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Preface to ”Cancer Biomarkers in Body Fluids”

Over the next 20 years, a sharp rise in cancer cases is expected, increasing from 18.1 million

people diagnosed in 2018 to an expected 29.5 million people in 2040 (Global Cancer Observatory;

WHO). Cancer burden can be reduced by promoting prevention campaigns, increasing early

detection, and implementing personalized cancer therapies. In such a scenario, the identification

of circulating biomarkers in body fluids is emerging as a breakthrough in cancer diagnostics for the

relative ease of obtaining biological samples using minimally invasive procedures before, during,

and after cancer treatment; additionally, the availability of groundbreaking technologies which

perform high-throughput and informative biomolecular analyses on limiting sample amounts is

boosting biomarkers screening studies. Recently, several scientific publications have provided proof

of principle studies which show the great advantage of using circulating biomarkers to monitor

exposure to cancer risk factors, increase the accuracy of cancer screening protocols, and detect

actionable therapeutic targets. Liquid biopsy shows promise for cancer screening and diagnostics,

though some technical challenges still remain.

Fabrizio Bianchi

Editor
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Simple Summary: Lung cancer is the leading cause of cancer death worldwide. Detecting lung
malignancies promptly is essential for any anticancer treatment to reduce mortality and morbidity,
especially in high-risk individuals. The use of liquid biopsy to detect circulating biomarkers such
as RNA, microRNA, DNA, proteins, autoantibodies in the blood, as well as circulating tumor
cells (CTCs), can substantially change the way we manage lung cancer patients by improving
disease stratification using intrinsic molecular characteristics, identification of therapeutic targets
and monitoring molecular residual disease. Here, we made an update on recent developments in
liquid biopsy-based biomarkers for lung cancer early diagnosis, and we propose guidelines for an
accurate study design, execution, and data interpretation for biomarker development.

Abstract: Lung cancer burden is increasing, with 2 million deaths/year worldwide. Current limi-
tations in early detection impede lung cancer diagnosis when the disease is still localized and thus
more curable by surgery or multimodality treatment. Liquid biopsy is emerging as an important
tool for lung cancer early detection and for monitoring therapy response. Here, we reviewed recent
advances in liquid biopsy for early diagnosis of lung cancer. We summarized DNA- or RNA-based
biomarkers, proteins, autoantibodies circulating in the blood, as well as circulating tumor cells
(CTCs), and compared the most promising studies in terms of biomarkers prediction performance.
While we observed an overall good performance for the proposed biomarkers, we noticed some
critical aspects which may complicate the successful translation of these biomarkers into the clinical
setting. We, therefore, proposed a roadmap for successful development of lung cancer biomarkers
during the discovery, prioritization, and clinical validation phase. The integration of innovative
minimally invasive biomarkers in screening programs is highly demanded to augment lung cancer
early detection.

Keywords: lung cancer; early diagnosis; biomarkers; liquid biopsy

1. Introduction

Lung cancer is an aggressive disease accounting for ~380,000 deaths/year only in
Europe (WHO; http://gco.iarc.fr; accessed on 21 April 2021) and ~2 million deaths/year
worldwide. With the COVID-19 pandemic, these rates are unfortunately expected to rise,
mainly due to delays in screening, hospitalizations and therapies, which will cause a
stage-shift for newly diagnosed lung tumors [1–3].

1
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Detecting lung malignancies promptly is essential for any anticancer treatment to
reduce mortality and morbidity, especially in high-risk individuals [4]. The US National
Lung Screening Trial (NLST) and other non-randomized trials [5] demonstrated that Low-
Dose Computed Tomography (LDCT) screening can reduce mortality (~20%). Recently,
the European NELSON trial has observed a lung cancer mortality reduction of ~25% at
10 years and up to ~30% at 10 years [6]. The drawback of LDCT screening is the presence
of uncertainties about high costs, risk of radiation exposure, and false positives observed
in the screening population [7], which may obstacle a fully safe large scale implementation
of the LDCT screening for lung cancer in Europe [8]. The false-positive rate is particularly
problematic, as suspicious nodules may require invasive investigations, causing unneces-
sary morbidity and reduced acceptance of screening among at-risk individuals. Therefore,
the integration of LDCT screening with innovative cancer biomarkers analyzable through
minimally invasive approaches aimed to increase screening accuracy is highly demanded.
Several pre-clinical studies have suggested that circulating molecules such as microRNA,
DNA, proteins, autoantibodies in the blood, as well as circulating tumor cells (CTCs), could
be potentially useful to diagnose lung cancer and increase screening accuracy [9–12]. In
addition, some studies in actual lung cancer screening cohorts confirmed the diagnostic
validity of measuring blood biomarkers for lung cancer early detection [13–15]. Yet, pitfalls
and caveats emerged during validation of some proposed biomarkers for lung cancer early
detection once applied to independent cohorts/multicenter studies and/or actual lung
cancer screening cohorts, which highlight the need to establish a roadmap to develop
effective biomarkers.

We reviewed the literature for the most promising biomarkers and relevant technical
issues, of which here we present a summary with the aim to propose guidelines for an
accurate study design and execution, and data interpretation for biomarker development.
We hope that these guidelines will aid further research and facilitate the translation of
circulating biomarkers into clinical setting.

2. Lung Cancer Biomarkers

In the last 10 years, there has been a sharp rise in published studies on lung cancer
diagnostic biomarkers, with over 544 papers published only in the last 5 years (Figure 1A).
However, a sizable fraction of these works relies on a relatively small cohort of samples
analyzed, without validation of biomarkers in independent cohorts and, more importantly,
in lung cancer screening trials. Ideally, robust biomarker(s) should facilitate the selection of
at-risk individuals independently of risk factors such as age and smoking habits, and/or
provide pathological information about indeterminate pulmonary nodules (IPNs) to aid
clinical decision making, and/or provide predictive/prognostic information. Here, we
focused on the most promising minimally invasive, reproducible and extensively validated
biomarkers assessed in prospective studies, including lung cancer screening trials.

2
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Figure 1. (A) Papers on lung cancer diagnostic biomarkers. PubMed free search engine which primarily accesses the MEDLINE
database was interrogated (April 2021) by using ‘advanced search’ tool and with the following MESH terms: Lung neoplasms;
Biomarkers; Diagnosis. (B) Schematic representation of best practice in biomarker development for early detection of lung cancer.
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2.1. DNA-Based Biomarkers

Circulating tumor DNA (ctDNA) was extensively investigated in the latest years due to
recent technological advances in the field of next-generation sequencing (NGS). Indeed, the
NGS technologies allow the analysis of custom panels of genes (i.e., targeted gene panels, TGP)
at an affordable cost (~330€ per sample; [16]) and the detection of mutant alleles presenting
with low frequency (<1%; [11,17,18]), which is mandatory when dealing with ctDNA, i.e.,
underrepresented among the more abundant cell-free DNA (cfDNA) of hematopoietic origin.
Although ctDNA was shown to be effective in the diagnosis of advanced lung cancer, the use
of ctDNA for detection of early stage lung tumors is suboptimal (with sensitivity ranging
from ~50%, [11,19] to 15% in the case of stage I NSCLC; [20]), which can be ascribable to
the rare amount of ctDNA present in blood samples of stage I disease patients; indeed, the
low proliferation/metabolic rate, and/or dismal tumor angiogenesis, and/or lack of necrotic
areas of these localized and tiny tumor lesions all contribute to a reduced ctDNA shedding, as
recent observations have suggested [21].

Furthermore, commercial TGPs are usually designed to track druggable cancer driver
mutations in more advanced cancer which, therefore, can be underrepresented in early
stage disease, i.e., characterized by lower intra-tumor genetic heterogeneity [22–24]. Con-
sequently, the chance to capture nucleotide variants in ctDNA of stage I is dismal. As an
alternative, some groups applied the CAncer Personalized Profiling by deep Sequencing
(CAPP-Seq) [11] in liquid biopsies to overcome the limited sensitivity of more standard
approaches. CAPP-seq introduced a preliminary bioinformatics approach to select target
genes containing regions recurrently mutated in the cancer of interest [11]. Despite signifi-
cant results reached by applying such technology to track molecular residual disease (MRD)
during lung cancer therapy [25], the application of CAPP-seq for diagnosis of early stage
lung cancer still resulted in a suboptimal sensitivity (~50% [21]). Whole-exome (WES) or
whole-genome (WGS) sequencing [26] of ctDNA, covering the entire set of known human
genes in order to overcome limitations of TGP, have been also attempted [27]. However, it
should be kept in mind that the larger the gene panels, the more difficult it is to obtain high
sensitivity for mutation calling and to maintain affordable costs. The high level of ctDNA
fragmentation (~100–150 bp in size; [27,28]) should also be considered when designing li-
braries for NGS. Other caveats in the detection of ctDNA are related to clonal hematopoiesis
(CH), i.e., an age-dependent process determining the accumulation of somatic mutations
in hematopoietic stem and progenitor cells ultimately leading to the clonal expansion of
mutated hematopoietic cells; CH accounts for the non-tumor derived mutations detected
from plasma [29]. Therefore, it is worth considering to sequence matched white blood cell
(WBC) DNA and cfDNA to determine the tumor specific fraction of cfDNA mutations.

Beyond detecting ctDNA mutations, other groups described methylation profiling
of cfDNA as a source of innovative minimally invasive cancer biomarkers. A global
hypomethylation of DNA is usually observed in cancer cells, yet hypermethylated regions
overlapping with CpG islands promoters of tumor suppressor genes were also discovered
and exploited to detect ctDNA [30]. The analysis cfDNA using specific methylation
signatures to estimate the ctDNA fraction was indeed showed to be a valuable approach
for diagnostic and prognostic purposes in lung cancer [31,32]. In a recent large trial with
a multi-cancer cohort of over 6000 participants, the methylation profile of ctDNA was
found to be highly specific (~99.3%) and to reach an acceptable sensitivity of 67.3% in a
set of 12 cancer types and including lung cancer. However, sensitivity dropped down
when analyses were limited to early-stage disease (39%; <25% in lung cancer) [33], thus
suggesting the need for further investigation of cfDNA methylation signatures in actual
lung cancer screening trials for refinement and validation.

2.2. RNA-Based Biomarkers

Different circulating RNA species (microRNA, miRNA; piwi-interacting RNAs, piRNA;
transfer RNAs, tRNA; small nucleolar RNAs, snoRNA; small nuclear RNAs, snRNA) were
identified in the human serum [34]. Circulating microRNAs (c-miRNAs) are predominant in

4
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the literature, and their remarkable stability in harsh conditions and resistance to circulating
RNAses [35] make them ideal candidates for developing lung cancer biomarkers. C-miRNAs
are released by virtually all human cells by passive (e.g., in apoptotic bodies, complexed
with AGO proteins) and active (e.g., in exosomes [36]/microvescicles) mechanisms [37],
and can influence tissue homeostasis by a sort of paracrine signaling [37] or by triggering
pathogenic mechanisms including neoplastic transformation and tumor progression [38,39].
Indeed, tumor cells, cancer-associated fibroblasts (CAFs) and blood cells were found to
release miRNAs in the microenvironment which then enter into the bloodstream [37,40].

Therefore, monitoring miRNA species and relative quantities in the blood represents
a valid strategy for early diagnosis of lung cancer. Few studies underwent an extensive
validation of c-miRNA as minimally invasive biomarkers for lung cancer early detection
(Table 1). Montani et al. validated [13] a serum 13 c-miRNAs signature (miR-Test) by
using the qRT-PRC in high-risk individuals (n = 1115; >20 pack-year smoking history, aged
>50 years) enrolled in an Italian LDCT screening trial (the COSMOS study), which showed
a sensitivity of 0.78, a specificity of 0.75, and an AUC of 0.85. Likewise, Sozzi et al. [14]
validated a 24 c-miRNA signature (the MSC classifier) by using the qRT-PCR in plasma sam-
ples of high-risk subjects enrolled in another Italian LDCT screening study (the bioMILD
study; n = 939 participants), with a sensitivity of 0.87 and a specificity of 0.81. Wozniac
et al. [41] analyzed plasma samples of 100 non-small cell lung cancer (NSCLC) patients
(stage I–IIIA) and 100 healthy subjects, using the same qRT-PCR technology as the one used
by the Italian studies, and identified another set of 24 miRNAs showing a predicted AUC of
0.78 when accounting for overfitting [41]. In Table S1, we reported overlapping c-miRNAs
in the various signatures identified by qRT-PCR.Notably, authors meta-analyzed the MSC
classifier as well as another 34 c-miRNA signature identified by Bianchi et al. [9] (from
which the miR-Test was derived) and reported an AUC of 0.70 and 0.78, respectively [41].

In multiethnic and multicentric studies on NSCLC patients and matched controls (lung
cancer-free or with benign lung nodule individuals), Wang et al. [42] and Ying et al. [43],
using the qRT-PCR, have identified two serum c-miRNA diagnostic signatures composed
by 5 miRNAs each (miR-214 was commonly found; Table S1). Other studies using different
screening platforms, such as microarray analysis of serum samples [44] or whole-blood
samples [45], have identified lung cancer diagnostic c-miRNA using large cohorts of
clinically detected lung cancer patients (Table 1).

Table 1. List of studies reporting the development of c-miRNA-based biomarkers diagnostic for
lung cancer.

Authors PubMed ID miRNA (n) AUC Sample Type LDCT

Boeri et al. [46] 21300873 13 0.88 Plasma Yes
Sozzi et al. [14] 24419137 24 - a Plasma Yes
Bianchi et al. [9] 21744498 34 0.89 Serum Yes

Montani et al. [13] 25794889 13 0.85 Serum Yes
Wozniak et al. [41] 25965386 24 0.78 b Plasma No

Shen et al. [47] 21864403 3 0.86 Plasma No
Lin et al. [48] 28580707 3 0.87 Plasma No

Chen et al. [49] 21557218 10 0.97 Serum No
Wang et al. [42] 26629532 5 0.82 Serum No
Ying et al. [43] 32943537 5 0.91–0.97 Serum No
Zhu et al. [50] 27093275 4 0.97 c Serum No

Nadal et al. [51] 26202143 4 0.99 Serum No
Asakura et al. [44] 32193503 2 0.99 Serum No

Fehlmann et al. [45] 32134442 15 - d Blood No
The number of miRNA (n) in each diagnostic signature is reported together with the performance (AUC, i.e.,
area under curve) and the type of biospecimen where biomarkers were derived (Serum or Plasma). LDCT,
studies which performed validation of biomarkers on actual LD-CT screening trials (Yes). a Sensitivity, 88% and a
specificity of 80%; b Predicted performance when applied to independent samples. c miRNAs combined with
carcinoembryonic antigen (CEA). d Sensitivity, 82.8%, and a specificity of 93.5%. PubMed identifiers (PubMed ID)
are reported to allow retrieving cited publications.

5
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Despite the proven validity of most of these c-miRNA signatures for early diagnosis of
lung cancer, there are still limitations in their application in medical laboratories. Challeng-
ing issues related to sample processing and miRNA profiling, pre-analytical and analytical
standardization as well as the considerable cost of sophisticated technologies, make the
translation of such biomarkers from the bench to the bedside very complicated.

Later, we will further discuss some of these limitations with the aim to provide
guidelines for biomarker profiling and translation to the clinic.

2.3. Protein-Based Biomarkers

The ability of tumor antigens [12] and tumor-associated autoantibodies (TAABs) [52]
in body fluids to serve as potential biomarkers for lung cancer early detection has been
investigated for years. In 2015, Doseeva et al. [53] showed that the combined use of tumor
antigens (CEA, CA-125, and CYFRA 21-1) and autoantibodies (NY-ESO-1) was accurate
enough (sensitivity, 77%; and specificity, 80%) for the early detection of NSCLC among
high-risk individuals. Analysis of CEA and CA-125 among others protein biomarkers (i.e.,
CA19-9, PRL, HGF, OPN, MPO and TIMP-1) were also included in a multi-analyte blood
test (CancerSEEK; [19]), which increased the sensitivity in tumor detection when combined
with ctDNA mutation profiling [19].

A large number of studies, systematically reviewed by Yang and colleagues [54],
showed that lung cancer patients produce antibodies recognizing self-antigens (i.e., TAAbs).
These TAAbs were tested as potential biomarkers for lung cancer detection at different
stages of tumor progression. Among TAAbs, the New York esophageal squamous cell
carcinoma-1 (NY-ESO-1) autoantibodies appeared to be most promising for NSCLC detec-
tion alone or in combination with other TAAbs [54]. However, the diagnostic utility would
be more evident if patients affected by bona fide autoimmune disease could also be included
in the analysis, in order to test whether TAAbs are actually specific for lung cancer.

Recently, the detection and quantification of complement activation fragments in plasma
samples from high-risk individuals who underwent LDCT screening were found to be a valid
strategy to identify lung cancer biomarkers [15]. A simple diagnostic model based on the
quantification of complement-derived fragment C4c and cancer antigens, i.e., 21.1 (CYFRA
21-1) and C-reactive protein (CRP), was able to discriminate between benign and malignant
pulmonary nodules (AUC, 0.86), with a high specificity (92%) in a cohort of individuals
enrolled in a CT-screening program. This was an important finding due to the considerable
fraction (~24%; [5]) of false positive findings by LDCT at the baseline. Authors also showed
that the model combined with clinical factors can be valuable in patients with indeterminate
pulmonary nodules (IPNs) to decide for more effective therapeutic strategies [55].

2.4. Immune Serum Conversion as Biomarker for Lung Precancerous Lesions

Quantification of inflammation, via measurement of systemic levels of pro-inflammatory
cytokines released by activated immune cells, showed a correlation between inflammation
and a higher risk for lung cancer incidence in smokers [56,57]. On the other hand, exten-
sive independent analysis of cohorts of non-smokers confirmed the association between
sustained inflammation and a higher risk of developing lung cancer [58–68]. In this sense,
pro-inflammatory immune activity, which is reflected in the level of circulating cytokines,
may be a contributing factor to tumorigenesis in the lung.

The immune system affects not only the tumorigenesis, but also the progression of the
disease [69–71]. Thus, whilst research efforts have focused on inflammatory mediators for
their potential roles as risk factors for lung cancer in healthy individuals, in parallel, inflam-
matory mediators have also been assessed for their role in tumor progression in patients
with established tumors. Even early stage premalignant lesions are highly infiltrated by
immune cells, suggesting that the immune system may affect the transition to malignant
lesions [72]. Thus, inflammatory cytokines could drive the progression to malignancy. To
date, a detailed and systematic characterization of circulating inflammatory cytokines in
patients bearing premalignant lesions in the lungs is still largely missing.
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Interestingly, in line with the hypothesis that chronic inflammation is detrimental
during carcinogenesis and cancer progression, Ridker and colleagues have recently demon-
strated that atherosclerotic patients treated systemically with canakinumab, an antibody
inhibiting pro-inflammatory cytokine IL-1β, are protected from lung cancer development,
most likely due to the reduction of pro-tumoral inflammation [73]. This seminal clinical
finding further highlights how circulating immune mediators may be pivotal for lung
cancer progression.

2.5. Circulating Tumor Cells (CTCs) for Lung Cancer Screening

In 2014, a ground-breaking paper showed that, by using a size-based enrichment tech-
nology (ISET®, Isolation by Size of Epithelial/Tumor cells), it was possible to detect cells
with morphological features of malignancy (i.e., circulating tumor cells, CTCs) in blood
samples of patients suffering of chronic obstructive pulmonary disease (COPD) [74]. The
presence of CTCs was shown to anticipate the radiological diagnosis of stage I NSCLC [74],
thus leading to an increasing interest around the diagnostic role of CTCs and their imple-
mentation as a possible biomarker in lung cancer screening programs.

CTCs can be defined as tumor cells in transit in the circulatory system. They originate
from primary and secondary tumor sites and are endowed with the molecular features
needed to overcome some of the numerous and challenging steps of the metastatic cascade,
including intravasation, survival in the blood microenvironment and dissemination to
distant organs [75,76]. CTCs are rare events, mixed with a huge number of other cell types,
mainly erythrocytes (3.5–7 billion/mL) and leukocytes (4–11 million/mL), and occurring
at a variable frequency, even less than 1 cell per milliliter of peripheral venous blood
depending on the tumor type and stage [77,78].

CTC detection for lung cancer diagnosis was found to be promising in initial and
explorative studies by Hofman and colleagues [10,74]. The same research group then
launched a large multicenter prospective French trial (AIR study, NCT02500693), which
enrolled a cohort of 614 high-risk subjects according to the NLST-UPSTF criteria (aged
55–74 years, 30 or more pack-year smoking history; current smokers or heavy smokers
having quit in the last 15 years) in order to assess the diagnostic accuracy of CTCs detected
by the ISET® technology. However, the sensitivity of CTC analysis in detecting 19 lung
cancers found at first low-dose computed tomography (LDCT) scan was low, i.e., ~26% [79].

Encouraging results in terms of detection rate were recently obtained using a 4-color
FISH test (Table 2) performed on the peripheral blood mononuclear cell (PBMC) fraction
isolated by density gradient centrifugation. Through this technique, it was possible to detect
cells with at least 2 polysomies or gains in 4 loci involved in the NSCLC tumorigenesis
or prognosis (i.e., at 10q22.3, 3p22.1, 3q29 loci, or at chromosome 10 centromere) in 89%
of 107 patients with ≤30 mm diameter pulmonary nodules. Contrariwise, none of the
100 lung cancer-free control cases were scored positive when the cut-off value was ≥3 cells
with genome abnormalities. Overall, sensitivity was 88.8%, specificity 100%, and accuracy
94.2% [80]. Although the frequency and number of PBMCs with aneuploidy was higher in
patients compared to controls, both the validity of a cut-off value of at least 3 cells with
aneuploidy to call as CTC-positive a lung cancer patient and the significance of the presence
of a maximum of 2 cells with aneuploidy in individuals at high risk for lung cancer should
be confirmed in further case series. However, this paper suggests that looking at the entire
PBMC population, rather than selecting specific subsets of cells, and using DNA-based
detection techniques could considerably augment test sensitivity and specificity. In another
work the introduction of alternative protein markers besides cytokeratins (CKs), such as
the glycolysis enzyme hexokinase 2 (HK2), increased the detection of CTCs in a cohort of
18 stage III lung adenocarcinoma patients without clinical evidence of distant metastases
from 39% when considering CKposCD45neg to 61% when considering HK2highCD45neg cell
subsets [81]. This suggests that using epithelial markers alone may not be sufficient to
detect CTCs in non-metastatic setting, and that by adding other markers such as metabolic
gene expression analysis can improve lung cancer diagnostic accuracy.
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Compared to cell-free circulating biomarkers, circulating cells represent an ideal and
promising systemic ‘surrogate’ of a tissue as they offer the opportunity to investigate the
entire cell at morphological, protein, RNA and DNA level, and to develop experimental
models for functional studies. However, the analysis of CTCs in blood samples requires
the enrollment of trained personnel and the acquisition of dedicated technologies to enrich
blood samples and detect target cells unambiguously. Results of studies in the diagnostic
and preoperative setting demonstrate that the accuracy and clinical validity of each kind of
technical approach for CTC analysis is still variable and has to be carefully assessed and
confirmed in large multicenter and validation trials.

3. A Roadmap to the Successful Development of Blood-Based Biomarkers for Lung
Cancer Early Detection

The bottleneck for the successful translation of biomarkers to the clinical use generally
lies in the suboptimal standardization in each step of the biomarker pipeline, including
discovery, prioritization, and clinical validation. We prepared a summary of the main
issues and the best practices in biomarker development (Figure 1B). The first fundamental
step in biomarker discovery is establishing a high-quality design which includes making
explicit hypotheses on the potential application/integration into current recommended
screening programs as well as adopting enrollment protocols with clear inclusion and
exclusion criteria for patients and controls. Moreover, heterogeneity (epidemiological,
biological and molecular) needs to be considered as the driver for adequate sample size to
fulfill the best design. Indeed, published studies often lack acceptable sample size with
respect to the numerous phenotypic features that should be considered to widely represent
the screening population [88], and the number of variables that should be analyzed to
deconvolute the high level of genetic heterogeneity of lung cancer. To limit self-selection
bias, instead of convenience selection of subjects (based on easy availability of the sam-
ple) [89], control populations should be identified based on matching criteria with the
patients’ cohort, and extensively represent the actual incidence and prevalence of lung
cancer in the screening population.

In the absence of standards for handling specimens (collection, storage and processing)
and controls for pre-analytical factors, randomization and blinding should be applied to
reduce bias from the experimental analysis. Indeed, quality and reproducibility of biomark-
ers can be influenced by uncontrolled pre-analytical conditions (i.e., fasting, lipemia, partial
hemolysis [90]) and by sample collection bias, especially when the biomarker is labile or
sensitive to temperature fluctuation or handling conditions (i.e., type of collection tubes,
centrifugation steps, long-term or short-term storage, freeze/thaw cycles; [91,92]). We
therefore suggest performing initial pilot experiments to measure the stability of circulating
biomarkers, i.e.: (i) by testing different samples collection strategies, using different col-
lection tubes for serum or plasma collection [93–96]; (ii) quantifying how much hemolysis
(partial or hidden) can influence biomarker concentration [97,98], (iii) checking if analyte
concentration is influenced by fasting status [90], and (iv) testing if different storage condi-
tions (short-term vs. long-term; +4 or −20/−80 ◦C or liquid nitrogen) can alter biomarker
quantity and quality [90]. After such analyses, a standard operating procedure (SOP) for
sample collection and handling should be defined and rigorously applied to the specific
biomarkers screening study.

Nowadays, high-throughput data allow the identification of many biomarkers act-
ing jointly on the risk of lung cancer; these markers can be easily combined in a single
multivariable statistical model; moreover, to avoid the resulting possible overfitting (i.e.,
capturing noise instead of the true underlying data structure), machine learning approaches
with sample-splitting or cross-validation should be considered [99]. The performance of
a new biomarker for the early detection of cancer is easily measured by true-positive
and false-positive rates, and summarized through receiver operating characteristic curves
(ROC). However, the “average” performance is often presented in the literature, with ROC
calculated across all study subjects, while subgroup and/or multivariable analysis should
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better reveal the utility of biomarker testing in specific groups (i.e., tumor stages, nodule
density, histotypes).

Exploration of biomarkers’ performance in subgroups could also help with ranking
the selected candidates for clinical relevance. Moreover, when a new biomarker study is
published, only limited discussion on the biological function of the candidates is reported,
and assay/platform reproducibility and standardization are frequently lacking (see below).
In our experience, an in-depth analysis of technical and biological variables which might
have an impact on the detection and quantification of selected biomarkers should also be
performed. For example, uncontrolled environmental conditions during sample processing
could influence the quantification of biomarkers of interest. Marzi et al. [90] showed, by
using an automated purification system based on spin columns for nucleic acid purification,
that efficiency in miRNA extraction was inversely proportional to temperature increase
during daily runs. Similar findings were also described by other research groups [100].

In the case of analysis of multiple biomarkers (e.g., DNA, RNA and protein), the
collected samples (whole blood, plasma, serum) can be split in several aliquots which can
be differently prioritized for processing based on stability of the biomarkers of interest;
in case of RNA, which is more liable, the relevant sample aliquot can be processed imme-
diately while other aliquots (for other biomarker types) can be processed subsequently.
Likewise, the use of different extraction kits with or without additional centrifugation
steps could affect quantities and species of the biomarkers of interest. Cheng et al. [101]
showed that plasma samples can be contaminated by residual platelets, which impact most
miRNA measurements (~70%), therefore authors suggested to add pre- or post-storage
centrifugation steps in order to remove residual platelet contamination. Furthermore,
miRNA quantities may vary depending on the kit used for extraction [102,103].

To keep track of the impact of these pre-analytical and analytical variables, we strongly
recommend using endogenous and exogenous controls. In circulating miRNA, biomarker
analysis measuring both endogenous controls (e.g., RNU6, RNU44, miR-16 [104]) and exoge-
nous controls, e.g., synthetic miRNAs from other organisms (ath-miR-159a and/or cel-miR-39),
allows monitoring sample degradation, extraction efficiency and performance of miRNA
detection by using different screening platforms (e.g., qRT-PCR, ddPCR, microarray, NGS).

Lastly, the analytical translation in a clinically applicable platform and validation in
a large prospective trial are both needed to complete validation of candidate biomarkers.
Industrial and clinical partners could facilitate these phases, providing funding supports
and know-how in large-scale test production, regulatory affairs and commercialization [88].
A major issue in the validation of biomarkers for lung cancer early detection is to prove
its benefit in the context of screening programs, where lead- and length-time biases and
overdiagnosis are peculiar. Therefore, the choice of the end-point is essential and, although
biases could occur in interpreting causes of death, lung-cancer mortality reduction should
represent the primary endpoint [99], then followed by the evaluation of overall mortality.

4. Overview of Platforms for Circulating Biomarkers Detection: A Focus on
c-miRNA Detection

The performance of different screening platforms available in terms of sensitivity,
specificity and reproducibility, as well as relative costs of analysis should also be considered
in advance before starting biomarkers profiling. As previously described, c-miRNAs
are the most discussed in the literature as promising biomarkers for lung cancer early
diagnosis. Besides the several pre-analytical and analytical factors, which can impinge on
the biomarker reliability as we previously discussed, some considerations should be made
on the impact on the accuracy of c-miRNA biomarkers when using different experimental
platforms and technologies for biomarkers detection.

To quantify c-miRNA expression, a variety of platforms have been developed so far,
mainly based on quantitative PCR (qRT-PCR), microarray, or next-generation sequencing
(NGS) technology. Recently, the efficiency and concordance of different miRNA profiling
platforms were assessed [105–108]. In 2014, Mestdagh et al. [105] analyzed the expres-
sion level of 196 common miRNAs measured by 12 different application platforms to
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provide a sort of “miRNA quality control (miRQC)” analysis. They performed experi-
ments with high and low RNA input amounts and organized output measurements into
four groups to represent the various testing questions, i.e.: reproducibility, specificity,
sensitivity, and accuracy [105]. Similar qRT-PCR platforms showed a different perfor-
mance in terms of reproducibility and specificity [105]. Sensitivity, on the other hand,
is very much technology-related, with qRT-PCR platforms (i.e., TaqMan Cards PreAmp;
ThermoFisher) being superior to hybridization- (i.e., microarray) and sequencing-based
platforms. Furthermore, the hybridization platforms displayed higher specificity, but lower
detection rates compared to most of the qRT-PCR and sequencing platforms [105]. Overall,
the authors reported that sensitivity and specificity have a deep and important inverse
relationship [105].

Next-generation technologies are now also available for miRNA profiling. For ex-
ample, Small RNA sequencing (RNA-Seq), in particular, was reported to be superior for
discovery studies, but less useful for high-throughput or fast turnaround applications [105].
Furthermore, when various RNA isolation and library preparation protocols are used,
the reproducibility of small RNA-seq is significantly and negatively affected [106,109].
Recently, Godoy et al. [107] evaluated a small RNA-seq method optimized for low-input
samples [106,110,111] (i.e., liquid biopsy) to three relatively novel platforms, i.e., (i) the HTG
Molecular’s EdgeSeq miRNA Whole Tran-scriptome Assay (EdgeSeq), (ii) the Abcam’s
FirePlex (FirePlex), and (iii) NanoString’s nCounter (nCounter). These three platforms
were selected for their rapid turnaround time and ease of use, properties that are attrac-
tive for biomarker assays. The authors used pools of synthetic RNA oligonucleotides
and standardized extracellular RNA human plasma samples to assess reproducibility,
bias, specificity, sensitivity, and accuracy. Briefly, the authors concluded that: (i) small
RNA-seq was the most accurate, sensitive and specific method with an AUC of 0.99 for
miRNA detection, which was superior to EdgeSeq (AUC = 0.97), nCounter (AUC = 0.94)
or FirePlex (AUC = 0.81); (ii) EdgeSeq was the most reproducible and had the least de-
tection bias; and (iii) nCounter was less sensitive than small RNA-seq, EdgeSeq, and
FirePlex. Recently, Hong LZ et al. [108] performed a systematic evaluation of multiple
qPCR platforms (MiRXES ID3EAL, Qiagen miScript, TaqMan Cards preAMP, Exiqon LNA),
nCounter technology (NanoString) and miRNA-Seq for microRNA biomarker discovery
in human biofluids. Performance parameters such as reproducibility, detection rate, and
inter-platform correlation were used to evaluate each technology. MiRXES qRT-PCR and
miRNA-Seq platforms had an almost perfect reproducibility between runs, calculating
the Concordance Correlation Coefficient (CCC = 0.99), while the other three qRT-PCR
platforms had moderate inter-run concordance (CCC > 0.9), and the NanoString platform
had poor inter-run concordance (CCC = 0.82). The MiRXES qRT-PCR and NanoString
platforms detected the highest and the lowest number of miRNAs above the LLOQ (lower
limit of quantification) in serum samples, respectively. The authors concluded that the
miRNA-Seq technology is preferable for discovery, while targeted qRT-PCR for subsequent
validation of candidate extracellular miRNA biomarkers is recommended.

Finally, the droplet digital PCR (ddPCR) technique is becoming the gold standard in
the application of liquid biopsy due to a number of advantages: (i) it allows an absolute
quantification by means of sample partitioning and Poisson statistics (an internal/external
normalization is thus not required); (ii) it has a superior precision and sensitivity in de-
tecting low-abundant targets; (iii) it is less affected by PCR inhibitors [112–115]. However,
ddPCR is less frequently used for c-miRNA measurements due also to a restricted mul-
tiplexing capacity, longer turnaround time for sample processing, and higher costs. In
Table 3, a summary of the pros and cons of c-miRNA screening technologies is provided.
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5. Discussion

Cancer biomarkers substantially change the way we manage lung cancer patients by
improving disease stratification using intrinsic molecular characteristics, identification of
therapeutic targets and monitoring molecular residual disease. However, the application
of biomarkers for lung cancer early diagnosis is still limited by a lack of substantial
trial-like research studies where the accuracy of proposed biomarkers is analyzed in
real-world datasets. Previous studies highlighted pros and cons of different circulating
biomarkers proposed for lung cancer detection and possible integration in the clinical
routine (reviewed in Seijo et al. [116]). Circulating biomarkers can be very effective to
inform clinical decision making in the management of indeterminate pulmonary nodules
(IPNs) and in the management of diagnosed and resected lung cancer patients. Current
management of IPNs is largely based on watchful waiting and may imply a risk of disease
dissemination. Nodules found on annual LDCT screening, which are frequently very small
in size and hamper current biopsy techniques, may benefit from an integrated risk model,
which includes the different sources of information: clinical, imaging and biomarkers. This
type of integrated risk model might also inform decisions regarding screening intervals,
personalized follow-up of lung cancer patients, and prognostication.

Here, we made an update on recent developments in liquid biopsy-based biomarkers
for lung cancer early diagnosis and proposed a roadmap for optimal biomarkers identifi-
cation and development. A limit of this study is that we opted for a focused analysis on
extensively validated biomarkers in large cohorts of samples including lung cancer screen-
ing studies rather than describing all circulating biomarkers proposed in the literature.

We have also brought to light the current limitations in biomarker research, which can
be briefly summarized in: (i) poorly designed studies for biomarker discovery and vali-
dation; (ii) uncontrolled pre-analytic and analytic variabilities lacking standard operating
procedures; (iii) frequent lack of validation studies using independent cohorts of samples
collected from lung cancer screening studies; and (iv) somewhat sophisticated technologies
for biomarker profiling that are hard to transfer to the clinical setting.

Biomarker research clearly offers substantial help in the characterization of at-risk
population subgroups for screening selection and—more importantly—in the identification
of disease precursors, predictive and prognostic factors before signs and symptoms of
the disease appear. In particular, the analysis of liquid biopsies (i.e., plasma/serum) is
emerging as promising for the quantification of biomarkers through also the use of lab-
on-chip technologies, which would allow a rapid disease detection/monitoring and a
biological characterization at the bedside [117,118]. Furthermore, genomic and proteomic
breath tests besides airway epithelium signatures, are being trialed for early and non-
invasive diagnosis of cancer and pulmonary disease, in particular for lung cancer and
COPD [119,120]. Likewise, new emerging RNA-based biomarkers such as long non-
coding RNA (lncRNA), circular RNA (circRNA) and platelets mRNAs have been described
circulating in the blood with a potential for lung cancer early detection (Tables S2–S4;
Figure 2).
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Figure 2. Forest plot showing the AUC and 95% confidence interval (when reported) for c-miRNA-based signatures (listed
in Table 1) and other RNA-based biomarkers (listed in Tables S2–S4). Red squares represent the AUC for each marker and
black vertical bars extend from the lower limit to the upper limit of the 95% confidence interval (95% CI).

6. Conclusions

Thus far, all these multi-source biomarkers have never been combined into a coordi-
nated and comprehensive workup for screening, diagnosis and treatment decision. The
main barrier consists of difficulties in organizing worldwide large-scale studies with cen-
tralized resources for data/sample collection and processing following standard operating
procedures. In addition, it is urgent to develop innovative approaches using big data and
artificial intelligence (AI) analytics, such as machine learning, to improve both lung cancer
early detection, personalized prevention strategies, and early treatments. We therefore
look forward for these next-generation biomarkers in lung cancer screening programs to
ameliorate early diagnosis, prognosis, and therapeutic response.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13153919/s1, Table S1: List of circulating miRNA markers diagnostic for lung cancer
analyzed by qRT-PCR, Table S2: List of circulating lncRNA markers diagnostic for lung cancer, Table
S3: List of circulating circRNA and pri-miRNAs markers diagnostic for lung cancer, Table S4: List of
mRNA platelets markers diagnostic for lung cancer.
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Simple Summary: Exosomes are small vesicles of 100 nm in size that are released from every cell
constantly. They contain different molecules (DNA, RNA, lipids, metabolites, etc.) that reflect
the content of the cell they come from. Exosomes can be found in all biological fluids. In cancer,
exosomes are involved in several events such as tumor growth, metastasis, and the immune response,
by delivering their cargos to recipient cells. Due to their unique features, exosomes have become
promising analytes in the field of liquid biopsy, which searches for biomarkers to manage different
steps of the tumor process. We believe that exosomes will become an important tool in liquid biopsy
in the near future. In this review we provide an updated literature compilation about exosomes as
biomarkers in oncology and discuss their possibilities and limitations.

Abstract: Among the different components that can be analyzed in liquid biopsy, the utility of
exosomes is particularly promising because of their presence in all biological fluids and their potential
for multicomponent analyses. Exosomes are extracellular vesicles with an average size of ~100 nm
in diameter with an endosomal origin. All eukaryotic cells release exosomes as part of their active
physiology. In an oncologic patient, up to 10% of all the circulating exosomes are estimated to be
tumor-derived exosomes. Exosome content mirrors the features of its cell of origin in terms of DNA,
RNA, lipids, metabolites, and cytosolic/cell-surface proteins. Due to their multifactorial content,
exosomes constitute a unique tool to capture the complexity and enormous heterogeneity of cancer
in a longitudinal manner. Due to molecular features such as high nucleic acid concentrations and
elevated coverage of genomic driver gene sequences, exosomes will probably become the “gold
standard” liquid biopsy analyte in the near future.

Keywords: exosomes; cancer; liquid biopsy; biomarkers

1. Exosome Biogenesis and Composition—Reflecting Their Origin

Exosomes are extracellular vesicles (EVs) with a size range of ~40 to 160 nm (average
~100 nm) in diameter with an endosomal origin. All eukaryotic (and also prokaryotic) cells
release exosomes as part of their active physiology [1].

Exosomes are generated in a process of sequential invagination of the plasma mem-
brane that results in the formation of multivesicular bodies (MVBs), which can intersect
with the trans-Golgi network, endoplasmic reticulum, or other intracellular vesicles, con-
tributing to the content heterogeneity of exosomes. Within the cell, the MVB can either fuse
with lysosomes or autophagosomes to be degraded or fuse with the plasma membrane to
release the contained vesicles (exosomes). Exosome biogenesis is reflected in the presence
of a variety of proteins either integrated in their membrane or as exosomal cargo: small
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Rab family GTPases; annexins and flotillin; Alix, Tsg101, and ESCRT complex; tetraspanins
CD9, CD63, and CD81; or heat shock proteins Hsp70 [2–5]. ExoCarta, an exosome database
(http://exocarta.org/; accessed on 27 April 2021), has been developed to identify exosomal
contents. Approximately 10,000 different proteins have been characterized in relation to
the exosomal component [6]. Figure 1 shows the main exosome components.
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Figure 1. Components of an exosome. Exosomes contain a wide variety of molecules of different
natures, such as nucleic acids, proteins, or lipids. All the content at both the membrane and soluble
levels represents the cell of origin the exosome is release from.

How DNA is contained in exosomes is far from being resolved and is still contro-
versial. It has been shown that DNA-containing micronuclei that originate from nuclear
membrane collapse can interact with exosomal tetraspanins, leading to the shuttling of the
DNA in MVBs [7]. Also, mitochondria produce vesicles containing mtDNA that reach the
endolysosomal system to form MVBs (reviewed in [8,9]).

Exosome production varies depending on the cellular origin, metabolic status, and
cellular microenvironment. One unresolved question about exosomes today is to dis-
tinguish tumoral-origin exosomes from non-tumoral counterparts. Moreover, it is still
unclear how exactly the exosomal content is selected and loaded into vesicles and how
exosomal trafficking is regulated. To solve these questions, it is crucial to fully understand
the biology of exosomes. This better knowledge is an essential requirement for future
clinical applications of exosomes as diagnostic (and even treatment) tools.

2. Exosomes: A Source of Biomarkers

The path towards more precise and personalized management of cancer patients is
currently focused on the development of novel non-invasive biopsy technologies that are
easy to obtain, may be repeated over time to follow longitudinally the progression of the
disease, and may be able to reflect the phenotypic and genetic heterogeneity of the tumor.
Liquid biopsy (LB) offers all of these potential benefits. LB is based on the search for
biomarkers that may help clinical decision making. Those biomarkers may be applied to
screening/early diagnosis, prognosis, prediction of response or resistance to treatments,
detection of minimal residual disease, confirmation of relapse, disease monitoring, etc.
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Among the different components that can be analyzed in liquid biopsy, the utility
of EVs is particularly promising because of their presence in all biological fluids and
their potential for multicomponent analyses. The concentration of analytes in membrane-
surrounded vesicles may potentially allow for higher sensitivity and specificity over
other types of liquid biopsy looking for single and even multiplexed free circulating
biomarkers [10,11]. Exosomes are the most abundant analyte within the liquid biopsy,
reaching 1 × 1011 particles per milliliter of blood. In an oncologic patient, up to 10% of all
the circulating exosomes will be tumor-derived exosomes depending on tumor stage [12].
Figure 2 describes liquid biopsy analytes and their concentrations. Exosome content
mirrors the features of its cell of origin in terms of DNA, RNA, lipids, metabolites, and
cytosolic/cell-surface proteins. In addition, exosome content has a number of advantages
in comparison to other liquid biopsy analytes. First, exosomes contain high-quality RNA
that can be extracted from fresh or frozen fluids. Second, different types of RNA are
contained in exosomes, including miRNA [13,14], piwi-interacting RNA, pseudo-genes,
lncRNA, tRNA, and mRNA including different splice isoforms found in the cells of origin.
Third, exosomes are released from viable tumor cells. Furthermore, their DNA recapitulates
the entire genome and the mutational burden of the parental tumor, a great advantage
compared to ctDNA, where DNA is fragmented. Evidently, it is significantly more difficult
to obtain information about the specific DNA alterations pursued in a given analysis or,
worse, to obtain the sequence of the entire genome from highly fragmented circulating
DNA [15,16]. In addition, as exosomes contain both RNA and DNA (reflecting tumor
mutations), the use of a single platform to study both molecular species is a clear advantage
for finding rare or not-abundant mutations. Finally, the protein content of a single exosome
reaches up to 400 unique proteins [17,18].
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Figure 2. Liquid biopsy analytes. In the bloodstream, many components can be found, cellular or non-cellular in nature.
Some of them constitute liquid biopsy analytes (marked with an asterisk). Higher concentrations of analytes (in parentheses)
will facilitate isolation techniques and subsequent analysis. Data taken from [12].

Therefore, the fact that exosomes include several molecules that can be considered
as potential biomarkers, alone or in combination, increases the possibility of success in
the pursuit of a good LB biomarker, which is a clear advantage over the other LB analytes.
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Moreover, the number of released exosomes could also be considered a clinical indicator
itself (see Section 3).

Table 1 summarizes information rendered by different analytes of LB and shows the
potential clinical applications of them as biomarkers.

Table 1. Liquid biopsy analytes: features, extractable information, and clinical applications as biomarkers. Table adapted
from [19].

Traits
Liquid Biopsy Analyte

CTCs 1 ctDNA 2 Exosomes ctRNA 3 miRNA

Origin
Viable cells 4 4
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Single-cell information ✔ ✖ ✖ ✖ ✖ 

Application in personalized medicine      

Diagnosis ✔ ✔ 8 ✔ ? ✔ 
Classification of molecular subtypes ✔ ✔ ? ? ✖ 

Clonal evolution tracking ✔ ✔ ? ✖ ✖ 
Prognosis ✔ ✔ ✔ ? ✔ 

Recurrence ✔ ✔ ✔ ✔ ✖ 
Predictive ✔ ✔ ✔ ? ✖ 

Resistance prediction ✔ ✔ ✔ ? ✖ 
Monitoring treatment ✔ ✔ ✔ ? ? 

1 Circulating tumor cell; 2 circulating tumor DNA; 3 circulating tumor RNA; 4 yes; 5 no; 6 no data; 7 not applicable; 8 most probably.  

3. Exosome Heterogeneity: An Unknown Wealth? 
Exosomes constitute a heterogeneous population of vesicles. This heterogeneity 

arises from the combination of different parameters such as cellular origin, content, size, 
number, and functionality. These parameters interact directly with each other, making it 
very difficult to isolate one without entering the field of another. Within an organ, exo-
somes can be released from epithelial (tumoral or normal) cells, as well as from stromal 
cells, lymphocytes, etc. This discrimination could be possible due to the preservation of 
cell-type-specific membrane proteins on the exosome membrane. There have already been 
reports in the literature of some examples where, using well-known specific proteins 
found in exosomes, researchers were able to easily recognize and differentiate exosomes 
with breast or pancreatic origin [20,21]. 

The cellular origin of exosomes will determine their composition, at both the mem-
brane and soluble levels. Therefore, the second factor that creates heterogeneity among 
exosomes is their content. The content of exosomes also varies in response to many factors. 
It responds to different cellular stages such us metabolic wellness [22]. Thus, an exosome’s 
hallmarks will dynamically change as a result of the modifications that occur in their cell 
of origin. Moreover, tumor-derived exosomes (TEX) expressing different integrins or 
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Therefore, the fact that exosomes include several molecules that can be considered as 
potential biomarkers, alone or in combination, increases the possibility of success in the 
pursuit of a good LB biomarker, which is a clear advantage over the other LB analytes. 
Moreover, the number of released exosomes could also be considered a clinical indicator 
itself (see Section 3). 

Table 1 summarizes information rendered by different analytes of LB and shows the 
potential clinical applications of them as biomarkers. 

Table 1. Liquid biopsy analytes: features, extractable information, and clinical applications as biomarkers. Table adapted 
from [19].  
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Liquid Biopsy Analyte 

CTCs 1 ctDNA 2 Exosomes ctRNA 3 miRNA 
Origin      

Viable cells ✔ 4 ✖ 5 ✔ ? 6 ? 
Apoptotic cells ✔ ✔ ? ? ? 
Components      

DNA ✔ ✔ ✔ N.A.7 N.A. 
RNA ✔ N.A. ✔ ✔ ✔ 

Proteins ✔ N.A. ✔ N.A. N.A. 
Metabolites ✔ N.A. ? N.A. N.A. 

Extractable information      

Copy number variation ✔ ✔ ✔ ✖ ✖ 
Mutations ✔ ✔ ✔ ✔ ✖ 

Epigenetic information ✔ ✔ ✔ ✖ ✖ 
Fusion genes ✔ ✔ ✔ ✔ ✖ 

Splice variants ✔ ✖ ✔ ✔ ✖ 
Single-cell information ✔ ✖ ✖ ✖ ✖ 

Application in personalized medicine      

Diagnosis ✔ ✔ 8 ✔ ? ✔ 
Classification of molecular subtypes ✔ ✔ ? ? ✖ 

Clonal evolution tracking ✔ ✔ ? ✖ ✖ 
Prognosis ✔ ✔ ✔ ? ✔ 

Recurrence ✔ ✔ ✔ ✔ ✖ 
Predictive ✔ ✔ ✔ ? ✖ 

Resistance prediction ✔ ✔ ✔ ? ✖ 
Monitoring treatment ✔ ✔ ✔ ? ? 

1 Circulating tumor cell; 2 circulating tumor DNA; 3 circulating tumor RNA; 4 yes; 5 no; 6 no data; 7 not applicable; 8 most probably.  

3. Exosome Heterogeneity: An Unknown Wealth? 
Exosomes constitute a heterogeneous population of vesicles. This heterogeneity 

arises from the combination of different parameters such as cellular origin, content, size, 
number, and functionality. These parameters interact directly with each other, making it 
very difficult to isolate one without entering the field of another. Within an organ, exo-
somes can be released from epithelial (tumoral or normal) cells, as well as from stromal 
cells, lymphocytes, etc. This discrimination could be possible due to the preservation of 
cell-type-specific membrane proteins on the exosome membrane. There have already been 
reports in the literature of some examples where, using well-known specific proteins 
found in exosomes, researchers were able to easily recognize and differentiate exosomes 
with breast or pancreatic origin [20,21]. 

The cellular origin of exosomes will determine their composition, at both the mem-
brane and soluble levels. Therefore, the second factor that creates heterogeneity among 
exosomes is their content. The content of exosomes also varies in response to many factors. 
It responds to different cellular stages such us metabolic wellness [22]. Thus, an exosome’s 
hallmarks will dynamically change as a result of the modifications that occur in their cell 
of origin. Moreover, tumor-derived exosomes (TEX) expressing different integrins or 
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pursuit of a good LB biomarker, which is a clear advantage over the other LB analytes. 
Moreover, the number of released exosomes could also be considered a clinical indicator 
itself (see Section 3). 

Table 1 summarizes information rendered by different analytes of LB and shows the 
potential clinical applications of them as biomarkers. 

Table 1. Liquid biopsy analytes: features, extractable information, and clinical applications as biomarkers. Table adapted 
from [19].  
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Liquid Biopsy Analyte 

CTCs 1 ctDNA 2 Exosomes ctRNA 3 miRNA 
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Viable cells ✔ 4 ✖ 5 ✔ ? 6 ? 
Apoptotic cells ✔ ✔ ? ? ? 
Components      

DNA ✔ ✔ ✔ N.A.7 N.A. 
RNA ✔ N.A. ✔ ✔ ✔ 

Proteins ✔ N.A. ✔ N.A. N.A. 
Metabolites ✔ N.A. ? N.A. N.A. 

Extractable information      
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Epigenetic information ✔ ✔ ✔ ✖ ✖ 
Fusion genes ✔ ✔ ✔ ✔ ✖ 

Splice variants ✔ ✖ ✔ ✔ ✖ 
Single-cell information ✔ ✖ ✖ ✖ ✖ 

Application in personalized medicine      

Diagnosis ✔ ✔ 8 ✔ ? ✔ 
Classification of molecular subtypes ✔ ✔ ? ? ✖ 

Clonal evolution tracking ✔ ✔ ? ✖ ✖ 
Prognosis ✔ ✔ ✔ ? ✔ 

Recurrence ✔ ✔ ✔ ✔ ✖ 
Predictive ✔ ✔ ✔ ? ✖ 

Resistance prediction ✔ ✔ ✔ ? ✖ 
Monitoring treatment ✔ ✔ ✔ ? ? 

1 Circulating tumor cell; 2 circulating tumor DNA; 3 circulating tumor RNA; 4 yes; 5 no; 6 no data; 7 not applicable; 8 most probably.  

3. Exosome Heterogeneity: An Unknown Wealth? 
Exosomes constitute a heterogeneous population of vesicles. This heterogeneity 

arises from the combination of different parameters such as cellular origin, content, size, 
number, and functionality. These parameters interact directly with each other, making it 
very difficult to isolate one without entering the field of another. Within an organ, exo-
somes can be released from epithelial (tumoral or normal) cells, as well as from stromal 
cells, lymphocytes, etc. This discrimination could be possible due to the preservation of 
cell-type-specific membrane proteins on the exosome membrane. There have already been 
reports in the literature of some examples where, using well-known specific proteins 
found in exosomes, researchers were able to easily recognize and differentiate exosomes 
with breast or pancreatic origin [20,21]. 

The cellular origin of exosomes will determine their composition, at both the mem-
brane and soluble levels. Therefore, the second factor that creates heterogeneity among 
exosomes is their content. The content of exosomes also varies in response to many factors. 
It responds to different cellular stages such us metabolic wellness [22]. Thus, an exosome’s 
hallmarks will dynamically change as a result of the modifications that occur in their cell 
of origin. Moreover, tumor-derived exosomes (TEX) expressing different integrins or 
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Moreover, the number of released exosomes could also be considered a clinical indicator 
itself (see Section 3). 

Table 1 summarizes information rendered by different analytes of LB and shows the 
potential clinical applications of them as biomarkers. 
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DNA ✔ ✔ ✔ N.A.7 N.A. 
RNA ✔ N.A. ✔ ✔ ✔ 

Proteins ✔ N.A. ✔ N.A. N.A. 
Metabolites ✔ N.A. ? N.A. N.A. 
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Application in personalized medicine      

Diagnosis ✔ ✔ 8 ✔ ? ✔ 
Classification of molecular subtypes ✔ ✔ ? ? ✖ 

Clonal evolution tracking ✔ ✔ ? ✖ ✖ 
Prognosis ✔ ✔ ✔ ? ✔ 

Recurrence ✔ ✔ ✔ ✔ ✖ 
Predictive ✔ ✔ ✔ ? ✖ 

Resistance prediction ✔ ✔ ✔ ? ✖ 
Monitoring treatment ✔ ✔ ✔ ? ? 

1 Circulating tumor cell; 2 circulating tumor DNA; 3 circulating tumor RNA; 4 yes; 5 no; 6 no data; 7 not applicable; 8 most probably.  

3. Exosome Heterogeneity: An Unknown Wealth? 
Exosomes constitute a heterogeneous population of vesicles. This heterogeneity 

arises from the combination of different parameters such as cellular origin, content, size, 
number, and functionality. These parameters interact directly with each other, making it 
very difficult to isolate one without entering the field of another. Within an organ, exo-
somes can be released from epithelial (tumoral or normal) cells, as well as from stromal 
cells, lymphocytes, etc. This discrimination could be possible due to the preservation of 
cell-type-specific membrane proteins on the exosome membrane. There have already been 
reports in the literature of some examples where, using well-known specific proteins 
found in exosomes, researchers were able to easily recognize and differentiate exosomes 
with breast or pancreatic origin [20,21]. 

The cellular origin of exosomes will determine their composition, at both the mem-
brane and soluble levels. Therefore, the second factor that creates heterogeneity among 
exosomes is their content. The content of exosomes also varies in response to many factors. 
It responds to different cellular stages such us metabolic wellness [22]. Thus, an exosome’s 
hallmarks will dynamically change as a result of the modifications that occur in their cell 
of origin. Moreover, tumor-derived exosomes (TEX) expressing different integrins or 

Cancers 2021, 13, x FOR PEER REVIEW 4 of 17 
 

 

Therefore, the fact that exosomes include several molecules that can be considered as 
potential biomarkers, alone or in combination, increases the possibility of success in the 
pursuit of a good LB biomarker, which is a clear advantage over the other LB analytes. 
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DNA ✔ ✔ ✔ N.A.7 N.A. 
RNA ✔ N.A. ✔ ✔ ✔ 

Proteins ✔ N.A. ✔ N.A. N.A. 
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Splice variants ✔ ✖ ✔ ✔ ✖ 
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Application in personalized medicine      

Diagnosis ✔ ✔ 8 ✔ ? ✔ 
Classification of molecular subtypes ✔ ✔ ? ? ✖ 

Clonal evolution tracking ✔ ✔ ? ✖ ✖ 
Prognosis ✔ ✔ ✔ ? ✔ 

Recurrence ✔ ✔ ✔ ✔ ✖ 
Predictive ✔ ✔ ✔ ? ✖ 

Resistance prediction ✔ ✔ ✔ ? ✖ 
Monitoring treatment ✔ ✔ ✔ ? ? 

1 Circulating tumor cell; 2 circulating tumor DNA; 3 circulating tumor RNA; 4 yes; 5 no; 6 no data; 7 not applicable; 8 most probably.  

3. Exosome Heterogeneity: An Unknown Wealth? 
Exosomes constitute a heterogeneous population of vesicles. This heterogeneity 

arises from the combination of different parameters such as cellular origin, content, size, 
number, and functionality. These parameters interact directly with each other, making it 
very difficult to isolate one without entering the field of another. Within an organ, exo-
somes can be released from epithelial (tumoral or normal) cells, as well as from stromal 
cells, lymphocytes, etc. This discrimination could be possible due to the preservation of 
cell-type-specific membrane proteins on the exosome membrane. There have already been 
reports in the literature of some examples where, using well-known specific proteins 
found in exosomes, researchers were able to easily recognize and differentiate exosomes 
with breast or pancreatic origin [20,21]. 

The cellular origin of exosomes will determine their composition, at both the mem-
brane and soluble levels. Therefore, the second factor that creates heterogeneity among 
exosomes is their content. The content of exosomes also varies in response to many factors. 
It responds to different cellular stages such us metabolic wellness [22]. Thus, an exosome’s 
hallmarks will dynamically change as a result of the modifications that occur in their cell 
of origin. Moreover, tumor-derived exosomes (TEX) expressing different integrins or 
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Therefore, the fact that exosomes include several molecules that can be considered as 
potential biomarkers, alone or in combination, increases the possibility of success in the 
pursuit of a good LB biomarker, which is a clear advantage over the other LB analytes. 
Moreover, the number of released exosomes could also be considered a clinical indicator 
itself (see Section 3). 

Table 1 summarizes information rendered by different analytes of LB and shows the 
potential clinical applications of them as biomarkers. 

Table 1. Liquid biopsy analytes: features, extractable information, and clinical applications as biomarkers. Table adapted 
from [19].  

Traits 
Liquid Biopsy Analyte 

CTCs 1 ctDNA 2 Exosomes ctRNA 3 miRNA 
Origin      

Viable cells ✔ 4 ✖ 5 ✔ ? 6 ? 
Apoptotic cells ✔ ✔ ? ? ? 
Components      

DNA ✔ ✔ ✔ N.A.7 N.A. 
RNA ✔ N.A. ✔ ✔ ✔ 

Proteins ✔ N.A. ✔ N.A. N.A. 
Metabolites ✔ N.A. ? N.A. N.A. 

Extractable information      

Copy number variation ✔ ✔ ✔ ✖ ✖ 
Mutations ✔ ✔ ✔ ✔ ✖ 

Epigenetic information ✔ ✔ ✔ ✖ ✖ 
Fusion genes ✔ ✔ ✔ ✔ ✖ 

Splice variants ✔ ✖ ✔ ✔ ✖ 
Single-cell information ✔ ✖ ✖ ✖ ✖ 

Application in personalized medicine      

Diagnosis ✔ ✔ 8 ✔ ? ✔ 
Classification of molecular subtypes ✔ ✔ ? ? ✖ 

Clonal evolution tracking ✔ ✔ ? ✖ ✖ 
Prognosis ✔ ✔ ✔ ? ✔ 

Recurrence ✔ ✔ ✔ ✔ ✖ 
Predictive ✔ ✔ ✔ ? ✖ 

Resistance prediction ✔ ✔ ✔ ? ✖ 
Monitoring treatment ✔ ✔ ✔ ? ? 

1 Circulating tumor cell; 2 circulating tumor DNA; 3 circulating tumor RNA; 4 yes; 5 no; 6 no data; 7 not applicable; 8 most probably.  

3. Exosome Heterogeneity: An Unknown Wealth? 
Exosomes constitute a heterogeneous population of vesicles. This heterogeneity 

arises from the combination of different parameters such as cellular origin, content, size, 
number, and functionality. These parameters interact directly with each other, making it 
very difficult to isolate one without entering the field of another. Within an organ, exo-
somes can be released from epithelial (tumoral or normal) cells, as well as from stromal 
cells, lymphocytes, etc. This discrimination could be possible due to the preservation of 
cell-type-specific membrane proteins on the exosome membrane. There have already been 
reports in the literature of some examples where, using well-known specific proteins 
found in exosomes, researchers were able to easily recognize and differentiate exosomes 
with breast or pancreatic origin [20,21]. 

The cellular origin of exosomes will determine their composition, at both the mem-
brane and soluble levels. Therefore, the second factor that creates heterogeneity among 
exosomes is their content. The content of exosomes also varies in response to many factors. 
It responds to different cellular stages such us metabolic wellness [22]. Thus, an exosome’s 
hallmarks will dynamically change as a result of the modifications that occur in their cell 
of origin. Moreover, tumor-derived exosomes (TEX) expressing different integrins or 
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Therefore, the fact that exosomes include several molecules that can be considered as 
potential biomarkers, alone or in combination, increases the possibility of success in the 
pursuit of a good LB biomarker, which is a clear advantage over the other LB analytes. 
Moreover, the number of released exosomes could also be considered a clinical indicator 
itself (see Section 3). 

Table 1 summarizes information rendered by different analytes of LB and shows the 
potential clinical applications of them as biomarkers. 

Table 1. Liquid biopsy analytes: features, extractable information, and clinical applications as biomarkers. Table adapted 
from [19].  
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Liquid Biopsy Analyte 

CTCs 1 ctDNA 2 Exosomes ctRNA 3 miRNA 
Origin      

Viable cells ✔ 4 ✖ 5 ✔ ? 6 ? 
Apoptotic cells ✔ ✔ ? ? ? 
Components      

DNA ✔ ✔ ✔ N.A.7 N.A. 
RNA ✔ N.A. ✔ ✔ ✔ 

Proteins ✔ N.A. ✔ N.A. N.A. 
Metabolites ✔ N.A. ? N.A. N.A. 

Extractable information      

Copy number variation ✔ ✔ ✔ ✖ ✖ 
Mutations ✔ ✔ ✔ ✔ ✖ 

Epigenetic information ✔ ✔ ✔ ✖ ✖ 
Fusion genes ✔ ✔ ✔ ✔ ✖ 

Splice variants ✔ ✖ ✔ ✔ ✖ 
Single-cell information ✔ ✖ ✖ ✖ ✖ 

Application in personalized medicine      

Diagnosis ✔ ✔ 8 ✔ ? ✔ 
Classification of molecular subtypes ✔ ✔ ? ? ✖ 

Clonal evolution tracking ✔ ✔ ? ✖ ✖ 
Prognosis ✔ ✔ ✔ ? ✔ 

Recurrence ✔ ✔ ✔ ✔ ✖ 
Predictive ✔ ✔ ✔ ? ✖ 

Resistance prediction ✔ ✔ ✔ ? ✖ 
Monitoring treatment ✔ ✔ ✔ ? ? 

1 Circulating tumor cell; 2 circulating tumor DNA; 3 circulating tumor RNA; 4 yes; 5 no; 6 no data; 7 not applicable; 8 most probably.  

3. Exosome Heterogeneity: An Unknown Wealth? 
Exosomes constitute a heterogeneous population of vesicles. This heterogeneity 

arises from the combination of different parameters such as cellular origin, content, size, 
number, and functionality. These parameters interact directly with each other, making it 
very difficult to isolate one without entering the field of another. Within an organ, exo-
somes can be released from epithelial (tumoral or normal) cells, as well as from stromal 
cells, lymphocytes, etc. This discrimination could be possible due to the preservation of 
cell-type-specific membrane proteins on the exosome membrane. There have already been 
reports in the literature of some examples where, using well-known specific proteins 
found in exosomes, researchers were able to easily recognize and differentiate exosomes 
with breast or pancreatic origin [20,21]. 

The cellular origin of exosomes will determine their composition, at both the mem-
brane and soluble levels. Therefore, the second factor that creates heterogeneity among 
exosomes is their content. The content of exosomes also varies in response to many factors. 
It responds to different cellular stages such us metabolic wellness [22]. Thus, an exosome’s 
hallmarks will dynamically change as a result of the modifications that occur in their cell 
of origin. Moreover, tumor-derived exosomes (TEX) expressing different integrins or 
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Therefore, the fact that exosomes include several molecules that can be considered as 
potential biomarkers, alone or in combination, increases the possibility of success in the 
pursuit of a good LB biomarker, which is a clear advantage over the other LB analytes. 
Moreover, the number of released exosomes could also be considered a clinical indicator 
itself (see Section 3). 

Table 1 summarizes information rendered by different analytes of LB and shows the 
potential clinical applications of them as biomarkers. 

Table 1. Liquid biopsy analytes: features, extractable information, and clinical applications as biomarkers. Table adapted 
from [19].  

Traits 
Liquid Biopsy Analyte 

CTCs 1 ctDNA 2 Exosomes ctRNA 3 miRNA 
Origin      

Viable cells ✔ 4 ✖ 5 ✔ ? 6 ? 
Apoptotic cells ✔ ✔ ? ? ? 
Components      

DNA ✔ ✔ ✔ N.A.7 N.A. 
RNA ✔ N.A. ✔ ✔ ✔ 

Proteins ✔ N.A. ✔ N.A. N.A. 
Metabolites ✔ N.A. ? N.A. N.A. 

Extractable information      

Copy number variation ✔ ✔ ✔ ✖ ✖ 
Mutations ✔ ✔ ✔ ✔ ✖ 

Epigenetic information ✔ ✔ ✔ ✖ ✖ 
Fusion genes ✔ ✔ ✔ ✔ ✖ 

Splice variants ✔ ✖ ✔ ✔ ✖ 
Single-cell information ✔ ✖ ✖ ✖ ✖ 

Application in personalized medicine      

Diagnosis ✔ ✔ 8 ✔ ? ✔ 
Classification of molecular subtypes ✔ ✔ ? ? ✖ 

Clonal evolution tracking ✔ ✔ ? ✖ ✖ 
Prognosis ✔ ✔ ✔ ? ✔ 

Recurrence ✔ ✔ ✔ ✔ ✖ 
Predictive ✔ ✔ ✔ ? ✖ 

Resistance prediction ✔ ✔ ✔ ? ✖ 
Monitoring treatment ✔ ✔ ✔ ? ? 

1 Circulating tumor cell; 2 circulating tumor DNA; 3 circulating tumor RNA; 4 yes; 5 no; 6 no data; 7 not applicable; 8 most probably.  

3. Exosome Heterogeneity: An Unknown Wealth? 
Exosomes constitute a heterogeneous population of vesicles. This heterogeneity 

arises from the combination of different parameters such as cellular origin, content, size, 
number, and functionality. These parameters interact directly with each other, making it 
very difficult to isolate one without entering the field of another. Within an organ, exo-
somes can be released from epithelial (tumoral or normal) cells, as well as from stromal 
cells, lymphocytes, etc. This discrimination could be possible due to the preservation of 
cell-type-specific membrane proteins on the exosome membrane. There have already been 
reports in the literature of some examples where, using well-known specific proteins 
found in exosomes, researchers were able to easily recognize and differentiate exosomes 
with breast or pancreatic origin [20,21]. 

The cellular origin of exosomes will determine their composition, at both the mem-
brane and soluble levels. Therefore, the second factor that creates heterogeneity among 
exosomes is their content. The content of exosomes also varies in response to many factors. 
It responds to different cellular stages such us metabolic wellness [22]. Thus, an exosome’s 
hallmarks will dynamically change as a result of the modifications that occur in their cell 
of origin. Moreover, tumor-derived exosomes (TEX) expressing different integrins or 
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Therefore, the fact that exosomes include several molecules that can be considered as 
potential biomarkers, alone or in combination, increases the possibility of success in the 
pursuit of a good LB biomarker, which is a clear advantage over the other LB analytes. 
Moreover, the number of released exosomes could also be considered a clinical indicator 
itself (see Section 3). 

Table 1 summarizes information rendered by different analytes of LB and shows the 
potential clinical applications of them as biomarkers. 
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from [19].  
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Origin      

Viable cells ✔ 4 ✖ 5 ✔ ? 6 ? 
Apoptotic cells ✔ ✔ ? ? ? 
Components      

DNA ✔ ✔ ✔ N.A.7 N.A. 
RNA ✔ N.A. ✔ ✔ ✔ 

Proteins ✔ N.A. ✔ N.A. N.A. 
Metabolites ✔ N.A. ? N.A. N.A. 

Extractable information      

Copy number variation ✔ ✔ ✔ ✖ ✖ 
Mutations ✔ ✔ ✔ ✔ ✖ 

Epigenetic information ✔ ✔ ✔ ✖ ✖ 
Fusion genes ✔ ✔ ✔ ✔ ✖ 

Splice variants ✔ ✖ ✔ ✔ ✖ 
Single-cell information ✔ ✖ ✖ ✖ ✖ 

Application in personalized medicine      

Diagnosis ✔ ✔ 8 ✔ ? ✔ 
Classification of molecular subtypes ✔ ✔ ? ? ✖ 

Clonal evolution tracking ✔ ✔ ? ✖ ✖ 
Prognosis ✔ ✔ ✔ ? ✔ 

Recurrence ✔ ✔ ✔ ✔ ✖ 
Predictive ✔ ✔ ✔ ? ✖ 

Resistance prediction ✔ ✔ ✔ ? ✖ 
Monitoring treatment ✔ ✔ ✔ ? ? 

1 Circulating tumor cell; 2 circulating tumor DNA; 3 circulating tumor RNA; 4 yes; 5 no; 6 no data; 7 not applicable; 8 most probably.  

3. Exosome Heterogeneity: An Unknown Wealth? 
Exosomes constitute a heterogeneous population of vesicles. This heterogeneity 

arises from the combination of different parameters such as cellular origin, content, size, 
number, and functionality. These parameters interact directly with each other, making it 
very difficult to isolate one without entering the field of another. Within an organ, exo-
somes can be released from epithelial (tumoral or normal) cells, as well as from stromal 
cells, lymphocytes, etc. This discrimination could be possible due to the preservation of 
cell-type-specific membrane proteins on the exosome membrane. There have already been 
reports in the literature of some examples where, using well-known specific proteins 
found in exosomes, researchers were able to easily recognize and differentiate exosomes 
with breast or pancreatic origin [20,21]. 

The cellular origin of exosomes will determine their composition, at both the mem-
brane and soluble levels. Therefore, the second factor that creates heterogeneity among 
exosomes is their content. The content of exosomes also varies in response to many factors. 
It responds to different cellular stages such us metabolic wellness [22]. Thus, an exosome’s 
hallmarks will dynamically change as a result of the modifications that occur in their cell 
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Prognosis ✔ ✔ ✔ ? ✔ 

Recurrence ✔ ✔ ✔ ✔ ✖ 
Predictive ✔ ✔ ✔ ? ✖ 

Resistance prediction ✔ ✔ ✔ ? ✖ 
Monitoring treatment ✔ ✔ ✔ ? ? 
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3. Exosome Heterogeneity: An Unknown Wealth? 
Exosomes constitute a heterogeneous population of vesicles. This heterogeneity 

arises from the combination of different parameters such as cellular origin, content, size, 
number, and functionality. These parameters interact directly with each other, making it 
very difficult to isolate one without entering the field of another. Within an organ, exo-
somes can be released from epithelial (tumoral or normal) cells, as well as from stromal 
cells, lymphocytes, etc. This discrimination could be possible due to the preservation of 
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reports in the literature of some examples where, using well-known specific proteins 
found in exosomes, researchers were able to easily recognize and differentiate exosomes 
with breast or pancreatic origin [20,21]. 
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brane and soluble levels. Therefore, the second factor that creates heterogeneity among 
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3. Exosome Heterogeneity: An Unknown Wealth?

Exosomes constitute a heterogeneous population of vesicles. This heterogeneity arises
from the combination of different parameters such as cellular origin, content, size, number,
and functionality. These parameters interact directly with each other, making it very
difficult to isolate one without entering the field of another. Within an organ, exosomes
can be released from epithelial (tumoral or normal) cells, as well as from stromal cells,
lymphocytes, etc. This discrimination could be possible due to the preservation of cell-
type-specific membrane proteins on the exosome membrane. There have already been
reports in the literature of some examples where, using well-known specific proteins found
in exosomes, researchers were able to easily recognize and differentiate exosomes with
breast or pancreatic origin [20,21].

The cellular origin of exosomes will determine their composition, at both the mem-
brane and soluble levels. Therefore, the second factor that creates heterogeneity among
exosomes is their content. The content of exosomes also varies in response to many factors.
It responds to different cellular stages such us metabolic wellness [22]. Thus, an exosome’s
hallmarks will dynamically change as a result of the modifications that occur in their cell
of origin. Moreover, tumor-derived exosomes (TEX) expressing different integrins or other
molecules in their membrane have been related to different organotropisms similar to what
is shown in tumor spreading cells [23,24] and, more interestingly, TEX are uptaken with
greater affinity by certain cell types within an organ [25].
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The content of an exosome is limited by its size. This brings us to the third parameter
of heterogeneity. Exosomes are also a mixed population in terms of size. As previously
mentioned, exosomes show a size range of ~40 to 160 nm. Therefore, a 150 nm diameter
exosome will be able to contain a greater number of molecules than a smaller exosome.
It is still unknown whether different exosome sizes respond to distinct cellular stages or
cause diverse responses in target cells, but what have been reported in recent studies are
significant differences in the number and size of exosomes in cancer patients depending on
the studied biological fluid [26].

The number of exosomes released from a cell is another source of heterogeneity. Due
to the constant influx of exosomes, the exosomal release–uptake dynamics of different cells,
and the lack of fine characterization of exosome origin, it is difficult to ascertain whether
the amount of TEX is different compared to that from normal cells. Historically, it has been
demonstrated in vitro that tumor cells secrete more exosomes than their normal cell counter-
parts. Thus, different studies reported higher exosome protein amounts in cancer patients
than in healthy controls [27] (reviewed in [10,28]). However, technological studies in breast
cancer pointed to the opposite situation, where the capture of shed exosomes in a single-cell
platform showed lower numbers of exosomes in tumor cells compared with tissue-matched,
nontumorigenic cell-line-derived exosomes [29]. Such studies relied on different isolation
methods, experimental designs, and quantification methods, facts that can easily disturb
results. Therefore, further investigation is needed to clarify this important aspect of exosome
biogenesis. The literature describes an increased number of total circulating exosomes in
the peripheral blood of cancer patients and, surprisingly, their size and morphology are also
altered compared to those of healthy donors [30]. More interestingly, recent studies showed
significant differences in the number and size of exosomes in cancer patients depending on
the studied biological fluid [26]. This fact highlights the importance of selecting an ideal
bodily fluid as a tool for the search and study of exosome-based biomarkers in each given
type of cancer. In summary, the underlying mechanism of these alterations during the tumor
course is unclear.

The final source of heterogeneity we will refer to is exosome functionality. Exosomes
show very diverse effects on the cells that uptake them. The consequences are so var-
ied that we dedicate an epigraph below to exploring the most studied and characteristic
outcomes (Figure 3).
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Figure 3. Five sources of exosomal heterogeneity. The heterogeneity of the exosomes results from the
combination of five factors: the cell of origin from which they are released (organ and cell type of ori-
gin); their molecular composition; their size; their number; and the functionality triggered in recipient
cells. Different combinations of these five factors make exosome heterogeneity highly complex.

27



Cancers 2021, 13, 2147

Taken together, these data suggest that exosome heterogeneity might play a dual
role in the characterization of a patient’s tumor. On the one hand, the number and other
above-mentioned hallmarks of exosomes could give us a clue about the tumoral stage and
its possible progression, but on the other hand, this mix could dilute valuable information
in their use as accurate biomarkers. Exosomal-related biomarkers are discussed below.

4. Sending a Message: The Role of Exosomes in Intercellular Communication

Exosomes have been shown to provide a natural mechanism for cell-to-cell commu-
nication, with a plethora of roles in physiology and pathology. In every communication
process, a relationship between a sender and a receiver is established through the emis-
sion and reception of a “message” that will have an impact on the recipient. Exosomes
are known to play a very important role in the communication process between tumor
cells and their microenvironment. Recently, several groups visualized through elegant
imaging techniques the process of exosome uptake in NSCLC [31] and breast cancer [32].
The content of tumor-released exosomes can be uptaken by other adjoining tumor cells,
tumor-niche (stroma) cells, immune cells, or distal organ cells after travelling through the
circulatory system.

There are still many questions about the role of exosomes in intercellular communi-
cation. For example, it is still unknown how different outcomes on receptor cells may be
affected by uptake affinity differences between recipient cell types or by different modes of
exosomal uptake (receptor-mediated endocytosis, direct binding, direct fusion, etc.) [33].
The regulation of the different potential cellular fates of the cargo transported by the up-
taken exosomes is also not clearly known. The contents of the exosomes can be directly
transferred to the degradation pathway or may be secreted into the endoplasmic reticulum
and/or to the cytoplasm. Specific membrane transport mechanisms may be involved
in these different inner cellular outcomes. Furthermore, it is plausible that depending
on the nature of the exosomal cargo and the state of the recipient cell, the ability of the
exosomal message to affect specific recipient cell functions may be variable, which makes
the understanding and the study of the exosomal-based communication process even
more complex.

As just mentioned above, exosomes have an impact on the recipient cells that will
influence the development of the tumoral process. Exosomes have been described to be
involved in different neoplastic stages such as tumor growth, metastasis, and resistance to
therapy, contributing to different hallmark features of cancer (Figure 4) [34]. Many of these
hallmarks will appear in the following section.
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28



Cancers 2021, 13, 2147

In order to better explain the role of exosomes in intercellular communication and
the effects that they trigger in recipient cells, we divided this epigraph into two sections,
using the distance to which the receptor cell is located as the criterion. We focus on TEX
examples as in the cancer field this is the central and most studied population of exosomes.

4.1. A Short-Range Shipment: The Role of Exosomes in the Tumor Microenvironment

Epithelial-to-mesenchymal transition (EMT) is a process through which cancer cells
may become more proliferative and resistant and gain migratory and invasive proper-
ties [35]. TEX are thought to be partially responsible for this cellular plasticity, inducing
EMT in adjoining tumor recipient cells [36] through the modulation of several well-known
signaling pathways. Thus, regulation of Wnt/β–catenin or PI3K/AKT in human lung
cancer cell lines [37,38] and modulation of the Hippo and ERK pathways [39,40] in hepa-
tocellular carcinoma upon TEX uptake have been reported. Similarly, activation of AKT
signaling triggered by TEX has been reported to induce EMT [41].

Classically, the field of exosomes has focused on understanding how TEX uptake
by stromal cells modifies the tumor niche, modulating the microenvironment to favor
tumor development. Most studies have focused on defining the functional changes in
cancer-associated fibroblasts (CAFs) and immune cells [42].

In this sense, several systems of TEX-mediated immune suppression have been de-
scribed. TEX carry ligands that bind to cognate receptors on immune cells, inducing
tolerogenic signaling [43] and inhibiting tumor-specific T cells [44]. The response of ac-
tivated T cells to TEX interaction triggers a reduction in both JAK expression and the
response to IL-2 [45,46] which prevents them from proliferating. Furthermore, TEX carry
CD39 and CD73, which activate the adenosine pathway, a well-known immunosuppressive
factor that inhibits T-cell function [47,48]. More interestingly, TEX carrying FasL [49] or
programmed death ligand 1 (PD-L1) induce the apoptosis of activated CD8+T cells by
triggering both extrinsic and intrinsic apoptosis pathways [50]. Importantly, FAsL and
PD-L1 exosomal expression levels correlate to spontaneous apoptosis of circulating T cells
and to tumor prognosis [51]. Recently, it was reported that the suppression of exosomal
PD-L1 induces systemic anti-tumor immunity and memory [52]. On the contrary, TEX lead
the differentiation and expansion of Tregs [44,53]. TEX also modulate NK cytotoxicity by
downregulating NKG2D expression, which suppresses NK cell activity [54]. Besides this,
tumor-derived exosomes inhibit monocyte differentiation into DC cells [55], directly inhibit-
ing DC bioactivity and inducing immune tolerance [56]. However, TEX skew monocyte
differentiation into myeloid-derived suppressor cells (MDSCs) [57,58], which accumulate in
murine tumor, spleen, peripheral blood, and lung in vivo [59]. This fact negatively affects
antigen processing and presentation and produces several immunosuppressive inhibitory
factors, including NO and ROS, causing TCR nitration or T-cell apoptosis [60]. Moreover,
neutrophils that uptake TEX DNA increase IL-8 and tissue factor production, boosting
tumor inflammation and paraneoplastic events (thrombosis) [61]. TEX also generate an
immunosuppressive microenvironment by activating macrophages to a tumor-associated
macrophage (TAM)-like phenotype [62,63]. Finally, the role of exosomes in the innate
immune response has also been described in cancer. TEX were shown to harbor B cells and
exert a decoy function limiting complement-mediated lysis and decreasing cytotoxicity
against cancer cells [64].

TEX are also implicated in angiogenic remodeling, an essential step in tumor survival,
growth, and dissemination, through favoring new vessel formation [25] or destroying the
integrity of the endothelium and promoting vascular permeability and metastasis [65].

Tumor dissemination is also facilitated by TEX triggering matrix destruction by
MMP1 activation [66].

The reciprocal exchange of exosomes between tumor cells and CAF has also been
a focus of study. In this way, CAF-derived exosomes support the metabolic fitness of
cancer cells growing as tumors through several known mechanisms, such as switching
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mitochondrial oxidative phosphorylation to glycolysis [67] or promoting motility via
Wnt-planar cell polarity (PCP) signaling [68].

4.2. A Long-Range Shipment: The Role of Exosomes in Metastatic Organs

Primary tumor TEX can reach metastatic organs through the circulation (blood or
lymphatic). It has been described how the pattern of integrins present in the exosome
membrane determines TEX organotropism. Thus, breast cancer TEX bearing integrins
α6β4 and α6β1 were associated with lung metastasis, while exosomal integrin αvβ5 was
linked to liver metastasis [23]. Once exosomes have reached the metastatic organ, they
are uptaken by specific cells in those organs, and the message they carry is translated by
the receptor cells into microenvironment remodeling orders known as premetastatic niche
preparation [69], an essential change for the nesting and engraftment of circulating tumor
cells (CTCs) reaching the metastatic organ. The recruitment of bone marrow progenitor
cells and macrophages to metastatic sites is one of the changes related to TEX that are
involved in premetastatic niche formation and enhance metastatic potential [70,71]. Also,
TEX prevent patrolling Ly6C low monocyte expansion, enabling immunosuppression and
leading to metastasis [72]. The activation of cancer-associated fibroblasts (CAFs) is also
involved in premetastatic niche formation. TEX can trigger TGF-b signaling pathways
and thereafter initiate a program of differentiation of fibroblasts toward a myofibroblastic
phenotype, altering the stroma which will be then responsible for supporting tumor
growth, vascularization, and metastasis [73]. In turn, CAF-derived exosomes induce
oxidative phosphorylation in metastatic breast cancer cells, contributing to their exit from
the dormant state [74]. Figure 5 recapitulates the role of TEX locally and in distant organs.
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5. TEX Biomarkers in Clinics: A List of Possibilities

One of the great proposals in the field is to study exosome contents as potential
biomarkers. Despite biological fluids being composed of a complex mixture of molecules
(RNA, DNA, and proteins), diagnostic approaches have traditionally focused on a single
molecular species. In the case of exosomal cargo, the same trend has happened. RNA
is the most abundant and studied exosomal component, being unusually stable thanks
to its exosomal membrane confinement. In 2012, the National Institute of Health (NIH)
dedicated a strategic Common Fund to the study of exosomal RNA (http://commonfund.
nih.gov/Exrna/index; accessed on 27 April 2021). Since then, the interest in the field has
continuously increased. The number of entries related to exosomes, RNA, and cancer in
PubMed has increased more than 10-fold from 2012 to date.

Currently, the focus of translational studies is also turning to exosomal DNA assess-
ment, with more than 200 publications being found in PubMed in 2020. Probably, one of
the most specific hallmarks of cancer is DNA mutations, which can also be captured within
exosomes [75]. Many recent works take advantage of existing technologies for circulating
free DNA (ctDNA) detection in LB. The translational use of exosome DNA sequencing is
an exciting approach that still needs to be fully explored and developed.

Proteins contained in exosomes also include altered proteins associated with cancer.
In addition, exosomal surface proteins are related to the functional status of the cells
comprising the tumor immune microenvironment, which may be important biomarkers
for monitoring response to immunotherapies [52].

Due to their multifactorial content, exosomes constitute a unique tool to capture the
complexity and enormous heterogeneity of cancer [10]. To bring exosome-based liquid
biopsy diagnosis closer to the clinic, several high-throughput platforms have recently been
developed. Among them, microfluidic devices based on antibody-capturing systems in
microchips [76–80] seem to be the best option for clinical application [81]. These novel
technical approaches aim to make exosome-based diagnostics cost and labor effective, by
means of developing highly sensitive and reproducible detection devices to isolate and
identify circulating cancer markers without using a large volume of sample and sparing
the time-consuming ultracentrifuge-based isolation processes that are usually associated
with exosome analysis.

Multicomponent diagnostic/prognostic applications based on exosomes are currently
being considered. These high-throughput multiplexed analyses can also be combined
with deep-learning-based interpretation methodologies, which will require pilot studies
in large numbers of clinical samples [82]. These approaches may overcome the sensitivity
and specificity of current biomarkers in a number of clinical situations. Moreover, the
inclusion of exosome cargo analysis in the biomarker laboratory armamentarium may
help to characterize not only the tumor but also its microenvironment, leading to a more
accurate tumor description and understanding.

The table below (Table 2) summarizes a list of exosomal analytes proposed as biomark-
ers in the last three years. All of them have been studied in well-characterized cohorts of
patients. Nevertheless, in a considerable proportion of these examples, especially in the case
of miRNAs, validation in independent cohorts, together with robust statistical criteria and
harmonized protocols, is still needed. The main disadvantage of working with exosomes is
still the lack of technical consensus, which leads to poor inter-laboratory reproducibility of
the results. Therefore, before exosome-based biomarkers become a clinical reality, major
efforts have to be made to standardize every single procedure in exosomal-based biomarker
studies: isolation, characterization, and analytical protocols [83].
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Table 2. Examples of exosomal-derived potential biomarkers with clinical significance published in the last three years.

Exosomal miRNAs as Cancer Biomarkers

miRNA Cancer type Clinical value Biofluid Reference
Let-7b-5p, -122-5p, -146b-5p,

-210-3p, -215-5p Breast cancer Diagnosis Plasma [84]

miR-224 Hepatocellular carcinoma Diagnosis/Prognosis Serum [85]
miR-106b, miR-1269a Lung cancer Diagnosis/Prognosis Serum [86,87]

miR-375, -1307 Ovarian cancer Diagnosis Serum [88]

Exosomal lncRNAs as Cancer Biomarkers

lncRNA Cancer type Clinical value Biofluid Reference
PCAT-1, UBC1 and SNHG16 Bladder cancer Diagnosis/Prognosis Urine [89]

MALAT-1 Lung cancer Diagnosis Serum [90]

Exosomal mRNA as Cancer Biomarkers

mRNA Cancer type Clinical value Biofluid Reference
BRAF, KRAS (mutant) Colorectal cancer Diagnosis Serum [91]

Exosomal mutated DNA as Cancer Biomarkers

DNA Cancer type Clinical value Biofluid Reference
IDH1 Glioblastoma Diagnosis/Prognosis Plasma [92]
EGFR Lung cancer Diagnosis/Prognosis Plasma/Bronchioalveolar lavage [93–96]
BRAF Melanoma Therapeutic monitoring Plasma [97]

KRAS, P53 Pancreatic cancer Diagnosis/Prognosis Serum/Plasma [98,99]
MYC, P53, MLH1, PTEN,

AR Prostate cancer Diagnosis/Prognosis Plasma [100,101]

Exosomal proteins as Cancer Biomarkers

Protein Cancer type Clinical value Biofluid Reference
PDL-1 Melanoma Prognosis Plasma [102]

6. Future Perspectives and Challenges: The Dawn of a New Era

Liquid biopsy applications have been exponentially growing since 2010. According
to RNCOS market research, the global liquid biopsy market is expected to reach 5 billion
dollars by 2023 [103]. Among the different analytes in LB, circulating tumor DNA (ctDNA)
seems to be the one with the most promising results in the field. The main bottleneck of
ctDNA-based LB is to develop technologies sensitive enough to measure low amounts
of ctDNA in circulation, particularly when early detection or minimal residual disease is
pursued. Next-generation sequencing (NGS)-based technologies have reached a compro-
mise between sensitivity and cost and they are already available in clinical laboratories.
By August 2020, the FDA had approved the first two blood tests, Guardant360 CDx and
FoundationOne Liquid CDx, as companion diagnostic tests that provide molecular infor-
mation (mainly specific mutations or CNA) predictive for the effective use of associated
drugs in NSCLC, prostate, breast, and ovary and for general tumor profiling in solid
tumors [104,105]. Previous NGS-based tests approved for use in DNA extracted from
FFPE or other tumor tissue samples have previously shown great efficacy as companion
biomarkers.

Although many efforts have been made in detecting ctDNA in blood, it is worth
mentioning that ctDNA seems to be mainly released passively from dying normal or
tumor cells (necrosis or the different types of programmed cell death). It is also actively
shed from neutrophils by the process called NETosis [106]. However, DNA can also be
released within exosomes in an active and selective manner. In fact, it has been reported
that more than 93% of amplifiable cfDNA in blood is in fact found as cargo of plasma
exosomes [107]. Therefore, exosomes are potentially very valuable raw materials for
more sensitive analysis of circulating DNA, as DNA is highly concentrated in exosomes
released from tumor and other cells. To date, only a few studies have compared the clinical
parameters of “gold standard” ctDNA and exosomal DNA (exoDNA). Only in pancreatic
ductal adenocarcinoma, KRAS mutation detection in exoDNA was superior to ctDNA
for prognosis [98,99]. It has also been shown that the combination of exoDNA/RNA and
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ctDNA has better sensitivity and specificity than ctDNA alone for EGFR T790M mutation
detection in NSCLC [93,94] and BRAF V600E mutation detection in melanoma [97].

Table 3. Pros and cons of the main exosome isolation techniques.

Factors
Ultracentrifugation Precipitation Affinity

Microfluidic
Filtration

Differential Gradient Immune Flow
Cytometry Ultrafiltration Molecular

Exclusion

Purity low high low high high high low high
Yield medium low medium medium medium low medium high

Specialized equipment medium medium high medium low low high high
Specialized user medium low high medium medium medium high high

RNA characterization high high high high high high high high
Protein characterization medium high low high high high medium high

Functional studies medium medium low medium medium medium medium high
Scalability medium low high medium high low medium medium

Time medium low high medium low medium high medium
Cost high medium high low low low medium medium

Despite the need for more studies in large patient cohorts to evaluate exoDNA as a
circulating biomarker, preliminary data are very promising. High exosomal nucleic acid
concentrations and elevated coverage of the genomic driver gene sequences will probably
help to make the analysis of exosomes the “gold standard” LB DNA-based analyte in the
near future.

In summary, although the field of exosomes in liquid biopsy is still immature, its
potential for the very near future seems enormous, promising, and fascinating. The major
hurdles for exosomal-based biomarkers to reach the clinic are the standardization and
optimization of isolation and characterization methodologies and the validation of reported
results in multiple independent cohorts.

In fact, there are many different techniques to isolate exosomes. They can be classified
into five main groups according to the chemical or physical isolation system: centrifu-
gation, precipitation, affinity binding, microfluidics, and molecular size-exclusion-based
techniques. Each method has its pros and cons. In general, an exosome isolation technique
with elevated yield numbers will render low exosome purity, and vice versa. Therefore, the
isolation method may be adapted to respond to each specific need. It is important to take
into consideration such factors as the type and amount of initial sample or the subsequent
use of those isolated exosomes. Moreover, some other aspects will determine the final
choice of the technique, e.g., the need for specialized equipment, cost, time, or scalability.
Table 3 summarizes the pros and cons of the main exosome isolation technologies.

Although there is still no consensus on a standard isolation method, the International
Society for Extracellular Vesicles (ISEV) is making an strong effort to achieve this aim [83].

Also, understanding of the regulatory mechanisms that control tumor-derived exo-
some heterogeneity that may influence the reproducibility of diagnostic outcomes is essential.

In addition, the development of liquid-biopsy-based multiparametric assays is ex-
pected to return large data sets of different nature (nucleic acids, proteins, etc.). For this
reason, the implementation of artificial intelligence tools for data management and analysis,
as well as the development of models that include all complex exosome-derived data, is
starting to be explored to accurately use exosomes as cancer biomarkers [108].

In summary, the research avenues for the near future in the field of exosomes in cancer
liquid biopsy are multiple, wide, and very exciting.
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Simple Summary: Exosomes are an emerging source of cancer biomarkers. Molecular components
of serum-derived exosomes have been addressed in several reports in the context of biomarkers for
early detection of lung cancer. However, despite the promising results of pilot studies, the clinical
applicability of such biomarkers has not been validated yet. In this review, the diagnostic potential
of miRNA content of serum-derived exosomes is presented. Moreover, potential target genes and
signaling pathways affected by miRNA present in lung cancer signatures are discussed.

Abstract: Early detection of lung cancer in screening programs is a rational way to reduce mortality
associated with this malignancy. Low-dose computed tomography, a diagnostic tool used in lung
cancer screening, generates a relatively large number of false-positive results, and its complementa-
tion with molecular biomarkers would greatly improve the effectiveness of such programs. Several
biomarkers of lung cancer based on different components of blood, including miRNA signatures,
were proposed. However, only a few of them have been positively validated in the context of early
cancer detection yet, which imposes a constant need for new biomarker candidates. An emerging
source of cancer biomarkers are exosomes and other types of extracellular vesicles circulating in body
fluids. Hence, different molecular components of serum/plasma-derived exosomes were tested and
showed different levels in lung cancer patients and healthy individuals. Several studies focused on
the miRNA component of these vesicles. Proposed signatures of exosome miRNA had promising
diagnostic value, though none of them have yet been clinically validated. These signatures involved
a few dozen miRNA species overall, including a few species that recurred in different signatures. It
is worth noting that all these miRNA species have cancer-related functions and have been associated
with lung cancer progression. Moreover, a few of them, including known oncomirs miR-17, miR-19,
miR-21, and miR-221, appeared in multiple miRNA signatures of lung cancer based on both the
whole serum/plasma and serum/plasma-derived exosomes.

Keywords: biomarkers; exosome; extracellular vesicles; lung cancer; miRNA; plasma; serum

1. Introduction

Lung cancer is among the major cancer-related public health problem responsible for
about a quarter of cancer-related deaths worldwide. Overall, the lung cancer five-year
survival rate (below 20%) is much lower than other leading cancer sites, such as colorectal
(about 65%), breast (about 90%), and prostate (about 95%). Though the risk and incidence
of lung cancer are slightly higher among men, this malignancy is becoming the major cause
of cancer-related death also in women. The majority of lung cancer cases are diagnosed at
advanced stages and have unfavorable prognoses (the average five-year survival of about
10–15%). However, in the case of the disease detected at the early stages, the prognosis
is much better (the average five-year survival varies between 65 and 85%). Thus, in
addition to primary prevention (i.e., tobacco smoking control), screening for early detection
was proposed as a promising strategy to reduce lung cancer mortality [1,2]. Several
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screening tools have been investigated during the past decades, but only one, the low-dose
computed tomography (LD-CT), has found an application in clinical practice. Originally,
the results of the National Lung Screening Trial (NLST) showed that compared to chest
X-ray examination, the LD-CT screening was associated with over 20% reduction of lung
cancer-specific mortality in a high-risk group of subjects defined by their smoking status
and age [3]. The potential of LD-CT screening programs to reduce lung cancer mortality
was further confirmed by other studies [2], including the Dutch–Belgian NELSON trial [4]
and the Danish Lung Cancer Screening Trial (DLCST) [5]. It is estimated that the use of
LD-CT allows for earlier detection of lung cancers in about 12,000 people a year, which is
about 8% of deaths annually due to this disease. It is worth noting, however, that LD-CT
allows detecting abnormalities in 20–40% of people undergoing this examination, but as
much as 95% of results could be false-positive [6]. Hence, due to the low specificity of
LD-CT (positive predictive value of only 3.8% in the NLST), the vast majority of patients
with screen-detected chest abnormalities are subjected to further expensive and potentially
harmful diagnostic procedures, such as transthoracic or bronchoscopic biopsy or surgery.
It is estimated that about 75% of patients unnecessarily underwent diagnostic workup,
including 25% subjected to invasive procedures [7]. Hence, there is an urgent need for
clinical and molecular tests supporting CT-based screening for the detection of lung cancer
to reduce “over-diagnosis” and decrease the costs. Such test(s) could either pre-select
individuals for LD-CT examination or discriminate between benign and malignant chest
abnormalities detected by LD-CT [8,9].

Potential biomarkers for early lung cancer can be found in various biological fluids;
however, blood is the richest and most readily available source [10,11]. Candidates for such
biomarkers include serum proteins, free nucleic acids, and metabolites [11,12]. Several
works reported serum/plasma proteins, which levels are associated with the risk of lung
cancer [13]. Another candidate for the biomarker of lung cancer is circulating free DNA
(cfDNA) [14] and circulating tumor cells (CTC) [15]. More recently, serum metabolites and
lipids have emerged as another class of potential biomarkers in lung cancer [16,17]. Several
other review papers could be suggested that cover this well-researched field [11–13,18–21].
However, though numerous biomarker candidates have been proposed only a few of them
have been positively validated in the proper clinical settings. The main reason was the lack
of sensitivity and analytical reproducibility, which in turn led to the elimination of potential
candidates from further stages of biomarker testing [9,12]. Moreover, none of the tested
biomarkers increased the actual number of detected early lung cancer cases yet [18,20,22].
Currently, only two molecular tests are used in clinical practice to help in the diagnosis of
indeterminate pulmonary nodules detected by CT. One of them is the autoantigen-based
EarlyCDT-Lung test, which enables the classification of indeterminate nodules with a
positive predictive value (PPV) >70% [23]. Another test is the XL2 test, which combines
the clinical probability of cancer score with the level of two plasma proteins: LG3BP and
C163A [24]. Hence, the identification of the reliable molecular biomarker that could be
used for the early detection of lung cancer remains a timely and vital issue.

The purpose of this literature review is to summarize current data on the emerging
biomarker of early lung cancer-circulating serum exosomes and their microRNA cargo.

2. Micro RNA Signatures of Lung Cancer

In the search for a lung cancer biomarker, there were numerous studies focused on
microRNAs (miRNAs). It is a class of small endogenous non-coding RNAs of 18–24 nucleotides
responsible for the regulation of target genes. More than 2500 mature miRNAs have been
described in humans yet [25–27]. miRNA is transcribed in the cell nucleus with the participation
of RNA polymerase II resulting in pri-miRNA, which is processed by the Drosh/DGCR8
enzyme complex to precursor miRNA (pre-miRNA). The resulting pre-miRNA is transported
from the nucleus to the cytoplasm involving Exportin-5, where it is processed by Dicer nuclease
to form miRNA duplexes or mature miRNA. Usually, a less-thermostable 5’-terminus strand is
packed to the protein complex (RISC), whose main component is a protein from the Argonaut
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family (AGO), while the second strand is degraded. The RISC complex then recognizes the
target mRNA and binds at the 3’UTR position: mRNA degradation occurs in the case of perfect
miRNA/mRNA matching, while translation repression in the case of incomplete alignment.
Thus, by silencing target mRNAs, miRNAs affect many critical cellular processes such as cell
proliferation, apoptosis, differentiation, and metabolism [27,28].

The composition of miRNA component of tissues (so-called miR-ome) could be af-
fected by different pathological conditions; hence, the diagnostic and prognostic values of
miRNA signatures have been addressed in many studies [29–34]. miRNA is resistant to
RNase digestion, boiling, extended storage, extreme pH, and multiple freezing and thawing
cycles [35]. Moreover, miRNA is considered to be more stable than other classes of RNA
in blood and other biofluids. However, it should be noted that during the analysis of free
circulating miRNA in human blood, miRNA molecules released by cancer cells and other
classes of “normal” cells (platelets, red blood cells, and endothelial cells) are co-purified
and co-analyzed [36]. Nevertheless, miRNA circulating in the blood and present in the
isolated serum (i.e., the liquid fraction of blood remaining after removal of the clot followed
coagulation) or plasma (i.e., the liquid fraction of blood remaining after removal of cell
components without coagulation), is an emerging source of disease biomarkers including
lung cancer.

Several studies addressed circulating miRNA as potential molecular signatures to be
used for the diagnosis of lung cancer. Numerous papers have been published since 2011
that described signatures of serum/plasma miRNA, which enabled the differentiation be-
tween lung cancer patients and healthy individuals. Some of these reports described single
miRNA, yet most of them proposed multi-component panels up to 24 plasma miRNAs [37]
or 34 serum miRNAs [38]. Examples of such studies are listed in Table 1. Proposed lung
cancer signatures involved about 100 miRNA species overall, which (according to our
literature review) included 39 miRNA species that recurred in more than one signature.
However, only four miRNA species were included in more than five signatures, namely,
miR-21 (11 signatures), miR-148b (8 signatures), miR-126, and miR-486–5p (seven signa-
tures). Hence, the overlap among different signatures was relatively low, which putatively
reflected different clinical characteristics of lung cancer patients and their ethnic/genetic
backgrounds as well as different analytical approaches used in different studies. Never-
theless, we analyzed a subset of 39 miRNA species that appeared in multiple lung cancer
signatures in the search for their target genes and associated biological functions; the
bioinformatics tool miRSystem (version 20160513) was used [39]. Among the biological
processes associated with this subset of miRNAs and statistically overrepresented, several
pathways were involved in cancer development, including the MAPK signaling, FGFR sig-
naling, transport of glucose, apoptosis, and antigen processing/presentation. This subset
included several known “oncomirs”, exemplified by miR-21, which will be discussed in de-
tail below. Furthermore, among the genes hypothetically targeted by the highest number of
miRs from this subset were a few genes with putative cancer-related functions, exemplified
by IFI30, PLA2G10, FGF6, ZBTB16, and CORO1A. IFI30 encodes a lysosomal thiol reductase
involved in the processing of MHC class II-restricted antigen, which was reported in the
development of melanoma [40]. PLA2G10 encodes a phospholipase A2 family member
involved in the production of inflammatory lipid mediators (e.g., prostaglandins), which
was reported in the progression of breast cancer [41]. FGF6 encodes a fibroblast growth
factor (FGF) family member involved in tumor growth [42]. ZBTB16 encodes a Krueppel
C2H2 zinc finger family member involved in the regulation of cell cycle, apoptosis, and
the AKT/Foxo3a pathway [43]. CORO1A encodes a WD-repeat protein family member
involved in the cell cycle progression, apoptosis, and signal transduction [44]. Hence,
cancer-related functions of miRNA species present in the proposed lung cancer signatures
provide additional validation of their putative diagnostic importance.

In conclusion, circulating miRNA appears a forward-looking diagnostic tool in the
detection of lung cancer. Proposed signatures revealed promising sensitivity and speci-
ficity, which usually reached 80–90%. Still, their actual diagnostic reproducibility requires
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further validation and clinical testing [25,35,45–47]. Further, none of the proposed miRNA
signatures have yet been conclusively validated in the prospective clinical studies. Never-
theless, three registered clinical trials are currently ongoing that include validation of the
serum/plasma miRNA signatures of early lung cancer. The BIOMILD study (NCT02247453)
sponsored by the Fondazione IRCCS Istituto Nazionale dei Tumori (Milano) is aimed at the
validation of the Plasma miR Signature Classifier [37]. The COSMOS study (NCT01248806)
sponsored by the European Institute of Oncology involves validation of the miR-Test [48]
in the context of lung cancer screening. Moreover, a smaller study sponsored by Hum-
mingbird Diagnostics (NCT03452514) is aimed at the validation of the commercial HMBDx
microRNA Test in a group of participants of the LD-CT lung cancer screening. However,
all these clinical trials are still running, and no conclusions are available yet (the planned
completion date of these studies is 2021).

Table 1. Examples of serum/plasma miRNAs as biomarkers of lung cancer.

Biofluid miRNA Signature Size of Groups Diagnostic Value Reference

Plasma miR-21, miR-126, miR-210, miR-486 Control: 29
Cases: 29 (Stage I–IV)

AUC = 0.86
SEN = 75%
SPE = 85%

[49]

Plasma miR-21, miR-335 Control: 38
Cases: 36 (Stage I)

AUC = 0.86
SEN = 72%
SPE = 81%

[50]

Plasma miR-21, miR-486 Control: 46
Cases: 54 (Stage I–III)

AUC = 0.90
SEN = 87%
SPE = 87%

[51]

Plasma miR-21, miR-145, miR-155 Control: 92
Cases: 96 (Stage I–IV)

AUC = 0.85
SEN = 69%
SPE = 78%

[52]

Plasma

miR-101, miR-106a, miR-126, miR-133a, miR-140-3p,
miR-140-5p, miR-142-3p, miR-145, miR-148a, miR-15b,
miR-16, miR-17, miR-197, miR-19b, miR-21, miR-221,

miR-28-3p, miR-30b, miR-30c, miR-320, miR-451,
miR-486-5p, miR-660, and miR-92a

(Plasma miR Signature Classifier; MSC)

Control: 870
Cases: 69 (Stage I–III)

SEN = 87%
SPE = 81% [37]

Plasma miR-182, miR-183, miR-210, miR-126 Control: 40
Cases: 112 (Stage I–III)

AUC = 0.97
SEN = 81%
SPE = 100%

[53]

Plasma miR-145, miR-20a, miR-21, miR-223 Control: 83
Cases: 129 (Stage I–II)

AUC = 0.90
SEN = 82%
SPE = 90%

[54]

Plasma miR-19b, miR-21, miR-221, miR-409, miR-425, miR-584 Control: 124
Cases: 141 (Stage I–IV)

AUC = 0.84
SEN = 73%
SPE = 80%

[55]

Serum

miR-92, miR-484, miR-486, miR-328, miR-191,
miR-376a, miR-342, miR-331, miR-30c, miR-28, miR-98,
miR-17, miR-26b, miR-374, miR-30b, miR-26a, miR-142,

miR-103, miR-126, let-7a, let-7d, let-7b, miR-32,
miR-133b, miR-566, miR-432, miR-223, miR-29a,
miR-148a, miR-142, miR-22, miR-148b, miR-140,

miR-139

Control: 69
Cases: 95 (Stage I–IV)

AUC = 0.89
SEN = 71%
SPE = 90%

[38]

Serum miR-15b, miR-27b Control: 95
Cases: 85 (Stage I–IV)

AUC = 0.98
SEN = 100%
SPE = 84%

[56]
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Table 1. Cont.

Biofluid miRNA Signature Size of Groups Diagnostic Value Reference

Serum

miR-92a-3p, miR-30b-5p, miR-191-5p, miR-484,
miR-328-3p, miR-30c-5p, miR-374a-5p, let-7d-5p,

miR-331-3p, miR-29a-3p, miR-148a-3p, miR-223-3p,
miR-140-5p
(miR-Test)

Control: 984
Cases: 48 (Stage I–III)

AUC = 0.85
SEN = 72%
SPE = 77%

[48]

Serum miR-193b, miR-301, miR-141, miR-200b Control: 45
Cases: 154 (Stage I–III)

AUC = 0.99
SEN = 97%
SPE = 96%

[57]

Serum miR-483, miR-193a, miR-25, miR-214, miR-7 Control: 63
Cases: 63 (Stage I–IV)

AUC = 0.82
SEN = 89%
SPE = 68%

[58]

Serum miR-152, miR-148a, miR-148b, miR-21 Control: 70
Cases: 70 (Stage I–IV)

AUC = 0.97
SEN = 96%
SPE = 91%

[59]

Serum miR-15b, miR-16, miR-20a Control: 58
Cases: 94 (Stage I–III)

AUC = 0.93
SEN = 86%
SPE = 91%

[60]

Serum miR-429, miR-205, miR-200b, miR-203, miR-12,
miR-34b

Control: 74
Cases: 138 (Stage I–IV)

AUC = 0.89
SEN = 88%
SPE = 71%

[61]

Serum miR-141, miR-193b, miR200b, miR-301 Control: 185
Cases: 213 (Stage I–IV)

AUC = 0.92
SEN = 91%
SPE = 78%

[62]

Serum miR-1268b, miR-6075
Control: 2178
Cases: 1566
(Stage I–IV)

AUC = 0.99
SEN = 99%
SPE = 99%

[63]

AUC—Area Under the Receiver Operating Characteristic (ROC) Curve; SEN—Sensitivity; SPE—Specificity.

3. Exosomes, an Emerging Type of Liquid Biopsy

Exosomes are membrane-enclosed nanovesicles (30–150 nm) of endosomal origin.
Exosomes arise as a result of the concavity of the plasma membrane inward, resulting in
the formation of an early endosome. The early endosome matures into the late endosome,
which then transforms into a multivesicular body (MVB) that could attach to the plasma
membrane from inside and release exosomes into the extracellular space [64,65] (Figure 1).
Exosomes can be detected in various biological fluids such as urine, cerebrospinal fluid,
saliva, blood, and its derivatives (serum and plasma). Exosomes are secreted by all
types of cells, either non-tumorigenic and cancerous. These vesicles are enclosed by a
double film of symmetrically distributed lipids containing several tetraspanins and other
membrane proteins involved in the formation of MVB (CD9, CD63, CD81, TSG101, and
Alix). However, the full set of proteins present in the exosome cargo (involving thousands
of different cellular proteins) is variable and reflects the current phenotype of the parent
cell. Except for proteins and lipids, exosomes also contain different classes of nucleic acids
(single-stranded RNA, long non-coding RNA, and microRNA) and metabolites, whose
composition is also regulated by the state of the cell [64,66,67].
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In general, exosomes are involved in many aspects of cell-to-cell communication
working in both paracrine and endocrine modes. In the case of exosomes from “normal”
(non-tumorogenic) cells, their role in immunity, coagulation, angiogenesis, spermatogene-
sis, and various physiological processes in the central nervous system has been confirmed.
In the case of tumor-derived exosomes (TEX), several lines of evidence indicate their asso-
ciation with immunomodulation, pre-metastatic niche formation, tumor growth, resistance
to the treatment, and drug removal from cells [68]. TEX are signal mediators and promote
disease development by participating in processes such as angiogenesis, metastasis, and
many others [66,68–70]. TEX are released into the bloodstream so they can reach distant
organs and modify the phenotype of many different cell types. This ability of TEX depends
on their bioactive cargo, which differs from the content of exosomes released by “normal”
cells and corresponds to the malignant phenotype of cancer cells [71]. Several review
papers focused on the functional role of TEX have already been published, including a few
recent ones [68,70,72,73]

Exosomes released by lung cancer cells were reported to be involved in tumor pro-
motion, immunomodulation, and remodeling of the tumor microenvironment, also in
the context of metastatic niche [66,69]. TEX secreted by lung cancer cells contain several
proteins involved in tumor development, including CD91, Galectin-9, LRG1, EGFR, and
Wnt5b [53,70,73–76]. Several studies also addressed the functional importance of non-
coding RNA present in TEX released by lung cancer cells. For example, miR-103a present
in TEX directly affected the polarization of macrophages by reducing PTEN protein expres-
sion, which in turn led to the accumulation of tumor-promoting factors such as IL10, CCL2,
and VEGF-A [70,77]. Moreover, miR-21 present in TEX promoted tumor growth by increas-
ing the permeability of blood vessels and the accumulation of hypoxia-induced factor-1α
(HIF-1α) under both normoxic and hypoxic conditions [78]. Other miRNAs present in
TEX secreted by lung cancer cells (e.g., miR-9, miR-126, miR-122, and miR-210) could
also participate in the process of angiogenesis of neoplastic blood vessels [73,74,79–82].
Long non-coding RNAs (lncRNAs) are another group of nucleic acids present in TEX
secreted from lung cancer cells. It has been reported that several such lncRNAs (MALAT1,
AK126698, SCAL1, and HOTAIR) are associated with the anti-apoptotic activity, resis-
tance to cisplatin, protection of cells against oxidative stress, and increased migration
proliferation and invasiveness [74,79,83,84].
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The molecular composition of TEX reflects that of parental cancer cells. Therefore,
TEX present in blood and other biofluids are an emerging type of liquid biopsy, considered
a gold mine of potential cancer markers [26,72,85–87]. It should be emphasized, however,
that exosomes represent only a subset of the heterogeneous group of extracellular vesicles
(EV) that also include microvesicles (also known as ectosomes; 250–1000 nm) and apoptotic
bodies (>1000 nm) formed by outward budding (“blebbing”) of the plasma membrane.
The term “exosomes” should be reserved for vesicles of endosomal origin that form via
MVB. However, due to the limitations of current methods used for the isolation of EV
the adequate discrimination between various EV subsets is not feasible. Therefore, to
avoid possible misconceptions, a simplified nomenclature has been recently proposed that
distinguishes small EV (i.e., <200 nm) and medium/large EV (>200 nm). A class of small
EV (sEV) consists mostly of exosomes, yet other types of EV, e.g., small microvesicles, could
also copurify with this fraction [88]; in this review, the terms “exosome” and “sEV” are
used interchangeably for simplicity. Moreover, sEV present in blood and other biofluids
represent a complex mixture of vesicles released by different types of cells. It is estimated
that TEX represent about 20–60% of sEV present in the plasma of cancer patients while the
remaining exosomes and other sEV present in this specimen are released by “normal” non-
cancerous types of cells (e.g., platelets, immune cells, and endothelial cells) [89]. However,
due to current limitations of methods allowing purification of specific TEX from body
fluids [90], the mixture of different sEV that could be isolated from serum or plasma remains
a feasible material in the search of cancer markers. Nevertheless, even such heterogeneous
material is a promising source of biomarkers for the detection of lung cancer, which is
discussed below.

4. Serum Exosomes as Potential Lung Cancer Biomarkers

Exosomes are secreted by various cells. However, the concentration of exosomes is
much higher in the blood of cancer patients, including lung cancer, compared to healthy
individuals. Recent reports indicate that the concentration of vesicles in the blood of cancer
patients may reach 109 vesicles/mL of blood [71]. The above observations have been con-
firmed in many types of cancers, including prostate cancer, ovarian cancer, breast cancer,
pancreatic ductal adenocarcinoma, hepatocellular carcinoma, and breast cancer [91–95].
Increased levels of vesicles in the blood of cancer patients correlate with a worse prognosis.
The molecular cargo of exosomes is the primary source of cancer biomarkers. However,
apart from a different molecular cargo, TEX may have a different morphology than exo-
somes secreted by “normal” cells. Exosomes isolated from the serum of patients diagnosed
with pancreatic cancer had a significantly smaller size compared to exosomes isolated
from healthy people [91]. Similar observations were made with the use of atomic force
microscopy in the case of exosomes present in patients with oral cancer [96]. Hence, the
number, composition, and morphology of exosomes can be an important diagnostic cancer
biomarker, though no specific data regarding lung cancer patients is available yet.

Different molecular components of exosomes existing in body fluids (serum, plasma,
and saliva) of patients with lung cancer have been tested in the search for a biomarker of
this malignancy [85,97–102]. Identified biomarker candidates include different classes of
molecules-nucleic acids, proteins, and metabolites. Results of these studies (except for exo-
some miRNA discussed in the subsequent paragraph) are listed in Table 2. A few signatures
of lung cancer have been proposed based on proteins present in serum/plasma-derived ex-
osomes [86,103–107]. Moreover, several studies have proposed long non-coding RNAs and
circular RNAs present in serum-derived exosomes as lung cancer biomarkers [84,108–111].
Furthermore, different levels of several phospholipids (phosphatidylcholines and sphin-
gomyelins), triglycerides, and cholesterol esters present in the exosome membrane have
been observed in plasma-derived exosomes in lung cancer patients and healthy con-
trols [112]. Different diagnostic performance of proposed signatures was reported (Area
Under the ROC Curve, AUC, was in the range 0.70 to 0.90), yet the observed difference
could be attributed to differences in the statistical methodology. Nevertheless, though
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some of these biomarker candidates are promising, their actual diagnostic performance
has not yet been validated in the proper clinical settings.

Table 2. Potential exosome biomarkers of lung cancer.

Biofluid/EV
Isolation Size of Groups Proposed Biomarker Analytic. Method Diagnostic Value Reference

Serum/UC
TEM, NTA, WB

Control: 46
Cases: 125

(Stage I–IV)
AHSG, ECM1 proteins MS

AUC = 0.80
SEN = 54%
SPE = 89%

[104]

Serum/IMA
Control: 10
Cases: 26

(Stage III–IV)
CD91 MS

AUC = 0.72
SEN = 60%
SPE = 89%

[105]

Plasma/UC
TEM, NTA, WB

Control: 15
Cases: 13

(Stage I–II)

SRGN, TPM3, THBS1,
HUWE1 proteins MS

AUC = 0.90
SEN = 81%
SPE = 82%

[106]

Serum/UC
TEM, NTA, WB

Control: 90
Cases: 183

(Stage I–IV)

LPS-binding
protein (LBP) ELISA

AUC = 0.71
SEN = 65%
SPE = 76%

[107]

Plasma/EV array
Control: 150
Cases: 431

(Stage I–IV)

CD151, Tspan8, NYESO1,
HER2, CD171, EGFRvIII
SFTPD, Flotilin1, CD142,

Mucin16

EV array
AUC = 0.74
SEN = 71%
SPE = 69%

[103]

Serum/PRE
TEA, NTA

Control: 150
Cases: 150

(Stage I–IV)
lncRNA (TBILA) qPCR

AUC = 0.78
SEN = 65%
SPE = 81%

[108]

Serum/PRE
TEA, NTA

Control: 150
Cases: 150

(Stage I–IV)
lncRNA (AGAP2-AS1) qPCR

AUC = 0.73
SEN = 67%
SPE = 73%

[108]

Serum/PRE
TEM, NTA, WB

Control: 64
Cases: 72

(Stage I–IV)
lncRNA (DLX6-AS1) qPCR

AUC = 0.81
SEN = 78%
SPE = 86%

[109]

Serum/PRE
TEM, NTA, WB

Control: 30
Cases: 77

(Stage I–IV)
lncRNA (MALAT-1) qPCR

AUC = 0.70
SEN = 60%
SPE = 81%

[85]

Serum/PRE
TEM, NTA, WB

Control: 40
Cases: 64

(Stage I–IV)
lncRNA (GAS5) qPCR

AUC = 0.86
SEN = 86%
SPE = 70%

[110]

Serum/PRE
WB

Control: 30
Cases: 120

(Stage I–IV)

circular RNA
(circRNA-002178) qPCR

AUC = 0.99
SEN = 99%
SPE = 100%

[111]

Plasma/UC
Control: 39
Cases: 44

(Stage I–II)

PC(32:0), PC(34:2),
PC(36:1)/(36:2)/(36:3),
PC(38:3)/(38:5)/(38:6),
LPC(12:0), LPC(16:0),
SM(34:1), SM(42:2),
TG(52:5), TG(54:6),

CE(20:4)

MS
AUC = 0.85
SEN = 77%
SPE = 72%

[112]

sEV’s isolation and characterization methods: UC—Ultracentrifugation; PRE—Precipitation; IMA—Immunoaffinity; TEM—Transmission
Electron Microscopy; NTA—Nanoparticle Tracking Analysis; WB—Western Blot; MS—mass spectrometry; qPCR—quantitative real-time
PCR; AUC—Area Under the ROC Curve; SEN—Sensitivity; SPE—Specificity.

5. Exosome miRNA as a Biomarker of Lung Cancer

The miRNA content of serum/plasma-derived exosomes is another promising source
of lung cancer biomarkers addressed in several papers. Two analytical methods of miRNA
detection dominate in these studies—quantitative PCR and next-generation sequencing.
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However, many different approaches were applied to isolate and characterize sEV from
serum or plasma; hence, different classes of vesicles could be studied in different reports.
The representative papers are summarized in Table 3. Some of these studies tested the
diagnostic performance of miRNA signatures, which resulted in AUC values that ranged
between 0.71 and 0.98. However, none of these signatures have yet been validated in an
independent study. Furthermore, none of them have been studied in the context of lung
cancer screening. Analyzed groups had different sizes and represented different clinical
characteristics and ethnic/genetic backgrounds. Therefore, different miRNA signatures
of serum/plasma exosomes proposed to discriminate lung cancer patients from healthy
controls should be compared with caution.

Table 3. Potential sEV miRNA biomarkers of lung cancer.

Biofluid/EV Isolation miRNA Signature Size of Groups Diagnostic Value Reference

Plasma/PRE miR-378a, miR-379, miR-139-5p,
miR-200b-5p

Control: 25
Cases: 80 (Stage I)

AUC = 0.91
SEN = 98%
SPE = 72%

[113]

Plasma/PRE
WB, TEM

miR-30b, miR-30c, miR-103, miR-122,
miR-195, miR-203, miR-221, miR-222

Control: 6
Cases: 12 (Stage -) - [114]

Plasma/PRE miR-19-3p, miR-21-5p, miR-221-3p Control: 14
Cases: 18 (Stage I–IV) - [55]

Plasma/PRE
WB, NTA, TEM miR-23b-3p, miR-10b-5p, miR-21-5p Control: 10

Cases: 10 (Stage I–IV)

AUC = 0.91
SEN = 82%
SPE = 85%

[115]

Plasma/PRE
WB, NTA, TEM miR-451a, miR-194-5p, miR-486-5p

Control: 149
Cases: 434
(Stage I-IV)

AUC = 0.97
SEN = 95%
SPE = 71%

[36]

Plasma/PRE
WB, NTA, TEM

miR-185-5p, miR-32-5p, miR-140-3p,
let-7f-5p

Control: 20
Cases:79

(Stage I–III)

AUC = 0.91
SEN = 59%
SPE = 100%

[116]

Plasma/SEC + IMA
miR-17-3p, miR-21, miR-106a, miR-146,
miR-155, miR-191, miR-192, miR-203,
miR-205, miR-210, miR-212, miR-214

Control: 8
Cases: 28

(Stage I–IV)
- [117]

Plasma/IMA let-7f, miR-20b, miR-30e-3p, miR-223,
miR-301

Control: 48
Cases:78

(Stage I–IV)
- [118]

Plasma/UC + IMA
WB, NTA let-7b-5p, let-7e-5p, miR-24-5p, miR-21-5p Control: 13

Cases: 47 (Stage I)

AUC = 0.90
SEN = 80%
SPE = 92%

[119]

Plasma/UC
TEM miR-21, miR-4257

Control: 30
Cases: 195

(Stage I–III)
- [120]

Plasma/SEC miR-411-5p Control: 7
Cases: 19 (Stage -) - [121]

Serum/PRE
miR-451a, miR-486-5p, miR-363-3p,
miR-660-5p, miR-15b-5p, miR-25-3p,

miR-16-2-3p

Control: 10
Cases: 20

(Stage I–IV)

AUC = 0.98
SEN = 100%
SPE = 90%

[122]

Serum/PRE
WB, NTA, TEM miR-17-5p

Control: 137
Cases: 172

(Stage I–III)

AUC = 0.74
SEN = 67%
SPE = 77%

[123]

Serum/PRE
WB, NTA, TEM miR-146a-5p, miR-486-5p

Control: 80
Cases: 48

(Stage I–II)

AUC = 0.90
SEN = 83%
SPE = 90%

[124]
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Table 3. Cont.

Biofluid/EV Isolation miRNA Signature Size of Groups Diagnostic Value Reference

Serum/PRE miR-216b
Control: 60
Cases: 105

(Stage I–IV)

AUC = 0.84
SEN = 87%
SPE = 75%

[125]

Serum/PRE
WB, TEM miR-106b

Control: 72
Cases: 72

(Stage I–IV)
- [126]

Serum/PRE 106a-5p, miR-20a-5p, miR-93-5p
Control: 36
Cases: 34

(Stage I–III)
AUC = 0.83 [127]

Serum/PRE
WB, NTA, TEM

miR-210-5p, miR-1269a, miR-205-5p,
miR-9-3p

Control: 150
Cases: 148

(Stage I–III)

AUC = 0.74
SEN = 81%
SPE = 61%

[128]

Serum/PRE
WB, NTA, TEM miR-1290

Control: 40
Cases: 70

(Stage I–IV)

AUC = 0.94
SEN = 80%
SPE = 97%

[129]

Serum/PRE miR-378
Control: 60
Cases: 103

(Stage I–IV)

AUC = 0.84
SEN = 78%
SPE = 82%

[130]

Serum/PRE
WB, TEM miR-7977, miR-98-3p

Control: 65
Cases: 65

(Stage I–IV)

AUC = 0.82
SEN = 81%
SPE = 75%

[131]

Serum/UC
WB, NTA, TEM miR-126

Control: 31
Cases: 45

(Stage I–III)

AUC = 0.84
SEN = 90%
SPE = 86%

[132]

Serum/UC
WB, NTA, TEM miR-21-5p, miR-126-3p, miR-140-5p

Control: 16
Cases: 23

(Stage I–IV)
- [133]

Serum/UC
WB, NTA, TEM miR-620

Control: 231
Cases: 235

(Stage I–IV)

AUC = 0.71
SEN = 63%
SPE = 68%

[134]

Serum/UC
WB, NTA, TEM miR-5684, miR-125b-5p

Control: 312
Cases: 330

(Stage I–IV)

AUC = 0.74
SEN = 81%
SPE = 61%

[135]

Serum/UC
WB, NTA, TEM miR-20b-5p, miR-3187-5p

Control: 30
Cases: 380
(Stage 0–I)

AUC = 0.84 [136]

sEV’s isolation and characterization methods: UC—Ultracentrifugation; PRE—Precipitation; IMA—Immunoaffinity; SEC—Size Exclusion
Chromatography; TEM—Transmission Electron Microscopy; NTA—Nanoparticle Tracking Analysis; WB—Western Blot; AUC—Area
Under the ROC Curve; SEN—Sensitivity; SPE—Specificity.

According to current literature research, proposed lung cancer exosome signatures
involved above 60 miRNA species overall, and 14 miRNA species appeared in more than
one signature. This included miR-21 (seven signatures), miR-221 (three signatures), and
miR-486-5p (three signatures). Figure 2 illustrates miRNA species present in lung cancer
signatures, detected in either whole serum/plasma or serum/plasma-derived exosomes,
which were included in more than one signature. There were nine miRNA species, namely,
miR-17, miR-19, miR-21, miR-221, miR-451, miR-486-5p, miR-126, miR-140, and miR-210,
which appeared in both whole serum/plasma and exosome-based signatures. Functions
associated with this interesting subset of miRNAs are discussed below.
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Figure 2. MicroRNA species present in lung cancer signatures. Showed are components present in
at least 2 signatures identified in either whole serum/plasma or serum/plasma-derived exosomes
(small extracellular vesicles).

Shared components of the whole serum/plasma-based and exosome-based lung can-
cer signatures contain several oncomirs, i.e., miRNAs with known cancer-related functions.
These include miR-17 and miR-19 belonging to the miR-17-92 cluster, which is regulated by
MYC. The miR-17-92 cluster is a unique oncomir due to the polycistronic miRNA transcript,
which allows obtaining six individual miRNAs involved in many cancer-associated pro-
cesses: miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1, and miR-92a-1 [137]. A high level
of miR-17 and miR-19 induces cell proliferation, while the deletion is lethal (it causes lung
and lymphoid cell developmental defects) [138]. miR-17 suppresses the expression of the
E2F1 transcription factor, shifting the cellular balance in favor of increased proliferation. In
lung cancer, overexpression of miR-17 and miR-19 affects the expression of HIF1A, PTEN,
BCL2L11, CDKNA, and TSP1, enhancing tumor growth by increasing the permeability of
blood vessels, inducing hypoxia, increasing proliferation, inhibiting apoptosis, and stimu-
lating tumor cell migration [139,140]. miR-21 is another oncomir frequently overexpressed
in cancer cells, one of the first miRNAs identified in mammals. Among the targets of
miR-21 are tumor suppressor genes such as PTEN, RHOB, and TP63. Further, miR-21
blocks AKT and MAPK signaling pathways via inhibition of several phosphatases. As a
result of miR-21 overexpression, the action of tumor suppressors is blocked, causing the
development of many cancers such as lung, ovarian, breast, brain, and many others [141].
In lung cancer, overexpression of miR-21 is associated with increased cell proliferation,
angiogenesis, cell invasion, and metastasis, as well as chemo- and radioresistance [142].
The inhibition of miR-21 resulted in the induction of apoptosis (due to inhibiting the
PI3K/Akt/NF-KB signaling pathway and increased caspase activity) as well as impeded
the migration and invasiveness of NSCLC cells [143]. miR-21 is involved in modulating
the tumor microenvironment by targeting PTEN in the stromal compartment, which is
mediated by miR-21-containing TEX [144]. Another oncogenic miRNA found in TEX is
miR-221. miR-221 inhibits p27 tumor suppressor, which causes the transition from G1 to
S phase and acceleration of cell division [145]. Among miR-221 targets is also CD117, a
known proto-oncogene that regulates cell survival, migration, and differentiation. Overex-
pression of miR-221 induces proliferation and migration of tumor cells as well as tumor
angiogenesis via the Wnt/β-catenin signaling pathway and has been shown to promote the
chemoresistance of lung cancer cells by activating the PTEN/Akt pathway [146]. miR-210
is also an important factor in the development of lung cancer, whose level increases in
NSCLS tissues and is associated with a worse prognosis [147]. The action of miR-210
involves the regulation of HIF-1, ATG7, LC3, and Beclin-1 [148].
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Other miRNA observed in multiple lung cancer signatures are putative tumor sup-
pressors. In lung cancer, a decreased level of miR-451 correlates with poor prognosis [149].
Functionally, decreased expression of miR-451 increases drug resistance and accelerates
the epithelial-mesenchymal transition due to MYC overexpression, which is a miR-451 tar-
get [150]. Moreover, miR-451 targets several genes involved in the inflammation and stress
response pathways that modulate the tumor microenvironment, including PSMB8, NOS2,
and CARF [151]. Another component of exosome lung cancer signature is miR-126, which
level was reduced in cancer patients. Overexpression of miR-126 inhibits cancer cell prolif-
eration, colony formation, migration, invasion, induces cell cycle arrest, and apoptosis via
targeting ITGA6 gene [152]. Another characteristic component of serum-derived exosomes
is miR-140 involved in carcinogenesis and tumor progression, which level is significantly
lowered in tumors. Overexpression of miR-140 is associated with inhibition of proliferation,
migration, and invasion of NSCLC cells via targeting of ATP8A1 and IGF1R genes [153,154].
Another miRNA shared by serum and exosome-based signatures is miR-486-5p. This
miRNA, one of the most abundant miRNAs in the peripheral blood, plays an important
role in the development of many cancers. Overexpression of miR-486-5p increases cell
proliferation by regulating the PTEN/PI3K/AKT pathway [155]. On the other hand, how-
ever, decreased levels of miRNA-486-5p in NSCLC tissues correlated with increased drug
resistance and a worse prognosis [156]. Moreover, overexpression of miR-486-5p inhibits
the development of lung cancer due to the suppression of GAB2 [157]. Further, decreased
level of miRNA-486-5p correlates with KIAA1199 protein overexpression, which in turn
results in increased cancer proliferation and poor prognosis [158].

Interesting cancer-related features could be attributed also to five miRNA species
detected only in exosome-based signatures of lung cancer, namely, let-7f, miR-146, miR-203,
miR-106a, and miR-20b. Let-7f belongs to the let-7 (lethal-7) family, which consists of 12
members that regulate cell cycle and cell proliferation by affecting RAS, cyclin A2, CDC34,
Aurora A and B kinases, E2F5, CDK8, and HMGA2 [159]. Decreased expression of let-7
is observed in different tumor tissues [160]. Increased expression of let-7f is associated
with inhibition of proliferation, migration, and invasion of neoplastic cells, including lung
cancer cells, while its decreased expression was observed in metastatic cells [161]. miR-146
is involved in the regulation of inflammation [162]. The overexpression of miR-146 is asso-
ciated with increased survival and migration of NSCLC cells via suppressing TRAF6 [163].
Further, increased expression of miR-146 in lung cancer cells lowers the level of claudin-12,
which in turn leads to activation of the Wnt/β-catenin and PI3K/AKT/MAPK signaling
pathways resulting in the increased viability and migration, as well as resistance to cisplatin
and inhibition of apoptosis [164]. Another oncogenic miRNA observed in exosomes of
lung cancer patients is miR-106, which increased expression correlates lymph node metas-
tases, drug resistance, and poor prognosis [165]. Increased level of miR-106 decreased
expression of BTG3, which in turn promotes proliferation and inhibits apoptosis [166]. The
expression of miR-20b is also significantly higher in lung cancer cells. miR-20b contributes
to the development of NSCLC by inhibiting APC via the canonical Wnt signaling path-
way [167]. Moreover, similar to miR-106, miR-20b directly targets BTG3 [168]. The last
miRNA detected in multiple lung cancer signatures is miR-203, which is a putative tumor
suppressor. High expression of miR-203 inhibits the proliferation and invasiveness of lung
cancer cells through negative regulation of survivin [169]. Moreover, increased expression
of miR-203 inhibits RGS17 oncogene, which results in reduced cell proliferation through
the cAMP-PKA-CREB pathway [170]. Furthermore, miR-203 acts as a suppressor of the
SRC/Ras/ERK pathway by inhibiting the expression of SRC oncogene, resulting in the
suppression of proliferation and migration of lung cancer cells [171].

Furthermore, to search systemically for genes regulated by 14 miRNA species that
recurred in sEV-based signatures of lung cancer (Figure 2), the miRTarBase database of
experimentally validated interactions between miRNA and genes [172] was analyzed. This
returned the set of about 600 genes, which functions were analyzed using the FunRich
functional enrichment analysis tool [173]. The set comprised of 390 genes associated with
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lung cancer, including several ones responsible for clinical features of this cancer (e.g.,
KRAS, EGFR, CASP8, PIK3CA, ERBB2, FASLG, RB1, MYD88, and TP53). Among molecular
functions and biological processes associated with this set of genes, several terms poten-
tially involved in cancer development and progression were significantly over-represented,
which is summarized in Table 4. Moreover, over-represented biological pathways associ-
ated with the most numerous subsets of genes were outweighed by signaling pathways
associated with inflammation, immune response, cell growth, cell-to-cell communication,
and cancer.

Table 4. Functions associated with genes regulated by exosome miRNAs common in lung cancer signatures.

Molecular Function No. of Genes Fold Enrichment FDR

Transcription factor activity 72 2.64 <0.00001
Receptor activity 32 2.73 0.00003

Protein serine/threonine kinase activity 28 2.87 0.00005
Transmembrane receptor protein tyrosine kinase activity 11 6.06 0.00008

Receptor signaling complex scaffold activity 28 2.68 0.00010
Receptor binding 16 3.83 0.00016

Protein-tyrosine kinase activity 8 6.50 0.00077
Transcription regulator activity 47 1.74 0.00451

GTPase activity 18 2.50 0.00868
Kinase regulator activity 5 6.71 0.01639

Biological Process No. of Genes Fold Enrichment FDR

Signal transduction 240 1.88 <0.00001
Cell communication 223 1.85 <0.00001

Regulation of nucleotide and nucleic acid metabolism 144 1.57 <0.00001
Apoptosis 26 3.64 <0.00001

Regulation of cell growth 5 7.35 0.01662

No. of genes—number of genes connected to specific term among 600 genes in the whole set; FDR—corrected p-value of the hypergeometric
test for the significance of over-representation.

6. Conclusions

MicroRNA component of serum/plasma is an attractive source of cancer biomarkers,
and several miRNA signatures of lung cancer have been proposed. Though none of them
is applied in clinical practice yet, a few are currently tested in prospective clinical trials
aimed at validation of their applicability in the early detection of lung cancer and/or
diagnosis of the indeterminate pulmonary nodules. Among other potential biomarkers
of early lung cancer are exosomes (or rather small extracellular vesicle, sEV) circulating
in the blood. Several molecular components of sEV, including proteins, lipids, and non-
coding RNAs, have been reported to have different levels in vesicles isolated from lung
cancer patients and healthy individuals. The largest number of published reports that
address this issue focus on the miRNA component of vesicles. Proposed signatures of
exosome miRNA have promising diagnostic value (AUC in the 0.75–0.95 range), yet none
of them has been validated in the context of the early detection of lung cancer. These
signatures involve a few dozen miRNA species overall, including 14 miRNA (so far) that
recurred in different signatures. It is worth noting that all these miRNA species have cancer-
related functions and have been associated with lung cancer progression, which further
confirms their diagnostic importance. Importantly, a few miRNA species, including known
oncomirs miR-17, miR-19, and miR-21, appear in multiple miRNA signatures of lung cancer
that are based on both the whole serum/plasma and serum/plasma-derived exosomes.
However, one should note, that due to barely standardized methods of sEV isolation, the
analysis of exosome miRNA content represents a diagnostic challenge. Therefore, the direct
comparison of a diagnostic value of miRNA signature based on the serum/plasma-derived
sEV and the whole specimen is desired, which is not available yet.

51



Cancers 2021, 13, 1373

Author Contributions: Writing—original draft preparation, M.S.; writing—review and editing, P.W.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Science Centre, Poland, Grant 2017/27/B/NZ7/01833
(to P.W.).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Blandin Knight, S.; Crosbie, P.A.; Balata, H.; Chudziak, J.; Hussell, T.; Dive, C. Progress and prospects of early detection in lung

cancer. Open Biol. 2017, 7, 170070. [CrossRef]
2. Kauczor, H.U.; Baird, A.M.; Blum, T.G.; Bonomo, L.; Bostantzoglou, C.; Burghuber, O.; Čepická, B.; Comanescu, A.; Couraud, S.;
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Simple Summary: The aim of this review is to provide an overview of the current scientific evidence
concerning the role played by exosomes in the pathogenesis, diagnosis and treatment of diseases.
The potential use of exosomes as delivery vectors for small-molecule therapeutic agents will be
discussed. In addition, a special emphasis will be placed on the involvement of exosomes in
oncological diseases, as well as to their potential therapeutic application as liquid biopsy tools mainly
in cancer diagnosis. A better understanding of exosome biology could improve the results of clinical
interventions using exosomes as therapeutic agents.

Abstract: Exosomes are lipid bilayer particles released from cells into their surrounding environment.
These vesicles are mediators of near and long-distance intercellular communication and affect various
aspects of cell biology. In addition to their biological function, they play an increasingly important
role both in diagnosis and as therapeutic agents. In this paper, we review recent literature related
to the molecular composition of exosomes, paying special attention to their role in pathogenesis,
along with their application as biomarkers and as therapeutic tools. In this context, we analyze
the potential use of exosomes in biomedicine, as well as the limitations that preclude their wider
application.

Keywords: exosomes; molecular composition; cancer pathogenesis; diagnostics; therapeutics

1. Introduction

Membrane-bound and heterogeneous extracellular vesicles (EVs) were initially con-
sidered anecdotal examples of cell debris or apoptotic bodies released by the majority of
cells [1]. EVs are now regarded as key diagnostic tools [2–4] and therapeutic agents [5]. EVs
facilitate communication processes between near and distant cells. In addition, these vesi-
cles can be grouped into two major categories: (a) microvesicles (MVs; 100–1000 nm), con-
sidered to be functional liposomes composed of molecules such as nucleic acids, proteins
and functional lipids surrounded by a lipid bilayer and (b) exosomes (EXOs; 30–150 nm)
(Figure 1) [6], which differ from MVs in their size, protein composition, buoyant density,
release mechanism and potential physiological role [7–10]. In this review, we will focus

59



Cancers 2021, 13, 84

mainly on exosomes, with particular emphasis on their composition. We will discuss their
potential role in signaling under both physiological and different pathological conditions.
Special attention will be paid to the therapeutic role of exosomes as delivery vectors, as well
as their potential use as biomarkers and in clinical interventions.
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2. Pathological Functions of Exosomes

Exosomes are known to transfer bioactive cargo between donor and recipient cells,
ensuring pleiotropic functions in intercellular communication. They are also considered to
be an important factor in tumor pathogenesis and immunosuppression [14]. They generate
an intricate network of interactions that inhibit the immune system by delivering similar
contents of tumor cells to immune cells and also impair natural killer cell activation and
induce effector T cell apoptosis [15]. These vesicles have been reported to use autocrine and
paracrine signaling pathways to regulate cell characteristics, to modulate their microenvi-
ronment and to boost their effects [16]. In addition, exosomes can act as external stimuli
and modify the biological phenotype of recipient cells by changing their RNA expression
and activating their receptors. Interestingly, cancer cells exchange exosomes with stromal
cells in order to create a protumor microenvironment and to increase tumor invasion and
proliferation [17].

On the other hand, these vesicles facilitate the interneuronal transmission of pathogenic
proteins that are responsible for several neurodegenerative diseases, such as Parkinson’s
disease (PD) and Alzheimer’s disease (AD) [18]. The exosomal transfer of p-tau and Aβ1-42
between cells and body fluids is potentially involved in the slow progress of AD. Moreover,
early detection of these neurodegenerative proteins could lead to successful treatments
and longer survival [19]. Thus, the key protein involved in PD pathology α-synuclein is
secreted via a calcium-dependent mechanism and transported by exosomes, leading to cell
death in recipient cells [20]. Exosomes have also been reported to release cellular prion
protein (PrPc) and prion protein scrapie (PrPsc) to the extracellular environment, thereby
contributing to the pathological spread of infectious prions [21].
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2.1. Tumor Pathogenesis

Tumor cells influence both their surrounding microenvironment and distant organs
where they can promote angiogenesis, proliferation and cancer metastasis. Exosomes,
which are considerably involved in cancer growth and metastatic spread, are considered
the main cause of the paracrine effect on recipient cells (Figure 2). The regulation of onco-
gene expression and abnormal transformations might also result from different initiation
factor effects. Eukaryotic translation initiation factor 3 (elF3) bridges the 43S preinitia-
tion complex and elF4F-bound mRNA to control protein synthesis, and their aberrant
expressed subunits are associated with different cancers [22]. The transforming growth
factor beta (TGF-β) signaling pathway, another cancer initiation and progression factor,
acts through its central mediator SMAD4 by disrupting DNA damage responses and repair
mechanisms, thus enhancing their genomic instability [23]. This signaling is also targeted
by the migration inhibitory factor (MIF) to induce the fibronectin production necessary
for the remodeling of the premetastatic niche [24]. Additionally, TGF-β is reported to
increase fibroblast growth factor-2 (FGF-2) production and mesenchymal stem cell (MSC)
differentiation into myofibroblasts to trigger cancer proliferation and invasiveness [25,26].
In the tumor environment, the production of hypoxia inducible factor-1 (HIF-1) plays a
crucial role in cancer initiation and progression. Consequently, hypoxia induces HIF-1
stabilization, and its nuclear translocation fosters the expression of genes such as vas-
cular endothelial growth factor (VEGF), hepatocyte growth factor (HGF) and the Met
protooncogene [27]. The oncogenes Kristen rat sarcoma 2 viral oncogene homolog (KRAS),
epidermal growth factor (EGF) and SRC are transferred by exosomes to recipient tumor
cells to promote tumor invasion [28]. To ensure the tumor evasion of immune surveillance,
exosomes also release programmed death-ligand 1 (PD-L1) [29].
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Figure 2. Roles of tumor-derived exosomes in cancer pathogenesis. Cancer stem cells: CSC. Epithelial-to-mesenchymal
transition: EMT. microRNAs: miRNAs. Transforming growth factor beta: TGF-β. Signal transducer and activator of
transcription: Stat. zinc finger E-box-binding homeobox: Zeb. Multidrug resistance: MDR. Interleukin 6: IL-6. Jun
N-terminal kinases: JNK. Mitogen-activated protein kinase kinase: MEK. Extracellular signal-regulated kinases: ERK.
Vascular endothelial growth factor: VEGF. Hepatocyte growth factor: HGF. Programmed death-ligand 1: PD-L1. Toll-like
receptors: TLRs. Phosphatase and tensin homolog: PTEN. Cluster of differentiation 9: CD9. Zonula occludens-1: ZO-1.
Hypoxia inducible factor-1: HIF-1).
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Heat shock proteins (HSPs), which are associated with stress conditions, are key
regulators of exosome formation and release [30,31] and are involved in antitumor activity
in a murine model in a major histocompatibility complex (MHC)-independent manner [32].
Furthermore, the P53 protein is mutated or lost in the majority of cancer types and also
modulates many surveillance pathways [33,34]. This protein modulates the transcription of
different genes, including TSAP6 and CHMP4C, thus promoting exosome production [35].
These transcriptional signals are involved in cell communication and immune activa-
tion [36]. Another tumor suppresser, the phosphatase and tensin homolog (PTEN) protein
secreted in exosomes, presents phosphatase activity in target cells, resulting in the activa-
tion of the apoptosis cascade and suppression of cell proliferation through interactions
with Notch signaling [37,38].

Exosomes containing noncoding RNAs (long noncoding and microRNAs (lnc- and
miRNAs)) are associated with many cellular mechanisms [39,40]. MiRNAs were first
identified in human serum and later in biological fluids such as saliva, urine and breast
milk, thus confirming their role in cell-to-cell communication [7,41]. By modulating mRNA
translation in target cells, exosome-associated miRNAs can improve and suppress cellular
unbalance, development and tumorigenesis [42].

MiRNA secreted by nontumor cells can affect various cancer-associated mechanisms.
Tumors not only contain cancerous cells but also vascular, immune and cancer-associated
fibroblastic cells, as well as an extracellular matrix (ECM), all nontumor cells involved
in cellular communication and signaling and sustain neighboring tumor cell growth and
metastasis [43]. These normal cells secrete tumor-suppressive miRNAs in their EVs to
competitively overcome the anarchic growth of their neighbors, a system failure that might
initiate cancer [44]. This was observed in prostate cancer, where miRNA-143 acts as a death
signal, inducing growth inhibition through a cell-competitive process [45]. Table 1 sum-
marizes the commonly reported miRNAs and lnc-miRNAs found in cancer pathogenesis.
Cancer is a multifactorial process in which different miRNAs are secreted by different cells
belonging to the tumor microenvironment, resulting in intercellular communication and a
single pathway, causing initiation and progression of the disease, angiogenesis, metastasis
and drug resistance. In contrast, a single miRNA could be a key modulator of different sig-
naling systems in multiple intercellular networks in recipient cells, thereby modifying their
destination and signaling pathway, thus promoting tumorigenesis. Lnc-RNAs, which are
highly expressed in exosomes, play a crucial role in the microenvironment by transferring
cell signaling and by modulating gene expression [46,47].

2.1.1. Cancer Initiation

Cancer is a genetic and irreversible change due to the activation of specific onco-
genes, inactivation of tumor-suppressive genes or other genes involved in genome stability.
The evolution of these cancer cells is the result of dual interactions between cancer cells and
their surrounding microenvironments. Inflammation is considered the driving initiator
of tumor development. Exosome integrins are reported to upregulate S100 proinflam-
matory molecules, probably by activating and phosphorylating SRCs [48]. Additionally,
tumor cells induce the secretion of inflammatory factors, including VEGF, tumor necrosis
factor-α (TNF-α), TGF-β and interleukins, to stimulate myeloid cells and immune cells
to migrate, thus amplifying inflammatory factor secretion [49]. The immune response
is prevented later after the programmed death receptor (PD-1) expressed on activated T
and B cells and macrophages binds to its ligand, PD-L1, inducing T-cell apoptosis and in-
hibiting T-cell activation and proliferation [50,51]. Tumor-associated macrophages (TAMs),
T-regulators and myeloid-derived suppressor cells are also recruited to the tumor to inhibit
the immune response [52,53]. This immune suppression phase is followed by the im-
provement of angiogenesis and vascular permeability. In this case, MSCs and endothelial
cell interactions mediated by Akt phosphorylation lead to the formation of a vascular
microenvironment [54]. By expressing E-cadherin and carbonic anhydrase-9 (CA-9) on
their surfaces, exosomes also promote angiogenesis [55,56]. Additionally, integrins (ITGs)

62



Cancers 2021, 13, 84

present on their surfaces determine organotropism, and their different expressions are
organ-specific [48]. These ITGs colocalize specifically with ECM components (laminin
or fibronectin) whose composition is modulated by fibroblasts and endothelial cells, sug-
gesting that exosomes drive the colonization of tumor cells by remodeling the stromal
microenvironment of the target organ. Mesenchymal stem cells (MSCs) are part of the
tumor microenvironment [57], where they are educated and transformed through the
release of exosomes into tumor-supportive myofibroblasts, leading to cancer initiation [58].

Likewise, cancer cell-derived exosomes from multiple myeloma (MM) cells are re-
ported to transfer miRNAs to MSCs to initiate cancer, which, in turn, activates cytokine
secretion, tumor growth and migration [59]. This mutual intercellular communication is
of primordial importance in initiating tumorigenesis in different organs. Tumor cells can
also inhibit or decrease antitumorigenic miRNA activity, leading to cancer initiation [60].
The release of miRNA-202-3p by exosomes into the microenvironment negatively regulates
its antitumorigenic target [61] (Table 1). From an alternative perspective, cancer-associated
fibroblasts (CAFs), which are mostly present in the cancer microenvironment, could induce
tumor development and progression. These cells, which secrete miRNAs such as miRNA-
21, miRNA-378e and miRNA-143, significantly increase the stemness of breast cancer cells
and their epithelial–mesenchymal phenotype [62]. In addition, infiltrating monocytes play
an important role in tumor cell progression, as they are driven to differentiate into M2
tumor-associated macrophages (TAMs) by the derived exosomes miRNA-103a and miRNA-
203, leading to the secretion of fibroblastic and proangiogenic growth factors [63,64].

On the other hand, exosome lncRNA-p21 is reported to suppress prostate cancer
initiation and the expression of genes transcriptionally regulated by P53 [65]. P53 expres-
sion is also stimulated by lnc-RNA-MEG3 to inhibit cell proliferation in lung cancer [66].
Lnc-RNA-GAS5 represses antiapoptotic genes when binding to the DNA-binding domain
of the glucocorticoid receptor to prevent prostate cancer initiation [67].

Other lnc-RNAs are reported to favor tumor progression by regulating or silencing
different miRNAs involved in cancer initiation repression. LncRNA-HOTAIR, which is
associated with poor prognosis in urothelial bladder cancer, sponges miRNA-205, thus
facilitating tumor initiation and progression [68]. Similarly, lncRNA-MALAT1 is reported
to modulate EMT and to promote cervical cancer cell growth and invasion [69,70]. LncRNA-
MONC and MIR100HG are both expressed in acute megakaryoblastic leukemia blasts
and act as oncogenes associated with tumor development [71]. LncRNA-RoR is a stress-
responsive lncRNA in hepatocellular cancer, preventing the activation of cellular stress
and miRNA-145 sponging, which can also promote the expression of hypoxia-inducible
genes associated with cell growth, apoptosis, angiogenesis, differentiation and survival [72].
Another lnc-RNA, lncRNA DANCR, has been reported to sponge miRNA-33a-5p and to
increase EMT, cell proliferation and migration in gliomas [73].

2.1.2. Tumor Angiogenesis

The formation of tumor-associated vessels might be mediated by the sprouting of
tumors surrounding pre-existing vessels or the newly recruited endothelial progenitor
cells from bone marrow [60]. Exosome-derived miRNA-21 is reported to increase vas-
cular endothelial growth factor (VEGF) levels (Table 1), the key player in angiogene-
sis, which facilitates endothelial cell migration and new blood vessel formation [74,75].
STAT proteins are also targeted by miRNA-9, whereby tumor neovascularization is strongly
activated [76–78]. Another miRNA, miRNA-135b, transferred to endothelial cells by mul-
tiple myeloma cell-derived exosomes, inhibits hypoxia-inducible factor 1 (HIF-1) and
promotes angiogenesis [79].

Angiogenesis is an important mediator of tumor progression through the induc-
tion of protumoral TAMs when monocytes incorporate miRNA-203-derived exosomes
secreted by colorectal cancer cells [63] and miRNA-103a-derived exosomes from lung
cancer [64]. This mechanism underlies the spread of cancer through the polarization
of tumor-suppressive and proangiogenic macrophages. Exosomes also mediate the en-
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dothelial cell phenotype in CD90+ liver cancer cells through lnc-RNA H19 and promote
angiogenesis and cell-to-cell adhesion [80].

2.1.3. Tumor Metastasis

Since 1989, when Steven Paget introduced the concept of “seed and soil” in relation
to tumor progression and metastasis, a great body of literature has been developed, with
a better understanding of the mechanisms underlying tumor growth and metastasis [81].
The spread of tumor cells was proposed as the result of the interaction and cooperation
between cancer cells (seed) and the host organ (soil) [82]. The metastatic process was
later identified as including several stages, such as intravasation, extravasation, tumor
latency and the development of micrometastasis and macrometastasis. However, the
preferential target organs (soil) may be prepared for metastatic deposits through the devel-
opment of premetastatic niches that facilitate tumor cell homing, colonization and growth.
The primary tumor (seed) plays a key role in the development of premetastatic niches by
producing soluble factors, inducing bone marrow-derived hematopoietic cell migration to
the premetastatic niche. The primary tumor also secretes exosomes, thus modulating the
tumor microenvironment in the premetastatic niches. EMT and mesenchymal-to-epithelial
transition (MET) enable migratory phenotypes and seed behaviors. EMT enables tumor
cells to enter the circulation and seeding at distant sites [83], where MET is responsible for
colonization and metastasis [84]. Moreover, premetastatic niche formation is associated
with the composition of molecular and cellular components undergoing four stages to
support tumor growth and metastasis. In the primary phase, the primary tumor, which is
affected by the uncontrolled proliferation and secretion of exosomes or other tumor-derived
secreted factors (TDSFs), becomes hypoxic and inflammatory. Bone marrow-derived (BMD)
immune/suppressive cells are prepared and mobilized to form an immature premetastatic
niche at a distant organ or at another site of the same organ [85]. In the second licensing
phase, BMDCs are continuously recruited in the secondary site in response to exosomes
and TDSFs, and their interactions with the distant microenvironment lead to their matura-
tion and preparation for tumor cell colonization. Apart from these BMDCs, bone marrow
mesenchymal stem cells (BM-MSCs), which have been identified in different studies, are
recruited by the evolving tumor microenvironment as a major source of cancer-associated
fibroblasts (CAFs) that boost tumor cell survival [86–88]. The activation of integrins,
chemokines and the ECM plays a key role in this organotropism by enabling seeding and
colonization in the secondary licensed site [48]. ECM remodeling, as well as the presence
of interleukin-1 β (IL-1β) and myeloid-derived suppresser cells, result in the EMT profile
of tumor cells [89,90]. The mature and fertile premetastatic niche is colonized by the tumor
cells that can undergo latency if the niche microenvironment is not yet suitable during the
initiation phase. In the case of a well-prepared niche, seeding and colonization with tumor
cells lead to the formation of micrometastases. In the final progression phase, premetastatic
niche hosting and support of more migratory tumor cells induce growth, expansion and
progression to form macrometastases.

From another perspective, cancer stem cells (CSCs), also known as cancer-initiating
cells, have the ability to self-renew and to regenerate the different cell subpopulations
constituting the tumor [91], with evidence showing that few tumor cells can form a tumor
and accomplish metastasis [91,92]. CSCs from metastatic breast cancer show significantly
higher tumorigenic and metastatic capacities than low metastatic cells [93]. Althogh au-
tophagy, whose contribution to tumor progression and metastasis remains controversial is
considered to be another seed-type factor, some evidence has demonstrated its involvement
in tumor invasion, colonization [94,95], in EMT [96] and CSC viability [95,97,98]. Tumor
cells can also disseminate and metastasize in distant sites; however, a lag between both
these processes can occur, with tumor cells entering a dormant state for long periods
before giving rise to metastasis months or several years after the primary tumor treat-
ment [99]. When these residual tumor cells, whose reactivation appears to be regulated by
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microenvironmental factors in certain organs, enter a dormant state, they become immune
to therapy.

According to Paget, soil factors may first be represented by the primary tumor mi-
croenvironment and some molecules providing primary seed-to-soil signaling to enhance
the invasive properties of tumor cells [100,101]. In different cancers, TAMs have been
shown to induce tumor cell invasiveness through exosome-derived oncogenic miRNA-223,
CCL18 and CCL19 [102,103]. MSCs promote cell motility through CCL5 signaling and
endothelial cells by modulating oxygenation and tumor perfusion [104]. Besides promoting
tumor growth and angiogenesis, CAFs also secrete SDF-1 to induce tumor cell motility
and invasion [105]. Additionally, secondary soil, which plays a critical role in influencing
cancer metastasis, is composed of many factors and cell types in the metastatic environ-
ment (distant organ microenvironment). In each cancer type, microenvironment-derived
factors promote specific signaling, leading to tumor migration, cell adhesion, growth and
metastasis by enabling tumor cells to enter the niche.

Invasive features are commonly associated with morphological changes in EMT
migration, cytoskeleton organization, motility, the basal membrane and extracellular matrix
(ECM) remodeling. Exosomes have emerged as potential regulators of the EMT promotion
of tumor invasion and spread. Given that EMT is reversible, mesenchymal-to-epithelial
transition (MET) might enable cancer cells to adopt an epithelial profile and capacity and,
thus, transmigrate to distant sites, promoting metastasis [106]. The miRNA-200 family
(miRNA-200a, -200b, -200c, -429 and -141) has the ability to regulate this epithelial cancer
cell phenotype by inhibiting the expression of Zeb1 and Zeb2 gene repressors [107,108].
Being the principal component of the tumor microenvironment, fibroblasts play a crucial
role in tumor progression. Their reprogramming into cancer-associated fibroblasts (CAFs)
occurs after miRNA-105 and miRNA-155 induction in breast cancer and pancreatic cancer,
respectively [109,110].

In addition, exosomes carrying different miRNAs have been shown to display migra-
tory and metastatic behaviors leading to distant tumors [111]. By disrupting the vascular
endothelial barrier, miRNA-939 and miRNA-105 are reported to increase its permeability
through the VE-cadherin gene and by targeting the tight junction protein ZO-1, respec-
tively [112,113]. In exosomes derived from breast cancer, miRNA-10b, with its higher
enrichment levels, also promotes cell invasion [114]. The blood–brain barrier (BBB) is
another aspect of tumor cell invasion, in which the modulation of permeability is the key
feature of brain metastasis. BBB degradation is caused by miRNA-181c, which downregu-
lates PDPK1 gene expression [115].

Glucose uptake suppression by nontumor cells has also been reported to increase
nutrient availability in the premetastatic niche via high-secretion miRNA-122, as observed
in breast cancer patients with metastatic progression [116,117].

2.1.4. Tumor Immunity

Exosomes have been reported to regulate adaptive immunity in different organs
through the cytokines and miRNAs they secrete [118]. Their involvement in tumor im-
munity can range from the regulation of tumor antigens to tumor immunity polariza-
tion [119,120]. However, the most commonly reported involvement of exosomes in immune
responses relates to antitumor supportive activity and to their role in preventing immune
surveillance. Tumor exosomes inhibit bone marrow dendritic cell (DC) differentiation via
the modulation of interleukin-6 (IL-6) expression [121]. The regulatory factor-X-associated
protein (RFXAP), a key transcription factor for the MHC-II gene, is downregulated by
pancreatic cancer-secreted exosomes containing miRNA-212-3p, leading to the inhibition
of MHC class II expression and CD4+ T-cell inactivation [122]. On the other hand, T-cell
apoptosis can be induced via the Fas ligand [123], while cytotoxic natural killer (NK)
cell activity can be inhibited via the downregulation of NK group 2 member D by tumor
exosomes [124]. Regulatory T cells are induced by exosome-derived transforming growth
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factor β-1 (TGF-β) or miRNA-214 in order to downregulate the phosphatase and tensin
homolog (PTEN) and to increase IL-10 secretion, leading to tumor growth [125,126].

On the other hand, tumor cells can evade immunosuppression responses by upreg-
ulating the surface expression of PD-L1 and by inactivating T cells. After binding to its
receptor PD-1, the Sh2p-driven dephosphorylation of the T cell receptor and its coreceptor
CD28 occurs, resulting in the suppression of the antigen-driven activation of T cells [127].
The level of PD-L1 in blood cancer patients is related to their pathoclinical features. Poggio
et al. have also demonstrated the differential expression of exosomal PD-L1 in prostate
cancer and melanoma cell lines [128].

Cancer cells release exosomes expressing PD-L1, which binds PD-1 through its ex-
tracellular domain on CD8 T cells in a concentration-dependent manner [53,128–130].
This PD-L1 secretion can be significantly amplified in tumor cells and in exosomes in
response to interferon gamma (IFN-γ) [128,131]. Exosomal PD-L1 levels, which correlate
with tumor size, have been reported to be significantly higher in the plasma of melanoma
patients as compared to healthy donors. Breast and lung cancer cells also exhibit immuno-
suppressive exosomal PD-L1. Physical interactions were identified with exosomal PD-L1
and activated PD-1+ CD8 T cells, leading to the inhibition of their proliferation by reducing
the expression of Ki-67 and Granzyme B, cytokine production and cytotoxicity through
the inhibition of IFN-γ, IL-2 and TNF-α [129]. Using a preclinical model of prostate can-
cer, the TRAMP-C2 model, the cluster regulatory interspaced short palindromic repeats
(CRISPR)/Cas9-mediated deletion of Rab27a and PD1l, thus inducing exosomal PD-L1
loss, has proven that exosomal PD-L1 is involved in in vivo tumor growth, even at distant
sites [128]. Additionally, in the absence of exosomes or PD-L1, the CD8 T-cell fraction in-
creases in lymph nodes relative to wild-type animals and decreases the exhaustion marker
Tim 3 characterizing cell subpopulations and increases the Granzyme B marker. Thus,
exposure to exosomal PD-L1-deficient tumor cells or the use of anti-PD-L1 antibodies,
considered to be new antitumor therapeutic targets, suppresses tumor growth. Moreover,
antibodies against PD-L1 and PD-1 have been demonstrated to be efficient in treating many
cancer types.

Known to express different toll-like receptors (TLRs), DCs and MSCs are expected to
interact with miRNAs to modulate immunity under normal and tumor conditions. Tumor
exosomes release miRNA-21 and miRNA-29a, which are considered TLR family ligands in
immune cells and act as key regulators of immune responses associated with prometastatic
microenvironments [132]. Pancreatic cancer-derived exosomes regulate TLR4 secretion
and the production of cytokines such as TNF-α and IL-12 in DCs through miRNA-203
transfer [133]. DC-derived exosomes are reported to activate T and B cells, thus facilitat-
ing the presentation of tumor antigens released by cancer cell-derived exosomes [134].
Additionally, this activation of T and B cells might be amplified by mast cells when DC
differentiation is induced [135].

2.1.5. Cancer Drug Resistance

Tumor cells often display resistance, hampering tumor treatments aimed at decrease
inter- and intracellular drug concentrations. This resistance can be the result of different
mechanisms due to genetic or phenotypic changes termed intrinsic resistance or to extrinsic
resistance involving the effect of the tumor microenvironment (TME) [136]. In the TME,
endothelial cells, fibroblasts and immune cells interact to support tumor growth and
progression, where homotypic or heterotypic exosome transfers are regarded as potent
effectors [136–138].

Tumor cells presenting cancer predisposition display multidrug resistance (MDR),
which is related to the increase in the expression of drug transporters from the adenosine
triphosphate (ATP)-binding cassette transporter (ABC) family [139]. These transporters
are present in more than 50% of cancer-presenting MDR phenotypes or can be induced
by chemotherapy [140] and encoded by multidrug resistance protein 1 gene (MDR1 or
ABCB1) for the p-glycoprotein or the ABCG2 gene for the breast cancer resistant protein
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(BCRP) [141]. Additionally, these transporters are able to transfer drug resistance through
exosomes to sensitive cells [142–144]. On the other hand, by reversing their orientation in
the exosome membrane, the transporters can drive drugs from donor cells into exosomes
for sequestration [143–145]. Acidification of the tumor microenvironment appears to
promote drug sequestration by increasing the expression of H+-ATPases [146]. Exosomes
can also act as sponges by presenting on their surface bait targets for drug molecules such
as CD20 to trap the anti-CD20 rituximab [147].

Exosomes are also reported to mediate irradiation resistance by interacting with
the cell cycle and DNA repair. Stroma-derived exosomes are reported to induce tumor cell
dormancy through their recruitment in the G0 phase and a CSC phenotype, thus increasing
chemoresistance [148]. When exosomes were derived from MSCs, a CSC phenotype was
improved in tumor cells [149,150]. Exosomes can also mediate antiapoptosis in donor cells
by decreasing the intracellular levels of proapoptotic proteins by releasing caspase-3 and
-9 [151,152]. Besides decreasing these proapoptotic proteins, exosomes prevent apoptosis
in recipient cells by stimulating antiapoptotic pathways mediated by IL-6, CD41, p38 and
p53 and JNK, Raf/MEK/ERK and Akt [152–154]. IL-6, activin A and granulocyte-colony
stimulating factor (G-CSF) have been shown to induce a CSC phenotype in lung carcinoma
cells by stimulating their de-differentiation [155].

Inducing DNA damage repair is triggered by exosomes to induce tumor cell survival
after exposure to genotoxic irradiation. Furthermore, irradiation increases tumor cell
exosome release [156]. In breast cancer exosomes, the phosphorylation of ataxia telang-
iectasia mutated (ATM) kinase, Histone H2AX and checkpoint kinase 1 (ChK1) increases
in recipient cells, leading to DNA damage repair responses [157]. DNA double-stranded
break repair, induced by tumor cell exosomes to increase irradiation therapy, can occur in
response to irradiation [156–158]. Exosomes derived from irradiated tumor cells can adopt
a migratory profile to escape from the irradiated site, leading to an increase in irradiation
resistance [159].

Cancer-associated fibroblasts (CAFs), which are largely regarded as the principal com-
ponent of tumors and supportive cells, provide a nursing niche and actively regulate the
survival and proliferation of cancer cells [137,138]. CAFs affect cross-interactions between
the stroma and tumor to activate tumor-supportive mechanisms [160,161]. One of these
mechanisms is related to the decrease in drug penetrance in the tumor microenvironment
due to a desmoplastic reaction [162]. After exposure to chemotherapy, CAFs contribute
to therapy resistance through the significant increase in exosome release. In response
to gemcitabine exposure, these exosomes increase the chemoresistance-inducing factor
SNAIL in recipient epithelial cells, leading to proliferation and resistance of pancreatic
ductal adenocarcinoma [163]. In breast cancer, fibroblast-derived exosomes induce a CSC
phenotype through Notch3/STAT1 [164], where, in lung cancer, these fibroblasts create
a nursing microenvironment around aldehyde dehydrogenase 1-positive CSCs to resist
chemotherapy [165].

Therapy resistance mediated by the CSC phenotype is closely related to EMT. Exo-
somes are actually regarded as the main inducers of EMT [166,167], and cross-interactions
between EMT, CSCs, resistance and exosomes appear to be responsible for increasing CSC
markers in breast cancer biopsies after chemotherapy [168]. Moreover, this EMT confers
cell plasticity on CSCs and CAFs. However, CAFs and CAF-like phenotypes may release
cancer-supportive signals after exposure to different chemotherapies, as well as to a single
ablative dose of radiotherapy [138,161,169].

Increasing evidence demonstrates that miRNA-derived exosomes are involved in
drug resistance in different cancers. Breast cancer exosome-derived miRNA-221/222 has
been reported to increase tamoxifen resistance by reducing the target gene expression of
P27 and Era [170]. Transferred by monocytes, miRNA-155 has been reported to target
telomerase activity and telomere length through TERF1 in neuroblastoma cells, leading to
enhanced chemotherapy resistance. The authors cited above also report that miRNA-21 is
involved in ovarian cancer chemoresistance, which suppresses cell apoptosis by binding to
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its target, APAF1 [171]. In addition, multidrug resistance protein 1 (MRP-1) is reported to
be overexpressed in the promyelocytic leukemia HL60 cell line [172]. Nevertheless, cancer
cells might target other adaptation mechanisms to escape chemotherapy; for example, in
breast cancer, exosome-derived miRNA-9-5p, miRNA-195-5p and miRNA-203a-3p trigger
the expression of stemness-associated genes, including Notch1, SRY-box transcription factor
9 (SOX9), SOX2, NANOG and octamer-binding transcription factor 4 (OCT4), leading to a
cancer stem-like cell phenotype [173].

In pancreatic cancer, overexpression of reactive oxygen species (ROS)-detoxifying
genes superoxide dismutase 2 (SOD2) and catalase (CAT) and downregulation of gemcitabine-
metabolizing enzyme deoxycytidine kinase (DCK) confers cellular chemoresistance through
exosome-derived miRNA-155 [174]. Another nc-miRNA associated with cellular stress,
lncRNA-RoR, has been reported to act as a mediator of cell-to-cell communication in
hepatocellular cancer, which elevates miRNA TGF levels in recipient cells, resulting in
chemoresistance [47].
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2.2. Neurodegenerative Disease

In the central nervous system (CNS), close interactions between neurons, microglia,
astrocytes and oligodendrocytes facilitate nerve homeostasis, cellular communication and
signal transduction by secreting exosomes, which, however, also leads to the transfer
of abnormal mediators [185]. These exosomes, which are released into the extracellular
microenvironment, have, in recent years, led to increased interest in the pathophysiol-
ogy of neurodegenerative diseases associated with aging and increasing life expectancy.
Alzheimer’s disease (AD), frontotemporal dementia, Parkinson’s disease (PD), Huntington’s
disease (HD), multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS) have been the
subject of intense study focused on different aspects of these diseases, including their phys-
iology, etiopathology, diagnosis and biomarkers, as well as emerging treatments [16,186].
These pathologies are characterized by protein aggregates and the formation of inclusion
bodies in specific sites in the brain due to neuronal cell death. The impairment of the quality
control mechanisms of these proteins resulting from age-related external stress induces the
transmission of these aggregates to other aggregate-free cells in the brain [186]. Recently,
exosomes have been identified as potential new biomarkers of great interest in synaptic
transmission and nerve regeneration. Additionally, some evidence shows that they are
involved in pathogenesis and could play a role in the advanced treatment of neurodegener-
ative diseases. These exosomes, which act as key mediators in intercellular communication,
have recently been observed to be involved in age-related neurodegenerative diseases,
leading to cognitive impairment due to their ability to transmigrate the blood–brain bar-
rier (BBB) and to transfer pathological protein aggregates such as amyloidβ (Aβ), tau and
α-synuclein proteins to distant brain cells [187]. Cancer cell-derived exosomes can reach
the CNS by destroying the BBB and transferring to neural cells. miRNA-181-c has been
shown to activate actin mislocalization, enabling exosomes to be transferred to the periphery
of the CNS [115]. There is also evidence that exosomes have the ability to cross the BBB
in the opposite direction. Hematopoietic cells are reported to transfer their exosomes to
Purkinje cells in the brain, leading to a modification in gene expression via the inflammatory
pathway [188]. Moreover, exosomes are involved in nerve injuries associated with infectious
agents. Prion proteins might be taken up in the infected cells and then delivered to target
cells through membrane fusion after secretion in the extracellular fluid [21], suggesting that
they play a role in spreading the infectious disease in the brain.

AD is the first common neurogenerative disease in which affected neurons probably
secrete tau protein in the exosomes released, thus contributing to the spread and pro-
gression of tauopathy due to tau protein hyperphosphorylation [189]. Wang et al. have
demonstrated that neuron depolarization leads to the release of exosome-derived tau,
whose trans-synaptic transmission is confirmed by its trans-neuronal and microglial trans-
fer [190,191]. Exosomes effectively spread within interconnected neurons and transfer Aβ

and tau proteins through an endosomal pathway and axonal transport [192]. The exosomal
hyperphosphorylated tau (p-tau) protein and the extracellular senile plaque containing the
Aβ peptide result in neuron degeneration and the secretion of proinflammatory cytokines
by microglia and astrocytes, thus altering the BBB and causing AD [193]. Rajendran et al.
reported that exosome-derived p-tau protein concentrations increase significantly in the
mild/severe stages (Braak stages 3–6) of AD, as compared to patients in the early stages
(Braak stages 0–2), suggesting that exosomes play a crucial role in the abnormal processing
of tau in the cerebrospinal fluid (CSF) in early onset AD [194,195]. On the other hand, Aβ is
transported by exosomes to be degraded by lysosomes in normal settings, and the disrup-
tion of this clearance could lead to their accumulation in exosomes and AD spread [196].
Similarly, this lysosomal dysfunction has been observed in relation to exosomal α-synuclein
release and transmission [197]. Disruption of the secretory pathway of neurons is another
pathological mechanism leading to AD, in which the neuroprotective signal peptide se-
quence targeted by cystatin C is downregulated in exosomes [198]. The soluble amyloid
protein precursor (APP) is thus decreased and associated with the involvement of Aβ

aggregates [199]. Exosomes from activated astrocytes have also been observed in the
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pathogenesis of AD by targeting the inflammatory and proapoptotic pathways [200,201].
Astrocytic damage is related to Aβ senile plaques through the activation of prostate apop-
tosis response 4 (PAR-4) [202,203], while the exosome secretion of PAR-4/ceramide results
in neuroprotective astrocyte apoptosis and AD induction [204].

The neurons are likely to modulate myelin biogenesis by regulating the secretion
of oligodendroglia-derived exosomes, whereby myelin sheaths are slowed down during
CNS development [205]. These exosomes contain myelin proteins and RNAs involved
in promoting myelination [206,207]. Their impact is not restricted to a positive effect on
myelination through an increase in neuron resistance to stress and their enhanced growth
but might also be involved in repairing damaged myelin sheaths [101].

In an immunological setting, exosomes from astrocytes, microglia, platelets, leukocytes
and endothelial cells have been demonstrated to secrete metalloproteinase (MMP)-14 and
caspase 1 following stimulation by proinflammatory cytokines in MS. These enzymes facilitate
lymphocyte and myeloid cell transmigration to CNS by inducing the disintegration of the
BBB [208,209]. In addition, endothelial-derived exosomes transfer the ICAM-1 receptor for
integrin Mac-1 to monocytes, thus increasing their transmigration through the barrier [210].
Furthermore, activated T lymphocytes are involved in this immunological cascade by releasing
exosomes containing larger amounts of chemokine CCL5, which facilitates their adhesion
to brain microvessel endothelium cells [211]. This suggests that exosome generation by the
neural and immune cell network is of great importance in MS pathogenesis.

Exosome cargo is also transferred outside the CNS. In MS, serum-derived exosomes
have been found to contain three myelin proteins: the myelin basic protein, the proteolipid
protein and the myelin oligodendrocyte glycoprotein (MOG). Some evidence indicates
that MOG content is strongly associated with MS, which modulates anti-myelin immune
reactions in both relapsing-remitting MS (RRMS) and secondary progressive MS (SPMS)
patients [212]. Significant sphingomyelinase enzymatic activity has recently been found in
MS patient-derived exosomes, resulting in decreasing levels of different sphingomyelins in
their CSF, which is associated with axonal damage and neuronal dysfunction [213].

Dopaminergic neuron degeneration in substantia nigra, the formation of intracy-
toplasmic Lewy bodies in other surviving neurons and the abnormal accumulation of
α-synuclein are related to the occurrence of PD [214,215]. In addition, α-synucleins control
synaptic transmission and vesicle release [216], where Lewy bodies indicate pathological
α-synuclein aggregation in neurons and glial cells [217], which propagate according to
a prion-like pattern [218]. Some evidence indicates that exosomes are involved in PD by
transporting α-synucleins to lysosomes for degradation, which might then be accumulated
and released into the intercellular space, resulting in cytotoxicity [219,220]. The coaggrega-
tion of α-synuclein with Aβ and the protein tau has also been reported, thus accelerating
the neuropathology and cognitive decline [221,222].

Although protein aggregation is a major cause of neurodegenerative disease, exosome-
derived miRNAs play a key role in controlling protein levels by regulating their mR-
NAs [223,224]. Differential miRNA expression is closely associated with AD, PD, ALS,
MS and HD [225–231]. In MS, different miRNAs have been identified in serum-derived
exosomes, whose signatures appear to be indicative of disease subtypes. MiRNA-15b-
5p, miRNA-451a, miRNA-30b-5p and miRNA-342-3p have been identified in RRMS pa-
tients, while miRNA-127-3p, miRNA-370-3p, miRNA-409-3p and miRNA-432-5p have
been found in SPMS patients [232]. Given the T-cell-mediated autoimmune nature of MS,
various studies have reported the involvement of miRNAs in CNS immunomodulation.
Exosomal miRNA let-7i was found to increase in MS patients and to suppress T-reg cell
induction by targeting insulin-like growth factor 1 receptor (IGF1R) and TGF-β receptor
1 (TGF-β R1), leading to autoimmune modulation [233]. Exosomal miRNA let-7 can also
activate TLR7 in neuronal cells and trigger inflammation, causing neuronal death [234,235].
On the other hand, Winkler et al. have suggested that neurons activate TLR7 proteins
present in endosomes and the uptake of exosomes containing miRNA let-7, thus inducing
cell degeneration [236]. In the CNS, TLRs are widely expressed in different cell types,
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whose crosstalk with miRNAs is associated with immune damage, causing inflammation
and neurodegenerative diseases. Additionally, the pathogenesis of MS is related to an
increase in miRNA-326 secretion from T-cell-derived exosomes in RRMSs, thus targeting
TH17 differentiation and maturation [237].

In AD, Aβ and the hyperphosphorylated tau protein are individually regulated
by the APP gene. Increased APP activity results in higher Aβ levels, which negatively
impacts synaptic function and neuron degeneration [238]. Various studies have reported
that miRNA-16; miRNA-101; miRNA-193b; miRNA-200b and the miRNA-20a family
(miRNA-20a, -106b and -17-5p) downregulate APP expression [239–241]. On the other
hand, the post-transcriptional protein tau is targeted by miRNA-34a by combining with
the 3′-untranslated region (UTR) of microtubule-associated protein tau (MAPT), which
inhibits its endogenous expression and leads to AD neuron degeneration [242,243].

The α-synuclein protein characterizing PD pathogenesis has been found to be overex-
pressed, with a recent study reporting that the α-synuclein gene (SNCA) combines its 3′-UTR
mRNA with miRNA-7, resulting in the inhibition of transcription and protein expression.
In PD, given the decrease in miRNA-7 expression, α-synuclein was found to be toxic to
dopamine neurons [244,245]. In addition, the blood plasma of patients is enriched in miRNA-
4639-5p as a result of the post-transcriptional downregulation of the DJ-1 gene, given that the
decrease in DJ-1 protein levels causes severe oxidative stress and neuron death [230].

3. Exosome Composition

Exosomes contain numerous molecules, including proteins, lipids, metabolites, mRNA
and microRNA [246], as well as genomic and mitochondrial DNA [247,248]. Other forms
of RNA, including transfer, ribosomal, small nucleolar and long noncoding RNA (lncRNA),
have also been identified [249] (Figure 1). These can be transferred from host to recipient
cells in order to regulate cellular functions [250–252]. In addition, the ExoCarta, EVpedia
and Vesiclepedia exosome databases provide detailed information regarding the molecular
content of exosomes [253]. The composition of exosomes is a tightly regulated process that
is influenced by environmental factors such as cell activation and stress conditions [254].
Exosomes secreted by the same cells are expected to have a similar protein, lipid and nucleic
acid composition. However, the molecular composition of exosomes has recently been
shown to be non-cell type-dependent and differs even when the exosomes originate from
the same parental cells [255–257]. On the other hand, some cargos are common to exosomes
of different origins [258]. Novel methods and technologies, including high-resolution flow
cytometry [259], laser tweezer Raman spectroscopy (LTRS) [257], ultracentrifugation [260]
and immunocapturing [261], have recently been developed in order to differentiate features
of exosomes such as exosomal heterogeneity [262].

3.1. Nucleic Acids

Exosomes contain nucleic acids, including messenger RNA (mRNA), microRNA
(miRNA) and other noncoding RNAs, which can be transferred between cells and possibly
regulate gene expression in recipient cells [263]. Exosomes released from cancer patients
have been found to contain fragments of single-stranded DNA and double-stranded ge-
nomic DNA, including all chromosomes [264,265]. These vesicles also excrete harmful
DNA from cells in order to maintain cellular homeostasis [266]. Exosomal RNA content
is a subset of cellular RNA and, in some cases, may differ significantly from that of its
parent cell. However, other RNAs are ubiquitous among all types of exosomes regardless
of their cell of origin due to their specific targeting in multivesicular bodies (MVBs) during
biogenesis [267], indicating that specific RNAs are actively sorted into exosomes. In addi-
tion, miRNA packaging in EVs is different from that of the parent cell and is particularly
influenced by external stimuli. As exosomal miRNAs play a prominent role in disease
progression, induce angiogenesis and facilitate metastasis in cancers [112,268], they can be
used as potential noninvasive biomarkers of disease states [269,270].
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Koppers-Lalic and colleagues have suggested that post-transcriptional modifications,
notably 3’-end adenylation and uridylation, have opposite effects that may contribute, at
least in part, to directing ncRNA sorting towards EVs, given the overrepresentation of
3′-end-adenylated miRNAs and 3′-end-uridylated miRNAs in human B cells and their
secreted exosomes, respectively [271]. Dicer and Ago2, key components of miRNA pro-
cessing, have been found to be functionally present in exosomes [272]. A tetranucleotide
sequence is also present in miRNAs that controls their localization in exosomes. In fact, the
protein heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) specifically binds
exosomal miRNAs through the recognition of this sequence and controls their loading
into exosomes [273]. Similarly, the synaptotagmin-binding cytoplasmic RNA-interacting
protein (SYNCRIP) can control miRNA sorting in exosomes. This protein binds directly to
miRNAs enriched in exosomes that share a similar sequence or hEXO motif. This motif,
whose introduction into a poorly exported miRNA improves its exosomal loading, can
regulate miRNA localization [274].

Exosomes produced by endothelial cells promote angiogenesis in vivo in a small
RNA-dependent manner. Exosomes produced by human breast cancer cell lines MDA-
MB-231 and MDA-MB-436 contain various classes of RNA, such as small nucleolar RNAs
(snoRNAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), microRNAs (miRNAs)
and yRNAs, with the major class of RNA being fragmented rRNAs, particularly rRNA
subunits 28S and 18S [275]. On the other hand, tRNAs are the most common RNA species
found in exosomes derived from human adipose- and bone marrow-derived mesenchymal
stem cells (MSCs). More than 50% of total small RNAs are tRNAs in adipose-derived
exosomes (ASC), while tRNAs account for 23–25% of the total small RNA content in bone
marrow (BMSC) exosomes [276]. Similarly, exosomes isolated from urine contain high
concentrations of rRNAs (40–60%) and tRNAs (20–50%), followed by mRNAs (5–15%) and
miRNAs (5–10%), while serum-derived exosomes are enriched with miRNAs (30–75%),
mRNAs (10–20%) and tRNAs (20–30%) [277]. As tRNAs can bind to argonaut proteins
and recognize mRNA targets similar to miRNAs, tRNAs may play a major role in RNA
silencing [278]. Furthermore, vault RNAs (vRNAs) have been reported to play an important
role by mediating the drug-resistant phenotype of malignant cells, suggesting that vRNAs
may be involved in the sequestration of chemotherapeutic compounds. On this basis,
mitoxantrone has the ability to bind to vRNAs, which potentially sequesters the drug and
prevents it from reaching the target site [279].

3.2. Proteins

Exosome protein contents have been well-identified using a wide variety of proteomic
techniques. High-throughput proteomic analyses have revealed the presence of proteins
involved in cell structure, motility and adhesion, such as actins, myosin, radixin, tubulins,
integrins, and cell surface receptors, including epidermal growth factor receptors (EGFRs),
platelet-derived growth factor receptor beta (PDGFRB) proteins and plasminogen activa-
tor urokinase receptors (PLAURs), as well as signaling proteins, transcription factors and
metabolic enzymes [280,281]. In addition, ExoCarta has indicated the presence of over 4000
proteins in exosomes. Exosomal protein composition can vary between different cell types
and under different culture conditions. Ingenuity pathway analysis (IPA) has identified
the presence of 157 proteins in placenta mesenchymal stem cell (PlaMsc)-derived exosomes
exposed to 1% O2. On the other hand, 34 and 37 individual proteins were found to be present
in PlaMSC-3%O2 and PlaMSC-8%O2 exosomes, respectively. More proteins associated with
vascular endothelial growth factor (VEGF), actin cytoskeleton, growth hormone and clathrin-
mediated endocytosis signaling in exosomes have been reported to be isolated from pMSC
exposed to 1% O2 as compared to 3% or 8% O2, possibly leading to an increase in the exosome
uptake of target cells [282]. As characterized by matrix-assisted laser desorption ionization
time-of-flight (MALDI-TOF) analysis, MHC-I, together with heat shock proteins HSC70 and
HSP90, annexins, PV-1 and developmental endothelial locus-1 (DEL-1), were found to be
present in exosomes derived from human mesothelioma cells [283].
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Certain molecular markers commonly found in exosomes are essential for the overall
biological and pharmacological effects of exosomes. Heat shock proteins HSP70 and
HSP90 are molecular chaperones, and tumor susceptibility gene 101 (TSG101) is involved
in multivesicular body (MVB) biogenesis. Moreover, tetraspanin and integrin proteins
such as CD63, CD9, CD81 and CD82 are pivotal for cell targeting and adhesion, while
Rab GTPases, annexins and flotillin are involved in membrane transport and fusion [284].
Different α and β chains of integrins (α4β1, αMβ2, αLβ2 and β2); A33 antigen and P-
selectin; ICAM1/CD54 and cell-surface peptidases CD26 and CD13 are also present in
exosomes [285]. Interestingly, given their competition with membrane MHC-II for T-cell
receptor binding on CD4+ T cells, soluble MHC-II (sMHC-II) proteins play a prominent
role in immune response suppression and the maintenance of tolerance [286].

As the protein composition of exosomes is not identical to that of the parent cell, there
are two major protein sorting pathways: the dependent and independent endosomal sort-
ing complexes for transport (ESCRT). ESCRT are composed of four multimeric complexes,
ESCRT-0 to ESCRT-III. Baietti and colleagues showed that cytoplasmic adaptor syntenin
interacts directly with ALIX, which, in turn, binds to ESCRT-III and is involved in the
sorting of syndecan membrane proteins in exosomes [287]. On the other hand, other studies
have indicated that proteins can also be packaged into MVBs without the involvement
of ESCRT or ubiquitin. Intraluminal vesicle (ILV) formation and melanosomal protein
(Pmel17) sorting continue following the disruption of the Hrs/ESCRT function, suggesting
that Pmel may be sorted into ILVs independently of Hrs/ESCRT machinery [288]. In
addition, the features of protein Sna3p enable its selective inclusion in invaginating vesi-
cles independently of ubiquitin [289]. Intriguingly, Lin et al. found that many ribosomal
proteins are secreted by exosomes that are derived from embryonic fibroblasts in sirtuin 6
knockout mice, indicating that SIRT6 affects the sorting of many proteins to exosomes [290].

Le Pecq and colleagues showed that dendritic cell-derived exosomes (dexosomes)
induce strong antitumor activity by displaying antigens to CD8+ and CD4+ T cells. In addi-
tion, this form of immunotherapy is well-tolerated in patients with advanced non-small
cell lung cancer (NSCLC), thus rendering dexosomes a viable acellular alternative to den-
dritic cells (DC) for use in cancer vaccinations in preclinical and clinical studies [291,292].
Some highly potent proteins in MSC-derived exosomes have the potential to improve
cardiac function after myocardial infarction (MI), including growth factors such as fibrob-
last growth factor 1 (FGF1) and neuregulin-1 (NRG1), involved in cardiac development
and regeneration in an MI rat model [293]. In addition, cardiac-specific human fibroblast
growth factor 1 (FGF-1) is also associated with enhanced postischemic hemodynamic
recovery and the attenuation of reperfusion-induced myocardial cell necrosis during is-
chemia reperfusion (IR) [294]. Macrophage colony-stimulating factor (M-CSF) increases
vascular endothelial growth factor (VEGF) production from cardiomyocytes, protects car-
diomyocytes and myotubes from cell death and enhances cardiac function after ischemic
injury [295]. Hill et al. demonstrated that glial growth factor 2 (GGF2) improves cardiac
function in rats with MI-induced systolic dysfunction [296]. Similarly, chronic leukemia
inhibitory factor (LIF) treatment has a positive effect on systolic heart function, suggesting
that LIF may have a therapeutic role in preventing or repairing myocardium injury [297].

3.3. Lipids

The effects of exosomes are not only mediated by their nucleic acid and protein content,
but exosomal lipids, in particular, can also modulate their bioactivity and vesicle stability.
Understanding the biological and pharmacological effects of exosomal lipids can improve
our knowledge of exosome biogenesis and will help to develop efficient exosome-based
therapeutics [262].

Exosomes are a heterogeneous population of extracellular vesicles (EVs) with different
surface-expressed molecular patterns, thus providing an additional tool for their identifica-
tion. The lipid composition of exosomes, which accounts for their unique rigidity, differs
from that of the parent cell’s plasma membrane, partly because exosomes also contain lipids
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from the Golgi apparatus. These vesicles are also rich in cholesterol, ceramide and other
sphingolipids, as well as phosphoglycerides with long saturated fatty acyl chains [298].
In this regard, B-cell-derived exosomes are rich in ceramides [299], whose role in the
budding of exosome vesicles into MVBs has also been reported [298]. On the other hand,
exosomes secreted from oligodendrocytes are highly rich in phosphatidylcholine (40%),
phosphatidylserine (25%) and phosphatidylethanolamine (20%) but contain only 2.2%
cholesterol [300].

Exosomes from mast and dendritic cells have increased levels of phosphatidylethanola-
mines, which have a higher rate of flipping between the two leaflets of the exosome bilayer
than in cellular membranes [301]. Interestingly, exosomes are able to deliver prostaglandins
to the target cells and carry prostaglandins bound to the exosomal membrane with po-
tentially enhanced biological activity rather than the soluble form of prostaglandins [302].
Recent studies have shown that exosomes may affect the lipid composition of recipient
cells, specifically cholesterol and sphingomyelin, thus modulating cell homeostasis [303].
Beloribi-Djefaflia and colleagues suggested that exosomal lipids contribute to tumor pro-
gression and drug resistance in Mia-PaCa-2 cells [304]. Finally, ceramide-enriched exo-
somes have been shown to induce astrocyte apoptosis, potentially contributing to the
progression of Alzheimer’s disease [204].

4. Applications of Exosomes in Biomedicine
4.1. Exosomes as Biomarkers

Exosomes are now regarded as new players in regenerative medicine due to their
therapeutic capacity and their potential as noninvasive biomarkers for early diagnosis;
the evaluation of treatment efficacy and monitoring of the progression of cancer, neurode-
generative, metabolic and infectious diseases [5,305]. They offer a simple method for the
molecular analysis of biofluids that reduces invasive surgery and promotes more precise
medical interventions. Several clinical trials have been launched for both early screening
and accurate diagnosis to reduce mortality rates and to increase recovery rates (Table 2).
The molecular content of exosomes reflects the origin and pathophysiological conditions
of releasing cells, suggesting that the analysis of exosomal markers is a highly specific
and sensitive method that could potentially replace invasive biopsies. In addition, their
small volume, specific biological information, strong permeability through body tissue
barriers, abundance and long half-lives in all biological fluids make these biomarkers
highly attractive targets for clinical diagnostic applications. In addition to nucleic acids,
exosomal proteins have been found to be potential biomarkers for a variety of pathologies,
including cancer, as well as a number of noncancer diseases in different organs, such the
central nervous system [195,197], the kidneys [306,307], liver [308] and lungs [309].

4.1.1. Exosomes for Cancer Diagnosis

Several types of cancer have long been known to shed exosomes into the blood. For-
tunately, recent technological advances have enabled the capture and analysis of these
cancer-derived exosomes to be improved upon, making them valuable diagnostic tools.
RNAs, including mRNAs, lncRNAs, circular RNAs (circRNAs) and miRNAs, DNA, pro-
teins and lipids, have been extensively used as cancer biomarkers (Figure 3).

DNA. Exosomes produced by several cancer types have been reported to contain
DNA. These vesicles carry either long double-stranded DNA fragments [310] or single-
stranded DNA [264]. Some studies have revealed the presence of double-stranded DNA in
exosomes secreted by human carcinoma and murine melanoma, suggesting its potential
use in the early clinical detection of cancer [248]. Similarly, Kahlert and coworkers detected
the predominance of double-stranded DNA in pancreatic cancer-derived exosomes, as well
as similar genomic mutations among exosomes and parental cancer cells [265]. On the other
hand, Balaj et al. identified single-stranded DNA in medulloblastoma-derived exosomes,
thus illustrating its promising potential use in cancer diagnosis and therapy [264].
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Messenger RNAs (mRNAs). Increased levels of epidermal growth factor receptor vari-
ant type III (EGFRvIII) mRNA have been detected in the serum exosomes of glioblastoma
patients, suggesting its use as a new glioblastoma diagnosis method instead of surgery [270].
Exosome Diagnostics, Inc. (Waltham, MA, USA) have developed methods for detecting one
or more biomarkers in urine microvesicles in order to aid the diagnosis, monitoring and
treatment of diseases such as cancer, especially prostate gland-related pathologies. Biomark-
ers, which are mRNAs of one or more isoforms of a large group of genes, facilitate the
detection of prostate cancer by determining the fusion between SLC45A3 and BRAF genes
in urinary microvesicles [311]. Recently, Dong and coworkers found that exosomal serum
membrane type 1-matrix metalloproteinase (MT1-MMP) mRNA increases significantly in
gastric cancer (GC) patients, which correlates with the tumor, lymph node and metastasis
(TNM) stage and lymphatic metastasis. These findings indicate that exosomal MT1-MMP
mRNA can be utilized as a biomarker for GC diagnosis and early treatment [312]. Similarly,
exosomal heterogeneous nuclear ribonucleoprotein H1 (hnRNPH1) mRNA levels, which
are remarkably higher in hepatocellular carcinoma (HCC) patients than in other groups,
are associated with the Child-Pugh and TNM stage classification, portal vein tumor emboli
and lymph node metastasis. This confirms that exosomal serum hnRNPH1 mRNA could
be an effective marker of HCC [313]. Esophageal cancer-related gene-4 (Ecrg4) has been
shown to be a tumor suppressor in several studies. Mao and colleagues have reported
that serum exosomes contain higher levels of ECRG4 mRNA in healthy individuals than
in their cancer counterparts, thus showing that exosomal ECRG4 mRNA can be used for
cancer detection [314].

MicroRNAs (miRNAs) are small noncoding, double-stranded RNA molecules that
degrade complementary mRNA sequences in target cells in order to inhibit protein transla-
tion. These molecules are reported to be abnormally expressed in several types of cancer,
suggesting their role in the pathogenesis of human cancer [315]. Eight miRNAs, previously
shown to be diagnostic markers of ovarian cancer, have been reported to be present at
similar levels in biopsy specimens of ovarian cancer and circulating exosomes isolated
from the same ovarian cancer patients [316]. With respect to lung tumors, Rabinowits
and coworkers found similar miRNA patterns in plasma exosomes and tumor biopsies
from lung adenocarcinoma patients. However, miRNA levels in lung cancer patients and
control subjects differed significantly, indicating that circulating exosomal miRNA could
be useful for lung adenocarcinoma screening tests [269]. Hepatocellular carcinoma (HCC)
is a primary liver malignancy and a leading cause of cancer-related mortality worldwide.
Exosomal miRNA-210 secreted by hepatocellular carcinoma cells is reported to promote
angiogenesis by targeting SMAD4 and STAT6 in endothelial cells. Therefore, exosomal
miRNA-210 could be used as a therapeutic target in anti-HCC therapy [109]. In this
regard, circulating miRNAs in serum exosomes have potential as novel biomarkers for
predicting hepatocellular carcinoma recurrence following liver transplantation [317]. In
addition, Takeshita and colleagues reported that the sensitivity and specificity of serum
miRNA-1246 in an esophageal squamous cell cancer (ESCC) diagnosis are 71.3% and 73.9%,
respectively. Serum miRNA-1246, which closely correlates with the tumor, lymph node
and metastasis (TNM) stage, has been shown to be a strong independent risk indicator
of poor survival rates. Intriguingly, miRNA-1246 levels were found to be elevated in
serum exosomes from ESCC patients but not in ESCC tissue samples, suggesting that
exosomal serum miRNA-1246 could be a valuable diagnostic and prognostic biomarker
of ESCC [318]. Circulating exosomal miRNA-17-5p and miRNA-92a-3p were found to be
upregulated in colorectal cancer (CRC) patients. Their expression levels correlated closely
with metastasis and chemotherapy resistance [319]. Moreover, exosomal miRNA-320d has
been identified as a promising blood-based biomarker for distinguishing metastatic from
nonmetastatic diseases in the serum of CRC patients. Therefore, these noninvasive biomark-
ers may have great potential to predict the clinical behavior of CRC and to monitor tumor
metastasis [320,321]. Mitchell et al. reported that circulating miRNA-141 levels are strong
diagnostic markers of prostate cancer [322]. Furthermore, exosomal serum miRNA-141 and
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miRNA-375 have been found to correlate with tumor progression in prostate cancer [323].
The enrichment of the let-7 miRNA family in exosomes from AZ-P7a cells may reflect their
oncogenic characteristics, including tumorigenesis and metastasis, suggesting that AZ-P7a
cells release let-7 miRNAs via exosomes into the extracellular environment to maintain
their oncogenesis [182].

Long noncoding RNAs (lncRNAs). Exosomes also contain lncRNAs, now character-
ized as potential diagnostic and prognostic biomarkers for a wide range of pathologies.
These functional RNAs, which are longer than 200 nucleotides, do not code for proteins but,
rather, bind to a variety of nucleic acids and proteins as a means to regulate gene expres-
sion at the transcriptional and/or translational level. Colon cancer-associated transcript
2 (CCAT2), a novel lncRNA transcript encompassing the rs6983267 SNP, is significantly
upregulated in CRC tissues as compared to adjacent noncancerous tissues. The higher
expression levels of CCAT2 are associated with a greater depth of local invasion, positive
lymph node metastasis and advanced TNM stage [324]. Moreover, exosomal lncRNA
and miRNA-217 are differentially expressed in the serum of colorectal carcinoma patients
and correlate with tumor classifications (T3/T4), advanced clinical stages (III/IV) and
lymph node or distant metastasis [325]. LncRNA 91H is known to play a prominent role in
tumor development by enhancing tumor cell migration and invasion through the modifi-
cation of heterogeneous nuclear ribonucleoprotein K (HNRNPK) protein expression. In
addition, CRC patients with high lncRNA 91H expression demonstrate a higher risk of
tumor recurrence and metastasis [326]. Interestingly, exosomes from healthy donors carry
a significant amount of HOTTIP (HOXA distal transcript antisense RNA) transcripts in
comparison to CRC patients, with a significant statistical correlation between low exosomal
HOTTIP levels and poor overall survival rates. Therefore, lncRNA HOTTIP could be a
viable biomarker for CRC patients to predict the postsurgical survival time [327]. Exosomal
serum lncRNA HOTAIR (Hox transcript antisense intergenic RNA) and miRNA-21 expres-
sion levels were higher in patients with lymph node metastasis than those without. In
addition, exosomal HOTAIR and miRNA-21 achieved a sensitivity and specificity of 94.2%
and 73.5%, respectively, in differentiating the malignant from benign laryngeal disease,
suggesting that the combined evaluation of their serum expression levels may be a valuable
biomarker of laryngeal squamous cell carcinoma [328].

Proteins. Exosomal protein signatures have also been used as potent alternative
diagnostic markers of cancer. The epidermal growth factor receptor (EGFR) localized to
exosome membranes has been found to be a possible marker for lung cancer diagnosis [329].
In this regard, Jakobsen and coworkers reported that the EGFR is highly expressed on the
exosomal surface by analyzing the extracellular vesicles secreted by lung cancer cells [330],
indicating that the EGFR is a promising biomarker for diagnosing non-small cell lung cancer
(NSCLC). The epidermal growth factor receptor variant type III (EGFRvIII) transcript was
detected in serum exosomes from 25 spongioblastoma patients but was not found in serum
exosomes from 30 normal control individuals. Therefore, exosomal EGFRvIII may provide
diagnostic information for glioblastoma patients [270]. Similarly, Graner et al. reported that
brain tumor exosomes can escape from the blood–brain barrier, with potential systemic and
distal signaling and immune consequences, and that serum exosomes from brain tumor
patients possess EGFR, EGFRvIII and TGF-beta [331]. A microfluidic chip was used to
analyze exosomal protein types in the blood circulation of spongioblastoma patients. In
this regard, Shao and colleagues found that circulating exosomes contain EGFR-VII, EGFR,
PDPN and IDH1, which can be used to analyze primary tumor mutations and to indicate
drug efficacy [332]. Urinary exosomal proteins have also been investigated as potential
biomarkers for prostate and bladder cancers. Nilsson et al. showed that urinary exosomes
in prostate cancer patients express prostate-specific antigen (PSA), prostate cancer gene-
3 (PCA-3), transmembrane serine protease 2-erythroblast transformation-specific (ETS)
transcription factor family member-related gene fusion (TMPRSS2-ERG) and other prostate
cancer-related markers, indicating the potential for the diagnosis and monitoring of cancer
patients [333]. In this respect, Chen and colleagues found that 24 urinary exosomal proteins
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presented at significantly different levels in hernia (control) and bladder cancer patients.
In particular, they revealed the strong association of TACSTD2 with bladder cancer and
the potential of human urinary exosomes in noninvasive cancer diagnosis [334]. CD24,
found in the MVB cytoplasm, is released into the extracellular environment via exosomes
and is associated with the poor prognosis of ovarian carcinomas [335]. Logozzi and
colleagues found that plasma CD63+ exosome levels are significantly higher in melanoma
patients as compared to healthy control individuals [336]. This team recently showed
that plasmatic exosomes from prostate cancer patients overexpress carbonic anhydrase IX
(CA IX), as well as CA IX-related activity. In addition, CA IX expression correlated with
intraluminal acidity in the plasmatic exosomes of these cancer patients [337]. The acidic
microenvironment was reported to induce an upregulation of both the expression and
activity of CA IX in cancer-derived exosomes, along with an increase in their production
levels [338]. Finally, leucine-rich alpha-2-glycoprotein 1 (LRG1) expression levels were
found to be higher in the urinary exosomes and lung tissue of NSCLC patients as compared
to healthy individuals, indicating that LRG1 may be a candidate biomarker for noninvasive
NSCLC diagnosis [309].

Lipids. Exosome lipidomics show great potential for the identification of suitable
markers for cancer diagnosis. Recently, using an untargeted high-resolution mass spec-
trometry approach, our research group identified similarities between structural lipids
differentially expressed in cancer stem cell (CSC)-derived exosomes and those derived
from patients with malignant melanoma (MM) [339]. Our results showed significant
metabolomic differences between exosomes derived from MM CSCs and those from differ-
entiated tumor cells and, also, between serum-derived exosomes from patients with MM
(MMPs) and those from healthy controls (HCs). We detected metabolites from different
lipid classes, such as glycerophosphoglycerols, glycerophosphoserines, triacylglycerols
and glycerophosphocholines. Interestingly, we found that PC 16:0/0:0 glycerophospho-
choline expression was lower in both CSCs and MMPs in comparison with differentiated
tumor cells and HCs, respectively, while lysophospholipid sphingosine 1-phosphate (S1P)
levels were found to be lower in serum-derived exosomes from MMP patients than from
HCs. These results indicate the importance of structural lipids detected in exosomes as
biomarkers in the early detection of cancer and their potential in the determination of
aggressiveness and therapeutic monitoring [339].

4.1.2. Use of Exosomes for Molecular Diagnostics of Neurodegenerative Diseases

Recent evidence indicates the potential involvement of exosomes in the nervous sys-
tem and highlights their role in transcription regulation, neurogenesis and plasticity [340].
Several central nervous system (CNS) cell types, such as neurons and glial cells, are known
to communicate intercellularly by releasing EVs. However, these vesicles could also play
a role in the development of neurodegenerative diseases. Parkinson’s disease (PD) is a
progressive neurodegenerative disorder that mostly affects the motor system. Proteomic
profiling was used to differentially identify proteins expressed in serum exosomes from
PD patients and healthy individuals [341]. In addition, Fraser and colleagues identified
leucine-rich repeat kinase 2 (LRRK2) as a biomarker in urinary exosomes from PD patients
that predicts the risk of the development of this disease among LRRK2 mutation carri-
ers [342]. The aggregation of α-synuclein may play an important role in PD pathology.
Exosomes have been shown to be able to transfer the α-synuclein protein to neighboring
normal cells, thus possibly exacerbating PD pathogenesis [197].

Alzheimer’s disease (AD), another neurodegenerative disorder, is now regarded as
the most common casue of dementia. The early detection of exosome-associated tau,
which is present in human cerebrospinal fluid (CSF) samples and is phosphorylated at
Thr-181 (AT270), would be helpful for AD diagnosis [194]. In this regard, the T-tau, P-
tau and neurofilament light (NFL) biomarkers could be used to differentiate effectively
between AD patients and healthy subjects [343]. Exosomal lipids could also be used as
promising biomarkers for AD diagnosis. In this respect, 10 lipids from plasma were able
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to predict phenoconversion to AD within a two-to-three-year timeframe with over 90%
accuracy [344].
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been reported to enhance the chemosensitivity of GBM cells to temozolomide and to decrease GBM cell migration [346].
In addition, the delivery of miRNA-34a results in the inhibition of GBM cell proliferation, invasion, migration and
tumurogenesis both in vivo and in vitro [347]. Lung cancer was also detected using exosomal biomarkers. In this context,
Liu et al. found that miRNA-23b/10b-5p/21-5p were good candidates for its diagnosis [348], while Dejima and coworkers
considered miRNA-21/4257/451a reliable biomarkers [349,350]. Other miRNAs such as homo sapiens (hsa)-miRNA-
320d/320c/320b were suggested as potential biomarkers [351]. On the other hand, exosome miRNA-101/373 serum levels
were found to be linked to aggressive breast carcinomas [352]. Other authors recommend miRNA-1246/21/223-3p as
potential indicators of breast cancer [353,354]. Therapeutic quantities of doxorubicin (Dox) and cholesterol-modified miRNA
159 (Cho-miRNA-159) were delivered to triple-negative breast cancer (TNBC) cells and exhibited improved anticancer
effects [355]. In addition, miRNA-204-5p and miRNA-21 efficiently inhibited cancer cell proliferation and increased
chemosensitivity by specifically suppressing their target genes in human colorectal cancer cells [356,357]. Adipose-derived
stromal cells (ASCs) were shown to be able to promote prostate cancer cell apoptosis via exosomal miRNA-145 through the
caspase-3/7 pathway [358,359].

4.2. Use of Exosomes as Therapeutic Agents

In many studies, exosomes have been used as delivery vectors for small-molecule
therapeutic agents, as they are capable of traveling from one cell to another and of con-
veying their cargo in a biologically active form, thus acting as attractive gene and drug
delivery vehicles [360]. Cancer cells internalize a significantly larger percentage of exo-
somes as compared to normal cells. HEK293 and MSC exosomes were therefore effectively
used as delivery vectors to transport PLK-1 small interfering RNA (siRNA) to bladder
cancer cells in vitro, resulting in the selective gene silencing of PLK1 [361]. In addition, the
internalization of exosomes in tumor cells is ten times greater than that of liposomes of
comparable size due to their lipid composition and surface proteins, indicating the superior
specificity of exosomes for cancer targeting [362]. Furthermore, exosomes offer several
advantages over standard delivery vehicles. For example, exosomes are able to cross
biological barriers, such as the blood–brain barrier (BBB), have poor immunogenicity and
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can be cell-specific [363]. Therefore, exosomes could be next-generation nontoxic delivery
tools that combine nanoparticle sizes with high capacity levels, making them powerful
vectors for the treatment of a variety of pathologies [364].

Doxorubicin-loaded exosomes are transported to tumor tissues and reduce tumor
growth in mice without any adverse effects observed from this equipotent free drug [365].
Tian and coworkers used mouse immature dendritic cells (imDCs) for exosome production
due to their lack of immunostimulatory markers. Purified imDC-derived exosomes were
gently mixed with doxorubicin (DOX) in an electroporation buffer and then examined
under a transmission electron microscope to verify the recovery of their plasma membrane.
After loading the therapeutic cargo, these vesicles successfully delivered DOX to the
targeted cell nucleus, leading to the inhibition of tumor growth without overt toxicity [366].
In another study, exosomes derived from a brain endothelial cell line, bEND.3, were loaded
with DOX and used to deliver the anticancer drug across the blood–brain barrier (BBB) for
the treatment of brain cancer in a zebrafish model [367]. The membrane vesicles mediated
the autonomous intercellular migration of anticancer agents through multiple cancer cell
layers and enabled hydrophobic and hydrophilic compounds to significantly penetrate
both spheroids and in vivo tumors, thereby enhancing their therapeutic efficacy [368].
Interestingly, chemotherapeutic agents epirubicin and paclitaxel increased miR-503 levels
in exosomes released from human umbilical vein endothelial cells (HUVECs) as compared
to control conditions and were demonstrated to induce antitumor responses during breast
cancer chemotherapy [369].

Exosomes also have the potential to deliver oligonucleotides, such as mRNA, miRNA
and various noncoding RNAs, as well as mitochondrial and genomic DNA, to other cells,
thus offering considerable advantages as ideal delivery systems for gene therapy [370].
As with the incorporation of genetic material into living cells, Alvarez-Erviti and colleagues
used electroporation to deliver short interfering siRNA analogs to the brain in mice via
exosomes [363]. In addition, Wahlgren and coworkers used plasma exosomes as gene
delivery vectors to transport exogenous siRNA to human blood cells. The vesicles suc-
cessfully delivered the administered siRNA to monocytes and lymphocytes, leading to
robust gene silencing of mitogen-activated protein kinase 1, thus suggesting exosomes
as a new generation of drug carriers that enable the development of safe and effective
gene therapies [371]. Similarly, Kamerkar et al. demonstrated a technique for the direct
and specific targeting of oncogenic KRAS in tumors using electroporated MSC-derived
exosomes with siRNA. This treatment suppressed cancer in multiple mouse models of
pancreatic cancer and significantly increased overall survival rates [372]. The same method
was used to load exosomes with miRNA to the epidermal growth factor receptor (EGFR)
expressed in breast cancer cells, indicating that exosomes can be used therapeutically to
target EGFR-expressing cancerous tissues with nucleic acid drugs [373]. Finally, endothelial
cells treated with chemotherapeutic agents are reported to release more exosomes that
contain miRNA-503. Given that miRNA-503 is downregulated in exosomes released from
endothelial cells cultured under tumoral conditions, the introduction of miRNA-503 into
breast cancer cells altered their proliferative and metastatic capacities by inhibiting both
CCND2 and CCND3 [369].

Lee and colleagues demonstrated that exosomes derived from MSCs deliver specific
miRNA mimics (miRNA-124 and miRNA-145) and decrease glioma cell migration and
the stem cell properties of cancer cells, providing an efficient route of therapeutic miRNA
delivery in vivo [374]. In addition, the intratumoral injection of exosomes derived from
miRNA-146-expressing MSCs results in a considerable reduction in glioma xenograft
development in a rat brain tumor model and decreases cell growth and invasion, suggesting
that the export of specific therapeutic miRNA into MSC exosomes represents an effective
treatment strategy for malignant glioma [375]. O’Brien and coworkers engineered EVs
loaded with miRNA-134, which is substantially downregulated in breast cancer tissue
as compared to healthy tissue. It has been demonstrated that miRNA-134-enriched EVs
reduce STAT5B and Hsp90 levels in target breast cancer cells, as well as cellular migration
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and invasion, and enhance the sensitivity of these cancer cells to anti-Hsp90 drugs [376].
Similarly, MSC-derived exosomes encapsulated with miRNA-379 were administered in
breast cancer therapy in vivo. The results of this study show that miRNA-379-enriched
EVs are potent tumor suppressors with an exciting potential as an innovative therapy for
metastatic breast cancer [377]. Bovy et al. identified miRNA-503, whose expression levels
are downregulated in exosomes released from endothelial cells cultured under tumoral
conditions. Endothelial cells are able to transfer miRNA-503 via exosomes to breast cancer
cells, thus impairing their growth and altering their proliferative capacity [369]. Breast
cancer cells prime MSCs to secrete exosomes containing distinct miRNA contents, which
promotes quiescence in a subset of cancer cells and confers drug resistance. According to
this study, a novel therapeutic approach to target dormant breast cancer cells based on
the systemic administration of MSCs loaded with antagomiRNA-222/223 resulted in the
chemosensitization of cancer cells and increased survival rates [148].

Shtam et al. introduced two different anti-RAD51 and -RAD52 siRNAs into Henrietta
Lacks (HeLa) cell-derived exosomes. These exosomes effectively delivered siRNA into
the recipient cancer cells and caused strong RAD51 knockdown, providing additional
evidence of the ability to use human exosomes as vectors in cancer therapy [378]. In a
similar study, Shimbo and coworkers found that the transfer of miRNA-143 by means of
MSC-derived exosomes decreases in the in vitro migration of osteosarcoma cells [379]. In
addition, miRNA-122-transfected adipose tissue-derived MSCs (AMSCs) can effectively
generate miRNA-122-encapsulated exosomes, which can mediate miRNA-122 communica-
tion between AMSCs and hepatocellular carcinoma (HCC) cells, thereby elevating tumor
cell sensitivity to chemotherapeutic agents through the alteration of miRNA-122 target gene
expression in HCC cells [380]. Usman and colleagues have described a strategy for gener-
ating large-scale amounts of exosomes for the delivery of RNA drugs, including antisense
oligonucleotides (ASOs). They chose human red blood cells (RBCs), which are devoid of
DNA, for EV production. RBC EVs were demonstrated to deliver therapeutic ASOs in order
to effectively antagonize oncogenic micro-RNAs (oncomiRNAs) and to suppress tumorige-
nesis [381]. Exosomes could potentially deliver therapeutic proteins to recipient cells, with
a recent study reporting the feasibility of using exosomes as biocompatible vectors that
could improve the targeting and delivery of therapeutic proteins to specific cells in diseased
tissues [382]. In addition, Haney et al. used a new method to treat Parkinson’s disease (PD).
In fact, catalase-loaded exosomes produce a potent neuroprotective effect on both in vitro
and in mouse brains following intranasal administration. This result demonstrates the
capacity of exosomes to load fully functional proteins and to treat specific disorders [383].
Several approaches have envisaged the utilization of specific conserved domains in order
to enhance the loading of proteins. For instance, Sterzenbach and colleagues exploited
late-domain (L-Domain) proteins and ESCRT machinery pathways to load Cre recombinase
into exosomes. This protein was successfully delivered to neurons through a nasal route,
a well-characterized noninvasive method to deliver exogenous proteins to the brain via
exosomes [384]. Human ubiquitin was also used as a sorting sequence to deliver diverse
proteins into exosomes such as EGFP and nHER2. Interestingly, C-terminal–ubiquitin
fusion may act as an efficient signal sequence of antigenic proteins into exosomes, which
could support the use of exosomes as vaccines [385].

5. Conclusions

A considerable number of physiological and pathological processes are undoubtedly
governed or, at least, modulated by the intervention of exosomes. This places exosomes in
a privileged position and optimizes their use as a potential tool in clinical applications for
both diagnosis and therapy. Despite groundbreaking improvements, a number of limita-
tions and challenges remain with regards to transforming exosome applications into clinical
therapies. Further exploration of the molecular composition and function of exosomes,
along with an appropriate cell source for exosome production according to the intended
therapeutic use, will undoubtedly enhance the final outcome of any clinical applications
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using these membrane vesicles. Taking into account the low biofluid volumes available
for diagnosis application, standard and highly effective exosome isolation, purification,
characterization and manipulation methods need to be developed to make these vesicles
a clinical reality. Furthermore, the loading of exosomes without altering their functional
efficacy and the natural characteristics of the donor cell are crucial for oncological research
and their development. Finally, with research in exosome biology in its infancy, further
studies to evaluate the possible impacts of exosomes in major preclinical models are re-
quired to assess the safety/toxicology issues and to ensure their safe and effective use in
therapeutic settings.
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Simple Summary: Tissue biopsy is essential for diagnosis and characterization of a tumor. Recently
circulating tumor cells and other tumor-derived nucleic acid can be detected from blood, which is
called liquid biopsy. Now this concept has been expanded to many other body fluids including
urine. Urine is the least invasive method to obtain a liquid biopsy and can be done anywhere, which
allows longitudinal repeated sampling. Here, we review the latest update on urine liquid biopsy in
urological and non-urological cancers.

Abstract: Tissue biopsy is the gold standard for diagnosis and morphological and immunohis-
tochemical analyses to characterize cancer. However, tissue biopsy usually requires an invasive
procedure, and it can be challenging depending on the condition of the patient and the location
of the tumor. Even liquid biopsy analysis of body fluids such as blood, saliva, gastric juice, sweat,
tears and cerebrospinal fluid may require invasive procedures to obtain samples. Liquid biopsy can
be applied to circulating tumor cells (CTCs) or nucleic acids (NAs) in blood. Recently, urine has
gained popularity due to its less invasive sampling, ability to easily repeat samples, and ability to
follow tumor evolution in real-time, making it a powerful tool for diagnosis and treatment monitor-
ing in cancer patients. With the development and advancements in extraction methods of urinary
substances, urinary NAs have been found to be closely related to carcinogenesis, metastasis, and
therapeutic response, not only in urological cancers but also in non-urological cancers. This review
mainly highlights the components of urine liquid biopsy and their utility and limitations in oncology,
especially in non-urological cancers.

Keywords: liquid biopsy; urine; urine liquid biopsy; DNA; mRNA; microRNA; sncRNA
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1. Introduction

Radiological evaluation followed by biopsy for assessment of tumor tissue and patho-
logical confirmation are the main investigatory methods for cancer diagnosis and treatment
planning. Depending upon the location of the tumor, invasive biopsies can be painful with
risk of complication and associated costs. This is particularly the case when lesions are
in vital organs or close to major vessels, thus making biopsy very challenging to access.
Treatment decisions are often made based on the pathological profile of the primary tumors,
which may or may not be the same genomic clone of the metastatic tumor. It is well known
that treatment effect is different between primary and metastatic tumors [1]. Cancer cells
proliferate continuously, through clonal evolution, to adapt to new environments and
exhibit clonal selection by selective pressure from a tumor microenvironment (TME) or
treatment [2]. It is now known that a bulk tumor may consist of multiple clones of the
same cancer cells (with different molecular and phenotypical profiles) that have a different
cancer biology and clonal evolution in response to treatment, also known as intratumor
heterogeneity. Intratumor heterogeneity is a key challenge in cancer treatment, requiring
real-time assessment of tumor genomic information for precision medicine. Tissue biopsy
often takes samples from only a small part of a bulk tumor and thus may not capture
the entire spatial diversity of tumor heterogeneity [3]. Although multi-region sequential
biopsy can be performed in order to address intratumor heterogeneity [4,5], it may be
impractical in clinical practice and limited to the number of samples that can be tolerated
by the patient. At the present time, cancer surveillance and assessment of treatment effect
is dependent on imaging studies. However, they can only capture morphology of the
tumor as a snapshot at a specific time and location, which does not correspond to the whole
characteristics or function of the tumor. Multiple follow-up visits with imaging studies and
possible biopsies significantly reduce patient compliance and quality of life, and it may be
cost-prohibitive. In order to avoid the shortcomings of current imaging and tissue biopsy
modalities but capture tumor heterogeneity, a non-invasive method to monitor tumor-wide
genomic information during tumor progression or treatment responses is needed.

Liquid biopsy can be an answer to these challenges. Body fluids contain large amounts
of substances secreted from cells after they are utilized in intercellular communication
or released upon cell death. They include metabolites, proteins, and nucleic acids which
may reflect the changes or abnormalities of cells in the body. Liquid biopsy refers to
a process of obtaining tumor-derived materials from body fluids. It is a non-invasive
investigative modality suited for repetitive assessment of tumor-related substances for
assessing changes in gene expression patterns and to study the genomic profile of the
tumor. Liquid biopsy (regardless of blood or urine) measures cells or nucleic acids, either
secreted out of the tumor or brushed out of the tumor after being destroyed. Thus, liquid
biopsy involves sampling from the entire tumor and not a specific area of a bulk tumor.
First, in regard to tumor heterogeneity, blood or urine are expected to contain materials
secreted or released from all cells and its quantity is expected to be reflective of the amount
in the bulk of a tumor. Second, since blood or urine capture the secretome from cells, it is
expected to capture the function of the cells. Changes in circulating materials reflect overall
changes in the TME, such as stromal interactions between the cancer and immune cells [6].
Theoretically, liquid biopsy has the possibility to capture everything from the cells in the
TME and is not spatially or longitudinally limited. Finally, based upon the homeostasis of
the body, anything produced and secreted by a neoplasm should be an excess to the body
and should be excreted via the urine; thus, urine is theoretically an ideal medium to detect
a neoplasm-derived material.

Because of these advantages, liquid biopsy is expected to become a powerful tool in
oncology not only for diagnosis and prognosis, but also for surveillance and assessing
therapeutic effects. Liquid biopsy initially referred only to circulating tumor cells (CTCs)
(although with a short half-life) but now extends to other components released by tumors
like cell-free circulating nucleic acids (NAs) such as DNA, messenger RNA (mRNA),
microRNA (miRNA), non-coding RNA, extracellular vesicles (EVs or exosomes) and tumor
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educated platelets (TEPs). Liquid biopsy corresponds to tumor burden and measurement
of ctDNA appears to be even more beneficial in the metastatic setting (with levels < 5 CTCs
per 7.5 cc correlating to better progression free survival and overall survival) [7]. For the
same reason, high false negative rates (FNR) are seen when lower levels of tumor-derived
products are seen in body fluids. For example, cell-free DNA (cfDNA) can be poor in
quality secondary to inflammation or infections that result in high false positive rates.
Droplet digital polymerase chain reaction (ddPCR) has become one of the most sensitive
methods for detection of somatic mutations by improving cfDNA extraction methods,
thereby optimizing the yield of cfDNA [8–11]. Although liquid biopsy can be performed
with various body fluids, such as blood [12], CSF [13,14], pleural fluid [15,16], gastric
juice [17,18], or saliva [19,20], we will focus on urine, as it can be easily and non-invasively
collected without use of any special techniques or instruments and in copious amounts.
Table 1 illustrates the specifics of standard tissue biopsy and its comparison with blood
and urine as liquid biopsy. While several reviews have been published on urine as a source
of liquid biopsy for cancer, most of them have mainly focused on genitourinary cancers.
Chen et al. focused on urine liquid biopsy technologies and its use in cancer, glomerular
disease, and tuberculosis [21], while Yu et al. focused on prostate and bladder cancer [22],
and Hentschel et al. on bladder, prostate, and cervix cancer [23]. This review seeks to
highlight the components of urine liquid biopsy and its utility and limitations in oncology,
mainly in non-urological cancers.

Table 1. Advantages and disadvantages of standard tissue biopsy versus blood liquid biopsy versus urine liquid biopsy.

Standard Tissue Biopsy Blood Liquid Biopsy Urine Liquid Biopsy

Components

Cell structure, grade, stromal and
immune cells, Lymphovascular
invasion, DNA seq, RNA seq,
gene signatures

CTCs, cell free nucleic acids, exosomes,
tumor educated platelets

Cell free DNA, urinary mRNA,
miRNA, lnc RNA, other snc
RNA, exosomes

Advantages

• Standard of care
• Standard technique,

low FNR
• Histological information

and immunohistochemical
profiling excellent

• Minimally invasive procedure
• Early detection and molecular

profile assessment
• Intratumor heterogeneity
• Real time monitoring of

cancer evolution
• Corelates with tumor burden
• Identifies genetic markers of

treatment and treatment resistance
• DNA fresh and not modified by

storage technique
• Quick turnaround testing time

for ctDNA
• ctDNA more beneficial in

metastatic setting

• Noninvasive procedure
• Early detection and molecular

profile assessment
• Intratumor heterogeneity
• Large quantities available and

centrifuged for concentrates
• High DNA yield
• Identifies genetic markers of

treatment and
treatment resistance

• Good for longitudinal follow up
• ucfDNA can potentially help in

localizing “cancer of
unknown primary”

Disadvantages

• Invasive procedure,
involves patient risk

• Lacks assessment of
intratumor heterogeneity

• Time period of
analysis fixed

• Repetitive invasive
biopsies cumbersome

• Early detection of cancer
not possible

• DNA quality highly
variable in FFPE

• Variable quantity of DNA
based on sampling methods,
high risk of
DNA degradation

• Investigational setting
• High FNR
• Lack of standardized technique for

cfDNA and cellular genomic DNA
• ctDNA quality and

extraction methods.
• Short half life of CTCs (1–2.4 h) in

peripheral blood

• Investigational setting
• No histological assessment
• Effect of hydration status

and medications
• ucfDNA integrity sensitivity

and specificity issues
• Artifacts from

microchip analysis
• Variations in assay

protocols/sample handling
• Measurement of urinary

RNAs challenging
• Lack of large multicenter studies

CTC: Circulating tumor cells; FNR: False negative rate; lnc RNA: Long non-coding RNA, sncRNA: small non-coding RNA; ucf DNA: urine
cell-free DNA; RT-PCR: Reverse transcription polymerase chain reaction; FFPE: Formalin fixed paraffin embedded; ctDNA: circulating
tumor DNA.
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2. Urine Liquid Biopsy Components

Urine is a biological fluid consisting of organic and inorganic compounds; salts; cells
like leucocytes, renal cells, urothelial cells, prostate cells, and exfoliated tumor cells; and
tumor cell-free nucleic acids. Tumor-derived DNA, mRNA, and miRNA can be obtained
via whole urine sample, centrifugation to obtain urine sediment, or filtration to obtain
urinary supernatant and cells [24]. With recent technological advances, it has become
possible to extract and analyze minute amounts of NAs from body fluids. It is easy to
collect large amounts of urine for larger samples of urinary NAs. Urinary NAs are expected
to provide very useful clinical information that may reflect tumor heterogeneity.

2.1. Urinary DNAs

While the exact mechanism of origin of circulating tumor DNA (ctDNA) and its fil-
tration by the kidneys remains unclear, some hypotheses of origin include: (i) from dying
cells, exfoliated either in urine (bladder and prostatic cells) or from circulation (ii) from
CTCs and (iii) via active release [25]. Urine contains DNA as a result of renal clearance of
blood. Only molecular substances smaller than 6.4 nm in diameter and molecular weight
not greater than 70 kDa can pass through the lumen of a nephron [26]. This corresponds to
about 100 base pair (bp) DNA in size [27]. Since the size of a mononucleosome exceeds the
size of the nephron barrier pores, they cannot pass through the nephron. Only protein and
NAs can pass through and are excreted in the urine. Many studies of urine liquid biopsy
have reported the correlation between urinary DNAs and urological malignancies, such as
cancers of the bladder [28,29], prostate [30], and kidney [31], as a result of directly shedding
breakdown products in the urine. Isolating DNA fragments in urine is technically easier
than blood since urine contains less protein [32]. On the other hand, NA-hydrolyzing
enzymes that breakdown DNAs are easily activated in urine. DNA hydrolase deoxyribonu-
clease I and II (DNase I and II) are present both in urine and blood and are more active
in urine. DNase I is a major DNA hydrolase released from the pancreas. The amount of
DNase II is less than DNase I in urine although it is more potent.

DNA methylation changes, which are considered one of the primary events in carcino-
genesis, can be identified by DNA-sodium bisulfite in the urine. This method selectively
deaminates unmethylated cytosines to uracil but methylated forms of cytosines escape the
bisulfite reaction, allowing them to be analyzed by polymerase chain reaction (PCR)-based
technology to target specific functional locations like CpG islands where methylation genes
are expressed. However, there is great variability in its sensitivity and specificity. GSTP1
methylation is a biomarker for prostate cancer [33] and ONECUT2 (One Cut Homeobox 2)
is for upper ureteral carcinoma [34]. However, due to its low sensitivity, DNA methylation
is recommended only in combination with other biomarkers.

Urinary cell-free DNA (ucfDNA) originates directly from dying cells exfoliated in
urine and gives important information regarding DNA derived from cancer cells and is
considered to be more representative than the tissue biopsy of a tumor [35]. There are no
standard protocols for isolation or detection of ucfDNA to date, but it can be detected by
conventional PCR-based assays or by using commercially available kits [36]. Recently, next
generation sequencing (NGS) has been used for better sensitivity [37]. ucfDNA has mainly
seen utility in urological cancers and was first described by Sidransky et al. in 1991 with the
presence of p53 mutations in the urine sediment of patients with muscle invasive bladder
cancer [38]. ucfDNA has also been investigated for EGFR mutation in non-small cell lung
cancer [39], with elevated levels seen in Stage III and IV. Elevated levels of ucfDNA p53
mutations have been demonstrated by Lin et al. in hepatocellular carcinoma and could be
potentially explored for screening [40]. Su et al. reported that KRAS mutation was detected
in higher incidence in urine compared to serum (35%) or plasma (40%) among patients
with colorectal cancer or colonic polyps [41]. KRAS gene G12/13 mutation has also been
found in ucfDNA by the NGS approach of patients with colorectal cancer [42].
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2.2. RNA-Based Biomarkers

Several types of RNA are present and measurable in the supernatant of the urine.
RNA molecules are biochemically unstable and sensitive to heavy metal ions, alkaline pH,
and RNA-hydrolyzing enzymes. There are abundant RNA hydrolases in urine, such as
RNA-hydrolyzing enzyme (RNase II) and Ribonuclease I, which hydrolyze both RNAs
and DNAs. Despite this mechanism, mRNAs are still detectable in the urine because they
are somewhat protected from degradation by extracellular vesicles, ribonucleoproteins,
and lipoproteins [43]. Through alternate splicing of mRNA, many genes generate different
isoforms of protein products in cancer. Thus, mRNA, being a protein coding transcript,
represents a good biomarker for establishing the correlation between information in DNA
and proteins. Several methods to isolate urinary mRNA have been described, including the
QIAamp Circulating Nucleic acid kit (Qiagen) [44], RNeasy kit (Qiagen [45]), and Quick-
RNA MicroPrep Kit (Zymo Research) [46], and miRNeasy kit (Qiagen) [47]. After isolation
of mRNA, molecular biology methods such as quantitative-PCR, droplet digital PCR, or
Next Generation Sequencing are required to search or determine NAs. Currently, the Xpert
BC Monitor test [48] and 2-Gene mRNA Urine test [49] are used for bladder cancer and
prostate cancer, respectively. Since these kits have been used predominantly for urological
cancer, further studies are needed to expand their application for non-urological cancers.

2.2.1. Urinary microRNAs

Compared with mRNA that can be easily degraded by RNA-hydrolyzing enzymes, mi-
croRNA is more resistant to nucleases and remains relatively stable in urine [50]. MicroRNA
are a class of short single strand RNAs (22–24 nucleotides in length) and are involved in cell
proliferation, differentiation, stress response, inflammation, and cell death [51–58]. They
epigenetically inhibit the translation of target mRNA into proteins [59]. They are known
to play roles in different mechanisms of cancer progression, including carcinogenesis,
angiogenesis, and metastasis [51]. MicroRNA is encapsulated and bound to RNA-binding
protein, which stabilize it to the point that it withstands several cycles of freeze and thaw
and remains stable at room temperature for long periods of time. They can be evaluated
in different fractions such as non-centrifuged urine, urine sediment, supernatant, and as
part of exosomes [60]. Since some microRNAs released from cancer cells are also highly
expressed in activated T-cells, some suggest that monitoring circulating microRNA released
from the host immune cells can be used as a biomarker in predicting cancer progression [61].
Furthermore, given the possible association between circulating microRNA and cancer
immunity, studies on circulating microRNA are expected to lead to the future development
of new therapeutic agents through immunomodulation. MicroRNAs represent a new
source of reliable biomarkers that can be diagnostic, prognostic, and predictive during
therapy of cancer patients and has been widely studied in prostate [62], renal [63], and
urothelial carcinoma [64]. MicroRNA can be quantified by reverse transcription-PCR
(RT-PCR), Northern blotting, in situ hybridization, gene expression microarray, or NGS
technology but also with commercially available isolation kits including the miRNeasy
Mini kit (Qiagen) [65], ZR urine RNA isolation kit (Zymo Research) [66] for bladder cancer;
Acid phenol–chloroform plus Silica columns (BioSilica Ltd.) [67], Urine Exfoliated Cell
and Bacteria RNA Purification Kit (Norgen) [68] for prostate cancer; TRIZOL reagent
(Invitrogen) [69] and miRNeasy Serum/Plasma kit (Qiagen) [70] for gastric cancer.

2.2.2. Long Non-Coding RNAs (lncRNAs)

Long non-coding RNAs (lncRNAs) are transcripts with length greater than 200 nu-
cleotides encoding no protein and are gene regulators involved in many biological functions
and dysregulated in various cancers [71]. Expression of lncRNAs is associated with a broad
range of cellular processes, such as cell growth, survival, migration, invasion, and differen-
tiation [72]. More recently, studies have investigated their possible role as biomarkers in
cancer by highlighting the role of lncRNAs in carcinogenesis through impairment of cell
cycle arrest and apoptosis [73]. Many lncRNAs are exosome-derived in urine and have
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been found to be more protected by RNAse activity. The gold standard method for lncRNA
detection is quantitative RT-PCR [74]. Prostate cancer antigen 3 (PCA3) was the first
lncRNA identified in 1999 mapped on chromosome 9q21–22 and found to be overexpressed
in greater than 95% of prostate cancers [75]. The human urothelial carcinoma–associated 1
(UCA1), a 2314-bp lncRNA located on human chromosome 19, has been found to be upreg-
ulated in many cancers, such as hepatocellular cancer [76], colorectal cancer [77], gastric
cancer [78], esophageal squamous cell carcinoma [79], and epithelial ovarian cancer [80].

2.2.3. Other Urinary Small Non-Coding RNAs (sncRNAs)

Small non-coding RNAs are usually shorter in length by about 18–200 nucleotides.
While mRNAs are highly susceptible to nucleases, sncRNAs, which are smaller in size, form
stable complexes in urine, making them more resistant to nuclease [81]. They include small
nuclear RNA (snRNA), small nucleolar RNA (snoRNA), Piwi-interacting RNA (piRNA)
and tRNA-derived small RNA (tsRNA). They have diverse roles, which in conjunction with
other molecules involve gene regulation through RNA interference or RNA modification.
SncRNAs circulate as part of nucleoprotein complexes or membrane-coated microparticles
such as exosomes [82]. Their role as a biomarker of cancers remains unclear [83].

3. Utility of Urine for Liquid Biopsy

While urine is a relatively cell-free biofluid, it contains large numbers of complex sub-
stances, including protein, circulating NAs (DNAs and RNAs), and extracellular vesicles
(EVs). Since the yield and sensitivity of urine cfDNAs are comparable to blood cfDNAs,
attention has been directed to urine sampling as an alternative body fluid source in lieu of
blood to monitor clinical course and follow-up therapeutic effects [84]. Genomic abnormal-
ities detected from urine NAs are shown to be useful in both urologic and non-urologic
cancers. It has been shown that the sensitivity of cfDNA/ctDNA in urine is comparable
to blood among patients with multiple cancers, such as urothelial carcinoma [85], breast
cancer [84], colon cancer [41], and lung cancer [37]. One of the major advantages of using
urine is its non-invasive nature of collection compared to tissue or blood, especially in
patients requiring repeated sampling to monitor cancer progression and/or therapeutic
effects [86]. Urine can be collected in large quantities, which solves one of the major prob-
lems with tissue biopsy or other liquid biopsy materials that often suffer from a limited
number of samples. It is more patient-friendly since the collection of urine can be done
anywhere as opposed to access to other body fluid or tissue which needs to be done in
clinics or hospitals. Even in clinic settings, obtaining sufficient blood draws can be a
challenge in some populations including geriatric patients, intravenous drug abusers, or
anyone with thin veins [87]. Sampling cerebrospinal fluid (CSF) or gastric juice is even
more invasive, and sophisticated techniques are required for their collection. Therefore,
liquid biopsy using urine is expected to significantly reduce labor and cost as well as
patients’ pain. Due to these advantages, urine liquid biopsy has been investigated for
cancer screening, monitoring of cancer progression or recurrence, and the efficacy of chemo
and radiation therapy.

3.1. Urinary Liquid Biopsy for Urological Cancers

Most of the studies regarding urine liquid biopsy have been performed on urological
cancers, since many of the substances secreted from urological cancer are likely to drain
directly into the urinary tract [27,88]. First morning urine contains the highest number of
cells and cellular debris from the urological tract exfoliated in urine at night [89]. Both
low-molecular-weight DNA (<100 bp) and high-molecular-weight DNA (≥1 kbp) can
be detected in urine [84]. Urinary protein biomarkers for early detection of prostate
cancer and bladder cancer have already been established and approved by the FDA, such
as Nuclear Matrix Protein 22 (NMP22), Urovysion Fluorescence In Situ Hybridization
(FISH), and Prostate Cancer gene 3 (PCA3) [90]. As a matter of fact, several tests based on
urine liquid biopsy have been already included in the National Comprehensive Cancer
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Network (NCCN) Guidelines for Prostate Cancer Early Detection since 2020. These tests
are Mi-Prostate scores that include measurements of PCA3 and TMPRSS2:ERG fusion
gene expression in the urine, IntelliScore and SelectMDx, which may reduce the number
of unnecessary biopsies [91]. In addition to ctDNA/cfDNA, the other NAs, such as
mRNA [44,92], lncRNA [93], microRNA, piRNA [94], and circRNA [95], have been reported
to be useful as biomarkers in urological cancers. The first commercial exosome-based
prostate Intelliscore test for prostate cancer became available in 2016 [96]. Several urinary
lncRNAs, such as FR0348383, MALAT1, and DD3 (PCA3), have been reported as better
biomarkers in prostate cancer compared to serum prostate-specific antigens (PSA) [97,98].
Given its quality and accuracy, detection of urinary PCA3 has been approved by the FDA
as a diagnostic tool for prostate cancer [98]. PCA3 levels have also been associated with
tumor volume burden and extracapsular extension and provide prognostic information
before a radical prostatectomy [99]. Urothelial carcinoma associated 1 (UCA1) is one
of the most well studied genes in bladder cancer, and urinary lncRNA of UCA1 was
often detected in patients with bladder cancer [100,101]. Currently, there are two clinical
trials evaluating urine as a source for liquid biopsy. NCT04432909 is a prospective multi-
center, single-blinded study to evaluate the utility of UroCAD for urothelial carcinoma
diagnosis and follow-up in 500 participants (https://clinicaltrials.gov/ct2/show/NCT0
4432909, accessed on 19 May 2021). Patients with urothelial carcinoma prior to resection
are compared with the patients being treated for other diseases but without any tumor to
determine the sensitivity and specificity of UroCAD analysis, which will be compared with
cytology and FISH. Another trial was reported at the American Society of Clinical Oncology
Genitourinary (ASCO-GU) 2021 meeting by Zhang et al. from Shanghai, China, which is a
prospective clinical trial that compares blood and urine liquid biopsy using PredicineCARE
NGS 152 gene assay with the gold standard of tissue biopsy in 59 treatment-naïve bladder
cancer patients. The mutation profiles of urine samples (sensitivity of 86.7%) were found
to be very similar with tissue biopsy compared to blood liquid biopsy samples (sensitivity
of 10.3%). At this point, we were unable to identify any current ongoing clinical trials in
non-urological cancers. With increasing evidence, it is conceivable that detection of not
only DNA and miRNA but also oncogenic lncRNAs in urine might enable early cancer
diagnosis and can be promising therapeutic targets for patients with genitourinary cancer.

3.2. Urinary Liquid Biopsy for Non-Urological Cancers

There are numerous studies identifying common mutations in each type of cancer, such
as EGFR mutation in lung cancer, that guide us in assigning a cell of origin to a biomarker
like cfDNA. We have summarized these molecules detected in urine and the cancer type
in Table 2. In addition, given the strength of liquid biopsy in longitudinal follow-up, we
may discover a unique/novel biomarker for a particular patient of a particular cancer type
that may become a strategy in the future. It is speculated that urinary RNAs may be also
associated with clinical outcomes in patients with various types of cancers [102,103].

Table 2. Application of urine liquid biopsy in non-urological cancers.

Study,
Reference
Number

Cancer Type
Early Stage,

Advanced or
Metastatic

No of
Patients

Molecules
Assessed

Methodology/
Quantitative

Analysis

Clinical
Application of
Urine Biopsy

Sensitivity
in Urine

Reckamp [37] NSCLC Advanced
Stage 63

ctDNA for
EGFR T790M

mutation
ddPCR, NGS

Predictive
response to
Rociletinib
(EGFR TKI)

75%

Husain [104] NSCLC Advanced
Stage 8

ctDNA for
EGFR T790M

mutation
ddPCR, NGS

Predictive
response to

Osimertinib (III
generation
EGFR TKI)

86%

111



Cancers 2021, 13, 2652

Table 2. Cont.

Study,
Reference
Number

Cancer Type
Early Stage,

Advanced or
Metastatic

No of
Patients

Molecules
Assessed

Methodology/
Quantitative

Analysis

Clinical
Application of
Urine Biopsy

Sensitivity
in Urine

Wu [105] NSCLC
Advanced

Stage
& Metastatic

50
TP53 and

EGFR
mutation

PCR, NGS
Detection of
driver gene
alterations

60%

Liu [106] NSCLC Early stage 74 DNA
methylation

Methylation
specific PCR

Early detection
after incidental

finding of nodule
on CT chest

73%

Zhang [107] Breast Early stage 200 ctDNA for
PIK3CA ddPCR Prognostic and

predictive 77%

Ritter [108] Endometrial
& Ovarian Early stage 10 MiR-10b-5p

RT-qPCR,
Human
miRNA
V21.0

microarray

Early detection 50%

Kao [69] Gastric Early stage 50 MiR-21-5p
Quantitative
stem loop RT-

PCR
Predictive NA

Iwasaki [70] Gastric Early stage 197 MiR-6807-5p
MiR-6856-5p

miRNeasy kit
(Qiagen),
miRNA

microarray

Early detection
and

Prognostic
63.4%

Su [41] Colorectal Advanced
stage 20

cfDNA
KRAS

mutation
RT-PCR Early detection 95%

NSCLC: Non-small cell lung cancer; ddPCR: Droplet digital polymerase chain reaction; NGS: Next generation sequencing; RT-PCR: Reverse
transcription polymerase chain reaction; ctDNA: circulating tumor DNA.

3.2.1. Urine Liquid Biopsy in Lung Cancers

Conventional tissue biopsies are particularly cumbersome and carry potential risk
for significant morbidity to lung cancer patients since they can cause pneumothorax and
significant bleeding within the airway. Various urine liquid biopsy components have
been investigated for patients with non-small cell lung cancer (NSCLC) and have been
reported to reduce costs by improving detection of EGFR T790M mutations and reducing
the complications associated with tissue biopsy [109]. Reckamp et al. studied 63 patients
with advanced EGFR-mutant NSCLC and found that the sensitivities of tissue, plasma, and
urine were 73%, 82%, and 75%, respectively, for T790M detection in these complementary
specimens [36]. They also found a significant decrease in T790M MAF in urine in patients
treated with Rociletinib (an EGFR tyrosine kinase inhibitor (TKI)), highlighting a potential
of using urine for follow-up. These findings were confirmed in another study by Husain
et al. who found that early kinetics of ctDNA in the urine of eight patients treated with
Osimertinib, a third generation anti-EGFR TKI, correlated with tumor response [104]. These
studies demonstrate that urine testing successfully identifies EGFR mutations in patients
with advanced stage/metastatic NSCLC and has high concordance with tumor tissue
and plasma and can be used as a viable approach for assessing EGFR mutation status.
In advanced NSCLC, Wu et al. demonstrated a good correlation and complementarity
between genomic profiles of cfDNA extracted from plasma, sputum, and urine compared to
tissue [105]. In early-stage NSCLC, the analysis of DNA methylation at cancer-specific loci
in urine were shown to help characterize nodules after screening via computed tomography
(CT) [106]. Thus, various studies have demonstrated the utility of urine liquid biopsy not
only as a diagnostic but also a prognostic and predictive marker in NSCLC.
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3.2.2. Urine Liquid Biopsy in Breast, Gynecological, and Gastrointestinal Cancers

Some have investigated the role of urine liquid biopsy in early breast cancer. In a
prospective study, Zhang et al. compared serum and urine ctDNA levels using a droplet
digital PCR (ddPCR) technique of 200 breast cancer patients and healthy volunteers [107].
The authors found 3.5-fold higher levels of ctDNA as well as wild-type PIK3CA genotype
in early breast cancer patients compared to healthy volunteers. These results demonstrate
that urinary ctDNA is capable of discerning between healthy populations while providing
early disease detection, especially in high-risk individuals. Zhang et al. also evaluated a
decline of urinary ctDNA following initial treatment and found a 6.8-fold decrease [107].

Among the tested 10 microRNAs, miR-10b-5p was identified as a candidate biomarker
for endometrial and ovarian cancer [108]. It was found to be elevated in patients with
endometrial cancer compared to healthy women; however, its relevance in ovarian cancer
remains unelucidated. MiR-200c-3p was found to be enriched in the urine of endometrial
cancer patients, paving the way for the development of a non-invasive biomarker for
early detection [110]. Abnormal lncRNA UCA1 expression has been linked to adverse
clinicopathological characteristics including lymph node metastasis, chemoresistance, and
poor overall survival in both cancers [80,111].

Identification of biomarkers for gastric cancer still remains a challenge. The most
frequently used tumor markers include CEA, CA19-9, CA72-4, CA50, pepsinogen, and
alfa fetoprotein, however their sensitivity and specificity are poor and hence not specific
to a diagnosis of gastric cancer. Hung et al. reported that miR-376c promotes gastric
cancer cell proliferation and migration, and it was increased in urine and plasma of gastric
cancer patients [112]. Kao et al. detected miR-21-5p levels in the urine of gastric cancer
patients pre- and post-op at one and three months and found that its levels consistently
decreased following gastric surgery [69]. MiR-6807-5p and miR-6856-5p were also found
to be significantly increased in the urine of gastric cancer patients but fell to almost non-
detectable levels following gastric resection [70]. These results appear promising for both
early detection and prognosis of patients with gastric cancer.

KRAS mutations were detected from the cfDNAs in the urine of advanced col-
orectal cancer patients. This was the first reported urinary cfDNA as a biomarker in
a non-urological cancer, proving that the kidney barrier in humans is permeable to DNA
molecules large enough to be analyzed by standard genetic technologies [113]. Su YH et al.
compared the concentration of DNA in different body fluids and found that it was similar
in urine compared to serum, but it was significantly lower in plasma than in either urine or
serum (p < 0.05). They also reported that when DNA was derived from 10 µL of body fluid
in each mutation assay, the mutated KRAS DNA detection was comparable among serum,
plasma, and urine. However, in patients with colorectal cancer, when a larger amount of
body fluid (200 µL) was used the detection rate of the KRAS gene in urine was significantly
higher (95%) than in serum (35%) or plasma (40%). These findings suggest that inhibitory
factors (such as DNase) in serum and plasma might be less abundant in urine, and that
urine does not usually contain large molecules, such as protein, that can interfere with PCR
amplification compared to blood or serum, as they are filtered by the kidneys [41].

4. Limitations of Urinary Liquid Biopsy

By definition, urine is generated by the kidney and there are many components that
may not get filtered in the urine compared to blood. Therefore, urine liquid biopsy has
been more intensively studied in genitourinary cancers and is one of the major limitations
in non-urological cancers. Since urine is a dynamic body fluid, concentrations change
with hydration status, renal pathology, urine volume, and effect of medications. Hence,
concentrations will most likely not be reliable with a high degree of variability within
the urine composition and will require an absolute amount or centrifugation. Therefore,
measuring 24 h urine volumes would be the gold standard to assess hydration status. Mea-
suring creatinine ratios or specific gravity remain as other possibilities and potentially more
feasible alternatives. Despite being a useful tool for diagnosis, prognosis, and a predictive
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marker for treatment response, a major limitation of urine cfDNA-based tests includes
lack of specificity. Increased levels of cfDNA are seen in non-malignant conditions such
as trauma, inflammation, pregnancy, autoimmune conditions like lupus, and infections
such as tuberculosis. Due to these very reasons, cfDNA-based tests lack application in the
clinical setting [36]. Mutation rates in individuals may be influenced by environmental and
physiological factors [114], and spontaneous mutations known to typically contribute to
cancer development can occur with increasing age but may not directly cause cancer. There
is also less abundance of mRNA in urine, a lack of stable targeted molecules, along with
possible contamination of cellular RNA during sample preparation [115]. Thus, utilization
of urine liquid biopsy in pre-symptomatic stages may yield false positive results and
overdiagnosis of cancer. With regards to methodology, microchip analysis is an efficient
method to screen for urine biomarkers; however, challenges when applying this method
include repetitive sequences in the discovery phase miRNAs when designing probes or
primers (due to short length of nucleotides), which may result in artifacts [108] masking
the results of microchip analysis. Varied analytical methods include NGS, RT-PCR, and
microarray, which can lead to aberrational findings [116]. Variations exist in assay protocols
and sample handling despite the same analytical method performed. More importantly,
why certain specific RNA extraction kits are used for detection of biomarkers in different
studies depending on the cancer site, remains elusive. Lack of large multicenter studies
remain the major reason for precluding its adoption in clinical practice.

While there are several limitations to urine as liquid biopsy, it can also be used to our
advantage. The biggest advantage of urine is that an unlimited amount can be collected.
Instead of an absolute value, urine samples can be collected as a set quantity per day and
quantified as a fraction of the total quantity (especially in patients suffering from excessive
diuresis). Ideally, it would be beneficial to confirm the presence of sufficient amounts
and quality of ctDNA to identify the most appropriate ctDNA quantification methods to
maintain uniformity and improve the sensitivity of ctDNA detection to anticipate drug
resistances by urine biopsy. In addition to looking into ctDNA, we can look into smaller
nucleic acids such as messenger RNA, micro-RNA, circular RNA, transfer RNA, or even
RNA in exosomes. Analyzing exosomes in the future can become an important strategy as
cells communicate through exosomes. More recently, with newer tools like SiRe NGS panel
testing [12] or the TargetPlex FFPE Direct DNA library preparation kit [117] being applied
to patient blood and tissue samples with advanced-stage NSCLC, we cannot help but
speculate that these more cost-effective methods may gain more widespread application in
urine liquid biopsies in the future. Considering the positive effects on biomarker studies
and beyond, we hope that funding bodies will take steps to complement the current
emphasis on these novel studies and support programs for reproduction studies of existing
findings to validate their clinical utility.

5. Conclusions and Future Perspectives

Changes in genomic and genetic material in the urine potentially precede changes
in imaging and can detect minimal tumor burden of urological and non-urological can-
cers. There still remains a need for standardized methods and normalization procedures.
Despite the non-invasive nature of sample collection and its potential benefits, this newer
urine-based approach still requires large-scale research for validation by large cohorts
prospectively. Although a promising innovation, an important question that remains to
be answered is whether urine biomarkers offer better profiling for disease recurrence and
whether urine biomarker elevation-driven interventions translate into better outcomes.
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Simple Summary: Apart from genetic changes, cancer is characterized by epigenetic alterations,
which indicate modifications in the DNA (such as DNA methylation) and histones (such as methyla-
tion and acetylation), as well as gene expression regulation by non-coding (nc)RNAs. These changes
can be used in biological fluids (liquid biopsies) for diagnosis, prognosis and prediction of cancer
drug response. Although these alterations are not widely used as biomarkers in the clinical practice
yet, increasing number of commercial kits and clinical trials are expected to prove that epigenetic
changes are able to offer valuable information for cancer patients.

Abstract: Early alterations in cancer include the deregulation of epigenetic events such as changes
in DNA methylation and abnormal levels of non-coding (nc)RNAs. Although these changes can
be identified in tumors, alternative sources of samples may offer advantages over tissue biopsies.
Because tumors shed DNA, RNA, and proteins, biological fluids containing these molecules can
accurately reflect alterations found in cancer cells, not only coming from the primary tumor, but also
from metastasis and from the tumor microenvironment (TME). Depending on the type of cancer,
biological fluids encompass blood, urine, cerebrospinal fluid, and saliva, among others. Such samples
are named with the general term “liquid biopsy” (LB). With the advent of ultrasensitive technologies
during the last decade, the identification of actionable genetic alterations (i.e., mutations) in LB is
a common practice to decide whether or not targeted therapy should be applied. Likewise, the
analysis of global or specific epigenetic alterations may also be important as biomarkers for diagnosis,
prognosis, and even for cancer drug response. Several commercial kits that assess the DNA promoter
methylation of single genes or gene sets are available, with some of them being tested as biomarkers
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for diagnosis in clinical trials. From the tumors with highest incidence, we can stress the relevance of
DNA methylation changes in the following genes found in LB: SHOX2 (for lung cancer); RASSF1A,
RARB2, and GSTP1 (for lung, breast, genitourinary and colon cancers); and SEPT9 (for colon cancer).
Moreover, multi-cancer high-throughput methylation-based tests are now commercially available.
Increased levels of the microRNA miR21 and several miRNA- and long ncRNA-signatures can also be
indicative biomarkers in LB. Therefore, epigenetic biomarkers are attractive and may have a clinical
value in cancer. Nonetheless, validation, standardization, and demonstration of an added value over
the common clinical practice are issues needed to be addressed in the transfer of this knowledge
from “bench to bedside”.

Keywords: epigenetic biomarkers; cancer; DNA methylation; micro-RNAs

1. Introduction

Aberrant epigenetic changes are recognized as one of the key events leading to car-
cinogenesis [1]. Cancer cells harbor global epigenetic abnormalities in addition to genetic
alterations. The use of “omic” techniques in recent years has allowed us to get a compre-
hensive view of the extensive reprograming that occurs in the epigenetic machinery of
cancer cells. These epigenetic changes include DNA methylation, histone modifications,
nucleosome positioning, and de-regulation of non-coding RNAs, mainly micro-RNAs
(miRNAs) [2].

The most widely studied epigenetic modification and the one closer to be transferred
to the clinic as a cancer biomarker is DNA methylation. This modification is the result
of the addition of a methyl group at the 5′-carbon of the pyrimidine ring of a cytosine
followed by a guanine (CpG), which impedes gene transcription. Cancer is characterized
by global DNA hypomethylation and focal hypermethylation of certain genes such as
tumor suppressor genes [3] or miRNAs, whose silencing promotes tumor growth [4].
Hypomethylation takes place mainly in repetitive regions of the genome and has been
shown to facilitate genomic instability and DNA damage [5].

Both genetic and epigenetic alterations identified in cancer can be used as biomark-
ers for diagnosis, prognosis, and prediction of drug response. Although assessment of
biomarkers in tumor specimens may offer direct information about genetic and epigenetic
alterations, the amount of tissue obtained from advanced tumors is often insufficient and
may not reflect the whole tumor heterogeneity. To overcome these inconveniences, an
alternative option to tissue samples has emerged in the last years, known as liquid biopsy
(LB). LB is an non-invasive method that allows for the analysis of different biomarkers
in fluids such as blood, saliva, bronchoalveolar lavage (BAL), cerebrospinal fluid (CSF),
urine, or other body fluids [6]. These samples are easily obtained and may pick up
DNA/RNA/proteins coming from both the primary tumor and the different metastatic
sites, representing tumor heterogeneity and clonal evolution. In LB, we can find circulating
tumor DNA (ctDNA), circulating tumor RNA (ctRNA), circulating tumor cells (CTCs), and
extracellular vesicles (EVs) that may contain RNA, proteins, and DNA. Figure 1 graphically
depicts the possible contribution of epigenetic biomarkers (free or vesicle-enclosed methy-
lated DNA and ncRNAs) isolated in LB, in conjunction with clinical data, for patient’s
stratification, prognosis, and prediction of response to therapy [6].
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Figure 1. Scheme representing the utility of epigenetic changes found in liquid biopsies as biomarkers for cancer diagnosis,
patient’s stratification, prognosis, and response to treatments. Changes in DNA methylation of gene promoters and
abnormal levels of non-coding RNAs (ncRNAs) can be found in fluids as free molecules or inside extracellular vesicles
(EVs). Integration of these biological markers with clinical and radiological data may help in the management of cancer
patients, in particular in the field of screening and diagnosis.

The clinical value of identifying actionable genetic mutations in LB (mainly blood)
to treat patients with targeted therapy has been widely proven. However, regarding
epigenetic changes, translation of these potential biomarkers into the clinic still lags far
behind the genetic biomarkers. Although with some exceptions, rather than prediction
of response to drugs, epigenetic biomarkers could be particularly useful as diagnostic
and prognostic indicators, with numerous commercially available tests already developed
to detect changes in DNA methylation levels [7]. The performance of diagnostic test is
commonly evaluated in terms of sensitivity, specificity, and the area under the ROC curve
(AUC). Sensitivity is defined as the percentage of positive cases that is correctly identified
and specificity as the percentage of negative cases that is correctly identified. The AUC,
which takes into account both sensitivity and specificity, defines diagnostic accuracy and
is optimal when values are closer to 1. The fact that epigenetic changes are found early
in carcinogenesis and that DNA methylation is stable in ctDNA, makes this epigenetic
modification an excellent potential cancer diagnostic biomarker in LB.

The term “epigenetic”, considered as any change in gene expression that does not
permanently affect the DNA, may also include gene expression regulation by non-coding
(nc)RNAs and histone modifications [8]. The aberrantly expressed ncRNAs may be promis-
ing therapeutic targets as well as cancer biomarkers. ncRNAs are the principal regulators of
key molecular and cellular processes such as RNA splicing, gene regulation, proliferation,
and apoptosis. ncRNAs can be classified into two groups based on their length and their
roles: housekeeping ncRNAs and regulatory ncRNAs, which in turn include small ncRNAs
and long ncRNAs (Figure 2). Circulating RNA species can be found free in fluids or inside
EVs, where they are protected from degradation. EVs can be classified into three main types
according to their size and biogenesis: exosomes, microvesicles, and apoptotic bodies [9].
Approximately 70% of studies have assessed exosomes as the source of choice for ncRNA
when evaluating biomarkers [9]. Yuan et al. analyzed the RNA content in exosomes and
estimated that mature miRNAs spanned 40.4%, piwi-interacting RNAs 40%, pseudo-genes
3.7%, lncRNAs 2.4%, tRNAs 2.1%, and mRNAs 2.1% of the total RNA [10]. From the
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different species of ncRNAs, microRNAs stand out as potential epigenetic markers in
fluids, although implementation in the clinic encounters several difficulties such as RNA in-
stability and variability of the methodologies used [11]. In general, RNA is less stable than
DNA and proteins, and in particular, some regulatory lncRNAs show short half-lives [12].
Besides, there are many factors that may influence RNA stability in body fluids such as
hemolysis in plasma/serum samples, which are a major cause of variation in miRNA
levels [13]. Another possible pitfall when analyzing tumor miRNAs in liquid biopsy is
their unknown cellular origin and the masking effect from ncRNAs released by non-tumor
cells. Several studies postulate that the material contained in exosomes derived from the
tumor microenvironment (TME) can also contribute to the characterization of the tumor,
and as a consequence, TME-derived exosomes could be a good source for biomarkers [14].

Figure 2. Non-coding (nc)RNAs classification into different groups based on their length and their regulatory roles. Small
non coding RNA (sncRNA), long non coding RNA (lncRNA), ribosomal RNA (rRNA), transfer RNA (tRNA), small nuclear
(snRNA), small nucleolar (snoRNA), telomerase RNA component (TERC), tRNA-Derived Fragments (tRF) and tRNA
halves (tiRNA), microRNA (miRNA), small interfering RNA (siRNA), piwi-interacting RNA (piRNA), promoter-associated
transcripts (PATs), enhancer RNA (eRNA), circular RNA (circRNA), and long non-coding RNA (lncRNA).

Changes in histone modification have also been identified in circulation in cancer pa-
tients and are another source of epigenetic biomarkers. Nonetheless, due to the complexity
of modifications, we will not cover it in our review. Information on this issue has been
comprehensively reviewed in a recent study [15].

In this review, we address the most relevant evidence (according to authors’ criteria)
on epigenetic biomarkers in LB, with special emphasis on tumors with high incidence. We
summarize the data about biomarkers currently registered on the market as well as novel
emerging candidates.

2. Types of Biological Fluids for Epigenetic Analysis

In cancer patients, ctDNA can harbor the same mutational and epigenetic traits as the
corresponding tumor [16]. A common and convenient source of LB is blood, but certain
tumors are characterized by shedding low amounts of DNA into the blood (i.e., brain,
kidney, bladder, prostate, thyroid, or head and neck cancers). In these cases, since their
tumor location allows a direct communication with other body fluids, it could be more
informative to use alternative samples for the analysis of biomarkers [17].

In head and neck cancer, saliva is an attractive non-invasive sample for screening,
diagnosis, and monitoring due to its simple collection and low cost. Salivary nucleic acids
have been used, for example, for the identification and validation of DNA methylation
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and miRNAs, demonstrating their utility in several clinical contexts (recently reviewed
by [18]). Airway-derived fluids such as bronchial aspirates/lavages and sputum samples,
have proven to be accurate tools for the early detection of tumors arising in the respiratory
system [7]. Pleural effusion is also a very informative biological sample for biomarker
assessment in lung cancer (LuCa) patients. It is well established that the EGFR mutational
status can be reliably determined in ctDNA from pleural effusions to predict response to
EGFR-tyrosine kinase inhibitors (TKIs) [19]. In contrast, the information on epigenetic
biomarkers in pleural fluid is more limited and the clinical value of such biomarkers
has to be clearly determined, but recent reports are finding possible association with
prognosis [20].

Urine is a bona-fide source of epigenetic biomarkers in the case of genitourinary
cancers. DNA hypermethylation has been described as one of the earliest and most
frequent aberrations in prostate cancer (PrCa), and the detection of methylation patterns
in urinary ctDNA has shown to be clinically meaningful [21]. In bladder cancer (BdCa),
promising results from urine-based tests that measure DNA methylation patterns have been
described [22]. The potential of miRNAs as biomarkers (individually or in combination)
has also been demonstrated for BdCa, showing high sensitivity and specificity [23].

In the case of central nervous system (CNS) tumors and due to the existence of
the blood–brain barrier, ctDNA in CSF seems to be a better source than blood [24]. A
high concordance between methylation patterns in CSF and matched tumor samples
has been reported, indicating the potential use of this biofluid for epigenetic biomarker
analysis [22,25].

3. Technologies for Epigenetic Assays in Liquid Biopsy

Several techniques have been described for the analysis of epigenetic alterations in
CTCs, free circulating nucleic acids and exosomes [7,26,27]. According to the number of
targets analyzed, these technologies can be divided into (a) single-locus or multiplexed
assays; and (b) genome-wide approaches, which are mainly based on microarrays and
next-generation sequencing (NGS).

3.1. DNA Methylation

The analyses of DNA methylation in ctDNA by single-locus or multiplexed assays
are mainly amplification-based methods such as methylation specific PCR (MSP) or dig-
ital droplet PCR (ddPCR). MSP is a classical method that encompasses Methylight and
MethylQuant assays. MSP detects a small amount of ctDNA among a considerable number
of circulating free DNA (cfDNA) [23]. In Methylight assays, the DNA methylation level
is analyzed by comparing the fluorescence of specific probes between methylated and
unmethylated molecules [28,29]. ddPCR is an ultrasensitive and quantitative method that
is useful for the discovery of clinical biomarkers in samples with a low amount of cfDNA.
This method is based on a PCR that is conducted in water-oil emulsion droplets where a
single DNA molecule can be amplified inside each droplet, thus avoiding the mask effect
of the non-target DNA [26,28]. Moreover, there are other approaches that combine tech-
niques used for ctDNA studies such as BEAming technology, epityper epigenetic analysis,
and methylation sensitive high-resolution technology (MS-HRT). BEAming technology
is a method that combines ddPCR and flow cytometry for the analysis of ctDNA [30,31].
Epityper epigenetic analysis combines specific enzymatic cleavage with mass spectrometry
(MALDI-TOF-MS) [32]. MS-HRT compares the melting profiles of sequences that present
differences in their base compositions [7,26].

Regarding genome-wide assays, the methylation analysis of ctDNA can be performed
by different techniques such as Infinium DNA methylation EPIC array (EPIC). EPIC
is considered the gold standard method for DNA methylation assays due to its cost-
effectiveness and its ability to examine more than 850,000 CpG sites [33].

125



Cancers 2021, 13, 3016

3.2. Non-Coding RNAs

The expression of ncRNAs can be evaluated in LB at targeted-specific level using
amplification-based methods such as reverse transcription quantitative PCR (RT-qPCR)
and ddPCR. Of note, the use of ddPCR represents a highly sensitive method to quantify
the expression of specific transcripts in LB [34–36]. In addition, there are other targeted
methods such as peptide nucleic acids (PNAs)-based fluorogenic biosensors [37] and the
NanoString nCounter platform that allow for the detection of ncRNA expression levels
without the need of previous amplification [38]. In particular, the NanoString nCounter
platform is able to analyze a large panel of miRNAs in several types of biological fluids
including plasma and urine [39]. Other targeted approaches have also been developed for
the detection of miRNAs in CTCs such as in situ hybridization (ISH) with locked-nucleic-
acid (LNA) probes [40] and methods based on signal amplification in microfluidic droplets
for single-cell analysis of multiple miRNAs [41].

The expression of ncRNAs can also be detected in LB at transcriptomic level with
the use of NGS (RNA-Seq) or microarrays. Although both technologies allow for the
analysis of ncRNA transcripts in LB [42,43], unlike microarrays, RNA-Seq does not require
prior knowledge of the target transcripts and shows higher sensitivity for the detection
of ncRNAs [42,43]. A summary of the types of technologies, applications, and advan-
tages/disadvantages can be found in Table S1.

4. Epigenetic Biomarkers in Lung Cancer

Lung cancer (LuCa) is currently the second most commonly diagnosed cancer and
the leading cause of cancer-related deaths worldwide among women and men. Globally,
there were an estimated 2.2 million lung cancer cases and 1.8 million deaths in 2018,
accounting for approximately a third of all cancer cases and deaths [44]. LuCa is one of the
most aggressive tumor types, with a 5-year survival rate that varies globally but remains
consistently low, not exceeding 19% [45]. There are two main types of LuCa: non-small cell
lung cancer (NSCLC, ~85% cases) and small cell lung cancer (SCLC, ~15% cases). NSCLC is
subdivided in three main histological subtypes: adenocarcinoma (LUAD) (~40% of NSCLC
cases), squamous cell carcinoma (LUSC) (~30% of NSCLC cases), and large-cell carcinoma
(~10–15% of NSCLC cases).

Despite breakthroughs in LuCa treatments in the last few decades, which have grad-
ually improved patient’s outcome, the mortality rate is still considerably behind that
observed for other prevalent types such as breast or colon cancer. A major factor is the late
diagnosis and, consequently, its late-stage presentation. In recent years, increased interest
has been directed toward the use of imaging techniques and biomarkers for screening
and early detection. In randomized trials, the use of low-dose computed tomography
(LDCT) in populations at risk has shown a significant reduction in lung cancer mortal-
ity [46]. However, there are still several questions regarding LDCT, which require further
research. Examples are clarification of cost-effectiveness in different populations; char-
acterization of detected nodules with indeterminate risk level; the small but significant
percentage of false-positive cases and the potential harms associated with unnecessary
invasive interventions (biopsies or even surgeries) of these cases; and the potential tools to
optimize risk assessment, to recommend for screening only those individuals with higher
risk, not only based on age and smoking exposure [47]. It is then possible that the use of
LB-based molecular biomarkers in screening programs might help LDCTs in identifying
NSCLC. Biological fluids that can be used as a source for biomarkers in LuCa include
blood, bronchial aspirates (BAS), bronchial lavages (BAL), sputum or pleural effusions, for
analysis of ctDNA, exosomes, and CTCs.

4.1. DNA Methylation

Among DNA methylation biomarkers in LuCa diagnosis, SHOX2 hypermethylation is
clearly the best studied epigenetic alteration. SHOX2 hypermethylation was first described
by Schmidt et al. using bronchial fluid aspirates during bronchoscopy, showing 68%
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sensitivity and 95% specificity [48]. Other studies [49–51] have later validated the diagnostic
potential of SHOX2 methylation status in plasma and pleural effusions. The EpiProLung®

assay is the only commercial test specifically designed for LuCa diagnosis. This test is
based on a PCR assay that analyzes methylation of SHOX2 and PTGER4 in blood, with a
sensitivity of 78% and specificity of 96%, and an area under the ROC curve (AUC) of 0.73.
This gene combination has also been tested in lavage fluid samples.

Other genes have been found to be differentially methylated in plasma samples when
comparing LuCa patients and healthy controls including DCLK1 (49% sensitivity and 91%
specificity) [52], SEPT9 (44% sensitivity and 92% specificity) [53], RASSF1A and RARB2
(87% sensitivity and 75% specificity) [54]. Hulbert et al. demonstrated that analyzing
the DNA methylation status of different genes such as TAC1 (86% sensitivity and 75%
specificity), HOXA7 (63% sensitivity and 92% specificity) and SOX17 (84% sensitivity and
88% specificity) allowed for the detection of LuCa in sputum samples with a global sensi-
tivity of 98% and specificity of 71% [55,56]. Interestingly this group has also published that
methylation analysis of CDO1, TAC1, HOXA9, and SOX17 in urine (as well as in plasma)
can be useful as an adjunct to LDCT screening [57]. Recently, our group has developed
an epigenetic model identified through epigenomic analysis by which the DNA methy-
lation status of four genes (BCAT1, CDO1, TRIM58, and ZNF177) in BAS/BAL/sputum
samples was able to discriminate between NSCLC patients (even at early stages) and
controls (82% sensitivity and 76% specificity, AUC, ~0.9) [55,58]. We have also described
that TMPRSS4 hypomethylation can be used as a diagnostic tool in early stages, with an
AUC of 0.72 (52% sensitivity and 91% specificity) for BAL and 0.73 (90% sensitivity and
65% specificity) for plasma [59].

Through genome-wide DNA methylation assays, Hsu et al. detected a multiple
epigenetic panel in tumor samples by studying the methylation status of genes CDH13,
BLU, FHIT, RASSF1A, and RARB, whose diagnostic potential was also validated in plasma
samples with a sensitivity of 73% and a specificity of 82% [60]. Similarly, Ostrow et al.
validated in plasma a group of four genes (DCC, Kif1a, NISCH, RARB) that was previously
found in tumors, which discriminated between LuCa patients and tumor-free individuals,
with a sensitivity of 73% and specificity of 71% [61]. In addition, Ooki et al. described
a serum-based gene signature, previously identified in tumors from TCGA (MARCH11,
HOXA9, CDO1, UNCX, PTGDR, and AJAP1) that was able to differentiate stage I NSCLC
patients from the controls, with 72.1% sensitivity and 71.4% specificity [62].

Unlike for diagnosis, only a few studies have described the association between DNA
methylation status and outcome or response to drugs using ctDNA [63,64]. Hyperme-
thylation of SHP1P2 in plasma was associated with reduced progression-free survival
(PFS) in advanced NSCLC [65]. DNA methylation of the gene panel SOX17, BMRS1, and
DCLK1 in plasma had a negative impact on survival [52,66,67], whereas SFN methylation
in serum samples was associated with improved survival [68]. Salazar et al. described
that patients with unmethylated CHFR had an improved survival when treated with
second-line EGFR TKIs [69]. Additionally, increased plasma ctDNA methylation levels
of RASSF1A and APC within 24 h after chemotherapy administration was found to be
associated with good response to cisplatin [70]. In addition, using plasma samples, pro-
longed survival has been observed in patients with low SHOX2 promoter methylation after
chemotherapy/radiotherapy [48].

4.2. ncRNAs

ncRNAs are also becoming a valuable tool for the early detection of LuCa. miRNAs,
the most widely studied type of ncRNA, provide promising biomarkers for the diagnosis
and prognosis of LuCa [71]. For instance, miR-1285 was significantly decreased while miR-
324-3p was significantly increased in plasma of stage I LUSC patients in contrast to healthy
donors (AUC 0.85 and 0.79, respectively) [72]. Chen et al. described 10 miRNAs (miR-20a,
miR-222, miR-221, miR-320, miR-152, miR-145, miR-223, miR-199a-5p, miR-24, miR-25)
able to discriminate NSCLC patients from healthy controls, with high sensitivity (92.5%)
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and specificity (90%) rates (AUC 0.97) [73]. miR-21, the most commonly studied miRNA in
LuCa, has been found consistently upregulated in both serum and plasma samples and
may serve as a diagnostic biomarker of early-stage NSCLC. Yu et al. reported that miR-21
was suitable for diagnosis, with 69% sensitivity and 71.9% specificity [74]. A multicenter
study was performed with a total of 3102 participants to investigate the potential use of
circulating miRNAs as diagnostic biomarkers in LuCa. Results reported that a 14-miRNA
signature might be useful to discriminate patients with early-stage lung cancer (stage
I or II) from healthy individuals. Specifically, miR-374b-5p differentiated patients with
early-stage LuCa from those without cancer, with an AUC of 0.83 [75]. Some groups have
studied miRNA precursors as diagnostic biomarkers in LuCa. Powrózek et al. reported
that miRNA-944 precursors distinguished SCC from ADC with 78.6% sensitivity and
91.7% specificity (AUC = 0.77), and pri-miRNA-3662 discriminated SCC from ADC with
57.1% sensitivity and 90% specificity (AUC = 0.845). Both markers allowed to distinguish
stage I-IIIA NSCLC from healthy individuals with 75.7% sensitivity and 82.3% specificity
(AUC = 0.898) [76].

Some ncRNAs have also been proposed as prognostic biomarkers for LuCa. A recent
study using a cohort of 182 patients with resected early-stage NSCLC reported that, among
84 circulating microRNAs, only miR-126-3p had an independent prognostic value in SCC
patients [77]. Moreover, Yanaihara et al. showed that high expression of precursor has-mir-
155 could be an independent poor prognosis biomarker in ADC patients [78]. Increasing
evidence shows that lncRNA can also act as biomarkers for prognosis. Xie et al. reported
in a cohort of 460 patients that low serum levels of SOX2OT and ANRIL were associated
with higher overall survival (OS) rate. Multivariate analysis revealed that SOX2OT could
be an independent prognostic factor for NSCLC [79]. Yung-Hung Luo et al. studied the
correlation between clinicopathological characteristics and circRNAs using plasma from a
cohort of 231 LuCa patients (65 had stage I–II and 166 stage III–IV) and 41 healthy donors.
They reported that higher levels of circ_0000190 were correlated with larger primary tumor
size, advanced stage, extrathoracic metastasis, and poor survival [80].

miR-21 has been identified as a key miRNA in the regulation of acquired resistance
to EGFR-TKIs in NSCLC, and high serum levels of this miRNA have been found to be
significantly increased at the time of EGFR-TKI progression when compared to those
observed before treatment [81]. Wang et al. also demonstrated that patients who were
resistant to EGFR-TKIs had higher levels of circulating miR-21, miR-27a, and miR-218
than patients who were sensitive [82]. Jinshuo Fan et al. found that NSCLC patients who
were responsive to ICIs (immune checkpoint inhibitors) had increased levels of a signature
composed of miR-27a, miR-28, miR-34a, miR-93, miR-106b, miR-138-5p, miR-181a, miR-
193a-3p, miR-200, and miR-424 compared to non-responders. Moreover, patients with
high levels of this signature showed improved PFS and OS than those where levels were
low [83]. Recently, expression of circ_0000190 has been found to be correlated with PD-L1
expression and response to immunotherapy in NSCLC [80].

5. Epigenetic Biomarkers in Genitourinary Cancers

The most prevalent tumors of the genitourinary (GU) tract are prostate cancer (PrCa),
bladder cancer (BdCa), and renal cell carcinoma (RCC) [84]. PrCa is the second most
commonly diagnosed cancer and the sixth leading cause of cancer death among men
worldwide [85]. PrCa diagnosis has not evolved significantly since the 1980s, when blood
levels of prostate-specific antigen (PSA) were first introduced as a follow-up marker for
recurrent tumors, and, subsequently, for early detection in combination with digital rectal
examination (DRE) [77,86]. PSA for PrCa screening has low positive predictive value
(~30%), potentially driving to over-diagnosis and over-treatment. This highlights the need
of more accurate biomarkers that are alternative or complementary to PSA for screening
and diagnosis [87]. In the case of BdCa, there was an estimated number of 550,000 cases
and 200,000 deaths (2.1% of all cancer deaths) in 2018 [88]. The 5-year survival rates (~77%)
have remained mostly unchanged since the 90s [89]. Although less frequent, RCC accounts
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for ~2% of all diagnosed cancers, but its incidence has more than doubled over the past fifty
years, being the tenth most common neoplasm in men [84,90]. RCC diagnosis is mostly an
accidental finding and represents 1.8% of all cancer deaths worldwide [90]. The therapeutic
options for RCC have increased tremendously in recent years, but biomarkers of response
to these drugs are still lacking.

5.1. DNA Methylation

A common trait of GU tumors is the possibility of using urine as a biological fluid for
the analysis of CTCs and ctDNA [7]. Commercial epigenetic-based kits for the detection of
PrCa and Bdca in both urine and blood samples are currently available [7]. Unfortunately,
epigenetic markers in liquid biopsies from RCC patients are underdeveloped, as this is
one of the tumor types with less ctDNA shedding into biological fluids [91–93]. Among
DNA methylation biomarkers in GU cancers, GSTP1 hypermethylation is by far the most
frequently described epigenetic alteration, especially in PrCa patients [94]. Many authors
have described its utility for PrCa detection [95,96] showing much higher specificity (~90%)
than PSA (~30%), although sensitivity was similar for both PSA levels and GSTP1 methyla-
tion [87,95]. Matched assessment of ctDNA GSTP1 in urine and plasma samples revealed
that urinary analysis outperforms plasma for diagnostic purposes [96,97]. It is worth
mentioning that the DNA methylation analysis of multi-gene panels in serum including
GSTP1, RASSF1A, and RARB have increased the diagnostic coverage of GSTP1 alone [98]
for PrCa. Similar strategies have also been used for BdCa detection (with 100% sensitivity)
in a multi-gene panel that assessed CDKN2A, ARF, MGMT, and GSTP1 [86]. In the case
of RCC, methylation analysis of serum cfDNA using GSTP1 alone or in combination with
either APC, p14ARF, p16, RARB, RASSF1, TIMP3, or PTGS2 has been shown to provide a
high accuracy of detection (AUC ranging from 0.73 to 0.75; 95% IC 0.50–0.84) [99]. Inde-
pendently, Hoque et al. measured GSTP1 together with CDH1, APC, MGMT, RASSF1A,
p16, RARB2, and ARF methylation for RCC detection using urine and plasma samples,
showing that at least one gene was hypermethylated in 88% and 67% of the patient’s urine
sediments and plasma, respectively. [100].

Other gene panels that do not include GSTP1 are also under study for PrCa and BdCa
detection. Analysis of MCAM, ERalpha, and ERbeta showed 75% sensitivity and 70% speci-
ficity for early PrCa detection [101]. Similarly, ST6GALNAC3, ZNF660, CCDC181, and
HAPLN3 detected PrCa patients with up to 100% specificity and 67% sensitivity [102]. With
respect to BdCa, methylation status of several genes are reliable alone or in combination
using ctDNA in serum: CDH13 [103], PCDH10 [104], and PCDH17 [105]. Additionally,
dual combinations such as PCDH17 and POU4F2 (93.96% sensitivity, 90% specificity) [106]
or NID2 and TWIST1 (90% sensitivity and 93% specificity) [107] have been proven to be
accurate for the detection of BdCa patients using urine samples [108]. Several commercial
tests that include epigenetic and non-epigenetic biomarkers are now available for the diag-
nosis of BdCa using urine or blood (AssureMDx®, Bladder CARE®, Bladder EPICHECK®).
In RCC, a panel of genes that act as Wnt antagonists can serve as biomarkers for diag-
nosis, staging, and prognosis using serum ctDNA [109]. Notably, Vitale Nuzzo P et al.
used cell-free methylated DNA immunoprecipitation and high-throughput sequencing
(cfMeDIP–seq) as a highly sensitive assay capable of detecting and discriminating early-
stage RCC from other tumor types and healthy controls in plasma (AUC 0.9) and urine
(AUC 0.86) [110]. Taking into account the different studies related to diagnosis in PrCa,
BdCa, and RCC, hypermethylation of RASSF1A, APC, RARB2, and ARF [111,112] seem to
be the most consolidated biomarkers to use in plasma, serum, and/or urine.

The potential of DNA methylation analysis in LB related to progression and therapy
response is an area of intense study. Sunami et al. reported that methylation of GSTP1,
RASSF1A, and RARB2 associated with PrCa’s Gleason score and serum PSA; in addition,
GSTP1 and RARB2 were associated with the disease’s advanced stage [98]. Likewise, it has
recently been shown that hypermethylation of APC, GSTP1, and RARB2 in urine sediments
correlated with shorter RFS and higher PrCa grade [113]. Additionally, in the case of
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urine, dual assessment of GSTP1 and APC discriminates between low-risk and aggressive
PrCa [114]. Interestingly, Zhao et al. showed that monitoring GSTP1, APC, CRIP3, and
HOXD8 methylation was useful for noninvasive prediction of PrCa aggressive disease in
patients on active surveillance [115]. Indeed, the same group of authors developed a PrCa
urinary epigenetic assay (ProCUrE®) with diagnostic and prognostic purposes based on
the optimized measurement of GSTP1 and HOXD3 gene methylation [116]. In the case of
BdCa, PCDH10 and PCDH17 hypermethylation were independent predictors of cancer
survival and correlated with higher stage and grade [104,105], as described for NID2 and
TWIST1, which were able to discriminate between different patient’s BdCa grades [108].
Finally, a multigene panel useful for BdCa recurrence surveillance has been developed,
which included EOMES, HOXA9, POU4F2, TWIST1, VIM, and ZNF154 [117]. A number of
registered clinical trials (in some cases using commercial tests) for screening or recurrence
purposes have been initiated in the case of PrCa and BdCa (https://www.clinicaltrials.gov/
(accessed on 30 December 2020)) (Table S2).

5.2. ncRNAs

In terms of ncRNA, several studies have shown their possible role as biomarkers
in LB. Yu et al. recently designed a 4-lncRNA panel of urinary biomarkers (UCA1-201,
HOTAIR, HYMA1, and MALAT1) for the diagnosis of non-muscle invasive bladder cancer
(NMIBC) [118]. This signature confirmed the presence of tumor in a validation cohort
of 140 NMIBC patients. A different study identified a 7-miRNA panel providing high
diagnostic accuracy in BdCa using urine samples (miR-7-5p, miR-22-3p, miR-29a-3p, miR-
126-5p, miR-200a-3p, miR-375, and miR-423-5p) [119]. Urquidi et al. described a sensitivity
of 87% and a specificity of 100% using a different 25-miRNA urine signature [120]. An
interesting approach integrated the expression of the mRNA HYAL1 together with two
miRNAs (miR-96 and miR-210) and one lncRNA (UCA1) in an urine diagnostic panel
that achieved a sensitivity of 100% and a specificity of 89.5% [121]. Interestingly, the
lncRNA UCA1 increases cisplatin resistance in BdCa [122]. In the case of PrCa, ncRNA
profiling could be a powerful tool to complement PSA screening. A recent study found
a robust diagnostic model in serum using two different miRNAs (miR-17-3p and miR-
1185-2-3p) with an associated 90% sensitivity and 90% specificity [123]. Serum detection of
PSA in combination with miR-103a-3p and let-7a-5p detected PrCa cases better than PSA
alone [124]. Serum miR-106b, miR-141-3p, miR-21, and miR-375 have also been combined
in a panel with AUC of 0.86 [125].

6. Epigenetic Biomarkers in Breast Cancer

Breast cancer (BrCa) is the most common neoplasm diagnosed in females worldwide,
with an incidence of 11.7% of all women cancer cases [44]. Screening based on imaging
is key for the early detection and better prognosis of this disease, with mammograms
being the most frequent technique recommended. However, the breast cancer nodules do
not always exhibit pathognomonic characteristics, which can prevent the radiologist from
performing a biopsy, or in other cases, generate false positives. Other limitations of this
technique include the possible cumulative radiation exposure and over-diagnosis [126–128].
For these reasons among others, the search for potential non-invasive biomarkers in BrCa
is needed.

6.1. DNA Methylation

Multiple studies have explored epigenetic alterations in ctDNA from BrCa patients
that could serve for diagnosis, prognosis, classification of BrCa subtypes, and prediction
of response to therapies. One of the most frequently studied markers has been the hy-
permethylation of RASSF1A [129–133], which discriminates between healthy individuals
and BrCa patients and acts as a poor prognosis indicator [134]. Moreover, this aberration
predicts the response to tamoxifen or neoadjuvant chemotherapy [135]. Other methy-
lated targets found in plasma from BrCa patients with a diagnostic value encompass
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SOX17, CST6, APC, DAK-K, MASPIN, HIC-1, HIN-1, RARB, RARbeta2, GSTP1, BRCA1,
and KIF1A [32,129–132,136–139]. Among these targets, the hypermethylation of RASSF1A,
BRCA1, RARB, and RARB2, in estrogen receptor+ (ER+) and progesterone receptor (PR+)
breast tumors and plasmas, were validated as indicators of poor prognosis in at least two
independent studies [140]. Furthermore, Fujita et al. showed that the simultaneous detec-
tion of RASSF1A, RARB, and GSTP1 methylation (93% specificity) was strongly correlated
with poor outcome [141]. SOX17 methylation is another independent prognostic factor
(HR: 4.737; 95% CI: 2.088–10.747) and its methylation status in ctDNA from plasma samples
was found to correlate (70.9% concordance) with that observed in CTCs from matched BrCa
patients [142,143]. PITX2 hypermethylation in plasma has also been reported as another
indicator of poor OS (HR: 3.4; 95% CI: 1.2–9.8) [144]. Interestingly, PITX2 hypermethylation
also predicted the response to anthracycline-based therapy [145].

In relation to ER status, Martinez-Galan et al. demonstrated methylation of ER and
ESR1 promoters in plasma from ER- patients [146]. In contrast, PTPRO methylation was
found as a prognostic factor (HR: 3.66; 95% CI: 1.371–9.784) in ER+ positive BrCa patients
but not in ER− [141]. Some gene panels have been designed to simultaneously analyze
several gene methylation patterns in BrCa serum/plasma. For instance, Visvanathan et al.
developed a panel of 10 genes including RASSF1A, whose methylation index predicted
worse PFS (HR: 1.79; CI 95%: 1.23–2.60, and OS (HR: 1.75; 95% CI: 1.21–2.54) in metastatic
BrCa patients [147]. Although evaluation of the methylation status in these genes is promis-
ing, there is currently only one commercial kit available specifically for BrCa, which tests for
PITX2 methylation in paraffin samples (Therascreen®, Qiagen, Frankfurt, Germany) [134].

6.2. ncRNAs

The potential value of ncRNAs as BrCa biomarkers in serum or plasma (either in
exosomes or as cfRNA) has also been reported. Exosomal miR-21 has been widely shown
to be a diagnostic biomarker, with sensitivity and specificity in pooled studies of ~75% and
~85%, respectively, and an AUC of 0.93 [148]. There are hundreds of studies proposing
miRNAs as diagnostic and prognostic biomarkers in BrCa, but they need validation. We
summarize here some recent relevant publications. In BrCa plasma samples, combination
of four miRNAs (miR-1246, miR-206, miR-24, miR-373) distinguished BrCa from healthy
individuals with 98% sensitivity, 96% specificity, and accuracy of 97% [149]. A panel
composed of exosomal miR-142-5p, miR-320a, and miR-4433b-5p isolated from a BrCa pa-
tient’s serum differentiated patients from their control counterparts with 93.33% sensitivity,
68.75% specificity, and AUC of 0.83 [135]. Furthermore, the combination of miR-142-5p
and miR-320a discriminated luminal A subtype from healthy donors with 100% sensitivity,
93.80% specificity, and AUC of 0.94. Interestingly, decreased expression of miR-142-5p and
miR-150-5p were significantly associated with more advanced tumor grades (grade III),
while the decreased expression of miR-142-5p and miR-320a was associated with a larger
tumor size [135]. Additionally, circulating miR-30b-5b has been recently reported to act as
a BrCa prognostic factor [150].

Serum miRNA profiles may be useful for the diagnosis of axillary lymph node metas-
tasis before surgery in a less-invasive manner than sentinel lymph node biopsy. A model
that includes a combination of two miRNAs (miR-629-3p and miR-4710) and three clinico-
pathological factors (T stage, lymphovascular invasion, and ultrasound findings) showed
an optimal diagnostic potential, with 88% sensitivity, 69% specificity, and accuracy of
0.86 [151].

There are also data that correlate ncRNA levels in serum to treatment response. For
example, a set of exosomal miRNAs (miR-185, miR-4283, miR-5008 and miR-3613, miR-
1302, miR-4715, and miR-3144) that target pathways of immune maturation predicted poor
neoadjuvant chemotherapy response prior to surgery [152]. Similarly, lncH19 levels in
the plasma of BrCa patients have also been reported to predict response to neoadjuvant
chemotherapy [153].

131



Cancers 2021, 13, 3016

7. Epigenetic Biomarkers in Colorectal Cancer

Colorectal cancer (CRC) is the third most common cancer worldwide. This tumor
represents approximately 10% of all diagnosed cancer cases, with approximately 1.8 million
new cases estimated in 2018. It is important to note that CRC is responsible for approxi-
mately 9% of all cancer deaths, being the second leading cause of cancer mortality [154]. In
CRC, screening strategies have been shown to be effective to detect early CRC and precan-
cerous lesions, and to reduce its morbidity and mortality. Among the detection strategies,
the fecal immunochemical test (FIT) represents a non-invasive and cost-effective assay for
detecting the presence of fecal hemoglobin. This is currently the most commonly used
method for CRC screening, with an overall sensitivity and specificity for detection of 79%
and 94%, respectively. However, the ability of this assay to detect advanced precancerous
lesions is limited, showing 24% sensitivity and 95% specificity [155]. After a positive result
for FIT, colonoscopy is the gold standard diagnostic technique for CRC detection. However,
it is an invasive method that needs bowel preparation and sedation, presenting certain risk
of complications for the patients [156]. In this context, the use of epigenetic biomarkers
such as DNA methylation in stool samples might provide a non-invasive and the most
cost-effective approach in population-based screening for both CRC and precancerous
lesions [157]. Thus, for example, the simultaneous methylation analysis of SEPT9 and
SDC2 (ColoDefense® test) in stool samples was able to obtain a sensitivity of 66.7% for
advanced adenoma (AA) and 92.3% for CRC, with a specificity of 93.2% [158].

7.1. DNA Methylation

Among the most frequently studied epigenetic biomarkers in ctDNA for CRC, the
methylation of SEPTIN9 (SEPT9) stands out for screening and early detection [144,159,160].
The EpiproColon® test was the first commercially available FDA-approved test for the
detection of SEPT9 methylation in plasma by real-time PCR [161,162]. In addition to
blood samples, methylation of this gene has also been analyzed in stool, showing a 35.9%
improvement in detecting pre-tumoral stages (AA) and 7.9% in identifying early CRC
tumors, in comparison with the plasma test [163]. The use of ColoDefense® in blood
enabled the detection of AA and CRC, with an overall sensitivity of 88.9% and a specificity
of 92.8% [164]. Similarly, other studies have proposed the analysis of the methylation of
several genes in plasma as circulating epigenetic biomarkers able to discriminate between
healthy controls and patients with AA or CRC [165,166]. In addition, approaches based
on methylation microarrays [33] and NGS [167] have been used to identify epigenetic
biomarkers in ctDNA for cancer detection.

Regarding prognosis, hypermethylation of the P16 promoter in ctDNA has been asso-
ciated with poor OS [168]. Additionally, hypermethylation of HPP1 and HLTF indicates a
poor prognosis and high mortality [169], and hypermethylation of RARB and RASSF1A was
associated with the aggressiveness of the disease [170] in patients with CRC. Methylation
of ctDNA can also be used to monitor tumor burden and evaluate the therapeutic response
of patients [171,172], correlating better than classical biomarkers such as carcinoembry-
onic antigen (CEA) and carbohydrate antigen (CA)-19-9. For example, the analysis of
the methylation status of the 2-gene panel BCAT1/IKZF1 in plasma showed higher sen-
sitivity for detecting CRC recurrence than CEA, with an odds ratio of 14.4 (95% CI: 5–39)
and 6.9 (95% CI: 2–22), respectively [173]. Similarly, the plasma methylation of SEPT9,
DCC, BOLL, and SRFP2 showed stronger correlation with tumor burden than CEA and
CA-19-9 [172].

7.2. ncRNAs

Circulating levels of ncRNAs have also shown utility as biomarkers in the manage-
ment of CRC. Circulating miR-21 levels in blood and saliva allow for the detection of
CRC [174,175]. In addition, miRNA signatures evaluated in fluids can be useful for discrim-
inating between healthy controls, patients with adenomas, and patients with CRC with
high sensitivity and specificity. In particular, the plasma levels of miR-601 and miR-760
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showed an AUC of 0.68 with 72.1% sensitivity and 62.1% specificity, which can discrim-
inate between AA and healthy donors. In addition, this panel of miRNAs was able to
differentiate CRC from the control samples with an AUC of 0.79, a sensitivity of 83.3%,
and a specificity of 69.1% [176]. Another study has recently identified a signature of six
miRNAs (miRNA19a, miRNA19b, miRNA15b, miRNA29a, miRNA335, and miRNA18a)
with an AUC of 0.92, a sensitivity of 85%, and a specificity of 90% that is able to detect
CRC and AA in comparison to healthy individuals [157]. Regarding prognosis, high levels
of circulating miR-210 and miR-141 are associated with shorter survival [165,177], while
high levels of miR-23b are associated with longer survival [178]. Besides, levels of different
miRNAs in blood may be useful for the early detection of recurrence [179] and evaluation
of therapy response in CRC patients [180]. High plasma levels of the lncRNA HOTAIR have
shown utility for the detection of CRC and association with a worse prognosis and higher
mortality [181]. Of note, other studies have analyzed different combinations of circulating
lncRNAs as diagnostic biomarkers, which were useful for the detection of adenomas and
CRC [166,182,183].

8. Epigenetic Biomarkers in Other Tumor Types and Multi-Cancer Tests

In addition to common tumor types, epigenetic alterations may also be detected in LB
from other less frequent malignancies, showing clinical utility as tumor biomarkers. In cuta-
neous melanoma, where the use of circulating epigenetic biomarkers has been proposed as
a non-invasive tool for tumor detection, promoter hypermethylation of RASSF1A has been
described in plasma samples as a diagnostic indicator, with the ability of discriminating
between melanoma patients and healthy individuals, showing a good diagnostic accuracy
with an AUC of 0.90 [184]. Besides, the detection of hypermethylated RASSF1A in serum
before treatment was able to predict the prognosis and clinical response to drugs in ad-
vanced melanoma patients [185]. In a recent pilot study using NGS and machine learning,
Bustos et al. were able to identify a circulating miRNA signature (miR-4649-3p, miR-615-3p,
and miR-1234-3p) associated with the response to ICIs in advanced melanoma patients,
suggesting that circulating miRNAs could enable real-time monitoring of patients receiv-
ing this type of treatment [167]. The plasmatic levels of other ncRNAs such as lncRNAs
(IGF2AS, anti-Peg11, MEG3, Zeb2NAT) were also found to be associated with prognosis
and therapy response in BRAF-mutant advanced melanoma patients treated with the
BRAF inhibitor vemurafenib [186]. Similar to melanoma, the blood-based analysis of DNA
methylation and ncRNAs has shown utility as circulating epigenetic biomarkers for other
tumors including pancreatic cancer [187], ovarian and endometrial carcinomas [188,189],
and brain tumors [190], among others.

In brain tumors such as glioblastoma, promoter hypermethylation of several genes
(MGMT, p16INK4a, TIMP-3, and THBS1) has been detected at high frequencies in serum
and CSF. In glioblastoma, hypermethylation of MGMT is associated with response to
temozolamide [191]. The methylation status of MGMT and THBS1 in CSF was also able
to independently predict PFS of glioblastoma patients [22]. Similar to methylation, the
circulating microRNA profiling of CSF has also been proposed as a good approach for the
non-invasive detection (miR-30e, miR-140, let-7b, mR-10a, and miR-21-3p) and prognosis
(miR-10b and miR-196b) of glioblastoma patients [192]. In other tumor types such as oral
cancer, the analysis of epigenetic biomarkers in saliva has been explored. In this sense, the
promoter hypermethylation of different types of genes (e.g., RASSF1A, p16 INK4a, TIMP3,
and PCQAP/MED15) and the expression levels of miRNAs in saliva have been detected in
association with oral tumors [18,193]. Thus, the study of epigenetic biomarkers in saliva
has been proposed as an easily accessible LB sample for oral cancer detection.

The recent application of NGS has allowed for the development of sensitive epigenetic
assays for the detection of both common and less-frequent tumors. Thus, using NGS
and machine learning, Liu et al., in a very large clinical trial including individuals with
(n = 2482) and without cancer (n = 4207), recently developed a classifier based on the
methylation of cfDNA, assessing >100,000 methylation sites in plasma for the sensitive
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detection of more than 50 tumor types [169]. This multi-cancer approach was useful across
all stages of the disease, and also for the identification of the tissue of origin with high
accuracy, which could be relevant for the treatment and follow-up of the patients. The assay
is going to be commercialized by the Biotech Company GRAIL. PanSeer® is an NGS-based
assay that is able to detect cancer in asymptomatic individuals, years before standard
diagnosis [194].

Table 1 shows a list of the top methylated genes and ncRNAs identified in LB from
cancer patients, with an emerging role as biomarkers. This list has been established based
on the number of studies and robustness of the genes/ncRNAs published and/or inclusion
in commercial tests.

Table 1. Top methylated genes/signatures and ncRNAs identified in liquid biopsies from cancer patients, with an emerging
role as biomarkers. BAL: bronchoalveolar lavage; BAS: bronchoalveolar aspirate; CSF: cerebrospinal fluid.

Epigenetic Alteration Gene Name(s)/Epigenetic Kit Type of Liquid Biopsy Intended Use Reference

LUNG CANCER

DNA methylation
-SHOX2/PTGER4 (EpiProLung)®

-Gene sets including RASFF1A and other genes
-BCAT1/CDO1/TRIM58/ZNF177

Blood Diagnosis [66]

BAL/sputum Diagnosis [54–57,62]

BAS/BAL/sputum Diagnosis [58]

ncRNAs
-miR21 Blood Diagnosis [74]

-Several miRNA signatures Blood Diagnosis [72,73]

GENITOURINARY CANCERS

DNA methylation

-Gene sets including GSTP1, RASFF1A, APC, ARF
and RARB2

-Several gene sets (AssureMDx®, Bladder CARE®,
Bladder EPICHECK®)

-GSTP1 and HOXD3 (ProCUrE, Prostate cancer)

Urine, blood Diagnosis [94,96]

Urine, blood Diagnosis [103,108]

Urine Diagnosis [116]

ncRNAs -Several miRNA and lncRNA signatures Blood Diagnosis [118–120]

BREAST CANCER

DNA methylation
-Gene sets including GSTP1, RASFF1A, BRCA1 and

RARB2
-PITX2

Blood
Blood

Diagnosis
Prognosis/response

[129–133,136–139]
[144,145]

ncRNAs
-miR21

-Several miRNA signatures
Blood Diagnosis [148]

Blood Diagnosis [149,151]

COLORECTAL CANCER

DNA methylation

-SEPT9 (EpiProColon®) Stool, blood, Diagnosis [161,162]

-SEPT9 and SDC2 (ColoDefense®) Stool, blood Diagnosis [158]

-p16, RASFF1A, RARB2 Blood Diagnosis,
prognosis [168–171]

-BCAT1 and IKZF1 Blood Diagnosis [172]

ncRNAs
-miR21 Blood, saliva Diagnosis [174,175]

-Several miRNA signatures Blood Diagnosis [176,177]

OTHER CANCER TYPES AND MULTI-CANCER BIOMARKERS

DNA methylation

-RASFF1A (melanoma) Blood Diagnosis [184]

-MGMT (glioblastoma) CSF Response to
therapy [191]

-RASFF1A, p16, TIMP3 (oral cancer) Blood, saliva Diagnosis,
prognosis [193]

-DNA methylation signature PanSeer® Blood Diagnosis [194]

-DNA methylation signature GRAIL® Blood Diagnosis [169]

ncRNAs -Several miRNA signatures Blood Diagnosis [186–189]
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9. Epigenetic Biomarkers in Cancer: Translation to the Clinic

The use of non-invasive epigenetic biomarkers is considered as a promising option in
oncology. However, these biomarkers (with few exceptions) have not successfully reached
clinical practice yet. Progress in the path to translation will be made provided clinical value
is added to the current management of patients. These are some of the difficulties to take
into consideration for clinical translation [195]:

(1) Clinical value and confirmatory results: confirmed clinical evidence in prospective
trials is critical for medical professionals and regulatory agencies.

(2) Performance and affordability: it is essential to develop a commercial product with
demonstrated good performance, affordable price, and is easy to use.

(3) Pre-analytical issues: preservation of the sample, storage time, and temperature, etc.,
have to be extensively studied.

(4) Technical barriers: when using some of the epigenetic techniques, there may be a
technical barrier, particularly for advanced procedures such as mass spectrometry or
next generation sequencing (NGS).

(5) Training: formation on new epigenetic platforms and interpretation of the results is
needed, especially for the “omic” epigenetic technologies.

(6) Global regulation: establishing a global harmonization of regulation would facilitate
translating an epigenetic assay into the clinic.

Overall, the continuous technological development and commercialization activity of
epigenetic kits would lead to an innovative and competitive environment that will result
in significant benefits for the clinical practice in the near future.

10. Conclusions and Future Perspectives

Evaluation of epigenetic biomarkers in LB is an emerging field in oncology that may
help in cancer screening, diagnosis, identification of tumor subtypes as well as in the
prediction of response to therapy and outcome. LB offers the opportunity of evaluating
tumor markers using non-invasive methods and may represent better tumor heterogeneity
and evolution. While the evaluation of actionable mutations in LB has a demonstrated
clinical value, the use of epigenetic alterations (with few exceptions) has not reached
clinical practice yet. Among the different fields where epigenetic changes may play a
role as biomarkers, we envision that screening and diagnosis are the areas closer to the
clinic. Current screening tests such as mammography, analysis of occult blood in feces and
colonoscopy are routinely performed to detect BrCa and CRC, respectively. Nonetheless,
over-diagnosis and false positives are of concern. In the case of PrCa, blood levels of PSA
lack diagnostic accuracy and for LuCa, LDCT is not a common practice yet. Therefore, epi-
genetic biomarkers in LB could be of great value in screening and diagnosis for these cancer
types. Moreover, the development of platforms that analyze thousands of methylation
alterations in blood has been shown to be highly valuable in screening for multiple cancers.

Some epigenetic commercial tests have been developed and are currently being evalu-
ated in clinical trials. These tests are designed for individual cancer types or as multi-cancer
diagnostic tools; some others include both DNA methylation and mutational assays in
the same kit. With constant information being provided by “omic” techniques for both
DNA methylation and ncRNAs, new potential sources of epigenetic markers will be intro-
duced and tested. However, the path to clinical translation is long and costly and thus the
identified epigenetic biomarkers need to offer an added value over the established clinical
practice and to attract investment for their development.

The discovery of new gene/signature candidates can also face several issues. For
example, in the case of blood, studies show the need to use large amounts of plasma or
serum to evaluate DNA methylation (1–4 mL) in comparison with protein-based techniques
that can use much lower amounts (10–100 µL). This limitation could be solved with the in-
troduction of new ultrasensitive techniques. The discovery of novel aberrantly methylated
genes using “omic” platforms may also need specialized technicians and bioinformaticians
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to analyze the data correctly. In addition, these technologies are expensive and could be
outsourced at reference hospitals.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13123016/s1, Table S1: Technologies for epigenetic assays in liquid biopsy, Table S2:
Clinical trials using epigenetic biomarkers in PrCa, BdCa and RCC.
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Simple Summary: Rheumatoid factors are autoantibodies that characterize different autoimmune
diseases, in particular rheumatoid arthritis, but that can also be found in the sera of the general
healthy population. They have been mainly studied in the context of autoimmune diseases, but some
evidence have suggested an association between their presence and the predisposition to develop
cancer as well as a facilitation of cancer growth and progression in oncologic patients. In this review,
for the first time we thus analyze and discuss the possible roles that these autoantibodies can assume
in tumor history, from determiners of a heightened susceptibility of developing cancer to drivers of a
reduced response to immunotherapies.

Abstract: The possible interplay between autoimmunity and cancer is a topic that still needs to be
deeply explored. Rheumatoid factors are autoantibodies that are able to bind the constant regions
(Fc) of immunoglobulins class G (IgGs). In physiological conditions, their production is a transient
event aimed at contributing to the elimination of pathogens as well as limiting a redundant immune
response by facilitating the clearance of antibodies and immune complexes. Their production can
become persistent in case of different chronic infections or diseases, being for instance a fundamental
marker for the diagnosis and prognosis of rheumatoid arthritis. Their presence is also associated
with aging. Some studies highlighted how elevated levels of rheumatoid factors (RFs) in the blood of
patients are correlated with an increased cancer risk, tumor recurrence, and load and with a reduced
response to anti-tumor immunotherapies. In line with their physiological roles, RFs showed in
different works the ability to impair in vitro anti-cancer immune responses and effector functions,
suggesting their potential immunosuppressive activity in the context of tumor immunity. Thus, the
aim of this review is to investigate the emerging role of RFs as determiners of cancer faith.

Keywords: rheumatoid factor; autoimmunity; autoantibodies; cancer; biomarker; predictive biomarker;
prognostic biomarker; cancer progression; cancer development; immunotherapy; cancer susceptibility;
tumor recurrence; tumor load

1. Introduction

The link between autoimmunity and cancer is considered a hot topic since the relation-
ship existing between these two conditions is still to be clarified. Rheumatoid factors (RFs)
are autoantibodies with different isotypes and affinities, which bind the constant regions
(Fc) of immunoglobulins class G (IgG). RFs were initially discovered in sera of patients
with rheumatoid arthritis (RA), and they are still considered a fundamental marker for the
diagnosis and prediction of the prognosis of these patients [1,2]. Later, it was highlighted
that RFs are not crucial for the development of the arthritis and, above all, that they are not
specific only for RA [3].

In fact, high levels of RFs can be found in the sera of patients with other diseases (both
autoimmune and non-autoimmune) in the same way as in healthy subjects [4].
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2. Rheumatoid Factors Isotypes and Affinities

RFs mainly belong to the immunoglobulins of class M (IgM), class G (IgG), and class
A (IgA) isotypes; rarely, also class E (IgE) and class D (IgD) RFs can be detected. While
physiological RFs are mainly of the IgM isotype, are polyreactive, have low affinity, and
show a reduced usage of the V gene (encoding for the variable region of the antibody),
pathological RFs can belong to IgM, IgA, IgG, IgD, and IgE classes and show a high affinity
and a wide usage of the V gene, thus indicating that pathological RFs are the result of an
immune response against a specific antigen [5–9].

RFs can bind to the Fc of all four subclasses of IgG. In different studies mapping
the RFs’ binding sites, it resulted that the affinity for the IgG1 subclass was the highest,
whereas the affinity for the IgG3 subclass was the most variable among the different sera
samples that were tested [10,11].

3. Physiological Rheumatoid Factor Production and Its Presence in Different
Clinical Conditions

In peripheral blood of healthy subjects, researchers found a B-cells repertoire that was
able to secrete RFs (RF+ B-cells) [12–14]. This population seems to be anergic in subjects
that are RF-seronegative, while it requires a specific activation pattern to start synthetizing
RFs [15].

Whereas in pathological conditions, such as RA, the chronic presence of RFs in patient
sera is due to the production carried out by terminally differentiated plasma cells in the
absence of a specific stimulus [16,17], in physiological conditions, the RFs production is
a transient event that results from an initiating stimulus capable of activating the B-cells
repertoire [15]. This initiating stimulus can be represented by an infection (bacterial, viral,
or parasitic) or by an active immunization [18–23]. The activation of this repertoire of RF+

B-cells is due to their interaction with T-helper cells, which react against a foreign antigen
during a secondary immune response [24,25]. In fact, it was proven that activated T-cells
are strong inducers of RF+ B-cells and, therefore, of physiological RFs production [12–15].
This is coherent with the RFs physiological role: on one side, they seem essential in fighting
pathogens by contributing to the formation and clearance of immune complexes (thanks to
IgM and IgG RFs capability at forming bigger immune complexes that can both bind the
complement and be phagocytosed) and because RF+ B-cells can act as antigen-presenting
cells (APCs); on the other side, RFs are also important in limiting a redundant immune
response against pathogens by destroying the antibodies produced in excess [26–29].

3.1. RFs in Patients with Non-Autoimmune Conditions

As outlined above, RFs production is essential in protecting the host against infections
in an inflammatory milieu. This is why high levels of RFs can be detected in patients with
different types of infections and chronic diseases. Conversely to the RFs found in RA, those
detected during infections are not damaging and are usually transient [4]. They are also,
as physiological RFs, polyreactive and low-affinity IgMs that show a reduced usage of
V gene [6,7,9]. If the infection evolves in a chronic disease, also the RFs circulating levels
can become persistent. RFs can indeed be found in the sera of 40–50% of patients with HCV
infection, reaching even 76% in some studies [30]. This is probably due to a continuous
stimulation and activation of an immune response triggered by the presence of the virus
in HCV patients. Since HCV infection nowadays has reached a high prevalence in a large
number of countries, it has become the first cause of high RFs levels in sera [30,31].

3.2. RFs in the General Healthy Population

High levels of RFs can be detected in the general healthy population, with a worldwide
variability in prevalence: for example, RFs positivity in sera show the highest prevalence in
North American Indian tribes (up to 30%), while in young Caucasians it is up to 4% [32–37].
As physiological RFs, those detected in the healthy population are not damaging, are
usually transient, and are polyreactive and low-affinity IgM, showing a reduced usage of
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the V gene [4,6,7,9]. The transient production of these physiological RFs can be the result
of any kind of infection [18–23,38]. Polyreactive IgM RFs can be persistently found in 18%
of presumably healthy aging subjects, suggesting that their chronic production could be an
age-related immune deregulation phenomenon [39–41], whereas in other individuals, the
reason of their presence can still not be identified [4].

3.3. RFs in Rheumatoid Arthritis and Other Autoimmune Diseases

In the sera of RA patients, IgM is the most frequent RFs isotype detected, which is
followed by IgG and IgA and, very rarely, also IgE and IgD. Most (70–90%) RA patients
are RF-positive; three isotypes of RFs, IgM, IgG, and IgA, are detected in up to 52% of
patients with RA [4,5,8,42–45]. RFs can also be found in the sera of patients with other
autoimmune systemic syndromes, such as Sjogren’s syndrome (SS), mixed cryoglobuline-
mia, systemic lupus erythematosus (SLE), mixed connective tissue disease, polymyositis,
and dermatomyositis. They can be detected also in 10% of patients with Waldenstrom’s
macroglobulinemia (a rare plasma cell cancer). Patients with SS (up to 60%) and type
II and type III of mixed cryoglobulinemia (often HCV-related) show the highest RFs
titers [26,43,46–49].

4. Rheumatoid Factor and Cancer History

During the years, the presence of circulating RFs was almost exclusively correlated
with the diagnosis and prognosis of RA and other autoimmune diseases. The role of RFs in
cancer was poorly investigated.

The presence of RFs can be detected in the blood of 10–20% of cancer patients [50],
reaching 26% in non-small lung cancer (NSCLC) patients [51]. The higher prevalence of
RF positivity in cancer patients compared to the general healthy population can be surely
explained by the older age of subjects affected by cancer, since RFs production is associated
with aging; however, it could also suggest a possible association between RF positivity
and cancer. In this scenario, its production could be the result of a regulatory-skewing
B-cells activation.

This association was investigated for the first time in the Reykjavik area (Iceland)
where, starting from 1967, a general health survey was conducted [52,53]. Then, the women
that were tested positive for RF were divided in groups based on RF titers and followed up
until 1974: of the four women who died during this observation period, three belonged to
the group with the highest RF titers; all of these three women had been diagnosed with
cancer (two mammalian cancer and one lung cancer). Thus, it was suggested that high
blood concentrations of RFs in healthy subjects might be associated with an increased risk
of developing cancer [52,53].

After this study, other publications showed how the presence of high RF titers in
patient sera were associated with an increased cancer risk, tumor recurrence, and tumor
load if compared with patients that were RF-negative [54–60].

In particular, in a longitudinal study conducted in 2016 including 2331 patients with
early RA, Ajeganova et al. [54] studied the presence of RFs, anticitrullinated protein
antibodies (ACPA), and anticarbamylated protein (anti-CarP) antibodies in relation to all
causes of mortality. Interestingly, they found that the presence of RF, differently from
the other autoantibodies, was associated with an increased number of neoplasm-related
deaths [54].

In a cohort study made in 2017 and involving 295,837 RA-free participants, Ahn et al.
clearly showed how cancer mortality risk was significantly greater in healthy adults that
were positive for RF when compared with those that were RF-negative; moreover, they also
demonstrated that cancer mortality risk was even higher in subjects with RF titers greater
than 100 IU/mL than in those with RF-negativity, suggesting a dose-dependent effect [55].

Finally, a retrospective study conducted in our laboratory brought clear evidence of
how the IgM–RF positivity is a strong predictive factor for the development of NSCLC
patients’ early progression in response to the treatment with anti-PD-1 immune checkpoint
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inhibitors (ICIs) [51,61]. IgM-RF also correlates with a negative prognosis in terms of both
overall survival (OS) and progression-free survival (PFS) in metastatic NSCLC patients in
treatment with an anti-PD-1 ICI, with the worst outcome shown by patients with titers
greater than 50 IU/mL [51,61].

Taken together, all these studies strongly suggest a facilitation of cancer growth and
progression in patients that are positive for RFs. The mechanism lying behind this phe-
nomenon still remains unknown, but some in vitro experiments highlighted an association
between the presence of RFs and an altered anti-tumor immunity.

Indeed, it was pointed out that RF preparations are able to impair the tumor-specific
in vitro cytotoxicity of cancer patients’ lymphoid cells [62,63]; IgM preparations lacking
of RF anti-IgG activity, used as control, did not block the cytotoxicity, indicating that
the impairing effect was the result of the specific RFs activity. The pre-incubation of
lymphoid effector cells with the RF preparations inhibited their cytotoxic action, whereas
pre-incubation of the tumor target cells with RF preparations before cytotoxic lymphocytes
were added had no effect, thus indicating that the observed phenomenon was mediated by
a direct effect on lymphoid effector cells [62].

Another important evidence supporting the suppressive activity of RFs on lymphoid
effector cells directed against tumor cells came out when it was shown that RF can have a
blocking effect in antibody-dependent cell-mediated cytotoxicity (ADCC) [64,65], which is
an important mechanism underlying the killing of tumor cells exerted by lymphoid cells.

In addition, Giuliano et al. [66] demonstrated that RFs are able to affect the melanoma
patients’ humoral immune response directed against membrane antigens of melanoma
cells in vitro. They indeed showed that the presence of RF in Indirect Membrane Im-
munofluorescence (IMI) assays increases the IgM reactivity detection, while in the Immune
Adherence (IA) assays, its presence reduces the detection of anti-membrane antibodies,
thus suggesting that the presence of RF prevents the binding of anti-tumor antibodies to
their target antigens on cancer cells [66].

Interestingly, in 2013, Jones at al. [67] found that RF can inhibit Rituximab effector
function. Rituximab is an IgG1 monoclonal antibody directed against the receptor CD20,
expressed by B-cells, which uses the complement-dependent cytotoxicity (CDC) and other
mechanisms to eliminate pathogenic B-cells [68]. It is used in the treatment of some B-
cell neoplasms, RA, and other autoimmune diseases [69,70]. In this study, Jones et al.
demonstrated that RF inhibits Rituximab-mediated CDC. Since RF does not block the
interaction between Rituximab and B-cells, it seems plausible that RF impairs this effector
function through the recognition and the binding of Rituximab Fc, which mediates the
CDC. Supporting this, they demonstrated that RF can also inhibit the trogocytosis, which
is an FcγR-dependent effect [67].

In accordance with these observations, in a recent work, we showed that IgM-RF is
not able to prevent the engagement between the drug Nivolumab (an IgG4 monoclonal
antibody) and its target receptor PD-1 on T-cells [51]. Instead, IgM-RF is able to bind prefer-
entially naïve and central memory CD4+ and CD8+ T-cells, leading to an impaired in vitro
migration of these T-cell subsets in response to the CCL19 cytokine [51,61]. Moreover,
RF-positive NSCLC patients showed a significant reduction of the CD137+ T-cells, which
identify the tumor-specific effector T-cell population [71]. This suggests that the dysfunc-
tional recirculation of naïve and central memory T-cells due to the presence of IgM-RF
can lead to an impaired expansion of the tumor-directed effector T-cell population, con-
sequently resulting in the failure of the anti-PD-1 treatments that relies on tumor-specific
effector T-cells in order to be effective [51] (Figure 1).
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In fact, RFs physiological role of limiting a redundant immune response against
pathogens seems coherent with their potential immunosuppressive activity within anti-
tumor immune responses. On one side, in healthy conditions, it was pointed out how
RFs are able to facilitate the clearance of immune complexes and antibodies. Similarly, in
cancer, their ability to bind antibodies results in interfering with the anti-tumor effect of
both endogenous and therapeutic antibodies. Indeed, it has been demonstrated that RFs
can hamper the interaction between tumor-directed antibodies and antigens on cancer cells’
surface as well as impair antibodies-mediated anti-tumor effector functions, such as CDC
and ADCC. On the other side, the physiological effect exerted by RFs on effector T-cells has
not been clarified yet. However, from different works presented in this review, it emerged
that in the context of anti-cancer immune responses, the presence of RFs is able to impair
lymphocytes-mediated anti-tumor cytotoxicity and the recirculation of naïve and central
memory T-cells, leading to a reduced expansion and effectiveness of tumor-specific effector
T-cells. Therefore, in the light of these results, it is reliable to assume that RFs’ presence in
the blood of cancer patients could facilitate cancer growth and progression.

However, although some evidence of the pro-tumor role of RFs was provided in vitro,
in vivo data are still lacking.

Thus, the altered anti-tumor immunity due to the presence of RFs may lead both to
an increased risk of developing cancer in RF-positive subjects and to a failure of immune-
based anti-tumor therapies, in terms of a higher amount of early progressions and a
reduced overall survival and progression-free survival rate following immunotherapies.
Different studies have indeed demonstrated the association between RF positivity and
the predisposition to develop cancer, the increased tumor recurrence and tumor load, the
worse prognosis, and eventually the failure of immune checkpoint inhibitors therapies in
cancer patients.

These findings opened the possibility of using RFs as both prognostic and predictive
biomarkers in cancer patients, which looks promising from two different perspectives.
First, being now clear that RFs can be used as an indicator of a heightened susceptibility of
developing cancer as well as of an increased tumor recurrence, subjects that are positive for
RFs could be monitored more strictly so as to increase early cancer diagnosis. Second, since
the presence of RFs in cancer patients correlates with a reduced OS and PFS and a lack of
response to anti-cancer immunotherapies, the RFs’ dosage could be introduced in oncologic
patients together with other parameters in order to improve their risk stratification and help
adjust the therapeutic plan based on the single patient’s characteristics. Since RF dosage is
a routinely performed and already standardized test, this seems to be a easily practicable
and promising opportunity to aid clinicians that are struggling to predict patients faith
and, above all, to increase the number of responder patients to anti-cancer therapies.

Finally, the higher prevalence of RFs in cancer patients compared to healthy adults
could certainly be referred to the older age of subjects affected by cancer, but it could also
be more evidence of the association between RF positivity and cancer risk. Indeed, even
if direct proof is lacking, we would like to take into consideration the hypothesis that RF
secretion could be the result of a regulatory-skewing B-cells activation due to the chronic
inflammation carried out by the presence of the tumor itself and, in this scenario, it could
serve as a further mechanism exerted by the tumor in its inflammatory milieu in order to
escape from the immune surveillance.

Other studies will be required to further clarify the role of RFs in cancer. Nevertheless,
the aim of this review is to open a new chapter in the study of cancer history, a chapter
in which RF can be considered as a novel determiner of cancer susceptibility and a novel
predictive and prognostic biomarker of a negative outcome in cancer patients that should
now be taken into account when stratifying oncologic patients.
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Simple Summary: In prostate cancer, overdiagnosis and overtreatment is a common problem
for clinicians. Accurate diagnosis and prognosis are essential to avoid unnecessary biopsy and
to increases the effectiveness of treatment. A new, easy-to-use and non-invasive test based on
liquid biopsy biomarkers such as Progensa PCA3, MyProstateScore, ExoDx, SelectMDx, PHI, 4K,
Stockholm3 and ConfirmMDx have been developed to improve diagnosis, prognosis and to help
guide the decision-making process. This article provides an overview of the above-mentioned
commercial tests. The performance and financial aspects of the tests have been compared using
available studies. Then the application of biomarker tests as an adjunct to multiparametric MRI in
the diagnosis, prognosis and monitoring of prostate cancer has been discussed.

Abstract: Prostate cancer (PCa) is the most common cancer in men worldwide. The current gold
standard for diagnosing PCa relies on a transrectal ultrasound-guided systematic core needle biopsy
indicated after detection changes in a digital rectal examination (DRE) and elevated prostate-specific
antigen (PSA) level in the blood serum. PSA is a marker produced by prostate cells, not just cancer
cells. Therefore, an elevated PSA level may be associated with other symptoms such as benign
prostatic hyperplasia or inflammation of the prostate gland. Due to this marker’s low specificity, a
common problem is overdiagnosis, which leads to unnecessary biopsies and overtreatment. This
is associated with various treatment complications (such as bleeding or infection) and generates
unnecessary costs. Therefore, there is no doubt that the improvement of the current procedure by ap-
plying effective, sensitive and specific markers is an urgent need. Several non-invasive, cost-effective,
high-accuracy liquid biopsy diagnostic biomarkers such as Progensa PCA3, MyProstateScore ExoDx,
SelectMDx, PHI, 4K, Stockholm3 and ConfirmMDx have been developed in recent years. This article
compares current knowledge about them and their potential application in clinical practice.

Keywords: cancer biomarkers; prostate cancer; liquid biopsy; prognosis; diagnosis; early detection

1. Introduction: Prostate Cancer Diagnosis

Prostate cancer (PCa) is the most common cancer in men and the second most common
cause of mortality in this population in the United States, with 191,930 new cases and
33,330 deaths in 2020 [1]. Globally, there are approximately 1,276,106 new cases and
358,989 deaths each year [2]. The lifetime risk of being diagnosed with prostate cancer is
estimated to be 1 in 9 men, while the risk of death is, fortunately, not as high at around
2% [1].

There is an emerging role for liquid biopsy in PCa, which has excellent potential in
preoperative medicine. It is a minimally invasive procedure, analysing even small numbers
of targets, which allows its usefulness in screening, diagnosis, prognosis, follow-up and
therapeutic management [3]. This review compares the diagnostic and prognostic utility
of prostate cancer tests. Good clinical outcomes can be achieved by accurate diagnosis
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followed by acute treatment or active surveillance in patients with disease located within
the gland. There is an unmet clinical need for non-invasive, easily performed diagnostic
tests to assess whether a prostate biopsy is indicated. The EAU 2020 guidelines [4] recom-
mend mpMRI before the first biopsy in men with a clinical suspicion of prostate cancer
(PCa). Indeed, when mpMRI shows lesions suspicious for PCa (i.e., PI-RADS ≥ 3), targeted
biopsy (TBx) and systemic biopsy (SBx) are recommended in patients who have not had a
previous biopsy. It therefore represents an important diagnostic tool, and its combination
with biomarkers further improves the accuracy of the initial diagnosis of PCa.

The traditional diagnosis of PCa (Figure 1) is based on the assessment of serum
prostate-specific antigen (PSA) levels, digital rectal examination (DRE), followed by biopsy
under the guidance of transrectal ultrasonography (TRUS). In screening programmes, high
PSA levels, despite a normal DRE, lead to the diagnosis of PCa in more than 60% of asymp-
tomatic patients. Serum PSA levels are commonly used for detection, risk stratification and
monitoring of PCa [5]; unfortunately, it results in a high number of unnecessary biopsies
and detection of asymptomatic cancers with low clinical risk [6]. The reason may be that
PSA has a low positive predictive value (~30%) and poor specificity, being organ rather
than cancer-specific. This highlights the need to develop more precise methods to identify
clinically relevant PCa, such as liquid biopsy-derived biomarkers.

Figure 1. Suggested workflow for utilisation of prostate cancer biomarkers.
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As prostate cancer is a heterogeneous disease, urologists, after identifying the presence
of disease during the baseline assessment, focus primarily on assessing the risk group.
Risk groups have been classified since 2014 using a classification system with five distinct
Grade Groups based on modified Gleason score groups. Group 1 = Gleason score ≤ 6,
Group 2 = Gleason score 3 + 4 = 7, Group 3 = Gleason score 4 + 3 = 7, Group 4 = Gleason
score 4 + 4 = 8, Group 5 = Gleason score 9 and 10.

Currently, the gold-standard test to confirm all of the above clinical situations is the
histopathological result of a prostate biopsy.

Unfortunately, this invasive procedure is painful, expensive and may pose a risk of
complications (e.g., infection or sepsis). Furthermore, the procedure is prone to significant
sampling error. It is therefore important to avoid unnecessary biopsies [7,8].

Liquid biopsy biomarkers are proving to be a promising new diagnostic and prognostic
approach to help optimise the pre-biopsy decision and stratify whether the patient requires
treatment or can be monitored under active surveillance.

2. Material and Methods

A literature review was performed by searching MEDLINE/PubMed, Google Scholar
and and CrossRef electronic databases to identify articles published from January 2000 to
October 2020 whose methods included commercially available prognostic and diagnostic
prostate cancer liquid biopsy biomarkers or contain information about the characteristics of
a relevant biomarker. The search terms included ConfirmMDx, ExoDx, MiPS, PCA3, PHI,
SelectMDx, Stockholm3, 4Kscore and and prostate cancer liquid biopsy using search terms
database = specific—medical subject headings terms in various combinations appropriate
to the research objective. Articles on biomarkers not available in clinical practice or studies
based on less than 40 patients were excluded.

3. Urine Biomarkers

Urine is obtained non-invasively and contains fluid excreted from the prostate gland,
which may contain products from prostate cancer cells [9]. For many urinary biomarkers,
performing a DRE is crucial as it increases the excretion of fluid from the prostate. To date,
four tests are available with proven clinical utility.

3.1. Prostate Cancer Antigen 3 (PCA3)

The Progensa PCA3 test (Hologic Inc., Marlborough, MA, USA) is a test that measures
PSA messenger RNA (mRNA) and PCA3 mRNA detectable in the first catch urine sample
after DRE.

Prostate cancer antigen 3 (PCA3, previously called “DD3”) is a long, non-coding RNA
(lncRNA) that is overexpressed in 95% of prostate cancers [9]. The test is based on the fact
that 60–100 times more PCA3 gene mRNA is detected in prostate cancer cells compared to
non-cancerous prostate tissue.

The PCA3 score is calculated using the Progensa PCA3 method. The test result
represents the PCA3/mRNA PSA ×1000 ratio [10].

It is the first urine biomarker test to be approved in 2006 by the European Union,
Canada [11] and in 2012 by the FDA. The FDA recommends its use in men ≥ 50 years
old to support repeat biopsy decision-making in whom one or more previous prostate
biopsies have been negative and for whom repeat biopsy is recommended based on current
standards of care [12]. However, some clinical studies [13,14] report the benefits of using
the test as early as the first biopsy.

Although the FDA recommends a cut-off PCA3 score = 25, many studies [12,13]
suggest a cut-off score of 35 as a more optimal cut-off point. Establishing a cut-off point
appears to be of vital importance.

A study [12] evaluated different PCA3 score cut-off points: 10 and 35. For these
values, the sensitivity was 87% and 58%, respectively, and the specificity was 28% and 72%,
respectively. The results showed that a PCA3 score cut-off of 35 could provide an optimal
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balance between sensitivity (58%) and specificity (72%) for the diagnosis of PCa and was
superior to PSA (Table 1).

Although the study [12] demonstrated high sensitivity and specificity, the ability to
improve prostate cancer detection was not shown. For this reason, Wei et al. conducted
a prospective validation trial on 859 men [14] to assess whether the PCA3 score could
improve the PPV for initial biopsy and NPV for repeat biopsy. The results were PPV = 80%
for detecting any PCa at initial biopsy and NPV = 88% at repeat biopsy. This showed that
at initial biopsy, a PCA3 score > 60 increases the likelihood of detecting PCa, and at repeat
biopsy, a PCA3 score < 20 indicates a low risk of detecting PCa at biopsy [14].

A systematic review and meta-analysis of studies (with a threshold of 35) [13] yielded
the following overall values: AUC = 0.734, sensitivity 69% and specificity 65%. These
results support the greater clinical utility of cut-off point = 35 than 25 (FDA approved).

Determining the best cut-off value is controversial, especially for primary biopsy—the
available studies are very heterogeneous. Several have highlighted that PCA3 does not
perform well at a single threshold, showing a high NPV below the low cut-off and a
high PPV above the high cut-off, with a grey zone in between—reflecting prostate cancer
specificity [14].

Roobol et al., in a publication [15], highlight men with a PCA3 score≥ 100 and no PCa
in a biopsy. This study combines data from the initial and re-biopsies that provided a PPV
of 52.2% in men with PCA3 ≥ 100, resulting in almost 50% unexplained high results. To
date, there is no explanation why PCA3 scores can be excessively high despite the absence
of biopsy-detectable PCa.

Publications [16–18] do not show a relationship between PCA3 value and prostate
cancer aggressiveness (Gleason score). A high PCA3 level, due to its low specificity, does
not help assess prognostic parameters and is therefore of low utility in clinical practice,
as it does not provide an answer to how to proceed with the patient. For this reason, to
detect patients who require rapid and radical treatment, it is reasonable to use newer, more
sensitive and specific diagnostic tools, e.g., SelectMDx (MDxHealth, Inc., Irvine, CA, USA).

Numerous studies [14,19] have shown that the diagnostic value of the test increases
when adding other predictors (i.e., age, PSA value, DRE result or prostate volume). There-
fore, the producer recommends its use in combination with standard diagnostic parameters [20].

To determine the clinical utility of the PCA3 test in African Americans, Feibus et al.
conducted a study [21] (Table 2) on a racially diverse group of men, where 60% of the
participants were African American. They demonstrated that the PCA3 test in African
Americans also improves the ability to predict the presence of any prostate cancer and high
malignancy.

Ochiai et al. [22] (Table 2) examined the diagnostic utility of PCA 3 in Japanese men
undergoing prostate biopsy. They achieved a similar diagnostic value to that obtained in
men in Europe and the USA. The PCA3 score for men with prostate cancer was significantly
higher than for men with negative biopsy results. Furthermore, they showed that also in
Japanese men, PCA3 was significantly better than PSA in predicting PCa.

The reported clinical utility of the study mentioned above on the Japanese population
and the desire to verify the promising reports of Shen et al. [23] (Table 2) on a small group of
Chinese men (prostate cancer patient group (n = 35), BPH patient group (n = 64)), inspired
other researchers to study the Chinese population. Wang et al. conducted a study on a
cohort of 500 Chinese men [24] (Table 2). This study showed a moderate improvement in
diagnostic accuracy using PCA3 during the initial prostate biopsy. In patients qualified for
initial biopsy (PSA≥ 4 and/or suspicious DRE), the Progensa test was not used, but the RC-
PCR-based PCA3 test was used. The values obtained were sufficient to distinguish positive
from negative prostate biopsy results but were not correlated with PCa aggressiveness.

In a study [25] (Table 2) involving Latino Americans, results were comparable to
those obtained for other populations, indicating its potential use in Latino Americans with
persistently elevated PSA and previous negative biopsies.
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PCA3 shows more significant diagnostic and prognostic potential when combined
with other biomarkers, such as TMPRSS2 fusion: ERG [36] hK2, PSA [37] and PSAD [38].
Currently, some researchers are making efforts to develop more precise detection methods
for PCA3 [39,40].

3.2. Mi-Prostate Score (MiPS)

MyProstateScore (MPS, LynxDx, Ann Arbor, MI, USA (previously known as MiPS—
Michigan Prostate Score)) is an algorithm that measures mRNA, PCA3 and TMPRSS-ERG
(abnormal fusion of TMPRSS2 and ERG (T2-ERG)) expression in urine from the first
collection after DRE and serum PSA.

More than 50% of patients with PCa have an ERG gene fusion with TMPRSS2 [41].
The presence of this translocation has been shown to be associated with poor patient
prognosis—an increased risk of recurrence and mortality from PCa.

The test is indicated for men with suspicious PSA levels who are being considered for
initial or repeat biopsy. The test result validates the need for biopsy and predicts the risk of
high-grade prostate cancer (GS > 7) in a diagnostic needle biopsy [42–44]. Values range
from 0 to 100, and the higher the score, the greater the risk of aggressive cancer.

In 2013, Salami et al. [44] showed that the MPS test was significantly more accurate
than any single variable (TMPRSS2-ERG AUC = 0.77 compared with 0.65 for PCA3 and
0.72 for serum PSA alone), AUC was 0.88, with specificity and sensitivity of 90% and 80%,
respectively (Table 3).

A pivotal study published by Tomlins et al. [43] in 2016 indicated the high diagnostic
value of MPS, AUC = 0.751 for detecting PCa on biopsy and AUC = 0.772 for detecting
clinically significant PCa (defined as Gleason ≥ 7), which was significantly better than for
PSA alone (AUC = 0.651) (Table 3).

In a prospective study [45] involving 1077 men, MPS was shown to increase the
detection of aggressive prostate cancers compared with PSA alone. When the cut-off point
was set at 95% sensitivity, the specificity of detecting HG PCa increased from 18% (PSA
alone) to 39%. The authors further demonstrated that if biopsies were performed in patients
with positive urine PCA3 (score > 20) or T2-ERG (score > 8) or with serum PSA > 10 ng/mL,
42% of unnecessary biopsies could be avoided.

In a study including a validation cohort of 1525 men, the MPS test was confirmed to
improve the detection of csPCa. The authors also intended to set a threshold to exclude
GG cancer ≥ 2. An MPS threshold of ≤10 was recommended. At this value, sensitivity
(96%) and NPV (97%) were obtained, avoiding 32% of unnecessary biopsies while missing
3.7% of GG cancer cases ≥ 2 (Table 3) [46].

3.3. ExoDx Prostate ® (IntelliScore) (EPI)

The ExoDx Prostate (IntelliScore) (EPI, Exosome Diagnostics, Waltham, MA, USA)
assesses the exosomal RNA expression of three genes (ERG, PCA3 and SPDEF) involved
in the initiation and progression of PCa. ExoDx prostate is a test performed from a urine
sample that does not require prior DRE testing. Exosomal RNA is derived from exosomes,
which are small membrane vesicles secreted by several cell types, including immune and
cancer cells [47]. The high potential of exosomes as biomarkers is due to their structure—a
lipid bilayer protects the contents from degradation by proteases.

The test scores range from 1 to 100 and a cut-off point of 15.6 indicates men at increased
risk of HG PCa (≥GG2) at subsequent biopsy, making the test helpful in validating the need
for biopsy in men at risk. The test is recommended for men aged ≥50 years who are in the
PSA “grey zone” (2–10 ng/mL) to distinguish a benign (HG1; when the test value < 15.6)
from high-grade PCa (HG2 ≥ 15.6) [48].
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A validation study [48] conducted in 2016 on a (training) cohort of 255 patients
initially and a separate validation cohort of 519 patients tested the ability of the ExoDx
test in combination with SOC (PSA level, age, race and family history) to identify PCa GS
(Gleason score) ≥7 in men aged ≥50 awaiting their first biopsy (PSA 2–20 ng/mL and/or
suspicious DRE). With a cut-off value of 15.6, ExoDx alone demonstrated a sensitivity of
=91.89%, NPV = 91.3% and AUC of 0.71 for distinguishing GS ≥ 7from GS 6 and benign
PCa. When the test was combined with SOC (AUC = 0.73), the ExoDx test outperformed
SOC alone (AUC = 0.63) and the PCPTRC risk calculator (AUC = 0.62) in differentiating
PCa GS ≥ 7od GS 6 and benign PCa.

In a study published 2 years later [61], McKiernan et al. evaluate the clinical util-
ity of ExoDx in comparison with standard clinical parameters for distinguishing grade
(GG) ≥ 2 PCa from GG1 PCa and benign disease (in men eligible for the first biopsy)
and conducted a prospective study of 503 patients aged ≥50 years with PSA “grey zone”
(2–10 ng/mL). The results obtained were similar to previous studies. The combined model
of ExoDx and SOC achieved the highest value (AUC = 0.71), and ExoDx alone (AUC = 0.70)
was better at predicting GG2 PCa at initial biopsy than SOC (AUC = 0.62). A value of 15.6
was confirmed as the recommended cut-off point to distinguish patients at high risk of
GG2 PCa at their initial biopsy. At a cut-off point of 15.6, a high negative predictive value
of NPV = 89% was achieved (Table 3), preventing 26% of unnecessary biopsies and 20% of
all biopsies (with only 7% of ≥GS7 PCa missed).

These two prospective studies validating over 1000 patients [48,61] showed that ExoDx
(AUC 0.71 and AUC 0.70, respectively) was better at predicting clinically significant PCa at
first biopsy than existing risk calculators and PCPT-RC (AUC 0.63), ERSPC-RC (AUC 0.58)
and PSA alone (AUC 0.58). Both studies show that this test is useful for risk stratification
of ≥GG2 due to GG1 cancer and benign disease and improves identification of patients at
higher risk of advanced prostate cancer and helps avoid unnecessary biopsies.

Other work [48,61] confirmed the utility of ExoDx for primary biopsy but lacked
confirmation for use on repeat biopsy. McKiernan et al. conducted a study [62] in 229 pa-
tients qualified for repeat biopsy; an AUC of 0.66 and an NPV of 92% (irrespective of other
clinical features) were achieved at a previously validated cut-off point of 15.6, which would
avoid 26% of unnecessary biopsies, omitting only 2.1% of patients with HG PCa (Table 3).
Furthermore, in this study, AUC curves and net health benefits analyses showed better
performance of ExoDx than the ERSPC and PSA risk calculator in predicting HG-PCa in
men with a prior negative prostate biopsy. A total of 71.6% of patients were Caucasian,
14.4% African American and the study was completed on the most ethnically diverse group.
The vast majority of publications are from the USA, and no studies have been completed
on Asian or African populations or, more widely, on African Americans. It is not known
what the cut-off values should be and what the diagnostic and prognostic accuracy is for a
multiethnic population.

The clinical utility of ExoDx Prostate was recently evaluated in 1094 patients scheduled
for their first biopsy (with PSA 2–10 ng/mL). This first study [63] of PCa biomarkers with
a blinded control arm showed that ExoDx helped avoid unnecessary biopsies when the
test was negative and increased the detection of HG PCa by 30% compared with a control
arm without ExoDx (SOC alone). Compared to SOC, the test missed 49% fewer HG PCa.
The study showed that ExoDx improved patient stratification and influenced the decisions
made by (68%) urologists about biopsy (with rising PSA being the main reason for not
following ExoDx results).

3.4. SelectMDx

SelectMDx (MDxHealth, Inc., Irvine, CA, USA) is a urine-based test after DRE that
measures three biomarkers: DLX1 (progression gene), HOXC6 (cell proliferation gene),
KLK3 (reference gene) and clinical risk factors (age, DRE, PSA and prostate volume,
which can be calculated from the TRUS measurements substituted into the formula:

166



Cancers 2021, 13, 3373

height × width × length × 0.523). HOXC6 and DLX1 mRNA levels are assessed to es-
timate the risk of PCa on biopsy and the presence of high-risk cancer.

Men with elevated PSA levels in the “grey zone” (4–10 ng/mL) and/or an abnormal
DRE result are subjects for whom an initial biopsy is considered. The result determines
whether the patient is at high or low risk of PCa. It supports clinical decision-making and
stratifies patients into those who may benefit from biopsy and early cancer detection and
others for whom it is better to avoid this invasive procedure and continue with routine
screening or active surveillance.

In a study [64], 386 men with an elevated PSA (≥3 ng/mL), abnormal DRE or family
history of PCa, awaiting initial or repeat biopsy were studied. The predictive model (which
included DRE as an additional risk factor) achieved an AUC = 0.86 in predicting high-grade
cancer (after biopsy). Moreover, it was shown that with a cut-off point of −2.8, a 98% NPV
with a sensitivity of 96%, the risk of GS ≥ 7 PCa was very low. For GS = 7 PCa, a 53%
reduction in unnecessary biopsies was achieved while missing only 2% of cases with csPCa.

A study [65] was performed on a multinational (Netherlands, France, Germany)
group of 715 patients with PSA < 10 ng/mL, before the initial prostate biopsy. SelectMDx
achieved very high predictive values (AUC = 0.82 with 89% sensitivity, 53% specificity
and NPV = 95% (Table 3), outperforming the PCPTRC 2.0. risk calculator (AUC = 0.70).
This supports the use of the SelectMDx (MDxHealth, Inc., Irvine, CA, USA) test for the
detection of HG PCa prior to the initial prostate biopsy.

To evaluate the clinical utility of SelectMDx, 418 patients who had an initial biopsy
were studied. A total of 165 of them were positive. The number of biopsies performed
within 3 months of the test was reviewed. For patients with a positive result, 71 patients
(43%) were biopsied—27 of these patients were identified as having cancer, including 10
with a grade > 2. During this time, 9 patients with negative SelectMDx test results (3.6%)
were biopsied—4 were identified as having cancer—all with a grade ≤ 2. SelectMDx has
been shown to have a significant impact on decisions about the frequency and timing of
biopsies. When the test was positive, the time period was shorter (median: 2 months) and
the number of biopsies was five times higher than when SelectMDx was negative (median:
5 months). The test assisted urologists in their decision-making and is, therefore, a useful
tool in daily urological practice [71].

A typical dilemma for the urologist deciding on a repeat prostate biopsy was presented
in a case report of two men [72]. Both patients had already had their first negative biopsy,
with normal DRE results, serum PSA levels of 3–10 ng/mL, no family history of PCa
(and a negative ERSPC RC4 risk score). In these considerations, the European Association
of Urology (EAU) recommendations [4] suggest the inclusion of mpMRI, RC and/or
liquid biopsy tests. The mpMRI is the most accurate tool for localisation of PCa, but
this imaging modality performed in the second patient did not show the presence of a
tumour. The SelectMDx test showed the presence of PCa and therefore played a key role in
individualising the need for repeat biopsy. In the mentioned report, NPV = 98%, and the
risk score correlates with the mpMRI results, but it describes only two cases; therefore it
suggests and indicates the need for further studies in risk stratification for repeat biopsy
using the SelectMDx test.

It is unknown what the cut-off values should be and what the diagnostic and prognos-
tic accuracy is for a multi-ethnic population. There is a lack of studies on Asian or African
American populations.

4. Serum Biomarkers

Serum biomarkers, determined from blood samples, are produced by healthy and
abnormal cells. PSA is undoubtedly the most widely studied cancer biomarker, but its
clinical utility due to low specificity and specificity raises the need to find a test with better
diagnostic values. Three tests that may have a positive impact on clinical practice are
described below.
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4.1. Prostate Health Index (PHI)

The Prostate Health Index (PHI; Beckman Coulter Inc., Brea, CA, USA), determined
from a serum test, includes total PSA (tPSA), free, non-protein-bound PSA (fPSA) and
(–2)proPSA (the fPSA isoform resulting from incomplete processing of the PSA precursor).

Determination of PHI values is indicated in men with PSA levels in the “grey zone”
(4–10 ng /mL) and an unsuspected digital rectal examination (DRE) result [53], at age
≥50 years. The PHI score is calculated from the formula: ((–2)proPSA/fPSA) × √PSA.

The above formula indicates that men with lower fPSA, higher total PSA and (–
2)proPSA are at an increased risk of development of clinically significant PCa [73].

This was confirmed by a study [74] in which the authors demonstrated that a low
fPSA with a high total PSA indicates a risk of more aggressive PCa.

High PHI values indicate an increased likelihood of detecting prostate cancer, so when
a biopsy (initial or repeat) is recommended, consideration should be given to using this
less invasive method.

The PHI score has a greater diagnostic value than considering each of the indices
(tPSA, fPSA) separately [49,51], improves the detection of PCa [75], improves clinical
decision-making and predicts PCa aggressiveness [49,76,77]. Although the PHI score
mainly provides information on overall PCa risk, studies [49,53] show an association
between PHI value and prediction of PCa GS ≥ 7. A study [49] reported AUC = 0.72 to
distinguish PCa GS ≥ 4 + 3 from GS ≤ 3 + 4 or no PCa.

Teams of researchers Lepor et al. [78] and Loeb et al. [53] showed that PHI is more
specific in detecting csPCa than tPSA and/or fPSA. Furthermore, they concluded that
this test might be useful in active surveillance and prediction of adverse outcomes after
prostatectomy. Guazzoni et al. [52] showed that this was due to (–2)proPSA, as at GS ≥7,
both PHI and (–2)proPSA were significantly elevated.

De la Calle et al., based on a multicentre study [50], showed that PHI is a predictor
of PCa GS ≥ 7 (AUC = 0.78–0.82). When the PHI cut-off value of 24 is taken, 36% of
unnecessary biopsies are avoided, while only 2.5% of high-grade cancers are missed.
With a PHI cut-off point of 25, 40% of biopsies would be missed, and detection of lower
grade PCa cases (GS = 6) would be reduced by 25%. However, this is associated with an
underdetection of approximately 5% of clinically significant cancer cases.

A study [79] also found a significant effect of PHI on biopsy decisions. The study
included 506 men diagnosed using PHI score and 683 without PHI determination, who
were the control group. In both groups, men had PSA in the range of 4–10 ng/mL and
unsuspecting DRE results. PHI score influenced medical management in 73% of patients;
when the score was low, biopsy was postponed, and when it was high or moderate
(PHI ≥ 36), biopsy was performed. Men who had a PHI test had fewer biopsies than the
control group: 36.4% vs. 60.3%, respectively.

In response to these publications, Ehdaie and Carlsson [80] expressed concern about
excluding men from a biopsy on the basis of PHI values and the risk of overlooking
aggressive cancer, pointing out that the rate of an omitted PCa was 30%.

The authors of the paper [79], in response [81] to [80], maintain that the biopsy was
safely postponed. They cite NCCN and AUA recommendations that men without biopsy
who are in the diagnostic grey area will be monitored more closely or with additional
methods. In a second response [82], it was shown that due to the small number of high-
grade cancers, the study would not allow drawing firm conclusions.

In a study [33] (Table 2) involving a European (n = 503) and an Asian (n = 1652)
population, the use of PHI established the recommended cut-off points for the above ethnic
groups. More biopsies were avoided in the Asian group (56% vs. 40%). This study also
identified the need to establish differential cut-off points for different ethnic groups. The
authors of the publication recommended cut-off points for csPCa: PHI > 40 for European
men and PHI > 30 for men of Asian origin. This result is not surprising, as Asians have a
four times lower risk of prostate cancer than Europeans.
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To assess the ability of PHI to detect Gleason grade 2–5 (GGG) PCa in Black men,
158 patients with elevated PSA levels and 135 controls were recruited [32] (Table 2). With
PSA ≥ 4.0 and PHI ≥ 35.0, 33.0% of unnecessary biopsies were avoided, but 17.3% of
GGG 2–5 PCa were missed. With PSA ≥ 4.0 and PHI ≥ 28.0, 17.9% were avoided, and the
sensitivity of detecting GGG 2–5 PCa was 90.4%. These results indicate that PHI ≥ 28.0 can
be safely used to avoid unnecessary biopsies in Black men, although it is associated with a
risk of missed detection of GGG 2–5 PCa.

Currently, some researchers are considering the use of the PHI density index (PHID—
calculated as PHI divided by prostate volume) in diagnosis to identify csPCa. Tosoian
et al. [83] showed that the prevalence of csPCa is associated with higher PHID and has a
higher diagnostic value compared to PHI (AUC= 0.84 vs. 0.76). Their study indicates that
PHID can prevent 38% of unnecessary biopsies while failing to detect only 2% of csPCa.

Another article [84] examined the diagnostic efficacy of PHI and PHID in terms of
avoiding unnecessary biopsies. The results indicate that PHI (AUC = 0.722) and PHID
(AUC = 0.739) have a higher diagnostic value than PSA, f-PSA% and PSAD (AUC = 0.595,
0.612 and 0.698, respectively). The combined sensitivity of PHI and PHID was 98%,
avoiding 20% of biopsies in the non-diagnosis of only one patient with csPCa. Therefore,
the use of the PHID density index may be a promising tool in the evaluation of PCa.

4.2. 4Kscore

The 4Kscore (Opko Health Inc., Miami, FL, USA) is a test developed to identify HG-
PCa in patients with a suspicious DRE or elevated serum PSA. The test measures the
levels of four kallikreins (4K): total PSA (tPSA), free PSA (fPSA), intact PSA (iPSA) and
serum levels of human kallikrein 2 (hK2). It then compares the values obtained in the
algorithm with the patient’s age, DRE and results of previous prostate biopsies. Based
on this information, the algorithm generates a percentage probability score to predict HG
PCa even years in advance. This assessment allows further management to be determined
depending on the outcome of the test and a decision to perform an initial or subsequent
biopsy. This test is recommended primarily for men with a genetic family history. However,
it can be performed by any man over 35 years of age who wants to assess his personalised
risk of disease in the future.

The 4K test, although not designed to assess the predicted course of already diagnosed
prostate cancer, has also been used in patients with csPCa to identify candidates for more
intensive therapy. It has also been used to improve treatment selection and thus increase
the chance of cure in patients suspected of having an underestimated malignancy. The
4Kscore provides an estimate of a patient’s risk of developing distant metastases within
10 years.

Parekh and colleagues [56] on a validation cohort of 1012 indicated that the 4Kscore
was better at predicting clinically significant PCa than the Prostate Cancer Prevention Trial
Risk Calculator 2.0 (PCPT RC) (AUC 0.82 vs. 0.74) (Table 3). This study also indicates
that, depending on the cut-off point, 30–58% of biopsies were reducible, while missing
only 1.3–4.7% of HG PCa. A threshold of 1–7.5% is considered low risk, allowing safe
delay of biopsy and continued follow-up with PSA. A cut-off of 9% reduces the number
of biopsies to 43%, with 2.4% of csPCa cases missed [56,58]. At a cut-off of 15%, this test
avoids prostate biopsies performed for indolent cancer by up to 58% and misses 4.7% [56].
A cut-off score of ≥20% indicates the need for biopsy due to the high risk of csPCa.

A comprehensive systematic review [57] including 12 studies (11,134 patients) showed,
almost identically to the above study, an AUC = 0.81 for the 4Kscore in detecting csPCa
(Table 3).

In a study [85], 43,692 asymptomatic men (unscreened, PCa-free, with low PSA values)
were followed for 20 years, and the 4Kscore was evaluated for early detection of malignant
prostate cancer. This work aimed to estimate the risk of prostate cancer metastasis or death
by analysing the 4Kscore and PSA. It turned out that already at the time of blood collection,
the 4Kscore indicated in whom an aggressive form of prostate cancer would appear. The
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4Kscore significantly improved the detection of HG PCa in men with moderately elevated
PSA. The authors concluded that men with an elevated PSA but a low 4Kscore could be
safely observed by performing blood marker tests instead of direct biopsy. They indicated
that men with a low 4Kscore have a very low long-term risk of death from prostate cancer
or metastasis.

In a study [58] involving 611 patients, the 4Kscore test was ordered to assess the risk
of aggressive prostate cancer in men with abnormal PSA and/or DRE results. Patients
were divided into three risk groups: low, medium and high. The test results influenced
biopsy decisions in 88.7% of men, where the biopsy avoidance rates were: 94.0%, 52.9%
and 19.0% for the low, intermediate and high-risk groups, respectively. The risk category
assessed by the 4Kscore was closely related to biopsy outcome, confirming the usefulness
of the test in clinical practice.

A case–control study [35] (Table 2) evaluated the 4Kscore in 1667 prostate cancer
cases and 691 control men with PSA ≥2 ng/mL. The men were from a variety of ethnic
groups, including African American, Hispanic, Japanese, Native Hawaiian and Caucasian
men. Results showed that across all ethnic groups, the 4Kscore was better at detecting
both general and aggressive prostate cancer than tPSA or tPSA + fPSA. Therefore, the
4Kscore has broad clinical applicability and can be used for prostate cancer screening in a
multiethnic population.

A study [56] conducted in the USA, evaluating the efficacy of the 4Kscore, examined
1012 men scheduled for prostate biopsy. The diagnostic performance in detecting HG-PCa
was evaluated, showing an AUC of 0.82. African American (AA) patients comprised only
8.1% of the study group, which meant that the results were not representative of AA.
For this reason, a validation study [34] (Table 2) was conducted on a population with a
higher proportion of AA patients. The study included 366 men, 205 of whom were African
American. The results of the study showed no significant difference in predicting tumour
aggressiveness in this population, showing AUC = 0.81; therefore, the 4Kscore can be used
to make biopsy decisions in both African Americans and non-African Americans.

A study [60] aimed at reducing unnecessary biopsies and overdiagnosis of benign
PCa used the 4Kscore and the RPCRP risk calculator to predict csPCa at biopsy. A study of
2873 men showed that RPCRP and 4Kscore had very similar performance (AUC = 0.868
vs. AUC = 0.876), and their combination gave even better results (AUC = 0.888). This
indicates that adding further predictors is a compromise between clinical utility, cost and
patient burden.

4.3. Stockholm3 Model

Stockholm 3 Model (S3M) combines serum biomarkers (total PSA, free PSA, free/total
PSA ratio, hK2, MIC1 and MSMB with genetic markers (254 single nucleotide polymor-
phisms [SNPs] and an unclassified variable for SNP HOXB13). The test also takes into
account clinical data (age, previous prostate biopsy—family history, use of 5-alpha re-
ductase inhibitors) and prostate examination (DRE, prostate volume). The S3M available
in Sweden, Norway, Denmark and Finland is in clinical use for predicting the risk of
aggressive prostate cancer and assessing the need for biopsy. The S3M research team at
Karolinska Institute is currently working with two major laboratories in Europe, as well as
laboratories in the US and Canada, to introduce the test in additional countries around the
world. Additional validation studies have been conducted in Germany, the Netherlands
and the UK. Studies on non-Caucasian populations (e.g., Hispanics, African Americans,
Asians) are also planned. If the S3M is negative, the man has a low or normal risk of
prostate cancer and is recommended to be followed up in 6 years. If the test is positive,
it is recommended that the man is referred to a urologist. The urologist measures the
volume of the prostate gland and carries out a DRE. If the prostate volume and/or the
DRE test is abnormal, a biopsy is recommended. Otherwise, a Stockholm3 test in 2 years
is recommended.
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A study involving 59,159 men [67] compared S3M with PSA ≥ 3 ng/mL, a screening
test for prostate cancer. The study was designed so that both tests detected the same
number of Gleason score (GS) ≥ 7 tumours, and the tests were graded on the number
of biopsies needed to achieve this. The results showed that S3M, in detecting tumours
with a Gleason score of at least 7, has significantly higher specificity, sensitivity and AUC
(0.74 versus 0.56 for PSA) for csPCa. Patients with a S3M score ≥ 11% were recommended
to be referred to a urologist for further diagnosis. With a retained GS sensitivity ≥ 7, S3M
avoided 32% of prostate biopsies (Table 3). In benign tumours, the level of biopsies avoided
was 44%. In addition, the authors indicated that S3M could detect aggressive cancer even in
men with PSA levels of 1.5–3 ng/mL, and the number of tumours with a Gleason score ≤ 6
was reduced by 17%, reducing overdiagnosis.

A study [68] described how, after fitting S3M to more data, the updated S3M slightly
improved the AUC in predicting prostate cancer GS ≥ 7 compared with previously pub-
lished results [67] (0.75 vs. 0.74). Each additional predictor (including DRE, previous
biopsies and prostate volume) increased the AUC by up to one unit. The combination
of predictors helps to increase the accuracy of diagnosis while reducing the number of
unnecessary biopsies.

Studies [67–70,86] prove that S3M reduces overdiagnosis and the number of prostate
biopsies while maintaining sensitivity for clinically significant prostate cancer.

In a short report [86], the authors evaluated how the S3M threshold affects the number
of cancers detected and the number of biopsies performed. They collected data from a
validation cohort of 47,688 men (with PSA ≥ 1 ng/mL) and then calculated the percentage
of biopsies avoided and the percentage of cancer detections for different cut-off points
of the S3M test. They noted that as the cut-off point increased, the number of cancers
detected and biopsies performed decreased. They considered it reasonable to use S3M
test values between 7% and 14% for the cut-off point for biopsy decisions, where cut-off
values below 10% would increase sensitivity for Gleason score tumours≥ 7 compared with
PSA ≥ 3 ng/mL. They noted that the threshold could be selected to fit different health
systems and even individual men.

Long-term follow-up of the replacement of PSA (as part of the standard prostate
cancer diagnostic procedure) with Stockholm3 in prostate cancer detection in primary
care in the Stavanger region of Norway showed that the implementation was beneficial.
Compared with PSA, S3M reduced the proportion of clinically insignificant PCa (from
58% to 35%) and the number of biopsies performed (from 29.0% to 20.8%). In addition, it
increased the proportion of biopsies positive for csPCa from 42% to 65%. This management
may also lead to a reduction in healthcare costs. It has been estimated that direct healthcare
costs decreased by 23–28% per male studied [87].

S3M is not suitable for men who have previously been diagnosed with or treated
for prostate cancer or who are under follow-up after prostate cancer. It has no proven
value for men diagnosed with prostate cancer or who have undergone a biopsy or other
examination by a urologist within the last 6 months. It does not replace biopsy in men
under active monitoring. This test was not evaluated on men younger than 50 years or older
than 70 years and was restricted to an ethnically homogeneous population (Stockholm
County, Sweden). The S3M was shown to be superior to prostate-specific antigen (PSA) as
a screening tool for prostate cancer in all men aged 50–70 years. Furthermore, the S3M test
can be performed in cases where the PSA value is > 1.5. The S3M has been shown to be
superior in detecting, now often overlooked, aggressive cancer in men with PSA levels of
1.5–3 ng/mL. The S3M may reduce unnecessary biopsies without compromising the ability
to diagnose prostate cancer with a Gleason score of at least 7.

5. Tissue Biomarkers

Tissue biomarkers analyse changes in nucleic acid expression and composition of
tissue collected during needle core biopsy of the prostate. The main concept is to detect
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changes in the histologically normal field neighbouring prostate cancer. This helps to verify
whether the patient requires an additional biopsy.

ConfirmMDx (MDxHealth)

ConfirmMDx (MDxHealth, Inc., Irvine, CA, USA) is a tissue-based epigenetic assay
that uses methylation-specific PCR (MSP) to analyse three prostate-cancer-related changes
in DNA methylation patterns of suppressor genes (GSTP1, APC and RASSF1) in biopsy
tissue (formalin-fixed and paraffin-embedded). All these biomarkers were isolated from
biopsy-positive tissue.

ConfirmMDx is a molecular test clinically validated for predicting prostate cancer risk
in men who have had a traditional thick-needle prostate biopsy that did not reveal the
presence of cancer cells in collected histopathological material. In many cases, prostate
biopsy results are falsely negative. The biopsy specimen may not be cancerous, and the
histopathological result will not reveal the presence of cancer. However, due to the “halo
effect”, tissue with a normal morphological appearance will show epigenetic changes,
indicating the presence of cancer. Using the test, histopathological material that has already
been taken—during a prostate biopsy—can be re-examined in a detailed epigenetic analysis
quantifying the level of methylation of promoter regions of three genes in benign prostate
tissue, assessing with high accuracy the presence of cancer cells in neighbouring areas.

ConfirmMDx offers the opportunity to avoid unnecessary repeat biopsies. It allows a
decision to be made on whether to include (rule-in) or exclude (rule-out) therapy. High-risk
men with a previously negative biopsy may have undetected cancer after the test. Such
patients with a previous “false negative” biopsy result should be included for repeat biopsy
and appropriate treatment.

It also allows low-risk men to be excluded from repeat biopsies, which protects the
patient from unnecessary stress and possible complications and reduces healthcare costs.
This test increases the negative predictive value.

In the MATLOC study [28] involving 498 men with histopathologically negative
prostate biopsies who had repeat biopsies within 30 months, positive results (cases) and
negative results (controls) were reported. The clinical impact of a panel of epigenetic
markers was assessed, showing for all cancers: NPV, sensitivity and specificity of 90%, 68%
and 64%, respectively (Table 1). The results showed that in a multivariate model including
patient age, PSA, DRE and histopathological features of the first biopsy, the epigenetic test
was a significant independent predictor. At the same time, it was shown that the addition
of this test could improve the diagnostic process for prostate cancer and reduce the number
of unnecessary biopsies.

This was confirmed in the multicentre DOCUMENT study [29], which validated
the clinical ability of ConfirmMDx to predict negative histopathological results in repeat
prostate biopsies. For this purpose, archived core tissue samples from prostate biopsies
with negative prostate cancer from 350 patients were evaluated. All patients had repeat
biopsies after 24 months with negative (control) or positive (cases) histopathological re-
sults. The epigenetic test was shown to be a significant independent predictor of PCa
detection after repeat biopsy and showed an NPV of 88%, with a sensitivity = 62% and
specificity= 64% (Table 1).

Van Neste et al. [30] conducted a study on a cohort of 803 men, stratified according
to their general methylation status (positive or negative) as defined in MATLOC [28]
and DOCUMENT [29]. This study demonstrated an NPV of 96% for csPCa, and that
methylation intensity was strongly correlated with the cancer stage. In assessing the
prediction of GS≥ 7 PCa after repeat biopsy, ConfirmMDx reached an AUC = 0.76 (Table 1).
The decision curve analysis indicated the high clinical utility of the risk score as a decision
tool in repeat biopsy. This indicates that ConfirmMDx is a much better predictor compared
to currently used indicators such as PSA and risk calculator (PCPT-RC).

A population of 211 African American men undergoing repeat biopsy was studied
to compare the accuracy of predicting repeat biopsy outcomes with previous studies
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conducted in predominantly Caucasian populations [31] (Table 2). The specificity of this
epigenetic assay was 60.0% and the sensitivity was 74.1% for detecting PCa at repeat biopsy.
For detection of all PCa and GS ≥ 7 PCa, the NPV was 78.8% and 94.2%, respectively
(Table 1). This study showed no significant differences in sensitivity and specificity between
this test and previously described validation studies involving predominantly Caucasian
populations and indicates usefulness for African Americans in risk stratification after an
initially negative biopsy.

Wojno et al. [88] in 2014 already noted a reduced number of biopsies in clinical
practice in centres using ConfirmMDx. They studied 138 patients with a median PSA level
of 4.7 ng/mL and previous negative biopsies. They indicated a 4.4% repeat biopsy rate in
ConfirmMDx-negative men, compared with a 43% prior repeat biopsy rate, indicating a
potential 10-fold reduction.

A later study [89] in 2019 confirmed the impact of ConfirmMDx on biopsy decision-
making. A total of 605 men with a median PSA level of 6.8 ng/mL and previous negative
biopsies were studied. There was a six times higher repeat biopsy rate in ConfirmMDx
positive men than in men with a negative test result.

ConfirmMDx enables a higher degree of accuracy (previously unattainable by prostate
biopsy procedures alone) and has clinical, financial [90] and health benefits by reducing
the number of medically unnecessary and expensive repeat biopsies that are part of the
current standard of care.

6. The Financial Aspect

A prostate MRI costs between 500 and 2500 USD in the United States, depending
on whether the patient is insured. Approximately 1 million American men are currently
referred for prostate biopsy each year. If all of these men underwent an MRI instead, costs
could reach 3 billion USD per year.

In a paper [91] addressing the costs associated with prostate biopsy and its potential
complications, the authors analysed charges for the procedure and related claims for all
Medicare Fee-for-Service patients over a 2-year period (January 2014–December 2015). The
study included 234,819 prostate biopsy cases and associated costs.

Uncomplicated biopsies cost about 1750 USD, those with one complication were
already more expensive at 4060 USD, and for patients requiring hospital admission, the cost
was as high as 13,840 USD (average cost was 2020 USD). The most common complication
of biopsy is bleeding and infection, which can be prevented using biomarker tests from
urine or blood. The cost of tests based on these is higher than the commonly used PSA but
lower than biopsy, which makes it a cost-effective option.

In a paper [92], Santhianathen et al. conducted a cost-effectiveness analysis of biomark-
ers for 2018. Costs were obtained directly from pharmaceutical companies (these were
as reported by Prostate Cancer Markers): PHI 499 USD, 4Kscore 1185 USD, SelectMDx
500 USD and ExoDx 760 USD the cost of ExoDx was estimated using data from the CMS
(Centers for Medicare and Medicaid Services) Clinical Laboratory Fee Schedule). Dis-
counted QALYs and costs were estimated; for example, a 50-year-old male with an elevated
PSA level (3 ng/mL or greater). The cost of the current SOC strategy of ultrasound-guided
transrectal biopsy was 3863 USD and the discounted QALY (an indicator of an individual’s
or group’s health status expressing quality-adjusted life expectancy) was 18.0853. Each of
the biomarkers tested improved the QALY compared with SOC. The ExoDx index provided
the highest QALY with an incremental cost-effectiveness ratio of 58,404 USD per QALY. The
study showed that before biopsy in men with elevated PSA levels, the use of SelectMDx
(MDxHealth, Inc., Irvine, CA, USA) or EPI (Exosome Diagnostics, Waltham, MA, USA)
assesses were cost-effective, PHI (Beckman Coulter Inc., Brea, CA, USA), was found to be
more expensive and less efficient.

In an economic evaluation, Nicholson et al. [93], comparing diagnostic value for money,
found that the PHI test and PCA3 were no more cost-effective than clinical evaluation,
which also generates more QALYs.
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Reports [94] on SelectMDx support data from four European countries [95], which
showed that SelectMDx in the initial diagnosis of prostate cancer saves healthcare costs
and increases QALYs compared with the current standard of care based on prostate biopsy
for elevated prostate-specific antigen [95].

This was confirmed in a study by Govers et al. [96] on a population of US men
with elevated PSA. Results were related to QALYs and cost of care from a payer (Medi-
care) perspective. Routine use of SelectMDx to guide biopsy decisions was shown to be
beneficial—gaining an average of 0.045 QALYs and saving 1694 USD per patient.

Based on studies [92,95,96], it can be concluded that a SelectMDx-based strategy
improves health outcomes and reduces costs.

The publication [90] focused on determining the impact of ConfirmMDx on the health-
care budget. It examined whether costs are recovered by avoiding unnecessary biopsies.

The implementation of ConfirmMDx created a hypothetical commercial health plan
in which direct costs were calculated over a 1-year horizon using 2013 Medicare fee-for-
service rates. The study concluded that the net cost of a commercial health plan with
1 million members would be reduced by approximately 500,000 USD if patients with
histopathologically negative biopsies were screened using an epigenetic test to distinguish
between patients who should undergo repeat biopsies and those who should not. The use
of this genetic test may reduce healthcare costs and improve clinical management.

STHLM3 is not a commercially available test, for which reason its price is unknown.
However, it is expected to be similar to other biomarkers currently available (>224 USD).
These tests are more expensive than the common PSA, but are more reliable and can be
performed less frequently due to their better diagnostic value. It also avoids biopsies,
reduces overdiagnosis and allows a treatment plan to be customised to the patient and
thus also reduces costs.

7. Guidelines

The National Comprehensive Cancer Network (NCCN) guidelines—version 2.2020—
recommend considering the use of biomarkers for the early detection of prostate cancer,
indicating that the specificity of screening can be improved in assessing the indication
for biopsy (Grade C recommendation). They indicate the possibility of using the Prostate
Health Index (PHI), SelectMDx, 4Kscore and ExoDx to assess the likelihood of high-grade
cancer (Gleason score ≥ 3 + 4, GG ≥ 2).

The NCCN guidelines also address post-biopsy management. They indicate the
possibility of using tests to improve specificity in high-risk patients despite a negative
prostate biopsy result: 4Kscore, PHI, percentage free PSA, PCA3 and ConfirmMDx (in-
cluded/added from 2020). The recommendations for the management of benign biopsy
results themselves have changed “PSA and DRE 6–24 months apart and consideration of
per cent free PSA, 4Kscore, PHI, PCA3 or ConfirmMDx and/or mpMRI and/or improved
prostate biopsy techniques. Repeat prostate biopsy, depending on risk”. However, the
guidelines note that the extent to which tests are validated in different populations varies
and that it is unclear what the optimal combination of tests with MRI would be. In the
current NCCN guidelines, MPS is listed as a biomarker requiring additional testing.

The EAU gives a strong recommendation for the use of risk-calculators and imaging in
asymptomatic men with PSA levels of 2–10 ng/mL, while giving a weak recommendation
(strength rating—weak) for urine and blood biomarkers to avoid biopsy [4].

The FDA has approved PCA3 and PHI. ExoDx received FDA Breakthrough Design
recognition in June 2019. SelectMDx has not been reviewed by the FDA due to the agency
determining that such approval is not necessary but includes CAP (College of American
Pathologists) and CLIA (Clinical Laboratory Improvement Amendments) accreditations.

ConfirmMDx and 4Kscore do not have FDA recommendations but are accredited by
CAP and CLIA.
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8. Biomarkers and mpMRI

Multiparametric magnetic resonance imaging (mpMRI) is a promising new tool for
the diagnosis, prognosis and monitoring of PCa.

The European Society of Urology guidelines on PCa recommends the use of mpMRI
before prostate biopsy in previously untreated patients with suspected PCa [4].

In addition to the high sensitivity of mpMRI in detecting hg-PCa, mpMRI also has
disadvantages, i.e., low specificity, high cost, the need for expensive, specialised equipment,
low sensitivity in predicting the presence of extra-urethral expansion and the requirement
for an expert review. Current research focuses on comparing biomarker tests with mpMRI
and also on the extent to which they can complement each other.

A study [66] on 172 men showed promising correlation results between SelectMDx
and mpMRI. There was a statistically significant difference in the SelectMDx score between
PI-RADS 3 and 4 (p < 0.01) and between PI-RADS 4 and 5. The SelectMDx score was better
than the PCA3 score in predicting outcome for suspected PCa on mpMRI (AUC = 0.83 for
SelectMDx versus 0.65 for PCA3), suggesting the possibility of using the SelectMDx test to
stratify patients for mpMRI.

The combination of 4KScore (AUC = 0.70) with mpMRI (AUC = 0.74) resulted in a
prognostic improvement (AUC = 0.82 for 4KScore and mpMRI combined) in detecting
aggressive PCa [97,98].

In a recent article [94], the authors demonstrated that the 4KScore, used in addition
to mpMRI, can reduce unnecessary SBx (without worsening the diagnosis of csPCa) and
identify patients who would benefit from undergoing TBx alone. An evaluation of 408 men
showed a reduction (39.5%) in unnecessary biopsies and a reduction in detection (33.9%)
of GG1 disease, with 5.2% (diagnosed with SBx) and 1.1% (diagnosed with SBx combined
with TBx) missing.

In another study [99], 266 men who were not biopsied underwent three strategies
using 4Kscore, mpMRI and combination PSA density (PSAD) to determine the safest
method to skip biopsy. The first strategy starts by assessing the 4Kscore value. If it was
>7.5, indicating an intermediate or high risk of csPCa, mpMRI was performed. If it was
negative and the 4Kscore value was above 7.5 but below 18 (intermediate risk), the patient
remained under clinical observation, but in case of a positive mpMRI result, a biopsy
was performed. The second strategy started with mpMRI and was similar thereafter. In
the third strategy, PSAD was calculated in case of a positive mpMRI result. The results
confirmed that 4Kscore combined with mpMRI gave a better AUC = 0.82 than each method
alone: 4Kscore (AUC = 0.70), mpMRI (AUC = 0.74). The best strategy seems to be an
initial biopsy if the 4Kscore was >7.5%, followed by mpMRI and another biopsy for those
with positive mpMRI (PIRADS ≥ 3) or 4Kscore >18%. This would avoid 34.2% of prostate
biopsies while missing 2.7% of clinically significant PCa. However, this model is more
expensive and requires external validation in a multicentre study, but it gives us an idea of
how we can improve the selection of men for biopsy using biomarkers and mpMRI.

PHI, total PSA, PSAD and the ability of mpMRI to identify csPCa were compared in a
group of 395 men [100]. In detecting csPCa for PSA, PSAD, Pi-RADS and PHI, the AUCs
were as follows, respectively: 59.5, 64.9, 62.5 and 68.9 in patients undergoing biopsy, and
for patients with a previous negative biopsy: 55.4, 69.3, 64.4 and 71.2. This indicates that
PHI had comparable results to mpMRI and outperformed other indices.

Adding PHI to mpMRI leads to increased predictive accuracy of csPCa and a reduction
of up to 50% in unnecessary biopsies (for men with PI-RADS 3–5 and PHI ≥ 30). Moreover,
combination AUC outperforms PHI and mpMRI alone (AUC were 0.87, 0.73 and 0.83,
respectively [101].

A study [102] performed prostate cancer diagnosis using a combination of Stockholm3
and mpMRI. Targeted biopsies or mpMRI were performed only in men at higher risk as
assessed by S3M. When maintaining the number of detected FG cancers ≥2, there was a
42% saving of biopsies and a 46% reduction in FG1 detection. Using a combination of S3M
and MRI TBx, the detection of GG 1 tumours and the number of biopsies needed were
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almost halved, with no reduction in sensitivity in detecting GG 2 cancers, compared with
using SBx.

9. Discussion

PSA is a highly sensitive screening test. However, it lacks specificity, resulting in a high
rate of unnecessary prostate biopsies. The liquid biopsy tests are more expensive than the
commonly used PSA, but because of their better diagnostic value, they can be performed
less frequently and avoid other more costly procedures such as biopsy or mpMRI.

It seems important to differentiate the tests in terms of their advantages and disadvan-
tages and to demonstrate which biomarker may be most useful in a given clinical situation.

PHI, 4Kscore, SelectMDx and ExoDx offer better specificity than PSA and can help
identify men with GS ≥ 7 PCa. MPS also outperforms PSA and each of its components in
HG PCa detection, and its performance in men with suspicious PSA levels helps to validate
the need for initial or repeat biopsy.

STHLM3 is also significantly superior to PSA and can detect HG PCa even in men
with PSA levels ≥ 1.5 ng/mL. However, this test has not yet been validated on multiethnic
groups, nor have tests comparing it with other liquid biopsy tests been developed.

In men at increased risk of PCa with a previous negative biopsy, additional information
can be obtained with the Progensa-PCA3 urine test, MPS, ExoDx and the 4Kscore, PHI and
STHLM3 serum tests or the tissue-based epigenetic test (ConfirmMDx).

PCA3 reduces prostate biopsy rates in men undergoing repeat biopsy, but there is still
no consensus on the cut-off value.

As PCA3 increases with cancer aggressiveness, tests based on it—Progensa PCA3,
MiPS and ExoDx—show the ability to distinguish between cancers with high and low
Gleason scores, indicating high utility in therapeutic decision-making.

As ExoDx uses an algorithm independent of PSA and its derivatives, clinical factors
(features) and standard of care (SOC), it is feasible (in the US) to perform at home. The
patient takes a sample, hands it over to a courier and then discusses the result with the
doctor via telehealth. This novelty (ExoDx Prostate At-Home Collection) seems particularly
useful in times of coronavirus pandemics and for people living far from medical care.

PHI is significantly better than SelectMDx in diagnosing any PCa, while SelectMDx is
significantly better than PHI in diagnosing csPCa.

The 4Kscore assesses the risk of detecting HG PCa if a biopsy is performed. It has
been shown to have a better detection rate for HG PCa than the modified PCPTRC and
SOC. In addition, 4Kscore can predict HG PCa even years in advance and assess the risk of
distant metastasis, e.g., in genetically burdened men. It thus helps to non-invasively avoid
prostate biopsy for men in whom it is not necessary and identifies men at higher risk for
whom an early intervention is beneficial.

Hendriks [103] and colleagues undertook a comparison of the diagnostic values of two
FDA-approved tests, PHI and PCA3, for primary and repeated biopsy. Unfortunately, after
compiling all studies published before 2017, they were unable to draw clear conclusions
due to the conflicting results of the articles analysed. Study [104] notes that although in a
double-blind study of PCA3 vs. PHI, PCA3 is superior to PHI in cancer prediction accuracy,
when considering only significant PCa, PHI remains the most accurate predictor. For this
reason, the authors recommend using PHI instead of PCA3 in population-based screening.

In a study [54] on 531 men (PSA 3–15 ng/mL) who underwent an initial biopsy,
4Kscore and PHI had similar AUCs in predicting PCa (AUC = 0.69 and 0.74, respectively)
and csPCa (0.72 vs. 0.71, respectively).

Russo et al. indicated in their systematic review [55] the high diagnostic accuracy
of PHI and 4Kscore. Both tests were tested on multiethnic groups and showed high
diagnostic value in them. Although both biomarkers provide similar diagnostic accuracy
in the detection of general and high-grade PCa and reduce the number of unnecessary
biopsies, it should be borne in mind that there are disturbing reports on PHI [80–82].
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Furthermore, PHI should not be interpreted as absolute proof of the presence or
absence of prostate cancer. Elevated PSA and PHI can be observed not only in patients with
prostate cancer but also with benign diseases. PHI results should be interpreted taking into
account clinical factors or family history, and individual clinical decisions should be made
based on them.

Vedder et al. [105] added PCA3 and 4Kscore to the ERSCPC risk calculator and
compared performance. They showed that 4Kscore was better than PCA3 in predicting
PCA in men (with PSA≥ 3.0 ng/mL) (AUC 0.78 and 0.62, respectively). However, when no
PSA limit was set, PCA3 performed better than 4Kscore (AUC 0.63 vs. 0.56). When added
to ERSPC, both biomarkers slightly improved the prediction of PCa, with no significant
differences (in performance) between them.

Additionally, the previously mentioned study [60] confirmed that adding ERSPC to
the 4Kscore improves diagnostic value. However, it is worth recalling that the 4Kscore is
the most expensive of the tests compiled in our review.

In addition, it is important to remember that drugs such as 5-alpha-reductase in-
hibitors: finasteride, dutasteride and anti-androgen therapy can affect the levels of PSA
and other biomarkers. Such medications should be discontinued for at least 6 months
prior to the study. Samples for the test should be taken when the clinician is satisfied
that the prostate tissue has recovered, normally no less than 6 months after the date of
the last biopsy or any other prostate procedure. The impact of these procedures on the
performance of the test has not yet been assessed.

10. Conclusions

Recently, molecular characterisation of PCa has become increasingly important, and
a wide range of biomarker-based liquid biopsy tests are commercially available to assist
urologists in clinical decision-making. The prostate cancer liquid biopsy biomarkers listed
above have a high NPV and therefore help prevent unnecessary biopsies. As mentioned
earlier, numerous publications [16–18] have not shown a correlation between PCA3 values
and prostate cancer aggressiveness (Gleason score). Given this fact and reports of unex-
plained PCA3 well above the cut-off [15] without cancer on biopsy, it is reasonable to use
newer, more sensitive and specific diagnostic tools to detect patients requiring prompt and
radical treatment. For example, PCA3 in combination with other biomarkers such as TM-
PRSS2: ERG fusion [36] in Mi-Prostate Score [41–46] or ERG and SPDEF in ExoDx Prostate
IntelliScore [47,48,61–63], where it shows better diagnostic and prognostic potential.

From a clinical point of view, it is critical to identify assays for the early detection of
aggressive PCa subtype when it can still be treated effectively. Recent years have led to the
development of totally non-invasive tests i.e., (ExoDx Prostate At-Home Collection) where
first catch, nondigital rectal examination urine specimens appeared helpful in identifying
aggressive (Gleason score 7–10) PCa in a racially diverse patient cohort. Similarly, the
four-kallikrein panel showed effectiveness in identifying aggressive PCa in a multiethnic
population.

It seems that in the near future, molecular biomarkers, clinical and histopathological
features and diagnostic imaging will have to be used in a complementary rather than
a competitive manner to ensure the best possible selection of patients for mpMRI and
eventual biopsy.
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Abbreviations

AUC Area under the curve
BMI Body Mass Index
csPCa Clinically significant prostate cancer
DCA Decision curve analysis
DRE Digital Rectal Examination
EAU European Association of Urology
EPI ExoDx Prostate IntelliScore
ERSPC RC European Randomised study of Screening for Prostate Cancer risk calculator
fPSA Free non-protein-bound PSA
GG Grade Group
GS Gleason score
HG High grade
hK2 Human kallikrein 2
iPSA Intact PSA
ISUP International Society of Urological Pathology
LG Low grade
lncRNA Long non-coding RNA
MiPS Michigan Prostate Score
mpMRI Multiparametric Magnetic Resonance Imaging
MRI Magnetic Resonance Imaging
NPV Negative predictive value
NCCN National Comprehensive Cancer Network
PCa Prostate cancer
PCA3 Prostate Cancer Antigen 3
PCPT-RC Prostate Cancer Prevention Trial Risk Calculator
PHI Prostate Health Index
PHID Prostate Health Index density
PI-RADS Prostate Imaging-Reporting and Data System
PPV Positive predictive value
PSA Prostate-specific antigen
PSAD Prostate-specific antigen density
QALY Quality-adjusted life year
RP Radical prostatectomy
SBx Systematic Biopsy
SNPs Single-nucleotide polymorphisms
SOC Standard of care
STHLM3 Stockholm 3
S3M Stockholm 3 Model
TBx Targeted biopsy
TNM Tumor-Node-Metastasis (Staging System)
tPSA Total PSA
TRUS Transrectal ultrasound
TRUS-Bx Transrectal ultrasound (TRUS) guided biopsy
4Kscore Four-kallikrein score
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Simple Summary: Colorectal cancer (CRC) is the third most common form of cancer in terms of
incidence and the second in terms of mortality worldwide. CRC develops over several years, thus
highlighting the importance of early diagnosis. Fecal occult blood test screening reduces incidence
and mortality. However, the participation rate remains low and the tests present a high number
of false positive results. This review provides an overview of CRC screening globally and the
most recent approaches aimed at improving accuracy and participation in CRC screening, while
also considering the need for gender and age differentiation. New fecal tests and markers such as
DNA methylation, mutation or integrity, proteins and microRNAs are explored, including recent
investigations into fecal microbiota. Liquid biopsy approaches, involving novel markers, such
as circulating mRNA, micro-RNA, DNA, proteins and extracellular vesicles are discussed. The
approaches reported are based on quantitative PCR methods or arrays and sequencing assays that
identify candidate biomarkers in blood samples.

Abstract: Colorectal cancer (CRC) is the third most common form of cancer in terms of incidence
and the second in terms of mortality worldwide. CRC develops over several years, thus highlighting
the importance of early diagnosis. National screening programs based on fecal occult blood tests
and subsequent colonoscopy have reduced the incidence and mortality, however improvements are
needed since the participation rate remains low and the tests present a high number of false positive
results. This review provides an overview of the CRC screening globally and the state of the art in
approaches aimed at improving accuracy and participation in CRC screening, also considering the
need for gender and age differentiation. New fecal tests and biomarkers such as DNA methylation,
mutation or integrity, proteins and microRNAs are explored, including recent investigations into fecal
microbiota. Liquid biopsy approaches, involving novel biomarkers and panels, such as circulating
mRNA, micro- and long-non-coding RNA, DNA, proteins and extracellular vesicles are discussed.
The approaches reported are based on quantitative PCR methods that could be easily applied to
routine screening, or arrays and sequencing assays that should be better exploited to describe and
identify candidate biomarkers in blood samples.

Keywords: fecal immunochemical test (FIT); colonoscopy; flexible sigmoidoscopy; liquid biopsy;
mRNA; microRNA; ctDNA; proteins; extracellular vesicles

1. Introduction

Colorectal cancer (CRC) develops over time from modifications of the normal in-
testinal mucosa to benign precancerous adenomas, carcinoma, and eventually aggressive
metastatic cancer [1]. This transition is a complex, multifactorial process that has been
characterized over the years. Adenomatous polyposis coli (APC) gene mutations or dele-
tions leading to chromosomal instability represents one of the pathways that drives the
development of CRC [2–4]. Activating mutations of the KRAS oncogene and inactivat-
ing mutations of the TP53 tumor suppressor gene further promote adenoma–carcinoma
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progression. Microsatellite instability (MSI), aberrant CpG island methylation phenotype
(CIMP), chromosomal instability (CIN) and BRAF mutations are also associated with the
transition and development of CRC. Colorectal cancer is also linked to different risk factors
such as older age, male sex, adverse lifestyle habits (smoking, increased consumption of
red meat and alcohol), chronic intestinal diseases, clinical history of polyps, genes, and
heredity [5].

The slow growth of this cancer makes the identification of precancerous lesions and
early detection of cancer fundamental for defeating the disease. Screening is, thus, essential
to reduce the incidence and mortality of CRC. In fact, CRC mortality is gradually decreasing
in industrialized countries due to the widespread adoption of screening programs [5].
Today, the implementation of screening opportunities is crucial, and the research in this
field is prolific globally.

This review is divided in two parts. The first focuses on the CRC status, screening
methodologies, national screening programs and their application worldwide. The second
part firstly examines the main drawbacks of the fecal occult blood test (FOBT), which is the
golden standard screening test worldwide, and then focuses on the strategies aimed at im-
proving CRC screening using liquid biopsy approaches and suitable candidate biomarkers
(mRNA, miRNA, ctDNA, microvesicles).

2. Colorectal Cancer Status in Europe and in the World

CRC is the third most common form of cancer in terms of incidence and the second
in terms of mortality worldwide, with 1.9 million new cases and 930,000 deaths reported
in 2020 [6]. There are important geographical discrepancies regarding the incidence and
mortality of CRC (Figure 1, Tables S1 and S2). Australia and New Zealand show the highest
incidence, followed by Europe and North America [7–10]. The highest reported mortality
rates are in central Eastern Europe. The lowest CRC incidence is registered in South Asia
and in Africa, where also the lowest mortality rates are recorded, although in these areas
the highest mortality to incidence ratio is recorded.Cancers 2021, 13, x  3 of 20 
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In Europe, CRC is the second most common oncological disease in terms of incidence
and mortality, with 519,820 new cases and 244,824 deaths registered in 2020 [6]. The highest
incidence was observed in central Eastern Europe and there are substantial differences
between European countries (Table S3; Figure 2), with respect to both risk factors, linked to
different lifestyles, and screening policies [5,9,11].Cancers 2021, 13, x  4 of 20 
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Figure 2. Colorectal cancer in Europe in 2020. (a) Estimated age standardized incidence rate (100,000) for European
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Observatory 2020, International Agency for Research on Cancer, World Health Organization [6].

In Italy, CRC is the third most common oncological disease in terms of incidence and
the second in terms of mortality, with 49,327 new cases and 19,258 deaths reported in 2018
(Table S4). The 5-year survival is 66%, with no differences between men and women [12].

3. Colorectal Cancer Screening
3.1. Advantages of Screening in Terms of Incidence and Mortality

CRC screening programs have been shown to reduce incidence and mortality [7,13–16].
Soon after the activation of screening programs, the incidence showed an increase in the
short-term, which tended to decrease over the subsequent years [13,17] and the cancers
that were detected were more often diagnosed at earlier stages [16]. Notably, populations
with active screening programs have shown an impressive reduction in mortality from
22 to 68% [16–21].

3.2. Screening Tests
3.2.1. Stool-Based Tests

There are currently three types of screening for detecting CRC: stool-based, imaging,
and endoscopic tests [5]. Stool-based tests (fecal occult based test, FOBT) shows the
presence of hem (gFOBT) or human globin (FIT) of hemoglobin in stool samples. The
gFOBT has a long history and consists of a colorimetric assay which uses the guaiac
reaction [22]. FIT is an immunochemical test, which exploits a specific antibody. It has
replaced gFOBT because it is more sensitive and accurate at detecting CRC (sensitivity
69–95% vs. 25–38%) and does not require dietary restrictions [23–25].

Patients with positive FIT tests are referred for a colonoscopy for further investigations.
In order to respond to the best cost–benefit strategy, numerous studies have tried to fix the
optimal cut-off of FIT. The most commonly used value currently appears to be 100 ng/mL,
corresponding to 20 µg of Hb per g of stool [24]. A high variability has been recorded in FIT
screening between different centers and kits, with the analytical performance depending on
antibody characteristics (mono or polyclonal), buffer volume or composition of collection
vials [7,26]. Other drawbacks of FIT are related to the less than optimal level of enrollment
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in screening programs, the high number of false positive results (15–30%), the poor ability
to detect serrated polyps, and the low sensitivity for adenomas [5,7,27].

3.2.2. Imaging Tests

Imaging tests include the double-contrast barium enema (DCBE), computed tomo-
graphic colonography (CTC), and colon capsule endoscopy (CCE). Today, novel imaging
methods are often used rather than DCBE [5]. CTC was introduced about 20 years ago
and provides endoluminal images of the air-distended colon, reconstructed by computed
tomography or magnetic resonance [5]. CCE is recognized by the European Society of
Gastrointestinal Endoscopy as an acceptable screening method for CRC (with a sensitivity
of 84% and specificity of 93%) [28]. However, these methods require intensive bowel prepa-
ration and are more expensive than colonoscopy and biopsies cannot be performed [5,28].

3.2.3. Endoscopic Tests

Endoscopic tests consist of flexible sigmoidoscopy (FS) and colonoscopy (CS). FS
visualizes only the distal gastrointestinal tract, but does not detect lesions in the proximal
colon. The advantages of FS include the fact that no dietary restrictions are required
and it involves minimal bowel preparation [5,19,20]. Colonoscopy represents the gold
standard for diagnosis, with a high sensitivity and specificity for detecting cancerous and
precancerous lesions (97–98%) in the entire large bowel and the distal part of the small
bowel [18]. During the procedure, it is also possible to perform biopsies for histological
evaluation. However, colonoscopy is an expensive and risky method, since complications
such as bleeding or bowel perforation occur in approximately 0.1–0.2% of patients [5,7,19].

3.3. Screening Status in Europe and the World

In 2012, the European Union drew up guidelines on CRC screening and diagnosis,
recommending the use of national screening programs based on FIT, FS or CS [29].

In Italy, the national screening program is FIT-based, which is recommended every
two years and carried out for the population deemed at risk (50–69 years) [7,12,30–32].
According to the most recent data, screening coverage was between 90 and 96%, depending
on the geographic area; however, the overall participation was still low, ranging from 60%
in the north to 23% in the south (Tables S5 and S6).

Several European countries, including the extra-EU, have developed an ongoing
or planned national or regional screening program, with an invitation system for the
population considered at risk (Table 1). The majority use the fecal occult blood test (gFOBT
or FIT), with wide differences in participation rates.

Table 1. Colorectal cancer (CRC) screening in Europe [15,33–39].

Country Program Test 1 Cut-Off 2 Target Age 3 Interval 3

(years)
Invited 4

(%)
Participation 5

(%)

Albania NA NA NA NA NA NA NA
Austria Regional/Opportunistic FIT/gFOBT/CS NA 40–80 1 NA NA
Belarus NA NA NA NA NA NA NA
Belgium Regional FIT/CS 15 50–74 2 99.2 27.7

Bosnia and
Herzegovina Regional/Opportunistic gFOBT NA >50 NA NA NA

Bulgaria No/Opportunistic gFOBT NA NA NA NA NA
Croatia National gFOBT NA 50–74 2 100 15.3
Cyprus Pilot/Planned FIT NA 50–69 2 NA NA
Czech

Republic Regional/Opportunistic FIT/gFOBT/CS 15 50–79 2 NA 22.7

Denmark National FIT 20 50–74 2 25 64
Estonia Pilot/Planned FIT NA 60–69 2
Finland Pilot/Planned gFOBT NA 60–69 2 23.9 66.4
France Regional FIT/gFOBT 30 50–74 2 99.1 26.5
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Table 1. Cont.

Country Program Test 1 Cut-Off 2 Target Age 3 Interval 3

(years)
Invited 4

(%)
Participation 5

(%)

Germany Opportunistic/Pilot/planned FIT/gFOBT/CS NA 50–74 2–10 NA NA
Greece No/Opportunistic gFOBT/CS NA 50–74 NA NA NA

Hungary Pilot/Planned FIT 20 50–70 2 21.1 36.7
Iceland Opportunistic/Planned gFOBT/CS NA 55–75 2–10 NA 30
Ireland National FIT 20 60–69 2 10.9 39.6

Italy National FIT/FS 6 20 50–74 6 2 75 42
Latvia No/Opportunistic gFOBT NA 50–74 NA NA 11.1

Lithuania Opportunistic/Pilot/Planned FIT NA 50–74 2 NA 53.1
Luxembourg Opportunistic/Planned FIT/gFOBT/CS NA 55–74 2 NA NA
Macedonia No/Opportunistic FIT NA NA NA NA NA

Malta National FIT 16–20 55–66 2 100 45.4
Montenegro Regional FIT NA 50–74 2 NA 33.3
The Nether-

lands National FIT 47 55–75 2 38.5 71.2

Norway Regional/Pilot FIT NA 55–64 2 NA 64.8
Poland National CS NA 55–64 10 12.5 16.7

Portugal Regional FIT/gFOBT 20 50–70 2 1.6 62
Romania No/Opportunistic NA NA NA NA NA NA
Russian

Federation Opportunistic/ Pilot FIT/CS NA 48–75 NA NA NA

Serbia National FIT NA 50–74 2 NA 58.4
Slovakian
Republic No/Opportunistic FIT/gFOBT/CS NA NA NA NA NA

Slovenia National FIT 20 50–69 2 93 47.1
Spain National FIT/gFOBT 20 50–69 2 14.2 50.2

Sweden Regional gFOBT NA 60–69 2 100 62.7
Switzerland No/Opportunistic FIT/CS NA 50–69 2–10 NA 22

Ukraine NA NA NA NA NA NA NA
United

Kingdom National FIT/gFOBT/FS NA 50–74 6 2 100 56.1

1 Guaiac fecal occult blood test (gFOBT), fecal immunochemical test (FIT), colonoscopy (CS), flexible sigmoidoscopy (FS), not available
(NA). 2 Cut-off for FIT in µg Hb/g feces 3. Target age and interval screening according to the national programs. 4 Percentage of people of
the target age invited to participate in the screening. 5 Percentage of invited people that participated in the screening. 6 Regional or national
differences.

National and regional organized screening programs using the fecal test (gFOBT or
FIT) have also been reported for Canada, Brazil, Argentina, Chile and Uruguay, which
obtained high participation rates in the pilot studies (90.1–79.7%) [10,36].

On the other hand, in the USA, the U.S. Preventive Service Task Force recommends
that asymptomatic adults aged from 50–75 have a screening test on a voluntary basis, and a
national screening program is still not available. The choice for the average risk population
in the USA is between stool-based tests (gFOBT, FIT, FIT-DNA), direct visualization tests
(FS, CS, CTC) or the serological DNA test (SEPT9). As of 2018, 68.8% of people aged 50–75
with health insurance are reported to be up-to-date with colorectal cancer screening [40].

In 2015, recommendations for CRC screening in the Asia Pacific region were up-
dated [41] and the Asia Cohort Consortium focused also on health outcomes in Asian
populations [42]. Few countries (Australia, China, Japan, New Zealand, South Korea, Thai-
land and Taiwan) have national or regional screening programs and these are mainly based
on the fecal test (FIT or gFOBT). Additionally, in these regions the national participation
rates were rather low (13–41.3%) [10,36].

Among the countries in the eastern Mediterranean, only Israel reported an organized
screening program based on FIT designed for people aged 50–74 years, while in other
countries, only opportunistic screening has been adopted (Jordan, Qatar and the United
Arabic Emirates). Finally, regarding Africa, the adoption of organized screening may have
a limited impact due to the relatively low incidence of CRC and the limited economic
resources [10,36].
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4. Disadvantages of Fecal Tests (FIT/gFOBT), Room for Improvement

In order to fully benefit from screening programs, the participation rate should be
higher than 80%, thus, low take-up is one of the main drawbacks of all the screening
programs, with large differences among and within countries [10,16,17,19,31,36,43,44].
Numerous studies have addressed the pitfalls of FIT, including the high rate of false
positives and negatives. A false positive FIT can create unnecessary psychological distress
and superfluous requests for colonoscopies, with associated healthcare costs. Between
8 and 32% of FIT positive participants do not have significant lesions [19,45,46]. On the
other hand, false-negative FIT results can delay CRC diagnosis and dissuade participants
from subsequent evaluations [47–49].

The FIT sensitivity for CRC ranges from 91 to 71%, according to the Hb cut-off, with
specificity ranging from 90 to 95%. For advanced adenoma (AA), the sensitivity falls
from 40 to 25%, with specificity ranging from 90 to 95% [50,51]. There are several risk
factors for CRC: gender, age, obesity, alcohol consumption, current or former smoking and
the use of drugs, such as non-steroidal anti-inflammatory drugs (NSAIDs) or anticoagu-
lants [24,27,47]. Differences in FIT performance by sex and age have been described. The
pooled sensitivity of FIT for advanced neoplasia (AN) was higher in women than in men,
with pooled specificities of 92 and 94%, respectively. Accordingly, De Klerk et al., found
that the highest risk of a false positive was found for females and the use of NSAIDs [47].
Interestingly, low-dose aspirin was associated with a higher risk of false positives (FPs),
suggesting a possible effect on bleeding of early lesions. Several factors appear to be
associated with an increased risk of false-positive FIT: male sex, older age (>65), obesity,
and current smoking [27,52].

The importance of improving FIT screening has led to various strategies aimed at
finding a balance between resources, participation rates and large populations. Some
countries have decided to increase the FIT positivity threshold, with the hope of reducing
the false positive results and optimizing colonoscopy performance. However, a high
threshold leads to a decreased sensitivity and an increased specificity only for advanced
neoplasia [53]. This solution reduces the number of false positives, but also increases
the false negatives. The decision to increase the FIT cut-off value “simply” to reduce the
number of colonoscopies seems more “cost-effective” than “patient-effective”, and the
adjustment of the FIT cut-off value cannot be the only viable solution.

A novel approach to FIT screening was developed by Senore et al., who evaluated
the sum of quantitative FIT results during consecutive negative screening rounds [54].
Subjects with a cumulative fecal Hb level ≥20 µg/g showed an 18-fold increase in their
cumulative AN (CRC and AA) risk over the subsequent two rounds. This is an interesting
approach; however, the number of false positive FITs would still be very high. Another
option is to select gender-specific or age-specific cut-offs in FIT screening [53,55,56]. In
a stratification model, patients could be assigned to different risk levels of finding AN,
by combining different risk factors (such as sex, age or Hb value), or considering FIT
separately from the prediction model. The risk-stratification based on prediction models
might be better at predicting neoplastic outcomes, including all FIT results, and might
enlarge the eligible population including younger subjects (<50 years) and/or people with
a history of familiarity for CRC.

5. New Tests
5.1. Fecal Tests

In recent years, new tests have been developed to optimize CRC screening and
diagnosis. Since the first studies on RAS oncogene mutations [57], DNA alterations in
stools have been investigated, as well as proteins and microRNAs.

A recent systematic review evaluated the performance of FIT combined with other
stool markers, including DNA methylation, mutation or integrity markers (PHACTR3,
APC, p53, KRAS and BRAF), proteins (transferrin, calprotectin and calgranulin) and
microRNA (miR-106a) [58]. Notably, the largest increase in sensitivity for CRC was found
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with long DNA as a measure of DNA integrity in the APC gene and p53, with a specificity
of 98%. Among the protein markers, combining transferrin or calgranulin C tests to FIT
yielded a slight increase in sensitivity [58,59]. However, calprotectin led to a significant
increase in sensitivity for all adenomas, from 53 to 86%, but the specificity decreased from
68 to 26% [58,60].

Following the first studies on DNA and the feasibility of the prototype of a multitarget
panel assay in stools [61], Imperiale et al. further developed and tested the multitarget
stool DNA ColoGuard (MT-sDNA; Exact Science) in a large screening setting. This test is
currently an alternative stool test, which was approved by the Food and Drug Adminis-
tration (FDA) and is currently employed in the USA [62]. The MT-sDNA test, ColoGuard,
combining stool DNA markers (methylated BMP3 and NDRG4 promoter regions, mu-
tant KRAS) with the results of FIT, undoubtedly represented a milestone of stool-based
molecular testing in CRC screening. It was tested in nearly 10,000 people, showing a
significantly better sensitivity than FIT in predicting any stage of CRC (92.3 vs. 73.8%,
respectively) and AA (42.2 vs. 23.8%), and retaining a high specificity (89.9 vs. 96.4%).
Similar results were obtained by Bosch et al., in a cohort of 1014 people [63]. By comparing
the single-application performance of the MT-sDNA test with FIT, MT-sDNA showed a
greater sensitivity for AA than FIT at the lowest cut-off tested (10 µg Hb/g of feces), with
a slight decrease in specificity (94 vs. 98%). No significant difference was highlighted to
distinguish between proximal and distal AA.

A similar FIT-DNA test kit, ColoClear, manufactured by New Horizon Health Tech-
nology Corporation Limited in Hangzhou, China, calculates a risk prediction by combining
the FIT test with the detection of the KRAS gene mutation, NDRG4 and BMP3 methylation.
ColoClear was tested in 839 subjects, obtaining a sensitivity for CRC and AA of 97.5 and
53.1%, respectively, with a combined sensitivity for predicting AN (CRC and AA) of 88.9%
and a specificity of 89.1% [64]. Moreover, no significant difference was highlighted for
proximal or distal colon CRC, while sensitivity for distal AA was higher than for proximal
AA (61 vs. 30%).

Another stool test, developed in Italy, with the collaboration of Diatech Pharmaco-
genetics, is based on the evaluation of stool DNA integrity [65,66]. The authors carried
out a quantitative evaluation based upon fluorescence amplification of different genomic
DNA targets called fluorescence long DNA (FL-DNA). FL-DNA showed a 70% sensitivity
and 87% specificity in detecting CRC in stool samples from subjects recruited by a regional
screening program based on FIT positivity.

Microbiome-based tests could represent a new frontier in the CRC detection.
Grobbee et al. measured fecal microbiota in FIT positive subjects. An overall increase
in total bacterial content (16S) was associated with patients affected by high grade dyspla-
sia and CRC [67]. Similarly, a new non-invasive CRC screening test based on microbiome
data was employed to reduce the false positive rate of FIT [68]. The authors targeted
specific genomic DNA bacterial sequences: Eubacteria (EUB) as the total bacterial load, Fae-
calibacterium prausnitzii (B10), Subdoligranulum variabile (B46), Ruminococcus, Roseburia and
Coprococcus (B48), Roseburia intestinalis (RSBI), Gemella morbillorum (GMLL), Peptostreptococ-
cus stomatis (PTST), Bacteroides fragilis (BCTF), Collinsella intestinalis (CINT), and Bacteroides
thetaiotaomicron (BCTT). GMLL, PTST and BCTF correlated significantly with AN. Although
the sensitivity values for bacterial markers alone were much lower than FIT performance,
a final algorithm consisting of the combination of FIT with three ratios between bacterial
markers (PTST/EUB, BCTF/EUB, BCTT/ EUB) decreased the number of false positive
results by 50%, obtaining a sensitivity of 80% and a specificity of 90%. Finally, panels of
proteins were tested in stool samples to identify AA or AN subjects, however, the levels
of sensitivity and specificity were quite low (54 vs. 13%) (Hp, LRG1, RBP4, and FN1;
62 vs. 40%) [69].

Nevertheless, despite these efforts to improve fecal-based screening, the main draw-
backs remain the low participation rate and the costs [70,71].
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5.2. A New Alternative: Liquid Biopsy

The analysis of tumor-derived biomarkers in biological fluids has the potential to
increase the participation rate [72]. Peripheral blood is one of the most studied biological
fluids, and an accurate blood test could be an attractive alternative for asymptomatic,
average-risk individuals who are reluctant to undergo screening by a stool test or endoscopy.
Two independent surveys [73,74] showed that a blood sample would be preferred to a
stool sample in a screening setting. In a clinical trial, 12% of people who refused to
enroll in a stool-based screening, agreed to perform the blood-based test [71]. Thus, blood
CRC biomarkers remain very attractive and are under investigation, including several
molecules from nucleic acids such as DNA and various types of RNA (messenger, mRNA;
micro, miRNA; long non-coding, lncRNA) to proteins, from circulating tumor cells to
microvesicles. There is also growing interest in biomarker combination, which could obtain
a higher sensitivity than single biomarker-based tests [72,75,76].

Figure 3 summarizes the blood-based tests discussed in this review. The next part
of this review focuses, above all, on mRNA, including microRNAs and lncRNA. DNA,
proteins and microvesicles are also briefly discussed.
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5.2.1. mRNA

The emergence of RNA sequencing (RNA-seq) technologies with the evolution of
next generation sequencing (NGS) is promising for the diagnosis, prognosis and therapy
of cancers including CRC. However, this method is very expensive and, paradoxically,
provides too much information that is not yet fully exploitable for the purpose of early
diagnosis [77].

In 2016, Rodia et al. [78] used a novel bioinformatic approach to search for specific
RNAs with high differential gene expression between CRC and normal blood. The genes
showing the highest significant difference were analyzed by qRT-PCR in blood samples
of healthy and CRC patients. The authors reported that CEACAM6, LGALS4, TSPAN8
and COL1A2 (known as CELTiC) discriminated between the two groups with a sensitivity
and specificity of 92 and 67%, respectively. The CELTiC panel was subsequently analyzed
in a population of FIT positive subjects, confirming its ability to identify patients with
high-risk lesions (CRC and AA), and appeared able to discriminate false positive FIT and
low risk patients (non-advanced adenoma and polyps) [79]. In 2020, the CELTiC panel
was measured in blood samples from healthy FIT negative subjects, reporting significant
gender differences for CEACAM6 and COL1A2, thus highlighting the importance of gender
as a potential factor in the comparison between healthy and FIT false positive subjects. The
CELTiC panel obtained high AUCs when comparing healthy to AN, low risk, FIT false
positive subjects or a combination of these groups, with good sensitivities and specificities
ranging from 83 to 90% and from 76 to 81%, respectively. These results confirmed the need
for additional studies to better define gender- and age-specific reference intervals for the
early diagnosis of CRC [80].

A similar approach was applied using ColonSentry, a panel of seven mRNAs [81,82].
Six out of seven genes (ANXA3, CLEC4D, LMNB1, PRRG4, TNFAIP6 and VNN1) were
overexpressed in the blood of CRC patients, and one (IL2RB) was under expressed with
a blinded validation test set resulting in 72% sensitivity and 70% specificity, with similar
predictive values for left- and right-sided CRC.

A similar test is COLOX [83,84], a panel of 29 mRNAs (BCL3, IL1B, PTGS2, MAP2K3,
PTGES, PPARG, MMP11, CCR1, EGR1, CACNB4, CES1, IL8, S100A8, CXCL11, ITGA2,
NME1, JUN, TNFSF13B, CXCR3, MAPK6, CD63, ITGB5, GATA2, LTF, MMP9, CXCL10,
MSL1, RHOC, FXYD5) measured in the peripheral blood mononuclear cells. Few individ-
ual genes showed significant differences among age classes, but the whole panel was not
affected by the age of the patient. Twelve mRNAs (BCL3, IL1B, PTGS2, PTGES, PPARG,
MMP11, CCR1, EGR1, CACNB4, CES1, IL8, S100A8) were able to differentiate between the
control group and CRC, and five mRNAs (CES1, CXCL11, IL1B, ITGA2, NME1) identified
large adenomas. The authors also found seven markers specifically able to differenti-
ate between large adenomas and CRC (BCL3, PTGES, PPARG, MMP11, IL8, TNFSF13B,
CXCR3).

Other mRNAs have also been investigated as blood markers of CRC [85–87]. In
2018, Alamro et al. reported significantly higher mRNA expression of inflammatory genes
(COX-2, TNF-α, NF-κB, IL-6) in blood samples of 20 CRC compared to 15 healthy controls
without significant association with gender, age or tumor localization [85]. A case–control
study performed on 83 CRC patients and 11 healthy donors resulted in significantly higher
levels of circulating HMGA2 mRNA in CRC patients with an AUC of 0.932 and a sensitivity
of 86.8%. The authors highlighted also a significant association with tumor localization,
reporting a greater expression in patients with colon cancer and right-sided CRC, but not
with age or gender of the patients [86]. Hamm et al. performed a genome-wide expression
analysis on RNA obtained from peripheral blood monocytes collected from 329 subjects
(128 healthy, 160 CRC, 41 other gastric diseases) divided in different cohorts [87]. Twenty-
three genes showed differential expression between healthy and CRC. By testing different
statistical models, the authors reported sensitivity values from 80 to 100%, specificity from
92.3 to 93.3%, and AUCs from 0.86 to 0.99. However, the panel was not tested for the
evaluation of preneoplastic lesions (i.e., polyps) or tumor localization [87].
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5.2.2. miRNA

MicroRNAs (miRNAs) are small non-coding RNAs (~20–22 nucleotides) that regulate
gene expression through repression or degradation of mRNAs. miRNAs seem to be
promising plasma biomarkers associated with the onset of CRC, and several studies have
searched for specific panels of miRNA capable of increasing both the sensitivity and
specificity of screening [4,7,88–91]. miR-7, miR-17-3p, miR-18, miR-21, miR-29a, miR-31,
miR-92a, miR-93, miR-155, miR-181b, miR-200c, miR-221, miR-409-3p, let-7g are some of
the miRNAs tested, either individually or as a panel in plasma or serum of patients affected
by CRC. However, only a few have been confirmed as diagnostic CRC biomarkers by
more than one study [89–93]. Among the most studied, mir-21 and mir-29 family (mir-29a,
mir-29b and mir-29c) are overexpressed in CRC and associated with CRC progression
and metastasis [7,91]. miR-21 is one of the most investigated diagnostic markers of CRC,
identified in several biological fluids (plasma, serum, whole blood) [72,94].

Clusters of miRNA have been taken into consideration and the mir-17–92 cluster,
also called oncomiR-1, is one of the most studied clusters in relation to CRC. This cluster
contains different members such as miR-17, miR-18a, miR19a, miR-19b, miR-20a and
miR-92a, and evidence suggests that miR-29a and miR-92a may have a good sensitivity
(69 to 89%) and specificity (70 to 89.1%) in CRC detection. In addition, the combination of
miR-92a and miR-29a appears to increase the performance of single miRNAs for detecting
AN [75,91,95]. Other members, such as miR-19a and miR-19b, were upregulated in plasma
from CRC patients compared to healthy individuals, and their combination obtained an
AUC of 0.82. The combination with another four plasma miRNAs (miR-18a, miR-29a,
miR-15b and miR-335) showed promising results in differentiating between controls and
CRC (AUC 0.95) or AA (AUC 0.91) and with similar performances for proximal (AUC 0.97)
and distal (AUC 0.95) CRC [75,96]. These results highlight the importance of combinatorial
approaches involving specific panels of miRNAs. Other panels of miRNA have recently
been reported [97–99]. A panel of seven miRNAs (miR-103a-3p, miR-127-3p, miR-151a-5p,
miR-17-5p, miR-181a-5p, miR-18a-5p and miR-18b-5p) was identified and evaluated in
a four-stage experiment (screening, training, testing and external validation) involving a
total of 139 CRC patients and 132 controls. The performances of the panel obtained an
AUC of 0.895 with a sensitivity and specificity of 76.9 and 86.7%, respectively, without
significant associations between serum levels of the analyzed miRNAs and age, gender or
location [99].

However, the use of mRNA and miRNA is still limited due to the lack of extensive
clinical validations.

5.2.3. DNA

In addition to RNA, DNA has also been widely studied in liquid biopsies searching
for CRC biomarkers. Cell-free DNA (cfDNA) and the tumor-derived fraction termed
as circulating tumor DNA (ctDNA) are of great interest. cfDNA mutations in genes
frequently associated with tumorigenesis have been assessed for the early detection of the
most common tumor types, including CRC [72,100,101]. KRAS mutations were detected
in plasma from CRC patients, however it was also reported that 0.45–20% of healthy
individuals may carry genomic alterations in cfDNA, with particular regard to TP53
and KRAS variants [72]. The low abundance of tumor-derived DNA is one of the main
challenges for early detection, as well as cancer-associated mutations accumulated with age.
Aberrant DNA methylation is a feature of most solid cancers and is a promising biomarker
for early diagnosis [75,100,102]. Septin 9 (SEPT9), a GTP-binding protein belonging to
the Septin family, is one of the most widely studied DNA markers in blood in relation to
CRC. In fact, CRCs show an atypical methylation status of SEPT9 gene. The EpiProcolon
assay, which detects circulating methylated SEPT9 (mSEPT9), was recently approved
by the FDA [102,103]. The values of sensitivity obtained from independent studies for
mSEPT9 ranged from 48.2 to 95.6%, with specificity ranging from 79.1 to 99.1%. In the most
recent studies, the sensitivity of the EpiproColon test 2.0 ranged from 61.2 to 82.2% and
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the specificity from 83.6 to 95.1%, showing a better performance than carcinoembryonic
antigen (CEA) and/or FIT tests in the screening of asymptomatic populations [75,102–104].
However, mSEPT9 is not able to distinguish between CRC and polyps or adenomas and
seems not affected by tumor localization, but may be affected by age or sex, suggesting that
age- and sex-specific cut-offs are required to better optimize the screening and diagnostic
procedures [75,102,104]. The combination of mSEPT9 with the FIT test seems to improve
the sensitivity for CRC and AA detection obtaining 94 and 43%, respectively, but at the
cost of losing the specificity [76].

Other ctDNA markers, such as BCAT1 and IKZF1, have been studied. BCAT1 and
IKZF1 methylation obtained a sensitivity of 66% and a specificity of 94% for CRC detec-
tion in a prospective study analyzing more than 2000 individuals, including 129 people
with CRC [75,105]. A different approach was recently applied by Cohen et al. [106] who
described a multi-analyte test (CancerSEEK) to identify eight common cancers, including
CRC, by determining the levels of circulating proteins and mutations in ctDNA. The me-
dian sensitivity of CancerSEEK was 73 and 78% for stage II and III cancers, respectively,
and 43% for stage I cancers. In particular, 14 out of the 16 genes tested (AKT1, APC, BRAF,
CDKN2A, CTNNB1, FBXW7, FGFR2, GNAS, KRAS, NRAS, PIK3CA, PPP2R1A, PTEN,
TP53) were detected in plasma samples of CRC patients. CRC was also the type of cancer
detected with the highest prediction accuracy.

Another approach [107] analyzed cfDNA and ctDNA by applying targeted error
correction sequencing (TEC-Seq) for the sensitive and specific detection of low-abundance
sequence alterations using NGS in commonly altered cancer genes. In plasma samples from
44 healthy individuals and 194 patients affected by CRC (n = 42), lung (n = 65), ovarian
(n = 42) or breast (n = 45) cancers, the authors analyzed a panel of 55 cancer driver genes.
cfDNA was significantly higher in cancer patients than in healthy individuals and, within
CRC patients, stage IV showed significantly higher cfDNA than stages I to III. In addition,
83% of CRC patients had detectable alterations in driver genes (ctDNA). These detection
rates were higher in patients with stages II, III and IV, (89, 90 and 94%, respectively) and
were also detected in half of the patients with stage I cancer, suggesting that larger panels
of ctDNA may improve the ability to detect small tumors and pre-neoplastic lesions.

cfDNA in the blood samples of CRC patients has also been studied using NGS,
machine-learning approaches, genome sequencing and digital sequencing
technologies [108–111]. The various models applied by Wan et al. [108] obtained a variable
sensitivity (71–85%) with 85% specificity, showing promising preliminary results.

5.2.4. Proteins

Carcinoembryonic antigen (CEA) and carbohydrate antigen (CA19-9) are two of the
most studied gastrointestinal tumor-associated proteins in blood (or plasma/
serum) [90,112–114]. Serum CEA and/or CA19-9 levels are significantly higher in CRC
patients compared to healthy subjects and are well-known cancer markers. However,
CEA and CA19-9 concentrations may also be high in other conditions or tumors and their
usefulness as CRC screening biomarkers is still an open issue. However, today CEA and
CA19-9 are used and approved in clinical practice to detect metastatic disease, recurrence,
or to monitor response to treatments [114–120].

Proteomic approaches have recently been applied to blood samples (or plasma/serum)
of CRC patients to search for new biomarkers in screening or diagnosis [121–124]. Chen and
colleagues performed protein profiling quantifying tumor-associated protein biomarkers
in CRC and healthy control plasma samples. Seventeen proteins showed significantly dif-
ferent concentrations between CRC and controls, nine were overexpressed (CEA, GDF-15,
AREG, IL-6, CXCL10, CXCL9, PSA, TNFα, cathepsin-D), and eight were downregulated
(HGF receptor, CXCL5, ERBB4, FLT3L, CD69, EMMPRIN, VEGFR-2, Caspase-3). Carci-
noembryonic antigen (CEA), growth differentiation factor 15 (GDF-15), and amphiregulin
(AREG) were the most significant. In addition, applying a logistic regression model, the
authors constructed a multi-marker prediction algorithm including eight markers (IFNg,
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EMMPRIN, ERBB4, PSA, CD69, AREG, HGF receptor and CEA) reporting moderate sensi-
tivities (44–65%) at high specificities (80–90%) [117].

Finally, an additional panel of eight plasma proteins including AFP, CA19-9, CEA,
hs-CRP, CyFra21-1, Ferritin, Galectin-3 and TIMP-1 was tested in 4698 subjects including
CRC, AA, non-advanced adenomas and extracolonic cancers [115,125]. All the individual
biomarkers significantly identified AN (CRC + AA) and the multivariable model including
all the biomarkers and age and gender obtained an AUC of 0.76, with 80% sensitivity
and 50% specificity. However, the various models tested, including a combination of
the eight proteins, showed moderate performances (90% specificity, 19% sensitivity) in
discriminating AA from other conditions (non-advanced adenomas, non-colonic tumors,
healthy).

5.2.5. Extracellular Vesicles

Extracellular vesicles (EVs), such as exosomes (EXOs), microvesicles (MVs) and large
oncosomes, may contain promising biomarkers. Three main categories divide EVs on the
basis of biogenesis and approximate size: EXOs (~40–100 nm) derive from multivesicular
bodies within the cells; MVs (~100 nm–1 µm) are formed from the outward budding of the
plasma membrane; apoptotic bodies (APs) (~1–5 µm) arise from dying cells undergoing
apoptosis [72]. In addition to these classes, some cancer-specific subtypes of EVs have
been identified: oncosomes (~100–400 nm) produced by non-transformed cells, whose
contents can determine oncogenic effects, and large oncosomes (~1–10 µm) derived from
malignant cells [126]. EVs contain proteins, RNA, DNA and lipids, which reflect in part
the composition of the cell of origin. By protecting nucleic acids from degradation, EVs
could also be considered a better source for tumor molecular profiling compared with
cell-free nucleic acids [126,127]. EVs and EXOs are also secreted by cancer cells and in a
greater amount than normal cells, therefore, increasing the transfer of RNAs, growth factors
and chemokines participating in cancer progression [128–130]. Examples of molecules
identified in EVs at increased levels include surface proteins detected by flow cytometry,
such as the epithelial cell adhesion molecule (EpCAM), CD9, CD81, CD63 and CD147 in
the bloodstream of CRC patients [126,131–133].

One of the drawbacks of studying EVs and exosomes is the lack of a standardized
protocol to isolate them from blood and to extract their content or surface material [133–137].
Despite the differences in EV isolation and although most of the studies are case–controls,
miRNA is one of the classes most studied as a biomarker in EVs.

Ogata-Kawata et al. [138] evaluated 88 CRC patients and 11 controls to assess the
ability of serum EV-miRNAs. In particular, miR-21, miR-23a, and miR-1246 differentiated
CRC patients (all stages) from controls [138]. By comparing serum EV-miRNA from CRC
patients to healthy controls, Yan et al., found that miR-486 was significantly upregulated,
while miR-548c was significantly downregulated [139]. Liu et al. also reported an increase
in miR-486 levels in the serum EVs of CRC patients compared to healthy subjects [140].
Peng et al. further confirmed the downregulation of serum EV miR-548c in CRC patients,
also finding an association with shorter survival and liver metastases [141].

Other authors have evaluated panels of EV-miRNA. Min et al. [142] analyzed EV-
miRNA from blood samples of early-stage CRC patients and non-cancerous controls. The
authors found 38 miRNAs upregulated and 57 downregulated in CRC patients compared
to healthy controls, some of which, such as Let-7b-3p, miR-150-3p, miR-145-3p, miR-139-3p,
had already been reported in the plasma of CRC patients. ROC curve analysis of the
single miRNAs reached AUCs of 0.792, 0.686, 0.692, and 0.679, respectively. On the other
hand, a logistic model including let-7b-3p, miR-139-3p, and miR-145-3p, confirmed the
increased potential of panels of EV-miRNAs compared to individuals ones with an AUC of
0.927 [142].

Cha et al. [143] evaluated eight mRNA markers (MYC, VEGF, CDX2, CD133, CEA,
CK19, EpCAM, and CD24) extracted from plasma EVs. Of the eight mRNAs, the combi-
nation of VEGF and CD133 showed statistically significant differences between healthy
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and CRC, and obtained an AUC of 0.96 with 100% sensitivity and 80% specificity in
discriminating between the two groups.

EVs also contain other types of RNA, such as long non-coding RNA (lncRNA) or
mRNA which are dysregulated in CRC. The presence and performance of lnc-RNA and
mRNA has been assessed in APs, MVs and EXOs [144]. In a first screening, in sera of CRC
patients and healthy subjects, 21 lncRNAs and 16 mRNAs showed significant differences
between EXOs of healthy and CRC samples. In the subsequent validation phase, tested in
30 CRC, 20 adenoma and 30 healthy subjects, the combination of lncRNA breast cancer anti-
estrogen resistance 4 (BCAR4) with two mRNAs (keratin-associated protein 5–4, KRTAP5-4,
and melanoma antigen family A3, MAGEA3) provided the greatest predictive ability, with
an AUC of 0.877.

6. Conclusions

There is a long history of CRC screening tests and several studies have attempted to
discover cancer biomarkers in stool or blood samples. However, most of the identified
biomarkers, (mRNAs, miRNAs, ctDNA, EVs) have only been evaluated in preliminary
case–control studies.

In order to improve the screening and the diagnosis of CRC, large-scale randomized
studies are needed to confirm the clinical benefits and the usefulness of these tests. In
particular, RNA-seq and NGS, could be used to describe and characterize the evolution
and development of CRC, in order to discover new and earlier biomarkers, thus improving
outcomes. On the other hand, qRT-PCR may be simpler and cheaper when applied to panels
of biomarkers aimed at higher levels of performance in terms of sensitivity, specificity,
accuracy and speed of execution.

In addition to the differences in sensitivity and specificity between tests, and some-
times the lack of extensive investigating trials, the main drawback remains the low par-
ticipation rate. However, the use of blood samples may change this trend. Liquid biopsy
could be also used to assess the prognosis, response to therapies and during follow-up.

Finally, the development of algorithms, including those derived with artificial intel-
ligence, which associate outcome-influencing parameters such as gender and age with
candidate markers, will be a further tool to improve the current efficacy of CRC screening.
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Simple Summary: Many different therapies are applied to fight tumor disease. Blood-based
biosources, like circulating tumor cells (CTCs), offer the opportunity to monitor the healing progression
and the real-time response to the therapy. In this review, we analyze the outcomes of the clinical trials
and scientific studies of prostate and breast cancer performed in the decade between April 2010 and
April 2020. Additionally, we describe the abstracts from the 4th Advances in Circulating Tumor Cells
(ACTC) meeting in 2019. We discuss the potential therapeutic opportunities related to the CTCs and
the challenges ahead in the routine treatment of cancer.

Abstract: Prostate cancer and breast cancer are the most common cancers worldwide. Anti-tumor
therapies are long and exhaustive for the patients. The real-time monitoring of the healing progression
could be a useful tool to evaluate therapeutic response. Blood-based biosources like circulating
tumor cells (CTCs) may offer this opportunity. Application of CTCs for the clinical diagnostics
could improve the sequenced screening, provide additional valuable information of tumor dynamics,
and help personalized management for the patients. In the past decade, CTCs as liquid biopsy
(LB) has received tremendous attention. Many different isolation and characterization platforms
are developed but the clinical validation is still missing. In this review, we focus on the clinical
trials of circulating tumor cells that have the potential to monitor and stratify patients and lead to
implementation into clinical practice.

Keywords: prostate cancer; breast cancer; circulating tumor cells; treatment decisions

1. Introduction

Cancer is caused by multiple molecular alterations in normal host cells that act together to
drive uncontrolled cell self-renewal, growth and invasion, and lead to malignant transformation and
progression. The majority of cancer-associated deaths (approximately 90%) are induced by metastatic
disease rather than the primary cancer [1]. The early detection of cancer and subsequent noninvasive
tumor profiling and monitoring should be enabled in every cancer patient. Thus, there is an unmet
clinical need for biomarkers to fulfill the claim in precision oncology.

Blood-based biosources such as circulating tumor cells (CTCs), cell-free DNA (cfDNA),
tumor-educated platelets and cell-free nucleic acids (circulating tumor DNA, long non-coding RNA,
messenger RNA and microRNA) offer this opportunity. These biomarkers, summarized as liquid
biopsy (LB), could provide information on urgent cancer characteristics [2]. CTCs detach from
primary or metastatic tumors to enter the bloodstream, from which a small CTC population has the
ability to metastasize to multiple organs [3]. In addition, CTCs are genetically unstable, evading
immune defenses and modification metabolism [3,4]. These characteristics reflect the dynamic and
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heterogeneous phenotype of CTCs. Furthermore, at present, we know that cancer cells survive after
infiltrating distant organs and can be present for years in the bone marrow as disseminated tumor cells
(DTCs), which are correlated with an increased risk of eventual clinical recurrence [5].

The concentration of CTCs in the blood is very low, and a single CTC is in the background of
millions of blood cells. Nonetheless, CTCs could serve as a comprehensive window into metastatic
disease for the real-time monitoring of therapy responses.

LB in the form of CTCs received tremendous attention following approval of the automated
CellSearch® system (Menarini Silicon Biosystems Inc, Huntington Valley, USA) by the Food and Drug
Administration (FDA). Thus, the importance of CTC enumeration as a surrogate marker for survival
benefits in breast and prostate cancer patients was commenced [6,7].

The clinical utility and reliable information of CTCs as useful biomarkers must still be demonstrated
in the standard care of cancer therapy. In the latest guidelines (version 3) the Prostate Cancer Clinical
Trials Working Group (PCWG) determined that for the outcome assessment of patients enrolled
in clinical trials, the incorporation of CTC enumeration (using CellSearch platform) must be the
endpoint [8]. This decision illustrates and emphasizes the importance of the serial biological profiling
of cancer. Moreover, it promotes CTCs in the field of personalized cancer treatment, supplying unique
information on individual cancer-associated variations in tumor burden.

In this review, we analyze current clinical studies and focus on the clinical application of CTCs in
prostate and breast cancer patients. We outline important results of clinical trials that may be translated
into clinical practice.

2. Evidence Acquisition

A literature review was performed via PubMed/Medline and the Cochrane Library
(January 2010–April 2020). In addition, abstracts from the 4th Advances in Circulating Tumor
Cells (ACTC) meeting in 2019 were searched for relevant abstracts. The search terms included CTCs,
CTC, circulating tumor cell, circulating tumor cells, prostate cancer, breast cancer and clinical trial. All
clinical trials reporting fewer than 20 patients were excluded (Figure 1).

Figure 1. PRISMA flow diagram. BC = breast cancer; PCa = prostate Cancer; n = number; * other
abstracts than ACTC (4th Advances in Circulating Tumor Cells) meeting 2019.
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3. Isolation Methods

The efficient capture of CTCs remains a technical challenge. Over the last decade, several platforms
have been developed to detect these rare cells. CTC enrichment can be achieved based on physical and
biological properties [9,10].

Currently, the most commonly used standardized method for detection and enrichment is the
CellSearch® system, based on affinity to epithelial cell adhesion molecule (EpCAM). The CellSearch®

system detects and enumerates cells expressing the epithelial marker EpCAM and cytokeratins
(CK) 8/18+ and/or 19+, and the additional treatment of the blood samples with a CD45 antibody
allows the elimination of leukocytes. A semiautomated fluorescence microscope captures images that
are manually reviewed for the following CTC criteria: round to oval morphology, visible nucleus
(DAPI positive), size > 4 µm, positive staining for cytokeratin, and negative staining for CD45 [11].
Recently, cells have been labeled with other markers, such as human epidermal growth factor receptor
2 (HER2), insulin-like growth factor 1 receptor (IGF-1R), epidermal growth factor receptor (EGFR),
androgen receptor (AR), Ki-67 (a marker of proliferation) or vascular endothelial growth factor receptor
2 (VEGFR-2) [12].

Not all CTCs express EpCAM. It has been demonstrated that CTCs can undergo epithelial-
mesenchymal transition (EMT) and can lose EpCAM expression. Therefore, analysis with the
CellSearch® system must be excluded, and other techniques based on physical properties must be
employed. Mononuclear cells can be isolated by density gradient centrifugation using Ficoll or a more
effective porous barrier. Cancer cells differ from normal cells in their electromagnetic charge. This feature
is used during separation with dielectrophoretic field-flow fractionation (depFFF). Finally, most CTCs
are larger than leukocytes and erythrocytes, and, as previously described, prepared buffy coat can be
passed through porous membranes by selecting larger cells [13]. The Epic Sciences CTC platform uses
only red blood cell lysates, and approximately 3 × 106 nucleated cells are dispensed onto 10–12 glass
micro slides and frozen at −80 ◦C until examination, allowing the unbiased detection and molecular
characterization of CTCs [14]. The CTC-iChip also offers the opportunity for antigen-independent
CTC isolation with negative depletion of normal blood cells. CTCs can be individually selected and
analyzed as single cells suited for a detailed transcriptome analysis [15].

Numerous CTC isolation platforms were presented at the 4th ACTC meeting in 2019. It is not
surprising that the CellSearch® system was the most common platform used in the investigations.
Interestingly, applications of the CellSearch® system together with antibody-independent CTC
isolation platforms in one blood sample were also common. An outstanding technology of a
new in vivo approach, an indwelling intravascular aphaeretic CTC isolation system based on an
EpCAM functionalized chip, was presented. Currently, the system has only been proven in a
canine model [16]. Furthermore, many investigators utilized the physical properties of CTCs
by label-independent isolation CTC methods (Isoflux—Fluxion Biosciences, Inc., Alameda, USA;
Screencells—Sarcelles, France; Parsortix—ANGLE, Guildford, UK; ISET—Rarecells Diagnostics, Paris,
France, and RosetteSep—STEMCELL Technologies, Vancouver, BC, Canada). The Vortex Biosciences
VTX-1 instrument (Vortex Biosciences, Pleasanton, CA, USA) is a label-free CTC isolation system that
enables the detection of gene expression in both CTCs and exosomal cfRNA from the same blood sample.
An important issue is single-CTC isolation and analysis. For this purpose, different CTC isolation
methods were combined. Workflows for single-cell selection using the QIAscout single-cell isolation
platform were described. Pereira-Veiga et al. [17] used VyCAP (VyCAP BV, Enschede, Netherlands),
DEPArry (Menarini Silicon Biosystems S.p.A, Bologna Italy) and manual micromanipulation for
single-cell isolation. The authors concluded that the VyCAP Puncher system yielded a higher recovery
rate and that the analysis at the single cell level provided better insights into CTCs’ heterogeneity [17].

4. Evidence Synthesis Prostate Cancer

It was estimated that over 1.3 million new cases of prostate cancer and 359,000 associated deaths
worldwide occurred in 2018, accounting for the second most frequent cancer and the fifth leading
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cause of cancer-related death in men [18]. The disease phenotypes varied from indolent to aggressive.
One challenge for clinicians is to determine the optimal sequencing therapies for patients who present
intermediate, high-risk localized, locally advanced or metastatic prostate cancer (mPCa) to minimize
overtreatment and improve outcomes. The treatment of mPCa is becoming increasingly complex [19].

In total, we screened 94 titles, and reviewed 46 full-text papers (Figure 1). From these
57 publications, 11 describe less than 20 and 46 describe 20 or more prostate cancer patients. Over
40 clinical trials evaluated the value of CTCs in metastatic castration-resistant prostate cancer (mCRPC)
patients. There are only a few studies analyzing the value of CTC in new metastatic hormone-sensitive
PCa (n = 1), neuroendocrine PCa (n = 1) and localized PCa (n = 3). In 10 phase III, 17 phase II and
10 phase I/II trials integrated measuring outcomes related to CTC enumeration or characterization.

The studies like SWOG S0421, MAINSAIL, COU-AA-301, analyzed the first-line docetaxel-base
treatment with or without additional agents. The efficacy of therapy among the patients was determined
enumeration of baseline CTC count and CTC count after defined cycle of chemotherapy or after
treatment. The combination of CTC count with other serum markers were analyzed in the trials
COU-AA-301, ELM-PC4 and IMMC38 as prognosis or surrogate biomarker for survival in mCRPC
patients. Nine clinical trials evaluated androgen receptor (AR) splice variants (AR-Vs) in CTCs as
marker responsible for castration-resistant prostate cancer progression. The baseline CTC-derived
AR-V7 status as a biomarker of the response or resistance to therapies was analyzed in PROPHECY,
TAXNEGY trial and three further monocentric trials.

In 18 studies, CTCs additional markers were analyzed: (1) standard genes (EpCAM, CK 8, 18, 19,
and CD45-), (2) prostate-specific membrane antigen (PSMA)—protein, (3) osteoblast regulators—mRNA,
(4) telomerase activity—mRNA, (5) TMPRESS2—mRNA, (6) AR-V7—mRNA/DNA. (Table S1).

4.1. CTC Enumeration—Prostate Cancer

Most clinical trials describing evaluations of the CTC count were published in the early 2000s.
Multiple groups confirmed the prognostic value of the CTC count [20–24]. The SWOG S0421
trial validated the CTC count as a prognostic factor in mCRPC patients who received first-line
docetaxel-based therapy. The CTC counts of 263 blood samples at baseline (day 0) and of 231 blood
samples at day 21 were evaluated. It has been repeatedly acknowledged that a CTC count ≥5 per 7.5 mL
at baseline determined with the CellSearch® system was associated with a high tumor burden and
poor disease outcomes. Additionally, a higher CTC count is correlated with worse bone pain, higher
prostate-specific antigen (PSA) levels, more liver disease, lower hemoglobin levels and higher alkaline
phosphatase levels [21].

A subgroup analysis from the MAINSAIL trial demonstrated that in mCRPC patients (n = 208),
an increased CTC count from <5 cells/7.5 mL to ≥5 cells/7.5 mL after three cycles of docetaxel
chemotherapy predicted significantly shorter overall survival (OS) (HR: 5.24, p = 0.025). A reduction
in the CTC count from ≥5 cells/7.5 mL to <5 cells/7.5 mL was associated with the best prognosis
(p = 0.003). Interestingly, there was no correlation of the baseline CTC count with the PSA level [25].

Heller et al. [26] determined the CTC count in combination with common prognostic laboratory
measures (lactate dehydrogenase, LDH; PSA; hemoglobin, and alkaline phosphatase, ALK = ALPHA)
in patients with CRPC. Their objective was to quantify a risk model to predict short-term versus
long-term survival. For this purpose, data from patients enrolled in the phase III registration trial of
abiraterone acetate (AA) plus prednisone (COU-AA-301; NCT00638690) and the registration trial of a
similar design evaluating orteronel plus prednisone (ELM-PC4; NCT01193244) were used. The results
suggested that the incorporation of CTC measurement into ALPHA as a prediction error of survival
was 3.75 months (SE, 0.22) versus 3.95 months (SE, 0.28) for ALPHA alone [26]. In the COU-AA301
study (AA plus prednisone versus prednisone alone), the Prentice criteria [27] were also applied to test
CTC counts and LDH as surrogates for OS at the individual mCRPC patient level. The combination of
CTC count and LDH level satisfied the Prentice criteria and highlighted its clinical utility [28].
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Furthermore, a baseline CTC count <5 cells was analyzed in mCRPC patients who were enrolled
in the COU-AA301 and IMMC38 trials. Among 259 (50.7%) patients in the COU-AA301 trial and
212 (50.4%) in the IMMC38 trial, zero CTCs were detected at baseline. Patients were treated with an
AR-targeting drug (COU-AA301) and chemotherapy (IMMC38) [29]. CTC progression was defined as
any increase in the CTC count and conversion of a CTC count from <5 to ≥5 CTCs during the first
12 weeks of treatment. These data revealed that CTC progression is positively associated with poor OS.
Interestingly, patients with CTC progression also had a significantly lower PSA response rate than
those without progression [29].

The SWOG 0925 trial, demonstrated in metastatic hormone-sensitive prostate cancer patients
treated with androgen deprivation therapy (ADT) ± cixutumumab (n = 105), that a low CTC count
(0 versus 1 to 4 versus ≥5/7.5 mL blood) correlated with the PSA level [30].

A pooled analysis of five randomized trials (n = 4196 patients) investigated the CTC count as a
predictor of prolonged survival in mCRPC patients. The CTC counts were determined by using the
CellSearch® system. The response measure endpoints were CTC0, CTC conversion and PSA levels at
baseline and week 13. Patients who had a CTC count ≥1 at baseline and zero CTCs at week 13 were
defined as CTC0. CTC conversion was defined as patients with a CTC count ≥5 at baseline and ≤4
at week 13. The results revealed that the use of the CTC0 count improved the ability to assess the
treatment response [31].

Moreover, these results revealed that CTC conversion data from trials on treatment efficacy are
highly reliable and can be obtained in a short time [26,31].

There are a marginal number of studies which investigate the role of CTC in localized prostate
cancer patient in our search results. Murray et al. [32,33] examine the role of prostate cancer-specific CTC
in patients after radical prostatectomy (RP) [32] and in patients with biochemical failure after RP [33].
The CTC were enriched by using density gradient isolation and detected by PSA immunocytochemistry.
The author mentioned these CTCs as circulating prostate cells (CPCs) and postulated an identical
phenotype to DTCs. They summarized that more CTC were detected in patients with positive margins,
extracapsular extension, and vascular and lymphatic infiltration, which associated with biochemical
failure [32]. The second publication of Murray and colleagues demonstrated a significant correlation
between CPC detection and clinical variables such as progression-free survival (PFS) after a long
follow-up period of 15 years. Additionally, CPC must express PSA and α-Methylacyl CoA racemase
(P504S) and CD82 (tumor suppressor gene). Patients with CD82-positive CPC have a better biochemical
failure-free survival at five years similar to CPC negative patients [33]. It is important to note from
these results that blood samples (EDTA) were stored at 4 ◦C and analyzed within 48 h, which could be
relevant for half-life of CPC, and also, no CPC number was provided.

4.2. Functional Characterization of CTCs—Prostate Cancer

The enumeration of CTCs has prognostic value in metastatic hormone-sensitive and metastatic
castration-resistant prostate cancers. Nevertheless, CTCs still must demonstrate incremental value in
predictive accuracy relative to known biomarkers. Therefore, the enumeration of CTCs has not yet
become a standard in the clinic. Molecular phenotyping could aid in the investigation of prostate
cancer-specific markers and be routinely incorporated into the care of patients with prostate cancer.
CTC profiling can demonstrate the DNA, RNA or protein characteristics of pooled or single cells and
reflect the real-time phenotype of the primary tumor or metastasis [34].

A potential predictive marker of sensitivity to the androgen biosynthesis inhibitor AA,
the androgen-driven transmembrane protease serine 2 (TMPRSS2)–v-ets erythroblastosis virus E26
oncogene homolog (ERG), is the focus of several studies [35,36].

A proof of principle study described an analytically validated polymerase chain reaction
(PCR)-based assay to detect TMPRSS2-ERG fusions in CTCs. However, the TMPRSS2-ERG fusion status
in CTCs has a limited role as a predictive biomarker of sensitivity to AA in post chemotherapy-treated
CRPC patients [37].
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Additional effort has been directed at the molecular characterization of telomerase activity in
CTCs. In men with mCRPC treated with first-line docetaxel ± atrasentan (SWOG 0421 trial), telomerase
activity (TA) was investigated in live-captured CTCs in parallel to baseline CTC counts. The CTC
TA measurement was performed with a slot microfilter. The authors analyzed TA in CTC lysates
by qPCR-telomeric repeat amplification (TRAP) and concluded that CTC TA was an independent
predictive marker for OS in men with a CTC count ≥5. Limitations of the TA assay were its low
sensitivity; only 47% of patients with ≥5 CTCs captured by the CellSearch® system showed prognostic
TA [38].

The prostate-specific membrane antigen (PSMA) is overexpressed in prostate cancer including
advanced stage [39]. Interestingly, the PSMA overexpression is correlated with higher tumor grade,
androgen deprivation and increased in mCRPC patient [40]. A phase II clinical trial suggested the
application of CTCs as a selection tool for the safety and efficacy of newly developed drugs. Patients
with progressing mCRPC (chemotherapy-naïve; n = 42) were treated with docetaxel-encapsulating
nanoparticles functionalized with PSMA molecules (BIND-014). The structure of this particle allows
binding of PSMA-expressing tumor tissue or cells. CTC enumerations were performed with the
CellSearch® system and revealed that 39 of the 42 chemotherapy-naïve mCRPC patients were positive
for CTCs. CTC conversion from an unfavorable count (≥5) to a favorable count (<5) was noted
in 13 of 26 patients after treatment. The Epic Sciences platform allows the detection of nucleated
cells after red blood lysis, and PSMA staining on CTCs and CTC clusters was subsequently used.
In 16 (89%) of 18 patients with PSMA-positive CTCs detected, the number of CTCs was reduced
after treatment. The PSMA expression levels can help select patients who are likely to benefit from
PSMA-directed treatment. The authors concluded that PSMA expression on CTCs could serve as
a patient selection biomarker for an early response in further clinical trials [41]. Another phase II
trial investigated a PSMA antibody-drug conjugate (PSMA ADC) coupled to monomethyl auristatin
E, which binds to PSMA-positive cells and induces cytotoxicity. The study demonstrated a decline
in the CTC count of ≥50% in 78% (60/77) of mCRPC patients and conversion (from ≥5 cells/7.5 mL
blood to less than 5 cells/7.5 mL blood) in 47% (36/77) of mCRPC patients. The highest CTC response
(≥50%) was documented in patients with combined high PSMA expression on CTCs and low levels of
neuroendocrine markers (94%) [42].

Armstrong and colleagues investigated treatment with radium-223 in men with bone metastases
and progressive mCRPC in a small phase II trial. Evidence of prostate cancer osteomimicry biomarkers
in CTCs was examined. These osteoblast regulators, such as bone alkaline phosphatase (B-ALP, gene
ALPL), osteopontin, osteocalcin, osteoblast cadherin, runt-related transcription factor 2, bone gamma
carboxyglutamate protein, tumor necrosis factor ligand superfamily 11, activator of NF-kappa-B ligand
and secreted protein acidic and cysteine rich, and osteonectin, were examined at the RNA level. The
authors concluded that genomic and phenotypic evidence supports osteomimicry in CTCs and tumor
biopsies of men with mCRPC [43]. In multiple phase I/II studies, the CTC genotype or phenotype was
used as a tool to determine possible direct drug targets or downstream drug targets [44–47].

AR splice variants (AR-Vs) represent a crucial mechanism responsible for castration-resistant
prostate cancer progression. All variants have common structural features resulting from deletion of the
ligand-binding domain (LBD) as a consequence of alternative splicing. Interestingly, the absence of the
LBD can confer constitutive, androgen-independent activity [48]. AR-V7 is the most discussed splice
variant in humans. A current study focusing on the mRNA analysis of CTCs revealed information
on the clinical efficacy of anti-androgen treatment—CTCs which harbor the androgen receptor splice
variant (AR-V7) and, despite the absence of the LBD, confer constitutive androgen-independent
activity [48]. In 2014, Antonarakis et al. [49] analyzed the baseline CTC-derived AR-V7 status as a
biomarker of the response or resistance to therapies in a small cohort of 62 men with enzalutamide- or
abiraterone acetate (AA)-pretreated mCRPC. The results demonstrated that the outcomes of treatment
with both drugs were significantly worse in patients who harbored the AR-V7 splice variant in CTCs
than in those who did not harbor AR-V7. This study led to increased interest in the prospective utility
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of CTCs for the serial monitoring of second-generation AR antagonists as a mechanism of treatment
resistance. Thus, CTCs might help to predict failure to treatment with enzalutamide and AA but not
docetaxel or cabazitaxel [49–51].

The PROPHECY trial (ClinicalTrials.gov identifier: NCT02269982) compared two CTC platforms:
the Johns Hopkins University modified-AdnaTest CTC AR-V7 mRNA assay and the Epic Sciences
CTC nuclear-specific AR-V7 protein assay. The AdnaTest uses antibodies against EpCAM and HER2
for CTC capture. The Epic Sciences CTC platform uses only red blood cell lysates, and approximately
3 × 106 nucleated cells are dispensed onto 10–16 glass micro slides. The prognostic significance of
baseline CTC AR-V7 evaluated based on radiographic or clinical progression-free survival (PFS) in
118 men with high-risk mCRPC was determined. Both assays demonstrated significantly different
PFS rates in AR-V7-positive men with mCRPC compared with AR-V7-negative men. Interestingly,
the percentage agreement between the AR-V7 CTC assays was 82% (86/105). The authors concluded
by two blood-based assays that the AR-V7 splice variant in CTCs may optimize treatment selection
beyond the clinical assessment of prognosis [52].

In the phase II TAXYNERGY trial (ClinicalTrials.gov identifier: NCT01718353), Antonarakis et al. [53]
analyzed an early taxane switch in men with chemotherapy-naïve, metastatic castration-resistant
prostate cancer. The assumption was that the clinical response was associated with taxane drug-target
engagement (DTE), which results in microtubule bundling (MTB) and nuclear AR localization (ARNL)
in CTCs [53]. CTCs were isolated from PSMA-based microfluidic devices [54]. This study demonstrated
that the combination of real-time CTC-based %ARNL and MTB mRNA detection at an early time point
could be used to indicate a benefit in men treated with taxanes [53].

Furthermore, the nuclear localization of the AR-V7 protein in CTCs from 161 men with mCRPC
was analyzed as a treatment-specific biomarker. The authors verified that nuclear localization of the
AR-V7 protein was associated with superior survival with taxane therapy over androgen receptor
signaling (ARS)-directed therapy (HR, 0.24; 95% CI, 0.10–0.57: p = 0.035) in a clinical setting [55].
The same group analyzed the phenotypic heterogeneity of CTCs (179 unique patients) to obtain
supporting information for the treatment choice of androgen receptor signaling inhibitors (ARSIs)
and taxanes in mCRPC patients. To quantify the heterogeneity of CTCs, the Shannon index was used.
The phenotypic features were subdivided into 15 subtypes: “A”–“O”. For example, the following
characteristics were associated with cell type A: low cytokeratin, no AR expression, and large cell size.
The following characteristics were associated with cell type F: frequently in the histological cluster of
2 CTCs, AR expression and high cytokeratin expression. CTCs were processed with the Epic system.
The authors concluded that low CTC phenotypic heterogeneity was associated with prolonged OS
in patients treated with an ARSI. A higher Shannon index was associated with better OS for patients
treated with taxanes [56]. The advantage of CTC analysis is to allow single-cell determination of nuclear
AR-V7 protein localization in different CTC subtypes. In this context, Miyamato et al. demonstrated the
RNA-based digital CTC quantification of prostate-derived transcripts as predictive of the AA response
in men with mCRPC. Single-cell RNA analysis of CTCs was performed on the androgen-responsive
transcripts PSA, KLK2, and TMRESS2, and on anterior gradient protein 2 homolog, PSMA, homeobox
B13 and the androgen-independent transcripts FAT1 and STEAP2. The authors concluded that the
digital scoring of CTC mRNA of prostate-derived transcripts can be used in high-throughput analyses
in clinical practice [57].

In a second study, in a population of 34 localized prostate cancer patients prior to radical
prostatectomy, Miyamoto et al. analyzed digital CTC quantification by whole transcriptome
amplification and multiplex droplet digital PCR of a panel of 8 genes (AGR2, FAT1, FOLH1, HOXB13,
KLK2, KLK3, STEAP2, TMPRESS2). Efficient risk stratification of localized PCa patients to guide
optimal treatment by digital CTC quantification was only recently achieved by using the differential
weighting of 6 genes from the panel, therefore, the authors could predict early presence or absence of
prostate cancer dissemination in localized disease [57].
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Among 108 posters, 16 reported the analysis of prostate cancer patients. Five abstracts from
the ACTC meeting in 2019 discussed the possible roles of AR and splice variants in mCRPC
patients. In this context, new quantification platforms for the proteins or mRNAs of CTCs were
presented. Hofmann et al. [17] analyzed an mRNA in situ padlock probe to detect AR and AR-V7 on
CellCollector. AR-V7 was detectable in 91% (10/11) of advanced prostate cancer patients. An analysis
by Markou et al. [17] demonstrated an RT-qPCR assay for determination of the proto-oncogene PIM-1
mRNA in the EpCAM-positive fraction of mCRPC patients (n = 50). They concluded that PIM-1
mRNA expression should be further assessed to profile CTCs. CTC clusters (two or more CTCs) were
evaluated in metastatic breast cancer (MBC) patients (n = 57) and mPCa patients (n = 57) in relation to
PFS and OS. CTCs were captured with the CellSearch® system. The authors confirmed the further
prognostic value of the CTC cluster compared with the CTC count alone [17].

5. Evidence Synthesis—Breast Cancer

Breast cancer is one of the most common cancers among women worldwide, with an incidence of
approximately 17,000,000 cases per year and the highest mortality among women [58,59]. In the early
status, breast cancer is relatively treatable, whereas metastasis oft finishes with death of the patient.
Even though decision on the proper therapy is not an easy step, one must consider the molecular
subtype of the tumor.

Over 70 clinical trials analyzing CTCs in breast cancer patients have been performed. From
these 71 publications, 10 describe less than 20 and 61 describe 20 and more patients bearing diverse
breast carcinomas of various stages: 17 with primary breast cancer (PBC) and 24 with MBC. Forty-one
studies were described as a part of clinical trials, or at least some of the patients were included in
clinical studies (trial phase I, 2; II, 18; III, 15). The most frequently used system for the CTC isolation
in breast cancer patients is the CellSearch® system (n = 47 trails). Patients bearing primary breast
cancer were analyzed in several studies like SUCCESS, NeoALLTO, and BEVERLY-2. The efficacy of
the given therapy among the patients was examined by enumeration of CTCs before and after applied
study-specific therapies (patients included in SUCCESS, BEVERLY-2) as well as by evaluating and
comparing the rate of pathological complete response (pCR) in HER2/ErbB2-overexpressing and/or
HER2/ErbB2-amplified PBC (patients included in NeoALLTO). In two studies, analysis of additional
staining of CTCs (Barriere et al.) or additional factors in blood (patients included in SUCCESS I) were
performed. Changes of CTC number and/or phenotype by metastatic breast cancer (MBC) patients
were analyzed in other trials. Six of them (OnSITE, CirCe01 and some multi- or mono-centric studies)
focused only on analysis of the enumeration, when the others (CAMELLIA, TBCRC, NEOZOTAC
side-study, LANDSCAPE, BCA2001, AVALUZ) investigated phenotypical changes among CTCs after
applied therapies.

In 27 studies, CTCs’ additional markers were analyzed: (1) tumor markers (MUC1 and HER2),
(2) subsidiary markers of stemness (CD44 and BMI1), (3) EMT markers (TWIST, AKT2, PI3KA, ALDH1,
and vimentin), (4) apoptotic genes expression, (5) study-related genes (AGTR1), and (6) 55-CTC-specific
genes (Table S2).

5.1. CTC Enumeration—Breast Cancer

The basic analysis of CTCs is their enumeration. Most investigators have noted the prognostic
significance of the CTC counts for OS [60,61] as well as chemotherapy [62–69]. In analysis performed by
Trapp et al. [70], describing the early-stage high risk PBC patients of the SUCCESS A trial, an association
between the presence of CTCs two years after chemotherapy with zoledronate and shortened OS and
disease-free survival (DFS) was observed. Symonds et al. [71] revealed that a decrease in CTC numbers
from baseline to the first assessment after employing nab-paclitaxel and bevacizumab therapy followed
by maintenance therapy with bevacizumab and erlotinib by metastatic TNBC patients correlated
with prolonged PFS and OS. Similar results were noticed in the OnSITE study analyzing the CTC
number before and after the second cycle of treatment of the HER2-negative advanced BC patients

212



Cancers 2020, 12, 3782

pre-treated with anthracyclines and taxanes, who received eribulin as third-line chemotherapy show
similar results [72]. Liang et al. [73] analyzed the number of CTCs as one of the efficacy parameters for
the comparison of three therapy strategies for tumor cryoablation with natural killer (NK) cells therapy
(I, cryoablation; II, cryoablation + NK cell therapy; III, NK cell therapy-Herceptin) and Herceptin
for patients with HER2-overexpressing recurrent BC. The reduced number of CTCs after combined
therapies correlated partially with prolonged PFS [73]. According to the prospective study with newly
diagnosed metastatic BC patients treated with the systemic therapy, the detection of ≥5 CTCs or CTC
clusters can predict a growing hazard ratio and worse PFS and OS during therapy [74]. Identification of
one or more CTCs before PBC resection correlates with poor relapse-free survival and OS [75]. Similarly,
Goodman et al. [76] observed longer OS, local recurrence-free survival (LRFS), and disease-free survival
(DFS) in CTC-positive patients enrolled in the phase III SUCCESS study and from the National
Cancer Database (NCDB), who underwent radiotherapy than in patients who did not. On the other
hand, after comparing two therapies (anthracycline-containing chemotherapy and anthracycline-free
chemotherapy), Schramm et al. [77] did not notice any differences in the number of CTCs between
the therapies in the HER2-negative patients with early BC included in SUCCESS C study. Similarly,
none or only the weak prognostic relevance of CTC count was demonstrated by Jueckstock et al. [78]
and Hepp et al. [79] The authors employed node-positive or high risk node-negative BC patients of
the SUCCESS A study before adjuvant taxane-based chemotherapy or patients of the SUCCESS study
receiving the therapy based on fluorouracil, epirubicin and cyclophosphamide (FEC) followed either
by docetaxel vs. by docetaxel supplemented with gemcitabine, respectively [78,79].

Among studies enrolling 50 (Lelievre et al. [80]) or 28 (Tokudome et al. [81]) patients, CTCs were
detected in only 8 or 9 at baseline and in only 1 or 5 at the final analysis, respectively. Similarly, during an
analysis of the influence of therapy on HER2-negative breast cancer patients, Gonzalez-Angulo et al. [82]
found CTCs only in 9 (28.1%) patients at baseline and in 3 (13.6%) at the end of the 18-week study,
whereas Agelaki et al. [83] found a decrease in the percentage of HER2-positive CTCs from 93.45%
(total number of patients = 21) to 66.6% after the first cycle. Paoletti et al. [84] described a study with
45 estrogen receptor-positive (ER)/HER2-negative metastatic or locoregionally recurrent disease BC
patients enrolled in the CTC analysis, but only 11 presented ≥5 CTCs. Similarly, Pierga et al. [85]
analyzed 41 HER2-positive MBC patients displaying brain metastasis, but the number of patients
with CTCs decreased from 20 (≥1 CTC) and 9 (≥5 CTC) at baseline to 11 and 3, respectively, at day 21.
However, elevated levels of CTCs were noted at baseline in both groups as strong prognostic
factors [84,85]. In contrast, an analysis of ER expression on CTCs in patients with positive primary
tumors (n = 16) showed intrapatient heterogeneity, though the small number of included patients
had the authors conclude the link to the mechanism of the escape from the endocrine therapy [86].
On the other hand, after an analysis of ER/HER2 expression on CTCs in small MBC and LABC/IBC
patient cohorts (n = 36), Somlo et al. [87] suggested that the pilot trial may help to validate CTC-based
targeted therapy.

5.2. Functional Characterization of CTCs—Breast Cancer

Molecular characterization of a tumor allows division into different subtypes: ER/PR-positive
and HER2-positive. Each subtype responds to different therapies [88–90]. The other subtype does
not express any of the receptors (triple-negative, TNBC) or respond to any of the hormonal target
therapies [91]. However, many reports indicate that independent of tumor size, histopathological
grade, ER/PR status or axillary lymph node involvement, the HER2 status of a patient can change [92].
First, a negative primary tumor may create positive metastases, which can influence the therapy
decision [93]. Therefore, the classification of a tumor using biopsy is crucial. However, due to the
location of the metastasis, biopsy is not always possible. LB is less invasive and can be used to monitor
disease development. Even if HER2 expression among the CTCs within each patient is heterogeneous,
revealing the strongly positive cells in blood samples allows us to suggest a positive HER2 tumor
status. This was demonstrated with the study investigating the efficacy of neoadjuvant treatment on
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inflammatory BC (HER2-negative—BEVERLY 01 or HER2-positive—BEVERLY 02) with non-metastatic
patients (M0) or prospective study with M1 BC [94]. The detection rate of CTCs and the determination
of their HER2 status could be a good clinical strategy during treatment [93,95,96].

CTC investigations can also support the prediction of survival in combination with other factors.
In their studies with inflammatory BC patients of the BEVERLY-2 survival data, Pierga et al. [97]
revealed that the analysis of CTCs and pathologic complete response (pCR) is a good combination
of parameters for creating a subgroup with a very good survival prognosis. Based on a comparison
of two patient groups with early-stage breast cancer, CTC-positive and CTC-negative, included in
phase I SUCCESS study (FEC therapy described previously), König et al. [98] demonstrated that the
cytokine profile could also serve as a marker for CTC involvement in disease progression. Among the
T-helper cell 2 cytokine (Th2) levels, interleukins 8 and 13 (IL-8, IL-13) were highly secreted by the
CTC-negative group of patients negative for progesterone receptor. This correlation was not observed
in CTC-positive patients. Similarly, there was an association between the IL-4 level and survival
(patients who died had a high IL-4 level) in hormone receptor-negative patients in the CTC-negative
but not CTC-positive group. Vilsmaier et al. [99] speculated that Th1 cytokines (Il-1α and Il-1β) are
also involved in the release of CTCs in breast cancer patients. Conversely, in a similar patient cohort,
(phase I SUCCESS), the expression of two vascular markers, soluble fms-like tyrosine kinase-1 (sFlt1)
and placental growth factor (PlGF), in correlation to the CTC status, found their increased expression
in CTC-negative patients was analyzed [99]. This suggests that the overexpression of both markers in
tumor cells inhibits invasion of the decanted tumor cells into blood vessels [100].

Several trials analyzed apoptosis in CTCs. Negative breast cancer responds to apoptosis, triggering
tigatuzumab treatment and Paoletti et al. [101] hypothesized the induction of apoptosis in CTCs among
metastatic TNBC patients treated with tigatuzumab in the included studies. However, no prognostic
effect was observed [101]. Other studies describing the influence of zoledronic acid (ZA, an inhibitor of
tumor growth and inductor of apoptosis) infusion on the CTC value in patients with locally advanced
BC (group 1) and those with bone metastasis only (group 2) revealed a decrease in the CTC number after
48 h; however, the difference was minimalized after 14 days. Additionally, an analysis of the apoptotic
marker M30 in CTCs after 14 days showed increased levels of apoptotic CTCs [102]. Similarly, in their
analysis with patients bearing progressive metastatic BC shared in the cohorts, depending on the
treatment (endocrine therapy, texane-based or non-texane based chemotherapy). Smerage et al. [103]
hypothesized that the presence of M30-positive CTCs was associated with a good prognosis, but the
results of their studies after any of the therapies produced the opposite outcomes. In patients with high
numbers of CTCs, high levels of M30-CTC correlated with a poor prognosis, while high CTC-Bcl-2
(B-cell lymphoma 2) levels were associated with a good prognosis [103].

Another mechanism that is strongly correlated with cell invasion is EMT. Analyses of this process
are crucial since it leads to downregulation of the expression of epithelial markers such as EpCAM.
Such a situation can result in false-negative findings considering EpCAM-based CTC isolation. Guan
et al. [104] examined CTCs of the HER2-negative metastatic BC women participating in CAMELLIA
trial. This phase III study analyzed the metronomic capecitabine chemotherapy vs. intermittent
capecitabine maintenance therapy following the capecitabine complemented with docetaxel first-line
chemotherapy. Examined CTCs were isolated with a method based on cell size, enumerated and
expression of epithelial markers (EpCAM, CK8/18/19), and mesenchymal markers was analyzed
(Twist and Vimentin). The investigation of Guan et al. [104] revealed that the group of patients who
secreted EMT-CTCs experienced shorter PFS than the group of non-EMT-CTC patients. Additionally,
HER2-negative patients demonstrated almost two times higher EMT-CTC counts than HER2-positive
patients [104]. Barriere et al. [105] analyzed CTCs in patients with early breast cancer. They detected
cells with dedifferentiated characteristics (mesenchymal phenotype, stem cell phenotype or both)
in 37.6% of the analyzed patients, and the predominant epithelial phenotype was present in 8.75%
of probes. They concluded that the molecular analysis of CTCs is more relevant than enumeration
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only [105]. An analysis of both epithelial and mesenchymal CTCs is also suggested as a good tool to
predict the responsiveness to eribulin [106].

Among 108 posters, 25 described the analysis of breast cancer patients. Many presentations
addressed the relation of CTCs with therapy. An analysis of blood samples from 36 BC patients
showed a positive association between the level of EMT-CTCs before treatment and the effect of
neoadjuvant therapy. Kallergi et al. [17] examined the expression of cytokeratin/C-X-C chemokine
receptor type 4/transcription factor jun-B (CK/CXCR4/JUNB) in DTCs isolated from the bone marrow
(BM) of 39 HR-positive, HER2-negative breast cancer patients and compared them to that in breast
cancer cell lines. They concluded that DTCs expressing these proteins appear to create a subgroup of BC
patients at high risk of relapse. After an analysis of epithelial-mesenchymal plasticity (EMP) of primary
tumors and their CTCs, Hassan et al. [17] concluded that CTCs may provide important information
regarding the progression of cancer. Strati et al. [17] performed an analysis on 100 patients with early
breast cancer and 19 healthy donors, and confirmed the importance of CTCs as prognostic factors
after detecting the overexpression of TWIST1 and stem cell transcripts. Considering the treatment
selection in metastatic TNBC, Zang et al. [17] examined the association between the levels of CTCs and
programmed cell death 1 ligand 1 (PD-L1) expression. They suggested this as a potential predictive
therapy marker in metastatic triple-negative breast cancer. In addition, the copy number alteration
(CNA) profiles of CTCs may be linked to OS. An analysis of the ERα gene (ESR1) (Tzanikou et al. [17])
and PIK3CA gene (Stergioupoulou et al. [17]) revealed that hot-spot mutations in single CTCs is
also possible.

6. Perspectives of Real-Time Monitoring

Anti-tumor therapies are long and exhaustive for patients. Real-time monitoring of the
healing process could be a useful tool to evaluate therapeutic responses. The application of LB
for clinical diagnostics could improve sequence screening, provide additional valuable information on
tumor dynamics (early response, mutation-based resistance to target therapy) and help personalize
management for patients (Table 1).

Table 1. Specification feature of CTCs (circulating tumor cells) for potential clinical application.

Cancer Type Characterization Clinical Utility of CTCs
Validated in Trials

Implementation in
Clinical Practice Reference

Prostate Cancer

AR/AR-Splice
Variants

Prognosis
Treatment Selection
Therapy Monitoring

Drug resistance

requires further evaluation [49–53,55]

PSMA Therapy monitoring basis for future evaluation [41,42]

Enumeration Prognosis potential clinical application [20–31]

Breast Cancer

HER2 Therapy monitoring
Prognosis

basis for future evaluation
basis for future evaluation

[87,94–96,105]
[105]

EMT Prognosis
Therapy monitoring

basis for future evaluation
requires future evaluation

[104]
[105]

Apoptosis Therapy monitoring basis for future evaluation [101–103]

Enumeration Prognosis
Therapy monitoring

potential clinical application
requires future evaluation
basis for future evaluation
requires future evaluation

[60,61]
[74,97,102]

[87,93,101–106]

AR: androgen receptor, PSAM: prostate-specific membrane antigen, HER2: human epidermal growth factor receptor
2, EMT: epithelial-mesenchymal transition, CTC: circulating tumor cells.

This less invasive method allows the analysis of CTCs, among other factors. Furthermore, CTCs
may offer the opportunity for the real-time monitoring of cancer progression. Additionally, CTCs
are sources of DNA, RNA and protein, which provide information on tumor heterogeneity. A good
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opportunity for this approach is CTC single-cell analysis [34]. At the 4th ACTC meeting, some new
approaches for single-CTC isolation were presented.

The first step of involvement of CTCs as prognostic and predictive biomarkers in the clinic was
the approval of the CellSearch® system for CTC enumeration. Within the scope of validation, it was
calculated that a cutoff of ≥5 CTCs/7.5 mL blood of breast or prostate cancer patients is associated
with an unfavorable prognosis [6,7]. The CellSearch® system was the best validated CTC platform,
as demonstrated by the large number of publications and the large number of analyzed patient
samples. In our review, 8659 prostate cancer and 12,994 breast cancer patients were examined with the
CellSearch® system. In summary, most studies used the only FDA-approved technique to detect CTCs;
however, this system also has limitations (EpCAM-based detection, sample size).

For a long time, the main applications of CTCs in clinical trials were based only on enumeration.
Many investigators suggest that enumeration could be an independent prognostic factor of DFS or
OS, or at least in combination with other agents [21,26,28,62,69,72,77]. The statement of the PCWG
published by Scher et al. [8] confirmed the importance of CTC enumeration.

However, in breast cancer patients, many reports indicate no relation between the CTC number
and therapy response [77–79]. In prostate cancer patients, the detection rate of CTCs is approximately
80%, but unfortunately, not all active progressive cancers have measurable CTCs in the blood [107].

The clinical trials demonstrated the possibility of real-time monitoring in metastatic cancer
patients. Future studies must develop a gold standard in combination of CTC isolation/characterization
technology for the ability to identify the best treatment. This is the main requirement for patients to
benefit from early therapeutic intervention.

7. Discussion

Cancer cells can enter and are motile in blood circulation long before the tumor diagnosed.
They offer a possibility for an early cancer diagnosis than standard diagnostics tools of imaging or
biomarkers. The CTC analysis can provide insight into personalized cancer characteristics.

CTCs are relatively rare cells with a heterogenetic phenotype and are difficult to capture. At present,
there are several platforms that can be used to capture or characterize CTCs. All of these platforms have
advantages and disadvantages. The user must be able to decide which is the best and most suitable
method for individual cancer patients. However, it is possible that in metastatic or late stage patients,
no CTCs are detected. One reason for such conditions, could be the necrotic changes, or reduced tumor
vascularization or extreme heterogenic CTC population. Another reason is the variation of the CTC
frequency in a single blood sample, which also includes the short half-life of CTC and possible circadian
rhythms of CTCs. Furthermore, it must be considered that phenotypic changes in CTC, in terms of
epithelial-to-mesenchymal transition (EMT), reflects features of and results in downregulation of cell
surface marker EpCAM.

The EMT process is also implicated in the generation of cancer stem cells (CSC), which are cells with
abilities to self-renewal [108]. Such changes increase aggressiveness of the tumor cells, provoke their
dissemination from the tumor and induce metastases. Detection of CSC as subpopulation CTCs and
EMT-CTCs by patients would be crucial information for the treatment and potential therapy resistance.

A more precise analysis of CTCs would be applying the markers like Vimentin (EMT) or CD44
(CSC) at any level (DNA, RNA, protein) in regard to their clinical utility. The broader knowledge on
intratumor heterogeneity and dynamic genetic and physiological changes in CTCs undergoing EMT or
stem cell CTCs enforces continuous widening of the spectrum of specific markers to be analyzed.

The tumor-released cells can circulate cell-clusters composed of different CTC subpopulation. Only
a few of the reviewed trials analyzed CTC-clusters additional to CTCs. The presence of CTC-clusters
supported the previous diagnosis obtained with CTCs [41,74].

In our opinion, the crucial point of the efficient CTC analysis, enabling to include them into
diagnostics, is their isolation. The combination of the EpCAM-based CellSearch® system with
antibody-independent CTC isolation platforms in one blood sample extends the best suitable CTC
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isolation method. This enables the isolation of all subpopulation of CTCs including CTC, EMT-CTC,
CSC and can provide a precise outcome. Approbation of such a system or platform as an additional or
supporting diagnostic tool would make the therapy more precise.

Such an analysis could be helpful to avoid the low response rate to therapy. A good example is
the detection of the HER2 status in circulating breast cancer cells, which could be opposite to that in
the primary tumor [93]. A combined analysis of additional factors, as described by Paoletti et al. [101]
(multiparameter CTC-Endocrine Therapy Index (CTC-ETI)), supplies more information and may
predict resistance to endocrine therapy. In preclinical studies, researchers analyzed the combined
results of the enumeration and expression of ER, HER2 and Ki-67 in MBC patients and demonstrated
strong analytical validity of the technique through intrapatient heterogeneity [84].

The molecular characterization of AR mRNA in CTCs and the detection of AR-V7 in CTCs can be
used as a tool to guide treatment decisions for men with advanced prostate cancer [51,52]. The benefits
for patients are that they are protected against the unnecessary side effects of ineffective treatments.

During their investigations, Smerage et al. [103] revealed that in patients with high numbers of
CTCs after treatment, the number of cells did not change; thus, the number of apoptotic cells increased.
High levels of M30-CTC (apoptotic cells) correlate with a poor prognosis, whereas high levels of
CTC-Bcl-2 (anti-apoptotic cells) are associated with a good prognosis [103]. This is a very important
observation, as the initiation of apoptosis in cells as a reaction to environmental stress leads to many
morphological and biochemical changes, and probably to the production and secretion of substances
that can be spread via the bloodstream to other organs, causing damage [109].

The signals from the tumor microenvironment (TME) and the microenvironment of CTC population
can modify the protein pattern of disseminated cells, preparing it to create metastasis. One of the
proteins induced by TME but also by chemotherapy is prostaglandin (PG)-endoperoxide synthase 2
(COX-2), which finally promotes the carcinogenesis and the rate of cancer recurrence, reducing the
survival rate. COX-2 is implicated in the suppression of the apoptosis causing the resistance of tumor
cells. The downstream signaling protein of the COX-2 is, among others, the Bcl-2, the anti-apoptotic
marker increased in CTCs analyzed by Smerage et al. [107] (reviewed in [110]). Since both the positive
and the negative signals may be initiated by the therapy, the monitoring of the treatment is crucial. LB,
as the CTCs, is an excellent tool to analyze the changes during the long healing process. Although
this hypothesis needs further investigation, if it is correct, it could bear significant consequences
(Table 1). The critical point of preanalytical variables on LB in prostate cancer was also discussed in the
plenary session of the ACTC 2019 meeting [17]; however, this issue is also applicable for other cancer
types, such as breast cancer. Howerd Scher pointed out, in this session, the importance of introducing
robust quality controls in all steps, such as pre-analytical procedures, and sample collection and
processing, as well as analytical steps like molecular assay specification and bioinformatics algorithm,
and data reporting. This standardization is absolutely necessary for its application into clinical routine.
Alix-Panabieres [111] summarized in her research, the need for more intervention studies on the
implementation of CTCs in the clinic. All abstracts at the 4th ACTC meeting described diverse proofs
of concept in CTC isolation and characterization, and confirmed the heterogeneity in this field.

Cabel et al. [112] summarized an analysis of the utility of CTCs in clinical trials. They noted
three main concepts of the studies: (1) CTCs serve as surrogate tumor material, (2) CTC enumeration
can be used to monitor therapy, and (3) specific biological features of CTCs and their relation to
metastatic spread. This conclusion is still relevant. The clinical validity of CTC enumeration by
the CellSearch® system is very high; however, its utility is still not standardized in the clinic and
requires further investigations. Moreover, the clinical relevance of CTC characterization indicates the
current therapeutic target HER2/ER in breast cancer patients and AR-V targets elucidates the resistance
mechanism for prostate cancer patients. Even if there is a great need to identify predictive markers for
therapy, it remains a great challenge to implement CTCs as a robust standard tool in the clinic.
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8. Conclusions and Future Perspectives

LB, in the form of CTCs, is an excellent tool to monitor the disease development and the progress
of the therapy. One must emphasize that different isolation methods may give disparate results;
therefore, in the clinic, it is crucial to use systems of comparable validation. There is still a great need to
develop and standardize the platform adequate to each tumor type. This crucial step can be achieved
by a combination of already existing methods based on EpCAM detection and physical properties of
the cells. A milestone would be an acceptance of LB in clinical diagnostic routine as a basic or at least
as a supporting factor detecting disease progress. Application of additional staining markers on CTCs,
specific for each type of the tumor, could help to monitor the changes of the tumor-derived cells during
early-stage therapy and help to make a decision on continuing or stopping the therapy. However,
as we know with the example of PSA, to become the useful tumor biomarker, the protein or factor
must reach the high trust of the clinicians based on long positive experience. It was demonstrated in
mCRPC that the CTC count is independent of the PSA level. In conclusion, the CTC count, in contrast
to the PSA level, is not directly affected by ADT. Another clinical application of the cell count is the
kinetic of CTC number, which reveal a higher discriminatory power for overall survival [26,31].
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Simple Summary: The main problem encountered in the management of prostate cancer (PCa) is the
inability to distinguish slow-growing indolent tumors from aggressive tumors. It is therefore impor-
tant to explore non-invasive assays for the early detection of this aggressive subtype, when it can still
be treated effectively. The presence of the TWEAK cytokine in biofluids of the PCa microenvironment
might drive the secretion of extracellular vesicles (EVs) containing exo-oncomicroRNAs capable of
modifying the tumor microenvironment. These exo-oncomicroRNAs are potentially useful as PCa
biomarkers. We identified 2 exo-oncomiRNAs isolated from semen EVs by the action of TWEAK in
the tumor microenvironment and, we determined their usefulness as biomarkers of PCa prognostic.
We also established, for the first time, that TWEAK modulates potential exo-oncomiRNA targets,
both tightly linked to cancer progression. In conclusion, our study shows that semen detection of
TWEAK-regulated exo-oncomiRNAs can improve PCa prognosis, opening new avenues for diagnosis
and treatment.

Abstract: Liquid biopsy-based biomarkers, including microRNAs packaged within extracellular
vesicles, are promising tools for patient management. The cytokine tumor necrosis factor-like weak
inducer of apoptosis (TWEAK) is related to PCa progression and is found in the semen of patients
with PCa. TWEAK can induce the transfer of exo-oncomiRNAs from tumor cells to body fluids,
and this process might have utility in non-invasive PCa prognosis. We investigated TWEAK-regulated
exo-microRNAs in semen and in post-digital rectal examination urine from patients with different
degrees of PCa aggressiveness. We first identified 14 exo-oncomiRNAs regulated by TWEAK in
PCa cells in vitro, and subsequently validated those using liquid biopsies from 97 patients with PCa.
Exo-oncomiR-221-3p, -222-3p and -31-5p were significantly higher in the semen of high-risk patients
than in low-risk peers, whereas exo-oncomiR-193-3p and -423-5p were significantly lower in paired
samples of post-digital rectal examination urine. A panel of semen biomarkers comprising exo-
oncomiR-221-3p, -222-3p and TWEAK was designed that could correctly classify 87.5% of patients
with aggressive PCa, with 85.7% specificity and 76.9% sensitivity with an area under the curve of
0.857. We additionally found that TWEAK modulated two exo-oncomiR-221-3p targets, TCF12 and
NLK. Overall, we show that liquid biopsy detection of TWEAK-regulated exo-oncomiRNAs can
improve PCa prognosis prediction.

Keywords: exosomes; prostate cancer; exo-oncomiRNAS; TWEAK; semen
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1. Introduction

Prostate cancer (PCa) is the most commonly diagnosed cancer and the fifth leading
cause of cancer-related death in men in the developed world [1]. The incidence and
morbidity of PCa continues to increase, likely due to changes in eating habits and the
aging of the population [2]. A major challenge in the management of PCa is the inability
to distinguish slow-growing and indolent tumors from aggressive tumors, which can
lead to under-treatment of patients with aggressive tumors and over-treatment of those
with indolent tumors. The prostate-specific antigen (PSA) test together with the tumor-
nodes-metastasis (TNM) stage and the Gleason score of prostate biopsy [3] are considered
indisputable prognostic factors to guide treatment decision-making. Among them, only
PSA is objective, making it the most extensively studied biomarker in PCa [4]. However, its
lack of specificity for clinically significant tumors has led to a rise in the number of prostate
biopsies performed, with a consequent increase in the diagnosis of insignificant tumors
and over-treatment of patients. Accordingly, the establishment of predictive biomarkers
that can distinguish between aggressive and indolent PCa would be highly valuable in
clinical practice, and could reduce the risk of over-diagnosis/over-treatment. In the context
of biomarker discovery, liquid biopsy has proved to be a promising non-invasive modality
for cancer diagnosis and prognosis that enables the assessment of circulating molecules in
biological fluids, including serum, urine and semen [5].

Inflammation predisposes to the development of cancer and promotes all stages of
tumorigenesis [6]. Inflammatory molecules—including cytokines and growth factors—
released by immune cells of the inflammatory tumor microenvironment can have a direct
effect on pre-malignant and cancer cells by enhancing their proliferation and resistance to
cell death and environmental stress, thereby directly promoting tumor growth and progres-
sion [6]. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is an inflammatory
cytokine that governs tumor growth by promoting inflammation and inducing angiogen-
esis [7], and is produced by several cells of the immune system (natural killer cells and
macrophages, among others) [8]. TWEAK can typically be found as a membrane-anchored
(mTWEAK) protein on the surface of cells, but it can also be released as a soluble form
(sTWEAK) by proteolytic processing. Both forms function through binding to their bona
fide receptor Fn14 [7], forming a receptor–ligand pair. The role of the TWEAK/Fn14 axis
has been established in some solid cancers, including breast and brain cancer [7]. We have
demonstrated that low serum levels of sTWEAK in head and neck cancer are related to
low survival rates, a finding that we later confirmed in a large cohort of patients, overall
pointing to sTWEAK as a robust non-invasive biomarker of this disease [9,10]. We have
also established a non-invasive biomarker panel with high negative predictive value to
classify PCa aggressiveness that included sTWEAK levels and Fn14 mRNA expression [11].

The release of extracellular vesicles (EVs) from cells is an active process and has
been shown to be a mechanism of cell-to-cell communication [12]. Exosomes are small
(nanometer-size) extracellular cargo vesicles that are secreted after the fusion of endosomes
with a plasma membrane, and are released by all cell types including cancer cells [13,14].
Exosomes can induce functional changes to receiving cells in the premetastatic niche—
a specialized tumor microenvironment—for instance, aiding PCa cells to overcome the
low-androgen conditions in distant metastatic organs [15]. Exosome secretion has long
been linked to inflammation [16] and several experimental models have been employed to
characterize the role of EVs in the development and progression of inflammatory diseases.
The presence of sTWEAK in PCa tumors can not only contribute to fuel tumor progres-
sion [17,18], but might also promote the secretion of EVs, which will likely have an impact
on the premetastatic niche, favoring the process of migration and proliferation. This is the
case for exosomes derived from TWEAK-stimulated macrophages in epithelial ovarian
cancer, which have been demonstrated to be internalized by the cancer cells and inhibit
cell metastasis [19].

Oncogenic shuttle miRNAs (exo-oncomiRNAs), which show long-term stability in
circulation and other body fluids, have been identified in exosomes [20]. Liquid biopsy exo-
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oncomiRNAs are thus potentially informative diagnostic and/or prognostic biomarkers
and might also be helpful in understanding how tumor cells transfer their oncogenic
potential to the environment [21]. Several studies have demonstrated that exomiRNAs
isolated from liquid biopsy might be useful for the diagnostic and risk classification of
PCa [22,23]. In this context, the most consistently reported deregulated exomiRNAs
identified as promising PCa diagnostic biomarkers in both urine and blood are miR-141,
miR-375, miR-21 and Let-7 [24–27]. While miR-141 is also frequently identified to be useful
for risk classification in serum [27], other exomiRNAs have been proposed as having
prognostic potential such as the combination of miR-1290 and miR-375 in plasma [24]
and miR-2909 in urine [28]. The literature is more scarce surrounding semen, and only
miRNA-342-3p and miRNA-374b-5p have been proposed as candidates for prognosis,
and miRNA-142-3p and miRNA-142-5p were described as having diagnostic potential [29].
Overall, more extensive cohort studies are needed (especially using semen) to validate the
identified exomiRNAs.

Exo-oncomiRNAs can be useful tools for non-invasive diagnosis and therapy mon-
itoring in cancer; therefore, in the present study we sought to investigate whether exo-
oncomiRNAs are shuttled into biofluids by the action of sTWEAK in the tumor microenvi-
ronment, and to determine their usefulness as prognostic PCa biomarkers in two different
liquid biopsies: semen and post-digital rectal examination urine. We also aimed to examine
the downstream targets of exo-oncomiRNAs, which might be important for the control of
PCa.

2. Results
2.1. Extracellular Vesicle-Derived Exo-oncomiRNAs Are Differentially Expressed in Liquid
Biopsies from Patients with Prostate Cancer Based on the Degree of Cancer Aggressiveness

We sought to search for a useful and practicable biomarker panel capable of dif-
ferentiating aggressive from non-aggressive forms of PCa in liquid biopsy-based exo-
oncomiRNAs isolated from EVs and secreted under sTWEAK stimulating conditions.
The search was divided into two phases: the initial phase was established to isolate the
EV-cargo (exo-oncomiRNAs) secreted into cell culture medium of two PCa cell lines—PC-3
and LNCaP—treated or not with sTWEAK; in the second phase, we assayed for expression
using a real-time PCR array of 752 miRNA target onco-miRNAs. We specifically chose an
androgen-independent line (PC-3) and an androgen-dependent line (LNCaP). Although the
two cell lines do not cover the entire spectrum of PCa, they allowed us to implement a first
approach to identify possible exo-miRNAs expressed through the influence of TWEAK [30].

Isolated EVs were confirmed by transmission electron microscopy (TEM) and by
Western blot analysis of selected EV markers in order to comply with the guidelines of the
International Society of Extracellular Vesicles [31]. Results confirmed the presence of EVs
within the expected range (30–100 nm), which were enriched for CD9, CD63 and CD81
markers (Figure 1). The detailed results of immunoblotting are shown in Figure S1.

By screening a 752-miRNA panel, the following 14 exo-oncomiRNAs were selected
from the first phase study that were significantly altered after sTWEAK treatment, compar-
ing either PC-3 or/and LNCaP cell lines, which accomplished the following criteria: cycle
threshold (Ct) < 33 and at least >1.8-fold-over-expression when comparing both sTWEAK-
stimulated cell lines (Table S1): miR-125b-1-3p, miR-193b-3p, miR-221-3p, miR-222-3p,
miR-23a-3p, miR-27a-3p, miR-29a-3p, miR-31-5p, miR-497-5p, miR-643, miR-663b, miR-940,
miR-9-5p and miR-99a-3p.

In the second phase of the experimental approach, we evaluated the expression levels
of the 14 selected exo-oncomiRNAs in EVs isolated from liquid biopsy (semen and post-
digital rectal examination urine) from 97 patients with low- or high-risk PCa. Pathological
and clinical characteristics of patients are listed in Table 1. Gleason grade (GG) criteria
and TNM classification was determined in accordance with the International Society of
Urological Pathology (ISUP). Complementary examinations included prostate volume,
measured by transrectal ultrasound, and PSA, as in standard clinical practice.

229



Cancers 2021, 13, 250

Figure 1. Characterization of isolated extracellular vesicles. (a) Analysis of extracellular vesicles (EVs) by electron microscopy
at different magnification. (b) Western blot image of protein extracts prepared from EVs isolated from PC-3 culture media
(CM), post-digital rectal examination urine (U), semen (S) and total cell extract from PC-3 (C), and tested with the following
antibodies: CD9, CD81, CD63, TSG101, HSP70 and tubulin. Uncropped Western Blot image is available in Figure S1.

Analysis of the expression pattern of the 14 selected exo-oncomiRNAs in liquid
biopsy of semen and post-digital rectal examination urine from patients with high-risk
(ISUP Group III, IV and V) and low-risk (ISUP Group I and II) PCa revealed significant
differences in the following five exo-oncomiRNAs: exo-oncomiR-221-3p, exo-oncomiR-222-
3p, exo-oncomiR-31-5p, which were up-regulated in semen of high-risk patients versus
low-risk patients; and exo-oncomiR-193-3p and exo-oncomiR-423-5p, which were down-
regulated in post-digital rectal examination urine samples of high-risk patients (Figure 2).
There were no significant differences between the studied groups for the remaining nine
exo-oncomiRNAs (Table S2).

Table 1. Clinical and pathological characteristics of the studied cohort.

Patient’s Characteristics Mean ± SD N

Age (years) 63.5 ± 6.35 97

Prostatic Volume (c.c) 47.49 ± 23.09 97

Testosterone (nmol/L) 14.37 ± 5.07 97

Total PSA (ng/mL) 9.57 ± 7.92 97

N (%)

BMI (kg/m2) <25 25 (25.8)
25 ≤ x ≤ 29.99 50 (51.5)

≥30 19 (19.6)

Total PSA (ng/mL)
<4 8 (8.2)

4 ≤ x < 10 60 (61.9)
≥ 10 29 (29.9)
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Table 1. Cont.

Patient’s Characteristics Mean ± SD N

ISUP-GG

Low Risk
Group I 32 (33.0)
Group II 25 (25.8)

High Risk
Group III 23 (23.7)
Group IV 10 (10.3)
Group V 7 (7.2)

T pathological stage
≤T2a 68 (70.1)
T3,T4 29 (29.9)

N pathological stage
NX 57 (58.8)
N0 34 (35.1)
N1 6 (6.2)

Abbreviations: BMI, body mass index; ISUP-GG, International Society of Urological Pathology
Gleason Grade groups based on the Gleason score as follows: (Gleason score ≤ 6—group I; 3 + 4
= 7 group II; 4 + 3 = 7 group III; 4 + 4 = 8—group IV; and 9–10—group V); PSA, prostate-specific
antigen; T stage, Tumor category; N node, category. The bolded words differentiate the clinical and
pathological characteristics from the rest of the table.Cancers 2021, 13, 250 6 of 20 
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Lipid profile 
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LDL cholesterol (mmol/L) 3.28 ± 1.3 3 ± 0.88 0.503 
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Hepatic profile 
AST (µkat/L) 0.39 ± 0.19 0.33 ± 0.07 0.171 

Figure 2. Exo-oncomiRNAs are differentially expressed in liquid biopsy from patients with prostate cancer. Box plots of
relative expression of the 5 discriminatory exo-oncomiRNAs analyzed in semen and post-digital rectal examination urine
liquid biopsies from patients with low- and high-risk PCa. Results are expressed as mean values ± SD. Statistical differences
between groups are indicated: * p < 0.05; ** p < 0.01.

We also examined for clinical and metabolic differences between the high-risk and
low-risk groups (Table 2). Univariate analysis showed that only total PSA was significantly
higher in the high-risk group than in the low-risk group (p = 0.007), whereas sTWEAK
semen levels were significantly lower in the high-risk group than in the low-risk group
(p = 0.009) (Table 2), as has been reported [11]. We then tested for correlations between
the five differentially expressed exo-oncomiRNAs and clinical and metabolic parameters
using Spearman’s bivariate correlation coefficient test. The most relevant associations
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observed were the significant negative correlations between semen sTWEAK levels and the
expression levels of exo-oncomiR-221-3p, exo-oncomiR-222-3p, and exo-oncomiR31-5p (r =
−0.375 p = 0.017, r = −0.387 p = 0.013 and r = −0.364 p = 0.021, respectively) (Figure S2).

Table 2. Anthropometric and analytical characteristics according to ISUP-GG criteria.

ISUP GG Classification

Patient’s Stratification
Low-Risk High-Risk

(Group I and II) (Group III, IV and V)

N = 57 N = 40

Mean ± SD Mean ± SD p-Value

Anthropometric parameters

Age (years) 62.46 ± 6.74 64.96 ± 5.52 0.066
BMI (kg/m2) 27.97 ± 4.07 27.64 ± 3.46 0.718
Prostatic volume (c.c) 48.68 ± 24.56 45.81 ± 21 0.687
Glycemic profile

Glucose (mmol/L) 5.82 ± 1.1 6.29 ± 2.26 0.388
Insulin (pmol/L) 89.36 ± 58.39 87.42 ± 47.09 0.841
HOMA-IR 3.46 ± 2.58 3.67 ± 2.71 0.841
HbA1c (%) 5.74 ± 0.64 5.92 ± 0.84 0.364
Lipid profile

Cholesterol (mmol/L) 5.03 ± 1.06 5.03 ± 1.1 0.957
HDL cholesterol (mmol/L) 1.49 ± 0.73 1.42 ± 0.39 0.672
LDL cholesterol (mmol/L) 3.28 ± 1.3 3 ± 0.88 0.503
Triglycerides (mmol/L) 1.36 ± 0.74 1.55 ± 0.96 0.711
Hepatic profile

AST (µkat/L) 0.39 ± 0.19 0.33 ± 0.07 0.171
ALT (µkat/L) 0.42 ± 0.22 0.36 ± 0.11 0.402
GGT (µkat/L) 0.7 ± 0.85 0.65 ± 0.48 0.887
Renal profile

Uric acid (µmol/L) 368.05 ± 83.1 456.2 ± 529.55 0.376
Urea (mmol/L) 14.26 ± 3.23 14.8 ± 5.12 0.808
Creatinine (µmol/L) 85.83 ± 18.44 80.05 ± 13.97 0.072
Hormonal profile

SHBG (nmol/L) 46.13 ± 52.46 40.02 ± 16.36 0.814
Testosterone (nmol/L) 14.93 ± 4.62 13.55 ± 5.63 0.101

Tumoral marker

Total PSA (µg/L) 7.71 ± 4.8 12.24 ± 10.43 0.007

Biofluid Biomarker profile

Semen cytokines (pg/mg of total protein)

sTWEAK 989.62 ± 685.75 617.25 ± 447.57 0.009

Exo-oncomiRNAs in semen—Relative expression levels

miR-221-3p 0.75 ± 0.6 2.17 ± 1.7 0.002
miR-222-3p 2.01 ± 2.79 3.79 ± 2.92 0.006
miR-31-5p 1.05 ± 0.73 2.75 ± 2.27 0.004

Exo-oncomiRNAs in urine—Relative expression levels

miR-193-3p 0.12 ± 0.12 0.06 ± 0.05 0.037
miR-423-5p 0.05 ± 0.05 0.04 ± 0.03 0.034

BMI, body mass index; HOMA-IR, homeostatic model assessment of insulin resistance; HbA1c,
Hemoglobin A1c; HDL, high-density lipoprotein; LDL, low-density lipoprotein; AST, aspartate
aminotransferase; ALT, alanine aminotransferase; GGT, γ-Glutamyltransferase; SHBG, sex hormone-
binding globulin; PSA, prostate-specific antigen; sTWEAK, soluble tumor necrosis factor-like weak
inducer of apoptosis.

232



Cancers 2021, 13, 250

2.2. Semen Levels of Exo-oncomiR-221-3p May Help Identify an Aggressive Prostate Cancer
Phenotype

We developed a partial least square-discriminant analysis (PLS-DA) model to evaluate
the potential of the five selected exo-oncomiRNAs plus PSA in serum, sTWEAK in semen,
age, prostatic volume, and testosterone, for the stratification of patients. Cross-validation
analyses showed that a one-component model had an accuracy of 72.02% (R2 = 0.2073 and
Q2 = 0.1493) (Figure S3a) indicating that is a good predictive model [32]. With regards to
the importance of individual components, variable importance in projection (VIP) scores
highlighted age, exo-oncomiR-222-3p in semen, exo-oncomiR-31-5p in semen, PSA in
serum, sTWEAK in semen and exo-oncomiR-221-3p in semen as the most important
variables (Figure 3). The VIP model estimated that exo-oncomiR-221-3p in semen and
sTWEAK in semen had more influence than total PSA (Figure 3).
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Figure 3. Variable importance in projection (VIP) scores. Selected variables: total PSA, testosterone,
prostatic volume, age, sTWEAK in semen, exo-oncomiR-221-3p, exo-oncomiR222-3p, exo-oncomiR31-
5p, exo-oncomiR-193-3p and exo-oncomiR-423-5p are shown in the model. Variables with scores
close to or greater than 1 were considered important in the model.

Variables with VIP score ≥ 1 were considered important in the model for determining
PCa aggressiveness. To evaluate the usefulness of exo-oncomiRNAs as potential prognosis
biomarkers of PCa aggressiveness in liquid biopsy, we performed logistic regression and
receiver operating characteristic (ROC) curve analysis combining the following variables:
exo-oncomiR-221-3p, exo-oncomiR-222-3p, exo-oncomiR-31-5p, total PSA, sTWEAK levels
and age; Table 3 lists the different combinations. Results showed that the area under the
curve (AUC) of each individual variable was below 0.8. Thus, we used a multivariate
regression model combining each potential biomarker to test which combination was more
suitable for correct diagnosis. Notably, we observed that the presence of exo-oncomiR-221-
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3p outperformed the other individual variables alone or in combination. The best panel in
our study to distinguish PCa aggressiveness was that composed by exo-oncomiR-221-3p,
exo-oncomiR-222-3p and semen sTWEAK, which could correctly classify 87.5% of patients,
with an AUC of 0.857 and with 85.7% specificity and 76.9% sensitivity (Table 3) (Figure S3).

Table 3. Exo-oncomiRNAs-based models as diagnostic classifiers.

95% CI

ROC Model AUC Error p-Value Lower Upper Sensivity
(%)

Specificity
(%)

% Correct
Diagnosis

Age 0.610 0.058 0.066 0.496 0.724 85 75.4 62.9
Total PSA 0.662 0.056 0.007 0.552 0.772 85 31.6 63.9
sTWEAK 0.708 0.072 0.009 0.567 0.848 85.7 52.8 71.9
exo-oncomiR-221-3p 0.79 0.078 0.002 0.638 0.943 86.7 55.6 78.6
exo-oncomiR-222-3p 0.758 0.08 0.006 0.601 0.915 86.7 74.1 66.7
exo-oncomiR-31-5p 0.768 0.082 0.004 0.607 0.929 86.7 48.1 76.2
Total PSA + Age 0.704 0.054 0.001 0.597 0.810 85 70.2 67
Total PSA + sTWEAK 0.738 0.072 0.003 0.597 0.879 85.7 47.2 71.9
Total PSA + exo-oncomiR-221-3p 0.864 0.063 <0.001 0.74 0.998 86.7 55.6 83.3
Total PSA + exo-oncomiR-222-3p 0.78 0.071 0.003 0.641 0.919 86.7 55.6 73.8
Total PSA + exo-oncomiR-31-5p 0.832 0.07 <0.001 0.695 0.969 86.7 51.9 81
sTWEAK + Age 0.709 0.069 0.009 0.574 0.844 85.7 50 66.7
sTWEAK + exo-oncomiR-221-3p 0.841 0.073 <0.001 0.698 0.983 85.7 69.2 82.5
sTWEAK + exo-oncomiR-222-3p 0.745 0.086 0.012 0.576 0.913 85.7 42.3 70
sTWEAK + exo-oncomiR-31-5p 0.808 0.077 0.001 0.657 0.958 85.7 61.5 77.5
exo-oncomiR-221-3p + Age 0.802 0.077 0.001 0.651 0.954 86.7 33.3 76.2
exo-oncomiR-221-3p +
exo-oncomiR-222-3p 0.802 0.078 0.001 0.65 0.955 86.7 63 76.2

exo-oncomiR-221-3p +
exo-oncomiR-31-5p 0.8 0.079 0.001 0.646 0.954 86.7 55.6 81

exo-oncomiR-222-3p + Age 0.751 0.081 0.008 0.592 0.909 86.7 66.7 73.8
exo-oncomiR-222-3p +
exo-oncomiR-31-5p 0.8 0.077 0.001 0.649 0.951 86.7 55.6 81

exo-oncomiR-31-5p + Age 0.778 0.078 0.003 0.625 0.930 86.7 44.4 73.8
Total PSA + sTWEAK + Age 0.746 0.067 0.002 0.614 0.878 85.7 44.4 73.7
Total PSA + sTWEAK +
exo-oncomiR-221-3p 0.863 0.068 <0.001 0.73 0.996 85.7 69.2 85

Total PSA + sTWEAK +
exo-oncomiR-222-3p 0.758 0.086 0.008 0.59 0.926 85.7 46.2 75

Total PSA + sTWEAK +
exo-oncomiR-31-5p 0.824 0.076 0.001 0.675 0.974 85.7 73.1 77.5

Total PSA + exo-oncomiR-221-3p +
Age 0.889 0.056 <0.001 0.780 0.998 85.7 37 83.3

Total PSA + exo-oncomiR-221-3p +
exo-oncomiR-222-3p 0.872 0.06 <0.001 0.755 0.988 86.7 59.3 83.3

Total PSA + exo-oncomiR-221-3p +
exo-oncomiR-31-5p 0.854 0.067 <0.001 0.724 0.985 86.7 51.9 83.3

Total PSA + exo-oncomiR-222-3p +
Age 0.840 0.064 <0.001 0.714 0.965 86.7 37 83.3

Total PSA + exo-oncomiR-222-3p +
exo-oncomiR-31-5p 0.849 0.069 <0.001 0.713 0.985 86.7 59.3 83.3

Total PSA + exo-oncomiR-31-5p +
Age 0.862 0.061 <0.001 0.743 0.981 86.7 37 83.3

sTWEAK + exo-oncomiR-221-3p +
Age 0.854 0.067 <0.001 0.723 0.986 85.7 23.7 77.5

sTWEAK + exo-oncomiR-221-3p +
exo-oncomiR-222-3p 0.857 0.069 <0.001 0.721 0.993 85.7 76.9 87.5
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Table 3. Cont.

95% CI

ROC Model AUC Error p-Value Lower Upper Sensivity
(%)

Specificity
(%)

% Correct
Diagnosis

sTWEAK + exo-oncomiR-221-3p +
exo-oncomiR-31-5p 0.841 0.073 <0.001 0.698 0.983 85.7 69.2 82.5

sTWEAK + exo-oncomiR-222-3p +
Age 0.764 0.078 0.006 0.611 0.917 85.7 50 72.5

sTWEAK + exo-oncomiR-222-3p +
exo-oncomiR-31-5p 0.83 0.073 0.001 0.687 0.972 85.7 53.8 82.5

sTWEAK + exo-oncomiR-31-5p +
Age 0.821 0.074 0.001 0.677 0.966 85.7 34.6 75

exo-oncomiR-221-3p +
exo-oncomiR-222-3p +
exo-oncomiR-31-5p

0.807 0.076 0.001 0.658 0.956 86.7 51.9 83.3

exo-oncomiR-221-3p +
exo-oncomiR-222-3p + Age 0.820 0.074 0.001 0.675 0.965 86.7 25.9 76.2

exo-oncomiR-221-3p +
exo-oncomiR-31-5p + Age 0.812 0.074 0.001 0.668 0.957 86.7 37 78.6

exo-oncomiR-222-3p +
exo-oncomiR-31-5p + Age 0.802 0.075 0.001 0.655 0.950 86.7 44 78.6

Total PSA + sTWEAK +
exo-oncomiR-221-3p +
exo-oncomiR-222-3p

0.86 0.071 <0.001 0.721 0.999 85.7 69.2 85

Total PSA + sTWEAK +
exo-oncomiR-221-3p +
exo-oncomiR-31-5p

0.86 0.069 <0.001 0.724 0.995 85.7 69.2 85

Total PSA + sTWEAK +
exo-oncomiR-222-3p +
exo-oncomiR-31-5p

0.83 0.076 0.001 0.682 0.978 85.7 65.4 82.5

Age + Total PSA + sTWEAK +
exo-oncomiR-221-3p 0.879 0.62 <0.001 0.757 1 85.7 23.1 85

Age + Total PSA + sTWEAK +
exo-oncomiR-222-3p 0.808 0.074 0.001 0.662 0.953 85.7 50 82.5

Age + Total PSA + sTWEAK +
exo-oncomiR-31-5p 0.849 0.069 <0.001 0.715 0.983 85.7 53.2 82.5

Age + Total PSA +
exo-oncomiR-221-3p +
exo-oncomiR-222-3p

0.894 0.053 <0.001 0.789 0.998 86.7 56.7 83.3

Age + Total PSA +
exo-oncomiR-221-3p +
exo-oncomiR-31-5p

0.879 0.059 <0.001 0.764 0.994 86.7 54.3 83.3

Age + Total PSA +
exo-oncomiR-222-3p +
exo-oncomiR-31-5p

0.867 0.059 <0.001 0.752 0.982 86.7 49.2 81

Age + sTWEAK +
exo-oncomiR-221-3p +
exo-oncomiR-222-3p

0.868 0.061 <0.001 0.748 0.988 86.7 46.5 80

Age + sTWEAK +
exo-onxomiR-221-3p +
exo-oncomiR-31-5p

0.857 0.067 <0.001 0.726 0.988 85.7 76.9 80

Age + sTWEAK +
exo-oncomiR-222-3p +
exo-oncomiR-31-5p

0.832 0.070 0.001 0.695 0.969 86.7 46.5 80

Age + exo-oncomiR-221-3p +
exo-oncomiR-222-3p +
exo-oncomiR-31-5p

0.820 0.072 0.001 0.678 0.962 86.7 48.1 81

235



Cancers 2021, 13, 250

Table 3. Cont.

95% CI

ROC Model AUC Error p-Value Lower Upper Sensivity
(%)

Specificity
(%)

% Correct
Diagnosis

Total PSA + exo-oncomiR-221-3p +
exo-oncomiR-222-3p +
exo-oncomiR-31-5p

0.874 0.061 <0.001 0.754 0.995 86.7 55.6 83.3

sTWEAK + exo-oncomiR-221-3p +
exo-oncomiR-222-3p +
exo-oncomiR-31-5p

0.86 0.068 <0.001 0.726 0.994 85.7 73.1 85

Total PSA + sTWEAK +
exo-oncomiR-221-3p +
exo-oncomiR-222-3p +
exo-oncomiR-31-5p

0.865 0.069 <0.001 0.73 1 85.7 69.2 85

Age + Total PSA + sTWEAK +
exo-oncomiR-221-3p +
exo-oncomiR-222-3p

0.879 0.062 <0.001 0.757 1 86.7 70.4 87.5

Age + Total PSA + sTWEAK +
exo-oncomiR-221-3p +
exo-oncomiR-31-5p

0.879 0.062 <0.001 0.758 1 86.7 57.9 85

Age + Total PSA + sTWEAK +
exo-oncomiR-222-3p +
exo-oncomiR-31-5p

0.857 0.065 <0.001 0.729 0.985 85.7 58.3 85

Age + Total PSA +
exo-oncomiR-221-3p +
exo-oncomiR-222-3p +
exo-oncomiR-31-5p

0.896 0.053 <0.001 0.793 0.999 86.7 57.9 83.3

Age + sTWEAK +
exo-oncomiR-221-3p +
exo-oncomiR-222-3p +
exo-oncomiR-31-5p

0.874 0.061 <0.001 0.755 0.992 85.7 63.8 82.5

Age + Total PSA + sTWEAK +
exo-oncomiR-221-3p +
exo-oncomiR-222-3p +
exo-oncomiR-31-5p

0.879 0.062 <0.001 0.757 1 85.7 68.9 87.5

Receiver operating characteristic (ROC) curve values showing the predictive efficiency for distinguishing PCa aggressiveness. Percentage
of correct diagnostic values was obtained by multivariate models (backward stepwise, conditional method). AUC, area under the curve;
95% CI (confidence interval). The bolded words represent the ROC Models.

2.3. TWEAK Modulates Potential Predicted Targets for oncomiR-221-3p

Several studies have shown that oncomiR-221 and oncomiR-222 are dysregulated in
many cancers [33], including PCa [34,35], which is in line with our findings showing deregu-
lated exo-oncomiR-221-3p and exo-oncomiR-222-3p in semen liquid biopsy of PCa. In vitro
analysis showed that oncomiR-221-3p expression was found significantly up-regulated by
sTWEAK only in PC-3 cells, both internally and in secreted EVs, and not in LNCaP cells,
indicating that sTWEAK can potentially modulate oncomiR221-3p downstream targets
(Figure 4a).
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Figure 4. sTWEAK regulates oncomiR-221-3p expression and down-regulates NLK and TCF12 targets. (a) oncomiR-221-3p
expression in PC-3 and LNCaP cell extracts and in extracellular vesicles (EVs) isolated from cell media. Different lettering over
boxes indicates statistical differences. Significant differences are established at p < 0.05. Data are expressed as mean± SEM (n
= 4 experiments). (b) Selected targets for oncomiR-221-3p by 3 different target prediction algorithms. # conserved elements in
multiply-aligned sequences. (c) qRT-PCR mRNA expression of selected oncomiR-221-3p targets in PC-3 cells before and after
treatment with sTWEAK. Significant differences: ** p < 0.01; *** p < 0.001. Data are expressed as mean± SEM (n = 6 experiments).
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Transcription factor 12 (TCF12); synaptosome associated protein 23 (SNAP23); dipeptidyl peptidase
8 (DPP8); aryl hydrocarbon receptor nuclear translocator (ARNT); Nemo-like kinase (NLK); ZFP36
ring finger protein-like 2 (ZFP36L2); folliculin interacting protein 2 (FNIP2); estrogen receptor 1
(ESR1); homeodomain interacting protein kinase 1 (HIPK1); and scavenger receptor class B-ember
2 (SCARB2). (d) Expression of TCF12, NLK and Fn14 protein in PC-3 cells transfected with the
oncomiR-221-3p inhibitor and further treated with sTWEAK. Representative Western blots are
presented (top). The membranes were tested with the corresponding antibody. iNC: inhibitor
negative control, i221-3p: inhibitor miR-221-3p; Nemo-like kinase (NLK); transcription factor 12
(TCF12); fibroblast growth factor 14 (Fn14). Relative protein expression levels are shown (bottom),
which were normalized to the corresponding control β-actin. Different lettering over boxes indicates
statistical differences. Significant differences are established at p < 0.05. Data are expressed as mean
± SEM (n = 3 experiments). Full-length blots and gels are presented in Figure S4.

To demonstrate a direct effect of sTWEAK on oncomiR-221-3p targets, we first searched
for possible oncomiR-221-3p targets and selected only those shared by the miRanda, Diana-
MicroT-CDS and miRWalk databases. We obtained 69 genes with putative target sites for
oncomiR-221-3p in their 3′untranslated regions. We then ranked the candidate genes by the
miRSVR score (the lower the score, the stronger the match to the seed region); if two or more
targets had a similar miRSVR score we considered the higher score from the Diana-microT-
CDS algorithm, miTG. With these criteria, we selected 10 possible targets implicated in
cancer and/or inflammation (Figure 4b, Table S3), shared also by onco-miR222-3p, because
both miRNAS are encoded in tandem and contain identical seed sequences separated
by 727 bases [33] (Table S4). Of the 10 targets only NLK (Nemo-like kinase) and TCF12
(transcription factor 12) expression levels were found to be reduced in PC-3 cells after
sTWEAK treatment for 24 h by real-time PCR (Figure 4c) and Western blotting (Figure 4d).
The stimulatory effect of sTWEAK was accompanied by the increased expression of its
receptor Fn14 (Figure 4d).

Finally, we performed in vitro experiments using PC-3 cells and an oncomiR-221-3p
inhibitor, which consistently influenced the expression of its target genes as demonstrated
by the reduced expression of TCF12 and NLK proteins when compared with non-treated
counterparts (Figure 4d). As anticipated, combined sTWEAK stimulation and oncomiR-
221-3p inhibition resulted in a significant down-regulation of NLK and TCF12 protein
levels (Figure 4d). The detailed results of immunoblotting are shown in Figure S4.

3. Discussion

Histopathological biopsy analysis is a common method for the diagnosis of PCa. This
procedure, however, only enables the analysis of part of the prostatic gland and, because of
the typical multifocal nature of PCa, information from a single biopsy is often insufficient
and does not reflect the dynamics of the tumor in the prostate.

Diagnosis of cancer through the use of liquid biopsy has proven to be particularly
useful as a non-invasive method of diagnosis and disease progression monitoring [36]. In a
similar line, exosomal miRNAs isolated in the context of cancer, termed exo-oncomiRNAs,
are promising biomarkers in part due to their stability in body fluids and ease of detection
and quantification at low cost. Additionally, exo-oncomiRNAs have a very important
role in modulating several critical cancer processes, including proliferation, migration,
and angiogenesis, through their regulation of important target genes within the tumor
environment [37].

Some exo-oncomiRNAs (e.g., miR-375, miR -21 and miR-141 [24,38]) from biofluids
including blood and urine are known to have diagnostic and prognostic capacity in PCa.
However, inconsistencies in identified, dysregulated exo-oncomiRNA profiles have been
reported, likely due to a lack of standardized exosomal isolation and miRNA quantification
techniques [23]. Despite these challenges, exo-oncomiRNAs remain highly promising
biomarker candidates to aid in PCa diagnosis and prognosis.
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We previously established a non-invasive biomarker panel with high negative predic-
tive value to classify PCa aggressiveness. Specifically, this biofluid signature comprised
the following biomarkers: total PSA serum levels, semen levels of sTWEAK, fasting serum
glycemia, and mRNA expression levels of Fn14, KLK2 (a gene that encodes a protease
that activates pre-PSA) and two chemokine receptors (CXCR2 and CCR3) in semen cell
sediment. This panel can identify PCa aggressiveness with 90.9% success [11]. Although
this panel could aid the clinical prognosis of PCa by outperforming the classical clinical
biomarkers (age, T-classification, and total PSA serum levels), it requires the measurement
of seven different biomarkers and uses two different biological samples—serum and semen.

In the aforementioned study, we observed that in patients with high-risk PCa, the de-
crease in sTWEAK levels in semen was accompanied by an increase in Fn14 mRNA levels in
seminal cell sediment, pointing to an active process of ligand–receptor interaction that may
favor cell proliferation and migration, as described in PCa cell models [17,18]. Accordingly,
the presence of TWEAK in PCa tumors could not only fuel tumor progression, but might
also promote the secretion of exo-oncomiRNAs contained within EVs, which will likely
have an impact on the tumor microenvironment.

In the search for an improved prognostic panel for PCa focusing on TWEAK-induced
exo-oncomiRNAs, we show here that five exo-oncomiRNAs (exo-oncomiR-221-3p, exo-
oncomiR-222-3p, exo-oncomiR-31-5p, exo-oncomiR-193b-3p, exo-oncomiR-423-5p) are
significantly dysregulated between low- and high-risk PCa. VIP analysis of selected
variables (including age, exo-oncomiRNA levels in semen and urine and, several analytical
parameters) showed that variables with VIP scores greater than 1, considered of importance
in the model for determining PCa aggressiveness, included only the three exo-oncomiRNAs
expressed in semen (exo-oncomiR-221-3p, exo-oncomiR-222-3p and exo-oncomiR-31-5p).
This finding may not be causal. Because 25% of semen is derived from prostatic tissue [39],
its contents are more likely to contain prostate disease-specific exo-oncomiRNAs [29] than
post-digital rectal examination urine samples [40].

After testing several logistic regression models followed by ROC analysis includ-
ing the 3 selected biomarkers (exo-oncomiR-221-3p, exo-oncomiR-222-3p and sTWEAK),
the measurements in semen liquid biopsy had the best prognostic accuracy (AUC = 0.857,
p = 0.001) when compared with the ROC curve analysis using only serum PSA levels (AUC
= 0.662, p < 0.007). This new model can outperform the classical PSA biomarker by 23.6%
for a correct diagnosis, improving the classification efficacy up to 87.5%. If we include
the two selected exo-oncomiRNAs (exo-oncomiR-221-3p, exo-oncomiR-222-3p) plus PSA
levels in serum, the model can predict PCa severity better than is commonly reported by
PSA screening alone; however, the model composed of sTWEAK, exo-oncomiR-221-3p
and exo-oncomiR-222-3p—all measured in semen—improves not only the percentage of
positively diagnosed patients by 2.25%, but increases the specificity by 8%.

MiR-221 and miR-222 are encoded tandemly in chromosome Xp11.3, and are highly
homologous miRNAs sharing the same “seed sequences” [33,41]. In vivo studies have
demonstrated that miR-221/222 down-regulation impairs the growth of PCa xenografts,
pointing to miR-221-3p as an oncogenic miRNA in PCa [42]. In the present study, we
observed that the addition of exo-oncomiR-221-3p expression levels in semen improves all
prognostic model panel combinations. miR-221 is overexpressed in a variety of epithelial
cancers including breast, liver, bladder, pancreas, gastric, colorectal cancer, melanoma, pap-
illary thyroid carcinoma and glioblastoma [33]. Additionally, miR-221 has been found to be
related to cancer progression in cervical squamous cell carcinoma [43], confers adriamycin
resistance in breast cancer [44], and is a biomarker in hepatocellular carcinoma [45], diffuse
large B cell lymphomas [46] and lung adenocarcinoma [47].

Studies on the expression of miR-221 in PCa (which is referred to as mir-221-3p in
MirBase), have used only PCa tissue [48,49] and have found the levels to be up-regulated.
Here we show, for the first time to our knowledge that the expression levels of miR-
221-3p in PCa biofluids are higher in high-risk patients than in low-risk peers, and we
additionally show that miR-221-3p is up-regulated in PC-3 secreted EVs and cell extracts.
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Mechanistically, in vitro studies have determined that miR-221-3p promotes proliferation
of PCa cells [50].

MiR-221 directly targets NLK in neuroblastoma cells [51]. Accumulating evidence
demonstrates that NLK has a pivotal role in cell proliferation, migration, invasion, and apop-
tosis by regulating a variety of transcriptional molecules [52]. NLK expression in PCa
metastases is decreased in comparison with normal prostate epithelium and primary
PCa [53]. Our findings show that oncomiR-221-3p inhibits NLK protein expression in
PC-3 cells and that expression is further reduced by sTWEAK. An additional predicted
and experimentally-demonstrated target for miR-221-3p is TCF12, a transcription factor
member of the helix–loop–helix protein family found to be extensively expressed in many
tissues [54]. As a target of miR-221, TCF12 has been related to survival after diagnosis of
colon cancer [55], and there is evidence to suggest that TCF12 is involved in cell migration
and differentiation [56]. Interestingly, the status of TCF12 has been found to be an inde-
pendent predictor of biochemical recurrence-free survival in PCa [57]. We show here that
miR-221-3p likely regulates TCF12 in PC-3 cells and its expression is, in turn, regulated
by sTWEAK. While our findings point to the possibility that regulation of NLK or TCF12
might be a therapeutic approach against PCa tumors, further research and validation
either in preclinical models or other established PCa cell lines will be needed to test their
functional relevance in cell proliferation, invasion and chemosensitivity to cytotoxic agents.

Overall, our results reveal that TWEAK inflammation-induced exo-oncomiRNAs are
components of an improved PCa prognostic panel based only on information obtained
from a unique liquid biopsy, semen. Additionally, we reveal that a TWEAK inflammatory
challenge in PCa cells can potentiate oncomiR-221-3p action.

4. Materials and Methods
4.1. Cell Culture

The PC-3 and LNCaP cell lines were purchased from Sigma-Aldrich (Barcelona, Spain).
PC-3 cells were cultured in Ham’s F-12K (Kaighn’s) medium (1:1 mixture) with L-glutamate
(Gibco, Fisher Scientific SL, Madrid, Spain), and LNCaP cells were cultured in RPMI
1640 medium supplemented with 1 mM sodium pyruvate (Gibco). Cultures were also
supplemented with 10% fetal bovine serum, 1× antibiotic-antimycotic solution (Gibco),
and 5 µg/mL plasmocin, and cultured in a humidified 5% CO2 atmosphere at 37 ◦C.
Cells were grown in exosome-deprived serum overnight before stimulation for 24 h with
100 ng/mL human recombinant (hr) TWEAK (PeproTech, BioNova Cientifica, Barcelona,
Spain).

4.2. Extracellular Vesicle Isolation from Cell Culture Media and Exo-oncomiRNA Expression
Profile Using TaqMan Low-Density Arrays

Exosomes and other extracellular vesicles from cell culture media (PC-3 and LNCaP)
were isolated and exo-oncomiRNAs were extracted using the exoRNeasy Serum/Plasma
Maxi Kit (Qiagen, BioNova Cientifica, Madrid, Spain). For exo-oncomiRNA screening,
the miRCURY LNA Universal RT microRNA PCR, Polyadenylation and cDNA Synthesis
Kit (Exiqon, BioNova Cientifica, s.l. Madrid, Spain) was used for reverse transcription.
cDNA was diluted and assayed by qRT-PCR according to the protocol in a 7900HT Fast
Real-Time PCR System (Applied Biosystems, Thermo Fisher Scientic, Waltham, MA, USA).
Each exo-oncomiRNA was assayed using ExiLENT SYBR Green Master Mix on the Human
panel I+II, V5, miRCURY LNA miRNA miRNome PCR Panel (Qiagen) that included 752
mature human cancer-related miRNAs. Fluorescence readings and expression records of
the microRNAs during the qRT-PCR were performed with the SDS 2.3 program (Applied
Biosystems, Foster City, CA, USA). From the quantitative analysis by qRT-PCR of all
miRNAs analyzed, we only considered those miRNAs that showed expression levels with
a Ct < 33. Then, using the GeneGlobe program (Qiagen) [58], CT values for each sample
were normalized to the arithmetic mean of the following reference miRNAs, hsa-miR-
423-5p, SNORD38B, SNORD49A, hsa-miR-191-5p, hsa-miR-103a-3p and U6 small nuclear
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RNA. The fold change expression of each exo-oncomiRNA was calculated with the formula
2−∆∆Ct where each miRNA, regardless of the condition, was first normalized to the CT of
an endogenous control and then we calculated the ∆∆Ct = ∆Ct sample treated sTWEAK
−∆Ct untreated controls. The exo-oncomiRNAs with p ≤ 0.05 when comparing cell type
and condition and with an increase ≥1.8-fold were considered for further analysis.

4.3. Extracellular Vesicle Analysis

Extracellular vesicles from culture media, post-digital rectal examination urine and se-
men were obtained using exoRNeasy Serum/Plasma Maxi Kit just before miRNA isolation
by the addition of 500 µL of elution buffer XE. The isolated EVs were further concentrated
using a 100,000 Da cut-off concentrator (Amicon Ultra-0.5 mL Centrifugal Filters, Millipore).
Samples were then ultrasonicated 3 times during 1 min bouts. Total protein was quantified
using the BCA method (Pierce). A total amount of 10 µg EV protein and 10 µg total PC-3 cell
extract were loaded on 4–15% SDS-PAGE gels and immunoblotted with polyclonal rabbit
antibodies against: EXOAB-CD9A1, EXOAB-CD81A-1, EXOAB-CD63A-1, EXOABHsp70A-
1, EXOAB-TSG101-1 (System Biology, Palo Alto, CA, USA), and the mouse monoclonal
antibody for tubulin (Thermo Fisher Scientific, Waltham, MA, USA). HRP-conjugated goat
anti-mouse or anti-rabbit (both from SBI) were used as secondary antibodies. All Western
blots were developed with SuperSignal West Femto chemiluminescen substrate (Pierce
Biotechnology, Boston, MA, USA) and visualized with the VersaDoc imaging system and
Quantity One software (Bio-Rad, Barcelona, Spain) (Supplementary Materials).

4.4. Transmission Electron Microscopy Analysis

EVs were placed on carbon-coated copper grids (200 mesh), allowed to dry, and incu-
bated in osmium tetroxide vapors for 15–30 min. TEM images were collected using a JEOL
1011 transmission electron microscope operating at 80 kV with a megaview III camera.

4.5. Patients

Our studied patient cohort comprised 97 consecutive patients with PCa who had
undergone radical prostatectomy by open surgery at the University Hospital Joan XXIII,
Tarragona, between 2015 and 2019—laparoscopic or robotic surgery (intraperitoneal or
extraperitoneal—with or without bilateral ilio-obturator lymphadenectomy, according to
the estimated risk of lymphadenopathy based on the Briganti nomogram [56]. Patients
were stratified according to the 2014 ISUP-GG and TNM classification [57,58]. Patients
were stratified into two categories: low-risk (ISUP Group I and II) and high-risk (ISUP
Groups III, IV and V). Written informed consent prior to their inclusion was provided
by all patients. The study was approved by our local ethics committee and performed
according to the provisions of the Declaration of Helsinki (Biomedical Research Law
14/2007, Royal Decree of Biobanks 1716/2011, Organic Law15/1999 of September 13
Protection of Personal Data) [11]. Clinical parameters, tumor aggressiveness, and metabolic
status of all patients were documented. All methods were approved and performed in
accordance with guidelines and regulations of the Ethical Committee for Clinical Research
(CEIm) from Pere Virgili Research Institute (Ref. CEim171/2017) (http://www.iispv.cat/
plataformes_de_suport/en_comite-iispv.html). Patient’s inclusion criteria were as follows:
older than 18 years, diagnosed with PCa by prostate biopsy in our center or any other,
and treated by radical prostatectomy in our center. Exclusion criteria were patients with a
previous history of cancer, patients older than 75 years, and those who had received any
prior treatment before radical prostatectomy for PCa, as described [11].

4.6. Analytical Methods

Plasma glucose, cholesterol, triglyceride, high-density lipoprotein cholesterol, insulin
levels and hepatic profile and renal profile was performed as described [59]. Levels of
sTWEAK in semen were determined in duplicate using commercially available human
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enzyme-linked immunosorbent assay (ELISA) DuoSet Kits (R&D Systems Europe, Abing-
don, UK).

4.7. Sample Processing

Serum/plasma: blood samples were collected after a fast of at least 12 h, or 2 h after
an oral glucose tolerance test. Samples were centrifuged at 4 ◦C and stored at −80 ◦C.

Post-digital rectal examination urine: urine samples were collected prior to prostate
biopsy or surgical intervention. Samples were centrifuged (2000× g, 10 min, 4 ◦C),
and stored at −80 ◦C.

Semen: semen samples were centrifuged at 2000× g for 15 min at 22 ◦C to separate
spermatozoa from semen plasma, and the supernatant (semen plasma) was stored at
−80 ◦C.

All samples were processed and stored at the Institut d’Investigació Sanitària Pere
Virgili (IISPV) BioBanc (B.0000853 + B.0000854) integrated in the Spanish National Biobanks
Platform (PT13/0010/0029 and PT13/0010/0062) for its collaboration.

4.8. Extracellular Vesicles Extraction from Liquid Biopsy and Exo-onocomiRNA Quantitative
Real-Time PCR Profiling

Extracellular vesicles and exo-miRNAs were isolated and extracted from urine and
semen samples using the exoRNeasy Serum/Plasma Maxi Kit or Midi Kit (Qiagen) [12].
The miRCURY LNA Universal RT microRNA PCR, Polyadenylation and cDNA Synthesis
Kit (Exiqon, BioNova Cientifica, s.l. Madrid, Spain) was used for reverse transcription.
The expression profile of the 14 selected exo-oncomiRNAs was further analyzed in urine
and semen samples in duplicate, using individual primers on a 7900HT Fast Real-Time
PCR System (Applied Biosystems). Data were analyzed by SDS 2.3 and RQ Manager 1.2
(Applied Biosystems) using the 2−∆∆Ct method. All values of Ct > 35 were excluded for
further analysis.

4.9. Target Search by Bioinformatic Analysis

The targets of the selected exo-oncomiRNAs were searched using three target predic-
tion software packages: (1) The miRanda algorithm (www.microRNA.org) was used to find
potential target sites for miRNAs in the genomic sequence. From the miRanda algorithm
results, we used the mirSVR score and PhastCons score to decipher which targets were
potentially predicted. The mirSVR score is an estimate of the miRNA effect on the mRNA
expression level; the more negative the score, the greater the inhibitory effect. PhastCons
scores measure the conservation of nucleotide positions across vertebrates of any possible
interaction; the higher the PhastCons value, the more conservative across vertebrates and
the more important is the complementarity of the miRNA and the target [60]. (2) The
Diana-MicroT-CDS predicts targets through the microT-CDS algorithm giving a miTG
score, which is a general score for the predicted interaction. The closer the score is to
1, the greater the prediction confidence [61]. (3) Finally, we used the miRWalk platform.
The calculated score is generated by executing the TarPmiR algorithm for miRNA target
site prediction. The closer the score is to 1, the greater is the confidence prediction, in the
same way as Diana-MicroT-CDS [62].

Candidate targets with an miR-SVR score equal or to less than −0.1; a PhastCons
value equal or greater to 0.56 and, an miTG and miRWalk score equal or greater to 0.8 were
considered as potential targets of exo-oncomiR-221-3p.

4.10. Functional Studies

Functional studies were performed in PC-3 cells cultured in 6-well plates and grown
at 90% confluence. Cells were transfected using Lipofectamine 3000 (Invitrogen, Thermo
Fisher Scientific, Waltham, MA, USA) and OPTI-MEM medium (Gibco) with a locked
nucleic acid probe containing a specific sequence antisense oligonucleotide targeting exo-
oncomiR-221-3p, miRCURY LNA exo-oncomiR-221-3p Power Inhibitor (Qiagen). A scram-
bled miRNA sequence, miRCURY LNA Power Inhibitor Control A (Qiagen), served as
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a negative control. Each condition was incubated for 24 h in a humidified 5% CO2 at-
mosphere at 37 ◦C before stimulation for 24 h with 100 ng/mL TWEAK (PeproTech) in
serum-free media. After stimulation, cells were harvested for protein and RNA analysis. Ex-
pression analyses of target genes were performed using commercial individual primers on
a 7900HT Fast Real-Time PCR System (Applied Biosystems). Protein analysis and Western
blotting were performed using standard protocols. Nitrocellulose membranes were probed
with the following primary antibodies that were purchased from Cell Signaling Technology
(Danvers, MA, USA): TCF12/HEB (#11825) and NLK (#94350) and NF-κB2 p100 (#4882).
An anti-β-actin (A11126) antibody was purchased from Sigma-Aldrich. The standard
molecular weight marker used was purchased from New England Biolabs Inc. (Herts, UK).
Western blots were developed with SuperSignal West Femto chemiluminescen substrate
(Pierce Biotechnology, Boston, MA, USA) and visualized with VersaDoc imaging system
and Quantity One software (Bio-Rad) (Supplementary Materials).

4.11. Statistical Analysis

For in vitro assays, experimental results are presented as mean ± standard error of
the mean (SEM) of 3–4 experiments. Statistical significance was assessed with Student’s
t-test. Results with p < 0.05 were considered statistically significant.

For human samples studies, the sample size was calculated to determine differences
between exo-oncomiRNA expression levels in liquid biopsy with respect to the degree
of aggressiveness of the tumor (low-risk/high-risk) in those patients diagnosed with
PCa. We assumed a two-fold change difference between groups and identical standard
deviation (SD) between the groups; therefore, a minimum of 35 patients was needed in
each group (bilateral alpha error 0.05, power 90%). Statistical analysis were performed
as described [11]. Briefly, for anthropometric and clinical variables, data are expressed as
mean ± SD. Before statistical analysis, normal distribution was evaluated using Levene’s
test. The non-parametric Mann–Whitney U-test was used to analyze the differences in
anthropometric and clinical data and absolute expression levels of the exomiR candidates
between patients according to ISUP-GG—low-risk (Group I and II) and high-risk (Group
III, Group IV, and Group V). A p-value less than 0.05 was considered statistically significant.
Spearman’s Rho test was used as a correlation analysis between anthropometric, clinical,
and exo-miRNAs data. Partial least square discriminant analysis (PLS-DA) and VIP analysis
models and binary logistic regression analysis were developed for selected variables. ROC
curve analysis was performed to evaluate the best predictive model. The statistical software
SPSS Statistics 24.0 (IBM, Madrid, Spain) package and R software (http://cran.r-project.org)
were used for analysis.

5. Conclusions

TWEAK, exo-oncomiR -221-3p and exo-oncomiR-222-3p are proposed as an improved
PCa prognostic panel based on information obtained from a unique biofluid, semen.
Further studies in larger cohorts of PCa will be needed as a next step to confirm/validate
our panel before it can be adopted in clinical practice.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072
-6694/13/2/250/s1. Table S1: 14 identified exo-oncomiRNAS, Table S2: Exo-oncomiRNAS non-
significantly changed when comparing urine or semen biofluids from patients with PCa stratified by
risk (low or high), Table S3: Role of elected exo-miR-221-3p targets in cancer, Table S4: List of the
selected exo-oncomiR-221-3p and exo-oncomiR-222-3p target’s scores, Figure S1: Complete Western
blot (WB) results referring to Figure 1b, Figure S2: Spearman’s correlation, Figure S3a,b: PLS-DA
analysis, Figure S4: Complete WB results referring to Figure 4d.
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Simple Summary: Leptomeningeal metastasis (LM) is a lethal complication in which cancer metasta-
sizes to the meninges. Currently, there are neither definitive treatments nor diagnosis methods for LM
patients. In this study, we suggest the examination of small non-coding RNA (smRNA) populations
of extracellular vesicles (EVs) derived from the cerebrospinal fluid (CSF) as a potential vehicle for
diagnosis and treatment strategies. Systemic and quantitative analysis of smRNA subpopulations
from LM CSF EVs showed unique expression patterns between LM patients and healthy donors.
In addition, LM CSF EVs smRNAs appeared to be associated with LM pathogenesis suggesting they
may be viable targets for novel diagnostic and treatment strategies.

Abstract: Leptomeningeal metastasis (LM) is a fatal and rare complication of cancer in which the can-
cer spreads via the cerebrospinal fluid (CSF). At present, there is no definitive treatment or diagnosis
for this deleterious disease. In this study, we systemically and quantitatively investigated biased ex-
pression of key small non-coding RNA (smRNA) subpopulations from LM CSF extracellular vesicles
(EVs) via a unique smRNA sequencing method. The analyzed subpopulations included microRNA
(miRNA), Piwi-interacting RNA (piRNA), Y RNA, small nuclear RNA (snRNA), small nucleolar
RNAs (snoRNA), vault RNA (vtRNA), novel miRNA, etc. Here, among identified miRNAs, miR-21,
which was already known to play an essential oncogenic role in tumorigenesis, was thoroughly
investigated via systemic biochemical, miR-21 sensor, and physiological cell-based approaches,
with the goal of confirming its functionality and potential as a biomarker for the pathogenesis and
diagnosis of LM. We herein uncovered LM CSF extravesicular smRNAs that may be associated with
LM-related complications and elucidated plausible pathways that may mechanistically contribute
to LM progression. In sum, the analyzed smRNA subpopulations will be useful as targets for the
development of therapeutic and diagnostic strategies for LM and LM-related complications.

Keywords: leptomeningeal metastasis; cerebrospinal fluid; extracellular vesicle; biomarker; RNA se-
quencing; small non-coding RNA; microRNA

1. Introduction

Leptomeningeal metastasis (LM) is a fatal and rare complication of cancer in which
the cancer spreads to the meninges surrounding the brain and spinal cord via the cere-
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brospinal fluid (CSF) [1,2]. LM occurs in approximately 5% of people with cancer and is
usually a terminal-stage cancer [1–3]. The median survival of LM patients is approximately
4–8 weeks [4]. At present, there is no definitive treatment or diagnosis of this deleteri-
ous disease. CSF is a clear, colorless body fluid found in the brain and spinal cord. It is
produced by specialized ependymal cells in the choroid plexuses of the ventricles of the
brain [1]. CSF acts as a cushion or buffer, providing basic mechanical and immunological
protection to the brain inside the skull [5]. As a potential vehicle for the spread of LM, CSF
can be considered a good resource for the identification of new biological markers for the
diagnosis derived from LM cells [6–8].

Extracellular vesicles (EVs) mostly consist of exosomes and microvesicles (MVs)
of different origin; however, there are limitations in current techniques to completely
separate the MV from the exosome since they are overlapped in size and share surface
biomarkers [9,10]. EVs are thought to function in intercellular communication. They
contain not only essential macromolecules (e.g., proteins and lipids) from their cell of
origin, but also functional RNA molecules that can be delivered to recipient cells to undergo
translation or perform other functions [11].

Most of the RNAs found in EVs are small non-coding RNAs (smRNAs) of less than
200-nucleotides (nt) in length [12]. Recent studies have indicated that the smRNAs con-
tained within EVs are generally enriched for functional species, such as the well-studied
microRNAs (miRNAs) [13]. This finding suggests that EVs are likely to have a direct
influence on gene expression of recipient cells upon internalization [14]. In addition to
miRNAs, the advent of next-generation sequencing (NGS) revealed the presence of a broad
spectrum of additional smRNAs in cells, most of which may be incorporated into EVs [13].
These additional smRNAs include Piwi-interacting RNA (piRNA), Y RNA, small nuclear
RNA (snRNA), small nucleolar RNA (snoRNA), vault RNA (vtRNA), tRNA-derived small
RNA (tsRNA), ribosomal RNA (rRNA), and small interfering RNA (siRNA) [15]. So far,
only the miRNAs have been confirmed to sustain gene-regulatory functions upon cell-
to-cell transfer [16]. Thus, researchers have focused on EV-related miRNAs for potential
therapeutic exploitation.

miRNAs are considered to be strong prognostic markers and key therapeutic targets
in various human diseases, especially cancer [17,18]. More than 600 different miRNAs
encoded in the human genome negatively regulate gene expression at the posttranscrip-
tional level by inducing translational repression and/or destabilizing specific mRNAs
by targeting their 3′ untranslated regions (UTRs) [19]. Thousands of different genes can
be subject to regulation by a single miRNA or miRNA family [20]. Although the action
mechanisms and oncogenic roles of miRNAs are relatively well understood in cancer,
the roles of EV-related miRNAs and their potential applications in monitoring tools and
therapeutic approaches are still under investigation.

In this report, we describe for the first time a comprehensive smRNA profile from the
EVs of LM patient CSF, as obtained via an unbiased polyadenylation-based smRNA library
construction procedure and subsequent NGS analysis. We performed deep sequencing
on a subpopulation of relatively well-characterized smRNAs found in CSF EVs from LM
patients and healthy control donors (HCs). The significance of biased expression of smRNA
subpopulations was extensively validated using various biochemical methods. Moreover,
the functionality of miR-21, which was found to be the most essential among the LM CSF
EV-relevant smRNAs, was verified using a newly developed multipurpose lentivirus-based
miR-21 monitoring system and physiological cell-based approaches. Finally, we discuss
the potential roles of miR-21 and other essential smRNAs in the progression of LM and
their usefulness for diagnosing LM.

2. Results
2.1. Biochemical and Molecular Characterization of EVs from CSF of LM Patients

Characteristics of the 19 LM patients and 16 HCs are summarized in Table 1 and
Table S2.
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Table 1. Clinical characteristics of CSF samples and their applications in this study (n = 24).

Patients No. Gender Age Patient Group Primary Disease Sample Site Applications

LM1 Female 67 LM NSCLC Intraventricular NGS, ddPCR, Luc, WB, SL

LM2 Female 67 LM NSCLC Lumbar NGS, ddPCR, ExoView,
WB, SL

LM3 Female 63 LM NSCLC Lumbar NGS, ddPCR, Luc, SL
LM4 Male 44 LM NSCLC Lumbar NGS, ddPCR, Luc
LM5 Female 54 LM NSCLC Lumbar NGS, ddPCR, M.A., Luc
LM6 Male 54 LM NSCLC Lumbar NGS, ddPCR, Luc
LM7 Male 69 LM NSCLC Lumbar NGS, ddPCR, M.A., Luc

LM8 Female 36 LM Breast cancer Lumbar NGS, ddPCR, ExoView
qRT-PCR, Luc,

LM9 Female 55 LM NSCLC Intraventricular ddPCR (E.V.), qRT-PCR,
Luc

LM10 Male 62 LM NSCLC Intraventricular ddPCR (E.V.), Luc
LM11 Male 65 LM NSCLC Intraventricular Luc
LM12 Female 63 LM NSCLC Intraventricular ddPCR (E.V.), Luc
LM13 Male 68 LM NSCLC Lumbar Luc
LM14 Male 56 LM NSCLC Intraventricular Luc
HC1 Female 61 Healthy control Unruptured an Cisternal NGS
HC2 Female 60 Healthy control Unruptured an Cisternal NGS, ddPCR
HC3 Male 50 Healthy control Unruptured an Cisternal ddPCR
HC4 Female 73 Healthy control Unruptured an Cisternal ddPCR

HC5 Female 45 Healthy control Unruptured an Lumbar ExoView, WB, ddPCR
(E.V.)

HC6 Male 69 Healthy control Unruptured an Lumbar ExoView, M.A., Luc,
ddPCR (E.V.)

HC7 Female 55 Healthy control Unruptured an Lumbar qRT-PCR, M.A., Luc,
ddPCR (E.V.)

HC8 Male 61 Healthy control Unruptured an Lumbar qRT-PCR
HC9 Male 59 Healthy control Unruptured an Intraventricular ddPCR (E.V.)

HC10 Male 40 Healthy control Unruptured an Intraventricular ddPCR (E.V.)

LM, leptomeningeal metastasis; HC, healthy control; NSCLC, non-small cell lung cancer; Unruptured an, unruptured aneurysms; NGS, next
generation sequencing; ddPCR, droplet digital PCR; qRT-PCR, real-time reverse transcription polymerase chain reaction; M.A., migration
assay; Luc, luciferase assay; WB, western blot; SL, splinted ligation; E.V., external validation.

The mean age of all patients was 59.97 years (range, 36–73 years). Overall, 19 patients
were female and 16 were male. Non-small cell lung cancer (NSCLC) was the most frequent
primary cancer type among LM patients except LM8, 17, and 19 (breast cancer). To identify
potential diagnostic small RNA (smRNA) biomarkers in LM patient CSF EVs, we first
optimized a procedure for isolating EVs from a minimal amount of CSF (Figure 1A).
All sample preparations and analyses were performed in accordance with our recently
published work [8]. EVs were isolated from 2 mL (LM patients) or 4 mL (HCs) of CSF, and
then the total RNAs were purified and further analyzed via NGS. As shown in Figure 1B,
the presence and characteristics of the EVs were first verified using ExoView Tetraspanin
Chip on the LM or HC CSF samples [8]. Beads bearing CD9/CD63/CD81 antibody-
captured EVs were measured for their mean fluorescence intensity. Similar fluorescence
patterns were obtained between LM patients and HCs, indicating that EVs were present in
both LM and HC CSFs (Figure 1B, bottom).

After removing cellular components and fragments, we measured the concentrations
and sizes of the presumed EVs from LM CSF by nanoparticle tracking analysis (NTA) using
a NanoSight NS300 (for details, see Supplementary Materials and Methods; Figure 1C
and Table S1). Nineteen LM patients exhibited a relatively high mean EV concentrations
compared with 16 HCs (p = 0.004) which showed a similar pattern as we previously
reported [8].

The EVs were isolated from LM CSF using a miRCURY exosome isolation kit (Figure 1D),
and the purified EV pellets were used for western blotting (WB) to identify well-known EV
markers [11,21–24]. As shown in Figure 1E and Figure S1, the representative EV markers,
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flotillin-1, CD63, CD81, and CD9, were clearly detected in HC and LM CSFs, and their
expression patterns were similar between the groups. This confirmed that our EVs pos-
sessed biochemical characteristics similar to those reported previously. The absence of
GM-130 (a Golgi marker) and cytochrome C (Cyto. C, a mitochondrial marker) excluded
potential contamination with cellular vesicular structures, such as those from the Golgi
and mitochondria [8].Cancers 2021, 13, x  4 of 23 
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Next, we sought to isolate total RNA from the EVs, as this would allow us to use NGS
to analyze smRNA profiles. Total RNAs were isolated with a miRCURY RNA isolation kit
and the criterion was evaluated based on the RNA size in the Bioanalyzer and the total
amount of RNA in RiboGreen (Figure S1) [13].

For quality control during smRNA library construction, more than 10 commercially
available RNA isolation kits were tested in the initial step. However, only the miRCURY
RNA Isolation Kit-Cell & Plant (#300110, Exiqon; Qiagen, Hilden, Germany) was effective
for RNA sequencing quality control and further library construction. As shown in Figure S1,
smRNAs derived from HC and LM CSF-isolated EVs were analyzed using an Agilent
Bioanalyzer with smRNA chips and showed relatively fair smRNA profiles for both HC
and LM EVs. When we set out to construct the smRNA library, we tested numerous kits but
obtained successful results only using the SMARTer smRNA-Seq Kit for Illumina (Takara
Bio Inc., Shiga, Japan), which involves polyadenylation-mediated cDNA amplification of
smRNA (Figure 1F). We then subjected the EV smRNA obtained from two healthy controls
(HC1 and HC2) and eight LM patients (LM1-8) to smRNA NGS, which yielded averages of
6.4 million reads and 13.2 million reads, respectively. Uniquely clustered reads were then
sequentially aligned to reference genome, miRBase v21, and the non-coding RNA database,
Rfam 9.1, to identify known miRNAs and other types of smRNA subpopulations [24–26].

2.2. Essential Subpopulation of smRNAs Show Biased Expression Patterns in LM CSF EVs

From among the annotated smRNA populations, we identified and focused on well-
known classes that were present and asymmetrically distributed in HC versus LM CSF
EVs. The most abundant housekeeping RNAs and contaminating mRNA fragments were
excluded from the comparison and further analysis. We determined the relative distribu-
tions of the ten most abundant classes between HC and LM EVs, which corresponded to
33.1% of all aligned reads. These RNA classes included miRNA, piRNA, Y RNA, snoRNA,
snRNA, vtRNA, novel miRNA, and scRNA (Figure 2).

The remaining aligned reads of EVs represented rRNA, tRNA, etc. All of the sorted and
identified RNA classes exhibited differential distribution between HC and LM. Interestingly,
as shown in Figure 2B, all of these smRNA subpopulations were relatively enriched in EVs
from LM CSF compared to HC.

2.3. Analysis of Relative Expression Profiles and Related Cellular Pathways of miRNA in EVs from
LM Patient CSF

To profile the EV miRNAs, we obtained approximately 3.7 million to 24.3 million raw
reads using Illumina HiSeq. The raw reads of EV miRNAs from LM patient CSF were
preprocessed, analyzed with miRDeep2, and then trimmed for adapter sequences [27,28].
Differentially expressed miRNAs between HC and LM CSF EVs were determined by
selecting those with |fold change| ≥ 2 and p-value < 0.05. A total of 46 significantly
differentially expressed miRNAs were identified, and hierarchical clustering showed that
the miRNA expression profile of LM EVs was markedly distinct from that of HC (Figure 3
and Figure S2).

Next, we validated the nine differentially expressed miRNAs using droplet digital
polymerase chain reaction (ddPCR) [29]. We selected hsa-miR-21-5p, hsa-miR-19b-3p,
hsa-miR-25-3p, hsa-miR-200c-3p, hsa-miR-19a-3p, and hsa-miR-34b-3p for validation of
the biased expression between LM and HC. As expected, these miRNA molecules were
significantly enriched in LM CSF EVs compared with HC (Figure 4A). In contrast, hsa-
miR-423-5p, hsa-miR-1273g-3p, and hsa-miR-4271, which were found to be significantly
downregulated in LM CSF EVs, were validated as being significantly downregulated in
our ddPCR analysis (Figure 4B).
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Figure 2. The proportion of smRNA subtypes showed biased expression between CSF EVs from
LM and healthy control (HC). (A) smRNA sequencing data were processed for 10 types of general
sm RNAs subclasses including genome and unknown population in RNA central database. Bar
graph showed the average percentage of each smRNA subtype. (B) After removing reads mapped
to rRNA, tRNA, and others, eight subtypes (miRNA, piRNA, Y RNA, snoRNA, snRNA, vtRNA,
novel miRNA, and scRNA) of biologically intriguing smRNAs were processed. Boxplot showed the
median percentage value and interquartile range of each smRNA subtypes. (LM, purple box, n = 8;
HC, green bar, n = 2).

As shown in Figure 3E, hsa-miR-21-5p was ranked first in relative expression. We thus
selected miR-21 for further analysis. This expression was validated using and conventional
TaqMan probe-based real-time reverse transcription PCR (qRT-PCR). hsa-miR-200c-3p, which
was the fifth-ranked miRNA in LM CSF EVs, was also selected for further analysis since it is
known to play important roles in the metastasis and mobilization of cancer cells. As shown
in Figure 4C, qRT-PCR result showed more than hundred folds elevation of both miRNAs
in EVs from LM CSF which was already analyzed as significantly upregulated by NGS. The
biased expression of miR-21 and miR-200c in LM CSF EVs was particularly notable since the
expression levels were found to be relatively lower in CSF EVs from glioblastoma multiforme
(GBM) patients than those from LM CSF. These data suggest that some yet-unknown driving
mechanism governing the biased expression of both miRNAs is more potent in LM CSF EVs
than in GBM CSF EVs. This may explain the poorer outcome of LM.

Out of the 46 miRNAs classified herein, additional essential miRNAs, such as hsa-
miR-191-5p and hsa-miR-93-5p, also showed higher expression in LM CSF EVs than HC
and GBM EVs (Figure 4D). In contrast, hsa-miR-204-5p and hsa-let-7b-5p, which are well-
known to play tumor-suppressive roles [30], showed severe downregulation in LM CSF
EVs compared with GBM CSF EVs (Figure S3).
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Figure 3. Distinct expression of miRNAs in EVs from LM patient CSF. Analysis of relative miRNA expression profile in EVs
extracted from CSF of LMs and HCs. Hierarchical clustering analysis of significantly expressed miRNA was visualized via
(A) heatmap showing z score of extravesicular miRNA from HC (n = 2) and patients with LM (n = 8) with 43 upregulated
(red) and 3 downregulated (blue) miRNAs. (B) Multidimensional scaling (MDS) map of HC and LM was generated with
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were found by fold change and p-value. (D) Volcano plot shows differentially expressed miRNA in HC and LM patients
with the x-axis showing log2 fold-change and y-axis showing −log10 of the p-value from LM versus HC miRNA expression
counts. (E) Table displays the fold change of 6 upregulated and 3 downregulated miRNAs in LM compared to HC ranked
in the order of abundance.

Furthermore, we visualized the expression of miR-21-5p using a well-established
conventional biochemical approach. Splinted ligation demonstrated that our ddPCR
and qRT-PCR results were not caused by non-specific amplification of unwanted RNA
species. As shown in Figure 4E and Figure S16, ligated bands of LM EV-derived and
cellular miR-21-5p (from K562 cells) migrated to the same point as the synthetic miR-21-
5p control. Moreover, similarly high and biased expression of miR-21-5p was observed
in additional LM patient CSF EVs (Figure S3A), as assessed by ddPCR analysis. Our
NGS (comprehensive high-throughput) and standard biochemical approaches clearly
demonstrated that miR-21 is present in the EVs from CSF of LM patients. Collectively,
these results suggested that the biased existence of specific population of miRNAs may
contribute to LM progression.

To investigate the predicted functions of the miRNAs that were differentially expressed
in LM EVs and HC EVs, we used the Database for Annotation, Visualization and Integrated
Discovery (DAVID) functional annotation tool to perform Gene Ontology (GO) analysis.
The significantly enriched GO terms included biological processes and molecular functions
(Figure 5).

The 43 miRNAs upregulated in LM CSF EVs represented processes such as cellular
response to hypoxia, positive regulation of cell proliferation, positive regulation of tran-
scription, and positive regulation of gene expression in the biological process category. The
selected miRNA, miR-21-5p, is involved in wound healing, cellular response to hypoxia,
positive regulation of transcription, and negative regulation of apoptotic process.

We also used a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrich-
ment analysis to examine the signaling pathways associated with each of the 43 miRNAs
found to be differentially expressed in LM CSF EVs versus HC. Our KEGG analysis revealed
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that the pathways of glioma, small cell lung cancer, pathways in cancer, and miRNAs in
cancer were particularly relevant. For miR-21-5p, the pathways of HIF-1 signaling, MAPK
signaling, cancer and miRNAs in cancer were found to be significant.
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lated miRNAs were analyzed by ddPCR (ddPCR Supermix for Probes; hsa-miR-21-5p, hsa-miR-19b-3p, hsa-miR-25-3p,
hsa-miR-200c-3p, hsa-miR-19a-3p, and hsa-miR-34b-3p) in EVs from LM (purple rectangle, n = 8) vs HC (green rhombus,
n = 3). (B) 3 downregulated miRNAs were analyzed by ddPCR (QX200 ddPCR EvaGreen Supermix; hsa-miR-423-5p, hsa-
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U test, * p < 0.05). (C) 2 upregulated miRNAs were analyzed by qRT-PCR (TaqMan Advanced miRNA Assay probes;
miR-21-5p and miR-200c-3p) in CSF EVs from 2 LMs (LM8 and LM9), 2 HCs (HC7 and HC8) and 3 glioblastoma multiforme
patients (GBM1-3). (D) 2 upregulated miRNAs were analyzed by qRT-PCR (TaqMan Advanced miRNA Assay probes;
hsa-miR-191-5p and hsa-miR-93-5p) in CSF EVs from 2 LMs (LM8 and LM9), 2 HCs (HC7 and HC8), and 3 glioblastoma
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probe specific for mature miR-21-5p as described in Supplementary Materials and Methods. The experiments were repeated
at least three times with similar results. The data shown in panel (E) is a representative image.

2.4. miRNA Sensor-Based Investigation of miR-21 Functionality in EVs from LM Patient CSF

To demonstrate whether the miRNA in the EVs from LM CSF could be physically
incorporated into the miRNA-induced silencing complex (miRISC) and be functional
within the miRNA machinery, we devised a lentivirus-based miR-21-sensing reporter.
In this system, firefly luciferase is transcribed under the control of the cytomegalovirus
(CMV) promoter and the translation of its mRNA is governed by five consecutive miR-21-
targeting sites located in the 3′UTR. The devised system offers the ability to easily monitor
the positive role of miR-21-containing LM CSF. The expression of firefly luciferase can
be easily normalized using human phosphoglycerate kinase 1 (hPGK) promoter-driven
Renilla luciferase activity in a dual luciferase assay (see Figure 6A). More details on this and
other miRNA-monitoring sensors were described in our recent report [31]. In the present
study, the binding of miR-21 to its target sites in the 3′UTR of the firefly luciferase mRNA
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repressed its translation, such that firefly luciferase activity was inversely correlated with
the cellular level of miR-21 [31]. When we used the developed system to examine cellular
expression in various cell lines, we found that miR-21 was highly expressed in NSCLC
A549 cells and was barely detectable in 293T [31].Cancers 2021, 13, x  9 of 23 
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Figure 5. Analysis of the miRNA target gene enriched pathway. The experimentally validated target genes of 43 upregulated
miRNAs (A,C) or hsa-miR-21-5p (B,D) were searched from miRTargetLink Human database. The target gene enriched
pathways were computed from the Database for Annotation, Visualization and Integrated Discovery (DAVID). Bar graph
depicted the top 10 highly enriched and biologically relevant pathways on Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway. BP, biological processes.

Next, to test the specific reactivity of luc-miR-21 sensor against LM CSF containing
potentially functional miR-21s, we treated LM CSF directly onto luc-miR-21 sensor-bearing
293T cells. As shown in Figure 6B, in most cases, the LM CSF markedly inhibited the
translation of firefly luciferase in luc-miR-21 sensor-bearing 293T cells. The physiological
activity of LM CSF harboring miR-21 was further confirmed by directly applying isolated
LM and HC CSF EVs to luc-miR-21 sensor-bearing A549 cells. As shown in Figure 6C, LM
CSF EV inhibited the translation of firefly luciferase in luc-miR-21 sensor-bearing A549
cells, whereas HC CSF EVs did not.

These data collectively demonstrated that LM CSF and LM CSF EVs contain functional
miR-21, indicating that this miRNA is physically incorporated into the cellular miRISC.
This event can potentiate downstream cellular oncogenic signal cascades triggered by
miR-21, which may induce LM malignancy among targeted recipient cells in patients.
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(Con). * p < 0.05, ** p < 0.01, *** p < 0.001; NS, not significant. (D) Representative images of A549 migration assays after 48 h
treatment with EVs from LM CSF (LM5 and LM7) and HC (HC7). Phase contrast microscopy images were taken with Axio
Observer (100×, Zeiss).

2.5. Effects of miR-21-Containing LM CSF EVs on the Migratory Phenotype of NSCLC
A549 Cells

To test whether miR-21 from LM CSF EVs can potentiate downstream cellular onco-
genic signal cascades, we used a migration (wound-healing) assay. First, to elucidate the
effect of miR-21 on the migration of A549 cells directly in vitro, we transfected the cells
with synthetic miRNA mimics or negative control nucleotides and performed a migration
assay. As shown in the Figure S4, the migratory phenotype of A549 cells was markedly
enhanced at the edge of the scratch at 48 h in cells transfected with synthetic miR-21-5p, but
not in those subjected to mock transfection or transfected with negative control nucleotides.
Based on this observation, we next tested the effect of LM CSF EVs on NSCLC A549 cell
motility. As shown in Figure 6D, Figures S13 and S17, the migratory phenotype of A549
cells was markedly enhanced at the edge of the scratch at 48 h in cells treated with LM
CSF EVs, compared to untreated control cells or those treated with HC EVs. These results
collectively suggested that EVs from LM CSF can promote the motility of NSCLC A549
cells in vitro, and these EVs contain a key regulator(s) of migration; thus, may be mediated
by miR-21.

2.6. Biased Expression of Piwi-Interacting RNAs and Y RNAs in EVs from LM Patient CSF

Interestingly, NGS analysis of the LM CSF EVs revealed the biased expression of Piwi-
interacting RNAs (piRNAs). piRNAs form RNA-protein complexes through interactions
with Piwi-subfamily proteins. The piRNA complexes are mostly involved in the epigenetic
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and posttranscriptional silencing of transposable elements [32]. As far as we know, this is
the first report of piRNA expression in LM CSF EVs. As shown in Figure 7, hierarchical
clustering revealed that piRNA expression could be clearly distinguished between LM CSF
EVs and HC. Our analysis showed that 35 piRNAs were significantly upregulated in LM
CSF EVs, while 19 were significantly downregulated. Our results suggested that piRNA
could be a pathogenic index that could be used to discriminate LM. The analyzed LM
samples showed similar clustering groups, whereas HC samples showed a very distinctive
pattern (Figure S5). We further used ddPCR to validate two highly ranked piRNAs among
the differentially expressed molecules. As shown in Figure 7E, hsa-piR-36340 and hsa-piR-
33415 were significantly enriched in LM CSF EVs compared with HC.
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Figure 7. Distinct expression of Piwi-interacting RNAs in EVs from LM patient CSF. Analysis of relative Piwi-interacting
RNA (piRNA) expression profile in EVs extracted from LMs and HCs. Hierarchical clustering analysis of significantly
expressed piRNA was visualized via (A) heatmap showing z score of extravesicular piRNA from HC (n = 2) and patients
with LM (n = 8) with 54 piRNA satisfying FC2 and raw p-value. (B) Count of up- and downregulated piRNA was found by
fold change and raw p-value. (C) Volcano plot shows differentially expressed piRNA in HC and LM patients with the x-axis
showing log2 fold-change and y-axis showing -log10 of the raw p-value from LM versus HC piRNA expression counts. (D)
Table displays the fold change of two piRNA in LM compared to HC ranked in the order of abundance. (E) Level of the two
piRNAs was confirmed in HC (n = 3) and LM EVs (n = 8) using ddPCR (piRNA-36340: Mann-Whitney U test, * p < 0.05;
piRNA-33415: Unpaired t-test with Welch’s correction, ** p < 0.01).

Another interesting smRNA species, Y RNAs, also showed markedly biased expres-
sion patterns between LM CSF EVs and HC. The members of this well-characterized
smRNA subpopulation act as components of the Ro60 ribonucleoprotein particle, which is
a target of autoimmune antibodies in patients with systemic lupus erythematosus [33]. Y
RNAs are also necessary for DNA replication through their interactions with chromatin
and initiation proteins [34]. In the LM CSF EVs, the number of upregulated Y RNAs (156)
was greater than that seen for miRNA or piRNA, whereas only seven Y RNAs were down-
regulated. Our data suggested that Y RNA could be very useful as diagnostic biomarkers
for LM. We used ddPCR to validate Y RNA-Y69, which was highly ranked as being differ-
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entially expressed in LM CSF EVs. As shown in Figure 8E, this confirmed that Y RNA-Y69
was significantly enriched in LM CSF EVs compared with HC CSF EVs.Cancers 2021, 13, x  13 of 23 

 

 
Figure 8. Distinct expression of Y RNAs in EVs from LM patient CSF. Analysis of relative Y RNA expression profile in 
EVs extracted from LMs and HCs. Hierarchical clustering analysis of significantly expressed Y RNA was visualized via 
(A) heatmap showing z score of extravesicular Y RNA from HC (n = 2) and patients with LM (n = 8) with 50 Y RNA that 
best satisfied FC2 value and adjusted p-value. (B) Count of up- and downregulated Y RNA was found by fold change and 
raw p-value. (C) Volcano plot shows differentially expressed Y RNA in HC and LM patients with the x-axis showing log2 
fold-change and y-axis showing -log10 of the raw p-value from LM versus HC Y RNA expression counts. (D) Table dis-
plays the fold change of a Y RNA in LM compared to HC ranked in the order of abundance. (E) The upregulated Y RNA-
Y69 expression was confirmed in HC (n = 3) and LM EVs (n = 8) using ddPCR (Mann-Whitney U test, * p < 0.05). 

2.7. Biased Expression of Essential Small RNA Subpopulations in EVs from LM Patient CSF: 
snRNA, snoRNA, vtRNA, Novel miRNA, and scRNA 

We additionally identified meaningful and essential smRNA subpopulations that 
showed markedly biased expression in our NGS analysis of LM CSF EVs versus HC. As 
shown in Figures S10 and S11, the analyzed reads were annotated for identification of 
novel miRNAs, which were predicted from mature, star, and loop sequences according to 
the RNAfold algorithm miRDeep2 [28]. In contrast to the well-identified miRNA, the po-
tential novel miRNA identified based on this analysis were largely downregulated (48, 
|fold change|≥ 2 and p-value < 0.05), with only nine exhibiting upregulation. This sug-
gested that, except for the nine cases, most of the predicted novel miRNAs may play a role 
in LM progression, opposing the function of known miRNAs. Future work is warranted 
to examine whether these predicted novel miRNAs are expressed and functional. We used 
ddPCR to validate the highly ranked upregulated novel miRNA-973. As shown in Figure 
S10, novel miRNA-973 was significantly enriched in LM EVs compared with HC. The data 
indicated that at least the upregulated novel miRNAs are processed in the LM CSF EVs 
and thus may exert positive functions in LM pathogenesis. 

Finally, we examined essential smRNAs, such as snRNA, snoRNA, vtRNA, and 
scRNA (Figures S6–S9, S11, and S12). We found that snRNA, snoRNA, and vtRNA were 
highly enriched in LM CSF EVs. Without exception, all of the identified snRNA, snoRNA, 
and vtRNA were detected to a much greater extent in LM CSF EVs compared to HC. We 
could speculate that the skewed distribution of snoRNAs in LM CSF EVs is likely a reflec-
tion of their biological function(s) in the cell, whereas the observed enrichment of several 
snoRNA fragments may be attributed to a miRNA-like cytoplasmic function. snRNA-
200C70, vtRNA-6C57F3, and scRNA-F3729, which were found to be differentially ex-
pressed in LM CSF EVs versus HC, were checked by ddPCR. As shown in Figures S6, S9, 

Figure 8. Distinct expression of Y RNAs in EVs from LM patient CSF. Analysis of relative Y RNA expression profile in
EVs extracted from LMs and HCs. Hierarchical clustering analysis of significantly expressed Y RNA was visualized via
(A) heatmap showing z score of extravesicular Y RNA from HC (n = 2) and patients with LM (n = 8) with 50 Y RNA that
best satisfied FC2 value and adjusted p-value. (B) Count of up- and downregulated Y RNA was found by fold change and
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expression was confirmed in HC (n = 3) and LM EVs (n = 8) using ddPCR (Mann-Whitney U test, * p < 0.05).

2.7. Biased Expression of Essential Small RNA Subpopulations in EVs from LM Patient CSF:
snRNA, snoRNA, vtRNA, Novel miRNA, and scRNA

We additionally identified meaningful and essential smRNA subpopulations that
showed markedly biased expression in our NGS analysis of LM CSF EVs versus HC. As
shown in Figures S10 and S11, the analyzed reads were annotated for identification of novel
miRNAs, which were predicted from mature, star, and loop sequences according to the
RNAfold algorithm miRDeep2 [28]. In contrast to the well-identified miRNA, the potential
novel miRNA identified based on this analysis were largely downregulated (48, |fold
change|≥ 2 and p-value < 0.05), with only nine exhibiting upregulation. This suggested
that, except for the nine cases, most of the predicted novel miRNAs may play a role in
LM progression, opposing the function of known miRNAs. Future work is warranted to
examine whether these predicted novel miRNAs are expressed and functional. We used
ddPCR to validate the highly ranked upregulated novel miRNA-973. As shown in Figure
S10, novel miRNA-973 was significantly enriched in LM EVs compared with HC. The data
indicated that at least the upregulated novel miRNAs are processed in the LM CSF EVs
and thus may exert positive functions in LM pathogenesis.

Finally, we examined essential smRNAs, such as snRNA, snoRNA, vtRNA, and
scRNA (Figures S6–S9, S11, and S12). We found that snRNA, snoRNA, and vtRNA were
highly enriched in LM CSF EVs. Without exception, all of the identified snRNA, snoRNA,
and vtRNA were detected to a much greater extent in LM CSF EVs compared to HC.
We could speculate that the skewed distribution of snoRNAs in LM CSF EVs is likely
a reflection of their biological function(s) in the cell, whereas the observed enrichment
of several snoRNA fragments may be attributed to a miRNA-like cytoplasmic function.
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snRNA-200C70, vtRNA-6C57F3, and scRNA-F3729, which were found to be differentially
expressed in LM CSF EVs versus HC, were checked by ddPCR. As shown in Figures S6,
S9, and S12, they were significantly enriched in LM EVs compared with HC. This suggests
that these smRNAs may contribute to LM pathogenesis.

3. Discussion
3.1. Comprehensive and Quantitative Analysis of Essential smRNA Subpopulation in EVs from
LM patient CSF

LM is generally considered to be a late complication of solid tumors [3]. LM causes
fatal cancer complications; thus its early diagnosis and monitoring are essential for effective
treatment and improved disease prognosis [2]. To date, we lack any clear biomarkers that
reflect the disease progression or molecular mechanisms of LM; this can be a major obstacle
to finding effective treatments. Therefore, efforts to identify biomarkers for monitoring
and investigating the mechanisms of the disease are critical to improve the prognosis of
LM and explore new therapeutic options. In several studies on LM, CSF cytology and
magnetic resonance imaging methods were used for diagnosis; however, these methods
are highly dependent on the examiner and are limited by reader-to-reader variability –
entailing a high risk for non-specific results [2,6]. Moreover, repeated lumbar punctures for
CSF cytology are not favorable for patients [35]. The data from this study strongly indicate
that analysis of smRNAs in CSF could be a promising approach for developing minimally
invasive assays for LM detection.

In this study, we examined CSF smRNA levels in individual LM patients as potential
markers for monitoring disease diagnosis. This is the first comprehensive and systemic
analysis of the smRNA molecular profiling in a standard set of CSF samples from individual
LM and non-LM patients. The identification of specific CSF smRNAs in this study suggests
new ways to diagnose and monitor LM and may contribute to efforts to explore the
mechanisms of LM.

The use of smRNA as LM biomarkers could offer several benefits. First, smRNAs,
essentially miRNAs, are functional in the biological system, and thus could be easily
applied for biochemical and physiological assays [13,20]. Here, we demonstrated that
LM CSF EV miRNA are physiologically functional using a specific miR-21 biosensor and
various cell-based assays. Second, smRNAs have sequence specificity and may be amplified
with various biochemical assays, making them suitable for disease-specific diagnostics [20].
Third, smRNAs are useful because they are typically less than 200-bp in size, and thus do
not need to be fragmented prior to library preparation [36,37]. Finally, storage conditions
do not influence the quality or distribution of the recovered smRNAs [38]. Therefore,
smRNA could be better biomarkers for the diagnosis of LM compared to macromolecules
such as large RNA, DNA, proteins, etc.

Our approach and quantitative-qualitative analyses of the smRNAs from LM CSF EVs
are superior to those of previous reports, as indicated by the following lines of evidence.
First, in this study, we set up a small-scale (2–4 mL of CSF) pipeline for analyzing the
entire small RNA transcriptome of CSF EVs. We successfully conducted RNA-sequencing
of extravesicular smRNAs using 3′-end polyadenylation-based SMARTer smRNA-Seq
commercial kit. We tested around 10 other kits for total RNA isolation that did not pass
library quality control and/or were not successful for library construction. In addition,
this protocol, which does not require laborious ultracentrifugation or large volumes of CSF,
may be practical in the clinical setting.

Previous reports showed that conventional adaptor-based approaches yielded biased
results for smRNA populations [37]. Compared to the conventional method, the polyadeny-
lated method offers easier construction of the smRNA library, an improved success rate for
library construction, and a decreased risk for bias due to the 5′ and 3′ end nucleotide com-
position. To our knowledge, this is the first report of the global identification of smRNAs
from the LM CSF EVs of individual patients. In addition, our study utilized small-scale
volume of CSF, unlike previous studies in which samples were pooled or required large
volumes of CSF [13]. Yagi et al. previously performed NGS-based miRNA profiling of CSF
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exosomes. However, the authors used CSF from several healthy volunteers, did not analyze
disease-related smRNAs, and examined only miRNAs. Here, we systemically analyzed
the extravesicular smRNA profile at an individual level. In this way, we may achieve
our goal of efficient personalized and diseased-oriented analysis of smRNA populations.
In addition to relevant miRNAs, we first analyzed and identified other essential smRNA
subpopulations, including piRNA, Y RNA, snRNA, snoRNA, and vtRNA, in the LM CSF
EV context.

Second, the biased expression of LM CSF extravesicular smRNA was systemically,
biochemically, and functionally validated through various biochemical and cellular ap-
proaches. Interestingly, we found that the potential LM pathogenesis-related miRNAs were
highly upregulated in LM CSF EVs. Our study also revealed that the ratios of different
types of extravesicular smRNAs differed between LM patients and HC. Furthermore,
identification of new smRNA population will increase our knowledge of LM.

Finally, the presence of smRNAs separated and identified on a large scale was quanti-
tatively confirmed using ddPCR (also see Figure S14 for normalized expression) as well
as qRT-PCR. These validated smRNA species, which may be analyzed using simple and
precise biochemistry, could potentially be used as cost-saving and efficient biomarkers. We
urgently need new strategies for the molecular diagnosis and liquid biopsy of LM using
simple and effective biochemical approaches.

3.2. Implication of miRNAs for LM Pathogenesis and as Essential Biomarkers for LM Diagnosis

Through the analysis of smRNA populations via a polyadenylation-mediated library
construction method, we identified 46 miRNAs that showed meaningful differences be-
tween LM CSF EVs and HC. We biochemically validated the differential expression of
hsa-miR-21-5p, hsa-miR-19b-3p, hsa-miR-25-3p, hsa-miR-200c-3p, hsa-miR-19a-3p, and
hsa-miR-34b-3p, which were significantly higher in LM patients than in HCs. The top-
scoring miRNA, miR-21, is intriguing since it has been suggested as a critical biomarker of
various cancers and is generally considered to act as an oncogene by negatively regulating
various tumor-suppressive target mRNAs [39]. For example, miR-21 plays significant roles
in central nervous system (CNS)-related tumors [40]. Our group and others previously
showed that miR-21 expression is tightly correlated with the malignancy of glioma [31,41],
and we have recently shown that miR-21 exhibited significant biased expression after
chemotherapeutic treatment [8]. Thus, the previous and present findings suggest that
miR-21 could be an essential biomarker for the treatment response of LM. Moreover, our
experimental results suggest that miRNAs, especially miR-21, are key components of LM
pathogenesis and characterization.

We systemically validated the function of extravesicular miR-21 in LM CSF via our
newly developed miR-21 sensor [31]. Using this sensitive system, we were confident that
LM CSF contains functional miRNAs, not just meaningless smRNA fragments. This was
also confirmed with isolated EVs. Our data indicated that LM CSF EVs, which contain
higher level of functional miR-21, positively affected the migratory phenotype of NSCLC
A549 cells, whereas HC CSF EV did not.

Another top-scoring miRNA, miR-19b, is known to enhance proliferation and apopto-
sis resistance via the EGFR signaling pathway by targeting PP2A and BIM in non-small cell
lung cancer [42]. miR-200c, which is a member of the miR-200 family, regulates epithelial-
mesenchymal transition by downregulating ZEB1/2 and upregulating E-cadherin [43].
miR-200c also has important functions in proliferation, invasion, and metastasis [44]. Fur-
thermore, miR-200c is a well-established prognostic and diagnostic marker in different
cancer types. Another study investigating serum miRNAs as cancer biomarkers showed
that miR-200c is associated with NSCLC, suggesting that it could potentially be useful for
diagnosis [45].

Our GO analyses showed that the target genes of 43 miRNAs, including top-scored
miR-21, were involved in regulating cell migration and cell differentiation. Based on the
existing literature and our experimental results, we speculate that miR-21 containing 43
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miRNAs may have a critical function for LM pathogenesis [8,17]. The increase of miRNA
expression may activate proliferation, invasion, and migration, which are closely related to
cancer metastasis mechanisms; thus promoting the occurrence of LM. We also performed
KEGG pathway analysis for the target genes of the 43 miRNAs and found that they were
involved in the pathways related to glioma, small cell lung cancer, pathways in cancer, and
miRNAs in cancer. Many of these pathways have close connections to CNS metastasis, and
abnormal signaling is likely to play a crucial role in the development of LM. Accumulating
evidence has demonstrated that the activation of MAPK, PI3K-Akt, and HIF-1 signaling
pathways are important for cancer progression. Further molecular investigations are
needed and such work will likely provide new perspectives on the mechanisms of LM and
suggest new intervention methods in LM treatment.

3.3. Implication of smRNA Subpopulations for LM Pathogenesis and as Potential Biomarkers for
LM Diagnosis: piRNA, Y RNA, and other smRNAs

One of the smRNAs that showed significantly biased expression in our NGS analysis
was piRNA. The piRNAs comprise the largest class of smRNA molecules expressed in
animal cells. They are around 26–31-nt long, and form RNA-protein complexes through
interactions with Piwi-subfamily proteins [46]. The formed piRNA complexes are mostly
involved in the epigenetic and posttranscriptional silencing of transposable elements, but
can also contribute to regulating other genetic elements in germline cells [32]. Consistent
with our data, a growing number of studies have shown that piRNA and Piwi proteins,
which are abnormally expressed in various cancers, may serve as novel biomarkers and
therapeutic targets. However, the functions of piRNAs in cancer and their underlying
mechanisms are not fully understood [47]. As shown in Figure 7, hierarchical clustering
of piRNA expression yielded clearly different patterns in LM CSF EVs compared with
HC. Thirty-five piRNAs were significantly upregulated and 19 piRNAs were significantly
downregulated in LM CSF EVs versus HC. Notably, our hierarchical clustering suggested
that piRNAs could be used as an index to discriminate LM. To our knowledge, this is the
first study to show that biased expression piRNA in LM CSF EVs. Therefore, the essential
role of piRNA for the LM complication should be pursued in the near future.

Another intriguing smRNA subpopulation that was highly upregulated in EVs from
LM CSF is Y RNAs. Y RNAs are highly conserved non-coding RNAs of ~100-nt in size.
These smRNAs are components of the Ro60 ribonucleoprotein particle, which is a target
of autoimmune antibodies in patients with systemic lupus erythematosus. These RNAs
are involved in various basic intracellular processes, such as DNA replication and RNA
quality control [33]. Several studies have reported the abundant presence of Y RNAs in cell
culture EV and body fluids. However, relatively little work has focused on the function and
biomarker potential of extracellular Y RNAs. Notably, Y RNAs are overexpressed in some
human tumors and required for cell proliferation, and miRNA-sized breakdown products
of Y RNAs may be involved in other unknown pathological conditions [34]. As shown
in Figure 8, hierarchical clustering showed that Y RNA expression is also distinctive in
LM CSF EVs compared with HC. Our results revealed that 156 Y RNAs were significantly
upregulated in LM CSF EVs, but only seven Y RNAs were significantly downregulated.
The essential role of Y RNA for the LM complication also should be pursued in near future.

snoRNAs are a class of smRNA molecules that primarily guide chemical modifications
of other RNAs, mainly rRNAs, tRNAs, and snRNAs. snoRNAs can function as miRNAs. It
has been shown that human ACA45 snoRNA can be processed into a 21-nt long mature
miRNA by Dicer [48]. Bioinformatic analyses have revealed that putatively snoRNA-
derived, miRNA-like fragments occur in different organisms [49]. Mutations and aberrant
expression of snoRNAs have been reported in cell transformation, tumorigenesis, and
metastasis, indicating that snoRNAs may serve as biomarkers and/or therapeutic targets
for cancer [50]. During LM development, aberrant expression of snoRNA may contribute
to LM-related complications. Alternatively, the miRNA-like activity of snoRNA may affect
recipient cells upon LM CSF EV delivery.
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snRNAs represent a class of small RNA molecules that are found within the splicing
speckles and Cajal bodies of the cell nucleus in eukaryotic cells. snRNA average ~150-nt in
length, and their primary function is in the processing of pre-messenger RNA (hnRNA) in the
nucleus and the U1 spliceosomal RNA is recurrently mutated in multiple cancers [51,52].

A major obstacle in cancer treatment is the development of chemoresistance, and
vtRNAs are known to play a role in this phenomenon. vtRNAs may facilitate the export
of certain chemotherapeutic drugs through binding-site specific interactions. In addition,
recent studies suggest that vtRNAs may inhibit drug activity through interfering with drug
target sites; thus conferring drug resistance during chemotherapy of LM [53].

With the exception of miRNAs, the smRNA subclasses have limited biochemical
analysis tools and functional assays, making it difficult to functionally verify their cellular
roles in LM. Furthermore, the lack of an animal model for LM further complicates the
research. In the near future, we can hope that new proper model systems will be developed
to facilitate the study of LM.

4. Materials and Methods
4.1. Collection of Clinical Samples and Preparatory Process

CSF samples were collected after approval of Institutional Review Board in National
Cancer Center, Korea (NCC2014-0135) in accordance with the ethical guidelines outlined
in the Declaration of Helsinki. The informed consent was obtained from all patients. CSF
samples were obtained from each patient before the lumbar, intraventricular, and cisternal
puncture. Obtained CSF was centrifuged within 1 h at 2000× g for 20 min for removing
cells and cellular debris at room temperature. After first centrifugation, CSFs were further
centrifuged at 10,000× g for 30 min and kept frozen at −80 ◦C.

4.2. ExoView Analysis of EVs in CSFs

The physical and biological properties of EVs in CSF samples were characterized by
using ExoView R-100 (NanoView Biosciences, Boston, MA, USA) and ExoView Tetraspanin
kits (NanoView Biosciences) including anti-CD81, anti-CD63 and anti-CD9 immobilized
chips, labeling agents, washing solutions (solution A and B) and blocking agent (NanoView
Biosciences). The three-capture antibody spots in each tetraspanin case were arrayed in
one chip thus, average and standard deviation could be measured in one chip. Briefly, the
35 µL of diluted sample with solution A was dropped on the ExoView Tetraspanin chip
and incubated overnight (16 h) at room temperature (RT). After the incubation process, the
sample loaded chip was washed by 1 mL of solution A for 3 min and this was repeated by
three times. Subsequently, the EVs on the chip were labeled by using 250 µL of a mixture of
anti-CD81/Alexa Fluor 555 (green), anti-CD63/Alexa Fluor 647 (red), and anti-CD9/Alexa
Fluor 488 (blue) and incubated for 1 h at RT to measure the colocalization of tetraspanin on
the surface of EVs. In this case, the fluorescein-labeled antibody was diluted in mixture
of solution A and blocking solution with 1:600. Finally, the chip was rinsed by 1 ml of
solution A and B and dried at RT. The EV captured chip was scanned by ExoView R-100
via nScan software (NanoView Biosciences) and data were analyzed through NanoViewer
2.9 software (NanoView Biosciences).

4.3. Isolation of EVs from LM Patient CSFs

EVs were isolated from CSF of LM and HC individuals. The CSF samples were
centrifuged twice and the cleared samples were used for the isolation of EVs with miR-
CURY Exosome Cell/Urine/CSF Kit (#300102, Exiqon) according to the manufacturer’s
instructions. In brief, CSF sample gently mixed Precipitation Buffer B, then the mixtures
were vortexed and incubated for 60 min at 2–8 ◦C for precipitating exosome pellet. After
centrifugation at 10,000× g for 30 min at 20 ◦C, then the supernatant was removed.
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4.4. EV RNA Extraction and Measurement

EV RNA extraction was performed using the miRCURY RNA Isolation Kit - Cell &
Plant (#300110, Exiqon) following the manufacturer’s instructions. In brief, exosome pellet
was lysed with the provided lysis solution supplemented with 96–100% ethanol, and the
mixture was loaded to the column. The EV RNA was washed and eluted with 15–50 µL of
RNase-free water. The extracted RNA concentration was calculated by Quant-IT RiboGreen
(Invitrogen; Thermo Fisher Scientific, Waltham, MA, USA). RNA size was confirmed using
Agilent RNA 6000 Pico Kit and Small RNA Kit on Agilent 2100 Bioanalyzer (Agilent
Technologies, Waldbronn, Germany).

4.5. Small RNA Library Construction and Sequencing

The 10 ng of RNA isolated from each sample was used to construct sequencing
libraries with the SMARTer smRNA-Seq Kit for Illumina (Takara Bio Inc.), following the
manufacturer’s protocol. Input RNA was first polyadenylated in order to provide a priming
sequence for an oligo(dT) primer. cDNA synthesis was primed by the 3′ smRNA dT Primer,
which incorporates an adapter sequence at the 5′ end of each first-strand cDNA molecule.
In the template-switching step, PrimeScript Reverse Transcriptase utilized the SMART
smRNA Oligo as a template for the addition of a second adapter sequence to the 3′ end of
each first-strand cDNA molecule. In the next step, full-length Illumina adapters (including
index sequences for sample multiplexing) were added during PCR amplification. The
forward PCR primer was then bound to the sequence added by the SMART smRNA Oligo,
while the reverse PCR primer was bound to the sequence added by the 3′ smRNA dT
Primer. The amplified libraries were purified from 6% Novex TBE-PAGE gels (Thermo-
Fisher Scientific) to excise the fraction over 138-bp (over than 18-bp of cDNA plus 120-bp
of adaptor). The resulting library cDNA included sequences required for clustering on
an Illumina flow cell. The libraries were gel purified, and validated by checking the
size, purity, and concentration on the Agilent 2100 Bioanalyzer. The libraries were then
quantified using qPCR according to the qPCR quantification protocol guide (KAPA Library
Quantification kits for Illumina Sequencing platforms; Roche, Basel, Switzerland) and
qualified using the TapeStation D1000 ScreenTape (Agilent Technologies). The libraries
were pooled in equimolar amounts, and sequenced on an Illumina HiSeq 2500 (Illumina,
San Diego, CA, USA) instrument to generate 101 base reads. Image decomposition and
quality values calculation were performed using the modules of the Illumina pipeline.
Adapter trimming was assessed using the Cutadapt program.

4.6. Data Analysis of smRNA Sequencing

Uniquely clustered reads were then sequentially aligned to reference genome, miR-
Base v21 and non-coding RNA database Rfam 9.1 to identify known miRNAs and other
type of smRNAs. Hierarchical cluster heatmaps, dendrograms, volcano plots, and multidi-
mensional scaling (MDS) of extracted EV smRNA were performed by Macrogen (Seoul,
Korea). Various hierarchical clustering analysis was performed using complete linkage
and Euclidean distance as measures of similarity in differentially expressed patterns of
the smRNA with the criteria of |fold change|≥ 2 and p-value < 0.05. Distance matrices
were processed by MDS to obtain a dimensionally reduced map of gene coordinates with
distance between plots as a measure of similarity. All data analysis and visualization were
performed using R 3.6.3 (www.r-project.org) (Table S4).

4.7. Synthesis of smRNA cDNA and Droplet Digital PCR (ddPCR)

Approximately 2 ng of purified total EV RNA was reverse transcribed to generate
cDNA with TaqMan Advanced miRNA cDNA Synthesis Kit (A28007, Applied Biosystems,
Foster City, CA, USA) according to the manufacturer’s instruction. Four µL of cDNA was
mixed ddPCR Supermix for Probes (No dUTP, Bio-Rad Laboratories, Inc., Hercules, CA,
USA) and TaqMan Advanced miRNA Assay probes (Applied Biosystems; hsa-miR-21-
5p, hsa-miR-19-3p, hsa-miR-25-3p, hsa-miR-200c-3p, hsa-miR-19a-3p, and hsa-miR-34b-
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3p). Four µL of cDNA was mixed with the QX200 ddPCR EvaGreen Supermix (Bio-Rad
Laboratories, Inc.) and oligomers for the following smRNAs; hsa-miR-423-5p, hsa-miR-
1273g-3p, hsa-miR-4271, piRNA-33415, piRNA-36340, Y RNA-Y69, snRNA-200C70, vtRNA-
6C57F3, novel miRNA-973, and scRNA-F3729 (Table S3). Each 20 µL of reaction mixture
was mixed with 70 µL of droplet generation oil and partitioned into up to 20,000 nL-sized
droplets by a QX299 droplet generator (Bio-Rad Laboratories, Inc.). Final 40 µL droplet
mixture was used for the PCR reaction following cycling protocol. ddPCR Supermix for
probes; 95 ◦C for 5 min (DNA polymerase activation), followed by 40 cycles of 95 ◦C for
30 s (denaturation) and 55 ◦C for 1 min (annealing) followed by post-cycling steps of 98 ◦C
for 10 min (enzyme inactivation) and an infinite 4 ◦C hold by Applied Biosystems 7900HT
Sequence Detection System. QX200 ddPCR EvaGreen Supermix; 95 ◦C for 5 min (DNA
polymerase activation), followed by 39 cycles of 95 ◦C for 30s (denaturation) and 60 ◦C for
1 min (annealing) followed by post-cycling steps of 1 cycle of 4 ◦C for 5 min, and 1 cycle of
90 ◦C for 5 min and an infinite 4 ◦C hold. Cycling between the temperatures was set to a
ramp rate of 2.5 ◦C/s. Annealing temperature of each oligomer set was optimized in QX200
ddPCR EvaGreen Supermix-based PCR reaction. The amplified PCR product of the nucleic
acid target in the droplets were quantified in the FAM channels using QC200 Droplet
Reader (Bio-Rad Laboratories, Inc.) and analyzed using QuantaSoft v.1.7.4.0917 software
(Bio-Rad Laboratories, Inc.). The concentration (smRNA copies/µL) value generated by
QuantaSoft was converted to smRNA copies/nL of CSF. The Mann-Whitney U test and
unpaired t-test with Welch’s correction were used to compare significant differences in
each smRNA expression between two groups according to the result of normality test
(Shapiro-Wilk test). * p-value < 0.05, ** p-value < 0.01.

4.8. The Gene Ontology of Biological Processes and the Kyoto Encyclopedia of Genes and
Genomes Pathways

The putative target genes of miRNA were searched from miRTargetLink [54] providing
a network algorithm based on the miRTarBase and experimentally validated interactions.
The Gene Ontology (GO) of biological processes and the Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways were computed using DAVID Bioinformatics [55]. 455
target genes of 43 miRNAs were identified from miRTargetLink database and gene set
enrichment analysis was assessed.

4.9. Luciferase Assay of miR-21 Sensor-Bearing Cell Lines

Two luminescence-based miR-21 sensor-bearing cell lines (293T and A549) were estab-
lished by lentiviral infection, and then harvested 16–20 h after treatment with designated
CSFs or CSF EV concentrates. Cells were lysed with Passive Lysis Buffer (Promega, Madi-
son, WI, USA), and the aliquot of lysates was analyzed by measuring luminescence signals
with Dual-Luciferase Reporter Assay System (Promega) in a reader (SpectraMax L, Molec-
ular Devices, San Jose, CA, USA). The miR-21 sensor signal from firefly luciferase was
normalized with that from Renilla luciferase. The normalized quantification data was
used in comparing the relative luciferase activities. Data are presented as the mean ±
standard deviation determined from at least three independent experiments. Differences
were assessed by two-tailed Student’s t-test using Excel software (Microsoft, Redmond,
WA, USA). * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001; NS, not significant.

4.10. Migration Assay

Human NSCLC A549 cells were plated on 6-well plates at a density of 6 × 105 per
well and cultured up to 80–90% confluence for 2 days before scratching. Then 4–6 lines
were scratched in each confluent monolayer with a sterile 200 µL tip. Dislodged cells
were removed by washing with warm Dulbecco’s phosphate-buffered saline, and the
remaining cells were replenished with fresh medium. A representative line with similar
width were selected and photographed in each group at starting point, and then treated
with concentrated EV dissolved medium or transfected with miR-21 mimics. After 24 h
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and 48 h, snapshots of the scratch were taken with the microscope (100×) (Axio Observer,
Zeiss, Oberkochen, Germany).

5. Conclusions

We reveal herein the molecular profile of CSF extravesicular smRNAs that are poten-
tially associated with LM pathogenesis. We successfully identified various LM-associated
smRNA populations that showed significantly biased expression patterns in LM. Our
extensive NGS analysis and relevant biochemical and cell-based validations demonstrated
that miRNAs and the other analyzed smRNA subpopulations may be useful targets for
the development of therapeutic and diagnostic strategies for LM. Further investigation
is critically needed to address the potential of extravesicular smRNAs as a novel phar-
macological target for LM and LM-related complications. Additional experiments and
bioinformatic analyses may reveal novel means to explore the underlying mechanisms of
LM and provide additional promising targets for treating LM patients.
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EVs Extracellular vesicles
LM Leptomeningeal metastasis
NTA Nanoparticle tracking analysis
CSF Cerebrospinal fluid
ddPCR Droplet digital polymerase chain reaction
NSCLC Non-small cell lung cancer
smRNA Small non-coding RNA
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DAVID Database for Annotation, Visualization and Integrated Discovery
KEGG Kyoto Encyclopedia of Genes and Genomes
miRISC miRNA-induced silencing complex
MDS Multidimensional scaling
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Simple Summary: Lung cancer is by far the main cause of cancer-related deaths among both men and
women. Early detection of malignant nodules and non-invasive monitoring of disease status is essential
to increase the chance of cure. In this study, we analyzed the frequency and the biological features of
circulating tumor cells, i.e., cells released from the tumor and in transit in the bloodstream, in patients
with a diagnosis of non-small cell lung cancer undergoing surgical resection, with the aim to develop a
blood-based diagnostic test and to promptly identify patients at risk of post-operative disease recurrence.

Abstract: Background: Non-small cell lung cancer (NSCLC) frequently presents when surgical inter-
vention is no longer feasible. Despite local treatment with curative intent, patients might experience
disease recurrence. In this context, accurate non-invasive biomarkers are urgently needed. We report
the results of a pilot study on the diagnostic and prognostic role of circulating tumor cells (CTCs) in
operable NSCLC. Methods: Blood samples collected from healthy volunteers (n = 10), nodule-negative
high-risk individuals enrolled in a screening program (n = 7), and NSCLC patients (n = 74) before
surgery were analyzed (4 mL) for the presence of cells with morphological features of malignancy
enriched through the ISET® technology. Results: CTC detection was 60% in patients, while no target
cells were found in lung cancer-free donors. We identified single CTCs (sCTC, 46%) and clusters of
CTCs and leukocytes (heterotypic clusters, hetCLU, 31%). The prevalence of sCTC (sCTC/4 mL ≥ 2)
or the presence of hetCLU predicted the risk of disease recurrence within the cohort of early-stage
(I–II, n = 52) or advanced stage cases (III–IVA, n = 22), respectively, while other tumor-related factors
did not inform prognosis. Conclusions: Cancer cell hematogenous dissemination occurs frequently
in patients with NSCLC without clinical evidence of distant metastases, laying the foundation for
the application of cell-based tests in screening programs. CTC subpopulations are fine prognostic
classifiers whose clinical validity should be further investigated in larger studies.

Keywords: circulating tumor cells; lung cancer; early diagnosis; cancer biomarkers
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1. Introduction

Lung cancer is the tumor with the highest fatality rate worldwide, both in males
and females [1], due to its aggressiveness and biological heterogeneity, with non-small
cell lung cancer (NSCLC) representing the most frequent histological subtype [2,3]. Im-
portantly, since approximately 75% of patients present symptoms when the disease has
advanced locally or disseminated at distant sites [4], lung cancer mortality is also a large
consequence of late diagnoses. Therefore, early detection is a key for improving patient’s
survival [5], and the US National Lung Screening Trial (NLST), the Nelson study and other
non-randomized trials have actually demonstrated a significant reduction in mortality
(20–30%) and morbidity upon screening programs based on a thoracic scan by low-dose
computed tomography (LDCT) [6,7]. At present, uncertainties on high costs, risk of ra-
diation exposure and false positives are obstacles to the large-scale implementation of
such screening in Europe [8–10], and controversies exist in the management of subjects
with indeterminate or premalignant nodules, which have to be monitored for a long time,
and in some cases biopsied, increasing the risk of subsequent morbidities [11]. Moreover,
notwithstanding the considerable advantages for patients who are diagnosed with the
early-stage disease compared to those with unresectable tumors [12,13], unfortunately, 30%
to 50% of cases who receive an indication for local treatment experience disease recur-
rence and die despite surgery with curative intent [14,15]. Lung cancer still lacks accurate
biomarkers, and staging is no longer considered an accurate prognostic factor since patients
with the disease at the same stage may undergo recurrence with variable incidence [16,17].
In this context, both non-invasive diagnostic tests and novel prognostic and predictive
biomarkers are urgently needed to better stratify patients at risk of recurrence upon surgery
and adjuvant therapies [18–20].

The measurement of blood biomarkers is an attractive approach to monitor cancer ap-
pearance and evolution: (i) suitable to be repeated, (ii) minimally invasive and (iii) believed
to represent the systemically diffused expression of tumor heterogeneity [21–23]. Among
all possible non-invasive biomarkers, circulating tumor cells (CTCs) are largely informative
as they represent cancer cells in transit in blood, with the expected ability to re-seed the
site of origin and/or to colonize distant organs [24], and which can be enumerated and
characterized at DNA, RNA, protein and morphological level, thus providing access to a
considerable amount of information. Importantly, hematogenous dissemination is now
considered an early event in tumor progression [25], and CTCs were actually observed in
the blood of patients without clinically detectable metastases in several solid tumors [26].
In lung cancer, a seminal work demonstrated that CTC analysis with the Isolation by
Size of Epithelial/Tumor cells (ISET®) technology, which enables the vast majority of
hematopoietic cells to be excluded by blood sample filtration through a porous membrane,
can anticipate the detection of malignant nodules by computed tomography scan in pa-
tients with chronic obstructive pulmonary disease (COPD) who had eventually developed
stage IA tumor [27], fostering the introduction of cell-based tests in diagnostic trials.

CTCs can be enriched and detected by several techniques based on the physical and
biological differences between cancer cells and blood cell types; however, accurate detection
is hampered by their rarity and phenotypical heterogeneity [28]. Size-based enrichment of
CTCs coupled to cytomorphological analysis are unbiased with respect to the expression
of protein markers and may reach a sensitivity of one cell per blood volume [29,30]. On
the basis of these considerations, we have analyzed blood samples of lung cancer-free
individuals and operable NSCLC patients before surgery, using the ISET® technology.
Previous works in early-stage NSCLCs demonstrated that CTCs can be observed by ISET®

in about 50% of patients and that they have prognostic significance in the preoperative
setting [31,32], while in a multicentric screening trial, CTC analysis was able to identify
only 26% of lung cancers detected at first LDCT scan [33].

Here, we have described atypical cells and searched for cells with morphological
features of malignancy upon staining with standard cytological colorants, with the aim
to assess the prognostic significance of CTC count and possible CTC subpopulations in
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operable NSCLC and to further explore the applicability of a CTC-based test in screening
programs by comparison with a cohort of lung cancer-free individuals.

2. Materials and Methods
2.1. Study Design

We designed and carried out a prospective observational study, following the STROBE
guidelines and the approval by the Ethics Committee of Humanitas Research Hospital in
Rozzano (Milan, Italy). Signed informed consent was obtained from all patients. Consecu-
tive patients with a confirmed diagnosis of NSCLC, aged 18 years or older, not pregnant,
treatment naïve, without prior cancer detected within the previous 5 years or a second
malignancy if there was evidence of active disease and candidate to surgical resection
were enrolled from January 2017 to September 2018 and admitted in the Thoracic Surgery
Division of Humanitas Cancer Center. During this phase of the study, blood samples
were collected from lung cancer patients detected outside the smoker’s health multiple
action (SMAC) screening program, the same day or the day before surgical intervention.
Blood samples for CTC analysis were also collected from high-risk individuals enrolled in
the SMAC screening program before the LDCT scan, starting from May 2019. Inclusion
criteria were: heavy smokers, i.e., ≥30 packs per year, for more than 30 years, or former-
smokers aged 55 years or older, who had ceased smoking within the 15 years prior to
enrollment in the study, absence of symptoms of lung cancer, such as worsening of cough,
hoarseness, hemoptysis and weight loss. Exclusion criteria were: previous diagnosis of
lung cancer, extrapulmonary cancer history in the last 5 years (excluding in situ tumors
or skin epidermoid tumor), chest CT scan performed in the last 18 months, severe lung or
extrapulmonary diseases that may preclude or invalidate appropriate therapy in case of
diagnosis of malignant pulmonary neoplasia. CTC analysis was performed on individu-
als without LDCT-detected pulmonary nodules. Blood samples from a group of healthy
volunteers aged 30–50 years were analyzed as a negative control to optimize the target
cell identification. The data were collected by a review of electronic medical records. The
TNM staging manual of the American Joint Committee on Cancer (AJCC) 8th edition was
applied. Cases considered for survival analyses include patients whose disease recurrence
or death was clearly documented and attributed to NSCLC, while patients whose status
was not available were excluded.

2.2. Blood Collection and CTC Enrichment

Samples of peripheral venous blood were drawn from patients or lung cancer-free
donors using a 21G needle, collected in K2EDTA BD Vacutainer® tubes (Becton Dickinson
Italia, Milan, Italy), preserved at room temperature under gentle agitation and processed
within 1.5 h using the Isolation by Size of Epithelial/Tumor cells (ISET®) technology
(Rarecells® Diagnostics, Paris, France). Briefly, 10-mL blood samples were diluted 1:10
with a proprietary Rarecells® Buffer, which lysates red blood cells, and fixed with 37%
formaldehyde solution (Sigma-Aldrich, St. Louis, MO, USA) at a final concentration of
about 0.7% for 10 minutes and under gentle agitation. The blood was filtered through a
filtration block containing a polycarbonate membrane, which hosts ten porous filter spots
(8-µm-diameter cylindrical pores), each spot representing the filtration product of 1 mL of
blood. The membranes were stored at 4 ◦C until cytological staining.

2.3. CTC Detection Method and Identification Criteria

Four ISET membrane spots per sample, which are the equivalent of 4 mL of blood,
were stained using May–Grünwald and Giemsa colorants following these steps: incubation
with a pure May–Grünwald solution (Sigma, St. Louis, MO, USA) for 5 min, then with
May–Grünwald 50% diluted in distilled water for 5 min and finally with a Giemsa solution
(Sigma) 10% diluted in distilled water for 20 min. Stained membranes were mounted
with Organo/Limonene MountTM mounting medium (Sigma) and examined under a
bright-field microscope (Olympus BX51) using a 10× objective. Areas of interest were
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subsequently digitalized at a 40× magnification for cytomorphological analysis. All images
were analyzed by a referral cytopathologist, without knowledge of disease status and
outcome, on the basis of the classical morphological criteria of malignancy, also described
by Hofman and colleagues [34], and other morphological criteria to define populations
of non-malignant circulating cells, as reported by Wechsler [35]. Images of atypical cells
recorded during the analysis of a training set of healthy volunteers were also taken into
account to exclude cells with uncertain malignancy. CTCs were defined as cells presenting
with a nucleus-to-cytoplasm ratio >0.75 and nucleus diameter >20 µm, and with at least one
of the following characteristics: nuclear border irregularities or nuclear hyperchromasia.
Clusters were defined as groups of at least two CTCs or groups of at least one CTC and at
least another cell type without features of malignancy, juxtaposed or in direct contact at the
cell membrane level. Clusters of cells with homogenous chromatin staining and nucleus-to
cytoplasm ratio <0.70, generally oval-shaped, were defined as clusters of epithelial-like
cells. Large macrophage-like cells were defined as cells with a longer diameter >30 µm,
with low nucleus-to-cytoplasm ratio, abundant pale basophilic cytoplasm and showing
several cell shapes, such as fusiform, tadpole-like, round or oblong. Naked nuclei were
defined as hyperchromatic and irregularly shaped nuclei with a longer diameter >20 µm
and without apparent cytoplasm. Samples were called CTC-positive when at least one
CTC was observed in a total of four filter spots, which corresponds to 4 mL of blood. All
samples were considered evaluable for cytomorphological analysis according to cellularity,
the prevalence of damaged cells and staining quality.

2.4. Spike-in Experiments

A549 ATCC® CCL-185™and NCI-H460 [H460] ATCC ® HTB-177™ lung cancer cell
lines were kindly provided by the European Institute of Oncology in Milan. Cells were
propagated according to the instructions provided by the American Type Culture Collection
(Manassas, VA, USA). Before performing spike-in experiments, the cells were detached
with Trypsin-Versene® solution (Lonza, Basel, Switzerland), counted using the Trypan Blue
0.4% solution as a vital dye exclusion assay (viability >99% in all tests) and injected in
10 mL of blood collected from healthy volunteers at a dilution of 1000 cells per milliliter
of blood (i.e., 1000 cells per membrane spot). The spiked-in samples were incubated for
30 min at room temperature under gentle agitation until chemical fixation and filtration as
described before. The membranes were stained with Hematoxylin (Histo-line Laboratories
Srl, Milan, Italy) for 3 min and Eosin Y aqueous solution (Histo-line Laboratories Srl) for
1 min, or with May–Grünwald and Giemsa solutions (Sigma) as described before and
observed at the Olympus BX51 under a 20× magnification objective.

2.5. Statistical Analysis

Associations between categorical variables were tested by Fisher’s exact test using
contingency tables. Differences in discrete variables were tested using the Mann–Whitney
and Kruskal–Wallis test. Linear regression analysis and Pearson’s correlation coefficient
r were used to estimate the correlation between cell numbers and age. Cox proportional-
hazards regression was used to investigate the prognostic role of CTC status or number
on recurrence-free survival, with relative hazard ratios (HR) and 95% confidence interval
(CI). Significance in the probability of time-to-event was tested by log-rank test. Each
selected factor was investigated in univariable analysis. All tests for the comparison of
experimental groups were performed using GraphPad Prism, version 7.04. Survival and
Cox regression analyses were performed, and Kaplan–Meier plots were constructed using
MedCalc, version 12.7, and SPSS, version 26.0, respectively. All tests were two-sided, and
significance statements refer to a p-value < 0.05.
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3. Results
3.1. Cancer Cell Hematogenous Dissemination Is a Frequent Event in NSCLC Patients without
Clinical Evidence of Metastasis

We performed the prospective collection of blood samples before surgical intervention
(n = 74), and we analyzed blood samples of young volunteers (n = 10) and high-risk lung
cancer-free individuals (n = 7), as assessed by LDCT as negative controls (Table 1). The
number of cases locally treated with curative intent was 32, 20 and 17 for stages I, II and
III, respectively. Five patients had stage IV disease at baseline: three underwent only
diagnostic surgical procedure at pleural or lung nodules, while two underwent surgery
with radical intent, one case presenting with a big, excavated lung lesion with the paraneo-
plastic syndrome and no possibility to undergo chemotherapy, the other case underwent
segmental resection plus resection of a local pleural lesion with partial decortication for
intraoperative diagnosis of a small pleural metastasis. In the control cases, cells with
features of malignancy were not observed, while some nuclei larger than 20 µm, hyper-
chromatic or with heterogeneous chromatin stain, without apparent cytoplasm, sometimes
overlapping, were found in 7 out of the 17 (41%) cases (Supplementary Figure S1). Images
were digitalized and taken into account during the morphological analysis of patients’
blood samples in order to exclude indeterminate atypical figures and avoid misleading
interpretations. Of the total population of NSCLC patients, 44 cases (59.5%) were called
CTC-positive, as they had at least one cell with clear features of malignancy detected in
4 mL of blood, 57.5% with stage I–III and 80% with stage IVA tumor (p-value = 0.4922). The
CTC status did not correlate with patient demographics nor with smoking habits, as also
with pathologic tumor stage, histology and invasiveness features, except for a statistically
significant higher CTC positivity rate observed in cases without peritumoral neoplastic
angioinvasion. Interestingly, the proportion of CTC-positive cases with stage I or II NSCLC
was considerable (57.7%) with respect to the limited amount of blood analyzed in this
study (Table 1).

Table 1. Circulating tumor cell (CTC) detection rate and cohorts’ characteristics.

N (%) N CTC+ve (%) p-Value

Patients with NSCLC 74 (100) 44 (59.5)
Median (range) Age (years) 71 (43–86)

Sex
Female 33 (44.6) 18 (54.5)

Male 41 (55.4) 26 (63.4) 0.4820
Smoking habits

Current smoker 25 (33.8) 17 (68.0)
Former smoker 32 (43.2) 18 (56.3)

Never smoker 16 (21.6) 9 (56.3)
Missing 1 (1.4) 0 0.7764 a

Tumor stage
IA 27 (36.5) 15 (55.6)
IB 5 (6.8) 2 (40.0)

IIA 4 (5.4) 4 (100)
IIB 16 (21.6) 9 (56.3)

IIIA 11 (14.9) 7 (63.6)
IIIB 6 (8.1) 3 (50.0)
IIIC 0 0
IVA 5 (6.8) 4 (80.0) 0.7964 b

Histology
Adenocarcinoma 55 (74.3) 33 (60.0)

Squamous cell carcinoma 16 (21.6) 10 (62.5)
Other 2 (2.7) 1 (50.0)

Missing 1 (1.4) 0 >0.9999 c
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Table 1. Cont.

N (%) N CTC+ve (%) p-Value

Patients with NSCLC 74 (100) 44 (59.5)
Grading

G1 4 (5.4) 3 (75.0)
G2 44 (59.5) 23 (52.3)
G3 24 (32.4) 17 (70.8)
G4 0 0

Missing 2 (2.7) 1 (50.0) 0.2092 d

Visceral pleura invasion
PL0 56 (75.7) 31 (55.4)
PL1 8 (10.8) 6 (75.0)
PL2 5 (6.8) 3 (60.0)
PL3 2 (2.7) 2 (100)

Missing 3 (4.1) 2 (66.7) 0.2494 e

Peritumoral neoplastic
angioinvasion

Absent 66 (89.2) 42 (63.6)
Present 6 (8.1) 1 (16.7)
Missing 2 (2.7) 1 (50.0) 0.0357

Lymph-node status
Negative 48 (64.9) 29 (60.4)

Positive 25 (33.8) 14 (56.0)
Missing 1 (1.4) 0 0.8039

Healthy volunteers 10
Median (range) Age (years) 35 (33–47)

Sex
Female 7 (70.0) 0 -

Male 3 (30.0) 0 -
Smoking habits

Smoker 2 (20.0) 0 -
Never smoker 8 (80.0) 0 -

High-risk subjects 7
Median (range) Age (years) 63 (53–73)

Sex
Female 3 (42.9) 0 -

Male 4 (57.1) 0 -
a current/former versus never smokers. b stage I/II versus III/IV. c adenocarcinoma versus squamous cell
carcinoma. d G1/G2 versus G3/G4. e PL0 vs. PL1/PL2/PL3.

3.2. Subpopulations of Circulating Atypical Cells Differentiate Operable NSCLC Patients from
Lung Cancer-Free Individuals

The morphological analysis of cytological samples prepared on ISET membranes
revealed the presence of a heterogeneous population of circulating atypical cells, which
includes different subsets observed at a variable frequency within the two cohorts of pa-
tients and controls. We identified three subpopulations of cells with features of malignancy,
hereafter referred to as (i) single CTCs (n = 71 cells), i.e., not in direct contact with other
cells (sCTC, Figure 1a–c), (ii) homotypic CTC clusters (homCLU, n = 2 clusters), i.e., groups
of slightly overlapping CTCs, and (iii) heterotypic clusters (hetCLU, n = 40 clusters), i.e.,
CTCs in direct contact with leukocytes (Figure 1d–f), mainly monocytes (62.5%) and neu-
trophil granulocytes (12.5%); we also observed (iv) a subpopulation of large cells, hereafter
referred to as atypical macrophage-like cells (Figure 1g–i), (v) a subpopulation of clusters
of epithelial-like cells (Figure 1j–l) and (vi) a considerable number of nuclei with a longer
diameter >20 µm, in some cases with irregular membrane border and/or hyperchromasia,
each of them apparently without the classical cytoplasmic rim observed in CTCs, in some
cases similar to those observed in healthy donors (Supplementary Figure S1), hereafter
referred to as naked nuclei (Supplementary Figure S2). In order to exclude the possibility
that clusters were a result of technical artifacts due to the CTC enrichment procedure, we
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performed spike-in experiments with A549 and NCI-H460 cell lines at a dilution of about
1000 cells per milliliter in a total of 10 mL of blood from three healthy donors. Spiked-in, fil-
tered and stained tumor cells were typically round-shaped and showed nucleus diameters
larger than 20 µm, a nucleus-to-cytoplasm ratio around 90% and nuclear hyperchromatism.
We did not observe the formation of homotypic clusters after filtration and staining, except
for some doublets of NCI-H460 cells, and leukocytes were randomly interspersed among
cancer cells.
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ated with the clinicopathological features of stage I–IVA non-small cell lung cancers. Dot plots 

Figure 1. Subpopulations of atypical circulating cells differentiate patients with operable non-small
cell lung cancer from lung cancer-free individuals. Images depict (a–c) single cells with morpho-
logical features of malignancy and (d–f) heterotypic clusters of cells with features of malignancy
physically interacting with normal cells, such as (d) neutrophil granulocytes, (e) monocytes or (f)
other indeterminate leukocytes, detected in patients, (g–i) atypical macrophage-like cells, (g) oblong
or (h) tadpole-like, both detected in patients, and (i) irregularly shaped, detected in healthy donors,
and (j–l) clusters of epithelial-like cells, detected in patients, on porous membranes stained with
May–Grünwald and Giemsa. Objective magnification 40×.

In the cohort of 74 NSCLC patients, sCTC and hetCLU were detected in 34 (45.9%)
and 23 (31.1%) cases, respectively, while both CTC subsets were observed in 14 (18.9%)
cases. Homotypic clusters were observed in two cases only (2.7%). Neither the presence
nor the prevalence or number of sCTC correlated with patients’ demographics, smoking
habits and tumor features, except for males and smokers, where at least two sCTC were
detected at a significantly higher frequency compared to females and never smokers
(Supplementary Table S1 and Figure 2a). Neither the presence nor the number of hetCLU
correlated with the clinicopathological features (Supplementary Table S2 and Figure 2b).
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Figure 2. The number of single CTCs (sCTC) and heterotypic CTC clusters (hetCLU) is not associated
with the clinicopathological features of stage I–IVA non-small cell lung cancers. Dot plots represent
the distribution of (a) sCTC or (b) hetCLU count (median number, line) in 4 mL of peripheral blood
according to the tumor stage, the histological subtype (LUAD, lung adenocarcinoma; LUSC, lung
squamous cell carcinoma), the visceral pleura invasion and the lymph-node involvement. Differences
were not significant (p-value > 0.05) by Kruskal–Wallis (tumor stage) or Mann–Whitney test.

Cells with features of atypical large macrophages were found in 12 out of 74 (16.2%)
patients, and 2 out of 17 (12%) controls, whereas naked nuclei were observed in both
cohorts, although with a two-fold increased frequency in patients (61/74, 82.4%) compared
to controls (7/17, 41%; p-value = 0.0011). Interestingly, clusters of epithelial-like cells
without apparent features of malignancy were detected in 9 out of 74 patients (12.2%) and
none of the control cases. The number of patients called CTC-positive, who also had at
least one atypical large macrophage, naked nucleus or cluster of epithelial-like cells were
11 (25%), 37 (84.1%) and 4 (9.1%), respectively.

3.3. The Prevalence of Single Circulating Tumor Cells Predicts the Risk of Recurrence in Patients
with Surgically Treated Stage I–II NSCLCs

We then explored the utility of CTCs in serving as prognostic biomarkers to identify
patients with an early-stage tumor at higher risk of disease recurrence. All stage I and
II cases underwent surgical resection with curative intent. Six out of the 52 patients
received post-operative adjuvant platinum-based with either vinorelbine or gemcitabine
chemotherapy and/or radiotherapy. The disease status of all patients was monitored by
clinical and radiological exams, except for eight cases (two stage I and six stage II) who
were lost at follow-up (n = 3) or had died for unknown causes (n = 5). The median (range)
observation time was 28 (1–47) months, and the total number of recurrence events was 13
(seven at intrathoracic level, five at distant sites and missing information in one case). The
risk of disease recurrence in stages III and IV compared to stages I and II patients were
HR 95%CI 3.45 (1.37–8.67), p-value = 0.0006, with an equal number of events (13) per group.
In the stages I and II cohort, neither the tumor stage nor the grading or the lymph-node
status were able to discriminate patients at higher risk of early disease recurrence. The
numbers of stages I and II cases out of 44 evaluable for disease recurrence and with at
least one, two, three or five sCTC, or at least one hetCLU, or CTC-positive irrespective of
the subset type, were 21 (47.7%), 8 (18.2%), 5 (11.4%), 1 (2.3%), 15 (34.1%) and 26 (59.1%),
respectively. No differences were found when grouping patients according to the overall
CTC status or the presence of hetCLU, while patients with a prevalence of at least two or
three CTCs in 4 mL of blood had a statistically significant shorter recurrence-free survival
probability (HR 95% CI, cut-off two CTC/4 mL: 5.15 (1.10–24.33), p-value = 0.0009; cut-off
three CTC/4 mL: 3.99 (0.47–33.57), p-value = 0.0216) compared to the counterpart with
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a more favorable CTC count (Figure 3 and Supplementary Table S3), demonstrating that
the number of sCTC was the most relevant predictor of prognosis in early-stage operable
NSCLCs.
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3.4. The Presence of Heterotypic Clusters of CTCs Predicts the Risk of Recurrence in Patients with
Surgically Treated Stage III–IVA NSCLCs

We assessed the clinical significance of CTCs in the group of patients presenting
with operable NSCLC at advanced stages (III and IV). Seventeen out of the 22 patients
received post-operative adjuvant platinum-based with either vinorelbine or gemcitabine
chemotherapy and/or radiotherapy or targeted therapy with gefitinib or afatinib for
stage IV EGFR mutated tumors. The disease outcome of all patients was monitored by
clinical and radiological exams, except for four stage III cases that were lost at follow-up
(n = 1) or had died for unknown causes (n = 3). The median (range) observation time was
17; (1–33) months, and the total number of recurrence events was 13 (5 at intrathoracic
level, 6 at distant sites and missing information in 2 cases).

In advanced NSCLC patients, neither the tumor stage nor the grading were able to
accurately identify cases at higher risk of early disease recurrence, although a slight trend
toward statistical significance was obtained when grouping according to the tumor stage
(Supplementary Table S4). The numbers of stages III and IV cases out of 18 evaluable for
disease recurrence and with at least one, two, three or five sCTCs, or at least one hetCLU, or
CTC-positive irrespective of the subset type, were 8 (44.4%), 6 (33.3%), 3 (16.7%), 3 (16.7%),
5 (27.8%) and 12 (66.7%), respectively. According to the survival analysis based on the
CTC status, a slight trend toward statistical significance was observed when consider-
ing the overall CTC population, while no difference was found when grouping patients
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according to the prevalence of sCTC. Interestingly, cases presenting with at least one
hetCLU in 4 mL of blood had a statistically significant shorter recurrence-free survival
probability (HR 95%CI: 3.44 (0.76–15.50), p-value = 0.0129) compared to patients without
hetCLU (Figure 4 and Supplementary Table S4), providing evidence for the first time of
the prognostic significance of hetCLU in advanced stage operable NSCLCs.
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4. Discussion

In this study, we have observed that cells with morphological features of malignancy
can be detected in 4 mL of peripheral blood in 60% of patients with operable NSCLC
and that the CTC frequency is not dependent on the tumor stage. We have found that in
NSCLC, cells with features of malignancy can circulate in physical contact with leukocytes,
mainly monocytes, forming aggregates of two cells in the majority of cases, here called
heterotypic clusters, with an overall frequency of 31%, without significant differences
according to the disease stage. We have also documented the presence and frequency
of other subpopulations of cells in patients, such as clusters of epithelial-like cells, large
macrophage-like cells and naked nuclei >20 µm, which were found both in patients and
lung cancer-free controls. Importantly, our study revealed different clinical messages
hidden in CTCs based on the subset type as, compared to other tumor-related factors,
only the CTC number at baseline was able to inform early-stage patients’ risk and time of
recurrence, whereas heterotypic clusters represented the most informative subpopulation
of CTCs with respect to disease outcome in the advanced stage setting.

Contrarily to the traditional view that cancer cells disseminate via blood vessels within
a time window closer to the clinical manifestation of secondary lesions rather than to the
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initiation of a tumor, CTCs are now widely recognized as events that can be detected at a
considerable frequency even in patients presenting with early-stage or locally advanced
disease. Since CTCs are known to be heterogeneous within the same patient, and a gold
standard approach for accurate detection has not been developed yet [36], it is clear that the
operational definition for the measurement of CTCs may change from study to study along
with the technical approach. One of the first reports on CTC analysis in stage I–III NSCLC
demonstrated that the CTC detection rate obtained by the capture of cells expressing
EpCAM and cytokeratins 8/18/19 was lower compared to parallel samples analyzed by a
size-based isolation approach coupled to cytomorphological analysis [32]. However, two
main biological and technical aspects should be taken into account: first, some CTCs might
have shaped their makeup while undergoing the epithelial-to-mesenchymal transition
(EMT), thus downregulating the expression of surface adhesion proteins [37] and remaining
undetectable to EpCAM-based capture; second, neutrophils have a low-to-absent expres-
sion of CD45 and, importantly, may be non-specifically bound by antibodies for some
intracellular proteins, including cytokeratins [38], thus leading to CTC misidentification.
Following the first demonstration that the early detection of CTCs was able to anticipate
stage I lung cancer diagnosis by radiological scan in COPD patients [27], the majority of
successive studies was performed using CTC enrichment methods based on the physical
properties of tumor cells. The CTC positivity data obtained in our study population was
59.5%, which is slightly higher compared to the study by Hofman and colleagues in a case
series of 210 NSCLC patients undergoing radical surgery [32], although the difference is
not negligible if considering that we have analyzed 4 mL rather than 10 mL of blood. In
other studies, the CTC detection rate was 80% by morphological analysis on 10 mL of
blood from 40 chemonaïve stage IIIA and IV cases [39] and 69.5% by immunostaining for
EpCAM and CD45 upon peripheral blood mononuclear cell collection and subsequent
filtration in 82 cases with any stage [40].

In addition to the population of single CTCs, other subsets of cells are emerging as
possible diagnostic biomarkers, as they showed high specificity in distinguishing between
patients from lung cancer-free individuals: CTC clusters [41–43], which are aggregates of at
least two CTCs in physical contact, held together through intercellular junctions [44], also
known as circulating tumor microemboli, which can appear with infiltrated or surrounding
platelets [35], or aggregates of cancer cells with non-malignant stromal or immune cells [44],
as also large macrophage-like cells [35] and tumor-macrophage hybrid cells [45,46], which
instead express both epithelial and leukocyte/macrophage-specific markers. The fre-
quency of CTC clusters may vary depending on the technical approach and the disease
stage [41–43,47]; therefore, further studies are needed to confirm the origin of this subset
of CTCs. However, it has been becoming increasingly clear that CTC clusters may act as
predictors or players in therapy resistance [48,49], and experimental evidence showed that
polymorphonuclear/myeloid-derived suppressor cells interact with CTCs and promote
their metastatic potential [50]. Remarkably, a non-conventional approach for CTC isolation
recently showed that heterotypic clusters could be detected at a relevant frequency in
many non-metastatic and metastatic solid tumors [51]. Therefore, heterotypic clusters can
represent a promising biomarker and therapeutic target. Furthermore, the role of clusters of
epithelial-like cells that we have observed in our cohort of patients is worth being clarified.

Studies with other technical approaches provided interesting results on the clinical
role of CTCs in NSCLC in the operative setting. It was reported that cytokeratin- and
EGFR-positive cells enriched by an immunomagnetic approach could be observed in stage
I–III NSCLC patients at different frequencies before and 1 month after surgery and that
post- but not pre-surgery detected cytokeratin-positive CTCs were associated with disease-
free survival [52]. In 2019, a work with the CellSearchTM system showed that tumor cells
collected from the pulmonary vein during surgical procedures could be observed in 48%
of cases, that using a cut-off of at least 18 CTCs in 7.5 mL of blood it was possible to
predict disease relapse and that mutations in CTCs largely overlapped with those found in
metastases detected 10 months later [53]. Other authors challenged the effect of surgery
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on CTC kinetics and found a significant decline in EpCAM-enriched CTCs a few days
after surgery in all patients, and that early rebound of CTC counts was associated with
disease recurrence [54]. Our data provide further evidence of the role of CTCs detected
in the peripheral venous blood, and importantly, of the different significance that CTC
subsets may have in classifying patients at risk of relapse when detected before surgery.
Longitudinal studies are of interest to assess CTC kinetics in response to post-surgery
administered systemic therapies.

Size-based approaches have already been shown to increase the sensitivity in detecting
CTC clusters in metastatic NSCLCs compared to epitope-dependent methods. In 2011,
vimentin-positive and cytokeratin-negative CTC clusters were described in three out of six
metastatic NSCLC patients [55], and later it was found that circulating tumor microemboli,
which were defined as clusters of at least three CTCs, could be observed in 43% of patients
using ISET® but were undetectable by CellSearchTM, which captures cells by anti-EpCAM
antibodies [39]. Moreover, CTC clusters isolated by a biomarker-independent, size-based
microfluidic method could be observed in 96% of patients with metastatic NSCLC, and 75%
of them were EpCAM-negative [47]. In our study, with stage I–IVA NSCLC patients, the
frequency of homotypic CTC clusters was negligible. The marker-free technical approach
based on the direct evaluation of cytological samples enabled the visualization of CTCs in
contact with leukocytes, as also of other atypical cells. The application of a filtration method
coupled to morphological analysis brings many advantages. However, a crucial point that
should be addressed is the reproducibility of the analysis based on cytomorphological
criteria. Although they have been already defined and blindly validated by a team of 10
cytopathologists on 808 blood samples analyzed by the ISET method, such criteria hold
the same limits as those used in routine cytology [56]. In our study, cells with features of
malignancy were not found in lung cancer-free individuals, following blinded analysis.
Larger cohorts of individuals at risk of lung cancer and the inter-reader variability should
be evaluated in multicentric studies in order to increase the robustness of the CTC test and
to foster its application in the clinical routine. The identification of a panel of biomarkers
for CTC detection in NSCLC is also of crucial importance in this context. Searching for
lung cancer-specific markers is a long-standing issue for pathologists, which consequently
affects CTC studies. An attentive look at CTC and metastasis biological hallmarks may
help to identify markers alternative to cytokeratin, and in fact, a recent paper showed that
the glycolysis enzyme hexokinase 2 (HK2) increased the detection of CTCs in a cohort of
18 stage III lung adenocarcinoma patients without clinical evidence of distant metastases
from 39% when considering cytokeratin-positive to 61% when considering HK2-positive
cell subsets [57].

To summarize the results of this study, we have discovered a population of heterotypic
CTC clusters in early-stage NSCLC and provided first evidence of the differential prognostic
significance of single CTC count, using a low cut-off (two CTCs in 4 mL of blood), and
of the presence of heterotypic clusters, in operable NSCLC patients with stages I or II
and stages III or IVA, respectively, demonstrating that looking at CTC subsets rather
than the overall CTC population can help to refine the classification of patients at risk of
disease recurrence, and outperforming classical primary tumor-related markers; we have
performed the analysis on cytological samples corresponding to 4 mL only compared to
larger blood volumes (from 7.5 to 10 mL) used in other studies, scoring as CTC-positive
about 60% of patients and none of the control individuals, and we have documented and
described other subsets of circulating atypical cells occurring with different frequency in
patients and lung cancer-free donors.

5. Conclusions

The ISET® technology for CTC enrichment coupled to cytomorphological analysis
was proven as a promising approach for the development of non-invasive biomarkers in
NSCLC. With a view to the implementation of a CTC-based test in screening programs,
studies with larger case series and the introduction of molecular analyses to infer the origin
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of atypical cells would be desirable. CTC subsets also deserve consideration to be included
in the clinical routine among the standard prognostic factors in order to early identify
patients at risk of recurrence and refine the therapeutic strategies accordingly.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13174488/s1, Figure S1. Naked nuclei detected in the blood of lung cancer-free
individuals; Figure S2. Naked nuclei detected in the blood of on-small cell lung cancer patients;
Table S1. Single circulating tumor cell (sCTC) prevalence and non-small cell lung cancer (NSCLC)
patients’ characteristics; Table S2. Circulating tumor cell cluster (cCTC) status and NSCLC patients’
characteristics; Table S3. Recurrence-free survival probability in patients with operable stage I–II
NSCLC according to standard clinico–pathological parameters and CTC status; Table S4. Recurrence-
free survival probability in patients with operable stage III–IV NSCLC according to standard clinico-
pathological parameters and CTC status.
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Simple Summary: Uveal melanoma (UM) is a rare cancer, with no effective standard systemic ther-
apy in the metastatic setting. Over 95% of UM harbor activating driver mutations that can be detected
in the circulation. In this study, circulating tumor DNA (ctDNA) was measured in 17 metastatic UM
patients treated with protein kinase C inhibitor (PKCi)-based therapy. ctDNA predicted response to
targeted therapy and increasing UM ctDNA preceded radiological progression with a lead-time of
4–10 weeks. Next generation sequencing (NGS) of ctDNA also identified prognostic and treatment
resistance mutations. Longitudinal ctDNA monitoring is useful for monitoring disease response and
progression in metastatic UM and is a valuable addition to adaptive clinical trial design.

Abstract: The prognosis for patients with UM is poor, and recent clinical trials have failed to prolong
overall survival (OS) of these patients. Over 95% of UM harbor activating driver mutations, and
this allows for the investigation of ctDNA. In this study, we investigated the value of ctDNA for
adaptive clinical trial design in metastatic UM. Longitudinal plasma samples were analyzed for
ctDNA in 17 metastatic UM patients treated with PKCi-based therapy in a phase 1 clinical trial
setting. Plasma ctDNA was assessed using digital droplet PCR (ddPCR) and a custom melanoma
gene panel for targeted next generation sequencing (NGS). Baseline ctDNA strongly correlated
with baseline lactate dehydrogenase (LDH) (p < 0.001) and baseline disease burden (p = 0.002).
Early during treatment (EDT) ctDNA accurately predicted patients with clinical benefit to PKCi
using receiver operator characteristic (ROC) curves (AUC 0.84, [95% confidence interval 0.65–1.0,
p = 0.026]). Longitudinal ctDNA assessment was informative for establishing clinical benefit and
detecting disease progression with 7/8 (88%) of patients showing a rise in ctDNA and targeted NGS
of ctDNA revealed putative resistance mechanisms prior to radiological progression. The inclusion
of longitudinal ctDNA monitoring in metastatic UM can advance adaptive clinical trial design.

Keywords: uveal melanoma; circulating tumor DNA; next generation sequencing; PKC inhibitor;
liquid biopsy; treatment; response; melanoma
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1. Introduction

Uveal melanoma (UM) is the most common primary intraocular malignancy [1].
The tumor arises from melanocytes within the uveal tract, with more than 90% of cases
involving the choroid followed by iris and ciliary body [2]. UM is a rare cancer, affecting
approximately 5–7 individuals per million each year [1,3–5]. Despite successful local
treatment with either surgery or radiation therapy, approximately 50% of patients with
UM will develop metastatic disease [6] with over 90% of metastases occurring in the
liver [7]. Currently there is no effective systemic treatment in metastatic UM and the
median progression free survival (PFS) and overall survival (OS) are 3.3 months and
10.2 months, respectively [8].

Nearly 95% of UM harbor mutually exclusive activating driver mutations in GNAQ,
GNA11, CYSTLR2 and PLCβ4 genes [9–14]. Molecular profiling, cytogenetic and transcrip-
tomic analysis of UM have provided accurate prognostic information [9,15]. Additional hot
spot mutations affecting the EIF1AX and SF3B1 genes are associated with better prognosis
whereas loss of function BAP1 gene alterations are correlated with the development of UM
metastases and poor prognosis [9,16]. Somatic copy number alterations such as loss of
chromosome 3, 6q and 8q are also associated with poor prognosis [17]. The specific and
defined mutation profile of UM provides an excellent opportunity to investigate the utility
of circulating tumor DNA (ctDNA) as a biomarker to detect the presence of metastatic
disease and to rapidly monitor response to early-phase drug therapies.

In cutaneous melanoma (CM), baseline ctDNA is strongly correlated with tumor
burden in patients with advanced stage disease [18] and is associated with overall response
rate and PFS in patients treated with targeted therapies [18,19]. A decline in ctDNA within
8 weeks of treatment initiation also predicts response to both combined BRAF and MEK
inhibition and immunotherapy in CM [19,20]. In metastatic UM, ctDNA levels correlate
with tumor burden and the presence of liver metastases [21,22] and are also prognostic
for PFS and OS [21]. The value of ctDNA in monitoring and predicting response to
trial drug therapies has not, to the best of our knowledge, been previously investigated.
This is particularly relevant in metastatic UM as there are currently no effective systemic
treatments, but significant ongoing clinical trial activity evaluating novel therapies. In this
study, we sought to assess ctDNA in metastatic UM patients treated with protein kinase C
inhibitor (PKCi)-based therapy in a phase 1 clinical trial setting (NCT02601378). Using two
methods, droplet digital PCR (ddPCR) and targeted Ion Torrent next generation sequencing
(NGS), we evaluated the utility of plasma ctDNA in monitoring and predicting clinical
outcomes including best response to therapy and PFS.

2. Materials and Methods
2.1. Patients and Treatment

Seventeen patients with metastatic UM with known mutations in GNAQ, GNA11 and
CYSTLR2, treated with the novel PKCi, LXS196 (n = 17) at Westmead Hospital, Sydney,
Australia as part of an experimental dose escalation phase 1 clinical trial between November
2016 to August 2018 were included in this study. Written consent was obtained from all
patients with metastatic UM under approved Human Research ethics committee protocols
from Royal Prince Alfred Hospital (Protocol X15-0454 and HREC/11/RPAH/444).

2.2. Patient and Disease Characteristics and Response Assessment

Patient demographics and clinicopathologic features including mutation status, East-
ern Cooperative Oncology Group (ECOG) performance status, and baseline LDH levels
(units/litre; U/L) were collected. Baseline disease burden was determined by the sum
of the product of bi-dimensional diameters (SPOD) for every metastasis ≥5 mm in the
long axis (≥15 mm in the short axis for lymph nodes). Investigator-determined objective
responses were assessed radiologically with computed tomography (CT) scans at two
monthly intervals using Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 cri-
teria [23]. Clinical progression was defined by primary clinician’s assessment of disease
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progression in patients without re-staging imaging and were classified as progressive
disease (PD). Clinical benefit was defined by patients who had partial response (PR) or
stable disease (SD) for ≥6 months.

2.3. Plasma Preparation

Plasma samples were collected at baseline (prior to therapy start), EDT (early during
treatment between 14–30 days of commencing PKCi-based therapy) and at later time points
during therapy (on-treatment samples). PROG samples were defined as plasma samples
taken within 30 days (before or after) of disease progression confirmed by imaging or
clinical progression as determined by the treating clinician. NGS analysis was performed
on baseline plasma samples and on the last available on-treatment plasma sample. Blood
(10 mL) was collected in EDTA tubes (Becton Dickinson, Franklin Lakes, NJ, USA) and
processed within 4 h from blood draw. Tubes were spun at 800 g for 15 min for plasma
collection, followed by a second centrifugation at 1600 g for 10 min to remove cellular
debris. Plasma was stored in 1–2 mL aliquots at −80 ◦C.

2.4. Purification of Circulating Free DNA from Plasma

Plasma circulating free DNA was extracted using the QIAamp Circulating Nucleic
Acid Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. Circu-
lating free DNA was purified from 1–4 mL of plasma and the final elution volume was
25 µL. Total circulating free DNA was quantified using a Qubit dsDNA high sensitivity
assay kit and a Qubit fluorometer 3 (Life Technologies, Carlsbad, CA, USA) according to
the manufacturer’s instructions.

2.5. ddPCR Analysis of ctDNA from Plasma

The copy number of ctDNA per milliliter of plasma was determined using the QX200
ddPCR system (Bio-Rad, Hercules, CA, USA), as previously described [20]. Commercially
available (GNAQ Q209P and GNA11 Q209L; Bio-Rad) and customized probes [22] (GNAQ
R183C and CYSTLR2 L129Q) were used to analyze ctDNA by ddPCR. The DNA copy
number/mL of plasma for mutant and wild-type circulating DNA species was determined
with QuantaSoft software version 1.7.4 (Bio-Rad, Hercules, CA, USA) using a manual
threshold setting. If analysis confirmed only 1 positive ctDNA mutant copy per 20 µL,
the ddPCR amplification was repeated up to three times, and the plasma sample was
considered positive if ctDNA was positive in at least two repeat experiments. ddPCR
results are reported as ctDNA copies/mL.

2.6. Custom Melanoma Gene Panel for Targeted NGS of Circulating Free DNA

An Ion Ampliseq HD made-to-order melanoma gene panel was obtained from Life
Technologies (Carlsbad, CA, USA). The panel, which consists of 123 amplicons and covers
melanoma-associated mutations in 30 gene targets, has been described previously [24].
This melanoma gene panel does not cover the BAP1 gene. DNA target amplification,
using 20 ng circulating free DNA as template, library construction and sequencing were
performed as previously described [24]. Ion Torrent NGS results in our study are reported
in mutant allele frequency (MAF).

2.7. Statistical Analysis

The Spearman rank correlation coefficient was used to test the correlation between
the ctDNA copies, and the baseline LDH level, baseline SPOD, or longest diameter of liver
metastatic lesion. Kruskal–Wallis test with Dunn’s multiple comparison test was used to
compare ctDNA copies in the clinical benefit group and no clinical benefit group. EDT
ctDNA copies to predict clinical benefit was measured using Receiver Operating Character-
istics (ROC) analysis. Statistical analyses were carried out using GraphPad Prism 9. Positive
predictive value for EDT > 16.35 copies/mL was calculated using the following formula:
Number of patients showing no clinical benefit with EDT ctDNA > 16.35 copies/mL divided
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by number of patients with EDT ctDNA > 16.35 copies/mL. Negative predictive value was
determined as follows: Number of responding patients with EDT ctDNA ≤ 16.35 copies/mL
divided by number of patients with EDT ctDNA ≤ 16.35 copies/mL.

3. Results
3.1. Patient Characteristics

Seventeen patients with metastatic UM were included in this study; 11 patients
received PKCi alone and six patients received PKCi in combination with the human
homolog of double minute 2 (HDM2) inhibitor (HDM201). Median follow-up duration
was 20.1 weeks (range 6.3–66.0 weeks). Baseline demographic data are detailed in Table 1.
The median age was 56 years and the majority of patients were male (10/17; 59%) with
an ECOG status of 0 (13/17; 76%). All patients had an established UM driver mutation
(GNAQ Q209P (35%), GNA11 Q209L (47%), GNAQ R183Q (12%) and CYSTLR2 L129Q
(6%)), and metastatic disease involving the liver. On commencement of the treatment,
11 (65%) patients had elevated LDH levels and 13 (76%) had prior systemic treatment. The
majority of patients (12/17; 70%) had a choroidal primary UM, 1 (6%) had an iris primary
tumor and for the remaining 4 (24%) patients, the additional component of the primary
tumor was unknown. Overall PFS was 3.8 months. Patients with RECIST 1.1 PR (2/17;
12%) or SD ≥ 6 months (4/17; 24%) were classified as the ‘clinical benefit’ group, while
patients with SD < 6 months (7/17; 41%) or PD (4/17; 24%) were classified as having ‘no
clinical benefit’ group (Table S1).

3.2. Baseline ctDNA Levels Are Associated with Tumor Volume and LDH Level

ctDNA was detected by ddPCR in 16/17 (94%) patients prior to commencing therapy.
Median ctDNA was 157.7 copies/mL with a range of 0–7172 copies/mL. Baseline ctDNA
was strongly correlated with baseline LDH (Spearman’s rank r = 0.7941, p < 0.001) and
baseline SPOD (Spearman’s rank r = 0.7206, p = 0.002) (Figure 1A,B). As expected, the
total lesion SPOD was significantly correlated to liver SPOD in these patients (Spearman’s
rank r = 0.8676, p < 0.01; Figure S1A); however, the baseline ctDNA did not correlate with
the longest diameter of liver lesion (Spearman’s rank r = 0.4027, p = 0.110) or liver SPOD
(p = 0.06, Spearman’s rank r = 0.4632) (Figure 1C,D). The discrepant correlation between
ctDNA versus total lesion SPOD and ctDNA versus liver SPOD was influenced by the
distribution of melanoma metastases in patient #6. This patient had multiple disease sites,
a relatively high overall tumor burden (6022 mm2), but very low liver disease (469 mm2)
(Figure S1A). When patient #6 was excluded, ctDNA levels were significantly correlated
with the longest diameter of liver lesion (Spearman’s rank r = 0.6455, p < 0.01) and liver
SPOD (Spearman’s rank r = 0.7176, p < 0.01).

We identified six patients in the clinical benefit group (PR, or SD≥ 6 months; including
5/6 (83%) patients treated with PKCi monotherapy) and eleven patients in the no clinical
benefit group (SD < 6 months or PD; including 6/11 (55%) patients treated with PKCi
monotherapy). Baseline ctDNA, SPOD and LDH were compared in the clinical benefit
versus no clinical benefit patient groups. Lower median baseline ctDNA was observed in
the clinical benefit group (33.8 copies/mL, range 0–333 copies/mL) compared to patients
in the no clinical benefit group (196.2 copies/mL, range 15–7172 copies/mL); however, this
difference was not statistically significant (Figure S1B). Similarly, LDH, median total SPOD,
longest diameter of liver lesion and LDH and liver SPOD were lower in the clinical benefit
versus no clinical benefit subset; however, these differences were not significantly different
(Figure S1B). The sample set was too small for multivariate analysis comparing baseline
ctDNA, LDH and SPOD to best response.
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Table 1. Baseline clinicopathologic characteristics of uveal melanoma patients.

Characteristics Patients (n = 17)

Age, Median (range) 56 (45–73)

Sex, n (%)
Male 10 (59%)

Female 7 (41%)

ECOG PS, n (%)
0 13 (76%)
≥1 4 (24%)

Mutation, n (%)
GNAQQ209P 6 (35%)
GNA11Q209L 8 (47%)
GNAQR183Q 2 (12%)

CYSTLR2L129Q 1 (6%)

Number of organs involved by metastatic disease, n (%)
1 3 (17%)

>1 14 (83%)

Liver metastases, n (%) 17 (100%)

LDH, n (%)
≤ULN 6 (35%)
>ULN 11 (65%)

Prior Systemic Treatment a

Yes 13 (76%)
No 4 (24%)

Primary Tumor Type
Choroidal 12 (70%)

Iris 1 (6%)
Unknown 4 (24%)

Treatment
PKCi alone 11 (65%)

PKCi + HDM2i 6 (35%)

Best Response b, n (%)
PR 2 (12%)

SD ≥ 6 months 4 (24%)
SD < 6 months 7 (41%)

PD 4 (23%)

PFS (months), median (range) 3.8 (1.7–13.1)

Number of liver lesions, median (range) 9 (1–49)

Liver SPOD (mm2), median (range) 3595 (200–15,525)

SPOD (mm2), median (range) 5986 (200–16,782)

Largest diameter of liver lesion (mm), median (range) 35 (11–110)
a Prior systemic treatment includes chemotherapy or immunotherapy. b Patients were stratified into response
groups based on RECIST 1.1. Clinical benefit was defined by patients who had partial response (PR) or stable
disease (SD) for ≥ 6 months. Patients with SD < 6 months or PD were classified as receiving no clinical benefit.
Abbreviations: LDH, lactate dehydrogenase; ULN, upper limit of normal; PR, partial response; SD, stable disease;
PD, progressive disease; SPOD, sum of the product of bi-dimensional diameters; PFS, progression-free survival;
PKCi, protein kinase C inhibitor (LXS196); HDM2i, HDM2 inhibitor (HDM201); ECOG PS, Eastern Cooperative
Oncology Group performance status.
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Figure 1. Relationship between uveal melanoma ctDNA (copies/mL), tumor burden and LDH. Spearman’s rank correlation
between ctDNA copies/mL and (A) LDH (U/L), p < 0.001, (B) SPOD (mm2), p < 0.01, (C) Longest liver lesion (mm), p =
0.11, (D) Liver SPOD (mm2), p = 0.06. Graph shows ctDNA+1 data.

3.3. Prognostic Value of Early during Treatment (EDT) ctDNA

Paired baseline and EDT ctDNA samples were available for 16 patients (patient #15
did not have an EDT sample). Four patients (4/16; 25%) displayed undetectable ctDNA at
EDT and three of these patients benefited from PKCi-based therapy (1 with PR and 2 with
SD ≥ 6 months; SD for 9.6 and 13.1 months, respectively) and the fourth patient initially
had SD but progressed at 3.7 months. Of these four patients, one (patient #5) had low
disease volume, undetectable ctDNA at baseline and EDT, SD ≥ 6 months and a PFS of
13.1 months. Of the remaining three patients, ctDNA zero converted at EDT from baseline
ctDNA levels ranging from 13–30 ctDNA copies/mL (Figure 2A). All four had a GNA11
Q209L mutation, a below median tumor burden and an LDH level below the upper limit
of normal.

Another nine patients (9/12; 75%) had positive ctDNA at baseline and showed a
substantial reduction but still detectable ctDNA at EDT (ctDNA reduction range 46–99%).
Three of these nine patients (33%) benefited from PKCi; patient #16 achieved PR with
delayed zero-conversion of ctDNA at day 57, patient #4 achieved SD ≥ 6 months and
showed undetectable ctDNA 41 days post treatment start and patient #1 achieved SD
≥ 6 without zero-conversion of ctDNA. Six patients with reduced, but not undetectable
ctDNA levels at EDT had no clinical benefit, with three patients showing SD < 6 months
(patients #11, #13 and #14) and three patients with PD (patients #6, #8 and #10) as best
response (Figure 2A, Table S1). The remaining three patients (patients #7, #12, #17) showed
an increase in ctDNA from baseline to EDT and all three of these patients did not benefit
from therapy (2 with SD < 6 months and 1 with, PD).
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Figure 2. Predictive performance of ctDNA. (A) ctDNA changes from baseline to EDT in clinical
benefit group (n = 6) and no clinical benefit group (n = 10) patients. Patient matched PRE-EDT
ctDNA levels were compared using Wilcoxon matched-pairs signed rank test, and unpaired PRE
or EDT ctDNA levels between clinical benefit and no clinical benefit patients were compared using
the Mann–Whitney test. (B) ROC curve analysis determined a negative predictive cut-off value (i.e.,
value providing maximum sensitivity and specificity) for ctDNA > 16.35 copies/mL at EDT for no
clinical benefit. ns, not significant; AUC, area under the curve.

EDT ctDNA levels were significantly lower in the clinical benefit patients compared to
the no clinical benefit subgroup (p = 0.023; Figure 2A). There was no statistical difference in
the baseline ctDNA level of the clinical benefit and no clinical benefit group. The changes
in baseline ctDNA to EDT ctDNA in both the clinical benefit group and no clinical benefit
group were also not statistically significant. The predictive accuracy of ctDNA was also
examined using receiver operator characteristic classification (ROC) curves. EDT ctDNA,
but not PRE ctDNA or change from PRE to EDT, accurately predicted clinical benefit to
PKCi based therapy (AUC 0.84, [95% confidence interval, 0.65–1.0, p = 0.026]) (Figure 2B).
Based on ROC curve analysis, the sensitivity and specificity for ctDNA > 16.35 copies/mL
at EDT in the no clinical benefit group were 70% and 100%, respectively. The positive and
negative predictive values for ctDNA > 16.35 copies/mL were 100% and 67%, respectively.

3.4. Longitudinal ctDNA Monitoring and Disease Progression

Monitoring ctDNA levels over time was also informative for establishing clinical
benefit and detecting disease progression. Collectively, six patients had undetectable
ctDNA during treatment (patient #2, #3, #4, #5, #9 and #16) and five of these patients
(5/6; 83%) benefited from PKCi-based therapy (PR or SD ≥ 6 months) (Figure 3A). Patient
#9 was the only patient with no clinical benefit who had an undetectable ctDNA at EDT
and multiple later time points (Figure 3B, Table S1). Conversely, of the seven patients
with consistently detectable ctDNA during therapy (patient #1, #7, #11, #13, #14, #15, #17)
(Figure 3, Figure S2) only one patient (patient #1, PFS of 7.4 months; Figure 3C) benefited
from therapy and this patient showed a 74% reduction in ctDNA level from baseline
to EDT.
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Figure 3. Monitoring of ctDNA in patients treated with PKCi in metastatic UM. ctDNA levels were collected longitudinally
during treatment and correlated to CT imaging during baseline, whilst on treatment and on progression. Longitudinal
ctDNA monitoring is shown for (A) clinical benefit patients, (B) no clinical benefit patients and (C) CT images and
corresponding ctDNA data are shown for clinical benefit patient #1. Only patients #2, #3, #4, #5, #9 and #16 had undetectable
ctDNA for the driver oncogene in at least one on-therapy plasma sample. SD, stable disease; PR, partial response; PD,
progressive disease.

Eight out of seventeen patients also had ctDNA samples assessed within 30 days
(before or after) of disease progression. In total, 7/8 patients (patient #1, #3 #7, #9, #11, #13
and #15; Figure 3, Figure S2) showed increasing ctDNA prior to radiological confirmation
of disease progression with an increase in size of target lesions and new metastases as per
RECIST 1.1 (Figure 4). Only patient #17 showed ctDNA levels near progression that were
lower than EDT ctDNA despite CT imaging confirming disease progression (Figure 3).

3.5. Detection of Driver and Additional Mutations through Ion Torrent NGS

We next examined the ctDNA of these patients using a targeted NGS panel that
included gene alterations shown to be prognostic in UM (Table 2). Paired baseline and
on-treatment samples (time from baseline to on-treatment sample 0.9–11.3 months) from 17
patients were sequenced and the driver GNAQ, GNA11 and CYSLTR2 mutations identified
in the tumor were confirmed by NGS in the baseline and/or on-treatment ctDNA samples
in 16/17 patients. The allele frequency of tumor-associated mutations determined by
ddPCR and NGS was highly correlated (Spearman’s rank r = 0.968, p < 0.001; Figure S3A).
The GNA11 Q209L driver mutation present in the UM of patient #9 was not detected in
the baseline or on-treatment liquid biopsy samples using NGS, and this patient had the
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lowest tumor burden (SPOD = 200 mm2), although not the lowest baseline ctDNA levels
by ddPCR (24 copies/mL plasma).

Table 2. Liquid biopsy mutation analysis using Ion Torrent next generation sequencing.

Patient ID Baseline Mutation
(MAF %, LOD %)

On-Treatment Mutation
(MAF %, LOD%)

Time from Baseline
to on-Treatment

Sample (Months)

1 GNA11Q209L → (0.7, 0.6)
GNA11Q209L → (23.4, 0.3)

TP53R248Q → (23.3, 0.3)
TP53R342 *→ (15.7, 0.3)

8.2

2 GNA11Q209L → (0.5, 0.3) GNA11Q209L → (9.9, 0.6) 8.5

3 GNA11Q209L → (3.0, 0.3)
SF3B1R625H → (1.3, 0.2)

GNA11Q209L → (2.0, 0.3)
SF3B1R625H → (1.8, 0.3)

10.0

4 GNAQR183H → (8.5, 0.2) GNAQR183H → (22.4, 0.2) 6.0

5 ND GNA11Q209L → (4.8, 0.6) 11.3

6 GNAQQ209P → (32.3, 0.2)
SF3B1R625C → (21.2, 0.1)

GNAQQ209P → (25.4, 0.2)
SF3B1R625C → (12.8, 0.2)

0.9

7 GNA11Q209L → (22.7, 0.1)
SF3B1R625L → (24.0, 0.1)

GNA11Q209L → (20.9, 0.2)
SF3B1R625L → (20.5, 0.2)

3.9

8 GNAQQ209P → (4.4, 0.1) GNAQQ209P → (0.3, 0.2) 1.0

9 ND ND 3.8

10 CYSLTR2L129Q → (8.1, 0.3) CYSLTR2L129Q → (0.5, 0.1) 0.9

11 GNA11Q209L → (13.3, 0.1) GNA11Q209L → (29.5, 0.2)
TP53G244D → (0.3, 0.2)

4.0

12
GNA11Q209L → (3.4, 0.3)

TP53Y220C → (0.7, 0.3)
TP53R248P → (0.3, 0.3)

GNA11Q209L → (14.1, 0.4) 0.9

13 GNAQQ209P → (0.8, 0.2) GNAQQ209P → (1.0, 0.2)
TP53R248G → (0.3, 0.2)

5.4

14 GNAQQ209P → (6.3, 0.2)
SF3B1R625H → (8.6, 0.2)

GNAQQ209P → (3.1, 0.4)
SF3B1R625H → (6.1, 0.3)

3.8

15 GNAQQ209P → (20.1, 0.2) GNAQQ209P → (9.7, 0.2) 3.8

16 GNAQQ209P → (5.9, 0.2) ND 2.4

17 GNAQR183Q → (4.2, 0.2) GNAQR183Q → (11.6, 0.3)
TP53S215G → (0.4, 0.3)

3.4

ND, not detected; MAF, mutant allele frequency; LOD, limit of detection. Timing of the on-treatment plasma
sample collection is also shown. *, indicates premature termination codon. All mutations shown had MAF > LOD.

In addition to the UM driver mutations, the hotspot SF3B1 R625 mutation was detected
in baseline and on-treatment ctDNA samples derived from four patients with GNAQ or
GNA11 driver mutations (patients #3, #6, #7 and #14; Table 2). The allele frequencies of
the SF3B1 and driver GNAQ/GNA11 mutations were highly correlated in these eight
ctDNA samples (Figure S3B). Of the four patients with SF3B1 mutations, one achieved SD
≥ 6 months, two had SD < 6 months and one patient had PD. The median PFS of these
SF3B1 mutation-positive patients was 4.6 months, slightly longer than the median PFS of
3.8 months for the whole cohort.
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Figure 4. Treatment response in target lesions and ctDNA detectability in UM patients treated with PKCi. Percentage
change in target lesions as per RECIST1.1 from 17 patients. Bars are aligned according to decreasing percentage in the
sum of target lesions. Positive bars show growth in target lesions and negative bars indicate shrinkage. The dotted line
corresponds to a 20% increase or 30% reduction in size of the target lesions. Patients were classified as ctDNA undetectable
if at least one on-therapy plasma sample was undetectable for the driver oncogene. Patient IDs are shown above or below
bars. # progression of disease with new non-target lesions.

We also identified TP53 mutations in the baseline and/or on-treatment plasma sam-
ples of 10 patients and many of these TP53 mutations are established cancer-associated
mutations (e.g., S215G, Y220C, G244D, G245S, R282P, R248P/Q/G) [25] (Table S2). Of these
10 patients, five received combination PKCi+HDM2i and there was an enrichment of TP53
mutations in the on-treatment plasma samples from patients treated with PKCi+HDM2i
compared to patients treated with PKCi monotherapy (Fisher exact test, p = 0.035). In-
terestingly, in four of five PKCi+HDM2i patients the TP53 variants were not identified
pre-treatment, suggesting the possibility of selection during treatment. It is important to
note that many TP53 mutations were detected at low allele frequencies that were below the
0.2% limit of detection of our NGS assay [24] and thus would require further validation.

4. Discussion

Currently, there is no effective systemic therapy for metastatic UM and recent clinical
trials with targeted therapies and immune checkpoint inhibitors appear not to improve the
OS of patients with metastatic UM [26,27]. Numerous phase 1 clinical trials are currently
underway including with PKCi-based therapy. In this study, we explored the utility of
ctDNA as an early marker of Phase I drug efficacy and resistance in metastatic UM [28].

We noted a strong correlation between baseline UM ctDNA levels and prognostic
markers including tumor burden and LDH levels, and this is consistent with previous
reports showing that elevated ctDNA reflects higher disease burden and is associated with
poor prognosis in UM and CM [20,21]. It is well established that ctDNA is also associated
with response, PFS and OS in metastatic CM patients treated with targeted therapies and
anti-PD1-based immunotherapies [19,20]. In this study, we explored the utility of ctDNA
in monitoring and predicting UM response to PKCi-based therapy. Only one other study
has examined longitudinal UM ctDNA levels and treatment response. The latter was a
proof-of-concept study including only three UM patients, and although it confirmed that
EDT ctDNA was predictive of an anti-PD-1 inhibitor response in a cohort that included
various cancer types [29], the UM patients failed to respond to PD-1 inhibitor blockade and
ctDNA was only detected in two of the UM patients [29].

In this study, we show that ctDNA levels early during therapy can predict UM re-
sponses to PKCi-based targeted therapy. Interestingly, pre-treatment ctDNA did not predict
response or prolonged PFS in our UM patient cohort, even though baseline ctDNA was
positively correlated with disease burden and LDH. Importantly, although all responding
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patients with detectable baseline ctDNA showed reduced levels of ctDNA at EDT, the
decrease from PRE to EDT was not significant, and ctDNA at EDT was also reduced in
seven of 10 patients showing no clinical benefit to PKCi. Thus, it is the absolute level of
EDT ctDNA that is indicative of treatment response in this cohort and we reported similar
findings in advanced melanoma patients treated with anti-PD1-based therapy [20]. Consid-
ering the level of ctDNA is reflective of both tumor size and metabolic tumor burden [30],
it is not surprising that low ctDNA early during therapy would predict treatment response.
Our study also confirms that increasing UM ctDNA preceded radiological progression and
did so with lead-time ranging from 4 to 10 weeks. A previous study also reported that
increasing ctDNA also precedes radiologic detection of UM liver metastases [22]. Thus,
the inclusion of ctDNA analysis in Phase I UM trials can provide meaningful data on
patients failing to respond to novel therapies, and this may accelerate CT-based confir-
mation of progression or contribute to adaptive trial design, allowing for earlier access to
alternate drugs.

We also utilized a custom targeted NGS panel designed for the detection of 90% of
known CM gene mutations and 95% of known UM gene mutations [24]. We confirmed
that the allele frequency of driver mutations identified using targeted Ion Torrent NGS was
comparable to the mutant allele frequencies determined by ddPCR, although the sensitivity
of NGS did not match ddPCR, and the driver GNAQ mutation was not detected by NGS
in one patient, presumably due to the low volume of disease. Nevertheless, NGS was
able to identify additional mutated genes (i.e., SF3B1, TP53), which have been implicated
in UM prognosis and treatment response. For instance, TP53 mutations were detected
in the circulation of 5/6 UM patients treated with PKCi+HDM2i. These TP53 mutations
may have been selected or expanded in response to therapy as they were not detected at
baseline in four patients. As these mutations were detected at low frequency they may
represent clonal expansion of tumor cells or hematopoietic stem cells during the process
of clonal hematopoiesis. Considering that TP53 loss confers HDM2i resistance [31] and
that the TP53 mutations detected in this study are established loss-of-function alterations,
ctDNA may prove valuable in the early detection of treatment resistance mechanisms. It is
also worth noting that a recent study confirmed that TP53 is significantly disrupted in UM
with 11/103 UM showing genomic loss or mutations affecting the TP53 gene [14].

This study was limited by the small sample size and the fact that patients were
treated with two distinct treatments based on PKC inhibition. A larger patient sample in a
prospective study is required to evaluate the predictive value of baseline ctDNA level and
more importantly test the value of including ctDNA as a routine monitoring tool in UM
clinical trials.

5. Conclusions

In summary, baseline ctDNA in metastatic UM strongly correlates with baseline LDH
level and disease volume. Treatment-induced changes in ctDNA and low levels of ctDNA
EDT predicted response to PKCi-based targeted therapy and the inclusion of targeted NGS
yielded valuable and accurate data about driver mutation frequency and the selection of
potential resistance effectors.

Despite proof of concept that ctDNA is a useful biomarker for monitoring response to
therapy, in the form of evolution of resistance, and should be included in metastatic UM
clinical trials, the most important challenge remains the identification of effective, durable
therapies for UM.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13071740/s1, Figure S1: Relationship between PKC inhibitor-based response and
ctDNA levels, LDH and disease burden, Figure S2: Longitudinal monitoring of ctDNA in patients
treated with PKCi in metastatic UM, Figure S3: Significant correlation in mutant allele frequency
determined by ddPCR and targeted Ion Torrent NGS, Table S1: Patient and response to therapy
details, Table S2: TP53 mutations detected by Ion Torrent next generation sequencing.
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Simple Summary: Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis. KRAS mutations
occur in up to 95% of cases and render the tumor resistant to many types of therapy. Therefore,
these patients are treated with traditional cytotoxic agents, according to guidelines. The familial or
hereditary form of the disease accounts for up to 10–15% of cases. We hypothesized that hereditary
and Familial Pancreatic Cancer cases (H/FPC) have a distinct tumor specific mutation profile due to
the presence of pathogenic germline mutations and we used circulating free DNA (cfDNA) in plasma
to assess this hypothesis. H/FPC cases were mainly KRAS mutation negative and harbored tumor
specific mutations that are potential treatment targets in the clinic. Thus, we conclude that cases with
a hereditary or familial background can be treated with newer and more effective agents that may
ultimately improve their overall survival.

Abstract: Pancreatic ductal adenocarcinoma (PDAC) presents many challenges in the clinic and there
are many areas for improvement in diagnostics and patient management. The five-year survival
rate is around 7.2% as the majority of patients present with advanced disease at diagnosis that
is treatment resistant. Approximately 10–15% of PDAC cases have a hereditary basis or Familial
Pancreatic Cancer (FPC). Here we demonstrate the use of circulating free DNA (cfDNA) in plasma
as a prognostic biomarker in PDAC. The levels of cfDNA correlated with disease status, disease
stage, and overall survival. Furthermore, we show for the first time via BEAMing that the majority
of hereditary or familial PDAC cases (around 84%) are negative for a KRAS somatic mutation. In
addition, KRAS mutation negative cases harbor somatic mutations in potentially druggable genes
such as KIT, PDGFR, MET, BRAF, and PIK3CA that could be exploited in the clinic. Finally, familial or
hereditary cases have a longer overall survival compared to sporadic cases (10.2 vs. 21.7 months,
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respectively). Currently, all patients are treated the same in the clinic with cytotoxic agents, although
here we demonstrate that there are different subtypes of tumors at the genetic level that could pave
the way to personalized treatment.

Keywords: liquid biopsy; cfDNA; hereditary and familial pancreatic cancer; somatic mutation
profiling; potentially druggable genes

1. Introduction

The incidence and mortality rates of adenocarcinoma of the pancreas (PDAC) are
almost equal [1]. Today, PDAC is the third leading cause of cancer death in the EU and by
2030 it is projected to be the second leading cause of cancer-related death [2], surpassing
breast, prostate, and colorectal cancer. The overall survival at 5 years is around 7.2% due to
the fact that the majority of patients present with advanced and treatment resistant disease
at diagnosis. KRAS somatic mutations are present in around 90% of sporadic tumors and
TP53, CDKN2A, and SMAD4 mutations are also commonly found. However, none of these
somatic changes are druggable at present time. In fact, PDAC tumors have an average
of 63 somatic alterations that affect different signaling pathways [3]. The best described
common risk factors for sporadic PDAC include tobacco, alcohol, diabetes, chronic pancre-
atitis, and obesity [4]. Family history is also an important risk factor and approximately
10% of PDAC cases have a hereditary or familial basis [5]. Hereditary pancreatic cancer
are associated with a known cancer syndrome such as hereditary breast–ovarian cancer
(HBOC), Peutz–Jeghers (PJ), Hereditary Pancreatitis (HP), Familial Atypical Multiple Mole
Melanoma (FAMMM), and Lynch syndrome and harbor germline pathogenic mutations
in genes such as BRCA2, MLH1, and CDKN2A [6]. Whereas, Familial Pancreatic Cancer
(FPC) is defined as a family with at least one pair of affected first degree relatives with no
identified genetic basis and account for 4–10% of PDAC patients [7,8]. The Spanish famil-
ial pancreatic cancer registry (PANGENFAM) was established in 2009 with the principal
objective to characterize the phenotypic and genetic background of FPC [9].

Specific, sensitive and minimally invasive biomarkers are needed in order to accu-
rately diagnose PDAC at a potentially curable stage and aid in patient management during
treatment. CA19-9 is currently used in the clinic, although the sensitivity and specificity
for the diagnosis of symptomatic PDAC is 79–81% and 82–90%, respectively [10]. Sev-
eral potential biomarkers have been recently described such as a three-protein panel in
urine [11], Galectin-1 (Gal-1) in serum [12], thrombospondin-2 (THBS2) in plasma [13],
circulating tumor DNA (ctDNA) [14], and the IMMray™ PanCan-d 29 biomarker signature
in serum [15]. The term the “liquid biopsy” was coined in 2010 [16], and is defined as the
detection and analysis of molecules (e.g., protein, DNA, RNA), cells or extracellular vesicles
(e.g., exosomes) that originate from the primary tumor in blood and other body fluids,
such as saliva, cerebrospinal fluid, and feces. Since fresh tissue, in the form of biopsies,
is scarce and prohibitive for many PDAC patients, liquid biopsies represent an attractive
surrogate system to provide essential information regarding diagnosis, stage, etc. Likewise,
there is an important and inherent degree of heterogeneity in primary PDAC tumors and
associated metastatic lesions [17], which can only be studied in depth via liquid biopsies
due to the shortage of primary and metastatic tumor tissue. Thus, research to maximize the
potential information that a liquid biopsy can offer has exploded in the past decade. cfDNA,
which consists of double-stranded DNA molecules of 70 to 200 bp [18,19], is released into
the blood stream by apoptotic or necrotic cells or in extracellular vesicles such as exosomes.
cfDNA is present in all individuals, although levels up 40 times higher are detected in
patients with tumors or inflammatory disease [20]. In fact, cfDNA detection has been used
previously as a prognostic and predictive marker in pancreatic cancer [21,22].
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This study aimed to analyze the use of cfDNA as a prognostic and predictive marker
in PDAC. Furthermore, the somatic mutation profile of Familial or Hereditary PDAC
(H/FPC) and sporadic PDAC cases was also analyzed.

2. Materials and Methods
2.1. Identification and Classification of Patients

The study was approved by the local ethics committee and all patients signed the
associated informed consent. PDAC patients were identified in the medical oncology
and general surgery departments of the Ramon y Cajal University Hospital in Madrid,
Spain. Cases that complied with the inclusion criteria of the Spanish Familial Pancreatic
cancer registry (PANGENFAM) were classified as Hereditary or FPC (H/FPC cohort) [9]
and included cases with and without a known genetic cause. Cases with no reported
hereditary or familial pancreatic cancer syndrome were classified as sporadic cases (SP
cohort). High-risk family members of H/FPC cases in the secondary screening program
that were diagnosed with pancreatic cysts or intraductal papillary mucinous neoplasm
(IPMN) were also included and one case that was initially included in the study as a
possible PDAC, but was later confirmed as an IPMN (pancreatic cysts cohort). Blood
samples in EDTA tubes were taken on entry into the study and plasma was extracted and
stored until cfDNA extraction and somatic mutation analysis. All clinical and personal
data was stored in a secure database Research Electronic Data Capture (REDCap: https:
//www.project-redcap.org/).

2.2. Isolation of cfDNA from Plasma

A total of two different methods of cfDNA isolation were compared to determine the
most appropriate method for PCR and sequencing based analysis of cfDNA, the Maxwell®

RSC Instrument and the QIAamp circulating nucleic acid kit (Qiagen, Venlo, Netherlands).
DNA was extracted from 1 mL of plasma using the Maxwell® RSC Instrument (Promega,
Madison, WI, USA) and eluted in a final volume of 50 µL from 136 patients diagnosed with
PDAC and 29 individuals diagnosed with pancreatic cysts and IPMN. Plasma samples
were also obtained from 40 healthy individuals with no known history of digestive disease
or cancer, provided by the BioBank Hospital Ramón y Cajal-IRYCIS (PT13/0010/0002), in-
tegrated in the Spanish National Biobanks Network (ISCIII Biobank Register No. B.0000678,
Spain). cfDNA was isolated as 10 plasma pools that consisted of 4 individuals in each. The
concentration of cfDNA was determined in all samples using the QuantiFluor® dsDNA
System (Promega, Madison, WI, USA) kit and analyzed using the Quantus Fluorometer
(Promega, Madison, WI, USA).

2.3. Detection of Mutant KRAS in Plasma by BEAMing

The presence of a mutation in KRAS codons 12, 13, 59, 61, 117, and 146 was determined
in cfDNA isolated using the Maxwell® RSC system and the OncoBEAM KRAS CRC kit
(Sysmex Inostics, Hamburg, Germany) using the BEAMing technology (Sysmex Inostics,
Hamburg, Germany) according to the manufacturer’s instructions, which also includes
positive and negative assay controls.

2.4. Sequencing of cfDNA Using the TruSight15 System (Illumina)

Cell free DNA was extracted from 1–3 mL of plasma using the QIAamp circulating
nucleic acid kit (Qiagen, Venlo, Netherlands) according to the manufacturer’s instructions.
The DNA preparation obtained was purified using the Agentcourt AMPure XP Reagent
(Beckman Coulter, Brea, CA, USA) in two successive steps in order to isolate cfDNA of
approximately 160–170 bp. DNA was added to the Agentcourt AMPure XP Reagent at a
ratio of 0.7× and then at a ratio of 2× the initial volume of DNA. The sample was then
vortexed, centrifuged and incubated for 5 min at room temperature and then placed in a
magnetic rack and incubated for 5 min. The supernatant containing the cfDNA was placed
in a new Eppendorf and more Agentcourt AMPure XP Reagent was added for the second
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round of purification. The same steps were repeated and the supernatant was finally
discarded. Then, 70% ethanol was added to the sample and then vortexed, centrifuged, and
placed in the magnetic rack for 30 s. The supernatant was removed and the sample was
washed with 70% ethanol in order to obtain a dry pellet. Finally, nuclease free water was
added and the sample was vortexed, centrifuged, incubated at room temperature for 2 min
and then incubated in the magnetic rack for 2 min. The purified cfDNA was analyzed with
the Tape Station 2200 using the HS D1000 kit (Agilent Technologies, Santa Clara, CA, USA)
to confirm the presence of a single band of approximately 160 bp. After quantification
using the Qubit fluorimeter 2.0 (ThermoFisher Scientific, Waltham, MA, USA) with the HS
DNA, the cfDNA was diluted to 2 ng/µL to prepare genome libraries using the TruSight
Tumor 15 kit (Illumina, San Diego, CA, USA), which is optimized for low DNA input.

The sequencing panel included the genes AKT1, BRAF, EGFR, ERBB2, FOXL2, GNA11,
GNAQ, KIT, KRAS, MET, NRAS, PDGFRA, PIK3CA, RET, and TP53. In total, 27 PDAC cases
(20 H/FPC cases and 7 sporadic cases) were included in the panel sequencing analysis
of cfDNA, and five of these samples were performed in duplicate. Then, two healthy
individuals, one case of previous breast cancer and one previous pancreatic neuroendocrine
tumor case, were also included in the study as control samples.

2.5. Identification of Pathogenic Somatic Variants

The BaseSpace Variant Interpreter (https://variantinterpreter.informatics.illumina.
com/home, last accessed date: 1 July 2020) from Illumina was used for the identification of
pathogenic somatic variants, which was specifically designed to analyze the sequencing
data generated using the TruSight 15 kit. A detailed description of the analysis pipeline
is shown in Data S1. Briefly, the variant call files (vcf) were uploaded and the “Small
Variant Consequences” filter was applied that included stop gain, stop loss, splice site,
missense, frameshift, deletions, insertions, and initiator codon (ATG) loss. Those variants
with a deleterious, probably or possibly damaging consequence according to the SIFT
and PolyPhen parameters were retained. The frequency of somatic variants was analyzed
using the Catalogue of Somatic Mutations in Cancer public database (COSMIC: (https:
//cancer.sanger.ac.uk/cosmic, last accessed date: 1 July 2020). Samples that did not reach
an average minimum amplicon coverage of 500 were excluded, and variants that passed
the quality filters of genotype quality, variant frequency, and strand bias were retained.

2.6. Statistical Analysis

The R program 3.4.3 was used for statistical analysis. The Mann–Whitney test was
used to analyze the differences in concentration of cfDNA between the different groups,
according to disease status and stage. The Chi square test was used to study the differences
in the frequency of somatic mutations in the different groups. A One-Way ANOVA test
was used to determine the differences in age at diagnosis and the Fishers exact test was
used to analyze the differences between sex and disease stage distributions in each group.

The “survival” package of R was used to perform survival analysis. Overall survival
(OS) was determined from the date of diagnosis until the date of death (event) or the date
of the last follow-up (censored). Patients were divided into 3 groups according to total
cfDNA concentration for survival analysis: high (≥3rd quartile), medium (≤3rd quartile
and ≥1st quartile), and low (≤1st quartile). The Kaplan Meyer and Log Rank test were
used to analyze overall survival among different subgroups of patient according to cfDNA
levels and classification as sporadic or H/FPC cases. The analysis was adjusted for age
and disease stage at diagnosis, sex and 1st line treatment and the corresponding hazard
ratios were calculated.

3. Results
3.1. Patient Characteristics

In total, 184 individuals were recruited in the entire study, including 145 cases (102 spo-
radic and 43 familial or hereditary PDAC cases), 29 patients with pancreatic cysts, and
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40 healthy controls. The demographic characteristics of the individuals included in the
study are summarized Table 1 and more detailed information of the clinical characteristics
of the different cohorts is provided in Table S1. The PDAC cohort included 71 males and
74 females with a median age of 69 years (29–90 years). The median age at diagnosis of
sporadic cases (SP) was 70 years and 65.5 years for Hereditary or Familial PDAC cases
(H/FPC), the difference was statistically significant according to the one-way ANOVA
test (p = 0.000113). The Male:Female ratio for sporadic cases was 0.89 and 0.65 and this
difference was not statistically significant according to the Fishers exact test. The pancreatic
cyst cohort consisted of 10 males and 19 females with a median age of 53 (37–81 years) and
four patients in this cohort finally underwent a surgical resection of the pancreatic lesion
due to a suspicion of malignancy (Table S1). The 40 healthy individual cohort consisted
of 17 females and 23 males with a median age of 39 years (18–63 years) and no known
digestive diseases.

Table 1. Age and sex distribution of the individuals included in the study, according to the different groups analyzed
pancreatic ductal adenocarcinoma (PDAC) cases (familial or hereditary (H/FPC) and Sporadic PDAC), pancreatic cysts and
healthy controls).

Variable All PDAC Cases Hereditary or Familial
PDAC Sporadic Pancreatic Cysts Healthy Controls

Male 71 17 54 10 23
Female 74 26 58 19 17

Ratio M:F 0.96 0.65 0.89 0.53 1.35
Median age (range) 69 (29–90) 65.5 (29–84) 70 (31–90) 53 (37–81) 39 (18–63)

A total of 136 PDAC patients (94 sporadic and 42 H/FPC) were included in the
cfDNA quantification analysis, 54 in the KRAS detection analysis in cfDNA via BEAMing
(23 sporadic and 31 H/FPC) and 20 H/FPC cases and 7 sporadic cases were included in
the panel sequencing analysis of cfDNA. There were no significant differences between the
age, sex, and disease stage at diagnosis distribution of the cohorts used for BEAMing and
sequencing analysis compared with the entire cohort.

3.2. Correlation of cfDNA Levels with Clinical Parameters

The Maxwell® RSC kit favors the isolation of small DNA fragments within the ex-
pected cfDNA size range of 150 to 200 bp with a low contamination of high-molecular
weight genomic DNA (Figure S1). Thus, this method was used for the study of total cfDNA
analysis in 1 mL of plasma and also for the BEAMing-based studies to avoid the amplifica-
tion of non-tumor genomic DNA. The total cfDNA concentration in plasma (ng/µL) was
determined for 136 patients with PDAC, 29 with pancreatic cysts and 40 healthy individu-
als (Figure 1a). The median cfDNA level in healthy individuals was 0.01 ng (0.005–0.09),
0.03 ng (0.005–0.7) in patients with pancreatic cysts, 0.0575 ng (0.01–4.17) in H/FPC PDAC
cases, and 0.07 ng (0.005–2.055) in sporadic PDAC cases. There were significantly higher
levels of cfDNA in patients with pancreatic cysts (p = 0.021), sporadic PDAC (p ≤ 0.001)
and H/FPC PDAC (p ≤ 0.001) compared to healthy individuals. Furthermore, there was
significantly higher levels of cfDNA levels in both H/FPC PDAC (p = 0.02314) and sporadic
PDAC cases (p = 0.01374) compared to patients with pancreatic cysts. The median cfDNA
concentration in all PDAC cases was 0.0675 ng (0.005–4.17) and there was no significant
difference in cfDNA levels between H/FPC PDAC and sporadic PDAC; 0.0575 vs. 0.07 ng,
respectively. The median cfDNA level in resectable cases was 0.0575 ng (0.0050–2.0000),
0.0675 ng (0.0350–2.0000) in locally advanced, and 0.07 ng (0.005–4.000) in metastatic cases
(Figure S2a). Even though the median cfDNA level increased according to disease stage,
the difference did not reach statistical significance. However, the levels of cfDNA were sig-
nificantly higher in resectable cases (p ≤ 0.001), locally advanced (p ≤ 0.001), and metastatic
cases (p ≤ 0.001) compared to healthy controls. Furthermore, the cfDNA levels were also
significantly higher in locally advanced (p = 0.02) and metastatic cases (p = 0.02) compared
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to patients with pancreatic cysts. There was no significant association between cfDNA
levels and tumor size according to the Pearson Correlation (−0.1).

1 
 

 

 

Figure 1. Correlation of circulating free DNA (cfDNA) levels with clinical characteristics. (a) The concentration of circulating
free DNA (cfDNA) in plasma differentiates between cancer and non-cancer cases. There were significantly higher levels of
total cfDNA in hereditary or familial and sporadic pancreatic ductal adenocarcinoma (PDAC) cases compared to healthy
controls and patients with pancreatic cysts. ** p ≤ 0.01; * p ≤ 0.05. (b) High levels of cfDNA at diagnosis correlate with a
poorer overall survival (OS). Patients were classified into 3 groups: high (>0.2037 ng), medium (≥0.035 ng and ≤0.2037),
and low (<0.035 ng) cfDNA levels. Follow-up was censored at 5 years and adjusted for sex, age, and disease stage at
diagnosis, sporadic or hereditary and familial, case and first line treatment. Low: N = 33; Medium N = 67 and High: N = 31.

Survival and cfDNA total concentration data were available for 134 PDAC cases. Cases
were followed up for a median of 12 months (0.4–60 months) and survival analysis was
performed based on total cfDNA levels and censored at 5 years. Patients were classified
into 3 groups: high (>0.2037 ng), medium (>0.035 ng and <0.2037 ng), and low (<0.035 ng)
cfDNA levels at diagnosis. The concentration of cfDNA in plasma significantly correlated
with overall survival (OS) and patients with a high cfDNA concentration at diagnosis
(>0.2037 ng) had a significantly shorter OS, with a median overall survival of 8.2 vs. 11.4
and 15.8 months for medium and low levels, respectively (Figure 1b). The Hazard Ratios
for a low cfDNA level at diagnosis was 0.6 (p = 0.04), 0.5 for a medium level (p = 0.01) and
1.8 (p = 0.04) for a high level (Table S2). Furthermore, cfDNA levels were determined in
plasma before and 1 month after a surgical resection of the primary tumor. There was a
significant reduction in the cfDNA concentration from 0.11 ng (0.025–5.5 ng) before surgery
to 0.025 ng (0.01–1.25 ng) after surgery (p = 0.0024) (Figure S2b), which supports the idea
that cfDNA levels are indicative of tumor burden.

3.3. Analysis of Somatic Mutations in Plasma

BEAMing was performed with cfDNA isolated from 1 mL of plasma using the
Maxwell® RSC kit from 54 PDAC cases, which included 31 H/FPC cases and 23 spo-
radic cases. The frequency of KRAS mutations in codon 12 and 13 was 70% in sporadic
cases and 16% in familial cases (Figure 2a,b), which was statistically significant (p ≤ 0.001),
and indicated that KRAS somatic mutations are less frequent in H/FPC cases compared to
sporadic cases. According to disease stage, KRAS positivity in sporadic and H/FPC cases
was 67 vs. 17% for locally advanced cases and 75 vs. 17% in metastatic cases, respectively,
which was statistically significant (p ≤ 0.001). The same statistical analysis could not
performed for the resectable cases due to the low number of cases in each in sub-group.
KRAS mutation validation in primary tissue was only possible in 8 out of 54 (15%) samples
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due to problems associated with primary tissue availability and a high non-neoplastic cell
content of primary tumors.
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Figure 2. KRAS mutation status was determined in plasma from (a) sporadic PDAC cases (b) hereditary or familial PDAC
(H/FPC) cases via BEAMing and mutant KRAS was more frequently detected in sporadic cases compared to H/FPC
cases. BEAMing was performed using cfDNA isolated from 1 mL of plasma from 54 PDAC cases (31 familial cases and
23 sporadic cases). The frequency of mutant KRAS was 70% in sporadic cases and 16% in familial cases, which was
statistically significant (p ≤ 0.001)).

The overall DNA yield with the QIAamp circulating nucleic acid kit was higher
compared to the Maxwell® RSC kit (Figure S1), although there was a higher level of
genomic DNA contamination. Thus, this method was used for subsequent sequencing
analyses after re-purification of fragments within the expected range of cfDNA (250 bp).
Panel sequencing of 15 genes commonly mutated in primary tumors was performed
in order to determine the spectrum of somatic mutations (other than KRAS) in H/FPC
cases. A total of 3 out of 21 (15%) of H/FPC cases were positive for a KRAS mutation (p.
Gly12Arg) (Figure 3) and BEAMing data were available for 17 of these cases. The KRAS
status via BEAMing and sequencing was consistent in 16 cases (3 KRAS positive and 14
KRAS negative) and a KRAS mutation was detected by BEAMing and not by sequencing in
one case. This is likely due to the lower sensitivity of sequencing for mutation detection
compared to BEAMing. The overall frequency of TP53 mutations in H/FPC cases was
12 out of 21 (57%). Furthermore, mutations in AKT, ERBB2, KIT, and PDGFRA were also
detected in KRAS negative H/FPC cases (Figure 3 and Table 2). Sequencing and BEAMing
data were available for 7 sporadic cases. The presence of a KRAS mutation was confirmed
by sequencing in 3 of 4 sporadic cases, again this is likely due to the lower sensitivity of
sequencing analysis. Of the 3 KRAS negative cases determined by BEAMing, one was
negative for mutations via sequencing, one harbored mutations in PDGFRA and TP53,
and the other case had mutations in PIK3CA, KIT, BRAF and ERBB2 (Table 2). The KRAS
mutation frequency in these 7 sporadic cases was 43%. However, it is important to note
that as 3 cases were specifically selected as they were negative for a KRAS mutation via
BEAMing and 4 KRAS positive cases were included for comparison. Thus, there is a
selection bias that is reflected in the KRAS mutation frequency.

305



Cancers 2021, 13, 1612

Figure 3. The frequency of somatic mutations in hereditary or familial cases and sporadic was
determined by sequencing analysis.

Table 2. Summary of the somatic mutations detected in H/FPC and sporadic cases by sequencing analysis.

Case Somatic Mutations Detected by Sequencing KRAS Status by BEAMing

H/FPC

KIT: p.(Glu640Lys) and TP53: p.(His214Tyr) and ERBB2: p.(Asn850Ser) md
KRAS: p.(Gly12Arg) and TP53: p.(His193Arg) md

KRAS: p.(Gly12Asp) md
KRAS:p.(Gly12Asp) and TP53:p.(Tyr220Cys) and ERBB2:p.(Asn850Ser) md
AKT: p.(Lys39Asn) and TP53: p.(Pro250His) and ERBB2: p.(Arg849Gln) nmd

ERBB2: p.(Ala710Val) nmd
ERBB2: p.(Cys560Phe) and AKT: p.(Thr34Asn) and TP53: p.(Pro250His) nmd

PDGFRA: p.(Ala840Thr) and AKT: p.(Thr34Asn) and TP53:p.(Pro250His) nmd
TP53 p.(Ser215Ile) and PDGFRA p.(Ala840Val) and KIT p.(Tyr545Phe) nmd

TP53: p.(Glu171Gly) and AKT: p.(Thr34Asn) nmd
TP53: p.(His214Tyr) nmd
TP53: p.(His214Tyr) nmd

TP53:p.(His214Tyr) and ERBB2:p.(Tyr735Cys) nmd
TP53:p.(His214Tyr) and KIT:p.(Glu640Lys) and ERBB2:p.(Tyr735Cys) and

ERBB2:p.(Asn850Ser) nmd

NEG nmd
NEG nmd
NEG nmd
NEG nmd

ERBB2:p.(Leu715Arg) and AKT:p.(Pro24Ser) not tested
NEG not tested
NEG not tested

Sporadic

KRAS: p.(Gly12Asp) and TP53: p.(Gly266Val) md
KRAS p.(Gly12Asp) and TP53 p.(Gly266Val) md

KRAS: p.(Gly12Asp) and TP53: p.(Gly244Ser) and AKT: p.(Arg23Trp) and
ERBB2: p.(Gly732Asp) md

TP53: p.(Pro177Arg) and ERBB2: p.(Pro1130His) md
PDGFRA p.(Ala820Val) and TP53 p.(Pro223Ser) nmd

PIK3CA: p.(Ala995Asp) and KIT: p.(Pro832Ser) and BRAF:p.(His585Tyr) and
ERBB2: p.(Pro761Thr) nmd

NEG nmd

NEG: negative for somatic mutations by sequencing analysis. md: KRAS mutation detected by BEAMing. nmd: no KRAS mutation
detected by BEAMing.
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Overall, 20 H/FPC and 7 sporadic cases were analyzed by sequencing analysis. Then,
3 out of 21 (14%) of H/FPC were positive for a KRAS mutation. All KRAS mutations were
Gly12Asp. One case only had a KRAS mutation, another KRAS and TP53 (His193Arg), and
another KRAS, TP53 (Tyr220Cys), and ERBB2 (Asn850Ser). Of the 3 sporadic cases negative
for a KRAS mutation via BEAMing, one had a mutation in TP53 and PDGFR, another in
PIK3CA, KIT, BRAF, and ERBB2, and the final case was mutation negative via sequencing.

According to the COSMIC database, KRAS and TP53 are the most commonly mutated
genes in PDAC, 64 and 47%, respectively. The KRAS mutations identified were known
pathogenic mutations that have been previously described in COSMIC. The most frequent
KRAS mutations found by sequencing were c.35G>A G12D and c.34G>C G12R, which are
among the most frequent mutations reported in COSMIC (G12D (47%), G12V (31%), and
G12R (13%)). The TP53 variant p.(His214Tyr) was identified in 5 H/FPC cases and had a
high pathogenicity score (FATHMM prediction (Pathogenic (score 1.00)) but was not found
in COSMIC [23].

Survival analysis was performed with hereditary or familial (H/FPC) cases and
sporadic cases, which was corrected for sex, age, and stage at diagnosis and 1st line therapy.
Hereditary or familial cases had a significantly longer median overall survival compared
to sporadic cases; 10.2 vs. 21.7 months, respectively, (p ≤ 0.001) (Figure 4). The Hazard
Ratio for sporadic cases was 2.4 (p ≤ 0.001) (Table S2), indicating that sporadic cases have a
poorer overall survival, independently of stage at diagnosis and 1st line treatment.
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Figure 4. Hereditary or familial PDAC cases have a longer overall survival (OS) compared to
sporadic cases.

Follow-up was censored at 5 years, adjusted for sex, age and disease stage at diagnosis,
and first line treatment. The median OS for H/FPC cases was 21.47 months (0.37–60) and
10.4 months (0.57–60) for sporadic cases, which was statistically significant. The HR for
sporadic cases was 2.4. Sporadic PDAC: N = 102 and H/FPC: N = 35.
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4. Discussion

Circulating-free DNA concentration in plasma or serum has been shown to be a
surrogate marker of tumor burden, survival, and recurrence in various tumor types, such
as lymphoma [24], lung [25,26], prostate [27] melanoma [28], and colon [29,30]. In this
study, the levels of cfDNA correlated with disease status, with higher levels found in PDAC
cases vs. healthy individuals or patients with pancreatic cysts. There was a reduction in
the total cfDNA levels after resection of the primary tumor, which also supports the notion
that cfDNA levels may be indicative of tumor burden. Furthermore, PDAC cases with a
cfDNA high concentration at diagnosis had a significantly poorer OS compared to cases
with low and medium levels. The lack of primary PDAC tissue of sufficient quality and
quantity is a significant problem due to the low resection rate and contamination with the
stroma cells, among other reasons. Thus, the liquid biopsy is the most feasible approach for
molecular studies in PDAC and we show here that molecular analysis in cfDNA is a good
substitute for primary tissue. We attempted to validate KRAS mutations in primary tissue
but were successful in only 15% of cases, which is a recurring problem in many PDAC
somatic profiling studies [31,32].

Mutant KRAS was more frequently detected in cfDNA from sporadic cases compared
to hereditary or familial cases (70 vs. 16%, respectively). This is the first time that a
difference in KRAS mutation status frequency has been shown between sporadic and
hereditary or familial cases. Previous studies have reported that the frequency of KRAS
mutations is similar between familial and sporadic cases [33,34]. However, as they reply
on primary tumor samples, they have some limitations, such as sample size and case
selection bias. One study reported a similar frequency of KRAS, TP53, CDKN2A, and
SMAD4 mutations in sporadic and familial cases [33]. However, this study only included
primary tumor-derived cell lines from 16 patients, thus there is an important sample size
limitation. A second study included 39 cases and also showed a similar somatic profile
between somatic and familial cases [34]. However, this study excluded cases with a known
pathogenic germline mutation that predisposes them to develop PDAC. Thus, there is an
important selection bias, as the cases that we hypothesize will lack KRAS somatic mutations
in the primary tumor were excluded. Thus, these data cannot be directly compared with
the data presented here.

Although it could be expected that the majority of sporadic cases would be positive for
KRAS mutation, we did not detect a KRAS mutation in all cases. This may be due to the low
cfDNA yield which appears to be dependent on disease stage. Furthermore, some patients
may not actively shed cfDNA into the blood stream and, therefore, it is almost impossible
to detect tumor cfDNA in these individuals. However, there was no statistically significant
difference in the median cfDNA levels between sporadic and hereditary or familial cases
that may account for this difference in KRAS detection frequency. Thus, suggesting that
the somatic KRAS mutation frequency differs between sporadic and hereditary for familial
cases. Furthermore, the KRAS positivity rate in the sporadic cases is consistent with
previous studies based on cfDNA that report values of 70 and 62.8%. Importantly, we show
for the first time that hereditary or familial cases have a longer OS survival compared to
sporadic cases, even though they are treated the same regimens in the clinic. Furthermore,
hereditary or familial cases were diagnosed at a significantly younger age compared
with sporadic cases, 70 vs. 65.5 years, respectively. However, since the survival analysis
was corrected for age and disease stage at diagnosis and 1st line adjuvant treatment, the
difference in survival may be due to a distinct molecular somatic profile of H/FPC cases
compared to sporadic cases.

The Maxwell system was used for BEAMing analysis as the magnetic beads-based
approach has been shown to be superior to silica membrane-based methods such as the
QIAamp kit [35]. In fact, we showed that Maxwell system favored the extraction of small
sized fragments which correspond to cfDNA, with less genomic DNA contamination. Thus,
we believe that this method is more appropriate for PCR based methods, such as BEAMing
to avoid the amplification of high molecular weight genomic DNA from normal cells. The
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QIAamp Kit produces the highest yield of total cfDNA compared to other commercially
available kits and was therefore used for sequencing analysis [36], which is at least 10 fold
less sensitive than BEAMing. The probability of finding a low number of cfDNA molecules
follows the Poisson distribution and therefore this probability increases with increased
sample volume. A minimum of 3.6 ng of cfDNA is needed to obtain a sensitivity of <0.1%
and 36 ng are needed to obtain a sensitivity of <0.01% [35]. Therefore, the sensitivity to
detect somatic mutations by sequencing analysis is much lower compared to BEAMing.

There are some important limitations with regard to the use of cfDNA as a prog-
nostic marker that should be taken into account. Some reports have shown that cfDNA
isolated from serum has a higher integrity than in plasma, although the KRAS allelic
frequencies were much lower in serum compared to plasma, with a similar sensitivity and
specificity [36]. The critical factors that influence the quality and yield of cfDNA are the
time from sample extraction to processing and sample collection tube type and a second
centrifugation is required to remove lysed white blood cells [36]. Plasma contains many
PCR inhibitors such as heparin, hemoglobin, hormones, immunoglobulin G, and lactofer-
rin [37], which may be overcome for PCR applications by diluting the sample. Although,
sequencing technologies are particularly sensitive to inhibitors and, thus, high quality and
quantity samples are needed. Clonal hematopoiesis of indeterminate potential (CHIP)
can interfere with cfDNA testing results and the parallel analysis of a paired whole blood
control to exclude CHIP variants and avoid misdiagnosis has been recommended [38].

In Europe, PDAC patients are all similarly treated in the clinic. Even though it is
clear that there are several PDAC sub-types at the genetic and histological level that differ
in terms of prognosis and response to therapy [39]. The backbone of chemotherapy in
PDAC are cytotoxic agents that target rapidly proliferating cancer cells. These include
the FOLFIRINOX scheme (folinic acid, fluorouracil, irinotecan, and oxaliplatin), gemc-
itabine combined with nab-paclitaxel, capecitabine and gemcitabine or 5FU monotherapy
according to disease stage and Eastern Cooperative Oncology Group (ECOG) status [40].
However, PDAC cases with germline and somatic mutations in DNA repair genes (BRCA1,
BRCA2, PALB2, ATM, BAP1, BARD1, BLM, BRIP1, CHEK2, FAM175A, FANCA, FANCC,
NBN, RAD50, RAD51, RAD51C), are more sensitive to platinum agents in first line and
PARP inhibitors (e.g., olaparib and rucaparib) as a maintenance treatment [41,42]. Clinical
guidelines recommend PDAC gene profiling and The National Comprehensive Cancer
Network (NCCN) guidelines suggest clinical trial participation as first line and second line
treatment options [40]. As treatment modifies the genomic composition of PDAC, cfDNA
is a useful tool to identify resistance mutations, and potential new treatment targets [43].

Low prevalence focal amplifications in druggable oncogenes have been identified
in PDAC such as ERBB2, MET, FGFR1, CDK6, PIK3R3, and PIK3CA, which may also be
exploited in the clinic to provide alternatives to cytotoxic therapies [44]. We hypothesized
that hereditary or familial PDAC cases have a distant somatic mutation spectrum due to
the presence of germline pathogenic mutations in DNA repair genes. We found somatic
mutations in the genes KIT, AKT, PDGFRA, MET, PIK3CA and BRAF in KRAS negative
cases, which were mainly found in hereditary and familial cases. Thus, this subgroup of
patients could be candidates for treatment with small molecule tyrosine kinase inhibitors
(TKI) that inhibit KIT and PDGFR (e.g., axitinib and imatinib), new generation isoform-
specific PI3K inhibitors that reduce toxicity (e.g., alpelisib), small molecule inhibitors and
monoclonal antibodies against the receptor and ligands of MET, BRAF, and EGFR, among
others. However, the efficacy of these treatment strategies must be confirmed in pre-clinical
or clinical studies in this sub-group of patients.

We show here for the first time that hereditary or familial cases have a lower KRAS
mutation frequency compared to sporadic cases. Although the data presented here are
preliminary and should be validated in a larger cohort of patients, the observation of
KRAS negativity in hereditary and familial cases could have an important impact in
the clinic for this patient subgroup. In addition, KRAS negative cases harbored somatic
mutations in potentially druggable genes that could potentially be exploited in the clinic.
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Furthermore, they have a longer overall survival, which does not appear to be related to
stage at diagnosis or 1st line treatment strategy. The main limitation of this study is the
sample size. Hereditary or familial PDAC is not a common entity and thus this factor
limited the number of cases that were included. Moreover, only 54 samples were included
in the BEAMing analysis and 27 in the sequencing analysis due to economic constraints and
8 cases in primary tissue validation due to sample availability. However, there are some
positive aspects of this study that should be highlighted. Firstly, as liquid biopsy samples
were used, were able to include localized and advanced PDAC cases in the study, which
provides a more representative patient cohort. Secondly, we show that the liquid biopsy
is a valid alternative in many PDAC cases to primary tissue samples, due to the advent
of new technologies with a high sensitivity and specificity for somatic mutation detection.
Finally, this study provides preliminary data to suggest that Hereditary or Familial PDAC
have a distinct somatic mutation profile compared to sporadic cases and this should be
taken into account in the clinic when defining a treatment strategy.

5. Conclusions

cfDNA is a valuable source of genomic information in PDAC cases where primary
tissue samples are scarce and is also useful to track the genomic changes induced by
treatment and tumor dynamics, for the design of a more personalized treatment. The level
of cfDNA in plasma appears to be a prognostic indicator, independently of the detection
of tumor specific mutations and appears to be a valid substitute for primary tumor tissue
for molecular studies in PDAC. Hereditary or familial and tend to be KRAS negative and
harbor somatic mutations in TP53 in combination with potentially druggable mutations in
genes such as KIT, AKT, BRAF, PIK3CA, and PDGFR. However, these preliminary findings
must be validated in a larger cohort. Hereditary or familial PDAC cases have a greater
overall survival rate, even though they are treated with the same regimens in the clinic as
sporadic cases.
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The authors wish to make the following corrections to this paper [1]: In the published
version, Figure 4 appeared as a duplication of Figure 1b. Furthermore, the legend of
Figure 2 has been corrected to accurately reflect the data shown.

The correct version of Figure 2 is as follows:

Figure 2. KRAS mutation status was determined in plasma from (a) sporadic PDAC cases (b) hereditary
or familial PDAC (H/FPC) cases via BEAMing and mutant KRAS was more frequently detected in
sporadic cases compared to H/FPC cases. BEAMing was performed using cfDNA isolated from 1 mL
of plasma from 54 PDAC cases (31 familial cases and 23 sporadic cases). The frequency of mutant KRAS
was 70% in sporadic cases and 16% in familial cases, which was statistically significant (p ≤ 0.001).
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The correct version of Figure 4 is as follows:

1 
 

 

 

Figure 4. Hereditary or familial PDAC cases have a longer overall survival (OS) compared to
sporadic cases.

We stress that these errors were purely due to human error and oversight; the correc-
tions made do not affect or change the written portion of the figure legend, the interpre-
tation of the results, or the final conclusions of this manuscript. The manuscript will be
updated. The authors would like to apologize for any inconvenience caused. All changes
have been reviewed and verified by the Academic Editors.
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Simple Summary: Classical markers alone, such as HPV DNA, p16 and HPV mRNA expression, are
not enough to stratify HPV-positive head and neck squamous cell carcinoma (HNSCC) patients, but
when combined with serological markers, the latter are strong indicators of prognosis in oropharyn-
geal squamous cell carcinoma (OPSCC) patients. Specifically, HPV16 E7 oncoprotein in serum at the
time of diagnosis, correlates with disease recurrence and patient overall survival. To our knowledge,
this is the first study to investigate HPV E7 oncoprotein in patient serum. The E7 oncoprotein detec-
tion in serum at the time of diagnosis may be useful as a non-invasive procedure for HPV-positive
OPSCC patient stratification and follow-up, helping to identify patients at risk for tumor recurrence
and metastasis during follow-up, and ultimately, providing a tool for clinicians to identify patients
for de-escalation treatment or those to be kept under close surveillance.

Abstract: Despite improved prognosis for many HPV-positive head and neck squamous cell carci-
nomas (HNSCCs), some cases are still marked by recurrence and metastasis. Our study aimed to
identify novel biomarkers for patient stratification. Classical HPV markers: HPV-DNA, p16 and HPV
mRNA expression were studied in HNSCC (n = 67) and controls (n = 58) by qPCR. Subsequently,
ELISA tests were used for HPV16 L1 antibody and HPV16 E7 oncoprotein detection in serum at
diagnosis and follow-up. All markers were correlated to relapse-free survival (RFS) and overall
survival (OS). HPV-DNA was found in HNSCCs (29.85%), HPV16-DNA in 95% of cases, HPV16 E7
mRNA was revealed in 93.75%. p16 was overexpressed in 75% of HPV-positive HNSCC compared to
negative samples and controls (p < 0.001). Classical markers correlated with improved OS (p < 0.05).
Serological studies showed similar proportions of HPV16 L1 antibodies in all HNSCCs (p > 0.05).
Serum E7 oncoprotein was present in 30% HPV-positive patients at diagnosis (p > 0.05) and correlated
to HNSCC HPV16 E7 mRNA (p < 0.01), whereas it was associated to worse RFS and OS, especially
for oropharyngeal squamous cell carcinoma (OPSCC) (p < 0.01). Detection of circulating HPV16 E7
oncoprotein at diagnosis may be useful for stratifying and monitoring HPV-positive HNSCC patients
for worse prognosis, providing clinicians a tool for selecting patients for treatment de-escalation.

Keywords: human papillomavirus; oropharyngeal squamous cell carcinoma; treatment de-escalation;
patient stratification; E7 oncoprotein; HPV DNA; HPV antibodies; ELISA
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1. Introduction

Human papillomavirus (HPV)-related head and neck squamous cell carcinomas (HN-
SCCs) are increasing worldwide [1]. Specifically, HPV-positive oropharyngeal squamous
cell carcinomas (OPSCC) have increased over the past few years, with approximately
93,000 new OPSCCs diagnosed per year worldwide [2–4]. HPV-positive OPSCCs constitute
a biologically distinct group of HNSCCs. Indeed, the American Joint Committee on Cancer,
8th edition, reports improved prognosis and treatment outcome for HPV-positive OPSCC
patients compared to HPV-negative cases [5,6].

HPV plays an important role in OPSCC onset [7]. The main transforming activity
of HPV relies on oncoproteins E6 and E7, which hamper p53 and pRb tumor suppressor
protein activities, respectively. Moreover, HPV E6 and E7 oncoproteins are key players in
tumor development, accounting for immune escape, angiogenesis, and the formation of a
pro-proliferative microenvironment [8].

Optimizing protocols through targeted therapies and personalized treatments is
paramount to increase survival rates for all patients [4]. In this context, several clinical trials,
such as PATHOS (NCT02215265) or OPTIMA (NCT02258659), are now in progress [9,10]
aiming to determine whether treatment de-intensification could improve quality of life
for HPV-positive OPSCC patients whilst maintaining high rates of cure. Indeed, even
if HPV-positive OPSCC patients usually respond to treatment de-escalation, 10–25% of
HPV-positive patients present recurrences and worse prognosis [9,11–13].

Hence, correctly stratifying HPV-positive patients is necessary to select optimized
treatment [14]. In an effort to improve stratification, many studies investigate HPV status,
p16 overexpression which is the surrogate marker of HPV transformation [6,12], and HPV
E6/E7 mRNA expression [15]. However, the current stratification system leads to several
pitfalls, i.e., (i) HPV might be present as a transient infection, but not active in tumors [15];
(ii) p16 expression is not always observed in HPV-positive tumors [16]; (iii) HPV mRNA
levels could be too low for detection [17,18].

Serological testing has gained interest in the past few years for HPV-positive OPSCC
prognostic studies. The immune response of the host has been studied in association with
both HPV-positive tumors and patient prognosis [4,19]. Serum IgG antibodies against
HPV16 L1 capsid protein can be detected several years before OPSCC onset/presentation,
but are also cumulative markers of viral exposure [20,21]. Antibodies to HPV16 E6 and E7
oncoproteins at the time of tumor diagnosis may be useful to predict disease-free survival
in HPV-positive OPSCC patients [22,23]. However, routine testing for antibodies against
HPV oncoproteins are difficult to perform due to the lack of available commercial kits.

Studies on cervical cancer have shown that detection of HPV E6 and E7 oncoproteins
in cervical scrapings may constitute valuable markers for disease progression [24,25].
Moreover, the presence of HPV16 E6 and E7 oncoproteins has been demonstrated by direct
ELISA in culture supernatant of HPV-positive cervical cancer cell lines SiHa and CaSki,
indicating the release of viral oncoproteins from tumor cells [26].

Therefore, we have hypothesized that HPV E6 and E7 oncoproteins could be present
in serum from HPV HNSCC patients, and their serum identification could be useful for
prognostic purposes. The presence of HPV E6 and E7 oncoproteins in serum from HPV-
associated cancer patients is yet to be investigated. Since new kits for testing serum HPV
E7 protein are now commercially available new investigations can be carried out.

The aim of this study was to identify markers for HPV-positive HNSCC patient
stratification. To this purpose, classical tumor markers, such as HPV DNA, p16 expression
and HPV E7 mRNA were studied in different HNSCC subtypes, including OPSCC. Sera
of HNSCC patients were analyzed for HPV16 L1 antibody titers and, for the first time,
HPV16 E7 oncoprotein levels at the time of tumor diagnosis and during follow-up at 3, 6,
12 and 24 months. Finally, results were correlated to patient relapse-free survival (RFS) and
overall survival (OS) at 24 months.
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2. Materials and Methods
2.1. Patient Samples

HNSCC specimens (n = 67) from patients, mean age ± standard deviation [SD] 64.94
± 10.88 years [y] old, were collected for analyses. Tumor-free tonsillar (TFT) samples
(n = 58), from non-oncological patients who had undergone tonsillar surgery, 39 ± 15.17 y
old, were used as controls. Samples were collected consecutively from 2016 to 2020 at the
Ear, Nose and Throat (ENT) Clinic (University Hospital of Ferrara, Ferrara, Italy). Inclusion
criteria was the histopathological detection of primary HNSCC in patients 18–95 y old,
including hidden or occult SCC with lymph node cervical positive histology. Exclusion
criteria were radiotherapy and/or chemotherapy treatment. The 8th edition of AJCC
classification was used [5]. Tumor and TFT specimens were collected at the time of surgery.
Blood specimens were also collected from HNSCC patients at the time of surgery and
during patient follow-up at 3, 6, 12, and 24 months.

2.2. Nucleic Acid Extraction

DNA/RNA extractions from HNSCC (n = 67) and TFT tissues (n = 58) were carried
out using the AllPrep DNA/RNA/Protein Extraction Kit (Qiagen, Milan, Italy). After
quantification using the NanoDrop 2000 (Thermo Scientific, Milan, Italy), DNA and RNA
samples were stored at −80 ◦C until analyses. DNA suitability for PCR analysis was as-
sessed as before [27,28]. Total mRNA was retro-transcribed using the Improm II (Promega,
Fitchburg, WI, USA) reverse transcription system [29].

2.3. HPV Analysis

HPV (GenBank: K02718.1) screening was performed by quantitative PCR (qPCR) using
the GP5+/GP6+ primer pair (Table S1) [27]. DNA (50 ng) was analyzed in 10 µL reactions
consisting of 2× SsoAdvanced Universal SYBR Green Supermix, Bio-Rad (Hercules, CA,
USA) and 500 nM of each primer. QPCR analyses were performed in triplicate. Thermal
cycling was: 95 ◦C for 5 min, 40 cycles of 95 ◦C for 15 s and 60 ◦C for 30 s. To discriminate
between HPV genotypes, a final high-resolution melting (HRM) step was added from
65–95 ◦C, increasing 0.1 ◦C every 0.03 s. Recombinant plasmids containing DNA sequences
from HPV types 6/11/16/18/31/33/45 were used as positive controls. An HPV-negative
genomic DNA sample, and a mock sample, without DNA, were used as negative controls.
HPV genotyping was done by comparing sample melting curves to the plasmid controls.
Quantification of the viral DNA load was performed in comparison to the standard curve
of a plasmid-HPV-type specific [29].

2.4. Gene Expression Analysis

QPCR was performed for p16 and HPV16 E7 gene expression analyses. Briefly, 50 ng
of cDNA were used in 10 µL reactions using 2× SsoAdvanced Universal SYBR Green
Supermix (Bio-Rad). A final concentration of 500 nM of each primer was employed
(Table S1). Samples were run in triplicate, along with mock samples used as negative
controls. Thermal conditions for HPV E7 and p16 were; 95 ◦C for 5 min and 40 cycles
of 95 ◦C for 15 s followed by a 60 ◦C for 30 s. Detection of the housekeeping gene
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used for normalization of
mRNA levels and the fold change was calculated using the 2−∆∆Ct method, as done
previously [30,31]. Furthermore, data was normalized against the TFT control group.

2.5. Detection of Serum HPV16 L1 Antibodies

Upon collection, blood samples were allowed to clot for 15 min at room temperature
and then centrifuged at 1300 g for 15 min. Serum HPV16 L1 IgG antibodies were evaluated
in HPV-positive (n = 20) and HPV-negative (n = 8) HNSCC patients at the time of diagnosis
(T0) and during follow-up at 3, 6, 12 and 24 months.

HPV16 L1 IgG antibodies were analyzed with a commercial kit (HPV16 L1, Cusabio,
Houston, TX, USA). The test was performed according to the manufacturer’s instructions.
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The signal intensity was measured as Optical Density (OD) at 450 nm (model Multiskan
EX, Thermo Electron Corp., Waltham, MA, USA) [32]. The cutoff value was calculated
according to the manufacturer’s instructions; an OD sample/OD negative ratio, equal or
greater than 2.1, was considered positive.

2.6. Serum E7 Oncoprotein Level Detection

Serum HPV16 E7 oncoprotein levels were evaluated in HPV-positive (n = 20) and
HPV-negative (n = 8) HNSCC patients, using the “HPV16 E7 Oncoprotein ELISA Kit”
(Cell Biolabs, San Diego, CA, USA), according to the manufacturer’s instructions. The
presence or absence of E7 oncoprotein was determined by considering sample absorbance
above or below the cutoff value, respectively, calculated as done previously [33]. The cutoff
for HPV16 E7 oncoprotein was 0.75 ng/mL. HPV16 E7 oncoprotein variation during the
follow-up was assessed by the ratio between protein amount at time of relapse and at
previous time point; ratios > 1 indicated increment of protein prior to relapse, while ratios
< 1 indicated decrement.

2.7. Statistical Analysis

Statistical analyses were carried out using the GraphPad Prism for Windows (version
8.0, GraphPad, San Diego, CA, USA) [34]. The ANOVA test was used to compare the mean
between groups for gene expression analyses. Pearson/Spearman correlation tests were
used to correlate viral gene expression and HPV DNA load, and E7 oncogene and p16
expression, respectively, and to assess univariate differences of clinicopathological features
according to E7 oncoprotein presence in serum. All parameters were correlated to patient’s
relapse-free survival (RFS) and overall survival (OS) at 24 months using the Kaplan-Meier
model; statistical significance was estimated using the log-rank test. p values of less than
0.05 were considered statistically significant for all analyses.

3. Results
3.1. HPV DNA Analysis

HNSCCs and control samples were analyzed for HPV DNA sequences and genotype.
HPV DNA was found in 20/67 (29.85%) of HNSCC samples, consisting of 2/20 (10%)
oral squamous cell carcinoma (OSCC), 15/20 (75%) OPSCC, 2/20 (10%) hypopharyngeal
cancer and 1/20 (5%) laryngeal cancer (Table 1). HPV-genotype was determined by high
resolution melting (HRM) to be HPV16 in 19/20 (95%) of the HNSCC HPV-positive cases
and HPV33 in 1/20 (5%) of the cases. Control DNAs were found to be HPV11-positive in
1/58 (1.7%) of the cases. Our further studies were hereafter focused on HPV type 16 due to
high prevalence in HNSCC. Viral DNA load in cancer specimens ranged from 2.52 × 10−4

to 4.26 × 102 copies of HPV DNA per cell (Figure 1A).
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Figure 1. Analysis of classical markers for stratification of HNSCC samples. Statistical significance 
was indicated as * for p < 0.05 and ** for p < 0.0001; (A) viral load quantification of HPV-positive 
HNSCC samples by qPCR; (B) differential p16 mRNA expression in HNSCC samples analyzed by 
qPCR; (C) Viral E7 mRNA expression in HPV-positive HNSCC samples; (D) Spearman correlation 
analyses between the expression of E7 (log2) oncogene and p16 (log2) showed correlation (r = 0.59; p 
< 0.05) in HPV-positive HNSCC tumor samples. 

3.2. p16 Gene Expression 
Forty-one out sixty-seven HNSCC matching DNA/RNA samples were available for 

further analyses. P16 mRNA expression was investigated in HNSCC samples, showing 
upregulation in 12/16 (75%) of HPV16-positive HNSCC and in 5/25 (20%) of HPV-negative 
HNSCC samples compared to controls (p < 0.001). HPV-positive patients showed overall 
p16 gene upregulation compared to controls (Mean ± [SD], 2.60 ± 3.98 log2 fold, p < 0.05) 
with the exception of two samples that harboured p16 downregulated. HPV-negative 
samples were downregulated compared to control samples (Mean ± [SD], −2.34 ± 3.71 log2 
fold, p < 0.05). Differences in p16 expression between HPV-positive and -negative were 
also significant (p < 0.0001) (Figure 1B). 

3.3. HPV mRNA Expression 
HPV-positive HNSCC samples were analyzed for HPV16 E7 gene expression by 

qPCR. Specifically, HPV16 E7 gene expression was analyzed in 16 HPV-positive HNSCC 

Figure 1. Analysis of classical markers for stratification of HNSCC samples. Statistical significance
was indicated as * for p < 0.05 and ** for p < 0.0001; (A) viral load quantification of HPV-positive
HNSCC samples by qPCR; (B) differential p16 mRNA expression in HNSCC samples analyzed by
qPCR; (C) Viral E7 mRNA expression in HPV-positive HNSCC samples; (D) Spearman correlation
analyses between the expression of E7 (log2) oncogene and p16 (log2) showed correlation (r = 0.59;
p < 0.05) in HPV-positive HNSCC tumor samples.

3.2. p16 Gene Expression

Forty-one out sixty-seven HNSCC matching DNA/RNA samples were available for
further analyses. P16 mRNA expression was investigated in HNSCC samples, showing
upregulation in 12/16 (75%) of HPV16-positive HNSCC and in 5/25 (20%) of HPV-negative
HNSCC samples compared to controls (p < 0.001). HPV-positive patients showed overall
p16 gene upregulation compared to controls (Mean ± [SD], 2.60 ± 3.98 log2 fold, p < 0.05)
with the exception of two samples that harboured p16 downregulated. HPV-negative
samples were downregulated compared to control samples (Mean ± [SD], −2.34 ± 3.71
log2 fold, p < 0.05). Differences in p16 expression between HPV-positive and -negative
were also significant (p < 0.0001) (Figure 1B).

3.3. HPV mRNA Expression

HPV-positive HNSCC samples were analyzed for HPV16 E7 gene expression by qPCR.
Specifically, HPV16 E7 gene expression was analyzed in 16 HPV-positive HNSCC samples.
mRNA E7 expression was detected in 15/16 (93.75%) (Figure 1C). Pearson correlation
test showed no correlation between the expression levels (log10) of E7 and HPV DNA
load (r = 0.42, p > 0.05). Furthermore, Spearman correlation analyses showed correlation
between E7 expression and p16 up-regulation (r = 0.59; p < 0.05) (Figure 1D). But, HPV E7
mRNA expression did not correlate to p16 upregulation for all samples, since two samples
(one OSCC and one OPSCC) presented E7 expression with p16 downregulation, and one
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sample presented p16 upregulation but no E7 expression; therefore, p16 is not always a
good marker of HPV infection.

3.4. Serological Studies
3.4.1. HPV16 L1 Antibody Titer

Serum from all HPV-positive (n = 20) HNSCC patients (Table 1) and from HPV-
negative (n = 8) HNSCC patients, consisting of 4/8 (50%) OPSCCs and 4/8 (50%) OSCCs,
were tested for HPV16 L1 IgG antibodies. HPV16 L1 antibodies were found with a similar
proportion in 18/20 (90%) HPV–positive HNSCC and 7/8 (87.5%) HPV-negative HNSCC
patients at T0 (p > 0.05). HPV DNA-positive HNSCC patients presented higher Optical
Density (OD) readings for antibodies anti-HPV16 L1 compared to HPV-negative (Mean
± [SD], 4.001 ± 2.11 vs. 2.29 ± 0.32; p < 0.05) (Figure 2A). Antibody response was further
compared during follow-up at 3, 6, 12 and 24 months. Results indicated that HPV16 L1
antibody titers did not vary significantly during follow-up (p > 0.05) (Figure 2B).
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Figure 2. ELISA tests on HNSCC serum samples. Statistical significance was indicated as * for
p < 0.05; (A) Serum antibody levels against HPV16 L1 in HNSCC patients. Differential OD between
HPV-positive and HPV-negative patients (p < 0.05); (B) HPV16 L1 antibody variation during HPV-
positive patient follow-up; (C) HPV16 E7 oncoprotein quantification in serum shows no difference
between HPV-positive and HPV-negative patients (p > 0.05); (D) HPV16 E7 oncoprotein variation
during HPV-positive patient follow-up.
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3.4.2. HPV16 E7 Oncoproteins in Sera

HPV16 E7 oncoprotein (ng/mL) amounts were evaluated at the time of diagnosis and
during follow-up at 3, 6, 12 and 24 months. At T0, HPV16 E7 oncoprotein was detected in
6/20 (30%) HPV-positive patient serum and no HPV-negative cases (p > 0.05) (Figure 2C).
Variation in the amount of E7 oncoprotein during follow-up was studied. Nine out of
20 (45%) patients showed an increment in the amount of oncoprotein during follow-up;
4/9 (44.44%) patients were positive at the time of diagnosis, while 5/9 (55.55%) became
positive during follow-up. Two patients out of 20 (10%) positive at the time of diagnosis,
presented HPV E7 decrement over-time, and one became negative. HPV16 E7 variation in
samples during follow-up resulted statistically insignificant (p > 0.05) (Figure 2D). Nine
out 20 (45%) patients were E7 negative at T0 and remained negative during follow-up.

Finally, HPV16 E7 oncoprotein levels in serum were studied in correlation to the
viral mRNA expression in the tumor samples. Results showed correlation between the
amount of HPV16 E7 mRNA expressed in the tumors and E7 oncoprotein in serum (r = 0.79,
p < 0.01), suggesting that circulating E7 protein may be due to release from the tumor site.

3.5. Survival Analysis
3.5.1. RFS and OS in Correlation to HPV DNA, p16 Expression and HPV mRNA

The median follow-up time of this study was 24 months. Relapse free survival (RFS)
and overall survival (OS) were assessed in HPV-positive HNSCC patients compared to
HPV-negative cases. Different RFS rates were observed; 72.11% and 48.77% for HPV-
positive and -negative, respectively (p > 0.05) (Figure 3A). Furthermore, OS was improved
for HPV-positive patients; 88.89% compared to 52.08% in HPV-negative OPSCCs (p < 0.01)
(Figure 3B).

To study the effect of p16 expression on survival rate, all HNSCC samples were
subdivided into p16-over or –underexpression in the tumor sample. Log2 fold change (FC)
value (with fixed interval) was used as the cut-off criteria. High and low expression were
considered when FC was greater than 1 (n = 13) or lower than −1 (n = 17), respectively [35].
RFS was 73.84%, in patients carrying p16 upregulation, compared to p16 downregulation,
48.12% (p > 0.05) (Figure 3C). OS was 100% in patients with higher p16 expression compared
to 52.94% of patients with p16 downregulation (p < 0.01) (Figure 3D).

RFS and OS were also assessed for HPV E7 mRNA expression in HNSCCs samples.
Samples were divided into expressing E7 oncogene (n = 15) and non (n = 26). Survival
proportions indicated that RFS was 64.61% in patients positive for E7 mRNA, and 48.77%
in patients HPV mRNA-negative (p > 0.05) (Figure 3E). OS was higher in patients carrying
HPV E7 mRNA, 92.85%, compared to HPV mRNA-negative, 52.08% (p < 0.05) (Figure 3F).
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Figure 3. Kaplan-Meier (KM) curves for RFS and OS in HNSCC; KM curves for (A) RFS and (B)
OS for HPV DNA presence in HNSCC tumor samples; KM curves for (C) RFS and (D) OS for p16
over- or under-expression in HNSCC samples; KM curves for (E) RFS and (F) OS for HPV E7 mRNA
expression in HNSCC tumor samples. Statistical significance was indicated as p < 0.01 or p < 0.05.

3.5.2. RFS and OS in Relation to Serum HPV16 L1 Antibodies

The next step was to study the association between HPV infection serological markers,
such as HPV16 L1 antibody, with patient’s survival. No significant differences were
observed for HPV16 L1 antibodies in RFS or OS for HPV-positive patients (n = 20) at
the time of diagnosis and during follow up. RFS was 51.28% and 100% for HPV16 L1
antibody-positive (n = 18), for HPV16 L1 antibody-negative (n = 2) patients, respectively
(p > 0.05) (Figure 4A). OS was also similar between HPV-positive patients and HPV16 L1
antibody positivity or negativity, at 63.64% and 100%, respectively (p > 0.05) (Figure 4B).
Overall these results indicate that HPV16 L1 is a poor indicator of prognosis and since it is
a cumulative marker of exposure, it may be used solely for epidemiological purposes.
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3.5.3. RFS and OS in Relation to Serum HPV16 E7 Oncoprotein

HPV16 E7 oncoprotein in serum was correlated to patients’ clinicopathological features
(Table 1). Interestingly, E7 oncoprotein in serum was strongly associated to recurrence in
HNSCC patients (p < 0.0001) and in the OPSCC subgroup (p < 0.001). Statistical analyses
on other HNSCC subtypes were not possible due to the small sample size (Table 1). RFS
was 0% for HNSCC with E7 positivity compared to 90.9% for patients testing negative for
E7 protein (p < 0.0001) (Figure 4C). OS was 100% and 50% in patients negative and positive
for E7 oncoprotein, respectively (p < 0.01) (Figure 4D).

The variation in serum E7 oncoprotein was also studied in correlation to patient
survival. RFS was 42.85% in HNSCC patients who increased E7 oncoprotein amounts
during follow-up, compared to 79.55% in those who experienced E7 decrease (p > 0.05)
(Figure 4E). OS proportion was 85.71% for patients showing increased E7 oncoprotein, and
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90.9% for those showing a decreased E7 oncoprotein (p > 0.05) (Figure 4F). These results
highlight the importance of patient monitoring for recurrence after circulating HPV E7
oncoprotein being found at the time of diagnosis or increasing levels during follow-up.

3.6. TNM Stage in Correlation to OPSCC Patient Prognosis and E7 Oncoprotein in Serum

RFS was 72.9% and 57.14% for patients with T (1–2) and T (3–4), respectively (p > 0.05)
(Figure 5A), while OS was 87.5% and 90%, respectively (p > 0.05) (Figure 5B). Similarly,
no statistically significant differences were observed for RFS or OS survival rates when
studied in correlation to lymph node involvement; RFS was 100% vs. 58.18% for patients
without and with lymph node involvement (p > 0.05) (Figure 5C), while OS was similar;
100% and 86.67%, respectively (p > 0.05) (Figure 5D).
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Patients in stages III/IV are more likely to recur. Indeed, RFS for patients in stage
III/IV was 42.86% compared to 100% for patients in stage I/II (p < 0.05) (Figure 5E), while
OS was similar for both groups 83.33% and 100%, respectively (p > 0.05) (Figure 5F).

Lastly, we studied the correlation between serum E7 presence and tumor size, lymph
node involvement and disease stage. E7 in serum correlated to tumor size (p < 0.05), but not
to lymph node involvement in OPSCC (p > 0.05) (Table 1). Out of 6 HPV-positive patients
with stage I/II, none presented E7 oncoprotein in serum at T0, while 5/12 (41.66%) of the
patients in stage III/IV presented E7 oncoprotein in serum (p > 0.05).

4. Discussion

The current study aims to find markers for recurrence in HPV-positive patients. For
patient stratification, we studied classical HPV markers, such as HPV DNA, p16 mRNA
and viral mRNA expression. Once stratified, we studied the presence of potential sero-
logical markers, i.e., HPV16 L1 antibodies and, for the first time, the HPV E7 oncoprotein.
Serological markers were then correlated to patient prognosis.

In an initial screening, we found that 29.85% of HNSCC tumor samples, including
75% OPSCC, harbored HPV-DNA, and 95% tested HPV16-positive. These findings are in
accordance to other studies indicating that HPV is found in 25% of all HNSCCs, and in up
to 70% of OPSCC tumors [36–39], whereas 90% of all HPV-positive tumors carried HPV
type 16 [40]. P16 mRNA expression was found to be overexpressed in 75% of HPV-positive
HNSCC samples. P16 is an established surrogate marker for tumors with transcriptionally
active HPV, which is known to be associated with tumors that respond better to therapy
and have improved outcomes [41,42]. Yet, not all HPV-positive tumors show p16 gene
upregulation, as shown in herein and in previous studies [15]. Transcription of E7 viral
oncogene was assessed in HPV-DNA positive patients only, showing 93.75% of HPV16
DNA positive samples expressing the HPV16 E7 oncogene, in agreement with previous
studies [30].

Since HPV status has a great impact on patient prognosis for different HNSCCs, such
as OPSCC and OSCC [43,44], it is important to stratify patients correctly. In our study, we
found that 30% of HPV-positive patients presented recurrence within the first two years of
diagnosis, similarly to other studies [9,11–13]. Classical HPV infection markers, i.e., HPV
DNA, p16 and HPV mRNA showed improved patient OS in our cohort of study, but none
of them correlated with recurrence.

Antibody response against L1 was studied for the prevalence of viral infection in
HNSCC patients. HPV L1 antibodies are cumulative markers of past and present infection,
although their presence does not imply HPV-driven tumorigenesis [45]. Indeed, in our
study both HPV-positive and -negative HNSCC patients had antibodies against HPV16 L1
with a similar level of prevalence at 90% and 87.5%, respectively. Interestingly, the antibody
titer in HPV-positive patients was higher compared to HPV-negative cases, which could be
indicative of active infection.

We also studied the antibody response during the follow-up to monitor disease status,
as proposed by Routman et al. [46], but no significant antibody titers change was observed
during follow up, indicating that antibody levels against HPV L1 may not be useful in
diagnosing or monitoring the disease.

Recently, the study of antibody response against HPV E6/E7 oncoproteins in OPSCC,
the major subtype of HNSCC, has been proposed as a marker for disease progression.
In spite of good perspectives for both diagnosis and prognosis [19,20,22,23,47], results
are still under debate due to the lack of seroconversion in many patients, as was also
underlined before for other diseases which are related to viral infections [48]. In a study
conducted by Kreimer et al., 57.6% of OPSCC patients remained HPV E6 seronegative
during follow-up [47].

To our knowledge, no previous research has been conducted to detect HPV E7 on-
coprotein in HNSCC patient serum, while the availability of ELISA kits for oncoprotein
detection could rapidly facilitate such study outcomes into clinical use. E7 oncoprotein in
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serum was specifically found with a frequency of 30% in HPV-positive samples, while the
detection of circulating protein at the time of diagnosis strongly correlated to recurrence.
Our data are in accordance to other studies showing higher levels of antibodies against
HPV oncoproteins at the time of diagnosis in association to a significantly increased risk of
recurrence [22,49]. Similar to previous studies on antibody titer variation during follow-up,
our investigation found no variation, increment or decrement of E7 oncoprotein in OPSCC
serum could be association with patient outcome during the two-year follow-up [20,21,50].
Nevertheless, an increase or decrease in serum E7 during follow-up was observed in
patients whether experiencing recurrence or not, respectively, thus, lack of significant
correlation between serum E7 level and relapse may be due to limited sample sizes.

It is to be noted that, circulating E7 protein showed correlation with high E7 mRNA
expression in the tumor, suggesting that tumor sites may provide the circulating onco-
protein. Circulating E7 protein may be considered a tumorigenesis marker, representing
at serological level what occurs at the tumor site. Sources of viral oncoproteins in serum
have currently not been established, but some hypotheses could be proposed. Firstly, the
transcriptionally active circulating tumor cells may account for the presence of serum
viral oncoproteins [13]. Indeed, HPV spreading through blood cells has been previously
reported [51], while HPV E6/E7 transcription in circulating tumor cells (CTCs) has been
correlated to patient prognosis [13]. Secondly, invasion and the associated development
of a tumor vascular bed may result in the release of E6/E7 proteins from the tumor mass,
probably as a consequence of necrosis [52]. Thirdly, HPV-positive tumor cells may secrete
exosomes containing viral oncoproteins, as has been reported for other DNA viruses [53].
Whatever the mechanism, HPV16 E7 oncoproteins were successfully found in HNSCC
patient serum and correlated to patient prognosis. E7 oncoprotein detection in serum at
the time of diagnosis displayed strong diagnostic and prognostic reliability in predicting
relapses and overall survival in HPV-positive HNSCC patients, especially HPV-positive
OPSCC patients. Moreover, since HPV mRNA may be present in HPV-DNA negative
samples [54], the analysis of HPV mRNA should be taken into consideration in all HNSCCs
to avoid HPV-driven tumors misclassification.

Moreover, E7 oncoprotein also correlated to tumor size, but not lymph node involve-
ment or disease stage. Overall, 41.66% HNSCC patients with high disease stage III/IV
presented E7 oncoprotein in serum, while none of those with low stage I/II did so, in
agreement with previous serologic studies [20,55], making the detection of E7 oncoprotein
in serum an excellent discriminator for HNSCC patients that may relapse, especially for
OPSCC patients.

This study demonstrates for the first time, the presence of circulating E7 oncoproteins
in serum from HNSCC patients using a direct ELISA assay. Our results indicate that the
presence of E7 oncoprotein in OPSCC patient serum at the time of diagnosis is indicative
of a higher risk of recurrence. Liquid biopsy for the detection of prognostic markers in
HPV-positive OPSCC patients provides valuable information on disease progression and
may help stratify and monitor patients over-time; this, can result extremely useful for
patients presenting persistent or occult tumors. For future studies, in order to increase
the statistical power of the study, a larger sample size for all HNSCC subtypes will be
considered. This study takes medicine one step closer to correct patient stratification for
therapy de-intensification. The combination of classical markers with serological markers,
may be used to plan personalized treatment strategies for HPV-positive patients.

5. Conclusions

Detection of circulating HPV E7 oncoprotein at the time of diagnosis, may be used
as non-invasive procedure for patient stratification and follow-up, ultimately providing
a tool for clinicians to determine which patients would be good candidates for treatment
de-escalation or should be kept under close surveillance.
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Simple Summary: Current diagnostic and follow-up methods for the clinical management of bladder
cancer (BC) have limitations, and there is an urgent unmet need for non-invasive biomarkers for
this highly prevalent disease. Furthermore, personalized treatments for patients could improve their
quality of life and overall survival. The aim of this article is to review the literature in this area, with
a primary focus on metabolic and epigenetic biomarkers of BC, as well as the targeted therapies
discovered to date. We show the dynamic biological interplay established between epigenomics
and metabolomics in the context of BC. These findings may be useful both for researchers and
physicians in the field of BC, and could facilitate clinical decision-making regarding patients at
diagnosis, prognosis, monitoring, or treatment.

Abstract: Bladder cancer (BC) represents a clinical, social, and economic challenge due to tumor-
intrinsic characteristics, limitations of diagnostic techniques and a lack of personalized treatments.
In the last decade, the use of liquid biopsy has grown as a non-invasive approach to characterize
tumors. Moreover, the emergence of omics has increased our knowledge of cancer biology and
identified critical BC biomarkers. The rewiring between epigenetics and metabolism has been closely
linked to tumor phenotype. Chromatin remodelers interact with each other to control gene silencing
in BC, but also with stress-inducible factors or oncogenic signaling cascades to regulate metabolic
reprogramming towards glycolysis, the pentose phosphate pathway, and lipogenesis. Concurrently,
one-carbon metabolism supplies methyl groups to histone and DNA methyltransferases, leading to
the hypermethylation and silencing of suppressor genes in BC. Conversely, α-KG and acetyl-CoA
enhance the activity of histone demethylases and acetyl transferases, increasing gene expression,
while succinate and fumarate have an inhibitory role. This review is the first to analyze the interplay
between epigenome, metabolome and cell signaling pathways in BC, and shows how their regulation
contributes to tumor development and progression. Moreover, it summarizes non-invasive biomark-
ers that could be applied in clinical practice to improve diagnosis, monitoring, prognosis and the
therapeutic options in BC.

Keywords: bladder cancer; metabolic pathways; metabolism; metabolomics; epigenetics; biomark-
ers; miRNAs

1. Introduction

BC is the second most common urological malignancy after prostate cancer, and its
development has previously been shown to be strongly related to smoking, schistosomiasis
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infection, and occupational exposure to certain chemicals [1,2]. Worldwide, BC represents
the sixth most frequent tumor with 424,082 new cases per year, and it is considered within
the ten deadliest cancers [3].

According to histological criteria, 75% of newly diagnosed BCs are non-invasive
(non-muscle-invasive BCs; NMIBCs) and have a 70% risk of recurrence and a 20% risk
of progression, despite being treated with surgery (transurethral resection (TUR) of tu-
mor), local chemotherapy, or non-specific immunotherapy (Bacillus Calmette–Guérin
(BCG)) [1,4,5]. The remaining 25% of BCs are muscle-invasive BCs (MIBCs) and require
radical cystectomy, usually followed by cisplatin-based chemotherapy. Patients with a poor
performance status and/or metastatic disease have limited treatment options but may
benefit from novel therapies such as immunotherapy, e.g., those that have recently been
approved by the United States Food and Drug Administration (FDA) [6].

The clinical management of BC is complex. Macroscopic or microscopic urinary
hematuria is one of the most prevalent symptoms in early stage BC, but alone it has low
specificity (5%) since it can be present in other benign pathologies such as cystitis or urinary
tract infections [7]. Therefore, urinary cytology and cystoscopy are routinely used for BC
diagnosis and follow-up. Urinary cytology is a non-invasive procedure with a reason-
able in-house cost, but it has poor sensitivity in low-grade BC detection. Consequently,
white light cystoscopy is the gold standard for BC detection. However, this method also
has drawbacks related to the omission of carcinomas in situ and preneoplasic lesions,
user-dependent interpretation, invasiveness, and high costs [7–10]. In fact, the clinical man-
agement of NMIBC is one of the most expensive due to lifelong patient monitoring through
cystoscopy and urinary cytology [11] to control the appearance of tumor recurrences and
progression, and also due to the TUR which is carried out in recurrent BC. Due to the
fact that urinary cytology and cystoscopy cannot provide prognostic information on BC
disease development, the European Organization for the Research and Treatment of Cancer
(EORTC) criteria are used to stratify NMIBC patients into low, intermediate, or high-risk
groups, which are related to disease recurrence or progression [12]. However, although the
EORTC scoring system is useful to guide the treatment of patients, it is obtained by the
combination of static parameters (e.g., tumor grade and stage, number of tumors, size of
tumors, presence of CIS) that do not reflect the dynamic behavior of tumors.

Taking into account the shortcomings of cystoscopy and urine cytology, research is
being conducted to find specific and non-invasive BC biomarkers that provide dynamic
information of tumors and improve patient management by avoiding unnecessary cysto-
scopies in the surveillance of them.

In the last decade, liquid biopsies have revolutionized oncology as a novel, non-
invasive method to evaluate the treatment responses, assess therapy resistance, or charac-
terize the tumor phenotype. Biomolecules such as circulating tumor cells (CTCs), circulat-
ing cell-free tumor deoxyribonucleic acid (ctDNA), messenger ribonucleic acids (mRNAs),
micro-RNAs (miRNAs), long non-coding RNAs (lncRNAs), proteins and peptides, metabo-
lites and vesicles (exosomes and endosomes) can be obtained from liquid biopsies and
analyzed to provide information about the tumor [13]. Among samples used to find BC
biomarkers, urine and blood have been the most frequent since the bladder releases cells
and molecules into these biofluids [14]. To date, different assays based on CTCs, sediment
cells, proteins, and mRNA detection have been carried out in urine or serum, and have
received FDA approval for BC diagnosis and/or follow-up. Some examples are uCyt+,
UroVysion, UroMark, CellSearch, CxBladder, CxBladder Monitor, Xpert BC Detection,
NMP22, BTA TRAK and BTA stat [15]. However, given their low sensitivities and/or
specificities, none of them have been shown to be superior to cystoscopy and have thus
not yet been implemented into clinical practice. Currently, liquid biopsy is a promising
non-invasive biomarker approach, and thus it may improve the management of BC.

Among molecular and analytic techniques used to identify biomarkers, metabolomics
and epigenomics have developed rapidly in the past decade. Metabolic reprogramming
and epigenetic modifications are two well-known hallmarks of cancer and their regulation
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is tightly linked to the tumor microenvironment and the eenvironment (e.g., microbiota),
but is also influenced by other molecular processes (i.e., the genome, transcriptome, and
proteome) [16,17]. Consequently, metabolomics and epigenomics have been found to be
dynamic and closely reflect the phenotype of the tumor [18,19]. In addition, several studies
have shown that the metabolome and epigenome establish bidirectional relationships
in cancer cells. The metabolic reprogramming of cancer cells supports bioenergetic and
biosynthetic demands of proliferation, but also alters the epigenetic landscape by modulat-
ing epigenetic metabolites. Furthermore, epigenetic mechanisms regulate metabolic gene
expression to offer adaptive responses to rapidly changing environmental conditions and
prolong tumor cell survival [20,21].

Understanding this dynamic relationship between metabolism and epigenetics and
how they may be dysregulated in cancer is crucial to identify novel therapeutic targets
and biomarkers. Additionally, it may provide a better understanding of the biological
machinery underlying each tumor phenotype, thereby taking one step closer to precision
medicine for the individualized treatment of patients in different types of cancer.

The review presented here is, to our knowledge, the first that specifically analyzes the
interplay among epigenomics, metabolomics, and cell signaling pathways in the context
of BC. It provides an overview of the complex interplay between these biochemical and
molecular processes and highlights the metabolites, metabolic enzymes, miRNAs, and
lncRNAs postulated as emerging clinical biomarkers and therapeutic targets in the context
of BC. This review integrates the current knowledge about the pathology of BC and may
help to improve clinical decision-making regarding BC patients, whether at the level of
diagnosis, prognosis, monitoring, or treatment.

2. Metabolic Rewiring Controls the Epigenome in BC

It is widely known that cancer development and progression are due to genetic muta-
tions in DNA. However, the role of metabolism and epigenetics has only been recognized
in the last decade when the reprogramming of energy metabolism and epigenetic plasticity
have been identified as two emerging hallmarks of cancer [22,23].

Cancer cells alter their metabolic and nutrient uptake pathways during tumor initia-
tion, growth, and metastasis through a tightly regulated program of metabolic plasticity.
This allows them to sustain the energetic and biosynthetic demands of cell proliferation
and to adapt to hostile and ever-changing environments [24]. Epigenetic modifiers act
on metabolic gene expression to induce changes in biochemical pathways, and many of
the chemical modifications in DNA and histones derive from intermediates of cellular
metabolic pathways. This indicates that fluctuations in metabolic concentrations affect
the deposition and removal of chromatin modifications. Emphasizing on this last issue,
several mechanisms have to be considered, such as: (i) the alteration of specific metabo-
lites’ concentrations that act as epigenetic cofactors or substrates; (ii) the generation of
oncometabolites which act as inhibiting or activating epigenetic enzymes; and (iii) the
translocation of metabolic enzymes and metabolites into the nucleus [20]. Below, we ad-
dress these regulation processes in the context of BC.

2.1. Metabolites and DNA/Histone Methylation Processes

DNA methylation is one of the most studied epigenetic mechanisms in cancer, in-
cluding BC. Methylation can be produced directly in promoter regions of cancer-related
genes (CpG islands) or in residues of histones, and this can control DNA accessibility and
regulate gene expression (see Section 3.1.1). In DNA or histone methylation processes,
the availability of methyl groups is essential for the action of histone methyltransferases
(HMTs) and DNA methyltransferases (DNMT) [20]. In this context, the methionine and
folate cycles, as well as the metabolites involved in these pathways (serine, methionine,
and the cofactor S-adenosyl-methionine (SAM)), have an important role in supplying one-
carbon groups [20] and they are closely related to DNA methylation processes (Figure 1).
High levels of these metabolites have been found in BC samples and are postulated as
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candidate biomarkers of BC [25,26]. SAM provides methyl groups that release S-adenosyl-
homocysteine (SAH), an inhibitor of DNMTs and HMTs. Therefore, the SAM/SAH ratio is
a major determinant of chromatin methylation. It is known that an increased SAM/SAH
ratio correlates with hypermethylation of tumor suppressor genes and inappropriate si-
lencing, whereas a decreased SAM/SAH ratio contributes to reduced methylation at the
promoters of oncogenes (Figure 1) [27].
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TETs: ten eleven translocation enzymes; THF: tetrahydrofolate.

Demethylation reactions are also susceptible to metabolic fluctuations of TCA cy-
cle intermediates, such as α-KG, succinate, fumarate, and acetyl-CoA, which have been
postulated as BC biomarkers [26,28]. They act on chromatin-modifying enzymes such as
the 2-oxoglutarate-dependent dioxygenases (2-OGDO) family, which include ten eleven
translocation (TET) enzymes, and the Jumonji (JHDMs) family of histone demethylases
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(Figure 1) [29–31]. These enzymes catalyze the hydroxylation and demethylation of pro-
teins and nucleic acids and play an important role in epigenetic processes. α-KG acts as
a positive cofactor of 2-OGDO, thus elevated levels of α-KG from glucose and glutamine
catabolism would promote demethylation processes that would influence BC epigenetic
landscapes by relaxing chromatin and activating oncogene expression. Additionally, α-KG
is a substrate of prolyl hydroxylase (PHDs), a type of protein that regulates hypoxia-
inducible factors (HIFs) [32,33]. HIF subunit alpha (HIF-1α) regulates various processes
and, under hypoxic conditions, can promote cancer cell survival. In the presence of oxygen,
PHD proteins hydroxylate proline residues on HIF-1α, which leads to HIF-1α ubiqui-
tination by Von Hippel–Lindau tumor suppressor protein (pVHL) and its proteasomal
degradation [34]. In the context of cancer, most tumors have hypoxic regions and, in this
case, HIF-1α is stabilized and triggers changes in glycolysis, nutrient uptake, waste han-
dling, angiogenesis, apoptosis, and cell migration, which promote tumor survival and
metastasis [34].

In BC, HIF-1α has a predictive and prognostic role; its overexpression is known to
stimulate angiogenesis and can lead to a poor prognosis for patients [35]. HIF-1α is also
closely linked to metabolism and regulates glycolysis, fatty acid, and amino acid pathways.
HIF-1α increases glucose uptake by upregulating glucose membrane transporters (GLUT1
and GLUT3), which has been correlated with BC progression and poor overall survival [36]
(Figure 1).

Furthermore, HIF-1α upregulates lactate dehydrogenase A (LDHA) to promote lactate
production, regenerates nicotinamide adenine dinucleotide (NAD+), and increases the
transcription of lactate transporters such as monocarboxylate transporter 1 (MCT1) [37,38].
This, in addition to high levels of hexokinase (HK), promotes a glucose flux towards
pyruvate and lactate generation [39]. Previous studies have shown that lactate levels are
related to BC progression and invasive or metastatic BC is known to have higher levels
of this metabolite [38,39]. These metabolic processes would be in concordance with the
Warburg effect [40]. Regarding lipid metabolism, several studies in cancer, including
BC, have shown that HIF-1α increases the availability of fatty acids by regulating the
action of fatty acid synthase (FAS), increasing fatty acid transport and reducing fatty acid
oxidation [41]. In addition, HIF-1α plays an important role in amino acid metabolism,
particularly in glutamine availability (Figure 1).

Cancer cells use glutamine as an energy substrate, a precursor of fatty acids, a donor
of carbon and nitrogen for generating nucleotides or other amino acids, and to maintain
the poll of intermediate metabolites such as acetyl-CoA or α-KG. These last metabolites are
important for the anaplerotic reactions of the TCA cycle, but also for epigenetic processes
by the effect that they have on HAT and HDM [34]. Due to the role that glutamine has
in BC cells, several studies have investigated the inhibitory action that lncRNAs (e.g.,
lncRNA-p21) or miRNAs (e.g., miR-1, miR-1-3p, miR-9, miR-129) exert on GLS regulation
(more details in Section 3.1.2) [42,43].

On the other hand, fumarate hydratase (FH) and succinate dehydrogenase (SDH)
genes are mutated in many human cancers, including BC, which leads to the accumu-
lation of their substrates, fumarate and succinate, respectively [30]. This is consistent
with metabolomic analyses, which have shown increased levels of these metabolites in
BC [28,44], but also with transcriptomic studies that have shown a strong deregulation
of TCA cycle genes [14]. Among others, succinate, fumarate and α-KG are considered on-
cometabolites. This term refers to metabolites that are significantly elevated in tumor cells
compared with control cells [45]. Succinate and fumarate, together with 2-hydroxyglutarate
(2-HG), can inhibit PHDs activity under normoxic conditions [31]. Hence, succinate and
fumarate could act as competitors of α-KG, inhibiting JHDMs and TET activity, and acting
on bladder tumor biology through a profound impact on epigenetic effector activity [46–48]
(see Figure 1). In conclusion, tumor-gene expression is regulated by epigenetic enzymes,
the activity of which is dependent on metabolite availability (substrates).
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2.2. Metabolites, Histone Acetylation Processes and Sirtuins

Another important metabolite, acetyl-CoA, is synthetized in several metabolic path-
ways (mitochondria, cytosol, and nucleus) from several sources, namely pyruvate, acetate,
fatty acid β-oxidation, and amino acid catabolism. Metabolomic studies have reported
elevated levels of acetyl-CoA in BC [28], and have particularly highlighted the role of
glutamine as a substrate for acetyl-CoA synthesis [14]. Additionally, upregulated expres-
sion of acetyl-CoA synthase enzymes, such as ATP citrate-lyase (ACYL) or acetyl-CoA
synthetase short chain family (ACSS), has been frequently found in BC cells, and some
studies have reported the importance of ACSS3 for histone acetylation [49]. Acetyl-CoA
acts as a cofactor which modulates kinetic and binding parameters of histone acetyltrans-
ferases (HATs). Nevertheless, CoA, the product of histone acetylation reaction, acts as an
inhibitor. Therefore, the acetyl-CoA/CoA ratio has been postulated as the most important
regulator of the enzymatic activity and specificity of HATs, rather than the absolute levels
of acetyl-CoA [50]. In brief, high intracellular acetyl-CoA levels would trigger histone
acetylation, an epigenetic marker associated with open chromatin, activating oncogenes
linked with BC progression, proliferation and migration [20,30].

Another connection between metabolic processes and histone acetylation is provided
by sirtuins (SIRTs), a type of NAD+-dependent histone deacetylases (HDACs) [51]. The
activity of these enzymes is closely linked with the NAD+/NADH ratio, and consequently
with the energy status in the cell. For example, when glycolytic activity is enhanced,
the NAD+/NADH ratio decreases, thereby inhibiting SIRT catalysis [20,30]. The low
NAD+/NADH ratio, together with an increase in HATs activity by elevated acetyl-CoA lev-
els, could contribute to histone hyperacetylation and therefore an aberrant gene expression
in BC [30].

2.3. Role of Metabolites in the Nucleus

Finally, the translocation or production of commonly cytosolic metabolic effectors
in the nucleus can supply essential intermediates to epigenetic machinery in specific
chromatin regions, which affects gene expression. Increased SAM levels in the nucleus
support epigenetic methyltransferase activity at specific regions of chromatin [20]. This
has been observed in cancer cells and is related to the translocation of splicing variants of
MATs (S-adenosylmethionine synthetase, also known as methionine adenosyltransferase).
Upregulated MAT1A levels have been reported in BC, specifically after treatment with
chemotherapy, so MAT1A and possibly SAM could be related to the repression of tumor
suppressor genes, (e.g., whose inhibition could confer tolerance or resistance to chemother-
apy). Conversely, increased nuclear levels of acetyl-CoA can be produced by free diffusion
of citrate or acetyl-CoA, but also by transient localization of the enzymes involved in its
synthesis: ACSS2, ACLY, pyruvate dehydrogenase complex (PDC), and CAT (carnitine
acetyltransferase). Post-translational modification of these enzymes within the nucleus
or their association with lysine acetyltransferases (KATs) and transcription factors would
explain their roles in chromatin regulation [48]. When there is DNA damage, ACYL is phos-
phorylated within the nucleus, which promotes histone H4 acetylation near sites of DNA
double-strand breaks to repair them. Therefore, in response to DNA damage, ACLY phos-
phorylation would be enhanced, which would allow an increase in the capture of citrate or
acetyl-CoA in the nucleus [48]. On the other hand, ACSS2 is recruited to specific genomic
loci to supply acetyl-CoA for site-specific histone acetylation. Some studies have found that
ACSS2 is translocated to the nucleus under low-glucose conditions upon phosphorylation
by AMPK. Since cellular acetyl-CoA levels decrease when glucose is limited, a localized
source of acetyl-CoA generated by ACSS2 could ensure the availability of this metabolite
to KATs for histone acetylation [48]. PDC acts as a co-activator of signal transducers and
activators of transcription 5 (STAT5) proteins. STAT5 proteins regulate specific nuclear
genes in response to growth factors and cytokines which are linked to crucial cellular
functions such as proliferation, differentiation, and survival. The role of STAT proteins is
underscored in the field of cancer because tumors have an aberrant constitutive activation
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of them, which significantly contributes to tumor cell survival and malignant progression
of disease [49]. Specifically in the context of BC, the findings obtained by Sun Y et al.
suggested that the inhibition of STAT signaling by diindolylmethane (DIM) could decrease
the invasiveness of BC, since DIM induced apoptosis in radioresistant cell lines. Therefore,
DIM plus radiotherapy could be useful in overcoming such resistance [50]. Other studies
performed in BC cell lines using inhibitors against STAT3/5 such as Stattic, Nifuroxazide
and SH-4-54 also showed reduced survival and increased apoptosis. In a xenograft model,
Static monotherapy had effects on tumors, but its combination with chemotherapy had
additive effects. These findings highlight that inhibitors against STAT3/5 are promising as
novel mono- and combination therapies in BC [51].

On the other hand, the regulation of NAD+/NADH levels in the nucleus is guaranteed
by the activity of glycolytic enzymes (e.g., LDHA and glyceraldehyde 3-phosphate dehy-
drogenase (GAPDH)) since mitochondrial and nuclear membranes are impermeable to
these cofactors [20]. Within the nucleus, NADH could be implicated in regulatory processes
associated with histone acetylation, which in turn would influence transcriptional activity.

Last, the role of pyruvate kinase embryonic isozyme M2 (PKM2) in BC has previously
been highlighted. Monomeric PKM2 translocates into the nucleus where it functions as
a protein kinase that phosphorylates histones during gene transcription and chromatin
remodeling [52]. Additionally, PKM2 upregulates the expression of c-Myc and cyclin D1,
promoting the Warburg effect and cell cycle progression, respectively. Therefore, the role of
nuclear PKM2 has been described as crucial for tumorigenesis, angiogenesis, and metasta-
sis, and this protein has been postulated as a target for treating human cancers, including
BC [53]. Numerous studies have correlated PKM2 overexpression with the development
and metastasis of BC through promoting cell proliferation, migration and invasion via
the mitogen-activated protein kinase (MAPK) signaling pathway [54], but also with ad-
vanced BC chemoresistance to cisplatin [55] or anticancer efficiency to pirarubicin [56].
Consequently, PKM2 could be a potential molecular prognostic marker of BC [57].

In brief, metabolic enzymes in the nucleus link metabolic flux to gene regulation, and
allow nuclear membrane-impermeable metabolites to be used in epigenetic processes [58].
This metabolism–epigenetics axis would facilitate the adaptation to a changing environ-
ment around bladder tumors, providing a potential novel therapeutic target. The role
that metabolites can play in modulating epigenetic enzyme action and gene expression is
depicted in Figure 1.

3. Epigenetics Control Metabolic Reprogramming

Epigenetic regulation of gene expression is one of the most efficient stimulus response
mechanisms. Extrinsic and intrinsic signals shape the plasticity of tumor cells to allow
them to adapt to rapidly changing environmental conditions. These signals drive tumor
metabolism [59], which can influence epigenetic mechanisms in several ways, such as
the control of metabolite concentration necessary as cofactors or substrate for epigenetic
enzymes, or the control of oncometabolites which regulate the expression of different
epigenetic enzymes, among others, which have been explained above. These signals also
drive metabolic reprogramming through changes in epigenetic modification patterns,
achieving a rapid and coordinated response under unfavorable conditions for survival [27].

The functions of the epigenome are fundamental for the normal status of gene ex-
pression, and its alterations affect basic cellular processes such as proliferation, apoptosis
or differentiation [60,61]. Epigenetics is defined as the heritable changes that occur in
gene expression that do not involve alterations in the nucleotide sequence of DNA. These
changes are basically divided into DNA methylation and modifications of the histone tails
that allow the opening or closing of the chromatin. DNMT enzymes produce an irreversible
silencing in the heterochromatin (closed chromatin state) and are divided in two groups:
those involved in maintaining the methylation pattern in each cell replication (DNMT1) and
those charged with de novo methylation (DNMT3a and DNMT3b). Chromatin regulatory el-
ements are small molecules that regulate dynamic and reversible processes based on small
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post-translational modifications (PTMs) such as acetylation or methylation, among others,
that make up the histone code. PTMs can be written by methyltransferases (HMTs) or acety-
lases (HATs), they can be deleted by demethylases (HDMs) and deacetylases (HDACs), and
they can be read by different effector molecules to direct a particular transcriptional result.
The main gene transcription marks are the acetylation of histones 3 and histone 4 (H3Kac,
H4Kac) and methylation of histone 3 in lysine 4, 36 and 79 (H3K4me, H3K36me, H3K79me),
while the best known gene repression marks are histone 3 methylation in lysines 9 and 27
and histone 4 in lysine 20 (H3K9me, H3K27me, H4K20me) [52]. The role of epigenetics
is broad; it not only involves chromatin modifiers or changes in DNA methylation, but
also includes non-coding RNA (ncRNA) expression (miRNA and lncRNA) that works in
coordination with chromatin remodeling complexes and regulates the expression of mul-
tiple genes [62]. The metabolic reprogramming affects pivotal biological processes of the
tumor cell such as survival, proliferation, or migration, among others. All these processes
are the product of obtaining energy and its use in different chemical metabolic reactions.
These reactions and the regulation of the use of energy to sustain demand underlie an
aberrant epigenetic regulation of genes which are part of the main tumor metabolic routes
and different oncogenic signaling pathways. Therefore, metabolism modulation can occur
by epigenetic dysregulation of DNA methylation, histone modifications and ncRNAs.

The interplay of epigenetics and metabolic rewiring is complex. The epigenetic mech-
anisms, whether direct or indirect, that control metabolism are multiple and not all are
well defined. However, there are two key connections between epigenetics and tumor
metabolism: (i) epigenetic alterations which are directly related to the expression of
metabolic enzymes; and (ii) epigenetic alterations that indirectly influence the signaling
transduction cascades involved in the control of cellular metabolism.

Epigenetic alterations can also regulate major signaling transduction cascades. Many
of them are well-known oncogenic pathways in cancer, especially in BC, which is considered
an epigenetic disease. Chromatin remodeling gene mutations are more frequent in BC than
in any other solid tumor. Importantly, they seem to be highly altered in the MIBC, where at
least 89% of the alterations are in histone-modifying genes and 64% in genes associated
with nucleosome positioning [63,64].

In recent studies, enhancer of zeste homolog 2 (EZH2), the main enzyme of the gene
repressor complex Polycomb 2 (PRC2), has been shown to play an important role in tumor
development and progression [65]. In NMIBC, EZH2 has been shown to predict recurrence
and progression [66]. For example, EZH2 promotes changes in global gene expression,
including aberrant expression of lncRNA HOTAIR, which acts in concert with EZH2
to mediate gene repression in high-risk tumors [67]. EZH2 also promotes the silencing
of various miRNAs, such as the miR-200 family of miRNAs, which are involved in the
repression of the epithelial–mesenchymal transition (EMT) and related to the increase in
the probability of recurrence in the disease [68]. EZH2 is also known to cooperate with
other modifiers such as DNMTs [69] and HDACs [70] to promote a permanent silencing of
gene expression. A role of EZH2 in the activation of different oncogenic signaling pathways
by turning off tumor suppressor genes has also been demonstrated.

DNA methylation and epigenetic enzymes that are altered in BC define different
tumor subtypes and can help in the diagnosis or prognosis of patients. Below, the main
epigenetic alterations that are involved in metabolic rewiring, including those are known
in BC, are shown.

3.1. Epigenetic Regulation of Metabolic Enzymes and Oncogenic Pathways in Metabolism

There are different studies that show that various metabolic enzymes are altered by epi-
genetic events in tumor cells, as opposed to genetic mutations. These events can regulate tu-
mor metabolic reprogramming directly or indirectly through DNA methylation, alterations
in histone modification patterns, and by aberrant expression of non-coding RNAs (ncRNAs:
miRNAs and lncRNAs; Figure 2), as will be shown throughout Sections 3.1.1–3.1.3.
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Additionally, metabolic reprogramming is activated by oncogenic signaling cascades,
such as PI3K/Akt/mTOR signaling, transcriptional factors (TFs) such as HIF, MYC or p53,
and the inactivation of tumor suppressor signaling, e.g., the LKB–AMPK pathway. Many of
these are present in BC, such as PIK3 or genes which upregulate c-myc glycolysis genes [71].
The PI3K/Akt/HIF-1α axis mediates glycolysis and leads to autophagy through AMPK
signaling in BC cells. Additionally, the lack of AMPK signaling increases mitochondrial
ROS, which enhances HIF-1α signaling [71]. These cascades are in turn connected to many
other factors that lead to a dynamic network and speak to the complex behavior and
biology of the tumor. These signaling pathways and activation of TFs are closely related to
tumor metabolism, but in turn can be regulated by epigenetic mechanisms and as it will
highlight in relation to ncRNAs (Figure 2). The implications of these signaling pathways
in metabolic rewiring will help to understand their epigenetic regulation. This is briefly
described below within each section.

AKT is known as the major regulator of glucose uptake and improves glucose
metabolism via glycolysis and the pentose phosphate pathway [72]. MYC is usually in-
duced by the Wnt/β-catenin, MAPK/ERK, and PI3K signaling pathways. In general,
MYC induces the transcription of genes involved in glycolysis and glutaminolysis and
contributes to control over redox balance [73]. MYC can also contribute to the supply of
glycolysis intermediaries to the PPP for the biosynthesis of other molecules [73]. MYC
can also regulate the use of glutamine by facilitating the activation of the expression of
its transporters [74] or even controlling the repression of ncRNA targeting the enzyme
GLS [75]. Thus, tumors that present MYC as a driver have a strong dependence on glucose
or glutamine, which may indicate them as promising targets for the study of metabolic
inhibitors. The classic tumor suppressor TP53 also has an emerging role in metabolic repro-
gramming. The activation of p53 represses the transcription of GLUT1, GLUT3 and GLUT4
transporters and activates the transcription of proteins involved in the electron transport
chain for their replacement [76], and can even bypass glucose through the PPP [77]. In ad-
dition, those tumors that show a loss of p53 functionality will show a glycolytic metabolic
phenotype. In hypoxic conditions, higher levels of HIF are detected. The HIFα subunits
stabilize and activate the transcription of numerous glycolytic enzyme genes [78], or lac-
tate synthesis enzyme genes, and this has been demonstrated in BC [79]. HIF can also
be constitutively activated under normoxic conditions by oncogenic pathways such as
PI3K/Akt/mTOR [80,81] or through the inactivation of LKB1–AMPK signaling [78].

3.1.1. DNA Methylation

DNA methylation is one of the most studied epigenetic mechanisms in cancer. Pro-
moter hypermethylation usually occurs in tumor suppressor genes, DNA repair genes, cell
cycle control, and invasiveness genes, and the silencing of their transcription causes cancer
development and progression [82]. Thus, hypermethylation is correlated with the grade
and stage of the tumor, with low-grade tumors being the least altered (10%) compared
to high-grade (20%) and invasive tumors (30%) [83,84]. For example, the hypermethy-
lation of GATA2, TBX2, TBX3 and ZIC4 in NIMBC is associated with progression to
MIBC [84,85], but their connection with metabolic pathways is still unknown. Addition-
ally, DNA hypomethylation in tumors leads to genomic instability and the activation of
proto-oncogenes [86] and increases the risk of BC [87,88].

Numerous studies have shown that DNA methylation is related to glycolysis and
glucose consumption. Indirectly, DNA methylation contributes to increased glucose uptake
by silencing genes associated with glucose transporter degradation pathways such as
GLUT1, allowing their overexpression [89]. Tumor suppressors, such as PTEN or LKB1,
inhibit oncogenic signaling, which are central activators of glycolysis (Akt, AMPK, HIF
and p53), and undergo hypermethylation of their promoters, facilitating the activation of
glycolysis and the synthesis of macromolecules, thus helping to maintain the glycolytic
phenotype [21,90]. Furthermore, the hypermethylation of certain metabolic enzyme genes
has a direct impact on glycolysis. For example, the FBP1 gene (fructose 1,6-biphosphatase),
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which codes for one of the main enzymes of gluconeogenesis, shows hypermethylation
of its promoter in different tumors, facilitating glycolysis [21,73,90]. In addition, the hy-
pomethylation of promoters can activate the transcription of genes that code for glycolytic
enzymes. Enzymes such as PKM2 or HK2 undergo promoter hypomethylation which
allows them to be expressed and increases their availability, which leads to an accelerated
glycolytic flow [91,92].
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Moreover, recent studies link DNA methylation sites to fatty acid metabolism in
BC [93–97]. TIMP3 promotor hypermethylation has been described in the regulation of
lipid metabolism, fatty acid oxidation and cholesterol homeostasis in response to oxida-
tive stress [96,97]. GSTP1 (glutathione S-transferase 1) is known to be hypermethylated
in BC and this enzyme is involved in xenobiotic metabolism [98,99] and can regulate
glycolytic and lipidic metabolism energetics, as well as oncogenic signaling pathways
in other tumors [100]. Further, human GSTM1, part of the GST superfamily, has been
reported to be transcriptionally downregulated by DNA methylation in BC [101]. Some
cancer cells, including BC, overexpress DNMT1, DNMT3A, and DNMT3B, which in turn
leads to DNA hypermethylation of promoter regions and the silencing of tumor suppressor
genes [102,103]. This DNA methylation pattern commonly negatively affects gene expres-
sion, promoting tumor growth and progression and predicting therapy outcomes [104].
In fact, the main difference between low- (LG) and high-grade (HG) BC is related to the
amount of aberrant hypermethylation in specific loci, with HG BC having a greater percent-
age of aberrant DNA methylation patterns (over 30%) when compared to LG BC [105,106].
Elevated FHIT, CDH1, CDH13, RASSF1A and APC promoter methylation levels correlate
with poor prognosis, adverse clinicopathological features, BC progression, and reduced
overall survival [107].

ASS1 and SAT1 genes, which are related to amino acid metabolism, have been shown to
be hypermethylated in cancer, and their association with the rewiring of cisplatin-resistant
BC has also been demonstrated [108]. In patients diagnosed with BC, the ABCB1/MDR1
drug transporter exhibits a dynamic degree of methylation, changing from a hyperme-
thylation state during carcinogenesis to a hypomethylated state during chemotherapeutic
treatments. Thus, it is a possible prognostic factor for disease recurrence and treatment
response in BC [109].

Finally, it should be noted that, to date, approximately 90% of identified genes in-
volved in drug metabolism and transport that are epigenetically regulated implicate
DNA methylation. Therefore, further research in this area may facilitate our understand-
ing of the multidrug resistant response in different patients with different types of can-
cers [110]. Cytochrome P450 enzymes can be hypomethylated and transcriptionally ac-
tivated and the metabolic response to drugs can be improved, thereby promoting resis-
tance to treatments [110,111]. Modifications such as histone methylation or acetylation
frequently work in combination to mediate the DNA methylation status of genes related
to drug metabolism [112,113]. Therefore, both DNA hypomethylation and hyper methy-
lation can contribute to the glycolytic phenotype in tumor cells and to the activation of
xenobiotic metabolism.

3.1.2. Histone Modifications

Post-transcriptional modifications of histone tails regulate chromatin structure for
gene activation or repression, replication, and DNA damage repair. The best studied and
central modifications of epigenetic regulation include tailing amino acid methylation and
acetylation marks, which are controlled by enzymes that can write them (HMTs or HATs)
or can erase them (KDMs or HDACs).

Histone Methyltransferases (HMTs)

Currently, further research is still required to understand how histone modifications
can control metabolic reprogramming. However, taking into account that histone methy-
lation markers are the main regulators of gene transcription, it is highly likely that they
modulate metabolism. HMTs control the methylation status of histones through repressor
labels such as H3K9me, H3K27me3 and H4K20me3 [114,115], and there is evidence that
some of these enzymes interfere in some way with cellular metabolic activities.

As mentioned above, EZH2 promotes global changes in gene and ncRNA expression,
can cooperate with other chromatin remodelers or may co-occupy several gene loci with
G9A in order to maintain gene silencing in a cooperative and coordinated manner, which
has been shown in BC [116] and could explain some oncological properties of EZH2 that
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could favor heterogeneity in tumors [117]. As the master epigenetic regulator, EZH2 con-
trols gene silencing through its mark H3K27me3 and it can alter the metabolic profile of
tumor cells through the metabolism of glucose, lipids and amino acids, as demonstrated
in recent studies [118]. EZH2 activity is affected by the availability of SAM from altered
metabolic profiles, and, through its involvement in multiple metabolic pathways, EZH2 can
also increase SAM gene and protein expression. Those events establish a positive feedback
loop which improves the activity of EZH2 and favors tumor progression [118,119]. Fur-
thermore, EZH2 is also influenced by the production of other metabolites involved in post-
transcriptional modifications such as phosphorylation, acetylation or O-GlcNAcylation
(O-linked N-acetylglucosamine modification) that can regulate the activity and stability of
this enzyme [120,121].

EZH2 facilitates glucose metabolism in tumor cells in several ways. It can silence the
transcription of HIF1α-directed hypoxia signaling repressors, which induces the transcrip-
tion of metabolic genes such as GLUT1, PDK, or HK2 and contributes to maintaining the
Warburg effect [122]. EZH2 can also promote and regulate lipid metabolism by silencing
WNT signaling pathways and overexpressing lipogenic genes such as PPAR-γ [123,124].
Additionally, TERT and EZH2 cooperate in the activation of PGC-1α, which is involved
in the expression of FAS [125]. It has been shown that FAS is involved in the synthesis of
triglycerides, and its expression is upregulated by SIRT6, a protein deacetylase known to
promote adipogenesis and be repressed by EZH2 [126]. These studies demonstrate the
participation of EZH2 in lipid synthesis; however, it is a field that still requires further
research, especially due to the important role of EZH2 in BC. EZH2 can also regulate amino
acid metabolism through multiple pathways, mainly contributing to the production of me-
thionine for SAM which, in addition to enhancing the expression of EZH2, can affect amino
acid transporters [127]. EZH2 also regulates the expression of transamination enzymes
that participate in the production of α-KG to obtain glutamate, and EZH2 inactivation can
upregulate glutamine metabolism [128]. New findings demonstrate that aldehyde oxidase
(AOX1) is epigenetically silenced through EZH2 during the progression of advanced BC.
AOX1 silencing reconnects the tryptophan–kynurenine pathway, raising NADP levels that
can increase metabolic flux through the PPP, allowing greater nucleotide synthesis [128,129].
Thus, AOX1-associated metabolites have a high predictive value for these tumors that do
not have effective therapeutic opportunities.

EZH2 expression can be regulated at multiple levels. It can be transcriptionally induced
by the activation of c-MYC or loss of p53 [130]. MYC regulates EZH2 directly by interacting
with its transcriptional promoter or indirectly by controlling the repression of some miRNAs
that silence EZH2 [131]. However, it can also be post-transcriptionally regulated by interaction
with ncRNAs [132] or by the activation of signaling cascades such as PI3K–Akt [120].

Another important methyl transferase that is involved in amino acid metabolism is
G9A. This enzyme can write the repression marks H3K9me1 and H3K9me2. Ribosome
biogenesis and cell proliferation depend on the availability of serine, and G9A is known to
increase glycolytic flux towards serine–glycine synthesis which is observed in BC [133]. G9A
is overexpressed in many tumors, including BC [116], and can cooperate with TFs or with
demethylases, such as KDM4C/JMJD2C, to maintain the H3K9me1 mark in the promoters
of serine pathway-related genes to promote their transcriptional activation, including those
for amino acid synthesis and transport [134,135]. Furthermore, like EZH2, G9A regulates
transamination enzymes whose expression is activated due to H3K9 demethylation or
G9A repression, and helps the production of other precursor metabolites such as NADH
or α-KG, which have critical roles in the control of cellular metabolism related to cell
proliferation and survival [135]. Patients with this type of epigenetic profile, as in the
case of EZH2, are not suitable candidates for epigenetic inhibitor therapies as they could
contribute to the metabolic reprogramming of tumors.

Histone Acetyltransferases (HATs)

The acetylation of histone lysine residues is established by HAT activity, using acetyl-
CoA as an acetyl donor [136]. Therefore, tumors with high production of acetyl-CoA can
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destabilize acetylation levels. There are not many reports on the involvement of these
enzymes in metabolic reprogramming, but it is known that the acetylation of PKM2 at
the end of glycolysis decreases its activity, thus favoring the trafficking of intermediates
for the biosynthesis of nucleic acids, amino acids and lipids [137], and that low levels of
H4K16ac/H3K9ac are associated with a highly proliferative tumor profile, thus it is likely
that these marks are related to metabolic rewiring [115,138], and would be very interesting
to research.

Histone acetylation is a highly dynamic process being regulated by two enzyme fam-
ily members, operating in an opposite fashion: the HATs and the HDACs. HDACs are
overexpressed in various tumors, including BC, and histone acetylation levels decrease
during progression to MIBC. Several studies indicate that global levels of histone acety-
lation are suitable biomarkers for patients with urological malignancies. For example,
histone acetylation levels could be helpful to identify patients with understated pT1 tumors
after TUR, identifying those who need cystectomy [139], or could help to identify how
patients will respond to treatment with HDAC inhibitors because the use of these therapies
results in decreased global histone acetylation levels and a poor prognosis outcome for
patients [139,140].

Histone Lysine Demethylases (KDMs)

Lysine demethylases (KDMs) are often overexpressed and activated in solid tumors.
These enzymes remove a methyl group from the histone tails by oxidation in a flavin
adenine dinucleotide (FAD) or α-KG-dependent manner [141].

Several KDMs play an active role in metabolic rewiring in cancer, for example,
KDM3A/JMJD1A, which promotes BC progression by enhancing glycolysis through the
coactivation of HIF-1α [142]. KDM3A demethylates glycolytic gene promoters including
GLUT1, HK2, phosphoglycerate kinase 1 (PGK1), and LDHA, among others, through
H3K9me2 mark, leading to their transcriptional activation [142]. Additionally, increased
H3K27ac binding on HIF-1α induces GLUT3 overexpression through KDM3A binding,
further contributing to BC’s glycolytic phenotype [143]. Finally, it is notable to mention that
the role of KDM6A/UTX, an enzyme that catalyzes the demethylation of H3K27me2 and
H3K27me3, acts as a tumor suppressor and can interact with other epigenetic elements.

Regarding glutaminolysis, the production of α-KG is reduced under hypoxic condi-
tions because it depends on the available local levels of glutamine. Likewise, α-KG is a
target for various histone demethylases [144]. The loss of KDM6A reproduces the effects of
low glutamine levels, suggesting that histone demethylases may be dependent on α-KG,
accentuating metabolic reprogramming [145]. It also causes important changes in the levels
of H3K4me1/H3K27ac of enhancer TFs and allows methyl transferases, such as EZH2,
to rewire H3K27me3 levels on the UTX-EZH2 target genes, e.g., the repressor genes of
c-MYC [144] or IGFBP3, whose decreased levels are involved in glucose metabolism [146].
KDM6A is one of the most frequently mutated enzymes in BC [147]. The loss of KDM6A
promotes enrichment in PRC2-regulated signaling and confers specific vulnerability to
EZH2 inhibition by converting tumoral cells into inducible synthetic lethality therapeutic
targets and provides a new possibility of personalized treatments in urothelial tumors [148].
Although the specific role of KDM6A in metabolic rewiring in BC is unknown, a correlation
has been observed between urothelial tumors with altered KDM6A and the upregulation
of DNA repair genes and mTORC1 signaling, which stimulates aerobic glycolysis and lipid
and nucleotide synthesis [147,149]. Therefore, KDM6A is a fundamental part of epigenetic
regulation, making it a potential candidate involved in metabolic processes.

Histone Deacetylases (HDACs)

HDACs are responsible for removing acetyl groups and are categorized into four
classes. HDAC Class III, or SIRTs, has been the most extensively studied concerning roles
in cell metabolism regulation [21,27,90]. SIRTs act on the activity of TFs implicated in the
transcription of genes involved in glycolysis, gluconeogenesis and lipid metabolism [150].
Dysregulated expression of various HDACs has been described in urothelial tumors [151].
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These enzymes could deacetylate lysines such as H3K27 to be subsequently methylated
by EZH2, and even PRC2 could recruit HDACs through EED to direct cooperative gene
repression [151].

SIRT1 is mainly involved in tumor suppressor in cancer, including BC [140,152,153];
it can suppress glycolysis indirectly through the deacetylation of HIF, which in turn can
regulate the transcription of various glycolytic enzymes such as LDH, G6P, PFK-1, PGK-1,
PGAM-1 or transporters such as GLUT1 or GLUT3 [154,155]. Moreover, SIRT1 can regulate
gluconeogenesis and lipid metabolism [150].

SIRT2 is also considered a BC tumor suppressor, and can participate in metabolic dys-
regulation indirectly by stabilizing MYC via deacetylation of a repressor, which functions
as a positive feedback loop [156]. It also contributes to gluconeogenesis by deacetylation
and activation of phosphoenolpyruvate carboxykinase (PEPCK) in the absence of glu-
cose [150]. SIRT2 silencing induces the inhibition of the HDAC6 family member, causing a
significant suppression of BC cancer cell migration and invasion. This strongly supports
the cooperative actions between SIRT2 and HDAC6 in urothelial malignancies [140].

SIRT3 is associated with glycolytic metabolism [157]. It can regulate glucose balance in
a HIF1α-dependent manner at the mitochondrial level [158]. In contrast to SIRT3, SIRT4 is
involved in the inhibition of GDH, repressing glutamine metabolism [159]. In addition, it is
also able to act on the activity of pyruvate dehydrogenase that catalyzes the conversion of
pyruvate to acetyl-CoA [150]. Of note, SIRT 3 and SIRT4 downregulation has been reported
in BC [140,153].

SIRT6 is the most reported SIRT involved in tumor metabolic reprogramming. Its
primary role is in the regulation of glucose homeostasis and lipid metabolism [150].
SIRT6 works as a suppressor by blocking the HIF-dependent glycolytic switch and MYC-
dependent ribosomal biosynthesis and glutaminolysis [21]. For instance, it can directly re-
press the expression of glycolysis genes by the deacetylation of H3K9, such as GLUT1 [154].
Functional studies of SIRT6 in BC cell lines confirmed its role in inhibiting glycolysis [160].
It should be noted that, in addition to regulating glycolysis, SIRT6 also participates in gluco-
neogenesis and lipid metabolism [150]. Its over-expression can inhibit the proliferation of
BC cells, while its expression decreases with the progression of BC from T2 to T4 stage [140].
Therefore, SIRT6 could be a promising druggable biomarker for BC, as would be the case
of SIRT4. SIRT7 can interact directly with the MYC factor, repressing its function [161,162].
Like SIRT6 (H3K9), the repressive mark of SIRT7 (H3K18) opposes the transcription of
MYC-dependent genes and can therefore regulate the metabolic alterations mediated by
this factor [150,162]. SIRT7 is upregulated in many cancers, including BC [140]; however, it
has been reported that in BC it may play a dual role depending on the context, suggesting
that the functional importance of SIRTs may change throughout cancer progression [153].
It has been demonstrated that SIRT7 levels decrease significantly in MIBC, suggesting
that SIRT7 may promote a more aggressive phenotype [152]. Although the mechanism
of dysregulation of SIRT7 in BC and its putative implication in metabolic rewiring have
not yet been adequately addressed, it is speculated that this could be due to epigenetic
mechanisms that allow a plastic expression of SIRT7 in both carcinogenesis and tumor
progression [152,153]. A lower expression of SIRT7 could be related to a positive regula-
tion of TFs of EMT processes, such as Snail or HOTAIR, which would participate in the
recruitment of EZH2 to specific genes [162]. It has been demonstrated that the expression
of SIRT7 is regulated by miRNAs such as miR-125b, which in turn interacts antagonistically
with the lncRNA MALAT1 in BC [163]. However, the findings on the miR-125b–MALAT1
interaction and its possible participation in metabolic regulation should be further studied
and confirmed [164].

In summary of this section, this is a possible scenario of epigenetic–metabolic repro-
gramming in BC. On the one hand, EZH2 can interact with other chromatin remodelers
such as G9a and DNMTs regulating the expression of tissue-specific gene sets in BC. EZH2
and G9a work in obtaining α-KG, in transamination reactions involved in amino acid and
lipid synthesis, and promote glycolysis and the PPP. Moreover, DNMT can hypermethylate
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genes that enhance glycolysis, but also it plays an important role in xenobiotic metabolism.
Therefore, a relationship with EZH2, and consequently with G9a, could open an exploration
path in resistance to therapy and the use of combined therapies in BC. Interestingly, KDMs
such as UTX or KDM3A cooperate with HIF-α and are associated with high levels of α-KG
and glutamine availability, enhancing amino acid synthesis, PPP activation, glycolysis as
well as lipid synthesis.

On the other hand, it has been proven that EZH2 can interact with PI3K signaling, one
of the major regulators of glucose uptake that enhances glycolysis and PPP, but also with
HIF, MYC and p53, either directly or indirectly. In turn, there appears to be evidence of
EZH2 regulation by these potent metabolic rewires. It should be noted that EZH2 regulates
the expression of HIF suppressors and that the role of sirtuins is basically to keep HIF or
MYC repressed, as is the case with SIRT6 and SIRT7 in BC. There is evidence that SIRT6 may
be silenced by EZH2 and that SIRT7 decreases as the disease progresses to MIBC. It can be
assumed, then, that EZH2 could regulate sirtuin expression, together with ncRNAs, since
EZH2 is involved in the recurrence and progression in BC. Thus, EZH2 not only controls
gene silencing programs together with other chromatin remodelers, but can also regulate
demethylation and deacetylation programs to orchestrate which metabolic pathways are
enhanced for obtaining energy and precursors and which are maintained by the tumor
cell. All this occurs through epigenetic regulation, one of the most fluid and dynamic
machineries to obtain rapid responses to progress in the disease.

3.1.3. ncRNAs

Recent studies have shown that ncRNAs regulate enzymes involved in metabolic
pathways such as glycolysis and the mitochondrial TCA cycle, contributing to oncogenic
metabolic programming. Their aberrant gene expression contributes to the establishment
of diverse mechanisms that govern the plasticity of tumor cell metabolism [21]. These small
RNA molecules are non-coding, but nevertheless have a regulatory role for gene expression
at the post-transcriptional level [90]. The regulatory role that miRNAs and lncRNAs can
exert on metabolic enzymes and glucose, lipid and amino acid metabolic pathways in BC
is discussed below [165,166].

ncRNAs can actively regulate energetic signaling by targeting key metabolic trans-
porters and enzymes, but also by directly or indirectly controlling the expression of tumor
suppressors or oncogenes in different signaling pathways.

miRNAs

There are numerous studies that link miRNAs with tumor metabolism, and they have
functions in various types of cancer. miRNAs control crucial metabolic processes including
glucose transport, glycolysis, the TCA cycle, glutaminolysis, altered lipid metabolism as
well as amino acid biosynthesis [167], but they are also related to drug-metabolizing gene
expression [106].

miRNAs can regulate the expression of numerous enzymes that participate in glucose
uptake, including glycolytic enzymes such as HK2, controlled by miR-143, miR-145 and
miR-155 in BC [168–170]; PKM2 regulated by miR-326 and miR133a/b [21]; or the expres-
sion of LDHA, which is controlled by miRNAs such as miR-34a or miR-200c in urothelial
tumors, favoring the production of lactate [167,171], among others. However, they can
also regulate the expression of glucose transporters. For instance, many miRNAs such as
miR-199a, miR-138 or miR-150 can control the expression of GLUT1 [164]. Interestingly,
miR-218 has been shown to regulate the expression of GLUT1, which leads to an enhance-
ment of chemosensitivity to cisplatin in BC [172]. In addition, miR-93 and miR-133 regulate
GLUT4 [173], and miR-195-5p or miR-106a improve the expression of GLUT3 in BC [174].

However, miRNAs arguably have the greatest impact on essential metabolic signaling
pathways such as PI3K/Akt/mTOR and LKB1–AMPK [121,164], as well as the expression
of TFs such as HIF, MYC and p53 that contribute to the metabolic phenotype of the
tumor [21].
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The expression of some miRNAs controls the activation of the PI3K/Akt/mTOR
pathway [165]. miR-143-145 cluster and miR-133a regulate AKT expression in BC. Oth-
ers regulate mTOR, such as miR-100 [175], or contribute to the inactivation of inhibitor
phosphatases (PTEN), as in the case of miR-19a [176].

Regarding metabolism, miR-21 is a molecular switch of several aerobic glycolytic
genes, such as GLUT1, GLUT3, LDHA, LDHB, PKM2, HK1 and HK2 in bladder tumors,
and regulates glycolysis through the PI3K/Akt/mTOR pathway [177]. The AMPK path-
way is one of the major sensors of cellular energy status that suppresses tumor growth
during metabolic stress and is regulated by oncogenic miRNAs such as miR-451 or miR-
33a/b [165]. The reactivation of LKB1–AMPK in BC cells improves apoptosis and au-
tophagy [178,179]. However, the role of this pathway in metabolic reprogramming in BC
requires further research.

These miRNAs, in turn, interact with other factors, e.g., HIF, to propagate hypoxia-
induced signaling and its stabilization [180], and some miRNAs are induced by HIF1α
in BC, such as miR-210, -193b, -125, or miR-145 [181]. p53 can also induce the expres-
sion of miRNAs with a partially suppressive role by inhibiting glycolytic enzymes like
HK1 and HK2, such as miR-34a [165]. On the other hand, p53 is under the regulation
of other oncogenic miRNAs such as miR-25, -30d, -33, -125b that can contribute to its
stabilization [182].

Regarding the interaction of miRNAs with MYC, there is evidence that this factor can
repress miRNAs with a suppressing role, such as miR-23a or miR-24b, or it can bind to the
promoter of oncogenes of other miRNAs to promote the metabolism of glutamine [72,75].

miRNAs such as the miR-210 or miR-200 family of miRNAs can inhibit mitochondrial
function by promoting glycolysis, glutaminolysis, and lactate production, which is crucial
for adaptation to hypoxic microenvironments [92]. Altered expression of the miR-200
family has been reported in various cancers and is known to play an important role in
BC [68]. This family includes five members located in two different clusters: miR-200a,
miR-200b and miR-429 (cluster I) and miR-200c and miR-141 (cluster II). It has been
shown that there is clear upregulation of cluster II in urothelial tumor tissue compared
to normal tissue, and this overexpression may be mediated by the activation of specific
oncogenic pathways such as MYC overexpression or p53 alterations [68]. Gene expression
patterns show that miR-200 expression is involved in ncRNA metabolism and RNA splicing,
and chromatin remodeling and histone modification processes are inversely related to
miR-200 expression [68]. However, the expression levels of this family decrease as the
disease progresses [183], suggesting a dual role of miR-200 in BC at different stages of
the disease. The hypermethylation of CpG islands is known to induce high-stage miR-
200 silencing in aggressive and infiltrating BC [184]. In addition, genes related to the
expression of miR-200 significantly present the repressive mark H3K27me3, which indicates
that the activity of EZH2 is inverse to the expression of these miRNAs and that EZH2
possibly participates in the repression of miR-200, which contributes to early recurrence,
as we initially described before Section 3.1. It should be noted that studies relating to the
participation of the members of this miRNA family in metabolic processes are scarce, even
more so in BC, and that we have only found evidence regarding HIF-miR-200c and LDHA
mechanisms [181].

miRNAs have been shown to target key enzymes involved in aerobic glycolysis,
the TCA cycle and lipid metabolism [185], but also control the aberrant expression of
central epigenetic enzymes, such as EZH2, and their expression can even be affected as
a consequence of the hypermethylation of the gene that encodes them by both DNMT
and HMT [186]. This means that in addition to metabolic dysregulation, ncRNAs further
expand the intricate regulatory network in the mechanisms underlying tumorigenesis [90].

EZH2 is a direct target of miR-101 or miR-138 in BC [187]. However, these miRNAs
also perform other functions. For example, in BC it has been shown that miR-101 can regu-
late the expression of cyclooxygenase-2, which is related to xenobiotic metabolism [188],
and miR-138 in turn can control the expression of EMT factors such as ZEB2 [42].
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Other miRNAs related to metabolic rewiring in BC are miR-1, miR-9 or miR-129.
miR-1 acts as a tumor suppressor regulating GLS expression, which is crucial in glutamine
metabolism [189]. miR-9 modulates the expression of the LASS2/CERS2 gene, which codes
for a ceramide synthase, an enzyme involved in the metabolism of sphingolipids, which
are part of cell membranes [190]. On the other hand, miR-129 may mediate the expression
of GALNT1, an enzyme involved in protein metabolism [191].

LncRNAs

LncRNAs have been identified as important regulators of cellular metabolism. How-
ever, despite cumulative studies investigating altered expression profiles of lncRNAs
during metabolic rewiring in cancer, the functional roles of these lncRNAs remain largely
unexplored [192,193]. The expression pattern of an lncRNA can differ significantly de-
pending on the metabolic process, making them crucial drivers of highly tissue-specific
cancer phenotypes [194]. LncRNAs are involved in the regulation of oncogene expression,
which induces metabolic reprogramming of HIF 1 α, c-MYC or p53 [195,196], but they can
also interact with tumor suppressors, such as AMPK [197], oncogenic signaling pathways,
metabolic enzymes or with other ncRNAs [193,194]. This network allows the maintenance
of metabolic rearrangement during tumor response surrounding the microenvironment.

LncRNA-mediated glucose metabolism can occur through three different mechanisms:
the alteration of the expression levels or distribution of GLUTs, the alteration of expression
levels of glycolytic enzymes, or interactions with glycolytic genes and the modulation of
their activity [194].

LncRNAs modulate glucose metabolism through glucose transporter regulation and
glycolytic genes, and are implicated in many malignancies, including BC, such as AN-
RIL [198]. High tissue abundance of ANRIL in cancer is associated with aggressive clinico-
pathologic features, poor overall survival [199], and resistance to chemotherapy [200,201].
ANRIL interacts with signal transduction pathways in cancer such as PI3K/Akt/mTOR [202].
Furthermore, ANRIL promotes GLUT1 and LDHA expression, resulting in the upregula-
tion of glucose uptake and the promotion of cancer progression via the Akt/mTOR path-
way [194]. However, it can also interact with TFs such as c-MYC, which can transactivate
ANRIL and promote tumor progression [202]. ANRIL also participates in the regulation of
gene expression via mechanisms including chromatin modulation, TF binding, and miRNA
regulation [203–205], and can be considered as a driver in cancer progression by increasing
glucose uptake for glycolysis, and additionally, ANRIL has also been linked to fatty acid
metabolism [206,207].

Other lncRNAs, such as HOTAIR and urothelial cancer-associated 1 (UCA-1), play
an important role in BC. Previous data have shown that the expression of HOTAIR may
be upregulated by EZH2 and that it is a predictor of disease recurrence and progression,
and overall survival in MIBC [68]. Recently, its role in tumor glucose metabolism through
the induction of GLUT1 gene expression has been discovered [208]. This lncRNA is also
involved in OXPHO mitochondrial activity [209]. Although these metabolic roles have
not been elucidated in BC, they could be part of the epigenetic regulation directed by an
EZH2–lncRNAs axis that reinforces the reformulation of metabolism.

UCA-1 is the most studied lncRNA in BC. It promotes glycolysis by modulating HK2
via the activation of mTOR/STAT3 and miR-143 repression [129] and induces glutamine
metabolism and redox regulation by targeting miR-16 in human BC [210]. Similarly to
HOTAIR, UCA-1 has been related to mitochondrial activity [194], contributing to ARL2
induction through miR-195 inhibition in BC [192,211,212]. Therefore, UCA-1 could be
related to metabolic readjustment in BC cells, although more in-depth investigations are
necessary in order to prove this hypothesis. To date, it is known that UCA-1 shows associ-
ation with HIF-1α in hypoxic environments [213], participates in the regulation of EMT
processes though targeting miR-145–ZEB1/2 or miR-143/HMGB1 pathways [15,214,215],
induces cisplatin/gemcitabine xenobiotic metabolism modulating miR-196a [216], and, cu-
riously, it is under the regulation of miR-1 [217], one of the miRNAs involved in metabolic
reprogramming in BC.
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Lastly, although studies on lncRNAs and tumor metabolism in BC are scarce, it has
been reported that lncRNA SLC16A1-AS1 promotes metabolic rewiring in BC disease
progression [218]. This lncRNA creates an lncRNA–protein complex with E2F1, which
facilitates its binding to two gene promoters: SLC16A1/MCT1, a monocarboxylate trans-
porter in charge of lactate or pyruvate flux, and PPARα, a TF closely linked to lipid
metabolism. The interaction with these metabolic effectors favors not only glycolysis, but
also improves mitochondrial oxidative phosphorylation and the β-oxidation of fatty acids,
allowing urothelial tumor cells to use alternative energy sources, which translates into
metabolic plasticity marked by a hybrid glycolysis/OXPHOS phenotype known to facilitate
BC invasiveness.

4. Non-Invasive Bladder Cancer Biomarkers

A biomarker could be defined as a characteristic which is objectively measured and
capable of indicating the state of a biological process, be it normal or pathological [219]. In
cancer, and specifically BC, diagnostic, prognostic, and monitoring biomarkers have been
identified in biological samples, e.g., blood and urine, by high-throughput techniques [220].
In this section, we review the most important metabolomic and epigenomic studies carried
out in the context of BC.

4.1. Metabolomic Studies in BC

Metabolomics identifies and quantifies endogenous and exogenous low-molecular-
weight organic molecules (<1 kDa), i.e., metabolites, that are present in a biological sam-
ple [221]. Analytical platforms such as gas chromatography (GC) and liquid chromatogra-
phy (LC) coupled to mass spectrometry (MS) and nuclear magnetic resonance (1H NMR)
spectroscopy have been widely used in metabolomic analyses to identify potential on-
cological biomarkers [220,221]. Each of these techniques has advantages and limitations
related to sample preparation, detection range, analysis speed, thresholds of sensitivity
and specificity, so the choice of either one of these approaches depends on the aims and the
requirements of the study.

In the last decade, metabolomic analyses have provided metabolomic profiles intended
to be used in BC surveillance, or capable of distinguishing: (i) BC from control samples;
(ii) NMIBC from MIBC samples; or (iii) low-grade from high-grade BC, with sensitivities,
specificities, positive and negative predictive values (PPV, NPV) over 75 to 80%, as well
as an elevated area under the curve (AUC). Although some of these studies have only
provided holistic profiles [25], others have identified potential metabolites which may
be used as non-invasive biomarkers. Tables 1 and 2 summarize the main metabolites
identified through different metabolomic platforms in urine and serum samples, as well as
the biochemical pathways in which they are involved.

Table 1. Putative identified metabolites and associated pathways in BC urine samples.

Metabolic Biomarkers in BC

Urine

Perturbed Biochemical Pathway Levels
(BC/Control) Metabolites Clinical

Application

Glycolysis
High Fructose [222], lactic acid [26,223] Diagnosis

Low Fructose [26] Diagnosis

TCA cycle
High – –

Low Citric acid [222–224], succinate [26] Diagnosis

Amino acid metabolism
High

Val [20,26,222], Phe, Met, S−Adenosylmethionine, Lys [225], Leu
[26,225,226], Ile, His, Ser [26], Tyr, Trp, hydroxyphenylalanine,

phenylacetilglutamine, homophenylalanine, phenylglycoxylyc acid,
kynurenine, hydroxyhippuric acid [221,227], hydroxytryptophan,

indolacetic acid, minohippuric acid [227]

Diagnosis

Low Ala, PAGN, Pro, Arg [226], Asp [225,226], hippuric acid
[224,227,228], creatine [26,229,230] Diagnosis
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Table 1. Cont.

Metabolic Biomarkers in BC

Urine

Perturbed Biochemical Pathway Levels
(BC/Control) Metabolites Clinical

Application

GSH metabolism
High – –

Low Pyroglutamic acid [231] Diagnosis

Taurine and hypotaurine
High Taurine [224,230,232] Diagnosis

Low – –

Lipid metabolism
High Carnitine [225], acetylcarnitine [26,227,230] Diagnosis

Low Glycerol [222], palmitic acid [225] Diagnosis

Nucleotide/nucleoside
metabolism

High Thymine [227], hypoxanthine, uridine [222] Diagnosis

Low Adenosine [26] Diagnosis

NAD cycle
High –

Low Trigonelline [229] Diagnosis

Note: This table only includes metabolites that were quantified individually in urine samples and obtained significant p_value
(p_value < 0.05), or metabolites that were selected as discriminants in metabolomic studies in which a validation set was used and
the model’s performance was good (i.e., sensitivity, specificity, PPV and NPV > 0.75). Ala: alanine; Asp: aspartate; Gly: glycine; GSH:
glutathione reductase; His: histidine; Ile: isoleucine; Leu: leucine; Lys: lysine; Met: methionine; NAD: nicotinamide adenine dinucleotide;
PAGN: phenylacetylglutamine; Phe: phenylalanine; Pro: proline; Ser: serine; TCA: tricarboxylic acid; Tyr: tyrosine; Val: valine; –: unknown.

Table 2. Putative identified metabolites and associated pathways in BC serum samples.

Metabolic Biomarkers in BC

Serum

Altered Biochemical Pathway Levels
(BC/Control) Metabolites Clinical

Application

Glycolysis
High Glucose [232], erythritol, D-lyxosylamine, ribonic acid [44] Diagnosis

Low Lactate [232] –

PPP
High Ribose, gluconic acid, 2-keto-gluconic acid, xylitol, arabitol [44] Diagnosis

Low – –

Sucrose metabolism
High Galacturonic acid, D-cellobiose, maltose [44] Diagnosis

Low – –

TCA cycle
High Succinate, pyruvate, oxalacetate, phosphoenolpyruvate,

acetyl-CoA [28], Cis-aconitic acid, fumaric acid, malic acid [44] Diagnosis

Low Citrate [232] Diagnosis

Amino acid metabolism
High Gln, His, Malonate, Val [233], creatinine, kynurenine, norleucine [44] Diagnosis

Low Tyr, Ile, Phe, Leu, Gly [232] Diagnosis

Taurine and hypotaurine
High Hypotaurine [44] Diagnosis

Low – –

Lipid metabolism
High Carnitine [28] Diagnosis

Low – –

Nucleotide/nucleoside metabolism
High Uridine, hypoxanthine [44] Diagnosis

Low – –

Organic acid
High

2-hydroxyglutaric acid, (R,R)-2,3-dihydroxybutanoic acid,
2,3,4-trihydroxybutyric acid, 2,4-dihydroxybutanoic acid,

3,4,5-trihydroxypentanoic acid, 3,4-Dihydroxybutanoic acid [44]
Diagnosis

Low – –

Choline
High Choline [232] Diagnosis

Low – –

Ketone metabolism
High Acetoacetate [232] Diagnosis

Low – –

Note: This table only includes metabolites that were quantified individually in serum samples and obtained significant p_value
(p_value < 0.05), or metabolites that were selected as discriminants in metabolomic studies in which a validation set was used and
the model’s performance was good (i.e., sensitivity, specificity, PPV and NPV > 0.75). Gly: glycine; Gln: glutamine; His: histidine;
Ile: isoleucine; Leu: leucine; Phe: phenylalanine; PPP: pentose phosphate pathway; TCA: tricarboxylic acid; Tyr: tyrosine; Val: valine;
–: unknown.
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Figure 3 shows the results obtained after performing an analysis of altered metabolic
pathways in BC using the MetaboAnalyst 3.0 tool, and considering all the found discrimi-
nant metabolites both in urine as in serum samples. Among the set of identified metabolites
in BC, a large majority are linked to pathways related to amino acid metabolism, the TCA
cycle, or pyruvate metabolism. These data derived from studies performed in BC sam-
ples [14,225] share altered metabolic pathways with other types of tumors [17], highlighting
that metabolic reprogramming is a common hallmark of tumors.
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It is important to note that all these discriminant metabolites were identified in studies
where tumor and non-tumor samples were compared, so clinically they could be applied
as diagnostic biomarkers. Conversely, other studies identified metabolites related to BC
aggressiveness using samples from LG or HG tumors [44,234–236]. For instance, Bensal
et al. identified a serum metabolic profile composed of six metabolites (dimethyl amine
(DMA), malonate, lactate, glutamine, histidine, and valine) able to distinguish LG and
HG BC samples from control samples. All except malonate were identified as crucial to
segregate LG tumors from controls; DMA, malonate, lactate, and histidine served as dif-
ferentiating biomarkers of HG from controls and the combination of DMA, glutamine,
and malonate was sufficient to accurately segregate LG from HG [236]. Tan et al. also
performed a metabolomic study using serum samples of patients with LG and HG BC.
In this case, they found a panel of serum metabolites formed by the combination of in-
osine, N-Acetyl-N-formyl-5-methoxykynurenamine (AFMK) and PS(O-18:0/0:0) which
sufficiently discriminated not only HG BC and LG BC (AUC > 0.95), but also LG BC and
healthy controls (AUC ≈ 0.99) [235]. The last notable study was carried out by Zhou et al.
They observed that both HG and LG BC had distinct metabolic profiles when compared
to control samples (e.g., elevated concentrations of TCA cycle metabolites or fatty acid
biosynthesis metabolites). Additionally, HG tumors had higher levels of PPP intermedi-
ates, nucleotide metabolites, and amino acids than the control group. Minor differences
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were detected in high- and low-grade tumors, with oleic acid and serine being identified
as discriminant metabolites between both groups [44]. Overall, these data suggest that
differential metabolic alterations are linked to tumor aggressiveness, which allows the
modulation of the processes involved in the development and progression of BC (prolifera-
tion, immune escape, differentiation, apoptosis, and invasion). Finally, other studies have
identified urinary metabolic profiles as biomarkers for BC monitoring [14,228]. In these
studies, samples were sequentially collected from NMIBC patients undergoing long-term
disease surveillance. Metabolic profiles were able to detect recurrences in this cohort of
patients by being able to observe that, after tumor removal, the metabolic profile trajec-
tory changed towards a non-tumor phenotype in concordance with negative cystoscopy
results. Metabolites linked with tryptophan, phenylalanine, arginine, proline, taurine, and
hypotaurine metabolic pathways were identified as discriminant and were postulated as
potential biomarkers for BC monitoring.

In conclusion, although some metabolomic studies have identified potential metabolic
profiles associated with BC, their transfer to the clinic remains challenging. With further
research and validation, metabolomic profiles may acquire FDA or European Medicines
Agency approval as diagnostic, prognostic or monitoring biomarkers. To achieve this,
the following are required: (i) the establishment of standard protocols that guarantee
sample quality during collection and processing; (ii) control of the analysis quality in
order to reduce preanalytical variation and batch-to-batch variability of data; (iii) a greater
reproducibility among metabolites found in similar studies; and (iv) the validation of
metabolic profiles in large patient populations.

4.2. Epigenetic Biomarkers in BC

The great advantage offered by epigenetic biomarkers is that they are highly dynamic,
showing a reversible and measurable expression in the different stages and grades of
tumors. Liquid biopsies more vastly used in the detection and surveillance of BC have
used urine and serum/plasma as biofluids. These liquid biopsies present several epigenetic
biomarkers, such as ctDNA for DNA alterations (mutations, CNV, methylation) or miRNAs
and lncRNAs, and the detection of exosomes (microvesicles that protect small RNAs that
can be found in the urine of patients).

Some epigenetic enzymes participate in metabolic reprogramming and may be consid-
ered good therapeutic targets, but they are not good biomarkers in fluids because: (i) there
are other ways to measure them; (ii) there are not enough validation studies to support
them as biomarkers, either for diagnosis, prognosis, recurrence or follow-up. Some of these,
such as EZH2 or G9A, are good molecular markers in bladder tumor tissue, which can
help to discern the nature of a tumor subtype and the prognosis of patients [116] and can
also cooperate or regulate other epigenetic elements which are biomarkers in the clinic.
The same situation occurs with some miRNAs and LncRNAs such as miR-143, miR-145,
miR-200, miR-34a, UCA-1 or HOTAIR. They are good biomarkers in tissue expression, but
they are not validated in fluids. Thanks to massive sequencing techniques, molecular panels
have been achieved that mark patterns in bladder tumor subtypes [63], a fundamental tool
for the classification of patients and their therapeutic opportunities [5].

DNA Methylation

Pyrosequencing techniques and comparative analysis of large databases allow us to
discover DNA methylation events, also important in tumor metabolism. The hypermethy-
lation of gene promoters occurs in 50–90% of BCs and includes a series of genes that are
considered biomarkers, either in urine or serum. Some of them are APC, ARF, BAX, BCL2,
CDH1, CDKN2A, DAPK, EDNRB, EOMES, FADD, GDF15, GSTP1, LITAF, MGMT, NID2,
PCDH17, POU4F2, RARβ2, RASSF1A, TCF21, TERT, TIMP3, TMS-1, TNFRSF21, TNFRSF25,
and ZNF154 [228,237]. Many of them have been validated in large cohorts of patients and
have reliable values for sensitivity, specificity and ROC curves.

Among all the alterations in the epigenetic machinery discussed previously, we must
distinguish that they exist as validated biomarkers for BC, but whose implication in
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metabolic reprogramming has not been studied or demonstrated in BC yet. We highlight
studies such as Hauser et al., who reported TIMP3, APC, RAR-β2, TIG1, p16INK4a, PTGS2,
p14ARF, RASSF1A and GSTP1 methylation promoters on the cell-free serum of BC pa-
tients for diagnosis [99,237]. The combination of methylated CDKN2A, GSTP1 and MGMT,
enzymes related to DNA repair events and drug metabolism [233,238], achieves 70% sen-
sitivity and 100% specificity in BC detection [239]. GSTP1 and MGMT in combination
with CDKN2A and ARF have diagnostic power in the urine of patients with BC [239], and
GSTP1 together with TIMP3 promoter methylation allowed the discrimination of invasive
tumors [13,239]. Therefore, the identification of these genes within a population may help
to better identify genetic vulnerabilities and pharmacogenetic studies and also monitoring
of patients during chemotherapy. However, the cohorts of patients are not enough in some
of these studies. In addition, DNA methylation patterns represent marks that can be de-
tected throughout the development of the tumor and its progression. As the bladder tumor
becomes malignant and invasive (MIBC), there are more alterations in DNA methylation,
which can be used as a clinical prognostic tool. Regarding its connection with metabolism,
on many occasions, we find genes associated with xenobiotic metabolism, which could give
us information on resistance to previous therapies. Findings on methylation biomarkers in
BC patients together with these are summarized in Table 3.

Table 3. Epigenetic marker compilation related to gene methylation status of ctDNA found in urine and serum from patients.

ctDNA (Urine and Serum)

Metabolic Gene/Pathway Related Gene Status Urine Serum Clinical
Application

Xenobiotic metabolism Hipermet. CDKN2A, MGMT ARF, GSPT1 – diagnosis

Xenobiotic metabolism, lipid metabolism
and β-oxidation fatty acids Hipermet. –

TIMP3, APC, RAR-β2, TIG1,
p16INK4a, PTGS2, p14ARF,

RASSF1A, GSTP1
diagnosis

Unknown Hipermet. GDF15, TMEFF2, VIM – diagnosis

Unknown Hipermet. PCDH10, PCDH17, APC – prognosis

Unknown Hipermet. TWIST, NID2 – diagnosis

Unknown Hipermet. – p16INK4a, p14ARF, CDH1,
PCDH10, PCDH17 diagnosis

Note: Those biomarkers that have been related to tumor metabolism in BC are highlighted in red.

ncRNAs

The main epigenetic markers that can be found in liquid biopsy are miRNAs and
lncRNAs. They are stable molecules that, due to their expression levels, can be related
to grade, state and other characteristics of the tumor. Thus, some of them are already
diagnostic (tumor initiation), prognosis (tumor in development or progression), or follow-
up markers (recurrent tumor/progression/dissemination).

Most of the biomarkers described and validated for diagnosis or prognosis in patients
with BC are ncRNAs, and some of them are related to the regulation of factors involved
in tumor metabolism. The combination of lncRNAs offers more precise results. We under-
line the possible connections between epigenetics and metabolism (Tables 3–6) from BC
biomarkers summarized by Lodewijk et al. [13]. Among detectable miRNAs and lncRNAs
in liquid biopsy, those highlighted are or could be involved in the regulation of metabolic
reprogramming in BC. We emphasize the expression of the miR-200 family, miR-21, miR-
34a, miR-143 or miR-93. We can highlight that the cluster of miRNAs detected in urine
for recurrence and surveillance reflects a greater number of alterations related to enzymes
and metabolic pathways than the sets of miRNAs used in diagnosis (Table 4). Thus, the
metabolism could be more altered as the disease progresses, and recurrence processes
would represent a period of great metabolic changes for the cell.
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Table 4. ncRNA markers found in urine from patient cohorts with BC.

Urine

Metabolic Gene/Pathway Related Levels Biomarker Panels Clinical Application

GLUT1, GLUT4LDHA, HIF1 High

miR-652, miR-199a-3p, miR-140-5p,
miR-93, miR-142-5p, miR-1305,

miR-30a, miR-224, miR-96, miR-766,
miR-223, miR-99b, miR-140-3p,

let-7b, miR-141, miR-191, miR-146b-5p,
miR-491-5p, miR-339-3p,

miR-200c, miR-106b, miR-143,
miR-429, miR-222 and miR-200a

Diagnosis

Unknown High
miR-7-5p, miR-22-3p, miR-29a-3p,

miR-126-5p, miR-200a-3p,
miR-375 and miR-423-5p

Diagnosis

GLS, LHDA, HIF1,GLUT1, GLUT3,
LHD, PKM2, HK2LDHA, HK1 (p53) High UCA1-miR-16, miR-200c, miR-205,

miR-21, miR-221 and miR-34a
Recurrence and

surveillance

Unknown High/low

NMIBC: miR-30a-5p, let-7c-5p,
miR-486-5p, miR-205-5p and let-7i-5p

NMIBC (high grade): miR-30a-5p, let-7c-5p,
miR-486-5p, miR-21-5p, miR-106b-3p, miR-151a-3p,
miR-200c-3p, miR-183-5p, miR-185-5p, miR-224-5p,

miR-30c-2-5p and miR-10b-5p
MIBC: miR-30a-5p, let-7c-5p, miR-486-5p, miR-205-5p,

miR-451a, miR-25-3p, miR-30a-5p and miR-7-1-5

Diagnosis/prognosis

p53, HIF1 Low miR-125b, miR-204, miR-99a, miR-30b, and miR-532-3p. Diagnosis

Glutamine metabolism, xenobiotic
metabolism, mitochondrial activity, HIF1 High hyal, lncRNA UCA1,

microRNA-210, microRNA-96 Diagnosis (MIBC)

NOTE: In red are indicated biomarkers related to metabolism. High expression of biomarkers is highlighted in green and low expression in blue.

Table 5. miRNA markers found in serum patient cohorts with BC.

Serum

Metabolic Gene/Pathway Related Level Biomarker Panels Clinical Application

Unknown High miR-422a-3p, miR-486-3p, miR-103a-3p and miR-27a-3p Prognosis (MIBC)

Unknown High miR-152, miR-148b-3p, miR-3187-3p, miR-15b-5p,
miR-27a-3p and miR-30a-5p Prognosis

Unknown High miR-422a-3p, miR-486-3p, miR-103a-3p and miR-27a-3p Prognosis (MIBC)

Unknown High miR-541, miR-200b, miR-566, miR-487 and miR-148b Diagnosis

Unknown Low miR-25, miR-92a, -92b, miR-302 and miR-33b Diagnosis

Unknown High miR-152 Prognosis

Table 6. lncRNA markers found in BC-derived exosomes from urine of patient cohorts.

lncRNA-Derived Exosomes (Urine)

Metabolic Gene/Pathway Related Levels Biomarker Panels Clinical Application

GLUT1 High HOTAIR, HOX-AS-2, MALAT1, HYMAI, LINC00477 Diagnosis (MIBC)

NOTE: biomarkers related to metabolism are in red.

On the other hand, the downregulation of miRNA expression could be a characteristic
feature of invasive tumors. Some examples are miR-200, miR-1, miR-143, miR-145, miR-
133a, miR-133b, and miR-125b [13], which have a tumor suppressor role and their silencing
promotes reprogramming and EMT processes, and also most of them are associated with
metabolic reprogramming in recurrence and xenobiotic metabolism, suggesting that their
regulation program is active in more advanced stages of the disease. It is important to
note that the particular role in metabolic reprogramming of ncRNAs detected in urine
and in the validation sets from MIBC serum sample assays (Tables 4 and 5) has not been
discovered yet.
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Regarding lncRNAs, there are very few validated ones, but we can highlight a
validated panel from urine samples which combines the expression of hyaluronoglu-
cosaminidase 1 (HYAL1), miR-210, miR-96 and lncRNA UCA-1 (Table 4), thereby achieving
a sensitivity of 100% and a specificity of 89.5% as a diagnosis biomarker [240]. LncRNAs
such as UCA-1, MALAT1 or HOTAIR would be of great interest to carry out studies in com-
bination of some of them with SIRTs, since there is evidence that they work in coordination
in metabolic rewiring on some occasions, as we have commented previously.

In addition, miRNAs and lncRNAs are generally included in exosomes, which are
crucial for the communication of cancer and stromal cells. Exosomes preserve their integrity
and are very stable in liquid biopsy samples, such as serum, plasma, and urine, making
them potential diagnostic and prognostic biomarkers with non-invasive methods [13]. We
report a study using exosomes from the urine of patients with MIBC that carry lncRNAs
(HOTAIR, HOX-AS-2, MALAT1, HYMAI, LINC00477, LOC100506688 and OTX2-AS1)
as diagnostic biomarkers [241] (Table 6). The identification of exo-miRNAs associated
with metastases could provide an additional tool to evaluate the follow-up of progression
disease [242].

Finally, it should be mentioned that both metabolites as ncRNAs or methylation
patterns in DNA are potential biomarkers that can be translated into the clinic to im-
prove the diagnosis, prognosis and monitoring of BC. All these biomolecules provide
dynamic information about tumor biology and evolution from a non-invasive and cost-
effective approach.

5. Therapeutic Opportunities and Future Perspectives

Massive sequencing technologies have allowed us to advance in the management of
BC, being a fundamental tool for the stratification of patients by increasingly well-known
molecular subtypes. Besides, the study of omics has given a greater vision of the behavior of
a tumor and its dynamics as stages progress. Thanks to studies in the field, new therapeutic
options are opened. This information, together with that provided by biomarkers, makes it
possible for us to talk more about precision medicine applied to patient management and
clinical decision-making. Nevertheless, it is difficult to ensure that emerging therapies are
implemented early in all patients, although some of them show promising results.

Clearly, a key metabolic target point is the glycolytic pathway and TCA cycle. There
are potent blockers of several metabolic pathways such as GLS inhibitors, competitive G6P
analogs that decrease acetyl-CoA levels [21,27], glucose transporter inhibitors [74] and even
hexosamine biosynthesis pathway inhibitors that can decrease protein O-GlcNAcylation
levels and reverse glucose-mediated metabolism [21]. Recent studies also suggest SAM
and SAH inhibitors as potential antitumor candidates and even methionine-restricted
diets [21,27,118]. SAH not only regulates intracellular levels of SAM, but the availability of
SAM is critical for DNMT and HMT activity [21,27,86]. A well-known example is DzNep, an
SAH inhibitor used in BC that blocks EZH2 and is closely related to H3K27me3 levels [199].
The levels of α-KG also affect the methylation status, as it is an essential cofactor for DNA
demethylase (TET) and histone demethylase (JMJD) and could be affecting the levels of
H3K27me3 [10]. In BC, there seems to be a positive feedback between the levels of SAM,
α-KG and HMTs, so the use of inhibitors of these metabolites could lead to a promising
novel strategy in this disease.

The main problem in the use of metabolic inhibitors is the heterogeneity in the
metabolic profiles of the tumor cells, allowing them to escape the pharmacological ef-
fect [73]. Therefore, it is important to have information on the metabolic data from patients
when selecting these inhibitors.

Regarding epigenetic therapy, two therapeutic strategies are currently used: small
molecules that inhibit epigenetic enzymes and the manipulation of the expression and
activity of miRNAs [243]. Epigenetic inhibitors currently approved for the treatment of
cancer primarily target DNA methylation (anti-DNMTs) and histone modifications (anti-
HDACs) [244].
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The latest studies have focused on determining the expression pattern of HDACs in
different cell lines and bladder tumors to explore their role in the development of cancer
and to be able to predict the efficacy of drugs [245]. Although HDAC inhibitors are shown
to be successful clinically, none of them targets class III HDACs.

Regarding SIRTs, recent studies have tried to identify SIRT6 inhibitors to understand
its mechanism of action [21,22]. Other reports have shown that the inhibition of SIRT7
reduces tumor growth, and the deacetylation of its mark promotes the inhibition of miR-34a
expression [150], implicated in BC. However, although there are many known compounds
that regulate the activity of SIRTs, their use as therapeutic drugs is uncertain. SIRTs regulate
so many cellular processes, so a change in their activity could positively affect one face of
the disease but have a negative impact on the other. However, there is intense and ongoing
research on its therapeutic use.

On the other hand, new epigenetic inhibitors targeting other histone remodeling
enzymes (HDMTs, HMT, etc.) are being developed. These include improved DZNep analog
blockers, specifically targeting EZH2 [246], G9A inhibitors [247] or agents against other
HMTs [248]. Dual inhibitors are more effective, such as EZH2/EZH1 (UNC1999) [249], or
against G9a/DNMT1 (CM-272) [116,250], which could represent an improved approach in
cancer therapeutics, especially in BC. One of the great problems of EZH2 as a target is its
relationship with acquired drug resistance. Therefore, it would be interesting to study the
possible relationship between EZH2 and xenobiotic metabolism genes. EZH2 is a powerful
regulator of gene expression, in addition to having other non-canonical roles, leading
to the activation of different signaling pathways to maintain tumor cell viability [128].
Furthermore, EZH2 can interact with other non-histone proteins that regulate its activity
by phosphorylation, such as AMPK or AKT (149, main activators of glycolytic metabolism).
Therefore, it is important to develop therapeutic strategies based on the potential value of
the combined intervention of EZH2 and tumor metabolic activities.

Synthetic lethality arises as a very attractive approach, based on the loss of expression
of two antagonistic genes, as occurs with KDM6A (loss of expression mutation) and EZH2
(sensitization to inhibitors) in BC [148]. This strategy improves the knowledge of signaling
pathways both to define with greater precision the different subtypes of tumors and to
understand the drug-resistance mechanisms.

As mentioned at the beginning, there is another focus of epigenetic therapy aimed
at miRNAs. Antisense oligonucleotides have been developed for silencing and synthetic
miRNAs or lentiviral constructs are used to restore expression [251,252]. There are basic
studies where the use of lentiviruses and antisense oligonucleotides, in combination with
cisplatin or other chemotherapeutic agents, increases the sensitization of BC cells [253,254].
The use of synthetic RNAs to increase/decrease expression is also increasing. For example,
the downregulation of miR-34a causes a clear inhibition of the clonogenic potential [255],
restoring miR-143, and it can target HK2 [21], or miR-101 overexpression, which enhances
the sensitivity to treatment [164]. On the other hand, oncogenic miRNAs that control
tumor suppressive pathways (LKB1, AMPK, PTEN . . . ), such as miR-21, can be inhibited
and allow TSG re-expression [21]. Recently, the CRISPR/Cas9 genome editing technique
had been employed to knockout lncRNA UCA-1 (147). Nevertheless, the development
of this type of therapy raises several challenges such as reliable administration methods,
the determination of appropriate dosages, as well as the possible pleiotropic effects or
resistance to therapy [165,192,194].

The ncRNAs exert an extensive and complex influence on the metabolic networks that
characterize reprogramming in tumors, but currently, they mostly remain uncharacterized.
Therefore, deepening the investigations of their functions and mechanisms in the regulation
of metabolism is essential for the development of clinical therapies focused on patients with
tumors with altered metabolism and the identification of new future biomarkers [193,194].

Apart from their possible therapeutic use in regulating the energy of cancer metabo-
lism [165,192], the true potential application of ncRNAs lies in the growing interest in
their biomarker character. Expression signatures of these ncRNAs in tumors hold great
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promise for the development of non-invasive diagnostic and prognostic biomarkers, which
together with metabolome studies translates into a more powerful and sophisticated strat-
egy for cancer diagnosis and treatment [192]. Additionally, exosomal-ncRNAs have several
advantages over the existing approaches, such as low toxicity and target specificity [242].

The key questions to be solved in the near future are, on the one hand, that a stratifi-
cation of patients must be carried out to guarantee the safety of the drugs. The metabolic
and epigenetic landscape changes at various stages of tumor growth, making it difficult to
design drugs that are effective [90]. Simultaneously targeting the epigenetic and metabolic
pathways through combined therapies can inhibit the dynamic adaptive mechanisms of
tumor cell reprogramming and obtain synergistic effects that can be evaluated in clinical
studies [20].

On the other hand, resistance to therapy or a lack of pharmacological efficacy leads us
to a second limitation, intertumoral and intratumoral heterogeneity—intertumoral because
the pharmacodynamics of each patient tumor is different, intratumoral because the sub-
populations that can be found within the tumor present different epigenetic and metabolic
profiles that are regulated differently and complicate therapeutic interventions [21,73,90].
Against this, emerging and rapidly advancing tools and platforms to study epigenomic and
metabolomic single cell heterogeneity are allowing the isolation and distinction of hetero-
geneous subpopulations of cancer cells that help us to understand the different profiles that
we can find. Liquid biopsies have also been proposed as an efficient and accessible way to
decipher the intratumor heterogeneity of the patient, by analyzing circulating tumor cells
(CTC) and extracting circulating tumor DNA (cDNA) [21,90]. Therefore, future clinical
trials should incorporate the analysis of epigenomic and metabolomic biomarkers that
allow the selection of subsets of patients who may benefit from available treatments [21].
In the case of BC, although multiple genomic analyses have been carried out to study
alterations in metabolic enzymes, there are no reports that integrate transcriptomic and
metabolomic analyses from any type of biopsy until now [14].

Metabolites and epigenetic molecules as biomarkers are able to record and monitor
the stage of the disease in real time and predict prognosis, recurrence or progression, as
well as the evaluation of response to treatment and resistance. However, to demonstrate
the reliability of a biomarker and the positive impact, a reliable prospective validation is
unavoidably required, in addition to the need for large studies with long follow-up periods
and large cohorts of patients [13,256,257]. Thus, in BC, these monitoring systems could be
used as a new approach to achieve unequivocal diagnoses and minimize the invasiveness
of the tests within its handling and management framework.

6. Conclusions

The metabolome and epigenome are closely intertwined in BC. EZH2 interacts with
chromatin remodelers such as G9a and DNMTs, but also with HIF, MYC, and oncogenic
signaling cascades, such as PI3K/Akt, to regulate metabolic reprogramming. Specifically,
it appears that this regulation enhances the synthesis of α-KG from glucose and glutamine
catabolism and promotes glucose flux towards glycolysis, PPP, and lipogenesis processes.
Additionally, data suggest an important role of amino acids, or their metabolite derivatives,
in BC, such as serine, methionine, SAM, and SAH, which are involved in one-carbon
metabolism, as well as oncometabolites such as succinate, fumarate, and α-KG involved
in the TCA cycle. All these metabolites have a crucial role in acting as epigenetic cofac-
tors or substrates, but also in inhibiting or activating epigenetic enzymes that control the
chromatin state and therefore gene expression. In summary, these data show the need for
further research in this promising field to offer patients: (i) personalized treatments that in-
crease their life expectancy; (ii) and non-invasive bladder cancer diagnosis and monitoring
techniques that improve their quality of life, being cost-effective for health systems.
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Simple Summary: Metabolic flexibility is one of the key hallmarks of cancer and metabolites are the
final products of this adaptation, reflecting the aberrant changes of tumors. However, the metabolic
plasticity of each cancer type is still unknown, and specifically to date, there are no data on metabolic
profile in neuroendocrine tumors. The aim of our retrospective study was to assess the metabolomic
profile of NET patients to understand metabolic deregulation in these tumors and identify novel
biomarkers with clinical potential. We provided, for the first time, a comprehensive metabolic profile
of NET patients and identifies a distinctive metabolic signature in plasma of potential clinical use,
selecting a reduced set of metabolites of high diagnostic accuracy. We have identified 32 novel
enriched metabolic pathways in NETs related with the TCA cycle, and with arginine, pyruvate or
glutathione metabolism, which have distinct implications in oncogenesis and may open innovative
avenues of clinical research.

Abstract: Purpose: High-throughput “-omic” technologies have enabled the detailed analysis of
metabolic networks in several cancers, but NETs have not been explored to date. We aim to assess
the metabolomic profile of NET patients to understand metabolic deregulation in these tumors
and identify novel biomarkers with clinical potential. Methods: Plasma samples from 77 NETs
and 68 controls were profiled by GC−MS, CE−MS and LC−MS untargeted metabolomics. OPLS-
DA was performed to evaluate metabolomic differences. Related pathways were explored using
Metaboanalyst 4.0. Finally, ROC and OPLS-DA analyses were performed to select metabolites with
biomarker potential. Results: We identified 155 differential compounds between NETs and controls.
We have detected an increase of bile acids, sugars, oxidized lipids and oxidized products from
arachidonic acid and a decrease of carnitine levels in NETs. MPA/MSEA identified 32 enriched
metabolic pathways in NETs related with the TCA cycle and amino acid metabolism. Finally, OPLS-
DA and ROC analysis revealed 48 metabolites with diagnostic potential. Conclusions: This study
provides, for the first time, a comprehensive metabolic profile of NET patients and identifies a
distinctive metabolic signature in plasma of potential clinical use. A reduced set of metabolites
of high diagnostic accuracy has been identified. Additionally, new enriched metabolic pathways
annotated may open innovative avenues of clinical research.
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Keywords: NETs; disease modelling; machine learning; metabolic signaling; molecular pathways;
plasma metabolites; diagnostic biomarkers

1. Introduction

Reprogrammed metabolism encompasses the capacity of cells to respond or adapt
their metabolic signaling to support and enable cell survival in unfavorable or hostile
conditions. This ability is enhanced in cancer cells in order to improve their adaptive
phenotype and maintain both viability and uncontrolled proliferation. Metabolic flexibility
is therefore one of the key hallmarks of cancer [1], although the pathways involved in the
metabolic plasticity of each cancer type remain to be elucidated. Metabolites are the final
products of this adaptation, reflecting the aberrant changes in the genomic, transcriptomic
and proteomic variability of tumors, and provide therefore useful biological and clinical
information on cancer initiation and progression [2–4]. This, together with the fact that
metabolomics can be easily performed in readily accessible biological samples (plasma,
urine), makes metabolic profiling of cancer patients a promising tool to characterize the
tumor phenotype and identify novel biomarkers of potential clinical use. Systems medicine
approaches integrating high-throughput “-omic” technologies into diagnostic platforms
have indeed enabled the detailed analysis of metabolic networks (known as metabolomics)
in several cancers of high incidence, prevalence and mortality [5–8], but these do not
include neuroendocrine neoplasms (NENs).

NENs comprise a heterogeneous family of rare tumors of increasing incidence and
challenging clinical management [9]. Although they can arise in virtually any organ, the
most common primary tumor sites are the lungs (25%) and the digestive tract (~65%).
Well-differentiated neuroendocrine tumors (NETs) account for ~80% of all NENs, have
a rather indolent clinical behavior, as compared to their exocrine counterparts, and are
associated with a good to moderate prognosis depending on primary tumor site, prolif-
erative index (ki67 or mitotic index) and tumor stage. About 20% of NETs have also the
unique ability to produce and secrete amines or peptide hormones to the blood stream, the
so-called “functioning tumors”, that produce specific endocrine syndromes (i.e., carcinoid
syndrome) that may seriously impair patients quality of life and prognosis [10]. Survival
has improved over time for all NETs, likely reflecting earlier diagnosis and improvements
in therapy [11,12]. However, a significant proportion of patients are still diagnosed with
advanced stages of disease, highlighting the need to identify novel specific biomarkers that
may contribute to an earlier detection and an increased likelihood of cure.

The study of hereditary genetic syndromes associated with an increased predisposi-
tion to develop NETs (~5%) has contributed to partially elucidate some of the mechanisms
involved in their tumorigenesis [13–18]. Germline mutations in MEN1, RET, CDKN1B,
VHL, NF1 and TSC1/2 are the molecular alterations most frequently detected in hereditary
NENs. Although some of these mutations have a relevant representation in sporadic
NETs (i.e., MEN1, TSC1/2), other molecular alterations involved in epigenetic regulation,
DNA repair, telomeres regulation and chromosomal rearrangements have been also impli-
cated [19–21]. Despite these recent advances, however, the molecular mechanisms of NET
genesis and progression remain largely unraveled. In addition, few authors have explored
NETs from a metabolomic perspective. A pilot prospective study analyzed urine sam-
ples from 28 gastroenteropancreatic NET patients by nuclear magnetic resonance (NMR)
spectroscopy, and showed distinct metabolomic phenotypes by primary tumor site (small
bowel versus pancreatic NEN) and function [22]. A second recent work described the
metabolomic fingerprint of 46 small intestine NET tissues analyzed by NMR spectroscopy,
suggesting the existence of complex metabolic pathways in NETs, possibly influencing
tumor development and evolution, and thereby clinical outcome [23]. With the exception
of these two small studies, the metabolomic profile of patients with NETs has not been
studied to date.
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In this context, the aim of our study was to perform a comprehensive metabolic
profiling of NETs to better understand metabolic dysregulation in these tumors and iden-
tify novel biomarkers of potential clinical use. To this aim, multiplatform untargeted
metabolomic analyses were performed in plasma samples of 77 patients with advanced
gastrointestinal and lung NETs, and 68 non-cancer individuals (controls). The diagnos-
tic potential and biological relevance of differential metabolites identified was assessed,
and dysregulated pathways were explored to provide further insight into the molecular
mechanisms involved in NET development and progression.

2. Results
2.1. Metabolomic Profiling in Plasma of Patients with Neuroendocrine Tumors

The metabolite fingerprint was assessed using a multiplatform LC-MS, GC-MS and
CE-MS approach in plasma of 77 patients diagnosed with NETs and of 68 non-cancer
individuals (controls). Main characteristics of the study population are summarized in
Table S1. All patients had well-differentiated G1-2 NETs (33.8% G1 and 66.2% G2), the most
common primary tumor site was the small intestine (58.4%) and one-third had functioning
tumors (carcinoid syndrome).

Data obtained after peak alignment and filtering were used for multivariate analysis of
unsupervised principal components (PCAs) to verify the distribution of QCs in each tech-
nique. System stability, performance and reproducibility of sample treatment procedures
were reflected with the spontaneous grouping of these QC samples (Figure S1).

For each platform in multivariate analysis, unsupervised (Figure S2), and supervised
PLS-DA and OPLS-DA models were also conducted. OPLS-DA supervised models were
used to model differences between groups and were validated using permutation tests
(Figure 1A–D).

All analytical techniques clearly discriminated NET patients from non-cancer individuals
in the applied models. A total of 1006 metabolites were detected and univariate analysis
revealed the following individually significant differential metabolites between cases and
controls: 75 compounds in CE–MS, 150 in LC–MS ESI(+), 296 in LC–MS ESI(−) and 19 in
GC–MS. These variables were annotated and/or identified as described in “Annotation and
compound identification” in the Material and Methods section and are summarized in Table 1.

The integration of metabolic data acquired by different analytical platforms resulted
in 155 identified metabolites with a differential availability in NET patients (p < 0.05),
when compared to non-cancer individuals. Metabolite identification of some specific
metabolites (arginine, glutamine, phenylalanine, among others) across more than one ana-
lytical platform significantly increases the confidence of metabolite identification (Table 1).
No significant differences were found by gender, age, grade, primary tumor site and
hormonal syndrome.

2.2. NETs Show a Particular Signature of Metabolites with Diagnostic Potential

The unsupervised heatmap cluster plot of the 155 metabolites identified with a dif-
ferential availability in NET patients as compared to non-cancer individuals is shown
in Figure S3. Given the relevant capacity to discriminate NET patients from non-cancer
individuals, we applied ROC analysis and calculated the AUC of each identified metabo-
lite to determine their individual performance as NET diagnostic biomarkers. We also
calculated the variable importance in projection (VIP) score from the OPLS-DA model.
VIP score estimates the importance of each metabolite in the model and therefore, their
ability to discriminate NETs from non-cancer patients. Table S2 summarizes the ROC and
OPLS-DA analyses of the 155 differential plasmatic metabolites identified between NETs
and controls. Those with an AUC > 0.85, a VIP > 1.0 and a |p(corr)| > 0.5 or both were
considered as metabolites with biomarker potential. Twenty-seven metabolites had both an
AUC > 0.85 and a VIP > 1.0 and a |p(corr)| > 0.5; 17 metabolites had only a VIP > 1.0 and
a |p(corr)| > 0.5 and 5 metabolites had only an AUC > 0.85. Overall, thus, we identified
49 metabolites with significant diagnostic potential.
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Figure 1. Supervised models show a clear separation between NET patients and non-cancer individu-
als. (A–D) OPLS-DA score plots and permutation tests of OPLS-DA models for each platform through
999 permutations. Panel (A) for CE-MS data (R2 = 0.872, Q2 = 0.843); panel (B), LC-MS/ESI(+) data
(R2 = 0.954, Q2 = 0.871); panel (C), LC-MS/ESI(−) data (R2 = 0.885, Q2 = 0.788) and panel (D), GC-MS
data (R2 = 0.781, Q2 = 0.744). Red dots, NETs (n = 77); blue dots, non-cancer individuals (n = 68).
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Next, to determine which molecules were directly related to NETs independent of
other clinical factors, we performed a logistic regression model (LRM) for each selected
metabolite adjusted for gender, age, glycemia, creatinine levels and selected concomitant
drugs as potential confounding variables before the inclusion in the model (Table S3).
Only up to two significant drug associations (p < 0.05) were included in the LRM of each
metabolite in order to avoid overfitting due to excessive explicative features. Out of
the 49 metabolites assessed, only one metabolite, suberyl-glycine, was not significantly
contributing to explain the classification output in its model (Table S4), indicating a poorer
diagnostic ability. Thus, 48 metabolites were significantly contributing to explain the
classification model (NET vs. non-cancer patients), independent of other confounding
factors. The unsupervised heatmap cluster plot of these 48 metabolites clearly discriminated
two clusters, one gathered all NET patients and the other one all the non-cancer individuals
(Figure 2).

Figure 2. Metabolite biomarker candidates show high diagnostic potential of NET patients. Unsupervised hierarchical
heatmap of differential plasmatic metabolites (n = 48) between NET (n = 77) and non-cancer (n = 68) patients. All samples
are shown in columns and metabolites in rows. Hierarchical clustering was performed on rows and columns using One
minus Pearson correlation metric and average as linkage method. Individual values were coded as colors, ranging from
blue (row minimum) to red (row maximum). This analysis clearly discriminated two clusters, one encompassing all NET
patients and the other one all non-oncologic control patients.

Finally, to validate the identity, differential expression and biomarker potential of
these 48 metabolites, we performed a targeted metabolomic analysis (LC- QQQ-MS) of
13 selected metabolites based on their nature, stability and ability to be analyzed and
quantified (Table S5), as described in Material and Methods.

Arginine, 1-methyladenosine, biliverdin, 5-hidroxyindolacetic acid, linoleoylcarnitine,
oleoylcarnitine, sphingosine-1-phosphate, 15-hidroxyeicosatetraenoic acid, ursodeoxy-
cholic acid and ursodeoxycholic acid 3-sulfate identities were confirmed as potential
diagnostic biomarkers of NETs, while bilirubin, 3-hidroxydodecanodioic acid and 3-
hidroxydodecanoic were not (Table S6), probably due to their instability. Distribution
of plasma abundance and ROC curves of the validated metabolites with diagnostic poten-
tial in NETs and non-cancer patients were showed in Figure 3.
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Figure 3. (A) Plasma abundance of the 10 validated metabolites with diagnostic potential in NETs. Violin plots and non-
parametric Mann-Whitney U test were performed to assess the abundance and distribution of the 10 validated metabolites
in NET patients (n = 77) and non-cancer individuals (n = 68). Log plasma values in NET patients are shown in green whereas
non-cancer individuals are plotted in grey. Continuous lines correspond to the median values whereas dashed lines relate to
quartiles Overall, all the validated metabolites showed significant differences (****; p < 0.0001) between NET and non-cancer
individuals. (B) Receiver operating characteristic (ROC) curves of the 10 validated metabolites with biomarker potential
in NETs. The curves were built based on the area under the curve (AUC) analysis of patients (n = 77) and non-cancer
individuals (n = 68). The optimal cut-off points were selected according to the maximization of the Youden Index. Overall,
all the validated metabolites showed high biomarker potential with AUC > 0.75.
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2.3. Biochemical and Functional Nature of Identified Metabolites in NET Patients

To better understand the molecular nature of metabolites involved in NETs we clas-
sified the 155 differential metabolites according to their biochemical class. The main
predominant categories identified were amino acids, peptides and their derivatives (27.7%),
fatty acids (16.1%), glycerophopholipids (14.2%), steroids and derivatives (9.7%) and carbo-
hydrates and their conjugates (3.9%) (Figure 4A). Seventy-two percent of all differential
metabolites were upregulated in NET patients. The proportion of up- or downregulated
metabolites by biochemical class is summarized in Figure 4B.

Figure 4. Biochemical classification of differential plasma metabolites in NET patients. (A) Pie chart
showing the percentage distribution of biochemical classes of differential and annotated plasmatic
metabolites (n = 155) in NETs (n = 77) vs. non-cancer (n = 68) individuals. Metabolites were classified
into 28 classes according to their biochemical nature. This analysis revealed amino acids, peptides
and analogues (n = 43; 27.74%), fatty acyls (n = 26; 16.13%), glycerophospholipids (n = 22; 14.19%),
steroids and steroid derivatives (n = 16; 9.68%), and carbohydrates and carbohydrate conjugates (n = 6;
3.87%) as the most represented biochemical classes. (B) Bar chart summarizing the percentage of up-
and downregulated plasmatic metabolites in the main biochemical classes found to be biologically
relevant in NET (n = 77) vs. non-cancer (n = 68) individuals. Overall, upregulation (72%) prevailed
over downregulation (28%) in our metabolite set (n =155). This upregulated vs. downregulated
metabolite trend remained constant for all main biochemical classes: amino acids, peptides and
analogues (65% vs. 35%), fatty acyls (72% vs. 28%), glycerophospholipids (77% vs. 23%), steroids
and steroid derivatives (80% vs. 20%), and carbohydrates and carbohydrate conjugates (100%).
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Interestingly, the main predominant categories of lipids following the official classifi-
cation [24] were glycerophospholipids, fatty acids and sterols. Glycerophospholipids repre-
sent the largest class of lipids found to be altered. Lyso forms were increased in contrast to
glycerophosphocolines and glycerophosphoethanolamines which were downregulated.
Oxidized lysoglycerophospholipids (oxLPCs) were found with increased abundances in
the NET group, and there are very few studies to date where oxLPCs have been measured.
Fatty acids and their derivatives account for about 30% of the measured lipids, and it is
easily noticed that there was an overall decrease in carnitine levels. In addition to that,
we have been able to identify increased levels of oxidized derivatives of arachidonic acid
(HETE) [25]. Other predominant group, sterols, consisted mainly of bile acids and had a
high content in the NET group.

NET patients also presented higher levels of sugars and citric acid and lower lev-
els of lactic and pyruvic acid, which are key metabolites in glycolysis and the tricar-
boxylic acid cycle (TCA)). A remarkable increase in serotonin and its principal metabolite,
5-hydroxyindoleacetic acid, was also detected in the NET cohort, a hormone secreted in
excess in patients with carcinoid syndrome.

2.4. Differential Metabolites in NET Patients Are Related with Molecular Pathways Associated
with Cancer

Considering the functional relevance of the selected metabolites documented in the
literature, we found several enriched pathways related to oncogenesis, some specifi-
cally involved in NET development, such as angiogenesis, mTOR pathway, tryptophan
metabolism, Warburg effect, oxidative stress, and urea cycle, among others (Figure S5A).
The proportion of metabolites up- or downregulated by the pathway is summarized in
Figure S5B.

Pathway analysis of the 155 differential metabolites identified several molecular
dysregulated pathways in NETs. Metabolite Pathway Analysis (MPA) showed that arginine
biosynthesis, arginine and proline metabolism, animoacyl-tRNA biosynthesis, citrate cycle
and pyruvate, glutathione, glyoxylate, dicarboxylate, alanine, aspartate and glutamate
metabolisms were the most commonly dysregulated pathways in NET patients (Figure 5A
and Table S7). Moreover, Metabolite Set Enrichment Analysis (MSEA), where we used
different sets of metabolites from MPA, suggested that tryptophan metabolism and urea
cycle, among others, were also dysregulated in NETs (Figure 5B and Table S8).

MPA and MSEA performed with the 48 metabolites with greater diagnostic poten-
tial confirmed arginine biosynthesis, arginine and proline metabolism, amimoacyl-tRNA
biosynthesis, citrate cycle, pyruvate and glutathione metabolism, and urea cycle were the
most relevant dysregulated pathways in NET patients (Figure S4, Tables S9 and S10).
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Figure 5. Pathway analysis of differential plasma metabolites in NET patients. (A) Metabolite Pathway Analysis (MPA)
representing the significant enriched pathways (FDR < 0.05) by availability of selected metabolites (n = 155) in plasma of
NET patients. The x-axis indicates the impact of matched metabolites of our dataset on the pathway from the topology
analysis. The -log(pval) is plotted in the y axis and shows to which extent the pathway is enriched. Circle size represents the
impact factor of matched metabolites in the pathway, and circle color indicates the pathway enrichment significance. The
most enriched pathways among the 32 significant ones were: arginine biosynthesis (FDR: 1.0143 × 10−48); alanine, aspartate
and glutamate metabolism (FDR: 2.2363 × 10−47); arginine and proline metabolism (FDR: 6.3629 × 10−43); glyoxylate
and dicarboxylate metabolism (FDR: 1.8621 × 10−38); glutathione metabolism (FDR: 2.8086 × 10−38); aminoacyl-tRNA
biosynthesis (FDR: 1.1784 × 10−37); pyruvate metabolism (FDR: 5.0802 × 10−34) and citrate cycle (FDR: 1.0634 × 10−32).
(B) MSEA of differential plasma metabolites in NET patients. X-axis represents the fold enrichment of each metabolite set
and the colour of the bars indicates the raw p-value. Thirty-four metabolite sets were significantly enriched (FDR < 0.05).
Aspartate metabolism (Q = 28.809), arginine and proline metabolism (Q = 38.272), urea cycle (Q = 40.438), glycolysis
(Q = 31.619) and glucose and alanine cycle (Q = 31.619) were the most significantly enriched metabolite sets.

3. Discussion

Our study provides, for the first time, a comprehensive metabolomic profile of NETs,
assessed by multiplatform untargeted metabolomic profiling of plasma samples in a large
cohort of patients with advanced disease, and identifies a distinctive metabolic signature of
potential clinical use. The integration of metabolic data acquired by GC, CE and LC coupled
to MS identified 155 differential compounds between NETs and non-cancer patients. ROC
and OPLS-DA analysis revealed 49 specific metabolites of diagnostic potential, 48 of which
significantly contributed to the model after adjustment for other potential confounding
variables such as gender, age, glycemia, creatinine levels and concomitant drug therapy.
The unsupervised heatmap cluster plot of these 48 metabolites clearly identified two
distinct clusters, one encompassing all NET patients and the other one all non-cancer
individuals. Although biochemical assessment of several peptides is currently used in the
clinic for the diagnosis and follow-up of NET patients, the use of general tumor markers
such as chromogranin A (CgA) or neuron-specific enolase (NSE) is not recommended for
screening nor are they sufficiently reliable as sole diagnostic procedures as they may be
increased in several other oncological and non-oncological conditions [26]. In this context,
the high diagnostic accuracy of the identified metabolites in our study may provide very
valuable new tools to improve the specific detection of NETs.

Differential metabolites identified were related with classical cancer pathways (apop-
tosis, cell cycle) and NET signaling (tryptophan metabolism, angiogenesis or the mTOR
pathway). In addition, we identified 32 novel enriched metabolic pathways in NETs re-
lated with the TCA cycle, and with arginine, pyruvate or glutathione metabolism, which
have distinct implications in oncogenesis. To date, only two small studies have partially
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explored the metabolomic profile of NET patients, but none of them using plasma samples
as main source of metabolic analysis. Kinross et al. conducted a prospective pilot study
that analyzed urine samples of 28 gastroenteropancreatic NETs by 1H-NMR spectroscopic
profiling. Distinct metabolomic phenotypes were identified by primary tumor site (small
bowel versus pancreatic NEN) and function, and they also observed that variations in hip-
purate metabolism strongly contributed to the class description. This study had, however,
important limitations such as the limited sample size, the substantial age gap between
control and tumor populations, and the lack of control of other potential confounding
variables such as gender, renal function or concomitant drug therapy [22]. More recently,
Imperiale et al. assessed the metabolomic fingerprint of 46 small intestinal NET primary
tumors and 18 liver NET metastases by 1H-NMR spectroscopy, as compared to 30 normal
small intestine and liver samples, and results suggested alterations in crucial metabolic
pathways such as the tricarboxylic acid cycle (TCA cycle). Our study also shows an increase
in the TCA cycle activity, reflected by the high availability of isocitrate/citrate compounds
in the plasma of NET patients (+64%). Moreover, high levels of glucose (+174%), glutamine
(+69%) and fatty acids, which fuel the TCA cycle further support the hypothesis of TCA
upregulation in NETs. Studies conducted in other hormone-dependent tumors, such as
prostate cancer, emphasize the relevance of altered intermediary metabolism in malig-
nant transformation. More specifically, the metabolic transformation of citrate-producing
normal cells to citrate-oxidizing malignant cells has been implicated in oncogenesis. Cit-
rate oxidation in the TCA cycle to produce ATP has important implications on cellular
bioenergetics, cell growth, apoptosis, lipogenesis and angiogenesis [27]. The TCA cycle
is a convergence point in the cellular respiration machinery, strictly regulated to fulfill
cell bioenergetics, biosynthetic and redox balance requirements. Although several tumors
types are characterized by a marked deregulation of TCA enzymes [28], its involvement in
cancer metabolism remains incompletely understood.

The presence of high levels of isocitrate/citrate in plasma of NET patients could
also derive from exported citrate from the mitochondrial pool to be used for lipogene-
sis [29]. Our data show a characteristic lipidome in NET patients, mainly represented
by the enrichment of glycerophospholipids, fatty acids and sterols. More specifically,
oxidized lysoglycerophospholipids (oxLPCs) were found with increased abundances in
NETs indicating a strong oxidative stress in these tumors, as well as high levels of oxidized
derivatives of arachidonic acid (HETE), and a major decrease in carnitine levels [25]. L-
carnitine is an essential metabolite, critical for the bidirectional transport of long-chain fatty
acyl and the acyl coenzyme A between the cytosol and the mitochondria, which has been
considered a bottleneck in the metabolism control of cancer cells [30,31]. Recent reports
suggest that the carnitine system is essential for the metabolic adaptation of cancer cells,
which obtain energy from beta-oxidation of lipids. Thus, low levels of carnitine in plasma
of NET patients may be related to the active carnitine system in tumor mitochondria and
the upregulation of beta-oxidation pathways.

Arachidonic acid (AA) is a polyunsaturated fatty acid, which is subsequently metabo-
lized through three different enzymatic pathways (cyclooxygenase (COX), lipoxygenase
(LOX) and cytochrome (CYP) P450) leading to a wide variety of lipid mediators (HETE)
involved in multiple physiological and pathophysiological processes [32]. In addition to
high levels of AA in plasma of NET patients, we have also found an important increase of
eicosanoids derivatives, intimately related to inflammatory responses [32].

Tumor progression is also dependent on cholesterol metabolism as proliferating cells
increase cholesterol uptake. Cancer cells adapt the high requirements of intracellular choles-
terol through different mechanisms including the endogenous production of cholesterol
and fatty acids, a reduction of their efflux through transporters or an increase in the uptake
of low-density lipid particles [33]. Plasma of NET patients show high content of sterols,
mainly bile acids, and cholesterol derivatives such as vitamin D, biliverdin and bilirubin,
suggesting the dependency of NETs on lipid and sterol metabolism.
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Vascularization and angiogenesis have a particular relevance in NET development and
progression [34], and several differential metabolites identified in our study may contribute
to the angiogenesis switch. For example, arginine was found to be upregulated in NETs
and is the main source of nitric oxide. NO exhibits both anti- and pro-tumoral effects, and
is deeply involved in the regulation of angiogenesis, apoptosis, cell cycle, invasion and
metastasis [35]. Similarly, lysophosphatidic acid, HETEs or biliverdin induce angiogenesis
by upregulation of VEGFA, VEGFC, IL-1β and IL-8 [36–38]. Overall, these findings further
support the relevant role that angiogenesis plays in the pathogenesis of NETs.

The mTOR pathway is also critical in NETs [39]. In fact, an mTOR inhibitor, everolimus,
has demonstrated antiproliferative activity in these neoplasms and is approved for the
treatment of advanced gastrointestinal, pancreatic and lung NETs [40,41]. In our study,
we detected very high plasma levels of arginine (+243%) and glutamine (+69%) in NET
patients, which are, together with leucine, stimulators of mTOR via the regulation complex.
Moreover, an increased abundance of phosphatidylcholine (+51% PC(32:0), +39% PC(38:2)
and −28% PC(38:5)) was also observed, the synthesis of which is promoted by mTORC1.
Interestingly, the mTOR pathway has been associated with cancer through its role in the
regulation of polyamine dynamics [42]. Polyamine levels are associated with a reduction of
apoptosis and an increase of cancer cell proliferation and expression of metastasis-related
genes, although the mechanisms underlying these effects have not been well defined [43].
Of note, we detected a 38% increase in the acetylspermidine polyamine, illustrating the
relevance of polyamines metabolism inNETs. Recently, Chalishazar et al. observed that
MYC-driven small-cell lung cancer (SCLC) preferentially depends on arginine-regulated
pathways, including polyamine biosynthesis and mTOR pathway activation [44]. ASS1,
which indirectly produces arginine in the urea cycle, is often decreased or even abolished
through epigenetic silencing in many cancers, including SCLC. Moreover, ASS1 knock-
down results in increased mTOR activity and in arginine auxotrophy. Thus, arginine
deprivation could be a promising therapeutic strategy for cancers that depend on arginine
for their survival [3]. Finally, we also found abundance differences in hypoxanthine. Low
levels of hypoxanthine both in urine and plasma samples are often observed in cancer
patients, especially in patients with advanced disease stages [45], as hyperproliferative
tissues require increased DNA synthesis. Accordingly, we observed a 34% decrease of
hypoxanthine abundance in the plasma of NET patients. The underlying mechanism of hy-
poxanthine downregulation in NET patients is unclear, but it is plausible that alterations in
purine metabolism may occur during tumor progression. Consistent with this hypothesis,
an inverse correlation was found in our study between hypoxanthine plasma levels and
the tumor proliferative rate or Ki-67 index (r2 = −0.243, p = 0.033).

One of the strengths of our study is that it was performed in plasma samples of a
large and homogeneous population, uniformly and prospectively collected and analyzed.
Moreover, a set of metabolites was validated in a target analysis with a different analytical
platform in the same cohort. Nevertheless, results shall be further investigated in an
independent NET patient cohort and metabolomic profiling of patients with exocrine
tumors of similar tissue origin (lung and gastrointestinal carcinomas) would be very helpful
to validate the specific metabolomic profile of NETs and to confirm the diagnostic potential
of the metabolic signature identified. Moreover, complementary -omic approaches, such as
exome, transcriptome or methylome of these patients, are needed to further understand
the underlying mechanisms in NET development and progression. In particular, the
metabolomic profile could be combined with complementary analytical approaches in
plasma such as cell-free nucleic acids profiling that might be particularly useful for early
diagnostics and patient stratification for personalized clinical management. Plasma -omic
profiling has the additional advantage of providing a dynamic characterization of disease
biology, which could be eventually utilized, beyond accompanying diagnostics, for targeted
prevention or screening, individualized treatment strategies, therapeutic monitoring and
prediction of patient’s outcome.
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4. Material and Methods
4.1. Study Population

The study population included patients with advanced, well-differentiated NETs
of lung or gastrointestinal origin. Main clinical and pathological features of the study
population are summarized in Table S1. Blood samples were obtained for metabolomic
analysis from 77 NET patients and 68 non-cancer individuals as the control group. The
distribution of gender, age and body mass index (BMI) was similar in the NET and non-
cancer cohorts (Table S11). Peripheral blood was collected in sodium EDTA tubes according
to standard procedures and fractionated at 3000 rpm for 5 min. Plasma layer was recovered
in sterile cryotubes, frozen and stored until use at −80 ◦C. The study protocol was approved
by the institutional ethics committee and all patients provided informed consent prior to
study entry.

4.2. Multiplatform Metabolic Fingerprinting

A multiplatform non-targeted metabolomics approach was performed to provide
a wide coverage of the metabolome under study. Samples were analyzed according to
standard protocols through different separation techniques coupled to mass spectrometry:
capillary electrophoresis 7100 coupled to a MS with time-of-flight analyzer, TOF-MS 6224
(Agilent Technologies, Santa Clara, CA, USA) (CE−MS), HPLC system 1290 Infinity II cou-
pled with 6545 QTOF MS detector (Agilent Technologies, Santa Clara, CA, USA) (LC−MS)
and GC system 7890A coupled to a mass spectrometer 5975C (Agilent Technologies, Santa
Clara, CA, USA) (GC−MS) [46–48] (see File S1).

4.2.1. Data Processing

The raw data obtained by CE−MS were processed with MassHunter Profinder soft-
ware version B.08.00, applying the Molecular Feature Extraction (MFE) and Find by Ion
(FbI) function by Recursive Feature Extraction (RFE). For LC−MS, the raw data were repro-
cessed by the MFE with MassHunter Qualitative (B.06.00, Agilent Software, Santa Clara,
USA) and DA Reprocessor Offline Utilities B.05.00 (Agilent) and Mass Profiler Professional
software (B.14.9 Agilent Software, Santa Clara, USA) to find coeluting adducts and aligned
and filtered the data. Raw data files from GC−MS analysis were converted to the appropri-
ate format for quantitative analysis through MassHunter Workstation GC−MS Translator
(B.04.01) and deconvolution was carried out through Agilent MassHunter Unknowns
Analysis Tool 7.0. For more specific details, see File S1.

4.2.2. Statistical Analysis

After correction (see File S1), the data underwent a Quality Assurance procedure, data
normality for every platform was assessed by Kolmogorov−Smirnov and Shapiro−Wilk
tests and Levene’s test was used to test for variance ratio. To determine the statistical
significance of each metabolite separately, differences between non-cancer individuals and
NET cases were evaluated by applying Student’s t-test (p ≤ 0.05) using MATLAB (R2015a,
MathWorks, Natick, MA, USA). Benjamini−Hochberg multiple post-correction method
was applied to all p-values to control the false positive rate at level α = 0.05.

Multivariate analysis (MVA) was performed in SIMCA 15.0 (Sartorius Stedim Biotech)
OPLS-DA model built was used to assess the S-plot and, for variable selection, volcano
plots of variable importance in projection (VIP) score and p(corr) [49]. For more specific
details, see Supplementary Material and Methods.

4.2.3. Annotation and Compound Identification

An initial annotation of features from LC−MS and CE−MS based on the m/z of the
compounds showing significant differences in class separation was performed by CEU
Mass Mediator tool [50] (see File S1).

To confirm the annotation of the compounds, LC−MS/MS analysis was carried out by
data independent analysis (DIA) and the identification of each metabolite was achieved by
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manual MS/MS spectra interpretation. Some CE−MS annotations could also be confirmed
through in-source fragmentation obtained at high fragmentor voltage (200 V) [51] (see File S1).

4.2.4. Targeted Analysis

Standards used and the corresponding sources are included in Table S12. Two cali-
bration curves were prepared according to the solubility of the standards. An aqueous
mixture containing arginine, 1-methyladenosine, biliverdin and bilirubin was diluted to
6 different concentration levels (ca. 1 ng/mL to 1 µg/mL) and another mixture containing
5-hydroxyindoleacetic acid, 3-hydroxydodecanedioic acid, linoleoylcarnitine, oleoylcarni-
tine, sphingosine-1-phosphate, 3-hydroxydodecanoic acid, HETE, ursodeoxycholic acid
and ursodeoxycholic acid 3-sulfate was diluted inMeOH/EtOH (1:1). Plasma samples
were prepared using the same protocol used for untargeted HPLC/MS analysis [47]. Tar-
geted analysis was performed on an Agilent 1290 Infinity UHPLC (Agilent Technologies,
Waldbronn, Germany) system coupled with an Agilent 6460 Triple Quadrupole Mass
Spectrometer with an electrospray ionization (ESI) source (HPLC QqQ MS/MS). In the
final method, chromatographic separation of compounds was achieved with a Zorbax C8
Eclipse Plus column (Agilent Technologies, 2.1 × 150 mm, 1.8 µm) thermostated at 55 ◦C.
For individual analytes, MS-related parameters were tuned by the Agilent MassHunter
Optimizer (software version B.07.00, Agilent Software, Santa Clara, USA) using authentic
standards for reference. MassHunter Optimizer automatically optimized the data acquisi-
tion parameters for MRM (multiple-reaction monitoring) mode. System control and initial
chromatogram review were performed with Agilent MassHunter Qualitative software
(version B.08.00, Agilent Software, Santa Clara, USA). Data reprocessing were carried out
using Agilent MassHunter QQQ Quantitative software program (version B.09.00, Agilent
Software, Santa Clara, USA). Metabolites were quantified according to the response factor
of the respective calibration curve.

4.3. Metabolite Classification and Pathway Analysis

The discriminant metabolites summarized in Table 1 were classified by biochemical
classes and by their relationship with specific molecular pathways (apoptosis, cell cycle,
angiogenesis, mTOR pathway, Warburg effect, oxidative stress, tryptophan metabolism,
collagen metabolism, carnitine metabolism, methionine cycle, arachidonic acid metabolism,
urea cycle, polyamines, and heme metabolism). In order to refine the identification of
aberrant molecular pathways in NET patients we analysed our data by Metabolite Pathway
Analysis (MPA) and Metabolite Set Enrichment Analysis (MSEA) using MetaboAnalyst
4.0 platform (http://www.metaboanalyst.ca/, accessed on 8 December 2020) [52]. The
databases of reference employed were KEGG homo sapiens (Oct 2019) and SMPD [53,54].

4.4. Clinical and Molecular Data Analysis

In order to evaluate the diagnostic potential of metabolites, Receiver Operating Char-
acteristic (ROC) curves and Area Under the Curve (AUCs) were assessed, and sensitivity
and specificity values were calculated (according to Youden Index) [55]. Associations with
relevant clinical features (age, gender, BMI, glycemia and creatinine plasma levels) and
common concomitant medications selected by their putative influence in metabolomics
(Table S13) were assessed in metabolites with AUC > 0.85, using Fisher’s exact test, chi-
squared test or Pearson correlation, as appropriate (p < 0.05 were considered significant).
Next, logistic regression models were built for each metabolite adjusting for age, gen-
der, glycemia, creatinine plasma levels and significant patient medication selected from
association analysis. Metabolites with AUC > 0.85 were considered as potential biomark-
ers. Additionally, differential metabolites from OPLS-DA models with VIP >1.0 and
|p(corr)| > 0.5 were also considered as potential biomarkers.
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4.5. Heatmap and Hierarchical Clustering

Heatmaps were conducted with the log10 value of each metabolite levels in plasma
samples. Unsupervised hierarchical clustering was performed for metabolites and patients
using Pearson correlation and average as linkage method. Both were conducted using
the Morpheus Software (Broad Institute; https://software.broadinstitute.org/morpheus,
accessed on 18 December 2020).

5. Conclusions

In conclusion, untargeted plasma metabolomic profiling of NET patients, that inte-
grated metabolic data acquired by GC, CE and LC in both polarity modes coupled to MS,
has identified a distinct metabolic signature of potential clinical use. Indeed, our study has
identified and validated a reduced set of metabolites of high diagnostic accuracy that may
improve the specific detection of NETs. Differential metabolites were related with classical
cancer pathways (apoptosis, cell cycle) and NET signaling (tryptophan metabolism, an-
giogenesis, mTOR). In addition, MPA/MSEA analysis of these metabolites has revealed
new enriched metabolic pathways in NETs, related with the TCA cycle and with arginine,
pyruvate or glutathione metabolism, which have distinct implications in oncogenesis and
may open innovative avenues of clinical research, including the identification of potential
novel targets for therapy. This is to our knowledge the most comprehensive metabolic
profiling study performed to date in NETs and provides very valuable information to
develop useful biomarkers for the management of these patients in clinical practice.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/cancers13112634/s1, Figure S1: PCA-X score plots, Figure S2: PCA-X unsupervised models,
Figure S3: NETs show a specific metabolomic profile, Figure S4: Pathway analysis of 48 metabolites
with diagnostic potential, Figure S5: Pathway classification of differential plasma metabolites in
NET patients, Table S1: Clinical, biochemical and pathological features of NET population, Table S2:
Metabolites with biomarker potential in NET patients, Table S3: Drugs as potential confounding
variables, Table S4: Logistic regression analysis of metabolites with biomarker potential in the plasma
of NET patients, Table S5: Metabolites candidates for targeted validation, Table S6: Validation of
potential diagnostic biomarkers of NETs, Table S7: Relevant metabolic pathways related to the
identified differential plasma metabolites in NET patients by Metabolite Pathway Analysis (MPA),
Table S8: Relevant metabolic pathways related to the identified differential plasma metabolites in
NET patients by Metabolite Set Enrichment Analysis (MSEA), Table S9: Relevant metabolic pathways
related to the diagnostic biomarker metabolites in NET patients by Metabolite Pathway Analysis
(MPA), Table S10: Relevant metabolic pathways related to the diagnostic biomarker metabolites in
NET patients by Metabolite Set Enrichment Analysis (MSEA), Table S11: Distribution of age, gender
and body mass index in NET patients and non-cancer individuals, Table S12: Standards and the
corresponding sources used for the targeted analysis, Table S13: Drug intake of NET and non-cancer
patients, File S1: Supplementary Materials and Methods.
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Simple Summary: Most ovarian cancer patients initially show a response to primary treatments,
but the development of refractory disease is a major problem. Currently, there are no blood-based
prognostic biomarkers, and the prognosis of a patient is determined by the International Federation
of Gynecology and Obstetrics (FIGO) stage and residual disease after cytoreductive surgery. In
this study, we developed and validated a novel test based on the ratio of two circulatory lipids
that enables the prognostic stratification of ovarian cancer patients at the time of diagnosis, prior
to any oncological treatments. The translational relevance of this test is to find those patients with
poor prognosis early on, and to identify patients that are at high risk of recurrence despite complete
cytoreduction. Thus, the test enables the early direction of novel targeted therapies to those ovarian
cancer patients at greatest risk of recurrence and death.

Abstract: Epithelial ovarian cancer (EOC) generally responds well to oncological treatments, but
the eventual development of a refractory disease is a major clinical problem. Presently, there
are no prognostic blood-based biomarkers for the stratification of EOC patients at the time of
diagnosis. We set out to assess and validate the prognostic utility of a novel two-lipid signature, as the
lipidome is known to be markedly aberrant in EOC patients. The study consisted of 499 women with
histologically confirmed EOC that were prospectively recruited at the university hospitals in Turku
(Finland) and Charité (Berlin, Germany). Lipidomic screening by tandem liquid chromatography–
mass spectrometry (LC-MS/MS) was performed for all baseline serum samples of these patients, and
additionally for 20 patients of the Turku cohort at various timepoints. A two-lipid signature, based
on the ratio of the ceramide Cer(d18:1/18:0) and phosphatidylcholine PC(O-38:4), showed consistent
prognostic performance in all investigated study cohorts. In the Turku cohort, the unadjusted hazard
ratios (HRs) per standard deviation (SD) (95% confidence interval) were 1.79 (1.40, 2.29) for overall
and 1.40 (1.14, 1.71) for progression-free survival. In a Charité cohort incorporating only stage III
completely resected patients, the corresponding HRs were 1.59 (1.08, 2.35) and 1.53 (1.02, 2.30). In
linear-mixed models predicting progression of the disease, the two-lipid signature showed higher
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performance (beta per SD increase 1.99 (1.38, 2.97)) than cancer antigen 125 (CA-125, 1.78 (1.13, 2.87)).
The two-lipid signature was able to identify EOC patients with an especially poor prognosis at the
time of diagnosis, and also showed promise for the detection of disease relapse.

Keywords: ovarian cancer; lipidomics; lipid; prognosis; ceramide; phospholipid; plasmalogen;
biomarker; patient stratification; outcome; personalized medicine

1. Introduction

Lipids play a fundamental role in the function of normal cells. They enable chemical
energy storage, cellular signaling, cell–cell interactions in tissues, and adequate function
of cell membranes, subsequently regulating cell survival, proliferation, and death [1].
These mechanisms are also tightly associated with and modified in oncogenic processes,
particularly cell transformation, tumor progression, and metastasis [1,2]. As an emerging
hallmark of cancer [3], metabolic and lipidomic dysregulation has attracted scientific
interest, and there is increasing evidence on the utility of lipidomics in the discovery of
circulating cancer biomarkers as well as disease mechanism exploration in tumors [4].

Comprehensive circulatory metabolic and lipidomic alterations have been described
in epithelial ovarian cancer (EOC) [5], which is a malignancy with a generally unfavor-
able outcome. With a five-year survival expectancy below 50%, EOC still has the highest
mortality among gynecological cancers, despite the recent advances in oncological treat-
ments [6]. Although most patients initially show response to primary treatment, the
frequent development of refractory disease is a major problem. Cancer antigen 125 (CA-
125) is a well-validated biomarker used in the diagnostics and treatment monitoring of
EOC; however, it has remained of little utility in the prognostic evaluation of EOC patients
in the clinical setting [7]. As circulatory prognostic biomarkers are lacking, the prognostic
stratification of patients is currently based on the International Federation of Gynecol-
ogy and Obstetrics (FIGO) stage and residual disease after cytoreductive surgery [8]. In
addition, patients with mutations in the homologous recombination repair (HR) genes
have been shown to possess a better prognosis than those without mutations [9]. As of
now, targeted therapies, i.e., poly (ADP-ribose) polymerase (PARP) inhibitors and anti-
vascular endothelial growth factor (VEGF) monoclonal antibodies, have become part of the
standard treatment regimen of EOC patients and consequently, patient selection and the
timely administration of targeted treatments have emerged as new challenges in clinical
care [10,11].

The investigation of circulatory lipidomic changes/aberrations may enable the prog-
nostic evaluation of cancer patients. Recently, a distinct plasma three-lipid signature
(ceramide, sphingomyelin, and phosphatidylcholine) was associated with the poor over-
all survival of patients with castration-resistant prostatic cancer [12]. Equivalently, two
ceramide species and 14 phospholipids quantified from the plasma of patients with liver
cancer were associated with increased mortality in another contemporary study [13]. Stud-
ies evaluating the feasibility of lipidomics in the prognostic stratification of EOC patients
are scarce but promising. Specifically, unsaturated phospholipids and ceramide species
have been suggested to play important and complex roles in EOC patient outcomes [14,15].
Phospholipids have been shown to augment ovarian cancer invasion and metastasis, i.e.,
by activating proteolytic enzymes, while ceramides are known to form more complex
sphingolipids, which are bioactive lipids suspected to boost the survival of cancerous cells
and facilitate tumor progression [16,17]. In the current study, we set out to evaluate the
prognostic utility of a novel two-lipid signature test in patients with EOC. The test builds
on the ratio of a circulatory ceramide (d18:1/18:0) (Cer(d18:1/18:0)) and a plasmalogen
(PC(O-38:4)), of which the former has previously been detected in increasing and the latter
in decreasing concentrations in the sera of EOC patients [15]. In addition, the ability of the
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two-lipid signature test to detect early disease recurrence was evaluated with longitudinal
lipid measurements.

2. Materials and Methods
2.1. Patient Cohorts and Samples

Global lipidomic analysis was performed for serum samples obtained in 3 indepen-
dent ovarian cancer study cohorts, 1 from the Turku University Hospital (Turku, Finland)
and 2 from the Charité University Hospital (Berlin, Germany) (Table 1). In the Turku cohort,
patients with histologically confirmed invasive EOC were prospectively recruited at the
University Hospital of Turku, Turku, Finland, in 2009–2019 (ClinicalTrials.gov identifier:
NCT01276574). In addition, 114 patients with histologically confirmed benign gynecologi-
cal diseases (benign tumors, inflammatory processes, and endometriosis) were included in
the study. A team of gynecologic oncologists evaluated patients diagnosed with ovarian
cancer, and if the tumor was considered primarily unresectable, patients received neoad-
juvant chemotherapy with subsequent interval debulking surgery [18]. Finally, a set of
20 high-grade serous carcinoma (HGSOC) patients were selected from the Turku cohort for
the longitudinal lipidomic analyses (Table S1). For these patients, samples were collected
before each cycle of chemotherapy and during follow up until first relapse.

Table 1. Clinical characteristics of the study cohorts.

Characteristic Subgroup Turku Charité 1 Charité 2 Charité 3

Malignant (N) 197 51 104 147
Age (years) 66 (59–72) 61 (56–68) 65 (57–70) 59 (50–67)
Histology Serous 156 48 95 147

Mucinous 13 1
Endometroid 16 1 2

Clear-cell 12 1
Other/unknown 2 5

Stage I 31 2
II 12 1 5
III 102 51 67 99
IV 50 24 31

NA 2 12 10
Follow-up time

(years) Death 2.6 (1.5–3.9) 3.6 (1.9–6.0) 1.6 (0.9–2.3) 3.2 (1.7–4.3)

Progression 1.3 (0.8–2.2) 2.0 (1.0–3.6) 1.2 (0.8–1.8) 1.5 (0.8–2.8)

Benign (N) 114 98
Age (years) 55 (45-68) 41 (31–55)

The cohorts from Charité were prospectively included in the Tumor Bank Ovarian
Cancer (www.toc-network.de, accessed on 6 April 2021). The patients in the first Charité
cohort (Charité 1) also participated the LION (Lymphadenectomy in Ovarian Neoplasms)
clinical trial [19], and consisted exclusively of stage III, completely cytoreduced patients
(Table 1). The second cohort from Charité (Charité 2) (Table 1) was a patient cohort
where the prognostic serum samples were obtained either before or after neoadjuvant
chemotherapy, whereas all the samples for the prognostic analyses from Turku and Charité
1 cohorts were obtained before any oncological treatments. For additional validation, we
used baseline serum lipidomics data from a third, previously published [15,20] Charité
cohort, Charité 3 (Table 1).

For all cohorts, the FIGO stage was determined according to the FIGO 2014 guidelines.
The operating team carefully assessed the amount of residual disease after cytoreductive
surgery, if present. The primary chemotherapy regimen consisted of carboplatin and
taxane. The response to primary treatment and progression were defined according to
the Response Evaluation Criteria in Solid Tumors (RECIST) guidelines [21]. Second-line
medical treatment was chosen individually for each patient based on the timing of the
relapse (platinum sensitive vs. resistant) and included chemotherapy indicated for the
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treatment of relapsed EOC [11]. The progression-free survival (PFS) was calculated from
the time of diagnosis to disease relapse.

2.2. Lipidomic and Conventional Biomarker Analyses

A global lipidomic screening method was used to analyze the samples. In brief, 10 µL
of samples were used for the extraction of the lipids using a modified Folch extraction [22].
The analysis was performed on a hybrid triple quadrupole/linear ion trap mass spectrom-
eter (QTRAP 5500, AB Sciex, Concords, Canada) equipped with ultra-high-performance
liquid chromatography (UHPLC) (Nexera-X2, Shimadzu, Kyoto, Japan). Chromatographic
separation was performed on an Acquity BEH C18, 2.1 × 50 mm id. 1.7 µm column (Waters
Corporation, Milford, MA, USA). The data were collected using a scheduled multiple
reaction monitoring (sMRM™) algorithm [23]. The lipidomic data were processed us-
ing Analyst and MultiQuant 3.0 software (AB Sciex), and the area or height ratios of the
analytes and their corresponding internal standard peaks were normalized with the IS
amount and the sample volume. The details of the chromatography and mass spectrometry
conditions have been described previously [15].

For patients recruited at the Turku University Hospital, the serum CA-125 (U/mL)
concentrations were determined from serum samples with the electrochemiluminescence
method on the Cobas e 601 instrument or a Modular E170 automatic analyzer (Roche
Diagnostics GmbH, Mannheim, Germany). For Charité patients, CA-125 was measured
using Elecsys CA 125 II assay (Roche Diagnostics GmbH, Mannheim, Germany). The serum
human epididymis protein 4 (HE4) (pmol/L) concentrations were determined with the
enzyme immunoassay method according to the instructions of the manufacturer (Fujirebio
Diagnostics Inc., Malvern, PA, USA).

2.3. Statistical Analyses

Baseline characteristics of the cohorts were described using medians (interquartile
range, IQR) for continuous variables. Two-group comparisons were performed by calculat-
ing the mean relative difference between the groups, and the p-values were determined
by parametric t-tests on log-transformed concentrations. The selection procedure for the
prognostic lipid ratio has been described in detail in Figure S1. Uni- and multivariate Cox
proportional hazard regression models were used to determine hazard ratios (HRs) and
95% confidence intervals for the associations of lipids and clinical measurements with over-
all and progression-free survival of the patients. The effects were expressed per increase
in standard deviation of the biomarkers. The changes over time were investigated using
linear mixed models with random intercepts, using the lme4 (version 1.1–23) package. R
version 4.0.2 was used for all statistical analyses.

3. Results
3.1. Selection of a Prognostic Two-Lipid Signature

We carried out a global lipidomic analysis of pretreatment serum samples from
197 ovarian cancer patients and 114 benign controls (Turku study, Table 1). The results were
in line with previous findings showing that ovarian cancer profoundly affects the lipidome,
and that the lipid alterations are already observable in early-stage patients (Table S2).
Furthermore, the results ratified that a large number of the lipids is associated with the
overall and progression-free survival of the patients (Table S2), and from these a single
prognostic lipid ratio was constructed. The selection was performed by taking from lipids
showing association with ovarian cancer and survival, a lipid ratio that showed highest
C-statistic for overall survival (Figure S1, Table S2). The lipids selected for this two-lipid
signature were PC(O-38:4) and Cer(d18:1/18:0), and the Cer(d18:1/18:0)/PC(O-38:4) ratio
showed higher C-statistics for both overall and progression-free survival than these lipids
individually (Table S2).
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3.2. Prognostic Value of the Two-Lipid Signature Test

Cox proportional hazards models for overall and progression-free survival were con-
structed in all study cohorts to evaluate the prognostic performance of the Cer(d18:1/18:0)
/ PC(O-38:4) lipid signature when measured prior to surgery or any other oncological
treatments. For overall survival, the point estimates for HRs per standard deviation ranged
from 1.40 to 2.12 and the C-statistic from 0.592 to 0.707 in the full study cohorts (Turku,
Charité 1, Charité 2, Charité 3), as well as in the subcohorts of patients without macroscopic
residual disease after surgery (R0) (Table 2). Adjusted HR point estimates varied from 1.10
to 2.16, and the C-statistic from 0.626 to 0.735. Importantly, pretreatment CA-125 value was
not indicative of overall survival in any of the study cohorts (Table 2).

For progression, the HR point estimates were between 1.22 and 1.53 in the cohorts,
and the C-statistic from 0.524 to 0.644 (Table 2). A C-statistic of 0.615 was recorded for
the Charité 1 cohort which included only stage III R0 resected patients (Table 2). Again,
CA-125 values were more modest, ranging from 0.418 to 0.592 (Table 2). In the Turku study
we had HE4 data available for the majority of the patients, and this clinically established
biomarker also showed worse performance than the two-lipid signature, except for the R0
population (Table S3).
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3.3. Risk Tables for Ovarian Cancer Patients

To illustrate the clinical relevance of the two-lipid signature, patients were split by
quartiles of this ratio. The two lowest quartiles were combined to place focus on the highest
quartiles. Event rates in these quartiles were calculated at 1, 3, and 5 years in the Turku as
well as Charité 1 cohorts. It was apparent that within one year of the diagnosis, the lipid
signature already showed consistent risk prediction for progression-free survival, and the
difference between the lowest and highest quartiles remained until the five-year follow-up
(Figure 1). For death, the separation of the risk in the Charité 1 study became apparent only
after three years, whereas it was already evident in the Turku cohort during the first year
(Figure 1). For comparison, CA-125 was categorized similarly and in general the results
were less consistent than for the lipid ratio (Figure 1).
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Q1-Q2 3 33 8 % 9 16 36 % 11 6 65 %

Q3 12 54 18 % 29 20 59 % 33 7 83 %
Q4 6 64 9 % 29 33 47 % 37 13 74 %

Q1-Q2 9 25 26 % 13 10 57 % 13 5 72 %
Q3 23 42 35 % 44 9 83 % 46 3 94 %
Q4 27 43 39 % 58 10 85 % 61 4 94 %

Q1-Q2 1 23 4 % 6 18 25 % 10 10 50 %
Q3 0 11 0 % 6 5 55 % 8 3 73 %
Q4 0 13 0 % 5 8 38 % 7 5 58 %

Q1-Q2 3 21 13 % 10 12 45 % 13 5 72 %
Q3 7 5 58 % 10 1 91 % 11 0 100 %
Q4 4 9 31 % 8 5 62 % 11 1 92 %

5 yearsCA-125

1 year 3 years 5 years

Turku

Death

Progression

Cer(d18:1/18:0) /
PC(O-38:4) Quartile

Quartile

Charité 1

Death

Progression

1 year 3 years

Turku

Death

Progression

Charité 1

Death
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Figure 1. Survival in different quartiles (Q1–Q4) of the lipid ratio (upper panel) or CA-125 (lower panel).

Based on the Turku cohort data, a Cox regression model incorporating lipid ratio
quartiles and the clinically important risk factors, i.e., FIGO stage and residual tumor after
surgery, was constructed to predict the risk of progression after one year and the risk
of death within five years of the diagnosis and biomarker measurements. As expected,
for stage I–II tumors the risk was generally much lower than for stage III–IV tumors
(Figure 2). However, for this population, after five years the risk of death was almost
three-fold higher in the highest quartile of the lipid signature when compared to the
lowest quartiles. Importantly, the stage III–IV R0 resected patients belonging to the highest
biomarker quartile had a higher risk for both worse progression-free and overall survival
than patients with a suboptimal surgery result but belonging to the low biomarker quartiles
(Figure 2). When only HGSOC patients were included, the results were similar except for
stage I–II patients that had higher overall risk (Figure S2).
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3.4. Results From Longitudinal Analyses

For 20 patients of the Turku cohort, we analyzed serum samples taken at the time of
diagnosis and in different phases during the course of the disease. The results from the
linear mixed models analyzing the interaction of biomarkers and possible progression of
the disease revealed that the two-lipid signature was more consistently elevated at the
time of progression (beta per SD increase 1.99 (95% confidence interval (CI) 1.38, 2.97))
than CA-125 (beta per SD increase 1.78 (95% CI 1.13, 2.87)). Indeed, when the results were
plotted for all the patients, it was evident that for two cases (subjects 1 and 10) the lipid
signature was clearly elevated at the time of progression, whereas CA-125 showed no or
minor elevation (Figure 3 and Figure S3). Importantly, there were no cases where CA-125
had shown elevation during progression but the lipid signature did not (Figure S3).
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4. Discussion

As of now, prognostic tools for evaluating the outcome of EOC patients are limited
to clinical and histopathological variables, while no biomarkers are in routine use. In the
current study, we introduced for the first time a two-lipid signature in the prognostic strati-
fication of EOC patients. For cardiovascular risk prediction, it has been shown that distinct
lipid ratios outperform single lipid concentrations in the prognostic performance [24,25].
For this reason and to construct as simple a test as possible, we decided to select a single
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lipid ratio for an ovarian cancer prognostic test. Above all, the lipid test identified espe-
cially poor-outcome patients at the time of diagnosis, before any oncological treatments.
Unsurprisingly, CA-125 was not significantly associated with the survival of EOC patients.

Patient selection and the most advantageous implementation of precision medicine
is of increasing importance in the regular treatment of EOC patients. In ovarian cancer
patients with HGSOC histology, a homologous recombination deficiency (HRD) indicates
better prognosis and response to platinum and PARP inhibition therapies [26]. Regarding
antiangiogenic agents, there is currently no clear consensus on which patients should
receive it and more importantly, which patients should not, although bevacizumab is
generally seen as a part of the standard treatment of EOC patients [11]. The strength of
the current two-lipid signature test is the capacity of finding the poor prognostic patients
early: notably, the test functioned in the Charité 1 cohort with completely surgically
debulked stage III patients. When identified early at diagnosis, the poor prognosis patients
can be offered comprehensive genetic testing and targeted therapies within clinical trials.
Altogether, a better prognostic evaluation of individual EOC patients could aid clinicians
in directing these treatments more effectively and also improve patient counselling as the
modern surgical and oncological treatments are utterly demanding.

In all patients with EOC, major effort is directed at reaching optimal cytoreduction
(0 mm residual disease) as the presence of macroscopic residual disease has been associated
with an especially poor prognosis [27]. Indeed, complex ultra-radical surgery including
peritonectomy and multiorgan resections have become conventional as the prognostic
benefit is generally considered to outweigh the increase in perioperative complications
and morbidity [28]. Intriguingly, in the present study, optimally cytoreduced patients in
the highest lipid test quartile had an inferior survival outcome compared to patients in
the lower lipid test quartiles, regardless of the presence of macroscopic residual disease.
These findings suggest that the tumor biology and/or composition of the non-macroscopic
residual tumor may have an equally important role in prognosis as the surgery outcome.
Of note, in addition to PC(O-38:4), decreased concentrations of a large number of other
plasmalogen lipids showed prognostic value. We have previously shown that downregu-
lation of the peroxisome-associated ABCD1 (ATP Binding Cassette Subfamily D Member
1) gene as well as altered serum lipids and metabolites related to peroxisomal disorders
are associated with poor survival in ovarian cancer patients [15,20]. Since the biosynthesis
of plasmalogens occurs in peroxisomes [29], it is possible that peroxisomal dysfunction
in ovarian cancer cells might explain the downregulation of plasmalogens. In our pre-
vious study it was revealed that the alterations in serum ceramides, i.e., their increase
or decrease, is dependent on the fatty acyl side chain, and Cer(d18:1/18:0) showed the
strongest elevation due to ovarian cancer [15]. Intriguingly, our present data showed that
this same ceramide lipid is also the most prognostic one, implying that Cer(d18:1/18:0)
is the most important ceramide both diagnostically and prognostically. Thus, it appears
that instead of global ceramide upregulation, the alterations are lipid-specific. The possible
peroxisomal dysfunction as well as the biological role of Cer(d18:1/18:0) in ovarian cancer
warrant mechanistic studies. Further studies on the treatment response are required, as
rendering a patient a non-responder for operative treatment a priori is unjustified without
robust evidence.

The potential of the two-lipid signature test to detect disease recurrence was estimated
in a proof-of-concept manner; however, the exploratory results of this study suggest that
aberrations in the concentration of circulatory lipids are already present early-on in tumor
development. Indeed, the two-lipid signature test might improve the follow up and early
detection of disease recurrence, although it is unclear whether the treatment of early,
asymptomatic recurrence is beneficial in the era of novel targeted therapies. It is tempting
to hypothesize that the two-lipid signature test might similarly improve the detection of
early stage EOC.

The strength of this study is the robust study configuration, as the results were
tested in one cohort and validated in three additional, separate cohorts. The LION trial

405



Cancers 2021, 13, 1764

implemented a strict study protocol, which emphasizes the independent prognostic value
of the two-lipid signature test. A limitation of the study is that the HR status was not
available from our study sets, and the correlation of the lipid test and HRD remains to be
assessed in future studies. In addition, the exploration of multiomic profiling might be
another feasible method to increase the prognostic potential of the lipidomic analyses [30].
Another limitation is the low number of patients included in the longitudinal analyses;
however, the longitudinal analyses were carried out in a proof-of-concept manner and the
results need to be further validated in larger patient cohorts. In addition, the lipidomic
method utilized is only semi-quantitative, and for clinical use a fully quantitative and
analytically validated method has to be developed. However, for one component of the
lipid signature, i.e., Cer (d18:1/18:0), a clinically validated method already exists [31], and
the addition of another lipid component to the method is feasible. A quantitative method is
also needed to confirm the calibration of the risk models between different study cohorts.

5. Conclusions

EOC continues to present a challenge for clinicians and scientists alike. Novel, robust,
and affordable biomarkers are needed to improve the detection and monitoring of the dis-
ease, and also for the optimal allocation of precision drugs and complex surgical treatment.
The analysis of circulatory lipids presents a non-invasive method, which differentiates
patients with an especially aggressive disease from those with a more favorable disease
outcome. Thus, the lipid signature may serve as a novel tool for treatment stratification,
which will be an important topic for future studies.
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.3390/cancers13081764/s1, Figure S1: Selection of the prognostic lipid ratio, Figure S2: Risk (%) of
progression in 1 year or death in 5 years, Figure S3: Longitudinal analysis of the two-lipid signature
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Simple Summary: Currently available biomarkers for response to checkpoint inhibitors are incom-
plete and predominantly focus on tumor tissue analysis e.g., tumor mutational burden, programmed
cell death-ligand 1 (PD-L1) expression. Biomarkers in peripheral blood would allow a more dynamic
monitoring and could offer a way for sequential adaptation of treatment strategy. We conducted
an in-depth analysis of baseline and on-treatment systemic immune features in a cohort of stage
III/IV melanoma and stage IV urothelial cancer (UC) patients treated with anti-programmed cell
death-1 (anti-PD-1) therapy combined with stereotactic body radiotherapy (SBRT) in a similar reg-
imen/schedule. Baseline immunity was clearly different between these two cohorts, indicating a
less active immune landscape in UC patients. This study also detected signatures of proliferation in
the CD8+ T-cell compartment pre-treatment and early after anti-PD-1 initiation that were positively
correlated with clinical outcome in both tumor types. In addition our data support the biological
relevance of PD-1/PD-L1 expression on circulating immune cell subsets, especially in melanoma.

Abstract: (1) Background: Blockade of the PD-1/PD-L1 pathway has revolutionized the oncology
field in the last decade. However, the proportion of patients experiencing a durable response is still
limited. In the current study, we performed an extensive immune monitoring in patients with stage
III/IV melanoma and stage IV UC who received anti-PD-1 immunotherapy with SBRT. (2) Methods:
In total 145 blood samples from 38 patients, collected at fixed time points before and during treatment,
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were phenotyped via high-parameter flow cytometry, luminex assay and UPLC-MS/MS. (3) Results:
Baseline systemic immunity in melanoma and UC patients was different with a more prominent
myeloid compartment and a higher neutrophil to lymphocyte ratio in UC. Proliferation (Ki67+) of
CD8+ T-cells and of the PD-1+/PD-L1+ CD8+ subset at baseline correlated with progression free
survival in melanoma. In contrast a higher frequency of PD-1/PD-L1 expressing non-proliferating
(Ki67−) CD8+ and CD4+ T-cells before treatment was associated with worse outcome in melanoma.
In UC, the expansion of Ki67+ CD8+ T-cells and of the PD-L1+ subset relative to tumor burden
correlated with clinical outcome. (4) Conclusion: This study reveals a clearly different immune
landscape in melanoma and UC at baseline, which may impact immunotherapy response. Signatures
of proliferation in the CD8+ T-cell compartment prior to and early after anti-PD-1 initiation were
positively correlated with clinical outcome in both cohorts. PD-1/PD-L1 expression on circulating
immune cell subsets seems of clinical relevance in the melanoma cohort.

Keywords: immunotherapy; anti-PD-1; melanoma; urothelial cancer; immune monitoring;
blood biomarkers

1. Introduction

New insights in immuno-oncology and the subsequently developed immunotherapies
have caused a major breakthrough in the oncology field in the last decade, creating the hope
of curing (metastatic) cancer. Despite the encouraging results, the proportion of patients
experiencing a durable response is still limited. In 2018 about 43% of cancer patients in
the United States were eligible for checkpoint inhibitor therapy compared to 1.5% in 2011,
while the estimated percentage of response only modestly increased from 0.14% to 12.4%
in the same time period [1]. Combination strategies are currently being tested in different
cancer types in an attempt to improve response rates [2,3], but the combination of cytotoxic
lymphocyte antigen 4 (CTLA-4) blockade and programmed cell death receptor 1 (PD-1)
blockade is well recognized to inevitably elicit higher toxicity and also implies a higher
cost. Both from the patient’s and healthcare budget’s perspective there is a need for new
translational insights that could help to optimize current immunotherapies.

Up to date predictive biomarkers have mainly been identified in tumor tissue. The
immunohistochemical expression of PD-L1 is currently one of the most widely used
biomarkers and, high expression has been correlated with response to PD-1/PD-L1 im-
munotherapy [4,5]. However, a systematic evaluation of 45 Food and Drug Administration
(FDA) approved trials involving 15 tumor types demonstrated that PD-L1 expression was
predictive in only 28.9% of cases [6]. High tumor mutational burden is also associated
with better response [7,8] and this finding led to FDA approval for checkpoint inhibition
in patients with microsatellite instability-high or mismatch repair-deficient solid tumors,
irrespective of cancer type [9,10]. Patients who respond to anti-PD-1 therapy exhibit a
tumor micro-environment that is enriched for interferon γ (IFNγ) and tumor infiltrating
lymphocytes (TILs), the so called ‘hot’ tumors [11–13].

Blood-based biomarkers have been far less reported and have not yet entered clinical
practice, although they could have the benefit of a dynamic monitoring during the treatment
course with the possibility to adapt immunotherapeutic strategies.

In the current study, we performed immune monitoring in patients with inopera-
ble stage III/IV melanoma and patients with stage IV UC who received anti-PD-1 im-
munotherapy combined with SBRT. The immune landscape before and during treatment
was compared between tumor types and the relation to clinical outcome was investigated.

2. Materials and Methods
2.1. Patient Samples

The biospecimens evaluated in this study were obtained from patients with melanoma
or UC who participated in two separate clinical trials (Figure 1a,b). A phase 2 trial included
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20 patients with unresectable stage III or stage IV metastatic melanoma who were treated
in the first line with anti-PD-1 (nivolumab) and SBRT (NCT02821182) [14]. The samples
from metastatic UC patients were collected during a randomized phase I trial with SBRT
administered either prior to the first anti-PD-1 cycle (arm A: SBRT prior to any treatment
with pembrolizumab, n = 9), or during anti-PD-1 treatment (arm B: SBRT prior to the third
pembrolizumab cycle, n = 9) [15]. Both trials were approved by the Ethics Committee of
Ghent University Hospital and are registered on Clinicaltrials.gov (resp. NCT02821182
and NCT02826564). At fixed time points through treatment, peripheral blood samples
(EDTA and serum tubes) were collected from melanoma (n = 85) and UC patients (n = 60)
respectively. Peripheral blood mononuclear cells (PBMCs) were isolated via Lymphoprep
centrifugation and stored in liquid nitrogen using standard methods.

Tumor burden was assessed using CT/MRI or PET-CT scan of the chest, abdomen and
pelvis at baseline, after the fourth cycle of anti-PD-1 and after every fifth cycle (melanoma)
or third cycle (UC) thereafter until the end of treatment. Tumor burden was defined as the
sum of the longest diameters for a maximum of five target lesions and up to two lesions
per organ. For lymph nodes the shortest axis was measured. Clinical responses were
determined based on Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 criteria.
Disease control was achieved in 12 melanoma patients (complete response, CR (n = 3);
partial response; PR (n = 6) and stable disease, SD (n = 3)) while 8 patients showed
progressive disease (non-responder). In UC, no objective responders were observed in
arm A, while of 4 patients in arm B achieved a complete or partial response (CR: n = 1;
PR: n = 3).

2.2. Flow Cytometry

Cryopreserved PBMCs were thawed and washed in RPMI 1640 medium supple-
mented with Glutamax (2.05 mM), 10% FCS and penicillin (100 U/mL)-streptomycin
(100 µg/mL). Cells were stained with monoclonal antibodies labeled with fluorochromes.
A complete list of the used antibodies can be found in Table S3. In a first step, 2.5 × 106 cells
were stained with FcR blocking reagent for blocking of unspecific binding of antibodies
(130-059-901, Miltenyi, Madrid, Spain) and a mixture of Fixable Viability dye eFluor 506
(65-0866-14, eBioscience, San Diego, CA, USA) and antibodies against surface markers in
PBS and BD Horizon Brilliant Stain Buffer (563794, BD Biosciences, San Jose, CA, USA),
incubated for 30 min at 4 ◦C and washed. In a second step, cells were fixed and perme-
abilized with Foxp3 Transcription Factor Staining Buffer Set (00-5523-00, eBioscience, San
Diego, CA, USA), and subsequently stained intracellularly for 30 min at RT. Labeled cell
suspensions were acquired on a BD FACSymphony flowcytometer (BD Biosciences, San
Jose, CA, USA) and data was analyzed with FlowJo 10.6.2 software (Ashland, OR, USA).
Gating strategies are depicted in Figure S1.

The frequency of neutrophils and lymphocytes in white blood cells was determined
for all of the samples using automated blood cell counting equipment (Sysmex XE-5000,
Norderstedt, Germany) during routine lab evaluations.

2.3. High Dimensional Data Analysis of Flow Cytometry Data
2.3.1. t-SNE

Live CD8+ T cells were gated in FlowJo v10.6.2 and exported as separate fcs files
for melanoma and UC. Populations before and during treatment were randomly down-
sampled and subsequently concatenated into 1 file (total events melanoma: 1.234.633 events;
total events urothelial cancer arm A: 689.057 events; total events urothelial cancer arm B:
979.821 events). Next, concatenated samples were analyzed via t-distributed stochastic
neighborhood embedding (t-SNE) in FlowJo v10.6.2. Opt-SNE was applied as learning
configuration, with perplexity set to 30 and iterations to 1000. The colors in the heatmap
represent the measured means intensity value of Ki67 in a given cluster.

411



Cancers 2021, 13, 2630Cancers 2021, 13, x  4 of 24 
 

 

 
Figure 1. Overview of the clinical trial treatment strategy and PD-L1 and TIL quantification. (a) Schematic of design of 
phase 2 clinical trial in unresectable stage III and stage IV melanoma receiving a combination of anti-PD-1 and SBRT. (b) 
Schematic of design of randomized phase 1 trial combining anti-PD-1 with either sequential (Arm A) or concomitant SBRT 
(Arm B) in metastatic UC. Red arrows indicate time of blood collection. (c) Boxplots with tumoral PD-L1 expression in 
non-responders and responders (left) and Kaplan-Meier estimate of PFS stratified according to tumoral PD-L1 expression 
(right) in melanoma and (d) in UC. Whiskers of boxplots extend to the minimum and maximum data point, with the 
horizontal line indicating the median. p value calculated using two-sided Mann-Whitney U test (left) and log-rank test 
(right). (e) TIL quantification in non-responders and responders in melanoma and (f) in UC. TILs were evaluated semi 
quantitatively: 1+, sporadic TILs; 2+, moderate number of TILs; 3+, abundant occurrence of TILs. p value calculated using 
Fisher’s exact test. Pre, pre-treatment; Wk, week; Gy, gray; SBRT, stereotactic body radiotherapy; CT, computed tomogra-
phy; NR, non-responder; R, responder; PFS, progression free survival; NS, not significant; TIL, tumor infiltrating lympho-
cytes. 
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phase 2 clinical trial in unresectable stage III and stage IV melanoma receiving a combination of anti-PD-1 and SBRT. (b)
Schematic of design of randomized phase 1 trial combining anti-PD-1 with either sequential (Arm A) or concomitant SBRT
(Arm B) in metastatic UC. Red arrows indicate time of blood collection. (c) Boxplots with tumoral PD-L1 expression in
non-responders and responders (left) and Kaplan-Meier estimate of PFS stratified according to tumoral PD-L1 expression
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horizontal line indicating the median. p value calculated using two-sided Mann-Whitney U test (left) and log-rank test
(right). (e) TIL quantification in non-responders and responders in melanoma and (f) in UC. TILs were evaluated semi
quantitatively: 1+, sporadic TILs; 2+, moderate number of TILs; 3+, abundant occurrence of TILs. p value calculated using
Fisher’s exact test. Pre, pre-treatment; Wk, week; Gy, gray; SBRT, stereotactic body radiotherapy; CT, computed tomography;
NR, non-responder; R, responder; PFS, progression free survival; NS, not significant; TIL, tumor infiltrating lymphocytes.

2.3.2. FlowSOM

The melanoma and UC datasets were analyzed separately, following the same pipeline.
The fcs files were first cleaned by manual gating in FlowJo, after which the data was
imported in R. An aggregate was generated with approximately 3 million cells, with
an equal number of cells subsampled at random without repetition from each sample
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(melanoma: 85 samples with 35,295 cells each, urothelial cancer arm B: 36 samples with
83,334 cells each). This aggregate was then used to train a FlowSOM model with a 15
by 15 grid (225 clusters) and 30 metaclusters. Thirteen markers were taken along for the
clustering: CD3, CD4, CD8, CD25, CD19, CD56, HLA-DR, CD123, CD33, CD11b, CD14,
CD16 and FoxP3.

Once the model was built, all samples were fully mapped onto the model, resulting
in a cluster and metacluster assignment for each cell. From this mapping, the cluster
and metacluster abundances per sample were extracted. Additionally, for 6 markers
(CTLA-4, Ki67, IDO, PD-1, PD-L1 and HLA-DR), a positivity threshold was determined
by manual gating. We used these thresholds to determine the abundance of each possible
subpopulation in each (meta-) cluster. A subpopulation was defined by being either
positive, negative or neutral (both positive and negative cells included) for each of the
markers, resulting in 729 potential combinations per (meta-) cluster. As many of these
combinations would not occur in reality, these subpopulations were then filtered, only
keeping those where at least 5 samples had at least 30 cells. This resulted in a total of
76,039 features describing the immune profile of melanoma samples and 70,648 features
for the urothelial cancer samples.

2.4. Cytokine Measurement

Magnetic luminex assay (R&D systems, Minneapolis, MN, USA) was performed on
cryopreserved serum samples according to manufacturer’s instructions using a customized
panel, including CXCL9, CXCL10, MICA, MICB, ULBP-1, ULBP-2/5/6, ULBP-3, ULBP-4
and s100B. Serum concentrations were measured on a Bio-Plex 200 Array Reader (Bio-Rad,
Hercules, CA, USA).

2.5. UPLC-MS/MS

Tryptophan (Trp) and its metabolite kynurenine (Kyn) were quantified according to
previously published methods [16,17], with slight modifications. Cryopreserved serum
samples (50 µL) were extracted using 50 µL acetonitrile containing Trp-D5 (50 µM, CDN
Isotopes, Pointe-Claire, QC, Canada) as an internal standard. The samples were centrifuged
(8 min, 11,800 rpm, 4 ◦C) and the supernatants (50 µL) were added to deionized water
(600 µL). Fifteen µL of this mixture was injected in an ultra-high-performance liquid
chromatography system coupled to tandem mass spectrometry detector (UPLC-MS/MS,
Acquity TQ-S Detector, Waters, Milford, MA, USA) equipped with a HSS C18 column.
Ions of each analyzed compound were detected in a positive ion mode using multiple
reaction monitoring.

2.6. Scoring of PD-L1 and Tumor Infiltrating Cells

Formalin-fixed, paraffin-embedded (FFPE) tumor samples were collected at time
of surgical resection before start of systemic treatment in melanoma and UC patients.
4 µm-thick FFPE tissue sections were subjected to heat-induced antigen retrieval and
incubated with primary monoclonal antibodies against PD-L1: clone SP263 (Ventana
Medical Systems Inc., Tucson, AZ, USA) for melanoma samples and clone 22C3 (Agilent
Technologies, Santa Clara, CA, USA) for UC samples. Samples were visualized with 3,3′-
diaminobenzidine (DAB) chromogen and hematoxylin counterstain and cover-slipped for
review. Scoring of PD-L1 was conducted by 2 pathologists blinded to patient characteristics.
In melanoma sections, the percentage of tumor cells with membranous PD-L1 staining was
scored (0–100%). In UC sections, the percentage of tumor cells and any tumor infiltrating
mononuclear inflammatory cells with membranous PD-L1 staining was scored (0–100%).

The abundance of intraepithelial TILs was determined on H&E stained sections. This
morphological assessment of TILs within tumor nests was evaluated semi quantitatively:
1+, sporadic TILs; 2+, moderate number of TILs; 3+, abundant occurrence of TILs. For
dichotomization, the TILs score was categorized into ‘low’ (1+ or 2+) and ‘high’ (3+). TILs
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were assessed on 19 melanoma patients as the only available specimens for the 20th patient
was a cytological sample.

2.7. Statistics

To compare longitudinal immunologic effects, p-values for each measured immune
feature were calculated using a Wilcoxon matched-pairs signed-ranks test. Associations
between immune features and treatment response were identified by Mann-Whitney U
tests comparing the frequencies of phenotypes between responders and non-responders.
Progression free survival (PFS) was defined as the time from inclusion to disease progres-
sion, death or the last follow-up, whichever occurred first. PFS curves were estimated
using the Kaplan-Meier method by dichotomizing immune phenotypes of interest through
their median value. Survival curves between patients with high (above the median) and
low (below the median) frequencies of the immune feature of interest were compared using
a Log-Rank test. Cox regression models have been used to perform univariate analysis.
Correlations between continuous variables were determined by Spearman’s r coefficient.
A chi square test was employed to test for association between two categorical variables.
Fold change in proliferation was calculated by dividing the frequency of Ki67+ T-cells in
on-treatment samples to the frequency of Ki67+ T-cells at pre-treatment. Statistical analyses
were performed using IBM SPSS v26 and all tests were performed two-sided; p < 0.05
was considered to be statistically significant. Graphs were plotted with Graphpad Prism
(GraphPad software Inc., San Diego, CA, USA). For FlowSOM analysis, a Wilcoxon Rank
Sum test was executed in R to compare responders and non-responders, after which the
features were ranked by p-value.

3. Results
3.1. Overview of Patient Cohorts

Blood samples (n = 145) of 20 melanoma patients and 18 UC patients treated with
anti-PD-1 therapy combined with SBRT were included (NCT02821182 and NCT02826564).
The design of the clinical trials and time points of blood sample collection is schemat-
ically presented in Figure 1a,b. The clinical results of these trials have been reported
elsewhere [14,15]. Detailed patient characteristics are described in Tables S1 and S2.

The median age in the melanoma cohort was 60.5 years (34.0–80.0 years) and 68.0 years
(50.0–84.0 years) in the UC cohort (Mann-Whitney U test, p = 0.055). Age was not correlated
with clinical outcome in the melanoma cohort (Mann-Whitney U test, p = 0.473). In the
UC cohort, median age was higher in responders (75.5 years, (71.0–84.0 years)) compared
to non-responders (61.0 years (50.0–79.0 years), Mann-Whitney U test, p = 0.018). The
median tumor burden was lower in melanoma patients compared to UC patients (23.5 mm
(10.0–100.0 mm) versus 45.8 mm (12.10–106.90 mm), Mann-Whitney U test, p = 0.033).
Median baseline tumor burden was not different in responders versus non-responders in
the melanoma cohort. Responders in the UC cohort tended to have lower median baseline
tumor burden compared to non-responders (arm B: 29.45 mm (12.10–46.90 mm) versus
60.50 mm (44.70–75.00 mm), Mann-Whitney U test, p = 0.032, for arm A+B p = 0.101). Prior
systemic treatment had been administered in 2/20 melanoma patients (anti-CTLA-4 and
BRAF-targeted therapy). In the UC cohort, 13/18 patients had been treated with one or
more platinum-based chemotherapies prior to enrollment in the study.

Tumoral PD-L1 expression was not significantly related to response or PFS in melanoma
or UC patients (Figure 1c,d). No difference in baseline TILs was found between responders
and non-responders (Figure 1e,f).

3.2. Differences in Baseline Immunity between Melanoma and UC Cohort

Significant differences in the baseline immune landscape were observed between the
melanoma and UC cohort (Figure 2a,b).
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Figure 2. Baseline systemic immunity differs between melanoma and urothelial cancer. (a) Frequency of neutrophils, lym-
phocytes and neutrophil-to-lymphocyte ratio in melanoma and UC. Reference values are depicted in black. (b) Frequency 
of immune cell populations of innate and adaptive immune system. Error bar denotes ± SD. (c) (left) Ratio of serum con-
centrations of kynurenine (Kyn) on tryptophan (Trp), presented values are Kyn/Trp x 100. (right) Serum concentrations of 
T-cell activating chemokines CXCL9 and CXCL10 and concentrations of ligands for NK cell activing receptor NKG2D: 
MICA, MICB, ULBP-2, ULBP-3 and ULBP-4. Concentrations out of the range of detection could not be depicted. p value 
calculated using two-sided Mann-Whitney U test. * p < 0.05, ** p < 0.01, *** p < 0.001. WBC, white blood cells; MDSC, 
myeloid-derived suppressor cells; mDC, myeloid dendritic cells; pDC, plasmacytoid dendritic cells; Tregs, regulatory T-
cells; ND, not detectable. 
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ND, not detectable.
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The neutrophil-to-lymphocyte ratio (NLR) was higher in UC compared to melanoma.
Melanoma patients had a clearly higher lymphocyte frequency and more γδ T-cells and
proliferating (Ki67 expressing) B-cells compared to UC patients. There was no significant
difference in the frequency of CD4+ and CD8+ T-cells between the two cohorts, except for
the frequency of regulatory T-cells (Tregs, as defined by CD25+ Foxp3+ CD4+ cells [18])
which was lower in melanoma patients.

In the UC cohort, the frequency of neutrophils, classical CD14+ monocytes, plasma-
cytoid dendritic cells (pDCs) and myeloid-derived suppressor cells (MDSCs) was higher
compared to the melanoma cohort. Notably, the frequency of CD16+ monocytes correlated
negatively with tumor burden in UC patients (Spearman’s CC: −0.627, p = 0.005). No
significant differences were observed in the total NK cell population but the percentage of
Ki67+ CD56bright NK was lower in the UC cohort.

The baseline concentration of IFNγ-inducible chemokine CXCL10 was higher in
melanoma, whereas higher serum concentrations of MICA and MICB-both soluble NKG2D
ligands-were detected in UC (Figure 2c). No differences in baseline kynurenine to trypto-
phan ratio (Kyn/Trp) were observed.

Altogether these data indicate a more favorable baseline immune landscape in the
melanoma cohort compared to UC patients.

3.3. Early Systemic Immune Changes after Anti-PD-1 Treatment Initiation

To study early dynamic changes in systemic immunity upon anti-PD-1 initiation,
blood samples after 1 cycle in the melanoma cohort (collected at week 1) and after 2 cycles
in the UC cohort arm B (collected at week 5) were examined.

While a significant increase in the Ki67 expressing CD8+ T-cell population was ob-
served, the increases in Ki67+ CD8+ T-cell subsets co-expressing the checkpoint molecules
PD-L1 or CTLA-4 were even more pronounced (Figure 3a,b). In both tumor types, Ki67+

CD8+ T-cells seemed to peak after 1 or 2 cycles of anti-PD-1 therapy (Figure 3c,d). Interest-
ingly, in the melanoma cohort the percentage of Ki67+ CD8+ T-cells, Ki67+ PD-L1+ CD8+

T-cells and especially Ki67+ PD-1+ CD8+ T-cells at baseline and for the former two also
at week 1 were positively correlated with PFS (Figure 3e). In UC, PFS correlated with the
increase of Ki67+ CD8+ T-cells to tumor burden and with the increase of Ki67+ PD-L1+

CD8+ T-cells to tumor burden (Figure 3f). In melanoma the increase of Ki67+(PD-L1+) CD8+

T-cells to tumor burden did not correlate with PFS.
In a subset of 7 melanoma patients with an additional blood sample collected during

anti-PD-1 treatment at a median time interval of 6 months (range: 3–16 months) after
start of treatment. Ki67+ CD8+ T-cells co-expressing PD-L1 or CTLA-4 had returned to
baseline levels.

Global high-dimensional mapping of flow cytometry data via the t-SNE algorithm
provided more insights into this proliferating subset of CD8+ T-lymphocytes. t-SNE analy-
sis revealed a highly Ki67-positive CD8+ T-cell cluster, already present before treatment
in melanoma and UC (Figure 3g,h). Compared to the total CD8+ T-cell population this
Ki67+ CD8+ T-cell cluster demonstrated enriched expression of the T-cell activation marker
HLA-DR and the immune checkpoint molecule IDO1 (Figure 3i,j). A variable expression for
CTLA-4, PD-1 and its ligand PD-L1 was present in this cluster, with cells either expressing
or lacking these markers. To assess the dynamics of this cluster during therapy, we manu-
ally gated on this cluster in the individual t-SNE map of each patient on each time point.
Independent of response to immunotherapy, the frequency of Ki67+ CD8+ T-cells increased
at week 1 and this was maintained at week 6 in melanoma patients (Figure 3k). In UC
patients, the increase in Ki67 expressing CD8+ T-cells tended to be higher in responders
(Figure 3l).

In addition, a significant increase in serum CXCL10 and Kyn/Trp was observed after
1 cycle of anti-PD-1 in the melanoma cohort (Figure 3m). The magnitude of these increases
was not significantly different between responders and non-responders. The increases in
CXCL10 and Kyn/Trp were not significant in the UC cohort (Figure 3n).
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Figure 3. Early upregulation of proliferating CD8+ T-cells in response to anti-PD-1. (a) Contour plots representing Ki67 
expression in CD8+ T-cell subsets at pre-treatment (Pre) and after 1 cycle of anti-PD-1 (Week 1) in 12 independent mela-
noma patients. (b) Contour plots representing Ki67 expression in CD8+ T-cell subsets at pre-treatment and after 2 cycles 
of anti-PD-1 (Week 5) in 9 independent UC patients (arm B). (c) Lineplot with fold induction of Ki67 expression in CD8+ 
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expression in CD8+ T-cell subsets at pre-treatment (Pre) and after 1 cycle of anti-PD-1 (Week 1) in 12 independent melanoma
patients. (b) Contour plots representing Ki67 expression in CD8+ T-cell subsets at pre-treatment and after 2 cycles of anti-
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PD-1 (Week 5) in 9 independent UC patients (arm B). (c) Lineplot with fold induction of Ki67 expression in CD8+ T-cell
subsets at indicated times in melanoma (n = 20) and (d) in UC (arm B, n = 9). Data shown are relative to pre-treatment
samples. Error bar denotes mean ± SEM. p value calculated using two-sided Wilcoxon matched-pairs test. * p < 0.05,
** p < 0.01. (e) Spearman correlation of PFS to Ki67 expression in the total CD8+ T-cell population (left), PD-L1+ CD8+ T-cells
(middle) and PD-1+ CD8+ T-cells (right) at pre-treatment (up) and after 1 cycle of anti-PD-1 (Week 1, down) in melanoma.
(f) Spearman correlation of PFS to the ratio of the fold change of Ki67 increase on CD8+ T-cells (week 5 on pre-treatment) to
tumor burden (up) and to the ratio of the fold change of Ki67 increase on PD-L1+ CD8+ T-cells (week 5 on pre-treatment) to
tumor burden (down) in UC. (g) t-distributed stochastic neighbor embedding (t-SNE) map of CD8+ T-cells overlaid with the
expression level of Ki67 as a heat map in melanoma and (h) in UC. (i) Phenotypic description of the Ki67+ cluster in the
CD8+ T-cell t-SNE map of melanoma and (j) of UC. Histograms depict expression profile of functional markers in the Ki67+

CD8+ cluster (orange) compared to total CD8+ T-cell population (grey). (k) Lineplot with fold induction of Ki67+ cells in
CD8+ T-cell t-SNE map of non-responders (NR) and responders (R) to anti-PD-1 at indicated times in melanoma and (l)
in UC. Data shown are relative to pre-treatment samples. Error bar denotes ± SEM. p value calculated using two-sided
Wilcoxon matched-pairs test. * p < 0.05, ** p < 0.01. (m) Lineplots with ratio of concentrations of serum Kyn and Trp (×100)
and concentration of CXCL10 at indicated times in melanoma and (n) in UC. p value calculated using two-sided Wilcoxon
matched-pairs test. ** p < 0.01. Wk, week; NS, not significant, TB, tumor burden.

To conclude, via a manual gating approach and an unsupervised clustering approach
we report marked invigoration of CD8+ T-cell subsets that have enriched expression of
the activation marker HLA-DR and variably express immune checkpoint molecules. upon
anti-PD-1 treatment initiation These proliferating CD8+ T-cell populations peaked after 1
to 2 cycles of anti-PD-1 in both melanoma and UC patients. Altogether these data point
to the possible clinical significance of baseline Ki67+ CD8+ T-cells and mainly the PD-1
expressing subset in melanoma. In UC the early increase of Ki67+ CD8+ T-cells and of the
PD-L1 expressing subset relative to tumor burden seems to be crucial for PFS.

3.4. Systemic Immune Changes after SBRT

To explore the impact of SBRT, the dynamics of immune cell frequencies before
and after SBRT were investigated (resp. blood samples collected at week 1 and 2 in
melanoma and week 5 and 6 in UC arm B). As described above, proliferation of the T-cell
compartment peaked at the first on-treatment blood sample, which was collected before
SBRT administration. No additional increases in (Ki67 expressing) T-cell subsets were
detected after SBRT in melanoma nor in UC. In melanoma, modest increases in the serum
concentration of CXCL10 and Kyn/Trp were observed, while the frequency of B-cells
decreased (Figure S2a), but these changes were not significantly different to the observed
trend before SBRT. In the UC cohort, these changes could not be confirmed (Figure S2b).

3.5. FlowSOM Analysis to Discover Immune Signatures Correlating with Clinical Outcome

In order to detect discrete differences in the systemic immune response between
responders and non-responders, we applied the algorithm FlowSOM to the flow cytometry
dataset. FlowSOM, a powerful clustering-based technique to explore cellular heterogeneity,
generates a Minimum Spanning Tree with each node existing of a group of phenotypically
related cells [19]. The 85 fcs files of melanoma patients were concatenated into one single
FlowSOM tree for all individuals (Figure 4a). The frequency of cells assigned to a specific
metacluster or cluster were compared between responders and non-responders before
and during treatment. No differences between responders and non-responders in the
percentage of cells assigned to a specific metacluster or cluster were noticed. We further
explored differences between melanoma responders and non-responders by investigating
the extent of (co-) expression of 6 functional markers (CTLA-4, Ki67, IDO, PD-1, PD-L1
and HLA-DR) in the FlowSOM clusters. Features distinguishing responders and non-
responders were predominantly found in the T-cell compartment.
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Figure 4. Pre-treatment expression of PD-1 and PD-L1 in non-proliferating CD8+ T-cells correlates with non-response to 
anti-PD-1 in melanoma. (a) FlowSOM tree of concatenated flow cytometry data of PBMCs from 20 melanoma patients (85 
samples). (b) (left) Boxplot of the pre-treatment expression of indicated signature in metacluster 1 (CD8+ T-cells) in non-
responders (NR) and responders (R). p value calculated using two-sided Mann-Whitney U test. ** p < 0.01. (right) Kaplan-
Maier estimate of PFS stratified according to low (<0.2221%) or high (>0.2221%) expression of PD-L1+ PD-1+ CTLA-4− Ki67− 
IDO− HLA-DR- in metacluster 1. p value calculated using log-rank test. (c,d) (top left) Melanoma FlowSOM tree depicting 
differences in expression of the indicated signature in clusters between non-responders and responders at pre-treatment. 
−log10(p values) are plotted on FlowSOM tree showing the significantly over- or underrepresented clusters in non-re-
sponders versus responders. (top right) Contour plot (n = 10) representing manual gating strategy on total CD8+ T-cell 
population to confirm FlowSOM signature. (below left) Boxplots with expression of manually gated signature in non-
responders (NR) and responders (R), p value in boxplots calculated using two-sided Mann-Whitney U test. * 0.01 < p < 
0.05. (below right) Kaplan-Maier estimate of PFS stratified according to low or high expression of indicated signature. p 
value calculated using log-rank test. (b–d). Whiskers of boxplots extend to the minimum and maximum data point, with 
the horizontal line indicating the median. 

  

Figure 4. Pre-treatment expression of PD-1 and PD-L1 in non-proliferating CD8+ T-cells correlates with non-response to
anti-PD-1 in melanoma. (a) FlowSOM tree of concatenated flow cytometry data of PBMCs from 20 melanoma patients
(85 samples). (b) (left) Boxplot of the pre-treatment expression of indicated signature in metacluster 1 (CD8+ T-cells) in
non-responders (NR) and responders (R). p value calculated using two-sided Mann-Whitney U test. ** p < 0.01. (right)
Kaplan-Maier estimate of PFS stratified according to low (<0.2221%) or high (>0.2221%) expression of PD-L1+ PD-1+ CTLA-
4− Ki67− IDO− HLA-DR− in metacluster 1. p value calculated using log-rank test. (c,d) (top left) Melanoma FlowSOM
tree depicting differences in expression of the indicated signature in clusters between non-responders and responders
at pre-treatment. −log10(p values) are plotted on FlowSOM tree showing the significantly over- or underrepresented
clusters in non-responders versus responders. (top right) Contour plot (n = 10) representing manual gating strategy on
total CD8+ T-cell population to confirm FlowSOM signature. (below left) Boxplots with expression of manually gated
signature in non-responders (NR) and responders (R), p value in boxplots calculated using two-sided Mann-Whitney U
test. * 0.01 < p < 0.05. (below right) Kaplan-Maier estimate of PFS stratified according to low or high expression of indicated
signature. p value calculated using log-rank test. (b–d). Whiskers of boxplots extend to the minimum and maximum data
point, with the horizontal line indicating the median.
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We first focused on features in (meta-) clusters corresponding to CD8+ T-cells. Flow-
SOM assigned CD8+ T-cells to 1 single metacluster (metacluster 1). Within this metacluster,
the baseline expression of PD-L1+ PD-1+ CTLA-4− Ki67− IDO− HLA-DR− was higher in
non-responding patients (Figure 4b). The frequency of CD8+ T-cells with this phenotype
was associated with worse PFS (Figure 4b, Log-Rank analysis, p = 0.018). Further, multiple
CD8+ T-cell clusters showed differential expression of Ki67− PD-1+ and PD-1− PD-L1−

between responders and non-responders (Figure 4c,d). We manually gated on Ki67− PD-1+

CD8+ T-cells, which confirmed higher frequencies in non-responders. In contrast, manual
gating on PD-1− PD-L1− showed decreased expression in non-responders compared to
responders. These signatures were inversely correlated with each other (Spearman’s CC:
−0.965, p < 0.001) and were both associated with PFS (Figure 4c,d).

In the CD4+ T-cell compartment, 51 signatures were detected to be differentially
expressed pre-treatment between responders and non-responders in melanoma (cluster 204,
cluster 205, cluster 206 and cluster 220). Notably, all signatures involved PD-L1 expression
and were highly interrelated (Figure 5a,b). The majority of signatures distinguishing
responders from non-responders were expressed in cluster 205, which is a HLA-DR positive
CD25− FoxP3− CD4+ T-cell population (Figure 5c). Non-responders had an increased
expression of PD-L1 in this cluster compared to responders (p = 0.0041, Figure 5d). PD-L1+

CD4+ cells in cluster 205 of non-responders were negative for expression of CTLA-4 or
Ki67 and were HLA-DRdim (Figure 5e). This phenotype of CD4+ T-cells could be confirmed
via a manual gating approach. Non-responders did not only have a higher frequency of
this subset of CD4+ T-cells at baseline but also during treatment (Figure 5f).

Since FlowSOM assigned Tregs to the same metacluster as other CD4+ T-cell pop-
ulations in melanoma, Treg clusters were analyzed separately by defining them as one
metacluster. Co-expression patterns in this Treg metacluster (including cluster 207, cluster
208, cluster 221, cluster 222 and cluster 223) were investigated. Non-responders were found
to have less Tregs with phenotype HLA-DR+ PD-L1− IDO− during treatment (Figure S3a).
This was confirmed via a manual gating approach (Figure S3b).

A similar strategy was applied to the UC cohort, concatenating 35 fcs files of the 9 arm
B patients into one single FlowSOM tree (Figure 6a). Other than in the melanoma cohort,
analysis in the UC cohort predominantly revealed alterations in (meta-) clusters corre-
sponding to monocytes. Cluster 215 containing non-classical CD14− CD16+ monocytes
was overrepresented in responders before and during treatment (Figure 6b). The frequency
of cells in metacluster 28, which includes cluster 215, was different between responders
and non-responders at week 5 and week 12 (Figure 6c). Cluster 202, cluster 216, cluster
217 and cluster 218 contain CD14+ CD16+ monocytes and were overrepresented in respon-
ders at week 12 (metacluster 23, Figure 6d). Baseline metacluster 23 and metacluster 28
were both inversely correlated with baseline tumor burden (resp. Spearman’s CC: −0.817,
p = 0.007 and Spearman’s CC: −0.833, p = 0.005), and also inversely correlated with the
serum Kyn/Trp ratio (resp. Spearman’s CC: −0.817, p = 0.007 and Spearman’s CC: −0.900,
p = 0.001). Furthermore, 3 additional clusters with classical CD14+ CD16− monocytes
were overrepresented in responders (cluster 208 before treatment p = 0.0159, cluster 210
and cluster 224 at week 12, both p = 0.0159), although not reflected on metacluster level
(Figure 6b). In addition enhanced expression of proliferation marker Ki67 in cluster 123
(corresponding to CD56bright NK cells) at week 12 was found to be associated with lower
Kyn/Trp ratio and better response (Figure 6e,f).
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Figure 5. Pre-treatment expression of PD-L1 in non-proliferating CD4+ T-cells correlate with non-response to anti-PD-1 in 
melanoma patients. (a) Melanoma FlowSOM tree representing differences in PD-L1 expression in clusters between non-
responders and responders at pre-treatment. –log10(p-values) are plotted on tree showing the significantly over- or un-
derrepresented clusters in non-responders versus responders. (b) Correlation matrix of pre-treatment signatures (co-) ex-
pressing PD-L1 in FlowSOM clusters corresponding to CD4+ T-cells. Colored boxes represent Spearman’s correlation with 

Figure 5. Pre-treatment expression of PD-L1 in non-proliferating CD4+ T-cells correlate with non-response to anti-PD-1
in melanoma patients. (a) Melanoma FlowSOM tree representing differences in PD-L1 expression in clusters between
non-responders and responders at pre-treatment. –log10(p-values) are plotted on tree showing the significantly over- or
underrepresented clusters in non-responders versus responders. (b) Correlation matrix of pre-treatment signatures (co-)
expressing PD-L1 in FlowSOM clusters corresponding to CD4+ T-cells. Colored boxes represent Spearman’s correlation with
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a significance of p < 0.05. Red to blue represents correlation coefficients ranging from 1 to -1, respectively. (c) Representative
flow plots of 10 independent melanoma patients with the phenotype of indicated clusters. (d) Histogram and contour
plots with PD-L1 expression in cluster 205 of non-responders (NR, n = 5) versus cluster 205 of responders (R, n = 5) versus
the total CD4+ T-cell population (n = 10). (e) (top) Boxplots with the frequency of expression of PD-L1 combined with
CTLA-4, Ki67 or HLA-DR in cluster 205 in non-responders (NR) and responders (R). (bottom) Contour plots with indicated
signatures in cluster 205 in non-responders (NR, n = 5) and responders (R, n = 5). (f) (top) Contour plots representing
manual gating strategy of PD-L1+ CTLA-4− Ki67− HLA-DR+ CD4+ T-cells. (bottom) Boxplots with frequency of manually
gated signature in CD4+ T-cell population at indicated times. (e,f). Whiskers of boxplots extend to the minimum and
maximum data point, with the horizontal line indicating the median. p value calculated using two-sided Mann-Whitney U
test. ** p < 0.01, *** p < 0.001. Wk, week.

Altogether, the results obtained by FlowSOM analysis highlight distinct signatures
in melanoma and UC that correlate with clinical outcome. In melanoma, these signatures
were predominantly found in the lymphoid compartment and mainly involved different
baseline expression patterns of PD-1 and/or PD-L1: the expression of PD-L1/PD-1 in non-
proliferating (Ki67−) CD8+ and CD4+ T cells was associated with worse clinical outcome. In
the UC cohort signatures with a higher frequency of (non-) classical monocytes were found
to be correlated with response, but also had a strong inverse correlation with tumor burden.

3.6. Link between Blood and Tumor Micro-Environment

We explored possible associations between the systemic immune landscape and the
TILs score/PD-L1 expression in the tumor. In melanoma, patients with a high TILs score
(score 3 versus score 1 and 2) had a significantly lower frequency of circulating PD-L1+

CD4+ T-cells and PD-L1+ PD-1+ CD4+ T-cells (Figure S4a). This could not be confirmed in
the UC cohort (Figure S4b). No correlation between PD-L1 staining in the tumor micro-
environment and systemic immune features could be observed for both cohorts.

1 
 

 

Figure 6. Cont.
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Figure 6. Increased frequency of monocytes associates to response in urothelial cancer. (a) FlowSOM tree of concatenated
flow cytometry data of PBMCs from 9 UC patients (arm B, 36 samples). (b) UC FlowSOM trees depicting differences in the
percentage of cells assigned to clusters between non-responders and responders at pre-treatment, week 5, week 6 and week
12 of anti-PD-1 treatment. −log10(p values) are plotted on trees showing the significantly over- or underrepresented clusters
in non-responders versus responders. Colors of cluster numbers correspond with immune cell populations in a. (c) Boxplots
with percentages of metacluster 28 corresponding to CD14− CD16+ monocytes in non-responders (NR) and responders
(R) at indicated times. (d) Boxplots with percentages of metacluster 23 corresponding to CD14+ CD16+ monocytes in
non-responders (NR) and responders (R) at indicated times. (e) Boxplots with percentages of Ki67 expression in cluster
123 corresponding to CD56bright NK cells in non-responders (NR) and responders (R) at indicated times. (f) Lineplots with
the ratio of concentrations of serum Kyn and Trp (×100) in non-responders (NR) and responders (R) at indicated times.
(c–e) Whiskers of boxplots extend to the minimum and maximum data point, with the horizontal line indicating the median.
p value calculated using two-sided Mann-Whitney U test. * 0.01 < p < 0.05.

4. Discussion

In this study we conducted an in-depth analysis of baseline and on-treatment systemic
immune features in a cohort of melanoma and UC patients treated with anti-PD-1 therapy
combined with SBRT in a similar design.

Baseline immunity (before start of treatment) was clearly different between these two
cohorts, supporting a less active immune landscape in UC compared to melanoma. NLR
was significantly higher in the UC cohort. Variations in baseline NLR have been reported
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between tumor types and increased pre-treatment NLR has been linked to worse outcome
in patients treated with immunotherapy [20]. The NLR is considered as a marker reflecting
the balance between inflammation state (pro-tumoral) and adaptive immune surveillance
and response (anti-tumoral). UC patients also had higher frequencies of classical monocytes
and immunosuppressive MDSCs. In the melanoma cohort, cells of the lymphoid lineage
were higher as reflected by higher frequencies of lymphocytes in total, γδ T-cells and
proliferating B-cells. In line with this, higher serum concentrations of CXCL10, an IFNγ-
inducible chemokine involved in T-cell recruitment to the tumor [21,22], were measured
in melanoma compared to UC. In contrast, serum concentrations of soluble MICA and
MICB were higher in UC patients. MICA and MICB are ligands for the activating receptor
NKG2D and their soluble form has been implicated in the perturbation of effector immune
cell function and the stimulation of MDSCs [23].

The observation of a distinct baseline systemic immunity in the 2 cohorts may play a
prominent role in the different response rates to immunotherapy. The objective response
rate (ORR) of anti-PD-1 monotherapy reported in inoperable stage III/IV melanoma is
around 42–45%, while ORR reported in chemotherapy-refractory metastatic urothelial
cancer is considerably lower (15–28.6%) [24–27]. Currently, our understanding of intrinsic
factors such as tumor type and burden, patient age and sex, and extrinsic factors such
as prior systemic treatments that shape the immune system is far from complete. Tumor
mutational burden has been linked to response to immunotherapy and varies across
tumor types, with melanoma constituting the largest neoantigen repertoire [8,28]. Both
patients’ age and sex were evidenced to impact the driver mutations that arise during
tumorigenesis, with younger and female patients accumulating driver mutations that are
less readily presented by MHC molecules [29]. In contrast, in a meta-analysis including
more than 10,000 patients treated with immunotherapy for several types of advanced
cancers, a higher relative reduction of the risk of death was observed in male compared to
female patients [30]. Since a higher tumor mutational burden has been reported in male
patients [31,32] and this is a predictor of benefit from immune checkpoint inhibitors [33,34],
this could be a possible explanation for improved overall survival rates in male patients.
Aging has been reported to accompany certain immune changes such as a decrease in the
number and functionality of naïve CD8+ T-cells [35,36] and reduced phagocytic function
and HLA-II expression of DCs [37], indicating elder individuals have an impaired T-cell
response to cross-presented antigens (immunosenescence). Nevertheless, a large multi-
centric study reported that older melanoma patients had better response to anti-PD-1
treatment compared to younger patients [38]. In our study median age in the UC cohort
was higher in responders compared to non-responders (75.5 versus 61.0 years). Age was
not correlated with NLR in the melanoma nor the UC cohort, which is consistent with other
reports [39,40]. The depicted reference values of neutrophils and lymphocytes (Figure 2a)
further support baseline differences per tumor type independent of sex and age.

Importantly, the majority of UC patients received prior chemotherapy and one third
even received two or three treatment lines before trial inclusion, which may have al-
tered the immune landscape considerably. The impact of these immunological alterations
on immunotherapy response is unclear. A number of recent studies hypothesize that
chemotherapy may sensitize tumors for immunotherapy whereas others postulate that
chemotherapy negatively impacts myelopoiesis, induces inflammation and increased ex-
pression of immunosuppressive molecules such as IDO and PD-L1 [41–45].

The observations in this study demonstrate important differences in baseline im-
munity between and within tumor types and these may be important determinants for
immunotherapy response. Better insights into the various intrinsic and extrinsic factors
that shape this baseline immunity may be relevant in order to gain further insights how to
optimize immunotherapy response across various cancer types.

Pathological response predictive for clinical outcome to immunotherapy has been
reported early after initiation of anti-PD-1 in melanoma [34,46] and the accumulation of
CD8+ T-cells expressing inhibitory receptors (exhausted T-cells, Tex) was detected in the
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peripheral blood within 3 weeks after immunotherapy initiation [46–48]. In the current
study, we observed increased proliferation of CD8+ T-cells in the blood as early as 7 days
after anti-PD-1 treatment initiation in melanoma patients. Similar increases in Ki67+ CD8+

T-cells were detected after one or two treatment cycles in UC patients. Proliferating CD8+

T-cells were positive for the activation marker HLA-DR and for IDO and had variable
expression of checkpoint molecules such as PD-1, PD-L1 and CTLA-4.These findings are
in line with previous data in NSCLC and melanoma, where anti-PD-1 was reported to
revitalize an already existing T-cell response consisting of primed (tumor-specific) CD8+

T-cells that had become exhausted due to chronic antigen stimulation [46–48]. It has been
hypothesized by Huang et al. that reinvigoration of Tex occurs in the peripheral blood
prior to migrating into the tumor as supported by a single peak of PD-1-blockade-induced
immune reinvigoration despite on-going treatment [46,47]. In line with this, proliferating
CD8+ T-cells in the current study peaked early in the PBMC compartment and declined
upon further anti-PD-1 administration.

No clear immune boost effect could be observed after SBRT in these 2 small patient
cohorts except from a moderate increase in CXCL10 in the melanoma cohort.

In melanoma, proliferation of the total CD8+ T-cell population, PD-L1+ CD8+ T-cells
and PD-1+ CD8+ T-cells at baseline were correlated with prolonged PFS. The former two
populations were also correlated with PFS after one cycle of anti-PD-1 (PD-1 expression
was not measurable beyond baseline presumably due to anti-PD-1 treatment preventing the
in vitro added PD-1 antibodies from binding their epitopes). In contrast, FlowSOM anal-
ysis supports a negative impact of baseline PD-1/PD-L1 expression in non-proliferating
(Ki67−) T-helper (CD25− Foxp3− CD4+) and cytotoxic T-cells (CD8+). A negative prog-
nostic effect of PD-L1 expressing CD8+ T-cells in melanoma has been reported in the
context of anti-CTLA-4 immunotherapy and also in early stage melanoma without sys-
temic treatment [49,50]. FlowSOM analysis also revealed PD-1/PD-L1 co-expression on
circulating CD8+ T-cells. This has been described before, and PD-1 and PD-L1 were shown
to bind in cis with high affinity in in vitro lentivirally transduced cell cultures, including
Jurkat Cells, evidencing this interaction can also occur on T-cells in vivo [51]. These in
cis PD-1/PD-L1 interactions on CD8+ T-cells might reflect functional inactivation, which
would explain the enhanced co-expression of PD-1 and PD-L1 on CD8+ T-cells in non-
responders observed in this study. In addition PD-L1/PD-1 co-expressing CD4+ T-cells in
blood tend to be related to a lower TILs score at the level of tumor micro-environment in
our melanoma cohort. In UC patients, the expansion of proliferating (Ki67+) CD8+ T-cells
and its PD-L1+ subset relative to tumor burden was correlated with longer PFS.

These data support that the size of the proliferating cytotoxic T-cell compartment
and its expansion is closely involved in the immunotherapy response. As UC patients
have lower baseline lymphocyte counts compared to melanoma, the actual magnitude
of the expansion might be important for response initiation. In addition, in arm B of the
UC cohort tumor burden was significantly lower in responders versus non-responders,
which may explain why the ratio is of importance in the UC cohort. Huang et al. have
reported that the magnitude of the reinvigoration of Tex as a ratio to pre-treatment tumor
burden was correlated with clinical outcome in immunotherapy in melanoma [47]. The
fact that tumor burden in arm B of the UC cohort was significantly lower in responders
compared to non-responders, may be a reason why this ratio was related to response
only in the UC cohort in this study. Our data are also supported by data from the neo-
adjuvant setting where a single injection of pembrolizumab in resectable stage III or IV
melanoma patients resulted in the expansion of Ki67+ PD-1+ CTLA-4+ CD8+ T-cells in the
peripheral blood of patients 7 days post injection. This Ki67+ CD8+ T-cell population was
demonstrated to be present in the blood before start of the treatment and supports the
reinvigorating properties of anti-PD-1 therapy on a preexisting immune response [52]. In
the study of Huang et al. the CD8+ T-cell population responding to anti-PD-1 treatment
was characterized as CD45lo CD27hi, containing cells with high expression of CTLA-4, 2B4
and PD-1. Moreover this population was Eomeshi and T-betlo, which is consistent with
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an exhausted T-cell phenotype [47]. Although the proliferating CD8+ T-cells in our study
had higher expression of the activation marker HLA-DR compared to the non-proliferating
CD8+ T-cells, they also had higher IDO expression and variable expression of PD-1 and
PD-L1. The expression of these immune checkpoint molecules has been shown to be a
possible physiological negative feedback mechanism upon immune stimulation [45,53].
These data may explain conflicting results on the prognostic value of checkpoint molecules
expressed on immune cells.

These data also underline the relevance of analyzing PD-1/PD-L1 expression on
circulating T-cell subsets. Whereas PD-1 is predominantly expressed on lymphocytes,
its ligand PD-L1 has been detected on a variety of cells in the tumor microenvironment
including conventional DCs, macrophages, MDSCs, and extracellular vesicles [54–57].
Blockade of PD-L1 signaling on immune cells (especially DCs and macrophages) was
demonstrated to be critical for an optimal anti-tumor immune response, as opposed
to/in addition to cancer-cell intrinsic PD-L1 expression [55,56]. This may explain the
inconsistent observations on the role of tumor PD-L1 expression in predicting response
to PD-1 blockade, and why its absence does not preclude response [58]. Although PD-L1
expression in tumor tissue has been related to response to PD-1 blockade, a systematic
evaluation of 45 FDA-approved trials involving 15 tumor types demonstrated that PD-L1
expression was predictive in only 28.9% of cases [6]. PD-L1 expression on circulating T-cells
is less studied. Pre-treatment PD-L1 expression on peripheral CD8+ and CD4+ T-cells was
associated with worse outcome in melanoma patients receiving CTLA-4 blockade [49]. We
previously reported that the frequency of circulating PD-L1+ CD8+ T-cells in early-stage
melanoma was an independent prognostic marker. High frequencies of PD-L1+ CD8+ T-
cells were associated with other immune suppressive features including increased Kyn/Trp
ratio (implying increased IDO1 activity) and increased MDSCs and Tregs [50]. Together
with the observation in the current study that the level of PD-L1 on circulating CD4+

and CD8+ T-cells is of importance for the outcome of anti-PD-1 treatment, these findings
suggest that PD-L1 expression in the lymphocyte compartment might be an important
blood biomarker in cancer patients receiving PD-1 blockade.

FlowSom analysis in the UC cohort revealed higher frequencies of monocytes in
responding UC patients. High frequencies of non-classical CD14− CD16+ monocytes and
intermediate CD14+ CD16+ monocytes were closely correlated with lower tumor burden
at baseline. The percentage of proliferating CD56bright NK cells was also found to be
increased in responding UC patients at week 12. Intratumoral CD56bright NK cells have
been previously reported to be associated with improved survival outcomes in localized
stage bladder cancer [59]. At week 12 responding UC patients also had lower levels of
Kyn/Trp, suggesting decreased activity of IDO1, an enzyme that is implicated in acquired
immune tolerance [57,60].

The immunotherapy field in oncology is rapidly changing with superior long-term
results of combination immunotherapy in melanoma and renal cell carcinoma [61] and
very promising results in melanoma in the neoadjuvant setting that seem to be extendable
to other tumor types [62,63]. Moreover the number of clinical trials with new immune
targets is increasing e.g., TIM-3, LAG-3, GITR, TIGIT. Immune monitoring of peripheral
blood is attractive for dynamic monitoring of the immune system, which ideally could
lead to a strategy of treatment adaptation in order to optimize response. In the current
study blood signatures before and during treatment with anti-PD-1 therapy combined with
SBRT were investigated. Whether the observed signatures related to clinical outcome are
applicable in daily practice and can be extrapolated to other immunotherapy regimens such
as the combination of anti-PD-1 with anti-CTLA4 needs to be further investigated. Distinct
cellular mechanisms of anti-PD-1 or anti-CTLA-4 monotherapy compared to combination
therapy have been detected in the peripheral blood [64,65] and anti-CTLA4 monotherapy
has been shown to induce some immune landscape changes in blood that are considered
negative for response on subsequent anti-PD-1 treatment [52]. These immune monitoring
data can provide relevant insights in how to optimize immunotherapy strategy.
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5. Conclusions

Despite the limitations of small sample sizes, use of cryopreserved samples and multi-
ple testing in the FlowSom analysis, this study clearly reveals a different baseline immune
landscape in melanoma and UC which may be of importance for immunotherapy response.
The intrinsic (host and/or tumor related) and extrinsic factors (e.g., prior treatments) that
shape this immune landscape are currently incompletely understood. Better insights in
these determinants may be important to gain new insights for optimizing immunotherapy
outcome. This study also reports signatures of proliferation in the CD8+ T-cell compartment
prior to and early after anti-PD-1 initiation that were positively correlated with clinical
outcome. Moreover our data support the clinical relevance of PD-1/PD-L1 expression on
circulating immune cell subsets in melanoma.
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Simple Summary: Neuroblastoma is a type of childhood cancer accounting for approximately 15%
of childhood cancer deaths. Despite intensive treatment, including immunotherapy, prognosis of
high-risk neuroblastoma is poor. Increasing amounts of research show that the fighting capacity of
the immune system is very important for the outcome of neuroblastoma patients. Therefore, we
investigated the fighting capacity of immune cells in blood at diagnosis and during the different
phases of therapy. In this study, we observed both processes that stimulate and processes that
decrease fighting capacity of immune cells in neuroblastoma patients during therapy. Despite
this, we show that overall fighting capacity of the immune system of neuroblastoma patients is
impaired at diagnosis as well as during therapy. In addition, we observed a lot of variation between
patients, which might explain differences in therapy efficacy between patients. This study provides
insight for improvement of therapy timing as well as new therapy strategies enhancing immune cell
fighting capacity.

Abstract: Despite intensive treatment, including consolidation immunotherapy (IT), prognosis of
high-risk neuroblastoma (HR-NBL) is poor. Immune status of patients over the course of treatment,
and thus immunological features potentially explaining therapy efficacy, are largely unknown. In this
study, the dynamics of immune cell subsets and their function were explored in 25 HR-NBL patients
at diagnosis, during induction chemotherapy, before high-dose chemotherapy, and during IT. The
dynamics of immune cells varied largely between patients. IL-2- and GM-CSF-containing IT cycles
resulted in significant expansion of effector cells (NK-cells in IL-2 cycles, neutrophils and monocytes
in GM-CSF cycles). Nonetheless, the cytotoxic phenotype of NK-cells was majorly disturbed at
the start of IT, and both IL-2 and GM-CSF IT cycles induced preferential expansion of suppressive
regulatory T-cells. Interestingly, proliferative capacity of purified patient T-cells was impaired at
diagnosis as well as during therapy. This study indicates the presence of both immune-enhancing as

431



Cancers 2021, 13, 2096

well as regulatory responses in HR-NBL patients during (immuno)therapy. Especially the double-
edged effects observed in IL-2-containing IT cycles are interesting, as this potentially explains the
absence of clinical benefit of IL-2 addition to IT cycles. This suggests that there is a need to combine
anti-GD2 with more specific immune-enhancing strategies to improve IT outcome in HR-NBL.

Keywords: neuroblastoma; immune monitoring; anti-GD2; IL-2; GM-CSF; ASCT; immunotherapy;
dinutuximab

1. Introduction

Neuroblastoma (NBL) is the most common extracranial solid tumor in children, ac-
counting for approximately 15% of all pediatric oncology deaths [1]. Patients are stratified
as low, intermediate or high risk (HR), depending on various factors (e.g., age, tumor stage,
and several genetic components, such as MYCN amplification) [2]. HR-NBL patients are
treated with multimodal therapy consisting of chemotherapy, high-dose chemotherapy
followed by autologous stem cell transplantation (ASCT), resection of the tumor, local
radiation, and maintenance immunotherapy (IT) consisting of the anti-GD2 monoclonal
antibody, often combined with the cytokines IL-2 and GM-CSF, and isotretinoin acid [3–5].
Despite intensive treatment, 5 year event-free survival (EFS) is <50% [6,7].

Dinutuximab, the monoclonal antibody used in NBL IT, targets GD2 on the surface
of NBL cells and signals antibody-dependent cell-mediated cytotoxicity (ADCC) and
complement-dependent cytotoxicity (CDC) [3]. The rationale to alternately add GM-CSF
and IL-2 to the IT cycles was to increase expansion and functional activity of natural killer
(NK) cells, lymphocytes, monocytes/macrophages, and neutrophils. This was mainly
supported by in vitro data indicating superior cytotoxic effects when combining dinutux-
imab with these cytokines [8,9]. Even though IT increased 2 year EFS and overall survival
(OS) [3], relapses are still observed in the majority of patients.

The dose, timing, and chosen immunotherapeutic compound combinations are cur-
rently highly empirical and do not take patients’ immune status into account. Fast immune
reconstitution during chemotherapy and higher absolute lymphocyte and monocyte counts
have been associated with improved overall outcome in multiple cancers [10–12]. Nassin
et al. showed that most patients with HR-NBL do not have full immune reconstitution
at the start of IT (based on total white blood cell count (WBC), hemoglobin, and platelet,
absolute neutrophil, lymphocyte and monocyte counts) and that immune recovery may
correlate with disease-related outcomes [13]. Relatively fast NK-cell recovery early after
ASCT was an important rationale for timing of IT early after transplantation [14]. Nonethe-
less, more detailed evaluation of NK-cell subsets showed that most cells are immature,
cytokine-releasing (CD56bright, CD16+/−) rather than cytotoxic (CD56dim, CD16+). This
may suggest suboptimal timing of dinutuximab IT early after transplantation, as cytotoxic
NK-cells are mainly responsible for anti-GD2-dependent ADCC [13]. Nonetheless, to date,
the potential effect of the IT regimen on shifting to the mature NK-cell phenotype has not
been addressed.

Another important observation came from a phase III clinical trial where no additive
effect of IL-2 administration on outcome of high-risk NBL patients was observed [4].
It is hypothesized that this may be the result of masking of the positive effects of IL-
2 (e.g., on NK-cell expansion and functionality) by preferential regulatory T-cell (Treg)
expansion [4,13], an effect known when administering (low dose) IL-2 to patients with
autoimmune diseases [15]. Nevertheless, studies addressing this observation during NBL
IT are lacking.

It may be hypothesized that post-ASCT immune reconstitution occurs with disparate
kinetics in different patients, which may affect treatment efficacy of immune-targeting
therapy. Comprehensive understanding of the status of the immune system in these
patients may be instrumental for further development of immunotherapeutic interventions

432



Cancers 2021, 13, 2096

after ASCT. However, no studies have monitored the immune status in NBL patients
during chemotherapy and IT and included functional analysis. Therefore, we monitored
the immune status in NBL patients during chemo- and immunotherapy. In addition, the
effect of IL-2 and GM-CSF on leukocyte and lymphocyte subpopulations and their (effector)
cell functions during IT were studied.

2. Materials and Methods
2.1. Patients and Treatment

HR-NBL patients diagnosed between January 2015 and January 2018 treated in the
Princess Máxima Center for Pediatric Oncology (Utrecht, The Netherlands) or Uniklinik
Köln (Cologne, Germany) were included in this study. Patients were treated following
the same treatment protocol based on N5/N6 chemotherapy (Dutch NBL2009 trial [16]
and NB2013-HR pilot GPOH/DCOG trial; N5 = cisplatin, etoposide, vindesine, N6 = vin-
cristine, dacarbacin, ifosfamide, doxorubicin). Staging was performed according to the
International NBL Staging System (INSS) [17]. MYCN and ALK amplification status was
determined with FISH, SNP-array was used for the determination of CNVs in 1p and 17q.
The study was approved by the Medical Ethical Committees (Academic Medical Center,
Amsterdam, the Netherlands; NL50762.018.14 and the University of Cologne, German trial
2013-004481-34). Written informed consent was obtained from the parents or guardians
before enrollment in accordance with the Declaration of Helsinki.

2.2. Sample Collection

Peripheral blood samples (EDTA) were transported to the laboratory at room tempera-
ture (RT), and a Trucount cell subset enumeration tube was analyzed using flow cytometry
within 24 h after blood withdrawal. Plasma was isolated after centrifugation and stored at
−80 ◦C until analysis. Peripheral blood mononuclear cells (PBMCs) were isolated using
Ficoll density gradient centrifugation, frozen in fetal calf serum (Bodinco, Alkmaar, The
Netherlands) containing 10% dimethyl sulphoxide (Sigma-Aldrich, St. Louis, MO, USA),
and stored in liquid nitrogen in the UMCU biobank until use in experiments. Frozen
control donor PBMCs, taken from healthy adult volunteers, served as control group.

In Utrecht, peripheral blood samples were taken at diagnosis (1 sample from 7 pa-
tients), after each N5/N6 cycle (1–3 samples from 18 patients), before the high-dose (HD)
chemotherapy regimen (1 sample from 7 patients), at start of IT (1 sample from 7 patients)
and after 3 and 6 cycles of IT (1–2 samples from 8 patients) as depicted in Figure S1. In
Cologne, peripheral blood samples were taken at start of IT and every 2 weeks during IT
cycle 1–5. Samples were shipped at RT to the laboratory in Utrecht and processed within
24 h as described above.

2.3. Treg and NK-Cell Phenotyping

PBMCs were thawed and stained with either Treg or NK-cell discriminating antibod-
ies. The Treg panel was comprised of the following extracellular antibodies: CD3-AF700,
CD4-eFluor780, CD8-PE-Cy7, CD25-PE, CD127-BV421, CD45RO-BV711 (Biolegend, Bi-
olegends, Koblenz; Germany). For intracellular staining, cells were permeabilized after
extracellular staining, using the eBioscience kit (Thermo Fisher Scientific, Darmstadt, Ger-
many) and stained for FOXP3 expression. The NK-cell panel comprised of CD3-AF700,
CD19-eFluor780, CD56-PE-Cy7, CD16-BV510, CD45RO-BV711, TCRVα24-PE, TCRVβ11-
FITC (Biolegend). All samples were measured within 24 h after staining on a BD LSR
Fortessa (BD Biosciences, Heidelberg, Germany). All flow cytometry data were analyzed
with FlowJo software version 10.6.0 (Tree Star, Ashland, OR, USA). Output CSV documents
were further analyzed using RStudio (version 1.2.1335).

2.4. Proliferation Assay

To assess proliferation of T-cells, PBMCs were thawed, labelled with Celltrace Violet
(CTV) (ThermoFisher Scientific)) and cultured in a round-bottom 96-well plate for 3 days
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at 37 ◦C and 5% CO2. 25,000 PBMCs were cultured in duplicates in the presence of anti-
CD3 (0.5 µg/mL, 16-0037-81; ThermoFisher Scientific), or without stimuli. On day 3,
supernatants were collected (pooled from duplos) and stored (as described in Section 2.6).
Proliferation of PBMCs was analyzed using flow cytometry.

2.5. Suppression Assay

Patient and healthy-donor (HD) CD4+CD25highCD127low Tregs were sorted using
BD FACSAriaTM. Tregs were added to CTV-labelled effector cells at an effector-to-target
ratio (E:T) of 2:1 in a crossover manner: (1) Tregs patient + effector cells patient; (2) Tregs
patient + effector cells HD; (3) Tregs HD + effector cells patient; (4) Tregs HD + effector
cells HD. Then, 96-well plates were coated with anti-CD3 (16-0037-81; ThermoFisher) to
provide a proliferation stimulus. At day 3, the proliferation of effector cells was analyzed
with flow cytometry.

2.6. Protein Profiling

Supernatant from the proliferation assays was collected after 3 days of culture, and
stored at −80 ◦C until cytokine measurement. Interferon-γ (IFN-γ), tumor necrosis factor
α (TNF-α), soluble IL-2R, IL-2, IL-10, IL-13, and IL-17 were measured using multiplex
immunoassays (Luminex Technology, Austin, TX, USA). The multiplex immunoassay was
performed as described previously by the MultiPlex Core Facility (MPCF) of the UMCU [18].
Out-of-range (OOR</OOR>) and extrapolated values were systematically replaced using
the following procedure. The LLOQ (lower limit of quantification) and ULOQ (upper
limit of quantification) were retrieved for the measured analytes of the experiment. The
LLOQ and ULOQ values were retrieved per analyte by the MPCF. The lowest measurement
was compared with LLOQ for each marker, to retrieve the lowest values for all measured
markers. The same was performed for the highest value. OOR< data were replaced by the
lowest value divided by 2. OOR> data were replaced by highest value times 2. The same
procedure was performed for extrapolated data. For some markers, there are no LLOQ
and ULOQ obtained yet. In that case, the lowest and highest measurements within the
experiment were used for the replacement of OOR and extrapolated data.

Plasma samples were analyzed using the Proseek Multiplex Immuno-oncology im-
munoassay panel (Olink Biosciences, Uppsala, Sweden). Proseek is a high-throughput
multiplex immunoassay based on proximity extension assay (PEA) technology that enables
the analysis of 92 immuno-oncology-related biomarkers simultaneously. In short, PEA
technology makes use of antibody pairs linked with matching DNA-oligonucleotides per
protein of interest. These oligonucleotides hybridize when brought into proximity after
binding the protein and are extended by DNA polymerase, thereby forming PCR targets.
These targets are quantified by real-time PCR. Obtained results are expressed in normalized
protein expression (NPX) values, which are in a log2 scale.

2.7. Statistics

Statistical analysis of absolute cell numbers and Treg expansion during IT was per-
formed using the Mann–Whitney U test, comparing differences between groups before
and after administration of IL-2 and GM-CSF. Hierarchical clustering analyses, presented
as heatmaps, were based on Ward’s method and pairwise correlation distance. Heatmaps
were generated using the heatmap.2 function from the gplots package [19]. To identify
significant differences between protein levels before and after IL-2 and GM-CSF IT cy-
cles, the Wilcoxon signed rank test was performed with correction for multiple testing
according to Benjamini and Hochberg [20] for IL-2 cycles and the Mann–Whitney test with
correction for multiple testing [20] for GM-CSF cycles. RStudio Project Software (version
1.2.1335) [21] was used for statistical analyses. Adjusted p-values of < 0.05 were considered
statistically significant.
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3. Results
3.1. Patient Characteristics

Twenty-five patients were included in this study (Table 1) with a median age at
diagnosis of 3.9 years (range 0.3–10.8). A slight majority (56%, n = 14) had at least a partial
response after induction chemotherapy. These patients continued therapy following the
HR treatment protocol. Nonresponders (44%, n = 11) received additional chemotherapy
(2–4 N8 cycles (etoposide, topotecan, cyclophosphamide)), and 14% (n = 4) received 131I-
metaiodobenzylguanidine (131I-MIBG) therapy. Twenty out of 25 patients received HD
chemotherapy followed by ASCT, seventy percent (n = 14/20) of patients received HD
busulfan and melphalan (Bu-Mel) and 30% (n = 7/20) received HD carboplatin, etoposide,
and melphalan. Following ASCT, 80% (n = 6/20) received dinutuximab IT in combination
with cytokines. The four patients who did not receive IT had progressive disease. The
mean time from ASCT to start IT was 137 days (range 108–193 days). The median time of
follow-up for surviving patients was 2.14 years (range 0.65–3.67). The median event-free
survival (EFS) was 1.65 years (range 0.11–3.67).

Table 1. Patient characteristics and time of sampling.

Patient Characteristics Total (n = 25)

Gender
male

female
14 (56%)
11 (44%)

Median age at diagnosis, year, (range) 3.9 (0.3–10.8)
Stage 3 disease 1 (4%)
Stage 4 disease 24 (96%)

Genetics
MYCN

Neg
Gain
Amp

18 (72%)
2 (8%)

5 (20%)
1p

normal
partial loss

loss
gain

14 (56%)
9 (36%)
1 (4%)
1 (4%)

17q
normal

partial gain
gain

unknown

1 (4%)
10 (40%)
11 (44%)
3 (12%)

ALK mutation
Yes
no

gain
unknown

5 (20%)
16 (64%)

1 (4%)
3 (12%)

CR or PR after induction chemotherapy (3× N5/N6) 14 (56%)
HD + ASCT 20 (80%)

Conditioning Regimen
Busulfan/melphalan 14/20 (70%)

Carboplatin/etoposide/melphalan 6/20 (30%)
CD34+ cell dose ×106/kg, (range) 2.47 (0.59–21.73)

Immunotherapy 16 (64%)
Time to immunotherapy, d, (range) 137 (108–193)

Event: progression or relapse 7 (31%)
Event: Refractory Disease 3 (14%)

Event: Toxicity 1 (5%)
Alive at last FU 14 (56%)

Median EFS, year (range) 1.65 (0.11–3.67)
Median follow-up OS, year, (range) 2.14 (0.65–3.67)

Abbreviations:CR, complete response; PR, partial response; HD, high-dose; ASCT, autologous stem cell transplan-
tation; FU, follow-up; EFS, event-free survival; OS, overall survival.
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3.2. Immune Profiles at Diagnosis, during Induction Chemotherapy, and before High-Dose
Chemotherapy Show Broad Variation between Patients

In the period before ASCT, large variations were observed between patients and
between treatment cycles within individual patients in absolute leukocyte, lymphocyte,
monocyte, neutrophil, eosinophil and specific lymphocyte subsets (B-cells, NK-cells, and T-
cells) (Figure 1). Absolute neutrophil counts fluctuated most, peaking after the first N5/N6
chemotherapy cycle. B-cells decreased after the first round of N5/N6 chemotherapy
and remained low during chemotherapy. Absolute lymphocyte counts remained similar
between patients, while NK-cells and T-cells showed a large variation between patients.
No correlation was found between absolute lymphocyte counts and occurrence of an event
or MYCN status.

Figure 1. Immune profiles at diagnosis, during induction chemotherapy, and before high-dose conditioning. Each
colored dot indicates absolute counts from one patient (×103/uL). Absolute leukocyte (a), lymphocyte (b), monocyte (c),
neutrophil (d), eosinophil (e), B cell (f), NK cell (g), and T cell (h) numbers are shown at diagnosis (Dx), after the 1st, 2nd, and
3rd round of N5/N6 induction chemotherapy, before high-dose chemotherapy (before HD), and at start of immunotherapy
(start IT) from 6, 9, 10, 12, 7, and 4 patients respectively.
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3.3. Immune Profiles during Immunotherapy Show Effect of IL-2 and GM-CSF on Leukocyte and
Lymphocyte Subsets

To determine whether the in vitro effects of IL-2 and GM-CSF are also observed
in vivo, immune profiles were generated during IT. In concordance with the rationale, total
lymphocyte counts increased significantly after IL-2-containing IT cycles (p = 0.01), due to
an increase of NK-cells (p < 0.01) (Figure 2 and Figure S2). IL-2 had no effect on total CD3+
T-cells (p = 0.67), CD19+ B cells (p = 0.70), and monocytes (p = 0.57). Neutrophils decreased
significantly after IL-2 administration (p = 0.01), while eosinophils showed a trend towards
increased numbers in peripheral blood after IL-2 (p = 0.19).

Figure 2. Immune profiles before and after IL-2-containing immunotherapy cycles. Each colored dot indicates absolute
counts from one patient (×103 cells/uL). From 5 patients, samples were paired before IL-2 (day 1 IT cycle 2 or 4) and after
IL-2 (day 15 IT cycle 2 or 4). In total, 7 paired samples are depicted (colored lines), because two patients were monitored
in both IL-2 cycles. Nine single measurements from 9 other patients were included, resulting in a total of 14 patients
(11 in study, 3 leftover material during IT). Absolute eosinophil (a), neutrophil (b), lymphocyte (c), monocyte (d), T-cell (e),
NK-cell (f), and B-cell numbers (g) are shown. * p < 0.05, ** p < 0.001.

GM-CSF-containing IT cycles increased total lymphocytes (p = 0.05) and monocytes
(p = 0.03), and a trend towards increased neutrophils (p = 0.07). GM-CSF had no effect
on total CD3+ T-cell (p = 0.28), NK-cells (p = 0.12), and CD19+ B cells (p = 0.19) (Figure 3
and Figure S3). In addition, administration of GM-CSF resulted in a notable increase of
eosinophils (p < 0.001).
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Figure 3. Immune profiles before and after GM-CSF-containing immunotherapy cycle. Each colored dot indicates absolute
counts from one patient (×103 cells/uL). From 5 patients, samples were paired before GM-CSF (day 1 IT cycle 1, 3 or 5) and
after GM-CSF (day 15 IT cycle 1, 3 or 5). In total, 9 paired samples are depicted (colored lines), because two patients were
monitored during all 3 GM-CSF cycles. Twelve single measurements from 12 other patients were included, resulting in
a total of 17 patients (11 in study, 6 left over material during IT). Absolute eosinophil (a), neutrophil (b), lymphocyte (c),
monocyte (d), T-cell (e), NK-cell (f), and B-cell numbers (g) are shown. * p < 0.05, *** p < 0.0001.

3.4. Plasma Protein Profiling Further Supports IL-2 and GM-CSF Mediated Immune Engagement
during Immunotherapy

Olink protein analysis was subsequently performed in plasma samples of 6 patients to
determine protein profiles along the IT course. Protein profiling showed distinct patterns
between pre- and post-IL-2 and pre- and post-GM-CSF-containing IT cycles. Unsupervised
clustering resulted in complete separation of protein profiles pre- and post-IL-2-containing
IT cycles (Figure S4A) and partial separation of protein profiles pre- and post-GM-CSF-
containing IT cycles (Figure S4B).

Even though the sample sizes are too small to observe statistically significant dif-
ferences upon IL-2-containing IT, increases can be observed in many NK-cell activation-
associated markers, including GZMA/B/H, KIR3DL1, and NCR1 (all p = 0.18), IFN-γ
(p = 0.34), CASP-8 (p = 0.17), and KLRD1 (p = 0.32) (Figure 4). Upon GM-CSF-containing IT
cycles, significant increases in several neutrophil-, monocyte-, and eosinophil-associated
factors, including CCL23 (p = 0.046), CCL17 (p = 0.015), CXCL11 (p = 0.037), and MCP-4
(p = 0.015) are observed (Figure 5).
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Figure 4. Upregulation of NK-cell activation-associated protein markers upon IL-2-containing immunotherapy cycles.
Plasma protein concentration of GZMA/B/H (p = 0.181) (A–C), and KLRD1 (p = 0.324) (D), NCR1 (p = 0.181) (E), IFN-y
(p = 0.339) (F), CASP-8 (p = 0.175) (G), and KLRD1 (p = 0.324) (H) pre- and post-IL-2-containing IT cycles. Protein expression
is shown as normalized protein expression (NPX). In total, 5 paired samples are shown, as two patients were monitored
during both IT cycles.

Figure 5. Upregulation of neutrophil-, monocyte-, and eosinophil-associated factors upon GM-CSF-containing immunother-
apy cycles. Plasma protein concentration of CXCL11 (p = 0.037) (a), CCL23 (p = 0.046) (b), CCL17 (p = 0.015) (c), and
MCP-4 (d) (p = 0.015) pre- and post-GM-CSF-containing IT cycles. Protein expression is shown as normalized protein
expression (NPX). In total, 7 paired samples are shown, as two patients were monitored during all three IT cycles. Two
single measurements from patients pre-GM-CSF were included, resulting in a total of 9 patients pre- and 7 post-GM-CSF.
* p < 0.05.

3.5. NK-Cell Phenotype Varies Widely between Patients and Is Suboptimal for Efficient
Dinutuximab-Mediated Cytotoxicity

As mentioned, the timing of IT in the NBL treatment protocol is established based
on the observation of relatively fast NK-cell recovery early after ASCT [14]. Fast NK-cell
recovery was observed based on absolute cell numbers (Figure 1g). However, even though
variation is large, the balance between absolute numbers of mature, cytotoxic NK-cells
(CD56dimCD16+) known to be mainly responsible for anti-GD2-dependent ADCC [13]
and immature, cytokine-releasing NK-cells (CD56brightCD16−) was majorly disturbed at
diagnosis and during all phases of the treatment protocol [22] (Figure 6a).
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Figure 6. The cytotoxic CD56dimCD16+/CD56brightCD16− NK-cell ratio during HR-NBL therapy.
(a) The ratio of absolute CD56dimCD16+ and CD56brightCD16- Trucount cell numbers is highly
variable between patients and is decreased at diagnosis and during therapy of HR-NBL patients.
Dx: n = 7, 1st N5/N6: n = 11, 2nd N5/N6: n = 10; 3rd N5/N6: n = 11, before HD: n = 7, start IT:
n = 7, After IT Cycle 1–3: n = 10, After IT cycle 4–5: n = 8. The dotted line reflects the reference value
of the cytotoxic NK-cell ratio of healthy individuals [22]. (b,c) In-depth monitoring of the fraction
of CD56dimCD16+ and CD56brightCD16− in two patients during the IT course shows an increase in
cytotoxic (CD56dimCD16+) NK-cell phenotype after IL-2-containing IT cycles. In patient 1, the ratio
remains below the normal cytotoxic NK-cell ratio of 9, whereas the ratio of patient 1 reaches normal
values after the first IL-2-containing IT cycle and is increased after the second IL-2-containing IT
cycle. Red arrows indicate start of IL-2-containing therapy cycles.

As plasma levels of NK-cell activation-associated markers increased upon IL-2-containing
IT cycles, the NK-cell phenotype of two patients was subsequently assessed along the IT course.
In both patients, we observed a major shift towards the mature, cytotoxic CD56dimCD16+ phe-
notype after both IL-2-containing IT cycles (Figure 6b,c). The CD56dimCD16+/CD56brightCD16−
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ratio of patient 1 remained lower than the ratio of 9–9.5 in healthy controls [23], whereas the
ratio of patient 2 reached a normal (IL-2 cycle 1) or superior (IL-2 cycle 2) NK-cell ratio.

3.6. Preferential Treg Expansion and Impaired T-Cell Proliferation during Therapy

Even though no significant changes were observed in absolute CD3+ T-cell levels
after IL-2- or GM-CSF-containing IT cycles, it is suggested that cytokine therapy can shift
the phenotype of CD3+ T-cells. To explore this effect during IT, extensive phenotyping of
the CD3+ T-cell fraction was performed. Administration of IL-2 in this study massively
increased the frequency of circulating CD4+CD25highCD127dim FOXP3+ Tregs (Figure 7a,b).
In addition, GM-CSF also increased the frequency of Tregs, although to a lower extent than
IL-2 (Figure 7b). These data were supported by an increased trend in plasma levels of IL-10
(GM-CSF: p = 0.144, IL-2: p = 0.339) (Figure 7c).

Figure 7. Cont.
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Figure 7. Regulatory T-cell profiles and their suppressive capacity during immunotherapy. (a) Exam-
ple of gating of CD25highCD127dim cells within the CD3+CD4+ T-cell population (upper panels) and
gating of FoxP3 within the CD25highCD127dim cell population before and after IL-2 administration
(lower panels). (b) Percentages of Tregs (within CD3+CD4+ T-cell population) increase 4–5-fold after
IL-2 administration (left) and increase 1–2-fold after GM-CSF administration (right). (c) Plasma IL-10
levels pre- and post-IL-2 (p = 0.339) (left) and GM-CSF (p = 0.144) (right). Protein expression is shown
as normalized protein expression (NPX). IL-2: In total, 5 paired samples are shown, as two patients
were monitored during both IT cycles. GM-CSF: In total, 7 paired samples are shown, as two patients
were monitored during all three IT cycles. Two single measurements from patients pre-GM-CSF
were included, resulting in a total of 9 patients pre- and 7 post-GM-CSF. (d) CTV staining of PBMCs
of a healthy donor co-cultured without Tregs (grey), with patient Tregs (green), or healthy-donor
Tregs (blue), or unstimulated (red) at an effector-to-target ratio of 2:1. (e) Relative percentages of
proliferation of HD CD3+ T-cells co-cultured with patient Tregs (blue) or HD Tregs (green) compared
to proliferation without Tregs (red). CD3+ T-cell proliferation was measured in patient 1 (during
cycle 2 and 4), patient 2 (during cycles 1, 2 and 5) and patient 3 (during cycle 1 and 2). HD = healthy
donor, PT = patient. ** p < 0.001, *** p < 0.0001.

To subsequently determine whether patient Tregs are functional, a Treg crossover
suppression assay was performed in which patient Tregs from different IT time points
were co-cultured with healthy-donor PBMCs. Healthy-donor PBMC proliferation was
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decreased upon co-culture with patient Tregs, indicating their suppressive capacity, even
though suppressive capacity seems to be decreased when compared with healthy-donor
Tregs (Figure 7d,e). In 2 of the 7 measurements (patient 1 cycle 2 and patient 3 cycle 1), no
T-cell suppression was noticed.

To assess functionality of the CD3+ T-cell fraction in terms of proliferative capacity
during IT, PBMCs were stimulated for three days with anti-CD3. Interestingly, anti-CD3-
mediated T-cell proliferation was impaired in the majority of patients at different IT time
points (Figure 8a). This was supported by decreased levels of secreted cytokines in stimu-
lated patient PBMCs as compared to healthy-donor PBMCs (Figure 8b). Possible interfer-
ence of CD25+CD127low Tregs or low-density eosinophils on T-cell proliferation was ruled
out by performing additional T-cell proliferation assays without these cell populations.
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Figure 8. T-cell proliferation is impaired at diagnosis as well as during therapy in HR-NBL.
(A) PBMCs of healthy donors (HD) (red) and patients (PT) (blue) were stimulated with anti-CD3
(0.5 µg/mL). T-cell proliferation of each individual sample is shown (duplos were pooled); PBMCs
HD (n = 8), PBMCs patients (n = 12). (B) Supernatants (HD n = 15, patients n = 17) were analyzed
using Luminex-based multiplex immunoassays. The heatmap shows the log concentration of IL-2,
IL-10, IL-13, IL-7, TNF-α, IFN-γ and soluble IL-2R, with low levels indicated in blue and high levels
indicated in red.

4. Discussion

Absolute lymphocyte counts, relative presence of subsets, and their phenotypical
characteristics are rarely monitored in NBL patients and not used as prognostic criteria
or treatment guidance, largely due to a lack of knowledge on clinical significance. In the
present study, we show that immune profiles of HR-NBL patients are already disturbed
(reduced levels of CD3+, CD56+, and CD19+ lymphocyte subsets) at diagnosis when
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compared to age-matched controls [24]. This is in line with Tamura et al. [25], who also
reported that lower levels of immune cells at diagnosis may predict poor prognosis in
patients with NBL. As HR-NBL often disseminates to the bone marrow, it is hypothesized
that the decreased immune cell levels are most likely caused by tumor replacement and/or
by tumor-related suppressive factors present in the bone marrow niche [25,26]. This is
supported by studies observing lower leukocyte [26] or monocyte and lymphocyte [25]
levels in patients with bone marrow metastases.

Moreover, we confirm data from Chung et al. [26] showing that the decrease in total
leukocytes and lymphocytes in children with HR-NBL is even more pronounced after
chemotherapy. We however observed a large interpatient variability between chemotherapy
cycles; while B cells are completely depressed during all stages of N5/N6 chemotherapy,
the numbers of monocytes, NK and T lymphocytes differed enormously. Whether these
variations correlate to clinical outcome will be subject of follow-up studies with larger cohorts.

The effect of chemotherapeutic agents on the immune compartment should be kept in
mind when combining IT with re-induction chemotherapy in relapsed/refractory patients.
The effect of chemotherapy on IT efficacy is paradoxal, as levels of effector cells are
often affected. On the other hand, targeting of immunosuppressive immune subsets
and increased immunogenicity of tumor cells are described as processes to enhance IT
efficacy [27–29]. Timing and chemotherapeutic compound selection are key to maximize
the effect of IT in refractory/relapsed patients.

When subsequently looking into the functionality of T-cells at diagnosis and during
the therapy regimen, we noticed hampered proliferation and cytokine secretion upon anti-
CD3-mediated T-cell stimulation. In line with this, impaired PHA mitogenesis at diagnosis
and during NBL therapy has been observed in several studies [30,31]. Helson et al. [31]
and Pelizzo et al. [32] showed hampered PHA-mediated T-cell mitogenesis when cultures
were supplemented with serum of NBL-patients, or mesenchymal stromal cells (MSCs)
from HR-NBL patients, respectively. This indicates the presence of both local and systemic
immune modulation by the NBL tumor. Several factors have been described that are able to
modulate T-cell functionality, including TGF-β, Indoleamine-pyrrole 2,3-dioxygenase (IDO),
and arginase [33,34]. The depletion of arginine by arginase [33] leads to T-cell cycle arrest,
impaired proliferation, and reduced activation [35,36]. Although impaired T-cell proliferation
is already noticed at diagnosis, it should be noted that immune function may be further
inhibited by intensive treatment. In-depth phenotyping, proteomics, and pathway-analysis
of T-cells during HR-NBL treatment is necessary to unravel mechanisms responsible for
T-cell dysfunctionality as a first step to develop strategies to counteract this effect.

The effect of the IT regimen on NK-cell phenotype is largely unknown. Even though
variation between patients is considerable, our data indicate that the cytotoxic NK-cell
ratio increased during IT. We observed a delayed increase of the cytotoxic ratio in two
patients upon IL-2-containing IT cycles. However, the NK-cell phenotype ratio of the
majority of patients is still decreased at the end of IT, which suggests suboptimal IT timing.
The observed differential effect of GM-CSF- and IL-2-containing IT cycles on the cytotoxic
NK-cell ratio indicates that this is an effect induced by IL-2 rather than dinutuximab itself.

To our knowledge, this is the first study to show beneficial effects of GM-CSF and
IL-2 addition to IT cycles in HR-NBL patients on both NK-cells (increased cytotoxic
NK-cell ratio and plasma levels of NK-cell-associated factors (e.g., granzymes, KLRD1,
NCR1, IFN-γ, CASP-8, KLRD1)), as well as on myeloid cells (based on plasma levels
of neutrophil/monocyte-associated factors (e.g., CXCL11, CCL17, CCL23, and MCP4)).
Nonetheless, Ladenstein and colleagues [4] recently concluded from a phase III clinical trial
that there is no additive effect of IL-2 administration on outcome of HR-NBL patients. We
noticed a strong increase of CD127dimCD25highFOXP3+ Tregs after IL-2, and to a lesser
extent, also GM-CSF administration. This increase has been described before [37]; however,
in many cases without confirming FOXP3 positivity, this may be expected based on results
from autoimmune patients [15] where (low dose) IL-2 is administered to induce Tregs.
Previously, preclinical data showed that Tregs inhibit anti-NBL immune responses before
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and after ASCT [38–40]. Using functional suppression assays in a crossover format, we
showed that these Tregs also maintain their suppressive capacity at multiple time points
during IT. Together, these data suggest that the beneficial effects of IL-2 may be masked by
preferential Treg expansion.

The observation of increased NK-cell cytotoxicity during IL-2-containing IT cycles in
our opinion substantiates the need to replace IL-2 during dinutuximab IT with other non-
Treg engaging (immuno)therapeutic compounds/strategies to maximize IT efficacy. First of
all, the start of IT can be delayed to allow further recovery of the NK-cell fraction. However,
the observation that the NK-cell phenotype is already disturbed at diagnosis, together with
the risk of the tumor to expand before the start of IT, are arguments against postponement
of IT. A second strategy would be to combine dinutuximab with soluble factors more
specifically activating NK-cells, for example, Lirilumab, an anti-KIR antibody currently
tested in the ESMART trial from the ITCC (ClinicalTrials.gov Identifier: NCT02813135). In
addition, NKTR-214, a CD122-biased cytokine agonist designed to preferentially activate
and expand effector CD8+ T- and NK-cells over Tregs via the heterodimeric IL-2 receptor
pathway (IL-2R-βγ) [41], is an interesting candidate to replace IL-2 [42]. Combining
dinutuximab with IL-15 is also of interest, as this cytokine is known to specifically expand
and mature NK-cells, without affecting Treg expansion [43,44]. The delayed effect of
IL-2 on the cytotoxic NK-cell ratio observed in this study may substantiate an approach
in which NK-cell engaging therapy is provided prior to dinituximab-based IT. A third
strategy would be to combine IT with an adoptive NK-cell therapy at the start of IT to
maximize effector cell function, either via an autologous (ClinicalTrials.gov Identifiers:
NCT02573896, NCT04211675) or allogeneic (haploidentical) [45] strategy (ClinicalTrials.gov
Identifier: NCT03242603). The advantage of using allogeneic cells is the potential to select
a mismatched donor to maximize anti-tumor effect. On the other hand, the risk of graft
rejection and mismatch-related adverse events in allogeneic settings is a clear disadvantage
compared to the use of an autologous, ex vivo-expanded, cell product.

Immune monitoring of HR-NBL patients comes with some limitations. The avail-
ability of patient samples was limited by dropout of patients from the study after re-
lapse/progression of disease, transfer to other trials, failure of blood sampling, and logis-
tical issues. In this study, immune status was monitored in peripheral blood only, which
provides markers that would be easily translatable to monitoring protocols in the clinic.
Nevertheless, information on tumor-infiltrating lymphocytes (TILs), and monitoring lym-
phocytes in tissues, would help to elucidate the mechanisms of (resistance to) therapy,
and indicate whether markers at the tumor site are systemically reflected in the blood.
Multinational collaborations in NBL cohorts are needed to allow for a larger sample size to
confirm the findings from this study and relate them to clinical parameters and outcome.

5. Conclusions

(Functional) immune monitoring in HR-NBL patients revealed the presence of both
immune-enhancing and immune regulatory effects during the therapy course. The immune-
enhancing effects observed upon IL-2-containing IT cycles, despite simultaneous Treg
expansion, clearly demonstrate the potential of combining dinutuximab with other NK-cell
engaging strategies. In addition, the observed systemic T-cell dysfunction at diagnosis as
well as during HR-NBL therapy highlights another mechanism, besides lack of MHC-I
expression and immune checkpoint expression, that should be unraveled to generate long-
term anti-NBL immune responses and immunological memory needed to prevent relapse.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13092096/s1, Figure S1: Schematic overview of sampling time points during the
HR-NBL treatment course; Figure S2: Percentages of cell types based on trucount data before
and after IL-2-containing immunotherapy cycles; Figure S3: Percentages of cell types based on
trucount data before and after GM-CSF-containing immunotherapy cycle; Figure S4: Clustering of
immune-oncology-related plasma protein concentrations of patients pre- and post-IL2- and GM-CSF-
containing immunotherapy cycles.
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Simple Summary: Nucleosomes composed of DNA and histone proteins enter the extracellular
space and end eventually in the circulation when cells die. In blood plasma, they could represent
a nonspecific marker of cell death, potentially useful for noninvasive monitoring of cancer. The aim
of this study was to analyze circulating nucleosomes in relation to patient/tumor characteristics and
prognosis in nonmetastatic breast cancer. This study included 92 patients with breast cancer treated
with surgery. Plasma nucleosomes were detected in samples taken in the morning on the day of
surgery. Circulating nucleosomes were positively associated with the systemic inflammation but
not with other patient/tumor characteristics. Patients with lower nucleosomes had lower risk of
disease recurrence compared to patients with higher nucleosomes. Our data suggest that plasma
nucleosomes in nonmetastatic breast cancer are associated with systemic inflammation and might
have a prognostic value. The underlying mechanisms require further studies.

Abstract: When cells die, nucleosomes composed of DNA and histone proteins enter the extracellular
space and end eventually in the circulation. In plasma, they might serve as a nonspecific marker of
cell death, potentially useful for noninvasive monitoring of tumor dynamics. The aim of this study
was to analyze circulating nucleosomes in relation to patient/tumor characteristics and prognosis in
primary breast cancer. This study included 92 patients with breast cancer treated with surgery for
whom plasma isolated was available in the biobank. Plasma nucleosomes were detected in samples
taken in the morning on the day of surgery using Cell Death Detection ELISA kit with anti-histone
and anti-DNA antibodies. Circulating nucleosomes were positively associated with the systemic
inflammatory index (SII), but not with other patient/tumor characteristics. Patients with high SII
in comparison to low SII had higher circulating nucleosomes (by 59%, p = 0.02). Nucleosomes
correlated with plasma plasminogen activator inhibitor-1, IL-15, IL-16, IL-18, and hepatocyte growth
factor. Patients with lower nucleosomes had significantly better disease-free survival (HR = 0.46,
p = 0.05). In a multivariate analysis, nucleosomes, hormone receptor status, HER2 status, lymph
node involvement, and tumor grade were independent predictors of disease-free survival. Our data
suggest that plasma nucleosomes in primary breast cancer are associated with systemic inflammation
and might have a prognostic value. The underlying mechanisms require further studies.
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1. Introduction

Breast cancer is the most common diagnosed cancer and the leading cause of cancer death among
women in developed countries [1]. Despite advances in cancer prevention, diagnoses, and treatment,
still approximately 5% of patients are diagnosed with metastatic disease, and 20–30% of initially
primary breast cancer develops metastasis subsequently, during the course of the disease.

Extracellular DNA (ecDNA), also called cell-free DNA, is present in blood plasma in various
forms [2]. EcDNA in the circulation of cancer patients contains tumor DNA from the primary tumor,
metastasis, or circulating tumor cells, as well as healthy host cells mostly of hematopoietic origin [3–5].
Plasma ecDNA is partially free unbound DNA and, so, sensitive to rapid cleavage, but it also can be
protected as ecDNA hidden in apoptotic bodies and/or bound to proteins such as histones in the form
of nucleosomes [5].

Nucleosomes are composed of DNA wound around histone proteins and represent the basic
structural unit of chromatin in the nucleus [6]. After cell death, membranes and nuclei disintegrate and
cell-free nucleosomes can get into the circulation. Plasma nucleosomes might serve as a nonspecific
biomarker of cell death [7]. This might be of interest in patients not only with autoimmune diseases, but
also with sepsis or cancer [8–10]. The prognostic value of the concentration of circulating nucleosomes
was shown in several types of cancer including lung, pancreatic, or colorectal cancer [11–15]. For
example, in pancreatic cancer, high nucleosome levels during treatment, but not pretherapeutic
levels, correlate with time to progression [16]. Similarly, in non-small cell lung cancer, high baseline
nucleosome level and/or during chemotherapy was associated with poor response to treatment
and these data suggested that circulating nucleosomes are a valuable tool for early prediction of
chemotherapy efficacy in cancer patients [17]. However, when it comes to primary breast cancer, data
in the published literature are limited.

In this study, we aimed to analyze circulating nucleosomes in relation to patients/tumor
characteristics and prognosis in primary breast cancer.

2. Methods

2.1. Study Patients

This study included 92 primary breast cancer patients (stage I–III) treated with surgery from March
to November 2012, for whom plasma isolated in the morning on the day of surgery was available in
the biobank. This study represents a substudy of a translational trial that aimed to evaluate prognostic
value of circulating tumor cells in primary breast cancer [18]. Study eligibility criteria and study details
were described previously [18]. The study was approved by the Institutional Review Board (IRB) of
the National Cancer Institute of Slovakia (TRUSK002, 20.6.2011). Each participant provided signed
informed consent before study enrollment.

2.2. Detection of Circulating Tumor Cells (CTCs) in Peripheral Blood

CTCs were detected in peripheral blood by a quantitative real-time polymerase chain reaction
(qRT-PCR)-based assay of peripheral blood as described previously [18–20].

2.3. Plasma Isolation

Venous peripheral blood samples were collected in EDTA-treated tubes in the morning on the day
of surgery and centrifuged at 1000× g for 10 min at room temperature within 2 h of venipuncture and
processed as described previously [21].
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2.4. Quantification of Circulating Nucleosomes

The commercially available Cell Death Detection kit (Roche, Basel, Switzerland) was used for
the measurement of nucleosomes. Briefly, 20 mL of plasma was mixed with biotin-labeled anti-histone
and peroxidase-conjugated anti-DNA antibodies. After incubation and washing, the substrate for
the peroxidase enzyme was added. Absorbance was measured at 405 nm in arbitrary units after
stopping the reaction. Interassay and intra-assay coefficients of variation were below 10% and
5%, respectively.

2.5. Measurement of DD, TF, uPA, and PAI-1 in Plasma

Plasma tissue factor (TF), d-dimer (DD), urokinase plasminogen activator (uPA), and plasminogen
activator inhibitor-1 (PAI-1) were analyzed using enzyme-linked immunosorbent assays (ELISA) as
described previously [21].

2.6. Plasma Cytokines and Angiogenic Factors Analysis

Plasma samples were analyzed for 51 plasma cytokines and angiogenic factors: TGF-β1, TGF-β2,
TGF-β3, IFN-α2, IL-1α, IL-2Rα, IL-3, IL-12p40, IL-16, IL-18, CTACK, Gro-α, HGF, LIF, MCP-3, M-CSF,
MIF, MIG, β-NGF, SCF, SCGF-β, SDF-1α, TNF-β, TRAIL, IL-1β, Il-1RA, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8,
IL-9, IL-10, IL-12, IL-13, IL-15, IL-17, Eotaxin, FGF basic, G-CSF, GM-CSF, IFN-γ, IP-10, MCP-1, MIP-1α,
MIP-1β, PDGF bb, RANTES, TNF-α, VEGF using predesigned panels as described previously and
were available for subset of patients (Bio-Plex Pro TGF-β assay, Bio-Plex Pro Human Cytokine 21- and
27-plex immunoassays; Bio-Rad Laboratories, Hercules, CA, USA) [22]. The large panel of cytokines
was analyzed as data were available from the previous study [22].

2.7. Complete Blood Count and Inflammation-Based Scores

Complete blood count (CBC) and CBC-derived inflammation-based scores were calculated as
described previously [23,24]. For CBC-derived inflammation-based scores, identical cut-off values as
published previously for metastatic breast cancer patients were used [23,24]. Data for calculation of
NLR, PLR, MLR, SII were available for 54, 52, 48, and 52 patients, respectively.

2.8. Statistical Analysis

The characteristics of patients is summarized using mean (range) for continuous variables and
frequency (percentage) for categorical variables. The median follow-up period was calculated as
the median observation time among all patients and among those who were still alive at the time of
their last follow-up. Disease-free survival (DFS) was calculated from the date of blood sampling to
the date of disease recurrence (locoregional or distant), secondary cancer, death, or last follow-up.
DFS was estimated using the Kaplan–Meier product limit method and compared between groups by
log-rank test. For survival analysis, circulating nucleosomes were dichotomized to “low” or “high”
(nucleosome level below vs. above mean, respectively). Univariate analyses with Chi squared or
Fisher’s exact test were performed to find associations between prognostic factors.

A multivariate Cox proportional hazards model for DFS was used to assess differences in outcome
on the basis of the nucleosomes status (above mean vs. below mean), hormone receptor status (positive
for either vs. negative for both), HER-2 status (positive or negative), axillary lymph node involvement
(N0 vs. N+), grade (grade 3 vs. grade 1 and 2). Stepwise regression techniques were used to build
multivariate models using a significance level of 0.10 to remain in the model. All p values presented
are two-sided, and associations were considered significant if the p value was less than or equal to 0.05.
Statistical analyses were performed using NCSS 11 Statistical Software (2016, NCSS, LLC., Kaysville,
UT, USA, ncss.com/software/ncss).
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3. Results

3.1. Patients’ Characteristics

The study population consisted of 92 primary breast cancer patients with a median age of 60 years
(range: 25–83 years). The patient characteristics are shown in Table 1. There were 79 (85.9%) patients
with estrogen receptor-positive (ER) and/or progesterone receptor-positive (PR) tumors, and 16 (17.4%)
patients with HER2/neu-positive tumors.

Table 1. Patients’ characteristics.

Variable N %

All Patients 92 100.0

T-stage
T1 58 63.0

>T1 34 37.0

Histology
IDC 76 82.6

other 16 17.4

Grade
low and intermediate 49 53.3

high grade 41 44.6
unknown 2 2.2

Lymph nodes
N0 57 62.0
N+ 34 37.0

unknown 1 1.1
LVI

present 69 75.0
absent 23 25.0

Hormone receptor status (cut-off 1%)
negative for both 13 14.1
positive for either 79 85.9

Estrogen receptor-positive (cut-off 1%)
negative 16 17.4
positive 76 82.6

Progesterone receptor-positive (cut-off
1%)

negative 25 27.2
positive 67 72.8

HER2 status
positive 16 17.4
negative 76 82.6

P53 status
negative 59 64.1
positive 32 34.8

unknown 1 1.1

BCL-2
negative 27 29.3
positive 65 70.7

unknown

Ki67 status (cut-off 14%)
<14% 48 52.2
>14% 44 47.8
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Table 1. Cont.

Variable N %

Molecular subtype
Luminal A 43 46.7
Luminal B 36 39.1

HER2+ 1 1.1
Triple-negative (TN) 12 13.0

CTC EP
negative 75 81.5
positive 17 18.5

CTC EMT
negative 76 82.6
positive 16 17.4

CTC ANY
negative 62 67.4
positive 30 32.6

Abbreviations: CTC EP, circulating tumor cells with epithelial phenotype; CTC EMT, circulating tumor cells with
epithelial–mesenchymal transition phenotype; CTC ANY, circulating tumor cells irrespective of phenotype; LVI,
lymphovascular invasion.

3.2. Association between Nucleosomes and Patient/Tumor Characteristics

The characteristics of patients and the associations with circulating nucleosomes are shown in
Table 2. The concentration of circulating nucleosomes was not associated with any patient/tumor
characteristics except the systemic inflammatory index (SII), where patients with high SII had
significantly higher levels of circulating nucleosomes compared to patients with low SII (0.17 vs.
0.27, p = 0.02). There was also a trend for higher level of circulating nucleosomes in patients with high
neutrophil/lymphocyte ratio (p = 0.07). There was no association between molecular subtype and
plasma nucleosomes, even if molecular subtypes of breast cancer were further segregated by tumor
grade. We also analyzed association of chronic medication/comorbidities (Appendix A, Table A1) and
circulating nucleosomes, but we found no association.

Table 2. Association between nucleosomes and patient/tumor characteristics.

Variable N Mean SEM Median p-Value

All 92 0.18 0.02 0.13 NA

T-stage
T1 58 0.20 0.02 0.14 0.30

>T1 34 0.15 0.03 0.13

Histology
invasive ductal carcinoma 76 0.19 0.02 0.13 0.61

other 16 0.15 0.04 0.13

Grade
low and intermediate 49 0.20 0.03 0.14 0.91

high grade 41 0.16 0.03 0.13
unknown 2

Lymph nodes
N0 57 0.18 0.02 0.12 0.10
N+ 34 0.19 0.03 0.17

unknown 1

Lymphovascular invasion
absent 69 0.18 0.02 0.13 0.20
present 23 0.19 0.04 0.16
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Table 2. Cont.

Variable N Mean SEM Median p-Value

Hormone receptor status (cut-off 1%)
negative for both 13 0.12 0.05 0.10 0.17
positive for either 79 0.19 0.02 0.14

HER2 status
negative 76 0.19 0.02 0.13 0.91
positive 16 0.17 0.04 0.15

P53 status

negative 59 0.19 0.02 0.14 0.51
positive 32 0.17 0.03 0.13

unknown 1

BCL-2
negative 27 0.15 0.03 0.13 0.52
positive 65 0.20 0.02 0.13

Ki67 status (cut-off 14%)
<14% 48 0.20 0.03 0.15 0.38
>14% 44 0.16 0.03 0.13

unknown

Molecular subtype
Luminal A 43 0.21 0.03 0.15 0.22
Luminal B 36 0.17 0.03 0.14

HER2+ 1 0.25 0.17 0.25
Triple-negative (TN) 12 0.10 0.05 0.09

CTC EP
negative 75 0.18 0.02 0.13 0.44
positive 17 0.17 0.04 0.14

CTC EMT
negative 76 0.19 0.02 0.13 0.78
positive 16 0.16 0.04 0.13

CTC ANY
negative 62 0.19 0.02 0.13 0.19
positive 30 0.18 0.03 0.15

NLR (neutrophil/lymphocyte ratio) *
<3 43 0.18 0.03 0.12 0.07
>3 11 0.26 0.06 0.17

PLR (platelet/lymphocyte ratio) *
<210 43 0.19 0.03 0.12 0.71
>210 9 0.21 0.07 0.15

MLR (monocyte/lymphocyte ratio) *
<0.34 40 0.20 0.03 0.12 0.60
>0.34 8 0.15 0.07 0.14

SII (systemic inflammatory index) *
<836 40 0.17 0.03 0.10 0.02
>836 12 0.27 0.06 0.17

Abbreviations: CTC EP, circulating tumor cells with epithelial phenotype; CTC EMT, circulating tumor cells with
epithelial–mesenchymal transition phenotype; CTC ANY, circulating tumor cells irrespective of phenotype. * Data
for calculation of NLR, PLR, MLR, SII were available for 54, 52, 48, and 52 patients, respectively; NA, not applicable.
p-Values < 0.05 are written in Bold.

3.3. Association between Nucleosomes and Plasma Cytokines

Patients with nucleosomes above mean in peripheral blood had significantly elevated plasma
IL-16 (p = 0.005), IL-18 (p = 0.0004), and hepatocyte growth factor (p = 0.043), as compared to patients
with nucleosomes below mean, while there was an inverse correlation between nucleosomes and IL-15
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(p = 0.036). There was also a trend for higher IFN-α2 (p = 0.055) and RANTES (p = 0.053) in patients
with higher nucleosome level (Table 3).

Table 3. Association between nucleosomes and plasma cytokines.

Variable N Mean SEM Median p-Value

IFN_a2 (ng/mL)
nucleosomes low 57 101.6 3.2 102.2 0.055
nucleosomes high 26 114.5 4.7 114.7

IL_16 (ng/mL)
nucleosomes low 58 349.2 19.8 330.9 0.005
nucleosomes high 27 446.7 29.0 419.5

IL_18 (ng/mL)
nucleosomes low 57 60.4 12.9 33.8 0.0004
nucleosomes high 26 120.0 19.1 69.7

HGF (ng/mL)
nucleosomes low 58 760.8 184.7 222.7 0.043
nucleosomes high 27 1312.2 270.8 438.6

M_CSF (ng/mL)
nucleosomes low 58 10.7 1.5 6.9 0.066
nucleosomes high 27 14.8 2.2 12.4

IL_15 (ng/mL)
nucleosomes low 39 22.0 2.1 16.7 0.036
nucleosomes high 22 13.6 2.9 12.8

RANTES (ng/mL)
nucleosomes low 58 8890.2 816.2 7644.8 0.053
nucleosomes high 27 7185.2 1196.2 4352.3

Abbreviations: SEM, standard error of the mean. p-Values < 0.05 are written in Bold.

3.4. Nucleosomes and Coagulation

There was no association between circulating nucleosomes and DD, TF, and/or uPA, while patients
with nucleosomes above mean had significantly elevated levels of plasma PAI-1 (Table 4).

Table 4. Association between nucleosomes and coagulation.

Variable N Mean SEM Median p-Value

Tissue factor (pg/mL)
nucleosomes low 61 66.2 2.2 60.4 0.464
nucleosomes high 31 62.1 3.0 60.0

D-dimer (ng/mL)
nucleosomes low 61 412.3 53.6 312.2 0.394
nucleosomes high 31 552.3 75.2 401.7

uPA (ng/mL) *
nucleosomes low 59 4.8 0.5 3.8 0.925
nucleosomes high 31 4.6 0.6 3.7

PAI_1 (pg/mL) *
nucleosomes low 59 285.5 21.6 269.2 0.042
nucleosomes high 31 387.4 29.8 305.2

Abbreviations: SEM, standard error of the mean; uPA, urokinase plasminogen activator; PAI-1, plasminogen
activator inhibitor-1. * uPA and PAI-1 were not determined in two patients. p-Values < 0.05 are written in Bold.
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3.5. Prognostic Value of Nucleosomes on Disease-Free Survival in Primary Breast Cancer

At a median follow-up time of 55.0 months (range = 4.9–76.7 months), 23 patients (25.0%) had
experienced a DFS event, and 15 patients (16.3%) had died. Herein, we present DFS analysis due to
the immaturity of overall survival data. Patients with lower than mean nucleosomes had significantly
better disease-free survival (HR = 0.46, 95% CI 0.19–1.12, p = 0.05) (Figure 1). The prognostic value of
circulating nucleosomes was most pronounced in lymph node-positive disease with high proliferation
rate and in patients with detectable circulating tumor cells with epithelial-to-mesenchymal transition,
but negative for epithelial circulating tumor cells (Table 5). In a multivariate analysis, nucleosomes,
hormone receptor status, HER2 status, lymph node involvement, and tumor grade were independent
predictors of disease-free survival (Table 6).
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Figure 1. Kaplan–Meier estimates of probabilities of disease-free survival according to plasma
nucleosome status in primary breast cancer patients (n = 92). HR = 0.46. 95% CI 0.19–1.12, p = 0.05,
0—nucleosomes below mean, 1—nucleosomes above mean.

Table 5. Prognostic value of nucleosomes on disease-free survival in primary breast cancer (nucleosomes
dichotomized below vs. above mean).

Variable HR 95% CI Low 95% CI High p-Value

All 0.46 0.19 1.12 0.05

T-stage
T1 0.29 0.08 1.02 0.04

>T1 0.56 0.14 2.19 0.33

Histology
IDC 0.35 0.14 0.91 0.01

other 0 0 0 0.33

Grade
low and intermediate 0.31 0.07 1.34 0.09

high grade 0.48 0.15 1.55 0.15

Lymph nodes
N0 0.86 0.15 4.92 0.86
N+ 0.36 0.13 1.04 0.03
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Table 5. Cont.

Variable HR 95% CI Low 95% CI High p-Value

Lymphovascular invasion
absent 0.46 0.14 1.53 0.15
present 0.54 0.15 1.97 0.31

Hormone receptor status (cut-off 1%)
negative for both 0.36 0.04 3.33 0.21
positive for either 0.41 0.15 1.15 0.06

HER2 status
negative 0.55 0.19 1.6 0.23
positive 0.3 0.06 1.55 0.09

P53 status
negative 0.48 0.16 1.44 0.13
positive 0.39 0.08 1.86 0.20

BCL-2
negative 0.25 0.05 1.17 0.02
positive 0.59 0.19 1.85 0.33

Ki67 status (cut-off 14%)
<14% 0.73 0.11 4.71 0.72
>14% 0.35 0.12 1 0.02

CTC EP
negative 0.31 0.12 0.83 0.01
positive 0 0 0 0.18

CTC EMT
negative 0.68 0.23 2.03 0.46
positive 0.17 0.03 0.9 0.01

CTC ANY
negative 0.45 0.13 1.52 0.14
positive 0.5 0.14 1.87 0.27

p-Values < 0.05 are written in Bold.

Table 6. Multivariate analysis of factors associated with disease-free survival.

Variable HR 95% CI Low 95% CI High p-Value

Nucleosomes
above mean vs. below mean 2.67 1.12 6.36 0.0268

Hormone receptor status (cut-off 1%)
positive for either vs. negative for both 0.30 0.11 0.80 0.0164

HER2 status
amplified vs. nonamplified 3.06 1.21 7.79 0.0187

Lymph nodes
positive vs. negative 6.56 2.50 17.21 0.0001

Grade
grade 3 vs. grade 1 and 2 2.85 1.14 7.08 0.0246

p-Values < 0.05 are written in Bold.

Circulating nucleosomes added prognostic value also to prognostic value of CTC_EMT, where
double-positive patients (positive for both CTC_EMT and high-circulating nucleosomes) had worse
prognosis compared to all other groups of patients (Figure 2).
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Figure 2. Kaplan–Meier estimates of probabilities of disease-free survival according to plasma
nucleosome status and CTC_EMT in primary breast cancer patients (n = 92). Patients positive for
CTC_EMT and high level of circulating nucleosomes had significantly worse survival compared to all
other groups (p = 0.0000003).

4. Discussion

In this translational study, circulating nucleosomes showed neither an association with basic
patient/tumor characteristics nor a correlation to CTCs. The origin of circulating nucleosomes
is unclear and likely complex [25]. While there is no correlation between CTCs and SII and/or
neutrophil/lymphocyte ratio [23,24], this study showed for the first time an association between plasma
nucleosomes and SII. Patients with high SII had significantly higher level of nucleosomes. Similarly,
there was a trend of higher nucleosomes in patients with high neutrophil/lymphocyte ratio, however,
the neutrophil/lymphocyte ratio is part of the SII.

Tumor-induced systemic changes in immune cells contribute to cancer progression and metastasis.
Various forms of ecDNA including extracellular nucleosomes and naked ecDNA differ in their cytotoxic
and proinflammatory effects [26]. For example, histones in the nucleosomes induce proinflammatory
signaling via toll-like receptors (TLR2/4), with subsequent production of TNF-α, IL-6, IL-10, and
myeloperoxidase, but they exhibit TLR-independent cytotoxicity as well [26–28]. On the other hand,
the ecDNA as part of the nucleosomes is recognized by the TLR9 [29]. In our study, nucleosomes
were associated with several proinflammatory cytokines, suggesting the association of circulating
nucleosomes with systemic inflammation. Histones in the nucleosomes could induce formation
of neutrophil extracellular traps (NETs), which contain nucleosomes and stimulate further NETs
production in a positive feedback loop [27]. On the other hand, nucleosomes could induce different
inflammatory pathways, as they, in contrast to histones, seem not to be cytotoxic to the endothelium [28].
The analyzed nucleosomes could be from tumor cells, but also from the released NETs. This would
explain the observed association between circulating nucleosomes and systemic inflammation in
primary breast cancer patients. NETs contain nuclear DNA and proteins that possess antibacterial
characteristics crucial for fighting pathogens [30,31]. The same NETs, however, also induce intravascular
coagulation [32] and their overproduction can lead to autoimmune diseases [33]. While circulating
ecDNA correlates with activation of coagulation [34], we for the first time describe this association for
circulating nucleosomes. Further research is needed to uncover if nucleosomes directly activate PAI-1,
or if high PAI-1 is a marker of coagulation activation in more aggressive disease that leads to release of
more nucleosomes.
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Data on the prognostic value of plasma nucleosomes in breast cancer is limited. In a small
study, nucleosomes were elevated in locally confined and metastatic breast cancer in comparison to
healthy individuals. During neoadjuvant chemotherapy, patients with no change of a local disease had
significantly higher pretherapeutic concentrations of nucleosomes than patients in remission [14]. In
another study, plasma nucleosomes were higher in primary breast cancer patients when compared
to healthy controls, and similarly to our study, there was no association between nucleosomes and
patient/tumor characteristics [15]. Circulating nucleosomes were, however, not able to discriminate
between benign and malignant breast lesions [35]. Their concentration was found to be associated
with lymph node-positive breast cancer and the presence of distant metastases [35].

In our study, we observed an inferior outcome of primary breast cancer patients with high plasma
nucleosomes. This is in contrast to a previous study, where elevated plasma nucleosomes were
associated with a better prognosis in both node-negative and node-positive early breast cancer [15].
However, the nucleosome detection method as well as the cut-off value to discriminate “low” and
“high” plasma nucleosomes was different compared to our trial and therefore, these differences in
results could be due to these factors. In our trial, the prognostic value of nucleosomes was consistent
in various subgroups, however, it was most pronounced in poor prognostic subgroups such as lymph
node-positive disease with high proliferation rate and in patients with detectable circulating tumor
cells with epithelial-to-mesenchymal transition. The prognostic value of circulating nucleosomes
was independent from established prognostic markers and was confirmed in a multivariate analysis.
Moreover, when we combined two circulating biomarkers, circulating tumor cells, and circulating
nucleosomes, we were able to uncover a subgroup of patients with extremely poor prognosis with
two-year DFS of only 33.3%.

Our study has some limitations. The major one is small sample size, especially for associations
between inflammatory indexes and nucleosomes. This is associated with decreased statistical power of
analyses and increased confidence intervals of results. Other limitations represent the data availability
for analysis of association between circulating nucleosomes and various clinic–pathological parameters,
which further decreases statistical robustness and could have an impact on study results. Circulating
plasma nucleosomes increase in non-neoplastic disease processes including inflammation, autoimmune
diseases, sepsis, and stroke. When we analyzed association between chronic medication/comorbidities
and circulating nucleosomes, no association was found, however, none of our patients received
anti-inflammatory drugs and/or had inflammatory disease that could affect study results. Another
limitation is lack of follow-up analysis on patient samples collected postsurgery to examine whether
the presurgery baseline levels of circulating plasma nucleosomes were altered postsurgery and
whether this alteration in circulating nucleosome levels is correlated with decrease in systemic
inflammatory index.

5. Conclusions

In conclusion, in this translational study, we have shown for the first time that circulating
nucleosomes are associated with systemic inflammation and activation of coagulation in primary
breast cancer. More importantly, we proved their prognostic value. While it is clear that the underlying
mechanisms of nucleosome release, their origin, and their fate require further studies, we suggest that
the quantification of plasma nucleosomes could be added to the established prognostic markers in
breast cancer. Future trials should focus on validation of these results to establish prognostic utility of
plasma circulation nucleosomes in addition to established prognostic factors.

Author Contributions: Conceptualization, P.C., and M.M.; Data curation, G.M., T.S., and K.K.; Formal analysis,
G.M., T.S., P.G., D.C., and P.C.; Funding acquisition, P.C., G.M., and M.M.; Investigation, M.K., G.M., J.B., and
M.M.; Methodology, G.M., T.S., and P.C.; Project administration, P.C. and M.M.; Resources, J.M., K.K., M.K.,
J.B., and M.M.; Validation, P.C. and M.M.; Visualization, K.K., D.P., and J.M.; Writing—Original draft, P.C., and
M.M.; Writing—Review & editing, all authors. All authors have read and agreed to the published version of
the manuscript.

459



Cancers 2020, 12, 2587

Funding: This research was funded by the Slovak Research and Development Agency (APVV), grant number
APVV-16-0010, APVV-16-0178, by ERA-NET EuroNanoMed II INNOCENT and by Scientific Grant Agency
(VEGA), contracts No. 1/0724/11, 1/0044/15, 1/0271/17, and 2/0052/18.

Acknowledgments: We would like to acknowledge Denisa Manasova for her excellent technical help. We are
grateful to all patients for their participation in the study.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Drug history in the last 6 months.

Chronic Medication N %

NSAID 0 0.0
Corticosteroids 0 0.0

L-thyroxin 8 8.7
ACEi 11 12.0

Sartans 14 15.2
Betablockers 27 29.3

Statins 15 16.3
Metformin 4 4.3

Insulin 2 2.2
LMWH 7 7.6

Warfarin 0 0.0

Abbreviations: ACEi, angiotensin-converting enzyme inhibitors; LMWH, low-molecular-weight heparin.
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Simple Summary: Volatile organic compounds (VOCs) in urine have been shown to be potential biomark-
ers for breast cancer. However, how urinary VOCs change upon the course of tumor progression has
never been studied. The aim of our study was to identify changes in VOC profiles corresponding to
mammary tumor (triple negative cells) presence and progression in mice models of induced breast cancer.
Urine samples were collected from mice prior to tumor injection and from days 2–19 after. VOC models
constructed by linear discriminant analysis had high ability to distinguish tumor-bearing mice from control
and determine the week of urine collection after tumor injection. Principal component regression analysis
demonstrated that VOCs could predict the number of days since tumor injection. VOCs identified from
these analyses correspond to metabolic pathways dysregulated by breast cancer and previous biomarker
investigations. It is anticipated that these findings can be translated into human research for early detection
of breast cancer recurrence.

Abstract: Previous studies have shown that volatile organic compounds (VOCs) are potential biomarkers
of breast cancer. An unanswered question is how urinary VOCs change over time as tumors progress. To
explore this, BALB/c mice were injected with 4T1.2 triple negative murine tumor cells in the tibia. This
typically causes tumor progression and osteolysis in 1–2 weeks. Samples were collected prior to tumor
injection and from days 2–19. Samples were analyzed by headspace solid phase microextraction coupled
to gas chromatography–mass spectrometry. Univariate analysis identified VOCs that were biomarkers
for breast cancer; some of these varied significantly over time and others did not. Principal component
analysis was used to distinguish Cancer (all Weeks) from Control and Cancer Week 1 from Cancer Week 3
with over 90% accuracy. Forward feature selection and linear discriminant analysis identified a unique
panel that could identify tumor presence with 94% accuracy and distinguish progression (Cancer Week 1
from Cancer Week 3) with 97% accuracy. Principal component regression analysis also demonstrated that
a VOC panel could predict number of days since tumor injection (R2 = 0.71 and adjusted R2 = 0.63). VOC
biomarkers identified by these analyses were associated with metabolic pathways relevant to breast cancer.

Keywords: volatile organic compounds (VOCs); gas chromatography (GC); mass spectrometry (MS);
headspace solid phase microextraction (HS-SPME); breast cancer biomarkers; principal component
analysis (PCA); linear discriminant analysis (LDA); principal component regression (PCR)
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1. Introduction

Breast cancer is estimated to comprise 30% of total diagnosed cancer cases for women
in 2021: over 280,000 patients will be diagnosed with and over 40,000 patients will die
from breast cancer [1]. Accurate and efficient screening/diagnostics is crucial, as the earlier
breast cancer is detected, the more efficacious the treatment [2]. Biopsies are used for
diagnostic confirmation and pathological grading. Breast cancer staging is based on tumor
size and number of lymph nodes affected, but aggressiveness depends on its dynamic rate
of change. Breast cancer imaging techniques are used for monitoring tumor progression
and morphological responses to treatment [3]. These tools are expensive, unreliable, cause
harm through exposure to radiation [4] and can only detect morphological changes six
to eight weeks after treatment [5]. There is a growing need for a less invasive and more
accurate tool for early detection at the time of diagnosis or for cancer recurrence. An
accurate and noninvasive assay to diagnose and monitor tumor progression could aid in
patient decision making after diagnosis and possibly during treatment.

Previous studies have demonstrated canine’s ability to detect the presence of prostate [6],
lung [7], breast [8,9] and ovarian [10] cancer in biosamples with high accuracy [11,12]. Ca-
nines noninvasively detect volatile metabolites generated by the disease condition, allow-
ing them to accurately detect cancer by scent. Based on canine results, groups have used
headspace solid phase microextraction (HS-SPME) or other extraction techniques coupled
with gas chromatography-mass spectrometry (GC-MS) to conduct untargeted analyses of
volatile organic compounds (VOCs). Cancer dysregulates metabolic pathways to enable tumor
growth [13]. The biological rationale for exploiting VOCs is they are by- or end products of
these dysregulated pathways [14]. Furthermore, VOCs can be noninvasively sampled and
detected in human biofluids including sweat, saliva, blood, breath and urine. Groups have
previously identified VOC biomarkers for lung [15], prostate [16–19] and breast cancer [20],
even classifying unique cancers from each other [21,22].

There has been an interest in using VOCs and other types of molecular biomarkers [23–25]
in urine or breath for breast cancer diagnostics. One group analyzing alveolar breath by GC-MS
found ten VOCs, that could distinguish breast cancer in patients with sensitivity = 75.3% and
specificity = 84.8% [20]. Another group also detected a unique biosignature of six VOCs for
breast cancer in human urine via unsupervised multivariate statistical analysis [26]. That group
subsequently implemented a central composite design to optimize method parameters and used
them to identify ten additional breast cancer volatile biomarkers that had accuracy of >90% [27].
The present study analyzes urinary VOCs in mice with breast cancer using GC-MS not simply to
identify VOCs of breast cancer, but to learn how VOCs change in different conditions associated
with breast cancer. For example, we previously analyzed changing patterns in VOCs caused
by tumor location [28] or effect of treatments [29–31]. Interestingly, our murine research has
previously reported almost half the VOCs tentatively identified by a different research group
analyzing human breath for VOCs of breast cancer [20] and for the sixteen VOCs reported in the
Silva papers, which incubated under different conditions, about half if including isomers and
other highly similar molecules. Additionally, urinary VOC biomarkers for breast cancer and
tumor progression may be useful in conjunction with circulating biomarkers of breast cancer
progression. For an example, Ibrahim et al. found the receptor activator of nuclear factor-κB
ligand (RANKL) to be a potential circulating biomarker for bone metastasis [32]. Correlating the
urinary biomarkers from this study to RANKL and other circulating biomarkers which may be
identified would help validate the candidates identified in this study. Additionally, circulating
tumor and urinary VOCs can be coupled, which could also potentially improve classification
accuracies and acceptance of alternative assays for breast cancer diagnosis, prognosis and
monitoring the efficacy of treatment.

All of our previous studies analyzed samples from mice collected at the same time
point (three weeks after tumor injection); none analyzed VOCs at intermediate points
of time. There are many murine models of cancer progression, but in the current study,
BALB/c mice were injected with 4T1.2 cells into the tibia. Tumors injected in this way
progress and typically produce osteolytic lesions in 1–2 weeks [33]. A previous study by
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some of the authors, using such a model, found decreases in bone stiffness which would
be indicative of osteolytic lesions after one week and before two weeks [34]. Detailed
and additional biological information regarding this cohort of mice has been previously
published [30]. For the current study, urine samples were collected from day 2–day 19
and grouped by number of weeks after injection. Analyses included comparisons between
samples by week collected and regression analysis of samples by day collected to observe
trends. Analysis of VOCs over time may help identify differences in VOC patterns to
determine which biomarkers are better predictors of late-stage cancers and which are
equally effective at identifying early-stage cancers.

2. Materials and Methods
2.1. Materials and Instrumentation

Female BALB/c mice (6 weeks old) were purchased from Harlan Laboratories, In-
dianapolis, IN, USA. 4T1.2 tumor cells were acquired from Dr. R. Anderson at the Peter
MacCallum Cancer Institute (Melbourne, Victoria, Australia). Glass Pasteur pipettes were
used for urine collection and purchased from Thermo Scientific (Waltham, MA, USA).
10 mL headspace vials were purchased from Thermo Scientific. Guanidine Hydrochloride
(GHCl) (pH = 8.5) was purchased from Sigma Aldrich (St. Louis, MO, USA) and was used
as a major urinary protein (MUP) denaturing agent. Two-centimeter polydimethylsilox-
ane/carboxen/divinylbenzene (PDMS/CAR/DVB) SPME fibers (Supelco; Bellefonte, PA,
USA) were employed to concentrate and extract VOCs. A 7890A GC system coupled to
an Agilent (Santa Clara, CA, USA) 7200 Accurate-Mass Quadrupole time-of-flight (QTOF)
MS system with a PAL autosampling system (CTC Analytics; Raleigh, NC, USA) was
used to analyze VOCs. An Agilent Ultra Inert HP-5ms, GC column of 30 m in length,
250 µm internal diameter and 0.25 µm film thickness was utilized. MATLAB (R2020a;
Natick, MA, USA) and Origin (Northampton, MA, USA) were used in generating figures
for chemometric analyses.

2.2. Tumor Injection and Urine Collection

A total of 20 mice were injected with 4T1.2 cells (triple negative mammary tumors) into
the right tibia [30]. Prior to tumor injection, urine was collected from the mice to serve as
the Control group. Urine was collected from the 20 mice the day following tumor injection
and over the course of three weeks. It is important to note that not all mice provided urine
samples at each time point. All experimental procedures followed the Guiding Principles
in the Care and Use of Animals supported by the American Physiological Society and
were approved by the Indiana University Animal Care and Use Committee (protocol code:
SC292R; date of approval: 30 May 2019). Mice were kept in cages at ambient temperature
and fed the same diet (mouse-chow ad libitum). Mice were transferred to a cage where
the floor was covered in parafilm during urine collection. Urine was collected over dry ice
using glass Pasteur pipettes into glass centrifuge tubes and centrifuged at 3000 RPM. A
total of 50 µL was transferred to a 10 mL headspace vial and stored in a −80 ◦C freezer.

2.3. HS-SPME and GC-MS QTOF Analysis

Urinary VOCs were detected through headspace analysis utilizing a SPME fiber and
GC-MS QTOF. The SPME fiber was conditioned before the first sample each day and
between each run. As the mice gave limited amounts of urine, only one aliquot was
analyzed per mouse. GHCl was added in a 1:1 volumetric ratio one hour prior to GC
analysis to denature the MUPs in mouse urine that bind VOCs [35]. Next, the sample was
agitated at 250 rpm and heated to 60 ◦C for 30 min. Then, the SPME fiber was inserted
into the vial for an additional 30 min (same agitation rate and temperature). The fiber was
injected into the GC inlet at 250 ◦C for two minutes to thermally desorb the VOCs. The
chromatographic protocol involved maintaining the oven temperature at 40 ◦C for two
minutes followed by a ramp to 100 ◦C at a rate of 8 ◦C/min, a 15 ◦C/min ramp to 120 ◦C,
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an 8 ◦C/min to 180 ◦C, a 15 ◦C/min to 200 ◦C and finally an 8 ◦C/min ramp to 260 ◦C. An
external reference standard was run each day to verify instrument reproducibility.

2.4. Data Treatment and Chemometric Analyses

Deconvolution and spectral alignment of chromatographic peaks based on similarities
in mass-to-charge ratio (m/z) and retention time were performed in MassHunter Profinder.
Features identified as silanes/siloxanes (products of SPME degradation) were removed.
VOCs that did not appear in at least 50% of either Control or Cancer Weeks 1–3 samples
were also excluded. To normalize the data, MS Total Useful Signal (MSTUS) was calculated
and applied to remove unwanted non-biological intraclass variation [36]. Finally, MSTUS
values were autoscaled (z-scored) to obtain a matrix with similar signal range. Univariate
statistical analysis was implemented (two-tailed Student’s T-test) on the Control group
against tumor-bearing mice with urine collected on days 2, 5 and 6 (Week 1), urine collected
on days 8, 9, 12 and 13 (Week 2) and finally, urine collected on days 16, 17 and 19 (Week 3).
These analyses were implemented to identify VOCs differentially expressed (p-value < 0.05)
between Cancer Weeks 1–3 and Control as well as between Cancer Week 1 and Cancer
Week 3. p-values were adjusted utilizing the Benjamini–Hochberg procedure [37] to account
for false discovery rates (FDR). Hierarchical heatmaps were generated for VOCs statistically
significant by p-value < 0.05 for Control against Weeks 1–3 and Week 1 against Week 3 to
visualize changes in VOC concentration induced by cancer injection and progression.

Principal component analysis (PCA) was performed using all VOCs with p-value < 0.05
between the Control group and all Cancer groups. PCA was also implemented on a smaller
group of VOCs with the lowest p-value (for Cancer/Control and Cancer Week 1/Week 3)
to separate Control, Cancer Week 1 and Cancer Week 3. The matrix of VOCs was then
subject to supervised linear discriminant analysis coupled with forward feature selection
(iterative LDA, iLDA) [38] to build predictive classification models. PCA and iLDA were
performed independently of each other in parallel. iLDA was used to develop VOC panels
separating Control vs. Cancer, Cancer Week 1 vs. Cancer Week 3 and lastly, Cancer Week 1
vs. Cancer Week 3 vs. Control. Leave one out cross validation (LOOCV) and fivefold cross
validation (partitioned 1000 times, median value utilized) were performed to determine if
the models were overfit [39]. Receiver operator characteristic (ROC) curves for each model
were built to visualize classification accuracies. If the area under the curve (AUC) of the
ROC differed more than 0.10 between the training and cross validation data sets, the model
was deemed overfit.

2.5. Regression Analyses

To further investigate the ability of individual VOCs to monitor mammary tumor pro-
gression, linear regression analysis was undertaken for VOCs with p-value < 0.05 (Cancer
Week 1 vs. Cancer Week 3). Here, Cancer samples were analyzed by day of urine collection
after tumor injection. Principal component regression (PCR) analysis was also implemented
to identify if a panel of VOCs can track mammary tumor progression by days after injection.
PCR proceeds by running PCA on the table of the explanatory (input) variables. Then,
an Ordinary Least Squares regression is completed on a group of principal components
selected by the user. Finally, PCR computes the parameters of the model that correspond
to the explanatory (input) variables. The number of principal components utilized was
varied and tested to ensure the production of a stable model. The first iteration of analysis
was followed by dimension reduction to only include VOCs that significantly contributed
toward the PCR model (p-value < 0.05). Analysis of variance (ANOVA) was implemented
to determine if there was a significant linear correlation between the independent and the
dependent variables. Determination coefficients (R2 value), regression coefficients and
standard errors were used to assess the degree of correlation.
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2.6. VOC Identification and Metabolic Pathway Analysis

After data screening and analysis, volatiles were identified using MassHunter Profinder
and MassHunter Unknowns Analysis with the NIST17 library. The data set produced
through Profinder contained average retention times, retention time span and the mass
spectra of the VOCs. Utilizing these quantifiers, VOCs in Profinder were found in Un-
knowns Analysis. Features in Unknowns Analysis were assigned a match factor from the
NIST17 library; VOCs identified with a match factor greater than 70 and an appropriate
experimental non-polar retention index (NPRI) value were deemed tentatively identified.
Experimental NPRI was determined using an instrument-specific calibration curve [28,29].
The Human Metabolome Database [40] and Kyoto Encyclopedia of Genes and Genomes
Pathways [41] were used to aid in interpreting the relevance of VOCs in the context of
cancer metabolism.

3. Results
3.1. Urine Collection, Spectral Alignment and Data Normalization

An illustration of the experimental procedure that was implemented to identify VOC
biomarkers of mammary tumor progression in mouse urine can be visualized in Figure 1. A
total of 65 urine samples were collected, aliquoted and analyzed from four different sample
classes over the course of three weeks (Control (20), Cancer Week 1 (12), Cancer Week 2 (15)
and Cancer Week 3 (18)). Spectral alignment of sample chromatograms generated a matrix
of 250 VOCs which were subject to chemometric analyses after removing silanes/siloxanes
and volatiles not detected in at least half of either Control or Cancer samples classes.
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Figure 1. Illustration of murine tumor injection, mouse urine sample collection, sample treatment and analysis via solid
phase microextraction coupled to gas chromatography-quadrupole time-of-flight mass spectrometry to identify volatile
organic compound (VOC) biomarkers for breast cancer and tumor progression.

3.2. Univariate Statistical Analysis

After normalization, Student’s T-test was performed between Control and All Cancer
classes and identified 44 out of 250 VOCs with p-value < 0.05. Additionally, the T-test
found 37 VOCs with p-value < 0.05 when applied between the Cancer Week 1 and Week 3
sample classes. These VOCs are identified and listed in Table S1 with their corresponding
name, retention time and p-values. After adjusting p-values for FDR, 18 VOCs with
p-value < 0.05 were found between Control and Cancer (italicized in Table S1) and 3 VOCs
were identified with p-value < 0.05 between Week 1 and Week 3 (underlined in Table S1).
Of the 44 VOCs identified with p-value < 0.05 between Control and Weeks 1–3, 37 features
were downregulated and 7 upregulated. With regards to the 37 significant VOCs between
Cancer Week 1 and Week 3, 24 were downregulated and 13 upregulated. Downregulated
features were more significant than upregulated ones for both comparisons. Hierarchical
heatmaps were generated using statistically significant VOCs between each comparison
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and are shown in Figure 2a,b. The heatmap corresponding to Control vs. Weeks 1–3,
shows low intraclass variation and high interclass variation (Figure 2a). Figure 2b shows
many VOCs are downregulated in Week 3, indicating the concentration of these VOCs
decreases as cancer progresses. The heatmap displays high intraclass variation for VOCs
with p < 0.05 detected in Week 2, indicating some mice progressed faster than others, or
possibly some mice had undergone tumor-induced osteolysis and some had not yet [30],
but no imaging or invasive studies were undertaken during intermediate time points,
so this is not confirmed. In Figure 2, abbreviations for VOCs that show high statistical
significance and are utilized for further analyses are indicated.
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due to the presence of cancer and tumor progression. Full names of VOCs used for further analyses (but here abbreviated)
are enumerated in the text and all VOCs shown in the heatmap and associated p values are listed in Table S1.

3.3. Multivariate Classification Analyses

PCA was utilized to visualize global patterns in the data. PCA using all 44 VOCs
with p-value < 0.05 between Cancer Weeks 1–3 and Control can be observed in Figure 3a.
Along the first two principal components, all Cancer samples were separated from Control
samples with 98% sensitivity and 95% specificity. A smaller panel of 10 VOCs with low
p-values for both tumor presence and progression were selected using an ad hoc approach
and PCA was run using this smaller set (Figure 3b). For this analysis, Cancer Week 2 was
excluded as it is intermediary and the goal was to observe significant differences at the
two endpoints. Cancer Week 1 and Week 3 samples were separated from Control samples
with sensitivity = 97% and specificity = 90%. Principal component 1 demonstrates sample
separation between Cancer and Control samples and Principal component 2 strongly
contributed toward sample separation between Cancer Week 1 and Cancer Week 3. VOCs
used in Figure 3b are labeled in Table S1 with an asterisk (*).

Even though PCA produced a reasonable separation, this required a relatively large
number of VOCs. To build a predictive classification model and decrease the number
of VOCs used, iLDA was used to distinguish Cancer Weeks 1–3 from Control samples.
Knowledge-based feature selection was implemented by limiting the analysis to ketones,
aromatics and terpenes as these functional groups have been previously reported by our
team to be potential biomarkers [28,29]. A panel of five VOCs (cymene (CYME), acetone
(ACET), 2-heptanone (2-HEP), 2,5-cyclohexadiene-1,4-dione, 2,6-bis(1,1-dimethylethyl)-
(CHDD) and 2-hexanone, 5-methyl (2-HXM)) could classify tumor presence (Cancer Weeks
1–3 from Control) with an AUC equal to 0.99 in the training set (sensitivity = 98% and
specificity = 95%) (the First LDA Model). The one-dimensional LDA plot can be observed in
Figure 4a and it is clear the first linear discriminant accounted for the significant differences
between the two sample classes. Data perturbation techniques were implemented to test
the robustness of the classification models [39,42]. LOOCV (AUC = 0.97) and fivefold
cross validation (AUC = 0.98) showed values similar to the training data, demonstrating
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the model was not overfit. The respective ROC curves can be seen in Figure 4b and the
two-dimensional LDA plot is illustrated in Figure 4c.
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iLDA was also implemented on a subset of ketones, terpenes and aromatics to model
changes in murine VOCs between Cancer Week 1 and Cancer Week 3. iLDA identified a
different biosignature of five VOCs (p-Cymen-8-ol (CYOL), 1,3,5-Undecatriene (UNTR),
8,8,9-Trimethyl-deca-3,5-diene-2,7-dione (TDDD), 2,4-Di-tert-butylphenol (DTBP) and 2-
Butanone, 3,3-dimethyl- (2-BDI)) that classified Cancer Week 1 from Cancer Week 3 with
100% accuracy in the training data set (AUC = 1.0) (The Second LDA Model). Use of the
first linear discriminant led to a perfect separation and one-dimensional LDA box/whisker
plots can be observed in Figure 4d. LOOCV (AUC = 0.94) and fivefold cross validation
(AUC = 0.97) were implemented and showed the model was not overfit (ROC in Figure 4e).
Cancer Week 2 samples were tested using this model and the two-dimensional LDA plot
can be seen in Figure 4f, which shows that some of the samples clustered in between
Cancer Week 1 and Week 3, some clustered with Cancer Week 1 and some clustered with
Cancer Week 3. This mirrors the results from the hierarchical heatmap in Figure 2b. Week 2
samples were not included in the statistical analysis comparing Weeks 1 and 3, shown in
Figure 4d,e.

Next, the team undertook iLDA to identify a single panel capable of distinguishing
all three sample classes of interest (Control, Cancer Week 1 and Cancer Week 3). iLDA
was undertaken and applied on all VOCs that were differentially expressed for all sample
comparisons (including VOCs only significant in Week 3 of Cancer). LDA utilizing five
compounds (damascenone, 1,3,5-trichlorobenzene (TCHB), linalool, DTBP and 2-hexanone
(2-HEX)) led to accurate classification of all three sample classes (the Third, LDA Model).
Linalool is a linear monoterpenoid and damascenone an isoprenoid lipid that are not listed
in Table S1 because although statistically significant for Control/Week 3 classification,
they were not univariately significant for either All Cancer/Control or the Cancer Week
1/Week 3 comparison. Using this third LDA model, Cancer samples were distinguished
from Control samples with an AUC equal to 0.98, sensitivity = 100% and specificity = 95%
(LOOCV AUC = 0.97 and fivefold cross validation = 0.95). Alternatively, Cancer Week
1 was classified from Week 3 with AUC = 0.99, sensitivity = 100% and specificity = 92%
(LOOCV AUC = 0.97 and fivefold cross validation AUC = 0.97). The ROC curves can be
seen in Figure 4g,h, while the two-dimensional LDA plot can be observed in Figure 4i.
Urine samples collected from the Week 2 cohort were tested using this classification model
and the LDA plot is shown in Figure S1. Week 2 samples are 100% distinguished from
Control samples and again cluster in between Cancer Week 1 and Cancer Week 3. However,
many of the mouse urine samples were classified as either Cancer Week 1 or Cancer
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Week 3, showing that some of the mice in Cancer Week 2 had tumors that may have
progressed faster.
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3.4. Linear and Principal Component Regression Analysis

Linear regression analysis was undertaken on individual VOCs (37 with p-value by
Student’s t-test < 0.05 between Cancer Week 1 and Week 3) to look for significant trends
with respect to the day on which urine was collected after tumor injection. Determination
coefficients (R2 value), regression coefficients and standard errors for all 37 individual
VOCs can be observed in Supplementary Table S2. ANOVA determined that 23 out of the
37 VOCs had statistically significant trends by linear regression (p-value < 0.05). Of the
23 VOCs, only 5 VOCs had a positive regression coefficient while the other 18 features
had negative regression coefficients. Even though statistically significant correlations
were observed, none of the VOCs had an adjusted R2 greater than 0.35. Next, PCR was
implemented on the same 37 VOCs. After employing PCR on all 37 principal components,
a relatively good fit was obtained (R2 = 0.94), but the adjusted R2 value was much lower
(0.61), indicating too many variables were being utilized. A scatter plot showing the R2

and adjusted R2 value as a function of the number of principal components utilized for
this model can be seen in Figure 5a, which indicates that analyzing more than 19 principal
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components will result in an overfit model. PCR using the first 19 components resulted
in a linear correlation with R2 = 0.82, adjusted R2 = 0.68 and root mean square error
(RMSE) = 3.3 (Figure 5b). The 95% confidence interval for the linear regression model is
additionally illustrated in Figure 5b. The standardized coefficients for all 37 VOCs can be
observed in Table S2. To increase the stability of the model, PCR was implemented using
only the 19 VOCs (principal component loadings) statistically significantly contributing
toward the first iteration of regression analysis (Figure 5b). Again, when plotting the R2

and adjusted R2 value as a function of the number of principal components (Figure 5c),
utilizing more than 10 principal components results in an overfit model. The first 10
principal components resulted in a linear correlation with R2 = 0.71, adjusted R2 = 0.63
and RMSE = 3.6 (Figure 5d). The 95% confidence interval for this PCR model is can also be
observed in Figure 5d. The standardized coefficients for all 19 VOCs for this model can
also be observed in Table S2.
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Figure 5. Principal component regression (PCR) analysis using models starting with 37 and 19 VOCs,
respectively, identify leaner models in an iterative fashion. (a) Coefficient of determination plotted
against the number of principal components utilized for the principal component regression (PCR)
analysis using 37 VOCs with p-value < 0.05 (Cancer Week 1 vs. Cancer Week 3). (b) PCR analysis
using the first 19 principal components with calculated R2 equal to 0.82 and adjusted R2 equal to
0.68. (c) Coefficient of determination plotted against the number of principal components utilized for
the PCR analysis using 19 VOCs significantly contributing toward the linear correlation. (d) PCR
analysis using the first 10 principal components results in a more stable model which could predict
the number of days after tumor injection with R2 equal to 0.71 and adjusted R2 equal to 0.63.

4. Discussion

The heatmaps (Figure 2) are consistent with previous studies in murine models
of breast cancer [28,29]; more VOCs are downregulated by cancer. However, previous
studies found roughly twice as many volatile terpenes and terpenoids among the cancer
biomarkers as ketones [28]. In the current study, ketones were observed to be more
consistently dysregulated by mammary tumors, regardless of when the urine was collected
(Week 1, Week 2 or Week 3). PCA and iLDA had the ability to classify all Cancer samples
with over 95% classification accuracy (Figures 3a and 4a–c) using different panels of VOCs.
Multivariate analyses could even distinguish the three sample classes of interest (Cancer
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Week 1, Cancer Week 3 and Control) with over 90% accuracy (Figures 3b and 4g–i) based
on different VOCs. These models show the ability of VOCs to classify any type of Cancer
and distinguish progression by week after tumor injection with outstanding accuracy.

PCR of all 37 VOCs with p-value < 0.05 and utilizing the first 19 principal compo-
nents resulted in a stable linear model (Figure 5a,b). Upon limiting principal component
regression to 19 VOCs, a model utilizing the first ten principal components resulted in
a model with greater stability (Figure 5c,d). Both of the principal component regression
models presented have a higher degree of linear correlation relative to any individual VOC
(Table S2). The 19 VOCs identified from principal component regression as useful for track-
ing tumor progression by day correspond to the results from multivariate classification of
Cancer by week. For example, five of the ten VOCs (DTBP, 2-BDI, CYOL, THUJ and TCHB)
that contribute toward the separation of the Control, Cancer Week 1 and Week 3 in PCA
(Figure 3b) were identified by PCR. On the other hand, four of the five VOCs identified
by LDA (CYOL, TDDD, 2-BDI and DTBP) to separate Cancer Week 1 from Cancer Week 3
(Figure 4d–f) were found to be significant by PCR. Two of the VOCs identified by LDA
to classify Control, Cancer Week 1 and Week 3 (TCHB and DTBP, shown in Figure 4g–i)
contributed toward PCR.

Ketones were the most frequent functional group detected as significantly dysregu-
lated as shown in Table S1. This is consistent with our previous analysis which showed
ketones were depleted in tumor-bearing mice [28]. Ketones have been previously reported
by Silva et al. to be potential markers for breast cancer as they are products of lipid peroxi-
dation [43]. Ketones and other carbonyls have been reported to be markers for prostate
cancer [16,18], lung cancer [44,45] and diabetes [46]. Another study by the authors showed
two ketones reported in this study, 2-HEP and 2-PEN, were enriched in urine samples
collected from mice receiving an antitumoral treatment [47] (treatment was bone loading, a
simulated form of exercise). Furthermore, in vitro analyses showed upon treatment with
2-HEP and 2-PEN, hypothalamic neuronal cells had reduced tumor cell viability accom-
panied with elevated levels of aralkylamine N-acetyltransferase (AANAT) and tyrosine
hydrogenase (TH). AANAT and TH are rate-limiting enzymes that produce melatonin
and dopamine, which have been shown to have a role in tumor suppression [47]. These
studies show the potential antitumor capability of ketones, which is intriguing as they
were downregulated by mammary tumors in this study.

Volatile terpenes/terpenoids (VTs) were found to be depleted in Cancer samples
(specifically in Week 3). VTs were previously identified to be potential markers of mammary
tumors in mice [28,29] and are synthesized in vivo by the mevalonate (MVA) pathway.
The MVA pathway has not only been shown to be dysregulated by cancer, but also to
play a significant role in tumor growth and transformation [48,49]. The change in VT
profiles may be due to osteolytic lesions likely forming by Week 3. Down-regulation of
the MVA pathway through the use of a class of HMG-CoA reductase inhibitors known
as statins is known to slow osteolysis in breast cancer models [30,50,51]. Cholesterol, an
end product downstream of the MVA pathway, has also been reported to play a role in
tumor growth [52]. The current authors previously have shown a correlation between
the dysregulation of urinary VTs and the upregulation of cholesterol in mice [30]. This is
important, as both VTs and cholesterol are products of the MVA pathway. Lastly, there
is a link between VTs as markers of cancer and potential treatments, because they have
demonstrated inhibitory effects against cancer [53–55].

2,4-Di-tert-butylphenol (DTBP) and 3,5-di-tert-Butyl-4-hydroxybenzaldehyde (DTBB),
which are classified as phenolic antioxidizing agents [40], are two aromatic VOCs identified
in the study. DTBB does not show any significant differences between Control samples
and Cancer Week 1 but becomes increasingly depleted by Week 3. On the other hand,
DTBP is significantly enriched in Cancer Week 1 relative to Control samples but becomes
progressively depleted by Cancer Week 3. These aromatic VOCs are potentially of interest
because natural phenolic antioxidant agents are secondary metabolites and their ability
to serve as an anticancer therapy has been previously analyzed. Studies have shown that
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several groups of phenolic antioxidants inhibit the growth and proliferation of tumor cells,
but the mechanism of action has not been entirely elucidated [56]. Given the previously
demonstrated antitumor capability, it is unsurprising to see their depletion induced by
tumor progression and/or the formation of osteolytic lesions.

Taken together, these results show that VOCs can not only classify tumor-bearing
mice, but also accurately track progression. Limitations of this study include the relatively
small number of samples analyzed. Additionally, the metabolic variation of all mice was
relatively controlled: BALB/c mice were the same age, given the same tumors (triple
negative 4T1.2 cells), kept in the same environment and fed the same diet. Women have
varied breast cancer tumors, larger variability in age, exercise, diet and other lifestyle
factors. However, it is evident most of the VOCs in the murine study do not represent the
tumors themselves, but the metabolic response to tumors; a human metabolic response
to tumors would be expected to also present significant similarities despite differences in
tumor type and the other variations noted above. In the future, it may be fruitful to combine
VOC analysis with other predictors of tumor progression such as the identified circulating
biomarker for bone metastasis [32] and others which have not yet been identified.

5. Conclusions

It is important, when translating results from murine models to human studies, to
recollect that murine samples may represent late stages in cancer tumor progression. This
study found tumor injection to the tibia led to many VOCs being dysregulated as early
as the first week after injection. Some VOCs remained relatively constant over the course
of the study, while others were insignificant early in the study but were dysregulated
later in the study. This is hypothesized to be because of cancer progression and/or the
formation of osteolytic lesions induced by mammary tumor injection/progression. It is
hoped these findings can be translated into human research for early detection of breast
cancer recurrence as 20–30% of patients with early breast cancer will experience relapse
with distant metastatic disease and bone metastases being the most common presentation
at the time of recurrence [2]. Further human research can be focused on finding if the
urinary VOCs can be detected before the radiographic appearance of lesions on the bone
scans or PET scans, or exploring if there is any correlation between the levels of VOCs and
the extent of tumor burden.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-669
4/13/6/1462/s1, Table S1: List of VOCs with p-value < 0.05 between Cancer Weeks 1–3 vs. Control
(tumor presence) or Cancer Week 1 vs. Cancer Week 3 (tumor progression) with corresponding
abbreviations, retention times and p-values for both comparisons (NS = no statistical significance,
upward facing arrows show upregulation in all Cancer samples or in Cancer Week 3 while downward
facing arrows signify downregulation, * denotes VOCs used for PCA in Figure 3b, underline denotes
p-value < 0.05 between Cancer Week 1 and Week 3 after FDR adjustment, italics denotes p-value <
0.05 between Cancer and No Cancer after FDR adjustment). Table S2. Regression analysis results of
individual 37 VOCs identified as significantly different (Cancer Week 1 and Week 3), standardized
regression coefficients for the same 37 VOCs analyzed by PCR in Figure 5b and standardized
regression coefficients for the 19 VOCs analyzed by PCR in Figure 5d. Figure S1: 2D LDA plot with
Cancer Week 2 samples tested utilizing the LDA model initially built to discriminate Control, Cancer
Week 1 and Cancer Week 3.
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