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Preface to ”Land-Atmosphere Interactions and Effects

on the Climate of the Tibetan Plateau and

Surrounding Regions”

This book focused on recent advances in land-atmosphere interactions and their effects on the

climate change over the Tibetan Plateau and surrounding regions using multisource remote sensing

data and in situ measurements.

Retrieval of land surface variables and surface heat fluxes, as well as change monitoring in

snow, glaciers, lakes, and other land-surface covers are of particular interest. Special attention is

given to retrieval of land-surface key properties, variations of land-surface heat fluxes, estimation of

precipitation and evapotranspiration, change monitoring of glacier and lakes, the responses of lakes

to climate change, carbon, water and heat exchange in terrestrial ecosystems, risk assessment of snow

disasters, estimation of turbulence characteristics, vegetation dynamics and its response to weather

and climate.
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1. Introduction

The global climate has undergone unequivocal warming. According to the sixth
assessment report of the Intergovernmental Panel on Climate Change, the global surface
temperature in the first two decades of the 21st century (2001–2020) was 0.99 ◦C (0.84 to
1.10 ◦C) higher than that from 1850–1900. Moreover, the global surface temperature from
2011–2020 was 1.09 ◦C (0.95 to 1.20 ◦C) higher than that from 1850–1900 [1]. Meanwhile,
accelerating climate change exerts more influence on polar regions, high-altitude zones,
and ecologically fragile areas. Often referred to as ‘the Third Pole’ and ‘the Roof of the
World’, the Tibetan Plateau (TP) conserves vast areas of mountain glaciers, permafrost, and
seasonally frozen soil and is the largest high-elevation portion of the cryosphere sensitive to
global climate change [2]. In this context, quantitative assessment of the land–atmosphere
interaction processes, as well as their effects on the TP and its surrounding regions, is
not only essential for understanding the energy and water cycles in the cryosphere and
hydrosphere but also crucial for understanding the Asian monsoon system and predicting
the climate of Asia and the Northern Hemisphere [3].

To this end, this Special Issue aimed to present recent scientific advances on (1) the
estimation of key land surface properties, (2) processes in the atmospheric boundary layer,
(3) monitoring of glaciers and glacial lakes, (4) hydrometeorological processes, (5) vegeta-
tion dynamics and their response to weather and climate, etc.

Twenty-three articles are published in this Special Issue, covering progress on the
following: land surface energy budget, glacier elevation change and snow phenology,
the spatiotemporal distribution of precipitation, properties of land surface characteristic
parameters, and evaluations of current models and products. The effects of climate change
on high-altitude lakes were also included in this Special Issue.

Remote Sens. 2023, 15, 286. https://doi.org/10.3390/rs15010286 https://www.mdpi.com/journal/remotesensing1
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2. Highlights of Research Articles

The land surface energy budget over the TP was analyzed via both remote sensing
datasets and in situ observations. Based on empirical orthogonal function analysis of the
summer surface sensible heating, a decadal decreasing trend was reported as the first
dominant mode over the TP with an explained variance of 20.1% [4]. An enhanced water
vapor supply and convergence over the TP were revealed, which led to an increase in
the total cloud cover and a decrease in surface downwelling shortwave radiation. The
reduction in downwelling shortwave radiation was found to dominate the shrinkage of
surface sensible heating. Meanwhile, a zonally asymmetric pattern with positive (negative)
sensible heating anomalies in the western (eastern) TP represented the second dominant
mode (with an explained variance of 14.2%) [4]. At the station level, the sensible (latent) heat
flux was the dominant energy balance component at the Ngari and Qomolangma (Linzhi,
Muztagh, Nagqu, and Nam Co) stations. The radiation/energy balance components and
surface characteristic parameters exhibited distinct diurnal cycles (e.g., a ‘U’ shaped curve
of the surface broadband albedo was reported) [5]. Based on measurements at eight plateau
stations in TIPEX III (the third Tibetan Plateau experiment for atmospheric sciences), the
daily mean surface heating field varied from 70.2 to 101.2 W/m2, with sensible (latent)
heat flux from 18.8 to 60.1 W/m2 (10.1 to 74.7 W/m2) [6]. A negative correlation between
surface heating field density and the intensity of the South Asian summer monsoon was
also verified at Baingoin, Nagqu, Nam Co, and Lhari stations [6].

Glaciers and snow phenology are sensitive indicators of climate change, both being
involved in and affecting energy/water transfer processes. Global warming has led to sig-
nificant changes in high-altitude glaciers. Shen et al. [7] developed an ‘elevation-aspect bin
analysis method’ to estimate the intra- and interannual elevation changes of glaciers in the
High Mountain Asia (HMA) region. An accelerating decreasing trend of glacier elevation
was reported in most regions of the HMA, with mean change rates of −0.21 ± 0.12 m/year
during 2003–2008 and −0.26 ± 0.11 m/year during 2003–2020. The variation in glacier
elevation showed distinct spatial differences. The decreasing rate gradually decreased from
the marginal region to the inner area of HMA, which indicates that the marginal areas of
the TP may be zones facing significant risk [7]. Meanwhile, the spatiotemporal variation
characteristics of snow disasters over the TP were also evaluated [8]. The frequency, dura-
tion, average snow depth, and grade of snow disasters over the TP all depicted a declining
trend in the long run. Using the farmer and pastoralist well-being (FPWB) index, which
has a negative relation with snow disaster risk, the whole TP area was divided into five
distinct regions: Kashgar (I), Shigatse (II), Nagqu (III), Qamdo (IV), and Yushu (V), with
gradually decreasing risks of snow disasters [8]. According to Wu et al. [9], factors such
as precipitation, solar radiation, and air temperature significantly affect snow phenology.
Precipitation was positively correlated with snow accumulation and maintenance, while
solar radiation and air temperature functioned negatively. Comparatively, the quantity of
snow was more sensitive to solar radiation, while its persistence was more sensitive to air
temperature. The mean change rates of snow depth and snow cover maintenance days
were estimated to be −0.06 cm/year and −0.37 day/year, respectively [9].

The spatiotemporal variability of precipitation was also focused on in this Special Issue.
Meng et al. [10] reported that precipitation in most areas of the three rivers’ source regions
decreased in spring, autumn, and winter, while summer contributed the most increases. In
contrast with the 2000s, the afternoon precipitation slightly decreased in the 2010s, while
the nighttime precipitation increased significantly. Cao et al. [11] derived similar results,
i.e., the diurnal maximum precipitation was found to be concentrated in the early evening,
showing a distinct diurnal cycle. In addition, the raindrop size exhibited significant seasonal
variability in the premonsoon, monsoon, and postmonsoon periods. The highest (lowest)
concentration of small raindrops was observed in monsoon (winter) precipitation, while
large raindrops dominated the premonsoon precipitation [12]. Shen et al. [13] found that
the precipitation particles above high mountains have distinct characteristics, such as lower
droplet number concentrations and larger diameters, compared with those over plains. In
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addition, both Wang et al. [14] and Yang et al. [15] concluded that soil moisture plays a more
dominant role in precipitation-use efficiency and evapotranspiration-precipitation coupling.
Moreover, Shikhovtsev et al. [16] utilized the fifth generation ECMWF (European Centre
for Medium-range Weather Forecasts) atmospheric reanalysis (ERA5) precipitable water
vapor (PWV) data within 2010–2020 to establish a functional relation between the PWV and
the elevation, exhibiting that the decrease of PWV with the elevation was exponential with
a height scale of 1000 m. The ERA5 product was also reported to overestimate the PWV
values by 1–2 mm in the Big Telescope Alt-azimuthal region (40◦N–50◦N, 35◦E–55◦E) [16].

Surface characteristic parameters are significant factors affecting the accuracy of sur-
face process assessments. Li et al. [17] developed an algorithm to generate high-spatial-
resolution soil moisture during the thawing season in the permafrost environment using
Sentinel-1 and Sentinel-2 data. The comparison with ERA5-Land, Global Land Data As-
similation System (GLDAS), and European Space Agency Climate Change Initiative (ESA
CCI) products indicated that this proposed method is able to provide more spatial de-
tails and achieve better performance in permafrost areas over the TP. The typical land
cover types, alpine desert, alpine steppe, alpine meadow, and alpine swamp meadow,
displayed distinct differences in soil moisture, with mean values of 0.16, 0.20, 0.23, and
0.26 m3/m3, respectively [17]. The soil’s apparent thermal diffusivity (k) is also vital for
investigating soil surface heat transfer. Tong et al. [18] determined the magnitude of k at
hourly, daily, and monthly scales via a conduction–convection method. The monthly k
varied from 0.4 × 10−6 to 1.1 × 10−6 m2/s at the wet site, with values from 1.7 × 10−7 to
3.3 × 10−7 m2/s at two dry sites, displaying magnitude differences under different soil
moisture conditions. In addition, Ren et al. [19] reported that the Bowen ratio decreased
significantly with an increase in soil moisture or effective precipitation. The Bowen ratio
in the semiarid region was 1.5 times higher than that in the semihumid region during
the growing season. Moreover, Zhang et al. [20] analyzed the profiles of the atmospheric
refractive index structure constant (C2

n), reporting unique optical turbulence characteristics
compared with plain areas.

Several articles have evaluated the current models or products of near-surface hy-
drometeorological variables. Huang et al. [21] conducted a systematic assessment of three
widely used air temperature products, namely, ERA5L, GLDAS, and China Meteorological
Administration Land Data Assimilation System (CLDAS). Among these three products,
CLDAS is more consistent with observations and can better describe temperature distri-
bution and variation details than ERA5L and GLDAS for the Asian region. CLDAS is
0.53 K higher than the in situ observation, while ERA5L and GLDAS are lower than in situ
measurements by −3.45 K and −1.40 K, respectively [21]. Liu et al. [22] reported that WRF
applying the default glacial albedo scheme overestimates the albedo with a mean error
of 0.18, while WRF applying a modified glacial albedo scheme slightly underestimates
the albedo with a mean error of only −0.08. The default glacial albedo scheme gives a
relatively high albedo value of 0.68, causing an underestimation of the net shortwave and
net radiation. In contrast, the modified glacial albedo scheme provides a mean albedo
value of 0.35, which is close to in situ measurements. In addition, Liu et al. [23] compared
the leaf area index (LAI) estimations from 35 Earth system models that participated in the
sixth Coupled Model Intercomparison Project (CMIP6) and found that these models over-
estimated the LAI trend over alpine vegetation, grassland, and forest but underestimated it
over meadow and shrub. More than 70% of the models overestimated the LAI during the
1981–2014 growing seasons, indicating that the greening of grassland in the TP was greatly
overestimated. Moreover, five complementary relationship-based models, requiring only
routine meteorological variables to estimate actual terrestrial evapotranspiration, were
evaluated by Shang et al. [24], with biases ranging from −94.2 to 28.3 mm/year. These
models provide a simple and convenient approach for evapotranspiration estimates.

Finally, the responses of TP lakes to climate change were also quantitively investigated.
The lake surface water temperature of the largest freshwater lake in the TP, Ngoring Lake,
was estimated to have a warming rate of 0.6 K/decade. However, comparison with its
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nearby small saline lake, the Hajiang Salt Pond, depicted distinct differences due to the
salinity effect. The high salinity of the small saline lake made the annual mean lake surface
water temperature 2.6 K higher and resulted in a 0.02 K/decade more significant warming
trend than freshwater lakes at the same depth [25]. Moreover, the lakes in the Qaidam
Basin were estimated to have undergone accelerated expansion. In the two study periods
of 2003–2011 and 2011-present, the air temperature, precipitation, and runoff increased
steadily, while the expansion rate of Tuosu Lake in the Qaidam Basin increased from
1.22 km2/year to 3.38 km2/year. This significant increase in the lake expansion rate reflects
groundwater’s substantial contribution to lake expansion [26].

3. Conclusions

This Special Issue compiles the up-to-date progress on the following: land surface
energy budget, glacier/snow phenology, the spatiotemporal distribution of precipitation,
properties of land surface characteristic parameters, evaluations of current models and
products, and high-altitude lake processes over the TP and its surrounding regions. These
selected papers are novel and timely in informing the land–atmosphere interactions driven
by climate change. The collation of these papers will provide quantitative references for
better assessment and prediction of the land–atmosphere interactions and their effects on
“the Third Pole” and its surrounding regions.

Author Contributions: Conceptualization, Y.M. and L.Z.; formal analysis, Y.M., L.Z., L.J. and M.M.;
investigation, L.Z.; writing—original draft preparation, L.Z.; writing—review and editing, Y.M., L.J.
and M.M.; supervision, Y.M.; funding acquisition, Y.M. and L.Z. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was jointly funded by the Second Tibetan Plateau Scientific Expedition and
Research (STEP) Program, Ministry of Science and Technology of the People’s Republic of China
(Grant No. 2019QZKK0103), the Strategic Priority Research Program of the Chinese Academy of
Sciences (Grant No. XDA20060101), the National Natural Science Foundation of China (Grant
Nos. 41875031, 91837208, and 4223061), and CLIMATE-Pan-TPE (ID 58516) in the framework of the
ESA-MOST Dragon 5 program.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; p. 2391.

2. Ma, Y.; Hu, Z.; Xie, Z.; Ma, W.; Wang, B.; Chen, X.; Li, M.; Zhong, L.; Sun, F.; Gu, L.; et al. A Long-Term (2005–2016) Dataset of
Hourly Integrated Land-Atmosphere Interaction Observations on the Tibetan Plateau. Earth Syst. Sci. Data 2020, 12, 2937–2957.
[CrossRef]

3. Su, Z.; Ma, Y.; Chen, X.; Dong, X.; Du, J.; Han, C.; He, Y.; Hofste, J.; Li, M.; Li, M.; et al. Monitoring Water and Energy Cycles at
Climate Scale in the Third Pole Environment (CLIMATE-TPE). Remote Sens. 2021, 13, 3661. [CrossRef]

4. Fan, W.; Hu, Z.; Ma, W.; Ma, Y.; Han, C.; Han, X.; Yang, Y.; Yu, H.; Fu, C.; Wu, D. Dominant Modes of Tibetan Plateau Summer
Surface Sensible Heating and Associated Atmospheric Circulation Anomalies. Remote Sens. 2022, 14, 956. [CrossRef]

5. Ma, J.; Wen, X.; Li, M.; Luo, S.; Zhu, X.; Yang, X.; Chen, M. Analysis of Surface Energy Changes over Different Underlying Surfaces
Based on MODIS Land-Use Data and Green Vegetation Fraction over the Tibetan Plateau. Remote Sens. 2022, 14, 2751. [CrossRef]

6. Li, H.; Zhou, L.; Wang, G. The Observed Impact of the South Asian Summer Monsoon on Land-Atmosphere Heat Transfers and
Its Inhomogeneity over the Tibetan Plateau. Remote Sens. 2022, 14, 3236. [CrossRef]

7. Shen, C.; Jia, L.; Ren, S. Inter- and Intra-Annual Glacier Elevation Change in High Mountain Asia Region Based on ICESat-1&2
Data Using Elevation-Aspect Bin Analysis Method. Remote Sens. 2022, 14, 1630.

8. Li, J.; Zou, Y.; Zhang, Y.; Sun, S.; Dong, X. Risk Assessment of Snow Disasters for Animal Husbandry on the Qinghai–Tibetan
Plateau and Influences of Snow Disasters on the Well-Being of Farmers and Pastoralists. Remote Sens. 2022, 14, 3358. [CrossRef]

9. Wu, L.; Li, C.; Xie, X.; Lv, J.; Zou, S.; Zhou, X.; Shen, N. Land Surface Snow Phenology Based on an Improved Downscaling
Method in the Southern Gansu Plateau, China. Remote Sens. 2022, 14, 2848. [CrossRef]

10. Meng, X.; Deng, M.; Liu, Y.; Li, Z.; Zhao, L. Remote Sensing-Detected Changes in Precipitation over the Source Region of Three
Rivers in the Recent Two Decades. Remote Sens. 2022, 14, 2216. [CrossRef]

11. Cao, B.; Yang, X.; Li, B.; Lu, Y.; Wen, J. Diurnal Variation in Cloud and Precipitation Characteristics in Summer over the Tibetan
Plateau and Sichuan Basin. Remote Sens. 2022, 14, 2711. [CrossRef]

4



Remote Sens. 2023, 15, 286

12. Li, R.; Wang, G.; Zhou, R.; Zhang, J.; Liu, L. Seasonal Variation in Microphysical Characteristics of Precipitation at the Entrance of
Water Vapor Channel in Yarlung Zangbo Grand Canyon. Remote Sens. 2022, 14, 3149. [CrossRef]

13. Shen, C.; Li, G.; Dong, Y. Vertical Structures Associated with Orographic Precipitation during Warm Season in the Sichuan Basin
and Its Surrounding Areas at Different Altitudes from 8-Year GPM DPR Observations. Remote Sens. 2022, 14, 4222. [CrossRef]

14. Wang, S.; Zhang, Q.; Yue, P.; Wang, J.; Yang, J.; Wang, W.; Zhang, H.; Ren, X. Precipitation-Use Efficiency and Its Conversion with
Climate Types in Mainland China. Remote Sens. 2022, 14, 2467. [CrossRef]

15. Yang, Z.; Zhang, Q.; Zhang, Y.; Yue, P.; Zhang, L.; Zeng, J.; Qi, Y. Hydrothermal Factors Influence on Spatial-Temporal Variation of
Evapotranspiration-Precipitation Coupling over Climate Transition Zone of North China. Remote Sens. 2022, 14, 1448. [CrossRef]

16. Shikhovtsev, A.Y.; Kovadlo, P.G.; Khaikin, V.B.; Kiselev, A.V. Precipitable Water Vapor and Fractional Clear Sky Statistics within
the Big Telescope Alt-Azimuthal Region. Remote Sens. 2022, 14, 6221. [CrossRef]

17. Li, Z.; Zhao, L.; Wang, L.; Zou, D.; Liu, G.; Hu, G.; Du, E.; Xiao, Y.; Liu, S.; Zhou, H.; et al. Retrieving Soil Moisture in the
Permafrost Environment by Sentinel-1/2 Temporal Data on the Qinghai–Tibet Plateau. Remote Sens. 2022, 14, 5966. [CrossRef]

18. Tong, B.; Xu, H.; Horton, R.; Bian, L.; Guo, J. Determination of Long-Term Soil Apparent Thermal Diffusivity Using Near-Surface
Soil Temperature on the Tibetan Plateau. Remote Sens. 2022, 14, 4238. [CrossRef]

19. Ren, X.; Zhang, Q.; Yue, P.; Yang, J.; Wang, S. Environmental and Biophysical Effects of the Bowen Ratio over Typical Farmland
Ecosystems in the Loess Plateau. Remote Sens. 2022, 14, 1897. [CrossRef]

20. Zhang, K.; Wang, F.; Weng, N.; Wu, X.; Li, X.; Luo, T. Optical Turbulence Characteristics in the Upper Troposphere–Lower
Stratosphere over the Lhasa within the Asian Summer Monsoon Anticyclone. Remote Sens. 2022, 14, 4104. [CrossRef]

21. Huang, X.; Han, S.; Shi, C. Evaluation of Three Air Temperature Reanalysis Datasets in the Alpine Region of the Qinghai–Tibet
Plateau. Remote Sens. 2022, 14, 4447. [CrossRef]

22. Liu, L.; Menenti, M.; Ma, Y. Evaluation of Albedo Schemes in WRF Coupled with Noah-MP on the Parlung No. 4 Glacier. Remote
Sens. 2022, 14, 3934. [CrossRef]

23. Liu, J.; Lu, Y. How Well Do CMIP6 Models Simulate the Greening of the Tibetan Plateau? Remote Sens. 2022, 14, 4633. [CrossRef]
24. Shang, C.; Wu, T.; Ma, N.; Wang, J.; Li, X.; Zhu, X.; Wang, T.; Hu, G.; Li, R.; Yang, S.; et al. Assessment of Different Complementary-

Relationship-Based Models for Estimating Actual Terrestrial Evapotranspiration in the Frozen Ground Regions of the Qinghai-
Tibet Plateau. Remote Sens. 2022, 14, 2047. [CrossRef]

25. Wen, L.; Wang, C.; Li, Z.; Zhao, L.; Lyu, S.; Leppäranta, M.; Kirillin, G.; Chen, S. Thermal Responses of the Largest Freshwater
Lake in the Tibetan Plateau and Its Nearby Saline Lake to Climate Change. Remote Sens. 2022, 14, 1774. [CrossRef]

26. Zhang, X.; Chen, J.; Chen, J.; Ma, F.; Wang, T. Lake Expansion under the Groundwater Contribution in Qaidam Basin, China.
Remote Sens. 2022, 14, 1756. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

5





Citation: Fan, W.; Hu, Z.; Ma, W.; Ma,

Y.; Han, C.; Han, X.; Yang, Y.; Yu, H.;

Fu, C.; Wu, D. Dominant Modes of

Tibetan Plateau Summer Surface

Sensible Heating and Associated

Atmospheric Circulation Anomalies.

Remote Sens. 2022, 14, 956. https://

doi.org/10.3390/rs14040956

Academic Editor: Costas Varotsos

Received: 5 January 2022

Accepted: 12 February 2022

Published: 16 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing 

Article

Dominant Modes of Tibetan Plateau Summer Surface Sensible
Heating and Associated Atmospheric Circulation Anomalies

Weiwei Fan 1,2,3, Zeyong Hu 1,2,*, Weiqiang Ma 4,5, Yaoming Ma 3,4,5,6,7,8, Cunbo Han 4, Xiang Han 9,

Yaoxian Yang 1,2, Haipeng Yu 1,2, Chunwei Fu 1,2,3 and Di Wu 1,2,3

1 Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute
of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
fanweiwei19@mails.ucas.ac.cn (W.F.); yangyaoxian@nieer.ac.cn (Y.Y.); yuhp@lzb.ac.cn (H.Y.);
fuchunwei@lzb.ac.cn (C.F.); wudi@lzb.ac.cn (D.W.)

2 Nagqu Station of Plateau Climate and Environment, Northwest Institute of Eco-Environment and Resources,
Chinese Academy of Sciences, Nagqu 851107, China

3 College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
ymma@itpcas.ac.cn

4 Land-Atmosphere Interaction and Its Climatic Effects Group, State Key Laboratory of Tibetan Plateau Earth
System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of
Sciences, Beijing 100101, China; wqma@itpcas.ac.cn (W.M.); cunbo.han@itpcas.ac.cn (C.H.)

5 National Observation and Research Station for Qomolongma Special Atmospheric Processes and
Environmental Changes, Dingri 858200, China

6 College of Atmospheric Science, Lanzhou University, Lanzhou 730000, China
7 Kathmandu Center of Research and Education, Chinese Academy of Sciences, Beijing 100101, China
8 China-Pakistan Joint Research Center on Earth Sciences, Chinese Academy of Sciences,

Islamabad 45320, Pakistan
9 Ocean College, Zhejiang University, Zhoushan 316021, China; than@zju.edu.cn
* Correspondence: zyhu@lzb.ac.cn

Abstract: Based on empirical orthogonal function (EOF) analysis, the dominant modes of variations
in summer surface sensible heating (SH) over the Tibetan Plateau (TP), as well as the associated
atmospheric circulation anomalies, were investigated in this study. The results show that the first
dominant mode of summer SH presents a feature of decadal reduction over the whole TP on an
interdecadal time scale, and the second dominant mode is characterized by a zonally asymmetric
pattern with positive (negative) SH anomalies in the western (eastern) TP on an interannual time
scale. The variations of summer SH are dominated by anomalies in downwelling surface shortwave
radiation (DSWR), which are associated with atmospheric circulation changes. The first dominant
mode of variation in SH is connected to the interdecadal variation of the Silk Road Pattern (SRP).
Further analysis reveals that the interdecadal phase shift of the SRP induces anticyclone circulation
to the northeast of the TP, leading to enhanced water vapor supply and convergence over the TP.
This can lead to an increase in the total cloud cover, and a reduction in DSWR, contributing to the
decadal reduction in SH over the TP. The second dominant mode of variation in SH is related to a
stationary teleconnection pattern over the Eurasian continent named the North Atlantic-East and
North Asia pattern (NAENA). Corresponding to the positive phase of the NAENA, there is a cyclone
anomaly to the west TP, leading to anomalous water vapor convergence (divergence) over the eastern
(western) TP. This can result in enhanced (decreased) cloud cover, reduced (increased) DSWR, and
therefore, an anomalous decrease (enhancement) in SH over the east (west) of the TP. Furthermore,
the southwesterly wind anomaly, which is accompanied by the anomalous cyclone to the west TP,
leads to positive SH in the western TP.

Keywords: surface sensible heating; Tibetan Plateau; teleconnection wave trains; dominant modes;
interannual and interdecadal variations
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1. Introduction

As one of the highest and largest highlands in the world, the Tibetan Plateau (TP) is
referred to as “the Third Pole” [1]. It contains abundant water resources with a large number
of lakes, rivers, glaciers, frozen soils, and wetlands [2–4]. The TP is the source of several
major rivers in Asia, which provide water for the surrounding areas, and has crucial impacts
on the development of the Asian economy and civilization [1,5]. Thermodynamic forcing
is closely connected to the water cycle of the TP through the “CISK-like mechanism” [6].
It also plays a critical role in Asian atmospheric circulations and thus the weather and
climatic systems, such as the plateau vortices, Asian monsoon rainfall, and even the tropical
signal [7–10]. As an important component of the atmospheric heat source in warm seasons,
surface sensible heating (SH) can regulate the onset and maintenance of Asian summer
monsoon systems confirmed by observations and numerical experiments [11–13]. In the
preceding spring, the variability of SH over the TP is well connected to the onset of the
East Asian summer monsoon, as well as the precipitation anomalies of East China [14,15].
In addition, the interannual variation of SH can regulate surface dust concentrations over
the East Asian dust source region and the northwestern Pacific through increasing the
westerly winds [16].

In consideration of the critical role of SH over the TP on surrounding weather and
climate systems, research into variations of SH over the TP has important impacts for im-
proving the understanding of the mechanism of the TP and the variability in Asian climate
systems. Trend analysis indicated that SH over the TP presented significant weakening
during the 1980s–2000s, which is due to the reduced surface wind speed in connection
with the East Asian subtropical westerly jet under global warming [17]. Recent studies
have indicated that SH over the TP has been dominated by a slightly increasing trend since
the late 1990s as a result of the restored surface wind speed and difference in ground-air
temperature [18]. The CMIP6 models demonstrated that SH will continue to increase in
the future [19]. Moreover, the long-term trend of SH features elevation dependence with a
greater variation trend at a higher elevation [20]. Observational analysis and numerical
experimentation indicated that the early spring sea surface temperature anomalies over the
North Atlantic can significantly impact the interannual variation of spring SH of the TP
by triggering eastward propagating wave trains and intensifying the subtropical westerly
jet [21,22]. Based on satellite data and observations, a recent study found that SH over the
TP has increased slightly since 2001 [23].

Summer SH over the TP plays a key role in the surrounding weather and climate
systems. Numerical simulations indicated that summer SH can enhance both the lower-
level convergence and upper-level divergence in the TP, intensify the rising motion, and
thus enhance the South Asia High [24]. Chen et al. [25] found that the disappearances of
the TP vortices in the sloping terrain of the eastern TP might be attributed to the weakening
of SH. Studies also showed that summer SH has crucial impacts on Sichuan-Chongqing
areas [26]. However, although the trends of summer SH as a result of climatic change were
investigated by previous research [17–19], few studies have investigated the interannual
and interdecadal variations in summer SH of the TP and their possible causes, which is
necessary for us to understand the changes in the Asian weather and climate. Therefore, the
present study aims to investigate the interannual and interdecadal variations in summer SH
over the TP and their associated mechanisms. This helps us to gain a deep understanding
of the land and atmosphere interaction over the TP during warm seasons.

2. Data and Methods

2.1. Data

To study the variations of summer SH over the TP, ERA-interim surface sensible heat
flux datasets were used in this paper, which were available at a horizontal resolution of
0.5◦ × 0.5◦ from 1981 to 2018. To improve the handling of data bias and background error
constraints, ERA-interim uses a 12-h 4D-Varassimilation system. Compared to ERA-40,
ERA-Interim has additional input remote data, including Meteosat-2 clear-sky radiances,
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Global Ozone Monitoring Experiment (GOME) ozone profiles, and radio occultation mea-
surements from the Challenging Mini Satellite Payload (CHAMP), Constellation Observing
System for Meteorology, Ionosphere, and Climate (COSMIC), and Gravity Recovery and
Climate Experiment (GRACE). Reprocessed ocean wave height data from ERS-1 and ERS-2,
as well as upper-level winds from Meteosat-2, were also included. Previous investigations
have shown that ERA-interim SH data can accurately reflect the surface heat flux [27].
Element fields such as the surface wind speed, total cloud cover, surface latent heating, and
surface radiation data are also provided by ERA-interim.

A remote-sensing product derived from Han et al. [28,29] was also used to analyze
summer SH on the TP. A detailed retrieval algorithm of SH can be found in Han et al. [28,29].

To quantify the association between SH and atmospheric circulation, we used the
38-year (1981–2018) monthly mean geopotential height, zonal wind, and meridional wind
use from the National Centers for Environmental Prediction-National Center for Atmo-
spheric Research (NCEP/NCAR), with a horizontal grid spacing of 2.5◦ × 2.5◦. The data
we used were for the summer season (JJA). Table 1 shows the details of each variables used
in this study.

Table 1. Summary of the datasets used in the study.

Variables Data Source Availability Temporal Resolution Spatial Resolution

Sensible heat flux
(Reanalysis) ERA-Interim 1981–2018 Daily 0.5◦ × 0.5◦

Sensible heat flux
(Remote Sensing) Han et al. [28,29] 2001–2018 Monthly 0.1◦ × 0.1◦

Surface wind speed
Total cloud cover
Latent heat flux

Surface radiation

ERA-Interim 1981–2018 Monthly 0.5◦ × 0.5◦

Geopotential height
Zonal wind

Meridional wind
NCEP/NCAR 1981–2018 Monthly 2.5◦ × 2.5◦

2.2. Methods
2.2.1. Surface Energy Balance Analysis

Surface energy balance analysis was employed to identify the cause of change in SH.
It is expressed as follows [30]:

SW↓ − SW↑ + LW↓ − LW↑ = SH + LH + G, (1)

where SW↓ and SW↑ indicate the downwelling and upwelling shortwave solar radiation,
respectively; LW↓ and LW↑ indicate the downwelling and upwelling longwave thermal
infrared radiation, respectively; SH and LH indicate the upward surface sensible and latent
heating; and G is the ground heating. The data were obtained from ERA-Interim. Therefore,
the change in SH was determined by the change in the other terms in the equation, which
can be expressed as follows:

ΔSH = ΔSW↓ − ΔSW↑ + ΔLW↓ − ΔLW↑ − ΔLH − ΔG, (2)

2.2.2. Wave Activity Flux

The wave activity flux formulated by Takaya and Nakamura [31] was used to deter-
mine the features of stationary wave propagation, which is given as follows:

W =
1

2
∣∣U∣∣
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Here, ψ is the stre-m function, u is the zonal wind v-locity, and v denotes the meridio-al
wind velocity. The data were obtained from NCEP/NCAR. The overbars represent the
basic states and primes represent perturbations.

2.2.3. Empirical Orthogonal Functions (EOF) Analysis

EOF analysis was used to study the features of interannual and interdecadal variations
of summer SH. In addition, the EOF analysis was also used to extract the teleconnection
wave trains related to variations of SH. The EOF method is frequently used to investigate
potential spatial patterns of climatic variability and how they develop over time. In EOF
analysis, the original climatic data were also projected on an orthogonal basis [32]. More-
over, the orthogonal basis was determined by calculating the eigenvector of the spatially
weighted anomaly covariance matrix, with the corresponding eigenvalues indicating the
percentage variance explained by each pattern. Therefore, the EOFs of spatiotemporal
physical processes could represent mutually orthogonal spatial patterns in the data change
set, in which the first pattern accounts for most of the variance, the second pattern accounts
for most of the residual variance, etc. As the principal component (PC) of an EOF mode
shows how the spatial pattern of this mode oscillates over time, we used the corresponding
PC of the dominant mode as the reference time series for each summer of SH.

2.2.4. Linear Regression Analysis and Composite Analysis

To investigate the anomalies in surface energy flux and atmospheric circulation as-
sociated with SH, linear regression and composite analysis were employed in this study.
Using the statistical analysis method of linear regression analysis, the linear relationship
between two or more variables can be determined quantitatively. A composite analysis is
frequently used in climate change research to explore the salient characteristics of different
periods. The positive phase period of SH and the negative phase period were selected first.
Second, we investigated the atmospheric circulation differences between the two periods.
The significance of the regression coefficient and difference in the composite analysis was
evaluated using Student’s t-test.

3. Results

3.1. Dominant Modes of Variation in Summer SH over the TP

Figure 1a,b shows the spatial pattern of summer SH over the TP during the period
2001–2018 obtained from ERA-Interim reanalysis (Figure 1a) and the remote sensing prod-
uct (Figure 1b). In general, ERA-Interim and remote sensing-based SH presented similar
spatial patterns, with a pattern correlation of 0.8, exceeding the 99% confidence test. The
values of SH were positive over the whole TP, acting as a gigantic SH air pump and having
crucial climatic effects [9]. SH increased from south to north, with the maximum value in
the Qaidam Basin over the northern TP. Figure 1c,d shows the spatial distributions of the
standard deviation in SH derived from ERA-Interim reanalysis (Figure 1c) and the remote
sensing product (Figure 1d). The spatial pattern of ERA-Interim SH standard deviation
was close to the remote sensing-based SH standard deviation. In the two datasets, val-
ues of the standard deviation in SH over the northern and southern TP were also larger
than those in the eastern TP, which were similar to the spatial distributions of summer
seasonal-mean SH.

To identify the dominant modes of summer SH anomalies, EOF analysis was per-
formed. The spatial distribution of the first dominant mode (EOF1) was marked by the
consistent variations of summer SH over the whole TP, with an explained variance of 20.1%
(Figure 2a). EOF1 was set apart from the other modes based on the North test. This means
that EOF1 is considered statistically distinguishable and significant. Figure 2b shows the
spatial distribution of EOF2. EOF2 accounted for 14.2% of the total variance and passed
the North test [32]. A clear zonal seesaw pattern could be observed over the TP. The same
analysis based on the remote sensing product derived from Han et al. [28,29] also indicated

10



Remote Sens. 2022, 14, 956

that the first leading mode of summer SH showed significant consistent variations, and the
second leading mode of summer SH showed a zonal dipolar pattern (Figure S1).

Figure 1. The spatial pattern of the TP summer SH climatology (W m−2) from ERA-Interim (a) and
remote sensing product derived from Han et al. [28,29] (b), standard deviation (W m−2) from ERA-
Interim reanalysis (c), and remote sensing (d) data.

Figure 2c shows the PC1 and its interdecadal component (PC1-ID). PC1-ID presented
an interdecadal shift from the positive phase to the negative phase from around 1996. From
the perspective of long-term trends, SH demonstrated reductions from the 1980s and a
slight recovery from the 2000s, which is in agreement with previous studies [24,25]. The
spatial distribution of the summer SH interdecadal component anomalies onto PC1-ID is
shown in Figure 2e. Significant positive anomalies appeared in almost the entire TP, while
weak negative anomalies occurred in the southeastern TP, which was similar to the first
leading mode of SH driving from the EOF method, with a pattern correlation of up to
0.96 (Figure 2a). This indicates that the PC1-ID can effectively represent the interdecadal
variation of summer SH over the TP.

Figure 2d shows the PC2 and its interannual component (PC2-IA). A remarkable
feature of this was that the relation between PC2-IA and PC2 had a correlation coefficient
of up to 0.95, which indicates that EOF2 presents the interannual variation of summer SH.
The spatial distribution of SH anomalies associated with PC2-IA is shown in Figure 2f.
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A clear zonal seesaw pattern could be observed over the TP, with negative SH in the east
of the TP and positive SH over the western TP. On the interannual time scale, when the
PC2-IA was in a positive phase, SH over the TP exhibited a zonal asymmetric spatial mode
with anomalous strengthening in SH over the western TP and anomalous weakening in
SH over the eastern TP. Anomalies in the interannual component of SH associated with
PC2-IA were the same as the second leading mode of SH derived from the EOF method
(Figure 2b), which indicates that the EOF2 pattern can effectively represent the dominant
mode of interannual variation in summer SH over the TP.

Figure 2. The first two EOFs of summer SH over the TP for the period 1981–2018 (a,b). The
explained variance of EOF is in the upper right of (a,b). Normalized time series of PC1 (column)
and its interdecadal component (PC1-ID) (line) (c). Normalized time series of PC2 (column) and its
interannual component (PC2-IA) (line) (d). Regression of the interdecadal component of summer
SH (shading, W m−2) on PC1-ID (e). Regression of the interannual component of summer SH
(shading, W m−2) on PC2-IA (f). Grid points with statistically significant anomalies passing the 95%
confidence level are denoted by an oblique line.

3.2. Physical Mechanisms of Variations in Summer SH
3.2.1. First Dominant Mode of Variation in Summer SH

The first dominant mode of variation in summer SH presented an interdecadal weak-
ening. As SH was determined by the local surface energy budget, the local surface energy
budget related to anomalies in SH on the interdecadal time scale is investigated below.
Considering SH experienced a decadal phase shift around 1996, we used the two periods,
1981–1995 and 1997–2018, to represent the decadal change in SH accordingly. Figure 3
presents the difference in surface fluxes between the two periods. Anomalies in SWR bore a
close resemblance to the spatial pattern of SH with negative anomalies over the majority of
the TP (Figure 3a,c). The anomalous decrease in SWR corresponded to significantly reduced
DSWR over the TP (Figure 3e). This indicates that the DSWR has a positive contribution to
the interdecadal variation of SH. The spatial distribution of anomalies in LWR presented
strengthening over the TP (Figure 3d), which was dominated by the change in DLWR
(Figure 3g). Moreover, the magnitude of anomalies in LH, USWR, ULWR, and G was too
small to impact SH (Figure 3b,f,h,i). The contributions of the components to changes in
SH are depicted in Figure 4. It was found that the first dominant mode of SH was mainly
due to anomalous SWR induced by DSWR, while the LWR anomalies induced by DLWR
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helped to offset the decadal weakening of SH. The contribution of the other components
was insignificant.

Figure 3. Spatial distribution of difference in sensible heating (SH) (a), latent heating (LH) (b), surface
net shortwave radiation (SWR) (c), surface net longwave radiation (LWR) (d), downwelling surface
shortwave radiation (DSWR) (e), upwelling surface shortwave radiation (USWR) (f), downwelling
surface longwave radiation (DLWR) (g), upwelling surface longwave radiation (ULWR) (h), and
ground heating (G) (i) between 1997–2018 and 1981–1995 (shading, W m−2). Grid points with
statistically significant anomalies passing the 95% confidence level are denoted by an oblique line.

Figure 4. The difference in SH, LH, SWR, LWR, DSWR, LSWR, DLWR, ULWR, and G between
1997–2018 and 1981–1995 over the TP (W m−2).
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According to previous studies, cloud cover can regulate the DSWR and DLWR [33].
Therefore, the opposite variations of DSWR and DLWR may have been induced by the
cloud cover. The total cloud cover variations associated with the interdecadal variation
of SH were investigated next. Figure 5a displays the difference in the total cloud cover
between 1997–2018 and 1981–1995. The TP was dominated by enhanced cloud cover, which
induced more reflection of downwelling solar radiation and resulted in reduced DSWR.
A decrease in DSWR can enhance SH owing to the surface energy budget. Figure 5b depicts
the difference in water vapor flux and divergence between 1997–2018 and 1981–1995.
A large westward water vapor flux emerged over the TP. This can enhance the convergence
of water vapor flux over the TP by means of decreasing the water vapor exported from
the eastern boundary of the TP. Associated with this increase in water vapor convergence,
more summer cloud cover appeared over the TP (Figure 5a), inducing a decadal weakening
of SH (Figure 3a).

Figure 5. Spatial distribution of difference in total cloud cover (a), water vapor flux exceeding the
95% confidence level (vector, kg m−1 s−1), and divergence (shading, 10−4 kg m−2 s−1) (b) between
1997–2018 and 1981–1995. Grid points with statistically significant anomalies passing the 95% confi-
dence level are denoted by oblique lines.

Large-scale circulation anomalies can usually contribute to regional climatic change.
Studying the impact of atmospheric circulation on TP SH can improve our understanding
of climatic change over the TP, which is helpful for climate prediction. The atmospheric
circulation anomalies linked to the interdecadal weakening of summer SH over the TP
were examined further. Figure 6a displays the 500 hPa geopotential height and horizontal
wind anomalies between 1997–2018 and 1981–1995. There was a wave train in the Eurasian
continent. A considerably positive geopotential height center with an anticyclonic anomaly
was located to the northeast of the TP, corresponding to this anomalous wave-like train.
This led to a weakened subtropical westerly jet over the TP and less water vapor export
from the eastern boundary of the TP. Figure 6b shows the 200 hPa geopotential height
anomalies during the two periods. A zonal wave train occurred from the North Atlantic to
the Eurasian continent, with two negative-height anomalies over the North Atlantic and
West Asia and two positive-height anomalies over eastern Europe and Lake Baikal. The
wave activity flux indicated that the wave train’s propagation direction was expected to
be from the North Atlantic to the Eurasian continent. Such a circulation anomaly pattern
is favorable for a reduced westerly jet and led to anomalous water vapor convergence
of the TP (Figure 5b). This conclusion coincides with Zhou et al. [34], who proposed
that the interdecadal variation in summer water vapor over the TP is related to a similar
teleconnection pattern. Furthermore, the atmospheric circulation anomalies linked to
PC1-ID were similar to those related to the interdecadal variation of SRP [35], implying that
the SRP pattern may be crucial in the interdecadal variability of summer SH over the TP.
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Figure 6. Spatial distribution of difference in 500 hPa geopotential height anomalies (shading, gpm)
and the wind exceeding the 95% confidence level (vector, m s−1) (a), the 200 hPa geopotential height
anomalies (shading, gpm), and the wave activity flux (vector, m2 s−2) (b) between 1997–2018 and
1981–1995. Grid points with statistically significant anomalies passing the 95% confidence level are
denoted by oblique lines.

3.2.2. Second Dominant Mode of Variation in Summer SH

We next investigated the surface flux anomalies related to the second dominant mode
of variation in TP summer SH. Figure 7 displays the surface flux anomalies related to the
PC2-IA of summer SH. The upwelling surface longwave and shortwave radiations ranged
from the surface to the atmosphere. In general, a large decrease in surface latent heating
(LH) mainly appeared in the southern TP, and an insignificant increase occurred in the
northern TP. Corresponding to the EOF2 of SH, a significant increase in the surface net
shortwave radiation (SWR) was observed over the western TP and a remarkable reduction
appeared in the eastern TP (Figure 7c). Anomalies in SWR were dominated by the zonally
asymmetric pattern of downwelling surface shortwave radiation (DSWR) (Figure 7e).
However, the contribution of upwelling surface shortwave radiation (USWR) to anomalies
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in SWR was insignificant (Figure 7f). This means that the DSWR has a positive contribution
to anomalies in SH over the TP. On the contrary, anomalies of surface longwave radiation
(LWR) (Figure 7d) mainly induced by anomalous downwelling surface longwave radiation
(DLWR) (Figure 7g) negatively affected SH due to the opposite spatial pattern anomalies.
Moreover, anomalies in upwelling surface longwave radiation (USWR) and the ground
heat flux (G) were insignificant and had little impact on the change in SH.

Figure 7. Anomalies in the interannual component of SH (a), LH (b), SWR (c), LWR (d), DSWR
(e), LSWR (f), DLWR (g), ULWR (h), and G (i) regressed on PC2-IA (shading, W m−2). Grid points
with statistically significant anomalies passing the 95% confidence level are denoted by oblique lines.
The two black rectangles denote the western TP (28–36◦ N, 78–88◦ E) and eastern TP (28–36◦ N,
92–102◦ E).

To further examine the contribution of each surface flux to SH anomalies, the average
regional anomalies of SH, LH, SWR, LWR, DSWR, USWR, DLWR, ULWR, and G were
calculated for the eastern TP (28–36◦ N, 78–88◦ E) (Figure 8a) and western TP (28–36◦ N,
92–102◦ E) (Figure 8b), respectively. For the eastern TP, a large decrease in SWR of ap-
proximately −9 W m−2 contributed to the decrease in SH and LH. The decrease in SWR
is mainly attributed to the weakening of DSWR. For the western TP, enhanced SH was
consistent with the increase in DSWR and decrease in LH, which means that the increase
in SH was mainly due to DSWR and LH. The LWR presented a significant reduction of
approximately −2.2 W m−2. Among the contributions to the SH change, the role of DSWR
was predominant. Therefore, we investigated the role of DSWR in changing SH on the
interannual time scale.
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Figure 8. Anomalies in the interannual component of SH, LH, SWR, LWR, DSWR, LSWR, DLWR,
ULWR, and G regressed on PC2-IA (W m−2) in the region of eastern TP (a) and western TP (b).

As investigated by previous studies [33], cloud cover has an important influence on
the shortwave radiation reaching the surface. Figure 9a shows anomalies in total cloud
cover related to the interannual variation of the TP summer SH. In contrast, less cloud cover
appeared in the western TP, and more cloud cover appeared in the eastern TP. This indicates
that the anomalous DSWR leading to the zonally asymmetric pattern of SH may be partly
related to the variations of total cloud cover over the TP. Figure 9b presents the regression of
water vapor flux and divergence onto PC2-IA. There was a significant southwesterly vapor
supply from the Indian monsoon region to the main body of the TP, which was induced by
the southwesterly anomalies. The anomalous water vapor flux divergence also presented a
dipole mode with divergence in the west of the TP and convergence in the east of the TP.
Sufficient moisture convergence (divergence) is favorable for the increase (decrease) in total
cloud cover, and therefore induced weakened (enhanced) SH over the eastern (western) TP.
According to previous studies, the variations of SH significantly respond to the changes
in surface wind speed [17]. Figure 9c also displays the regression of the surface wind
speed on PC2-IA. Remarkable southwesterly anomalies and positive surface wind speed
anomalies were located in the western TP, in accordance with the anomalous enhancement
in SH of the western TP (Figure 7a). This means that the positive SH of the western TP
was also partly due to the strengthened surface wind speed, owing to the southwesterly
wind anomalies.
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Figure 9. Anomalies in the interannual component of total cloud cover (a), water vapor flux exceeding
the 95% confidence level (vector, kg m−1 s−1) and divergence (shading, 10−4 kg m−2 s−1) (b), surface
wind vectors passing the 95% confidence level (vector, m s−1), and wind speed (shading, m s−1)
(c) regressed on PC2-IA. Grid points with statistically significant anomalies passing the 95% confi-
dence level are denoted by an oblique line.

The above result indicates that interannual variation in SH can be mainly explained
by the DSWR change, which is associated with moisture convergence and divergence. In
addition, the southwesterly wind anomaly can also partly explain the SH anomalies in
the western TP. These analyses suggest that atmospheric circulation changes may have an
important impact on the SH anomalies by impacting the water vapor convergence and
divergence and wind anomalies over the TP. Atmosphere circulation anomalies related
to the anomalies in SH were further examined. Figure 10a displays 500 hPa geopotential
height and horizontal wind anomalies related to the interannual variation of SH. An evident
feature is that there was a significant, negative, high-pressure center to the west of the TP
corresponding to the cyclonic anomaly, which led to enhanced southwest wind anomalies
at the southwestern boundary of the TP and water vapor convergence (divergence) over
the eastern (western) TP. Furthermore, 200 hPa geopotential height regressed against
normalized PC2-IA presented a similar spatial pattern of 500 hPa, showing an equivalent
barotropic structure in the vertical direction (Figure 10b). According to the horizontal
wave activity flux, the teleconnection wave associated with SH anomalies originated in the
North Atlantic and traveled eastward across the Eurasian continent. This suggests that
atmospheric wave-like patterns originating in the North Atlantic may be important in the
interannual variation of SH.
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Figure 10. Anomalies in the interannual component of 500 hPa geopotential height (shading, gpm)
and wind passing the 95% confidence level (vector, m/s) (a), the 200 hPa geopotential height (shading,
gpm), and the wave activity flux (vector, m2 s−2) (b) regressed on PC2-IA. Grid points with statistically
significant anomalies passing the 95% confidence level are denoted by oblique lines.

3.2.3. Association between Variations in Summer SH and Atmospheric Wave Trains

The above analysis indicated that the dominant modes of variations in summer SH
over the TP had a close connection to atmospheric wave trains. Associations between
variations in summer SH and atmospheric wave trains are investigated below.

We first investigated the impact of interdecadal variation in SRP on summer SH.
According to previous studies [35–37], the SRP pattern is defined as the EOF1 of the
summer mean 200 hPa meridional wind within the region 20–60◦ N, 0–150◦ E (Figure 11a),
and the normalized PC1 is referred to as the SRP index (SRPI) (Figure 11b). A 9-year
Lanczos low-pass filter was used to calculate the interdecadal component of SRPI (SRPI-ID),
which can be seen in Figure 11c. The temporal correlation coefficient between PC1-ID
and the SRPI-ID was up to 0.84, with a significance level of 99% (Figure 11c). Figure 11d
shows the spatial distribution of SH anomalies related to the interdecadal variation of
SRP. Significantly decreased anomalies occurred in almost the whole TP, while weak
negative anomalies appeared in the southeastern TP. The spatial pattern was in good
agreement with the distribution of interdecadal weakening of SH (Figure 3a). This suggests
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that the SRP is closely related to the interdecadal variability of SH. Figure 11e,f depict
atmospheric circulation anomalies linked to SRP interdecadal variation. The 500 hPa
geopotential height and horizontal wind anomalies regressed upon the SRPI-ID multiplied
by −1 are presented in Figure 11e. To the northeast of the TP, significant positive height
anomalies arose, which were related to the decadal weakening of SH. The anomalous
positive height accompanied the anticyclonic anomaly to the northeast of the TP. In relation
to the anticyclonic circulation at 500 hPa, easterly wind anomalies to the south of the
anticyclonic center flowed into the TP from the eastern boundary of the TP, resulting in a
diminished subtropical westerly jet. Corresponding to the easterly anomalies there was
significant water vapor convergence and enhanced cloud cover, which could reduce DSWR
and SH in the TP. The above analysis indicated that the interdecadal variation of SRP can
significantly induce anomalous weakening in SH over the TP by impacting the circulation
anomalies and, therefore, cloud cover and DSWR anomalies.

Figure 11. (a) The first EOF of summer means 200 hPa meridional wind over the region 20–60◦ N,
0–150◦ E for the period 1981–2018. (b) Normalized time series of SRPindex (column) and its in-
terdecadal component (line). (c) Normalized time series of interdecadal component of SRP index
(column) and PC1-ID (line). (**: significant at 99% confidience level). Anomalies in the interdecadal
component of sensible heating (d), 500 hPa geopotential height (shading, gpm) and the wind ex-
ceeding the 95% confidence level (vector, m/s) (e), the 200 hPa geopotential height (shading, gpm)
(f) regressed on SRPI-ID multiplied by −1. Grid points with statistically significant anomalies passing
the 95% confidence level are denoted by oblique lines.

We also found that the second leading mode of the upper-tropospheric 200 hPa
meridional wind anomalies in 20–60◦ N, 0–150◦ E during summer, which is defined as
the North Atlantic-East and North Asia pattern (NAENA), had significant impacts on
the interannual variation of SH (Figure 12a). The NAENA index (NAENAI) is defined
as the PC2 corresponding to EOF2 of the summer 200 hPa meridional wind over the
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Eurasian continent (Figure 12b). Figure 12c displays the normalized time series of the
interannual component of NAENAI (NAENAI-IA) (column) and PC2-IA (black line). The
temporal correlation coefficient between PC2-IA and NAENAI-IA during the period of
1981–2018 was up to 0.63, which indicated that the interannual variation in NAENA could
explain approximately 40% of the anomalies in summer SH on the interannual time scale.
Figure 12d shows anomalies in SH obtained by regression upon NAENAI. Positive SH
anomalies predominated in the west of the TP, whereas weakened SH anomalies arose
in the east of the TP, resembling the spatial pattern of EOF2 (Figure 2b). Moreover, the
spatial pattern of NAENA showed close similarity to the atmospheric circulation anomalies
associated with the interannual variation of SH (Figure 12e,f). The above analysis suggested
that NAENA can impact the interannual variation of summer SH over the TP by means of
changing the wind speed and water vapor convergence and divergence over the TP.

Figure 12. (a) The second EOF of summer mean 200 hPa meridional wind in 20–60◦ N, 0–150◦ E for
the period 1981–2018. (b) Normalized time series of NAENA index (column) and its interannual
component (line). (c) Normalized time series of interannual components of NAENAI (column) and
PC2-IA (line), (**: significant at 99% confidience level). Anomalies in the interannual component
of sensible heating (d), 500 hPa geopotential height (shading, gpm) and the wind exceeding the
95% confidence level (vector, m/s) (e), the 200 hPa geopotential height (shading, gpm), and the
wave activity flux (vector, m2 s−2) (f) regressed on PC2-IA. Grid points with statistically significant
anomalies passing the 95% confidence level are denoted by oblique lines.
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4. Discussion

Summer SH over the TP had a significant influence on the regional and Asian climate.
Therefore, comprehending and predicting the variability of summer SH is of great impor-
tance. Using the monthly remote sensing and reanalysis data with a period of 2001–2018,
the features of dominant modes of SH were investigated in this study. EOF analysis showed
that an interdecadal weakening of SH appeared over almost the whole TP from 1981–2018
in the leading mode. This is in great agreement with previous studies. Duan et al. [17]
indicated that SH over the TP exhibited a decreasing trend since the 1980s, which was
mainly induced by the weakening of the westerly jet. In recent years, SH has presented
an increasing trend as the result of enhanced surface wind speed [18,38]. However, it was
thought that the variations of SH were long-term trends due to global warming and its
hiatus, while this study considered that the different trends of SH might be a manifestation
of the interdecadal variation. Based on satellite data and observations, recent studies [23]
have found that SH has increased slightly over the TP from around 2001. To reach more
accurate SH over the TP, the introduction of satellite data will be carried out in the future,
which would overcome the shortage of accuracy in reanalysis data. The EOF2 pattern of
summer SH over the TP was characterized by a zonally asymmetric pattern with positive
(negative) SH anomalies in the western (eastern) TP. This indicated that positive SH anoma-
lies in the western TP are usually accompanied by negative SH anomalies in the eastern TP
on an interannual time scale. Based on meteorological data and satellite products, a recent
study found that the long-term variations of summer evapotranspiration (ET) over the TP
present a dipole pattern, with an increasing trend in the eastern TP and a decreasing trend
in the western TP [29]. It is worth studying the cause of opposite spatial patterns between
SH and ET over the TP.

Further analysis showed that the interannual variation of SH had a tight connection to
the stationary teleconnection pattern NAENA, which was the second leading mode of the
upper-tropospheric meridional wind anomalies over the Eurasian continent in summer.
The interdecadal weakening of summer SH over the TP was mainly due to the decreased
westerly wind anomalies over the TP, which were induced by the anticyclonic circulation
to the northeast of the TP. The atmospheric circulation anomalies linked to the interdecadal
weakening of SH were characterized by a teleconnection wave train, which was similar to
that linked to the interdecadal phase shift of SRP. This indicated that the decadal shift of
the phase in SRP plays a crucial role in the interdecadal weakening of SH. Han et al. [38]
suggested that SRP is a key factor influencing summer atmospheric heat over the inner
TP on interdecadal time scales, which is consistent with our conclusion. A recent study
proposed that the predictability of the TP rainfall also originates from SRP [39]. Therefore,
the interdecadal variation of SRP can significantly impact the climate variations of the
TP on interdecadal and multidecadal time scales and acts as a potential predictor for the
climate variations for TP. Previous studies have demonstrated that the phase of the AMO is
likely to provide some prediction potential for the interdecadal variations of SRP [35]. The
impacts of mid-high atmospheric circulation systems on the TP call for further studies.

5. Conclusions

This study examined the dominant modes of variability in summer SH over the TP
based on reanalysis and remote sensing data. The role of atmospheric teleconnection
patterns in SH was also investigated. The main conclusions are as follows:

(1) The large value area in SH and its standard deviation was concentrated in the north
and west of the TP. The first leading mode of the TP summer SH during the period
1981–2018 presented a decadal shift from a positive phase to a negative phase after
around 1996. The second leading mode was characterized by a zonal dipole pat-
tern with enhanced (weakened) SH anomalies in the western (eastern) TP on the
interannual time scale.

(2) The interannual variation of summer SH was dominated by anomalies in DSWR,
which was associated with the anomalous cloud cover over the TP. An atmospheric
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pattern referred to as NAENA induced an anticyclone anomaly to the west of the TP,
leading to anomalous water vapor convergence (divergence) and more (less) cloud
cover in the eastern (western) TP. Corresponding to the increase (decrease) in cloud
cover, DSWR presented anomalous enhancement (reduction) and resulted in a zonal
dipole pattern with strengthened (weakened) SH in the western (eastern) TP.

(3) Interdecadal weakening of summer SH was associated with the interdecadal variation
of DSWR induced by the enhancement of cloud cover. The decadal change in cloud
cover over the TP was mainly due to the variation of water vapor transport as a result
of the decadal phase shift of SRP. An anticyclone circulation to the northeast of the TP
associated with SRP led to enhanced water vapor supply and convergence of the TP,
which resulted in an increase in cloud cover and a reduction in DSWR, contributing
to the interdecadal decrease in SH over the TP.

By investigating the relationship between large-scale circulation and the TP thermody-
namic forcing, this study is crucial for us to understand the land-atmosphere interaction
and its climatic effects of the TP.
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Normalized time series of PC1 (c) and PC2 (f) derived from ERA-Interim (black line) and remote
sensing data (red line).
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Abstract: As a land–atmosphere coupling “hot spot”, the northern China climate transition zone has
a sharp spatial gradient of hydrothermal conditions, which plays an essential role in shaping the
spatial and temporal pattern of evapotranspiration-precipitation coupling, but whose mechanisms
still remain unclear. This study analyzes the spatial and temporal variation in land–atmosphere
coupling strength (CS) in the climate transitional zone of northern China and its relationship with
soil moisture and air temperature. Results show that CS gradually transitions from strong positive
in the northwest to negative in the southeast and northeast corners. The spatial distribution of CS
is closely related to climatic hydrothermal conditions, where soil moisture plays a more dominant
role: CS increases first, and then decreases with increasing soil moisture, with the threshold of soil
moisture at 0.2; CS gradually transitions from positive to negative at soil moisture between 0.25 and
0.35; CS shows an exponential decreasing trend with increasing temperature. In terms of temporal
variation, CS is strongest in spring and weakens sequentially in summer, autumn, and winter, and has
significant interdecadal fluctuations. The trend in CS shifts gradually from significantly negative in
the west to a non-significant positive in the east. Soil moisture variability dominates the intra-annual
variability of CS in the study regions, and determines the interannual variation of CS in arid and
semi-arid areas. Moreover, the main reason for the positive and negative spatial differences in CS in
the study area is the different driving regime of evapotranspiration (ET). ET is energy-limited in the
southern part of the study area, leading to a positive correlation between ET and lifting condensation
level (LCL), while in most of the northern part, ET is water-limited and is negatively correlated with
LCL; LCL has a negative correlation with P across the study area, thus leading to a negative ET-P
coupling in the south and a positive coupling in the north.

Keywords: land–atmosphere interaction; evapotranspiration; soil moisture; temperature; climate
transition areas

1. Introduction

Among the interactions amid various spheres of the climate system, the land–atmosphere
interaction plays an important role in influencing the evolution of weather and climate [1].
The land surface is closely linked to the atmosphere through energy and water cycles,
causing increases in the temperature variability [2] and the frequency of high-temperature
heat waves [3], and exacerbating compound soil and atmospheric drought intensity [4].
The land–atmosphere coupling strength (CS) is a key indicator to characterize the land–
atmosphere interaction. Areas with a stronger CS imply a greater influence of land surface
on regional weather and climate. The global strong land–atmosphere coupling zone is
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mostly located in the arid-humid climate transition zone [5], including west-central North
America, parts of Eurasia, Australia, Argentina, the Sahel region of North Africa, and
South Africa [6,7]. Accurate acquisition of land–atmosphere forcing signals in these land–
atmosphere coupling “hotspots” is important for improving the forecasting capabilities of
the weather and climate [5,8,9].

Land–atmosphere coupling includes a series of complex processes: land surface state
anomalies first cause changes in surface fluxes, which in turn affect precipitation through
feedbacks from the land surface to the atmosphere [7,10]. Regulated by the surface energy
balance, sensible heat fluxes change synergistically with evapotranspiration. Thus, evapo-
transpiration can regulate sensible heat fluxes via the Bowen ratio. Therefore, evapotranspi-
ration is often considered as a key process in land–atmosphere coupling processes [11,12].
However, studies have shown that the influence of evapotranspiration on precipitation
has the greatest uncertainty in land–atmosphere coupling processes [13]. Generally, evap-
otranspiration can affect precipitation in three ways. First, evapotranspiration directly
affects atmospheric precipitation through water recycling. Evapotranspiration can return
approximately 70% of precipitation to the atmosphere [14], and atmospheric precipitable
water directly influences precipitation. This mechanism is more prominent in water-scarce
areas [15,16]. Second, changes in evapotranspiration can also alter the regional pressure
field, which can cause adjustments in atmospheric circulation and lead to large-scale precip-
itation changes [17]. Moreover, evapotranspiration and the sensible heat fluxes regulated
by it affect the atmospheric stability state by altering the atmospheric temperature and
humidity profiles, thus affecting convective precipitation [18]. The last of these pathways,
evapotranspiration–precipitation local coupling, is the most important method for evapo-
transpiration to influence precipitation [13,19,20]. However, due to the complexity of the
influence of evapotranspiration on atmospheric stability, evapotranspiration-precipitation
local coupling has significant uncertainty and becomes a challenging problem in the current
land–atmosphere coupling research.

Local evapotranspiration–precipitation coupling is controlled by many factors and
the influence mechanism is very complex. Water and energy cycles are the key physical
processes throughout the coupled land–atmosphere interaction [21]. Moisture and thermal
factors directly affect the evapotranspiration process: in dry areas, evapotranspiration is
controlled mainly by moisture factors, while in humid areas evapotranspiration is con-
trolled mainly by thermal factors [22,23]. In turn, evapotranspiration affects the structural
characteristics of the boundary layer through the transport of water and heat, and sufficient
surface moisture can lead to lowered boundary layer height (BLH) and lifting condensation
level (LCL) and increased moist static energy (MSE); in contrast, limited surface water and
adequate thermal conditions raise the BLH and LCL. In general, lower BLH and LCL and
larger MSE can lead to an increase in convective available potential energy (CAPE) and
a higher probability of convective precipitation [20]. However, observation studies have
found that arid conditions can also promote physical mechanisms that favor the generation
of convective precipitation [24–27]. This is attributed to the large sensible heat flux caused
by strong thermal factors in arid regions that weakens the convective inhibition energy
(CIN) [28], thereby increasing the probability of convective precipitation; there is also a
negative feedback of evapotranspiration on precipitation. Therefore, both positive and
negative feedbacks between evapotranspiration and precipitation are closely related to
moisture and thermal properties, i.e., moisture and thermal factors are the most critical
forcing factors affecting the land–atmosphere coupling strength.

In the past 20 years, a large number of studies have paid attention to the spatial
and temporal distribution of land–atmosphere coupling and its intrinsic mechanism. The
Global Land-Atmosphere Coupling Experiment (GLACE) found that the strong land–
atmosphere coupling regions are mostly located in semi-arid and semi-humid climate
transition zones [5], and other diagnostic studies based on observational data have also ver-
ified this conclusion [6,7,29]. Due to the apparent spatial variability of land–atmosphere CS,
some typical regions have attracted wide attention. In North America, the spatial distribu-

28



Remote Sens. 2022, 14, 1448

tion of land–atmosphere coupling was correlated with the multi-year average soil moisture,
and the strong coupling area was mainly distributed in areas with soil moisture ranging
from 0.4 to 0.55 [30]. Due to interannual variations in soil moisture, land–atmosphere
coupling shows significant interannual fluctuations [31,32]. In southeastern South America,
the spatial and temporal distribution of land–atmosphere coupling is correlated not only
with soil moisture but also with wet static energy and its vertical gradient that is controlled
by soil moisture [33]. Moreover, under future climate warming and humidification, the
intensity of land–atmosphere coupling will be significantly weakened due to the gradual
shift of evapotranspiration from moisture limitation to energy limitation [34]. In Europe,
the northward expansion of the Hadley circulation has caused a northward shift of the
climate transition zone, leading to a northward shift of the strong land–atmosphere cou-
pling zone [2]. In Africa, land–atmosphere coupling was negatively correlated with the
spatial and temporal distribution of soil moisture, with areas of lower soil moisture and
periods of dry moisture exhibiting stronger land–atmosphere coupling. Spatial differences
in the soil moisture lead to enhanced sensible heat fluxes in the dry zone and reduced
sensible heat fluxes in the wet zone, which in turn trigger mesoscale circulation, and the
upward branch of this circulation in the dry zone is an important factor in triggering deep
convection [26]. In East Asia, land–atmosphere coupling is strong in north China, where
soil moisture is low [35]; land–atmosphere coupling is strong in southwest China in spring,
when soil moisture is low [36]; land–atmosphere coupling is strongly influenced by the
snow cover in the dry season and by the soil moisture in the rainy season over Tibetan
Plateau [37]; the land–atmosphere coupling degree is closely related to the state of surface
vegetation in northwest China, and the improvement of vegetation state can improve the
surface moisture condition, reduce the land surface evapotranspiration, and decrease the
strength of land–atmosphere coupling [38].

The above studies mainly focused on the spatial distribution and temporal variation
in the land–atmosphere CS and its relationship with soil moisture, and there is lack of
research on the role of thermal factors on the land–atmosphere CS. Theoretically, the
thermal properties also play a substantial role in the land–atmosphere coupling. The role of
moisture and thermal factors in regulating the land–atmosphere coupling is similar to that
of evapotranspiration, as it is regulated by moisture in water-scarce areas and by thermal
and energy in water-sufficient areas [39].

Most of northern China makes up a dry-wet climate transitional zone, with dramatic
spatial and temporal variations in water and heat characteristics. From the northwest to
the southeast, moisture availability decreases, and energy availability increases, while the
evapotranspiration control factor gradually changes from moisture to energy limitation [23].
This inevitably affects the spatial and temporal variation of regional land–atmosphere
coupling. However, the spatial and temporal distribution of land–atmosphere coupling
in north China’s climate transition zone remains unclear, and it is also unknown how
hydrothermal factors affect the spatial-temporal variation in land–atmosphere coupling.

In this study, an evapotranspiration–precipitation coupling index proposed by Zeng
et al. [6] was used to diagnose the land–atmosphere CS in the climate transitional zone
of north China, and the main objectives were to (i) analyze the spatial distribution and
temporal evolution characteristics of the land–atmosphere coupling and (ii) explain the
impacts of moisture and thermal factors on the land–atmosphere CS. The results of the study
are expected to enhance the understanding of land–atmosphere coupling mechanisms in
the climate transitional zone of northern China.

2. Data and Methods

2.1. Study Area and Sites

The climate transitional zone of northern China (CTZNC) is selected as the study
area in this work, with the spatial extent of the region between 33◦N and 45◦N and 100◦E
and 125◦E. The geographical area and the climatic background are shown in the black box
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of Figure 1. The climate background is classified using the dryness index defined by the
United Nations Environment Programme:

AI = P/PET, (1)

where, AI is the dryness index, P is the average annual precipitation in mm, and PET is the
average annual potential evapotranspiration in mm. AI < 0.05 is classified as a hyper-arid
zone, 0.05 < AI < 0.2 as an arid zone, 0.2 < AI < 0.5 as semi-arid zone, 0.5 < AI < 0.65 as a
sub-humid zone, and AI > 0.65 as a humid zone. As shown in Figure 1, the study region
mainly includes arid, semi-arid, sub-humid, and humid climate. It is not only a climate
transition region but also a typical ecological transition zone, as well as a major activity
area of the northern edge of the East Asian summer monsoon.

Figure 1. Climatic background of climate transitional zone of northern China (hyper-arid: AI < 0.05,
arid: 0.05 < AI < 0.2, semi-arid: 0.2 < AI < 0.5, sub-humid: 0.5 < AI < 0.65, and humid: AI > 0.65). The
soil moisture observation sites are indicated by stars.

Four sites are selected for study, the underlying surfaces of which are either grass-
land or cropland. The locations of the sites are shown in Figure 1, and the climate and
environmental background are given in Table 1.

Table 1. Brief description of the soil moisture observatories.

Station Location Elevation (m) Land Cover Precipitation (mm)
Mean Air

Temperature (◦C)
Climate

SACOL 35◦57′N, 104◦08′E 1966 Grassland 381.8 6.7 Semi-arid
QY 35◦41′N, 107◦51′E 1280 Cropland 562 8.8 Sub-humid
NM 43◦33′N, 116◦40′E 1250 Grassland 336 0.8 Semi-arid
YC 36◦50′N, 116◦34′E 28 Cropland 582 13.1 Sub-humid

2.2. Data

We selected a gridded evapotranspiration dataset—Derived Optimal Linear Combi-
nation Evapotranspiration (DOLCE) [40]. DOLCE is a hybrid evapotranspiration dataset
under observational constraints, which merges four available global ET datasets: ERA5-
land, FLUXCOM METEO+RS, GLEAM v3.5a, and GLEAM v3.5b. The contribution of
each dataset to DOLCE ET is based on its ability to match field observations as well as
its dependence to the other parent datasets. The latest version of DOLCE-ET V3.0 also
provides time-varying estimates of its uncertainty errors. DOLCE-ET V3.0 has a temporal
resolution of months and a spatial resolution of 0.25◦. It spans the years 1980–2018 and
covers the global land surface.
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We use the China Meteorological Forcing Dataset (CMFD) for precipitation and near-
surface air temperature data [41]. CMFD uses Princeton reanalysis data, GLDAS (global
land data assimilation system) data, GEWEX-SRB (the global energy and water exchanges)
radiation data, and tropical rainfall measuring mission precipitation data as background
fields, and merges the conventional meteorological observation data of the China Meteoro-
logical Administration to produce a regional high spatial and temporal resolution dataset.
The dataset has a temporal resolution of months and a spatial resolution of 0.1◦, with a
spatial range of 60–140◦E and 15–55◦N.

For soil moisture, we selected the Climate Change Initiative (CCI) data set of the
European Space Agency (ESA) [42]. The CCI SM v04.7 product consists of three sets of
surface soil moisture data: active products, passive products, and combined products. The
“active product” and “passive product” are generated by merging the soil moisture outputs
of the scatterometer and radiometer, respectively; the “combined product” is a hybrid
product based on the first two data sets, and used in this study. The dataset has a temporal
resolution of a day and a spatial resolution of 0.25◦, and spans the period from November
1978 to December 2019. Site observations was used to validate CCI data.

Boundary layer heights used ECMWF monthly averaged ERA5 data with a spatial
resolution of 0.25◦. All data were time-scaled to months and interpolated to 0.25◦ × 0.25◦
spatial resolution.

2.3. Methods
2.3.1. Evapotranspiration-Precipitation Coupling Strength

An evapotranspiration–precipitation coupling index proposed by Zeng et al. [6] was
employed to diagnose the strength of land–atmosphere coupling. Considering that surface
state variables always affect the atmospheric state via near-surface fluxes, evapotranspi-
ration was selected as the surface impact factor. In the index, the covariance of evap-
otranspiration and precipitation reflects the synchronous change in evapotranspiration
and precipitation, and the ratio of the covariance to the precipitation variance reflects the
contribution of evapotranspiration changes to total precipitation changes. This method has
a solid physical mechanism and is widely used in diagnostic studies of land–atmosphere
CS. The equation for its calculation is as follows:

Γ =
∑N

i=1 Pi
′Ei

′

∑N
i Pi

′2 (2)

This can also be rewritten as:
Γ = rP,E

σE
σP

, (3)

where Γ is the land–atmosphere CS, Pi
′ and Ei

′ are anomalies of precipitation and evapotran-
spiration, respectively, N is total number of months or years, rP,E is correlation coefficient
of precipitation and evapotranspiration, σE and σP are the standard deviation of evapotran-
spiration and precipitation, respectively. This index reflects the proportion of precipitation
changes caused by evapotranspiration in total precipitation using the relative magnitude
of the covariance between precipitation and evapotranspiration and the variance of precipi-
tation. The more consistent the pace of change between the two variables, and the larger
the magnitude of change, and the stronger the land–atmosphere coupling. The positive
and negative values can also reflect the respective coupling between evapotranspiration
and precipitation.

This method examines the ET–P relationship statistically and does not reflect the
specific physical processes and influence mechanisms. To identify the significant strong CS
areas, a correlation-coefficient significance test can be used to test the significance of the
CS [7]. i.e., the ET–P coupling is deemed to be significant if the p value of the correlation
coefficient is less than 0.05.
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The evapotranspiration–precipitation CS was calculated using monthly or yearly ET
and P data. The bulk CS in Figure 4 was calculated using data of all months during the
study period. The seasonal CS in Figure 5 was calculated using monthly data in each of
the four seasons. The decadal CS in Figure 6 was calculated by using yearly data in each
decade. The yearly CS was calculated using monthly data of each year, and subsequently
the yearly CS was used to calculate the linear trend of CS in Figure 7. The warm season CS
was calculated using monthly data of April-September.

2.3.2. Lifting Condensation Level

The lifting Condensation Level (LCL) can be calculated by:

LCL ≈ 125(T2m − D2m) (4)

where T2m and D2m are 2-m air temperature and dew point temperature, respectively.

2.4. Validation of CCI Soil Moisture

ESA CCI soil moisture data were validated using observations at four sites in the study
area in 2007. Figure 2 shows that the correlation coefficients between CCI and observations
are 0.71, 0.69, 0.66, and 0.65 for NM, QY, SACOL, and YC, respectively. The RMSE values
for the four sites are 0.033, 0.041, 0.043, and 0.072 m3/m3, respectively. YC station, in a
semi-humid region with higher soil moisture, has a larger root mean squared error (RMSE)
compared to other sites. This is consistent with the results of other studies [43,44], and CCI
has a relatively high accuracy in the climate transitional zone of northern China with a
correlation coefficient of about 0.7. Therefore, CCI soil moisture is applicable in the climate
transitional zone of northern China.

Figure 2. Taylor diagram of ESA CCI soil moisture data.

3. Results

3.1. Spatial and Temporal Variation of Evapotranspiration-Precipitation Coupling Strength

To evaluate the spatial pattern of evapotranspiration-precipitation coupling over the
climate transitional zone of northern China, the spatial distribution of evapotranspiration,
precipitation, and their variations are shown in Figure 3. Precipitation gradually transitions
from more than 800 mm in the southeast to less than 100 mm in the northwest. The standard
deviation of precipitation has similar spatial distribution to annual precipitation, decreasing
from southeast to northwest. This spatial distribution of precipitation is consistent with
the situation of the study area of north China in the transition zone from the East Asian
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summer monsoon-influenced zone to the non-monsoon zone, where the monsoon precip-
itation gradually increases from the non-monsoon zone to the monsoon zone. Similarly,
evapotranspiration likewise decreases from the southeast to northwest, with a maximum
of about 600 mm in the southeast and a minimum of a few tens of millimeters in the
northwest. The spatial distribution of evapotranspiration is similar to that of precipitation,
indicating a close relationship between evapotranspiration and precipitation. Furthermore,
the distribution of standard deviation of evapotranspiration is more complicated, which is
larger in the middle region of transition area and smaller in wet and dry areas.

Figure 3. Spatial distribution of (a) climatology of annual precipitation, (b) standard deviation of
annual precipitation, (c) climatology of evapotranspiration, and (d) standard deviation of evapotran-
spiration in the climate transitional zone of northern China.

The results from the above analysis highlight a general consistency of the spatial dis-
tribution of mean precipitation and evapotranspiration. This suggests a close relationship
between precipitation and evapotranspiration in the study region. Furthermore, an index
of evapotranspiration–precipitation CS was applied to assessing the spatial and temporal
variation in CS in the climate transitional zone of northern China. The spatial pattern of CS
shows sharp transition features in the climate transitional zone of northern China (Figure 4),
decreasing from the northwest to southeast. The northwest half of the study region is a
strong positive coupling area, with CS between 0.2 and 0.6 (passing 0.05 significance test),
while the southeast and northeast horn depict negative coupling zone, with CS ranging
from –0.2 to –0.5 (passing 0.05 significance test). The middle region of the two regions
marks the transition zone from positive to negative coupling, and CS is relatively small.

Due to the temporal changes in climate variables, land–atmosphere couplings also
vary with time. Despite having a similar spatial pattern in all seasons, the CS is strongest in
spring, when it is significantly larger than the other seasons, followed by summer, and the
smallest coupling in autumn and winter (Figure 5). This indicates that the contribution of
surface evapotranspiration to precipitation occurs mainly in spring.

On an interdecadal scale (Figure 6), the CS was highest in the 1980s and lowest in
the 1990s. The spatial distribution of CS with stronger coupling in the 1980s and 2000s is
similar to the distribution of annual coupling; however, it shows a more heterogeneous
spatial pattern in the 2010s and 1990s.
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Figure 4. Spatial distribution of evapotranspiration-precipitation CS in the climate transitional zone
of northern China (dot denotes CS passing 0.05 significance test).

Figure 5. Seasonal changes in spatial distribution of evapotranspiration–precipitation CS in the
climate transitional zone of northern China, (a) for winter, (b) for spring, (c) for summer, and (d) for
autumn (dot denotes CS passing 0.05 significance test).

The trend of annual CS was examined for the climate transitional zone of northern
China for the period 1980–2018 (Figure 7). The CS showed a significant decreasing trend
in the central and western parts. Except for a small area showing an increase trend in the
northwest corner, the overall trend of CS gradually shifts from significant negative in the
west to insignificant positive in the east. The northwest region has the strongest decreasing
trend of CS, about –0.003/year, whereas the southeast region has a weak increasing trend
of CS, with a rate of about 0.001/year.
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Figure 6. Decadal changes in spatial distribution of evapotranspiration–precipitation coupling in the
climate transitional zone of northern China, (a) for 1980–1989, (b) for 1990–2000, (c) for 2000–2009,
and (d) for 2010–2019 (dot denotes CS passing 0.05 significance test).

Figure 7. Spatial distribution of evapotranspiration–precipitation coupling trends in the climate
transitional zone of northern China (dot denotes trend passing the significance test).

3.2. Spatial and Temporal Variation of Evapotranspiration-Precipitation Coupling in Relation to
Moisture and Thermal Conditions
3.2.1. Spatial Variation of CS in Relation to Spatial Moisture and Thermal Conditions

The CS has large spatial differences and displays transitional characteristics in the cli-
mate transitional zone of northern China, which is closely related to the fact that the region
is in a climatic transition zone with large spatial gradients of hydrothermal conditions in
the region. Soil moisture and air temperature can aptly reflect hydrothermal conditions in
the study region. Therefore, this section analyzes the dependences of CS on soil moisture
and air temperature.

First, the spatial patterns of climatological mean soil moisture and air temperature
were analyzed for the study region. Soil moisture has large spatial variability in the climate
transitional zone of northern China, gradually increasing from 0.1 in the northwest to 0.4 in
the southeast (Figure 8a). From the northwest to southeast, the climate is arid, semi-arid,
sub-humid, and humid. Most of the study area belongs to a semi-arid or sub-humid climate,
with only the northwest and southeast corners being arid and humid zones. Moreover,
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temperature has a similar spatial pattern as soil moisture (Figure 8b), increasing from the
northwest of −8 ◦C to southeast of 16 ◦C in the study area. Notably, the southeast area was
generally warmer with a lower gradient. In total, the soil moisture and air temperature
have a general reversed spatial pattern compared to CS, and the spatial pattern of soil
moisture is closer to that of CS in the study area.

Figure 8. Distribution of climatology of (a) soil moisture and (b) air temperature in northern China.

To examine the influence of soil moisture on spatial CS, Figure 9a displays the re-
lationship between CS and climatological soil moisture. Generally, CS increases slightly
and is maintained at a strong level when the soil moisture is below 0.2, and CS decreases
gradually with increase in soil moisture when the soil moisture is larger than 0.2 (Figure 8a).
In areas where the soil moisture is greater than 0.35, the CS is negative; in areas where
the soil moisture is below 0.25, the CS is positive; in areas where the soil moisture is be-
tween 0.25 and 0.35, CS gradually transits from negative to positive. The determination
coefficient R2 of 0.4 indicates that variation in soil moisture explains 40% of the variation
in CS. Figure 9b illustrates the relationship between the CS trend and soil moisture. The
relationship between the CS trend and soil moisture is roughly opposite to that of between
soil moisture and CS. In the range of soil moisture below 0.2, the CS trend decreases with
increasing soil moisture; while in the range of soil moisture larger than 0.2, the CS trend
increases with increasing soil moisture. Further, a negative CS trend occurs at moderate
soil moisture, while a positive CS trend occurs at very dry or wet soil moisture.
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Figure 9. (a) Variation in evapotranspiration–precipitation CS and (b) its trend with soil moisture
(shades of color indicate the density of the points).

Similarly, the relationships between CS, CS trend, and air temperature were analyzed
to examine the influence of air temperature on the spatial distribution of CS and the CS
trend. Figure 10a illustrates that CS logarithmically decreases with increasing temperature.
CS is mainly positive below zero degrees, and both positive and negative coupling exist
above zero degree. The percentage of negative coupling increases as the temperature rises.
The determination coefficient R2 of 0.4 indicates that Ta only explains 26% of the variation
in CS. In the contrary, the CS trend increases with increasing temperature (Figure 10b). The
CS trend is negative below zero degrees, and the proportion of positive trend increases with
increasing temperature. Clearly, the relationship between CS and temperature shows a
significantly wider spread than that between CS and soil moisture. The spatial variation in
soil moisture explains more of the spatial variation in CS compared to the spatial variation
in TA. Therefore, the climatological soil moisture plays a more dominant role in determining
the spatial pattern of CS compared to the temperature.

Figure 10. (a) Variation in evapotranspiration-precipitation CS and (b) its trend with air temperature
(shades of color indicate the density of the points).

3.2.2. Temporal Variation of CS in Relation to Hydrothermal Conditions
Inner-Annual Variability

The intra-annual variations of soil moisture and temperature were analyzed first
(Figure 11). The soil moisture exhibits an evident intra-annual cycle reaching its minimum
in the winter, followed by a rise in spring and autumn, and reaching its maximum in the
summer (Figure 11a). Precipitation mainly concentrates in the summer over the water-
scared northern areas, which serves as the primary method to replenish the soil moisture.
Figure 10b shows the intra-annual variation in soil moisture variability. The soil moisture
variability was small in winter and relatively larger in spring, summer, and autumn in
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all areas. The soil moisture variability is small in arid areas due to low soil moisture.
Moreover, the air temperature in all regions shows a unimodal pattern of a low winter
and high summer, peaking in July (Figure 11c). Temperature variability is U-shaped, with
large variations in the winter and small in the summer (Figure 11d). Furthermore, the
temperature variability is larger in semi-arid regions than in others.

 

 
Figure 11. Intra-annual variation in (a) soil moisture, (b) standard deviation of soil moisture, (c)
temperature, and (d) standard deviation of temperature (standard deviation of each month data for
the 39 years) under different dry-wet climatic backgrounds.

Figure 12a further illustrates the intra-annual variation in CS, and shows that CS is
smallest in winter months, reaching the maximum in spring months, and then decreasing
again in summer and autumn months across all areas. The semi-arid region has the largest
CS, followed by arid and semi-humid areas, and it has the smallest CS in humid areas.
The CS is weak in the humid region, with small negative or positive values fluctuating
around zero.

To determine this intra-annual variability of CS in relation to moisture and thermal
factors, the intra-annual pattern of CS was compared to that of moisture (i.e., soil moisture
and its variability) and thermal factors (i.e., temperature and its variability) for each dry
and wet climate background. The intra-annual variation in CS is similar to the intra-annual
variation in soil moisture variability, and temperature, and has roughly opposite charac-
teristics to the intra-annual variation in temperature variability. Notably, soil moisture
peaks in March–October, temperature peaks in July–August, temperature variability is at
its minimum in May–August, whereas CS peaks in March–May. Generally, the coupling is
most similar to the intra-annual variation of soil moisture variability.
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Figure 12. (a) Intra-annual variation in ET-P CS and (b) its correlation coefficients with soil moisture
(SM), standard deviation of soil moisture (SMCD), air temperature (TA) and standard deviation of
temperature (TASD) under different dry-wet climatic backgrounds.

From the correlation analysis of the CS with moisture and thermal factors (Figure 12b),
soil moisture variability was found to have the highest correlation coefficient with CS, with
the correlation coefficients larger than 0.4 in all regions. This suggests that a large soil
moisture variability causes a large ET variability, and subsequently a large P variability,
leading to a stronger ET-P coupling. The correlation coefficients of CS with temperature and
temperature variability are large in semi-arid regions, but small in other regions, indicating
that thermal factors have an important influence in semi-arid regions. Moreover, a higher
temperature and temperature variability supplies more energy for the land–atmosphere
interaction. The correlation coefficient between CS and soil moisture is low. Therefore, soil
moisture variability is the main factor dominating the intra-annual variation of CS in the
climate transitional zone of northern China.

Inter-Annual Variability

Because the CS is the highest in the warm season (April–September) in the climate
transitional zone of northern China, warm season CS was chosen as a representative to
analyze the inter-annual variation of the CS with moisture and thermal factors. First, the
inter-annual evolution of soil moisture and air temperature and their variability were
analyzed. Soil moisture changed little during the study period, with a weak increase
in all areas (Figure 13a). Instead, soil moisture variability fluctuated dramatically and
declined during the study period (Figure 13b). Soil moisture variability was larger in the
arid zone than other regions. In addition, temperature showed a significant increasing
trend (Figure 13c), while the temperature variability displayed a fluctuating decreasing
trend during the study period (Figure 13d).

Responding to changes in climatic conditions, the CS fluctuated strongly during the
study period, and showed a slight decreasing trend in all subregions (Figure 14a). To
find the dominant factors of inter-annual variation in CS, first, the time evolution of CS
was compared with that of moisture and thermal factors. Soil moisture and temperature
fluctuations were small, while soil moisture variability and temperature variability fluctua-
tions were large and more similar to the inter-annual variation of CS. Figure 14b further
presents the correlation of CS with soil moisture and temperature related variables for
different soil moisture backgrounds in the warm season. The CS was significantly positive
and correlated with soil moisture variability in arid and semi-arid regions, suggesting that
inter-annual variation in soil moisture variability has a significant impact on the variation in
ET and subsequently the variation in P. CS was negatively correlated with the soil moisture,
demonstrating that soil moisture experiencing a relative dry state could cause a stronger
CS. In the humid and sub-humid region, soil moisture and temperature related variables
were weakly correlated with CS. This may be due to the joint influence of soil moisture and
air temperature on CS giving rise to a more complex influence mechanism.

39



Remote Sens. 2022, 14, 1448

Figure 13. Inter-annual variation in warm season (a) soil moisture, (b) standard deviation (standard
deviation of monthly data within warm season of a year) of soil moisture, (c) temperature, and
(d) standard deviation of temperature under different dry-wet climatic backgrounds.

Figure 14. (a) Inter-annual variation of warm season ET-P CS and (b) its correlation coefficients with
soil moisture (SM), standard deviation of soil moisture (SMCD), air temperature (TA) and standard
deviation of temperature (TASD) under different dry-wet climatic conditions.
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3.3. Reasons of Spatial Differences in Coupling Strength

To investigate the mechanism for the opposite signs of CS over different regions of the
climate transitional zone of northern China, we analyzed boundary layer characteristics
as an intermediate process of ET-P coupling. The distribution of correlation coefficients
between the LCL and precipitation is shown in Figure 15a. The precipitation and LCL are
negatively correlated in the majority of study areas, demonstrating that a lower LCL is
more likely to trigger precipitation. This implies that the role of water vapor in precipitation
is very prominent in the study area. The more saturated the atmosphere is, the lower the
LCL, and the easier it is to trigger precipitation. This also shows that the effect of moisture
recycling from evapotranspiration on precipitation is the main pathway of ET-P coupling.

Figure 15. Distribution of correlation coefficients between (a) P and LCL, (b) ET and LCL, (c) ET and
BLH (dot denotes correlation coefficient passing 0.05 significance test).

The spatial distribution of correlation coefficients between ET and LCL is shown in
Figure 15b. ET and LCL are negatively correlated in the majority of the study area, where CS
are mainly positive; ET and LCL are positively correlated in the southern humid zone and
eastern northeast, where CS is mainly negative. In fact, in the negative ET-LCL correlation
zones in the climate transitional zone of northern China, the ET type is water-limited, and
the increase in soil moisture causes an increase in ET, which increases air humidity and thus
decreases LCL. Meanwhile, the increase in ET reduces the energy partitioning available to
sensible heat, and the decrease in sensible heat inhibits the boundary layer development
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and decreases the boundary layer height (BLH), resulting in a negative correlation between
ET and BLH in these regions (Figure 15c). In contrast, in the positive ET-LCL correlation
zone in the south and northeast, the ET type is energy-limited, and an increase in the
available energy leads to an increase in both sensible and latent heat. Hence, the boundary
layer is developed, resulting in an increase in LCL and BLH.

The main reason behind positive and negative ET-P coupling is the different driving
regimes of evapotranspiration in the study area: ET is energy-limited in the southern and
northeast corner of the study area, leading to a positive correlation between ET and LCL,
while ET is water-limited, and ET is negatively correlated with LCL in most of the northern
part. Meanwhile, LCL has a negative correlation with P in the whole study area, it therefore
leads to a negative ET-P coupling in the south and northeast corner and a positive coupling
in the most northern region. Combined with the scatter plot of CS and soil moisture in
Figure 8a, CS is positive in areas with soil moisture below 0.25, corresponding to moisture-
limited evapotranspiration; both positive and negative CSs exist in areas with soil moisture
in the range of 0.25–0.35, corresponding to the transition zone of evapotranspiration from
moisture-limited to energy-limited; CS is negative in areas with soil moisture greater than
0.35, corresponding to an energy-limited evapotranspiration.

4. Discussion

4.1. Determination of Water and Temperature Factors via Spatial Pattern of CS

Both observation and simulation studies showed that the strong land–atmosphere cou-
pling zone is mainly located in the semi-arid and sub-humid climate transition zone [5–7,29].
Because coupling is influenced by the evapotranspiration variability, the sensitivity of
evapotranspiration to soil moisture, and sufficient water vapor conditions, which are
optimal in the transition zone following a compromise, it is strongest in the transition
zone. In these land–atmosphere coupling “hot spots”, the CS is further influenced by
hydrothermal factors.

In semi-arid regions of southeastern South America and Africa, land–atmosphere
coupling (soil moisture–precipitation coupling) is negatively correlated with soil moisture,
with stronger coupling occurring in areas with lower soil moisture [26,33]. Wei et al. [30]
found that the spatial distribution of soil moisture -precipitation CS is linked to the mean
soil moisture, and the strong coupling area is mainly distributed in the areas with a soil
moisture of 0.4–0.5.

Land–atmosphere coupling can be separated into two components: the terrestrial
leg and the atmospheric leg [7]. For instance, soil moisture–precipitation coupling can be
separated into soil moisture–evapotranspiration coupling (terrestrial leg) and evapotran-
spiration coupling (atmospheric leg). The current study focused on ET-P coupling, which
is the atmospheric leg of land-precipitation coupling. The CS is found to be positively
related to climatological soil moisture, and the data reveal the strong coupling in the climate
transition zone with soil moisture in the range of 0.15–0.25, with relatively weak coupling
in the arid and humid areas. The soil moisture range of the strongest coupling differs from
the strong coupling zone of 0.4–0.55 in Wei’s study, which may be related to the different
soil moisture data, where they used MERRA-LAND reanalysis soil moisture data (top 1 m),
while we used CCI remotely sensed soil moisture (surface 5–10 cm).

Studies have shown that the areas where land–atmosphere coupling is controlled by
thermal energy factors are mostly located in moist areas with sufficient moisture [35,39].
In the climate transitional zone of northern China, where the climate is non-humid, the
influence of temperature is weak, and the relationship between the spatial distribution of
CS and temperature is considerably weaker than that with soil moisture. Therefore, the
moisture factor is the main factor dominating the spatial distribution of ET-P coupling.

4.2. Determination of Water and Temperature Factors on Temporal Variation of CS

The studies on the temporal variation of CS are fewer than those on the spatial pattern
of CS. The findings based on GLACE and MERRA-LAND both indicate that interannual
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variation in land–atmosphere coupling is mainly caused by soil moisture variation, and
suggest a phenomenon of “see-saw” that the CS is stronger in the wet period in the dry area
and in the dry period in the wet area [30,31]. This is explained by the fact that where the CS
is strongest in the transition zone, either the dry zone becomes wet or the wet zone becomes
dry, and the coupling is thus enhanced. Recently, Lo et al. showed that hydrological events
have a significant effect on temporal evolution of CS by changing the surface state [45].
After large-scale intensive precipitation events, the soil moisture increases significantly,
causing evapotranspiration to change from moisture to transitional limitation. Thus, the
dependence of evapotranspiration on soil moisture decreases, resulting in a decrease in CS.

In the current study, responding to the intra- and inter-annual fluctuations of envi-
ronmental conditions, land–atmosphere coupling exhibits distinct intra-annual cycles and
inter-annual fluctuations. Soil moisture variability (standard deviation) is the most impor-
tant influencing factor in determining the CS in the northern China climate transition zone.
This is in relation to evapotranspiration being moisture-limited across most of the climate
transition zone, and a larger soil moisture variability causes a larger evapotranspiration
variability, and subsequently a precipitation variability. This effect is more significant in
arid and semi-arid regions.

4.3. Positive and Negative Coupling Mechanisms

Land–atmosphere couplings could be positive or negative. Drylands tend to show
positive coupling, i.e., the lager the soil moisture, the higher the evapotranspiration, and
the more likely to trigger convective precipitation [5,16]. The mechanism responsible for
positive coupling involves dominant moisture recycling in land–atmosphere coupling.
Negative coupling was also found in some studies, i.e., negative coupling exists in north
Africa [26]. Negative coupling implies that a lower soil moisture is more likely to trigger
precipitation. The mechanism responsible for negative CS is that in areas where the
boundary layer is wet with a dry surface with strong heating, the convective available
potential energy (CAPE) is large and convective inhibition (CIN) is small, causing the
boundary layer to be more likely to develop deeper. Although a dry and hot boundary
layer causes LCL lift, the well-developed BLH would exceed LCL and trigger convective
precipitation. This mechanism is similar to the land–atmosphere coupling mechanism in
the southern region of the study area in the current study.

LCL is a key variable in the linkage between surface and precipitation, and the de-
velopment of LCL is closely related to the type of evapotranspiration [46]. The ET in the
southern region of the study area is energy-limited, and the increase in available energy
causes both sensible and latent heat to increase, and the increased sensible heat heats the
boundary layer and increases the LCL, leading to a positive correlation between ET and
LCL. In most northern regions, ET is moisture-limited, and increasing soil moisture results
in an increase in ET and a decrease in sensible heat, causing LCL to decrease and the
boundary layer to become wet and cold, leading negative correlation of ET with LCL. In
contrast, over the whole study area, a lower LCL is more likely to trigger precipitation, and
hence, LCL has a negative correlation with P. Thus, it leads to negative ET-P coupling in the
part of south region and positive coupling in the north region. Therefore, the main reason
for the positive and negative differences in ET-P coupling in the study area is the different
driving regimes of evapotranspiration.

5. Conclusions

Employing an evapotranspiration–precipitation coupling index (CS) proposed by
Zeng (2010), this study found that CS decreases gradually from the northwest to southeast
in the north China climate transition zone, with strong positive coupling in the northwest
and negative coupling in the southeast and northeast corners. The CS decreases sequentially
in the spring, summer, autumn and winter, and is considerably stronger in spring than
in other seasons. On the interdecadal scale, coupling is highest in the 1980s, lowest in
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the 1990s, and moderate in the 2000s and 2010s. The trend of CS gradually shifts from a
significant declining trend in the west to an increasing trend (not significant) in the east.

The spatial distribution of CS is closely related to the distribution of climatology of
moisture and temperature. The CS remained at a strong level and increased slightly by
increasing soil moisture when it was below 0.2, and decreased with increasing soil moisture
when the soil moisture was above 0.2. In the zone of study, areas with soil moisture
below 0.25 have positive CS, areas with soil moisture between 0.25 and 0.35 experience
a transitional coupling from positive to negative, and areas with soil moisture greater
than 0.35 exhibit negative CS. The relationship between soil moisture and the CS trend is
roughly opposite to that between the soil moisture and CS. The CS shows an exponential
decreasing trend with the increase in temperature, while the CS trend gradually increases
with increasing temperature. Climatological soil moisture plays a more dominant role in
determining the distribution of CS.

The CS exhibits evident intra- and inter-annual variability in the climate transitional
zone of northern China. Soil moisture variability has the highest correlation coefficient with
the intra-annual CS, dominating the intra-annual variation in ET-P coupling in the northern
region. At the interannual scale, soil moisture variability is significantly and positively
correlated with CS in arid and semi-arid regions, determining the interannual variability in
CS in these regions. In humid and semi-humid areas, the CS is more complex in relation to
the hydrothermal factors, and subject to the combined effect of hydrothermal factors.

The boundary layer thermodynamic analysis revealed that the main reason for positive
and negative differences in CS across the study area is the different driving regimes of
evapotranspiration. ET is energy-limited in the southern part of the study area, leading
to a positive correlation between ET and LCL, while in most of the northern part, ET is
moisture-limited, and ET is negatively correlated with LCL. The effect of moisture recycling
from evapotranspiration on precipitation represents the main pathway of ET-P coupling,
and LCL has a negative correlation with P across the study area, therefore leading to a
negative ET-P coupling in part of the south and a positive coupling in the north.
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Abstract: Glaciers are sensitive indicators of climate change and have a significant influence on
regional water cycle, human survival and social development. Global warming has led to great
changes in glaciers over the High Mountain Asia (HMA) region. Glacier elevation change is a measure
of glacier mass balance driven by the processes of energy and mass exchange between the glacier
surface and the atmosphere which are influenced by climatic factors and glacier surface properties. In
this study, we estimated the inter-annual and intra-annual elevation changes of glaciers in the HMA
region in 2003–2020 using Ice, Cloud and land Elevation Satellite (ICESat) data and Shuttle Radar
Terrain Mission (SRTM) digital elevation model (DEM) data by developing an “elevation-aspect bin
analysis method” that considered the difference of glacier elevation changes in different elevations
and aspects of glacier topography. The results showed that: (1) The inter-annual change of glacier
elevation in 2003–2020 had large spatial heterogeneity. Glacier elevation reduction mainly occurred
in the marginal region of the HMA with the maximum decline in the Nyainqentanglha region, while
glacier elevation showed increase in the West Kunlun of inner HMA regions in 2003–2020. The glacier
elevation change rate showed an accelerating reduction trend in most of the HMA regions, except in
the west HMA where the glacier elevation reduction rate showed slowdown tendency. Specifically,
the glacier elevation change rate in the entire HMA was −0.21 ± 0.12 m/year in 2003–2008 and
−0.26 ± 0.11 m/year in 2003–2020, respectively. (2) The intra-annual change of HMA glacier elevation
in 2019 and 2020 showed obvious spatiotemporal heterogeneity, and the glacier thickening period was
gradually delayed from the marginal area to the inner area of the HMA. The glaciers in the western
marginal part of the HMA (the Tienshan Mountains, Pamir and Hindu Kush and Spiti Lahaul) and
Karakoram thickened in winter or spring, the glaciers in the Nyainqentanglha Mountains exhibited
spring accumulation. The glaciers in West Kunlun accumulated in two time periods, i.e., from March
to June and from July to September. The glaciers in the Inner Tibetan Plateau and Bhutan and Nepal
areas experienced spring or summer accumulation, especially in June or July. Moreover, we found
that the inter-annual and intra-annual change of glacier elevation could be explained by the changes
in temperature and precipitation. A similar analysis can be extended to mountain glaciers in other
regions of the world, and glacier change trends could be further explored over a longer time span
with the continuous operation of ICESat-2.

Keywords: ICESat-1; ICESat-2; glacier elevation change; inter-annual and intra-annual changes;
elevation-aspect bin analysis method; HMA

1. Introduction

In the past two decades, with global warming, great changes have taken place in
global glaciers [1–3]. A recent study based on satellite data and modeling has revealed that
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the potential contribution of the world’s melting glaciers to sea level rise is 257 ± 85 mm in
2017–2018 [4]. High Mountain Asia (HMA) is the region with the largest distribution of
glaciers and diverse glacier types in the middle latitudes of the earth. It is the birthplace of
major rivers in Asia, such as the Amu Darya River, the Syr Darya River, the Yangtze River,
the Yellow River, the Salween River, the Brahmaputra River and the Indus River [5–7].
To date, the glaciers in the HMA region have undergone significant changes, triggering
a series of disasters and having a major impact on people’s production and lives. The glacier
changes not only directly drive changes in the natural environment in the HMA region,
but also have feedbacks to climate change in the whole northern hemisphere and even
the whole world. Therefore, accurate monitoring of glacier changes in the HMA region is
crucial for studying global glacier and climate change, as well as for understanding the
potential impact of glacier retreat [8–11].

The method based on satellite stereoscopic imagery has good spatial coverage and
is a common method to monitor glacier elevation changes [12,13]. Existing studies have
shown that the glaciers in the HMA are generally in a melting state, but the rate of change
varies in different regions and different time spans [9,14,15]. For example, in the Nyan-
qentanglha Mountains, Ren et al. [16] analyzed the ZY-3 satellite stereo image pair data
and found that the glacier thinning rate in 2013–2017 was faster than that in 2000–2013.
The results of Brun et al. [17] showed that the glacier thickness across the HMA region
decreased by 0.21 m per year from 2000 to 2016. However, glaciers in East Pamir, Karako-
ram and West Kunlun are in a state of equilibrium or slightly rising, which is called the
“Karakoram Anomaly” [18–21].

Lidar altimetry data, such as ICESat-1&2 data, have higher vertical accuracy than
satellite-based stereo image pair data. Using lidar data to monitor glacier elevation change is
a hot research topic [22]. At present, ICESat-1 equipped with the Geoscience Laser Altimeter
System (GLAS), as the first generation of space-borne laser point cloud satellite, can provide
global laser point cloud data from 2003 to 2009. The data have a high point frequency
(40 Hz) and are widely used in ice sheet monitoring in the Arctic and Antarctic regions [23].
ICESat-1 GLAS data were also used to explore the mass balance changes of glaciers in the
Tibetan Plateau, and found that the annual mass loss of glaciers from 2003 to 2009 was
−26 ± 12 Gt [24]. However, ICESat-1 data points in the mid-latitude region are sparse,
which limits its use in the HMA. In addition, ICESat-1 stopped operation after 2009. ICESat-
2 is a new generation of spaceborne lidar satellite equipped with an Advanced Topographic
Laser Altimeter System (ATLAS). Since 2018, the ATLAS has provided abundant laser
point data every year. Compared with ICESat-1 data, ICESat-2 data not only improves
the observation accuracy but can also observe more glaciers in the same time span, thus
providing more complete and accurate glacier elevation information [25–27]. Therefore,
ICESat-2 provides a new perspective for monitoring inter-annual glacier elevation changes.

At the same time, it would be interesting to explore the intra-annual changes of
glacier elevation. Seasonal meltwater from glaciers is a guarantee of water resources in
the surrounding and downstream regions of the HMA, in particular in arid and semi-arid
regions [28]. Many studies on glacier elevation changes in the HMA region have focused on
the inter-annual variability, and studies on monthly/seasonal changes in glacier elevation
are still lacking. Although many studies have estimated the intra-annual loss of glaciers,
most studies infer monthly/seasonal glacier elevation changes based on relationships with
precipitation rather than directly extracting glacier elevation information from satellites
observations. Existing studies have shown that the timing of glacier accumulation or
melting varies widely in different regions. For example, Ageta [29] found that most
of the glaciers in the inner Tibetan Plateau thickened in summer based on continuous
ground observations of some specific glaciers, but the spatial patterns still need to be
understood to a large extent. Maussion et al. [30] discovered that most glaciers in Pamir
and Spiti Lahaul thickened in winter, but they used a clustering algorithm based on monthly
precipitation data to calculate monthly changes in glacier elevation, rather than using direct
observations of monthly glacier elevation. Wang et al. [31] utilized ICESat-1 and Gravity
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Recovery and Climate Experiment (GRACE) data to explore seasonal changes of glaciers
in the HMA. However, due to sensor failure, the ICESat-1 data could only be obtained
two to three times every year [32], and most of them were concentrated in March, June
and October, and could not provide observations for each month. However, studying
monthly/seasonal changes of glaciers is of great significance for disaster warning and
an in-depth understanding of the mechanism of glacier changes [31]. In short, none of the
existing studies have analyzed glacier elevation changes on a monthly/seasonal scale [33].
The lack of existing observations and effective monitoring methods has limited researchers
to accurately analyze the intra-annual variation of glacier elevation. The rich data volume
of ICESat-2 data, along with the increase of laser point emission rate (10 KHz) and the
number of laser point beams (six beams), provides a new perspective for exploring the
intra-annual changes of glacier elevation.

Terrain factors, i.e., elevation, slope and aspect, have impacts on the glacier mass
balance and changes [34]. In general, the lower the altitude, the more glacier mass is lost,
and vice versa. Existing studies show that precipitation affects glacier accumulation [35].
It is found that the glaciers on the windward side of the mountain retreated less, which
was attributed to the effective recharge produced by more precipitation than that on the
leeward side of the mountain [36–38]. For example, Wang et al. [39] found that due to
the influence of climatic conditions, the glaciers on the northern slope of the Tienshan
Mountains decreased more than that on the southern slope. This may be because the
precipitation brought by the westerly wind supplemented the mass loss of the glacier on
the southern slope, resulting in less glacier mass loss. Therefore, it is important to consider
terrain aspect and elevation when monitoring glacier elevation changes using laser point
data. Previous studies have rarely considered topographical aspect effects when extracting
changes in glacier elevation using ICESat-1&2 data.

The objectives of this study are:

(1) To improve the analysis method for glacier elevation change by comprehensively
considering the glacier terrain elevation and slope aspect.

(2) To analyze the inter-annual differences in the rate of glacier elevation change.
(3) To analyze the intra-annual differences in glacier elevation changes on a monthly/

seasonal scale.

2. Study Area and Datasets

2.1. Study Area

The HMA (26◦N~47◦N, 65◦E~104◦E), located in the central Asia (Figure 1), with
an average altitude of more than 4000 m. It is the birthplace of many major rivers in central
Asia, East Asia, Southeast Asia and South Asia [40]. The HMA is located in the intersection
of various climates. The south of HMA is mainly affected by the Indian monsoon [41],
the west and northwest of HMA are mainly affected by the westerly wind, the east is
mainly affected by the East Asian monsoon, and the central region is mainly affected by the
continental climate. The HMA is sensitive to climate change. Previous studies have shown
that a 1.5 ◦C increase in global temperature will lead to a 2.1 ◦C increase in the temperature
in the Tibetan Plateau [11]. In addition, various types of glaciers are formed in the HMA
region due to the dense mountains and complex topography. According to the Randolph
Glacier Inventory (RGI) 6.0 glacier catalog data, there are about 100,000 glaciers in the HMA
region, covering an area of nearly 100,000 square kilometers [42]. As these glaciers are less
affected by human activities, their changes are largely driven by natural factors. Therefore,
glacier change is an important indicator of global warming, and it is of great significance to
explore the changes in the HMA glacier and its relationship with the climate variations.
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Figure 1. Overview of the High Mountain Asia with background image as elevation above sea
level. The white regions in the HMA are the glacier areas. The blue, black and red arrows show the
climate-influencing sphere of the Westerly, East Asian monsoon and Indian monsoon, respectively.
(a) The HMA sub-regions according to the regional division of Brun et al. [17]; (b) Major river basins
in the HMA according to [43].
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2.2. Datasets
2.2.1. ICESat-1 Data

ICESat-1 is part of NASA’s earth observation system and the first satellite with a lidar
sensor to monitor the earth’s elevation information. The GLAS onboard ICESat-1 satellite
emits 40 Hz laser pulses vertically along the orbit and estimates the surface elevation from
the round-trip time of the laser pulses. The vertical detection accuracy of the GLAS is
less than 34 cm [44]. Its main scientific purpose is to observe changes in the glacier mass
balance, cloud layer and vegetation features from 2003–2009. GLAS14 data is GLAS Level
2 altimetry data that includes the geographical location of the laser beam footprint and the
correction parameters for elevation measurement. In this study, GLAS14 data was used to
extract glacier elevation information at laser points, including elevation, longitude, latitude,
ellipsoid correction parameters, etc. The data were downloaded from the National Snow &
Ice Data Center (NSIDC) (https://nsidc.org/data/icesat, accessed on 1 1 September 2020).

2.2.2. ICESat-2 Data

ICESat-2 uses ATLAS to monitor the elevation information of the earth’s surface [45].
Compared to the ICESat-1 GLAS, the working technology of the ICESat-2 ATLAS is greatly
improved. The ATLAS emits six laser beams at a time, divided into three groups. Each
group consists of a strong laser beam and a weak laser beam. The energy ratio of the strong
laser beam to the weak laser beam is about 4:1. The smaller spatial sampling interval
(~0.7 m) and higher frequency (10 kHz) [27] of the ATLAS allow it to collect denser data
points for more effective monitoring of glacier elevation changes. For example, the data
points observed by ATLAS in 2020 can occupy about 30,000 glaciers in the HMA region,
which is about nine times as many as all data points observed by GLAS in 2003–2008
(Figure 2). In addition, the ATLAS has higher detection accuracy; Zhang et al. [46] found
that the ICESat-2 data can extract glacier elevation in the Qilian Mountains with an accuracy
of 0.08 m compared with the data of Unmanned Aerial Vehicle (UAV). In the Antarctic area,
the accuracy can reach 1–2 cm [47]. Brunt et al. [48] used the Global Navigation Satellite
Systems (GNSS) to verify that the accuracy of ICESat-2 data in extracting the elevation
change of Antarctic ice sheet was better than 3 cm. In this study, the ICESat-2 ATL06 data
were used, including elevation, time, latitude, longitude, confidence parameters, etc. The
data were downloaded from the NSIDC (https://nsidc.org/data/icesat-2, accessed on
1 June 2021).

Figure 2. Comparison of observation capabilities by ICESat-1 and ICESat-2: the number of glaciers
and the total area of glaciers in the HMA region observed by ICESat-1 data in 2003–2008 and by
ICESat-2 data in 2020.

2.2.3. SRTM DEM

SRTM uses Synthetic Aperture Radar (SAR) technology to collect the earth’s surface
elevation data. It uses C-band Synthetic Aperture Radar (C-SAR) and X-band Synthetic
Aperture Radar (X-SAR) to collect data of the earth’s environment. The earth’s surface
elevation information from these data is converted to the height information specified in
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the DEM and used to create an accurate earth map. The revisit period of the SRTM mission
is 11 days. Since February 2000, the SRTM has used the phase difference between two SAR
images to calculate the DEM information from 60◦N to 56◦S [23]. It obtains the topographic
information of 80% of the earth’s surface (except the Arctic and Antarctic) and 95% of the
residential areas. In this study, the SRTM DEM from C-SAR data were used as the reference
elevation to obtain the glacier surface elevation information of the HMA in 2000. The data
were downloaded from the EARTHDATA platform (https://search.earthdata.nasa.gov/,
accessed on 1 September 2020).

2.2.4. ERA5

The fifth-generation European Centre for Medium-Range Weather Forecasts (ECMWF)
global climate and weather reanalysis v5 (ERA5) data were used to analyze the changes in
temperature and precipitation in the HMA region over the past 20 years. The reanalysis
process combined model data with observations from the world into a globally complete
and consistent dataset. We extracted the temperature and precipitation data for the HMA
region from 2003 to 2020. The temperature data is the air temperature at 2 m height
above the surface of land, ocean or inland water; the precipitation data is the accumulated
liquid and frozen water that falls on the earth’s surface, including rain and snow, but does
not include fog, dew or moisture that evaporates in the atmosphere before reaching the
earth’s surface. The data were downloaded from the ECMWF (https://www.ecmwf.int/
en/forecasts/datasets/reanalysis-datasets/era5, accessed on 1 September 2021).

2.2.5. Auxiliary Data

This study used the Randolph Glacier Inventory (RGI 6.0) data to determine glacier
boundaries. The RGI 6.0 data provide a global list of glaciers, with Landsat TM/ETM+
images as the primary data source, and interpreted with high-resolution imagery and
topographic maps such as ASTER, IKONOS and Systeme Probatoire d’Observation de la
Terre (SPOT) as supplementary data.

According to the regional division of HMA by Brun et al. [17], the HMA is divided
into Bhutan, Nepal, Nyainqentanglha, Spiti Lahaul, Karakoram, West Kunlun, Tienshan,
Inner TP (Tibetan Plateau), Pamir and Hindu Kush (Figure 1a). Additionally, using the
“One Belt, One Road” boundary map of the major Asian river basins [43], the HMA is
divided into 14 basins, namely Amu Darya, Brahmaputra, Ebinur and Manas river, Ili river,
Shule and Heihe river, Indus river, Qiangtang Plateau, Mekong river, Qardam, Salween
river, Issyk-Kul lake, Syr Darya, Tarim river and Yangtze, for analysis of changes in glacier
elevation in basin scale (Figure 1b).

3. Methods

Since the ICESat-1&2 data are laser point data and the spatial distribution of the data
points is not uniform in space, the ICESat-1&2 data therefore cannot provide pixel-wised
information covering the entire surface of glacier like the ZY-3 stereo image pair data.
The spatial distribution of ICESat-1&2 data points on each glacier differs due to different
satellite overpassing tracks and different sensor laser beam trajectories. In addition, due to
the different atmospheric conditions and different radiation energy received by glaciers in
different elevation and orientations, the glacier mass balance will differ in different aspects
at the same altitude. Based on the above reasons, this paper proposed an analysis method,
namely “elevation-aspect bin analysis method”, to investigate glacier elevation changes by
considering the glacier terrain elevation, slope aspect and the corresponding glacier areas.

Our research workflow consists of: (1) extraction of the elevation differences between
the ICESat-1&2 data and the SRTM DEM data in the ICESat-1&2 footprint scale; (2) extrac-
tion of glacier elevation difference in 1◦ × 1◦ grids; (3) estimation of the change of glacier
elevation in sub-regions or river basins; and (4) uncertainty analysis for the quantitative
assessment of the influences of data errors, processing errors and other factors on the
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results. Figure 3 shows the specific workflow, and the method details are described in the
following sections.

 

Figure 3. Flowchart of glacier elevation change extraction and analysis using ICESat-1&2 data and
SRTM DEM data.

3.1. Extraction of Elevation Difference in the ICESat-1&2 Data Footprints

Due to the differences in reference ellipsoid for projection and differences in vertical
reference system between ICESat-1&2 data and SRTM DEM data, we first need to convert
the elevation datum to extract elevation change information and eliminate outliers. In this
study, bilinear interpolation method was used to extract the elevation information of SRTM
DEM data in the footprint of the ICESat-1&2 data. Two corrections were applied before
the difference between the elevation from ICESat-1&2 data and from SRTM DEM data
can be calculated: (1) The Topex/Poseidon ellipsoid used by ICESat-1 data was converted
to the World Geodetic System 1984 (WGS84) ellipsoid used by ICESat-2 data and SRTM
DEM data [49,50]. (2) The Earth Gravity Model (EGM) 1996 used by the SRTM DEM geoid
elevation was converted to EGM2008 used by ICESat-1&2 data [35].
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The glacier elevation change in each year, ΔHyr (in meter), at each footprint point can
then be calculated by:

ΔHyr = HICESat, yr − HSRTM + PSRTM (1)

where HICESat,yr (m) is the elevation from ICESt-1&2 data in a year “yr” after ellipsoid cor-
rection; HSRTM (m) is the elevation from SRTM DEM data in 2000 after leveling correction
and bilinear interpolation within the footprint of ICESat-1&2 data point; PSRTM (m) is the
penetration depth of the SRTM DEM data in the glacier region, we set PSRTM as 2.4 m in
this study according to [51].

To reduce the influence of slope, ICESat-1&2 data points in slopes greater than 30◦
were excluded according to [35,52]. To remove outliers affected by detector saturation, only
ICESat-1 GLAS14 data flagged with class “0” or “1” in the data quality layer “satCorrFlg”
were selected according to [53]. For ICESat-2 data, we only selected the data flagged with
category “0” in the data quality layer “atl06_quality_summary” to ensure the data quality
according to [48]. Additionally, we excluded the data points with elevation differences
greater than 100 m between ICESat-1&2 data and the SRTM DEM data to eliminate the
influence of outliers that were possibly introduced by cloud interference [35].

3.2. Extraction of Glacier Elevation Difference in 1◦ × 1◦ Grids

To reduce the uncertainty caused by the uneven spatial distribution of the ICESat-1&2
data points in each elevation and slope aspect on the results, the core idea of the “elevation-
aspect bin analysis method” proposed in this paper is to calculate the glacier elevation
change in each 1◦ × 1◦ grid according to the distribution of ICESat-1&2 data points in
different elevations and slope aspects and respective glacier areas. The whole HMA is
divided into 1◦ × 1◦ grids. In each 1◦ × 1◦ grid, the elevation is divided into elevation
bins (denoted by i), each elevation bin is divided into 8 aspect bins (denoted by j) with
an interval of 45◦.

The elevation difference for each elevation bin in a 1◦ × 1◦ grid is calculated by:

ΔHyr, grid(i) = ∑8
j=1

(
Fyr,grid(i, j) · ΔHyr, grid(i, j)

)
, (j = 1, 2, . . . , 8, number of aspect bins) (2)

where, Fyr,grid(i, j) and ΔHyr, grid(i, j) are the fraction of glacier area and the median of glacier elevation
difference (between a target year and 2000) in aspect bin j of the elevation bin i in a 1◦ × 1◦ grid.

The elevation difference between a target year and the reference year 2000 in a 1◦ × 1◦ grid,
ΔHyr,grid, was the area-weighted average of elevation difference for all elevation bins and calculated as:

ΔHyr, grid = ∑N
i=1

(
Fyr,grid(i) · ΔHyr, grid(i)

)
, (i = 1, 2, . . . , N, number of elevation bins) (3)

where Fyr,grid(i) is the fraction of glacier area of the elevation bin i in a 1◦ × 1◦ grid. Following the
method in [35], we repeated the calculation using Equations (2) and (3) by setting 6 different intervals
of elevation bin, i.e., 200 m, 300 m, 400 m, 500 m, 600 m and 700 m, and used the average of the
six results as the final glacier elevation difference in each 1◦ × 1◦ grid. ICESat-1 and ICESat-2 data
from September to November of each year in 2003–2008 and 2018–2020, respectively, were used for
annual change calculation.

Monthly glacier elevation difference between all months in 2019–2020 and the reference year
2000 in each 1◦ × 1◦ grid was calculated in the same way using the “elevation-aspect bin” area-
weighting method.

3.3. Estimation of Annual and Monthly Change of Glacier Elevation in Sub-Regions
The annual glacier elevation changes in a sub-region or a river basin, ΔHyr, subregion, was

calculated by the area-weighted average of glacier elevation differences in all 1◦ × 1◦ grids in
a sub-region or river basin as:

ΔHyr, subregion = ∑M
k=1

(
Fyr(k) · ΔHyr, grid(k)

)
, (k = 1, 2, . . . , M, number of grids in a region) (4)
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where Fyr(k) is the ratio of glacier area of each 1◦ × 1◦ grid over the total glacier area in either
a sub-region or a river basin.

Following the method used in Kääb et al. [54], the rate of change of glacier elevation over
multiple years was calculated by applying robust linear regression to the time series of ΔHyr, subregion.
This way, the rate of change in glacier elevation between 2003–2008 and between 2003–2020 were
obtained using ICESat-1 and ICESat-2 data, respectively.

3.4. Error Analysis
It is difficult to directly assess the uncertainty of ICESat-1&2 and SRTM DEM data using ground

data due to insufficient in situ measurements of glacier elevations. Factors affecting the accuracy of
the results include the vertical height error of SRTM DEM data, the penetration depth error of SRTM
DRM data in the glacier area and the error of ICESat-1&2 data itself. In this study, the uncertainty
assessment method of glacier monitoring by Wang et al. [35] was adopted, as shown below:

σDH =
√

σ2
std+σ2

dh (5)

where σDH is the glacier elevation change error (m), σstd is the standard deviation of the result in
different elevation bins (m). The σdh includes the SRTM DEM vertical deviation (<16 m), ICESat-1&2
error (centimeter and decimeter scale) and radar penetration error (meter scale). In this study, the
absolute error of each ICSat-1/2 footprint point is set to 20 m.

The uncertainty of glacier elevation change rate is obtained by

σDH/dt =
√

σ2
fit+σ2

spat+σ2
temp+σ2

bias (6)

where σDH/dt is the glacier elevation change rate error, σfit is the linear fitting error, σspat and σtemp are
spatial and temporal sampling errors, σbias is the comparison bias and unknown system uncertainty
of crustal uplift [55]. We followed Wang et al. [22] and set σspat, σtemp and σbias to 0.06 m/year in
this study.

4. Results

This study analyzed the change in glacier elevation from two perspectives, inter-annual and
intra-annual. In the first part, we investigated the change in glacier elevation at different altitudes and
slope aspects (Section 4.1) and analyzed the spatial differences in the inter-annual rate of change in
glacier elevation (Section 4.2). In the third part, we conducted monthly/seasonal study by analyzing
the 24-month pattern of glacier elevation changes from January 2019 to December 2020 (Section 4.3).

4.1. Glacier Elevation Change in Different Elevations and Slope Aspects
Firstly, we analyzed the glacier elevation changes between 2000 (from SRTM DEM data) and

2020 (from ICESat-2 data) in different elevations and slope aspects in the HMA sub-regions according
to the regional division of Brun et al. [17], as shown in Figure 1a. Overall, the glacier elevation
changes (i.e., the glacier thickness change) between 2000 and 2020 decreased with increasing altitudes
in all sub-regions of the HMA (Figure 4a), which is consistent with the findings of Ragettli et al. [56].
In addition, the accumulation and melting characteristics of glaciers also varied in different slope
aspects (Figure 4b). In general, in most sub-regions, the glacier elevation changes on the southern
slope decreased more than that on the northern slopes from 2000 to 2020, because the southern slopes
received more solar radiation, resulting in more melting of the glaciers. However, different features
were found in the Nyainqentangla Mountains, Bhutan, Nepal and the Tienshan Mountains. In the
Nyainqentangla Mountains, the glaciers thinning on the northern slopes thinned more than that in
the southwestern slopes. Additionally, in Bhutan, the glacier on the northern slopes thinned more
than that on the eastern and southwestern slopes. The reason might be that these regions were
strongly influenced by monsoon which brings abundant precipitation and leads to less reduction
in glacier thickness on the windward sides [57]. In Nepal, for example, the southern slopes of the
mountains are windward, and the glaciers on the southern slopes were replenished by precipitation
from the Indian monsoon, resulting in less reduction in glacier thickness. Similarly, in the Tienshan
Mountains, under the influence of the westerly winds, the glacier thickness on the southwestern
slopes (windward) decreased less than that on the northeastern slopes. To sum up, the water vapor
carried by monsoon will affect the melting rate of the glaciers in the HMA region, resulting in a large
difference in the glacier elevation changes on different slope aspects, especially in the areas greatly
affected by the monsoon.
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Figure 4. Glacier elevation change between 2000 and 2020 in each sub-region of the HMA in:
(a) different elevations, and (b) different slope aspects. (The sub-regions were defined in Figure 1a).

4.2. Inter-Annual Change Rate of Glacier Elevation
4.2.1. Spatial Pattern of Annual Glacier Elevation Change Rate

To calculate inter-annual rate of change in glacier elevation, ICESat-1&2 data in autumn months
(September–November) from 2003 to 2008 and from 2018 to 2020 were selected (procedure described
in Section 3). Autumn was chosen for the annual trend analysis because the ICESat-1&2 and SRTM
observations are less influenced by snow cover in this season [35,54]. The year 2009 was not included
in the trend analysis due to too little data available in autumn to ensure reliable results (ICESat-1
eventually ceased work in 2010). Figure 5 showed the spatial distribution of the annual rate of
change in glacier elevation in the HMA region from 2003 to 2008 and from 2003 to 2020, respectively.
The detailed annual changes in glacier elevation and the respective error information were shown
in Table A1. The results showed that the spatial variation of glacier elevation change rate in the
HMA was very significant, and the change rate was very different in some areas between 2003–
2008 and 2003–2020. The glacier elevations have thinned across much of the HMA region. For
the entire HMA, the annual rate of change in glacier elevation from 2003 to 2008 and from 2003 to
2020 were −0.21 ± 0.12 m/year and −0.26 ± 0.11 m/year, respectively, indicating a faster thinning
rate in recent years. In Nyainqentanglha, the annual glacier elevation change rate increased from
−0.81 ± 0.15 m/year in 2003–2008 to −1.12 ± 0.13 m/year in 2003–2020, which is the region with
the fastest glacier loss. The annual glacier change rate in the Tienshan Mountains increased from
−0.27 ± 0.13 m/year in 2003–2008 to −0.33 ± 0.11 m/year in 2003–2020. In contrast, the rate of
glacier thinning decreased significantly in the west HMA. For example, in the Pamir, the glacier
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elevations decreased by 0.22 m/year in 2003–2008 and 0.13 m/year in 2003–2020, indicating a slowing
down trend in glacier thinning rate. Although the elevation of most glaciers generally decreased
between 2003–2020, some glaciers in the inner region of HMA showed an increase in elevation.
Previous studies found that glaciers in the West Kunlun was thickening [17]. Our results showed
that in West Kunlun, the glacier elevation change rate was 0.18 ± 0.11 m/year in 2003–2020 and
0.10 ± 0.13 m/year in 2003–2008. As a summary of our results, the glacier thinning rate across
the entire HMA is gradually accelerating, except for the West Kunlun, Karakoram, Pamir and
Hindu Kush.

 

 

Figure 5. Glacier elevation change rate in the HMA in 2003–2008 (a) and in 2003–2020 (b) (Statistics
in 1◦ × 1◦ grids).
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4.2.2. Glacier Elevation Change Rate in Basin Scale
The melting of the HMA glaciers has an important impact on the changes in river flow and

water resources in the HMA and its downstream regions. Therefore, obtaining information on glaciers
changes in different basins of the HMA is of great significance for understanding the changes of water
resources in the HMA and its surrounding areas. We estimated the glacier elevation change rate in
each basin of the HMA during 2003–2008 and 2003–2020 (Table 1) (method described in Section 3.3).

Table 1. The rate of change in glacier elevation in the basins of the HMA in 2003–2008 and 2003–2020.
The errors are given at the 1σ level calculated by Equation (6).

Basin Name
Glacier Elevation Change Rate (m/year)

2003–2008 2003–2020

Amu Darya −0.21 ± 0.13 −0.12 ± 0.11
Brahmaputra −0.43 ± 0.18 −0.78 ± 0.13
Ili river −0.46 ± 0.13 −0.40 ± 0.12
Indus river −0.25 ± 0.15 −0.20 ± 0.12
Qiangtang Plateau 0.07 ± 0.12 −0.04 ± 0.11
Shule and Heihe river −0.11 ± 0.18 −0.44 ± 0.15
Ebinur and Manas river −0.10 ± 0.30 −0.42 ± 0.18
Mekong river −0.34 ± 0.43 −1.2 ± 0.33
Qardam −0.21 ± 0.20 −0.37 ± 0.13
Issyk-Kul lake 0.10 ± 0.2 −0.39 ± 0.14
Salween −0.69 ± 0.20 −1.02 ± 0.14
Syr Darya −0.67 ± 0.16 −0.34 ± 0.13
Tarim river 0.08 ± 0.14 0.08 ± 0.11
Yangtze −0.43 ± 0.19 −0.48 ± 0.13

Due to the differences in temperature, precipitation, evapotranspiration and other factors in
different basins, rates of changes in glacier elevations varied greatly in time and space (Table 1). The
results in Table 1 showed that from 2003 to 2020, the glacier elevations in almost all basins of the HMA
showed a decreasing trend, except for Tarim. From 2003 to 2020, the Mekong River basin experienced
the fastest thinning of glaciers, followed by the Salween and Brahmaputra basins. However, we
found that the rate of thinning of glaciers in the Indus, Syr Darya and Amu Darya river basins slowed
down. We will analyze the reasons for this phenomenon in Section 5.2.1.

4.3. Intra-Annual Change of Glacier Elevation
The period of thickening or thinning of glaciers varied in different regions of the HMA due to

climate and topography. In this section, the HMA was divided into eight sub-regions to explore the
monthly/seasonal characteristics of the glacier elevation changes in the HMA caused by differences
in glacier accumulation and melting over time. The eight sub-regions are Spiti Lahaul, Bhutan
and Nepal, Nyainqentanglha mountain, West Kunlun, Pamir and Hindu Kush, Tienshan mountain,
Karakoram and Inner TP (Tibetan Plateau). The ICESat-2 monthly data in 2019–2020 were used for
monthly/seasonal analysis.

In this study, we found that the period of glacier thickening from the marginal regions of the
HMA to the interior HMA was gradually delayed from autumn to summer. The results in Figure 6
revealed that in Pamir and Hindu Kush and Karakoram, glaciers showed similar seasonal changes in
thickening in autumn (SON: September–October–November) or winter (DJF: December–January–
February). In Pamir and Hindu Kush, although the glaciers were at their highest elevations in spring,
significant glacier thickening occurred mainly in October–March, followed by a significant thinning
period. The glaciers in Karakoram had almost the same seasonal variation as in Pamir and Hindu
Kush, except for a sudden drop in elevation in July 2019, which might be attributed to relatively
low precipitation and warmer temperatures in July 2019 (see the discussion in Section 5.2.2). In
West Kunlun and Bhutan and Nepal, the glaciers exhibited similar seasonal thickening variation in
spring (MAM: March–April–May) or summer (JJA: June–July–August). The glaciers in West Kunlun
Mountains showed two accumulation periods with obvious thickening, i.e., in March–June and in
July–September. In the Bhutan and Nepal regions, the month with the least glacier elevation decline
in 2019–2020 occurred in July. In the inner TP, the glaciers did not show an obvious consistency of
accumulation (or melting) in the two years, although the months with the highest glacier elevations
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appeared in the summer of the two years. In the Tienshan Mountains, the glacier elevations fluctuated
greatly, the glacier thickening time was mainly concentrated from December to April, and there was
a weak thickening trend from September to December. In Spiti Lahual, the southwest of the HMA,
the glacier thickening period was mainly concentrated in winter and spring, with thinning in summer.
The glacier elevations in the Nyainqentanglha Mountains reached their highest points in spring.

Figure 6. The monthly change of glacier elevation in different regions of the HMA from January
of 2019 to December of 2020. The red line (left Y-axis) represents the glacier elevation difference
between the ICESat-2 data in 2019–2020 and the SRTM DEM data in 2000, the blue column (right
Y-axis) represents the number of ICESat-2 data points in each month. The error bars are the values of
standard deviation of spatial glacier elevation difference in the corresponding months calculated by
Equation (5) at 1σ level.

5. Discussion

5.1. Comparison with Existing Studies
5.1.1. Comparison of Inter-Annual Glacier Elevation Change Rate

We compared our results with those by other studies in each sub-region of the HMA (Figure 7).
Overall, our results are consistent with most previous studies.

However, there are some discrepancies between our results and existing studies, which may
be due to the use of different methods and data. As shown in Section 4.1, glacier elevation changes
varied with elevations and slope aspects. As shown in Figure 4b, the glacier elevation changes on
the east and west slopes of the Nyainqentanglha Mountains were different. At the same time, the
distribution of ICESat-1&2 data points in different slope aspects will also affect the changes of glacier
elevations. The ICESat-1&2 laser point data cannot be guaranteed to be evenly distributed in space.
In general, a large area may have more data points. However, due to factors such as satellite orbit
or cloud cover, the spatiotemporal distribution of available laser points is irregular. We selected
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the computing unit (i.e., one 1◦ × 1◦ grid) around the Yalong glacier (96◦E~97◦E, 29◦N~30◦N) to
investigate the distribution of ICESat-2 data and found that the data volume of ICESat-2 data in 2020
in the eastern slopes is about 1.6 times of that in the western slopes, while the area of glaciers in the
eastern slopes is only 1.2 times of that in the western slope. In brief, the distribution of ICESat-1&2
data points will be different in various slope aspects due to the influence of topography, climate and
satellite operation mode, which in turn affects the accuracy of the results of glacier elevation changes.
Therefore, in this study, elevation and aspect are both factors that must be considered simultaneously
when calculating the glacier elevation change.

 
Figure 7. Comparison of results on glacier elevation change rate in the HMA in 2003–2020 and
2003–2008 between this study with existing studies. Wang et al. [22] calculated the glacier elevation
change rate in 2003–2019 using the ICESat-1&2 data. Brun et al. [17] and Shean et al. [10] calculated
the glacier elevation change rates in 2000–2016 and 2000–2018 using ASTER data in 2016/2018 and
SRTM DEM data in 2000, respectively. Kääb et al. [58] calculated the glacier elevation change rate in
2003–2008 using ICESat-1 data. The error bars are the standard deviation of spatial glacier elevation
change rate calculated by Equation (6) at 1σ level.

Existing studies have shown that the glacier thinning rate based on ICESat-1&2 data is greater
than that based on stereo pair data in the Nyainqentanglha region [22,59]. However, with the
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exception of Nyainqentanglha region, the difference between our results in 2003–2020 and the results
of Brun et al. [17] and Shean et al. [10], both using stereo pair data, is very small (within two standard
deviations), indicating that our results of glacier elevation change rate are within an acceptable range.

5.1.2. Comparison of Intra-Annual Glacier Elevation Change
The results of this study are basically consistent with the existing studies (Table 2) on intra-

annual variation of glacier elevation. In general, glaciers in the marginal regions of the HMA (the
Tienshan Mountains, Spiti Lahaul, etc.) thicken in winter. However, similar to existing studies, the
glaciers in Bhutan and Nepal have an obvious thickening trend in summer. This may be due to the
accumulation of water vapor in the whole Tibet Plateau mainly in summer. The southern slopes of
Bhutan and Nepal are affected by the strong monsoon from the Indian Ocean and the Bay of Bengal,
with the most precipitation in summer [60]. The impacts of precipitation outweigh the impacts of
temperature, leading to summer replenishment of glaciers in Himalayas. However, there are also
large fluctuations in glacier elevation changes in Bhutan and Nepal. Our findings show that in 2019
the glaciers generally accumulated between January and June, while in 2020 the opposite was true,
although the months with the highest glacier elevation were all in July. Kansakar et al. [61] found
large variation in precipitation patterns in Nepal suggesting that there may be large differences in
glacier elevation changes in the Himalayas Mountain, which is consistent with studies by Maus-
sion et al. [30] and Wang et al. [31]. Similarly, the greater variability in the glacier elevation change
in the Nyainqentanglha Mountains may be partly due to the influence of hydrothermal conditions,
because the inter-annual variability of precipitation due to abnormal anticyclones in the northern
Indian subcontinent and the Bay of Bengal varies greatly [62,63]. Different from the existing research,
in the Tienshan Mountains, our results showed a clear trend of glacier thickening in autumn, although
the glacier elevation in autumn was the lowest. This is mainly due to the large glacier loss from
July to September. However, looking at the monthly distribution, we found a slight increase in
autumn during the two-year period (September to December). The same phenomenon occurred in
Nyainqentanglha, Pamir and Hindu Kush. This is also an advantage of our study based on monthly
data from ICESat-2, as we could highlight the details between seasons. In short, using the ICESat-2
data, we can more precisely monitor the intra-annual changes in glacier elevation. However, when
the analysis is carried out on a monthly/seasonal scale, the amount of data is reduced, which also
affects the accuracy of regional results. For example, some glaciers may have only a few hundred
points in a month, which may be the reason for the large fluctuations in glacier elevation change
in some areas. Nevertheless, our method is a direct calculation of glacier elevation change that can
represent the intra-annual variation pattern of glacier elevation. With the continuous observation by
ICESat-2 satellite, we will obtain more accurate monthly/seasonal variation characteristics of glacier
in the future.

Table 2. The period of glacier accumulation in the sub-regions of the HMA from this study and the
comparison with previous studies.

Sub-Regions This Study Wang et al. [31] Maussion et al. [30]

Spiti Lahaul December–March December–March December–February
Bhutan and Nepal February–July / March–August
Nyainqentanglha October–April (June) December–June December–August

West Kunlun March–June,
July–September March–June (August) March–May

Pamir and Hindu
Kush October–March November–April December–February

Tienshan September–April December–June /
Karakoram October–January / December–February
Inner TP summer April–August June–August

5.2. Factors Controlling Glacier Elevation Change
5.2.1. Factors Controlling Inter-Annual Glacier Elevation Change Rate

Previous studies have shown that the sensitivity of glaciers to climate is the main controlling
factor of the HMA glacier change [64]. The rate at which a glacier melts is related to the energy
gain or loss on the glacier surface. The main factors affecting glacier changes include temperature
and precipitation. Warmer temperatures will lead to accelerated glacier loss [65], while increased
precipitation will compensate for glacier mass loss. To explore the factors affecting the changes of
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glacier thickness, we calculated the change of glacier elevation change rate from 2003 to 2020 and
from 2003 to 2008 (Figure 8a), and used the ERA5 data to investigate the average temperature and
precipitation changes in autumn in the HMA from 2003 to 2020 and from 2003 to 2008 (Figure 8b,c).

 

 

 

Figure 8. Difference between 2003–2020 and 2003–2008 (in autumn) in: (a) glacier elevation change
rate, (b) mean temperature, and (c) mean precipitation.
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The result showed strong warming in the central and southeastern regions of the HMA, while
the temperature decreased in the western, northwestern and southwestern regions. The precipitation
in the HMA generally showed an overall increasing trend, but the increased precipitation was mainly
concentrated in the Tienshan Mountains in the northwest of the HMA, the western part of the HMA,
parts of the central HMA and southern edge of the HMA. Our study revealed that in the context
of global warming, most glaciers in the HMA experienced accelerated mass loss. Spatially, the
change of glacier elevation change rate in the Tienshan Mountains is consistent with the change in
precipitation, indicating that the change of glaciers in the Tienshan Mountains may be more affected
by precipitation. However, the rate of glacier thinning in the southwest of HMA has slowed down.
Guo et al. [66] found that, compared with the warming trend (+0.18 ◦C/decade) of the Tibetan Plateau
since 2001, the temperature in the southwest of the Tibetan Plateau decreased by 0.15 ◦C/decade, and
we found that Pamir and Hindu Kush also appeared to have a similar pattern. Overall, a decrease
in temperature (Figure 8b) and an increase in precipitation (Figure 8c) explained the slowing of
glacier mass loss in the west HMA region. The analysis of climatic factors of precipitation and
temperature showed that the regional pattern of glacier elevation changes was consistent with the
patterns of precipitation and temperature. Existing studies showed that for every 1 degree increase in
temperature, precipitation needs to increase by 25−35% to compensate for the impact of temperature
on glaciers [67]. Both temperature and precipitation within the HMA are increasing overall, and
while more precipitation can compensate for the mass loss of the glaciers, it is still far from being
able to compensate for the overall melting of glaciers caused by the increase in temperature, which
contributes to the accelerated glacier mass loss in most parts of the HMA.

5.2.2. Factors Controlling Intra-Annual Glacier Elevation Variation
The glaciers in the HMA region have multiple types of accumulation and ablation patterns,

which are largely related to precipitation [68,69]. This study analyzed the monthly/seasonal variations
in temperature and precipitation from January 2019 to December 2020. In all regions of the HMA,
the temperature throughout the year showed a trend of first rising and then falling. The changes in
precipitation can explain the characteristics of intra-annual glacier elevation variations (Figure 9).

Figure 9. Monthly temperature and precipitation from January 2019 to December 2020 in each
sub-region of the HMA. The red line (left Y-axis) represents the monthly temperature, and the blue
column (right Y-axis) represents the monthly precipitation.
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For example, precipitation in the Himalayas has a clear upward trend in summer, which explains
the accumulation of its glaciers in summer. In the Nyainqentanglha Mountains, the thickening of
the glaciers in spring is attributed to that the concentration of about 20−40% of the precipitation in
spring [70]. The strength and nature of the coupling between the monsoon system and the westerly
system are important factors that cause precipitation changes. Glaciers in Pamir, Hindu Kush and
Spiti Lahaul, located at the intersection zones of westerly and monsoon air flows, may be more
sensitive to changes in weather and atmospheric circulation [30]. Compared with other regions, Spiti
Lahaul and Pamir have significantly more precipitation in winter and spring, which is the reason
for the thickening of glaciers here. April in particular is the rainiest month in Pamirs and in Spiti
Lahaul from November to March, while the rest of the HMA is around July. As shown in Section 4.3,
the overall trend of glacier elevation changes in Karakoram is similar to that in Pamir and Hindu
Kush, except in July 2019, which may be due to less precipitation in July 2019. Existing studies have
shown that in areas affected by the westerly climate, the precipitation in winter is more than that
in summer [71]. At the same time, affected by the atmospheric circulation and the deviation of the
earth’s rotation, the Tienshan Mountains, Pamir and Hindu Kush are mainly affected by the Atlantic
southwesterly wind. Coupled with the barriers of mountains, the westerly wind in spring will bring
sufficient precipitation here and reduce the mass loss of glaciers. For example, in Pamir and Hindu
Kush, the glacier elevation is highest in spring, due to the continuous thickening of the glaciers
from October to March. There is less glacier mass loss in spring as precipitation remains high from
March to May. In conclusion, the difference of precipitation can explain the difference in the glacier
accumulation in different regions of the HMA.

5.3. Advantages and Disadvantages of ICESat-1&2 Data in Estimating Glacier Elevation Change
The ICESat-1&2 data have high vertical detection accuracy, and their applications in the

cryosphere will be worth exploring. The emergence of ICESat-1&2 data allows us to obtain a large
amount of data every year or even every month, which provides us with an opportunity to un-
derstand the glacier changes at higher temporal resolutions (monthly/seasonal), which is of great
significance to disaster prevention and rational use of water resources [24,72]. For example, the
ICESat-2 data are observed more frequently and therefore have more data points in space, providing
a new perspective for the monitoring changes in glacier elevation. Its main disadvantage is that
the large orbital spacing in the middle latitudes [73]. As shown in Figure 2, the ICESat-1 GLAS
data have less data density. Although the amount of ICESat-2 ATLAS data and glacier coverage
have been greatly improved, it still cannot cover all glaciers completely, which is an unavoidable
problem when using ICESat-1&2 data in mid latitudes. The number and spatial distribution of
data points will directly affect the accuracy of the results. In some regions, the reduction in data
volume can increase the uncertainty of the results. For example, in the monthly analysis in Section 4.3,
there were only a few hundred points per month in some regions, resulting in large fluctuations in
annual performance. The spatiotemporal sampling of the data will affect the accuracy of the results,
especially the ICESat-1 data with a small amount of data. There is no doubt that the more complete
the data points, the more reliable the results will be. In future study, systematic analysis should be
carried out to explore the impact of the spatial distribution of the ICESat-1&2 data points on the
accuracy of the results. The second disadvantage is that the orbital revisit positions of ICESat-1&2 are
not constant, so the observation points of each orbit do not repeat at the same position. While the
track crossing method or plane fitting method can help reduce uncertainty, these methods are mostly
applicable to polar regions [74] and are not reliable in mid-latitudes. The method proposed in this
paper can better calculate the glacier elevation changes, but the uncertainty of the ICESat-1&2 data
itself cannot be eliminated compared with studies based on stereo image pairs.

It should be noted that the data record of ICESat-1&2 is short (2003–2008 & 2018-onwards),
making it is difficult to draw ultimate and firm conclusions about the trend in glacier elevation
changes. With more ICESat-2 data becomes available over time, the glacier thickness change and
seasonal dynamics can be monitored with longer record and data of better quality.

6. Conclusions

This study applied the “elevation-aspect bin analysis method” to ICESat-1&2 data to estimate
glacier elevation changes in the HMA region and explored the inter-annual and intra-annual changes
of glacier elevation in the HMA. The main conclusions of this study are as follows: (1) The “elevation-
aspect bin analysis method” can efficiently capture the glacier elevation change and reduce the
uncertainty caused by uneven spatial distribution of data points of ICESat-1&2 observations. (2) The
result of the inter-annual rate of change in glacier elevation in the HMA showed spatial heterogeneity.
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The glacier elevation in the marginal regions of HMA declined more (i.e., thinned faster), while
the elevation of the glaciers in West Kunlun rose. The declined rate of glacier elevation in the
HMA in 2003–2020 (−0.26 ± 0.11 m/year) was faster than that in 2003–2008 (−0.21 ± 0.12 m/year).
Glacier retreat is accelerating in all regions of the HMA except in the western part of the HMA.
The regional variability of the glacier elevation change rate from 2003 to 2020 was large, ranging
from −1.12 ± 0.13 m/year in the Nyaingentanglha Mountains to +0.18 ± 0.11 m/year in the West
Kunlun Mountains. (3) For the intra-annual variation of glacier elevation, the results show that
glacier elevation change has spatial heterogeneity, and the glacier thickening period is gradually
delayed from the marginal regions to inner regions of the HMA. The glaciers in the Spiti Lahaul
(December to March) and the Tienshan Mountains (September to April) tend to thicken during winter
to spring, while glacier elevation in the Tienshan Mountains tends to rise slightly in autumn. The
glaciers in Pamir and Hindu Kush (October to March) and Karakoram (October to January) thicken
during winter. The glaciers in Nyainqentanglha thicken during spring (October to April or June).
The glaciers in West Kunlun, Inner TP and Bhutan and Nepal thicken in spring and summer. West
Kunlun has two accumulation periods (March–June and July–September). The glaciers in the Bhutan
and Nepal (February to July) thicken in spring and summer, with elevation peaking in July. The
glacier elevation in Inner TP reaches the highest level in June or July, but the accumulation trend is
not obvious. In addition, the factors affecting glacier elevation changes are analyzed and the results
indicate that the inter-annual and intra-annual changes in glacier elevation are consistent with the
changes in air temperature or precipitation patterns.
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Appendix A

Table A1. The annual elevation difference and error of glaciers in each region of HMA based on
ICESat-1&2 data and SRTM DEM data (m). The errors are the values of standard deviation of spatial
glacier elevation difference in the corresponding years calculated by Equation (5) at 1σ level.

Region 2003 2004 2005 2006 2007 2008 2018 2019 2020

Bhutan −2.1 ±
1.63

0.69 ±
1.3

0.52 ±
1.53

0.11 ±
1.51

−1.33 ±
1.74

−1.21 ±
1.08

−8.46 ±
0.89

−8.92 ±
0.46

−9.19 ±
0.61

East Nepal −1.67 ±
1.06

−1.64 ±
1.07

−2.86 ±
1.13

−2.70 ±
1.17

−2.70 ±
1.18

−1.99 ±
1.04

−9.34 ±
0.3

−10.84 ±
0.36

−9.86 ±
0.22

Hindu Kush −2.51 ±
0.69

−2.27 ±
1.01

−1.85 ±
0.91

−2.57 ±
1.1

−3.62 ±
0.93

−3.55 ±
1.32

−4.87 ±
0.21

−5.37 ±
0.16

−4.83 ±
0.35

Inner TP −0.36 ±
0.41

−0.53 ±
0.55

−0.35 ±
0.53 −1 ± 0.59 −0.9 ±

0.55
−0.62 ±

0.48
−4.22 ±

0.19
−4.59 ±

0.15
−4.78 ±

0.12

Karakoram 2.33 ±
0.46

1.98 ±
0.57

3.37 ±
0.56 3.65 ± 0.6 2.23 ±

0.55
1.38 ±

0.47
−0.15 ±

0.17
1.76 ±

0.15
2.02 ±

0.11

West Kunlun 2.28 ±
0.47

2.02 ±
0.63

3.19 ±
0.637

2.16 ±
0.63

2.23 ±
0.63

3.04 ±
0.62

4.60 ±
0.62

5.10 ±
0.26

4.92 ±
0.13

Nyainqentanglha −1.12 ±
0.76

−0.66 ±
0.94

−2.13 ±
0.89

−3.38 ±
0..99

−4.48 ±
1.36

−4.28 ±
0.92

−16.13 ±
0.8

−18.18 ±
0.38

−19.52 ±
0.49

Pamir −1.12 ±
0.61

−1.09 ±
0.75

−0.43 ±
0.72

−1.68 ±
0.97

−1.90 ±
0.65

−2.14 ±
0.78

−2.68 ±
0.3

−3.35 ±
0.13

−3.37 ±
0.19

Tienshan 0.25 ±
0.5

−0.18 ±
0.58

0.48 ±
0.55

−0.47 ±
0.54

−0.39 ±
0.57

−1.39 ±
0.54

−4.99 ±
0.2

−4.94 ±
0.15

−4.68 ±
0.16
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Table A1. Cont.

Region 2003 2004 2005 2006 2007 2008 2018 2019 2020

West Nepal −2.08 ±
0.79

−3.15 ±
0.95

−2.58 ±
0.97

−3.17 ±
1.04

−3.35 ±
0.99

−3.54 ±
0.9

−10.96 ±
0.21

−10.47 ±
0.19

−11.35 ±
0.23

Spiti Lahaul −1.10 ±
0.6

−1.55 ±
0.76

−0.93 ±
0.81

−1.76 ±
0.73

−2.94 ±
0.76

−2.98 ±
0.75

−7.82 ±
0.26

−7.53 ±
0.15

−8.74 ±
0.27

HMA 0.11 ±
0.17

−0.07 ±
0.22

0.48 ±
0.2

−0.15 ±
0.24

−0.71 ±
0.23

−0.87 ±
0.25

−3.63 ±
0.11

−3.85 ±
0.04

−4.06 ±
0.04
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Abstract: The relationship between groundwater and lakes in Qaidam Basin is often overlooked.
Therefore, we employed Landsat satellite images and meteorological data to investigate the causes of
lake expansion through model calculation and statistical analysis and then determine groundwater
sources through isotope analysis (2H, 3H, and 18O). In the two study periods of 2003–2011 and
2011–present, temperature, precipitation, and runoff increased at a steady rate, whereas the expansion
rate of Tuosu Lake increased from 1.22 km2/year to 3.38 km2/year. This significant increase in the
rate of lake expansion reflects the substantial contribution of groundwater to lake expansion. The
groundwater contribution to the lake includes not only the glacial meltwater that infiltrates the
piedmont plain but also other, more isotopically deleted water sources from other basins. It is
speculated that the 2003 Ms 6.4 earthquake in the northwest of the Delingha region was a possible
mechanism for lake expansion. Earthquakes can enhance crustal permeability and keep fractures
open, which promotes groundwater contribution to lakes and in turn causes rapid lake expansion and
an increased groundwater level. This study is important for understanding the sources, circulation,
and evolution of groundwater in Qaidam Basin.

Keywords: Qaidam Basin; lake expansion; groundwater contribution; oxygen and hydrogen isotopes;
climate change

1. Introduction

In recent decades, many lakes in the Tibetan Plateau have exhibited continued and
rapid expansion [1–3], in contrast to a general trend of lake shrinkage in other regions
and basins around the world. Qaidam Basin, located in the northeastern margin of the
Tibetan Plateau, is an arid alpine region with scarce precipitation and intense evaporation.
Thus, the regional hydrological cycle is sensitive to both climate change and human activity.
As an important part of the hydrological cycle in arid areas, lakes are possibly affected
by climate change processes such as increased precipitation and temperature [3,4]. For
example, higher temperatures accelerate glacier melting and increase runoff into the lake,
leading to lake expansion. Simultaneously, increased precipitation may partly contribute to
lake expansion [5–7].

In addition to climate change, the impact of groundwater contribution to lakes should
also be considered. The role of groundwater in lakes has previously been observed in
Qinghai Lake [8] (China), Nalengele River [9] (China), Pyhajarvi Lake (Finland) [10], and
other basins [11], although the sources of groundwater have not been thoroughly studied.
A recent study [12] revealed that the endorheic Qiangtang Basin has a large amount of
missing water (up to 540 × 108 m3/year), which leaks through six rifts in the south of the
basin and may subsequently upwell in surrounding areas. This observation invalidates the
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traditional water budget theory of watersheds and likely also affects the water budget of
surrounding areas. Qaidam Basin, which is adjacent to Qiangtang Basin, is a key area for
water discharge. Studies of radon (222Rn) isotopes have revealed that lakes in the Qaidam
Basin have an extensive groundwater contribution [9,11]. Therefore, in this study, we
investigated lake surface area changes in response to climate change and groundwater
contributions in the northeast of Qaidam Basin, which is important to understand the
sources, circulation, and evolution patterns of regional groundwater.

The expansion or shrinkage of a lake directly reflects the lake water budget. In inland
basins of alpine regions, mountain precipitation and/or glacial meltwater converge into
rivers. When these rivers flow through the piedmont plain, some of the water infiltrates as
groundwater, and some continues to flow downstream, flowing through alluvial plains
to eventually form endorheic lakes. Endorheic lakes are generally located at the lowest
elevation in the basin, where they form a confluence of surface water [9,13]. The regional
distribution of groundwater heads determines whether the lake discharges to groundwater
or groundwater contributes to the lake, which controls groundwater inflow and outflow in
the water balance of the endorheic lake. The groundwater level in Qaidam Basin gradually
decreases from the mountains to the plains; thus, groundwater flows from the mountains
to the lakes in the plains, where it eventually contributes to the lakes [8,9,11]. Therefore,
the water input component of these endorheic lakes predominantly includes surface runoff,
lake precipitation, and groundwater inflow, and the water output component is principally
lake evaporation; groundwater outflow can typically be ignored [14].

Thus, it is important to accurately quantify lake evaporation before exploring the
causes of lake expansion. By comparing the eddy covariance system with several combined
evaporation models, McJannet [15,16] concluded that the Penman–Monteith model was
most suitable for estimating lake evaporation because it considers the effects of both vapor
pressure gradient and wind speed. However, the meteorological monitoring network in
alpine areas is typically sparse, with stations often located far from lakes; therefore, it
is difficult to obtain long time-series of meteorological monitoring data near lakes. The
improved Penman–Monteith model proposed a general application of wind functions
and thus can be used to calculate lake evaporation from remote overland meteorological
measurements [15,16], which has been applied in several subsequent studies. Lake surface
area changes can also reflect changes in lake water storage [17–19]. However, because of
the remote environment and lack of monitoring stations, lakes in the Tibetan Plateau lack
long-term monitoring data related to water levels and lake surface area. Thus, satellite
remote sensing technology is used in this study to observe long-term changes in lake surface
area and water level [2,4,20,21]. Moreover, 2H and 18O isotopes in water bodies are ideal
natural tracers for identifying groundwater sources and tracing hydrologic cycles [11,13].
Furthermore, tritium (3H) can determine the rate of groundwater circulation and the
groundwater age [20].

We investigated three lakes in this study (Tuosu Lake, Keluk lake, and Gahai Lake), all
of which are located in the northeast of the extremely arid Qaidam Basin. Remote sensing
techniques, model calculations, and statistical analyses were used to analyze lake surface
area changes in response to climate change and groundwater contribution in the study area,
and potential groundwater sources were identified using stable isotopes. The aims of this
study were to (1) provide scientific support for the utilization and management of water
resources in Qaidam Basin and (2) propose measures for mitigating future environmental
and geological problems related to continued lake expansion, thereby protecting inhabitants
and production in the study region.

2. Study Region

The study area (96◦34′–97◦54′E, 36◦58′–37◦40′N) is located in the northeast of Qaidam
Basin, China, which is surrounded by the Buhete Mountains to the east, the Delingha
uplift to the west, the Denan hills to the south, and the Zongwulong Mountains to the
north (Figure 1). The landscape is predominantly mountainous, alluvial–proluvial plain,
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and alluvial lacustrine plain. The study area has a typical plateau continental climate,
with annual average temperature, precipitation, and pan-evaporation values of 4.7 ◦C,
211 mm/year, and up to 1845 mm/year, respectively.

The main river (Bayin River) in the study area originates from the Zongwulong
Mountains and has a total length of 188 km and a catchment area of 7281 km2. The
Bayin River flows east to west between Zongwulong and Buhete Mountains and then
north to south after flowing through the Heishishan reservoir [11]. The Bayin River seeps
underground in the middle of the alluvial–proluvial plain and then upwells as springs at
the front edge of the alluvial plain. Because of the influence of the Denan hills, the Bayin
River flows westward downstream across the alluvial lacustrine plain and eventually flows
into Keluke Lake. Keluke Lake is connected to Tuosu Lake by the Lianshui River, forming
a terminal endorheic lake. Gahai Lake is another terminal endorheic lake located in the
southeast of the study area, which has a weak hydraulic connection with the Bayin River
through southeast groundwater runoff.

Figure 1. Spatial map representing the distribution of samples, including river, lake, spring, confined
groundwater, and phreatic groundwater in the northeast of the Qaidam Basin, China. Squares
represent samples from the literature [11].

Groundwater in the Delingha area mainly occurs in porous quaternary loose sediments
in the plain areas. At the top and middle of the alluvial–proluvial plain, the single-layer
alluvial aquifer is more than 300 m thick and mainly composed of sand and gravel; the
depth of the groundwater level is 80–120 m and 10–30 m, respectively. At the end of
the alluvial–proluvial plain, the aquifer system changes from a single-layer structure to
a multi-layer structure, sediments are mostly fine-grained, and the groundwater level is
shallow (<10 m) [13]. In the lacustrine plain downstream of Bayin River, the aquifer system
consists of a multi-layer aquifer with interbedded clay and fine sand. In the study area,
groundwater flows from south to north in the upper part of the alluvial–proluvial plain
and then flows westward again because of the effect of the Denan hills [21], which are
predominantly tertiary clastic rocks interspersed with mudstone and gypsum with limited
infiltration capacity. In addition, the scarce precipitation and low precipitation intensity
(a single precipitation event is less than 10 mm) hinders groundwater formation. In the
western part of the alluvial–proluvial plain, groundwater flows from north to south and
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southeast because of the Delingha uplift, before finally flowing westward [11]. In the
eastern part of the alluvial–proluvial plain, a small amount of groundwater flows southeast
along the ancient river channel and converges at Gahai Lake.

Since 2000, Tuosu and Gahai Lakes have exhibited rapid expansion. The continuous
expansion of Gahai Lake has caused groundwater levels to rise in the vicinity, which
threatens the safety of inhabitants and their livelihoods. Therefore, the causes of lake
expansion have become a key area of research for local governments. Delingha has a
permanent population of 88,200 and a population density of only 2.88 people/km2 (the
seventh National Census). Because of their remote environment and minimal human
impact, the lakes in the study area are suitable for studying the effects of climate change
and groundwater on lake expansion.

The Bayin River has two hydrologic stations (Figure 1), the Delingha (96◦16′E, 37◦22′N)
and Zelinggou stations (97◦48′E, 37◦25′N). Zelinggou station is located 7 km upstream
of Delingha station, near the exit of the mountain. The runoff measured at this station
is mainly glacial meltwater from the mountainous area; hence, Zelinggou station runoff
represents the amount of glacier melt in the lakes. The catchment between Delingha and
Zelinggou station is defined as the upstream area. The runoff measured at Delingha station
includes glacial meltwater and runoff generated by precipitation in the upstream area. The
monitoring period for Zelinggou station was 1959–1984, as the station was withdrawn after
1984. Data from these hydrological stations were used for subsequent statistical analysis of
runoff trends.

3. Methods

3.1. Landsat Data and Lake Surface Area Extraction

Long-term changes in the surface area of Tuosu, Keluke, and Gahai Lakes were
extracted from remote sensing images. Since 1984, Landsat satellites have acquired high-
resolution Earth observation images, which are widely used for feature identification. In
this study, the Landsat 5 Thematic Mapper (TM) and Landsat 8 Operational Land Imager
(OLI), which are the longest time-series data currently available, provided observation
data for different periods. The Universal Transverse Mercator (UTM) and World Geodetic
System 1984 were used as geocoordinate references to construct the temporal and spatial
sequence of lake changes. The spatial resolution of the extracted lake surface area was
30 m, which is sufficient for studying lakes measuring several tens to hundreds of square
kilometers. Although the spatial resolution is moderate, its effect on the results is very
limited [22–25]. All Landsat data were downloaded from the United States Geological
Survey (http://glovis.usgs.gov/, accessed on 10 January 2021), Geospatial Data Cloud
(https://geocloud.cgs.gov.cn/, accessed on 10 January 2021), and Chinese Academy of
Sciences (http://www.gscloud.cn/, accessed on 10 January 2021). The necessary image pre-
processing steps, such as radiation calibration and atmospheric correction, were performed
using ENVI 5.3 software.

The repeat coverage of Landsat 5 and Landsat 8 is 18 and 16 days, respectively,
providing 1–2 images per month. Considering the influence of seasonal variations, monthly
variations of the Tuosu Lake surface area in 2003 and 2020 were also extracted (Figure 2),
and it showed that the seasonal variation had only a slight disturbance to the annual trend
of lake surface area (see Section 4.1 for details). To observe the lake surface area in more
detail, this study selected 20 remote sensing images of the Delingha region from 2000 to
2020 and extracted changes in the surface areas in Tuosu, Keluke, and Gahai Lakes. As
optical images are significantly affected by weather conditions, particularly clouds, satellite
images were typically only selected from July to August. This is because the summer in
Qaidam Basin is dry and sunny with minimal clouds. If no images were available, we
substituted images from adjacent months. The data sources used in the study are listed in
Table 1. It should be noted that there was a lack of images available in 2012.
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Figure 2. Changes in the surface area of Tuosu Lake in 2003 and 2020. Black error bar represents the
uncertainty of the extracted lake surface area.

Table 1. Sources of remote sensing data used in this study.

Index Time Data Source Index Time Data Source

1 26 May 2000 Landsat 5(TM) 11 2010/7/27 Landsat 5(TM)
2 2 July 2001 Landsat 5(TM) 12 2011/7/14 Landsat 5(TM)
3 5 July 2002 Landsat 5(TM) 13 2013/6/1 Landsat 8(OLI)
4 10 September 2003 Landsat 5(TM) 14 2014/8/23 Landsat 8(OLI)
5 27 August 2004 Landsat 5(TM) 15 2015/8/10 Landsat 8(OLI)
6 13 July 2005 Landsat 5(TM) 16 2016/9/29 Landsat 8(OLI)
7 1 August 2006 Landsat 5(TM) 17 2017/7/14 Landsat 8(OLI)
8 21 September 2007 Landsat 5(TM) 18 2018/10/5 Landsat 8(OLI)
9 5 July 2008 Landsat 5(TM) 19 2019/5/1 Landsat 8(OLI)
10 9 August 2009 Landsat 5(TM) 20 2020/10/10 Landsat 8(OLI)

Uncertainty in the extracted lake surface area mainly originates from the positioning
accuracy and indistinguishable mixed pixels in the image [26]. According to previous
studies, the registration error is 6 m for TM images [27] and 5 m for OLI images [28]. Con-
sidering the registration error, the positioning accuracy in the image, and the clarity of the
lake boundary, the uncertainty in the lake surface area was estimated by Equation (1) [29]
and is shown as error bars in Figure 3a. Here, EA is the uncertainty in the extracted lake
surface area; l is the length of the lake boundary; LREyear is the resolution error of Landsat
images in different years, which should be half the resolution of the image pixel; and Eco is
the registration error in the image:

EA = l ×
√

LREyear2 + Eco2 (1)

Because of a lack of detailed bathymetric maps of the lakes, the change in lake storage
was estimated based on the lake surface area and the slope of the lakeshore zone. The
change in water storage between the two stages can be approximated as a frustum, and its
volume can be estimated by the following equation [30]:

ΔV =
1
3
×
(

S1 + S2 +
√

S1 × S2

)
× H (2)

where S1 and S2 are the lake surface area in the two stages; ΔV is the change in lake storage;
and H is the lake water level interval. The lakes in the study area are located at the end
of the alluvial lacustrine plain, with gentle topography and a lakeshore slope of less than
5%, where the slope I = H/L, and L is the horizontal distance. For H, the shapes of Tuosu,
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Keluk, and Gahai Lakes are approximately equilateral triangles, whose side lengths can be
calculated according to the lake surface area in different periods:

H =
2
3
× I ×

(√
S2 −

√
S1

)
(3)

here, slope values of 4, 3, and 2 were used to calculate the change in lake water storage,
and the calculation results are shown in Figure 3b.

Figure 3. (a) Plot depicting the change of lake surface area in the study region extracted from Landsat
satellite images. Triangles (before 2000) represent data in the literature [31,32]. y, y1, and y2 represent
the least square fitting line of the surface area in Gahai Lake after 2000, Tuosu Lake from 2003 to 2011,
and after 2011, respectively. Black error bar represents the uncertainty of the extracted lake surface
area. (b) Calculated change in lake storage (ΔV). The solid line, dashed lines in dark gray and light
gray are the calculation results when the slope (I) is 3, 2, and 4, respectively.

3.2. Hydrological and Meteorological Monitoring Data

The meteorological monitoring network in the alpine region is sparse; however, the
single weather station is generally considered to represent the climatic conditions of the
basin. The distance between Delingha station (97◦22′E, 37◦22′N) and Tuosu, Keluke, and
Gahai Lakes is only 42, 41, and 27 km, respectively. The terrain between the weather
station and the lakes is flat, with no obstruction from mountains, and the climate conditions
exhibit minimal spatial variability. Therefore, data from Delingha station were used to
represent the climatic conditions near the lakes. Meteorological data at Delingha station
were downloaded from the National Meteorological Data Center (http://data.cma.cn/,
accessed on 9 August 2021); this included daily data of relative humidity, minimum relative
humidity, mean temperature, maximum temperature, minimum temperature, mean wind
speed, minimum wind speed, and annual precipitation. Delingha station lacks solar
radiation data; therefore, these data were replaced by monitoring data from the nearest
station in Golmud (94◦54′E, 36◦25′N).

Runoff data from Delingha station (1957–2018) and Zelinggou station (1957–1983)
were compiled from the Hydrological Yearbook. Lake water temperature data for Tuosu,
Keluke, and Gahai Lakes were obtained from a dataset of daily lake surface temperature
over the Tibetan Plateau (1978–2017) compiled by the National Tibetan Plateau Data Center
(http://data.tpdc.ac.cn, accessed on 11 August 2021) [33], which uses the improved lake
water temperature model (air2water) to simulate the annual surface temperature every
day. Considering the different available periods of sequences, the calculation interval for
analyzing lake evaporation was 1984–2016 in this study.

3.3. Penman–Monteith Model

Accurate quantification of lake evaporation is essential for determining the water
budget of a lake, especially for endorheic lakes, where evaporation is the most important
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output term of the lake water budget [34–36]. Based on the energy conservation formula,
Penman [37] first proposed the Penman formula for calculating evapotranspiration, from
which many water surface evaporation models have been developed [38,39]. After com-
paring 14 evaporation models with baseline Bowen ratio energy budget measurements,
Rosenberry [40] identified that the De BruinKeijman, Priestley Taylor, and Penman mod-
els provided the best estimates of water surface evaporation. McJannet then compared
eddy covariance measurements with the De BruinKeijman, Priestley Taylor, and Penman–
Monteith models, [15,16] and found that the Penman–Monteith model was most suitable
for water surface evaporation because it considers both the vapor pressure gradient and
wind speed, and produced estimates of total evaporation that varied from the actual mea-
surements by less than 1%. In addition, the Penman–Monteith model has been improved
by proposing the general application of wind functions, making it applicable for calculating
evaporation for water bodies ranging from tens to hundreds of kilometers. This improved
Penman–Monteith model has been applied in several subsequent studies [17–19].

In this study, we used the improved Penman–Monteith model to calculate lake surface
evaporation (see McJannet [15,16] for details). Uncertainty in the evaporation value mainly
derived from data measurement and parameter calculation. The measurement error comes
from the measurement of wind speed, temperature, humidity, and accumulated solar
radiation. These errors are inevitable but have little impact on the final calculation results.

3.4. Sampling and Isotope Measurements

Hydrogen (2H) and oxygen (18O) isotopes are widely used to study hydrological
cycles [41,42] and qualitatively identify water sources and trace groundwater runoff pro-
cesses [11,13]. In this study, 47 water samples were collected from rivers, phreatic ground-
water, confined groundwater, springs, and lakes (Figure 1). River water samples (R07, R09,
and R12) were collected from the upper reaches of Bayin River, close to where the river
exits the mountains, mainly from glacial meltwater; thus, they are minimally influenced
by precipitation and groundwater. These three samples represent the hydrogen (2H) and
oxygen (18O) isotope characteristics of glacial meltwater. In this study, only one lake water
sample was collected from Keluke Lake, which was analyzed together with 12 lake water
samples collected from Yang Lake [11], which are discussed in Section 4.4.

Stable isotopes of hydrogen and oxygen (2H, 3H, 18O) were measured at the State Key
Laboratory of Hydrology, Water Resources, and Hydraulic Engineering, Hohai University.
18O/16O and 2H/1H ratios were measured using a MAT253 mass spectrometer. The isotope
ratio ‘δ’ was expressed as follows:

δsample(‰) =
(

Rsample/Rstandard − 1
)
× 1000 (4)

where Rsample and Rstandard are the isotope ratios (18O/16O, 2H/1H) of the sample and
standard, respectively, and the international standard is the δ2H and δ18O of Vienna mean
seawater. The measurement errors of δ18O and δ2H were ±0.1‰ and ±1‰, respectively.
The tritium content of samples was measured by a liquid scintillation meter (TRI-CARB
3170 TR/SL) with a detection limit of 0.2 TU and precision of >0.8 TU. The measurement
results for hydrogen (2H, 3H) and oxygen (18O) isotopes are shown in Table 2.
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Table 2. Isotope measurement results (2H, 18O, and tritium) for different water samples in the study area.

Sam. No. Type Latitude (N) Longitude (E) Depth (m) δ2H (‰) δ18O (‰) 3H (TU)

R01 RW 37◦23′15′′ 97◦21′39′′ −58.6 −8.81 14.0
R02 RW 37◦23′43′′ 97◦22′04′′ −58.4 −8.76
R03 RW 37◦23′55′′ 97◦21′35′′ −52.1 −7.34
R07 RW 37◦22′38′′ 97◦26′40′′ −57.1 −6.60
R09 RW 37◦21′06′′ 97◦33′12′′ −56.9 −8.82 17.8
R10 RW 37◦21′11′′ 97◦37′31′′ −58.4 −8.97 11.6
R12 RW 37◦23′03′′ 97◦42′34′′ −56.7 −8.63 16.7
R22 RW 37◦19′06′′ 97◦21′59′′ −57.4 −8.77
R25 RW 37◦11′44′′ 97◦20′21′′ −56.3 −8.80
R31 RW 37◦09′21′′ 97◦17′56′′ −56.1 −8.39
R33 RW 37◦9′39′′ 97◦10′58′′ −56.3 −8.49
R36 RW 37◦15′07′′ 97◦02′14′′ −50.8 −7.20
R39 RW 37◦32′47′′ 96◦50′03′′ −59.6 −9.23
R40 RW 37◦32′47′′ 96◦50′03′′ −59.8 −9.26
R41 RW 37◦41′14′′ 96◦31′03′′ −53.6 −7.59
R43 RW 37◦36′31′′ 96◦51′35′′ −59.8 −9.44
R47 RW 37◦22′38′′ 97◦20′37′′ −60.1 −9.34
L37 LW 37◦18′56′′ 96◦54′07′′ −46.1 −6.42
L42 LW 37◦43′32′′ 96◦28′43′′ −22.1 −1.05
G17 SW 37◦12′20′′ 97◦24′02′′ −58.3 −8.82 11.2
G18 SW 37◦13′10′′ 97◦27′36′′ −60.0 −9.16 11.9
G20 SW 37◦13′24′′ 97◦29′24′′ −62.4 −9.38 5.0
G35 SW 37◦15′08′′ 97◦02′12′′ −66.6 −10.08 3.7
G26 PGW 37◦12′07′′ 97◦17′54′′ 0.26 −58.2 −8.89 9.0
G19 PGW 37◦13′07′′ 97◦27′35′′ 0.6 −57.8 −8.68
G27 PGW 37◦12′18′′ 97◦16′14′′ 1.2 −60.0 −9.08
G24 PGW 37◦12′38′′ 97◦20′20′′ 1.4 −62.5 −9.36
G16 PGW 37◦13′24′′ 97◦25′08′′ 1.9 −60.5 −8.82 9.1
G08 PGW 37◦22′33′′ 97◦27′16′′ 2.0 −42.0
G28 PGW 37◦13′05′′ 97◦14′11′′ 3.5 −58.7 −9.19
G05 PGW 37◦22′40′′ 97◦26′00′′ 3.8 −62.2 −9.39 15.1
G45 PGW 37◦20′59′′ 96◦46′32′′ 26.4 −53.6 −8.31
G44 PGW 37◦21′00′′ 96◦46′25′′ 27.6 −50.8 −8.26 11.8
G29 PGW 37◦15′46′′ 97◦13′12′′ 12.0 −64.8 −9.92 5.5
G30 PGW 37◦17′55′′ 97◦12′47′′ 14.9 −62.5 −9.56
G34 PGW 37◦19′05′′ 97◦12′36′′ 18.2 −58.8 −8.88 9.6
G06 PGW 37◦22′44′′ 97◦25′54′′ 20.0 −65.4 −9.28
G23 CGW 37◦17′02′′ 97◦20′28′′ 31.8 −58.9 −8.84 10.9
G15 CGW 37◦17′23′′ 97◦24′07′′ 40.4 −60.3 −9.08
G11 CGW 37◦21′14′′ 97◦40′20′′ 50.0 −71.1 −10.60 1.3
G14 CGW 37◦19′31′′ 97◦23′49′′ 63.3 −58.2 −8.86
G04 CGW 37◦22′45′′ 97◦25′51′′ 65.0 −60.4 −9.08 15.6

Note: PGW, CGW, RW, SW, and LW represent phreatic water, confined water, river water, spring water, and lake
water, respectively.

4. Results

4.1. Long-Term Changes in Lake Surface Area

Lakes generally have seasonal variations, which possibly affect the interannual trend
analysis of change in the lake surface area. Considering this effect of seasonal variations,
the monthly variations of the Tuosu Lake surface area in 2003 and 2020 were extracted
(Figure 2). The results show that the lake surface areas of Tuosu Lake in 2003 and 2020 were
128.2–136.1 km2 and 174.0–178.7 km2 with uncertainties within 1.6% and 1.2%, respectively.
This indicates that the extracted lake surface areas are reliable. The maximum differences
of lake surface area caused by seasonal variation are 7.9 km2 and 4.7 km2 in 2003 and 2020,
respectively, and the relative deviation is within 4% and 2%, respectively. Therefore, the
seasonal variation has only a slight effect on the interannual trend of the lake surface area.
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Changes in the surface areas of Tuosu, Keluke, and Gahai Lakes from 2000 to 2020,
as well as changes in lake water storage calculated from the lake surface area and slope
(I = 2, 3, and 4), are shown in Figure 3a,b, respectively. The average surface areas of Keluke,
Tuosu, and Gahai Lakes were 54.2, 146.5, and 33.1 km2, with uncertainties of within 1.3%,
1.7%, and 1.6%, respectively. Keluke Lake remained stable because it is connected to Tuosu
Lake through the Lianshui River. When the water level of Keluke Lake rises, excess water
flows into Tuosu Lake through the river. Therefore, changes in lake surface area mainly
occurred in Tuosu Lake, with three distinct trends: continuous shrinkage (before 2003),
slow expansion (2003–2011), and rapid expansion (after 2011). Before 2003, Tuosu Lake
shrank at a rate of 2.50 km2/year and then gradually increased at a rate of 1.54 km2/year
from 2003 to 2011, with an average increase in lake water storage of 1.45 × 108 m3/year
(Figure 3b). After 2011, Tuosu Lake expanded rapidly at a rate of up to 3.38 km2/year,
which was much higher than the overall increase of 2.19 km2/year (R2 = 0.88) after 2003.
At this time, the average increase in lake water storage was as high as 5.75 × 108 m3/year
(I = 3). Gahai Lake shrank gradually prior to 2000 and then expanded steadily after 2000
at a rate of 0.45 km2/year (R2 = 0.96), with an average increase in lake water storage of
0.29 × 108 m3/year. Although detailed lakeshore slopes were not obtained in the calculation
of lake water storage changes, the gentle lakeshore zone allowed changes in water storage
to be largely reflected in the lake surface area rather than the lake height, which supports
our subsequent analysis of the water budget based on surface area changes.

Similar lake expansion occurred at the edge of the Tibetan Plateau. Taitema Lake
in the north of the Altun Mountains reappeared in 2003 after prolonged drying over
many years, and then expanded rapidly [43]. Similarly, Qinghai Lake in the northeast
margin of the Tibetan Plateau expanded rapidly at a rate of 8.67 km2/year after 2003
(https://hydroweb.theia-land.fr/hydroweb, accessed on 27 November 2021), with a si-
multaneous increase in groundwater level in the Hexi corridor in the north of the Qilian
Mountains [44], which may imply similar lake response patterns.

4.2. Lake Evaporation Calculated by the Improved Penman–Monteith Model

Lake expansion is a direct reflection of the water budget of a lake. Regional ground-
water head distribution determines groundwater inflow and groundwater outflow in the
water balance of the endorheic lake. The groundwater level in the study area gradually
decreases from the mountains to the plains, and the groundwater flows from the mountains
to the lakes and eventually contributes to the lakes. For endorheic lakes, the input com-
ponents of the lake water budget mainly include precipitation, runoff, and groundwater
inflow, while the output component is mainly lake evaporation, and groundwater outflow
can be neglected. In this study, lake evaporation was quantified by using the improved
Penman–Monteith model and used to analyze the influence of the major output compo-
nent (lake evaporation) on lake expansion in the study area. Based on the monitoring
data of Delingha station, evaporation values for Tuosu, Keluke, and Gahai Lakes were
1233–1476 mm/year, 1164–1379 mm/year, and 1407–1700 mm/year, with average values of
1342, 1274, and 1542 mm/year, respectively (Figure 4). These results show that evaporation
varied significantly between lakes with different lake surface areas and depths. All three
lakes exhibited stable interannual evaporation values, with insignificant variation trends
and relative deviations of 9.9%, 9.6%, and 10.2%, respectively. Therefore, evaporation did
not cause significant changes in lake surface area and cannot explain the rapid expansion
of the lakes since 2003. This suggests that climate change processes such as increased
temperature and precipitation did not significantly affect lake evaporation and were not
the main factors affecting the lake water budget during the study period.
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Figure 4. Plots exhibiting the evaporation of Tuosu (a), Keluke (b), and Gahai Lakes (c) calculated by
the improved Penman–Monteith model.

4.3. Annual Hydrometeorological Trends

Considering the lack of significant changes in the main output component of the lake
water budget (lake evaporation), rapid lake expansion may instead have been caused by the
input components, which include precipitation, runoff, and groundwater inflow. Rainfall
and runoff data were derived from long-term monitoring at Delingha meteorological and
hydrological stations. Because of the complexity and hidden nature of the groundwater
runoff process, the groundwater contribution to lakes is difficult to directly quantify and
observe long-term. Therefore, we first analyzed the long-term variation trends of rainfall
and runoff.

The Mann–Kendall test was used to inspect the long-term trends of hydrometeoro-
logical data and identify abrupt changes in the time-series data. An abrupt change in the
precipitation time-series occurred in 1989 (α = 0.05), with average precipitation before
and after this change equal to 156 mm/year and 215 mm/year, respectively, representing
an increase of more than 37.7%. However, this abrupt change in precipitation occurred
much earlier than the beginning of lake expansion in 2003. This indicates that, although
precipitation increased annually, it was not the dominant factor influencing lake expansion.
Additionally, precipitation in the plain area is only 50 mm/year; thus, its contribution to the
lake water budget can be neglected (Comprehensive Investigation Committee of Chinese
Academy of Sciences, 1984).

Conversely, there was no obvious abrupt change in the runoff measured at Delingha
station, although there was a significant difference in average runoff before and after 2002
(3.19 × 108 m3/year and 4.55 × 108 m3/year, respectively), representing a difference of
42.6% (Figure 5b). Runoff from Zelinggou station represents glacier meltwater, whereas
Delingha station is located at the boundary between the upper and middle reaches of
the Bayin River; thus, runoff is derived from both glacier meltwater and precipitation in
mountainous areas. A comparison of the runoff values between the two stations during
1957–1983 revealed strong similarity, with a correlation coefficient of up to 0.88 (Figure 6).
Runoff at Zelinggou station accounts for 90% of that at Delingha station, which indicates
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that glacial meltwater is the main source of the Bayin River. The rate of glacial melt is
controlled by the average air temperature, which changed significantly (α = 0.05) in 1997,
from 4.1 ◦C to 5.1 ◦C, representing an increase of 23.3% (Figure 5d). This increase in air
temperature likely accelerated glacier meltwater.

Figure 5. Plots depicting the change of runoff at Delingha and Zelinggou stations (a), results of MK
test for runoff (b), precipitation (c), and temperature (d) at Delingha station.

Figure 6. Graph representing the comparison between runoff at Delingha and Zelinggou stations
from 1957 to 1983.

4.4. Isotopic Characteristics of Surface Water, Groundwater, and Spring Water

To trace groundwater processes and sources, the stable isotopes (2H, 18O) of collected
water samples were analyzed (Figure 7 and Table 2). Samples R12, R09, and R07 represent
glacial meltwater, as discussed earlier. The δ2H and δ18O of glacial meltwater, phreatic
groundwater, and river water lie in the range of −57.1 to −56.7‰ and −8.8 to −6.6‰,
−65.4 to −42.0‰ and −9.9 to −8.3‰, and −60.1 to −50.8‰ and −9.4 to −6.6‰, respectively.
The points of river water were distributed along with the least square fitting line in Figure 7,
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i.e., δ2H = 3.43 δ18O −27.63 (R2 = 0.77), showing the evaporation characteristics of river
water. Most of the river points fell within the range of phreatic groundwater. This implies a
strong interaction between river water and phreatic groundwater and that the river was
recharged by both phreatic groundwater and glacial meltwater. The fitting line of lake
water was δ2H = 5.1883 δ18O − 12.599 (R2 = 0.81), and its intersection (−54.7‰, −8.1‰)
with the global meteoric water line (GWML) fell within the range of river water, suggesting
that phreatic groundwater contributed to the lake after flowing into the river.

Figure 7. Plot illustrating δ18O vs. δ2H diagram of groundwater, lake water, river water, and spring
water in the study area of the Qaidam Basin, China. Squares represent samples from the literature [11].

Zhang [45] also collected precipitation samples from Delingha from September 1991
to December 1992 and derived a weighted average of δ2H and δ18O in precipitation of
−44.2‰ and −6.8‰, respectively. The δ2H and δ18O values of confined groundwater ranged
from −71.1‰ to −58.2‰ and from −10.6‰ to −8.8‰, respectively. Thus, the confined
groundwater was more depleted in deuterium and oxygen-18 than phreatic groundwater and
local meteoric precipitation. The concentrations of tritium in river water, spring water, and
confined water were 11.6–17.8 TU, 3.7–11.9 TU, and 1.3–15.6 TU, respectively.

5. Discussion

5.1. Potential Causes of Lake Expansion

Long-term changes in the surface areas of Tuosu, Keluke, and Gahai Lakes during
the study period were the result of a combination of climate change and groundwater
contributions, with climate change processes mainly including increased precipitation and
temperature. Expansion of Tuosu Lake was particularly obvious; hence, we used this lake
as an example to analyze the reasons for lake expansion. Long-term lake evaporation
was stable at 1342 mm/year, indicating that increased temperatures affect the lake surface
area by accelerating glacier melting rather than promoting lake evaporation. According
to long-term meteorological data, lake evaporation and runoff remained stable prior to
2003, whereas precipitation slowly increased (2.279 mm/year). However, the surface area
of Tuosu Lake decreased from 159.9 km2 in 1973 to 132.3 km2 in 2003; thus, lake shrinkage
was likely caused by the decrease in the groundwater contribution to the lake.

From 2003 to 2011, temperature and precipitation increased by 18.6% and 34.1%,
respectively (Table 3), which caused an increase in runoff of 1.21 × 108 m3/year and
0.15 × 108 m3/year at Delingha station, respectively. Temperature increases during this
period mainly promoted lake expansion by accelerating glacial melting, which resulted
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in more surface runoff into the lake. This reflects the contribution of glacial meltwater to
lake expansion. The rates of temperature, precipitation, and runoff increase were similar
between the two periods of 2003–2011 and 2011–present; however, the expansion rate of
Tuosu Lake increased rapidly between these periods, from 1.22 km2/year to 3.38 km2/year.
Thus, the increase in runoff caused by accelerated glacial melting cannot fully explain the
observed lake expansion, which implies that groundwater was an important reason for
rapid lake expansion.

Table 3. Variation of factors affecting the Tuosu Lake surface area before 2003 and after 2003.

Time Runoff Precipitation Temperature Evaporation Lake Surface Area

Average Before 2003 3.2 171 4.3 1341.8 148.6
After 2003 4.5 229 5.1 1343.0 146.5

Variation Whole time 1.3 58 0.8 1.1 −2.1
Variation ratio Whole time 40.6% 34.1% 18.6% 0.09% −1.4%
Variation rate Before 2003 −0.002 2.279 0.068 3.087 −0.867

After 2003 0.092 −0.777 0.034 3.080 2.190
Whole time 0.024 2.083 0.051 0.858 0.131

Note: units of runoff, precipitation, evaporation, and lake surface area are 108 m3/year, mm/year, mm/year, and
km2, respectively.

When glacial meltwater flows through the piedmont plain, some infiltrates the ground
as subsurface runoff, which is an important contributor of water to the lake. However,
not all of the groundwater contribution to the lakes is derived from glacial meltwater,
as groundwater collected near the lakes showed greater isotopic depletion than glacial
meltwater in the basin. This indicates the existence of other water sources with more
depleted isotopes, which may be related to the mechanism of rapid lake expansion. Several
earlier studies have revealed the important role of groundwater in lake expansion and
shrinkage [8–11]. For example, the groundwater contribution flux estimated by the radon
isotope (222Rn) is 0.55 − 2.49 × 10−4 m3/(s × m); however, this flux was only measured at
a certain time [11]. In future studies, long-term observations of groundwater contributions
are required to determine and predict the effects of groundwater on lakes.

5.2. Sources of Groundwater Contribution to Lakes

Deuterium and oxygen-18 isotopes revealed that confined groundwater is character-
ized by significant isotopic depletion. The origin of depleted confined groundwater in
alpine arid basins is controversial. According to 14C-dating of groundwater, it is generally
believed that glacial meltwater generated a large amount of recharge after the last glacial
period [46,47], or some studies have suggested that meteoric precipitation during glacial
and interglacial periods recharged the confined groundwater [48–50]. 14C-dating of ground-
water age strictly requires that endogenous CO2 from no other sources is dissolved in the
groundwater system, which can dilute the 14C concentration in the groundwater, resulting
in overestimation of the significant groundwater age. However, Qaidam Basin is an active
geological environment containing multiple crisscrossing fractures. Thus, mantle-derived
endogenous CO2 with low 14C activity can migrate upward through active structures such
as fault zones and dissolve into the groundwater, leading to significant overestimation
of groundwater age [51,52] by tens of thousands of years. As such, tritium was used to
identify the groundwater renewal cycle in this study. The half-life of tritium is only 12.3 a,
and the background value of tritium in natural groundwater systems is generally less than
1 TU. After 1952, global nuclear explosion tests caused a peak in the atmospheric tritium
concentration. Therefore, groundwater systems with tritium values >5 TU are considered to
have a groundwater renewal cycle of several decades. The confined groundwater samples
in this study exhibited high tritium concentrations of between 8.5 TU and 15.6 TU, which
demonstrates that confined groundwater is rapidly circulated and recharged by modern
water since the global nuclear explosion tests. Therefore, confined groundwater in the
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study area may be recharged by water sources with more depleted isotopic signatures from
other areas.

Previous research [12] has revealed an enormous amount of missing water in Qiangtang
Basin, with a leakage water volume of up to 540 × 108 m3/year, which is related to tectonic
activity such as earthquakes. Leakage occurs in six major rift valleys in the southern part of
Qiangtang Basin and is transported to other basins by underground runoff. Although the
drainage area was not identified in previous literature, this leakage was likely discharged
to surrounding areas at lower elevations, causing groundwater levels to rise and lakes to
expand. Delingha, Qinghai Lake, Taklamakan Desert, and Hexi Corridor, located on the
northern edge of the Tibetan Plateau, have a relatively low altitude and an active geological
environment with frequent earthquakes, providing suitable conditions for the remote
discharge of groundwater. Moreover, earthquakes are known to increase groundwater
discharge [53–55]. In 2003, groundwater release induced by earthquakes was observed in
Qinghai Lake (https://hydroweb.theia-land.fr/hydroweb, accessed on 27 November 2021),
Taklimakan Desert [43], and the Hexi corridor [44], resulting in the emergence of new lakes,
the expansion of existing lakes, and an increase in groundwater levels. An earthquake
with a magnitude of 6.1 can affect areas as far as 80 km from the earthquake source [56].
The 2003 Ms 6.4 earthquake that occurred in the northwestern part of the study area
(Figure 1) was only 57 km away from Tuosu Lake; thus, it very likely led to an increase
in groundwater contribution to the lake. The endorheic lakes in the study area represent
places of convergence for surface water and groundwater, and stable isotope analysis
showed that groundwater is an important contributor to the lakes. Outflow from the
lake to groundwater is limited, which in turn supports that lake evaporation is the main
output of lake water balance. The distinctly depleted H and O isotopes in the confined
groundwater indicate remote discharge from a high-altitude water source with a more
depleted isotopic signature. Therefore, it is speculated that either the 2003 Ms 6.4 earthquake
in the northwest of Delingha or the 2001 Ms 8.1 earthquake in the Kunlun Mountains were
possible mechanisms for expansion of the lakes in the study area. Earthquakes enhance
crustal permeability and keep fractures open [43,44], which promotes the groundwater
contribution to lakes and in turn causes rapid lake expansion.

5.3. Uncertainty in Lake Evaporation Calculations

Uncertainty in the calculated evaporation values is derived from the lack of solar
radiation monitoring data at the Delingha station, which was replaced by data from the
nearby Golmud station in this study. Because the intensity of solar radiation is mainly
related to latitude, and the latitude difference between Delingha and Golmud stations
is only approximately 1◦, the uncertainty caused by solar radiation data can be ignored.
Uncertainty also originates from the lake surface temperature simulated by the improved
lake water temperature model (air2water), with a deviation of ±0.55 ◦C, which also has a
limited impact on the calculation results. Combined with remote sensing and meteorologi-
cal data, evaporation from Tuosu Lake is 1333 mm/year [57], which only differs by 0.7%
from the value calculated in this study. Earlier studies have reported substantial variation
in evaporation between lakes, even if the lake surface areas are similar. For example, Laguo
and Yang Lakes have only a 1.3% difference in surface area but a 24.4% difference in lake
evaporation [57]. The improved Penman–Monteith model considers the effect of lake
surface area and depth on evaporation, leading to more accurate calculation results.

5.4. Mitigating the Environmental Effects of Lake Expansion

Lake expansion likely affects the groundwater runoff process, leading to geological
and environmental problems. For example, Gahai Lake is located at the southeastern edge
of the alluvial fan and has no inflow from surface runoff. Water from the Bayin River seeps
into groundwater in the middle reaches, with weak groundwater runoff in the southeast
direction being one of the sources of Gahai Lake. The Gahai irrigation area (D) is located
in this groundwater flow path (Figure 8). The geological formation in front of the alluvial
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fan is mainly composed of fine-grained sediment, which has a strong water-blocking effect.
The water level of Gahai Lake has been rising continuously since 2000, which slows down
the groundwater discharge rate and enhances groundwater level rises in the surrounding
area. After 2006, the groundwater level increased at a rate of 0.5 m/year. In 2012, the
groundwater level came close to the surface and overflowed, rising as high as 11 m in some
areas [58]. This directly led to problems such as foundation collapses, and soil salinization
occurred in the vicinity of Gahai Lake, which threatened the lives and livelihoods of nearby
residents. Therefore, measures should be taken to mitigate the effects of lake expansion in
the study area.

Figure 8. The distribution of irrigation area in Delingha. A, B, C, D, F represents Huaitoutala, Gebi,
Delingha, Gahai, and Zelinggou irrigation area, respectively. The blue arrow represents the direction
of weak groundwater runoff after the Bayan River leakage.

Furthermore, when the water level of Keluke Lake rises, the water can be discharged
to Tuosu Lake through the Lianshui River. The Huaitoutala irrigation area (A) and nearby
villages are located northwest of Keluke Lake (Figure 8), at higher elevation than both
Keluke Lake (by 36 m) and Tuosu Lake (by 48 m). Therefore, the future expansion of Tuosu
Lake will have little impact on the nearby irrigation areas and villages but is likely to
promote expansion of the marsh in the northeast of Tuosu Lake. Considering the long-term
trend of climate warming, a rise in groundwater levels in the vicinity of Gahai Lake is
inevitable. Therefore, to ensure the safety of residents and continued operation of the
irrigation area, drainage channels can be excavated at the end of the alluvial fan to divert
groundwater to the Bayin River. Despite the potential for further increases in the water
level of Tuosu Lake after channel excavation, the lack of villages and farmland around the
lake makes this an appropriate management solution.

6. Conclusions

Remote sensing techniques, model calculations, and statistical analyses were used
to analyze lake surface area changes in response to climate change and groundwater in
Qaidam Basin, and stale isotopes were used to identify potential sources of groundwater.
Our analysis suggests that long-term increases in temperature and precipitation had a
certain promotion effect on lake expansion, with higher temperatures accelerating glacier
melting rather than promoting lake evaporation. However, the significant increase in the
rate of lake expansion also indicated the important contribution of groundwater to lake
expansion, which includes not only glacial meltwater that infiltrates the piedmont plain but
also other sources of water. Isotope data revealed that confined groundwater can circulate
rapidly and is recharged by modern water since the global nuclear explosion tests. The
more depleted isotopic signature of the confined groundwater compared to that of local
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meteoric precipitation and glacial meltwater suggested recharge by water sources with
more isotopic depletion from other basins. Therefore, it is speculated that the 2003 Ms 6.4
earthquake in the northwest of Delingha may be a possible mechanism for the expansion
of the lakes in the study area by enhancing crustal permeability and keeping fractures
open, which promotes the groundwater contribution to lakes and in turn causes rapid lake
expansion and increased groundwater levels.

The expansion of Gahai Lake has caused an increase in surrounding groundwater levels,
which threatens the lives and livelihoods of residents. Under the long-term trend of climate
warming, Gahai Lake will inevitably continue to expand in the future. Therefore, to ensure the
safety of residents and continued operation of the irrigation area, it is suggested that drainage
channels can be excavated at the end of the alluvial fan to divert groundwater to the Bayin
River and eventually Tuosu Lake. This study emphasizes the important role of groundwater
in lake expansion and improves our understanding of groundwater sources, circulation, and
evolution patterns in Qaidam Basin and the arid area of northwest China. Currently, the
future contribution of groundwater to lake expansion cannot be predicted because of a lack
of groundwater monitoring data in the study area; therefore, future work should include
long-term monitoring of the groundwater contribution to lakes in Qaidam Basin.
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Abstract: There are thousands of lakes in the Tibetan Plateau (TP), and most are saline. However, little
is known about the responses of TP lakes to climate change, especially saline ones. We investigated the
thermal responses of the largest freshwater lake (Ngoring Lake) in the TP and its nearby small saline
lake (Hajiang Salt Pond) to climate change using the improved lake scheme in the Community Land
model (CLM4-LISSS), in which we primarily developed the salinity parameterizations previously
evaluated in the Great Salt Lake in USA and further considered the effect of salinity on the temperature
of the maximum density of saline water in the present study. The improved lake model with salinity
parameterizations was first applied to a saline lake in the TP, where saline lakes make up the majority
of water bodies. The CLM4-LISSS model could effectively simulate lake surface water temperature
(LSWT), lake water temperature (LT) and ice thickness in Ngoring Lake. Additionally, the model
including our salinity parameterizations significantly improved simulations of LSWT and LT in
Hajiang Salt Pond, especially in winter. The LSWT of the two completely opposite lakes were
warming in the simulations at a rate above 0.6 ◦C/decade. Meteorological forces were the main
driving factor, with increasing downward longwave radiation, air temperature and air humidity,
as well as weakening winds contributing to LSWT increase. Compared to a hypothetical shallow
freshwater lake, the greater depth of Ngoring Lake made its surface warm faster, and salinity slightly
accelerated the warming of Hajiang Salt Pond. Monthly mean LSWT differences between the two
lakes were induced by salinity effects in cold periods and lake depth in the unfrozen period. In
response to a warming climate, the LSWT in the ice-free Hajiang Salt Pond rapidly increased from
January to April due to the warming climate, whereas the LSWT of Ngoring Lake increased faster in
the first and last month of the ice-cover period due to later ice-on and earlier ice-off. This study will
provide a useful tool for saline lakes in the TP and help deepen our knowledge about the responses
of TP lakes, especially the saline lakes, to climate change, as well as response differences between
freshwater and saline lakes and the reasons for these differences.

Keywords: Ngoring Lake; Tibetan Plateau; saline lake; lake temperature; climate change; CLM4-LISSS;
salinity parameterizations

1. Introduction

The Tibetan Plateau (abbreviated as TP, see Abbreviation List at the end of the text)
is known as “the Third Pole”, with an average altitude of 4000 m above sea level. The TP,
with a total area of about 50,000 km2, contains 1424 lakes (≥1 km2 each) [1], most of which
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are saline, accounting for more than half of the total lake coverage in China. The specific
TP climatic environment (low air density, pressure, and temperature, all-year intensive
solar radiation) creates unique lake–atmosphere interactions [2–8]. TP lakes significantly
influence the local and regional climate by heat and mass exchanges between lakes and the
atmosphere, and resonate with the adjacent and remote regions [9,10].

Lakes are sentinels of large-scale climate variability which interact strongly with the
atmosphere and respond fast and widely to climate change, especially in the TP. The TP
is influenced by elevation-dependent intensive warming, at up to three times the global
warming rate [8,11]. The lake surface water temperature (LSWT) has rapidly increased glob-
ally, with a mean increasing trend of 0.34 ◦C/decade in summer averaged over 235 lakes
worldwide between 1985 and 2009 [12]. However, TP lakes have shown an overall warming
trend of 0.37 ◦C/decade, based on data from 374 inland lakes [13]. This rate was slightly
higher than the global mean, because the TP climate and the warming of TP lakes are
highly heterogeneous [14]. The majority of the TP lakes are warming at a higher rate of
0.76 ◦C/decade primarily due to the increasing air temperature, downward longwave radi-
ation, and decreasing wind speeds, while some lakes are cooling due to glacier meltwater
inflow or reduced salinity [3,13–17]. Changes in thermal conditions profoundly influence a
lake’s biological and chemical processes [18–20]. These processes may undergo substantial
alterations, even with relatively small changes in lake temperature [21]. Moreover, the
changing thermal characteristics of lakes further modulate local air–lake interactions, with
significant impacts on the local climate. Therefore, a comprehensive investigation of the
response of the thermal structure in TP lakes to climate change is needed to predict changes
in lake ecosystems and the regional climate.

Most previous studies about the thermal responses of TP lakes were based on remote
sensing data, which only reflected LSWT changes and the correlation between LSWT
and possible driving factors. Additionally, results were mainly derived from statistical
methods. However, this approach does not reveal the changes of internal phenomena in
lakes, the quantitative contribution of driving factors, and the detailed mechanisms in
lake processes. Numerical simulations appear to be the efficient method to reveal these
key processes. A series of lake models, such as the Lake model, Flake (Freshwater lake)
model, WRF (Weather Research and Forecast)-Lake, CLM (Community Land model)-Lake,
CLM4-LISSS (the Lake, Ice, Snow, and Sediment Simulator), and the General Lake Model
have been applied to studies of the TP lakes [2,4,7,15,16], with results showing that the
vertically integrated mean lake water temperature (MLT) has been consistently changing
corresponding to the increasing LSWT, while the bottom lake temperature (BLT) has varied
in different ways depending on the lake depth [16,18]. However, with a scarcity of data,
the development of TP lake models and numerical studies about the thermal responses of
lakes to climate change have been focused solely on several large lakes, such as Nam Co
Lake, Qinghai Lake, Ngoring Lake (NL) and Gyraing Lake [3,4,15], etc. In the absence of
sufficient observational data and accurate forcing datasets, a previous long-term NL study
employed the NCEP (National Centers for Environmental Prediction) and ERA-Interim
(European Centre for Medium-Range Weather Forecasts Re-Analysis) data, in which the
solar radiation was too great and decreasing quickly compared to the observations [22].
This resulted in predictions of insignificant NL warming in the simulations, whereas NL
was actually warming, as shown by remote sensing data [14,23]. As such, the response of
NL to climate warming should be restudied based on more accurate forcing data.

Most TP lakes are saline, but their responses to climate warming have been less studied
than those of large lakes in the TP, mostly because of their small areas and the scarcity
of observational data. Studies of saline lakes should be strengthened. The Hajiang Salt
Pond (HSP, rich in soluble salts) is a paleo-saline lake which was formed by the joint action
of traceability development of the Yellow River and climate change due to evaporation
and condensation resulting from strong wind and sun. The pond is only about 11.2 km
from NL and provides an ideal contrast as a saline lake to a freshwater lake NL with a
similar climate.
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The effects of salinity on responses of saline lakes to climate warming were poorly
understood because of the lack of salinity parameterizations in commonly used models.
Salinity could affect lake temperature, evaporation and ice appearance, etc. As such, a
lake model considering salinity parameterizations is necessary for numerical studies of the
majority of TP lakes.

Therefore, the CLM4-LISSS lake model, parameterized with salinity effects on several
lake water characteristics and developed by ourselves and applied to the Great Salt Lake
in USA, was introduced. Our previous saline lake model ignored the temperature of the
maximum density (Tmaxd) of saline water that decreases with increased salinity and could
affect the vertical thermal structure during the cold season in the TP [2,24]. To further
improve our lake model, Tmaxd was further parameterized.

In the present study, we applied the CLM4-LISSS lake model developed with salinity
parameterizations, in situ lake data, remote sensing data, and an assimilated meteorological
dataset to study the thermal response of the largest freshwater lake NL in the TP and its
nearby saline lake to climate change. The aim of the study is:

• to further improve our developed lake model with salinity parameterizations, to apply
it to a TP saline lake, and to evaluate the model performance in the TP;

• to study the long-term warming trends in a deep freshwater lake and a saline lake in
the TP; and

• to quantify the contribution of meteorological factors and salinity effects on the thermal
regime changes of a deep freshwater lake and a saline lake.

2. Study Area, Data and Methods

2.1. Study Area
2.1.1. Freshwater Ngoring Lake

Ngoring Lake (NL), with a surface area of 610 km2 and mean depth of 17 m, is the
largest freshwater lake in the TP (Figure 1, 97.5~97.92◦E, 34.75~35.08◦N, 4274 m a.s.l.).
Mineralization is low. A cold, semi-arid continental climate prevails in the NL basin. The
monthly mean air temperature varies from 11.6 ◦C (August 2016) to −26.6 ◦C (January 1978),
the annual average air temperature is −3.5 ◦C (1953–2016), and the annual precipitation is
322.4 mm (Data from China’s National Climate Center) at Maduo meteorological station
(Figure 1, 34.91◦N, 98.22◦E, 4272 m a.s.l.). The lake is covered with ice from early December
to early April.

 

Figure 1. Map of the research area, locations of the Ngoring Lake (NL) and Hajiang Salt Pond (HSP),
and three observation sites (marked by red stars).

2.1.2. Hajiang Salt Pond

Hajiang Salt Pond (HSP, 97.88–97.92◦E, 35.02–35.05◦N) is a small and shallow saline
lake with less than 1 m depth and about 220 g L−1 salinity [25]. The freezing point caused
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by the salinity is low enough to prevent the lake from freezing normally. It is located
approximately 11.2 km east from NL at an altitude of 4240 m. The lake developed from the
large Hajiang paleo-lake and currently covers an area of about 10 km2.

2.2. Data
2.2.1. Observations Data in NL and HSP

The NL lake temperature below the surface was observed (at a distance of ~2 km from
the shore) using a Campbell 109 L logger sensor from June to October 2012, and from May
to September 2013, and using RBR SOLO sensor from September 2015 to September 2016.
The lake ice thickness was manually measured at irregular intervals from December 2012
to March 2013 and from December 2015 to March 2016 near the shore. Water temperature
in HSP was measured (~1 km from the shore) under the lake surface from September 2015
to April 2016 using HOBO Water Temperature Pro v2 Data Loggers U22-001. These data
were used to evaluate the performance of the lake model in the TP.

2.2.2. ITPCAS Data and Its Correction

Data for the lake model forcing were obtained from the China meteorological forcing
dataset (1979–2018) (ITPCAS), developed by the Institute of Tibetan Plateau Research,
Chinese Academy of Sciences [26]. The data include air temperature and specific hu-
midity at 2 m above the surface, wind speed, surface air pressure, precipitation as well
as downward shortwave and longwave radiation. The spatial resolution is 0.1◦ and the
temporal resolution is 3 h [27]. The dataset was produced by merging a variety of data
sources, including Princeton reanalysis data, Global Land Data Assimilation System data,
the Global Energy and Water Cycle Experiment-surface radiation budget shortwave radia-
tion dataset, Tropical Rainfall Measuring Mission satellite precipitation analysis data and
China Meteorological Administration (CMA) station data.

The trend of annual mean ITPCAS air temperature (Ta) in the period of 1979–2016
was 0.77 ◦C/decade (p < 0.01), i.e., higher than that measured at the Maduo meteorological
station (0.55 ◦C/decade (p < 0.01)). A closer inspection of the data revealed that the
warming rate, i.e., 0.38 ◦C/decade, was identical in the two datasets for 1979–1997, with a
systematic cold bias in the ITPCAS data compared to observations (Figure 2). The difference
reversed in 1998–2006 but returned in 2007. Consequently, the forcing data from ITPCAS
was bias-corrected based on the monthly observational data from the Maduo Station from
1979 to 2016 before being used to drive the lake model.

Figure 2. Monthly air temperature difference between ITPCAS and observations at the Maduo station
(ITPCAS-Observation).

2.2.3. MODIS Data

The global 8-day composite daytime and nighttime LSWT from MODIS AQUA prod-
uct data MYD11C2 V006 (0.05◦ resolution) and MYD11A2 V006 (1 km resolution) from
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2003–2016 were used to evaluate the results of the long-term simulations for NL and HSP,
respectively. Albedo from MODIS MCD43B3 V006 with 1-km resolution was used to set up
the lake model.

2.3. Lake Model and Setup

In this study, we used an enhanced version of the Hostetler 1-D lake thermal model
code, known as CLM4-LISSS. It was originally the lake scheme coupled in CLM, which
is the land component of the Community Earth System Model (Details may be found in
Subin et al., 2012). The lake scheme includes 0–5 snow layers, 10 lake liquid water and ice
layers, and 10 sediment layers, which were also applied in WRF and the RegCM (Regional
Climate Model) [28,29], etc.

CLM4-LISSS has been shown to provide reasonable performance in simulations of lake
temperature, surface energy fluxes, and ice and snow thicknesses for several different-sized
lakes around the world [30–33]. The model has also been improved in terms of ice albedo
and mixing process, etc., for the TP [34,35]. It has been shown to effectively simulate the
amplitude and pattern of temperature variability at all depths [2,7,36]. However, there is
little progress for the saline lake model in the TP. Therefore, we first applied the developed
CLM4-LISSS model with salinity parameterizations (evaluated in the Great Salt Lake in
USA) to a simulation study of a saline lake (HSP) in the TP [17,30,37]. Further, the change
of Tmaxd caused by dissolved salt in the water was parameterized in the current salinity
scheme because it could significantly change the thermal processes of the lake water [2,24].

2.3.1. Lake Model with Salinity Parameterizations

The following equations, except for Tmaxd, were incorporated into the developed
CLM4-LISSS lake model to evaluate for the salinity [17,37].

The dependence on salinity s (‰) of the freezing point (Tf, ◦C) was approximated by
the seawater formula [38]:

Tf = −0.0575 s (1)

The effect of dissolved salts on evaporation was expressed by the ratio of the saturated
vapor pressure Rsvp over saline water to that over freshwater as [39]:

Rsvp = exp (−2/55.51 × (s/(1 − s/1000)/58.44 + 0.77)) (2)

The specific heat capacity of saline water cpsw (kJ/kg/K) was determined as [17,37]:

cpsw = 4.188 − 4.4 s/1000 (3)

The thermal conductivity of saline water λsw was determined as [17,37]:

λsw = λfw [1.0 − 0.22 s/1000 + 0.1(s/1000)2] (4)

where λfw is the freshwater thermal conductivity, equal to 0.6 W m−1·K.
In addition to the previously used salinity parametrizations [37], the effect of salinity

on the temperature of the maximum density (Tmaxd) of saline water was introduced in the
study as Tmaxd decrease with increased salinity [40]:

Tmaxd = 3.98 − 0.216 s (5)

2.3.2. Model Parameters for the Freshwater NL

In the model settings for NL (Table 1), the fraction of the net solar radiation absorbed
near the lake surface was set to β = 0.5 in the absence of snow, and derived from the snow
optics sub-model when snow was present [30].
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Table 1. Numerical experiments S-(Lake) and model parameters.

Parameter

Experiment
S-NL S-D1F S-HSP

Lake NL D1F HSP
Salinity (‰) 0 0 220

Lake depth (m) 17 1 1
Albedo Equation (7) Equation (7) 0.15

Parameter of the light extinction
coefficient η0

1.1925 1.1925 2 × 1.1925

Fraction of absorbed surface solar
radiation β

0.5 0.5 0.6

Meteorological forcing Bias-corrected
ITPCAS

Bias-corrected
ITPCAS

Bias-corrected
ITPCAS

The light extinction coefficient η was modelled as

η = η0 d−0.424 (6)

where d is the lake depth (m). The η0 parameter was set as 1.1925 in the lake scheme of the
CLM model [30].

The lake albedo was fixed as 0.06 for open water conditions according to observations
at the NL station without considering the diurnal change, as in CLM4-LISSS, and calculated
for an ice-covered lake with the following function [30,41]:

α = αmax − αmax x + αmin x, x = exp (−95.6 (Tf − LSWT)/Tf) (7)

where αmax and αmin are the max and min values of the lake ice albedo, respectively. In
CLM4-LISSS, there are different (αmax, αmin) values for near infrared and visible radiation.
Without making a distinction between the two radiation types in the study, αmax and αmin
were set to 0.6 and 0.1, respectively [30,41].

In the lake model, NL depth was set to 17 m, i.e., the same as the mean lake depth.
Variations of lake depth were not considered, for two reasons: (1) Some lake models, such
as the General Lake Model [15], are capable of considering changes in lake depth, but they
have not yet been coupled with atmospheric models. In recent lake–air coupled simulation
studies, the lake model CLM4-LISSS and Flake model are the two most commonly applied
lake models in the TP [42,43]. Both models use a fixed lake depth. Returning to this study,
long-term lake–air interactions will be further studied in the coupled atmospheric model,
so the CLM4-LISSS lake model with a fixed lake depth was employed for the sake of
consistency. (2) The NL lake level varies by less than 1 m per year, and varied by less than
3 m from 1985 to 2014 [44]. Such variations only induced small effects on the simulated
LSWT [7].

2.3.3. Model Parameters for the Saline HSP

The salinity in HSP was set to 220‰ (Table 1) according to observations [25], and the
lake depth was set to 1 m. Salinity variations were not considered because there was always
insoluble salt at the bottom of HSP and the lake was shallow and well mixed.

Due to its shallowness, high salinity (corresponding Tf around −20 ◦C), and turbidity,
HSP rarely freezes and has a higher albedo than the ice-free NL. The albedo of HSP was set
to 0.15 (Table 1) as its annual mean albedo, as shown by MODIS.

The parameters β and η0 were set to 0.6–0.8 and three times the freshwater lake
value η0 for the shallow turbid hypereutrophic Taihu Lake, respectively [45]. HSP has less
phytoplankton and more transparent water than Taihu; as such, β was set to 0.6 and η0 was
set to twice the freshwater value (Table 1).
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2.3.4. Numerical Experiments Design

The bias-corrected ITPCAS data and the two lake configurations from Table 1 were
used to simulate the temperature conditions in NL and HSP in two model runs henceforth
referred to as S-NL and S-HSP, respectively (Table 1).

Additionally, to segregate the effects of lake depth and salinity on the lake heat budget,
a sensitivity model run called S-D1F (Table 1) was performed for a hypothetical freshwater
lake with a depth of 1 m under the same ITPCAS atmospheric forcing. In this way, the
only difference between the S-D1F and S-NL configurations was the lake depth, and the
differences between S-HSP and S-D1F runs were caused solely by the salinity.

To understand the effects of climate change on lake warming, we performed sensitivity
experiments in which the monotonic trend in each meteorological forcing variable (air
temperature Ta, wind speed WS, specific humidity Q, downward shortwave radiation
SWD and downward longwave radiation LWD) was removed individually based on a
linear regression analysis and control runs using S-NL, S-D1F and S-HSP for NL, D1F
and HSP, respectively. Experiments were called S-(Lake)-d(meteorological variable), as
shown in Table 2. Owing to the consistency and significant impacts on the simulated lake
temperature of Ta and LWD, more experiments with detrended Ta and LWD together were
run. Some of the above forcing meteorological variables could be interconnected, and the
above sensitivity experiments were quite artificial in nature. However, these experiments
shed light on the controlling factors of lake warming [15,19] and quantified their individual
effects on lake warming rate.

Table 2. S-(Lake)-d(meteorological variable) sensitivity experiments.

Experiment Lake Forcing

S-NL-dTa NL Same as S-NL except that Ta was detrended
S-NL-dWS NL Same as S-NL except that WS was detrended
S-NL-dQ NL Same as S-NL except that Q was detrended

S-NL-dSWD NL Same as S-NL except that SWD was detrended
S-NL-dLWD NL Same as S-NL except that LWD was detrended

S-NL-dTa&LWD NL Same as S-NL except that Ta and LWD were detrended
S-D1F-dTa D1F Same as S-D1F except that Ta was detrended

S-D1F-dWS D1F Same as S-D1F except that WS was detrended
S-D1F-dQ D1F Same as S-D1F except that Q was detrended

S-D1F-dSWD D1F Same as S-D1F except that SWD was detrended
S-D1F-dLWD D1F Same as S-D1F except that LWD was detrended

S-D1F-dTa&LWD D1F Same as S-D1F except that Ta and LWD were detrended
S-HSP-dTa HSP Same as S-HSP except that Ta was detrended

S-HSP-dWS HSP Same as S-HSP except that WS was detrended
S-HSP-dQ HSP Same as S-HSP except that Q was detrended

S-HSP-dSWD HSP Same as S-HSP except that SWD was detrended
S-HSP-dLWD HSP Same as S-HSP except that LWD was detrended

S-HSP-dTa&LWD HSP Same as S-HSP except that Ta and LWD were detrended

To estimate the individual effect of salinity on lake heat budget, we ran an additional
series of sensitivity experiments without considering the effects of salinity on each pa-
rameter (α, η0, β, Rsvp, Tmaxd and Tf), i.e., S-HSP-(parameter) in Table 3. The salinity
effects on simulated lake temperature caused by the specific heat capacity, and the thermal
conductivity in saline lakes were not studied as they were negligible [17,37].
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Table 3. S-HSP-(parameter of salinity effect) sensitivity experiments.

Experiment Model Setting

S-HSP-α Same as S-HSP except that albedo was set to that in S-NL

S-HSP-η0
Same as S-HSP except that the parameter of the light extinction

coefficient η0 was set from 2 × 1.1925 to 1.1925 as in S-NL

S-HSP-β Same as S-HSP except that the fraction of absorbed surface solar
radiation β was set from 0.6 to 0.5 as in S-NL

S-HSP-Rsvp
Same as S-HSP except that the ratio of the saturated vapor

pressure Rsvp over the saline water to that over the fresh water in
Equation (2) was set to 1 as in S-NL

S-HSP-Tmaxd Same as S-HSP except that the temperature of the maximum
density Tmaxd was changed from minus to 3.98 ◦C as in S-NL

S-HSP-Tf Same as S-HSP except that the freezing temperature Tf was
changed from −12.65 ◦C to 0 ◦C as in S-NL

2.3.5. Model Performance Criteria

The performance of the model was tested against the observed temperature and heat
fluxes using three model efficiency scores: bias, root mean square error (RMSE) and the
correlation coefficient (R) [46]:

Bias =
n

∑
i=1

(Si − Oi)/n (8)

RMSE =

√
n

∑
i=1

(Si − Oi)
2/n (9)

R =
n

∑
i=1

((Si − S)
(
Oi − O

)
)/

(√
n

∑
i=1

(Si − S)2
√

n

∑
i=1

(Oi − O)
2
)

(10)

where Oi represents the observations, n is the total number of observations, and Si repre-
sents the simulated results.

3. Results and Analysis

3.1. Performance of the Lake Model
3.1.1. Performance on the Freshwater Lake (NL)

The model showed long-term seasonal variations with maximum and minimum values
consistent with the MODIS LSWT (Figure 3a). The simulated LSWT forced by ITPCAS was
slightly overestimated compared to the MODIS data with bias = 0.6 ◦C, RMSE = 3.2 ◦C,
and R = 0.94. The simulated LSWT precision was close to that of Qinghai Lake and Nam Co
Lake [4,15,16] using long-term ITPCAS. Except for the model errors, the simulated errors
were from two sources: (1) compared to in situ observations, MODIS had the bias averaged
from −1.5 ◦C to 0.2 ◦C and RMSE of around 2.0 ◦C owing to the cool skin effect [14,47,48];
and (2) ITPCAS was closer to the observations than other reanalysis data (e.g., NCEP
and ERA) but still not very accurate, especially in lake basins with strong underlying
heterogeneity. When the model was driven by observations from the NL lakeshore, the
bias and RMSE between the simulated and observed LSWT were only −0.21 ◦C and
1.44 ◦C, respectively, in 2012 [49]. The model produced a better simulation with in situ
observed forcing, but still could not reproduce long-term lake thermal conditions which
were consistent with the assimilated meteorological dataset.
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Figure 3. Observed and simulated LSWT (a), LT (b) and ice thickness (c) in S-NL, and LSWT (d) and
LT (e) in S-HSP and S-D1F.

The model was able to accurately reproduce the lake temperature (Figure 3b), i.e.,
compared to the shallow-layer observations in the ice-free period with bias = 0.5 ◦C,
RMSE = 2.8 ◦C, and R = 0.91. Similarly, the bias and RMSE between the simulated and
observed lake temperature could be reduced to −0.25 ◦C and 0.41 ◦C, respectively, in 2016,
when the model was driven by observations taken on the shore of NL [49].

The observed ice thickness remained above 0.6 m from the middle of January to early
March, with the maximum value measured in late February (Figure 3c). With bias < 0.1 m
and RMSE < 0.2 m, the model had a good ability to simulate the ice thickness.

3.1.2. Performance over a Saline Lake

The S-HSP numerical experiment with representative fixed salinity yielded more
accurate LSWT simulations (Figure 3d) than the reference S-D1F experiment without the
salinity effects, although both simulations were able to mimic the variations of LSWT.
Compared to MODIS LSWT, the bias and RMSE of LSWT in S-D1F were 8.3 ◦C and 10.3 ◦C,
respectively, while in S-HSP, they were reduced 3.4 ◦C and 7.0 ◦C, mainly because the
application of a lower freezing point led to improved simulations in winter. The bias and
RMSE from S-D1F to S-HSP in winter were reduced from 7.4 ◦C to 3.0 ◦C and from 9.3 ◦C
to 3.1 ◦C, respectively. S-HSP could effectively reproduce the observed drop and increase
in lake water temperature in winter, while S-D1F resulted in an ice cover and a nearly fixed
water temperature below the ice. Factoring in salinity effects, the lake model was able to
reflect the unfrozen state of the saline lake and the real variability of the lake temperature
in winter, which is essential for studying the physics and chemistry of cold saline lakes.
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3.2. Lake Temperature Variations and the Influence of Forcing Data
3.2.1. LSWT and Variation Trends
Annual LSWT

The annual mean LSWT of NL varied from −2 to 3 ◦C during 1979–2016, with a
long-term average of 0.37 ◦C; the long-term mean LSWT of HSP was 2.95 ◦C, varying
within 1–6 ◦C from one year to another (Figure 4a,c). The 2.6 ◦C lower mean LSWT in
freshwater NL than in non-freezing saline HSP was conditioned by the ice cover reflecting
solar radiation in winter. In the reference simulation, i.e., D1F with 1 m freshwater lake
depth, the annual mean LSWT of 0.38 ◦C was close to that of NL and much smaller than
that of HSP (Figure 4). Compared with salinity, lake depth did not have significant effects
on the annual mean LSWT in the three simulations because the ice formation played the
dominant role.

Figure 4. Annual LSWT (red), MLT (black) and BLT (blue) and their trends in S-NL (a), S-HSP (b) and
S-D1F (c) Monthly LSWT.

The trends of annual LSWT, MLT and BLT in each of the three simulations except NL
BLT surpassed 99% significance. The annual LSWT in NL increased by 0.68 ◦C/decade
during 1979–2016, which was slightly faster than the 0.64 ◦C/decade simulated for HSP.
The increasing rate of annual LSWT in S-D1F was 0.62 ◦C/decade, the lowest among the
three simulations. Still, the difference between the three experiments was not significant as
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long as the meteorological forcing was the same and remained the main driver responsible
for the annual LSWT changing rate.

In monthly means, LSWT differences between the three experiments were mainly
controlled by salinity during the cold periods, while lake depth was the primary factor
during open-water periods. From November to May, the monthly LSWT of NL and D1F
were similar to each other and about 4 ◦C lower than those in HSP (Figure 5a), because
the high salinity of the latter prevented the development of ice cover. In turn, during
the warm period from June to October, the LSWT of D1F and HSP closely followed air
temperature variations; both lake surfaces were 2 ◦C warmer than that of the deeper NL
in mid-summer (June and July), and both cooled faster than NL in autumn, with LSWT
differences increasing gradually from 1 to 3 ◦C from September to October.

 

 

Figure 5. The monthly mean temperatures (◦C, lines) and their long-term trends (◦C/year, bars) in
the model runs S-NL (red), S-HSP (blue) and S-D1F (black). Panels (a–c) correspond to LSWT, MLT
and BLT, respectively. Solid and hollow points at the end of bars mean passing the significance test of
p < 0.01 and p < 0.05, respectively.

The long-term LSWT trends of the three lakes were positive for all months. In non-
freezing HSP, the temperatures between January and April increased at 0.6 ◦C/decade
(Figure 5a), with the largest increase taking place in February (1.0 ◦C/decade) in response
to climate change. The LSWT of NL and D1F increased significantly in May and November
because of the shortened ice period and ice-albedo feedback. In May, the LSWT in D1F
warmed a little faster than in NL (1.2 ◦C/decade vs. 1.1 ◦C/decade), and in November, the
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warming rate of NL LSWT (1.6 ◦C/decade) was the most acute, demonstrating that LSWT
increase in months of delayed ice cover is faster in deeper lakes.

3.2.2. MLT and the Variation Trends
Annual MLT

The annual vertically averaged lake water temperature (MLT) was 5.11, 3.55, and
3.35 ◦C in NL, D1F, and HSP respectively (Figure 4b). The annual MLT of HSP was the
lowest because of the stronger heat loss from the open surface of HSP in winter compared
to the ice-covered NL and D1F.

The annual NL MLT increased by 0.19 ◦C/decade, i.e., much slower than the an-
nual LSWT in NL (0.68 ◦C/decade) and slower than the annual MLT trends in D1F
(0.54 ◦C/decade) and HSP (0.56 ◦C/decade) (Figure 4). Apparently, the MLT of the deep
lake increased more slowly due to its large heat capacity and thermal inertia. Salinity
differences between shallow lakes D1F and HSP did not have a strong influence on the
observed MLT trend.

Monthly MLT

The monthly means of HSP MLT in winter were the lowest, reaching around −10 ◦C
in January (Figure 5b). In turn, because of the shallow depth, the MLT of HSP and D1F
were the highest in summer, reaching about 14 ◦C in July. Hence, lake depth was the main
factor controlling the magnitude of the annual and summer monthly MLT in the three
simulations. In contrast, salinity determined the winter MLT minima by preventing ice
cover formation in saline lakes.

In NL, the long-term trends of monthly MLT were less than 0.6 ◦C/decade, and varia-
tions therein were much smaller than those of monthly mean LSWT (0.2–1.6 ◦C/decade)
(Figure 5). In NL, the monthly MLT showed a strong positive trend from April to November
and stayed almost stable during the ice period, while the monthly LSWT became higher
throughout the whole year, especially in freezing and breakup months.

In shallow lakes (HSP and D1F), the trends of monthly MLT in summer coincided
with monthly LSWT trends (0.4–0.8 ◦C/decade); the difference (<0.3 ◦C/decade) between
MLT and LSWT in shallow lakes was only seen in winter and at times of ice-formation and
melting. Still, their differences were much smaller than in NL.

Akin to the surface temperatures, the MLT of HSP in winter (February to April)
increased at the highest rate among the three simulations, i.e., at about 0.6 ◦C/decade,
compared to around 0.2 ◦C/decade in D1F and <0.1 ◦C/decade in NL.

3.2.3. Bottom Temperature and the Variation Trends
Annual BLT

An annual BLT of 3.63 ◦C in HSP was the lowest among the three experiments, with
4.36 ◦C and 5.33 ◦C in NL and D1F, respectively (Figure 4). The simulated BLT of the two
shallow lake experiments, i.e., in S-HSP and D1F, were warming by 0.52 and 0.44 ◦C/decade,
while that of NL tended to become slightly cooler (−0.03 ◦C/decade) without passing the
significance test. This is consistent with results from other deep dimictic lakes [16,50,51].

Monthly BLT

In NL, the monthly BLT became obviously lower (about −0.4 ◦C/decade) from July
to September with a 0.01 significance level (Figure 5c). Its warming surface intensified
the stability in the stratification period of the deep lake and resulted in less heat being
transferred to the bottom. Changes in NL BLT in other months were not insignificant.

Owing to the shallow depth of D1F and HSP, there were no big differences between
monthly LSWT, MLT, and BLT in the two runs during ice-free periods (Figure 5). The
shallow lake depth and high salinity made the winter BLT increase faster in HSP than in
other runs.
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3.3. Effects of Local Climate Drivers on the Lake Warming
3.3.1. Correlation between LSWT and Meteorological Forcing

The study region was experiencing the same rapid climate change as most of the TP
during the study period [52]. All trends of ITPCAS meteorological variables (Figure 6)
over the study region passed the 0.01 significance level except for solar radiation, with
a 0.1 significance level. Ta increased by 0.49 ◦C/decade, downward longwave radiation
LWD increased at a rate of 3.40 W m−2/decade, and the specific humidity Q grew at
0.16 g kg−1/decade.

Figure 6. The ITPCAS annual mean meteorological variables and their trends: air temperature Ta
and wind speed WS (a) and downward shortwave radiation SWD, downward longwave radiation
LWD and specific humidity Q (b).

The increasing Ta, LWD, and Q had positive effects on lake warming, with around
0.8 correlation with LSWT in the three experiments (Figure 7a). Wind speed decreased
by −0.23 m s−1/decade and was negatively correlated with the LSWT (r = −0.6). The
downward shortwave radiation SWD decreased at −1.51 W m−2/decade, acting in the
opposite direction, with a correlation coefficient of −0.15.

Figure 7. Correlations between the meteorological variables and LSWT (a), the percentage difference
of LSWT warming rate between the control simulation S-(lake) and the sensitivity simulations S-
(Lake)-d (variable) in NL, D1F, and HSP (b), the difference of LSWT and the warming rate between
the S-HSP control simulation and S-HSP-(parameter of salinity effect) sensitivity simulations (c).
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3.3.2. Quantified Contribution of Individual Meteorological Forcing to Lake Warming

The above correlation analysis showed the effects of meteorological variables on lake
warming, but their quantified contributions were still unknown. Therefore, detrended
sensitivity experiments, referred to as S-(Lake)-d (variable) in Table 2, were performed to
attempt to answer this question, although the sensitivity experiments were a little artificial.
The increase of atmospheric longwave radiation contributed the most to the warming of
TP lakes, causing 30–40% of the annual LSWT change (Figure 7b). Increasing Ta induced a
30% increase of LSWT. The combined increase of atmospheric longwave radiation and Ta
could explain almost the all of the observed LSWT warming. The decreasing WS caused
a 20–30% increase in LSWT, especially in HSP. Air humidity increase accelerated the lake
surface warming by 20% and, consequently, should not be ignored, as it was in a study of
the Nam Co Lake in TP [15]. The decrease of SWD decelerated warming by about 10%.

3.4. Effects of Salinity Parameters on the Lake Warming

The cumulative effect of salinity on the lake water properties caused the simulated
lake surface to be 2.6 ◦C warmer and experience 0.02 ◦C/decade faster warming in S-HSP
than in its freshwater counterpart (Figure 4).

The salinity effect on Tf and Rsvp were simulated, making the saline lake surface
2.34 ◦C and 0.9 ◦C warmer (Figure 7c) in S-HSP than in the two sensitivity experiments of
salinity effects (S-HSP-Tf and S-HSP-Rsvp), inducing about 90% and 31% annual differences
between the saline lake and the freshwater one. The lower freezing point also significantly
accelerated the increase of simulated LSWT in saline lake warming to 0.07 ◦C/decade
(3.5 times the warming rate difference between the saline lake and the hypothetical fresh-
water lake with the same 1 m depth), while the salinity effect on the saturation water vapor
pressure had no impact on the long-term temperature trend.

The differences between the S-HSP and S-HSP-η0 simulations showed that the lower
transparency of salt water with higher η0 increased the annual LSWT by only 0.02 ◦C and
slowed the warming by 0.01 ◦C/decade.

The difference between the S-HSP and S-HSP-α simulations showed that the higher α
of salt water cooled the lake surface by 1.24 ◦C annually (about −47% of the annual LSWT
difference between the saline lake and the freshwater one) and slowed the warming rate by
0.02 ◦C/decade (the same magnitude as the warming rate caused by all the salinity effects).

Changes in the temperature of the maximum density (Tmaxd) of saline water and the
absorption of solar radiation (β) by the lake surface caused by salinity did not affect the
annual mean temperature or the changing rate.

4. Discussion

4.1. Salinity Effects and Parameterizations

Most TP lakes are saline, but existing numerical studies have focused exclusively
on several large lakes with small amounts of salt because of the lack of observations and
salinity parameterizations in lake models. Based on previous salinity parameterizations
coupled in CLM applied to the Great Salt Lake in USA and the significant impacts of
Tmaxd on density convection and thermal stratification, the effects of Tmaxd were further
parameterized in our lake model. The improved model was first applied to the TP saline
lake and significantly reduced errors in the simulation of LSWT and LT in the saline lake,
especially in winter. The salinity-extended lake model will be an efficient tool for studying
saline lakes in the TP.

Salinity parameterization of Tmaxd had no obvious impacts on the warming of a small
saline lake, mainly because of the shallow lake depth, absence of ice cover and the strong
effects of wind in terms of turbulence mixing in HSP. However, Tmaxd could alter the
thermal structure of a lake with a certain depth [2,24]. Therefore, considering the salinity
effect on Tmaxd makes the developed saline lake model more accurate.

Salinity will play a major role in terms of the impact of climate change on TP lakes in
future. Salinity decreases due to increased precipitation and inflow of glacial meltwater, but
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it could also increase due to increased evaporation. Since many lakes are fairly small, even
small changes in the water balance can be important. Also, salinity evolution influences the
vertical stratification of lakes and, consequently, the water temperature structure. Variations
in salinity will be addressed in future according to the mass balance.

4.2. Simulated Warming Rates of LSWT in Different Studies

LSWTs globally have increased rapidly, with a mean trend of 0.34 ◦C/decade in
summer between 1985 and 2009 [12]. Although the TP is warming at twice or even three
times the global warming rate [8,11], TP lakes have overall been warming with a trend of
0.37 ◦C/decade, based on data from 374 inland lakes. They are warming slightly more
rapidly than the global mean because the warming of TP lakes is highly heterogeneous [14].
Most TP lakes are warming with the higher 0.76 ◦C/decade rate, while some lakes are
cooling due to glacier meltwater inflow or reduced salinity [3,13–17].

The simulated LSWT warming rate of NL was 0.68 ◦C/decade, as shown by remote
sensing data that the lake was warming [14,23], and its warming rate was between the
simulated rates of 0.52 ± 0.25 ◦C/decade in Nam Co by the GLM and 0.74 ◦C/decade in
Qinghai Lake by Flake. The trend was not insignificant as in the previous NL simulation, in
which the model was forced by the NCEP and ERA data where solar radiation was larger
and decreased quickly compared to the observations [22]. Thus, insignificant warming in
NL was concluded in the previous study. Although field work is hard, enough observations
should be performed and accurate forcing datasets should be built for more accurate
simulation studies.

Our results make it clear that the largest freshwater lake in the TP and a nearby
small saline lake have indeed warmed over the last several decades and are warming
faster owing to the amplification effect of their high altitude. The warming rate of
LSWT in NL (0.68 ◦C/decade) significantly exceeded that of the regional air tempera-
ture (0.49 ◦C/decade) and was similar to Qinghai Lake and Lake Superior due to reduced
ice cover [16,53]. While lakes in some temperate climate regions are warming in line with
increased air temperatures [50,54], even the warming rates of tropical lakes are smaller than
those of air [55,56]. Moreover, the bottom layers of NL were simulated to isolate from direct
atmospheric influence, and tended to show long-term cooling at a rate −0.03 ◦C/decade on
account of strengthening stratification. This result is similar to those reported from other
stratified dimictic lakes, such as Qinghai Lake, Heiligensee Lake, and so on [16,50].

5. Conclusions

Compared to our observations, the salinity-extended lake model demonstrated a good
ability to represent lake–air interactions and the thermal regime in both a freshwater lake
and a saline lake. The newly introduced salinity parameterization significantly improved
the model performance for a saline lake in winter.

The simulated long-term increasing rates of the annual LSWT in NL, HSP, and a
shallower hypothetical freshwater lake amounted to more than 0.6 ◦C/decade, mainly due
to meteorological forcing. Increasing LWD and Ta, weakening wind, and increased air
humidity had positive effects on the warming trend of TP lakes in decreasing order, while
solar radiation dimming counteracted the warming. The LWD and Ta contributed the most
to lake warming in the sensitivity experiment; although it was overlooked in previous
studies [3,15], increasing atmospheric humidity over TP should be considered a significant
climatic factor.

The shallow lakes in experiments S-D1F and S-HSP lacked seasonal thermal stratifica-
tion and were well-mixed vertically, revealing similar long-term warming trends across
their depths. Comparing to a fresh water lake with 1 m depth, the 17-m-deep NL experi-
enced a 0.06 ◦C/decade faster surface warming and a slower MLT rise of 0.35 ◦C/decade.

High salinity prevented ice cover formation in HSP and induced more heat release
in winter and lower MLT and BLT than in freshwater lakes NL and D1F. However, the
high salinity made the annual mean LSWT 2.6 ◦C higher and resulted in a 0.02 ◦C/decade
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stronger warming trend than in the freshwater lake with the same depth. The salinity effect
on the freezing point contributed most to this difference, inducing a 90% higher LSWT
compared to the freshwater D1F. The salinity effect on evaporation caused a 31% higher
LSWT in HSP. The opposite salinity effect on the lake surface albedo cooled the lake surface
and decelerated the warming trend.

The monthly mean LSWT differences between Ngoring Lake and the Hajiang Salt
Pond were induced by salinity effects in cold periods and lake depth in the unfrozen period.
The LSWT in ice-free Hajiang Salt Pond increased rapidly from January to April due to
climate change, whereas the LSWT of Ngoring Lake increased faster in the first and last
months of the ice-cover period due to later ice-on and earlier ice-off.
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Abbreviation

Abbreviation Explain Unit

BLT bottom lake temperature ◦C
CMA China Meteorological Administration
CLM4-LISSS the Lake, Ice, Snow, and Sediment Simulator

in the Community Land model V4.0
cpsw specific heat capacity of saline water kJ/kg/K
d lake depth m
ITPCAS Institute of Tibetan Plateau Research,

Chinese Academy of Sciences
LWD downward longwave radiation W m−2

HSP Hajiang Salt Pond
LSWT lake surface water temperature ◦C
LT lake water temperature ◦C
MLT mean lake water temperature ◦C
n total number of observations
NL Ngoring Lake
Q specific humidity g kg−1

Oi represents the observations
R correlation coefficient
RMSE root mean square error
Rsvp the ratio of the saturated vapor pressure
s salinity ‰
Si represents the simulated results
SWD downward shortwave radiation W m−2

Ta air temperature ◦C
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Tf freezing point ◦C
Tmaxd temperature of the maximum density

of saline water ◦C
TP The Tibetan Plateau
WS wind speed m s−1

α lake albedo
αmax max values of the lake ice albedo
αmin min values of the lake ice albedo
β fraction of absorbed surface solar radiation
λsw thermal conductivity of saline water W m−1·K
η light extinction coefficient
η0 constant value 1.1925
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Abstract: The Bowen ratio (β) comprehensively reflects physical characteristics of the land-surface
climate. In this study, eddy covariance systems installed at Dingxi and Qingyang were used to
conduct energy distribution measurements and observations characteristic of semi-arid and semi-
humid farmland ecosystems on the China Loess Plateau. We studied mechanisms by which eco-
environmental factors influence β. Additionally, we investigated responses of physiological and
ecological factors to water and heat exchange under seasonally dry and wet conditions within
each farmland ecosystem. Our results showed that sensible heat flux in the semi-arid farmland
was the main consumer of available energy. In the semi-humid area, latent heat flux in summer
had the dominant role in energy distribution (mean β 0.71). The β in the semi-arid region was
1.5 times higher than that in the semi-humid region during the growing season. β increased with an
increase in the vapor pressure deficit (VPD) and ground–air temperature difference (Ts − Ta), and
decreased significantly with an increase in effective precipitation and soil moisture. The change in
β with environmental factors was more clear-cut in semi-arid areas than in semi-humid areas. The
Priestley–Taylor coefficient (α) and β satisfied a power function law in the growing season. There
was a strong correlation between them, with the coefficients of determination for semi-humid and
semi-arid areas being 0.62 and 0.72, respectively. β decreased with an increase in the normalized
difference vegetative index (NDVI), with this phenomenon being more obvious in the semi-humid
zone (R2 = 0.40). β responded more rapidly to NDVI in the semi-arid area than in the semi-humid
area. There was a negative exponential relationship between canopy stomatal conductance (Gs)
and β, which displayed a stronger declining trend with the increase in Gs in the semi-arid area
than in the semi-humid area. This study provides an important reference for the determination of
land-surface characteristics of semi-arid and semi-humid farmland ecosystems on the Loess Plateau
and for improving parameterization of land-surface processes.

Keywords: Loess Plateau; farmland ecosystem; physiological and ecological factors; Bowen ratio

1. Introduction

The farmland ecosystem is the foundation of the existence and development of human
society, and represents an orderly structure composed of organisms in an environment
that can realize the conversion of energy and matter [1]. In-depth research and scientific
understanding of the influencing factors and regulatory mechanisms of farmland ecosys-
tems can provide high-quality information that may potentially guarantee the sustainable
development of society. Due to the interactions between biogeochemical cycles, climate, soil
available water, and plant physiology, the distributions of sensible and latent heat fluxes in
farmland ecosystems differ [2–4]. Studies have shown that climate change affects the energy
change between the earth and the atmosphere through the water cycle [5–8]. In addition
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to climate change, human activities (such as water conservancy projects and changes in
land utilization) can also alter the water balance, thereby affecting the evapotranspiration
process [5,9,10]. Meteorological and environmental factors, and the development of veg-
etation, can affect the distribution of surface energy during the growing season [11,12],
in which the latent and sensible heat fluxes can change the environmental variables that
affect matter and energy transfer between the atmosphere and the ecosystem. It has also
been found that evapotranspiration in farmland ecosystems is mainly controlled by net
radiation, but the regulation of latent heat transfers by vegetation indexes and canopy
stomatal conductance (Gs) cannot be ignored [13–15]. In addition, vegetation phenology
also affects the partitioning of net radiation to turbulent fluxes and soil heat flux [16–18].

The Bowen ratio (β) is a comprehensive physical index of the land surface climate,
which comprehensively reflects the effects of microclimate and hydrological processes on
ecosystem energy distribution and water use [19]. In previous studies of land–atmosphere
interactions in ecosystems, β has been found to be a very important factor [2,20]. However,
due to changes in regional climate conditions (such as temperature, precipitation, and
soil moisture) [12,21,22], and seasonal differences in the physiological characteristics of
vegetation [13–15], there are often large differences in β of ecosystems [23,24]. AmeriFlux
observations have shown that the monthly average value of β in farmland ecosystems is
between 0.26 and 1.3 [25–27]. Even during a relatively stable growing season, there are
still significant differences in β among different farmland ecosystems [2,28]. For different
ecosystems in the same climate region, there is an obvious contrast in their ability to
regulate water and heat exchange, which is an internal factor leading to an apparent
discrepancy in β. Precipitation is the most important driving factor in this process [2,24]. In
the Loess Plateau, where precipitation fluctuates substantially, the ecological environment is
fragile. The process of water and heat exchange in this region is also extremely sensitive to
climate change [24], which makes β more dependent on the driving effect of environmental
factors. Therefore, studying the seasonal variation in β of the typical farmland ecosystem
of the Loess Plateau is of great significance for better understanding the land–atmosphere
interaction mechanism in semi-arid regions.

The Loess Plateau in China is located within a typical semi-arid and semi-humid
climate zone, which is not only a transitional zone for the East Asian summer monsoon,
but is also positioned at the intersection of the water and heat gradient zones in China [25].
Therefore, the spatial distribution and temporal variation in land surface physical parame-
ters in the Loess Plateau are very significant and highly sensitive to the advance and retreat
of the monsoon and changes in its intensity. Due to the influence of the summer monsoon,
the annual precipitation in this region is relatively concentrated, with about 65% of the
total annual precipitation received from June to September. However, the interannual
variability of precipitation is very large, which leads to visible spatial differences in the
vegetation distribution [29,30]. The seasonal fluctuations of precipitation will undoubtedly
lead to seasonal changes in β, which will cause the water and heat exchange of farmland
ecosystems to display significant dry–wet conversion characteristics in turn [31,32]. The
β and its influence on grassland in the Loess Plateau have been studied in depth [24],
and the evapotranspiration in farmland ecosystems and its environmental impact in this
region are also well understood [33–35]. However, there have been few studies of water
and heat exchange in farmland ecosystems on the Loess Plateau, especially in terms of β
and its influencing factors, despite it being a surface parameter that can comprehensively
reflect the effects of water and heat. This has prevented the interactions between the land
surface and the atmosphere in the farmland ecosystem of the Loess Plateau from being fully
understood, and has prevented an in-depth understanding of water and heat exchange.

This study aimed to identify the effects of environmental factors on β of farmland
ecosystems in different climate regions of the Loess Plateau using experimental land–
atmosphere interaction data for two typical farmland ecosystems in Dingxi and Qingyang,
which are semi-arid and semi-humid regions, respectively. The remainder of this paper is
organized as follows: The study area, data and method employed are described in Section 2.
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The results of physiological and ecological factors relating to water and heat exchange are
investigated briefly in Section 3. The discussion of the results is provided in Section 4. In
Section 5, the conclusions of this paper are presented.

2. Materials and Methods

2.1. Site Description

Dingxi Station (35.58◦N, 104.62◦E) is located in the elevated extension area of the
Loess Plateau, with an altitude of 1896.7 m. Precipitation from June to September accounts
for 66% of total annual precipitation. The mean annual temperature and precipitation are
6.7 ◦C and 386 mm, respectively. The average annual pan evaporation is 1400 mm, and
the annual mean sunshine duration of 2344 h is typical for a semi-arid climate. Qingyang
Station (35.44◦N, 107.38◦E) is located in Dongzhiyuan on the Longdong Loess Plateau at
an altitude of 1421 m and has an average annual temperature and precipitation of 8.8 ◦C
and 562 mm, respectively. Precipitation from June to September accounts for 67% of the
annual total. The average annual pan evaporation is 1470 mm, and the annual average
sunshine duration of 2250 h is typical for a semi-humid climate. During the study, the
principal crops in Dingxi were potatoes and spring wheat, whereas the principal crops in
Qingyang were winter wheat and spring corn. The canopy height of the crops during the
vigorous growth period was approximately 50 cm [34]. Both experimental sites are rain-fed
farmland. Figure 1 shows the specific geographic locations.

Figure 1. Geographical location of the study area. The stars show the Dingxi and Qingyang stations.

2.2. Observation Method and Data Processing

The data used in this paper include turbulence flux data observed by the eddy covari-
ance system, temperature, humidity, and wind gradient data observed by a near-ground
gradient tower, and radiation, soil temperature, and humidity gradient. Conventional
observation data from meteorological stations were also used. The data period of turbulent
flux in Dingxi is August 2016–May 2019; for Qingyang, multi-segment data were used,
such as July 2011–July 2012, May 2013–October 2013, December 2015–May 2016, and May
2018–July 2019. In addition, the observation data of Dingxi and Xifeng meteorological
stations from 1980 to 2010 were used. The installation height and details of the specific
models of the measuring instruments are shown in Table 1.
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Table 1. Measurement instruments and installation height.

Instrument Type
Installation Height

Dingxi Qingyang

Open Path CO2/H2O Gas
Analyzer

Li-7500, Li-Cor
(Lincoln, NE, USA) 2.5 m 3 m

Three-dimensional (3D) sonic
anemometer

CSAT-3, Campbell
(Logan, UT, USA) 2.5 m 3 m

Temperature and relative
humidity probe

HMP45C-L,
Vaisala (Vantaa, Finland) 1, 2, 4, 10, and 16 m 2, 4, 8, and 18 m

Net radiometer CNR4, Kipp and Zoned
(Delft, The Netherlands) 1.5 m 1.5 m

Self-calibrating heat
flux sensor

HFP01SC-L50, Hukseflux
(Delft, The Netherlands) 2, 5, and 10 cm 1, 2.5 and 5 cm

Soil temperature
profile sensor STP01-L50, Hukseflux 0, 5, 10, 20, 40, 50, and 80 cm 0, 5, 10, 20, 40, 60, and 90 cm

Water content reflectometer CS616-L, Campbell 5, 10, 20, 40, 50, and 80 cm 5, 10, 20, 40, 60, and 90 cm

The turbulent flux data were processed by the EdiRe software (v1.5.0.32, Robert
Clement, University of Edinburgh, Edinburgh, UK), which was developed by the University
of Edinburgh for quality control and pre-processing. The operations included wild point
removal, rotation coordinates, turbulence stationarity calculation, and water and CO2 lag
corrections. After quality control, the data were processed into 30 min average results.
After excluding the outliers and precipitation period data, missing data for periods of
less than 6 h were linearly interpolated, whereas missing data for periods of more than
6 h were interpolated by a look-up table method, which was based on the correlation
between sensible heat, latent heat, net radiation, and water vapor pressure deficit (VPD) [36].
In addition, turbulent flux is greatly affected at night [37–40], and using midday data
(09:00–15:00) can make the calculation results more reliable [2,41]. Beijing time was used in
the study.

Due to the lack of station vegetation index observation data, the normalized difference
vegetative index (NDVI) retrieved from the Aqua Moderate Resolution Imaging Spectrora-
diometer (MODIS, Phoenix, AZ, USA) data was used, with a temporal resolution of 16 days
and a spatial resolution of 250 m (https://ladsweb.modaps.eosdis.nasa.gov/search/order/
1/MOD13Q1--61). The NDVI of the experimental site was obtained from the average
values of the four nearest grid points.

2.3. Energy Balance

The surface energy balance can be expressed as:

Rn = H + LE + G + S + Q (1)

where Rn is the net radiation (W/m2), H is the sensible heat flux (W/m2), LE is the latent
heat flux (W/m2), G is the soil heat flux (W/m2), S is canopy heat storage, and Q is the
sum of all additional energy sources and sinks. Typically, Q is neglected as a small term.
McCaughey [42] and Moore [43] suggested that canopy heat storage had a great effect on
the degree of energy balance closure when the vegetation height was more than 8 m. Hence,
the canopy heat storage term (S) was not taken into account in this study. The two principal
methods for evaluating the degree of surface energy closure are the energy balance ratio
(EBR) and the ordinary least squares (OLS) methods.

The EBR determines the degree of surface energy closure by calculating the ratio of
turbulent flux to available energy during the study period:

EBR =
∑(H + LE)
∑(Rn − G)

(2)
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For EBR = 1, the surface energy is in an ideal equilibrium state. This method is ideal
for evaluating the long-term energy closure state.

The OLS method is a simple regression model based on a hypothesis. It is based
on the principle of the least squares method and is widely used in parameter estimation.
When the sum of squares between the estimated value of the model and the experimental
observation is at a minimum, the estimated value model is considered the optimal fitting
model, and can describe the relationship between turbulent flux and available energy to
the greatest extent. The slope of the regression model reflects the degree of surface energy
closure. When the intercept of the regression curve is 0 and the slope is 1, the surface energy
reaches the ideal closed state. Figure 2 shows the surface energy closure obtained by the
OLS method. The black dotted line is the ideal state, and the grey shadow part (the slope
ranges from 0.49 to 0.81) is the result reported by Li et al. [44] in evaluating the energy
closure of flux observations of the terrestrial ecosystem in China. The slope calculated by
the OLS method is closer to 1, indicating that the degree of surface energy closure is higher.

Figure 2. Surface energy closure obtained by the OLS method.

2.4. Soil Heat Flux Correction

The soil heat flux can be corrected to the surface value by the temperature integral
method using the soil heat flux observed at 5 cm and soil temperatures at depths of
0 and 5 cm [45,46]:

G = G5 +
ρscs

Δt

z=0

∑
z=5cm

[T((zi, t) + Δt)− T(zi, t)]Δz (3)

where G is the soil heat flux corrected to the surface (W/m2); G5 is the soil heat flux at 5 cm
measured by the heat flux observation board (W/m2); T(zi, t) is the soil temperature (◦C)
at depths of 0 and 5 cm; and ρscs is the volumetric heat capacity of the soil, which was
1.24 × 106 J/

(
m3·K) in the calculation. The soil temperature at 0 cm can be converted from

surface long-wave radiation as follows:

T0 =

(
R↑

L −
(
1 − εg

)
R↓

L
εgσ

)1/4

(4)
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where R↑
L and R↓

L are the upward and downward long-wave radiation from the surface
(W/m2), respectively; εg is the surface specific emissivity (0.96); and σ is the Stefan–

Boltzmann constant (5.67 × 10−8 W/
(

m2·K2
)

).

2.5. Bowen Ratio

The Bowen ratio (β) comprehensively reflects the impact of climate and hydrological
processes on the energy distribution of land surface ecosystems and is expressed as the
ratio of the sensible and latent heat fluxes:

β =
H
LE

(5)

For β > 1, the sensible heat flux plays a dominant role in the energy distribution; for
β < 1, the latent heat flux plays the leading role.

2.6. Overall Land Surface Parameters

Canopy resistance (Rs), dynamic resistance (Ra), and climate resistance (Ri) are im-
portant parameters that affect the study of land-atmosphere interaction [14]. Rs is obtained
by the Penman–Monteith equation [47]:

Rs =
1

Gs
=

ρcpVPD + RaLE(Δβ − γ)

γLE
(6)

where Gs is stomatal conductance (m/s); ρ is air density
(
kg/m3); cp is the specific heat of

air (1005 J/(kg·K)); VPD is the saturated vapor pressure deficit (kPa); LE is the latent heat
flux (W/m2); Δ is the slope of saturated vapor pressure curve (kPa/K); β is the Bowen ratio;
γ is the dry and wet bulb constant (kPa/K); and Ra is the aerodynamic impedance at the
height of the canopy (s/m). Ra can be calculated by the Monteith–Unsworth equation [48]:

Ra =
u
u2∗

+ 6.2u−0.67∗ (7)

where u is the wind speed at 2 m (m/s); and u∗ is the friction velocity (m/s). Δ can be
calculated by the following formula:

Δ =
4098

[
0.6108exp

(
17.27T

T+237.3

)]
(T + 237.3)2 (8)

where T is the air temperature (K).
Climatic resistance Ri reflects the degree of atmospheric demand for moisture under

different surface available energy conditions [14]:

Ri =
ρcpVPD

γ(Rn − G)
(9)

Using Equations (6), (7), and (9), it can be shown that Rs, Ra, and Ri satisfy the
following relationship:

Rs

Ra
= k0 + k

√
Ri
Ra

(10)

where k0 and k are empirical coefficients that depend on vegetation physiology and soil
moisture status. For a clearer understanding of the impact of vegetation physiological pro-
cesses on the water and heat exchange of the ecosystem, the normalized surface resistance
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Rs∗ is defined to eliminate the difference in aerodynamic resistance and climate resistance
caused by local changes in the underlying surface [23]:

R∗
s =

Rs√
RiRa

(11)

In addition, the Priestley–Taylor coefficient (α) can reflect the influence of environmen-
tal meteorological elements and vegetation physiological factors on ecosysterm evapotran-
spiration:

α =
LE

LEeq
(12)

where LEeq (W/m2) is the latent heat flux on a wide surface that is not restricted by
moisture, defined as:

LEeq =
Δ(Rn − G)

Δ+ γ
(13)

The value of α can be used to determine whether the evapotranspiration of the ecosys-
tem is restricted by water conditions. When α < 1, the evaporation of the ecosystem is
limited by water. When α > 1.26, there is no water stress in the ecosystem, and the factor
affecting evaporation is only surface available energy (Rn − G) [49].

3. Results

3.1. Environmental Factor Variations

Figure 3 shows the seasonal variation in the characteristics of the environmental factors
at Dingxi and Qingyang. The temperatures at the two stations had unimodal distributions
(Figure 3(a1,b1)), reaching a maximum in midsummer and a minimum in January. The
average temperature (Ta) at Dingxi was 0.2 ◦C higher than the 30 y (from 1988–2017)
historical average (6.9 ◦C) during the experimental period. The monthly average minimum
and maximum temperatures were −8.63 and 22.61 ◦C, respectively. Ta at Qingyang (10.2 ◦C)
was 0.5 ◦C higher than the historical average; the average monthly minimum and maximum
temperatures were −2.93 and 22.32 ◦C, respectively. During the experiment, maximum
monthly precipitation in Dingxi and Qingyang was 148.1 (August 2017) and 246.2 mm (July
2018), respectively. Considering the monthly average precipitation over the past 30 years,
the dry months at Dingxi station (April–October) accounted for 57.9% of the total; the dry
months at Qingyang accounted for 35.0%. Due to the summer monsoon, more than 65% of
the precipitation at the two stations was concentrated from July to September. Soil moisture
greater than 40 cm in the tillage layer is very sensitive to precipitation. The monthly average
VPD at Dingxi Station was 0.78 kPa and was largest in July 2017 (1.14 kPa) and smallest
in January 2018 (0.21 kPa). The monthly average VPD at Qingyang Station was 0.69 kPa,
with minimum and maximum values in November 2015 (0.13 kPa) and July 2019 (1.22 kPa),
respectively. During the growing season, the average VPD values in Dingxi and Qingyang
were 1.10 and 0.89 kPa, respectively. The seasonal variation patterns of the NDVI in Dingxi
and Qingyang were basically the same. Vegetation growth and the NDVI increased in
spring as precipitation and temperature gradually increased. The annual average values of
the NDVI in Dingxi and Qingyang were 0.31 and 0.50, respectively; the respective growing
season values were 0.40 and 0.56. The Gs trend was very similar to that of the NDVI, with
an annual maximum from June to August. Precipitation was sufficient during the summer
monsoon from June to August, and vegetation photosynthesis and transpiration were the
strongest, which made the Gs reach the maximum. Vegetation physiological factors had the
greatest impact on ecosystem evapotranspiration at this time, resulting in the peak value of
α (Figure 3(a2,b2)).
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Figure 3. Seasonal and interannual variations of eco-environmental factors at Dingxi (a1,a2) and
Qingyang (b1,b2) stations. Ta is the monthly mean temperature, SWC is the soil water content, VPD
is the vapor pressure deficit, Rainfall represents monthly precipitation, Gs is the canopy stomatal
conductance, α is the Priestley–Taylor coefficient, and NDVI is the normalized vegetation index.

3.2. Energy Balance Characteristics

The degree of energy closure is one of the most important criteria used to measure
the quality and reliability of turbulent flux observation data [49]. The linear regression
relationship between turbulent fluxes (LE + H) and available energy (Rn − G) is usually
adopted to evaluate the reliability of eddy correlation system observations [50,51]. A large
number of studies have shown that the energy imbalance observed by the eddy correlation
method is between 10% and 30% [49,52]. Table 2 presents the energy closure of the Dingxi
and Qingyang flux stations in the daytime, at night, and throughout the day. From the OLS
results, the energy closure at both Dingxi and Qingyang was greater in daytime than that
at night. This is due to the strong solar radiation during the day. The turbulent air is heated
by the surface warming in the near-ground atmosphere, and the exchange is therefore
greater [49,53], resulting in a high degree of energy closure. At night, due to the effect
of stable atmosphere and low wind speed, the turbulent mixing is insufficient, resulting
in low closing energy [12,54]. The increased uncertainty of net radiation measurement at
night is also one of the reasons for the low energy closure [55]. When analyzing the degree
of energy closure of flux observation systems, it has been reported that the energy balance
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components of the land surface are not in the same physical measurement plane, which is
also the objective reason for the phenomenon of energy non-closure [56].

Table 2. Characteristics of the energy balance in different regions.

Site

Midday Night All Day

Sample
Numbers

OLS
EBR Sample

Numbers

OLS
EBR Sample

Numbers

OLS
EBR

Slope R2 Slope R2 Slope R2

Dingxi 10,516 0.65 0.68 0.89 11,190 0.18 0.05 0.03 40,350 0.76 0.81 0.68
Qingyang 5149 0.71 0.71 0.81 7773 0.11 0.05 0.49 24,064 0.73 0.85 0.60

The OLS method commonly used in energy balance analyses is a simplified processing
method based on the assumption of “no random error”. The residual frequency distribution
can be used to determine whether the model satisfies the hypothesis. Figure 4 shows the
residual frequency distribution of the research site during the daytime. It can be seen
that both residual density curves followed a normal distribution, indicating that the linear
model obtained by the OLS method satisfies the assumption of “no random error”. For
observation data with a longer time scale, the EBR can balance the influence of error on
energy closure. A large number of studies have shown that the energy closure calculated
by this method is generally higher than that calculated by the OLS method [12]. It can
be seen from Table 2 that the magnitude of the whole-day energy closure of Dingxi and
Qingyang stations was between that of day and night, i.e., the closure of surface energy in
daytime is greater than that during the whole day and at night. Compared with Li et al. [44],
who used the OLS (0.49–0.81) and EBR (0.58–1.00) methods to evaluate the energy closure
of ChinaFlux sites, the energy closure of the research site used in this study was slightly
higher. This indicates that the accuracy of the observation data was high, and was suitable
for a study of water and heat exchange in farmland ecosystems.

Figure 4. Frequency distribution and probability density curve of the energy balance residual.
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3.3. Diurnal Cycle and Seasonal Variation in Energy Flux

When the annual average daily change in energy flux (Figure 5) was considered,
the difference in the daily peak of net radiation between Dingxi and Qingyang was only
14.3 W/m2 (Table 3). The daily peak values of the sensible heat flux were almost the same
(120.3 and 122.3 W/m2 in Dingxi and Qingyang, respectively). However, the difference
in the latent heat flux between the two locations was large. The daily peak value of the
latent heat flux in Qingyang in the semi-humid climate region was almost twice than that
in Dingxi in the semi-arid climate region. The daily peak soil heat flux in Qingyang was
approximately 2/3 of the Dingxi value. In addition, the latent heat flux (20.95 W/m2) in the
arid region of the Loess Plateau was less than the sensible heat flux (28.98 W/m2), whereas
the latent heat flux in the semi-humid region was larger than the sensible heat flux, with
values of 41.41 and 28.50 W/m2, respectively. According to the ratio of turbulent flux to net
radiation (Figure 5e,f), the sensible heat flux in Dingxi was higher than the latent heat flux,
with an average difference of 10.3%. In Qingyang, on the contrary, the average difference
between the proportion of latent heat flux and the proportion of sensible heat flux was 7.6%.
As a consequence, the sensible heat flux played a dominant role in the energy distribution
in the semi-arid region of the Loess Plateau, whereas the latent heat flux was dominant in
the semi-humid region.

Figure 5. Annual average diurnal variation in energy flux (a–d), and the ratio of H, LE, and G to Rn
at midday at Dingxi (e) and Qingyang (f). Rn is net radiation, H is the sensible heat flux, LE is the
latent heat flux, and G is the soil heat flux.

116



Remote Sens. 2022, 14, 1897

Table 3. Annual average daily peak values and average daily values of the energy components.

Site
Rn (W/m2) LE (W/m2) H (W/m2) G (W/m2)

Peak Mean Peak Mean Peak Mean Peak Mean

Dingxi 334.10 67.29 64.14 20.95 120.29 28.98 157.88 6.08
Qingyang 348.37 71.74 125.83 41.41 122.32 28.50 96.93 1.62

Figure 6 shows the daily distribution characteristics of the energy flux on a seasonal
scale. The net radiation in the semi-arid and semi-humid regions of the Loess Plateau
(represented by Dingxi and Qingyang) reached a maximum in summer, with daily average
radiation intensities of 109.9 and 119.8 W/m2, respectively, and a minimum in winter, with
average values of 25.3 and 26.2 W/m2, respectively (Table 4). The daily peak values of
net radiation in Dingxi and Qingyang occurred at 13:00, with summer values of 440.2
and 460.22 W/m2 and winter values of 226.52 and 240.9 W/m2, respectively. In summer
and autumn, the latent heat flux at Qingyang in the semi-humid area accounted for 61.8%
and 77.7% of the net radiation, respectively; whereas the sensible heat flux accounted
for 25.5% and 33.8% of the net radiation, respectively. The latent heat flux at Dingxi in
the semi-arid area in summer and autumn accounted for 32.9% and 41.3% of the net
radiation, respectively; whereas the sensible heat flux accounted for 37.8% and 36.3%,
respectively. The maximum value of soil heat flux at Dingxi and Qingyang appeared
in summer, 125.82 W/m2 and 214.49 W/m2, respectively. Compared with other energy
components, soil heat flux has a larger nighttime variability. This is related to two factors:
the change in the direction of soil heat transfer caused by the process of soil freezing
and thawing [57]; and the different energy intensity of soil radiation to the atmosphere
caused by the diurnal variation in ground temperature difference in different seasons.
Zhang et al. [58] reported a similar conclusion in the Loess Plateau.

Figure 7 shows the seasonal variation in energy flux in Dingxi and Qingyang. The net
radiation in the semi-arid and semi-humid areas of the Loess Plateau had single-peak distri-
butions, with maximum values in July (111.2 W/m2) and June (125.0 W/m2), respectively,
and minimum values in December (21.6 and 19.5 W/m2, respectively). Sensible heat flux
and latent heat flux are not only restricted by net radiation, but are also affected by surface
vegetation and soil moisture. Dingxi and Qingyang are bare land in the non-growing
season, where precipitation is less than 20% of the annual total. Therefore, whether it is
a semi-arid or semi-humid area of the Loess Plateau, the ratio of sensible heat flux to net
radiation is relatively large (Figure 7(a1,a2)). For the semi-arid area of the Loess Plateau,
with the increase in net radiation from March to May, and under the constraint of water
conditions, net radiation is mainly transformed into sensible heat flux. Nevertheless, as the
summer monsoon advances, the region that is located at the northern edge of the typical
summer monsoon transition zone is affected by monsoon precipitation; as a result, the
latent heat flux from June to September is generally equivalent to the sensible heat flux
(Figure 7(a2)). However, due to the large fluctuation in monsoon precipitation, this area
often experiences the phenomenon in which sensible heat and latent heat flux alternately
dominate the energy distribution. In contrast, the unimodal distribution of the latent heat
flux in Qingyang in the semi-humid region of the Loess Plateau was more prominent than
that in Dingxi in the semi-arid region, with a peak value of 77.9 W/m2 in July. The experi-
mental results showed that the latent heat flux in the growing season in the semi-humid
region of the Loess Plateau was 2.4 times than that of the sensible heat flux. The average la-
tent and sensible heat fluxes were 69.4 and 29.1 W/m2, respectively. In the same period, the
latent and sensible heat fluxes in Dingxi were similar (33.1 and 39.4 W/m2, respectively).
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Figure 6. Seasonal average diurnal variation in the energy flux (a–d). Columns 1, 2, 3, and 4 represent
spring, summer, autumn, and winter, respectively.
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Table 4. Peak and daily average values of the seasonal average daily energy fluxes.

Energy Component
(W/m2)

Spring Summer Autumn Winter

Dingxi Qingyang Dingxi Qingyang Dingxi Qingyang Dingxi Qingyang

Rn Peak 345.02 376.71 440.16 460.16 362.38 348.03 226.45 240.88
Mean 67.73 77.14 109.87 119.84 78.76 75.02 25.34 26.20

LE Peak 39.31 82.61 103.10 169.41 101.19 168.67 22.55 21.63
Mean 11.77 25.70 36.00 74.11 32.54 58.31 5.23 6.64

H Peak 148.75 162.54 143.10 112.81 107.21 110.68 93.27 118.66
Mean 34.85 34.02 41.31 30.49 28.59 25.33 17.93 21.93

G Peak 173.24 109.18 214.49 125.82 124.15 97.69 136.16 56.19
Mean 10.34 6.68 20.07 8.67 1.24 −2.29 −3.29 −6.94

Figure 7. Seasonal variation in the energy components (a1,a2) and the ratio of H, LE, and G to Rn in
Dingxi (b1) and Qingyang (b2).
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In addition, the cumulative fraction curves of the sensible heat flux in Qingyang during
the whole year and the growing season basically overlapped, when the cumulative fraction
reached 0.6 (Figure 8a). When the cumulative fraction was about 0.4, the annual sensible
heat flux was basically consistent with the latent heat flux in Dingxi. The cumulative fraction
curves of the sensible and latent heat fluxes in the growing season in the two regions show
that the sensible and latent heat fluxes in Dingxi in the semi-arid region were basically
the same for cumulative fractions > 0.6, whereas the sensible heat flux in Qingyang in the
semi-humid region was almost half of the latent heat flux. These results were consistent
with the fluctuation in the sensible and latent heat fluxes in Figure 8b. The average latent
heat flux (31.2 W/m2) was less than the average sensible heat flux (34.1 W/m2) in the
semi-arid area during the growing season; contrary results were found for the semi-humid
area. The interquartile ranges of sensible and latent heat fluxes in semi-arid regions are
23.27–43.42 W/m2 and 21.00–42.74 W/m2, respectively, and in sub-humid areas the ranges
are 22.46–36.72 W/m2 and 42.45–70.07 W/m2, respectively. Zhang et al. [58] also showed
that the summer latent heat and sensible heat flux in the semi-arid area of Northwest China
are equivalent, and the summer latent heat flux in the semi-humid area is about twice the
sensible heat flux.

Figure 8. Cumulative fraction curve (a) and box plot (b) of the sensible and latent heat fluxes in
Dingxi and Qingyang.

The soil heat flux changed from negative to positive from January to February, and
from positive to negative from August to September (Figure 7(a2,b2)). This shows that the
conversion of the heat source and heat sink occurred in the soil during these two periods.
The soil is the conversion period of the heat sink and heat source in spring and summer.
In winter, the soil heat flux is transferred from the deep layer to the shallow layer, which
serves as a heat source to heat the atmosphere. Yue et al. [45] obtained consistent results in
the study of semi-arid grassland in the Loess Plateau.

3.4. Bowen Ratio Variation

Figure 9 shows the seasonal variation in β. Overall, β of the two stations first de-
creased, then fluctuated slightly, and finally increased. The seasonal average β at Dingxi
(6.58) and Qingyang (5.85) was highest in the winter and lowest in the summer (2.51 and
0.71, respectively). The growing season β at Dingxi fluctuated around 1, whereas that at
Qingyang was < 1. Furthermore, β of both stations was low, with multi-year mean values of
2.11 and 0.77, respectively. Precipitation at Dingxi (320 mm) was 1.4 times that of Qingyang
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(446 mm) during the same period, and β in the semi-arid area was 2.7 times that of the
semi-humid area.

Figure 9. Seasonal variation in β in Dingxi (a) and Qingyang (b).

3.5. Environmental and Ecological Controls on Bowen Ratio

To fully understand the influence of environmental impacts on β of farmland ecosys-
tems under dry and wet conditions on the Loess Plateau, the rainfall data from Dingxi
and Qingyang Meteorological Stations in the past 30 years were used to divide the growth
period into dry and wet months. Months with monthly precipitation greater than the
average of the same period over many years were defined as wet months, whereas the
opposite pattern indicated dry months. It was found that β was mainly affected by Ts − Ta,
VPD, shallow SWC, and precipitation. Figure 10 and Table 5 show the relationship between
β and environmental factors on a monthly scale. The regularity between β and Ts − Ta in
the semi-humid region (R2 = 0.51) was better than that in the semi-arid region (R2 = 0.36)
whether under dry or wet conditions (Table 5). Under drought conditions, the correlation
between VPD and β in the semi-humid region was more significant (R2 = 0.44), and the co-
efficient of determination in the semi-arid area was only 0.29. Under humid conditions, the
opposite result was observed (Figure 10b). The relationship between effective precipitation
(defined as the daily precipitation amount that exceeded 0.5 mm in winter and 4.0 mm in
other seasons [28]) and β was more significant, and β decreased significantly as effective
precipitation increased (Figure 10c). As can be seen from the scatter points in Figure 10c,
under dry conditions, β decreased more rapidly with increased precipitation in the semi-
arid area than in the semi-humid area. Figure 10d shows the relationship between β and
SWC; the decrease with SWC was more prominent in semi-arid areas. Under the humid
condition, the goodness of fit in the semi-humid region was the highest, reaching 0.63.
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Figure 10. Relationship between environmental factors and β under different moisture conditions.
The solid and hollow dots represent wet and dry conditions, respectively. The red and blue dashed
line are the relationships of (a) Ts − Ta, (b) VPD, (c) effective precipitation, (d) SWC, and β in Dingxi
and Qingyang, respectively.

Table 5. Statistical relationships between environmental factors and the Bowen ratio under dry and
wet conditions.

Environmental
Factors

Equation
Parameters

Dingxi Qingyang

Dry Wet Dry Wet

Ts − Ta (°C)

y = aebx y = aebx y = aebx y = aebx

a 1.27 0.78 0.39 0.26
b 0.24 0.11 0.09 0.13

R2 0.36 0.59 0.51 0.58
p <0.01 <0.01 <0.01 <0.01

VPD (kPa)

y = axb y = aebx y = axb y = aebx

a 2.18 0.46 0.66 0.39
b 1.62 1.45 1.76 0.65

R2 0.29 0.38 0.44 0.22
p <0.05 <0.05 <0.05 <0.05

Effective
precipitation

(mm)

y = aebx y = aebx y = aebx y = aebx

a 4.25 1.27 2.16 1.05
b −0.02 −0.004 −0.03 −0.01

R2 0.37 0.27 0.80 0.60
p <0.01 <0.01 <0.01 <0.01

SWC
(m3/m3)

y = aebx y = aebx y = aebx y = axb

a 15.23 2.49 2.48 0.12
b −11.08 −4.24 −5.92 −1.10

R2 0.19 0.33 0.36 0.63
p <0.05 <0.01 <0.01 <0.01
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The relationship between NDVI–Gs, Gs–α, and α–β was determined to explore the
influence of ecological factors on the hydrothermal process. Gs increased exponentially
as the NDVI increased. When the NDVI was the same in both areas, Gs in the semi-arid
area was smaller than in the semi-humid area, and the correlation between NDVI and Gs
in the semi-humid area was more significant (R2 = 0.57). The regulation of transpiration
by Gs is reflected by the Priestley–Taylor coefficient. Figure 11b shows that α increased
logarithmically with Gs. The increasing trend of α in semi-humid areas as Gs increased
is more significant than that in the semi-arid area, with tangent slopes of 0.19 and 0.26,
respectively. In addition, β decreased exponentially as α increased; this trend was more
pronounced in the semi-arid area (Figure 11c).

Figure 11. Relationship between (a) the NDVI and Gs, (b) Gs and α, (c) α and β on a monthly scale.

We produced path diagrams of the Dingxi and Qingyang stations to further analyze
the direct and indirect effects of various influencing factors on β (Table 6). On a daily
scale, eco-environmental factors at Dingxi and Qingyang explained 60% and 58% of the
change in β, respectively. From an impact factor perspective, β in the semi-arid area was
primarily influenced by the direct effect of NDVI and the indirect effect of SWC (path
coefficients of −0.68 and −0.41, respectively). Ta and NDVI in the semi-humid area were
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the most important direct and indirect influencing factors, with contributions of 48% and
17%, respectively. In addition, SWC had a more significant overall regulatory effect on
β in the semi-arid area, with a total path coefficient of −0.63. In the semi-humid area, β
was primarily affected by Ta, with a total path coefficient of −0.53. It is worth noting that
the effect of Ta on Bowen ratio in the semi-arid and semi-humid regions was completely
opposite. This phenomenon can be explained by the influence of the mechanism found by
Zhang et al. [59] in the transition zone affected by the summer monsoon, which is related
to Ta and land surface evapotranspiration. Under the humid condition, the increase in
temperature significantly increases the evapotranspiration, whereas under the drought
condition, the increase in temperature decreases the land surface SWC, thus inhibiting the
surface evapotranspiration. Yue et al. [33] found that the effects of Ta in dry and wet years
on evapotranspiration were similar by studying the long series of observation data of the
semi-arid grassland ecosystem on the Loess Plateau.

Table 6. Path coefficient between Bowen ratio and impact factor.

Site
Correlation

Effect
NDVI Ta VPD SWC

Dingxi
Direct −0.68 0.42 0.11 −0.21

Indirect 0.12 −0.36 0.39 −0.41
Total −0.57 0.06 0.51 −0.63

Qingyang
Direct 0.33 −0.90 0.54 −0.35

Indirect −0.84 0.37 −0.26 −0.01
Total −0.51 −0.53 0.28 −0.36

To comprehensively assess the effects of farmland ecosystem Gs, near-ground aero-
dynamic characteristics, and the local climate background on β, Cho et al. [24] defined
the normalized surface impedance (Rs∗). Figure 12a shows the relationship between β
and the monthly mean Rs∗. There was a significant linear relationship between the β and
Rs∗ in the farmland ecosystem of the Loess Plateau, with a slope of 0.49. As expected, α
decreased more slowly as Rs∗ increased in the semi-arid region than in the semi-humid
region due to the growing season. The goodness of fit in the two regions was basically the
same (R2 = 0.81).

Figure 12. Relationships between the normalized surface impedance (Rs∗) and (a) β and (b) α

on a monthly time scale. The gray dotted line in the figure represents the overall trend of the
above relationship.
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4. Discussion

4.1. Bowen Ratio Variation

β comprehensively reflects the wet and dry conditions of an ecosystem. A β of 1 is
usually used as the critical value for assessing dry and wet conditions in an ecosystem [58].
Figure 9 indicates that β in the Loess Plateau was extremely sensitive to climate fluctuations;
semi-arid areas represented by Dingxi were mostly dry. β still fluctuated around 1 in
summer when precipitation was relatively concentrated. Thus, the land surface ecosystem
in the region was largely on the border of the dry and slightly wet areas and was primarily
in a state of drought in winter and spring. The fluctuation in β at Dingxi in the semi-
arid area during the growing season was more significant than that of Qingyang in the
semi-humid area. This was due to the low annual total precipitation in this area and the
large precipitation variability during the summer monsoon, which led to prominent non-
uniformity in the spatio-temporal distribution of soil moisture in the underlying surface
and quickly transformed the surface energy distribution. In addition, the precipitation
in the semi-humid area was 1.4 times higher than that in the semi-arid area; however, β
of 2.7 was higher in the semi-arid area than in the semi-humid area. Thus, the β—which
reflects the comprehensive effect of land surface water and heat—is more sensitive than
relative precipitation in the transition zone from the semi-humid to semi-arid regions of
the Loess Plateau.

Huang et al. [60] found that climate change aggravates drought in semi-arid regions of
East Asia and humidifies semi-arid regions of North America. Our findings are comparable
with β (0.26–0.36) in a farmland ecosystem observed by AmeriFlux [26–28]. The ratio in the
farmland ecosystem in the Loess Plateau was approximately 2–3 times higher than that in
similar climate regions of North America, indicating that the degree of water stress of the
farmland ecosystem in the Loess Plateau is higher than that in North America. This also
means that the impact of climate change, especially drought, on the ecosystem of the Loess
Plateau in China is greater than that in North America.

4.2. Influence of Environmental and Ecological Factors on the Bowen Ratio

Solar radiation [61], rainfall dynamics, and irrigation [60] affect the water potential
gradient and surface resistance, and change the soil moisture and evaporation composition
of LE, thus impacting β [3,62]. For the same climatic region, β is more sensitive to the
changes in Ts − Ta under arid conditions. Further analysis showed that β decreased
with an increase in SWC. This trend was more prominent in semi-arid areas, because the
land surface parameters in semi-arid areas were more sensitive to changes in SWC [34].
Effective precipitation indirectly affects energy distribution by affecting the content of
shallow soil moisture (Figure 10c) [28]. Comparing the relationship between β and effective
precipitation in semi-arid and semi-humid regions of the Loess Plateau, it was found that
the response speed of β to effective precipitation is faster than that of the latter. Thus,
the change in the effective precipitation in this region had an important impact on the
key physical parameters of the land surface ecosystem, and regulated the water and heat
exchange of the ecosystem through ecological factors. In this study, the change in β with
environmental factors was clearer in semi-arid areas than in semi-humid areas; further, the
response of β to environmental factors was more severe under dry conditions than under
humid conditions.

Ecological factors are the principal regulators of ET and affect the process of energy
distribution through canopy conductance. Evapotranspiration is also closely related to
vegetation growth [20,61]. Yue et al. [28] indicated that the NDVI regulated transpiration
in the ecosystem by affecting Gs, which in turn had an important regulatory effect on
β. Differences between climatic regions with various vegetation growth statuses lead to
differences in the correlation between the NDVI and Gs. The ecosystem was less affected
by water stress in the semi-humid area than in the semi-arid area, and the growth state
of vegetation was better. Because vegetation transpiration is very sensitive to stomatal
impedance, the intensity of transpiration increases as Gs increases. In theory, when Gs

125



Remote Sens. 2022, 14, 1897

reaches a critical value, α tends to reach equilibrium as Gs increases; thus, the magni-
tude of evapotranspiration is not limited by Gs, and vegetation transpiration reaches a
maximum [63]. McHaughton and Spriggs [64] reported the theoretical critical value of
ecosystem Gs (12–16 mm/s). Yue et al. [28] found that the critical value of Gs in semi-arid
grasslands on the Loess Plateau was 8.2 mm/s. However, this study did not find an obvious
Gs threshold in the farmland ecosystem in the Loess Plateau, indicating an ecosystem under
water stress. As Gs increased, the α value in the semi-arid area increased less than in
the semi-humid area, indicating that ecological factors in the semi-arid area had a more
prominent inhibitory effect on evapotranspiration.

4.3. Biometeorological Controls on the Bowen Ratio

The water and heat distributions of farmland ecosystems in different climatic regions
are restricted by different influencing factors. For semi-humid areas, the energy distribution
is affected by the air temperature, which indicates the type of energy constraint. However,
the hydrological conditions of β are more significant in semi-arid areas and show the char-
acteristics of water restriction. Because the surface of the semi-humid area was relatively
humid and the vegetation grew well, the increase in Ta promoted surface evaporation and
vegetation transpiration, resulting in the latent heat flux being the dominant energy distri-
bution process. The surface was dry in the semi-arid area, and therefore the lower SWC
inhibited soil evaporation and vegetation transpiration, and energy distribution through
the sensible heat flux played the leading role in the increase in β. The effect of Ta on β was
the opposite in the semi-arid and semi-humid regions. This phenomenon is related to Ta
and land surface evapotranspiration [32,59]. Under humid conditions, a temperature in-
crease significantly increases evapotranspiration; under drought conditions, a temperature
increase decreases the land surface SWC, thus inhibiting surface evapotranspiration.

In this study, Rs∗ was used to show the consistencies and differences among dif-
ferent climatic zones of farmland ecosystems on the Loess Plateau. The consistency is
reflected in the relationship between Rs∗ and β, which was significantly linear (Figure 12a).
Fraedrich et al. [65] found that Rs∗ was larger when the surface was dry, that the physiolog-
ical activity of vegetation was weak, and that the Bowen ratio was accordingly larger. Cho
et al. [24] analyzed AmeriFlux observation data and found a positive correlation between
β and Rs∗, which is very sensitive to the physiological vegetation processes. The slope of
the regression equation between β and Rs∗ was 0.21 (R2 = 0.65). Yue et al. [28] found that
the slope of β and Rs∗ in the semi-arid grassland of the Loess Plateau was 0.34 (R2 = 0.95).
The slope of the regression equation for the relationship between β and Rs∗ of the farmland
ecosystem in the Loess Plateau was 0.49 (R2 = 0.91), which indicates that the comprehen-
sive influence of the eco-environmental factors of the farmland ecosystem on the Loess
Plateau led to a larger β than that of the grassland ecosystem in this region. Therefore, the
effect of water stress on the farmland ecosystem is more serious than that on the grassland
ecosystem. Figure 12b shows the difference between the semi-arid and sub-humid regions
and the relationship between α and Rs∗. A significant negative correlation between the
two was found in the semi-arid farmland ecosystem of the Loess Plateau. For the same α

value, the Rs∗ of the semi-arid area was greater than that of the semi-humid area, indicating
that Rs∗ increased as the aridity of the regional climate increased. Additionally, Rs∗ had a
stronger limiting effect on evapotranspiration in semi-arid areas.

5. Conclusions

Under the background of global change, differences in precipitation caused by the
duration of the dry and wet seasons in different climate regions are likely to be enhanced.
The Loess Plateau in China has both semi-arid and semi-humid climate zones, and it is
located in the transitional zone of the East Asian summer monsoon, in which the seasonal
variation in precipitation is particularly obvious. Due to the intensity of the monsoon and
its advancing northern edge, the land surface processes in the farmland ecosystem of this
region display large interannual and seasonal changes. In particular, β, which characterizes
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the intensity of land surface water and heat exchanges, is very sensitive to environmental
factors. The precipitation in Qingyang during the growing season was 1.4 times that in
Dingxi, but the Bowen ratio in Dingxi was 2.7 times that in Qingyang, indicating that the
land surface water and heat exchanges on the Loess Plateau were more sensitive than the
precipitation variations. In addition, the farmland ecosystem of the Loess Plateau was more
affected by water stress than farmland ecosystems in North America, and the impact of
drought on the ecosystem in this region was also greater than in North America. According
to the experimental observations, β in the Loess Plateau was extremely sensitive to climate
fluctuations, and most of the time in the semi-arid region it indicated a dry state. Even
during the summer monsoon, the regional land surface ecosystem was subject to water
stress. The fluctuation in β around 1 indicated that the semi-arid region of the Loess Plateau
was on the borderline of dry and slightly wet conditions for long periods. Compared with
the semi-humid region of the Loess Plateau, there was less annual total precipitation in the
semi-arid region and the precipitation variability was larger during the summer monsoon,
which led to obvious fluctuations in the contributions of the latent and sensible heat fluxes
to the energy distribution; this was a factor affecting the stability of β in the semi-arid
region of the Loess Plateau during the summer monsoon.

The main environmental factors affecting β of the farmland ecosystem under differ-
ent dry and wet conditions on the Loess Plateau are Ts − Ta, VPD, shallow SWC, and
precipitation. The positive correlation between β and Ts − Ta in the Loess Plateau was
stronger in the semi-humid region than in the semi-arid region. Under drought conditions,
the correlation between VPD and β in the semi-humid area was more significant. β of
the farmland ecosystem in this region decreased with the increase in SWC, especially in
semi-arid areas, because the land surface water and heat exchanges in semi-arid areas were
more sensitive to changes in SWC. Ecological factors regulated evapotranspiration through
canopy conductance, which then affected β. The NDVI controlled the transpiration process
within the ecosystem by affecting Gs, and then played an important role in regulating β of
the ecosystem. Theoretically, when Gs reaches a critical value, α tends to remain stable with
a further increase in Gs, and the transpiration of vegetation reaches a maximum at this point.
According to our observations, there was no obvious threshold for the farmland ecosystem
on the Loess Plateau, but previous studies have found that there is a sensitivity threshold
for Gs in the semi-arid grassland on the Loess Plateau, demonstrating that the farmland
ecosystem in this region is in a state of water stress. Therefore, from the response of the land
surface water and heat exchange processes to the summer monsoon, restoring farmland to
grassland in the Loess Plateau may reduce the demand for water evapotranspiration and
help to maintain the stability of the regional ecosystem. A path analysis showed that NDVI
and SWC had obvious direct and indirect effects on β in the semi-arid area, whereas β in
the semi-humid area was directly and indirectly affected by Ta and NDVI. The influence of
Ta on β in the semi-humid and semi-arid regions had the opposite effect. An increase in
temperature in the semi-humid region significantly increased evapotranspiration, whereas
an increase in temperature in the semi-arid region decreased the land surface SWC and
inhibited surface evapotranspiration.
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Abstract: Actual evapotranspiration (ETa) is important since it is an important link to water, energy,
and carbon cycles. Approximately 96% of the Qinghai-Tibet Plateau (QTP) is underlain by frozen
ground, however, the ground observations of ETa are particularly sparse–which is especially true
in the permafrost regions–leading to great challenge for the accurate estimation of ETa. Due to
the impacts of freeze-thaw cycles and permafrost degradation on the regional ET process, it is
therefore urgent and important to find a reasonable approach for ETa estimation in the regions.
The complementary relationship (CR) approach is a potential method since it needs only routine
meteorological variables to estimate ETa. The CR approach, including the modified advection-aridity
model by Kahler (K2006), polynomial generalized complementary function by Brutsaert (B2015) and
its improved versions by Szilagyi (S2017) and Crago (C2018), and sigmoid generalized complementary
function by Han (H2018) in the present study, were assessed against in situ measured ETa at four
observation sites in the frozen ground regions. The results indicate that five CR-based models
are generally capable of simulating variations in ETa, whether default and calibrated parameter
values are employed during the warm season compared with those of the cold season. On a daily
basis, the C2018 model performed better than other CR-based models, as indicated by the highest
Nash-Sutcliffe efficiency (NSE) and lowest root mean square error (RMSE) values at each site. On a
monthly basis, no model uniformly performed best in a specific month. On an annual basis, CR-based
models estimating ETa with biases ranging from −94.2 to 28.3 mm year−1, and the H2018 model
overall performed best with the smallest bias within 15 mm year−1. Parameter sensitivity analysis
demonstrated the relatively small influence of each parameter varying within regular fluctuation
magnitude on the accuracy of the corresponding model.

Keywords: actual evapotranspiration; complementary relationship; permafrost; seasonally frozen
ground; Qinghai-Tibet Plateau

1. Introduction

Terrestrial evapotranspiration (ET) is an important part of the water cycle and surface en-
ergy balance, which is not only the nexus of the water cycle in the soil–vegetation–atmosphere

Remote Sens. 2022, 14, 2047. https://doi.org/10.3390/rs14092047 https://www.mdpi.com/journal/remotesensing131



Remote Sens. 2022, 14, 2047

continuum, but also a crucial link in the mass exchange and energy balance of the land
surface [1,2]. Accurate estimation of ET is important to deeply understand how much liq-
uid or solid water from land transforms as vapor in the atmosphere, which has significant
implications for regional weather or climate conditions, and water resource management, such
as ecological conservation and agricultural management, etc. [3–5].

In practice, ET estimation is often challenging because of complex land–atmosphere
interactions, which often involve relevant micrometeorological, hydrological, or ecolog-
ical methods [6,7]. In recent decades, great progress has been made on the theories and
technologies of actual evapotranspiration (ETa) regardless of observations or simulations,
significantly contributing to our knowledge of the ET process [8–12]. Current ET esti-
mation approaches, such as land surface models or remote sensing technologies, have
been successfully applied to various climatic or ecosystem zones [13–15]; however, the
above approaches generally have relatively higher uncertainty in parameterization schemes
at specific zones and require detailed information on vegetation or soil properties [16],
which is especially difficult for data-scarce regions. For example, the Penman-Monteith
(PM) [17,18] equation is often used to calculate potential evapotranspiration (ETp), which
is close to ETa under ample water supply conditions, and with a higher accuracy. However,
under water-limited conditions, the PM method assumes typically that ETa is proportional
to the ETp (rescaling with soil moisture content), giving rise to practical difficulties such as
soil moisture data unavailability in harsh environments where the estimation has a higher
uncertainty. In addition, the assumption of the positive relationship between ETa and ETp
may be rejected by observational evidence that supports negative correlations between the
two variables [19]. Han [20] emphasized that the correlation between ETa and ETp depends
mainly on water availability rather than always being positive.

Bouchet [21] first proposed another important hypothesis about ETa estimation, often
called the “Bouchet hypothesis”. In contrast to the PM method, Bouchet [21] described the
negative relationship between ETa and ETp caused by land-atmosphere feedback, which is
also referred to as the complementary relationship (CR) approach. The greatest advantage
of the CR approach is that it does not require any vegetation and soil information, and only
a few model parameters and routine meteorological forcing data are needed [22,23]. Vari-
ous models based on the CR approach have been proposed over the past decades [24]. The
most widely used CR-based models include the AA (advection-aridity) model [25], CRAE
(complementary relationship areal evapotranspiration) model [26], and GG (Granger and
Gray) model [27], which are all based on the linearly symmetric CR approach. However,
some later studies [28,29] have found that the complementary relationships are not symmet-
ric, and they further proposed various asymmetric linear CR-based functions. Nevertheless,
Han [30] found that both symmetric and asymmetric linear CR-based functions have poor
generality and are applicable only to some mild climate regions. To extend the applicability
of the CR function, Han [31] and Brutsaert [32] generalized the CR approach; subsequently,
many studies have further refined the CR approach based on the above [33–37]. At present,
various CR-based models have been applied to different ecosystems (shrubland, cropland,
grassland, etc.) or climate (arid, semiarid, temperate) regions around the world on annual,
monthly, daily, and sub-daily timescales [38–42], but very few studies focused on frozen
ground regions on the Qinghai-Tibet Plateau (QTP), which may limit the development and
application of the CR approach in frozen ground regions.

The QTP accounts for approximately a quarter of China’s land area, with an average
altitude greater than 4000 m above sea level, known as the “roof of the world” and the “third
Pole” [43]. Its vast topography and high altitude have significant impacts on the weather
and climate of East Asia and even the world through thermal and dynamic forcing [44,45].
Additionally, frozen ground is widely distributed on the QTP [46], accounting for 96% of
the area (including approximately 40% permafrost and 56% seasonally frozen ground).
In these regions, freeze-thaw seasonal cycles and permafrost degradation [47,48] have
certainly affected the regional hydrothermal balance of the soil–vegetation–atmosphere
system; however, one of the current obstacles is that little is known about how seasonal
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and long-term ETa rates have changed in the frozen ground regions. In recent decades,
several comprehensive observation sites have been established [49,50], improving our
understanding of the ET process, but large-scale ETa estimation in the frozen ground
regions of the QTP is still sparse. Hence, the above CR approach using only routine
meteorological observations seems to be a feasible method. Wang [51] have improved and
validated one CR-based model when applied to a permafrost sites on the QTP, but it is still
unclear about which CR-based models are best for ETa estimation in this region.

This study utilized four comprehensive field sites, which are all located in the frozen
ground regions of the QTP, based on five CR-based models with in situ measurement
meteorological and eddy-covariance (EC) flux data, to calculate variables and optimize
parameters in CR-based models. The objective of this study was to clarify the applicability
of five widely used CR-based models in the frozen ground regions of the QTP and further
investigate the uncertainty of the CR approach in ETa estimation. The results of this study
could provide a reference for the applicability of CR-based models in the frozen ground
regions of the QTP and provide a simple and feasible option for future large-scale terrestrial
ETa in such data-scarce regions.

2. Materials and Methods

2.1. Site Description

In this study, in situ measurement data were collected from four comprehensive
observation field sites (Figure 1). Tanggula (TGL, 91.86◦E, 32.58◦N, 5100 m asl) and Xidatan
(XDT, 94.13◦E, 35.72◦N, 4538 m asl) lie in the south edge and northern limit of permafrost
regions of QTP, covered by alpine steppe and alpine meadow, where the annual average
air temperature is about −4.7 ◦C and −3.6 ◦C, and the annual accumulated precipitation
is about 352 and 384.5 mm, respectively [52]. Another two field sites, Nagqu (BJ, 91.90◦E,
31.37◦N, 4509 m asl) and Nam Co (NAMORS, 90.96◦E, 30.77◦N, 4730 m asl), lie in the
seasonally-frozen ground regions of QTP, covered by alpine meadow and alpine steppe,
where the annual average air temperature is about 0.54 ◦C and −0.36 ◦C, and the annual
accumulated precipitation is about 436 and 462 mm, respectively [53]. All the sites are near
the Qinghai-Tibet highway.

Figure 1. Locations of four observation field sites on the QTP.

2.2. In Situ Measurement Data and Data Processing

All four selected field sites include eddy covariance flux data, meteorological data,
soil temperature, soil moisture content, and soil heat flux data in a shallow soil layer. Eddy
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covariance flux data, including latent heat flux (LE) and sensible heat flux (H), were used to
identify the performance of the different CR-based models. All EC systems were installed
on towers about 3 m distance from the ground, consisting of a three-dimensional sonic
anemometer (CAST3, Campbell Scientific Inc., USA) that measured instantaneous horizon-
tal (u,v), vertical (w) wind speeds and sonic air temperature fluctuations, and an open path
infrared gas analyser (Li-7500, LI-cor Inc., USA) that measured the water vapor density
and carbon dioxide concentrations fluctuations. The EC instruments were all sampled at a
frequency of 10 Hz. The corresponding meteorological data, including roughly 2 m down-
wards/upwards shortwave and longwave radiation, air temperature, relative humidity,
wind speed, and pressure, were employed to drive each CR-based model. Soil temperature,
soil moisture content, and soil heat flux data in shallow soil layer (within 10 cm from ground
surface) were used to calculate ground heat flux for variables in CR-based models. All above
observations were recorded at intervals of 30 min. Data of TGL and XDT were provided
from Cryosphere Research Station on the Qinghai-Tibet Plateau, Northwest Institute of Eco-
Environment and Resources, CAS (http://new.crs.ac.cn/, 1 September 2021). Data of BJ
and NAMORS were provided from National Tibetan Plateau Third Pole Environment Data
Center, CAS (https://data.tpdc.ac.cn/en/data/b9ab35b2-81fb-4330-925f-4d9860ac47c3/,
1 September 2021). In addition, two different selected study periods of each field site were
determined by data integrity and continuity; observation of first and second year was taken
as calibration and validation period, respectively.

The EC flux raw data processing was conducted on EddyPro7.0.6 software, and the
main processing steps included spike detection, lag corrections of H2O/CO2 relative to
the vertical wind component, sonic virtual temperature correction, coordinate rotation
(planar fit rotation), corrections for Webb-Pearman-Leuning density fluctuations, and
frequency response correction. The 30 min data output by EddyPro software was screened
as follows: (1) the data of instrument error was removed; (2) 30-min record data with more
than 10% missing values were excluded; (3) night data with weak turbulence (friction
velocity (u*) less than 0.1 m s−1) were eliminated; (4) data with quality control code “2” (“2”
indicate poor quality) were filtered out [54]. Then, half-hourly data during data available
period accounts for filling the gaps; for gaps within seven consecutive days, they were
filled using REddyProcWeb online tool (https://www.bgc-jena.mpg.de/bgi/index.php/
Services/REddyProcWeb, 1 September 2021); for gaps longer than seven consecutive days,
they were filled alternatively using aerodynamic method [55] or Bowen ratio energy balance
method [56] for 30-min intervals. Finally, 30 min gap-filled flux data were aggregated into
daily values. Ground heat flux were computed by linear method and thermal diffusion
equation (TDE); detailed calculation processes are described in Yang [57] and Yao [58].
The daily energy balance closure ratios are 0.85, 0.79, 0.95, and 1.1 at TGL, XDT, BJ, and
NAMORS, respectively (Figure 2).

It should be noted that on snow cover days, snow sublimation was one of the main
evapotranspiration forms for four selected sites. Due to lack of observation of snow cover,
this study employed the albedo instead, defined as the ratio of upward short wave radiation
to downward shortwave radiation, to identify whether the observation field was snow-free
or not. To exclude the influence of solar elevation angle, daily mean albedo was calculated
as the average of half-hourly albedo from 10:00 to 14:00, local time. According to the
variations of albedo at each observation fields, snow cover days were determined. In
addition, snowfall still occurs during warm season at some observation fields, however,
snow generally melts quickly to liquid water in few hours; thus, on a daily basis, only
sublimation during cold season (from October to April in the next year) were considered.
Then, the latent heat of vaporization—λv (J Kg−1), for snow free days—and the latent heat
of sublimation—λs (J Kg−1), for snow cover days—were calculated using Equation (1), and
the results were then used to calculate the actual evapotranspiration or sublimation [59]:

{
λv = (2500 − 2.4Ta)× 103

λs = (2834.1 − 0.149Ta)× 103 (1)
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where Ta (◦C) is the air temperature measured at 2 m high.

 
Figure 2. Comparison of available energy (Rn − G) and sum of turbulent fluxes (H + LE) for the
daily-averaged measurements after gap-filled during study period at four selected sites: (a) TGL;
(b) XDT; (c) BJ; (d) NAMORS. The black solid line is the 1:1 line, and the black dash line fitted by the
linear regression.

2.3. Complementary Relationship (CR) Approach

The CR approach involves three types of evaporation, namely, the actual evaporation
(E, note: followed by “E” instead), the apparent potential evaporation (Epa), and the wet-
environment evaporation (Epo). The CR approach is expressed as follows: for relatively
larger and homogeneous surfaces with minimum advection, under certain net radiation
inputs, E decreases with the availability of limited water over the underlying surface, and
the energy that would be consumed by the latent heat flux thus becomes the sensible heat,
thus increasing Epa. Hence, one can predict water-limited E by gauging how much Epa is
raised from the hypothetical evaporation rate that should occur under the full wetness (Epo).
Previous studies [60] hold that a unit decrease in E yields a corresponding unit increase in
Epa, signifying a symmetric CR. This can be expressed as follows:

Epa − Epo = Epo − E (2)

Epa and Epo is calculated as follows:

Epa = Erad + Eaero =
Δ(Rn − G)

Δ + γ
+

γ f (U)(eo − ea)

Δ + γ
(3)

Epo = αeErad = αe
Δ(Rn − G)

Δ + γ
(4)

where Erad is the radiation term, Eaero is the aerodynamic term, αe is an analog of the
dimensionless Priestley-Taylor coefficient, (Rn − G) is the available energy (mm d−1), Δ is
the slope of saturation vapor pressure curve at the air temperature Ta (kPa ◦C−1), γ is
the psychrometric constant (kPa ◦C−1), and eo and ea are the saturation and actual vapor
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pressure of the air (kPa), respectively. f (U) (mm d−1 kPa−1) is the wind function calculated
by Penman’s original empirical linear equation:

f (U) = 2.6(1 + 0.54U2) (5)

where U2 is the measured wind speed (m s−1) at 2 m height.
Here, five CR-based models were selected to estimate E: the modified AA model [28]

represents the linear CR version; the polynomial CR function [32] and sigmoid CR func-
tion [36] both represents the generalized nonlinear CR concept, and they represent different
improved versions of the original CR approach mainly in physical boundary constraints;
in addition, the calibration-free CR function and rescaled CR function are two improved
versions based on the polynomial CR function [33–35].

2.3.1. Modified AA Model

The modified AA model extended the symmetric CR principle (herein referred to as
K2006) and the equation becomes asymmetry as follows:

yK =
b + 1

b
xK − 1

b
(6)

where b is a coefficient that depicts the proportion of the sensible heat that increases Epa,
xK = Epo/Epa, yK = E/Epa. The only physical constraint is E ≤ Epo ≤ Epa; when the water
availability of the landscape is not limited, E is assumed to proceed at Epa and E = Epo = Epa.

2.3.2. Polynomial Generalized Complementary Function

Brutsaert [32] reformulated a new general polynomial complementary function satis-
fying boundary conditions based on strictly physical constraints, referred to as the B2015
model, and its boundary conditions were as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yB = 1, xB = 1
yB = 0, xB = 0
dyB
dxB

= 1, xB = 1
dyB
dxB

= 0, xB = 0

(7)

where xB = Epo/Epa, yB = E/Epa. The function form is as follows:

yB = (2 − c)xB
2 − (1 − 2c)xB

3 − cxB
4 (8)

c is an adjustable parameter which need to be locally calibrated.

2.3.3. Calibration-Free CR Function

Szilagyi [35] utilized the same function forms as the B2015 model (herein referred to
as S2017), and the equation is as follows:

yS = 2XS
2 − XS

3 (9)

where yS is the same as yB, XS is defined as

XS =
Epmax − Epa

Epmax − Epo_c

Epo_c

Epa
(10)

Here two variables (Ep max and Epo_c) are introduced to improve the performance of
S2017 function. Ep max is the maximum value that Epa can theoretically reach, which may
appear when the air loses all moisture, that is,
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Epmax =
ΔTdry(Rn − G)

ΔTdry + γ
+

γ f (U)
(

eo,Tdry − 0
)

ΔTdry + γ
(11)

where ΔTdry and eo,Tdry are the slope of the saturation vapor pressure curve and saturated
vapor pressure, respectively, at extreme dry environment air temperature, Tdry (◦C). Tdry
can be estimated from the adiabatic line as follows:

Tdry =
eo,Twb(Ta − Twb)

eo,Twb − ea
+ Twb (12)

where Twb (◦C) is the wet-bulb temperature, and eo,Twb (kPa) is the saturated vapor pressure
at Twb. Twb is derived by another iteration of solving for the Bowen ratio during adiabatic
changes, that is,

γ
Twb − Ta

eo,Twb − ea
= −1 (13)

Another one variable Epo_c is defined as

Epo_c = αeErad = αe
Δwea(Rn − G)

Δwea + γ
(14)

where Δwea (kPa ◦C−1) is the slope of the saturation vapor pressure curve at Twes. Epo_c
is the wet environment evapotranspiration rate calculated with Δwea instead of Δ. Note
that S2017 function uses Epo_c instead of Epo because the latter variable is based on local air
temperature, which is physically improperly employed to calculate wet environment evap-
oration. Szilagyi and Jozsa (2008) [61] suggested Equation (4) should use wet environment
air temperature (Twea). Twea cannot be measured directly under water-limited conditions
but can be approximated by the wet surface temperature (Twes). According to Szilagyi [62],
Twes can be solved iteratively by implementing the Bowen ratio of a small wet patch, that is,

βw =
Rn − G − Epa

Epa
≈ γ

Twes − Ta

eo,Twes − ea
(15)

in which βw is the Bowen ratio of the wet patch (assuming that the available energy for the
wet patch is close to that of the drying surface), and eo,Twes is the saturated vapor pressure
at Twes(≈Twea). Note that Twes may be larger than Ta when air is close to saturation, and in
such cases, Twea should be replaced by Ta.

2.3.4. Rescaled Complementary Function

Crago [34] used a similar method to the S2017 model, with Ep max introduced to rescale
xB, and new analytical forms (herein referred to as C2018) have been proposed as follows:

⎧⎪⎨
⎪⎩

xmin =
Epo_c
Epmax

XC = x−xmin
1−xmin

yC = XC

(16)

where yC are consistent with the corresponding variables of yS in the S2017 model.

2.3.5. Sigmoid Generalized Complementary Function

Han [36] brought in the minimum and maximum limits of Erad/Epen (xmin and xmax)
under an assumed constant Erad and rederived four new boundary conditions fitting
to two widely accepted assumptions following Penman’s combination theory, namely,
dE/dEpen = 0 in extremely arid environments and E = Epen in completely wet environments.
The boundary conditions are as follows:
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yH = 0, xH → xmin
yH = 1, xH → xmax
dyH
dxH

= 0, xH → xmin
dyH
dxH

= 0, xH → xmax

(17)

The following new sigmoid function in accordance with the above boundary condi-
tions were also proposed (herein referred to as H2018):

yH =
1

1 + m
(

xmax−xH
xH−xmin

)n (18)

where xH = Erad/Epen, yH = E/Epen, and the calculation of Erad and Epen (equal to Epa) refers
to Equation (3); m and n are two unknown parameters that need to be locally calibrated.

{
n=

4α(1+b−1)(x0.5−xmin)(xmax−x0.5)
xmax−xmin

m=
(

x0.5−xmin
xmax−x0.5

)n (19)

where x0.5 is a variable that corresponds to yH = 0.5 (simply reflecting a temperate envi-
ronment). Han [36] conducted that x0.5 = 0.5+b−1

αe(1+b−1)
, xmax and xmin can be simply set as 1

and 0 on a daily time scale, respectively. For longer time scales, xmax and xmin needed to be
locally calibrated.

2.4. Model Parameter Calibration Methods

For the CR approach, one of the most important steps is to determine unknown
parameter values. Generally, “optimal” parameter values could be either derived from
transplanting from elsewhere, or are locally calibrated. First, “optimal” parameter values
between two different sites are roughly equal under similar climatic or underlying surface
conditions. In our study, the vegetation type of all four selected sites was grassland, so
we set the “optimal” parameter values from other grassland sites reported in previous
literature as the default values in each CR-based model. Note that the unknown parameters
in the K2006, B2015, and H2018 models used corresponding values from the US-Fpe flux
site [36] as default values, and the unknown parameters in S2017 and C2018 model used cor-
responding values from the Riggs Creek site at Australia [34] as default values, respectively.
Second, unknown parameters of each CR-based model were all optimized by minimizing
the root mean square error of the simulated and measured daily E during the calibrated
period, and then the calibrated parameter values were used for the validation period.

2.5. Model Evaluation Criteria

To assess the model performance, five statistical metrics, including root mean square
error (RMSE), mean absolute error (MAE), mean bias error (MBE), Nash-Sutcliffe efficiency
(NSE), and correlation coefficient (CC) are used to evaluate the accuracy of simulated E
with in situ measurements:

RMSE =

√√√√ 1
N

N

∑
i=1

(Esim,i − Eobs,i)
2 (20)

MAE =
1
N

N

∑
i=1

∣∣Esim,i − Eobs,i
∣∣ (21)

MBE =
1
N

N

∑
i=1

(Esim,i − Eobs,i) (22)
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NSE = 1 −

N
∑

i=1
(Esim,i − Eobs,i)

2

N
∑

i=1

(
Eobs,i − Eobs

)2
(23)

CC =

N
∑

i=1

(
Esim,i − Esim

)(
Eobs,i − Eobs

)
√

N
∑

i=1

(
Esim,i − Esim

)2
√

N
∑

i=1

(
Eobs,i − Eobs

)2
(24)

where N is the number of observation, Esim,i (i = 1, 2, 3, . . . , N) is the simulated actual
evapotranspiration value, Eobs,i is the observed actual evapotranspiration value, Esim and
Eobs are the mean values of Esim,i and Eobs,i, respectively.

3. Results

3.1. Variations in ET Rates at Four Observation Sites

The daily variations in actual evapotranspiration (E), sublimation, radiation term
(Erad), and apparent potential evapotranspiration (Epa) rate at four observation field sites
are shown in Figure 3. Note that relatively larger errors of observation may exist at
NAMORS during some periods, especially in the warm season when E is larger than Epa,
which is discrepant with Penman’s evaporation theory. Visibly, among four observation
field sites–whether located in permafrost regions or seasonally frozen ground regions–are
both clear seasonal variations of each ET variable: higher E and Epa usually occurs during
the warm season, maximum E could reach approximately 4 mm d−1 at TGL and XDT, and
5 mm d−1 or more at BJ and NAMORS. For Epa, which exhibited greater daily fluctuations
compared with E and Erad, the maximum Epa ranges from 5 mm d−1 to 7 mm d−1 at
four selected sites: low E occurred during cold seasons and was generally close to zero
when soils were frozen, except at NAMORS, and Epa and Erad was relatively lower, which
was mainly controlled by net radiation. Additionally, some obvious differences between
permafrost regions and seasonally frozen ground regions were that greater variations in E
occurred at seasonally frozen ground regions than permafrost regions, and the onset time
of increasing E after the frozen period in seasonally frozen ground regions (usually in late
March) was earlier than that of permafrost regions (usually in late April), which was due to
the onset time of thawing being earlier in the former. As the ground ice thaws, surface soil
moisture increases, and E also increases.

Some studies found that E is larger than rainfall at the annual scale at observation
sites on the QTP [59,63]; the same phenomenon was also found in our study (see Table 1).
Due to missing values of rainfall during the study period at BJ and NAMORS, we instead
used data from the nearby Naqu and Dangxiong country meteorological station provided
from China Meteorological Administration. The exception of this was when there were
observation errors about precipitation or ET; this phenomenon is often explained by surface
soil moisture providing available water for evaporation. Although limited by land surface
water supply, soil evaporation is one of the main forms of water consumption for the four
selected field sites.
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Figure 3. The daily variations of E (blue circles), sublimation (red circles), Erad (pink line), and Epa

(gray area) during the study period at the observation fields: (a) TGL; (b) XDT; (c) BJ; (d) NAMORS.
“W” represents warm season and “C” represents cold season.

Table 1. Sum of daily rainfall (mm), E plus sublimation (mm), Epa (mm) for two periods of every
observational year. The warm season is from May to September, the cold season is from January to
April and October to December.

Sites Variables
First Year Second Year

Warm Season Cold Season Annual Warm Season Cold Season Annual

TGL Rainfall 339.5 54.3 393.8 355.9 36 391.9
(N1 = 365; E plus Sublimation 362.1 70.9 433 364.7 81.6 446.3
N2 = 360) Epa 537.5 409.7 947.2 496 391.1 887.1

XDT Rainfall 299.3 65.1 364.4 200.6 7 207.6
(N1 = 363; E plus Sublimation 312.4 82.9 395.3 178 24.4 202.4
N2 = 185) Epa 515.9 410.1 926 309.7 141.9 451.6

BJ Rainfall a - - - 386 83.2 469.2
(N1 = 363; E plus Sublimation 432.9 118.9 551.8 385.5 117.3 502.8
N2 = 350) Epa 580.8 421.5 1002.3 549.8 363.4 913.2

NAMORS Rainfall b 494.7 54.2 548.9 327 47.3 374.3
(N1 = 337; E plus Sublimation 413.6 128.9 542.5 346 121.2 467.2
N2 = 352) Epa 493.1 336.1 829.2 531.6 411.4 943

Note: N1 represents available samples of first observational year, N2 represents available samples of second
observational year. a Rainfall data on second year from Naqu country meteorological station; b Rainfall data on
second year from Dangxiong country meteorological station.

3.2. Evaluating Model Performance
3.2.1. Model Performance with Default and Calibrated Parameter Values on a
Daily Timescale

This study first employed the default and calibrated parameter values to simulate
the daily actual evapotranspiration (Esim) and then compared with in situ measurements,
respectively (Figure 4).
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Figure 4. Comparison of simulated daily actual evapotranspiration (Esim) rates by five CR-based
models with default parameter against measurements made using EC system at (a–e) TGL; (f–j) XDT;
(k–o) BJ; (p–t) NAMORS, respectively. The blue scattered dots and dash lines represent E estimated
by default parameter values and its fitting line; the red scattered dots and dash lines represent E
estimated by calibrated parameter values and its fitting line; the black solid line is the 1:1 line.

The results indicate that Esim was underestimated to different degrees by each CR-
based model at all four selected sites, whether the default or calibrated parameter values
were employed; the highest NSE value was 0.92 at TGL and the lowest NSE value was 0.58
at NAMORS. The average RMSE value was 0.4 mm d−1 at TGL and at XDT, 0.58 mm d−1

at BJ, and 0.63 mm d−1 at NAMORS when default values were employed (Table 2). After
being locally calibrated, the highest NSE value was 0.92 at TGL and lowest NSE value was
0.69 at NAMORS. The average RMSE value was 0.36 mm d−1 at TGL, 0.38 mm d−1 at XDT,
0.56 mm d−1 at BJ, and 0.6 mm d−1 at NAMORS (Table 2), with only a small improvement
in accuracy when compared with the results simulated by default parameter values. In
addition, the CC values of five CR-based models all exceeded 0.87. Therefore, a better
performance of the CR approach was found for daily E estimation in the frozen regions of
the QTP, and unknown parameter values from other similar climatic or underlying surfaces
could also be applicable without local calibration due to a lack of in situ measured E, such
as in data-scarce regions.
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Table 2. Statistical results of CR-based models with default and calibrated (in parentheses) parameter
values against daily actual evapotranspiration measurements from four observation sites. Bold font
indicates the best model based on maximum NSE values among five CR-based models.

Sites Model αe b c RMSE
(mm d−1)

MAE
(mm d−1)

MBE
(mm d−1)

NSE R2 Average
(mm d−1)

TGL

K2006 0.88
(1.01)

16.67
(2.41) - 0.457 (0.381) 0.375 (0.31) 0.053 (−0.056) 0.84

(0.889)
0.872

(0.891)

1.24

B2015 0.92
(1.03) - −1.35

(2.22) 0.428 (0.347) 0.338 (0.269) 0.109 (−0.032) 0.86
(0.908)

0.88
(0.91)

S2017 1.12
(1.13) - - 0.394 (0.388) 0.279 (0.275) −0.136 (−0.112) 0.881

(0.885)
0.897

(0.899)

C2018 1.12
(1.08) - - 0.321 (0.324) 0.244 (0.245) 0.039 (−0.041) 0.921

(0.919)
0.924

(0.924)

H2018 0.97
(1.07)

5.56
(1.44) - 0.415 (0.343) 0.328 (0.266) 0.128 (−0.01) 0.868

(0.91)
0.889
(0.91)

XDT

K2006 0.88
(0.94)

16.67
(4.1) - 0.372 (0.375) 0.282 (0.281) 0.052 (−0.07) 0.839

(0.837)
0.845

(0.852)

1.09

B2015 0.92
(1.01) - −1.35

(1.48) 0.388 (0.361) 0.287 (0.268) 0.093 (−0.049) 0.826
(0.849)

0.852
(0.861)

S2017 1.12
(1.18) - - 0.486 (0.467) 0.354 (0.341) −0.198 (−0.07) 0.725

(0.746)
0.778

(0.799)

C2018 1.12
(1.11) - - 0.37 (0.366) 0.277 (0.274) 0.017 (−3.4 × 10−4)

0.841
(0.844)

0.852
(0.852)

H2018 0.97
(1.04)

5.56
(1.8) - 0.381 (0.36) 0.289 (0.269) 0.105 (−0.042) 0.831

(0.849)
0.856

(0.859)

BJ

K2006 0.88
(1.03)

16.67
(2.63) - 0.609 (0.59) 0.463 (0.439) 0.001 (0.003) 0.746

(0.762)
0.748

(0.773)

1.44

B2015 0.92
(1.05) - −1.35

(2.55) 0.604 (0.578) 0.453 (0.42) 0.074 (−0.031) 0.75
(0.772)

0.755
(0.789)

S2017 1.12
(1.14) - - 0.544 (0.553) 0.405 (0.41) −0.156 (−0.092) 0.798

(0.791)
0.826

(0.824)

C2018 1.12
(1.11) - - 0.531 (0.523) 0.377 (0.371) 0.038 (0.013) 0.808

(0.813)
0.819

(0.821)

H2018 0.97
(1.11)

5.56
(1.17) - 0.596 (0.584) 0.45 (0.421) 0.092 (−0.013) 0.757

(0.767)
0.764

(0.792)

NAMORS

K2006 0.88
(1.13)

16.67
(10.07) - 0.637 (0.601) 0.458 (0.464) −0.231 (0.08) 0.704

(0.737)
0.755

(0.757)

1.33

B2015 0.92
(1.17) - −1.35

(0.76) 0.607 (0.585) 0.448 (0.455) −0.204 (−0.033) 0.731
(0.751)

0.764
(0.774)

S2017 1.12
(1.25) - - 0.756 (0.653) 0.573 (0.516) −0.516 (−0.273) 0.583

(0.689)
0.78

(0.785)

C2018 1.12
(1.2) - - 0.579 (0.549) 0.422 (0.413) −0.264 (−0.139) 0.756

(0.78)
0.806

(0.803)

H2018 0.97
(1.28)

5.56
(1.72) - 0.601 (0.6) 0.431 (0.475) −0.197 (−0.041) 0.737

(0.738)
0.769

(0.776)

However, a relatively larger bias occurred when there were lower E values for each
model at all four sites, which indicated poor applicability of the CR approach. There were
even some negative Esim values by the K2006 model when E was low at all four observation
sites, probably because there were no strict boundary conditions constrained in the K2006
model, which led to abnormal values near the border of the boundary. In general, the
CR approach may be inappropriate during the cold season in the frozen regions of the
QTP because lower E values mainly occurred during the cold season. The S2017 model
performed poorly among the five CR-based models, with relatively lower NSE values
and higher RMSE and MBE values (Table 2), especially at NAMORS, where the MAE
values reached 0.57 mm d−1 and 0.52 mm d−1 with the default and calibrated parameter
values, respectively, signifying the largest bias during the study period. The C2018 model
performed best at TGL, BJ, and NAMORS, and performed very well at XDT, and the NSE
values of the C2018 model were all above 0.75. The overall performances of the B2015 and
H2018 models were slightly inferior to that of the C2018 model, and the NSE and RMSE
values of the above two models were close to those of the C2018 model.
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Note that for the C2018 model, although there was only one unknown parameter
to calibrate, there were more variables, such as wet and dry environment temperature,
which meant a relatively more complex calculation process. For the B2015 model, previous
studies have pointed out its deficiency in physical boundaries, which may be inappropriate
for extremely dry or wet environments and periods. Therefore, the H2018 model, with
relatively robust physical boundary constraints and a simpler calculation process, may
be the most appropriate CR-based model for daily E estimation in the frozen regions of
the QTP.

3.2.2. Performance of Different CR-Based Functions against Relationships among Three
Evapotranspiration Variables

To determine relationships among three evapotranspiration variables (E, Epo and Epa)
during warm and cold seasons and to further elucidate the applicability and optimal
form of CR-based functions in the frozen ground regions of the QTP, the performance of
different function forms using calibrated parameter values combined with observation
data is presented in Figure 5. Here, all data at each field site were divided into three
parts: daily ET variables that fulfill the preconditions of each CR-based model, judged by
“po (Epo_c) ≤ Epa” for the K2006, B2015, S2017, and C2018 models, “E ≤ Epo and E ≤ Epen”
for the H2018 model, and the above data can be used to further divide based on the warm
and cold season, respectively. The remaining data are daily evapotranspiration variables
that do not fulfill the CR-based models. Note that although parameter calibration was
performed, there were still some data that did not satisfy the CR-based models, which may
have been due to observation errors or inapplicability of the CR approach to that time.

The results indicated that observation data were unevenly scattered around CR-
fitting lines at each site, and all CR-based function forms basically captured relationships
among the three types of evaporation during the warm season in the frozen ground
regions of the QTP, similar to the simulated results from some other sites around the
world [36,42,64]. However, when variable y converges to 0 (that is, E is low), which often
occurs in cold seasons, the dimensionless variable x (or X) has a relatively wide range, even
above 0.6, because strong radiation (Erad) on the QTP leads to a high proportion of radiation
to apparent potential evapotranspiration (Epa). Usually, a high proportion of radiation
indicates there is strong evaporation energy available and higher actual evaporation;
however, for water-limited frozen ground regions, water availability is another important
factor affecting evaporation. Figure 5a–t shows relatively small deviations during warm
seasons and the CR-fitting lines cross near the center of the observation data; five different
CR-based functions both captured the daily E values well without evident differences,
however, differences were clear in the lower E values. Because most studies about CR
approach focus on warm seasons or growing seasons when E is relatively high, it is not
enough to take into account the conditions of small E values during cold seasons; difficulties
lie in high uncertainty of observation data during cold seasons, which leads to a lack of
reliable data to validate whether the hypothesis of the CR approach is applied to cold and
high-altitude areas or cold seasons from the aspect of the mechanism.

3.2.3. Model Performance with Calibrated Parameter Values on a Monthly Timescale

We also investigated the performance of five CR-based models with calibrated param-
eter values on a monthly timescale. Figure 6 illustrates that the monthly Esim got acceptable
accuracy at TGL, XDT, and BJ, but relatively larger deviations occurred at NAMORS.
The simulated performance between each CR-based model was very close, which indi-
cated more stable performance to the CR approach on longer timescales. Compared with
variations in precipitation, the peak of E was not always synchronized with the peak of
precipitation on a monthly timescale. Taking TGL (Figure 6a) for an example, the peak
of E occurred in August and was higher than concurrent precipitation; higher E may be
contributed by water stored in the soil layer by antecedent precipitation, due to the peak of
precipitation in July.

143



Remote Sens. 2022, 14, 2047

Figure 5. Scatter plot of y versus different rescaling x for five CR-based functions at four observation
sites (dots, a–t), blue scattered dots represent data during cold season and red scattered dots represent
data during warm season, green scattered dots represent data that could not meet the preconditions
of CR approach. The solid lines fitted by CR-based functions with calibrated parameter values.

Figure 6. Comparison of monthly E values estimated by five CR functions with calibrated param-
eters against measurements by eddy-covariance system at (a) TGL; (b) XDT; (c) BJ; (d) NAMORS,
respectively. Number in parentheses are available days during corresponding month.
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To further determine the contributions of monthly simulated bias to annual total
bias at each field site, the monthly absolute bias of each CR-based model was calculated
(Figure 7). Although the performance of the five CR-based models varied from one site
to another, overall, the H2018 model seemed to have a smaller annual bias than the other
models. According to Figure 7e,i,o,t, the H2018 model underestimated annual E at each site,
and the bias was within 15 mm. The K2006, B2015, and C2018 models performed slightly
inferior to the H2018 model; larger biases all occurred at NAMORS, and the rest of the sites
performed relatively well. The S2017 model performed worst among the five CR-based
models at each site, and the largest bias occurred at NAMORS, which was close to 100 mm
on an annual timescale. Considering the contribution of monthly or seasonal bias to annual
total bias (see Table 3), negative annual bias was mainly contributed by the negative bias of
the warm season at TGL; however, the negative bias of the cold season contributed more
to the total bias at XDT, BJ, and NAMORS. The larger negative monthly bias frequently
occurred in October or November, and the maximum bias was −15.3 mm (in October) at
TGL, −5.42 mm (in July) at XDT, −11.72 mm (in July) at BJ, and −17.58 mm (in October)
at NAMORS.

Figure 7. Bias of monthly E estimated by five CR-based models at (a–e) TGL; (f–j) XDT; (k–o) BJ;
(p–t) NAMORS, respectively. Dash lines represent annual total bias. The grey filled area represents
the warm season.
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4. Discussion

4.1. Uncertainty of Actual Evapotranspiration Estimation by the CR Approach

Using only routine meteorological variables (air temperature, relative humidity, wind
speed, and net radiation) in the CR approach can better estimate daily or monthly E in the
frozen ground regions of the QTP according to the present study; however, the uncertainty
of the CR approach itself, physical variable calculations, and key parameter values are still
non-negligible for estimating E on different spatiotemporal scales.

For the K2006 model, characterizing variables such as Epa and Epo is difficult. Al-
though using the Penman equation to calculate Epa is widely accepted, determining Epo is
controversial because a fixed analog of the Priestley-Taylor coefficient αe usually cannot
vary with climate, which means that the value of αe cannot truly reflect the interaction
between the land and atmosphere [65,66]. We also need to know atmospheric status–such
as air temperature–under well-supplied water conditions at the land surface before deter-
mining Epo, despite some progress [61,62] that has been made in obtaining air temperature
under well-supplied water conditions. However, usual iterative solving exists for un-
solved or anomalous solutions, which makes it difficult to promote the above method as a
universal approach.

For generalized complementary functions, in addition to the above common problems,
the definition of boundary constraint conditions is another one important problem. Han [65]
noted that boundary constraint conditions determine the domain of definition and the
analytic formula of complementary functions. Many of the latest debates [67,68] on the
CR-based functions have focused on boundary constraint conditions, which is controversial
for the CR approach. The above-mentioned problems reflect a great lack of understanding
of the evaporation process on different spatiotemporal scales for frozen ground regions on
the QTP, where the current CR function forms seem to perform inferiorly in the specific
regions described by Wang [42].

For the CR principle, an important prerequisite of the CR approach is that at large and
homogeneous land surfaces, the influence of air advection could be negligible, so atmo-
spheric evaporation demand is totally caused by feedback of the land surface. Morton [26]
pointed out that the CR principle should be applied at spatial resolutions larger than 1 km
and temporal resolutions longer than five days, since large-scale weather fronts may bring
air masses over the land with a moisture signature decoupled from the underlying surface,
which thus may temporarily disrupt the dynamic equilibrium of air humidity and surface
fluxes in the land–atmosphere system. Although previous studies [28,38,42,69] have ap-
plied the CR approach to hourly or daily E estimations, the theory of the CR principle on
short timescales still needs to be improved.

4.1.1. Influence of Parameter Values on Actual Evapotranspiration Estimation

Determining the parameter values of CR functions is urgent for the application of
each CR-based model to estimate E, as well as for the development of a CR approach. The
K2006 and H2018 both have two parameters, αe and b; the B2015, S2017, and C2018 all
have one parameter, αe (note: parameter c in the B2015 model is an adjustable parameter,
c = 0 often in most conditions, so, here we did not discuss parameter c). To determine
the impacts of parameter values on evapotranspiration estimation, we discuss the fol-
lowing two problems: (i) difference in simulated results by each CR-based model with
parameter calibration on different time lengths and (ii) parameter sensitivity for actual
evapotranspiration estimation.

Here, we first investigated the influence of calibrated parameter values by different
time lengths (whole year and warm season) on simulating daily E during the warm season.
For the cold season, due to higher uncertainty of observations, we did not discuss the
results here. Table 4 compares the parameter values and simulated NSE values during the
warm season by the calibration period of one whole year and the corresponding warm
season, respectively. The results indicated that the time length of parameter calibration
did not have much of an impact on simulated E during the warm season, parameter αe
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was very close between the two calibration periods, and the differences in parameter b was
slightly larger. According to our results, the simulated E was insensitive to the variations
in parameter b in the K2006 and H2018 model, because even if the difference in parameter
b was large, like the K2006 model at NAMORS, the simulated daily E between the two
calibrated parameter values were still approximate. However, variations in parameter αe
in all five CR-based models exerted more of an influence on the simulated results. The
above results indicated that parameter calibration—especially αe—in CR-based models at
specific sites is more important to simulate daily E compared with different time lengths of
calibration periods in the frozen ground regions of the QTP.

Table 4. Comparison of simulated results by different CR-based models using two different calibrated
parameter values during the warm season. One is calibrated by a whole year period, another is
calibrated by a corresponding warm season.

Site Model
Calibrated Period by Warm Season Calibrated Period by Whole Year

αe b c NSE αe b c NSE

TGL

K2006 1.02 2.49 - 0.759 1.01 2.41 - 0.73
B2015 1 - 0.8 0.764 1.03 - 2.22 0.752
S2017 1.12 - - 0.559 1.13 - - 0.581
C2018 1.08 - - 0.731 1.08 - - 0.731
H2018 1.01 2.58 - 0.764 1.07 1.44 - 0.762

XDT

K2006 1 2.93 - 0.657 0.94 4.1 - 0.669
B2015 0.98 - 0.38 0.656 1.01 - 1.48 0.657
S2017 1.18 - - 0.376 1.18 - - 0.376
C2018 1.12 - - 0.607 1.11 - - 0.617
H2018 0.99 3.03 - 0.657 1.04 1.8 - 0.65

BJ

K2006 1.11 1.13 - 0.323 1.03 2.63 - 0.357
B2015 1.1 - 4.66 0.294 1.05 - 2.55 0.361
S2017 1.14 - - 0.429 1.14 - - 0.429
C2018 1.11 - - 0.466 1.11 - - 0.466
H2018 1.17 0.75 - 0.27 1.11 1.17 - 0.341

NAMORS

K2006 1.18 3.81 - 0.577 1.13 10.07 - 0.58
B2015 1.19 - 1.01 0.577 1.17 - 0.76 0.588
S2017 1.25 - - 0.492 1.25 - - 0.492
C2018 1.2 - - 0.622 1.2 - - 0.622
H2018 1.35 1.03 - 0.525 1.28 1.72 - 0.573

4.1.2. Sensitivity Analysis of CR-Based Models to Parameter Values

Then, we tested the sensitivity of five CR-based models to parameter values at each
site, by adding increments from −50 to 50% at an interval of 10% to optimized parameter
values for each CR-based model. Figure 8 displays the RMSE of the simulated E values for
the in situ measurement. It is clear that variations in b values combined with constant αe
values have little impact on evapotranspiration estimation, and a 50% variation in the αe
value combined with constant b values led to increased RMSE values within 0.5 mm d−1.
The K2006, B2015 and H2018 models exhibited lower sensitivity to variations in parameter
values, and the H2018 model had the lowest sensitivity among all CR-based models.

We also noticed that larger RMSE values for the S2017 and C2018 models when the
optimized αe value increased more than 20% because there were many abnormal E values,
which indicated that the S2017 and C2018 models were more sensitive to parameter values,
especially when the αe value increased more than 20%. Brutsaert [70] found that αe was
closely related to the aridity index (AI, AI = Epa/P); accordingly, based on the global
distribution of the parameter αe, the αe values were mainly from 0.8 to 1.2 around the
world, except in extremely arid and wet regions. Assuming αe values were within the
above scope in the present study–which means αe mainly varied from about −10% to
20% of its optimized values for all five CR models at each field site–according to Figure 8,
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the averaged RMSE increased by 0.14 mm d−1, 0.12 mm d−1, 0.15 mm d−1, 0.09 mm d−1

from the RMSE of the E estimated when using optimized αe values at TGL, XDT, BJ, and
NAMORS, respectively.

 
Figure 8. Sensitivity analysis of CR-based models to the parameter αe and b at (a) TGL, (b) XDT, (c) BJ,
and (d) NAMORS. Δαe represents the increment to the optimized αe values for all five CR-based
models and Δb represents the increment to the optimized b values for K2006 and H2018 model. Suffix
“(α)” and “(b)” represents simulated actual ET with perturbations of α (with constant b) and b (with
constant α), respectively.

Thus, the parameter αe value is very important to the accuracy of E estimation accord-
ing to our study; certainly, the smaller deviation of optimized αe value would exert little
impact on the accuracy of E estimation. Furthermore, the K2006 and H2018 models were
completely insensitive to deviations of parameter b values.

4.2. Comparison with Previous Studies on the QTP at a Single Point Scale

Here, we compared estimation results of monthly E by five CR-based models in the
present study with the latest two improved remote-sensing ET models that have been
validated for the QTP. One is an improved MOD16 model by Yuan [71], referred to as
“MOD16_Yuan” in this study; the another one is an improved SEBS model by Han [72],
referred to as “SEBS_Han” in this study. Both obtained better accuracy with in situ measure-
ments than that in previous results. Due to shared use observation data with Yuan’s work
at NAMORS in 2009 and with Han’s work at BJ in 2013, the above two field sites during the
corresponding period were chosen for comparison. Note that there are some differences
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in the observed E between this study and the above two works, which may be caused by
different data procedure processes, such as quality control and gap-filling approaches.

Figure 9a exhibits the estimation results of monthly E by the CR approach and
MOD16_Yuan model at NAMORS. Statistical results showed that in situ measured annual
E values ranged from 467.2 to 481.6 mm, and the annual E values simulated from the five
CR-based models were 495.5 mm (K2006), 455.6 mm (B2015), 371.1 mm (S2017), 418.4 mm
(C2018), and 452.8 mm (H2018), respectively. For the MOD16_Yuan model, the annual
E values reached 539.7 mm which was overestimated by 12.1% compared with in situ
measurements. The largest bias occurred in June when the positive bias could reach 36 mm.
The K2006 model overestimated the annual E by 6.1% with smaller positive deviations
than the MOD16_Yuan model. The B2015 and H2018 models obtained better accuracy with
smaller negative bias–approximately 20 mm on an annual scale–and both two CR-based
models performed better than the K2006 and MOD16_Yuan models. However, the S2017
and C2018 models both performed poorly due to large negative biases, especially the S2017
model, with a bias of approximately 100 mm on an annual scale.

Figure 9. Comparison of monthly observed E values (filled area enclosed by calculated results from
this study and another corresponding work) and simulated E values (solid lines) of CR-based models
with improved MOD16 evapotranspiration model by Yuan [71] at (a) NAMORS; with improved SEBS
model by Han [72] at (b) BJ.

Figure 9b is the same as Figure 9a, but for BJ. Due to the lack of observed E data
in some months, only available data during the corresponding month were analyzed.
The simulated monthly E values by the five CR-based models were very close to each
other– which could also capture the monthly variations in observed E–but a larger positive
bias occurred in August. The SEBS_Han model performed well in August; however, it
significantly overestimated monthly E values in May, June, and July, with a larger positive
bias than that of the five CR-based models. Thus, the overall performance of the CR
approach is still better than that of the SEBS_Han model in the present study.

Both the MOD16_Yuan and the SEBS_Han models have solid physical foundations,
and the MOD16_Yuan model based on the original MOD16 model takes soil moisture
and soil texture into soil evaporation estimation, and simultaneously optimizes canopy
transpiration estimation. The SEBS_Han model introduces the description of the form
drag caused by subgrid-scale topographical obstacles, the effective roughness lengths for
momentum, and sensible heat transfer into the SEBS model. The above two models both
improved the description capability of remote sensing models for the physical process
of ET. For the CR approach, from another aspect of feedback of atmospheric evaporation
demand to land surface moisture conditions, with a few unknown parameters and routine
meteorological variables, the CR approach has also been demonstrated to have comparable
accuracy with current sophisticated ET models in the present study.

4.3. Perspectives from the Present CR-Based Model Evaluations

This study provided a relatively comprehensive assessment about applicability of the
CR-based models to frozen ground regions on the QTP. A performance comparison of five
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CR-based models was evaluated at four observation field sites. After local calibration, the
E estimated by all five CR-based models captured daily variations; however, consistent
with the findings of previous studies, it is difficult to capture daily variations during
cold seasons (Figure 5). The reason for poor performance during cold seasons is still
unclear. Theoretically, variable Epo (approximated by the Priestley-Taylor equation) in the
CR approach assumes evaporation for an extensive saturation with minimal advection;
however, during cold seasons, air advection is usually stronger than that in warm seasons.
Thus, greater deviations may be derived from the conduction of Epo by only local air
temperature and humidity in cold seasons, and the degree of land–atmosphere coupling
during the cold season is usually weaker than that in warm seasons. The above conditions
for cold seasons hardly satisfy the requirements of the CR approach.

Han [65] pointed out that accurate terrestrial ET estimation depends on precisely
determining the land surface and atmospheric status; however, the deficiencies of CR-
based models are focused only on the atmospheric status and neglect the land surface
status, and the influence of land surface status on evaporation processes may not be fully
captured through changes in atmospheric status alone, especially at small spatiotemporal
scales. The CR principle may be an alternatively valuable approach when there is a lack
of land surface information in the past, but for now, remote-sensing technologies make
obtaining information on land surface status significantly easier. The CR approach also
needs to take land surface information into account. Currently, some studies [70,73,74]
have introduced shallow soil moisture, the vegetation index, or AI into the CR approach
when applied at large-scale regions. Some other studies [75,76] also adhere to using only
atmospheric status information, developing a free-calibrated CR approach when estimating
large-scale ET. Further assessments about two different CR approaches need to be explored
in the future.

5. Conclusions

This work assessed the actual evapotranspiration estimated by the CR approach in
the frozen ground regions of the QTP. The uncertainties associated with observation and
modeling of E at point scale were analyzed by investigating the parameter determined
by different lengths of calibrated periods and parameter deviations on the accuracy of E
estimation. Finally, two more latest works were compared with the CR-based models in
this study at BJ and NAMORS.

Five CR-based models–whether with default or calibrated parameters–performed well
in daily E estimation: the NSE values were both above 0.7, the accuracy of each CR-based
model was close to another, the C2018 and H2018 models performed better among five
CR-based models on daily and monthly timescales at four field sites, and the S2017 model
performed poorest. The five CR-based models could estimate daily E during warm seasons,
however, they are hardly applied during cold seasons. Nevertheless, the amount of E
during cold seasons only account for small proportion of annual evaporation. Therefore,
CR-based models with fewer data requirements and parameters provide a feasible approach
to estimate daily and monthly E without needing detailed information on moisture and
vegetation in the frozen ground regions of the QTP.

For calibrated parameter αe and b in CR-based models, all models are more sensitive
to variations of αe than b. Specifically, within a certain range of deviations of parameter
αe (for example, deviations from −10 to 30% in this study), the RMSE values will increase
about 0.1 mm d−1 compared with RMSE of E estimation with optimized parameter values.
Parameter b has little impact on the accuracy of E estimation. Thus, reasonable parameter
αe values are of much importance to the performance of CR-based models.

Compared with previous studies about the application of CR-based models on the
QTP, this study uses more in situ measurement data and more CR-based models. The
present study also demonstrates better capability of CR approach on estimating E in high
altitude and cold regions over QTP. At present, the CR approach has been developed as a
benchmarking tool for large-scale evapotranspiration estimates, however, discrepancies
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in different spatiotemporal scales with other mainstream evapotranspiration products
indicated that with the exception of developing physically CR-based models, hybrid
modelling approaches such as combining CR approach with data-driven models are of
great significance to large-scale and high-accuracy ET estimation in the future.
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Abstract: The source region of three rivers (SRTR) is an important water conservation area, also
known as the Water Tower of Asia. Precipitation is one of the most important factors affecting the
ecological system and water resources over the SRTR. However, the characteristics and mechanism
of its change at different time scales are still uncertain. Using the GSMaP remote sensing products
and ERA5 reanalysis data, this study analyzes the spatial and temporal variability of precipitation
and water vapor transport in the SRTR over the past two decades. The annual precipitation slightly
reduces in the north and west and slightly increases in the east and south parts of the SRTR. The
spring, autumn and winter dominate the decrease in precipitation in most areas of the SRTR, while
the summer contributes the most increases. In contrast with the 2000s, the afternoon precipitation
slightly reduced in the 2010s, while the nighttime precipitation increases significantly. The changes in
nighttime precipitation, especially its intensity, associated with the water vapor transport contribute
to the changes in precipitation over the SRTR.

Keywords: remote sensing; afternoon and nighttime precipitation; source region of three rivers;
Tibetan Plateau

1. Introduction

The Tibetan Plateau (TP), due to its unique high altitude, large topography and
hollow heating effect, plays an important role in the modulation of Asian and even global
atmospheric circulation [1,2]. In recent decades, the TP has been experiencing rapid
warming and humidification characteristics, with the warming rate almost 1.5 times the
global average value [3]. Thus, the TP is known as the “initiator” and “amplifier” of climate
change. The source region of Three Rivers (SRTR) is located on the eastern TP and includes
the source region of the Yangtze River, Yellow River and Lantsang River and is honored as
the “Asia’s Water Tower” [4]. Precipitation is one of the most important climatic factors
affecting the ecological system and water resources over the SRTR [5]. Because it is located
in the intersection area of the Indian monsoon, East Asian monsoon and westerly belt, the
SRTR has a complex variety of climate types and inter-annual variation of precipitation [6].
Generally, the precipitation in the eastern and southern parts of the SRTR is significantly
more than that in the northwest [7], and there is a complex coupling relationship between
land surface processes and precipitation in different regions. Therefore, it is of great
value for climate change, water resources research and ecological protection to study the
characteristics and mechanisms of precipitation change in the SRTR.

The precipitation in the SRTR has been widely analyzed by using the in situ observa-
tion data. Besides the dominant pattern with high and low-value centers located in the
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southeast and northwest SRTR, respectively, a dipole pattern with southwest–northeast
reverse distribution also exists in the SRTR [8]. From 1961 to 2019, the SRTR average annual
precipitation was 470.7 mm and increased by 10.31 mm·10 a−1 [9], and the frequency of
extreme events has increased [10]. The period 1971–1980 was the driest period since the
year 1961, and 2001–2015 was the wettest period [11]. The trends in precipitation variation
during spring, summer and autumn decreased from northwest to southeast, but the oppo-
site trend was observed in winter [9]. Even in cold seasons, the precipitation has discordant
trends in different months, with an increasing trend in November and February and a
decreasing trend in other winter months [12].

In addition to meteorological station data, remote sensing products and reanalysis
data have also been used to analyze precipitation in the SRTR. The Global Precipitation
Climatology Project (GPCP) data are in agreement with the in situ measured precipita-
tion [13]. The Integrated Multisatellite Retrievals for Global Precipitation Measurement
(IMERG) products are affected by the temporal scale, precipitation intensity and phase,
and the performance in the wet season is superior to that in the dry season [14]. Compared
to the in situ observation data, the Climatic Research Unit (CRU) dataset underrated the
annual precipitation but gave a similar variation characteristic in the SRTR [15]. On the
same time scale, the consistency of NOAA Climate Prediction Center (CPC) products and
Tropical Rainfall Measuring Mission (TRMM) products is better than that of the NOAA
PERSIANN Precipitation Climate Data Record (PERSIANN-CDR) products [16]. Over-
all, remote sensing products have a higher ability to detect precipitation in high-altitude
areas (>3000 m) than in low-altitude areas (<3000 m), and they have a better detection
performance for light rain than moderate and heavy rain events [16].

Many studies have focused on the sources of water vapor and mechanisms of precipi-
tation variation over the SRTR under different climates, but the results remain inconclusive.
A study using the GPCP data suggests that the abnormal wind convergence and the low-
pressure system, combined with the effects of the western Pacific subtropical high and the
Mongolian high, provide conditions for the transport of water vapor and precipitation over
the SRTR [13]. Another study suggests that Niño3.4, North Atlantic oscillation and Arctic
oscillation play more important roles in the variation of dryness/wetness patterns in the
SRTR [12]. In the cold season, the mechanisms for the interannual variation in precipitation
are significantly different in different months. The main factors modulating the interannual
variability of precipitation are the anomalous westerly water vapor transport (WVT) branch
in November and southwesterly WVT anomalies in January and February [13].

In general, previous studies mostly focused on the analysis of long-term interannual
or seasonal variations of SRTR precipitation and rarely discusses the changes in specific
precipitation types (such as afternoon convective precipitation or nocturnal precipitation).
A few studies have found that precipitation in the TP occurred mostly in the afternoon
and night due to the thermal processes and the longwave radiation cooling [17,18]. In
this study, we used the remote sensing precipitation product to diagnose precipitation
changes in the SRTR in the last two decades. As previous studies emphasized an important
influence of the hydrological cycle on local precipitation [19–21], we also present variation
of afternoon precipitation as it is a dominant part of local triggered precipitation and is
strongly related to the local thermal and hydrological processes. The paper is organized as
follows. Section 2 introduces the study area and data used in this study. Section 3 presents
the results. Section 4 is the discussion. Section 5 presents the conclusions.

2. Study Area and Data

2.1. Study Area

The SRTR is located in the northeastern of the TP, with an average elevation of 3500 m;
we mainly focused on the area of 30–37◦N and 88–104◦E in this study (Figure 1). Previous
studies show that 38% of runoff in the source region of the Yellow River, 15% of runoff in
the source region of the Lantsang River and a considerate amount of runoff in the Yangtze
River originate from the SRTR [4,22]. The GSMaP_Gauge is densely covered with rivers,
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lakes, wetlands, snow-capped mountains and glaciers and thus is an important ecological
shelter zone in China [23].

Figure 1. The overview of the Source Region of Three Rivers.

2.2. The GSMaP Precipitation Product

GSMaP (Global Satellite Mapping of Precipitation) and IMERG (Integrated Multi-
satellite Retrievals for GPM) are two widely used satellite precipitation products in the
GPM era, with high spatial and temporal resolutions. GSMaP (Global Satellite Map-
ping of Precipitation), developed by the Japan Aerospace Exploration Agency (JAXA)
(https://sharaku.eorc.jaxa.jp/GSMaP_CLM/index.htm, accessed on 10 May 2020), is one
of the most popular algorithms in the era of GPM [24,25]. The GSMaP_Guage product
we used in this study is a gauge-calibrated product that adjusts the GSMaP_MVK es-
timation with CPC (Climate Precipitation Center) gauge-based analysis of global daily
precipitation, whose spatial and temporal resolutions are 0.1◦ × 0.1◦ and 1 h, respectively.
Kentaro et al. (2015) compared GSMaP_Gauge and GSMaP_MVK products in Japan and
found that GSMaP_Gauge products have a better detection performance under different
time scales and precipitation intensities [26]. Previous studies show that GSMaP gets
some improvements in inversion accuracy and hydrological simulation utility compared to
TRMM (Tropical Rainfall Measuring Mission) products over the Tibetan Plateau [27]. In
the Yellow River basins. The latest GSMaP data is evaluated as having a relatively higher
accuracy than IMERG [28].

2.3. ERA5 Reanalysis Data

ERA5 is the fifth generation of global climate atmospheric reanalysis information from the
Copernicus Climate Change Service (C3S) at the European Centre for Medium-range Weather
Forecasts (ECMWF) (https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5,
accessed on 30 August 2021), which uses an advanced modeling and data assimilation system
to combine model data with observations from around the world to form a globally complete
and consistent dataset. Compared to its predecessor, ERA5 has a finer horizontal grid of about
30 km while also improving vertical resolution and providing hourly estimates of a large
number of atmospheric, terrestrial and oceanic climate variables [29–31]. Moreover, ERA5
effectively corrects for overestimating some physical quantities of thermodynamics and can
be used for general analysis of the Tibetan Plateau [32,33].

3. Results

3.1. Climatology of Precipitation

Figure 2 shows the climatology of annual and seasonal precipitation on the SRTR.
The annual precipitation ranges from 500 to 1000 mm/a, presenting a pattern of gradual
decrease from southeast to northwest. Among the different seasons, summer (June-July-
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August, JJA) precipitation dominates the pattern of annual precipitation, accounting for
about 61.3% of the annual precipitation (Figure 3). In spring (March-April-May, MAM),
summer and autumn (September-October-November, SON), the precipitation distribution
presents a pattern of decrease from southeast to northwest, while in winter (December-
January-February, DJF), precipitation has no significant spatial distribution characteristics.
In addition, the summer precipitation is mainly in July and August, suggesting influences
of water vapor transport by the summer monsoon.

Figure 2. Precipitation (mm/month) in (a) annual average, (b) June-July-August (JJA) average,
(c) March-April-May (MAM) average, (d) June average, (e) September-October-November (SON)
average, (f) July average, (g) December-January-Februrary (DJF) average, and (h) August average
from 2001 to 2019.

In terms of precipitation occurrence ratio (i.e., proportion of precipitation days in
the total days, Figure 4), the distribution characteristics for multi-year climatology, MAM,
JJA and SON consistently decline from southeast to northwest, the same as precipitation
amount shown in Figure 2. There is not much distinction between MAM and SON. How-
ever, for JJA, precipitation days occupy more than 60%, particularly in June, almost 80%
of the days have precipitation events, followed by July and August. In the west of the
SRTR, precipitation is suppressed most of the time. However, for the east part of the source
region of the Yellow River, it always presents a relatively higher frequency of precipitation
in all seasons, which has also become an important water supply area for the Yellow River.
In DJF, precipitation only occurs in this region, suggesting a very dry condition in other
regions of the SRTR.
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Figure 3. Monthly accumulated precipitation on the SRTR (averaged from 2001 to 2019).

Figure 4. Precipitation occurrence ratio in (a) annual average, (b) June-July-August (JJA) average,
(c) March-April-May (MAM) average, (d) June average, (e) September-October-November (SON)
average, (f) July average, (g) December-January-Februrary (DJF) average, and (h) August average
from 2001 to 2019.

3.2. Changes in Precipitation
3.2.1. Precipitation Amount

Figure 5 shows differences between the climatology of precipitation in the two decades,
i.e., 2010 to 2019 and 2001 to 2010. For the annual average precipitation, it shows a
slight decrease in the north and west of the SRTR and a slight increase in the eastern and
southern parts. In a large area of central SRTR, precipitation shows tiny variation. The
most significant changes happened in the southeast of the source region of the Yellow
River and the Lantsang River. Considering the contribution of different seasons, MAM,
SON and DJF dominate the decreasing of precipitation in most area of the SRTR, while
JJA contributes the most increases. Precipitation in spring presents a similar pattern, with
the annual average, while in SON, precipitation in most of the area shows a drying trend
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except the southeast of the source region of the Yellow and Lanstang Rivers. The winter
presents a total drying pattern in contrast with the total wetting variation in most areas
in summer. For different months in summer, precipitation shows a significant increase in
June, especially in the center to the south, while it has an increase in the north in August.
In July, it shows basically a drying trend in the northwest of the SRTR and a wetting trend
in the south.

Figure 5. Difference between precipitation (a) annual average, (b) June-July-August (JJA) average,
(c) March-April-May (MAM) average, (d) June average, (e) September-October-November (SON)
average, (f) July average, (g) December-January-Februrary (DJF) average, and (h) August average
from 2010 to 2019 and from 2001 to 2010 (mm/month).

3.2.2. Precipitation Frequency

As to the changes in precipitation frequency, for the annual average, MAM, SON and
DJF, most areas show a reduction in the precipitation occurrence ratio (Figure 6). Only in
June and August do the precipitation occurrence ratios increase in most areas. In the west
of the Yangtze River headwater region, a significant rise in the precipitation occurrence
ratio is presented, although the precipitation amount does not increase correspondingly
in this region. The spatial correlation coefficients between the variations of precipitation
amount and precipitation occurrences ratio over the two decades are 0.689, 0.752, 0.48, 0.697
and 0.437 for the annual average, MAM, JJA, SON and DJF, respectively. The higher spatial
correlation in MAM and SON suggests the possibility of precipitation reduction caused by
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the decreasing precipitation frequency in these two seasons, while this is not the same in
JJA and DJF. In June, July and August, the spatial correlation coefficients are 0.195, 0.604
and 0.611, indicating the inconsistency in changes in precipitation amount and frequency. ‘

Figure 6. Difference in precipitation occurrence ratio between 2010 and 2019 and from 2001 to 2010
in (a) annual average, (b) June-July-August (JJA) average, (c) March-April-May (MAM) average,
(d) June average, (e) September-October-November (SON) average, (f) July average, (g) December-
January-Februrary (DJF) average, and (h) August average.

3.2.3. Afternoon and Nighttime Precipitation

Figure 7 shows the changes in afternoon precipitation in the same period as Figure 5.
To address the contribution of afternoon precipitation to precipitation changes in the two
decades, we calculated spatial correlation coefficients between the afternoon precipitation
differences and total precipitation differences between the two decades (Table 1). Com-
paring Figure 5 with Figure 7, there was a similar pattern in Year, MAM, SON and JJA,
but the results were quite different in the three months in summer. In terms of the spatial
correlation coefficients, the maximum is from the total precipitation changes between the
two decades, and the correlation coefficients are 0.552, 0.438, 0.518 and 0.805 for MAM, JJA,
SON, and DJF, respectively, which are all larger than that in each month in summer.
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Figure 7. Difference between afternoon precipitation in (a) annual average, (b) June-July-August (JJA)
average, (c) March-April-May (MAM) average, (d) June average, (e) September-October-November
(SON) average, (f) July average, (g) December-January-Februrary (DJF) average, and (h) August
average from 2010 to 2019 and from 2001 to 2010 (mm/month).

Table 1. Spatial correlation coefficients (Cor) between afternoon precipitation differences and total
precipitation differences among the two decades in different periods.

Year Season Month

period Year MAM JJA SON DJF Jun Jul Aug

Cor 0.629 0.552 0.438 0.518 0.805 0.186 0.485 0.326

As shown in Figure 8, the nighttime precipitation changes show similar patterns as in
Figure 5, except the magnitude in the night is different. The spatial correlation coefficients
are around 0.9 for almost all time periods (Table 2), suggesting a dominant contribution of
nighttime precipitation to the total precipitation changes. Figure 9 shows diurnal changes
in precipitation rates between the two decades. In the morning in the local time (i.e., 00:00
to 04:00 UTC), there are no significant changes between the two decades. For afternoon
precipitation (04:00 UTC to 12:00 UTC), there is a slight reduction in the 2010s in contrast
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with the 2000s, whilst there is a strong increase shown for the nighttime precipitation,
emphasizing the contribution of nighttime precipitation variation to the total precipitation.

Figure 8. Difference between nighttime precipitation in (a) annual average, (b) June-July-August (JJA)
average, (c) March-April-May (MAM) average, (d) June average, (e) September-October-November
(SON) average, (f) July average, (g) December-January-Februrary (DJF) average, and (h) August
average from 2010 to 2019 and from 2001 to 2010 (mm/month).

Table 2. Spatial correlation coefficients between nighttime precipitation differences and precipitation
differences among the two decades in different time periods.

Year Season Month

period Year MAM JJA SON DJF Jun Jul Aug

Cor 0.964 0.943 0.908 0.965 0.916 0.934 0.917 0.884

In order to quantify the causes of precipitation changes, we calculated the correlation
coefficients of precipitation difference with precipitation probability, afternoon precip-
itation difference, nighttime precipitation difference, afternoon precipitation frequency
difference and nighttime precipitation frequency difference (Table 3). It is very clear that
the maximums of the correlation coefficients occur between the precipitation difference
and the nighttime precipitation difference, suggesting the domination of nighttime pre-
cipitation changes in the total variations. When comparing the precipitation intensity and
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frequency in the nighttime (Table 4), the nighttime precipitation intensity difference shows
a higher correlation with the night precipitation changes, implying the domination of
nighttime precipitation.

Figure 9. Diurnal changes in precipitation rate (mm/h) between the two decades.

Table 3. Correlation coefficients of precipitation difference with precipitation probability (Pp), after-
noon precipitation difference (Pa), nighttime precipitation difference (Pe), afternoon precipitation
frequency difference (Ppa) and nighttime precipitation frequency difference (Ppe).

Cor Year MAM JJA SON DJF Jun Jul Aug

Pp 0.689 0.752 0.480 0.697 0.437 0.195 0.604 0.611
Pa 0.629 0.552 0.438 0.518 0.805 0.186 0.485 0.326
Pe 0.964 0.943 0.908 0.965 0.916 0.934 0.917 0.884

Ppa 0.835 0.834 0.638 0.743 0.620 0.586 0.629 0.646
Ppe 0.818 0.844 0.562 0.699 0.589 0.465 0.599 0.595

Table 4. Correlation coefficients of nighttime precipitation difference with nighttime precipitation
intensity difference (Se) and nighttime precipitation frequency difference (Pa).

Cor Year MAM JJA SON DJF Jun Jul Aug

Se 0.963 0.946 0.890 0.959 0.912 0.916 0.909 0.929
Pa 0.795 0.823 0.455 0.705 0.528 0.393 0.538 0.469

4. Discussion

As was shown above, the nighttime precipitation intensity dominates the variations
of night precipitation and then precipitation amount in the SRTR. Previous studies have
investigated the interdecadal variability of regional precipitation in the SRTR. For example,
Shang et al. (2021) found that the increased precipitation in the cold season over the
SRTR is associated with the strengthened easterly anomalies over the TP and water vapor
meridional transport enhancement from tropical oceans and the South China Sea [34].
Zhao et al. (2021) found the heavy precipitation events, which mainly contribute to the
interannual increasing trend of summer precipitation over the SRTR, could be largely
attributed to the enhanced moisture sources from the neighboring northeastern areas of the
SRTR [35]. It is necessary to diagnose the changes in water vapor between the two decades.

Figure 10 shows the difference between the climatology of water vapor and its diver-
gence between the two decades. For the changes in annual average and different seasons,
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the variation in atmospheric water vapor convergence and dispersion is in good agreement
with the variation in the nighttime precipitation (Figure 8). For example, in SON and July,
the increase in water vapor transported from the south side and the decrease in water
vapor on the north side result in a distribution characteristic of a dry north and a wet south,
despite the spatial gradients being different. In MAM and DJF, the water vapor variation
is not evident, and with the strong decrease of vertical velocity (figure not shown), the
nighttime precipitation of the SRTR generally presents a reduction trend (Figure 8). For
JJA, a clearly drying trend is shown, although the pattern varies from month to month.
Basically, the water vapor transport increases from the south ocean in the monsoon period,
while it shows a decreasing trend in the monsoon retreat period. It is worth noting that
the substantial drying of the atmospheric water vapor content and decrease of vertical
upward motion in July in the past two decades over the whole SRTR has led to a decrease
in summer precipitation, which are different from other studies focusing on longer time
periods [12,35–37].

Figure 10. Differences between climatology of vertical water vapor (Vectors, kg/(m.s)) and its
divergence (Shaded, kg/(m2.s)) in (a) annual average, (b) June-July-August (JJA) average, (c) March-
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April-May (MAM) average, (d) June average, (e) September-October-November (SON) average,
(f) July average, (g) December-January-Februrary (DJF) average, and (h) August average from 2010
to 2019 and 2001 to 2010.

5. Conclusions

This study focuses on the spatial and temporal variability of precipitation in the
SRTR over the past two decades based on satellite observations and reanalysis data. The
annual precipitation shows a slight reduction in the north and west of the SRTR and a
slight increase in the east and south parts. In most regions of central SRTR, there is little
variation in precipitation. For the annual variation, JJA contributes the most increases,
while the remaining three seasons dominate the decrease in precipitation in most areas of
the SRTR. In the west of the Yangtze River headwater region, although the precipitation
amount does not increase, the precipitation occurrences ratio significantly raises. The
higher spatial correlation between the precipitation amount and precipitation occurrences
ratio in MAM and SON suggests the possibility of precipitation reduction caused by the
decreasing precipitation frequency in these two seasons, while this is not the same in JJA
and DJF. In contrast with the 2000s, the afternoon precipitation slightly reduced in the
2010s, while there is a strong increase shown for the nighttime precipitation. The spatial
correlation coefficients between nighttime and total precipitation differences between the
two decades are around 0.9 for almost all time periods, suggesting a dominant contribution
of nighttime precipitation to the total precipitation changes. The water vapor transport
changes dominate the precipitation changes in different seasons and months in summer,
while the decreasing vertical velocity depresses precipitation to some extent. The changes
in nighttime precipitation, especially its intensity, associated with the water vapor transport,
contribute to the changes in precipitation over the SRTR region.
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Abstract: The impacts of climate change on ecosystem productivity and water resources over a long
term in China are not well quantified. Precipitation-use efficiency (PUE) is a key parameter that
describes carbon and water exchange in terrestrial ecosystems. Research on the response of regional
PUE to climate change and its driving forces is of great significance to climate-change mitigation and
the sustainable development of regional ecology. Based on an improved actual evapotranspiration
(ETa) model, the responses of ETa, net primary productivity (NPP), and PUE to climate change in
different climatic regions of China were analyzed; the contributions of various environmental factors
to PUE changes were quantified; and the conversion characteristics and regulatory mechanisms of the
PUE regime in different climatic regions were identified. The results indicate that the improved ETa

model, after considering the limiting effect of energy on ETa in humid regions, can simulate the ETa

distribution in China well. Over the past 58 years (1960–2017), ETa and NPP have increased in the
western regions and decreased in the eastern regions, with the boundary at 103◦ E. PUE presents a
“low-high-low” spatial distribution from northwest to southeast in China. It is noteworthy that there
was a zonal distribution for a high value area of PUE, which coincided with the summer monsoon
transition zone. The soil moisture (SM) increase in arid regions is the main driving force of the PUE
increase, whereas the annual net radiation (Rn) change in humid regions is the main driving force
of the PUE change. The transition zone is the conversion zone, where the prevailing factor limiting
vegetation growth transitions from water to energy.

Keywords: typical climatic zones; precipitation-use efficiency; net primary productivity; contribution
of environmental factors; transformation characteristics

1. Introduction

Global warming and the increase of extreme weather events are having a serious
impact on the structure, function, and processes of global ecosystems [1], and have become
a focal issue of common concern to governments, the public, and the scientific community.
In IPCC AR6 [2], it is reported that the frequency and intensity of some extreme weather
and climate events will continue to increase under medium and high emission scenarios,
and the increased extreme events (e.g., droughts, heat waves, and heavy rainfall) will affect
25−40% of global ecosystem structure and function.

The terrestrial ecosystem carbon cycle is a key process driving ecosystem change,
and changes in the ecosystem carbon cycle are sensitive to climate change. China is
one of the most sensitive and vulnerable regions to climate change. Climate change
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decreased the capacity of carbon storage [3], and extreme climate events such as drought,
extreme heat, and extreme precipitation all have serious impacts on the carbon cycle of
terrestrial ecosystems. Droughts have weakened vegetation growth [4], and prolonged
and persistent droughts have reduced carbon accumulation, causing grassland ecosystems
in Inner Mongolia to change from a carbon sink to a carbon source in a typical year [5].
Heat waves and droughts significantly reduced regional GPPs and crop yields in summer
2013 [6]. The ice storm in early 2008 also resulted in a decrease in annual evapotranspiration
and GPP in southeastern China [7].

Precipitation-use efficiency (PUE) describes the response of net primary productivity
(NPP) to the temporal and spatial distribution of precipitation. PUE is a comprehensive
physiological and ecological index for evaluating the appropriate degree of vegetation
growth while reflecting the carbon and water cycles and the carbon–water relationship
in the ecosystem [8]. Research on the characteristics of PUE and its control mechanism
can help evaluate and predict the impact of global changes on the carbon–water cycle of
ecosystems and provide a theoretical basis for regional plant protection and restoration.
PUE distribution and changes are affected by several factors, such as topography, soil
conditions, climate change, and human activities. Climate change is the most important
and active factor [9,10]. Earlier studies addressed the response of the spatiotemporal
PUE pattern to climate change but did not reach a consistent conclusion due to different
temporal and spatial scales. Some studies concluded that the PUE spatially decreases
with increasing drought and potential evapotranspiration and increases with increasing
precipitation [11]. However, other studies concluded that the PUE spatially decreases with
increasing precipitation [12,13]. It has also been demonstrated that there is no obvious
relationship between the spatial PUE distribution and precipitation [14]. In addition, some
studies have reported that the PUE exhibits a unimodal distribution that first increases and
then decreases with increasing precipitation and reaches its peak at a specific precipitation
value [13,15,16]. The feedback mechanisms between the water-carbon cycle of ecosystems
and climate are relatively complex, and the response of NPP and PUE to climate change
has a large spatial and temporal heterogeneity. China’s vast land area, complex topography,
diverse climate and vegetation types, and high spatial and temporal variability in precipita-
tion and ecosystem carbon fluxes hinder the accurate assessment of carbon fluxes [17–20].
Earlier studies focused mostly on small local areas with precipitation or temperature limits
or specific vegetation types [11,16,21,22], and little attention has been paid to variations in
PUE along a climatic gradient. At the same time, prior studies mostly focused on the effects
of single climate factors on PUE, lacking a comprehensive understanding of the specific
contributions of each climate factor and regional differences [16,20,21], which cannot fully
reveal the difference and transformation characteristics of PUE with climate and vegetation-
gradient distribution, thereby limiting the in-depth understanding of PUE characteristics
and driving forces in different regions.

NPP is a key for calculating the PUE. There are several methods for obtaining the
NPP. In situ measurements have high data accuracy but are limited by the amount of
data and are time-consuming and labor-intensive. Thus, they can only be used during
surveys of small areas. Model estimation is an effective means of obtaining NPP on a
regional or global scale. NPP estimation models can be roughly divided into three cate-
gories: ecophysiological process models, light-use efficiency models, and climate statistical
models [23]. Ecophysiological process models simulate NPP based on the ecophysiological
characteristics and growth mechanisms of plants [24]. Representative models include the
Biome-BGC, CEVSA, and BEPS models. This type of model has strong mechanisms and
is systematic. However, they are complex, and the required parameters are many and
difficult to obtain. Light-use efficiency models use photosynthesis from vegetation and a
resource balance view as the theoretical basis. They apply remote sensing data to drive
ecological models for NPP simulation on regional or global scales and have been used
worldwide. Representative models are the CASA and Glo-PEM models. Although this type
of model has clear mechanisms and complete structures, the assignment and correction of
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model parameters are complicated, with large uncertainties. There are three main types
of parameters based on the input of the light-use efficiency model: solar radiation data,
maximum light-use efficiency, and environmental factors. The algorithms and required
data for each parameter type are diverse. Different calculation methods have substantial
differences in simulating vegetation NPP, especially in simulating environmental factors
and maximum light use efficiency, because it is difficult to assign a large number of soil
parameters to certain regions or special geomorphic types [25]. Additionally, these models
are completely dependent on the availability and quality of remote sensing data [26]; in
regions with strong spatial heterogeneity and complex terrain, the accuracy of the model is
highly uncertain.

Climate statistical models estimate NPP based on the correlation between plant growth
and environmental factors. Representative models include the Miami, Thornthwaite memorial,
Chicago, and comprehensive models. Although these models lack a mechanism, they are simple,
intuitive, and highly applicable. Hence, they constitute the easiest and most convenient method
for estimating NPP. Since their development in the 1970s, they have been applied in vegetation
NPP research worldwide [20], particularly in relation to large-scale research. Various land-
atmosphere mutual observation experiments also provide the possibility for model calibration,
thereby continuously improving the accuracy of these models.

In the context of global climate change, the characteristics and changes of China’s regional
PUE are not yet fully understood, as well as the regional differences and driving forces of
the PUE response to climate change. What are the spatial distribution characteristics of the
carbon flux in mainland China? How do environmental factors relate to PUE? Does PUE spatial
conversion occur with climate type? What is the possible mechanism of action? Therefore,
our primary objectives were to: (1) improve the ETa calculation model by comprehensively
considering the water and energy conditions in different regions; (2) analyze the characteristics
of ETa, NPP, and PUE in different climate regions of China; (3) reveal the driving forces,
transformation characteristics, and control mechanism of the PUE distribution.

2. Materials and Methods

2.1. Study Area

This study focused on mainland China. There are great climatic differences between
east and west and south and north of China. Precipitation decreases from southeast to
northwest, and climate transitions from humid to arid, presenting a basic pattern of humid
in the east and south, but arid in the west and north, and there is a narrow zonal climate
transition zone between humid and arid climate regions. We divided the study region
into three sub-regions according to the distribution of average annual precipitation (P):
the arid region (P < 200 mm), transition zone (600 > P ≥ 200 mm), and humid region
(P ≥ 600 mm) [27]. The distribution of meteorological and flux stations and sub-regions is
shown in Figure 1.

Figure 1. Locations of 693 meteorological stations (black solid dots), 44 flux stations (red stars), and
the three sub-regions (i.e., arid region, transition zone, and humid region) (a), and the Köppen-Geiger
climatic zones (b).
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2.2. Data

Daily meteorological data from 693 stations in China between 1960 and 2017 were
used, including maximum, mean, and minimum temperatures (Tmax, Tmean, and Tmin,
respectively); sunshine hours (H); wind velocity (U); relative humidity (Rh); and P. These
data were obtained through the meteorological data sharing network of the China Mete-
orological Administration and were checked for homogenization and quality, including
controls for time and space consistency, extreme values, and climate-limit or allowable
values [28].

Observations from 44 flux stations were used to validate the ETa model. Nine of
these stations are part of China FLUX (The Chinese Terrestrial Ecosystem Flux Research
Network). Data from the remaining stations were obtained from published articles. These
flux stations are widely distributed in space, including 16 forest, 17 grassland, 6 farmland,
and 5 wetland stations, covering the main climatic regions and typical ecosystem types in
China. Details on the data are given in Table 1.

Table 1. Metadata for each flux station including station name, location, altitude, years of available
data, and references.

No. Stations Latitude Longitude Observational Periods Reference

1 Daxing 39.53◦ N 116.25◦ E 2006 Zhang [29]
2 Dinghushan 23.17◦ N 112.53◦ E 2003–2010 China FLUX
3 Changbaishan 42.40◦ N 128.10◦ E 2003–2010 China FLUX
4 Guantan 38.53◦ N 100.25◦ E 2011 Zhu et al. [30]
5 Yueyang 29.31◦ N 112.51◦ E 2006 Wang [31]
6 Kubiqi 40.54◦ N 108.69◦ E 2006 Wilske et al. [32]
7 Xiaolangdi 35.02◦ N 112.47◦ E 2007–2009 Guo [33]
8 Xishuangbannan 21.96◦ N 101.20◦ E 2003–2010 China FLUX
9 Qianyanzhou 26.74◦ N 115.06◦ E 2003–2010 China FLUX
10 Ailaoshan 24.53◦ N 101.02◦ E 2010 China FLUX
11 Gonggashan 29.58◦ N 102.00◦ E 2009 Lin et al. [34]
12 Huaining 33.00◦ N 117.00◦ E 2005–2006 Han et al. [35]
13 Huitong 26.83◦ N 109.75◦ E 2009 Wang et al. [36]
14 Laoshan 45.33◦ N 127.57◦ E 2004–2006 Cui [37]
15 Miyun 40.63◦ N 117.32◦ E 2008–2010 Liu et al. [38]
16 Taihuyuan 30.18◦ N 119.34◦ E 2011 Lin et al. [39]
17 Changling 44.58◦ N 123.50◦ E 2007–2008 Dong et al. [40]
18 Duolun County 42.05◦ N 116.28◦ E 2006 Chen et al. [41]
19 Haibei a 37.66◦ N 101.29◦ E 2003–2010 China FLUX
20 Haibei b 37.60◦ N 101.30◦ E 2002–2004 Gu et al. [42]
21 Siziwang Banner, grazed 41.79◦ N 111.90◦ E 2010 Shao et al. [43]
22 Xilinhot, grazed 43.55◦ N 116.67◦ E 2006 Chen et al. [41]
23 Xilinhot, typical fenced 44.13◦ N 116.33◦ E 2004–2006 Wang et al. [44]
24 Tongyu 44.59◦ N 122.52◦ E 2003–2008 Liu and Feng [45]
25 Yuzhong 35.95◦ N 104.14◦ E 2007–2012 Yue et al. [46]
26 Aro 38.04◦ N 100.46◦ E 2008 Wang et al. [47]
27 Dangxiong 30.85◦ N 91.08◦ E 2003–2010 China FLUX
28 Yanchi 37.81◦ N 107.48◦ E 2016 Liu [48]
29 Xinlin Gol 43.55◦ N 116.68◦ E 2003–2010 China FLUX
30 Fukang 44.28◦ N 87.93◦ E 2004 Liu et al. [49]
31 Sunitezuo 44.00◦ N 113.57◦ E 2008–2009 Zhang et al. [50]
32 Sanjiangyuan 34.35◦ N 100.50◦ E 2006–2008 Li et al. [51]
33 Tianjun 38.42◦ N 98.32◦ E 2011 Wu et al. [52]
34 Yucheng 36.95◦ N 116.60◦ E 2003–2010 China FLUX
35 Dingxi 35.55◦ N 104.58◦ E 2010 Yang et al. [53]
36 Jinzhou 41.15◦ N 121.20◦ E 2006 Zhou et al. [54]
37 Yueyang 29.31◦ N 112.51◦ E 2015 Chen and Huang [55]
38 Changwu 35.23◦ N 107.67◦ E 2008 Wu et al. [56]
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Table 1. Cont.

No. Stations Latitude Longitude Observational Periods Reference

39 Yushu 44.85◦ N 126.52◦ E 2009 Guo et al. [57]
40 Sanjiang Plains 47.51◦ N 133.51◦ E 2017 Guo et al. [58]
41 Panjin 41.14◦ N 121.90◦ E 2005, 2006–2007 Zhou et al. [59]
42 Dongtan 31.52◦ N 121.96◦ E 2005 Guo et al. [60]
43 Yunxiao 23.92◦ N 117.42◦ E 2009–2010 Yan [61]
44 Gaoqiao 21.57◦ N 109.76◦ E 2010 Chen et al. [62]

Nos.1 to 16 are forest stations, 17 to 33 are grassland stations, 34 to 39 are cropland stations, and 40 to 44 are
wetland stations. Periods in bold are the Validation Data. Haibei a and Haibei b are two sites in different
geographical locations.

Actual evapotranspiration data (unit: mm) and the 0–10 cm depth, monthly average
soil water-content data (unit: kg·m−2) in GLDAS_Noah025_M 2.0 and 2.1 datasets were
used, with 0.25 × 0.25◦ spatial resolution and a time range from January 1960 to December
2017. GLDAS data are global land-surface characteristics and flux data generated by
advanced land–surface models and data assimilation technology [63].

The validation NPP data are the MOD17A3 surface vegetation NPP data provided
by the EOS/MODIS (TERRA satellite) of NASA. MOD17A3 has been verified and widely
applied in research regarding vegetation growth, biomass estimation, environmental moni-
toring, and global change in different regions of China and the world. In this study, we
used NPP data with a 0.5 × 0.5 km resolution from 2000 to 2017. Data corresponding to the
693 meteorological stations were extracted using the neighboring grid method.

2.3. Methods

PUE was identified as the ratio of NPP to P [11]:

PUE =
NPP

P
(1)

where NPP is the annual net primary productivity (unit: g·m−2) and P is the annual
precipitation (unit: mm). NPP is obtained through the Thornthwaite memorial model [64]:

NPP = 3000(1 − e−0.0009695(ETa−20)
)

(2)

where ETa is the actual evapotranspiration. It can be obtained as Zhou and Zhang [65]. Al-
though there are many methods to estimate ETa, such as the water balance method, surface
energy balance method, remote sensing analysis method, etc., they all have limitations,
such as complicated parameters and difficulty to determine [66,67]. Zhou and Zhang’s
method fully reflects the limiting effect of energy and water on evapotranspiration, with its
few parameters and clear physical significance making it high practicability. The method is
as follows:

ETa =
P × R × (P2 + R2 + P × R

)
(P + R)× (P2 + R2)

(3)

Here, P is the annual precipitation, and R is the annual net radiation correction factor,
which can be obtained by Equation (4):

R = (ET0 × P)0.5 × (0.369 + 0.598 × (ET0/P)0.5 (4)

where ET0 is the potential evapotranspiration calculated using the FAO Penman-Monteith
method. See Allen et al. [68] for details.

The sensitivity coefficient and the relative change were used to measure the contribu-
tion of environmental factors to the PUE change:

ConX = RCX × SX (5)
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RCX =
58 × TrendX

|aveX | × 100% (6)

where ConX is the contribution of a factor to the PUE change, RCX is the relative change
rate of the factor, TrendX and aveX are the change rate and average of the factor, respectively,
and Sx is the sensitivity coefficient of the PUE with respect to environmental factor X. Sx
can be obtained as McCuen [69]:

Sx = lim
ΔX→0

(
ΔPUE/PUE

ΔX/X

)
=

∂PUE
∂X

× X
PUE

(7)

3. Results

3.1. ETa Estimation and Its Change Characteristics

ETa was calculated using Equation (3). Compared with the observations from the
flux stations (Figure 2), both the observed and estimated ETa were found to increase
significantly with increased precipitation in the region where P < 600 mm. Furthermore,
when P ≥ 600 mm, the observed ETa first increased and then decreased with increasing P,
although the estimated ETa still increased significantly with increased P. Many factors affect
ETa, the most important of which are water and energy conditions. In arid and semiarid
regions, the amount of precipitation is relatively small, but the energy is sufficient. The main
factor affecting ETa is water, and a change in P largely determines the change in ETa. In the
semi humid region, increased P makes energy the controlling factor of ETa instead of water,
and the rate at which ETa increases with P slows down. In humid areas with abundant
rainfall, ETa no longer increased with increasing P. Due to more precipitation, energy
conditions limit ETa, and higher P results in smaller ETa. Earlier studies confirmed the
switch of the ETa controlling factor from water to energy with increased precipitation [70].
Equation (3) does not consider this switch when estimating the ETa in the humid region
and does not reflect its energy constraint. Estimates are largely dependent on precipitation,
which exaggerates the results. We further used P = 600 and P = 1400 mm as the boundaries
and conducted regression corrections on the estimated ETa. The specific regression equation
is given by Equation (8).

ETa_new =

⎧⎨
⎩

ETa if Pre ≤ 600mm
0.815 ∗ ETa + 26.2 if 600 mm < Pre ≤ 1400mm (r = 0.82, a < 0.01)
−0.615 ∗ ETa + 1249.8 if Pre > 1400mm (r = 0.53, a < 0 .01)

(8)

Figure 2. Distribution of observed and estimated ETa with P.

The improved ETa in the southern humid region is significantly smaller than the
ETa before improvement (Figure 3). Regions with the highest ETa move north from the
southeastern coastal area to the middle and lower reaches of the Yangtze River. To further
verify the accuracy of the improved ETa model, we compared the estimated values with
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the ETa observations from the flux stations during the validation period and the ETa from
GLDAS during the same period. This comparison showed that the improved ETa is highly
consistent with the observed and GLDAS ETa (Figure 4). The correlation coefficients were
0.95 and 0.85, respectively, and the standard deviation between the estimated and observed
values was much smaller than that between the GLDAS assimilation and observed values.
GLDAS data are sparser in the high evapotranspiration regions, and the values are too
large. Wang et al. [71] also identified an overestimation in the high ETa regions of southern
China in the GLDAS data. Hence, our improved ETa model can simulate the ETa in the
study region more accurately.

Figure 3. ETa distribution (1981–2010 average) before (a) and after (b) improvement.

Figure 4. Comparison of the improved ETa values (ETanew_simu) with the observed and GLDAS
ETa values.

Over the past 58 years (1960–2017), the ETa trend was roughly bounded by 103◦ E,
with ETa increasing to the west and decreasing to the east (Figure 5a). ETa in the arid
region is the smallest, with an average of 68.8 mm and a fluctuation range of 21.3–142.7 mm.
ETa in the transition zone is 350.2 mm with a 79.2–485.0 mm fluctuation range. The ETa
fluctuation range in the humid region is between 439.8 and 745.6 mm, with an average
of 602.5 mm. Over the past 58 years, ETa in the arid region increased at an average rate
of 2.9 mm·10 a−1. The amount of water expenditure in the region increased, and this
increase was significant in some areas. The ETa in the humid area decreased at a rate of
−1.7 mm· 10 a−1. Moreover, the ETa in the transition zone generally shows a slight overall
decrease, and the regional differences are obvious (Figure 5b).
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Figure 5. ETa trend (1960–2017) and (a) distribution of average values and trends in sub regions and
(b) +indicates that the trend was significant at the 0.05 level.

3.2. NPP Estimation and Change Characteristics

Figure 6 shows the estimated annual NPP before and after ETa improvement. As
depicted, the NPP in China is small in the northwest and large in the southeast, which
is consistent with previous study [72]. The NPP of the southern humid region obtained
before the improvement of the ETa model was between 1400 and 1700 g·m−2·a−1. Precipi-
tation is proportional to the NPP. In some regions of the southeast coast, the NPP is above
1700 g· m−2·a−1. The improved NPP range was 22–1510 g·m−2·a−1. The region of maxi-
mum NPP shifts northward and is located south of the Yangtze River. The annual average
NPP was above 1400 g·m−2·a−1. In arid regions, water has a positive effect on vegetation
productivity, which means that productivity increases with improved water conditions.
However, in humid regions with sufficient water supply, NPP tends to be saturated and
is no longer controlled by water [73]. In addition, this region is the cloudiest region in
China [74], which is generally proportional to the light stress on vegetation growth. In
coastal regions with abundant rainfall, vegetation growth is more likely to be regulated by
radiation. Before the improvement, the ETa model did not consider the energy constraint
in the south, the estimated NPP was overly dependent on precipitation, and the estimated
values were too large. The improved NPP better reflects the response of vegetation growth
to the regional climate.

Figure 6. NPP distribution before (a) and after(b) improvement.

A comparison between the estimated NPP values (average values from 2000 to 2017)
and the MOD17A3 multiyear average data shows that the estimated NPP after improve-
ment is significantly correlated with the MOD17A3 NPP (R = 0.67, p < 0.001) (Figure 7). In
the arid region, the MOD17A3 NPP was larger than the estimated NPP. However, in the
humid region, the MOD17A3 NPP was relatively small. Due to estimation errors regarding
reflectance, maximum light-use efficiency, and radiation, MODIS NPP products are overes-
timated in low-productivity regions and underestimated in high-productivity regions [75].
In addition, different methods and scale conversions can also lead to different comparisons.
Therefore, the estimated NPP in this study has a certain rationality and superiority.
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Figure 7. Comparison of estimated NPP and MOD17A3 NPP (average values from 2000 to 2017).

The distribution of the average values and trends of the NPP in the sub regions in
China from 1960 to 2017 are shown in Figure 8. Over the past 58 years, the NPP increased
to the west of 103◦ E, while it decreased to the east. NPP in arid regions typically increases,
with a rate of 4.3 g·m−2·10 a−1. NPP in the transition zone generally exhibits a slight
decrease. However, the regional differences are large. NPP in the humid region typically
displays a decreasing trend of −3.3 g·m−2·10 a−1. The distribution of the average NPP
in different climatic regions shows that the NPP gradually increases from arid to humid
regions. The main vegetation types in arid regions are desert grassland and lowland
meadows. The soil is severely desertified and salinized in regions with low vegetation
coverage. The annual average NPP is 140.4 g·m−2·a−1. The NPP fluctuation range in the
humid region is the smallest, with an average of 1287.9 g·m−2·a−1. The average NPP in
the transition zone is 807.2 g·m−2·a−1, ranging from 226.6 to 1084.8 g·m−2·a−1, thereby
exhibiting the largest regional difference, which is related to the complex and diverse
climate types and vegetation types in the area.

Figure 8. NPP trend (1960–2017) and (a) distribution of average values and trends in sub regions and
(b) +indicates that the trend was significant at the 0.05 level.

3.3. Spatial Distribution and Temporal Variation in PUE

The distribution of the multiyear average PUE presents a “low-high-low” band from
northwest to southeast (Figure 9). PUE is relatively low in arid and humid regions and is
the lowest in extremely arid and extremely humid regions. The transition zone exhibited
the highest PUE. PUE reached its highest value of 2.2 g·m−2·mm−1 in the area where the
annual precipitation was 414 mm. The regional differences in PUE distribution are closely
related to the regional topography, landform, and water expenditure modes. Arid regions
have sparse precipitation, sufficient energy, and low and sparse vegetation, and water is
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mostly spent in the form of soil evaporation. Therefore, vegetation PUE is low. Humid
regions have abundant precipitation, but there are many rainstorms of large intensity [76].
Precipitation is dissipated in the form of runoff, canopy interception, and soil evaporation,
which may produce more ineffective water. In addition, in the humid region, there are
mostly mountainous and hilly land forms with large surface runoff. Hence, PUE is also
low there.

Figure 9. Spatial distribution of mean precipitation-use efficiency (PUE) in China during 1981–2010.

Figure 10 shows the PUE trend in China from 1960 to 2017 and the distribution of
average values and trends in the sub regions. Over the past 58 years, PUE in the arid region
increased at a rate of 0.014 g·m−2·mm−1·10a−1, indicating that the ability of vegetation
in those regions to convert water and nutrients into biomass has increased. PUE in the
transition zone was the highest, with an average of 1.92 g·m−2·mm−1, and generally
showed a slight decreasing trend. In the western part of the transition zone (i.e., west of
103◦ E), PUE decreases and ecology deteriorates, which is consistent with current grassland
degradation in the upper reaches of the Yellow River [77]. In the middle of the transition
zone (i.e., between 103 and 120◦ E), PUE increases. PUE in the eastern part (i.e., east of
120◦ E) decreases. Most of the PUE in the humid region exhibits a decreasing trend of
−0.003 g· m−2·mm−1·10 a−1. In recent years, rainstorm intensity in humid regions has
significantly increased, as has the proportion of rainstorms in annual precipitation [76].
Rainstorms are more likely to form runoff. Hence, this change in precipitation intensity is
one of the reasons for the PUE decrease in the region.

Figure 10. Precipitation-use efficiency (PUE) trend (1960–2017) and (a) distribution of average values
and trends in the sub regions and (b) +indicates that the trend was significant at the 0.05 level.

3.4. Driving Force of PUE Changes and Its Corresponding Conversion Characteristics

Fluctuations in environmental factors have a significant effect on the PUE. Here, we
selected Tmean, Rn, U, Rh, and soil moisture (SM) as influencing factors to characterize the
energy, dynamic, and water statuses, respectively. Regression models between regional
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environmental factors and PUE were established (Table S1). Based on the trends and
sensitivity analysis, the contribution of each factor to the PUE change was obtained.

Figure 11 shows the trends of environmental factors from 1960 to 2017. Over the past
58 years, Tmean in China exhibited a significant increasing trend. Air-temperature increases
in the arid region and transition zone are particularly evident. Rn, U, and Rh exhibited
decreasing trends. Among them, Rn decreased most significantly in the eastern transition
zone and the humid region, especially in Beijing-Tianjin-Hebei and the lower reaches of
the Yangtze River, which is closely related to increased aerosols in these areas [78]. U also
decreased most significantly in the eastern transition zone and east of the humid region. In
addition, U exhibited significant decreasing trends in most of the arid regions. Rh change
is more complicated. Rh in the western Tianshan Mountains, which are located in an arid
region, exhibited an increasing trend because the climate in the region tends to be warm
and humid [50]. Rh decreased in most of the rest of the country. SM changes differed from
east to west. The arid region and western transition zone exhibited significant SM increases,
whereas the Middle Eastern transition zone and humid region exhibited SM decreases.
Overall, soil tended to become arid.

Figure 11. Trends of each environmental factor from 1960 to 2017, (a) Tmean, (b) Rn, (c) U, (d) Rh,
(e) SM, +indicates that the trend was significant at the 0.05 level.

PUE changes in different regions caused by changes in environmental factors are
shown in Figure 12. In the arid region, PUE increased by 6.5% over the past 58 years. The
Tmean increase reduced the PUE by 9.3%. The SM increase and U decrease increased
the PUE by 8.4% and 6.1%, respectively. Rn and Rh increased the PUE by 1.3 and 1.9%,
respectively. SM was the main driving force of regional PUE increases. In the humid
region, PUE decreased by 3.5% over the past 58 years. The relative change rates of PUE
caused by changes in Rn, U, Tmean, Rh, and SM were −15.3, 13.0, −3.2, −1.3, and 1.6%,
respectively. Rn changes were the main driving force of regional PUE decreases. Over the
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past 58 years, atmospheric aerosols in humid regions increased significantly, whereas net
radiation decreased significantly [78]. As a result, vegetation photosynthesis is inhibited,
vegetation productivity decreases, and PUE decreases accordingly. The impact of climate
factors on PUE in the transition zone is more complicated. From the regional average
sequence, the positive contribution of the Tmean increase and the U decrease to PUE offset
the adverse effects of the Rn and SM decreases, which makes the PUE change insignificant.
However, the PUE change in the transition zone exhibited obvious regional differences. The
PUE decrease in the western plateau area was dominated by a significant SM increase. The
PUE increase in the central regions was mainly due to the positive effect of a U decrease.
PUE in the eastern and northeastern regions of the transition zone was dominated by Rn,
which means that a significant Rn decrease can reduce the PUE. Overall, the PUE trend
was dominated by water in the northern and arid regions and by energy in the southern
and humid regions of China.

Figure 12. Contribution of environmental factors to precipitation-use efficiency (PUE). Tmean is air
temperature, Rn is the net radiation, U is the wind speed at 10 m, Rh is the relative humidity, and SM
is soil moisture.

The contribution of the factors is consistent or opposite depending on the factor and
region. Rn exhibits a negative effect in southern humid regions and a positive effect in
northern arid regions. Rh exhibits a positive effect in northern arid regions and a negative
effect in southern humid regions. Furthermore, the effects of Tmean, SM, and U follow
apparent “V” shapes, with positive and negative directions or turns from large to small and
subsequently to large in the transition zone. To further reveal the turning characteristics of
the PUE responses to water, energy, and dynamics and to clarify the precipitation climate
zone where turning occurs, the multiyear average precipitation at each station was taken
as a spatial climate type at every 200 mm. For example, the P100 climate type represents a
spatial climate type with average annual precipitation between 0 and 200 mm. The NPP
and PUE responses to changes in Tmean, SM, and U in different precipitation climate types
were further analyzed.

Figure 13 shows the distribution patterns of annual NPP and PUE with ΔT, ΔSM, and
ΔU changes in different precipitation climate types. Therefore, ΔT, ΔSM, and ΔU are the
increments of Tmean, U, and SM, expressed as ΔX = X − Xmin, where X is T, SM, or U,
and Xmin is the minimum value of each factor. In the arid region and transition zone (i.e.,
P100, P300, and P500), NPP and PUE were the most sensitive to various factors, especially
ΔSM (Figure 13b,e). NPP and PUE increased significantly with positive ΔSM. In the humid
region, NPP and PUE changed slightly with ΔSM. However, in the extremely humid area
(i.e., P ≥ 1400), NPP and PUE decreased with positive ΔSM. Soil moisture in the arid region
and transition zone is close to the withering humidity. Vegetation growth is affected mainly
by water factors. Soil moisture in the humid region always maintains a relatively high
value. However, vegetation is less sensitive to soil moisture. Hence, extremely humid soil
can restrict the oxygen supply to vegetation roots and soil microorganisms due to excessive
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moisture. The NPP and PUE responses to a positive ΔSM range from significantly increased
to decreased between the arid and extremely humid regions, respectively. The NPP and
PUE responses to ΔT and ΔU also have conversion characteristics (Figure 13a,c,d,f). Water
available for evapotranspiration in arid regions is limited. Changes in NPP and PUE with
ΔT were not obvious. However, in the transition zone, more obvious air temperature
increases resulted in stronger water restriction for vegetation growth and smaller PUE.
In the humid region, NPP and PUE were less sensitive to ΔT, but they increased slightly
with positive ΔT in the extremely humid region, which reflects the promotion of vegetation
growth in extremely humid regions by improved energy conditions. Wind velocity had
the greatest impact on vegetation growth in the arid region and transition zone. Increased
wind velocity was more conducive to evapotranspiration, thereby causing faster water
loss and decreased NPP and PUE. In the humid region, a positive ΔU resulted in more
favorable evapotranspiration of super humid water vapor, which indirectly promoted NPP
and PUE.

Figure 13. Trends of annual NPP and PUE with ΔT (a,d), ΔSM (b,e), and ΔU (c,f) in different
precipitation climate types.

4. Discussion

4.1. Effect of Energy and Water on ETa in Different Climatic Regions of China

The Budyko curve shows the relationship between ETa-Pre-ET0 and can reveal the
limiting relationship between energy and water on ETa [79–81]. Figure 14 shows the
Long-term mean values of annual ETa, Pre, and ET0 together with Fu’s curves with the
regional average values of parameter ω, where ω is the plant-available water coefficient,
representing the relative difference in the way plants use soil water for transpiration, and
larger values of ω tend to promote evapotranspiration. It can be seen that the relationship in
most areas conforms to the Budyko curve, and the data are within the boundary conditions
of the hydrothermal coupling assumption, with ω in the humid region greater than in the
arid region. In humid regions, ETa is limited by available energy. As it asymptotically
approaches ET0, in arid regions, ET0 exceeds P, and where ETa is mainly controlled by
water, evapotranspiration ratio (ETa/Pre) tends to 1.
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Figure 14. Relationship among ETa-Pre-ET0 in different climatic regions of China. The ratio of mean
annual ETa to Pre as a function of the index of dryness (ET0/Pre) for different values of plant-available
water coefficient ω.

Evapotranspiration ratio at some stations in the arid and semi-arid zones (in the lower
right dashed box) is less than 1; as such, this may be attributed to the way different kinds of
vegetation use soil water and the particularity of precipitation conversion to evaporation in
arid areas. In the arid region, small precipitation events are just able to wet the soil surface
and are quickly evaporated, whereas large precipitation events increase potential water
losses from the ecosystem through runoff or deep soil water percolation [13]. Therefore,
evaporation can be lower than precipitation in arid regions, this is consistent with the study
of Yang et al. [82] in northern China. In addition, evapotranspiration ratio in arid regions
also shows a large fluctuation, which may be related to the large variation in precipitation in
arid regions [83,84]. The amount of precipitation in arid and semi-arid regions of China has
a large variation [85]; the sparser the precipitation in a region, the greater the variation, and
interannual fluctuations in precipitation and regional differences cause large fluctuations
in evapotranspiration.

4.2. Complexity of PUE Change in Transition Zone

Figure 15 shows a schematic diagram of the controlling factors of PUE in different
climatic regions in China, which shows the opposite change of PUE in arid and humid
regions and the complexity of PUE change in transition zones.

Figure 15. Schematic diagram that illustrates the control factors of the PUE in different climatic
regions of China.
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Warming and humidification in Northwest China [86] have a great impact on the
increased ETa, NPP, and PUE in arid areas. Warming and humidification increase the
amount of water that can evaporate, thereby increasing ETa. Temperature increase results
in earlier onset of the greening period while delaying the yellowing period, enhancing
vegetation activities, then increasing NPP. Multiple research based on empirical observa-
tions and process-based models have also confirmed that aboveground production in arid
ecosystems has exhibited an increasing trend [87]. Decreased ETa in the humid region
is related to the decrease in ET0, which is consistent with the evaporation paradox [88].
In the southern humid region with sufficient water supply, changes in ETa and ET0 are
consistent [89]. Thus, when the ET0 decreases, ETa also decreases. Rainfall is abundant
in humid areas. Vegetation productivity is positively correlated with air temperature and
negatively correlated with precipitation. In recent decades, the increase in precipitation
in humid regions has reduced photosynthetically active radiation. Enhanced radiation
restrictions reduce vegetation NPP.

Factors influencing ETa, NPP, and PUE in the transition zone are more complex because
this region is a competitive zone for water and energy [90]. In the highland region in the
western part of the transition zone, NPP increases along with warming and humidification,
and a significant decrease in precipitation in the eastern region of the transition zone and
the warming and drying caused by temperature increases are the main reasons for the
NPP decrease [91]. At the same time, the region is affected by the interannual fluctuation
of the intensity of the East Asian summer monsoon, so the interannual and interdecadal
precipitation fluctuations in the region are large [92].

4.3. Transformation Characteristics of PUE

The transition zone exhibited the highest PUE. PUE reached its highest value of
2.2 g· m−2·mm−1 in the area where the annual precipitation was 414 mm. The unimodal
PUE distribution, which first increases and then decreases with increasing precipitation,
has been confirmed by other studies. Paruelo et al. [8] indicated that in American temperate
grasslands with 200–1200 mm precipitation, PUE first increased and then decreased with
increasing precipitation, peaking at 475 mm. PUE in extremely arid and extremely humid
regions is low. Hu et al. [5] reported that the PUE initially exhibited a rising trend but
subsequently decreased as precipitation increased from 200 to 1200 mm. PUE peaked at
400–500 mm. Huxman et al. [6], Lauenroth and Paruelo [7], and Yu et al. [11] also showed
that in regions with annual precipitation less than 600 mm, PUE increased with increasing
precipitation. In humid regions with annual precipitation above 650 mm, PUE decreased
with increasing precipitation, and when the annual precipitation was above 1500 mm, PUE
was approximately constant. Zhang et al. [9] reported that the spatiotemporal PUE pattern
in alpine grasslands in northern Tibet initially increased in the arid region and subsequently
decreased along the precipitation gradient toward the humid region, reaching a peak at
approximately 500 mm precipitation.

The PUE distribution pattern with precipitation in this study is consistent with the
above studies, and different precipitation thresholds of the maximum PUE conversion
point may be partially attributed to the different research methods and study regions.
In addition, the distribution patterns of annual PUE with ΔT, ΔSM, and ΔU changes in
different precipitation climate types also indicate that the PUE transition interval coincides
with the northern edge of the monsoon. Therefore, the results of this paper are reasonable.

Our research shows that transition regions with limited rainfall have the strongest
NPP and PUE processes, and the response of the carbon fluxes in these fragile regions
deserves more attention.

5. Conclusions

Based on the improvement of the ETa model, this study characterized the responses of
ETa, NPP, and PUE to climate change in different climatic regions of China, revealed the
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PUE conversion characteristics with the precipitation distribution, and clarified the driving
force of PUE changes in different climate regions. The main conclusions are as follows:

The improved ETa model fully reflects the energy limitation on ETa in humid regions,
and the estimated ETa is more reasonable and reliable. The distribution of ETa and NPP in
China shows a gradually increasing trend from northwest to southeast, and the trends of
ETa and NPP both change from an increase to a decrease from the arid to the humid region.
ETa and NPP fluctuations in arid regions are mainly controlled by water, and the increase
in precipitation and soil moisture is the main reason. ETa and NPP in humid regions are
mainly controlled by energy. ETa in the transition zone is affected by both water and energy,
and regional differences in ETa and NPP changes in the transition zone are large.

There was a conversion zone of PUE in mainland China. Arid and humid regions had
the lowest PUE, and the transition zone with annual precipitation of 200–600 mm had the
highest PUE. In the past 58 years, PUE in arid regions has exhibited an increasing trend,
whereas PUE in the transition zone generally exhibited a slightly decreasing trend. PUE
displayed a decreasing trend in most of the humid regions.

PUE changes in arid regions are dominated by water conditions, whereas changes
in energy in humid regions largely determine PUE changes. The transition zone is the
conversion zone where the prevailing factor transitions from water to energy. PUE changes
are caused by the interaction of energy, water, and dynamic factors. Among them, soil
moisture plays the most prominent role, followed by temperature and wind velocity.
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Abstract: The diurnal variation in precipitation and cloud parameters and their influencing fac-
tors during summer over the Tibetan Plateau (TP) and Sichuan Basin (SB) were investigated using
the Hydro-Estimator satellite rainfall estimates, ground observations, and ERA5 dataset. The pre-
cipitation and cloud parameters show diurnal propagation over the SB during the mei-yu period
in contrast to such parameters over the TP. The diurnal maximum precipitation from the Hydro-
Estimator satellite and cloud ice and liquid water content (cloud LWC and IWC) from the ERA5
dataset are concentrated in the early evening, while their diurnal minimums manifest in the morning.
Cloud LWC accounts for more than 60% of the total water during almost the entire diurnal cycle
over the inner TP and SB during the mei-yu period. The IWC accounts for more than 60% of the
total water in the late afternoon over the edge of the SB and TP. The cloud base height (CBH) above
ground level (AGL), the lifting condensation level (LCL) AGL, and the zero degree level AGL are
almost equal over the TP during the summer period. The zero degree level AGL over the SB is higher
than that over the TP because the air temperature lapse rate over the TP is larger. The thickness of
liquid water cloud over the SB is larger than that over the TP. The correlation analysis shows that
the CBH AGL and LCL AGL over the TP are related to the dewpoint spread, but less so over the
SB because of the stronger turbulence and lower air density over the TP than the SB. Convective
available potential energy has a larger impact on precipitation over the TP than the SB. The cloud
LWC makes a larger contribution to the precipitation over the SB than over the TP, which is related
to the mean zonal wind and diurnal cycle of low-level winds. The precipitation at the edge of the
TP and SB (i.e., the steep downstream slope) is largely influenced by the ice water contained within
clouds owing to the convergence rising motion over the slopes.

Keywords: Tibetan Plateau; Sichuan Basin; steep slope; precipitation; cloud; diurnal variation

1. Introduction

The Tibetan Plateau (TP) (26◦00′–39◦47′N, 73◦19′–104◦47′E) is often referred to as ‘the
roof of the world’ owing to its average elevation exceeding 4000 m, or ‘the Asian water
tower’ [1] because several of Asia’s major rivers such as the Yangtze, Yellow, and Lancang
originate from the region. The precipitation over the TP is important to these rivers, and the
heat supply of the TP serves as an important energy source of the atmosphere [1–3]. The
TP has also a profound impact on the precipitation over its surrounding and downstream
areas [4–7]. The Sichuan Basin (SB) is a deep basin with an elevation on average 2500 m
lower than that of the TP. Remote sensing and ground observations and modeling of
the diurnal cycle of cloud and precipitation over the TP are important to understand the
weather and climate processes over the TP and surrounding areas. Recently, the second
(TIPEX2) and third (TIPEX3) Tibetan Plateau Atmospheric Experiments were carried out [8]
and obtained large quantities of observational data from the TP to the SB, especially ground
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radar observations of cloud and precipitation. These observational data and analysis
provide a basis for further studies on the mechanisms of cloud and precipitation and the
improvement of parameterization schemes for cloud and precipitation physical processes.

According to ground- and satellite-based observations as well as simulation results in
previous research, the total precipitation is <400 mm during the entire summer (June–August)
over the TP, which is smaller than that over the surrounding areas [9]. Moreover, the
monthly averaged precipitation rate is ~0.3 mm h−1; the precipitation rate in precipitation
events is 1~20 mm h−1; the averaged daily precipitation is <15 mm over the TP [10,11]. The
cloud top height usually exceeds 12 km above ground level (AGL), and sometimes exceeds
16 km AGL over the TP, mainly including mixed-phase and ice-phase processes, in which
super-cold water may be contained [9–11]. The average cloud base height (CBH) during
summer over the TP exceeds 1.5 km AGL, which is larger than that over the plains and SB.

The summer precipitation in China can be divided into two stages: the mei-yu period
and the midsummer period [12–16]. Precipitation during summer shows an obvious
diurnal cycle, peaking in the evening, with the greatest change occurring over the central
TP [17–22]. The eastern foothills of the TP are dominated by nocturnal rainfall before
midsummer [23]. The diurnal cycle of precipitation from the TP to downstream areas shows
diurnal propagation during the pre-mei-yu period. However, this diurnal propagation from
the TP to downstream areas disappears during midsummer. The zonal wind weakens from
the pre-mei-yu period to midsummer. In addition, the precipitation over the valleys of the
Himalaya mainly occurs from midnight to the sunrise [24]. High quantities of cloud cover
occur mainly over the ridges and then move to the valleys. Convective activity mainly
occurs at night over the valleys [10]. Turbulence and convective cloud over the TP develop
more easily than in the surrounding areas because the air density is lower. A convective
cloud develops after sunrise, reaching a maximum from late afternoon to early morning
the following day, as does convective available potential energy (CAPE) [6,14]. The diurnal
cycle in monsoonal flow, the sea–land breeze, boundary-layer flow, low-level jet, aerosols,
and inertial oscillation in the mid-level horizontal wind field in the mid-troposphere
(~500 hPa) are the key factors that influence the diurnal variation in precipitation over the
EASM region [25–27].

Satellite precipitation observation can obtain the precipitation on a global scale, which
is better than conventional measurements made by rain (and snow) gauges and surface-
based weather radar observations. Many advanced satellite algorithms have been released
that make use of infrared and passive microwave data, for example, the Precipitation
Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate
Data Record (PERSIANN-CDR) [28], the Integrated Multi-Satellite Retrievals for GPM
(IMERG) [29], the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation
Analysis (TMPA) [30], the Climate Prediction Center Morphing technique (CMORPH) [31],
and the Hydro-Estimator (HE) Satellite Rainfall Estimates [32]. Mountainous regions repre-
sent a major challenge for these satellite data products. Over highly complex topography
such as the Andes area, HE provides the most stable result, which could be associated
with the best performance of HE on the development of precipitation from warmer and
relatively lower clouds [33]. The HE with orographic correction to some extent captures the
spatial distribution and timing of diurnal convective events over a mountainous region [34].
In addition, spatial distribution in cloud optical thickness and the cloud water path derived
from satellite retrievals over the TP were closely associated with the increase in water-vapor
transport flux divergence [35].

However, there is little research on the differences in the diurnal cycle of precipitation
between HE satellite products and ground observations datasets, as well as the differences
between the TP and SB. Moreover, the macroscopic properties of clouds such as cloud cover
and cloud liquid or ice water content (LWC and IWC, respectively) and their relationships
with surface thermal effects have received minimal attention. HE satellite products do
not provide cloud microphysical parameters, while reanalysis data can provide cloud
microphysical parameters. Therefore, it is a good choice to combine reanalysis data and
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high-precision satellite data such as HE satellite products to analyze the distribution
characteristics of cloud microphysical parameters over the TP and SB. Focusing on the
diurnal cycle of cloud physical parameters, this paper seeks to answer the following
questions on the basis of satellite, ground, and cloud radar observations and a reanalysis
dataset: (1) What are the phase differences of water within clouds during the diurnal
cycles over the TP and SB, and how do these change diurnally? (2) What are the possible
mechanisms responsible for the phase differences of precipitation and cloud? Following
this introduction and a description of the data (Section 2) and methods (Section 3) employed
in this study, the diurnal variation in precipitation and cloud parameters (CBH AGL, cloud
cover, cloud IWC and LWC) over the TP and SB using ECMWF Reanalysis v5 (ERA5)
and the ground and HE are investigated in Section 4. Additionally, the relationships of
the precipitation rate in HE, and cloud cover and cloud IWC and LWC from ERA5 with
surface thermal effects are investigated. This research is important for addressing the bias
of precipitation in the diurnal cycle during ground and satellite observations.

2. Data

2.1. Hydro-Estimator Satellite Rainfall Estimates

The rainfall rate data from Hydro-Estimator (HE) Satellite Rainfall Estimates cov-
ering June, July, and August 2014–2020 were used in this study. The HE rainfall rate
estimates were produced using the data from NOAA’s Geostationary Operational Envi-
ronmental Satellites and also using available geostationary data over Europe, Africa, and
Asia. The datasets were downloaded from ftp://ftp.star.nesdis.noaa.gov/pub/smcd/
emb/f_f/hydroest/world/world/archive/ (accessed on 1 January 2022). The horizontal
resolution of HE dataset is ~4 km, and the temporal resolution is 1 h. The HE dataset
has been widely used in various studies [21–23]. HE provides the most stable result
for several kinds of algorithms that combine infrared and passive microwave data over
mountainous regions [32–34].

2.2. Ground Observational Data

The data from 50 ground meteorological observation sites belonging to the China Mete-
orological Administration were chosen, covering June, July, and August 2014–2020. Among
them, 36 were located in the TP region and 14 in the SB region. The data included precipita-
tion, air temperature at 2 m, humidity, and surface pressure, with a temporal resolution of
1 h, that were employed. Detailed station information is provided in Tables S1 and S2 in
the Supporting Information. Additionally, the data from 12 radiosondes, including temper-
ature, wind, pressure, and lifting condensation level (LCL) were chosen. The remaining
observations were from TIPEX3 and a research program entitled ‘The interaction between
the earth and atmosphere of the TP and its influence on the weather and climate in the
downstream’ [4,7] (Figure 1). Cloud radar data, including CBH, cloud cover, and LWC
(temporal resolution: 1 min), at the sites of Naqu (30.46◦N, 90.59◦E; 4730 m above mean sea
level (MSL)), Yushu (33.01◦N, 96.56◦E; 3689 m MSL), and Linzhi (29.46◦N, 94.44◦E; 3326 m
MSL), from July and August 2014–2020, were also used. The LWC was retrieved by using
the cloud radar data with the equation LWC = 3z0.5, where LWC is a power relationship
with reflectivity z. For details about the cloud radar instrument and the cloud radar LWC
retrievals, see [36,37]. The locations of the observation sites are shown in Figure 1.
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Figure 1. (a) Topography of the Tibetan Plateau and Sichuan Basin, in which the black dots indicate the
locations of the ground meteorological observation sites of the China Meteorological Administration;
‘×’ represents the radiosonde stations; and pentagrams represent the cloud radar observation sites.
(b) Elevation goes along the line of 31.2◦N marked with the dashed blue line in (a).

2.3. ERA5 Reanalysis Dataset

We obtained hourly estimates of u-wind, v-wind, temperature, precipitation, CBH,
cloud cover, cloud IWC, cloud LWC, dewpoint spread, zero degree level, and CAPE from
the ERA5 reanalysis dataset. ERA5 combines vast amounts of historical observations into
global estimates using advanced modeling and data assimilation systems. ERA5 has been
widely used in various studies [38]. The ERA5 precipitation rate is greater than that in the
observations when the precipitation rate is less than 10 mm day−1 over the TP [39]. The
data were downloaded from https://www.ecmwf.int/en/forecasts/datasets/reanalysis-
datasets/era5 (accessed on 1 January 2022) and spanned the period 2014–2020 for the
summer months of June, July, and August. The horizontal resolution of ERA5 is ~31 km.

3. Methods

The summer precipitation in China can be divided into two stages: the mei-yu period
and the midsummer period. The ‘mei-yu’ rain, also called plum rain or the East Asian
rainy season, is caused by precipitation along a persistent stationary front known as the
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Meiyu front for nearly two months during the late spring and early summer in East
Asia. These weather systems can produce heavy rainfall and flooding. The typical mei-
yu period is generally at the beginning of mid or late June and at the end of early or
middle July [12–16]. Therefore, two time periods were chosen: (1) the mei-yu period,
during 1–25 June in the monsoon phase and (2) the midsummer period, during 1 July–10
August. In terms of the study domain, the region of the eastern TP and its downstream
area (28◦–34◦N, 90◦–110◦E) were chosen (Figure 1) [15], which were then further separated
into two subregions with different elevations (framed areas in Figure 1): 90◦–100◦E and
100◦–110◦E, which represented the TP and SB. To describe the diurnal cycle during summer,
the ERA5 and observational data were grouped into the mei-yu and midsummer seasons.
The precipitation feature (PF) number is defined as the number of hours with precipitation
in the diurnal cycle during the observational period when the precipitation observed was
larger than 0.02 mm h−1. The numbers of the PF in the two subregions during the two
different seasons are listed in Table 1.

Table 1. The number of precipitation features (Unit: hour) from the Hydro-Estimator Satellite Rainfall
Estimates dataset in the two subregions within 28◦–34◦N shown in Figure 1 in each of the two
chosen seasons.

Tibetan Plateau Sichuan Basin

Mei-yu 4531 2687
Midsummer 8145 3556

The ground and cloud radar observations were temporally averaged to 1 h. Local
time (LT) was defined as Coordinated Universal Time (UTC) + 7 h. To match the ground
observations with the satellite and ERA5 data in spatial terms, four grid values near the
ground observations including precipitation and cloud parameters at different levels from
the ERA5 dataset and satellite were interpolated using the bilinear interpolation method to
produce the value at the ground observation site [40,41]. We use Hovmöller diagrams [23]
to show the diurnal cycle of CBH, precipitation, dewpoint spread, IWC, and LWC and their
changes with latitude. Typically, longitude is plotted along the x-axis, and time is recorded
on the ordinate; then, the contour values of a named physical field are presented through
color or shading. In addition, the height of the LCL can be calculated as Zlcl = 123(T − Td),
where T is the air temperature at 2 m, and Td is the dewpoint temperature, in which the
LCL is determined by the dewpoint spread.

4. Results

4.1. Diurnal Cycle of Precipitation and Cloud

During the mei-yu period, the diurnal variation in precipitation from HE satellite
estimates shows phase propagation from west to east over the SB (103◦–110◦E), while no
such propagation can be seen over the TP (90◦–102◦E) (Figure 2a), which is similar to the
results of [23]. The diurnal maximum precipitation rate over the TP is concentrated between
1500 LT and 2100 LT, and the diurnal minimum precipitation rate lies within 0000–1200 LT.
Over the SB, meanwhile, the diurnal maximum precipitation rate occurs at night, and
then decreases to a minimum in the morning, which was also found in previous studies
(e.g., [42]). The result for the PF number percentage is similar to that of the precipitation
amount, except the maximum PF number percentage occurs at the boundary of the TP
and SB (Figure 2c), which is related to the convergence rising motion over the slopes in
the afternoon and rising motion in the center of the SB at night. During the midsummer
period, the diurnal variation in the precipitation rate shows no propagation from the TP to
SB, which is different from the mei-yu period. The diurnal maximum precipitation rate
is concentrated between 1500 LT and 2100 LT, while the diurnal minimum precipitation
rate lies within 0000–0600 LT, which is similar to that during the mei-yu period (Figure 2b).
The average precipitation rate over the SB is larger than that over the TP. The result for
the PF number percentage is similar to that of the precipitation amount (Figure 2d). The
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reasons of the diurnal propagation of rainfall are related to the decreases in the zonal wind
profile from the mei-yu to midsummer period and the diurnal cycle of low-level winds
over the SB [23].

Figure 2. The (a,b) diurnal variation in precipitation and (c,d) precipitation feature number per-
centage during the (a,c) mei-yu and (b,d) midsummer period from the Hydro Estimator satellite
rainfall estimates.

The precipitation from HE satellite estimates and ground observations are compared
in Figure S1. Over the TP, the maximum precipitation rate from the HE satellite is 3 h ahead
of that of the ground observations during the mei-yu and midsummer periods, and the
precipitation rate from HE satellite is larger than that observed on the ground. Over the SB,
the maximum precipitation rate from the HE satellite is also 3 h ahead of that of the ground
observations during the mei-yu period, while it is in-phase with ground observations
during the midsummer period. The result for the PF number percentage is comparable to
that of the precipitation rate.

The diurnal variations in cloud cover, LWC, and IWC from ERA5 are shown in Figure 3.
During the mei-yu period, the diurnal variation in cloud cover (Figure 3a), LWC (Figure 3c),
and IWC (Figure 3e) shows propagation from west to east over the SB, while no diurnal
propagation is apparent over the TP. The diurnal maximum cloud cover and LWC over the
TP is concentrated between 1800 LT and 0300 LT, while over the SB they lie within 1500–
2400 LT. The diurnal minimum cloud cover and LWC lie within 1000–1500 LT over both the
TP and SB. The cloud cover and LWC at the border of the SB and TP are smaller than those
over the inner parts of the two regions. The cloud cover and LWC in the SB are larger than
those over the TP. The diurnal maximum IWC over the TP is concentrated between 1500 LT
and 2100 LT, while the range for the diurnal minimum IWC is 0600–1200 LT. Over the SB,
the diurnal maximum IWC is in the mid-afternoon to early evening (1500–2100 LT) and
then decreases to a minimum during the morning (0600–1200 LT). The cloud IWC over the
edge of TP and SB is larger than that over the inner TP and SB.
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Figure 3. Diurnal variation in (a,b) cloud cover, (c,d) total column cloud liquid water content,
and (e,f) cloud ice water content from ERA5 over the Tibetan Plateau and Sichuan Basin during
the (a,c,e) mei-yu and (b,d,f) midsummer periods.

During the midsummer period, the diurnal variation in cloud cover (Figure 3b), LWC
(Figure 3d), and IWC (Figure 3f) shows no propagation from the TP to SB. Over the TP,
the diurnal maximum cloud cover and LWC lie within 1500–2100 LT and 0000–1200 LT,
respectively, while the ranges for the diurnal minimum cloud cover and LWC are 1000–
1500 LT and 1800–2100 LT. The cloud cover and LWC at the border of the SB and TP are
smaller than those over the inner parts of the TP and SB. The cloud cover and LWC over the
SB are larger than over the TP. Over both the TP and SB, the diurnal maximum IWC occurs
in the mid-afternoon to early evening (1500–2100 LT) and reaches a diurnal minimum in
the morning (2400–1200 LT).

The ratios of cloud LWC and IWC to total cloud water were separately calculated, and
the results are presented in Figure 4. The results show that LWC accounts for more than
60% of total water during almost the entire diurnal cycle over the inner TP and SB during
the mei-yu period, except for the period 1500–1800 LT at the edge of the SB and TP. The
IWC accounts for more than 60% at around 1800 LT at the edge of the TP and SB, which is
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related to the convergence rising motion over the slopes at the edge of the two regions. The
proportions of LWC and IWC during midsummer are similar to those during the mei-yu
period. However, there are two IWC centers during the midsummer period. One is in the
period 1500–1800 LT at the edge of the SB and TP, and the other is located in the region
92◦–94◦E during 1700–2000 LT, which is related to development of the westerly jet and
southern water vapor transportation.

Figure 4. Ratio of cloud (a,c) liquid water and (b,d) ice water to total cloud water during
the (a,b) mei-yu and (c,d) midsummer periods.

During the mei-yu period, the cloud LWC mainly distributes between the 900 hPa
and 450 hPa level in the daytime and the 850–450 hPa level in the nighttime over the SB,
while it mainly distributes between the 600 hPa and 450 hPa level in the daytime and the
600–400 hPa level in the nighttime over the TP (Figure 5a,b). The cloud LWC in the night
is larger than that in the daytime over the SB. During the midsummer period, it is mainly
similar to that over the SB and TP (Figure 5c,d) except that the cloud LWC during the
midsummer period is smaller than that in the mei-yu period.

During the mei-yu period, the cloud IWC mainly distributes between the 450 hPa
and 150 hPa level in the daytime and the 500–100 hPa level in the nighttime over the SB,
while it mainly distributes between the 500 hPa and 180 hPa level in the daytime and the
450–100 hPa level in the nighttime over the TP (Figure 6a,b). The cloud IWC in the night is
smaller than that in the daytime over the SB. During the midsummer period, it is mainly
similar to that over the SB and TP except that the cloud IWC during the midsummer period
is larger than that in the mei-yu period (Figure 6c,d). The cloud IWC in the daytime during
the midsummer period mainly is concentrated over the edge of the SB and TP.
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Figure 5. The pressure level of cloud liquid water content (shaded color), cloud base (green line), zero
degree level (orange line), and the topography (red line) along with longitude during the (a,b) mei-yu
and (c,d) midsummer periods during the (a,c) daytime and (b,d) nighttime.

Figure 6. Similar with Figure 5, but for cloud ice water content.
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The diurnal cycle of CBH AGL in ERA5 is presented in Figure 7. During the mei-yu
period, the diurnal variation in CBH AGL shows propagation from west to east over the SB,
while no propagation is apparent over the TP. The diurnal maximum CBH AGL over the TP
is concentrated between 1500 LT and 2400 LT, while the diurnal minimum CBH AGL lies
within 0900–1200 LT. The CBH AGL in the early evening is higher than that in the daytime
over the SB, which is consistent with the nocturnal maximum precipitation. The CBH AGL
over the SB is higher than that over the TP (Figure 7a). During the midsummer period,
the diurnal variation in CBH AGL shows no propagation from the TP to SB. The diurnal
maximum CBH AGL over the TP is concentrated between 2100 LT and 0300 LT, while the
diurnal minimum lies within 0700–1500 LT. Over the SB, the diurnal maximum CBH AGL
lies within the period 2100–0600 LT, while the diurnal minimum is within 1500–2100 LT
(Figure 7b). The average CBH AGL observed by the cloud radar at Yushu, Naqu, and
Linzhi is close to that in ERA5 (Figure S2). The maximum CBH AGL from ERA5 is in-phase
with the observations averaged from the three sites during the mei-yu (Figure S2a) and
midsummer (Figure S2b) periods over the TP.

Figure 7. Diurnal variation in cloud base height from ERA5 over the Tibetan Plateau and Sichuan
Basin during the (a) mei-yu and (b) midsummer periods.

The CBH AGL is compared with the zero degree level AGL in Figure 5. The zero
degree level AGL is much higher than the CBH AGL over the TP and SB during the mei-yu
period, while CBH AGL nears the zero degree level AGL over the TP during midsummer.
The latter is related to the air temperature lapse rate, which is larger over the TP than the
SB. The zero degree level MSL over the TP is higher than that over the SB. The thickness of
cloud LWC over the SB is larger than that near the edge of the TP during the mei-yu and
midsummer periods. The zero degree level MSL increases while the CBH remains stable
with the increase in distance from the TP. However, super-cooled liquid water can exist
down to −40 ◦C.

4.2. Factors Influencing the Formation of Cloud over the TP and SB

During the mei-yu period, the diurnal variation in dewpoint spread shows no prop-
agation from morning to night over the SB and TP (Figure 8a,b). As is well known, the
dewpoint spread is mainly influenced by the solar radiation and surface heating. The
diurnal maximum dewpoint spread is concentrated between 1500 LT and 2100 LT, and
the diurnal minimum dewpoint spread lies within 0000–0900 LT in the region 90◦–100◦E
during mei-yu period (Figure 8a). During the midsummer period, the diurnal variation in
dewpoint spread shows no propagation from the TP to SB. The diurnal maximum dew-
point spread is concentrated between 1500 LT and 2100 LT, while the range for the diurnal
minimum is 0600–1000 LT (Figure 8b). The dewpoint spread over the SB is larger than that
over the TP.
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Figure 8. Diurnal variation in (a,b) dewpoint spread and (c,d) convective available potential
energy (CAPE) from ERA5 over the Tibetan Plateau and Sichuan Basin during the (a,c) mei-yu
and (b,d) midsummer periods.

A comparison of the dewpoint spread between the observation and ERA5 is given in
Figure S3. Over both the TP and SB, the timing of the diurnal maximum dewpoint spread
is similar to that in the observations during both the mei-yu and midsummer period. The
dewpoint spread from ERA5 is larger than that in the observations, especially during the
early evening. Some studies show that the dewpoint spread makes a profound contribution
to the LCL (e.g., [43]). In this study, the CBH is close to the LCL during the summer period
with large amounts of LWC during that same season (Table 2).

Table 2. Comparison of cloud base height (CBH) from ERA5 dataset and lifting condensation
level (LCL) above ground level (AGL) during summer over the Tibetan Plateau (TP) and Sichuan
Basin (SB).

TP SB

Mei-Yu Midsummer Mei-Yu Midsummer

CBH AGL (m) 822 901 2556 2341
LCL AGL (m) 753 856 2468 2390

To investigate the effect of dewpoint spread on the CBH AGL, a correlation analysis
between the two at each longitudinal grid point in ERA5 was carried out (Figure 9a). Over
the TP, the correlation coefficient reaches up to 0.8 at the 5% significance level. However,
it decreases at the edge of the TP and SB and becomes gradually negative, reaching a
maximum negative value over the inner part of the SB. According to the above-mentioned
results, CBH AGL propagates diurnally from the TP to SB, but the dewpoint spread does
not. Therefore, the dewpoint spread makes a profound contribution to the CBH over the
TP, but little contribution to the CBH AGL over the SB because of the stronger turbulence
and lower air density over the TP than the SB [44].

201



Remote Sens. 2022, 14, 2711

Figure 9. Correlation between (a) dewpoint spread and CBH and (b) water vapor flux and ΔV during
the mei-yu (blue line) and midsummer (red line) periods. (c,d) Correlation of ΔV, CAPE, cloud LWC
and IWC with precipitation rate during the (c) mei-yu and (d) midsummer periods.

From the spatial distribution of the water vapor flux, the transportation of water
vapor can be seen to be mainly from the west (Figure 10), which is similar to the results
of [45]. The water vapor flux decreases from the mei-yu period to the midsummer period,
especially over the SB. This is related to the decreases in the mean zonal wind profile and
low-level winds from the mei-yu to midsummer period.

Figure 10. Integral of water vapor flux at 1800 LT from ERA5 over the (a) mei-yu and (b) midsummer periods.

To investigate the relationship between the total water vapor transportation and
westerly wind, the difference in horizontal wind speed between 200 hPa and 500 hPa (ΔV)
was calculated (Figure 11); that is, ΔV = [u(200) − u(500)]2 + [v(200) − v(500)]2,where
u(200) and v(200) refer to u-wind and v-wind at the 200 hPa level, respectively, and u(500)
and v(500) refer to the same but at the 500 hPa level. Correlation analysis was carried out
between the water vapor flux and ΔV. The ΔV over both the TP and SB decreases from
the mei-yu to midsummer period, and the ΔV over the TP is larger than that over the SB
during both periods. The ΔV correlates positively with water vapor transportation at the
5% significance level over the TP and SB, and the correlation coefficient over the TP is
smaller than that over the SB during the mei-yu and midsummer periods (Figure 9b). The
ΔV has a profound impact on the transportation of water vapor over the SB. The correlation
coefficient decreases dramatically from the mei-yu to midsummer period in the region of
90◦–100◦E where the steep slopes and SB are situated.
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Figure 11. Diurnal variation in ΔV during the (a) mei-yu and (b) midsummer periods.

4.3. Factors Influencing the Formation of Precipitation over the TP and SB

To investigate the factors influencing the precipitation, the diurnal cycle of CAPE
is shown in Figure 8c,d. During the mei-yu period, CAPE shows no propagation over
the TP and SB (Figure 8c). The diurnal maximum CAPE occurs in the late afternoon
(1500–1900 LT) and early evening (1900–2100 LT) over the TP and SB during the mei-yu
period, and the diurnal minimum occurs in the morning (0600–1000 LT). The CAPE over
the TP is larger than that over the SB (Figure 8c), which is different from the precipitation
and cloud LWC. During the midsummer period, CAPE shows no diurnal propagation over
the TP and SB (Figure 8d). The diurnal maximum and minimum CAPE values during the
mei-yu period are similar to those during the midsummer period. CAPE is related to the
maximum potential vertical velocity of air within an updraft, so higher values of CAPE are
an indicator of precipitation.

To investigate the influence of diurnal variation in CAPE, cloud LWC and IWC on
precipitation, correlation analysis was performed. During the mei-yu period, the correlation
coefficient between CAPE and precipitation over the TP is larger than that over the SB.
The correlation coefficient reaches a maximum (0.8) at the edge of the TP and SB at the 5%
significance level (Figure 9c). The correlation coefficient between CAPE and precipitation
during the midsummer period is smaller than that during the mei-yu period (Figure 9d).
These results indicate that CAPE has a larger impact on precipitation over the TP than
over the SB.

The correlation coefficient between cloud IWC and precipitation over the TP and SB is
larger than 0.7, with a significance level of 5%, during the mei-yu period. The correlation
coefficient between cloud LWC and precipitation over the SB during the midsummer period
(Figure 9d) is smaller than that during the mei-yu period, which decreases with longitude
from west to east due to the diurnal propagation of LWC and precipitation (Figure 9c),
while the opposite is the case for cloud IWC. However, the correlation between the cloud
IWC and precipitation over the edge of the TP and SB is better than over the inner parts
of the TP and SB due to the convergence rising motion over the slopes. The above results
indicate that the cloud LWC makes a large contribution to precipitation over the SB. The
precipitation over the edge of the TP and SB (i.e., the steep downstream slopes) is influenced
by the cloud IWC.

5. Conclusions

The diurnal variations in precipitation in the HE Satellite Rainfall Estimates and cloud
parameters (CBH AGL, cloud cover, cloud LWC and IWC, and dewpoint spread) in the
ERA5 dataset were analyzed over the TP and SB. Results show that the precipitation and
cloud parameters show diurnal propagation from morning to night over the SB during the
mei-yu period, while no such diurnal propagation is apparent over the TP during both the
mei-yu and midsummer periods. The precipitation, cloud LWC and IWC, and cloud cover
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over the TP are smaller than over the SB. The dewpoint spread over the TP is larger than
over the SB. The diurnal maximum precipitation and cloud LWC and IWC are concentrated
in the early evening, while the diurnal minima occur in the morning.

The precipitation from the HE Satellite is larger than that in the observations. Over
the SB, the maximum precipitation from the HE Satellite is 3 h ahead of observations. The
result for the PF number percentage is similar to that of the precipitation amount. During
both the mei-yu and midsummer period, the cloud LWC from ERA5 at night is larger than
that in the daytime. Cloud LWC accounts for more than 60% of total water during almost
the entire diurnal cycle over the inner parts of the TP and SB during the mei-yu period
except for late afternoon at the edge of the SB and TP. The cloud IWC accounts for more
than 60% during early evening at the edge of the TP and SB.

The CBH AGL, LCL AGL, and zero degree level AGL are almost equal over the TP
during the summer period. The zero degree level AGL over the SB is higher than that over
the TP because the air temperature lapse rate over the TP is larger than that over the SB.
The thickness of the LWC over the SB is larger than that over the TP. The dewpoint spread
makes a profound contribution to the CBH AGL over the TP but little contribution to the
CBH AGL over the SB because of the stronger turbulence and lower air density over the TP.
CAPE has a larger impact on precipitation over the TP than over the SB. The cloud LWC
makes a large contribution to the precipitation over the SB, which is related to the mean
zonal wind profile and diurnal cycle of low-level winds. The precipitation over the edge of
the TP and SB (i.e., the steep downstream slopes) is influenced by the cloud IWC owing to
the convergence rising motion over the slopes.

Although the distribution of cloud LWC and IWC over the TP and SB was obtained
in this study, the distribution of supercooled water and ice level over the edge of TP and
SB is still unclear and needs to be investigated. In addition, the results of ERA5 data were
uncertainty limited by the resolution of ERA5 data, especially concerning quite an extreme
region. The current cloud radar sites are very sparse, making it impossible directly to
observe the cloud microphysical parameter data over the entire TP and SB. In the future,
the accuracy of the reanalysis dataset and observations over the TP and SB at night should
be improved. More cloud radar observations at different locations over the TP and SB are
needed in the future. The phase of water within cloud needs to be studied using different
kinds of observational and model data.
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//www.mdpi.com/article/10.3390/rs14112711/s1: Table S1: The information of ground meteo-
rological observation sites of China Meteorological Administration; Table S2: The information of
radiosonde station of China Meteorological Administration; Figure S1: The precipitation from Hydro
Estimator satellite estimates (blue line) and ground observations (red line) during (a,b) meiyu and
(c,d) midsummer period over the (a,c) Tibetan Plateau and (b,d) Sichuan Basin. Blue shaded area is
the standard error of precipitation from Hydro Estimator satellite estimates, and red shaded area is
the standard error of precipitation from ground observations. The percentage of precipitation feature
during (e,f) mei-yu and (g,h) midsummer period over the (e,g) Tibetan Plateau and (f,h) Sichuan Basin
and their error bar. Blue shaded area is the standard error of the percentage of precipitation feature
from Hydro Estimator satellite estimates, and red shaded area is the standard error of percentage of
precipitation feature from ground observations; Figure S2: The comparison of cloud base height from
ERA5 dataset (blue line) and cloud radar observations (red line) and their standard error (blue shaded
area for ERA5 and red shaded area for observations) during the (a) mei-yu and (b) midsummer
period; Figure S3: The comparison of dew point spread from the ERA5 dataset (blue line) and ground
observations (red line) and their standard error (blue shaded area for ERA5 dataset, and red shaded
area for observations) during the (a,b) mei-yu and (c,d) midsummer period over the (a,c) Tibetan
Plateau and (b,d) Sichuan Basin.
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Abbreviations

TP Tibetan Plateau
SB Sichuan Basin
EASM East Asian summer monsoon
ECMWF European Centre for Medium-Range Weather Forecasts
ERA5 ECMWF Reanalysis v5

PERSIANN-CDR
Precipitation Estimation from Remotely Sensed Information using Artificial
Neural Networks-Climate Data Record

IMERG Integrated Multi-satellite Retrievals for GPM

TMPA
Tropical Rainfall Measuring Mission (TRMM) Multisatellite
Precipitation Analysis

CMORPH Climate Prediction Center Morphing technique
HE Hydro-Estimator Satellite Rainfall Estimates
LT Local time
UTC Coordinated Universal Time
PF Precipitation Feature
AGL Above ground level
MSL Mean sea level
CBH Cloud base height
LCL Lifting condensation level
CAPE Convective available potential energy
LWC Cloud liquid water content
IWC Cloud ice water content
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Abstract: To better predict and understand land–atmospheric interactions in the Tibetan Plateau (TP),
we used Moderate Resolution Imaging Spectroradiometer (MODIS)-based land-use data and the
MODIS-derived green vegetation fraction (GVF) to analyze the variation trend over the TP. The in situ
observations from six flux stations (“BJ” (the BJ site of Nagqu Station of Plateau Climate and Environ-
ment), “MAWORS” (the Muztagh Ata Westerly Observation and Research Station), “NADORS” (the
Ngari Desert Observation and Research Station), “NAMORS” (the Nam Co Monitoring and Research
Station for Multisphere Interactions), “QOMS” (the Qomolangma Atmospheric and Environmental
Observation and Research Station), and “SETORS” (the Southeast Tibet Observation and Research
Station for the Alpine Environment)) at the Chinese TP Scientific Data Center were used to study the
surface energy variation characteristics and energy distribution over different underlying surfaces.
Finally, we used observation data to verify the applicability of the ERA-5 land reanalysis data to
the TP. The results showed that the annual GVF steadily declined from the southeast parts to the
northwest parts of the TP, and the vegetation coverage rate was highest from June to September. The
sensible heat flux (H), latent heat flux (LE), net surface radiation (Rn), and four-component radiation
(solar downward shortwave radiation (Rsd), surface upward shortwave radiation (Rsu), atmospheric
downward longwave radiation (Rld), and surface upward longwave radiation (Rlu)) reached their
maxima in summer at each station. Rld did not change significantly with time; all other variables
increased during the day and decreased at night. The interannual variation in H and LE shows that
latent heat exchange was the dominant form of energy transfer in BJ, MAWORS, NAMORS, and
SETORS. By contrast, sensible heat exchange was the main form of energy transfer in NADORS and
QOMS. The Bowen ratio was generally low in summer, and some sites had a maximum in spring. The
surface albedo exhibited a “U” shape, decreasing in spring and summer, and increasing in autumn
and winter, and reaching the lowest value at noon. Except for SETORS, ERA-5 Land data and other
flux stations had high simulation accuracy and correlation. Regional surface energy changes were
mainly observed in the eastern and western parts of the TP, except for the maximum of H in spring;
the maximum values of other heat fluxes were concentrated in summer.

Keywords: Tibetan Plateau; ERA-5 reanalysis data; surface energy; land–atmospheric interaction;
different underlying surfaces

1. Introduction

The Tibetan Plateau (TP) is the highest plateau in the world and the largest plateau in
western China, known as the “roof of the world” and “the third pole of the earth,” with an
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elevation between 3000 to 5000 m [1]. The plateau’s high and towering terrain and complex
underlying surface features significantly impact the plateau monsoon, water vapor cycle, and
atmospheric vertical circulation, affecting climate change in East Asia [2–6]. In the 1970s, the
first Scientific Expedition and Research on the Tibetan Plateau began. The main goal was
to elucidate the history of geological development and the causes of plateau uplifting, to
study the effects of uplifting on the ecological environment and human activities on local
climate, and to look into the characteristics of natural conditions and resources, as well as
the directions and routes for their exploitation and modification [7,8]. The Second Tibetan
Plateau Scientific Expedition and Research will be based on the First Tibetan Plateau Scientific
Expedition and Research, highlighting the change as the theme of investigation and research,
to determine the law of change, evaluate and predict the future trend of change, and carry
out ten scientific expeditions and research missions [7]. The study of the westerly monsoon
synergy’s evolution law, variation characteristics, and driving mechanism, as well as greater
knowledge of the land–atmospheric interactions, precipitation efficiency, and the impact on
the Sichuan Basin and its climate effect are all essential for revealing environmental changes
on the TP [9–12]. Land–atmospheric interactions and local climate effects are the primary
focus of this study. Specifically, the transfer and exchange of heat, momentum, water
vapor, and carbon dioxide fluxes between the land surface and atmosphere are essential
components of atmospheric interactions [13,14]. Energy and material transport are essential
forcing fields for the development of convection in the atmospheric boundary layer. The
thermodynamic and dynamical effects of the TP on the atmosphere are mainly influenced
by the free air flow through the near-layer and boundary layer of the TP [15–18]. Land
surface parameters such as green vegetation, soil texture, and soil moisture are essential
factors that affect changes in surface energy flux over the TP. Moreover, owing to the wide
area, complex vegetation types, and high altitude, the underlying surface characteristics
significantly affect the water–energy cycle between the land surface and atmosphere. The
scarce distribution of meteorological observation stations on the TP could pose a challenge
to understanding the effects of the above-mentioned factors [19–21].

Ma et al. first analyzed the radiation characteristics of the period before and after
the monsoon in the Nagqu area using radiation observations from the 1998 Intensification
Observation Period (IOP). Observations were then compared with parameterized remote
sensing results [22–24]. Li et al. found that sensible heat flux (H) is the primary energy
source providing heat from the land surface to the atmosphere before the monsoon’s
outbreak, whereas latent heat flux (LE) is the main source of atmospheric warming during
the monsoon season [25]. Studies have found that climate change in the TP exhibits a
consistent warming trend at different timescales, and grasslands in semi-arid areas are
highly sensitive to temperature and precipitation changes [26]. Studies have found that
the H on the interannual variability of the TP shows a trend of weakening and falling at a
rate of 2% per decade, with climate change and reduced wind speed over the TP identified
as the causes of this phenomenon. However, the plateau’s warming rate is higher than
at the same latitude in eastern China, which remains unexplained [27–30]. Except for the
Yarlung Zangbo River Basin, the LE was found to increase on the TP. This may be due
to the increase in the net surface radiation (Rn) from the wetter forest cover underlying
surface and the high soil moisture content caused by agricultural irrigation [31,32].

Studies have shown that diurnal variations in surface upward shortwave radiation
(Rsu) and soil heat flux in alpine meadows are larger than those in banana plantations [33].
Net longwave radiation can affect soil-water freezing and its duration [34], the near-surface
soil freeze–thaw process, heat storage, and melting of snow. Vegetation growth and
non-growth periods affect surface energy non-closure [35,36]. The surface energy flux of
Qomolangma has clear diurnal and seasonal variation trends that are greatly affected by
the southwest monsoon. The response of the surface albedo to changes in rainfall has a lag
effect. In winter, the vegetation cover in most areas of the TP is reduced, snow is present
on the surface, and the surface albedo is often at the annual highest value [37,38]. Based
on the analysis of the surface radiation observation data from the BJ site of Nagqu Station

210



Remote Sens. 2022, 14, 2751

of Plateau Climate and Environment, Muztagh Ata Westerly Observation and Research
Station (MAWORS), Ngari Desert Observation and Research Station (NADORS), Nam Co
Monitoring and Research Station for Multisphere Interactions (NAMORS), Qomolangma
Atmospheric and Environmental Observation and Research Station (QOMS), and Southeast
Tibet Observation and Research Station for the Alpine Environment (SETORS), it was found
that the Rsu and surface albedo of all stations decreased on the whole. The atmospheric
downward longwave radiation (Rld), surface upward longwave radiation (Rlu), net surface
radiation (Rn), ground surface temperature, and air temperature at most observation
stations showed an upward trend at the interannual scale. The amplitude of Rlu was more
significant than that of the downward long-wave radiation. Rn often reaches a maximum
in late spring and early summer in the Ngari area [24,39]. The variation in characteristics of
the surface energy flux with time at each station has been analyzed in detail; however, the
surface energy distribution has yet to be discussed further.

The above studies considered the surface energy variation characteristics of the TP in
numerous ways. However, the majority of these studies focused on the TP’s eastern part,
with only a few addressing the western part. In addition, the majority of these studies used
short-term or limited-period data, with only a few studies studying the long-term changes
in land surface energy and heat fluxes. In this study, we used Normalized Difference
Vegetation Index (NDVI) data from MODIS, ERA-5 Land reanalysis data, and long-term
flux observation station data from six sites (BJ, MAWORS, NADORS, NAMORS, QOMS,
and SETORS) in the TP of the Second Tibetan Plateau Scientific Expedition and Research to
examine the long-time series variation characteristics and energy distribution differences
of the surface energy fluxes on different underlying surfaces over the TP.

2. Data and Methods

2.1. Data
2.1.1. Observation Data

In this study, the observed data regarding hourly integrated land–atmospheric interac-
tions on the TP from 2005 to 2016 were obtained from the Chinese Science Data Center of
the TP, which integrates the following six stations: MAWORS, NADORS, BJ, NAMORS,
QOMS, and SETORS. Specifically, the following were obtained: hourly meteorological,
solar radiation, eddy covariance (EC), and soil moisture, and heat data from the six field
sites from 2005 to 2016, including multi-layer gradient observation data composed of wind
direction, wind speed, air temperature, relative humidity, precipitation, air pressure, multi-
layer soil temperature and moisture data, soil heat flux data, four-component radiation,
EC turbulent flux data composed of LE and H, and carbon dioxide flux data [40]. In this
study, the data used for analysis were the LE, H, and solar radiation components. The H
and LE data were collected using an EC system for observation. The EC systems comprise
a sonic anemometer (Campbell, CSAT3) and a fast-response gas analyzer (Li-COR, Li-7500)
and were installed at 3.02 m, 2.3 m, 2.75 m, 3.06 m, 3.25 m, and 3.04 m above the ground of
BJ, MAWORS, NADORS, NAMORS, QOMS, and SETORS, respectively. The CNR1 and
NR01 (Kipp&Zonen) four-component radiation observation systems were used to collect
radiation measurements at QOMS, SETORS, NADORS, and MAWORS. The NR01 (Vaisala)
four-component radiation observation system was used to measure the Namco station,
and the error range was within ±10%. A solar radiation measurement system (CM21,
Kipp&Zonen, and PIR, Eppley) was used to measure the surface radiation component; this
system can measure shortwave radiation from the surface and longwave radiation from the
atmosphere, with error ranges of ±2% and ±5 W/m2, respectively. Local time was used in
this study (UTC+8) [40]. The data from 2005 were not included in this study because of
discontinuity caused by many missing readings from this year.

2.1.2. ERA-5 Reanalysis Data

The ERA-5 reanalysis data are the fifth generation of global climate atmospheric reanal-
ysis data from the European Center for Medium-Range Weather Forecasts (ECMWF) [41].
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ERA-5 combines vast amounts of historical observations into global estimates using ad-
vanced modeling and data assimilation systems. The data cover the Earth on a 30 km
grid and resolve the atmosphere using 137 levels from the surface up to a height of 80 km.
The ERA-5 Land dataset used in this study was a replay of the land component forced by
meteorological fields and offers great improvements in precision for land applications [42].
ERA-5 Land dataset coverage was from 1950 to the present time, and was regridded to a
spatial resolution of 0.1◦ × 0.1◦. The monthly averaged LE, H, downward and upward
radiation, surface albedo, and net radiation from 2006 to 2016 were used in this study.

2.1.3. Land-Use Type Data and GVF Data

Land-use type data obtained by MODIS (Terra and Aqua) were also used in this
study to assess the underlying surfaces of the TP. The complete MODIS land-use database
contains five different land-use datasets: the IGBP dataset [43], the University of Maryland
Data Set (UMD) of 14 classes [44], 10 types of MODIS LAI/FPAR algorithm dataset [45],
8 biological datasets [46] and 12 types of plant functional classifications [47,48]. The MODIS
data used in this study were obtained from a 21-category IGBP database with a resolution
of 5 km.

The GVF was calculated by using MOD13A3 Level 3 monthly 1 km Vegetation Indices
data (https://appeears.earthdatacloud.nasa.gov/task/area, accessed on 30 September
2021) and also upscaling to 5 km resolution. The GVF is obtained using the relationship by
Gutman and Ignatov (1998) [49]:

NDVI = (NDVI − NDVImin)/(NDVImax − NDVImin) (1)

where NDVImin and NDVImax are bare soil without vegetation (LAI→0) and dense vegetation
(LAI→∞), which contain the minimum and maximum NDVI values over the TP, respectively.

2.2. Analysis Method

The Formula calculation of Rn was as follows:

Rn = (Rsd + Rld)− (Rsu + Rlu) (2)

In formula (2), the Rsd is the downward solar radiation, Rsu is the upward radiation,
Rld is the atmospheric downward longwave radiation, and Rlu is the upward longwave
radiation (W/m2).

In the error analysis of the ERA-5 data and observation data, as the temporal and
spatial resolution of the radiation flux observation data of each station was different
from that of the ERA-5, a monthly average processing method was adopted to unify the
temporal resolution of all data. Bilinear interpolation was used to interpolate the ERA-5 to
the positions of the observation stations. ERA-5 data for the six field sites were obtained
using this method. As the ERA-5 monthly mean data are in J/m2 and the cumulative
period is 24 h, dividing by the cumulative period expressed in seconds converts the units
to W/m2 following the observed data. The formulas for calculating the shortwave and
longwave radiation from the land surface upward in the ERA-5 data are as follows:

Rsu = Rsd × f al (3)

Rlu = Rld − str (4)

where fal is surface albedo and str is surface net thermal radiation.
Three error measures were selected to validate the ERA-5 data: the correlation coeffi-

cient (R), bias, and root mean square error (RMSE).
R is a statistical indicator that reflects the closeness of the correlation between the

variables. The value of R is between −1 and 1. If the coefficient is positive, then the two
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variables are positively correlated. If the coefficient is negative, then the correlation is
negative. The greater the absolute value, the stronger the correlation.

R =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2 ∑n
i=1(yi − y)2

(5)

The bias describes the difference between the simulated and actual values. In this
study, a positive deviation means that the reanalysis data overestimate the observed value,
and a negative deviation means that the reanalysis data underestimate the observed value.
The calculation formula is as follows:

Bias = ∑n
i=1(yi − xi)

n
(6)

The RMSE is extremely sensitive to the maximum or minimum error response in a
set of measurements, so it can better reflect the measurement accuracy. A smaller value
indicates a higher accuracy. The calculation formula is as follows:

RMSE =

√
∑n

i=1(yi − xi)
2

n
(7)

where yi is the predicted value of the reanalysis data, xi is the observed value, and n is the
number of measurements.

Figure 1. Analysis process flow chart.

The data analysis and processing in this study were conducted as follows: first,
ERA-5 reanalysis data, MODIS land-use and NDVI data, and flux site observation data
were collected, and the data over different underlying surfaces were pre-processed. The
underlying surface of the TP was then divided into four main types: Grasslands; Barren
or Sparsely Vegetated Lands; Open Shrublands; Deciduous Broadleaf Forest and Mixed
Forests. Based on the feedback effect of energy and water on the atmosphere, we analyzed
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the monthly variation characteristics of radiation, surface energy flux, the Bowen ratio
(β), and surface albedo parameters, and calculated the RMSE and bias error. Finally,
the distribution characteristics of the ERA-5 data over the TP were obtained, and the
applicability of this data was verified. The flow chart of the analysis process is shown in
Figure 1, and a schematic diagram of the land-use types, site locations, and elevation on
the TP is shown in Figure 2.

 
Figure 2. (a) Distribution of land-use/vegetation types and site locations (symbol) on the TP;
(b) Elevation diagram on the TP.

3. Results and Analysis

3.1. Monthly Variation Characteristics of GVF

GVF is an important land surface parameter in land–atmospheric interaction processes
and is defined as a part of photosynthetically active green canopy intercepting a midday
downward solar grid cell [50]. In the Noah land surface model (LSM), the seasonal variation
of GVF also defines the variation of other surface physical characteristics, such as LAI,
albedo, roughness length, and surface emissivity [51]. The vegetation distribution is
related to precipitation and temperature, and humid and warm areas are conducive to
vegetation growth [52]. The annual distribution of GVF gradually decreased from southeast
to northwest over the TP. Due to sufficient precipitation and higher temperature in the
southeast than in the west TP, vegetation coverage is higher throughout the year. Vegetation
is sparse in the northwestern region of the TP. GVF showed an obvious seasonal variation
trend, rising in May and gradually decreasing in September (Figure 3e–i). From June to
September, the vegetation coverage rate of the TP reached 40−60% (Figure 3f–i).

Of the six sites studied in this paper, MAWORS and NADORS are distributed in the
northwest of the TP (Figure 2a), and because of their geographical location, the underlying
surface of the two stations is predominantly barren or sparsely vegetated (Table 1), and
the GVF is low (Figure 3). The QOMS is located in the south of the TP, and the under-
lying surface is dominated by barren or sparsely vegetated land (Figure 2a and Table 1).
NAMORS and BJ are located in the middle of the TP and the underlying surface is mainly
grassland [40]. (Figure 2a and Table 1). As can be seen from Figure 3, their GVF is high from
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June to September but low in other months (Figure 3f–i). SETORS is located in the area
with the highest annual GVF in the TP (Figures 2a and 3). The underlying surface types are
broadleaf forests and mixed forests, which have little influence on seasonal changes.

 
Figure 3. Spatial distribution characteristics of green vegetation fractions in different months on the
Tibetan Plateau (Unit: %).

3.2. Variation Characteristics of Surface Energy
3.2.1. Seasonal Variation Characteristics of Surface Energy

The monthly energy variation characteristics of the six stations were different, but also
had some similarities. In this study, the four seasons were divided as follows: spring from
March to May, summer from June to August, autumn from September to November, and
winter from December to the following January. The highest values of H were observed
in the spring, decreased in summer, increased to varying degrees in the autumn, and
decreased again in winter. After each station’s H achieved its maximum value in spring,
the time at which it started decreasing varied, with the SETORS station being the earliest.
The LE showed a unimodal change. Before the outbreak of the southeast monsoon on the
TP, the LE value was minimal. Precipitation rose in summer, soil moisture increased, latent
heat exchange was intense, and LE increased rapidly, with the maximum value exceeding
100 W/m2 (Figure 4a). In autumn, it gradually decreased and reached a minimum value
during winter. The difference between H and LE at NADORS and QOMS stations in
summer was smaller than for the other four stations (Figure 4c,e). The four-component
radiation data showed a single-peak variation, and the solar shortwave downward ra-
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diation began to decrease in summer. The Rsu values at BJ, QOMS, and NAMORS in
spring and winter increased with different amplitudes (Figure 4a,d,e). Longwave radiation
increased in spring and summer and decreased in autumn and winter. Rn increased in
spring, reached a maximum in summer, and decreased in autumn and winter. Possible
errors were observed in the longwave radiation values at SETORS, meaning these data
were not taken into consideration in analysis.

Table 1. Description of geographic features of six sites.

Site Latitude, Longitude Elevation (m) Land Cover
Initial Observation Time of the

Instrument (Radiations/EC)

BJ 31.37◦ N, 91.90◦ E 4509 Grasslands 2006

MAWORS 38.41◦ N, 75.04◦ E 3668 Barren or Sparsely Vegetated
and Open Shrublands 2010

NADORS 33.39◦ N, 79.70◦ E 4270 Barren or Sparsely Vegetated 2009/2005

NAMORS 30.77◦ N, 90.99◦ E 4730 Grasslands 2005

QOMS 28.21◦ N, 86.56◦ E 4298 Barren or Sparsely Vegetated 2005/2007

SETORS 29.77◦ N, 94.73◦ E 3327 Deciduous Broadleaf Forest
and Mixed Forests 2007

Figure 4. Annual average monthly variation of surface energy at six sites.

3.2.2. Diurnal Variation Characteristics of Surface Energy

To illustrate the diurnal variation of surface energy fluxes in different regions of the
TP, Figures 5 and 6 show the diurnal variation of H, LE, Rn, and four-component radiation
at the six stations in summer and winter. As shown in Figure 5, all three variables reached
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their peak values at approximately 14:00. Sunshine is highest when the solar altitude is
high, and the surface obtains more energy. In summer, Rn increased gradually from 7:00
to 9:00, peaked at approximately 14:00, and decreased to its lowest value in a day at 23:00.
The peak value of Rn in summer was more significant than that in winter, with a difference
of approximately 250 W/m2. The variation in H and LE was the same as that of Rn, and
the maximum LE could be more than 200 W/m2. The diurnal variations of H and LE
increased at sunrise and decreased at sunset. The LE was generally greater than H in the
summer. However, the opposite was true for NADORS and QOMS (Figure 5c,e) because
the underlying surface of the two stations comprises barren or sparsely vegetated land,
meaning the latent heat exchange is not intense, resulting in an LE that is lower than H.
The maximum difference in H and LE between BJ and SETORS could reach more than
100 W/m2 (Figure 5a,f) because the underlying surface of both stations is covered by dense
vegetation, with high precipitation and high soil moisture. The diurnal variation trend of
each variable at each station in winter was the same as that in summer, but the peak values
at all three stations were lower than those in summer. H was higher than LE in winter
because the plateau area was in the non-growing period, and vegetation was reduced.

Figure 5. Diurnal variation of monthly mean H, LE, and Rn in summer and winter.

Figure 6 shows the diurnal variation of the four-component radiation at the six stations
in summer and winter. It can be observed from Figure 6 that the variation trends of the
four-component radiation in summer and winter were the same. While Rld did not vary
significantly with time during summer, the other three variables all increased at sunrise
and reached a peak at approximately 14:00, then gradually decreased and reached their
lowest levels at 23:00. The surface heat was mainly obtained from Rsd, reaching a maximum
of 900 W/m2 or more at noon. There was a significant difference between Rsd and Rsu
in the summer, with a maximum of approximately 700 W/m2 (Figure 6e). However, the
difference decreased in winter, with a maximum of approximately 600 W/m2, due to the
reduced solar radiation in winter. The difference between Rlu and Rld was smaller than
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that for shortwave radiation, about 100 W/m2, while the difference was approximately
200 W/m2 at SETORS (Figure 6f).

 

Figure 6. Diurnal variation of monthly mean four-component radiation in summer and winter at
six sites.

3.3. Surface Energy Budget and Distribution
3.3.1. Land Surface Albedo

Land surface albedo is an essential factor affecting the surface energy budget and
distribution, and is mainly determined by two factors: the underlying surface conditions
and solar altitude. The albedo was calculated using observational data from 8:00 to 20:00 LT.
As shown in Figure 7, the variation of the surface albedo presents as a “U” shaped curve,
and was higher in the morning and evening and lower at noon. The solar altitude angle was
higher at noon and the surface reflected a minor level of Rsd. When the solar altitude angle
is low, longwave radiation makes up a major part of the solar radiation that reaches the
earth surface. The land surface is highly reflective of longwave radiation. The lowest value
varied between 0.2 and 0.4 at each station, and the albedo change at each station differed
with the season. Whereas, at NADORS and SETORS, the seasonal variation was relatively
insignificant (Figure 7c,f), the surface albedo at the other stations gradually decreased
from January to May, reaching the lowest values in July or August, and then gradually
increased. The main reason for this is that the albedo rises in winter due to heavy snow
cover but falls in spring and summer when the snow melts and vegetation grows, resulting
in a decreased albedo. For MAWORS and QOMS (Figure 7b), the underlying surface is
barren or sparsely vegetated and the surface albedo should be high. However, there was
still sparse vegetation growth in summer, which may be the reason for the decrease in the
surface albedo of these two stations in summer. SETORS maintains a low surface albedo
throughout the year because of the lush vegetation coverage and little influence of seasonal
variation on the station (Figure 7f).
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Figure 7. Diurnal variation of monthly mean surface albedo at six sites.

3.3.2. Surface Energy Distribution

To further illustrate the effects of the different routes of energy transfer on the different
underlying surfaces, Figures 8 and 9 show the distribution of the surface energy. As can be
seen from Figure 8, latent heat played a leading role in energy exchange in BJ, MAWORS,
NAMORS, and SETORS (Figure 8a,b,d,f), while sensible heat was the dominant source of
surface energy exchange in NADORS and QOMS (Figure 8c,e). Since the underlying surface
of BJ and SETORS has dense vegetation, the transpiration of plants was more notable than
the soil heat source effect, and latent heat was the main source of energy transfer [53]. For
some years, the primary route of energy transfer at NAMORS was sensible heat, and plant
transpiration was less than the soil heat source effect, resulting in a weaker latent heat
exchange versus sensible heat exchange.

Figure 8. Comparison of annual mean values of H and LE at six sites.
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Figure 9. Monthly variation of Bowen ratio (H/LE) at six sites (dashed line indicates that H = LE).

The Bowen ratio (β) is defined as the ratio of H to LE at the surface. A higher value of
β indicates greater sensible heat exchange; otherwise, the latent heat exchange is higher.
As shown in Figure 9, sensible heat exchange was the main form of energy transfer in
winter at all stations except MAWORS. The main reason for this is that plants are in the
non-growing phase in winter, resulting in a decline in vegetation and soil hydrothermal
conditions [54]. The seasonal variation trends in BJ and SETORS were identical, decreasing
in spring and increasing in autumn. Latent heat was the main energy distribution process
in BJ in summer, whereas sensible heat was the main process during the other seasons.
The variation range at SETORS was smaller than that of BJ, and the energy distribution
was mainly latent heat, except in winter. The heat exchange between the land surface and
the atmosphere at MAWORS was dominated by latent heat exchange throughout the year,
which is consistent with the comparison of the annual mean values of LE and H. β was less
than 1 at NADORS during July and August only, and greater than 1 for all other months.
The maximum value reached was 8.8, indicating that the energy transfer at NADORS
occurred mainly via sensible heat exchange, which accounted for a large proportion. The
β levels were relatively seasonally balanced at NAMORS. The monthly variation of β at
QOMS was the same as that at NADORS because the underlying surface is mainly desert
with sparse vegetation and weak latent heat exchange.

3.4. Error Analysis of ERA-5 Land Data and Observation Data

As the ERA-5 data are reanalysis data, they can be affected by many factors that may
cause them to deviate from actual observation values. Error analysis of the ERA-5 data
and the observation data from the six stations was carried out to determine whether the
ERA-5 data had a high degree of accuracy and could be used to study the surface energy
changes of the entire TP region.

Table 2 lists the R between the observed data from the six stations and the ERA-5 data.
We can see that, of all the variables, Rld has the highest correlations, almost all above 0.9,
followed by Rsd. H exhibits the lowest correlation, mostly under 0.5, followed by Rsu.
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Of all the stations, the correlation between the ERA-5 data and the observed values is
highest at MAWORS, and lowest at SETORS, and H is actually negatively correlated. The
low correlation may be attributed to underlying surface conditions. Actual underlying
surface conditions are more complex than those simulated by the ERA-5 data, leading to
uncertainty in the predicted values.

Table 2. R between ERA-5 data and observed values (* indicates a failure to pass the significance test).

Variable
Site BJ MAWORS NADORS NAMORS QOMS SETORS

Rsd 0.94 0.95 0.96 0.70 0.79 0.57
Rsu 0.39 0.52 0.44 0.31 0.60 0.26
Rld 0.94 0.98 0.98 0.97 0.98 0.41
Rlu 0.95 0.96 0.94 0.87 0.79 0.11 *
H 0.49 0.77 0.56 0.37 0.62 −0.50
LE 0.90 0.76 0.81 0.41 0.77 0.84
Rn 0.85 0.91 0.90 0.78 0.30 0.17 *

Surface heat flux is mainly limited by soil temperature and moisture (vegetation cover,
atmospheric conditions, and soil physical characteristics). Soil temperature and moisture
are greatly affected by precipitation, especially in arid regions [55–57]. Figure 10 shows
the monthly variation in the bias between the ERA-5 reanalysis data and observations.
It can be seen from the picture that the longwave radiation values of the ERA-5 data
underestimated the observed values (except for SETORS) (Figure 10c,d). The bias variation
ranges of H and Rld are relatively minimal, and the variation range is within 60 W/m2

(Figure 10c,e). All stations show the same variation in the shortwave radiation bias during
spring and summer, which becomes larger in spring and smaller in summer, indicating
that the predicted value gradually approaches the observed value in summer, and then
reaches a minimum in autumn and winter (Figure 10a,b). The bias of Rld did not change
significantly with time (except at SETORS). The bias values are approximately 50 W/m2

lower than the observed values at MAWORS and NADORS, while they are approximately
30 W/m2 lower at BJ, QOMS, and NAMORS, among which NAMORS shows the smallest
bias (Figure 10c). The bias of Rlu changes significantly in spring and summer, but little in
autumn and winter (Figure 10d). The bias of H was large in the first five months, reached
a maximum bias in March at most stations, and then gradually decreased (Figure 10e).
Precipitation uncertainty leads to a bias between the surface and soil moisture, leading to a
greater uncertainty regarding the LE levels in the ERA-5 data. The predicted LE is closest
to the observed value in summer because there is more precipitation and high soil moisture
on the TP at this time, and the uncertainty of the ERA-5 data is decreased (Figure 10f). Rn
showed a high underestimation to different degrees from January to June. There was little
change at other stations from July to December, except for QOMS, which had a relatively
high estimate in November (Figure 10g). As mentioned above, there are some errors in
the longwave radiation data from SETORS; these resulted in an abnormal bias fluctuation,
which will not be discussed here.

As RMSE can better reflect the accuracy of data, this study also used RMSE as an
index to evaluate the accuracy of the ERA-5 data. Figure 11 shows the monthly variation in
the RMSE of the ERA-5 data and the observed data. Generally speaking, the accuracy is
highest for BJ and lowest for MAWORS. As the MAWORS is located in a barren or sparsely
vegetated area, the precipitation is low, and the soil temperature and soil moisture are
greatly affected by precipitation, which adds more uncertainty to the ERA-5 data. The
accuracy is higher for summer and lower for spring at most of the stations. The RMSE of
Rld does not change significantly with time (Figure 11c), but the RMSE of LE and H do
(Figure 11e,f). The RMSE changes in shortwave radiation, Rlu, and Rn are the same, and
their accuracy is higher for summer (Figure 11a,b,d,g).

221



Remote Sens. 2022, 14, 2751

Figure 10. Monthly change of Bias between ERA-5 data and observed values (Unit: W/m2).

Figure 11. Monthly change of RMSE between ERA-5 data and observed values (Unit: W/m2).

3.5. Energy Variation Characteristics of Surface Area

The changes in surface energy over time at the six stations were analyzed in the
previous section. This section considers the changes in regional energy across the TP.
Figure 12 shows the seasonal variation in the surface energy of the TP. It can be seen that
the LE had an obvious seasonal variation, and the LE in the north and west of the plateau
could reach more than 60 W/m2 in spring and autumn. In most other locations, it was
20–40 W/m2 (Figure 12a,c). However, in summer, the area with the highest values of
LE was primarily located in the east of the plateau, where the maximum could exceed
80 W/m2 (Figure 12b). This is due to the onset of the summer monsoon, resulting in higher
precipitation and lush vegetation in the east of the plateau, and intense latent heat exchange
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between the surface and the atmosphere, which does not occur in winter. In spring and
summer, the area with the highest values of H was mainly concentrated in the west of
the plateau, with an average of 40–60 W/m2 (Figure 12e,f), indicating that the turbulent
movement in the west of the plateau was relatively strong at this time. Rn reached its peak
in summer (Figure 12j), and Rn in the north of the plateau was always higher than that in
the south, except in summer (Figure 12i,k,l). Generally, the LE was higher in the north and
east of the plateau, whereas the maximum H was mainly in the west of the plateau. The
energy value of H had a smaller variation range over time compared with that of LE. The
Rn value in the north of the plateau was higher than that in the south (except in summer).

Figure 12. Annual average seasonal variation of ERA-5 data (LE, H, and Rn).

Figure 13 shows the seasonal variation in four-component radiation over the TP. As
shown in the figure, Rsd reached its maximum value in spring, and the high-value area
was mainly located in the western and central parts of the TP. At this time, the average Rsd
on the TP was approximately 300 W/m2 (Figure 13a). The high-value area was reduced
during the summer, during which time the Rsd of the plateau was approximately 250 W/m2

on average (Figure 13b). The radiation value gradually decreased in autumn and winter
(Figure 13c,d). However, the decrease in the west of the plateau was smaller than that
in the eastern part of the plateau. The Rsu value was relatively low throughout the year,
between 50 and 100 W/m2, while that in the north of the plateau was lower than 50 W/m2

(Figure 13e–h). When combined with Figure 2a, it can be seen that the northern part of
the underlying plateau surface is complex, and Rsd is relatively low, which may be the
reason for the low value of Rsu in the north of the plateau. The value of longwave radiation
was generally larger than that of shortwave radiation on the plateau. For Rld, the seasonal
variation was obvious. It increased in spring and reached its maximum in summer, and
the radiation value varied between 250 and 300 W/m2 (Figure 13i,j), decreasing gradually
in autumn and winter (Figure 13k,l). The annual value of Rlu was greater than that of the
first three variables, and the seasonal variation was similar to that of Rld. It reached its
peak in summer, with levels of more than 350 W/m2 in most of the plateau and more than
450 W/m2 in the west of the plateau (Figure 13n). The Rlu value in the south of the plateau
was always lower than that in the north (Figure 13m–p).

223



Remote Sens. 2022, 14, 2751

Figure 13. Annual average seasonal variation of ERA-5 four-component radiation (Rsd, Rsu, Rld,
and Rlu).

4. Discussion

In this paper, MODIS land-use data and NDVI data were used to acquire the under-
lying surface vegetation types and analyze the distribution of the seasonal variation of
GVF over the TP. The geographical location and underlying surface conditions had a great
impact on the exchange of surface energy flux. In general, during the vegetation growth pe-
riod on the TP, the three stations with a higher GVF (BJ, NAMORS, and SETORS), recorded
a lower surface albedo, resulting in a decrease in Rsu and an increase in Rn. The radiation
energy was absorbed by the large number of plants and by the soil. Moreover, evaporation
from the land surface and vegetation increased, resulting in intensive latent heat exchange.
The LE increased rapidly in summer, and played a leading role in surface energy transfer.
However, in the low GVF areas (NADORS and QOMS), the surface albedo was always high,
causing the surface energy exchange to be dominated by sensible heat. We also found that
the relationship between energy distribution and the underlying surface in the MAWORS
site area was different from the above mentioned. The MAWORS station is located in the
west of the TP, and the underlying vegetation is sparse, but the value of LE was always
higher than H throughout the year. The reasons for this phenomenon need further study.
After comparative analysis with the observational data, we found that the ERA-5 data
have good applicability in the TP. The discrepancy between the ERA-5 radiation data and
underlying surface energy flux data was higher in spring and lower in summer over the TP.
We preliminarily analyzed the surface radiation and energy variation characteristics of six
flux sites in different regions of the TP, and considered the impact of underlying vegetation
coverage and land-use types on the energy distribution. However, the contribution of
different regions’ energy transfer ratios needs to be further examined. The use of ERA-5
reanalysis data to analyze the differences in energy distribution in different regions of the
TP also requires further research.
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5. Conclusions

Based on the observational data from six stations (BJ, MAWORS, NADORS, NAMORS,
QOMS, and SETORS) on the TP, the surface energy variation and energy distribution were
studied. The ERA-5 Land data were used to study the regional energy changes of the TP
after error analysis, and the following results were obtained:

(1) The annual distribution of GVF gradually decreased from southeast to northwest over
the TP. Owing to the influence of precipitation and temperature, vegetation coverage
in the southeastern TP is relatively high throughout the year. From June to September,
the vegetation coverage rate of the TP reached 40−60%.

(2) Monthly variations in surface energy characteristics included the following. H in-
creased in spring and autumn and decreased in summer and winter. After H reached
its maximum value in spring, the decrease began at different times at each station,
and was earliest at the SETORS station. The LE increased rapidly in summer, with a
maximum value of more than 100 W/m2, and gradually decreased in autumn and
winter. In summer, the difference between H and LE at the NADORS and QOMS
stations was lower than that at the other four stations. The four-component surface
radiation increased during spring and summer, and decreased in autumn and winter.

(3) The diurnal variation in the surface energy obeyed the following trends. Except for
Rld, which changed insignificantly over time, these variables began to increase at
sunrise, reached their maximum values at noon, and decreased at sunset. LE was
generally greater than H in summer, but the opposite was true for NADORS and
QOMS. In winter, H was generally greater than LE. Longwave radiation differs from
shortwave radiation in that it is more susceptible to solar radiation.

(4) The surface albedo changed in a “U” shape curve, and was high in the morning and
evening, and low at noon. Except for NADORS and SETORS, where the surface albedo
changed insignificantly with the seasons, all stations showed a gradual decrease in
spring, reached their lowest values in summer, and gradually increased in autumn
and winter. The interannual variation in H and LE shows that latent heat exchange
is the main form of energy transfer in BJ, MAWORS, NAMORS, and SETORS. In
contrast, sensible heat played a leading role in surface energy transfer at NADORS
and QOMS. The Bowen ratio was generally low in summer, and some sites had a
maximum in spring.

(5) The Rld value of ERA-5 at each station had the highest correlation with the observed
value. The longwave radiation value of ERA-5 was lower than the observed value,
and the bias of the shortwave radiation increased in spring and decreased in summer.
Among the six stations, the highest precision was observed for BJ.

(6) The LE increased in spring and summer and decreased in autumn and winter, with
the highest levels mainly concentrated in the north and east of the plateau (during
summer). The high-value area of H was mainly in the west of the plateau. When Rn
varied with the season, the radiation value in the north of the plateau was always
higher than that in the south of the plateau (except in summer). The four components
varied significantly with the seasons. Rld in the east of the plateau was higher than
that in the west, and Rsd in the east of the plateau was lower than that in the west.
The maximum Rlu values were in the northwest and northeast of the plateau.
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Abstract: Snow is involved in and influences water–energy processes at multiple scales. Studies on
land surface snow phenology are an important part of cryosphere science and are a hot spot in the
hydrological community. In this study, we improved a statistical downscaling method by introducing
a spatial probability distribution function to obtain regional snow depth data with higher spatial
resolution. Based on this, the southern Gansu Plateau (SGP), an important water source region in the
upper reaches of the Yellow River, was taken as a study area to quantify regional land surface snow
phenology variation, together with a discussion of their responses to land surface terrain and local
climate, during the period from 2003 to 2018. The results revealed that the improved downscaling
method was satisfactory for snow depth data reprocessing according to comparisons with gauge-
based data. The downscaled snow depth data were used to conduct spatial analysis and it was
found that snow depth was on average larger and maintained longer in areas with higher altitudes,
varying and decreasing with a shortened persistence time. Snow was also found more on steeper
terrain, although it was indistinguishable among various aspects. The former is mostly located at
high altitudes in the SGP, where lower temperatures and higher precipitation provide favorable
conditions for snow accumulation. Climatically, factors such as precipitation, solar radiation, and air
temperature had significantly singular effectiveness on land surface snow phenology. Precipitation
was positively correlated with snow accumulation and maintenance, while solar radiation and air
temperature functioned negatively. Comparatively, the quantity of snow was more sensitive to
solar radiation, while its persistence was more sensitive to air temperature, especially extremely low
temperatures. This study presents an example of data and methods to analyze regional land surface
snow phenology dynamics, and the results may provide references for better understanding water
formation, distribution, and evolution in alpine water source areas.

Keywords: land surface snow phenology; statistical downscaling; terrain; climate; southern Gansu
Plateau

1. Introduction

Snow is one of the main forms of water in the cryosphere and is involved in most land
surface energy and moisture transport [1–3]. It influences local and regional land–atmospheric
processes and circulation [4,5] and is considered an important indicator of environmental
changes at multiple scales [6,7]. Variations in snow and its phenology directly affect the
formation of mountain discharge and the evolution of water resources in river source
areas [8,9], influencing water utilization and supporting local society–economy–ecological
sustainability in the middle and lower reaches [10,11]. Quantitative analysis can help
better understand the responses of land surface hydrological systems to environmental
changes [12–14].

Snow is very sensitive to climate change. According to the 6th Assessment Report of
the Intergovernmental Panel on Climate Change (IPCC), the current global air temperature
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is approximately 1 ◦C higher than before industrialization. In terms of the predicted av-
erage temperature change in the next 20 years, the global temperature rise is expected to
reach or exceed 1.5 ◦C [15,16]. Future warming may lead to abnormal precipitation and
accelerated and earlier glacier and snow melts, which, in turn, will affect the distribution
and dynamics of snow in time and space [17,18]. Studies have revealed that the spatiotem-
poral distribution of snow cover shows strong differentiation in China, and relatively stable
snow areas are found mainly in northwestern and northeastern China, the Tibetan Plateau,
and Inner Mongolia [19–21]. Land surface snow phenology (LSSP), such as snow cover
start date, snow melt end date, and snow depth, is better correlated with temperature than
other meteorological factors.

Underlying conditions, such as land surface topography and vegetation types, also
affect the distribution and dynamics of snow [22,23]. For example, as the temperature
gradually decreases with increasing altitude, snow melt slows, making it easier for snow
to accumulate [24,25]. The absorption of solar radiation changes with different terrain
conditions (i.e., slope and aspect), leading to diverse environmental temperatures and
heating, consequentially influencing snowmelt processes [26,27]. In addition, relatively
open areas, such as forest edges and sparse woodlands, are prone to snow accumulation,
and the opposite is the case in well-covered woodlands due to canopy interception [28–30].

In recent decades, an increasing number of programs have been initiated internation-
ally to facilitate snow research, such as the Climate and Cryosphere Project of the World
Climate Research Program (WCRP), the Cold Region Land Surface Processes Experiment
carried out by NASA, and the Western Environmental and Ecological Science Research
Project, effectively advancing not only the study of snow and its dynamics as the key
objects [31–33], but also techniques for snow monitoring and data derivation. In particu-
lar, the idea of using optical remote sensing to obtain snow information has made great
progress [34–36], a large number of derivations as data products have been released, such
as microwave radiometer-based (i.e., AMSR-E) and MODIS-based (i.e., MOD10A1 and
MOD10A2) [37–39]. Among them, MODIS-based snow products have high spatial resolu-
tions, can better reflect the distribution of snow cover, and are widely used in regional snow
variation-related studies [40–42]. In contrast, passive microwave monitoring-based snow
depth data are useful for equivalent evaluation, but their spatial resolution is generally
low [43–45]. To obtain high-resolution snow depth information, downscaling of the data is
needed. There are two common methods for this purpose: one is based on statistics, and
the other is based on deep learning such as machine training [41,46]. The development of
downscaling methods is important for snow studies, especially when conducted at smaller
scales [47–49].

The southern Gansu Plateau (SGP), located on the northeast edge of the Tibetan
Plateau, is an important water source area in the upper reaches of China’s Yellow River and
Yangtze River. Snow dynamics effectively influence runoff formation and evolution, and
mechanistic exploration is beneficial to the scientific planning and utilization of basin water
resources [5,50]. Over the past 20 years, river discharge on the SGP have sharply decreased,
although few studies on snow phenology and its hydro effectiveness have been published.
In view of the above, the objectives of this study are (1) to improve a downscaling method
to obtain high-resolution snow depth (SD) data for the analysis of spatiotemporal variations
in LSSP on the SGP during the time period from 2003–2018 and (2) to use a geostatistical
method to analyze the effects of topographic and climatic factors on the LSSP. Related
results may help improve our knowledge of alpine-cold region snow and can provide
basic data and methodological support for comprehensive hydrological simulations and
predictions in the water source area of large river basins.

2. Study Area

As an important part of the water source area in the upper reaches of the Yellow
River, the SGP administratively includes the whole of the Gannan Tibetan Autonomous
Prefecture in Gansu Province of China, geographically located between 33◦06′N–35◦34′N,
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100◦45′E–104◦45′E (Figure 1a). The elevation ranges from 1159~4866 m and averages
approximately 3000 m, topographically featuring higher elevations in the northwest and
lower elevations in the southeast. The regionally averaged annual air temperature is 1.7 ◦C,
featuring a short frost-free period and plentiful sunshine throughout the year. The annual
total precipitation is 620 mm, concentrated in the rainy season from June to September. The
relatively lower air temperature and abundant precipitation, corresponding to a typically
continental plateau climate, make the SGP naturally develop many tributary systems of
the Yellow River (i.e., the Tao River, the Daxia River, etc.) and Yangtze River (i.e., the
Bailong River), becoming remarkable in terms of water conservation on the Tibetan Plateau
(Figure 1b,c). Along with the increasing intensity of human activities such as cultivation
and overgrazing, ecosystems such as grasslands and wetlands become ecologically fragile,
and water yield recharge to rivers are reduced, both seriously affecting the protection of
regional water resources and ecological security. Due to the significance of snowmelt to
SGP hydro-processes, the analysis of snow distribution and dynamics is important for the
formation, evolution, rational development, and utilization of water on the SGP and across
all the related basins.

 

Figure 1. Overview of the study area, including the geographic location on the northeast edge of
the Tibetan Plateau (a), the water source area in the upper reaches of the Yellow River and Yangtze
River (b), and the distribution of elevation, stream networks, and snow and hydrological observation
stations (c).
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3. Data and Methods

3.1. Data

The SD data were obtained from the long-term series of the daily snow depth dataset
in China (1979–2020), released by the National Tibetan Plateau data center (http://data.
tpdc.ac.cn, accessed on 11 October 2021). The data were derived from the inversion of
daily passive microwave brightness temperature (SMMR, SSM/I, and SSMI/S), with a
spatial resolution of 0.25◦ [51]. Based on the daily SD data, the monthly and annual
maximum SD data were obtained using the maximum value composite (MVC) method,
which represented the maximum value in the process of snowmelt and accumulation [52].
The snow cover data were adopted from the MODIS Daily Cloudless 500 m Snow Area
Product Dataset over China during the period from 2000 to 2019, released by the National
Cryosphere Desert Data Center (http://www.ncdc.ac.cn, accessed on 28 October 2021),
used for LSSP calculation [53]. A DEM with a 30 m spatial resolution released by the
Chinese Academy of Sciences Geospatial Data Cloud (http://www.gscloud.cn, accessed on
5 July 2018) was used to calculate the slope and aspect across the SGP. The surface net solar
radiation data were released by the European Centre for Medium-Range Weather Forecasts
(ECMWF) (https://www.ecmwf.int/, accessed on 17 April 2019), with a spatial resolution
of 0.25◦ and a temporal resolution of 3 h. The meteorological data, including precipitation,
maximum temperature, and minimum temperature, were from the National Meteorological
Information Center of China Meteorological Administration (http://data.cma.cn/, accessed
on 21 August 2021). Snow depth observation data came from the National Meteorological
Information Center of the China Meteorological Administration and are used to test the
accuracy of the downscaling. The time spans of the above data (except for the DEM) were
unified to the same period from 2002 to 2018 for simultaneity.

3.2. Methods
3.2.1. SD Data Downscaling

We define the spatial resolution of 0.25◦ as the lower resolution and that of 500 m as
the finer resolution. The purpose of this is to downscale the lower resolution SD data to the
finer resolution by considering and integrating multiple influential factors.

(1) Statistical downscaling
Pilot correlation analysis revealed that topographic and geographic factors such as

elevation, slope, aspect, longitude, and latitude have significant effects on SD; they affect
or regulate climatic process such as snowfall at local or even larger scales [54,55]. All the
above factors were calculated and resampled into the lower and finer spatial resolutions.
Taking the influential factors at coarse resolution as environmental variables, a multiple
linear regression method is used to calibrate the statistical formula based on the original
monthly 0.25◦ SD data (SDa) as the target variable. Application of the formula results in a
simulated series of SD at both the lower (SDb, Equation (1)) and finer (SDc, Equation (3))
spatial resolutions. Residuals (Equation (2)) of SDb to SDa (ΔSDlow) are resampled into the
finer 500 m resolution (ΔSDhigh) using bilinear interpolation. The sums of SDc and ΔSDhigh
are the statistically downscaled SD data (SDd, Equation (4)).

SDb = A × X1,low + B × X2,low + C × X3,low + D × X4,low + E × X5,low + F (1)

ΔSDlow = SDa − SDb (2)

SDc = A × X1,high + B × X2,high + C × X3,high + D × X4,high + E × X5,high + F (3)

SDd = SDc + ΔSDhigh (4)

where Xn (n = 1, 2, 3, 4, 5) represent raster data of elevation, slope, aspect, longitude, and
latitude, respectively. Subscripts low and high denote the lower and finer resolutions in
space, respectively.

(2) Improvement based on snow cover data
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The original resolution of the SD data is 0.25◦, and although it has been geographically
and topographically corrected through statistical downscaling, the inaccurate influence
is still present. For example, SD occurs in low-altitude regions in warmer months, a
situation that seldom occurs, as common sense in the study area dictates. By introducing
the spatial distribution probability function of snow, the 500 m MODIS snow cover data
are used to modify and improve the precision of the statistical downscaling. Given values
of 1 and 0 representing snowy and snowless pixels, respectively, the original MODIS snow
cover raster data are converted into binary ones. We define the period from September
1 of one year to August 31 of the next year as a snow hydrological year (SHY), and the
accumulation days of snow (ADS) in each SHY are calculated from September 2002 to
August 2018 at a spatial resolution of 500 m. Then, the cumulative days of snow (CDS) in a
domain containing 55 × 55 ADS grids are counted, approximately corresponding to the
spatial resolution of the original SD data (SDa). The snow distribution probability (P) can
be determined as follows:

P =
ADS ∗ 3025

CDS
(5)

The product of SDd and P (Equation (6)) is what objective (1) aims at, which is an im-
provement of the statistically downscaled SD based on snow cover data, comprehensively
reflecting a high-resolution SD (SDf in) controlled or influenced by geography, topography,
and snow distribution (Figure 2).

SDf in = SDd ∗ P (6)

 

Figure 2. Schematic diagram of the statistical-based method and the improvement from introducing
snow distribution probability for downscaling SD data.

3.2.2. LSSP Indicator Extraction

Snow cover maintaining days (SCD), snow cover start date (SCS), and snow cover
melt end date (SCM) are calculated based on the binary retreated MODIS snow cover data.
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Among them, SCS and SCM are important LSSPs determining SCD [56,57], which represent
the dates when a monitored pixel starts accumulating snow and ends melting in a SHY.
SCD is the number of days that each pixel is covered by snow in a SHY. The larger the SCD
is, the longer and the more the snow reserves.

SCS = Fd − SCDbFd (7)

SCM = SCDaFd + Fd (8)

SCD = ∑N
i=0(Si) (9)

In the above equations, Fd is a fixed number representing the date when the largest
snow cover occurs during the period from 2002 to 2018. The statistics resulted in the Fd
date being 12 January 2008, the 134th day in the SHY. SCDbFd and SCDaFd represent the
numbers of snow cover days before and after Fd, respectively, in each SHY. N is the upper
limit for a specified time range, valued as 1 to represent a complete SHY; Si is the binary
retreated pixel value of daily snow cover (snowy or snowless).

3.2.3. Trend Analysis

Sen’s slope is selected for series variation amplitude statistics [58,59]. The method can
reduce or prevent the impact of data anomalies and omissions when evaluating the trend
and range of time series changes. An orderly column is constructed with the change rates
of sample sequences of different lengths. Variable testing is then performed statistically
according to the given significance level to obtain the value range of the change rates,
and the median is used to determine the variation trend and magnitude. The equation is
as follows:

SSij = MEDIAN

(
Xj − Xi

)
(j − i)

(10)

where SSij is Sen’s slope, Xi and Xj represent the sequential values corresponding to time i
and j, respectively, where 1 < i < j < n and n is the length of the series.

The Mann–Kendall method [60,61] is a nonparametric test approach used to determine
the significance of a trend analysis [62].

S = ∑n−1
i=1 ∑n

j=i+1

⎧⎨
⎩

1 yi − yj > 0
0 yi − yj = 0
−1 yi − yj < 0

(11)

Z =

⎧⎪⎪⎨
⎪⎪⎩

S−1√
s(S)

S > 0

0 S = 0
S+1√

s(S)
S < 0

(12)

where yi and yj represent the snow phenology indicators in SHY i and j, respectively;
n represents the length of the sequence. A positive value of the statistic S indicates an
increasing trend of the data series, while a negative one indicates a decreasing trend of the
series. The value of Z is in the range of (−∞, +∞); for a given confidence interval α, if |Z|
≥ Z1−α/2, it indicates that there is a significant trend in the data series at confidence level α.

3.2.4. Analysis of Climate-Driven Influences

Correlation-based significance statistics, represented by partial correlation coefficients,
are used to examine the strength of climate influences on regional LSSP. To be specific,
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assuming there are j (j > 2) variables (Xl1 , Xl2 ...... Xlg , Xlh , Xli , Xlj
), the formula for the

(j − 2)th order partial correlation coefficient of any two variables Xli and Xlj
is:

rli lj ·l1l2···lh =
rli lj ·l1l2···lh−1−rli lh ·l1l2···lh−1

rlj lh ·l1l2···lh−1√(
1 − r2

li lh ·l1l2···lh−1

)(
1 − r2

lj lh ·l1l2···lh−1

) (13)

where r denotes the correlation coefficient, factors on the right side of the formula are the
(j − 3)th order partial factors.

Four key climatic factors, including precipitation (P), land surface net solar radiation
(SSR), maximum air temperature (Tmax), and minimum air temperature (Tmin), are selected
to investigate the climate-driven strength of the LSSP, the 3rd order partial correlation
coefficient is adopted. A t test is used to analyze whether the partial correlation coefficient
between LSSP and climatic factors pass the 0.01 significance level (Table 1). The calculation
formula is:

t =
r2

l4l5·l1l2l3
1 − r2

l4l5·l1l2l3

× n − m − 1
m

(14)

where rl4l5·l1l2l3 is the partial correlation coefficient, m is the number of independent vari-
ables, and n is the sequence length. The partitioning criteria are listed in Table 1.

Table 1. Significance-based analysis standards for climate driving forces on LSSP.

Driving Force t Test-P t Test-SSR t Test-Tmax t Test-Tmin

[P] |t| > t0.01 |t| < t0.01 |t| < t0.01 |t| < t0.01
[SSR] |t| < t0.01 |t| > t0.01 |t| < t0.01 |t| < t0.01

[P + SSR] |t| > t0.01 |t| > t0.01 |t| < t0.01 |t| < t0.01
...... ...... ...... ...... ......

[P + SSR + Tmax + Tmin] |t| > t0.01 |t| > t0.01 |t| > t0.01 |t| > t0.01
[NC] |t| < t0.01 |t| < t0.01 |t| < t0.01 |t| < t0.01

Note: t test-P, t test-SSR, t test-Tmax, and t test-Tmin represent the t significance test of LSSP with P, SSR, Tmax , and
Tmin, respectively. [P] and [SSR] indicate that LSSP is driven by P or SSR. [P + SSR] indicates that LSSP is driven
by both P and SSR. [P + SSR + Tmax + Tmin] means that LSSP is conjointly driven by P, SSR, Tmax, and Tmin. [NC]
means nonclimate-driven. There are four key climatic factors and a total of 16 driving force combinations or single
factors. Not all of them are listed due to space limitations.

3.2.5. Sensitivity Analysis

The response of snow variation to climate change is diagnosed using the sensitivity
coefficient [63]. The method is widely used in contribution separations of influential factors
on hydrological processes. The sensitivity coefficient is calculated as:

εx =
x
y
× ∑n

i=1(x − x)(y − y)

∑n
i=1(x − x)2 (15)

where εx is the sensitivity coefficient of y (LSSP) to x (climatic factors), indicating that
the εx% change in LSSP is caused by 1% variation in a climatic element. x and y are the
multiyear averaged values of x and y. In the following statement, εa−b represents the
sensitivity of LSSP to climatic factors, a is climatic factors such as P, SSR, Tmax, and Tmin, b is
LSSP indicators such as SD and SCD.

4. Results

4.1. Evaluation of the Improved SD Downscaling Method

Gauge-based SD observations at 10 stations in and near the SGP (Figure 1c) were
adopted as references, based on which absolute errors were calculated using SD data
before and after downscaling, as shown in Figure 3. The vertical ranges cover all errors,
including both the positive and negative ones, while transverse widths indicate occurrent
frequencies. It can be seen that the positive downscaled SD (ΔSDf in) errors at all stations
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and the negative errors at most of the 10 stations are reduced, indicating an effective
optimization for the elimination of both the over- and underestimations of the initial SD
data. Frequencies of SD error valued at 0 were found to be the highest at all stations, and
differences were not clear between the two sets of data, although an overall but slight
decrease appeared. As a whole, using the improved downscaling method, the spatial
resolution and real representation of SD were verified to be acceptable, and the downscaled
data were satisfactory for LSSP analysis in the SGP region.

 

Figure 3. Evaluation of the improved downscaling method based on the differences from the gauge-
based SD observations. ΔSDa and ΔSDf in represent the absolute error between the SD data before
and after downscaling, respectively. Subplots (a−j) correspond to the gauge stations for snow
observation. Names of the stations labeled in the right corners of the plots.

4.2. LSSP Characteristics

The binary retreated MODIS snow cover data were used to calculate time-based
LSSP values, including the SCS, SCM, and SCD. Together with the downscaled SD data, a
spatiotemporal analysis of LSSPs of the SGP from 2002 to 2018 was conducted.

4.2.1. Spatiotemporal Distributions

LSSPs present remarkable heterogeneity in time and space on the SGP. High SD values
are mainly found in areas near or at mountain divides, while low SD values are generally
distributed in valley areas featuring lower altitudes. For example, in the southwestern and
southeastern parts where the main stream of the Yellow River and the Bailong River develop,
SD can exceed 18 cm in high altitude zones but less than 10 cm in valleys (Figure 4a). The
SCS and SCM show opposite distribution patterns in value space (Figure 4b,c). In or near
mountain divides, snow begins to accumulate early (i.e., the earliest is the 34th day in a
SHY) but ends melting late (i.e., after the 255th day in a SHY). In most areas, the SCS starts
after the 120th day, corresponding to SCM days before the 195th day, and both result in
a relatively short SCD time in a SHY, i.e., most of the SCD is quantified to be less than
15 days in the SGP. Overall, the SD, SCS, SCM, and SCD spatially match well in phenology.
For example, in areas such as mountain divides featuring deeper snow, accumulation starts
earlier, melting ends later, and snow cover lasts longer.

The SD is larger in months from November to the following March than that in the
rest of a SHY, the maximum value generally occurs in February, with a multiyear average
value of 4.03 cm (Figure 5a). For the presence of snow cover, SCD presents a “multipeak”
pattern in a SHY (Figure 5b). Generally, snow cover lasts the longest in November of one
year and March of the following year, especially in March, when the existence of snow can
reach 8 days. In the context of the regional climate, there is rarely snow cover in the SGP
from June to August.
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Figure 4. The spatial distribution of LSSPs on the SGP. Subplots (a–d) are for SD, SCS, SCM, and SCD.

Figure 5. Multiyear averaged monthly distribution of SD (a) and SCD (b) in SGP (2003–2018).

4.2.2. Spatiotemporal Variations

LSSP variation was found to interannually fluctuate according to quantification of the
representative index, including SD, SCS, SCM, and SCD. Generally, higher values of SD
and SCD occurred simultaneously, corresponding to smaller SCS values and larger SCM
values (Figure 6). During the period from 2003 to 2018, the value ranges of the LSSP index,
such as the SD, SCS, SCM, and SCD, were quantified from 2.67 to 10.53 cm, 113 to 134 d, 142
to 188 d, and 16 to 75 d, averaged to 5.15 cm, 123 d, 158 d, and 34 d, respectively. During
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the statistical period, the maximum SD was found in 2009, when the SCS and SCM were
121 d and 181 d in the SHY, respectively, corresponding to an SCD length of 60 d.

 
Figure 6. Interannual variations of the four selected LSSP indices on the SGP (2003–2018).

The variation trends and amplitudes of the LSSP during the time period from 2003 to
2018 were measured spatially on the SGP based on Sen’s slope method, as shown in Figure 7.
A decreasing trend of SD in most of the area occurred, especially in the southwestern part,
which is located in the main channel of the Yellow River. A relatively small area had an
increase in SD, as in the southeastern part, which dominates the upstream section of the
Bailong River. The variation in SD was not significant at p ≥ 0.01 on most of the SGP,
especially in the central and northern parts, similar to the significance test for the spatial
statistics of the other three LSSP indices. The areal percentage of the reduced SD occupied
60.36%, and the variation amplitude was overall quantified into a rate of −0.06 cm/a across
the whole SGP (Figure 7a). Areas with high altitudes showed significant changes in the SCS
and SCM, such as in or near mountain divides. In terms of the areal percentage, areas with
increased SCS accounted for 75.10%, indicating that the start date of snow accumulation
on most of the SGP presented a delay. Areas with decreased SCM accounted for 65.78%,
indicating that most of the snow melt ended earlier. However, the aggregative variation was
rated as 0.53 d/a and 0.45 d/a for SCS and SCM, respectively (Figure 7b,c). The amplitude
of the former was greater than that of the latter, resulting in an overall reduction in SCD of
−0.37 d/a, which was specifically significant in the southwestern and southeastern parts
of the SGP. The statistics resulted in a larger areal percentage of 56.90% for the increase in
SCD, and the overall reduction was due to the magnitude of the decrease (Figure 7d).

4.3. Terrain Influence on LSSP

Terrain factors, including altitude, slope, and aspect, were calculated and reclassified
using value intervals of 500 m, 10◦, and 45◦ for analysis of the topographic influence on
the LSSP. Altitude zones between 3000~3500 m and 3500~4000 m are mostly distributed in
the region (Figure 8a), while few of the slopes are more than 50◦ (Figure 8b). The aspect
differentiation is not significant, with relatively more differentiation in the northeast and
less differentiation in the southeast and south (Figure 8c).
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Figure 7. Spatial variation of the four selected LSSP indices across the SGP (2003–2018). Subplots
(a–d) are for SD, SCS, SCM, and SCD in order). “∗” indicates an area with significantly tested LSSP
series (p ≤ 0.01). Fan diagrams in the upper left corners of the subplots indicate areal proportions of
increasing and decreasing, differentiated using blue and orange, while regional averages are indicated
by the white part in the middle.

4.3.1. Terrain-Based Distribution

LSSP presented a similar value distribution corresponding to altitude and slope.
Statistically, the higher the altitude, or the steeper the slope, the greater the SD (Figure 9a,c),
SCM (Figure 9c,f) and SCD (Figure 9d,h), and the smaller the SCS (Figure 9b,g). In particular,
the variation amplitudes of the four LSSP indices increased along with the above two terrain
factors, indicating that LSSP variability strengthened in regions with higher altitudes and
steeper slopes. Generally, snow does not easily accumulate on steep slopes, our analysis
showed an inverse pattern. It was found that steep slopes are mostly located in regions
with high altitudes on the SGP and are more prone to snowfall, which might be the reason
why the higher SD values were more distributed [64]. The influence of aspects on LSSP
were statistically close due to the relative equilibrium at the regional scale. South-facing
areas, including the southeast, south, and southwest facings, had smaller SD, SCM, and
SCD, and larger SCS (Figure 9i–l), reflecting a lower probability of snow accumulation on
sunny slopes.
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Figure 8. Reclassification of the three selected topographic factors together with their areal statistics
across the SGP. Subplots (a–c) are for altitude, slope, and aspect, respectively.

Figure 9. Statistics of LSSP based on terrain. Subplots (a–d), (e–h) and (i–l) correspond to altitude,
slope, and aspect, respectively.
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4.3.2. Terrain-Based Variation

Statistics were conducted to diagnose the variation difference in the LSSP correspond-
ing to the reclassified terrain. The results revealed that the decrease in SD mainly occurred
in regions with altitudes higher than 3000 m, while in other altitude zones, the SD increased.
In zones with slopes ranging between 70~80◦ or less than 40◦, the SD was found to decrease,
although an increase occurred in other slope zones. All aspects, correspondingly exhibiting
almost all altitudes and slopes in zones, were found to decrease with SD. In terms of the
time phenology, an increase in SCS, together with a decrease in SCM, was found in most of
the altitude zones, resulting in a general decrease in SCD or a shortened snow-maintaining
time, especially in regions with altitudes higher than 3000 m, consistent with the variation
in SD (Figure 10a). The SCS in all slope zones presented a delay (increase), while the
SCM presented a decrease (earlier), except in zones with slopes less than 20◦ (Figure 10b).
Statistics based on aspects resulted in an overall increase in the SCS and SCM, although the
variation rates of the latter were less than those of the former (Figure 10c). According to the
above, given an altitude of 3000 m and a slope of 20◦, LSSPs on the SGP generally presented
a pattern of “decrease in higher and steeper areas corresponding to a shortened snow
duration, increase in lower and flatter areas corresponding to a relatively lengthened snow
duration”, which might have a profound relationship with the regional climate change
under the warming background.

 

Figure 10. Quantified annual variation in SD (cm/a), SCS (d/a), SCM (d/a), and SCD (d/a) cor-
responding to the terrain factors of the SGP. Subplots (a–c) represent zonal statistics based on the
reclassified altitude, slope and aspect, respectively.

4.4. Climate Influence on LSSP

Analysis revealed that the SGP experienced an overall reduction in snow accumulation
during the time period from 2003 to 2018, the duration of snow cover moved backward in
a SHY. The above, represented by the SD and SCD indices (determined by SCS and SCM),
can be considered comprehensive reflections of snow dynamics. Reasons leading to snow
variation vary, in which the climate influence plays an important role [25,65]. In particular,
regional precipitation (P), surface net solar radiation (SSR), maximum air temperature
(Tmax), and minimum air temperature (Tmin) are key factors [66] and are thus selected to
analyze the responses of the LSSP to regional climate change on the SGP.

4.4.1. Partial Correlation Analysis

The influence of climate change on regional LSSP is mechanically complex. To be
more focused, the multicollinearity analysis between factors of climate and terrain are
ignored at this stage because it is out of the present study’s scope. Given the four selected
climatic factors, the singular or synergistic effectiveness of multiple factor combinations
on LSSP variation needs to be clarified. Coupling partial correlation (Equation (14)) and
significance analysis (Table 1) can help. Among the 16 factor/combinations, the top five
categories satisfying the t test standard were sorted by significantly influenced area. The
SD order list was [SSR, Tmin, Tmax, SSR + Tmin, P] (Figure 11a), while that of the SCD was
[Tmax, SSR, P, P + SSR + Tmax, P + Tmax] (Figure 11b), indicating different impacts of climate
on regional LSSP variation, e.g., SD varied remarkably by SSR and Tmin effectiveness,
although SCD was more susceptible to synergistic influences, mechanically showing more
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complexity. Effectiveness of climatic driving factors on SD and SCD were found to be
different, which may be due to local terrain regulations to different LSSP. For example, in
the northern part of the SGP featuring lower altitude, the SD is more significantly related to
lower air temperature that facilitating more snowfall, while the occurrence of factors with
influence that can significantly drive the SCD is less because snow is usually sparse and
shortly maintained there. In the southwestern part, the altitude is relatively higher and the
air temperature is always lower; the abundant SSR, due to the high altitude, influences
SD more, although SCD is dramatically affected by the higher air temperature because
the snow event occurs commonly, especially in cold seasons. In summary, the singular
effectiveness of the factors was verified to influence the LSSP more over a larger area, which
may be related to the zonal differentiation of terrain and climate on the SGP. In other words,
key factors affecting regional LSSP might tend to be single, which is in good agreement
with the following sensitivity analysis.

 

Figure 11. Significance-based diagnosis of the relationship between LSSP and key climatic factors and
their combinations on the SGP. Subplots (a,b) correspond to SD and SCD, respectively. Histograms
in the left corners show the top five areas influenced (km2) and NC indicates an area that failed the
significance test.

4.4.2. Sensitivity Analysis

Sensitivity (coefficient) analysis quantifies the percentage variation in the target vari-
able (SD/SCD) caused by a 1% change in the environmental variable (the climatic factors).
εP−SD, εSSR−SD, εTmax−SD and εTmin−SD represent the sensitivity of SD to P, SSR, Tmax, and
Tmin, respectively. The results revealed that SD positively or negatively responded to all
four climatic factors. Positive facilitation of SD due to increased P was widely charac-
terized on the SGP, accounting for 67.74% of the area (Figure 12a), while the other three
factors produced damping effects on SD; along with the increase in SD, the proportions
of the area with negative impacts were above 80% (Figure 12b–d). The regional averages
of εP−SD, εSSR−SD, εTmax−SD and εTmin−SD were 0.71%, −4.12%, −3.22%, and −2.95%,
respectively, corresponding to SD variation rates when the climatic factor increased by 1%.
Comparatively, SD was more sensitive to SSR on the SGP.
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Figure 12. Spatial distribution of the SD sensitivity to the four climatic factors. Subplots (a–d) cor-
respond to P, SSR, Tmax and Tmin, respectively. Fan diagrams in the upper left corners of subplots
indicate the areal proportion of positively or negatively influenced and are differentiated using blue
and orange, while the regional averages are the white part in the middle.

εP−SCD, εSSR−SCD, εTmax−SCD, and εTmin−SCD represent the sensitivity of SCD to P,
SSR, Tmax, and Tmin, respectively. Similar results were obtained by calculations (Figure 13).
In contrast, the regional averages of εP−SCD, εSSR−SCD, εTmax−SCD, and εTmin−SCD were
1.16%, −3.69%, −3.45%, and −4.01%, respectively, corresponding to SCD variation rates
when the climatic factor increased by 1%. Comparatively, SCD was more sensitive to air
temperature, especially the lower ones.

Overall, the LSSP on the SGP was influenced by and showed more sensitivity to
solar radiation and air temperature. Local precipitation, especially snowfall, provides the
matter base for snow formation, distribution, and accumulation. The low sensitivity might
be related to the spatiotemporal correspondence and the interactive adaptation between
terrain and climate.

4.5. Integrated Effectiveness of Climate and Terrain

To explore the integrated effectiveness of climate and terrain, statistics of LSSP sensi-
tivity (coefficients) to the climate were conducted based on the terrain. The results showed
negative values of εP−SD with respect to the area, mainly at altitudes lower than 3000 m,
while positive values were observed in the others, indicating that precipitation tended to
positively contribute to SD in higher altitude regions [67]. Values of εP−SCD were found to
be positive in most of the study area except in the altitude range of 1500~2000 m, indicating
that it is not easy for snow to form and be maintained in lower altitude regions. The
sensitivity coefficients of the two LSSP indices to SSR, Tmax, and Tmin were all negative,
indicating that an increase in the three climate factors led to a decrease in snow in both
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amount and persistence at all altitudes (Figure 14a,b). In areas with slopes greater than
30◦, the SD sensitivity to precipitation was found to be negative, indicating that snow
hardly accumulated on steep slopes. The SCD sensitivity to precipitation was positive
but decreased with increasing slope, indicating that the steeper the slope is, the smaller
the effect of precipitation on snow persistence. The absolute value of LSSP sensitivity to
SSR and Tmax decreased with increasing slope, while the trend of LSSP sensitivity to Tmin
was opposite, meaning that snow on steeper land is less sensitive to solar radiation and
higher air temperature, but more sensitive to lower air temperature (Figure 14c,d). LSSP
sensitivities to P and SSR were not found to be significantly different in various aspects,
while LSSP sensitivity to Tmax was found to be stronger on sunny (southward) slopes and
LSSP sensitivity to Tmin was stronger on shaded (northward) slopes (Figure 14e,f).

 
Figure 13. Spatial distribution of SCD sensitivity to the four climatic factors. Subplots (a–d) cor-
respond to P, SSR, Tmax and Tmin, respectively. Fan diagrams in the upper left corners of subplots
indicate the areal proportion of positively or negatively influenced and are differentiated using blue
and orange, while the regional averages are indicated by the white part in the middle.
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Figure 14. LSSP sensitivity statistics based on combinations of climatic and terrain factors. Subplots
(a,b) are altitude-based, (c,d) are slope-based, and (e,f) are aspect-based.

5. Discussion

Located in a midlatitude inland region featuring limitations of circulation transporta-
tion, precipitation, especially snowfall in the cold season on the SGP, is relatively scarce [41].
Combined with the influence of land surface topography, snow cover presents remarkable
fragmentation [68,69], leading to significant heterogeneity in LSSP variation [70]. For a
better understanding, data with a fine spatial resolution are thus essential. To address
this issue, we regressively analyzed the relationship between SD and the geographic and
topographic factors on the SGP to statistically downscale the SD data product from a
coarse spatial resolution of 0.25◦ to a finer one of 500 m. To eliminate the distortion of
the original data, we introduced the MODIS-based spatial probability of snow cover for
correction [7,71]. The coupling of the two ideas not only helped advance the downscaling
method but also improved the data accuracy of snow depth, which can be considered an
example to synthesize methods in data treatment.

Snow formation, accumulation, and redistribution are closely related to land surface
terrain [72,73]. We found that on the SGP, the higher the altitude is, the larger the LSSP
variability, indicating that snow is more significantly affected by environmental factors at
higher altitudes [74]. The slope, together with aspect, is profoundly connected with incidence
angle and eolian activities, acting on the amount of solar radiation and energy flux, influencing
land surface energy budget, and affecting snow accumulation and melt rates [68,75]. Our
study demonstrated the difference in LSSP in terrains with high complexity.

It was found that precipitation and air temperature are the key factors that most
influence the regional LSSP [76]. As the basic material source for forming snow, precipi-
tation cannot have an effect on the LSSP unless the air temperature is below the freezing
point [77,78], which might be the explanation for the lower sensitivity of the LSSP to
precipitation and the more remarkable sensitivity to air temperature [79,80]. Generally,
absorption of solar radiation by snow cover relates to land surface albedo [81,82], dur-
ing which the phase variation of the solar altitude angle in winter and spring plays an
important role, dramatically affecting snow melt in a year [83,84]. Our study of the SGP
agree with the above findings. The influence of key climatic factors on LSSP was further
distinguished, and considerable differences in LSSP in response to the maximum and
minimum air temperatures in time and space were quantitatively presented.

In terms of LSSP variation, the chemical composition and physical state of the atmo-
sphere (e.g., aerosol load), structure and density of snow (e.g., crystal size) [85], variation in
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environmental conditions (e.g., permafrost degradation [82]; land use/cover change [86]),
artificial disturbance [87,88], and so on, directly or indirectly have profound impact on
snow accumulation and melting and may cause LSSP variability [89]. In particular, a long
period with snow is generally influenced by combinations of interactively functioning
factors [90]. Our study examined individual effectiveness based on sensitivity analysis,
and coupling studies were not conducted. Additionally, LSSP does not vary synchronously
with climate, and delays with time often occur [78,91]. Furthermore, land surface vege-
tation also influences the LSSP [92]. The above processes, together with their effects on
regional LSSP, have been neglected and may lead to uncertainties in the present study. It is
hoped that shortcomings will be overcome in the future based on the improvement of data
and methods.

6. Conclusions

In this study, we developed an improved statistical downscaling method to obtain
SD data with higher spatial resolution for a comprehensive study on regional LSSP of the
SGP, a specifically selected water source area of China’s Yellow River. It was shown that
the improved downscaling method can be used to effectively optimize both the spatial
resolution and data accuracy of SD. Statistics from 2003 to 2018 revealed an overall reduction
in the SGP’s LSSP, especially the two main indices of SD and SCD, which varied at negative
rates of −0.06 cm/a and −0.37 d/a, respectively. In terms of terrain, the LSSP of the
SGP generally presented a pattern of “decrease in higher and steeper areas corresponding
to a shortened snow duration, increase in lower and flatter areas corresponding to a
relatively lengthened duration”. Climatically, given a 1% increase in P, SSR, Tmax and
Tmin, the regional averages of the SD variation were 0.71%, −4.12%, −3.22%, and −2.95%,
respectively, while those of the SCD variation were 1.16%, −3.69%, −3.45%, and −4.01%,
respectively. Comparatively, SD was more sensitive to SSR, while SCD was more sensitive
to air temperature on the SGP. These findings may be helpful to the awareness of snow
hydrology and promote its quantitative analysis in the alpine water source areas of large
river basins.
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Abbreviations

LSSP Land surface snow phenology
SGP Southern Gansu Plateau
SD Snow depth
MVC Maximum value composite
ECMWF European Centre for Medium-Range Weather Forecasts
SHY Snow hydrological year
CDS Cumulative days of snow
ADS Accumulation days of snow
SCD Snow cover maintaining days
SCS Snow cover start date
SCM Snow cover melt end date
Tmax Maximum air temperature
Tmin Minimum air temperature
SSR Land surface net solar radiation
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Abstract: Mêdog is located at the entrance of the water vapor channel in the Yarlung Zangbo
Grand Canyon (YGC). This area has the largest annual accumulated rainfall totals and precipitation
frequency on the Tibetan Plateau (TP). This paper investigates the seasonal variation in raindrop
size distribution (DSD) characteristics in Mêdog based on disdrometer observations from 1 July 2019
to 30 June 2020. The DSD characteristics are examined under six rain rate classes and two rainfall
types (stratiform and convective) in the winter, premonsoon, monsoon and postmonsoon periods.
The highest (lowest) concentration of small raindrops is observed in monsoon (winter) precipitation,
whereas large raindrops predominate in premonsoon precipitation. For stratiform rainfall, the
mean mass-weighted mean diameter (Dm) exhibits overlooked differences in the four periods, while
the mean normalized intercept parameter (Nw) is significantly higher in the monsoon period than
in the other three periods. The convective rainfall in the monsoon and postmonsoon periods is
characterized by a high concentration of limited-size drops and can be classified as maritime-like.
This is probably attributed to abundant warm and humid airflow transported by the Indian Ocean
monsoon into Mêdog. The westerly winds prevail over the TP during the premonsoon period, and
thereby the premonsoon convective rainfall in Mêdog has a larger mean Dm and a lower mean
Nw. In addition, the relationships of radar reflectivity Z and rain rate R for different precipitation
types in different periods are also derived. A better understanding of the seasonal variation in the
microphysical characteristics of precipitation in Mêdog is important for improving the microphysical
parameterization scheme and the precipitation forecast of models on the TP.

Keywords: Tibetan Plateau; raindrop size distribution (DSD); seasonal variation; maritime-like

1. Introduction

The microphysical processes of clouds and precipitation play vital roles in the forma-
tion and development of precipitation and the prediction of severe weather. Raindrop size
distribution (DSD) is an important feature that characterizes the microphysical process
of precipitation [1–3] and is mainly affected by climatic characteristics and precipitation
types [3–9]. In recent years, disdrometer DSD measurements have been widely used to
study the microphysical characteristics of precipitation [4,10–14]. Many DSD observa-
tions and analyses have been carried out in different regions of China. Based on the OTT
Particle Size Velocity (PARSIVEL) disdrometer data from Nagqu (4500 m above sea level
(ASL)) over the Tibetan Plateau (TP), Chen et al. [15] reported that the discrepancy in DSDs
between day and night is nonsignificant in stratiform rainfall but obvious in convective
rainfall. The DSDs of different precipitation types (stratiform and convective) between
Nagqu over the TP and Yangjiang in southern China were compared and showed that all
three gamma parameters for stratiform precipitation over the TP are larger than those in
southern China, while the normalized intercept parameter Nw and the shape parameter
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μ for convective precipitation are less than those in southern China [16]. DSD statistical
analysis was also conducted in Yining, Xinjiang, an arid region of China, and it showed that
convective precipitation was neither continental-like nor maritime-like [17]. In addition, the
same location will display significant seasonal differences in the microphysical processes
of precipitation [18]. The precipitation over the South China Sea (SCS) is dominated by
small (midsize) drops during the premonsoon (monsoon) period, while it has the lowest
concentration of raindrops in the postmonsoon season [18]. Monsoon precipitation at
Thiruvananthapuram, a coastal tropical station in India, has a higher concentration of
small drops than in the other three seasons [3]. Krishna et al. [6] found that the mean
concentrations of medium and large raindrops in the west monsoon season are higher than
those in the east monsoon season in the Palau Islands.

The TP is located in western China, with an average elevation of approximately 4000 m.
It is important to the climate and ecosystems of the Asian continent and even the world [19].
The TP is also known as the Water Tower of Asia due to the origination of seven important
Asian rivers, including the Yellow River, the Yangtze River, the Yarlung Zangbo River, etc.
The westerlies–monsoon synergy zone covers the TP and the surrounding areas. Climate
warming has led to anomalies in westerlies–monsoons and an imbalance in the Water
Tower of Asia. The Yarlung Zangbo Grand Canyon (YGC), with a total length of 496.3 km
and a depth of up to 6009 m [20], is located in the southeast TP and is the largest channel
for transporting water vapor to the TP. During the Indian summer monsoon period, warm
and wet water vapor is transported northward to the TP along the YGC. The water vapor
transport intensity (nearly 2000 g cm−1 s−1) is equivalent to that from the south bank of
the Yangtze River to the north bank in summer [21]. The YGC plays an important role in
climate change in the TP and is a typical unit in the TP climate system.

Mêdog, with a mean altitude of 1200 m, is located at the entrance of the YGC. The hu-
mid air from the Indian Ocean flows straight into the gorge, giving Mêdog the most annual
accumulated precipitation on the TP [22]. Due to inconvenient transportation and frequent
debris flows in the rainy season, in situ observation data are lacking along the YGC, espe-
cially in Mêdog. To explore the causes and related mechanisms of water resource changes
in the Yarlung Zangbo River basin under the synergistic action of westerlies–monsoons
in the southeast TP, a comprehensive cloud precipitation observation test base was estab-
lished at the Mêdog Climate Observatory (95.32◦E, 29.31◦N), supported by “the Second
Tibetan Plateau Scientific Expedition” and “the Earth-Atmosphere Interaction in the TP
and its Influence on the Weather and Climate in the Lower Reaches” projects. A Ka-band
cloud radar, a micro rain radar, an OTT PARSIVEL disdrometer and other instruments
were deployed at Mêdog National Climate Observatory to obtain the three-dimensional
structure of clouds and precipitation characteristics in the YGC. Based on Ka-band cloud
radar measurements, the vertical structure characteristics and diurnal variation in clouds
over Mêdog in the southeast TP were analyzed [23]. In addition, precipitation in Mêdog
was dominated by small and medium drops, and the convective rain in this region could
be classified as maritime-like [24]. However, the seasonal variation characteristics of the
raindrop spectrum were not analyzed due to the short observation period. In this study,
DSD data collected from an OTT PARSIVEL disdrometer during the period of July 2019
to June 2020 were used to study the seasonal variation in microphysical characteristics
for different precipitation intensities and precipitation types. In addition, the European
Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis version 5 (ERA5) data,
Fengyun-4A (FY-4A) satellite products and automatic weather station (AWS) observations
were used to address the possible reasons for the seasonal differences in DSDs in Mêdog.
This study aimed to better understand the seasonal variation in the microphysical charac-
teristics of precipitation processes at the entrance of the water vapor channel in the YGC
and its relationship with westerlies–monsoon synergy and water vapor transport, which is
beneficial for improving the microphysical parameterization scheme and the precipitation
forecast of the models in the TP.
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The instruments, data and methods adopted in this study are provided in Section 2.
The properties of DSDs and microphysics parameters for different rain rate classes and
precipitation types in different seasons are reported in Section 3. Section 4 discusses the
possible reasons for the seasonal variations in DSDs. The major conclusions are given in
the final section.

2. Data and Methods

The proposed research investigation used different datasets to provide an overall
evaluation of seasonal variation in raindrop size distribution in Mêdog. The main steps
followed along this study are presented in the flow chart depicted in Figure 1.

 

Figure 1. Methodological workflow diagram adopted in this study.

Measurements from a laser-optical PARSIVEL disdrometer [7] in Mêdog with a time
resolution of 1 min were used in this study. The position of the Mêdog National Climate
Observatory and a picture of the PARSIVEL disdrometer are shown in Figure 2. A disdrom-
eter can simultaneously measure the size and falling speed of hydrometeors. The size and
falling speed ranged from 0.06 mm to 24.5 mm and from 0.05 to 20.8 m s−1, respectively,
which were divided into 32 nonequidistant bins [25,26].
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(b) 

Figure 2. The locations of Mêdog (black solid dot) and Yarlung Zangbo Grand Canyon (YGC), and
topography (m) of the Tibetan Plateau (TP) (a) and the PARSIVEL disdrometer (b). The red arrow
indicates water vapor channel in the YGC.

The disdrometer data used in this study were collected from 1 July 2019 to 30 June 2020
and divided into four periods, winter (January–February), premonsoon (March–May), mon-
soon (June–September) and postmonsoon (October–December) [3], to study the seasonal
characteristics of DSDs in Mêdog. During this period, 30 days and 893 min of data were
missing due to power outages caused by geological disasters, such as landslides and
debris flows.

2.1. Quality Control

In this study, strict quality control was carried out on disdrometer data to eliminate
the influence of raindrop classification errors caused by edge landing, strong wind and
splashing. Firstly, the falling speed beyond the boundary of ±60% of Beard’s empirical
speed–diameter relationship was excluded [27]. Given the terrain altitude of Mêdog, the
speed–diameter relationship was corrected by multiplying by an air density factor of
1.04 [28]. Figure 3 gives the accumulated raw particle counts by diameter and fall speed
observed during the four seasons. Drops beyond a ±60% empirical fall speed–diameter
relationship were eliminated. The distribution of fall speed–diameter basically conformed
to Beard’s empirical fall speed–diameter relationship after quality control.

Secondly, the first and second size bins were removed due to their low signal-to-noise
ratio, and the size bins with a number of drops less than 2 or with diameters greater than
6 mm were screened and eliminated [10]. One-minute samples with a total number of
raindrops less than 10 or a rainfall rate less than 0.1 mm h−1 were regarded as instrument
noise and eliminated [3,29]. Good agreements between disdrometer observations and
gauge measurements in Mêdog have been reported by Wang et al. [24], although disdrom-
eters tend to underestimate gauged rain. This suggests that disdrometer data could be
used to explore the seasonal variation in the microphysical characteristics of precipitation
in Mêdog.

A total of 73,707 min of precipitation samples after quality control were collected from
the disdrometer at the Mêdog National Climate Observatory, with accumulated rainfall of
1237.57 mm. Table 1 shows the total rain duration and accumulated rainfall amount during
the four seasons. As seen from Table 1, Mêdog precipitation mainly occurred in the mon-
soon period, with the rainfall in this period being 699.92 mm, accounting for approximately
57% of the total, followed by the premonsoon period, accounting for approximately 32%.
The rainfall in winter was the lowest, accounting for only approximately 4% of the total
rainfall. Rainfall exhibited obvious seasonal variation.
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Figure 3. Accumulated raw particle counts by diameter and fall speed were observed during the
four seasons: winter (a), premonsoon (b), monsoon (c) and postmonsoon (d). Solid black lines
indicate the empirical fall speed–diameter relationship. Dashed lines denote the ±60% empirical fall
speed–diameter relationship.

Table 1. Total rain duration and accumulated rainfall amount during the four seasons.

Season
Total Rain Duration
(min)/Frequency (%)

Accumulated Rainfall
(mm)/Percentage (%)

Winter 6153/8.35 48.90/3.95
Pre-mon 24,880/33.75 400.76/32.38
Monsoon 35,538/48.22 699.92/56.56
Post-mon 7136/9.68 87.99/7.11

2.2. Parameter Calculation

The raindrop number (ni,j) of the ith size (Di) and the jth speed (Vj) are measured by a
disdrometer. The raindrop number concentration, N(Di) (m−3 mm−1), in the ith size can be
calculated as follows:

N(Di) =
32

∑
j=1

ni,j

Vj × S/T × ΔDi
(1)
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where S
(
m2) and T (s) are the sampling area and sampling time and were set to 54 cm2

and 60 s in this study, respectively. ΔDi indicates the size interval.
The rainfall rate R

(
mm h−1

)
, radar reflectivity factor Z

(
mm6 m−3), total raindrop

concentration NT
(
m−3) and liquid water content (LWC, g m−3) can be obtained from the

following equations:

R = 6π× 10−4
32

∑
i=3

32

∑
j=1

Di
3 ni,j

S × T
(2)

Z =
32

∑
i=3

Di
6N(Di)ΔDi (3)

NT = ∑32
i=3N(Di)ΔDi, (4)

LWC =
π

6000 ∑32
i=3Di

3N(Di)ΔDi, (5)

In this paper, the gamma distribution model was used to fit the observed DSDs from
the disdrometer [30]:

N(D) = N0Dμ exp(−ΛD) (6)

where D (mm) represents the hydrometeor diameter, N0
(
mm−μ−1 m−3) is the intercept

parameter, and Λ
(
mm−1) and μ indicate the slope parameter and shape parameter, re-

spectively. Λ and μ can be calculated as follows [31]:

Mx = ∑32
i=3N(Di)Di

xΔDi, (7)

G =
M3

4
M2

3 M6
, (8)

μ =
11G − 8 +

√
G(G + 8)

2(1 − G)
, (9)

Λ = (μ + 4)
M3

M4
. (10)

Testud et al. [32] proposed the normalized gamma distribution:

N(D) = Nw f (μ)(
D

Dm
)

μ

exp
[
−(4 + μ)

D
Dm

]
, (11)

f (μ) =
Γ(4)
44

(4 + μ)4+μ

Γ(4 + μ)
, (12)

where Γ(x) represents a complete gamma function that is defined as follows:

Γ(x) =
√

2πe−xxx− 1
2 (13)

The mass-weighted mean diameter Dm (mm) and normalized intercept parameter Nw
(m−3 mm−1) can be used to describe the general DSD characteristics and can be defined as
follows [33]:

Dm =
M4

M3
, (14)

Nw =
256
6

× M5
3

M4
4

. (15)

2.3. Different Classes in R, Dm and NT

The DSD data used in this study were divided into the following six categories
according to R, Dm and NT, respectively, as shown in Table 2. Percentages of occurrence

256



Remote Sens. 2022, 14, 3149

and relative contributions to total rainfall were calculated for different categories of R, Dm
and NT. To improve the representativeness of the statistical characteristics, the rainfall rate
categories with fewer than 20 samples were excluded.

Table 2. Categories of rain rate (R), mass-weighted mean diameter (Dm) and total raindrop concen-
tration (NT).

Rain Rate (R) Mass-Weighted Mean Diameter (Dm) Total Raindrop Concentration (NT)
Variable Range, mm h−1 Variable Range, mm Variable Range, m−3

R1 0.1–1 Dm1 <1 NT1 10–250
R2 1–2 Dm2 1–2 NT2 250–500
R3 2–5 Dm3 2–3 NT3 500–750
R4 5–10 Dm4 3–4 NT4 750–1000
R5 10–20 Dm5 4–5 NT5 1000–1500
R6 >20 Dm6 >5 NT6 >1500

2.4. Different Precipitation Types

To further analyze the DSD characteristics in different seasons, the 1 min DSD samples
from the disdrometer were also classified into stratiform rainfall and convective rainfall
according to a simple method based on the SD σR of rainfall rate R [34]. Specifically, for
10 continuous 1 min DSD samples, if R ≥ 5 mm h−1 and σR > 1.5 mm h−1, convective
rainfall was distinguished, while when σR ≤ 1.5 mm h−1, stratiform rainfall was classified.

In addition to the disdrometer measurements, ECMWF ERA5 reanalysis data, AWS
observations and FY-4A products were also used in this study. ERA5 reanalysis data are
the fifth-generation ECMWF reanalysis for the global climate and weather for the past
4 to 7 decades recorded by C3S Climate Data Store (CDS, https://cds.climate.copernicus.
eu, accessed on 1 September 2021) with a spatial resolution of 0.25◦ × 0.25◦. FY-4A is
China’s second-generation geostationary meteorological satellite and carries the Advanced
Geosynchronous Radiation Imager (AGRI), the Geostationary Interferometric Infrared
Sounder (GIIRS) and the Lighting Mapping Imager (LMI). AGRI has 14 channels, and
the spatial resolution can reach 0.5–1 km for visible and near-infrared bands and 2–4 km
for infrared bands. The AGRI level2 dataset provides the cloud type (CLT), the cloud
top height (CTH), the Black Body Temperature (TBB) and other products, which can be
obtained at FENGYUN Satellite Data Center (http://satellite.nsmc.org.cn, accessed on
1 September 2021).

3. Result

3.1. Statistical Characteristics

Table 3 shows the maximum, mean and standard deviation (SD) of R, Dm and NT
calculated by using 1 min DSD disdromter samples in different seasons. The maximum
rainfall rate of 56.643 mm h−1 was in the premonsoon season, indicating that the strongest
convective precipitation occurred in the premonsoon season. The mean R was highest in
the monsoon season, followed by the premonsoon season, and the weakest in winter. The
sequence was in line with that of the accumulated rainfall amount in the four seasons. The
low value of SD in all the seasons indicated a small variation in precipitation intensity
in Mêdog. The lowest SD in winter may be related to uniform stratiform precipitation
and minimal convective precipitation. The higher SD was more or less in the premon-
soon and monsoon seasons, showing that convective precipitation mainly occurred in the
two seasons.
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Table 3. Maximum, mean and standard deviation of R, Dm and NT during the four seasons.

Winter Pre-Mon Monsoon Post-Mon

R
(mm h−1)

Max 7.645 56.650 43.980 24.016
Mean 0.477 0.966 1.182 0.740

SD 0.563 1.668 1.733 1.184

Dm
(mm)

Max 2.970 3.645 3.168 3.314
Mean 0.976 1.021 0.900 0.923

SD 0.258 0.287 0.237 0.236

NT
(m−3)

Max 810.352 1914.562 2401.187 1449.321
Mean 96.262 156.808 279.416 176.428

SD 57.739 130.039 217.689 167.339

The maximum, mean and SD of Dm were found to be larger in the premonsoon season,
which indicates stronger convective actions. During the monsoon season, the mean and SD
of Dm were smaller, probably due to precipitation dominated by warm rain processes and
the relative consistency of precipitation [3,24]. The maximum, mean and SD of NT were the
highest in the monsoon season, which indicates that the raindrop concentration was the
highest with larger dispersion.

In general, the monsoon exhibited the largest values for the mean and SD of R, the
smallest values for the mean and SD of Dm, and the highest values for the maximum,
mean and SD of NT. All these features showed that rainfall during the monsoon period
is characterized by abundant, smaller drops, which may be attributed to the sufficient
warm and humid air flows from the Indian Ocean. In addition, the Dm of premonsoon
precipitation registered larger values in the maximum, mean and SD, as well as the highest
value of the maximum R. Therefore, stronger convective activities probably occurred in the
premonsoon season.

3.2. Seasonal Variation in DSDs

Figure 4 shows the DSDs of different seasons from mean spectra. Drops with D ≤ 1 mm
were regarded as small raindrops, D > 3 mm as large raindrops, and 1 < D ≤ 3 mm as
medium raindrops [18]. As seen from Figure 4, the DSDs in Mêdog exhibited bimodal
distribution with peaks at 0.4 mm and 1.1 mm. This characteristic of the multipeak raindrop
spectrum has been discussed [35]. In terms of small raindrops, the highest concentration
was in the monsoon season and the lowest was in winter, and the premonsoon season was
similar to the postmonsoon season. As raindrop diameter increased, the concentration of
medium raindrops was slightly higher in the monsoon and premonsoon seasons than in
the postmonsoon and winter seasons. The concentration of large raindrops was the highest
(lowest) in the premonsoon (monsoon) season. The results showing that the concentration
of large (small) raindrops was the highest in the premonsoon season (monsoon) were con-
sistent with those found in tropical coastal areas, which are also dominated by the Indian
Ocean monsoon in summer [3]. Unlike the SCS, Zeng et al. [18] reported that small drops
predominate in precipitation during the premonsoon period, while large drops prevail in
the postmonsoon season.

To further analyze the DSD characteristics in different seasons, the DSD data used
in this study were divided into six categories, as shown in Table 2. The DSDs of different
rainfall rate categories from mean spectra for different seasons are shown in Figure 5. As
the rainfall rate increased, the spectra width in all seasons became wider, and the differ-
ence in DSDs among the four seasons gradually increased. For R ≤ 5 mm h−1 (usually
corresponding to stratiform precipitation [13]), the concentration of large raindrops was the
highest in winter. Precipitation with R ≥ 10 mm h−1 (usually corresponding to convective
rainfall [36,37]) occurred mainly in the premonsoon and monsoon seasons. The concentra-
tion of large raindrops in the premonsoon season was significantly greater than that in the
monsoon season, indicating stronger convective rainfall in the premonsoon season.
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Figure 4. Averaged DSDs during the four seasons.

Figure 5. Averaged DSDs for different rain rate categories. (a) R1: 0.1 ≤ R < 1 mm h−1, (b) R2: 1 ≤ R
< 2 mm h−1, (c) R3: 2 ≤ R < 5 mm h−1, (d) R4: 5 ≤ R < 10 mm h−1, (e) R5: 10 ≤ R < 20 mm h−1 and
(f) R6: R ≥ 20 mm h−1.

Table 4 gives the average rainfall microphysical parameters for each of the six rainfall
rate categories from 1 min DSD samples in different seasons. The mean values of Z, LWC,
NT and Dm increased with increasing rain rate in all seasons. The log10(Nw) tended to
decrease with the increasing rain rate in winter, indicating that the increase in precipitation
intensity was mainly attributed to the increase in raindrop size. During other periods,
log10(Nw) tended to increase with increasing rain rate until R > 20 mm h−1. For the same
rainfall rate categories, monsoon precipitation was characterized by the smallest mean Dm
value and the highest mean log10(Nw) value.
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Table 4. Average rainfall microphysical parameters for each of the six rainfall rate classes in the
winter, premonsoon, monsoon and postmonsoon seasons.

Class
(mm h−1)

Samples
R

(mm h−1)
Z

(dBZ)
LWC

(g m−3)
NT

(m−3)
Dm

(mm)
log10(Nw)

(Nw in m−3 mm−1)
μ

Winter

0.1 ≤ R < 1 5546 0.332 17.110 0.019 87.880 0.923 3.297 10.037
1 ≤ R < 2 444 1.368 27.000 0.066 161.317 1.356 3.222 4.415
2 ≤ R < 5 152 2.752 33.175 0.118 192.405 1.729 3.063 2.960
5 ≤ R < 10 11 - - - - - - -
10 ≤ R < 20 - - - - - - - -

R ≥ 20 - - - - - - - -

Pre-mon

0.1 ≤ R < 1 17,796 0.406 17.511 0.024 112.441 0.919 3.395 11.940
1 ≤ R < 2 4304 1.401 25.261 0.072 221.116 1.171 3.517 7.066
2 ≤ R < 5 2338 2.905 30.741 0.138 311.241 1.394 3.508 5.732
5 ≤ R < 10 352 6.420 35.292 0.287 456.934 1.574 3.626 6.271

10 ≤ R < 20 63 13.795 40.876 0.574 639.370 1.864 3.667 6.528
R ≥ 20 27 32.590 46.225 1.211 736.530 2.336 3.525 5.495

Monsoon

0.1 ≤ R < 1 22,605 0.423 16.254 0.028 205.271 0.797 3.729 14.108
1 ≤ R < 2 7248 1.418 23.496 0.079 324.584 1.021 3.787 8.802
2 ≤ R < 5 4710 2.954 27.882 0.153 463.498 1.134 3.889 2.853
5 ≤ R < 10 782 6.636 31.735 0.327 732.233 1.205 4.114 10.112

10 ≤ R < 20 154 13.132 36.175 0.609 900.956 1.381 4.141 9.568
R ≥ 20 39 26.385 42.061 1.130 1095.38 1.743 4.004 6.803

Post-mon

0.1 ≤ R < 1 5678 0.370 16.568 0.023 127.712 0.874 3.462 13.122
1 ≤ R < 2 968 1.378 24.120 0.076 303.602 1.069 3.701 8.052
2 ≤ R < 5 412 2.844 28.385 0.147 456.403 1.165 3.848 8.263
5 ≤ R < 10 62 6.664 33.567 0.320 670.792 1.330 3.981 8.917
10 ≤ R < 20 13 - - - - - - -

R ≥ 20 3 - - - - - - -

3.3. Distribution of Dm, R, and NT

Figure 6 shows the percentage of occurrence (bar) and relative contribution to the total
rainfall (line) for the different Dm bins in the four seasons. Mêdog rainfall in all the seasons
was dominated by raindrops with Dm < 2 mm. The distribution of the occurrence frequency
of Dm was similar in all seasons except for a slight difference in the premonsoon season.
The occurrence frequency of Dm1 was the highest, followed by Dm2 for all four seasons.
During the winter, monsoon and postmonsoon seasons, the occurrence percentage of Dm1
was more than 60%, whereas it was less than 60% during the premonsoon period. On
the other hand, the percentage occurrence of Dm2 was more than 40% in the premonsoon
season, while it was approximately 30% in the other three seasons. The deceased Dm1 in
the premonsoon season was compensated by the increase in Dm2. This result indicated that
the occurrence frequency of larger raindrops was higher in the premonsoon season than in
the other three seasons.

The distribution of the relative contribution to the rainfall totals was different from
that of the occurrence frequency. The Dm2 category produced a greater contribution to
rainfall by 50–70%, although it had a lower occurrence frequency than the Dm1 category.
The rainfall rate was proportional to the third power of raindrop diameter. The larger
raindrops with 2 ≤ Dm < 3 mm only contributed to the total rainfall by approximately 5%
in the winter and premonsoon seasons, and there were hardly any larger raindrops with
2 ≤ Dm < 3 mm during the monsoon and postmonsoon periods.
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Figure 6. Percentages of occurrence (bar) and relative contributions to the total rainfall (line) from the
different Dm bins in the four seasons: winter (a), premonsoon (b), monsoon (c) and postmonsoon (d).

The percentage of occurrence (bar) and relative contribution to the total rainfall (line)
from the different rain rate categories in the four seasons are shown in Figure 7. Weak
rainfall with R < 1 mm h−1 was dominant in the four seasons, which was evident from
the occurrence frequency of the R1 category exceeding 60%, especially more than 80% in
the winter season. The occurrence frequencies of R2 and R3 were higher in the monsoon
season than in the other three seasons. Considering the relative contribution to total rainfall,
the relative contribution to rainfall by R1 was largest and exceeded 60% in the winter
season. Similarly, the R1 category also made the largest relative contribution to rainfall in
the postmonsoon season. However, the relative contributions to rainfall by the R1, R2, and
R3 categories were comparable in the premonsoon season. During the monsoon season,
the R3 category made the highest contribution to total rainfall, although its occurrence
frequency was lower than that of the R1 and R2 categories.

Figure 7. Percentages of occurrence (bar) and relative contributions to the total rainfall (line) from the
different R bins in the four seasons: winter (a), premonsoon (b), monsoon (c) and postmonsoon (d).

Figure 8 shows the percentage of occurrence (bar) and relative contribution to the
total rainfall (line) from the different NT classes in the four seasons. The occurrence
frequencies decreased with the increase in drop number, and the NT1 class predominated
in the four seasons. The drop concentration in Mêdog was mostly below 250 m−3, followed
by 250–500 m−3, and a drop concentration of more than 1000 m−3 rarely occurred. The
occurrence frequency of NT1 was lower in the monsoon season (approximately 57%) than
in the other three seasons (an average of approximately 88%), and the occurrence frequency
of NT2 in the monsoon season (approximately 30%) was higher than in the other three
seasons (an average of approximately 9.5%). The relative contribution to the total rainfall
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monotonically decreased with increasing NT in all seasons except the monsoon season.
During the monsoon season, NT2 made a larger relative contribution (38%) to the total
rainfall than the NT1 class (28%).

Figure 8. Percentages of occurrence (bar) and relative contributions to the total rainfall (line) from the
different NT bins in the four seasons: winter (a), premonsoon (b), monsoon (c) and postmonsoon (d).

3.4. Characteristics of DSDs in Stratiform and Convective Rainfall

Previous studies have shown that the microphysical process of stratiform rainfall is
significantly different from that of convective rainfall [34,38]. Therefore, the 1 min DSD
samples were classified into stratiform rainfall and convective rainfall. Consequently,
the stratiform/convective precipitation samples/percentages were 6130/5 (99.6%/0.1%),
24,155/286 (97.1%/1.1%), 33,468/763 (94.2%/2.1%) and 6930/69 (97.1%1.0%) in the winter,
premonsoon, monsoon and postmonsoon seasons, respectively. Considering only five
samples, the DSD of convective rainfall in winter was not considered.

Figure 9 shows the DSDs of stratiform rainfall and convective rainfall from mean
spectra during different periods. Compared to stratiform rainfall, convective rainfall had a
broader spectrum width and a higher concentration of drops. Bimodal distribution could
also be seen in both DSDs of stratiform rain and convective rain, and the concentration
of the second peak at 1.1 mm was comparable to that of the first peak at 0.4 mm for
convective rainfall.

Figure 9. The mean DSDs of stratiform rain (a) and convective rain (b) for different seasons.
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For stratiform rainfall (Figure 9a), the DSD peaked at 0.4 mm in all four seasons and
then decreased rapidly. The precipitation in the monsoon season (winter) was characterized
by a higher (lower) concentration of drops with sizes less than 1.1 mm. The winter and
premonsoon precipitation had higher concentrations of drops with sizes larger than 2.1 mm
than the monsoon and postmonsoon precipitation. The precipitation in the four seasons had
comparable concentrations of drops with diameters of 1.1–2.1 mm. For convective rainfall
(Figure 9b), the highest concentration of raindrop diameters less than 1.1 mm occurred in
the monsoon season, and the highest concentration of drops larger than 1.7 mm appeared
in the premonsoon season. On the other hand, convective rain in the monsoon season had
the lowest concentration of larger drops with D > 2 mm, and the lowest concentration of
small drops occurred in the premonsoon season. The concentrations of raindrops with
sizes of 1.1–1.7 mm were very similar for the three seasons considered.

The average microphysical parameters of stratiform rain and convective rain from
1 min DSD samples during the four periods are given in Table 5. For stratiform rain, the
mean LWC, NT, R, Nw and μ were the highest in the monsoon season. The largest mean
Dm value was observed in the premonsoon season, followed by the winter season, and
the smallest mean Dm value was observed in the monsoon season. The highest mean Z in
the premonsoon season was mainly attributed to the largest Dm because the reflectivity
factor is proportional to the sixth power of drop diameter. During the winter period, the
lowest mean R and LWC were probably related to the lowest concentration of drops. For
convective rain, the mean R, Z, LWC and Dm were the largest in the premonsoon period.
The highest mean values of NT, Nw and μ were found in the monsoon period, followed
by the postmonsoon period, and the lowest mean values of NT and Nw were found in the
premonsoon period.

Table 5. The average microphysical parameters of stratiform rain and convective rain in
different seasons.

Rain Types Samples
R

(mm h−1)
Z

(dBZ)
LWC

(g m−3)
NT

(m−3)
Dm

(mm)
log10(Nw)

(Nw in m−3 mm−1)
μ

Winter_Str 6130 0.47 21.50 0.02 95.43 0.97 3.28 9.45
Pre-mon_Str 24,155 0.82 23.50 0.04 149.03 1.01 3.42 10.46
Monsoon_Str 33,468 0.95 21.99 0.05 258.47 0.89 3.75 12.24
Post-mon_Str 6930 0.62 20.08 0.04 166.54 0.91 3.51 12.17
Winter_Con 5 - - - - - - -

Pre-mon_Con 286 10.86 39.50 0.45 554.82 1.67 3.70 7.07
Monsoon_Con 763 9.11 34.44 0.43 805.81 1.26 4.14 10.14
Post-mon_Con 69 9.02 37.24 0.41 646.12 1.49 3.88 8.44

Figure 10 shows the average log10(Nw) versus average Dm value (along with ±σ SD
bars) for stratiform rain and convective rain during different periods. The two outlined
squares represent the maritime-like and continental-like convective events reported by
Bringi et al. [34]. In general, the average Dm versus average log10(Nw) showed evident
seasonal differences in Mêdog. In terms of convective rain, monsoon precipitation had
the smallest (highest) mean Dm (log10(Nw)) value of 1.26 mm (4.14), while premonsoon
precipitation was characterized by the largest (lowest) mean Dm (log10(Nw)) value of
1.67 mm (3.70). Convective rain in the monsoon and postmonsoon seasons was similar
to maritime-like events, exhibiting smaller Dm and higher log10(Nw). The convective
precipitation during the monsoon and postmonsoon seasons also conformed to the C–S
separation line from Thompson et al. [5] for the tropics. Convective events during the
premonsoon period were considered to be between maritime- and continental-like events.
For stratiform rain, the average Dm versus log10(Nw) values appeared on the left side
(underside) of the C–S separation line, as reported by Bringi et al. [34] (Thompson et al. [5]).
The differences in the mean Dm values among the four seasons were relatively slight,
whereas the mean log10(Nw) displayed an evident discrepancy. For example, the mean
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log10(Nw) value of 3.75 in the monsoon season was much higher than that in the winter
period, with a value of 3.28.

Figure 10. Scatterplots of averaged log10(Nw) versus Dm (along with ±σ standard deviation bars)
for stratiform (blank symbols) and convective (full symbols) precipitation in Mêdog (circles), SCS
(squares), Nanjing (diamond) and Beijing (star) during the winter (green), premonsoon (purple),
monsoon (red) and postmonsoon (blue) seasons. The two outlined squares represent (left) the
maritime and (right) continental types of convective systems reported by Bringi et al. [34]. The dotted
line and dashed lines represent the C–S separation line by Bringi et al. [34] and Thompson et al. [5].

For comparison with other regions in China, Figure 10 is also superimposed with
the mean Dm and log10(Nw) values of different seasons from previous studies, including
the SCS [18], Nanjing [39] and Beijing [40]. Compared with these regions, the stratiform
precipitation in Mêdog showed smaller mean Dm and mean log10(Nw) values in all seasons,
except the monsoon season, which had a similar mean log10(Nw) value. The mean Dm
value of the premonsoon convective precipitation in Mêdog was similar to that in the SCS,
and the mean log10(Nw) value was similar to that in Beijing. Mêdog convective rain in the
monsoon season was similar to Nanjing, which may have been due to abundant water
vapor in the two regions during this period. The mean Dm (log10(Nw)) of Mêdog convective
rain was much smaller (higher) than that in the SCS and Beijing in the monsoon season.
This finding was probably related to the predominant warm (cold) rain processes in Mêdog
(SCS and Beijing). Similarly, the postmonsoon convective cluster in Mêdog was similar to
Nanjing but had a smaller (higher) Dm (log10(Nw)) than Beijing and the SCS.

3.5. The μ–Λ Relationships

The μ–Λ relationship is closely related to the DSD and varies with rain types, climatic
characteristics and terrain [38,41]. Zhang et al. [38] proposed the quadratic fitting formula
in Florida as follows:

Λ = 0.0365 μ2 + 0.735 μ + 1.935 (16)

To minimize the scatter, the samples in Mêdog with rain rates > 5 mm h−1 and drop
counts > 300 were used to derive μ and Λ [15,38]. Figure 11 shows the scatterplots of μ
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and Λ for three seasons due to minimal convective precipitation in winter. The fitted μ–Λ
relationships for the premonsoon, monsoon and postmonsoon periods are given as follows:

Λ = 0.0148 μ2 + 0.786 μ + 1.916 (17)

Λ = 0.0056 μ2 + 0.949 μ + 1.716, (18)

and
Λ = 0.0250 μ2 + 0.665 μ + 2.674. (19)

The μ–Λ relationships in Mêdog exhibited little variation among the different periods,
especially for Λ < 13. The shape factor μ in the postmonsoon season gradually became
lower than that in other seasons when Λ > 13, which may be related to the few samples
of convective precipitation with increasing Λ during the postmonsoon period. Notably,
the μ–Λ relationships in different seasons were similar to the Florida (subtropical environ-
ment) relationship reported by Zhang et al. [38]. This finding might indicate that climatic
characteristics may play an important role in the determination of the μ–Λ relationship.

Figure 11. Scatterplots of μ versus Λ and the empirical fitting relationships for samples with rain
rates > 5 mm h−1 and drop counts > 300 during the premonsoon, monsoon and postmonsoon seasons.
The colored solid lines are the fitted empirical μ–Λ relationships in different seasons, and the gray
solid line represents the empirical μ–Λ relationship of Zhang et al. [38].

3.6. Quantitative Precipitation Estimation (QPE)

An important application of DSD is quantitative precipitation estimation (QPE). The
power-law relationship of Z = ARb is widely used in radar meteorology and changes with
rainfall type, atmospheric conditions and geographic location [42]. The new-generation
weather radar system in China uses the empirical relationships of Z = 300R1.4 and
Z = 200R1.6 to describe midlatitude convection [43] and stratiform precipitation [44],
respectively. Wu and Liu [16] proposed that coefficient A (exponent b) is 170.7 (1.31) and
69.83 (1.83) for summer convection precipitation and stratiform precipitation in Nagqu,
respectively, based on disdrometer measurements. Wang et al. [24] gave the relationships
of Z = 114.79R1.34 and Z = 53.69R1.71 for convection precipitation and stratiform precipi-
tation in rainy seasons in Mêdog, respectively. The equivalent radar reflectivity factor (Ze,
in mm6 m−3) based on observed DSDs can be expressed according to Zhang et al. [45]:
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Ze =
4λ4

π4|Kw|2
∫ Dmax

Dmin

| f (D)|2N(D)dD (20)

where λ indicates the radar wavelength and was set to 5 cm, considering that C-band
Doppler weather radars were deployed over the TP. Kw is the water dielectric factor, and
|Kw|2 is set to 0.93 by convention. f (D) is the backscattering amplitude for a raindrop of
size D, which is calculated by using the extended boundary condition method (EBCM) [46].

Considering the evident seasonal variation in DSD characteristics in Mêdog, the Z–R
relationships for the four seasons are discussed in this section. Figure 12 shows the scatter
plots of Z and R superimposed with the fitted Z–R relationships using the least squares
method for stratiform rain and convective rain, respectively. The fitted coefficient A and
exponent b for different rainfall types in the four seasons are given in Table 6. Following
Zeng et al. [18], the normalized mean biases (NBs) of the fitted Z–R relations and empirical
relations at midlatitudes for different precipitation types were calculated to evaluate the
accuracies of different Z–R relationships (Table 7).

Figure 12. Scatterplots of radar reflectivity factor (Z) and rain rate (R) and fitted Z–R relationships
using the least squares method (solid lines) for stratiform rain (a) and convective rain (b).

Table 6. Fitted radar reflectivity and rain rate (Z–R) relationships for stratiform and convective rain
types in the four seasons.

Season
Stratiform Rainfall Convective Rainfall

A b A b

Winter 242.22 1.61 - -
Pre-mon 176.48 1.47 82.80 1.76
Monsoon 118.39 1.42 50.91 1.70
Post-mon 139.04 1.35 65.55 1.76

Table 7. NB (%) values of the fitted Z–R relationships and empirical relationships for different
precipitation types in the four seasons.

Season
Stratiform Rainfall Convective Rainfall

Fitted Z–R Z = 200R1.6 Fitted Z–R Z = 300R1.4

Winter 7.91 21.51 - -
Pre-mon 9.97 −1.74 7.26 −12.27
Monsoon 6.14 −27.24 2.98 −51.38
Post-mon 7.92 −14.32 11.19 −26.87
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For stratiform precipitation, a small discrepancy in fitted Z–R relationships among
the different seasons could be noted. Winter precipitation had larger A and b values than
those of the empirical relationship in midlatitudes, while precipitation in other seasons
had smaller A and b values. This result may be related to the fact that winter stratiform
precipitation had more (less) large (small) drops than in other seasons. The empirical
relationship of Z = 200R1.6 underestimated rainfall in the premonsoon, monsoon and
postmonsoon seasons by 1.74%, 27.24%, and 14.32%, respectively, while it overestimated
winter rainfall by 21.51%. The fitted Z–R relationships reduced the NB to less than 10% for
all of the considered seasons.

For convective precipitation, the fitted coefficient A (exponent b) in the premonsoon,
monsoon and postmonsoon seasons was much less (larger) than that of the empirical
relation at midlatitudes. Monsoon precipitation had a minimum coefficient A (50.91) and
exponent b (1.70), which might have been attributed to the large number of small raindrops
during this period. That is, the same reflectivity factor would derive the highest rain rate in
the monsoon season. Given a radar reflectivity factor value of 40 dBZ, the corresponding
rainfall rates were 15.24 mm h−1, 22.33 mm h−1 and 18.20 mm h−1 in the premonsoon,
monsoon and postmonsoon seasons, respectively. The empirical relationship of Z = 300R1.4

underestimated convective rainfall up to 51.38% in the monsoon season, followed by 26.87%
in the postmonsoon season and then 12.27% in the premonsoon season. However, the
fitted Z–R relationships significantly reduced the NB in all of the considered seasons. In
particular, the NB decreased from 51.38% to 2.98% in the monsoon season. The distinct
seasonal variation in DSDs in Mêdog convective rain determined the evident discrepancy
in Z–R relationships among the different seasons. Therefore, the fitted Z–R relationships
for different seasons could significantly improve the accuracy of radar-based QPEs.

4. Discussion

The significant seasonal variations in DSDs in Mêdog could provide a better under-
standing of the microphysical process of precipitation at the entrance of the vapor channel
in the YGC and improve the parameterization schemes in numerical models over the TP.
The possible causative mechanisms of the distinct DSD variability over seasons may be
addressed from the standpoint of the meteorological environments of rainfall [13]. To
explore the possible causes of seasonal variations in the DSD in Mêdog, meteorological
conditions of rainy days from ERA5 reanalysis data, AWS and TBB and CTH products
of the FY-4A satellite were collected. The lifting condensation level (LCL), 0 ◦C isotherm
layer height, CTH, TBB probability density function, surface wind speed box diagram
and the vertical integral of water vapor flux of rainy days in the four seasons are shown
in Figures 13 and 14.

Due to the lack of radiosonde and ceilometer observations in Mêdog, the LCLs cal-
culated from AWS data were approximately considered as cloud base height (CBH). The
average LCL was calculated using the surface temperature (T), surface dew point tempera-
ture (Td) and surface pressure (p) according to the empirical formula (Equations (21)–(23))
given by Barnes [47]:

TLCL = Td − (0.001296Td + 0.1963)(T − Td), (21)

pLCL = p[(TLCL + 273.15)/(T + 273.15)]
7
2 , (22)

LCL = 18, 400(1 + at) log
(

p
pLCL

)
, (23)

TLCL and pLCL indicate the temperature and pressure at LCL height, respectively.
a = 1/273, t = TLCL-T (unit: ◦C). The calculated average LCL heights were 0.12 km, 0.13 km,
0.16 km and 0.20 km in the winter, premonsoon, monsoon and postmonsoon periods,
respectively, exhibiting a negligible difference in the four seasons. The average heights of
the 0 ◦C isotherm layer from ERA5 in the winter, premonsoon, monsoon and postmonsoon
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periods were 1.53 km, 2.67 km, 4.01 km and 2.81 km, respectively, and the average CTHs
were 5.13 km, 6.64 km, 6.97 km and 5.39 km, respectively.

Figure 13. The lifting condensation level (LCL), 0 ◦C isotherm layer height, cloud top height (CTH)
and standard deviation (a). TBB probability density function (b). The dashed line in Figure 13b
denotes the TBB temperature of −32 ◦C.

Figure 14. Surface wind speed box diagram (a) and the vertical integral of water vapor flux (b) in
different seasons.

Clouds between LCL and the 0 ◦C isotherm layer level are defined as warm clouds, and
those between the 0 ◦C isotherm layer level and CTH are considered cold clouds [18]. The
cloud rain process is predominant during the winter precipitation period, which is evident
from the significant cold cloud depth of 3.60 km compared to the relatively short warm
cloud depth of 1.41 km. The microphysical and dynamic mechanisms (e.g., updraft, particle
formation and particle growth processes) in the cold rain process are different from those
in the warm rain process, leading to significant discrepancies in DSD characteristics [39].
Ice crystals grow quickly above the 0 ◦C isotherm level in the winter precipitation process.
The higher concentration of large drops found in winter precipitation may be attributed
to melted ice particles, such as low-density, large snow particles, and/or graupel (e.g.,
Figures 5 and 9a). In addition, wind and humidity are two important meteorological
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elements affecting the evaporation process [48]. Stronger evaporation is expected in the
winter season due to a larger wind speed and less water vapor (Figure 14), reducing the
concentration of small raindrops (e.g., Figures 5 and 9a).

The premonsoon precipitation was characterized by a high concentration of large
drops (e.g., Figures 4, 5 and 9). The average cold cloud depth (3.97 km) was much larger
than the average warm cloud depth (2.54 km) in the premonsoon season, indicating that the
cold rain process is also predominant in this period. The melted ice particles (e.g., graupel
and/or snow particles) could result in the formation of larger drops [49]. Convective
activity frequently occurs in the premonsoon season, as evidenced by the probability
density function (PDF) of TBB (Figure 13b), which is often used to assess the intensity
of convective activity [50]. The smaller the TBB value is, the deeper the development
of convective clouds. The threshold of TBB ≤ −32 ◦C is often used to differentiate the
development of convection. The probability of TBB ≤ −32 ◦C was the highest in the
premonsoon season, indicating that intense convective activity occurs more frequently
during this period. The westerly winds prevail over the TP during this period, and cold
air masses can easily invade the middle to upper troposphere. In addition, solar radiation
causes an increase in surface heating in the daytime. This destabilization of the troposphere
would be beneficial to the formation of dry convection in the premonsoon season [51].

In addition, the largest surface wind speed (e.g., Figure 14a) among the four seasons
may lead to relatively strong evaporation in the premonsoon season, which was partly
responsible for the relatively low concentration of small drops. Thus, a higher concen-
tration of larger raindrops and a lower concentration of small raindrops were observed
for higher rainfall rate categories (e.g., R > 5 mm h−1) and convective rainfall types (e.g.,
Figures 5d–f and 9b). Therefore, the intensity increase in premonsoon precipitation was
more attributed to the increase in drop diameter (e.g., Table 4).

During the monsoon season, although the CTH was highest, the average thickness
of warm clouds (3.85 km) was significantly larger than that of cold clouds (2.96 km)
(Figure 13a). Therefore, monsoon rainfall was dominated by warm rain processes, which
tended to produce higher concentrations of small raindrops owing to collisional and co-
alescence processes (e.g., Figures 4, 5 and 9). A large amount of water vapor is carried
to Mêdog by the Indian Ocean monsoon in this season (Figure 14b), which is conducive
to the formation of warm clouds and the production of abundant small raindrops. Weak
evaporation is expected in the monsoon season due to the smaller wind speed and wet en-
vironment, contributing to the production of small raindrops. The increase in precipitation
intensity in the monsoon season may be mainly attributed to the significant increase in the
concentration of raindrops (Table 4).

The postmonsoon precipitation had less rainfall total and was also characterized
by a higher concentration of small drops (i.e., Figures 4 and 5b–d). Although the mean
depth of warm clouds (2.61 km) was similar to that of cold clouds (2.58 km) in this season,
Figure 14 exhibits humid and weak wind atmospheric conditions, which are favorable to
the production of small drops.

5. Conclusions

In this paper, the seasonal variation in DSDs and microphysical parameters among
the winter, premonsoon, monsoon, and postmonsoon periods were investigated using
PARSIVEL disdrometer data from July 2019 to June 2020 in Mêdog, which is located in the
southeast of the TP and at the entrance of the vapor channel in the YGC. In addition, EAR5
reanalysis data, FY-4A satellite products and AWS observations were used to address the
possible causative factors for the distinct seasonal variation in DSDs. The conclusions of
this study are outlined as follows:

(1) Precipitation mainly occurs during the monsoon period in Mêdog, contributing
approximately 57% to the annual rainfall totals, and small drops are dominant in the
four seasons. Weak rainfall (i.e., R < 1 mm h−1) with small drops (i.e., Dm < 1 mm) and
low concentrations (i.e., NT < 250 m−3) occurs frequently in the four seasons in Mêdog.
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However, taking the contributor to rainfall into account, drops with 1 ≤ Dm < 2 mm
are the largest contributor in the four seasons, and the weak rainfall with R < 1 mm h−1

is the largest contributor in Mêdog except during the monsoon season, during which,
rainfall with 2 ≤ R < 5 mm h−1 is the largest contributor. For the average spectrum of the
four seasons, the monsoon season precipitation has the narrowest spectrum width and
is characterized by the highest (lowest) concentration of small (large) drops. The winter
(postmonsoon) precipitation has the lowest (highest) concentration of small (large) drops.
In terms of rain rate classes, a higher (lower) concentration of small (large) raindrops can be
found in the monsoon season for all the considered rainfall rate classes in this study. More
large drops and fewer small drops are observed in winter precipitation with R < 5 mm h−1.
For heavy rainfall (i.e., R > 5 mm h−1), the premonsoon precipitation exhibits a higher
concentration of large drops.

(2) Mêdog stratiform precipitation in the four seasons has a similar mean Dm value
of approximately 1.0 mm but exhibits a distinct difference in the mean value of log10(Nw).
Monsoon stratiform rain has the highest mean log10(Nw) value of 3.75, followed by post-
monsoon rain, and the winter season has the lowest mean log10(Nw) value of 3.28. The
convective rainfall during the monsoon season is characterized by the highest concentration
of limited-size drops and is identified as maritime-like. Premonsoon convective rain has
predominantly larger drops than other seasons. The largest mean Dm (1.67 mm) and the
lowest mean log10(Nw) (3.70) are observed in the premonsoon convective rainfall, which
could be considered a transition between maritime-like and continental-like conditions.

(3) The relationships of μ–Λ and Z–R corresponding to different seasons were also
fitted. The μ–Λ relationships of the different periods show little discrepancy. The fitted
Z–R relationships for stratiform precipitation exhibit little seasonal variation, and winter
stratiform rain has a larger coefficient A and exponent b. The fitted Z–R relationships for
convective precipitation show evident discrepancies among the premonsoon, monsoon, and
postmonsoon periods. The Z–R relationship in monsoon convective rainfall has a smaller
(larger) coefficient A (exponent b) than in other seasons, indicating a higher rain rate in
monsoon convective precipitation for a given radar reflectivity. The empirical relationship
of Z = 300R1.4 at midlatitudes would cause the severe underestimation of convective rain
in Mêdog, especially during the monsoon period.

(4) The possible causative meteorological environments responsible for the seasonal
variation in DSDs in Mêdog were discussed. Westerlies prevail over the whole TP in the
premonsoon season, and rainfall is dominated by cold rain processes, resulting in the
formation of large raindrops via the melting of frozen particles. In addition, less water
vapor and a larger wind speed contribute to stronger evaporation, which probably leads
to a lower concentration of small drops in the premonsoon precipitation. During the
monsoon period, abundant warm and humid mass air intrudes from the Indian Ocean into
Mêdog, and warm rain processes prevail in this period, producing many small raindrops
via active collision and coalescence processes. Atmospheric conditions are characterized by
humid and weak winds in the postmonsoon season, which is favorable to the production
of small drops.

Notably, this work focused on the seasonal variation in DSD based on disdrometer
data in Mêdog. The parameters of gamma distribution model of DSDs are trying to
be used to improve the microphysical parameterization scheme of precipitation in the
local numerical model. The detailed performance of the model will be evaluated later.
Furthermore, disdrometer observations at more locations over the TP will be used to
explore the temporal and spatial variation in DSDs. In addition, the vertical structure of
DSDs in different seasons will be explored in future research by jointly using K-band Micro
Rain Radar and X-band dual-polarization radar observations.
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Abstract: To promote Tibetan meteorological research, the third Tibetan Plateau (TP) Experiment
for atmospheric sciences (TIPEX III) has been carried out over the plateau region since 2014, with
near-surface heat fluxes measured at different sites. Using the observational data of near-surface heat
fluxes measured at 8 plateau stations in TIPEX III, as well as the ECMWF ERA Interim reanalysis data,
the land-atmosphere heat transfers over different regions of TP and their responses to the South Asian
summer monsoon (SASM) during active/break periods were investigated. Inhomogeneity was found
in the land-atmosphere heat transfers over the plateau, with large differences among plateau stations.
During the observation period, the daily averaged total heat transfer (the sum of sensible and latent
heat flux) varied from 70.2 to 101.2 Wm−2 among the 8 plateau stations, with the sensible heat flux
from 18.8 to 60.1 Wm−2 and the latent heat flux from 10.1 to 74.7 Wm−2. These heat transfers were
strongly affected by the SASM evolution, but with strong inhomogeneities over the plateau stations.
Overall, the more southern station locations exhibited more SASM impacts. The land-atmosphere
heat transfers (the total, sensible and latent heat fluxes) were greatly weakened/strengthened during
the SASM active/break period at Namco (southeast plateau), Baingoin (central plateau), Lhari (central
plateau), and Nagqu (central plateau), which were closely related to the weakened/strengthened
radiation conditions. However, the SASM impacts were quite small or even negligible for the other
plateau stations, which complicated our conclusions, and further investigations are still needed.

Keywords: Tibetan Plateau; South Asian summer monsoon; land-atmosphere heat transfer;
inhomogeneity

1. Introduction

As the “Third Pole of the Earth” and the “atmospheric water tower”, the Tibetan
Plateau (TP) has an area of about 2.5 million square kilometers and an average altitude
greater than 4000 m. The strong solar radiation on this elevated surface makes the plateau
a heating source for the atmosphere in the middle troposphere. This surface heating not
only impacts the local weather and synoptic situations over the plateau, but also affects the
climate and environment of East Asia and the Northern Hemisphere [1–4]. For example,
Yanai et al. revealed that Tibetan surface heating has a great influence on the onset of the
South Asian summer monsoon [2], and Zhou et al. noted that the possible impacts of the
plateau surface heating could be expanded to the Northern Atlantic Ocean [4]. Zou showed
the role of surface heating in the formation of the Tibetan ozone low [5].

To understand the surface heating over the Tibetan Plateau, many scientific exper-
iments have been carried out, in particular, the First and Second Tibetan Plateau Atmo-
spheric Scientific Experiments. Using the observational data, Ye and Gao studied the
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land-air heat exchange and noted that sensible heat transfer dominates the surface heating
over the plateau, especially in summer [1]. Gao et al., Bian et al., Li et al. and Zou et al.
observed the land-air heat exchange at Nagqu (Central Tibet), Qamdo (East Tibet), Gerze
(West Tibet), and the northern slope of Mt. Everest (South Tibet), respectively, in spring
and early summer [6–9]. They showed that the total turbulent heat fluxes (defined as the
sum of sensible and latent heat flux) over East, West, and Central Tibet were in the range of
80.0–144.0 Wm−2, with a higher sensible heat transfer in the range of 43.0–86.0 Wm−2, and
a lower latent heat transfer with the range of 28.0–59.0 Wm−2. However, Zou et al. found
that the near-surface heat transfer in the Southeast Tibet in early summer was significantly
different from that in the other Tibetan regions [10], with a total heat flux of 86.3 Wm−2,
a sensible heat flux of 22.9 Wm−2 and a latent heat flux of 63.4 Wm−2. The latent heat
transfer dominates the land-air heat exchange in Southeast Tibet.

The South Asian summer monsoon (SASM) is an important component of the Asian
monsoon, which has a great influence on the atmospheric processes over Asia [11–15]. The
SASM usually starts in late May or early June, which is characterized by the formation
of cyclonic vortices in the Bay of Bengal or in the Southeast Arabian Sea [11,16,17]. After
its onset, the SASM develops during the summer and autumn, with several active and
break periods observed, which are characterized by the heavy and light rainfalls associated
with the different monsoon troughs over South Asia [12,18–20]. The SASM decays in late
September or early October. The SASM mainly affects the Indian Peninsula and Indo-China
Peninsula, and the affected areas could extend northwards to the Qinghai-Tibet Plateau and
Southwest China [13,16]. Gao et al. showed that the precipitation over Southeast Tibet can
be affected by the monsoon [21]. Zhou et al. [17,22–25] and Li et al. [26] found that the local
atmospheric properties in the Himalayas and Southeast Tibet region are closely related
to the SASM evolutions. Most recently, Zou et al. [9,10] and Zhou et al. [27] revealed that
the land-air heat transfer in the Himalayas and Yarlung Zangbo River Valley in Nyingchi
is strongly affected by the SASM. Due to the lack of observation data, the above studies
mainly focused on the analysis of a single site or a typical underlying surface, but there
was a lack of studies on the influence of the South Asian summer monsoon on the land-air
exchange at other different sites in the Tibetan Plateau.

The network of plateau observation stations is sparse; the representativeness of obser-
vation stations is limited by the complex topography and underlying surface characteristics.
The study of land-air interaction under the complex terrain of the plateau is much more
difficult than that in other areas, the observation time, space, and physical-property vari-
ables are very limited. Because of this limitation, the third Tibetan Plateau Experiment
for atmospheric science (TIPEX III) has been organized by China Meteorological Adminis-
tration since June 2014, with nine boundary-layer observation stations established in the
central, western, and southeastern parts of the plateau [28]. The observation sites are more
widely distributed, and the data are the latest and most comprehensive, which provides an
important data basis for the study of land-air energy exchange over the Tibetan Plateau.
With this observational data, Wang et al. analyzed the surface parameters and near-surface
turbulent fluxes over TP [29]. Most previous studies on the SASM impacts are from one
or two in-situ stations in the south or Southeast Tibet, while the SASM impacts may be
the largest. In this study, a total of eight stations covering different regions of TP were
applied, aiming to study the different phases of SASM (active/break periods) impacts
on land-atmosphere heat transfer over different plateau regions. In addition, previous
studies suggested the great impacts of SASM on the local TP heating, as well as the regional
climate over the Southeast Tibet and South Tibet; however, whether these impacts extend
northwards was not clear until now. Thus, one of our purposes was to understand the
SASM-affected area and extension. In this paper, data and methods are introduced in
Section 2, and the SASM evolution (transition of active and break phases), and its possible
influences on the land-air heat transfers over different plateau regions are presented in
Section 3. The discussion and conclusions are given in Sections 4 and 5, respectively.
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2. Data and Methods

The data used in this paper are from the third Tibetan Plateau (TP) Experiment
for atmospheric science (TIPEX III) from late July to early September, 2014. During the
experimental period, 9 observation stations were installed over the plateau regions. These
stations are Ali, Nagqu, Amdo, Nyainrong, Biru, Baingoin, Lhari, Nyingchi, and Namco
(see Figure 1 for the topography and Table 1 for the detailed station locations). At each
station, the radiation fluxes (downward shortwave radiation flux and net radiation flux)
were measured by a 4-component net radiometer (NR01, Hukseflux Thermal Sensors,
Delftechpark, The Netherlands), and the land-atmosphere heat transfers (sensible and
latent heat fluxes) were measured by a 3-D ultrasonic anemometer (CSAT3, Campbell
Scientific, Inc., Logan, UT, USA). These raw data were calculated as the averaging interval
of 30 min for analysis in this paper. In this paper, the total heat flux is defined as the sum of
sensible and latent heat flux.

Figure 1. Topography of the Tibetan Plateau, with 9 plateau stations being denoted by red dots. It
should be noted that the Nyingchi station was excluded from our study after the data quality control
steps were completed.

Table 1. Station locations over the plateau regions.

Stations Location Elevation (m) Plateau Regions

Ali 80.1◦E, 32.5◦N 4350 northwest plateau
Nagqu 91.9◦E, 32.4◦N 4509 central plateau
Amdo 91.6◦E, 32.2◦N 4695 central plateau

Nyainrong 92.3◦E, 32.1◦N 4730 central plateau
Biru 93.7◦E, 31.5◦N 4408 central plateau

Baingoin 90.1◦E, 31.4◦N 4700 central plateau
Lhari 93.2◦E, 30.7◦N 4500 central plateau

Namco 91.0◦E, 29.8◦N 4730 southeast plateau
Nyingchi 94.7◦E, 29.8◦N 3327 southeast plateau

EDDYPRO (version 5.1) software (from Li-COR Corporation) is also used for turbulent
flux data quality control [29–31]. After quality control steps were performed, Nyingchi
station was excluded from our study due to the missing data of more than 30%. For the
following analysis, 29 July–26 August was selected as the observational period when data
were available from all 8 stations.

In addition to the observational data, the large-scale reanalysis data from ECMWF
(European Centre for Medium-Range Weather Forecasts) Interim were also used, including
wind and specific humidity, with a horizontal resolution of 0.75◦ × 0.75◦. The interpolated
outgoing long-wave radiation (OLR) data from NOAA (National Oceanic and Atmospheric
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Administration) were applied to illustrate the convection conditions, with a horizontal
resolution of 1.0◦ × 1.0◦.

3. Results

3.1. SASM Evolution and Synoptic Situations

The SASM evolution could have great impacts on the weather and climate in Asia
through general circulation changes [1,17,21,23,27,32]. The onset of SASM usually occurs
at the end of May or early June in South Asia [33]. To investigate the impacts of the SASM
on the land-air heat exchange processes over TP, the SASM evolution during the TIPEX III
experiment in 2014 is first analyzed.

To characterize the SASM evolution in the TIPEX III in 2014, a SASM index (SASMI)
from Wang et al. [34] is adopted in this study. The SASMI is defined by the standardized
difference of averaged zonal wind speeds at 850 hPa from two regions, 5–15◦N, 40–80◦E,
and 20–30◦N, 70–90◦E. A large positive SASMI corresponds to a strong monsoonal circula-
tion, while a large negative SASMI corresponds to a weak monsoon. Figure 2 presents the
daily variations in SASMI during the observation period from 1 May to 30 September 2014.
This figure shows that the SASMI turns positive on 6 June, and then begins with a sudden
increase to a maximum on 11 June 2014, with the maximum SASMI value being larger
than the average value (5.0 m/s). At this time, a strong cyclonic circulation prevailed
over the Arabian Sea at 850 hPa (figure not shown), which represents the SASM onset
in 2014. Thereafter, SASM experienced several active periods during 11–16 July, 22 July,
29 July–1 August, 5 August, and 27 August–2 September, with positive SASMI exceeding
the standard deviation, and break periods during 21–23 June, 28–30 June, 13–15 August,
24–25 August, with negative SASMI values exceeding the standard deviation. Considering
the observation period, 29 July–1 August, and 5 August were selected as the SASM active
period, and 13–15 August, and 24–25 August were selected as the SASM break period. In
order to minimize the influence of the solar altitude angle, the active and break periods
were selected close to each other. In the following studies, the land-air heat transfers, as well
as radiation fluxes, will be averaged for the SASM active and break periods, to investigate
their responses to the SASM evolution.

Figure 2. Variations in the SASM index (SASMI), with the averaged SASMI value (5.0 m/s) shown as
a solid line, dashed lines represent one standard deviation (3.8 m/s) above and below the mean value.

To illustrate convection related to the SASM evolution, the outgoing long-wave radia-
tion (OLR) was averaged for the entire observational period and for the SASM active and
break periods; their distributions are shown in Figure 3. The low OLR values represent
strong convection and vice versa. During the observational period (Figure 3a), there were
three strong convective activity centers (with OLR values lower than 190 Wm−2) in the
eastern part of the Bay of Bengal, the northeastern part of India and the central portion of
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TP. During the SASM active period (Figure 3b), the strong convective activities over the
Bay of Bengal and North India both intensified and extended northward, with central OLR
values less than 160 Wm−2. The convection over the central TP became more severe and
enlarged, with central OLR values lower than 160 Wm−2 and covering almost the entire
TP region. During the break period (Figure 3c), however, all the three convections moved
southwards, and the convective activity center over the TP as shown in Figure 3a retreated
to the south of TP. Therefore, obvious differences can be found in the OLR distributions
between the SASM active and break periods, especially over the TP regions, representing
the dominant strong and weak convections there.

Figure 3. Outgoing long-wave radiation (OLR) distributions over the South Asia and TP regions,
averaged for the (a) observation period, (b) SASM active period, and (c) SASM break period, with a
contour interval of 10 Wm−2.

Figure 4 presents the averaged wind and specific humidity fields at 500 hPa in the
entire observation period, SASM active and break periods. During the observation period
(Figure 4a), a cyclone formed over Central India and the Bay of Bengal, with the highest
specific humidity greater than 4.5 g/kg. A westerly existed in the west TP, bringing dry air
masses there (with the specific humidity less than 3.0 g/kg). A southwesterly prevailed
over the south and central plateau regions, with specific humidity values greater than
5.5 g/kg. During the SASM active period (Figure 4b), the cyclone over Central India and
the Bay of Bengal intensified, and moved northward and westward, associated with an
enhancement of moisture (central specific humidity greater than 5.5 g/kg). An obvious
cyclonic circulation appeared over the main body of the plateau. The dry westerly prevailed
over the west TP weakened. The southwesterly existed in the south and Central TP became
stronger, leading to higher moisture levels over the entire TP, with central values greater
than 7.0 g/kg. During the SASM break period (Figure 4c), the cyclone with high water
vapor over Central India and the Bay of Bengal as shown in Figure 4b disappeared. The
dry westerly over the west and southwest of TP strengthened significantly, with moisture
values below 2.0 g/kg. The weakened southwesterly led to the retreat and shrinking of the
high moisture center over the south and Central TP.

3.2. The Impacts of SASM Evolution on the Radiation Heat Transfers

From the above results, large differences between the SASM active and break periods
were observed from the synoptic situations, including the convection, wind, and moisture
fields over the South Asian and TP regions. In the following study, the impacts of SASM
evolution on land-air heat exchange processes, as well as the radiation conditions will
be covered.
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Figure 4. Horizontal distributions of wind (arrows, units: m/s) and specific humidity. (shadings,
units: g/kg) at 500 hPa averaged for (a) the observation period, (b) the SASM active period, and
(c) the SASM break period.

Figure 5 shows the diurnal variations of the downward shortwave radiation flux
(DR), averaged for the observations period, SASM active, and break periods. The diurnal
variations of DR are similar for all stations, showing increases at approximately 06:00 LST
(local standard time) near sunrise, reaching a maximum at noon, and decreasing to almost
zero at approximately 18:00 LST near sunset. However, large DR amplitude differences
were found among the 8 plateau stations. The strongest DR occurred over Ali station
(northwest plateau), with daily average and maximum values of 319.2 and 1007.8 Wm−2,
respectively, which is mainly due to the low precipitation and less moisture in the air. Ali
station is located in the northwest of the Qinghai-Tibet Plateau, and Ali is a very dry area
with very little rainfall. According to the observation data, Ali station had no precipitation
from July to September in 2014, resulting in low water vapor content in the air. The second
strong DR is found over Namco station (southeast plateau), with daily averaged and
maximum values of 222.9 and 846.3 Wm−2, respectively. For the other stations, the DR
differences are noticeably smaller, and the difference of the daily averaged values was less
than 20 Wm−2, with a variation between 187.3 Wm−2 and 206.1 Wm−2. During the SASM
active/break periods, the DR is greatly weakened/strengthened at most plateau stations.
For example, the daily averaged value of DR at the Baingoin station was 194.2 Wm−2

during the observation period, and the DR varies from 133.2 Wm−2 (weakened by 31.4%)
during the SASM active period and 234.5 Wm−2 (strengthened by 20.8%) during the break
period, respectively. The weakened/strengthened DR is closely related to the strong/weak
convections over the plateau region during the SASM active/break periods (see Figure 3).
The strong/weak convections can result in more/less cloudiness, which further affects the
solar radiation by blocking/enhancing effects [17,27,32].

Figure 6 presents the net radiation fluxes (NR) for the 8 stations over the TP during
the observations, SASM active, and break periods. The NR patterns exhibit similar diurnal
variations as those of the DR, with positive values (net heating) during daytime from
approximately 06:00 LST to approximately 18:00 LST and negative values (net cooling) for
the other times of the day over most of the plateau stations. NR amplitude differences
are also seen among the 8 plateau stations. The strongest net radiation also occurs at
Namco station (southeast plateau), with daily averaged and maximum values of 133.2 and
609.2 Wm−2, respectively. The second strongest NR is found over Lhari station (central
plateau), with a diurnally averaged value of 120.0 Wm−2 and a maximum of 511.6 Wm−2.
Over the other stations, the NR differences are quite small; the difference in the daily
averaged value was about 10 Wm−2, with a range from 102.8 to 112.2 Wm−2. The NR is
also weakened/strengthened during the SASM active/break periods at most of the stations
compared with the observational mean. As with DR, the largest effects of SASM on the NR
occurred at Baingoin station, the daily averaged value of NR was 102.8 Wm−2 during the
observation period, while the NR was 66.9 Wm−2 during the SASM active period, which
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weakened by 34.9%, and the NR was 128.8 Wm−2 during the SASM break period, which
strengthened by 25.3%.

Figure 5. Diurnal variation of the downward short-wave radiation flux (DR) (units: Wm−2) from
8 stations, averaged for the observations, SASM active, and break periods.
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Figure 6. Same as for Figure 5, but for the net radiation flux (NR) (units: Wm−2).

3.3. The Impacts of SASM Evolution on the Turbulent Heat Transfers

Figure 7 shows the diurnal variations in sensible heat flux (SH), averaged for the
observations, SASM active, and break periods. Driven by the net heating (see Figure 6),
the plateau releases heat into the atmosphere during the daytime (positive SH values) and
receives heat from the atmosphere at night (negative SH values). Following the diurnal

280



Remote Sens. 2022, 14, 3236

variation in radiation, the sensible heat flux increases from early morning at approximately
6:00 LST, reaches a maximum at noon, and decreases later in the day. Differences are clearly
found in the SH averaged and maximum values among the 8 plateau stations, despite
the similar diurnal variations. During the observation period, the largest sensible heat
transfer occurs over Ali station (northwest plateau), with daily averaged and maximum
values of 60.1 (see Table 2) and 197.4 Wm−2, respectively. The second-largest SH is found
over Namco station (southeast plateau), with daily averaged and maximum values of
28.2 and 118.9 Wm−2, respectively. Over the other stations, the diurnally averaged SH
varies from 20.0 to 26.5 Wm−2, and the daily maximum values vary from 73.1 to 98.2 Wm−2.
The smallest SH occurs over the Biru station (central plateau), with averaged and maximum
values of 18.8 and 77.5 Wm−2, respectively. Our results are consistent with recent study
results. The recent research reveals that SH in the central TP in August is generally between
5 and 40 Wm−2, with an average of 18 Wm−2, while SH in the western TP is between
40 and 70 Wm−2, with an average of 56 Wm−2, these results are also smaller than that
in the past [29,35]. Ye and Gao [1] estimated the July-August-mean intensity of SH is
60–80 Wm−2 over the central TP and 150–190 Wm−2 in the western TP, and Yang and
Guo [36] estimated SH in July-August is 50–60 Wm−2 in the central TP and 75–90 Wm−2 in
the western TP, remarkably larger compared to the new findings. This result indicates that
SH has been possibly overestimated by the previous studies when calculating SH using the
bulk transfer method, which is based on the larger values of the bulk transfer coefficient
for sensible heat [28].

During the SASM active period, the response of land-to-atmosphere sensible heat
transfer exhibited great differences among the 8 stations. For example, the daily averaged
SH weakened at most stations, with the amplitude of weakening varying from −1.7% to
−41.4%. The largest weakening occurred at Namco station (southeast plateau), and the
SH was 16.5 Wm−2 over the SASM active period, which was weakened by 41.4% from its
daily averaged value of 28.2 Wm−2 during the observation period. The smallest weakening
happened at Biru station (central plateau), with a weakening of 1.7% from its daily averaged
value. At stations Amdo and Nyainrong, the daily averaged SH values strengthened, with
the amplitudes increasing by 12.3% and 13.2%, respectively. During the SASM break period,
the SH largely strengthens over all stations, and with the strengths varying from 0.8% (at
Ali) to 45.3% (at Nyainrong). Therefore, the sensible heat transfers over the plateau region
can be affected by the SASM evolution, with the weakened/strengthened amplitudes
over most stations during the SASM active/break periods, which are closely related to
the weakened/strengthened radiation conditions [9,10,17,23,27,32]. However, these SASM
impacts on the sensible heat transfer exhibit large inhomogeneity over the plateau regions.
Overall, the more southerly stations received more SASM impacts. The larger SASM
impacts on sensible heat transfers occurred at stations Namco, Baingoin, and Lhari, and
the SH differences between the SASM active and break periods were greater than 38% of
the daily averaged values. The SASM impacts also extended westward and northward to
the Ali and Nagqu stations, with the SH differences between the SASM active and break
periods reaching 21.4% and 34.6% of their daily averaged values, respectively. However,
the SASM impact appeared to be negligible at Amdo station (south of Nagqu station),
which complicated our results.
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Figure 7. Diurnal variations of the sensible heat flux (SH) (units: Wm−2) from 8 stations, averaged
for the observations and SASM active and break periods.
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Table 2. Sensible heat flux (SH) (Wm−2) over the 8 plateau stations, averaged for the observations and
SASM active and break periods. The bracketed values denote the SH percentage increase (decrease)
of the daily averaged value, in which positive (negative) values mean increasing (decreasing).

SH/Stations Ali Nagqu Amdo Nyainrong Biru Baingoin Lhari Namco

Observation 60.1 26.5 24.5 20.0 18.8 20.2 20.0 28.2

SASM
active

47.7
(−20.5%)

20.9
(−21.2%) 27.5 (12.3%) 22.6 (13.2%) 18.5

(−1.7%)
16.0

(−20.8%)
18.6

(−6.8%)
16.5

(−41.4%)

SASM
break 60.6 (0.8%) 30.1 (13.4%) 27.0 (10.1%) 29.0 (45.3%) 21.7 (15.4%) 27.7 (37.6%) 26.3 (31.7%) 30.9 (9.7%)

Figure 8 presents the diurnal variation of latent heat flux (LH), averaged for the
observations, SASM active, and break periods. Differing from the sensible heat flux, the
latent heat over the TP is always transferred upwards (positive LH values) during the
entire day. In addition, the amplitude of LH was much larger than that of SH over most of
the plateau stations and that was consistent with previous results [37]. Obvious differences
are seen in the LH daily averaged and maximum values among the 8 plateau stations.
During the observation period, the largest latent heat transfer occurred at Nagqu station
(central plateau), with daily averaged and maximum values of 74.7 (see Table 3) and
238.6 Wm−2, respectively. The smallest LH occurred at Ali station (northwest plateau)
due to small amounts of precipitation there, with daily averaged and maximum values of
10.1 and 27.2 Wm−2, respectively. Over the other stations, the diurnally averaged LH
varied from 53.0 to 74.4 Wm−2, and the maximum values varied from 152.8 to 245.7 Wm−2.

Table 3. Latent heat flux (LH) (Wm−2) over the 8 plateau stations, averaged for the observations and
SASM active and break periods. The bracketed values denote the LH increasing (decreasing) percent-
age of the daily averaged value, in which the positive (negative) values mean increasing (decreasing).

LH/Stations Ali Nagqu Amdo Nyainrong Biru Baingoin Lhari Namco

Observation 10.1 74.7 74.4 66.6 59.3 55.4 53.0 65.0

SASM
active 18.9 (87.4%) 56.8

(−24.0%) 78.7 (5.9%) 72.8 (9.4%) 69.5 (17.3%) 47.5
(−14.3%)

48.3
(−8.8%)

59.1
(−9.0%)

SASM
break

5.9
(−41.2%) 77.5 (3.8%) 73.5

(−1.1%) 77.6 (16.6%) 63.5 (7.1%) 62.9 (13.6%) 57.8 (9.0%) 63.0 (3.0%)

Compared with the impacts of the SH, the SASM impacts on LH were relatively small
and complicated. At stations Namco, Lhari, and Baingoin, while the SASM impacts on the
SH were large, but the SASM impacts on LH were smaller, with the LH differences between
the SASM active and break periods varying from 12.0% to 27.9% of their daily averaged
values. The small impacts over these stations could be closely related to the high moisture
conditions there. The SASM impacts could also extend to the north plateau, and Nagqu
station with a large LH difference (27.8% of the daily averaged value) between the SASM
active and break periods. However, the same as for SH, the SASM impacts on LH seem
negligible over station Amdo. It should be noted that the SASM impact over Ali could be
ignored due to the small LH value despite having the largest LH response amplitude of the
daily averaged values.

The total heat transfer (TH) is defined as the sum of SH and LH. Figure 9 shows the
diurnal variation in TH, averaged for the observations, SASM active, and break periods.
Clear differences can be seen in the TH magnitudes among the 8 plateau stations. During
the observation period, the largest TH occurred at Nagqu station (central plateau), with
daily averaged and maximum values of 101.2 (see Table 4) and 336.7 Wm−2, respectively.
The smallest TH occurred over Ali station (northwest plateau), with daily averaged and
maximum values of 70.2 and 220.3 Wm−2, respectively. Over the other stations, the
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diurnally averaged TH varied from 73.0 to 98.8 Wm−2, and the daily maximum values
varied from 225.9 to 343.9 Wm−2.

Figure 8. Same as Figure 7, but for latent heat flux (LH) (units: Wm−2).
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Figure 9. Same as Figure 7, but for total heat flux (TH) (units: Wm−2).
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Table 4. Total heat flux (TH) (Wm−2) over the 8 plateau stations, averaged for the observations
and SASM active and break periods. The bracketed values denote the TH increasing (decreasing)
percentage of the daily averaged value, in which the positive (negative) values mean increasing
(decreasing).

TH/Stations Ali Nagqu Amdo Nyainrong Biru Baingoin Lhari Namco

Observation 70.2 101.2 98.8 86.5 78.1 75.5 73.0 93.1

SASM
active

66.7
(−5.0%)

77.7
(−23.3%)

108.7
(10.0%) 95.4 (10.2%) 88.0 (12.7%) 63.4

(−16.0%)
67.0

(−8.3%)
75.6

(−18.8%)

SASM
break

66.5
(−5.2%) 107.6 (6.3%) 100.5 (1.7%) 106.6

(23.2%) 85.2 (9.1%) 90.6 (20.0%) 84.1 (15.2%) 93.9 (0.8%)

From Table 4, the SASM impacts on the TH can be clearly seen at stations Namco,
Baingoin, Lhari, and Nagqu, with a weakened/strengthened magnitude during the SASM
active/break period, and the TH differences in daily averaged value between the SASM
active and break periods are with a range between 19.6% and 36.6%. The largest impacts
occurred at Baingoin station, with the TH difference reaching 36.0% of the daily averaged
value between the SASM active and break periods. In comparison, the SASM impacts on
TH over the other plateau stations were quite small or even negligible.

4. Discussion

In theory, there are multi-scale atmospheric motions, especially over the complex TP
regions, which interact with each other. The local land-atmosphere heat transfers over TP
could be possibly affected by the large-scale circulations, such as the surrounding South
Asia monsoon systems. Theoretically, the monsoon could affect the local heat transfer by
adjusting the local radiation conditions through cloud and precipitation variations, which
have been proved by previous studies [9,23,27].

From our results, not all stations show consistent impacts from SASM. For example,
the Biru station has an opposite variation of heat flux during the different SASM stages,
compared with other stations at similar latitudes, such as Baingoin and Lhari. The reason
is still unclear; this may have connections with orographic peculiarities and microclimatic
features, and which could be partly leading to the different local heating forces there. The
problem also needs to be further studied using longer-time observation data in the future.

The spatial differences between various sites could be possibly not only affected by
the SASM activities. Our study presented a clue that the local land-air exchange processes
could be strongly affected by large-scale circulations, such as the SASM evolution, with
inhomogeneous distributions over the whole TP region. The local topographic effects
should be carefully considered for future studies.

Due to the hard living and working conditions, the observational data are quite limited
over Tibet, especially over the northern and western parts of the plateau. Thus, as shown
in our introduction, most previous studies focused mainly on the SASM impacts over the
south or the southeast Tibet, one reason is due to the largest impacts there which were
shown from our studies, and another reason is no observational data over the other plateau
regions. During the most recent year, the Third Tibetan Plateau Atmospheric Scientific
Experiment provided us with an opportunity to make a comprehensive study on the
possible SASM impacts on different regions of TP. Although our conclusions are based
on only one year of data (2014), the physical mechanism is the same for the other year, in
spite of year-to-year variations. The SASM evolution could result in cloud and advection
variations, adjusting the local radiation conditions, and further affecting the local heat
transfers. Therefore, the inhomogeneities of SASM impacts should be confirmed for each
year, but varied with different amplitudes and monsoon extended regions. In the future,
based on more accumulated data, further investigations and more evidence are still needed
for the robustness of conclusions.
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5. Conclusions

Using the observation data from TIBEX III, as well as the large-scale reanalysis data
from ECMWF Interim and from NOAA, the different impacts of SASM on the land-
atmosphere heat exchange processes between active and break periods over different
regions of TP were investigated. During the observation period (29 July to 26 August),
the land-atmosphere heat transfer exhibited strong inhomogeneous distributions over the
plateau regions. The daily average total heat transfer varied from 70.2 to 101.2 Wm−2

over the 8 plateau stations, with the sensible heat flux ranging from 18.8 to 60.1 Wm−2

and the latent heat flux with a variation between 10.1 and 74.7 Wm−2. The latent heat
transfer values larger than the sensible heat transfer values over most of the plateau regions
are mainly related to the strong convection that prevailed over the plateau during the
observation period (Figure 3a), which caused the high moisture conditions (Figure 4a).
The land-atmosphere heat transfer can be largely affected by the SASM evolution, but
with strong inhomogeneity over the plateau stations. Overall, the more southerly stations
received more SASM impacts. The land-atmosphere heat transfers (the total, sensible,
and latent heat fluxes) are greatly weakened/strengthened during the SASM active/break
period at the Namco (southeast plateau), Baingoin (central plateau), Lhari (central plateau),
and Nagqu (central plateau) stations, with the sensible heat flux differences between the
SASM active and break periods varying from 34.6% to 58.4% of the daily averaged values,
with a range between 12.0% and 27.9% for the latent heat flux and with a variation between
19.6% and 36.0% for the total heat transfer. These significant SASM influences could be
closely related to the weakened/strengthened radiation conditions [9,10,17,23,27,32]. How-
ever, the impacts of SASM during active/break periods become complicated over the other
plateau stations. For example, the impact of SASM on Ali station is mainly reflected in the
influence of sensible heat flux, because sensible heat flux plays a dominant role in the total
heat transfer. The different phases of SASM impacts on the Amdo and Nyainrong stations
were quite small or even negligible, which complicates our conclusions. Therefore, further
investigations are still needed based on more observational data over a long period in the
Tibetan Plateau.
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Abstract: In the context of global warming, meteorological disasters occur more frequently in various
regions which exert increasing influences on human life. Snow disasters are some of the natural
disasters that most seriously affect the development of husbandry on the Qinghai–Tibetan Plateau
(QTP), so it is necessary to explore their spatio-temporal variations and perform comprehensive
risk assessment. Based on the daily snow depth data set in China, obtained by inversion of satellite
remote sensing data, the spatio-temporal variation characteristics of snow disasters on the QTP from
1980 to 2019 were studied. The regional difference in the comprehensive risks of snow disasters
for the husbandry on the QTP was evaluated from four perspectives, i.e., the risk of hazard factors,
sensitivity of hazard-inducing environments, vulnerability of hazard-affected bodies, and disaster
prevention and mitigation capacity. The farmer and pastoralist well-being (FPWB) index in five
typical regions was constructed to discuss the possible influences of snow disasters on the FPWB
since the 21st century. Results show that, in the last 40 years, the frequency, duration, average snow
depth, and grade of snow disasters on the QTP all exhibited significant interannual and interdecadal
variabilities, and they also displayed a declining long-term trend. The comprehensive risk of snow
disasters for the husbandry on the QTP is low in the north while high in the south. The high-risk
zone accounts for 1.54% of the total and is mainly located in Kashgar City in the north-western end
of the QTP; the sub-high-risk and medium-risk zones are mainly found in the south of the plateau
and are distributed in a tripole pattern, separately covering 15.96% and 16.32% of the total area of the
plateau; the north of the plateau mainly belongs to low-risk and sub-low-risk zones, which separately
account for 43.06% and 23.12% of the total area of the plateau. Since the beginning of the 21st century,
the FPWB in five typical regions, namely, Kashgar (I), Shigatse (II), Nagqu (III), Qamdo (IV), and
Yushu (V), has been increasing, while the risk of snow disasters has gradually decreased. Every 1%
decrease in the risk of snow disasters corresponded to 0.186%, 0.768%, 0.378%, 0.109%, and 0.03%
increases in the FPWB index in the five regions. Snow disasters affect FPWB mainly by directly or
indirectly damaging material resources (livestock inventories and meat production) and social and
financial resources.

Keywords: Qinghai–Tibetan Plateau; snow disaster; risk assessment; climate change

1. Introduction

The sixth assessment report (AR6) released by the Intergovernmental Panel on Cli-
mate Change (IPCC) pointed out that extreme climate events have occurred more fre-
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quently in the context of global warming compared with pre-industrial-revolution lev-
els [1]. The meteorological disasters and derived disasters triggered by extreme climate
events have caused increasingly large losses and higher disaster risks which seriously
affect society, the economy, and human life, so the topic has attracted wide attention [2].
The Qinghai–Tibetan Plateau (QTP), located in a mid-to-low-latitude region in the north-
ern hemisphere, is the highest plateau in the world. At an average altitude of above
4000 m, animal husbandry is one of the economic pillars for residents on the QTP [3].
However, husbandry on the QTP is highly susceptible to natural disasters due to the
special weather conditions and types of vegetation [4]. Among the natural disasters,
snow disasters have become one of the leading meteorological disasters in winter and
spring in alpine pastoral regions due to their long duration and wide range of influence.
Continuous snowfall is frequent in alpine pastoral regions in winter and spring, and, at
the same time, the snow persists for a long time due to the low temperature and readily
covers short forage grass [4]. As a result, livestock feeding on forage grass may die of frost
and starvation, which greatly threatens the livelihoods and property of local farmers and
pastoralists and influences the productivity of husbandry. Meanwhile, previous research
showed that the frequency and hazard of snow disasters on the QTP have also risen in
the context of global climate change [5,6]. Therefore, assessing the risk of snow disasters
based on determining the spatio-temporal distribution characteristics of snow disasters
on the QTP is of significance for disaster prevention and protection of the husbandry on
the plateau.

In recent years, much research into the spatio-temporal variation characteristics of
snow disasters on the QTP has been performed using various data and technological means.
Based on occurrence records and observations at meteorological stations, previous studies
found that snow disasters on the QTP during winter and spring are mainly caused by
abnormal snow accumulation from November to the following March [7]. In addition,
snow disasters showed obvious interdecadal variations and a significant variation in
the early 1990s. The frequency of snow disasters has shown an increasing trend since
the 1990s [8,9], and the Lhoka City in the Tibetan Autonomous Region (Lhoka) in the
south-west and the border between southern Qinghai Province and Sichuan Province
are two centers with high frequencies of snow disasters [10]. With the climate warming
over the plateau, the snow depth and the number of snow cover days for the majority
of the QTP show a decreasing trend [11], and the decrease in the snow depth is more
significant in the high-altitude areas [12]. Although the above studies achieved certain
goals, the research conclusions were quite different due to the sparsely distributed nature
of the meteorological stations on the QTP and differences in the selected meteorological
stations and research areas [11,13–15]; because remote sensing data can provide snow
information with high spatio-temporal resolution, they are widely used for the inversion
and monitoring of snow [16–18], assessment of snow disasters [19,20], and early warning
of snow disasters [21] in areas with sparse meteorological stations. These works greatly
improved popular perception of the variations in, and possible drivers of, snowfall, and
some scholars also used remote sensing data to explore the occurrence of snow disasters
on the QTP. For example, Yin et al. [4] used AVHRR archival reflectance products to find
that the grade of snow disaster on the QTP reduced from 1982 to 2012. No matter which
data were used, most studies focused on the spatio-temporal variation characteristics
of snow disasters. However, snow disasters, as one of the natural disasters that most
greatly affects animal husbandry on the QTP, exert remarkable influences on all aspects
of society, the economy, and people’s livelihood. Therefore, snow disasters need to be
comprehensively studied from the perspective of risk assessment, in addition to the existing
studies which discussed the influences of snow disasters on livestock in typical regions
of the QTP [22,23]. Meanwhile, researchers have used human well-being to characterize
the material and spiritual satisfaction of residents in recent years. Because of the close
relations between the people’s livelihood and governmental decisions, human well-being
has recently been paid much heed by many researchers [24,25]. Numerous studies were
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conducted on human well-being from multiple perspectives, including studies of variation
characteristics and influence factors [26–30]; however, most studies focused on social and
ecological topics. Natural disasters may affect material supply, living environment, and
even life and property security of residents, so their influences on residents’ physical and
mental health cannot be underestimated. However, there are few studies on the influences
of natural disasters on human well-being.

Therefore, this research mainly aims to determine regional differences in the com-
prehensive risk degree of snow disasters for husbandry on the QTP by comprehensively
considering the risk of hazard factors, sensitivity of hazard-inducing environments, vulner-
ability of hazard-affected bodies, and disaster prevention and mitigation capacity from the
perspective of the risk assessment of snow disasters. This is based on analysis of spatio-
temporal variation characteristics of snow disasters on the QTP. Then, the farmer and
pastoralist well-being (FPWB) index is constructed to evaluate possible influences of snow
disasters on FPWB on the QTP since the beginning of the 21st century. The research results
provide a theoretical basis for making policies to prevent snow disasters and selecting
policies for FPWB on the QTP.

2. Materials and Methods

2.1. Definition of Snow Disasters

Snow disasters on the QTP mainly occur from October to the following May, so this
time period was selected for calculating snow disasters. For time recording, the period
from October 1979 to May 1980 was used as a statistical time period, recorded as of the
year of 1980, which was divided into last winter (from October 1979 to February 1980)
and this spring (from March to May 1980). Other years were recorded in the same way,
thus, obtaining snow disasters over 40 years from 1980 to 2019. According to previous
research and relevant meteorological standards [4,31,32], the snow disasters of last winter
and this spring on the QTP were graded following criteria in Tables 1 and 2. Based on the
criteria, the grade, duration, and average snow depth of snow disasters were summarized.
Therein, the highest grade of snow disaster was taken as the annual grade of snow disaster.
For example, if three snow disasters occurred in a year, including a slight, a moderate, and
an extremely heavy event, then the year was recorded as having had an extremely heavy
snow disaster. The sum of durations of several snow disasters in a year was recorded as
the duration of snow disasters. The average snow depth was the average value during the
snow disasters.

Table 1. Division criteria for snow disasters of last winter.

Grade of Snow Disaster Snow Depth/mm Snow Duration/d

Slight [2, 5] [11, 20]
(5, 10] [5, 10]

Moderate
[2, 5] [21, 40]

(5, 10] [11, 20]
(10, 20] [5, 10]

Heavy
[2, 5] (40, )
(5, 10] [21, 40]
(10, 20] [11, 20]

Extremely heavy
(5, 10] (40, )
(10, 20] (20, )
(20, ) (15, )
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Table 2. Division criteria for snow disasters of this spring.

Grade of Snow Disaster Snow Depth/cm Snow Duration/d

Slight [2, 5] [6, 10]
(5, 10] [3, 5]

Moderate
[2, 5] [11, 20]

(5, 10] [6, 10]
(10, 20] [3, 5]

Heavy
[2, 5] (20, )
(5, 10] [11, 20]
(10, 20] [6, 10]

Extremely heavy
(5, 10] (20, )
(10, 20] (10, )
(20, ) (8, )

2.2. Risk Assessment Method of Snow Disasters

Snow disasters are a type of natural disaster. In risk assessment, the comprehensive
risk of snow disasters is reflected by the risk of hazard factors, sensitivity of hazard-
inducing environments, vulnerability of hazard-affected bodies, and disaster prevention
and mitigation capacity according to the risk-forming theory of relevant natural disasters.
The disaster risk is expressed as follows:

D = f (H, S, V, R) (1)

where D, H, S, V, and R separately represent the disaster risk, risk of hazard factors,
sensitivity of hazard-inducing environments, vulnerability of hazard-affected bodies, and
disaster prevention and mitigation capacity; f is the function relationship.

When assessing the risk of snow disasters on the QTP, the following equation was used:

FDVI =
(

EWE
)

VWV
(

SWS
)
(10 − R)WR (2)

where FDVI represents the comprehensive risk index of snow disasters, and its value can be
used to characterize the risk degree of snow disasters for husbandry on the QTP; the larger
its value, the higher the risk of snow disasters. E, V, S, and R separately denote indices
of various assessment factors, including the hazard factor, hazard-inducing environment,
hazard-affected body, and disaster prevention and mitigation capacity; WE, WV, WS, and
WR represent weights of various assessment factors, which are determined using the
analytic hierarchy process (AHP). Weights of various factors are listed in Table 3.

In the calculation, various factors contain several different indexes, each of which has
a different dimension and order of magnitude. Therefore, Equation (3) is used to normalize
the various indices to ensure the comparability of various indices; thereafter, the indices lie
within the range 0.5–1.

Aij = 0.5 + 0.5 × aij − mini

maxi − mini
(3)

where Aij denotes the normalized value of the ith index at the jth station (or grid); aij is
the value of the ith index at the jth station (or grid); maxi and mini separately represent the
maximum and minimum of the ith index.

Finally, the natural breaks method was adopted to grade the comprehensive indices
of snow disasters for husbandry as high-risk, sub-high-risk, medium-risk, low-risk, and
sub-low-risk zones.
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Table 3. Risk assessment indices for snow disasters on the QTP and their weights.

Index Rule Hierarchy (Weight) Scheme Layer (Weight)

Risk assessment of snow
disasters on the QTP

Hazard factors (0.534) Duration (0.141)

Snow depth (0.141)

Grade of snow disasters (0.455)

Frequency (0.263)

Hazard-inducing environments (0.108)

Slope (0.159)

Slope aspect (0.252)

Altitude (0.589)

Hazard-affected bodies (0.282)

Crop-sown area (0.081)

Livestock inventories at the end of a
year (0.378)

Disaster prevention and mitigation
capacity (0.076)

GDP (0.5)

Net income of rural residents (0.5)

2.3. Establishment of the FPWB Index

Human well-being is used to characterize the living conditions of people, involving
health, happiness, and affluence of materials. Early research on human well-being was
mainly dedicated to economics and sociology. In recent years, research on human well-
being has been gradually heeded by scholars in ecology and geology with the promotion
of the idea of sustainable development. Meanwhile, characterization of human well-
being has also gradually expanded from a single economic index to the ecological system.
According to differences in research foci, human well-being is also divided into objective
and subjective dimensions. This research focused on well-being of farmers and pastoralists
(shorted as FPWB) according to sources of income, living styles, and the factors influencing
the economy of residents on the QTP. To characterize FPWB, the FPWB index on the QTP
was established by combining the conceptual framework of objective well-being and the
concept of livelihood capital.

The FPWB index is composed of various factors. This research selected key factors
that are closely related to the life of farmers and pastoralists from the agricultural part
in provincial statistical yearbooks. These factors can be grouped into the following four
aspects: natural resources, human resources, material resources, and social and financial
resources, and indices contained in each level are listed in Table 4. The indices are quantified
using the weighted comprehensive evaluation method, and their weights are determined
by the AHP. In this way, the FPWB index can be expressed by Equation (4):

FPWB = V1W1 + V2W2 + V3W3 + V4W4 (4)

where FPWB represents the farmer and pastoralist well-being; W1, W2, W3, and W4 sepa-
rately denote the four aspects that constitute the FPWB index, namely, natural resources,
human resources, material resources, and social and financial resources; and V1, V2, V3, and
V4 are weights of each level of assessment, which are determined using the AHP. The final
weights are listed in Table 4. Likewise, each index is also normalized because each level of
assessment involves different indices that are in different units and dimensions and must be
normalized to reach the goal of eliminating differences and making the indices comparable.
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Table 4. Components of the FPWB index on the QTP.

Index Rule Hierarchy (Weight) Scheme Layer (Weight)

FPWB index

Human resources (0.126) The number of rural households (0.5)
The number of employees in farming, forestry,

animal husbandry, and fishery (0.5)

Natural resources (0.222) Crop-sown area

Material resources (0.574) Total power of agricultural machinery (0.081)
Total grain output (0.163)

Livestock inventories at the end of a year (0.378)
Meat production (0.378)

Social and financial resources (0.077) Gross output of farming, forestry, animal husbandry,
and fishery

2.4. Data Sources

Snow data: the snow depth long time-series data set in China (1979–2019) was pro-
vided by the National Tibetan Plateau Data Center (TPDC). The data set was obtained
by inversion of SMMR (1979–1987), SSM/I (1987–2007), and SSMI/S (2008–2019) daily
EASE-Grid brightness temperature data processed by the National Snow and Ice Data
Center of the United States with a spatial resolution of 25 km. The data set has been widely
proved to be reliable, and its development is described elsewhere [33–35].

Socio-economic data: socio-economic data, including the number of rural households,
the number of employees in farming, forestry, animal husbandry, and fishery, GDP, and net
income of rural residents, were extracted from statistical yearbooks of Qinghai Province,
the Tibetan Autonomous Region, Sichuan Province, Gansu Province, and the Xinjiang
Uygur Autonomous Region.

3. Results

3.1. Spatio-Temporal Variation of Snow Disasters
3.1.1. Temporal Variation Characteristics

According to the above division criteria for the grade of snow disaster, the frequency
and areal proportion of snow disasters on the QTP from 1980 to 2019 were summarized
(Figure 1). Over the past 40 years, 36,330 snow disasters happened at 724 grid points on the
QTP, that is, 908 snow disasters every year on average. The annual average frequency was
the lowest, at only 687, in the 2010s (2010–2019), while that in the 1990s (1990–1999) was
relatively high at about 1034. Although the climate tendency rate shows that the overall
frequency of snow disasters declined significantly (−94.9 times/decade, p < 0.01), the
variations showed interdecadal characteristics. The frequency of snow disasters increased
with volatility (74.2 times/decade, p < 0.05) in the 1980s and 1990s, while, after entering the
21st century, it exhibited a monotonic decreasing trend (−285.5 times/decade, p < 0.01).
Variations of the frequency of different grades of snow disaster also showed remarkable
differences: 354 slight snow disasters happened annually on average, with the lowest
number in 2018 (168 times), while the largest number occurred in 1999 (622). The frequency
of slight snow disasters showed a decreasing trend in the long run (−16.8 times/decade)
(not passing the significance test). However, it also demonstrated a tendency to increase
first, then decrease during the aforementioned interdecadal variation; the frequency in-
creased significantly in the 1980s and 1990s by 186 times/decade (p < 0.01), while it
significantly declined since the beginning of the 21st century by −168.4 times/decade
(p < 0.01). Variations in the frequency of moderate snow disasters also showed similar
characteristics: the frequency declined significantly (−19.4 times/decade, p < 0.05); it signif-
icantly increased before the beginning of the 21st century (39.5 times/decade, p < 0.05) and
decreased significantly (−67.5 times/decade, p < 0.01) thereafter. In terms of the long-term
variation trend, the frequencies of heavy and extremely heavy snow disasters were, sepa-
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rately, −28.7 times/decade (p < 0.01) and −29.1 times/decade (p < 0.01) without significant
interdecadal variation.

 

Figure 1. Variation of the frequency (a) and areal proportion of snow disasters (b) on the QTP over
past 40 years.

Regarding the areal proportion of snow disasters, an average of 34.3% of the area
of the QTP suffered from snow disasters every year, while the areal proportion of snow
disasters shrank at −1.9%/decade (p < 0.05). This decline mainly occurred since the 2010s.
Although the areal proportions of different grades of snow disaster changed with certain
differences over the last 40 years, they all showed a decreasing trend. The areal proportions
of slight and moderate snow disasters decreased slightly and did not pass the significance
test, while those of heavy and extremely heavy snow disasters declined significantly by
−2.1%/decade and −1.8%/decade, separately, passing the significance tests at the 0.01 and
0.05 levels.

As to the long-term variations in the annual frequencies of different grades of snow
disasters at various grid points (Figure 2), the long-term variation trends of different grades
of snow disasters and that of all snow disasters showed similar spatial distribution over
the last 40 years. That is, the frequency of snow disasters showed a decreasing trend for the
majority of the QTP in the context of global warming, with areas with the most significant
decrease distributed mainly in the center and south of the Tibetan Autonomous Region and
the north of Qinghai Province. The areas with an increasing frequency of snow disasters
were dispersed and relatively concentrated in the north-western and south-eastern parts of
the QTP with a slightly increasing trend.

The duration of snow disasters and snow depth are also important indices used
for measuring snow disasters. Figure 3 illustrates the regional average variations of the
duration of snow disasters and snow depth on the QTP over the past 40 years and the
corresponding spatial distribution of long-term variation trends. The figure shows that the
average duration of snow disasters in the past 40 years was 116 d, with the longest being
151 d (1982) and the shortest being 69 d (2006). The average snow depth was 73 mm, with
the deepest being 89 mm (1992) and the shallowest being 60 mm (2006). Compared with
variations of the snow depth (Figure 3c), the duration of snow disasters showed more
obvious interdecadal variation characteristics. It can be seen from Figure 3a that the
duration of snow disasters showed a significant decreasing trend before the beginning
of the 21st century (−22.7 d/decade, p < 0.01); the snow disasters lasted for the shortest
time in 2006, while their duration rapidly lengthened in the several years following until
2010 when the duration showed stable volatility. Correspondingly, the snow depth did not
fluctuate greatly over the past 40 years and did not have significant interdecadal variation;
however, the long-term variation trends of the duration of snow disasters and snow depth
at different grid points (Figure 3b,d) exhibited significant spatial differences, and the two
showed similar spatial distributions. The majority of the area of the QTP was found to
have decreased duration of snow disasters and snow depth. The areas with the most
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significant decrease in the duration were mainly distributed in the center and south of the
Tibetan Autonomous Region. The duration of snow disasters in these high-value centers
was found to have a decreasing trend in the range of −40 to −67 d/decade. In addition,
a sub-high-value center was found in the north of Qinghai Province, where the duration
of snow disasters decreased in a trend from −20 to −40 d/decade. The areas with the
most significant decreasing trend (−1 to −2 cm/decade) of snow depth were mainly
concentrated in the south of the Tibetan Autonomous Region. Areas where the duration of
snow disasters showed an increasing trend were dispersed, with relatively concentrated
areas in the north-west and south-east of the QTP, varying within 20 d/decade. Areas with
increasing snow depth where the snow depth increase did not exceed 10 mm/decade, were
more dispersed.

The annual grade of snow disaster is the highest grade of snow disaster in a year.
In this way, the variations in regional average grades of snow disaster and the spatial
distribution of long-term variations over the past 40 years were calculated (Figure 4);
the multi-year variations in the grade of snow disaster on the QTP showed significant
interannual volatilities and a slight decreasing trend over the past 40 years (not passing the
significance test). However, the grade tended to decrease then increase in different sections,
somewhat akin to the variations in the duration of snow disasters. That is, the grade
of snow disasters exhibited a significant decreasing trend before the early 21st century,
growing significantly for several years thereafter, and showing slight volatility in the 2010s.
The long-term variations at different grid points were found to have an uneven spatial
distribution; the grade of snow disaster slightly rose in most areas of the QTP, with the
most significant increase at the south-eastern margin of the plateau. Areas where the grade
of snow disaster declined were mainly distributed at the southern margin of the plateau
and in the region of the Qaidam Basin, particularly the former, where the grade declined
most significantly.

3.1.2. Spatial Distribution

From the spatial distribution of the overall frequency of snow disasters on the QTP
over the past 40 years (Figure 5a), it can be seen that snow disasters were very unevenly
spread across the plateau. In the west of the QTP, there is an obvious, low-value center from
Ngari Prefecture in the Tibetan Autonomous Region (hereinafter shorted to Ngari) to Hotan
Prefecture in the Xinjiang Uygur Autonomous Region (Hotan) to northern Nagqu County
in the Tibetan Autonomous Region (Nagqu) to northern Yushu Tibetan Autonomous Pre-
fecture in Qinghai Province (Yushu). Fewer than 10 snow disasters happened in most
areas along the zone in the past 40 years, and most areas did not suffer from any snow
disasters. In addition, there is also a low-value center with very few snow disasters in the
north-east of the QTP from Xining City in Qinghai Province (Xining) to Haidong Prefec-
ture in Qinghai Province (Haidong) to the Tibetan Autonomous Prefecture of Huangnan
in Qinghai Province (Huangnan) to Gannan Tibetan Autonomous Prefecture in Gansu
Province (Gannan) to northern Aba Tibetan and Qiang Autonomous Prefecture in Sichuan
Province (Aba). There are three relatively concentrated high-value centers and one sub-
high-value center with relatively high frequencies of snow disasters. The areas with the
highest frequency of snow disasters are mainly found in the west of Shigatse City in the
Tibetan Autonomous Region (Shigatse) and south-eastern Ngari in the south of the QTP,
extending north-eastward to the center of Nagqu. This zone is where snow disasters
happened most frequently on the QTP, with as many as 150 to 252 snow disasters over
the past 40 years. Eastern Yushu in the middle of the QTP is also a high-value center and
had around 150 to 200 snow disasters. Moreover, there is also a high-value center that had
150 to 200 snow disasters in the north-western end of the QTP from Kashgar Prefecture to
Kizilsu Kirgiz Autonomous Prefecture (both in the Xinjiang Uygur Autonomous Region,
Kashgar and Kizilsu Kirgiz). Snow disasters also happened frequently in the south-east of
the QTP, which is a sub-high-value zone, with cumulative snow disasters amounting to 50
to 150 therein.
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Figure 2. Spatial distribution of long-term variation trends for annual frequencies of different grades
of snow disasters ((a–e) represent total snow disasters, slight, moderate, heavy, and extremely heavy
snow disasters, respectively).

According to the spatial distribution of frequencies of slight, moderate, and heavy
snow disasters (Figure 5b–d), despite different frequencies of different grades of snow
disaster, the spatial distribution of the frequencies of these snow disasters was similar
to that of the overall frequency of all snow disasters. That is, there are three relatively
concentrated high-value centers, one sub-high-value center, and two low-value zones.
In comparison, the frequency of extremely heavy snow disasters showed a very different
spatial distribution (Figure 5e), mainly occurring in relatively decentralized high-value cen-
ters, and the relatively concentrated high-value centers are mainly located in two regions:
the south-eastern end of the QTP and the north-western end of the plateau along Kashgar
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to Kizilsu Kirgiz. The cumulative numbers of extremely heavy snow disasters in the two
high-value centers were mainly between 50 and 95.

Figure 3. The regional average variation sequences and the spatial distribution of long-term variations
of the duration of snow disasters and snow depth ((a,b) represent the duration of snow disasters;
(c,d) represent the snow depth, respectively).

Figure 4. Regional average grades of snow disasters (a) and spatial distribution of the long-term
variations (b).
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Figure 5. Spatial distribution of frequencies of different grades of snow disasters on the QTP over
the past 40 years ((a–e) represent total snow disasters, slight, moderate, heavy, and extremely heavy
snow disasters, respectively).

Figure 6 shows the spatial distribution of the average duration of snow disasters and
the corresponding average snow depth on the QTP over the past 40 years. The low-value
zones are distributed in areas consistent with the frequency of snow disasters, while the
high-value zones are distributed in different areas. The area with the longest average
duration of snow disaster was in the north-western end of the QTP from Kashgar to Kizilsu
Kirgiz, and the average duration of snow disaster in the high-value center was between
150 and 229 d. High-value centers with a long duration of snow disaster are also present in
the south-east and the middle (eastern Yushu) of the QTP. Although snow disasters occur
frequently in the south of the QTP, from the western Shigatse–south-eastern Ngari line,
the duration does not tend to be any longer than in the aforementioned areas, so it is a
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sub-high-value zone. The spatial distribution of the average snow depth was similar to
that of the duration of snow disasters; the high-value center is located in the north-western
end of the QTP along the Kashgar–Kizilsu Kirgiz line, followed by the south-east of the
plateau.

Figure 6. Spatial distribution of the average duration of snow disasters (a) and the average snow
depth (b) on the QTP over the past 40 years.

The spatial distribution of multi-year average grades of snow disaster on the QTP
over the past 40 years (Figure 7) indicates that the average grades of snow disaster were
distributed with multiple high-value centers. The highest-value center is in the north-
western end of the QTP from Kashgar to Kizilsu Kirgiz, where the multi-year average grade
of snow disasters always reached a level concomitant with extremely heavy snow disasters
every year. There is also an area with a relatively high average grade of snow disaster
in the south-east of the QTP, with the core area being from Lhoka City–Nyingchi City in
the Tibetan Autonomous Region (Nyingchi) to Diqing Tibetan Autonomous Prefecture in
Yunnan Province (Diqing). In that area, heavy snow disasters may take place. The zone
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from Yushu to the Tibetan Autonomous Prefecture of Golog in Qinghai Province (Golog) to
Aba in the center of the QTP is also a continuous area with a high average grade of snow
disaster, with snow disasters in the central zone reaching a heavy grade. The zone with a
high average grade of snow disasters and covering a large area is found in the south of the
QTP along the western Shigatse–south-eastern Ngari line, with a moderate grade of snow
disaster on average.

Figure 7. Spatial distribution of the average grade of snow disaster on the QTP.

3.2. Risk Assessment of Snow Disasters for Husbandry

The risk of snow disasters for animal husbandry on the QTP was assessed from
four perspectives: hazard factors, hazard-inducing environments, hazard-affected bodies,
and disaster prevention and mitigation capacity. Four hazard factors were selected in
the research, including the duration, snow depth, frequency, and grade of snow disaster
(spatio-temporal variation characteristics of each factor are provided above). By using the
weighted comprehensive evaluation method, the risk of hazard factors of snow disasters for
animal husbandry on the QTP was zoned. This mainly reflects the intensity and probability
of hazard factors that cause snow disasters to affect animal husbandry and is the leading
precondition for snow disasters. The larger the risk of hazard factors, the greater the
intensity thereof and the higher the probability of ensuing damage. Figure 8a shows the
spatial distribution of the risk of hazard factors of snow disasters for animal husbandry
on the QTP; the risk of hazard factors is low in the north while high in the south on the
whole, having multiple high-value centers. The high-risk zone of snow disasters is mainly
concentrated in Kashgar in the north-western end of the QTP, which is characterized by
a long duration of snow, large snow depth, and high grade of snow disaster. The sub-
high-value zone is mainly concentrated in the south-east of the QTP, including southern
Lhoka and Nyingchi, Nujiang Lisu Autonomous Prefecture in Yunnan Province (Nujiang),
Diqing, and southern Garzê Tibetan Autonomous Prefecture in Sichuan Province (Garzê).
Snow disasters in the zone are mainly characterized by a high grade and a high frequency
of extremely heavy snow disasters.
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Figure 8. Zoning of the risk of hazard factors (a), sensitivity of hazard-inducing environments
(b), vulnerability of hazard-affected bodies (c), and disaster prevention and mitigation capacity (d) of
snow disasters for husbandry on the QTP.

In terms of the hazard-inducing environment, three factors, including the altitude,
slope, and slope aspect, were mainly considered. Research showed that, under same
or similar conditions, the combination of snow and landform may further aggravate
the influences of snow disasters and cause certain secondary disasters. Therein, small
topographic factors, such as the altitude, slope, and slope aspect, exert more significant
influences. Therefore, the three factors, i.e., altitude, slope, and slope aspect, were selected
to analyze the sensitivity of the hazard-inducing environment of snow disasters for animal
husbandry on the QTP (Figure 8b). The QTP lies at a high altitude, on the whole, and
features steep mountains, so the hazard-inducing environment of snow disasters for animal
husbandry is of high sensitivity, and areas of low sensitivity are mainly located in the
north-east and the south-eastern margin.

The degree of damage caused by snow disasters is, in fact, closely related to the body
affected by snow disasters. The loss caused by snow disasters is not only dependent on the
intensity, duration, and frequency of the disasters, but also is greatly affected by the hazard-
affected bodies. Generally, the higher the vulnerability of hazard-affected bodies, the more
easily these bodies are affected and the greater the loss (and vice versa). The present
research mainly focused on snow disasters and their effects on animal husbandry, so crop-
sown area and livestock inventories were selected as indices representing the vulnerability
of hazard-affected bodies. Zones with a large crop-sown area are mainly located in the
northern and eastern QTP, in which Kashgar has the largest crop-sown area, followed
by the Bayingolin Mongol Autonomous Prefecture in the Xinjiang Uygur Autonomous
Region (Bayingolin). Two zones have large livestock inventories: one is Kashgar–Hotan–
Bayingolin–Nagqu–Shigatse in the west of the QTP, and the other is Garzê–Aba in the
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east of the plateau. By combining these two indices, the zoning of the vulnerability of
hazard-affected bodies in snow disasters for the husbandry on the QTP can be obtained
(Figure 8c). Areas of high vulnerability of hazard-affected bodies are mainly distributed in
Kashgar–Hotan–Bayingolin–Nagqu–Shigatse in the west of the plateau and Garzê, Hainan
Tibetan Autonomous Prefecture in Qinghai Province (Hainan), and Gannan in the east.

The disaster prevention and mitigation capacities refer to both disaster resistance
and post-disaster resilience, which are mainly represented by the local level of economic
development and the economic capability of farmers and pastoralists. In this research,
the (municipal/prefecture) GDP and the per capita net income of farmers and pastoralists
were selected as indices to reflect the local disaster prevention and mitigation capacity,
thus, finally obtaining a zoning map of the capacity (Figure 8d). As shown in the figure,
areas with high disaster prevention and mitigation capacity include Xining, Bayingolin,
Liangshan Yi Autonomous Prefecture in Sichuan Province (Liangshan), Aba, Kashgar,
and Haixi.

The comprehensive risk index of snow disasters for husbandry on the QTP was
calculated using Equation (2) for comprehensive risk assessment according to the weights
of the four factors (the hazard factors, hazard-inducing environments, hazard-affected
bodies, and disaster prevention and mitigation capacity) (Table 3). The comprehensive
risk was graded using the natural breaks method, finally attaining the zoning map for the
comprehensive risk of snow disasters for animal husbandry on the QTP (Figure 9). The risk
of snow disasters can be divided into five grades: high-risk, sub-high-risk, medium-risk,
low-risk, and sub-low-risk zones. The high-risk zone accounts for about 1.54% of the total
area of the QTP, mainly located in Kashgar at the north-western end of the plateau; the
sub-high-risk and medium-risk zones are mainly found in the south of the plateau and are
distributed in a tripole pattern, separately accounting for 15.96% and 16.32% of the plateau.
The three “poles” are located along the Lhoka–Nyingchi–Nujiang–Diqing–southern Garzê
line in the south-east, western Shigatse in the south, and Yushu in the hinterland of the
QTP. The northern QTP is mainly dominated by low-risk and sub-low-risk zones, which
separately cover 43.06% and 23.12% of the plateau.

Figure 9. Zoning of the comprehensive risk of snow disasters for husbandry on the QTP.
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3.3. Possible Influences of Snow Disasters on FPWB

To further explore the possible influences of major natural disasters, represented by
snow disasters on FPWB, several typical regions (Figure 10) were selected for discussion
based on the aforementioned analysis of the spatial-temporal variations of snow disasters
in the QTP and zoning of the comprehensive risk of snow disasters for animal husbandry.
These regions were Kashgar (I), Shigatse (II), Nagqu (III), Qamdo (IV), and Yushu (V).
Among these regions, Kashgar represents the high-risk zone and is characterized by the
high risk of hazard factors and high vulnerability of hazard-affected bodies while also
having favorable disaster prevention and mitigation capacity. Shigatse mainly contains
sub-high-risk and medium-risk zones, characterized by the moderate risk of hazard factors
and moderate disaster prevention and mitigation capacity, while showing high sensitivity
in its hazard-inducing environments and high vulnerability of hazard-affected bodies.
Nagqu and Qamdo, sharing the similar comprehensive risk of snow disasters for animal
husbandry and the risk of hazard factors, both belong to the medium-risk zone with
above moderate vulnerability of hazard-affected bodies and poor disaster prevention and
mitigation capacity. Western Yushu is a vast, depopulated zone, while the more heavily
populated eastern Yushu region shows a sub-high comprehensive risk of snow disasters
and a sub-high risk of hazard factors, moderate vulnerability of hazard-affected bodies,
and poor disaster prevention and mitigation capacity.

Figure 10. Typical regions (a) and variations of the FPWB index and the risk of snow disasters for
every typical region ((b–f) represent I, II, III, IV, and V, respectively).
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According to the method of calculation of the FPWB index, variations in the FPWB
index in various typical regions from 2000 to 2019 were calculated (the period from 2003 to
2017 was used for Yushu due to problems encountered in data acquisition). Meanwhile, the
risk of hazard factors was used as the comprehensive assessment model for the severity
of snow disasters. Variations in the risk of snow disasters of these typical regions in the
same period were calculated, and the FPWB indices and variations of the risk of snow
disasters are illustrated in Figure 10. From the long-term variation, the FPWB in these
typical regions showed a significant ascending trend, which passed the significance test at
the 0.01 level. The result indicates that the FPWB on the QTP has improved significantly
since the 21st century, and the average growth rate of FPWB in the five typical regions
is 3.6%, 1.9%, 2.8%, 1.3%, and 2.3%, respectively. The risk of snow disasters in regions
I, II, and V exhibited a significant decreasing trend, while that in regions III and IV did
not show significant variation. By using least-squares regression, the contribution of
variations in the risk of snow disasters to the FPWB from 2000 to 2019 was quantitatively
estimated (Table 5). The results suggest that the risk of snow disasters had an adverse
effect on variations of the FPWB. Every 1% increase in the risk of snow disasters in several
typical regions corresponded to 0.186%, 0.768%, 0.378%, 0.109%, and 0.03% decreases in
the FPWB index. Snow disasters affect the FPWB mainly by directly or indirectly impairing
material resources (livestock inventories and meat production) and social and financial
resources. Similar results were found in the research by Qiu et al. [22]. Because animal
husbandry on the QTP is relatively unsophisticated and mainly depends on individual
management of farmers and pastoralists, the area is far from realizing mechanization,
intensification, and modernization of its agricultural practices; it is heavily dependent on
prevailing meteorological conditions. Natural disasters, represented by snow disasters,
directly affect the livelihood of local farmers and pastoralists and exert adverse impacts on
the FPWB. Once a snow disaster occurs, it is generally accompanied by low-temperature
weather, and the snow cannot be removed for a long time. This, on the one hand, directly
affects livestock and poultry (often killing and injuring many animals and birds); on
the other hand, a snow disaster also causes insufficient supply of forage grass, which
affects later feeding and management and even causes death of livestock and poultry.
At the same time, winter and spring are seasons with a high incidence of animal disease
epidemics. Once a snow disaster occurs, the insufficient supply of forage grass may also
lead to undernutrition and decreased immunity of livestock and poultry, rendering them
more susceptible to infection, thus, influencing livestock inventories and meat production.
In addition, in the process of snow disasters, the huge and rapid snowfall frequently causes
collapse of livestock housing and breeding sheds, inducing deaths and injuries of livestock,
bringing an economic loss to farmers and pastoralists and even causing causalities among
farmers. Apart from the direct influences affecting development of animal husbandry, snow
disasters also directly affect the life and production activities of residents, even causing
major economic losses. For example, snow and ice heavily damage electric power facilities
and transportation, hindering daily transportation of animal husbandry products, affecting
the whole supply chain.

Table 5. Contribution of variations of the risk of snow disasters to the FPWB.

FPWB
Material

Resources
Livestock

Inventories
Meat Production

Social and
Financial Resources

I −0.186 −0.552 −0.451 −0.239 −0.759
II −0.768 −0.601 −0.524 −0.511 −1.121
III −0.378 −0.947 −0.871 −0.466 −1.054
IV −0.109 −0.032 −0.172 −0.223 −0.284
V −0.03 −0.047 −0.12 −0.043 −0.044
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4. Discussion

Snow disasters are one of the most important meteorological hazards on the QTP, and
their spatial and temporal characteristics and influencing factors have received more and
more attention in recent years; however, some findings are constrained by the plateau’s
poor distribution of meteorological stations. In this paper, we used remote sensing data
to analyze the spatial and temporal occurrence patterns of snow disasters on the QTP.
Results demonstrated that, during the past 40 years, the frequency, duration, average snow
depth, and grade of snow disaster on the QTP have all exhibited significant interannual and
interdecadal variabilities, as well as a declining long-term trend, which is consistent with
some previous studies [4,11,12,19]. In addition to the direct influence of local climatic con-
ditions [12], many circulation factors also modulate the occurrence of snow disasters on the
QTP through westerly winds and atmospheric bridges. These factors all contribute to the
variability of snow disasters on interannual to interdecadal time scales. Huang et al. [36]
suggested that snow disasters were more likely to occur when the west wind belt and
the polar vortex in the eastern hemisphere are stronger and the East Asian trough and
subtropical high are more westerly, and vice versa. SST, as an important external forc-
ing factor, also profoundly affects the occurrence of snow disasters, and the equatorial
central-east Pacific, the tropical Indian Ocean, and the North Atlantic are some of the more
critically affected areas [14,37–39]. In addition, the positive North Atlantic Oscillation
(NAO) can excite Rossby waves, which can strengthen the Indo–Myanmar trough on the
southern side of the plateau and promote snowfall on the QTP, leading to more snow
disasters [40,41]. Furthermore, Arctic sea ice, as an important external forcing factor affect-
ing extreme weather and climate events at medium latitudes [42], also has an important
modulating effect on the occurrence of snow disasters on the Tibetan plateau. A positive
anomaly of Arctic sea ice can enhance the meridional temperature gradient, which excites
upward-propagating and equatorward-propagating anomalous Rossby waves, leading
to an anomalous dipole pattern of atmospheric circulation over the polar regions and
Eurasia, enhancing the zonal advection and meridional convergence of atmospheric mois-
ture fluxes over the plateau and favoring snow disasters [43,44]. Other circulation factors,
such as El Niño (ENSO) and the Arctic Oscillation (AO), can also influence the occur-
rence of snow disasters through cyclonic circulation propagating along the westerly wind
belt [14,37,45,46]. We also discussed the possible influences of snow disasters on the farmer
and pastoralist well-being (FPWB) since the 21st century. Since World War II, with the
ensuing economic development, academics, decision-makers, and practitioners around
the world have paid close attention to human well-being, and gross domestic product
(GDP) was once the dominant measure of human well-being [47,48]. However, since GDP
is mainly a reflection of economic indicators, it is hoped that other factors, such as social,
humanistic, and ecological factors, can be absorbed into the human well-being evaluation
system. The Millennium Ecosystem Assessment [49] provides a useful framework for the
study of ecosystem services as an influencing factor on human well-being, making explicit
the close relationship between ecosystem services and human well-being and ushering
in a new era of human well-being research. Within this framework, a large number of
studies revealed the characteristics of changes in human well-being in different regions and
at different time scales, as well as their main drivers [50–53]. However, current research
on human well-being tends to be a holistic concept, and there is no uniform definition
of the meaning of well-being for different groups of people. Farmers and pastoralists
are the majority of the inhabitants of the QTP, and it is of great practical importance to
discuss their well-being to improve the well-being of the plateau people. Generally, farmers’
happiness increases with job satisfaction and income, while land as an important means
of production for farmers is closely related to farmers’ income [54], and the stronger the
farmers’ willingness to retire from farming, the worse their happiness is [55]; moreover,
farmers’ self-rated health status has a positive impact on their well-being [56]. Here, the
FPWB index on the QTP was established by combining the sources of income, living styles,
and economic factors, and exploring the impact of snow disasters on the well-being of
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farmers and pastoralists. The results (Figure 10 and Table 5) show that snow disasters
have a certain negative impact on the FPWB, but we only discussed the impact of a single
meteorological disaster, and it is necessary to systematically explore the systematic impact
of other meteorological disasters on the FPWB in the future. Meanwhile, it should be noted
that the improvement of FPWB on the QTP has been stagnant or even declining in recent
years. This may be related to the increase of extreme weather and climate events caused
by climate change which affect the living environment, life, and property of farmers and
pastoralists. On the other hand, the advancement of urbanization on the QTP may attract
a large number of young people to work and live in cities, which indirectly leads to the
decline of human resources, production level, and production capacity in agriculture and
livestock, thus, affecting the overall situation of farmer and pastoralist well-being.

5. Conclusions

The spatio-temporal variation characteristics of snow disasters on the QTP over the
past 40 years were investigated based on the daily snow depth data set in China obtained by
the inversion of the satellite remote sensing data provided by the national TPDC. The results
show that the frequency, duration, average snow depth, and grade of snow disaster had
similar spatial distributions, being low in the north while high in the south. The high-value
center in the north is mainly located in Kashgar–Kizilsu Kirgiz at the north-western end
of the QTP, which is the zone with the most numerous heavy snow disasters and the
highest frequency of snow disaster on the plateau. The high-value center in the south
has a tripole distribution pattern, and the three “poles” are located in Lhoka–Nyingchi–
Nujiang–Diqing–southern Garzê in the south-east, western Shigatse in the south, and
Yushu in the hinterland of the plateau. It can be seen from the interannual and interdecadal
variations in the frequency, duration, average snow depth, and grade of snow disaster
on the QTP over the past 40 years that various indices all have obvious interannual and
interdecadal variabilities. Meanwhile, the long-term variations of various indices also
showed a decreasing trend despite certain spatio-temporal differences. On this basis,
geographic information system (GIS) technology was used to zone the comprehensive risk
of snow disasters on the QTP. The results indicated that the high-risk zone accounts for
1.54% of the plateau, mainly in Kashgar at the north-western end of the plateau. The sub-
high-risk and medium-risk zones are located in the south of the plateau and are distributed
in a tripole pattern, separately covering 15.96% and 16.32% of the QTP. The north of the
QTP is dominated by low-risk and sub-low-risk zones, which separately account for 43.06%
and 23.12% of the plateau. Finally, five typical regions, Kashgar (I), Shigatse (II), Nagqu
(III), Qamdo (IV), and Yushu (V), were selected to discuss the possible influences of snow
disasters on FPWB since the 21st century. The results implied that every 1% increase in
the risk of snow disasters corresponded to 0.186%, 0.768%, 0.378%, 0.109%, and 0.03%
decreases in the FPWB. Snow disasters affect the FPWB mainly by directly and indirectly
damaging material resources (livestock inventories and meat production) and social and
financial resources.
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Abstract: Meteorological variables (e.g., air temperature (T2), radiation flux, and precipitation)
determine the evolution of glacier mass and characteristics. Observations of these variables are not
available with adequate spatial coverage and spatiotemporal resolution over the Tibetan Plateau.
Albedo is the key factor of net radiation and is determined by the land cover and snow-related
variables. This study focuses on evaluating the performance of the albedo parameterization scheme in
WRF coupled with Noah-MP in terms of glacio-meteorological variables, by conducting experiments
applying the standard surface albedo scheme with the default vegetation and corrected to ice cover
and the modified glacial albedo scheme to the Parlung No. 4 Glacier in the 2016 ablation season. In
situ glacio-meteorological element observations and MODIS-retrieved albedo are selected to assess
the performance of the model. The key results are as follows. First, compared to the air temperature
bias of 1.56 ◦C in WRF applying the standard surface albedo scheme and the default vegetation cover,
realistic land-use categories considerably reduce the model warm bias on the glacier. The model using
realistic land-use categories yields similar T2 diurnal patterns to the observations, with a mean bias
of only −0.5 ◦C, no matter which glacial albedo scheme is implemented. Second, the default glacial
albedo scheme gives a rather high albedo value of 0.68, causing an apparent underestimation of the
net shortwave radiation and net radiation; the modified glacial albedo scheme gives a mean albedo
value of 0.35, close to the in situ observations, helping to relieve underestimations of net shortwave
radiation and net radiation. Compared with the MODIS albedo of the glacier, WRF applying the
default glacial albedo scheme apparently overestimates the albedo with a mean error of 0.18, while
WRF applying the modified glacial albedo scheme slightly underestimates the albedo with a mean
error of only −0.08. Third, the mean net radiation flux (142 W m−2) and high ground heat flux
(182 W m−2) values that were estimated by WRF applying the corrected land cover and the modified
glacial albedo scheme result in the heating of the glacier surface and subsurface, causing ice melt
and the liquid water content to increase more quickly and preferentially, equating to an estimated
ice thickness decrease of 1 m by mid-June in the ablation region. Our study confirms the ability of
the WRF model to reproduce glacio-meteorological variables as long as a reasonable glacial albedo
scheme and the corrected land cover is applied and provides a theoretical reference for researchers
that are committed to further improvement of the glacial albedo scheme.
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1. Introduction

The Tibetan Plateau (TP) has a complex topography and unique geographical environ-
ment, with a mean elevation of approximately 4000 m above sea level (a.s.l.). It is known
as the Earth’s ‘third pole’ [1], containing many of the world’s middle- and low-latitude
glaciers. According to the Second Chinese Glacier Inventory, there are 48,571 glaciers
in China, with a total area of 51,480 km2 and estimated water reserves of 5600 km3

(http://news.sciencenet.cn/htmlnews/2015/1/310736.shtm, accessed on 1 June 2020),
of which approximately 80% are found on the TP. Glaciers represent an important land
surface type, and their glacier–atmosphere interaction affects the exchange of water and
energy in the land–atmosphere system. Very complex physical feedback mechanisms
link glaciers and the climate system [2,3]. Therefore, glaciers are considered to be natural
indicators and sensitive recorders of climatic and environmental changes [4,5].

As a significant component of the cryosphere, mountain glaciers have attracted un-
precedented attention, in particular in regard to their mass balance [6–10]. Under global
warming, glaciers on the TP have been retreating and shrinking for decades, a trend that
has accelerated in recent years [11–14]. It has been noted that glaciers that are located in the
southeastern TP and central Himalayas have retreated rapidly, while those that are located
in the Karakoram and Eastern Pamirs have retreated slowly, revealing the great spatial
variability in glacier mass balance across the whole TP [15]. Glacier mass balance change
has an important impact on the availability of glacial meltwater to recharge the surrounding
rivers and lakes of the Yangtze River basin. The retreat of glaciers has contributed to rising
lake levels in regions with extensive glacier coverage, such as the Nam Co Lake and Selin
Co Lake [16], and has contributed to global mean sea level rise [17,18].

Glacier mass balance has been observed sparsely and far from comprehensively over
the topographically-complex TP. Previous research has been limited to a small number
of glaciers, including the Qiyi, Xiaodongkemadi, and Parlung glaciers [15,16]. Most in-
vestigations of glacier mass balance have depended on energy-based models [6,10] and
remote sensing retrievals [9,19]. Glacio-meteorological variables (i.e., near-surface air tem-
perature, precipitation, wind speed, relative humidity, and radiation fluxes) greatly affect
the glacier mass balance and are essential factors in mass balance models. The glacial
meteorology, point energy, and mass balance of Parlung No. 4 Glacier has previously
been investigated [20–23], revealing that net radiation fluxes (especially net shortwave
radiation) govern the surface melt of the glacier, with net shortwave radiation contributing
98% of the surface melt. The temperature index model has been proven to be applicable for
mass balance and ablation modeling when incorporating solar irradiance [20]. Modeling
the spatial distribution of glacier mass balance requires distributed glacio-meteorological
forcing, but this is difficult to implement owing to the sparse and uneven distribution of
in situ observation stations across the TP. Also, collecting valid in situ measurements of
glacio-meteorological variables and energy balance is difficult owing to logistical problems
that are associated with the harsh, high-elevation environment of the TP.

Land–atmosphere interactions are evident at the interface of glaciers and the lower
atmosphere and drive the rapid response of glaciers to surrounding environmental changes.
Temperature, precipitation, and general atmospheric circulation are essential factors influ-
encing changes in glacier mass [15,24]. As one of several coupled atmosphere–land surface
models (LSMs), the advanced Weather Research and Forecasting (WRF) model [25] is a
good candidate for estimating the glacio-meteorological variables that are required to force
glacier mass balance models (e.g., a distributed energy and mass balance model). Numer-
ous studies have evaluated the ability of WRF to produce forcing data for glaciological
studies with a correct representation of the glacierized area [26–30]. Great efforts have been
made to estimate glacio-meteorological variables using WRF coupled with an LSM (e.g.,
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Noah, multi-physics Noah (Noah-MP), and Rapid Update Cycle (RUC)). These schemes
have been used to drive the physically-based, distributed glacier energy and mass balance
models that were developed to estimate mountain glacier mass variability in dynamically-
downscaled, offline, or interactive coupling simulations [26,27,31]. Provisional results
have indicated that WRF-modelled meteorological variables at high spatial resolution (i.e.,
1 km) can be used to force distributed simulations of Kersten Glacier mass balance with
acceptable accuracy [26]. This method has also been successful in simulating the Zhadang
Glacier, a small alpine glacier, although feedbacks from the glacier surface mass change into
the regional atmospheric forcing were neglected [31]. Models of the interactive coupling
between WRF and glacier mass balance have shown promise in studying glacier mass
variability [27,32]. However, previous studies of glacier mass balance are seldom based
only on the WRF model although the mass accumulation and ice melt as well as energy
budget had been involved in this model, leaving more possibility in future research.

The land surface type is a significant factor affecting land surface properties (e.g.,
emissivity, albedo, and roughness length), and in WRF has an important influence on the
modeled surface and near-surface meteorological variables (e.g., temperature, radiation,
albedo, wind speed, and snowmelt). However, the statistical land-use product in WRF is
wrong to match the Parlung No. 4 Glacier land cover. In addition, snow albedo determin-
ing the surface energy budget and influences the glacier mass balance, undergoes large
variations during the snow melting and accumulation periods, which is essential for the
ice surface energy and mass balance because of its strong controls on the length of the
accumulation and ablation seasons. It is significantly affected by many parameters, i.e.,
snow depth and age, snow cover, surface temperature, cloud cover fraction, wind speed,
positive accumulated degrees days, solar zenith angle, and impurities [33–37]. Generally,
the snow albedo schemes depend on the observation data and involve the empiric parame-
ters with the most important to be the maximum and minimum albedo. From the review
of the currently existing snow albedo schemes [33], many glacial albedo schemes use the
minimum albedo about 0.5, which is mostly suitable for the thick ice but not suitable for
relatively thin ice. The maximum prescribed snow albedo is usually 0.8–0.85, but the fresh
snow albedo is observed up to 0.95. What’s more, the simplest snow albedo schemes apply
constant values of albedo for different land cover. Other schemes depend on temperature to
account for snow metamorphism and snow thinning. More sophisticated schemes consider
the snow-related variables and solar zenith angle (for example Biosphere-Atmosphere
Transfer Scheme (BATS) [38] and LSM [39]) and impurities [40,41]. It is revealed that the
deposition of absorbing aerosols decreases the snow albedo of the Himalayan region by
0.15 ± 0.13, causing a positive radiative effect of 14 ± 13 W m−2 and an increase of the
surface temperature by 1.33 ± 1.2 ◦C as well as the reduction of the snow cover fraction by
7 ± 11% [42]. Therefore, the choice of the snow albedo scheme has a considerable impact
on the simulations of both weather and climate and the glacier energy and mass balance.

In addition, glaciers in the Himalayas are mostly sensitive to monsoon-related pre-
cipitation perturbations and summer air temperature, which are highly linked to albedo
owing to the crucial snow–albedo feedback in summer [43]. In this study, we conducted
three numerical experiments using WRF, with one applying the default land surface type
(open shrub-land) and the other two adjusted to the snow and ice type and modified
albedo scheme on Parlung No. 4 Glacier in the ablation season. Glacio-meteorological
variables (near-surface air temperature, wind speed, precipitation, albedo, and radiation
fluxes) were modeled and evaluated based on in situ observations and satellite-retrieved
albedo at the glacier. This preliminary work is helpful in assessing the two-way coupling
of WRF and glacier mass balance models when estimating the mass change of maritime
mountain glaciers.
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2. Data and Methodology

2.1. Study Area and In-Situ Measurements

Parlung No. 4 Glacier is located at the southeast margin of the TP (Figure 1). This
geographic region is strongly dominated by the South Asian monsoon and receives frequent
precipitation after the onset of the Indian summer monsoon; thus, glaciers here are of the
maritime type. It is a debris-free glacier with an area of 11.7 km2 and a length of 8 km [22].
Many high-quality glacio-meteorological and mass balance observations are available
for Parlung No. 4 Glacier, and these have allowed detailed study of the glacier [20–23].
The glacial mass change in the ablation zone is a crucial component of the whole glacier
mass balance. Therefore, this study focuses on the assessment of the glacio-meteorological
variables simulations in the ablation zone of the Parlung No. 4 Glacier.

Figure 1. (a) WRF domains and model topography. (b) Terrain elevation from the WRF model,
shaded in units of meters with the green line denoting the glacier boundary and the green solid circle
denoting the observation site in the ablation zone of Parlung No. 4 Glacier.

An automatic weather station (AWS) is installed at 29.25◦N, 96.93◦E, at an elevation of
4800 m a.s.l. in the ablation zone of Parlung No. 4 Glacier (Figure 1). Specific meteorolog-
ical variables including air temperature at 2 m height (T2), and upward and downward
shortwave and longwave radiation, are collected hourly by a CR1000 Campbell Scientific
data logger. The hourly precipitation is measured by a Geonor T-200B weighing bucket
gauge. The observed T2, components of the radiation fluxes, and precipitation in summer
were used to evaluate the numerical estimates in our three experiments. These observa-
tional data were obtained from the TP scientific data center website and are freely available
from the National Tibetan Plateau Data Center (https://data.tpdc.ac.cn/en/, accessed on
1 July 2020). The observed surface albedo was calculated as the ratio of upward shortwave
radiation flux to solar irradiance. Detailed instrumental information and descriptions of the
effects of the observed meteorology and surface energy fluxes on the glacier in the ablation
season have already been provided [20,22].

2.2. Model Configuration and Experimental Design

The WRF model was developed through a partnership of the National Center for
Atmospheric Research (NCAR), the National Oceanic and Atmospheric Administration
(NOAA), the United States Air Force, the Naval Research Laboratory, the University of
Oklahoma, and the Federal Aviation Administration (The model can be downloaded from
https://www2.mmm.ucar.edu/wrf/users/, accessed on 1 July 2020). It is a state-of-the-art
atmospheric modeling system, comprising of a fully compressible and non-hydrostatic
model with a terrain-following pressure vertical coordinate and Arakawa C-grid horizontal
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coordinates [25]. It uses Runge–Kutta second- and third-order integration in the time
schemes, and second- to sixth-order integration in the advection schemes. The options for
atmospheric and land surface processes can be chosen with a broad range of grid sizes,
from tens of meters to thousands of kilometers.

WRF has the capacity to estimate glacio-meteorological variables in the low boundary
layer and can successfully force distributed energy and mass balance models of mountain
glaciers [27,31]. In order to investigate the performance of WRF with respect to glacio-
meteorological variables above maritime mountain glaciers in the ablation season, the
more recent WRF version 4.3.1 was applied to Parlung No. 4 Glacier in summer 2016.
We configured 3 nested domains, with the inner-most domain covering the glacier and
its surroundings (Figure 1). The model was centered on 29.23◦N, 96.92◦E, with spatial
resolutions of 12.5, 2.5, and 0.5 km. All the domains were set to 50 terrain-following vertical
levels, stretching from the surface to 50 hPa. A dataset from the Interim European Centre
for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim) [44], which
is found to have the closest agreement with in situ measurements of air temperature in
the Tibetan Plateau [45], was chosen to produce the initial and boundary meteorological
conditions with a 0.25◦ × 0.25◦ horizontal resolution and a six-hourly intervals. The
Noah-MP LSM includes a separate glacier treatment and improved snow physics, with
up to three layers in the snowpack, representing improvements over the original Noah
scheme [46,47]; it also features a modified two-stream radiation transfer scheme, which
considers the three-dimensional canopy structure to calculate radiation fluxes that are
reflected, absorbed, and transmitted by vegetation. This LSM uses a ‘tile’ approach to
calculate albedo, a key factor in the energy budget, considering bare ground, vegetation
canopy, and snow cover [48]. The Noah-MP coupled with WRF has been shown to provide
suitable robust precipitation estimates across the TP [49]; hence, this scheme was chosen
for our current study. The model was run from 1 May to 1 October 2016, producing three-
hourly output meteorological variables. The first month of simulation was regarded as
the model spin-up. The physics schemes that were selected when using WRF and the
multi-physical parameterization schemes from Noah-MP are detailed in Table 1.

Table 1. Detailed options that were selected in WRF coupled with the Noah-MP LSM.

Simulations Time Period From 1 May to 1 October 2016

Nest Three nested domains (two-way)
Projection Mercator

Center of domain 29.23◦N, 96.92◦E
Resolution 12.5 km, 2.5 km, 0.5 km

Microphysics Thompson scheme
Longwave radiation RRTM scheme
Shortwave radiation Dudhia scheme

Surface layer Revised MM5 Monin-Obukhov scheme
Planetary boundary layer YSU scheme

Cumulus parameterization Grell-Devenyi ensemble scheme in domain 1
Land surface Noah-MP

Canopy stomatal resistance Ball-Berry scheme
Soil moisture factor for stomatal resistance Noah scheme

Runoff and groundwater TOPMODEL with groundwater
Surface layer drag coefficient Monin–Obukhov

Soil permeability option Linear effect, more permeable
Radiation transfer Two-stream applied to vegetated fraction

Ground surface albedo option CLASS (Canadian Land Surface Scheme)
Precipitation partitioning between snow

and rain Jordan scheme

Snow/soil temperature time scheme Semi-implicit
Noah-MP glacier treatment Includes phase change
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Land-use type strongly influences radiation fluxes and near-surface air tempera-
tures [50]. The default static land-use in the current WRF version 4.3.1 is the Moderate Res-
olution Imaging Spectroradiometer (MODIS) land-use product with 30 arc-seconds spatial
resolution. This land-use product incorrectly classifies land cover within the ablation zone
of Parlung No. 4 Glacier as open shrub-land. To evaluate the importance of land surface
type and albedo-related parameters in the accurate estimation of meteorological elements,
numerical experiments were conducted: the first experiment used the default land-use prod-
uct and default albedo scheme of CLASS [51] as the control experiment (CTL); the second
experiment (Sens1) used the true land-use type of snow and ice for the extent of the glacier,
default bare ice albedo (visible = 0.8, near infrared = 0.55, background albedo = 0.55), and
snow albedo scheme of CLASS; the third experiment (Sens2) was similar to Sens1, but
corrected bare ice albedo according to previous results (visible = 0.5, near infrared = 0.2 [52],
background albedo = 0.23 [22]), and additionally included snow age and solar zenith angle
in the CLASS scheme according to the principle of the BATS snow albedo scheme [53]. The
CLASS (Equations (1)–(4)) snow albedo scheme and snow cover fraction that were used in
the CLASS scheme are described in the Sections 2 and 3.4 of the technical description of
Noah-MP [53] in the following equations:

α1 = 0.55 + (αold − 0.55)e
−0.01dt

3600 (1)

fsn = tanh(
hsn

2.5z0(
ρsn

ρnew
)

fm
) (2)

αs = α1 + fsn(0.84 − α1) (3)

αsd1 = αsd2 = αsi1 = αsi2 = αs (4)

where αold is the albedo of the last time step (dt). fsn is fractional snow cover. hsn is snow
depth in unit of m. ρsn is the bulk density of snow in unit of kg m−3. ρnew is the fresh snow
density with the value of 100 kg m−3. z0 is the snow surface roughness length with the
value of 0.002 m. fm is melting factor determining the curves in melting season which is
adjustable and sets to 1.0 in Noah-MP. αs is the albedo of snow. αsd1 and αsd2 denote the
direct albedo of snow for visible and near infrared bands, respectively, and αsi1 and αsi2
denote the diffuse albedo of snow for visible and near infrared bands, respectively.

The BATS (Equations (5)–(9)) snow albedo scheme is described in the Section 3.3 of
the technical description of Noah-MP [53] in the following equations:

Zc =
1.5

1 + 4 cos Z
− 0.5 (5)

αsi1 = 0.95(1 − 0.2Ac) (6)

αsi2 = 0.65(1 − 0.5Ac) (7)

αsd1 = αsi1 + 0.4Zc(1 − αsi1) (8)

αsd2 = αsi2 + 0.4Zc(1 − αsi2) (9)

where Z is the solar zenith angle and Ac is the snow age.
The default snow albedo scheme in the model is developed based on the deep snow

with slow melting, which shows a large snow-related simulation deviation on the TP where
the snow is shallow and melts rapidly. The insufficient consideration of snow age leading to
the lag of melting is the potential reason. In order to more accurately account for the impact
of snow age on snow melting on the TP, we attempted to simultaneously consider the snow
age in both CLASS and BATS schemes in the Sens2 experiment. However, the albedo of
snow for visible and near infrared bands is parameterized to the same value in the CLASS
scheme. In reality, the spectral albedo is the different values according to the spectral albedo
measurements with a higher albedo for visible band and a lower for near infrared band
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and with different spectral albedo curves for fresh snow and old snow [54]. In terms of
spectral albedo that is related to snow age in the BATS scheme, multiplicative factors of
0.95 in Equation (6) and 0.65 in Equation (7) represent the diffuse fresh snow albedo for
visible and near infrared bands, respectively, which corresponds to about 1.2 and 0.8 times
the prescribed fresh snow albedo value of 0.8 for broadband in the model. Therefore, we
boldly modified multiplicative factors of 0.95 to αs × 1.2 in Equation (6) and 0.65 to αs × 0.8
in Equation (7) when integrating the CLASS and BATS snow albedo schemes in Sens2
experiment. Eventually, the Equations (1)–(3) and (5), the modified Equations (6)–(9) were
used ordinally to calculate the spectral snow albedo for the direct and diffuse irradiance in
the Sens2 experiment.

The different initial surface conditions and the applied snow albedo schemes in the
ablation zone of the glacier in three experiments are outlined in Table 2.

Table 2. Initial surface conditions in the ablation zone of the glacier and snow albedo schemes that
were used in our experiments (vis = visible, nir = near infrared).

Experiment
Land-Use
Categories

Vegetation
Fraction/%

Soil
Categories

Background
Albedo

Bare Ice Albedo Snow Albedo Scheme

CTL open shrub-land 30.5 loam 0.16 - CLASS

Sens1 snow and ice 0 land-ice 0.55 vis = 0.8, nir = 0.55 CLASS

Sens2 snow and ice 0 land-ice 0.23 vis = 0.5, nir = 0.2 combined CLASS
and BATS

2.3. Evaluation of Model Performance

In order to assess the performance of the model in the ablation region of the glacier, the
root-mean-square error (RMSE), mean absolute deviation, and the correlation coefficient
(CC) between the in situ observations and model estimates were used to evaluate the model
performance in terms of the glacio-meteorological variables (T2 and shortwave/longwave
radiation). Also, we applied linear regression to the observed and modeled net radiation.
Pearson linear cross-correlation was chosen to calculate the CC, and the t-test was chosen to
test the significance of the correlation. A significance level of 0.01 was specified in this study.
In addition, space remote sensing instrument developed by National Aeronautics and
Space Administration, MODIS is used to monitoring global climate change. The product of
MOD09GA Version 6 (available from: https://lpdaac.usgs.gov/products/mod09gav006/,
accessed on 1 July 2020) provides an estimate of the daily surface spectral reflectance
of MODIS/Terra in bands 1 to 7 with a spatial resolution of 500 m. This product was
used to assess the performance of the model across the whole glacier, including the main
body of the glacier. Quality assurance information regarding the quality control code and
atmospheric condition flag of the MOD09GA product were considered to achieve the ideal
quality (ideal quality of bands, no cloud, low aerosol quantity) broadband albedo product,
which can be estimated using Liang’s algorithm [55]:

αshort = 0.160α1 + 0.291α2 + 0.243α3 + 0.116α4 + 0.112α5 + 0.081α7 − 0.0015 (10)

where αshort is the surface broadband albedo, and α1 to α7 represent the surface reflectance in
MODIS bands 1 to 7, respectively. The spectral coverage for MODIS bands 1 to 7 is 0.62–0.67,
0.84–0.87, 0.46–0.48, 0.54–0.56, 1.23–1.25, 1.63–1.65, and 2.11–2.15 μm, respectively.

3. Results

3.1. Air Temperature and Precipitation

The near-surface air temperature and precipitation are essential parameters in forcing
glacier mass balance models. These parameters greatly influence the ablation and expansion
of mountain glaciers in the summer, with high air temperatures and liquid precipitation
accelerating the ablation process and high solid precipitation accelerating the expansion
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process. The observed and modeled T2 and daily rainfall, and their diurnal variation over
the Parlung No. 4 Glacier are shown in Figure 2. Compared with the T2 observations,
both Sens1 and Sens2 experiments applying the realistic land cover yielded similar T2
values and diurnal patterns in the 2016 ablation season, while the CTL experiment applying
the default land cover greatly overestimated T2. The mean T2 in the ablation season was
observed to be 3.68 ◦C and was estimated to be 5.24 ◦C in the CTL experiment, 3.17 ◦C in the
Sens1 experiment, and 3.23 ◦C in the Sens2 experiment. The mean T2 deviation (absolute
deviation) reached 1.56 (1.88) ◦C, −0.51 (1.19) ◦C, and −0.45 (1.21) ◦C in the CTL, Sens1,
and Sens2 experiments, respectively. The RMSE of T2 between the observations and CTL
(Sens1) (Sens2) estimates was 2.42 (1.51) (1.54) ◦C and the CC was up to 0.7. On the whole,
the model accurately recreated the diurnal cycle of T2 on the glacier. The T2 estimates were
significantly correlated with the ground observations at the specified significance level
of 0.01. WRF applying the real updated land surface type (Sens1 and Sens2 experiments)
successfully reproduced T2 in the ablation zone of the glacier in summer 2016, confirming
the significance of using realistic land surface types in model simulations of near-surface
meteorological elements (Figure 2a).

 
Figure 2. Observed and modeled (a) 2 m air temperature (T2), (b) daily rainfall, and (c) accumulated
diurnal variation of rainfall in the ablation zone over the Parlung No. 4 Glacier, with a box whisker
diagram in the upper right corner.
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Precipitation processes of rainfall and snowfall present different mechanisms for
glaciers’ mass balance. The heat of rainfall will be transferred to the glacier contributing to
the melting of glaciers, while snowfall contributes to the expansion of glaciers by providing
solid precipitation particles. Therefore, the precipitation differences for the contributions
from liquid precipitation (rain) were investigated first, and then solid precipitation (snow).
The observed rainfall mainly occurred in July (89.67 mm) and August (47.21 mm), ac-
counting for 47% and 25%, respectively, of the total rainfall in the ablation season over
the Parlung No. 4 Glacier. The modeled rainfall also mainly occurred in July and August.
However, the model greatly overestimated light rainfall and underestimated moderate
rainfall. For the accumulated rainfall in the ablation season, the observed total rainfall
amount was 190.6 mm, the Sens2 estimate was 417.2 mm, and the Sens1 and CTL estimates
were approximately 433 mm. The three experiments estimated the total rainfall to be
more than double the observed total amount (Figure 2b). In terms of diurnal variation
of accumulated rainfall, the observed maximum accumulated rainfall in summer 2016
occurred at nighttime (21:00–23:00 LST; LST = UTC + 8 h), reaching 48.33 mm, and rainfall
from the afternoon to sunrise (15:00–08:00 LST) accounted for 92% of the daily rainfall. The
model demonstrated its capacity to simulate the diurnal variation curves of rainfall but
notably overestimated the rainfall amount, with the maximum accumulated rainfall in
summer reaching 92.83 mm (00:00–02:00 LST), 111.06 mm (03:00–05:00 LST), and 80.95 mm
(00:00–02:00 LST) for CTL, Sens1, and Sens2 modeling, respectively. For the main rainfall
duration period (15:00–08:00 LST), the three experiments modeled rainfall that accounted
for more than 80% of the total daily rainfall (Figure 2c).

Old snow melted and small amounts of sleet occurred before 20 September, then
snowfall ensued thereafter. The Sens1 and Sens2 experiments successfully estimated
snowfall in late September, although Sens1 falsely simulated a large amount of snow before
20 September. The observed and modeled three-hourly snow water equivalent (SWE) in
late September and the corresponding accumulated diurnal variation in snowfall and snow
melt is shown in Figure 3. Compared with the snowfall observations, the Sens2 experiment
reproduced snowfall on 20 September followed by rapid snow melt, but failed to reproduce
snowfall on 24 September. The two snowfall events were reproduced by Sens1, but the first
snowfall amount was remarkably overestimated and this was followed by slow snow melt.
The total snowfall amounts from the ground observations, Sens1, and Sens2 estimates were
11.77, 28.58, and 18.47 mm, respectively, with the model greatly overestimating the snowfall
amount (Figure 3a). In addition, the observed snowfall mainly occurred in the morning
before 11:00 LST, with the largest amount at sunrise, presenting a single peak pattern.
However, both Sens1 and Sens2 simulated the snowfall occurrence as double peaks, with
the first high peak occurring at 6:00 LST and the second low peak at 17:00 LST for Sens1,
and the first peak occurring at 5:00 LST and the second slightly lower peak at 11:00 LST for
Sens2. Remarkably, snow melted at local noon in the estimates of both experiments, and
the peak of snow melt from Sens2 lagged behind Sens1 by approximately 2 h (Figure 3b).

Figure 3. (a) Observed and modeled three-hourly SWE in late September over the Parlung
No. 4 Glacier (solid line indicates snow accumulation and the dashed line indicates snow melt).
(b) Corresponding accumulated diurnal variation of snowfall and snow melt estimates.
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3.2. Net Radiation Flux and Albedo

Net radiation is a direct and immediate forcing of glacier mass balance, which consists
of net shortwave radiation and net longwave radiation; excess energy will melt the snow
and ice and affect the near-surface air temperature. A comparison of the net radiation
and its components, and the diurnal variation of net radiation between observations and
model estimates, is displayed in Figure 4. It is clear to see that similar performance of
WRF simulating net longwave radiation was achieved for Sens1 and Sens2 experiments
with the similarly temporal pattern and the same range of values (Figure 4a,b). The mean
observation of the net longwave radiation was only 13.77 W m−2 and the mean estimates
reached 30.56 W m−2 for both experiments (Sens1, Sens2). Compared with the observed
net longwave radiation, the net longwave radiation was rather consistently overestimated
by the two experiments (Sens1, Sens2), with an average overestimation value of 17 W m−2.
A similar performance of WRF in relation to the net shortwave radiation and the net
radiation was achieved, revealing the variation in the net shortwave radiation to be a
fundamental factor in the variation in net radiation. Owing to the distinct glacial albedo
scheme that was implemented in WRF, the instantaneous net shortwave radiation and
net radiation was distributed discretely on both sides of the perfect fitting line (y = x)
for Sens2, and concentrated below the perfect fitting line (y = x) for Sens1, with rather
large underestimations (Figure 4c–e). The average net shortwave radiation for observation,
Sens1, and Sens2 estimates was 137.21, 84.2, and 172.41 W m−2, respectively. The average
net radiation was calculated to be 123.44 W m−2 using in situ observations, 53.64 W m−2

for Sens1 estimates, and 141.85 W m−2 for Sens2 estimates. The linear regression lines
for Sens1 and Sens2 estimates were y = 0.47x + 19.61 (CC = 0.81) and y = 0.92x + 46.16
(CC = 0.77), respectively, for the net shortwave radiation; and y = 0.45x − 1.95 (CC = 0.83)
and y = 0.88x + 30.92 (CC = 0.78), respectively, for the net radiation. These illustrate that
Sens2 apparently outperforms Sens1 in estimating the instantaneous net radiation and
its dominant component (net shortwave radiation), and shows a consistent conclusion in
terms of the daily mean net radiation estimates that Sens2 apparently outperforms Sens1.
Owing to the notable discreteness of net shortwave radiation and the net radiation from
Sens2 estimates, Sens2 yielded large RMSEs of ~140 W m−2 for both the net radiation and
net shortwave radiation. Such large RMSEs were also simulated by the Sens1 experiment
because of remarkable underestimations of the net shortwave radiation and net radiation.
Compared with the observed diurnal variations in the net radiation, the two experiments
achieved identical diurnal cycles, with maximum values occurring at local noon. Yet,
different peaks were calculated in Sens1 (228.92 W m−2) and Sens2 (503.99 W m−2), the
latter being closer to the observed value of 454.62 W m−2 (Figure 4f). Coincident high
CCs of ~0.8 were calculated between the observations and experimental (Sens1, Sens2)
estimates of net radiation and net shortwave radiation, which passed the significance test
at the specified 0.01 level.

Surface albedo is a key factor in net radiation and is the main determinant of the energy
and mass balance of a glacier. Rapid changes in the albedo arise because of snowfall and
the subsequent evolution of the snowpack, with large values associated with fresh snow,
and decreasing values as snow melt progresses. Our experiments applied the snow albedo
scheme and a bare ground albedo scheme for Sens1 and Sens2, and additionally involved a
modified two-stream radiation transfer scheme considering the three-dimensional structure
of the canopy in the control experiment. The albedo was calculated from a combination of
the reflected radiation of snow, bare ground, and vegetation canopy in the model, and was
compared with ground observations and MODIS product (Figure 5). The observed daily
albedo declined sharply from 0.75 to 0.24 before 29 June, slightly increased to 0.47 on 3 July,
then remained at a rather low, variable value of approximately 0.23 until 19 September.
Subsequently, the observed albedo rapidly increased to 0.75 on 20 September, then to 0.78
on 24 September (Figure 5a). The variation in the observed daily albedo indicates that
the seasonal snowpack in the ablation zone was melting and did not disappear until late
June, when the ice became exposed on the surface. Subsequently, the observed variable
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low albedo value before 19 September not only results from small amounts of sleet and
subsequent snow melt increasing the albedo, but also from rainfall increasing the liquid
water content above the glacier’s surface and in the meantime decreasing the albedo. In
the meanwhile, the observed bare ice albedo fluctuates around 0.23 which was affected
by the liquid water content. Therefore, the low ice albedo of 0.23 instead of the minimum
albedo is set as the background albedo of the glacier in the Sens2 experiment. The large
albedo value in late September resulted from two apparent snowfall events. Owing to
the very different treatments of snow, canopy, and bare-ground albedo in the WRF model,
the three experiments yielded substantially different surface albedo estimates. The albedo
maintained a value of 0.12 in the ablation season in the CTL experiment because the surface
type was wrongly classified as open shrub-land. The Sens1 experiment applied the default
albedo scheme on the glacier, presenting a very high albedo value of ~0.8 on 3 July and
9, 20, and 21 September, while retaining a constantly high albedo value of 0.68 for the
rest of the ablation season. The Sens2 experiment, using the modified albedo scheme on
the glacier, yielded a constantly low albedo value of 0.35, which was close to the in situ
observation, before increasing to a maximum of 0.78 during snowfall in late September
(Figure 5a). Apparently, the albedo error of Sens2 in the ablation season is significantly
smaller than that of Sens1, while the error of Sens1 before the middle of June and after
the middle of September is significantly lower than that of Sens1. This reveals that the
modified glacial albedo scheme for Sens2 is only applicable to the ablation season.

Figure 4. Comparison of the net longwave radiation (a) daily mean NetLW; (b) instantaneous NetLW,
net shortwave radiation; (c) instantaneous NetSW; and net radiation (d) instantaneous Rn; (e) daily
mean Rn), and the diurnal variation in instantaneous net radiation (f) between the observations
(OBS: grey) and model estimates (Sens1: green; Sens2: blue). The grey dashed line denotes the perfect
linear fit line of y = x, the green solid line denotes the linear fit between the observation and Sens1
estimates, and the blue solid line denotes the linear fit between the observation and Sens2 estimates
in (c) and (d).
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Figure 5. Comparison of model-estimated albedo at 14:00 LST against observations (a) and MODIS
retrieved product on 21 August 2016 (b). The solid black circle indicates the location of the AWS.

In addition, the performance of WRF in relation to the albedo estimates when applying
different glacial albedo schemes was also evaluated against the MODIS-retrieved high
pixel resolution and the daily albedo product over the whole glacier. MODIS retrieval of
albedo on 21 August 2016 was selected to assess the model performance on simulating the
spatial distribution of albedo (Figure 5b), because the albedo in the pixels of the glacier was
measured in the highest quality on 21 August 2016. It revealed that the glacial albedo was
different across the pixels of the glacier in the summer with a low value of 0.2–0.4 in the
ablation zone and a high value of 0.5–0.7 in the accumulated zone. The model applying
the default glacial albedo scheme greatly overestimated the albedo of the whole glacier
particularly in the accumulated zone where the albedo kept to 0.7–0.8. The model applying
the modified glacial albedo scheme showed the remarkable advantages in relation to the
albedo estimates in the ablation zone, but underestimated the albedo in the accumulated
zone. Therefore, in the ablation zone, using the observed background albedo had a large
effect on the simulated albedo (Figure 5b). Besides, we used the MODIS-retrieved albedo in
pixels of the glacier, where the ideal quality of the spectral bands, no cloud effect, and low
aerosol quantity were recognized in the ablation season. The albedo RMSE and the mean
error between Sens1 and the MODIS product were 0.22 and 0.18, respectively, indicating
an overestimation of the albedo of the glacier when the default glacial albedo scheme was
applied in WRF. In contrast, the albedo RMSE and the mean error between Sens2 and the
MODIS product were 0.16 and −0.08, respectively, illustrating a slight underestimation of
the albedo of the glacier when the modified glacial albedo scheme was applied in WRF.
The albedo estimates from WRF were significantly correlated with the MODIS retrievals at
the specified significance level of 0.01, with similar CC values of ~0.5.

On the whole, the albedo was largely underestimated with a rather low value of
0.12 kept in the CTL experiment due to wrong land cover that was used in the model.
The Sens1 and Sens2 experiments using the updated land cover successfully simulated
snowfall events in late September. However, Sens1 gave a rather high albedo, with the
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average value of 0.68 leading to an underestimation of the net shortwave radiation and
net radiation. Sens2 gave a low albedo, with the average value of 0.35 being closer to
the in situ observations when little snow appeared, causing an overestimation of the net
shortwave radiation and net radiation in early June, followed by underestimation in July
and August (Figures 4 and 5a). On average, surface shortwave radiative forcing reached to
−141 (−60) W m−2 due to albedo changes that were induced by land cover in CTL updated
to the one in Sens1 (Sens2), which shows the cooling effect. Surface shortwave radiative
forcing reached to 85 W m−2 due to glacial albedo changes that were induced by albedo
the scheme in Sens1 that was updated to the scheme in Sens2, which shows an apparent
heating effect and may cause a considerable ablation of the glacier.

3.3. Turbulent Heat Flux

The surface net radiation determines the energy redistribution between turbulent
water vapor and heat fluxes. Albedo is a key factor of net radiation. In our previous
analysis, albedo schemes present large impacts on shortwave radiation estimates, but
similar T2 is simulated by both Sens1 and Sens2 experiments. Maybe compensating the
effects of energy fluxes to/away from the ice surface results in the similar T2. In order to
explain this finding reasonably, the modeled daily mean sensible and latent heat fluxes
above the Parlung No. 4 Glacier, the ground heat flux beneath the glacier, as well as the
daily mean surface heat budget in the ablation season are shown in Figure 6. It shows
that the Sens1 and Sens2 experiments simulated similarly low values and consistent daily
variations of sensible (−60 to 0 W m−2) and latent (−51 to 36 W m−2) heat fluxes over
the entire time. The excess surface energy enters the glacier in the form of ground heat
flux. High ground heat flux from Sens1 (15–184 W m−2) and Sens2 (30–295 W m−2) heats
the glacier, resulting in surface and subsurface ice melt (Figure 6a). From the boxplots
analysis of the daily mean surface heat budget (Figure 6b), the large difference of the
net radiation between Sens1 and Sens2 estimates attributes to the large difference of net
shortwave radiation that is caused by different glacial albedo schemes. The simulated
net radiation, sensible and a proportion of the latent heat flux by both Sens1 and Sens2
experiments are used to heat the surface glacier first and then transmit downwards to heat
the subsurface glacier. The main energy contributor to surface and subsurface ice melt from
both experiments is the net radiation, supplemented by sensible heating. Similar sensible
heat flux was reproduced by both Sens1 and Sens2 experiments, which is highly linked
to the temperature difference between the ground and air, and the ground temperature
of the glacier kept to 0 ◦C. These account for the similar T2 that was estimated by WRF
applying different glacial albedo schemes. The average ground heat flux from Sens1 was
88 W m−2, which was much lower than that from Sens2 (182 W m−2). This is because
the albedo from Sens1 was much higher that from Sens2, causing apparently lower net
radiation and reduced energy entering the glacier.

In addition, ice melt leads to an increase in the liquid water content in the glacier. The
liquid water content estimates in the different layers in the ablation region of the glacier
are displayed in Figure 7. This shows that excess energy is first used to melt the surface
ice (the upper layer, 0–0.1 m), then the second layer (0.1–0.4 m), followed by the third
layer (0.4–1.0 m), and finally the bottom layer (1.0–2.0 m). Apparently, the ice in the upper
layer melts more quickly than that in the bottom layer of the glacier. Compared with
Sens1 estimates, more energy from Sens2 estimates enters the glacier, causing ice to melt
more quickly and preferentially, which in turn causes the liquid water content to increase
more rapidly and preferentially. Both Sens1 and Sens2 experiments illustrated considerable
glacier melting in the ablation region, with an ice thickness reduction of 0.4 m by 22 June
for the Sens1 estimates, and an ice thickness reduction of 1.0 m by mid-June for the Sens2
estimates (Figure 7).
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Figure 6. Comparison between the Sens1 and Sens2 estimates of the daily mean near-surface sensible
(HFX, + to atmosphere), latent (LH, + to atmosphere), ground (GRDFLX, + to soil) heat fluxes
(a) and each component of the surface heat budget (b), NetSW: net shortwave radiation; NetLW: net
longwave radiation; NetR: net radiation).

Figure 7. Comparison between the Sens1 and Sens2 estimates of the liquid water content (SH2O) in
the first (L1), second (L2), third (L3), and fourth layer (L4) in June 2016 in the ablation region of the
Parlung No. 4 Glacier.

4. Discussion and Conclusions

The glacier mass balance has a great effect on the physical processes in the cryosphere
and hydrosphere, and exhibits strong feedback with current climate change [2,3]. However,
high quality observations of glacier mass balance and glacio-meteorological variables are
sparse across the TP, while the WRF model can provide useful estimates of meteorological
conditions (e.g., T2, precipitation, and radiation fluxes). Previous numerical studies of
glacier mass balance estimates usually combine the standard WRF model and the dis-
tributed glacier energy and mass balance models through dynamically-downscaled, offline,
or interactive coupling simulations [26,27,31,32]. The land-atmosphere coupling WRF in-
volves the mass supplement from precipitation processes and ice melt that is related to the
energy budget, which provides a possibility to use WRF alone to study glacier mass changes.
However, rarely do studies attempt the related research. In addition, as the key factor
of surface net radiation, albedo highly links to the energy balance of glaciers. Previous
studies often implement the default glacial albedo scheme when using the standard WRF
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to force the distributed glacier energy and mass balance models, seldom improving the
glacial albedo scheme in WRF. In our study, control and sensitivity experiments focusing
on the land surface type and glacial albedo scheme were conducted using the WRF model
coupled with Noah-MP to simulate glacio-meteorological variables in the 2016 ablation
season above the Parlung No. 4 Glacier on the TP. The in situ meteorological element
observations and the MODIS-retrieved albedo product were selected to evaluate the model
performance. Our study initially tries to modify the glacial albedo scheme and evaluates
the capacity of WRF alone to the ablation of a marine glacier over the TP. It is one step
forward in understanding the glacier mass balance over the TP.

Surfaces with a high albedo reflect a large fraction of solar irradiance, resulting in
only a small amount of shortwave radiation being absorbed by the land surface, thereby
reducing the surface net radiation heating, and leading to a lower T2 through turbulent
heat exchange between the glacier surface and the near-surface atmosphere. In contrast,
low albedo has the opposite effect and promotes a higher T2. In this study, the three
experiments were able to obtain not only daily variations, but also the mean diurnal pattern
of T2. However, the model overestimated the daily mean T2 throughout the ablation season
when using the unrealistic open shrub-land surface type, owing to the very low estimated
surface albedo of ~0.12. Vegetation decreases the surface albedo mainly because of the
low background albedo of the underlying vegetation cover in the CTL experiment. Such
a low albedo contributes to a high surface net radiation through reducing the reflected
irradiance, and the high net radiation heats the land surface with open shrub-land covered
enhancing the turbulent sensible heat exchange among the land surface, vegetation, and
near-surface atmosphere. This leads to the CTL estimated mean air temperature of 1.56 ◦C
higher than the in situ observations. In addition, the vegetation increases not only the
evapotranspiration, changing the surface water balance but also the roughness length
and friction velocity enhancing the momentum exchange between the land surface and
near-surface atmosphere. The apparent warm bias of 1.56 ◦C was significantly alleviated
by sensitivity experiments using a larger glacier albedo, with the mean bias decreasing
to −0.5 ◦C and a 37% improvement in RMSE. Consequently, the realistic geostatic land
surface parameters such as land surface type are strongly recommended in the model
simulations in the following research.

Albedo is a key factor in surface energy balance and affects the redistribution of
surface net radiation between turbulent water vapor and heat fluxes. Noah-MP imposes
a minimum ice surface albedo of 0.55 which does not adequately represent the surface
conditions in the ablation zone of the glacier. This was the main cause of the large albedo
value of 0.68 that was simulated in the model that applied the default glacial albedo
scheme. A rather high albedo was retained in the default glacial albedo scheme resulting in
significant underestimations of the net shortwave radiation and the net radiation. However,
an albedo value of 0.35 was held in the modified glacial albedo scheme; this contributed to
relieving the underestimation of not only the net shortwave radiation and net radiation,
but also the peak net radiation value at local noon. In addition, our simulation results
confirm that the net shortwave radiation is the dominant energy source during the ablation
season on the southeast TP [20]. Notably, the albedo error of Sens2 in the ablation season is
significantly smaller than that of Sens1, but the error of Sens1 before the middle of June
and after the middle of September is significantly lower than that of Sens1, revealing that
the modified glacial albedo scheme for Sens2 is only applicable to the ablation season. This
is because the observed bare ice albedo in the ablation season is set as the background
albedo and used in the modified glacial albedo scheme. Besides, the WRF model cannot
precisely grasp the variation of albedo during snowfall processes in early June and late
September, even though the model applies the observed background albedo to the modified
glacial albedo schemes. This is highly linked to the improper snow albedo scheme and
the inappropriate description of the relationship between snow albedo and the underlying
ice surface.
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In addition, the net longwave radiation was apparently overestimated by 17 W m−2

in Sens1 and Sens2 experiments. The overestimation of net longwave radiation was highly
related to the cloud effect on the downward longwave radiation. The glacier emitted the
same intensity of longwave radiation due to the unified observed and simulated surface
temperature of 0 ◦C. In realistic cloudy conditions, the cloud increased the downward
longwave radiation causing a decrease of the net longwave radiation. However, there is
more rainfall in both sensitive experiments (Sens1 and Sens2) on days when no rainfall was
observed, and clouds may be present in both sensitive experiments but less matching the
timing of the observed clouds. More rainfall in WRF sensitive experiments was caused by
cloud particles gradually growing into raindrops through complex microphysical processes
and falling to the ground. Afterwards, the cloud dissipated accompanied by a decrease
of downward longwave radiation. This would result in an increase of the net longwave
radiation for both sensitivity experiments. What is more, the complex topography is a
potential factor causing large RMSEs of net radiation and its components for both sensitive
experiments; our sensitive experiments that were reported herein did not consider the
effects of complex local topography on the direct solar irradiance, and also neglected the
reflected and diffuse radiation from surrounding mountainous topography.

Both sensitivity experiments (Sens1 and Sens2) generated relatively small and con-
sistent turbulent water vapor and heat exchange values, showing the similarity of model
performance in relation to surface sensible and latent heat, despite two different glacial
albedo schemes being applied. The sensible and latent heat fluxes were estimated to be
a little higher than Yang’s results using the energy balance model [22]. For example, the
mean downward sensible heat flux was calculated to be 28 W m−2 from our experiments
and 17 W m−2 from Yang’s estimate [22]. Compared with WRF using the default glacial
albedo scheme, the excess surface energy that was obtained from WRF using the modified
glacial albedo scheme heats surface ice and enters the glacier, heating subsurface ice in the
form of ground heat flux, which is estimated to be 182 W m−2. This causes surface and
subsurface ice melt and the liquid water content to increase more quickly and preferentially
in WRF with the modified glacial albedo scheme. Our study confirms net radiation to be
the main contributor to surface ice melt, supplemented by sensible heating, and illustrates
considerable glacier melting in the ablation region during the ablation season. The ice
thickness decreased by 1.0 m by mid-June when applying the modified glacial albedo
scheme in WRF, which closely matches the ablation that was measured by stakes and
calculated using the surface energy-balance model from Yang’s results [22]. However, the
ice thickness of glaciers is defined to be 2 m in the current Noah-MP, and the maximum ice
thickness reduction is limited to 2 m. Therefore, it is reasonable to model the ablation of
glaciers under the condition of ice thickness more than 2 m but the cumulative reduction
less than 2 m. In our study, the thickness of the Parlung No. 4 Glacier and the observed
cumulative reduction are more than 2 m in the ablation zone in summer 2016 [22]. In
order to accurately simulate the large ablation, the ice thickness should be adjusted in the
Noah-MP, which was not considered in our study but should be considered further through
conducting more numerical tests to ensure the stable calculation during the model’s inte-
gration. Understanding glacier mass balance anomalies requires quantification and insight
into subtle shifts in the energy balance at high altitude glaciers [30]. In order to understand
the accumulated and melt regimes of glaciers, further work will focus on the investigation
of the roles of each component of glacial surface and subsurface energy balance.

More realistic land-use parameters in the model can reduce the modelled T2 and
precipitation biases, and more accurate surface albedo will provide further model bias
reductions [56]. This study used the satellite-retrieved spectral albedo and the in situ
observed albedo in the ablation zone of the glacier to modify the glacial albedo scheme,
which achieved better performance in relation to the glacio-meteorological elements in the
focused ablation region. However, the modified albedo scheme is not reasonable in the
main area of the glacier because the parameters in the ablation zone cannot represent the
parameters in the main area of the glacier. Further improvements in glacial albedo schemes

328



Remote Sens. 2022, 14, 3934

in land–atmosphere coupling models are urgently required in order to obtain better model
performance in the estimation of glacio-meteorological variables across the entire glaciers.

The ablation of glaciers has contributed to rising not only the lake levels in the glacier
concentration areas [16], but also the global mean sea level [17,18]. The lake and sea level
rise will threaten the lives of people who reside by lakes and in the coastal cities. Therefore,
the accurate prediction of glacier ablation contributions to the lake and sea level rise is
essential in regions with extensive glacier coverage. Our study assesses the ability of WRF
itself to estimate the ablation of a mountainous glacier, which is the first step before WRF
itself can be widely used in the accurate simulation and prediction of glacier ablation. Our
study confirms the potential of the WRF model to generate reasonable glacio-meteorological
variables, such as T2, radiation, and ground heat flux except precipitation, as long as a
reasonable glacial albedo scheme is applied. These variables are essential to estimate glacier
energy and mass changes. Precipitation is another decisive factor in glacier mass changes
and different phases of precipitation (i.e., rain and snow) show different mechanisms of
glacier mass balance; however, the simulated precipitation was twice that of the in situ ob-
servations during the ablation season over the glacier. This is not directly influenced by the
glacial albedo scheme but was affected not only by the microphysical and cumulus param-
eterization schemes in the WRF model, but also by the complex mountainous topography.
At present, we have not investigated complex parameters in the microphysics and cumulus
schemes, nor the role of terrain and the terrain-induced water vapor transport, which relate
to the very high precipitation duration, intensity, and amount in WRF estimates. Therefore,
it is important to explore how to improve the parameterizations of precipitation in regional
models over complex topography. In the future, we will focus on evaluating and improving
the performance of the model with regard to the total amount of summer precipitation
over the southeastern TP, through investigation of the model microphysics and cumulus
schemes. Also, we will further investigate the roles of mountainous topography and the
terrain-induced water vapor from the Indian summer monsoon in increasing precipitation
over the southeastern TP.
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Abstract: The high elevation, complex topography, and unique atmospheric circulations of the
Tibetan Plateau (TP) make its optical turbulence characteristics different from those in low-elevation
regions. In this study, the characteristics of the atmospheric refractive index structure constant (C2

n)
profiles in the Lhasa area at different strength states of the Asian summer monsoon anticyclone
(ASMA) are analyzed based on precious in situ sounding data measured over the Lhasa in August
2018. C2

n in the upper troposphere–lower stratosphere fluctuates significantly within a few days
during the ASMA, particularly in the upper troposphere. The effect of the ASMA on C2

n varies among
the upper troposphere, tropopause, and lower stratosphere. The stronger and closer the ASMA is to
Lhasa, the more pronounced is the “upper highs and lower lows” pressure field structure, which
is beneficial for decreasing the potential temperature lapse rate. The decrease in static stability is
an important condition for developing optical turbulence, elevating the tropopause height, and
reducing the tropopause temperature. However, if strong high-pressure activity occurs at the lower
pressure layer, such as at 500 hPa, an “upper highs and lower highs” pressure field structure forms
over the Lhasa, increasing the potential temperature lapse rate and suppressing the convective
intensity. Being almost unaffected by low-level atmospheric high-pressure activities, the ASMA,
as the main influencing factor, mainly inhibits C2

n in the tropopause and lower stratosphere. The
variations of turbulence intensity in UTLS caused by ASMA activities also have a great influence on
astronomical parameters, which will have certain guiding significance for astronomical site testing
and observations.

Keywords: Tibetan Plateau; optical turbulence; Asian summer monsoon anticyclone; upper
troposphere-lower stratosphere

1. Introduction

The unique features of the Tibetan Plateau (TP), such as its complex terrain formed by
high mountains and valleys, dramatic changes in the atmospheric environment, differences
in atmospheric composition, and unique geographical climate and circulation characteris-
tics, form different atmospheric optical turbulence characteristics over the TP from those
of low-elevation plain regions [1]. The TP is the major energy source providing sensible
and latent heat fluxes to the atmosphere depending on the turbulence processes that occur
during land–atmosphere interactions for mass and energy exchanges [2]. The combined
effect of the complex terrain of the TP and the heat source enables the development of
turbulence in the middle and upper atmosphere over the region.

Strong Asian summer monsoon circulations exist above the TP, including deep con-
vective activities and planetary-scale anticyclones, such as the South Asian high, SAH
(hereinafter referred to as the Asian summer monsoon anticyclone (ASMA)) [3,4]. The
ASMA is stable and strong in the vertical direction at 70–300 hPa and occupies almost
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the entire upper troposphere–lower stratosphere (UTLS) area [5], which is closely related
to plateau land-atmosphere heat transfer [6,7]. The ASMA is closely related to frequent
convective activities, particularly during the period from June to September. The geo-
graphic location of the ASMA center varies over periods of a few days or even over longer
periods [8]. The coupling of atmospheric circulation and convection that prevails over
the TP during the summer results in the frequent occurrence of convective activities in
the lower atmosphere. Less details are known about the influence of the ASMA on the
thermodynamic structure of the atmosphere in the stratosphere.

The strong convective activities and ASMA on the TP affect the atmospheric com-
ponents and their distribution in the UTLS of the Asian monsoon region by uplifting the
lower atmosphere [9–11]. A turbulent atmosphere is an important transport medium in
stratosphere–troposphere exchange (STE). First, convective injections can impact air and
aerosol transport from the atmospheric boundary layer (ABL) to the UTLS [12,13]. In
contrast, deep convection activities carry low concentrations of ozone and high concen-
trations of water vapor into the ASMA, which remain inside the ASMA for a period of
time, and they are relatively isolated from the outside air and subsequently uploaded to the
UTLS [14,15]. Moreover, the vertical distribution of atmospheric turbulence is one of the
factors that must be inevitably considered in the astronomical site testing of ground-based
astronomical optical telescopes [16]. Atmospheric turbulence is the main reason for the
serious degradation of optical imaging quality, and it is also an important indicator for
comparing the quality of astronomical sites [17,18].

TP has garnered significant attention as the third pole of the Earth. In the past three
decades, researchers have conducted several atmospheric scientific experiments on the
TP combined with numerical simulations. Some studies have been conducted mainly on
the structure of the ABL over the TP and its surrounding areas, including studies on the
occurrence and development of weather systems and the impact of the TP on atmospheric
circulation [19,20].

However, the relationship between the optical turbulent structure and meteorological
parameters in the UTLS has rarely been studied [21]. The results of observations and
numerical simulations obtained in recent years indicate that the ASMA region surrounding
Lhasa as the core area is an extremely important area, through which surface pollutants
enter the global stratosphere. The transport of these materials into the stratosphere through
atmospheric turbulence has important effects on the global climate and environment
through microphysical, chemical, and radiative processes [22–24].

At present, most research on atmospheric turbulence structure in UTLS over the TP
are studied based on model simulations or reanalysis, because in situ observed turbulent
data are scarce. In consequence, details regarding the structure of atmospheric turbulence
in the UTLS, STE process, and characteristics of atmospheric composition budgets are still
lacking. The widely used measurement techniques of high-altitude atmospheric turbulence
characteristics are roughly divided into two categories. One is the path-averaged turbulence
intensity measurement technique, such as the optical triangulation method [16,25] and
extension technology [26]; the other is the localized turbulence intensity measurement
technique, such as the micro-thermal pulsation method. In situ turbulent measurement
based on radiosonde is a simple but very reliable, effective, high-precision, and commonly
used atmospheric detection method, particularly the micro-thermal sensors mounted on
the balloon, which realizes the measurement of atmospheric turbulence in UTLS [27–30].
As such, not only basic atmospheric parameters such as temperature and humidity can
be measured, but also the value of atmospheric refractive index structure constant C2

n
in the middle and upper atmosphere is obtained simultaneously, which is an important
parameter to measure turbulence intensity. This study analyzes the reasons for the large
short-term fluctuations of C2

n in the Lhasa region from the aspects of atmospheric turbulence
parameters, the ASMA, high-pressure activities at 500 hPa, and atmospheric circulation.
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2. Methods

2.1. Sounding Data

From 3 to 18 August 2018, a thermal turbulent sounding experiment was conducted
at the Lhasa Meteorological Bureau (91◦06′E, 29◦36′N) (“pentagram” in Figure 1) by the
Hefei Institutes of Physical Science, Chinese Academy of Sciences. This experiment col-
lected very precious high vertical resolution thermal turbulence sounding data, which
provided a reliable basis for the study of the fine atmospheric structure in UTLS and the
verification of model simulation over the TP [30]. The sounding balloons were equipped
with conventional meteorological sensors to measure the atmospheric temperature (T),
humidity, pressure (P), and wind speed, along with two-channels turbulent meteorological
radiosondes developed by the Anhui Institute of Optics and Fine Mechanics.

Figure 1. The elevation height of TP (color shaded) and the geographical location of Lhasa (penta-
gram). This figure was plotted using the Lambert conformal conic projection.

Each thermal turbulence radiosonde comprises two platinum wire probes (15 μm
in diameter) separated by a distance of r (=1 m). The platinum wire probes have linear
resistance–temperature coefficients. The thermal turbulence radiosondes measure the
temperature difference between the distance r and voltage change between the two micro-
thermal probes [28–30]. Then, the temperature structure constant (C2

T) in the inertial
subrange can be calculated using the following equation [31]:〈[

T
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x
)
− T

(→
x +

→
r
)]2

〉
= C2

Tr
2
3 (l0 � r � L0) (1)
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r
)

denote the temperatures at two points, 〈· · · 〉 represents the
ensemble average, and l0 and L0 represent the inner and outer scales of the turbulence,
respectively (units of m).

C2
n, the degree of refractive index fluctuation due to variations in atmospheric temper-

ature and density [18,32], can be calculated by inputting temperature (T) and pressure (P)
profiles, according to the relationship between C2

n and C2
T (Equation (2)):

C2
n =

(
79 × 10−6 P

T2

)2
C2

T (2)
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The range of the response frequency of the thermal turbulent radiosonde is 0.1–30 Hz,
and the minimum measurable standard deviation of the temperature fluctuation does not
exceed 0.002 ◦C. In addition, the vertical resolution of the radiosondes was 30 m.

Five thermal turbulence radiosondes were launched during the experiments at about
19:30 local time (LT). The detailed experimental records are summarized in Table 1. Owing
to weather and transmission interference problems, four valid data sets were obtained over
20 km above sea level (ASL, the height below refers specifically to ASL except for special
explanations) in height.

Table 1. Detailed records of radiosonde experiments over the Lhasa.

Radiosonde Number
Release Time

(LT)
Release Altitude

(m ASL)
Termination Altitude

(m ASL)
Remark

1 12 August 2018 19:24:36 3653.6 21,810.0 Cloudy
2 13 August 2018 19:28:03 3654.1 23,221.1 Cloudy
3 14 August 2018 19:40:46 3652.8 30,658.8 Cloudy

4 15 August 2018 19:04:16 3658.2 29,956.9 Storm; micro-thermal
sensors was destroyed

5 16 August 2018 19:20:15 3652.2 31,206.0 Cloudy

2.2. C2
n Integrated Parameters

C2
n integrated parameters (the Fried parameter r0, seeing ε, isoplanatic angle θ0) are of

importance evaluation criteria for the astronomical site testing and the design of adaptive
optics systems, defining as:

r0 = [0.423
(

2π

λ

)2
secβ

∫ ∞

0
C2

n(h)dh]
− 3

5

(3)

ε = 5.25λ− 1
5
[∫ ∞

0 C2
n(h)dh

]− 3
5 = 0.98 λ

r0
(4)

θ0 = 0.057λ
6
5

[∫ ∞
0 C2

n(h)h
5
3 dh

]− 3
5 (5)

where, λ (=550 nm for this study) is a given wavelength for visible light, β is the zenith angle.

3. Results

3.1. ASMA Activities during the Experimental Period

SAH has significant multicenter characteristics [33], particularly bimodality [5,34],
which is attributed to the warm preference of the SAH. Only the Tibetan mode is considered
in this study. Figure 2 shows the distributions of the ECMWF geopotential height at 200-hPa
pressure level on 12 August (Figure 2a), 13 (Figure 2b), 14 (Figure 2c), and 16 (Figure 2d),
overlaid with the wind fields. The black square in Figure 2 denotes the location of Lhasa,
whereas the black circle denotes the center of the SAH that is associated with the largest
geopotential height. As shown in Figure 3a, the center of the SAH gradually moved
northeastward during the experimental period. After 14 August, two SAH centers formed,
with one located over the TP and the other over the Iranian Plateau.
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Figure 2. Distribution of the 200 hPa geopotential height (shaded), wind (vector), the 500 hPa
geopotential height (contour), and the central region of the ASMA (the black square represents the
geographic location of Lhasa, and the black dots represent the strongest negative vortex region. The
same symbols are used below). The weather conditions during experimental periods were analyzed
using the ERA-interim reanalysis data (http://www.ecmwf.int/, accessed on 17 January 2019) of the
European Centre for Medium-Range Weather Forecasts (ECMWF). The horizontal resolutions of the
meridional wind and relative vorticity were 2.5◦ × 2.5◦ and 0.25◦ × 0.25◦, respectively. (a) 12 August
2018; (b) 13 August 2018; (c) 14 August 2018; and (d) 16 August 2018.

° ° ° ° ° ° ° °
°

°

°

°

Figure 3. (a) The geographic locations of the ASMA centers from 12–16 August 2018. A-area
(27.5–32.5◦N, 65–80◦E), B-area (27.5–32.5◦N, 80–95◦E), C-area (22.5–27.5◦N, 65–80◦E), and D-area
(22.5–27.5◦N, 80–95◦E) were divided to identify the ASMA center (the black square represents
the geographic location of Lhasa; the same symbols are used below); (b) the mean vorticity of
20 × 20 grids with the ASMA center considered as the geometric center, representing the strength of
the ASMA; (c) the vorticity at 200 hPa over Lhasa from 12–20 August 2018; and (d) the geopotential
height anomalies at 500 hPa and 100 hPa over Lhasa from 12–20 August 2018.
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Figure 3 shows the development of the ASMA and its influence on Lhasa during the
experimental period. The geolocation of the strongest ASMA center (dots in Figure 3a) is
defined as the position of the greatest potential height in the strongest anticyclone area
among the four areas (denoted as the A-area (27.5–32.5◦N, 65–80◦E), B-area (27.5–32.5◦N,
80–95◦E), C-area (22.5–27.5◦N, 65–80◦E), and D-area (22.5–27.5◦N, 80–95◦E)), according to
the literatures [35,36]. In the physical sense, the criterion used to measure the strength of
the ASMA is that the potential vorticity (PV) at the center of the anticyclone is smaller than
that in the surrounding region [15,37,38]. The intensity of ASMA is shown in Figure 3b.
The strength of the high-pressure system over the TP gradually increased with increasing
geopotential height. Along with the development of a high-pressure system, the ASMA
center moved to the TP after 12 August (onset), and its intensity was generally enhanced
(13–15 August, early stage formation). After 16 August, the ASMA was fully established
over the TP, with its intensity reaching the highest value.

The variations in relative vorticity at 200 hPa (Figure 3c) and geopotential height
anomalies at 500 and 100 hPa over Lhasa (Figure 3d) are also presented. Along with the
approach of the ASMA center toward Lhasa, the strength of the PV at 200 hPa over Lhasa
increased, reached a maximum on 14 August, and thereafter gradually decreased. The
anomalies at 100 hPa over Lhasa (Figure 3d) gradually increased from 12–15 August 2018,
indicating that the transition from low to high pressure activity gradually occurred. Al-
though the high-pressure activity at 500 hPa started to form with a one-day lag, it showed
a more rapid growth trend and lasted longer. It can also be seen from the 500 hPa geopo-
tential height field (Figure 2) that the high-pressure activity at 500 hPa gradually increased
from the 13th, enveloping the entire TP on 16th. Notably, the geopotential height anomaly
changed from negative to positive on 14 August, and the subsequent growing tendency
was fiercer, which indicated that the high-pressure activity at 500 hPa became abnormally
strong from 14 August.

3.2. Characteristics of C2
n under Different ASMA Strength States

We selected four representative profiles obtained at night on 12–14 and 16 August 2018,
as shown in Figure 4, to analyze the variation characteristics of C2

n under different ASMA
strength states over the Lhasa. There were strong maximum peaks of C2

n at 17–18 km (about
100 hPa). Certainly, a weak and thin maximum peak of Cn2 appeared at around 12 km
(about 200 hPa), such as the 16 August 2018.

C2
n was largest on 13 August and smallest on 16 August. On 12 August, ASMA had a

subtle impact on the C2
n profile over Lhasa. As the ASMA center approached Lhasa and its

intensity increased, C2
n increased correspondingly on 13 and 14 August. Although these

two days are in the middle stage of the ASMA, C2
n decreased on 14 August to a lower

value than that recorded on 13 August in the range of ~15–20 km. With the departure and
attenuated intensity of the ASMA, C2

n decreased rapidly on 16 August 2018.
In general, when the ASMA intensity was higher or the ASMA center was closer to

Lhasa, a more pronounced “upper highs and lower lows” pressure field structure appeared
over Lhasa. The stronger the convective activity, the greater the value of C2

n. However,
changes in the low-level pressure field, such as at 500 hPa, may have had a crucial impact
on the vertical profile of C2

n. A turning point occurred on 14 August, when the geopotential
anomaly value changed from negative to positive, that is, the pressure field constructed in
the UTLS changed from “upper highs and lower lows” to “upper highs and lower highs”.

338



Remote Sens. 2022, 14, 4104

Figure 4. Vertical profiles of the atmospheric refractive index structure constant C2
n in the UTLS.

In comparison with that recorded on 16 August 2018, the high-pressure activity at the
500 hPa layer was weaker on 14 August, and the upward movement of the atmosphere
was only slightly suppressed [37]. Therefore, C2

n on 14 August was higher than that on
16 August, but lower than that on 13 August.

3.3. Contribution of Atmospheric Turbulence in UTLS to the Total Integrated Parameters

The turbulent energy ratio (TER) in the range of 10–20 km, describing the contribution
of atmospheric turbulence in this layer to ε and θ0 of the total layer, can be calculated using
the following equation [29]:

TERε =
ε(i)5/3

ε(total)5/3 × 100% (6)

TERθ0 = θ0(i)5/3

θ0(total)5/3 × 100% (7)

where, i stands for 10–20 km turbulent layer.
Table 2 summarizes the integrated contribution of seeing (ε) and isoplanatic angle

(θ0) from the range of 10–20 km and the total integrated parameters. The atmospheric
turbulence in the range of 10–20 km has a more significant proportion of ε(total) (more than
60%) and θ0(total) (more than 70%) over the Lhasa, which is consistent with the results of
Gaomeigu site, Yunnan observatories, Chinese Academy of Science [29]. The ε(i) (θ0(i))
differs 0.5” (0.21”) between 13 and 16 August 2018, and TERε, as well as TERθ0 , varies so
widely (more than 10%), which indicates that the variations of C2

n under different ASMA
strength states are related with the astronomical observations.

339



Remote Sens. 2022, 14, 4104

Table 2. The contribution of seeing (ε ) and isoplanatic angle (θ0 ) from the range of 10–20 km
to total height layer.

12 August
2018

13 August
2018

14 August
2018

16 August
2018

ε (”)

ε(i) 1.08 1.32 1.19 0.82

ε(total) 1.30 1.63 1.60 1.11

TERε 73.73% 70.21% 61.09% 59.76%

θ0 (”)
θ0(i) 0.44 0.35 0.41 0.56

θ0(total) 0.40 0.30 0.35 0.45

TERθ0 85.58% 78.82% 77.84% 69.65%

4. Discussion

4.1. Potential Temperature Gradient

Equation (2) indicates that the most critical step in the parameterization scheme of
atmospheric turbulence is how to parameterize C2

T , and C2
n can be calculated logically.

According to the dimensional analysis, Tatarski [31] defined the atmospheric temperature
structure constant as follows:

C2
T = 1.6εθε− 1

3 (8)

where εθ denotes the molecular diffusivity caused by temperature difference, and ε is the
turbulent energy dissipation rate. The energy of atmospheric turbulence mainly originates
from the dynamic and thermal effects. The former implies that when there is wind direction
and wind speed shear, the turbulent shear stress works on the air micro-clusters, whereas
the latter implies that in an unstable atmosphere, the buoyant force works on the air
micro-clusters that move vertically to increase the turbulence.

Bougeault and Lacarrere [39] parameterized C2
T as follows:

C2
T = 0.59L4/3

(
δθ
δz

)2
∅3 (9)

where L denotes the Bougeault–Lacarrere mixing length, ∅3 is the reversed turbulent
Prandtl number, and θ is the potential temperature. Refer to the detailed derivation process
in the literature [40].

L =
√

2e
g
θ

δθ
δz

(10)

where e denotes the turbulence energy. Parametric Equations (8)–(10) clearly indicate that,
the potential temperature gradient is directly related to the buoyancy frequency, turbulent
energy dissipation rate, and temperature structure constant. This is an indispensable and
important parameter in the parameterization of atmospheric turbulence [41]. Therefore,
under different ASMA intensities, the numerical changes in the potential temperature
gradient can also reflect the thermal convection intensity.

4.2. Discussion on the Temperature Structure in UTLS

Radiosonde data were used to compare and analyze the atmospheric temperature
structure from 12 to 16 August 2018. The temperatures above ~16 km fluctuated signifi-
cantly during these days, where was stably controlled by ASMA. As shown in Figure 5b,
the cold-point tropopause (CPT), which corresponds to the coldest temperature, was higher
in the middle of the ASMA than in other stages, and this timing may have coincided with a
decrease in static stability [42] and may be related to strong convective activities [43,44].
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°

°

Figure 5. (a) Vertical temperature profiles from 12 to 16 August 2018. (b) Cold-point tropopause
height (the black line) and temperature (the red line) from 12 to 16 August 2018. The lowest layer of
the multi-tropopause serves as the CPT height. (c) First-order linear piecewise fitting to log10

(
C2

n
)

within the upper troposphere, tropopause, and lower stratosphere.

Table 3 summarizes the fitting results of log10
(
C2

n
)

using first-order linear fitting
within the upper troposphere, tropopause, and lower stratosphere (Figure 5c), and the
coefficients represent the increase rate of log10

(
C2

n
)
, reaching respective maximum value at

tropopause layer. However, when the ASMA intensity is large, the log10
(
C2

n
)

increase rate
in the tropopause is weakened, and the log10

(
C2

n
)

in the lower stratosphere decreases.

Table 3. Increase rate of log10 C2
n (m7/3) within upper troposphere, tropopause, and lower stratosphere.

12 August 2018 13 August 2018 14 August 2018 16 August 2018

Upper troposphere
(10–15.5 km) 0.02 0.02 −0.01 0.04

Tropopause
(15.5 km—CPT) 0.09 0.02 −0.01 0.05

Lower stratosphere
(CPT—20 km) −0.13 −0.27 −0.29 −0.13

During the experimental period, the potential temperature profiles varied significantly
in the UTLS (Figure 6a), particularly in the upper troposphere. The potential temperature
lapse rate (unit: K/km) within three heights in the range 10–16 km was fitted using
the first-order linear piecewise method (Table 4). The potential temperature lapse rates
in the ranges of 10–11 km (Figure 6b) and 11–12.5 km (Figure 6c) corresponded to the
minimum and maximum recorded values on 13 and 16 August 2018, respectively. Under
the control of the high-intensity ASMA on 14 August 2018, the potential temperature
lapse rate was approximately equivalent to the values recorded on 12 and 16 August. In
particular, in the 10–11 km range, the potential temperature lapse rate on 14 August was
approximately 2.2 times as high as that on 13 August owing to high-pressure activity
at 500 hPa. This shift suppressed the vertical flow of the atmosphere and enhanced the
static stability of the UTLS.

341



Remote Sens. 2022, 14, 4104

Figure 6. (a) Vertical profiles of potential temperature on 12–14 and 16 August 2018. (b,c) show
magnified views of the 12.5–16 km and 10–12.5 km ranges, respectively.

Table 4. Potential temperature lapse rate (K/km) within the range of 10–16 km.

12 August 2018 13 August 2018 14 August 2018 16 August 2018

10–11 km 4.84 1.48 3.29 3.48
11–12.5 km 2.19 2.03 2.96 2.6
12.5–16 km 3.79 3.65 3.73 3.24

In general, the potential temperature lapse rates for the four days were at the same
amplitude within the range of 12.5–16 km. However, the trend of potential temperature
on 16 August 2018 was significantly different from that on the other three days within
12.5–16 km. There was a weak thermal inversion layer in the range of 15–16 km on
16 August 2018. The inversion layer was able to block the upward movement of air [45,46],
corresponding to a small C2

n value in the range of 10–15 km.
Piecewise linear fitting was performed on the potential temperature profiles within

the tropopause and lower stratosphere regions at intervals of 1000 m. The CPT height of
the TP was approximately 100 hPa, and the potential temperature lapse rate within 2 km
below the CPT varied significantly among the four profiles. The potential temperature
change rate on 14 August during the ASMA was twice as high as that on 12 and 16 August.
This indicates that the stronger the ASMA, the greater the potential temperature lapse rate
in tropopause. Above the CPT, C2

n cannot escape the fate of being affected by the ASMA,
but thermal convection is inhibited in the lower stratosphere. The dynamic and thermal
structures of the troposphere and stratosphere are completely different, and this difference
is mainly characterized by high stability and weak turbulence in the stratosphere [14,47,48].

The tropopause is the mixed layer between the troposphere and stratosphere and it
has dual characteristics of both the troposphere and stratosphere [49–51]. The CPT height
corresponds to the minimum saturated water vapor mixing ratio, which is considered to
be the upper boundary of the tropical tropopause [52]. Figure 7 shows that the potential
temperature lapse rate is completely different between the tropopause and lower strato-
sphere, mainly showing that the potential temperature lapse rate increases sharply in the
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lower stratosphere. The turbulence characteristics of the lower stratosphere are hardly
affected by the high-pressure activity over the 500-hPa layer, and the ASMA is the strongest
influencing factor. Figure 2c shows that the Lhasa area was affected by the decreased ASMA
on 12–14 and 16 August 2018. The potential temperature lapse rate in the tropopause area
and above the CPT reached a maximum on 14 August and a minimum on 12 August 2018.
The area 2 km lower than the CPT belongs to the tropopause mixed layer, and the potential
temperature lapse rate in this area was largest on 14 August; the other three days did
not differ extensively. It is inferred from the current data that the presence of the ASMA
inhibits the vertical movement of the atmosphere in the lower stratosphere and tropopause.
However, this conclusion requires additional data for verification.

Figure 7. The piecewise fitting lines of potential temperature in tropopause and lower stratosphere.
The potential temperature profiles are linearly fitted with the least-square method at intervals of
1000 m. The numbers indicate the coefficients (unit: K/km) of the piecewise fitting, indicating the
potential temperature lapse rates. The pink dotted lines represent the corresponding CPT heights.
(a) 12 August 2018, (b) 13 August 2018, (c) 14 August 2018, and (d) 16 August 2018.

5. Conclusions

In this study, the impacts of the ASMA and high-pressure activities in the 500 hPa
layer on C2

n were analyzed under different ASMA strength states over the Lhasa during the
summer based on precious in situ sounding data.

The atmospheric refractive index structure constant C2
n characterizes the optical turbu-

lence intensity, which is directly affected by the atmospheric temperature. The ASMA is a
warm, high-pressure system in the upper troposphere that causes the TP to be a strong heat
source during the summer, heating the air over the TP. The upper atmosphere diverged to
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form a high-pressure circulation system, and the lower atmosphere converged to form a
low-pressure circulation system. The “upper highs and lower highs” pressure structure
enhances the potential temperature lapse rate, which is conducive for the reduction in static
stability and development of optical turbulence in the UTLS. However, once strong high-
pressure activity exists in the lower pressure layer, such as at 500 hPa, the high-pressure
system is dominant from the 500- to 100-hPa layer, constituting an “upper highs and lower
highs” pressure field structure. In comparison with the “upper highs and lower lows”
pressure field structure observed in most cases, this particular pressure field structure
suppresses the vertical potential temperature lapse rate and vertical upward movement,
and weakens the atmospheric convective activity. Under the combined action of the ASMA
and low-pressure activity over 500 hPa, the potential temperature lapse rate decreased
rapidly, and C2

n increased by an order of magnitude in the upper-troposphere.
The situations in both the tropopause and lower stratosphere are different from those

in the upper troposphere, where atmosphere is almost unaffected by high-pressure activities
at 500 hPa. The difference in the potential temperature lapse rate caused by the ASMA is
particularly manifested in the region adjacent to the tropopause. The best evidence is that
the potential temperature lapse rate in high-intensity ASMA situations is twice as high as
that in low-intensity states. In other words, the potential temperature gradient can not only
reflect the static structure of the atmosphere represented by buoyancy frequency, but also
qualitatively analyze the variation tendency of C2

n. Under different ASMA intensities, the
potential temperature lapse rate is consistent with the variation tendency of C2

n, and the
profile on 13 August 2018, was the most evident.

The tropopause height over the TP is close to the 100-hPa layer, corresponding to the
scope of activity of the ASMA. The tropopause height is closely related to the turbulence
intensity. Strong turbulence elevates the CPT to a higher position, and the CPT temperature
is lowered [42,53]. When the impact of the ASMA is greater, the CPT height rises by
approximately 1.5 km.

In general, the ASMA has different mechanisms of influence on the atmospheric
refractive index structure constant C2

n in the upper troposphere, tropopause, and lower
stratosphere. It was found that during high-intensity ASMA, turbulent activity in the
tropopause and lower stratosphere (in the upper-troposphere) is suppressed (promoted),
which may be not conductive to the STE process (astronomical observations).

The extent of the promotion of convection by ASMA is not only related to the position
of its center and strength but is also inseparable from the high-pressure activities of the
lower atmosphere. Clearly, because of the limited radiosonde data considered in this
study, determining whether our discussion is regional and limited and the reasons for the
short-term C2

n fluctuations necessitate further exploration and analyses with various and
abundant data, such as Stereo-SCIDAR measurements [26].
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Abstract: Global precipitation measurement (GPM) is one of the effective means employed to observe
orographic precipitation, and its inversed GPM DPR data can be used to study the microphysical
structure of precipitation particles. This study considers statistics on convective precipitation (CP)
and stratiform precipitation (SP) events over three types of terrain (plains, mountains, and high
mountains) using the DPR onboard the GPM Core Observatory from May to September of 2014–2021
to analyze the vertical structure of heavy CP and SP. In mountain areas and high mountain areas, the
updraft rendered by topography or seeder-feeder mechanism is not only conducive to the collision
and merger of raindrops into large raindrops, but also increases the concentration of small drops,
which is the main reason why the occurrence probability of not only large but also small raindrops
increases and the horizontal distribution domain of mass weighted average raindrop diameter (Dm)
widens. For heavy SP, the occurrence probability of medium-diameter precipitation particles below
the freezing height (FzH) over high mountains is greater than those over plains. The precipitation
particles above 10 km altitude of high mountains have characteristics, such as lower droplet number
concentration and larger diameter, compared with those over plains. Furthermore, the study also
analyzed the correlation between storm top altitude (STA) and Dm, water vapor and STA respectively.
This study is helpful to further understand the effect of topography on heavy precipitation through
cloud microphysical processes and the vertical structure of precipitation.

Keywords: heavy precipitation; GPM; dual frequency spaceborne radar; vertical structure; micro-
physical characteristic

1. Introduction

Precipitation types can be mainly classified as stratiform precipitation (SP) and convec-
tive precipitation (CP) [1]. There are significant differences between SP and CP regarding
the growth of precipitation particles by aggregation, riming, and coalescence, which is due
to the different thermal dynamics and microphysics processes of the two types of precipita-
tion [2,3]. The vertical structure of precipitation can reflect the characteristics of dynamics
and microphysical of hydrometeor growth attenuation in the precipitation clouds. These
microphysical and thermodynamic processes can affect the precipitation efficiency, and the
intensity of surface precipitation, likewise, plays a role in determining precipitation type to
some extent [4–7]. The topography has a very important influence on the vertical structure
of precipitation and clouds [8–10], manifested in that topographical thermodynamic and
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dynamic processes affects atmospheric circulation, thereby the initiation and development
of rainfall systems was significantly affected.

Sichuan province is located in the interior of southwest China, with the Qinling
Mountains to the north, the Yun-Gui Plateau to the south, and the eastern edge of the
Qinghai-Tibet Plateau. The terrain of Sichuan is high west and low east that the topography
is diverse, and the weather processes are also complex and changeful. Heavy rainfall is one
of the meteorological disasters with the highest frequency and the severest personal casualty
and property loss in the Sichuan Basin and its surrounding areas. This region not only
has high annual average precipitation, but is also prone to short-time heavy precipitation
because of the complex terrain. In the past, research on mountain precipitation was difficult
due to scarce surface observational data. At the same time, the detection of weather radar in
mountainous areas is limited by terrain [11]. The Global Precipitation Measurement (GPM)
mission was initiated by the National Aeronautics and Space Administration (NASA) and
the Japan Aerospace and Exploration Agency (JAXA), which is the successor to Tropical
Rainfall Measuring Mission (TRMM). The GPM observatory carries the first spaceborne
dual-frequency phased array precipitation radar (DPR), developed by JAXA and National
Institute of Communication Technology (NICT), and a conical-scanning multichannel
microwave imager, developed and built by the Ball Aerospace and Technology Corporation
under contract with NASA’s Goddard Space Flight Center (GSFC). The GPM sensor has
higher sensitivity and wider measurement range compared with TRMM instruments, and
can provide more accurate precipitation microstructure information [12–14]. The detection
of precipitation radar (PR) from satellite is not restricted to the geographical environment.
Thus, it is feasible for PR to monitor cloud clusters on the distant seas and oceans, the
plateau, or mountains where ground-based PR is hard to deploy, which can effectively
make up for the deficiency of ground-based PR. In addition, the large precipitation particles
are usually located in the middle and lower layers of cloud cluster, in the upper layer of
cloud cluster, radar beam form satellite attenuated more lightly than that from ground-
based because of the work type of satellite PR detection is top-down, which is available for
obtaining the structural information of the upper layer of cloud cluster [15].

The reliability of GPM DPR data has been evaluated and verified by many scholars.
Liao et al. [16] conducted a physical evaluation of the rain profiling retrieval algorithms
for DPR on board the GPM Core Observatory satellite and proved that the DPR dual-
wavelength algorithm can generally provide accurate rainfall rate. Jin et al. [17] evaluated
the applicability of the GPM data in Mount Taishan area, and the results showed that the
GPM had the highest accuracy in the mountainous area that could estimate the precipitation
system with more accurate accuracy and lower error. Zhang et al. [18] revealed that the GPM
DPR inversion product was more capable of revealing structures of both strong and light
precipitation through individual cases and statistical analysis. Lasser et al. [19] compared
the precipitation observation data measured by GPM DPR with that measured by ground
weather stations, and the result showed that the precipitation observation data measured
by GPM DPR was basically consistent with the data measured by ground meteorological
station. Sun et al. [20] compared the GPM DPR data with the measured results of one-
dimensional (1-D) laser-optical particle size velocity (PARSIVEL) disdrometers over the
Yangtze-Huai River Valley in central China, and found that the measured results were
similar, the mean deviation was relatively small, and the skewness was close to zero. 16
laser-optical PARSIVEL disdrometers deployed in Sichuan were used to validate the GPM-
DPR results by Li et al. [21] verified that the DPR data in this area are basically credible.
However, it is also mentioned that due to the complex topography of Sichuan Province and
the difference of measurement principles between DPR and disdrometers, it is difficult to
have identical and ideal conditions to evaluate DPR data by PARSIVEL disdrometers. All
of the above comparative evaluation works show that the GPM DPR data are very reliable.

Drop size distribution (DSD) and its spatial variability is not only essential in under-
standing the microphysical processes that occur at the different stages of a precipitating
system, but also useful in microwave communication, soil erosion and landslide triggering
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studies [22–24]. Seela et al. [25] studied the DSD variability in summer season rainfall
between two islands in the western Pacific region and the results indicated that both orog-
raphy and aerosol loading are responsible for the spatial variability of DSD. Harikumar
et al. [26] made a comparative study on the data of four tropical stations in the peninsular
India and found that orographic rain has larger drops when compared with non-orographic
rain when the rain rate is high. Zwiebel et al. [27] studied the impact of complex terrain
located in France on the structure of rainfall and mentioned that the evolution of the DSD
over the transition and plain areas is dominated by coalescence and evaporation.

In this study, DPR observations are used to analyze the radar reflectivity factors and
the vertical structural characteristic of DSD of SP and CP over different terrain regions
(plains, mountains, high mountains) in the Sichuan Basin and its surrounding areas, ex-
pecting to obtain the characteristics of precipitation structure, which will help in further
understanding the influence of mountain topography on precipitation structure and inter-
nal microphysical processes, and it also plays a very important role in deepening scientific
recognition of mountain heavy rainfall mechanism. The remainder of this study is arranged
as follows: The dataset used and the methodology are given in Section 2. Section 3 pro-
vides the results, including the vertical structure characteristics, horizontal distribution
characteristics, and the relationship between each physical quantities of stratiform and CP
over different types of terrain. The discussion is provided in Section 4 and followed by a
summary in Section 5.

2. Data and Methods

GPM Core Observatory takes about 93 min to fly around the earth. The global coverage
is from 68◦S to 68◦N, and the flight heights is at the altitude of 407 km. The GPM radar is
able to provide observations of the 3D structure of precipitation from the surface to 22 km
altitude. The DPR instrument is made of a Ka-band precipitation radar (KaPR) operating at
35.5 GHz and a Ku-band precipitation radar (KuPR) at 13.6 GHz, and the KuPR and KaPR
will provide coaligned 5-km-resolution footprints on Earth’s surface. 2A.GPM.DPR is the
dataset of DPR Ku and Ka-band radar reflectivity profile and radar-based precipitation
retrievals. The dataset carries three radar profiles, including the Ku-band normal scan
(NS), the Ka-band matched scan (MS), and the Ka-band high-sensitivity scan (HS). The
NS has a nominal vertical range resolution of 250 m with cross-track swath widths of
245 km, the MS has a nominal vertical range resolution of 250 m with cross-track swath
widths of 120 km, and the HS has a nominal vertical range resolution of 500 m with cross-
track swath widths of 120 km [12].The 2A.GPM.DPR database V06 (covering the period
from May to September of 2014–2021) has been used in the study, which can provide
detailed precipitation information, including reflectivity factor with attenuation correction
(Ze), DSD, storm top altitude (STA), freezing height (FzH), rain rate (RR), precipitation
type, and so on. In single frequency classification (CSF) modules, i.e., in Ku-only and
Ka-only modules, precipitation type classification is made by a Vertical profiling method
(V-method) and by an Horizontal pattern method (H-method) [28,29]. In the dual frequency
module, in place of the V-method, the measured dual frequency ratio (DFRm) method is
used for precipitation type classification and for BB detection in the inner swath [30,31],
classifying rain into stratiform, transition, and convective. More details can be found
online at https://gpm.nasa.gov/sites/default/files/2019-05/ATBD_DPR_201811_with_
Appendix3b.pdf (accessed on 23 August 2022).

The research regions are the Sichuan Basin and its surrounding areas of China (99◦E–
109◦E, 27◦N–33◦N). ETOPO1 is a 1 arc-minute global relief model that was developed
by the National Geophysical Data Center (NGDC), an office of the National Oceanic and
Atmospheric Administration (NOAA), which was used to divide the research regions in
this study. Fan et al. [32] found the best statistical window of topographic relief in Sichuan
to be 9.92 km2, while the statistical window of topographic relief is defined as 13.69 km2 in
this paper because of the limit of resolution of ETOPO1. Topographic relief is the difference
between maximum and minimum of altitude. Referring to related research results [33–35],
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dividing the research regions into three types of topography by ETOPO1 (Figure 1): 1.
Plains with altitude from 0 to 1500 m, topographic relief < 100 m; 2. Mountains with altitude
from 500 to 1500 m, topographic relief ≥ 200 m; 3. High mountains with altitude from 1500
to 4000 m, topographic relief ≥ 200 m. In Figure 1b, the white areas represent the place
where topographic relief does not meet the requirements of three categories mentioned
above, e.g., the white areas of 1500–4000 m above mean sea level represent high-altitude
areas with flat terrain as well as with few rainy pixels, therefore not going to study such
areas. For statistical analysis, the number of rainy pixel samples occurred in study regions
during the period May to September of 2014–2021 was counted based on GPM DPR data
(Table 1), and Figure 2 shows the spatial distribution of the number of stratiform and
convective rainy pixels.

Figure 1. Administrative regional division of the People’s Republic of China (a), and geographical
division of Sichuan Basin and its surrounding areas; (b) The green, yellow and brown areas represent
the plains, mountains and high mountains respectively.

Table 1. Number of convective and stratiform rainy pixels of different types of terrain in Sichuan
Basin and its surrounding detected by GPM DPR from May to September of 2014–2021.

RR (mm/h) Plain Mountain High Mountain

0.5 ≤ RR < 2 2186 (32,530) 4616 (72,504) 6646 (65,973)
2 ≤ RR < 4 2031 (10,851) 4146 (25,204) 3885 (14,688)
4 ≤ RR < 8 1985 (5301) 4263 (12,772) 3481 (5545)
8 ≤ RR < 20 1685 (1674) 3530 (3813) 2126 (1121)

RR ≥ 20 981 (247) 1579 (483) 495 (85)
Numbers in brackets denote SP, and numbers outside brackets denote CP.

Figure 2. The spatial distribution of heavy stratiform (a) and convective (b) rainy pixels. The heavy
precipitation occurs over plains (green dots), mountains (yellow dots) and high mountains (brown dots).

The contoured frequency by altitude diagram (CFAD) is an effective method to repre-
sent the vertical structure of precipitation that has been applied in many studies [36,37]. The
entire frequency distribution normalized by dividing by the maximum absolute frequency
of the samples within the region of analysis is NCFAD, which permits the comparison
of CFADs between regions despite the different absolute frequencies [38]. In this paper,
NCFAD is mainly used to statistically analyze the vertical structure characteristics of SP
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and CP that occurred over plains, mountains and high mountains regions of the Sichuan
Basin and its surrounding area. RR ≥ 20 mm/h is defined as heavy precipitation [39], and
2A.GPM.DPR retrievals with RR < 0.5 mm/h are discarded from this study because of the
limitations of dual-frequency retrieval. For the detailed discussion, the ground precipitation
grades were divided into 5 levels, including 0.5 < RR ≤ 2 mm/h, 2 < RR ≤ 4 mm/h, 4 < RR
≤ 8 mm/h, 8 < RR ≤ 20 mm/h and RR ≥ 20 mm/h. Since shallow rain is archived as CP in
DPR retrievals, excluded it from the CP, and only precipitation events in which the phase
behavior of near-surface particles is liquid are considered. The STA, FzH, and bright band
height in this study are absolute heights altitude relative to sea level, not relative to the
surface. In addition, the horizontal distribution of STA and other physical quantity of DPR
orbit dataset were gridded at 0.25◦ × 0.25◦. For example, the average STA denotes the ratio
of the sum of STA within the 0.25◦ × 0.25◦ to the total number of samples within that area.

3. Results

3.1. Vertical Distribution Characteristics of Radar Reflectivity Factor

Figure 3 shows the vertical structure of reflectivity factor. In addition to revealing the
vertical structure of precipitation, the maximum frequency profile of the Ze is also a good
indicator of its microphysical processes [40]. SP is usually characterized by bright band near
FzH, and the bright band is a good indicator of phase change of hydrometeor [41]. The
hydrometeors above bright band are mainly ice or snow. In bright band, there are mixed-
phase hydrometeors including partially melted ice, snow and raindrops, while it occurs at the
liquid phase below bright band. As shown in the maximum frequency profile of Ze from 6
to 10 km, Ze of two types of heavy precipitation increases with altitude reducing, indicating
that precipitation particles are growing as they are falling. For stratiform heavy precipitation
(Figure 3a–c), different to CP, the growth rate of Ze is very large near the freezing layer that
the profile tends to be horizontal, showing particles undergoing a rapid transition from ice
to liquid phase near the freezing layer. Figure 4 shows the correlation between the elevation
and FzH for heavy rainfall. Only Figure 4e,g,h passed the 0.01 significance level, and the
r-value is relatively large in Figure 4h, which suggests that the FzH of the two types of heavy
precipitation is hardly affected by topography, except for heavy CP over high mountains.

Figure 3. Normalized contoured frequency by altitude diagrams (NCFAD) of reflectivity factor of
two types of heavy precipitation over plains (a,d), mountains (b,e), and high mountains (c,f). The
color areas and black solid lines indicate occurrence frequency and maximum frequency profile of
reflectivity factor, respectively. The black and blue dash lines represent STA and FzH, respectively.
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Figure 4. Scatter plots of elevation and FzH of two types of heavy precipitation over (a,e) three areas,
(b,f) plains, (c,g) mountains, and (d,h) high mountains. r represents Pearson correlation coefficient,
p represents significance level, y and red solid lines are the regression equation and N represents
sample size.

Figure 5 exhibits the mean Ze profiles with various RR. Ze increases from STA to the
surface with altitude decreasing, and the near-surface Ze increases with near-surface RR
increasing. As shown in Figure 5a–e, the bright band characteristics of SP are remarkable
at an altitude of about 6 km, and there is a clear turning point near FzH, which is the
microphysical property of the SP particles during the falling process, while Ze profiles of
CP do not have such characteristic. For heavy precipitation, Ze from FzH to the surface
overall increases, indicating that the coalescence of falling particles is more efficient than
breakup and evaporation.

 

Figure 5. The vertical profile of Ze with various near-surface RR. (a–e) represent SP (top panels),
(f–j) represent CP (bottom panels). The green, black and red solid lines represent plains, mountains
and high mountains, respectively. The square and round dots represent STA and FzH, respectively.
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3.2. Vertical Distribution Characteristics of Mass-Weighted Mean Raindrop Diameter

DSD is a fundamental property of precipitation, which is very important for under-
standing the microphysical processes occurring in precipitation systems. DSD contains two
parameters: mass-weighted mean raindrop diameter (Dm in mm) and normalized DSD
intercepts (Nw in mm−1/m3), where Nw denotes the raindrop number concentration as
rainwater content and raindrop size are constant. The relationship between dBNw and Nw
is dBNw = 10 lg(Nw). For simplicity, hereinafter, dBNw is used rather than Nw. Figure 6
shows the NCFAD of Dm of two types of heavy precipitation over different types of terrain.
Small precipitation particles (Dm ≤ 1.2 mm) are mainly concentrated between STA and FzH,
and the precipitation particles in this layer mainly exist in the form of ice crystals. With the
elevation of terrain, the horizontal distribution domain of Dm increases while the vertical
distribution domain decreases. For the same terrain, the horizontal and vertical distribution
domain of Dm of heavy SP is smaller than that of heavy CP. In addition, the maximum
Dm of the horizontal distribution domain is also smaller than that of CP. For heavy CP,
with the elevation increasing, the occurrence probability of large raindrops (Dm ≥ 2.6 mm)
increasing, as shown in Figure 6d–f. It can be clearly seen from Figure 6a–c that in heavy SP,
precipitation particles with Dm of 1.3–1.6 mm below FzH of mountains and high mountains
have a higher probability of occurrence than that of plains. This is mainly caused by the
difference of water vapor content near FzH, which will be discussed in Section 4.

Figure 6. NCFAD of Dm of two types of heavy precipitation over plains (a,d), mountains (b,e), and
high mountains(c,f). The color areas indicate occurrence frequency of Dm. The black and blue dash
lines represent STA and FzH, respectively.

From Dm profiles of different rain intensity levels (Figure 7), it can be seen that the
value of CP near the surface is always greater than SP under the same terrain and rain
intensity levels. The Dm profiles of light CP (0.5 ≤ RR < 2 mm/h) that are shown in Figure 7f
are obviously different from that of other rainfall intensity. The Dm profile of light CP
over high mountains decreases as altitude decreases from STA to FzH, while that of other
rainfall intensity increases as altitude decreases. Different from light SP (Figure 7a), the
Dm profile of plains of CP (Figure 7f) decreases as altitude decreases from FzH to surface
because of the less water vapor in low-level atmosphere over plains, which tends to reduce
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the diameter of small raindrops by evaporation. Above an altitude of 10 km, the Dm of
heavy precipitation over high mountains are larger than those over plains and mountain
(Figure 7e,j), particularly in heavy SP, which is significantly different from that of other
rainfall intensity.

 

Figure 7. The vertical profile of the mean Dm with various near-surface RR. (a–e) represent CP,
(f–j) represent SP. The green, black and red solid lines represent plains, mountains and high moun-
tains, respectively. The square and round dots represent STA and FzH, respectively.

There is a close relationship between Dm and Ze. In general, large Dm of precipitation
particles correspond to large Ze. As shown in Figure 7e,j, the near-surface Dm of CP is
significantly larger than that of heavy SP, and therefore the near-surface Ze is also larger
than that of SP (Figure 5e,j).

3.3. Vertical Distribution Characteristics of dBNw

For the same terrain, compared with dBNw NCFAD of two types of heavy precipitation
(Figure 8), it shows that the horizontal distribution domain of dBNw of heavy SP over
plains and mountains is wider than that of CP while the high frequency areas of dBNw are
not as concentrated as those of heavy CP. In contrast, the horizontal distribution domain of
dBNw of heavy SP over high mountains is smaller than that of CP while the high frequency
areas are more concentrated. For different types of terrain, the vertical structure of dBNw
of heavy CP is also different, as shown in Figure 8d–f: The higher elevation is, the wider
horizontal distribution domain of dBNw is. Below FzH, the high frequency areas of dBNw
over plains are the most concentrated with 34–38 mm−1/m3, while those over mountains
and high mountains are more scattered, especially over high mountains. The opposite is
true for heavy SP. The high frequency areas of dBNw over mountains and high mountains
are more concentrated than those over plains (Figure 8a–c).
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Figure 8. Normalized contoured frequency by altitude diagrams (NCFAD) of dBNw of two types of
heavy precipitation over plains (a,d), mountains (b,e), and high mountains (c,f). The color areas indicate
occurrence frequency of dBNw, the black and blue dash lines represent STA and FzH, respectively.

Figure 9 shows the mean dBNw profiles with different surface rainfall intensity. In each
panel, dBNw overall increases as altitude decreases. For heavy precipitation (Figure 9e,j),
the dBNw above 10 km over high mountains are obviously smaller than those over plains.
Combined with the mean Dm profiles of heavy precipitation (Figure 7e,j), compared with
plain areas, precipitation particles over high mountains have the characteristics of lower
number concentration and larger scale above 10 km.

 

Figure 9. The vertical profile of dBNw with various near-surface RR. (a–e) represent SP, (f–j) represent
CP. The green, black and red solid lines represent plains, mountains and high mountains, respectively.
The square and round dots represent STA and FzH, respectively.
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3.4. Distribution Characteristics of Storm Top Altitude and Water Vapor

In general, for the same type of precipitation, the higher STA is, the heavier precipita-
tion is. STA is usually lower than the cloud top height, and when STA is low, the cloud top
height varies widely. The higher STA is, the more similar the cloud top height is to STA [42].

Figure 10 shows the horizontal distribution of STA when heavy precipitation occurred.
For the same types of terrain, STA of heavy CP is overall higher than that of heavy SP.
For heavy CP, the high value areas of STA over plains (Figure 10d) are mainly located
in the central and western of the Sichuan Basin where roughly correspond to the high
frequency areas of heavy precipitation. The high value areas of STA over mountains are
mainly located in the region where the plain and the mountain meet in the west of the
Sichuan Basin (Figure 10e). In general, STA over plains is higher than those over mountains
and high mountains, regardless of heavy CP or SP.

Figure 10. The horizontal Distribution of storm top altitude of two types of heavy precipitation over
plains (a,d), mountains (b,e), and high mountains (c,f).

In order to have a more intuitive understanding of the distribution of STA, Figure 11
shows the probability distribution functions (PDFs) of STA over plains, mountains and high
mountains with different rain intensity levels. It can be seen that when heavy precipitation
occurs, STA is mostly above 6 km altitude (cloud system is deep). In the same terrains,
STA of heavy CP is generally higher than heavy SP (Figure 11e,j), which also indicates that
convective cloud develops more vigorously than stratus in the vertical direction. When
the RR is less than 8 mm/h, there is no significant difference in STA of CP and SP over
the same terrain. When the surface RR increased to 8–20 mm/h, STA of precipitation over
mountains and high mountains was still roughly the same, but STA of precipitation over
plains began to show significant differences. STA of CP over plains was significantly higher
than that of SP, and its highest frequency was about 4 km higher than that of SP. When
CP occurs, with the increase of RR, the height corresponding to the maximum occurrence
frequency of STA also increases. For the two types of precipitation with RR < 20 mm/h,
STA of precipitation over high mountains is generally higher than those over plains and
mountain. When the RR ≥ 20 mm/h for heavy CP, STA over plains is obviously higher
than those over mountains and high mountains. STA of heavy CP over plains is mainly
concentrated at 10–14 km altitude, while that in mountains and high mountains are mainly
concentrated at 9–11 km altitude.
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Figure 11. Probability distribution functions (PDFs) of storm top altitude with various near-surface
RR of SP (a–e) and CP (f–j) over different topographic. The green, black and red solid lines represent
plains, mountains and high mountains, respectively.

It is usually considered that convective overshooting is with STA > 10 km, and
deep SP is with STA > 8 km. Fu et al. [43] divided STA into three categories, including
STA < 5 km, 5–10 km and > 10 km, which represent shallow convective, moderate convec-
tive and deep convective (also called convective overshooting) respectively. Likewise,
divided STA into below 5 km, 5–8 km and above 8 km, representing shallow stratiform,
moderate stratiform and deep stratiform respectively. Statistics on the categories of STA
over the Sichuan Basin and its surrounding areas are shown in Table 2. It can be found
that with the increase of RR, the proportion of shallow precipitation gradually decreases,
while the deep precipitation increases with the increase of RR. For heavy precipitation, the
proportion of deep convective over plains is 69.6%, higher than mountains (54.8%) and
high mountains (57.2%). For heavy SP, there is little difference in the proportion of deep
stratiform between plains and high mountains (64.4% and 65.9%, respectively), both higher
than mountains (50.1%).

STA is related to the strength of the updraft and affected by properties of the under-
lying surface [44]. The updraft not only influences STA, but also plays a significant role
in the size of the precipitation particles. Therefore, it is speculated that there may be a
correlation between STA and the precipitation particles size, then the correlation between
STA and the near-surface Dm was tested for significance (Figure 12). Except for the heavy
SP over plains and high mountains that failed with 0.01 significance level, all others passed
the significance test, indicating that there is a positive linear correlation between STA
and near-surface Dm of heavy precipitation except for the heavy SP over plains and high
mountains. For the same types of terrain, the correlation of heavy CP is higher than that of
heavy SP, and the correlation of heavy CP over mountains is the most significant, which
may be related to different mechanisms of heavy CP and SP. For heavy CP, as shown in
Figure 12d–f, the slope of the regression equation of high mountains is the largest, followed
by mountains and plains in sequence, which shows that when near-surface Dm grows to
the same diameter, STA over high mountains is usually the lowest while that over plain is
usually the highest.
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Table 2. Statistics on the proportion of shallow convective (stratiform), moderate convective (strati-
form) and deep convective (stratiform) over different types of terrain in the Sichuan Basin and its
surrounding detected by GPM DPR from May to September of 2014–2021.

RR (mm/h) 0.5 ≤ RR < 2 2 ≤ RR < 4 4 ≤ RR < 8 8 ≤ RR < 20 RR ≥ 20

Shallow convective (stratiform) of plains 15.2%
(15.0%)

5.8%
(5.4%)

3.7%
(2.7%)

1.2%
(1.5%)

0.1%
(0.0%)

Shallow convective (stratiform) of mountains 17.4%
(15.3%)

5.1%
(4.0%)

2.4%
(1.9%)

0.8%
(1.5%)

0.2%
(0.6%)

Shallow convective (stratiform) of high mountains 7.9%
(4.6%)

0.5%
(0.5%)

0.1%
(0.2%)

0.0%
(0.7%)

0.0%
(0.0%)

Moderate convective (stratiform) of plains 68.6%
(68.0%)

71.3%
(61.2%)

66.3%
(50.2%)

52.0%
(46.6%)

30.3%
(35.6%)

Moderate convective (stratiform) of mountains 70.3%
(71.3%)

73.9%
(66.3%)

71.5%
(55.1%)

65.2%
(53.4%)

45.0%
(49.3%)

Moderate convective (stratiform) of high mountains 82.7%
(74.9%)

71.8%
(56.4%)

62.5%
(44.0%)

53.4%
(43.0%)

42.8%
(34.1%)

Deep convective (stratiform) of plains 16.2%
(17.0%)

22.9%
(33.4%)

30.0%
(47.1%)

46.8%
(51.9%)

69.6%
(64.4%)

Deep convective (stratiform) of mountains 12.3%
(13.4%)

21.0%
(29.7%)

26.1%
(43.0%)

34.0%
(45.1%)

54.8%
(50.1%)

Deep convective (stratiform) of high mountains 9.4%
(20.5%)

27.7%
(43.1%)

37.4%
(55.8%)

46.5%
(56.3%)

57.2%
(65.9%)

Numbers in brackets denote SP, and numbers outside brackets denote CP.

Figure 12. Scatter plots of storm top altitude and Dm of two types of heavy precipitation over
plains (a,d), mountains (b,e), and high mountains (c,f). r represents Pearson correlation coefficient,
p represents significance level, y and red solid lines are the regression equation and N represents
sample size.

Water vapor is one of the important physical quantities that affects precipitation.
The momentum, water vapor and heat convergence in meteorological boundary layer all
contribute to the rainstorm during the heavy rainfall processes. Figure 13 exhibits the
horizontal distribution characteristics of total water vapor from the surface to FzH when
heavy precipitation occurs. The maximum value of water vapor is mainly located over
the plains, and the water vapor gradually decreases as the elevation increases, showing a
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stair-like decrease from west to east. The horizontal distribution characteristics of water
vapor are roughly similar to STA.

Figure 13. The horizontal Distribution of water vapor of two types of heavy precipitation over plains (a,d),
mountains (b,e), and high mountains (c,f).

Figure 14 shows the correlation between the sum of water vapor from the surface to
FzH and STA. For the heavy CP and SP over plains and mountains except high mountains
passed with 0.01 significance level, which suggests there is a positive linear correlation
between the sum of water vapor from surface to FzH and STA. For the same terrain, the
correlation of heavy SP is more relevant than that of heavy CP, and it is most significant
over plains.

Figure 14. Scatter plots of water vapor and storm top altitude of two types of heavy precipitation over
plains (a,d), mountains (b,e), and high mountains (c,f). r represents Pearson correlation coefficient,
p represents significance level, y and red solid lines are the regression equation and N represents
sample size.
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4. Discussion

In this section, we discuss and analyses the reasons for the difference of precipitation
particles of heavy precipitation over different terrain, including plains, mountains, and
high mountains. For heavy CP, the occurrence probability of larger precipitation particles
(Dm ≥ 2.6 mm) increases with elevation (Figure 6d–f). We suggest that strong updraft
is more likely to form due to mountainous topographic lifting, and the strong updrafts
tend to hold up the falling raindrops, slowing them down, and can carry some small
raindrops to high altitudes to collide and merge with the falling raindrops, which leads
to higher collision efficiency. In addition, the strong updraft can also carry sufficient
water vapor into the cloud, which is also conducive to the formation of large raindrops.
Yan et al. [45] proposed that the strengthening of ascending movement will also cause
the snow and graupel particles above FzH to grow rapidly, making it easier to generate
large rain droplets. Strong turbulence facilitates raindrops colliding and merging into
large raindrops, meanwhile, it is facilitating raindrops breakup into little raindrops. This
phenomenon is well evidenced by the wider Dm horizontal distribution over mountains
and high mountains than those over plains (Figure 6d–f). Another explanation is due to the
seeder–feeder mechanism. In Figure 15, the relationship between near-surface Dm and near-
surface dBNw is shown for the heavy CP over the three areas. For heavy CP, when dBNw
is > 40 mm−1/m3, it generally corresponds to Dm < 2 mm, and this relationship is best in
high mountains. In Figure 8f, it can be clearly observed that the occurrence probability
of region with dBNw > 40 mm−1/m3 below FzH of high mountains is much higher than
those of plains. Wilson and Barros [46] showed that the seeder-feeder mechanism leads to
an accelerated growth of small and moderate size raindrops (Dm < 2 mm). This process
could explain the enhancement of coalescence and the increase of the concentration of
small drops [27]. Yan et al. [45] mentioned that for heavy rain, the cloud ice particles with
large number concentrations (>600 L−1) seldom occur, and they are more inclined to gather
at moderate concentrations (100–250 L−1) above 9 km over the Tibetan Plateau (roughly
corresponds to the high mountains in this study) compared with the northern India and
south of the Tibetan Plateau (NIST) and tropical ocean (TO). The cloud ice particles with
smaller number concentrations usually correspond to the larger sizes of cloud ice particles.
In this study, for heavy precipitation, precipitation particles over high mountains have the
characteristics of lower number concentration and larger scale above 10 km. We speculate
that there is some connection between the cloud ice particles and precipitation particles.
However, this assumption needs further exploration and validation in future studies.

Figure 15. Scatter distribution of near-surface Dm-dBNw of heavy CP over plains (a), mountains (b),
and high mountains (c). The color indicates the scatter density.
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For heavy SP, the occurrence probability of precipitation particles Dm below FzH
within 1.3–1.6 mm over high mountains are significantly higher than those over plains
(Figure 6a,c). The total water vapor near FzH (altitude at 4.5–6.5 km) over high mountains
is more sufficient than those over plains (Figure 16). In addition, the underlying surface of
the high mountains is closer to FzH, and the updraft is more likely to transport water vapor
to FzH, which makes snow and graupel particles above FzH grow rapidly and form larger
raindrops more easily. Owing to sufficient water vapor, the occurrence probability of Dm in
the range of 1.1–1.3 mm over high mountains is much lower than those over plains, and
the Dm over high mountains tends to concentrate in the range of 1.3–1.6 mm (Figure 6a,c).

Figure 16. Probability distribution functions (PDFs) of total water vapor content at 4.5–6.5 km of
heavy SP of different topographic. The green, black and red solid lines represent plains, mountains
and high mountains, respectively.

5. Conclusions

The Sichuan Basin and its surrounding areas are divided into three types of terrain
based on ETOPO1, including plains, mountains, and high mountains. The Ze and the
vertical structural of SP and CP particles over the three types of terrain were analyzed by
measurements and retrievals from GPM DPR from May to September of 2014–2021. The
major conclusions of this study can be summarized as follows.

1. The FzH of the two types of heavy precipitation is hardly affected by topography,
except for heavy CP over mountains. The mean Ze profiles of SP are significantly bent
near FzH, which is different from that of CP.

2. For the same types of terrain, the Dm horizontal distribution domain, vertical dis-
tribution domain, and the maximum Dm of the horizontal distribution domain of
heavy CP are all larger than those of heavy SP. With the increase of elevation, the
horizontal distribution domain of Dm of the two types of heavy precipitation increases,
while the vertical distribution domain of Dm decreases. For heavy CP, as elevation
increases, the occurrence probability of larger precipitation particles (Dm ≥ 2.6 mm)
increases as well as Dm horizontal distribution domain, which is probably related to
the strong updraft rendered by topography, while the seeder-feeder mechanism may
also enhance particle growth mechanism. For heavy SP, the occurrence probability
of medium raindrops (Dm in 1.3–1.6 mm) below FzH over high mountains is higher
than those over plains. This is because water vapor over high mountains is more
sufficient, the underlying surface is closer to FzH, and the updraft is more likely to
transport water vapor to FzH, which makes snow and graupel particles above FzH
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grow rapidly, and thus it is easier to form larger raindrops. For heavy precipitation,
the higher the elevation, the larger the Dm above 10 km altitude.

3. The mean dBNw profiles of the two types of precipitation overall increase with the
decreases of altitude. For heavy CP, the dBNw high frequency area of plains is more
concentrated than that of mountains and high mountains, while the situation of heavy
SP is opposite. Above 10 km altitude, compared with plains, the precipitation particles
of heavy precipitation over high mountains have the characteristics of lower number
concentration and larger scale.

4. In the same terrain, overall, STA of heavy CP is higher than heavy SP. The distribution
characteristics of STA of the two types of heavy precipitation are consistent, and STA
of plain is generally higher than that of mountains and high mountains. There is a
positive linear correlation between STA and the near-surface Dm for heavy precipita-
tion (excluding heavy SP over plains and high mountains), and the correlation is most
significant for heavy CP over mountainous. The slope of the linear regression equation
of heavy CP over high mountainous terrain is the largest, followed by mountains
and plains, indicating that when precipitation particles grow to the same size over
different terrains, the STA of high mountainous is the smallest, while that of plains is
the largest.

5. For heavy precipitation, the total distribution of water vapor from ground to FzH
is the most sufficient over plains, followed by over the mountains, and the smallest
over high mountains, which is caused by the difficulty of transporting water vapor to
mountains and high mountains areas due to the effect of altitude and terrain barrier.
For heavy precipitation (excluding heavy precipitation over high mountains), there
is also a positive linear correlation between STA and the total water vapor in the
altitude layer from surface to FzH, and the correlation of heavy SP over plains is the
most significant.

The present study mainly focuses on heavy rain DSD, by comparing the DSD char-
acteristics at low-altitude flat terrain and high-altitude complex terrain, leads to evidence
and understanding about the effect of Sichuan’s unique orography on rain physics. It
is very clear from the present study that for heavy precipitation, high-altitude complex
terrain has a higher occurrence probability of larger raindrops than plains in Sichuan. This
situation is critical because larger rain drops could cause more soil erosion, which leads to
the triggering of landslides [26]. Therefore, in the present study on the orographic effect of
rain DSD, it would also be useful and throw more light on landslide triggering mechanisms.
Likewise, preliminary connections between some physical quantities would help improve
the current understanding of the effects of Sichuan’s unique topography on microphysical
precipitation processes. The current work is a preliminary study focusing on some facts
about the characteristics and differences due to different terrains, as well as the internal
relationships and mechanisms that remain to be studied further in the future.
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Abstract: The knowledge of soil apparent thermal diffusivity (k) is important for investigating
soil surface heat transfer and temperature. Long-term k determined using the near-surface soil
temperature is limited on the Tibetan Plateau (TP). The main objective of this study is to determine
k with a conduction–convection method using the near-surface soil temperature measured at three
sites during 2014–2016 on the TP. The hourly, daily, and monthly k values of the 0.0 m to 0.20 m layer
were obtained. The hourly and daily k values ranged from 0.3 × 10−6 m2 s−1 to 1.9 × 10−6 m2 s−1 at
the wet site, and from 1.0 × 10−7 m2 s−1 to 4.0 × 10−7 m2 s−1 at the two dry sites. For the monthly
timescale, k ranged from 0.4 (±0.0) × 10−6 m2 s−1 to 1.1 (±0.2) × 10−6 m2 s−1 at the wet site, and
varied between 1.7 (±0.0) × 10−7 m2 s−1 and 3.3 (±0.2) × 10−7 m2 s−1 at the two dry sites. The k
was not constant over a day, and it varied seasonally to different degrees at different sites and years.
The variation of k with soil moisture (θ) appeared to be roughly similar for unfrozen soil at these
sites and years, namely, k increased sharply before reaching the peak as θ increased, and then it
tended to be stable or varied slightly with further increases in θ. This variation trend was consistent
with previous studies. However, the relationship between k and θ changed when soil temperature
was below 0 ◦C, because ice had higher k than water. The correlation coefficients (r) between k and
θ ranged from 0.37 to 0.80, and 0.80 to 0.92 on hourly and monthly timescales, respectively. The
monthly and annual k values were significantly correlated (r: 0.73~0.93) to the Normalized Difference
Vegetation Index (NDVI). The results broaden our understanding of the relationship between in situ k
and θ. The presented values of k at various timescales can be used as soil parameters when modeling
land–atmosphere interactions at these TP regions.

Keywords: soil thermal diffusivity; conduction–convection method; soil temperature; soil water
content; Normalized Difference Vegetation Index (NDVI)

1. Introduction

Soil apparent thermal diffusivity (k), defined as the ratio of soil thermal conductivity
(λ) to volumetric heat capacity (Cv), is the parameter that describes the rate of transmission
of temperature change within the soil [1]. It is associated with transient processes of heat
conduction and intra-porous convection [2,3]. Knowledge of k is essential for estimating
soil temperature, which plays an important role in regulating land surface processes [4–8],
estimating soil heat flux [3,9,10], and simulating permafrost extent [11].

Soil apparent thermal diffusivity can be measured in a laboratory with a commercial
(e.g., KD2, METER Group, Inc., Pullman, WA, USA) or homemade instrument (e.g., heat
pulse probe, [12,13]), or estimated by k empirical models using soil texture, moisture
(θ), bulk density, soil organic matter, temperature, vegetation index, etc. (e.g., [14–17]).
Obtaining k by sampling and analyzing soil from multiple depths and locations is highly
valuable, but it is also time consuming, invasive, difficult to repeat over time, and costly [18].
Heat pulse probe, commonly used in laboratory, has been recognized as reliable tool for
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measuring soil thermal properties in the field (e.g., [19,20]). The small sampling volume
and relatively sophisticated equipment setup, however, limit its extensive application in
field conditions [17]. The k empirical models require various soil specific parameters and
some of the parameters are difficult to determine in situ, which limits their use.

Besides, there are numerous studies focused on determining k for time periods (e.g.,
diurnal, or annual) using near surface soil temperature measured in situ at multiple depths
(e.g., [3,21–28]). Conduction is the primary heat transfer mechanism in soil [29]. Some
methods are based on solutions of one-dimensional conduction heat transfer equations
with constant diffusivity and soil upper boundary described by a sinusoidal function [30],
by two harmonics [31,32], or by a Fourier series [21]. Horton et al. [21] examined these k
methods and reported that the harmonic method performed best. Since soil is an intra-
porous medium, soil heat transfer occurs via a complex combination of conductive and
convective heat transfer processes [3]. Considering this, some researchers developed
methods of estimating k based on the solution of a one-dimensional soil conduction–
convection heat transfer equation with the soil upper boundary described by a sinusoidal
function [23,24,33], or by a Fourier series [34]. Wang et al. [35] compared the six k methods
(the amplitude, phase, arctangent, logarithmic, conduction–convection, and harmonic) at
a site in the Loess Plateau of China, and suggested that the harmonic method performed
best, and the conduction–convection method followed. Compared with the harmonic
method, the conduction–convection method had a less accurate description of the upper
boundary temperature, but it included more physics in the soil heat transfer process.
By comparisons of the soil temperature estimation at the 0.10 m depth in the permafrost
regions of Qinghai-Xizang (Tibet) Plateau, Hu et al. [36] found the conduction–convection
method [23] performed better than the conduction methods (amplitude and phase method).
Compared with the k method proposed by Hu et al. [34], the k method proposed by
Gao et al. [23] is easier to calculate and has an explicit mathematical expression for k. Some
researchers also developed analytical [37] and numerical [38–40] solutions for estimating
the k of nonuniform soils. Due to some limitations and complexities, these methods
have not been widely used in various fields. The k methods mentioned above with soil
temperature can only obtain daily or longer timescale k values. The shorter timescales, e.g.,
hourly k values, remain unknown.

The Tibet Plateau (TP) is known as the “third pole” of the earth, with an average
altitude of over 4000 m [41]. Land–atmosphere interactions over the TP play a crucial
role in controlling the regional and global climate [42–45]. The soil thermal properties
exert import roles in soil heat and water transfer, which have significant effects on land–
atmosphere interactions [46,47]. Wang et al. [48] derived the soil thermal properties of the
0.025–0.075 m layer with soil data measured over two years at a cold semi-desert site on
the western TP, and examined their relationships with soil moisture. They calculated k as
the ratio of λ/Cv, which were determined by soil temperature and heat fluxes measured at
two depths [49]. Gao [26] determined the k of the 0.015–0.05 m layer with the conduction–
convection method at BJ on the TP during day of year (DOY) 195 to 258, 1998. Using the
same k method, recently Zhou et al. [28] determined the daily k with soil temperatures
measured in the 0.8 m and 3.2 m soil layer at 39 weather sites in the TP during 1980 to 2001
and examined the spatio-temporal variation of k.

Due to the harsh natural conditions and limited observations in the TP, few studies
have focused on soil apparent thermal diffusivity determined with long-term in situ near-
surface soil data. To fill the gap, the objective of this study is to determine long-term
soil apparent thermal diffusivity using the conduction–convection method [23], with the
near-surface soil temperature measured at three sites during 2014–2016 over the TP. The
specific objectives are twofold, (1) to determine k at different timescales (e.g., hourly,
daily, and monthly) over 2014–2016 at the three sites; (2) to examine the relationship
between k and soil moisture at different timescales. The conduction–convection method is
chosen to determine k because it considers more physics in the soil heat transfer process
compared to conduction methods, and it provides an explicit mathematical expression
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for k as a function of soil temperature amplitude and phase. To obtain sub-daily k, the
Dynamic Harmonic Regression (DHR, [50,51]) is used to extract sub-daily soil temperature
parameters (amplitude and phase) from the soil temperature series data. In order to
indirectly investigate the effect of the soil moisture on k from the vegetation aspect, the
monthly relationship between k and the Normalized Difference Vegetation Index (NDVI)
is also investigated.

2. Materials and Methods

2.1. Site Description

The data used in this study are from three TP sites: the Bijie site of Nagqu Station of
Plateau Climate and Environment, Chinese Academy of Sciences (NPCE-BJ, hereinafter
abbreviated as BJ) in the central part of the TP, the Qomolangma Atmospheric and Environ-
mental Observation and Research Station, CAS (QOMS) in the south part of the TP, and
the Ngari Desert Observation and Research Station, CAS (NADORS) in the northwestern
part of the TP. The geographic characteristics of the three sites are listed in Table 1, and the
locations of the three sites are shown in Figure 1. The BJ site is in a flat, open prairie except
for the north, where a low hill stands. This site is well covered with grass and a canopy
height up to 5 cm. The other two sites are barren and the ground is relatively flat and open,
with sparse and short vegetation. Additional information about the sites can be found in
Ma et al. [52].

Table 1. List of the geographic characteristics of the three sites.

Site Latitude Longitude Elevation (m) Land Cover Soil Type

BJ 31.37◦N 91.90◦E 4509 Alpine meadow Sandy silt loam
QOMS 28.36◦N 86.95◦E 4298 Alpine desert Sand and gravel

NADORS 33.39◦N 79.70◦E 4270 Alpine desert Sand and gravel

Figure 1. Geographical distribution of the observational sites (BJ, QOMS, and NADORS) over the TP
(the colored shading denotes topography above sea level).

2.2. Observations

The soil data used in this study, measured at the period of 2014–2016, are shared
by Ma et al. [52] at the Science Data Bank (https://doi.org/10.11922/sciencedb.00103
(accessed on 26 August 2021), Ma et al. [52]), and the National Tibetan Plateau Data Center
(https://doi.org/10.11888/Meteoro.tpdc.270910 (accessed on 26 August 2021)). The data
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were hourly values. The information of soil sensors used at each site is presented in Table 2.
Note that at 2014 BJ the soil temperature and moisture were measured at the depths of
0.04 m, 0.10 m and 0.20 m, and 0.04 m and 0.20 m, respectively. Both the soil temperature
and moisture were measured at the depths of 0.05 m, 0.10 m, and 0.20 m at 2015–2016 BJ.

Table 2. The sensors and observation information at each site.

Site Variables Senser Models Manufactures Depths Accuracy Units

BJ Tsoil TS-301/TR-219L Okazak/
Tri-Tronics

0.04/0.10/0.20 m;
0.05/0.10/0.20 m Unknown ◦C

θ CS616-L Campbell 0.04/0.20 m;
0.05/0.10/0.20 m ±2.5% θ m3 m−3

QOMS Tsoil Model 107 Campbell 0.0/0.10/0.20 m ≤±0.01 ◦C ◦C
θ CS616 Campbell 0.0/0.10/0.20 m ±2.5% θ m3 m−3

NADORS Tsoil CSI 109 Campbell 0.0/0.20 m ≤±0.03 ◦C ◦C
θ CS616 Campbell 0.0/0.20 m ±2.5% θ m3 m−3

The NDVI data were obtained from MYD13C2-v006, provided on a monthly basis, with
a spatial resolution of 0.05◦ × 0.05◦ (https://giovanni.gsfc.nasa.gov/giovanni/, accessed
on 15 April 2022).

2.3. The Method Used to Determine Soil Apparent Thermal Diffusivity

Expanding the heat conduction equation presented by Van Wijk and De Vries [30],
Gao et al. [23] presented the conduction and convection heat transfer equation with an as-
sumption that the soil apparent thermal diffusivity was vertically homogenous, as follows:

∂T
∂t

= k
∂2T
∂z2 + W

∂T
∂z

(1)

where T (◦C) is soil temperature, t (s) is the time, and z (m) is the vertical coordinate positive
downward; k (m2 s−1) is soil apparent thermal diffusivity, W (m s−1) is the apparent
convection parameter. With a boundary condition described with the sine function of soil
temperature, Gao et al. [23] obtained an analytical solution of this heat transfer equation,
and derived the equations of k, as follows:

k = − (z1 − z2)
2ω ln(A1/A2)

(Φ1 − Φ2)
[
(Φ1 − Φ2)

2 + ln2(A1/A2)
] (2)

where z1 (m) and z2 (m) are the measurement depths of soil temperature; A1 (◦C) and
A2 (◦C) are soil temperature amplitude at the depths of z1 and z2, respectively, Φ1 (rad)
and Φ2 (rad) are soil temperature phase at the depths of z1 and z2, respectively; ω
(=2π/P = 7.292 × 10−5 rad−1) is the angular velocity of the Earth’s rotation; and P
(=24 × 3600 s) is the harmonic period of the soil temperature.

2.4. Data Processing

Equation (2) is the conduction–convection method for determining k, which is the same
equation derived by McCallum et al. [53] and Luce et al. [54] for saturated soil. In order to
determine k at various timescales, we first derived hourly A and Φ of daily soil temperature
at two depths using the DHR (See Appendix A) from the Captain toolbox [50,51], and then
put them into Equation (2) to obtain hourly k. The daily and monthly values of k were
obtained by averaging the hourly values.

To ensure the quality of k, the first 3 days of soil k data from the beginning and end
of the data collection periods were discarded due to the edge effects of digital filtering
with DHR [55,56]. Gordon et al. [57] suggested that data from any time series that have
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amplitudes below the sensor resolution should be treated with suspicion. To minimize
the amount of suspicion, we deleted the data when the soil temperature amplitude at
0.20 m depth was below the values of 0.5 ◦C, 0.1 ◦C and 0.1 ◦C at BJ, QOMS and NADORS,
respectively. After data deletions, approximately 95–100%, 96–100%, and 78–82% of the
original data remained for analyses at BJ, QOMS and NADORS, respectively.

The soil moisture measured at the 0.10 m depth was used to represent the soil water
status in the 0.0 m to 0.20 m layer. The θ measured at the 0.04 m depth was used as the
soil water condition in the interest layer for 2014 BJ. For NADORS, the θ at the 0.10 m
depth was calculated by the arithmetic mean of θ measured at the surface and the 0.20 m
depth. Note that here θ indicates liquid water content in the soil, and the ice content is not
measured. Ice content is qualitatively discussed based on soil temperature and initial soil
liquid water content as described in the Section 4.2.

3. Results

3.1. The Variations of Soil Moisture

Figure 2 shows the variation of soil moisture (θ) over 2014–2016 at the BJ, QOMS, and
NADORS. At BJ, θ varied greatly for most months except autumn and winter (October–
December) 2015 and winter and spring (January–May) 2016. During non-winter periods,
θ varied with rainfall; while during other periods, θ fluctuations were mainly attributed
to soil thawing and freezing processes with temperature (e.g., spring (March–April), 2014;
autumn (November), 2016). Soil temperatures fluctuated around the freezing temperature
(Figure S1), resulting in a water phase transition between liquid and ice. The minimum
θ values were similar for 2014–2016, around 0.05 m3 m−3 at BJ, while the maximum θ

values differed for the three years and occurred in summer, with about 0.33 m3 m−3 in
July–August 2014, 0.28 m3 m−3 in August 2015, and 0.25 m3 m−3 in July 2016, respectively.

Figure 2. The variations of hourly soil moisture (θ, m3 m−3) at the depth of 0.10 m at (a) BJ, (b) QOMS,
and (c) NADORS for 2014–2016. Note that θ was measured at 0.04 m depth at BJ 2014, θ at NADORS
were the arithmetic mean of soil moisture measured at the depths of 0.00 m and 0.20 m, and θ were
directly measured at the 0.10 m depth for other cases.

Compared to BJ, the soil at QOMS and NADORS had distinct wet and dry cycles. The
θ varied greatly in the summer and remained relatively constant during other periods.
Besides, no large fluctuations in the θ were measured in winter at the two sites. The reason
was that the θ decreased to a low value before winter, therefore, no large fluctuations in the
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θ occurred as soil temperature varied around the freezing temperature. The θ ranged from
0.01 m3 m−3 to 0.20 m3 m−3 at QOMS, and 0.05 m3 m−3 to 0.30 m3 m−3 at NADORS.

Overall, the soil at QOMS was driest, followed by NADORS and BJ. Increases in the θ

were sharp after rain, and decreases in the θ were relatively slow as soil water evaporated.

3.2. The Variations of Soil Apparent Thermal Diffusivity

The hourly soil temperature amplitude (A) and phase (Φ) at two depths were extracted
from soil temperature time series using DHR. For simplicity, only the 2014 results at the
three sites are presented as illustrated in Figure 3, and the other results are shown in Figures
S2–S4. The data were removed as A at 0.20 m depth was less than the corresponding
threshold value at each site.

Figure 3. The variations of hourly soil temperature amplitude (A, ◦C) and phase (Φ, rad) at two
depths of 0.04 m (or 0.0 m) and 0.2 m at (a,b) BJ, (c,d) QOMS, and (e,f) NADORS for 2014.

It is obvious that A varied with time, and its fluctuation at the shallow depth was
much larger than that at the deeper depth (Figure 3a,c,e). As soil is heated by solar radiation
at daytime and soil temperature generally decreases exponentially with depth [21], as does
A. Compared to other periods, A was relatively small in winter and wet periods. Compared
with A, the fluctuation of Φ was relatively small, and the deeper the depth, the larger the
Φ. Since soil temperature phase shifts vary linearly with depth [21].

Among the sites, the differences in A and Φ at the two depths were larger at QOMS and
NADORS than those at BJ. The soils at QOMS and NADORS were dry (corresponding to rel-
atively small k, see the following results). Thus, soil temperature changes were transmitted
slowly through the soil, resulting in large differences in A and Φ between the two depths
at the two sites. Tong et al. [58] derived the relationship between conduction–convection k
and ln(A1/A2) and (Φ2 − Φ1) by taking partial derivatives, finding that when ln(A1/A2) is
constant, k increases as (Φ2 − Φ1) decreases; when (Φ2 − Φ1) is constant, k increases (de-
creases) with increasing ln(A1/A2) when (Φ2 − Φ1) > ln(A1/A2) [(Φ2−Φ1) < ln(A1/A2)].

After obtaining hourly A and Φ values for soil temperature at the first depth and the
0.20 m depth, hourly k was determined with Equation (2). The daily k was also obtained
by averaging the hourly values over a day. The variations of the hourly and daily k for
2014–2016 at the three sites are shown in Figure 4.
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Figure 4. The variations of hourly (marked with dot) and daily (marked with square) soil apparent
thermal diffusivity (k, m2 s−1) of the 0.0 m to 0.20 m layer at (a) BJ, (b) QOMS, and (c) NADORS for
2014–2016.

Generally, k varied with time to varying degrees at different sites and years. At BJ and
QOMS, k had an obvious seasonal variation (Figure 4a,b), and it roughly varied with θ

during the wetting periods (compare Figure 2a,b to Figure 4a,b).
At BJ, k values in 2014 were larger than those in 2015 and 2016 except for some time in

June. The 2014 k varied around 1.0 × 10−6 m2 s−1, and the minimum and maximum values
were about 0.5 × 10−6 m2 s−1 and 1.9 × 10−6 m2 s−1, respectively. For 2015–2016, the k
ranged from 0.3 × 10−6 m2 s−1 to 0.9 × 10−6 m2 s−1. For QOMS, k fluctuated between
1.0 × 10−7 m2 s−1 to 4.0 × 10−7 m2 s−1 over 2014–2016, and except for summer time,
k varied slightly and was relatively small at most time. The k varied almost exclusively
with θ, namely, large k corresponded to large θ (compare Figure 2b to Figure 4b).

Compared to BJ and QOMS, the differences in k at NADORS among the three years
were relatively small, and k varied slightly during the non-winter periods, although the θ

obviously varied. From January to mid-March, k tended to decrease from 3.3 × 10−7 m2 s−1

to 1.2 × 10−7 m2 s−1; while it was relatively stable in spring–mid autumn (May-October),
ranging from 2.5 × 10−7 m2 s−1 to 3.2 × 10−7 m2 s−1.

Figure 4 shows that k is not always constant throughout a day, and it can change
drastically when the soil is wetted (e.g., DOY 218 in 2015 at BJ; DOY 150 in 2014 at QOMS).

The monthly variations of k and θ for 2014–2016 at the three sites are further examined
in Figure 5. The values of the monthly k (mean ± one standard deviation) are listed
in Table 3.

At BJ, the monthly median k fluctuated around 1.0 × 10−6 m2 s−1 in 2014. While the
2015 monthly k was around 7.0 × 10−7 m2 s−1 in May–September and decreased to about
4.0 × 10−7 m2 s−1 in October–December, the monthly k was around 4.0 × 10−7 m2 s−1

in February–May and increased to 7.5 × 10−7 m2 s−1 after May in 2016. For QOMS, the
monthly k peaked in August 2014-2015, with a median value of 3.2 × 10−7 m2 s−1, and
varied around 2.0 × 10−7 m2 s−1 for most other months. In July and August 2016, the
monthly k value was the largest, at 3.2 × 10−7 m2 s−1, after which it decreased almost
linearly until December (2.3 × 10−7 m2 s−1). The monthly k was relatively stable at around
1.8 × 10−7 m2 s−1 before July.
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Figure 5. The monthly variations (25th, median, and 75th percentiles) of soil apparent thermal
diffusivity (k, m2 s−1) and moisture (θ, m3 m−3) at (a) BJ, (b) QOMS, and (c) NADORS for 2014–2016.
Data are deleted when there are less than 15 days available in a month.

Table 3. The monthly (mean ± one standard deviation) k × 107 (m2 s−1) at each site.

Month
BJ QOMS NADORS

2014 2015 2016 2014 2015 2016 2014 2015 2016

1 11.2 ± 0.8 - 1 - 1.9 ± 0.1 1.9 ± 0.1 1.9 ± 0.1 2.6 ± 0.1 2.3 ± 0.2 2.9 ± 0.3
2 9.0 ± 0.6 - 3.8 ± 0.3 1.7 ± 0.3 1.8 ± 0.2 1.9 ± 0.1 2.4 ± 0.2 2.1 ± 0.3 2.2 ± 0.3
3 9.0 ± 1.4 - 3.7 ± 0.5 2.2 ± 0.1 2.2 ± 0.1 1.9 ± 0.0 - - -
4 11.2 ± 2.3 - 4.3 ± 0.2 2.2 ± 0.0 2.1 ± 0.1 1.8 ± 0.0 2.9 ± 0.2 2.7 ± 0.2 2.8 ± 0.2
5 9.1 ± 1.1 6.9 ± 0.8 5.2 ± 1.0 2.2 ± 0.3 2.0 ± 0.0 1.7 ± 0.0 2.7 ± 0.1 2.6 ± 0.1 2.7 ± 0.1
6 9.3 ± 1.6 6.5 ± 1.2 7.4 ± 0.7 2.4 ± 0.3 1.8 ± 0.0 1.9 ± 0.0 2.8 ± 0.1 2.7 ± 0.1 2.8 ± 0.1
7 10.3 ± 0.9 6.1 ± 1.2 7.9 ± 0.6 2.7 ± 0.7 2.5 ± 0.5 3.2 ± 0.3 3.0 ± 0.1 2.9 ± 0.2 2.9 ± 0.1
8 10.8 ± 0.9 6.7 ± 1.3 6.9 ± 1.5 3.3 ± 0.2 3.2 ± 0.3 3.2 ± 0.3 3.0 ± 0.1 3.1 ± 0.1 2.9 ± 0.1
9 10.6 ± 1.0 6.7 ± 0.9 7.1 ± 1.2 2.4 ± 0.2 2.3 ± 0.3 2.9 ± 0.3 2.9 ± 0.1 3.1 ± 0.1 3.0 ± 0.1
10 10.1 ± 0.7 4.6 ± 0.2 7.7 ± 0.5 2.4 ± 0.2 2.0 ± 0.0 2.6 ± 0.1 2.8 ± 0.1 2.9 ± 0.1 2.7 ± 0.2
11 10.3 ± 1.2 3.9 ± 0.6 - 2.2 ± 0.0 2.1 ± 0.0 2.4 ± 0.0 - - -
12 8.8 ± 0.8 3.8 ± 0.2 7.6 ± 0.8 - 1.9 ± 0.1 2.3 ± 0.0 - - -

1 indicates there is no data.

Differing from BJ and QOMS, the monthly k at NADORS varied little, about
3.0 × 10−7 m2 s−1 for most of the non-winter period (April-October), although θ did
vary during this period. It decreased from January to February over the 3-year period,
ranging from 3.0 × 10−7 m2 s−1 to 1.0 × 10−7 m2 s−1.

Overall, the variation trends of monthly k were roughly similar to those of θ, except
for BJ 2014 and NADORS 2016. The monthly k at BJ ranged from 0.4(±0.0) × 10−6 m2 s−1

to 1.1(±0.2) × 10−6 m2 s−1, from 1.7(±0.0) × 10−7 m2 s−1 to 3.3(±0.2) × 10−7 m2 s−1 at
QOMS, and from 2.1(±0.3) × 10−7 m2 s−1 to 3.1(±0.1) × 10−7 m2 s−1 at NADORS (Table 3).

3.3. The Relationship between Soil Apparent Thermal Diffusivity and Moisture

Figure 6 shows how k varies with θ on an hourly timescale in 2014–2016 at the sites.
Overall, the trends of unfrozen soil k versus θ at the three sites were roughly similar, i.e.,
k increased rapidly to a maximum value with increasing θ and then tended to be constant
or decrease slightly as θ increased further. The values of θ corresponding to peak k values
were different, and the θ values at QOMS were less than those at BJ.
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Figure 6. The variation of soil apparent thermal diffusivity (k, m2 s−1) with soil moisture (θ, m3 m−3)
at 0.10 m depth on an hourly timescale for 2014 (in the 1st column), 2015 (in the 2nd column) and
2016 (in the 3rd column) at (a–c) BJ, (d–f) QOMS, and (g–i) NADORS, respectively. The color bar
indicates the value of soil temperature at the depth of 0.20 m (Ts0.2m), and the larger the temperature,
the redder the color. The marker size suggests the amplitude of Ts0.2m (A0.2m), and the larger the
value of A0.2m, the larger the marker. The correlation coefficients (r) between k and θ are provided
for all of the data and for the data when Ts0.2m > 0 ◦C, respectively. “**” indicates p-value < 0.01.
The probability distributions of k and θ are shown on the y-axis and x-axis sides, respectively.

Interestingly, the relationship between k and θ did not appear to be significant when
Ts0.2m < 0 ◦C and θ < 0.1 m3 m−3, i.e., k fluctuated greatly within a narrow range of θ (e.g.,
see the blue points in Figure 6a,c,g–i). The correlation coefficients (r) between k and θ for
all of the data ranged from 0.66 to 0.80 except for BJ 2014 (r = 0.37) and NADORS 2016
(r = 0.46). Under the condition of Ts0.2m > 0 ◦C, the r coefficients changed to different
degrees at each site and year, and the changes depended on the location of the data of
Ts0.2m ≤ 0 ◦C on the curve. Overall, without including data for Ts0.2m ≤ 0 ◦C, the r coeffi-
cients decreased at NADORS, increased at BJ, and changed slightly at QOMS, respectively.

Note that the probability distributions of k were different, especially at different sites.
The same is true for θ. Compared to k, the probability distribution of θ for a given site
was more consistent during 2014–2016. There was an obvious gap between 0.05 m3 m−3 to
0.10 m3 m−3 at NADORS (Figure 6g–i), since the data in the θ range were deleted according
to the standard of A0.2m < 0.1 ◦C, as mentioned in Section 2.4.

The relationship between k and θ on a daily timescale (Figure S5) was similar to that
on an hourly timescale. Few studies have investigated the relationship between k and θ for
soil below and above the freezing temperature simultaneously.
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We furthermore investigated the relationship between median k and θ on a monthly
timescale, as shown in Figure 7. Similar to the hourly results, the monthly k tended
to increase with θ when θ was relatively small, reached a peak value and then became
relatively stable as θ increased further.

Figure 7. Same as Figure 6, but for the relationship between median k and θ on a monthly timescale.
The number of months per year (N) and corresponding correlation coefficients (r) are given. “**” indi-
cates p-value < 0.01, and there is no label after r if r is not significant (p-value > 0.05). The data for a
month are deleted when the number of days is less than 15.

Overall, monthly k was significantly correlated to θ regardless of site and year, except
for 2014 BJ and 2016 NADORS. The significant (p-value < 0.01) r ranged from 0.80 (2016 BJ)
to 0.92 (2015 QOMS) on a monthly timescale, and from 0.64 (NADORS) to 0.88 (QOMS) on
an annual timescale. The r coefficients of k vs. θ on a monthly timescale were larger than
those on an hourly timescale. This could be explained because the effect of frozen soil on
the relationship between k and θ was greatly reduced on a monthly timescale.

In order to indirectly investigate the effect of soil moisture on k from the vegetation
aspect, the relationship between monthly k and NDVI is also examined as shown in Figure 8.
The ranges of NDVI were different at the three sites, and the maximum NDVI at BJ (0.51)
was approximately 2.5 times that of QOMS (0.22) and NADORS (0.18).

Figure 8. Same as Figure 7, but for the relationship between k and NDVI. “*” indicates p-value < 0.05,
“**” indicates p-value < 0.01, and there is no label after r if r is not significant (p-value > 0.05).
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Interestingly, the monthly k had a similar correlation with NDVI as it did with θ.
At QOMS and NADORS, the r coefficients of k vs. NDVI were close to those of k vs. θ
(Δr < 0.08), while the r coefficients of k vs. NDVI were smaller than those of k vs. θ at BJ.

4. Discussion

4.1. The Variations of Soil Apparent Thermal Diffusivity

With k methods based on the solution of the soil heat transfer equation, normally only
daily or longer timescale k values were obtained in previous studies. In this study, we used
a conduction–convection method combined with DHR to obtain hourly k. The daily and
monthly k were also provided for 2014–2016 at the three sites (Figures 4 and 5 and Table 3).
Figure 4 visually shows that in a day, k is not necessarily constant over a day, and it can
change drastically when the soil become wetter suddenly. The knowledge of k with higher
temporal resolution may have great implications in improving soil heat and water models.
The issue of underestimating soil temperature at night with the conduction-convection
method [24] may be largely resolved by using hourly k values instead of daily k values
as inputs. Besides, higher temporal resolution k may help to improve the modeling of
permafrost distributions [11].

Figure 4 also indicates that k had obvious seasonal variations at BJ and QOMS, while
it did not vary greatly during wetting at NADORS. The soil types for both QOMS and
NADORS were sandy and gravel, but θ at NADORS during wetting (> 0.10 m3 m−3) was
greater than that at QOMS (Figure 2b,c). Previous studies suggested that k variations
during wetting depended on the magnitude of θ, and k was insensitive to changes in θ

when θ reached certain thresholds (e.g., 0.1~0.2 m3 m−3 for sand soils, [16]), which could
explain why k did not vary much during wetting at NADORS.

The k values at QOMS and NADORS were much less than those at BJ (Figures 4 and 5).
In addition to the soil moisture (Figure 2), the soil bulk density at QOMS and NADORS was
expected to differ from that at BJ, since their soil types were sand and gravel, whereas BJ’s
soil type was sandy silt loam. Previous studies indicated that k varied with bulk density
as well as soil moisture [17,18,59–61]. Therefore, the combined effects of the soil texture,
moisture and bulk density resulted in the relative magnitude of k at the three sites. At BJ,
the k values in 2014 were much larger than those at 2015 and 2016 (Figure 6a–c). The main
reason may be due to differences in soil bulk density and soil moisture content.

With the conduction–convection method, Gao [26] determined the daily k ranging from
0.1 × 10−6 to 2.0 × 10−6 m2 s−1 at BJ during DOYs 195 to 258, 1998, which was within the
range of k at BJ for 2014–2016 in this study. Additionally, with the conduction–convection
method, Zhou et al. [28] determined daily k based on soil temperatures measured at 0.8 m
and 3.2 m depths in 39 weather sites in the TP during 1980 to 2001. They reported that
the magnitude of k in most areas of the TP was 10−7 m2 s−1, and relatively high k values
were obtained at the central and eastern parts of the plateau with an order of magnitude of
10−6 m2 s−1. Our results that k at BJ are larger than those at QOMS and NADORS are
broadly consistent with the findings of Zhou et al. [28]. The soil thermal properties were de-
termined at a cold semi-desert site on the western TP for about two years by Wang et al. [48].
They calculated k as the ratio of λ/Cv, which were determined by soil temperature and heat
fluxes measured at two layers according to the method proposed by Zhang and Huang [49].
Their daily k values ranged from 3.0 × 10−7 m2 s−1 to 9.0 × 10−7 m2 s−1, which was larger
than our k values at QOMS and NADORS, and less than those at BJ. The differences in k
were attributed to the differences in soil texture, moisture, and the method of determining k.
Even with a well-calibrated soil heat flux sensor, it is difficult to measure the soil heat flux
accurately [62–65], because the soil heat and moisture fluxes are disturbed [66]. Heat flux
plates measure only sensible heat as it moves past the plate by means of the temperature
gradient, which exists across the plate. Latent heat, which is hidden in the evaporative
process, is not detected [67]. Therefore, cautions should be exercised when determining
soil thermal properties using soil heat flux plate data.
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Using monthly soil temperature data measured in the 0.2 m to 3.2 m soil layer at the
northern permafrost regions, Zhu et al. [11] obtained k with a conduction method, ranging
from 0.2 × 10−7 m2 s−1 to 2.0 × 10−6 m2 s−1. The minimum k values occurred at sites with
large soil organic carbon (SOC, 60~70 kg C m−3), and they were less than our minimum
results. A possible reason is that there is more SOC at the northern permafrost regions than
at our sites, and the k of SOC is an order of magnitude smaller than that of typical soil
minerals [68].

Few studies provided long-term k using a conduction–convection method on different
timescales over the TP. The long-term k values obtained in this study on different timescales
can be used as input for land surface models over this region.

4.2. The Relationship between Soil Apparent Thermal Diffusivity and Soil Moisture

Normally, k increases rapidly with increasing θ to a maximum and then decreases
with further increases in θ. This is explained by the fact that the heat capacity increases
linearly with θ, whereas the thermal conductivity experiences its most rapid rise at low θ,
leading to the ratio of thermal conductivity to heat capacity to have an internal maximum
as a function of θ [29,69]. The increase rate of k with θ differs for different soil textures.
A laboratory experiment showed that for sandy soils, k increased rapidly with θ when θ

was less than 0.1~0.2 m3 m−3, and then it remained stable or slightly decreased; while the
variation of k with θ was smaller for silty and clay-textured soils [16].

Figure 6 shows that although the probability distributions of k and θ differed, espe-
cially at different sites, the variation trends of unfrozen soil k versus θ were roughly similar,
which was consistent with previous studies reported based on laboratory measured data
under controlled conditions (e.g., [16,17,29,59]) and in situ data (e.g., [22,25,70]). We should
be aware that this trend of k versus θ reported with laboratory measurements generally
only applies when the soil temperature is room temperature, since measurements in the
laboratory are usually conducted at room temperature. However, if some ice is present
in a soil layer, the k versus θ relationship is expected to deviate from this trend, since ice
has a higher k value than water (1.1 vs. 0.14 × 10−6 m2 s−1, [68]). That is why there are
some “outliers” in the trend of k versus θ as mentioned above, i.e., k varied greatly within
a narrow range of θ, as the blue point when θ < 0.1 m3 m−3 shown in Figure 6a,c,g–i.

About 2/3 blue points in Figure 6c (when θ ranged from 0.06 m3 m−3 to 0.075 m3 m−3)
appeared on DOYs 332–364. To elucidate this phenomenon, the variations of soil tempera-
ture, θ and k over DOYs 300–365, 2016, at BJ are shown in Figure 9. One can see that on
DOYs 332–364 soil liquid water content, θ in the 0.05–0.20 m layer showed a downward
trend, and as the soil temperature dropped to the freezing point, more and more ice was
expected to form. At the same time, θ at the depth of 0.10 m varied slightly, while k tended
to increase greatly. Therefore, one can see that k had a wide range from 0.6 × 10−6 m2 s−1

to 0.95 × 10−6 m2 s−1 with a narrow range of θ in Figure 6c. Note that almost no water
loss is assumed since DOY 300 here, as soil water evaporation is generally small when soil
temperature is below freezing. Therefore, the decrease in liquid water content in the soil
layer is expected to be a result of increasing ice content.

For Figure 6i, the “outliers” (when θ < 0.054 m3 m−3 and k ranged from 1.4 × 10−7 m2 s−1

to 3.4 × 10−7 m2 s−1) appeared on DOYs 1–63, 2016 at NADORS. The variations of soil
temperature, θ and k over DOYs 1–70, 2016, at NADORS are shown in Figure 10. In con-
trast to Figure 9, the soil temperature tended to increase from DOYs 1 to 63, resulting in
an increasing amount of time that soil temperature was above freezing (Figure 10a). We
expect that ice content in the 0–0.20 m soil layer tended to decrease over time, although
θ appeared to vary slightly. Figure 10 also shows that as the ice content decreased with
increasing soil temperature, k tended to decrease, eventually varying from approximately
1.4 × 10−7 m2 s−1 to 3.4 × 10−7 m2 s−1. Therefore, one can see that k varied greatly with a
narrow range of θ in Figure 6i. Figures 9 and 10 explains why large k changes occurred
over a small range of θ in Figure 6a,c,g–i.
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Figure 9. The (a) soil temperature (Ts, ◦C) at the depths of 0.05 m, 0.10 m and 0.20 m, and soil
apparent thermal diffusivity (k, m2 s−1), and (b) soil moisture (θ, m3 m−3) at the depths of 0.05 m,
0.10 m and 0.20 m over DOYs 300–365, 2016, at BJ. The labels of k are marked in cyan when the soil
amplitude at the 0.2 m depth is less than 0.5 ◦C.

Compared to BJ and NADORS, there were no apparent “outliers” at QOMS (Figure 6d–f).
The soil at QOMS was driest among the three sites, and θ decreased to the minimum value
(<0.03 m3 m−3) in September from the summer (Figure 2b), and small θ lasted until winter.
Some laboratory experiments indicated that the unfrozen water content of freezing soil
was largely controlled by the initial volumetric water content [71], which may prove why
there was almost no ice after September at QOMS. Ochsner and Baker [20] presented
some in situ measurements of soil thermal properties across a full range of temperatures
encountered in freezing and thawing soil, and the measurement and model both showed
that for temperatures between −5 ◦C and 0 ◦C, soil thermal properties were strongly
temperature dependent. They explained that temperature dependence was primarily the
result of latent heat transfer processes when water underwent a phase change. Therefore,
although soil temperature changed from positive to negative at QOMS in autumn, the
“frozen” soil had a lesser effect on k since little ice was produced. Thus, few “outliers”
existed during the cold months at QOMS (Figure 6d–f).

To indirectly investigate the effect of soil moisture on k from the vegetation aspect, the
relationship between monthly k and NDVI was also examined (Figure 8), which is similar
to the relationship between k to θ (Figure 7). The reason may be that NDVI is closely related
to θ at these sites. The r coefficients between NDVI and θ ranged from 0.73 to 0.92 on a
monthly timescale, and from 0.69 to 0.82 on an annual timescale (Table 4). Compared to
the other two sites, more vegetation was present in BJ, so the NDVI of BJ represented more
vegetation information than bare soil. Therefore, the correlation between k and NDVI was
weaker than that between k and θ at BJ, while closer to that between k and θ at the other
two sites, as shown in Figures 7 and 8.

With in situ soil temperature, we determined k by the conduction–convection method
for 2014–2016 at three TP sites and examined the relationship between k and θ. Our results
indicated that k had a clear relationship with θ for unfrozen soil, but the relationship
changed when the soil temperature was less than 0 ◦C and the initial θ was not too small.
These findings broaden our understanding of the relationship between in situ k and θ.
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Figure 10. The (a) soil temperature (Ts, ◦C) at the depths of 0.0 m and 0.20 m, and soil apparent
thermal diffusivity (k, m2 s−1), and (b) soil moisture (θ, m3 m−3) at the depths of 0.0 m, 0.10 m
and 0.20 m over DOYs 0–70, 2016, at NADORS. The labels of k are marked in cyan when the soil
amplitude at the 0.2 m depth is less than 0.1 ◦C.

Table 4. Correlation coefficient (r) of the monthly soil moisture and NDVI for 2014-2016 at the
three sites.

Site 2014 2015 2016 All

BJ 0.82 ** 1 0.75 * 2 0.86 ** 0.69 **
QOMS 0.73 * 0.87 ** 0.92 ** 0.86 **

NADORS 0.87 ** 0.88 ** 0.91 ** 0.86 **
1 ** p-value < 0.01, 2 * p-value < 0.05.

4.3. Limitations

In this study, long-term k was determined for frozen and unfrozen conditions. Due
to the uncertainty of the k method, several k values were removed during the transition
periods with soil thawing/freezing when soil temperature variations were low, as men-
tioned in Section 2.4. Another method or sensor is needed to determine k during soil
thawing/freezing periods.

Our results indicated a potential effect of ice content on the relationship between k
and θ, while the amount of ice content was inferred by combining the variations of soil
temperature and soil moisture, rather than direct measurements. The ice content measured
in situ is vital to quantify the relationship between k and soil moisture (including liquid
and ice phases). The thermo-TDR sensor is a candidate for in situ measurement of both
liquid and ice contents, since its performance was satisfactory in laboratory experiments
reported in previous studies (e.g., [72–74]). In addition, thermo-TDR was also used in the
field to measure soil thermal properties during thawing and freezing (e.g., [20]). By using
actively heated fiber Bragg grating (AH-FBG) sensors, Wu et al. [75] measured the ice
content of frozen soil in laboratory. The AH-FBG sensor integrates the functions of active
heating and temperature measurement, which can accurately detect the thermal response
of frozen soil [75]. We recommend using soil thermocouples and thermo-TDR sensors
or only AH-FBG sensors for soil temperature, water content (liquid and ice phase) and
thermal property measurements over multiple thawing and freezing cycles to more deeply
explore the time variations of k and its relationship with water content.
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In this study, we did not examine the effects of other soil factors (e.g., soil texture, SOC)
on k due to a lack of data. Zhu et al. [11] suggested that SOC is the dominate factor (among
soil texture, bulk density, moisture, and SOC) controlling the variability of diffusivity at
200 sites in high latitude regions, and k is a strong predictor for simulated permafrost
extent. In future investigations, additional soil factors should be included in the study of
long-term variations of soil thermal properties.

5. Conclusions

Based on in situ soil temperature data measured at three TP sites (BJ, QOMS, and
NADORS), we determined the hourly, daily, and monthly soil apparent thermal diffusivity
values of the 0.0 m to 0.20 m layer for 2014–2016 by using a conduction–convection method
combined with DHR. The hourly, daily, and monthly k values of the 0.0 m to 0.20 m
layer were obtained. The hourly and daily k values ranged from 0.3 × 10−6 m2 s−1 to
1.9 × 10−6 m2 s−1 at BJ, and from 1.0 × 10−7 m2 s−1 to 4.0 × 10−7 m2 s−1 at QOMS and
NADORS. The monthly k ranged from 0.4(±0.0) × 10−6 m2 s−1 to 1.1(±0.2) × 10−6 m2 s−1

at BJ, from 1.7(±0.0) × 10−7 m2 s−1 to 3.3(±0.2) × 10−7 m2 s−1 at QOMS, and from
2.1(±0.3) × 10−7 m2 s−1 to 3.1(±0.1) × 10−7 m2 s−1 at NADORS. The results suggested
that k was not constant over a day, and k showed seasonal variations. The variations of k
with θ appeared to be roughly similar for unfrozen soil at these sites and years, namely,
k increased sharply before it reached a peak value as θ increased, and then it tended
to be stable or varied slightly with further increases in θ. The correlation coefficients
(r) between k and θ ranged from 0.37 to 0.80, and 0.80 to 0.92 on hourly and monthly
timescales, respectively. However, the relationship between k and θ changed when soil
temperature was below 0 ◦C. Our results also suggested that the k and NDVI values were
significantly related on monthly and annual timescales, with r ranging from 0.73 to 0.93.
These results broaden our understanding of the relationship between in situ k and θ. The
presented values of k at various timescales can be used as soil parameters when modeling
land–atmosphere interactions at these TP regions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs14174238/s1, Figure S1. The variations of soil temperature at
(a) BJ, (b) QOMS, (c) NADORS, respectively. Figure S2. The amplitude (A, ◦C) and phase (Φ, rad)
of soil temperature 2015–2016 at BJ. Figure S3. The amplitude (A, ◦C) and phase (Φ, rad) of soil
temperature 2015–2016 at QOMS. Figure S4. The amplitude (A, ◦C) and phase (Φ, rad) of soil
temperature 2015–2016 at NADORS. Figure S5. The variation of soil apparent thermal diffusivity
(k, m2 s−1) with soil moisture (θ, m3 m−3) on a daily timescale in 2014 (in the 1st column), 2015 (in the
2nd column) and 2016 (in the 3rd column) at (a–c) BJ, (d–f) QOMS, and (g–i) NADORS, respectively.
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Appendix A. Determination of Soil Temperature Amplitude and Phase with DHR

Gordon et al. [57] described how to extract soil amplitude and phase information
from a soil temperature time series with the Dynamic Harmonic Regression (DHR). DHR,
a simplification of the unobserved component model, has the form as follows:

yt = Tt + Ct + et (A1)

where yt is the observed soil temperature time series, Tt is a trend or zero-frequency
component, Ct is a cyclical component, and et is an irregular, white-noise component [50].
The Ct is modeled as a sum of the fundamental signal and its associated harmonics,
as follows:

Ct =
N

∑
i=1

[ai,tcos(ωit) + bi,tsin(ωit)] (A2)

where ai,t and bi,t are stochastic time-varying parameters and ωi (I = 1:N) are the funda-
mental frequency and its harmonics (ω1 ) up to the Nyquist frequency (ωN ). This DHR
model is a non-stationary extension of the discrete Fourier transform, where the amplitude
(A) and phase (Φ) of the soil temperature for each time series vary with time. Identification
of the time-varying parameters is achieved in a stochastic state formulation using two-step
Kalman filtering and fixed-interval smoothing [50].

After obtaining the time-varying parameters, the A and Φ of any harmonic component
at discrete time can be calculated by the following equations:

Ai,t =
√

a2
i,t + b2

i,t (A3)

Φi,t = tan−1(ai,t/bi,t) (A4)

where Ai,t and Φi,t are the amplitude and phase for the component with frequency ωi at
time t, respectively.
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Abstract: Surface air temperature is a critical element in the surface–atmosphere interaction, energy
exchange, and water cycle. Multi-source fusion reanalysis products (hereafter referred to as reanaly-
sis) have spatiotemporal continuity and broad applicability that can provide key data support for
various studies such as glacier melting, soil freeze-thaw and desertification, ecosystem, and climate
change in the alpine region of the Qinghai–Tibet Plateau (QTP). Surface air temperature observations
collected at 17 weather stations in the High-cold region Observation and Research Network for Land
Surface Process and Environment of China (HORN) over the period of 2017–2018 are implemented to
evaluate the advanced and widely used surface air temperature reanalysis datasets, which include
the European Centre for Medium-Range Weather Forecasts (ECMWF) Fifth Generation Land Surface
Reanalysis (ERA5L), the U.S. Global Land Data Assimilation System (GLDAS), and China Meteorolog-
ical Administration Land Data Assimilation System (CLDAS). Results are as follows: (1) Evaluation
results of temporal changes and spatial distribution characteristics indicate that the three reanalysis
datasets are consistent with in-situ observations in the alpine region of the QTP. CLDAS is more
consistent with observations and can better describe details of temperature distribution and variation
than ERA5L and GLDAS. (2) For the evaluation period, CLDAS is 0.53 ◦C higher than the in-situ
observation, while ERA5L and GLDAS are lower than the in-situ observation by −3.45 ◦C and
−1.40 ◦C, respectively. (3) The accuracy of CLDAS is better than ERA5L and GLDAS under different
elevations and land covers. We resampled three reanalysis datasets with a spatial resolution of 0.25◦

and used the two most common interpolation methods to analyze the impact of spatial resolution
and different interpolation methods on the evaluation results. We found that the impact is small.
In summary, the three reanalysis datasets all have certain applicability in the alpine region of the
QTP, and the accuracy of CLDAS is significantly higher than ERA5L and GLDAS. The results of
the present paper have important implications for the selection of reanalysis data in the studies of
climate, ecosystem, and sustainable development in the QTP.

Keywords: air temperature; Qinghai–Tibet Plateau; reanalysis dataset; alpine region; applicability

1. Introduction

The Qinghai–Tibet Plateau (QTP) is regarded as the Earth’s “Third Pole” and “Asian
Water Tower” [1,2]. It is the highest plateau in the world with an average elevation of over
4000 m. The strong dynamic and thermodynamic effects [3] of the QTP significantly affect
atmospheric circulations in the northern hemisphere, as well as the Asian monsoon process
and the climate patterns in East Asia [4,5], and have extremely important impacts on global
climate change [1–14]. Glaciers, frozen soil, meadows, snow, and wetlands are widely
distributed in the alpine region of the plateau, where the headwaters of China’s major
rivers are located. The alpine region of the plateau is an important area of ecological barrier,
but it is also an area of harsh climatic conditions [6] and fragile ecological environments [9]
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with low levels of economic development [5]. Climate change in the QTP and the various
impacts it brings have become a frontier and hotspot in earth system science research,
which has attracted extensive attention within the scientific community [1,2,14]. Surface
air temperature is a key variable in the land-surface–atmosphere interaction and energy
exchange, as well as in water cycle processes. It is also an important basis [7,8] for the
studies of glacial melting, soil freeze-thaw and desertification, and ecosystems and climate
change in the plateau. Due to the vast area of the QTP, the restrictions of transport, and the
terrain environment, weather stations are only sparsely distributed in the QTP and mainly
concentrated in the eastern and southern parts of the QTP [15]; few stations are located
in the western and northern parts of the plateau [16]. To complicate matters furthers,
many stations in the QTP are established late and with short sequences of observations,
which makes the temperature observations unable to fully reflect the state of the surface
air temperature over the entire plateau. Therefore, reanalysis products of temperatures
with spatiotemporal continuity and broad applicability are required to provide critical data
support [15–19] for climate change and impact studies over the QTP [20,21].

In recent years, several research institutions in the United States, the European Union,
China, Japan, and other countries have successfully developed a series of land surface
reanalysis systems and multi-source data fusion analysis systems [22–24]. Great progress
has been made in the land surface reanalysis dataset. Compared with atmospheric re-
analysis datasets, land surface reanalysis products have higher spatiotemporal resolutions
and wider application. At present, the most advanced land surface reanalysis datasets
include the ECMWF Fifth Generation Land Surface Reanalysis (ERA5L) [25–30], the NASA
Global Land Data Assimilation System (GLDAS) [31–33], and the China Meteorological
Administration Land Surface Data Assimilation System (CLDAS) [34–38]. These datasets
include surface meteorological elements and soil information. A series of research results
have been achieved based on the application of these datasets in studies of weather and
climate prediction, water resources management and water cycle, etc.

Due to differences in input data, numerical assimilation models, parameterization
schemes, and the spatiotemporal resolutions of final products, these reanalysis datasets
demonstrate quite different performances in different regions. Therefore, accuracy evalu-
ation and applicability analysis of various reanalysis datasets are a prerequisite for their
application. Several studies have evaluated the applicability of CLDAS, ERA5L, and
GLDAS in the QTP [39–42]. For example, Han et al. [40] compared surface air temperature
from CLDAS and GLDAS with observations collected at 2380 weather stations in China
over the period 2010–2015. Their results indicate that surface air temperatures in the two
reanalysis datasets are lower than observations in the QTP, while the accuracy and correla-
tion of CLDAS with station observations are better than GLDAS. On different temporal and
spatial scales, Huang et al. [41] verified CLDAS, ERA5L, and GLDAS against observations
collected at 2265 weather stations in China during 2017–2019. They found that the three
aforementioned reanalysis datasets can represent the characteristic temperature changes in
the QTP well, although they are lower than observations. CLDAS is highly consistent with
station observations, and its accuracy is significantly better than the other two reanalysis
datasets. GLDAS is better than ERA5L. Liu et al. [42] selected 32,552 assessment stations
that have been fused into the CLDAS system and 12,403 non-assessment stations that are
non-fused into the CLDAS system as the data sources for evaluation and conducted depen-
dent and independent verifications of CLDAS hourly temperature data in different regions
of China. Results of both dependent and independent verification confirm that CLDAS has
a relatively high accuracy and applicability in the QTP. Wang et al. [43] compared GLDAS
with China’s gridded surface air temperature dataset in the QTP and surrounding areas.
They found that GLDAS performs better in arid regions than in sub-humid areas, and that
the data are more accurate during 1979–1994 than during 2000–2007.

In summary, the three aforementioned reanalysis datasets all demonstrate a relatively
high applicability in the QTP and thus have potential values for weather and climate
studies. We also found that the previous applicability studies of temperature reanalysis
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datasets often use observations collected at operational weather stations of the China
Meteorological Administration as reference data, and, while these observations have high
accuracy and reliability, the following issues need to be addressed: (1) Many national-level
meteorological station observations have been included in the international exchange list,
and many of the data have been used as input for assimilation and/or data fusion to
produce various reanalysis datasets. Therefore, it is hard to achieve independent results
using these data to verify reanalysis products. (2) Most of these weather stations are located
in suburbs of cities or areas along highways that are easily accessible. Their coverage of QTP
topography and landform types is limited, which makes the evaluation results have limited
reference value for assessing the reliability of the reanalysis datasets in the QTP. Based on the
aforementioned discussion, the present study uses in-situ observations provided by “China
Alpine Region Surface Process and Environmental Monitoring Research Network” [44,45]
to evaluate surface air temperature from CLDAS, ERA5L, and GLDAS. The present study
reveals some important similarities and differences in comparison to previous studies.
Results of the study will be helpful in studies of the special atmospheric, hydrological, and
ecological processes in the alpine region of the QTP [46].

2. Data and Methods

2.1. Data
2.1.1. Reanalysis of Surface Air Temperature

1. CLDAS dataset

CLDAS is a land-surface data assimilation system developed in the National Meteo-
rological Information Center of the China Meteorological Administration (CMA) [22,35].
Advanced fusion technology is combined with independent innovations proposed in CMA
during the development of CLDAS. Multi-grid variational analysis, spatial grid stitching,
discrete ordinate shortwave radiation remote sensing retrievals, terrain correction, ensem-
ble simulations of multiple land surface models (CLM, Noah-MP, CoLM), etc., are combined
to produce surface pressure, ground precipitation, temperature, humidity, UV winds, short-
wave radiation, surface air temperature and humidity, soil moisture and temperature, etc.
The China Land-surface Data Assimilation System Version 2 (CLDAS-V2.0) [22] was re-
leased in 2015 and upgraded in 2018. This system can efficiently fuse observations collected
at nearly 60,000 weather stations in China with numerical prediction data and satellite
remote sensing data, and can release a real-time fused land surface data analysis product on
0.05◦ × 0.05◦ grids at 1 h intervals. This product has been widely applied in meteorological
and agricultural studies [36,37,41].

2. ERA5L dataset

ERA5L is a high spatiotemporal resolution global land surface reanalysis dataset
produced by ECMWF for global land areas. It is a component of the fifth-generation
European Reanalysis Product (ERA5) [28] that was developed within the framework of
the European Commission Copernicus Climate Change Service (C3S). Based on outputs
of numerical simulations of the ECMWF land-surface model, ERA5L is a downscaled
dataset from the ERA5 climate reanalysis, and elevation correction for near-surface thermal
states is conducted to ensure consistent evolvement of water and energy cycles over the
land [27]. ERA5L can be applied for trend and anomaly analysis. ECMWF released the
ERA5L product in 2019, which contains data from 1981 until present, with ongoing updates.
The historical dataset over 1950–1980 was released in September 2021. With a high spatial
resolution of 0.1◦ × 0.1◦ and temporal resolution of 1h, as well as long data sequences and
data consistency, ERA5L provides a strong support in hydrological study and numerical
weather/climate model initialization. It is also widely applied in studies of water resources
and land and environment management [29,30,47], etc.

3. GLDAS dataset

GLDAS is produced by the NASA Goddard Space Flight Center (GSFC) and the Na-
tional Centers for Environmental Prediction (NCEP) of National Oceanic and Atmospheric
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Administration (NOAA). Surface observations and satellite remote sensing retrievals are
assimilated into the land surface models of Noah, Mosaic, CLM, and VOC to simulate
global surface variables [32] (such as soil moisture, land surface temperature, etc.) and
fluxes (such as evaporation, sensible heat flux, etc.). GLDAS has been widely applied to
global climate change studies and comparative studies with other remote sensing products.
GLDAS provides two versions of the dataset (GLDAS-1 [48] and GLDAS-2 [49]). The
present study uses GLDAS-2, and the spatial and temporal resolutions of the dataset are 1h
and 0.25◦, respectively.

Table 1 lists the attributes of the datasets evaluated in the present study, including
their spatial and temporal resolutions, coverages, and data download sources.

Table 1. Characteristics of the reanalysis temperature datasets.

Dataset
Areal

Coverage
Spatial

Resolution
Temporal

Resolution
Unit Website for Download

GLDAS 180◦W–180◦E;
60◦S–90◦N 0.25◦ × 0.25◦ 3 hourly K http://disc.sci.gsfc.nasa.gov/hydrology/data-

holdings (accessed on 30 June 2022)

ERA5L 180◦W–180◦E;
60◦S–90◦N 0.1◦ × 0.1◦ Hourly K

https://cds.climate.copernicus.eu/cdsapp#!/
dataset/reanalysis-ERA5L?tab=form (accessed

on 30 June 2022)

CLDAS 70◦E–140◦E;
0◦–60◦N 0.05◦ × 0.05◦ Hourly K http://data.cma.cn/ (accessed on 30 June 2022)

2.1.2. In-Situ Temperature Observations in the Alpine Region of the QTP

The in-situ temperature observations used to evaluate the reanalysis datasets are
provided by the Tibetan Plateau Data Center of China. The data were downloaded from
http://data.tpdc.ac.cn/ (accessed on 3 January 2022). These observations are collected at
17 field observation sites (Figure 1), which are evenly distributed in the alpine region of
the QTP. Temperature, precipitation, wind speed and wind direction, relative humidity,
radiation, evaporation, etc., are measured. Long-term surface processes and environmental
changes are continuously monitored to understand patterns of climate and water resource
changes in the headwater areas of the Yangzi River and the Yellow River. This information
will be helpful to reveal the changes in ecosystem structure and function, build ecological
protection barriers, and grasp the mechanism for the occurrence of natural disasters such
as ice and snow freezing and thawing [44]. All the in-situ temperature observations used
in the present study are daily mean temperature. Table 2 lists the properties of the in-situ
observation sites and related information [45].

2.2. Methods

To quantitatively compare the consistency of the three reanalysis datasets with in-situ
observations and evaluate their errors of daily average temperatures, the reanalysis data
from 2017–2018 are divided into eight times per day (00, 03, 06, 09, 11, 14, 17, 20 UTC), which
is the division used in GLDAS. The arithmetic mean is taken as daily mean temperature
for individual reanalysis datasets. Based on the latitude and longitude information of
the observation sites, daily mean temperatures from reanalysis are interpolated to the
observation sites using the nearest neighbor interpolation method. Two sequences of daily
temperatures from the reanalysis and from the in-situ observations, with 11,635 samples in
each sequence, are then compared. Pearson correlation coefficient (CC), mean bias error
(MBE), root-mean-square error (RMSE), Nash–Sutcliffe efficiency coefficient (NSE) [50,51],
Kling–Gupta efficiency (KGE) [52,53], and Willmott’s Index of Agreement (WIA) [54] are
then calculated to evaluate the accuracy and applicability of CLDAS, ERA5L, and GLDAS
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temperature data in the alpine region of the QTP. The calculations of the aforementioned
indices are as follows:

CC =

n
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i=1
(Ri − R)(Si − S)√

n
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i=1
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n
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(1)

MBE =
1
n

n

∑
i=1

Ri − Si (2)

RMSE =

√
1
n

n

∑
i=1

(Ri − Si)2 (3)

NSE = 1 −

n
∑

i=1
(Ri − Si)

2

n
∑

i=1
(Si − S)2

(4)

KGE = 1 −
√
(CC − 1)2 + (α − 1)2 + (β − 1)2 with α =

R
S

, and β =
σR

σS
(5)

WIA = 1 −

n
∑

i=1
(Ri − Si)

2

n
∑

i=1
(
∣∣Ri − S
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(6)

where Ri is the reanalysis temperature interpolated to the observation site, Si is the in-situ
observation at the site, n is the total number of records that participate in the evaluation,
and R and S denote the averages of reanalysis data and observations during the study
period, respectively. CC (Equation (1)) represents the correlation between reanalysis and
observations with values that range within [−1, 1]. |CC| = 1 indicates that the two
sequences are completely linearly correlated; CC = 0 means there is no correlation between
the two sequences, and 0 < |CC| < 1 indicates that there is a certain degree of linear
correlation between the two. The closer |CC| is to 1, the higher the linear relationship is; the
closer |CC| is to 0, the weaker the linear correlation is between the two. CC>0 indicates that
the reanalysis and the in-situ observations have the same trends of change, and CC<0 means
that they have opposite trends. MBE (Equation (2)) reflects the deviations of reanalysis data
from observations. Negative MBE values indicates that the reanalysis data are lower than
the observation, and vice versa. RMSE (Equation (3)) shows the overall difference between
the reanalysis and the observations, including systematic and non-systematic biases. A
closer-to-0 RMSE corresponds to a more accurate reanalysis dataset. NSE (Equation (4))
is widely applied to quantify the prediction ability of hydrological models. It reflects the
consistency of two datasets: NSE = 1 indicates that the reanalysis data are completely
consistent with the observations; NSE ≤ 0 indicates that the two datasets are inconsistent
with each other. The KGE (Equation (5)) is based on a decomposition of the NSE into its
constitutive components (correlation, mean bias, and variability bias) and is increasingly
used for model calibration and evaluation. σR and σS are the standard deviations in
reanalysis and in-situ observations, respectively. KGE can vary from negative infinity to
1, and KGE = 1 indicates perfect agreement between simulations and observations. WIA
(Equation (6)) is similar to NSE, but the denominator of the main term in the equation is
the potential maximum difference [54]. The value of WIA ranges between 0 (not consistent)
and 1 (perfectly consistent). On the scatterplot of reanalysis versus in-situ observations,
both WIA and NSE indicate how close the data points are to the fitted 1:1 line. During the
evaluation period, all samples used for evaluation are calculated based on the cumulative
results of daily observations.

387



Remote Sens. 2022, 14, 4447

Figure 1. Elevation of the study area and distribution of in-situ observation sites.

Table 2. Properties of in-situ observation sites and related information.

NO. Name
Longitude

(◦)
Latitude

(◦)
Elevation

(m)
Height of the Sensor
from the Ground (m)

Land Cover Type

1 Zangdongnan 94.7363 29.7593 3326 1.3 Grassland in forests
2 Namucuo 90.9885 30.7740 4730 1.5 Alpine meadow
3 Zufeng 86.9422 28.3590 4276 1.5 Sand and gravel
4 Golmud 94.1333 35.7167 4538 2.0 Alpine meadow
5 Lasa 91.3333 29.6667 3688 1.5 Artificial grassland
6 Mushitage 75.0183 38.2868 4400 1.5 Gravel
7 Ali 79.7013 33.3917 4264 1.5 Desert
8 Rupergai (Elinghu) 97.5588 34.9021 4278 2.0 Alpine meadow
9 Sanjiangyuan 100.4833 34.3667 3958 1.5 Alpine meadow

10 Shenzha 88.7000 30.9500 4675 2.0 Alpine meadow
11 Ruoergai 102.6509 33.1026 3483 2.7 Peatland
12 Ruoergai (Maqu) 102.1515 33.9205 3430 2.0 Alpine meadow
13 Naqu (Dilisuo) 92.0097 31.6437 4602 1.8 Alpine meadow
14 Naqu (Qingzangsuo) 92.0170 31.4410 4500 1.5 Alpine meadow
15 Shuanghu 88.8322 33.2167 4939 2.0 Alpine meadow
16 Haibei 101.3167 37.6167 3220 1.5 Alpine meadow
17 Naqu (Hanhansuo) 91.9000 31.3700 4509 1.5 Alpine meadow

Note: The properties of these sites are derived from the metadata provided in http://data.tpdc.ac.cn (accessed on
18 May 2022). The unit of latitude and longitude in degree, minute, and second is transferred to decimal unit in
degree and keeps four decimal places. For a few sites where the metadata is missing, the properties are derived
from other information. For example, the elevation at Shuanghu is derived from 90 m-resolution DEM, and the
land cover type at Ali is derived from http://www.horn.ac.cn/index.jsp (accessed on 18 May 2022).

3. Results Analysis

3.1. Comparative Analysis of Spatial Distribution Characteristics

Spatial distributions of average temperature for reanalysis datasets and in-situ obser-
vations during the study period of 2017–2018 are displayed in Figure 2, which clearly shows
that the three reanalysis datasets and the in-situ observations roughly follow the variation
of latitude and elevation. Despite the slight differences at local or regional scales, the
magnitude and spatial distribution of temperature are basically the same for these datasets
(Figure 2a). Temperature gradually increases from north to south, and high temperature
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centers are located in southeastern Tibet, southwestern Sichuan, and northwestern Yunnan.
The Qaidam Basin in the northwest of Qinghai is surrounded by mountains. The average
elevation of the basin is about 2600 m, which is lower than the surrounding areas. The
annual average temperatures in the three reanalysis datasets in the Qaidam Basin are all
significantly higher than those of the surrounding areas. The average elevation of the Kun-
lun Mountains and Karakoram Mountains located in western Tibet is more than 5500 m,
and the temperature is significantly lower than other areas in the same latitude. Compared
to ERA5L and GLDAS, CLDAS describes more details of temperature changes with al-
titude. For example, CLDAS aptly describes the dramatic temperature changes caused
by large altitude differences in the Hengduan Mountains region located at the junction
of Tibet, Sichuan, and Yunnan, where mountains, valleys, and rivers are intertwined. In
contrast, the other two reanalysis datasets can barely reflect this characteristic distribution
of temperature in the Hengduan Mountains.

Figure 2. Spatial distributions of annual mean temperature over 2017–2018 ((a) CLDAS; (b) ERA5L;
(c) GLDAS; (d) in-situ observations).

Spatial distributions of seasonal temperature are displayed in Figures 3–6. In the
spring (Figure 3), CLDAS temperature is higher than ERA5L and GLDAS in the entire
study area except the Qaidam Basin and the low-elevation region of southern Tibet, where
CLDAS is lower than ERA5L and GLDAS. ERA5L and GLDAS show large differences in
the spatial distribution of air temperature in the plateau area, though CLDAS has a small
difference. ERA5L is also significantly lower than CLDAS and GLDAS in the central QTP.
In the summer (Figure 4), the spatial distributions of CLDAS and GLDAS are similar to
each other, while ERA5L is obviously lower than the other two reanalysis datasets. In the
autumn (Figure 5), CLDAS and ERA5L are closer to each other, while GLDAS is lower
than CLDAS and ERA5L in the high-elevation region of western QTP, but higher in the
low-elevation region of the southeastern QTP. In the winter (Figure 6), spatial distributions
of the three reanalysis datasets are basically consistent, although ERA5L is lower than
CLDAS and GLDAS in southeastern Qinghai and northeastern Tibet. Overall, compared
to GLDAS and ERA5L, CLDAS is closer to observations and demonstrates higher spatial
consistency.
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Figure 3. Spatial distributions of spring mean temperature over 2017–2018 ((a) CLDAS; (b) ERA5L;
(c) GLDAS; (d) in-situ observations).

Figure 4. Spatial distributions of summer mean temperature over 2017–2018 ((a) CLDAS; (b) ERA5L;
(c) GLDAS; (d) in-situ observations).
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Figure 5. Spatial distributions of autumn mean temperature over 2017–2018 ((a) CLDAS; (b) ERA5L;
(c) GLDAS; (d) in-situ observations).

Figure 6. Spatial distributions of winter mean temperature over 2017–2018 ((a) CLDAS; (b) ERA5L;
(c) GLDAS; (d) in-situ observations).

3.2. Accuracy of the Reanalysis Datasets for the Evaluation Period

Table 3 lists the evaluation results over the period 2017–2018. The mean temperatures
of CLDAS, ERA5L, and GLDAS are 1.49 ◦C, −2.491 ◦C, and −0.44 ◦C, respectively. The
mean value of CLDAS is the closest to the average of the in-situ observations (0.956 ◦C).
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The correlation coefficient (CC) between CLDAS and the observations is the highest (0.969),
followed by the correlation between ERA5L and the observations (0.934); the correlation
coefficient between GLDAS and the observations is the lowest (0.92). The MBEs of ERA5L
and GLDAS are −3.45 ◦C and −1.40 ◦C, respectively, which suggests that temperature is
underestimated in the two reanalysis datasets, to a certain degree. Conversely, the MBE
of CLDAS is 0.53, which indicates that CLDAS overestimates temperature in those in-situ
observation sites. The RMSEs of CLDAS, ERA5L, and GLDAS are 2.18 ◦C, 4. 83 ◦C, and
3.64 ◦C, respectively, which indicates that the errors of CLDAS are smaller than the other
two reanalyses. The values of NSE and WAI are close to 1 (the premium value) for all
the three reanalysis datasets, suggesting that they are highly consistent with the in-situ
observations, especially CLDAS. From the value of KGE, CLDAS is closer to 1, which
indicates that it is better than ERA5L and GLDAS. This result agrees with NSE and WIA. In
general, CLDAS is noticeably better than GDAS and ERA5L during the evaluation period
based on evaluation indices of correlation, bias, and consistency. GLDAS is better than
ERA5L, although the differences between them are relatively small.

Table 3. Accuracy evaluation results of CLDAS, ERA5L and GLDAS for the period 2017–2018.

Dataset
Mean Temperature

(◦C)
CC

MBE
(◦C)

RMSE
(◦C)

NSE KGE WIA

CLDAS 1.49 0.969 0.534 2.175 0.933 0.44 0.983
ERA5L −2.491 0.934 −3.447 4.827 0.67 −2.609 0.927
GLDAS −0.44 0.92 −1.396 3.638 0.813 −0.463 0.952

To better display the consistency of the three reanalysis datasets with the observations
during the evaluation period, Figure 7 shows the scatter plots of reanalysis data versus
in-situ observations and the results of univariate linear regression. The goodness of fit (R2)
for CLDAS, ERA5L, and GLDAS are 0.939, 0.872, and 0.847, respectively, which indicates
that CLDAS is more consistent with in-situ observations. This result agrees with the results
shown in Table 3.

Figure 7. Scatter plots of reanalysis datasets versus in-situ observations ((a) CLDAS; (b) ERA5L;
(c) GLDAS; n: total number of samples).

3.3. Evaluation of Temporal Variation
3.3.1. Daily Variation

To analyze differences in daily temperature of the reanalysis datasets during the
evaluation period, daily average temperatures of CLDAS, GLDAS, ERA5L, and in-situ
observations over the evaluation period are displayed in Figure 8a, which shows that the
daily variations and temporal changes of surface air temperature are basically consistent
between the three reanalysis datasets and observations, and that CLDAS is closer to the
observations than GLDAS and ERA5L are. Looking at the time series of daily CC (Figure 8b),
we found that in 85. 6% of the days, the CCs of CLDAS with observations are above 0.8.
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However, the CCs of GLDAS and ERA5L with observations are below 0.8 in 60.7% and
90.5% of the days, respectively. Furthermore, the magnitude of daily variation of CLDAS
is relatively small, which implies a more stable correlation with in-situ observations. The
ranges of daily RMSE variation for CLDAS, ERA5L, and GLDAS (Figure 8c) are within
0.61–2.35 ◦C, 1.97–3.80 ◦C, and 2.43–3.76 ◦C, respectively. Note that the daily variation
of RMSE for CLDAS is obviously lower than—the other two reanalysis datasets. In 76%
of the total days, the RMSE values of GLDAS were lower than those of ERA5L, which
indicates that the quality of GLDAS is higher than ERA5L in most days. The time series
of daily MBE are displayed in Figure 8d, which shows that the MBEs of CLDAS are
closer to the zero line than GLDAS and ERA5L are, which suggests that CLDAS is more
consistent with observations than GLDAS and ERA5L. The MBE of CLDAS is positive in
78.5% of the days, whereas the MBE of GLDAS is negative in 90% of the days, and ERA5L
is negative throughout the study period. This result indicates that daily temperature is
overestimated by CLDAS and underestimated by GLDAS in most of the days, and it
is always underestimated by ERA5L. The consistency indices of NSE (Figure 8e), KGE
(Figure 8f), and WIA (Figure 8g) of CLDAS are closer to 1 with a smaller range of variation
compared to that of ERA5L and GLDAS, which shows that CLDAS is more consistent with
observations and demonstrates a higher stability.

Figure 8. Daily evaluation of during 2017–2018. (a) Time series of daily mean temperature; (b) CC;
(c) RMSE; (d) MBE; (e) NSE; (f) KGE; (g) WIA.
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3.3.2. Monthly Variation

Figure 9 presents characteristic changes in monthly mean errors of the reanalysis
datasets. The time series of monthly mean temperature (Figure 9a) indicates that the
variation trends of the three reanalysis datasets are similar to that of the observations,
i.e., temperature is the lowest in January and gradually increases from then onwards,
reaches the highest in July, and then gradually decreases. Monthly CCs for CLDAS are all
higher than those for GLDAS and ERA5L (Figure 9b). CCs for GLDAS are higher than for
ERA5L in all months except March 2017 and February 2018, when the CCs for GLDAS are
slightly lower than those of ERA5L. The RMSEs of CLDAS, ERA5L, and GLDAS (Figure 9c)
range between 1.637–3.046 ◦C, 2.535–8.353 ◦C, and 2.682–5.054 ◦C, respectively. Note that
the RMSEs of CLDAS are smaller than those of the DLDAS and ERA5L in all months,
while the RMSEs of GLDAS are lower than those of ERA5L in all months except August
and September of 2017 and July and August of 2018, when the RMSEs of GLDAS are
slightly higher than those of ERA5L. Monthly MBE variations (Figure 9d) indicate that
CLDAS overestimates monthly mean temperature in all months except December 2018,
when it slightly underestimates the monthly mean temperature by −0.025 ◦C. The largest
overestimation of 1.172 ◦C occurs in March 2017. Monthly MBEs of ERA5L are negative
in all months, with the largest negative bias of −7.395 ◦C occurring in November 2018.
Monthly MBEs of GLDAS are negative in all months except December 2017, when the
monthly mean temperature of GLDAS is higher than the observation by 0.445 ◦C. The
largest negative bias of GLDAS occurs in March 2017 with the value of −2.993 ◦C. Monthly
consistency indices of NSE (Figure 9e) for CLDAS, ERA5L, and GLDAS are within the
ranges of 0.581–0.847, −2.253–0.363, and −0.191–0.541, respectively, and the ranges of KGE
(Figure 9f) are 0.027–0.892, −26.714–0.736, and −8.948–0.709, respectively. The indices
of WIA (Figure 9g) are within the ranges of 0.903–0.961, 0.545–0.855, and 0.685–0.865,
respectively. The lowest value of NSE occurs in either July or August for all the three
reanalysis datasets, whereas the lowest value of WIA occurs in either October or August.
Compared to the other two reanalysis datasets, monthly values of NSE, KGE, and WIA
for CLDAS are closer to one, suggesting that CLDAS is more consistent with observations.
GLDAS overall is better than ERA5L, with the exception of a few months.

3.3.3. Seasonal Analysis

Figure 10 displays seasonal error characteristics during the evaluation period. The
histograms of seasonal mean air temperature changes from reanalysis datasets and in-
situ observations are displayed in Figure 10a, which shows that seasonal temperatures
of CLDAS, ERA5L, and GLDAS as well as in-situ observations all present a unimodal
feature of being low in winter and high in summer. This result indicates that the three
reanalysis datasets can well describe the seasonal variation of temperature in the QTP.
Seasonal CCs (Figure 10b) of the three reanalysis datasets with observations are all the
highest in autumn, while the CCs of CLDAS and ERA5L with observations are the lowest in
winter and higher in spring than in summer. Although the CC of GLDAS with observations
is the lowest in summer, the difference between CCs in winter and summer is quite small.
Seasonal RMSEs (Figure 10c) of the CLDAS, ERA5L, and GLDAS all gradually increase
from the minimum values in summer (1.819 ◦C, 2.863 ◦C and 2.828 ◦C) to the maximum
values in winter (2.62 ◦C, 5.693 ◦C and 4.451 ◦C), and then decrease in the spring. Seasonal
MBEs are displayed in Figure 10d, which indicates that CLDAS overestimates seasonal
mean temperature in all seasons, though the overestimation is relatively small in autumn.
Opposite to CLDAS, ERA5L and GLDAS both underestimate seasonal mean temperature,
and the underestimation is more severe in ERA5L. The largest negative bias occurs in
autumn and the smallest negative bias occurs in summer for both ERA5L and GLDAS. The
histograms of seasonal NSE (Figure 10e) and WIA (Figure 10g) show that the consistency
of the three reanalysis data with in-situ observations is relatively poor in winter, and is
optimal in autumn. However, from the perspective of KGE (Figure 10f), the three reanalysis
datasets are worst in spring and better in summer.
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Figure 9. Monthly evaluation of during 2017–2018. (a): Series of monthly mean temperature; (b) CC;
(c) RMSE; (d) MBE; (e) NSE; (f) NSE; (g) WIA.

3.4. Comparative Reanalysis at Individual Sites

Figure 11 shows box plots of temperature errors of CLDAS, GLDAS, and ERA5L
during 2017–2018. The numbers of stations with CC (Figure 11a) higher than 0.95 account
for 82.4%, 52.9%, and 70.6% of the total number of stations for CLDAS, ERA5L, and
GLDAS, respectively. The lowest CCs, with respective values of 0.902, 0.915, and 0.913 for
CLDAS, ERA5L, and GLDAS, all occur at Ruoergai (Elinghu), while the highest CCs occur
at Ali and Golmud (0.992 for CLDAS), Haibei (0.974 for ERA5L), and Mushitage (0.979
for GLDAS). RMSEs (Figure 11b) are within the ranges of 1.222–4.289 ◦C, 2.345–6.076 ◦C,
and 2.366–5.736 ◦C for CLDAS, ERA5L, and GLDAS, respectively. The largest RMSEs
of CLDAS and ERA5L occur at Ruoergai (Elinghu), where the correlation is the lowest.
The largest RMSE of GLDAS is found at Lasa. The smallest RMSEs of the three datasets
occur at different sites. The box plot of MBE (Figure 11c) shows that CLDAS is lower than
observations at only 4 sites, i.e., Ruoerai (Elinghu), Sanjinagyuan, Golmud, and Shenzha,
which account for 23.5% of the total observation sites. The largest negative bias (−1.995)
is found at Ruoergai (Elinghu), and the largest positive bias (1.99 ◦C) occurs at Naqu
(Hanhansuo). ERA5L data are lower than observations at all sites, and the largest bias is
found at Mushitage (−4.968 ◦C). Positive biases of GLDAS only occur at Ruoergai (Maqu),
Naqu (Qingzangsuo), Naqu (Hanhansuo), and Shuanghu, which account for 29.4% of
the total stations. The largest positive bias occurs at Shuanghu (2.37 ◦C); the biases of
GLDAS are negative at all other sites with the largest negative bias (−5.385 ◦C) at Lasa.
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The consistency indices of NSE for CLDAS, ERA5L, and GLDAS (Figure 11d) are within
the ranges of 0.748–0.974, 0.102–0.919, and 0.219–0.934, respectively, and the ranges of
KGE (Figure 11e) are −157.108–0.918, −389.193–0.537, and −138.881–0.882, respectively.
The ranges of WIA (Figure 11f) are 0.936–0.994, 0.85–0.978, and 0.839–0.982, respectively.
Based on NSE, KGE, and WIA, the consistency of CLDAS is the worst at Ruoergai (Elinghu)
and the consistency of GLDAS is the worst at Lasa. The consistency of ERA5L is worst
at Zhufeng, Zangdongnan, and Lasa. In summary, the various reanalysis datasets show
different qualities and applicability.

Figure 10. Seasonal evaluation during 2017–2018. (a): Seasonal changes of the average temperature;
(b): CC; (c): RMSE; (d): MBE; (e): NSE; (f): KGE; (g): WIA.

To intuitively and easily understand the relationship between the consistency and
errors of CLDAS, ERA5L, and GLDAS at the 17 observation stations, Taylor diagrams be-
tween the three reanalysis datasets and in-situ observations at each individual observation
site are displayed in Figure 12. Figure 12a–q show that the standard deviations of CLDAS
and GLDAS are relatively large at 11 and 7 sites, respectively, while ERA5L shows greater
variability at 15 sites. The correlation coefficient between CLDAS and in-situ observations
is larger than those between the other two reanalysis datasets and observations at all ob-
servation sites except Ruoergai (Elinghu), where the CC of CLDAS is slightly lower than
the CC of GLDAS and ERA5L. The Taylor diagram between the three reanalysis datasets
and all the in-situ observations (Figure 12r) indicates that CLDAS is closer to, and more
consistent with, observations with smaller deviation.
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Figure 11. Box plots of temperature errors in CLDAS, ERA5Land GLDAS: (a) CC, (b) RMSE, (c) MBE,
(d) NSE, (e) KGE, (f) WIA.

3.5. Comparative Reanalysis at Different Terrain Elevations

To explore the temperature variation characteristics of the three reanalysis datasets
in different elevations, the observation sites are divided into four categories of elevation:
<3500 m, ≥3500–4000 m, ≥4000–4500 m, and ≥4500 m. Figure 13 show the bias characteris-
tics of the three gridded datasets at different elevations. In terms of evaluation indices (CC,
NSE, KGE, and WIA), the consistency between CLDAS and the in-station observations
is higher than the other analysis products at any altitude. The MBEs of CLDAS show a
positive deviation relative to the observation station, while ERA5L and GLDAS are oppo-
site. The RMSEs of CLDAS are lower than those of the other two reanalysis datasets, and
GLDAS is better than ERA5L. Although the CCs of ERA5L is slightly higher than GLDAS,
other indices (NSE, KGE and WIA) are relatively lower than GLDAS. Compared to ERA5L
and GLDAS, the CLDAS temperature data is less affected by elevation.

3.6. Comparative Reanalysis at Different Land Covers

According to the land cover type, the observation sites are divided into seven cate-
gories: alpine meadow (AE), desert (DT), grassland in forests (GF), gravel (GL), peatland
(PD), sand and gravel (SG), and artificial grassland (AG). Figure 14 show the bias char-
acteristics of CLDAS, ERA5L, and GLDAS at different land covers. The MBEs of ERA5L
and GLDAS showed negative deviation in in-station observations at different land covers,
while CLDAS is opposite. The deviation of CLDAS at land cover of artificial grassland is
the smallest, as are ERA5L and GLDAS with alpine meadow and peatland, respectively. In
essence, the consistency indices (CC, NSE, KGE, and WIA) and deviation (MBE and RMSE)
between CLDAS and in-station observations have a small range of variation, and are better
than ERA5L and GLDAS in each land cover.
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Figure 12. Taylor diagrams of (a–q) CLDAS, ERA5L, GLDAS against in-situ observations at 17 stations
and (r) all observation stations.
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Figure 13. The errors at different altitudes: (a) CC; (b) RMSE; (c) MBE; (d) NSE; (e) KGE; (f) WIA.

Figure 14. The errors at different land covers: (a) CC; (b) RMSE; (c) MBE; (d) NSE; (e) KGE; (f) WIA.
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4. Discussion

Based on the validation results, we found that a certain degree of errors are inevitable in
the three reanalysis datasets in comparison to in-situ observations. Surface air temperature
in the QTP is not only controlled by regional factors (longitude, latitude), but also affected
by other factors such as geographical conditions (altitude, aspect, slope) and the underlying
surface (such as vegetation, snow cover), and are further complicated by temperature
changes [55–63].

Several previous studies have also found differences of biases between stations and
air temperature reanalysis datasets. For example, Huang et al. [41] found that elevation
is not the only factor that causes biases in reanalysis datasets. Through the assessment
of the slopes of in-situ observation sites, they found that the errors and applicability
of CLDAS, ERA5L, and GLDAS increase with the increasing slope of the observation
site. Ding et al. [64] found that temperature changes are significantly correlated with the
elevation and slope of the observation site, and the complexity of the terrain is the main
factor leading to large errors in reanalysis data. Meanwhile, these results also indicate that
when using temperature reanalysis data, topographic correction should be performed on
the data in order to effectively reduce errors and improve the accuracy and applicability
of the reanalysis data. Liu and Long et al. [42,65] evaluated CLDAS; Huang et al. [41]
evaluated CLDAS, ERA5L, and GLDAS in China. They found that that the errors of the
three reanalysis datasets all increase with increasing monthly average temperatures, and the
correlation between the reanalysis data and the in-situ observations gradually decreased,
reaching the minimum value in July or August. The correlation and bias then gradually
increased with decreasing temperature. However, the present study indicates that the
monthly variation of errors in the QTP is not significant, though the seasonal variation is
essentially the same with the previous studies of Huang et al. [41], which may be attributed
to the differences in the time series of the data used and the division of regions.

Errors that resulted from the approach of evaluation at individual sites can be influ-
enced by a few factors: (1) The spatial scales do not match. The in-situ observations at
a specific site only reflect temperature changes in a certain area around it, and, due to
the influence of topography, the representativeness of the observations is still limited. In
contrast, the reanalysis data at a specific grid represents the average value of the grid. Thus,
it is difficult to solve the problem of spatial mismatch [56,59] between in-situ observations
and gridded reanalysis data. (2) The difference between the terrain height of the re-analysis
grid and the elevation of the station [41,42,66]. If the observation site is located in a valley
and its altitude is lower than the altitude of the surrounding grid points of the reanalysis
dataset, the evaluation result at this site will generally show a colder deviation; if the site
is located at the top of mountains, which is higher than the elevation of the surrounding
grids in the reanalysis dataset, the evaluation result will show a warm bias at this site.
(3) Systematic errors [67,68] caused by the numerical model or assimilation method. For
example, cold errors occur at 70.6% and 100% of the total number of stations for GLDAS
and ERA5L, respectively, which may be caused by systematic errors. In addition, errors
in input data and errors introduced during the interpolation of reanalysis data (e.g., from
Gaussian grids to coordinate grids) are also sources of errors that need to be further verified.
Therefore, error characteristics and the applicability of reanalysis data should be fully
considered in the application of temperature reanalysis data. Next, we will resample the
three reanalysis datasets at the same resolution and use different interpolation methods for
evaluation to discuss the influences on the accuracy of the gridded datasets.

4.1. Inpact of Grid Resolutions on the Accuracy of the Reanalysis Datasets

To explore the temperature variation characteristics and accuracy of the three reanal-
ysis datasets at the same resolution, GLDAS and ERA5L are resampled to GLDAS grids
with the spatial resolution of 0.25◦ using the mean value algorithm [55], and thus the three
reanalysis datasets have uniform temporal and spatial resolutions. Figure 15 show the
spatial distributions of annual mean temperature over 2017–2018. Although remapping
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CLDAS and ERA5L reduces the resolution, it still shows more advantages in detail than
GLDAS. Figure 16 shows the bias of annual mean temperature between in-situ observations
and reanalysis datasets at 17 weather stations. It is easy to find that, at each observation
station, CLDAS has a small deviation to in-situ observations compared with ERA5L and
GLDAS.

Figure 15. Spatial distributions of annual mean temperature over 2017–2018. (a) CLDAS (0.05◦);
(b) ERA5L (0.1◦); (c) CLDAS (0.25◦); (d) CLDAS (resampled to 0.25◦); (e) ERA5L (resampled to 0.25◦);
(f) OBS (in-situ observations).

4.2. Inpact of Interpolation Methods on the Accuracy of the Reanalysis Datasets

In order to analyze the impact of different interpolation methods on the evaluation
results, the two most common interpolation methods, nearest neighbor method and bilinear
interpolation method, are used in the present study [40,42]. The results are shown in Table 4.
We found that different interpolation methods can have a certain impact on the evaluation
results, but the impact is very small. It can also be seen that the bilinear interpolation
method also shows that the deviation of CLDAS from the in-situ observations is lower than
the other two reanalysis datasets, and that GLDAS is better than ERA5L.

401



Remote Sens. 2022, 14, 4447

Figure 16. The bias of annual mean temperature between in-situ observations (OBS) and three
reanalysis datasets over 2017–2018.

Table 4. Accuracy evaluation results used two interpolation methods for the evaluation period.

Dataset
CC MBE (◦C) RMSE (◦C) NSE KGE WIA

Nea Bil Nea Bil Nea Bil Nea Bil Nea Bil Nea Bil

CLDAS 0.969 0.968 0.534 0.404 2.175 2.179 0.933 0.933 0.44 0.576 0.983 0.983
ERA5L 0.934 0.933 −3.447 −3.61 4.827 4.942 0.67 0.654 −2.609 −2.779 0.927 0.924
GLDAS 0.92 0.927 −1.396 −1.103 3.638 3.37 0.813 0.839 −0.463 −0.157 0.952 0.958

Note: Nearest neighbor interpolation method (Nea), bilinear interpolation method (Bil).

Although all three reanalysis datasets can accurately reflect the distribution character-
istics of air temperature in the alpine region of the QTP, CLDAS performs better overall. It
is also better at individual stations and on daily, monthly, and seasonal time scales. One
important reason is that in the QTP, CLDAS integrates the observations collected at thou-
sands of surface automatic weather stations [22,35], which is of great benefit to the quality
of CLDAS. ERA5L and GLDAS are global reanalysis products, both of which show large
deviations from observations, probably due to the lack of observations for assimilation
over the QTP. Furthermore, when compared with the other two reanalysis datasets, CLDAS
also has higher spatial resolution, which can improve its ability for temperature descrip-
tion [40], especially in complex terrain areas. Using data assimilation and fusion techniques
with in-situ observation data, satellite remote sensing data, and numerical model data,
the reanalysis system produces regular gridded data with a certain temporal and spatial
resolution. This process will introduce some uncertainties [22] into the final data products,
which is why deviation of reanalysis from in-situ observations is important.

Based on the aforementioned discussion, we believe that, although there are certain
deviations in the temperature reanalysis datasets in the QTP, they still have certain applica-
bility and credibility in the alpine region of the QPT, where observation sites are unevenly
distributed with a low density of observations. Thus, these reanalysis datasets have certain
reference values. It should be noted that, even though the quality of CLDAS is better than
the other two datasets based on careful evaluation of the three reanalysis datasets in the
present study, the reanalysis datasets of ERA5L and GLDAS have longer time sequences,
larger spatial coverage, and better continuity compared to CLDAS. Due to the extremely
complex terrain in the QTP and the short sequences of in-situ observations at the 17 sites,
which cannot cover all of the QTP area, the three datasets have their respective advantages
and disadvantages in different areas and further studies are necessary for local scale.
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5. Conclusions

In this study, the consistency between in-situ observations collected at 17 field obser-
vation stations in the alpine region of the QTP and the three reanalysis datasets (CLDAS,
GLDAS, and ERA5L) and their deviations from observations from 2017–2018 are evaluated.
Major conclusions are as follows:

(1) The spatial distributions of the three reanalysis datasets and the in-situ observations
follow the change patterns of latitude and elevation. Temporal variations of average
temperature and spatial distributions of temperature in the reanalysis datasets, as
well as their correlations with and deviation from in-situ observations, all indicate that
the three reanalysis datasets are consistent with observations and demonstrate reason-
ability. Despite some slight differences in local or regional scales, the magnitudes of
the data and their spatial distributions remain consistent.

(2) The spatial distributions of the three reanalysis datasets are consistent, while CLDAS is
closer to, and more consistent with, observations than GLDAS and ERA5L are. In the
spring, CLDAS temperature is higher than ERA5L and GLDAS over the entire study
area except the Qaidam Basin and the low elevation area of southern Tibet. Compared
to ERA5L and GLDAS, CLDAS shows smaller differences in spatial distribution. In
the summer, spatial distributions of CLDAS and GLDAS are closer, while ERA5L is
obviously lower. In the autumn, CLDAS and ERA5L become closer, while GLDAS
is relatively low in the high-elevation area of the western QTP but relatively high in
the low-elevation area of the southeastern QTP. In the winter, ERA5L is lower than
CLDAS and GLDAS in southeastern Qinghai and northeastern Tibet.

(3) Evaluation results on multi-time scales (daily, monthly, and seasonal) and multi-space
scales (individual stations, elevations, and land covers) indicate that the accuracy and
applicability of CLDAS are discernibly better than the other two datasets. GLDAS is
better than ERA5L, but the difference between the two is small. However, the quality
of the reanalysis datasets is different at observation sites.

In summary, CLDAS is more consistent with observations than GLDAS and ERA5L
are and demonstrates better capability for the description of temperature in the alpine
region of the QTP. Despite certain defects and limitations, ERA5L and GLDAS are still
reliable and applicable in the alpine area of the QTP where observations are sparse and
unevenly distributed. Results of the present paper have great implications for ecosystems
and sustainable development studies in the QTP.
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Abstract: The “warm-humid” climate change across the Tibetan Plateau (TP) has promoted grassland
growth and an overall greening trend has been observed by remote sensing products. Many of the
current generations of Earth System Models (ESMs) incorporate advanced process-based vegetation
growth in the land surface module that can simulate vegetation growth, but the evaluation of their
performance has not received much attention, especially over hot spots where projections of the future
climate and vegetation growth are greatly needed. In this study, we compare the leaf area index (LAI)
simulations of 35 ESMs that participated in CMIP6 to a remote-sensing-derived LAI product (GLASS
LAI). The results show that about 40% of the models overestimated the Tibetan Plateau’s greening,
48% of the models underestimated the greening, and 11% of the models showed a declining LAI trend.
The CMIP6 models generally produced poor simulations of the spatial distribution of LAI trend, and
overestimated the LAI trend of alpine vegetation, grassland, and forest, but underestimated meadow
and shrub. Compared with other vegetation types, simulations of the forest LAI trend were the
worst, the declining trend in forest pixels on the TP was generally underestimated, and the greening
of the meadow was underestimated as well. However, the greening of the grassland, was greatly
overestimated. For the Tibetan Plateau’s averaged LAI, more than 70% of the models overestimated
this during the growing seasons of 1981–2014. Similar to the forest LAI trend, the performance of the
forest LAI simulation was the worst among the different vegetation types, and the forest LAI was
underestimated as well.

Keywords: Coupled Model Intercomparison Project Phase 6 (CMIP6); LAI; LAI trend; Tibetan Plateau

1. Introduction

Vegetation is a critical component of terrestrial ecosystems and is very sensitive to
climate change [1–3]. The global average surface temperature increased by 0.85 ◦C from
1880 to 2012 [4], which triggered phenological changes in different vegetation types in
different regions. The increase in temperature, as one of the causes of variation in vege-
tation, has led to a significant overall change in vegetation, manifested by an increase in
the Normalized Difference Vegetation Index (NDVI) during the vegetation growth season
in the Northern Hemisphere [5], and the growth rate of NDVI in forests is greater than
that of other vegetation types [6–8]. The community structure of snow-meadow vegetation
has changed significantly as a result of climate change in Northern Japan over the last
40 years [9]. In the Siberian Mountains, the birch area has increased by 10%, and birch
stands and the treeline boundary have moved upslope at a rate of 1.4 m yr−1 and
4.0 m yr−1, respectively, since the 1970s with the onset of warming [10]. In China, the zone
of tundra vegetation of the Changbai Mountains has been invaded by herbaceous plants
with the rising temperature over the last 30 years [11].

As the third pole of the earth, the Tibetan Plateau (TP) is highly sensitive to cli-
mate change and has been experiencing a rapid warming of 0.4◦ 10 yr−1 over the last
30 years [12,13] and with precipitation increasing by 1.96 mm 10 yr−1 in 1994–2015 [14].
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This “warm–humid” trend has led to tremendous changes on the land surface, such as
glaciers collapsing [15], permafrost thawing [16], and lakes expanding [17], as well as
surface vegetation growth. Liu et al. [18] found that the vegetation coverage on the TP
showed a trend of “overall increase and partial degradation” from 1981 to 2005, with the
area of improvement much larger than the area of degradation. Wei et al. [19] found that
“warm-humid” has a significant promoting effect on the improvement of vegetation on
the TP, and Zhang et al. [20] found that the overall NDVI of grassland in the growing
season of the TP also shows an increasing trend. Xu et al. [21] used the leaf area index
inversion by NOAA–AVHRR to study the temporal and spatial changes in vegetation
cover characteristics in the TP, and also found an overall increase in vegetation cover.
Zhang et al. [13] found that the green-up dates with the alpine vegetation in the Plateau
had a continuous advancing trend with a rate of ~1.04 d·y−1 from 1982 to 2011.

Remote sensing, as one of the major tools for studying vegetation’s response to climate
change [22], was used to study the vegetation on the TP, with various long-term vegetation
leaf area index (LAI) datasets derived through satellite remote sensing, such as GLASS
LAI [23], GLOBMAP LAI [24], GIMMS LAI [25], and MODIS LAI [5]. Hua et al. (2018) [26]
used the GIMMS NDVI dataset (NDVI-3g) to study the temporal and spatial variations in
vegetation dynamics controlled by climate on the Tibetan Plateau during 1982–2011 and
found that the potential cause of the change in vegetation dynamics might be controlled
by the climate, particularly the increasing precipitation and the significant temperature
rise in the Central and Southeastern Tibetan Plateau. Although remote sensing products
are very useful for understanding historical vegetation variations, satellite remote sensing
could not directly measure future vegetation dynamics. Another powerful tool, the state-of-
the-art Earth System Models that incorporate a process-based vegetation growth module,
can simulate not only historical variations in vegetation but also those in future climate.
Zhu et al. [27] built the first pedotransfer function to simulate temporal variations in
vegetation coverage (VC) and found that the pedotransfer function more accurately sim-
ulated temporal variation in VC than a multiple linear regression in an alpine meadow
on the Tibetan Plateau. Lu et al. [28] found that net primary productivity (NPP) and
LAI decreased from the southeast to the northwest of the Tibetan Plateau by using the
atmosphere–vegetation interaction model (AVIM) to simulate the distribution of LAI and
NPP over the Tibetan Plateau. The accuracy of the simulation results varies greatly due to
the design and use of the model itself, so it is very important to evaluate the accuracy of
the simulation data before using the simulations.

The International Coupled Model Comparison Program (CMIP), proposed by the
World Climate Research Program Group, currently in the sixth generation (CMIP6), has
been widely used for studying various environmental changes. Tian et al. [29] analyzed
changes in the annual mean surface air temperature (SAT) and precipitation, and also
the related uncertainties using historical simulations and future projections under the
Representative Concentration Pathway scenarios (RCPs) from the CMIP5 models across
China and in its seven sub-regions. Zhang et al. [30] demonstrated that there may be a
basic spatial scale limit below which it may not be useful to further refine climate model
predictions based on an integrated analysis of coupled model simulations and projections
from CMIP3 and CMIP5. Using the established linear relationship and monthly temper-
ature simulations from CMIP5 models over the Northern Hemisphere during the 21st
century, Xia et al. [31] found the start of the vegetation growing season (SOS) will have
advanced by 4.7 days under RCP2.6 (Representative Concentration Pathway) by 2040–2059.
After CMIP5, more and more models have incorporated a dynamic vegetation growth
module, and therefore evaluating CMIP vegetation simulations has drawn much atten-
tion. Anav et al. [32] assessed the ability of 18 Earth system models (ESMs) in CMIP5
and found that most models overestimated the global average LAI and half of the models
also overestimated the LAI trend for 1986–2005. Zhao et al. [33] analyzed the changes
in projected global LAI from 16 CMIP5 ESMs and 17 CMIP6 ESMs, and found that the
CMIP6 models had a better ability to describe the global area-averaged LAI time series.
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Lawrence et al. [34] did not evaluate the performance of the simulated global tree height of
the CMIPs’ ESMs but gave the biases of tree height for the offline simulations of CLM5BGC.
Brovkin et al. [35] evaluated the performance of MPI-ESM, and Seller [36] evaluated
UKESM1-0-LI in terms of vegetation distribution; both found that the two models overes-
timated the fraction of tree coverage. Most evaluations have focused on the global scale;
few have focused on regional scales such as the Tibetan Plateau. Bao et al. [37] evalu-
ated 12 CMIP5 ESMs for reproducing vegetation cover and LAI over the Tibetan Plateau
in 1986–2005, and found that INMCM4, BCC-CSM-1.1M, MPI-ESM-LR, IPSL-CM5A-LR,
HadGEM2-ES, and CCSM4 were the best six models for capturing vegetation among the
12 models. CMIP6 has had the largest participation since its implementation [38]. However,
how well the CMIP6 models simulate vegetation growth, especially the recent greening of
the Tibetan Plateau, is unknown.

LAI is usually defined as half of the total leaf surface area per unit of surface area [39],
and NDVI is defined as the ratio of the difference between the near-infrared band (NIR) and
the visible red band (R), and the sum of the two bands, NDVI = (NIR − R)/(NIR + R). NDVI
is directly obtained from the satellites’ reflection information and the real-time variation of
vegetation after a simple calculation, which can quantitatively reflect the actual variation of
vegetation, including the vegetation structure, the vegetation growth, and the vegetation
coverage during the observation period, and is widely used in the field of vegetation remote
sensing [40–42]. LAI and NDVI are both important indices for quantifying the vegetation
variations, but only LAI could be validated because NDVI is not an output of the dynamic
vegetation growth models in CMIP6. LAI, as a key indicator of vegetation growth [43], has
been widely used in global climate models, ecological models, hydrological models, and
ecosystem productivity models [44]. Therefore, we focused on LAI validations in our work
rather than NDVI.

In recent decades, although greening is one of the most important changes in the
Tibetan Plateau, few works have particularly focused on the performance of the model
simulations on the greening of the Tibetan Plateau. We developed our own ranking method
that considered the temporal and spatial simulations’ abilities to give an overall assessment
of CMIP6 models. We also quantified the growth of different vegetation types. Our goals
with this work are to evaluate the performance to simulate the LAI trend and LAI of the
CMIP6 model during the growing season and to provide a reference for the selection
of simulation data of vegetation changes, aid the research into vegetation in the Tibetan
Plateau, and analyze the sources of temporal and spatial error in each model, laying a
foundation for model optimization.

2. Data and Methods

2.1. Study Area

The TP [45,46] is located at 26–39◦N latitude in Southwest China. Surrounded by high
mountains on the edge of the area, the internal topography is complex, including plateaus,
basins, glaciers, lakes, and swamps [47]. Its geographical features, such as the high altitude,
and the complex and changeable topography, have created special climatic conditions and
water and heat distribution in this area, and have also created its distinctive vegetation
distribution. As the largest alpine grassland ecosystem in the world, the TP is dominated
by meadows and grasslands (Figure 1), concentrated across a wide range of Central Tibet.
The vegetation types in Tibet have spatial distribution characteristics that gradually change
from southeast to northwest. From southeast to northwest in Tibet, the vegetation types are
distributed in the order of forests, shrubs, meadows, grassland, and desert (Figure 1). The
dataset is derived from the 1:1 million vegetation data set collected in China in 2001, and
it is provided by the National Cryosphere Desert Data Center (http://www.ncdc.ac.cn)
(accessed on 9 December 2021).
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(a)

(b)

Figure 1. (a) The location of the Tibetan Plateau [48] in the world map, and the world map from
ArcGIS. (b) Distribution of vegetation types on the Tibetan Plateau [49].

2.2. Satellite Data

To evaluate the ability of the 35 models from the CMIP6 to reproduce the LAI over the
Tibetan Plateau, the 1981–2018 LAI data from the Global Land Surface Satellite (GLASS)
dataset with an eight-day temporal frequency and a 0.5◦ × 0.5◦ spatial resolution were
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used as a benchmark in our study. GLASS LAI uses generalized regression neural networks
(GRNNs) to invert LAI from Time-Series AVHRR Surface Reflectance data; the algorithm
trains GRNNs using preprocessed AVHRR Time-Series AVHRR Surface Reflectance, and
then uses rolling processing to produce time-continuous long-term GLASS LAI products
from the preprocessed AVHRR Surface Reflectance [23]. Compared with other LAI datasets,
GLASS LAI data have a long observation period, high quality, and good accuracy [50]. They
have more complete trajectories than the MODIS LAI product and also show lower uncer-
tainty than the MODIS and CYCLOPES LAI products compared with 20 ground-measured
LAI reference maps. Many studies use GLASS LAI as a reference database for research or
validation [51–55]. All these factors make it an ideal long-term dynamic LAI observation
dataset in this study. The GLASS LAI product (V50) used in this study is available from the
University of Maryland and the Center for Global Change Data Processing and Analysis
of Beijing Normal University (http://www.glass.umd.edu/Download.html, accessed on
9 March 2021).

2.3. CMIP6 Model Simulations

Thirty-five CMIP6 models with no missing data were selected in this study, and the
LAI from outputs of historical simulations for 1850–2014 was used (https://esgf-node.llnl.
gov/search/cmip6/, accessed on 16 August 2021).

In order to facilitate the comparison of the simulation and observational data, all
simulations were downloaded and converted to a 0.5◦ × 0.5◦ spatial resolution by bilinear
interpolation from low to high resolution. The overlaps of the GLASS datasets and CMIP6
were 1981–2014, so our analysis focused on 1981–2014. The model’s information is shown
in Table 1.

2.4. Evaluation Approach

A series of evaluation indicators was applied to quantify the agreement between
the observed and simulated LAI and the trend of the CMIP6 models. In this study, we
calculated the average LAI during the growing season (May–September) for each year as
the average LAI, a linear regression trend of the average LAI from 1981 to 2014 as the trend,
and an increasing trend indicated TP greening. We also calculated the monthly average
LAI for each month of the growing season, and the TP averaged monthly average LAI
during 1981–2014 as the monthly LAI. Then, we calculated the linear regression trend of
the monthly average LAI for each month during the growing season from 1981 to 2014, and
the TP averaged trend of the monthly average LAI as the monthly LAI trend. We obtained
monthly variations from the monthly LAI and the monthly LAI trend during the growing
season. In the following, we further describe the metrics used for model evaluation and the
method used for ranking the models.

2.4.1. Evaluation Metrics

The spatial correlation (pattern correlation) was used to quantify the correlation
between the grid cell trend (or the grid cell average LAI from 1981 to 2014) distribution in
the models and observations. Through a combination of the definitions of Bao et al. [37]
and Chang et al. [80], the spatial correlation formula for the simulated and observed trends
in this study was defined as follows:

Pattern correlation =
1
N ∑ N

i Wi
(

Mi − M
)(

Oi − O
)

√
1
N ∑ N

i Wi
(

Mi − M
)2
√

1
N ∑ N

i Wi
(
Oi − O

)2
. (1)

where N is the total number of grid cells under evaluation, Mi and Oi are the simulated
and observed trend (or the average LAI from 1981 to 2014) from the CMIP6 models and the
GLASS of the grid cell i , and Wi is the area weight of the grid cell i (all grid weights add
up to 1) [37]. We calculated Wi in the Pearson correlation coefficient equation as the area of
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each grid cell associated with the central geographic latitude of each grid cell [37]. In the
TP, the variation in Wi is not obvious and the value of Wi can almost be neglected.

Table 1. Model description.

Model Institute Land Surface Model Resolution Reference

AWI-ESM-1-1-LR AWI (Germany) CABLE2.4 250 km [56]
ACCESS-ESM1-5 CSIRO (Australia) CABLE2.4 250 km [57]
BCC-CSM2-MR BCC (China) BCC-AVIM2.0 100 km [58]

BCC-ESM1 BCC (China) BCC-AVIM2.0 250 km [58]
CAMS-CSM1-0 China CoLM 100 km [59]

CanESM5 CCCMA (Canada) CLASS3.6-CTEM1.2 500 km [60]
CanESM5-CanOE CCCMA (Canada) CLASS3.6-CTEM1.2 500 km [60]

CESM2 NCAR (USA) CLM5 100 km [61]
CESM2-FV2 NCAR (USA) CLM5 100 km [61]

CMCC-CM2-SR5 CMCC (Italy) CLM4.5 100 km [62]
CMCC-ESM2 CMCC (Italy) CLM4.5 100 km [62]

E3SM-1-0 E3SM-Project (USA) ELM 100 km [63]
E3SM-1-1 E3SM-Project (USA) ELM 100 km [63]

E3SM-1-1-ECA E3SM-Project (USA) ELM 100 km [63]
EC-Earth3-Veg EC-Earth-Consortium (Europe) HTESSEL 100 km [64]

EC-Earth3-Veg-LR EC-Earth-Consortium (Europe) HTESSEL 100 km [64]
FGOALS-g3 China CAS-LSM 2 × 2◦ [65]
FIO-ESM-2-0 FIO (China) CLM4.0 100 km [66]
GFDL-CM4 GFDL (USA) LM4.0 100 km [67]
GFDL-ESM4 GFDL (USA) LM4.1 100 km [68]
GISS-E2-1-G GISS (USA) GISS LSM 250 km [69]

HadGEM3-GC31-LL HadGEM (United Kingdom) JULES 250 km [70]
HadGEM3-GC31-MM HadGEM (United Kingdom) JULES 100 km [70]

INM-CM4-8 INM (Russia) INM-LND1 100 km [71]
INM-CM5-0 INM (Russia) INM-LND1 100 km [72]

IPSL-CM6A-LR IPSL (France) ORCHIDEE v2 250 km [73]
KIOST-ESM KIOST (Korea) LM3.0 250 km [74]

MIROC-ES2L MIROC (Japan) MATSIRO6.0
+VISIT-e v1 500 km [75]

MPI-ESM-1-2-HAM
HAMMOZ Consortium
(Switzerland, Germany,

Finland, UK)
CABLE2.4 250 km [76]

MPI-ESM1-2-HR MPI (Germany) CABLE2.4 100 km [76]
MRI-ESM2-0 MRI (Japan) HAL 1.0 100 km [77]

NorESM2-LM NCC (Norway) CLM5 250 km [78]
NorESM2-MM NCC (Norway) CLM5 100 km [78]

TaiESM1 AS-RCEC (Taiwan, China) CLM4.0 100 km [79]
UKESM1-0-LI MOHC (UK) JULES-ES-1.0 250 km [36]

The bias between the simulated and observed grid cell trend (or the grid cell average
LAI from 1981 to 2014) was calculated to quantify the main bias between the model
simulations and GLASS observations. In our study, we subtracted the observed trend (or
the average LAI from 1981 to 2014) from the simulated trend (or the average LAI from 1981
to 2014) to get trend (or the average LAI from 1981 to 2014) bias at the single grid cell i by
Equation (2). We thus obtained a value of the bias at every grid cell and the distribution of
the bias across the whole study region. The relative bias of grid cell trend (or the grid cell
average LAI from 1981 to 2014) was calculated as the ratio of the trend (or the average LAI
from 1981 to 2014) bias to the observed trend (or the average LAI from 1981 to 2014) at the
grid cell i in Equation (3). We also calculated the TP averaged bias using Equation (4).

Bias = Mi − Oi (2)
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RelativeBias =
Biasi

Oi
(3)

Biasavg =
∑ N

1 |Mi − Oi|
N

(4)

The root-mean-square error (RMSE) was used to measure the difference between the
simulations and observations. Similar to bias, we calculated the trend (the average LAI
from 1981 to 2014) of the two datasets at grid cell i , and then aggregated the results over
the entire TP. Next, we converted spatial two-dimensional data of trend (or the average LAI
from 1981 to 2014) in simulations and observations into one dimension and calculated the
RMSE of the two columns (the simulations and observations) of the one-dimensional data
by Equation (5). This RMSE was used in the ranking. Moreover, we used RMSE to quantify
the difference in the average LAI from 1981 to 2014 sequence between the simulation and
observation during the growing season in 1981–2014 at single grid cell i , and then obtained
the distribution of RMSE across the region.

RMSE =

√
∑ N

1 (Mi − Oi)

N

2

(5)

The ratio of the standard deviation (Ratioδ) was used to quantify the magnitude of
the difference in variation between the simulation and the observation. Similar to RMSE,
we first converted the spatial two-dimensional data of the grid cell trend (or the grid cell
average LAI from 1981 to 2014) in simulations and observations into one dimension, and
then calculated the standard deviation of the simulations and observations by Equation (6),
and finally calculated the ratio of the two standard deviations. Furthermore, δM and δO were
the standard deviations of the model simulations and the GLASS observations, respectively.
The ratio of trend (Ratiotrend) was used to quantify the variation of the simulated trend
and the observed trend as either overestimation or underestimation. We calculated the
Ratiotrend by Equation (7); trendM was the simulated trend, and the trendO was the GLASS
trend. A ratio less than 0 indicated that the trend was not captured, contrary to the trend in
GLASS. A ratio greater than 0 but less than 1 indicated that the greening or declined trend
was captured, but was underestimated. A ratio greater than 1 indicated an overestimation
of the greening or declined trend.

Ratioδ =
δM
δO

(6)

Ratiotrend =
trendM
trendO

(7)

2.4.2. Significant Test Method

We used two methods for significance testing, the Student’s t-test and the Mann–
Kendall trend test. The Student’s t-test was used for the significant difference test between
simulations and observations. The Mann–Kendall trend test was used to detect whether a
time series was steadily increasing/decreasing or unchanging.

2.4.3. Ranking Method

A ranking scheme was developed by Brunke et al. to score the multi-bulk aerodynamic
algorithm for calculating the turbulence fluxes on the ocean surface [81]. Decker et al. [82]
ranked the bias and standard deviation of error between reanalysis products and flux
tower measurements using the same method as Brunke et al. On the basis of Decker et al.,
Wang et al. [83] extended this ranking approach and increased the statistical parameters
to four, including the correlation coefficient (ρ), the standard deviation ratio (σr/σobs), the
standard deviation error (σd), and the difference (bias) to rank the ability of six kinds of
reanalysis data to reproduce climate characteristics over the Tibetan Plateau. Since then,
this ranking approach, as a good example of model performance evaluation, has been
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used in many studies [32,37]. In this study, we adjusted the ranking method used by
Wang and Zeng, and the ranking metrics were changed into the spatial correlation (pattern
correlation), the bias (Bias), the root mean square error (RMSE), and the ratio of standard
deviation (Ratioδ).

In the context of this study, the simulation with the highest pattern correlation, the
lowest bias and RMSE, and the closest ratio was considered to have the best performance
for reproducing the trend (or the LAI) over the Tibetan Plateau. The models were ranked
from 1 to 35, with 1 being the model with the lowest value in magnitude of bias, RMSE, or
|ratio-1| (or the highest pattern correlation) and 35 being the model with the highest value
in magnitude of bias, RMSE, or |ratio-1| (or the lowest pattern correlation) [82]. We then
calculated the total score of the four metrics for a single model and defined the total score
as the “error ranking”. The higher the model’s error ranking, the closer the relationship
between the simulations and observations.

3. Result

3.1. The Average Growing Season LAI and Trend

More than 70% of models overestimated and about 28% of models underestimated
the area-averaged growing season LAI over the Tibetan Plateau (Figure 2). EC-Earth3-Veg,
C-Earth3-Veg-LR, and HadGEM3-GC31-LL showed the smallest average LAI bias with
slight underestimations of 0.0066–0.018 m2 m−2 in comparison with GLASS LAI. CMIP6
models (except FI0-ESM-2-0) incorporating the community land model (hereafter referred
to as the CLM family) showed a much larger LAI bias of 2–5.5 m2 m−2, especially CESM2,
CESM2-FV2, NorESM2-LM, and NorESM2-MM (4–5.5 m2 m−2). CanESM5, CanESM5-
CanOE, E3SM-1-0, GISS-E2-1-G, IPSL-CM6A-LR, and KIOST-ESM underestimated the
average LAI (0.1–0.40 m2 m−2), but these underestimations were much smaller than the
overestimations of other CMIP6 models.

Figure 2. The bias of the area-averaged LAI during the growing season in Tibetan Plateau from 1981
to 2014 between each CMIP6 model and GLASS data.

In Figure 3, we show the ratio of the area-averaged trend between simulations and
observations from 1981–2014 in TP. For the Tibetan Plateau LAI trend in 1981–2014, about
40% of the models overestimated the Tibetan Plateau’s greening, more than 48% of the
models underestimated the greening, and 11% models showed a declining LAI trend
(Figure 3). E3SM-1-1 and MPI-ESM-1-2-HAM showed the closest trend estimations among
the 35 CMIP6 models. For some CMIP6 models, the overestimation or the underestimation
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of greening and the area-averaged LAI (in Figure 2) occurred at the same time. For example,
CMIP6 models (except for FI0-ESM-2-0) that incorporated CLM also greatly overestimated
the greening of the Tibetan Plateau above the GLASS data (2.5–6.5 times higher), while
CanESM5 underestimated not only the average LAI but also the greening. However,
models such as AWI-ESM-1-1-LR and UKESM1-0-LI overestimated the average LAI but
underestimated the greening.

Figure 3. The ratio of the area-averaged LAI trend of the growing season (1981–2014) between each
CMIP6 models and the GLASS data.

3.2. LAI and Trend Monthly Variations
3.2.1. Monthly Leaf Area Index

The maximum underestimation of LAI mainly occurred in July and August, while the
maximum overestimation of LAI varied greatly across different CMIP6 models, and this
variation depended greatly on the land surface models incorporated in the different CMIP6
models (Figure 4a). The monthly variation in the bias of the LM family (UKESM1-0-LI,
GFDL-CM4, and GFDL-ESM4) was similar for each month of the growing season. Unlike
the LM family, the overestimation bias of the CLM family (except for FIO-ESM-2-0) first
increased and then remained stable, with the bias in May being the smallest, and the largest
being in June or September. The bias of the BCC family showed more complex monthly
variation characteristics, with the overestimation bias increasing and then decreasing, and
the bias in August being the largest.

Moreover, the good simulations of area-averaged LAI of EC-Earth3-Veg, EC-Earth3-
Veg-LR, and HadGEM3-GC31-LL were due to the positive and negative biases in dif-
ferent months cancelling each other out. EC-Earth3-Veg and EC-Earth3-Veg-LR under-
estimated LAI in May (−0.04 to −0.01 m2 m−2), July (−0.06 to –0.03 m2 m−2), and
August (−0.1 to −0.05 m2m−2), while LAI was overestimated in June (0.003–0.022 m2

m−2) and September (0.02–0.05 m2 m−2), HadGEM3-GC31-LL overestimated LAI in May
(0.014 m2 m−2) and June (0.024 m2 m−2), but underestimated LAI in July (−0.016 m2

m−2), August (−0.09 m2 m−2), and September (−0.021 m2 m−2), and these biases partially
canceled each other out, making the overall average bias smaller.
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Figure 4. The bias of the monthly LAI during the growing season of the Tibetan Plateau between
each CMIP6 model and the GLASS data. The y-axis is from −1 to 6 in (a), and from −1 to 1 in (b).
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Although the bias of LAI in May was small, the relative LAI bias was quite large
in May (Figure S1). For example, the relative LAI bias of the CLM family (except for
FIO-ESM-2-0) was highest in May and June (364–1105%) and then decreased from May
or June to August (265–725%), which suggested that improvements at the beginning of
growth are key to these models.

3.2.2. Monthly LAI Trend

None of the CMIP6 models captured the monthly LAI trend well, even those models
that showed good agreement for the annual LAI trend (Figure 5). The good overall greening
simulations of E3SM-1-1, INM-CM5-0, INM-CM4-8, and MPI-ESM1-2-HR were due to the
overestimations and underestimations in different months cancelling each other out.

Models that underestimated the greening of the Tibetan Plateau generally had the
greatest underestimation in July and August (Figure 5). For example, except for IPSL-
CM6A-LR, the monthly error of other models that underestimated the greening of the
Tibetan Plateau showed the changes first increasing and then decreasing, and the under-
estimation error was usually the largest in July and August. However, the models that
overestimated the greening of the Tibetan Plateau showed inconsistent monthly variations.
For example, the CLM family (except for FIO-ESM-2-0) showed the largest overestimation in
May (2.93–18.37) and the smallest overestimations in July (1.22–3.24) and August (1.15–3.04).
BCC-CSM2-MR showed the greatest overestimation in September (3.33), while E3SM-1-1-ECA
showed the greatest overestimation in June (2.81). The models that did not simulate greening
also did not simulate the greening trend for each month of the growing season.

Unlike the large difference between the LAI bias and relative LAI bias, the ratio of
the monthly LAI trend and the bias of the monthly LAI trend had consistent variations
(Figure S2). The CLM family (except for FIO-ESM-2-0) showed the largest overestimation
in May, and the greatest underestimation of LAI trend in July and August.

3.3. LAI Spatial Comparison
3.3.1. Averaged Leaf Area Index for 1981–2014

GLASS LAI gradually decreased from southeast to northwest (Figure 6). The LAI of
forests in Southeast TP was larger (2.8–4.8 m2 m−2), and the LAI dominated by grasslands
and shrubs in the central and northwest areas was smaller (0–0.8 m2 m−2).

Before evaluating the spatial distribution simulation capability, we ranked the perfor-
mance of the CMIP6 models to capture the LAI spatial distribution based on the evaluation
metrics (Table S1), then we presented the LAI spatial distribution results in Figures S3 and 7
by ranking their scores from the best to the worst.

Almost all the CMIP6 models could reproduce a spatially declining pattern from
southeast to northwest, but there was still large spatial bias. The pattern correlation of 88%
of the models was greater than 0.60 and the highest was 0.934 for HadGEM3-GC31-MM
(Figure S3). We also found that the top five models among the 35 CMIP6 models mainly
underestimated the LAI, and the underestimation bias mainly came from the alpine forest
area and alpine meadow areas in southeast Tibet. The main feature of the model ranked in
the middle (ranked 6–20) among the CMIP6 models is that there were both overestimations
and underestimations in the region, while the models with lower (after 20) rankings mainly
overestimated the LAI, and the overestimation bias was more obvious in the southeast.

417



Remote Sens. 2022, 14, 4633

Figure 5. The ratio of the monthly LAI trend of the growing season between each CMIP6 model and
the GLASS data. The y-axis is from −2 to 20 in (a), and from −2 to 2 in (b).
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Figure 6. Spatial distribution of the GLASS LAI during the growing season.

Models that underestimated LAI did so mainly over meadows and alpine forest areas
in southeast TP, while models that obviously overestimated LAI had great differences
in their spatial bias (Figure 7). The obvious overestimation of BCC-CSM2-MR from the
BCC family mainly came from the shrub area, while the overestimation of BCC-ESM1
was mainly from shrub areas, meadows, and part of the grassland, and there was high
overestimation near river basins. The overestimation of GFDL-CM4 in the LM family came
from the shrub areas, while the overestimation of GFDL-ESM4 was mainly distributed
across all of Southeast Tibet and was significantly overestimated in the central part. The
overestimation of the INM family mainly occurred in shrub areas, deserts, and grassland
area, and the highest value of the overestimation bias was for the shrub areas. In addition,
the CLM family (except for FIO-ESM-2-0) had abnormally high LAI values throughout
the Tibetan Plateau region, and the overestimation was distributed throughout the region,
especially for shrub areas and meadows in the southeast TP, with the bias values being
4.5–5.0 m2 m−2.

EC-Earth3-Veg and EC-Earth3-Veg-LR showed the best simulations for the average
LAI (Figure 2), but none of them showed the exact spatial distribution of LAI (Figure 7).
EC-Earth3-Veg and EC-Earth3-Veg-LR overestimated the southeastern edge of Tibet but
underestimated the grassland and meadow regions of the TP; these positive and negative
errors cancelled each other out.

Overall, the CMIP6 models had poor performance for the forest LAI simulation with
the highest RMSE, and the bias of the CMIP6 models varied greatly with large overesti-
mation and underestimation, but with the smallest relative bias (Figure S4). Although
CMIP6 models had a small overestimation of forest average LAI generally (Figure S4), most
models underestimated the forest LAI in the small areas where forests are concentrated on
the southern edge of the TP (Figure 7). Similar to the forest LAI, the simulation of shrub
was poor with large RMSE and bias, but the relative bias of the shrub was small. The
performance of the CMIP6 models for simulating the grassland LAI was good among the
different vegetation types with the smallest RMSE. The reason for the small absolute bias
but large relative bias with grassland may be that the LAI value of grassland was small.
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Figure 7. Spatial distribution of the bias of simulated and observed LAI during the growing season.
The white part failed the significant difference test. The number in the top left corner is the ranking
of each CMIP6 model for simulating the spatial distribution of the average LAI during the growing
season in 1981–2014. The value in each title is the pattern correlation.

3.3.2. The Leaf Area Index Trend during 1981–2014

The GLASS LAI data showed a clear greening trend from 1981 to 2014 over the TP,
except for some forest areas on the southern edge of the TP (Figure 8). The entire area had
significant greening (p < 0.05) of 0.0047 m2 m−2 yr−1 (Figure S4), especially in the river
basins of the meadow area.

Similar to the analysis of the spatial distribution of the LAI, we ranked the perfor-
mance in reproducing the LAI trend of the CMIP6 models (Table S2) and show the spatial
distribution of the LAI trend from best to worst in Figure 9.
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Figure 8. Spatial distributions of the linear trend of GLASS LAI during the growing season.

The CMIP6 models showed a poor ability to simulate the spatial distribution of the
LAI trend across the whole Tibetan Plateau during 1981–2014, while most models could
simulate the LAI trend in parts of the Tibetan Plateau (Figure 9). The pattern correlation
of the LAI trend between all models and GLASS was less than 0.65, and a few models
even had negative pattern correlations (Figure S6). There were five models (MPI-ESM-1-2-
HAM, BCC-ESM1, BCC-CSM2-MR, EC-Earth-Veg, and EC-Earth-Veg-LR) that generally
simulated the overall greening trend of the study area, and also captured the high value of
the greening trend in the southeast region, where the spatial distribution of the greening
trend was closer to the observation data, and five models (E3SM-1-1, AWI-ESM-1-1-LR,
CESM2, GFDL-ESM4, and TaiESM1) simulated the obvious decline in the Southern TP
better than other 30 models. E3SM-1-1 and MPI-ESM-1-2-HAM had the best performance
in simulating the distribution of the LAI trend and could capture the greening and the
decline as well.

Compared with other vegetation types, the simulation of forest LAI trend was poor
with the highest RMSE, and the CMIP6 models generally overestimated the forest LAI trend.
The simulation of the forest LAI trend showed great differences. Some models showed
largely overestimations (NorESM2-MM with a bias of 0.026 m2 m−2 year−1) and some mod-
els showed large underestimations (GFDL-ESM4 with a bias of –0.017 m2 m−2 year−1),
which resulted in a larger LAI bias range across all CMIP6 models than for other vegetation
types (Figure S7). The alpine vegetation and grassland were also overestimated by CMIP6
models, but the meadow and shrub were underestimated (Figure S7).

In total, 70% of the models accurately simulated increases and decreases in the LAI
trend of 80% of the area of the Tibetan Plateau, but the simulation of the value of the LAI
trends on the grids was poor (Figure 9). Six models (FIO-ESM-2-0, HadGEM3-GC31-LL,
FGOALS-g3, UKESM1-O-LI, GISS-E2-1-G, and GFDL-ESM4) all had obvious gray areas,
which mean that the models showed a contrary trend to the GLASS data and had not
captured the greening or the declining—especially for GISS-E2-1-G, the gray area was
distributed across almost the entire area. Neither FIO-ESM-2-0 nor FGOALS-g3 captured
the LAI trend in Northern Tibet, and neither UKESM1-O-LI nor GFDL-ESM4 captured the
LAI trend in the southwestern region.
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Figure 9. Spatial distributions of the ratio of simulated and observed linear trends in LAI during
the growing season. The grid cells with colors all showed a statistically significant interannual change
(p < 0.05). Gray areas mean the grid cells did not capture greening or a declining trend during 1981–2014
in the Tibetan Plateau, blue areas mean the grid cells captured the greening or the declining trend but
underestimated them, and red areas indicated overestimations of the greening or the declining trend.
Cross-hatched areas indicate that the LAI trend was negative. The number in the upper left corner is the
ranking of each CMIP6 model for simulating LAI trends. The value in each title is the pattern correlation.

The remaining models all captured the greening in 1981–2014, while there were
still underestimations and overestimations of the value of the LAI trend in grid cells
(Figure 9). The underestimation of the LAI trend mainly came from the shrub, whole
meadow area or part of the meadow area, and the greening of the shrub and meadows was
underestimated. While the overestimation of the LAI trend came from the grasslands, the
CLM family (except for FIO-ESM-2-0) overestimated the LAI trend in almost the whole
area, especially the greening of the grassland, which was greatly overestimated. Similarly,
13 models (E3SM-1-1, INM-CM5-0, MIROC-ES2L, INM-CM4-8, MRI-ESM2-0, GFDL-CM4,
MPI-ESM1-2-HR, E3SM-1-1-ECA, EC-Earth-Veg, EC-Earth-Veg-LR, UKESM1-O-LI, KIOST-
ESM, and MRI-ESM2-0) all overestimated the greening of grasslands. Although the trend
of forest LAI was generally overestimated by CMIP6 models (Figure S7), the decline trend
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of forest LAI was underestimated in parts of the southeast where alpine forests were
concentrated (Figure 9).

4. Discussion

Our study chose GLASS LAI as our reference LAI because it is one of the leading
data sources for studying long-term series vegetation changes with good representations
of various surface LAI distributions. In an evaluation of the authenticity of GLASS LAI
products in the grasslands of Xilinhot [84], it was found that the observational accuracy and
consistency of GLASS LAI were better than those of MODIS LAI, making it more suitable
for related research. When GLASS LAI data were used to analyze changes in the Amazon
rainforest from 1982 to 2012 [53], it was demonstrated that the GLASS LAI data can be used
for detecting changes in the large-scale surface vegetation status in long sequences. As
early as 2014, Xiang et al. [85] compared LAI products (MODIS LAI, CYCLOPES LAI, and
CCRS LAI) with ground measurement LAI data, and found that the accuracy of GLASS
LAI data products was significantly higher than that of MODIS and CYCLOPES. At the
same time, through a comparison of LAI products (MODIS LAI, CYCLOPES LAI, and
CCRS LAI), it was found that, compared with other LAI products, GLASS LAI has the best
temporal continuity and integrity, and smoother trajectories, and is an ideal data product
for studying temporal changes in LAI. The spatial distribution of the GLASS LAI data is
reasonable, and it also has good consistency with the global spatial distribution of MODIS
LAI. It thus has great advantages in studies of the spatial distribution of LAI.

Although many studies using remote sensing products found an overall increasing
trend of vegetation growth (greening) over the Tibetan Plateau, like the GLASS remote
sensing products, controversy remains regarding how vegetation on the Tibetan Plateau
has changed. Xu showed that spring warming advanced spring leaf-out time and in-
creased the biomass [86]. However, Yu (2010) argued that the warm winter may also have
led to delayed spring phases due to insufficient fulfillment of chilling requirements [87].
Zhang et al. [13] argued for the earlier start date of plant phenology and a longer growing
season, but some still doubt this [88,89]. Regarding the change in the trend, a declined
trend for the vegetation dynamics of the TP was found in some studies over the last 30 years
(about 1980-2010) according to the Global Inventory of Modeling and Mapping and Studies
(GIMMS) [90,91], but others found an increasing trend of vegetation growth in northeastern
TP using other NDVI datasets for 1982–2011 [92]. These different understandings indicate that
a combination of ground observations, remote sensing datasets, and land/vegetation models
is necessary to fully understand past and future vegetation changes on the Tibetan Plateau.

In the CMIP6 models, some model groups showed consistency in simulating LAI and
LAI trends using the same land surface model, but others showed great differences. In
order to understand the possible reasons for these differences, we briefly summarized the
differences among the model groups using the same land surface model (Table 2).

By combining the simulation results of the model for the average LAI and LAI trends
in Figures 2 and 3 and the different characteristics of the models in Table 2, we found
that the simulation results of the models using different land surface models were quite
different on the whole; the simulation results of models using the same land surface
model had overall consistency, whereas the simulation results of models using different
versions of the same land surface model were different. There are many possible reasons
for the large difference in the simulations of vegetation growth, such as the simplified
parameterization, uncalibrated parameters, and the atmospheric forcing data that drive the
model. The vegetation growth in the land surface model also subject to the simulations
of other processes directly affecting vegetation growth, such as the simulation of soil
temperature and moisture, surface radiation transfer, etc. Using the Community Land
Model (CLM) as an example, Luo et al. [100] used the simulated data of Weather Research
and Forecasting Model (WRF) to apply to the forcing data sets of the CLM model in the
Tibetan Plateau, and found that there are deviations between simulated and observed
surface temperatures with RMSE in the range of 2.0–4.2 ◦C. CLM4.0 simulated [101] lower
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soil temperature by −0.83 ◦C and higher sensible heat flux up to 60 W.m−2, except in
winter at Maqu Alpine Grassland. Xie et al. [102] found that the simulation of the winter
radiation balance component and the surface energy balance component of CLM4.5 was
poor, especially the simulation of the surface reflected radiation with the highest RMSE
of 165.16 W.m−2 in January, and sensible heat flux in winter had a serious deviation with
the highest RMSE of 145.15 W.m−2 in February. Song et al. [103] used CLM4.5, which
underestimated soil temperature and latent heat flux in winter at the Naqu site, which
indicated that the parameterization schemes of snow processes and surface albedos in
CLM4.5 need to be improved. All these discrepancies in land surface simulations may lead
to poor simulations of vegetation growth. Mao et al. [104] found that the GPP and LAI
both had a positive correlation with precipitation and a strong negative correlation with
incident shortwave radiation globally. Due to the special geography of the TP, especially
the complex lower cushion surface characteristics, there is a particularity and complexity
of the land–air interaction in the area, which has caused difficulties for CLM land surface
simulation. How to improve and perfect the simulation performance of the CLM model
on the vegetation of the TP requires more in-depth research in the future. However, there
are factors that can be improved, such as continuing to optimize the parameter schemes of
simulating the temperature, precipitation, radiation flux, and the coverage of snow on the
TP in CLM. Although almost all CLM models overestimated LAI and the LAI trend, there
were differences in the degree of overestimation. An obvious difference is that the FIO-
ESM-2-0 model with the ocean wave model added to the coupling had better performance
in simulating the area-averaged LAI of the Tibetan Plateau from 1981 to 2014 (Figure 2)
than other CLM models. Other modules such as the ocean wave model in the coupled
model might also have had a large impact on the CLM model.

Most models had a worse performance in simulating the forest LAI and LAI trend com-
pared with other vegetation types. The reasons for this difference may be that, compared
with grasslands and meadows, the vegetation growth mechanism in forest ecosystems is
more complex, the species of forest ecosystems are more abundant, and it is more difficult
to establish mathematical structures for simulations with different species. Changes in the
long-term processes of different species within the forest system are more complex, and it
is more difficult to establish mathematical structures with simulations.

From CMIP5 to CMIP6, the average LAI over the Tibetan Plateau still showed overes-
timation but of an even higher magnitude. Bao et al. [37] found that 10 out of 12 CMIP5
models overestimated LAI with bias of between 0.44 and 3.6 m2 m−2 from 1986 to 2005.
We found that 25 out of 35 CMIP6 overestimated LAI of TP, with bias ranging from 0.07 to
5.38 from 1981 to 2014. For the same model from CMIP5 to CMIP6, we found that some
models had better performance: for example, HadGEM3-GC31 had the smallest bias of the
CMIP6 models. Some models showed poor performance in CMIP6—for example, CESM2
in CMIP6 showed much a higher average LAI than its previous version, CCSM4 in CMIP5;
additionally, INMCM4, with the lowest bias of 12 CMIP5 models [37], ranked 23rd in area-
averaged bias among the 35 CMIP6 models. Both CanESM2 from CMIP5 and CanESM5
from CMIP6 maintained a better simulation of the average LAI on the TP with the smaller
bias, the same as the MPI-ESM1-2-HR and the old version MPI-ESM-LR. There were also
models, whether in the CMIP5 or in the CMIP6, where the simulation performance was
relatively poor, such as bcc-csm1.1-m and the new version, BCC-CSM2-MR, in CMIP6, and
NorESM1-ME and NorESM2-MM/LM from CMIP5 to CMIP6.

Song et al. [105] found that CMIP6 generally overestimated the global multiyear
average LAI, and the overestimation of growing season length (GSL) contributed to the
overestimated LAI in boreal and some temperate areas. We found that CLM family also
overestimated the average LAI during the growing season in 1981–2014 on the TP. We
analyzed the monthly average LAI of 35 models from 1981 to 2014 and found that most of
the models had a longer growing season (Figure S8). CMIP6 LAI in April, October, and
November were still large. Part of the reason for the global multi-year average LAI and
the TP LAI overestimation was the same. Moreover, we found that LAI increased greatly
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during the leaf emerge stage in most CLM family models, which suggested too much
carbon was being allocated to leaves. Improving the phenology and carbon allocation is
crucial for improving LAI simulations over the Tibetan Plateau.

Table 2. Summary of the different models.

Land Surface Model CMIP6 Models The Difference of Models

BCC-AVIM2.0

BCC-CSM2-MR BCC-CSM2-MR uses the carbon emissions provided by CMIP6 as the forcing,
but BCC-ESM1.0 uses the chemical reaction gas and aerosol emission data

provided by CMIP6 as the
forcing [93]

BCC-ESM1

CLASS3.6-CTEM1.2
CanESM5 CanESM5-CanOE is exactly the same physical model as CanESM5, but it

couples it with the CanOE ocean biogeochemical model [60]CanESM5-CanOE

CLM4.0

FIO-ESM-2-0 The FIO-ESM-2-0 model adds an ocean surface wave model to the traditional
atmosphere–land–ocean–sea ice coupled model of CPL7; TaiESM1 was

developed on the basis of the Community Earth System Model version 1.2.2 by
implementing several improvements to the parameterization schemes in the

atmospheric component [94,95]TaiESM1

CLM4.5
CMCC-CM2-SR5 CMCC-CM2-SR5 does not include ocean biogeochemistry model in the model,

but the BFM5.1 ocean biogeochemistry model was added to CMCC-ESM2CMCC-ESM2

CLM5.0

CESM2

CESM2-FV2
NorESM2-LM
NorESM2-MM

CESM2-FV2 reduces the horizontal resolution of the atmosphere and land on
the basis of CESM2; NorESM2-LM and NorESM2-MM are similar to the CESM2
and CESM2-FV2 models in terms of the framework and model composition; the

differences are that NorESM2 uses completely different oceans and
oceano-biogeochemical model and uses a different ocean and

oceano-biogeochemistry model and the atmosphere component of
NorESM2-MM and CAM-Nor; the difference between NorESM2-LM and

NorESM2-MM is the resolution [78,96]

ELM
E3SM-1-0
E3SM-1-1

E3SM-1-1-ECA

On the basis of E3SM-1-0, E3SM-1-1 has corrected several vulnerabilities and
made improvements; on the basis of E3SM-1-1, E3SM-1-1-ECA uses the ECA
plant and soil carbon and nutrient mechanisms, soil carbon and the effects of
nutrients representing carbon, nitrogen and phosphorus, and it excludes the

effect of coupled ocean and sea ice biogeochemistry [97]

HTESSEL
EC-Earth3-Veg EC-Earth3-Veg-LR has a lower resolution than EC-Earth3-Veg

EC-Earth3-Veg-LR

INM-LND1 INM-CM4-8
INM-CM5-0

On the basis of INM-CM4-8, the key improvements in INM-CM5-0 include an
increase in the vertical resolution in the atmospheric module, a revision of the

large-scale condensation and cloud formation parameterizations, the newly
developed aerosol block, the horizontal resolution of the oceanic model, and a
reworking of the INMCM5 program code for better performance on parallel

computers [71]

JSBACH 3.2
AWI-ESM-1-1-LR

MPI-ESM-1-2-HAM
MPI-ESM1-2-HR

AWI-ESM-1-1-LR is based on AWI-ESM and adds a dynamic land change model
to it; MPI-ESM1-2-HR and MPI-ESM-1-2-HAM both are based on MPIESM1.2,

and the difference between the two is that MPI-ESM-1-2-HAM adds the
Hamburg aerosol mode and MPI-ESM1-2-HR improves the resolution of

MPIESM1.2, which has a higher resolution than MPI- ESM-1-2-HAM [76,96]

JULES
HadGEM3-GC31-LL

HadGEM3-GC31-MM
UKESM1-0-LI

HadGEM3-GC31 is a coupled atmosphere–land–ocean–sea ice model.
Compared with HadGEM3-GC31-LL, HadGEM3-GC31-MM has a higher

resolution. UKESM1 takes HadGEM3-GC31 as the core of the physical model
and adds the carbon and nitrogen cycle and atmospheric chemical composition

to it [98,99]

LM3.0 KIOST-ESM Atmosphere–land–ocean–sea ice coupled model [68,96]

LM4.0 GFDL-CM4 A coupled ocean–atmosphere model [68,96]

LM4.1 GFDL-ESM4 A fully coupled chemistry–climate model [68,96]

Climate change has led to changes in vegetation on the TP in recent decades. From the
1980s to the beginning of the 21st century, the vegetation coverage rate of the TP showed
an overall increasing trend [21], with large seasonal and spatial variations. The spring
vegetation coverage of the Tibet Plateau showed the larger increasing rate [106] than other
seasons. The humid areas in the Southeast TP showed increasing vegetation coverage while
the Central and Northwest TP showed declined vegetation coverage [21,107]. The upper
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limit of the vertical natural zone of vegetation over the TP has changed significantly. The
forest lines migrated to high altitudes [107]. The glacier retreat and permafrost ablation will
aggravate the degradation of regional alpine grassland [108] on the TP. Due to changes in
the permafrost environment, the soil moisture and nutrients in the root layer of vegetation
are decreased, resulting in the drying out of swamp wetlands and the transformation into
meadows in Zoige, according to the measured data on temperature precipitation [109], and
shrub invasion of alpine meadows [107]. Species diversity in the native Kobresia humilis
meadow community decreased in a simulation of a five-year temperature increase run a
greenhouse in TP [110]. The degradation of permafrost, the drying out of some swamps,
and the aggravation of surface salinization all exacerbated the desertification of permafrost
area in the TP [111]. Meanwhile, many of the variables that cause changes in vegetation
growth in the context of global change have also changed. Temperature and precipitation,
which have a positive correlation with LAI [112], showed an overall increasing trend on
the TP, with warming of 0.4 ◦C. 10 yr−1 over the last 30 years [12,13] and precipitation
increasing by 1.96 mm.10 yr−1 in 1994–2015 [14]. Zhu et al. [113] found that in the past
50 years, the highest value of Photosynthetically Active Radiation (PAR) in China appeared
in the southwest of the Tibetan Plateau (with an annual PAR of 35 mol.m−2d−1), while
the PAR in the northwest of the Tibetan Plateau showed an upward trend in different
seasons. By analyzing the daily temperature data provided by the National Meteorological
Information Center, China Meteorological Administration, for the Tibetan Plateau stations
from 1961 to 2007, Fan et al. [114] found that spring and summer are starting earlier while
autumn and winter are starting later.

Some of these changes can be monitored by remote sensing, e.g., glacier retreat [115],
widespread grassland variation [116] with grassland biomass dynamics [117], rising forest
lines, shrub intrusion into alpine meadows, etc. However, it is difficult for vegetation
growth models to simulate these complex processes. The phenology and allocation schemes
were not designed to capture tree line migration or grassland transformation. Moreover,
the land surface model also could not simulate the well permafrost thawing or the glacier
retreat processes over the Tibetan Plateau.

Some researchers also found that the model had large errors in other simulation vari-
ables on the TP. Xiao et al. [118] evaluated the performance of the state-of-the-art global
high-resolution models in simulating hourly precipitation and extreme precipitation in
summer over the TP in 1950–2050 with eight CMIP6 high-resolution models (HighResMIP)
and found that the CMIP6 HighResMIP overestimated the precipitation amount and fre-
quency. Chen et al. [119] found that, although the CMIP6 models could simulate the spatial
distribution characteristics of the average annual precipitation on the Tibetan Plateau, this
was generally overestimated, with an average of more than 397.8 mm.a−1. The simulations
of temperature and precipitation, which have a greater impact on the LAI simulation of
vegetation, showed a large error in the TP. The inaccuracy of the temperature and precipita-
tion simulation may also be one of the reasons for the large error in vegetation simulations
on the TP.

The acquisition of field data in TP was limited due to geographical, topographical,
and environmental factors. However, continuous actual observation data from the plateau
site are also very important for the accurate description of land–atmosphere interactions
and the improvement of the parameterization of different physical processes [120–122].

Therefore, there are three pathways that may improve the performance of models in
simulating LAI over the TP. The first is to incorporate missing physical mechanisms that
directly or indirectly impact on vegetation growth, such as aerosol effects [123], elevated
CO2 concentration, and the impact of volcanic eruptions on the climate [124]. Moreover,
incorporating land surface processes such as permafrost thawing processes and the winter
surface parameterization scheme [102] may be particularly important over the TP. The sec-
ond is to calibrate and optimize the internal parameters [104] to better represent vegetation
growth over the TP. Some of the parameters were not calibrated or validated over the TP,
so using artificial intelligence to train models could improve the model simulations. The
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third is to further improve the observation system and obtain continuous and complete
atmospheric observations, as site-observed vegetation growth is also very important for
improving simulations of the vegetation on the TP.

As the temperature continues to rise, the impact of the climate on plant phenology
becomes more complex [125] and the acquisition of the forcing data becomes harder due to
the extreme weather problems caused by global warming, which will make simulation of
the vegetation growth in the Tibetan Plateau more challenging in the future.

5. Conclusions

In this study, we evaluated the performance of CMIP6 models in simulating LAI and
the LAI trend during the growing season of the Tibetan Plateau over the period 1981–2014,
compared with the GLASS LAI. We found the following:

1. In total, 40% of the models overestimated the greening, 48% of the models under-
estimated the greening, and 11% of the models showed a declining LAI trend for
1981–2014 over the Tibetan Plateau. For the LAI, 70% of the models overestimated
this, while about 17% of the models underestimated it.

2. Both the models underestimating greening, and the models underestimating LAI,
showed the greatest underestimation bias in July and August. The biases and ratio of
LAI (with the exception of the CLM family) and trend between the simulations and
observations had the same change during the growing season.

3. CMIP6 models overestimated the LAI trend of alpine vegetation, forest, and grassland,
but underestimated the meadow and shrub. The greening of grasslands was overesti-
mated, and the greening of meadows was underestimated in CMIP6. Compared with
other vegetation types, the performance of simulating the forest LAI trend was poor
with the highest RMSE, and the declining trend in forest pixels showing a declining
trend on the TP, was generally underestimated.

4. The performance in simulating the spatial distribution of LAI was better than the LAI
trend. The underestimation of LAI was mainly in meadows and alpine forest areas in
southeast TP. Similar to the forest LAI trend, the simulation performance of forest LAI
was also poor, with the highest RMSE, and the forest LAI in parts of the southeast
where alpine forests were concentrated on the TP was underestimated by 20 of 35
CMIP6 models.
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Abstract: Soil moisture (SM) products presently available in permafrost regions, especially on
the Qinghai–Tibet Plateau (QTP), hardly meet the demands of evaluating and modeling climatic,
hydrological, and ecological processes, due to their significant bias and low spatial resolution. This
study developed an algorithm to generate high-spatial-resolution SM during the thawing season
using Sentinel-1 (S1) and Sentinel-2 (S2) temporal data in the permafrost environment. This algorithm
utilizes the seasonal backscatter differences to reduce the effect of surface roughness and uses the
normalized difference vegetation index (NDVI) and the normalized difference moisture index (NDMI)
to characterize vegetation contribution. Then, the SM map with a grid spacing of 50 m × 50 m in
the hinterland of the QTP with an area of 505 km × 246 km was generated. The results were
independently validated based on in situ data from active layer monitoring sites. It shows that
this algorithm can retrieve SM well in the study area. The coefficient of determination (R2) and
root-mean-square error (RMSE) are 0.82 and 0.06 m3/m3, respectively. This study analyzed the
SM distribution of different vegetation types: the alpine swamp meadow had the largest SM of
0.26 m3/m3, followed by the alpine meadow (0.23), alpine steppe (0.2), and alpine desert (0.16),
taking the Tuotuo River basin as an example. We also found a significantly negative correlation
between the coefficient of variation (CV) and SM in the permafrost area, and the variability of SM is
higher in drier environments and lower in wetter environments. The comparison with ERA5-Land,
GLDAS, and ESA CCI showed that the proposed method can provide more spatial details and
achieve better performance in permafrost areas on QTP. The results also indicated that the developed
algorithm has the potential to be applied in the entire permafrost regions on the QTP.

Keywords: soil moisture; SAR; retrieval algorithm; high spatial resolution; permafrost

1. Introduction

Soil moisture (SM) is an essential component of the terrestrial hydrological cycle
ecosystem [1,2]. In ecology, SM affects the growth and activity of vegetation and microor-
ganisms by controlling the division of water [3], and can also mitigate changes in soil
organic carbon content caused due to climate warming [4]. In hydrology, SM is not only an
important parameter of the water cycle but is also used to infer surface- and ground-water
exchanges [5]. In climatology, SM affects regional climate through changing surface albedo,
evapotranspiration intensity, and sensible and latent heat fluxes [6]. In the permafrost
environment of the Qinghai–Tibet Plateau (QTP), the SM in the active layer is signifi-
cantly altered by the seasonal freezing and thawing processes and influences the energy

Remote Sens. 2022, 14, 5966. https://doi.org/10.3390/rs14235966 https://www.mdpi.com/journal/remotesensing433



Remote Sens. 2022, 14, 5966

exchange between permafrost terrain and the atmosphere [7,8]. The accurate information
on the spatial and temporal distribution of SM helps advance hydrological, ecological, and
climatological studies in permafrost areas [9].

In the permafrost area of 1.06 × 106 km2 of the QTP [10], it is critical for various scien-
tific studies to obtain accurate spatial distribution data of SM on a large scale. Due to the
harsh environment and inconvenience of accessing the QTP, the traditional methods of ob-
taining SM by sampling measurement and monitoring are limited. Several meteorological
and hydrological stations have been deployed over the past few decades, and data scarcity
has been filled to a degree [11]. These restricted sites are unevenly distributed on the edge
of permafrost areas or on seasonally frozen ground areas, which makes it challenging to
study SM with high spatial heterogeneity [6,12]. Remote sensing technology has achieved
significant advances in SM monitoring, with its unique large-area observation capabilities,
and some remote sensing products and reanalysis data have been produced, such as the
fifth generation of the land component of the European Centre for Medium-Range Weather
Forecast atmospheric reanalysis (ERA5-Land) [13], the European Space Agency Climate
Change Initiative (ESA CCI) [14], and the Noah land surface model driven by Global Land
Data Assimilation System (GLDAS-Noah) [15]. Xing et al. evaluated seven SM data prod-
ucts (SMAP, SMOS-IC, ASCAT, ERA5-Land, ESA CCI, LPRM, AMSR2) over the permafrost
region of the QTP based on in situ SM measurements and found that the SM data of ESA
CCI had the highest accuracy [16]. Due to the lack of adequate measurement data, SM
products generated by the model assimilation are significantly biased in the QTP [17]. In
addition, the SM product data at a spatial resolution of tens of kilometers are affected by
mixed pixels and do not accurately describe the SM distribution. The coefficient of variation
(CV) analysis is often used to describe significant patterns in regional mean SM content,
with the relationship between CV and SM often showing a hysteresis pattern in spatial
variability [18–20]. The spatial–temporal SM variations have never been revealed over the
permafrost area in the QTP, where the relationship between the CV and mean SM is similar
to that found in other regions is unclear [21,22]. The lack of high-spatial-resolution SM
data in the permafrost region of the QTP greatly limits the studies of the spatial–temporal
distribution characteristics of SM. Few studies are able to analyze the spatial–temporal
variations of SM in permafrost areas on a fine scale.

Synthetic Aperture Radar (SAR) has proven its high potential for retrieving high-
spatial-resolution SM using the backscatter coefficient (σ◦) [23,24]. Some empirical [25,26],
semi-empirical [27], and physical scattering models [28] have been developed to relate
backscattering with surface SM, roughness, and vegetation. Surface scattering models
are commonly used for bare soil including the semi-empirical Dubios model [29], the
Oh model [30], and the physically based Integrate Equation Model (IEM) [31]. These are
usually integrated with vegetation scattering models, such as semi-empirical water cloud
models (WCM), to predict scattering from vegetated areas [32,33]. Studies have developed
algorithms for retrieving SM based on IEM or WCM inversion using minimization, LUT,
and machine learning approaches. In 2014, He et al. estimated SM in the alpine meadow
region by coupling the IEM and the WCM with R2 and RMSE reaching 0.71 and 0.03 m3/m3,
respectively [34]. In 2017, Bai et al. first estimated SM in the alpine steppe region of Magu
using Sentinel-1 (S1) data with the WCM [35]. In 2021, Yang et al. coupled the improved Oh
model in 2004 and WCM to estimate SM in the Nagqu region based on S1 data and MODIS
optical data with the assumption of constant surface roughness [36]. Despite the significant
advance in scattering modeling, SM inversion from these microwave scattering models
are commonly ill-posed and complicated [37,38]. Besides utilizing microwave scattering,
several algorithms have been successively developed and widely used to retrieve SM, such
as change detection (CD) and neural network (NN) [39–41]. NN are mathematical models
that are commonly trained by vegetation coefficients, backscatter coefficients, and other
parameters in studies of SM retrieval using SAR data, which have high requirements for
the data volume. However, the NN method requires a large amount of data for training
and validation, which greatly limits its application in the permafrost region of the QTP.
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The principle of the CD algorithm is based on the assumption that by differencing the
backscattering coefficients in two periods, the effect of soil roughness and vegetation is
reduced, and the backscatter difference is mainly due to the changes in SM [39]. Thus,
it is more suitable than the NN algorithm for permafrost areas where a large amount of
training data acquirement is difficult. Gao et al. mapped SM distributions at a 100 m
spatial resolution located in Urgell using a CD algorithm by combining S1 and Sentinel-
2 (S2) data [40]. Bauer-Marschallinger et al. used the CD algorithm to build the first
global SM dataset with 1 km spatial resolution, which greatly advanced the progress of
SM studies [42]. Zhu et al. proposed an unsupervised CD method as a pre-processing
procedure for multi-temporal retrieval and improved the accuracy of the CD algorithm by
reducing the uncertainty caused by changes in vegetation and roughness [43,44].

Over the QTP, studies of SM retrieval using SAR data have also been conducted in recent
years. Yang et al. and Bai et al. estimated SM in alpine grassland environments in Nagqu
and Magu, respectively, both with favorable results [35,36]. In the Beiluhe, Zhang et al.
used estimated SM in alpine meadows and alpine deserts and improved the accuracy of
estimating SM by the WCM and CD algorithms [45]. However, these SM retrieving studies
on the QTP were conducted outside or in the margin/border of the permafrost area or
within a very small permafrost region. The study area was very small, i.e., covering only a
few square kilometers, and the effectiveness and accuracy of the retrieving algorithms or
models were not tested in other areas. To our knowledge, no SM retrieving study has yet
been conducted on the large-scale hinterland permafrost regions.

The freeze–thaw cycle of active layer soils and the water barrier of the frozen layer
in the permafrost area play an active role in determining vegetation growth and SM
retention [46,47]. It implies that in areas with high SM, the vegetation cover has significant
interference with the radar signal. The vegetation canopy complicates the extraction of
underlying soil water, as the canopy contains water and can also block or scatter radar
signals [48]. Therefore, in the retrieval process, vegetation is another important factor
that affects the radar signal in addition to SM. In the many ecological, hydrological, and
agricultural studies, the vegetation canopy is usually expressed by the vegetation indices,
such as Leaf Area Index (LAI), Normalized Difference Vegetation Index (NDVI), and the
Enhanced Vegetation Index (EVI), biomass, vegetation height, etc. [35,45,49–52]. Several
studies have shown that NDVI is easier to derive and has fewer errors than other vegetation
indices and is widely used in SM retrieval studies [50,53]. In addition, in partially vegetated
areas, Bao et al. found that Normalized Difference Moisture Index (NDMI) can also perform
well in SM retrieval studies based on S1 data [54].

In the permafrost region on the QTP, the ground has a distinct freeze–thaw cycle
process. The soil water is in a liquid state during summer and in a state of combination of
ice and unfrozen water in other seasons [9]. The real implication of SM values obtained by in
situ monitoring and sampling drying measurements could be different. In situ monitoring
measures the unfrozen water (liquid water) content by monitoring the dielectric constant in
the soil, such as the Hydra soil moisture sensor. The field-oven sampling acquires the total
soil water content (unfrozen water and ice) by collecting in the field and then calculating
the volumetric water content from the wet and dry weight of the soil. Meanwhile, σ◦ is
sensitive to unfrozen soil water, and the frozen part is neglected in the retrieval process.
The σ◦ could not represent the gross soil water content in all seasons except for the thawing
season. Therefore, we need to be careful when choosing field “SM” data in developing and
training SM retrieving algorithms [55].

In summary, a retrieval algorithm for SM is urgently needed to obtain SM spatial data
which could promote hydrological, ecological, climatic, and engineering studies in the
permafrost region of the QTP. In this study, the hinterland of the QTP was selected for SM
retrieval, where a variety of surface types are included. The retrieval algorithm is trained
and validated using multi-year in situ observations of different surface environments. We
chose the months of July and August as the study period, which can reduce the errors
caused by the freeze–thaw process of the soil. The SM retrieval during the thawing
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season could represent the gross soil water content. In addition, the CD algorithm is a
promising method for SM retrieval in the permafrost region where a priori knowledge is
scarce [39,40]. The liquid soil water is very small in the coldest winter season, by reference
to the CD algorithm, the effect of surface roughness is minimized. Then, the vegetation
effect is further represented and reduced by vegetation indexes (NDVI, NDMI) from optical
data. Finally, the objectives of this study are: (1) to develop an SM retrieval algorithm
suitable for permafrost environments on the QTP using high spatial-resolution SAR data to
obtain spatial data of SM for the thawing season; and (2) to explore the spatial–temporal
distribution characteristics of SM on the large extent of permafrost region on the QTP.

2. Materials and Methods

2.1. Study Area

In this study, an area of 505 km × 246 km in the hinterland of QTP along the Qinghai–
Tibet Highway was selected as the study area, as shown in Figure 1. This area covers most
of the stations of the SM and temperature monitoring of the permafrost networks [11]. The
study area includes typical permafrost regions and seasonally frozen ground regions with
an altitude between 4189 m and 6402 m a.s.l. The average annual temperature in this region
is between −5.8 ◦C and −2.4 ◦C, and the trend of temperature increase is consistent, with
an average rate of change of about 0.05 ◦C/a. The annual precipitation is in the range of
approximately 210–580 mm, with sizeable interannual variation [56,57]. The precipitation
is mainly concentrated between May and September, and there is an apparent upward
fluctuation in annual precipitation, with an average variable rate of 7.49 mm/a from 2004
to 2016 [58].

The vegetation types in the study area are classified as alpine swamp meadows, alpine
meadows, alpine steppes, and alpine deserts. The alpine meadows cover the largest areas,
followed by alpine steppes and alpine swamp meadows at the least [59]. The degradation
of the permafrost has affected the ecological situation in the QTP. The vegetation ecosystem
degradation is significant, mainly manifested as the degradation of alpine swamp meadow
to the alpine meadow and alpine meadow to alpine steppe [59].

The frozen ground undergoes seasonal freeze–thaw cycles [8]. On the QTP, the thawing
process begins in mid-to-late May and lasts until late September to early November each
year [58,60,61]. The effect of water transport during soil freezing and thawing on SM
distribution is very significant. The measured data in the in situ show that the SM in the
thawing season varies roughly between 0.1 m3/m3 and 0.5 m3/m3. When the soil is frozen
in winter, the unfrozen water content is low.

Figure 1. The overview of the study area. The base map is the map of the permafrost [10], glaciers [62],
lakes [63], and topographic map from SRTM data [64].
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2.2. Datasets
2.2.1. In Situ Observations

The in situ SM measurements are acquired from the SM and temperature observation
network built by the Chinese Academy of Sciences (CAS) [11]. SM was measured by a
Hydra soil moisture sensor and recorded by a CR10X/CR1000/CR3000 data logger, with
an accuracy of ±2.5%. Table 1 shows detailed information on the stations used in the
study. The elevation of these stations ranges from 4468 m to 5100 m a.s.l and spans about
420 km from north to south. The sites also contain several typical vegetation types of the
QTP, including alpine swamp meadows, alpine meadows, and alpine steppes. They could
represent the varied permafrost environment on the QTP to some extent. We collected 129
in situ SM data during the thawing season (months July, and August) from 2016 to 2019 at
these sites, of which 100 were used for training the model and 29 for validation.

Table 1. Information of SM monitoring sites.

Sites Lon. (◦E) Lat. (◦N) Location Altitude(m) Vegetation Types

CN03 92.727 34.47 Wuli 4625 Alpine steppe
CN04 91.737 31.81 Liangdaohe 4808 Alpine swamp meadow
CN06 94.063 35.62 Kunlun Pass 4746 Alpine meadow
QT01 93.043 35.14 Hoh Xil 4734 Alpine meadow
QT02 93.921 34.82 Beiluhe 4656 Alpine swamp meadow
QT04 91.941 33.07 Tanggula 5100 Alpine meadow
QT05 92.338 33.95 Kaixinling 4652 Alpine meadow
QT06 92.239 33.77 Tongtian 4650 Alpine steppe
QT08 93.084 35.22 Wudaoliang 4783 Alpine steppe
QT09 94.125 35.72 Xidatan 4538 Alpine steppe
QT14 93.600 35.43 Suonandaje 4468 Alpine meadow
QT18 92.892 34.73 Fenghuo 4773 Alpine swamp meadow

2.2.2. Sentinel-1

The Sentinel-1 (S1) satellites were launched by the European Space Agency (ESA) in
the frame of Europe’s Copernicus program, including Sentinel-1A (S1A) and Sentinel-1B
(S1B). The orbital period of S1A is 98.6 min, the revisit period is 12 days, and the combined
AB satellite is 6 days. The interferometric wide (IW) imaging model with a spatial resolution
of 5 m × 20 m provides a more accurate σ◦ and better meets the needs of this study [50].

We use the ground range detection (GRD) products of S1 in IW acquisition mode
with the VV and VH polarizations from Google Earth Engine (GEE). Compared to the VH
polarization of S1, the VV polarization has greater potential for SM retrieval [40,65–67].
Some researchers have used both VV and VH in SM retrieval studies and characterized the
effect of vegetation by the ratio of VV and VH [41,68]. However, in the study, only VV single
polarized data is acquired before February 2017. Therefore, the optical vegetation index
NDVI is used in this study for characterizing vegetation. The backscattered images of VV
polarization in the completely thawed season (months July, and August) and the completely
frozen season (January to February) from 2016 to 2019, in a total of 89 acquisitions, are
employed for the SM retrieval algorithm development and validation.

2.2.3. Sentinel-2

Sentinel-2 (S2) is a high-resolution imaging satellite that carries a multi-spectral imager
(MSI). The revisit period for one satellite is 10 days, and the revisit period for two satellites
is 5 days [69,70]. In this study, cloud-free S2 TOA Level-1C data one week before and after
the S1 acquisition is selected to calculate vegetation and water indices using the green band
(B3: Green), red band (B4: Red), near-infrared band (B8: NIR), and short-wave infrared
(B11: SWIR) [71].
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2.2.4. SRTM DEM

Shuttle Radar Topography Mission (SRTM) data is mainly measured jointly by the
National Aeronautics and Space Administration (NASA) and the National Imagery and
Mapping Agency (NIMA). Interferometric radar data is captured using dual radar antennas
and converted into digital terrain data. This study uses the “NASA SRTM Digital Elevation
30-m” elevation dataset provided by the GEE platform [64].

2.2.5. SM Data Products

In this study, we also compared the retrieval SM with three SM data products, such
as the fifth generation of the land component of the European Centre for Medium-Range
Weather Forecasts atmospheric reanalysis (ERA5-Land) [13], the Noah land surface model
driven by Global Land Data Assimilation System (GLDAS-Noah) [15], and the European
Space Agency Climate Change Initiative (ESA CCI) [14]. The specific information of the
three datasets and the first layer of the depth range are shown in Table 2. In this study, the
SM product data for 2 July and 19 August 2018 were selected for comparing the spatial
distribution and average SM content with the retrieval results.

Table 2. Information on SM products.

Product type Sensor Period Spatial Resolution Temporal Resolution Depth

Remote sensing products ESA CCI 1978–2019 0.25◦ × 0.25◦ Daily ~0–5 cm

Reanalysis products ERA5-Land 2000–present 0.1◦ × 0.1◦ 3-Hourly 0–7 cm
GLDAS-Noah 1948–present 0.25◦ × 0.25◦ 3-Hourly 0–10 cm

2.3. Methods

The workflow of the SM retrieval algorithm development is illustrated in Figure 2.
The main steps are summarized as (1) S1 backscatter preprocessing; (2) Reducing the effect
of surface roughness; (3) Reducing the effect of vegetation; (4) SM retrieval algorithm
construction; (5) SM result post-processing; and (6) Retrieval result validation.

Figure 2. Workflow of SM retrieval and validation.
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2.3.1. S1 Backscatter Preprocessing

Data preprocessing was performed on the GEE platform [72]. GEE has performed
some preprocessing of the S1 data using the ESA S1 Toolbox (S1TBX), including applying
orbit files, removing thermal noise, removing GRD border noise, radiometric calibration,
and Range-Doppler terrain correction. Furthermore, the S1 incident angle normalization
and spatial filtering are needed to make the data as correct as possible.

• S1 incident angle normalization

The σ◦ is affected by the incidence angle (θ0) of S1 and has a slight deviation from the
actual situation. There is a certain correlation between θ0 and σ◦, which can be expressed
as a slope β [73,74]. This study chose the central incidence angle of the study area (38◦)
as the reference angle to reduce the overall error caused by extrapolation [42]. Therefore,
as shown in Equation (1), we uniformly correct the σ to the value corresponding to the
incident angle of 38◦ (σ◦ (38◦)).

σ◦(38◦) = σ◦ (θ0) − β (θ0 − 38◦) [dB]. (1)

The calculation of Equation (1) can be performed on the GEE.

• Refined Lee Filtering

In order to reduce the speckle noise in the image while preserving the image edge
information, the Refined Lee filter with a window size of 7 × 7 is used in this study [75,76].

2.3.2. Sensitivity of Backscattering Coefficient to Soil Liquid Water

The correlation between SM and σ◦ in the permafrost region was analyzed at sites
QT08 and QT09. As shown in Figure 3, the σ◦ and SM at both stations showed obvious
seasonal variations, i.e., high in summer and low in winter. When the soil freezes, the soil’s
liquid water content decreases sharply, and therefore, the dielectric constant decreases, and
consequently, the σ◦ drops significantly.

Figure 3. The time-series variation of SM and σ◦ at sites. (a) QT08 and (b) QT09.

Figure 3 also revealed that the same σ◦ corresponded to different SM values at the two
sites. At site QT08, the σ◦ was in the range of −17 to −10 dB, corresponding to SM of about
0.003 to 0.13 m3/m3, while at site QT09, the σ◦ range was −17 to −11 dB, corresponding
to the SM range of about 0.05 to 0.4 m3/m3. This shows that the range of σ◦ does not
vary much between the two sites, but the corresponding SM ranges are dramatically
different. Many studies have demonstrated that surface roughness and vegetation are the
major factors affecting the correlation between surface backscatter intensity and SM [77].
Therefore, it is critical to reduce the effects of surface roughness and vegetation in the
retrieval process to improve accuracy.

2.3.3. Reducing the Effect of Surface Roughness

The CD algorithm originally proposed by Wagner et al. determines the SM by linearly
scaling the observed backscatter between that at the driest and wettest conditions [78].
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The algorithm has been validated and used in many regions in SM retrieval studies in
recent years, including semi-arid areas and mountainous areas [42,79]. Rignot EJM et al.
conducted experiments in a mountainous region of the Katmai National Park and Preserve
in Alaska and found that the CD algorithm is effective in removing the topographic
influences [80]. Therefore, this study refers to the principle of the CD algorithm to eliminate
the effect of topography in permafrost areas.

According to the characteristics of soil liquid water in the permafrost regions of QTP,
the soil surface is mostly frozen in winter and holds little liquid water. Meanwhile, due to
low precipitation during the period of January–February, the snowmelt or wet snowfall
effect is limited, and the change in surface roughness in winter is not significant compared to
the melting season. We assumed that the smallest σ◦ in winter of its temporal curves could
represent the lowest liquid water content of the soil during this period. Therefore, we took
the smallest value of σ◦ in the freezing season (January, February) as the reference value
and subtracted it from the backscatter signal during the thawing season. The backscatter
difference (Δσ) between the freezing and thawing seasons (months July, and August)
represents the changes in SM and vegetation. It can be expressed as:

Δσ = σs − σw (2)

where σs is the σ◦ of the thawing season, and σw is the σ◦ of the freezing season. Figure 4
shows the distribution and details of σs, σw, and Δσ in the study area. In the case of
Figure 4a,b, the topographic factor has a significant effect on the backscattered signal.
Figure 4c shows that the method of calculating the σ◦ difference between summer and
winter is effective in weakening this effect.

 

Figure 4. The distribution of σs, σw, and Δσ and details in the study area. (a): The σ◦ on 2 July 2018.
(b): The σw in 2018. (c): The Δσ. (d–f): The details after scaling up of σ◦, σw, and Δσ within the
red box.
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2.3.4. Reduce the Effect of Vegetation

We applied NDVI and NDMI to reflect vegetation characteristics and the water content
in vegetation and proposed to use the combination of NDVI and NDMI to characterize the
effect of vegetation on the σ. These vegetation indices were calculated as follows:

NDVI = (ρnir − ρred)/(ρnir + ρred) (3)

NDMI = (ρnir − ρswir)/(ρnir + ρswir) (4)

where ρred, ρnir, and ρswir are the reflection value in the red spectrum, the near-infrared
spectrum, and the shortwave infrared spectrum, respectively. It is noteworthy that the
contribution of soil to NDMI is primarily negative for some areas, while the contribution of
green vegetation is mostly positive [81].

2.3.5. SM Retrieval Algorithm Construction

We collected 129 datasets (in situ data, and corresponding Δσ, NDVI, NDMI) dur-
ing the thawing season (months July and August) from 2016 to 2019. A multiple linear
regression model was constructed based on the linear relationship between SM and the Δσ,
NDVI, and NDMI, and the SM retrieval algorithm can be expressed as follows:

SM = a × �σ + b × NDVI + c × NDMI + d (5)

where a, b, and c are the coefficients of the three variables (�σ, NDVI, NDMI), respectively,
and d is a constant. In order to ensure the universality of the retrieval algorithm, we arrange
the in situ data of different years together and then performed 10,000 random divisions
with a ratio of nearly 8 to 2 for determining the optimal coefficient. One part is used to
obtain model coefficients (a, b, c, d). The other is used to verify the accuracy of retrieved
SM. Thus, we can obtain 10,000 sets of coefficients, training, and validation of R2. Finally,
we calculate the sum of R2 for training and validation processes using their sample size as
the weights. The coefficients corresponding to the maximum sum of R2 are determined as
the optimal coefficient.

2.3.6. SM Result Post-Processing

There are some outlier regions in the retrieval results, which are removed in the
post-processing steps.

• Waterbody masking

The sensitivity of the σ◦ to soil liquid water is its advantage of SM retrieval, but σ◦ will
present an anomaly and deviate from the normal range when the sensor scans water bodies
such as rivers and lakes. The normalized difference water index (NDWI) is calculated
using the green band, and the near-infrared band can effectively identify the water body
information [82]. The NDWI is calculated as follows:

NDWI = (ρgreen − ρnir)/(ρgreen + ρnir) (6)

In Equation (6), ρgreen is the reflection in the green spectrum, corresponding to the B3
band of the S2. Then, a mask is created with 0 as the threshold to remove the water body
part of the retrieved results.

• Shadow masking

It is found that the σ◦ in the hillside or foothills usually shows outliers in our study
area due to the radar signal being obscured and distorted in these areas. The local incidence
angle (θ) can be calculated by using the zenith angle and azimuth angle of S1 to represent
the illumination condition of the radar signal, expressed in Equation (7),
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cosθ = cosθza × cosS + sinθza × sinS × cos(θaa − A) (7)

where θza is the zenith angle, which is the same angle as θ0, θaa is the azimuth angle, S is
the slope, and A is the aspect. The pixels with θ smaller than a threshold to be defined
are masked out. According to a visual comparison of shadow outliers and local incidence
masks, the threshold of 15◦ is adopted in our study.

• Negative Δσ masking

Theoretically, there is a positive correlation between the σ◦ and the SM, and the σ◦ in
the thawing season should be higher than that in winter. Hence, the area where the Δσ is
less than zero is considered abnormal and masked out during the post-processing.

2.3.7. SM Retrieval Algorithm Validation

In all, 29 samples were used to evaluate the accuracy of the retrieved SM using the
proposed algorithm. The root-mean-square error (RMSE) and coefficient of determination
(R2) are applied to indicate the accuracy of the SM retrieval result.

3. Results

3.1. Reduce the Effects of Surface Roughness and Vegetation

Figure 5 shows the correlation of σ◦ and Δσ with the SM observations. There is no
apparent correlation between the original σ◦ and SM, with a Pearson correlation coefficient
(r) of 0.06. However, after subtracting the winter reference σw, the r between Δσ and SM
reached 0.76. In Figure 5a, the sensitivity of the radar signal to SM is weakened by the effect
of surface roughness. The comparison of SM with σ◦ and Δσ has proven that our method
is able to reduce the effect of surface roughness and essentially improve the sensitivity of
radar signals to SM.

 
Figure 5. Relationship between the σ◦ and the SM measurements. (a): none-corrected σ◦and SM;
(b): Δσ and SM.

NDVI and NDMI jointly characterize the contribution of vegetation to the retrieval
of SM. As shown in Figure 6, NDVI and NDMI have high correlations with SM, with r
of 0.76 and 0.74, respectively. The results indicate that NDVI and NDMI are suitable for
characterizing the vegetation contribution in σ◦ of the study area.
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Figure 6. Relationship between the vegetation parameters and the SM measurements at the site.
(a): NDVI and SM; (b): NDMI and SM.

3.2. SM Retrieval Algorithm and Validation

Table 3 lists the model coefficients and R2 value of 10,000 regressions. The coefficients
which generate the highest weighted R2 were set as the optimal coefficients. The SM
retrieval algorithm is expressed as follows:

SM = 0.02 × Δσ + 0.24 × NDVI + 0.28 × NDMI + 0.003 (8)

As illustrated in Table 3 and Figure 7, the retrieved result is satisfactory, with R2

and RMSE reaching 0.82 and 0.07 m3/m3, respectively. As shown in Table 3, the mean
values of the 10,000 sets of regression coefficients are very close to the optimal values, and
the standard deviation is also relatively small. It indicates that the model coefficients are
relatively stable, and not largely influenced by different divisions of training and validation
samples, which demonstrates the robustness of the model.

Figure 7. Comparison of SM-retrieved results with measurement data.
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Table 3. The optimal coefficients are selected after the regression analysis. Mean is the mean value of
each coefficient, STD is the standard deviation, and OPT is the optimal coefficient solution.

a b c d R2

MEAN 0.02 0.23 0.28 0.004 0.81
STD 0.0001 0.02 0.04 0.004 0.004
OPT 0.02 0.24 0.28 0.003 0.82

3.3. Map of Retrieved SM

Figure 8 shows retrieved SM on eight days of S1 acquisitions with the grid spacing
of 50 m × 50 m. The white areas in the retrieval results are caused by post-processing,
where water bodies, mountain shadows, and anomalous areas are masked. To better show
the spatial distribution characteristics of SM, Figure 9 was made by overlaying the spatial
distribution map of SM with the topographic map. In hill areas with undulating terrain,
SM is usually higher. In order to show the complexity of the spatial distribution of SM
in mountainous areas of the permafrost region, this study designed two transect lines to
further show the SM variation in the hill areas and extracted the SM values corresponding
to the two transect lines, as shown in Figure 10. The variability of SM in hill areas is well
presented. It demonstrates the high variability of SM, which could not be revealed by
coarse SM products.

Figure 8. The map of SM retrieval results for thawing seasons 2018 and 2019 after post−processing.

Figure 11 shows the relationship between the spatial and temporal CV and the mean
SM in this study area. The CV tends to decrease with increasing mean SM in both spatial
and temporal dimensions, which shows that the variability of SM is higher in drier envi-
ronments and lower in wetter environments. This pattern is related to the water-holding
capacity of the soil and its spatial variability [83]. The large differences in the CV in different
regions are related to the soil water content, bulk density, and soil texture [22,84,85]. In
permafrost areas, the physicochemical properties of soils vary greatly in different areas
of topography and vegetation cover, resulting in a high spatial heterogeneity of SM. In
addition, the high CV in areas of low SM may also be explained by frequent precipitation
and strong evapotranspiration during the thawing season.
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Figure 9. The spatial distribution of the SM and the location of the two transect lines.

Figure 10. The SM values for the two transect lines. (a): Red transect line; (b): Black transect line.

Figure 11. The corresponding CV for each mean SM interval. (a): Spatial; (b): Temporal.
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4. Discussion

4.1. Comparison of S1-Retrieved SM with SM Products

We chose the Tuotuo River basin as an example, where the detailed investigation
was conducted, to compare with widely used SM products, such as GLDAS-Noah, ESA
CCI, and ERA5-Land (Figure 12). At the local scale, the retrieval results can present the
distribution characteristics of SM in different surface environments. The widely used SM
data products are unable to characterize the heterogeneity of SM spatial distribution in
detail. For example, the GLDAS and CCI can only identify high SM in the southernmost
glacial regions, while the distribution of SM in other areas is varied. They can only give a
very rough description of the moisture distribution over tens of kilometers limited by its
coarse resolution, and the details on SM distribution are lost. In addition, the distribution
of the three SM products in this region is also different, which also confirms the demand
for high-accuracy SM data in the QTP.

Figure 12. The comparison of SM distribution between retrieved SM and widely used SM products.
(a) The place circled by the black line indicates the location of the Tuotuo River basin. (b–i): The SM
distribution in this region with different data. The white areas in the retrieval results are caused by
post-processing, where water bodies, mountain shadows, and regions with negative Δσ are masked.
The white areas of SM products are caused by the lack of effective data in QTP.

Figure 13 shows the statistics of SM distribution in the study area on 2 July 2018, from
three SM products and S1 retrieval results. The average SM content of ESA CCI, ERA5-
Land, GLDAS-Noah, and retrieval result is 0.34, 0.5, 0.29, and 0.19, respectively. The upper
and lower quartiles of the in situ SM for the thawing season are 0.29 and 0.09, respectively.
Compared with the in situ data, the SM values of the three products are significantly
overestimated, while the retrieval results are in a reasonable range. In addition, previous
research found that the SM data of the ESA CCI product has the best accuracy on the QTP
compared with in situ observations, with an r of 0.63 [16]. In terms of accuracy, our SM
retrieval results also showed substantially higher accuracy, and r reached 0.9.
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Figure 13. The box plot of SM for the three SM products and S1 retrieval results for the Tuotuo river
basins on 2 July 2018. The box line diagram has six parts: lower edge, lower quartile, median, upper
quartile, upper edge, and outliers beyond the upper and lower edges.

4.2. SM Distribution Characteristics at the Local Scale

Figure 14 shows the spatial distribution of different vegetation types [86] and SM in
the Tuotuo River basin. We summarized the characteristics of SM over different vegetation
types, as shown in Figure 15. In areas with high vegetation cover, such as alpine swamp
meadows and alpine meadow areas, the SM content is significantly higher than in alpine
steppe and alpine desert areas. The average SM content over different vegetation types
from high to low is alpine swamp meadow (0.26), alpine meadow (0.23), alpine steppe
(0.20), and alpine desert (0.16).

 

Figure 14. The vegetation types and spatial distribution of SM in the Tuotuo River basin. (a): The
vegetation type. (b): S1retrieved SM.
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Figure 15. Violin plots of SM content of the four vegetation types. Each violin plot contains a box
plot and a kernel density plot. A kernel density plot overlays each box plot. The black marks indicate
the median, and the boxes indicate the quarter range of values. The number of samples defines the
width of the violin in each subplot.

4.3. Regions with Very Low σ◦ in the Thawing Season

Normally, the value of σ◦ in the thawing season is higher than that in winter because
the liquid water content in the thawing state is usually higher than in the frozen state [87].
However, during the SM retrieving process, we noticed that σ◦ during the thawing season
in some regions is close to or even lower than σ◦ in winter. Therefore, we tried to find the
reason by comparing the variation of the backscattering coefficients for long time series.
As shown in Figure 16a, we consider the regions with significant seasonal variations in
the σ◦ as normal areas, i.e., σ◦ is higher in summer than in winter, and the disordered
areas as abnormal areas. To explain the potential reasons for this phenomenon, we further
examined the precipitation, vegetation, and soil texture in these particular regions.

• Precipitation

The precipitation process during the thawing season is one of the main reasons for SM
variations [88]. During precipitation events, the wet or flooded ground surface will cause
the σ◦ to deviate from its normal range. We examined the precipitation conditions in three
regions as in Figure 16a to test the possibility of this conjecture. The precipitation data is
from ERA5-Land precipitation reanalysis data [13], and the temporal curves are shown in
Figure 16b. The average annual precipitation of the three regions is 606 mm, 574 mm, and
624 mm, respectively, with little difference in precipitation. Therefore, precipitation is not
the cause of low σ◦ in the thawing season, and the speculation that the wet ground surface
causes low σ◦ is not true. The inference of the abnormal σ◦ caused by the accumulation of
surface water is also not valid.

• Vegetation and soil texture

The impact of vegetation coverage and soil texture on SM content should not be
neglected [89–91]. We found some differences between the two regions by examining the
temporal changes in the NDVI values in the normal and abnormal regions. As shown in
Figure 16c, the NDVI values in the abnormal areas are all relatively low (smaller than 0.1)
and do not exhibit seasonal variations. Meanwhile, we referred to the soil texture dataset
published by Liu et al. [92,93] and combined it with the field records in the anomaly areas.
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We found that the soil in this abnormal area is composed of sand. There is a big chance that
these abnormal areas are bare ground and are extremely dry during the particular period
in the thawing season, therefore leading to low values of σ◦.

Figure 16. Comparison of normal and abnormal regions. (a): σ◦; (b): Precipitation; (c): NDVI.

5. Conclusions

This study developed a concise and practical algorithm for SM estimation using
Sentinel-1/2 temporal data in a permafrost environment on the QTP in the thawing season.
The R2 of this SM retrieval algorithm reached 0.82 with an RMSE of 0.06 m3/m3.

Our retrieved SM results were compared with current SM products (ERA5-Land,
GLDAS-Noah, and ESA CCI) in the Tuotuo River basin and showed that our results have
more strength and advantage in characterizing the spatial heterogeneity of SM distribution.
By analyzing the SM distribution of different vegetation types, the alpine swamp meadow
had the largest SM of 0.26 m3/m3, followed by the alpine meadow (0.23), alpine steppe (0.2),
and alpine desert (0.16). We also found a significantly negative correlation between the CV
and SM in the permafrost area that the variability of SM is higher in drier environments
and lower in wetter environments.

The study also explored the reasons for abnormal SM retrievals in some places. The
developed algorithm is not applicable in some extremely bare and dry ground with very
low SM. Overall, the proposed algorithm shows great potential to derive the detailed SM
distribution in the permafrost environment on the entire QTP, which has great significance
in studying the SM characteristics in spatial detail and helps facilitate the studies of the
response of permafrost to climate change.
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Abstract: The development of a network of ground-based telescopes requires detailed astroclimatic
studies. This paper presents the spatial distributions of precipitable water vapor (PWV), total cloud
cover (TCC) and cloud base height (CBH). With the aim of a representative description of the
precipitable water vapor, a method for correcting this characteristic which takes into account the
underlying surface is proposed. The method uses the exponential decrease in the water vapor content
with the altitude and is based on the calculation of the averaged elevation of the grid nodes around
the site. By applying this correction method, the seasonal changes in the median PWV values at
the sites of Ali, Muztag-Ata and Suffa, as well as within the Chajnantor area are estimated. We
show that the decrease of PWV with the altitude is exponential with a height scale of 1000 m for
the sites in South America and Eurasia. The astroclimatic characteristics within the Big Telescope
Alt-azimuthal (BTA) region (40◦N–50◦N; 35◦E–55◦E) are estimated. In this region, the sites suitable
for the millimeter and submillimeter (mm/submm) observations are revealed. New sites are Mt.
Horai and Mt. Kurapdag. In addition, we show that the Era-5 reanalysis data overestimate the
PWV values by 1–2 mm and describe changes in the monthly medians of PWV. Comparison of the
calculated medians with the measured PWV show that the correlation coefficient between these
characteristics is 0.97.

Keywords: precipitable water vapor; clear sky; millimeter telescope; Ali; Muztag-Ata; BTA

1. Introduction

Astronomical observations in the millimeter/submillimeter (mm/submm) range of
the electromagnetic spectrum are limited by the Earth’s atmosphere. In this spectral
range, the Earth’s atmosphere causes a significant attenuation of radiation. One of the
main atmospheric gases that is responsible for attenuating radiation in the atmosphere
is water vapor. In particular, precipitable water vapor (PWV) is often used for the site
characterization. The amount of precipitable water vapor corresponds to the height of the
water layer (in mm or cm), which would be formed by complete condensation of the water
vapor from a column of atmospheric air with the area of 1 cm2. With a decrease in the
content of water vapor, which is distributed along the telescope’s line of sight, transparency
of the atmosphere increases.

A number of areas and sites with low water vapor content suitable for mm/submm
astronomical observations are known in the world. For example, one of the areas with low
water vapor content is the Chajnantor plateau in the Chilean Andes at ∼5000 m elevation
above sea level, where the Atacama Large Millimeter/Submillimeter Array (ALMA) is
located [49]. Table 1 lists medians of precipitable water vapor at the sites with good
astroclimatic conditions [2–6]. In particular, the measurement data show that the medians
of PWV at the Chajnantor Plateau are 2.56 mm and 0.72 mm in January and August,
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respectively. At the Chajnantor summit, the medians of PWV decrease significantly, to 1.08
mm in January and 0.54 mm in August.

Table 1. Median values of precipitable water vapor at the sites with good astroclimatic conditions [2–6].

- mm

Chajnantor Plateau 0.72 (August) 2.56 (January) 1.05
Cerro Chajnantor summit 0.54 (August) 1.08 (January) 0.67
Dome A - - 0.21
Dome C - - 0.28
South Pole - - 0.30
Cerro Macon - - 1.02
Mauna Kea - - 1.44
Mauna Loa - - 2.00
Karakaya Hills, Erzurum 2.7 (October–June) 4.0 (January–September) 2.7
Muztag -Ata ∼1.0 (December–January) ∼7.0 (July) 2.3
Hanle ∼1.0 (December–January) - 2.23
Merak - - 2.16
Ali - - 2.22
Salt - - 1.31
Yang - - 1.37

A pronounced minimum of PWV is observed in Antarctica. Year-round median values
of the PWV at the sites of Dome A, Dome C and the South Pole are listed in Table 1.
Due to low air temperatures, the sites of Dome A, Dome C [7,8] and the South Pole are
characterized by very low content of water vapor. At these sites, annual medians of PWV
do not exceed 0.30 mm.

For comparison, Table 1 lists the medians of PWV for sites, such as Cerro Macon
and Mauna Kea [2], which are characterized by very high astroclimatic parameters. The
medians at these sites are slightly higher than in Antarctica and equal to 1.02 mm and
1.44 mm at Cerro Macon and Mauna Kea, respectively.

In addition, one of the sites with low and moderate PWV is the Karakaya Hills in
Erzurum city. An analysis of the radiosonde data at this site (located at 3170 m above sea
level) showed that the median of PWV is 2.7 mm for the period 6 October 2016–15 January
2017. The median increased to 4.00 mm for 1 January 2016–26 September 2017 [6].

In the northern hemisphere, the Tibet Plateau is an area suitable for millimeter and
submillimeter observations [9,10]. In particular, Zhao et al. [11] showed that the Lenghu
site has very low PWV, ∼1 mm. Amplitudes of intraday PWV fluctuations do not exceed
0.5 mm. In addition, Shantikumar S. Ningombam et al. studied the driest locations in Tibet
and compared them with well-known astronomical sites in the world [12,13]. The authors
highlighted three sites with high astroclimatic characteristics, including Hanle, Merak and
Ali sites within the Himalayan region. The year-round medians of PWV at the Himalayan
sites varied from 2.16 mm (Merak) to 2.23 mm (Hanle). Another promising site is Muztag
-Ata. Xu et al. found that the annual median of PWV was 2.28 mm and 2.37 mm in 2018
and 2019, respectively [5]. At this site, the driest period with the median less than 2 mm is
observed from October to March.

Although some sites with low water vapor content are known, further detailed as-
troclimatic studies are required for developing a ground-based network of mm/submm
telescopes [14,15].

PWV is often estimated using radiosonde data [16–20]. However, the rather sparse
network of stations, especially in mountainous regions, as well as the rare frequency of
launching radiosondes, do not allow for detailed studies. Other possibilities for estimation
of PWV are based on use of GPS data, GNSS data or MODIS observations [21,22].

The most optimal approach for preliminary estimation of PWV within a large region is
use of reanalysis data [23–25]. The reanalysis data makes it possible to evaluate statistically
representative atmospheric parameters including not only PWV, but also other character-
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istics relevant for astronomical observations (for example, total cloud cover, wind speed,
air temperature, atmospheric boundary height, seeing, the Richardson parameter) [26–28].
Comparison between PWV changes estimated with the help of satellite and ground-based
instruments and reanalysis-derived PWV changes shows a close relationship. For example,
Kumar et al. found that at the Varanasi the correlation coefficient between the GPS-derived
PWV and the PWV estimated from the Era-Interium reanalysis is close to 0.86 [29]. An
analysis of the MODIS-PWV and the Era-5 derived PWV showed that the correlation co-
efficients are above 0.9 over most of China [22]. The area-averaged correlation coefficient
is ∼0.98. The low correlation coefficients are observed near the southwestern border of
China (∼0.62).

Long-period changes in PWV show that the Mediterranean coasts, the Alps and
northern and inland Europe are characterized by large correlation coefficients (more than
0.97) [30]. The root mean square deviations estimated between changes in the Era-5 PWV
and the GPS-PWV range from 1.0 to 1.6 kg m−2 for the Mediterranean coasts and the Alps
and from 0.5 to 1.0 kg m−2 for northern and inland Europe. In addition, the studies over
Russia showed that MODIS data overestimates the atmospheric optical depth associated
with PWV compared to the data of ground-based actinometric observations [31].

This paper is a continuation of our astroclimatic studies in the application of optical,
millimeter and submillimeter astronomy [32–34]. We discuss the results of a quantitative
analysis of atmospheric characteristics, including mean values, medians, mean absolute
error, root mean square deviation and correlation coefficient [35–38]. The study is being car-
ried out to determine the best sites for ground-based mm/submm telescopes as part of the
ESMT Submillimeter Teselscopes (ESMT) project [34,39]. Within this project, it is planned to
design three mm/submm telescopes in Russia, Uzbekistan and China. We should also note
that our studies cover locations with low values of atmospheric diffuse light ranging from
8.3 to 13% (Figure 1). These locations are Baykal Astrophysical Observatory (BAO), Large
Solar Telescope (LST-3), Big Telescope Alt-Azimuthal, Crimean Astrophysical Observatory
and the Hapcheranga site [34,39].

Figure 1. Diffuse light at astronomical observatories and sites suitable for observations.

2. Data Method to Correct Precipitable Water Vapor Values

In order to estimate spatial distributions of precipitable water vapor, we used the Era-5
reanalysis database [40]. The Era-5 reanalysis data are available with hourly resolution.
The horizontal resolution is 0.25◦. In our study, we used isobaric levels from 1000 hPa to
30 hPa. Each isobaric level corresponds to a certain altitude in the atmosphere.

One of the approaches used for estimating PWV is integration of specific air humidity
vertical profiles. In particular, the PWV is calculated using the formula:

PWV =
1

ρg

∫ Phr

Ps
q(P)dP, (1)
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where ρ is the water density (1000 kg/m3), g is the gravitational acceleration (m/s2), q(P)
is the air specific humidity (g/kg), P is the atmospheric pressure (hPa), Ps is the air pressure
near the Earth’s surface (hPa), which defines the lower integration limit, and Phr is the
air pressure at the altitude corresponding to the upper integration limit (hPa). The upper
integration limit is chosen quite arbitrarily. The arbitrary choice of the upper limit is due
to low content of water vapor in the upper layers of the atmosphere. At an altitude of
1.5–2 km, the water vapor pressure is half that at the Earth’s surface, in average. The
troposphere (atmospheric layer, from Earth’s surface up to 10–12 km) contains 99% of
the atmospheric water vapor. In the calculations, we assumed that the upper limit of
integration is 30 hPa.

A significant problem is choice of the lower integration limit, as the lower part of the
atmosphere (so-called dynamic atmospheric boundary layer) makes the largest contribution
to PWV and, thereby, optical thickness. Radiosonde data and reanalysis make it possible
to estimate PWV separately by integrating the vertical profiles in air humidity, as well
as to estimate the lower integration limit at the reference radiosounding station. For
choosing the lower integration limit, we use either surface air pressure measurements or
the approximation of the standard atmosphere.

Another approach applied for estimation of atmospheric water vapor statistics is based
on the hourly values of PWV, which are available in the Era-5 reanalysis database. Direct
use of the reanalysis data leads to overestimated values of PWV, especially for mountainous
areas. The input data in the reanalysis corresponds to a certain volume box limited by grid
node. In this case, we can note that PWV values must be corrected. The Era-5 reanalysis
data, which include PWV values, profiles of meteorological values and modeled relief,
have a limited spatial resolution. PWV values are calculated for grid nodes that may not
contain mountain peaks but include lower altitudes. A site suitable for millimeter and
submillimeter observations can be remote from the nearest grid node. So, deviations in the
PWV values may appear. To take into account the relief, we use a well-known Formula (2)
containing an exponential term and a relative altitude difference δz:

PWV = Kre f PWV0exp
(
< CPWV > δz

hl

)
= K0PWV0, (2)

K0 = Kre f exp
(
< CPWV > δz

hl

)
∼ Kre f exp

(
δz
Hl

)
, (3)

where < CPWV > is the non-dimensional proportionality coefficient, Hl = hl/0.439 is the
water vapor scale height, and hl = 1000 m. A flowchart of the method for correcting PWV
is shown in Figure 2.

PWVRadiosonde sounding,
reference station

Reference water
vapor scale

height

Vertical profile
PWV(z) 

Radiosonde sounding, 
station 2, station 3,... 

KrefVertical profiles
PWV(z)  

Spatial distribution
of weighted PWV

Era-5 data

Figure 2. Flowchart of the method for correcting PWV. The values of PWV are computed using
the radiosonde sounding at the nearest reference station. Additional radiosonde stations provide
correction of PWV distribution within the region.
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The water vapor scale height and the proportionality coefficient are calculated from
the best exponential fit to the water vapor content profile obtained from radiosonde sound-
ings launched from the nearest station (Mineralny Vody). At a given site, the coefficient
< CPWV > and Hl vary over time. Under different atmospheric conditions, the scale
height ranges from 1200 to 2700 m at the BTA. The mean value of Hl is 2280 m. The non-
dimensional coefficients Kre f are calculated for grid nodes by interpolation of Hl estimated
for a set of radiosonde stations within a given region. Adaptation of the method for the sites
where the statistics of PWV are known shows that valid calculation of the δz value should
take into account the limited area and depends on the relief model in the Era-5 reanalysis as
well as the physical elevation of a given site. For a correct estimate of PWV at a given site,
we calculate the relative altitude difference not for a single grid node but within the area
around the site. In other words, PWV values are corrected using variable coefficients for
different sites, taking into account the relief model and, in particular, the mean difference
between the altitude of the mountain summit and the “surrounding terrain”.

3. Precipitable Water Vapor Statistics within the Chajnantor Area

In order to determine how well the Era-5 reanalysis data reproduces real changes
in precipitable water vapor, we used the data gathered from radiometer measurements
at the Chajnantor Plateau [3]. Using Formula (2), we estimated the mean hourly PWV
values within the Chajnantor Plateau. The Era-5-derived precipitable water vapor values
are overestimated in comparison with the measurement data. We used the mean absolute
error (MAE) for estimation of the PWV deviations assessed between the calculated and
measured PWV:

MAE =
1
N

N

∑
i=1

| PWVi(Era)− PWVi(r) |, (4)

where PWVi(Era) is the mean monthly PWV calculated from the Era-5 reanalysis data, and
PWVi(r) is the mean monthly measured values of PWV. In average, the mean absolute
error is 1.8 mm. The largest MAE falls in winter when water vapor content is the highest.
The mean absolute error in winter is 3.1 mm. In summer, MAE decreases to 1.1 mm.

A correct estimation of statistical characteristics of precipitable water vapor, including
hourly values, requires the use of a certain method, especially under conditions of low
atmospheric moisture. Using Formula (2), we calculated the PWV variations within the
Chajnantor area. Figure 3 shows the PWV variations for a period of five days within the
Chajnantor area.

At the Chajnantor Plateau, measurements were performed with an APEX radiometer
operating at 183 GHz [3]. At the Cerro Chajnantor summit, precipitable water vapor was
measured by a water vapor radiometer (red line) at 183 GHz and the Tipper radiometer,
which integrates radiation over a 103 GHz band, centered at 850 GHz. An analysis of
intraday variations in the precipitable water vapor shows that the measured values of PWV
significantly deviate from the hourly PWV values estimated from the Era-5 reanalysis data.
The mean absolute error is 0.94 mm. We also estimated the root mean square deviation:

σ =

(
1
N

N

∑
i=1

(PWVi(Era)− PWVi(r))
2

)0.5

(5)

and the correlation coefficient:

K =
1
N

∑N
i=1

(
PWVi(Era)− PWV(Era)

)(
PWVi(r)− PWV(r)

)
σPWV(ERA)σPWV(r)

, (6)

where PWV(Era) and PWV(r) are the Era-5 derived PWV and measured PWV, respectively,
and σPWV(ERA) and σPWV(r) are the root mean square deviations.
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Figure 3. PWV variations for a period of five days in the Chajnantor area for the period 18 December
2011–23 December 2011. The blue line corresponds to the calculated Era-5 PWV variations. The red
line and round markers correspond to the PWV variations at the Cerro Chajnantor summit. The
orange line corresponds to the PWV variations at the Chajnantor Plateau.

The root mean square deviation of the PWV is 1.06 mm. The correlation coefficient
between the PWV variations is 0.57. Thus, the Era-5 reanalysis data passably reflect
atmospheric situations with low and high water vapor content in the atmosphere, which
are of interest for mm/submm astronomical observations.

For longer averaging periods, consistency of PWV variations estimated from the Era-5
data and the data of the radiometric measurements improves. Figure 4 shows the changes
in the mean monthly PWV values estimated from Era-5 data and the changes in the mean
monthly measured radiometric PWV values. PWV values are averaged from 2011 to 2014.
Statistics of PWV variations estimated from the Era-5 reanalysis data and radiometric data
are shown in Table 2. In addition to the mean absolute error estimated for the hourly PWV
values, we also estimated the RMS and the correlation coefficient between the PWV time
series. Compared to intrahour variations, the mean absolute error of the mean monthly
variations in PWV decreases to 0.23 mm, and the RMS decreases to 0.28 mm. The correlation
coefficient is 0.97.

Table 2. Statistical characteristics of PWV variations estimated from Era-5 reanalysis data and
radiometric measurement data.

Averaging STD, mm MAE, mm K

Mean hourly 1.06 0.94 0.57
Mean monthly 0.28 0.23 0.97
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Figure 4. Changes in mean monthly PWV values estimated from Era-5 reanalysis data and changes
in mean monthly measured PWV values within the Chajnantor area.

4. Atmospheric Parameter Statistics Relevant for the Millimeter/Submillimeter
Observations within the BTA Region

Knowledge of statistics in air humidity and precipitable water vapor makes it possible
to estimate absorption coefficients along the telescope’s line of sight. In this section,
we estimate the spatial changes and seasonal variability in water vapor content in the
atmosphere within the BTA region [41]. Using the Era-5 reanalysis data, we obtained
the statistically averaged spatial distributions of PWV for different seasons for the period
2010–2020.

4.1. Spatial Distributions of Precipitable Water Vapor within the BTA Region

With the aim of identifying the sites suitable for astronomical observations in the
mm/submm wavelength range, we obtained spatial distributions of PWV within the BTA
region. We used the Era-5 reanalysis data for mapping. The spatial distributions of PWV
averaged for the period 2010–2020 for different seasons are shown in Figure 5. PWV
averaging was performed using Formula (7):

PWV0 = 1/N
N

∑
i=1

PWV0i, (7)

where PWV0i is the hourly mean PWV value, and N is the total number of hours for the
period 2010–2020. The analysis of Figure 5 shows that there is a wide area of low PWV
values within the BTA region. The average position of the area varies little during the year.
However, the PWV values change significantly from season to season. The highest PWV
values are observed in summer, while the lowest PWV values correspond to winter.

In our studies, in order to correct the PWV values, we compared the variations in
precipitable water vapor estimated from the Era-5 data with the PWV obtained using
the Global Navigation Satellite System in the BTA region [39]. The data comparison
showed that the correlation coefficients varied from 0.71 to 0.94. The best relation between
PWV variations was observed at the sites with altitudes from 727 m to 2095 m, with high
repeatability of clear sky. In particular, at the Khunzakh with an elevation of 1627 m above
sea level, the correlation coefficient was 0.94. At the Kislovodsk mountain astronomical
station with an elevation of 2095 m above sea level, the correlation coefficient is also high
(∼0.91). The worst correlation coefficient was observed at the Peak Terskol, as the highest
site of the analyzed (3121 m above sea level). At this site, the correlation coefficient was
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0.71. It is also worth noting that, according to our estimates, the Chajnantor Plateau at an
elevation of 5107 m has a correlation coefficient of 0.57.

(a) (b)

(c) (d)

Figure 5. Spatial distributions of PWV0 obtained from Era-5 reanalysis data for the period 2010–2020:
(a) winter; (b) spring; (c) summer; (d) autumn.

Using Formula (2) and Era-5 reanalysis data, we estimated the spatial distributions of
corrected PWV values for the period 2010–2020. Figure 6 shows the spatial distributions of
the corrected PWV values. The correction of PWV values, taking into account the relief,
was carried out using the relative altitude difference determined over a large area within
the region. In this case, in low landforms, PWV values were not corrected; PWV values for
mountain peaks were corrected using Formula (2). In the calculations, we used the Era-5
relief model.

The analysis of the corrected spatial distributions shows that PWV values for moun-
tains decreased significantly. As a result of applying the correction method, PWV values
at the summit and at the bottom of the mountain began to differ significantly. This is
consistent with physical concepts and measurement data of precipitable water vapor.
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(a) (b)

(c) (d)

Figure 6. Era-5 PWV spatial distributions obtained for the period 2010–2020, adapted for mountain
peaks: (a) winter; (b) spring; (c) summer; (d) autumn.

4.2. Spatial Distributions of Total Cloud Cover within the BTA Region

The duration of sunshine or total cloud cover determines the potential duration of
astronomical observations. In order to reveal the sites with minimal total cloudiness, we
obtained the spatial distributions of total cloud cover TCC (shown in Figure 7). The TCC
values in the Era-5 reanalysis were averaged for the period 2010–2020 for different seasons
using Formula (8):

TCC = 1/N
N

∑
i=1

TCCi, (8)

where TCCi is the hourly mean value of TCC, and N is the total number of hours from
2010 to 2020.

The analysis of Figure 7 shows that the TCC distributions are spatially inhomogeneous.
Areas with low TCC are shown in dark blue. The best conditions in both TCC and PWV
occur during winter. The sites with the best atmospheric conditions in TCC and PWV
include the locations of mountainous Dagestan: Mt. Kurapdag and Mt. Horai. Table 3
shows mean values of TCC at the sites suitable for mm/submm observations. The best
conditions in terms of TCC are noted at the location of Mt. Horai and Mt. Kurapdag.
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(a) (b)

(c) (d)

Figure 7. Spatial distributions of total cloud cover within the BTA region obtained for the period
2010–2020: (a) winter; (b) spring; (c) summer; (d) autumn.

Table 3. Mean values TCC at the sites suitable for mm/submm observations.

Site Season TCC

BTA Winter 0.62
Spring 0.65

Summer 0.47
Autumn 0.46

Terskol Winter 0.63
Spring 0.64

Summer 0.49
Autumn 0.47

Horai Winter 0.44
Spring 0.55

Summer 0.33
Autumn 0.41

Kislovodsk Winter 0.57
Spring 0.62

Summer 0.47
Autumn 0.46
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Table 3. Cont.

Site Season TCC

Kurapdag Winter 0.45
Spring 0.57

Summer 0.45
Autumn 0.42

4.3. Spatial Distributions of Cloud Base Height within the BTA Region

For astroclimatic estimation of astronomical observing time within mountainous
regions, an important parameter is the cloud base height (CBH). We attribute large values
of cloud base height to a higher repeatability of high atmospheric mm/submm transparency.
In this case, a high transparency of the atmosphere is due to low water content in the middle
and upper troposphere compared to the lower layers of the atmosphere. Based on the Era-5
reanalysis data, we estimated CBH. Spatial distributions of cloud base height for different
seasons are shown in Figure 8.

(a) (b)

(c) (d)

Figure 8. Spatial distributions of cloud base height for different seasons for the period 2010–2020:
(a) winter; (b) spring; (c) summer; (d) autumn.

The analysis of spatial distributions of cloud base height indicates the following
features of cloud formation:

(i) In all seasons, an area with low values of cloud base heights is observed over the
Caucasus. The “depth” of this area in terms of CBH horizontal gradients varies
throughout the year.
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(ii) Excluding winter, an extended area with large CBH values is formed in the eastern
part of the BTA region. In this region, maximum CBH occurs in summer. Cloud
base heights range from ∼3600 to ∼5300 m. In winter, cloud base heights range from
∼900 m to ∼1500 m.

Table 4 shows mean values of CBH at the sites suitable for mm/submm observations.
Typical cloud base heights at the BTA site vary from 800 m (summer) to 1500 m (winter).
Similar conditions are also observed at the Peak Terskol. The minimum cloud base height
values are observed in summer (750 m), and the maximum values correspond to the
autumn–winter period (1100–1200 m).

Table 4. Mean values of CBH at the sites suitable for mm/submm observations.

Site Season CBH, m

BTA Winter 1500
Spring 1200

Summer 800
Autumn 1400

Terskol Winter 1100
Spring 950

Summer 750
Autumn 1200

Horai Winter 1400
Spring 1200

Summer 1600
Autumn 1200

Kislovodsk Winter 1700
Spring 1200

Summer 900
Autumn 1350

Kurupdag Winter 1400
Spring 1200

Summer 1050
Autumn 1100

One of the promising sites, namely Mt. Horai, has intermediate values in cloud base
height: 1600 m in summer and 1200 m in autumn and spring. In comparison with Mt.Horai,
Mt. Kurapdag has lower cloudiness in summer (1050 m).

In winter, the Kislovodsk Observatory has a high CBH value, ∼1700 m. This value is
close to the CBH at the BTA (1500 m).

Thus, Mt. Horai and Mt.Kurapdag are promising for mm/submm observations, not
only in terms of PWV, but also in terms of total cloud cover and cloud base heights.

4.4. Nighttime Cloud Fraction Fraction

The estimation of the nighttime cloud fraction is one of the key parameters for eval-
uating the number of useful nights at an astronomical site [42–44]. In order to estimate
the number of useful nights at the BTA, we used a similar approach to that described in
paper [42]. We used the following methodology for classifying nights:

(i) Clear nights and partly clear nights: we supposed that cloud cover values range from
0 to 20% for the entire night. Clouds may be observed at night, but the total cloud
cover ranges from 0 to 20% for 4 or more hours continuously.

(ii) Partly cloudy night: cloud coverage is less than or equal to 40% for 4 or more h.
(iii) Photometric night: a night is termed photometric if it satisfies (i).
(iv) Spectroscopic nights: a night is termed spectroscopic if it satisfies (i) and (ii).
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In order to estimate the number of photometric and spectroscopic nights as well as
nights with cloud coverage lower than or equal to 50% at the BTA site, we used hourly
Era-5 data from 2010 to 2022. The duration of a night at a site is counted from an hour
after sunset to an hour before sunrise. Figures 9 and 10 show box and whisker plots for
photometric spectroscopic nights for 2010–2021. Table 5 summarizes the number of nights
estimated with different thresholds for the cloud coverage at the BTA site. At the BTA site,
the averaged number of spectroscopic nights per year estimated from long-term reanalysis
data is 67.8 (71.2 for nights with cloud coverage lower than or equal to 50%). The number
of photometric nights is less (it is equal to 25.3 per year).

Table 5. Number of nights for observations at the BTA.

Month
Nights with Cloud

Cover ≤ 0.5
Spectroscopic Nights Photometric Nights

January 4.2 4.1 1.3
February 4.2 4.1 0.9
March 7.0 6.2 1.3
April 6.9 6.2 1.7
May 8.2 8.0 3.7
June 8.1 8.0 4.0
July 7.8 7.1 4.0
August 7.1 7.0 3.0
September 5.7 5.1 2.1
October 4.0 4.0 1.1
November 4.0 4.0 1.1
December 4.0 4.0 1.1
Year 71.2 67.8 25.3

In addition, we compared the annual changes in amount of hours from visual obser-
vations at the BTA [45] with the hours estimated from Era-5 reanalysis data. Figure 11
shows annual changes in the amount of hours from visual observations at the BTA with the
hours estimated from Era-5 reanalysis data. For spectral nights, the Era-5 data have the
best agreement with visual observations at a threshold of 0.5. The total observing time at
the BTA is 1453 h per year (Table 6). As Table 6 shows, one of the best sites in Dagestan,
namely Mt. Kurapdag, is characterized by a large number of observation hours. The mean
number of hours for the period from 2010 to 2021 was 1971 h.

Table 6. Estimations of observing time at the BTA. The value in December 2022 is the forecast variable.

BTA Kurapdag

Month Hours Hours Hours Hours

2022 2010–2021 2022 2010–2021

January 66 108 189 214
February 109 97 200 173
March 63 91 170 139
April 102 88 127 104
May 96 62 123 84
June 50 72 142 101
July 105 106 87 116
August 180 154 185 163
September 139 155 193 180
October 200 178 233 209
November 148 188 250 231
December 142 154 305 257
Year 1400 1453 2204 1971
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Figure 9. Box and whisker plots for photometric nights during 2010–2021 at the BTA site. The central
horizontal lines inside the boxes are medians; bottoms and tops of the boxes are standard deviations;
and ends of the whiskers are the minimum and maximum values.

Figure 10. Box and whisker plots for spectroscopic nights during 2010–2021 at the BTA site. The
central horizontal lines inside the boxes are medians; bottoms and tops of the boxes are ± standard
deviation; and ends of the whiskers are the minimum and maximum values.
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Figure 11. Annual changes in amount of hours from visual observations at the BTA with the hours
estimated from Era-5 reanalysis data. The amount of observation time at the BTA according to
the operation service is shown by the black line. The amount of observation time at the telescope
according to astronomical observations is shown by the red line. The value in 2022 is the forecast
variable (regression analysis).

5. Seasonal Variations of PWV at the Ali, Muztag-Ata, Suffa, Bta and Peak Terskol

For estimation of water vapor content within the BTA region, we corrected PWV values
for a number of sites. Using Formula (2), we estimated the proportionality coefficients at
different sites, taking into account ratios between the altitudes of the mountain peak and
the “surrounding terrain”.

Our method of PWV correction includes:

(i) The choice of area boundaries within which we should estimate the mean relative
altitude difference. In particular, at the BTA, we used a limited area, which includes
4 × 5 grid nodes.

(ii) To calculate the relative altitude difference for an adjacent grid node, we shifted the
selected area. Shifts are shown by the red box. The size of this area is fixed for each
mesh node.

(iii) Knowing the relative altitude difference at a given site, we calculated the average
ratios between precipitable water vapor at the mountain summit and the values
corresponding to the “surrounding terrain”.

Figure 12 shows seasonal changes in corrected median PWV values estimated from
the Era-5 data at the sites of Ali, Muztag-Ata, Suffa, Bta and Peak Terskol.
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Figure 12. Seasonal changes in corrected median PWV values estimated from Era-5 reanalysis data at
the sites of Ali, Muztag-Ata, Suffa, Bta and Peak Terskol.

Table 7 shows the mean ratios K0 of the precipitable water vapor at the summit to the
PWV values corresponding to the “surrounding terrain”. Table 8 shows the mean values of
PWV at the sites suitable for mm/submm observations.

Table 7. Mean ratios of precipitable water vapor at the summit to the PWV values corresponding to
the “surrounding terrain” K0 at the sites of Ali, Muztag-Ata, Suffa, Bta and Peak Terskol.

Site Elevation, m PWV /PWV0

Ali 5050 0.72
Muztag -Ata 4536 0.75
BTA 2100 0.81
Terskol 3100 0.56
Suffa 2500 0.73

At the Ali site, the median value of PWV calculated from the Era-5 data is about
2.9 mm. This value exceeds the median value of PWV by a factor of 1.44 estimated in [10]
(2.02 mm). The maximum PWV values are observed in summer. The median value is
7.0 mm. In winter, the median value is about 1 mm.

Similar astroclimatic conditions in terms of median PWV values are observed at
Muztag-Ata. The median of PWV is 2.9 mm. In comparison with Ali, Muztag-Ata is
characterized by a smaller intra-annual amplitude of PWV changes. In summer, the median
is 5.7 mm; in winter, the median decreases to 1.0 mm.
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Table 8. Mean values of PWV at the sites suitable for mm/submm observations.

Site Season PWV, mm

Ali Winter 0.7
Spring 1.7

Summer 7.0
Autumn 2.3

Year 2.9

Muztag-Ata Winter 1.0
Spring 2.1

Summer 5.7
Autumn 2.6

Year 2.9

Suffa Winter 3.1
Spring 5.2

Summer 8.0
Autumn 5.2

Year 5.4

BTA Winter 4.9
Spring 6.5

Summer 17.4
Autumn 13.5

Year 10.3

Terskol Winter 2.9
Spring 4.9

Summer 11.1
Autumn 6.5

Year 6.3

At the Suffa International Observatory, medians in PWV are higher compared to
Muztag-Ata and Ali. The annual median PWV derived from Era-5 reanalysis is 5.4 mm.
The best conditions are observed in December–January when the median values are close
to 2.6–2.9 mm. The worst conditions are in July with a median of 8.9 mm. Comparison of
the calculated PWV with the PWV measured by MIAP-2 radiometer [46–48] shows that
MAE is 0.79 mm, and the root mean square deviation is close to 0.87 mm. The correlation
coefficient between the measured and calculated monthly PWV values is 0.98.

Following the proposed approach, the medians of PWV were estimated at the Peak
Terskol and the site of BTA. At the BTA, the annual median is 10.3 mm. In winter, the
median is minimal and equal to 4.9 mm; in summer, the median increases to 17.4 mm.
In comparison with the BTA, at the Peak Terskol, the annual median of PWV decreases
1.63 times (the median is 6.3 mm). In summer, at the Peak Terskol, the median varies
from 10.5 to 11.5 mm. In winter, the median is 2.9 mm (the minimum of PWV is observed
in December).

6. Discussion

The study is aimed at the description of astroclimatic conditions within the BTA region
(from 35◦E to 55◦E, from 40◦N to 50◦N). For the first time, spatial distributions of PWV
within the BTA region were obtained. We show that a stable vast area with low water vapor
content is formed within the BTA region. We associate this area with high transparency of
the atmosphere for mm/submm radiation. In order to estimate water vapor content most
closely matched to the measured values, we proposed a method for correcting PWV values,
taking into account the relief. The method is based on averaging the elevation of grid notes
within a certain area. In calculations, this area contains a certain number of grid nodes
(4 × 5 nodes). For each grid node, the relative altitude differences between the mountain
top and the surrounding terrain, as well as the corresponding proportionality coefficients,
were calculated.
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Using the correction method, we estimated the medians of PWV at the Chajnantor
Plateau, Ali, Muztag-Ata, Suffa, BTA, Peak Terskol, Mt. Horai and Mt. Kurapdag. We
showed that the Era-5 reanalysis reproduces changes in hourly PWV values with a correla-
tion coefficient of 0.57. The consistency of the reanalysis data improves with the measured
variations in terms of mean monthly PWV values. The correlation coefficient increases
to 0.97.

In the calculations, we used the exponential dependence of PWV on the altitude [49].
Figure 13 shows the correspondence between medians of PWV and site elevation.

Figure 13. Dependencies of PWV medians on site elevation above sea level.

With the aim of comparing the PWV dependence, we estimated the medians of PWV at
the Chajnantor Plateau, at the sites of Cerro Chajnantor Summit, Tolonchar and Armazones.
It should be noted that the authors [4] considered a limited range of altitudes (from 3000 to
5640 m). In this range of altitudes, the authors obtained the dependence:

PWV = 2.75exp
(
− z − 3000

1820

)
. (9)
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However, if we consider a wider range of altitudes, we see that the Chajnantor Plateau,
Cerro Chajnantor Summit, Tolonchar and Armazones are described well by the dependence:

PWV = 10exp
(
−0.439δz

1000

)
= 10exp

(
− δz

2280

)
. (10)

The analysis of the figure shows that in comparison with the sites of South America,
Ali and Muztag-Ata have higher PWV and are described by the dependence:

PWV = 20exp
(
−0.439δz

1000

)
= 20exp

(
− δz

2280

)
. (11)

The PWV estimates obtained at these sites are in good agreement with theoretical
dependencies of PWV on altitude. The mean absolute errors decrease with altitude and do
not exceed 2.0 mm, on average. We can note that the reanalysis data somewhat overestimate
the PWV medians by 1–2 mm compared to the measurement data. A small spread of PWV
values indicates that using the reanalysis data and the proposed method, in general, we
can estimate the medians of PWV reliably. Considering cases with low values of TCC as
well as PWV, we can note that Mt. Kurupdag and Mt. Horai are located in an area suitable
for mm/submm astronomical observations.

7. Conclusions

(i) In this article, we make use of the Era-5 reanalysis from 2010 to 2020 over the BTA
region to summarize the empirical relation between the total amount of PWV in the
atmospheric column and PWV(z). Our results confirm that PWV in the surface layer
of the atmosphere and the water vapor scale height affect the total amount of PWV.
The functional relation between the total amount of PWV and PWV(z) are similar
among the discussed sites.

(ii) We proposed a method for correcting the PWV values which takes into account
the water vapor scale height calculated for the nearest radiosounding station and
underlying surface. The method is based on the calculation of the average elevation
of the grid nodes around the site of interest. Within the BTA region, we calculated
δz using 20 grid nodes for every site. We believe that taking into account the local
orography makes it possible to more accurately parameterize the PWV. Based on
the proposed method, the distributions of precipitable water vapor within the BTA
region in different seasons were obtained. The analysis of PWV spatial distributions
showed that the BTA is located in the belt with low water vapor content, extending
southeastward. One of the main conclusions in this paper is that potential sites with
low PWV are located east and southeast of BTA in the region (40.5◦N–42.0◦N; 46.2◦E–
48.7◦E). In addition, using the method we estimated seasonal changes in corrected
median PWV values at the sites of Ali, Muztag-Ata, Suffa, Bta and Peak Terskol. The
statistics obtained are close to the measured PWV at these sites.

(iii) The Era-5 reanalysis passably describes the hourly fluctuations in PWV. The root
mean square deviation between measured and calculated values of PVW within the
Chajnantor area is 1.06 mm. The correlation coefficient is 0.57. For longer averaging
periods, consistency of PWV variations estimated from the Era-5 data and radiometric
measurements improves. The correlation coefficient increases to 0.97 for monthly
PWV values.

(iv) We found that there are 68–71% spectroscopic nights per year at the BTA. These
estimations are in a good agreement with the visual observations. At the BTA, the
number of photometric nights derived from the Era-5 data is underestimated by 20%
in comparison to that from the visual observations and equal to 25 per year. Using the
reanalysis, we estimate that the observing time at the telescope is 1453 hours. At one
of the best sites that we found, namely Mt. Kurapdag, the mean number of hours for
the period from 2010 to 2021 was 1971 h.
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