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Preface to ”Development and Optimization of

Mathematical Models for Operations Research”

1. Introduction

The development of mathematical models and their optimization are fundamental for the

effective resolution of many problems in operational research. In recent years, increased insights into

real-world problems have led to the development of new mathematical models and new optimization

algorithms, contributing to the development of a research area with increasing practical relevance.

This Special Issue is dedicated to works at the interface of mathematical modeling, optimization,

and operations research with a special focus on their real-world applications. The interest of the

scientific community was significant, with submissions from authors from different countries from

five continents, including Australia, China, Egypt, India, Israel, Portugal, Russia, Saudi Arabia, and

the United States of America. Ten papers were accepted for publication after thorough peer-review

by dedicated reviewers with expertise in the fields of the papers.

2. Description of Published Papers

This section presents a brief overview of the published papers.

S. Singh et al. [1] proposed a multi-time generalized Nash equilibrium problem and proved its

equivalence with a multi-time quasi-variational inequality problem. Moreover, the authors proved

an existence theorem for equilibria. Next, they applied the considered model to a traffic network

problem. Finally, they studied the multi-time generalized Nash equilibrium problem as a projected

dynamical system and showed a numerical example with its approximated solution.

H. Zhou et al. [2] presented a genetic algorithm for optimizing the formation and schedule of

heavy-haul trains, which is a special case of a more general Train Formation Problem. The authors

established two integer programming models in stages involving the train service plan problem

model and the train time-tabling problem model. They then implemented a number of experiments

to illustrate the feasibility and effectiveness of the proposed approaches.

R. Mondal et al. [3] formulated an inventory model that combines two important components

of inventory management: the demand of a product and the uncertainty of customers’ behavior.

They derived a mathematical formulation that maximized the profit of the inventory system. They

considered three numerical examples to validate the model and solved them using different variants

of quantum-behaved particle swarm optimization techniques in order to determine the duration of

stock-in time and the preservation technology cost.

L. Alkhalifa and H. Mittelmann [4] introduced Piecewise Linear Approximation (PLA), one of

most popular methods used to transform nonlinear problems into linear ones. Following a brief

background and literature review, authors proposed two piecewise linear approximation helpers in

mixed-integer nonlinear programming: one related to domain partitioning and another with a partial

application of PLA to MINLP. They used quadratically constrained quadratic programming (QCQP)

and MIQCQP to demonstrate that problems under PLA with nonuniform partition resulted in more

accurate solutions and required less time compared to PLA with uniform partition.

N. Krivulin et al. [5] presented an application of pairwise comparisons method on decision

making: the determination of consumer preferences in hotel selection. They demonstrated several

known methods on a sample of 202 university students, evaluating their preferred criteria when

selecting a hotel for accommodation during a professional development program in a foreign country.

The comparison of the solutions produced showed a high degree of similarity in results.

P. Ruan et al. [6] considered a two-echelon supply chain with an up-stream supplier and

ix



down-stream retailer during the COVID-19 period. They constructed an inventory model considering

the following four elements: ordering cost, holding cost, deterioration cost, and purchasing cost. A

computer program provided a numerical solution indicating the minimum total cost per unit time.

R. Etgar and Y. Cohen [7] presented a novel approach to solve a current problem that R&D

companies face: multi-annual project portfolio selection. The suggested approach was to expand and

improve common meta-heuristic methods and, thus, solve this NP-hard problem of determining the

roadmap of multi-annual portfolio planning. This study developed an efficient tool that can provide

both practical and academic benefits.

A. Antunes et al. [8] focused on single-stage scheduling problems occurring in parallel machine

environments. They applied a genetic algorithm (GA) to the scheduling problem of unrelated parallel

machines in order to minimize the makespan of a set of tasks that was subject to varying setup times.

A comparative statistical analysis of small and large instances of scheduling problems showed the

advantage of the GA proposed.

K. Alnowibet et al. [9] presented modified algorithms based on conjugate gradient (CG)

principles to solve local and global minimization problems. First, they improved the existing

CG algorithm to enhance its global and local optimization capacities. Then, they obtained a

hybrid stochastic conjugate gradient algorithm using the improved CG method. The performance

profiles used to compare the proposed hybrid approach and four other hybrid stochastic conjugate

gradient algorithms showed the competitiveness of the former. The authors tested both convex and

non-convex problems.

B. Emambocus et al. [10] proposed an optimized discrete adapted Dragonfly Algorithm (DA)

using the Steepest Ascent Hill-Climbing algorithm as a local search. They applied the proposed DA to

a traveling salesman problem, modeling a package delivery system in Kuala Lumpur. The improved

DA showed better performance than the discrete adapted DA and other studied swarm intelligence

algorithms.

3. Conclusions

As guest editors of the Special Issue ‘Development and Optimization of Mathematical Models

for Operations Research’, we express our gratitude to all the authors who sent their articles for

publication in this issue. We also cordially thank all anonymous referees and staff of MDPI for

contributing to the creation of this Special Issue. Special thanks are due to the Managing Editor of the

Special Issue, Ms. Linn Li, for her excellent collaboration and valuable assistance. We are confident

that the papers selected for this Special Issue will attract a significant audience in the scientific

community and further stimulate research involving the development of mathematical models and

their optimization.
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Abstract: We propose a multi-time generalized Nash equilibrium problem and prove its equivalence
with a multi-time quasi-variational inequality problem. Then, we establish the existence of equilibria.
Furthermore, we demonstrate that our multi-time generalized Nash equilibrium problem can be
applied to solving traffic network problems, the aim of which is to minimize the traffic cost of
each route and to solving a river basin pollution problem. Moreover, we also study the proposed
multi-time generalized Nash equilibrium problem as a projected dynamical system and numerically
illustrate our theoretical results.

Keywords: multi-time generalized Nash equilibrium problem; projected dynamical system; river
basin pollution problem; traffic network equilibrium problem; variational inequality problem

1. Introduction

The concept of an equilibrium problem originated with Cournot [1] in the context
of an oligopolistic economy, but formally it was introduced by Nash [2,3]. Therefore, it
is called a Nash equilibrium problem. Nash equilibrium problems have been extensively
studied and employed as powerful and flexible tools. However, the Nash equilibrium only
deals with the dependency of the payoff function of each player on the strategies of the
other (rival) players. Later, this notion was extended to the generalized Nash equilibrium
by Arrow and Debreu [4], where each player’s strategy set also depends on the strategies of
the other players. Generalized Nash equilibrium problems are important in mathematical
modeling because of their usefulness in the modeling of economic systems [5], routing
problems in communication networks [6], and in engineering applications [7]. The survey
papers [8,9] give a complete overview of the state of the art regarding theoretical results
and numerical methods for solving generalized Nash equilibrium problems. One of the
popular strategies for solving the generalized Nash equilibrium problem is to first bridge
the gap between this problem and well-known variational tools in the literature, and then
to use these well-developed tools to solve it. Instances of such methods are reformulations
of generalized Nash equilibrium problems as suitable variational inequalities and quasi-
variational inequalities.

A variational inequality problem comprises an inequality which must be satisfied for
all the elements of a given (convex) set. The study of variational inequality problems in
traffic analysis was initiated by Smith [10] and Dafermos [11]. They set up the traffic assign-
ment problem in terms of a finite-dimensional variational inequality problem. Presently
variational inequalities constitute an important modeling tool in economics [12,13], op-
timization [14] and game theory [15–17]. A quasi-variational inequality problem is an
extension of the concept of a variational inequality problem, where the feasible set is also
allowed to vary. Such problems have been used to model more complex phenomena. It

Mathematics 2021, 9, 1658. https://doi.org/10.3390/math9141658 https://www.mdpi.com/journal/mathematics1



Mathematics 2021, 9, 1658

was Bensoussan [18] who first recognized the connection between the generalized Nash
equilibrium and quasi-variational inequality problems, and studied them in Hilbert space.
Thereafter, Harker [17] investigated these problems in Euclidean spaces. Aussel et al. [19]
studied the time-dependent generalized Nash equilibrium problem and reformulated it
as an evolutionary quasi-variational inequality problem. More relevant papers are well
documented in [20–22].

In recent decades the notion of multi-time has frequently been used in optimization
theory and in multi-time control problems. Indeed, several science and engineering
problems can be converted into optimization problems that are defined as m-flow type PDEs
(multi-time evolution systems) and the associated cost functionals are expressed as path-
independent curvilinear integrals or multiple integrals. Udrişte and Ţevy [23] introduced
the basic optimization problems involving path-independent curvilinear integrals and
multiple integrals. Mathematically speaking, these integrals are equivalent, but their
meanings are completely different in real life problems. Thereafter, a systematic study of
multi-time problems was initiated by the research group of Udrişte [24–27]. In this way,
a multi-time parameter of evolution approach in optimization theory started to be used
and this concept has extensively been explored; see [28–30]. Apart from optimization,
the concept of a multi-time parameter of evolution is also used in space theory. A space
coordinate is merely an index numbering degrees of freedom and the time coordinate is
usually the physical time in which the system evolves. In some physical problems, two-
time t = (t1; t2) is used, where t1 means the intrinsic time and t2 the observer time. These
prominent roles of multi-time parameters in different areas of science show the necessity of
some new formulations of this concept. To pursue further explorations and present novel
results involving multi-time parameters, particularly in optimization and noncooperative
games, we formulate the multi-time generalized Nash equilibrium problem (MGNEP),
which is a generalized form of the time-dependent generalized Nash equilibrium problem
studied by Aussel et al. [19], and reformulate it as a multi-time quasi-variational inequality
problem. We also establish the existence of equilibria. To provide an application of the
formulated multi-time generalized Nash equilibrium problems in traffic analysis, we
interpret a traffic network model in terms of such an equilibrium problem for a courier
service company with the intention of minimizing the traffic cost of each route. Moreover,
we also provide an application to solving river basin pollution problems. We formulate
a river basin pollution problem in terms of our multi-time generalized Nash equilibrium
problem, and demonstrate how the industrial factories (agents) situated along a river can
maximize their profit by following the particular norms and restrictions of reducing the
river water pollution imposed by the basin authorities. Finally, we propose a method for
solving the multi-time generalized Nash equilibrium problem via projected dynamical
system theory. To exhibit the utility of our proposed method, we solve the well-known
Nguyen traffic network problem [31] using this method and numerically illustrate our
results.

Our paper is organized as follows: preliminaries and the formulations of the problem
are presented in Section 2. The equivalence of the multi-time generalized Nash equilib-
rium problem with the multi-time quasi-variational inequality problem is established in
Section 3. The existence of equilibria is obtained in Section 4. The applications of multi-time
generalized Nash equilibrium problems in traffic network analysis and to solving river
basin pollution problems are demonstrated in Section 5. Explorations of the multi-time
generalized Nash equilibrium problem as a projected dynamical system, as well as numeri-
cal illustrations regarding the Nguyen traffic network, are presented in Section 6. Section 7
concludes our paper.

2. Preliminaries and Problem Formulations

We start with the formulation of a multi-time generalized Nash equilibrium problem.
To this end, we first introduce important notation and mathematical tools. We consider
a hyperparallelepiped Ωl◦ ,l1 in Rm with the opposite diagonal points l◦ = (l1◦, l2◦, . . . , lm◦ )

2
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and l1 = (l1
1, l2

1, . . . , lm
1 ). Using the product order relation on Rm, we can view this hy-

perparallelepiped as an interval [l◦, l1]m. This interval is sometimes called the planning
horizon of players for preparing their strategies. We denote by t the multi-time parameter
of evolution. It is defined as t = (tα) ∈ Ωl◦ ,l1 , where α = (1, 2, . . . , m). The multi-time
generalized Nash equilibrium problem comprises N players and each player μ controls
the variable xμ(t) ∈ L2(Ωl◦ ,l1 ,Rnμ). This variable is the multi-time-dependent vector of
strategies of the player μ. Let x−μ(t) ∈ L2(Ωl◦ ,l1 ,Rn−nμ) be the vector of strategies set
up by the decision variables of all the players except the player μ at a given multi-time
t ∈ Ωl◦ ,l1 and let x(t) ∈ L2(Ωl◦ ,l1 ,Rn) be the multi-time-dependent vector of strategies of

all players. Here n =
N
∑

μ=1
nμ. When we wish to put the strategy vector of the player μ

under a spotlight, we write the strategy vector x(t) of all the players as

x(t) = (xμ(t), x−μ(t)).

This is still the vector x(t) = (x1(t), x2(t), . . . , xμ−1(t), xμ(t), xμ+1(t), . . . , xN(t)) which
belongs to L2(Ωl◦ ,l1 ,Rn). Please note that the notation (xμ(t), x−μ(t)) does not mean that
the block components of x(t) are reordered in such a way so that xμ(t) becomes the first
block. We hark back to L2(Ωl◦ ,l1 ,Rn) = L2(Ωl◦ ,l1 ,Rnμ)× L2(Ωl◦ ,l1 ,Rn−nμ). Now let K be
a nonempty, closed and convex subset of L2(Ωl◦ ,l1 ,Rn). For any given strategy vector
x−μ(t) of the rival players, we denote the nonempty, closed and convex feasible set (or
strategy set) of the player μ by Kμ(x−μ(t)). This is a subset of L2(Ωl◦ ,l1 ,Rnμ). Each player
has an objective function which is called the cost (or loss, or payoff) function. It depends
on the player’s own variables xμ(t), as well as on those of the rival players x−μ(t). In our
formulation of the multi-time generalized Nash equilibrium problem, we write the total
cost function Fμ : L2(Ωl◦ ,l1 ,Rn)→ R of the player μ as a multiple integral. More precisely,

Fμ(x(t)) =
∫

Ωl◦ ,l1

f μ(xμ(s), x−μ(s))ds,

where f μ(xμ(s), x−μ(s)) is a real-valued continuously differentiable function which denotes
the running cost (loss) function the player μ bears when the rival players have chosen the
strategy x−μ(s) at a given time s ∈ Ωl◦ ,l1 , and ds = ds1 . . . dsm denotes the volume element
of Ωl◦ ,l1 . We use the following notation to denote the value of the function represented by
p(t) at the point q(t):

〈〈p(t), q(t)〉〉 =
∫

Ωl◦ ,l1

〈p(s), q(s)〉ds ∀ p(t), q(t) ∈ L2(Ωl◦ ,l1 ,Rn),

where 〈., .〉 represents the Euclidean inner product. Throughout the paper, the abbreviation
“a.e.” stands for “almost everywhere" and R

p
+ represents the set of non-negative vectors in

the Euclidean space Rp.

Remark 1. In our paper, we do not impose any special structure on the feasible set Kμ(x−μ(t)) of
each player. For studies of generalized Nash equilibrium problems with special structures on the
feasible set of each player, we refer the interested readers to [8,21].

Now we are able to introduce our multi-time generalized Nash equilibrium problem
(MGNEP). For a given strategy vector x−μ(t) of rival players, the aim of a player μ is to
choose a strategy vector xμ(t) such that it solves the following multi-time minimization
problem:

(MGNEP) min
xμ(t)

∫
Ωl◦ ,l1

f μ(xμ(t), x−μ(t))dt,

subject to xμ(t) ∈ Kμ(x−μ(t)).

3
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Problem (MGNEP) can also be interpreted in the following way.

Definition 1. A strategy vector y(t) ∈ K is said to be a multi-time generalized Nash equilibrium
if and only if for each player μ, we have yμ(t) ∈ Kμ(y−μ(t)) and

∫
Ωl◦ ,l1

f μ(yμ(t), y−μ(t))dt ≤
∫

Ωl◦ ,l1

f μ(xμ(t), y−μ(t))dt ∀ xμ(t) ∈ Kμ(y−μ(t)).

Special Case. If m = 1, then Ωl◦ ,l1 is simply the closed real interval [l◦, l1]. Furthermore,
for more convenience, we put l◦ = 0 and l1 = T (which denotes an arbitrary time) and
then Ωl◦ ,l1 = [0, T] (a fixed time interval). Consequently, in this case (MGNEP) reduces to
the time-dependent generalized Nash equilibrium problem, studied by Aussel et al. [19].

To formulate our multi-time quasi-variational inequality problem, we define the
set-valued map Γ : K → 2K by

Γ(x(t)) :=
N

∏
μ=1

Kμ(x−μ(t))

for each x(t) ∈ K. We also let J : L2(Ωl◦ ,l1 ,Rn) → L2(Ωl◦ ,l1 ,Rn) be a single-valued map.
Our multi-time quasi-variational inequality problem is defined as follows:

(MQVIP) to find a vector y(t) ∈ K such that y(t) ∈ Γ(y(t)) and
∫

Ωl◦ ,l1

〈J(y(t)), x(t)− y(t)〉dt ≥ 0 ∀ x(t) ∈ Γ(y(t)).

Taking into account the definitions of generalized convexities formulated in [32,33],
we define the following notion of convexity for a multi-time functional H : K → R of
the form H(x(t)) =

∫
Ωl◦ ,l1

h(x(s))ds, where h is a real-valued continuously differentiable

function.

Definition 2. The multi-time functional H is said to be convex on the set K if for all x(s), y(s) ∈ K,
the following inequality holds:

∫
Ωl◦ ,l1

h(x(s))ds−
∫

Ωl◦ ,l1

h(y(s))ds ≥
∫

Ωl◦ ,l1

〈
∂h
∂x

(y(s)), x(s)− y(s)
〉

ds.

Next, we recall the following definitions and theorem (compare [34,35]).

Definition 3. The nearest point projection of a point x(t) ∈ L2(Ωl◦ ,l1 ,Rn) onto the set K is
defined by

projK
(

x(t)
)

:= arg min
y(t)∈K

∥∥x(t)− y(t)
∥∥.

Remark 2. For each x(t) ∈ L2(Ωl◦ ,l1 ,Rn), projK(x(t)) enjoys the following property:

〈〈x(t)− projK(x(t)), y(t)− projK(x(t))〉〉 ≤ 0 ∀ y(t) ∈ K.

Definition 4. The polar set K◦ associated with K is defined by

K◦ :=
{

y(t) ∈ L2(Ωl◦ ,l1 ,Rn) : 〈〈y(t), x(t)〉〉 ≤ 0 ∀ x(t) ∈ K
}

.

Definition 5. The tangent cone to the set K at a point x(t) ∈ K is defined by

TK(x(t)) := cl

(⋃
λ>0

K− x(t)
λ

)
,

4
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where cl denotes the closure operation.

Definition 6. The normal cone of K at a point x(t) is defined by

NK
(
x(t)

)
:=

{
{y(t) ∈ L2(Ωl◦ ,l1 ,Rn) : 〈〈y(t), z(t)− x(t)〉〉 ≤ 0 ∀ z(t) ∈ K}, x(t) ∈ K,
∅, x(t) /∈ K.

Please note that TK
(
x(t)

)
=
[
NK

(
x(t)

)]◦.
Definition 7. A subset D of K is said to be compactly open (respectively, compactly closed) in K if
for any nonempty compact subset L of K, the intersection D ∩ L is open (respectively, closed) in L.

Remark 3. (a) It is evident from the above definition that every open (respectively, closed) set is
compactly open (respectively, compactly closed).

(b) The union or intersection of a finite number of compactly open (respectively, compactly closed)
sets is compactly open (respectively, compactly closed).

(c) If A ⊂ K1 and B ⊂ K2 are compactly open (respectively, compactly closed) in K1 and K2,
respectively, then A× B ⊂ K1 × K2 is compactly open (respectively, compactly closed) in
K1 × K2.

Definition 8. A family {gμ}N
μ=1 of maps gμ : K → L2(Ωl◦ ,l1 ,Rn) is called hemicontinuous if

for all x(t), y(t) ∈ K and λ ∈ [0, 1], the mapping λ �→ N
∑

μ=1
〈〈gμ(x(t) + λz(t)), zμ(t)〉〉 with

zμ(t) = yμ(t)− xμ(t) is continuous, where zμ(t) is the μth component of z(t).

Theorem 1 ([34]). Assume that S, T : K → 2K are set-valued maps and that the following
hypotheses are satisfied:

1. ∀ x(t) ∈ K, S(x(t)) ⊂ T(x(t)),
2. ∀ x(t) ∈ K, S(x(t)) 
= ∅,
3. ∀ x(t) ∈ K, T(x(t)) is convex,
4. ∀ y(t) ∈ K, S−1({y(t)}) = {x(t) ∈ K : y(t) ∈ S(x(t))} is compactly open,
5. there exists a nonempty, closed and compact subset D of K and y(t) ∈ D such that K \ D ⊂

S−1({y(t)}).
Then there exists x(t) ∈ K such that x(t) ∈ T(x(t)).

3. An Equivalent Form of the Multi-Time Generalized Nash Equilibrium Problem

We begin our analysis by presenting an equivalent form of our multi-time generalized
Nash equilibrium problem in terms of a multi-time quasi-variational inequality problem.
This equivalent formulation turns out to be useful for proving further results in the sequel.
From now onwards, the symbol ∂ f μ

∂xμ (y(t)) stands for the partial derivative of the running
cost function f μ of the player μ with respect to the argument xμ(t) at the strategy vector
y(t) ∈ K.

Theorem 2. Assume that J(x(t)) =
(

∂ f μ

∂xμ (x(t))
)N

μ=1
for each x(t) ∈ K, and that for each

μ ∈ {1, 2, . . . , N} and each x−μ(t), the multi-time cost functional Fμ is convex on K in the
argument xμ(t). Then y(t) ∈ K is a multi-time generalized Nash equilibrium if and only if it is a
solution to (MQVIP).

5
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Proof. Let y(t) ∈ K be a solution of (MQVIP). We shall first prove that for each μ ∈
{1, 2, . . . , N}, yμ(t) ∈ Kμ(y−μ(t)) satisfies the following inequality:

〈
∂ f μ

∂xμ (y(t)), xμ(t)− yμ(t)
〉
≥ 0 ∀ xμ(t) ∈ Kμ(y−μ(t)) and a.e. on Ωl◦ ,l1 . (1)

To this end, suppose on the contrary that this inequality does not hold. Then it follows
that there exists a ν ∈ {1, 2, . . . , N}, and a strategy vector zν(t) ∈ Kν(y−ν(t)) together
with a set G ⊂ Ωl◦ ,l1 of positive measure such that for yν(t) ∈ Kν(y−ν(t)) the following
inequality holds: 〈

∂ f ν

∂xν
(y(t)), zν(t)− yν(t)

〉
< 0 a.e. on G. (2)

Next, we consider the strategy vector h(t) ∈ L2(Ωl◦ ,l1 ,Rn) defined by

h(t) :=

⎧⎪⎨
⎪⎩

hμ(t) = yμ(t), t ∈ Ωl◦ ,l1 and μ 
= ν,
hμ(t) = zν(t), t ∈ G and μ = ν,
hμ(t) = yν(t), t ∈ Ωl◦ ,l1 \ G and μ = ν.

We have h(t) ∈ Γ(y(t)) and

∫
Ωl◦ ,l1

〈J(y(t)), h(t)− y(t)〉dt =
N

∑
μ=1

∫
Ωl◦ ,l1

〈
∂ f μ

∂xμ (y(t)), hμ(t)− yμ(t)
〉

dt

=
N

∑
μ=1 (μ 
=ν)

∫
Ωl◦ ,l1

〈
∂ f μ

∂xμ (y(t)), hμ(t)− yμ(t)
〉

dt

+
∫

Ωl◦ ,l1

〈
∂ f ν

∂xν
(y(t)), hν(t)− yν(t)

〉
dt

=
∫

G

〈
∂ f ν

∂xν
(y(t)), zν(t)− yν(t)

〉
dt.

(3)

It now follows from Inequalities (2) and (3) that
∫

Ωl◦ ,l1

〈J(y(t)), h(t)− y(t)〉dt < 0,

which contradicts the fact that y(t) is a solution to (MQVIP). Thus, inequality (1) holds, as
claimed. Furthermore, for each μ, the convexity of the multi-time cost functional Fμ on the
set K in the argument xμ(t) implies that

∫
Ωl◦ ,l1

f μ(xμ(t), y−μ(t))dt−
∫

Ωl◦ ,l1

f μ(yμ(t), y−μ(t))dt

≥
∫

Ωl◦ ,l1

〈
∂ f μ

∂xμ (y(t)), xμ(t)− yμ(t)
〉

dt ∀ xμ(t) ∈ Kμ(y−μ(t)).
(4)

By combining inequalities (1) and (4), we obtain
∫

Ωl◦ ,l1

f μ(xμ(t), y−μ(t))dt−
∫

Ωl◦ ,l1

f μ(yμ(t), y−μ(t))dt ≥ 0 ∀ xμ(t) ∈ Kμ(y−μ(t)), (5)

which implies that y(t) is a multi-time generalized Nash equilibrium, as asserted.

6
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Conversely, let y(t) ∈ K be a multi-time generalized Nash equilibrium. Then we have
inequality (5). Since Kμ(y−μ(t)) is a convex set, for all xμ(t) ∈ Kμ(y−μ(t)) and λ ∈ [0, 1],
inequality (5) can be rewritten as

∫
Ωl◦ ,l1

[ f μ(yμ(t) + λ(xμ(t)− yμ(t)), y−μ(t))− f μ(yμ(t), y−μ(t))]dt ≥ 0.

Dividing the above inequality by λ, taking the limit as λ → 0, and using Taylor’s series,
we arrive at

∫
Ωl◦ ,l1

〈
∂ f μ

∂xμ (y(t)), xμ(t)− yμ(t)
〉

dt ≥ 0 ∀ xμ(t) ∈ Kμ(y−μ(t)).

Since by hypothesis, J(y(t)) =
(

∂ f μ

∂xμ (y(t))
)N

μ=1
, we have for any x(t) ∈ Γ(y(t)),

∫
Ωl◦ ,l1

〈J(y(t)), x(t)− y(t)〉dt =
N

∑
μ=1

∫
Ωl◦ ,l1

〈
∂ f μ

∂xμ (y(t)), xμ(t)− yμ(t)
〉

dt ≥ 0.

Since we already have y(t) ∈ Γ(y(t)), it follows that y(t) is a solution to (MQVIP).

Remark 4. The set G
l◦ , l◦+l1

2
of positive measure in the converse part of the proof of Theorem 3.1

of [29] should also be simply denoted by G.

4. Existence of Equilibria

Our aim in this section is to establish the existence of multi-time generalized Nash
equilibria. In view of the equivalence of the multi-time generalized Nash equilibrium
problem with the multi-time quasi-variational inequality problem, we can take advantage
of techniques for proving existence results regarding quasi-variational inequality problems,
which were investigated in [34,35]. Throughout this section, for better understanding
of the strategy vector xμ(t) of each player μ ∈ {1, 2, . . . , N} and of the strategy vectors
x−μ(t) of the rival players excluding the player μ, the subset K ⊂ L2(Ωl◦ ,l1 ,Rn)) is given

as K =
N
∏

μ=1
Xμ and X−μ =

N
∏

ν=1, (ν 
=μ)
Xν, where {Xμ}N

μ=1 is a family of nonempty, closed

and convex subsets with each Xμ ⊂ L2(Ωl◦ ,l1 ,Rnμ). With this notation, the entire strategy
vector x(t) ∈ K can be written as x(t) = (xμ(t), x−μ(t)) ∈ Xμ ×X−μ. For all x−μ(t) ∈ X−μ,
the strategy set of each player μ is a subset of Xμ, i.e., Kμ(x−μ(t)) ⊂ Xμ and for each
yμ(t) ∈ Xμ, K−1

μ ({yμ(t)}) ⊂ X−μ.
Using the above mathematical framework, it is not difficult to see that

Γ−1({y(t)}) =
N⋂

μ=1

[Xμ × K−1
μ ({yμ(t)})] ∀ y(t) ∈ K.

We assume that for each μ ∈ {1, 2, . . . , N}, Xμ is compactly open and for all yμ(t) ∈ Xμ,
the set K−1

μ ({yμ(t)}) is compactly open in X−μ. Therefore, Remark 3(b) and (c) yield that
Γ−1({y(t)}) is compactly open for all y(t) ∈ K. Moreover, we also assume that the set
A = {x(t) ∈ K : x(t) ∈ Γ(x(t))} is compactly closed.

Theorem 3. Let y(t) ∈ K be an arbitrary strategy vector, J(y(t)) =
(

∂ f μ

∂xμ (y(t))
)N

μ=1
, and for

each μ ∈ {1, 2, . . . , N} and a given y−μ(t), let the multi-time cost functional Fμ be convex on
the set K in the argument yμ(t). Assume that there exist a nonempty, closed and compact subset
D ⊂ K and ŷ(t) ∈ D such that

7
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N

∑
μ=1

∫
Ωl◦ ,l1

〈
∂ f μ

∂xμ (ŷ(t)), ŷμ(t)− xμ(t)
〉

dt < 0 ∀ x(t) ∈ K \ D with ŷ(t) ∈ Γ(x(t)). (6)

Then (MQVIP) has a solution.

Proof. First, we define two set-valued maps Γ1, Γ2 : K → 2K as follows: for each x(t) ∈
K, let

Γ1(x(t)) :=

{
y(t) ∈ K :

N

∑
μ=1

∫
Ωl◦ ,l1

〈
∂ f μ

∂xμ (y(t)), yμ(t)− xμ(t)
〉

dt < 0

}
,

Γ2(x(t)) :=

{
y(t) ∈ K :

N

∑
μ=1

∫
Ωl◦ ,l1

〈
∂ f μ

∂xμ (x(t)), yμ(t)− xμ(t)
〉

dt < 0

}
.

Since each multi-time cost functional Fμ is convex on the set K in the arguments of Xμ, we
have, for all x1(t) and x2(t) ∈ K,

∫
Ωl◦ ,l1

f μ(x1(t))dt−
∫

Ωl◦ ,l1

f μ(x2(t))dt ≥
∫

Ωl◦ ,l1

〈
∂ f μ

∂xμ (x2(t)), xμ
1 (t)− xμ

2 (t)
〉

dt. (7)

By interchanging the variables x1(t) and x2(t) in inequality (7), we get

∫
Ωl◦ ,l1

f μ(x2(t))dt−
∫

Ωl◦ ,l1

f μ(x1(t))dt ≥
∫

Ωl◦ ,l1

〈
∂ f μ

∂xμ (x1(t)), xμ
2 (t)− xμ

1 (t)
〉

dt. (8)

Adding inequalities (7) and (8), we obtain the inequality

∫
Ωl◦ ,l1

〈
∂ f μ

∂xμ (x1(t)), xμ
2 (t)− xμ

1 (t)
〉

dt ≤
∫

Ωl◦ ,l1

〈
∂ f μ

∂xμ (x2(t)), xμ
2 (t)− xμ

1 (t)
〉

dt,

which yields the following inequality:

N

∑
μ=1

∫
Ωl◦ ,l1

〈
∂ f μ

∂xμ (x1(t)), xμ
2 (t)− xμ

1 (t)
〉

dt ≤
N

∑
μ=1

∫
Ωl◦ ,l1

〈
∂ f μ

∂xμ (x2(t)), xμ
2 (t)− xμ

1 (t)
〉

dt. (9)

Inequality (9) implies that Γ1(x(t)) ⊂ Γ2(x(t)) for all x(t) ∈ K. Next, we define two
more set-valued maps S, T : K → 2K as follows:

S(x(t)) :=

{
Γ(x(t)) ∩ Γ1(x(t)), if x(t) ∈ A
Γ(x(t)), if x(t) ∈ K \ A

.

T(x(t)) :=

{
Γ(x(t)) ∩ Γ2(x(t)), if x(t) ∈ A
Γ(x(t)), if x(t) ∈ K \ A

.

Clearly, the point images of the set-valued maps Γ and Γ2, i.e., Γ(x(t)) and Γ2(x(t)),
are convex for all x(t) ∈ K. Therefore, the point images of the set-valued map T, i.e.,
T(x(t)), are also convex for all x(t) ∈ K. Moreover, S(x(t)) ⊂ T(x(t)) for all x(t) ∈ K.
Now, for all y(t) ∈ K, we have

8
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S−1({y(t)}) = {x(t) ∈ K : y(t) ∈ S(x(t))}
= {x(t) ∈ A : y(t) ∈ Γ(x(t)) ∩ Γ1(x(t))} ∪ {x(t) ∈ K \ A : y(t) ∈ Γ(x(t))}
= [A ∩ (Γ−1({y(t)}) ∩ Γ−1

1 ({y(t)}))] ∪ [K \ A ∩ Γ−1({y(t)})]
= [(A ∩ (Γ−1({y(t)}) ∩ Γ−1

1 ({y(t)}))) ∪ K \ A]

∩ [(A ∩ (Γ−1({y(t)}) ∩ Γ−1
1 ({y(t)}))) ∪ Γ−1({y(t)})]

= [K ∩ ((Γ−1({y(t)}) ∩ Γ−1
1 ({y(t)})) ∪ K \ A)]

∩ [(A ∪ Γ−1({y(t)})) ∩ (Γ−1({y(t)}) ∩ Γ−1
1 ({y(t)}))]

= [(Γ−1({y(t)}) ∩ Γ−1
1 ({y(t)})) ∪ K \ A] ∩ Γ−1({y(t)})

= (Γ−1({y(t)}) ∩ Γ−1
1 ({y(t)})) ∪ (K \ A ∩ Γ−1({y(t)})).

Furthermore, for each y(t) ∈ K, the complement of Γ−1
1 ({y(t)}) in K can be written as

[Γ−1
1 ({y(t)})]c =

{
x(t) ∈ K :

N

∑
μ=1

∫
Ωl◦ ,l1

〈
∂ f μ

∂xμ (y(t)), yμ(t)− xμ(t)
〉

dt ≥ 0

}
,

which is closed in K. Consequently, the set Γ−1
1 ({y(t)}) is open in K. Remark 3(a) implies

that Γ−1
1 ({y(t)}) is compactly open for all y(t) ∈ K. We also note that for all y(t) ∈ K, the

sets Γ−1({y(t)}) and K \ A are compactly open. Hence the set S−1({y(t)}) is now seen to
also be compactly open for each y(t) ∈ K. We now claim that there is a point x̂(t) ∈ A
such that Γ(x̂(t)) ∩ Γ1(x̂(t)) = ∅. Suppose on the contrary that for each x(t) ∈ A, the
set Γ(x(t)) ∩ Γ1(x(t)) 
= ∅. Since we already know that the set Γ(x(t)) is nonempty and
convex for each x(t) ∈ K, it follows that S(x(t)) 
= ∅ for each x(t) ∈ K. Our hypothesis
yields that there exist a nonempty, closed and compact subset D ⊂ K and a point ŷ(t) ∈ D
such that K \ D ⊂ S−1({ŷ(t)}). Thus, all the conditions of Theorem 1 are satisfied and so
we conclude that there exists a point z(t) ∈ K such that z(t) ∈ T(z(t)). The definitions of
the set A and the set-valued map T imply that {x(t) ∈ K : x(t) ∈ T(x(t))} ⊂ A. Hence
z(t) ∈ A, z(t) ∈ Γ(z(t)) ∩ Γ2(z(t)) and consequently, z(t) ∈ Γ2(z(t)). It follows that

N

∑
μ=1

∫
Ωl◦ ,l1

〈
∂ f μ

∂xμ (z(t)), zμ(t)− zμ(t)
〉

dt < 0,

which is impossible. The contradiction we have reached shows that there indeed exists a
point x̂(t) ∈ A such that Γ(x̂(t)) ∩ Γ1(x̂(t)) = ∅, as claimed. That is, x̂(t) ∈ Γ(x̂(t)) and

N

∑
μ=1

∫
Ωl◦ ,l1

〈
∂ f μ

∂xμ (y(t)), yμ(t)− x̂μ(t)
〉

dt ≥ 0 ∀ y(t) ∈ Γ(x̂(t)).

Using the convexity of both Kμ(x̂−μ(t)) and Γ(x̂(t)), we can rewrite the above inequality
as follows:

N

∑
μ=1

∫
Ωl◦ ,l1

〈
∂ f μ

∂xμ (x̂(t) + λ(y(t)− x̂(t))), yμ(t)− x̂μ(t)
〉

dt ≥ 0 ∀ y(t) ∈ Γ(x̂(t)) and λ ∈ [0, 1].

Since ∂ f μ

∂xμ (·) is hemicontinuous, by taking the limit as λ → 0+ in the above inequality,
we obtain

N

∑
μ=1

∫
Ωl◦ ,l1

〈
∂ f μ

∂xμ (x̂(t)), yμ(t)− x̂μ(t)
〉

dt ≥ 0 ∀ y(t) ∈ Γ(x̂(t)).

9
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Using our hypothesis, we can rewrite the above inequality as follows:

〈〈J(x̂(t)), y(t)− x̂(t)〉〉 ≥ 0 ∀ y(t) ∈ Γ(x̂(t)).

In other words, x̂(t) is a solution to (MQVIP).

5. Applications

5.1. Traffic Network Problem

Motivated by the network equilibrium problems studied by Nagurney et al. [36],
and Daniele [37], in this section we study in more detail our multi-time generalized Nash
equilibrium problem and demonstrate how this concept can apply to traffic network
problems. To this end, we assume that the traffic network is made of M nodes, which
represent the airports, railway stations, crossings, etc., and that the nodes are connected
by the set of directed links L. Furthermore, W represents the set of origin–destination
pairs while V represents the entire set of routes. Let r be a path consisting of a sequence
of links which connect an origin–destination pair of nodes. Let p be the number of paths
in the network. We assume that each route r ∈ V links exactly one origin–destination
pair. The set of all r ∈ V which link a given w ∈ W is denoted by V(w), where |W| = l
and p > l. Let x(t) be the entire traffic flow vector over the multi-time t ∈ Ωl◦ ,l1 and
be an element of L2(Ωl◦ ,l1 ,Rp

+). To emphasize the rth route flow vector in x(t), some-
times we write (xr(t), x−r(t)) in place of x(t). Bear in mind that this is still the vector
x(t) = (x1(t), x2(t), . . . , xr−1(t), xr(t), xr+1(t), . . . , xp(t)). Indeed, xr(t) ∈ L2(Ωl◦ ,l1 ,R+) is

the flow vector over the route r over the multi-time t ∈ Ωl◦ ,l1 and x−r(t) ∈ L2(Ωl◦ ,l1 ,Rp−1
+ )

denotes the flow vector of all the routes excluding the route r. We adhere to the restrictions
that every traffic flow vector x(t) satisfies the multi-time-dependent capacity constraints

η(t) ≤ x(t) ≤ θ(t), a.e. on Ωl◦ ,l1

and the traffic conservation law/demand requirements

φx(t) = ρ(t), a.e. on Ωl◦ ,l1 ,

where η(t), θ(t) ∈ L2(Ωl◦ ,l1 ,Rp
+) are given bounds with η(t) ≤ θ(t) and the function

ρ(t) ∈ L2(Ωl◦ ,l1 ,Rl
+) is the given demand. Here ρ(t) ≥ 0 and φ = φr,w is the pair-route

incidence matrix, the entries of which are 1 if route r links the pair w and 0 otherwise. We
also have

φη(t) ≤ ρ(t) ≤ φθ(t), a.e. on Ωl◦ ,l1 ,

which implies that the set of all feasible flows

K := {x(t) ∈ L2(Ωl◦ ,l1 ,Rp
+) : η(t) ≤ x(t) ≤ θ(t) and φx(t) = ρ(t), a.e. on Ωl◦ ,l1}

is not empty. For any given x−r(t), the nonempty, closed and convex feasible traffic flow
set of each route r is denoted by Kr(x−r(t)). This is a subset of L2(Ωl◦ ,l1 ,R+).

The multi-time cost functional of each route r, Hr : K → R, is defined by the multiple
integral

Hr(x(t)) =
∫

Ωl◦ ,l1

Cr(xr(s), x−r(s))ds,

where Cr(xr(s), x−r(s)) denotes the running cost function of the route r that depends on
both its own variable xr(s) (the flow in the route r) and x−r(s) (the flow in the other routes
except route r). It is assumed to be a real-valued continuously differentiable function. Our
aim is to compute the entire traffic flow vector x(t) ∈ K so as to minimize the cost of each
route r in the time period Ωl◦ ,l1 when the flow vectors of the other routes except that of the
route r, x−r(t), are given, i.e., to solve the following multi-time optimization problem:

10



Mathematics 2021, 9, 1658

min
xr(t)

∫
Ωl◦ ,l1

Cr(xr(t), x−r(t))dt

subject to xr(t) ∈ Kr(x−r(t)).
(10)

Evidently, an equilibrium of the multi-time optimization problem (10) is a multi-
time generalized Nash equilibrium in the sense of our (MGNEP). To present a realistic
demonstration of the traffic network model that can be reformulated as a multi-time
generalized Nash equilibrium problem (10), we consider a general traffic network structure,
displayed in Figure 1, for a courier service company which wishes to minimize the traffic
cost of routes for delivering packages at their destinations. The traffic network pattern of
Figure 1 comprises 13 nodes and 16 links. We assume that a branch of the courier service
company is situated at a node, say O, which must deliver the packages at the nodes P1 and
P2. Thus, we have two origin–destination pairs w1 = (O, P1) and w2 = (O, P2), which are
respectively connected by the following routes:

w1 :

⎧⎪⎨
⎪⎩

r1 = (O, a1) ∪ (a1, P1)

r2 = (O, a9) ∪ (a9, a10) ∪ (a10, P1)

r3 = (O, a4) ∪ (a4, a3) ∪ (a3, a2) ∪ (a2, a1) ∪ (a1, P1),

w2 :

⎧⎪⎨
⎪⎩

r4 = (O, a9) ∪ (a9, a8) ∪ (a8, a7) ∪ (a7, a6) ∪ (a6, a5) ∪ (a5, P2)

r5 = (O, a6) ∪ (a6, a5) ∪ (a5, P2)

r6 = (O, a4) ∪ (a4, P2).

We have explicitly p = 6 paths in the given traffic network. The courier company must
find the entire traffic flow vector to minimize the cost of each route {r1, r2, r3, r4, r5, r6}.
This can be calculated by solving the multi-time optimization problem (10).

Figure 1. Traffic network pattern with 6 routes, i.e., p = 6.

5.2. River Basin Pollution Problem

In this subsection we show how our multi-time generalized Nash equilibrium prob-
lem can be applied to solving the river basin pollution problem [38]. For studies of the
river basin pollution problem, we refer the interested reader to [39–41]. We use the term
time t ∈ Ωl◦ ,l1 as defined in Section 2. We assume that n industrial factories (paper mills,
chemical factories, pharmaceutical manufacturing companies, etc.) are located along a
river. In the sequel we call them industrial agents. Presently, it is a very common scenario
that industrial factories often dump waste garbage, such as dirty water, used chemicals
and oils, sewage, and cafeteria waste, directly into a community water source (river, lake
or stream). Waste dumped contains several contaminants which mix and create pollution

11
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concentration along the river. We assume that m basin authorities (monitoring stations)
are located along the river. Each basin authority is empowered to set a maximum pol-
lutant concentration level at time t which we denote by χs(t) ∈ L2(Ωl◦ ,l1 ,R+) where
s ∈ {1, 2, . . . , m}. Furthermore, we let e f (t) ∈ L2(Ωl◦ ,l1 ,R+) be the pollutant emission
coefficient for the industrial agent f ∈ {1, 2, . . . , n}. Let x f (t) ∈ L2(Ωl◦ ,l1 ,R+) be the
chosen emitted pollutant concentration level at time t by the industrial agent f and let
x− f (t) ∈ L2(Ωl◦ ,l1 ,Rn−1

+ ) be the chosen emitted pollutant concentration level at time t
by all the industrial agents except the agent f . Furthermore, let x(t) ∈ L2(Ωl◦ ,l1 ,Rn

+) be
the chosen emitted pollutant concentration level at time t by all the industrial agents.
To put the chosen emitted pollutant concentration level x f (t) of the industrial agent f
in focus, we write x(t) as x(t) = (x f (t), x− f (t)). Please note that x(t) is still the vector
x(t) = (x1(t), x2(t), . . . , x f−1(t), x f (t), x f+1(t), . . . , xn(t)). Waste materials, dumped by
the industrial agents into the river, spread, decay and then finally reach the basin author-
ities. Thus, the amount of pollution received by the basin authority s ∈ {1, 2, . . . , m} is

n
∑

f=1
δ

f
s (t)e f (t)x f (t), where δ

f
s (t) is the decay-and-transportation coefficient from the agent

f to the monitoring station s. The basin authorities impose constraints on the pollution, so
that industrial agents control their pollutant emission into the river. Thus, the pollution
constraint set imposed by the authority s is given by

n

∑
f=1

δ
f
s (t)e f (t)x f (t) ≤ χs(t) for s ∈ {1, 2, . . . , m} and a.e. on Ωl◦ ,l1 .

The nonempty set of entire feasible pollution concentration levels is given by

K =

{
x(t) ∈ L2(Ωl◦ ,l1 ,Rn

+) :
n

∑
f=1

δ
f
s (t)e f (t)x f (t) ≤ χs(t) for s ∈ {1, 2, . . . , m}

and a.e. on Ωl◦ ,l1

}
.

We bear in the mind that industrial agents are dependent on each other, at least
because of the finiteness of the amount of dumping pollutants into the river. There-
fore, for any given x− f (t), the nonempty, closed and convex feasible pollution concen-
tration level set of each industrial agent f is denoted by K f (x− f (t)). This is a subset of
L2(Ωl◦ ,l1 ,R+). Each agent wishes to maximize its profit in the time period t, where the

profit is defined by the difference between the revenue [p1 − p2
n
∑

f=1
x f (t)]x f (t) and the cost

[a f (t) + b f (t)x f (t)]x f (t). Here p1 and p2 are economic constants which follow the inverse
demand law and a f (t), b f (t) ∈ L2(Ωl◦ ,l1 ,R+) are the cost coefficient functions. Now, for a
given x− f (t), the aim of the industrial agent f is to choose an emitted pollutant concentra-
tion level x f (t) such that it solves the following multi-time maximization problem:

max
x f (t)

∫
Ωl◦ ,l1

[{(
p1 − p2

n

∑
f=1

x f (t)
)

x f (t)
}
− {(a f (t) + b f (t)x f (t))x f (t)}

]
dt,

subject to x f (t) ∈ K f (x− f (t)).

An equilibrium of the above defined multi-time maximization problem is a multi-time
generalized Nash equilibrium in the sense of our (MGNEP), where

f μ(xμ(t), x−μ(t)) =
[
{(aμ(t) + bμ(t)xμ(t))xμ(t)} −

{(
p1 − p2

n

∑
μ=1

xμ(t)
)

xμ(t)
}]

.

12
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6. The Multi-Time Generalized Nash Equilibrium Problem as a Projected
Dynamical System

In this section, we investigate our multi-time generalized Nash equilibrium problem
via a projected dynamical system. We also propose a method for finding the equilib-
ria of our multi-time generalized Nash equilibrium problem. Our work is motivated
by [12,20,42]. We also refer the interested reader to the more recent work [29], which deals
with a projected dynamical system pertaining to a single-valued map in the context of a
multi-time variational inequality problem, while the projected dynamical system of this
section pertains to a set-valued map in the context of a multi-time quasi-variational inequal-
ity problem. More precisely, in the present section we consider the following projected
dynamical system (PDS) pertaining to the set-valued map Γ, where x(·) ∈ Γ(x(·)):

dx(·, τ)

dτ
= ΠΓ(x(·,τ))(x(·, τ),−J(x(·, τ))),

x(·, 0) = x◦(·) ∈ Γ(x(·)),
(11)

where J : L2(Ωl◦ ,l1 ,Rn)→ L2(Ωl◦ ,l1 ,Rn) is a Lipschitz continuous vector field and ΠΓ(x(·)) :
L2(Ωl◦ ,l1 ,Rn)× L2(Ωl◦ ,l1 ,Rn)→ L2(Ωl◦ ,l1 ,Rn) is the operator defined by

ΠΓ(x(·))(x(·), v(·)) := lim
δ→0+

projΓ(x(·))(x(·) + δv(·))− x(·)
δ

,

where x(·) ∈ K and v(·) ∈ L2(Ωl◦ ,l1 ,Rn). The characteristics of the times t and τ in (PDS)
are different. Indeed, for all t ∈ Ωl◦ ,l1 , a solution of (MQVIP) specifies the static states of the
underlying system and the static states defined by one or more equilibrium curves when
t varies over the set Ωl◦ ,l1 . On the other hand, τ represents the dynamics of the system
over the interval [0, ∞) until it reaches one of the equilibria on the curves. It is evident that
the solutions of (PDS) lie in the class of absolutely continuous functions with respect to τ,
which take [0, ∞) into Γ(x(·)). Moreover, to avoid any possible confusion between t and
τ, we represent elements of the sets L2(Ωl◦ ,l1 ,Rn) at fixed moments t ∈ Ωl◦ ,l1 by x(·). To
describe the connection of our (MGNEP) with (PDS), we need the following definition,
which is inspired by [42].

Definition 9. y(·) ∈ K is called a critical point of (PDS) if y(·) ∈ Γ(y(·)) and

ΠΓ(y(·))(y(·),−J(y(·))) = 0.

Lemma 1 ([43], Lemma 1.2.8). For each i = {1, 2, . . . , p}, let Hi be a Hilbert space and let
Ci ⊂ Hi be closed and convex, Set C = C1 × C2 × . . .× Cp ⊂ H1 × H2 × . . .× Hp = H and
let x = (x1, x2, . . . , xp) ∈ H. Let projCi denote the metric projection onto Ci. Then the metric
projection projC(x) is given by

projC(x) = (projC1
(x1), projC2

(x2), . . . , projCp
(xp)).

The following propositions concerning each player μ ∈ {1, 2, . . . , N} and the strategies
y−μ(·) ∈ L2(Ωl◦ ,l1 ,Rn−nμ) of the rival players except player μ are direct consequences of
Proposition 2.1 and 2.2 in [42].

Proposition 1. For all yμ(·) ∈ Kμ(y−μ(·)) and vμ(·) ∈ L2(Ωl◦ ,l1 ,Rnμ),
ΠKμ(y−μ(·))(yμ(·), vμ(·)) exists and ΠKμ(y−μ(·))(yμ(·), vμ(·)) = projTKμ(y−μ(·))(y

μ(·))(vμ(·)).

Proposition 2. For each yμ(·) ∈ Kμ(y−μ(·)), there exists nμ(·) ∈ NKμ(y−μ(·))(yμ(·)) such that
ΠKμ(y−μ(·))(yμ(·), vμ(·)) = vμ(·)− nμ(·) for all vμ(·) ∈ L2(Ωl◦ ,l1 ,Rnμ).

13
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The following theorem establishes a strong connection between (MGNEP) and (PDS).

Theorem 4. Assume that J(x(·)) =
(

∂ f μ

∂xμ (x(·))
)N

μ=1
for any x(·) ∈ K, and that for each

μ ∈ {1, 2, . . . , N} and x−μ(·), the multi-time cost functional Fμ is convex on K in the argument
xμ(·). Then y(·) ∈ K is a multi-time generalized Nash equilibrium if and only if it is a critical
point of (PDS).

Proof. Suppose that y(·) ∈ K is a multi-time generalized Nash equilibrium. Then it follows
from Theorem 2 that for each μ ∈ {1, 2, . . . , N}, we have

∫
Ωl◦ ,l1

〈
∂ f μ

∂xμ (y(·)), xμ(·)− yμ(·)
〉

dt ≥ 0 ∀ xμ(·) ∈ Kμ(y−μ(·)).

The above inequality can be rewritten as〈〈
∂ f μ

∂xμ (y(·)), xμ(·)− yμ(·)
〉〉

≥ 0 ∀ xμ(·) ∈ Kμ(y−μ(·)),

which leads to the following inclusion:

−∂ f μ

∂xμ (y(·)) ∈ NKμ(y−μ(·))(yμ(·)).

Proposition 2 now yields

ΠKμ(y−μ(·))
(

yμ(·),−∂ f μ

∂xμ (y(·))
)
= 0. (12)

Since Kμ(y−μ(·)) is convex for each μ ∈ {1, 2, . . . , N}, Lemma 1 implies that

ΠΓ(y(·))(y(·),−J(y(·))) = 0. (13)

Therefore y(·) is indeed a critical point of (PDS), as asserted.
Conversely, assume that y(·) ∈ K is a critical point of (PDS). Then y(·) ∈ Γ(y(·)) and

inequality (13) holds. Consequently, (12) holds too. Proposition 1 implies that

projTKμ(y−μ(·))(y
μ(·))

(
−∂ f μ

∂xμ (y(·))
)
= 0.

In view of Remark 2, the above expression leads to〈〈
−∂ f μ

∂xμ (y(·)), zμ(·)
〉〉

≤ 0 ∀ zμ(·) ∈ TKμ(y−μ(·))(yμ(·)),

which in turn implies that

−∂ f μ

∂xμ (y(·)) ∈ NKμ(y−μ(·))(yμ(·)),

which yields that y(·) is a solution of (MQVIP) with J(y(·)) =
(

∂ f μ

∂xμ (y(·))
)N

μ=1
. Thus, the

first part of the proof of Theorem 2 implies that y(·) is a multi-time generalized Nash
equilibrium.

Remark 5. In view of the proof techniques of Theorem 4 and the fact that the normal cone of
a product set is equal to the product of the normal cones ([44], Proposition 6.41), we can write

14
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(PDS) (11) as a concatenation of the following N dynamical systems (PDS)μ for J(x(·, τ)) =(
∂ f μ

∂xμ (x(·, τ))
)N

μ=1
:

dxμ(·, τ)

dτ
= ΠKμ(x−μ(·,τ))

(
xμ(·, τ),−∂ f μ

∂xμ (x(·, τ))

)
,

xμ(·, 0) = xμ
◦ (·) ∈ Kμ(x−μ(·)).

Numerical Illustrations

In this subsection we turn our attention to demonstrating a method for solving
(MGNEP) by taking advantage of (PDS) (11). Theorem 4 tells us that any point on a
curve of equilibria in the set K is a critical point of (PDS) and vice versa. Please note that the
existence of equilibria has already been established. Next, we take the following discretiza-
tion of Ωl◦ ,l1 : (l1◦, l2◦, . . . , lm◦ ) = (t1◦, t2◦, . . . , tm◦ ) < (t1

1, t2
1, . . . , tm

1 ) < . . . < (t1
i , t2

i , . . . , tm
i ) <

. . . < (t1
n, t2

n, . . . , tm
n ) = (l1

1, l2
1, . . . , lm

1 ). Then for each ti = (t1
i , t2

i , . . . , tm
i ), i = {0, 1, . . . , n},

we obtain a sequence of (PDS) on the distinct, nonempty, finite-dimensional and convex sets
Kti . After computing all the critical points of each (PDS), we obtain a sequence of critical
points which by interpolation yields the curves of equilibria. To apply this procedure in
practice, we consider a Nguyen traffic network [31] which comprises 13 nodes, 19 links,
four origin–destination pairs and 24 paths. See Figure 2. Here we use the terminology of
Section 5. Every origin–destination pair of our Nguyen traffic network is connected by six
paths. Let m = 2 and Ωl◦ ,l1 = Ω0,4 = [0, 4]2. The set of feasible flows is given by

K =

{
x(t) ∈ L2(Ω0,4,R24

+ ) : (0, . . . , 0) ≤ (xr(t))24
r=1 ≤ (t1 + t2 + r)24

r=1

and
6

∑
r=1

xr(t) = 6t1 + 6t2 + 21,
12

∑
r=7

xr(t) = 6t1 + 6t2 + 57,

18

∑
r=13

xr(t) = 6t1 + 6t2 + 93,
24

∑
r=19

xr(t) = 6t1 + 6t2 + 129 a.e. on Ω0,4

}
.

To simplify our calculations, we assume the following special structure of the feasible
traffic flow set of each route r ∈ {1, 2, . . . , 24}. This is motivated by Rosen [5].

Kr(x−r(t)) = {x(t) ∈ L2(Ω0,4,R+) : (xr(t), x−r(t)) ∈ K}

and the multi-time cost functional of each route r ∈ {1, 2, . . . , 24} is defined by

Hr(x(t)) =
∫

Ω0,4

(xr(s) + (xr(s))2)ds,

where x(t) = (x1(t), x2(t), . . . , xr−1(t), xr(t), xr+1(t), . . . , x24(t)). It can easily be proven
that for each r ∈ {1, 2, . . . , 24}, the multi-time cost functional Hr(x(t)) is convex in the
argument xr(t) and that there exists a nonempty, closed and compact subset D ⊂ K which
is given by

D =

{
x(t) ∈ L2(Ω0,4,R24

+ ) : (0, . . . , 0) ≤ (xr(t))24
r=1 ≤

(
t1 + t2 +

r
2

)24

r=1

and
6

∑
r=1

xr(t) = 6t1 + 6t2 + 21,
12

∑
r=7

xr(t) = 6t1 + 6t2 + 57,

18

∑
r=13

xr(t) = 6t1 + 6t2 + 93,
24

∑
r=19

xr(t) = 6t1 + 6t2 + 129 a.e. on Ω0,4

}

15



Mathematics 2021, 9, 1658

such that for ŷ(t) ∈ D, inequality (6) is satisfied. Thus, all the hypotheses of Theorem 3 are
fulfilled. Therefore, for J(y(t)) = (1 + 2yr(t))24

r=1, (MDVIP) has a solution. Consequently,
by Theorem 2, (MGNEP) has a solution too.

Selecting points ti ∈
{(

k
8 , k

8

)
: k ∈ {0, 1, 2, . . . , 32}

}
, we obtain a sequence of (PDS)

defined on the sets

Kti =

{
x(ti) ∈ L2(Ω0,4,R24

+ ) : (0, . . . , 0) ≤ (xr(ti))
24
r=1 ≤ (t1

i + t2
i + r)24

r=1

and
6

∑
r=1

xr(ti) = 6t1
i + 6t2

i + 21,
12

∑
r=7

xr(ti) = 6t1
i + 6t2

i + 57,

18

∑
r=13

xr(ti) = 6t1
i + 6t2

i + 93,
24

∑
r=19

xr(ti) = 6t1
i + 6t2

i + 129 a.e. on Ω0,4

}
.

We have
Kr(x−r(ti)) = {x(ti) ∈ L2(Ω0,4,R+) : (xr(ti), x−r(ti)) ∈ Kti},

and Γ(y(ti)) =
24

∏
r=1

Kr(y−r(ti)).

For calculating the equilibrium, we consider the following system at the points ti: to
find the point y(ti) = (y1(ti), y2(ti), . . . , yr−1(ti), yr(ti), yr+1(ti), . . . , y24(ti)) ∈ Kti such that

−(1 + 2yr(ti)) ∈ NKr(y−r(ti))
(yr(ti)).

Figure 2. The Nguyen traffic network (13 nodes, 19 links, 4 origin–destination pairs).

After a simple calculation, we find the equilibrium points which are given in Tables 1–4.
We then interpolate the points of these tables and finally obtain the curves of equilibria.
They are displayed in Figure 3.
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Table 1. Numerical Results.

ti = {t1
i , t2

i } y1(ti) y2(ti) y3(ti) y4(ti) y5(ti) y6(ti)

{0, 0} 1 2 3 4 5 6

{ 1
8 , 1

8} 1.25 2.25 3.25 4.25 5.25 6.25

{ 1
4 , 1

4} 1.5 2.5 3.5 4.5 5.5 6.5

{ 3
8 , 3

8} 1.75 2.75 3.75 4.75 5.75 6.75

{ 1
2 , 1

2} 2 3 4 5 6 7

{ 5
8 , 5

8} 2.25 3.25 4.25 5.25 6.25 7.25

{ 3
4 , 3

4} 2.5 3.5 4.5 5.5 6.5 7.5

{ 7
8 , 7

8} 2.75 3.75 4.75 5.75 6.75 7.75

{1, 1} 3 4 5 6 7 8

{ 9
8 , 9

8} 3.25 4.25 5.25 6.25 7.25 8.25

{ 5
4 , 5

4} 3.5 4.5 5.5 6.5 7.5 8.5

{ 11
8 , 11

8 } 3.75 4.75 5.75 6.75 7.75 8.75

{ 3
2 , 3

2} 4 5 6 7 8 9

{ 13
8 , 13

8 } 4.25 5.25 6.25 7.25 8.25 9.25

{ 7
4 , 7

4} 4.5 5.5 6.5 7.5 8.5 9.5

{ 15
8 , 15

8 } 4.75 5.75 6.75 7.75 8.75 9.75

{2, 2} 5 6 7 8 9 10

{ 17
8 , 17

8 } 5.25 6.25 7.25 8.25 9.25 10.25

{ 9
4 , 9

4} 5.5 6.5 7.5 8.5 9.5 10.5

{ 19
8 , 19

8 } 5.75 6.75 7.75 8.75 9.75 10.75

{ 5
2 , 5

2} 6 7 8 9 10 11

{ 21
8 , 21

8 } 6.25 7.25 8.25 9.25 10.25 11.25

{ 11
4 , 11

4 } 6.5 7.5 8.5 9.5 10.5 11.5

{ 23
8 , 23

8 } 6.75 7.75 8.75 9.75 10.75 11.75

{3, 3} 7 8 9 10 11 12

{ 25
8 , 25

8 } 7.25 8.25 9.25 10.25 11.25 12.25

{ 13
4 , 13

4 } 7.5 8.5 9.5 10.5 11.5 12.5

{ 27
8 , 27

8 } 7.75 8.75 9.75 10.75 11.75 12.75

{ 7
2 , 7

2} 8 9 10 11 12 13

{ 29
8 , 29

8 } 8.25 9.25 10.25 11.25 12.25 13.25

{ 15
4 , 15

4 } 8.5 9.5 10.5 11.5 12.5 13.5

{ 31
8 , 31

8 } 8.75 9.75 10.75 11.75 12.75 13.75

{4, 4} 9 10 11 12 13 14
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Table 2. Numerical Results.

ti = {t1
i , t2

i } y7(ti) y8(ti) y9(ti) y10(ti) y11(ti) y12(ti)

{0, 0} 7 8 9 10 11 12

{ 1
8 , 1

8} 7.25 8.25 9.25 10.25 11.25 12.25

{ 1
4 , 1

4} 7.5 8.5 9.5 10.5 11.5 12.5

{ 3
8 , 3

8} 7.75 8.75 9.75 10.75 11.75 12.75

{ 1
2 , 1

2} 8 9 10 11 12 13

{ 5
8 , 5

8} 8.25 9.25 10.25 11.25 12.25 13.25

{ 3
4 , 3

4} 8.5 9.5 10.5 11.5 12.5 13.5

{ 7
8 , 7

8} 8.75 9.75 10.75 11.75 12.75 13.75

{1, 1} 9 10 11 12 13 14

{ 9
8 , 9

8} 9.25 10.25 11.25 12.25 13.25 14.25

{ 5
4 , 5

4} 9.5 10.5 11.5 12.5 13.5 14.5

{ 11
8 , 11

8 } 9.75 10.75 11.75 12.75 13.75 14.75

{ 3
2 , 3

2} 10 11 12 13 14 15

{ 13
8 , 13

8 } 10.25 11.25 12.25 13.25 14.25 15.25

{ 7
4 , 7

4} 10.5 11.5 12.5 13.5 14.5 15.5

{ 15
8 , 15

8 } 10.75 11.75 12.75 13.75 14.75 15.75

{2, 2} 11 12 13 14 15 16

{ 17
8 , 17

8 } 11.25 12.25 13.25 14.25 15.25 16.25

{ 9
4 , 9

4} 11.5 12.5 13.5 14.5 15.5 16.5

{ 19
8 , 19

8 } 11.75 12.75 13.75 14.75 15.75 16.75

{ 5
2 , 5

2} 12 13 14 15 16 17

{ 21
8 , 21

8 } 12.25 13.25 14.25 15.25 16.25 17.25

{ 11
4 , 11

4 } 12.5 13.5 14.5 15.5 16.5 17.5

{ 23
8 , 23

8 } 12.75 13.75 14.75 15.75 16.75 17.75

{3, 3} 13 14 15 16 17 18

{ 25
8 , 25

8 } 13.25 14.25 15.25 16.25 17.25 18.25

{ 13
4 , 13

4 } 13.5 14.5 15.5 16.5 17.5 18.5

{ 27
8 , 27

8 } 13.75 14.75 15.75 16.75 17.75 18.75

{ 7
2 , 7

2} 14 15 16 17 18 19

{ 29
8 , 29

8 } 14.25 15.25 16.25 17.25 18.25 19.25

{ 15
4 , 15

4 } 14.5 15.5 16.5 17.5 18.5 19.5

{ 31
8 , 31

8 } 14.75 15.75 16.75 17.75 18.75 19.75

{4, 4} 15 16 17 18 19 20
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Table 3. Numerical Results.

ti = {t1
i , t2

i } y13(ti) y14(ti) y15(ti) y16(ti) y17(ti) y18(ti)

{0, 0} 13 14 15 16 17 18

{ 1
8 , 1

8} 13.25 14.25 15.25 16.25 17.25 18.25

{ 1
4 , 1

4} 13.5 14.5 15.5 16.5 17.5 18.5

{ 3
8 , 3

8} 13.75 14.75 15.75 16.75 17.75 18.75

{ 1
2 , 1

2} 14 15 16 17 18 19

{ 5
8 , 5

8} 14.25 15.25 16.25 17.25 18.25 19.25

{ 3
4 , 3

4} 14.5 15.5 16.5 17.5 18.5 19.5

{ 7
8 , 7

8} 14.75 15.75 16.75 17.75 18.75 19.75

{1, 1} 15 16 17 18 19 20

{ 9
8 , 9

8} 15.25 16.25 17.25 18.25 19.25 20.25

{ 5
4 , 5

4} 15.5 16.5 17.5 18.5 19.5 20.5

{ 11
8 , 11

8 } 15.75 16.75 17.75 18.75 19.75 20.75

{ 3
2 , 3

2} 16 17 18 19 20 21

{ 13
8 , 13

8 } 16.25 17.25 18.25 19.25 20.25 21.25

{ 7
4 , 7

4} 16.5 17.5 18.5 19.5 20.5 21.5

{ 15
8 , 15

8 } 16.75 17.75 18.75 19.75 20.75 21.75

{2, 2} 17 18 19 20 21 22

{ 17
8 , 17

8 } 17.25 18.25 19.25 20.25 21.25 22.25

{ 9
4 , 9

4} 17.5 18.5 19.5 20.5 21.5 22.5

{ 19
8 , 19

8 } 17.75 18.75 19.75 20.75 21.75 22.75

{ 5
2 , 5

2} 18 19 20 21 22 23

{ 21
8 , 21

8 } 18.25 19.25 20.25 21.25 22.25 23.25

{ 11
4 , 11

4 } 18.5 19.5 20.5 21.5 22.5 23.5

{ 23
8 , 23

8 } 18.75 19.75 20.75 21.75 22.75 23.75

{3, 3} 19 20 21 22 23 24

{ 25
8 , 25

8 } 19.25 20.25 21.25 22.25 23.25 24.25

{ 13
4 , 13

4 } 19.5 20.5 21.5 22.5 23.5 24.5

{ 27
8 , 27

8 } 19.75 20.75 21.75 22.75 23.75 24.75

{ 7
2 , 7

2} 20 21 22 23 24 25

{ 29
8 , 29

8 } 20.25 21.25 22.25 23.25 24.25 25.25

{ 15
4 , 15

4 } 20.5 21.5 22.5 23.5 24.5 25.5

{ 31
8 , 31

8 } 20.75 21.75 22.75 23.75 24.75 25.75

{4, 4} 21 22 23 24 25 26
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Table 4. Numerical Results.

ti = {t1
i , t2

i } y19(ti) y20(ti) y21(ti) y22(ti) y23(ti) y24(ti)

{0, 0} 19 20 21 22 23 24

{ 1
8 , 1

8} 19.25 20.25 21.25 22.25 23.25 24.25

{ 1
4 , 1

4} 19.5 20.5 21.5 22.5 23.5 24.5

{ 3
8 , 3

8} 19.75 20.75 21.75 22.75 23.75 24.75

{ 1
2 , 1

2} 20 21 22 23 24 25

{ 5
8 , 5

8} 20.25 21.25 22.25 23.25 24.25 25.25

{ 3
4 , 3

4} 20.5 21.5 22.5 23.5 24.5 25.5

{ 7
8 , 7

8} 20.75 21.75 22.75 23.75 24.75 25.75

{1, 1} 21 22 23 24 25 26

{ 9
8 , 9

8} 21.25 22.25 23.25 24.25 25.25 26.25

{ 5
4 , 5

4} 21.5 22.5 23.5 24.5 25.5 26.5

{ 11
8 , 11

8 } 21.75 22.75 23.75 24.75 25.75 26.75

{ 3
2 , 3

2} 22 23 24 25 26 27

{ 13
8 , 13

8 } 22.25 23.25 24.25 25.25 26.25 27.25

{ 7
4 , 7

4} 22.5 23.5 24.5 25.5 26.5 27.5

{ 15
8 , 15

8 } 22.75 23.75 24.75 25.75 26.75 27.75

{2, 2} 23 24 25 26 27 28

{ 17
8 , 17

8 } 23.25 24.25 25.25 26.25 27.25 28.25

{ 9
4 , 9

4} 23.5 24.5 25.5 26.5 27.5 28.5

{ 19
8 , 19

8 } 23.75 24.75 25.75 26.75 27.75 28.75

{ 5
2 , 5

2} 24 25 26 27 28 29

{ 21
8 , 21

8 } 24.25 25.25 26.25 27.25 28.25 29.25

{ 11
4 , 11

4 } 24.5 25.5 26.5 27.5 28.5 29.5

{ 23
8 , 23

8 } 24.75 25.75 26.75 27.75 28.75 29.75

{3, 3} 25 26 27 28 29 30

{ 25
8 , 25

8 } 25.25 26.25 27.25 28.25 29.25 30.25

{ 13
4 , 13

4 } 25.5 26.5 27.5 28.5 29.5 30.5

{ 27
8 , 27

8 } 25.75 26.75 27.75 28.75 29.75 30.75

{ 7
2 , 7

2} 26 27 28 29 30 31

{ 29
8 , 29

8 } 26.25 27.25 28.25 29.25 30.25 31.25

{ 15
4 , 15

4 } 26.5 27.5 28.5 29.5 30.5 31.5

{ 31
8 , 31

8 } 26.75 27.75 28.75 29.75 30.75 31.75

{4, 4} 27 28 29 30 31 32
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Figure 3. Nguyen traffic network pattern with 24 routes, i.e., p = 24.

7. Conclusions and Further Developments

This paper is a contribution to the field of noncooperative games. Using a multi-
dimensional approach to time, we have first formulated a multi-time generalized Nash
equilibrium problem and a multi-time quasi-variational inequality problem, and then we
have established an equivalence between these two problems. Next, we have proved the ex-
istence of an equilibrium. As applications of our multi-time generalized Nash equilibrium
problem, we have formulated a traffic network model for a courier service company with
the aim of minimizing the traffic cost of routes and a river basin pollution problem in the
terms of such problems. We have also provided a method for finding equilibria using pro-
jected dynamical system theory and have solved the well-known Nguyen traffic network
problem by applying our method to it. Indeed, since the decision maker (the company)
in this problem aims to minimize the total delivery cost, an optimization reformulation is
perhaps more natural than a generalized Nash equilibrium problem (10). Nevertheless,
it can be noted that both the feasible traffic flow set and the cost function of each route
also depend on the traffic flow of other routes in the generalized Nash equilibrium model
(10), but this scenario is not present in an optimization model. In essence, the outcomes of
our generalized Nash equilibrium model (10) provide a new approach to solving traffic
network problems. We also intend to develop more practical theories and experiments to
ascertain that generalized Nash equilibrium models are more efficient than optimization
models when applied to traffic network problems. Moreover, we also intend to further
explore certain aspects of the river basin pollution problem.
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Abstract: Heavy-haul railway transport is a critical mode of regional bulk cargo transport. It
dramatically improves the freight transport capacity of railway lines by combining several unit trains
into one combined train. In order to improve the efficiency of the heavy-haul transport system and
reduce the transportation cost, a critical problem involves arranging the combination scheme in the
combination station (CBS) and scheduling the train timetable along the trains’ journey. With this
consideration, this paper establishes two integer programming models in stages involving the train
service plan problem (TSPP) model and train timetabling problem (TTP) model. The TSPP model
aims to obtain a train service plan according to the freight demands by minimizing the operation
cost. Based on the train service plan, the TTP model is to simultaneously schedule the combination
scheme and train timetable, considering the utilization optimal for the CBS. Then, an effective hybrid
genetic algorithm (HGA) is designed to solve the model and obtain the combination scheme and train
timetable. Finally, some experiments are implemented to illustrate the feasibility of the proposed
approaches and demonstrate the effectiveness of the HGA.

Keywords: freight transportation; heavy-haul railway; combination scheme; train timetable; genetic
algorithm

1. Introduction

1.1. Background

Heavy-haul railways have been the backbone of the coal transportation system be-
cause of their high capacity [1] and high efficiency for a long time. With the continuous
growth of freight volume, the number of trains in the heavy-haul railway system keeps
increasing, which brings great difficulties to the transportation plans’ scheduling and
operation management in both stations and trunk lines. Therefore, one of the emergency
issues that railway operators are concerned about is how to schedule transportation plans
to reduce operating costs while ensuring transportation demand.

After North American railways took the lead in adopting heavy-haul railway trans-
portation in the 1950s, this transportation mode quickly adapted to the needs of bulk cargo
transport such as for coal, ore, etc., and developed rapidly in the world. The United States,
Canada, Russia, Brazil, China, South Africa, Australia, Sweden, and more than ten other
countries have carried out heavy-haul railway transportation. The heavy-haul railway
transportation mode dramatically improves the freight transport capacity of railway lines
by combining several unit trains into one combined train. Taking China as an example, the
supply and demand for coal are extremely uneven geographically. The eastern region of
China has been economically developed and its industrial production has a great need for
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coal resources. However, coal resources are mainly distributed in the western region [2].
Under this particular distribution pattern of natural resources, developing a heavy-haul
railway can effectively guarantee coal supply and transportation.

With the rapid growth of the demand for heavy-haul transportation, railway operators
have proposed a series of measures to guarantee the transport capacity of the heavy-haul
railway, including increasing the load of combined trains, running different types of
combined trains, and reducing the headway of adjacent trains. Under the condition that
railway infrastructure cannot be revolutionarily upgraded, the flexible organization of
several types of combined trains is one of the most effective ways for railway operators to
satisfy the freight demand at a lower cost. From a transportation system-wide perspective, a
reasonable heavy-haul railway transportation plan should meet the transportation demand,
reduce the station operation workload, and reduce the operation cost.

A complete heavy-haul railway transportation plan consists of several sub-plans. It
includes the train service plan, train combination scheme, train timetable, locomotive
circulation scheme, empty train return scheme, decomposition scheme, etc. The heavy-haul
railway operators are involved in various steps of the decision-making process to obtain a
complete heavy-haul railway transportation plan. Six main stages in the decision-making
process of the heavy-haul railway transportation plan are listed below.

(1) Collect the transport demand. The railway operators collect the buyers’ transport
requirements, including the number and the destination of the required bulk goods.

(2) Schedule the train service plan. Determine the number and type of heavy-haul
trains running between each station pair under the given unloading station requirements
and loading station capacity conditions.

(3) Schedule the train combination scheme. In a heavy-haul railway system, the unit
trains must be combined at a combination station (CBS) to run towards the unloading
stations. Therefore, a detailed combination scheme should be arranged for the unit trains
in the CBS.

(4) Schedule the train timetable. Based on the train combination scheme, determine all
trains’ arrival and departure times at each station.

(5) Schedule the locomotive circulation scheme and train maintenance scheme. Heavy-
haul trains generally require multi-locomotive traction. Set up the trains’ locomotive
circulation and train maintenance schemes according to the preset locomotive routing and
maintenance procedures.

(6) Schedule the empty train return scheme and the decomposition scheme. After the
combined trains’ unloading at the unloading stations, the empty trains must return to the
CBS for decomposition operations and return to the loading stations.

This paper focuses on developing a joint scheduling approach to schedule the (2)–(4)
stages listed above. The decision-making process of the (2)–(4) stages is a complex process
guided by transport demand. Figure 1 illustrates the relations between the stages in
the decision-making process. It starts by collecting the loading capacity of each loading
station and the requests for each unloading station’s demand. Then, heavy-haul railway
operators need to generate executable combination schemes and train timetables based
on the collected information according to the actual situation of the heavy-haul railway.
The decision-making process at these stages needs to comprehensively consider all kinds
of information of the heavy-haul railway transportation system and reflect it into the
transportation plan.
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Figure 1. The relations between stages in the decision-making process of the heavy-haul railway
transportation plan.

1.2. Literature Review

In the early stage, heavy-haul transportation was mainly carried out to relieve the tight
transportation capacity on busy trunk lines. Thus, the research focused mainly on freight
transportation organization from a macro perspective. Fan [3] took the selectivity of the
traffic flow path, the line capacity, and the unloading area of the heavy-haul railway into
the optimization process and constructed an optional optimization model for the loading
area. Yang [4] considered the logical matching relationship for the weight, speed, and
density of heavy-haul railways to be a critical factor in freight railways and the matching
relations of these three elements should be assured according to the country economy,
society needs, and routes’ essential condition. Ma [5] discussed the external and internal
factors that affect heavy-haul railways. The external factors include economic development,
transportation price, and production factor price. In contrast, the internal factors include
loading capacity, station capacity, unloading capacity, and maintenance capacity. Sun [6]
analyzed the traffic capacity of coal transportation in the Baotou-Shenmu Railway and
suggested strengthening the carrying capacity according to the present and further freight
volume. Zhou [7] put forward strategies to improve the heavy-haul railway carrying
capacity of the Baotou-Shenmu Railway in stations, improve train transportation efficiency
and traction quality, and optimize the heavy-haul transportation organization plan, among
other strategies as well.

With the increase of the freight volume of the heavy-haul railway, scholars have begun
discussing the organization of the railcar flow in heavy-haul transport systems, focusing
mainly on the relationship between the demand of cargo and the handling capacity of
the railway system. Xue [8] proposed a method calculating the coupling degree between
the station stages plan and the given dynamic railcar flow. Wang [9] studied the heavy-
haul train operation plan problem with a multi-objective programming model, taking the
prescriptive transportation volume index, the capacity of the railway line, and the available
locomotives as the constraints. Zhao [10] established an optimization model of railcar flow
organization in the loading area of the heavy-haul railway to minimize the combination
time consumption and to maximize the flow of the heavy-haul railway. Then, he solved
the model with the minimum cost and maximum flow algorithm. Tang [11] also built a
minimum cost maximum flow model, of which the optimization goal is to maximize the
operation time saved by direct transportation. Wang [12] focused on the cost of cargo
flow in transit and established a 0–1 non-linear programming model with the objective of
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achieving the least cost. Jing [13] established the optimization model of direct flow in the
loading area with the least operation time and lowest running consumption.

The increasing freight volume also increased the workload of stations in the heavy-
haul railway systems. However, the manual approaches are still widely used in the
actual railway operation, which are time-consuming and highly rely on the experience
of the design managers [14]. Thus, scholars also paid attention to the organizational
optimization of heavy-haul railway stations. The station technical operation is an essential
part of the heavy-haul railway transportation organization. The stations of heavy-haul
railways can be divided into four types: loading stations, CBS, unloading stations, and
intermediate stations [15], which mainly handle the loading, unloading, combined, and
decomposed operations. Among these types, the CBS is primarily responsible for the
combined operations of heavy trains based on the combination scheme [16]. Hence, it is an
important node of the heavy-haul railway at the macro level. After realizing the critical role
of station technical schemes in the operation and the management of heavy-haul railway
systems, scholars began to focus on the research about the CBS.

Along this line, Wei [17] studied the influence of turnout selection on the passing
capacity of heavy-haul railway stations, the additional start or stop time of trains, the
period of the train timetable, and the headway of tracks. Ye [18] analyzed the reasons for
the station’s passing capacity based on the operation of 20,000 tons of combined trains
in Hudong Station. He put forward an optimized organization plan to ensure heavy-
haul trains’ safe transportation in Hudong Station. Liang [19] calculated the time that
the trains occupied the station track by analyzing the operation process of the combined
trains in the CBS and checked the number of the station arrival–departure tracks setting in
Hudong Station. Tang [11] studied the operation organization of Hudong Station on the
Daqin Railway and made an in-depth analysis of the organization mode of train queuing.
In the cargo flow organization model established by him, the optimization goal is to
maximize the adaptation time saved by direct transportation. Under constraints of the
combination regulations, train’s weight, the latest permissible time for the combination
of the departure trains, etc., the non-linear 0–1 programming model was established by
Han [20] with the objective of the minimum station dwell time and decomposition time
of the heavy-haul train at CBS. Ma [21] constructed the linear 0–1 programming model
and quadratic 0–1 programming model, setting the utilization equilibrium and the track’s
selection tendency as the objective functions.

The heavy-haul railway transport is a particular pattern of railway freight transport,
which is different from the general passenger and freight railway transport. From the whole
network scale perspective, the heavy-haul railway is a radial tree-shaped network with
strong system independence rather than a large-scale network structure. From the view
of station operation in the technical station, the heavy-haul trains need to be combined or
decomposed in the CBS with unit trains as the minimum unit, which is similar to the freight
train’s marshaling. The scheduling of the combined scheme in the CBS of the heavy-haul
railway can be regarded as a special case of the train formation problem (TFP). The TFP
determines the routing and frequency of trains and assigns the demands to trains [22].

The TFP has received research attention from a mathematical point of view. Therefore,
the transportation organization of heavy-haul railway stations can also learn from some
research studies based on marshaling yards. For example, a neural network is examined
for obtaining good solutions in short time periods for the TFP by Martinelli [23]. Xiao [14]
established the comprehensive optimization model of the train formulation plan using both
the single-block trains and two-block trains, aimed at the minimization of the total car–hour
consumption at all yards. As for a discrete deterministic-controlled system that simulates
the operation of the flat yard, Kozachenko [24] obtained a mathematical statement of the
problem of choosing the optimal order of multi-group train formation. Lin [25] built a
bi-level linear integer model to solve the train service network problem of the Chinese
railway system. Later, he [26] presented the formulation of a train formation problem in rail
loading stations from a systematic perspective. Yaghini [27] proposed a hybrid algorithm of
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the simplex method and simulated annealing for the train formation problem. Murali [28]
presented a decision tool to aid train planners to obtain good quality routes and schedules
quickly for short-time horizons. Lazarev [29] provided the integer linear programming
statement to form trains and define both their routes and schedules by minimizing the total
weighted delivery time of all orders.

There are mainly two differences between heavy-haul railway transport and general
freight railway transport. Firstly, at the beginning of the transport, the loading stations
need to load a particular length of unit trains without specifying the destination of each
railcar. In contrast, in the general freight railway system, different railcars have specific
destinations, thus railway operators need to combine the railcars with similar destinations
into a train. Secondly, at the end of the transport, considering that the unloading stations
in the heavy-haul railway have a large unloading capacity, the railway operators transport
the combined trains into specific unloading stations directly.

To our knowledge, however, there are few demand-oriented scheduling approaches of
heavy-haul railway transportation plans. This paper is particularly interested in proposing
a new approach to simultaneously schedule the combination scheme and heavy-haul train
timetable on a heavy-haul railway considering the demand of the unloading area.

The rest of this paper is organized as follows. Section 2 introduces the general form of a
heavy-haul railway network and the operation process of trains in the heavy-haul transport
system. We also explain several terms of the heavy-haul transport system. Section 3
describes the problem and proposes two optimization models to solve the heavy-haul
railway’s combination scheme and train timetable. Section 4 designs a hybrid algorithm
based on the genetic algorithm framework to solve the proposed model. In Section 5, a
small case and a real-world case are solved by the proposed approach to prove the method’s
effectiveness. Section 6 presents some conclusions.

2. Conceptual Illustration

This section will introduce the composition of a heavy-haul railway and the operation
process of trains in the railway system.

2.1. Composition of the Heavy-Haul Railway

The heavy-haul railway usually connects the railway to the production side and the
demand side of bulk cargo like a corridor. Thus, it is also called the heavy-haul railway
corridor. It has the characteristics of high independence and large carrying capacity. The
heavy-haul railway corridor is usually a special freight railway line used to transport a
particular type of bulk cargo. This kind of heavy-haul railway generally transports a single
type of cargo and operates massive railcars’ flow every day.

Figure 2 is a simplified schematic diagram of a heavy-haul railway. As shown in the
figure, a typical heavy-haul railway can be divided into three parts: loading area, transport
area, and unloading area.
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Figure 2. Simplified schematic diagram of a heavy-haul railway.

1. Loading area

The loading area contains two types of technical stations. One is the loading station,
which is the place where the unit trains are loaded. The loading stations in the loading area
mainly connect to the trunk line through branch railway lines. Empty railcars are loaded at
loading stations and become heavy unit trains (in the following text, we call it unit trains).
Part of the heavy unit trains also directly turn into the heavy-haul railway through the
boundary (the boundary connects the heavy-haul railway to other railway lines). Another
technical station is the CBS, the most critical technical station in the heavy-haul railway
system. The unit trains would be sent here for combined operation. The unit trains are
assembled here and combined into combined trains for the unloading area.

2. Transport area

The transport area is the trunk line between the CBS and the unloading area. Accord-
ing to the train timetable, the combined trains run on the trunk line to transport the bulk
cargo to the unloading area.

3. Unloading area

The unloading area is the end of a heavy-haul railway. Here, the buyer submits the
demand and hands over the bulk cargo. Part of the branch line in the unloading area is
not directly connected to the unloading station but is a boundary connecting other railway
lines. The combined trains will arrive at the unloading stations to unload the bulk cargo or
to be transferred from the boundary to other places. The combined trains become empty
trains after unloading at the unloading station.

For the sake of simplification, this paper considers that all unit trains will be combined
in the CBS. However, there were also a number of direct trains on the heavy-haul railways
that only need a simple inspection operation at the CBS. As running trains directly connect
to the destination, it is helpful to reduce the workload of the CBS [30], and some loading
stations load and send specific types of combined trains. These trains do not need combined
operation when through the CBS. For this scenario, when these direct trains run between
the loading area and the CBS, we regard them as unit trains. When they run between the
CBS and unloading area, we regard them as combined trains. We also treat the inspection
operation of direct trains in CBS as a combined operation.

2.2. Operating Process of Trains

In order to intuitively introduce the operational process of unit trains and the com-
bined trains in a heavy-haul railway system, an illustration of a small heavy-haul railway
network is given below.
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As shown in Figure 3, A is the CBS in a small-scale heavy-haul railway network. The
unloading station d requires 10 kt of coal. Therefore, two unit trains with 5 kt loads are sent
to the unloading station d from both loading station a and loading station b. Unit train u1
(blue dotted arcs) departs from loading station a, and unit train u2 (red dotted arcs) departs
from loading station b. At the CBS A, u1 and u2 are combined into a combined train c1
(purple arcs) with a 10 kt total load.

a

d

e

b

u

u c

Figure 3. The operating process of trains in a heavy-haul railway network.

When we extend this physical railway network on the time axis, we can find more
temporal details from the time–geography perspective. As shown in Figure 4, the vertical
axis corresponds to time and we discretize consecutive periods into small increments. The
benefit of adopting a space–time network framework is to precisely capture the temporal
and spatial interaction of the transportation system [31]. In this way, we can intuitively
understand the moving trajectory of the trains in the heavy-haul railway. The process
of train operation in the heavy-haul railway can be divided into two types: travel in the
section and station technical operation.

4. Travel in the section

The straight arcs in Figure 4 are the space–time trajectories of the trains. They show the
spatial and temporal displacement of the train in the sections. The start of the straight arcs
means the section’s origin station and the train’s departure time. The end of the straight
arcs means the section’s destination station and the train’s arrival time. Thus, the duration
of the straight arcs reflects the train’s running time in the section. The running time of the
trains in a section is generally constant because the trains do not need to perform additional
operations in the section.

5. Station technical operation

Train station operations in the heavy-haul railway include loading operations at the
loading station, unloading operations at the unloading station, and technical operations at
the CBS. After arriving at the CBS, the unit train needs to connect other pre-designated unit
trains as a combined train. The whole combined operation includes the process of arriving,
changing locomotives, connecting trains, and train inspection. A combined operation
usually takes more than 2 h. However, the direct trains only need to carry out the train
inspection at the CBS rather than participate in the combined operation. Here, we treat
train inspection as a special combination of operations. All heavy-haul trains need to finish
the technical operation at the CBS before they can be dispatched to the trunk line.
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Figure 4. The operating process of heavy-haul trains in a space–time network.

As shown in Figure 4, the duration of a unit train’s staying in the CBS is the dwell
time from the unit train’s arrival to its departure after combining into a combined train,
including the headway and all combined operation times. Obviously, the longer unit trains
stay in the CBS, the longer cargo will be in transit, increasing delivery time. At the same
time, the unit trains occupy the resources such as tracks in the CBS, which will reduce
the station’s utilization. Therefore, in actual operation, we hope to reduce the total dwell
time of unit trains in the CBS as much as possible so as to improve the efficiency of CBS
operations and to reduce the delivery time of cargo.

The technical operations of the CBS are based on a combination scheme. The combi-
nation scheme will specify when the unit trains arrive at the CBS, will assign the specific
constituent unit trains for the combined train, and will specify when the combined train
will be dispatched from the CBS. The formulation of the combination scheme determines
the total dwell time of the unit trains in the CBS. Therefore, optimizing the combination
scheme is the key point to improve the efficiency of the heavy-haul transport system.

2.3. Framework

This paper proposes a new methodology using a hybrid genetic algorithm to simul-
taneously account for cargo transportation demand and station technical operation to
optimize both train combination scheme and timetable. Thus, the heavy-haul transport
system can meet the transportation service at a lower cost. The framework of our proposed
methodology is illustrated in Figure 5.
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Figure 5. The framework of the heavy-haul train timetabling methodology.

To simplify the problem, we divide the heavy-haul railway transportation plan prob-
lem into two stages. In the first stage, the heavy-haul train service plan is designed. The
cargo demand and heavy-haul railway’s operating conditions determine the number of
each type of heavily loaded train between different stations. The second stage is to schedule
an appropriate combination scheme and train timetable for the heavy-haul train service
plan generated in the first stage.

3. Optimization Model

To provide high-performance transportation services, railway operators need to op-
timize the heavy-haul railway transportation plan based on the required demand. In
this section, we describe the train service plan problem (TSPP) and the train timetabling
problem (TTP). Table 1 lists the sets, indices, and parameters used in this paper.

Table 1. Sets, indices, and parameters.

Symbol Definition

T The set of combined trains and unit trains
Tcom The set of combined trains, Tcom ∈ T
Tuni The set of unit trains, Tuni ∈ T

S The set of stations
V The set of sections
K The set of combined train types
U The set of unit train types
p The index of combined trains, p ∈ Tcom

q The index of unit trains, q ∈ Tuni

i, j The index of stations, i, j ∈ S
sz The label of the CBS, sz ∈ S
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Table 1. Cont.

Symbol Definition

Sloa The set of loading stations, Sloa ∈ S
Sunl The set of unloading stations, Sunl ∈ S
(i, j) The label of the section that connects station i and station j, (i, j) ∈ V

k The index of combined train types, k ∈ K
u The index of unit train types, u ∈ U

p(i, j) p(i, j) ∈ {0, 1}; if combined train p, choose the section (i, j), p(i, j) = 1, otherwise
p(i, j)= 0

q(i, j) q(i, j) ∈ {0, 1}; if unit train q, choose the section (i, j), q(i, j) = 1, otherwise q(i, j)= 0
pk pk ∈ {0, 1}; if the type of combined train is k, pk = 1, otherwise pk= 0
Ik The minimum headway of the combined train when its type is k
Iu The minimum headway of the unit train when its type is u
qu qu ∈ {0, 1}; if the type of unit train q is u, qu = 1, otherwise qu= 0

ϕk,u
The number of u-type unit trains required to combine a k-type combined train,
ϕk,u ∈ Z

ttec
k The total dwell time of the k-type combined train in the CBS

r(i, j) The running time of trains running on the section (i, j)
wu The number of railcars in a u-type unit train
lcap
i The unloading capacity of the unloading station i

ldem
i The demand for unloading station i
μk The cycle length of train turn-around
M A big enough positive number
ck The cost of running a k-type combined train
λ The section capacity utilization
tλ Longest service time of the railway line

Dstart, Dend The allowable starting and ending time for combined trains
Astart, Aend The allowable starting and ending time for unit trains

3.1. Train Service Plan Problem (TSPP) Model

The heavy-haul railway train service plan should include the following parts: the
type and quantity of the unit trains departing from each loading station, and the type and
quantity of the combined trains arriving at each unloading station.

In a heavy-haul railway system, the combined trains take on the transport between
the CBS and unloading stations. The combined trains require different operation times and
human resources, and cause different track wear due to their different total loads. Thus,
the operating cost of the different types of the combined trains is different. However, the
heavy-haul railway train service plan involves a key criterion, which is railway operators’
profitability [32]. To this end, we introduce an optimization model that intends to minimize
the total cost requirements. The problem also aims to determine the number of u-type unit
trains departing from loading station i to the CBS, which can be defined by variable yu

i , and
to determine the number of k-type combined trains departing from the CBS to unloading
station j, which can be defined by variable xk

j . Table 2 lists the two types of variables used
in this model.

Table 2. Decision variables for the TSPP model.

Symbol Definition

yu
i The number of u-type unit trains departing from loading station i to the CBS, i ∈ Sloa

xk
j

The number of k-type combined trains departing from the CBS to unloading station
j, j ∈ Sunl

1. Problem statement

A heavy-haul railway system has several loading and unloading stations. Given the
loading stations’ capacity, the unloading stations’ demand, and the unloading capacity.
Find a train service plan to meet the cargo demand to make the total operation cost minimal.
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2. Objective function

The objective function is to minimize the operating costs of the heavy-haul railway. ck
denotes the cost of running a k-type combined train. The parameter ck can be calibrated by
the experience of the railway operator.

min z = ∑
j∈Sunl

∑
k

ckxk
j (1)

3. Demand constraints

Constraint (2) ensures that the cargo that can be transported by the combined trains,
arriving at the unloading station within one day, shall meet the demand for the cargo at
the unloading station.

∑
k

∑
u

xk
j
ϕk,uwu ≥ ldem

j , ∀j ∈ Sunl (2)

4. Unloading capacity constraints

Due to the limited unloading capacity of each unloading station, the quantity of cargo
to be carried by the combined trains arriving at each unloading station shall be less than
the daily unloading capacity of the unloading station.

∑
k

∑
u

xk
j ϕk,uwu ≤ lcap

j , ∀j ∈ Sunl (3)

5. Loading capacity constraints

Due to the limited loading capacity of each loading station, the number of unit trains
departing from each loading station shall be less than the daily loading capacity of the
loading station.

∑
u

yu
i wu ≤ lcap

i , ∀i ∈ Sloa (4)

6. Section carrying capacity constraints

In a heavy-haul railway’s trunk line and branch lines, the headway between any two
adjacent trains should be greater than the minimum headway. As a result, the number of
trains going through the heavy-haul railway every day is limited. Therefore, the number of
unit trains or combined trains passing through any section should be less than the section
carrying capacity.

∑
j

∑
k

Ikyk
j ≤ tλ (5)

7. Flow balance constraint for the CBS

The unit trains arriving at the CBS are combined into the combined trains and sent
into the trunk line. The CBS cannot be used as a storage place for trains, thus the number
of railcars arriving at the CBS is equal to the railcars departing from it.

∑
j∈Sunl

∑
k

xk
j ϕk,u = ∑

i∈Sloa

yu
i , ∀u ∈ U (6)

3.2. Train Timetabling Problem (TTP) Model

In our approach, the result of the TSPP model provides input parameters related to
the train timetable. Since we already know the number of different types of unit trains and
combined trains that need to be operated in the heavy-haul railway, we need to further
develop appropriate schedules for these trains.

The goal of the TTP model is to schedule the trains to minimize the total dwell time
in the CBS. The model also aims to determine the combination relationship between the
unit trains and combined trains, which can be defined by variable θp,q. Here, we use two
groups of decision variables. The unit train schedule variable dq(i, j) and aq(i, j) denote
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the departure time and arrival time of unit train q in station i and station j. The combined
train schedule variable dp(i, j) and ap(i, j) denote the departure time and the arrival time
of combined train p in station i and station j. Table 3 lists the variables used in this model.

Table 3. Decision variables for the TTP model.

Symbol Definition

ap(i, j) The arrival time of combined train p arriving at station j from section (i, j)
aq(i, j) The arrival time of unit train q arriving at station j from section (i, j)
dp(i, j) The departure time of combined train p departing from station i to section (i, j)
dq(i, j) The departure time of unit train q departing from station i to section (i, j)

θp,q
Unit train assignment variable (if the combined train p is combined by unit train q,
θp,q = 1; otherwise, θp,q = 0)

1. Problem statement

Given the number and type of unit trains and combined trains that need to be operated
in the heavy-haul railway system, determine the trains’ combination scheme in the CBS
and the train timetable of each station to make the total dwell time minimal.

2. Objective function

The objective function is to minimize the total dwell time of the trains in the CBS.
The function ∑

p
dp(i, j)θp,q denotes the departure time of combined train p. Additionally,

suppose the combined train p is composed of unit train q. The dwell time of unit train q in
the CBS can be calculated by the function ∑

p
dp(i, j)θp,q − aq(i, j). Thus, the total dwell time

of unit trains in the CBS can be expressed by (7).

min z2 = ∑
q

[
∑
p

dp(sz, j)θp,q − aq(i, sz)

]
, ∀p ∈ Tcom, ∀q ∈ Tuni (7)

3. Minimum station operating time constraints

The dwell time of trains must be longer than its minimum station operating time to
ensure the necessary combined operation before departure. Constraint (8) guarantees the
minimum station operating time of combined train q in the CBS. M is a big enough positive
number. If combined train p is not composed of unit train q, the right-hand side of the
inequality is equal to a big enough negative number, thus the inequality is always true. If
combined train p is composed of unit train q, the right-hand side of the inequality is equal
to the minimum station operating time.

dp(sz, j)− aq(i, sz) ≥ θp,qttec +
(
θp,q − 1

)
M, ∀p ∈ Tcom, ∀q ∈ Tuni (8)

4. Marshalling constraints

Each type of combined train has a prescribed rule of marshaling which specifies the
type and number of the component unit trains. For example, a 15 kt combined train is
composed of three 5 kt unit trains and a 10 kt combined train is composed of two 5 kt
unit trains. It is worth noting that a 10 kt unit train can be sent into the trunk line directly
without marshaling. For the sake of description in the model, we describe it as a 10 kt
combined train composed of a 10 kt unit train in this scenario.

∑
q

θp,qqu = ∑
k

pk ϕk,u, ∀p ∈ P, ∀u ∈ U (9)
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5. Running time constraints

r(i, j) denotes the running time of trains in section (i, j). Equation constraints (10) and
(11) enforce the rule that the running time of combined trains and unit trains should equal
to r(i, j) if (i, j) is in its route.

ap(i, j)− dp(i, j) = r(i, j)p(i, j), ∀(i, j) ∈ V, ∀p ∈ Tcom (10)

aq(i, j)− dq(i, j) = r(i, j)q(i, j), ∀(i, j) ∈ V, ∀q ∈ Tuni (11)

6. Headway constraints

The headways of different types of trains are different. The function ∑
k

Ik pk denotes

the minimum headway of combined train p and constraint (13) ensures that the interval
between two adjacent combined trains in section (i, j) must not be less than the mini-
mum headway. ∣∣∣aq′(i, j)− aq(i, j)

∣∣∣ ≥ ∑u qu Iu, ∀q, q′ ∈ Tuni (12)∣∣∣ap′(i, j)− ap(i, j)
∣∣∣ ≥ ∑k pk Ik, ∀p, p′ ∈ Tcom (13)

7. Operating period constraint

Both combined trains and unit trains must be operated within the permitted period.

aq(i, sz) ∈
[

Astart, Aend
]
, ∀q ∈ Tuni (14)

dp(sz, j) ∈
[

Astart, Aend
]
, ∀p ∈ Tcom (15)

4. Hybrid Genetic Algorithm

To solve the TSPP model and TTP model for a heavy-haul railway system, we propose
the following solution approach by solving the TSPP model using commercial solver
GUROBI and solving the TTP model using a hybrid genetic algorithm (HGA). In this
section, we introduce the detailed solving process of the HGA.

The TTP model is the optimal integration of a heavy-haul railway combined scheme
and train timetable. It is a difficult problem since both the train formation problem and the
train timetabling problem are NP-hard problems [22,33,34]. Therefore, to solve the TTP
model, we developed a genetic algorithm-based framework.

Genetic algorithms (GA), first proposed by Holland [35], are inspired by natural
genetic and evolutionary mechanisms to find high-quality solutions for complex problems.
The genetic algorithm constructs a fitness function according to the objective function
of the problem. The fitness value may directly or indirectly represent a solution to the
original problem. The algorithm performs evaluation, genetic calculation, and selection on
a population composed of multiple solutions (each solution corresponds to a chromosome),
and after multiple generations of reproduction, the individual with the best fitness is
the optimal solution to the problem. A population contains multiple individuals and for
each their chromosome includes one or several gene fragments. The GA includes the
following steps [36]: (1) chromosome representations; (2) initial populations generate;
(3) fitness function; (4) genetic operations (including crossover and mutation); (5) selection
mechanisms; and (6) termination condition.

The GA is widely used in industrial engineering, artificial intelligence, automatic
control, and other fields because of its great potential in solving complex optimization
problems [37].

Specifically, the HGA to solve the TTP model is set up as explained below.
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4.1. Representation Scheme

In this solution approach, we represent solutions indirectly by parameters that are
later used to obtain a solution by a special decoding procedure. Each solution chromosome
is made of two gene fragments.

Gene fragment I: The first gene fragment represents the departure sequence of the
combined trains departing from the CBS. It is made of Nc genes, where Nc is the number
of the combined trains. After obtaining the type and number of trains that need to run
between the CBS and each loading station or unloading station, we create a unique index
for each train. The value of the jth gene of gene fragment I represents the departure
sequence of train j.

Gene fragment II: The second gene fragment is a matrix to represent the connection
relationship between the unit trains and combined trains. When the number of combined
trains is Nc and the number of unit trains is Nu and a Nu × Nc, a matrix can be built and
we call it the combination matrix. The combination matrix is a 0–1 matrix. If the value of
row i and column j is 1, that means combined train j is composed of unit train i.

Figure 6 depicts a small example. As shown in the figure, seven unit trains are assigned
into four combined trains in the CBS. Four combined trains, namely c1, c2, c3, and c4, depart
the CBS in the sequence as 2, 1, 3, and 4, respectively. Thus, the departure sequence can be
represented by the vector (2, 1, 3, 4). For combined train c1, it consists of unit trans u1 and
u2. Thus, its corresponding row in the combination matrix should be (1, 0, 0, 1, 0, 0, 0).

u u u u u u u
c
c
c
c

u u u u u u u

c cc c

Figure 6. Gene fragments of the combined operation.
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4.2. Initial Populations and Infeasible Solution Adjustment

The combination matrix is a gene fragment of a chromosome generated randomly
by initialization or through crossover and mutation. It may not satisfy the constraints
of train marshaling. Therefore, infeasible combination matrix adjustment strategies are
designed for chromosomes to obtain an available connection relationship. The infeasible
combination matrix adjustment process is illustrated in Algorithm 1.

Algorithm 1 Infeasible combination matrix adjustment

Step 1. Calculate the initial number and type of unit trains that are combined into a
combined train.

Create set Ccom, calculate the current number of unit trains connected to the combined train
p, and let cp denote it. Then, add cp to Ccom.

Step 2. Adjust chromosomes so that each combined train consists of a specified number of
unit trains.

For each combined train p ∈ Tcom

If cp > ϕk,u
Create index set Rp1
Find out all indices r where θp,r = 1 and add r to Rp1
Create subset Rp2
Randomly choose ϕk,u − cp elements r′ in Rp1 and add r′ to Rp2
Let θp,r′= 0 for all r′ in Rp2

If cp < ϕk,u
Create index set Rp1
Find out all indices r where θp,r= 0 and add r to Rp1
Create subset Rp2
Randomly choose cp − ϕk,u elements r′ in Rp1 and add r′ to Rp2
Let θp,r′= 1 for all r′ in Rp2

Step 3. Calculate the current number and type of unit trains that are combined into a
combined train.

Create set Cunit, calculate the current number of combined trains connected to unit train q,
and let cq denote it. Then, add cq to Cunit.

Step 4. Adjust chromosomes so that each unit train can be combined into, at most, one
combination train.

Create index set Rq0
Find out all indices s where cq = 0 and add s to Rq0

For each unit train q ∈ Tuni

If cq > 1
Create index set Rq1
Find out all indices r where θr,q= 1 and add r to Rq1
Create subset Rq2, Rq3
Randomly choose cq − 1 elements r′ in Rq1 and add r′ to Rq2

Randomly choose cq − 1 elements s′ in Rq0 −
q−1
∑

q=1
Rq3 and add s′ to Rq3

Let θr′ ,q= 0 for all r′ in Rq2 and let θr′ ,s= 0 for all s′ in Rq3

4.3. Decoding

The chromosomes are made of two gene fragments that represent the combined trains’
departure sequence and the connection relationship; thus, the chromosomes have to be
decoded to derive the combination scheme and train timetable. The chromosome decoding
process is divided into three main steps. First, we transform the two gene fragments of the
chromosome into the operation sequence of the trains. Then, we use a linear program to
determine the combination scheme of the unit trains and the combined trains in the CBS.
Finally, we calculate the train timetable according to the combination scheme.

First of all, we determine the order of any two combined trains departing from the
CBS according to gene fragment I of the chromosome. Next, determine the order of any
two unit trains arriving at the CBS according to gene fragment II. Here, we introduce two
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parameters, namely Ocom(p, p
′
) and Ouni(q, q′). Ocom(p, p′) denotes the departure order of

combined trains p and p′. When combined train p departs from the CBS before combined
train p′, then Ocom(p, p′) = 1; otherwise, Ocom(p, p′)= 0. Ouni(q, q′) denotes the arrival
order of unit trains q and q′. When unit train q arrives at the CBS before combined train q′,
then Ocom(q, q′) = 1; otherwise, Ocom(q, q′)= 0.

The process of determining the value of the parameters Ocom(p, p′) and Ouni(q, q′) is
shown in Algorithm 2. The calculation process of determining the operation sequence of
trains can be divided into two steps. In step 1, we roughly calculate all trains’ arrival and
departure times in the COS according to the departure sequence in gene fragment I and the
connection relationship in gene fragment II. Then, in step 2, we determine the departure
order of any combined train pair by sequencing in gene fragment I. Similarly, we compare
the arrival times in step 1 to determine the arrival order of any unit train pair. As a result,
we derive an assignment to Ocom and Ouni.

Algorithm 2 Determine the operation sequence of trains in the CBS

Input: Gene fragment I g1, gene fragment IIG2
Output: Ocom, Ouni

Step 1: Initialize the departure time of the combined trains and the arrival time of the unit
trains according to gene fragments I and II.

Create set Dcom to denote the initialized departure time of the combined trains
Create set Auni to denote the initialized arrival time of the unit trains
For each combined train p ∈ Tcom

If g1(p) = 1
Let dp = 0 and add dp to Dcom

Else
If g1(p) = g1(p′) + 1
Let dp = dp′ + ∑k Ik p′k and add dp to Dcom

For each unit train q ∈ Tuni

u = 0
For each combined train p ∈ Tcom

If G2(p, q) = 1
Let aq = dp −∑k pkttec

k − Iuu and add aq to Auni

u = u + 1
Step 2: Determine departure order Ocom for any combination train pair and arrival order

Ouni for any unit train pair.
Create set Ocom of the combined train departure order
Create set Ouni of the combined train arrival order
For each combined train p ∈ Tcom

For each combined train p′ ∈ Tcom

If g1(p) < g1(p′)
Let op,p′ = 1 and add op,p′ to Ocom

Else
Let op,p′ = 0 and add op,p′ to Ocom

For each unit train q ∈ Tuni

For each combined train q′ ∈ Tuni

If aq < aq′

Let oq,q′ = 1 and add oq,q′ to Ouni

Else
Let oq,q′ = 0 and add oq,q′ to Ouni

After the train operation sequence is determined, the solution space of the original
problem is greatly reduced. Using parameters Ocom(p, p′), Ouni(q, q′), and a large positive
number M, we can rewrite the absolute value inequality in constraints (12) and (13). The
operation time of the combined trains and unit trains in the CBS can be easily solved.
We rewrite this part as the combination planning problem (CPP). The objective function
of the CPP is the same as TTP, that is, to minimize the total operation time of the CBS.
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Additionally, the operating time of the trains in the CBS needs to meet the station operating
time requirements.

To sum up, this program’s objective function and constraints are shown in (16) and (17).

min z3 = ∑
q

[
∑
p

dp(sz, j)θp,q − aq(i, sz)

]
, ∀p ∈ Tcom, ∀q ∈ Tuni (16)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dp(sz, j)− aq(i, sz) ≥ θp,q∑k pkttec
k +

(
θp,q − 1

)
M, ∀p ∈ Tcom, ∀q ∈ Tuni

dp′(sz, j)− dp(sz, j) + (1− op,p′)M ≥ ∑k pk Ik, ∀p, p′ ∈ Tcom

aq′(i, sz)− aq(i, sz) + (1− oq.q′)M ≥ ∑u qu Iu, ∀q, q′ ∈ Tuni

dp(sz, j) ∈
[

Dstart, Dend
]
, ∀p ∈ Tcom

aq(i, sz) ∈
[

Astart, Aend
]
, ∀q ∈ Tuni

(17)

We will call the commercial solver Gurobi to solve the CPP.
Finally, calculate the train timetable based on the solution of CPP. In this paper, we

assume that all trains run at the same speed class and that there is no train overtaking that
occurs when running on a heavy-haul railway. Therefore, once the time of a combined
train departing from the CBS is determined, its arrival time at the unloading station and
stop time at the adjacent stations can also be determined. Same as for combined trains, the
schedule of a unit train can also be calculated once its arrival time at the CBS is determined.
Formulas for calculating the arrival and departure times of other stations are shown in (18).

{
ap(i, j)− dp(i, j) = r(i, j)p(i, j), ∀(i, j) ∈ V, ∀p ∈ Tcom

aq(i, j)− dq(i, j) = r(i, j)q(i, j), ∀(i, j) ∈ V, ∀q ∈ Tuni (18)

4.4. Fitness Function

The fitness function is shown in (19), where the denominator represents the total
operating time of the trains in the CBS. Its reciprocal is good for evaluating the quality of
the solution: a larger fitness function value indicates a better solution.

f =
1

∑
q

[
∑
p

dp(i, j)θp,q − aq(i, j)

] (19)

4.5. Crossover

Crossover is one of the genetic operations that combines two chromosomes to generate
a new chromosome. First, select two chromosomes from the current population with
probability Ps. Ps is a set of probability, indicating the possibility of each individual being
selected. The selection probability of each individual is proportional to its fitness value.
The chosen two chromosomes will crossover with the probability of Pc. Then, randomly
select a crossover point for gene fragment I and gene fragment . After crossover, it should
avoid generating infeasible solutions [38]. For the newly generated chromosomes that
may not satisfy the constraint, we use the adjustment strategy proposed in Algorithm 1 to
ensure the feasibility of the newly generated chromosomes.

4.6. Mutation

The mutation is another genetic operation to evolve the chromosomes. The random-
ness mutation of the population can allow the search process to jump out of the local
optimal solution and search for the global optimal solution. However, this randomness
does not necessarily mean that the population will evolve in a better direction. A high
mutation probability may make the population mixed with poor individuals and the results
experience difficulty in converging. However, when the mutation probability is too low,
the population may fail to evolve for many generations and become trapped in the local
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optimal solution. To solve this problem, Glover [39] tried to use a heuristic search in the
mutation process to improve the performance.

Therefore, we introduced a neighborhood search into the mutation process to ensure
that the population evolves in a better direction. The select chromosomes will be mutated
with probability Pm. We separately apply the following mutation procedure for each gene
fragment.

For gene fragment I, randomly select two chromosomal sites and exchange the genes
of the two sites. For gene fragment II, randomly select a chromosomal site and change the
value of the gene. The gene of fragment II is a 0–1 binary variable, that is, to change 0 to 1
or 1 to 0.

During each mutation, we generate a neighborhood set for the chromosome. Then,
we use the fitness function to evaluate the quality of chromosomes in the neighborhood set
and choose the best mutant chromosome as the newly generated chromosome.

4.7. Termination Conditions

The algorithm ends and outputs the result when the optimal objective value does not
change continuously or when the number of iterations reaches the predetermined value.

4.8. Algorithm

The framework of the algorithmic procedure is summarized below in Figure 7.

Figure 7. Flow chart of the solution approach.
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5. Case Study

This section provides several numerical experiments on the proposed heavy-haul
railway train timetabling problem in order to prove the effectiveness of our models
and algorithms.

5.1. A Small Case

In this section, we use a small case to illustrate the effectiveness of the proposed model
and hybrid algorithm.

5.1.1. Operation Data

The corresponding schematic diagram of a small heavy-haul railway network is
presented in Figure 8. As shown in the figure, this small heavy-haul railway consists of
three loading stations (station a, station b, and station c), three unloading stations (station d,
station e, and station f ), and a CBS. The loading capacity of station a, station b, and station
c is each 550 cars per day. The unloading demand of station d, station e, and station f is
360 cars/day, 720 cars/day, and 540 cars/day, respectively. Lastly, the unloading capacity
of station d, station e, and station f can meet the unloading requirements.

a

b

c

d

e

f

Figure 8. Simplified heavy-haul railway network of the small case.

In this small heavy-haul railway, the unit train types include 5 kt unit trains and 10 kt
unit trains that contain 60 railcars and 120 railcars, respectively. The combined train types
include 10 kt (2× 5 kt) combined trains, 15 kt (3× 5 kt) combined trans, and 20 kt (4 × 5 kt)
combined trans. The corresponding combination rule and operation cost of these combined
trans are 10 kt (2 × 5 kt) combined trans (two 5 kt unit trains, cost = 0.9), 15 kt (3 × 5 kt)
combined trans (three 5 kt unit trains, cost = 1), and 20 kt (4 × 5 kt) combined trans (four
5 kt unit trains, cost = 1; or two 10 kt unit trains, cost = 1.8). The combined operation in
the CBS should be during 0:00–8:00 and the combined train needs to depart from the CBS
during 6:00–8:00.

5.1.2. Optimization Results

By solving the TSPP, we derive the type and number of unit trains that need to be
loaded at each loading station, as well as the type and number of combined trains that need
to be unloaded at each unloading station. The solution of the TSPP is shown in Table 4.
The TTP will be further solved based on this solution.
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Table 4. Solution of the TSPP in the small case.

Unloading
Stations

Unit Train
Type

Number of
Trains

Loading
Stations

Combined Train
Type

Number of
Trains

station a 5 kt 9 station d 10 kt (2 × 5 kt) 1
station b 5 kt 9 station d 20 kt (4 × 5 kt) 1
station c 5 kt 9 station e 20 kt (4 × 5 kt) 3

station f 10 kt (2 × 5 kt) 1
station f 15 kt (3 × 5 kt) 1
station f 20 kt (4 × 5 kt) 1

Then, we apply the proposed HGA to obtain the optimal combination scheme and
train timetable to minimize the total dwell time of all heavy-haul trains. Specifically, some
parameters of the HGA are set as follows:

• The crossover rate is set to 0.85;
• The mutation rate is set to 0.15 and the number of elements in the neighborhood set of

mutation chromosomes is set as 20;
• The larger positive number M is set to 10,000; and
• When the optimal value exceeds 50 iterations without optimization, the iteration

reaches the termination condition.

The corresponding results and the solution searching process of the small case are
plotted in Figure 9. By generating and optimizing the combined operation plan of heavy-
haul trains at the CBS, the total combined operation time in the system is 4664 car–hours.

Figure 9. The solution searching process of the small case using the HGA.

In order to verify the effectiveness of the proposed model, we compare the results
with the timetable obtained by the manual scheduling operation. To this end, we designed
a simulation process to imitate the manual scheduling operation approaches of the heavy-
haul railway scheduling system. The simulation steps are as follows:

Step 1: Assign a combination scheme of combined trains and unit trains based
on experience.

Step 2: Randomly assign a series of the departure times of the combined trains in
the CBS.

Step 3: Determine the arrival time of the unit trains at the CBS backwards according
to the departure time of the combined trains and the required dwell time.

Step 4: Calculate trains’ arrival and departure times in each section according to the
section running time.

Step 5: Check for conflicts and adjust the train timetable.
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Next, the simulation method is applied to the small case to obtain a solution. The
total dwell time obtained by the simulation is 7876 car–hours. Compared to the pro-
posed model’s optimization results, the simulation method’s operation time increases by
3212 car–hours, resulting in a time waste of about 40.8%.

Figure 10 shows the combination scheme’s diagram using the HGA and the simulation.
The horizontal axis shows the time and the vertical axis shows the position of the trains.
These combination scheme diagrams can be divided into three parts. The upper oblique
lines represent the unit trains running between the loading stations and the CBS. The lower
oblique lines represent the combined trains running between the CBS and the unloading
stations. The horizontal and vertical lines in the middle represent the combination relation-
ship and the dwell time of each train. As shown in the figure, compared to the combination
scheme obtained by the simulation, the solution obtained by the HGA is more compact
and uses less time in the CBS.

 
(a) 

(b) 

Figure 10. The comparison of the results of the two methods: (a) the diagram of the combination scheme using the HGA
and (b) the diagram of the combined combination scheme using the simulation.

To further compare the two methods, we calculate the waiting time of each unit train
that waits for the combination operation in the two combination schemes. The waiting
time is the period that lasts from when the unit train enters the CBS to when it starts the
combination operation. The waiting time of each unit train in the CBS is shown in (20).
We define the unit train whose waiting time in the CBS is less than 90 min as the efficient
turnover train (ETT).

wp = ∑p∈Tcom dp(sz, j)θp,q − aq(i, sz), ∀q ∈ Tuni (20)
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Figure 11 plots the waiting time distribution of unit trains in the two solutions. The
horizontal axis represents the index of the unit train and the vertical axis represents the
waiting time of the corresponding unit train in the CBS. The green dotted line indicates
that the waiting time is 90 min and the points below the green dotted line are the ETT. As
shown in Figure 11, 18 unit trains in the combination scheme obtained by the TTP belong
to the ETT, while only 7 ETT are in the combination scheme obtained by the simulation.
Therefore, the combination scheme solved by the TTP can effectively reduce the waiting
time of unit trains in the CBS, thus reducing the service load of stations and improving
train turnover efficiency.

Figure 11. The distribution of the waiting time for unit trains in the two solutions.

By comparing these two methods of scheduling the combination schemes, the effi-
ciency of the TTP is verified.

5.1.3. Effectiveness of the Algorithm

In order to verify the effectiveness of the algorithm, we introduce an unimproved
genetic algorithm (GA) and a tabu search (TS) to solve the optimization problem.

In experiments of GA, we still adopt the same representation scheme, population
initialization operation, and chromosome-crossing operation as the method in this paper.
The fitness function still adopts the reciprocal of the objective function. The difference is
that the CPP is not called during the decoding process to find the optimized combination
scheme. Meanwhile, the mutation operation uses single random mutation instead of
neighborhood search.

As for the TS, it is another widely used stochastic search method designed to find the
optimal solution. The tabu search algorithm imitates human memory and uses a tabu list
to forbid certain moves to avoid cycling search [40]. The tabu search adopts neighborhood
optimization. In order to transcend the local optimal solution, the algorithm can accept
inferior solutions. In this algorithm, we use the same representation scheme in the HGA
and we employ the neighborhood generation method of the mutation operator in the HGA.
The objective function of the TTP is used as the evaluation function to evaluate the quality
of neighbor solutions.

Then, we conducted five experiments with different parameters. Due to the random-
ness of the search process, we ran each experiment 10 times and calculated the average
value of the best five solutions as the final result. The experimental parameters and results
are shown in Tables 5–7.
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Table 5. The parameters and results of the GA.

Index
Population

Size
Generations

Crossover
Rate

Mutation
Rate

Total Operation
Time

(car–hours)

1 30 150 0.90 0.05 5735
2 50 200 0.80 0.1 5531
3 50 150 0.80 0.15 5623
4 80 250 0.75 0.15 5703
5 100 250 0.85 0.15 5537

Table 6. The parameters and results of the HGA.

Index
Population

Size
Generations

Crossover
Rate

Mutation
Rate

Total Operation
Time

(car–hours)

1 30 150 0.90 0.05 4867
2 50 200 0.80 0.1 4855
3 50 150 0.80 0.15 4818
4 80 250 0.75 0.15 4770
5 100 250 0.85 0.15 4727

Table 7. The parameters and results of the TS.

Index
Number of
Neighbors

Tabu Length Iterations
Total Operation Time

(car–hours)

1 20 15 200 5032
2 40 15 200 4993
3 40 10 200 5057

The search process of the two algorithms is shown in Figures 12–14. All algorithms
have made some progress in reducing the objective value. In the experimental group of
the GA, experiment GA-3 obtained the best objective value, which was 5531 car–hours.
In the experimental group of the HGA, the best objective function value was obtained
in experiment HGA-4, which was 4727 car–hours. In the experimental group of the TS,
the best objective function value was obtained in experiment TS-2, which was 4993 car–
hours. In comparing Figure 12 with Figure 13, it is obvious that the HGA achieves better
optimization values than the GA on the whole. As shown in Figure 14, compared with
the TS, the HGA obtains a better initial solution and has a high convergence speed. The
above experiments showed that, compared to the GA and TS, the HGA obtains a better
initial solution because we solve the CPP model to improve the initial solution in the HGA.
Additionally, the HGA achieves a high convergence speed. These experiments demonstrate
the effectiveness of the designed HGA.
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Figure 12. The solution searching process of the GA.

Figure 13. The solution searching process of the HGA.

Figure 14. The solution searching process of the TS.
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5.2. Large-Scale Experiments
5.2.1. Description of the Experimental Setting

To further show the effectiveness of the proposed approach, we select the Datong-
Qinhuangdao Heavy-haul Railway (DQHR) as a large-scale study case. The DQHR, with
a total length of 653 km, is China’s first double-line electrified heavy-haul railway and
it is an important coal transportation corridor from Shanxi, Shaanxi, and western Inner
Mongolia [41].

In these experiments, the DQHR contains 6 loading stations and 11 unloading stations.
A simplified schematic is shown in Figure 15. Some important train operation parameters
are listed in Tables 8 and 9. Table 8 shows the capacity and demand of the loading and
unloading stations in the DQHR. Table 8 shows the running cost and operating time of
each type of combined train.

Figure 15. Simplified Datong-Qinhuangdao Heavy-haul Railway.

Table 8. Parameters of the loading stations and unloading stations.

Parameters of Loading Stations Parameters of Unloading Stations

Loading Station
Daily Loading

Capacity
(cars/day)

Unloading
Station

Daily
Unloading
Capacity
(cars/day)

Cargo Demand
(cars/day)

Hanyuan 15,058 Gaogezhuang 382 300
Beitongpu 18,888 Duanjialing 870 500
Yungang 2365 Jixian 403 300
Kouquan 1134 Cuipingshan 960 600

Dabao 6845 Zunhuabei 1296 1000
Dahuai 7289 Qiananbei 480 300

Caofeidian 4992 3000
Donggang 1944 1500
Luannan 4584 3500
Houying 2544 1500

Liucunnan 6720 4000
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Table 9. The running cost and operating time of each type of combined train.

Index
Type of Combined

Trains
Type and Number

of Unit Trains
Cost of
Train

Operating Time of
Combination (min)

1 10 kt combined train 2 × 5 kt unit train 1.3 126
2 10 kt combined train 1 × 10 kt unit train 1 93
3 15 kt combined train 3 × 5 kt unit train 1.4 152
4 20 kt combined train 2 × 10 kt unit train 1.5 135
5 20 kt combined train 4 × 5 kt unit train 1.8 182
6 30 kt combined train 3 × 10 kt unit train 2 168

5.2.2. Computational Results of the Large-Scale Experiment

The solution of the TSPP in the large-scale experiment is shown in Table 10. Subsequent
TTP will be further solved based on this solution.

Table 10. Solution of the TSPP in the large-scale experiment.

Unloading
Stations

Unit Train
Type

Number of
Trains

Loading
Stations

Combined Train
Type

Number of
Trains

Hanyuan 10 kt 24 Chawu 30 kt (3 × 10 kt) 1
Beitongpu 5 kt 114 Duanjialing 15 kt (3 × 5 kt) 3

Dahuai 5 kt 121 Jixian 30 kt (3 × 10 kt) 1
Zunhua 15 kt (3 × 5 kt) 3
Zunhua 20 kt (4 × 5 kt) 2

Cuipingshan 15 kt (3 × 5 kt) 2
Cuipingshan 20 kt (4 × 5 kt) 1

Qianan 30 kt (3 × 10 kt) 1
Caofeidian 15 kt (3 × 5 kt) 14
Caofeidian 20 kt (4 × 5 kt) 2
Donggang 15 kt (3 × 5 kt) 3
Donggang 20 kt (4 × 5 kt) 4
Luannan 15 kt (3 × 5 kt) 16
Luannan 30 kt (3 × 10 kt) 2
Houying 15 kt (3 × 5 kt) 7
Houying 20 kt (4 × 5 kt) 1

Liucunnan 15 kt (3 × 5 kt) 5
Liucunnan 20 kt (4 × 5 kt) 9
Liucunnan 30 kt (3 × 10 kt) 3

In this large-scale experiment, the crossover rate was set to 0.85 and the mutation rate
was set to 0.15. The number of elements in the neighborhood set of mutation chromosomes
was set as 20. The maximum number of iterations was set to 200.

Figure 16 shows the iterative process of the HGA when used to solve the TTP in the
large-scale experiment. As shown in Figure 16, the total combined operation time in the
system was 98,848 car–hours. This example provides an illustration of the usefulness and
application of our proposed approach.
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Figure 16. The solution searching process of the large-scale experiment using the HGA.

6. Conclusions

Based on the actual demand of the heavy-haul railway, this paper proposes a schedul-
ing approach to optimize the heavy-haul railway transportation plan, including the com-
bination scheme and train timetable. This approach can satisfy the freight transportation
demands, improve the utilization of the CBS operation, and reduce the cost of the whole
transportation process, thus improving rail operators’ profits.

First, the train service plan problem (TSPP) model was proposed based on the loading
stations’ capacity and the unloading stations’ demands. We solved the TSPP to determine
the type and number of unit trains that need to be loaded at each loading station, as well
as the type and number of combined trains that need to arrive and unload at unloading
stations. On this basis, we put forward the train timetabling problem (TTP) model. The
TTP model can solve the combination scheme in the CBS and the train timetable of the
heavy-haul railway. Then, we applied a hybrid genetic algorithm (HGA) to solve the TTP
model. In a small case study using the TTP model, we obtained a solution that reduces
the total dwell time of unit trains by 40.8% compared to a manual scheduling simulation
method. The comparison experiments with the unimproved genetic algorithm (GA) and
tabu search (TS) demonstrate that the HGA can obtain better solutions and achieve a
high convergence speed. By applying the approach into a large-scale case of DQHR, we
demonstrated the practicability of the method in the real world.

In this paper, we assumed that the combined capacity of the CBS is large enough to
deal with the unit trains. However, in practice, when the freight volume of the heavy-
haul railway is too big, the CBS may not be able to combine many unit trains at once. In
future studies, we will consider the combined capacity of the CBS as one of the constraints
to determine a more feasible combination scheme. At the same time, the return and
decomposed operation of the empty trains after the unloading operation is also a critical
part of trains circulating in the heavy-haul railway system. Thus, the transportation
organization of the empty trains will also be considered in future research.
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Abstract: The demand for a product is one of the important components of inventory management.
In most cases, it is not constant; it may vary from time to time depending upon several factors
which cannot be ignored. For any seasonal product, it is observed that at the beginning of the season,
demand escalates over time, then it is stable and after that, it decreases. This type of demand is known
as the trapezoidal type. Also, due to the uncertainty of customers’ behavior, inventory parameters
are not always fixed. Combining these two concepts together, an inventory model is formulated for
decaying items in an interval environment. Preservative technology is incorporated to preserve the
product from deterioration. The corresponding mathematical formulation is derived in such a way
that the profit of the inventory system is maximized. Consequently, the corresponding optimization
problem is converted into an interval optimization problem. To solve the same, different variants
of quantum-behaved particle swarm optimization (QPSO) techniques are employed to determine
the duration of stock-in time and preservation technology cost. To illustrate and also to validate the
model, three numerical examples are considered and solved. Then the computational results are
compared. Thereafter, to study the impact of different parameters of the proposed model on the best
found (optimal or very close to optimal) solution, sensitivity analysis are performed graphically.

Keywords: trapezoidal type demand; interval-valued inventory costs; deterioration; preservation
technology; QPSO algorithms

1. Introduction

In the literature of inventory, it is observed that several investigators drew their atten-
tion to investigate the impact of trapezoidal type demand rate on the different inventory
systems. To the best of our knowledge, Cheng and Wang [1] first proposed the idea of
trapezoidal type demand in the modeling of an inventory control problem. Cheng et al. [2]
expanded the model of Cheng and Wang [1] with the help of partially backlogged shortages
and also the effect of deterioration. Then, Lin [3] developed an inventory model considering
the demand which follows the trapezoidal pattern. After that, Chuang et al. [4] and Singh
& Pattanayak [5] investigated inventory models considering trapezoidal type demand for
deteriorating items. Lin et al. [6] wrote a note on Cheng et al. [2] based on modeling and
solutions. Mishra [7] introduced a deteriorating inventory model considering deterioration
prevention technology and trapezoidal demand. Wu et al. [8] developed two inventory
models with trapezoidal demand, time-dependent deterioration, and completely back-
logged shortages. Recently, Vandana and Srivastava [9] developed an inventory model
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for ameliorating items with trapezoidal demand and complete shortages under inflation
conditions. Wu et al. [10] formulated an inventory model with trapezoidal demand and the
rate of decaying is dependent on the maximum lifetime of an item along with trade credit
facilities. Garai et al. [11] proposed a fuzzy inventory model with time-varying holding
cost under price-dependent demand. Xu et al. [12] studied an inventory model for nonper-
ishable items with trapezoidal type demand and partial backlogging shortages. Kumar [13]
investigated a fuzzy inventory model with trapezoidal demand and time-varying holding
costs under shortages.

Usually, the selling price of an item is not always fixed. It may vary from time to
time within a certain range. In this connection, different types of costs, like ordering cost,
carrying cost, shortage cost, etc. may also vary. So, the authors should give attention to
the flexible nature of the system parameters in the formulation of the inventory model.
The impreciseness of inventory parameters can be represented with the help of fuzzy,
probabilistic, and interval approaches. In this connection, one may refer to the works of
Kazemi et al. [14], De and Sana [15], Mondal et al. [16], Mondal et al. [17], and De et al. [18]
in which the imprecise parameters are represented by either fuzzy sets or fuzzy numbers.
Representing the impreciseness by random variables, the works of Pulido-Rojano [19] and
Adak and Mahapatra [20] are worth mentioning. Using the interval approach, Dutta and
Kumar [21], Bhunia and Shaikh [22], and Bhunia et al. [23] proposed several inventory
models. Over the last two decades, several researchers applied the concept of interval
uncertainty in inventory control theory and formulated several inventory models. To the
best of our knowledge, Gupta et al. [24] first applied this concept in the formulation of
their inventory model and solved the corresponding interval optimization problem by
using a modified genetic algorithm. Then, Gupta et al. [25] proposed another inventory
model and solved it with the help of a genetic algorithm. They considered the concept of
the advance payment and assumed the inventory costs as interval-valued. Chakrabortty
et al. [26] developed an algorithm for solving an inventory problem under an interval
environment. Dutta and Kumar [21] developed a deteriorating inventory model along with
time-varying holding cost and demand. Bhunia and Shaikh [22] proposed two warehouse
inventory models under inflation in an interval environment. Bhunia et al. [23] formulated
a partially integrated production model with variable demand and reliability of the product
in an interval environment. Mondal et al. [27] introduced an ameliorating inventory
model for deteriorating items in crisp and interval environments. They have solved
the corresponding optimization problem with the help of different variants of quantum-
behaved particle swarm optimization techniques. Shaikh et al. [28] studied an inventory
problem of a two-warehouse system for non-instantaneous deteriorating items in an interval
environment. Rahman et al. [29] proposed a parametric approach of interval in formulating
an inventory model with price-dependent demand. Ruidas, et al. [30] developed an interval-
valued production inventory model with price-sensitive demand under interval-valued
carbon emission.

The products like pharmaceuticals, blood, food items, chemicals, and radioactive
chemicals deteriorate very fast with time. Various factors like heat, worm effect, vaporiza-
tion, dryness, perishability, spoilage, lack of preservation facility, etc. are responsible for
this deterioration. The loss that occurs due to the effect of deterioration cannot be neglected
in the inventory analysis. In 1963, Ghare and Schrader [31] first proposed the concept of de-
caying of the product in the modeling of an inventory control problem and they formulated
an inventory model with an exponentially decaying rate. Covert and Phillip [32] extended
the work of Ghare and Schrader [31] by considering Weibull distributed deterioration rate.
After that, several works were developed assuming fixed or variable deterioration rates.
Mahapatra et al. [33] proposed an inventory model with reliability-dependent demand for
deteriorating items. Shaikh et al. [34] developed a stock and price-related inventory model
for non-instantaneous decaying items. Shah and Naik [35] proposed a non-instantaneous
decaying model assuming price-sensitive demand and considering learning effects. Chen
et al. [36] developed an optimal pricing inventory model by taking stock-level, price, and
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time-dependent demand for decaying items. Mahmoodi [37] introduced the concept of
duopoly retailers and formulated a deteriorating inventory model with a linear trend in
demand. Saha and Sen [38] proposed a price-dependent inventory model for deteriorat-
ing items considering shortages. Khakzad and Gholamian [39] introduced an advance
payment-related inventory model with the effect of the inspection rate of deterioration.
Khan et al. [40] discussed the effect of non-instantaneous deterioration in a two-warehouse
system under advance payment and shortages. Xu et al. [41] studied the strategy of in-
ventory control for deteriorating items with time-varying demand and carbon emission
regulations. A comparative study between the proposed work and the related works
reported in the existing literature is shown in Table 1. To preserve the product in store
room, a preservation technology cost is required. This cost undoubtedly affects inventory
control optimization. Dye [42] proposed a non-instantaneous decaying inventory model
considering preservation facility.

Table 1. Literature review related to the proposed model.

Reported
Articles

Type of
Model

Deterioration
Backlog-ging

Situation
Demand

Type
Preventing
Technology

Uncertainty
Solution

Procedure

Wahab et al. [43] Purchase
model × × - × Not

considered

Gradient best
numerical

method

Cheng et al. [2] Purchase
model

√ √ Trapezoidal
demand × Not

considered

Gradient best
numerical

method

Zhao, L. [44] Purchase
model

√ √ Trapezoidal
demand × Not

considered

Gradient best
numerical

method

Wu et al. [8] Purchase
model

√ √ Trapezoidal
demand × Not

considered

Gradient best
numerical

method

Bhunia and
Shaikh [22]

Purchase
model

√ √
- × Interval

Different
variants of

PSO

Taleizadeh et al.
[45]

Purchase
model × × - × Not

considered

Gradient best
numerical

method

Wu et al. [10] Purchase
model

√ √ Trapezoidal
demand × Not

considered

Gradient best
numerical

method

Mondal et al.
[27]

Purchase
model

√ × Price de-
pendent × Crisp and

Interval

Different
variants of

QPSO
techniques

Rahman et al.
[46]

Purchase
model

√ ×
Known

and
constant

√ Interval-
valued

Different
variants of

QPSO
techniques

Dey et al. [47] Supply
chain × ×

Advertisement
depen-
dent

demand

× Not
considered

Gradient best
numerical

method

Shaikh et al. [48] Purchase
model

√ √ Price de-
pendent × Crisp Multi-section

Method

Jabbarzadeh et al.
[49]

Purchase
model

Shaikh et al.
[48] ×

√
- × Crisp

Signomial
Geometric
Program-

ming
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Table 1. Cont.

Reported
Articles

Type of
Model

Deterioration
Backlog-ging

Situation
Demand

Type
Preventing
Technology

Uncertainty
Solution

Procedure

This work
inventory

model

√ √ trapezoidal
demand

√
Interval

Different
variants of

QPSO
techniques

Singh and Rathore [50] proposed a trade credit policy-oriented inventory model for
deteriorating items under preservation facility. Tayal et al. [51] investigated a production
inventory model with a preservation facility for a deteriorating item. Mishra et al. [52]
formulated a deteriorated inventory model taking the impact of decaying reduction tech-
nology investment. They considered stock and price-dependent demand with shortages in
their model. Mishra et al. [53] proposed an inventory model with a preservation facility for
the deteriorating item under a trade credit facility. Bardhan et al. [54] applied the concept of
reduction technology in the modeling of inventory control Shah et al. [55] proposed an in-
ventory model with preservation investment Das et al. [56] introduced an inventory model
with price dependent demand under preservation investment and backlogging. Khanna
and Jaggi [57] formulated an inventory model with a preservation facility considering the
price and stock-dependent demand.

In the existing literature, several research works are available for solving the interval-
valued optimization problem. Bhunia and Shaikh [22] developed a two-warehouse in-
ventory model for the deteriorating item under inflation with interval-valued inventory
cost. Bhunia et al. [23] introduced a production inventory model with a reliability factor of
the product in an interval environment. Shaikh et al. [28] proposed an inventory model
for stock-dependent demand with inventory costs as interval-valued. Rahman et al. [58]
studied an inventory model in interval environment with parametric approach of interval.
To the best of our knowledge, no one solved the inventory model with trapezoidal demand
for deteriorating items considering preservation facility, partially backlogged shortages
along interval-valued inventory costs. The proposed work is developed for decaying items
considering trapezoidal type demand, preservation technology, and completely backlogged
shortages. Also, the cost of inventory parameters is considered interval-valued. Due to the
consideration of interval-valued inventory cost parameters, the corresponding optimization
problem is converted into an interval-valued optimization problem. Also, this optimization
problem is highly nonlinear in nature. So, it cannot be solved with the help of classical
and numerical gradient-based optimization techniques. Due to this limitation, interval
order relation and different variants of the quantum-behaved particle swarm optimization
technique (QPSO) are used. These techniques are modified with the interval fitness to
solve the interval-valued optimization problem. Finally, sensitivity analyses are presented
graphically for Example 3 to show the impact on the best found (optimal) policies.

The remaining paper is organized in the following ways: Section 2 represents notations.
In Section 3, assumptions of the proposed model are mentioned. Mathematical formulations
are derived in Section 4. Section 5 represents the numerical solution of the proposed model.
A sensitivity analysis is performed in Section 6. Section 7 represents some managerial
insight into the proposed model. Finally, a conclusion is made in Section 8.
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2. Notation

S Initial inventory level

D(t) Time-dependent trapezoidal demand rate

a, c, b, e1 Constant demand parameters

θ Constant deterioration rate

D′ Total deteriorated units throughout the business period[
CpL, CpU

]
Purchasing cost ($)/unit.[

p′L, p′U
]

Interval valued salvage value ($)/unit
(

p′U < CpL )

ξ Preservation cost ($)/unit/unit time

m(ξ) Preservation technology function

[C0L, C0U ] Replenishment cost ($)

[ChL, ChU ] Interval valued inventory holding cost ($)/unit/unit time

p Selling price ($)/unit

t1 Stock-in period

T Cycle length

R Maximum shortage level

γ1, γ2
Time points of trapezoidal demand in which the demand
becomes constant during the time period [γ1, γ2]

SR Sales revenue

[cbL, cbU ] Interval valued shortage cost/unit/unit time

[clL, clU ] Interval-valued lost-sale cost

δ Backlogging rate

TC Crisp valued total system cost ($)

[TCL, TCU ] Interval-valued total cost of the system ($)

Z/[ZL, ZU ] Crisp/ Interval valued average profit ($)

3. Assumptions

Basically, the proposed model is developed based on trapezoidal type demand, dete-
rioration, preservation facility, backlogged shortage, and interval-valued inventory costs.
The following assumptions are considered before developing this type of particular inven-
tory model.

(i) The replenishment rate is infinite.
(ii) The demand pattern is following a trapezoidal function of time whose mathematical

form is as follows (the pictorial view is shown in Figure 1):

D(t) =

⎧⎨
⎩

a + bt, t ≤ γ1
c, γ1 < t ≤ γ2
c− e1(t− γ2), γ2 < t ≤ T

(iii) The deterioration rate θ(0 < θ << 1) is constant.
(iv) To prevent the decaying rate, deterioration reduction technology is incorporated

on the item, and a preservation technology functions m(ξ) = a1ξ
1+a1ξ , a1 > 0 or

m(ξ) = 1− exp(−a2ξ), a2 > 0 is considered Hsu et al. [59], Hasan et al. [60], Ma-
sud et al. [61], Dye [42], Yang et al. [62], and Das et al. [56,63]. It should be noted that
m(ξ) is an increasing function with m′′ (ξ) < 0.

(v) Various costs related to inventory, like purchasing cost, holding cost, ordering cost are
known and interval types due to the uncertainty of marketing price.
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(vi) Shortages are allowed and it is completely backlogged.

  
  

Figure 1. Pictorial representation of trapezoidal demand pattern function of the demand rate.

4. Mathematical Formulation

It is assumed that before the beginning of an inventory cycle, an enterprise makes
an order of (S + R) units of a perishable item. After receiving the lot at the beginning
(t = 0), R units are utilized to satisfy the backlogged quantities of an earlier cycle and the
remaining stock becomes S units. After that, the level of inventory gradually decreases
due to the combined effects of deterioration and customers’ requirements. Finally, at the
time point, t = t1, the level of inventory reaches zero. Thereafter, the stock-out situation
occurs and at the end of the cycle i.e., at time point t = T along with the maximum shortage
R units. Then the entire cycle is repeating itself.

According to the assumptions, the behavior of inventory level at any time t can be
presented with the help of the following differential Equations:

q′(t) = −D(t)− θ{1−m(ξ)}q(t), 0 ≤ t ≤ t1 (1)

q′(t) = −D(t), t1 < t ≤ T (2)

with q(t1) = 0.
From the demand function, one can easily obtain the relations γ1 = (c− a)/b, and

γ2 = T − (c− a)/e1. Depending upon the time t1, γ1 and γ2, three cases may arise:
Case-I: 0 ≤ t1 ≤ γ1
Case-II: γ1 < t1 ≤ γ2
Case-III:γ2 < t1 ≤ T
Now, all the cases are discussed in detail.
Case-I: 0 ≤ t1 ≤ γ1
The level of inventory depletes due to the trapezoidal type of demand and constant

decaying rate with preservation technology during the time period [0, t1] and it becomes
empty at time t = t1 (see Figure 2). Then from Equations (1) and (2), one can write

q′(t) = −(a + bt)− kq(t) , 0 < t ≤ t1 (3)

q′(t) = −δ(a + bt), t1 < t ≤ γ1 (4)

q′(t) = −δc , γ1 < t ≤ γ2 (5)

and
q′(t) = −δ{c− e1(t− γ2)} , γ2 < t ≤ T (6)

with the conditions
q(0) = S, q(t1) = 0 and q(T) = −R (7)

where k = θ{1−m(ξ)}.
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Figure 2. Pictorial representation of inventory situation under Case-I.

The solutions of the differential Equations (3)–(6) with the condition (7) are given by

q(t) = −
(

a + bt
k

− b
k2

)
+

{
a + bt1

k
− b

k2

}
exp{k(t1 − t)}, 0 ≤ t ≤ t1 (8)

q(t) = δ

{
a(t1 − t) +

b
2
(t2

1 − t2)

}
, t1 < t ≤ γ1 (9)

q(t) = δ{c(γ1 − t) + k1}, γ1 < t ≤ γ2 (10)

q(t) = δ

{
k2 + cγ2 +

e1

2
γ2

2 − ct + e1

(
t2

2
− γ2t

)}
, γ2 < t ≤ T (11)

where k = θ{1−m(ξ)}

k1 = q(γ1) = a(t1 − γ1) +
b
2

(
t2
1 − γ2

1

)
k2 = q(γ2) = c(γ1 − γ2) + k1

k3 = cγ2 +
e1

2
γ2

2 + k2

Again, condition (7) implies

S = q(0) =
(

a + bt1

k
− b

k2

)
exp(kt1)−

(
a
k
− b

k2

)
(12)

As at the time t = T, q(t) = −R, so the maximum shortage level R is given by

R = δ

{
cT − e1

(
T2

2
− γ2T

)
− k2 − cγ2 − e1

2
γ2

2

}

The number of units that deteriorated during the time [0, t1] is given by

D′ = S−
t1∫
0

D(t)dt = S−
t1∫
0
(a + bt)dt

= S− at1 − b
2 t2

1

(13)
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The total salvage value throughout the cycle T is given by
[
p′L, p′U

]
D′.

The bounds of the carrying cost are ChLH1 and ChU H1, where

H1 =

t1∫
0

q(t)dt=
(

a + bt1

k2 − b
k3

)
{exp(kt1)− 1} − at1

k
+

bt1

k2 +
bt2

1
2k

Again, the total shortage of units throughout the entire cycle [t1, T] are given by

SC = −
T∫

t1

q(t)dt = −
γ1∫
t1

q(t)dt−
γ2∫

γ1

q(t)dt−
T∫

γ2

q(t)dt

= δ

{
aγ1

( γ1
2 − t1

)
+ bγ1

2

(
γ2

1
3 − t2

1

)
+ a t2

1
2 + b

3 t3
1

}
+ δ

{
cγ2

( γ2
2 − γ1

)− k1γ2 +
c
2 γ2

1 + k1γ1
}

+δ

{
cT2

2 − e1T2( T
6 − γ2

2 )− k3T − c
2 γ2

2 − e1
γ3

2
3 + k3γ2

}

The total shortage cost for the entire cycle is [cbL, cbU ]SC.
Lost sale cost,

[LSCL, LSCU ] = [clL, clU ](1− δ)

[
γ1∫
t1

(a + bt) dt +
γ2∫

γ1

c dt +
T∫

γ2

{c− e1(t− γ2)} dt

]

= [clL, clU ](1− δ)
[

a(γ1 − t1) +
b
2
(
γ2

1 − t2
1
)
+ c(T − γ1)− e1

2 (T − γ2)
2
]

Thus the bounds of lost sale cost are

LSCL = clL(1− δ)

[
a(γ1 − t1) +

b
2

(
γ2

1 − t2
1

)
+ c(T − γ1)− e1

2
(T − γ2)

2
]

and

LSCU = clU(1− δ)

[
a(γ1 − t1) +

b
2

(
γ2

1 − t2
1

)
+ c(T − γ1)− e1

2
(T − γ2)

2
]

Preservation cost = ζT per cycle
Ordering cost = [C0L, C0U ] per cycle

Sales revenue (SR) = p
t1∫

0

D(t)dt + pR = p
t1∫

0

(a + bt)dt + pR = p

(
at1 +

bt2
1

2

)
+ pR

System Cost:
The total system cost is given by

[TCL, TCU ]

where TCL = C0L +CpL(S+ R)+ChLH1 + cbLSC+LSCL + ζT, and TCU = C0U +CpU(S+
R) + ChU H1 + cbUSC + LSCU + ζT.

Profit Function:
So, the profit function per unit time Z with respect to two variables t1 and ξ.
Hence, the profit per unit time is given by [ZL(t1, ξ), ZU(t1, ξ)], where ZL(t1, ξ) =

1
T [SR + p′LD′ − TCU ] and ZU(t1, ξ) = 1

T
[
SR + p′U D′ − TCL

]
.

Therefore, the related optimization problem can be written as:
Maximize [ZL(t1, ξ), ZU(t1, ξ)],
With the conditions t1, ξ > 0.
Case-II: γ1 < t1 ≤ γ2
In this case, from the starting point of the cycle, the level of inventory depletes due to

the trapezoidal type demand and constant deterioration rate with preservation technology
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throughout the time period [0, t1] and it reaches zero level at the time t = t1 (see Figure 3).
Then, from Equations (1) and (2), we have

q′(t) = −(a + bt)− kq(t), 0 ≤ t ≤ γ1 (14)

q′(t) = −c− kq(t), γ1 < t ≤ t1 (15)

q′(t) = −δc , t1 < t ≤ γ2 (16)

and
q′(t) = −δ{c− e1(t− γ2)}, γ2 < t ≤ T (17)

with
q(t) = S at t = 0 and q(t) = 0 at (18)

where k = θ{1−m(ξ)}.

 

 

   

 

   

Figure 3. Pictorial representation of inventory situation under Case-II.

The solutions of the differential Equations (14)–(17) with the condition (18) are given by

q(t) = − a
k
− bt

k
+

b
k2 +

{
S +

a
k
− b

k2

}
exp(−kt), 0 < t ≤ γ1 (19)

q(t) =
c
k
[exp{k(t1 − t)} − 1], γ1 < t ≤ t1 (20)

q(t) = cδ(t1 − t), t1 < t ≤ γ2 (21)

q(t) = δ

{
−ct + e1

(
t2

2
− γ2t

)
+ k3

}
, γ2 < t ≤ T (22)

where k = θ{1−m(ξ)}

k1 =
[

c
k [exp{k(t1 − γ1)} − 1] + a

k +
bγ1

k − b
k2

]
exp(kγ1)

k2 = q(γ2) = c(t1 − γ2)

and k3 = k2 +

{
cγ2 + e1

γ2
2

2 )

}

Now, q(t) = S at t = 0 implies

S = q(0) =
b
k2 −

a
k
+ k1 (23)
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At the time t = T, q(t) = −R, so the highest shortage level R is given by

R = δ

{
cT − e1

(
T2

2
− γ2T

)
− k3

}

The total number of units that deteriorate throughout the period [0, t1] is given by

D′ = S−
t1∫
0

D(t)dt = S−
γ1∫
0
(a + bt)dt−

t1∫
γ1

cdt

= S− aγ1 − b
2 γ2

1 − c(t1 − γ1)

(24)

The total salvage value throughout the cycle time is [p′L, p′U ]D′.
The bounds of the carrying cost of the system are ChLH2 and ChU H2 where

H2 =
t1∫
0

q(t)dt =
γ1∫
0

q(t)dt +
t1∫

γ1

q(t)dt

=
[
− aγ1

k − b
2k γ2

1 +
bγ1
k2 + 1

k

(
S + a

k − b
k2

)
{1− exp(−kγ1)}

]
+ c

k2 [exp{k(t1 − γ1)} − k(t1 − γ1)− 1]
(25)

The total shortage unit throughout the period [t1, T] is given by

SC = −
T∫

t1

q(t)dt = −
γ2∫
t1

q(t)dt−
T∫

γ2

q(t)dt

= cδ
2 (γ2 − t1)

2 + δ
{

cT2

2 − e1

(
T3

6 − γ2T2

2

)
− k3T

}
− δ

{
cγ2

2
2 − e1

γ3
2

6 − k3γ2

} (26)

Preservation cost = ζT per cycle.
Ordering cost = [C0L, C0U ] per cycle.
The total shortage cost for the entire cycle T is [cbL, cbU ]SC.

Lost sale cost, [LSCL, LSCU ] = [clL, clU ](1 − δ)

[
γ2∫
t1

c dt +
T∫

γ2

{c− e1(t− γ2)} dt

]

= [clL, clU ](1− δ)
[
c(T − t1)− e1

2 (T − γ2)
2
]
.

Thus, the bounds of lost sale cost are

[LSCL, LSCU ] =
[
clL(1− δ)

{
c(T − t1)− e1

2
(T − γ2)

2
}

, clU(1− δ)
{

c(T − t1)− e1

2
(T − γ2)

2
}]

Sales revenue (SR)= p
t1∫

0

D(t)dt + pR = p

⎧⎨
⎩

γ1∫
0

(a + bt)dt +
t1∫

γ1

cdt

⎫⎬
⎭+ pR = p

{
aγ1 +

bγ2
1

2
+ c(t1 − γ1)

}
+ pR

System Cost:
The total system cost is given by [TCL, TCU ], where TCL = C0L +CpL(S+R)+ChLH2 +

cbLSC + LSCL + ζT and TCU = C0U + CpU(S + R) + ChU H2 + cbUSC + LSCU + ζT.
Profit Function:
So, the profit function Z is a function of two variables t1 and ξ.
Hence, the profit function can be written as [ZL(t1, ξ), ZU(t1, ξ)], where ZL(t1, ξ) =

1
T [SR + p′LD′ − TCU ] and ZU(t1, ξ) = 1

T
[
SR + p′U D′ − TCL

]
.

Again, the corresponding optimization problem is given by
Maximize [ZL(t1, ξ), ZU(t1, ξ)],
Subject to t1, ξ > 0.
Case-III: γ2 < t1 ≤ T
In this case, from the starting of the entire cycle, the inventory level depletes due to

the combined effect of constant decaying rate with preservation technology and demand

64



Mathematics 2022, 10, 78

of an item throughout the time period [0, t1]. Finally, it reaches to empty level at the time
t = t1 (see Figure 4). Then from Equations (1) and (2), we have

q′(t) = −(a + bt)− kq(t), 0 < t ≤ γ1 (27)

q′(t) = −c− kq(t), γ1 < t ≤ γ2 (28)

q′(t) = −{c− e1(t− γ2)} − kq(t), γ2 < t ≤ t1 (29)

and q′(t) = −δ{c− e1(t− γ2)} , t1 < t ≤ T (30)

with
q(0) = S, q(t1) = 0 and q(T) = −R. (31)

q(t) is also continuous at t = γ1 and γ2.
Solving the differential Equations (27)–(30) with the conditions (31) are given by

q(t) = − a
k
− bt

k
+

b
k2 + (S +

a
k
− b

k2 ) exp(−kt), 0 < t ≤ γ1 (32)

q(t) = − c
k
+ k4 exp{k(γ2 − t)}, γ1 < t ≤ γ2 (33)

q(t) = −
[

c
k
− e1(t− γ2)

k
+

e1

k2

]
+ k1 exp{k(t1 − t)}, γ2 < t ≤ t1 (34)

q(t) = δ

{
−ct + e1

(
t2

2
− γ2t

)
+ k7 − R

}
, t1 < t ≤ T (35)

where k = θ{1−m(ξ)},

k1 = c
k − e1(t1−γ2)

k + e1
k2 ,

k2 = c
k +

e1
k2 ,

k3 = −k2 + k1 exp{k(t1 − γ2)},
k4 = k3 +

c
k ,

k5 = − c
k + k4 exp{k(γ2 − γ1)},

k6 = a
k +

bγ1
k − b

k2 ,

k7 = cT − e1

(
T2

2 − γ2T
)

.

Now, q(0) = S implies

S = (k5 + k6) exp(kγ1)− a
k
+

b
k2 (36)

At the time t = T, q(t) = −R, so the highest shortage level R is given by

R = δ

{
k7 − ct1 + e1

(
t2
1
2
− γ2t1

)}

The total number of units deteriorated throughout the time t = 0 to t = t1 is

D′ = S−
t1∫

0

D(t)dt= S−
[

aγ1 + b
γ2

1
2

+ c(t1 − γ1)− e1

2
(t1 − γ2)

2

]
(37)
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Figure 4. Pictorial representation of inventory situation under Case-III γ2 < t1 ≤ T.

The total salvage value throughout the period is
[
p′L, p′U

]
D′.

The bounds of the carrying cost of the system are ChLH3 and ChU H3 where

H3 =
t1∫
0

q(t)dt =
γ1∫
0

q(t)dt +
γ2∫

γ1

q(t)dt +
t1∫

γ2

q(t)dt

= 1
k

(
S + a

k − b
k2

)
{1− exp(−kγ1)} −

(
aγ1

k +
bγ2

1
2k − bγ1

k2

)
+ k4

k [exp{k(γ2 − γ1)} − 1]− c
k ((γ2 − γ1))

+ k1
k [exp{k(t1 − γ2)} − 1]−

[
c
k (t1 − γ2)− e1

2k (t1 − γ2)
2 + e1

k2 (t1 − γ2)
]

The total shortage of units throughout the period [t1, T] is given by

SC = −
T∫

t1

q(t)dt= δ

{
(R− k7)(T − t1) +

1
2
(c− γ2)

(
T2 − t2

1

)
− e1

6

(
T3 − t3

1

)}

Preservation cost = ζT per cycle,
Ordering cost = [C0L, C0U ] per cycle,
The total shortage cost for the entire cycle T is [cbL, cbU ]SC.
The lost sale cost is given by

[LSCL, LSCU ] = [clL, clU ](1− δ)

⎡
⎣ T∫

t1

{c− e1(t− γ2)} dt

⎤
⎦ = [clL, clU ](1− δ)

[
c(T − t1)− e1

2

{
(T − γ2)

2 − (t1 − γ2)
2
}]

Thus, the bounds of lost sale cost are

LSCL = clL(1− δ)
[
c(T − t1)− e1

2

{
(T − γ2)

2 − (t1 − γ2)
2
}]

and LSCU = clU(1− δ)
[
c(T − t1)− e1

2

{
(T − γ2)

2 − (t1 − γ2)
2
}]

.

Sales revenue (SR) = p
t1∫
0

D(t)dt+ pR= p
[

aγ1 +
bγ2

1
2 + c(t1 − γ1)− e1

2 (t1 − γ2)
2
]
+ pR

System Cost:
The total system cost is given by [TCL, TCU ], where TCL = C0L +CpL(S+R)+ChLH3 +

cbLSC + LSCL + ζT and TCU = C0U + CpU(S + R) + ChU H3 + cbUSC + LSCU + ζT.
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Profit Function:
So, the profit function Z is a function concerning two variables t1 and ξ.
Hence, the profit per unit time can be written as [ZL(t1, ξ), ZU(t1, ξ)], where ZL(t1, ξ) =

1
T [SR + p′LD′ − TCU ] and ZU(t1, ξ) = 1

T
[
SR + p′U D′ − TCL

]
.

Again, the related optimization problem can be written as

Maximize [ZL(t1, ξ), ZU(t1, ξ)] (38)

subject to t1, γ2, ξ > 0 and t1 > γ2.

5. Numerical Illustration

To validate and also to illustrate the proposed models, three numerical examples are
considered and solved. The best-found solutions for the feasible cases of each example are
shown in Tables 2–10. To solve each optimization problem of the hypothetical inventory
model, different variants of QPSO, viz. GQPSO, AQPSO, and WQPSO techniques are
used and these algorithms are coded in C language. The corresponding computational
works are performed on a laptop with the configuration Intel core i-3 with 2.40 GHz 7th
generation processor in the Linux operating system. Every algorithm is run 50 times
independently to solve each example. It is also to be mentioned that the obtained results
are called best-found solutions which are either optimal or nearer to the optimal solution.
The corresponding results of these computations are shown in Tables 2–4 for Example 1,
Tables 5–7 for Example 2, and Tables 8–10 for Example 3.

Example 1. The values of different parameters of the proposed models are as follows:
CpL = $12/unit, CpU = $14/unit, p = $32/unit, a = 15, b = 2.8, c = 70, C0L = $95/order,

C0U = $105 /order, e1 = 15, ChL = $0.9/unit, ChU = $1.1/unit, θ = 0.1, a2 = 0.1,
cbL = $1.5/unit/unit time, cbU = $2.5/unit/unit time, p′L = $7.5/unit, p′U = $9.5, clL = $0.7,
clU = $0.9, δ = 0.2 and T = 24 weeks.

For the above hypothetical data, Case-I is feasible whereas the rest two cases are infea-
sible. It indicates that the other constraints are not satisfied with this particular example.
The best-found, worst found solutions and statistical results are shown in Tables 2–4.

Table 2. Best found results for Case-I of Example 1.

Types of
QPSO

ZL
(in $)

ZU
(in $)

ZC
(in $)

Zr
t1

(Weeks)
γ1

(Weeks)
γ2

(Weeks)
ξ S R

Computational
Time

(s)

GQPSO 145.4559 289.9762 217.7161 72.26013 17.6825 19.6429 20.3333 35.5954 724.7227 67.2026 0.0308

AQPSO 145.456 289.9762 217.7161 72.26011 17.6825 19.6429 20.3333 35.5954 724.7224 67.2027 0.0221

WQPSO 145.456 289.9762 217.7161 72.2601 17.6825 19.6429 20.3333 35.5954 724.7223 67.2027 0.0542

Table 3. Worst found results for Case-I of Example 1.

Types of
QPSO

ZL
(in $)

ZU
(in $)

ZC
(in $)

Zr
t1

(Weeks)
γ1

(Weeks)
γ2

(Weeks)
ξ S R

Computational
Time

(s)

GQPSO 145.456 289.9762 217.7161 72.26011 17.6825 19.6429 20.3333 35.5954 724.7227 67.2027 0.037

AQPSO 145.456 289.9762 217.7161 72.26012 17.6825 19.6429 20.3333 35.5954 724.7225 67.2027 0.0287

WQPSO 145.456 289.9762 217.7161 72.2601 17.6825 19.6429 20.3333 35.5954 724.7224 67.2027 0.0656

Example 2. The values of different parameters are given as follows:
CpL = $12/unit, CpU = $14/unit, p = $32/unit, a = 15, b = 10, c = 65, C0L =

$95/order, C0U = $105 /order, e1 = 15, ChL = $0.9/unit, ChU = $1.1/unit, θ = 0.1, a2 = 0.1,
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cbL = $1.5/unit/unit time, cbU = $2.5/unit/unit time, p′L = $7.5/unit, p′U = $9.5, clL = $0.7,
clU = $0.9, δ = 0.2 and T = 24 weeks.

Table 4. Statistical Analysis for various types of QPSO for Case-I of Example 1.

Types of QPSO
Best Found ZC

(in $)
Worst Found ZC

(in $)
Mean of ZC

(in $)
Standard
Deviation

GQPSO 217.7161 217.7161 217.7161 0

AQPSO 217.7161 217.7161 217.7161 0

WQPSO 217.7161 217.7161 217.7161 0

For the above hypothetical data, Case-II is feasible whereas the rest two cases are in-
feasible. It indicates that the other constraints are not satisfied with this particular example.
The best-found, worst found solutions and statistical results are shown in Tables 5–7.

Table 5. Best found solutions for Case-II of Example 2.

Types of
QPSO

ZL
(in $)

ZU
(in $)

ZC
(in $)

Zr
γ1

(Weeks)
t1

(Weeks)
γ2

(Weeks)
ξ S R

Computational
Time

(s)

GQPSO 271.0675 463.4415 367.2545 96.18704 5.0000 17.7892 20.6667 38.1136 1053.8824 64.0743 0.0087

AQPSO 271.0675 463.4415 367.2545 96.18699 5.0000 17.7891 20.6667 38.1136 1053.8817 64.0744 0.0054

WQPSO 271.0675 463.4415 367.2545 96.18699 5.0000 17.7891 20.6667 38.1136 1053.8818 64.0744 0.0123

Table 6. Worst found results for Case-II of Example 2.

Types of
QPSO

ZL
(in $)

ZU
(in $)

ZC
(in $)

Zr
γ1

(Weeks)
t1

(Weeks)
γ2

(Weeks)
ξ S R

Computational
Time

(s)

GQPSO 271.0675 463.4415 367.2545 96.18699 5.0000 17.7891 20.6667 38.1136 1053.8817 64.0744 0.0098

AQPSO 271.0675 463.4415 367.2545 96.187 5.0000 17.7892 20.6667 38.1136 1053.8818 64.0744 0.0062

WQPSO 271.0675 463.4415 367.2545 96.18699 5.0000 17.7891 20.6667 38.1136 1053.8818 64.0744 0.0163

Table 7. Statistical analysis for different types of QPSO for Case-II of Example 2.

Types of QPSO
Best Found ZC

(in $)
Worst Found ZC

(in $)
Mean of ZC

(in $)
Standard
Deviation

GQPSO 367.2545 367.2545 367.2545 0

AQPSO 367.2545 367.2545 367.2545 0

WQPSO 367.2545 367.2545 367.2545 0

Example 3. The input values of different system parameters are given as follows:
CpL = $12/unit, CpU = $14/unit, p = $32/unit, a = 15, b = 40, c = 85, C0L =

$95/order, C0U = $105 /order, e1 = 3.5, ChL = $0.9/unit, ChU = $1.1/unit, θ = 0.1, a2 = 0.1,
cbL = $1.5/unit/unit time, cbU = $2.5/unit/unit time, p′L = $7.5/unit, p′U = $9.5, clL = $0.7,
clU = $0.9, δ = 0.2 and T = 24 weeks.

For the above hypothetical data, Case-III is feasible whereas the rest two cases are
infeasible. It indicates that the other constraints are not satisfied with this particular
example. The best-found, worst found and statistical results are shown in Tables 8–10.
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Table 8. Best found results for Case-III of Example 3.

Types of
QPSO

ZL
(in $)

ZU
(in $)

ZC
(in $)

Zr
γ1

(Weeks)
γ2

(Weeks)
t1

(Weeks)
ξ S R

Computational
Time

(s)

GQPSO 345.2759 438.5276 391.9018 46.62583 1.7500 4.0000 6.5651 10.3321 703.4356 158.6968 0.0103

AQPSO 345.2928 438.5107 391.9017 46.60898 1.7500 4.0000 6.5637 9.8094 703.2428 158.7168 0.0054

WQPSO 345.2759 438.5276 391.9018 46.62583 1.7500 4.0000 6.5651 24.0148 703.4356 158.6968 0.0139

Table 9. Worst found results for Case- III of Example 3.

Types of
QPSO

ZL
(in $)

ZU
(in $)

ZC
(in $)

Zr
γ1

(Weeks)
γ2

(Weeks)
t1

(Weeks)
ξ S R

Computational
Time

(s)

GQPSO 345.2759 438.5276 391.9018 46.62583 1.7500 4.0000 6.5651 14.5762 703.4356 158.6968 0.0124

AQPSO 338.219 443.7263 390.9726 52.75365 1.7500 4.0000 7.0334 15.4843 772.9438 151.6534 0.0054

WQPSO 345.2759 438.5276 391.9018 46.62583 1.7500 4.0000 6.5651 13.0511 703.4356 158.6968 0.019

Table 10. Statistical Analysis for different variants of QPSO for Case-III of Example 3.

Types of QPSO
Best Found ZC

(in $)
Worst Found ZC

(in $)
Mean of ZC

(in $)
Standard
Deviation

GQPSO 391.9018 391.9018 391.9018 0

AQPSO 391.9017 390.9726 391.714238 0.270107162

WQPSO 391.9018 391.9018 391.9018 0

6. Discussions

• Tables 2 and 3, represent that the average profit/mid-value of the profit (ZC) obtained
by using GQPSO, AQPSO and WQPSO techniques be the same up to certain decimal
places. Also, it should be noted that the AQPSO technique takes less computational
time to find the best-found solution.

• It is clear from Tables 5 and 6 that the average profit (ZC) obtained by using GQPSO,
AQPSO and WQPSO techniques be the same up to certain decimal places. It is
observed that the AQPSO technique takes less time to find the best-found solution.
To solve this particular problem AQPSO is taking the least time. It does not give any
guarantee that AQPSO always takes less time, it may vary from problem to problem.

• From Tables 9 and 10, it is also remarked that the average profit obtained by using
GQPSO and WQPSO techniques be the same up to certain decimal places although it
is different when applying the AQPSO technique. In this case, the AQPSO technique
takes less time to find the best-found solution. From Tables 4 and 7, it is remarked
that the statistical results assured that the GQPSO, AQPSO, and WQPSO algorithms
equally perform and they are equally efficient to find the best-found solutions for
Examples 1 and 2. From Table 10, it is also remarked that the statistical results assured
that the GQPSO and WQPSO algorithms equally perform and they are equally efficient
to find the best-found solutions for Examples 3.

• From Table 2, Table 5and Table 8, it is remarked that the best-found value of average
profit (ZC) of Examples 1, 2, and 3 lie in between the bounds of the best found (optimal)
value of interval-valued average profit of Examples 1, 2, and 3. So, the study of the
best found (optimal) policy in an interval environment is well validated.

7. Sensitivity Analysis

For Example 2, sensitivity analyses are performed to observe the effect of different
parameters on the center of the average profit (ZC), initial inventory level (S), maximum
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shortage level (R), stock-in period (t1), and preservation technology cost (ξ). This experi-
ment is performed by the GQPSO technique and it is obtained by changing each bound of
a parameter by −20% to +20% keeping the values of the rest parameters as their original
input values. For each problem, the best-found results are taken from 50 independent runs.
The detailed analyses are depicted in Figures 5–10.

 

Figure 5. Impact of post optimality analysis of ‘p’ on ZC, t1, S, R, and ξ.

 

Figure 6. Impact of post optimality analysis of ‘a’ on ZC, t1, S, R, and ξ.

 

Figure 7. Impact of post optimality analysis of ‘
[
CpL, CpU

]
’ on ZC, t1, S, R, and ξ.
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Figure 8. Impact of post optimality analysis of ‘a2’ on ZC, t1, S, R, and ξ.

 

Figure 9. Impact of post optimality analysis of ‘[cbL, cbU ]’ on ZC, t1, S, R, and ξ.

 

Figure 10. Impact of post optimality analysis of ‘e1’ on ZC, t1, S, R, and ξ.

From the Figures 5–10, following implications can be observed.

(i) The center of average profit (ZC) is highly sensitive w. r. to the selling price (p) and
interval-valued purchase cost (

[
CpL, CpU

]
).Again, ZC is less sensitive w. r. to interval-

valued shortage cost ([cbL, cbU ]), demand parameter, (a) and preservation parameter
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(a2) whereas it is insensitive w. r. to demand parameter (e1). Further,
[
CpL, CpU

]
and

[cbL, cbU ] both have a reverse effect on the average profit.
(ii) Stock-in period (t1) is less sensitive w. r. to the selling price (p), purchase cost([

CpL, CpU
])

, shortage cost ([cbL, cbU ]), demand parameter (a2) and demand parame-
ter (e1). Again, T is insensitive with respect to preservation parameter (a2). Further,
the parameters ‘a’, ‘

[
CpL, CpU

]
’, ‘[cbL, cbU ]’, ‘e1’ all have inverse effect on the business

period ’t1’.
(iii) Initial inventory level (S) is less sensitive w. r. to purchase cost

[
CpL, CpU

]
and

with respect to selling price (p), demand parameter (a) and ([cbL, cbU ]). Again, it is
insensitive with respect to preservation parameter a2 and e1. Further, it is observed
that for the positive changes of the parameters ‘a’, ‘[cbL, cbU ]’, ‘e1’, the initial inventory
level (S) changes inversely.

(iv) The highest shortages level (R) is highly sensitive w. r. to selling price (p) and demand
parameter purchase cost

([
CpL, CpU

])
but (p) has the reverse effect on ‘R’. Further,

it is less impact w.r.to demand parameter (a), preservation parameter (a2), [cbL, cbU ]
and demand parameter (e1). Further, it is noted that (p)[cbL, cbU ] and have a reverse
effect on ‘R’.

(v) Preservation cost (ξ) is equally sensitive w. r. to preservation parameter (a2) and it is
less sensitive w. r. to the selling price (p) and w. r. to [cbL, cbU ]. Again, it is insensitive
w. r. to parameters a,

[
CpL, CpU

]
and e1.

8. Managerial Implications

From the earlier observations, the following managerial insights may be suggested:

• The selling price of the item (p) and interval-valued purchasing cost (
[
CpL, CpU

]
) have

a significant impact on the retailer’s profit per unit time. So, the decision-maker should
think about the selling price of the item to increase the customers’ demand as well as
the smooth running of their business.

• To reduce the natural effect of the deterioration of products in the stock-in situation,
preservation technology should be used to increase the average profit of the system.

• The proposed model is more appropriate for seasonal products e.g., fruits, vegetables,
seasonal fishes, etc. At the beginning of the season, the demand for such type of the
product increases then after a certain period it becomes stable. Finally, the demand
for the product declined up to a certain level throughout the business period. So, the
business period may be fixed. Keeping in mind this type of behavior of the demand
of the sessional product, decision-maker should make the proper business plan to
increase their profit.

9. Conclusions

In this study, an inventory model is developed for deteriorating items considering
trapezoidal type demand and preservation technology to reduce the deterioration. Short-
ages are partially backlogged and inventory costs parameters are as interval-valued. Then
the corresponding profit maximization problem is developed. Three different variants of
QPSO techniques GQPSO, AQPSO, and WQPSO are used to solve this profit maximization
problem. Finally, sensitivity analyses are studied graphically for Example 2 to study the
impact of different parameters on the best-found policy. Also, from the statistical analysis,
it is observed that both the techniques GQPSO and WQPSO are equally efficient to solve
the optimization problems with interval-valued objectives.

The proposed trapezoidal type of demand is observed in the case of seasonal prod-
ucts. To reduce the natural phenomenon of deterioration, consideration of preservation
technology makes more realistic in the modeling of inventory problems.

This work can be extended in various ways. One may consider the advertisement
numbers/ cost, time, selling price as well as displayed stock level dependent demand, non-
linear holding cost, inflation, etc. Furthermore, this work can be extended by considering
trade credit policy, discount facility, advance payment policy.
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Abstract: Techniques and methods of linear optimization underwent a significant improvement in
the 20th century which led to the development of reliable mixed integer linear programming (MILP)
solvers. It would be useful if these solvers could handle mixed integer nonlinear programming
(MINLP) problems. Piecewise linear approximation (PLA) is one of most popular methods used
to transform nonlinear problems into linear ones. This paper will introduce PLA with brief a
background and literature review, followed by describing our contribution before presenting the
results of computational experiments and our findings. The goals of this paper are (a) improving
PLA models by using nonuniform domain partitioning, and (b) proposing an idea of applying
PLA partially on MINLP problems, making them easier to handle. The computational experiments
were done using quadratically constrained quadratic programming (QCQP) and MIQCQP and they
showed that problems under PLA with nonuniform partition resulted in more accurate solutions and
required less time compared to PLA with uniform partition.

Keywords: mixed integer nonlinear programming; piecewise linear approximation; branch and bound

1. Introduction

The rapid advances of Linear Programming (LP), Non-Linear Programming (NLP),
and Mixed Integer Linear Programming (MILP) techniques and algorithms in the 20th
century led to the development of robust MILP solvers that can easily handle problems
with millions of variables. On the other hand, methods that deal with Mixed Integer Non-
Linear Programming (MINLP), which is the most difficult class of optimization, started
to improve recently. Even with the current improvements in the MINLP solvers, it would
be a great step forward if MINLP problems could be solved globally by MILP solvers.
In principle, this can be done by approximating the MINLP problem by an MILP one,
but solving this approximation by an MILP solver will probably be harder than solving
the original problem by an MINLP solver. Recent discussions about software solvers and
their development can be found in [1,2]. More detail about MINLP and their algorithms
can be found in [3–6], and a recent general survey was introduced by [7]. For some real life
optimization applications, we refer to [8–11].

One of the methods to remodel MINLP as MILP is the piecewise linear approximation
(PLA) ([7]). This method takes an advantage of the fact that any continuous function can
be approximated by a piecewise linear one. Replacing every nonlinear function in the
MINLP model by their PLAs will yield an MILP model. Because of the size of the new
approximated model, the PLA was not introduced to do full approximations to the MINLP
models. Instead, it was used mostly to find linear under/over estimators to some of the
functions involved in the models.

The procedures of approximating a nonlinear function f (x), where x ∈ [xl , xu] ⊆ R,
by a piecewise Linear (PL) function are simple. First, the domain of the variables x is
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divided into n intervals by introducing the breakpoints x0 = xl < x1 < x2 < · · · < xn = xu.
Then the function f is evaluated at each breakpoint, and the lines that connect the points
(xi, f (xi)) and (xi+1, f (xi+1)) form the desired PL function, denoted by f . The PLA idea
was also extended to higher dimensional functions.

Increasing the number of breakpoints will increase the accuracy of the approximation,
but it will result in problem size growth. This major drawback may restrict the PLA
benefits to functions of only few dimensions. Ref. [12] discuss minimizing the number
of breakpoints needed to approximate a nonlinear function up to a given tolerance. This
subject will not be discussed here. When doing PLA, introducing breakpoints requires
adding both binary and continuous variables to the optimization problem in addition to
new constraints. This is done by setting the binary variables to be SOS1 or SOS2 (please
see [13]). The number of the new variables and constraints may increase exponentially with
the number of dimensions of the function and it varies depending on the model used to do
the PLA.

The following section will present a brief literature review on the PLA modeles.
The remainder of the paper is organized as follows: in Section 2, few approaches on how to
improve the PLA models are introduced. One approach shows how to take an advantage of
a local solution to choose the breakpoints by nonuniform partitioning, and our contribution
will be using this partitioning to produce better PLA. The other approach is to apply the
PLA on only a part of the optimization problem. The computational results are given in
Section 3, where the tests are applied to continuous and discrete problems.

Literature Review

PLA dates back to the 1950s (see, for example, [14–16]), and since then, many PLA
models were introduced. The convex combination model (CC) (also called the λ-model
in some sources) is one of the most common PLA models and it was introduced by [15].
Another model that was introduced by [14] is the incremental model. The incremental
model requires one less binary variable and one less continuous variable compared to the
CC model, but it needs nearly twice the number of new constraints. Modifications were
done to the CC model and the incremental model resulting in the disaggregated convex
combination model ([16,17]) and the multiple choice model ([18]), respectively. Piecewise
linear relaxation techniques are widely used by many algorithms, and these techniques are
different from PLA, even though they share some steps. In this paper, we are interested
only on PLA, and we refer to [19–21], for further reading about piecewise linear relaxations.

The efficiency of MILP solvers will be affected if the PLA is done using many break-
points, especially for higher dimensional functions. More accurate PLA can be obtained by
increasing the number of breakpoints, but in all models mentioned above, the introduced bi-
nary variables will be almost as many as the breakpoints. Therefore the MILP solvers might
not be able to deal with the size of the resulting MILP problem. Introducing less breakpoints
will result in small approximated problems but it might lead to a bad approximation.

Many attempts have been made to deal with the size issues, but these attempts do not
resolve the problem completely. A major improvement in this area took a place when [22,23]
introduced a technique that allows PLA models to use dramatically fewer binary variables.
They applied the technique to both versions of the convex combination model and denoted
it by logarithmic model, and it was later applied to other PLA models. To do the PLA
with n + 1 breakpoints using the logarithmic model, only �log2 n� binary variables are
required, instead of approximately n required by other PLA models. In this paper, we will
use the CC and logarithmic disaggregated convex combination (LOG) models to do the
computational experiments on quadratically constrained quadratic programming (QCQP)
and Mixed Integer QCQP (MIQCQP).

A good overview of the models mentioned in this section is presented by [24], and it
was shown that they are equivalent in terms of the feasibility of their solutions. In term of
tightness, it is desired for a PLA model to be locally ideal (the vertices of its LP relaxation
satisfy the integrality constraints of the original MINLP problem). Ref. [25] shows that
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the incremental model is superior to the CC model since the incremental model is locally
ideal (this is supported by the computational comparison that will be discussed below).
Ref. [23] proves that all PLA models mentioned earlier are locally ideal except the CC
model. However, the CC model has the sharpness property, i.e,. the projection of the
vertices of the model onto the original set of the variables is exactly the convex hull of the
set. Moreover, it can be shown that any locally ideal model is sharp. More recent theoretical
comparison between the models was given by [26].

In the computational experiments made by [23], they approximated functions with one
variable in 100 test instances, and used CPLEX to solve the PLAs. It was observed that for
less than 10 breakpoints, all models performed well with the multiple choice model being
slightly better. As the number of breakpoints increases, the logarithmic models started to
gain the upper hand. When 33 breakpoints were used, the logarithmic models are almost
20 times faster than the incremental model, which is more than two times faster than the
CC and multiple choice models. The disaggregated convex combination is much slower
than the rest. Similar outcomes resulted from testing 100 problems where the approximated
functions have two variables. A less extensive experiment was done by [27], and it was
concluded that in some cases, it is better to use the incremental model rather than the
logarithmic one, even though the latter has smaller size.

2. Improving PLA Models

In this section, a few approaches to improve the PLA models will be presented. Since
PLA requires introducing many binary and continuous variables and constraints, it was
not studied as a stand-alone method to solve MINLP problems until recently. It is usually
used as a tool in optimization algorithms to find local solutions or to under/over estimate
some of the nonlinear functions. For PLA models to completely transform an already
hard MINLP problem and produce an MILP problem that is easier than the original to be
handled, more improvements on these models are needed. Note that even if the targeted
problems in this paper have many variables, the PLA models will be applied separately
only to functions of two variables or less.

One approach to improve the models is to choose the breakpoints such that the
variable domain is nonuniformly partitioned. This approach was motivated by the desire
to produce an accurate approximation with reasonable problem size. Unfortunately, this
is rarely possible since an accurate approximation requires many breakpoints. One of
the methods to overcome this issue is to study how to partition a domain. Most existing
PLA models choose the locations of breakpoints based on a uniform partitioning of the
domain. The approach proposed in this section, namely a nonuniform partitioning, leads to
a better PLA model than the one produced by uniform partitioning with the same number
of breakpoints. The details are given in Section 2.1.

Another approach that will be presented in this section is applying the PLA partially to
problems with many nonlinear functions. Given a complicated MINLP problem, applying
the PLA to only some of its nonlinear constraints will not make the problem solvable
by an MILP solver, but it might make the problem less complicated for MINLP solvers.
The idea is to identify complicated nonlinear constraints and approximate some of them by
linear ones, then the modified problem is solved using MINLP solvers. An algorithm that
identifies these constraints and approximates them will be provided in Section 2.2.

2.1. Choosing Breakpoints by Nonuniform Partitioning

Most PLA models, that are used within the context of optimization, rely on uniform
partitioning of variable domains. A few methods to do nonuniform partitioning were
introduced within other contexts. For example, [28] used nonuniform partitioning to
approximate a one dimensional curve. The idea is to add more breakpoints in the part of
the domain where the function has higher curvature. This method is done by solving a
shortest path problem, and it was later used within the PLA approach for one and two
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dimension by [29]. Other methods were introduced to use nonuniform partitioning to get
piecewise convex/linear relaxations, such as the one proposed by [30].

The partitioning method suggested in this section is to build the partitioning around
a local solution. The density of breakpoints increases as they get closer from both sides
to the local solution, which itself is a breakpoint. Assume the local solution of a variable
l ≤ x ≤ u is x∗, then a possible partitioning is to have a breakpoint in the halfway in the
interval from the upper/lower bound to x∗, then another point halfway toward x∗ and so
on. This partitioning can be given by using the formulas

x∗ + u− x∗

ki and x∗ − x∗ − l
ki , (1)

for k = 2 and i = 1, 2, . . . , to get the breakpoint values on both sides of x∗, as shown in
Figure 1A.

l x∗ u

(A) k = 2

l x∗ u

(B) k = 1.7

l x∗ u

(C) k = 1.5

Figure 1. Partitioning Using the Formulas x∗ + u−x∗
ki and x∗ − x∗−l

ki .

The problem with the case k = 2 is that it leaves half of the interval between the
upper/lower bound and x∗ without any breakpoints, which may affect the accuracy of
the PLA. Thus, giving k different values between one and two, as in Figure 1B,C, may
yield better partitioning. It can be noticed that as k gets closer to one, the density of
breakpoints shifts away from x∗. If x∗ happened to be at or very close to one of the bounds,
the partitioning will be on one side only. In the case that the approximated function has
two variables, the same logic is applied to both domains.

The PLA using this partitioning was tested for many values of 1 < k < 2 against PLA
with uniform partitioning. The results show that models with nonuniform partitioning
were solved faster and yielded better solutions to most of the tested instances. Details
about the targeted optimization problems and the test results will be given in Section 3.

2.2. Partial PLA

In this section, PLA will be performed only on parts of a given MINLP problem,
instead of approximating all nonlinear functions. This is done by targeting complicated
nonlinear functions be handled by PLA, leaving the remaining functions unchanged.
The goal of this approach is to avoid introducing unnecessary variables that result from
approximating simple functions. To test this approach, an algorithm is introduced to
deal with problems having many nonlinear constraints by picking one constraint at every
iteration and approximating it, until enough constraints are replaced.

Assume the algorithm is applied to an MINLP problem with x∗ and f ∗ as its global
optimal solution and objective function value, respectively. The algorithm starts by solving
the problem (before doing any PLA) using an MINLP solver for a few nodes before it stops
the solving process when a specified number of nodes, N, is reached. Then all nonlinear
constraints are identified, and since the solving process was interrupted, using the current
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node solution will probably result in some of these constraints being violated. Now all
nonviolated constraint are considered to be easy since the solver was able to satisfy them
within few nodes, so the PLA will not be applied to these constraints.

Now the algorithm picks a constraint from the violated ones to be approximated
using a PLA model, and this constraint is suggested to be the most violated one. As a
result, the problem now has one less nonlinear constraint. Then the process is repeated
until the problem has no violated constraints. Note that some of the nonlinear constraint
will not be replaced, so the problem is still an MINLP one. At this point, the problem is
solved regularly to produce a solution x∗ to the modified problem with a function value
f
∗
. | f ∗ − f ∗| is evaluated and the solving times of the original and modified problems are

compared. Algorithm 1 shows the steps of the partial PLA approach on MIQCP problems,
for some ε > 0 and k ∈ N.

Algorithm 1: An algorithm that chooses some constraints to be approximated.

Input:MIQCP problem;
Output:MIQCP problem with up to k constraints being approximated;
while | f ∗ − f ∗| ≥ ε and iteration ≤ k do

start the solving process;
if solving is done before number of nodes reaches N then

set the current objective value = f ∗;
if | f ∗ − f ∗| ≥ ε then

add more breakpoints;
end

else
stop the solving process when the tree has N nodes;
identify the quadratic constraints;
if number of violated constraints ≥ 1 then

replace the most violated one with its PLA;
set f ∗ = ∞;

else

solve the PL problem and set the current objective value = f ∗;
end

end

end

With each iteration, one constraint is replaced by its PLA. Obviously, if k is large
enough, then all violated constraints will be replaced and the resulting problem will
probably be harder to solve because of the size. The computational experiments with
large k came as expected and produced extremely large problems. Then k was set to one,
i.e., PLA was applied to only the most violated constraint in the first iteration. For some
test instances, both PLA models, that were introduced in the previous section, produced
modified problems that were solved faster than the original ones, with similar solution and
objective value. As the number of replaced constraints increases, the modified problem
gets more complicated. Most of the tested instances appeared to be better off without PLA
if k ≥ 3. In Section 3, a summary of the test instances will be presented in addition to the
main findings on applying PLA to only parts of these instances.

3. Computational Experiments

This section presents detailed reports on computational experiments that target QCQP
and MIQCQP problems. The approaches that were introduced in the previous section
can be applied to MINLP problems, but they were implemented to test the quadratic
problems only. The same procedures can be applied to the MINLP problems by modifying
the code that implements the procedures to allow it to identify other non linear functions
beside the quadratic ones. Most of the chosen problems are not trivial and are based on
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different real world applications. The QCQP problems were taken from the kall instances
in the MINLPLib library (http://www.minlplib.org/index.html, accessed on 15 May 2021),
whereas the MIQCQP problems were taken from both MINLPLib and QPLIB (http://qplib.
zib.de/accessed on 15 May 2021). Two dimensional functions are involved in all of the
instances, so 2d PLA is required.

The nonlinear functions in the instances are approximated by linear ones using the
CC and LOG models. If the breakpoints needed for CC and LOG are determined using
nonuniform partitioning, then the models will be called NCC and NLOG. These four
models are also used to do partial PLA to the test instances by approximating all the
nonlinear functions in one constraint.

The code that implements the PLA models were written using PySCIPOpt (http:
//scip-interfaces.github.io/PySCIPOpt/docs/html/index.html, accessed on 15 May 2021),
which is a Python interface for the global solver SCIP. The tests were applied to the
instances several times before taking the average results. After the instance is read by SCIP,
all quadratic constraints (or general nonlinear constraints, in case the instance is an MINLP
one) are identified before the domain of every variable involved in a quadratic function
is partitioned (uniformly or nonuniformly). Then SCIP adds all necessary variables and
constraints needed to replace the targeted function. Finally, any quadratic constraint is
deleted from the instance and linear constraints, that approximate the deleted ones, are
added. Now the instance is written in a format that can be read by MILP solvers.

The local instance solutions, that are needed for the nonuniform partitioning, are
generated using the solver Knitro. The comparison between the uniform and nonuniform
partitioning is determined through solving the MILP problems resulting from applying
CC, LOG, NCC, and NLOG to the test instances. The MILP problems are solved using
CPLEX 12.10 with its default settings, and the computations are done in a Linux machine
with Intel Xeon E5-2620 2GHz processor. The time limit for each problem is set to one hour.

The partial PLA tests are done by solving the original instances and the same instances
with one constraint replaced. The instances are solved using SCIP Optimization Suite 6.0.0
on a Linux machine with Intel Core i5-7y54 1.2GHz processor. The default solver settings
were used with a time limit of two hours. The results of the computational experiments
will be described in detail in the following sections.

3.1. Continuous Variables

The computational results that are reported in this section are for the kall instances,
where the objective is linear and the constraints are linear and quadratic. The quadratic
constraints contain up to two functions with two variables of the forms (x + y)2 or xy.
Moreover, one variable functions of the form x2 appear in the constraints of some of
the problems.

Statistics of the instances are given in Table 1, where seq# is the sequential number that
will refer to the corresponding instance throughout the section. The number of variables
is shown under #v, and #cons (q) represents the total number of constraints including (q)
quadratic ones. The best objective values found so far (according to the MINLPLib library)
are entered under the obj val column header. All objective values shown in the table are
proven to be the global optimum by at least 3 global solvers except instances 2, 3, 5, and 12.

The instances were solved regularly by SCIP, with time limit of 2 h. The solving times
are recorded and presented in seconds in the last column of Table 1. For some instances,
the limits, machine memory (ML) or time (TL), were reached before the instance is solved
to optimality. Moreover, it can be observed from the solving times that some instances are
trivial and solved quickly but others took time to be solved. Solving the instances here was
not intended to find their global solutions, since the best solutions are already found and
listed in the library and no further improvement to the solutions can be done. Instead, they
were solved to give an idea about their difficulty levels, and to have a reference when it is
needed to compare their results to the modified problems results.

82



Mathematics 2022, 10, 198

Table 1. Statistics of continuous test instances, and the solving time by SCIP.

Instance seq# #v #cons (q) obj val Time

kall_circles_c6a 1 18 54 (22) 2.1117 1927
kall_circles_c6b 2 18 54 (22) 1.9736 2964
kall_circles_c7a 3 20 69 (29) 2.6628 2612
kall_circles_c8a 4 22 86 (37) 2.5409 TL

kall_congruentcircles_c31 5 10 16 (4) 0.6438 1
kall_congruentcircles_c32 6 10 16 (4) 1.3759 1
kall_congruentcircles_c41 7 12 24 (6) 0.8584 1
kall_congruentcircles_c42 8 12 24 (7) 0.8584 1
kall_congruentcircles_c51 9 14 34 (11) 1.073 12
kall_congruentcircles_c52 10 14 34 (11) 1.5371 4
kall_congruentcircles_c62 11 16 46 (16) 1.2876 16
kall_congruentcircles_c63 12 16 46 (16) 1.2876 11
kall_congruentcircles_c72 13 18 60 (22) 1.9663 225

kall_diffcircles_10 14 24 71 (45) 11.9355 6356 (ML)
kall_diffcircles_5a 15 14 24 (11) 5.1162 63
kall_diffcircles_5b 16 14 24 (11) 5.1162 44
kall_diffcircles_6 17 16 31 (16) 7.7879 102
kall_diffcircles_7 18 18 40 (22) 7.1531 177
kall_diffcircles_8 19 20 49 (28) 14.4813 3350
kall_diffcircles_9 20 22 60 (36) 13.3503 5118 (ML)

Before discussing the results of instance PLAs, one important factor about the instances
has to be taken into account: the sizes of variable domains. When the variable involved in
PLA of a function has a large domain, the domain will need more breakpoints to get a good
approximation. However, introducing many breakpoints will affect the size, so the number
of breakpoints for the computational tests is set to 10 for all domains. The domain size for
each variable in the tested instances ranges between 1 and 18, with average size of 7.25 per
domain. Therefore, 10 points should be enough to get good models for test purposes.

To compare between the PLA models with respect to the sizes of the produced prob-
lems, the instances were transformed into MILP problems by the models CC and LOG
(using nonuniform partitioning would give the same size). Each instance was approximated
by these models using 10, 20, and 30 breakpoints. Then the average numbers of constraints
and binary/continuous variables per problem is recorded for each set of breakpoints,
as shown in Table 2. It is apparent from the table that there is a significant advantage for
the model LOG in terms of needed number of binary variables and constraints. Moreover,
it will be shown later that this advantage is not outweighed by the CC model’s advantage
of having many fewer continuous variables.

Table 2. Average sizes per problem produced by CC and LOG models using 10, 20, and 30 breakpoints.

10 20 30

BV CC 6135 27,195 63,355
LOG 303 377 414

CV CC 3808 15,083 33,916
LOG 22,738 90,416 203,417

Cons CC 3983 15,259 34,092
LOG 764 891 983

While Table 2 gives enough insight on the problem sizes, detailed statistics for every
problem approximated using 10 breakpoints is given in Table 3. This table makes it easier
to track the detail of every tested problem and compare between its size and computational
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results. It should be expected that most problems will not be solved easily by CPLEX due
to the large number of binaries and constraints.

Table 3. The sizes of the instances produced by CC and LOG models with 10 breakpoints.

p#
CC LOG

BV CV Cons BV CV Cons

1 6966 4318 4526 344 25,818 871
2 6966 4318 4526 344 25,818 871
3 9234 5720 5991 456 34,220 1152
4 11,826 7322 7678 584 43,822 1473
5 1134 710 744 56 4210 149
6 1134 710 744 56 4210 149
7 2106 1312 1376 104 7812 271
8 2106 1312 1376 104 7812 271
9 3402 2114 2218 168 12,614 433

10 3402 2114 2218 168 12,614 433
11 5022 3116 3270 248 18,616 635
12 5022 3166 3270 248 18,616 635
13 6966 4318 4532 344 25,818 877
14 14,742 9124 9535 728 54,624 1800
15 3402 2114 2208 168 12,614 423
16 3402 2114 2208 168 12,614 423
17 5022 3118 3255 248 18,616 620
18 6966 4318 4512 344 25,818 857
19 9234 5720 5977 456 34,220 1132
20 11,826 7322 7652 584 43,822 1447

3.1.1. Uniform vs. Nonuniform Partitioning

The computational experiments on solving the MILP problems approximating the
selected instances were made by CPLEX with a time limit of one hour per problem. The ob-
jective of these experiments is to compare between uniform and nonuniform partitioning.
The nonuniform partitioning is done using different values for the parameter k in the
formulas in Equation (1).

Table 4 compares the results obtained from solving the CC and NCC problems,
with k = 1.5, 1.7. For each model, the solving time is listed in seconds or as TL if the
time limit is reached. The objective value of the best integer solution found within the time
limit is listed under BI, and F means the solver failed to find an integer solution. Initially,
10 breakpoints were used by the models, but CPLEX failed to find a solution for most
of the problems, so they were regenerated using 7 points. The third column measures
the difference, if applicable, between the best integer value, f ∗ and the best value of the
original instance, f ∗, which can be found in Table 1. Smaller | f ∗ − f ∗| value indicates that
the approximation is acceptable. Note that for problems that reached time limit, the best
integer value could keep improving if there is no time limit.

Given the fact that most of the original instances were solved by SCIP to global opti-
mality within less than an hour (Table 1), it can be confirmed that complete transformation
of MINLP problems into MILP ones will not make the problems easier, especially when
approximating many functions. Nonetheless, this is not the goal of the experiments since
the main purpose is to compare partitioning methods for PLA models. The aspects of the
comparison between uniform and nonuniform partitioning will be the accuracy of the
approximation and the time needed to solve the approximation.
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Table 4. Results of solving MILP problems produced by CC and NCC models using 7 breakpoints.

p#
CC NCC (k = 1.5) NCC (k = 1.7)

Time BI | f∗ − f∗| Time BI | f∗ − f∗| Time BI | f∗ − f∗|
1 TL F NA TL 1.184 0.9277 TL 2.47 0.3583
2 TL F NA TL 3.324 1.3504 TL F NA
3 TL F NA TL 2.0317 0.6311 TL 2.6628 0
4 TL F NA TL F NA TL F NA
5 18 0.5724 0.0714 29 0.6009 0.0429 81 0.5847 0.0591
6 11 1.366 0.0099 8 1.3831 0.0072 5 1.3544 0.0215
7 1 0.8084 0.05 1 0.8584 0 1 0.8584 0
8 TL 0.8084 0.05 133 0.8269 0.0315 110 0.8052 0.0532
9 TL 1.5373 0.4643 TL 0.7367 0.3363 TL 0.5087 0.5643

10 1200 1.473 0.0641 TL 1.5371 0 TL 1.588 0.0509
11 TL 1.221 0.0666 TL 1.2876 0 TL 1.2876 0
12 856 1.118 0.1696 TL 1.2876 0 TL 1.2876 0
13 TL 1.6689 0.2974 TL 1.9663 0 TL 1.817 0.1493
14 TL F NA TL F NA TL F NA
15 TL 5.2619 0.1457 TL 5.1162 0 TL 6.479 1.3628
16 1400 2.838 2.2782 527 3.172 1.9442 TL 3.4476 1.6686
17 3400 7.5885 0.1994 TL 7.2298 0.558 TL F NA
18 TL F NA TL F NA TL F NA
19 TL F NA TL 15.431 0.9497 TL 17.611 3.1297
20 TL F NA TL F NA TL F NA

The data listed under the time columns indicate that all models are close in terms of
the number of problems that were solved within the time limit. However, for problems
that reached the time limit, the model with uniform partitioning failed to find an integer
solution in eight problems, compared to four problems for the NCC model with k = 1.5.
This implies that problems generated by CC models with nonuniform partitioning usually
find feasible solutions faster than with uniform partitioning. The same outcome resulted
when other nonuniform cases were tested for k = 1.4, 1.6, 1.8. Even when both uniform
and nonuniform cases resulted in a problem that produced an integer solution within the
time limit, the gap in the nonuniform case is smaller most of the times. Therefore, it can be
concluded that problems produced by NCC models are usually solved faster than the ones
produced by CC models.

The quality of the approximation is better tested without the time limit, where the
solver runs until the global solution is found, and then the solutions of the original and
approximated problems are compared. In spite of that, the table provides enough data to
compare the quality of CC and NCC approximations. It can be observed that the integer
solution is the same as the solution of the original instance in many problem for both cases
of nonuniform partitioning, while the uniform partitioning never produced an identical
integer solution to the original one. Moreover, for the cases that the integer solution is not
the same as the original one, the difference between the two solutions is mostly less in the
NCC cases.

The computational results for solving problems produced by the models LOG and
NLOG are summarized in Table 5. The test setting and comparison aspects for these
models are the same as the CC and NCC models, except for the number of breakpoints
where 11 is used for this test. The outcomes also turned out to be similar: the nonuniform
partitioning improved the models in both speed and accuracy. Both NLOG models resulted
in more problems that were solved within time limit, compared to LOG models; and when
a problem is solved within time limit for all models, almost always the NLOG problem
needs less solving time. Moreover, the difference | f ∗ − f ∗| is mostly smaller in the NLOG
cases. It should be mentioned that in nonuniform partitioning, having a local solution as
one of the breakpoints helped improving the model’s quality.

85



Mathematics 2022, 10, 198

Table 5. Results of solving MILP problems produced with LOG and NLOG models using 11 breakpoints.

p#
LOG NLOG (k = 1.5) NLOG (k = 1.7)

Time BI | f ∗ − f ∗| Time BI | f ∗ − f ∗| Time BI | f ∗ − f ∗|
1 TL F NA TL F NA TL F NA
2 TL F NA TL 1.9488 0.0248 TL F NA
3 TL F NA TL 2.6628 0 TL 2.6628 0
4 TL F NA TL F NA TL F NA
5 8 0.5435 0.1003 6 0.6009 0.0429 73 0.5847 0.0591
6 10 1.368 0.0079 2 1.3831 0.0072 157 1.3544 0.0215
7 3 0.8324 0.026 1 0.8584 0 47 0.8584 0
8 37 0.8348 0.0236 16 0.8269 0.0315 133 0.8052 0.0532
9 TL 2.944 1.871 TL 1.036 0.037 TL 0.378 0.695
10 1764 1.51 0.0271 194 1.5371 0 915 1.5371 0
11 TL 1.651 0.3634 1042 1.2876 0 821 1.2876 0
12 346 1.038 0.2496 231 1.2876 0 478 1.2876 0
13 TL 2.097 0.1307 TL 1.9663 0 TL 1.9663 0
14 TL F NA TL F NA TL F NA
15 2980 5.038 0.0782 TL 5.1162 0 161 4.6298 0.4864
16 TL 4.201 0.9152 191 3.172 1.9442 1625 3.4476 1.6686
17 TL 7.642 0.1459 450 7.2298 0.5581 2516 7.572 0.2159
18 TL F NA TL 6.411 0.7421 TL F NA
19 TL F NA 935 7.182 7.2993 TL 2.288 12.1933
20 TL F NA TL 7.217 6.1333 TL F NA

Comparing between the data in Tables 4 and 5 makes it clear that the logarithmic
models are significantly better than the non logarithmic ones. This confirms the fact that
for a PLA model, increasing the number of binary variables has more negative impact than
increasing the continuous variables. Even though the logarithmic models used 4 points
more (11 compared to 7), which considerably affects the size, the solving times turned out
to be much less than the times for the non logarithmic case. Therefore, using logarithmic
models allows introducing more breakpoints and, consequently, producing more accurate
approximation. For example, the average difference between optimal value of the original
instance and approximation, | f ∗ − f ∗|, per LOG problem is 0.328, while it is 0.667 for
CC problems.

The computational experiments in this section have shown that full PLA of MINLP
problems will not make the new problems any better, yet they prove that the improvement
of PLA models is promising. In addition to the major development of the PLA model
caused by logarithmic formulation, different components of the model can also be improved.
For example, it was demonstrated that nonuniform partitioning based on local solutions
can add more improvement to the models. Finally, the uses of PLA are not limited to the
full PLA; it can be useful if applied to only parts of an MINLP problem, as will be shown in
the next section.

3.1.2. Partial PLA

PLA was applied partially to different QCQP and MIQCQP using Algorithm 1. If the
number of approximated constraints is large, then the modified problem gets more compli-
cated and the original problem is better off without this approximation. However, in this
section, the algorithm is applied with one iteration to many instances belonging to different
groups from the MINLPLib library. Interestingly, this approach worked on some instances,
and produced problems that needed shorter solving times. Table 6 summarizes the statistics
of some of these instances, in addition to computational results of solving them using SCIP
with 2 h time limit.
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Table 6. Statistics of different test instances, and the solving results by SCIP.

Instance seq# #v #cons (q) obj val Time Gap %

kall_circlespolygons_c1p12 1 43 48 (21) 0.3396 TL ∞
kall_circlespolygons_c1p13 2 43 48 (21) 0.3396 TL ∞
kall_circlesrectangles_c1r12 3 49 41 (23) 0.3396 TL ∞

kall_diffcircles_5a 4 14 24 (11) 5.1162 63 0
kall_diffcircles_6 5 16 31 (16) 7.7879 102 0

pooling_foulds3stp 6 832 1089 (1024) −8 5730 0
pooling_foulds4stp 7 832 1089 (1024) −8 6235 0

As can be seen in the table, SCIP failed to close the gap when solving instances 1, 2,
and 3; but it succeeded for the other problems. The goal of testing these instances is to show
that approximating one constraint per instance aids the solver to handle the instance better.
For each modified instance Table 7 presents the solving time, the optimal objective value
f ∗, and the difference between the optimal values of the original and modified instance.

Table 7. Computational Results of Problems Produced by Partial PLA Using 10 Breakpoints.

p#
CC LOG

Time f ∗ | f ∗ − f ∗| Time f ∗ | f ∗ − f ∗|
1 92 0.2949 0.0447 241 0.2848 0.0548
2 258 0.2914 0.0482 358 0.3227 0.0169
3 TL 0.3396 0 TL 0.3396 ∞
4 38 4.96 0.1562 29 4.96 0.1562
5 68 7.7879 0 47 7.7879 0
6 215 −8 0 2631 −8 0
7 3143 −8 0 622 −8 0

The results table shows that for the first three instances, SCIP was able to solve them
and close the gap, except for the third instance, the gap was closed shortly after 2 h (when
time limit was disabled) for the CC case, and the gap was ∞% in the LOG case. The solving
time of the modified instance is mostly shorter than the original problem.

From instances with | f ∗ − f ∗| > 0, it can be implied that even if it is only one out of
many constraints that was approximated, there will probably be an approximation error.
These instances were approximated again with 15, 20, and 25 breakpoints, and that led to
better optimal values but longer solving time. For example, when instance 1 was generated
by CC with 15 points, SCIP needed 250 s to solve it and the objective value was 0.311; and
with 25 points, it needed 440 s, yielding an objective value of 0.334.

An interesting finding is that the solving times of CC problems are shorter than
those of LOG problems. This indicates that the models have similar performance when
approximating problems with few variables using few breakpoints.

The experimental results suggest that partial PLA can produce less complicated prob-
lems with small or zero approximation error. Moreover, it was shown that LOG models
have no advantage here in contrary to the case in the previous section. In the following
section, similar computational experiments are performed on MIQCP problems.

3.2. Mixed Integer Variables

The PLA models, that were used in the previous section, were applied to problems
where the variables involved in the quadratic terms can be integer. When introducing
the breakpoints to an integer variable’s interval, every integer value in the interval will
be a breakpoint, so the number of breakpoints depends on the length of the interval.
If this results in a large number of breakpoints, some integer values can be skipped so the
number stays reasonable. Moreover, there is no need to have a convex combination of two

87



Mathematics 2022, 10, 198

breakpoints since the variable cannot take noninteger values. For all noninteger variables
involved in the quadratic functions, the PLA procedures are still the same.

The objective of the computational tests is the same as in the case of continuous
variables: to test the uniform against the nonuniform partitioning, and to assess the
performance of the partial PLA models. A summary of the test instances’ statistics is given
in Table 8, where they were solved by SCIP with a time limit of two hours. Instances 1, 2,
and 3 were taken from the QPLIB library and the remainder are from MINLPLib instances.

Table 8. Statistics of MIQCP test instances, and the solving results by SCIP.

Instance seq# #v #cons (q) obj val Time Gap %

3562 1 63 42 (7) 15 TL 305
3780 2 168 72 (12) 90.6 TL 1138.3
3816 3 187 387 (24) 7.3936 TL 27.37

blend029 4 102 213 (12) 13.359 8 0
blend146 5 222 624 (24) 45.297 TL 1.87

ex1236 6 92 55 (4) 19.6 1 0
gabriel02 7 261 597 (96) 39.6 TL 22.3

sep1 8 29 31 (6) −510.81 1 0
st_e31 9 112 135 (5) −2 4 0

tln4 10 24 24 (4) 8.3 6 0

Based on the solving times in Table 8, it can be concluded that half of the tested
instances are challenging and the other half are not. It should be mentioned that in
instances 1, 2, and 10, only integer variables are involved in the quadratic functions, so no
nonuniform partitioning is done for these instances (a breakpoint is introduced at every
integer value in the interval). Tables 9 and 10 show the results of solving the problems
produced by the convex combination and the logarithmic models with 11 breakpoints.
The computations were done using CPLEX with 2 h time limit.

Table 9. Results of Solving MILP Problems Obtained from MIQCP Instances, Produced by CC and
NCC Models Using 11 Breakpoints.

p#
CC NCC (k = 1.5) NCC (k = 1.7)

Time BI | f ∗ − f ∗| Time BI | f ∗ − f ∗| Time BI | f ∗ − f ∗|
1 TL 19.6 4.6 similar
2 TL F NA similar
3 TL F NA TL F NA TL F NA
4 TL 12.73 0.629 TL 12.73 0.629 TL 13.359 0
5 TL F NA TL F NA TL F NA
6 360 19.6 0 68 19.6 0 237 19.6 0
7 TL F NA TL F NA TL F NA
8 109 −510.29 0.25 88 −510.08 0.73 21 −510.08 0.73
9 331 −2.019 0.019 29 −2.087 0.087 16 −2.188 0.188

10 TL 8.3 0 similar

The results in the tables show that CPLEX failed to find an integer solution to 3 NLOG
problems and 4 problems produced by the other models. For problems for which CPLEX
found integer solutions, it can be observed that the problems with nonuniform partitioning
are solved faster than the uniformly partitioned problems, for both logarithmic and nonlog-
arithmic models. The data under | f ∗ − f ∗| columns show that no clear advantage can be
confirmed for any of the models in the accuracy of the approximation.

Partial PLA was applied to the same set of instances and the most violated constraint
of each challenging instance was approximated using CC and NLOG models. As Table 8
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shows, instances 1 and 2 have a relative gap of 305% and 1138%, respectively, after two
hours of solving time. After PLA, SCIP reached the time limit and resulted in gaps of 53%
and 1862% for the CC problems, and 200% and 774% for the LOG problems. The rest of
instances resulted in better performances by the solver without PLA.

Table 10. Results of solving MILP problems produced with LOG and NLOG models using 11 break-
points.

p#
CC NCC (k = 1.5) NCC (k = 1.7)

Time BI | f ∗ − f ∗| Time BI | f ∗ − f ∗| Time BI | f ∗ − f ∗|
1 TL 18.4 3.4 similar
2 TL F NA similar
3 TL F NA TL 6.6 0.7936 TL 6.2 1.1936
4 5088 13.359 0 756 13.359 0 970 13.359 0
5 TL F NA TL F NA TL F NA
6 146 19.6 0 29 19.6 0 41 19.6 0
7 TL F NA TL F NA TL F NA
8 103 −509.72 1.09 34 −510.08 0.73 43 −510.08 0.73
9 198 −2.01 0.01 89 −2.087 0.087 103 −2.188 0.188

10 354 8.3 0 similar

4. Discussion

To summarize the results of the computational experiments, two comparisons will be
discussed. The first comparison is between PLA models using uniform against nonuniform
partitioning. QCQP and MIQCQP problems were approximated using CC, NCC, LOG,
and NLOG models. Most of the MILP problems that resulted from the nonuniformly
partitioned model were solved to optimality faster than the problems resulting from
the uniform partitioning. For example, out of 20 instances, the nonuniformly partitioned
logarithmic model (k = 1.5) failed to find an integer solution within the time limit only three
times compared to 8 failures in the uniform partitioning case. For the other 12 instances
that an integer solution was found by both models, the nonuniformly partitioned model
was faster 11 times. Moreover, the optimal solutions are more accurate (closer or identical
to the optimal solutions of the original problems) in the nonuniform partitioning models.
It is worth mentioning that the both logarithmic models were better than the convex
combination models in the continuous variables problems. Despite introducing more
breakpoints to LOG and NLOG (which lead to more accurate solutions), their resulting
problems were solved faster.

The other comparison is to discuss whether applying PLA partially on an optimization
problem can be useful ot not. We tested many QCQP and MIQCQP problems by solving
them by SCIP, then we use Algorithm 1 to replace one quadratic constraints by its linear
approximation, then we solve it again by SCIP. The results showed that partial PLA led
to an easier problem form several instances. For these instances, the average solving time
was around 4818 s without PLA, while it was 1573 and 1598 for PLA using CC and LOG
models, respectively. Even though more QCQP problems were solved faster without the
partial PLA, it was useful for SCIP in many QCQP problems. Improving some of the steps
in Algorithm 1 can decrease the difficulty in more instances. For example the violated
constraints selection rule can be improved by taking into account other aspects like current
feasible solutions, variables bounds, optimal solution bounds, etc.

With the improvement of MINLP solvers, it can be concluded that full transformation
of an MINLP problem into an MILP one will not be beneficial. However, doing PLA
partially or using it as a supporting tool within MINLP algorithms can be useful, especially
after showing that PLA itself can be improved.

89



Mathematics 2022, 10, 198

5. Conclusions

The computational experiments performed on both continuous and mixed integer
problems indicate promising results. It can be concluded that PLA models can be improved
by using nonuniform partitioning depending on local solutions instead of uniform par-
titioning. Moreover, the tests have shown that some challenging QCQP and MIQCQP
problems can be less challenging by applying partial PLA and replacing only one constraint
by its linear approximation, which is only a small change to the original problem.

Some of the paper subjects can be considered for further research in the future. In this
paper, we studied nonuniform against uniform partitioning, but it would be good research
of our nonuniform partitioning was tested against other nonuniform partitioning methods.
Moreover, it might be useful to do the partitioning depending on the function, so every
nonlinear function could have its own domain partitioning. On the other hand, the partial
PLA algorithm can be used as a tool of an existing MINLP algorithm. It can be improved
by, for example, selecting a violated constraint based on all information that can be brought
from the already explored nodes in the branch and bound tree.
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Abstract: We consider the problem of evaluating preferences for criteria used by university students
when selecting a hotel for accommodation during a professional development program in a foreign
country. Input data for analysis come from a survey of 202 respondents, who indicated their age, sex
and whether they have previously visited the country. The criteria under evaluation are location,
accommodation cost, typical guests, free breakfast, room amenities and courtesy of staff. The
respondents assess the criteria both directly by providing estimates of absolute ratings and ranks,
and indirectly by relative estimates using ratios of pairwise comparisons. To improve the accuracy of
ratings derived from pairwise comparisons, we concurrently apply the principal eigenvector method,
the geometric mean method and the method of log-Chebyshev approximation. Then, the results
from the direct and indirect evaluation of ratings and ranks are examined together to analyze how
the results from pairwise comparisons may differ from each other and from the results of direct
assessment by respondents. We apply statistical techniques, such as estimation of means, standard
deviations and correlations, to the vectors of ratings and ranks provided directly or indirectly by
respondents, and then use the estimates to make accurate assessment of the criteria under study.

Keywords: pairwise comparison; matrix approximation; log-Chebyshev metric; tropical optimiza-
tion; consumer preference; hotel selection

MSC: 90B50; 90C47; 91B06; 41A50; 90C24

1. Introduction

Evaluation of preferences for alternatives based on their pairwise comparisons is a
widely accepted approach in decision making, when direct assessment of the preferences is
infeasible or impossible [1–4]. The approach uses the results of pairwise comparisons of
alternatives on an appropriate scale, given in the form of a pairwise comparison matrix.
Then, various computational methods can be applied to the matrix to make judgment
on the preference of each alternatives by evaluating its individual rating (score, priority,
weight) and ranking the alternatives according to the ratings.

The methods used to derive ratings from pairwise comparisons may exploit different
computational techniques. These methods are mainly based on aggregation (summation)
of columns in the pairwise comparison matrix to obtain a vector of ratings of alternatives,
or on approximation of the pairwise comparison matrix by a symmetrically reciprocal
(consistent) matrix that directly determines the vector of ratings (see, e.g., [5,6]). The key
issue in deriving ratings from pairwise comparisons by different techniques is that these
techniques may produce rather different or even contradictory results (see, e.g., [7–10]),
which can significantly complicate or even make it impossible to unambiguously assess
alternatives when making decisions in practice.
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Among other problems arising from the issue indicated above, one has to recognize
how much the results of different methods vary in practical problems, and how to make
the right decision in case of possible inconsistency of the results. The comparison of results
of assessment methods is discussed in many research studies [8,10,11], including statistical
analysis of extensive data given by many pairwise comparison matrices. However, in most
cases, the source data used in the analysis are obtained by simulation [8,10] and thus are to
be considered as an artificial input that may less adequately reflect the usual conditions of
practice than authentic results of human evaluation.

In practical situations where the methods used can give different results, a natural but
reasonable way to evaluate alternatives more unambiguously is based on the simultaneous
application of several methods to make a decision that concurrently considers all the
results. If these results differ significantly, the choice of one of them as the basis for making
a decision does not seem entirely justified. On the contrary, the closeness and stability of
the results can serve as additional arguments in favor of choosing one of them as a solution
that can be considered as close to optimal.

The well-known solution approach is the principal eigenvector method [2,3,5], which
defines the vector of ratings as a weighted sum of the columns in the pairwise comparison
matrix, where the weights are taken proportional to the entries of the vector of ratings
itself. This approach leads to a solution calculated as the eigenvector of the pairwise
comparison matrix, which corresponds to the maximal eigenvalue. The geometric mean
method is another widely used approach, which solves the problem by approximating
the pairwise comparison matrix by a consistent matrix in the Euclidean norm on the
logarithmic scale [7,12,13]. It provides the solution vector by calculating the geometric
mean of the entries in each row of the pairwise comparison matrix.

An approach to the derivation of ratings from pairwise comparison matrices, which
applies the Chebyshev approximation on the logarithmic scale (the log-Chebyshev approx-
imation), is developed in [14–17]. The proposed solution technique is based on methods
and results of tropical mathematics which is concerned with the study and application
of algebraic systems with idempotent operations [18–21]. The approximation problem
is formulated and solved as an optimization problem in terms of tropical mathematics
(a tropical optimization problem), which yields a complete analytical solution given in a
parametric form ready for numerical computation and formal analysis.

The problem of evaluating alternatives from their pairwise comparisons often arises in
studying consumer preferences in various markets including the market of hotel services.
Specifically, for hotel suppliers, it is crucial to identify the most and least important criteria
used by consumers in hotel selection. The problem of assessment criteria for hotel selec-
tion by various customer groups is studied in many researches (see, e.g., [22–30]). These
studies mainly concentrate on investigation of preferences of business and (or) leisure
travelers, who often constitute the largest segment of hotel guests and thus are of prime in-
terest [23–26,30], but sometimes more specific customer groups such as university students
are under consideration [29].

As a source of information to understand how different factors (hotel attributes), such
as location, accommodation cost, free breakfast or amenities, may affect the choice of a
hotel, consumer surveys are widely used which can be administered online [26,28] or
using a paper-and-pencil format [22,24,27,29,30]. A typical survey can ask respondents for
absolute estimates that rate and rank the factors directly or for relative estimates in the
form of pairwise comparison ratios for the factors.

The pairwise comparison data are then used to make a final assessment of factors by
applying one of the methods of rating alternatives from pairwise comparisons. However,
many studies rely on results obtained using only one method, which can lead to inaccu-
rate or wrong conclusions because different methods may produce ambiguous results.
To improve the quality of the assessment, it seems necessary to verify the results of one
method against the results of other available methods, which makes the development and
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experimental study of a combined approach, which integrates several solution methods
together with procedures of data analysis, a highly relevant issue.

In this paper, we consider the problem of evaluating preferences for criteria used
by university students when selecting a hotel for accommodation during a short-term
professional development program in a foreign country. As input data for analysis, we
are restricted by the results of a survey of 202 respondents who indicated their age, sex
and whether they have previous experience of visiting the country. The criteria evaluated
by respondents include location, accommodation cost, typical guests, free breakfast, room
amenities and courtesy of staff. The respondents assess the criteria both directly by provid-
ing estimates of absolute ratings and ranks, and indirectly by relative estimates that are
represented as ratios of pairwise comparisons.

The purpose of this applied study is twofold. First, it is to investigate the possibilities
of combining different methods of rating and ranking criteria together with statistical
procedures to provide more accurate assessment of the criteria, to describe an applied
technique intended to improve the quality of assessment, and to demonstrate the imple-
mentation of this technique to the problem of evaluating criteria for hotel selection. The
second objective is to explore by statistical procedures the results obtained by different
methods from pairwise comparisons provided by respondents to gain additional insight
and understanding about the similarity and difference between these results.

As the key technique to improve the accuracy of ratings derived from the results
of pairwise comparisons, we concurrently apply the methods of principal eigenvector,
geometric mean and log-Chebyshev approximation. Then, the results obtained by the
direct and indirect assessment of ratings and ranks are examined together to analyze how
the results from pairwise comparisons may differ from each other and from the results of
direct assessment. The analysis involves statistical techniques, such as estimation of means,
standard deviations and correlations, applied to the vectors of ratings and ranks of criteria,
which are provided directly or indirectly by respondents.

The paper is organized as follows. We start in Section 2 with a brief overview of the
methods used below to derive ratings from pairwise comparisons, including the method
based on the log-Chebyshev approximation. Section 3 presents the basic definitions,
notation and results of tropical mathematics, which are then used to give direct formulas
for calculating vectors of ratings using log-Chebyshev approximation. In Section 4, we
formulate the problem of evaluating criteria for hotel selection, which motivates and
illustrates the study, and describe the survey data used in the solution.

Section 5 offers results of statistical analysis of ratings and ranks derived from the
survey data. First, we investigate whether characteristics of respondents (age, sex, etc.) may
affect the degree of difference or similarity between vectors of ratings or ranks obtained
for each respondent by different methods. Furthermore, statistical results of the analysis
and comparison of the vectors of ratings for the criteria are given including estimates of
means, standard deviations and correlations. We conclude the section with the results of
comparison of rank vectors that order criteria according to their preferences. In Section 6,
we present some discussions, and in Section 7 offer concluding remarks.

2. Evaluation of Alternatives from Pairwise Comparisons

Suppose there are n alternatives A1, . . . ,An for making decisions, which are com-
pared in pairs. The results of the comparisons are represented in the form of a pairwise
comparison matrix A = (aij) of dimension n× n, where the element aij > 0 indicates by
how many times the alternative Ai is more preferable than Aj. The problem of pairwise
comparisons is to find a vector x = (xi) of absolute ratings (scores, priorities, weights) of
alternatives on the basis of the relative estimates given by pairwise comparisons.

Consider a pairwise comparison matrix A and note that its elements satisfy the
condition aji = 1/aij (and hence aii = 1) for all i, j = 1, . . . , n, and therefore the matrix A is
symmetrically reciprocal. Furthermore, if the transitive property in the form of equality
aij = aikakj is fulfilled for all i, j, k = 1, . . . , n, then the matrix A is called consistent.
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The elements of a consistent pairwise comparison matrix A are represented as aij = xi/xj
for all i, j = 1, . . . , n, where xi are the components of some positive vector x determined up
to a positive factor. Moreover, it directly follows from the equality aij = xi/xj that x = (xi)
is a solution of the pairwise comparison problem of interest.

In practical applications, the matrices obtained by pairwise comparisons of alternatives
are usually not consistent. In this case, a problem arises of finding a consistent matrix
that is close to (approximates) the original pairwise comparison matrix. Any vector that
determines this consistent matrix is then taken as the vector of absolute ratings. To find an
appropriate consistent matrix of pairwise comparisons various heuristic procedures and
approximation methods are used (see, e.g., [2,5,6]).

Heuristic methods for solving the problem usually apply techniques of aggregation
(summation) of the columns in the pairwise comparison matrix. The columns are added
up with coefficients (weights) that are dependent on the technique. The resulting vector,
which generates some consistent matrix, serves as a solution to the problem. As examples
of the heuristic approach, one can consider the weighted column sum method and the
principal eigenvector method.

The most common in practice is the method of principal eigenvector proposed by
T. Saaty in the 1970s [2,3,5,31]. The method assumes that the weights of columns for
aggregation are set proportional to the components of the solution vector of absolute ratings.
This leads to a solution of the problem that takes the form of the principal eigenvector x of
the pairwise comparison matrix A, which corresponds to the maximum eigenvalue λ of
the matrix and satisfies the equality

Ax = λx.

The approximation methods solve a problem of minimizing an error in the approxima-
tion of the pairwise comparison matrix A = (aij) by a consistent matrix X = (xi/xj). The
application of these methods offers a mathematically justified approach, which however
can result in very hard optimization problems. The complexity of the solution essentially
depends on the metric and scale used to estimate the approximation error.

To measure the error on the standard linear scale, different metrics may be used includ-
ing the Euclidean, Manhattan and Chebyshev distance functions. However, minimizing
the errors in linear scale usually leads to complex nonlinear multiextremal optimization
problems that are difficult to solve [5,32], and hence is not common in practice.

If the approximation error is evaluated in logarithmic scale, then the solution may
become less complicated and can sometimes be obtained in analytical form [7,12,13]. Note
that when transforming from linear scale to logarithmic scale, the variation between entries
in a pairwise comparison matrix A decreases, which reduces the impact on the overall error
of large values (for example, aij = 9) to the detriment of small ones (aji = 1/9). Therefore,
the use of the logarithmic scale in the approximation of the pairwise comparison matrices
seems to be quite reasonable.

Consider the application of the log-Euclidean metric (the Euclidean metric on the
logarithmic scale), in which the distance between the matrices A = (aij) and X = (xi/xj)
is determined using logarithm in a base greater than one by the formula

l2(A, X) =

(
∑

1≤i,j≤n

(
log aij − log

xi
xj

)2)1/2

.

The minimum distance is immediately found by calculating the derivatives of the
squared distance l2

2(A, X) with respect to all xi, equating the derivatives to zero, and
solving the obtained equations. For a symmetrically reciprocal matrix A, the result is

96



Mathematics 2022, 10, 730

a direct solution of the approximation problem, in which the components of the vector
x = (x1, . . . , xn)T that determines the matrix X are given in the parametric form

xi =

(
n

∏
j=1

aij

)1/n

u, u > 0, i = 1, . . . , n.

The obtained vector x (usually normalized in rectangular metric, i.e., with respect to
the sum of components) is called the solution of the problem of pairwise comparisons by
the method of geometric mean [7,12,13].

The distance between the matrices A and X in the Chebyshev metric in logarithmic
scale (the log-Chebyshev distance) is defined as

l∞(A, X) = max
1≤i,j≤n

∣∣∣∣∣log aij − log
xi
xj

∣∣∣∣∣.
The problem of approximating a pairwise comparison matrix in the log-Chebyshev

metric can be reduced to the following problem of minimizing a function without logarithm
(see, e.g., [17,33]):

min
x>0

max
1≤i,j≤n

aijxj

xi
, (1)

which is equivalent to minimizing the maximum relative error [33,34], which is given by

max
1≤i,j≤n

∣∣∣∣∣ aij − xi/xj

aij

∣∣∣∣∣.
In contrast to both methods of the principal eigenvalue and geometric mean, which

always lead to a single solution vector (up to a positive factor), the solution based on the
log-Chebyshev approximation may be nonunique.

The existence of multiple solutions instead of a single one, on the one hand, can make
it difficult to choose the most preferable alternative in practice. On the other hand, the
availability of a set of different solutions to the problem extends the possibility of making
optimal decisions, for example by taking into account additional constraints to narrow
the solutions. In addition, due to the rather approximate nature of the model of pairwise
comparisons for which the inconsistency of pairwise judgments is typical, the existence of
several solutions to the problem seems to be quite natural.

Suppose that the approximation procedure results in a set S of optimal vectors, rather
than in a single optimal vector of ratings. As the “best” and “worst” solutions to the
problem, we can take those two vectors from S that best and worst differentiate the
alternatives with highest and lowest ratings [16,17].

Consider the ratio between the maximum and minimum elements of the vector
x = (xi), which is called the Hilbert (interval, range) seminorm, and given by

max
1≤i≤n

xi

/
min

1≤j≤n
xj = max

1≤i≤n
xi × max

1≤j≤n
x−1

j .

The solution vector with the maximum Hilbert seminorm is taken as the best dif-
ferentiating solution, whereas the vector with the minimum seminorm is as the worst
differentiating solution. These vectors are obtained by solving the following problems:

max
x∈S

max
1≤i≤n

xi × max
1≤j≤n

x−1
j , (2)

min
x∈S

max
1≤i≤n

xi × max
1≤j≤n

x−1
j . (3)
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Problems (1)–(3), which arise from the log-Chebyshev approximation in the pairwise
comparison problem, can be directly solved in analytical form, using the methods and
results of tropical mathematics (see, e.g., [14–17] for further details).

3. Tropical Mathematics Based Solutions

The purpose of this section is to provide a brief overview of the basic concepts,
definitions and notation of tropical mathematics, which are used to describe the solution
of the pairwise comparison problem. Further information on the theory, methods and
applications of tropical mathematics can be found, for example, in [18–21,35].

3.1. Elements of Tropical Mathematics

Tropical (idempotent) mathematics deals with the theory and applications of algebraic
systems with idempotent operations. An operation is idempotent if its application to
arguments of the same value yields this value as the result. For example, taking the
maximum is an idempotent operation since max{x, x} = x, whereas the arithmetic addition
is not: x + x = 2x.

Tropical optimization focuses on optimization problems that are formulated and
solved in terms of tropical mathematics. Models and methods of tropical optimization make
it possible to find new solutions for classical and newly posed problems. Many problems
can be solved directly in explicit analytic form; for other problems, only algorithmic
techniques that offer solutions in numerical form are known. Applications of tropical
optimization include various problems in project scheduling, location analysis, decision
making and other areas.

An example of an algebraic system with an idempotent operation is the max-algebra
defined on the set of non-negative real numbers R+ = {x ∈ R|x ≥ 0}. It is closed under
addition denoted by ⊕ and defined for all x, y ∈ R+ as maximum: x ⊕ y = max{x, y},
and multiplication defined as usual. The neutral elements with respect to addition and
multiplication coincide with the arithmetic zero 0 and one 1.

The tropical addition ⊕ is not invertible (opposite numbers do not exist), and hence
a subtraction operation is undefined in max-algebra. The notion and notation of inverse
elements with respect to multiplication, and exponents have the usual sense.

Vector and matrix operations are performed according to standard rules, where the
arithmetic addition + is replaced by ⊕. Specifically, multiplication of a vector or matrix
by a scalar has the same result as in the standard arithmetic. In what follows, all vectors
are considered column vectors until otherwise indicated. The zero vector denoted by 0,
positive vector, zero matrix and identity matrix denoted by I are defined as usual.

For any nonzero column vector x = (xj), its multiplicative conjugate transpose is the
row vector x− = (x−j ), where x−j = x−1

j if xj 
= 0, and x−j = 0 otherwise. For the vector of

all ones, which is denoted as 1, the conjugate transpose is given by 1− = 1T . Multiplicative
conjugate transposition of a nonzero matrix A = (aij) results in the transposed matrix
A− = (a−ij ), where a−ij = a−1

ji if aji 
= 0, and a−ij = 0 otherwise.
For vectors a1, . . . , an, its linear combination with nonnegative coefficients x1, . . . , xn

is given by x1a1 ⊕ · · · ⊕ xnan. A vector b linearly depends on vectors a1, . . . , an if there
exist numbers x1, . . . , xn such that b = x1a1 ⊕ · · · ⊕ xnan. The collinearity of two vectors
has the usual sense: vectors b is collinear with a if b = xa for some x.

The set of all linear combinations x1a1 ⊕ · · · ⊕ xnan of a system of vectors a1, . . . , an
forms a tropical linear space. Any vector y of this space is expressed as the (tropical)
product of the matrix A = (a1, . . . , an), which consists of the vectors in the system taken as
columns, and some vector x = (x1, . . . , xn)T , in the form y = Ax.

98



Mathematics 2022, 10, 730

For a square matrix A = (aij) of order n, the nonnegative integer powers indicate
repeated tropical multiplication of the matrix with itself, and are defined as A0 = I,
Ap = Ap−1 A = AAp−1 for all integer p > 0. The trace of the matrix is given by

tr A = a11 ⊕ · · · ⊕ ann =
n⊕

i=1

aii.

The spectral radius of the matrix A is calculated by the formula

λ = tr A⊕ · · · ⊕ tr1/n(An) =
n⊕

k=1

tr1/k(Ak).

On condition that λ ≤ 1, the Kleene operator (the Kleene star) is defined to map the
matrix A onto the matrix

A∗ = I ⊕ A⊕ · · · ⊕ An−1 =
n−1⊕
k=0

Ak.

3.2. Preliminary Results

We start with a formal criterion of linear dependence of vectors. In order to check
whether a vector b is dependent on the system of vectors a1, . . . , an, the following result
can be used [36] (see, also [35]).

Lemma 1. Denote by A = (a1, . . . , an) a matrix that consists of vectors a1, . . . , an as columns.
Then, a vector b is linearly dependent on a1, . . . , an if and only if the following equality holds:

(A(b−A)−)−b = 1.

We now consider some results in tropical optimization that provide the basis to solve
pairwise comparison problems using log-Chebyshev approximation. Suppose that, given
an (n× n)-matrix A, we need to find positive n-vectors x to solve the problem

min
x>0

x−Ax. (4)

A complete solution of the problem is obtained as follows (see, e.g., [37]).

Lemma 2. Let A be a matrix with spectral radius λ > 0. Then, the minimum in problem (4) is
equal to λ, and all positive solutions are given in the parametric form

x = (λ−1 A)∗u, u > 0.

Let B = (bj) be a positive (n×m)-matrix with columns bj = (bij), and the problem is
to obtain positive n-vectors x that provide the maximum

max
x>0

1Txx−1,

x = Bu, u > 0.
(5)

The next result offers a direct solution to the problem [16,17,38].

Lemma 3. Denote by Blk the matrix obtained from B by setting to zero all elements except blk for
some indices k and l. Then, the maximum in problem (5) is equal to Δ = 1T BB−1, and all positive
solutions are given in the parametric form

x = B(I ⊕ B−lk B)u, u > 0,
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where the indices k and l are selected by the conditions

k = arg max
j

1Tbjb−j 1, l = arg max
i

b−1
ik .

Finally, suppose that, given an (n× n)-matrix A with spectral radius λ > 0, we need
to find positive n-vectors x that attain the minimum

min
x>0

1Txx−1,

x = (λ−1 A)∗u, u > 0.
(6)

A solution to this problem is found as follows [16,17].

Lemma 4. Let A be a matrix with spectral radius λ > 0. Then, the minimum in problem (6) is
equal to δ = 1T(λ−1 A)∗1, and all positive solutions are given in the parametric form

x = (δ−111T ⊕ λ−1 A)∗u, u > 0.

Finally, note that the parametric form of solutions offered by Lemmas 2–4 defines the
set of solutions to problems (4)–(6) as a linear span of columns of corresponding matrices
that generate the solutions.

3.3. Application to Pairwise Comparison Problem

Consider the problem of evaluating ratings of alternatives from pairwise comparison,
which is solved using the log-Chebyshev approximation of a pairwise comparison matrix.
In this case, we need to obtain a solution of problem (1), and then, if the result is not unique,
solutions of problems (2) and (3). Below, we use results in [14–17] to demonstrate how
these problems can be analytically solved in explicit form.

We combine the solutions of the above problems into a procedure to handle the pair-
wise comparison problem under consideration. The procedure includes the following main
steps: (i) finding the set of all solution vectors that represent absolute ratings of alternatives;
(ii) checking whether the vectors determine a unique solution of the problem; and, in the
case of a nonunique solution, (iii) selecting vectors which best and worst differentiate alter-
natives with the highest and lowest ratings (the best and worth differentiating solutions).

3.3.1. Finding All Solution Vectors

First, we observe that the calculation of all solutions to the pairwise comparison prob-
lem with a matrix A by using log-Chebyshev approximation requires solving problem (1).
In the tropical algebra setting, the objective function in this problem takes the vector form
x−Ax, whereas the problem itself is written as (4) and can be solved by Lemma 2. The
application of the lemma starts with the evaluation of the spectral radius for the matrix A,
given by

λ =
n⊕

k=1

tr1/k(Ak). (7)

Furthermore, we construct the matrix λ−1 A and calculate its Kleene star matrix

B = (λ−1 A)∗ =
n−1⊕
k=0

(λ−1 A)k. (8)

The set of all solutions of the problem is described using a vector of parameters u as

x = Bu. u > 0 (9)
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This result shows that these solutions form a set of linear combinations of columns
(are generated by columns) in the Kleene matrix B = (λ−1 A)∗.

3.3.2. Checking Uniqueness of Solution

In the framework of the pairwise comparison problem, the solution obtained is con-
sidered unique if each column in the matrix B generates the same space of vectors, which
happens when all columns are collinear. To check the uniqueness of the solution, we
apply a refinement procedure based on Lemma 1. The procedure examines the columns of
the Kleene matrix B = (bj) sequentially one by one and deletes a column if it is linearly
dependent on others. For each column bj, we form a matrix B(j) by taking all other columns
of B, which have not yet been deleted, and then verify the condition

(B(j)(b
−
j B(j))

−)−bj = 1.

If this condition holds, the column bj is deleted from the matrix B, and otherwise
retained. The solution is unique if the procedure results in a matrix with a single column
that is taken as the solution. In the case when a matrix with several linearly independent
columns is obtained to generate a set of different solutions, we turn to finding the best and
worst differentiating vectors of ratings among them.

3.3.3. Best Differentiating Solution

Suppose that a solution to the log-Chebyshev approximation problem is obtained in
the form x = Bu, where the matrix B has linearly independent columns. To select the best
differentiating solution, we need to solve problem (2). In the framework of tropical algebra,
this problem has the objective function written in the form 1Txx−1, and can be represented
as problem (5), which is solved using Lemma 3.

According to Lemma 3, we need to find indices k and l that satisfy the conditions

k = arg max
j

1Tbjb−j 1, l = arg max
i

b−1
ik .

Then, we construct the matrix Blk by setting to zero all elements in the matrix B
except for the element blk. The best differentiating solution is then given using a vector of
parameters u1 by

x1 = B(I ⊕ B−lk B)u1, u1 > 0.

3.3.4. Worst Differentiating Solution

We obtain the worst differentiating solution by solving problem (3), which in terms
of tropical algebra, takes the form of (6). The solution of the latter problem by applying
Lemma 4 involves evaluating

δ = 1T(λ−1 A)∗1.

The worst differentiating solution is given in parametric form as

x2 = (δ−111T ⊕ λ−1 A)∗u2, u2 > 0.

4. Evaluation of Criteria for Hotel Selection

In this section, we consider the application of the above-discussed techniques of ratings
alternatives from pairwise comparisons to the problem of evaluating consumer preferences
in hotel selection. The problem is to identify priorities among criteria used by students
in choosing hotels in a foreign country. The research is based on data obtained from
202 students of both sexes aged 17 to 26 years, who are to take a short-term professional
development program at an educational institution in the country. Some students have
visited this country and may have some experience of living there.

The students are provided with a grant that covers the travel expenses, tuition pay-
ments and food expenses during the working day. At the same time, the students must
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pay for accommodation on their own and choose a hotel by applying information available
in the Internet on booking portals and hotel websites as well as their previous experience
on visiting the country.

There are six criteria that are used when choosing a hotel: C1—location, C2—accom-
modation cost, C3—social environment (typical guests who usually stay at the hotel),
C4—free breakfast, C5—amenities (room equipment), C6—courtesy of hotel staff. The aim
of the research is to evaluate ratings (scores, priorities, weights) and then obtain ranks of
the criteria, based on the results of the survey of the students as respondents.

During the survey process, the respondent directly assesses the degree of importance
(the rating) of each criterion, determines the ranks of the criteria, and compares the criteria
in pairs. For the direct rating of criteria, the following absolute scale is used: 1/5—not
important, 2/5—important, 3/5—fairly important, 4/5—important, 1—very important.
For the pairwise comparison of criteria, the following comparative scale is used: 1—equal
importance, 2—moderate importance, 3—strong importance, 4—very strong importance;
5—extreme importance of one criterion over another.

The survey results together with the parameters of respondents (sex, age, etc.) are
summarized in a table. For each respondent i, the survey results include

sR(i), the vector of direct ratings (scores) of criteria by the respondent,

rR(i), the vector of direct ranks of criteria by the respondent,

CR(i), the matrix of pairwise comparisons of criteria, provided by the respondent.

Below, the survey results for three respondents with i = 1, 2, 3 are given as examples.
Respondent 1, male, age 24, visited the country before, provides the following estimates:

sR(1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

3/5
1

1/5
2/5

1
1/5

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0.60
1.00
0.20
0.40
1.00
0.20

⎞
⎟⎟⎟⎟⎟⎟⎠

, rR(1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

3
2
5
4
1
6

⎞
⎟⎟⎟⎟⎟⎟⎠

,

CR(1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1/4 5 4 1/5 4
4 1 5 5 1/3 5

1/5 1/5 1 1/3 1/5 2
1/4 1/5 3 1 1/5 3

5 3 5 5 1 5
1/4 1/5 1/2 1/3 1/5 1

⎞
⎟⎟⎟⎟⎟⎟⎠

;

Respondent 2, male, age 19, never visited the country before,

sR(2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
1

3/4
1/2
3/4
1/2

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1.00
1.00
0.75
0.50
0.75
0.50

⎞
⎟⎟⎟⎟⎟⎟⎠

, rR(2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

2
1
3
4
5
6

⎞
⎟⎟⎟⎟⎟⎟⎠

,

CR(2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 3 3 2 4
1 1 4 2 4 5

1/3 1/4 1 3 1 4
1/3 1/2 1/3 1 1 3
1/2 1/4 1 1 1 3
1/4 1/5 1/4 1/3 1/3 1

⎞
⎟⎟⎟⎟⎟⎟⎠

;
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Respondent 3, female, age 21, never visited the country before,

sR(3) =

⎛
⎜⎜⎜⎜⎜⎜⎝

4/5
1

1/5
3/5
4/5
3/5

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0.80
1.00
0.20
0.60
0.80
0.60

⎞
⎟⎟⎟⎟⎟⎟⎠

, rR(3) =

⎛
⎜⎜⎜⎜⎜⎜⎝

2
1
6
4
3
5

⎞
⎟⎟⎟⎟⎟⎟⎠

,

CR(3) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1/4 5 4 1/3 3
4 1 5 5 3 5

1/5 1/5 1 1/3 1/5 1/3
1/4 1/5 3 1 1/4 1

3 1/3 5 4 1 5
1/3 1/5 3 1 1/5 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Given the pairwise comparison matrix obtained from each respondent, the absolute
ratings of criteria are found based on three computational methods. We obtain vectors of
ratings by application of the principal eigenvector method and the method of geometric
mean. Furthermore, we solve the problem by using the log-Chebyshev approximation
in the framework of tropical algebra, which yields two vectors that are best and worst
differentiate the criteria with the highest and lowest ratings (the best and worst log-
Chebyshev approximation vectors). The vectors of ratings obtained are then used to rank
criteria according to the values of ratings.

As a result, for each respondent i, the following vectors of ratings normalized by
dividing by the maximum element, and rank vectors are calculated:

sR(i), the direct ratings (scores) by the respondent (SR),

rR(i), the direct ranks by the respondent (RR),

rsR(i), the ranks based on direct ratings by the respondent (RSR),

sPE(i), the ratings by the method of principal eigenvector (SPE),

rsPE(i), the ranks based on the principal eigenvector ratings (RSPE),

sGM(i), the ratings by the method of geometric mean (SGM),

rsGM
(i), the ranks based on the geometric mean ratings (RSGM),

sCB(i), the best ratings by the method of log-Chebyshev approximation (SCB),

rsCB
(i), the ranks based on the best ratings from the log-Chebyshev approximation (RSCB),

sCW(i), the worst ratings by the method of log-Chebyshev approximation (SCW),

rsCW
(i), the ranks based on the worst ratings from the log-Chebyshev approximation (RSCW).

For respondents i = 1, 2, 3 considered above as examples, we have the following
results. For respondent 1, the vectors of ratings and ranks take the form
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rsR(1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

3
1
5
4
2
6

⎞
⎟⎟⎟⎟⎟⎟⎠

, sPE(1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.3581
0.6526
0.1142
0.1832
1.0000
0.0943

⎞
⎟⎟⎟⎟⎟⎟⎠

, rsPE(1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

3
2
5
4
1
6

⎞
⎟⎟⎟⎟⎟⎟⎠

,

sGM(1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.3588
0.6680
0.1190
0.1906
1.0000
0.0981

⎞
⎟⎟⎟⎟⎟⎟⎠

, sCB(1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.3218
0.6551
0.1036
0.1581
1.0000
0.1018

⎞
⎟⎟⎟⎟⎟⎟⎠

, sCW(1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.3218
0.6551
0.1036
0.1581
1.0000
0.1018

⎞
⎟⎟⎟⎟⎟⎟⎠

,

rsGM
(1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

3
2
5
4
1
6

⎞
⎟⎟⎟⎟⎟⎟⎠

, rsCB
(1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

3
2
5
4
1
6

⎞
⎟⎟⎟⎟⎟⎟⎠

, rsCW
(1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

3
2
5
4
1
6

⎞
⎟⎟⎟⎟⎟⎟⎠

.

From the results obtained, it follows that the ranks of criteria provided by all methods
for respondent 1 coincide and arrange the criteria in the following order of preference with
the symbol � used to indicate the preference relation:

C5 � C2 � C1 � C4 � C6.

Note that the best and worst differentiating solutions lead the same vector of ratings,
and thus the method of log-Chebyshev approximation has a unique solution in this case.

For respondent 2, the calculation results in the following vectors of ratings and ranks:

rsR(2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
2
3
5
4
6

⎞
⎟⎟⎟⎟⎟⎟⎠

, sPE(2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.8485
1.0000
0.4462
0.3170
0.3467
0.1392

⎞
⎟⎟⎟⎟⎟⎟⎠

, rsPE(2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

2
1
3
5
4
6

⎞
⎟⎟⎟⎟⎟⎟⎠

,

sGM(2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.8754
1.0000
0.4292
0.3184
0.3645
0.1434

⎞
⎟⎟⎟⎟⎟⎟⎠

, sCB(2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.7500
1.0000
0.4543
0.2752
0.2500
0.1101

⎞
⎟⎟⎟⎟⎟⎟⎠

, sCW(2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1.0000
1.0000
0.4543
0.2752
0.4543
0.1667

⎞
⎟⎟⎟⎟⎟⎟⎠

,

rsGM
(2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

2
1
3
5
4
6

⎞
⎟⎟⎟⎟⎟⎟⎠

, rsCB
(2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

2
1
3
4
5
6

⎞
⎟⎟⎟⎟⎟⎟⎠

, rsCW
(2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
2
3
5
4
6

⎞
⎟⎟⎟⎟⎟⎟⎠

.

We observe that the ranks of the criteria obtained by both methods of the principal
vector and of geometric mean are the same and determine the order

C2 � C1 � C3 � C5 � C4 � C6.

Furthermore, we may consider that the ratings, which are provided by the worst
differentiating vector of log-Chebyshev approximation, lead to the above ranking as well.
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Indeed, this method gives equal ratings to the first and second criteria to allow these criteria
to be ranked in any order, one of which is the same as above.

The best and worst differentiating vectors of ratings obtained as a result of the log-
Chebyshev approximation differ in some elements and can be coupled as a vector with
interval values in the form

sC(2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.7500 . . . 1.0000
1.0000
0.4543
0.2752

0.2500 . . . 0.4543
0.1101 . . . 0.1667

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The order provided by these vectors can be represented in combined form as

C2 � C1 � C3 � C5 ‖ C4 � C6,

where the symbol � denotes the weak preference relation (preferred or indifferent) and ‖
indicates an undetermined preference.

Finally, the results obtained for respondent 3 are given by the vectors

rsR(3) =

⎛
⎜⎜⎜⎜⎜⎜⎝

2
1
6
4
3
5

⎞
⎟⎟⎟⎟⎟⎟⎠

, rsPE(3) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.3773
1.0000
0.0930
0.1630
0.6213
0.1631

⎞
⎟⎟⎟⎟⎟⎟⎠

, rsPE(3) =

⎛
⎜⎜⎜⎜⎜⎜⎝

3
1
6
5
2
4

⎞
⎟⎟⎟⎟⎟⎟⎠

,

sGM(3) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.3865
1.0000
0.0916
0.1710
0.6368
0.1728

⎞
⎟⎟⎟⎟⎟⎟⎠

, sCB(3) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.3798
1.0000
0.1082
0.1755
0.6163
0.1755

⎞
⎟⎟⎟⎟⎟⎟⎠

, sCW(3) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.3798
1.0000
0.1082
0.1755
0.6163
0.2279

⎞
⎟⎟⎟⎟⎟⎟⎠

,

rsGM
(3) =

⎛
⎜⎜⎜⎜⎜⎜⎝

3
1
6
5
2
4

⎞
⎟⎟⎟⎟⎟⎟⎠

, rsCB
(3) =

⎛
⎜⎜⎜⎜⎜⎜⎝

3
1
6
4
2
5

⎞
⎟⎟⎟⎟⎟⎟⎠

, rsCW
(3) =

⎛
⎜⎜⎜⎜⎜⎜⎝

3
1
6
5
2
4

⎞
⎟⎟⎟⎟⎟⎟⎠

.

In this case, the solutions provided by the method of principal eigenvector and method
of geometric mean as well as the worst differentiating solution by the log-Chebyshev
approximation define the same ranks of criteria, which yields the order

C2 � C5 � C1 � C6 � C4 � C3.

The best and worst differentiating vectors of ratings differ only by the last element
and can be combined as follows:

sC(3) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.3798
1.0000
0.1082
0.1755
0.6163

0.1755 . . . 0.2279

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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The order of criteria, which corresponds to these vectors, can be represented as

C2 � C5 � C1 � C6 � C4 � C3.

It follows from the above examples that the results of determining the ranks of criteria,
which are obtained from their pairwise comparisons by applying different methods may
vary. In the next sections, we examine the difference between these results more closely by
using appropriate techniques of data analysis.

5. Statistical Analysis of Ratings and Ranks

In this section, we compare ratings and ranks of criteria, obtained by different methods
for all respondents participating in the survey. Ratings and ranks that are directly specified
by respondents are compared with those which are based on three methods of evaluating
criteria from pairwise comparisons. We examine the results of the principal eigenvector
method, the geometric mean method, and the method of log-Chebyshev approximation.
For the latter method, we consider two solution vectors, which best and worst differentiate
the criteria if the solution is nonunique (both vectors coincide when the solution is unique).

To represent the obtained results in table form below, we use the following symbols:

SR, the direct ratings (scores) given by respondent (Scores by Respondent),

RR, the direct ranks by respondent (Ranks by Respondent),

RSR, the ranks from the direct ratings by respondent (Ranks from Scores by Respondent),

SPE, the ratings by the method of principal eigenvector (Scores by Principal Eigenvector),

RSPE, the ranks from the principal eigenvector ratings (Ranks from Scores by Princi-
pal Eigenvector),

SGM, the ratings by the method of geometric mean (Scores by Geometric Means),

RSGM, the ranks from the geometric mean ratings (Ranks from Scores by Geometric Means),

SCB, the best differentiating ratings by the method of log-Chebyshev approximation
(Scores by log-Chebyshev, Best),

RSCB, the ranks from the best ratings from the log-Chebyshev approximation (Ranks
from Scores by log-Chebyshev, Best),

SCW, the worst differentiating ratings from the log-Chebyshev approximation (Scores by
log-Chebyshev, Worst),

RSCW, the ranks from the worst ratings from the log-Chebyshev approximation (Ranks
from Scores by log-Chebyshev, Worst).

We start by counting the matches in the rank vectors obtained directly and determined
through pairwise comparisons. The numbers of matches between rank vectors for each
pair of the ranking methods are presented in Table 1.

Table 1. Number of matches of rank vectors.

Ranking Ranking Method

Method RR RSR RSPE RSGM RSCB RSCW

RR 202 28 56 56 59 56
RSR 28 202 20 20 18 23

RSPE 56 20 202 184 124 123
RSGM 56 20 184 202 124 125
RSCB 59 18 124 124 202 130
RSCW 56 23 123 125 130 202

The results given by Table 1 show a low level of matches (encountered for 28 out of
202 respondents) between the vectors of direct ranks (RR) and ranks determined from
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ratings that are specified by respondents (RSR). We can explain this inconsistency by greater
variability in determining ratings by respondents, which allows one to assign the same
ratings to several criteria. As a result, the ranks obtained from ratings may differ from
the direct ranking, when the respondent specifies an individual rank for each criterion to
indicate the number (position) of the criterion in the ranking order.

The degree of consistency of the direct ranking (RR) with the ranking on the basis of
ratings obtained from pairwise comparisons (RSPE, RSGM, RSCB, RSCW) is better given by
56–59 matches of rank vectors, which are more than a quarter of respondents. Note that the
maximum number of matches, which is equal to 59, is provided by the best differentiating
solution of log-Chebyshev approximation (RSCB).

We note that the results of ranking criteria from pairwise comparisons demonstrate
a higher level of consistency between the methods under consideration. Specifically, the
largest number of matches encountered for 184 (more than 90% of) respondents is given
by the outcome from the methods of principal eigenvector (RSPE) and of geometric mean
(RSGM). The number of matches between the rank vectors produced by these methods
and the vectors obtained using log-Chebyshev approximation (RSCB, RSCW) is within the
range 123–125 (more than 60% of respondents). Finally, the rank vectors, which are obtained
from the best and worst differentiating solutions found by log-Chebyshev approximation,
coincide for 130 respondents.

Below, to analyze and compare the results more thoroughly, we use appropriate
statistical techniques of parameter estimation and correlation analysis. As preliminary
analysis of data, we investigate if parameters of respondents, such as age and sex, may
affect the results of the evaluation of criteria. Furthermore, we compare the results of
evaluating ratings and ranks obtained from pairwise comparisons by different methods
with each other and with the ratings and ranks directly provided by respondents.

5.1. Preliminary Analysis of Data

In the analysis of indirect methods that produce results from pairwise comparison
data, it seems reasonable to consider the ratings and ranks of criteria, which are directly
specified by respondents, as some basis for comparison. Since these ratings and ranks are
known for all respondents, we can try to select those respondents for whom the direct
ranks and ranks given by direct ratings appear to be closest to each other. Considering that
a part of respondents may demonstrate a higher level of consistency in the direct judgment,
one can expect that these respondents are able to assess pairwise comparison of criteria
more adequately and definitely.

To examine how the consistency between direct estimates of ratings and ranks may
affect the results based on pairwise comparisons, we consider groups of respondents
with different degrees of consistency. As a measure of inconsistency (difference) between
rank vectors, we apply the Chebyshev metric (the maximum absolute componentwise
difference), which is calculated for two n-vectors a = (aj) and b = (bj) as

d(a, b) = max
1≤j≤n

|aj − bj|.

We consider a series of nested subsets (groups) R0 ⊂ R1 ⊂ · · · ⊂ R5, where Ri denotes
the set of respondents for whom the Chebyshev metric between the vectors of direct ranks
and ranks obtained from the direct ratings is less or equal to i = 0, 1, . . . , 5. Table 2 shows
how the total number of respondents in groups changes with increase in the upper bound
for Chebyshev metric, which indicates the maximum degree of difference in groups. For
each group, the percentage of respondents who visited the country and male/female
percentage are also included.
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Table 2. Groups of respondents according to difference between rank vectors.

Maximum Number of Percentage of Male/
Group Component-Wise Respondents Respondents Who Female

Difference in the Group Visited the Country Percentage

R0 0 28 35 33/67
R1 1 95 19 32/68
R2 2 167 18 30/70
R3 3 194 17 28/72
R4 4 201 18 28/72
R5 5 202 19 28/72

It follows from the data presented in the table that the direct ranks and the ranks
obtained from direct ratings completely coincide for 28 respondents from the group R0,
who may be considered as the most accurate evaluators. However, these respondents form
a rather small part of all respondents involved in the survey, which makes it unreasonable
to take this group as a good representative of the entire sample.

Furthermore, we note that the respondents in the groups R1, . . . , R5 with less consistent
direct judgments demonstrate almost the same percentage of those who visited the country
(17–19%). This apparently indicates that for the most respondents, there is no relationship
between visiting the country and accuracy of judgments. At the same time, for the group
R0, this percentage increases to 35%, which is in line with the idea that the accuracy
of judgments should increase as respondents gain experience of staying in the country.
A conclusion about the lack of systematic dependence of the accuracy of judgments on the
gender and age of respondents can also be drawn for all groups.

To complete the analysis of the possible influence of the accuracy of direct judgments
about ratings and ranks on the other survey results, we estimate correlations between
the rank vectors directly provided by respondents and the vectors derived from pairwise
comparisons. To measure correlation, we use the Kendall rank correlation coefficient,
which is given for two n-vectors a = (aj) and b = (bj) by the formula

τ(a, b) =
2

n(n− 1) ∑
1≤i<j≤n

sgn(ai − aj) sgn(bi − bj).

For each group R0, R1 and R5, we concatenate the vectors of ratings obtained for all
respondents in the group to form a single vector of ratings for each method. The estimates
of the correlation coefficients between concatenated vectors for the groups R0, R1 and R5
are given in Tables 3–5 (the estimates for groups R2, R3 and R4 do not differ significantly
from the results for R1 and R5 and hence are omitted).

Table 3. Correlation of rank vectors for the group R0.

Ranking Ranking Method

Method RR RSPE RSGM RSCB RSCW

RR 1.0000 0.8482 0.8482 0.8560 0.8645
RSPE 0.8482 1.0000 1.0000 0.9558 0.9557
RSGM 0.8482 1.0000 1.0000 0.9557 0.9557
RSCB 0.8560 0.9558 0.9558 1.0000 0.9717
RSCW 0.8645 0.9557 0.9557 0.9717 1.0000
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Table 4. Correlation of rank vectors for the group R1.

Ranking Ranking Method

Method RR RSPE RSGM RSCB RSCW

RR 1.0000 0.8184 0.8234 0.8108 0.8221
RSPE 0.8184 1.0000 0.9943 0.9450 0.9183
RSGM 0.8234 0.9943 1.0000 0.9429 0.9223
RSCB 0.8108 0.9450 0.9429 1.0000 0.9234
RSCW 0.8221 0.9183 0.9223 0.9234 1.0000

Table 5. Correlation of rank vectors for the group R5.

Ranking Ranking Method

Method RR RSPE RSGM RSCB RSCW

RR 1.0000 0.7939 0.7940 0.7876 0.7839
RSPE 0.7939 1.0000 0.9862 0.9312 0.9186
RSGM 0.7940 0.9862 1.0000 0.9290 0.9204
RSCB 0.7876 0.9312 0.9290 1.0000 0.9144
RSCW 0.7839 0.9186 0.9204 0.9144 1.0000

The data presented in these tables show that for all groups of respondents, the correla-
tions vary within small limits and maintain the relative order of magnitude for different
methods. This allows us to conclude that the change in accuracy of direct estimates does
not significantly affect the results of ranking based on pairwise comparisons.

In the subsequent analysis, we take into account the above results and examine all
respondents together rather than divide them into groups according to the accuracy of
direct judgments or parameters of respondents.

5.2. Comparison of Ratings

We now examine results of evaluating ratings, obtained by different methods from
pairwise comparisons and specified directly by respondents. First, we calculate the means
and standard deviations of vectors of ratings for each rating method. The mean vectors
can be considered as the most representative (typical) vectors over all respondents for
each method to give some general idea of the absolute ratings of criteria in hotel selection.
The standard deviations describing the spread of the vectors can characterize both the
differences in the perception of the relative importance of criteria by respondents and the
ability of the methods to reinforce or smooth these differences.

The results of calculating the mean vectors presented in Table 6 show that on average,
criterion 2 is always rated higher than the others, next come criterion 1 and then 5. The
other criteria have lower mean ratings, which give the order (3, 4, 6) for all methods
except the direct rating with the order (6, 3, 4). Examination of the output of individual
respondents indicates that the second criterion is evaluated above the others for more
than 60% respondents. Specifically, this result encounters in the direct rating (SR) for
165 respondents, in both methods of principal eigenvector (SPE) and geometric mean
(SGM) for 125 respondents, and in the best and worst differentiating solutions of log-
Chebyshev approximation (SCB and SCW) for 123 and 147 respondents respectively.

It follows from Table 6 that the direct ratings by respondents are sufficiently different
from the other results. This can be explained by a rather primitive scale used in the survey,
which includes only 5 points. At the same time, the evaluation of mean vectors for all
indirect methods of rating criteria gives quite close results. We note that the mean vectors
of the log-Chebyshev approximation appear as lower and upper boundaries for the mean
vectors for both methods of principal eigenvector and geometric mean.
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Table 6. Mean vectors of rating of criteria.

Criterion Rating Method

Number SR SPE SGM SCB SCW

1 0.7480 0.6268 0.6272 0.5693 0.6313
2 0.9428 0.8877 0.8915 0.8504 0.9025
3 0.5784 0.3238 0.3231 0.2861 0.3511
4 0.5588 0.3044 0.3053 0.2735 0.3291
5 0.7331 0.5279 0.5303 0.4910 0.5581
6 0.6149 0.2543 0.2558 0.2252 0.2879

To measure the overall variability of ratings for all methods, we use the average
standard deviation over criteria and a total (vector) standard deviation defined as the
square root of the sum of squares of standard deviations for each criterion. The results of
calculation are given in Table 7 and say, in particular, that the total standard deviations
for the methods of principal eigenvector and geometric mean almost coincide, and both
methods have slightly lower variability of ratings than the log-Chebyshev approximation.

Table 7. Variability estimates for vectors of ratings.

Variability Rating Method

Measure SR SPE SGM SCB SCW

Average deviation 0.2037 0.2202 0.2198 0.2252 0.2339
Total deviation 0.5046 0.5477 0.5478 0.5613 0.5796

Table 8 demonstrates the standard deviation of ratings for each pair of criteria and
methods. We note that criteria 2 and 6 most often have the smallest or the next smallest
standard deviation for all methods, which suggests that the real assessment of these criteria
differs the least from one respondent to another.

Table 8. Standard deviation of ratings of each criterion.

Criterion Rating Method

Number SR SPE SGM SCB SCW

1 0.2188 0.2578 0.2611 0.2685 0.2633
2 0.1379 0.1837 0.1807 0.2175 0.1879
3 0.2255 0.2300 0.2279 0.2163 0.2426
4 0.2248 0.2052 0.2039 0.1963 0.2150
5 0.1978 0.2769 0.2798 0.2889 0.2914
6 0.2173 0.1676 0.1656 0.1639 0.2032

Next, we turn to the estimates of correlation between vectors of ratings produced by
the direct and indirect assessment methods. For each method, we concatenate the vectors
of all respondents into a single vector of ratings, and then estimate the Pearson correlation
coefficients between the concatenated vectors. The correlation coefficients calculated for all
pairs of methods are given in Table 9.

The results presented in this table show that the correlation between ratings obtained
from pairwise comparisons is close to one for all pairs of methods, which means that
any two concatenated vectors of ratings are close to be linearly dependent (collinear).
Specifically, the vectors found by the methods of principal eigenvector and geometric mean
correlate at the level of 0.9973, and thus can be considered poorly distinguishable from the
correlation point of view.
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Table 9. Correlation of vectors of ratings for all pairs of methods.

Rating Rating Method

Method SR SPE SGM SCB SCW

SR 1.0000 0.6942 0.6918 0.6619 0.6889
SPE 0.6942 1.0000 0.9973 0.9613 0.9622
SGM 0.6918 0.9973 1.0000 0.9631 0.9576
SCB 0.6619 0.9613 0.9631 1.0000 0.9164
SCW 0.6889 0.9622 0.9576 0.9164 1.0000

We now consider the correlations of ratings produced by all methods for each individ-
ual criterion. Tables 10–12 demonstrate the estimates for criteria 1, 2 and 6 (the results for
criteria 3, 4 and 5 are similar to those for criterion 1 and thus omitted).

Table 10. Correlation of ratings of criterion 1 for all pairs of methods.

Rating Rating Method

Method SR SPE SGM SCB SCW

SR 1.0000 0.5815 0.5639 0.5151 0.5758
SPE 0.5815 1.0000 0.9949 0.9215 0.9408
SGM 0.5639 0.9949 1.0000 0.9250 0.9220
SCB 0.5151 0.9215 0.9250 1.0000 0.8723
SCW 0.5758 0.9408 0.9220 0.8723 1.0000

The results obtained for each criterion indicate that there is a high correlation at
the level of 0.9929 . . . 0.9959 between the ratings produced by the method of principal
eigenvector and the method of geometric mean.

Table 11. Correlation of ratings of criterion 2 for all pairs of methods.

Rating Rating Method

Method SR SPE SGM SCB SCW

SR 1.0000 0.4243 0.4314 0.3778 0.4348
SPE 0.4243 1.0000 0.9959 0.8887 0.9217
SGM 0.4314 0.9959 1.0000 0.8899 0.9239
SCB 0.3778 0.8887 0.8899 1.0000 0.8004
SCW 0.4348 0.9217 0.9239 0.8004 1.0000

Furthermore, the ratings provided by the best differentiating solutions of log-Chebyshev
approximation are usually more correlated with the ratings by the method of geometric mean
(0.8899 . . . 0.9543), whereas the ratings from the worst differentiating solutions are more cor-
related with those from the method of principal eigenvector (0.8938 . . . 0.9408). Finally, the
correlation between ratings from the best and worst differentiating solutions are somewhat
lower and lay in the range 0.7776 . . . 0.8752.

Table 12. Correlation of ratings of criterion 6 for all pairs of methods.

Rating Rating Method

Method SR SPE SGM SCB SCW

SR 1.0000 0.4926 0.4873 0.4569 0.4842
SPE 0.4926 1.0000 0.9929 0.9301 0.8938
SGM 0.4873 0.9929 1.0000 0.9189 0.8911
SCB 0.4569 0.9301 0.9189 1.0000 0.7776
SCW 0.4842 0.8938 0.8911 0.7776 1.0000
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To summarize the results of the comparison of ratings, we can conclude that for the
survey data under study, all indirect methods of rating criteria consistently produce highly
correlated vectors of ratings, with the highest correlation very close to one between the
results of the methods of principal eigenvector and geometric mean. The good agreement
between the results of indirect methods can be explained by the natural origin of the initial
data obtained as results of human judgment, which provide rationale for more consistent
pairwise comparisons than artificial simulated data.

In conclusion, we note low correlations between direct and indirect ratings, which are
within the range 0.3778 . . . 0.5993. This relative disagreement may serve as an illustration of
the known fact that it may be difficult for typical respondents to make a correct judgment
when more than two alternatives are simultaneously evaluated, whereas they normally
assess pairwise comparisons more accurately.

5.3. Comparison of Ranks

We start with the ranks derived from ratings given by the mean vectors in Table 6.
The mean vector of ratings that are directly provided by respondents yields the rank vector
(2, 1, 5, 6, 3, 4), which arranges the criteria in the following order:

C2 � C1 � C5 � C6 � C3 � C4.

To see how frequently this order coincides with the order derived from the vectors
of ratings of individual respondents, we calculate the Hamming distance between (the
number of different elements in) the corresponding rank vectors. The results of counting
the number of rank vectors, which are obtained from vectors of ratings for all methods,
within fixed distances from the vector (2, 1, 5, 6, 3, 4) are given in Table 13.

Table 13. Number of vectors within fixed distance from (2, 1, 5, 6, 3, 4).

Maximum Rating Method

Hamming Distance RSR RSPE RSGM RSCB RSCW

0 5 3 3 4 4
1 5 3 3 4 4
2 23 35 32 35 31
3 61 68 65 66 64
4 122 135 130 123 132
5 178 185 186 186 188
6 202 202 202 202 202

The mean vectors of ratings derived from pairwise comparisons by different methods
imply a common rank vector (2, 1, 5, 3, 4, 6), which corresponds to the order

C2 � C1 � C5 � C3 � C4 � C6.

The numbers of rank vectors within fixed distances from the vector (2, 1, 5, 3, 4, 6) are
shown in Table 14.

Both Tables 13 and 14 demonstrate low correspondence between the rank vectors de-
rived from the mean vectors of ratings and the individual rank vectors for each respondent.
In this case, we cannot consider the ranks based on the mean vectors as well justified, and
need further examination of the individual rank vectors to find those vectors that occur
more frequently for each method. The results of determining the five most common rank
vectors for each method are presented in Table 15.
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Table 14. Number of vectors within fixed distance from (2, 1, 5, 3, 4, 6).

Maximum Rating Method

Hamming Distance RSR RSPE RSGM RSCB RSCW

0 6 4 4 7 5
1 6 4 4 7 5
2 37 40 38 48 41
3 66 64 63 69 63
4 121 133 132 130 129
5 175 180 179 183 184
6 202 202 202 202 202

Table 15. Most frequently occurred rank vectors.

Ranking Method Rank Vector Order of Criteria Number of Occurrences

(1, 2, 5, 3, 4, 6) C1 � C2 � C5 � C3 � C4 � C6 10
(2, 1, 5, 3, 6, 4) C2 � C1 � C5 � C3 � C6 � C4 9

RSR (1, 2, 3, 5, 6, 4) C1 � C2 � C3 � C5 � C6 � C4 8
(2, 5, 6, 1, 3, 4) C2 � C5 � C6 � C1 � C3 � C4 7
(1, 2, 3, 4, 5, 6) C1 � C2 � C3 � C4 � C5 � C6 6

(2, 1, 5, 3, 6, 4) C2 � C1 � C5 � C3 � C6 � C4 12
(2, 1, 5, 4, 6, 3) C2 � C1 � C5 � C4 � C6 � C3 8

RSPE (2, 1, 5, 4, 3, 6) C2 � C1 � C5 � C4 � C3 � C6 7
(2, 5, 1, 3, 6, 4) C2 � C5 � C1 � C3 � C6 � C4 6
(2, 1, 4, 5, 6, 3) C2 � C1 � C4 � C5 � C6 � C3 6

(2, 1, 5, 3, 6, 4) C2 � C1 � C5 � C3 � C6 � C4 12
(2, 1, 5, 4, 6, 3) C2 � C1 � C5 � C4 � C6 � C3 8

RSGM (2, 1, 4, 5, 6, 3) C2 � C1 � C4 � C5 � C6 � C3 7
(1, 2, 5, 4, 3, 6) C1 � C2 � C5 � C4 � C3 � C6 7
(2, 1, 3, 5, 6, 4) C2 � C1 � C3 � C5 � C6 � C4 6

(2, 1, 5, 3, 6, 4) C2 � C1 � C5 � C3 � C6 � C4 11
(2, 5, 1, 3, 4, 6) C2 � C5 � C1 � C3 � C4 � C6 7

RSCB (2, 1, 5, 3, 4, 6) C2 � C1 � C5 � C3 � C4 � C6 7
(2, 1, 5, 4, 3, 6) C2 � C1 � C5 � C4 � C3 � C6 7
(1, 2, 5, 4, 3, 6) C1 � C2 � C5 � C4 � C3 � C6 6

(2, 1, 5, 3, 6, 4) C2 � C1 � C5 � C3 � C6 � C4 9
(2, 5, 1, 3, 4, 6) C2 � C5 � C1 � C3 � C4 � C6 8

RSCW (2, 1, 5, 4, 3, 6) C2 � C1 � C5 � C4 � C3 � C6 8
(1, 2, 5, 4, 3, 6) C1 � C2 � C5 � C4 � C3 � C6 8
(2, 5, 1, 4, 3, 6) C2 � C5 � C1 � C4 � C3 � C6 6

It follows from Table 15 that the most frequently occurred rank vector derived from
ratings for all indirect methods and the second most frequent for the direct ratings by
respondents is (2, 1, 5, 3, 6, 4). This rank vector yields the order of criteria defined as

C2 � C1 � C5 � C3 � C6 � C4,

and seems to provide a more accurate assessment of the ranks of criteria for the set of
respondents participating in the survey.

We conclude with the results in Table 16, which demonstrate the Kendall correlation
between concatenated rank vectors obtained by direct and indirect methods (this table
actually presents the same results as in Table 5 used in the preliminary analysis of data).
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Table 16. Correlations of rank vectors for all methods.

Ranking Ranking Method

Method RR RSPE RSGM RSCB RSCW

RR 1.0000 0.7939 0.7940 0.7876 0.7839
RSPE 0.7939 1.0000 0.9862 0.9312 0.9186
RSGM 0.7940 0.9862 1.0000 0.9290 0.9204
RSCB 0.7876 0.9312 0.9290 1.0000 0.9144
RSCW 0.7839 0.9186 0.9204 0.9144 1.0000

As for the correlation of vectors of ratings obtained from pairwise comparisons, the
corresponding rank vectors are highly correlated for all methods. As before, the methods
of principal eigenvector and geometric mean have the highest correlation of 0.9863, which
is very close to one. At the same time, the correlation of rank vectors obtained by the
log-Chebyshev approximation and by both methods of principal eigenvector and geometric
mean increase to 0.9187 . . . 0.9313. This shows that in terms of rank vectors, the difference
between the results of all methods remains quite small, and therefore, the results of one
method can be used to validate the results of the other methods.

6. Discussion

In this study, we considered a problem of the assessment of 6 criteria used by university
students for hotel selection when attending a short-term educational program in a foreign
country. The data available for the assessment procedure include the results of a survey of
202 respondents who report on their age, sex and whether they have previously visited
the country, and evaluate the criteria by different ways. In the course of evaluation, each
respondent directly estimates ratings and indicate ranks of criteria, and then compares the
criteria in pairs to provide an input for subsequent derivation of ratings from the pairwise
comparisons by an appropriate computational method.

To provide more accuracy of the assessment, we concurrently applied three methods
of rating alternatives from pairwise comparisons, where the results of the most common
approaches, the method of principal eigenvector and method of geometric mean, were
considered in line with results of log-Chebyshev approximation. Moreover, the ratings
derived by these methods and corresponding ranks of criteria were compared with the
ratings and ranks provided by respondents directly.

First, we investigated the possible influence of parameters and properties of respon-
dents on the degree of difference and similarity of results provided by different methods of
deriving ratings. Specifically, we examined the assumption that the consistency between di-
rect ranks and ratings given by respondents may affect the results of calculating ranks from
pairwise comparisons by these methods. As our analysis has shown, for the majority of
respondents, the consistency of the direct judgments, as well as parameters of respondents
do not have a significant impact on the stability of the results, which made it inappropriate
to divide respondents into groups for separate analysis.

Furthermore, we considered ratings provided by respondents directly or indirectly
through pairwise comparisons of criteria. Calculation of the mean vectors of ratings has
indicated that on average all indirect methods produce very close results. Specifically, the
mean vectors of the methods of principal eigenvector and geometric mean appear to be
closest to each other, whereas the mean vectors of the best and worst differentiating results
of log-Chebyshev approximation form lower and upper bounds for the other two mean
vectors. The mean vector of direct ratings by respondents is rather different from the mean
vectors of indirect methods, which is due to a rough 5-point scale that narrows the range of
assessment values used by respondents.

On average all methods equally determine the highest ratings of criteria in the order
(2, 1, 5). The other criteria are ordered by all indirect methods as (3, 4, 6), and by the ratings
directly provided by respondents as (6, 3, 4). The standard deviation of ratings of criterion
2 has the smallest or the next smallest value among the criteria, which speaks in favor
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of a unanimous assessment of this criterion by all respondents. As a result, the analysis
of mean vectors of ratings suggests two possible candidates for the optimal rank vector:
(2, 1, 5, 3, 4, 6) and (2, 1, 5, 6, 3, 4).

To give further insight into the consistency or inconsistency of ratings derived by
different methods, we estimated Pearson correlation coefficients between vectors of ratings
obtained for all respondents. We have found a high correlation close to one between
the results of the methods of principal eigenvector and geometric mean. The correlation
between ratings from these two methods and from the log-Chebyshev approximation is
somewhat lower, but still close to one. The good agreement of the ratings obtained from
pairwise comparisons by all methods can be seen as a result of the natural and meaningful
character of the input data that reflect mechanisms of human judgment and hence have a
certain level of immanent consistency.

As the next step of the investigation, we examined the vectors of ranks provided by
direct and indirect assessments. First, we checked whether the rank vectors (2, 1, 5, 3, 4, 6)
or (2, 1, 5, 6, 3, 4) derived from the mean vectors of ratings actually occur in the results
based on the data provided by individual respondents. We have found that these vectors of
ranks are relatively rare as results of all assessment methods, and thus cannot be considered
as appropriate solutions. At the same time, calculating the number of the most frequently
obtained rank vectors has shown that the most occurred vector is (2, 1, 5, 3, 6, 4) for all
methods except for the ranking from direct ratings by respondents, where this vector is the
second most frequent. We note that the last vector of ranks provides the same order for
three most important criteria as the two vectors considered above, and differ from them
only for the last three least important criteria.

It follows from the analysis of the results obtained that for the given survey data,
one can take the rank vector (2, 1, 5, 3, 6, 4) as the most accurate assessment of criteria for
hotel selection. Assuming the respondents are representative of the total population of
university students, we can conclude that the typical student ranks the criteria of hotel
selection in the following order (from the most important to the least important):

1. Accommodation cost, C2;
2. Hotel location, C1;
3. Room amenities, C5;
4. Typical guests, C3;
5. Courtesy of staff, C6;
6. Free breakfast, C4.

As another less definite but more realistic conclusion, we can group criteria into two
levels. The first level consists of the criterion C2 (accommodation cost), which is ranked
first most frequently, and then criteria C1 (hotel location) and C5 (room amenities), which
can sometimes change the order of each other. On the second level of lower importance are
the criteria C3 (typical guests), C6 (courtesy of staff) and C4 (free breakfast), which can go in
almost any order.

Finally, we estimated Kendall correlation coefficients for rank vectors derived from
pairwise comparisons. As in the case of ratings, the correlations between rank vectors have
been found close to one, which shows once again that for the pairwise comparison data
provided by respondents, the method of principal eigenvector, the method of geometric
mean and the method of log-Chebyshev approximation produce quite consistent outcome.
The similarity of assessment results can serve as an additional argument in support of
accepting the obtained order of criteria as the optimal solution.

7. Conclusions

The problem of evaluating preferences of criteria for choice is a key component in the
multicriteria decision making procedure of assessment alternatives, and it is of independent
interest in many applications including marketing research and practice. However, the
existing methods to handle the problem, which are based on both direct evaluation of each
criterion and indirect evaluation, where the criteria are compared in pairs, are known to
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give different and even opposite results. In the case when different methods may lead to
inconsistent outcomes, a natural approach is to solve the problem by using several most
widely used or mathematically justified methods concurrently and then combine the results
to provide a more consistent and justified final solution.

In the paper, we have presented an approach that is intended to improve quality of
the evaluation of criteria used by students in hotel selection when attending an educational
program abroad. The approach is based on implementation of both direct and indirect
methods of evaluating criteria, followed by statistical procedures to examine similarity
and difference of the results. In addition, we have compared the solutions obtained by
three methods of evaluating criteria from pairwise comparisons, including the methods of
principal eigenvector, geometric mean and log-Chebyshev approximation.

By applying this technique, we have derived a solution that ranks the criteria of hotel
selection in a way, which combines the results of different methods to provide the basis
for more accurate assessment of the criteria. The comparison of the solutions produced by
the indirect methods under study has shown a fairly high degree of similarity of results.
We consider that the combined assessment technique described in the paper may serve
as a template for a useful solution approach to handle real world problems of evaluating
alternatives, where the accuracy and reliability of results is of prime importance and thus
require additional formal and experimental justification.

As directions of future research, one can consider an extension of the approach to
incorporate additional methods of evaluating alternatives from pairwise comparisons,
including interval, linguistic and fuzzy pairwise comparisons. Further development of the
technique into efficient algorithms and procedures to support decision making processes
in practical problems presents another promising line of research.
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29. Tümer, M.; Aghaei, İ.; Lasisi, T.T. Assessment of housing choice criteria for the universities’ students in North Cyprus using AHP

method. Eur. J. Manag. Res. 2019, 3, 65–86.
30. Goral, R. Prioritizing the factors which affect the selection of hotels by consumers traveling for vacation with analytical hierarchy

process (AHP) method. J. Tour. Manag. Res. 2020, 7, 11–31. [CrossRef]
31. Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [CrossRef]
32. Chu, M.T. On the optimal consistent approximation to pairwise comparison matrices. Linear Algebra Appl. 1998, 272, 155–168.

[CrossRef]
33. Krivulin, N. Using tropical optimization techniques in bi-criteria decision problems. Comput. Manag. Sci. 2020, 17, 79–104.

[CrossRef]
34. Elsner, L.; van den Driessche, P. Max-algebra and pairwise comparison matrices. Linear Algebra Appl. 2004, 385, 47–62. [CrossRef]
35. Cuninghame-Green, R.A. Minimax algebra and applications. In Advances in Imaging and Electron Physics; Hawkes, P.W., Ed.;

Academic Press: San Diego, CA, USA, 1994; Volume 90, pp. 1–121. [CrossRef]
36. Krivulin, N.K. Solution of generalized linear vector equations in idempotent algebra. Vestnik St. Petersburg Univ. Math. 2006,

39, 16–26.
37. Krivulin, N. Extremal properties of tropical eigenvalues and solutions to tropical optimization problems. Linear Algebra Appl.

2015, 468, 211–232. [CrossRef]
38. Krivulin, N. A maximization problem in tropical mathematics: A complete solution and application examples. Informatica 2016,

27, 587–606. [CrossRef]

117





Citation: Ruan, P.; Huang, Y.-F.;

Weng, M.-W. Impact of COVID-19 on

Supply Chains: A Hybrid Trade

Credit Policy. Mathematics 2022, 10,

1209. https://doi.org/10.3390/

math10081209

Academic Editors: Humberto Rocha

and Ana Maria Rocha

Received: 1 March 2022

Accepted: 1 April 2022

Published: 7 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Impact of COVID-19 on Supply Chains: A Hybrid Trade
Credit Policy

Ping Ruan 1, Yung-Fu Huang 2 and Ming-Wei Weng 2,*

1 Zhongshan Institute, Management School, University of Electronic Science and Technology of China,
Zhongshan 528400, China; zhongshan_rp@126.com

2 Department of Marketing and Logistics Management, Chaoyang University of Technology,
Taichung 413310, Taiwan; huf@cyut.edu.tw

* Correspondence: mwweng@cyut.edu.tw

Abstract: The COVID-19 pandemic has affected all sectors of the world’s economy and society. Firms
need to have disaster recovery and business sustainability plans and to be able to generate profits in
order to develop. Trade credit may be a good way for firms to free up cash flow and finance short-term
growth. Extensions of payment will provide firms with low-cost loans under the COVID-19 credit
guarantee scheme. Implementation of hybrid trade credit activities has been shown to improve the
financial crisis of many firms, and the effects are particularly evident within two-echelon supply
chains. An economic order quantity (EOQ) model is derived under conditions of deteriorating items,
an upstream full trade credit or cash discount, and downstream partial trade credit in a supply chain.
A computer program is developed to provide a numerical solution and a numerical example is used
to show the solution’s form and verify that the solution gives the minimum total cost per unit time.

Keywords: partial trade credit; cash discount; deteriorating items; EOQ; COVID-19
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1. Introduction

The COVID-19 pandemic has had an unprecedented impact on health, economic, and
financial systems around the world. From an economic and industry point of view, COVID-
19 has brought uncertainties and disruptions to international businesses and supply chains.
Thus, a supply chain may change the distribution network and route. Early theorization on
the basic economic order quantity (EOQ) model that assumes instant payment, constant
demand, and no shortages can be traced back to Harris [1]. Suppliers adopted a resolution
for a hybrid payment strategy to sustain business during the COVID-19 crisis. COVID-19
could be the black swan event that finally forces many firms, and entire industries, to
rethink and transform their global supply chain model. These shortages and supply-chain
disruptions are significant and widespread. To protect their supply chain operations, firms
may use digital supply networks, update inventory policies and planning parameters,
and focus on cash flow. Some payment policies are commonly used among suppliers
and retailers, such as prepayments, delays in payments, cash discounts, and the AC/DCF
approach. A permissible delay in payments produces two benefits for the supplier: (1) it
should attract new customers who consider it to be a type of price reduction; and (2) it
should cause a reduction in the sales outstanding, since some established customers will
pay more promptly in order to take advantage of permissible delays more frequently. Early
theorization on the EOQ model can be traced back to Goyal [2] under the conditions of
permissible delays in payments. Teng [3] amended Goyal’s model [2] by considering the
difference between the unit price and the unit cost and found that it makes economic sense
for a well-established retailer to order a lower quantity and take the benefit of payment
delays more frequently. Trade credit is used to motivate sales or decrease the on-hand
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inventory level to encourage customers. Numerous studies in the trade credit area can
be found in the literature. Examples include Huang [4], Huang [5], Huang and Hsu [6],
Hsieh et al. [7], Liao [8], Teng and Chang [9], Min et al. [10], Chen and Kang [11], Kreng
and Tan [12], Lee and Rhee [13], Mathata [14], Soni and Patel [15], Ouyang et al. [16],
Ouyang and Chang [17], Yang et al. [18], Chen et al. [19], Chen and Teng [20], Giri and
Sharma [21], Lashgari et al. [22], and Sarkar et al. [23]. Furthermore, the classical EOQ
model assumes that the purchasing cost is paid once an order is placed by a retailer. In
the corporate world, companies often have to make advance payments to suppliers when
their orders are large enough to be burdensome to the producer. An advance payment is
a type of payment made ahead of its normal schedule; for instance, paying for a good or
service before it is actually received. A prepayment is made when a selling firm receives
payment from a buyer before the seller has shipped goods or provided services to the buyer.
To produce a special product, the manufacturer may have to pay additional costs to set
up a new process. This requires the manufacturer to obtain a fraction of the production
or purchasing cost in advance. Various issues with advance payments are discussed in
Maiti et al. [24], Gupta et al. [25], Thangam [26], Taleizadeh et al. [27], Zhang et al. [28],
Tavakoli and Taleizadeh [29], Taleizadeh et al. [30], Shah et al. [31], Khan et al. [32], and
Taleizadeh et al. [33]. Generally, in the real world, suppliers give different kinds of benefits
to retailers due to advance payments. One of the popular benefits is an instant cash discount
due to an advance payment. An example is a supplier who will provide a 2% discount on
an invoice due in 30 days if the retailer pays within the first 10 days of receiving the invoice.
Giving the buyer a small cash discount would benefit the seller as it would allow her to
access the cash sooner. Khan et al. [34] proposed an inventory model for deteriorating items
with a price- and stock-dependent demand rate under full/partial advance payment condi-
tions. Shao and Meng [35] discussed the question of how to make decisions on whether the
supplier’s downstream enterprises should enjoy cash discounts. Several studies, including
those of Huang and Chung [36], Ouyang et al. [37], Yang [38], Yang et al. [39], Feng et al. [40],
Shah and Cárdenas-Barrón [41], Alshanbari et al. [42], Tripathi [43], and Mashud et al. [44],
have provided extensive discussions on the applications of cash discounts. While trade
credit is a powerful commercial tool for conquering new markets and building customer
loyalty, it is well known that cash flow plays a pivotal role in determining firms’ operation
decisions. Zhou et al. [45] considered the structure of the retailer’s optimal policies under
different partial trade credit penalty rates. Laitinen [46] investigated the characteristics of
the discounted cash flow (DCF) as a measure of a startup’s financial success. Since then,
several similar inventory EOQ models related to trade credit and discounted cash flow
(DCF) have been proposed [47–56]. However, few studies have been done on the effect of
COVID-19 on trade credit. Mashud et al. [44] showed the effect of advance and delayed pay-
ments on the retailer’s total profit during the post-COVID-19 recovery period. De et al. [57]
explored carbon emission issues with a production manufacturing system in the context of
joint inventory control and sustainable trade credit financing for deteriorating items in a
supplier–retailer–customer model in a volumetric fuzzy system. Demir and Javorcik [58]
found that the impact of COVID-19 on trade finance matters included an increased risk of
non-payment or non-delivery of pre-paid goods. Several studies (Agca et al. [59], Choi [60],
Liu et al. [61], and Luo [62]) have suggested the effectiveness of COVID-19 in creating a
trade credit policy. Some common practical issues are:

(1) The prepayment policy. This issue is key to expressing the real credit trade problem.
These policies actually sustained business growth in a competitive market during the
COVID-19 period;

(2) The cash discount policy. The Government’s SME Recovery Loan Scheme is designed
to support economic recovery and to provide continued assistance; otherwise, the
supplier offers the retailer a discounted rate on an invoice in exchange for an early
payment discount.
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2. Problem Description

The global production and supply chain system has been disrupted due to the COVID-
19 pandemic. The COVID-19 pandemic has broken most of the transportation links and
distribution mechanisms between suppliers, production facilities, and customers. There-
fore, in response to the challenges resulting from the COVID-19 pandemic, firms are looking
to implement some credit trade policies to fill financing gaps left by engaging in both short-
term (ST) and medium- and long-term (MLT) trade finance. While long-term partnerships
are great for handling incremental changes during stable periods, disruptive environmental
changes may require managers to consider disruptive changes to their businesses. In
this paper, we specifically discuss these issues as hybrid credit trade problems during the
COVID-19 period. In actuality, however, the COVID-19 pandemic has caused an unprece-
dented level of global disruption to economic systems and livelihoods. Zimon et al. [63]
explored the trade credit management strategy in Polish group purchasing organizations
during the COVID-19 pandemic. Table 1 presents a brief comparison of the results of
the studies mentioned above. The following questions are often posed by suppliers and
retailers as key points of interest:

(1) When is the best time to start prepayment for export items in the post-COVID-19 period?
(2) When is the best time to end prepayment for export items during the COVID-19 period?
(3) What is the optimal discount rate for items?
(4) What is the optimal selling price for items?
(5) What is the optimal production rate for items?

Table 1. Comparison of the financial policies in existing models with those in the proposed model.

References
Financial Policy

Other Consideration(s)
EOQ/EPQ PP F/P CD DCF

Goyal [2] EOQ F Trade credit financing
Huang [4] EOQ F Different payment rule
Huang [5] EPQ F Two levels of trade credit policies

Huang and Hsu [6] EOQ P A powerful decision-making right
Hsieh et al. [7] EOQ F

√
Demand and deterioration fluctuate with time

Liao [8] EOQ F Non-instantaneous and exponentially
deteriorating items

Teng and Chang [9] EPQ F Relaxes the assumption of N < M
Min et al. [10] EOQ F Stock-dependent demand

Chen and Kang [11] EOQ/EPQ F Imperfect items/Varying permissible delays
in payments

Kreng and Tan [12] EOQ F Order quantity
Lee and Rhee [13] EOQ F Newsvendor framework

Mathata [14] EOQ/EPQ P
√

Exponentially deteriorating items
Soni and Patel [15] EOQ F/P Defective items/Variable production
Ouyang et al. [16] EOQ F AM-GM mean inequality

Ouyang and Chang [17] EPQ F Imperfect production/AM-GM inequality
Yang et al. [18] EOQ P Order quantity/Limited storage capacity

Chen et al. [19] EPQ F/P Convex fractional
programming/Non-deteriorated items

Chen and Teng [20] EOQ F
√ Expiration dates/Time-varying deterioration

of items
Giri and Sharma [21] EOQ P Linear time-dependent demand/Shortage

Lashgari et al. [22] EOQ
√

P Non-instantaneous deterioration/Partial
backordering

Sarkar et al. [23] EOQ F
√

Carbon emissions/Rework/Shortage
Maiti et al. [24] EOQ

√
F

√
Genetic algorithm/Price-dependent demand

Gupta et al. [25] EOQ
√

F Real-coded genetic algorithm/Constant
uniform demand

Thangam [26] EOQ
√

F/P Perishable items
Taleizadeh et al. [27] EOQ

√ √
Fuzzy rough/Metaheuristic algorithms

121



Mathematics 2022, 10, 1209

Table 1. Cont.

References
Financial Policy

Other Consideration(s)
EOQ/EPQ PP F/P CD DCF

Zhang et al. [28] EOQ
√

P/P
√

Time-weighted inventory
Tavakoli and Taleizadeh [29] EOQ

√
Shortage/Percentage of purchasing cost

Taleizadeh et al. [30] EOQ
√

Pricing/Shortage

Shah et al. [31] EOQ
√ Fixed-lifetime/Quadratic

demand/Preservation investment
Khan et al. [32] EOQ

√
Advertising/Maximum lifetime/Shortage

Taleizadeh et al. [33] EOQ
√

P/P Inspection policy/Shortage/Fraction
of demand

Khan et al. [34] EOQ
√

F/P
√

Price- and stock-dependent demand
Shao and Meng [35] EOQ

√ √
Decision tree diagram/Cost of capital

Huang and Chung [36] EOQ
√

F
√

Ip < Ie

Ouyang et al. [37] EOQ F
√ Realistic in the modern business environment

Transactions
Yang [38] EOQ F

√ √
Conditionally permissible delays in payments

Yang et al. [39] EOQ
√

Delays in payments linked to order quantity
Feng et al. [40] EPQ F

√
Ic ≥ Id, c(1− δ)Ic ≥ sId

Shah and Cárdenas-Barrón [41] EOQ
√

Order-linked credit period

Alshanbari et al. [42] EOQ
√ Shortage/Two-parameter Weibull distribution

decay rate/Advertisement
Tripathi [43] EOQ F

√
Time-sensitive demand/Shortage

Mashud et al. [44] EOQ P
√ Post-COVID-19 recovery/Price-sensitive

demand/Preservation technology
Zhou et al. [45] EOQ P Newsvendor/Stochastic demand

Laitinen [46] EOQ
√

Payback/Internal rate of return (IRR)

Arcelus et al. [47] EOQ P
√ Special sales/Forward

buying/Price-dependent demand

Stokes [48] EOQ
√ Differential game/Working capital

management/Terms of sale

Chung and Liao [49] EOQ F
√ Ordering quantity/Out-of-pocket inventory

carrying cost

Guariglia and Mateut [50] EOQ F
√ Inventory investment/Coverage

ratio/Financing constraints
Ho et al. [51] EOQ F

√
The market demand rate D(p) = ap−δ

Chang et al. [52] EOQ F
√

Trade credit linked to order quantity
Chung et al. [53] EOQ P/F

√ √
Mathematical solution procedures

Wu et al. [54] EOQ F
√ Expiration dates/

Deterioration rate at time t
Tripathi et al. [55] EOQ F

√
Stock-dependent demand

This paper EOQ
√

F/P
√

COVID-19 period

Note: PP = prepayment; F/P = full/partial trade credit; CD = cash discount; DCF = discounted cash flow.
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3. Notation and Assumptions

3.1. System Parameters
D retailer’s demand rate during the COVID-19 period.
P manufacturer’s production rate, where P > D
A manufacturer’s ordering cost per order.
θ the item deteriorates at a constant rate θ (0 < θ < 1) per time unit.
h the retailer’s holding cost excluding interest charges, USD/per unit/year.
Ie the retailer’s interest earned per dollar per year.
Ik the retailer’s interest charged per dollar per year.
M the upstream trade credit period in years offered by the supplier.
N the downstream trade credit period in years offered by the retailer, where N ≤M.
L the time period of prepayment.
r the cash discount rate 0 < r < 1.
α the fraction of the delay in payments permitted by the supplier.
c the unit purchasing cost.
p the unit selling price, with p > c.
t1 the production run time.
T the length of the replenishment cycle in years.

TVC1(T) total cost per unit time (cash discount).
TVC2(T) total cost per unit time (full delay in payments).

3.2. Assumptions

This paper is based on the following assumptions:

• The rate of replenishment is considered to be infinite, while the lead time is zero;
• The inventory system involves only one item;
• An infinite planning horizon for the whole system is considered;
• The items deteriorate at a constant rate θ, where θ > 0;
• Before the COVID-19 pandemic, the logistic efficiency and the latest digital technolo-

gies (e-commerce technology) were regarded as critical elements in stabilizing demand.
As the pandemic continued, it understandably became challenging to stabilize and
recover the retailer’s demand absolutely. The demand rate, D, is known and constant.

• A discount is presented by the supplier (the manufacturer) to the retailer when the
retailer agrees to delay a portion α of the prepayment for time period L. The discount
rate (α) increases when TVC1(L− N) decreases during a lockdown period of the
COVID-19 pandemic.

4. Model Formulation

This paper considers a two-echelon supply chain with an upstream supplier and
a downstream retailer during the COVID-19 period. The structure is developed in a
coordinated case. In the current COVID-19 pandemic situation, the supplier offers advance
payments to the firm so that they will not cancel the order. The aim is to evaluate the effect
of the cash discount and trade credit. In the replenishment period, [0, T], the retailer offers
a trade credit policy to customers. In the Phase I trade credit period, [0, t1], depletion of the
inventory occurs due to the combined effects of production, demand, and deterioration on
the replenishment cycle. Hence, the change in the inventory level can be illustrated by the
following differential equation:

dI(t)
dt

= P− D− θ I(t), 0 ≤ t ≤ t1, (1)

with the boundary condition I(t1) = 0. Solving Equation (1), one obtains

I(t) =
P− D

θ
(1− e−θt), 0 ≤ t ≤ t1, (2)
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In the Phase II trade credit period, [t1, T], the inventory level is decreased by the
effects of demand and deterioration on the replenishment cycle. Hence, the change in the
inventory level can be illustrated by the following differential equation

dI(t)
dt

= −D− θ I(t), t1 ≤ t ≤ T, (3)

with the boundary condition I(t 1) =
P−D

θ (1− e−θt1).
Solving Equation (3) yields

I(t) =
D
θ
(eθ(T−t) − 1), t1 ≤ t ≤ T, (4)

In considering the two-echelon supply chain issues, t1 and T can be expressed as

t1 =
1
θ

ln[1 +
D
P
(eθT − 1)], (5)

In this section, we construct an inventory model that consists of the following four
elements:

• The ordering cost (OC). The retailer’s ordering cost per replenishment cycle is OC = A/T;
• The holding cost (HC). The retailer’s holding cost per replenishment cycle is

h
T [
∫ t1

0 I(t)dt+
∫ T

t1
I(t)dt] = h

θT (Pt1 − DT);

• The deterioration cost (DC), which is calculated as DC =

{
c(Pt1–DT)/θT

c(1− r)(Pt1 − DT)/θT
;

• The purchasing cost (PC), which is calculated as PC =

{
cD
(1− r)cD

.

4.1. Taking a Cash Discount

Based on the lengths of N, L, and N + L, three cases are possible: (1) L ≤ T;
(2) L− N ≤ T ≤ L; and (3) T ≤ L− N. We discuss each case in detail below.

4.1.1. Case 1 L ≤ T

Here, the retailer pays off all items at time 0. The interest charged per unit time is

IC11 =
c(1− r)IkD

2T
[α(T − L)2 + (1− α)(T + N − L)2], (6)

The retailer starts selling the items from time 0 but receives money at time N. Therefore,
the interest earned per unit time is

IE11 =
pIeD
2T

[αL2 + (1− α)(L− N)2], (7)

Consequently, the retailer’s total cost, TVC11(T), per unit time for Case 1 is

TVC11(T) = A
T + h+cθ(1−r)

θT (Pt1 − DT) + (1− r)cD
+ c(1−r)Ik D

2T [α(T − L)2 + (1− α)(T + N − L)2],
− pIeD

2T [αL2 + (1− α)(L− N)2]

(8)

The graphical representation for Case 1 is shown in Figure 1.

124



Mathematics 2022, 10, 1209

 
Figure 1. Graphical representation of L ≤ T.

4.1.2. Case 2 L− N ≤ T ≤ L

In this case, the retailer receives the total revenue at time L and has to pay the supplier
at T + N. Hence, the interest charged per unit time is

IC12 =
c(1− r)IkD

2T
(1− α)(T + N − L)2, (9)

and the interest earned per unit time is

IE12 =
pIeD
2T

[αT2 + 2αT(L− T) + (1− α)(L− N)2], (10)

Thus, the retailer’s total cost, TVC12(T), per unit time for Case 2 is

TVC12(T) = A
T + h+cθ(1−r)

θT (Pt1 − DT) + (1− r)cD
+ c(1−r)Ik D

2T (1− α)(T + N − L)2

− pIeD
2T [αT2 + 2αT(L− T) + (1− α)(L− N)2]

, (11)

The graphical representation for Case 2 is shown in Figure 2.

Figure 2. Graphical representation of L− N ≤ T ≤ L.

4.1.3. Case 3 T ≤ L− N

In this case, the retailer can sell the items and receives the total revenue at time L. The
annual interest earned is

IE13 = pIeD
2T [αT2 + 2αT(L− T) + (1− α)T2 + 2(1− α)T(L− T − N)]

= pIeD
2 [2L− T − 2(1− α)N]

, (12)
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From the above arguments, the retailer’s annual total cost, TVC13(T), per unit time
for Case 3 is

TVC13(T) = A
T + h+cθ(1−r)

θT (Pt1 − DT) + (1− r)cD
− pIeD

2 [2L− T − 2(1− α)N]
, (13)

Summarizing the above cases, the retailer’s total cost, TVC1i(T), is given by

TVC1i(T) =

⎧⎨
⎩

TVC11(T), i f L ≤ T
TVC12(T), i f L− N ≤ T ≤ L
TVC13(T), i f T ≤ L− N

, (14)

At T= L, we find TVC11(L) = TVC12(L); at T= L− N, TVC12(L− N) = TVC13(L−
N). Hence, TVC1i(T) is continuous and well-defined. TVC11(T), TVC12(T), TVC13(T),
and TVC1(T) are all defined on T > 0. The graphical representation for Case 3 is shown in
Figure 3.

 
Figure 3. Graphical representation of T ≤ L− N.

4.2. Taking a Permissible Delay
4.2.1. Case 1 M ≤ T

In this case, the retailer receives the total revenue at time M. The interest charged per
unit time is

IC21 =
c(1− r)IkD

2T
[α(T − M)2 + (1− α)(T + N −M)2], (15)

The interest earned per unit time is

IE21 =
pIeD
2T

[αL2 + (1− α)(L− N)2], (16)

From Equations (15) and (16), the annual total cost, TVC21(T), is given by

TVC21(T) = A
T + h+cθ

θT (Pt1 − DT) + cD
+ cIk D

2T [α(T −M)2 + (1− α)(T + N −M)2]

− pIeD
2T [αM2 + (1− α)(M− N)2]

, (17)

4.2.2. Case 2 M− N ≤ T ≤ M

The interest charged per unit time is

IC22 =
c(1− r)IkD

2T
(1− α)(T + N −M)2, (18)
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The interest earned per unit time is

IE22 =
pIeD
2T

[αT2 + 2αT(M− T) + (1− α)(M− N)2], (19)

From Equations (18) and (19), the annual total cost, TVC22(T), is given by

TVC22(T) = A
T + h+cθ

θT (Pt1 − DT) + cD
+ cIk D

2T (1− α)(T + N − M)2

− pIeD
2T [αT2 + 2αT(M− T) + (1− α)(M− N)2]

, (20)

4.2.3. Case 3 T ≤ M− N

The interest earned per unit time is

IE23 =
pIeD

2
[2M− T − 2(1− α)N], (21)

From Equation (21), the annual total cost, TVC23(T), is given by

TVC23(T) = A
T + h+cθ

θT (Pt1 − DT) + cD
− pIeD

2 [2M− T − 2(1− α)N]
, (22)

Summarizing the above cases, the retailer’s total cost, TVC2i(T), is given by

TVC2i(T) =

⎧⎨
⎩

TVC21(T), i f M ≤ T
TVC22(T), i f M− N ≤ T ≤ M
TVC23(T), i f T ≤ M− N

, (23)

At T= M, we find TVC21(M) = TVC22(M); at T= M − N, TVC22 (M − N) =
TVC23(M− N). Hence, TVC2(T) is continuous and well-defined. TVC21(T), TVC22(T),
TVC23(T), and TVC2(T) are all defined on T > 0.

From the above argument, the annual total cost for the retailer can be expressed as:

TVC(T) =
{

TVC1(T), i f takingacashdiscount
TVC2(T), i f takingapermissibledelay

, (24)

5. Solution Procedures

The main purpose of this section is to develop a solution procedure to determine the
optimal cycle time T∗ to minimize the annual total cost for each case.

5.1. Taking a Cash Discount

In an attempt to minimize the annual total cost for each case, we developed solution
procedures consisting of two cases, with three propositions in each case.

Proposition 1. For L ≤ T, if T∗11 ≥ L, then dTVC11(T)/dT is a strictly increasing function of T
and there exists a unique real solution T∗11 ∈ [L, ∞) such that TVC11(T∗11) is the minimum.

Proof. By Theorem 3.2.10 in Cambini and Martein [64], let q(x) = f (x)
g(x) . If f ′(x) is a differ-

entiable and strictly increasing function in x, f ′(x) ≥ 0 and if g′(x) is a differentiable and
strictly decreasing function in x, g′(x) ≥ 0. We have shown that q(x) is a concave function;
therefore, there exists a unique value of x∗ that minimizes q(x∗). From Equation (6), we
obtain TVC11(T) =

f (T)
g(T) , where
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f (T) = A + h+cθ(1−r)
θ (Pt1 − DT) + (1− r)cDT

+ c(1−r)Ik D
2 [α(T − L)2 + (1− α)(T + N − L)2]

− pIeD
2 [αL2 + (1− α)(L− N)2]

, (25)

and
g(T) = T > 0, (26)

Then, substituting into Equation (25), we take the first- and second-order derivations of
f (T) with respect to T and obtain

f ′(T) = h+cθ(1−r)
θ [ PDeθT

P+D(eθT−1) − D] + (1− r)cD
+c(1− r)IkD[T − L + (1− α)N]

, (27)

and

f ′′(T) = h + cθ(1− r)
θ

[
P2DθeθTρ

P + D(eθT − 1)2 ] + c(1− r)IkD > 0, (28)

Therefore, TVC11(T) is convex in T. The minimum value of TVC11(T) will occur at the
point T∗ that satisfies

dTVC11(T)
dT

= 0, if T ≥ L.

Next, the first-order derivatives of TVC11(T) with respect to T are

dTVC11(T)
dT = P[h+cθ(1−r)]

θ

{
DTeθT

P+D(eθT−1) − 1
θ ln[1 + D

P (e
θT − 1)]

}
+ c(1−r)Ik D

2 [T2 − αL2 − (1− α)(L− N)2]

+ pIeD
2 [αL2 − (1− α)(L− N)2]− A

= 0

, (29)

�

Proposition 2. If L− N ≤ T ≤ L, then dTVC12(T)/dT is a strictly increasing function of T
and there exists a unique real solution T∗12 ∈ [L− N, L] such that TVC12(T∗12) is the minimum.

Proof. We first take the first-order derivative of TVC12(T) with respect to T and obtain

dTVC12(T)
dT = P[h+cθ(1−r)]

θ

{
DTeθT

P+D(eθT−1) − 1
θ ln[1 + D

P (e
θT − 1)]

}
+ c(1−r)Ik D

2 (1− α)[T2 − (L− N)2]

+ pIeD
2 [αTL + (1− α)(L− N)2]− A

= 0

, (30)

Since dTVC12(T)/dT is also strictly increasing in T, the minimum value of TVC12(T)
will occur at the point T∗ that satisfies

dTVC12(T)
dT

= 0; otherwise, T =

{
L− Ni f limT→L−N+

dTVC12(T)
dT > 0

Li f limT→L−
dTVC12(T)

dT < 0
(31)

�

Proposition 3. If 0 ≤ T ≤ L− N, then dTVC13(T)/dT is a strictly increasing function of T and
there exists a unique real solution T∗13 ∈ (0, L− N) such that TVC13(T∗13) is the minimum.

Proof. We first take the first-order derivative of TVC13(T) with respect to T and obtain
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dTVC13(T)
dT = P[h+cθ(1−r)]

θ

{
DTeθT

P+D(eθT−1) − 1
θ ln[1 + D

P (e
θT − 1)]

}
+ pIeD

2 T2 − A
= 0

(32)

Next, we let

Δ1 =
P[h + cθ(1− r)]

θ
{ D(L− N)eθ(L−N)

P + D(eθ(L−N) − 1)
− 1

θ
ln[1 +

D
P
(eθ(L−N) − 1)]}+ pIeD

2
(L− N)2 − A (33)

Δ2 = P[h+cθ(1−r)]
θ { DLeθL

P+D(eθL−1) − 1
θ ln[1 + D

P (e
θL − 1)]}

+ c(1−r)Ik D
2 [(1− α)N(2L− N)] + pIeD

2 [L2 − (1− α)N(2L− N)]− A
(34)

Since dTVC13(T)/dT is also strictly increasing in T, the minimum value of TVC13(T) will
occur at the point T that satisfies dTVC13(T)

dT = 0; otherwise,

T∗13 = L− N i f limT→L−N−
dTVC13(T)

dT
< 0

�

Lemma 1. Δ1 < Δ2, for L ≥ N.

Proof. From Proposition 2, we first take the first-order derivative of TVC12(T) with respect
to T and obtain

TVC′12(L− N) =
Δ1 +

pIeD
2 αN(L− N)

(L− N)2 < TVC′12(L) =
Δ2

L2

From Equation (28), since L ≥ N, we have Δ1 < Δ2. �

Proposition 4.

(1) If Δ2 < 0, then we obtain TVC1(T∗) = TVC1(T∗11).
(2) If Δ2 = 0, then we obtain TVC1(T∗) = TVC1(L).
(3) If Δ1 < 0 and Δ2 > 0, then we obtain TVC1(T∗) = TVC1(T∗12).
(4) If Δ1 = 0, then we obtain TVC1(T∗) = TVC1(L− N).
(5) If Δ1 > 0, then we obtain TVC1(T∗) = TVC1(T∗13).

Proof. From (28), the first-order derivatives of TVC11(T) with respect to T are

TVC′11(T) =
1

T2

⎧⎪⎪⎨
⎪⎪⎩

P[h+cθ(1−r)]
θ

{
DTeθT

P+D(eθT−1) − 1
θ ln[1 + D

P (e
θT − 1)]

}
+ c(1−r)Ik D

2 [T2 − L2 + (1− α)N(2L− N)]

+ pIeD
2 [L2 − (1− α)N(2L− N)]− A

⎫⎪⎪⎬
⎪⎪⎭ (35)

From Equation (35), if Δ2 < 0, since lim
T→∞

TVC′11(T) =
c(1−r)Ik D

2 > 0 and TVC′11(L) =
Δ2
L2 < 0, the Intermediate Value Theorem implies that the root of TVC′11

(
T∗11

)
is the unique

real solution T∗11 ∈ (L, ∞). From Lemma 1, since TVC′12(L− N) =
Δ1+

pIe D
2 αN(L−N)

(L−N)2 <

TVC′12(L) = Δ2
L2 < 0 and lim

ζ→0
TVC′13(ξ) < TVC′13(L− N) = Δ1

(L−N)2 < 0, and
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dTVC12(T)/dT and dTVC13(T)/dT are strictly decreasing in T, the minimum value of
TVC12(T) and TVC13(T) will occur at the point T∗ that satisfies

dTVC12(T)
dT

= 0; otherwise, T∗ =
{

L−N, if limT→L−N+
dTVC12(T)

dT >0

N, if limT→N−
dTVC12(T)

dT <0

and dTVC13(T)
dT = 0; otherwise, T∗ = N, if limT→N−

dTVC13(T)
dT < 0, respectively. In addition,

it is not difficult to show that TVC11
(
T∗11

)
< TVC11(L) = TVC12(L) < TVC12(L− N) =

TVC13(L− N). Clearly, by Equations (2)–(5), TVC11(T), TVC12(T), and TVC13(T) are
convex in T, respectively. �

5.2. Taking a Permissible Delay

In this situation, the supplier offers the retailer a trade credit. The solution procedures
consist of two cases in which the business relationship is maintained during the COVID-19
period, with four propositions in each case.

Proposition 5. If M ≤ T ≤ ∞, then dTVC21(T)/dT is a strictly increasing function of T and
there exists a unique real solution T∗21 ∈ [M, ∞] such that TVC21(T∗21) is the minimum.

Proposition 6. If M− N ≤ T ≤ M, then dTVC22(T)/dT is a strictly increasing function of T
and there exists a unique real solution T∗22 ∈ [M− N, M] such that TVC22(T∗22) is the minimum.

Proposition 7. If 0 ≤ T ≤ M− N, then dTVC23(T)/dT is a strictly increasing function of T
and there exists a unique real solution T∗23 ∈ [0, M− N] such that TVC23(T∗23) is the minimum.

Next, we first take the first-order derivative of TVC2i(T) with respect to T. Then, only
one case of TVC2i(T) has a solution to

dTVC2i(T)
dT

= 0

We then obtain the desired results.

dTVC21(T)
dT = P(h+cθ)

θ { DTeθT

P+D(eθT−1) − 1
θ ln[1 + D

P (e
θT − 1)]}

+(pIe−cIk)D
2 [αM2 + (1− α)(M− N)2] + cIk D

2 T2 − A
= 0

(36)

dTVC22(T)
dT = P(h+cθ)

θ { DTeθT

P+D(eθT−1) − 1
θ ln[1 + D

P (e
θT − 1)]}

+(pIe−cIk)D
2 (1− α)(M− N)2 + DT2

2 [αpIe + (1− α)cIk]− A
= 0

(37)

dTVC23(T)
dT

=
P(h + cθ)

θ
{ DTeθT

P + D(eθT − 1)
− 1

θ
ln[1 +

D
P
(eθT − 1)]}+ DT2

2
pIe − A = 0 (38)

respectively. Next, we let

Δ3 =
P(h + cθ)

θ
{ D(M− N)eθ(M−N)

P + D(eθ(M−N) − 1)
− 1

θ
ln[1 +

D
P
(eθ(M−N) − 1)]}+ D(M− N)2

2
pIe − A (39)

Δ4 = P(h+cθ)
θ

{
DMeθM

P+D(eθM−1) − 1
θ ln[1 + D

P (e
θM − 1)]

}
+ (pIe−cIk)D

2 [αM2 + (1− α)(M− N)2] + cIk D
2 M2 − A

(40)

Lemma 2. Δ3 < Δ4 for T > 0.
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Proof. The proof is similar that of Lemma 1, we omit it here. �

Proposition 8.

(1) If Δ4 < 0, then TVC∗2 (T∗) = TVC∗2 (T∗21).
(2) If Δ4 = 0, then TVC∗2 (T∗) = TVC∗2 (M).
(3) If Δ3 < 0 and Δ4 > 0, then TVC∗2 (T∗) = TVC∗2 (T∗22).
(4) If Δ3 = 0, then TVC∗2 (T∗) = TVC∗2 (M− N).
(5) If Δ3 > 0, then TVC∗2 (T∗) = TVC∗2 (T∗23).

5.3. Retailer’s Ordering Policies

The COVID-19 pandemic has changed retailers’ payment habits, such as the share
of cash transactions and average transaction values. As the economic environment has
deteriorated and consumption has decreased due to the ongoing COVID-19 crisis, E-
commerce has gained an advantage as a sales channel over brick-and-mortar retailers.
E-commerce provides customers with access to a significant variety of products from the
convenience and safety of their own home. This section describes how an effective retailer
ordering policy can result in lower costs and a better understanding of sales patterns. From
Equation (24), Propositions 4 and 8, we have:

(1) If Δ2 < 0 and Δ4 < 0, then TVC∗(T∗) = min
{

TVC∗1 (T
∗
11), TVC∗2 (T∗21)

}
.

(2) If Δ2 < 0 and Δ4 = 0, then TVC∗(T∗) = min
{

TVC∗1 (T
∗
11), TVC∗2 (M)

}
.

(3) If Δ2 < 0, Δ3 < 0, and Δ4 > 0, then TVC∗(T∗) = min
{

TVC∗1 (T
∗
11), TVC∗2 (T∗22)

}
.

(4) If Δ2 < 0 and Δ3 = 0, then TVC∗(T∗) = min
{

TVC∗1 (T
∗
11), TVC∗2 (M− N)

}
.

(5) If Δ2 < 0 and Δ3 > 0, then TVC∗(T∗) = min
{

TVC∗1 (T
∗
11), TVC∗2 (T∗23)

}
.

(6) If Δ2 = 0 and Δ4 < 0, then TVC∗(T∗) = min
{

TVC∗1 (L), TVC∗2 (T∗21)
}

.
(7) If Δ2 = 0 and Δ4 = 0, then TVC∗(T∗) = min

{
TVC∗1 (L), TVC∗2 (M)

}
.

(8) If Δ2 = 0, Δ3 < 0, and Δ4 > 0, then TVC∗(T∗) = min
{

TVC∗1 (L), TVC∗2 (T∗22)
}

.
(9) If Δ2 = 0 and Δ3 = 0, then TVC∗(T∗) = min

{
TVC∗1 (L), TVC∗2 (M− N)

}
.

(10) If Δ2 = 0 and Δ3 > 0, then TVC∗(T∗) = min
{

TVC∗1 (L), TVC∗2 (T∗23)
}

.
(11) If Δ1 < 0, Δ2 > 0, and Δ4 < 0, then TVC∗(T∗) = min

{
TVC∗1 (T

∗
12), TVC∗2 (T∗21)

}
.

(12) If Δ1 < 0, Δ2 > 0, and Δ4 = 0, then TVC∗(T∗) = min
{

TVC∗1 (T
∗
12), TVC∗2 (M)

}
.

(13) If Δ1 < 0, Δ2 > 0, Δ3 < 0, and Δ4 > 0, then TVC∗(T∗) = min
{

TVC∗1 (T
∗
12), TVC∗2 (T∗22)

}
.

(14) If Δ1 < 0, Δ2 > 0, and Δ3 = 0, then TVC∗(T∗) = min
{

TVC∗1 (T
∗
12), TVC∗2 (M− N)

}
.

(15) If Δ1 < 0, Δ2 > 0, and Δ3 > 0, then TVC∗(T∗) = min
{

TVC∗1 (T
∗
12), TVC∗2 (T∗23)

}
.

(16) If Δ1 = 0 and Δ4 < 0, then TVC∗(T∗) = min
{

TVC∗1 (L− N), TVC∗2 (T∗21)
}

.
(17) If Δ1 = 0 and Δ4 = 0, then TVC∗(T∗) = min

{
TVC∗1 (L− N), TVC∗2 (M)

}
.

(18) If Δ1 = 0, Δ3 < 0, and Δ4 > 0, then TVC∗(T∗) = min
{

TVC∗1 (L− N), TVC∗2 (T∗22)
}

.
(19) If Δ1 = 0 and Δ3 = 0, then TVC∗(T∗) = min

{
TVC∗1 (L− N), TVC∗2 (M− N)

}
.

(20) If Δ1 = 0 and Δ3 > 0, then TVC∗(T∗) = min
{

TVC∗1 (L− N), TVC∗2 (T∗23)
}

.
(21) If Δ1 > 0 and Δ4 < 0, then TVC∗(T∗) = min

{
TVC∗1 (T

∗
13), TVC∗2 (T∗21)

}
.

(22) If Δ1 > 0 and Δ4 = 0, then TVC∗(T∗) = min
{

TVC∗1 (T
∗
13), TVC∗2 (M)

}
.

(23) If Δ1 > 0, Δ3 < 0, and Δ4 > 0, then TVC∗(T∗) = min
{

TVC∗1 (T
∗
13), TVC∗2 (T∗22)

}
.

(24) If Δ1 > 0 and Δ3 = 0, then TVC∗(T∗) = min
{

TVC∗1 (T
∗
13), TVC∗2 (M− N)

}
.

(25) If Δ1 > 0 and Δ3 > 0, then TVC∗(T∗) = min
{

TVC∗1 (T
∗
13), TVC∗2 (T∗23)

}
.

5.4. Algorithm

Step 1. Evaluate the solution of T according to Equations (36)–(38);
Step 2. Use Propositions 1 and 2 to determine min{TVC1(T), TVC2(T)} and the corre-
sponding value of T;
Step 3. Let Tn+1 = Tn + ε and repeat Steps 1–2;
Step 4. If TVCj(T∗(n)) ≥ TVCj(T∗(n−1)), then return to Step 3; otherwise, execute Step 5;
Step 5. Let (T∗(n)) = (T∗(n−1)); therefore, T∗ is the optimal solution and the minimum
total cost per unit time is TVCj(T∗).
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6. Application Example

The practicality of the proposed model was assessed using a case study involving
SMEs in Taiwan. A numerical example of this case was used to verify our analytical results,
and a sensitivity analysis was used to explore trends in the optimal policies in order to
obtain managerial insights for the SMEs. The COVID-19 pandemic of 2019–2021 offers a
unique setting in which to examine how the supply of trade credit is impacted during a
crisis that emanates from the real sector, which is radically different to a crisis that emanates
from financing difficulties, such as the global financial crisis (GFC) of 2008–2009. The
parallel trends of average payables during the COVID-19 period and the GFC period based
on the probabilty of default of a firm are shown in Figures 4 and 5. A high probability of
default is defined as 1 for the creditrisk+ of firms whose probability of default is above the
median. The figures display the parallel trend of average payables for the last two years for
growing firms.

Figure 4. Parallel trend of average payables during the COVID-19 period.

Figure 5. Parallel trend of average payables during the GFC period.

6.1. Trade Credit and the COVID-19 Crisis

In this section, we describe a model currently in use by Small- and Medium-Sized
Enterprises (SMEs) in Taiwan. The COVID-19 pandemic outbreak forced changes in trade
credit management. Managers need to answer the following essential question: will the
economic uncertainty affect the speed at which the firm adjusts to the target trade credit
ratio? Online retailers have also endeavoured to increase the willingness of customers to
place an order by addressing the risk-adjusted return on loans (direct fiscal transfers to
borrowers to help reduce their credit risk; moratoriums on loan payments). The changes in
the price of a product play a vital role in customers choosing the right kinds of products,
and costs are sometimes affected by the fraction of the payment delayed. Another change in
the strategy for managing receivables from customers is the discount rate policy. Sales were
discontinued at any price, which was connected to the offering of additional discounts or
extensions to trade credit. During the COVID-19 pandemic, retailers (suppliers) expected to
quickly receive payment from customers (retailers). Government assistance for firms comes
in the form of loan guarantees that increase firms’ access to credit as a way of loosening
liquidity constraints. On the demand side, trade credit represents the firm’s access to
capital, especially for SMEs. The hybrid (trade credit and discount rate) policy responses
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to COVID-19 may entice firms provided that the trade credit is lower in periods of less-
restrictive bank credit. However, given the high degree of integration of supply chains
worldwide, multilateral collaboration and coordinated interventions among economies
are imperative to ensure no disruptions in supply chains, help financially constrained
businesses survive the pandemic, and minimize unfavorable consequences on industrial
structures in the long term.

The most common terms for the use of trade credit require a retailer to make a payment
within 7, 30, 60, 90, or 120 days. A percentage discount is applied if payment is made
before the date agreed upon in the terms. The aim of these trade credit activities is to
build long-term relationships with customers and suppliers. Figure 6 shows the trade
finance in emerging markets during COVID-19. The retailer has offered a variety of trade
credit agreements and the contract consists of six items: (1) a financing arrangement for
the customer; (2) the customer repays the lender on the terms of the original payment
(e.g., 60 days); (3) the lender pays the retailer upon approval of the invoice; (4) a financing
arrangement for the manufacturer; (5) the manufacturer repays the lender on the terms of
the original payment (e.g., 90 days); and (6) a commercial agreement.

Figure 6. COVID-19 and trade finance in emerging markets.

6.2. Numerical Example

Base settings were established for the model by conducting interviews and surveys
with relevant staff in the firm. In the current COVID-19 pandemic situation, the supplier
offers advance payments to the firm so that they will not cancel the order. Due to the
shortages in demand, the supplier offers a discount rate that is dependent on the number
of installments. The firm also offers delays in payments for customers who do not have
transportation and goods available. The values presented here were altered to preserve the
confidentiality of the commercial information.

6.3. Sensitivity Analysis

The numerical example presented in Tables 2 and 3 were used to assess the effects
of changes to system parameters (A, D, P, p, M, N, L, α, r, θ, c, and h) on the values T∗,
TVC1(T

∗
11
)
, TVC1(T

∗
12
)
, and TVC1(L− N). Each parameter was adjusted separately (i.e.,

the other parameters were left unchanged) by +50%, +25%, −25%, or −50%. Our analytical
results in Table 4 permit the following interesting observations and managerial insights
that could be used to guide decision-making:

• The effect of decreasing the cost parameters (A, D, P, and N) would lead to a decrease
in the total cost per unit time. In other words, if the costs could be reduced, then the
enterprise would be able to earmark more money for the downstream trade credit
period. This would also lead to a corresponding indirect increase in total profit per
unit time due to decreased overall costs and/or increased sales;

133



Mathematics 2022, 10, 1209

• The effect of decreasing the change to θ on the value of TVC1(T
∗
11
)
, TVC1(T

∗
12
)
, and

TVC1(L− N) is minimal; that is, a decrease of 22.472%, 22.431% and 21.61%. This
indicates that attempts to increase total profits per unit time should focus on lowering
the deterioration of items;

• In terms of holding cost parameters, increasing the values of the parameter h led to a
corresponding decrease in T∗. This is an indication that the length of replenishment
cycle times could be shortened to prevent an increase in holding costs;

• Decreasing the cost parameters (α, r) would lead to increase in the total cost per unit
time. This indicates that if there were an increase in the cash discount rate, then the
firm should use offers and discounts to drive customer loyalty and sales. Nonetheless,
the amount spent on cash discounts could be increased to stimulate demand;

• An increase in the defect parameter (Ik or Ie) led to a corresponding increase in the
total cost per unit time. This is an indication that the manufacturer can accumulate
revenue by selling items and by earning interest and interest charges to reduce their
finance risk.

Table 2. Let us consider an inventory system with the following data for Example 1–3.

Example 1

A = 200 D = 2000 P = 4000 p = 75
c = 50 h = 15 Ik= 0.15 Ie= 0.1

r = 0.05 α= 0.5 θ= 0.05 M = 0.1
N = 0.05 L = 0.08

Example 2

A = 1000 D = 1500 P = 4000 p = 75
c = 50 h = 15 Ik= 0.15 Ie= 0.1

r = 0.05 α= 0.5 θ= 0.05 M = 0.1
N = 0.05 L = 0.08

Example 3

A = 1000 D = 1500 P = 4000 p = 75
c = 50 h = 5 Ik= 0.15 Ie= 0.1

r = 0.05 α= 0.5 θ= 0.05 M = 0.25
N = 0.05 L = 0.02

Table 3. The optimal results of T∗ and TVC∗.

Example Conditional Expressions
Results

T∗ TVC(T∗)

1 Δ1 = −185.43, Δ2 = −97.43,
Δ3 = −159.38, Δ4 = −37.50 0.35711 7661.41

2 Δ1 = −85.43, Δ2 = 2.59,
Δ3 = −59.38, Δ4 = 62.50 0.33411 7691.44

3 Δ1 = 0, Δ2 = 280.00,
Δ3 = 285.78, Δ4 = 651.40 0.35141 8349.57

Table 4. Results of Example 1 for three trade credit policies.

Case 1 Case 2 Case 3

Parameter T TVC1(T
∗
11

)
T TVC1(T

∗
12

)
T TVC1(L−N)

A +50%
+25%

0.43732 8920.16 0.43358 8960.96 0.43358 9619.08
0.39924 8322.47 0.39585 8358.14 0.39585 9016.26

−25% 0.30926 6911.08 0.30671 6934.82 0.30671 7592.94
−50% 0.25248 6021.02 0.25248 6037.46 0.25047 6695.59

D +50%
+25%

0.30695 9612.78 0.30695 9647.90 0.30415 10635.1
0.32758 8684.81 0.32471 8684.81 0.32471 9540.12

−25% 0.40230 6512.89 0.39905 6539.96 0.39905 7033.55
−50% 0.48074 5181.66 0.48074 5205.02 0.47700 5534.08
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Table 4. Cont.

Case 1 Case 2 Case 3

Parameter T TVC1(T
∗
11

)
T TVC1(T

∗
12

)
T TVC1(L−N)

P +50%
+25%
−25%
−50%

0.34574 7840.23 0.34071 8718.87 0.34303 8526.90
0.35018 7769.22 0.34501 8647.86 0.34735 8456.47
0.36948 7478.04 0.36370 8356.77 0.36614 8167.84
0.39784 7096.23 0.39109 7975.42 0.39365 7789.78

p +50%
+25%
−25%
−50%

0.35527
0.35619
0.35802

7632.58
7647.01
7675.76

0.32444
0.33727
0.36820

8785.97
8667.83
8401.34

0.32631
0.33936
0.37093

8767.22
8563

8124.68
0.35893 7690.08 0.38719 8250.11 0.39036 7887.00

M +50% 0.35711 7661.40 0.35173 8540.05 0.35411 8349.57
+25% 0.35711 7661.40 0.35173 8540.05 0.35411 8349.57
−25% 0.35711 7661.40 0.35173 8540.05 0.35411 8349.57
−50% 0.35711 7661.40 0.35173 8540.05 0.35411 8349.57

N +50% 0.35713 7795.34 0.35174 8677.33 0.35405 8482.32
+25% 0.35712 7728.44 0.35174 8608.72 0.35408 8416.00
−25% 0.35708 7594.25 0.35174 8471.31 0.35412 8283.01
−50% 0.35705 7526.97 0.35174 8402.51 0.35413 8216.32

L +50% 0.35680 7229.18 0.35170 8094.87 0.35412 8240.08
+25% 0.35697 7445.61 0.35171 8317.54 0.35411 8294.83
−25% 0.35720 7876.57 0.35174 8762.40 0.35410 8404.28
−50% 0.35725 8091.11 0.35174 8984.58 0.35409 8458.98

α +50% 0.35704 7526.73 0.35257 7571.62 0.35257 8238.18
+25% 0.35707 7594.07 0.35333 7631.55 0.35333 8293.89
−25% 0.35714 7728.74 0.35488 7751.31 0.35488 8405.22
−50% 0.35717 7796.08 0.35566 7811.15 0.35566 8460.84

r +50% 0.36116 6796.87 0.35653 6842.58 0.35653 7492.26
+25% 0.35912 7229.23 0.35531 7267.04 0.35531 7920.95
−25% 0.35513 8093.41 0.35291 8115.78 0.35291 8778.12
−50% 0.35319 8525.24 0.35173 8540.05 0.35173 9206.61

c +50% 0.29967 23,976.9 0.31579 23,775.70 0.31579 24,594.2
+25% 0.32450 15,842.7 0.33329 15,743.40 0.33329 16,481.7
−25% 0.40257 −583.856 0.37941 −384.116 0.37941 193.853
−50% 0.47229 −8923.05 0.41111 −8488.82 0.41111 −7991.01

h +50% 0.34597 −6301.60 0.34325 −6273.03 0.34325 −5614.90
+25% 0.35140 680.618 0.34855 709.905 0.34855 1368.03
−25% 0.36310 14,640.7 0.35994 14,671.5 0.35994 15,329.6
−50% 0.36940 21,618.4 0.36607 21,650.1 0.36607 22,308.2

θ +50% 0.34129 17,346.3 0.33868 17,374.3 0.33868 18,032.4
+25% 0.34894 13,448.1 0.34615 13,477.0 0.34615 14,135.1
−25% 0.36585 −1899.49 0.36261 −1868.3 0.36261 −1210.17
−50% 0.36585 −1899.49 0.37174 −20,859.4 0.37174 −20,201.3

Ik +50% 0.30991 8283.38 0.32794 8069.73 0.32794 8888.17
+25% 0.33090 7987.53 0.34026 7884.91 0.34026 8623.20
−25% 0.39109 7296.58 0.36981 7488.20 0.36981 8066.16
−50% 0.43758 6879.97 0.38782 7273.79 0.38782 7771.60

Ie +50% 0.35527 7690.58 0.32631 7940.35 0.32631 8767.22
+25% 0.35619 7675.01 0.33936 7820.81 0.33936 8563.31
−25% 0.35802 7647.76 0.37093 7550.93 0.37093 8124.68
−50% 0.35893 7632.08 0.39036 7397.62 0.39036 7887.00

Figure 7 compares the full delay in payments policy with the cash discount policy. It
indicates that the cash discount policy in a general supply chain model in the COVID-19
situation is determined by each member’s purchase quantity and price.

135



Mathematics 2022, 10, 1209

Figure 7. Minimum measures in the COVID-19 situation under the two policies.

7. Managerial Insights

In real-world business, a firm’s size will affect the trade credit supply and demand
side. On the demand side, the frequency of use of external financing, the proportion of
credit sales, and the day sales outstanding are conditioning factors of the volume of credit
purchases (for trade credit demand). On the supply side, the trade credits are conditioned by
cash flow generation and by the frequency of the use of loans. Next, we describe the impact
of COVID-19 on business operations, the economy, and employment at the beginning of
the crisis. To help firms affected by the COVID-19 pandemic to return to normal operations,
banks have implemented major policies, including cutting policy rates (the discount rate
on accommodations with collateral) and providing a special accommodation facility to
support bank credit for SMEs. Herein, pricing is a crucial element of business, and costs
are sometimes affected by the discount rate. Are companies able to pay their trade credits
on time? Figure 8 indicates the percentage of trade credit balances being paid on time in
each country. The percentage of on-time payments was 32%, 23%, and 16% (lower than
February’s values). In this paper, we explored some important managerial insights that
could help managers make decisions during the post-COVID-19 recovery period:

(i) The retailer should always examine the probability that a firm will default on its
suppliers once a lockdown has been imposed, which varies depending on the degree
of reliance on trade credit financing. A suggestion has been made for the retailer to be
legally mandated to shut down during the first two months of the pandemic, which
experienced by far the highest increase in defaults induced by trade credit payment
obligations that had built up prior to the crisis.

(ii) The supplier should offer early payment discounts in order to minimize late payments,
increase customer loyalty, maximize profits, and improve supplier relationships. A
suggestion has been made for the manager to be able to choose to implement a
discount period with a fixed percentage of savings off of an item.

(iii) As the discount is offered for the advance payment only, the retailer should often use
this oppoortunity to intensify profits. A suggestion has been made for the manager
to be able to choose the effective interest rate through the use of early payment
discount terms.

(iv) In the COVID-19 period, suppliers should offer retailers an estimate of the payment
amount and the due date through a loan service; for instance, coronavirus-related
loan forgiveness options lawfully and duly declared during a COVID-19 pandemic
national emergency.

136



Mathematics 2022, 10, 1209

(v) SMEs often have a limited number of suppliers. Firms are particularly vulnerable
to the disruption of business networks and supply chains. Connections to larger
operators (e.g., MNEs) and the outsourcing of business services are critical to their
performance.

Figure 8. The percentage of trade credit balances being paid on time in each country (Source: S&P
Global Market Intelligence, 5 June 2020. For illustrative purposes only).

8. Conclusions

While the production of goods and services is either reduced or paused temporarily,
retailers should continue to pay at-risk suppliers to ensure cash flow and supplier survival.
In this paper, we provided a hybrid trade credit policy to stimulate supplier–retailer
business recovery during the COVID-19 period. Here, an alternative strategy to sustain
business relationships through a hybrid payment system and discount facility considering
the fraction of delayed payments was proposed. Two issues that need to be considered in
this regard are: (1) due to the reduced default risk, the retailer should only provide a full
trade credit policy to his/her customers with good credit; and (2) to reduce the risk of cash
flow shortages and bad debt, the supplier should offer credit terms mixing a cash discount
and trade credit to the retailer. Here, the supplier is likely to focus on maintaining business
relationships through a hybrid payment system and discount rate policy. For example, the
supplier may agree to a 2% discount off the retailer’s purchasing price if payment is made
within 120 days (during the COVID-19 period).

The results of this paper show that the retailer can optimize the replenishment cycle,
discount rate, and time of prepayment for export items. Furthermore, we established
retailer ordering policies that are given as solution procedures to determine the optimal
solution under various conditions and provide a simple way to determine the optimal
replenishment cycle time. The results of this paper clearly support the notion that an
increase in the retailer’s total cost will occur when discount rate, prepayment, and trade
credit strategies are implemented wisely. The analytical formulations of the problem on
the general framework described have been given. Despite the transition to cash sales
in SMEs, sales with a large amount of trade credit were strongly limited, especially for
new customers. In practice, suppliers allow customers a fixed period in which to settle the
payment without penalty in order to increase sales and reduce on-hand inventory. The
resulting nonlinear model was solved by the mathematical 12.0.0 software, and numerical
examples were presented in order to illustrate the model. Demand patterns constitute an
important topic to be explored in future research.
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Abstract: The process of project portfolio selection is crucial in many organizations, especially R&D
organizations. There is a need to make informed decisions on the investment in various projects
or lack thereof. As the projects may continue over more than 1 year, and as there are connections
between various projects, there is a need to not only decide which project to invest in but also when
to invest. Since future benefits from projects are to be depreciated in comparison with near-future
ones, and due to the interdependency among projects, the question of allocating the limited resources
becomes quite complex. This research provides a novel heuristic method for allocating the limited
resources over multi-annual planning horizons and examines its results in comparison with an exact
branch and bound solution and various heuristic ones. This paper culminates with an efficient tool
that can provide both practical and academic benefits.

Keywords: metaheuristics; project selection; portfolio management; resource; R&D; roadmap;
program management

MSC: 90B35

1. Introduction

Most project-based organizations are faced with a long list of proposed projects that
compete for a limited set of resources such as money, manpower, and equipment [1]. Project
portfolio selection (PPS) aims to find which projects an organization should take [2–4].
Needless to say, as the decision to allocate and prioritize projects today affects the organiza-
tion’s competitive position in the future [5], and the decisions of initiation (and termination)
of projects are of a strategic nature since they involve the commitment of substantial enter-
prise resources [6], it is recognized worldwide that there is a need to manage projects as an
overall portfolio [7] and not as separated projects [8].

Evidently, organizations wish to maximize their return on investment when selecting
projects [9], and therefore, the selection process should be based on criteria that take into
account this objective function [10].

The operational research problem of PPS was defined [11] as the situation where
several projects are available for investment. They are different in their resource needs
(both resource types and resource demand level).

The current research and method are lacking in two aspects: they do not take into
consideration the time value of the projects (i.e., contribution depending on the projects’
completion time), and they also do not consider the dependence between the projects
(i.e., precedence and competition over resources). This research aims to present a novel
formulation of the problem, namely one that incorporates theses aspects. The article also
provides an exact solution algorithm (branch and bound) that can solve small to medium
problems. However, due to the NP-hard nature of the problem, large-scale problems require
a different approach. Thus, several metaheuristic algorithms are proposed and analyzed.
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2. Literature

The research in the area of project portfolio selection has been growing intensively
in the past decade, with intensive proliferation of research articles tackling a myriad of
variations of this problem. Some of this proliferation was summarized in several review
papers. For example, Frey and Buxmann [12] reviewed the literature on portfolio selection
of IT projects. Weissenberger-Eibl and Teufel [13] provided a strategic and political review
on project selection. Padhy [14] and Condé and Martens [15] reviewed six-sigma project se-
lections. Danesh et al. [16] provided a broad review of multi-criteria portfolio management,
and Mohagheghi et al. [17] reviewed models, uncertainty approaches, solution techniques,
and case studies.

The simplest model of the project selection problems is single-attribute optimiza-
tion under resource constraints. This problem resembles the well-known knapsack al-
gorithm [18,19]. This problem was primarily extended to reflect synergies and uncer-
tainty [18]. The main extensions to this type of optimization were with interactions and
under uncertainty [20,21].

Another classical model of the project selection problem is financial project portfolio
selection, which is based on mean profit vs. profit variance [22]. However, this model of
portfolio selection is rooted in investment in the stock markets, and its use is indeed more
suited to investment decisions in a portfolio of stocks and other financial assets. Thus,
only a few papers on project portfolio selection adopted this modeling approach [9]. This
model’s assumptions and characteristics are more suited to pure investment decisions than
to a company or organization decision problem.

Biobjective models were a natural evolution of single-objective optimization [20,23].
While multi-objective optimization became the research mainstay of project portfolio selection,
biobjective models, due to their simplicity, still attract some research attention [19,23–25].

The multi-objective optimization models followed the aforementioned models [26–30].
The literature on multi-objective project portfolio selections proliferated [31–36] and became
the main branch of the project portfolio research [16], and it is still prevalent [37]. Within this
multi-objective framework, robustness became a prevalent requirement and an objective to
address the uncertainties of project portfolio selection [29,32].

During the last two decades, fuzzy logic started to play an important role in decision
making, and in the past decade, it made its way into the portfolio selection literature.
For example, Perez and Gomez [33] and Perez et al. [38] used fuzzy constraints between
projects, while others [1,35,39,40] used them in the objective function.

Another branch of research gathered both project scheduling and project selection into
a single decision frame (some examples are in [19,30,41–43]).

While the above discussion dealt with project selection in technical terms, strategic
project portfolio selection presents a very different approach [25,44–46]. Killen et al. [4] iden-
tify three strategic perspectives of project portfolio selection: (1) the resource-based view,
(2) the dynamic capabilities view, and (3) the absorptive capacity view. Kaiser et al. [47]
stressed the role of structural alignment of selected projects with the organization’s values,
vision, and strategy. Kopmann et al. [46] suggested fostering both deliberate and emer-
gent strategies. Finally, Guo et al. [25] suggested balancing strategic contributions and
financial returns.

While the existing reviews cover their relevant part of the literature and suggest some
classifications of the project selection problems, a more formal and general classification
system can contribute to them. We suggest a system that would be close to Kendall’s
notation in queuing theory [48]. To foster a discussion for filling this gap, we present here
our initial attempt at classification of project portfolio selection’s main problem types using
the major characteristics of these problems. It is hoped that the suggested classification
scheme will initiate a discussion (or even a debate) which will culminate in an agreed-upon
standard classification method. In Figure 1, we propose a classification method for the PPS
problem. The suggestion is to classify the problems by their objective type, the solution
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method used to make the selection, the nature of the data, and the constraints. Therefore,
the proposed method has four classifiers:

 

Figure 1. Project portfolio selection classification scheme.

X— Objective type: single-attribute selection, multiple-attribute selection, fitness function,
profit vs. risk selection, utility vs risk selection, and strategic selection;

Y— Solution type: optimized selection, robust selection, efficient frontier, AHP/ANP, and
priority-based;

Z— Data type: deterministic data, fuzzy data, and stochastic data;
W—Constraint characteristics: a combination of letters that testify for the existence of the

characteristic constraint as follows: P = precedence constraints, RL = resource-level
constraints, DR = depleted resource constraints, and T = time constraints.

Some examples of this classification scheme are shown in Table 1.

143



Mathematics 2022, 10, 1601

Table 1. Examples of the suggested classifications.

Reference Objective Type
Solution

Type
Data Type

Constraints
Combination

1 [33] Multi-objective Efficient
frontier Fuzzy P, RL, DR, T

2 [49] Strategic selection None Deterministic P, RL, DR, T

3 [50] Single-objective
selection Optimized Deterministic P, RL, DR, T

4 [51] Single-objective
selection Optimized Deterministic P, RL, DR, T

5 [52] Single-objective
selection Optimized Known random

distribution P, RL, DR, T

6 [53] Profit vs. risk
selection Optimized Known random

distribution None

7 [32] Multi-objective Robust
selection Deterministic P, RL, DR, T

As stated above, enhancements to this classification scheme and even challenges are
welcome as part of future research.

The problem researched in this article is of a single objective (maximum value); the
data are assumed to be deterministic, and no depleted resources are concerned. The article
utilizes two solution types: optimal for small-to-medium-sized problems and metaheuristic
searching for larger ones. Therefore, this problem should be classified according to the
hierarchical classification of Figure 1 as multi-attribute, optimized, and deterministic.

This article does not consider random, fuzzy, or gray data.

3. Problem Description

The problem deals with an ongoing situation of R&D to develop projects. The need is
to decide which projects should be scheduled for each year in the planning horizon. As
a company has a limited amount of resources each year, it is impossible to perform all
projects at once, and therefore, there is a need to schedule less-lucrative projects for distant
years. In the case of no constraints, all projects would have been planned for the first year.
However, this is not the case. Two reasons compel postponing projects to future years:

• Resource availability: Each project requires a specific level of various resources. The
assumption is that there cannot be a breach of the available level of each resource.

• Precedence: As part of the R&D project, the company acquires new capabilities that
can be exploited for future projects.

3.1. Problem Assumptions

• Each project has a specific value to the company. This value can be measured in the
same units (typically profit, measured in dollars).

• The value of the project to the company depreciates as a function of time; that is, each
year can be assigned a corresponding coefficient that expresses the depreciated value.
(For example, a project assigned to year 1 has a value of 100. The same project assigned
to year 2 has a value of 80. If assigned to year 3, it has an even lower value, etc.).

• All relevant resources are renewable (e.g., work hours). For each year, there are new
levels of resources available. The amount of a resource that was not consumed in year
n cannot be used in year n + 1.

• Each project has given levels of resources needed for its completion (e.g., programmer
hours or QA hours).

• Technical precedence dependencies exist between the projects. Thus, project x can be
performed based on the technology performed for project y.
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3.2. Problem Notations

To assist understanding of the formulation, Table 2 depicts the notations used for
the formulation.

Table 2. Problem notations.

Notation Definition

Y A vector of all the depreciation values of the years.
yi ∈ Y is the value of year i.

=
R

A matrix containing the available resources at each year in the planning horizon.

rj,i ∈
=
R is the level of resource j at year i.

=
Q

A matrix containing the required resources for each project.

qk,j ∈
=
Q is the requirement of resource j of project k.

P
A vector of all the contributions (values) of the projects.

pk ∈ P is the value of project k.

=
D

A matrix containing technical dependencies.

dk,m ∈
=
D has the following values:

dk,m =

{
1 i f project m depends on project k
0 otherwise

=
X

Decision variable matrix.
xk,i ∈

=
X has the following values:

xk,i =

{
1 i f project k is to be completed in year i
0 otherwise

V Total portfolio value.
=
Z Auxiliary variables, denoting the years the project is in process.
=
W Auxiliary decision variables denoting the level of resources used by a project in any given year.
N Number of projects in the examined portfolio.
H Planning horizon (number of years).
R Number of resource types.
G Genotype vector.

i, j, k, l, m, n

Indices:
i, l—Year index.
j—Resource index.
k, m, n, p—Project index.

3.3. Problem Formulation

The objective function is for maximizing the cumulative value of the project portfolio
such that

maxV = ∑
∀yi∈Y

∑
∀pk∈P

∑
∀xk,i∈

=
D

yi pkxk,i (1)

Each project is to end in one year only, so the relevant constraints are

∑∀i xk,i = 1 ∀k ∈ {1, 2, . . . , N} (2)

Since a project can stretch over more than one year (i.e., start before its final year),

there is a need for an auxiliary set of variables (
=
Z), denoting the years a project can use

resources (i.e., the project cannot use resources after its ending):

zk,i ≤ ∑H
l=i xk,l ∀k ∈ {1, 2, . . . , N} (3)
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Thus, zk,i can have the maximum value of 1 for each year until its ending year
and 0 onward.

To ensure that the project spreads over consecutive years, we use

zk,i ≤ zk,i+1 ∀k ∈ {1, 2, . . . , N}, ∀i ∈ {1, 2, . . . , H − 1} (4)

This notification enables the setting of the resource-consuming variables (
=
W), denoting

the level of resource j consumed by project k at year i:

wk,i,j ≤ qk,jzk,i ∀k ∈ {1, 2, . . . , N}, ∀i ∈ {1, 2, . . . , H}, ∀j ∈ {1, 2, . . . , P} (5)

Thus, a project may consume part of the resources it needs in year n and part of year
n + 1 (e.g., use 2023’s budget and 2024’s budget). Additionally, each project must consume
all the needed resources:

∑H
i=1 wk,i,l = qk,j ∀k ∈ {1, 2, . . . , N}, ∀l ∈ {1, 2, . . . , H} (6)

To prevent over-consumption of resources at any given year, the resource level con-
straints are

∑∀k ∑∀i wk,j ≤ rj,i ∀j ∈ {1, 2, . . . , P} (7)

Finally, the technical dependencies among the projects are expressed as

zk,i ≥ zm,i ∀dk,m = 1, ∀i ∈ {1, 2, . . . , H} (8)

A small example to help illustrate this formulation is detailed in the Appendix A.

4. Problem Complexity and Exact Solution

Although the formulation depicted in Section 3.3 is accurate and needed, it is of little
contribution when trying to solve such problems. The described problem is NP-complete,
yet exact solutions can be obtained via the branch and bound (B&B) method. Section 4.1
describes a B&B solution for this problem.

Since a B&B solution is practical for some of the problems, and the NP-completeness of
the general problem hinders exact solutions, a practical and efficient metaheuristic solution
is described in Section 5. This solution method is useful for large-sized problems and also
provides an initial upper bound for the B&B algorithm.

4.1. Complexity

To prove the NP-completeness of the PPS, a reduction to a well-known problem is
needed: the precedence constraint knapsack problem [54]. The reduction is performed
as follows:

• Set the horizon (number of years) to 2. Thus, the projects are either assigned to the
first year (i.e., inserted to the “knapsack”) or to the second one (left out).

• Set the second year’s value to zero (y2 = 0).

As PPS is far more complicated than this, it is clear that PPS is of an NP-complete nature.

4.2. Branch and Bound Algorithm

An efficient B&B algorithm is based on the following components:

• A lower bound (LB): Any feasible solution can provide an LB. The algorithm can
start with either a solution produced by the metaheuristic algorithm or a simple
heuristic solution.

• An upper bound (UB): This is an efficient way to assess the maximal potential of a
partial solution (i.e., branch) of the tree. The UB can serve as a convenient heuristic
precedence rule (i.e., a rule to decide which branch to further develop first).

• A branching method: This is a way to create the net branches.
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The following subsections describe the components of the algorithm.

4.2.1. Initial Solution

It is convenient (though not necessary) to start the run of the algorithm with a lower
bound (LB). The higher the LB, the better. A reasonable algorithm should consider all
important attributes of the projects, namely the resource requirements and precedence. The
following algorithm can provide a decent initial solution:

1. For each resource type (j):

1.1 Calculate for each project the ratio of the project value to its resource require-
ment; that is, θk =

pk
qk,j

, where θk denotes the value that can be obtained from
one unit of the resource by performing the project.

1.2 For each project, calculate its total impact. The impact is calculated by aggre-
gating the project’s θk value and the values of all its successors (direct and
indirect). For example, for project 1, the impact is I1 = θ1 + θ5 + θ7 + θ8 (since
projects 5, 7, and 8 are successors to project 1).

1.3 Sort the projects in descending order by the total impact.
1.4 Schedule the projects according to the order obtained in Step 1.3. Each project

should be scheduled for the first available year.
1.5 Calculate the total value obtained from the schedule of Step 1.4 [V(j)].

2. The solution is set to be LB = max
∀j
V(j).

4.2.2. Branching

The branching process is quite simple. Each “level” of the tree represents a year.
Therefore, the tree depth can only be as deep as the planning horizon.

Each branch is simply a set of projects that fully utilize at least one of the resources
available for that year; that is, when branching year i, each branch is a set J of all the
unscheduled projects that fulfill the following requirements:

• There exists a resource type (j) for which

∑
∀i∈J

qk,j ≥ ri,j (9)

• For every subset of J, denoted by J− (i.e., J− ⊂ J and not J− = J) and for every
resource type (j), the following is true:

∑
∀i∈J−

qk,j < ri,j (10)

The two conditions may look cumbersome, but all they mean is that the set J is
a set that exploits one resource to the fullest, and any subset of J can be extended by
adding project (s).

4.2.3. Bounding Rule

An efficient bounding rule should satisfy the following demands:

• Simply calculable: The rule should provide the result with a low complexity algorithm
(otherwise, it provides no benefit).

• Low UB: To trim the tree as much as possible, the UB should be as low as possible.

The following algorithm provides the two demands. The algorithm is based on two
relaxations of the problem: the first is ignoring the precedence constraints, and the second is
ignoring the multi-resource nature of the problem (by dealing with one resource at a time).

1. For each resource type (j), the following should be performed:

1.1 Ignore all resource requirements (other than resource j) and precedence constraints.
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1.2 The remaining problem is the multiple knapsacks problem. Solve the
problem accordingly.

1.3 As the multiple knapsacks problem is an NP-complete problem, when a project
is scheduled to start in year i and finish in year i + 1, calculate the obtained
value of the project proportional to the year it was scheduled for.

1.4 Calculate the total values of the projects (each according to its year) UB(k).

2. Calculate the overall bound UB = min
∀k

UB(k).

The proposed algorithm is quite simple and rapid for small-scale problems.

5. Metaheuristic Search

Although the previous section describes an exact algorithm, it is impractical to apply
this algorithm (or any exact algorithm) successfully to large-size problems. The algo-
rithm provided in Section 4.2.1 may prove unsatisfactory for even medium- let alone
large-scale problems.

To provide near-optimal solutions, a metaheuristic approach is suggested. The benefit
of this approach is that (providing enough runtime) optimality is guaranteed. Since the first
conception of metaheuristics, many approaches were suggested. The proposed solution is
based on the CLONALG metaheuristics. This search method was developed by de Castro
and Van Zuben [55]. This basic method can be applied to various scheduling problems, as
long as the following requirements are provided [56]:

• Representation of the solution space (i.e., the “antibodies”);
• An initial set of solutions.
• A procedure to create valid mutations in the antibodies (i.e., mutations creating new

solutions that are included in the solution space).

Section 5.1 elaborates on the application of the first requirement to PPS. The second
requirement application is provided in Section 5.2. Finally, several different mutation
algorithms (third requirement) are detailed in Section 6.

5.1. Vector Representation

Although the formulation provided in Section 3 (and the notations of Table 2) is

mathematically accurate, the presentation of the decision variables (
=
X ) is impractical for

the purposed CLONALG process. The main problem is that most possible instances of
=
X are not feasible, either because they represent schedules that violate the dependency
constraints or violate the resource constraints. An ideal representation is one in which
every possible instance represents a feasible solution. Thus, the mutation process would
never yield infeasible solutions. Another requirement is that all feasible solutions can be
represented (i.e., the vector representation should spread the entire solution space) so the
mutation process will not omit any possible solution.

To achieve this, a vector G is introduced. This vector represents the “genotype” of the
solution (i.e., it is not the schedule itself), but from each possible instance of G, a feasible

“phenotype” (
=
X , the solution) can be derived. G is a vector of N natural numbers (from 1

to N), where gk is the kth project to be scheduled.

The transformation from G to
=
X (“genotype to phenotype translation”) is performed

as follows:
MAIN

1. For k = 1 to N, do the following:

1.1 If ∑N
j=1 xk,j = 0 (i.e., gk has not been scheduled yet): Run procedure “FindYear”

with parameter k.

1.2 If ∑N
i=1 xk,j = 1 (i.e., gk has already been scheduled): Continue.

FindYear(k)
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1. For m = 1 to k− 1, do the following (without loss of generality, as it is assumed that if
project k depends on project m, then k > m):

1.1 If dm,k = 1 and ∑N
j=1 xm,j = 0 (project k depends on project m, and project m

has not been scheduled), run procedure “SCHEDULE” with parameter m.
1.2 Otherwlse (either project k does not depend on project m or project m has

already been scheduled), continue.

2. Find the first year i in which gk can be scheduled (has enough available resources and
does not violate dependencies), and set xk,i = 1.

3. Return

This simple algorithm provides the two requirements: (1) any genotype G can be

converted to a feasible “phenotype” (feasible
=
X ) through a simple process, and (2) all

feasible solutions can be originated from a genotype G.

5.2. Initial Solution Generation

Since the aforementioned procedure makes any vector containing the natural numbers
from 1 to N to be a feasible representation of a solution, a procedure to generate an initial
feasible solution is quite straightforward; any “scrambled” vector containing the numbers
from 1 to N in random order will suffice. To achieve a set of these scrambled vectors, the
following method was applied:

1. A matrix
=
S with dimensions N × 2 was created;

2. For i = 1 to N do the following:

2.1 Set si,1 = i.
2.2 Set si,2 = U(0, 1) (random number from the unit uniform distribution).

After this stage, the first column is filled with running numbers and the second with
random numbers.

3 Sort
=
S in ascending order according to the second column.

4 The first column of
=
S is an initial solution vector (G).

6. Mutation Generation

The presentation of the solution vector and the initial solution set generating set the
ground for the central part of the CLONALG process: mutation generation and cloning.
The mutations are generated by random change insertion to the genome vector (G). Since
the genotype vector describes the order of scheduling the projects, the mutation process
will be carried out by changing this order. This section describes three approaches to the
mutation process. The first and the second are “traditional” approaches, and the third one
attempts to exploit clustering techniques to improve the search performance. An additional
approach is also presented: a combination of the previous ones.

6.1. Minor Mutations

The most trivial and straightforward approach to changing the order of the vector
members is by replacement. The simplest way is to randomly choose a project (member
of the genotype vector) and replace it with its neighbor, as depicted in Figure 2. In this
case, the fifth location (project 6) was chosen and replaced with its neighbor in the sixth
location (project 3).
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Figure 2. A simple mutation.

There is an advantage in small mutations. When in the vicinity of the optimal solution,
a small mutation is less likely to cause damage and drift away from the optimal solution,
as visualized in Figure 3. The small mutation, though in a wrong direction, is less likely to
corrupt the solution value than the larger mutation in the correct direction.

Figure 3. (a) A small mutation. (b) A large mutation.

6.2. Major Mutations

Though the minor mutations have the advantage of minimal damage when in the
vicinity of the optimum, they are likely to provide only minimal improvement (i.e., many
steps needed toward the optimum). To illustrate this, let us examine the case depicted
in Figure 4.

 
Figure 4. Projects’ dependencies.
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Project 7 has a high value and therefore should be scheduled ASAP. Let us assume a
pre-mutated solution vector G = (4, 10, 1, 2, 3, 5, 6, 7, 8, 9). A mutation switching Projects 1
and 10 may decrease the total value (as Project 10 is postponed) without expediting the
lucrative Project 7. This mutation has a high probability of being rejected (decrease in
the objective function). To expedite Project 7, there is a need for several “lucky” small
mutations. This sequence of small mutations will indeed appear eventually but may take
quite a long time. Figure 5 visually depicts the difference between the mutation types.

Figure 5. Comparison between the advantages of (a) large and (b) small mutations.

To improve this, another version of mutations is suggested: randomly choosing two
projects in the vector and switching their locations, as depicted in Figure 6. In this case, the
third location (Project 2) and the eighth location (Project 1) were switched.

 
Figure 6. Switch mutation.

While this “mega-mutation” may prove lethal (i.e., significantly reduce the objective
function value), it may also save the need for a lucky sequence of minor mutations.

6.3. Oriented Mutations

As claimed by Darwin, in nature, all mutations, whether large or small, are totally
random and have no special direction (unlike the Lamarckism theory, which claims that they
evolve toward a defined goal). The two mutation types described in Sections 6.1 and 6.2
are Darwinian; that is, they are totally random, and each project has the same probability to
be selected. This full randomness has the distinct advantage of being totally unbiased but
may prove inefficient. Evolutionary scientists have claimed for decades that a gene cannot
be considered simply “bad”, “good”, or even “helpful” for the organism, but rather a set of
genes operating together may prove beneficial [57–59]. For example, a set of sharp incisors
and canines is of no use for an herbivore animal, nor are long intestines and complex
stomachs useful for a carnivorous hunter. A gene for sharp teeth can contribute only when
accompanied by other genes for a carnivorous lifestyle, yielding a cheetah for example. Not
to push the natural metaphor too much, but this observation from the field of “ordinary”
evolution can be adapted to the field of evolutionary metaheuristic search. If project X
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and project Y are both predecessors of project Z (which is very lucrative), then there is
no advantage in expediting project X alone, but it is very beneficial to expedite X and Y
together. In our example, expediting Project 5 may prove unbeneficial if not accompanied
by Projects 6 and 7. A beneficial mutation will include several combined small mutations
and thus collectively improve the total value.

The problem then is how to recognize whether project X is beneficial with project Y. The
projects have dependencies, and they compete for the same resources. To predict whether
two projects should be scheduled together, a technique often used by data science was
exploited: the similarity coefficient method (SCM). The concept of the SCM was originally
used for group technology (GT) applications [60,61], but it is now used for a wide variety
of classification and optimization problems [62–64]. Therefore, the proposed method is
actually a combination of three fields: SCM, oriented (Lamarckist) evolution, and PPS.
Obviously, the similarity between machines and manufacturing processes (as used by GT)
should be altered too.

The challenge is to keep the process of CLONALG and its random mutations while
inserting “smart” mutations. The basic notion laying beneath this approach is to increase
the probability of clustered-together projects to be moved simultaneously (either postponed
or expedited but together) by resorting to the SCM. The first step is to calculate the similarity
between the projects (i.e., likelihood of benefiting from being scheduled together). The
second phase is to generate the mutation in a way that is based on this similarity.

The similarity measure will be as follows:

• Dependent projects: In the example depicted in Figure 4, Projects 5 and 6 have a
common dependent in Project 7. This means that it will not be possible to gain the
value of Project 7, even if Project 5 is expedited. There is a need to complete Projects 6
and 2 as well. Any small mutation expediting just one of these projects will leave the
others untouched and fail to yield a major gain in value. Furthermore, any mutation
that causes one of these projects to be postponed will yield a major reduction in the
total value. A mutation involving all three projects may enable the expedition of the
lucrative Project 7. The proposed similarity measure is (based on [65])

S1k,m =
∑N

i=1 dk,idm,i

∑N
i=1 dk,i(1− dm,i) + ∑N

i=1 dm,i(1− dk,i) + ∑N
i=1 dk,idm,i

(11)

where the latter is simply the number of projects that depend on both project k and
m divided by the number of projects that depend on either of the two. For example,
S15,6 = 1

1+1+1 = 1
3 , since only Project 7 depends on both projects, and there are 3

projects that depend on either 5 or 6.
• Mutual dependencies: When two projects depend on the same (or nearly the same)

projects, expediting both together causes only a little more impact on the entire sched-
ule than expediting only one (i.e., “two for almost the same price”). Therefore, the
second similarity is calculated as follows:

S2k,m =
∑N

i=1 di,kdi,m

∑N
i=1 di,m(1− di,m) + ∑N

i=1 di,m(1− di,k) + ∑N
i=1 di,kdi,m

(12)

• Resource requirements: Obviously, all projects compete for the same resource pool.
Therefore, the third similarity is based on the measure of the level of common resources
required by both projects. Two projects that require totally different resources do not
compete at all. Projects that compete for the same resource, in which the resource
itself is in abundance, will result in a minimal competition. If, however, both have
high requirements for a low-level resource, then they are in head-to-head competition.
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Therefore, the third similarity can be calculated as the ratio between the required
combined resources and the availability of these resources:

s3k,m =
R

∑
j=1

qj,k + qj,m

∑H
i=1 rj,i

(13)

• This similarity measure differs from S1 and S2. First, it measures dissimilarity. Second,
the value of s3 depends on the number of resources (R). The larger the value of R, the
larger the value of s3. This poses a problem for the implementation of the CLONALG
method. Therefore, the similarity measure (S3k,m) will be calculated as follows:

S3k,m =
1− s3k,m

max
∀n 
=p

(1− s3n,p)
(14)

Thus, the similarity measure (S3) is set to be a 0–1 number, where 1 indicates 2
non-competing projects, and the lower the value, the higher the competition for resources.

These three similarity measures are utilized to create a similarity coefficient that
incorporates all these attributes. The similarity coefficient is, therefore, the following:

SCk,m = α1S1k,m + α2S2k,m + α3S3k,m (15)

where α1 + α2 + α3 = 1 and α1, α2, α3 are non-negative.
The similarity coefficient is the base of the mutation generation algorithm:

1. Randomly choose a project k;
2. Create an empty set of projects Φ;
3. For each project m = 1 . . . N where m 
= k, do the following:

3.1 Generate a random number u ∼ U(0, 1);
3.2 If SCk,m > u, then add project m to Φ.

4. Randomly choose a location l for project k;
5. Move all members of the set Φ to location l (while maintaining the inner order of Φ).

6.4. Mixed Mutations

The basic concept of the oriented mutations is that the advance toward the optimum
is not limited to random mutations but also benefits from knowledge and common sense
(as expressed in the similarity coefficient matrix). In Figure 7a, there is an illustration of
random mutations, where the new solutions are spread randomly. Figure 7b depicts an
illustration of the oriented mutations, where the new solutions are concentrated in the
vicinities of the optima.

 
Figure 7. (a) Random mutations vs. (b) Oriented mutations.
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The main risk of the oriented mutation is that the “orientation” will lower the diver-
sification, or the ability to visit many different regions of the solution space [66]. Lower
diversification will interfere with the random search and disturb the metaheuristic process
that enables escape from the local optima. Though the oriented approach increases the
search intensification, it is essential to find an optimal balance between intensification
and diversification [67].

To overcome this risk, other approaches were examined for the mutation process.
These approaches were basically to tune the level of similarity that is, in the mutation
algorithm depicted in Section 6.2, Step 3 is replaced by the following:

3 For each project m = 1 . . . N where m 
= k, do the following:

3.1 Generate a random number u ∼ U(0, 1);
3.2 If αSCk,m > u, then add project m to Φ.

where α is the tuning parameter. A high value of α means that the mutation process
relies more on oriented mutations. A low value of α means it is less reliant on these. When
α = 0, the mutation process is the same as depicted in Section 6.2.

7. Computational Results

7.1. Database

To examine the performance of the different approaches, a random data set of portfo-
lios was generated. To encompass the wide variety of portfolios, the database was generated
by randomly generating different cases varying in size, connectivity, and resources:

• Size: The number of projects varied between 20 and 120 projects (20, 40, 60, and
80 projects);

• Connectivity: The number of precedence connections can vary between zero (i.e.,
no project depends on any other one) and full connectivity (i.e., all projects can be
presented as Project 1 precedes Project 2, which precedes Project 3, and so on). The
problems were divided into three categories: high, low, and medium connectivity;

• Resources: For each type of resource, its scarcity can be measured by the ratio between
the total demand (of all projects) and its annual availability. The resource scarcity has
a strong connection to the planning horizon (the scarcer the resource, the more years
are needed to complete the entire set of projects). As the number of years for the entire
project was set to five, the scarcest resource was set to require seven times the annual
resource level. The total number of resources varied between 1 and 3.

For each combination of size, connectivity, and resources, a set of five random portfo-
lios was generated.

The data set was planned for 5 years (a project scheduled for year 6 is considered to be
undesired and not performed).

7.2. Experiment Design

The purpose of the experiment was to assess the performance of the four approaches
to CLONALG mutations (i.e., minor, major, oriented, and mixed mutations). As there was
no database of optimal (or even best-known) solutions, the comparison was based on the
following measures:

• Ratio to optimal solution: For smaller problems (i.e., sets of 20 projects), an optimal
solution was found using B&B;

• Ratio to best-known solution: For each instance, the best value was found, and for
each method, the ratio between its solution and the best solution was calculated.

To compare the various methods correctly, they were run for the exact same time. The
runtime for each problem was set by running the minor mutation first until no improvement
was achieved for 20 generations. The time was measured, and then all other methods were
run for the same length of time, thus providing a comfortable benchmark.

The mixed method used a value of α = 0.5.
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7.3. Initial Results

The results of the experiment for small problems are depicted in Table 3. For larger
problems, the results are depicted in Table 4.

Table 3. Initial results: ratio to optimal solutions.

Connectivity Resources Minor Major Oriented Mixed

Low
1 1 1 1 1
2 0.94 0.94 1 1
3 0.93 0.96 1 1

Med
1 1 1 1 1
2 0.96 1 1 1
3 0.93 0.94 1 1

High
1 1 1 1 1
2 0.96 0.96 1 1
3 1 0.95 1 1

Table 4. Initial results: ratio to optimal best known.

Problem Size Connectivity Resources Minor Major Oriented Mixed

40

Low
1 1 1 1 1
2 0.94 0.96 1 1
3 0.93 0.93 0.96 1

Med
1 1 1 1 1
2 0.96 1 1 1
3 0.94 0.94 1 1

High
1 1 1 1 1
2 0.96 0.96 1 1
3 1 1 1 1

60

Low
1 0.95 1 1 1
2 0.99 0.98 0.96 1
3 0.91 0.95 0.96 1

Med
1 0.97 1 1 1
2 0.91 1 0.94 0.99
3 0.99 0.97 0.95 1

High
1 0.96 0.96 0.93 1
2 0.95 0.97 1 1
3 0.93 0.9 0.98 1

80

Low
1 0.91 0.92 1 1
2 1 0.93 0.97 1
3 0.99 0.94 0.96 0.99

Med
1 0.9 0.96 0.97 1
2 0.93 0.96 1 1
3 0.94 0.96 0.96 1

High
1 0.97 0.91 0.99 1
2 0.91 0.99 0.97 1
3 0.97 0.94 0.96 0.98

As can be seen from Tables 3 and 4, the mixed method outperformed all other methods
(also relying only on minor mutations proven to be underperforming). A comparison
between the methods is described in Figure 8.
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Figure 8. Comparison.

The graph of Figure 8 reveals that the “oriented” (i.e., Lamarckian) mutations indeed
improved the performance of the metaheuristic search. However, mixing them with
“classic” mutations provided better solutions. The question that arises is the composition
of this mix. The experiment was based on the arbitrary setting of α = 0.5 (i.e., halfway
between oriented mutations and totally non-oriented ones). As the advantage of oriented
mutations was established, it is interesting to further explore and find the optimal ratio of
this “mix”.

To test this point, a second experiment was performed. The same sets of 80 problems
were used again for different values of α. The results are depicted in Figure 9. From the
results, it is evident that there was almost no significance to the value of α as long as there
was a presence of oriented mutations and as long as the oriented mutations monopolized
the process.

 

Figure 9. Effect of α.

8. Summary and Conclusions

This paper aimed to tackle the problem of project selection subject to resource con-
straints and technical precedence. To test this novel problem, the research developed a
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benchmark database of portfolios varying in size, precedence complexity, and resources.
As far as we can ascertain, this is a one-of-a-kind database, and one of the outcomes of
this research is to set benchmark results. This paper provides an exact formulation and an
example for the new problem.

To solve the problem, a practical search approach for reaching a solution was devel-
oped. This enhancement approach would be applicable for most metaheuristic search
techniques by using clustering methods that portray the attractive search zones and act
as “intensificators”. The proposed search was able to generate feasible, meaningful, and
highly satisfactory solutions to the planning of long-horizon problems.

The proposed algorithm has both theoretical and practical implications. The practical
one is its ability to upgrade the PPS problem decision making and base it on solid exact
foundations. The decision-making process should be based less on “gut feelings” and
more on exact and well-presented data. Furthermore, the process may enable the decision
makers to be aware of the impact of various constraints and lead to improved decisions
(e.g., the economic benefit of recruiting more of a specific type of engineers). The theoretical
implications, on the other hand, can be derived from the metaheuristic approach; the
suggested oriented search need not be limited to PPS and can be implemented in various
scheduling (and perhaps other) problems.

An obvious weakness of the article is its limitation to a specific problem, where the data
is deterministic and the objective function is limited to a single one (maximum gain value).
In reality, the data are often fuzzy or stochastic, and the proposed model does not take this
into account. It is worth mentioning that there is nothing fundamental that prevents the
proposed meta-heuristic search techniques from tackling fuzzy objective functions, and
this may be a suitable direction for further research.

Another direction for future research could use the presented insights to develop
better algorithms that will smartly manipulate the mutation type in the different phases of
the search and develop a technique or a method for optimizing the various factors of the
search to better its performance.
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Appendix A. Problem Example

To help visualize the problem formulation, a miniature PPS is portrayed. Whereas
typical PPS may include hundreds of projects, this one includes only 10.

Appendix A.1. Projects

The set includes 10 projects with the dependencies included in Figure 4.
The dependency matrix is, therefore, the following:
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=
D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Appendix A.2. Resources

The planning horizon is limited to 3 years. In this example, the number of resources

is limited to one. Therefore, the matrix
=
R is of the dimensions 3× 1. Let us assume a

constant level of 5 units (e.g., 5 worker years for each of the years of the entire horizon):
=
RT = (5, 5, 5, ∞)

As can be seen, the last year has an infinite level of resources, since scheduling a
project to year 4 means not performing it at all.

The demand for resources is depicted in Table A1. From this table, the matrix
=
Q can

be derived:
=
QT = (2, 3, 1, 3, 2, 3, 1, 2, 3, 1)

Table A1. Resource demand.

Project Resource Requirement Project Resource Requirement

1 2 6 3
2 3 7 2
3 1 8 2
4 3 9 3
5 2 10 1

Appendix A.3. Planning Horizon

As mentioned, the planning horizon spreads over 3 years. The first year has a value
(depreciation) of 1 (no depreciation), the second has a value of 0.8, the third has a value of
0.5, and everything that follows has a value of 0 (i.e., not planned to be developed at all).
Therefore, we set H = 4 (i.e., the 3 years of the planning horizon plus 1 year for the projects
that would not be realized). We also set the following: YT = (1, 0.8, 0.5, 0)

Appendix A.4. Projects’ Values

The projects’ values are depicted in Table A2. Therefore, the vector P is set to
PT = (1, 1, 1, 1, 1, 2, 8, 2, 2, 3).

Table A2. Projects’ values.

Project Value Project Value

1 1 6 2
2 1 7 8
3 1 8 2
4 1 9 2
5 1 10 3
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Appendix A.5. Objective Function

From the previous notations, the objective function can be derived:

maxV = (X1,1+ X2,1 + X3,1 + X4,1 + X4,1 + 3X6,1 + 8X7,1 + 2X8,1 + 2X9,1 + 3X10,1) + 0.8(X1,2 + X2,2 + X3,2

+X4,2 + X4,2 + 3X6,2 + 8X7,2 + 2X8,2 + 2X9,2 + 3X10,2) + 0.5(X1,3 + X2,3 + X3,3 + X4,3 + X4,3

+3X6,3 + 8X7,3 + 2X8,3 + 2X9,3 + 3X10,3)

Appendix A.6. Single Completion Year Constraints

To ensure that a project is completed in 1 year only, the following constraints are added:

X1,1 + X1,2 + X1,3 + X1,4 = 1
X2,1 + X2,2 + X2,3 + X2,4 = 1
X3,1 + X3,2 + X3,3 + X3,4 = 1
X4,1 + X4,2 + X4,3 + X4,4 = 1
X5,1 + X5,2 + X5,3 + X5,4 = 1
X6,1 + X6,2 + X6,3 + X6,4 = 1
X7,1 + X7,2 + X7,3 + X7,4 = 1
X8,1 + X8,2 + X8,3 + X8,4 = 1
X9,1 + X9,2 + X9,3 + X9,4 = 1

X10,1 + X10,2 + X10,3 + X10,4 = 1

Appendix A.7. Precedence Constraints

The auxiliary variables zi,j are set as follows:

z1,1 ≤ x1,1 + x1,2 + x1,3 + x1,4, z1,2 ≤ x1,2 + x1,3 + x1,4,z1,3 ≤ x1,3 + x1,4,z1,4 ≤ x1,4
z2,1 ≤ x2,1 + x2,2 + x2,3 + x2,4, z2,2 ≤ x2,2 + x2,3 + x2,4,z2,3 ≤ x2,3 + x2,4,z2,4 ≤ x2,4
z3,1 ≤ x3,1 + x3,2 + x3,3 + x3,4, z3,2 ≤ x3,2 + x3,3 + x3,4,z3,3 ≤ x3,3 + x3,4,z3,4 ≤ x3,4
z4,1 ≤ x4,1 + x4,2 + x4,3 + x4,4, z4,2 ≤ x4,2 + x4,3 + x4,4,z4,3 ≤ x4,3 + x4,4,z4,4 ≤ x4,4
z5,1 ≤ x5,1 + x5,2 + x5,3 + x5,4, z5,2 ≤ x5,2 + x5,3 + x5,4,z5,3 ≤ x5,3 + x5,4,z5,4 ≤ x5,4
z6,1 ≤ x6,1 + x6,2 + x6,3 + x6,4, z6,2 ≤ x6,2 + x6,3 + x6,4,z6,3 ≤ x6,3 + x6,4,z6,4 ≤ x6,4
z7,1 ≤ x7,1 + x7,2 + x7,3 + x7,4, z7,2 ≤ x7,2 + x7,3 + x7,4,z7,3 ≤ x7,3 + x7,4,z7,4 ≤ x7,4
z8,1 ≤ x8,1 + x8,2 + x8,3 + x8,4, z8,2 ≤ x8,2 + x8,3 + x8,4,z8,3 ≤ x8,3 + x8,4,z8,4 ≤ x8,4
z9,1 ≤ x9,1 + x9,2 + x9,3 + x9,4, z9,2 ≤ x9,2 + x9,3 + x9,4,z9,3 ≤ x9,3 + x9,4,z9,4 ≤ x9,4
z10,1 ≤ x10,1 + x10,2 + x10,3 + x10,4, z10,2 ≤ x10,2 + x10,3 + x10,4,z10,3 ≤ x10,3 + x10,4,

z10,4 ≤ x10,4
z1,1 ≤ z1,2 ≤ z1,3
z2,1 ≤ z2,2 ≤ z2,3
z3,1 ≤ z3,2 ≤ z3,3
z4,1 ≤ z4,2 ≤ z4,3
z5,1 ≤ z5,2 ≤ z5,3
z6,1 ≤ z6,2 ≤ z6,3
z7,1 ≤ z7,2 ≤ z7,3
z8,1 ≤ z8,2 ≤ z8,3
z9,1 ≤ z9,2 ≤ z9,3

z10,1 ≤ z10,2 ≤ z10,3
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Appendix A.8. Resource Requirements

w1,1 ≤ z1,1,w1,2 ≤ z1,2,w1,3 ≤ z1,3,w1,4 ≤ z1,4
w2,1 ≤ z2,1,w2,2 ≤ z2,2,w2,3 ≤ z2,3,w2,4 ≤ z2,4
w3,1 ≤ z3,1,w3,2 ≤ z3,2,w3,3 ≤ z3,3,w3,4 ≤ z3,4
w4,1 ≤ z4,1,w4,2 ≤ z4,2,w4,3 ≤ z4,3,w4,4 ≤ z4,4
w5,1 ≤ z5,1,w5,2 ≤ z5,2,w5,3 ≤ z5,3,w5,4 ≤ z5,4

w6,1 ≤ 2z6,1,w6,2 ≤ 2z6,2,w6,3 ≤ 2z6,3,w6,4 ≤ 2z6,4
w7,1 ≤ 8z7,1,w7,2 ≤ 8z7,2,w7,3 ≤ 8z7,3,w7,4 ≤ 8z7,4
w8,1 ≤ 2z8,1,w8,2 ≤ 2z8,2,w8,3 ≤ 2z8,3,w8,4 ≤ 2z8,4
w9,1 ≤ 2z9,1,w9,2 ≤ 2z9,2,w9,3 ≤ 2z9,3,w9,4 ≤ 2z9,4

w10,1 ≤ 3z10,1,w10,2 ≤ 3z10,2,w10,3 ≤ 3z10,3,w10,4 ≤ 3z10,4

Appendix A.9. Resource Consumption Constraints

w1,1 + w1,2 + w1,3 + w1,4 = 1
w2,1 + w2,2 + w2,3 + w2,4 = 1
w3,1 + w3,2 + w3,3 + w3,4 = 1
w4,1 + w4,2 + w4,3 + w4,4 = 1
w5,1 + w5,2 + w5,3 + w5,4 = 1
w6,1 + w6,2 + w6,3 + w6,4 = 2
w7,1 + w7,2 + w7,3 + w7,4 = 8
w8,1 + w8,2 + w8,3 + w8,4 = 2
w9,1 + w9,2 + w9,3 + w9,4 = 2

w10,1 + w10,2 + w10,3 + w10,4 = 3

Appendix A.10. Resource Limitations

The resource limitation constraints for each of the years of the planning horizon are as
follows, where year 4 does not have a constraint as it is limitless:

w1,1 + w2,1 + w3,1 + w4,1 + w5,1 + w6,1 + w7,1 + w8,1 + w9,1 + w10,1 ≤ 5
w1,2 + w2,2 + w3,2 + w4,2 + w5,2 + w6,2 + w7,2 + w8,2 + w9,2 + w10,2 ≤ 5
w1,3 + w2,3 + w3,3 + w4,3 + w5,3 + w6,3 + w7,3 + w8,3 + w9,3 + w10,3 ≤ 5

Appendix A.11. Precedence Constraints

z1,1 ≤ z5,1 z1,2 ≤ z5,2 z1,3 ≤ z5,3
z5,1 ≤ z8,1 z5,2 ≤ z8,2 z5,3 ≤ z8,3
z5,1 ≤ z7,1 z5,2 ≤ z7,2 z5,3 ≤ z7,3
z2,1 ≤ z7,1 z2,2 ≤ z7,2 z2,3 ≤ z7,3
z6,1 ≤ z7,1 z6,2 ≤ z7,2 z6,3 ≤ z7,3
z3,1 ≤ z6,1 z3,2 ≤ z6,2 z3,3 ≤ z6,3
z6,1 ≤ z9,1 z6,2 ≤ z9,2 z6,3 ≤ z9,3

As can be seen, even for such a small problem, the formulation is quite complicated
and non-linear.
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Abstract: Manufacturing scheduling aims to optimize one or more performance measures by al-
locating a set of resources to a set of jobs or tasks over a given period of time. It is an area that
considers a very important decision-making process for manufacturing and production systems.
In this paper, the unrelated parallel machine scheduling problem with machine-dependent and
job-sequence-dependent setup times is addressed. This problem involves the scheduling of tasks on
unrelated machines with setup times in order to minimize the makespan. The genetic algorithm is
used to solve small and large instances of this problem when processing and setup times are balanced
(Balanced problems), when processing times are dominant (Dominant P problems), and when setup
times are dominant (Dominant S problems). For small instances, most of the values achieved the
optimal makespan value, and, when compared to the metaheuristic ant colony optimization (ACOII)
algorithm referred to in the literature, it was found that there were no significant differences between
the two methods. However, in terms of large instances, there were significant differences between the
optimal makespan obtained by the two methods, revealing overall better performance by the genetic
algorithm for Dominant S and Dominant P problems.

Keywords: scheduling; unrelated parallel machines; sequence-dependent tasks; makespan;
metaheuristics; genetic algorithm; statistical analysis

MSC: 90B36; 90C59; 90C27; 62P30; 68M20; 68Q25

1. Introduction

In the current 4th Industrial Revolution scenario, and with the underlying gradual
transition of the use of exponential technologies and high-performance computing, com-
panies, namely industrial ones, must be aware of the need to be able to progressively
update their decision support tools, for instance, regarding manufacturing scheduling
decision-making.

Thus, for an industrial company to remain successful and competitive, it is necessary
to use effective and efficient methods and optimization algorithms, along with optimized
production processes, in order to differentiate itself in the current global market. In this
sense, the manufacturing scheduling decision support systems and underlying algorithms
continue to play a crucial role by enabling manufacturing companies to obtain best-suited
manufacturing schedules while avoiding unnecessary order cancellations or delays as well
as the best use of production resources and costs; this has been a major concern of many
researchers over the last decades.

Production management in an industrial environment faces several challenges due to
dynamic changes in production and market volatility. Companies are increasingly looking
to shorten delivery times as an economic measure due to increased competitiveness in
emerging markets [1]. Industrial problems such as scheduling jobs or tasks are affected by
customer requirements due to the variety of orders and speed of delivery [1,2].
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Manufacturing scheduling is, therefore, a well-studied subject area and is considered
a very important decision-making process for manufacturing and production systems. It
aims to optimize one or more performance measures by allocating a set of resources to a set
of jobs or tasks over a certain period of time [2].

Scheduling problems occur in different kinds of manufacturing environments, varying
from a single stage of operation to multi-stage ones. In parallel machine scheduling prob-
lems, there is a need to assign tasks to machines coupled with sequencing problems. The
scheduling problems in parallel machine environments have been the object of many stud-
ies in the last decades. However, cases on unrelated parallel machines are less investigated,
especially when setup times are used [3–7].

Parallel machines are considered unrelated when the processing times of tasks depend
on the machines to which they are assigned and when there is no relationship between the
speeds of the machines [5]. The setup times are dependent since their values depend on
both the work sequence and the configuration time matrix of each machine.

Many authors have considered the use of algorithms, heuristics, and metaheuristics
to solve scheduling problems on unrelated parallel machines [3,6,8,9], although not all
proposed approaches and underlying algorithms are equally effective and efficient in pro-
viding scheduling solutions. Yang et al. in 2022 [10] proposed an elite learning differential
particle swarm optimization (DELPSO) in order to improve particle swarm optimization
(PSO) for large problems. For this, two examples of guidance were applied to direct the
update of each particle. The authors verified that the proposed model obtained better
results when compared to the PSO. In another paper [11], a new approach was applied in
order to improve the performance of multi-objective particle swarm optimizers (MOPSOs).
The strategy used is called hybrid global leader selection (HGLSS), where Pareto dominance
and density estimation are analyzed to verify the effectiveness of the proposed model. For
this, the performance of the proposed approach was compared with nine multi-objective
metaheuristics in solving several benchmark problems. The results showed an overcoming
of the proposed algorithm in terms of the modified inverted generational distance indicator.
The authors, Das and Suganthan [12], presented a literature review on the evolutionary
algorithm (EA). In addition, an overview of works carried out on differential evolution (DE)
was conducted, where subjects such as variants, multi-objective applications, constrained
optimization problems, and theoretical studies of DE were addressed. Finally, engineering
applications in which DE was applied were presented. In Pan et al. [13], a differential
evolution (DE) algorithm was presented to solve a permutation flow shop scheduling
problem in order to minimize the makespan. DE is a traditional continuous algorithm, and
the lowest position value rule was presented in order to convert the continuous vector to a
discrete work permutation.

This paper focuses on single-stage scheduling problems occurring in parallel machine
environments. It is intended to evaluate the behavior of the genetic algorithm (GA) when
applied to the scheduling problem of unrelated parallel machines in order to minimize
the makespan of a set of tasks subject to varying setup times. A set of small and large
instances of this problem will be used to assess the GA performance when compared to
the solutions obtained by the metaheuristic ant colony optimization (ACOII) [8,9]. Then,
statistical analysis of these two metaheuristics is performed.

In order to properly put forward the main contributions of this work, this paper is
organized as follows. In the second section, a summarized introduction to manufacturing
scheduling is provided. In Section 3, the unrelated parallel machine scheduling problem is
briefly described. Section 4 presents the guidelines for the computational study to be carried
out, the metaheuristic GA, and some implementation details. In Section 5, a comparative
statistical analysis of the metaheuristics GA and ACOII is performed for small and large
instances of scheduling problems, and the main conclusions and planned future work are
summarized in Section 6.
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2. Manufacturing Scheduling

2.1. General Overview

Scheduling plays a very important role in the decision-making process to be carried out
in different decision-making environments, from manufacturing to information processing,
transportation, and distribution, among other kinds of services [2]. In manufacturing,
scheduling problems vary from single-stage or operations problems, occurring in single or
parallel machine environments, up to multi-stage or operation ones, typically occurring in
flow shop (FSP), job shop (JSP), or open shop scheduling problems (OSPs), to mention some
of the most well-known [2]. The multi-stage scheduling problems tend to be more complex
than the single-stage ones; for instance, FSPs have some complicated variants, namely,
considering energy issues and material handling assumptions or stochastic data [14,15].

Manufacturing scheduling implies the allocation of jobs or tasks to resources or vice
versa, its sequencing or order in time for being processed, along with the definition of the
initial and final processing times for each job or task in a given resource, made available
through a given manufacturing environment [16].

In [17], Brucker points out that the scheduling of a production system is dependent on
several factors, such as manufacturing orders, available resources, available machines, and
the operations to be performed by each one, and there may be processing times that are
different from one machine to another one while satisfying and/or optimizing a single or
complex performance measure or criteria.

The programming of parallel machines has been a growing research area since the
first works carried out in the early 20th century [18]. This type of problem has, since
then, received continuous interest from researchers due to its relevance to manufacturing
environments [3,7–9].

Manufacturing scheduling to optimize configurations, either directly or indirectly,
has been an important issue for different types of industries, including plastic, textile, and
chemical industries, as well as for some service areas [3,7,9,19–25].

Allahverdi, in [26], presents a review of scheduling problems. In his work, the schedul-
ing problems are further classified based on the underlying production environment as a
single machine, parallel machines, flow shop, job shop, or open shop. It also classifies them
according to the consideration and processing of information regarding their inclusion in
family sets, besides the characterization of sequence-dependent jobs/tasks or machine con-
figurations, which also affects production times and/or costs, among other characterization
parameters that are also further explored in other publications, such as [3,21,22].

Thus, scheduling requires decisions about jobs/tasks and processing resources. The
sequencing corresponds to a permutation of jobs/tasks or the order in which they might be
processed on each resource or machine. On the other hand, the allocation of resources or
machines refers to the choice of which one will process each job or task [27]. The scheduling
problem aims to assign tasks to machines and define the periods that each task is processed
on each machine in order to minimize and/or maximize an optimization criterion, usually
expressed in the form of an objective function intended to be optimized [11].

The Brucker classification system, in [17], uses the nomenclature α|β|γ, initially intro-
duced by [28]. In this nomenclature, the α represents the scheduling classification factors
related to the manufacturing environment, which usually include the type of manufactur-
ing system and the number of machines. The manufacturing environment can range from a
simple one, such as a single machine, up to more complex ones, occurring in flow shop, job
shop, and open shop environments or flexible manufacturing environments, besides other
kinds of manufacturing systems, for instance, taking place in different types of parallel
machine environments. These manufacturing environments can have different complexity
levels, not just according to the nature of the manufacturing systems’ configuration and
the underlying production flows themselves but further to other, additional characteristics,
about a more or less widened set of conditions and constraints imposed in the schedul-
ing problem, expressed by a corresponding β set of factors in the problem classification
nomenclature. Moreover, a simple or combined set of performance measures can also be
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considered and expressed through the γ factor. Since its introduction, this notation has
been used and reformulated by several authors, and many classifications have been added
as other problems arise [22].

2.2. Scheduling Assumptions

The scheduling problem studied in this work occurs in a parallel-machines scheduling
environment, where the processing times of the task are expressed through a task-machine
tuple, which varies from one machine to another for processing a given task [29,30].

In scheduling problems arising in manufacturing environments, frequently, multiple
machines are available for processing a set of tasks, and the processing times are often even
more dependent on task sequences. Thus, there is a sequence-dependent setup time (Si,j,k)
whenever, after processing task j, preparation time Si,j,k is required before processing task k.
Moreover, when these times are also dependent on the machines, index i is added [31–33].

The scheduling problem considers a set of tasks with setup times that are dependent
on the machine used and sequence-dependent on the unrelated parallel machines set,
with the goal of minimizing the maximum completion time or makespan. In scheduling
theory, the makespan (Cmax) is defined as the completion time of the final task of a job to
be processed (when the job leaves the system). The scheduling problem is thus based on
a set of N tasks that must be processed on a machine from a set of M unrelated parallel
machines (RM). The processing time of the tasks depends on the assigned machine, and
there is no relationship between these machines as they are unrelated. The setup times are
machine- and task-sequence-dependent (Si,j,k). Each machine has its setup time matrix,
and each matrix is different from the others for the remaining unrelated parallel machines.

The problem studied in this work is classified in the literature as RM|Si,j,k|Cmax.
Minimizing the makespan of a scheduling problem with identical parallel machines and
sequence-dependent setup times is categorized as NP-hard. Therefore, the most complex
problem of unrelated parallel machines is also considered NP-hard.

2.3. Review about Scheduling Sequence-Dependent Setups in Unrelated Parallel Machines

The scheduling problem occurring in unrelated parallel machines for processing
sequence-dependent setup times is quite important as it can be found in several areas such
as the electronics, steel, and textile industries [34–37].

Kim et al. [35] used the simulated annealing (SA) algorithm to solve a scheduling
problem in the electronics industry. In their work, it was possible to conclude that the
proposed SA method significantly outperformed a neighborhood search method regarding
the total delay of jobs or tasks.

Tang and Wang [36] formulated a scheduling problem for the steel industry as a
mixed nonlinear program and proposed the Tabu search (TS) heuristic to obtain satisfactory
solutions. The results showed that their model and heuristic performed more efficiently
and effectively than other manual planning approaches.

In the textile industry, Gendreau, Laporte, and Guimarães [34] applied a heuristic to
the multiprocessor scheduling problem with sequence-dependent setup times; their results
showed that their heuristic was faster than a TS-based one but, at the same time, provided
solutions of almost similar quality.

Thus, the complexity of the scheduling problem of unrelated parallel machines has
led to increased interest in heuristic procedures to find solutions in a reasonable time
interval. Kim and Chen [38] proposed four research heuristics for the aforementioned
problem. According to the authors, these heuristics can be easily applied to obtain practical
production scheduling solutions. Ghirardi and Potts [39] also studied the problem of
unrelated parallel machines for minimizing the makespan; the underlying heuristic used
was an application of the recovering beam search technique. The computational results
allowed them to generate approximate solutions for large instances of problems (up to
50 machines and 1000 jobs) in just a few minutes.
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Another heuristic, called Meta-RaPS, was introduced by Rabadi, Moraga, and Al-
Salem [7] to minimize the makespan in unrelated parallel machine problems with sequence-
dependent setup times. The performance of the proposed heuristic was evaluated by
comparing its solutions with those obtained by other existing heuristics for the same prob-
lem. The results showed that the Meta-RaPS found optimal solutions for small problems
and performed better than other existing heuristics for larger problems.

For the same problem and makespan objective function, Arnaout et al. [8] introduced
the ant colony optimization (ACO) approach. To evaluate the performance of the ACO, the
authors compared their solutions with the ones obtained by other heuristics, for example,
solutions based on Tabu search and a partitioning heuristic with those obtained by Meta-
RaPS [7]. They concluded that the ACO outperformed the other algorithms.

Arnaout et al. [9] also proposed an improved ACO algorithm (ACOII) and mentioned
achieving better performance than the previous version; further, the algorithm had the
ability to solve more difficult combinatorial optimization problems by partitioning them
into subproblems.

The minimization of the makespan is one of the most studied criterion in the produc-
tion scheduling literature, whether in parallel or single machines. For example, Woo, Jung,
and Kim, in [23], developed a mixed-integer linear programming (MILP) model to find the
optimal solution to the scheduling problem in unrelated parallel machines with the aim of
minimizing the makespan. They proposed a new rule based on a genetic algorithm with a
chromosome that represents the sequence of assignment of jobs or tasks to a machine, with
the scheduling of jobs/tasks for each machine being determined by a heuristic based on
completion time during the chromosome decoding process.

Considering that the setup times are dependent on the work sequence, the authors
of [6] presented a GA for minimizing the makespan when solving scheduling problems in
unrelated parallel machines. Their GA algorithm was further compared with other algo-
rithms found in the literature, and they concluded that their proposed GA outperformed
existing ones.

More recently, the scheduling of unrelated parallel machines for green manufacturing
purposes, with resource constraints, was proposed by Zheng and Wang [40]. This work
aimed at minimizing the makespan and total carbon emissions; to solve the problem, a
collaborative multi-objective fruit fly optimization algorithm (CMFOA) was proposed. The
results showed that their multi-objective algorithm was able to obtain more and better
non-dominated solutions than other existing algorithms in comparison.

Aydilek et al. [41] addressed a scheduling problem to minimize order delays, in
which the setup times were independent of the processing times, through the application
of algorithms of self-adaptive differential evolution and hybrid and simulated insertion
algorithms. A scheduling problem with different approaches to setup times, aiming to
minimize the makespan with the application of an enhanced version of the ACO algorithm,
was studied in [24,25].

Abreu and Prata [42] presented a hybrid GA for solving the unrelated parallel ma-
chine scheduling problem with sequence-dependent setup times. A case study on the
granite industry is presented, and the proposed approach outperformed three traditional
dispatch rules presented in the current literature. Gedik et al. in [43] studied the non-
preemptive unrelated parallel machine scheduling problem with job/task-sequence- and
machine-dependent setup times in order to minimize the makespan. Their study provided
a novel constraint programming (CP) model with two customized branching strategies
that used CP’s global constraints, interval decision variables, and domain filtering algo-
rithms. According to the authors, in terms of average solution quality, the computational
results indicated that their CP model slightly outperformed their analyzed contributions
from state-of-art algorithms in solving small problem instances and was able to prove the
optimality of 283 currently best-known solutions. It is also mentioned to be effective in
finding good quality feasible solutions for larger problem instances. Fanjul-Peyro et al.
in [44] studied the same problem with the same objective function, but they modeled the
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problem by means of two integer linear programming problems. One was based on a
model previously proposed in the literature, and the other was based on packing problems.
According to the authors, since their models were unable to solve medium-sized instances
to optimality, they proposed three other metaheuristics for each of these two models. Their
results showed that the proposed metaheuristics significantly outperformed the mathemati-
cal models. Recently, in [45], Arnaout addressed the unrelated parallel machine scheduling
problem with setup times when minimizing the makespan through a worm optimization
(WO) algorithm. The performance of the WO algorithm was evaluated by comparing its
solutions to solutions of six other known metaheuristics.

Considering the previously presented literature review, most of the research addressed
the scheduling problem with different objective functions and algorithm applications in
different contexts and industrial environments.

The work underlying this paper was motivated by the work carried out by Arnaout et al. [9],
where a comparison was made with the solutions obtained by the Meta-RaPS metaheuris-
tic [46]. Based on data for small and large problem instances, this paper aims to propose a
genetic algorithm for solving unrelated parallel machine scheduling problems with setup
times for minimizing the makespan, Cmax. Moreover, in this study, we intend to present
an extended evaluation of the behavior of the GA when solving different types of case
studies (small and large instances) of unrelated parallel machine scheduling problems with
setup times.

3. The Scheduling Problem

This paper addresses the unrelated parallel machine scheduling problem considering
the scheduling of N tasks that are available at time zero on M unrelated machines (RM). The
objective function is the makespan Cmax, considering machine-dependent and sequence-
dependent setup times Si,j,k. This problem is classified in the literature as RM|Si,j,k|Cmax,
which is a generalization of the PM||Cmax problem of identical speeds for processing a
set of tasks on the machines [2,47]. The unrelated parallel machine scheduling problem is
known to be NP-hard [2] and can be formulated as a mixed-integer linear programming
(MILP) model.

In the following, the problem assumptions are described:

• M is the number of parallel machines;
• N denotes the number of tasks to be scheduled;
• Each machine can only process one task at a time without preemption;
• For the initial time instant, which is at time zero, all tasks are available. No restrictions

of precedence are imposed among tasks;
• For each machine i, each task j has a processing time, pi,j;
• For each machine i, for processing tasks j just after tasks k, there is a setup time, Si,j,k.

The setup time is different for each machine;
• The objective is to minimize the makespan Cmax. The term span is used to define the

completion time of a machine, while the term makespan is used for the maximum
span in the solution of the problem.

The mathematical programming model of the considered problem is presented below,
which consists of finding an optimal solution to schedule a set of jobs or tasks in a set of
unrelated parallel machines regarding the existence of sequence-dependent setup times,
a similar model to the one used by Guinet in [8,48]. This MILP model includes binary
variables (xi,j,k ∈ {0, 1}) indicating the assignment of tasks to machines and continuous
variables denoting the completion times of tasks (Cj ≥ 0 and Cmax ≥ 0).

Min Cmax (1)
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subject to
N

∑
i=0
i 
=j

M

∑
k=1

xi,j,k = 1, ∀j = 1, . . . , N (2)

N

∑
i=0
i 
=j

xi,h,k −
N

∑
j=0
j 
=h

xh,j,k = 0, ∀h = 1, . . . , N, ∀k = 1, . . . , M (3)

Cj ≥ Ci +
M

∑
k=1

xi,j,k

(
Si,j,k + pj,k

)
+ HV

(
M

∑
k=1

xi,j,k − 1

)
, ∀i = 0, . . . , N, ∀j = 1, . . . , N (4)

N

∑
j=0

x0,j,k = 1, ∀k = 1, . . . , M (5)

Cj ≤ Cmax, ∀j = 1, . . . , N (6)

xi,j,k ∈ {0, 1}, ∀i = 1, . . . , N, ∀j = 1, . . . , N, ∀k = 1, . . . , M (7)

C0 = 0 (8)

Cj ≥ 0, ∀j = 1, . . . , N (9)

where

Cj: maximum completion time of task j;
pj,i: processing time of task j in machine i;
Si,j,k: setup time dependent on the processing sequence of task j after task k in machine i;
S0,j,i: setup time for processing first task j on machine i;
xk,j,i: 1 if task j is processed immediately after task k in machine i, and 0 otherwise;
x0,j,i: 1 if task j is the first one to be processed in machine i, and 0 otherwise;
xj,0,i: 1 if task j is the last task to be processed in machine i, and 0 otherwise;
HV: a large positive number (usually denoted by a capital M).

The objective function (1) intends to minimize the makespan, where Cmax is the length
of time that elapses from the start of jobs to the end of the last job. Constraints (2) ensure that
each task is only scheduled once and processed by a single machine. Constraints (3) ensure
that each task must not be preceded or succeeded by more than one task. Constraint (4)
calculates the completion time and ensures that no task precedes or succeeds the same
task. Constraint (5) ensures that only one task can be scheduled first on each machine.
There is no need for additional constraints to ensure that only one task is scheduled last
on each machine because Constraints (5) and (3) guarantee this. Constraints (6) express
the makespan Cmax as a variable that must be larger than any other job’s completion time.
Constraints (7) guarantee that the decision variable x is binary in all domains. Constraint (8)
states that the completion time for dummy work is zero, and Constraint (9) ensures that the
completion time is non-negative. Solving the scheduling problem described above enables
optimal solutions to be obtained.

4. Computational Study

This section presents the way that this computational study will be conducted. Firstly,
the scheduling data description will be presented. Then, the genetic algorithm will be
briefly described, followed by the implementation details considered to achieve the goals
of the research.

4.1. Scheduling Data Description

The data available on the Scheduling Research Virtual Center page (available on-
line: https://sites.wp.odu.edu/schedulingresearch/wp-content/uploads/sites/99/201
6/01/Rm-Cmax-ACO-Arnaout-2014.xlsx (accessed on 10 May 2021) [49] were used for
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comparison with the GA. This work is divided into two large groups: first, a comparative
analysis of the solutions obtained by GA for small problems, and then, a statistical analysis
of the solutions obtained with large problems.

The M and N values define the dimension of the problem in terms of the number
of machines and tasks: small problems for some combinations of M in {2, 4, 6, 8}, and
N in {6, 7, 8, 9, 10, 11} were considered, and large problems were defined for some
combinations of M in {2, 4, 6, 8, 10, 12} and N in {20, 40, 60, 80, 100, 120}.

For each combination of the number of machines and tasks, there are 15 instances of
problems. The study was carried out for three types of small and large problems: Balanced
(when processing and setup times are balanced), Dominant P (when processing times are
dominant), and Dominant S (when setup times are dominant).

4.2. Implementation Details

In this work, the implementation of the genetic algorithm [50–52] to solve the unre-
lated parallel machine scheduling problem with machine-dependent and job-sequence-
dependent setup times is addressed. The ga function from MATLAB®, which implements
the genetic algorithm, was used to solve this combinatorial problem. However, an imple-
mentation of a permutation to represent the solutions was previously defined in order
to use the ga function. GA works with a population of chromosomes that represent the
potential solution of the optimization problem and is adequate to tackle combinatorial
problems since the constraints can be handled by permutation representations. For this
scheduling problem, a solution is represented by a chromosome (a sequence of genes) that
is a permutation of size N + M− 1. In this representation, a solution is a sequence of integer
values that can occur only once. In a chromosome, the permutation values that are superior
to N divide the chromosome into M subsequences that indicate the tasks and the corre-
sponding order assigned to each machine. The genetic operators implemented to guarantee
the feasibility of the solutions during the search were the order-based crossover and swap
mutation. In the order-based crossover, the genetic material between two chromosomes
is combined in order to generate offspring. Two random positions are selected, and the
genes between them are swapped. Then, the remaining empty positions are filled with the
other parent’s genes while preventing repetitions. In the swap mutation, two positions are
generated at random, and the genes in a chromosome are swapped. A stochastic uniform
selection operator was used to select chromosomes for the application of genetic operators.

The population size and the maximum number of generations of GA were set to
50 (default value) and 15,000, respectively. The crossover fraction was 0.8, i.e., each genera-
tion of the order-based crossover was applied to 80% of the population. The swap mutation
was applied to the same fraction of the population. GA parameter values were chosen,
taking into account the ACOII parameter values used in [9] in order to guarantee a fair
performance comparison between the algorithms. Due to the stochastic nature of the GA,
30 independent runs were performed; the value of MaxStallGenerations was 1000. The case
studies were run in the MatLab® R2021a using a 11th Gen Intel(R) Core(TM) i7-1165G7 @
2.80 GHz 2.80 GHz.

After obtaining the results using GA, the pandas and scipy.stats libraries [53,54] for
Python version 3.8 were used to perform the statistical analysis.

Firstly, data were imported using the pandas’ library by applying the read_csv function.
Then, the function groupby was performed to identify the minimum value of the makespan,
considering the same number of machines, tasks, and instances.

Thereafter, the library scipy.stats was used to implement the shapiro, ttest_rel and
wilcoxon functions to evaluate if data followed a normal distribution and to apply a para-
metric t-test and non-parametric Wilcoxon test for the related samples, respectively.

In the case of data following a normal distribution, a t-test was considered to compare
the metaheuristics GA and ACOII; otherwise, the Wilcoxon test was performed. After
identifying the combinations of M and N values where there are differences between
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the two methods, the confidence interval for paired samples was computed, taking into
consideration Equation (10) [55].

d− t(n−1; α
2 )
× sd√

n
< μd < d + t(n−1; α

2 )
× sd√

n
(10)

First, the differences between the makespan of ACOII and GA must be performed,
defined as d. Moreover, d and sd are the mean and standard deviation values of d, respec-
tively. Furthermore, t is a quantile from the t-Student distribution, where n is the number
of observations and α is the level of significance.

In order to visualize the obtained results, the seaborn library [56] was implemented
to display the boxplot graphs using the boxplot function. Boxplots allow us to compare
the distribution of the makespan values obtained by each algorithm for the different
combinations of M and N.

5. Comparative Statistical Analysis

In this section, comparative statistical analysis is performed considering the makespan
and the execution time obtained by the metaheuristics GA and ACOII when solving small
and large instances arising in the scheduling problem on unrelated parallel machines with
sequence-dependent setup times.

5.1. Small Problems

The comparison between both algorithms, GA and ACOII, was made considering the
performance measures given by Equations (11) and (12) to identify which method achieved
better results for small and large problems.

γ =
Cmax(Algorithm)− Cmax(Optimal)

Cmax(Optimal)
(11)

δ =
Cmax(ACOII)− Cmax(GA)

Cmax(GA)
(12)

For the small instances, the optimal values are known when M = 2 and
N ∈ {6, 7, 8, 9}, M = 4 and N ∈ {6, 7, 8}, and M = 6 and N = 8. Note that if the
GA method, in the small instances, achieves the optimal value, then γ must be equal to
zero. If γ is positive, it means that the proposed method achieved a worse value (greater
value in terms of minimization) than the optimal value; otherwise, a better value was found
(smaller). In terms of δ values, if it is positive, then GA achieved better results than ACOII;
otherwise, ACOII achieved better results than GA.

Table 1 presents the average values of γ for the small instances where the optimal
value is known. According to the results, in most of them, GA found the optimal value,
except for the Dominant S (M = 4, N = 7) and Dominant P problems (M = 4, N = 6).
For this Dominant S problem, the γ value is positive (γ = 0.0005), which means the result
achieved is close to the optimal value. Furthermore, in the Dominant P problem, the
γ value is negative (γ = −0.00034); thus, a better result than the optimal known value
is found.

The δ values for the two algorithms are presented in Table 2 for Balanced, Dominant
S, and Dominant P problems. In the Balanced instances, there are three cases where GA
achieved better results (δ > 0) and one case where ACOII had a better result (δ < 0). In
terms of Dominant S instances, there are three cases where GA had better results than ACOII
and two cases where ACOII achieved better results than GA. Finally, in the Dominant
P instances, there are also three cases where GA had the best performance and one case
where ACOII performed better than GA. Overall, the GA method achieved better results
when compared to ACOII, although these are very small differences.
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Table 1. Average γ deviation from optimal solutions for small problems.

Balanced Dominant S Dominant P
M N ACOII GA ACOII GA ACOII GA

2

6 0 0 0 0 0 0
7 0 0 0 0 0 0
8 0 0 0 0 0 0
9 0 0 0 0 0 0

4
6 0 0 0 0 0 −0.00034
7 0 0 0 0.0005 0 0
8 0 0 0 0 0 0

6 8 0 0 NA NA NA NA

Table 2. Average δ deviation from GA for small problems.

M N Balanced Dominant S Dominant P

2
10 0 −0.00026 −0.00026
11 0.000469 0 0

4

6 0 0 0.000336
7 0 −0.0005 0
9 0 0.000117 0.00282

11 −0.00055 0.000112 0

6
10 0.000271 0 0
11 0.001328 0 0.000167

8 11 0 0.000351 0

Hypothesis testing has been used to test if there are statistically significant differ-
ences between the two methods (GA and ACOII). Parametric tests were first considered.
Therefore, the underlying assumptions were tested, namely, the normality of data. If so,
then the parametric t-test for comparing the means of two related samples was computed.
Otherwise, a non-parametric Wilcoxon test was used. The hypotheses to be tested are:

H0: There are no differences between the GA and ACOII results.

H1: There are differences between the GA and ACOII results.

Considering the level of significance as 5%, if the p-value is greater than 0.05, it means
that the null hypothesis (H0) is not rejected. Otherwise, it is rejected.

For the small instances, the hypothesis test was performed for M and N values that
presented some differences between the GA and ACOII methods (see Table 2). The p-values
and the 95% confidence intervals (CI) are shown in Table 3. According to the results
achieved, all the p-values were greater than 0.05, considering a significance level of 5%.
Thus, the null hypothesis (H0) is not rejected, and consequently, there are no statistically
significant differences between GA and ACOII results for small instances. The same
conclusion can be drawn using the confidence interval since the value zero belongs to all
confidence intervals. In other words, the mean difference between the average δ deviations
obtained for GA and ACOII can be equal to zero.

Table 4 shows the average execution times, in seconds, for each type of small instance,
where the time increases as the number of concurrent machines and the number of tasks
increase. It is possible to observe that for the Dominant P problems, a higher average
execution time is required when the number of machines is 8. On the contrary, for the
Dominant S problems, the lowest average execution time is observed for the number of
machines equal to 2.
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Table 3. Hypothesis test p-values and 95% confidence intervals for small problems.

Balanced Dominant S Dominant P
M N p-Value CI p-Value CI p-Value CI

2
10 - - 0.334 [−0.305;0.839] 0.334 [−0.305;0.839]
11 0.334 [−1.048;0.382] - - - -

4

6 - - - - 0.334 [−0.419;0.153]
7 - - 0.334 [−0.229;0.629] - -
9 - - 0.334 [0.210;0.076] 0.334 [−5.032;1.832]
11 0.334 [−0.229;0.629] 0.334 [−0.210;0.076] - -

6
10 0.317 [−0.210;0.076] - - - -
11 0.461 [−1.078;0.412] - - 0.751 [−0.509;0.376]

8 11 - - 0.334 [0.419;0.153] - -

Table 4. Average GA execution time for Balanced, Dominant P, and Dominant S for small problems.

Number of Tasks (N)

6 7 8 9 10 11

Number of
Machines (M)

Balanced

2 11.44 11.76 12.03 12.34 12.71 12.79
4 13.60 14.16 14.38 14.33 14.85 15.02
6 - - 15.16 15.77 16.13 15.85
8 - - - - 16.20 16.63

Dominant P

2 10.97 11.11 11.39 12.24 12.54 12.66
4 13.64 14.15 13.79 13.67 14.00 14.42
6 - - 14.77 15.88 16.19 16.32
8 - - - - 17.13 17.61

Dominant S

2 11.34 11.81 12.01 11.35 11.69 12.33
4 12.99 13.89 14.29 14.46 14.77 14.95
6 - - 14.54 15.37 15.01 15.13
8 - - - - 16.54 16.83

5.2. Large Problems

The same analysis was reproduced for large problems to compare GA and ACOII
performances. The computed values for the average makespan deviation from GA (δ) are
presented in Table 5. For the Balanced instances, negative values were obtained for all
instances, which means that the ACOII method has better performance than GA. However,
GA has better results in Dominant P and Dominant S instances, even though ACOII
presents better results in Dominant P instances when the number of machines is equal to
12 and in Dominant S instances when M = 12 and N = 40.

Parametric and non-parametric tests were applied to statistically prove if there are
significant differences between the average δ deviations achieved by the GA and ACOII
algorithms for large instances. The hypotheses to be tested were the same as the ones
previously defined for small instances. In terms of results, all p-values were less than
0.05; therefore, for the large instances, the null hypothesis is rejected, and it is possible to
conclude that there are significant differences between GA and ACOII results considering
the significance level of 5%. Furthermore, it is also possible to conclude that there are
significant differences between the two algorithms for the significance level of 0.1% since
all p-values are less than 0.001.

The next step was to compute the mean and median Cmax values for each algorithm to
identify which one achieved better results. For example, considering M = 12 and N = 40,
in Dominant S instances, the mean values were 748.33 and 737.60, and the median values
were 749.00 and 739.00 for GA and ACOII, respectively. Thereby, in this case, ACOII
performed better than GA since it achieved lower mean and median Cmax values. This
analysis was conducted for all combinations of M and N. Overall, for Balanced instances,
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the ACOII results were significantly better than the GA results. On the other hand, for
the Dominant P and Dominant S instances, the GA algorithm obtained better results than
ACOII, except when M = 12 and N = 40 for Dominant S and M = 12 for Dominant P,
where ACOII achieved better results.

Table 5. Average δ deviation from GA for large problems.

M N Balanced Dominant S Dominant P

2

20 −0.0052 0.6010 0.5968
40 −0.0243 0.5839 0.5875
60 −0.0312 0.5801 0.5823
80 −0.0352 0.5771 0.5801

100 −0.0374 0.5902 0.5929
120 −0.0363 0.5883 0.5901

4

20 −0.0086 0.6038 0.5942
40 −0.0281 0.6017 0.6017
60 −0.0418 0.5909 0.5842
80 −0.0456 0.5810 0.5783

100 −0.0497 0.5803 0.5815
120 −0.0544 0.5708 0.5755

6

20 −0.0064 0.6628 0.6659
40 −0.0308 0.6185 0.6004
60 −0.0499 0.5681 0.5698
80 −0.0484 0.5864 0.5849

100 −0.0663 0.5740 0.5666
120 −0.0767 0.5463 0.5484

8

20 −0.0053 0.6594 0.6558
40 −0.0491 0.5694 0.5703
60 −0.0502 0.5904 0.5930
80 −0.0764 0.5326 0.5282

100 −0.0763 0.5577 0.5647
120 −0.0978 0.5245 0.5113

10

20 −0.0192 0.6055 0.6072
40 −0.0388 0.5704 0.5653
60 −0.0723 0.5109 0.5082
80 −0.0996 0.4983 0.4919

100 −0.0996 0.5036 0.4976
120 −0.1067 0.4945 0.5001

12

20 −0.0198 0.6008 −0.0187
40 −0.0323 −0.0143 −0.0126
60 −0.0917 0.4929 −0.0418
80 −0.0924 0.5278 −0.0503

100 −0.0905 0.5271 −0.0424
120 −0.1261 0.4602 −0.0817

For a better understanding of the performance of the algorithms, boxplots showing
the makespan (Cmax) distribution in terms of N for different values of M are depicted in
Figures 1–3 for Balanced, Dominant S, and Dominant P instances, respectively. Using this
visualization, it is more perceptible that when the problem becomes more complex (that is,
the number of tasks increases), the makespan value also increases. It can also be concluded
that most of the GA results are better than the ACOII method.

In Table 6, the average execution time, in seconds, for the genetic algorithm when
solving Balanced, Dominant P, and Dominant S large problems is presented. It can be
seen that as the number of tasks increases for each number of concurrent machines, the
execution time also increases. The lowest average execution time value is observed for
problems with six machines. Conversely, the highest average execution time value is
obtained for problems with four concurrent machines. It is also observed that the highest
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average execution time occurred for the Balanced problem with M = 2 and N = 120. For
the Dominant P problem with M = 2 and N = 20, the shortest average execution time
was obtained.

Figure 1. Makespan boxplot for Balanced large problems for (a) M = 2; (b) M = 4; (c) M = 6;
(d) M = 8; (e) M = 10; (f) M = 12.
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Figure 2. Makespan boxplot for Dominant P large problems for (a) M = 2; (b) M = 4; (c) M = 6;
(d) M = 8; (e) M = 10; (f) M = 12.
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Figure 3. Makespan boxplot for Dominant S large problems for (a) M = 2; (b) M = 4; (c) M = 6;
(d) M = 8; (e) M = 10; (f) M = 12.
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Table 6. Average GA execution time for Balanced, Dominant P, and Dominant S for large problems.

Number of Tasks (N)

20 40 60 80 100 120

Number of
Machines (M)

Balanced

2 19.95 29.97 37.06 63.74 81.56 110.90
4 22.24 35.65 50.56 60.74 85.44 94.31
6 25.11 33.63 45.22 53.70 73.65 86.47
8 26.74 35.38 41.47 50.82 60.51 71.67

10 31.36 39.80 47.78 60.42 71.74 83.71
12 31.20 40.78 50.03 53.02 61.63 69.19

Dominant P

2 14.74 21.25 31.71 44.08 61.96 84.73
4 16.93 23.22 30.66 41.56 51.82 65.73
6 17.85 24.70 30.51 37.91 46.17 59.19
8 25.12 33.38 42.34 50.66 59.03 70.64

10 30.72 38.78 46.42 54.00 63.82 73.47
12 32.47 40.64 49.22 57.69 65.36 73.28

Dominant S

2 14.84 20.96 32.30 45.63 60.52 84.44
4 17.17 23.37 32.06 42.02 49.55 64.90
6 18.56 24.53 30.68 36.99 45.52 54.41
8 24.99 33.62 41.27 49.82 57.57 67.14

10 28.80 39.37 48.03 52.45 59.35 69.27
12 31.11 36.81 44.94 51.85 59.18 64.69

6. Conclusions

Decision support systems are a much-needed factor for industries worldwide. For
this, raw material production scheduling and mathematical algorithms are widely used
methods to help companies make the best decisions. These decisions avoid unnecessary
order cancellations or delays and help to better manage product production costs. In
parallel machine scheduling problems, there is a need to assign tasks to machines, along
with sequencing problems. In this article, a scheduling problem was developed in an
environment of unrelated parallel machines. The machines are considered unrelated when
the processing times of tasks depend on the machines to which they are assigned and when
there is no relationship between the speeds of the machines. Two types of problems were
applied, small and large problems (Balanced, Dominant S, and Dominant P), using the
genetic algorithm to minimize the makespan.

In terms of small problems, in general, the proposed approach obtained good results in
terms of the makespan, achieving the known optimal value. For Dominant S (M = 4, N = 7)
and Dominant P (M = 4, N = 6) problems, the optimal solution was not found, despite
the makespan of the solutions found being very close to the optimal value. Moreover, a
new comparison was made with the ACOII method, and there are nine values where the
genetic algorithm achieved better results and only four values where ACOII performed
better. However, after applying hypothesis testing, there were no significant differences
between GA and ACOII results, considering a level of confidence of 95%. The average
execution time was the longest for the Dominant S problems when M = 8 and N = 11.
However, the shortest average execution time was obtained for Dominant P problems for
M = 2 and N = 6.

For large problems, the optimal solution is unknown, and thus, a comparison was
made between the solutions obtained by the genetic algorithm and the ACOII method. For
the Balanced problems, the genetic algorithm exhibited the worst performance. On the
contrary, for both Dominant S and Dominant P problems, the genetic algorithm performed
better, except when M = 12 and N = 40 and for M = 12, respectively. Furthermore, it
was proved that there are significant differences between the average makespan values of
the genetic algorithm and the ACOII methods. Moreover, it was also possible to observe
that the highest average execution time occurred for the Balanced problem with M = 2

180



Mathematics 2022, 10, 2431

and N = 120. For the Dominant P problem with M = 2 and N = 20, the shortest average
execution time was obtained.

In conclusion, GA has the ability to effectively solve small and large scheduling
problems when minimizing the makespan of unrelated parallel machines with sequence-
dependent setup times; better performance for the GA was observed in the comparative
statistical analysis between the two metaheuristics, especially for the large problems.

In the future, we intend to study the effect of using different chromosome representa-
tions and genetic operators in GA performance and to consider other objectives such as
completion time and tardiness.

Author Contributions: Conceptualization, L.R.V., A.M.A.C.R. and L.A.C.; methodology, A.M.A.C.R.,
L.R.V., L.A.C., A.R.A. and M.A.M.; software, A.M.A.C.R., L.A.C., A.R.A. and M.A.M.; validation,
A.R.A., A.M.A.C.R., L.A.C., L.R.V. and M.A.M.; formal analysis, A.R.A., A.M.A.C.R., M.A.M. and
L.A.C.; investigation, L.R.V., A.R.A., A.M.A.C.R., L.A.C. and M.A.M.; resources, A.M.A.C.R., L.A.C.
and L.R.V.; data curation, A.R.A., A.M.A.C.R., L.A.C., L.R.V. and M.A.M.; writing—original draft
preparation, A.R.A., L.R.V. and M.A.M.; writing—review and editing, A.R.A., A.M.A.C.R., L.A.C.,
L.R.V. and M.A.M.; visualization, A.R.A., A.M.A.C.R., L.A.C., L.R.V. and M.A.M.; supervision,
A.M.A.C.R., L.A.C. and L.R.V.; project administration, A.M.A.C.R., L.A.C. and L.R.V.; funding
acquisition, A.M.A.C.R., L.A.C. and L.R.V. All authors have read and agreed to the published version
of the manuscript.

Funding: The project is funded by the FCT—Fundação para a Ciência e Tecnologia through the
R&D Units Project Scope UIDB/00319/2020 and EXPL/EME-SIS/1224/2021 and PhD grant UI/BD/
150936/2021.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Schuh, G.; Reuter, C.; Prote, J.-P.; Brambring, F.; Ays, J. Increasing data integrity for improving decision making in production
planning and control. CIRP Ann. 2017, 66, 425–428. [CrossRef]

2. Pinedo, M.L. Scheduling Theory, Algorithms, and Systems, 5th ed.; Springer: New York, NY, USA, 2016.
3. Santos, A.S.; Madureira, A.M.; Varela, M.L.R. An ordered heuristic for the allocation of resources in unrelated paral-lel-machines.

Int. J. Ind. Eng. Comput. 2015, 6, 145–156.
4. Su, L.-H.; Cheng, T.; Chou, F.-D. A minimum-cost network flow approach to preemptive parallel-machine scheduling. Comput.

Ind. Eng. 2013, 64, 453–458. [CrossRef]
5. Tan, Z.; Chen, Y.; Zhang, A. Parallel machines scheduling with machine maintenance for minsum criteria. Eur. J. Oper. Res. 2011,

212, 287–292. [CrossRef]
6. Vallada, E.; Ruiz, R. A genetic algorithm for the unrelated parallel machine scheduling problem with sequence dependent setup

times. Eur. J. Oper. Res. 2011, 211, 612–622. [CrossRef]
7. Rabadi, G.; Moraga, R.J.; Al-Salem, A. Heuristics for the Unrelated Parallel Machine Scheduling Problem with Setup Times. J.

Intell. Manuf. 2006, 17, 85–97. [CrossRef]
8. Arnaout, J.-P.; Rabadi, G.; Musa, R. A two-stage Ant Colony Optimization algorithm to minimize the makespan on unrelated

parallel machines with sequence-dependent setup times. J. Intell. Manuf. 2009, 21, 693–701. [CrossRef]
9. Arnaout, J.-P.; Musa, R.; Rabadi, G. A two-stage Ant Colony optimization algorithm to minimize the makespan on unrelated

parallel machines—part II: Enhancements and experimentations. J. Intell. Manuf. 2012, 25, 43–53. [CrossRef]
10. Yang, Q.; Guo, X.; Gao, X.-D.; Xu, D.-D.; Lu, Z.-Y. Differential Elite Learning Particle Swarm Optimization for Global Numerical

Optimization. Mathematics 2022, 10, 1261. [CrossRef]
11. Leung, M.-F.; Coello, C.A.C.; Cheung, C.-C.; Ng, S.-C.; Lui, A.K.-F. A Hybrid Leader Selection Strategy for Many-Objective

Particle Swarm Optimization. IEEE Access 2020, 8, 189527–189545. [CrossRef]
12. Das, S.; Suganthan, P.N. Differential Evolution: A Survey of the State-of-the-Art. IEEE Trans. Evol. Comput. 2011, 15, 4–31.

[CrossRef]
13. Pan, Q.-K.; Tasgetiren, M.F.; Liang, Y.-C. A discrete differential evolution algorithm for the permutation flowshop scheduling

problem. Comput. Ind. Eng. 2008, 55, 795–816. [CrossRef]

181



Mathematics 2022, 10, 2431

14. Ho, M.H.; Hnaien, F.; Dugardinr, F. Exact method to optimize the total electricity cost in two-machine permutation flow shop
scheduling problem under Time-of-use tariff. Comput. Oper. Res. 2022, 144, 105788. [CrossRef]

15. Foumani, M.; Razeghi, A.; Smith-Miles, K. Stochastic optimization of two-machine flow shop robotic cells with con-trollable
inspection times: From theory toward practice. Robot. Comput.-Integr. Manuf. 2020, 61, 101822. [CrossRef]

16. Artiba, A.; Elmaghraby, S.E. The Planning and Scheduling of Production Systems; Springer Science & Business Media: Berlin,
Germany, 1996. [CrossRef]

17. Brucker, P. Due-date scheduling. In Scheduling Algorithms; Springer: Berlin/Heidelberg, Germany, 2001. [CrossRef]
18. McNaughton, R. Scheduling with Deadlines and Loss Functions. Manag. Sci. 1959, 6, 1–12. [CrossRef]
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Abstract: This paper contains two main parts, Part I and Part II, which discuss the local and global
minimization problems, respectively. In Part I, a fresh conjugate gradient (CG) technique is suggested
and then combined with a line-search technique to obtain a globally convergent algorithm. The
finite difference approximations approach is used to compute the approximate values of the first
derivative of the function f . The convergence analysis of the suggested method is established. The
comparisons between the performance of the new CG method and the performance of four other
CG methods demonstrate that the proposed CG method is promising and competitive for finding
a local optimum point. In Part II, three formulas are designed by which a group of solutions are
generated. This set of random formulas is hybridized with the globally convergent CG algorithm to
obtain a hybrid stochastic conjugate gradient algorithm denoted by HSSZH. The HSSZH algorithm
finds the approximate value of the global solution of a global optimization problem. Five combined
stochastic conjugate gradient algorithms are constructed. The performance profiles are used to
assess and compare the rendition of the family of hybrid stochastic conjugate gradient algorithms.
The comparison results between our proposed HSSZH algorithm and four other hybrid stochastic
conjugate gradient techniques demonstrate that the suggested HSSZH method is competitive with,
and in all cases superior to, the four algorithms in terms of the efficiency, reliability and effectiveness to
find the approximate solution of the global optimization problem that contains a non-convex function.

Keywords: global optimization; unconstrained minimization; numerical approximations of gradients;
meta-heuristics; stochastic parameters; conjugate gradient methods; efficient algorithm; performance
profiles; comparisons; testing

MSC: 90C26

1. Introduction

The major goal of this paper is to find the local and global minima of a convex and
non-convex function. The local and global minimization problems are defined as follows.

Definition 1. A local minimum xlo ∈ S of the function f , f : S → R is an input element with
f (xlo) ≤ f (x) for all x neighboring xlo. If S ⊆ Rn, it is formulated by

∀xlo ∃ε > 0 : f (xlo) ≤ f (x) ∀x ∈ S, ‖x− xlo‖ ≤ ε. (1)

Mathematics 2022, 10, 3595. https://doi.org/10.3390/math10193595 https://www.mdpi.com/journal/mathematics185
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Definition 2. The point xgl ∈ S is called the global minimizer of the function f ; f : S→ R such
that f (xgl) ≤ f (x) ∀x ∈ S. When S ⊆ Rn, then the problem can be formulated by

min
x∈S

f (x) : S→ R, (2)

In both problems (formulae) S ⊆ Rn is the range in which we find the global minimizer
of f (x). f (x) is continuously differentiable.

Global optimization (GO) attempts to find the approximate solution of the objective
function are shown in Problem (2).

However, this task can be difficult since the knowledge about f is usually only local.
On the other hand, the fastest algorithms (LO) prefer to find a local point since these
algorithms are not capable of finding the global solution at each run.

The bottom line is that the core difference between the GO methods and the LO
algorithms is as follows: the GO methods focus on solving Problem (2) over the given
set, while the task of the LO methods is to solve (1). Consequently, solving Problem (1)
is relatively simple by using deterministic (classical) local optimization methods. On the
contrary, finding the global optimum of Problem (2) is an NP-hard problem.

Challenging problems arise in different application fields, for example, technical sciences,
industrial engineering, economics, networks, chemical engineering, etc. See [1–11].

Recently, many optimization algorithms have been proposed to deal with these prob-
lems. The thoughts of those suggested methods rely on the standard of meta-heuristic
strategies (random search).

There are different classifications for meta-heuristic methods [12].
Mohamed et al. [7] presented a brief description of these classifications.
In random algorithms, the minimization technique relies partly on probability.
In contrast, in the deterministic algorithms, a guessing scale is not utilized. Hence,

deterministic techniques need an exhaustive examination over the research domain of
function f to find the approximate solution to Problem (2) at each run. Otherwise, they fail
in this task.

Therefore, finding the approximate solution to Problem (2) by using random tech-
niques can be proved by the asymptotic convergence probability. See [13–15].

There are many deterministic methods that have been proposed for dealing with the
local optimization problems. See, for example, Refs. [16–20].

The most popular deterministic method is the CG method [18]. CG methods are
exceedingly utilized to find the local minimizer of Problem (1) [21].

However, the CG algorithms have a numerical weakness, so their subsequent actions
might be low if a little step is created away from the local point. Hence, for solving this issue,
a line-search technique is combined with the CG technique to create a globally convergent
algorithm [22,23].

Therefore, many conjugant gradient line-search methods are suggested; see, for exam-
ple, refs. [18,24–28].

The CG method is an efficient and inexpensive technique to deal with Problem (1).
The CG method is an iterative algorithm. Therefore, the candidate solutions are

generated by the following recursive formula.

xk+1 = xk + αk dk , (3)

where the step size αk > 0, and the directions dk are created by the following formula:

dk+1 = −gk+1
+ βk dk , d0 = −g0 . (4)

where gk denotes the gradient vector of the function f at the point xk .
Several versions of the CG methods are suggested. The core difference between those

CG algorithms relies on choosing the parameter βk [18,27–29]. The main features of the
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CG method are as follows: it has low memory requirements, it is strongly local, and it has
global convergence properties [30].

Many authors presented several studies to analyze the CG method; see, for exam-
ple, Refs. [31,32].

In 1964, the authors of [33] applied the CG methods to nonlinear problems, and they
proposed the following parameter.

βFR
k

=
‖gk+1‖2

‖gk‖2 . (5)

The authors of [34,35] established the global convergence of the scheme defined in (5);
they used an exact line search and an inexact line search respectively.

However, the author of [36] showed that there are some cases that have some strays;
these jamming occurrences happen when the search directions dk are almost orthogonal to
the gradient vector gk [18].

The authors of [37,38] presented a modification of the parameter βFR
k

for treating the
noise event denoted in [36]. Hence, they proposed the following parameter.

βPRP
k

=
yT

k
gk+1

||gk ||2
, (6)

where yk = gk+1 − gk . When a noise occurs gk+1 ≈ gk , βPRP
k

≈ 0, and dk+1 ≈ −gk+1,
i.e., when jamming happens, the search direction dk is no longer perpendicular to the
gradient vector gk , but it is aligned with the vector −gk . This built-in restart advantage of
the βPRP

k
parameter usually has better quick convergence when compared to the parameter

βFR
k

[18].
The authors of [39] proposed an approach closely related to βPRP

k
, and it is defined as

follows.

βHS
k

=
yT

k
gk+1

dT
k

yk

. (7)

in the case that step-size αk is found by an exact line search algorithm. Hence, by (4) and
the orthogonality situation gT

k+1yk = 0, the following can be obtained:

dT
k yk = (gk+1 − gk)

Tdk = −dT
k

gk = ||gk ||2. (8)

Therefore, βHS
k

= βPRP
k

when the step size αk is calculated by an exact line search
method. Other fundamentals formulas of the parameter βk which contain one term are
listed as follows.

βLS
k

=
gT

k+1yk

−dT
k

gk

. (9)

Formula (9) was proposed by [40].

βDY
k

=
‖gk+1||2

yT
k

dk

. (10)

Formula (10) was proposed by Dai and Yuan [41]. It is noteworthy that when the f is
quadratic and step size αk is selected to reduce f along dk , the options of the parameter βk

mentioned above are alike for the generic nonlinear function.
Different alternatives have fully different convergence possessions [18].
Many version of the parameter βk have been proposed in two- and three terms; see,

for example, Refs. [32,42–50].
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For example, in the following two approaches, we present some modifications to
obtain a new CG method. See Section 2.

βHZ
k

=
(yT

k
gk)(d

T
k−1yk)− 2||yk ||2(dT

k−1gk)

(dT
k−1yk)

2
. (11)

Formula (11) was proposed by [30].

βMHZ
k

=
(yT

k
gk)(d

T
k−1yk)− 2||yk ||2(dT

k−1gk)

max{σ||yk ||2||dk ||2, (dT
k−1yk)

2} , (12)

where σ > 0.5 is a constant. Formula (12) was proposed by [49]. The denominator
(dT

k−1yk)
2 in the βHZ

k
is modified to max{σ‖yk‖2‖dk‖2, (dT

k−1yk)
2} in the βMHZ

k
. This

procedure may help the dk stay in a trusted area automatically beneath each iteration [49].
Furthermore, in a situation σ||yk ||2||dk ||2 < (dT

k−1yk)
2, βMHZ

k
decreases to βHZ

k
with αk

calculated to satisfy the inexact line search. Moreover, βHZ
k

decreases to βHS
k

under the
exact line search.

Consequently, by using a line search method, the CG method can satisfy the following
descent condition:

gT
k

dk ≤ −C‖gk‖2, (13)

where C > 0 is a constant.
The sufficient descent condition (13) has a core task in the convergence analysis of the

algorithms. See [17,30–32,35,41,49,51,52].
However, the CG method has a numerical obstacle; its sub-sequential phases might be

low if a little step is created away from the intended point [49].
Recently, the authors of [48,49] proved that the CG algorithm includes powerful

convergence features if it satisfies the trust-region feature that is determined by

||dk || < Cv ||gk ||, (14)

where Cv > 0 is a constant. It is shown, therefore, that the trust-region property can enable
the search direction dk to be bounded in the trust radius [49]. Numerous researchers pro-
posed many CG algorithms that give perfect results and powerful convergence properties.
See [30,48,49,51].

The selection of the right step size αk can help the CG algorithms to achieve global con-
vergence.

The exact line search is defined as follows:

f (xk + αk dk) = min
α≥0

θ(α) = f (xk + αdk). (15)

It is clear that in big-scale problems, the exact line search cannot be used.
Therefore, there are many techniques to achieve this task. Formula (15), for example,

the weak Wolfe–Powell algorithm (WWP), is a popular technique, and it is exceedingly
utilized. The WWP technique is designed to find the step size αk to satisfy the following
inequalities:

f (xk + αk dk) ≤ f (xk) + δαk gT
k

dk , (16)

and
g(xk + αk dk)

Tdk ≥ σgT
k

dk , (17)

where δ ∈ (0, 0.5) and σ ∈ (δ, 1) are constants.
Inequality (16) is named the Armijo condition, and the WWP line search decreases to

strong Wolfe–Powell (SWP) by substituting Inequality (17) with the following inequality:

|g(xk + αk dk)
Tdk | ≤ −σgT

k
dk , (18)
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Generally, under the WWP line search, it is assumed that the gradient g(x) is Lipschitz
continuous in the convergence analysis. Therefore, the following inequality is satisfied:

||g(x)− g(y)|| ≤ L||x− y||, (19)

with L is a constant ∀ x, y ∈ Rn.
In fact, the CG technique with the line search methods has proven notability in solving

the local optimization problem [18,27,28]. However, in trying to solve Problem (2), the CG
method fails to achieve this task per run because it is trapped to a local point. To prevent
sticking in a local point, random parameters are used [53].

We can summarize the essence of the above discussions as follows.
Recently, there have been many and many proposed approaches presented to improve

the performance of deterministic methods, such as CG methods, gradient descent meth-
ods, Newton methods, etc. Those new approaches are designed to deal with the local
optimization problems. See, for example, Refs. [16–20].

On the other hand, a plentiful number of stochastic approaches are suggested to deal
with the global optimization problems. See, for example, Refs. [1,2,4,5,7,54].

Therefore, to gain the features of both deterministic and stochastic methods, many
studies presented several ideas and suggestions to combine deterministic and stochastic
techniques to obtain a new technique that is efficient and effective in solving Problem (2).
Numerical outcomes demonstrated that the interbreed between classical and stochastic
techniques has been hugely successful. See [55–59].

This work focuses on solving the local and global minimization problems. So, the first
part of this study trades with Problem (1) by suggesting a new modified CG method, while
the second part of this paper presents a new random approach that includes three formulae
by which the candidate solutions are generated randomly.

Therefore, the new proposed stochastic approach is combined with the new modified
CG method that is proposed in the first part of this paper to obtain a new hybrid stochastic
conjugate gradient algorithm that solves Problem (2). The new hybrid stochastic conjugate
gradient algorithm has four formulae by which the candidate solutions are created. One of
the four formulae is a purely deterministic formula, the second one is a mixture of determin-
istic and stochastic parameters, and the other two formulas contain parameters generated
randomly. The bottom line is that we can claim that the main merit that makes the new
hybrid algorithm capable of finding the approximate solution to the global minimum of a
non-convex function comes from the hybridization of random and non-random parameters.

Consequently, the contribution of this paper is divided into two parts.
Part I presents the following contributions.

• A new modified CG technique is proposed and added with a line search for obtaining
a globally convergent algorithm that solves Problem (1). It is abbreviated by SHZ.

• The convergence analysis of the SHZ algorithm is designed.
• The gradient vector is estimated by using a numerical approximation approach (DFF);

step-size h (interval) is randomly.
• The convergence analysis of the DFF method is designed.
• The four FR, SH, HZ and MZH methods are designed like the SHZ algorithm to solve

Problem (1).
• Numerical experiments of the five SHZ FR, SH, HZ and MZH algorithms are analyzed

by using the performance profiles.

Part II presents the following contributions.

� Stochastic parameters are designed (SP).
� The five SHZ, FR, SH, HZ and MZH algorithms are hybridized with the SP technique

to obtain five hybrid algorithms; HSSHZ, HSFR, HSSH, HSHZ and HSMZH. These
five algorithms solve Problem (2).

� Numerical experiments of the five HSSHZ, HSFR, HSSH, HSHZ and HSMZH algo-
rithms are analyzed by using the performance profiles.
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Consequently, the remainder of the study is arranged as follows.
Part I contains the following sections: Section 2 presents a new modified CG- SHZ

technique with its convergence analysis.
In Section 3, the approximate value of the gradient vector is calculated by using the

numerical differentiation. Section 4 presents the numerical investigations of the local
minimization problem. Part II contains the following sections: Section 5 presents a random
approach for unconstrained global optimization. Section 6 presents the hybridization of
the conjugate gradient method with stochastic parameters. The numerical experiments of
Problem (2) are presented in Section 7. Some concluding remarks are given in Section 8.

Part I: Local Minimization Problem

In this part, a new modified CG technique is presented, the convergence analysis of
this technique is designed, the numerical differentiation approach is utilized to calculate
the approximate values of the first derivative, the five algorithms are designed to solve
Problem (1), and their numerical experiments are analyzed by using the performance profiles.

2. Suggested CG Method

Recently, the authors of [49] suggested a new MHZ-CG method, relying on the study
which was proposed by the authors of [30]. The MHZ method contains the sufficient
descent and the trust-region features independent of a line search technique. The parameter
of the MHZ is defined by (12).

Therefore, the story in this section begins with the authors of [30] who proposed a new
CG-HZ method, where the parameter of the HZ method is defined by (11). The parameter
βHZ

k
can ensure that dk satisfies the following inequality:

dT
k

gk ≤ −
7
8
||gk ||2, (20)

where (20) is proved by [30]. If the step size αk is calculated by the true line search, then
βHZ

k
decreases to the βHS

k
that was proposed by [39] because dT

k
gk = 0 is true [49].

Hence, for obtaining the global convergence for a general function, Hager and Zhang [30]
dynamically adjusted the down limitation of βHZ

k
by

dk = −gk + βHZ+

k
dk−1, d0 = −g0 , (21)

βHZ+

k
= max{βHZ, rk}, rk =

−1
||dk−1||min{r,||gk−1

||} , where r > 0 is a constant.

Many researchers have suggested several modifications and refinements to improve
the performance of the CG-HZ algorithm. The latest version of the CG-HZ method was
offered by [49]. Yuan et al. [49] presented some modifications to the HZ-CG method, and
the result was obtaining the new CG-MHZ algorithm.

The CG-MHZ algorithm contains a sufficient condition and the trust-region feature.
The research direction of the MHZ-CG technique is designed as follows:

dk = −gk + βMHZ
k

dk−1, d0 = −g0 , (22)

where the βMHZ is defined by (12).
In this paper, the MHZ method is extended and modified to obtain a new proposed

method called the SHZ method such that the SHZ method has a sufficient condition and
the trust-region feature. This method is defined as follows:

dk = −gk + βSHZ
k

dk−1, d0 = −g0 , (23)

βSHZ
k

=
(yT

k
gk)(d

T
k−1yk)− 2||yk ||2(dT

k−1gk)

max{ϑ‖yk‖2‖dk‖2, (dT
k−1yk)

2} , (24)
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where the ϑ = max{ρ, Rk}, the ρ and Rk are defined as follows. The parameter ρ is changed
randomly at each iteration and its values are taken from the range [0.8, 2) and Rk = � f�x.
The values of� f and�x are calculated by

� f = | f0 − f Itr |, (25)

where Itr is the number of iterations, and after the Itr number of iterations, f Itr and� f are
computed. Then, we set f0 = f Itr , while�x is defined by

�x = ‖xk+1
− xk‖, for k = 0, 1, . . . , Itr. (26)

Hence, when ϑ = σ, βSHZ
k

inevitably reduces to one of the following methods
{βMHZ

k
, βHZ

k
, βHS

k
} as follows.

If ϑ = σ and δ‖yk‖2‖dk‖2 > (dT
k−1yk)

2, the βSHZ
k

reduces to the βMHZ
k

. Otherwise,
βSHZ

k
reduces to βHZ

k
or to βHS

k
under the exact line search [49]. This procedure gives the

advantages of the MHZ, HZ and HS methods to the proposed SHZ method. In other words,
the SHZ algorithm gains the characteristics of the three MHZ, HZ and HS algorithms. This
is why the SHZ algorithm is superior to the four other MHZ, HZ, HS and FR methods.

Note: The authors of [49] imposed that the σ > 0.5 is a constant, while the parameter
ϑ is modified dynamically at each iteration.

Convergence Analysis of Algorithm 1

In this section, we present the features of Algorithm 1. We also present the convergence
analysis of this algorithm, and we show that the search direction dk that is defined by
Formula (23) satisfies the sufficient descent condition and the trust-region merit, which are
defined by Formulae (13) and (14), respectively.

Algorithm 1 A conjugate gradient method (CG-SHZ).

Input: f : Rn → R, f ∈ C1, γ ∈ (0, 1) ,k = 0, a starting point xk ∈ Rn and ε > 0.
Output: x∗ = xloc the local minimizer of f , f (x∗), the value of f at x∗

1: Set d0 = −g0 and k := 0.
2: while ‖gk‖ > ε. do
3: compute αk to satisfy (16) and (17).
4: Calculate a new point xk+1 = xk + αk dk .
5: compute fk = f (xk+1

), gk = g(xk+1
)

6: Set k = k + 1.
7: calculate the search direction dk by (23).
8: end while
9: return xac the local minimizer and its function value fac

Two sensible hypotheses are assumed as follows.

Hypothesis 1. We suppose that Problems (1) and (2) contain an objective function f (x) with the
following characteristics: continuity and differentiability properties.

Hypothesis 2. In some neighborhood ℵ of the level set

� = {x ∈ R
n : f (x) ≤ f (x0)},

the gradient vector g(x) is Lipschitz continuous. This means that there is a fixed real number
L < ∞ such that

‖g(x)− g(y)‖ ≤ L‖x− y‖,

for all x, y ∈ ℵ.

191



Mathematics 2022, 10, 3595

Lemma 1. Suppose that the sequence {xk} is obtained by Algorithm 1. If dT
k

yk 
= 0, then

gT
k

dk ≤ −c‖gk‖2, (27)

and
||dk || ≤ rv‖gk‖, (28)

where c = 1− 7
9ϑ > 0, ϑ = max{ρ, Rk}, ρ is taken randomly from ∈ [ 8

10 , 2) at each iteration of
Algorithm 1, 0 ≤ Rk < ∞, and rv = (1 + 3

ϑ ) is the trust-region radius.

Proof. If k = 0, d0 = −g0 , then gT
0

d0 = −||g0 ||2 and ||d0 || = ‖g0‖, which indicates (27)
and (28) by picking c ∈ (0, 1] and rv ∈ [1, ∞) .

Merging (23) with (24), the result is obtaining the following:

gT
k

dk =
(yT

k
gk)(d

T
k−1yk)(gk

Tdk−1)− 2||yk ||2(gk
Tdk−1)

2

max{ϑ‖yk‖2‖dk−1‖2, (dT
k−1yk)

2} − ‖gk‖2. (29)

The following inequality uT v ≤ 1
2 (||u||2 + ‖v‖2) is applied to the first term of the

numerator of Inequality (29), where u = dk−1gT
k yk , v = yk gk

Tdk−1, and it is clear that
uT v ≤ 7

9 (||u||2 + ‖v‖2) is right.
Therefore, the following inequality obtains

gT
k

dk =
(yT

k
gk)(d

T
k−1yk)(gk

Tdk−1)− 2||yk ||2(gk
Tdk−1)

2

max{ϑ‖yk‖2‖dk−1‖2, (dT
k−1yk)

2} − ‖gk‖2 ≤

−‖gk‖2 +
7
9 ||yk ||2‖gk‖2||dk−1||2 + 7

9 ||yk ||2(gk
Tdk−1)

2 − 2||yk ||2(gk
Tdk−1)

2

max{ϑ‖yk‖2‖dk−1‖2, (dT
k−1yk)

2} =

−‖gk‖2 +
7
9 ||yk ||2‖gk‖2||dk−1||2 − 11

9 ||yk ||2(gk
Tdk−1)

2

max{ϑ‖yk‖2‖dk−1‖2, (dT
k−1yk)

2} ≤

−‖gk‖2 +
7
9 ||yk ||2‖gk‖2||dk−1||2

max{ϑ‖yk‖2‖dk−1‖2, (dT
k−1yk)

2} ≤ (
7

9ϑ
− 1)‖gk‖2,

such that
max

{
ϑ‖yk‖2‖dk−1‖2, (dT

k−1yk)
2} ≥ ϑ‖yk‖2‖dk−1‖2, (30)

where ϑ = max{ρ, Rk}. Since ϑ ≥ 8
10 and c = 1− 7

9ϑ > 0, (27) is true.
By using (30), it is obvious that

‖dk‖ =
∥∥∥∥− gk +

(yT
k

gk)(d
T
k−1yk)− 2||yk ||2(dT

k−1gk)

max{ϑ‖yk‖2‖dk‖2, (dT
k−1yk)

2} dk−1

∥∥∥∥ ≤

‖− gk‖+
||yk ||2‖gk‖‖dk−1‖2 + 2‖yk‖2‖gk‖‖dk−1‖2

ϑ‖yk‖2‖dk−1‖2 =
(
1 +

3
ϑ

)‖gk‖

Consequently, (28) is met, where rv ∈ [1 + 3
ϑ , ∞). The proof is complete.

Corollary 1. According to Formula (28) of Lemma 1, the following formula is met.

∞

∑
k=0

‖gk‖4

‖dk‖2 = ∞. (31)
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Proof. Since ‖dk‖ ≤ rv‖gk‖2, where 1 < rv < ∞, then ‖dk‖2 ≤ r2
v‖gk‖4, therefore,

‖dk‖2

‖gk‖4 ≤
r2

v , hence
‖gk‖4

‖dk‖2 ≥ 1
r2

v
. Now, the final expression is summed as k → ∞. The result is obtaining

the following inequality:
∞

∑
k=0

‖gk‖4

‖dk‖2 ≥
∞

∑
k=0

1
r2

v

=
1
r2

v

∞

∑
k=0

1 = ∞. Therefore, (31) is met.

Under the assumptions, we give a helpful lemma that was basically proved by Zou-
tendijk [60] and Wolfe [61,62].

Lemma 2. Assume that the x0 is the initial point by which Assumption 1 is satisfied. Regarding any
algorithm of Formula (23), dk is a descent direction, and αk satisfies the standard Wolfe conditions
(16) and (17). Hence, the following inequality is met:

∞

∑
k=0

(gk
Tdk)

2

‖dk‖2 < ∞ (32)

Proof. It tracks Formula (17), such that

dT
k

yk = dT
k
(gk+1

− gk) ≥ (σ− 1)gT
k

dk . (33)

On the other hand, the Lipschitz condition (19) implies

(gk+1
− gk)

Tdk ≤ αk L‖dk‖2. (34)

The above two inequalities give

αk ≥
σ− 1

L
.
gk

Tdk

‖dk‖2 , (35)

which with (16) implies that

fk − fk+1 ≥ c
(gk

Tdk)
2

‖dk‖2 , (36)

where c = δ(1−σ)
L . By summing (36) and with the observation that f is limited below, we

see that (32) holds, which concludes the proof.

Theorem 1. Suppose that Hypotheses 1 and 2 hold, and by utilizing the outcome of Corollary 1,
the sequence {gk} that is generated by Algorithm 1 satisfies the following:

lim
k→∞

inf ‖gk‖ = 0, (37)

Proof. By contradiction, suppose that (37) is not true; then, for some ε > 0, the following
inequality is true:

‖gk‖ ≥ ε. (38)

Hence, with inequality (38) and (27), we obtain

gk
Tdk ≤ −c‖gk‖2 ≤ −ε2. (39)

Then, we have
gk

Tdk

‖dk‖
≤ −ε2

‖dk‖
;

gk
Tdk

‖dk‖
≥ ε4

‖dk‖2 ,
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and by summing the final expression, we obtain

∞

∑
k=0

(gk
Tdk)

2

‖dk‖2 ≥
∞

∑
k=0

ε4

‖dk‖2 = ∞. (40)

Therefore, the above leads to a contradiction with (32). So, (37) is met.

Note 1: The search direction dk that is defined by Formula (23) satisfies the sufficient
descent condition which is defined by Formula (13).

Note 2: Lemma 1 guarantees that Algorithm 1 has a sufficient descent property and
the trust-region feature automatically.

Note 3: Theorem 1 confirms that the series {gk} that is obtained by Algorithm 1
approaches to 0 as long as k → ∞.

In the next section, the numerical differentiation approach is discussed by which the
first derivative is estimated and the step size αk is computed.

3. Numerical Differentiation

We now turn our attention to the numerical approximation to compute the approxi-
mate value of the gradient vector. In precept, it can be possible to find an analytic form for
the first derivative for any continuous and differentiable function. However, in some cases,
the analytic form is very complicated. The numerical approximation of the derivative may
be sufficient for some purposes.

In this paper, the values of the αk , gk and the direction dk are computed by using
the numerical differentiation method. Moreover, we have another step size and research
directions that are generated randomly.

Several suggested methods have given fair outcomes for computing the gradient
vector values numerically. See [63–67].

The common approaches by which the first derivative is computed are the finite
difference approximation methods. Therefore, the first derivative f ′(x) can be estimated by
the following numerical differentiation formula:

Df f (xi) =
f (xi+1)− f (xi )

xi+1 − xi

=
f (xi + h)− f (xi )

h
, (41)

where h is limited and little, but it is not necessarily infinitesimally small.
Reasonably, if the value of the h is small, the approximated value of the first derivative

may improve. The forward difference and the central difference are the familiar and
common methods used in many studies; see for example, [68–72].

The Taylor series can be used to derive these formulas. Thus, 3, 4 and 5 points can
be utilized to derive these formulas, but it will be more costly than utilizing 2 points. The
central difference method is known to include aspects of both accuracy and precision [73]
but it needs 2n function evaluations against the forward-difference approximation approach,
which needs n function evaluations for each iteration. So, in this study, the forward-
difference approximation approach is used, because it is a cheap method and it has sensible
precision [66,68].

The advantage of the finite difference approximation approaches relies on choosing
the fit values of the h.

Error approximation of the first derivative is discussed in the next section.
Therefore, the discussion of the error analysis guides us to define an appropriate finite-

difference interval for the forward-difference approximation that balances the truncation
error that grows from the error in the Taylor formula, and the magnitude error that is
obtained from noise during computing the function values [66].
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3.1. Error Analysis

Formula (41) contains the forward-difference approximation form that is used to
estimate the first derivative of the function f . Its errors are proportional to some power
of the values of h. Therefore, it appears that the errors go on to reduce if h is reduced.
However, it is a part of the problem since it is assumed only the truncation error yielded
by truncating the high-order terms in the Taylor series expansion and does not take into
account the round-off error induced by quantization. The round-off error is beside the
truncation error; all of them are discussed in this section as follows.

Regarding this goal, suppose that the function values f (x), f (x + h), are quantized to
θ1 = f (x + h) + ε1 , θ0 = f (x) + ε0 , with the sizes of the round-off errors ε1 and ε0 all being
smaller than some positive number ε, that is |εj | ≤ ε; with j = 0, 1.

Hence, the total error of the forward difference approximation defined by (41) is
derived by

Df f (x) =
θ1 − θ0

h
=

f (x + h) + ε1 − f (x)− ε0

h
= f ′(x) +

ε1 − ε0

h
+

Tf

2
h. (42)

Hence, ∣∣Df f (x)− f ′(x)
∣∣ ≤ ∣∣∣ ε1 − ε0

h

∣∣∣+ ∣∣∣Tf

2

∣∣∣h ≤ 2ε

h
+
|Tf |

2
h, (43)

with Tf = f
′′
(x). Therefore, the upper bound of the error is illustrated by the right-hand

side of Formula (43). The maximum limited of error contains two expressions; the first
comes from the rounding error and in inverse proportion to step-size h, whilst the second
comes from the truncation error and in direct proportion to h. These two parts can be

formulated as a function φ(h) with respect to h as follows φ(h) = 2ε
h +

|Tf |
2 h. Now, if we

find the minimizer h∗ of the function φ(h), then the value φ(h∗) is the upper bound of the

total error. Hence dφ(h)
dh = −2ε

h2 +
|Tf |

2 = 0, then

h∗ = 2

√
ε

|Tf |
= 2

√
ε

| f ′′(x)| . (44)

Therefore, it can be concluded that as we create small values of h, the round-off error
might grow, whilst the truncation error reduces. It is called the “step-size dilemma”.

Consequently, there have to be some optimal values of the h∗ for the forward difference
approximation formula, as derived analytically in (44). However, Formula (44) is only of
theoretical value and cannot be used practically to determine h∗ because we do not have
any information about the second derivative and, therefore, we cannot estimate the values
of Tf .

Therefore, there are many approaches which have been presented to deal with the
step-size dilemma.

Recently, Shi et al. [66] proposed a bisection search for finding a finite-difference interval
for a finite-difference method. Their approach was presented to balance the truncation
error that grows from the error in the Taylor formula and the measurement error obtained
from noise in the function evaluation. According to their numerical experience, the finite-
difference interval h∗ are bounded between the following ranges [2× 10−4, 6.32× 10−1],
[2.72× 10−4, 8.26× 100] and [8.44× 10−3, 3.94× 100] by using the forward and central
differences to estimate the values of the first derivative of the f .

Additionally, the authors of [68] gave a study of the theoretical and practical com-
parison of the approximate values of the gradient vector in derivative-free optimization.
These authors analyzed some approaches for approximating gradients of noisy functions
utilizing only function values; those techniques include a finite difference.

The values of the finite difference interval are as follows 10−8 ≤ h∗ ≤ 1.
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According to the earlier investigations, the core of the difference between all ap-
proaches is to determine the step size h. Hence, the value of the step size is ranged between
this range h∗ ∈ [1, 12× 10−10].

In this paper, the h is designed in a way that makes its values generated randomly.
Additionally, the values of the h are connected to the function values per iteration to cover
this domain, thus the feature here is that the value of h is modified per iteration randomly.

Therefore, a fresh approach to define the h∗ is presented in the following section.

3.2. Selecting a Step-Size h

The forward difference approach is a cheap method compared to the different tech-
niques.

The forward difference approach has shown promising results for minimizing noisy
black-box functions [66].

Depending on the hypotheses which are listed in Section 2, let x0 be any starting point,
thus function f satisfies the following f0 ≥ f1 ≥ . . . ≥ fk , for k = 0, 1, 2, . . .. The numerical
outcomes that are given in the past papers denote that the values of step-size h belong to
the following range [10−10,≤ 1].

Therefore, the next Algorithm 2 is created to generate the values of the h∗ randomly
from the intervals [0.1, 10−8].

Algorithm 2 Algorithm for calculating the values of h∗.
Step 1: At each iteration k, we generate a set random values between 10−2, and 10−7, and
this set of random values is denoted by Lε = {lε1

, lε2
, . . . , lε10

}.
Step 2: The minimum and maximum of the set Lε are extracted, respectively, as follows
Mε = min{l

εi :i=1,2,...,10}, Nε = max{l
εi :i=1,2,...,10} and set Mf = M−1

ε
.

Step 3: The function value f is calculated at each k; fk = f (xk).

Now we determine two cases according to the function values of the | fk | as follows.
Case 1: If | fk | ∈ [10−1, ∞), the value of the h is determined by

hk =

⎧⎪⎪⎨
⎪⎪⎩

√
Nε
Mf

if | fk | > Mf ,√
Mε
| f f |

otherwise.
(45)

Case 2: If | fk | ∈ [0, 10−1), the value of the h is determined by a random way from the
range [10−4, 10−8].

Example: In this example, we show how the above algorithm is run.
Let us suppose that the point x0 has four different values as starting points with four

different values of f , for example, f0 = f (x0) = {1010, 106, 103, 10−1} and suppose we
generate the set Lε as random values between 10−1, and 10−7 such that Lε = {1.50×
10−4, 5.10× 10−6, 1.01× 10−6, 1.40× 10−2, 1.78× 10−7, 1.92× 10−5, 1.09× 10−3, 2.77×
10−4, 2.99 × 10−04, 5.15 × 10−4}, Mε = 1.78 × 10−7; hence, Mf = 5.618 × 106, since

f0 = 1010 > Mf = 5.618× 106, then we set F0 = Mf = 5.618× 106 and h1 = 2
√

Mε
Mf

=

2
√

1.78×10−7

5.618×106 = 3.56 × 10−7. If f0 = 106, f0 = 106 < Mf = 5.618 × 106, and then

h1 = 2
√

Mε
F0

= 2
√

5.618×106

106 = 8.438 × 10−7, and f0 = {103 < Mf 5.618 × 106, we set

F0 = 103, then h1 = 2
√

Mε
F0

= 2
√

5.618×106

103 = 2.6683× 10−5.

Finally, if f0 = 10−1, then h1 = 2
√

5.618×106

10−1 = 2.67× 10−3.
The above example shows how Case 1 is implemented by using Formula (45).
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Regarding Case 2 when 0 ≤ | fk | < 0.1, the value of the hk is taken randomly from the
range [10−4, 10−8].

3.3. Estimating Gradient Vector

The forward finite difference (DFF) is utilized to compute the approximate value of
the gradient vector of function f at x ∈ Rn by

[DFF]i =
f (x + hei )− f (x)

h
, for i = 1, 2, . . . , n. (46)

where h > 0 is the finite difference interval defined in Section 3.2, and ei ∈ Rn is the ith

column of the identity matrix.
Therefore, g(x) ≈ DFF(x), is the approximate value of the gradient vector of function

f at point x.
Therefore, the step size ϕk is defined in the following.
The function f (x) is estimated by utilizing Taylor’s expansion up to the linear term

around the point xk , for each iteration k. Then we have

f (xk + p) ≈ f (xk)+g(xk)
T p.

We define the quadratic model of f (x) at xk as

mk(p) =
1
2

(
f (xk) + g(xk)

T p
)2

=
1
2

f (xk)
2 + f (xk)g(xk)

T p +
1
2

pT g(xk)g(xk)
T p.

Set p = −ϕg(xk) where ϕ is the step size along the −g(xk). The optimal value of the ϕ
is picked by solving the following subproblem: min

ϕ∈R
mk(ϕ) = 1

2 f (xk)
2− ϕ f (xk)g(xi)

T g(xk)+

1
2 ϕ2(g(xk)

Tg(xk))
2. This gives

ϕk =
f (xk)

‖g(xk)‖2 . (47)

Therefore,

‖g(xk)‖2 =
f (xk)

ϕk

, ϕk 
= 0, (48)

where g(xk) ≈ DFF(xk).

3.4. Convergence Analysis of DFF

The condition which is usually utilized in the convergence analysis of first-order
methods with inexact gradient (DFF) vectors is defined by

||DFF(x)− g(x)|| ≤ C||g(x)||, (49)

for some 0 ≤ C < 1. This condition is introduced by [74,75] and it is called a norm condition.
This condition denotes that the g(x) ≈ DFF(x) is a descent direction for the function
f [68].

However, condition (49) cannot be applied, unless we know ‖g(x)‖; therefore, this
condition might be hard or impossible to verify.

There are many authors who have attempted to deal with this issue; see, for example,
Refs. [68,76–79]. Byrd et al. [76] suggested a practical approach to estimate ‖g(xk)‖,
and they utilized it to guarantee some approximation of (49). Cartis and Scheinberg [77]
and Paquette and Scheinberg [79] replaced condition (49) by

‖DFF(x)− g(x)‖ ≤ kαk ||g(x)||, (50)

where k > 0, and convergence rate analysis were derived for a line search method that
has access to deterministic function values in [77] and stochastic function values (with
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additional assumptions) in [79]. Berahas et al. [68] established conditions under which (49)

holds. For the forward finite differences method (DFF), they set h∗ = 2
√

Mε
L .

Therefore, we present the following

Theorem 2. Under Assumptions 1 and 2 of Section 2, let DFF(x) denote the forward finite
difference approximation to the gradient g(x). Then, for all x ∈ Rn, the following inequality is
true: ∣∣∣‖DFF(xk)‖∞ − ‖g(xk)‖∞

∣∣∣ ≤ ∣∣ f (xk)hi
− f (xk)

∣∣+ f (xk)

ϕk

, ϕk 
= 0, (51)

where the value of the ϕk is estimated by (47). We know that ‖X‖∞ and ‖X‖ are the norm infinity
and the 2-norm, respectively, and they are defined by

‖X‖∞ = max
1≤i≤n

|xi |, (52)

‖X‖ =
√

∑
i

xi
2, (53)

and then
‖X‖∞ = max

1≤i≤n
|xi | ≤

√
∑

i

xi
2. (54)

According to (46) which defines the gradient approximation by forward differences,
the vector of [DFF(xk)]i is described by [DFF(xk)]i = 1

h [ f (xk + ei h) − f (xk)]i , wherer
i = 1, 2, . . . , n, then

‖DFF(xk)‖∞ = max
1≤i≤n

∣∣∣∣∣
[

f (xk + ei h)− f (xk)

h

]
i

∣∣∣∣∣ = 1
h

max
1≤i≤n

|[ f (xk + ei h)− f (xk)]i |,

and therefore, the next inequality is true

‖DFF(xk)‖∞ =
1
h

max
1≤i≤n

|[ f (xk + ei h)− f (xk)]i | ≤ | f (xk)hi
− f (xk)|. (55)

By using (48), (51), (54) and (55), we obtain
∣∣∣‖DFF(xk)‖∞ −‖g(xk)‖∞

∣∣∣ ≤ ‖DFF(xk)‖∞ +

‖g(xk)‖∞ ≤ | f (xk)hi
− f (xk)|+ ‖g(xk)‖2 = | f (xk)hi

− f (xk)|+
f (xk )

ϕk
, ϕk 
= 0.

Therefore, the theorem holds.

4. Numerical Experiments of Part I

All experiments were run on a PC with Intel(R) Core(TM) i5-3230M CPU@2.60GHz
2.60 GHz with RAM 4.00 GB of memory on a Windows 10 operating system. The five
methods were coded by utilizing MATLAB version 8.5.0.197613 (R2015a) and the machine
epsilon was about 10−16.

The model optimization test problems are categorized into two types. The first type
is the test problems that contain a convex function, while the second type include a non-
convex function. Both kinds of test problems are listed in Tables 1–8 such that the second
type of the test problem is referred to by ∗. Columns 1–4 of Table 1 give the data of the test
problems as follows: the abbreviation of the function f is given on Column 1, the number
of variables n is listed on Column 2, the exact function value f (x∗) at the global point
x∗ is presented on Column 3, and the exact value of the norm of the gradient ‖g(x∗)‖
vector is given by Column 4, where the mark “−” denotes that the value of the norm of the
gradient ‖g(x∗)‖ for the convex function satisfies the stopping criterion ‖g(x∗)‖ < 10−6.
Columns 5–8 are as Columns 1–4.

The data in Table 1 are taken from [56].
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The numerical results for the local minimizers of all test problems are listed in
Tables 2–8. Columns 1–2 and 8–9 contain the abbreviation of the function f and the
number of the variables n, respectively. Columns 3–7 contain the abbreviation of each
algorithm of the five algorithm SHZ, MHZ, HZ, HS and FR, which present the number of
worst iterations, number of worst function evaluations, number of best iterations, number
of best function evaluations, average of time (CPU), average of the number of iterations
and average of the number of function evaluations, respectively. Columns 10–14 are similar
to Columns 3–7.

Note 1: It is worth noting that the full name for each test function is mentioned in
Appendix A according to the reference in which the test problem is.

Note 2: F denotes that the algorithm has failed to find the local minimizer of the
function f according to the stopping criteria of Algorithm 1 which are listed in Section 4.1
below.

Table 1. List of both kinds of test problems.

f n f (x∗) ‖g(x∗)‖ f n f (x∗) ‖g(x∗)‖
Rn 10, 30, 50, 80, 100 0 - Zn 10, 30, 50, 80, 100 0 -
PW 8, 32, 84, 120 0 - SP 10, 30, 80, 100 0 -
Tr 10, 30, 60, 80 −n(n+4)(n−1)

6
- Su 10, 30, 50, 80, 100 0 -

CV 4 0 - BR 2 0.397887 -
DJ 3 0 - BO 2 0 -
Ma 2 0 - S5∗ 4 −10.1532 3.2 × 10−5

S7∗ 4 −10.4029 - S10∗ 4 −10.5364 3 × 10−5

GP∗ 2 3 2 × 10−6 Ras∗ 2 −2 2.5 × 10−6

Bh1∗ 2 0 2.4 × 10−5 SH∗ 2 −186.7309 2 × 10−6

P8∗ 3 0 - P16∗ 5 0 1.2 × 10−6

CB∗ 2 −1.0316285 2 × 10−5 H3∗ 3 −3.86278 2 × 10−5

H6∗ 6 −3.32237 6 × 10−5 HM∗ 2 0 1.1 × 10−8

Le∗ 10 0 2.1 × 10−6

Table 2. The number of worst iterations.

f n SHZ MHZ HZ HS FR f n SHZ MHZ HZ HS FR

Rn 10 2915 3740 5705 5080 5185 Rn 30 2270 3555 5170 5140 5050
Rn 50 2605 3805 5705 5290 5145 Rn 80 2750 4010 5795 5150 5890
Rn 100 2820 2950 5050 5930 5840 Zn 10 145 170 225 210 195
Zn 30 1075 995 1825 1575 1425 Zn 50 2295 2600 4180 3645 3515
Zn 80 5335 4900 9255 8610 7345 Zn 100 9095 7490 9905 9905 9905
PW 8 1470 2230 7120 3980 970 PW 32 2135 4515 9700 9700 2075
PW 84 3345 6575 9885 9885 2145 PW 120 4385 7750 9920 9920 4495
SP 10 15 25 25 30 25 SP 30 15 25 30 30 30
SP 80 15 30 25 35 25 SP 100 15 30 30 35 30
Tr 10 575 160 135 355 155 Tr 30 2830 1765 2055 9680 2280
Tr 60 9840 9840 9840 9840 9840 Tr 100 9880 9905 9905 9905 9905
Su 100 155 155 190 200 185 Su 80 140 135 175 190 185
Su 50 115 95 130 130 130 Su 30 75 80 90 95 80
Su 10 45 40 45 40 40 BR 2 75 75 70 65 200
CV 4 2070 1745 1760 2455 5705 DJ 3 15 15 35 40 30
BO 2 35 35 40 40 35 Ma 2 80 105 65 F 140
S5∗ 4 115 445 150 750 155 S7∗ 4 200 275 220 1500 215
S10∗ 4 100 250 205 620 120 GP∗ 2 6670 6670 6670 6670 6670
Ras∗ 2 30 175 1665 280 220 Bh1∗ 2 35 50 400 70 75
SH∗ 2 6670 6670 6670 6670 6670 P8∗ 4 20 8000 8000 1880 4730
P16∗ 5 20 8000 8000 1880 4730 CB∗ 2 25 25 115 25 150
H3∗ 3 415 655 1300 365 7500 H6∗ 6 445 1425 2190 8575 565

HM∗ 2 25 30 25 25 25 Le∗ 10 1105 1575 1815 1025 1200
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Table 3. The number of worst function evaluations.

f n SHZ MHZ HZ HS FR f n SHZ MHZ HZ HS FR

Rn 10 32,065 41,140 290,955 55,880 57,035 Rn 30 70,370 110,205 160,270 159,340 156,550
Rn 50 132,855 194,055 290,955 269,790 262,395 Rn 80 222,750 324,810 469,395 417,150 477,090
Rn 100 284,820 297,950 510,050 598,930 589,840 Zn 10 1595 1870 2475 2310 2145
Zn 30 33,325 30,845 56,575 48,825 44,175 Zn 50 117,045 132,600 213,180 185,895 179,265
Zn 80 432,135 396,900 749,655 697,410 594,945 Zn 100 918,595 756,490 1,000,405 1,000,405 1,000,405
PW 8 13,230 20,070 64,080 35,820 8730 PW 32 70,455 148,995 320,100 320,100 68,475
PW 84 284,325 558,875 840,225 840,225 182,325 PW 120 530,585 937,750 1,200,320 1,200,320 543,895
SP 10 165 275 275 330 275 SP 30 465 775 930 930 930
SP 80 1215 2430 2025 2835 2025 SP 100 1515 3030 3030 3535 3030
Tr 10 6325 1760 1485 3905 1705 Tr 30 87,730 54,715 63,705 300,080 70,680
Tr 60 600,240 600,240 600,240 600,240 600,240 Tr 100 800,280 1,000,405 1,000,405 1,000,405 1,000,405
Su 100 15,655 15,655 19,190 20,200 18,685 Su 80 11,340 10,935 14,175 15,390 14,985
Su 50 5865 4845 6630 6630 6630 Su 30 2325 2480 2790 2945 2480
Su 10 495 440 495 440 440 BR 2 225 225 210 195 600
CV 4 10,350 8725 8800 12,275 28,525 DJ 3 60 60 140 160 120
BO 2 105 105 160 120 105 Ma 2 240 315 195 F 420
S5∗ 4 575 2225 750 3750 775 S7∗ 4 1000 1375 1100 7500 1075
S10∗ 4 500 1250 1025 3100 600 GP∗ 2 20,010 20,010 20,010 20,010 20,010
Ras∗ 2 90 525 4995 840 660 Bh1∗ 2 105 150 1200 210 225
SH∗ 2 20,010 20,010 20,010 20,010 20,010 P8∗ 4 100 40,000 40,000 9400 23,650
P16∗ 5 100 40,000 40,000 9400 23,650 CB∗ 2 75 75 345 75 450
H3∗ 3 1660 2620 5200 1460 30,000 H6∗ 6 3115 9975 15,330 60,025 3955

HM∗ 2 75 90 75 75 75 Le∗ 10 12,155 17,325 19,965 11,275 13,200

Table 4. The number of best iterations.

f n SHZ MHZ HZ HS FR f n SHZ MHZ HZ HS FR

Rn 10 360 460 490 520 510 Rn 30 230 485 190 590 420
Rn 50 705 375 490 650 440 Rn 80 230 400 920 125 460
Rn 100 240 275 885 670 705 Zn 10 60 60 115 80 75
Zn 30 245 330 875 875 810 Zn 50 570 905 2235 1765 1885
Zn 80 935 1565 4080 4365 3495 Zn 100 1670 2545 6345 6045 5095
PW 8 180 175 2080 375 225 PW 32 280 2610 1250 390 280
PW 84 510 3525 4115 520 410 PW 120 535 2745 2765 395 435
SP 10 5 10 10 20 10 SP 30 10 10 10 20 10
SP 80 10 10 10 20 15 SP 100 10 10 10 20 15
Tr 10 85 85 65 80 55 Tr 30 735 1370 230 350 220
Tr 60 9840 9840 9840 9840 430 Tr 100 9880 9905 9905 9905 9905
Su 100 70 80 95 95 75 Su 80 65 55 75 100 70
Su 50 50 55 60 70 50 Su 30 40 40 40 45 40
Su 10 20 25 20 25 20 BR 2 15 15 15 15 10
CV 4 275 275 690 370 600 DJ 3 10 10 10 20 10
BO 2 15 15 20 20 20 Ma 2 30 20 20 F 15
S5∗ 4 15 20 20 25 125 S7∗ 4 15 15 15 30 100

S10∗ 4 15 15 20 15 100 GP∗ 2 25 180 170 60 165
Ras∗ 2 10 20 95 15 45 Bh1∗ 2 20 20 30 25 75
SH∗ 2 390 255 840 155 20010 P8∗ 4 10 15 5 15 125
P16∗ 5 10 15 5 15 125 CB∗ 2 15 15 20 15 45
H3∗ 3 5 5 5 5 15 H6∗ 6 50 50 50 50 175

HM∗ 2 10 15 15 15 30 Le∗ 10 65 40 105 70 550

200



Mathematics 2022, 10, 3595

Table 5. The number of best function evaluations.

f n SHZ MHZ HZ HS FR f n SHZ MHZ HZ HS FR

Rn 10 3960 5060 24,990 5720 5610 Rn 30 7130 15,035 5890 18,290 13,020
Rn 50 35,955 19,125 24,990 33,150 22,440 Rn 80 18,630 32,400 74,520 10,125 37,260
Rn 100 24,240 27,775 89,385 67,670 71,205 Zn 10 660 660 1265 880 825
Zn 30 7595 10,230 27,125 27,125 25,110 Zn 50 29,070 46,155 113,985 90,015 96,135
Zn 80 75,735 126,765 330,480 353,565 283,095 Zn 100 168,670 257,045 640,845 610,545 514,595
PW 8 1620 1575 18,720 3375 2025 PW 32 9240 86,130 41,250 12,870 9240
PW 84 43,350 299,625 349,775 44,200 34,850 PW 120 64,735 332,145 334,565 47,795 52,635
SP 10 55 110 110 220 110 SP 30 310 310 310 620 310
SP 80 810 810 810 1620 1215 SP 100 1010 1010 1010 2020 1515
Tr 10 935 935 715 880 605 Tr 30 22,785 42,470 7130 10,850 6820
Tr 60 600,240 600,240 600,240 600,240 26,230 Tr 100 800,280 1,000,405 1,000,405 1,000,405 1,000,405
Su 100 7070 8080 9595 9595 7575 Su 80 5265 4455 6075 8100 5670
Su 50 2550 2805 3060 3570 2550 Su 30 1240 1240 1240 1395 1240
Su 10 220 275 220 275 220 BR 2 45 45 45 45 30
CV 4 1375 1375 3450 1850 3000 DJ 3 40 40 40 80 40
BO 2 45 45 80 60 60 Ma 2 90 60 60 F 45
S5∗ 4 75 100 100 125 125 S7∗ 4 75 75 75 150 100
S10∗ 4 75 75 100 75 100 GP∗ 2 75 540 510 180 165
Ras∗ 2 30 60 285 45 45 Bh1∗ 2 60 60 90 75 75
SH∗ 2 1170 765 2520 465 20,010 P8∗ 4 50 75 25 75 125
P16∗ 5 50 75 25 75 125 CB∗ 2 45 45 60 45 45
H3∗ 3 15 15 15 15 15 H6∗ 6 300 300 300 300 175

HM∗ 2 30 45 45 45 30 Le∗ 10 715 440 1155 770 550

Table 6. The average of time.

f n SHZ MHZ HZ HS FR f n SHZ MHZ HZ HS FR

Rn 10 1.463 1.441 3.316 2.436 3.215 Rn 30 2.771 3.702 6.831 6.934 6.816
Rn 50 5.571 6.123 13.288 12.286 13.258 Rn 80 10.149 11.273 19.529 21.934 22.283
Rn 100 14.761 15.973 29.596 29.495 32.934 Zn 10 0.083 0.091 0.139 0.137 0.115
Zn 30 1.336 1.365 2.477 3.220 2.290 Zn 50 5.445 5.297 11.689 11.293 10.938
Zn 80 24.818 27.532 58.547 55.403 50.910 Zn 100 53.552 51.210 107.859 104.313 109.531
PW 8 0.493 1.231 4.760 0.985 0.309 PW 32 1.783 6.812 21.873 6.496 1.085
PW 84 8.779 38.644 76.499 16.061 4.562 PW 120 16.955 72.473 113.171 29.623 7.631
SP 10 0.011 0.016 0.020 0.026 0.017 SP 30 0.021 0.032 0.033 0.042 0.036
SP 80 0.060 0.099 0.096 0.165 0.096 SP 100 0.075 0.137 0.125 0.191 0.148
Tr 10 0.183 0.084 0.068 0.144 0.069 Tr 30 2.948 2.891 1.982 24.737 1.256
Tr 60 63.990 73.812 80.235 58.588 70.106 Tr 100 90.259 130.122 134.463 145.078 135.992
Su 100 4.542 4.706 4.736 5.194 5.127 Su 80 2.288 2.753 2.839 2.948 2.716
Su 50 0.780 0.799 0.842 0.921 0.889 Su 30 0.294 0.265 0.298 0.296 0.247
Su 10 0.051 0.043 0.038 0.041 0.036 BR 2 0.022 0.024 0.022 0.019 0.045
CV 4 0.568 0.505 0.762 0.774 6.317 DJ 3 0.008 0.009 0.013 0.020 0.013
BO 2 0.014 0.014 0.016 0.016 0.016 Ma 2 0.026 0.026 0.017 F 0.019
S5∗ 4 0.107 0.321 0.166 0.297 0.162 S7∗ 4 0.231 0.204 0.180 0.554 0.273

S10∗ 4 0.124 0.180 0.208 0.432 0.194 GP∗ 2 6.068 7.927 5.410 11.203 3.164
Ras∗ 2 0.021 0.091 1.355 0.109 0.120 Bh1∗ 2 0.019 0.030 0.184 0.039 0.043
SH∗ 2 13.341 11.597 13.226 12.487 17.294 P8∗ 4 0.011 0.307 0.234 0.247 0.155
P16∗ 5 0.128 0.276 3.452 0.129 3.886 CB∗ 2 0.014 0.015 0.060 0.015 0.058
H3∗ 3 0.103 0.411 0.203 0.114 0.400 H6∗ 6 0.224 0.902 0.205 1.064 0.164

HM∗ 2 0.016 0.021 0.015 0.015 0.016 Le∗ 10 0.501 0.513 0.836 0.553 0.612
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Table 7. The average of number of iterations.

f n SHZ MHZ HZ HS FR f n SHZ MHZ HZ HS FR

Rn 10 1469.3 1479.3 3114.8 2517.2 2952.5 Rn 30 1273.4 1523.8 2877.9 2867.5 2721.5
Rn 50 1375 1530.6 3114.8 2746.4 2851.1 Rn 80 1379.2 1535.2 2524.7 2885.5 2593.2
Rn 100 1403.9 1421.2 2821 2839 2809.7 Zn 10 104.61 108.92 168.04 155.2 142.16
Zn 30 654.02 674.22 1229.3 1187.3 1078.8 Zn 50 1491.3 1479.2 2947.1 2914.6 2817
Zn 80 3378.6 3298.6 6529 6519.2 6185.1 Zn 100 5125.6 4818.4 9066.1 8703.7 9048.1
PW 8 697.16 1731.6 5774.2 1339.6 441.47 PW 32 1042.5 3675 8852.9 2993.3 660.1
PW 84 1665.2 5767.7 9547.3 2632.5 817.55 PW 120 1774.8 6851.4 9424 2964.5 897.55
SP 10 10.294 16.765 16.471 23.824 18.529 SP 30 10.784 17.941 18.627 25.294 21.176
SP 80 11.176 19.118 19.216 26.471 19.412 SP 100 10.588 19.314 18.725 26.765 20.98
Tr 10 283.24 125.88 100.59 182.06 96.961 Tr 30 1713.5 1610.5 1053 7268.8 649.41
Tr 60 9840 9840 9840 9840 9117.5 Tr 100 9880 9905 9905 9905 9905
Su 100 116.08 112.35 152.06 147.94 141.86 Su 80 96.373 99.02 134.9 137.25 117.35
Su 50 76.667 72.353 95.98 95.686 89.51 Su 30 58.725 54.314 70.392 69.608 57.255
Su 10 32.451 29.706 31.961 33.627 29.706 BR 2 36.961 32.255 35.686 31.667 49.902
CV 4 704.41 634.9 1114.1 1015.2 3365.8 DJ 3 11.078 11.373 21.176 31.275 18.824
BO 2 24.608 23.824 29.02 28.235 27.451 Ma 2 58.824 60.882 39.902 F 40.882
S5∗ 4 52 106.5 76.75 255.25 66.75 S7∗ 4 73.25 73 61.25 387.75 76.5

S10∗ 4 40.25 49.75 57.75 172.75 51.75 GP∗ 2 2053.8 3273.3 2340.3 4125 1381
Ras∗ 2 21.5 68.25 802.25 86.25 88.25 Bh1∗ 2 28.5 33.25 119.5 38 42.5
SH∗ 2 5927.5 5855 6184.5 6344.3 6670 P8∗ 4 13.25 771.5 575.25 603.75 367.5
P16∗ 5 13.25 771.5 575.25 603.75 367.5 CB∗ 2 19.75 19 50.75 19.75 47.5
H3∗ 3 92.25 201.25 225.5 104.75 450 H6∗ 6 108.25 250 130.25 580.5 103.75

HM∗ 2 19.75 20.25 19 19.25 19 Le∗ 10 303.5 323.25 550.75 375 379

Table 8. The average of number of function evaluations.

f n SHZ MHZ HZ HS FR f n SHZ MHZ HZ HS FR

Rn 10 16,163 16,273 158,855 27,689 32,477 Rn 30 39,476 47,239 89,216 88,894 84,366
Rn 50 70,125 78,060 158,855 140,065 145,405 Rn 80 111,717 124,351 204,501 233,725 210,052
Rn 100 141,796 143,539 284,919 286,741 283,780 Zn 10 1151 1198 1848 1707 1564
Zn 30 20,275 20,901 38,109 36,805 33,444 Zn 50 76,055 75,440 150,300 148,645 143,665
Zn 80 273,669 267,189 528,851 528,057 500,993 Zn 100 517,684 486,662 915,674 879,076 913,862
PW 8 6274 15,584 51,968 12,057 3973 PW 32 34,404 121,275 292,147 98,780 21,783
PW 84 141,542 490,258 811,517 223,758 69,492 PW 120 214,751 829,016 1,140,306 358,706 108,603
SP 10 113 184 181 262 204 SP 30 334 556 578 784 657
SP 80 905 1549 1557 2144 1572 SP 100 1069 1951 1891 2703 2119
Tr 10 3116 1385 1107 2003 1067 Tr 30 53,119 49,925 32,644 225,333 20,132
Tr 60 600,240 600,240 600,240 600,240 556,165 Tr 100 800,280 1,000,405 1,000,405 1,000,405 1,000,405
Su 100 11,724 11,348 15,358 14,942 14,328 Su 80 7806 8021 10,927 11,118 9506
Su 50 3910 3690 4895 4880 4565 Su 30 1821 1684 2182 2158 1775
Su 10 357 327 352 370 327 BR 2 111 97 107 95 150
CV 4 3522 3175 5571 5076 16,829 DJ 3 44 46 85 125 75
BO 2 74 72 116 85 82 Ma 2 177 183 120 F 123
S5∗ 4 260 533 384 1276 334 S7∗ 4 366 365 306 1939 383
S10∗ 4 201 249 289 864 259 GP∗ 2 6161 9820 7021 12,375 4143
Ras∗ 2 65 205 2407 259 265 Bh1∗ 2 86 100 359 114 128
SH∗ 2 17,783 17565 18,554 19,033 20,010 P8∗ 4 66 3858 2876 3019 1838
P16∗ 5 66 3858 2876 3019 1838 CB∗ 2 59 57 152 59 143
H3∗ 3 369 805 902 419 1800 H6∗ 6 758 1750 912 4064 671

HM∗ 2 59 61 57 58 57 Le∗ 10 3339 3556 6058 4125 4169

The stopping criteria of Algorithm 1 are as follows.

4.1. Stopping Criteria of Algorithm 1

Since this section focuses in finding a local minimizer of all test problems, the stopping
criteria of Algorithm 1 can be defined as follows.

According to the discussions of the convergence analysis which are mentioned in the
previous sections, the stopping criterion of Algorithm 1 is, if ‖g(xk)‖ ≤ ε1 is satisfied,
Algorithm 1 stops, where ε1 ∈ [10−6, 10−8]. However, the exact value of the gradient
vector is unknown since the value of the gradient vector is estimated by Formula (46);
therefore, this condition is replaced by ‖DFFk‖ ≤ ε2 or FEs = n104, i.e., if one of them
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is met, Algorithm 1 stops, where ε2 ∈ [10−7, 10−9], FEs denotes the maximum function
evaluations and n is the number variables of the f .

In the following section, the performance profile is presented as an easy tool to compare
the performance of our proposed method versus other methods in finding local minimizers
of convex or non-convex functions regarding the worst and best numbers of iterations and
function evaluations, the average of CPU time and the average of iterations and function
evaluations, respectively.

4.2. Performance Profiles

The performance profile is the best tool for testing the performance of the proposed
algorithms [80–84].

In this paper, the five algorithms’ performance evaluation standards are as follows:
the worst and best numbers of iterations and function emulations, and the average of the
CPU time, iterations and function emulations. They are abbreviated as itr.w, itr.be, FEs.w,
FEs.be, time.a, itr.a and EFs.a, respectively. In the remainder of the paper, the set Fit will be
used to denote the seven criteria; Fit = {itr.w, itr.be, FEs.w, FEs.be, time.a, itr.a, EFs.a}.

Therefore, the numerical outcomes are presented in the form of performance profiles,
as depicted in [82]. The most important characteristic of the performance profiles is that they
can be shown in one figure by plotting for the different solvers a cumulative distribution
function ρs(τ).

The performance ratio is defined by first setting rp,s =
tp,s

min{tp,s :s∈S} , where p ∈ P, P is
a set of test problems, S is the set of solvers, and tp,s is the value obtained by solver s on
test problem p.

Then, define ρs(τ) =
1
|P|size{p ∈ P : rp,s ≤ τ}, where |P| is the number of test problems.

The value of ρs(1) is the probability that the solver will win over the remaining ones,
i.e., it will yield a value lower than the values of the remaining ones.

In the following, the performance profiles are utilized to evaluate the performance of
the five methods: SHZ, MHZ, HZ, SH and FR.

Therefore, in this paper, the term tp,s indicates one element of the set Fit, |P| = 46 is
the number of test problems. We have 46 unconstrained test problems, 14 of which include
non-convex functions. The group of solvers S = {SHZ, MHZ, HZ, SH, FR} finds the local
minimizers of the 46 test problems; therefore, the values of the Fit are taken from the results
of the 46 test problems as follows.

Each solver s of the set S is run 51 times for each of the 46 problems; at each run, every
element of the set Fit has owned its value. So, they are analyzed in the following.

rp,s =

⎧⎨
⎩

fitp,s
min{fitp,s :s∈S} if the s pass to solve the p,

∞ otherwise,
(56)

where fitp,s is an element of the Fit for the test problem p by using the solver s.
Note: Formula (56) means that if the final result, obtained by a solver s ∈ S, satisfies

Inequality (57), then the first branch of (56) is computed. Otherwise, we set rp,s = ∞.

‖DFFk‖ ≤ ε2 , (57)

where ε2 ∈ [10−5, 10−9].
Therefore, the performance profile of solver s is defined as follows:

δ(rp,s, τ) =

{
1 if rp,s ≤ τ,
0 otherwise,

(58)
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Therefore, the performance profile for solver s is then given by the following function:

ρs(τ) =
1
|P|

{
∑
p∈P

δ(rp,s, τ)
}

, τ ≥ 1. (59)

As we mentioned above, |P| = 46 and τ ∈ [1, 60].
By definition of Fitp,s, ρs(1) denotes the fraction of test problems for which solver s

performs the best. In general, ρs(τ) can be explained as the probability for solver s ∈ S that
the performance ratio rp,s is within a factor τ of the best possible ratio. Additionally, the es-
sential characteristic of performance profiles is that they present data on the proportional
performance of numerous solvers [82,83].

The numerical outcomes of the five methods are analyzed by using the performance
profiles as follows. Figures 1–4 show the performance profiles of the set solvers S, for each
element of the set Fit, respectively.

The performance profile depicted on the left of Figure 1 (in the term itr.w) compares
the five techniques for a set of the 46 test problems.

The SHZ method has the best performance for the 46 test problems; this means that
our suggested approach is capable of finding a local minimizer to the 46 test problems as
fast as, or faster than, the other four approaches.

For instance, if τ = 1, the SHZ technique is capable of finding the local minimizer for
65% of problems versus the 33%, 20%, 20% and 13% of a set of test problems solved by the
MHZ, HS, FR and HZ methods, respectively.

In general, the term itr.w, τ = 60 displays that all test problems are solved by SHZ
against 96% of test problems solved by the MHZ, HZ and FR methods respectively, while
93% of test problems are solved by the HS method. At τ ≥ 400, all test problems are solved
by the MHZ, HZ and FR methods respectively, while 98% of test problems are solved by
the HS.

The right graph of Figure 1 shows that the method SHZ is capable of finding the local
minimum of all test problems regarding term FEs.w.

The rest of Figures 2–4 show that the SHZ algorithm is superior to the four algorithms
regarding the rest of the terms of the set Fit.

Therefore, the SHZ technique includes the characteristics of efficiency, reliability and
effectiveness in solving Problem (1) compared to the other four methods.

Note: The power of the SHZ technique comes from the fact that the SHZ method gains
the features of the four methods MHZ, HZ and HS, as we mentioned in Section 2.

Figure 1. Cont.
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Figure 1. Plotting the results of the terms itr.w and FEs.w for 5 algorithms.

Figure 2. Plotting the results of the terms itr.be and FEs.be for 5 algorithms.

Part II: Global Minimization Problem

It is worth mentioning that the final results of Part I for the second set of test problems
contain some global minimizers at some runs for some non-convex functions. This means
that the pure CG technique could not find the global minimizer of the second type of test
problems for each run because it is a local method.

Therefore, to make this method capable of solving Problem (2) per run, the random
technique is proposed and it is added to the CG approach to gain a new PS-CG hybrid
technique that solves Problem (2). In many studies, the numerical outcomes indicated that
the interbreed between a classical method and a random technique is very successful in
overcoming the weakness of these methods. See [55–59].

205



Mathematics 2022, 10, 3595

Figure 3. Plotting the results of the term time.a “CPU” for 5 algorithms.

Figure 4. Plotting the results of the terms itr.a and FEs.a for 5 algorithms.

Consequently, this part of the paper seeks to solve Problem (2).
Therefore, each method of the five CG methods mentioned in Part I is hybridized with

the stochastic technique to obtain five algorithms to try to solve Problem (2).
In the next section, a stochastic technique is presented.

5. Random Technique

In this section, a new random parameter “SP” is presented. This stochastic technique
contains three different formulas by which three different points are generated. This
set of formulas is combined with the CG method to obtain a new algorithm that solves
Problem (2).
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Random Parameters (SP Technique)

Step 1: The first point is computed as follows, generate Vk ∼ [−1, 1]n is as a random
vector, set γk = 10ψk , ψk ∈ [0.01, 1), where the interval [0.01, 1) is divided into Itr of fractions
and at every iteration k, the parameter ψk takes one value of the Itr and then computes

λk =
(1+γk )

|Vi |

γk
SVi as a research direction with the step lengths, where i = 1, 2, . . . , n, n is

the of number variables, Itr is the number of iterations, and SVi denotes the signs of the V
and is defined by

SVi =

{
−1 if Vi < 0,

1 otherwise.
(60)

Thus, a point is calculated as follows:

x1 = xac + λk , (61)

where xac is the best point obtained yet, and then we compute f1 = f (x1).
Step 2: The second point is defined by

x2 = xac + ηk Bk , (62)

where Bk = ϕk dk , ϕk is defined by (47), ηk ∈ (0, 2) is a random number, and the dk is
defined by (23). Then, we compute f2 = f (x2).

Step 3: This point is defined by

x3 = Xw +
1
2

Dx, (63)

where Dx =
(1+μk )

|Vi |−1
μk+0.1 SVi , μk = | fac|2, fac is the function value at the point xac that has

been accepted, and Xw is a stochastic variable picked from the feasible range of the objective
function. This means that for Xw ∼ [a, b]n, a and b are the lower and upper bounds of the
feasible range, respectively, and the random vector V with its signs SVi is defined by the
first step.

Therefore, we calculate f3 = f (x3).
For finding the global minimizer of a non-convex function, the above stochastic

technique is used since Algorithm 1 is not capable of finding the global solution at each run.
In other words, in some runs, Algorithm 1 fails to find the global solution to this function
due to it sticking to a local point.

In the following example, we show how the SP algorithm is run.
Example: This example shows how the three steps of the SP algorithm are implemented.
We use the first test problem of the list of the test problems that are listed in Appendix A.

R2(x) = 100(x2
1
− x2)

2 + (x1 − 1)2, to facilitate an explanation of the mechanism of using
the Sp algorithm (Formulas (61)–(63)), we use the following easy information about the
function R2(x), n = 2 is the number of the variables, xac = [2;−1], or xac = [2; 1], where
xac represents the best solution has been accepted so far or the starting point; hence, the
function values at the two points are R2(xac) = 100(22 + 1)2 + (2− 1)2 = 2500 + 1 = 2501
and R2(xac) = 100(22 − 1)2 + (2− 1)2 = 900 + 1 = 901.

Supposing Itr = 5 is the number of iterations, the interval [0.01; 1) is divided into five
fractions with step size 1−0.01

5 = 0.198, and thus the set of this fractions is
A = {0.01, 0.208, 0.406, 0.604, 0.802}, let k be 3 which means the algorithm is at the
third iteration. Then, ψ3 = 0.406, γ3 = 10ψ3 = 100.406 = 2.5468. Let V3 be [−0.5; 1], then

λ3 =

[
(1+2.5468)|−0.5|

2.5468 ×−1; (1+2.5468)|1|
2.5468 × 1

]
=

[
− 1.8833

2.5468 ; 3.5468
2.5468

]
=

[
− 0.73948; 1.3926

]
.

Therefore, the new solution is computed by Formula (61) as follows.
x1 = xac + λ3 = [2;−1] + [−0.73948; 1.3926] = [1.2605; 0.3926] or x1 = xac + λ3 =

[2; 1] + [−0.73948; 1.3926] = [1.2605; 2.3926].
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The function values at both points are as follows.
R2(x1) = 100(1.26052 − 0.3926)2 + (1.2605− 1)2 = 143.1 + 0.06786 = 143.17 or R2(x1) =
100(1.26052 − 2.3926)2 + (1.2605− 1)2 = 64.6 + 0.06786 = 64.668.

Therefore, R2(x1) < R2(xac); this means the solution that is generated by Formula (61)
reduces the function value.

In the following, we explain how the candidate solution is generated by Formula (62).
Let Mε = 1.2× 10−6. By using Formula (45), we obtain h3 = 4.381× 10−5 as the

step size h (a random interval) to the difference approximations method, and then we
have xh1

= [xac(1) + h3 ; xac(2)] = [2 + 4.381× 10−5;−1], xh2
= [xac(1); xac(2) + h3 ] =

[2; −1 + 4.381× 10−5].
Therefore, the values of the function at the three points xac, xh1

and xh2
are listed in

the following.
R2(xac) = 2501, R2(xh1

) = 2501.175 and R2(xh2
) = 2500.956.

We compute the approximate value of the gradient vector by Formula (46) as follows:

DFF(xac) =

[
2501.175− 2501

4.381× 10−5 ;
2500.956− 2501

4.381× 10−5

]
=
[
3994.522; −1004.34

]
,

ϕ3 = 2501
‖DFF‖2 = 0.0002, where ϕ3 is defined by (47).

We consider d3 = −g(xac) ≈
[− 3994.522; 1004.34

]
because we do not have informa-

tion about the value of the d2 in this illustration example.
Now, we apply Formula (62), as follows B3 = ϕ3 d2 = [−0.799; 0.201], we take

η3 = 0.971 as a random number from the range (0, 2), then x2 = [2;−1] + 0.971 ×
[−0.799; 0.201] = [1.2242; −0.80483], the function value at the point x2 is R2(x2) = 530.66.

We note that the R2(x2) = 530.66 < R2(xac) = 2501, i.e., the function value is reduced
by the point x2 .

In the following, we explain how the candidate solution is generated by Formula (63).

μ3 = | fac|2 = 25012 = 6,255,001, Dx =
[ (1+6,255,001)|−0.5|−1

6,255,001+0.1 × −1; (1+6,255,001)|1|−1
6,255,001+0.1 ×

1
]
=
[− 2501−1

6,255,001.1 ; 6,255,002−1
6,255,001.1

]
=
[− 0.0004; 0.999

]
. Xw = [−3.095; 8.701] is as a random

vector picked from the range [−5, 10]2, and then x3 = [−3.095; 8.701]+ 1
2 [−0.0004; 0.999] =

[−3.095; 8.701] + [−0.0002; 0.4995] = [−3.0952; 9.2005].
We compute the function value at the point x3 ; R2(x3) = 100((−3.0952)2 − 9.2005)2 +

(−3.0952− 1)2 = 14.422 + 16.771 = 31.193.
We note that the R2(x3) = 31.193 < R2(xac) = 2501. Therefore, the point x3 minimizes

the function value.
According to the above example that illustrates the mechanism of Formulas (61)–(63),

we deduce the following results.

Remark 1. Formulas (3), (61) and (62) are the main formulas which are used in the new hybrid
proposed algorithm that is described in Section 6. However, Formula (63) is used when Δ f = 0 that
is defined by Formula (25); in this case, Algorithm 3 reaches a critical point, thus if this point is
the approximate value of the global minimizer point of the f , then Algorithm 3 stops according to
the condition in Line 4 or Line 1 of Algorithm 3. Otherwise, the candidate solution is generated by
Formula (63); see Section 6. Consequently, in this example, at iteration k = 3, the result which is
obtained by Formula (63) cannot be taken into account due to the Δ f 
= 0.

Remark 2. All Formulas (61)–(63) minimize the function value from any starting point.

6. Hybridization of the CG Method with Stochastic Parameters

When a stochastic method as a global optimization algorithm is combined with a
globally convergent method (deterministic method), the result is a global optimization
algorithm [55,56].

Therefore, the SP technique is hybridized with each of the five conjugate gradient
methods SHZ, MHZ, HZ, HS and FR to obtain five techniques.
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Our proposed algorithm is called a hybrid stochastic CG method abbreviated by
HSSHZ that solves Problem (2). However, Algorithm 3 represents five alternative algo-
rithms when the SHZ method is hybridized with the PS technique, then we obtain a new
algorithm abbreviated by HSSHZ. When we combine any method of MHZ, HZ, HS or FR,
we obtain four other abbreviations of algorithms as follows: HSMHZ, HSHZ, HSHS and
HSFR, respectively.

In general, the outputs of this paper are five algorithms that solve Problem (2), where
the best one is the HSSHZ algorithm as illustrated by the numerical experiments section of
Part II.

In the following, Algorithm 1 is combined with SP technique to obtain Algorithm 3.
The SP method permits conducting an exhaustive wipe of the search range to guarantee

that the global minimizer point is visited at least once per run.

Algorithm 3 Hybrid stochastic CG method.

Input: f : Rn → R, f ∈ C1, fac = fcg gained by Algorithm 1 and ε > 0.
Output: xgl = xac the global minimizer of f , f (xgl ), the value of f at xgl .

1: while | fac − f ∗| > ε or FEs< n104 do
2: fcg is a function value f gained by Algorithm 1.
3: fac = min{ fcg, f1 , f2} and xac the best point gives the fac.
4: if | fac − f ∗| ≤ ε then
5: Stop.
6: end if
7: if� f == 0 then
8: calculate the x3 and the f3 = f (x3) by Formula (63).
9: if f3 < fac then

10: the x3 is accepted, compute the xac → x3 , fac → f3 , and go to Line 1.
11: else
12: generate another point x3 by Formula (63).
13: end if
14: else
15: go to Line 1.
16: end if
17: end while
18: return xac the best point and its function value fac

A Mechanism Running Algorithm 3

As we mentioned above, Algorithm 3 is a combination of two methods; the first is
a CG method of the five techniques CG = {SHZ, MHZ, HZ, SH, FR} that are discussed
in Part I, and the second is a random method is depicted by Section 5. The point xcg is
obtained by Algorithm 1 and it will be an input to Algorithm 3.

Algorithm 3 begins with Line 1 that is the stopping standard of the algorithm. There-
fore, Algorithm 3 ends if one of the following standards is satisfied: The first standard
is | fac − f ∗| ≤ ε, and the second standard is FEs≥ n104, where fac the best value of the
function f is gained, the f ∗ is the true solution, ε = 10−6, FEs is the number of function
evaluations, and FEs = n104 is a stopping standard indicated by [85,86].

In Line 3, the best value of f is selected from the three values of the function fcg, f1 and
f2 , and indicated by fac, the three values of the function f are calculated by Algorithms (1),
(61) and (62), respectively, and xac indicates this.

In Line 4, if | fac − f ∗| ≤ ε is fulfilled, the algorithm ends. The standard that is listed
in Line 7 gives the algorithm an opportunity to flee from the local points. Consequently,
if � f = 0, then the algorithm has reached a crucial point. Therefore, if the norm of the
gradient vector is 0 or ≈0, this point is either a local point or the global point. According to
the above actions, the hybrid algorithm has been granted sequential opportunities to escape
out of a snare (a local point). Thus, the procedures in Lines 8–12 are eligible for helping the
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algorithm to flee this snare, especially since the second stopping standard guarantees that
most of the research domain is scanned.

The numerical outcomes of the five methods are given in the next section.

7. Numerical Experiments of Part II

The numerical results for the second test problems (non-convex functions) are pre-
sented, and these results are obtained by Algorithm 3.

The performance profiles tool that is described in Part I is used here for assessing the
achievement of Algorithm 3 that contains five alternatives of algorithms as we mentioned
above in Section 6.

The numerical results of the second type of the test problems are listed in Tables 9–15.
Columns 1–2 and 8–9 contain the abbreviation of the function f and the number of the
unknowns n, respectively. Columns 3–7 contain the abbreviation of each algorithm of the
five algorithm HSSHZ, HSMHZ, HSHZ, HSHS and HSFR, which present the number of
worst iterations, number of worst function evaluations, number of best iterations, number
of best function evaluations, average of time (CPU), average of number of iterations and
average of number of function evaluations, respectively. Columns 10–14 are similar to
Columns 3–7.

Note: F denotes that the algorithm has failed to find the local minimizer of the function
f according to the stopping criteria of Algorithm 3 which are listed in Section 6.

Table 9. The number of worst iterations.

f n HSSHZ HSMHZ HSHZ HSHS HSFR f n HSSHZ HSMHZ HSHZ HSHS HSFR

S5∗ 4 3150 55 85 F F S7∗ 4 10,000 F 10,000 F F
S10∗ 4 710 F 3020 F F HM∗ 2 40 100 95 75 180
H∗ 3 300 590 1155 465 1270 H∗ 6 50 500 300 9550 F

CB∗ 2 55 145 15 200 90 P8∗ 4 20 15 15 550 10
P16∗ 5 755 835 3280 F 7300 SH∗ 2 100 115 200 250 190
Bh1∗ 2 205 F F F F Ras∗ 2 1310 F F F F
GP∗ 2 20 F F 300 F Le∗ 10 2470 1430 F F 3100

Table 10. The number of worst function evaluations.

f n HSSHZ HSMHZ HSHZ HSHS HSFR f n HSSHZ HSMHZ HSHZ HSHS HSFR

S5∗ 4 12,600 220 340 F F S7∗ 4 40,000 F 40,000 F F
S10∗ 4 2840 F 12,080 F F HM∗ 2 120 200 190 150 360
H∗ 3 900 1770 3465 1395 3810 H∗ 6 300 3000 1800 57,300 F

CB∗ 2 110 290 30 400 180 P8∗ 4 80 60 60 2200 40
P16∗ 5 3775 4175 16,400 F 36,500 SH∗ 2 200 230 400 500 380
Bh1∗ 2 410 F F F F Ras∗ 2 2620 F F F F
GP∗ 2 40 F F 600 F Le∗ 10 24,700 14,300 F F 31,000

Table 11. The number of best iterations.

f n HSSHZ HSMHZ HSHZ HSHS HSFR f n HSSHZ HSMHZ HSHZ HSHS HSFR

S5∗ 4 50 35 55 F F S7∗ 4 750 F 520 F F
S10∗ 4 20 F 70 F F HM∗ 2 15 10 10 10 5
H∗ 3 50 60 85 20 130 H∗ 6 50 100 100 50 F

CB∗ 2 15 10 10 50 10 P8∗ 4 5 5 5 50 5
P16∗ 5 150 35 80 F 40 SH∗ 2 10 10 10 50 10
Bh1∗ 2 20 F F F F Ras∗ 2 10 F F F F
GP∗ 2 15 F F 50 F Le∗ 10 400 120 F F 395

210



Mathematics 2022, 10, 3595

Table 12. The number of best function evaluations.

f n HSSHZ HSMHZ HSHZ HSHS HSFR f n HSSHZ HSMHZ HSHZ HSHS HSFR

S5∗ 4 200 140 220 F F S7∗ 4 3000 F 2080 F F
S10∗ 4 80 F 280 F F HM∗ 2 45 20 20 20 10
H∗ 3 150 180 255 60 390 H∗ 6 300 600 600 300 F

CB∗ 2 30 20 20 100 20 P8∗ 4 20 20 20 200 20
P16∗ 5 725 175 400 F 200 SH∗ 2 20 20 20 100 20
Bh1∗ 2 40 F F F F Ras∗ 2 20 F F F F
GP∗ 2 30 F F 100 F Le∗ 10 4000 1200 F F 3950

Table 13. The average of time.

f n HSSHZ HSMHZ HSHZ HSHS HSFR f n HSSHZ HSMHZ HSHZ HSHS HSFR

S5∗ 4 0.720 0.050 0.046 F F S7∗ 4 7.368 F 13.249 F F
S10∗ 4 0.151 F 0.885 F F HM∗ 2 0.017 0.031 0.028 0.021 0.053
H∗ 3 0.186 0.353 0.409 0.271 0.361 H∗ 6 0.057 0.194 0.143 4.712 F

CB∗ 2 0.018 0.025 0.010 0.049 0.030 P8∗ 4 0.014 0.015 0.009 0.116 0.007
P16∗ 5 0.319 0.135 0.683 F 1.606 SH∗ 2 0.028 0.037 0.050 0.084 0.039
Bh1∗ 2 0.039 F F F F Ras∗ 2 0.261 F F F F
GP∗ 2 0.015 F F 0.078 F Le∗ 10 1.221 0.627 F F 2.087

Table 14. The average of number of iterations.

f n HSSHZ HSMHZ HSHZ HSHS HSFR f n HSSHZ HSMHZ HSHZ HSHS HSFR

S5∗ 4 416.7 47 67 F F S7∗ 4 5928.7 F 8648 F F
S10∗ 4 131.3 F 589 F F HM∗ 2 24.3 29 34.8 25.8 50.8
H∗ 3 213.3 268.8 373.3 247 333.8 H∗ 6 50 205 177.5 2382.5 F

CB∗ 2 26 23.3 12.8 57.5 36.8 P8∗ 4 12 11 10.5 267.5 6.3
P16∗ 5 376 171.25 878.8 F 2208.5 SH∗ 2 30.3 39 48.5 65 41.5
Bh1∗ 2 74.3 F F F F Ras∗ 2 346.7 F F F F
GP∗ 2 18 F F 62.5 F Le∗ 10 1012.7 506 F F 1380.3

Table 15. The average of number of function evaluations.

f n HSSHZ HSMHZ HSHZ HSHS HSFR f n HSSHZ HSMHZ HSHZ HSHS HSFR

S5∗ 4 1666.7 188 268 F F S7∗ 4 23,714.7 F 34,592 F F
S10∗ 4 525.3 F 2356 F F HM∗ 2 73 58 69.5 51.5 101.5
H∗ 3 640 806.3 1119.8 741 1001.3 H∗ 6 300 1230 1065 14,295 F

CB∗ 2 52 46.5 25.5 115 73.5 P8∗ 4 48 44 42 1070 25
P16∗ 5 1880 856.3 4393.8 F 11,042.5 SH∗ 2 60.7 78 97 130 83
Bh1∗ 2 148.7 F F F F Ras∗ 2 693.3 F F F F
GP∗ 2 36 F F 125 F Le∗ 10 10,126.7 5060 F F 13,802.5

The performance profiles for the five algorithms are analyzed as follows.
Figures 5–8 show the performance profiles of the five set solvers S regarding the set

standard Fit that is mentioned in Section 4.2.
The performance profiles which are drawn on the left of Figure 5 (in the term itr.w)

compares 5 methods for the 14 test problems.
The HSSHZ technique has a good achievement (for the term itr.w) for all test problems,

which indicates that the HSSHZ technique is capable of solving Problem (2) as fast as or
faster than the four techniques.

For instance, if τ = 1, the HSSHZ algorithm solves 71% of the 14 test problems against
14%, 14%, 7% and 0%, of the 14 test problems solved by the HSMHZ, HSHZ, HSFR and
HSHS algorithms, respectively.

In general, for the term itr.w, τ ≥ 60 exhibits that the second type of the test problems
are solved by HSSHZ, while 64%, 71%, 43% and 50% of test problems are solved by the
HSMHZ, HSHZ, HSHS and HSFR algorithms respectively.
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Figures 5–8 demonstrate that the performance of the HSSHZ technique is better than
the performance of the four techniques regarding the seven standards listed in the set Fit,
respectively.

Therefore, the HSSHZ technique includes the characteristics of efficiency, reliability
and effectiveness in finding the global minimizer of the non-convex function f compared
to the other four methods.

It is worth observing that the power of the HSSHZ algorithm comes from the fact that
the SHZ method gains the features of the four methods, MHZ, HZ, HS and FR, as mentioned
in Section 2.

Note 1: In Algorithm 3, a run is considered successful if Inequality (64) is met.

| fac − f ∗| ≤ 10−5, (64)

where f ∗ is the exact global solution that is listed in Columns 3 and 7 of Table 1, respectively,
and the fac is the final result obtained by Algorithm 3.

Note 2: Formula (56) means if the final result fac , obtained by Algorithm 3 satisfies
Inequality (64), then the first branch of (56) is computed; otherwise, we set rp,s = ∞.

Figure 5. Plotting the results of the terms itr.w and FEs.w for 5 algorithms.
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Figure 6. Plotting the results of the terms itr.be and FEs.be for 5 algorithms.

Figure 7. Plotting the results of the term time.a “CPU” for 5 algorithms.
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Figure 8. Plotting the results of the terms itr.a and FEs.a for 5 algorithms.

8. Conclusions and Future Work

A new modified CG algorithm is suggested, named SHZ. The SHZ finds the local
minimizers of unconstrained optimization problems. The modernized formulae of the SHZ
algorithm are more complicated than previous approaches; nevertheless, the numerical
experiments of the SHZ are very strong. The convergence analysis of the SHZ algorithm
is designed. We also analyzed the gradient approximation g(x) ≈ DFF constructed by
finite differences (the forward differences method). This method includes a new approach
for selecting the fit value of the h according to the value of the objective function and
it is updated dynamically at each iteration. The numerical results demonstrate that the
performance of the SHZ method is positively competitive with the other four conjugate
gradient methods based on performance profiles.

Comparing the final results of the gradient vector that were obtained by the method
DFF to the exact values of the gradient vector demonstrates that the fresh technique
succeeded in picking the right value of h. The proposed random approach recreates a critical
role to make the SHZ method capable of finding the global minimizers of unconstrained
optimization test problems, especially when the objective function is non-convex.

It can be worth observing that the power of the HSSHZ algorithm comes from the fact
that the SHZ method gains the characteristics of the four methods, MHZ, HZ, HS and FR.

The suggested approach can be improved and modified to deal with constrained,
multi-objective optimization problems, and it will be used for image restorations.
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Appendix A. List of Test Problems

1 Rn: Rosenbrock functions [57,87,88]

min
x

{ n−1

∑
i=1

[
100(x2

i − xi+1)
2 + (xi − 1)2

]}
.

Range of starting points −5 < xi < 10, i = 1, 2, . . . , n.
Global minima: f (x∗) = 0 at x∗ =

(
1, 1, . . . , 1

)
.

2 Zn: Zakharov functions [57,80,87,88]

min
x

{ n

∑
i=1

x2
i +

( n

∑
i=1

0.5ixi

)2
+
(

∑ 0.5ixi

)4
}

.

Range of starting points −5 < xi < 10, i = 1, 2, . . . , n.
Global minima: f (x∗) = 0 at x∗ =

(
0, 0, . . . , 0

)
.

3 PW: Powell function [80]

min
x

{ n
4
∑

i=1

[
(x4i−3 + 10x4i−2)

2 + 5(x4i−1 − x4i)
2 + (x4i−2 − 2x4i−1)

4

+ 10(x4i−3 − x4i)
4
]}

. Range of starting points −600 < xi < 600, i = 1, 2, . . . , n.

Global minima: f (x∗) = 0 at x∗ =
(
0, 0, . . . , 0

)
.

4 SP: Sphere function [89]

min
x

{ n

∑
i=1

x2
i

}
.

Range of starting points −10 ≤ xi ≤ 10, i = 1, 2, . . . , n.
Global minima: f (x∗) = 0 at x∗ =

(
0, 0, . . . , 0

)
.

5 Tr: Trid function [80]

min
n

∑
i=1

(xi − 1)2 −
n

∑
i=2

xixi−1 .

Range of starting points −n2 < xi < n2, i = 1, 2, . . . , n.
Global minima : f (x∗) = n(n+4)(n−1)

6 . at x∗ = i(n + 1− i)
6: Sum Squares function [90]

min
x

{ n

∑
i=1

ix2
i

}
.

Range of starting points −100 < xi < 100, i = 1, 2, . . . , n.
Global minima: f (x∗) = 0 at x∗ =

(
0, 0, . . . , 0

)
.

7 CV: Colville function [57,80,91]

min
x

{
100

(
x2

1 − x2
)2

+
(

x1 − 1
)2

+
(

x3 − 1
)2

+ 90
(

x2
3 − x4

)2

+ 10.1
((

x2 − 1
)2

+
(

x4 − 1
)2
)
+ 19.8

(
x2 − 1

)(
x4 − 1

)2
}

.
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Range of starting points −10 < xi < 10, i = 1, 2, . . . , n.
Global minima: f (x∗) = 0 at x∗ = (1, 1, 1, 1).

8 BR: Branin function [57,92,93]

min
x

{
(x2 − 5.1

4π2 x2
1 +

5
π x1 − 6)2 + 10(1− 1

8π cos(x1)) + 10
}

.

Range of starting points −5 < xi < 15, i = 1, 2.
Only one global minima: f (x∗) = 0.397887. at x∗ = {(−π, 12.275),
(9.42478, 2.475), (π, 2.275)}.

9 DJ: De Joung function [57,87,88]

min
x

{
x2

1 + x2
2 + x2

3

}
.

Range of starting points −5 < xi < 15, i = 1, 2, 3.
Number of local minima: no local minima.
Global minima: f (x∗) = 0 at x∗ = (0, 0, 0).

10 BO: Booth function [89]

min
x

{
(x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2

}
.

Range of starting points −10 < xi < 10, i = 1, 2, . . . , n.
Global minima: f (x∗) = 0 at x∗ =

(
1, 3

)
.

11 Ma: Matyas function [90]

min
x

{
0.26

(
x2

1
+ x2

2

)
− 0.48x1 x2

}
.

Range of starting points −10 < xi < 10, i = 1, 2, . . . , n.
Global minima: f (x∗) = 0 at x∗ =

(
0, 0

)
.

12 Sm∗: Shekel functions [57,80,87,88,92–94]

min
x

{
−

m

∑
j=1

( 4

∑
i=1

(
xi − Aij

)2
+ cj

)−1
}

.

where c = 0.1[1, 2, 2, 4, 4, 6, 3, 7, 5, 5],

A =

⎡
⎢⎢⎣

4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.0
4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.0

⎤
⎥⎥⎦

Range of starting points 0 < xi < 10, i = 1, . . . , n.
Number of local minima: m local minima.
Global minima:

f (x∗)n,m =

⎧⎨
⎩
−10.1532 , when m = 5,
−10.4029 , when m = 7,
−10.5364 , when m = 10.

Global minima for three functions at x∗ =
(
4, 4, 4, 4

)
.

13 GP∗: Goldstein and Price function [57,80,87,88,92,94]
u(x) = 1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2)

v(x) = 30 + (2x1 − 3x2)
2(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2).

min
x

{
v(x)u(x)

}
.

Range of starting points −2 < xi < 2, i = 1, 2.
Number of local minima: 4 local minima.
Global minima: f (x∗) = 3 at x∗ = (0,−1).
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14 Ras∗: Rastrigin function [93]

min
x

{
x2

1 + x2
2 − cos(18x1)− cos(18x2)

}
.

Range of starting points −1 < xi < 1, i = 1, 2.
Number of local minima: many local minima.
Global minima: f (x∗) = −2 at x∗ = (0, 0).

15 Bh1∗: Bohachevsky function [80]

min
x

{
x2

1 + 2x2
2 − 0.3cos(3πx1)− 0.4cos(4πx2) + 0.7

}
.

Range of starting points −100 < xi < 100, i = 1, 2.
Number of local minima: many local minima.
Global minima: f (x∗) = 0 at x∗ =

(
0, 0

)
.

16 SH∗: Shubert function in [57,80,87,88,92]

min
x

{( 5

∑
i=1

icos
(
(i + 1)x1 + i

))( 5

∑
i=1

icos
(
(i + 1)x2 + i

))}
.

Range of starting points −5.12 < xi < 5.12, i = 1, 2.
Number of local minima: 760 local minima.
Global minima: f (x∗) = −186.7309 at 18 point different of x∗.

17 P8∗ Ref. [92]

min
x

{
π

n

(
k1sin(πy1)

2 +
n−1

∑
i=1

(
yi − k2

)2
[
1 + k1sin(πyi+1)

2
]
+ (yn − k2)

2
)}

,

with yi = 1 + 1
4

(
xi + 1

)
, k1 = 10 and k2 = 1.

Range of starting points −10 ≤ xi ≤ 10, i = 1, 2, 3.
Number of local minima: 53 local minima.
Global minima: f (x∗) = 0 at x∗ = (−1,−1,−1).

18 P16∗ Ref. [92]

min
x

k3

{
sin2(πk4x1) +

n−1

∑
i=1

(
xi − k5

)2
[
1 + k6sin2(πk4xi+1)

]
+ (xn − k5)

2
[
1 + k6sin2(πk7xn)

]}
,

where k3 = 0.1,k4 = 3, k5 = 1, k6 = 1,k7 = 2.
Range of starting points −5 ≤ xi ≤ 5, i = 1, .., n.
Number of local minima: 155 local minima.
Global minima: f (x∗) = 0 at x∗ = (1, 1, 1, 1, 1).

19 CB∗: Camel back in [80] and camel function in [93]

min
x

{
4x2

1 − 2.1x4
1 +

1
3

x6
1 + x1x2 − 4x2

2 + 4x4
2

}
.

Range of starting points −5 < xi < 5, i = 1, 2.
Number of local minima: many local minima.
Global minima: f (x∗) = −1.0316285 at x∗ = {(0.089842,−0.71266),
(−0.089842, 0.71266)}.

20 H3∗: Hartmann function [57,80,87,88,92–94]

min
x

{
−

4

∑
i=1

ciexp
(
−

3

∑
j=1

aij
(

xj − pij
)2
)}

.
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Range of starting points −1 < xj < 1, j = 1, 2, 3.
Number of local minima: 4 local minima.
Global minima: f (x∗) = −3.86278 at x∗ =

(
0.114614, 0.555649, 0.852547

)
.

21 H6∗: Hartmann function [57,80,87,88,92–94]

min
x

{
−

4

∑
i=1

ciexp
(
−

6

∑
j=1

aij
(

xj − pij
)2
)}

.

Range of starting points −1 < xj < 1, j = 1, 2, . . . , n.
Number of local minima: 4 local minima.
Global minima: f (x∗) = −3.32237 at x∗ =

(
0.201690, 0.150011, 0.476874,

0.275332,0.311652, 0.657300
)
.

22 HM∗: hump Function [57]

min
x

{
1.0316285 + 4x2

1 − 2.1x4
1 +

1
3

x6
1 + x1x2 − 4x2

2 + 4x4
2

}
.

Range of starting points −5 < xi < 5, i = 1, 2.
Number of local minima: 3 local minima.
Global minima: f (x∗) = 0 at x∗ = {(0.0898,−0.7126), (−0.0898, 0.7126)}.

23 Le∗: Levy function [95]

min
x

{
sin2(πw1) +

n−1

∑
i=1

(wi − 1)2
(

1 + 10sin2(πwi + 1)
)
+ (wn − 1)2

[
1 + sin2(2πwn)

]}
,

where wi = 1 + xi−1
4 , for i = 1, . . . , n.

Range of starting points −10 < xi < 10, i = 1, 2, . . . , n.
Number of local minima: many local minima.
Global minima: f (x∗) = 0 at x∗ =

(
1, 1, . . . , 1

)
.
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Abstract: Optimization problems are prevalent in almost all areas and hence optimization algorithms
are crucial for a myriad of real-world applications. Deterministic optimization algorithms tend to be
computationally costly and time-consuming. Hence, heuristic and metaheuristic algorithms are more
favoured as they provide near-optimal solutions in an acceptable amount of time. Swarm intelligence
algorithms are being increasingly used for optimization problems owing to their simplicity and good
performance. The Dragonfly Algorithm (DA) is one which is inspired by the swarming behaviours of
dragonflies, and it has been proven to have a superior performance than other algorithms in multiple
applications. Hence, it is worth considering its application to the traveling salesman problem which is
a predominant discrete optimization problem. The original DA is only suitable for solving continuous
optimization problems and, although there is a binary version of the algorithm, it is not easily adapted
for solving discrete optimization problems like TSP. We have previously proposed a discrete adapted
DA algorithm suitable for TSP. However, it has low effectiveness, and it has not been used for large
TSP problems. In this paper, we propose an optimized discrete adapted DA by using the steepest
ascent hill climbing algorithm as a local search. The algorithm is applied to a TSP problem modelling
a package delivery system in the Kuala Lumpur area and to benchmark TSP problems, and it is
found to have a higher effectiveness than the discrete adapted DA and some other swarm intelligence
algorithms. It also has a higher efficiency than the discrete adapted DA.

Keywords: discrete optimization; dragonfly algorithm; metaheuristics; optimization; swarm intelligence
algorithms; traveling salesman problem

MSC: 49M37

1. Introduction

Optimization is crucial in almost every domain where certain processes, designs, or
systems are adjusted so as to be the most effective possible. Its aim is to find the best solution
among a set of available solutions which either maximizes or minimizes an objective
function. Hence, optimization algorithms are usually iterative where the objective function
is evaluated repeatedly and the best solution found is chosen. Optimization algorithms
can be classified into two types; deterministic algorithms, and heuristic algorithms [1].
Deterministic algorithms consist of exact methods which find the best solution to a problem.
However, they are computationally costly and time-consuming, especially for large-scale
real-world applications. Conversely, heuristic algorithms try to find a near-optimal solution
in a feasible amount of time. Heuristic algorithms can be further developed to produce
metaheuristic algorithms which use a combination of diversification and intensification
techniques to perform better than simple heuristic algorithms. They can be classified as
either trajectory-based or population-based algorithms [1].
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Swarm intelligence algorithms are population-based metaheuristic algorithms which
are inspired by various biological organisms. In nature, the simple and self-organizing
interactions that individuals from a specific biological population have with each other and
with their environment cause a functional global pattern to emerge [2]. Swarm intelligence
algorithms are inspired by these simple interactions of different groups of animals or
swarms of insects. They make use of a population of search agents which replicate the
interactions of a biological population for solving complex optimization problems.

The Dragonfly Algorithm (DA) [3] is a swarm intelligence algorithm which is inspired
by dragonfly swarms, in particular, their hunting and migrating behaviours. Dragonflies
swarm statically and dynamically while hunting and migrating, respectively, and these
two types of swarming aptly represent the two requisite phases of optimization algorithms;
exploration, and exploitation. DA has been found to have a better performance than
multiple other swarm intelligence algorithms in various applications [4]. In [3], three
versions of the dragonfly algorithm are proposed, namely, the original continuous DA
for solving continuous optimization problems, the binary DA (BDA) to cater for discrete
or binary optimization problems, and the multi-objective DA (MODA) to cater for multi-
objective optimization problems.

The Traveling Salesman Problem (TSP) is a combinatorial optimization problem with
a discrete search space. A myriad of real-world problems can be represented as TSP and
hence it has numerous real-world applications. Large TSP problems are difficult to be
solved using exact algorithms and the solvable instances consume a significant amount of
computational time and resources [5]. Hence, heuristic algorithms are often used to solve
TSP by providing near-optimal solutions. A number of swarm intelligence algorithms such
as the Particle Swarm Optimization (PSO) [6], and the Ant Colony Optimization (ACO) [7],
and their variants [8–11] have been successfully employed for solving TSP.

Considering the good performance of DA and its superior performance over other
swarm intelligence algorithms in multiple applications, it is worth applying it for solv-
ing TSP. The original DA was proposed to solve continuous optimization problems and
although a binary version of the original DA is proposed in [3], it is difficult to be adapted
for discrete problems like TSP. Hence, in [12], we proposed a discrete adapted dragonfly
algorithm suitable for TSP. This is to propose a new discretized variant of the dragonfly
algorithm which is suitable for solving discrete optimization problems like TSP and which
can be further improved. However, this algorithm has not been applied to large TSP
problems and it has low effectiveness.

In this paper, we propose to improve the low effectiveness of the adapted discrete
dragonfly algorithm in [12] by employing the steepest ascent Hill Climbing (HC) algorithm
as a local search to improve the exploitation phase. The algorithm is tested using a TSP
problem consisting of 50 locations in the area of Kuala Lumpur. The TSP problem models a
package delivery system where the shortest route to deliver parcels at specific locations
and return to the initial location needs to be found. Moreover, the performance of the
algorithm is compared to other swarm intelligence algorithms in solving benchmark TSP
problems from TSPLIB. From the experiments conducted, the proposed algorithm is found
to have higher effectiveness, that is, it produces solutions with a lower cost as compared
to the adapted discrete DA [12], and the enhanced Swap Sequence based PSO (SSPSO) [8]
algorithms, and it also has higher effectiveness as compared to some other swarm intelli-
gence algorithms as it provides the optimal solution or close to the optimal solutions for
benchmark TSP problems. Moreover, it has a higher efficiency than the adapted discrete
DA as it converges to the optimal solution in a shorter amount of time.

The contributions of this paper include an optimized discrete dragonfly algorithm
suitable for solving discrete optimization problems such as TSP, which provides optimal
or near-optimal solutions for benchmark TSP problems, an application of the proposed
algorithm to a TSP problem which models a package delivery system in the area of Kuala
Lumpur, and a comparison of the performance of the proposed algorithm to that of other
swarm intelligence algorithms in solving benchmark TSP problems.
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The remaining of the paper is structured as follows: In Section 2, a background on
swarm intelligence algorithms, the original dragonfly algorithm, and the hill climbing
algorithm is provided. In Section 3, an explanation on the traveling salesman problem is
given. In Section 4, some previous works using swarm intelligence algorithms for solving
TSP, and the adapted discrete DA algorithm are presented. In Section 5, a description of the
proposed algorithm is given. In Section 6, the results and discussions are presented and,
finally, in Section 7, the conclusions and some future work are presented.

2. Background on Swarm Intelligence, Dragonfly Algorithm, and Hill
Climbing Algorithm

2.1. Swarm Intelligence Algorithms

Swarm intelligence algorithms are metaheuristic optimization algorithms that are
inspired by the simple and self-organizing interactions of biological organisms that give
rise to a functional global pattern [2]. They make use of a number of search agents which
replicate the actions of individuals in a specific biological population as they interact among
themselves and their environment. Each search agent, which represents a solution, moves
in the state space by considering a fitness function. This allows the algorithm to solve
complex optimization problems. Some well-known swarm intelligence algorithms include
the particle swarm optimization that is inspired by the swarming of bird flocks or fish
schools, and the ant colony optimization that is based on the food searching behaviour
of ants.

Swarm intelligence algorithms have a plethora of applications in various domains as
they can be used for solving different types of optimization problems including continuous
optimization problems, discrete optimization problems, and multi-objective optimization
problems. A continuous optimization problem is one in which the solution can be any real
value within a certain range of values whereas a discrete optimization problem is one in
which the solution can be a specific one from a set of possible solutions. A multi-objective
optimization problem is one which has more than one objective function.

Some recent applications of swarm intelligence algorithms include in agricultural tech-
nology drones used for improving the productivity of farming areas [13], in fog computing
systems for task scheduling [14], in gene selection profile for the classification of microarray
data [15], in feature selection [16], and in artificial neural networks for optimizing the
parameters of the network [17,18]. Furthermore, they have various applications in data
science [19], in Internet of Things (IoT) systems [20], in surveillance systems [21], in water
resources engineering [22], and in supply chain management [23].

2.2. Dragonfly Algorithm

The dragonfly algorithm [3] is a metaheuristic optimization algorithm classified under
swarm intelligence algorithms. It is inspired by the swarming behaviours of dragonflies
during hunting and migrating. During hunting, the dragonflies swarm statically, that is
they form small groups and fly over a small area by abruptly changing their flying path.
This type of swarming is congruent with the exploration phase of optimization algorithms
where the algorithm tries to find a good region of the search space. Conversely, during
migration, the dragonflies fly together in a sole group and along one direction over long
distances. This type of swarming is congruent with the exploitation phase of optimization
algorithms where the algorithm tries to converge to the optimal solution. Figure 1 shows a
static and a dynamic swarm of dragonflies.

Five factors are used to control the movement of the dragonflies in the search space
during both the exploration and exploitation phases; separation, alignment, cohesion,
attraction to food, and distraction from enemy. Each factor has a corresponding weight
which is used to tune the factor to enable the algorithm to transition between the exploration
and exploitation phases. The factors, along with the weights, also ensure the survival of
the swarm by causing it to attract towards food sources and distract away from enemies.
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The best solution which has been obtained by the population of search agents is taken as
the food source and the worst solution is taken as the enemy.

Figure 1. Static and dynamic dragonfly swarms.

The separation factor of a dragonfly is used to prevent its static collision with its
neighbours, and is calculated using (1):

Si = −
N

∑
j=1

Xi − Xj (1)

where Xi, and Xj are the current dragonfly’s position and the j-th neighbour’s position
respectively, and N is the number of dragonflies in the neighbourhood.

The alignment factor of a dragonfly matches its velocity to that of its neighbours, and
is calculated using (2):

Ai =
∑N

j=1 Vj

N
(2)

where Vj is the j-th neighbour’s velocity and N is the number of dragonflies in the
neighbourhood.

The cohesion factor of a dragonfly is its tendency towards the centre of mass of the
neighbourhood, and is calculated using (3):

Ci =
∑N

j=1 Xj

N
− Xi (3)

where Xj is the j-th neighbour’s position and N is the number of dragonflies in the
neighbourhood.

The attraction to food factor of a dragonfly is its attraction towards a food source, and
is calculated using (4):

Fi = X+ − Xi (4)

where X+ is the food source’s position.
The distraction from enemy factor of a dragonfly is its repulsion from an enemy, and

is calculated using (5):
Ei = X− + Xi (5)

where X− is the enemy’s position.
To allow the dragonflies to move in the search space by considering these factors, two

vectors are used: the step vector (ΔX) and the position vector (X).
The step vector determines the direction of the movement, and it is calculated using (6):

ΔXt+1
i = (sSi + aAi + cCi + f Fi + eEi) + wΔXt

i (6)

where Si, Ai, Ci, Fi, and Ei are the separation, alignment, cohesion, food factor, and enemy
factors of the i-th dragonfly respectively, s, a, c, f , and e are the separation, alignment,
cohesion, food factor, and enemy factor’s weights respectively, w is the inertia weight, and
t is the iteration counter.
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The position vector allows the movement in the search space, and it is calculated
using (7):

Xt+1
i = Xt

i + ΔXt+1
i (7)

In DA, in order to replicate the static and dynamic swarming behaviours of dragonflies,
it is important to consider the neighbourhood of each search agent. This is achieved by
considering a radius around each artificial dragonfly. The radius is increased proportionally
to the iteration number so as to change the static swarms to dynamic ones until the whole
population form one dynamic swarm and converges to the global optimum during the final
iterations. This is another way by which the algorithm transitions from the exploration
phase to the exploitation phase.

If a dragonfly has no neighbouring dragonfly, its position is updated using the Levy
flight mechanism, which is a random walk employed to increase the stochasticity of the
algorithm. The position vector of the dragonfly is calculated using (8):

Xt+1
i = Xt

i + Levy(d)× Xt
i (8)

where t is the current iteration number and d is the dimension of the position vectors.
The pseudocode of DA is given in Algorithm 1.

Algorithm 1: Dragonfly Algorithm

1 Initialize the population’s positions randomly;
2 Initialize the step vectors;
3 while end condition do
4 Calculate the objective values of all dragonflies;
5 Update the food source and enemy;
6 Update the weights;
7 Calculate the factors using (1)–(5);
8 Update radius of neighbourhoods;
9 if dragonfly has one or more neighbours then

10 Update step vector using (6);
11 Update position vector using (7);
12 else
13 Update position vector using (8);
14 end
15 Check and correct new positions based on upper

and lower bounds;
16 end

2.3. Hill Climbing Algorithm

The hill climbing algorithm is a heuristic local search algorithm which is used for
optimization mainly in the field of artificial intelligence. Generally, starting from one
position, it considers all the possible neighbouring solutions in a search region and selects
the one which either maximizes or minimizes an objective function the most.

There are three main types of hill climbing, namely, the simple hill climbing algorithm,
the steepest ascent hill climbing algorithm, and the stochastic hill climbing algorithm.

The simple hill climbing algorithm checks only one neighbouring solution at a time. If
it is better than the current solution, the neighbouring solution is selected as the current
solution. This type of hill climbing algorithm requires less computing power. However, a
good solution is not guaranteed.

The steepest ascent hill climbing algorithm checks all the neighbouring solutions and
then selects the best one. This type of hill climbing algorithm requires more computing
power, however, it is more likely to find the most optimal solution.
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The stochastic hill climbing algorithm checks a random neighbouring solution and if
it is better than the current solution, the neighbouring solution is selected as the current
solution, otherwise, another random neighbouring solution is selected.

3. Problem Formulation

The traveling salesman problem, a combinatorial optimization problem, is classified
as a Non-Deterministic Polynomial-hard (NP-hard) problem as large TSP problems are
difficult to solve [5]. It consists of a discrete state space with a finite set of possible solutions
and the aim is to find the best solution from the set. TSP can be defined as follows: given a
number of inputs called cities and the cost of travel between each possible pair, the aim
is to find the route with the least cost to visit each city exactly once and to return to the
starting city.

TSP has numerous real-world applications since a large number of real-world prob-
lems can be represented as TSP. For example, it can be used in X-Ray crystallography,
computer wiring, vehicle routing, and order picking in warehouses [24]. Some more recent
applications of TSP include route planning for Unmanned Aerial Vehicles (UAVs) [25], in
delivery services using UAVs [26], in emergency air logistics [27], in robotic automated
storage and retrieval system [28] and robot path planning [29].

4. Related Works

4.1. Existing Swarm Intelligence Algorithms Applied to TSP

In this section, some previous works in which swarm intelligence algorithms have
been adapted and enhanced for solving TSP are presented.

In [30], the firefly algorithm is adapted and enhanced for solving TSP by using the
method of swap sequences and Genetic Algorithm (GA). GA is first used to initialise the
population of search agents. The serial number coding method is used for representing the
discrete state space of TSP and the method of swap sequences is used to redefine the equa-
tions of the firefly algorithm in order to adapt the algorithm to TSP. Three neighbourhood
structures are also used to redefine the disturbance mechanism of the firefly algorithm.
The algorithm is tested using five TSP problems from TSPLIB and it is found to provide
solutions which are close to the known optimal solutions.

In [31], a discrete sparrow search algorithm is proposed for solving TSP. For ini-
tialization of the population’s positions, the roulette wheel selection is used. The path
representation method is used for representing a TSP path. The position of the search
agents is updated using the same equation as the original sparrow search algorithm and
a decoding method called the order-based decoding is used to decode the solution ob-
tained. To increase the diversity of the population, the Gaussian mutation perturbation
is used together with swap operators. Furthermore, the 2-opt algorithm is used as a lo-
cal search to improve the quality of the solutions and to increase the convergence rate.
The algorithm is tested using 34 TSP instances and is found to be robust and have good
convergence characteristics.

In [32], the Grey Wolf Optimization (GWO) is adapted for solving TSP by the use of
swap sequences and swap operators. It makes use of the general steps of the Grey Wolf
optimization algorithm. In the initialization stage, the population is initialized with a
random TSP path and the agents with the three best solutions are chosen as the Alpha,
Beta, and Delta wolves. The position of each search agent is then updated by considering
the Alpha, Beta, and Delta wolves by making use of the method of swap sequences. The
algorithm is used for solving benchmark TSP problems and is found to provide better
results than ACO and GA for several TSP problems.

In [33], the chicken swarm optimization algorithm is adapted for solving TSP by using
the methods of swap operators, order crossover, and reverse order mutation. The integer
coding method is used for the solution representation, and the method of swap operators is
used for updating the position of the search agents. The order crossover, and reverse order
mutation are also used for updating the position of the search agents in the state space by
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increasing the population diversity. Five instances from TSPLIB are used for testing the
algorithm which is found to be effective in solving TSP.

In [34], a discrete spider monkey optimization algorithm is proposed for solving TSP. It
makes use of the method of swap sequences and swap operators for updating the position
of the search agents. The position of each search agent is updated based on the position
of a subgroup leader, known as the local leader, and the position of a main group leader,
known as the global leader, and also their self-experience. The algorithm is tested using
TSP instances from TSPLIB and its performance is compared with other swarm intelligence
algorithms. It is found to have a good performance in solving TSP.

In [8], an enhanced swap sequence based PSO algorithm is proposed for solving TSP.
It makes use of path representation for representing solutions in the state space, and the
method of swap operators for updating the positions. It incorporates the three strategies
of the continuous XPSO algorithm and uses the method of swap operators in order to be
suitable for solving TSP. The three strategies include a forgetting ability for each particle,
the adjustment of the acceleration coefficients by making use of the population’s experience,
and the use of both the global and local exemplars for learning. The algorithm is found to
provide better results than the swap sequence-based PSO.

4.2. Discrete Adapted Dragonfly Algorithm

In this section, a description of the adapted discrete dragonfly algorithm that we
proposed in [12] is given. The algorithm makes use of the path representation method to
represent a potential solution, that is a TSP path, and it makes use of the method of swap
sequence [35] which was originally used for adapting PSO to TSP. The adapted discrete DA
adapts the original DA algorithm to be suitable for solving TSP by the following: firstly, the
method of path representation is used to represent a potential solution, that is, a TSP path
which is taken as the position of a search agent. Secondly, the equations for calculating the
five factors used in DA, the step vector, and the position vector are adapted to be suitable
for the path representation. Thirdly, the five factors, the step vector, and the position vector
are calculated using the method of swap sequence. The pseudocode of the adapted discrete
DA is given in Algorithm 2.

Algorithm 2: Adapted Discrete DA Algorithm for TSP

1 Initialize the population’s positions with random TSP paths;
2 Initialize the step vectors with random swap sequences;
3 while end condition do
4 Calculate the objective values of all dragonflies;
5 Update the food source and enemy;
6 Update the weights;
7 Calculate the factors using (9), (10), (11), (12), (13);
8 Update step vector using (14);
9 Update position vector using (15);

10 end

In the discrete adapted DA algorithm, the position and step vector of the search agents
are first initialized with a random TSP path and a random swap sequence respectively.
Then in each iteration, the objective value of each search agent’s position, that is the cost of
the TSP path represented by the search agent’s position, is calculated. The position with
the lowest objective value is taken as the food source and that with the highest objective
value is taken as the enemy. The separation, alignment, cohesion, attraction to food, and
distraction from enemy factors are calculated, and their corresponding weights are updated.
Finally, the position of the search agents is updated using the step and the position vectors.
Contrary to the original continuous DA, the radius of neighbourhood of the dragonflies is
not considered in the discrete adapted DA. This is because the Euclidean distance between
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the dragonflies in a discrete state space cannot be easily calculated and hence all the search
agents are considered to be in the same neighbourhood.

4.3. Initialization

In the initialization phase, the positions of the search agents are first initialized with a
random solution, that is a TSP path. The TSP path is represented using path representation,
that is, a permutation of numbers representing cities. The numbers indicates the order of
visit of the cities. An example of a TSP path for a TSP problem consisting of 4 cities can
be: 3 2 1 4 3. This indicates that starting from the city denoted by the number 3, city 2 will
be visited next, followed by city 1 and city 4, before returning to the starting point, that is,
city 3.

The step vector of the search agents is then initialized with a velocity, which in this
case, is a random swap sequence. A swap sequence consists of a number of swap operators,
and each swap operator contains a pair of indices which represents cities in a TSP path.
It indicates that the position of the two cities will be swapped when the swap operator is
applied to a TSP path. For example, a swap operator, SO, can be represented by SO(2, 4),
and a swap sequence, SS, can be represented by SS = (SO(2, 4), SO(1, 2)).

4.4. Calculation of Factors

The separation, alignment, cohesion, attraction to food, and distraction from enemy
factors are calculated using Equations (9)–(13). These equations have been produced by
adapting the Equations (1)–(5) from the original DA. This is because the factors of a search
agent are calculated using the positions and step vectors of its neighbours, and in the
adapted discrete DA, the positions and step vectors are TSP paths and swap sequences
respectively. Hence the equations used in the original DA are not suitable for the adapted
discrete DA.

The separation factor is calculated as follows:

Si = Inv(
N⊕

j=1

X� Xj) (9)

where X, Xj, and N are the the current search agent’s position, the j-th neighbour’s position,
and the total number of neighbours respectively.

The ‘�’ operator indicates the subtraction of two positions, that is two TSP paths, to
produce a swap sequence. For example, the subtraction of two paths, X = 1 3 4 2 and
Xj = 2 3 1 4, is X� Xj = SO(1, 3), SO(3, 4).

The ‘
⊕

’ operator indicates the merging of the swap sequences into only one swap
sequence which contains all the swap operators from the different swap sequences in
sequential order. For example, for the swap sequences SS1 = SO(2, 3), SO(4, 1) and
SS2 = SO(1, 3), SS1

⊕
SS2 = SO(2, 3), SO(4, 1), SO(1, 3).

‘Inv’ indicates that the swap sequence is inversed. For example, for SS = SO(2, 3),
SO(4, 1), Inv(SS) = SO(1, 4), SO(3, 2).

The alignment factor is calculated as follows:

Ai = Vavg (10)

where Vavg is the step vector of the neighbour having the fitness closest to the average
fitness in the neighbourhood.

The cohesion factor is calculated as follows:

Ci = Xavg � X (11)

where Xavg is the position of the neighbour having the fitness closest to the average fitness
in the neighbourhood and X is the current search agent’s position.

The attraction to the food source factor is calculated as follows:
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Fi = X f � X (12)

where X f is the food source’s position and X is the current search agent’s position.
The distraction from the enemy factor is calculated using the procedure ‘CalculateEi()’

which provides a swap sequence.

Ei = CalculateEi(Xe, X) (13)

Xe is the enemy’s position and X is the current search agent’s position. The procedure
compares each city in Xe and X and if a city is similar in both positions, it generates a swap
operator which consists of that city and another different random city. This is to decrease
the similarity between the two TSP paths.

4.5. Update of Positions

For updating the position of the search agents, the step vector is first calculated
as follows:

ΔXt+1 = (sSi ⊕ aAi ⊕ cCi ⊕ f Fi ⊕ eEi)⊕ wΔXt (14)

where Si, Ai, Ci, Fi, and Ei are the separation, alignment, cohesion, food factor, and enemy
factors of the i-th dragonfly respectively, s, a, c, f , and e are the separation, alignment,
cohesion, food factor, and enemy factor’s weights respectively, w is the inertia weight, and
t is the iteration counter.

In this equation, ‘⊕’ indicates the merging of two swap sequences, resulting in one
swap sequence with all the swap operators in the first swap sequence followed by all the
swap operators in the second swap sequence.

The position vector of the search agent is then calculated as follows:

Xt+1 = Xt ⊗ ΔXt+1 (15)

In this equation, ‘⊗’ indicates that the swap sequence ‘ΔXt+1’ will be applied to the
path ‘Xt’. The application of a swap sequence to a path means that each swap operator
in the swap sequence will be applied to the path sequentially to produce a new path. An
example of applying a swap operator to a path is given below.

Considering a path X = 2 4 1 3 and a swap operator SO(2, 3), the cities in the second
and third positions of X will be swapped. Hence, the resultant path will be X = 2 1 4 3.

5. Proposed Enhanced Adapted Discrete DA

In this section, a description of the proposed enhanced discrete adapted DA algorithm
is provided. The proposed algorithm improves the exploitation phase of the adapted
discrete DA by using the steepest ascent hill climbing algorithm as a local search. After the
position of the search agents is updated using Equation (15), the hill climbing algorithm is
employed to further exploit the region obtained and to update the position of the search
agent to a better one. The steepest ascent hill climbing algorithm starts at the position
obtained by Equation (15) and then looks for every possible position in that area of the
search space. It then selects the one with the lowest cost. Hence, the steepest ascent hill
climbing algorithm is able to locate the optimum solution in the area initially obtained
by the search agent. Moreover, to prevent the algorithm from getting stuck in a local
optimum, the position of a search agent is changed to a random solution when it cannot be
further improved. This is done by keeping track of the personal best solution that is found
by a search agent. If the personal best solution does not change over a certain number
of iterations, the search agent’s position is changed to another random position so as to
allow it to get out of the local optimum and to search other regions of the state space. The
pseudocode of the proposed algorithm is given in Algorithm 3.
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Algorithm 3: Enhanced Adapted Discrete DA Algorithm for TSP

1 Initialize the population’s positions with random TSP paths;
2 Initialize the step vectors with random swap sequences;
3 PBest_Stagnancy = 0;
4 while end condition do

5 Calculate the objective values of all dragonflies;
6 Update the food source and enemy;
7 Update the weights;
8 Calculate the factors using (9), (10), (11), (12), (13);
9 Update step vector using (14);

10 Update position vector using (15);
11 Initialize position as current position for hill climbing;
12 while local optima is not reached do

13 Generate neighbours;
14 for each neighbour do

15 if cost of neighbour <cost of current position then

16 current position = neighbour position;
17 end

18 end

19 end

20 if cost of position <cost of personal best position then

21 best position = position;
22 else

23 PBest_Stagnancy = PBest_Stagnancy + 1;
24 end

25 if PBest_Stagnancy > 3 then

26 Change position to random position;
27 end

28 end

In the initialization phase, the position and step vectors are initialized with a random
TSP path, and a random swap sequence respectively. This step is similar to the adapted
discrete DA in Section 4.2. In addition, a personal best stagnancy variable is initialized
to zero. This variable is used to keep track of the number of iterations in which the best
solution found by a search agent has not improved.

In the main loop of iteration, the objective cost of each search agent is first calculated,
and the food and enemy are updated with the best and worst positions respectively.
Then the separation, alignment, cohesion, attraction to food and distraction from enemy
factors are calculated. Contrary to the adapted discrete DA in Section 4.2, in the proposed
algorithm, these factors are calculated based on the path obtained after applying the
previous factor; that is the separation factor is first calculated and the swap operators
obtained are immediately applied to the TSP path represented by the position of the search
agent to update the path. Then the alignment factor is calculated based on the updated path
after applying the separation factor. Similarly, the path is updated and then the cohesion
factor is calculated. The food factor is then calculated based on the updated path after
applying the swap operators of the cohesion factor and the enemy factor is calculated based
on the updated path after applying the food factor. The path with the lowest cost is then
chosen as the next position of the search agent. This is done so as to increase the efficiency
of the algorithm so that it can provide good solutions in a short amount of time.

After the position of a search agent is updated using Equation (15), the hill climbing
algorithm is employed to further update the position as follows: the position obtained
by (15) is taken as the current position for the hill climbing algorithm. Then a set of
neighbouring solutions is generated and the one with the lowest cost is selected as the
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current position. The steps of generating neighbours and selecting the one with the
lowest cost as the current position are repeated until a solution with a lower cost cannot
be found. The use of the hill climbing algorithm is to improve the exploitation of the
dragonfly algorithm.

In order to prevent the algorithm from being stuck in local optima, the personal best
solution of each search agent, which is the best solution found by the search agent, is
recorded. In each iteration, after the position of the search agent has been updated, the
personal best solution is checked and updated if it has changed. If the personal best solution
remains unchanged over a certain amount of iterations, then the position of the search
agent is changed to a random solution. This is to allow the search agent to get out of the
local optimum and explore other regions of the search space.

5.1. Solution Representation

There are several ways to represent a TSP path as the position of a search agent in a
discrete state space such as binary, path, adjacency, ordinal, and matrix representations [31].
In this paper, the path representation is used to encode the TSP solutions since this is the
most natural representation of a path. This is the same representation used in [12] for the
adapted discrete DA algorithm.

5.2. Objective Function

The objective function is the cost of the TSP path, which in this case is the total distance
of the TSP path. This is obtained by calculating the distance between each pair of adjacent
cities in the TSP path. It is considered that the distance to travel from city i to city j is the
same as the distance to travel from city j to city i.

5.3. Update of Positions

Similar to the adapted discrete DA algorithm in Section 4.2, the method of swap
sequences is used for updating a position, that is a TSP path. A sequence contains a number
of swap operators which indicate that the two cities in the position denoted by the swap
operator will be swapped to produce a new TSP path. The swap operators in the swap
sequence are applied sequentially to the TSP path. For example, for a TSP path 2 4 1 3, and
swap sequence SO(1, 2), SO(3, 2), the TSP path 4 1 2 3 will be obtained when the swap
sequence is applied to the TSP path.

5.4. Experimental Parameters

Table 1 shows the parameters used for the optimized DA algorithm, their description,
and their values.

Table 1. Experimental parameters.

Parameter Description Value

Xi The position of search agent i A TSP path, example: 1 3 4 2 1

Vi The step vector of search agent i A swap sequence, example: SO(1, 3) SO(2, 1)

X f The food position A TSP path, example: 1 4 2 3 1

Xe The enemy position A TSP path, example: 1 2 4 3 1

Si The separation factor of the ith search agent A swap sequence, example: SO(2, 4) SO(1, 2)

Ai The alignment factor of the ith search agent A swap sequence, example: SO(1, 4) SO(3, 2)

Ci The cohesion factor of the ith search agent A swap sequence, example: SO(1, 3) SO(3, 4)

Fi The food factor of the ith search agent A swap sequence, example: SO(3, 4) SO(1, 2)
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Table 1. Cont.

Parameter Description Value

Ei The enemy factor of the ith search agent A swap sequence, example: SO(3, 2) SO(4, 1)

s The separation weight A real value, example: 1.5

c The cohesion weight A real value, example: 1.2

a The alignment weight A real value, example: 2.3

f The attraction to food weight A real value, example: 1.2

e The distraction from enemy weight A real value, example: 0.5

w The step vector weight A real value, example: 0.1

6. Experimental Results and Analysis

In this section, a description of the experimental datasets used, the experimental setup,
and the results with some discussions are provided.

6.1. Experimental Dataset

The test data consist of a TSP problem with 50 nodes, where each node represents
a location in the area of Kuala Lumpur (KL). The cost between each pair of nodes is the
distance needed to travel from one node to the other. It is considered that the distance to
travel from city i to city j is the same as the distance to travel from city j to city i. The aim
is to find the shortest route to visit each node once and to return to the initial node. The
distance between two locations is taken as the shortest distance in kilometers (km) that can
be taken by a vehicle based on Google Maps.

To test the proposed algorithm with TSP problems of different sizes, the TSP data is
changed to 10, 20, and 40 nodes by taking the first 10, 20, and 40 locations respectively.

Moreover, several benchmark datasets from TSPLIB are used to test the performance
of the proposed algorithm. Specifically, the burma14, ulysses16, ulysses22, bays29, eil51,
berlin52, st70, eil76, rat99 and kroA100 datasets consisting of 14, 16, 22, 29, 51, 52, 70, 76,
99, and 100 nodes respectively are used. The datasets are in the form of coordinates and
the distance matrix of each dataset is constructed by calculating the Euclidean distance
between the nodes.

6.2. Experimental Setup

The proposed algorithm is used for solving the TSP problem with 50, 40, 20, and
10 locations in KL and the results are recorded in terms of the cost of the solution obtained,
the time taken to converge to the optimal solution, and the total time taken by the algorithm.

To compare the performance of the proposed algorithm, the discrete adapted dragonfly
algorithm in [12], and the enhanced SSPSO in [8] are used for solving the same TSP problems
of 50, 40, 20, and 10 locations and the results are recorded in terms of the cost of the solution
obtained, the time taken to converge to the optimal solution, and the total time taken by
the algorithm. The results of the proposed algorithm are compared to that of the discrete
adapted dragonfly algorithm and the enhanced SSPSO algorithm. The enhanced SSPSO
is used for comparing the performance of the proposed algorithm since it is our own
algorithm which had been used for the same dataset, and TSP problem, that is the delivery
system in the area of Kuala Lumpur. In order to have a better algorithm for the delivery
system, the new optimized DA algorithm is proposed in this paper.

The experiments are repeated for different numbers of maximum iteration and search
agents. Specifically, the number of maximum iterations used are 20, 50, 100, 200, and 500,
and the number of search agents used is 5, 10, 20, and 40.

Furthermore, in order to compare the performance of the proposed algorithm to that of
other swarm intelligence algorithms, the algorithm is applied to benchmark TSP problems
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from TSPLIB and the best solution obtained by the proposed algorithm is compared to
the best solution obtained by Ant Colony Optimization (ACO), Velocity Tentative PSO
(VTPSO), Artificial Bee Colony with Swap Sequence (ABCSS), Discrete Spider Monkey
Optimization (DSMO), Genetic Algorithm (GA), Producer Scrounger Method (PSM), and
Grey Wolf Optimizer (GWO) algorithms. The results of ACO, VTPSO, ABCSS, and DSMO
are taken from [34]. The results of ACO GA, PSM, and GWO are taken from [32]. The
maximum number of iterations used for the proposed optimized DA is 500 and the number
of search agents used is between 20 and 100.

Both the proposed optimized discrete adapted DA and the discrete adapted DA were
implemented in MATLAB and all experiments were conducted on a MacOs Monterey
operating system, Apple M2 chip CPU, and 8 GB RAM.

6.3. Results and Discussion
6.3.1. Greater Kuala Lumpur TSP Problem

In this section, we present a comparison and discussion on the performance of the
proposed algorithm when applied to our own dataset consisting of locations in the area of
Greater Kuala Lumpur which models a delivery system.

Tables 2–5 show the results obtained when the proposed optimized discrete DA, the
discrete adapted DA, and the enhanced swap sequence based PSO are used for solving the
TSP problem with 50, 40, 20, and 10 locations respectively. The experiments are conducted
by using different number of maximum iterations and search agents and the results are
recorded in terms of the cost of the solution, that is TSP path, provided by the algorithms,
the time taken to converge to the global optimal solution, and the total time taken by the
algorithms.

Figures 2–5 show the convergence curve of the proposed optimized discrete adapted
DA and the discrete adapted DA in solving a TSP of 50, 40, 20, and 10 locations respectively.
The figures show the convergence of the algorithms for 5, 10, 20, and 40 search agents
and for a maximum iteration of 200. The figures show the convergence rate of the two
algorithms and also the cost of the solution, that is the TSP path provided.

An example of a TSP path for 20 locations in Kuala Lumpur area provided by the
optimized discrete adapted DA algorithm is given in Figure 6. The cost of the TSP path
is 105.4 and the path is as follows: 11 15 18 16 10 9 4 13 2 3 12 1 20 19 17 7 6 5 8 14 11.
The numbers represent the cities and their order represent the order in which they will
be visited.

From Tables 2–5 it can be deduced that the proposed optimized discrete adapted
DA algorithm has a higher effectiveness than the discrete adapted DA algorithm as the
cost of the TSP path provided by the proposed algorithm is significantly lower in all of
the experiments conducted. For example, for a maximum iteration of 500 and 40 search
agents, the costs of the TSP paths obtained by the discrete adapted DA for 50, 40, 20,
and 10 locations are 507.8, 409.3, 161.9, and 69.6 respectively while those obtained by the
proposed optimized adapted discrete DA are 200.0, 178.7, 105.4, and 65.9 respectively.
This means that the optimized adapted discrete DA improves the solution obtained by
the adapted discrete DA by 60.6%, 56.3%, 34.9%, and 5.3% for 50, 40, 20, and 10 locations
respectively.

Even for smaller number of iterations and search agents, the proposed algorithm
converges to solutions with lower costs than the discrete adapted DA. For example, for a
maximum of 20 iterations and only five search agents, the costs of the TSP paths obtained
by the discrete adapted DA for 50, 40, 20, and 10 locations are 556.2, 478.1, 191.9, and 82.9
respectively while those obtained by the optimized discrete adapted DA are 229.4, 217.8,
117.5, and 65.9 respectively. This indicates that the optimized adapted discrete DA provides
solutions which are 58.8%, 54.4%, 38.8%, and 20.5% better than those provided by the
adapted discrete DA for 50, 40, 20, and 10 locations respectively.
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Figure 2. Convergence curve of optimized discrete adapted DA and discrete adapted DA in solving
TSP of 50 cities.

Figure 3. Convergence curve of optimized discrete adapted DA and discrete adapted DA in solving
TSP of 40 cities.
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Figure 4. Convergence curve of optimized discrete adapted DA and discrete adapted DA in solving
TSP of 20 cities.

Figure 5. Convergence curve of optimized discrete adapted DA and discrete adapted DA in solving
TSP of 10 cities.
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Figure 6. TSP path provided by optimized discrete adapted DA for 20 locations.

Moreover, the costs of the best TSP paths that can be provided by the adapted discrete
DA for 50, 40, 20, and 10 locations are 487.2, 409.3, 155.7, and 69.6 respectively while the
costs of the best TSP paths that can be provided by the proposed optimized adapted discrete
DA for 50, 40, 20, and 10 locations are 193.6, 179.4, 105.4, and 65.9 respectively.

In comparison to the enhanced SSPSO algorithm in [8], the proposed optimized
discrete DA algorithm has a higher effectiveness as it provides solutions with a lower cost
in all the experiments conducted.

In terms of efficiency, it can be seen from Tables 2–5 that the proposed optimized
adapted discrete DA algorithm takes less time than the adapted discrete DA algorithm for
execution until the maximum number of iterations. Moreover, in terms of the time taken to
converge to the global optimal solution, it can be seen that the proposed algorithm is better
than the discrete adapted DA as it takes less time to converge. Hence, it can be deduced
that the proposed algorithm has a higher convergence rate as compared to the adapted
discrete DA algorithm.

From Figures 2–5, it can be seen that the proposed optimized adapted discrete DA
algorithm provides better solution than the adapted discrete DA as the proposed algorithm
converges to solutions with lower costs in all cases. Moreover, it can be seen that in multiple
cases the proposed algorithm has a higher convergence rate than the adapted discrete DA
as the proposed algorithm converges at earlier iterations.

6.3.2. Benchmark TSP Problems

In this section, we present a comparison and discussion on the performance of the
proposed algorithm in solving benchmark TSP problems.

Table 6 shows a comparison of the performance of the proposed optimized DA al-
gorithm and other swarm intelligence algorithms, namely ACO, GA, PSM, and GWO in
solving benchmark TSP problems. The results of ACO, GA, PSM, and GWO are taken
from [32]. The results are compared in terms of the cost of the best solution that can be
obtained by the algorithm. The maximum number of iterations used for the proposed
optimized DA, and the other swarm intelligence algorithms is 500, and the maximum
number of search agents used is 100.

Table 7 shows a comparison of the performance of the proposed optimized DA algo-
rithm and other swarm intelligence algorithms, namely ACO, VTPSO, ABCSS and DSMO
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in solving benchmark TSP problems. The results for ACO, VTPSO, ABCSS and DSMO are
taken from [34]. The results are compared in terms of the cost of the best solution that can
be obtained by the algorithm. The maximum number of iterations used for ACO, VTPSO,
and DSMO is 500, while that for ABCSS is 1000. The number of search agents used for
ACO, VTPSO, ABCSS and DSMO is between 100 and 300. For the proposed optimized
DA, the maximum number of iterations used is 500, and the maximum number of search
agents used is 100. Although the number of search agents and maximum iteration for the
proposed algorithm and the other swarm intelligence algorithms are not the same, the
results are shown for comparison purposes.

Table 6. Performance comparison of proposed optimized discrete adapted DA and other swarm
intelligence algorithms in solving benchmark TSP using a maximum of 100 search agents.

TSP Instance
Cost of Best Solution Obtained

Proposed Optimized DA ACO GA PSM GWO

burma14 30.8785 31.21 30.87 30.87 30.87

ulysses16 73.9876 77.13 74.0 73.99 73.99

ulysses22 75.3097 86.74 76.09 75.51 75.51

bays29 9074.148 9964.78 9336.82 9076.98 9076.98

eil51 430.244 499.92 524.18 438.7 455.24

berlin52 7544.3659 8046.06 9184.19 8109.91 8048.91

st70 687.0724 734.19 1015.0 767.65 752.84

eil76 566.5564 595.58 805.78 591.89 604.32

kroA100 24,205.4508 24,504.9 51446.8 26,419.8 25,983.8

Table 7. Performance comparison of proposed optimized discrete adapted DA and other swarm
intelligence algorithms in solving benchmark TSP using different number of search agents.

TSP Instance
Cost of Best Solution Obtained

Proposed Optimized DA ACO VTPSO ABCSS DSMO

burma14 30.8785 31.21 30.87 30.87 30.87

ulysses16 73.9876 77.13 73.99 73.99 73.99

ulysses22 75.3097 84.78 75.31 75.31 75.31

bays29 9074.148 9964.78 9074.15 9074.15 9074.15

eil51 430.244 499.92 429.51 428.98 428.86

berlin52 7544.3659 7870.45 7544.37 7544.37 7544.37

st70 687.0724 734.19 682.57 682.57 677.11

eil76 566.5564 581.42 559.25 550.24 558.68

rat99 1298.888 1366.3 1256.25 1242.32 1225.56

kroA100 24,205.4508 24,504.9 21,307.44 21,299.0 21,298.21

From Table 6, it can be seen that the proposed algorithm achieves the same optimal
solution for burma14 as GA, PSM, and GWO. For the ulysses16 dataset, the proposed
algorithm provides the same optimal solution as PSM, and GWO. As for all the other
datasets, that is, ulysses22, bays29, eil51, berlin52, st70, eil76, and kroA100, the proposed
optimized DA provides better solutions as compared to ACO, GA, PSM, and GWO when
the same number of search agents and maximum iterations is used.

From Table 7, it can be seen that the proposed algorithm can achieve the optimal
solution for five of the datasets, namely for burma14, ulysses16, ulysses22, bays29, and
berlin52, even though a smaller number of search agents and maximum iteration is used as
compared to ACO, VTPSO, ABCSS, and DSMO. Although in some cases, VTPSO, ABCSS,
and DMSO can provide a solution with lower cost as compared to our proposed algorithm,
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it is expected that our proposed algorithm will be able to provide similar or even better
solutions if the same number of search agents and maximum iteration is used.

7. Conclusions and Future Work

Swarm intelligence algorithms are popular metaheuristic algorithms for solving com-
plex optimization problems owing to the simple interactions of the search agents which
give rise to a global intelligent behaviour. The dragonfly algorithm is a swarm intelligence
algorithm inspired by the swarming behaviours of dragonflies while hunting and migrat-
ing. It has been found to have a higher performance than multiple other swarm intelligence
algorithms in various applications.

Since DA has been found to have a better performance than multiple swarm intel-
ligence algorithms in various applications, it is worth considering its application to the
traveling salesman problem which is a popular discrete optimization problem having a
plethora of real-world applications. In [3], a binary version of the dragonfly algorithm
is proposed. However, this algorithm is difficult to be adapted for discrete problems
like TSP. Hence, in [12], we proposed a discrete adapted dragonfly algorithm suitable
for TSP. However, this algorithm has not been applied to large TSP problems and it has
low effectiveness.

In this paper, we propose an optimized adapted discrete dragonfly algorithm which
improves the low effectiveness of the adapted discrete DA in [12]. The proposed algorithm
improves the exploitation phase of the adapted discrete DA by using the steepest ascent
hill climbing algorithm as a local search. The proposed optimized adapted discrete DA has
been tested using TSP instances consisting of 50, 40, 30, 20, and 10 cities. It has been found
to provide better solutions, that is TSP paths with a lower cost, as compared to the adapted
discrete DA [12], and the enhanced swap sequence based PSO [8] algorithms. It also has a
higher convergence rate than the adapted discrete DA. Moreover, it has been tested using
several benchmark TSP problems and it has been found to provide optimal solutions or
solutions close to the optimal solutions.

For future work, the proposed algorithm can be applied to other real-world applica-
tions such as channel routing, planning, scheduling, and logistics.

Author Contributions: Conceptualization, B.A.S.E. and M.B.J.; writing—original draft preparation,
B.A.S.E. and M.B.J.; writing—review and editing, M.B.J., A.A. and A.W.M.; supervision, M.B.J.;
project administration, M.B.J.; funding acquisition, M.B.J. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by Sunway University Internal Grant Scheme 2022 grant number
GRTIN-IGS-DCIS[S]-11-2022.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

DA Dragonfly Algorithm
TSP Traveling Salesman Problem
BDA Binary Dragonfly Algorithm
MODA Multi-Objective Dragonfly Algorithm
PSO Particle Swarm Optimization
ACO Ant Colony Optimization
HC Hill Climbing
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GA Genetic Algorithm
GWO Grey Wolf Optimizer
XPSO Expanded PSO
SO Swap Operator
SS Swap Sequence
VTPSO Velocity Tentative PSO
ABCSS Artificial Bee Colony with Swap Sequence
DSMO Discrete Spider Monkey Optimization
PSM Producer Scrounger Method
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