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Abstract: Computational identification of special protein molecules is a key issue in understanding
protein function. It can guide molecular experiments and help to save costs. I assessed 18 papers
published in the special issue of Int. J. Mol. Sci., and also discussed the related works.
The computational methods employed in this special issue focused on machine learning, network
analysis, and molecular docking. New methods and new topics were also proposed. There were in
addition several wet experiments, with proven results showing promise. I hope our special issue will
help in protein molecules identification researches.

Keywords: bioinformatics; machine learning; feature selection; protein classification; network
analysis; molecular docking

1. Introduction

With the development of next generation sequencing technologies, the size of biological databases
have increased dramatically in terms of the number of samples. It is fast and cheap to obtain biological
sequences but relatively slow and expensive to extract function information because of limitations
of traditional biological experimental technologies. Protein, as the product of gene expression and
the important material basis of life activity, participates in almost all life activities and biological
processes. For some special protein molecules, the detection of new ones is time-consuming and costly.
Some special proteins are present, such as cytokines, enzymes, cell-penetrating peptides, anticancer
peptides, cancerlectins, and G protein-coupled receptors. In order to save the wet experimental costs,
researches first select some candidates through computer programs. The “computer program” is the
key step in selecting candidates. High false positive software would lead to high spending on the
validation process.

In this special issue, these “computer program” approaches and algorithms are discussed.
Numerous sequence-based “golden features” have been proposed for these problems, such as Chou’s
PseAAC. Ever since the concept of PseAAC was proposed, it has penetrated into nearly all fields
of protein identification. However, it is suggested that special features and classification methods
should be proposed for special protein molecular. “Golden features” could hardly apply to all kinds of
proteins. In this special issue, submissions focused on a kind of special protein molecules, collected
related data sets, got better prediction performance (especially low false positive), and developed
friendly software tools or web servers.

We received 36 submissions. After rigorous reviewing process, 18 papers were published.
They come from different countries, including China, Russia, Canada, Australia, USA, Poland, etc.
These papers could be categorized into three subtopics. As shown in Figure 1.
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Figure 1. Subtopics of our special issue [38,52,63].

2. Machine Learning Related Researches

2.1. Protein–Protein Interaction Prediction

The first subtopic is to identify or predict protein function with machine learning methods.
Two papers focused on protein–protein interaction prediction. Protein–protein interactions (PPIs)
play crucial roles in almost all cellular processes. Correctly predicting protein–protein interactions
contributes to precise protein function prediction [1,2]. Most of them focus on the PPIs predictions
from various data types, including 3D structural information, gene ontology and annotations, and gene
fusion. Wang et al. [3] proposed a sequence-based approach (DNN-LCTD) combining deep neural
networks (DNN) and Local Conjoint Triad Description (LCTD) feature representation. Experimental
results showed that DNN-LCTD is very promising for predicting PPIs. Wang et al. [4] using the
Zernike moments (ZM) descriptor on the PSSM combined with Probabilistic Classification Vector
Machines (PCVM) classifier developed the PCVMZM predictor for predicting the PPIs from protein
amino acids sequences. It was proved to be a robust, powerful and feasible PPI prediction method.
Ding et al. [5] developed a random forest algorithm based predictor using a multivariate mutual
information feature representation scheme and normalized Moreau-Broto Autocorrelation information
from protein sequence. Another work [6] is a novel matrix-based protein sequence representation
approach to identify PPIs, using an ensemble learning method for classification. The matrix of Amino
Acid Contact (AAC) was constructed based on the statistical analysis of residue-pairing frequencies in a
data-set of 6323 protein–protein complexes. The feature vector was extracted by applying algorithms of
Histogram of Oriented Gradient (HOG) and Singular Value Decomposition (SVD) on the Substitution
Matrix Representation (SMR) matrix of protein sequence.

Drug-target interaction is a special PPI. Because the experimental prediction of drug-target
interaction (DTIs) is time-consuming and expensive, computational technology with high accuracy
plays a crucial rule in the large-scale rapid prediction of DTIs. Shen et al. [7] proposed DAWN a kind
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of Drug-target interactions predictor combining discrete Wavelet transform and Network features.
Most importantly, DAWN as a kind of machine learning approach of feature vector-based method,
has the desired effect under the condition of without network information. In the same year, they
also developed the second tool [8] using molecular substructure fingerprints, Multivariate Mutual
Information (MMI) of proteins, and network topology.

Hotspot has important significance in the determination of protein–protein interactions [9]. Many
methods have been developed for the hotspot predictions [10,11] and even protein binding site
predictions [12]. Most of the works focused on the hotspot predictions from a curated small partial
dataset of the whole protein sequences [13]. In Jiang’s work [14], the issue of hotspot determination
was approached from whole natural protein sequences, and a random projection ensemble system
based on k nearest neighbor algorithm to identify hotspot residues by sequence information alone was
developed. Experimental results showed that although this method did not perform well enough in
the real applications of hotspots, it was very promising in the determination of hotspot residues from
whole sequences.

2.2. Special Proteins Identification

Besides protein–protein interaction, DNA binding proteins, ion channel proteins, and amyloids
have also attracted researchers’ attentions. DNA binding protein is a kind of special protein molecule,
whose identification is one of the most important tasks in studying the function of proteins. In this
regard, many computational predictors have been proposed [15–21]. In a special issue, Zhang et al. [22]
proposed a new approach to extract evolutionary information from the Position Specific Frequency
Matrix (PSFM) and incorporate the evolutionary information, and a computational predictor was
proposed for DNA binding protein identification. Experimental results showed that this predictor
outperformed some existing state-of-the-art approaches in this field. DNA-protein interactions play a
key role in a variety of biological processes, especially in cellular metabolism. Endowed with a ditto
multi-scale idea in essence, Shen et al. [23] addressed a kind of competitive method called Multi-scale
Local Average Blocks (MLAB) algorithm. Different from the structure-based route, MLAB exploited a
strategy that not only extracted local evolutionary information from primary sequence, but also used
predicted solvent accessibility. Moreover, the construction on the predictor of DNA-protein binding
sites wields an ensemble weighted sparse representation model with random under-sampling.

Ion channels are membrane proteins which are widely distributed in all cells. They have
been shown to be extensively involved in various physiological and pathological processes,
including regulating neuronal and cardiac excitability, muscle contraction, hormone secretion, fluid
movement, and immune cell activation. Different ion channels play their unique roles in different
biological processes. With the rapid development of next-generation sequencing technologies, the
accumulation of proteomic data provides uswith a platform to systematically investigate and predict
ion channels and their types. Several studies have focused on the prediction of ion channels and
their types [24–26]. The paper published in the special issue [27] proposed a new prediction model
to quickly predict ion channels and their types. An improved feature extraction method combining
dipeptide composition with the physicochemical property correlation between two residues was
developed to formulate protein samples. Subsequently, the analysis of variance (ANOVA) combined
with the incremental feature selection (IFS) was employed to find out the optimal features which
can produce the maximum accuracy. As a result, authors achieved the overall accuracies of
87.8% for discriminating ion channels from non-ion channels, 94.0% for distinguishing between
voltage-gated ion channel and ligand-gated ion channels and 92.6% for four types of voltage-gated
ion channels, respectively. Based on the proposed models, a web server called IonchanPred 2.0
(http://lin.uestc.edu.cn/server/IonchanPredv2.0) was established. The free predictor will be most
useful to most wet-experimental scholars. A few groups have focused on the outer membrane protein
recently, Wang et al. introduced the predicted topology structure as a mainly structure-specific
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feature to this classical type of ion channel protein, improved the precision of outer membrane
identification [28], inter-barrel contact prediction [29] and fold recognition [30].

In this special issue, Antonets et al. [31] detected amyloidogenic proteins in the proteomes of
plants. Amyloids are protein fibrils with characteristic spatial structure. The main computational
method for them was phylogenetic analysis together with machine learning techniques. This kind of
protein also includes DNA and RNA binding ones, which showed that different kinds of proteins have
comment characters. To summarize, effective protein features and machine learning techniques are
still essential and challenging in the future.

2.3. Protein Subcellular Localization and Function Analysis

Besides PPI, special proteins, protein subcellular localization, and function prediction are
traditional challenges and attract researchers. In general, only when the protein is located in the
correct subcellular location, can the protein function normally. Therefore, prediction of protein
subcellular localization is an important component of proteomics, and it can aid the identification
of drug targets. Due to the technical limitation and high cost of time and money in traditional
experimental methods, research on protein subcellular location annotation with the machine learning
technique has become a focused research problem in bioinformatics. When we use machine learning
technologies to predict protein subcellular location, we need to extract the features of protein sequences,
and then use the classifier to realize the protein classification. Thus feature extraction and dimension
reduction are important techniques for analyzing the complex and high dimensional biological data
in protein subcellular location. In order to improve the prediction accuracy of protein subcellular
location, an appropriate algorithm for reducing data dimension should be used before classification.
Wang et al. [32] proposed two feature fusion expressions and then used the linear discriminant analysis
(LDA) method for dimension reduction. Considering the general nonlinear property in protein
sequence data, they [33] introduced the nonlinear kernel discriminant analysis (KDA) method to
reduce the high dimensionality in some feature data in this special issue. In this paper, an improved
Gauss kernel parameter selection algorithm was proposed to predict subcellular location. It was
proposed by maximizing the differences of reconstruction errors between edge normal samples and
internal normal samples. The proposed method did not only show the same effect as traditional
methods, but also reduced the computational time and improved the efficiency. It should be noted
that LDA and KDA methods cannot only reduce the data dimensionality, but also take use of some
classification information in the data, resulting in an ideal classification effect. Besides, there have been
some new dimensional reduction algorithms which have been tried in other pattern recognition fields,
such as face recognition [34].

Knowledge of protein function is the key to the understanding of the biological process and
disease development and to the discovery of new therapeutic targets [35]. Various in-silico methods
have been developed for protein function prediction [36], which complement one another due to their
distinct underlying theory [37]. A comprehensive comparison of the performances between those
popular prediction algorithms was conducted based on the information from 93 functional protein
families [38], which observed a substantially higher sensitivity of BLAST and a significantly reduced
false discovery rate of machine learning.

Since machine learning is a key issue in protein research, it is essential to extract numerical features
from the protein primary sequence. Some recent studies showed that evolutionary information and
the sequence-order effects are very important for extracting the features of proteins [39,40]. In their
special issue, Du et al. [41] developed the UltraPse program to convert biological sequences into
digital features. Unlike the PseAAC-Builder [42] or PseAAC-General [43], the UltraPse program can
be used on DNA/RNA sequences as well as protein sequences. The program is a good starting point
in predicting special protein functional characters, especially the exact subcellular localization of
proteins [44].
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3. Network Techniques Related Researches

Network analysis is also an important technique for protein identification and function research.
Identification of disease genes is very important in medicine. For a disease, extracting its disease
genes as completely as possible is helpful in understanding its pathogenesis, thereby designing
effective treatments. To date, several network methods have been proposed to identify genes related
to different diseases, such as the guilt by association (GBA) based method [45], the shortest path
algorithm based method [46–48], the flow propagation algorithm [49], and the random walk with
restart (RWR) algorithm based method [50]. In view of the fact that the RWR algorithm can make
full use of the whole network, a RWR algorithm based method was proposed by Lu et al. [51] to
identify disease genes of uveitis, a serious eye disease that may cause blindness in both young and
middle-aged people. The method first applied the RWR algorithm on a protein–protein interaction
(PPI) network using validated uveitis-related genes as seed nodes. Second, the obtained genes were
filtered by a permutation test that can exclude false positive genes produced by the PPI network.
Finally, they extracted important genes from the remaining genes by evaluating their associations to
validate genes. Several putative genes were accessed and some have been determined to be important
for the pathogenesis of uveitis.

Li et al. [52] employed the advanced network clustering algorithm for protein complex
identification. Their method could detect the overlapping complex from the PPI network. Cluster
analysis of biological networks is an important topic in systems biology. Up to now, a number
of computational methods and tools have been proposed for analyzing biological networks and
identifying protein complexes [53]. Various plugins based on cytoscape, such as CytoNCA [54],
ClusterViz [55], DyNetViewer [56], CytoCtrlAnalyser [57], were developed to analyze biological
networks from different perspectives. CytoCluster [58] in our special issue is a popular clustering tool
which integrates six clustering algorithms and BinGO function. Since it was established in July 2013,
CytoCluster has been downloaded more than 11,200 times from the Cytoscape App Store and has been
applied to different biological networks analyses.

4. Docking and Wet Experiments Researches

Docking is still an interesting and hot topic in protein structure and function analysis, especially in
the drug design process. Adenosine monophosphate-activated protein kinase (AMPK) plays a critical
role in the regulation of energy metabolism. Huang et al. [59] employed molecular docking to get
potential β1-selective AMPK activators. Finally, 12 novel compounds were selected as potential starting
points for the design of direct β1-selective AMPK activators. Hou et al. [60] investigated the relationship
between scopoletin structure and TcPMCA1(a gene name)-inhibiting activity of scopoletin and other
30 coumarin derivatives by employing docking and three-dimensional quantitative structure-activity
relationships (3D-QSAR). This work offers additional insights into the mechanism underlying the
interaction of scopoletin with TcPMCA1 gene. Together with this work, the other three works in this
special issue also carried out wet experiments. Besides wet experiments, Ding et al. [61] completed
bioinformatics analysis and molecular dynamics simulation on glucose 1-dehydrogenase (GDH).
Chandler et al. [62] extracted insulin-binding protein and insulin-like peptides in the Eastern spiny
lobster, Sagmariasus verreauxi. Molecular modelling, including docking, showed various interaction
and regulation. Futoma-Koloch et al. [63] laid special stress on analyzing the relationship between
triamine-biocide tolerance of Salmonella enterica serovar Senftenberg with antimicrobial susceptibility,
serum resistance, and outer membrane proteins.

To conclude, papers in this special issue cover several emerging topics of computational
identification and bioinformatics analysis of special protein molecules. We fervently hope that this
particular issue will attract considerable interest in the relevant fields. We are grateful to Int. J. Mol. Sci.
for providing the chance to organize this special issue. We also thank the reviewers for their efforts in
guaranteeing the high quality of this special issue. Finally, we thank all those who contributed to this
special issue. Int. J. Mol. Sci. has promised to continue with the same topic as a new special issue in
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2018. Besides special protein molecules, nucleic acids with special modifications identification (such as
RNA m6A [64], protein phosphorylation [65] and methylation, etc.) will also be welcomed in the 2018
special issue. I hope more authors and readers will contribute, especially to the follow-up works from
this special issue.
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Abstract: Protein–protein interactions (PPIs) are essential for most living organisms’ process. Thus,
detecting PPIs is extremely important to understand the molecular mechanisms of biological systems.
Although many PPIs data have been generated by high-throughput technologies for a variety
of organisms, the whole interatom is still far from complete. In addition, the high-throughput
technologies for detecting PPIs has some unavoidable defects, including time consumption, high cost,
and high error rate. In recent years, with the development of machine learning, computational
methods have been broadly used to predict PPIs, and can achieve good prediction rate. In this paper,
we present here PCVMZM, a computational method based on a Probabilistic Classification Vector
Machines (PCVM) model and Zernike moments (ZM) descriptor for predicting the PPIs from protein
amino acids sequences. Specifically, a Zernike moments (ZM) descriptor is used to extract protein
evolutionary information from Position-Specific Scoring Matrix (PSSM) generated by Position-Specific
Iterated Basic Local Alignment Search Tool (PSI-BLAST). Then, PCVM classifier is used to infer the
interactions among protein. When performed on PPIs datasets of Yeast and H. Pylori, the proposed
method can achieve the average prediction accuracy of 94.48% and 91.25%, respectively. In order
to further evaluate the performance of the proposed method, the state-of-the-art support vector
machines (SVM) classifier is used and compares with the PCVM model. Experimental results on
the Yeast dataset show that the performance of PCVM classifier is better than that of SVM classifier.
The experimental results indicate that our proposed method is robust, powerful and feasible, which
can be used as a helpful tool for proteomics research.

Keywords: proteins; position-specific scoring matrix; probabilistic classification vector machines

1. Introduction

Recognition of protein–protein interactions (PPIs) is essential for elucidating the function of
proteins and further understanding the various biological processes in cells. In the last decade,
a variety of biological methods have been used for large-scale PPIs detection, such as tandem affinity
purification [1], yeast two-hybrid systems [2,3], and protein chip [4]. For the limit of the experimental
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technique, these methods have some disadvantages, including high cost and time-intensive, as well as
high rates of both false-positive and false-negative. Hence, computational methods for the detection
of protein interactions have become hot research topics of proteomics research. So far, a number of
computational methods have been presented for the detection of PPIs based on different data types,
such as protein domains, protein structure information, genomic information and phylogenetic
profiles [5–13]. However, these approaches cannot be achieved unless prior information of the protein
is available. Hence, the mentioned methods are not widespread. Compared to the rapid growth
of a large number of protein sequences, other data that can be used to predict the PPIs are scarce.
Therefore, computational methods using only protein amino acid sequence information for PPIs
prediction is especially interesting [14]. Bock and Gough used a support vector machine (SVM) with
protein sequence descriptors to predict PPIs [15]. Martin et al. proposed an approach to predict
PPIs by using signature product, which is a descriptor that extends from signature descriptors [16].
Najafabadi et al. attempted to solve this problem with Bayesian network [17]. Shen et al. adopted a
SVM model to predict PPI network by combining Skernel function of protein pairs with a conjoint
triad feature [18]. Yu-An Huang et al. developed a method by combining discrete cosine transform and
using weighted sparse representation-based classifier to predict PPIs, and it has achieved very exciting
prediction accuracy when applying this method to detecting yeast PPIs [19]. Yan-Zhi Guo et al. also
obtained promising prediction results by adopting support vector machine and auto covariance [20].
Loris Nanni et al. developed several matrix-based protein representation methods, including [21–25].
Other feature extraction approaches based on protein sequence have been proposed in [26–34].
In this study, a novel computational approach for predicting PPIs from amino acid sequences based
on a probabilistic classification vector machines model (PCVM) and a Zernike moments descriptor
(PCVMZM) was proposed. The major improvement is the development of a more accurate protein
sequence representation. Specifically, we employed the Zernike moments feature representation on a
Position-Specific Scoring Matrix (PSSM) to extract the evolutionary information from protein sequence,
and then a probabilistic classification vector machines classifier is used to infer the PPIs. In more
detail, a PSSM representation is used to represent each protein. Afterward, for the sake of obtaining
more representative information, we apply a Zernike moments descriptor to extract features in each
protein PSSM and use Zernike moments of 12-order information and generate a 42-dimensional feature
vector. Finally, we adopt the machine learning method called PCVM to accomplish classification.
The proposed method was applied to Yeast and H. Pylori PPIs datasets. The experiments have shown
that a PCVM prediction model with a Zernike moments descriptor yields fantastic performance. By
further contrast experiment, we found that our proposed method was superior to the state-of-the-art
SVM, which clearly shows that the proposed approach is trustworthy in predicting PPIs [35–39].

2. Results and Discussion

2.1. Evaluation Measure

The proposed method is evaluated against the following criteria: The Accuracy (Acc), Sensitivity
(Sen), Precision (Pre), and Matthew‘s correlation coefficient (MCC). All the computational formula is
defined as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Sensitivity =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

MCC =
(TP × TN)− (FP × FN)√

(TP + FN)× (TN + FP)× (TP + FP)× (TN + FN)
(4)
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where TP represents the number of true positive, that true samples are predicted correctly, TN
represents the number of true negative that true noninteracting pairs are predicted correctly. FP
represents the number of false positive that non-interacting pairs are predicted to be interaction. FN
represents the number of false negative that interacting pairs are predicted to be non-interacting.
In addition, the receiver operating characteristic (ROC) curve [40] is applied to evaluate the
performance of our method. The area under an ROC curve (AUC) [41] also is computed.

2.2. Assessment of Prediction

In order to make our method more reliable, five-fold cross-validation was adopted to divide
a whole dataset into five parts. Hence, we obtained five models through separate experiments for
each data set. The prediction result of PCVM prediction models with a Zernike moments description
of protein sequence on Yeast and H. Pylori datasets are shown in Tables 1 and 2. From Table 1,
we can see that our proposed method achieved a good performance on the Yeast dataset. Its average
accuracy, sensitivity, precision, and MCC are 94.48%, 95.13%, 93.92% and 89.58%, respectively. When
using our proposed method on the H. Pylori dataset, as shown in Table 2, we also achieved some
satisfactory results of average accuracy, sensitivity, precision, and MCC of 91.25%, 92.05%, 90.60% and
84.04%, respectively.

Table 1. Fivefold cross validation results using the proposed method on Yeast dataset.

Testing Set Acc (%) Sen (%) Pre (%) MCC (%)

1 96.38 97.21 95.57 93.02
2 94.05 95.23 92.77 88.81
3 93.07 96.73 90.27 87.06
4 94.46 94.20 94.71 89.53
5 94.42 92.26 96.26 89.46

Average 94.48 ± 1.2 95.13 ± 2.0 93.92 ± 2.4 89.58 ± 2.2

Table 2. Fivefold cross validation results using the proposed method on H. Pylori dataset.

Testing Set Acc (%) Sen (%) Pre (%) MCC (%)

1 89.54 92.11 86.82 81.24
2 92.11 92.68 91.41 85.46
3 91.08 91.16 91.16 83.75
4 91.42 92.25 90.34 84.31
5 92.12 92.04 93.23 85.42

Average 91.25 ± 1.1 92.05 ± 0.6 90.06 ± 2.4 84.04 ± 1.7

From the experimental results, it can be seen that our proposed approach is robust, accurate and
practical for predicting PPIs. The outstanding performance for detecting PPIs can be put down to the
feature extraction and the classification model of our proposed method. It is effective that Zernike
moments are used for feature extraction, and the PCVM model is accurate and robust in dealing with
classification problems.

2.3. Comparison with the Support Vector Machine (SVM)-Based Method

In order to further evaluate the prediction performance of the proposed entire model, the SVM
model is adopted based on the Yeast dataset to predict PPIs using the same Zernike moments to extract
feature, and then, we compared the classification result between PCVM and SVM. We employed the
SVM through the library for Support Vector Machines (LIBSVM) tool [42]. SVM have two parameters,
c and g, respectively. A grid search method is used to optimize parameters c and g. In our experiment,
a radial basis function is used as the kernel function and the initial value c and g was set to 0.4 and 0.5.
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Table 3 gives the prediction results of five-fold cross-validation over two different classification
methods on the Yeast dataset. From Table 3, we can see that the classification method of SVM achieved
89.31% average accuracy, 87.54% average sensitivity, 90.81% average precision, 80.91% average MCC.
While the classification results of the PCVM method achieved 94.48% average accuracy, 95.13% average
sensitivity, 93.92% average precision, 89.58% average MCC. Experimental results show that PCVM
classification method is significantly better than the SVM classification method. Comparison of
ROC curves performed between RVM and SVM on the Yeast dataset from Figures 1 and 2, we have
experimental data obtained that the PCVM classifier is more accurate and robust than the SVM classifier
for detecting PPIs.

Table 3. Five-fold cross-validation results by using two models on the Yeast dataset.

Model Testing Set Acc (%) Sen (%) Pre (%) MCC (%)

Probabilistic Classification Vector
Machines (PCVM)

1 96.38 97.21 95.57 93.02
2 94.05 95.23 92.77 88.81
3 93.07 96.73 90.27 87.06
4 94.46 94.20 94.71 89.53
5 94.42 92.26 96.26 89.46

Average 94.48 ± 1.2 95.13 ± 2.0 93.92 ± 2.4 89.58 ± 2.2

Support Vector Machin (SVM)

1 89.23 87.75 90.27 80.76
2 90.48 88.73 91.49 82.74
3 87.62 87.37 88.07 78.30
4 89.63 88.05 90.97 81.40
5 89.60 85.79 93.23 81.32

Average 89.31 ± 1.7 87.54 ± 1.1 90.81 ± 1.9 80.91 ± 1.62

The main improvement is attributed to three points: (1) the main advantage of PCVM is that
the truncated Gaussian priors are adopted to generate robust and sparse results—in other words,
the number of weight vectors is less than SVM. Hence, the complexity of the model is reduced, besides,
the model is more general; (2) The parameter optimization procedure of the PCVM based on EM
algorithm and probabilistic inference not only can improve the performance, but also save the effort to
do cross-validation; (3) The PCVM model is simpler and easier to be understood, because the number
of basic functions does not grow linearly with the number of training points. In general, the PCVM is a
sparse model that makes up the shortcoming of SVM without deskilling the generalization performance
and provides probabilistic outputs. Here it is, our proposed approach can produce satisfactory results.

Figure 1. Receiver operating characteristic (ROC) curves performed of a probabilistic classification
vector machines model (PCVM) on the Yeast dataset.
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Figure 2. ROC curves performed of support vector machine (SVM) on the Yeast dataset.

2.4. Comparison with Other Methods

In recent years, many classification methods have been developed to predict PPIs. To further validate
the performance of our proposed method, we compared the predictive performance of our method
with other existing several well-known methods. The achieved results of five-fold cross-validation of
different methods on the Yeast dataset and H. pylori dataset are shown in Tables 4 and 5. From Table 4,
the prediction accuracy of other previous methods on the Yeast dataset varies from 75.08% to 93.92%,
while the proposed method achieved higher value of 94.48%. Similarly, the sensitivity and MCC of our
method are also higher than those of other methods. We can find similar results on the H. pylori dataset
in Table 5. Our proposed method achieves 91.25% accuracy, which is higher than the other five methods
with the highest prediction accuracy of 87.50%. The same is true for precision, sensitivity and MCC.
All prediction results in Tables 4 and 5 indicate that the PCVM classifier is stable and robust and can
improve the prediction performance compared with the state-of-the-art methods. The improvement of
prediction performance of our method may derive from the novel feature extraction method which
extracts the highly discriminative information, and the use of PCVM classifier which ensures accurate
and stable prediction.

Table 4. Practical predicting results of different methods on the Yeast dataset.

Model Testing Set Acc (%) Sen (%) Pre (%) MCC (%)

Guo [20]
Auto Covariance (ACC) 89.33 ± 2.67 89.93 ± 3.68 88.87 ± 6.16 N/A

auto covariance (AC) 87.36 ± 1.38 87.30 ± 4.68 87.82 ± 4.33 N/A

Yang [23]

Cod1 75.08 ± 1.13 75.81 ± 1.20 74.75 ± 1.23 N/A
Cod2 80.04 ± 1.06 76.77 ± 0.69 82.17 ± 1.35 N/A
Cod3 80.41 ± 0.47 78.14 ± 0.90 81.66 ± 0.99 N/A
Cod4 86.15 ± 1.17 81.03 ± 1.74 90.24 ± 1.34 N/A

You [24]
Principal Component

Analysis-Ensemble Extreme
Learning Machines (PCA-EELM)

87.00 ± 0.29 86.15 ± 0.43 87.59 ± 0.32 77.36 ± 0.44

Wong [30]
Rotation Forest (RF) + Property

Response-Local Phase
Quantization (PR-LPQ)

93.92 ± 0.36 91.10 ± 0.31 96.45 ± 0.45 88.56 ± 0.63

Proposed Method PCVM 94.48 ± 1.20 95.13 ± 2.00 93.92 ± 2.40 89.58 ± 2.20
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Table 5. Practical predicting results of different methods on the H. Pylori dataset.

Model Acc (%) Sen (%) Pre (%) MCC (%)

Nanni [23] 83.00 86.00 85.10 N/A
Nanni [32] 84.00 86.00 84.00 N/A

Nanni and Lumini [25] 86.60 86.70 85.00 N/A
Z-H You [29] 87.50 88.95 86.15 78.13
L Nanni [24] 84.00 84.00 84.00 N/A

Proposed Method 91.25 92.05 90.06 84.04

3. Materials and Methodology

3.1. Dataset

Up to now, many databases of PPIs data have been generated, such as Database of Interaction
Proteins (DIP) [43], Molecular Interaction Database (MINT) [44], and Biomolecular Interaction Network
Database (BIND) [45]. To evaluate our approach, we used two publicly available datasets: Yeast
and H. Pylori, which were extracted from Database of Interaction Proteins (DIP). In order to ensure
the reliability of the tests, we extract 5594 positive protein pairs to constitute the positive dataset
and 5594 negative protein pairs to constitute the negative protein dataset from the Yeast dataset.
Analogously, we extract 1458 positive protein pairs to constitute the positive dataset and 1458 negative
protein pairs to constitute the negative protein dataset from the H. Pylori dataset. Therefore, the Yeast
dataset consists of 11,188 protein pairs and the H. Pylori dataset consists of 2916 protein pairs.

3.2. Position-Specific Scoring Matrix

A Position-Specific Scoring Matrix (PSSM) was usually adopted to find distantly related proteins,
protein disulfide, protein quaternary structural attributes and protein folding patterns [46–49].
In this paper, we also adopt PSSM to predict PPIs. Here, each protein was transformed into
a PSSM matrix by employing the Position-Specific Iterated Basic Local Alignment Search Tool
(PSI-BLAST) [50,51]. A PSSM is represented as

PSSM = (N1, N2, . . . , Ni, . . . , N20) (5)

where Ni = (N1i, N2i, . . . , NLi)
T , (i = 1, 2, . . . , 20). A PSSM contains L × 20 elements, where L denotes

the length of an amino acid sequence and 20 columns are owing to 20 amino acids. The Nij of the
PSSM element is indicated as a score of jth amino acid in the ith position of the given protein sequence
and it can be expressed as Nij = ∑20

k=1 p(i, k)× q(j, k) where p(i, k) is the appearing frequency value
of the kth amino acid at position i of the probe, and q(j, k) represents the value of Dayhoff’s mutation
matrix [52] between the jth and the kth amino acids. Consequently, the higher the score, the better the
conserved position [53–55].

In our study, the experiment datasets were built by using PSI-BLAST to transform each protein
into a PSSM for detecting PPIs. To obtain more extensive homologous sequences, the e-value parameter
of PSI-BLAST was set to 0.001 and chose three iterations. As a result, the PSSM of a protein sequence
can be represented as a M × 20 matrix, where M is the number of residues and each column represents
an amino acid [56–59].

3.3. Zernike Moments

Zernike moments have an exciting performance in the field of image recognition for extract image
feature, because it is robust against rotation and it can represent information from different angles.
In this paper, we first introduced Zernike moments to extract significant information from protein
sequences. In this section, Zernike moments and their principal properties are described, and we
illustrate how to achieve the rotation invariance. Finally, we describe the process of feature selection.
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3.3.1. Invariance of Normalized Zernike Moment

The principle of Zernike moments [60–63] is Zernike polynomials [64–66], that is a set of complete
orthogonal polynomials within the unit circle. In two-dimensional space, these polynomials can be
expressed as {Vnm(x, y)} and expression is as follows:

Vnm(x, y) = Vnm(ρ, θ) = Rnm(ρ)ejmθ for ρ ≤ 1 (6)

where n is a nonnegative integer and m is an integer subject to constraints n−|m| even, |m| ≤ n.
Here, {Rnm(ρ)} is a radial polynomial in the form of

Rnm(ρ) = ∑(n−|m|/2)
s=0 (−1)s (n − s)!

s!
(

n+|m|
2 − s

)
!
(

n+|m|
2 − s

)
!
ρn−2s (7)

Note that Rn,−m(ρ) = Rnm(ρ).The set of polynomials are orthogonal, i.e.,

∫ 2π

0

∫ 1

0
V∗

nm(ρ, θ)Vpq(ρ, θ)ρdρdθ =
π

n + 1
δnpδmq (8)

With

δab =

{
1 a = b
0 otherwise

(9)

The two-dimensional Zernike moments for continuous function f (ρ, θ) are the projection of f (ρ, θ)
onto these orthogonal basis function and denoted by

Anm =
n + 1

π

∫ 2π

0

∫ 1

0
f (ρ, θ)V∗

nm(ρ, θ)ρdρdθ (10)

Correspondingly, for a digital function, the two-dimensional Zernike moments are represented by

Anm =
n + 1

π ∑(ρ,θ)∈unit circle ∑ f (ρ, θ)V∗
nm(ρ, θ) (11)

To compute the Zernike moments of a PSSM matrix [67–70], the center of the matrix is taken
as the origin and coordinates are mapped into a unit circle, i.e., x2 + y2 ≤ 1. Those values of matrix
falling outside the unit disk are not used in the computation. Note that A∗

nm = An,−m.

3.3.2. Introduction of a Zernike Moments Descriptor

When we define f ′(ρ, θ) as the rotated function, the equivalence between original and rotated
function is

f ′(ρ, θ) = f (ρ, θ − α) (12)

The Zernike moments A′
nm of the rotated function f ′(ρ, θ) become

A′
nm = Anme−jmα (13)

Equation (13) indicates that Zernike moments only need phase shift on rotation. Therefore, the
magnitude of the Zernike moment, |A′

nm|, can be adopted as rotation-invariant feature.
Therefore, after moving the origin of PSSM matrix into the centroid, we can compute the Zernike

moments and the magnitudes of the moments are rotation-invariant [71,72].

3.3.3. Feature Selection

According to the foregoing, we have known that the magnitudes of Zernike moments can be
used as rotation-invariant features. One problem that must be considered is how big should N be?
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The lower-order moments extract gross information and high details information are captured by
higher-order moments. In our experiments, N is set to 12. We can obtain 42 features from each protein

sequence. The feature vector
→
F be represented as:

→
F = [|A11|, |A22|, . . . . . . , |ANM|]T (14)

where |Anm| represent the Zernike moments magnitude. Here, we do not consider the case of m = 0,
because they do not include useful information regarding the PPIs and Zernike moments with m < 0
have not been considered, because they are inferred through An,−m = A∗

nm. Hence, the dimension of

the feature vector
→
F is 42 [73]. The obtained Zernike moments is shown in Table 6.

Table 6. List of Zernike Moments (ZMs) sorted by n and m in sequence for the case where
(n, m) = (12, 12).

N Moments No. N Moments No.

1 A11 1 7 A71, A73, A75, A77 4
2 A22 1 8 A82, A84, A86, A88 4
3 A31, A33 2 9 A91, A93, A95, A97, A99 5
4 A42, A44 2 10 A10,2, A10,4, A10,6, A10,8, A10,10 5
5 A51, A53, A55 3 11 A11,1, A11,3, A11,5, A11,7, A11,9, A11,11 6
6 A62, A64, A66 3 12 A12,2, A12,4, A12,6, A12,8, A12,10, A12,12 6

3.4. Related Machine Learning Models

In the field of machine learning, the Support Vector Machines (SVM) [74] are acknowledged
as an excellent supervision model in pattern recognition, classification, and regression analysis.
However, there are certain apparent disadvantages when using this method: (1) the count of support
vectors grows linearly with the scale of the training set; (2) Outputs of the SVMs are not probabilistic;
(3) The parameters of kernel function need to be optimized by cross-validation, the procedure wastes
a lot of computing resources. Compared with SVM, the Relevance Vector Machines (RVM) [75]
based on Bayesian technique can avoid these problems. The RVM method takes advantage of the
Bayesian automatic relevance determination (ARD) [76] framework and gives a zero-mean Gaussian
prior over every weight wi to produce a sparse solution. However, for a classification problem, the
zero-mean Gaussian prior are given over weights for negative and positive classes, which leads to
a problem that some training points belonging to negative classes may be given positive weights
and vice-versa. Under this circumstance, it may give rise to produce some unreliable vectors for the
decision of RVMs. For the sake of addressing this problem and proposing an appropriate probabilistic
model for predicting PPIs, we first adopt the Probabilistic Classification Vector Machine (PCVM)
classifier which gives different priors over weights for training points that belong to different classes,
i.e., the non-negative, left-truncated Gaussian is used for the positive class and the non-positive,
right-truncated Gaussian is used for the negative class. PCVM provides many advantages: (1) PCVM
produces the probabilistic outputs for each test point; (2) It is effective that PCVM used expectation
maximization (EM) algorithm to optimizing kernel parameters; (3) PCVM introduced a sparser model
leading to faster performance in the test stage.

3.5. PCVM Algorithm

PCVM is a classification model that supervised learning. Hence, we need a set of input-target
training pairs {xi, yi}N

i=1, where yi = {−1, +1} to train a learning model f (x; w), which is defined by
parameters W. The model is a linear combination of N basis functions and is represented as

f (x; w) = ∑N
i=1 wi∅i,θ(x) + b (15)

17



Int. J. Mol. Sci. 2017, 18, 1029

where the {∅1,θ(x), . . . . . .∅N,θ(x)} is basis function, (wherein θ represent the parameter vector of the
basis function), the W = (w1, . . . . . . , wN)

T is the parameter of the PCVM model, the b is the bias.
In this paper, we adopt the radial basis function (RBF) [77] as the basis and adopt the probit link

function ψ(x) =
∫ x
−∞ N(t|0, 1)dt to obtain the binary outputs. Finally, mapping the f (x; w) into ψ(x),

the expression of the PCVM model becomes:

L (X; w, b) = ψ
(
∑N

i=1 wi∅i,θ(x) + b
)
= ψ(Φθ(X)W + b) (16)

A truncated Gaussian distribution as a prior is employed over each weight wi as follow

p(W|α)= ∏N
i=1 p(wi|αi) = ∏N

i=1 Nt(wi|0, α−1
i ) (17)

A zero-mean Gaussian distribution as a prior is employed over the bias b:

p(b|β) = N
(

b|0, β−1
)

(18)

The Nt(wi|0, α−1
i ) is a truncated Gaussian function, αi is the precision of the corresponding

parameter wi, β represents the precision of the normal distribution of b. When yi = +1, the truncated
prior is a non-negative, left-truncated Gaussian, and when yi = −1, the prior is a non-positive,
right-truncated Gaussian. This can be represented as

p(wi|αi) =

{
2N(wi|0, α−1

i ) yiwi ≥ 0
0 others

(19)

The gamma distribution is adopted as the hyper prior of α and β. Using the EM algorithm, assign
the parameters of a PCVM model, such as parameters b, W and θ. The EM algorithm is an iterative
algorithm, which is used to estimate the maximum likelihood or maximum posterior probability
involving latent variables. For more details about the PCVM theory, please refer to [78,79].

3.6. Initial Parameter Selection and Training

The PCVM algorithm has only one parameter, θ, which can be optimized automatically in the
training process. However, the EM algorithm is susceptible to initial point and trap in local maxima.
Choosing the best initialization point is an effective method to avoid the local maxima. We train a
PCVM model with eight initialization points over the five training folds of each data. Hence, we obtain
a 5 × 8 matrix of parameters, where the rows represent the folds and the columns represent the
initializations. For each row, we select the results of the lowest test error. Hence, we find only five
points, and then, we select the medium over those parameters. We have experimental obtained the
optimal initial value θ which is seted as 3.6 on the Yeast dataset and 1.18 on the H. pylori dataset.

4. Conclusions

Considering time, efficiency and economy, the use of computational methods based on protein
amino acid sequences to predict PPIs has attracted the attention of researchers. The computational
method is playing an important role in proteomics research, because it saves manpower and material
resources and is more accurate and efficient. In this paper, we introduce an accurate computational
method based on protein sequence. It is established by using a PCVM classifier combined with a
Zernike moments descriptor on the PSSM. The experiments showed that the performance of our
proposed method achieves a high classification accuracy and is superior to the SVM. The main
improvements of the developed approach come from adopting a Zernike moments descriptor as
feature extraction approach that can capture multi-angle useful and representative information. More
than this, the use of a PCVM classifier ensures more reliable and accurate recognition, because the
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use of the truncated Gaussian priors can lead to obtaining robust and sparse results—the number of
support vectors is less than SVM, and the probabilistic outputs produced by PCVM can assess the
uncertainty of prediction on the skewed dataset. In addition, the parameter optimization procedure of
the PCVM not only can improve the performance, but also save effort to do cross-validation. Due to
the outstanding performance of the Zernike moments descriptor and PCVM, our method can improve
the PPIs accuracy rate. All in all, our proposed method is highly efficient and stable and can be a useful
tool for predicting PPIs.
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Abstract: Uveitis, defined as inflammation of the uveal tract, may cause blindness in both young
and middle-aged people. Approximately 10–15% of blindness in the West is caused by uveitis.
Therefore, a comprehensive investigation to determine the disease pathogenesis is urgent, as it will
thus be possible to design effective treatments. Identification of the disease genes that cause uveitis
is an important requirement to achieve this goal. To begin to answer this question, in this study,
a computational method was proposed to identify novel uveitis-related genes. This method was
executed on a large protein–protein interaction network and employed a popular ranking algorithm,
the Random Walk with Restart (RWR) algorithm. To improve the utility of the method, a permutation
test and a procedure for selecting core genes were added, which helped to exclude false discoveries
and select the most important candidate genes. The five-fold cross-validation was adopted to evaluate
the method, yielding the average F1-measure of 0.189. In addition, we compared our method with
a classic GBA-based method to further indicate its utility. Based on our method, 56 putative genes
were chosen for further assessment. We have determined that several of these genes (e.g., CCL4, Jun,
and MMP9) are likely to be important for the pathogenesis of uveitis.

Keywords: uveitis; protein–protein interaction; random walk with restart algorithm

1. Introduction

Uveitis is defined as an inflammation of the uveal tract, which is composed of the ciliary body,
iris and choroid [1,2]. Uveitis is one of the leading causes of permanent and irreversible blindness in
young and middle-aged people and accounts for 10–15% of blindness in the Western world [1–3]. Uveitis
can be caused by infectious and non-infectious factors; the latter include Vogt–Koyanagi–Harada
(VKH) syndrome, Behcet’s disease (BD), acute anterior uveitis (AAU), birdshot chorioretinopathy
(BCR) and some types of cancers. VKH is an autoimmune disease characterized by systemic disorders
including poliosis, vitiligo, alopecia, auditory signs and disorders of the central nervous system [4,5].
BD is a chronic multi-systemic inflammatory disease characterized by nongranulomatous uveitis,
oral ulcers and skin lesions [2,6]. AAU is the most common non-infectious cause of uveitis and is
characterized by self-limiting and recurrent inflammation involving the ciliary and iris body [7]. BCR is

Int. J. Mol. Sci. 2017, 18, 1045 23 www.mdpi.com/journal/ijms



Int. J. Mol. Sci. 2017, 18, 1045

a chronic, bilateral, and posterior uveitis that has an almost 100% genetic association with HLA-A29 [8].
Uveitis or uveitis masquerade syndrome could also be induced by some intraocular tumors, such as
retinoblastoma and intraocular lymphoma, or their therapeutic approaches [9–15].

It has been reported that complex genetic mechanisms coupled with an aberrant immune response
may be involved in the development of uveitis. In some cases, the pathogenesis of uveitis seemly
has a different cause than those described above, such as sarcoidosis [16]. Mutations in different
genes and gene families have been discovered in patients. In this study, we focused on the most
important causes of uveitis and research for the putative genes involved in these processes. Human
leukocyte antigens (HLAs) are the major molecules that are important for the development of uveitis,
including uveitis associated with VKH (HLA-DR4, DRB1/DQA1), BD (HLA-B51), AAU (HLA-B27)
and BCR (HLA-A29). In addition, genome-wide association studies revealed that abnormities of
many non-HLA genes such as the interleukin (IL) family and the Signal transducer and activator
of transcription 4 (STAT4) also participate in the progression of uveitis [17–19]. IL23R is associated
with both VKH and AAU [20]. Furthermore, copy number variations (CNVs) of Toll-like receptors
(TLRs), a family of cellular receptors that function in innate immune response, are associated with
BD, VKH and AAU. These genes include TLRs 1–3, TLRs 5–7, and TLRs 9–10 [21]. SNPs of TLR4
were also shown to be involved in the development of BD [22]. In addition, it has been demonstrated
that there is increased expression of T-bet and IFN-γ, two genes involved in the Th1 cell pathway,
in uveitis patients [23]. The activator of STAT4 affects IL-17 production and is a shared risk factor for
BD in different cohorts [17,24]. Finally, interleukins (notably IL-2, IL12B, IL18 and IL23R) are important
cytokines that play a pathogenic role in the process of uveitis [2,17,25]. In this study, we mainly focused
on the genes that play an important role in the immune system, transcription, or cell adhesion.

Using traditional methods, it is quite difficult to collect these large-scale data and analyze genes
synthetically. The microarray is a widely used tool for the identification of novel genes. Microarray
analysis has been used to determine a number of genes that are associated with uveitis, including
the IL10 family and several other transcripts [16,26–29]. In recent years, computational analysis has
been applied to identify virulence genes, but many of these genes were identified based on guilt by
association (GBA) [30–32]. This approach assumes that the candidate genes, which are neighbors
of disease genes, are more likely to be new virulence genes. Thus, the GBA-based methods only
consider the neighbors of known disease genes to discover novel candidates. Therefore, these methods
only examine part of the gene network. Random Walk with Restart (RWR) is another algorithm that
identifies disease-related genes [33–35]. This algorithm utilizes a set of seed nodes that represent
disease genes and performs random walking on the gene network. When the probabilities of all nodes
are stable, the probability of a node gene correlating with disease is updated. The genes that correspond
to nodes that have high probabilities may be potential novel candidate virulence genes. This method
is useful for mining disease genes and to better explore the mechanism of disease. In addition,
other studies have adopted the shortest path (SP) algorithm to identify novel disease genes [36–41].
By searching the shortest paths that connect any two validated disease genes, genes that are present
in these paths could be extracted and considered as novel disease genes. An obvious advantage of
the RWR or SP algorithms is that these algorithms utilize the entire gene network and consider more
factors, therefore performing a more extensive and reliable analysis.

As discussed above, many genetic factors contribute to the pathogenesis of uveitis. In this study,
we utilized computational analyses to build a genetic network based on previously known factors.
A computational method was built to identify novel genes related to uveitis. First, a large network
was constructed using human protein–protein interactions (PPIs). Next, the RWR algorithm was
performed on the network using the validated uveitis-related genes as seed nodes, yielding several
possible candidate genes. These candidate genes were filtered based on a set of criteria that were
built by p-values and their associations with validated uveitis-related genes. To indicate the utility
of the method, it was evaluated by five-fold cross-validation, resulting in the average F1-measure of
0.189. Furthermore, the proposed method was compared with a classic GBA-based method [30–32] to

24



Int. J. Mol. Sci. 2017, 18, 1045

further prove its effectiveness for identification of uveitis-related genes. Through our method, 56 novel
candidate genes were identified and extensively analyzed.

2. Results and Discussion

2.1. Results of Testing Random Walk with Restart (RWR)-Based Method

Before the RWR-based method was used to identify novel uveitis-related genes, five-fold
cross-validation was adopted to evaluate its utility. For each part, the results yielded by the method
on the rest four parts were counted as recall, precision and F1-measure, which are listed in Table 1.
It can be observed that the average of recall, precision and F1-measure was 0.287, 0.141 and 0.189,
respectively. Although these measurements are not very high, the RWR-based method is still acceptable
due to the difficulties for identification of novel genes with given functions. Besides, the utility of the
RWR-based method would be further proved by comparing it with other methods, which is described
in Section 2.5.

Table 1. The performance of the Random Walk with Restrart (RWR)-based method yielded by
five-fold cross-validation.

Index of Part Recall Precision F1-Measure

1 0.172 0.089 0.118
2 0.172 0.088 0.116
3 0.379 0.177 0.242
4 0.310 0.141 0.194
5 0.400 0.211 0.276

Mean 0.287 0.141 0.189

2.2. RWR Genes

Based on the uveitis-related genes, the RWR algorithm yielded a probability for each gene in the
PPI network, which indicated the likelihood of the gene being important for uveitis. Then, genes were
selected that had probabilities larger than 10−5. From our analysis, we obtained 3641 RWR genes,
which are provided with their RWR probabilities in Supplementary Table S1.

2.3. Candidate Genes

According to the RWR-based method detailed in Section 3.3, RWR genes were filtered using
a permutation test. For each RWR gene, a p-value was assigned to indicate whether the RWR
gene is specific for uveitis. The p-value for each of the 3641 RWR genes is also provided in
Supplementary Table S1. We found 1231 candidate genes that had a p-value < 0.05 (see the first
1231 genes in Supplementary Table S1).

The 1231 candidate genes were then further analyzed using the criteria outlined in Section 3.3.
For each candidate gene, MIS (cf. Equation (3)) and MFS (cf. Equation (5)) were calculated, and the
values for each gene are available in Supplementary Table S1. The threshold for MIS was set at 900,
while 0.8 was used as the threshold for MFS. Finally, we obtained 56 Ensembl IDs (listed in Table 2)
corresponding to core candidate genes. These genes were deemed to be highly related to uveitis and
could be considered novel candidate genes. As intuitionistic evidence, a sub-network was plotted in
Figure 1, which contains the putative and validated genes. Each putative gene had strong associations
with validated genes, implying that they had functions similar to those of the validated genes and may
be novel uveitis-related genes with high probabilities.

25



Int. J. Mol. Sci. 2017, 18, 1045

T
a

b
le

2
.

N
ov

el
ge

ne
s

in
fe

rr
ed

by
R

an
do

m
W

al
k

w
it

h
R

es
tr

ar
t(

R
W

R
)-

ba
se

d
m

et
ho

d.

E
n

se
m

b
l

ID
G

e
n

e
S

y
m

b
o

l
D

e
sc

ri
p

ti
o

n
P

ro
b

a
b

il
it

y
p-

V
a

lu
e

M
IS

M
F

S

EN
SP

00
00

03
51

67
1

b
C

C
L2

0
C

-C
m

ot
if

ch
em

ok
in

e
lig

an
d

20
1.

65
×

10
−4

<0
.0

01
99

9
0.

84
1

EN
SP

00
00

02
50

15
1

b
C

C
L4

C
-C

m
ot

if
ch

em
ok

in
e

lig
an

d
4

1.
64

×
10

−4
<0

.0
01

99
4

0.
82

0
EN

SP
00

00
03

26
43

2
c

C
C

R
8

C
-C

m
ot

if
ch

em
ok

in
e

re
ce

pt
or

8
8.

90
×

10
−5

<0
.0

01
95

1
0.

81
6

EN
SP

00
00

03
13

41
9

b
C

D
19

C
D

19
m

ol
ec

ul
e

2.
15

×
10

−4
<0

.0
01

94
7

0.
83

7
EN

SP
00

00
03

20
08

4
c

C
D

27
6

C
D

27
6

m
ol

ec
ul

e
1.

91
×

10
−4

<0
.0

01
95

5
0.

82
3

EN
SP

00
00

03
59

66
3

b
C

D
40

LG
C

D
40

lig
an

d
1.

97
×

10
−4

<0
.0

01
99

9
0.

83
9

EN
SP

00
00

02
64

24
6

b
C

D
80

C
D

80
m

ol
ec

ul
e

2.
18

×
10

−4
<0

.0
01

99
9

0.
82

0
EN

SP
00

00
02

83
63

5
c

C
D

8A
C

D
8a

m
ol

ec
ul

e
1.

91
×

10
−4

<0
.0

01
99

0
0.

81
5

EN
SP

00
00

02
96

87
1

c
C

SF
2

C
ol

on
y

st
im

ul
at

in
g

fa
ct

or
2

2.
71

×
10

−4
<0

.0
01

99
2

0.
87

5
EN

SP
00

00
02

25
47

4
c

C
SF

3
C

ol
on

y
st

im
ul

at
in

g
fa

ct
or

3
1.

55
×

10
−4

<0
.0

01
91

6
0.

82
9

EN
SP

00
00

03
79

11
0

b
C

X
C

L1
C

-X
-C

m
ot

if
ch

em
ok

in
e

lig
an

d
1

1.
69

×
10

−4
<0

.0
01

97
3

0.
82

7
EN

SP
00

00
03

06
88

4
b

C
X

C
L1

1
C

-X
-C

m
ot

if
ch

em
ok

in
e

lig
an

d
11

1.
28

×
10

−4
<0

.0
01

99
9

0.
81

8
EN

SP
00

00
02

86
75

8
b

C
X

C
L1

3
C

-X
-C

m
ot

if
ch

em
ok

in
e

lig
an

d
13

1.
49

×
10

−4
<0

.0
01

98
6

0.
80

6
EN

SP
00

00
02

93
77

8
b

C
X

C
L1

6
C

-X
-C

m
ot

if
ch

em
ok

in
e

lig
an

d
16

1.
02

×
10

−4
<0

.0
01

95
2

0.
80

0
EN

SP
00

00
02

96
02

7
b

C
X

C
L5

C
-X

-C
m

ot
if

ch
em

ok
in

e
lig

an
d

5
1.

11
×

10
−4

<0
.0

01
95

8
0.

81
1

EN
SP

00
00

03
54

90
1

b
C

X
C

L9
C

-X
-C

m
ot

if
ch

em
ok

in
e

lig
an

d
9

2.
13

×
10

−4
<0

.0
01

99
9

0.
88

3
EN

SP
00

00
02

95
68

3
c

C
X

C
R

1
C

-X
-C

m
ot

if
ch

em
ok

in
e

re
ce

pt
or

1
8.

67
×

10
−5

<0
.0

01
99

9
0.

83
3

EN
SP

00
00

03
19

63
5

b
C

X
C

R
2

C
-X

-C
m

ot
if

ch
em

ok
in

e
re

ce
pt

or
2

1.
02

×
10

−4
<0

.0
01

99
9

0.
85

1
EN

SP
00

00
02

29
23

9
c

G
A

PD
H

G
ly

ce
ra

ld
eh

yd
e-

3-
ph

os
ph

at
e

de
hy

dr
og

en
as

e
2.

12
×

10
−4

<0
.0

01
92

2
0.

82
4

EN
SP

00
00

02
16

34
1

c
G

Z
M

B
G

ra
nz

ym
e

B
2.

46
×

10
−4

<0
.0

01
99

1
0.

82
9

EN
SP

00
00

03
64

11
4

c
H

LA
-D

R
B5

M
aj

or
hi

st
oc

om
pa

ti
bi

lit
y

co
m

pl
ex

,c
la

ss
II

,D
R
β

5
2.

27
×

10
−4

<0
.0

01
94

8
0.

82
2

EN
SP

00
00

03
04

91
5

a
IL

13
In

te
rl

eu
ki

n
13

1.
31

×
10

−4
<0

.0
01

99
9

0.
81

3
EN

SP
00

00
02

96
54

5
b

IL
15

In
te

rl
eu

ki
n

15
1.

85
×

10
−4

<0
.0

01
94

6
0.

80
6

EN
SP

00
00

02
63

33
9

b
IL

1A
In

te
rl

eu
ki

n
1
α

1.
82

×
10

−4
<0

.0
01

99
6

0.
82

0
EN

SP
00

00
02

63
34

1
b

IL
1B

In
te

rl
eu

ki
n

1
β

3.
58

×
10

−4
<0

.0
01

99
9

0.
87

3
EN

SP
00

00
02

59
20

6
a

IL
1R

N
In

te
rl

eu
ki

n
1

re
ce

pt
or

an
ta

go
ni

st
1.

68
×

10
−4

<0
.0

01
99

9
0.

83
6

EN
SP

00
00

02
28

53
4

b
IL

23
A

In
te

rl
eu

ki
n

23
su

bu
ni

tA
2.

87
×

10
−4

<0
.0

01
99

8
0.

84
4

EN
SP

00
00

03
69

29
3

b
IL

2R
A

In
te

rl
eu

ki
n

2
re

ce
pt

or
su

bu
ni

tA
2.

46
×

10
−4

<0
.0

01
99

9
0.

86
6

EN
SP

00
00

02
74

52
0

c
IL

9
In

te
rl

eu
ki

n
9

1.
27

×
10

−4
<0

.0
01

96
5

0.
80

6
EN

SP
00

00
03

60
26

6
b

JU
N

Ju
n

pr
ot

o-
on

co
ge

ne
,A

P-
1

tr
an

sc
ri

pt
io

n
fa

ct
or

su
bu

ni
t

3.
22

×
10

−4
<0

.0
01

99
9

0.
83

1
EN

SP
00

00
03

61
40

5
b

M
M

P9
M

at
ri

x
m

et
al

lo
pe

pt
id

as
e

9
1.

70
×

10
−4

<0
.0

01
97

1
0.

83
3

26



Int. J. Mol. Sci. 2017, 18, 1045

T
a

b
le

2
.

C
on

t.

EN
SP

00
00

03
79

62
5

a
M

Y
D

88
M

ye
lo

id
di

ff
er

en
ti

at
io

n
pr

im
ar

y
re

sp
on

se
88

1.
82

×
10

−4
<0

.0
01

99
9

0.
88

2
EN

SP
00

00
03

56
34

6
c

PT
PR

C
Pr

ot
ei

n
ty

ro
si

ne
ph

os
ph

at
as

e,
re

ce
pt

or
ty

pe
C

2.
18

×
10

−4
<0

.0
01

99
4

0.
82

6
EN

SP
00

00
03

31
73

6
c

SE
LE

Se
le

ct
in

E
1.

46
×

10
−4

<0
.0

01
97

8
0.

83
0

EN
SP

00
00

03
54

39
4

b
ST

A
T1

Si
gn

al
tr

an
sd

uc
er

an
d

ac
ti

va
to

r
of

tr
an

sc
ri

pt
io

n
1

2.
63

×
10

−4
<0

.0
01

99
9

0.
85

2
EN

SP
00

00
03

00
13

4
b

ST
A

T6
Si

gn
al

tr
an

sd
uc

er
an

d
ac

ti
va

to
r

of
tr

an
sc

ri
pt

io
n

6
1.

77
×

10
−4

<0
.0

01
99

9
0.

80
4

EN
SP

00
00

02
21

93
0

a
TG

FB
1

Tr
an

sf
or

m
in

g
gr

ow
th

fa
ct

or
β

1
2.

90
×

10
−4

<0
.0

01
99

7
0.

83
2

EN
SP

00
00

04
16

33
0

c
TG

FB
I

Tr
an

sf
or

m
in

g
gr

ow
th

fa
ct

or
β

in
du

ce
d

1.
91

×
10

−4
<0

.0
01

91
7

0.
81

3
EN

SP
00

00
02

60
01

0
b

TL
R

2
To

ll
lik

e
re

ce
pt

or
2

2.
25

×
10

−4
<0

.0
01

96
8

0.
88

8
EN

SP
00

00
03

70
03

4
b

TL
R

7
To

ll
lik

e
re

ce
pt

or
7

1.
26

×
10

−4
<0

.0
01

92
6

0.
81

9
EN

SP
00

00
03

53
87

4
b

TL
R

9
To

ll
lik

e
re

ce
pt

or
9

1.
55

×
10

−4
<0

.0
01

95
8

0.
85

4
EN

SP
00

00
02

94
72

8
b

V
C

A
M

1
V

as
cu

la
r

ce
ll

ad
he

si
on

m
ol

ec
ul

e
1

2.
23

×
10

−4
<0

.0
01

96
8

0.
88

2
EN

SP
00

00
02

92
17

4
c

C
X

C
R

5
C

-X
-C

m
ot

if
ch

em
ok

in
e

re
ce

pt
or

5
1.

14
×

10
−4

0.
00

1
97

6
0.

82
0

EN
SP

00
00

03
43

20
4

a
JA

K
1

Ja
nu

s
ki

na
se

1
1.

21
×

10
−4

0.
00

1
99

9
0.

81
8

EN
SP

00
00

01
62

74
9

b
TN

FR
SF

1A
TN

F
R

ec
ep

to
r

su
pe

rf
am

ily
m

em
be

r
1A

2.
30

×
10

−4
0.

00
1

99
9

0.
82

6
EN

SP
00

00
03

04
41

4
c

C
X

C
R

6
C

-X
-C

m
ot

if
ch

em
ok

in
e

re
ce

pt
or

6
9.

27
×

10
−5

0.
00

2
96

4
0.

80
3

EN
SP

00
00

02
96

79
5

a
TL

R
3

To
ll

lik
e

re
ce

pt
or

3
1.

58
×

10
−4

0.
00

2
96

6
0.

85
8

EN
SP

00
00

02
31

45
4

c
IL

5
In

te
rl

eu
ki

n
5

1.
13

×
10

−4
0.

00
4

99
1

0.
80

3
EN

SP
00

00
02

22
82

3
a

N
O

D
1

N
uc

le
ot

id
e

bi
nd

in
g

ol
ig

om
er

iz
at

io
n

do
m

ai
n

co
nt

ai
ni

ng
1

7.
72

×
10

−5
0.

00
4

99
1

0.
86

6
EN

SP
00

00
02

31
44

9
b

IL
4

In
te

rl
eu

ki
n

4
2.

55
×

10
−4

0.
00

5
99

9
0.

85
2

EN
SP

00
00

03
56

43
8

a
PT

G
S2

Pr
os

ta
gl

an
di

n-
en

do
pe

ro
xi

de
sy

nt
ha

se
2

1.
92

×
10

−4
0.

00
9

97
2

0.
86

4
EN

SP
00

00
02

19
24

4
b

C
C

L1
7

C
-C

m
ot

if
ch

em
ok

in
e

lig
an

d
17

1.
20

×
10

−4
0.

01
98

4
0.

80
8

EN
SP

00
00

03
51

27
3

b
C

A
SP

8
C

as
pa

se
8

9.
66

×
10

−5
0.

02
7

99
9

0.
82

1
EN

SP
00

00
03

53
48

3
c

M
A

PK
8

M
it

og
en

-a
ct

iv
at

ed
pr

ot
ei

n
ki

na
se

8
1.

03
×

10
−4

0.
03

4
92

5
0.

84
7

EN
SP

00
00

02
28

28
0

c
K

IT
LG

K
IT

lig
an

d
9.

60
×

10
−5

0.
03

9
95

8
0.

81
0

EN
SP

00
00

02
38

68
2

c
TG

FB
3

Tr
an

sf
or

m
in

g
gr

ow
th

fa
ct

or
β

3
5.

37
×

10
−5

0.
04

9
96

1
0.

85
0

a :G
en

es
w

it
h

ex
pe

ri
m

en
te

vi
de

nc
e;

b
:G

en
es

w
it

ho
ut

ex
pe

ri
m

en
te

vi
de

nc
e

bu
th

av
e

si
gn

ifi
ca

nt
re

la
ti

on
sh

ip
w

it
h

uv
ei

ti
s;

c :G
en

es
w

it
ho

ut
an

y
ev

id
en

ce
.

27



Int. J. Mol. Sci. 2017, 18, 1045

 

Figure 1. The sub-network of the large network containing Ensembl Identifications (IDs) of validated
and putative uveitis-related genes. Blue nodes represent Ensembl IDs of validated uveitis-related genes.
Green nodes represent Ensembl IDs of putative uveitis-related genes.

2.4. Analysis of Novel Genes

In this study, the RWR-based method yielded fifty-six genes that were deemed to have a significant
correlation with uveitis. Detailed information for these genes is provided in Table 2.

2.4.1. Immune System Regulation Genes

CCL4 (C-C motif chemokine ligand 4) belongs to the cytokine family and is involved in
immunoregulation and inflammation. It has been reported that CCL4 is associated with BD
immunopathogenesis [42]. In the majority of VKH cases, the expression of another family member
CCL17 was lower in cerebrospinal fluid than in serum, which indicated its potential function in
VKH [43]. CCL17 also could be inhibited by overexpression of SOCS1 in the retina to regulate the
recruitment of inflammatory cells [44]. The cytokine CCL20 was considered to be a specific biomarker
of HLA-B27-associated uveitis [45]. Our study revealed that CCL4, CCL17 and CCL20 likely play
essential roles in uveitis.

CD40 ligand (also known as CD154) is a type II transmembrane glycoprotein that has structural
homology to the proteins of the TNF (tumor necrosis factor) family [46–49]. The interaction between the
CD40 and CD40 ligand is important for both cellular and humoral immune responses [50]. The CD40
and CD40 ligand interaction provides signals in T-cell priming and effecter functions [46,48,49,51–53],
whereas monocyte and B-cell apoptosis could be inhibited by their interaction [54]. It has been
demonstrated that the CD40 ligand is associated with the immune-pathogenesis of several autoimmune
diseases including AU (anterior uveitis) [54,55]. The CD40 ligand is significantly expressed on T-cells
in the peripheral blood of patients with AU [56]. The results of the RWR-based method revealed a
MIS of 999 had a p-value < 0.001. Expression of CD80 on dendritic cells (DCs) could be induced by
activation of NOD1 and NOD2 and is involved in the pathogenesis of VKH syndrome [57]. In another
report, it was found that BBR downregulated the expression of costimulatory molecules CD40, CD80
and CD86 on DCs [58]. The MIS and p-value of CD80 were 999 and <0.001, respectively. We speculate
that these molecules play key roles in uveitis, but their mechanism in uveitis must still be clarified.

CSF2 (colony stimulating factor 2) is a cytokine that functions as a hematological cell growth factor
by stimulating stem cells to produce granulocytes and monocytes [59]. Three signaling pathways can
be activated by CSF2: the JAK2/STAT pathway, the MAP pathway and the PI3K pathway [60–64].
CSF2 is a valuable prognostic indicator and a therapeutic target in tumors [59]. CSF2 expression in
uveitis is reported as rare. However, in this study, the MIS of CSF2 was 992 with a p-value < 0.001.
We speculate that CSF2 might be a key factor in the pathogenesis of uveitis.

Interleukins and their receptors are inflammatory cytokines that play an important role in immune
system response. Many interleukins and their receptors are involved in uveitis, as discussed above.
Our data showed that IL13, IL15, IL1A, IL1B, IL1RN, IL4, IL5, IL9, IL23A and IL2RA had MISs larger
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than 900 with p-values <0.05. It has been observed that the expression of IL1A is decreased in
patients with clinically active BD, while the expression of IL1B is increased in patients with active,
inactive or ocular BD [65]. IL1B has been associated with ocular Behcet’s disease [66]. IL-13 is a strong
immunomodulatory cytokine which is a promising mode of treatment for uveitis [67–70]. IL-15 and
its receptor system is involved in the inflammatory process and pathogenesis of BD and the IL-15/Fc
fusion protein has been shown to inhibit IRBP1-20 specific CD80+ T cell to decrease the severity of
EAU [71,72]. An aberrantly high CNV of IL23A is a common risk factor for VKH and BD [73]. In mice,
IL-1RN suppresses immune-mediated ocular inflammation and is considered a potential biomarker
in the management of patients with uveitis [74]. Interleukin 2 receptor α (IL2RA) is a risk locus in
various autoimmune diseases and a variant of this gene, rs2104286, was demonstrated to be strongly
associated with intermediated uveitis [75]. An antibody against IL2RA, daclizumab is used to reduce
intermediated uveitis [76]. However, rs2104286 was not related to endogenous non-anterior uveitis [77].
EAU (experimental autoimmune uveoretinitis) disease severity was reduced in mice in which IL-1B
expression was reduced in the retina through deletion of S100B, a Ca2+ binding protein [78]. In a Lewis
rat model of EAU, IL-2 and IL-4 were produced in destructive foci in the retina and uveal tract. IL-2 is
thought to act as a cytotoxic effector, while IL-4 is associated with a helper cell function [79]. In patients
with BD, IL-2 is more highly expressed, while IL-4 is more lowly expressed [80]. Genetic findings
suggest that more work should be done to evaluate both the molecular target and the inhibitor for
personalized therapy.

TLR2, TLR3, TLR7 and TLR9 belong to the Toll-like receptor (TLR) family, which are key factors
in pathogen recognition and activation of innate immunity. TLRs are thought to be associated
with infection and auto-inflammatory or autoimmune diseases, including uveitis [81,82]. Several
autoimmune diseases, including BD, are associated with certain TLR gene polymorphisms [83,84].
A significant association has been found between polymorphism of TLR2 and ocular BD patients [85].
The expression of TLR4 was significantly up-regulated in monocyte-derived macrophages from VKH
patients [86]. The chitosan-mediated TLR3-siRNA transfection had a potential therapeutic effect on
remitting uveitis [87]. In a Chinese Han population, a high copy number of TLR7 conferred risk for
BD patients [88]. In the Japanese population, the homozygous genotypes and homozygous deplotype
configuration of TLR9 SNPs was associated with the susceptibility to BD [89]. It has been reported
that glucocorticoid could improve uveitis by downregulating TLR7 and TLR9 in peripheral blood
of patients with uveitis [90]. In our analysis, TLR2, TLR3, TLR7 and TLR9 have MIS scores of 968,
966, 926 and 958, respectively. We argue that TLR2, TLR3, TLR7 and TLR8 play essential roles in uveitis
and thus require more attention.

2.4.2. Transcription Associated Genes

Jun (also known as jun proto-oncogene) is a critical subunit of the transcription factor AP1,
which is an important modulator of diverse biological processes such as cell proliferation, apoptosis and
malignant transformation [91]. Jun is activated through phosphorylation at Ser 63 and Ser 73 by JNK [92,93].
A high level of Jun has been observed in various types of cancer including non-small cell lung cancer,
oral squamous cell carcinoma, breast cancer and colorectal cancer [94–98]. Overexpression of Jun
has led to aberrant tumor growth and progression and inhibited cell apoptosis [94]. The underlying
mechanism of Jun as it relates to uveitis is still unclear. In a gene screen assay, it was found that
expression of Jun showed a significantly higher index in experimental lens-induced uveitis rabbits [99].
In our analysis, Jun showed a significant index p-value and an MIS of 999; therefore, we propose that
Jun may be an essential factor in uveitis.

STAT1 and STAT6 encode transcription factors that belong to the STAT family,
where phosphorylation is activated by receptor associated kinases. Atopic dermatitis associated
uveitis may be driven by TH2-mediated inflammation [100]. IL-4 is a TH2 cytokine, and binding with
its receptor can activate STAT6 via the (Jak) Janus kinase/STAT signaling pathway to promote many
immunomodulatory genes [101]. Furthermore, the Stat6 VT (STAT6 V547A/T548A) mouse model of
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atopic dermatitis exhibited uveitis symptoms [100]. In the STAT family, TH17 cells can be induced by
IL-2 and suppressed by IL-27/STAT1 to contribute to uveitis [102]. In this study, STAT1 and STAT6
both had significant p-values and MIS of 999, and therefore we hypothesize that STAT1/6 function has
a putative role in uveitis.

2.4.3. Cell Adhesion and Signal Transduction Related Genes

Matrix metalloproteinase (MMP) are key factors for the degradation of extracellular matrix
components and modification of cytokines, protease inhibitors, and cell surface signaling
systems [103–106]. Polymorphisms on the MMP-9 promoter can affect the development of visceral
involvement in Korean people with BD [107]. In our RWR analysis, MMP9 had an MIS of 971 and a
p-value < 0.001, which suggests that MMP-9 may be a novel susceptibility gene for uveitis.

VCAM1 (vascular cell adhesion molecule 1) belongs to the Ig superfamily and is a cell
surface sialoglycoprotein expressed by cytokine-activated endothelium. This protein is mediated
by leukocyte-endothelial cell adhesion and signal transduction [108,109]. VCAM1 can be regulated by
inflammatory cytokines such as IL1B [108]. Uveitis is closely associated with the immune system and
immune-related proteins including the interleukin family. In our study, the MIS of VCAM1 was 968
and the p-value was less than 0.05, which makes VCAM1 a candidate gene for uveitis.

We detected 56 novel uveitis-related genes using the RWR-based method. These genes can be
clustered into three categories, shown in Figure 2. Among these 56 potential genes, eight (8/56, 14.3%)
genes, IL13, IL1RN, JAK1, MYD88, NOD1, PTGS2, TGFB1 and TLR3, were considered as uveitis
genes by experimental evidence [110–117], and 29 (29/56, 51.8%) genes (CASP8, CCL17, CCL20, CCL4,
CD19, CD40 LG, CD80, CXCL1, CXCL11, CXCL13, CXCL16, CXCL5, CXCL9, CXCR2, IL15, IL1A, IL1B,
IL23A, IL2RA, IL4, JUN, MMP9, STAT1, STAT6, TLR2, TLR7, TLR9, TNFRSF1A and VCAM1) had a
correlation with uveitis. However, the pathogenesis is not clear. In our results, we found that these
genes have a significant relationship with uveitis genes and therefore need more validation. There are
few reports of the rest of the genes (19/56, 33.9%) (CCR8, CD276, CD8A, CSF2, CSF3, CXCR1, CXCR5,
CXCR6, GAPDH, GZMB, HLA-DB5, IL5, IL9, KITLG, MAPK8, PTPRC, SELE, TGFB3 and TGFBI) which
participate in the process of uveitis. We considered that they might be novel uveitis genes and merit
attention. We argue that some of these may be critical putative virulence genes for uveitis and could
be interesting agents for the treatment of human uveitis.

Figure 2. Clustering results of the 56 novel genes according to their evidences for being novel
uveitis-related genes. Among 56 novel genes, eight have experiment evidence, 29 have significant
relationship with uveitis but without experiment evidence, while no evidence can be found for the
rest genes.
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2.5. Comparison of Other Methods

The results listed in Sections 2.1–2.4 can partly prove the effectiveness of the RWR-based method.
In this section, we compared our method with a classic GBA-based method [30–32], i.e., a method
like the nearest neighbor algorithm (NNA). This method identified novel genes from neighbors of the
uveitis-related genes in a network. For convenience, we directly used the PPI network that was adopted
in the RWR-based method. In addition, we called a neighbor of a node is a nearer neighbor if the edge
between them was assigned a higher weight due to the definition of the interaction score reported in
STRING. The GBA-based method selected the k nearest neighbors of each uveitis-related genes and
collected them together as the predicted genes of the method, where k is a predefined parameter.

The five-fold cross-validation method was also adopted to test the GBA-based method, which
used the same partition in testing the RWR-based method. Because we do not know the best value of k,
we tried the following values: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100. The testing
results are provided in Supplementary Table S2. The best performance of the GBA-based method with
different parameter k on each part is shown in Table 3. Compared with the testing results of RWR-based
method, also listed in Table 3 for convenience, we can see that GBA-based method provides higher
recalls sometimes, however, it always provides lower precisions, indicating the GBA-based method can
yield more false positive genes. If only considering the F1-measure, we can conclude that F1-measures
of the RWR-based method are always higher than those of the GBA-based method. It is indicated that
the RWR-based method is superior to GBA-based method for identification of uveitis-related genes.

Table 3. Comparison of the RWR-based method and GBA-based method.

Index of Part
RWR-Based Method GBA-Based Method

Recall Precision F1-Measure Best Value of k Recall Precision F1-Measure

1 0.172 0.089 0.118 1 0.207 0.061 0.094
2 0.172 0.088 0.116 1 0.207 0.059 0.092
3 0.379 0.177 0.242 3 0.345 0.039 0.069
4 0.310 0.141 0.194 1 0.172 0.052 0.079
5 0.400 0.211 0.276 3 0.500 0.061 0.109

3. Materials and Methods

3.1. Materials

Uveitis-related genes were collected from literatures indexed by PubMed (http://www.ncbi.
nlm.nih.gov/pubmed/). The keywords “uveitis” and “genes” were used to search the literature in
PubMed, which resulted in the collection of 744 papers. Among them, 98 review papers that generally
summarized uveitis-related genes were manually reviewed. From those 98 papers, 121 genes were
chosen from 96 reviews reporting the functional genes that may be important for uveitis or for specific
uveitis symptoms. These genes are provided in Supplementary Table S3. In total, 146 Ensembl IDs for
these genes were also determined and are provided in Supplementary Table S3.

3.2. Protein-protein Interaction (PPI) Network

PPIs are useful for the investigation of genetic disorders because they play an essential role
in intracellular and intercellular biochemical processes. Many computational methods have been
developed using this information, such as the prediction engines for the identification of protein
functions [118–120] and methods for identification of novel disease genes [36–38]. Several methods
were built based on the hypothesis that two proteins in a PPI are more likely to share similar functions.
Thus, we can infer novel genes related to uveitis using PPI information and the uveitis-related genes
mentioned in Section 3.1.
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In this study, we used the PPI information retrieved from STRING (Search Tool for the Retrieval of
Interacting Genes/Proteins, Version 9.1, http://string-db.org/) [121] to construct the PPI network that
the RWR algorithm can be applied. To access the PPI information in STRING, we downloaded the file
“protein.links.v9.1 txt.gz”. Because “9606” is the organism code for the human interactome in STRING,
lines in this file that started with “9606” were extracted, obtaining 2,425,314 human PPIs involving
20,770 proteins. According to STRING, these PPIs were derived from the following four sources:
(1) genomic context; (2) high-throughput experiments; (3) (conserved) co-expression; and (4) previous
knowledge. Thus, the information in STRING contained both the direct (physical) and the indirect
(functional) association between proteins, therefore STRING could widely measure the associations
between proteins. Each PPI contained two Ensembl IDs and one score that ranged between 150 and 999,
which indicated the strength of the interaction. An interaction with a high score meant this interaction
has a high probability of occurring. For each interaction containing proteins pa and pb, the score was
denoted by S(pa,pb). The PPI network defined the 20,770 proteins as the nodes, and two nodes were
adjacent if and only if their corresponding proteins can form a PPI. Additionally, each edge in the
network represented a PPI; thus, we assigned a weight to each edge, which was defined as the score of
its corresponding PPI. From our analysis, a PPI network containing 20,770 nodes and 2,425,314 edges
was obtained.

3.3. RWR-Based Method

The RWR algorithm was executed on the PPI network using validated genes as seed nodes to
search possible genes. Then, a permutation test was executed to exclude false discoveries found by
RWR. The remaining candidate genes with strong associations to validated genes were selected for
further analysis. The pseudo-codes of the RWR-based method are listed in Table 4.

Table 4. The pseudo-code of the RWR-based method.

RWR-Based Method

Input: Ensembl IDs of uveitis-related genes, a PPI network
Output: A number of putative uveitis-related genes

1. Execute the RWR algorithm on the PPI network using the Ensembl IDs of uveitis-related genes as seed
nodes, yielding a probability for each gene in the network; genes with probabilities higher than 10−5

were selected and called RWR genes;
2. Execute a permutation test, producing the p-value for each RWR gene; select RWR genes with p-values

less than 0.05; the remaining genes were called candidate genes;
3. For each candidate gene, calculate its MIS (cf. Equation (3)) and MFS (cf. Equation (5)); select candidate

genes with MISs no less than 900 and MFSs larger than 0.8;
4. Output the remaining candidate genes as the putative uveitis-related genes.

3.3.1. Searching Possible Genes Using the RWR Algorithm

RWR is a type of ranking algorithm [33]. Based on a seed node or a set of seed nodes, it simulates
a walker that starts from the nodes and randomly walks in a network. Here, 146 Ensembl IDs listed
in Supplementary Table S3 were deemed as seed nodes. Starting from these nodes, we attempted to
discover novel nodes (genes) related to uveitis. In the beginning of the RWR algorithm, a 20,770-D
vector P0 was constructed, in which each composition represented the probability that a node in the
network was a uveitis-related gene. Because the 146 Ensembl IDs represented validated uveitis-related
genes, their compositions in P0 were set to 1/146, while others were set to zero. Then, the RWR
algorithm repeatedly updated this probability vector until it became stable. We designated Pi to
represent the probability vector after the i-th step was executed. The probability vector was updated
according to the following equation:

Pi+1 = (1 − r)AT Pi + rP0 (1)
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where A represented the column-wise normalized adjacency matrix of the PPI network and r was set
to 0.8. When ‖Pt+1 − Pt‖L1

< 10−6, the update procedure was stopped, and Pt+1 was the output of the
RWR algorithm.

According to the probability vector yielded by the RWR algorithm, some nodes received high
probabilities. It was apparent that their corresponding genes are more likely to be uveitis-related
genes. To avoid missing possible uveitis-related genes, we set a probability threshold of 10−5.
The corresponding genes of these nodes were designated as RWR genes.

In this study, we used the RWR program on the heterogeneous network that was implemented in
Matlab and proposed by Li and Patra [122]. The code can be downloaded at http://www3.ntu.edu.
sg/home/aspatra/research/Yongjin_BI2010.zip. By setting the special values of some parameters, this
program could be used to execute the RWR algorithm on a single network.

3.3.2. Excluding False Discoveries Using the Permutation Test

Based on the validated uveitis-related genes and RWR algorithm, new RWR genes were accessed.
However, this result was influenced by the structure of the constructed PPI network, i.e., some RWR
genes were selected due to the structure of the network and they were not necessarily unique to
uveitis. Furthermore, if we randomly selected some nodes in the network as seed nodes of the RWR
algorithm, these genes were still selected for and were therefore deemed as likely to be false positive.
To control for these genes, a permutation test was executed. We randomly constructed 1000 Ensembl
ID sets, denoted by E1, E2, . . . , E1000, consisting of 146 Ensembl IDs. For each set, the Ensembl IDs were
deemed seed nodes of the RWR algorithm. Each RWR gene was given a probability. Thus, there were
1000 probabilities for 1000 sets and one probability for 146 Ensembl IDs of the uveitis-related genes for
each RWR gene. Then, a measurement, called the p-value, was counted for each RWR gene g, which
was defined as:

p − value(g) =
Θ

1000
(2)

where Θ represented the number of randomly constructed sets where the probability assigned to g
was larger than that for the 146 Ensembl IDs of uveitis-related genes. Clearly, an RWR gene with a
high p-value indicated that the gene was not specific for uveitis and should be discarded. RWR genes
with p-values less than 0.05 were selected for further analysis as potential candidate genes for uveitis.

3.3.3. Selection of Core Genes by Associations with Validated Genes

We hypothesized that, of the candidate genes, some may have a strong correlation with uveitis.
To further select core candidate genes, two criteria were designed. Candidate genes satisfying both
criteria were selected for additional analysis. Candidate genes that had the strongest associations with
uveitis-related genes were more likely to be novel uveitis-related genes. Thus, for each candidate
gene g, we calculated the maximum interaction score (MIS) as follows:

MIS(g) = max
{

S(g, g′) : g′is a uveitis − related gene
}

(3)

A high MIS suggested that the candidate gene was closely related to at least one uveitis-related
gene, indicating that it was a novel uveitis-related gene with a high probability. According to STRING,
a score of 900 was the cut-off for the highest confidence level. Therefore, candidate genes with MISs
larger than 900 were selected.

Validated uveitis-related genes have strong associations with specific gene ontology (GO) terms
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Therefore, candidate genes that
had similar associations with uveitis GO terms and KEGG pathways were more likely to be novel
uveitis-related genes. We performed GO term (KEGG pathway) [123–126] enrichment analysis for
candidate genes and uveitis-related genes. The representation of a gene g on all GO terms and
KEGG pathways was encoded into a vector ES (g) using this theory. This vector can be obtained
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by an in-house program using the R function phyper. The R code used was “score <− −log10
(phyper (numWdrawn− 1, numW, numB, numDrawn, lower.tail = FALSE)),” where numW, numB,
and numDrawn are the number of genes annotated to the GO term or KEGG pathway, the number of
genes not annotated to the GO term or KEGG pathway, and the number of neighbors of gene g and
numWdrawn is the number of neighbors of gene g that are also annotated to the GO term or KEGG
pathway. The relativity of the two genes g and g′ on GO terms and KEGG pathways was measured by

Γ(g, g′) = ES(g) · ES(g′)
‖ES(g)‖ · ‖ES(g′)‖ (4)

A high outcome of Equation (4) indicated that g and g′ have a similar relationship in terms of GO
terms and KEGG pathways. For any candidate gene g, we calculated the maximum function score
(MFS) using the following equation:

MFS(g) = max
{

Γ(g, g′) : g′is a uveitis − related gene
}

(5)

Candidate genes with high MFSs were selected. In this equation, we set 0.8 as the threshold of
MFS to select essential candidate genes.

3.4. Methods for Testing RWR-Based Method

In this study, we designed the RWR-based method to identify novel uveitis-related genes.
However, it is necessary to test its effectiveness in advance. Here, the five-fold cross-validation [127]
was employed. In detail, 146 Ensembl IDs of uveitis-related genes were randomly and equally divided
into five parts. Then, Ensembl IDs in each part were singled out in turn and other Ensembl IDs in
the rest four parts were used as the seed nodes in the RWR-based method. For each part, the results
yielded by a good identification method on the rest four parts should satisfy the following conditions:
(I) the results can recover a high proportion of the Ensembl IDs in the part; and (II) the results cannot
contain several Ensembl IDs that are not in the part. Thus, recall and precision were employed to
evaluate the results yielded by the RWR-based method, which can be calculated by{

recall = TP
TP+FN

precision = TP
TP+FP

(6)

where TP represented the number of Ensembl IDs in the part that can be recovered by the method,
FN represented the number of Ensembl IDs in the part that cannot be recovered by the method
and FP represented the number of Ensembl IDs that were yielded by the method and not in the part.
In addition, to evaluate the predicted results on the whole, the F1-measure was also adopted, which can
be computed by

F1 − measure =
2 × recall × precision

recall + precision
(7)

It is clear that a high F1-measure means the good performance of the method.

4. Conclusions

This study presented a computational method to determine novel uveitis-related genes. Using
the RWR algorithm and certain screening criteria, 56 putative genes were accessed. Extensive analysis
of the obtained genes confirmed that several genes are associated with the pathogenesis of uveitis.
We hope that the identified novel genes may be used as material to study uveitis and that the proposed
method can be extended to other diseases.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/5/1045/s1.
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Abstract: Due to the dual cofactor specificity, glucose 1-dehydrogenase (GDH) has been considered
as a promising alternative for coenzyme regeneration in biocatalysis. To mine for potential GDHs
for practical applications, several genes encoding for GDH had been heterogeneously expressed
in Escherichia coli BL21 (DE3) for primary screening. Of all the candidates, GDH from Bacillus sp.
ZJ (BzGDH) was one of the most robust enzymes. BzGDH was then purified to homogeneity by
immobilized metal affinity chromatography and characterized biochemically. It displayed maximum
activity at 45 ◦C and pH 9.0, and was stable at temperatures below 50 ◦C. BzGDH also exhibited
a broad pH stability, especially in the acidic region, which could maintain around 80% of its initial
activity at the pH range of 4.0–8.5 after incubating for 1 hour. Molecular dynamics simulation was
conducted for better understanding the stability feature of BzGDH against the structural context.
The in-silico simulation shows that BzGDH is stable and can maintain its overall structure against
heat during the simulation at 323 K, which is consistent with the biochemical studies. In brief,
the robust stability of BzGDH made it an attractive participant for cofactor regeneration on practical
applications, especially for the catalysis implemented in acidic pH and high temperature.

Keywords: Bacillus; glucose 1-dehydrogenase; acid-resistant; thermal-stable; molecular
dynamics simulation

1. Introduction

NAD(P)-dependent glucose 1-dehydrogenase (GDH, EC 1.1.1.47) is an oxidoreductase present
in various organisms and involved in glucose metabolic pathways, catalyzing the oxidation of
D-glucose to D-glucono-1,5-lactone while simultaneously reducing NAD(P) to NAD(P)H [1–6].
As a member of the short-chain dehydrogenases/reductases family (SDRs), GDH is a tetrameric
protein consisting of four identical subunits, which shares similar overall folding and oligomeric
architecture with those of its homologous counterparts [7,8]. Due to the dual cofactor specificity, high
activity, easy preparation, and cheap substrate, GDH has been widely used in biocatalysis [9–11],
bioremediation [12], biosensors [13], and biofuel cells [14].

Biocatalysis has been considered as a powerful tool for the pharmaceutical and fine chemical
synthetic processes due to the chemo-, regio-, and stereo-selectivity of enzymes [15]. However, because
many kinds of industrial enzymes are cofactor-dependent, the enzymatic synthesis is limited by the
considerable expenses of the cofactors. To tackle the issue of manufacturing expense on biocatalysis,
several cofactor regeneration approaches have been proposed, of which the enzymatic regeneration
method has been considered as an effective technique [16]. Due to the activity toward both NAD
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and NADP, GDH has been proposed as a promising candidate for coenzyme regeneration [17,18],
compared with other oxidoreductases such as formate dehydrogenase [19], alcohol dehydrogenase [20],
glucose-6-phosphate dehydrogenase [21], and phosphite dehydrogenase [22].

Although GDHs from various microorganisms have been employed as coenzyme regenerators
for biocatalysis [9–11], new enzymes with robust stability against broad temperature and pH
range are still preferred. In this work, a novel NAD(P)-dependent glucose 1-dehydrogenase from
Bacillus sp. ZJ (BzGDH), with considerable acidic tolerance and thermal stability, has been extensively
characterized through biochemical experiments. In contrast to previously reported acid-resistant
GDHs, including GDH from Bacillus thuringiensis M15 (BtGDH) [3], Bacillus sp. G3 (BgGDH) [23],
and Bacillus cereus var. mycoides (BcGDH) [24], BzGDH exhibited superior thermal stability to its
homologous counterparts. To better understand this remarkable feature that distinguishes BzGDH
from other acid-resistant GDHs, molecular dynamic (MD) simulation was conducted to investigate
the conformational flexibility and fluctuations of BzGDH over time and spatial scales. Analysis of the
trajectory shows that BzGDH is stable and can maintain its overall structure against heat during the
simulation at 323 Kelvin (K), which is in accordance with the biochemical studies.

2. Results and Discussion

2.1. Sequence Analysis

The gene bzgdh encodes a peptide consisting of 261 amino acids with a predicted molecular weight
of 28 kDa and a theoretical isoelectric point of 5.4. Significant Pfam-A matches [25] revealed that
BzGDH was affiliated to adh_short_C2 family (PF13561, Enoyl-(Acyl carrier protein) reductase), which
belonged to the FAD/NAD(P)-binding Rossmann fold superfamily (CL0063), as well as other GDHs.
BzGDH also shared the conserved coenzyme-binding GXXXGXG motif (14–20) and catalytic triad
(Ser145/Tyr158/Lys162) with other GDHs. In addition, amino acid substitutions mostly occurred at
the N-terminus of GDHs (Figure 1), indicating that the N-terminal sequence is less conservative than
the C-terminal sequence, which played critical roles in substrate recognition. Phylogenetic analysis
showed that these GDHs diverged into two clusters, and BzGDH belonged to the sub-branch consisting
of BtGDH, BcGDH, and BgGDH (Figure 2), of which all exhibited acidic resistance in previous studies,
suggesting that these four GDHs might originate from the same ancestral sequences.

Figure 1. Cont.
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Figure 1. Multiple alignment of the primary structure of glucose 1-dehydrogenases (GDHs). Identical
residues and conserved substitutions are shaded red and enveloped by rectangles, respectively.
GDHs from Bacillus sp. ZJ (this study), Bacillus megaterium IWG3 [5], Lysinibacillus sphaericus
G10 [2], Bacillus cereus var. mycoides [24], Bacillus sp. G3 [23], Bacillus amyloliquefaciens SB5 [1],
Bacillus thuringiensis M15 [26], and Bacillus subtilis W168 [27] are abbreviated as BzGDH, BmGDH,
LsGDH, BcGDH, BgGDH, BaGDH, BtGDH, and BsGDH, respectively. BmGDHA and BmGDHB
are from Bacillus megaterium M1286 [6]. BmGDHI, BmGDHII, BmGDHIII, and BmGDHIV are from
Bacillus megaterium IAM1030 [4,5]. Alignment of multiple protein sequences was conducted by using
the Clustal X 2.0 program [28] and rendered by ESPript [29].

Figure 2. Unrooted phylogenetic tree of GDHs. The phylogenetic tree was constructed using the
neighbor joining method [30] in MEGA7 software [31], with a bootstrap test of 1000 replicates.
The evolutionary distances were computed using the Poisson correction method [32] and are in
the units of the number of amino acid substitutions per site.
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2.2. Heterologous Expression and Purification

The specific activity of the purified BzGDH was 194 ± 2 U·mg−1 at 25 ◦C using NAD
(nicotinamide adenine dinucleotide) as a cofactor. SDS-PAGE (sodium dodecyl sulfate polyacrylamide
gel electrophoresis) analysis showed a homogeneous band corresponding to 30 kDa (Figure 3).
By using gel filtration chromatography through a Zorbax Bio-series GF-450 column, the molecular
weight of the native BzGDH was estimated to be 120 kDa. These results indicated that BzGDH was
a homo-tetramer composed of four identical subunits, as well as other NAD-dependent GDHs derived
from Bacillus [1–6,23,24,26,27].

Figure 3. SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) analysis of total cell
lysate and the purified enzyme. Lane M: protein molecular weight marker. Lane 1: uninduced total
cell lysate of BzGDH. Lane 2: induced total cell lysate of BzGDH. Lane 3: purified BzGDH.

2.3. Effects of pH and Temperature on the Activity and Stability

BzGDH exhibited activity at a wide pH range from 4.0 to 10.5, and displayed maximum activity at
pH 9.0 in Tris-HCl buffer among all buffers. Actually, the chemical composition of the sodium citrate,
sodium phosphate, and Tris-HCl buffers, showed no significant influence on the specific activity of
the enzyme, and the differences in the specific activity are mainly caused by the change of the pH of
the solution. However, a significant decrease of specific activity was observed in the glycine-NaOH
buffer at pH values of 8.5 and 9.0 when compared to those of the same pH values of the Tris-HCl
buffer, indicating that glycine might inhibit the activity of BzGDH. Surprisingly, the optimum pH
was determined as 9.5 in Glycine-NaOH buffer (Figure 4a), which is inconsistent with the maximum
activity pH of 9.0. A reasonable explanation for this discrepancy is that the observed activity of the
enzyme is not only affected by the pKa of its catalytic residues which played critical roles on the
activity, but is influenced by the stability of the enzyme which might be unstable at its optimum pH
(Figure 4b), and is even sometimes affected by the chemicals in the buffer such as glycine in this case.
In regards to its pH stability, BzGDH was stable over a broad pH range, especially in the acidic region,
which could maintain around 80% of its initial activity in the pH range of 4.0–8.5 after incubating for
1 hour (Figure 4b).
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Figure 4. Effects of pH and temperature on the activity and stability of BzGDH. (a) Effect of pH on the
activity of BzGDH; (b) Effect of pH on the stability of BzGDH. (�) pH 4.0–6.0, 100 mM sodium citrate
buffer; (Δ) pH 6.0–8.0, 100 mM sodium phosphate buffer; (�) pH 7.0–9.0, 100 mM Tris-HCl buffer;
(�) pH 8.5–10.5, 100 mM glycine-NaOH buffer; (c) Effect of temperature on the activity of BzGDH;
(d) Effect of temperature on the stability of BzGDH.

As demonstrated in Figure 4c, the optimum catalytic temperature of BzGDH was determined as
45 ◦C. The activity of BzGDH decreased linearly from 45 to 65 ◦C and could not be measurable at 75 ◦C.
In consistent with its higher optimum reaction temperature, the recombinant enzyme also possessed
good thermal stability, which was stable after incubation at temperatures below 50 ◦C for 30 min and
still maintained 50% of its initial activity after incubation at 65 ◦C for 30 min (Figure 4d). BzGDH
exhibited superior thermal stability to its homologous counterparts, BgGDH [23] and BcGDH [24],
which were almost completely inactivated after incubation at 50 ◦C without any protective agent.

Since stability is an indispensable characteristic for the utilization of enzymes in real life,
the considerable stability of BzGDH against both heat and acid made it a very promising candidate in
practical application in harsh conditions.

2.4. Substrate Specificity and Steady-State Kinetics

As shown in Table 1, the substrate spectrum of BzGDH was similar to that of BcGDH. However,
both BzGDH and BcGDH displayed stricter substrate specificity toward various sugars than that of
BgGDH, especially for galactose and mannose, indicating that BzGDH could be a potential diagnostic
reagent for blood glucose measurement as well as BcGDH.

The steady-state kinetic constants of BzGDH were determined by using a nonlinear fitting plot
(Table 2). Although BzGDH had similar kcat values for both NAD and NADP, the Km value for NADP
was 5.6-fold higher than that for NAD, indicating that BzGDH preferred NAD rather than NADP as
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the cofactor. The cofactor preference of BzGDH resembled that of BmGDHIII, BmGDHIV [4], and
BtGDH [3], while BmGDH, BmGDHI, BmGDHII [5], and BgGDH [23] preferred NADP.

Table 1. Substrate specificity of GDHs.

Substrate
Relative Activity (%) 1

BzGDH BgGDH [23] BcGDH [24]

D-glucose 100 100 100
D-galactose 6.8 22.0 7.3
D-mannose 3.2 7.1 4.4
D-fructose 0.9 0.6 0
D-xylose 6.1 6.4 6.0

D-arabinose 0 0.2 0
D-maltose 10.0 13.0 11.0
D-lactose 3.1 2.6 5.2
D-sucrose 0.9 6.3 2.51

1 The activities are expressed relative to those for D-glucose.

Table 2. Kinetic constants of BzGDH.

Substrate/Cofactor Km (mM) kcat (s−1) 1 kcat/Km (mM−1·s−1)

D-glucose 17.126 ± 0.946 87.844 ± 1.362 5.129
NAD 0.072 ± 0.009 84.521 ± 2.175 1166.294

NADP 0.404 ± 0.088 73.960 ± 2.677 182.978
1 The values of kcat were calculated for one subunit.

2.5. Homology Modeling and Electrostatic Potential Analysis

The quaternary structure of BzGDH was constructed by SWISS-MODEL [33] and evaluated
by ProSA-web [34] and PROCHECK [35]. Both of the Z-score and Ramachandran plot statistics
indicated that the dimensional structure of BzGDH (Figure 5a) had been modeled reasonably (Table 3).
To investigate the electrostatic potential of BzGDH, the model of BzGDH was subjected to the
software APBS [36] and PyMOL (The PyMOL Molecular Graphics System, Version 1.7 Schrödinger,
LLC. available online: http://pymol.org/), to generate the electrostatic potential molecular surface.
As shown in Figure 5, the contact surfaces of subunits AB, AC, and AD circled by black ellipses
are mainly constituted by non-polar amino acid residues and are surrounded by acidic amino acid
residues. The non-polar areas can maintain their electrically neutral state in either acidic or alkaline
solutions, whereas the acidic areas would be negatively charged in alkaline solutions, leading to the
mutual repulsion between subunits. Therefore, the acid-resistance of BzGDH could be explained by
the electrostatic potential of contact surfaces between subunits, as well as BcGDH [24].

Table 3. Evaluation of models generated by homology modeling.

Model Z-Score 1

Ramachandran Plot 2

Most Favored
(%)

Additional
Allowed (%)

Generously
Allowed (%)

Disallowed
(%)

1GEE −8.87 91.2 8.0 0.9 0
BzGDH −8.80 89.1 10.5 0.4 0

1 Calculated by ProSA-web [34]; 2 Calculated by PROCHECK [35].
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Figure 5. ±5 kT/e electrostatic potential surface of BzGDH. (a) Tetrameric structure of BzGDH;
(b) Electrostatic potential surface representation of the interface between subunits A and B;
(c) Electrostatic potential surface representation of the interface between subunits A and C;
(d) Electrostatic potential surface representation of the interface between subunits A and D. Subunits
ABCD were labeled using the corresponding capital letters nearby, respectively. Positive, negative, and
neutral electrostatic potential surfaces are rendered by blue, red, and white, respectively. The non-polar
regions of the contact surfaces of subunits AB, AC, and AD were circled by dashed ellipses.

2.6. Global Structure Stability

To study the stability and mobility of BzGDH, the model was subjected to a 20-ns MD simulation
at 323 K. The stability of BzGDH was analyzed by the all-atom and backbone-atom root mean square
deviation (RMSD), respectively, both of which increased from the beginning of the simulation and
reached an equilibrium state at about 10 ns (Figure 6a), suggesting no significant structural changes for
BzGDH during the simulation. In addition, the radius of gyration, the hydrogen bonds of intra-protein,
and the solvent accessible surface area (SASA) of BzGDH all displayed steadily dynamic changes
against time (Figure 6b–d), further confirming the stable global behavior of BzGDH during the
simulation at 323 K.
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Figure 6. Dynamic changes of BzGDH in the molecular dynamics (MD) simulation. (a) All-atom
and backbone-atom root mean square deviation (RMSD) as functions of time; (b) Radius of gyration
as a function of time; (c) Hydrogen bonds as a function of time. Hydrogen bonds were detected by
GROMACS (GROningen MAchine for Chemical Simulations) with default geometrical criterion, which
defined both the donor-acceptor distance (≤0.35 nm) and the hydrogen-donor-acceptor angle (≤30 ◦C);
(d) Solvent accessible surface areas (SASA) as a function of time; (e) Root mean square fluctuation
(RMSF) as a function of residue numbers; (f) N-H generalized order parameter S2 as a function of
residue numbers.

2.7. Structure Flexibility

The conformational flexibility of BzGDH was assessed using the root mean square fluctuation
(RMSF) of C-alpha (Cα) atoms per residue. Generally, regular secondary structure regions display
tiny fluctuations with small RMSF values during the simulation, whereas prominent fluctuations with
large RMSF are observed for irregular secondary structure regions such as terminal or loop regions,
which often bear certain function of proteins. As shown in Figure 6e, regions involved in coenzyme
binding (39–55) and substrate binding (190–210) of each subunit are more flexible with large RMSF
values than other regions. The RMSF values were converted to B-factors using the equation:

B-factor = (8 × π2 × RMSF2)/3 (1)

to visualize global structure rigidity and flexibility of BzGDH. As shown in Figure 7, most regions of
BzGDH are rigid, except for the aforementioned flexible regions, indicating that the enzyme is stable
during the simulation at 323 K.

In addition to the observation of RMSF, the bond-specific fluctuations in protein structure
can further be captured by the Lipari–Szabo order parameter S2 [37], which provide an intuitive
description of the amplitude of spatial restriction of the internal motions of the bond vectors on a fast
timescale from picosecond to nanosecond (ps-ns). More specifically, S2 represents the component of
the H-X bond vector autocorrelation function which is dissipated by global molecular tumbling, while
(1 − S2) characterizes the bond vector orientational disorder arising from internal motion occurring
more rapidly than the molecular tumbling. The S2 order parameter can range from 0 to 1, with 1
corresponding to a rigid bond vector (completely restricted) and 0 corresponding to the highest degree
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of disorder for a bond vector (completely isotropic). Higher order parameters (0.85) were observed
in the regions of secondary structure, while unstructured regions showed lower order parameters
(0.4–0.6).

The order parameter S2 of the main chain N-H bonds of BzGDH has been calculated based on the
equilibrium MD trajectories. The average value of the order parameter S2, over all residues, is 0.86 for
BzGDH. The most flexible region that showed lower S2 of each subunit is the substrate binding domain,
with residues Lys 179, Gly 180, Arg 182, Asn 184, Asn 185, Ala 190, Asn 196, and Asp 202 involved,
indicating that these residues exhibit considerable disorder on the ps-ns timescale. Similarly, residues
Gln 257, Ala 258, and Gly 259 in the C-terminal region of the protein have low order parameters,
also implying that this region is disordered on the ps-ns timescale. Indeed, the order parameter
revealed that these regions are flexible on the ps–ns timescale, with the fluctuations functioning to
allow substrate access to and release of products from the active site. The results of the computation of
the order parameters are in considerable agreement with the RMSF profiles, with the greatest flexibility
occurring in loop regions, while other secondary structural elements are more constrained.

Figure 7. Cartoon representation of BzGDH shaded according to the B-factors (temperature factor) of
each residue. Subunits ABCD were labeled using the corresponding capital letters nearby. The structure
was shaded from the blue to red spectrum along with the increase of B-factor values from 3.98 to 193.74.

2.8. Essential Dynamics

To reveal the concerted fluctuations of BzGDH over time and spatial scales, essential dynamics
(ED) is employed to extract information from sampled conformations over the molecular dynamics
trajectory [38]. Practically, the essential dynamics of a protein is obtained by performing principal
component analysis (PCA), which is a multivariate statistical technique involving diagonalization
of the covariance matrix (Figure 8) constructed from atomic displacements of Cα atoms, to reduce
the number of dimensions required to describe protein dynamics and yield a set of eigenvectors that
provide information about collective motions of the protein [39].
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Figure 8. Covariance analysis of the atomic fluctuation of BzGDH in the MD (molecular dynamics)
simulation. The correlation matrix is computed using the C-α Cartesian coordinates. The collective
motions between pairs of residues are represented as red for correlated, white for uncorrelated,
and blue for anti-correlated motions, respectively. The amplitude of fluctuation was represented by the
color depth.

The eigenvectors represent the directions of motion, and the corresponding eigenvalues represent
the amount of motion along each eigenvector, where larger eigenvalues describe motions on larger
spatial scales. Generally, the first 10–20 eigenvectors are enough to capture the principal motions of
the protein and describe more than 90% of all cumulative protein fluctuations [40]. However, it can be
seen that only 14.3% of the total Cα motion can be explained by the first two eigenvectors, even the
first 20 eigenvectors merely contribute for 51.2% of the total Cα motion from Figure 9a. This shows
that most of the internal motions of BzGDH are not confined within a subspace of small dimension,
and no obvious collective motion of the backbone of BzGDH is observed from the MD simulation
performed at 323 K, reflecting that the enzyme can maintain its overall structure against heat, which is
in accordance with the biochemical experiments.

Figure 9b shows the trajectory projected on the plane defined by the first two principal
eigenvectors. The trajectories filled most of the expected ranges, suggesting the deficiency of a coupled
force field, which leads to independent motions. The trajectories were projected onto the individual
eigenvectors against time to further investigate the motion along the eigenvector directions. It is clear
from Figure 10 that the fluctuations of the first six eigenvectors are relatively large, whereas those
of the subsequent eigenvectors become successively flat, indicating that the motions belong to the
last four eigenvectors have reached their equilibrium fluctuation, which cannot be used to describe
the motions of the system. Due to the limitation of hardware, such simulations may not capture the
essential motions related to function at much longer timescales. Improvements in computational
power will fill the gap between reality and simulation.

51



Int. J. Mol. Sci. 2017, 18, 1198

Figure 9. Principal component analysis of BzGDH in the MD simulation. (a) Relative cumulative
deviation up to the first 100 eigenvectors provided by the essential dynamics analysis performed on
the Cα atoms of BzGDH; (b) Projections of the trajectory on the plane defined by the first two principal
eigenvectors. Horizontal axis: atomic displacement along the first eigenvector. Vertical axis: atomic
displacement along the second eigenvector.

Figure 10. Motions along the first ten eigenvectors obtained from the Cα coordinates’ covariance matrix.

3. Materials and Methods

3.1. Strains, Plasmids, and Chemicals

Strain Bacillus sp. ZJ isolated from the soil near Yuhangtang River in Hangzhou, China,
was used as a source for retrieving glucose 1-dehydrogenase. Escherichia coli (E. coli) DH5α and
BL21 (DE3), expression vector pET28a (+), and Ni-NTA resin were purchased from Invitrogen. Taq
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DNA polymerase, PrimeSTAR HS DNA Polymerase, T4 DNA ligase, NdeI, and BamHI were purchased
from TaKaRa. Genomic DNA, plasmid and gel extraction kits were purchased from Axygen. All other
chemicals were of analytical grade.

3.2. Cloning of the Bzgdh Gene and Sequence Analysis

The gene bzgdh was amplified by using genomic DNA of Bacillus sp. ZJ as a template
with the forward primer 5′-GGAATTCCATATGTATAGTGATTTAGCAGG-3′ and the reverse
primer 5′-CGGGATCCTATTACCCACGCCCAGC-3′, which carried cutting sites of NdeI and
BamHI (underlined), respectively. The amplified fragments were digested with NdeI and BamHI
simultaneously, then purified by using a gel extraction kit prior to ligate with the pre-digested vector
pET-28a (+). The recombinant plasmid harboring gene bzgdh was transformed into competent cells of
E. coli DH5α for sequencing.

Homologous searches in GenBank were performed using the BLAST server (available online:
http://blast.ncbi.nlm.nih.gov). Alignment of multiple protein sequences was conducted by using the
Clustal X 2.0 program [28] and rendered by ESPript [29]. The phylogenetic tree was constructed using
the neighbor-joining method in MEGA7 [31], with a bootstrap test of 1000 replicates.

The nucleotide sequence for GDH of Bacillus sp. ZJ was deposited in GenBank under accession
number KJ701281.

3.3. Expression and Purification of Recombinant BzGDH

The recombinant plasmid was transformed into competent cells of E. coli BL21 (DE3) for expression.
The recombinant cells were cultivated in Luria-Bertani broth containing 50 μg kanamycin·mL−1 at
37 ◦C with a shaking speed of 250 rpm. The expression of recombinant protein was induced by
adding 0.5 mM of IPTG to the medium when the OD600 of the culture reached 0.5–0.8, followed
by another 12 h incubation at 25 ◦C with a shaking speed of 200 rpm. The cells were harvested by
centrifugation at 10,000× g for 10 min at 4 ◦C and were washed with the binding buffer (50 mM
NaH2PO4, 500 mM NaCl, 20 mM imidazole, pH 8.0), and then lysed by ultrasonication. The cell debris
was removed by centrifugation at 15,000× g for 30 min at 4 ◦C, and then the supernatant was loaded
onto a column containing pre-equilibrated Ni-NTA resin. The column was washed with binding buffer
and subsequently eluted with elution buffer (50 mM NaH2PO4, 500 mM NaCl, 250 mM imidazole,
pH 8.0). The eluted enzyme was desalted and concentrated by ultrafiltration and stored at −80 ◦C in
25 mM sodium phosphate buffer (pH 6.5) with 30% of glycerol contained. The protein concentration
was determined by Bradford’s method using bovine serum albumin as the reference.

Denaturing discontinuous polyacrylamide gel electrophoresis was performed on a 5% stacking
gel and a 12% separating gel. The native molecular weight of GDH was determined by size-exclusion
chromatography according to the protocol of the manufacture (Zorbax Bio-series GF-450, Agilent,
Santa Clara, CA, USA), using lysozyme (14.3 kDa), chicken ovalbumin (45 kDa), bovine serum albumin
fraction V (67 kDa), and goat IgG (150 kDa) as standards.

3.4. Enzyme Activity Assay

Glucose dehydrogenase activity was determined by assaying the absorbance of NADH at 340 nm
in 100 mM sodium phosphate (pH 8.0) containing 200 mM glucose and 1 mM NAD at 25 ◦C.
All measurements were conducted in triplicate. One unit of enzyme activity was defined as the
amount of the enzyme that catalyzed the formation of 1 μmol of NADH per minute.

3.5. Effects of pH and Temperature on the Activity and Stability of BzGDH

The optimum pH of BzGDH was measured at pH ranging from 4.0 to 10.5 at 25 ◦C. The effect
of pH on the stability of BzGDH was determined by measuring the residual activity after incubating
BzGDH in buffers with different pH values for one hour at 25 ◦C.
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The optimal temperature of BzGDH was determined at different temperatures (25–75 ◦C) in
phosphate buffer at pH 7.0. The thermal stability of BzGDH was assayed by measuring the residual
activity after incubating BzGDH at different temperatures (25–75 ◦C) in phosphate buffer at pH 7.0 for
30 min.

3.6. Substrate Specificity of BzGDH

The substrate specificity of BzGDH was determined by the aforementioned enzyme activity assay,
except that glucose was replaced by sucrose, lactose, maltose, xylose, galactose, mannose, fructose,
and arabinose, respectively.

3.7. Steady-State Kinetics of BzGDH

In order to obtain the kinetic constants for the coenzyme, 200 μM of glucose was employed as the
substrate and 0.01 to 0.2 mM NAD and NADP were used as the coenzymes, respectively. For analysis
of the kinetics for glucose, 1 mM NAD was used as a cofactor, 1 to 200 mM glucose was used as the
substrate. GDH activity was measured as described above. The kinetic constants were determined by
using a nonlinear fitting of the Michaelis-Menten equation:

v = (Vmax × [S])/(Km + [S]) (2)

where [S] is the concentration of the cofactor or substrate, Km is the Michaelis constants for the cofactor
or substrate, v is the reaction velocity, and Vmax is the maximum reaction velocity. The turnover number
kcat was calculated by the equation:

Vmax = kcat × [E] (3)

where [E] is the concentration of the enzyme.

3.8. Homology Modeling and Electrostatic Potential of BzGDH

The crystal structure of glucose 1-dehydrogenase from Bacillus megaterium IWG3 (PDB code:
1GEE, 1.60 Å) [41], which shares 88.12% identity with BzGDH, was served as the template for
homology modeling of BzGDH. The three-dimensional model of BzGDH was constructed by using
the SWISS-MODEL [33]. Precise evaluation of the model quality was performed using ProSA-web [34]
and PROCHECK [35]. The structure for electrostatics calculations was prepared by PDB2PQR [42]
using the AMBER force field and assigned protonation states at pH 7.0. The electrostatic potential
of BzGDH was calculated by APBS [36] using the linearized Poisson-Boltzmann equation (lpbe) at
298 K with the monovalent ion concentration of 0.1 M. The dielectric constants of protein and solvent
were set as 2.0 and 78.0, respectively. The electrostatic potential molecular surface was represented
by PyMOL.

3.9. Molecular Dynamic Simulations of BzGDH

The constructed model of BzGDH was subjected to the software package GROMACS 5.0.2 [43],
with the AMBER99SB [44] force field adopted, for molecular dynamics simulations. The model was
first placed into the center of a virtual cubic box with a side length of 11.049 nm and solvated with
39,486 TIP3P water molecules. The pH condition was 7.0 according to the ionization state of the protein
with a charge of −20, and twenty Na+ ions were added to the water box as counter ions to neutralize
the negative charge of the entire system. Bond lengths were constrained by the LINCS algorithm to
ensure covalent bonds to maintain their correct lengths during the simulation. Energy minimization of
the system was conducted using the steepest descent algorithm for 5000 steps, followed by a 500-ps
equilibration simulation with harmonic position restraints on the heavy protein atoms to equilibrate
the solvent molecules around the protein. Subsequently, a 2-ns simulation without position restraints
was conducted to equilibrate the entire system. Finally, the production simulation was performed
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for 20 ns at the target temperature. All simulations were performed under the NPT ensemble with
periodic boundary conditions and a time step of 2 fs. The temperature of the system was kept at 323 K
using the v-rescale method, and the pressure was kept at 1 bar using the Parrinello-Rahman method.

According to the RMSD profile of BzGDH, trajectories that reached the equilibrium state (10–20 ns)
were used for further analysis. Principal component analysis was conducted to identify the direction
and amplitude of the most prominent characteristics of the motions of BzGDH along the simulation
trajectory. Generalized order parameters S2, employed as a measure of the degree of spatial restriction
of motion, were also calculated for the N-H bonds of BzGDH.

4. Conclusions

In this study, a novel NAD(P)-dependent glucose 1-dehydrogenase from Bacillus sp. ZJ has been
extensively characterized, with remarkable acidic tolerance and thermal stability. To better understand
the stability feature of BzGDH against the structural context, molecular dynamics simulation was
conducted to investigate the conformational flexibility and fluctuations of BzGDH over time and spatial
scales. Analysis of the trajectory shows that BzGDH is stable and can maintain its overall structure
against heat during the simulation at 323 K, which is in accordance with the biochemical studies.
In brief, the robust stability of BzGDH made it a promising participant for cofactor regeneration in
practical applications, especially for catalysis implemented in acidic pH and high temperature.
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Abstract: The carmine spider mite, Tetranychus cinnabarinus (Boisduval), is an economically important
agricultural pest that is difficult to prevent and control. Scopoletin is a botanical coumarin derivative
that targets Ca2+-ATPase to exert a strong acaricidal effect on carmine spider mites. In this study,
the full-length cDNA sequence of a plasma membrane Ca2+-ATPase 1 gene (TcPMCA1) was cloned.
The sequence contains an open reading frame of 3750 bp and encodes a putative protein of 1249 amino
acids. The effects of scopoletin on TcPMCA1 expression were investigated. TcPMCA1 was significantly
upregulated after it was exposed to 10%, 30%, and 50% of the lethal concentration of scopoletin.
Homology modeling, molecular docking, and three-dimensional quantitative structure-activity
relationships were then studied to explore the relationship between scopoletin structure and
TcPMCA1-inhibiting activity of scopoletin and other 30 coumarin derivatives. Results showed that
scopoletin inserts into the binding cavity and interacts with amino acid residues at the binding site
of the TcPMCA1 protein through the driving forces of hydrogen bonds. Furthermore, CoMFA
(comparative molecular field analysis)- and CoMSIA (comparative molecular similarity index
analysis)-derived models showed that the steric and H-bond fields of these compounds exert
important influences on the activities of the coumarin compounds.Notably, the C3, C6, and C7
positions in the skeletal structure of the coumarins are the most suitable active sites. This work
provides insights into the mechanism underlying the interaction of scopoletin with TcPMCA1.
The present results can improve the understanding on plasma membrane Ca2+-ATPase-mediated
(PMCA-mediated) detoxification of scopoletin and coumarin derivatives in T. cinnabarinus, as well as
provide valuable information for the design of novel PMCA-inhibiting acaricides.

Keywords: Tetranychus cinnabarinus; plasma membrane Ca2+-ATPase; scopoletin; coumarin
derivatives; molecular docking; three-dimensional quantitative structure activity relationship
(3D-QSAR); interaction mechanism

1. Introduction

The plasma membrane Ca2+-ATPase (PMCA) pumps Ca2+ out of the cell to maintain cytosolic
Ca2+ concentration at a level that is compatible with messenger function. The concentration of nerve
membrane Ca2+ is normally higher in the cytoplasm than that in the extracellular matrix;furthermore,
Ca2+ is sequestered by sarco/endoplasmic reticulum Ca2+ pumps (SERCA) or by Ca2+-binding proteins,
or else extruded by Na+/Ca2+ exchangers or PMCAs [1–3]. PMCAs exhibit cell-specific expression
patterns and play an essential role in Ca2+ homeostasis in various cell types, including sensory
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neurons [4–7]. The inhibition of PMCAs in rat and fire salamander cilia by specific drugs, such as
vanadate or carboxyeosin, suggests that PMCAs play a predominant role in Ca2+ clearance [8,9].
In mammals, four genes encode PMCAs [10]. PMCA isoforms 1 and 4 are ubiquitously expressed and
considered as housekeeping isoforms, whereas PMCA isoforms 2 and 3 exhibit limited expression
in tissues [4–7]. Through quantitative analysis, human PMCA1 is shown to be more abundant than
PMCA4 at mRNA and protein levels [11]. Numerous methods, such as transient transfection, the
use of stable cell lines, and use of the vaccinia viral vector, are used to advance knowledge on the
differential properties of these isoforms [12–14].

The carmine spider mite, Tetranychus cinnabarinus (Boisduval), is a global agricultural pest that
parasitizes more than 100 plant species, including beans, cotton, eggplants, tomatoes, and peppers.
T. cinnabarinus infestations significantly reduce the quality and yield of these crops. These mites are
difficult to prevent and control given its high fecundity, short developmental duration, small individual
size, limited territory, and high inbreeding rate [15,16]. The control and prevention of T. cinnabarinus
are currently dependent on chemical insecticides and acaricides, such as spiromesifen, pyridaben, and
etoxazole, which introduce a high amount of chemical residues to the environment and induce drug
resistance in the target species [17]. Therefore, a novel, environmentally friendly acaricidal compound
should be identified and developed to manage these problems.

Scopoletin (7-hydroxy-6-methoxychromen-2-one) is an important coumarin phytoalexin found in
many herbs [18]. Scopoletin displays a wide array of pharmacological and biochemical activities [19].
In addition, scopoletin exerts insecticidal, acaridal, antibacterial, and allelopathic activities that
are useful in agricultural applications [20–22]. A previous study found that scopoletin extracted
from Artemisia annua L. exhibits strong acaricidal activity against carmine spider mites and inhibits
oviposition [22]. Furthermore, many studies on the effects of scopoletin on various protective enzymes
in the nervous system of T. cinnabarinus indicated that scopoletin inhibits Ca2+-ATPase [23]. Thus,
scopoletin is has increasingly attracting interest as a potential botanical acaricide because it is more
environmentally friendly compared with chemical and physical agents. However, the interaction
between Ca2+-ATPase and scopoletin in T. cinnabarinus remains unclear.

The objective of this study is to investigate the PMCA-meditated detoxification mechanism of
scopoletin. Molecular docking and three-dimensional quantitative structure activity relationship
(3D-QSAR) analyses were performed to achieve this aim. The full-length cDNA that encodes the
PMCA 1 gene (TcPMCA1) was obtained from T. cinnabarinus. The expression profiles of TcPMCA1
at the various life stages of carmine spider mites were then reported. The effects of scopoletin on
TcPMCA1 expression during the adult stage of T. cinnabarinus were also investigated. The results of
the molecular docking and 3D-QSAR studies were used to investigate the mechanism underlying the
interaction between scopoletin and TcPMCA1, as well as the active site of coumarin compounds. This
work provides an insight into the detoxification mechanism of scopoletin at the active site for future
studies on the optimized structural design of scopoletin and other coumarin derivatives.

2. Results

2.1. Cloning and Sequence Analysis

The partial cDNA sequence that codes for PMCA1 was identified through the use of transcriptome
data and alignment with nucleotide sequences from the genome datasets of Tetranychus urticae [24]. The
remaining 5′ and 3′ ends were amplified through a RACE (rapid amplification of cDNA ends)/PCR
(Polymerase Chain Reaction)-based strategy. The full-length cDNA sequence, which was designated
as TcPMCA1, was deposited in the GenBank database and with the accession number of KP455490.
The full-length cDNA of TcPMCA1 is 4369 bp in length and contains a 3750-bp open reading frame
(ORF), a 456-bp 5′-untranslated region (UTR), and a 163-bp 3′-UTR with a putative polyadenylation
signal upstream of the poly(A) (Figure 1). The ORF encodes 1249 amino acid residues with a predicted
molecular mass of 137.7 kDa and an isoelectric point of 8.10 (Figure 1).
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Figure 1. Nucleotide and deduced amino acid sequences of Ca2+-ATPase 1 gene (TcPMCA1) from the
carmine spider mite (Tetranychus cinnabarinus (Boisduval)). Nucleotide numbers are provided on the
left. The 10 transmembrane (TM) domains, which are denoted as TM I to TM X, are shaded. The ATP
(Adenosine Triphosphate)-binding site, together with phosphorylable aspartate (D480), is shaded black,
whereas the conserved lysine (K605) is boxed. The calmodulin-binding domain is indicated by a single
line and the four N-glycosylation sites are indicated by double lines. * represents the termination signal.
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The analysis of the deduced amino acid sequence of TcPMCA1 revealed the presence of ten
membrane-spanning segments (TM), which were denoted as TM I to TM X, as well as four main
cytosolic domains located between TM II and TM III, between TM IV and TM V, and at the N-
and C-terminal regions. Some characteristic segments also were predicted. TcPMCA1 contains an
ATP-binding site (from amino acid D480 to T484) and a calmodulin-binding domain (Q1119 to Q1130)
(Figure 1).

The multiple protein alignments of the C-terminal conserved catalytic domains of the PMCAs
from Arachnida and insects showed that TcPMCA1 exhibits 99.7% amino acid sequence identity
with T. urticae PMCA1. TcPMCA1 also showed nearly 70% similarity with the PMCA genes of
Ixodes scapularis, and 60–75% similarity with the PMCA genes of insects and nematodes (Figure 2).

Figure 2. ClustalW alignment of the C-terminal sequence comparison of plasma membrane
Ca2+-ATPase 1 (PMCA1) obtained from different species. Alignment of the sequences of the PMCAs,
starting after the last (10th) putative membrane-spanning domain and ending at the last residue.
Residues that are completely conserved are marked with an asterisk (*); those that are highly conserved
are indicated by colon (:); while similar residues are indicated by a dot (.). “-” represents interval.
PMCA1 sequences used in the alignment are as follows: TcPMCA1, Tetranychus cinnabarinus; TuPMCA1,
Tetranychus urticae; ApPMCA1, Acythosiphon pisum; and CbPMCA1, Caenorhabditis briggsae. The PMCA2
sequences used in the alignment are as follows: TcPMCA2, Tetranychus cinnabarinus; TuPMCA2,
Tetranychus urticae; IsPMCA, Ixodes scapularis; and CbPMCA1, Caenorhabditis briggsae.

2.2. Phylogenetic Analysis

A neighbor-joining phylogenetic tree was constructed by comparing the amino acid sequence of
TcPMCA1 with those of PMCA genes from other animal species. Phylogenetic analysis showed that
TcPMCA1 belongs to the cluster of Ixodes PMCA. The PMCA genes of T. cinnabarinus and T. urticae
clustered into the PMCA family and apparently share a single clade. These results suggested that the
PMCA genes of T. cinnabarinus and T. urticae are evolutionarily related and share similar physiological
functions (Figure 3).
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Figure 3. Phylogenetic analysis of TcPMCA1 obtained from the carmine spider mite
(Tetranychus cinnabarinus (Boisduval)). The phylogenetic tree was constructed using Molecular
Evolutionary Genetics Analysis (MEGA) 5.04 using the neighbor-joining method based on amino
acid sequences. TcPMCA1 was indicated by “�”. Bootstrap support values derived from 1000 replicates
are shown on the branches. Sequence accession numbers are given in Electronic Supplementary
Material, Table S1.
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2.3. Developmental Expression Patterns

To gain insights into the potential role of TcPMCA1, the expression levels of TcPMCA1 in female
individuals at various life stages were quantified through Real-time Quantitative polymerase chain
reaction (RT-qPCR). The results showed that TcPMCA1 mRNA was detected at all developmental
stages, including the larval, nymphal, and adult stages. More specifically, the TcPMCA1 transcript was
slightly detectable at the egg stage, was highly expressed at the larval, nymphal, and adult stages, and
was the highest at the nymphal stage (Figure 4).

Figure 4. Expression levels of the plasma membrane Ca2+-ATPase 1 gene (TcPMCA1) at different
developmental stages of Tetranychus cinnabarinus were evaluated using Real-time Quantitative
polymerase chain reaction (RT-qPCR). The egg, larval, nymphal, and adult stages were analyzed.
Relative expression was calculated according to the value of the lowest expression level, which was
assigned with an arbitrary value of 1. Letters above the bars indicate significant differences among
different developmental stages. RPS18 was used as reference gene. Data were presented as the means
(±SE) of three biological replications per developmental stage. Different letters on the error bars
indicate significant differences revealed by ANOVA test (p < 0.05).

2.4. Effects of Scopoletin Exposure on TcPMCA Expression

Scopoletin exposure caused spasms and high mortality among adult T. cinnabarinus. The results
of induction showed that exposure to scopoletin significantly changed the TcPMCA1 expression.
TcPMCA1 was significantly upregulated following exposure to low lethal (LC10), sublethal (LC30), and
median lethal (LC50) scopoletin concentrations for 12, 24, 36, or 48 h. The relative expression levels
of TcPMCA1 were upregulated by more than 100-fold of that of the control following 24 or 36 h of
exposure to scopoletin at LC30 dose. However, TcPMCA1 activation by scopoletin weakened gradually
with the extension of time (Figure 5).

2.5. Homology Modeling

Bell Labs Layered Space-Time (BLAST) analysis revealed that the primary sequence of the target
enzyme had a high sequence identity of 73% with the template 3BA6. BLAST analysis guarantees
that the model structure is of a high quality. Further energy minimization was performed to remove
geometric restraints prior to model construction [25]. The homology modeling of TcPMCA1 is shown
in Figure 6. The 3D structure of this enzyme was further checked by Procheck to evaluate the
stereo-chemical quality. Ramachandran plot analysis showed that most residues are present at the most
favored regions. In particular, 90.3% of the residues were in the most favored regions, 9.0% residues in
the additional allowed regions, giving a total of 99.3%. Other 0.4% residues in the generously allowed
regions and 0.4% residues in the disallowed regions. The results of the procheck analysis demonstrated
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that the 3D-modeling structure exhibits reasonable and reliable stereo-chemical properties and is thus
appropriate for subsequent molecular docking study.

Figure 5. Relative expression levels of the TcPMCA1 gene in adult female Tetranychus cinnabarinus
exposed LC10 (0.219 mg mL−1), LC30 (0.581 mg mL−1), and LC50 (1.142 mg mL−1) scopoletin.
Expression levels were quantified using qPCR after 12, 24, 36, and 48 h of treatment through leaf-dip
bioassay (n = 3). Scopoletin was mixed with acetone and Tween-80 (scopoletin: Tween-80 = 3:1; acetone
was added until scopoletin dissolved, generally limited within 5%). T. cinnabarinus treated with double
distilled water containing 0.5% acetone and Tween-80 were used as controls (CK). The mRNA levels in
the control and in each treatment were normalized to the expression of the reference gene RPS18. The
mean expression in each treatment was shown as fold change compared with the mean expression in
the control, which was assigned with a basal value of 1. Letters on the error bar indicate significant
difference between scopoletin treatment and control (p < 0.05).

 

Figure 6. Homology modeling 3D-structure of TcPMCA1.
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2.6. Molecular Docking

To comprehend the interaction between the ligand scopoletin and TcPMCA1, molecular
docking was performed to investigate the binding mode of scopoletin within the binding pocket
of TcPMCA1, and to further understand their structure–activity relationship. The ligand structure
of scopoletin is shown in Figure 7. The result showed that scopoletin docked with high affinity to
the nucleotide-binding pocket of TcPMCA1 and amino acid residues Ser297 and 300, Thr144, Cys299,
Glu83, Gln86, Asp87, and Lys301 surrounded scopoletin. Furthermore, five hydrogen bonds (the red
dash lines) formed between the 7-hydroxy with Sre297, 6-methoxy with Ala298, oxygen at position 1
with Lys301, and oxygen at position 2 with Lys301 and Ser300 (Figure 8).

Figure 7. (A) Chemical structural formula and (B) the cartoon representation of scopoletin. Red regions
represent oxygen atoms; green regions represent carbon atoms.

Figure 8. (A) Binding pocket of TcPMCA1 was indicated by the black frame; (B) best conformation of
scopoletin docked to binding pocket of TcPMCA1; (C) cartoon representation of residues involved in
the binding of scopoletin to TcPMCA1. The black box represents the binding cavity. Short, red dashed
lines represent hydrogen bonds. Red regions represent oxygen atoms of scopoletin; green regions
represent the carbon atoms of scopoletin; the others represent the amino acid residue of the protein.

The 30 coumarin derivatives (Table 1) were also subjected to molecular docking calculations.
The derivatives all docked with high affinity to the nucleotide-binding domain (NBD). These
results appeared promising and encouraged the calculation of molecular docking at the NBD for
all compounds. Defined molecular docking (DMD) at the nucleotide-binding pocket revealed that all
compounds showed low binding energy values. The lowest binding energy of −6.03 kcal/mol was
exhibited by compound 2 (Table 1). Therefore, compound 2 appears to be the most stable compound.
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Table 1. Docking results of coumarins with Ca2+-ATPase 1 gene of Tetranychus cinnabarinus (TcPMCA1).

Compound
AutoDock

Compound
AutoDock

Einter Eintra Etors ΔG Einter Eintra Etors ΔG

1 −6.87 −0.47 1.19 −5.64 16 −4.64 −0.15 0.3 −4.35
2 −7.22 −0.59 1.19 −6.71 17 −4.77 −0.37 0.6 −5.01
3 −4.55 −0.56 0.3 −4.65 18 −5.95 −0.86 0.89 −5.03
4 −4.95 −0.02 0.3 −5.07 19 −4.84 −1.45 0.89 −4.33
5 −4.65 −0.1 0.3 −4.38 20 −4.67 −1.13 0.6 −4.69
6 −4.95 0.03 0.3 −4.41 21 −4.61 −1.27 0.6 −4.23
7 −6.01 −0.55 0.89 −5.14 22 −4.29 0.02 0.3 −4.32
8 −4.86 −0.09 0.3 −5.04 23 −3.97 0 0 −4.47
9 −6.56 −1.73 0.89 −5.24 24 −5.89 −0.38 0.89 −6.08

10 −4.66 0.03 0.3 −3.83 25 −4.89 −0.25 0.6 −6.1
11 −4.35 −0.06 0.3 −4.59 26 −4.12 0 0 −4.59
12 −4.79 0.01 0.3 −4.58 27 −5.59 −0.59 0.89 −5.25
13 −4.56 −0.26 0.6 −4.84 28 −4.91 −0.11 0.3 −5.13
14 −4.49 0 0 −5.28 29 −4.54 −0.68 0.3 −5.35
15 −4.56 −0.14 0.6 −4.36 30 −4.42 −0.89 0.89 −4.6

1, 3-(2-benzimidazolyl)-7-(diethylamino)coumarin; 2, 3-(2-benzothiazolyl)-7-(diethylamino)coumarin; 3,
3-Aminocoumarin; 4, 3-Acetylcoumarin; 5, 4-Methoxycoumarin; 6, 4-Hydroxycoumarin; 7, 5,7-dihydroxy-4-phenyl
coumarin; 8, 6-Nitrocoumarin; 9, 7,8-dihydroxy-4-phenyl coumarin; 10, 7-amino-4-phenyl coumarin; 11,
7-methoxycoumarin(herniarin); 12, 7-mercapto-4-methyl coumarin; 13, 6,7-dimethoxy coumarin(Scoparone); 14,
Psoralen; 15, 7-Hydroxy-6-methoxycoumarin(Scopoletin); 16, Xanthotoxin; 17, Pimpinellin; 18, Imperatorin; 19,
Fraxetin; 20, Esculetin; 21, Daphnetin; 22, Umbelliferone; 23, Coumarin; 24, Oxypeucedanin; 25, Isopimpinellin; 26,
6-Methylcoumarin; 27, Osthole; 28, Bergapten; 29, Xanthotol; 30, Isofraxidin.

2.7. CoMFA and CoMSIA Statistical Result

The same training (24 compounds) and test sets (six compounds) (Table 2) were used to derive
models through CoMFA and CoMSIA. The statistical details were summarized in Table 3. The
results showed that the optimal CoMFA model provided a leave-one-out q2 of 0.75 (>0.5) with an
optimal number of principal components (ONC) of 7. A correlation coefficient R2 of 0.993 with a low
standard error of the estimate (SEE) of 0.042, and an F-statistic value of 383.856 were also obtained. In
contribution, the CoMFA steric field and electrostatic field contributed 72.6% and 27.4%, respectively.
The best CoMSIA model provided a q2 of 0.71 with an ONC of 6. An R2 of 0.975 with a low SEE of
0.080 and an F value of 124.834 were obtained. In CoMSIA model, the contributions of the steric,
electrostatic, hydrophobic, H-bond donor and acceptor were 14.0%, 33.4%, 23.9%, 19.7%and 9.0%,
respectively (Table 3). Based on these field contributions, the steric field is the most important field in
the CoMFA model, whereas the electrostatic field is the most important field in the CoMSIA model.

The test set (six compounds) was used to evaluate the predictive accuracy of the CoMFA and
CoMSIA models. Table 4 showed the experimentally determined and predicted activitiesand the
training and test sets residual values. The residual values obtained by calculating the difference
between the predicted and actual pLC50 are below one logarithmic unit for all the compounds (Figure 9).
Therefore, the predictive abilities of the optimal CoMFA/CoMSIA models are excellent.
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Table 2. Structures and acaricidal activities (LC50 values) of the compounds tested in this study.

Compound Structure LC50 (mmol/L) Compound Structure LC50 (mmol/L)

1a

 

1.2175 16a

 

6.0313

2a 0.8638 17a

 

5.188

3a
 

2.971 18a

 

 

5.3789

4a

 

3.52 19a

 

6.2036

5b

 

2.2563 20a
 

12.6973

6b

 

 

61.2926 21b

 

3.8273

7a

 

 

22.784 22a
 

20.0142

8a

 

3.319 23a
 

14.1447

9b

 

5.4987 24a

 

4.876

10b
 

14.1318 25a 5.0816

11a
 

33.8571 26a

 

15.4398

12b

 

22.269 27a

 

1.9186

13a
 

1.3813 28a

 

15.1358

14a
 

25.6564 29a

 

3.8

15a
 

6.4698 30a 2.5798

a, Training compounds; b, test set compounds. The others are the same as those in Table 1.
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Table 3. Summary of the results obtained from CoMFA (comparative molecular field analysis) and
CoMSIA (comparative molecular similarity index analysis) analyses.

Statistical Parameter CoMFA Model CoMSIA Model

q2 0.750 0.710
ONC 7 6

R2 0.993 0.975
SEE 0.042 0.080

F 383.856 124.834
R2pred 0.6465 0.931

Contribution
Steric 0.726 0.140

Electrostatic 0.274 0.334
Hydrophobic 0.239
H-bond donor 0.197

H-bond acceptor 0.090

Table 4. Observed and predicted activities of the test compounds.

Compound pLC50
CoMFA CoMSIA

Predicted pLC50 Residual Predicted pLC50 Residual

1a 2.915 2.868 0.047 2.924 −0.009
2a 3.064 3.097 −0.033 3.021 0.043
3a 2.527 2.514 0.013 1.83 0.697
4a 2.453 2.487 −0.034 2.465 −0.012
5b 2.647 1.651 0.996 1.92 0.727
6b 1.213 2.328 −1.115 1.916 −0.703
7a 1.642 1.394 0.248 1.65 −0.008
8a 2.479 2.894 −0.415 2.493 −0.014
9b 2.260 1.67 0.59 1.917 0.343

10b 1.850 2.097 −0.247 1.857 −0.007
11a 1.470 2.184 −0.714 1.716 −0.246
12b 1.652 2.245 −0.593 1.756 −0.104
13a 2.860 2.258 0.602 2.779 0.081
14a 1.591 2.271 −0.68 1.739 −0.148
15a 2.189 1.84 0.349 2.18 0.009
16a 2.220 1.703 0.517 2.127 0.093
17a 2.285 1.931 0.354 2.344 −0.059
18a 2.269 2.304 −0.035 2.263 0.006
19a 2.207 2.309 −0.102 2.311 −0.104
20a 1.896 1.947 −0.051 1.769 0.127
21b 2.417 2.74 −0.323 2.063 0.354
22a 1.699 1.841 −0.142 1.641 0.058
23a 1.849 2.583 −0.734 1.806 0.043
24a 2.312 2.008 0.304 2.298 0.014
25a 2.294 1.967 0.327 2.265 0.029
26a 1.811 2.122 −0.311 1.765 0.046
27a 2.717 1.759 0.958 2.697 0.02
28a 1.820 1.697 0.123 1.683 0.137
29a 2.420 2.152 0.268 1.832 0.588
30a 2.588 1.681 0.907 3.694 −1.106

a, Training compounds; b, test set compounds. The others are the same as those in Table 1. CoMFA, comparative
molecular field analysis; CoMSIA, comparative molecular similarity index analysis; pLC50, −log(LC50).
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Figure 9. Plots of experimental activity [log (1/LC50)] against activity as predicted using CoMFA- (A)
and CoMSIA-derived (B) models.

2.8. Contour Maps of CoMFA-Derived Models

Stdev * Coeff contour maps were plotted on the basis of the optimal CoMFA/CoMSIA-derived
models. Core structure of these test compounds were shown in Figure 10A. Compound 2 was employed
as the template molecule for the analysis of contour maps (Figure 10B) because of it had the highest
acaricidal effect and its lowest binding energy among all compounds. Figure 11 presents the steric and
electrostatic contour maps for the optimal CoMFA-derived models. The green and yellow contours in
the contour maps indicated default 80% and 20% contribution levels, respectively. From Figure 11A,
a medium-sized green contour near the R5-position of ring B indicated that inhibitory activity could
be improved with a bulky substituent introduced in this region. Correspondingly, other compounds
have bulky substituents at this position. Another green contour occurred around the R1-position of
ring A, suggesting that inserting a bulky group into ring A increases inhibitory activity. By contrast, a
large yellow contour near the R5-position of ring B implied that the introduction of a bulky group at
this position negatively affects inhibitory activity. Another large yellow contour around the R2 and
R3 positions suggested that inserting a bulky group in these positions decreases inhibitory activity.
Indeed, the inhibitory activities of compounds 1–4 (with a group at R1-or R5-position) are higher than
that of compound 23 (with an H atom at this position; Table 2).

Figure 10. (A) Core structure of the test compounds and (B) the chemical structure of compound 2.
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Figure 11. Steric (A) and electrostatic (B) contour maps obtained using CoMFA-derived models based
on molecule 2. Green regions (A) indicates regions where the introduction of a bulky group would
increase activity. Yellow regions (A) indicates regions where the introduction of a bulky group would
decrease activity. Red regions (B) indicates regions where the introduction of electronegative groups is
favored. Blue regions (B) indicates regions where the introduction of electropositive groups is favored.
The others in Figure A and B represent the compound 2 (Red, oxygen atoms; yellow and blue, nitrogen
atom; cyan, hydrogen atom; gray, carbon atoms).

Figure 11B showed the electrostatic contour maps obtained from CoMFA-derived models. Red
contour indicates electronegative groups are favored; blue contour indicates electropositive groups
are favored. These contours depict default contribution levels. A large blue contour near the R5 and
R6 positions of ring B suggested that the introduction of electronegative groups in this position will
decrease inhibitory activity. Another large blue contour near the R1-position of ring A indicated that
the introduction of electropositive groupsenhances inhibitory activity. A large red contour near the
R4-positions of ring B suggested that replacing the original groups with electronegative groups at these
positions could improve inhibitory activity. For example, the inhibitory activities of compounds 3 (R1
= –NH2) and 4 (R1 = –COCH3) are greater than that of compound 23 (R1 = –H), and the inhibitory
activity of compound 8 (R4 = –NO2) is greater than that of compound 23 (R1 = –H) (Table 2).

2.9. Contour Maps of CoMSIA-derived Models

The steric, electrostatic, hydrophobic, and H-bond contour maps for the optimal CoMSIA-derived
models are shown in Figure 12. Figure 12A,B show the steric and electrostatic contour maps,
respectively, which were obtained from the optimal CoMSIA model. The CoMSIA steric and
electrostatic contour maps are similar to the corresponding CoMFA contour map. Therefore, the
preceding discussion also applies to the steric and electrostatic contour maps from the CoMFA model.

Figure 12C shows the hydrophobic contour map of the CoMSIA model is displayed. In the
CoMSIA-derived hydrophobic field, a medium-sized cyan contour near the ring B indicated that
introducing hydrophilic groups to that position could improve the inhibitory activity of the molecule.
Another two yellow contours around the R1-position of ring A suggested that hydrophobic groups
preferentially localize at these positions. Figure 12D shows the H-bond contour map for the optimal
CoMSIA model. In this figure, the cyan color indicated regions that favor H-bond donors, whereas
the red color indicated regions that disfavor H-bond donors. A medium-sized cyan contour occurred
at the 2-position on ring A, thus indicating that the inhibitory activity would be improved with an
H-bond acceptor group introduced at this position. A large red contour near the 4-position of ring B
implied that introducing an H-bond donor group in this position could decrease inhibitory activity.

The detailed analysis of the contour maps obtained using the optimal CoMFA- and
CoMSIA-derived models may facilitate the design of a novel selective TcPMCA1 inhibitors. Introducing
an electropositive, hydrophobic, or H-accepting group in region A (R1- and R2-positions of ring A)
can increase inhibitory activity, and introducing a hydrophobic group in region B (R3-position of ring
B) can increase activity. Meanwhile, introducing an electronegative group in region C (R4-position of
ring B) is favorable, and introducing a bulky, hydrophobic, or electropositive group in region D (R5-
and R6-position of ring B) can increase activity (Figure 13).
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Figure 12. Steric (A), electrostatic (B), hydrophobic (C), and H-bond (D) contour maps obtained using
CoMSIA-derived models based on molecule 2. Green (A) indicates regions where the introduction of a
bulky group would increase activity. Yellow (A) indicates regions where the introduction of a bulky
group would decrease activity. Blue (B) indicates regions where the introduction of electropositive
groups is favored. Cyan (C) indicates regions where the introduction of hydrophobic is favored.
Purple (D) indicates regions where the introduction of H-bond acceptors is favored. Red (D) indicates
regions where the introduction of H-bond acceptors is disfavored. The others in Figure A–D represent
the compound 2 (Red, oxygen atoms; yellow and blue, nitrogen atom; cyan, hydrogen atom; gray,
carbon atoms).

 

Figure 13. Diagram of structure–activity relationship based on the core structure of the tested
compounds. Blue (region A) indicates regions where the introduction of electropositive group,
hydrophobic group, or H-accepting groups would increase activity. Red (region B) indicates regions
where the introduction of hydrophobic group is favored. Cyan (region C) indicates regions where
the introduction of electronegative group is favored. Magenta (region D) indicates regions where the
introduction of a bulky group, hydrophobic group, or electropositive group would increase the activity.
Dark indicates the core structure of the test compounds.

3. Discussion

Scopoletin is a naturally occurring, low-molecular-weight alloleochemical that is ubiquitous in
the plant kingdom. Moreover, scopoletin is present in some foods and plant species used in traditional
medicine. Scopoletin extracted from Artemisia annua L. exhibits strong activity against the carmine
spider mite; in addition, it affects ATPase activity and is possibly a neurotoxin [22].
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In the present study, full-length cDNA encoding PMCA1 from T. cinnabarinus was characterized
and designated as TcPMCA1. The predicted amino acid sequences of TcPMCA1 consists of three major
regions: the first intracellular loop region located between transmembrane segments TM II and TM III;
the second large intracellular loop region located between TM IV and TM V; which possesses a putative
ATP-binding site; the third part extended “tail” found next to TM X. This conformation is consistent
with the structure of previously described PMCAs [26–29]. The putative CaM-binding domain of
TcPMCA1 binds to the C-terminal region downstream of the last transmembrane domain and shares a
common pattern with those in vertebrates [30]. Alternative splicing expands the diversity of mRNA
transcripts and augments the functions of modulatory genes [31]. Previous efforts to discriminate
TcPMCA1 splice variants failed, this failure was also reported in Spodoptera littoralis [32]. By contrast,
mammals and Drosophila melanogaster possess a large number of splice variants [28].

The expression profiles of TcPMCA1 in T. cinnabarinus were similar to that in S. littoralis, which
is present at all investigated stages and exhibits maximal expression at the nymphal stage [32]. This
expression pattern is correlated to the massive synthesis of TcPMCA1 during the developmental stages,
thereby confirming that TcPMCA1 is essential for the functions of T. cinnabarinus.

The reported pharmacological effects of scopoletin presuppose some interactions with
membrane-bound enzymes, such as Ca2+-ATPase, which is vital in nervous signal conduction [33–35].
Oliveira [36] reported that in rats, scopoletin inhibits Ca2+-ATPase activity by inhibiting the
mobilization of intracellular calcium from noradrenaline-sensitive Ca stores. Ca2+-ATPase is a
major neurotransmitter, and PMCA extrudes Ca2+ from the postsynaptic region of the nerve [37].
In insects, PMCA inhibition results in internal Ca2+ flow, causing neurotransmitter accumulation [38].
In the present study, the results of scopoletin induction indicated that TcPMCA1 in T. cinnabarinus
was significantly upregulated after exposure to scopoletin within 36 h. Scopoletin also increases
the expression of both peroxisome proliferator-activated receptor γ2 and adipocyte-specific fatty
acid binding protein [39]. Moreover, scopoletin inhibits the expression of cyclooxygenase in a
concentration-dependent manner [40]. These results implicated TcPMCA1 in the detoxification
metabolism of scopoletin in T. cinnabarinus. The inhibition of Ca2+-ATPase activity or increase in PMCA
expression possibly indicates the existence of a feedback regulatory mechanism that compensates for
enzyme content. The decrease of gene expression at 48 h may related to the organism damage caused
by continuous scopoletin exposing. Basing on these results, we surmise that TcPMCA1 inhibition in
T. cinnabarinus causes intra- and extracellular calcium ion imbalance and thus blocks the transmission of
neural activity, causing the death of mites [41,42].However, the influence of scopoletin on Ca2+-ATPase
mechanism in the carmine spider mite requires extensive exploration because of the intricacy of
PMCA-mediated detoxification.

Scopoletin is also designated as 7-hydroxy-6-methoxy coumarin and is a coumarin derivative.
Coumarin is a leading molecule in biopesticides. Given the pesticidal potential of this class of
compounds, the toxic effects of coumarin derivatives against mosquito species Culex quinquefasciatus
and Aedes aegypti were evaluated, and the results showed that modifying the 7-OH position remarkably
enhances the ovicidal activity of coumarin [43]. The antitermiticidal activity of scopoletin and coumarin
derivatives were investigated against Coptotermes formosanus, and the results suggested that scopoletin
has the highest activity among the tested compounds [44]. To investigate the structure–activity
relationship of the methoxy and hydroxy groups at the C-6 and C-7 positions of the coumarin skeleton,
6-alkoxycoumarin derivatives and 7-alkoxycoumarins and related analogs were synthesized. The
findings indicated that the presence of alkenyloxy and alkynyloxy groups at the C-6 position, as well
as the cyclohexyloxy and aryloxy groups at the C-7 position, are important for the termiticidal and
antifeedant activities of coumarin [45,46]. These results revealed that scopoletin actually inserts into the
binding cavity and interacts with the active sites of TcPMCA1, suggesting that the microenvironments
and conformation of the enzymes change because of these interactions [47]. Furthermore, these results
indicated that the C-6 and C-7 positions of scopoletin are important for acaricidal activity.
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Molecular docking and the homology modeling of the 3D structure of the target protein were used
to identify conformational protein–ligand interaction patterns [48,49]. Pharmacophore have been used
to develop 3D-QSAR models over the past the decade [50]. Combined information on protein–ligand
interactions from a pharmacophore and accurate binding conformations from molecular docking
offers the potential for enhanced prediction accuracy [51]. In the present study, the crystallographic
structure of sarco/endoplasmic reticulum Ca2+-ATPases (SERCA) was defined in rabbit [52]. The
BLAST analysis performed showed that TcPMCA1 shares 73% sequence identity with the SERCA
Ca2+-ATPase of rabbit, indicating the validity of homologous protein structure [53,54]. The homologous
3D structure of TcPMCA1 allowed the evaluation of the binding energies and docking positions of
scopoletin on TcPMCA1 protein. In our docking results, the hydrophobic environment of the active
site is favorable for interactions with scopoletin, and the special arrangements at the C6 and C7 sites
are assumed to be favorable for the acaricidal activity of scopoletin. Furthermore, the 3D-CoMFA and
CoMSIA models indicating that C3, C6, and C7 regions of coumarins appear to be important acaricidal
active sites of coumarins. This result is in agreement with the results of the acaricidal activity assay,
which showed that coumarins substituted with methoxy at C6 or C7 have significantly better activity
than coumarins substituted with other compounds at the same positions. Furthermore, coumarins
with C3 substitutions also demonstrated enhanced acaricidal activity. Nakamura [55] previously
investigated the structure–activity relationship between 63 natural oxycoumarin derivatives and their
effects on the expression of inducible nitric oxide synthase, which showed that the C-5, C-6 and C-7
positions of oxycoumarin derivatives are essential for potent activities. In addition, the discovery and
structure–activity relationship of a novel series of coumarin-based tumor necrosis factor α (TNF-α)
inhibitors showed that substitution at the C-3 and C-6 position of the coumarin ring system most
dramatically influences inhibitory activity against TNF-α [56]. The docking results and the detailed
analysis of the contour maps obtained by 3D-CoMFA and CoMSIA-derived models will encourage the
design of novel, selective TcPMCA inhibitors.

4. Materials and Methods

4.1. Test Mites

The carmine spider mite culture was collected from cowpea Vigna unguiculata (L.) grown in
Beibei, Chongqing, China. The mites were maintained on potted cowpea seedlings (30–40 cm tall)
in a walk-in insect rearing room at 26 ± 1 ◦C under 75 to 80% RH and 16L:8D photoperiod. The
colony was maintained for more than 12 years without any contact with insecticides/acaricides. The
voucher specimens of T. cinnabarinus were deposited at the Insect Collection of Southwest University,
Chongqing, China.

4.2. Leaf-Dip Bioassay

More than 600 leaf discs were prepared to obtain uniform individuals at different developmental
stages. Fresh cowpea leaves that had not been exposed to pesticides were washed thoroughly. Leaf
discs with 3 cm diameters were placed on a 4 mm water-saturated sponge in a Petri dish (9 cm in
diameter) [57]. Approximately 30 adult females were transferred to each leaf disc, allowed to lay eggs,
and removed after 12 h. After a batch of uniform eggs had hatched, the offspring was maintained until
the progeny had developed into 3- to 5-d-old females [58].

For the leaf-dip bioassay, female adult mites were treated with scopoletin (provided by Southwest
University, Beibei, Chongqing, China). The responses of TcPMCAs in mites to scopoletin were
investigated by exposing the adult female mites to 10% of the lethal concentration (LC10), LC30,
and LC50 of scopoletin for 12, 24, 36, and 48 h. The LC10 (0.219 mg·mL−1), LC30 (0.581 mg·mL−1), and
LC50 (1.142 mg·mL−1) of T. cinnabarinus to scopoletin were determined using leaf-dip bioassays prior
to acaricide treatments. Each leaf disc, which contained 30 mites on its surface, was soaked for 5 s
in acaricide solutions. For each treatment, more than 500 surviving mites were collected and three
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biological replicates were performed. A total of 200 mites were dipped in distilled water for 5 s and
used as the control. All of the surviving mites were collected and stored at −80 ◦C for RNA extraction.

4.3. RNA Isolation and Reverse Transcription

Total RNA was isolated using RNeasy® Plus Micro Kit (Qiagen, Hilden, Germany), and genomic
DNA was removed using a gDNA elimination column in accordance with the manufacturer’s
instructions. The quantities of total RNA were assessed at 260 nm using Nanovue UV-Vis
spectrophotometer (GE Healthcare, Fairfield, CT, USA). RNA purities were quantified at an absorbance
ratio of OD260/280. RNA integrity was evaluated via 1% agarose gel electrophoresis. cDNA was
synthesized using total RNA and the rapid amplification of cDNA ends (RACE) method. First-strand
cDNA was synthesized from 0.5 μg of RNA in a 10 μL reaction mixture by using PrimeScript® 1st
strand cDNA Synthesis Kit (TaKaRa, Dalian, China) and oligo (dT)18 primers. The synthesized samples
were then stored at −20 ◦C.

4.4. Sequencing and Phylogenetic Analysis

To obtain the full-length DNA sequences of TcPMCA genes, specific primers were designed using
Primer 5.0 (Available online: http://www.premierbiosoft.com/) based on the transcript unigene
sequences obtained from the transcriptome (Table S2). A set of gene-specific primers and nested
primers were designed to amplify the fragments. The rapid amplification of cDNA ends (RACE)
methodwas amplified using the SMARTer™ RACE cDNA Amplification Kit (Clontech, Palo Alto, CA,
USA). The total PCR volume was 25 μL and contained 2.5 μL of 10× PCR buffer (Mg2+ free), 2.0 μL
of dNTPs (2.5 mM), 2.0 μL of Mg2+ (2.5 mM), 1 μL of cDNA templates, 1 μL of each primer (10 mM),
0.25 μL of rTaq™ polymerase (TaKaRa), and 15.5 μL of ddH2O. The PCR program was performed as
follows: initial denaturation for 3 min at 94 ◦C, followed by 34 cycles of 94 ◦C for 30 s, 55 to 60 ◦C
(depending on gene specific primers) for 30 s, and 72 ◦C extension for 2 min, and final extension for
10 min at 72 ◦C. The PCR products were separated by agarose gel electrophoresis andpurified using
Gel Extraction Mini Kit (Watson Biotechnologies, Shanghai, China). The purified PCR products were
ligated into the pGEM-T vector (Promega, Fitchburg, MA, USA) and then sequenced (Invitrogen Life
Technologies, Shanghai, China).

BLAST searching was performed using the NCBI BLAST website (Available online: http:
//www.ncbi.nlm.nih.gov/Blast.cgi). The molecular weight and isoelectric points of the deduced
protein sequences were calculated by ExPASy Proteomics Server (Available online: http://cn.
expasy.org/tools/pi_tool.html) [59]. The transmembrane domain positions and protein domain
were estimated using Phobius (Available online: http://phobius.sbc.su.se/), Calmodulin Target
Database (Available online: http://calcium.uhnres.utoronto.ca/ctdb/pub_pages/search/index.htm),
and ATPint (Available online: http://www.imtech.res.in/raghava/atpint/submit.html) servers. Signal
peptides were predicted using Signa1P 3.0 (Available online: http://www.cbs.dtu.dk/service/
SignalP/) [60]. N-glycosylation sites were predicted by NetNGlyc 1.0 Server (Available online:
http://www.cbs.dtu.dk/services/NetNGlyc/). DNAMAN 6.0 (Lynnon BioSoft, Vaudreuil, QC,
Canada) was used to edit TcPMCA1 nucleotide sequences, and the corresponding phylogenetic trees
were constructed using the neighbor-joining method, with 1000 bootstrap replicates, in MEGA5.01 [61].

4.5. Real-Time Quantitative PCR (qPCR)

Primers used for qPCR were designed by Primer 3.0 software [62]. qPCR was performed in
20 μL-reaction mixture that contained 10 μL of qSYBR Green Supermix (BIO-RAD laboratories,
Hercules, CA, USA), 1 μL of cDNA template, 1 μL of each primer (0.2 mM) and 7 μL of ddH2O.
qPCR was performed on a Stratagene Mx3000P Thermal Cycler (Stratagene, La Jolla, CA, USA) as
following protocol: an initial denaturation at 95 ◦C for 2 min, followed by 40 cycles at 95 ◦C for 15 s,
60 ◦C for 30 s, and elongation at 72 ◦C for 30 s. At the end of each reaction, a melt curve analys (from
60 to 95 ◦C) was generated to rule out the possibility of primer-dimer formation. RPS18 was used as a
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stable housekeeping gene for the qPCR analysis [63]. Relative gene expression levels were calculated
by 2−ΔΔCt method [64]. Three biological and two technical replicates were performed.

Expression pattern of TcPMCA1 at different developmental stages. To investigate the expression
patterns of TcPMCA1 at different developmental stages, we collected mites in uniform developmental
stages (2000 eggs, 1500 larvae, 1000 nymphs, and 500 adults). The samples were isolated and placed
in a 1.5 mL diethyl pyrocarbonate (DEPC)-treated centrifuge tube containing RNA storage reagent
(Tiangen, Beijing, China), immediately frozen in liquid nitrogen, and stored at −80 ◦C for RNA
extraction. Three independent biological replications were performed.

Expression levels of TcPMCA1 after scopoletin exposure. The differential expression levels of TcPMCA1
in response to scopoletin were investigated by exposing adult female mites to LC10, LC30, and LC50

scopoletin, as in leaf bioassays. After 12, 24, and 36 h intervals, only the surviving adults obtained
from the treated and control groups (at least 500 larvae) were collected and frozen at −80 ◦C for RNA
extraction. After scopoletin exposure, total RNA was isolated to analyze the expression levels of
TcPMCA by TR-qPCR.

4.6. Homology Modeling

The homology modeling was conducted on the I-TASSER server (Available online: http://
zhanglab.ccmb.med.umich.edu/I-TASSER/) [65], and the 3D structure of TcPMCA1 protein was
obtained. The details of I-TASSER protocol have been described previously [66–70]. Briefly, it consists
of three steps: template identification, full-length structure assembly and structure-based function
annotation. Firstly, starting from the query sequence, I-TASSER identifies homologous structure
templates from the PDB library [71] using LOMETS [69,72], a meta-threading program that consists
of multiple threading algorithms. Then, the topology of the full-length models is constructed by
reassembling the continuously aligned fragment structures excised from the templates, where the
structures of the unaligned regions are built from scratch by ab initio folding based on replica-exchange
Monte Carlo simulations [73]. The low free-energy states are further identified by SPICKER [74].
To refine the structural models, a second round of structure reassembly is conducted starting from
the SPICKER clusters. The low free-energy conformations refined by full-atomic simulations using
FG-MD [75] and ModRefiner [76]. Finally, the biological functions of the target proteins were derived
by matching the I-TASSER models with proteins in the BioLiP library [77–79].

Based on identity with the primary sequence of the target TcPMCA1, the crystal structure of the
phosphoenzyme intermediate of the rabbit SERCA Ca2+-ATPase (PDB ID code: 3BA6) was retrieved
from the Protein Data Bank (PDB, Available online: http://www.rcsb.org/pdb/home/home.do) and
used as the template for homology modeling (the amino acid sequences of the trmplate was shown in
Figure S1). The Psi/Phi Ramachandran plot obtained from Procheck analysis was used to validate the
modeled 3D structure of TcPMCA1 protein [80,81].

4.7. Dataset and Molecular Modeling

The acaricidal activities of the 30 collected compounds (Table S3) were obtained from a previous
study [82]. These 30 compounds are natural or synthetic compounds that are readily available to
coumarin, which were purchased from Chengdu Aikeda Chemical Reagent Co., Ltd. and Shanghai
yuanye Bio-Technology Co., Ltd. The purity of these compounds was more than 98%. The structures
and half-maximal inhibitory concentration (LC50) of the compounds are shown in Table 2. These
values were transformed into the corresponding pLC50 [−log(LC50)] as the expression of inhibitor
potency. The 30 compounds were placed in a training set of 24 compounds (80%) and a test set of 6
compounds (20%).

The 3D structures of these ligand compounds were constructed in Sybyl 6.9 (Tripos Software,
St. Louis, MO, USA). Structures were energy minimized by using the Gasteiger–Hückel charge [83],
Tripos force field [84], and Powell methods [85] with a convergence criterion of 0.005 kcal/(mol Å). The
iterations maximum number was set to 10,000, and multiple conformation search was used. Coumarin
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structure was used as the common scaffold for molecular alignment, and compound 2 with the highest
acaricidal activity was used as the template molecule. All other compounds were aligned with the
coumarin core using the “align database” command in Sybyl.

4.8. Molecular Docking

The protein model was prepared using Sybyl prior to docking simulations. All bound water
molecules and ligands were removed from the protein, and hydrogen atoms and AM1-BCC charges [86]
were added to the amino acid residues. The generated homology model of TcPMCA1 was used for
molecular docking, and the binding pocket was defined using Discovery Studio 2.5 (Accelrys Software
Inc., San Diego, CA, USA). The 3D structure of the compound was prepared as the ligand, and all of
the hydrogen atoms and AM1-BCC charges were added [86]. Molecular docking was performed with
AutoDock 4.0 [87]. The grid spacing was changed from 0.375 nm, and the cubic grid map was 40 × 40
× 40 Å toward the TcPMCA binding site. The docking parameters were set as follows: the number
of GA Runs was set as 10, population size was set as 150, the maximum number of evaluations was
set as 25,000,000, and 250 runs were performed. All other parameters were set as the default. The
docking process was performed as follows: first, molecular docking was performed to evaluate the
docking poses. Then, defined docking was conducted on the binding pocket. Three to six independent
docking calculations were conducted. The corresponding lowest binding energies and predicted
inhibition constants (pKi) were obtained from the docking log files (dlg). The mean ± SD of binding
energies was calculated from the dockings. AutoDock Tools and Visual Molecular Dynamics (VMD,
Theoretical and Computational Biophysics group at the Beckman Institute, University of Illinois at
Urbana-Champaign) [88,89] was used to visualize the docking result. Surface representation images
that show the binding pocket of TcPMCA1 were generated using VMD software.

4.9. 3D-QSAR Study

CoMFA and CoMSIA descriptor fields were employed in the present 3D-QSAR studies.
The CoMFA fields were carried out to generate the steric and electrostatic fields with the default value
of the energy cutoff at 30 kcal·mol−1 CoMSIA fields were carried out to calculate the steric, electrostatic,
hydrophobic, hydrogen-bond donor and hydrogen-acceptor donor with a default attenuation factor of
0.3 for Gaussian function. Field type “Stdev * Coeff” was used as the coefficient to analysis the contour
map of each field. The partial least squares (PLS) [90] was used to construct a linear correlation by
setting the biological activity (pLC50 values) as the dependent variables and the CoMFA/CoMSIA
descriptors as independent variables.

4.10. Statistical Analysis

All results were expressed as the mean ± standard error. The differences among the four
developmental stages and time-dependent responses to scopoletin exposure were analyzed using
one-way analysis of variance (ANOVA). The level of significance of the means was then separated
by Fisher’s LSD multiple comparison test (p < 0.05). The fold change in TcPMCA gene expression
was analyzed using SPSS (v.16.0, SPSS Inc., Chicago, IL, USA), and significance was determined by
independent sample t-test (p < 0.05).

5. Conclusions

The molecular characteristics of the TcPMCA1 gene were identified and described, and the gene
expression levels of TcPMCA1 after scopoletin exposure were investigated. The TcPMCA1-mediated
detoxification mechanism of scopoletin in T. cinnabarinus was preliminarily explored through the
integrated study of homology modeling and molecular docking. Moreover, CoMFA and CoMSIA
3D-QSAR studies have been performed to put the pharmacophoric environment that will help future
structure based drug design. The results of the present study showed that scopoletin forms hydrogen
bonds with the active site of TcPMCA1, and that the C3, C6, and C7 positions in the skeletal structure
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of coumarins are the most suitable active sites. These results provide a better understanding of the
TcPMCA1-mediated detoxification mechanisms of scopoletin and of other coumarin derivatives. These
compounds can be structurally modified to increase their acaricidal and inhibitory effects. More
detailed investigations of the mechanism of action and pharmacological activities of these compounds
may provide novel anti-PMCA agents for spider mite control.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/7/1380/s1.
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Abstract: Adenosine monophosphate-activated protein kinase (AMPK) plays a critical role in
the regulation of energy metabolism and has been targeted for drug development of therapeutic
intervention in Type II diabetes and related diseases. Recently, there has been renewed interest in
the development of direct β1-selective AMPK activators to treat patients with diabetic nephropathy.
To investigate the details of AMPK domain structure, sequence alignment and structural comparison
were used to identify the key amino acids involved in the interaction with activators and the structure
difference between β1 and β2 subunits. Additionally, a series of potential β1-selective AMPK
activators were identified by virtual screening using molecular docking. The retrieved hits were
filtered on the basis of Lipinski’s rule of five and drug-likeness. Finally, 12 novel compounds with
diverse scaffolds were obtained as potential starting points for the design of direct β1-selective
AMPK activators.

Keywords: Adenosine 5′-monophosphate-activated protein kinase; virtual screening; molecular
docking; selective activator

1. Introduction

Kidney disease associated with diabetes is the leading cause of chronic kidney disease (CKD)
and end-stage kidney disease worldwide and nearly one-third of patients with diabetes develop
nephropathy [1]. As the incidence of both types 1 and 2 diabetes rises worldwide, diabetic nephropathy
(DN) is likely become a significant health and economic burden for society [2]. Current therapy for
diabetic nephropathy includes glycemic optimization using antidiabetics and blood pressure control
with blockade of the renin-angiotensin system [3]. However, these strategies are slow but cannot
reverse or at least stop the disease progression [4]. Although several clinical trials are currently in
progress, there are still no drugs approved for the treatment of DN. Among these ongoing phase
3 clinical trials, atrasentan is still in progress, while bardoxolone methyl and paricalcitol failed to meet
the primary endpoint or was terminated on safety concerns [4,5]. Recently, there has been renewed
interest in the development of direct β1-selective Adenosine monophosphate-activated protein kinase
(AMPK) activators that have the potential to treat diabetic nephropathy [6].

AMPK is master sensor of cellular energy and plays a critical role in the regulation of metabolic
homeostasis [7]. AMPK is a heterotrimeric kinase comprised of a highly conserved catalytic α subunit
and two regulatory subunits (β and γ) [8]. The α subunit possess a N-terminal serine/threonine
catalytic kinase domain (KD) that is followed by an autoinhibitory domain (AID) and a C-terminal
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β subunit-binding domain [9]. The β subunit serves as a scaffold to bridge α and γ subunits that
contains a glycogen binding domain (GBD) and a C-terminal domain [10]. The γ subunit is composed
of a β subunit-binding region and two Bateman domains [11]. These seven subunits (α1, α2, β1, β2,
γ1, γ2, and γ3) are encoded by separate genes, resulting in 12 different αβγ AMPK heterotrimers [12].
The distinct physiological functions of each AMPK isoforms are not fully understood, but derive from
differential expression patterns among different tissues [13]. For instance, the α1 subunit appears to be
relatively evenly expressed in kidney, rat heart, liver, brain, lung and skeletal muscle tissues, while the
α2 subunit is mainly expressed in skeletal muscle, heart, and liver tissues [14]. Among the two known
β subunits, β1 subunit is highly abundant in kidney as suggested by mRNA levels [6].

More recently, a direct AMPK activator PF-06409577 was reported to activate α1β1γ1 and
α2β1γ1 AMPK isoforms with EC50 of 7.0 nM and 6.8 nM but was much less active against
α1β2γ1/α2β2γ1/α2β2γ3 AMPK isoforms with EC50 greater 4000 nM [6]. Besides, compound
PF-06409577 exhibited efficacy in a preclinical model of diabetic nephropathy. Compounds A-769662
and 991 possessed similar potency toward AMPK heterotrimers containing a β1 subunit as
PF-96409577 [15]. On the other hand, an allosteric site of AMPK has been named allosteric drug
and metabolite site (ADaM site) [16], which was constructed by the catalytic kinase domain (KD) of
α subunit and the regulatory carbohydrate-binding module (CBM) of β subunit [13,17]. The three
known direct AMPK activators (PF-06409577 [6], A-769662 [18], and 991 [19], Figure 1) all bound to the
allosteric site and showed better potency for isoforms that contain the β1 subunit. This implies that
the allosteric site can be used to design the selective activators of AMPK containing the β1 subunit.

Figure 1. Structures of reported direct AMPK activators.

The present study aims to investigate details of the domain structure and identify new potential
β1-selective AMPK activators. Hence, sequence alignment and structural comparison were used to
identify the key amino acids that are involved in the interaction with activators and structure difference
between different subunits. Furthermore, molecular docking was performed for virtual screening
to discover direct β1-selective AMPK activators. The screened retrieved hits were then subjected to
several filters such as estimated activity and quantitative estimation of drug-likeness (QED) [20,21].
Finally, 12 compounds with diverse scaffolds were selected as potential hit compounds for the design
of novel β1-selective AMPK activators. These findings provided a useful molecular basis for the design
and development of novel β1-selective AMPK activators.

2. Results and Discussion

2.1. Sequence Alignment and Structural Comparison

To reveal the possible molecular mechanism for the selective potency of activators against
the β1-isoform of AMPK, sequence and secondary structure elements comparison between
carbohydrate-binding module of β1 and β2 subunits were investigated. As shown in Figure 2,
the sequences that were boxed blue were located within the range of 5 Å of active site. Sequence
alignment reveals that β1 and β2 subunits shares 77.1% sequence identity. As shown in Figure 3,
superposition with the two subunits reveals a deflexion of sheet1 in β2 subunit as compared with β1
subunit. The Phe-82 of β1 subunit corresponded to Ile-81 in β2 subunit, as well as the Thr-85 to Ser-84,
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Gly-86 to Glu-85, which may account for the deflexion of sheet1 in β2 subunit. The large aromatic Phe
residues and small Thr and Gly presented a binding surface more capable of accommodating ligand.

 

Figure 2. Sequence alignment of carbohydrate-binding module from the β1 and β2 subunits.
Asterisks indicate positions that have a single, fully conserved residue. Colon (green) indicates
conservation between groups of strongly similar properties. Period (yellow) indicates conservation
between groups of weakly similar properties. Blank character (red) indicates conservation between
groups of strongly different properties.

Figure 3. Structural comparison of the scope within 5 Å of the active site from β1 and β2 subunits.
The α subunit was shown in cartoon and colored by the cyan. The β1 and β2 subunits were shown in
cartoon and colored by green and blue, respectively. The sites with different amino acids were shown
in line. The Ser-108 was shown in stick and colored by red.

The sheet 2 torsion may attribute to the amino acid sequence differences of the sites of 106
and 107. The most notable is supposed to the Ser108 (red and stick), an autophosphorylation site,
phosphorylated serine (pSer108) formed hydrogen bonds with Thr-21, Lys-29, Lys-31, His-109′, and
Asn-111′ enhancing the ADaM site stabilization [22], and the phosphate group contributed to the
binding of activators [23]. The Gln-109′ and Asn-111′ were mutated to His-109′ and Asp-111′, which
abolished original hydrogen bonds and generated a large conformational change. We speculated that
the above differences between β1 and β2 may affect the binding of activators to AMPk isoforms.

2.2. Parameter Setting for Molecular Docking

Docking parameters, which exert an important influence on molecular docking-based virtual
screening, were optimized in advance. The crystal structure of PF-06409577 bound to the α1β1γ1
AMPK isoform (PDB ID: 5KQ5) and A-769662 bound to the α2β1γ1 AMPK isoform (PDB ID: 4CFF)
were chosen as the reference, the docking parameters were adjusted until the docked poses were as
close as possible to the original crystallized structures. The ring flexibility was mainly considered in
final optimized docking parameters according to the default settings. The overlay of the original ligand
from X-ray crystal (stick and magenta) and the conformation from Surflex-Dock results (stick and
green) were shown in Figure 4, in which the indole moiety of PF-06409577 and terminal benzene ring
of A-769662 generated a little deflection and there was no effect on the interaction between compounds
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and the active site. The hydrogen bond interactions appeared consistent with the original ligands
and the root mean square deviation (RMSD) between these two conformations are 0.53 and 0.56 Å,
respectively. The molecular docking results indicated that the Surflex-Dock was reliable and could be
used for the further virtual screening.

 

Figure 4. Conformation comparison of the original ligand from X-ray crystal (magenta and stick)
and the conformation from Surflex-Dock result (green and stick). (A): PF-06409577; (B): A-769662.
The indole moiety of PF-06409577 and terminal benzene ring of A-769662 generated a little deflection
in compared with the original conformation. The hydrogen bond was labeled by red dashed lines.

2.3. High-Throughput Virtual Screening Procedure

To identify new potent activators of AMPK, virtual screening was performed on the active
sites as mentioned previously. A chemical library containing with 1,500,000 commercially available
compounds (ChemDiv database) was docked to the molecular models of α1β1γ1 and α2β1γ1 AMPK
isoforms in silico, respectively. Prior to docking, the ChemDiv database was split into eight subsets
for molecular docking. About 600 top ranked compounds with high total-scores were screened and
subsequently checked for their binding modes and interactions with the active site, especially the
hydrogen bonds formed with the residuals of Asp-88, Lys-29, Lys-31, and Gly-19. Then the potential hit
compounds were evaluated for their drug-likeness model scores using Lipinski’s rule of five (Table 1).
Finally, six potential hits with new scaffolds could serve as activators for α1β1γ1 AMPK isoform and
six for α2β1γ1 AMPK isoform were visually chosen from the top potential hits.

Table 1. The docking scores and drug-likeness model scores of selected activators for AMPK (α1β1γ1
and α2β1γ1).

Isoforms Compound No. Total-Score Crash Polar Similarity
Number of
HBA/HBD

MolLog
P

Drug-Likeness
Model Score

AMPK
(α1β1γ1)
activators

F064-1335 10.50 −2.35 3.54 0.44 6/1 3.79 −0.16
M5653-1884 10.24 −1.43 2.90 0.50 5/1 6.07 0.22
D454-0135 10.20 −1.58 3.41 0.44 6/2 4.03 −0.31

M8006-4303 10.07 −1.83 4.29 0.58 6/1 1.01 1.02
F264-3019 9.93 −1.39 3.19 0.46 6/1 5.44 1.00
F377-1213 10.03 −1.43 1.32 0.44 6/1 4.12 0.16

PF-06409577 7.29 −0.07 3.08 0.93 3/3 3.80 0.71

AMPK
(α2β1γ1)
activators

L267-1138 10.96 −2.46 2.78 0.52 4/1 6.05 −0.08
F684-0053 10.60 −2.77 4.31 0.54 7/3 2.04 0.54
C804-0412 10.15 −3.27 3.39 0.54 5/2 2.53 1.00

M5976-1661 9.46 −0.92 1.32 0.46 6/0 4.84 0.62
M039-0295 9.35 −1.61 1.48 0.50 6/1 2.66 −0.20

M5050-0116 9.27 −1.35 2.82 0.49 7/2 5.13 0.38
A-769662 7.44 −1.46 1.26 0.93 5/3 3.46 0.30

991 8.38 −0.96 4.08 0.73 4/2 5.38 0.41
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2.4. Analysis of Binding Mode of Activators for α1β1γ1 AMPK Isoform

The structures of retrieved hits as activators of α1β1γ1 AMPK isoform are shown in Figure 5.
Although these compounds possess different chemical scaffolds, they exhibit similar binding modes
at the active site. Among these compounds, compounds F064-1335 and M5653-1884 possess higher
docking scores, compounds M8006-4303 and F264-3019 have perfect drug-likeness model scores.

Figure 5. Structures of retrieved hits targeting α1β1γ1 AMPK isoform from ChemDiv database.

As shown in Figure 6A, the compound F064-1335 with the highest docking score (10.50) formed
several hydrogen bonds with active site residues. The two oxygen atoms of sulfonamide established a
hydrogen bond network with the side chain of Lys-31, Lys-29, and Asn-111′. The carbonyl oxygen
atom of the ester group formed two hydrogen bonds with the main chain of Lys-29, the anther oxygen
atom of the ester group was bound to the main chain of Asn-48 by a hydrogen bond, which made
the alkoxy group trend into a hydrophobic pocket formed by the Lys-51, Ile-52, Val-62, and Leu-47.
In addition, the carbonyl oxygen of benzoxazolone ring formed a hydrogen bond with the side chain
of Arg-83′.

 

Figure 6. The binding modes of typical hit compounds for α1β1γ1 AMPK isoform. (A): F064-1335;
(B): M5653-1884; (C): M8006-4303; (D): F264-0391. The α subunit was shown in cartoon and colored by
cyan and the β subunit was shown in cartoon and colored by pink. The hydrogen bonds were labeled
with red dashed lines.
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The compound M5653-1884 with a considerable docking score (10.24) and the bind mode is shown
in Figure 6B. Four hydrogen bonds were observed between the compound and the active site residues.
One carbonyl oxygen atom of 1,3-indandione formed hydrogen bond with the side chain of Lys-31,
another carbonyl oxygen atom formed a hydrogen bond with the main chain of Val-11. The carbonyl
oxygen atom of the amide group showed hydrogen bond interactions with the side chain of Lys-29
and Asn-111. In addition, there was a hydrophobic effect with the side chain of Ile-46, Asn-48, Asp-88,
and Phe-88.

As shown in Figure 6C, the compound of M8006-4303 exhibited similar binding mode as
PF-06409577. The ethanol group attached to the piperazine group participated in two hydrogen
bond interactions with the side chain of Gly-19 and Lys-31. The carbonyl oxygen atoms of
pyrrolidine-2,5-dione formed a hydrogen bond interaction with the side chain of Lys-29. In addition,
the oxygen atom of oxygen butyl associated with the benzene ring accepted a hydrogen bond from the
main chain of Asn-48. Within the cavity of the active site, Ile-47, Asn-48, Lys-51, and Ile-52 probably
generated a hydrophobic effect.

The binding mode of compound F264-3091 with a prefect drug-likeness score (1.00) was shown in
Figure 6D. The oxgen atom of an oxyethyl group on the benzene ring participated in a hydrogen bond
with the main chain of Val-11. The carbonyl oxygen atom of the amide group showed two hydrogen
bonds with the main chain of Gln-19 and side chain of Lys-31. In addition, one hydrogen bond was
formed between the side chain of Asn-48 and the oxyethyl group connected with flavone B-ring while
the B-ring showed a stacked cation-π interaction with the side chain of Val-83′.

2.5. Analysis of Binding Mode of Activators for α2β1γ1 AMPK Isoform

The chemical structures of six compounds as activators of α2β1γ1 AMPK isoform are shown in
Figure 7. The molecular docking results indicated that all the compounds possess higher docking
scores than A-769662 and 991. The binding modes of the representative compound M2958-7438 and
M5050-0116 in the active site of α2β1γ1 AMPK isoform are shown in Figure 8.

 

Figure 7. Structures of retrieved hits targeting α2β1γ1 AMPK isoform from ChemDiv database.

As shown in Figure 8A, six hydrogen bonds were formed between the compound M2958-7438
and active site residues, in which the barbituric acid ring formed three hydrogen bonds with the side
chain of Asp-88, making prominent contributions to the high docking score (10.04). The oxygen atom
of the anisole associated with the barbituric acid ring accepted a hydrogen bond from the side chain of
Lys-29, and two oxygen atoms in the linker participated in two hydrogen bonds with the side chain
of Lys-31. In addition, the barbituric acid ring generated a stacked cation-π interaction with the side
chain of Arg-83′.

The compound M5050-0116 with a docking score of 9.27 and formed four hydrogen bonds
with Val-11, Leu-18, Lys-29, and Asn-111′. As shown in Figure 8B, the Lys-29 of α subunit and
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Asn-111′ of β subunit, simultaneously coordinated the oxygen atom of dibenzofuran with hydrogen
bonds. The hydroxyl group attached on pyrimidine anchored in a suitable geometry and formed
two hydrogen bonds with the main chain of Glu-19 and the side chain of Val-11. Additionally, the
compound M5050-0116 exhibited hydrophobic interactions with several residues, which formed a
hydrophobic pocket including Ile-46, Leu-47, Asn-48, Asp-88, and Phe-90.

 

Figure 8. The binding modes of typical activators for α2β1γ1 AMPK isoform. (A): M2958-7438;
(B): M5050-0116. The α subunit was shown in the illustration and colored cyan and the β subunit was
shown in the illustration and colored pink. The hydrogen bonds were labeled with red dashed lines.

2.6. Biological Activities

The six screened compounds based on α1β1γ1 AMPK isoform were evaluated for activities
against AMPK (α1β1γ1 isoform) at a dosages of 2 μM. A-769662, a known β1-selective AMPK activator,
was used as a control. The preliminary in vitro assay (Figure 9) indicated that most of the selected
α1β1γ1 AMPK activators displayed promising activation potency against α1β1γ1 AMPK isoform.
Compounds D454-0135 and F264-3019 displayed comparable activation activity against AMPK in the
comparison with the known β1-selective AMPK activator A-769662. Morever, compounds M8006-4303
and F264-3019 showed stronger activation activities against α1β1γ1 AMPK than A-769662. Compound
M563-1884 with a higher logP value and showed a relatively low activation activity among the assayed
compounds. This implies that the lipophilicity may play an important role in the bioavailability for
the compound.

Figure 9. Activation of AMPK (α1β1γ1 isoform) by the screened compounds was measured using
Elisa Kit.
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3. Materials and Methods

3.1. Sequence Alignment and Structural Comparison

Sequence alignment is an essential method for similarity/dissimilarity analysis of protein, DNA,
or RNA sequences [24]. The software used for sequence alignment tasks include HAlign, BioEdit,
EMBL-EBI, T-Coffee, and CLUSTAL [25,26]. The crystal structure data of AMPK (α1β1γ1: 5KQ5,
4QFG; α1β2γ1: 4REW and α2β1γ1: 4CFF) were obtained from RCSB Protein Data Bank [6,8,13,19],
as well as the amino acid sequences of carbohydrate-binding module. The amino acid sequences of
carbohydrate-binding module (CBM) on β subunits were used to study the differences. The sequence
alignment between α1β1γ1 isoform (PDB: 4QFG) and α1β2γ1 (PDB:4REW) isoform was performed
and edited using BioEdit software (version 7.1.8) [27], which is a user-friendly biological sequence
alignment editor and analysis program. The crystallographic structures of AMPK for molecular
docking studying were added to the hydrogen atoms and the charge was given to the Gasteiger-Huckel.
The crystal structures comparison was conducted by Sybyl X 2.1 (Tripos Associates Inc., S.H. R.:
St. Louis, MO, USA.) [28] and the binding modes were generated by PyMOL V0.99 (Schrödinger,
New York, NY, USA.) [29]. The polar hydrogen atoms were added to the crystal structures of the
AMPK via the biopolymer module and the Gasteiger-Huckel charges were loaded on the atoms of
proteins. The protein peptide backbones were shown in cartoon and colored by different colors, the
side chains of the nonconservative amino acids were shown in line and colored by chain.

3.2. Molecular Docking

The virtual screening and molecular docking studies were performed using Surflex docking
module in Sybyl X 2.1. There were still some deficiencies due to the fact that the receptor was regarded
as a rigid structure. Therefore, it was essential to optimize the docking parameters, the co-crystallized
ligand was extracted and re-docked into the active site of the AMPK with the varied parameters, and
then the conformation of the original ligand and the re-docking ligand were compared. The binding site
was defined as a sphere containing the residues that stay within 5 Å from the co-ligand. The maximum
conformations per fragment and maximum number of rotatable bonds per molecule were 20 and
100, respectively. Furthermore, the options for pre-dock minimization and post-dock minimization of
molecules were omitted, while other parameters were set as default options. The top 20 conformational
poses were selected according to the docking score. Dock scores were evaluated by Consensus Score
(CScore), which integrates the strengths of individual scoring functions combine to rank the affinity of
ligands bound to the active site of a receptor.

3.3. High-Throughput Virtual Screening

High-throughput virtual screening was regarded as an important tool to identify novel lead
compounds suitable for specific protein targets [30], and the screened compounds can be easily
obtained from commercial sources for biological evaluation as well [31]. The ChemDiv database was
supplied by Topscience Co. (Shanghai, China), which includes 1,500,000 compounds was employed for
virtual screening through Surflex docking module in Sybyl X 2.1. To accelerate virtual screening, the
maximum quantity of conformations was reduced from 20 to 10, the maximum quantity of rotatable
bonds was decreased from 100 to 50, and the top six conformations were collected. The same as the
molecular docking studies, the default optimization of molecules before and after the docking was
canceled. Other parameters were kept as default values. Compounds PF-06409577 and A-769662
were severed as reference molecules, respectively. The compounds with the docking score (≥8.0)
were extracted for further analyzing the interactions between ligand and active site, to this end,
100 compounds were collected to calculate the drug-likeness model score. Drug-likeness model scores
were computed for hit compounds using the MolSoft software (MolSoft, San Diego, CA, USA) [32].
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3.4. The In Vitro Activation Assay

The in vitro preliminary kinase assays human α1β1γ1 AMPK were carried out according to the
previous experimental method [33]. The screened compounds and α1β1γ1 AMPK isoform were
provided by Topscience Co. (Shanghai, China) and Huawei Pharmaceutical Co. Ltd. (Shanghai,
China), respectively. Generally, each of the evaluated compounds was dissolved in 10% Dimethyl
sulphoxide at 10 μM and diluted to a required concentration with buffer solution. Then, 5 μL of the
dilution was added to a 30 μL kinase assay buffer and 5 μL AMPK isoform per well. The solution was
mixed at 0 ◦C for 30 min. Next, 5 μL of AMARA petide and 5 μL Adenosine triphosphate (ATP) were
added to the well. The enzymatic reactions were conducted at 30 ◦C for 30 min. The AMPK activity
was determined by quantifying the amount of ATP remaining in assay solution with Kinase-Glo Plus
luminescent kinase assay kit (Promega, Madison, WI, USA). The luminescent signal is correlated with
the amount of ATP present, while inversely correlated with the kinase activity. The mean values
from three independent experiments were used for the expression of relative activities. A-769662,
a β1-selective AMPK activator reported by Abbott laboratories, was used as a control.

4. Conclusions

In summary, the sequence alignment and structural comparison was performed to identify the
AMPK domain structure detail, which provides a molecular basis of selective AMPK activators on
β1-containing isoforms. The key amino acid residues (Phe/Ile82, Thr/Ser85, Gly/Glu86, Thr/Ile106,
Arg/Lys107, Gln/His109, Asn/Asp111) may contribute to the selectivity and provide a foundation for
structure-based design of new direct β1-selective AMPK activators. Furthermore, the structure-based
virtual screening workflow for the identification of selective activators of AMPK (α1β1γ1 and
α2β1γ1) was established and six potential hit compounds for α1β1γ1 isoform and α2β1γ1 isoform
were obtained, respectively. The preliminary assay indicated that most of the selected α1β1γ1
AMPK activators displayed promising activation potency. Overall, these findings revealed extensive
interactions of activators and AMPK for rational design of novel selective AMPK activators. Further
in vitro testing of retrieved hits is still in progress in our laboratory.
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Abstract: A new emerging phenomenon is the association between the incorrect use of biocides in
the process of disinfection in farms and the emergence of cross-resistance in Salmonella populations.
Adaptation of the microorganisms to the sub-inhibitory concentrations of the disinfectants is not clear,
but may result in an increase of sensitivity or resistance to antibiotics, depending on the biocide used
and the challenged Salmonella serovar. Exposure of five Salmonella enterica subsp. enterica serovar
Senftenberg (S. Senftenberg) strains to triamine-containing disinfectant did not result in variants with
resistance to antibiotics, but has changed their susceptibility to normal human serum (NHS). Three
biocide variants developed reduced sensitivity to NHS in comparison to the sensitive parental strains,
while two isolates lost their resistance to serum. For S. Senftenberg, which exhibited the highest
triamine tolerance (6 × MIC) and intrinsic sensitivity to 22.5% and 45% NHS, a downregulation of
flagellin and enolase has been demonstrated, which might suggest a lower adhesion and virulence
of the bacteria. This is the first report demonstrating the influence of biocide tolerance on NHS
resistance. In conclusion, there was a potential in S. Senftenberg to adjust to the conditions, where
the biocide containing triamine was present. However, the adaptation did not result in the increase
of antibiotic resistance, but manifested in changes within outer membrane proteins’ patterns. The
strategy of bacterial membrane proteins’ analysis provides an opportunity to adjust the ways of
infection treatments, especially when it is connected to the life-threating bacteremia caused by
Salmonella species.

Keywords: Salmonella; biocide; serum; antimicrobial resistance; molecular biology; outer membrane
protein analysis

1. Introduction

Cross-resistance to antibiotics of bacteria exposed to disinfectants (biocides) is an increasing
problem for public health as cross-resistant phenotypes of microorganisms could potentially develop
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into life-threatening infections. The main reasons for increasing microbial resistance to disinfectants
are mistakes during the disinfecting process itself, using chemicals that are not designed for
specific microbiological pollution, inaccurate cleaning of surfaces with biocides (which causes high
levels of organic matter and biofilm formation) or applying too low concentrations of biocides [1].
The implementation of hygiene supervision and standardization of the use of antibiotics and
disinfectants seem to be a promising way to improve public safety [2]. There is still a lack of
understanding of the mode of action of the biocides, especially when used at low or sub-inhibitory
concentrations. A single exposure to some biocides has been found to be insufficient to select for
multidrug-resistant (MDR) strains; however, repeated, sub-inhibitory exposure to biocides does result
in the selection of MDR bacteria [3]. MDR is a major problem in the treatment of infections caused
in humans by Salmonella isolates. It has also been noted that the drug resistance was found more
frequently in the internal farm environment than in the external environment [2]. It is interesting
that, although cross-resistance between biocides and antibiotics is often described for biocide-resistant
mutants [2,4,5], increased susceptibility for some antimicrobials has been observed [6,7]. Moreover,
resistance levels can also differ even between Salmonella serovars [7]. In two recent studies, we
demonstrated that growth of Salmonella enterica subsp. enterica serovars Enteritidis, Typhimurium,
Virchow and Zanzibar isolated from human fecal samples with sub-inhibitory concentrations
of farm disinfectants containing dodecylamine (triamine) led to increased isolation of multiple
antibiotic-resistant strains [8,9]. The antimicrobial efficacy of commercially-manufactured disinfectant
substances (represented by quaternary ammonium salts (QAC) and QAC combined with other
additives) were tested against Salmonella Enteritidis strains by others [7,10].

QAC and triamine-containing disinfectants are effective against many Gram-positive and
Gram-negative bacteria. The antibacterial effect is caused by an increase in the permeability of
the bacterial cell membrane, which leads to an osmotic imbalance and an outpouring of cytoplasm [11].
A blend containing dodecylamine-based structure was designed for the cleaning and disinfection
of workplaces and devices that come into contact with food and in veterinary hygiene to disinfect
animal houses (manufacturer’s data, Amity International). Exposure and further Salmonella adaptation
to biocides may result in modification of cell envelope (an activity of efflux systems), virulence or
motility [7]. It may also include various alterations of chemotaxis pathways and protein synthesis [1,12].
Several proteins have been found to be differentially expressed between biocide-tolerant variants and
their parental counterparts. Recently, we have suggested that the resistance of the S. Typhimurium
disinfectant (dodecylamine) variant to ciprofloxacin and cefotaxime was connected to the 55-kDa
surface protein repression [8]. Moreover, S. Typhimurium and S. Enteritidis dodecylamine-tolerant
isolates produced more surface proteins in the range of 30–40 kDa, which probably were porins OmpC
(36 kDa), OmpF (35 kDa) and OmpD (34 kDa) [9]. Exposure of Salmonella cells to disinfectants can
induce the expression of the AcrAB-TolC efflux system [13]; but after single exposure, MDR strains
were not found and probably, this is not the primary mechanism of biocide tolerance generation [6].
Additionally, SugE protein is implicated in QAC resistance and is frequently found in Salmonella
isolates of clinical and animal origin [14,15].

The majority of Salmonella infections result in a mild, self-limiting, gastrointestinal illness and
usually do not require antimicrobial treatment. In some cases, Salmonella infection can develop to
bacteremia in a minor subset of patients [16]. In the situation of severe enteric disease, or when
Salmonella invades and causes bloodstream infection, therapy with antimicrobials is essential and can
be life-saving. Infections with antimicrobial-resistant Salmonella strains resistant to first-line treatments,
i.e., fluoroquinolones and cephalosporins, may cause treatment failure. There is a lack of studies
regarding the susceptibility of biocide-tolerant bacteria to normal human serum (NHS), so the present
work is the first study in which these aspects of bacterial virulence are discussed. Outer membrane
proteins (OMPs) are described as surface virulence factors necessary for bacterial adaptation to human
immune response [17]. Therefore, they have been analyzed in our research in the context of resistance
to complement-mediated killing. The aim of the present study was to assess the in vitro antimicrobial
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effects of triamine on S. enterica subsp. enterica serovar Senftenberg sensitive to antibiotics using both
MIC (minimal inhibitory concentration) and MBC (minimal bactericidal concentration) in correlation
with susceptibility to NHS and OMPs patterns. Understanding the mechanisms of the individual and
cross-resistance of bacteria may provide reliable clues for the design of more effective antimicrobials.

2. Results

2.1. Salmonella enterica Tolerance to the Biocide Formulation

In this paper, the biocide formulation containing active substances triamine, ethanol, cationic
surfactant and nonionic surfactant (Amity International) was used in the experiments of the generation
of disinfectant-tolerant bacteria. Five S. Senftenberg (Salmonella Senftenberg) strains (131, 132, 133,
134, 135) were exposed to the disinfectant in Luria-Bertani (LB) liquid medium (Table 1). We found
that the threshold for the bacterial growth was the concentration of the biocide of 8 × MIC (Minimal
Inhibitory Concentration) in the LB medium, which was lethal for all tested microorganisms. The
strains were grown in LB supplemented with the biocide used in the concentrations of 4 × MIC (131,
132, 134) or 6 × MIC (133, 135). After 25 days of incubation in LB containing the biocidal formulation
and the following 10 days of the stability test (incubation in LB broth), the cultures were subjected to
Salmonella spp. detection, because of the possible contamination with other microorganisms during
extended passages. The isolates before and after the stability test were identified as Salmonella spp. on
Brilliant Green agar plates as red to pink-white colonies with a red zone.

Table 1. Generation of triamine-tolerant Salmonella Senftenberg (S. Senftenberg) variants.

Time of Incubation Concentration of Biocide
S. Senftenberg Strain

131 132 133 134 135

1-day preculture in LB broth none + + + + +

7 days in Luria-Bertani (LB) broth 0.5 × MIC +
0.05

+
0.2

+
0.05

+
0.05

+
0.1

Gradient 4 × 4 days in LB broth

0.75 × MIC +
0.075

+
0.3

+
0.075

+
0.075

+
0.15

1.0 × MIC +
0.1

+
0.4

+
0.1

+
0.1

+
0.2

1.25 × MIC +
0.125

+
0.5

+
0.125

+
0.125

+
0.25

1.5 × MIC +
0.15

+
0.6

+
0.15

+
0.15

+
0.3

1 day in LB broth

2 × MIC +
0.2

+
0.8

+
0.2

+
0.2

+
0.4

4 × MIC +
0.4

+
1.6

+
0.4

+
0.4

+
0.8

6 × MIC −
0.6

−
2.4

+
0.6

−
0.6

+
1.2

8 × MIC −
0.8

−
3.2

−
0.8

−
0.8

−
1.6

Identification on Brilliant Green from the highest MIC
(where growth was observed) + + + + +

Stability test 10 days in LB broth none + + + + +

Identification on Brilliant Green none + + + + +

Definitions of abbreviations: (+) the growth of bacteria in broth supplemented with the biocide seen as the turbidity
of the tubes contents or the presence of the colonies typical for Salmonella bacteria on Brilliant Green Agar; (−) no
growth; concentrations of the biocide (μL/mL) are also shown. MIC, minimal inhibitory concentration.

Salmonella variants were tested for MIC determination before and after the 10-day stability test
(incubation in LB) to verify if the feature of tolerance to the biocide is stable or not. As can be seen in
Table 2, MIC values were getting higher in the case of S. Senftenberg strains (131 bST, 131 aST, 132 bST,
133 bST, 133 aST, 134 bST, 134 aST, 135 bST) in comparison to their wild-type counterparts. Except for
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the S. Senftenberg 131 strain, in almost all tested variants cultures, MICs were decreased after the
stability test, to almost the same level as it was at the beginning of the experiments. Additional MBC
comparison showed that MBCs were equal to MICs for four wild tested strains: S. Senftenberg (131, 132,
133, 134), but not for S. Senftenberg 135. It was also interesting to verify if MBC levels were maintained
after the test of the stability of the tolerant phenotypes. It was demonstrated that MBC did not change
(strain 132 aST) or was even slightly higher (131 aST, 133 aST, 134 aST, 135 aST) in comparison to the MBC
value estimated for the wild-type strains. In general, both parameters MIC and MBC increased as the
effect of bacterial adaptation to the increasing concentration of the biocide containing triamine.

Table 2. MIC and MBC values of the triamine-containing disinfectant for Salmonella Senftenberg strains.

Test
S. Senftenberg Strains

131 131 bST 131 aST 132 132 bST 132 aST 133 133 bST 133 aST 134 134 bST 134 aST 135 135 bST 135 aST

MIC
(μL/mL) 0.1 0.4 0.4 0.4 1.6 0.2 0.1 0.6 0.4 0.1 0.4 0.2 0.2 0.8 0.2

MBC
(μL/mL) 0.1 nt 0.4 0.4 nt 0.4 0.1 nt 0.8 0.1 nt 0.2 0.4 nt 0.8

Definitions of abbreviations: MIC, minimal inhibitory concentration; MBC, minimal bactericidal concentration; nt,
not tested; bST, before the test of stability; aST, after the test of stability.

2.2. Antibiotic Susceptibility Profiling

The obtained results showed that the passages of S. Senftenberg strains in medium containing
disinfectant did not change the susceptibility pattern to antibiotics. The wild-type strains, as well
as their biocide variants, were sensitive to ciprofloxacin (CIP, 5 μg), co-trimoxazole (STX, 25 μg),
cefotaxime (CTX, 5 μg), amoxicillin/clavulanic acid (AMX 30; 20/10 μg) and ampicillin (AMP, 10 μg).

2.3. Bactericidal Activity of Human Serum against S. Senftenberg Variants Tolerant to the Disinfectant

As C3 is a crucial protein in the activation of the serum complement cascade, standard analysis of
C3 protein level in NHS used for experiments was performed. C3 concentration in NHS was 1470 mg/L,
which was in the range of standard values (970–1576 mg/L for males and 1032–1495 for females).

Bactericidal activity of diluted NHS (22.5%, 45%) was performed on Salmonella wild-type strains, as
well as on their biocide variants. The average number of colony forming units (CFU/mL) was calculated
from the colonies grown on the agar plates from the volume of 10 μL of bacterial suspensions. Between
zero and 20 colonies were achieved. Two mechanisms of bacterial susceptibility to the antibacterial
activity of serum were observed. Three variants of Salmonella strains (131 bST, 131 aST, 133 aST, 134 bST,
134 aST) were found to become resistant in T1 or T2 to NHS in comparison to the sensitive parental
strains, while two biocide variants (132 bST, 132 aST, 135 bST, 135 aST), lost their resistance to serum
(wild-type strains were resistant) (Tables S1 and S2). In detail, the survival rate estimated for two
serovars (131 and 133) increased from 10.8% (131) to 55.6% (131 bST) at T1 in 45% NHS and to 85.3% in
the case of the variant obtained after the test of stability (131 aST). Survival of bacteria increased from
0.3% (parent strain 133) to 385.7% after 15 min of incubation in 45% NHS and from 15.0–103.0% at the
same time in 22.5% serum. The third strain, which exhibited resistance to NHS, was 134 bST, which
multiplied before the test of stability in 22.5% at T2 (survival changed from 7.2% to 128.6%), as well as
after the test of stability (76.9% survival, 134 aST), at the same time, in comparison to the parent strain. In
the higher concentration of serum of 45%, the same strain became resistant, as its survival raised from
5.5–70.0% at T2. It was interesting also to compare the feature of resistance between strains before the
test of stability and after that. It was helpful to determine if the phenotype of resistance in variants was
stable even if the cultures did not have any contact with the disinfectant during 10 days of incubation in
LB not supplemented with the biocide. It has been observed that after the test of stability, the resistance
rose (131 aST, 132 aST, 133 aST, 134 aST), or the resistance was maintained (131 aST, 134 aST), or vanished
(132 aST), depending on the time of incubation and the serum dilution. When the bactericidal activity
of NHS was heat inhibited (HIS, control of experiments), bacterial cells proliferated very intensively,
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and all of the tested strains were resistant to 22.5% NHS (Table S1) and 45% NHS (Table S2). Regarding
our results and reports of other research groups, showing that resistance to the bactericidal activity of
serum is determined by OMPs [17–20], the next stage of research focused on the analysis of the protein
profiles of OMPs in the context of unknown OMP-dependent tolerance to the biocide.

2.4. Analysis of the Two-Dimensional (2-DE) Profiles of Isolated Membrane Proteins

We applied a proteomic approach using the 2-DE and mass spectrometry analysis for the
identification of specific proteins that could be involved in the phenomenon of biocide and NHS
resistance of the S. Senftenberg 133 strain. We have chosen for this analysis S. Senftenberg 133
as the only strain that was primarily sensitive to NHS and belonging to the group of the highest
triamine tolerance (6 × MIC). Protein spots on 2-DE were visualized within the molecular weight
(MW) range of 10–250 kDa and isoelectric points (pI) of 4–7. The comparative protein pattern analysis
of S. Senftenberg strains resistant to triamine and NHS showed differences in the presence of some
proteins (Figure 1), from which four were described in detail (Table 3). MWs of identified OMPs were
distributed in the range of 37.49–89.52 kDa. These research spots were distributed in the range of pI of
4.85–8.48. The detailed MASCOT search results are provided as Supporting Information. It has been
noted that flagellar protein FliC (Spot 1, Figure 1), as well as enolase (Spot 2) were present in lower
quantities in the biocide-tolerant variant in comparison to the wild-type parent strain. In contrast,
two identified molecules, chemotaxis response regulator protein-glutamate methylesterase (Spot 3),
and outer membrane protein assembly factor (Spot 4), were overproduced in the S. Senftenberg
biocide-serum-resistant isolate, although the molecular mass of Spot 4 from 2-DE does not reflect
the mass of the identified protein from the database (89.252 kDa), suggesting the degradation of the
protein during the preparation process.

Figure 1. Comparative 2-D gel electrophoresis (pH 4–7) of OMPs from Salmonella Senftenberg 133 strain
without biocide exposure (a) and with simultaneous resistance to triamine-containing disinfectant and
NHS (b). Identification of flagellar protein FliC (Spot 1), enolase (Spot 2), chemotaxis response regulator
protein-glutamate methylesterase (Spot 3) and outer membrane protein assembly factor (Spot 4). On
the right, protein marker Precision Plus Protein™ Dual Color Standards 1610374 (Bio-Rad, Hercules,
CA, USA). Left arrow refers to part (a), right arrow refers to part (b).
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Table 3. Identification of isolated proteins from Salmonella Senftenberg 133 with resistance to both
triamine-containing biocide (6 × MIC) and normal human serum (NHS).

Spots Identified Proteins Gene Symbols Molecular Weight (kDa) pI Expression

1 Flagellin (FliC) fliC 52.081 4.85 downregulated

2 Enolase eno 45.628 5.25 downregulated

3 Chemotaxis response regulator
protein-glutamate methylesterase cheB 37.498 8.48 upregulated

4 Outer membrane protein assembly factor BamA bamA 89.525 4.92 upregulated

3. Discussion

Salmonella enterica serovars continue to be among the most important foodborne pathogens
worldwide due to the significant human rates of illness reported. Public concern for the appearance of
resistant zoonotic pathogens such as Salmonella strains to many antibiotics is challenging the poultry
industry to find successful means of control [21]. The increasing use of biocides in farming, food
production, hospital settings and the home is contributing to the selection of antibiotic-resistant
strains [3]. Within several years, it has also been documented that biocide-resistant Salmonella mutants
demonstrated reduced susceptibility to antibiotics or, differently, the exposure of these microorganisms
to the disinfectants has not changed their sensitivity to antimicrobials. Shengzhi et al. [2] showed that
109 Salmonella strains were co-resistant to antibiotic and disinfectant. In inquiring research, Whitehead
and co-workers [3] isolated mutants able to survive challenge with “in-use” concentrations of biocides
after one exposure using fluorescence-activated cell sorting (FACS). These mutants were multidrug
resistant and overexpressed the AcrEF efflux pump and MarA, demonstrating that biocide exposure
can select for mutants with a broad, low-level antibiotic resistance. Working on S. Typhimurium phage
type 104 (DT104) Majtánova and Majtán indicated that isolate 5551/99 represented the multiresistant
phenotype, resistant to ampicillin, chloramphenicol, streptomycin and tetracycline, but the second
isolate 577/99 was sensitive to all antibiotics tested [7]. Others also observed increased susceptibility
of Salmonella for some drugs. In vitro exposure to a quaternary ammonium disinfectant containing
formaldehyde and glutaraldehyde (QACFG) and triclosan led to the selection of S. Typhimurium
cells with reduced susceptibility to several antibiotics. This was associated with overexpression of
the AcrAB efflux pump and accompanied with reduced invasiveness [22]. Strains used in our study,
despite the tolerance to biocide, were sensitive to antibiotics, such as ciprofloxacin, co-trimoxazole,
cefotaxime, amoxicillin/clavulanic acid and ampicillin. Overall, the issue of bacterial cross-resistance
needs to be clarified, but in this paper, the main characteristic that was chosen for testing was Salmonella
sensitivity to serum.

It has been suggested that the involvement of common general responses in biocide-tolerant
mutants includes several alterations in metabolic and chemotaxis pathways, protein synthesis,
cell envelope or regulation of pathogenicity islands. Unlike what has been commonly reported,
overexpression of AcrAB-like pumps did not seem to be the primary mechanism involved in biocide
tolerance. QACs are widely used in different settings, including the food industry as a hard-surface
disinfectant, antiseptic and in foaming hand sanitizers [6]. It has been known that QACs are the
membrane-active agents with the target site predominantly at the cytoplasmic membrane of bacteria.
Although it was found that the antibacterial efficacy of substances containing QACs with other
additives was high against S. Enteritidis strain 85/01, it was possible to select isolates resistant to
these compounds [10]. Repeated passages of Arcobacter spp. in a medium with a low concentration
of the disinfectant Incidur, containing cationic surfactant benzalkonium chloride, increased their
initial resistance to 1.5–3.5×, depending on the bacterial species or origin [5]. In our study, following
several rounds of in vitro variants’ selection using increasing concentrations of triamine-containing
disinfectant, S. Senftenberg isolates developed the biocide tolerance phenotype, with a four-fold
or six-fold increase in the MIC. The test of stability relied on the incubation of the variants for
10 consecutive days in fresh LB medium without the addition of the biocide. Determination of MICs
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helped to conclude that the exposure of the tested strains to the triamine-containing blend resulted in
increased tolerance immediately after the end of the generation of mutants that was before the stability
test. However, after 10 days of incubation in non-stressful conditions, the bacteria became more
sensitive to the disinfectant (Table 2). This is an optimistic phenomenon considering the public health,
since tolerance to triamine was not stable. The question remains which conditions may favor stable
tolerance to the biocides. The possible explanation is the presence of proteins or organic materials that
reduce disinfectant activity and contribute to biofilm formation [23]. Quorum sensing is known to
contribute to antibiotic resistance in Salmonella [24], but its role in biocide tolerance is not understood.
In out further investigations, the growth of the bacteria was inhibited using the concentration of 0.04%
(strains 131, 134), 0.16% (strain 132), 0.06% (strain 133) and 0.12% (strain 135). It is important to note
that the bacteria were able to adapt to the increasing concentrations of the biocidal formulation, as has
been previously shown [8,9].

The ability of human pathogens to survive in serum is another feature worth determining.
Salmonella infections can result in uncomplicated diarrhea in most cases, but can lead to invasive
disease [25]. Unfortunately, the mechanism of bacterial survival in NHS is not entirely understood.
Considering Salmonella spp. surface antigens’ composition, it has been shown that long-chain LPS [26],
O-antigen (O-Ag) [27], Vi capsules [28], OMPs [17,29] or the presence of fimbriae on the cell surface are
virulence factors necessary for bacterial adaptation to human immune response. Recent investigations
by Dudek et al. [20] revealed that sensitive S. Enteritidis strains possessed a high level of flagellar
hook-associated protein 2 (FliD). Furthermore, others showed that O-Ag capsule-deficient mutants
produced exclusively phase I flagellin (FliC) [27]. In this paper, we demonstrate that the triamine
tolerant mutants displayed changes in their susceptibility profile to a diluted NHS (22.5% and 45%)
when compared to their isogenic, wild-type parental strains. To our knowledge, this is the first report
demonstrating the influence of biocide-tolerant phenotype to NHS-resistant pattern. Salmonella after
repeated exposure to the biocide did not become resistant to antibiotics, but have developed resistance
to NHS (Table 4). Hypothesizing, if it came to systemic infection by the bacteria with a cross-resistance
to antibacterials and reduced susceptibility to serum, it would have produced treatment failure,
because of an inadequate dose of a drug.

After the revision of the literature information on the role of membrane proteins in biocide or
antibiotics tolerance, it can be summarized that exposure to triclosan has been associated with an
upregulation of AcrAB, a major efflux system [23]. Moreover, Salmonella can survive challenge with
in-use concentrations of some biocides; this is due to de-repression of the AcrEF efflux system, and
these mutants were MDR [3]. They also included SugE, classically implicated in QACs resistance
and frequently found in Salmonella isolates of clinical and animal origin. In this study, we compared
the proteomic profile of the S. Senftenberg 133 variant (133 bST) with the reduced susceptibility to
triamine and NHS with its isogenic biocide-tolerant counterpart. We have chosen for this analysis S.
Senftenberg 133, because it was the only one primarily sensitive to HS, belonging to the group of the
highest triamine tolerance (6 × MIC). Intrinsic susceptibility of the tested serovar was essential for
evaluation of 2DE analysis since sensitive Salmonella enterica serovars were shown to possess higher
levels of flagellar hook-associated protein 2 (FliD) [20]. In our analysis, even though the variant was
tolerant to the disinfectant and was sensitive to antibiotics, we have observed four distinct changes in
protein patterns related to flagellin (FliC), outer membrane protein assembly factor, chemotaxis response
regulator protein-glutamate methylesterase and enolase. Downregulation of flagellin and enolase factor
might suggest a lower pathogenicity, including adhesion and invasion of the host cells. On the other
hand, over-production of chemotaxis response regulator protein and outer membrane protein assembly
factor in S. Senftenberg 133 bST could compensate a loss of motility. It has to be stressed that enolase is
described as the multifunctional bacterial protein with the unique function of the receptor to human
plasminogen. The enolase/plasminogen system is one of the mechanisms facilitating the invasiveness
of pathogens, and it plays also an important role in the development of tumor tissues [30]. It seems that
the tested biocide might weaken the motility-dependent virulence of S. Senftenberg.
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In summary, there is much potential in Salmonella spp. to adjust to hostile environments, where
the biocide containing triamine is present; however, the adaptation of the bacteria to the sub-inhibitory
disinfectants’ concentrations does not always result in the increase of antibiotic resistance. In cases of
reduced sensitivity of bacteria to antimicrobials, a good idea would be the use of different disinfectants
alternately to minimize the risk of cross-resistance and developing of MDR phenotypes.

4. Materials and Methods

4.1. Bacterial Strains

Salmonella enterica subsp. enterica serovar Senftenberg strains were isolated from poultry food
samples in the period of November–December 2014 at the LAB-VET Veterinary Diagnostic Laboratory
(Tarnowo Podgórne, Poland) by the procedures approved by Polish Centre for Accreditation. Bacterial
species were serotyped in the National Serotype Salmonella Centre (Gdańsk, Poland). Strains used in
this study were as follows: S. Senftenberg 131; S. Senftenberg 132; S. Senftenberg 133; S. Senftenberg
134; S. Senftenberg 135. Strains originated from the collection of the Department of Microbiology at
the University of Wrocław (Wrocław, Poland). Variants before the test of stability were marked as bST
and after the test of stability as aST.

4.2. Disinfectants and Antibiotics

Disinfectant: commercial biocide formulation contained: triamine, 2-aminoethanol, cationic
surfactants, nonionic surfactants, potassium carbonate (Amity International, Barnsley, UK) (Table 5).
Antibiotics: ciprofloxacin (CIP), co-trimoxazole (STX), cefotaxime (CTX), amoxicillin/clavulanic acid
(AMX 30) and ampicillin (AMP) (Thermo Fisher Scientific, Waltham, MA, USA).

4.3. Antimicrobial Susceptibility

Parent S. Senftenberg strains and their variants were tested with the broth microdilution method
to determine MIC and MBC of the biocides according to Andrews et al. [31] with minor modifications.
In short, biocide concentrations were prepared in Mueller-Hinton broth (Merck, Kenilworth, NJ,
USA) as follows: 204.8, 102.4, 51.2, 25.6, 12.8, 6.4, 3.2, 1.6, 0.8, 0.4, 0.2, 0.1, 0.05, 0.025 μL/mL in
U-bottom microtitration plates (Medlab, Raszyn, Poland). The adjustment of the bacterial precultures
suspension to the density of the 0.5 McFarland standard was performed. Next, the inoculum was
adjusted so that 104 CFU/mL per spot were applied into the wells. The plates were incubated at
37 ◦C, and finally, MICs were estimated as the lowest concentration of biocide at which there was no
visible growth. Either MBC was calculated. MBC was the lowest concentration that demonstrated a
significant reduction (such as 99.9%) in CFU/mL when compared to the MIC dilution. The testing
of bacterial susceptibility to antibiotics was done using disc diffusion and the E-test method. Data
interpretation was performed according to the European Committee for Antimicrobial Susceptibility
Testing (EUCAST) epidemiological cut-off values and clinical breakpoints [32]. The tests were repeated
three times, including appropriate controls.
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4.4. Isolation of Biocide Tolerant Variants and the Stability of Their Phenotypes

Isolation (generation) of variants from each culture of Salmonella was done according to
Ricci et al. [33] and Karatzas et al. [22] (Table 1). The test was performed as previously described [8,9].
One-day precultures of the wild-type strains of Salmonella were exposed to subinhibitory concentrations
of the disinfectant (0.5 × MIC) relevant to 0.05, 0.1, 0.2 μL/mL in dependence of the strain for 7 days;
gradually increasing concentrations of the same substance (4 days for each concentration 0.75 × MIC,
1.0 × MIC, 1.25 × MIC, 1.5 × MIC); one-day incubation in LB broth (Merck) containing a 2-fold, 4-fold
and 6-fold increase in biocides MICs; and ten days of incubation in LB broth, in the absence of the
disinfectant to test the stability of the phenotypes. The tests of the stability of phenotypes were done
on the cultures from the highest possible MICs. Three replicates of each concentration were used.
Typical Salmonella colonies from the agar plates were transferred into sterile saline to set the density of
0.5 in McFarland standard (2 × 108 cells). Then, an inoculum was created by suspending of 0.1 mL of
the culture in 10 mL of saline. Next, 9.8 mL of LB medium, 0.1 mL of bacterial suspension and 0.1 mL
of a given concentration of the biocide were pipetted into a sterile tube. The concentration of the
biocide for each test depended on the value of the MIC estimated at the beginning of the experiments.
The cultures were incubated at 37 ◦C for 24 h in a shaking water bath. The cultures of the bacteria
were revitalized every day through the collecting of 0.1 mL bacterial suspension from the previous
day’s incubation and transferring into fresh LB medium. The whole experiment, to obtain the variants
tolerant to triamine-containing disinfectant, took 35 days. To confirm the presence of Salmonella spp.
in the study, the cultures of the bacteria were inoculated onto Brilliant Green Lab-Agar (Biocorp,
Warszawa, Poland).

4.5. Serum

NHS was obtained from Regional Centre of Transfusion Medicine and Blood Bank, Wrocław,
Poland. This was conducted according to the principles expressed in the Law on public service of
the blood of 20 May 2016 and in the Directive 2002/98/EC of the European Parliament and of the
Council of 27 January 2003, establishing standards of quality and safety for the collection, testing,
processing, storage and distribution of human blood and blood components. Blood samples were
collected into aseptic tubes with clot activator and with gel for serum separation. The samples were
then stored at room temperature (RT) for 30 min. After that time, the samples were centrifuged for
5 min at 4000× g. Only the serum samples without hemolysis and lipemia were used for experiments.
The serum samples were collected, pooled and kept frozen (−70 ◦C) for a period no longer than
3 months. A suitable volume of serum was thawed immediately before use. Each portion was used
only once.

4.6. Serum C3 Concentration

The C3 concentration in the pool of NHS was quantified by a radial immunodiffusion test Human
Complement C3&C4 “Nl” BindaridTM Radial Immunodiffusion Kit (The Binding Site, Birmingham,
UK). C3 protein is thought to be the most important component of the C system [34]. NHS with the
proper concentration of C3 glycoprotein (between 970 and 1576 mg/L) was used for these studies.

4.7. Serum Susceptibility Assay

The bactericidal activity of normal human serum (NHS) was determined as described
previously [35] with minor modifications. It was performed in sterile polystyrene U-bottom
microtitration plates (Medlab, Raszyn, Polska). S. Senftenberg strains and their biocide variants
before and after the test of stability were subjected to the challenge of 22.5% and 45% NHS. Serum
decomplemented by heating at 56 ◦C for 30 min (heat-inactivated normal human serum (HIS)) was
used as a control [36]. After overnight incubation in LB medium (Merck, Kenilworth, NJ, USA), bacteria
(500 μL) in their early exponential phase were collected by centrifugation (1500× g for 20 min at 4 ◦C).
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The pellet was suspended in 3 mL of phosphate-buffered saline (PBS) (POCH, Gliwice, Poland) and
then diluted in the same saline to produce a suspension of approximately 107 cells/mL. The volume of
20 μL of bacterial suspension and 180 μL of active or inactivated serum were transferred into the wells
of the plates. Each concentration of the serum was loaded in triplicate. Finally, each well contained
about 2 × 105 of the bacterial cells. The mixtures were incubated at 37 ◦C for 0, 15 and 30 min (T0,
T1 and T2, respectively) on a laboratory shaker with rotation at 20 rpm. Appropriate dilutions in the
volume of 10 μL were then spread in triplicate onto nutrient agar plates (Biocorp, Warszawa, Poland)
and incubated at 37 ◦C for 24 h. The average number of CFU/mL was calculated from the replicate
plate counts. The survival rate for T1 and T2 was calculated as a percentage of the cell count for T0

(set at 100%). Strains with survival rates below 50% were considered susceptible to the bactericidal
action of NHS, while those with survival rates above 50% were described as resistant to NHS. Each
test was performed three times.

4.8. Outer Membrane Proteins Isolation and Preparation

The isolation of OMPs was performed according to Murphy and Bartos [37] with minor
modifications [20,38]. Bacterial strains were cultured overnight at 37 ◦C in 25 mL LB medium (Merck,
Kenilworth, NJ, USA). The cells from the overnight culture were harvested (1500× g at 4 ◦C for 20 min)
and suspended in 1.25 mL 1 M sodium acetate (POCH, Gliwice, Polska) with 1 mM β-mercaptoethanol
(Merck). Subsequently, 11.25 mL water solution containing 5% (w/v) Zwittergent Z 3–14 (Merck,
Kenilworth, NJ, USA) and 0.5 M CaCl2 (POCH) were added. This mixture was stirred at room
temperature for 1h. To precipitate nucleic acids, 3.13 mL of 96% (v/v) cold ethanol (POCH) were
added very slowly. The mixture was then centrifuged at 17,000× g at 4 ◦C for 10 min. The proteins
were precipitated from the supernatant by the addition of 46.75 mL of 96% (v/v) cold ethanol and
centrifuged at 17,000× g at 4 ◦C for 20 min. The pellet was left to dry at RT and then suspended in
1.5 mL 50 mM Trizma-Base (Merck) buffer, pH 8.0 containing 0.05% (w/v) Zwittergent Z 3–14 and
10 mM EDTA (Merck) and stirred at room temperature for 1 h. The solution was kept at 4 ◦C overnight.
Insoluble material was removed by centrifugation at 12,000× g at 4 ◦C for 10 min, with OMPs present
in the supernatant. Total protein concentration was measured using a commercial BCA Protein Assay
Kit (Thermo Fisher Scientific, Waltham, MA, USA).

4.9. Two-Dimensional Gel Electrophoresis

The OMPs were separated with 4–7 pH immobilized gradient strips (IPG 7 cm) (Bio-Rad, Hercules,
CA, USA). 2-DE was carried out with the Mini-PROTEAN Tetra Cell System (Bio-Rad). Isoelectric
focusing (IEF) was conducted by a stepwise increase of voltage as follows: 250 V, 20 min (linear);
4000 V, 120 min (linear); and 4000 V (rapid); until the total volt-hours reached 14 kVh. IPG strips
were then loaded onto the top of 1-mm slabs comprised of a 9% polyacrylamide stacking gel and
12.5% polyacrylamide separating gel, using 0.5% agarose (Bio-Rad) with bromophenol blue dye in
the running buffer. Electrophoresis was performed at 4 ◦C with constant power (3 W) until the dye
front reached the bottom [39–41]. The protein spots were visualized by Coomassie Brilliant Blue
(Bio-Rad). Band patterns were visualized under white light and photographed using Gel Doc™ EZ
System (Bio-Rad). Image spots of proteins were analyzed by PDQuest software 8.0.1 (Bio-Rad) [20].

4.10. In-Gel Protein Digestion and MS Protein Identification

After isolation, 2-DE separation and staining with the Coomassie Brilliant Blue method, protein
spots of interest were excised from the gel and subjected to the in-gel tryptic digestion according to the
method described by Shevchenko et al. [42]. Briefly, after destaining (100 mM NH4HCO3/acetonitrile,
1:1, v/v), reduction (10 mM dithiothreitol in 100 mM NH4HCO3) and alkylation (55 mM iodoacetamide
in 100 mM NH4HCO3), a suitable volume of 13 ng/μL trypsin in 10 mM ammonium bicarbonate
containing 10% (v/v) acetonitrile was added to the excised gel spot cut into cubes. The obtained
peptides were extracted from the gel, concentrated and desalted with the Pierce C18 tip and
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subjected to mass spectrometry analysis using the MALDI-TOF ultrafleXtreme instrument (Bruker,
Bremen, Germany). Ten milligrams per milliliter of α-cyano-4-hydroxycinnamic acid (Bruker) in
acetonitrile/0.1% TFA in H2O (1:1, v/v) were used as the eluent of peptides from the Pierce C18 tip
directly on an MALDI plate. Spectra were acquired in positive reflector mode, averaging 2000 laser
shots per MALDI-TOF spectrum. OMPs identification was achieved using a bioinformatics platform
(ProteinScape 3.0., Bruker) and MASCOT (Matrix Science, 2.3.02) as a search engine to search
protein sequence databases (NCBI, Swiss-Prot, date of access 10/03/2017) using the peptide mass
fingerprinting method. All solvents used for digestion, MS preparation and analysis were of LC-MS
grade and purchased from Merck Millipore (Billerica, MA, USA). Ammonium bicarbonate eluent
additive for LC-MS, dithiothreitol and iodoacetamide were from Sigma-Aldrich (Saint Louis, MO,
USA). Sequencing-grade modified trypsin was obtained from Promega (Madison, WI, USA).

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/7/1459/s1.
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the paper. Gabriela Bugla-Płoskońska and Jacek Rybka provided study supervision. All co-authors revised and
approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

aST After the test of stability
bST Before the test of stability
CFU Colony-forming units
h Hours
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of zwitterionic detergent to the solubilization of Klebsiella pneumoniae outer membrane proteins for
two-dimensional gel electrophoresis. J. Microbiol. Methods 2014, 107, 74–79. [CrossRef] [PubMed]
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Abstract: Hotspot residues are important in the determination of protein-protein interactions,
and they always perform specific functions in biological processes. The determination of hotspot
residues is by the commonly-used method of alanine scanning mutagenesis experiments, which
is always costly and time consuming. To address this issue, computational methods have been
developed. Most of them are structure based, i.e., using the information of solved protein structures.
However, the number of solved protein structures is extremely less than that of sequences. Moreover,
almost all of the predictors identified hotspots from the interfaces of protein complexes, seldom
from the whole protein sequences. Therefore, determining hotspots from whole protein sequences
by sequence information alone is urgent. To address the issue of hotspot predictions from the whole
sequences of proteins, we proposed an ensemble system with random projections using statistical
physicochemical properties of amino acids. First, an encoding scheme involving sequence profiles of
residues and physicochemical properties from the AAindex1 dataset is developed. Then, the random
projection technique was adopted to project the encoding instances into a reduced space. Then, several
better random projections were obtained by training an IBk classifier based on the training dataset,
which were thus applied to the test dataset. The ensemble of random projection classifiers is therefore
obtained. Experimental results showed that although the performance of our method is not good
enough for real applications of hotspots, it is very promising in the determination of hotspot residues
from whole sequences.

Keywords: random projection; hot spots; IBk; ensemble system

1. Introduction

Hotspot residues contribute a large portion of the binding energy of one protein in complex with
another protein [1,2], which are always surrounded by residues contributing less binding energy. These
are not uniformly distributed for the binding energy of proteins over their interaction surfaces [1].
Hotspots are important in the binding and the stability of protein-protein interactions and thus key to
perform specific functions in the protein [3,4]. Actually, hotspots are difficult to determine. A common
determination method is the method of alanine scanning mutagenesis experiments, which identify a
hotspot if a change in its binding free energy is larger than a predefined threshold when the residue
is mutated to alanine. However, this method is costly and time consuming.

Several databases stored experimental and computational hotspot residues and the details
of hotspots’ properties. The first database for storing experimental hotspots was the Alanine Scanning
Energetics Database (ASEdb) by the use of alanine scanning energetics experiments [5]. Another
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database is the Binding Interface Database (BID) developed by Fischer et al., which mined the primary
scientific literature for detailed data about protein interfaces [6]. These databases are commonly
used in previous works on hotspot identification. The Protein-protein Interactions Thermodynamic
Database (PINT) is another database that mainly accumulates the thermodynamic data of interacting
proteins upon binding along with all of the experimentally-measured thermodynamic data (Kd, Ka,
ΔG, ΔH and ΔCp) for wild-type and mutant proteins [7]. It contains 1513 entries in 129 protein–protein
complexes from 72 original research articles, where only 33 entries have complete 3D structures
deposited in PDB (Protein Data Bank), in the first release of PINT. Recently, Moal et al. built the
SKEMPI (Structural Kinetic and Energetic database of Mutant Protein Interactions) that has collected
3047 binding free energy changes from 85 protein-protein complexes from the literature [8].

Although some databases stored hotspot residues, few of the protein complexes were solved.
Computational approaches were proposed to identify hotspot residues, and they were complementary
to the experimental methods. Some methods predicted hotspots by energy function-based
physical models [3,9–11], molecular dynamics simulation-based approaches [12–14], evolutionary
conservation-based methods [4,15,16] and docking-based methods [17,18]. Some methods adopted
machine learning methods for the hotspot prediction, such as graph-based approaches [19], neural
network [20], decision tree [3,21], SVM (Support Vector Machine) [22], random forest [23] and the
consensus of different machine learning methods [24], combining features of solvent accessibility,
conservation, sequence profiles and pairing potential [20,23,25–29].

All of the previous methods were developed to identify hotspots from a part of residues in the
interface regions. They always worked on selected datasets containing almost the same numbers of
hotspots and non-hotspots. The ratio of the number of hotspots to that of residues in whole datasets
is around 20∼50%, for example: BID contains 54 hotspots and 58 non-hotspots; 58 hotspots and
91 non-hotspots are in the ASEdb dataset; and SKEMPI contains 196 hotspots and 777 non-hotspots
[29]. However, no more than 2% of the residues in whole protein sequences are hotspots. The issue of
identifying hotspots from whole protein sequences in our study is more difficult than others, but more
interesting.

Most hotspot prediction methods are structure-based, which cannot be applied to protein
complexes without the information of protein structures [3,22,23]. Therefore, identifying hotspots from
the protein sequence only is important. Moreover, few works identified hotspot residues from the
whole protein sequences. To address these issues, here, we propose a method that predicts hotspots
from the whole protein sequences using physicochemical characteristics extracted from amino acid
sequences. A random projection ensemble classifier system is developed for the hotspot predictions.
The system involves an encoding scheme integrating sequence profiles of residues and the statistical
physicochemical properties of amino acids from the AAindex1 (Amino Acid index1 database) dataset.
Then, the random projection technique was adopted to obtain a reduced input space, but to retain the
structure of the original space. Several better classifiers with the IBk algorithm are obtained after the
use of random projections. The ensemble of good classifiers is therefore constructed. Experimental
results showed that our method performs well in hotspot predictions for the whole protein sequences.

2. Results

2.1. Performance of the Hotspot Prediction

In the running of the random projection-based classifier, different random projections
in Equation (1) construct different classifiers. After running the classifier 100 times, 100 classifiers with
random projections R are formed and trained on the training subset Dk

tr. As a result, 100 predictions
are obtained. All of the classifiers are ranked in terms of the prediction measure F1. The ensemble
of several top N classifiers is then tested on the test subset Dk

ts. In this work, the ASEdb0 is regarded
as the training dataset, and the test dataset is BID0; while the predictions on the ASEdb0 dataset are
also tested by training on the BID0 dataset.
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Table 1 shows the performance of the top individual classifiers trained by the ASEdb0 dataset and
the prediction performance on the BID0 dataset. The individual classifiers are ranked in terms of the
F1 measure in the training process. The top classifiers yield good predictions on the BID0 dataset.
It achieves an F1 of 0.109, as well as a precision of 0.069 at a sensitivity of 0.259 in the training process
and, therefore, yields an F1 of 0.315, as well as a precision of 0.220 at a sensitivity of 0.558 in the test
process. Here, the dimensionality of the original data is reduced from 7072 to only five.

Table 2 shows the performance comparison of the ensembles of the top N classifiers. In the
classifier ensemble, the majority vote technique was applied to the ensemble, i.e., one residue will be
identified as the hotspot if half of the N classifiers predict it to be the hotspot. Here, seven ensembles
of the number of top classifiers are listed, i.e., 2, 3, 5, 10, 15, 25 and 50. From Table 2, it can be seen that
the ensemble of the top three classifiers with the majority vote yields a good performance compared
with other classifier ensembles. It yields an MCC (Matthews Correlation Coefficient) of 0.428, as well
as a precision of 0.245 at a sensitivity of 0.793, for testing on the ASEdb0 dataset by training on the
BID0 dataset; and it yields an MCC of 0.601, as well as a precision of 0.440 at a sensitivity of 0.846,
for testing on the BID0 dataset by training on the ASEdb0 dataset. The ensemble of the top three
classifiers resulted in a dramatic improvement, compared with the top three individual classifiers.
The reason for the improvement is most likely in that a suitable random projection makes the classifier
more diverse, where the detailed results are not shown here. Previous methods also showed that the
ensemble of more diverse classifiers yielded more efficient predictions [30].

It seems that the more top classifiers the ensemble contains, the worse the ensemble performs.
The ensemble with the top 50 classifiers performs the worst both for testing on the ASEdb0 and the
BID0 dataset. Therefore, a suitable number of top classifiers can improve the predictions of hotspot
residues. Moreover, our method on the BID0 dataset performs better than that on the ASEdb0 dataset,
maybe because of the larger ratio of hotspots to the total residues in BID0 (1.831%) than that in
ASEdb0 (1.445%).

Table 1. Prediction performance of individual classifiers with the reduced dimension of 5 on the
Binding Interface Database 0 (BID0) test dataset training by Alanine Scanning Energetics Database 0
(ASEdb) dataset. There are 50 top individual classifiers listed here for a simple comparison between
classifiers. Here measures of “Sen”, “Prec”, “F1” and “MCC” denote Sensitivity, Precision, F-Measure,
and Matthews Correlation Coefficient, respectively.

No.
Training Test

Sen MCC Prec F1 Sen MCC Prec F1

1 0.259 0.110 0.069 0.109 0.558 0.332 0.220 0.315
2 0.069 0.125 0.250 0.108 0.558 0.357 0.250 0.345
3 0.138 0.080 0.070 0.093 0.212 0.141 0.122 0.155
4 0.069 0.085 0.129 0.090 0.500 0.274 0.173 0.257
5 0.121 0.075 0.071 0.089 0.308 0.194 0.150 0.201
6 0.069 0.083 0.125 0.089 0.096 0.040 0.044 0.060
7 0.069 0.076 0.108 0.084 0.269 0.136 0.096 0.141
8 0.069 0.076 0.108 0.084 0.269 0.129 0.090 0.135
9 0.138 0.071 0.061 0.084 0.558 0.364 0.259 0.354

10 0.138 0.069 0.058 0.082 0.346 0.226 0.173 0.231
11 0.069 0.071 0.098 0.081 0.135 0.038 0.037 0.058
12 0.086 0.066 0.075 0.080 0.615 0.337 0.205 0.308
13 0.052 0.080 0.150 0.077 0.577 0.317 0.196 0.293
14 0.052 0.076 0.136 0.075 0.404 0.227 0.153 0.222
15 0.069 0.064 0.083 0.075 0.135 0.082 0.080 0.100
16 0.052 0.074 0.130 0.074 0.577 0.323 0.203 0.300
17 0.052 0.074 0.130 0.074 0.596 0.279 0.153 0.243
18 0.069 0.062 0.080 0.074 0.404 0.225 0.151 0.220
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Table 1. Cont.

No.
Training Test

Sen MCC Prec F1 Sen MCC Prec F1

19 0.069 0.062 0.080 0.074 0.308 0.152 0.102 0.153
20 0.052 0.072 0.125 0.073 0.115 0.030 0.033 0.052
21 0.121 0.058 0.052 0.073 0.192 0.135 0.123 0.150
22 0.052 0.067 0.111 0.071 0.288 0.150 0.105 0.154
23 0.190 0.064 0.044 0.071 0.577 0.281 0.159 0.249
24 0.069 0.056 0.070 0.070 0.269 0.145 0.105 0.151
25 0.086 0.054 0.057 0.069 0.423 0.171 0.095 0.155
26 0.086 0.053 0.057 0.068 0.212 0.079 0.057 0.090
27 0.086 0.051 0.054 0.066 0.365 0.218 0.156 0.218
28 0.052 0.058 0.091 0.066 0.250 0.091 0.060 0.097
29 0.052 0.057 0.088 0.065 0.481 0.237 0.141 0.218
30 0.034 0.095 0.286 0.062 0.519 0.241 0.136 0.215
31 0.034 0.095 0.286 0.062 0.346 0.204 0.146 0.206
32 0.052 0.050 0.073 0.061 0.173 0.095 0.081 0.110
33 0.138 0.048 0.039 0.061 0.442 0.271 0.190 0.266
34 0.052 0.049 0.071 0.060 0.231 0.115 0.085 0.124
35 0.224 0.055 0.035 0.060 0.346 0.186 0.127 0.186
36 0.034 0.078 0.200 0.059 0.250 0.161 0.131 0.172
37 0.207 0.052 0.034 0.059 0.519 0.273 0.167 0.252
38 0.034 0.074 0.182 0.058 0.365 0.238 0.181 0.242
39 0.034 0.064 0.143 0.056 0.192 0.083 0.064 0.096
40 0.052 0.044 0.061 0.056 0.231 0.146 0.120 0.158
41 0.052 0.042 0.059 0.055 0.135 0.070 0.065 0.088
42 0.103 0.038 0.036 0.054 0.327 0.145 0.091 0.143
43 0.103 0.037 0.036 0.053 0.192 0.111 0.093 0.125
44 0.034 0.049 0.095 0.051 0.077 0.013 0.025 0.037
45 0.069 0.035 0.040 0.051 0.154 0.054 0.046 0.071
46 0.121 0.034 0.031 0.050 0.423 0.231 0.151 0.222
47 0.224 0.041 0.028 0.050 0.288 0.172 0.129 0.179
48 0.241 0.037 0.026 0.046 0.308 0.152 0.102 0.153
49 0.052 0.030 0.040 0.045 0.442 0.210 0.125 0.195
50 0.155 0.031 0.026 0.045 0.462 0.252 0.162 0.240

Table 2. Prediction performance of the ensemble of the top N classifiers with reduced instance
dimension of 5 on the two datasets.

Test Set No. Dimension Sen MCC Prec F1

2 0.224 0.322 0.481 0.306

ASEdb0

3 0.793 0.428 0.245 0.374
5 0.897 0.383 0.177 0.295
10 1.000 0.299 0.103 0.186
15 1.000 0.219 0.062 0.116
25 1.000 0.149 0.036 0.070
50 1.000 0.081 0.021 0.041

2 0.385 0.260 0.200 0.263

BID0

3 0.846 0.601 0.440 0.579
5 1.000 0.461 0.226 0.369
10 1.000 0.283 0.096 0.175
15 1.000 0.222 0.066 0.124
25 1.000 0.145 0.038 0.074
50 1.000 0.078 0.024 0.046

Furthermore, the performance comparison of ensembles with different numbers of reduced
instance dimensions by the random projection technique was investigated. The ensembles of random
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projections with seven reduced dimensions were built, i.e., the dimensions of 1, 2, 5, 10, 20, 50 and
100. The ensemble with the reduced dimension of five performs the best among the seven ensembles,
while the ensemble of the top three classifiers with instance dimension of one also performs well in the
hotspot predictions for the whole sequences of proteins, which yields an MCC of 0.475, as well as a
precision of 0.704 at a sensitivity of 0.328. Table 3 shows the performance comparison of the classifier
ensemble with different numbers of reduced dimensions on the BID0 test dataset.

Table 3. Prediction performance of the ensemble of the top 3 classifiers with different reduced instance
dimensions on the BID0 test dataset.

No. Dimension Sen MCC Prec F1

1 0.328 0.475 0.704 0.447
2 0.328 0.352 0.396 0.358
5 0.846 0.601 0.440 0.579
10 0.846 0.499 0.310 0.454
20 0.481 0.240 0.144 0.221
50 0.500 0.274 0.173 0.257

100 0.538 0.252 0.141 0.224

This study adopted the window length technique to encode input instances of classifiers; however,
the sliding window technique makes the performance of the classifier varied. To show which window
length makes the classifiers better for a specific type of dataset, several windows with different lengths
were investigated. Figure 1 shows the prediction performance on different sliding windows on the
BID0 dataset. Among the seven sliding windows, the window with length 13 performs the best, which
yields an F1 of 0.579. It should be mentioned here that classifier ensembles with a suitable window
length perform better than those with a smaller or bigger length.

Figure 1. Prediction performance for different sliding windows in instance encoding on the BID0
dataset training by the ASEdb0 dataset. The symbol “I” for each window denotes the calculation error
of prediction performance in F1.

2.2. Comparison with Other Methods

So far, few works identified hotspots from the whole protein sequences by sequence information
alone. Some top hotspot predictors did the predictions based on protein structures. Most of hotspot
prediction methods predicted hotspots from protein-protein interfaces or from some benchmark
datasets, such as ASEdb0 and BID0, which contained approximately the same hotspots and
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non-hotspots. Therefore, the random predictor is used to compare with our method. The random
predictor was run 100 times, and the average performance was calculated. Furthermore, for prediction
comparison, the tool of ISIS (Interaction Sites Identified from Sequence) [20] on the PredictProtein
server [31] was adopted, which has been applied in hotspot predictions on the dataset of interface
residues [20]. ISIS is a machine learning-based method that identified interacting residues from
the sequence alone. Similar to our method, although the method was developed using transient
protein-protein interfaces from complexes of experimentally-known 3D structures, it only used
the sequence and predicted 2D information. In PredictProtein, it predicted a residue as a hotspot
if the prediction score of the residue was bigger than 21, otherwise being non-hotspot residues.
Since PredictProtein currently cannot process short input sequences less than 17 residues, protein
sequences in PDB names “1DDMB” and “2NMBB” were removed from the BID0 test set. We tested
all of the sequences of more than 17 residues on the BID0 dataset, and the performance of hotspot
predictions on the dataset was obtained. The predictions of ISIS method can be referred to the
Supplementary Materials.

Table 4 lists the hotspot prediction comparison in detail. Our method developed a random
projection ensemble system yielding a final precision of 0.440 at a sensitivity of 0.846 by the use
of sequence information only. Results showed that our method outperforms the random predictor.
Furthermore, our method outperformed the ISIS method. Actually, ISIS was developed to identify
protein-protein interactions. The power of ISIS for the identification of hotspot residues was poor.
It can predict nine of 47 real hotspots correctly; however, 2920 non-hotspots were predicted to be
hotspots in the BID0 dataset.

Table 4. Performance comparison of the three methods on the BID0 dataset by training on the
ASEdb0 dataset.

Method Type Sen MCC Prec F1

Our Method Random Projection 0.846 0.601 0.440 0.579
ISIS Neural Networks 0.191 0.030 0.026 0.046

Random Predictor 0.983 0.000 0.018 0.035

We also show the performance of classifier ensemble in several measures based on the measure
of sensitivity. Figure 2 illustrates the performance of the ensemble classifier with the majority vote for
the test set BID0. Although it is very difficult to identify hotspots from the whole protein sequences,
our method yields a good result based on sequence information only.

Figure 2. The performance of our method for testing on the BID0 dataset by training on the ASEdb0
dataset. The left graph illustrates the ROC (receiver operating characteristic) curve, and the right one
shows the four measure curves with respect to sensitivity.
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2.3. Case Study of Hotspot Predictions

To show the performance of our method on a single protein chain, hotspot predictions for chain
“A” of protein PDB:1DDM are illustrated in Figure 3. Protein 1DDM is an in vivo complex containing
a phosphotyrosine-binding (PTB) domain (chain “A”) of the cell fate determinant Numb, which can
bind a diverse array of peptide sequences in vitro, and a peptide containing an amino acid sequence
“NMSF” derived from the Numb-associated kinase (Nak) (chain “B”). The Numb PTB domain is in
complex with the Nak peptide. The chain “A” contains 135 amino acid residues, where only residues
E144, I145, C150 and C198 are real hotspot residues in complex with the chain “B” of the protein
(which contains 11 amino acid residues; see Figure 3c). Our method correctly predicted the first three
true hotspots, and hotspot residue 198 was predicted as a non-hotspot, while residues 69, 112, 130 and
160 were wrongly predicted as hotspot residues. All of them are located at the surface of the protein
structure. The results of ISIS are also illustrated in Figure 3b. The ISIS method cannot identify the four
true hotspot residues, although most of the hotspot predictions are located at the surface of the protein.

(a)Prediction of our method. (b)Predictions of ISIS method.

(c)Complex structure of protein PDB:1DDM.

Figure 3. Case study for the complex of protein PDB:1DDM. The subgraphs (a,b) are shown for the
prediction comparison of our method and the ISIS method, respectively, where the chain B of protein
1DDM is colored in wheat. The subgraph (c) illustrates the cartoon structure of the protein complex,
where the chain B of protein 1DDM is colored in green. Here, red residues are the hotspots that
are predicted correctly; green residues are non-hotspots that are predicted to be hotspots; while yellow
ones are real hotspots that are predicted to be non-hotspot residues. All other residues are correctly
predicted as non-hotspots.
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3. Materials and Methods

3.1. Hot Spot Definitions

As we know, a residue is defined as a hotspot by the change of the binding free energy (ΔΔG)
higher than a threshold, if mutated to alanine. Several thresholds were adopted in previous works.
Many works defined residues as hotspots when their ΔΔGs are higher than 2.0 kcal/mol, and other
residues with ΔΔG from 0–2.0 kcal/mol were defined as non-hotspots [21–23]. Ofran et al. used
another definition that defined residues with ΔΔG above 2.5 kcal/mol as hotspots and those with
ΔΔG = 0 kcal/mol (i.e., no change in binding energy) as non-hotspots [20]. Moreover, Tuncbag and
colleagues defined hotspots as those with ΔΔG higher than 2.0 kcal/mol and non-hotspots as those with
ΔΔG from 0–0.4 kcal/mol [24]. Previous works also investigated several definitions of hotspots [26,29].
They concluded that different definitions of hotspots and non-hotspots yield different ratios of the
number of hotspots to that of non-hotspots and, therefore, change the performances of hotspot
prediction methods [26,29]. In this paper, residues higher than 2.0 kcal/mol are defined as hotspots
and all other residues in the whole protein sequences as non-hotspots, no matter if their position
is in interfaces, surfaces or any other regions.

3.2. Datasets

Since this work addresses the issue of hotspot residue predictions for the whole sequences
of proteins, the definitions of hotspot residues are the same as those of the ASEdb and BID datasets,
while all of the other residues in the protein sequences are considered as non-hotspot residues.

Two commonly-used benchmark datasets are used in this work. The first dataset is ASEdb [5].
To clean the proteins in ASEdb, protein sequences in the dataset were removed when the sequence
identity between any two sequences was higher than 35%. Based on the hotspot definition in this
study, we constructed a new ASEdb0 dataset consisting of 58 hotspots from the ASEdb dataset and
3957 non-hotspots of the other residues in whole protein sequences, totaling 4015 residues in our new
ASEdb0 dataset.

The BID dataset [6] is the other one used in this work. The dataset was filtered in the same manner
as the ASEdb dataset. As a result, we constructed a new BID0 dataset consisting of 54 hotspots from
the BID dataset and 2895 non-hotspots from the rest of the residues in the whole protein sequences,
totaling 2949 residues in our new BID0 dataset. The data in the two datasets came from different
complexes and were mutually exclusive. Table 5 lists the composition of hotspots and non-hotspots.

Table 5. The details of the hotspot datasets.

Dataset Hot Spots Non-Hotspots Total Residues Ratio §

BID0 54 2895 2949 1.831%
ASEdb0 58 3957 4015 1.445%

BID 54 58 112 48.214%
ASEdb 58 91 149 38.926%

§ The ratio of the number of hotspots to that of total residues in the dataset.

3.3. Feature Encoding Scheme

The AAindex1 database [32] contained 544 numerical indices representing various
physicochemical and biochemical properties of amino acids. It collected published indices with
a set of 20 numerical values representing different properties of amino acids. It also contained the
results of cluster analysis using the correlation coefficient as the distance between two indices. All data
were derived from published literature.

The protein sequence profile of one amino acid is a set of 20 numerical values representing the
evolution of the amino acid residue, where each value represents the frequency by which residue
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was mutated into another amino acid residue. It can be used to recognizing remote homologs and
plays an important role in protein sequence database search, protein structure/function prediction
and phylogenetic analysis. Protein sequence profiles are always obtained by a BLAST (Basic Local
Alignment Search Tool) program, such as the commonly-used program of PSI-BLAST (Position-Specific
Iterative Basic Local Alignment Search Tool) [33]. Therefore, for the residue Ri of one protein sequence,
the multiplication MSKj

i of the sequence profile SPi of residue Ri and one physicochemical amino
acid property AAPj can represent the statistical evolution of the amino acid property [34–36], i.e.,
MSKj

i = SPi × AAPj, where SPi and AAPj are both vectors of 1 × 20. The multiplication for residue

Ri results in a set of 20 numerical vectors MSKj
i . The standard deviation STDj

i of the multiplication
is then obtained. For residue Ri, the 544 amino acid AAindex1 properties yield a set of 544 standard
deviations STDi = STDj

i , j = 1 544, which will be used for encoding residue Ri. Our previous work
has shown that the standard deviations of the multiplications can reflect the evolutionary variance
of the residue Ri along with the amino acid property AAPj [29,34,35].

To encode the residue Ri in one protein sequence, a sliding window involving residues centered
at the residue Ri is considered, i.e., several neighboring residues are used to represent the center
residue Ri. Therefore, a set of winLen × 544 = 7072 numerical values represents the residue Ri, where
winLen = 13 is the sliding window length in this work. A similar vector representation can be found
in our previous work [29,34,35]. For the residue Ri, it is represented by a 1 × 7072 vector Vi, whose
corresponding target value Ti is 1 or 0, denoting whether the residue is a hotspot or not. Therefore, our
method is developed to learn the relationship between input vectors V and the corresponding target
array T and tries to make its output Y = f (V) as close to the target T as possible.

3.4. IBk Classifier Ensemble by the Random Mapping Technique

The random projection technique can be traced back to the work done by Ritter and Kohonen [37],
which reduced the dimensionality of the representations of the word contexts by replacing each
dimension of the original space by a random direction in a smaller-dimensional space. From the
literature [37,38], it seems surprising that random mapping can reduce the dimensionality of the data
in a manner that preserves enough structure of the original dataset to be useful. Kaski used both
analytical and empirical evidence to explain the reason why the random mapping method worked
well in high-dimensional spaces [39].

Given the original data, X ∈ �N×L1, let the linear random projection be the multiplication of the
original instances by a random matrix R ∈ �L1×L2, where the element in the matrix ranges from 0–1.
The matrix R is composed of random elements, and each column has been normalized to unity.
The projection:

XR = XR = ∑
i
(xi × ri) (1)

yields a dimensionality-reduced instance XR ∈ �N×L2 from dimension L1 to L2, where xi is the i-th
sample of the original data, ri is the i-th column of the random matrix and L2 � L1. In Equation (1),
each original instance with dimension L1 has been replaced by a random, non-orthogonal direction
L2 in the reduced-dimensional space [39]. Therefore, the dimensionality of the original instance
is reduced from 7072 to a rather small value.

The dimension-reduced instances are then input into the classifier with the IBk algorithm.
The IBk algorithm, implementing the k-nearest neighbor algorithm, is a type of instance-based
learning, where the function is only approximated locally, and all computations are deferred until
classification. The simplest of the IBk algorithms among machine learning algorithms was adopted
since we want to ensemble diverse classifiers and expect to yield good results. Previous results showed
that the generalization error caused by one classifier can be compensated by other classifiers; therefore,
the ensemble of some diverse classifiers can yield significant improvement [40].

In the hotspot prediction, the multiplication of the k-th random projection Rk on the original
instances (X, Y) forms a set of instances Dk = {(XRk

i , Yi)}, i = 1, ..., N, where N and K denote the
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number of training instances and that of random projections, respectively. For the k-th random
projection, the instances Dk are generated from the original instances (X, Y) as an input to an IBk
classifier, and thus, it forms a classifier IBkk(x), where x is a training instance. To train the classifier
IBkk(x), the instance set Dk is divided into training dataset Dk

tr and test dataset Dk
ts by 10-fold

cross-validation. For training the classifier, the training dataset Dk
tr is divided into training subset

Dk−tr
tr and test subset Dk−ts

tr again. The training process retains the top classifiers on some random
projections, and in the test process, they are applied to test the test dataset Dk

ts.
After running random projection 100 times, top classifiers in the F1 measure are retained for

testing the test dataset Dk
ts. The ensemble of top classifiers yields the final predictions. The mjority vote

technique was always used in classifier ensemble and often made a dramatic improvement [41]. Here,
a residue is predicted as a hotspot if half of the classifiers identified it as positive Class 1, otherwise
it is a non-hotspot residue.

Moreover, since the hotspot dataset is extremely imbalanced, containing only 1.4% of hotspots,
balancing the dataset is necessary to avoid the overfitting of the classifier. Therefor, the training dataset
Dk−tr

tr is resampled and then consists of positive instances and negative instances with roughly the
same number. The ensemble system can be seen i Figure 4.

Figure 4. The flowchart of the ensemble system for the hotspot prediction. Here, Rk means the k-th
random projection. The IBk implements k-Nearest Neighbors (KNN) algorithm. Here the black arrows
denote the flow of the training subset, while the blue ones are that of the test subset.

3.5. Hot Spot Prediction Evaluation

To evaluate hotspot predictions, in this work, we adopted four evaluation measures to show the
ability of our model objectively. They are the criteria of sensitivity (Sen), precision (Prec), F-measure (F1)
and Matthews correlation coefficient (MCC) [34,42] and shown below:

Sen =
TP

TP + FN
, Prec =

TP
TP + FP

F1 = 2 × Prec × Sen
Prec + Sen

MCC =
TP × TN − FP × FN√

(TP + FN)(TP + FP)(TN + FP)(TN + FN)
,

(2)

where TP (true positive) is the number of correctly-predicted hotspot residues; FP (false positive) is the
number of false positives (incorrectly over-predicted non-hotspot residues); TN (true negative) is the
number of correctly-predicted non-hotspot residues; and FN (false negative) is false negative, i.e.,
incorrectly under-predicted hotspot residues.
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4. Conclusions

This paper proposes an ensemble method based on the random projection technique that predicts
hotspots from the whole sequences of proteins, using physicochemical characteristics of amino acids.
The classifier system involves an encoding scheme integrating sequence profiles of residues and
statistical physicochemical properties of amino acids from the AAindex1 dataset. Then, the random
projection technique was adopted to obtain a reduced input space for the original input instances,
but retaining the structure of the original space. Several top classifiers are obtained after the use
of random projections. The ensemble of the top classifiers is therefore constructed. The classifier
with random projection ran 50 times, and 50 classifiers were sorted in the F1 measure in the training
step. Applying the 50 classifiers to the test dataset yielded the final hotspot predictions. Results
showed that the ensemble of the top three classifiers yields better performance in hotspot predictions.
Moreover, random projections with different reduced dimensions were investigated, and the projection
with the dimension of five performs the best. To select the most effective sliding window, several
sliding windows were investigated for encoding instances, and a window with a length of 13 was
chosen finally, which performed the best among the eight windows. It is suggested that our method is
promising in computational hotspot prediction for the whole protein sequence.
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Abstract: The prediction of drug–target interactions (DTIs) via computational technology plays
a crucial role in reducing the experimental cost. A variety of state-of-the-art methods have been
proposed to improve the accuracy of DTI predictions. In this paper, we propose a kind of drug–target
interactions predictor adopting multi-scale discrete wavelet transform and network features (named
as DAWN) in order to solve the DTIs prediction problem. We encode the drug molecule by a
substructure fingerprint with a dictionary of substructure patterns. Simultaneously, we apply the
discrete wavelet transform (DWT) to extract features from target sequences. Then, we concatenate
and normalize the target, drug, and network features to construct feature vectors. The prediction
model is obtained by feeding these feature vectors into the support vector machine (SVM) classifier.
Extensive experimental results show that the prediction ability of DAWN has a compatibility among
other DTI prediction schemes. The prediction areas under the precision–recall curves (AUPRs) of
four datasets are 0.895 (Enzyme), 0.921 (Ion Channel), 0.786 (guanosine-binding protein coupled
receptor, GPCR), and 0.603 (Nuclear Receptor), respectively.

Keywords: drug–target interactions; discrete wavelet transform; network property; support
vector machine

1. Introduction

Although the PubChem database [1] has stored millions of chemical compounds, the number of
compounds having target protein information are limited. Drug discovery (finding new drug–target
interactions, DTIs) requires much more cost and time via biochemical experiments. Hence, some
efficient computational methods for predicting potential DTIs are used to cover the shortage of
traditional experimental methods. There are three categories of the DTIs prediction approaches:
molecular docking, matrix-based, and feature vector-based methods. Cheng et al. [2] and
Rarey et al. [3] developed molecular docking methods, which were based on the crystal structure
of the target binding site (3D structures). Docking simulations quantitatively estimate the maximal
affinity achievable by a drug-like molecule, and these calculated values correlate with drug discovery
outcomes. However, docking simulations depend on the spatial structure of targets and are usually
time-consuming because of the screening technique. In contrast to docking methods, the other two
kinds of computational methods (matrix-based and feature vector-based methods) can achieve the
large-scale prediction of DTIs.
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Compared with molecular docking, matrix-based methods of chemical structure similarity are
more popular. Many matrix-based approaches are becoming popular in the area of DTI predicition.
The bipartite graph learning (BGL) [4] model was firstly proposed by Yamanishi et al. They developed
a new supervised method to infer unknown DTIs by integrating chemical space and genomic space into
a unified space. Bleakley and Yamanishi et al. [5] raised the bipartite local model (BLM) to solve the
DTI prediction problem in chemical and genomic spaces, and applied the bipartite model to transform
prediction into a binary classification [5]. Mei et al. [6] improved the BLM with neighbor-based
interaction-profile inferring (BLM-NII). The NII strategy inferred label information or training data
from neighbors when there was no training data readily available from the query compound/protein
itself. Laarhoven et al. designed kernel regularized least squares (RLS), in which they defined Gaussian
interaction profile (GIP) kernels on the profiles of drugs and targets to predict DTIs [7]. Xia et al.
raised Laplacian regularized least square based on interaction network (NetLapRLS) [8] to improve
the prediction performance of RLS. Zheng et al. built a DTI predictor with collaborative matrix
factorization (CMF) [9], which can incorporate multiple types of similarities from drugs and those
from targets at once. Laarhoven et al. [10] also proposed weighted nearest neighbor with Gaussian
interaction profile kernels (WNN-GIP) to predict DTIs. The WNN constructed an interaction score
profile for a new drug compound using chemical and interaction information about known compounds
in the dataset. Another matrix factorization-based method—kernelized Bayesian matrix factorization
with twin kernels (KBMF2K) [11]—was proposed by Gönen, M. The novelty of KBMF2K came from
the joint Bayesian formulation of projecting drug compounds and target proteins into a unified
subspace using the similarities and estimating the interaction network in that subspace. Neighborhood
regularized logistic matrix factorization (NRLMF) was raised by Liu et al. [12]. NRLMF focused on
modeling the probability that a drug would interact with a target by logistic matrix factorization,
where the properties of drugs and targets were represented by drug-specific and target-specific latent
vectors, respectively. Nevertheless, the drawback of pairwise kernel method is the high computational
complexity on the occasion of a large numbers of samples. In addition, matrix-based methods did
not consider the physical and chemical properties of the target protein. These properties reflect some
particular relationship between targets and the molecular structure of drugs.

To handle the above problem, other machine learning approaches of feature vector-based method
was raised. Cao et al. firstly proposed several works to predict DTIs via drug (molecular fingerprint),
target (sequence descriptors), and network information [13,14]. They used composition (C), transition
(T), and distribution (D) and Molecular ACCess System (MACCS) fingerprint to describe target
sequence and drug molecule, respectively. The above features were fed into random forest (RF) to
detect DTIs.

In this article, we propose a new DTI predictor based on signal compression technology. The target
sequence can be regarded as biomolecule signal of a cell. To further extract effective features from the
target sequence, we utilize discrete wavelet transform (DWT) as a spectral analysis tool to compress the
signal of the target sequence. According to Heisenberg’s uncertainty principle, the velocity and location
of moving quanta cannot be determined at the same time. Similarly, in a time–frequency coordinate
system, the frequency and location of a signal cannot be determined at the same time. Wavelet
transform can be based on the scale of the transformation and offset in different frequency bands,
given different resolution. This is an effective scenario in practice. We also use MACCS fingerprint
to describe the drug. Further more, network feature provides the relationship between drug–target
pairs. Many models (e.g., BLM, BLM-NII, NetLapRLS, CMF, KBMF2K, NRLMF, and Cao’s work [14])
were built with network information. Therefore, our feature contains sequence (DWT feature), drug
(MACCS feature), and network (net feature). Moreover, we combine the above three types of features
with support vector machine (SVM) and feature selection (FS) to develop a predictor of DTIs. We
evaluate our method on four benchmark datasets including Enzyme, Ion Channel, guanosine-binding
protein coupled receptor (GPCR), and Nuclear receptor. The result shows that our method achieves
better prediction performance than outstanding approaches.
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2. Results

We evaluated our method (DAWN) on balanced DTI datasets, described by Cao’s work [14].
We analyzed the performance of features (including MACCS, DWT, and net feature). Then, we
compared DAWN with other outstanding methods, including BLM [5], RLS [7], BGL [4], NetLapRLS [8],
and Cao’s work [14]. In addition, we also tested DAWN on imbalanced DTI datasets, compared with
NetLapRLS [8], BLM-NII [6], CMF [9], WNN-GIP [10], KBMF2K [11], and NRLMF [12]. We found that
DAWN achieved better values of AUCs.

2.1. Dataset

To evaluate the performance and scalability of our method, we adopted enzyme, ion channels,
GPCR, and nuclear receptors used by Yamanishi et al. [4] as the gold standard datasets. These datasets
come from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database [15]. The information
of drug–target interactions comes from KEGG BRITE [15], BRENDA [16], Super Target [17], and
DrugBank databases [18]. Table 1 presents some quantitative descriptors about the golden datasets,
including the number of drugs (n), number of targets (m), number of interactions, and ratio of n to m.

Table 1. Statistics of DTI datasets [4].

Drugs (n) Targets (m) Interactions Ratio (n/m)

Enzyme 445 664 2926 0.67
IC 210 204 1476 1.03

GPCR 223 95 635 2.35
Nuclear receptors 54 26 90 2.08

IC: ion channel; GPCR: guanosine-binding protein coupled receptor.

2.1.1. Balanced Dataset

In Cao’s study [14], all real drug–target interaction pairs were used as the positive samples.
For negative examples, they selected random, unknown interacting pairs from these drug and
protein molecules. DAWN was tested on Cao’s four balanced benchmark datasets (including Enzyme,
Ion channels, GPCRs, and Nuclear receptors).

2.1.2. Imbalanced Dataset

The gold standard datasets only contain positive examples (interaction pairs). Hence,
non-interaction drug–target pairs are considered as negative examples. Because the number of
non-interaction pairs is larger than interaction pairs, the ratio between majority and minority examples
is much greater than 1.

2.2. Evaluation Measurements

Three parameters were adopted as criteria: overall prediction accuracy (ACC), sensitivity (SN),
and specificity (Spec).

• Accuracy:

ACC =
TP + TN

TP + FP + TN + FN
(1)

• Sensitivity or Recall:

SN =
TP

TP + FN
(2)

• Specificity:

Spec =
TN

TN + FP
(3)
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TP represents the number of positive samples predicted correctly. Similarly, we have TN, FP and
FN, which represent the number of negative samples predicted correctly, the number of negative
samples predicted as positive, and the positive samples predicted as negative, respectively.

In signal detection theory, a receiver operating characteristic (ROC), or simply ROC curve, is a
graphical plot illustrating the performance of a binary classifier system as its varied discrimination
threshold. A ROC curve can be used to illustrate the relation between sensitivity and specificity.

Area under the precision–recall curve (PRC) (AUPR) is an average of the precision weighted
by a given threshold probability. We employed both ROC and the area under the precision–recall
curve (PRC), because the representation of PRC is more effective than ROC on highly imbalanced or
skewed datasets. Area under the ROC curve (AUC) and AUPR can quantitatively describe sensitivity
against specificity and precision against recall, respectively.

2.3. Experimental Results on Balanced Datasets

2.3.1. Performance Analysis of Feature

In order to analyze the performance of MACCS, DWT, and net features, we tested these
features on four balanced datasets (each set contains 10 balanced subsets) through five-fold
cross-validation. Results of DWT + MACCS, DWT + MACCS (with FS), DWT + NET + MACCS,
and DWT + NET + MACCS (with FS) are shown in Table 2. Because the datasets are balanced,
the evaluation of ACC or AUC can measure overall performance. DWT + NET + MACCS (with
FS) had the best performance of ACC on Enzyme (0.938), IC (0.943), GPCR (0.890), and Nuclear
receptor (0.860), respectively. The performance (AUC) of DWT + NET + MACCS (Enzyme: 0.977,
IC: 0.978, GPCR: 0.934, Nuclear receptor: 0.866) was better than DWT + MACCS (Enzyme: 0.925, IC:
0.929, GPCR: 0.872, Nuclear receptor: 0.816). The feature DWT + NET + MACCS indeed improved
the prediction performance by adding network information. In addition, the performance (AUC) of
DWT + NET + MACCS (with FS) (Enzyme: 0.980, IC: 0.983, GPCR: 0.950, Nuclear receptor: 0.931)
was better than DWT + NET + MACCS (without FS) (Enzyme: 0.977, IC: 0.978, GPCR: 0.934,
Nuclear receptor: 0.866).

Table 2. Comparison of the prediction performance between different features on balanced datasets.

Dataset Feature ACC Sn SP AUC

Enzyme

DWT + MACCS 0.867 ± 0.002 0.861 ± 0.004 0.873 ± 0.003 0.925 ± 0.003
DWT + MACCS (FS) 0.895 ± 0.001 0.901 ± 0.003 0.889 ± 0.003 0.949 ± 0.001
DWT + NET + MACCS 0.932 ± 0.003 0.933 ± 0.002 0.933 ± 0.002 0.977 ± 0.002
DWT + NET + MACCS (FS) 0.938 ± 0.002 0.938 ± 0.002 0.939 ± 0.004 0.980 ± 0.001

IC

DWT + MACCS 0.864 ± 0.003 0.868 ± 0.004 0.861 ± 0.005 0.929 ± 0.004
DWT + MACCS (FS) 0.879 ± 0.004 0.891 ± 0.004 0.866 ± 0.007 0.935 ± 0.003
DWT + NET + MACCS 0.940 ± 0.004 0.932 ± 0.005 0.943 ± 0.006 0.978 ± 0.003
DWT + NET + MACCS (FS) 0.943 ± 0.002 0.938 ± 0.003 0.949 ± 0.003 0.983 ± 0.001

GPCR

DWT + MACCS 0.826 ± 0.005 0.831 ± 0.003 0.822 ± 0.007 0.872 ± 0.004
DWT + MACCS (FS) 0.836 ± 0.006 0.846 ± 0.007 0.827 ± 0.009 0.892 ± 0.005
DWT + NET + MACCS 0.872 ± 0.004 0.872 ± 0.005 0.872 ± 0.003 0.934 ± 0.005
DWT + NET + MACCS (FS) 0.890 ± 0.005 0.888 ± 0.009 0.891 ± 0.011 0.950 ± 0.002

Nuclear receptor

DWT + MACCS 0.750 ± 0.011 0.619 ± 0.013 0.879 ± 0.021 0.816 ± 0.015
DWT + MACCS (FS) 0.791 ± 0.017 0.790 ± 0.018 0.793 ± 0.036 0.850 ± 0.016
DWT + NET + MACCS 0.805 ± 0.021 0.767 ± 0.017 0.837 ± 0.013 0.866 ± 0.011
DWT + NET + MACCS (FS) 0.860 ± 0.009 0.855 ± 0.013 0.867 ± 0.024 0.931 ± 0.009

DWT: discrete wavelet transform; FS: feature selection; NET: network features; MACCS: drug features of
molecular access system.

It is clear that FS plays a key role in elevating the prediction of our method. The FS can enhance
generalization by reducing the overfitting. Obviously, the performance of DWT + NET + MACCS
(with FS) can be seen from Figures 1 and 2. Network topology can be a useful supplement to improve
prediction effect.

125



Int. J. Mol. Sci. 2017, 18, 1781

(a) (b)

(c) (d)

Figure 1. The area under the Receiver Operating characteristic Curve (ROC) values obtained on
balanced datasets (with FS). The blue curve is the combined feature of MACCS (chem), DWT (bio), and
net. The red curve is the combined feature of MACCS (chem) and DWT (bio); (a) Enzyme’s ROC curve
with network feature; (b) IC ’s ROC curve with network feature; (c) GPCR’s ROC curve with network
feature; (d) Nuclear receptor’s ROC curve with network feature.

(a) (b)

Figure 2. Cont.
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(c) (d)

Figure 2. The area under the precision–recall (PR) curve (AUPR) values obtained on balanced datasets
(with FS). The blue curve is the combined feature of MACCS (chem), DWT (bio), and net. The red
curve is the combined feature of MACCS (chem) and DWT (bio); (a) Enzyme’s PR curve with network
feature; (b) IC’s PR curve with network feature; (c) GPCR’s PR curve with network feature; (d) Nuclear
receptor’s PR curve with network feature.

2.3.2. Comparing with Existing Methods

On the balanced datasets [14], we compare DAWN with other common methods by five-fold cross
validation. These methods contain BLM [5], RLS [7], BGL [4], NetLapRLS [8] and Cao’s work [14].
The detailed results are listed in Table 3. DAWN achieved the best values of AUCs on Enzyme (0.980)
and Nuclear receptor (0.931), respectively. Although the AUC value of DAWN on Ion channel and
GPCR datasets were not higher than Cao’s work [14] and BLM, we still have a competitive prediction rate.
Recapitulating about the aforementioned description, DAWN has a competitive ability among these works.

Table 3. The mean AUC values of five methods on balanced datasets.

Methods Enzyme IC GPCR Nuclear Receptor

Cao’s work [14] 0.979 0.987 0.951 0.924
BGL 0.904 0.851 0.899 0.843
BLM 0.976 0.973 0.955 0.881
NetLapRLS 0.956 0.947 0.931 0.856
RLS 0.978 0.984 0.954 0.922
DAWN (our method) 0.980 0.983 0.950 0.931

Results excerpted from [14]. The best results in each column are in bold faces. BGL: bipartite graph learning;
BLM: bipartite local model; NetLapRLS: Laplacian regularized least square based on interaction network;
RLS: regularized least square. DAWN: prediction of Drug–tArget interactions based on multi-scale discrete
Wavelet transform and Network features.

2.4. Experimental Results on Imbalanced Datasets

In order to highlight the advantage of our method, we also tested DAWN on the imbalanced
datasets of DTIs by 10-fold cross validation. DAWN was compared with NetLapRLS [8], BLM-NII [6],
CMF [9], WNN-GIP [10], KBMF2K [11], and NRLMF [12]. The detailed results are listed in Table 4.
Because the datasets are imbalanced, the evaluation of AUC and AUPR were both used to measure
overall performance. DAWN achieved average AUCs of 0.981, 0.990, 0.952, and 0.906, and the AUPR
values of DAWN were 0.895, 0.921, 0.786, and 0.603 on Enzyme, Ion channel, GPCR, and Nuclear
receptor, respectively. The AUC value of DAWN on the Enzyme dataset was 0.981 and AUPR was 0.895,
and only the NRLMF (AUC: 0.987, AUPR: 0.892) method was comparable. On Ion channel and GPCR
datasets, we also had best or second-best results. For AUPR value on Nuclear receptor, NRLMF was
higher than DAWN. The Nuclear receptor dataset is smaller than the other three datasets. The size of
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the dataset might be a reason for DAWN’s performance. Therefore, the DAWN method that adopted the
mean of DWT was not as effective as larger datasets. However, among methods in Table 4, none could
give markedly higher prediction performance on all four datasets in both AUC and AUPR. Therefore,
it is fair to claim that our strategy has comparable performance. Further, Figures 3 and 4 show the
curves of AUC and AUPR on imbalanced datasets through 10-fold cross validation. Related datasets,
codes, and figures of our algorithm are available at https://github.com/6gbluewind/DTI_DWT.

(a) (b)

(c) (d)

Figure 3. ROC of imbalanced datasets by 10-fold cross-validation; (a) Enzyme’s ROC curve with
network feature; (b) IC’s ROC curve with network feature; (c) GPCR’s ROC curve with network feature;
(d) Nuclear receptor’s ROC curve with network feature.
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(a) (b)

(c) (d)

Figure 4. AUPR of imbalanced datasets by 10-fold cross-validation. (a) Enzyme’s PR curve with
network feature. (b) IC’s PR curve with network feature. (c) GPCR’s PR curve with network feature.
(d) Nuclear receptor’s PR curve with network feature.

Table 4. Overall AUC and AUPR values of different methods on imbalanced dataset for four species.

Evaluation Method Enzyme Ion Channel GPCR Nuclear Receptor

AUC

NetLapRLS 0.972 ± 0.002 0.969 ± 0.003 0.915 ± 0.006 0.850 ± 0.021
BLM-NII 0.978 ± 0.002 0.981 ± 0.002 0.950 ± 0.006 0.905 ± 0.023

WNN-GIP 0.964 ± 0.003 0.959 ± 0.003 0.944 ± 0.005 0.901 ± 0.017
KBMF2K 0.905 ± 0.003 0.961 ± 0.003 0.926 ± 0.006 0.877 ± 0.023

CMF 0.969 ± 0.002 0.981 ± 0.002 0.940 ± 0.007 0.864 ± 0.026
NRLMF 0.987 ± 0.001 0.989 ± 0.001 0.969 ± 0.004 0.950 ± 0.011
DAWN 0.981 ± 0.004 0.990 ± 0.014 0.952 ± 0.009 0.906 ± 0.067

AUPR

NetLapRLS 0.789 ± 0.005 0.837 ± 0.009 0.616 ± 0.015 0.465 ± 0.044
BLM-NII 0.752 ± 0.011 0.821 ± 0.012 0.524 ± 0.024 0.659 ± 0.039

WNN-GIP 0.706 ± 0.017 0.717 ± 0.020 0.520 ± 0.021 0.589 ± 0.034
KBMF2K 0.654 ± 0.008 0.771 ± 0.009 0.578 ± 0.018 0.534 ± 0.050

CMF 0.877 ± 0.005 0.923 ± 0.006 0.745 ± 0.013 0.584 ± 0.042
NRLMF 0.892 ± 0.006 0.906 ± 0.008 0.749 ± 0.015 0.728 ± 0.041
DAWN 0.895 ± 0.011 0.921 ± 0.036 0.786 ± 0.023 0.603 ± 0.087

Results excerpted from [12]. The best results in each column are in bold faces and the second best
results are underlined. BLM-NII: improved BLM with neighbor-based interaction-profile inferring; CMF:
collaborative matrix factorization; KBMF2K: kernelized Bayesian matrix factorization with twin kernels;
NRLMF: neighborhood regularized logistic matrix factorization; WNN-GIP: weighted nearest neighbor
with Gaussian interaction profile kernels.
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2.5. Predicting New DTIs

In this experiment, the balanced DTIs were set as training data sets. We ranked the remaining
non-interacting pairs and selected the top five non-interacting pairs as predicted interactions.
We utilized four well-known biological databases (including ChEMBL (C) [19], DrugBank (D) [18],
KEGG (K) [15] and Matador (M) [20]) as references to verify whether or not the predicted new DTIs are
true. The predicted novel interactions by DAWN can be ranked based on the interaction probabilities,
which are shown in Table 5. The potential DTIs may be present in one or several databases. For
example, the secondly ranked DTI of GPCR (D00563: hsa3269) belongs to DrugBank and Matador
databases. In addition, the DTI databases (the above four databases) are still being updated, and the
accuracy of identifying new DTIs by DAWN may be increased.

Table 5. Top five new DTIs predicted by DAWN on four data sets.

Dataset Rank Drug Target Databases

Enzyme

1 D00545 hsa1571
2 D03365 hsa1571
3 D00437 hsa1559 M
4 D00546 hsa1571
5 D00184 hsa5478 D

Ion channel

1 D00542 hsa6262
2 D00542 hsa6263 M
3 D00349 hsa6263
4 D00477 hsa6336 C
5 D01448 hsa3782

GPCR

1 D01051 hsa3269
2 D00563 hsa3269 D, M
3 D00563 hsa1812 D
4 D00715 hsa1129 D, K
5 D00563 hsa1129

Nuclear receptor

1 D01689 hsa5241
2 D01115 hsa5241
3 D00443 hsa5241 D
4 D00443 hsa367 D
5 D00187 hsa2099

C: ChEMBL; D: DrugBank; K: KEGG; M: Matador.

3. Discussion

In this paper, we proposed a new DTIs predictor based on signal compression technology.
We encoded the drug molecule by a substructure fingerprint with a dictionary of substructure patterns.
Moreover, we applied the DWT to extract features from target sequences. At last, we concatenated the
target, drug, and network features to construct predictive model of DTIs.

To evaluate the performance of our method, the DTIs model was compared to other state-of-the-art
DTIs prediction methods on four benchmark datasets. DAWN achieved average AUCs of 0.981, 0.990,
0.952, and 0.906, and the AUPR values of DAWN were 0.895, 0.921, 0.786, and 0.603 on Enzyme, Ion
channel, GPCR, and Nuclear receptor, respectively. Although our result using feature selection could
be a kind of ameliorated prediction, the imbalanced problem of DTIs prediction is not solved very well.
SVM is poor on imbalanced data. The AUPR value of DAWN is low on the Nuclear receptor dataset.

4. Materials and Methods

To predict DTIs by machine learning methods, one challenge is to extract effective features from
the target protein, drug, and the relationship between drug–target pairs. Considering that DTIs
depend on the molecular properties of the drug and the physicochemical properties of target, we use
MACCS fingerprints (Open Babel 2.4.0 Released, OpenEye Scientific Software, Inc., Santa Fe, New
Mexico, United States) to represent the drug, and extract biological features from the target via DWT.
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In addition, the net feature describes the topology information of the DTIs network. We utilize the
above features to train the SVM predictor (LIBSVM Version 3.22, National Taiwan University, Taiwan,
China) for detecting DTIs.

4.1. Molecular Substructure Fingerprint of Drug

To encode the chemical structure of the drug, we utilize MACCS fingerprints with 166 common
chemical substructures. These substructures are defined in the Molecular Design Limited (MDL)
system, which can be found from OpenBabel (http://openbabel.org). The MACCS feature is encoded
by a binary bits vector, which shows the presence (1) or absence (0) of some specific substructures in a
molecule. Please refer to the relevant literature [13,14] for details.

4.2. Biological Feature of Target

4.2.1. Six Physicochemical Properties of Amino Acids

The target sequence can be denoted by seq = {r1, r2, · · · , ri, · · · , rL}, where 1 ≤ i ≤ L. ri is the
i-th residue of sequence seq, and L is the length of sequence seq. In addition, for ease of calculation
about feature representation, we select six kinds of physicochemical properties for 20 amino acid types
as original target features [21–24]. More specifically, they are hydrophobicity (H), volumes of side chains
of amino acids (VSC), polarity (P1), polarizability (P2), solvent-accessible surface area (SASA) and net charge
index of side chains (NCISC), respectively. Values of all kinds of amino acid are shown in Table 6.

Table 6. Six physicochemical properties of 20 amino acid types.

Amino Acid H VSC P1 P2 SASA NCISC

A 0.62 27.5 8.1 0.046 1.181 0.007187
C 0.29 44.6 5.5 0.128 1.461 −0.03661
D −0.9 40 13 0.105 1.587 −0.02382
E −0.74 62 12.3 0.151 1.862 0.006802
F 1.19 115.5 5.2 0.29 2.228 0.037552
G 0.48 0 9 0 0.881 0.179052
H −0.4 79 10.4 0.23 2.025 −0.01069
I 1.38 93.5 5.2 0.186 1.81 0.021631
K −1.5 100 11.3 0.219 2.258 0.017708
L 1.06 93.5 4.9 0.186 1.931 0.051672
M 0.64 94.1 5.7 0.221 2.034 0.002683
N −0.78 58.7 11.6 0.134 1.655 0.005392
P 0.12 41.9 8 0.131 1.468 0.239531
Q −0.85 80.7 10.5 0.18 1.932 0.049211
R −2.53 105 10.5 0.291 2.56 0.043587
S −0.18 29.3 9.2 0.062 1.298 0.004627
T −0.05 51.3 8.6 0.108 1.525 0.003352
V 1.08 71.5 5.9 0.14 1.645 0.057004
W 0.81 145.5 5.4 0.409 2.663 0.037977
Y 0.26 117.3 6.2 0.298 2.368 0.023599

H: hydrophobicity; VSC: volumes of side chains of amino acids; P1: polarity; P2: polarizability; SASA:
solvent-accessible surface area; NCISC: net charge index of side chains.

For the sake of facilitating the dealing with the datasets, the amino acid residues are translated
and normalized according to Equation (4).

P′
ij =

Pij − Pj

Sj
(j = 1, 2, . . . , 6; i = 1, 2, . . . , 20) (4)

where Pi,j and Pj indicate the value of the j-th descriptor of amino acid type i and the mean of 20 amino
acid types of descriptor value j, respectively, standard deviation (SD) corresponding to Sj.

Each target sequence can be translated into six vectors with each amino acid represented by
normalized values of six descriptors. Thus, the seq can be represented as physicochemical matrix
X = [x1, ..., xch, ..., x6], X ∈ RL×6, xch ∈ RL×1, ch = 1, 2, ..., 6.
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4.2.2. Discrete Wavelet Transform

Discrete wavelet transform (DWT) with its inversion formula was established by physical intuition
and practical experience of signal processing [25].

If a signal or a function can be represented as Equation (5), then the signal or function has a linear
decomposition. If the formula of expansion is unique, then the set of expansion can be said as a group
of basis. If this group of basis is orthogonal or represented as Equation (6), then the coefficient can be
computed by inner product as Equation (7).

f (t) = ∑
�

a�ψ�(t), (5)

(ψk(t), ψ�(t)) =
∫

ψk(t)ψ�(t)dt = 0, k 
= �, (6)

ak = ( f (t), ψk(t)) =
∫

f (t)ψk(t)dt, (7)

where � and k are the finite or infinite integer indexes, a� and ak are the real coefficients of the expansion,
and ψ�(t) and ψk(t) are the set of real functions.

For wavelet expansion, we can construct a system with two parameters, then the formula can be
transferred as Equation (8):

f (t) = ∑
k

∑
j

aj,kψj,k(t), (8)

where j and k are integer index, and ψj,k(t) is wavelet function, which generally forms a group of
orthogonal basis.

The expansion coefficient set aj,k is known as the discrete wavelet transform (DWT) of f (t).
Nanni et al. proposed an efficient algorithm to perform DWT by assuming that the discrete signal f (t)
is xch(n).

yl,high,ch(n) =
L

∑
k=1

[xch(k) · h(2n − k)] (9a)

yl,low,ch(n) =
L

∑
k=1

[xch(k) · g(2n − k)] (9b)

where h and g refer to high-pass filter and low-pass filter, L is the length of discrete signal, yl,low,ch(n)
is the approximate coefficient (low-frequency components) of the signal, l(l = 1, 2, 3, 4) is the
decomposition level of DWT, ch(ch = 1, 2, 3, 4, 5, 6) is the physicochemical index, and yl,low,ch(n)
is the detailed coefficient (high-frequency components).

DWT can decompose discrete sequences into high- and low-frequency coefficients.
Nanni et al. [26] substituted each amino acid of the protein sequence with a physicochemical property.
Then, the protein sequence was encoded as a numerical sequence. DWT compresses discrete sequence
and removes noise from the origin sequence. Different decomposition scales with discrete wavelet
have different results for representing the sequence of the target protein. They used 4-level DWT and
calculated the maximum, minimum, mean, and standard deviation values of different scales (four
levels of both low- and high-frequency coefficients). In addition, high-frequency components are more
noisy while low-frequency components are more critical. Therefore, they extracted the beginning of the
first five Discrete Cosine Transform (DCT) coefficients from the approximation coefficients. We utilize
Nanni’s method to describe the sequence of the target protein. The schematic diagram of a 4-level
DWT is shown in Figure 5.
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Figure 5. Wavelet decomposition tree.

4.3. Drug–Target Associations from Network

State-of-the-art works such as BLM [5], BLM-NII [6], NetLapRLS [8], CMF [9], KBMF2K [11],
NRLMF [12], and Cao’s work [14] used DTI network topology information to improve the prediction
performance. Therefore, we also consider utilizing net feature to build a DTI predictor.

The DTI network can be conveniently regarded as a bipartite graph. In the network, each drug
is associated with nt targets, and each target is associated with nd drugs. Excluding target Tj itself,
we make a binary vector of all other known targets of Di in the bipartite network, as well as a
separate list of targets not known to be targeted by Di. Known and unknown targets are labeled by
1 and 0, respectively. For drug Di, we get (nt − 1)-dimensional binary vector. Similarly, we also get
(nd − 1)-dimensional binary vector of target Tj. Thus, we can get a [(nd − 1) + (nt − 1)]-dimensional
vector for describing net feature.

4.4. Feature Selection and Training SVM Model

Not all features are useful for DTIs prediction. Therefore, we apply support vector machine
recursive feature elimination and correlation bias reduction (SVM-RFE+CBR) [27,28] to select the
important features of DTIs. The SVM-RFE+CBR can estimate the score of importance for each
dimensional feature. We rank these features (including MACCS feature, DWT feature, and net
feature) by the scores in descending order. Then, we select an optimal feature subset in top k ranked
manner to predict DTIs.

Support vector machine (SVM) was originally developed by Vapnik [29] and coworkers, and
has shown a promising capability to solve a number of chemical or biological classification problems.
SVM and other machine learning algorithms (e.g., random forest, RF, k-nearest neighbor, kNN, etc.)
are widely used in computational biology [30–33]. SVM performs classification tasks by constructing a
hyperplane in a multidimensional space to differentiate two classes with a maximum margin. The input
data of SVM is defined as {xi, yi}, i = 1, 2, ..., N, feature vector xi ∈ Rn and labels yi ∈ {+1,−1}.

The classification decision function implemented by SVM is shown as Equation (10).

f (x) = sgn{
N

∑
i=1

yiαi · K(x, xi) + b} (10)

where the coefficient αi is obtained by solving a convex quadratic programming problem, and K(x, xi)

is called a kernel function.
Here, we focus on choosing a radial basis function (RBF) kernel [34], because it not only has

better boundary response but can also make most high-dimensional data approximate a Gaussian-like
distribution. The architecture of our proposed method is shown in Figures 6 and 7.
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Figure 6. Overview of the drug–target interaction (DTI) prediction.

Figure 7. Flow chart. DWT: discrete wavelet transform; DCT: discrete cosine transform; Std: standard
deviation; SVM: support vector machine.

5. Conclusions

In this paper, we present a DTI prediction method by using multi-scale discrete wavelet transform
and network features. We employ a DWT algorithm to extract target features, and combine them with
drug fingerprint and network feature. Our method can achieve satisfactory prediction performances,
and our prediction can be a kind of ameliorated prediction by comparing with other existing methods
after feature selection. However, the imbalanced problem of DTIs prediction is not solved very well.
SVM is poor on imbalanced data. The AUPR value of DAWN is low on the Nuclear receptor dataset.

The prediction accuracy may be further enhanced with the further expansion of more refined
representation of the structural and physicochemical properties or a better machine learning model

134



Int. J. Mol. Sci. 2017, 18, 1781

(such as sparse representation and gradient boosting decision tree) for predicting drug–target
interactions. In the future, we will build the classification by the strategy of bootstrap sampling
and weighting sub-classifiers.
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Abstract: The insulin signalling system is one of the most conserved endocrine systems of Animalia
from mollusc to man. In decapod Crustacea, such as the Eastern spiny lobster, Sagmariasus verreauxi
(Sv) and the red-claw crayfish, Cherax quadricarinatus (Cq), insulin endocrinology governs male
sexual differentiation through the action of a male-specific, insulin-like androgenic gland peptide
(IAG). To understand the bioactivity of IAG it is necessary to consider its bio-regulators such as the
insulin-like growth factor binding protein (IGFBP). This work has employed various molecular
modelling approaches to represent S. verreauxi IGFBP and IAG, along with additional Sv-ILP
ligands, in order to characterise their binding interactions. Firstly, we present Sv- and Cq-ILP2:
neuroendocrine factors that share closest homology with Drosophila ILP8 (Dilp8). We then describe
the binding interaction of the N-terminal domain of Sv-IGFBP and each ILP through a synergy
of computational analyses. In-depth interaction mapping and computational alanine scanning of
IGFBP_N’ highlight the conserved involvement of the hotspot residues Q67, G70, D71, S72, G91, G92,
T93 and D94. The significance of the negatively charged residues D71 and D94 was then further
exemplified by structural electrostatics. The functional importance of the negative surface charge
of IGFBP is exemplified in the complementary electropositive charge on the reciprocal binding
interface of all three ILP ligands. When examined, this electrostatic complementarity is the inverse
of vertebrate homologues; such physicochemical divergences elucidate towards ligand-binding
specificity between Phyla.

Keywords: insulin-like growth factor binding protein (IGFBP); insulin-like androgenic gland
peptide (IAG); insulin-like peptides (ILP1; ILP2); molecular modelling; binding interaction; alanine
scanning; hotspot residue; electrostatics; decapod
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1. Introduction

The binding interaction of insulin-like growth factor binding proteins (IGFBPs) and their
insulin-like growth factor (IGF) ligands has been a significant focus of IGF endocrinology for the
past two decades [1–3]. This is reflective of the central function of the high-affinity IGFBP subgroup
(IGFBP1-6) in mediating the bioavailability and activity of IGFI and II at their receptor(s) [1–3].
In doing so, IGFBPs not only facilitate the translocation of their binding partners but they also provide
proteolytic protection, extending the half-life and maintaining a functionally viable reservoir of the
hormone in circulation [1–3].

The structure of the IGFBP is central to this function. Although domain specifics of the superfamily
vary, most notably across the low-affinity IGFBP-related subgroup (IGFBP-rP1-9) [1], the family
conforms to a common architecture: a highly structured, globular N terminal (N’) insulin-binding
domain; a flexible linking domain; and a flexi-folded C terminal (C’) domain, which is the most variable
domain across subgroups and species [1,3]. The highly structured N’ insulin-binding domain (the only
domain conserved across the entire IGFBP superfamily) provides the primary binding interface for
the ligand and is capable of binding in isolation [4]. In the case of IGFBP1-6, the C’ domain functions
to maximise binding affinity, encapsulating the ligand to stabilise binding by interacting with the N’
domain [3,5,6]. In doing so, the C’ shields some of the key residues involved in the interaction of IGF
with its receptor, increasing the antagonistic action of the IGFBP [5]. This synergistic binding of N’ and
C’ domains is coordinated through the flexible linking domain [1].

We have identified an IGFBP homologue in the decapod crustacean Sagmariasus verreauxi,
commonly referred to as the Eastern spiny lobster [7], prior to which a similar protein was identified
in the red-claw crayfish (Cherax quadricarinatus) [8]. Additional homologues have since been found in
a prawn, Macrobrachium nipponense [9], and two crab species, Scylla paramamosain [10] and Callinectes
sapidus [11]. These decapod IGFBPs share closest homology with the human IGFBP-rP1 (known as
MAC25) from the low-affinity IGF-binding subgroup. They all share a kazal-type serine proteinase
inhibitor as the linking domain and an immunoglobulin-like domain as the C’ domain (rather than
the thyroglobulin-type I domain of human IGFBP1-6 [1]). Unlike IGFBP1-6, the binding capacity of
IGFBP-rP1 is more diverse, enabling it to bind insulin with a similar affinity as the IGFs, although
with a reduced affinity compared to its specialised (IGFBP1-6) counterparts [12]. This is thought to be
achieved through the substituted C’ immunoglobulin domain [1], which is proposed to reduce the
synergistic N’ and C’ domain high-affinity binding for IGFs, whilst also better exposing the insulin
binding site [13,14]. In addition, it has been recognised that although they share the same overall fold,
the N’ insulin-binding domain of this IGFBP-r subgroup contains notable structural variations from
IGFBP1-6, resulting in a decreased IGF binding affinity [15]. Thus some suggest that the IGF binding
of the IGFBP-r subgroup is biologically irrelevant [15,16], advising of a primary function unrelated to
IGF binding [17]. Even so, the general consensus appears to be that the IGFBP-r subgroup functions in
both IGF-dependent and independent roles [1,17].

In the context of the decapod IGFBPs, the homology with the less IGF-specific IGFBP-rP1 is likely
to have functional significance, relating to the ligands with which these decapod homologues bind.
The IGFs comprise one subgroup of the insulin-like superfamily, with the insulin-like peptides (ILP)
encompassing the other [7,18]. The structural distinction centres around the pre-prohormone structure
and processing. IGFs tend to retain their truncated C-domain and have additional D (uncleaved) and
E (cleaved) domains after the A-chain [2,19,20]. ILPs undergo cleavage of the C-peptide and terminate
after the A-chain [7,18]. However, both IGFs and ILPs share the same disulfide bond topology, with two
inter (B to A) and one intra (A)-chain bonds [18,20].

IGF homologues have not yet been identified in decapods, but the Crustacean class Malocastraca
(which includes the Order Decapoda) is known for an ILP termed the insulin-like androgenic
gland peptide (IAG). This hormone, only found in males (with noted exceptions [21,22]),
is specifically produced and secreted from a male-specific endocrine gland known as the androgenic
gland (AG) [23–25]. Upon secretion, IAG stimulates and maintains the broad tissue effects of male
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sexual differentiation and maturation [26–30], reviewed in [31]. More recently, the prevalence of ILPs
in these species has diversified with the first identification of a DILP7/relaxin-like ILP in S. verreauxi
(Sv-ILP1) [7], since identified across the Order [32].

Work in C. quadricarinatus has already demonstrated the capacity of Cq-IGFBP to bind Cq-IAG
through a pull-down assay with AG homogenate, where the IGFBP was shown to bind residues
within the A-chain, B-chain and C-peptide; highlighting the ability of the IGFBP to also bind the IAG
pre-prohormone [8]. The IGF/ILP receptor signalling system, as characterised in mammals [2,3] and
Drosophila [33], is conserved in decapods (as evidenced by the identification of an active tyrosine
kinase insulin receptor (TKIR) [34,35] and an inactive decoy (TKIR_decoy) [34]). Consequently,
it seems highly likely that the IGFBP will adopt a similarly conserved role within the system. Thus,
to realistically interpret the bioactivity of IAG in mediating male sexual development, we must
integrate the regulatory influences of the IGFBP. Furthermore, the identification of additional ILPs [7]
and the broad tissue distribution of the IGFBP [7,8,10,11] in the decapods may suggest a multi-ligand
binding role.

In light of the dramatic advancements that have been made in the field of computational
protein-modelling and interaction studies [36,37], this work employed an in silico approach to study
the IGFBP_N’-ILP ligand interaction in decapod Crustacea. Firstly, we present Sv-ILP2 and Cq-ILP2,
which are novel to the Order. We then model the N’ domain of Sv-IGFBP and each ligand (Sv-IAG, ILP1
and ILP2) in order to characterise the binding interaction of each. In doing so we determine a subset of
consistently interacting residues at the IGFBP interface, involved in binding all three ligands, which
are further suggested to be hotspots based on computational alanine scanning. Electrostatic potential
surface calculations illustrate the significance of the negatively charged hotspots, suggesting them to
be a fundamental feature of complex formation. Together, these analyses emphasise the consequence
of amino-acid variations in determining the physicochemical structure and consequential binding
interactions of the seemingly conserved N’ insulin-binding domain of the IGFBP.

2. Results

2.1. Identification of Sv-ILP2

This work is the first to describe the identification of a second insulin-like peptide in S. verreauxi,
Sv-ILP2 (KP006646). Sv-ILP2 conforms to the ILP superfamily structure exhibiting all of its conserved
features: a signal peptide (20 amino acids (aa)); followed by a B-chain (28 aa) containing two cysteines;
a C-peptide (71 aa), flanked by RR cleavage sites; and an A-chain (17 aa) containing a double and
two single cysteines (Figure 1a). Interestingly, unlike Sv-IAG and Sv-ILP1, Sv-ILP2 contains multiple
RR cleavage sites throughout the C-peptide. These additional chains are somewhat reminiscent of
the additional D and E domains of the IGF-like pre-prohormone structure. However, as the CCxxxC
cysteine signature is located in the C’ domain of the open reading frame it was considered to be the
A-chain, suggesting these additional cleavage sites constitute an elongated C-peptide; we therefore
classified Sv-ILP2 as an ILP rather than an IGF.

Spatial expression analyses of Sv-ILP2 (Figure 1b) show it to be predominantly expressed in the
neuroendocrine tissues (brain and eyestalk) of males and females, although all RPKMs are low (RPKMs
as follows: female eyestalk 1.15; male eyestalk 0.8; male brain 0.39; immature AG 0.2). Temporal
RT-PCR analyses were also conducted (from phyllosoma instar 16 to puerulus) but Sv-ILP2 expression
was not identified (data not shown). When blasted at NCBI (https://blast.ncbi.nlm.nih.gov/Blast.cgi),
neither the pre-pro nor mature hormone gave any significant hits, although our phylogenetic analyses
(with a range of model ILPs) shows that Sv-ILP2 clusters with Dilp8 (Figure 1c). Thus, Sv-ILP2 is the
first of a new subclass of ILPs to be described in the decapods.

This work also presents two homologues of Sv-ILP1 and ILP2 (S. verreauxi, Suborder Achelata) in
the red-claw crayfish, C. quadricarinatus (Suborder Astacidea); we have therefore named these peptides
Cq-ILP1 (KP006644) and Cq-ILP2 (KP006645) (Figure 1c). Cq-ILP1 is comprised of: a signal peptide
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(25 amino acids (aa)); a B-chain (37 aa); a C peptide (115 aa); and an A-chain (37 aa). Cq-ILP2 is
comprised of a: signal peptide (25 aa); a B-chain (29 aa); a C-peptide (159 aa); and an A-chain (17 aa).
When assessed by RT-PCR, the Cq homologues display similar spatial expression to that described
in S. verreauxi, with Cq-ILP1 present in the male and female brain, antennal gland, gonads, and the
female, but not male hepatopancreas, while Cq-ILP2 expression is specific to the male and female brain
and thoracic ganglia (no expression in the eyestalk) (data not shown).

 

Figure 1. Spatial expression and phylogeny of Sv-ILP2: (a) sequence of Sv-ILP2, the signal peptide
is underlined in red and the B-(blue) and A-(orange) chains boxed with the cysteine core of each
highlighted. The C-peptide is shown in grey with the predicted Arg-C cleavage sites shown,
with those predicted to generate the mature hormone underlined in red. (b) Transcriptomic spatial
expression of Sv-ILP2 quantified as reads per kilobase per million reads (RPKM) for male and female
brain (BR), eyestalk (ES), gonads (TS and OV), antennal gland (AnG), and fifth walking leg (5WL),
immature androgenic glands (I_AG1 and I_AG2), and mature androgenic glands (AG1* and AG2,
where * indicates a hypertrophied gland). Validated with spatial RT-PCR analyses, with the removal
of the immature AGs, 5WL, and AG1*, and the addition of male and female hepatopancreas (HP).
Negative control (NC) in the fifteenth lane, 16S as positive control. (c) Neighbour-joining phylogram
of Sv- and Cq-ILP1 and ILP2 with a range of ILPs from model species: Anopheles ILP1-5, Drosophila
Dilp1-8, decapod insulin-like androgenic gland peptides (IAGs), and bovine insulin and human IGFI.
Bootstrap values are shown at each node and were performed with 1000 replicates. Scale bar indicates
number of amino acid substitutions per site. IAG cluster boxed in blue, Dilp7/relaxin-like cluster in
yellow, and novel decapod ILP2s in purple.

2.2. Sequence Analyses of IGFBPs and ILP Ligands

We conducted pairwise alignment of the IGFBP, IAG, ILP1, and ILP2 peptides from S. verreauxi
and C. quadricarinatus to assess physicochemical conservation. The IGFBP sequences share a pairwise
identity score of 68.9% and significant conservation in physicochemical properties (Figure 2a).
With regard to the ligands, the IAG peptides share the lowest identity score of the three ILPs,
at 32.2% across the pre-prohormone and 35.5% across the mature hormone (consisting of only the
A and B-chains) (Figure 2b). The ILP1 homologues share the highest conservation at 64.6% across
the pre-prohormone and 83.1% across the mature hormone (Figure 2c). This high identity score is
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fitting with the strong conservation of this relaxin-like ILP subclass across species (also known as the
Dilp7-likes characterized in Drosophila).

The ILP2 homologues share an identity score of 44.6% at the pre-prohormone level,
which increases to 57.8% for the mature peptide (Figure 2d). As previously mentioned, we surmise
that the final cleavage site indicates the beginning of the A-chain, based on the structural placement of
the cysteines but also reflective of the increased conservation observed between the Sv- and Cq-ILP2
homologues in this C’ domain. These sequence alignments exemplify the minimized evolutionary
restraint within the C-peptide, showing far higher rates of divergence than that observed in the A and
B-chains which ultimately form the mature and active hormone.

Figure 2. Sequence alignment of Sagmariasus verreauxi and Cherax quadricarinatus IGFBP and ILP
homologues, with emphasis on the conservation of physicochemical properties. Residues are
colored in accordance with properties: red—defines small, hydrophobic residues; blue—negatively
charged/acidic; magenta—positively charged/basic; and green—polar and amine groups. An asterisk
(*) indicates a conserved amino acid, a colon (:) those with conserved physicochemical properties,
and a full stop (.) those with weakly similar properties. (a) Compares Cq-IGFBP and Sv-IGFBP,
the signal peptide is underlined in red, the insulin-binding domain boxed in blue with the cysteine core
highlighted, the kazal domain underlined in purple, and the C’ immunoglobulin domain boxed in grey.
(b) Compares Cq-IAG and Sv-IAG; (c) Sv-ILP1 and the novel Cq-ILP1; and (d) the novel Sv-ILP2 and
Cq-ILP2. In each case the signal peptide is underlined in red and the mature hormone is highlighted
as the B-(blue) and A-(orange) chains with the cysteine core of each highlighted; C-peptide Arg-C
proteinase cleavage sites are underlined in red.

To provide a more cohesive understanding of the insulin-signaling system in S. verreauxi,
we generated a spatial expression profile summarizing all of the insulin factors identified in the species
to date (Figure 3), namely, Sv-IAG [38]; Sv-IGFBP and Sv-ILP1 [7]; Sv-TKIR and Sv-TKIR_decoy [34,39];
and Sv-ILP2, presented in this work (all RPKMs have been validated with independent RT-PCR,
some with additional in situ analyses; related references given above after each gene). Of note is the
broad tissue distribution of Sv-IGFBP and the dramatically higher expression of IAG relative to all
other endocrine factors. However, this expression must be considered in the context of localization,
as IAG is secreted by a relatively small subset of cells, all of which are accounted for in this one gland.
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Figure 3. Spatial expression profile summarising all insulin factors identified in Sagmariasus verreauxi
for a cohesive depiction of our current understanding of the insulin endocrine system: IAG [38];
ILP1 and IGFBP [7]; the active (TKIR) and decoy (TKIR_decoy) tyrosine kinase insulin receptors [34,39];
and Sv-ILP2. Quantified as RPKM; tissue abbreviations as previously described.

2.3. Structural Modelling

Structures of Sv-IGFBP (3TJQ and 2CQV) and Sv-IAG, Sv-ILP1 and Sv-ILP2 (2KQP) were predicted
by homology modelling using the described PDB templates. The predicted structure of Sv-IGFBP
provides clear visualization of the domain architecture of the molecule (Figure 4a). The highly
structured N’ insulin-binding domain contains seven disulfide bonds, ensuring accurate folding of the
binding interface. The kazal domain, defined as the flexible linking region which connects the N’ and
C’ domains, contains an alpha helical region and one disulfide bond. The C’ immunoglobulin domain
also contains a disulfide bond, as well as a cis-peptide bond, but lacks any other significant orienting
features and is mainly comprised of beta pleated sheets and random coils.

Each ILP ligand conforms to the characteristic tertiary structure of the ILP family with two inter
and one intra (A-chain) disulfide bonds that determine the overall fold of the molecule (Figure 4b–d).
Within the confines of the generic ILP fold, each protein displays unique features. The most prominent
of these include the elongated A-chain of Sv-ILP1, which does not form the usual alpha-helix but
instead a random coil (Figure 4c; Figure S1). Conversely, Sv-ILP2 has a truncated A-chain, where
the residues 1QCCV4 result in an alpha turn rather than a complete helix (Figure 4d; Figure S1).
Refer to M&M and Figure S1 for full modelling procedures. It is these features that determine the
specifics of the interactive interface shared between the A- and B-chains, dictating the molecular
structure of each ligand. This is best illustrated by the inter-chain interactions: the A- and B-chains
of IAG, ILP1, and ILP2 are predicted to share one, three, and one hydrogen bonds and 153, 109,
and 74 non-bonded contacts, respectively, in addition to the two disulfide bonds common to all three
(predicted by PDBsum) (Figure S2).
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Figure 4. Molecular structure models of (a) Sv-IGFBP, the domains of which are indicated with: a blue
bracket for the highly structured N’ insulin-binding domain; a purple bracket for the linking kazal
domain; and grey bracket for the C’ immunoglobulin domain. (b) Sv-IAG, (c) Sv-ILP1, and (d) Sv-ILP2
are shown as previously described with the A-chain in orange and B-chain in blue. All structures are
shown in secondary structure ribbon format with disulfide bonds highlighted as sticks.

2.4. Complex Formation

Complex formation and protein-protein interactions were then investigated through both manual
structural alignment and predictive binding analyses. Due to the reduced reliability of modelling the
bound C’ immunoglobulin domain, Sv-IGFBP was truncated after the kazal domain (Sv-IGFBP_N’)
(as is common in IGFBP binding studies [40,41]; PDB: 1H59 [42]; PDB: 1WQJ [5]). Sv-IGFBP_N’
was used for all further interaction studies. We collated manual alignment analyses, with predicted
binding interactions generated through PDBsum [43] and PRODIGY [44] to generate an interaction
map of all the residues involved in complex formation (Figure 5). Visual comparison of the three
Sv-IGFBP_N’ complexes (Figure 5a) clearly demonstrates the binding interface of the N’ insulin-binding
domain (supported by HADDOCK2.2 simulations: Figure S3), with all highlighted interacting residues
predicted by both PDBsum and PRODIGY (shown in Figure 5b; additional residues predicted by
PRODIGY presented in Table S1). Of all the predicted interacting residues presented in Figure 5b,
we have highlighted those amino acids of IGFBP_N’ that show conserved interaction contacts with
all three ligands (*), namely: the negatively charged Asp(D)71 and Asp(D)94; supported by the
polarGln(Q)67 (where proton acceptor properties enable it to form two hydrogen bonds, stabilizing
the overall negative charge); the neutrally charged Ser(S)72 and Thr(T)93; and Gly(G)70, Gly(G)91,

and Gly(G)92. In addition to these eight consistent contacts of IGFBP_N’, PRODIGY predicts a further
nine (Table S1). The physicochemical nature of each interaction as predicted by PRODIGY suggests
that a relatively even contribution of charged, polar, and non-polar interactions contribute to binding,
with charged forces slightly dominating with IAG and ILP1 and hydrophobic forces being slightly
dominant with ILP2 (Table S1b).
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Figure 5. Molecular structure models of bound complexes and interaction map: (a) Complex of
Sv-IGFBP_N’ with each ligand. In each case the IGFBP_N’ is in green and the ligand in orange
(A-chain) and blue (B-chain). All residues involved at the binding interface are indicated in stick,
with colouring as previously described. (b) Interaction map describing residue-specific interactions
between Sv-IGFBP_N’ and each ligand. Standard amino acid abbreviations are used, with colours
indicating physicochemical properties as follows: blue—positive, red—negative, green—neutral,
grey—aliphatic, mauve—aromatic, orange—proline and glycine, and yellow—cysteine. Number of
interacting residues is given in brackets; an asterisk denotes those residues that show a conserved
binding interaction with all three ligands (n = 8).

2.5. Interaction Hotspots

As the IGFBP_N’ is predicted to contain a subset of consistently interacting residues when in
complex with all three ligands, the energy contributions of these residues were investigated using
computational alanine scanning to highlight binding hotspots. A hotspot is defined as an amino
acid that significantly decreases the binding free-energy of complex formation. As a rule: hotspot
potential increases as the degree of buriedness of a residue decreases (due to shape complementarity);
it increases if a given residue forms a salt bridge, and hotspot residues tend to show structural and
interactive complementarity to that of their binding partners. In brief, alanine scanning is conducted by
mutating each residue in the complex to alanine, removing the sidechains that are fundamental to its
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physicochemical and interaction properties. The binding free-energy is then calculated and compared
to the wild-type. In doing so, those residues that contribute most significantly to achieving the binding
energetics of complex formation are determined. This work used five independent algorithms to
generate a meta-style analysis. These hotspot predictions are in strong support of our predicted
interactions, with all the consistently interacting residues predicted by both PDBsum and PRODIGY
being identified as hotspots (Figure 6a). Furthermore, of the additional predicted hotspots, four of the
seven residues were predicted as consistently interacting residues by PRODIGY (denoted with a P in
Table S1). Together, this allows confident prediction that these residues are vital to the binding capacity
of IGFBP_N’, suggesting a synergistic physicochemical influence of negative charge, polar neutral
residues, and glycine. Figure 6b shows the sequence positioning of these residues, which appear to
cluster into two defined regions as hotspot pockets, which, at the structural level, orientate across the
exposed binding interface (Figure 6c).

Figure 6. Identification of hotspot residues: (a) determined by five independent alanine scanning
algorithms. Amino acids are shown in standard letter notation. Other notation is as follows: an asterisk
(*) indicates the presence of a salt bridge predicted by PDBsum; a dash (‘) a salt bridge predicted by
Cpclab; bold underlined indicates residues that show a conserved binding interaction with all three
ligands (see Figure 5b). (b) Illustration of Sv-IGFBP_N’ sequence (insulin-binding domain boxed in blue
and kazal domain underlined in purple) highlighting the positioning of predicted hotspots. The eight
consistently interacting hotspot residues are in bold underline. Additional predicted hotspots are also
listed, with a P highlighting those residues that were predicted as consistently interacting residues
by PRODIGY. (c) Structural illustration of Sv-IGFBP_N’ with conserved interacting hotspot residues
highlighted in ball and stick and additional hotspots in stick. Throughout, red indicates negatively
charged residues; green, neutrally charged; and orange, glycine. Note the neutral Gln(Q) has been
underlined in red in (b) sequence and coloured red in (c) structure due to its role in stabilizing the
overall negative charge through the formation of hydrogen bonds.

2.6. Electrostatic Potential Molecular Surfaces

Considering the conserved prevalence of negatively charged residues throughout the hotspot
predictions, we conducted an electrostatic potential surface analysis to further investigate the
significance of these negatively charged residues. Figure 7a shows the electrostatic potential surface
of the IGFBP_N’-IAG complex and the binding interfaces of each individual molecule, as well as
the additional ligands, ILP1 (Figure 7b) and ILP2 (Figure 7c). The binding interface of Sv-IGFBP_N’
is indeed characterized by a strong negative electrostatic potential. The complementary positive
electrostatic potential that exists on the reciprocal interface of all three ligands is in support of
an electrostatic interaction. Considering the sequence conservation of Sv-IGFBP and Cq-IGFBP
(Figure 2a), we performed similar analyses on Cq-IGFBP_N’. Indeed, the negative electrostatic potential
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of the predicted binding interface is conserved to Cq-IGFBP_N’, as is the broader physicochemical
nature of 13 of the 15 interaction hotspots characterized in Sv (Figure 8). Of note is the Glu(E)70

substitution in Cq (replacing the Gln(Q)67 of Sv) emphasizing the suggested negative-centered
properties of this residue in Sv. This is indicative of conserved interactive properties and the resulting
binding mechanism of the two IGFBP_N’ of these species.

 

Figure 7. Electrostatic potential surface of: (a) Sv-IGFBP_N’-IAG complex and the individual binding
partners; (b) ILP1; and (c) ILP2. IGFBP_N’ is coloured in green and the ligands in blue and orange;
the interacting hotspot residues of IGFBP_N’ are highlighted as described in Figure 6c; ligands have
been orientated to display the binding interface. Surfaces are colored by potential on the solvent
accessible surface on a scale of −kT/e (red) to +kT/e (blue), as indicated by the scale bar.

Figure 8. Comparison of Sv-IGFBP_N’ and Cq-IGFBP_N’: (a) sequence alignment of the focal region of
Sv and Cq insulin-binding domains (boxed in blue); (b) Electrostatic potential surface of Cq-IGFBP_N’.
All physicochemical conserved residues (predicted as interaction contacts in Sv) are highlighted in bold
in sequence and as sticks in structure, the two non-conserved residues (Thr75 and Gly97) are shown
in line. Throughout, red indicates negatively charged residues; green, neutrally charged; and orange,
proline and glycine. Surfaces are colored by potential on the solvent accessible surface on a scale of
−kT/e (red) to +kT/e (blue), as indicated by the scale bar.
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For evolutionary comparison, we conducted electrostatic potential surface calculations on
the template complexes IGFBP4_N’ and IGFI (PDB: 1WQJ) (Figure 9a), and IGFBP5_N’ and IGFI
(PDB: 1H59) (Figure 9b), as well as IGFII (PDB: 2L29) (Figure S4), and found that these human
complexes (positive electrostatic potential on the IGFBP and negative on the ligand) display inverse
complementary electrostatic potentials to those described in S. verreauxi and C. quadricarinatus (negative
electrostatic potential on the IGFBP and positive on the ligand). We then proceeded to conduct
electrostatic potential surface calculations on a range of publicly available vertebrate IGFBP1_N’ and
IGFI structures. All of those analyzed (namely rat, cow, chicken, for which IGFBP2_N’ replaced
IGFBP1 and salmon) display a similar electrostatic potential complementarity to that observed in
human, with a positive (IGFBP) and negative (IGF) electrostatic potential (data not shown). Thus,
the complementarity common to the vertebrate IGFBP-ligand examples differs from that described in
these decapod Crustacea.

Figure 9. Electrostatic potential surface in vertebrates: (a) the bound complex and individual binding
partners of human IGFBP4_N’-IGFI (PDB: 1WQJ); and (b) human IGFBP5_N’-IGFI (PDB: 1H59). In both
cases the IGFBP_N’ is coloured in blue and the IGFI in green. Surfaces are colored by potential on the
solvent accessible surface on a scale of −kT/e (red) to +kT/e (blue), as indicated by the scale bar.
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3. Discussion

The interaction studies conducted in this work provide structural and physicochemical evidence
for the capacity of IGFBP to bind the ILP ligands identified in S. verreauxi. By comparing Sv002D-IGFBP
with a homologous IGFBP from C. quadricarinatus (a member of the sister Suborder Astacidea),
we highlight the conservation of these physicochemical properties, suggesting a similar binding
interaction to be conserved. These structural studies are indicative of a conserved function of the
IGFBP in the insulin endocrine system of these decapods.

The contacts that occur at the binding interface are the fundamental features that dictate a binding
interaction and, critically, its stability [45]. This makes in silico analyses such as these a highly
suitable method to investigate and visualise molecular binding. Furthermore, the development of
computational alanine substitution has provided significant insight into the energetic contributions
of the binding interface [45,46], most significantly highlighting that only a few key residues—
the hotspots—are those that contribute most significantly to the binding free-energy of complex
formation [45]. Our analyses of Sv-IGFBP_N’ agree with this, firstly identifying those residues that are
involved in interaction contacts with all three ligands (Figure 5b) and then verifying their significance
as interaction hotspots. Hotspot residues tend to cluster in pockets within the centre of the exposed
binding interface [45]. This is true of our predicted hotspots, which show close structural orientation
across the exposed centre of the N’ domain (Figure 6c).

The physicochemical nature of these conserved interacting hotspots (Q67, G70, D71, S72, G91, G92,
T93 and D94) suggests that a range of contact properties exist at the binding interface (supported by the
PRODIGY contact predictions; Table S1b). In particular, we illustrate the significance of the negatively
charged hotspots, providing a structural illustration of the negative charge of the entire Sv-IGFBP_N’
binding interface. Taken with the complementary positive charge of the reciprocal interface of each ILP
(Figure 7), it appears that complex formation occurs, at least in part through an electrostatic interaction.
Electrostatic interactions promote complex affinity through hydrogen bonding and in certain cases,
such as that predicted for Asp(D)71 in complex with ILP2 (Figure 5b), salt bridge formation, adding
significant stability to the bound complex.

However, any binding interface is achieved through a complex synergy of molecular
interactions [45]. For example, hydrophobicity has been repeatedly described as the interactive
force in IGFBP_N’-IGF complexes. Studies with human IGFBP5_N’ [42] and IGFBP4_N’ [6] highlight
the conserved importance of the hydrophobic residues (Val49/48, Leu70/69, Leu74/72). This hydrophobic
patch is conserved across all six IGFBP_N’ [47] and has been mutated in IGFBP3-6_N’, resulting in
a ~1000 fold decrease in binding affinity [40,41,48–50]. The solved complex of IGFI with IGFBP5_N’
further verified the hydrophobic interaction, evident through the interwoven hydrophobic contacts of
protruding side chains [42], also described for IGFBP4_N’ [5,6]. Of the above, the only mention
of electrostatic properties comes from IGFBP3_N’ and 5_N’, where the electropositive residues
Lys68/Arg69 were also highlighted as critical for high-affinity binding [40,41]. It is only more recently
that the role of electrostatic interactions has been established. Chen et al., (2014) [51], conducted
computational alanine scanning of IGFI to select mutation hotspots in order to conduct comparative
molecular dynamic simulations. Five of the six determined hotspots were negatively charged
(three Glu(E) and two Asp(D)) and electrostatic interactions were determined to be the dominant
driving force behind the IGF-IGFBP interaction [51]. These simulations are in strong support of our
electrostatic potential surface analyses, which describe an electropositive (IGFBP) to electronegative
(IGF) complementarity in vertebrates (Figures 9 and S4).

It follows that residues across the binding interface coevolve, acquiring binding pockets enriched
with amino acids that ensure an interdependent binding interaction [45]. Such coevolution is evident
in the significant sequence conservation between Sv and Cq-IGFBP, and further still by the inverse
electrostatic complementarity that we have observed between the crustacean (Figures 7 and 8) and
vertebrate (Figures 9 and S4) IGFBP_N’-ligand complexes. Rosen et al., (2013) [8], found that Cq-IGFBP
was not able to bind human insulin and could only weakly bind human IGFI. This emphasises that
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although the conserved cysteine architecture of the IGFBP_N’ family coordinates the same overall
fold [1,15], it is the specific properties of amino acids, particularly the interaction hotspots, that govern
side-chain interactions [15] and thus the binding capacity for any given ligand. Indeed, the same
has been noted with the evolutionary conservation of the insulin receptor and its interactions with
insulin [52].

A structural comparison of the bound Sv-IGFBP_N’ complexes suggests that a similar interaction
is shared across all three ligands. Binding affinity predictions varied, with PRODIGY [43,44]
and PYDOCK [53] showing no significant distinction and ROSETTADOCK [54] indicating
an ILP1 > IAG > ILP2 affinity pattern and FIREDOCK [55] an ILP2 > ILP1 > IAG pattern. Thus,
no reliable affinity prediction can be determined; however, taken with our structural studies, it can
be stated that Sv-IGFBP_N’ appears to lack a selective affinity for any of these ligands, similar to
that described for IGFBP-rP1 with insulin, IGFI, and IGFII [12]. The inability to generate consistent
predictions of relative binding affinity is partly due to the intrinsic error in the computational prediction
of binding affinities but also reflects the use of a molecular model of the isolated IGFBP_N’. Indeed,
this is a common problem in IGFBP structural studies. Although well aware of the interactive nature
of the IGFBP_N’ and C’ domains in the mediation of binding affinity, the N’ insulin-binding domain
remains the focus of structural and affinity studies, mainly due to the poor ability to solve the flexible
linking domain [51]. Yet, as we are well aware of the synergistic function of the N’ and C’ domains
in mediating affinity [3,6], we must strive to generate interaction studies of the entire protein [37] in
order to gain accurate in silico quantification of IGFBP binding affinity across ligands.

In a practical context, these in silico proof-of-binding studies suggest that these decapod IGFBPs
may offer a distinct mode to regulate the bioavailability and consequential activity of IAG. The use
of RNAi biotechnologies employing IAG to induce sex-reversal for the monosex population culture
has been highly successful in the commercial decapod M. rosenbergii [56,57], with similar research
practices occurring across commercial species. Molecular evidence for the interconnected nature of
the IGFBP and IAG was demonstrated by Li et al., (2015) [9], who showed that the silencing of IAG in
M. nipponense caused a ~50% reduction in the expression of the IGFBP (so named IAGBP). However,
although this is evidence of a transcriptional interaction, when interpreted in the context of this work
these conclusions may be somewhat misleading. This is most evident in the naming of the IGFBP as
an IAGBP, suggesting specificity. This study clearly demonstrates the capacity of the IGFBP to bind
non-IAG ILPs. Indeed, the finding that IAG silencing only resulted in a significant decline of IAGBP in
the AG, testis, muscle, and hepatopancreas, but not in the neuroendocrine tissues of brain, eyestalk,
and nerve cord is evidence for a maintained function of the IAGBP in these tissues. As we show both
ILP1 [7] and ILP2 (this study) to express in neuroendocrine tissues, perhaps the maintained expression
of “IAGBP” in the neuroendocrine tissues of M. nipponense is evidence of an unaffected interaction with
additional ILPs. This is further supported by the increasing evidence of additional ILP1/relaxin-like
ILPs in the decapods [32], which are likely to share a similar binding interaction with their IGFBPs.
Thus, we caution against employing IGFBP as a target for IAG manipulation, as it is likely to induce
off-target effects across the broader insulin endocrinology of these species. In the context of IAG
regulation, additional bio-regulators may provide a more specific anti-protease action, such as the
family of AG enriched α2-macroglobulins [58] identified through their >5× higher expression in the
AG relative to all other tissues [59].

Moreover, the IGF-independent action of the IGFBP superfamily (most significantly the IGFBP-r
subgroup) is not to be ignored [3,17]. Thus, an ILP-independent functionality of these decapod IGFBPs
is very probable; an example being the immunological function investigated by Huang et al., (2016) [11].
When one considers the unspecified IGF/insulin binding capacity of IGFBP-rP1, as well as its ligand
independent functions [1], perhaps these homologous decapod IGFBPs [7–11] (which are the only
IGFBP subtype to be identified in the Order) are the multi-functional, unspecified ancestors of the
superfamily described in vertebrates. Multiple modes for the evolution of the IGFBP family have
been suggested, but establishing the evolutionary trajectory of this diverse superfamily is complex,
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with the only pronounced feature being the early emergence and conservation of the N’ insulin-binding
domain [1].

In summary, this work has added novel evolutionary perspectives to the IGFBP superfamily,
demonstrating the conserved functionality of an IGFBP-rP1 homologue in binding multiple insulin-like
ligands in a decapod crustacean. This constitutes further evidence for the conserved nature of the
insulin-signalling system in decapod species. By employing molecular modelling approaches we have
assessed the structural, but more importantly, the physicochemical nature of the IGFBP_N’. In doing
so, we suggest that these physicochemical characteristics are at the core of the IGFBP_N’ divergences
across species. The inverse electrostatic complementarity that we illustrate to exist between the
decapod and vertebrate IGFBP_N’-ligand complexes is evidence of such. These dramatic divergences
likely justify the specificity of ligand binding between Phyla.

4. Materials and Methods

4.1. Sequences

In addition to the previously described sequences for Sv-IAG (KF220491.1), Sv-ILP1 (KP006643),
and Sv-IGFBP (KU195720), this work is the first to describe a second insulin-like peptide in S.-verreauxi,
Sv-ILP2 (KP006646), as well two homologues in C. quadricarinatus, so named Cq-ILP1 (KP006644) and
Cq-ILP2 (KP006645). Sequences were mined from transcriptomic data using a Java script for the conserved
cysteine residue motif (using CLC (v7.5.1)). All sequences have been submitted to NCBI Genbank
(Accession Numbers given in brackets). Phylogenetic analyses were conducted with mature ILP sequences
(removal of signal and C-peptide) in Mega (7.0.21), aligned by Muscle and trees constructed using the
neighbour-joining method with 1000 bootstrap replicates. This work also uses the C. quadricarinatus IGFBP,
Cq-IGFBP (KC952011.1), and Cq-IAG (ABH07705.1). Sequence alignment and physicochemical analyses
were conducted using Clustal2.1 (http://www.ebi.ac.uk/Tools/msa/clustalo/).

4.2. Protein Structure Modelling

Sequences for Sv-IGFBP, Cq-IGFBP, Sv-IAG, Sv-ILP1, and Sv-ILP2 were submitted to LOMETS
http://zhanglab.ccmb.med.umich.edu/LOMETS [60] to select the closest resolved structures available
from the Protein Data Bank (PDB) to serve as structural templates. Models were based on the following
templates: Sv- and Cq-IGFBP insulin binding and kazal domains on IGFBP-rP5, also known as HTRA1
(PDB: 3TJQ_A), and the immunoglobulin domain on a myosin light chain kinase (PDB: 2CQV_A).
Sv-IAG, Sv-ILP1, and Sv-ILP2 were constructed based on insulin (PDB: 2KQP_A). In addition, each
sequence was analysed using Network Protein Sequence Analysis, Consensus Secondary Structure
Prediction meta-server (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_
seccons.html), to detect any structural variances from the chosen template, which were then specifically
applied to each sequence (refer to Figure S1 for full details on modelling procedure).

The sequence alignments were imported into Discovery Studio 4.0 (Biovia; Accelrys Inc.,
San Diego, CA, USA) for model construction. Each protein model was generated using the “Build
Homology Model” by MODELER [61], implementing the disulfide bond criteria and any secondary
structure restraints (refer to Figure S1). In the case of Sv-IGFBP, an additional cis-peptide bond was
defined in the C’ immunoglobulin domain. In each case, the optimal model was selected via its lowest
energy and associated DOPE score [62] (Sv-IGFBP, −14117.9; Cq-IGFBP, −8248.2; IAG, −7841.97, ILP1,
−10224.5, ILP2, −6622.85). For the ILPs the C-peptide was kept intact for modelling (as it is likely
to be involved with orientation and folding) and later removed. Due to the flexible structure of the
IGFBP C’ immunoglobulin domain, truncated models (IGFBP_N’) consisting of the insulin-binding
and kazal domains were generated for Sv (truncated at R153) and Cq (truncated at R155) and used for
subsequent analyses.
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4.3. Molecular Docking and Binding Studies

For interaction studies, Sv-IGFBP_N’ and each ligand were imported to the Matchmaker module
in UCSF Chimera (http://www.rbvi.ucsf.edu/chimera) and aligned to the resolved, bound structure of
IGFBP4_N’ and IGFI (PDB: 1WQJ). The resulting bound models were saved relative to the template and
reimported to Discovery Studio. Each complex was then individually refined by energy minimisation
(using the CHARMm force field) to reduce steric clashes. For interaction assessment, refined complexes
were then submitted to PDBsum Generate, (http://www.ebi.ac.uk/thornton-srv/databases/pdbsum/
Generate.html), PRODIGY [43,44] (http://milou.science.uu.nl/services/PRODIGY/), CCharPPI [63]
(https://life.bsc.es/pid/ccharppi), and then reanalysed manually in Chimera to validate interacting
residues. To assess the reliability of our modelled complexes, structures were also submitted
to HADDOCK2.2: Easy interface (http://milou.science.uu.nl/services/HADDOCK2.2) [64,65] to
generate comparative docked complexes.

4.4. Alanine Scanning and Hotspot Residues

We employed computational alanine scanning to determine the hotspot residues of
Sv-IGFBP_N’. This was done by replacing each residue in turn with alanine (the smallest
most inert amino acid) and assessing for a significant decrease in the binding free-energy [46].
We submitted each refined bound complex to five software platforms to gain a meta-style output:
Cpclab (http://cpclab.uni-duesseldorf.de/dsppi/) [66]; Robetta (http://www.robetta.org/
alascansubmit.jsp) [67]; KFC (http://kfc.mitchell-lab.org/) [68]; ANCHOR (http://structure.pitt.
edu/anchor/upload/); and HotRegion (http://prism.ccbb.ku.edu.tr/hotregion/) [69]. In addition,
the electrostatic interaction of each Sv complex, Cq-IGFBP_N’ and a range of vertebrate structures
was determined by performing electrostatic potential surface calculations using PDB2PQR [70] and
APBS [71] programmes within UCSF Chimera (with protonation states at physiological pH and 298 K
and parse charges). The surface potential representation is shown in each figure, with charge levels
ranging from −kT/e (red) to +kT/e (blue), as indicated by the scale bar.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/9/1832/s1.
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Abbreviations

AG Androgenic gland
C’ C terminal
Cq Cherax quadricarinatus (red-claw crayfish)
Dilp7 Drosophila ILP7
Dilp8 Drosophila ILP8
IAG Insulin-like androgenic gland peptide
IGF Insulin-like growth factor
IGFBP Insulin-like growth factor binding protein
IGFBP-rP1 Insulin-like growth factor binding- related protein
ILP Insulin-like peptide
N’ N terminal
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RPKM Reads per kilobase per million reads
Sv Sagmariasus verreauxi (Eastern spiny lobster)
TKIR Tyrosine kinase insulin receptor
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Abstract: Ion channels (IC) are ion-permeable protein pores located in the lipid membranes of all
cells. Different ion channels have unique functions in different biological processes. Due to the
rapid development of high-throughput mass spectrometry, proteomic data are rapidly accumulating
and provide us an opportunity to systematically investigate and predict ion channels and their
types. In this paper, we constructed a support vector machine (SVM)-based model to quickly
predict ion channels and their types. By considering the residue sequence information and their
physicochemical properties, a novel feature-extracted method which combined dipeptide composition
with the physicochemical correlation between two residues was employed. A feature selection
strategy was used to improve the performance of the model. Comparison results of in jackknife
cross-validation demonstrated that our method was superior to other methods for predicting ion
channels and their types. Based on the model, we built a web server called IonchanPred which can
be freely accessed from http://lin.uestc.edu.cn/server/IonchanPredv2.0.

Keywords: ion channels; pseudo-dipeptide composition; machine learning method

1. Introduction

Ion channels are pore-forming membrane proteins for the transmembrane exchange of inorganic
ions (as shown in Figure 1). Ion channels exist in the membranes of all cells and are required
in numerous physiological and pathological processes, such as regulating neuronal and cardiac
excitability, muscle contraction, hormone secretion, fluid movement, and immune cell activation [1].
Due to their important role in biological processes, ion channels are often used as targets for disease
diagnosis and drug development. There are over 300 types of ion channels in living cells [2], and
they differ in their structure and function. According to the different gating mechanisms, the ion
channels can be mainly divided into two categories, namely voltage-gated ion channels (VGIC) and
ligand-gated ion channels (LGIC) [3]. The opening and closing of the voltage-gated ion channels
depends on the change of the membrane potential, whereas the state of the ligand channels is closely
related to the binding of the ligand. The voltage-gated ion channels can be further classified into the
following four subclasses: potassium (K+), sodium (Na+), calcium (Ca2+), and anion channels.
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Figure 1. Schematic diagram of material exchange through ion channels.

In view of the important role and multiple types of ion channels, the structures and functions of
ion channels have continued to attract the attention of numerous researchers in recent years [4–10].
Due to the rapid growth of proteomic data, it is particularly important to develop bioinformatics
tools to quickly predict and identify ion channels and their types. Consequently, many computational
methods based on machine learning algorithm have been developed in the last 10 years [11–17].
Liu et al. [11] proposed a method to identify voltage-gated potassium channels, and indicated that
the local sequence information-based method was better than the global sequence information-based
method. Saha et al. [12] developed a support vector machine (SVM)-based method by using amino
acid composition and dipeptide composition to predict voltage-gated ion channels and their subtypes.
In 2011, our group [13] developed a more generalized predictive tool, called IonchanPred, and
identified ion channels and their types accurately. Recently, Tiwari et al. [16] proposed a random forest
based methods and Gao et al. [17] proposed a model to predict ion channels and their subfamilies by
combining a SVM-based model with BLAST sequence similarity search. Although many predictors for
identifying ion channels are available, three essential issues remain elusive. Firstly, the use of high
similarity sequences may overestimate the performance of a model. Secondly, the long-range effect is
lost in most published models. Thirdly, web servers should be improved.

In this paper, a support vector machine-based model was constructed to quickly identify ion
channels and their types. In this model, a novel feature extraction method called pseudo-dipeptide
composition was employed. The analysis of variance (ANOVA) [18] was introduced to rank features.
The incremental feature selection (IFS) was employed to find an optimized feature set which can
produce the maximum accuracy. Finally, a web server called IonchanPred 2.0 was established. The
flow chart is shown in Figure 2.
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Figure 2. Workflow of the IonchanPred 2.0 model.

2. Results and Discussion

2.1. Parameter Optimization

The establishment of our proposed model depends on two important parameters: λ and ω. λ

factor denotes the rank of correlation and the larger λ may contain more global sequence-order
information. ω represents the weight of the correlation of residues’ physiochemical properties
compared to the traditional dipeptide component. To obtain the optimal value for the two parameters,
a serial of experiments was performed according to the following standard:{

1 ≤ λ ≤ 30 with step Δ = 1
0.05 ≤ ω ≤ 0.70 with step Δ = 0.05

(1)

In view of this, a total of 30 × 14 = 420 individual combinations were obtained. Then, we
can investigate the accuracy of SVM with the jackknife test. The optimal parameter combinations
corresponding to the three individual datasets are shown in Table 1. It shows that the highest overall
accuracy can be up to 87.5% when λ = 21 and ω = 0.20 for the dataset including ion channels and
non-ion channels (NIC). For the benchmark dataset VGIC vs. LGIC, the maximum accuracy is 93.9%
when λ = 7 and ω = 0.30. The best model for four types of VGIC prediction can produce overall
accuracy of 89.1%. After the parameters are optimized, the samples for the three individual datasets
can be respectively formulated as follows: a 589-dimensional vector involving 400 dimensions for
traditional dipeptide composition and 9 × 21 = 189 dimensions for correlation information for IC vs.
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NIC prediction, a vector involving 400 + 9 × 7 = 463 dimensions for VGIC vs. LGIC, and a vector
involving 400 + 9 × 9 = 481 dimensions for four types of voltage-gated ion channels datasets.

Table 1. Optimal parameters for the three datasets.

Database λ ω OA (%)

IC vs. NIC 21 0.20 87.5
VGIC vs. LGIC 7 0.30 93.9

four types of VGIC 9 0.15 89.1

IC: ion channels; NIC: non-ion channels; VGIC: voltage-gated ion channels; LGIC: ligand-gated ion channels; OA:
overall accuracy.

2.2. Model Establishment

In order to further improve the accuracy, we used ANOVA to exclude noise or redundant
information. After the feature selection, the features were sorted according to the decreasing order
of the F values described in Section 3.3 Feature Selection to obtain the feature list. Then, we used the
IFS to determine the optimal number of features, as described below. The feature subset starts from a
feature ranking first in the feature list. A new feature subset was composed when the second feature of
this list was added. We repeated this process until all candidate features were added. In this case, we
obtained 589, 463, and 535 feature subsets, respectively, for the three benchmark datasets mentioned
above. The performance of each feature subset was examined by using SVM with the jackknife test.
We plotted the relationship between the overall accuracy and the numbers of features in Figure 3. We
noticed that the prediction performances were the best when the top ranked 527, 460, and 147 features
were used for the three datasets, respectively.
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Figure 3. The feature selection results for three independent datasets. (a) Incremental feature selection
(IFS) curve for ion channel (IC) vs. non-ion channel (NIC) prediction; (b) IFS curve for voltage-gated
ion channels (VGIC) vs. ligand-gated ion channels (LGIC) prediction; (c) IFS curve for four types of
VGIC prediction.

In order to further evaluate the predictive performance of our model, we also calculated the
average accuracies for the three datasets. A comparison of the results with the previous model [13] are
shown in Table 2. It is clear that the predictive performance of our proposed model is better than the
previous model.
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Table 2. Performance evaluation parameters of our proposed model and a previous model.

Datasets
Our Model Previous Model [13]

Sn OA AA Sn OA AA

IC vs. NIC
IC 80.2

87.8 87.8
85.9

86.6 86.6NIC 95.3 87.3

VGIC vs. LGIC
VGIC 94.7

94.0 94.0
94.6

92.6 92.7LGIC 93.2 90.7

Types of VGIC

K+ 97.5

92.6 87.7

92.6

87.8 83.7
Ca2+ 89.7 82.8
Na+ 75.0 75.0
An− 88.5 84.6

Sn: sensitivity; AA: average accuracy; OA: overall accuracy; IC: ion channels; NIC: non-ion channels; VGIC:
voltage-gated ion channels; LGIC: ligand-gated ion channels.

3. Materials and Methods

3.1. Benchmark Databases

The data used to establish the prediction model in this paper were collected from Lin et al. [13].
The sequences of ion channels were collected from the Universal Protein Resource (UniProt) [19] and
the Ligand-Gated Ion channel database [20]. To construct a high-quality benchmark dataset, some
sequences were removed according to three characteristics. Firstly, a sequence that contained some
ambiguous residues (such as “X”, “B”, “Z”). Secondly, a sequence that was the fragment of other
proteins. Thirdly, a sequence that was annotated based on homology or prediction. Then, redundant
sequences were removed by using the CD-HIT [21] program with a sequence identity threshold of
40%, which has been widely used to filter out redundant samples in genomics and proteomics [22–26].

After the raw data were preprocessed, we finally obtained 298 ion channels including 148
voltage-gated ion channels and 150 ligand-gated ion channels. These voltage-gated ion channels
can be classified into four subtypes as follows: 81 potassium (K+), 29 calcium (Ca2+), 12 sodium
(Na+), and 26 voltage-gated anion channels. Here, all the 300 non-ion channel proteins were randomly
selected from the membrane proteins which were not marked as ion channels in the UniProt database.
Moreover, any two sequences in these non-ion channels should guarantee that the identity between
them is less than 40%.

3.2. Feature Extraction of Samples

In order to characterize each protein sequence as accurately as possible, the order effect of sequence
was usually selected as a method for generating effective feature vectors. Therefore, PseAAC [27,28]
incorporating dipeptide composition was selected as the method for feature extraction of protein
samples in this paper.

Assuming that there is a protein sequence of L amino acid residues:

P = R1R2R3R4R5R6R7 . . . RL (2)

where Ri(i = 1, 2, 3 . . . L) represents the amino acid residue at i-th sequence position. Therefore, we
can get a set of feature vectors with the dimension of 400 + nλ from any sequence like Equation (1)

P = [P1, P2, . . . , P400, P401, . . . , P400+nλ]
T (3)

where the first 400 features P1, P2, . . . , P400 represent the effect of the classical dipeptide composition;
the nλ elements P400+1, P400+2, . . . , P400+nλ in addition to the 400 components represent the sequence
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order effect of protein samples, namely the first tier to λ-th tier correlation factors of protein sequence.
These features can be calculated by:

Pu =

⎧⎪⎪⎨⎪⎪⎩
fu

∑400
i=1 fi + ω ∑nλ

j=1 τj
(1 ≤ u ≤ 400)

ωτu

∑400
i=1 fi + ω ∑nλ

j=1 τj
(400 + 1 ≤ u ≤ 400 + nλ)

(4)

where fi(i = 1, 2, . . . , 400) is the normalized occurrence frequencies of the 400 dipeptides in protein P;
ω is the weight factor; τj (j = 1, 2, . . . , nλ) is the j-tier sequence-correlation factor computed by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ1 = 1
L−1

L−1
∑

i=1
H1

i,i+1

τ2 = 1
L−1

L−1
∑

i=1
H2

i,i+1

. . .

τn = 1
L−1

L−1
∑

i=1
Hn

i,i+1

τn+1 = 1
L−2

L−2
∑

i=1
H1

i,i+2

τn+2 = 1
L−2

L−2
∑

i=1
H2

i,i+2

. . .

τ2n = 1
L−2

L−2
∑

i=1
Hn

i,i+2

. . .

τnλ−1 = 1
L−λ

L−λ

∑
i=1

Hn−1
i,i+λ

τnλ = 1
L−λ

L−λ

∑
i=1

Hn
i,i+λ

(5)

where Hn
i,j is the correlation function of physicochemical properties and can be calculated as:

Hn
i,j = hn(Ri) · hn(Rj

)
(6)

where hn(Ri) denotes the value of n-th kind physicochemical property of Ri; hn(Rj
)

is similar. To
obtain the high-quality feature set, all the data of physicochemical properties must be subjected to a
standard conversion as below:

hk(Ri) =
hk

0(Ri)− ∑20
α=1 hk

0(Rα)/20√
∑20

u=1

[
hk

0(Ri)− ∑20
α=1 hk

0(Rα)/20
]2

(7)

where Ri(i = 1, 2, . . . , 20) represents the 20-native amino acid according to the alphabetical order of
their single-letter codes: A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, and Y. hk

0(Ri) denotes the
original value of the k-th physicochemical property for residue Ri. The values of each physicochemical
property obtained after the standard conversion have two advantages. These values will have a
zero-mean over the 20 native amino acids and remain unchanged if they are subjected to the same
conversion procedure again. The values of the nine kinds of physicochemical properties used in this
paper are from previous results [29].
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3.3. Feature Selection

Generally, all features do not equally contribute to an ion channel prediction system. Some
features make key contributions, whereas some others make minor contributions [30,31]. Therefore,
the selection of features is an important step for establishing an effective prediction model. To analyze
these feature vectors, ANOVA was used to choose the optimal feature sets in this paper.

In order to assess the contribution of each feature to the predictive system, the F value was defined
as follows:

F(λ) =
S2

B(λ)

S2
W(λ)

(8)

where S2
B(λ) and S2

W(λ) respectively denote the sample variance between groups (also called means
square between, MSB) and the sample variable within groups (also called means square within, MSW),
and are expressed as:⎧⎪⎪⎪⎨⎪⎪⎪⎩

S2
B(λ) =

∑K
i=1 ni(∑

ni
j=1 fij(λ)/ni − ∑K

i=1 ∑ni
j=1 fij(λ)/ ∑K

i=1 ni)
2

K − 1

S2
W(λ) =

∑K
i=1 ∑ni

j=1 ( fij(λ)− ∑K
i=1 ∑ni

j=1 fij(λ)/ ∑K
i=1 ni)

2

N − K

(9)

where K and N respectively denote the number of groups and the total number of samples. fij(λ)

represents the frequency of the λ-th feature of the j-th sample in the i-th group. ni denotes the total
number of samples in the i-th group. Thus, each feature corresponds to an F score.

Obviously, the larger F value means the greater contribution of the corresponding feature to the
classification. Thus, according to their F values, we may rank all features. Subsequently, we used
the incremental feature selection (IFS) to determine the optimal number of features [32]. Firstly, we
examined the accuracy of the first feature subset including a feature with the highest F value in the
ranked feature set. Secondly, we investigated the accuracy of the second feature subset which was
produced by adding the feature with the second highest F value. This process was repeated from the
higher F to the lower F value until all candidate features were added. The performances of all feature
subsets were evaluated. Then, we were able to obtain the best feature subset which was capable of
producing the maximum accuracy.

3.4. Support Vector Machine

SVM is a kind of classification algorithm that can improve the generalization ability of machine
learning and achieve the minimization of experience risk and confidence scope by minimizing the
structural risk. Therefore, a good statistical result can be usually achieved even using a small sample.
SVM, as a powerful supervised learning method, has been widely used in various fields including
bioinformatics [33–38]. In this paper, we used LIBSVM 3.21 [39] which could be freely downloaded
from http://www.csie.ntu.edu.tw/~cjlin/libsvm/. The radial basis function (RBF) kernel was selected
as kernel function and one vs. one (OVO) strategy was used for multiclass classification. For achieving
the optimal model, the penalty constant C and the kernel width parameter λ were tuned by an
optimization procedure with a grid search method [39]. The search spaces for C and λ were [2−5, 215]
and [25, 2−15] with steps being 2 and 2−1, respectively.

3.5. Performance Evaluation

A cross-validation technique is generally employed to estimate the accuracy of a predictive model.
Three cross-validation methods including the independent dataset test, subsampling test, and jackknife
test can be used [40–43]. Among them, the jackknife test is considered to be the most objective and
rigorous one. Therefore, the jackknife test was employed to assess the performance of our methods.
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In addition, we also used other assessment criteria to evaluate the effectiveness of our predictive
model in this paper. These assessment criteria, including sensitivity (Sn), overall accuracy (OA), and
average accuracy (AA), are defined as follows:

Sn(i) =
TPi

TPi + FNi
(10)

OA = ∑n
i=1

TPi
N

(11)

AA = ∑n
i=1

Sn(i)
n

(12)

where TPi and FNi respectively denote true positives and false negatives of the i-th class. N and n
represent the total number of samples and number of classes, respectively.

4. Conclusions

We constructed an SVM-based model for the accurate prediction of ion channel proteins and
their types. In this model, a pseudo-dipeptide composition was adopted to extract features. The
ANOVA was used to exclude noise or redundant information of feature vectors and then IFS was
employed to determine the optimal number of features. High accuracies indicated that the proposed
method was an effective tool for predicting ion channels and their types. A free web server based on
the proposed method presented in this paper has been constructed and is accessible at the website
(http://lin.uestc.edu.cn/server/IonchanPredv2.0).
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Abstract: DNA-binding proteins play crucial roles in various biological processes, such as DNA
replication and repair, transcriptional regulation and many other biological activities associated
with DNA. Experimental recognition techniques for DNA-binding proteins identification are both
time consuming and expensive. Effective methods for identifying these proteins only based on
protein sequences are highly required. The key for sequence-based methods is to effectively
represent protein sequences. It has been reported by various previous studies that evolutionary
information is crucial for DNA-binding protein identification. In this study, we employed four
methods to extract the evolutionary information from Position Specific Frequency Matrix (PSFM),
including Residue Probing Transformation (RPT), Evolutionary Difference Transformation (EDT),
Distance-Bigram Transformation (DBT), and Trigram Transformation (TT). The PSFMs were converted
into fixed length feature vectors by these four methods, and then respectively combined with
Support Vector Machines (SVMs); four predictors for identifying these proteins were constructed,
including PSFM-RPT, PSFM-EDT, PSFM-DBT, and PSFM-TT. Experimental results on a widely used
benchmark dataset PDB1075 and an independent dataset PDB186 showed that these four methods
achieved state-of-the-art-performance, and PSFM-DBT outperformed other existing methods in this
field. For practical applications, a user-friendly webserver of PSFM-DBT was established, which is
available at http://bioinformatics.hitsz.edu.cn/PSFM-DBT/.

Keywords: PSFM-DBT; DNA binding protein; distance bigram transformation; PSFM

1. Introduction

DNA-binding proteins play crucial roles in various biological processes, such as DNA replication
and repair, transcriptional regulation, the combination and separation of single-stranded DNA
and other biological activities associated with DNA. Therefore, effective methods for identifying
DNA-binding proteins are highly required.

There are some experimental recognition techniques for DNA-binding protein identification,
such as filter binding assays, genetic analysis, chromatin immune precipitation on microarrays,
and X-ray crystallography. However, these methods are both time consuming and expensive [1].
With the development of genomic and proteomic sequencing techniques, the number of protein
sequences is growing rapidly. It is highly desired to develop fast and effective computational
methods to identify the DNA binding proteins based on the protein sequences. In this regard,
some computational methods based on machine learning algorithms have been proposed.
These methods can be roughly divided into two groups: structure-based methods [2–8] and
sequence-based methods. Stawiski et al. [7] analyzed the positive electrostatic patches in protein
surface, and represented proteins with 12 features including the patch size, percent helix in patch,
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average surface area, hydrogen-bonding potential, three conserved special residues, and other features
of the protein. These features were then inputted into a Neural Network (NN) for identifying
DNA-binding proteins.

A webserver for the identification of DNA binding proteins (iDBPs) [9] recently was constructed
for DNA binding protein identification, in which a random forest (RF) classifier was trained based
on multiple structural features, such as electrostatic potential, cluster-based amino acid conservation
patterns, secondary structure content of the patches, dipole moment and hydrogen-bonding potential.
Song et al developed nDNA-Prot, which employed an imbalanced classifier [10]. Bhardwaj et al. [11]
examined the sizes of positively charged patches on the surface of proteins, and used generated
structural features to train a support vector machine (SVM) classifier. These structure-based methods
achieved state-of-the-art performance. However, they require the structure information of proteins,
which is not always available. In contrast, the sequence-based methods identify the DNA binding
proteins only based on the sequence information of proteins, for example, Cai and Lin [12] proposed
a method representing proteins employing pseudo amino acid composition (PseAAC) [13], in which
amino acid composition, limited range correlation of hydrophobicity and solvent accessible surface
area were taken into account. In method DNA-Prot [14], proteins was represented by various sequence
properties, including frequency of amino acid, physical chemical properties, secondary structure,
neutral amino acids, etc. Fang et al. [15] extracted protein features by using autocross-covariance (ACC)
transform, pseudo amino acid composition, and dipeptide composition. Evolutionary profiles were
introduced into this field by Kumar et al. [16]; they also developed a SVM-based predictor based on
generated features. Recently, evolutionary profile was widely used in this field. Position specific score
matrix distance transformation (PSSM-DT) [17] combined PSSM distance transformation with SVM.
An improved DNA-binding protein prediction method (Local-DPP) [18] extracted local evolutionary
information from some equally sized sub-PSSMs to represent proteins. Zhang et al. [19] proposed a new
method in which feature vectors were extracted from PSSM, secondary structure, and physicochemical
properties. They further improved the performance by using an improved Binary Firefly Algorithm
(BFA) to filter noisy features and select optimal parameters for the classifier. Waris et al. [20]
combined three different protein representations (dipeptide composition, split amino acid composition,
and PSSM), and three machine learning algorithms (k Nearest Neighbor (KNN), SVM, and RF).

All these aforementioned methods have made great contributions to the development of this
important field; the profile-based methods especially achieved state-of-the-art performance by
incorporating evolutionary information into the predictors. Almost all of the machine-learning-based
classifiers require fixed length feature vectors as inputs [21]. However, it is not an easy task to
convert the profiles into feature vectors because a profile such as PSSM is a matrix with different
dimensions. In this study, we employed four methods to extract the evolutionary information from
Position Specific Frequency Matrix (PSFM), including Residue Probing Transformation (RPT) [22],
Evolutionary Difference Transformation (EDT) [3], Distance-Bigram Transformation (DBT) [17,23,24],
and Trigram Transformation (TT) [25]. The PSFMs were converted into fixed length feature vectors by
these four methods, and then respectively combined with SVMs; four predictors for DNA binding
protein identification were constructed, including PSFM-RPT, PSFM-EDT, PSFM-DBT and PSFM-TT.
Experimental results on a widely used benchmark dataset and an independent dataset showed that
these four methods achieved state-of-the-art-performance, and outperformed other existing methods
in this field.

2. Result and Discussion

2.1. Impact of the Maximum Distance D

In order to evaluate the performance of the proposed methods, and select the optimized parameter,
we explored the effect of the parameter D (see Equations (9) and (12)) in methods PSFM-EDT and
PSFM-DBT. Taking into account the time cost, the predictive results were obtained by using 5-fold
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cross validation on benchmark dataset. The results of PSFM-EDT and PSFM-DBT with different values
of D are shown in Figure 1a,b, respectively, from which we can see that PSFM-EDT and PSFM-DBT
can achieve stable performance with different D values, and they achieved best performance when D
= 7 and D = 4 respectively. Therefore, the parameter D of PSFM-EDT was set as 7 and the parameter D
of PSFM-DBT was set as 4.

Figure 1. (a) The performance of Position Specific Frequency Matrix-Evolutionary Difference
Transformation (PSFM-EDT) with different D on the benchmark dataset via five-cross validation.
(b) The performance of Position Specific Frequency Matrix-Distance-Bigram Transformation
(PSFM-DBT) with different D on the benchmark dataset via five-cross validation.

2.2. Comparison of the Four PSFM-Based Methods

The performance of the four proposed PSFM-based methods was shown in Table 1 by using
jackknife test on benchmark dataset, and the corresponding ROC curves of these methods were shown
in Figure 2a. From Table 1 and Figure 2a we can see that the PSFM-DBT is better than all the other
methods. The reason is that PSFM-DBT incorporates more sequence-order effects by considering
bigrams separated by different distances, which is more efficient than the other three approaches.
Furthermore, a recent study showed that these sequence-order effects are critical for DNA binding
protein identification [23].

Figure 2. (a) The Receiver Operating Characteristic (ROC) curves of the four PSFM-based methods
on the benchmark dataset using the jackknife tests. (b) The ROC curves of various methods on the
benchmark dataset using the jackknife tests.
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Table 1. The results of the four Position Specific Frequency Matrix (PSFM)-based methods on the
benchmark dataset.

Method ACC (%) MCC AUC (%) SN (%) SP (%)

PSFM-RPT a 78.88 0.5785 86.35 80.76 77.09
PSFM-EDT b 79.35 0.5868 84.49 78.86 79.82

PSFM-DBT c 81.02 0.6224 87.12 84.19 78.00
PSFM-TT d 79.16 0.5840 85.54 80.95 77.45

The results were obtained by jackknife test on benchmark dataset with SVM algorithm. The bold numbers represent
the best values of the corresponding evaluation criteria in this table. a The parameters were: c = 24, g = 26;
b The parameters were: D = 7, c = 29, g = 2−2; c The parameters were: D = 4, c = 23, g = 25; d The parameters were:
c = 25, g = 2−9.

2.3. Comparison with Existing Methods

The performance of PSFM-DBT was compared with other existing methods on the
benchmark dataset, including DNAbinder [16], DNA-Prot [14], iDNA-Prot [26], iDNA-KACC [27],
PseDNA-Pro [17], iDNA-Prot|dis [23], iDNAPro-PseAAC [28], PSSM-DT [17] and Local-DPP [18].
Among these nine methods, DNAbinder, iDNAPro-PseAAC, PSSM-DT and Local-DPP are
profile-based methods, and the other five methods are sequence-based methods. The performance of
various methods was shown in Table 2 and Figure 2b, from which we can see that the profile-based
methods achieved higher performance than other sequence-based methods, and PSFM-DBT obviously
outperformed other methods, indicating that evolutionary information is critical for DNA binding
protein identification, and PSFM-DBT is an efficient method. ACC represents the percentage of the
samples which are correctly predicted among all samples; MCC explains the reliability of models;
Sensitivity (SN) is an important measure, it presents the accuracy of predicting positive samples;
Specificity (SP) denotes the percentage of true negative samples among negative samples; AUC is the
area under ROC curve which gives a measure of the quality of binary classification methods, the larger
AUC is, the better its predictive quality is.

Table 2. The performance of various methods on benchmark dataset.

Method ACC (%) MCC AUC (%) SN (%) SP (%)

DNA-Prot 72.55 0.44 78.90 82.67 59.75
iDNA-Prot 75.40 0.50 76.10 83.81 64.73

DNAbinder (dimension 400) 73.58 0.47 81.50 66.47 80.36
DNAbinder (dimension 21) 73.95 0.48 81.40 68.57 79.09

PseDNA-Pro 76.55 0.53 N/A 79.61 73.63
iDNA-Prot|dis 77.30 0.54 82.60 79.40 75.27

iDNAPro-PseAAC 76.56 0.53 83.92 75.62 77.45
iDNA-KACC 75.16 0.50 83.00 77.52 72.90

PSSM-DT 79.96 0.62 86.50 78.00 81.91
Local-DPP 79.10 0.59 N/A 84.80 73.60

PSFM-DBT a 81.02 0.62 87.12 84.19 78.00

The results of all methods in the table were obtained by jackknife validation on benchmark dataset. The bold
numbers represent the best values of the corresponding evaluation criteria in this table. a See the footnote of Table 1.

2.4. Independent Test

In this study, the four proposed PSFM-based methods were further evaluated on an independent
dataset PDB186 constructed by Lou et al. [1]. It contains 93 DNA-binding proteins and 93
non-DNA-binding proteins selected from PDB. Because there are some proteins in benchmark dataset
share more than 25% sequence identity with some proteins in independent dataset, this will lead
to homology bias. In order to avoid this problem, the NCBI’s BLASTCLUST [29] was employed to
filter those proteins from the benchmark dataset which have more than 25% sequence identity to any
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protein in a same subset of the PDB186 dataset. Then we retrained the four proposed PSFM-based
methods on such a reduced benchmark dataset, based on which the proteins in the independent
dataset were predicted, and the results were shown in Table 3 and Figure 3a. PSFM-DBT achieved
the top performance, which further demonstrates that it is a useful predictor for DNA binding
protein identification.

Table 3. Performance of various methods on the independent dataset.

Method ACC (%) MCC AUC (%) SN (%) SP (%)

DNA-Prot 61.80 0.240 N/A 69.90 53.80
iDNA-Prot 67.20 0.344 N/A 67.70 66.70
DNAbinder 60.80 0.216 60.70 57.00 64.50
DNABIND 67.70 0.355 69.40 66.70 68.80
DBPPred 76.90 0.538 79.10 79.60 74.20

iDNA-Prot|dis 72.00 0.445 78.60 79.50 64.50
iDNAPro-PseAAC-EL 71.50 0.442 77.80 82.80 60.2

iDNA-KACC-EL 79.03 0.611 81.40 94.62 63.44
PSSM-DT 80.00 0.647 87.40 87.09 72.83
Local-DPP 79.00 0.625 N/A 92.50 65.60
PSFM-TT 78.49 0.580 86.63 88.17 68.82

PSFM-RPT 79.57 0.594 85.67 84.95 74.19
PSFM-EDT 79.57 0.600 86.88 88.17 70.97
PSFM-DBT 80.65 0.624 88.03 90.32 70.97

The bold numbers represent the best values of the corresponding evaluation criteria in this table.

The number of DNA-binding proteins is much lower than that of the non DNA-binding proteins
in the real world. In order to simulate real world applications, we evaluated the performance of
PSFM-DBT on this independent dataset with different ratios of positive and negative samples, and the
results were shown in Figure 3b, from which we can see that the ACC increases slightly as the ratio of
positive samples increases, indicating that the PSFM-DBT can achieve stable performance and it is
suitable for DNA binding protein prediction.

 

Figure 3. (a) The ROC curves of various methods on the independent dataset PDB186. (b) The
performance of PSFM-DBT on the independent dataset with different ratios of positive samples.

2.5. Feature Analysis

To further investigate the importance of the features and to reveal the biological meaning of
the features in proposed PSFM-DBT, we followed some previous studies [30,31] to calculate the
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discriminant weight vector in the feature space. The sequence-specific weight obtained from the
SVM training process can be used to calculate the discriminant weight of each feature to measure
the importance of the features. Given the weight vectors of the training set with N samples obtained
from the kernel-based training A = [a1, a2, a3, . . . , aN], the feature discriminant weight vector W in the
feature space can be calculated by the following equation:

W = A · M =

⎡⎢⎢⎢⎢⎣
a1

a2
...

aN

⎤⎥⎥⎥⎥⎦
T⎡⎢⎢⎢⎢⎣

m11 m12 · · · m1j
m21 m22 · · · m2j

...
...

. . .
...

mN1 mN2 · · · mNj

⎤⎥⎥⎥⎥⎦ (1)

where M is the matrix of sequence representatives; A is the weight vectors of the training samples; N is
the number of training samples; j is the dimension of the feature vector. The element in W represents
the discriminative power of the corresponding feature.

In this study, the feature analysis was based on the predictor PSFM-DBT (D = 4). The discriminative
weights of the 2000 features were calculated by Equation (1). Then we analyzed the features of amino
acid composition and the features of amino acid bigrams respectively. The discriminant weights of
the 400 features with d = 0 were visualized by a heatmap shown in Figure 4a. The 20 elements in the
diagonal represent the 20 features of amino acids composition, from which we can see that the amino
acid K (Lys) has the highest weight value among all the 20 features, indicating that amino acid K is
critical for predicting the DNA binding proteins. For further exploration, all the discriminant weights of
all the 20 features of amino acid composition were shown in Figure 4b. We can see that 10 amino acids
show positive discriminative weights, while the other 10 amino acids show negative discriminative
weights. The top five most discriminative amino acids are K (Lys), R (Arg), L (Leu), E (Glu) and T
(Thr). It has been reported that the positively charged amino acids (such as Arg and Lys) and the polar
amino acids (such as Thr and Ser) are important for a protein binding with a DNA sequence, and the
acidic amino acids, such as D (Asp) and E (Glu), show low propensity for the interaction of protein and
DNA [32,33]. However, amino acid Glu show positive discriminative weights in Figure 4b indicating
that the bigram composition is more accurate than the amino acid composition.

 

Figure 4. Cont.
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Figure 4. Feature analysis based on the features generated by PSFM-DBT. (a) The discriminant weights
of the 400 features with d = 0. Each element in the figure represents the discriminant weight of the
corresponding feature. The diagonal elements represent 20 features of amino acid composition. (b) The
discriminant weights of the 20 amino acids according to amino acid composition. (c) The discriminant
weights of the 400 standard amino acid pairs (d = 1, 2, 3, 4). Each element in the figure represents the
sum of the discriminant weights of the corresponding bigrams, for example, the discriminant weight of
bigrams (R, R) is W(R, R) = W(RR) + W(R*R) + W(R**R) + W(R***R), where * represents mismatch. The x-axis
and y-axis represent the second amino acid and first amino acid in a bigram, respectively. (d) The
discriminant weights of the top five most discriminant bigrams, including (R, R), (T, T), (K, K), (R, K)
and (K, R).

Then we analyzed the rest of the 1600 features of amino acid bigrams obtained by PSFM-DBT with
d = 1, 2, 3, 4. The weight values of the same kinds of bigrams with different d values were summed,
and the results are shown in Figure 4c. We can see from this figure, the top five most discriminative
amino acid bigrams are (R, R), (T, T), (K, K), (R, K) and (K, R), whose discriminant weights were shown
in Figure 4d. These results further confirmed that the importance of amino acid R (Arg), T (Thr) and
K (Lys). Interestingly, this conclusion is fully consistent with previous studies [32–35]. A specific
DNA-binding protein 1IGN chain B was selected as an example to further explore the importance
of the features in PSFM-DBT. 1IGNB is known as the yeast RAP1, a multifunctional protein binding
with the telomeric DNA in the yeast S. cerevisiae via a sequence-specific manner, it is also involved in
transcriptional regulation [36]. As shown in Figure 4d, bigrams (R, R) have the highest weight values
among all the four bigrams. There are four kinds of (R, R) bigrams, including RR, R*R, R**R and R***R
(* represents mismatch) with distance d = 1, 2, 3, 4 respectively. The distributions of these bigrams in
the protein sequence 1IGNB and its 3D structure were shown in Figure 5a,c, respectively, from which
we can see that most of the (R, R) bigrams were located in the DNA binding regions, except that two
occurred in the structural disordered regions, and all (R, R) bigrams occurred in the area close to DNA
major grooves. Previous studies reported [23,34] that the arginine rich region is indeed critical for the
protein helix, and DNA major groove interaction by a mechanism known as ‘phosphate bridging by an
arginine-rich helix’. Moreover, we counted the numbers of these amino acid residues interacting with
DNA in protein 1IGNB, the corresponding histogram is shown in Figure 5b, from which we can see
that the positively charged amino acids (Arg, Lys and His) and the polar amino acids (Thr, Ser and Asn)
are more likely to bind to DNA. This proved the correctness of the above conclusion, and explained
the reason why the proposed PSFM-DBT predictor works well for DNA binding protein identification.
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Figure 5. (a) The distributions of bigrams (R, R) in protein 1IGNB. The structural domains of this
protein are color coded (orange represents domain 1, purple represents domain 2, and C-terminal tail
is shown in blue). The open rectangles indicate the positions of helices, and broken lines mark regions
of structural disorder. Residues interacting with DNA bases are indicated by triangles, and those
contacting the phosphate backbone are indicated by circles. The two (R, R) bigrams shown in green
rectangles are the two bigrams occurring in non-DNA-binding regions. (b) Histogram of the number
of amino acid residues which binding with DNA in protein 1IGNB. (c) The distributions of bigrams
(R, R) with different distances in the 3D structure of protein 1IGNB. The 3D structures of protein and
DNA are shown in green and brown, respectively.

2.6. Web-Server Guide

We established an accessible web-server for the proposed PSFM-DBT predictor. Furthermore,
for the convenience of the vast majority of experimental scientists, a step-by-step guide about how
to use the web-server without the need to carefully understand the mathematical details was stated
as follows.

Step 1. Open the web-server at http://bioinformatics.hitsz.edu.cn/PSFM-DBT/ and you will
see the home page of PSFM-DBT, as shown in Figure 6. Click on the “ReadMe” button to see a brief
introduction of the server and the caveat when using it.

Step 2. You can input the query sequences into the input box or directly upload your input
data via the “Browse” button. The input sequence should be in the FASTA format. The examples of
sequences in the FASTA format could be shown in the input box by clicking the Example button right
above the input box.

Step 3. Click on the “Submit” button to execute the recognition program, then the predicted
results will be shown in a new page. For example, if you use the four example protein sequences
as the input, you will see on your computer screen that the first and second query sequences are
DNA-binding proteins. The third and fourth are non-DNA-binding proteins.
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Figure 6. A semi-screenshot to show the home page of the web-server PSFM-DBT, which is available at
http://bioinformatics.hitsz.edu.cn/PSFM-DBT/.

3. Methods and Materials

3.1. Dataset

The quality of the data set determines the quality of the research results. In the current study,
we selected a widely used dataset PDB1075 [23] as the benchmark dataset. PDB1075 was constructed
by Liu et al., which can be formulated as

S = S
+ ∪ S

− (2)

where S+ is the subset of positive samples, S− is the subset of negative samples and the symbol
∪ represents the “union” in the set theory. These proteins were all extracted from Protein
Data Bank (PDB) released at December 2013, where DNA-binding proteins were obtained by
searching the mmCIF keyword of ‘DNA binding protein’ through the advanced search interface
and non-DNA-binding proteins were obtained by randomly extracting from PDB. To construct a high
quality and non-redundant benchmark dataset, these proteins were filtered strictly according to the
following criteria. (1) Remove all the sequences which have less than 50 amino acids or contain
character of ‘X’. (2) Using PISCES [37] to filter those sequences that have ≥25% pairwise sequence
similarity to any other in the same subset. Finally, the subset S+ consist of 525 DNA-binding proteins
and the subset S− consists of 550 non-DNA-binding proteins.

3.2. Protein Representation

One of the most challenging problems in machine learning-based methods for computational
biology is how to effectively represent a biological sequence with a discrete model [38–40], because all
the existing machine learning algorithms [41], such as NN, SVM, RF, and KNN can only handle vector
rather than protein sequences with different lengths. To solve this problem, many researchers have
proposed various methods. Previous experimental results showed that evolutionary information can
obviously improve the performance of predictors for identifying DNA-binding proteins. In order to
incorporate the evolutionary information into the predictors, we employed four feature extraction
methods to extract the evolutionary information from the Position Specific Frequency Matrix
(PSFM) [42]. PSFM and the four methods will be introduced in more detail in the following sections.
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3.2.1. Position Specific Frequency Matrix

PSFM has been widely used in the field of predicting the structure and function of proteins [42,43].
Therefore, in this study, we employed the PSFM, which was generated by using PSI-BLAST [29] to
search the target proteins against the non-redundant database NRDB90 [44] with default parameters,
except the iteration and e-value were set as 10 and 0.001, respectively.

Given a protein sequence P with L amino acids, it can be formulated as:

P = R1R2R3R4R5 · · ·RL (3)

where R1 represents the 1st residue, R2 the 2nd residue, and so forth.
The PSFM profile can be represented as a matrix with dimensions of 20 × L as follows:

PSFM =

⎡⎢⎢⎢⎢⎣
P1,1 P1,2 · · · P1,20

P2,1 P2,2 · · · P2,20
...

...
. . .

...
PL,1 PL,2 · · · PL,20

⎤⎥⎥⎥⎥⎦ (4)

where 20 represents the number of standard amino acids, and L is the length of the query protein
sequence. The element Pi,j represents the occurrence probability of amino acid j at position i of the
protein sequence, the rows of matrix represent the positions of the sequence, and the columns of the
matrix represent the 20 standard amino acids. The sum of elements in each row is 1.

3.2.2. Residue Probing Transformation

RPT, first proposed by Jeong et al. [22], focuses on domains with similar conservation rates by
grouping domain families based on their conservation scores in PSSM profiles. Because the idea
is similar to the probe concept used in microarray technologies, it was called RPT. Each probe is
a standard amino acid, and corresponds to a particular column in the PSFM profiles.

Given a PSFM (Equation (4)), it was divided into 20 groups according to 20 different standard
amino acids, and for each group, we calculated the sum of the PSFM values in every column, leading to
a feature vector of 20 dimension. Iteratively, for the 20 groups, the PSFM was translated into a Matrix
M with 20 × 20 dimension, as follows:

M =

⎡⎢⎢⎢⎢⎣
e1,1 e1,2 · · · e1,20

e2,1 e2,2 · · · e2,20
...

...
. . .

...
e20,1 e20,2 · · · e20,20

⎤⎥⎥⎥⎥⎦ (5)

The M was then transferred into a feature vector of 400 dimension, as follows:

P = [ f (e1,1) f (e1,2) · · · f (ei,j) · · · f (e20,20)] (6)

where f (ei,j) was calculated by the following equation:

f (ei,j) =
ei,j

L
(i, j = 1, 2, · · · , 20) (7)

In this study, the amino acid composition of the 20 standard amino acids in PSFM was also
incorporated into the RPT approach. As a result, the dimension of the corresponding feature vector is
400 + 20 = 420.
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3.2.3. Evolutionary Difference Transformation

EDT [3] is able to extract the information of the non-co-occurrence probability of two amino acids
separated by a certain distance d in protein during the evolutionary process of the protein. The d is the
distance between these two amino acids (d = 1, 2, . . . , Lmin − 1, where Lmin is the length of the shortest
proteins in the benchmark dataset (Equation (2)). For example, d = 1 means the two amino acids are
adjacent; d = 2 means there is one amino acid between the two amino acids; d = 3 means there are two
amino acids between the two amino acids, and so forth.

For a given PSFM (Equation (4)), it can be transferred into a feature vector, as follows:

P = [ψ1 ψ2 · · · ψk · · · ψΩ] (8)

where Ω is an integer reflecting the vector’s dimension, its value is D × 400; where D is the maximum
value of d. The non-co-occurrence probability of two amino acids separated by distance d can be
calculated by:

f (Ax, Ay|d) = 1
L − d

L−d

∑
i=1

(
Pi,x − Pi+d,y

)2
(9)

where Pi,x (Pi+d,y) is the element in PSFM; Ax and Ay can be any of the 20 standard amino acids in the
protein (Equation (3)).

Thus, each element in feature vector (Equation (8)) is obtained by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ1 = f (A1, A1|1)
ψ2 = f (A1, A2|1)
· · ·

ψ400 = f (A20, A20|1)
· · ·

ψk = f (Ax, Ay
∣∣d)

· · ·
ψΩ = f (A20, A20|D)

, (1 ≤ d ≤ D) (10)

3.2.4. Distance-Bigram Transformation

DBT [17,23,24] calculate the occurrence frequency of a combination of two amino acids separated
by a certain distance along the protein sequence. The distance d is determined by the number of
amino acids between the two amino acids of bigram. Some previous studies [17,23,24] have reported
that the occurrence frequencies of amino acid pairs can well capture characteristics of proteins and
they worked well for protein functionality annotation. To capture the characteristics of DNA-binding
proteins, we represented proteins by combining PSFM with distance-bigram transformation, which can
transform PSFM into fixed length feature vector.

For a given PSFM (Equation (4)), it can be transferred into a feature vector, as follows:

P = [ψ1 ψ2 · · · ψk · · · ψΩ] (11)

where Ω is an integer to reflect the vector’s dimension, its value is determined by D the maximum
value of d. In order to incorporate the amino acid composition of the 20 standard amino acids in PSFM
into the DBT approach, in this method, d = 0 was taken into account, therefore, Ω = 400 × D + 400.

The detail of DBT can be summarized mathematically as in the below equation.

f (Ax, Ay|d) = 1
L − d

L−d

∑
i=1

Pi,xPi+d,y (12)
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where Pi,x (Pi+d,y) is the element of the PSFM matrix; f (Ax,Ay|d) represents the occurrence frequency of
a bigram (standard amino acids Ax and Ay separated by a certain distance d) in evolutionary process.

Accordingly, each element in the feature vector (Equation (11)) is obtained by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ1 = f (A1, A1|0)
ψ2 = f (A1, A2|0)
· · ·

ψ400 = f (A20, A20|0)
· · ·

ψk = f (Ax, Ay
∣∣d)

· · ·
ψΩ = f (A20, A20|D)

, (0 ≤ d ≤ D) (13)

3.2.5. Trigram Transformation

TT [25] is able to consider the local and global sequence-order effects by considering the trigrams
along the protein sequences, the resulting feature vectors can be represented as:

P = [ψ1 ψ2 · · · ψk · · · ψ8000] (14)

This technique can be summarized mathematically as shown in the below equation.

f (Ax, Ay, Az) =
L−2

∑
i=1

Pi,xPi+1,yPi+2,z (15)

where Pi,x, Pi+1,y and Pi+2,z represent the corresponding elements in PSFM (Equation (4)); Ax, Ay and
Az can be any of the 20 standard amino acids in the protein (Equation (3)); f (Ax, Ay, Az) represents the
occurrence frequency of trigram (AxAyAz) in evolutionary process.

Accordingly, each element in the feature vector (Equation (14)) is obtained by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ψ1 = f (A1, A1, A1)

ψ2 = f (A1, A1, A2)

· · ·
ψk = f (Ax, Ay, Az)

· · ·
ψ8000 = f (A20, A20, A20)

, (x, y, x = 1, 2, · · · , 20) (16)

3.3. Support Vector Machine

SVM is a machine learning algorithm based on the structural-risk minimization principle of
statistical learning theory. It was first presented by Vapnik [45] and has been widely used in
bioinformatics. SVM is not only suitable for linear data, but also suitable for non-linear data. For linear
data, SVM seek for an optimal hyper-plane to maximize the separation boundary between the positive
instance and the negative instance, thereby separating the two instances. The nearest two points to the
hyper-plane are called support vectors. For a non-linear model, SVM uses a non-linear transformation
to map the input feature space to a high dimensional feature space where the samples can be well
separated by an optimal hyper-plane. Kernel function is the most vital part for SVM; it determines the
final performance of the SVM algorithm. There are some commonly used kernel functions for SVM,
including Linear Function, Polynomial Function, Gaussian Function, Laplacian Function, Sigmoid
Function and Radial Basis Function (RBF). SVM also can be used in the hierarchical classification [46].
Ensemble SVM may improve performance, too [47–49]. In the current study, an available SVM
algorithm package called LIBSVM [50] was used to implement SVM algorithm, in which the RBF was
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chosen as the kernel function and the two parameters c and g were optimized by 5-fold cross validation
on the benchmark.

3.4. Evaluation of Performance

In the current study, three commonly used methods were used to evaluate the performance of the
proposed methods, including k-fold cross-validation, jackknife test and independent test. Moreover,
sensitivity (SN), specificity (SP), accuracy (ACC), Matthew’s correlation coefficient (MCC), the Receiver
Operating Characteristic (ROC) curve [51] and the area under ROC curve (AUC) were selected as
evaluation criteria. These criteria have been widely used in various studies for biological sequence
annotation. They can be mathematically defined as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

SN = TP
TP+FN

SP = TN
TN+FP

ACC = TP+TN
TP+FP+TN+FN

MCC = TP×TN−FP×FN√
(TP+FN)×(TP+FP)×(TN+FP)×(TN+FN)

(17)

where TP is the number of true positive samples; TN is the number of true negative samples; FP is
the number of false positive samples; and FN is the number of false negative samples. SN denote
percentage of true positive samples among positive samples and SP denote percentage of true negative
samples among negative samples. ACC represent the percentage of the samples which were correctly
predicted among all samples. MCC explains the reliability of models, and its values range from −1
to 1, when MCC = −1 if all predictions are incorrect and when MCC = 1 if all predictions are correct.
For MCC = 0, the prediction is no better than random. The ROC curve is a plot which is usually used to
evaluate the performance of predictors. The AUC is the area under ROC curve which gives a measure
of the quality of binary classification methods; the larger AUC, the better the predictive quality is.

4. Conclusions

To further improve the prediction accuracy and understand the binding regular patterns of DNA
binding proteins, we explored and compared the performance of four feature extraction methods,
including Residue Probing Transformation (RPT), Evolutionary Difference Transformation (EDT),
Distance-Bigram Transformation (DBT), and Trigram Transformation (TT). Experimental results
showed that PSFM-DBT achieved the best performance, and outperformed other existing methods
in this field. This method was further evaluated on an independent dataset. Furthermore,
some interesting patterns were discovered by analyzing the features generated PSFM-DBT,
fully consistent with previous studies. Finally, a web server of the proposed PSFM-DBT predictor was
established in order to help the users to use this method, which would be a useful tool for protein
sequence analysis, especially for studying the structure and function of proteins. Future studies
will focus on exploring advanced machine learning techniques to improve the performance of DNA
binding protein prediction [52,53].

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/9/1856/s1.
The benchmark dataset PDB1075 contains 525 DNA-binding proteins (positive samples) and 550 non-DNA-binding
proteins (negative samples) (See Equation (2)), which is available at http://bioinformatics.hitsz.edu.cn/PSFM-
DBT/data/.
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Abstract: Nowadays, cluster analysis of biological networks has become one of the most important
approaches to identifying functional modules as well as predicting protein complexes and network
biomarkers. Furthermore, the visualization of clustering results is crucial to display the structure
of biological networks. Here we present CytoCluster, a cytoscape plugin integrating six clustering
algorithms, HC-PIN (Hierarchical Clustering algorithm in Protein Interaction Networks), OH-PIN
(identifying Overlapping and Hierarchical modules in Protein Interaction Networks), IPCA
(Identifying Protein Complex Algorithm), ClusterONE (Clustering with Overlapping Neighborhood
Expansion), DCU (Detecting Complexes based on Uncertain graph model), IPC-MCE (Identifying
Protein Complexes based on Maximal Complex Extension), and BinGO (the Biological networks Gene
Ontology) function. Users can select different clustering algorithms according to their requirements.
The main function of these six clustering algorithms is to detect protein complexes or functional
modules. In addition, BinGO is used to determine which Gene Ontology (GO) categories are
statistically overrepresented in a set of genes or a subgraph of a biological network. CytoCluster can
be easily expanded, so that more clustering algorithms and functions can be added to this plugin.
Since it was created in July 2013, CytoCluster has been downloaded more than 9700 times in the
Cytoscape App store and has already been applied to the analysis of different biological networks.
CytoCluster is available from http://apps.cytoscape.org/apps/cytocluster.

Keywords: biological networks; cluster analysis; cytoscape; visualization

1. Introduction

In recent years, people have paid more and more attention to recognizing life activities within
a cell by protein interactions and protein complexes [1–3] in the field of systems biology. Proteins
are one of the most important biological molecules in a cell. Within a cell, a protein cannot work
alone, but rather works together with other proteins to perform cellular functions. Proteins are
involved in a life process through protein complexes. Protein complexes can help us to understand
certain biological processes and to predict the functions of proteins. Also, they can realize the cell
signaling regulation functions by allosteric, competitive binding, interaction, and post-translational
modification [4]. Protein-protein interaction (PPI) networks are powerful models that represent the
pairwise protein interactions of organisms. Clustering PPI networks can be useful for isolating groups
of interacting proteins that participate in the same biological processes or that, together, perform
specific biological functions.

Up to now, many clustering algorithms, which are used to predict protein complexes from
proteomics data, have been proposed and applied to biological networks. Out of these methods,
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the graph-based approaches are the most popular, which includes the partition-based clustering
method, the density-based clustering method, the hierarchical-based clustering method and the
spectral-based clustering method.

The partition-based clustering algorithms detect protein complexes by finding an optimal network
partition, and making sure that the divided objects in the same cluster are as close as possible and the
objects in different clusters are as far away as possible, such as HCS (Highly Connected Subgraph) [5],
RNSC (Restricted Neighborhood Search Clustering) [6], MSCF (Minimal Seed Cover for Finding
protein complexes) [7]. These partition-based clustering algorithms need to know the partition number,
which is albeit generally unknown to us. What is more, partition-based methods cannot predict
overlapping clusters.

The density-based clustering algorithms identify protein complexes by mining dense subgraphs
from biological networks, such as MCL (Markov CLuster) [8], MCODE (Molecular COmplex
DEtection) [9], CPM (Clique Percolation Method) [10], LCMA (Local Clique Merging Algorithm) [11],
Dpclus (Density-periphery based clustering) [12], IPCA (Identifying Protein Complex Algorithm) [13],
CMC (Clustering based on Maximal Cliques) [14], MCL-Caw (a refinement of MCL for detecting
yeast complexes) [15], ClusterONE (Clustering with Overlapping Neighborhood Expansion) [16],
and so on. These clustering algorithms have the advantage of recognizing dense subgraphs. However,
it is difficult to predict the clusters which are non-dense subgraphs with these methods, such as the
subgraph of “star” and “cycle.”

The basic idea of the hierarchical clustering method is measuring the possibility that any two
proteins are located in the same cluster according to their similarity or the distance between them.
Hierarchical clustering methods can be further divided into divisive methods and agglomerative
methods. A divisive method is a top-down approach, whose main action regards the total PPI network
as a cluster first, then divides the network according to a rule until all nodes belong to different clusters.
An agglomerative method is a bottom-up approach, whose main action regards each protein in the PPI
network as a cluster first, then merges any two clusters according to their similarity value until all nodes
are assigned to clusters. For example, G-N (Girvan-Newman) [17], MoNet (Modular organization of
protein interaction Networks) [18], FAG-EC (Fast AGglomerate algorithm for mining functional
modules based on the Edge Clustering coefficients) [19], EAGLE (agglomerativE hierarchicAl
clusterinG based on maximaL cliquE) [20], HC-PIN (Hierarchical Clustering algorithm in Protein
Interaction Networks) [21] are all hierarchical clustering algorithms. Hierarchical clustering methods
can be used for mining arbitrary shape clusters, and can render the hierarchical organization of the
entire PPI network based on a tree structure. However, this type of method is very sensitive to noise
data and cannot obtain overlapping clusters. Some researchers extend the hierarchical clustering
method to detect overlapping clusters by initializing a triangle with three interacting proteins instead
of a single protein, such as OH-PIN (identifying Overlapping and Hierarchical modules in Protein
Interaction Networks) [22].

The spectral-based clustering algorithms predict protein complexes based on the spectrum
theory, such as QCUT (Combines spectral graph partitioning and a local search to optimize the
modularity Q) [23], ADMSC (Adjustable Diffusion Matrix-based Spectral Clustering) [24], and SSCC
(Semi-Supervised Consensus Clustering) [25]. These spectral-based clustering methods can be a simple
and fast approach to a certain extent. These clustering algorithms depend on the feature vector,
which determines the final clustering results. In addition, many other kinds clustering algorithms can
be found in survey papers [26,27].

With the developments of clustering methods, the visualization of clusters becomes more and
more important. Several tools [28–33] have been developed to help researchers to better recognize
positive protein complexes. Cytoscape [34] is a friendly and open bioinformatics platform, which shows
an exceptional performance both in virtualizations and manipulation of biological networks. Cytoscape
also has the advantage of formidable extensibility of integrating a vast amount of plugins with diverse
functions over other platforms. There are 33 apps concerning clustering based on Cytoscape described
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in our supplement, many of which aim to find meaningful pathways, or visualize networks by semantic
similarities, or construct dynamic networks. Among all of the apps, there are several apps, such as
ClusterViz [35], clusterMake [36], and ClusterONE [16], which are used to detect and visualize protein
complexes in PPI networks. They are all useful tools with different clustering methods, which have
been used in different areas of life sciences in recent years. However, a great deal of newly developed
clustering algorithms has lost favor with the Cytoscape platform and do not implement visualization.
Also, several plugins with old versions cannot work on the new Cytoscape platform any more. In order
to solve the above limitations, we developed a new plugin named CytoCluster, which integrates six
new clustering algorithms in total. In our plugin, five new approaches named IPCA, OH-PIN, HC-PIN,
DCU (Detecting Complexes based on Uncertain graph model) [37], IPC-MCE (Identifying Protein
Complexes based on Maximal Complex Extension) [38] were added, which are not integrated in any
existing apps, but are important methods used to predict protein complexes. Our CytoCluster plugin
also contains the BinGO function, which is used to determine which Gene Ontology (GO) categories
are statistically overrepresented in a set of genes or a subgraph of a biological network. So, our app
becomes a versatile tool that offers such comprehensive clustering algorithms, in addition to the BinGO
function for biological networks.

2. Architecture

In this paper, we adopt Cytoscape 3.x to develop our app. Cytoscape 3.x has notable advantages
over Cytoscape 2.x, which can be described in the following two aspects. First, the platform of
Cytoscape 3.x adopts the OSGI (Open Service Gateway Initiative) framework, which allows developers
to dynamically install, load, update, unload, and uninstall the newly developed bundles in an easy
way. Second, Cytoscape 3.x employs Maven, which can help developers manage many jar files.
In Cytoscape 3.x, both core modules and apps are called OSGI bundles, and they can significantly
reduce complexity in app development to some extent. Also, two methods can be used for developing
apps in Cytoscape 3.x. The first way is to develop apps as bundles, which can both register a service in
the OSGI framework and withdraw its service from the registry. The second way is to implement the
apps with Simplified CyApp API (Application Programming Interface), just like in Cytoscape 2.x.

The architecture of CytoCluster is shown in Figure 1, which includes three main bundles:
the interface of CytoCluster bundles, the cluster algorithm bundles, and the visualization, BinGO,
and export bundles. The interface of CytoCluster bundles is made up of a graphic user interface and a
data exchange system, which allows the users to obtain different forms of bioinformatics networks
including .txt and .csv files, and send the clustering results to Cytoscape. The six clustering algorithms
bundles play an important role in our plugin CytoCluster, and we have defined the abstract Java
class named clustering algorithms, making it is easy for us to integrate more clustering algorithms
in CytoCluster. The BinGO bundles are the core functionality in analyzing the GO terms, which can
be used to determine which GO categories are statistically overrepresented in a set of genes or a
subgraph of a biological network. The visualization of BinGO and export bundles provide a way to
intuitively visualize the clustering results in Cytoscape, determine which GO categories are statistically
overrepresented, and export the clustering results to .txt or .cvs files.
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Figure 1. Architecture of CytoCluster.

3. Implementation

A user-friendly clustering software system to detect clusters is very important for biologists.
By running the software, users can easily detect and analyze the protein complexes participating in the
different life activities. Based on this basic idea, we developed our plugin CytoCluster by adopting
the OSGI framework and the Cytoscape Maven archetypes. These frameworks and archetypes can
create a maven-based project that builds an initial OSGI bundle-based Cytoscape app. The design is
guided by the following three goals: first, to extend new clustering algorithms and add more functions;
second, to dispatch the interface of CytoCluster and the algorithms; third, to respond quickly when
the user operates the GUI (Graphical User Interface).

CyActivator class is an abstract class, which plays an important role in connecting Cytoscape with
CytoCluster. All of the functions of CyActivator start to work as soon as you install the CytoCluster.jar
for Cytoscape. The Analyze Action, as one of the service bundles, is the most important function
in CytoCluster. Once the network is imported into Cytoscape, then our plugin CytoCluster is able
to obtain these data from Cytoscape for further analysis. Two parts can be seen in the main panel.
The top part mainly contains the two kinds of the clustering algorithms, overlap clustering algorithms
and nonoverlap clustering algorithms. The bottom panel mainly provides six clustering algorithm
panels, which are the IPCA panel, HC-PIN panel, OH-PIN panel, DCU panel, ClusterONE panel,
and IPC-MCE panel. The user can choose different parameters according to their needs from these
clustering algorithm panels. The result panel and the “export to .txt” function must be contained
in CytoCluster, which provides an easy way to further analyze the results produced by different
clustering algorithms. In addition, the progress panel is included in our app, which is used to visualize
the progression of the running clustering algorithms.

Finally, we constructed this CytoCluster app containing four parts: Open, Close, About,
and BinGO. Each part has its own function. Six clustering algorithms are included in the Open
part. When users want to terminate this app, they should select the Close part. Here, BinGO plays
an important role in determining which GO categories are statistically overrepresented in biological
networks. Lastly, if you want to learn more information about the app, you cannot miss the About part.
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3.1. Calculation and Basic Analysis

When users open the CytoCluster plugin, six clustering algorithms are provided, which are
HC-PIN, OH-PIN, IPCA, IPC-MCE, ClusterONE, and DCU. In the following, these six clustering
algorithms are briefly described.

3.1.1. HC-PIN (Hierarchical Clustering Algorithm in Protein Interaction Networks)

The HC-PIN algorithm [21] is a fast, hierarchical clustering algorithm, which can be used
in a weighted graph or an unweighted graph. The main processes can be described as follows.
First, all vertices in the PPI network are regarded as singleton clusters. Then, HC-PIN [21] calculates
the clustering value of each edge and queues all of the edges into a queue Sq in non-increasing order
according to their clustering values. The higher clustering value the edge has, the more likely its
two vertices will be in the same module. In the process of adding edges in the queue Sq to cluster,
λ-modules are formed. Finally, λ-modules can be outputted when the number of its proteins is no less
than a threshold s.

3.1.2. OH-PIN (Identifying Overlapping and Hierarchical Modules in Protein Interaction Networks)

The OH-PIN algorithm [22] is an improved hierarchical clustering method, which can identify
overlapping clusters. The basic idea of OH-PIN can be summarized as follows. At the beginning,
the cluster set C_set is empty. For each edge in the protein interaction network, its B_Cluster is
generated and the B_Cluster is added to the C_set, if B_Cluster is not already included in the C_set,
until every B_Cluster is included. Then, OH-PIN [22] merges all highly overlapping cluster pairs in
the C_set in terms of the threshold overlapping value. After the above step, OH-PIN assembles all
of the clusters in the C_set into λ-modules by gradually merging the cluster pair with the maximum
clustering coefficient.

3.1.3. IPCA (Identifying Protein Complex Algorithm)

The IPCA algorithm [13] is a density-based clustering algorithm, which can identify dense
subgraphs in protein interaction networks. IPCA has four major sub-algorithms: weighting vertex,
selecting weed, extending cluster, and extend-judgment. First, IPCA [13] calculates the weight of each
edge by counting the common neighbors of its connected two nodes and computes the weight of each
node by summing up the weights of its incident edges. The higher weight one node has, the more
likely the node is regarded as the seed. At the beginning, a seed is initialed as a cluster. IPCA extends
a cluster by adding vertices recursively from its neighbors in terms of the nodes’ priority. Whether a
node can be added to a cluster is determined by two conditions: its interaction probability and the
shortest path between it and the nodes in the cluster.

3.1.4. IPC-MCE (Identifying Protein Complexes based on Maximal Complex Extension)

The IPC-MCE algorithm [38] is a maximal clique-based clustering algorithm. The basic idea of
IPC-MCE can be described as follows. First, IPC-MCE removes all the nodes which have only one
neighbor. Then IPC-MCE enumerates all the maximal cliques in the remained PPI network and puts
them into the set MCS (Maximal Clique Sets). For each neighborhood vertex v of the maximal clique K
in set MCS, if IPvk is no less than the threshold t, the vertex v can be added to the maximal clique K.
The definition of IPvk is as follows:

IPvk =
|Evk|
|Vk| (1)

EvK is the number of the edges between the vertex v and K, and |Vk| is the number of nodes in K.
Finally, IPC-MCE [38] filters the repeated maximal clique according to a pre-defined overlapping value.
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3.1.5. ClusterONE (Clustering with Overlapping Neighborhood Expansion)

The ClusterONE algorithm [16] mainly contains three steps. First, groups are grown by adding or
removing vertices with high cohesiveness from selected seed proteins. At the beginning, the protein
with the highest degree is regarded as the first seed and grows a cohesive group from it using a greedy
procedure. ClusterONE repeats this grown process to form overlapping complexes until there are
no proteins remaining in the PPI network. Then ClusterONE merges the highly overlapping pairs of
locally optimal cohesive groups according to a pre-defined overlapping score. Finally, ClusterONE
outputs protein complexes that contain no less than three proteins or whose density is larger than a
given threshold ∂ (its default value is 0.8).

3.1.6. DCU (Detecting Complexes Based on Uncertain Graph Model)

The DCU algorithm [37] is a clustering algorithm, which detects protein complexes based on an
uncertain graph model. First, DCU [37] starts from a seed vertex and adds other vertices by using a
greedy procedure to form a candidate core with high cohesion and low coupling. Then, DCU uses
a core-attachment strategy to add attachments to core sets to form complexes. Specifically, for each
protein of a candidate set, if its internal absolute degree is less than its external absolute degree,
which consists of neighbors of protein vertices in the candidate set, the protein must be removed
from the candidate set. Finally, DCU needs to solve the problem of the repeated protein complexes
by controlling their overlapping value. Users can select any kind of clustering algorithms they want
in the main panel and input the parameters of the algorithm, which decide the creation of a specific
clustering algorithm object in memory. Our CytoCluster plugin also provides the visualization of
clustering results after running each of these six clustering algorithms, which can be seen in the result
panel in the form of a thumbnail list. They can be sorted by the score, the size, or the modularity. In the
result panel, the “Export” button and “Discard Result” button are included. The “Export” button
is used for exporting results to a .txt file, including the name of algorithm, the parameters, and the
clusters, while the “Discard Result” button is used for closing the result panel. Users can close the
visualization of clustering results after running these six clustering algorithms with default parameters.
In addition, users can see the visualization of cluster results after running a clustering algorithm.
Therefore, CytoCluster is a convenient and fast app to obtain smaller networks from a large network.

3.2. BinGO

Here, we integrate the BinGO function to be the part of the CytoCluster. All this is done for
the convenience of the users. When they install a cytocluster jar, users can not only choose different
clustering algorithms, but also use BinGO. Once the BinGO part is opened, a panel will appear in
the center of the computer monitor. Users can make a choice from this setting panel according to
their need. The main function of BinGO is to determine the overrepresentation of Gene Ontology
(GO) categories in a subgraph of a biological network or a set of genes. Once given a set of genes or
a subgraph of a network on the GO hierarchy, BinGO can map the predominant functional themes
and output this map in the form of a Cytoscape graph. The BinGO function has the same features
as the BiNGO [39] plugin. These features contain graphs or genes list inputs; make and use custom
annotations, ontologies, and reference sets; save the extensive results in a tab-delimited text file
format; and so on. Selecting the “Start BiNGO” button is required after users have chosen their basic
parameters. Then, the visualization of GO can be seen from a chosen network. The result can also be
saved in a .bgo, which can be used for further studies.

In the BinGO part, two modes are included for selecting the set of genes to be functionally
recommended. One is the default mode, and the other is the flexible mode. In the default mode,
nodes can be chosen from a Cytoscape network, either manually or by other plugins. In the flexible
mode, nodes can be selected from other sources, for example a set of nodes that are obtained from an
experiment and pasted in a text input box. Here, the relevant GO annotations can be retrieved and
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propagated upwards through the GO hierarchy; namely, any genes related to a certain GO category can
be predicted explicitly and included in all parental categories. Two statistical tests are also concerned
so as to assess the enrichment of a GO term better. The most important characteristic of the BinGO
part is its interactive use for molecular interaction networks, such as protein interaction networks.
Furthermore, it is very flexible for BinGO to use ontologies and annotations. Both the traditional GO
ontologies and the GOSlim ontologies are supported by BinGO. Then, the Cytoscape graph produced
by BinGO can be seen, altered, and saved in a variety of ways.

4. Cases Studies

CytoCluster integrates different types of clustering algorithms including density-based clustering
algorithms, hierarchical clustering algorithms, and maximal clique-based methods. Many researchers
have downloaded and used the plugin since CytoCluster was released. So far, CytoCluster has been
downloaded more than 9700 times since it was released in July 2013. Several important scientific
articles indicated that CytoCluster can help scholars with their studies on the mechanisms of biological
networks. There are several generic stages of how to run the clustering algorithms in our CytoCluster
plugin, which include installing the CytoCluster app, loading the network, setting the data scope and
parameters of clustering algorithms, running the cluster algorithm, and receiving or exporting the
information of clustering results. The “CytoCluster” menu appears in the “App” menu, after installing
the CytoCluster app. In this paper, we present a case to illustrate the use of our plugin. In addition,
more cases on these six clustering algorithms can be seen in Table 1.

188



Int. J. Mol. Sci. 2017, 18, 1880

T
a

b
le

1
.

M
or

e
ap

pl
ic

at
io

ns
of

C
yt

oC
lu

st
er

an
d

th
e

si
x

cl
us

te
ri

ng
al

go
ri

th
m

s
in

te
gr

at
ed

in
it

.

A
lg

o
ri

th
m

s
A

p
p

li
ca

ti
o

n
N

e
tw

o
rk

D
e

sc
ri

p
ti

o
n

R
e

fe
re

n
ce

IP
C

A

Ex
pl

or
in

g
to

m
at

o
ge

ne
fu

nc
ti

on
s

Th
e

to
m

at
o

co
-e

xp
re

ss
io

n
ne

tw
or

k
w

as
ch

os
en

an
d

46
5

co
m

pl
ex

es
w

er
e

fo
un

d
IP

C
A

w
as

us
ed

to
id

en
ti

ty
a

de
ns

el
y

co
nn

ec
te

d
ne

tw
or

k
[4

0]

U
nr

av
el

lin
g

ge
ne

fu
nc

ti
on

Th
e

to
m

at
o

co
-e

xp
re

ss
io

n
ne

tw
or

k
w

as
ch

os
en

an
d

46
5

co
m

pl
ex

es
w

er
e

fo
un

d
IP

C
A

w
as

ch
oo

se
n

to
id

en
ti

fy
th

ic
k

co
nn

ec
te

d
no

de
s

[4
1]

Pr
ed

ic
ti

ng
co

lo
n

ad
en

oc
ar

ci
no

m
a

Th
e

ne
tw

or
ks

fr
om

In
tA

ct
an

d
re

ac
to

m
e

w
er

e
m

er
ge

d
IP

C
A

w
as

us
ed

to
id

en
ti

fy
hi

gh
ly

co
nn

ec
te

d
su

bn
et

w
or

ks
[4

2]

Th
e

co
rr

el
at

io
n

be
tw

ee
n

co
ld

an
d

he
at

pa
tt

er
ns

T
he

ne
tw

or
k

fr
om

R
A

18
w

as
di

ag
no

se
d

w
it

h
de

fc
ie

nc
y

pa
tt

er
n

an
d

15
ot

he
rs

w
er

e
di

ag
no

se
d

w
it

h
no

nd
ef

ci
en

cy
pa

tt
er

n
IP

C
A

w
as

us
ed

to
an

al
yz

e
th

e
ch

ar
ac

te
ri

st
ic

s
of

ne
tw

or
ks

[4
3]

Ev
id

en
ce

-b
as

ed
co

m
pl

em
en

ta
ry

an
d

al
te

rn
at

iv
e

m
ed

ic
in

e

PP
In

et
w

or
k

fr
om

ge
ne

s
w

as
ch

os
en

so
th

at
th

e
ra

ti
o

of
co

ld
pa

tt
er

ns
to

he
at

pa
tt

er
ns

in
pa

ti
en

ts
w

it
h

R
A

w
as

m
or

e
or

le
ss

th
an

1:
1.

4
IP

C
A

w
as

us
ed

to
de

te
ct

hi
gh

ly
co

nn
ec

te
d

su
bn

et
w

or
ks

[4
4]

C
ol

d
an

d
he

at
pa

tt
er

ns
of

rh
eu

m
at

oi
d

ar
th

ri
ti

s
PP

In
et

w
or

k
fr

om
th

es
e

ge
ne

s
w

as
ch

os
e

th
at

th
e

ra
ti

o
of

co
ld

pa
tt

er
ns

to
he

at
pa

tt
er

ns
in

pa
ti

en
ts

w
it

h
R

A
w

as
m

or
e

or
le

ss
th

an
1:

2

H
ig

hl
y

co
nn

ec
te

d
re

gi
on

s
as

so
ci

at
ed

w
it

h
ty

pi
ca

lT
C

M
co

ld
pa

tt
er

ns
an

d
he

at
pa

tt
er

ns
w

er
e

id
en

ti
fie

d
[4

5]

C
ol

d
an

d
he

at
pa

tt
er

n
of

rh
eu

m
at

oi
d

ar
th

ri
ti

s
N

et
w

or
k

fo
r

di
ff

er
en

ti
al

ly
ex

pr
es

se
d

ge
ne

s
be

tw
ee

n
R

A
pa

ti
en

ts
w

it
h

TC
M

co
ld

an
d

he
at

pa
tt

er
ns

IP
C

A
w

as
us

ed
to

in
fe

r
si

gn
ifi

ca
nt

co
m

pl
ex

es
or

pa
th

w
ay

s
in

th
e

PP
In

et
w

or
k

[4
6]

Fu
nc

ti
on

al
ne

tw
or

ks
N

et
w

or
k

co
nt

ai
ne

d
so

m
e

ge
ne

ex
pr

es
si

on
s

or
re

gu
la

te
d

pr
ot

ei
ns

Th
en

ei
gh

th
ig

hl
y

co
nn

ec
te

d
re

gi
on

s
w

er
e

fo
un

d
by

IP
C

A
to

in
fe

r
co

m
pl

ex
es

or
pa

th
w

ay
s

[4
7]

Th
e

m
ol

ec
ul

ar
m

ec
ha

ni
sm

of
in

te
rv

en
ti

on
s

PP
In

et
w

or
ks

of
bi

om
ed

ic
al

co
m

bi
na

ti
on

w
as

ch
os

en
an

d
11

co
m

pl
ex

es
w

er
e

fo
un

d
IP

C
A

w
as

us
ed

to
an

al
yz

e
th

e
ch

ar
ac

te
ri

st
ic

s
of

th
e

ne
tw

or
k

[4
8]

Th
e

sy
ne

rg
is

ti
c

se
ch

an
is

m
s

N
et

w
or

k
as

so
ci

at
ed

w
it

h
Sa

lv
ia

m
ilt

io
rr

hi
za

an
d

Pa
na

x
no

to
gi

ns
en

g
Si

gn
ifi

ca
nt

co
m

pl
ex

es
or

pa
th

w
ay

s
w

er
e

in
fe

rr
ed

[4
9]

H
C

-P
IN

C
on

st
ra

in
ts

on
co

m
m

un
it

y
A

ss
oc

ia
ti

on
s

be
tw

ee
n

ba
ct

er
ia

O
TU

s
an

d
fo

ur
su

bn
et

w
or

ks
w

er
e

fo
un

d
Su

bn
et

w
or

ks
of

O
TU

s
w

er
e

de
te

ct
ed

[5
0]

St
ra

te
gi

es
be

tw
ee

n
tw

o
re

ef
bu

ild
in

g
co

ld
-w

at
er

co
ra

ls
pe

ci
es

A
ss

oc
ia

ti
on

ne
tw

or
k

of
th

e
co

ld
-w

at
er

sc
le

ra
ct

in
ia

n
co

ra
ls

ba
ct

er
ia

lc
om

m
un

it
ie

s
H

C
-P

IN
w

as
us

ed
to

id
en

ti
fy

O
TU

s
[5

1]

Bi
om

ar
ke

rs
Th

e
ne

tw
or

k
w

as
ex

tr
ac

te
d

fr
om

th
e

TC
G

A
da

ta
ba

se
m

iR
N

A
-g

en
e

cl
us

te
rs

w
er

e
id

en
ti

fie
d

[5
2]

Fi
nd

in
g

th
e

ca
nd

id
at

e
bi

om
ar

ke
rs

fo
r

PO
A

G
di

se
as

e
N

et
w

or
k

w
as

ex
tr

ac
te

d
fr

om
pr

ev
io

us
st

ud
ie

s
w

it
h

47
4

pr
ot

ei
ns

an
d

ni
ne

su
bn

et
w

or
ks

w
er

e
fo

un
d

H
C

-P
IN

w
as

ch
oo

se
n

to
pe

rf
or

m
th

e
cl

us
te

ri
ng

w
it

h
a

co
m

pl
ex

si
ze

th
re

sh
ol

d
of

3
[5

3]

O
H

-P
IN

Ba
ct

er
ia

la
ss

oc
ia

ti
on

s
Bu

lk
so

il
D

N
A

w
as

ex
tr

ac
te

d
Th

e
su

bn
et

w
or

ks
w

er
e

pa
rt

it
io

ne
d

in
to

m
od

ul
ar

s
[5

4]

C
lu

st
er

O
N

E

A
ce

ns
us

of
hu

m
an

so
lu

bl
e

pr
ot

ei
n

co
m

pl
ex

es
N

et
w

or
k

w
as

ex
tr

ac
te

d
fr

om
hu

m
an

H
eL

a
S3

an
d

H
EK

29
3

ce
lls

gr
ow

n
C

lu
st

er
O

N
E

w
as

us
ed

to
de

te
ct

pr
ot

ei
n

co
m

pl
ex

es
[5

5]

A
n

ar
ab

id
op

si
s

A
ne

tw
or

k
w

it
h

89
00

no
de

s
an

d
63

82
ed

ge
s

w
as

ch
os

en
an

d
70

1
cl

us
te

rs
w

er
e

fo
un

d
C

lu
st

er
O

N
E

w
as

us
ed

to
ob

ta
in

su
bn

et
w

or
ks

[5
6]

Fn
di

ng
e

di
se

as
e-

dr
ug

m
od

ul
es

D
is

ea
se

-g
en

e
an

d
dr

ug
-t

ar
ge

ta
ss

oc
ia

ti
on

s
w

er
e

fo
un

d
fr

om
dr

ug
-t

ar
ge

td
at

a
O

ve
rl

ap
pi

ng
su

bn
et

w
or

ks
w

er
e

id
en

ti
fie

d
[5

7]

PP
I:

Pr
ot

ei
n-

pr
ot

ei
n

in
te

ra
ct

io
n;

IP
C

A
:I

de
nt

if
yi

ng
Pr

ot
ei

n
C

om
pl

ex
A

lg
or

it
hm

;T
C

M
:T

ra
di

ti
on

al
C

hi
ne

se
M

ed
ic

in
e;

R
A

:R
he

um
at

oi
d

A
rt

hr
it

is
;P

O
A

G
:P

ri
m

ar
y

O
pe

n
A

ng
le

G
la

uc
om

a;
O

TU
:O

pe
ar

at
in

g
Ta

xo
no

m
ic

U
ni

t;
TC

G
A

:T
he

C
an

ce
r

G
en

om
e

A
tl

as
;O

H
-P

IN
:I

de
nt

if
yi

ng
O

ve
rl

ap
pi

ng
an

d
H

ie
ra

rc
hi

ca
lM

od
ul

es
in

Pr
ot

ei
n

In
te

ra
ct

io
n

N
et

w
or

ks
.

189



Int. J. Mol. Sci. 2017, 18, 1880

The case of CytoCluster was applied in botany [58]. This paper was published in Plant Physiology
by Baute et al. The co-expression network was generated by Cytoscape 3.2.0 [59] according to the nodes
and edges [60,61] at first. Then, the newly co-expression network was loaded, which incorporated
185 genes and 943 edges. Third, the main panel of the CytoCluster was opened and the HC-PIN
clustering algorithm was chosen with standard settings and a complex size threshold of 10. In this
case, 185 genes and 943 edges were included after dealing with the whole network. The identified
subnetworks were further filtered, so as to only include the co-expression networks based on PCCs
(Pearson Correlation Coefficients) of 0.7 and higher, as well as protein-protein interactions between
query genes based on both experimental and predicted data from CORNET, when the users clicked
on the “Analysis” button. Then, four subnetworks were formed after using our plugin for analysis,
which can be seen from Figure 2. Each circle in Figure 2 shows a subnetwork. What is more, the
generated co-expression network achieved by the HC-PIN algorithm can be seen in the result panel or
exported to a .txt, so users can output the results from the different algorithms for further analysis.
The table panel can list proprieties of clustering results when users select the corresponding clustering.
The progress panel is used to visualize the progression of a specific cluster algorithm.

Figure 2. Four subnetworks achieved in the first case [58].

5. Conclusions

Our CytoCluster plugin is a platform-independent app for Cytoscape, which is also a functional
diversity tool to offer different types of clustering algorithms, including IPCA, DCU, HC-PIN, OH-PIN,
IPC-MCE, and ClusterONE. OH-PIN and HC-PIN are both hierarchical-based clustering algorithms,
HC-PIN generates non-overlapping clusters, and on the contrary, OH-PIN produces overlapping
clusters. IPCA, DCU, IPC-MCE, and ClusterONE are all density-based clustering algorithms, but the
clusters generated by them also have some differences. Moreover, the same method will produce
different results by changing the values of parameters. Users can both choose different clustering
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algorithms and analyze which GO categories are statistically overrepresented in a set of genes or a
subgraph of a biological network. Our CytoCluster plugin is not only convenient for researchers to
use, but also renders the investigated biological process easy to understand. Because our app has the
advantage of expandability, more clustering algorithms such as those reported in References [62–65] as
well as modules can be added to CytoCluster. Owing to such features, we firmly believe our app will
be of great help in biology research.
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Abstract: Recent advances in high-throughput laboratory techniques captured large-scale
protein–protein interaction (PPI) data, making it possible to create a detailed map of protein
interaction networks, and thus enable us to detect protein complexes from these PPI networks.
However, most of the current state-of-the-art studies still have some problems, for instance,
incapability of identifying overlapping clusters, without considering the inherent organization within
protein complexes, and overlooking the biological meaning of complexes. Therefore, we present a
novel overlapping protein complexes prediction method based on core–attachment structure and
function annotations (CFOCM), which performs in two stages: first, it detects protein complex cores
with the maximum value of our defined cluster closeness function, in which the proteins are also
closely related to at least one common function. Then it appends attach proteins into these detected
cores to form the returned complexes. For performance evaluation, CFOCM and six classical methods
have been used to identify protein complexes on three different yeast PPI networks, and three
sets of real complexes including the Munich Information Center for Protein Sequences (MIPS), the
Saccharomyces Genome Database (SGD) and the Catalogues of Yeast protein Complexes (CYC2008)
are selected as benchmark sets, and the results show that CFOCM is indeed effective and robust for
achieving the highest F-measure values in all tests.

Keywords: protein–protein interaction network; overlapping; clustering

1. Introduction

Most proteins in living organisms, performing their biological functions or involving with cellular
processes, barely serve as single isolated entities, but rather via molecular interactions with other
partners to form complexes [1]. In fact, protein complexes are the key molecular entities to perform
cellular functions, such as signal transduction, post-translational modification, DNA transcription, and
mRNA translation. Moreover, the damage of protein complexes is one of the main factors inducing
severe diseases [2]. Identification of protein complexes, therefore, becomes a fundamental task in
better understanding the biological functions in different cellular systems, uncovering regularities of
cellular activities and contributing to interpreting the causes, diagnosis, and even the treatments of
complex diseases. As a result, lots of techniques including laboratory-based and computational-based
have been proposed to address this issue.

Up to now, significant progress in high-throughput laboratory techniques involving Tandem
Affinity Purification (TAP) [3] and Mass Spectrometry (MS) [4] has been made to discover protein
complexes on a large scale. However, laboratory experiments are expensive and time-consuming,
resulting in poor coverage of the complete protein complexes. Fortunately, the genomic-scale
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protein–protein interaction (PPI) networks created from pairwise protein–protein interactions make it
possible to automatically and computationally detect protein complexes. Given a PPI network, as the
protein complexes are formed by physical aggregations of several binding proteins, they are assumed
to be the functionally and structurally cohesive substructures, and thus graph clustering methods have
been put forward to search densely connected regions in PPI networks as protein complexes.

Since some proteins have multiple functions, in other words, they may belong to more than
one protein complex, so the ideal approaches need to be able to detect overlapping complexes.
However, several types of graph clustering methods don’t allow overlaps between detected protein
complexes due to the confinements of the rationales behind them. For example, the partition-based
clustering methods such as the Restricted Neighborhood Search Clustering algorithm (RNSC) [5],
the Bayesian Nonnegative Matrix Factorization(NMF)-based weighted Ensemble Clustering algorithm
(EC-BNMF) [6], obtain, however, some highly reliable protein complexes, since they need prior
knowledge of the exact number of clusters that thus cannot detect overlapping functional modules,
and, in addition, most of the hierarchy-based clustering methods [7–9] utilize hierarchical trees to
represent the hierarchical module organization for a PPI network, but it is difficult to detect overlapping
complexes as well. In addition, although some algorithms are capable of finding overlapping
complexes, they still have some distinct shortcomings—for instance, the Molecular Complex Detection
(MCODE) [10] predicts only quite a small number of protein complexes. CFinder [11] first discovers
k-cliques by using the clique percolation method (CPM) [12], and then combines the adjacent k-cliques
to get the functional modules, but may fail to detect some regular complexes. ClusterONE [13] requires
one pre-determined parameter, which is depended on the quality of PPI network, and it is difficult
to determine.

Furthermore, the aforementioned methods still have a common fatal weakness—ignorance of the
inherent organization of the complexes—but actually experimental analysis has already reported that
a protein complex generally consists of a core, in which proteins share similar functions and tend to be
highly co-expressed, and other attach proteins surrounding to the core [14]. Based on these, several
core–attachment based algorithms have been presented, and experimental results indicate that they can
acquire better performance compared to traditional methods neglecting inherent organization. Among
them, CORE [15] first calculates the probability of each pairwise proteins to be in the same core and
then uses it to detect cores. COACH [16] detects cores from neighborhood graphs of the selected seed
proteins, and then applies an outward growing strategy to generate protein complexes. Compared with
CORE, COACH can find overlapping cores. Other methods including [17] predict complexes based on
multi-structures in PPI network, and achieve significant performance. The complexes predicted by
structure-based methods, in general, have been verified more in accordance with the known complexes.

In addition, to precisely predict more biological explainable complexes, some methods of
fusing various types of prior knowledge including functional annotations [18–20], gene expression
data [21–23], as well as sub-cellular location of proteins [24], are presented and have already been
proved that can help to improve the performance to some extent. However, these kinds of valuable
information are either used in data preprocessing or post-processing, such as filtering low-confidence
edges, weighting edges, discarding some biological meaningless complexes, but seldom helps mining
cores with better biological meaning, in which most proteins are co-subcellular or co-expression or
with similar functions. Furthermore, since these data are undeniably incomplete and imprecise, how
to generate a impartial and efficient model incorporating different types of data is still a hot topic in
complex prediction [25–27].

In summary, we may come to the conclusion that a comparatively well-designed protein
complexes identification method may need to meet the following conditions: capable of detecting
overlapping complexes, fewer parameters, being easy to be determine, consideration of the inherent
organization of protein complexes, particularly finding topological and biological meaningful cores,
properly incorporating prior information as much as possible into the predicting model, and robust
to PPI networks with false positives and false negatives. Unfortunately, even though many effective
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techniques have been proposed, as far as we know, few of them satisfy most of the above-mentioned
requirements, which results in impeding further practical applications, and thus there is still urgent
need for new approaches.

In this manuscript, we introduced a novel core–attachment based method to predict protein
complexes, and the proteins in our detected cores are closely linked, share high similar topology that
is highly connected to internal vertexes and relatively sparsely connected to outsides, and are more
biologically significant, namely more likely to participate in one or more biological processes with the
appliance of GO functional annotation. Furthermore, the detected complexes can be overlapping. We
applied our algorithm to two PPI networks of yeast, and validated our predicted complexes using
benchmark complexes collected from several public databases. The experimental results indicated that
our algorithm is efficient and outperforms other existing classical methods.

2. Results

We have applied our CFOCM method on the Database of Interacting Proteins (DIP) data and
Gavin data. In this section, we will first discuss parameter t affecting the performance of CFOCM.
Next, we perform comprehensive comparisons with various existing classical methods and analyse
the results in detail. Finally, we explore the functional definition of the complex-core as a whole,
contributing to the biological significance of the detected complexes.

2.1. Evaluation Metrics

The neighborhood affinity score NS(p, r) can also be devoted to measure the overall similarity
between a predicted complex p and a real complex r, and if NS(p, r) ≥ ω, p and r are considered to
be matching. On the one hand, the greater setting value of ω means the more stringent matching of
between the predicted complex and the real complex in the benchmark, probably resulting in a sharp
decline in all the prediction measure values; on the other, the smaller value could not only lead to
identify the low-confidence predicted complex as the real complex, which is also not reasonable. In our
experiments, we set ω to 0.2 the same as most literatures do [5,7,11,13,15,28], which provides easy and
fair comparisons between results of various algorithms.

Let P and R represent the set of predicted complexes and the real complexes in benchmarks,
respectively. Ncp = {p ∈ P|∃r ∈ B, NS(p, r) ≥ ω} denotes the predicted complexes matching at least
one real complex, and Ncr = {r ∈ R|∃p ∈ P, NS(r, p) ≥ ω} denotes the real complexes matching
at least one predicted complex. In addition, then the performance of a clustering algorithm can be
measured using precision, recall, and F-measure, which can be calculated as follows:

Precison =
|Ncp|
|P| ,

Recall =
|Ncr|
|R| ,

F-measure = 2 × Precison × Recall/(Precision + Recall) ,

where Precision means the ratio of predicted protein complexes that are matched with the real
complexes, Recall means the rate of real complexes that are successfully detected and F-measure
evaluates the overall performance.

2.2. Optimization of the Parameter t

Recall that the process of mining cores from PPI network in Algorithm 1 of CFOCM employs a
user-defined parameter t calculated by NS(mci, mcj) to decide whether a certain candidate core mcj
should be merged into the family of the current candidate core mci. In general, CFOCM can predict
more complexes with the bigger value of t; nevertheless, this may lead to compromise on the quality
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of the predicted complexes, and thus how to choose a relatively appropriate t to achieve a balance
between the predicted complexes’ quality and quantity needs to be probed. Here, varying t from 0.2 to
0.6 with the interval 0.01, the F-measure values of each predicted complex set are computed, and help
us to intuitively observe that the variation of t affects the performance of our CFOCM method and
selects the relatively suitable t as well (see Figure 1).

Figure 1. The effect of t, showing how the variation of parameter t affects the performance of our
proposed overlapping protein complexes prediction method based on core–attachment structure and
function annotations (CFOCM) in terms of F-measure.

In Figure 1, all the curves of different CFOCMs, based on DIP data or Gavin data, validated in
benchmark set MIPS or SGD or CYC2008, are comparably smooth and steady when the t varies from
0.2 to 0.44. However, the curves change abruptly near t = 0.45, and the causation of this phenomenon
can be rationally explained with the NS score of two candidate cores being 4/9 (≈0.44) in which the
number of proteins are both three and two of them are the overlapping; that is to say, these two cores
can not be put into the same family if t is larger than 4/9, resulting in a rapid increase of low-confidence
detected cores with size 3 and a sharp decease of recall value and F-measure score as well. For example,
under t = 0.44, CFOCM based on DIP and Gavin network generates 751,453 complexes respectively,
while under t = 0.45 generates 2629, 1703 complexes respectively, conforming to the above analysis
and interpretation.

As stated above, t should definitely not be set to larger than 0.44 as increasing abundant
low-confidence three-size cores, and actually the performance of CFOCM does not change significantly
when t ∈ [0.2, 0.44]. Still, demand for more complexes shows a preference to a larger t; otherwise, if
there is demand for a fewer number of complexes, a preference is shown for a smaller t. For example,
CFOCM predicts 545 complexes with average matching of 156 real complexes in MIPS when t = 0.2,
while predicting 751 complexes matching 205 real complexes in MIPS when t = 0.44. In the following
part, either in DIP data or Gavin data, the t of our CFOCM algorithm is set to 0.4.

2.3. Comparison Experiments on Different Datasets

For performance evaluation, the comparison experiments between CFOCM and six representative
algorithms including MCL, MCODE, RNSC, CORE, COACH and ClusterONE are performed on both
DIP data , Gavin data and Srihari data. Note that the parameters of these six comparative methods are
set to the default values. Figure 2, Table 1, Figure 3, Table 2 ,Figure 4, and Table 3 exhibit the overall
comparison results in terms of Precision, Recall and F-measure on DIP data, Gavin data and Srihari
data, respectively.
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Figure 2. Comparative performance of CFOCM and the other six methods in DIP data using benchmark
MIPS, SGD, CYC2008, respectively.

Table 1. Results of various approaches using DIP data.

Algorithms MCL MCODE RNSC COER ClusterONE COACH CFOCM

# complexes 4838 63 543 592 341 746 748
Np (MIPS) 305 31 65 78 69 179 205
Nb (MIPS) 117 42 96 113 89 134 126
Np (SGD) 621 39 106 117 112 231 285
Nb (SGD) 262 53 134 138 121 176 168

Np (CYC2008) 853 46 134 153 145 311 351
Nb (CYC2008) 358 55 149 168 132 215 196

In Figure 2, no matter whether benchmarks MIPS or SGD or CASP2008 are used, MCODE achieves
the highest precision that is far beyond other methods. However, since the number of predicted protein
complexes is very limited and also matches with fewer real complexes, resulting in much low recall and
F-measure values. In addition, CORE, RNSC, and ClusterONE are observed to attain high recall values,
but, nevertheless, the F-measure values of them merely end up with relatively lower F-measure value
due to their very low precision values. In fact, CFOCM and COACH demonstrate their distinctive
competitive advantages in F-measure as a result of balanced precisions and recalls. Moreover, it is
obvious that CFOCM remarkably outperforms COACH in F-measure when using benchmark MIPS
and SGD. Meanwhile, both CFOCM and COACH are based on core–attach structure, it may indicate
that the protein complex detection method seems more appropriate when taking consideration of the
inherent organization of complex. As Table 1 shows, CFOCM detects moderate number of complexes,
many of which correctly match with the real complexes and have a high coverage rate of real complexes
as well.

In order to evaluate the robustness of algorithm CFOCM, comparison experiments are also carried
on Gavin network, which is different from the DIP network for containing much fewer and more
densely connected proteins. Figure 3 illustrates the results for Gavin data, CFOCM shows even better
performance for Gavin data, which achieves the highest precision values when using benchmark MIPS
and CYC2008, and, apparently, CFOCM obtains the best F-measure value for every benchmark. This
may suggest that CFOCM indeed works on dense network as well. For each method, the total number
of identified complexes, the number of correct predictions Np matching at least a real complex, and the
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number of real complexes Nb matching at least a predicted one are listed in Table 2, reaching similar
conclusions that are consistent with DIP data.

Figure 3. Comparative performance of CFOCM and the other six methods in Gavin data using
benchmarks MIPS, SGD, CYC2008, respectively.

Table 2. Results of various approaches using Gavin data.

Algorithms MCL MCODE RNSC COER ClusterONE COACH CFOCM

# complexes 232 69 476 267 292 326 453
Np (MIPS) 59 31 22 69 65 106 191
Nb (MIPS) 96 47 21 98 80 94 91
Np (SGD) 86 46 53 101 109 130 250
Nb (SGD) 114 61 55 120 121 118 119

Np (CYC2008) 115 51 68 130 136 171 305
Nb (CYC2008) 142 63 79 148 143 135 131

For further evaluation, Srihari data derived from three different repositories are also used for
comparison, and the results are showed in Figure 4 and Table 3. Similar conclusions can be reached
as in DIP and Gavin data, except that both the Precision value and Recall value of CFOCM are better
than COACH, and this may indicate that CFOCM has more potential on composite data.

Table 3. Results of various approaches using Srihari data.

Algorithms MCL MCODE RNSC COER ClusterONE COACH CFOCM

# complexes 4732 88 552 525 773 726 758
Np (MIPS) 325 26 78 92 117 219 225
Nb (MIPS) 168 42 102 111 131 150 152
Np (SGD) 654 36 108 176 224 299 322
Nb (SGD) 292 44 184 189 217 231 240

Np (CYC2008) 846 46 138 218 275 397 452
Nb (CYC2008) 362 57 154 236 272 281 290
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Figure 4. Comparative performance of CFOCM and the other six methods in Srihari data using
benchmarks MIPS, SGD, CYC2008, respectively.

In a word, either in relatively sparse DIP networks or in relatively dense Gavin data even using a
composite data set, CFOCM is able to identify a suitable number of protein complexes, and, meanwhile,
the predicted complexes are also biologically meaningful as a consequence of cooperating the protein
function annotations into our model, so it compellingly performs better than other existing methods
in term of F-measure. Thus, we can come to the conclusion that CFOCM is efficient and has strong
adaptability and robustness to different types of data.

3. Discussion

3.1. The Effectiveness of Functional Annotation

As the assumption of the complex-core described before, the proteins in each CFOCM detected
core must be functional related to a certain common GO item, namely either annotated with that GO
item or annotated with a GO item that is functionally interdependent with that GO item. To estimate the
contribution of this, comparison experiments between CFOCM and CFOCM without use (unCFOCM)
are conducted. As the results listed in Table 4 (DIP) and Table 5 (Gavin), unCFOCM in all the tests
predicts much more biological meaningless complexes on account of not using GO annotation, leading
to lower F-measure values. In other words, owing to the requirement of functional relevance within
the discovered cores, CFOCM is capable of filtering abundant low-confidence protein complexes, and
the detected protein complexes are supposed to be more biologically significant. Therefore, the cores
detected by CFOCM should share some common functions, which is more in conformity with the
original definition of the complex core, and it is greatly obliged to help finding more accurate protein
complexes.

3.2. Case Studies

This section illustrates two predicted protein complexes, namely the Glycine decarboxylase
complex and the RNA polymerase I complex as Figure 5. The Glycine decarboxylase complex is a
small-sized complex responsible for the oxidation of glycine by mitochondria, and it consists of four
proteins including YDR019C, YMR18W, YAL044C and YFL018C. As showed, CFOCM successfully
identified these four proteins, in which YDR019C, YMR18W, and YAL044C are recognized as core
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proteins and YFL018C is detected as an attachment to the core. In another case, the RNA polymerase I
complex is a larger complex comprised of 14 proteins, and CFOCM could also completely identify
all the proteins in this complex with 100% precision, in which all proteins except YHR143W-A are
detected as members of the core having more dense connections with each other and sharing more
functional relevance as well.

Table 4. Results of CFOCM and CFOCM without using Gene Ontology (GO) (unCFOCM) on DIP data.

Algorithms + Benchmark # Complexes Np Nb Precision Recall F-Measure

CFOCM + MIPS 748 205 126 0.2741 0.6207 0.3802
unCFOCM + MIPS 862 213 130 0.2471 0.6404 0.3566

CFOCM + SGD 748 285 168 0.381 0.5201 0.4398
unCFOCM + SGD 862 297 175 0.3445 0.5418 0.4212

CFOCM + CYC2008 748 351 196 0.4693 0.4804 0.4748
unCFOCM + CYC2008 862 363 201 0.4211 0.4926 0.4541

Table 5. Results of CFOCM and CFOCM without using Gene Ontology (GO) (unCFOCM) on Gavin data.

Algorithms + Benchmark # Complexes Np Nb Precision Recall F-Measure

CFOCM + MIPS 453 191 91 0.4216 0.4483 0.4345
unCFOCM + MIPS 551 197 92 0.3575 0.4532 0.3997

CFOCM + SGD 453 250 119 0.5519 0.3684 0.4419
unCFOCM + SGD 551 262 124 0.4755 0.3839 0.4248

CFOCM + CYC2008 453 305 131 0.6733 0.3211 0.4348
unCFOCM + CYC2008 551 321 138 0.5826 0.3382 0.4280

Figure 5. The Glycine decarboxylase complex and the RNA polymerase I complex as detected by
CFOCM. The yellow nodes represent proteins within the complex core, while the blue node proteins
represent proteins that are attachments.

4. Materials and Methods

4.1. Terminologies

A PPI Network typically can be represented as an undirected graph G = (V, E), where V and
E = {(u, v)|u, v ∈ V) represent proteins and protein–protein interactions, respectively. A graph
G′ = (V′, E′) is regarded as a subgraph of G if V′ ⊆ V and E′ ⊆ E. v’s direct interacting neighbors in
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graph G is denoted as Nv = {u|(u, v) ∈ E, u ∈ V}, and NG′
v = {u|(u, v) ∈ E, u ∈ V′} is v’s neighbors

in subgraph G′. Subgraph G′ external boundary nodes are defined as Vob(G′) = {v| < v, w >∈ E(G),
v ∈ V(G)\V(G′) , w ∈ V(G′)}.

A neighborhood affinity score metric [25], denoted as NS(G′, G′′), is imported to measure the
similarity between two overlapping graphs G′ = (V′, E′) and G′′ = (V′′, E′′),

NS(G′, G′′) = |VG′ ∩ VG′′ |2
|VG′ | × |VG′′ | ,

where, if NS(G′, G′′) >= t (t is a predefined threshold), we may declare cluster G′ = (V′, E′) and
cluster G′′ = (V′′, E′′) can be further merged as a result of their high topological similarity.

As is well known, GO is composed of three orthogonal ontologies capturing knowledge about
biological process, molecular function and cellular component, and each ontology consists of controlled
and structured biological terms that can be used to annotate genes and proteins. Some GO item pairs
are highly functionally related—for example, sharing a common parent node, or one is just a near
ancestor of the other, while other GO item pairs may possess much weaker relationships or even be
functionally independent. Therefore, the urgent need is to design a metric to quantify the functional
interdependence between two GO items. Fortunately, Ref. [18] has done what we want (see the
formula below):

f ri,j =
rei,j − eei,j√

eei,j(1 − ( ∑
k∈GI

eei,k/|E|))(1 − ( ∑
k∈GI

eek,j/|E|))
,

where rei,j represents the real number of edges in G connecting one protein annotated with GO item i
and the other annotated with item j, eei,j represents the expected number of edges that one protein
is annotated with item i and the other annotated with item j in G, hence it equals (Number of edges
in G with one protein annotated with i)*(Number of edges in G with one protein annotated with j
to the others)/|E|, and GI represents the whole GO items set. Ref. [18] also indicates that item i and
j are functionally interdependent if f ri,j > 1.96; otherwise, they are considered to be functionally
independent.

A protein complex is pervasively modeled as an induced subgraph of PPI network G, the proteins
in which have dense intra-connections and are sparely connected to the rest of the network, thus we
introduce a new and effective closeness function to quantify the probability that G′ is complex based
on network topology:

cf(G′) = density(G′)× (
1

|G′| ∗ ∑
v∈G′

|NG′
v |

|Nv| ),

where density(G′)= 2×|E′ |
|V′ |×(|V′ |−1) is the density of graph G′, depicted to quantify the richness of edges in

G′, and |NG′
v |

|Nv | corresponds to the percentage of v’s direct neighbors located within G′. If |NG′
v |

|Nv | equals 1,
all the neighbors of v are in G′, so there is a high tendency that v should be a member of G′. If equals 0,
v has little chance to be a member of G′. Consequently, the expression in the bracket represents the
mean possibility of each node being retained in G′. Compared with previous closeness function based
on the density of G′, cf not only assesses the inner denseness of G′, but also takes the ratio of G′ inner
edges and outer edges into consideration, hence manifesting superiority in appraising the likelihood
of G′ to be a real complex.

4.2. Description of CFOCM Algorithm

Most of the protein complexes contain core–attachment structure, and the proteins in the core share
similar topology and are highly functionally related, while the attach proteins are usually located in
the periphery of the core [14]. As the differences between core proteins and attach proteins, therefore,
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our core–attachment based algorithm CFOCM for protein complexes identification, comprised of
two necessary phases, which first detects the protein complexes’ cores and then selects attach proteins
to the discovered cores.

4.2.1. The Complex Cores Detection

Protein-complex core plays a key role for complex performing biological function, and determines
the cellular role and significance of the complex in the context to a large extent [14]. The results of
biological analysis also indicate that most protein complex cores own some significant distinguishing
features: including a small group of proteins which are densely intra-connected and sparsely to
outsides, allowing overlaps between cores, possession of some common functions, showing an
altitudinal mRNA co-expression patterns. In this paper, however, only the former three features
are used to portray the cores discovered by CFOCM, and our detected cores satisfy the following
assumption.

Assumption 1. A subgraph G′ = (V′, E′) is a protein-complex core unless if satisfying the followed conditions:

1. The topology of G′ meets: |G′| >= 3, G′ reaches the local optimum that there does not exist any neighbor
node v that satisfies cf(G′+ {v}) > cf(G′) or cf(G′ − {v}) > cf(G′), and no such G′′ exists if G′ ⊆ G′′

and G′′ is a complex core.
2. If G′ has overlaps with G′′, then NS(G′, G′′) < t must be satisfied; otherwise, G′ and G′′ could

combine together.
3. G′ needs to be biologically significant: mx is defined as the the maximum common GO item annotating a

maximum number of nodes in G′, ∀v ∈ V′, v is either annotated by mx or annotated by a GO item gi
interdependent with mx, which satisfies fr(gi, mx) > 1.96.

Different from traditional methods exploring each core protein separately, our above complex-core
assumption is more plausible for considering all proteins in the core as a whole. Benefiting from
this renovation ensures that each protein in the core owns similar topology and contributes to the
enforcement of core’s biological functions. Conditions 1, 2, and 3 guarantees the maximizes closeness
function value of core, the nearest distance can be retained between different cores, and participation
of at least one common biological functions, respectively. Specifically, most traditional literature is
mainly focused on the assurance of highly functional similarity between each protein pair in the core,
which will result in neglecting that the core as a whole should perform some common functions, while
this flaw is certainly renovated by our integrated global view of the core.

Algorithm 1 illustrates that the overall framework to detect protein-complex cores, and, without
question, the discovered cores comply with definitions in Assumption 1. We first compute the
functional interdependence between each GO items pair by the definition fr in line 1. Then, in line 2,
we identify all cliques that are fully connected subgraphs by using a complete enumeration method [29],
based on the fact that a k-clique can be obtained by adding a vertex to the clique with k-1 vertices and
the 2-cliques can be initialized as the edges in the graph, but only the maximal cliques are reserved
at last, and a k-clique is regarded as a maximal k-clique only in the case that it cannot be enlarged
by adding any vertex. After that, lines 4–19 mining complex cores by a iteration process on the
basis of the two aforementioned pretreatment works. Here, a concept of candidate-core family is
presented, containing the core itself and its similar candidate-cores with the neighborhood affinity
score NS less than a predefined threshold t. For each certain candidate-core, its family set is obtained
in lines 8–13, and a more reasonable combined candidate-core comes into being through algorithm
Merge_Similar_Cores in line 14. The details of Merge_Similar_Cores algorithm are described in
Algorithm 2. Still, in lines 15–17, if the current generated candidate-core already exists in the generated
candidate-core set, we simply discard it; otherwise, we add it to the candidate-core set. After these
steps, though, there unavoidably exist some incorrect manipulations, excessive overlapping and
biological meaningless candidate cores are substantially removed, and the overwhelming majority of
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the vertexes in retained cores are densely connected internally, possess similar topology and attend to
share at least one common GO annotated function.

Algorithm 1: Complex cores detection algorithm.
Require: The PPI network G = (V, E);

Neighborhood affinity score threshold t.
Ensure: The detected complex cores set CS.

1: calculate each GO item pair functional interdependence f r;
2: find all the maximum cliques MC in G;
3: CS = MC;
4: repeat

5: MC = CS;
6: CS = {};
7: for mci in MC do

8: Fmci = {mci}; {Fmci stores the cliques similar with mci}
9: for mcj in MC do

10: if NS(mci, mcj) >= t then

11: Fmci = Fmci ∪ {mcj};
12: end if

13: end for

14: c = Merge_Similar_Cores(Fmci );
15: if c is not exists in CS then

16: CS = CS ∪ {c};
17: end if

18: end for

19: until not exists any two elements ci and cj in CS satisfying NS(ci, cj) >= t
20: return CS;

A crucial artifice, not described in Algorithm 1, is applied in the process of detecting cores. First,
for each maximal cliques set with the same number of vertexes, we generate their corresponding new
candidate cores by executing steps in lines 4–19, and then form the final detected cores via the same
steps on these different-sized generated cores. Without using this, the smaller cliques may be annexed
by the larger similar cliques so that they barely contribute to the generation of the new candidate core.
Actually, this artifice is proved to be an effective means of improving the predicting performance.

4.2.2. Similar Complex Cores Merge

Given the family Fmc of the candidate core mc, the Merge_Similar_Cores algorithm will filter the
proteins that can not help to preserve the topology of the core or are functionally independent with
other proteins in the core and return a new candidate core.

Our Merge_Similar_Cores algorithm works as follows. To begin with, we extract the proteins
PS from the input family of a candidate-core in line 1, and find the GO item m disappeared in the
GO annotations of maximal proteins in line 2. Afterwards, in lines 3–7, we remove proteins that
are neither annotated by the common item m nor have a GO item functional interdependent with
item m, and this procedure ensures that the returned candidate-core has a high probability of owning
at least one common GO function because the proteins in the returned candidate-core either have
the common GO item m or a GO item j exists that is functionally interdependent with m. Finally,
in lines 8–10, we iteratively delete a protein p from the PS until no such protein p exists, satisfying
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cf(PS − {p}) > cf(PS), and ensuring that the remaining proteins reach the local optimum, which is
relatively richly inner-connected and sparsely connected to the outside.

Algorithm 2: c = Merge_Similar_Cores (Fmc).
1: get all proteins PS contained in Fmc;
2: find the GO item m which annotating maximum number of proteins in PS;
3: for each p in PS do

4: if p is not annotated by m and exists no GO item j annotating p satisfying: f rm,j < 1.96 then

5: PS = PS − {p};
6: end if

7: end for

8: while exists max
p∈PS

cf(PS − {p}) > cf(PS) do

9: PS = PS − {arg max
p∈PS

cf(PS − {p})};
10: end while

11: return c = PS;

Each input candidate-core family goes through these steps, and a newer candidate-core has been
formed. In addition, Figure 6 also provides an example to illustrate the process of our proposed
Merge_Similar_Cores algorithm.

4.2.3. Attach-Proteins Screening

After the foregoing phase of our CFOCM method, the protein-complex cores have already been
mined from PPI network G = (V, E). In the second phase, we will form the final predicted complex
by appending reliable peripheral proteins to the discovered cores. Given a protein complex core c,
for each external boundary protein p of current core c, the following Assumption 2 presents whether p
should be an attachment to the core c or not.

Assumption 2. A external boundary protein p is affirmed as an attachment to the complex core c if satisfying
cf(c + {p}) > cf(c).

From the above assumption, the external boundary protein p improves the closeness function cf
of the current cluster selected as an attachment. Through appending some attachment proteins to the
current core, the topology of core can still be reserved, and thus all the proteins in each final predicted
complex are densely connected and sparsely connected to the outside. Algorithm 3 is the pseudo
code description.

Algorithm 3: Attach-proteins screening algorithm.
Require: Protein complex cores CS.
Ensure: The predicted complexes Complexes.

1: Complexes = {};
2: for each c in CS do

3: while exists max
v∈Neighbors(c)

cf(c ∪ {v}) > cf(c) do

4: c = c ∪ {arg max
v∈Neighbors(c)

cf(c ∪ {v})};
5: end while

6: Complexes = Complexes ∪ {c};
7: end for

8: return Complexes;
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Figure 6. The diagram of Merge_Similar_Cores algorithm. In the example, (A) is the family graph of
clique {A,B,C}, including cliques {{A,B,C},{A,B,D},{A,B,H},{A,C,E},{B,C,F},{B,C,G}}, and the proteins
set is {A,B,C,D,E,F,G,H}. In (B), the common Gene Ontology (GO) item is GO:02, and reserve vertex
E as f rGO:02,GO:04 > 1.96, while drop vertex F is f rGO:02,GO:05 < 1.96. In (C), drop vertex G is
arg max

p∈PS
cf(PS − {p}) = G. In (D), drop vertex H is arg max

p∈PS
cf(PS − {p}) = H, and returns the next

candidate-core A,B,C,D,E, as no remove operation can improve the cf.

4.3. Data Sources

Three publicly available yeast PPI networks, namely the Database of Interacting Proteins (DIP)
data [30], Gavin data [14] and Srihari data collected by Srihari et al. [31], are used to evaluate
the performance of our method CFOCM in protein complex prediction. DIP consists of 17,203 PPIs
involving 4930 proteins, while Gavin data contains fewer proteins but is more densely connected, which
consists of 6531 high-quality interactions among 1430 proteins. Srihiri data contains 20,000 interactions
covering 3680 proteins derived from the BioGRID, IntAct, and MINT repositories.
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Table 6. Three protein-protein interaction (PPI) networks used in the experiments.

Dataset #Proteins #Interactions Average Node Degree

DIP 4930 17203 6.98
Gavin 1430 6531 9.13
Srihari 3680 20,000 10.87

To validate our predicted complexes, three reference sets of real complexes, denoted as the Munich
Information Center for Protein Sequence (MIPS) [32], Saccharomyces Genome Database (SGD) [33],
and CYC2008 [34], are selected as benchmarks. MIPS consists of 203 protein complexes manually
curated from the literature, SGD contains 323 complexes derived from Gene Ontology-based complex
annotations, and CYC2008 consists of 408 hand-curated complexes reliably backed by small-scale
experiments.

The yeast GO annotation dataset is downloaded from the SGD database, and the submission data
is February 2014.

5. Conclusions

In this paper, we have proposed a novel algorithm CFOCM for protein complex identification
from the protein–protein interaction network. According to the fact that there some proteins involved
in more than one biological function or cellular processes, CFOCM implements allowing overlaps
between detected complexes. Meanwhile, CFOCM also takes into account the inherent core–attachment
structure in the protein complexes. Moreover, CFOCM ensures topological similarity and functional
interdependence between each pair of proteins within detected cores.

Comparison experiments between CFOCM and the other six state-of-the-art methods are carried
out in DIP networks, Gavin networks and Srihari data, and the results of all tests show that CFOCM
significantly outperforms the others. Moreover, CFOCM has been demonstrated to be capable
of filtering the low-confidence or biological insignificant protein complexes via comparing with
unCFOCM without consideration that the proteins in a complex core should occupy some common
functions. In a word, CFOCM is efficient, robust, and it is applicable for helping biologists search for
new biological meaningful protein complexes.

The follow-up works are ongoing. For instance, since some proteins still have not been functionally
annotated, and we intend to find a more suitable strategy to handle this data problem, and design a
parallel version of CFOCM to accelerate the operating speed. In addition, how to extend CFOCM to
detect protein complexes and functional modules in dynamic PPI networks, which can be constructed
by incorporating gene expression data, is also a promising direction.
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Abstract: Amyloids are protein fibrils with characteristic spatial structure. Though amyloids were
long perceived to be pathogens that cause dozens of incurable pathologies in humans and mammals,
it is currently clear that amyloids also represent a functionally important form of protein structure
implicated in a variety of biological processes in organisms ranging from archaea and bacteria to
fungi and animals. Despite their social significance, plants remain the most poorly studied group of
organisms in the field of amyloid biology. To date, amyloid properties have only been demonstrated
in vitro or in heterologous systems for a small number of plant proteins. Here, for the first time,
we performed a comprehensive analysis of the distribution of potentially amyloidogenic proteins
in the proteomes of approximately 70 species of land plants using the Waltz and SARP (Sequence
Analysis based on the Ranking of Probabilities) bioinformatic algorithms. We analyzed more than
2.9 million protein sequences and found that potentially amyloidogenic proteins are abundant in
plant proteomes. We found that such proteins are overrepresented among membrane as well as
DNA- and RNA-binding proteins of plants. Moreover, seed storage and defense proteins of most
plant species are rich in amyloidogenic regions. Taken together, our data demonstrate the diversity
of potentially amyloidogenic proteins in plant proteomes and suggest biological processes where
formation of amyloids might be functionally important.

Keywords: amyloid; Waltz; SARP; plant; prion; seed storage protein; proteomics; compositionally
biased region; amyloidogenic region

1. Introduction

Amyloids represent protein fibrils consisting of monomers that form intermolecular β-sheets
located along the axis of a fibril and are stabilized by numerous hydrogen bonds. Such a spatial
structure is called “cross-β” [1]. The term “cross-β” refers to the common pattern of amyloids in
X-ray diffraction analysis with two scattering signals of approximately 4.7 and 10 Å corresponding
to the distances between β-strands comprising β-sheets and between intermolecular β-sheets,
respectively [2,3]. Their highly ordered structure gives amyloids unusual properties including
resistance to treatment with ionic detergents [4], other protein denaturants [5] and proteinases [6].

Initially, amyloids were described as lethal pathogens causing incurable diseases (amyloidoses)
of humans and animals [7]. The term “amyloid” was proposed in 1854 by Rudolf Virchow, who was
the first to stain pathological amyloid deposits in human tissues with iodine [8]. Though “amyloid”
is a derivative from “amylon” and “amylum” (starch-like in Greek and Latin, respectively), the key
components of amyloid deposits are protein fibrils [7,9]. Nevertheless, such deposits additionally
contain a significant number of proteoglycans and glycosaminoglycans that were initially detected
by iodine and led to an incorrect interpretation of the chemical nature of amyloids [10]. Amyloidoses
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occur primarily due to mutations that change the structure of the corresponding amyloid-forming
proteins or lead to their overproduction [11]. To date, more than 30 human proteins have been shown
to adopt pathological amyloid states [12].

Another aspect of these proteins was revealed over the last two decades, when amyloids that
were not associated with pathogenesis were found. These amyloids, which are formed under native
conditions and are implicated in cellular processes, were named “functional amyloids” [13,14].
In bacteria, functional amyloids are important for biofilm formation [15], toxin metabolism [16],
and overcoming surface tension by aerial hyphae [17]. In archaea, such amyloids not only participate
in the formation of biofilms [18] but also act as the structural components of the cell sheaths [19].
Functional amyloids of fungi regulate heterokaryon incompatibility [20] as well as facultative
multicellularity [21] and, similar to bacterial amyloids, contribute to the formation of aerial hyphae [22].
Amyloids forming under native conditions in animals (including humans) are involved in long-term
memory formation [23,24], melanin polymerization [25], hormone storage [26], tooth enamel
polymerization, programmed necrosis [27], and antiviral responses [28]. Taken together, amyloids
represent not only pathogenic but also widespread functionally important variants of the quaternary
protein structure and are vital for many species.

The propensity of a protein to form amyloid fibrils is determined by the presence in its amino
acid sequence of so-called “amyloidogenic regions” (ARs) that drive amyloidogenesis [29–31] acting
as a “trigger” for polymerization [32]. Amyloid-forming proteins may contain one or multiple
ARs [33,34], which are relatively short [35] and predominantly composed of hydrophobic residues,
especially aromatics (W, F, Y) and aliphatics (V, I, L) [36]. ARs can be predicted using a wide range of
algorithms, one of the most efficient of which is Waltz [37], which is based on a position-specific scoring
matrix [36,37]. Another type of AR is represented by compositionally biased regions (CBRs) that are rich
in glutamine (Q) and/or asparagine (N) [38]. The key role of QN-rich CBRs in amyloid formation was
initially demonstrated on the human poly-Q expanded Huntingtin protein [39] and further deepened
by the data obtained on the yeast amyloid-forming proteins [40]. In addition to QN, CBRs rich in E are
also amyloid-prone [41]. Compositionally biased regions rich in Q, N or E can be efficiently predicted by
different existing bioinformatic algorithms, including LPS (Lower Probability Subsequences) [42] and
SARP (Sequence Analysis based on the Ranking of Probabilities) [43]. Hereafter, short amyloidogenic
regions predicted with Waltz are referred to as ARs, while potentially amyloidogenic compositionally
biased regions are referred to as CBRs. Currently, bioinformatic prediction is widely used for
the detection of potentially amyloidogenic (i.e., containing amyloidogenic regions) proteins in the
proteomes of different species [42,44,45] as well as for the identification of amyloidogenic regions in
particular proteins to analyze their amyloid properties in vitro and in vivo [46–48].

Despite the fact that plants are one of the most economically important groups of organisms,
they remain the least studied in the field of amyloid biology. To date, amyloid properties have been
demonstrated for several plant proteins or their fragments only in vitro [49,50] or in heterologous systems
in vivo [46] (for a review, see [51]). Here, we present a large-scale analysis of the distribution of potentially
amyloidogenic proteins in the proteomes of land plants reported to date. We screened the proteomes of
75 species comprising more than 2.9 million proteins for the presence of amyloidogenic regions using
the SARP and Waltz algorithms. We analyzed the molecular functions of potentially amyloidogenic
plant proteins along with their subcellular localization and molecular process involvement. We found
plant-specific groups of proteins in which amyloidogenic regions are overrepresented and discuss the
analysis of amyloid properties of such proteins and their potential significance.

2. Results

2.1. Abundance of Potentially Amyloidogenic Proteins in the Proteomes of Plants

To assess the abundance of potentially amyloidogenic proteins in plant proteomes, the proteins of
75 plant species available in the Uniprot Proteomes database (available at http://www.uniprot.org/
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proteomes/) were analyzed for the presence of amyloidogenic regions with two different bioinformatic
approaches: Waltz, which predicts short amyloidogenic regions (ARs) based on a position-specific
scoring matrix [37], and SARP, which searches for compositionally biased potentially amyloidogenic
regions (CBRs) rich in particular residues [43]. For each proteome, we calculated the following:
(i) fraction of potentially amyloidogenic proteins in the proteome; and (ii) the coverage of total
proteome length with ARs and QN-rich CBRs (Figure 1, Table S1a).

 

Figure 1. Distribution of amyloidogenic regions in the proteomes of land plants. A phylogenetic tree
of plant species is shown according to the Uniprot Taxonomy. The results for proteins bearing ARs
predicted by Waltz and QN-rich CBRs found with SARP are shown. For each type of amyloidogenic
region, the percentage of proteins harboring these regions (%) and the coverage of the total proteome
length with these regions (%) are shown. ARs, amyloidogenic regions; Q, glutamine; N, asparagine;
CBRs, compositionally biased regions; SARP, Sequence Analysis based on the Ranking of Probabilities.

Amyloidogenic regions (ARs) predicted by Waltz are abundant in the proteomes of plants.
More than half of all proteins in each proteome contained at least one such region (Figure S1). Most ARs
are very short at approximately 6–9 amino acids long, with a modal length of seven residues (Figure S2).
Though such regions are amyloid-prone themselves [37], they may not contribute to amyloid-forming
properties of the full-length proteins due to their short lengths. Therefore, to enhance the specificity
of the predictions, we excluded from the Waltz analysis all ARs shorter than 10 amino acids.
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After this filtering, the median percentage of plant proteins that contained ARs predicted by Waltz was
25.41% (Table S1a). Potentially amyloidogenic compositionally biased regions (CBRs) predicted by
SARP were significantly less abundant than ARs predicted by Waltz: approximately 1.38% of plant
proteins contain QN-rich CBRs. The median length of CBRs predicted by SARP in plant proteomes
was 203 residues for QN-rich CBRs (Table S1a). In contrast to potentially amyloidogenic proteins
predicted by Waltz, most of the potentially amyloidogenic proteins predicted by SARP contained
only one potentially amyloidogenic compositionally biased region. Notably, though amyloidogenic
region predictions by Waltz and SARP were completely different, ARs predicted by Waltz were
associated with CBRs rich in hydrophobic residues I, W, Y, F predicted by SARP (Figure S3). This result
corresponds with the previous observation that amino acids with hydrophobic side chains have the
highest amyloidogenic potential (i.e., propensity to form amyloid structure) [36].

The AR contents predicted by Waltz and SARP varied broadly in the proteomes of different
plant species and may be significantly different even in closely related species (Figure 1, Table S1a).
For example, Gossypium arboreum has many fewer proteins containing ARs predicted by Waltz (20.6%)
compared to Gossypium hirsutum (29.5%) (Figure 1), which originated as a hybrid of Gossypium arboreum
and Gossypium raimondii [52]. Species of Oryza spp. significantly differ from one another in the
content of proteins with QN-rich CBRs (Figure 1). We excluded Ipomeae nil from analysis because
its proteome, available at Uniprot (Table S2), contained only proteins encoded by the chloroplast
or mitochondrial genomes. The only conifer species, Picea glauca, drastically differed from other
species in AR and QN-rich CBR contents (Figure 1), but this could be associated with an incomplete
proteome available at Uniprot (Table S2). Despite variability in the content of ARs and QN-rich CBRs
in the proteomes of land plants, there is a common tendency of the proteomes of grasses to have
a lower percentage of proteins with ARs predicted by Waltz and to be more abundant in QN-rich
proteins (Figure 1). It should be noted that the proteomes of plants have similar contents of potentially
amyloidogenic proteins compared with the Escherichia coli, Saccharomyces cerevisiae and Homo sapiens
proteomes (Table S1b), in which experimentally verified amyloid proteins have been previously
reported [22,53,54]. Moreover, since plants have very large proteomes, the total number of potentially
amyloidogenic proteins in several species of plants is greater even than the corresponding number in
the human proteome (Table S1a,b).

2.2. Molecular Functions of Potentially Amyloidogenic Proteins of Plants

Functional amyloids participate in diverse molecular functions in a wide spectrum of prokaryotic
and eukaryotic species [13,54,55]. Functional amyloids may be active in the amyloid state [23–25,28]
or act as protein or peptide storage reservoirs [26]. Thus, it was important to analyze the molecular
functions of the predicted potentially amyloidogenic plant proteins to reveal functions that could
be associated with amyloid formation. We searched for Gene Ontology (GO) terms related to
molecular functions where potentially amyloidogenic proteins detected by Waltz and SARP are
overrepresented. We found that GO terms enriched in proteins harboring ARs predicted by Waltz
were drastically different from the terms associated with QN-rich proteins predicted by SARP.
For instance, amyloidogenic regions predicted by Waltz were found mostly in transmembrane proteins
with transporter activity as well as proteins with motor and kinase activities (Figure 2, Table S1c).
Conversely, proteins harboring QN-rich CBRs were mostly associated with transcription, DNA- and
RNA-binding activities, and protein oligomerization (Figure 3, Table S1d). Both ARs and QN-rich
CBRs-containing proteins shared kinase activity as a function (Figures 2 and 3). Several molecular
functions were specific to particular systematic groups. For example, microtubule motor and
actin-binding activities were characteristic of Poaceae QN-rich proteins (Figure 3). Notably, QN-rich
proteins of approximately two-thirds of the analyzed species were associated with nutrient reservoir
activity. Proteins with this function belong mostly to seed storage proteins that are known to be rich in
Q and E in several species [56,57].
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Figure 2. Heat map of GO molecular functions in which potentially amyloidogenic proteins predicted
by Waltz are overrepresented. For such proteins, the top 30 GO terms from the molecular function
ontology are shown. The color of the cells denotes the fraction of potentially amyloidogenic proteins
predicted by Waltz among all proteins annotated with this term. All cells with p-values greater than
0.01 have values of 0 (dark blue). The dendrogram of plant species corresponds to their phylogenetic
tree. GO, Gene Ontology.
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Figure 3. Heat map of GO molecular functions in which potentially amyloidogenic proteins containing
QN-rich CBRs predicted by SARP are overrepresented. For such proteins, the top 30 GO terms from
the molecular function ontology are shown. The color of the cells denotes the fraction of potentially
amyloidogenic proteins predicted by SARP among all proteins annotated with this term. All cells with
p-values greater than 0.01 have values of 0 (dark blue). The dendrogram of plant species corresponds
to their phylogenetic tree.

Since E-rich proteins are also potentially amyloidogenic, we analyzed GO molecular functions
associated with plant proteins containing E-rich CBRs predicted by SARP (Figure S4, Table S1e).
Several functions of E-rich proteins were found to be similar to those observed for QN-rich proteins
including nucleic acid and clathrin binding. In contrast to QN-rich proteins, in which microtubule

216



Int. J. Mol. Sci. 2017, 18, 2155

motor and actin binding activities were typical only for Poaceae proteins, E-rich proteins harboring these
functions were characteristic of most plant species analyzed (Figure S4, Table S1e). Some functions,
including translation-associated activities and unfolded protein binding, were specific to E-rich proteins
(Figure S4). Finally, E-rich proteins with nutrient reservoir activity were abundant in fewer plant
species compared to QN-rich proteins (Figure 3 and Figure S4). Thus, the molecular functions
of potentially amyloidogenic proteins predicted by Waltz drastically differ from the functions of
potentially amyloidogenic QN- and E-rich proteins that are partially similar.

2.3. Subcellular Localization of Potentially Amyloidogenic Proteins of Plants

We analyzed distribution of amyloidogenic proteins over different cellular components
according to the Gene Ontology database (available at http://www.geneontology.org/). Potentially
amyloidogenic proteins harboring ARs predicted by Waltz were found to be associated with different
membranes, membrane organelles, myosin and V-type ATPase complexes (Figure S5, Table S1f).
Potentially amyloidogenic proteins with QN-rich CBRs were associated with the RNA polymerase
II transcription complex, nucleus, RNA-processing complexes, cytoskeleton and clathrin-coated
vesicles (Figure S6, Table S1g). Interestingly, QN-rich proteins were abundant among proteins of
P-bodies of only Asian species of rice, but not in the African species (Figure S6, Table S1g). Potentially
amyloidogenic proteins with E-rich CBRs were associated with the translation machinery complex,
cytoskeleton and chromosomes (Figure S7, Table S1h). Overall, the cellular components where different
types of potentially amyloidogenic proteins predominate correspond to the molecular functions of
these proteins. The general tendency is that potentially amyloidogenic proteins predicted by Waltz
have membrane localization, while potentially amyloidogenic proteins with QN- and E-rich CBRs
predicted by SARP are mainly cytoplasmic or intranuclear.

2.4. Biological Processes Implementing Potentially Amyloidogenic Proteins of Plants

We characterized the molecular functions and subcellular localization of potentially amyloidogenic
proteins of different plant species. As a next step, we analyzed biological processes in which
potentially amyloidogenic proteins participate. We found that proteins with ARs predicted by Waltz
are overrepresented in biological processes associated with transmembrane transport, such as regulation
of pH and ion (sodium, potassium, phosphate) and carbohydrate transport (Figure 4, Table S1i). Among
these, there are several processes related to biosynthesis (cellulose and lipid biosynthesis, cell wall
modifications) or associated with responses to outer factors (recognition of pollen and defense
response). Interestingly, the defense response is a biological process in which Waltz-predicted
potentially amyloidogenic proteins are abundant in the majority of plant species, with the exception of
most grasses (Figure 4).

The biological processes in which QN-rich potentially amyloidogenic proteins are abundant are mostly
related to transcription, cytoskeleton organization and clathrin vesicle formation (Figure 5, Table S1j).
Some are connected with the regulation of development, such as the negative regulation of
long-day photoperiodism, seed and flower development, auxin, jasmonic and abscisic acid pathways
(Figure 5, Table S1j). Overrepresentation of potentially amyloidogenic proteins in some of these
processes can only occur in a few species. For example, the flower development process is only
associated with QN-rich proteins in several very distant plant species: Arabidopsis spp., Teobroma cacao,
Vitis vinifera, Amborella trichopoda and some grasses. Similar to QN-rich proteins, potentially
amyloidogenic E-rich proteins are associated with the cytoskeleton and genome organization, as well
as RNA processing (Figure S8, Table S1k). However, E-rich proteins are also overrepresented among
the translation initiation and folding machinery components (Figure S8, Table S1k). Taken together,
QN-rich proteins are similar to E-rich proteins for subcellular localizations, but each of the three groups
of potentially amyloidogenic proteins (Waltz-predicted, QN-rich and E-rich) is involved in specific
molecular functions and biological processes that only partially overlap.
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Figure 4. Heat map of GO biological processes in which potentially amyloidogenic proteins predicted
by Waltz are overrepresented. For such proteins, the top 30 GO terms from the molecular function
ontology are shown. The color of the cells denotes the fraction of potentially amyloidogenic proteins
predicted by Waltz among all proteins annotated with this term. All cells with p-values greater
than 0.01 have values of 0 (dark blue). The dendrogram of plant species corresponds to their
phylogenetic tree.
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Figure 5. Heat map of GO biological processes in which QN-rich potentially amyloidogenic proteins
predicted by SARP are overrepresented. For such proteins, the top 30 GO terms from the molecular
function ontology are shown. The color of the cells denotes the fraction of QN-rich potentially
amyloidogenic proteins predicted by SARP among all proteins annotated with this term. All cells with
p-values greater than 0.01 have values of 0 (dark blue). The dendrogram of plant species corresponds
to their phylogenetic tree.
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2.5. Amyloidogenic Proteins in the Chloroplast and Mitochondrial Proteomes of Different Plant Species

Proteins encoded in the organellar genomes might be very different from proteins encoded in
the nuclear genome. Therefore, we separately analyzed the distribution of potentially amyloidogenic
proteins among the proteins encoded by the chloroplast and mitochondrial genomes. We found
that proteins encoded in the organellar genomes have more regions predicted by Waltz in both the
chloroplast and mitochondrion proteomes (Figure 6a,b) compared to the nuclear genome encoded
proteins of the same species (Figure 1). At the same time, only three chloroplast proteins (Figure 6a) and
no mitochondrial proteins contained QN-rich regions. These three proteins encoded in the chloroplast
genome demonstrate interesting variability in the presence of QN-rich regions. The first is TIC214,
the only component of the translocon at the chloroplast inner envelope [58]. It is present in most
land plant species with the exception of grasses [59] (Figure 6a) and has a long QN-rich region in its
C-terminus. The second chloroplast protein, Ycf2, has a QN-rich region only in Bryophyta (spreading
earth moss, Psycomitrella patens) and Pinophyta (white spruce, Picea glauca) species, but not in the
flowering plants. The third protein, an omnipresent ribosomal protein of the small subunit, rps18,
has a short QN-rich region only in grasses. The QN-rich region of rps18 in many species of grasses was
too short to be detected with SARP, but it was validated manually. Taken together, proteins encoded
in the organellar genomes are enriched with potentially amyloidogenic proteins predicted by Waltz,
while chloroplast QN-rich proteins show evolutionary conservation of their amyloidogenic regions.

 

Figure 6. (a) Distribution of chloroplast sequences potentially capable of forming amyloids across
land plant proteins. A taxonomic tree of plant species is shown according to the Uniprot Taxonomy.
The results for amyloidogenic regions predicted by Waltz and QN-rich sequences found with SARP are
shown. For each type of amyloidogenic region, the fraction of proteins harboring these regions and the
coverage of the total proteome length with these regions are shown. For the TIC214, Ycf2 and rps18
proteins: (i) a red circle means that the protein is present in the proteome and has a QN-rich region;
(ii) a gray circle denotes that the protein is encoded by the chloroplast genome but lacks a QN-rich
region; (iii) a white circle denotes that there is no corresponding gene in the chloroplast genome;
and (iv) a pink circle denotes that the rps18 protein has a small, manually verified QN-rich region.
(b) Distribution of potentially amyloidogenic regions across higher plant proteins encoded by the
mitochondrion genome. A taxonomic tree of plant species is shown according to the Uniprot Taxonomy.
The results for Waltz-predicted regions are shown. For each type of amyloidogenic region, the fraction
of proteins harboring these regions and the coverage of the total proteome length with these regions
are shown. The results for QN-rich proteins predicted by SARP are not shown since such proteins are
absent in the proteome of the mitochondrion.
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2.6. Co-Occurrence of Potentially Amyloidogenic Regions with the Structural Features of Proteins

Potentially amyloidogenic regions have specific amino acid compositions and physical properties,
and thus they might tend to be incorporated into certain structural features of proteins. We analyzed
co-occurrence of QN-rich regions and regions predicted with Waltz with different types of protein
domains. We found that QN-rich regions tend to co-occur with different DNA- (HTH Myb-type)
and RNA-binding (YTH, RRM, PUM-HD), kinase (FAT), lipase (GDSL), and cytoskeleton-related
domains (Dilute, Myosin, Kinesin) (Figure 7). QN-rich regions were also found to be associated with
the LRRNT domain, which is mostly responsible for protein-protein interactions [60]. Importantly,
in many plant species, the QN-rich regions overlap with the conserved barrel domain, Cupin1, of the
11S and 7S plant seed storage proteins. For deeper analysis of the association between seed storage
protein domains and QN-rich regions, we used PFAM database (see Section 4.7) [61]. We found that
302 storage proteins with Cupin1 were Q/N-rich in 54 of 75 plant species analyzed (Table 1). Q/N-rich
storage proteins containing other domains were less abundant. For example, we detected 119 Q/N-rich
proteins with Zein domain in three plant species; 121 with Gliadin domain in 15 species; 13 with Vicilin
domain in nine species; and seven with high molecular weight Glutenin in two plant species analyzed
(Table 1). Taken together, our data show that different seed storage proteins in various plant species
are associated with the presence of potentially amyloidogenic Q/N-rich regions.

Similar to QN-rich regions, E-rich regions of plant proteins were mainly enriched with
DNA-binding (HMG, SMC) and cytoskeleton-associated (NAB, Kinesin) domains (Figure S9).
Additionally, E-rich regions were associated with Helicase and Cactin domains as well as with GTD
and FF domains, which are likely responsible for protein-protein interactions (Figure S9). In contrast to
QN- and E-rich regions, amyloidogenic regions predicted with Waltz tend to be inside transmembrane
domains (EamA, TPT, PBPe, MFS, ABC transmembrane Type-1, etc.) in all plant species analyzed
except for P. glauca (Figure 8), which is likely because of incomplete proteome annotation for this
species. Signal peptides were strongly associated with ARs predicted by Waltz in all species except
grasses (Figure 8). Notably, both QN-rich regions and ARs predicted by Waltz are associated with
protein kinase domains (Figures 7 and 8). Thus, amyloidogenic regions occupy specific protein domains
(Figures 7 and 8 and Figure S9), which might reflect the involvement of ARs in the functioning of
these domains.
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Figure 7. Top 20 protein features that are overrepresented in QN-rich regions predicted with SARP.
The color of the cells denotes the fraction of proteins with amyloidogenic regions among all proteins
with this feature. The dendrogram of plant species corresponds to their phylogenetic tree.
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Figure 8. Top 20 protein features that are overrepresented in Waltz-predicted amyloidogenic regions.
The color of the cells denotes the fraction of proteins with amyloidogenic regions among all proteins
with this feature. The dendrogram of plant species corresponds to their phylogenetic tree.
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3. Discussion

The bioinformatic analysis performed in this study revealed that potentially amyloidogenic
proteins are abundant in the proteomes of land plants (Figure 1). These proteins exhibit various
molecular functions, cellular localizations and biological processes (Figures 2–5). Two algorithms used
in our study, Waltz and SARP, revealed different groups of potentially amyloidogenic plant proteins
based on their primary structure. Some of these proteins are related to amyloid-forming proteins in
other groups of organisms identified in vivo or plant proteins whose amyloid properties were partially
characterized in vitro and in heterologous systems.

Most groups of plant proteins predicted by Waltz are transmembrane proteins acting as
transporters of different compounds. Such proteins can potentially have amyloid properties.
For example, porins OmpA and OmpC of the bacteria Escherichia coli were shown to have amyloid
properties [62,63]. Thus, we cannot exclude that several membrane proteins of plants could also
adopt amyloid structures. The second group of amyloidogenic proteins predicted by Waltz to be
abundant in most of the species analyzed were defense proteins. These proteins represent a large and
heterogeneous group, many representatives of which are hydrophobic [64]. Interestingly, several plant
defense proteins and peptides were shown to have amyloid-like properties in vitro [49,50,65]. Amyloid
formation by such plant proteins could stabilize them and enhance their survival during interactions
with pathogens, since amyloids are extremely stable [66].

Amyloidogenic proteins of plants predicted with SARP were mainly localized in the nucleus
and cytoplasm. In the case of QN-rich plant proteins, DNA- and RNA-binding activities including
transcriptional regulation are the most common. There are numerous examples of Q and/or
N-rich transcriptional factors among human and yeast amyloid-forming proteins [38]. Moreover,
Luminidependens, a QN-rich transcriptional regulator of flowering in Arabidopsis thaliana, was recently
shown to have amyloid- and prion-like properties in a heterologous yeast system [46]. We also
found that QN-rich proteins are overrepresented among floral regulators, but only in several species
including A. thaliana (Figure 5). Overall, according to bioinformatic data, DNA- and RNA-binding
QN-rich proteins of plants represent a promising group to search for novel amyloid-forming
proteins. The second group of potentially amyloidogenic proteins predicted by SARP was E-rich,
which were similar to QN-rich in function and localization, but additionally included translation- and
folding-related proteins (Figure S8) that could be involved in amyloid formation.

One of the most important findings of this study was the overrepresentation in different
plant species of potentially amyloidogenic proteins among proteins acting as nutrient reservoirs
(Figure 3 and Figure S4), including seed storage proteins, which constitute an important part of the
human diet. Moreover, the evolutionarily conserved Cupin1 as well as Zein, Gliadin, Vicilin and high
molecular weight Glutenin domains of seed storage proteins tend to have potentially amyloidogenic
QN-rich regions (Figure 7, Table 1). Previously, proteolytic peptides of seed storage proteins of
leguminous plants were shown to form fibrils with several properties of amyloids in vitro [67–69].
Based on these observations, we hypothesized that storage proteins might adopt amyloid states in
seeds to accumulate and stabilize their molecules during dehydration that naturally occurs as a result of
seed maturation [51]. The data obtained in this study strongly support our hypothesis. We may expect
that the process of accumulation of storage proteins in the seeds could be similar to the accumulation
of human hormones in the amyloid state [26] or dehydration-dependent amyloid formation by the
proteins of egg envelop of “annual killfish” Austrofundulus limnaeus [51,70].

We found that QN-rich proteins were absent in the mitochondria and that few chloroplast proteins
contained QN-rich regions (Figure 6). One such protein is TIC214, which harbors a QN-rich region in
its C-terminus in all investigated plant species (see Section 2.5). It should be noted that TIC214 is the
only translocon component on the inner envelope of chloroplasts that is encoded in the chloroplast
genome [59]. Though it is omnipresent in most species of plants (except grasses), the C-terminal region
is highly variable. The only common feature of the C-terminal region of TIC214 in different species
is the presence of charged motifs [59]. Possibly, an increased QN content might be important for
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interspersing these motifs. Another chloroplast protein, Ycf2, contains a QN-rich region, but not in
the flowering plants (Figure 6). The changes in Ycf2 composition coincide with its gene duplication
in the flowering plants lineage [71]. The Poaceae species have lost the Ycf1/TIC214 protein, but they
have a small QN-rich region in the C-terminal region of the rps18 protein (Figure 6). These examples
suggest that the composition of QN-rich regions might correspond with the evolution of species,
even when the sequence of such regions is highly variable. Additionally, such a conservation of amino
acid composition suggests that CBRs may be functionally important.

Undoubtedly, the presence of bioinformatically predicted amyloidogenic regions does not indicate
that the corresponding full-length proteins have amyloid properties in vivo. Nevertheless, resistance
of proteins to treatment with ionic detergents, which is one of the key properties of amyloids, correlates
with the presence of ARs predicted by WALTZ and CBRs predicted by SARP [72], and the most of
experimentally analyzed amyloidogenic plant proteins (LD, FPA, FCA, TGZ, monellin, pro-hevein) [51]
bear such regions. Thus, predictions of potentially amyloidogenic proteins with these algorithms
are useful not only to analyze molecular functions, subcellular functions, and domain structure of
such proteins but also to reveal candidates in plant proteomes for experimental analysis of their
amyloid-forming properties. Identification of novel amyloid proteins is laborious and time-consuming,
but bioinformatic predictions in combination with recently developed proteomic approaches [72–75]
are useful in this regard. In addition, future development of novel, more efficient bioinformatic
algorithms based on the machine learning, which is actively using now for protein analysis [76,77],
could also contribute to the progress in the proteomics of amyloids.

Overall, in this study, we have investigated the diversity of amyloidogenic proteins in plant
species, analyzed their functions and localization, and, based on the obtained bioinformatic data,
suggested possible roles of amyloid formation in different biological processes including defense from
pathogens and storage of proteins in seeds.

4. Materials and Methods

4.1. Datasets

All protein sequences of 75 plant species were downloaded with their annotations from
the Uniprot Proteomes database (available at http://www.uniprot.org/proteomes/). We used the
sequences listed in the reference proteomes for these species in June of 2017. To fetch the data, we used
the Proteins REST API (available at http://www.ebi.ac.uk/proteins/api/doc) [78]. Phylogenetic trees
of plant species were obtained according to the Uniprot Taxonomy (available at http://www.uniprot.
org/taxonomy/). IDs of the proteomes and taxonomies used are listed in Table S2.

4.2. Prediction of Amyloidogenic Regions

Prediction of amyloidogenic regions was performed using the Waltz algorithm [37], with parameters
set as follows: threshold–best overall selectivity and pH 7.0. Protein sequences that did not match the
Waltz requirements (sequence should not contain uncanonical amino acid letters and should not be
longer ten thousand residues) were excluded. Proteins harboring at least one region predicted with
Waltz longer than 9 amino acids were marked as potentially amyloidogenic proteins. Coverages of
Waltz-predicted regions were calculated as follows: total length of all regions predicted by WALTZ
divided by sum of lengths of all proteins in the corresponding proteome. A comparison of different
species by the portion of potentially amyloidogenic proteins in the proteomes was performed with
Fisher’s exact test [79] with a Benjamini and Hochberg p-value adjustment [80].

4.3. Prediction of Compositionally Biased Regions

Prediction of compositionally biased regions (CBRs) in proteins for E, Q and N amino acids was
performed with the SARP algorithm [43]. The threshold of probability was set to 10−8. Calculations of
coverage of CBRs and comparisons of different species by their proportion of compositionally biased
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regions in proteomes were performed as for ARs (see Section 4.1). The proteins were considered
potentially amyloidogenic if they harbor at least one CBR rich in E or Q and N.

4.4. GO Term Enrichment Test

GO term enrichment tests were performed with the topGO R package [81]. Only terms with
p-values less than 0.01 and at least five proteins in the list of interest were selected. All proteins in
the proteome for each species were used as the protein universe, and only proteins with predicted
amyloidogenic regions or compositionally biased regions were included in the list of proteins of
interest. The heatmap.2 function from the gplots package was used to draw heat maps with default
clustering functions.

4.5. Identification of Potentially Amyloidogenic Proteins in the Proteomes of Organelles

Data on whether proteins were encoded by mitochondrion or chloroplast genomes were obtained
from the proteome annotation in the Uniport database. For each set of proteins, amyloidogenic regions
were predicted with Waltz (see Section 4.2), and QN-rich CBRs were found with SARP (see Section 4.3).
Statistics for the ARs and CBRs were calculated for each set separately, as described in Sections 4.2 and 4.3.

4.6. Analysis of the Association between Amyloidogenic Regions and Different Protein Features

Feature annotation was obtained from the Uniprot database. All sequence regions that were
not assigned to any feature were marked as unannotated. For each type of feature, the sum of the
length of overlaps of all amyloidogenic regions, and amyloidogenic CBRs rich in QN or E with these
features were calculated and divided by the total length of features of that type. The distribution of
ARs predicted by Waltz over different CBRs was calculated the same way (summing the lengths of
all ARs overlapping with CBRs of a given type and dividing by the total length of all CBRs of this
type). The heatmap.2 function from the gplots package was used to draw heat maps with default
clustering functions.

4.7. Analysis of the Abundance of the PFAM Domains among Proteins Containing CBRs

We used PFAM annotation for proteins from Uniprot database (available at http://www.uniprot.
org/). The descriptions for PFAM families were fetched from PFAM database [61] (available at
http://pfam.xfam.org/). To calculate the abundance of the PFAM domains among proteins with
nutrient reservoir activity, we obtained the list of PFAM accessions associated with the proteins
with GO:0045735 and calculate the number of proteins from this subset for each PFAM accession.
The abundance of the PFAM domains among QN-rich proteins was calculated in the same way,
but only proteins with GO:0045735 containing QN-rich regions predicted by SARP were selected.
For each PFAM accession, we calculated the number of species in which proteomes proteins with
corresponding PFAM domains from given subsets were present.
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Abstract: Protein-protein interactions (PPIs) play crucial roles in almost all cellular processes.
Although a large amount of PPIs have been verified by high-throughput techniques in the past
decades, currently known PPIs pairs are still far from complete. Furthermore, the wet-lab experiments
based techniques for detecting PPIs are time-consuming and expensive. Hence, it is urgent and
essential to develop automatic computational methods to efficiently and accurately predict PPIs.
In this paper, a sequence-based approach called DNN-LCTD is developed by combining deep
neural networks (DNNs) and a novel local conjoint triad description (LCTD) feature representation.
LCTD incorporates the advantage of local description and conjoint triad, thus, it is capable to
account for the interactions between residues in both continuous and discontinuous regions of
amino acid sequences. DNNs can not only learn suitable features from the data by themselves,
but also learn and discover hierarchical representations of data. When performing on the PPIs data
of Saccharomyces cerevisiae, DNN-LCTD achieves superior performance with accuracy as 93.12%,
precision as 93.75%, sensitivity as 93.83%, area under the receiver operating characteristic curve
(AUC) as 97.92%, and it only needs 718 s. These results indicate DNN-LCTD is very promising for
predicting PPIs. DNN-LCTD can be a useful supplementary tool for future proteomics study.

Keywords: protein-protein interactions; amino acid sequences; local conjoint triad descriptor;
deep neural networks

1. Introduction

Protein-protein interactions (PPIs) play critical roles in virtually all cellular processes, including
immune response [1], DNA transcription and replication [2], and signal transduction [3]. Therefore,
correctly identifying PPIs can not only better elucidate protein functions but also further understand the
various biological processes in cells [4–6]. In recent years, biologists take advantage of high-throughput
technologies to detect PPIs, such as mass spectrometric (MS), tandem affinity purification (TAP) [7],
yeast two-hybrid system (Y2H) [8,9], and so on. Unfortunately, these wet-lab experiments are costly
and labor-intensive, and have a high rate of both false positive and false negative, and limited coverage.
Hence, it is extremely imperative to develop reliable computational models to predict PPIs in large
scale [10].

So far, a number of computational methods have been developed for the detection of PPIs.
Most of these methods are based on the genomic information, such as Gene Ontology and
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annotations [11], phylogenetic profile, and gene fusion [12]. Methods employ 3D structural information
of proteins [13,14] and the sequence conservation between interacting proteins [15] also have been
reported. However, these methods are heavily dependent on the pre-knowledge of the proteins, such as
protein functional domains, structure information of proteins, and physicochemical properties of
proteins [16,17]. In other words, all these methods are hardly implementable unless the pre-knowledge
about proteins is available. Compared to the abundant data of protein sequences, other types of data
including 3D structure, Gene Ontology annotations, and domain-domain interactions of proteins are
still limited.

Many researchers have innovated sequence-based methods for detecting PPIs [18–24],
and experimental results have shown that the information of the amino acid sequences alone is
sufficient to identify new PPIs. Among them, Shen et al. [18] achieved an excellent effect based on
support vector machine (SVM). They grouped 20 standard amino acids into 7 classes according
to their dipoles, volumes of the side chains, and then employed conjoint triad (CT) method to
extract the features information of amino acid sequences based on the classification of amino
acids. Next, SVM predictor is used to predict PPIs. Their method yields a high prediction accuracy
of 89.3% on human PPIs. However, it does not consider the neighboring effect and PPIs are
almost always occurring in the non-continuous segments of amino acid sequences. Guo et al. [19]
developed SVM-based method by using auto covariance (AC) to abstract the feature information in
the discontinuous amino acid segments in the sequence, and obtained a perfect result with accuracy
as 86.55% on Saccharomyces cerevisiae (S. cerevisiae). Yang et al. [20] introduced local descriptor (LD)
to encode amino acid sequences based on k-nearest neighbor (kNN). In this study, they grouped
20 standard amino acids into 7 classes as done by Shen et al. [18]. Then they divided an entire
protein sequence into ten segments with varying length and extracted information of each segment.
Finally, they applied kNN to predict PPIs. This kNN based method achieves prediction accuracy as
86.15% on S. cerevisiae. You et al. [21] innovated a novel multi-scale continuous and discontinuous
(MCD) descriptor based on the LD [20]. In order to discover more information from amino acid
sequences, MCD descriptor applies the binary coding scheme to construct varying length segments
and abstracts the feature vectors from these segments. Then the minimum redundancy maximum
relevancy criterion [25], which can reduce the feature abundance and computation complexity, is used
to select an optimal feature subset. Finally, SVM is employed to predict new PPIs. This solution obtains
a high accuracy as 91.36% on S. cerevisiae. Recently, Du et al. [22] employed deep neural networks
(DNNs), a recently famous and popular machine learning technique, and amphiphilic pseudo amino
acid composition (APAAC) [26] to predict new PPIs. They firstly extracted the feature information from
two respective amino acid sequences by APAAC, then they took APAAC features of two respective
proteins as inputs of two separate DNNs and fused the two DNNs to predict PPIs. Their method
obtains an accuracy of 92.5% on PPIs of S. cerevisiae.

LD descriptor [20] only considers the neighboring effect of adjacent two types of amino
acids. Hence, it cannot sufficiently abstract information of neighboring amino acids but can
sufficiently discover information of discontinuous segments of the amino acid sequences. On the
other hand, CT [18] considers the neighboring effect of adjacent three types of amino acids but
ignores the discontinuous information. Given these observations, we combine the advantage of
local descriptor [20] and conjoint triad method [18], and introduce a novel feature representation
method called local conjoint triad descriptor (LCTD). LCTD can better account for the interactions
between sequentially distant but spatially close amino acid residues than LD [20] and CT [18]. DNNs,
a recently powerful machine learning technique, can not only reduce the impact of noise in the raw data
and automatically extract high-level abstractions, but also have better performance than traditional
models [27,28]. Inspired by these characteristics of DNNs, we employ DNNs to detect the PPIs based
LCTD feature representation of amino acid sequences and introduce an approach called DNN-LCTD.
Particularly, DNN-LCTD extracts the feature information of the amino acid sequences by LCTD,
then it trains a 3-hidden layers neural network by taking feature sets derived from LCTD as inputs
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and accelerates training by graphics processing unit (GPU). Finally, the learned network is employed
to predict new PPIs. We perform experiments on PPIs of S. cerevisiae, DNN-LCTD achieves 93.12%
accuracy, 93.83% sensitivity, 93.75% precision, and area under the receiver operating characteristic
curve (AUC) as 97.92%, and only uses 718 s. Experimental results on other five independent datasets:
Caenorhabditis elegans (4013 interacting pairs), Escherichia coli (6954 interacting pairs), Helicobacter pylori
(1420 interacting pairs), Homo sapiens (1412 interacting pairs), and Mus musculus (313 interacting pairs),
further demonstrate the effectiveness of DNN-LCTD.

2. Results and Discussion

In this section, we briefly introduce the evaluation metrics employed in performance comparison.
Then, we provide the recommended configuration of experiments. Finally, we analyze and discuss the
experimental results and compare our results with those of other related work.

2.1. Evaluation Metrics

To reasonably evaluate the performance of DNN-LCTD, five-fold cross validation is adopted.
Cross validation can avoid the overfitting and enhance the generalization performance [29].
Six evaluation metrics are used to quantitatively measure the prediction performance of DNN-LCTD,
including overall prediction accuracy (ACC), precision (PE), recall (RE), specificity (SPE), matthews
correlation coefficient (MCC), F1 score values, and area under the receiver operating characteristic
curve (AUC). They (except AUC) are defined as follows:

ACC =
TP + TN

TP + FP + TN + FN
(1)

PE =
TP

TP + FP
(2)

RE =
TP

TP + FN
(3)

SPE =
TN

TN + FP
(4)

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(5)

F1 =
2TP

2TP + FP + FN
(6)

where TP (true positive) is the number of the true PPIs that are correctly predicted, the FN (false
negative) is the number of the true interacting pairs that are failed to be predicted, TN (true negative) is
the number of the true non-interactions protein pairs of that are correctly predicted, FP (false positive)
is the number of true non-interactions pairs that are failed to be predicted. MCC is a measure for
the quality of binary classification. MCC equal to 0 means completely random prediction, −1 means
completely wrong prediction and 1 means perfect prediction. F1 score is a harmonic average of
precision and recall. A larger F1 denotes a better performance. Receiver operating characteristic
curve (ROC) can elucidate the diagnostic ability of a binary classifier system by graphical plot.
This curve is produced by plotting the true positive rate versus the false positive rate under different
thresholds [30,31]. AUC is the area under the ROC curve and its value is widely employed to compare
predictors. The larger the value of AUC, the better the predictor is.
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2.2. Experimental Setup

DNN-LCTD is implemented on Tensorlfow platform https://www.tensorflow.org. The flowchart
of DNN-LCTD is shown in Figure 1. DNN-LCTD firstly encodes the amino acid sequences using
the novel LCTD. After that, we train a 3-hidden layers neural network with GPU based on the
encoded feature sets. Finally, we apply the learned DNN to predict new PPIs. Hyper-parameters
of the DNN model heavily impact the experimental results. Deep learning algorithms have ten
or more hyper-parameters to be properly specified, trying all of them is impossible in practice [32].
We summarize the recommended configuration of DNN-LCTD in Table 1. As to the parameters setup of
the comparing methods, we use the grid search approach to obtain the optimal parameters. The optimal
parameters is shown in Table 2. The details of the parameters of comparing methods are available
at http://scikit-learn.org. For Du et al. work [22], there are too many parameters need to be set,
the information of parameters can be accessed via http://ailab.ahu.edu.cn:8087/DeepPPI/index.html.
All the experiments are carried out on a server with configuration: CentOS 7.3, 256 GB RAM, and Intel
Exon E5-2678 v3. DNN-LCTD uses NVIDIA Corporation GK110BGL [Tesla K40c] to accelerate training
of DNNs.

Figure 1. The flowchart of DNN-LCTD for predicting protein-protein interactions. There are some
abbreviations in this figure, including database of interacting proteins (DIP), protein information
resource, local conjoint triad descriptor (LCTD), protein-protein interactions (PPIs), and graphics
processing unit (GPU). The Noneg is the number of non-interacting protein pairs, Nopos is the number
of interacting protein pairs. Y/N means yes/no.

2.3. Results on PPIs of S. cerevisiae

In order to achieve good experimental results, the corresponding hyper-parameters for deep
neural network are firstly optimized. Table 1 provides the recommended hyper-parameters that are
chosen by a large number of experiments. Considering the numerous samples used in this work,
five-fold cross validation is adopted to reduce the impact of data dependency and to minimize the
risk of over-fitting. Thus, five models are generated for the five sets of data. Table 3 reports the
results of DNN-LCTD on five individual folds (fold 1–5) and the overall average results of five folds.
From Table 3, we can observe that all the prediction accuracies are nearly ≥93.1%, the precisions
are ≥93.35%, all the recalls are almost ≥93.4%, the specificities are ≥92.75%, and the F1 are ≥92.4%.
In order to comprehensively evaluate the performance of DNN-LCTD, the MCC and AUC are also
calculated. DNN-LCTD achieves superior prediction performance with an average accuracy as 93.11%,
precision as 93.75%, recall as 92.40%, specificity as 92.75%, MCC as 86.24%, F1 as 93.06%, and AUC
as 97.95%.
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Table 1. Recommended parameters of DNN-LCTD in the experiments.

Name Range Recommendation

Learning rate 1, 0.1, 0.001, 0.002, 0.003, 0.0001 0.002

Batch size 32, 64, 128, 256, 512, 1024 512, 1024

Weight initialization uniform, normal, lecun_uniform, glorot_normalglorot_normal, glorot_uniform

Per-parameter adaptive learning rate SGD, RMSprop, Adagrad, AdamAdadelta, Adam, Adamax, Nadam

Activation function relu, tanh, sigmoid, softmax, softplus relu, sigmoid

Dropout rate 0.5, 0.6, 0.7 0.6

Depth 2, 3, 4, 5, 6, 7, 8, 9 3

Width 16, 32, 64, 128, 256, 1024, 2048, 4096 2048, 512, 32

GPU Yes, No Yes

Table 2. Optimal parameters of comparing methods.

Method Name Parameters

Guo’s work [19] SVM + AC
C γ kernel

32768.0 0.074325444687670064 poly

Yang’s work [20] kNN + LD
n_neighbors weights algorithm p

3 distance auto 1

Zhou’s work [33] SVM + LD
C γ kernel

3.1748021 0.07432544468767006 rbf

You’s work [21] RF + MCD
n_estimators max_features criterion bootstrap

5000 auto gini True

SVM: support vector machine, kNN: k-nearest neighbor, RF: random forest, AC: auto covariance,
LD: local descriptor, MCD: multi-scale continuous and discontinuous, rbf: radical basis function,
gini: gini index.

Plenty sequence-based methods have been employed to predict PPIs. We compare the
prediction performance of DNN-LCTD with the other existing approaches on S. cerevisiae, including
Guo et al. [19], Yang et al. [20], Zhou et al. [33], You et al. [21], and Du et al. [22]. The details of these
approaches were introduced in Section 1. From Table 3, we can observe that DeepPPI [22] achieves
the best performance among comparing methods (except DNN-LCTD). DeepPPI firstly uses APAAC
descriptor to encode the amino acid sequence for each protein and takes the APAAC features as
separate inputs for two individual DNNs to extract high-level features of these two proteins, it finally
fuses the extracted features to predict PPIs. Its average prediction accuracy is 92.58% ± 0.38%, precision
is 94.21% ± 0.45%, recall is 90.95% ± 0.41%, MCC is 85.41% ± 0.76%, F1 is 92.55% ± 0.39%, and AUC
is 97.55% ± 0.16%. This result mean that DeepPPI [22] is indeed successful for predicting new PPIs
using DNNs with APAAC [26]. DNN-LCTD encodes the amino acid sequences of each protein via
LCTD descriptor, it then concatenates the LCTD features of two proteins into a longer feature vector
and takes the concatenated features as inputs of DNN for prediction. The average accuracy, recall,
MCC, F1 and AUC of DNN-LCTD are 0.53%, 1.45%, 0.83%, 1.05% and 0.4% higher than those of
DeepPPI, respectively. The reason is that LCTD can discover more feature information from amino
acid sequences than APAAC. The DNN-LCTD is far greater than other comparing approaches can be
attributed to the merits of DNNs and of LCTD. The contributions of LCTD and DNNs will be further
investigated in Sections 2.4 and 2.5. The S. cerevisiae dataset contains tremendous samples, hence, a little
improvement in prediction performance still has a great effect. Based on these experimental results,
we can conclude that DNN-LCTD can more effectively predict PPIs than other comparing methods,
and the proposed LCTD descriptor can explore more patterns from continuous and discontinuous
amino acid segments.
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The adopted negative PPIs set may lead to a biased estimation of prediction performance [34].
To prove the rationality of a negative set generated by selecting non-interacting pairs of
non-co-localized proteins [19], we perform additional testing on a simulated dataset of S. cerevisiae.
Particularly, we firstly construct the negative PPIs set by pairing proteins whose subcellular
localizations are different, and we randomly select 17,257 protein pairs as the negative set of the
simulated dataset. Next, we construct the positive PPIs set by pairing proteins whose subcellular
localizations are the same, regardless of being interacting pairs or not. We then randomly select 17,257
protein pairs as the positive set. As a result, the simulated testing dataset includes 34,514 protein pairs
for testing, where half are positives and the other half are negatives. After that, we randomly divide
these testing PPIs into five folds, and apply the same DNN as trained on the dataset in Table 3 to
predict PPIs in each fold. Table 4 reports the evaluation results on this simulated dataset. From Table 4,
we can see that the values of accuracy, recall, MCC, and F1 are much lower than the corresponding
values reported in Table 3. The reason for the high specificity in Table 4 is that the way of constructing
negative dataset in the training dataset (used in Table 3) and simulated testing dataset is the same.
These results indicate that the constructed negative set is reasonable.

Table 4. Results on simulated S. cerevisiae dataset.

ACC PE RE SPE MCC F1 AUC

fold 1 82.53% 92.24% 71.01% 94.04% 66.85% 80.24% 92.47%
fold 2 82.89% 93.57% 70.71% 95.12% 67.86% 80.55% 93.52%
fold 3 82.56% 93.25% 70.30% 94.89% 67.22% 80.16% 92.52%
fold 4 82.09% 94.02% 68.95% 95.52% 66.74% 79.56% 93.08%
fold 5 82.24% 91.74% 70.26% 93.86% 66.14% 79.58% 92.85%

Average 82.46% ± 0.31% 92.97% ± 0.95% 70.25% ± 0.79% 94.68% ± 0.71% 66.96% ± 0.64% 80.02% ± 0.44% 92.89% ± 0.43%

2.4. Comparison with Different Descriptors

To further investigate the contribution of the novel local conjoint triad descriptor, we separately
train DNNs based on CT [18], AC [19], LD [20,33], MCD [21], APAAC [22], and LCTD. After that we
use pairwise t-test at 95% significance level to check the statistical significance between LCTD and
LD, MCD, AC, CT, APAAC in five-fold cross validation and report the results in Figure 2 and Table 5.
In Table 5, • means that LCTD is statistically significant better than other descriptors on a particular
evaluation metric. From Figure 2 and Table 5, we can observe that the prediction performance using
LCTD outperforms other descriptors across nearly all evaluation metrics. The ACC, MCC, F1 and AUC
of DNN-LCTD are 1.76%, 3.48%, 1.86%, and 2.85% higher than those of DNN-MCD; 2.92%, 5.81%,
3.05% and 1.62% higher than those of DNN-LD; 3.62%, 7.25%, 3.56% and 2.06% than those of DNN-AC;
1.27%, 7.74%, 9.41% and 1.99% than those of DNN-CT; 3.02%, 5.99%, 3.03% and 2.06% than those of
DNN-APAAC, respectively. These improvements can be attributed to that LCTD can extract more
useful feature information of amino acid sequences by incorporating the advantage of LD [20,33] and
conjoint triad (CT) descriptor [18]. From these results, we can conclude that the novel LCTD can more
sufficiently capture the feature information of amino acid sequences for PPIs prediction.
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Figure 2. Performance comparison based on DNNs with AC, LD, MCD, LCTD, CT, or APAAC on
S. cerevisiae dataset.

Table 5. Results based on DNNs with AC, LD, MCD, LCTD, CT, and APAAC on S. cerevisiae dataset.
• indicates LCTD is statistically (according to pairwise t-test at 95% significance level) superior to the
other descriptor.

ACC (%) PE (%) RE (%) SPE (%) MCC (%) F1 (%) AUC (%)

DNN-LCTD 93.11 ± 0.33 93.75 ± 0.88 92.40 ± 0.81 93.83 ± 0.85 86.24 ± 0.66 93.06 ± 0.39 97.95 ± 0.16
DNN-MCD 91.35 ± 0.31• 92.80 ± 1.08 89.67 ± 0.96• 93.03 ± 1.10 82.76 ± 0.64• 91.20 ± 0.35• 95.10 ± 0.17•
DNN-LD 90.19 ± 0.26• 91.63 ± 0.77• 88.46 ± 0.42• 91.92 ± 0.72• 80.43 ± 0.55• 90.01 ± 0.27• 96.33 ± 0.18•
DNN-AC 89.49 ± 0.36• 89.40 ± 3.06• 89.61 ± 3.92• 89.38 ± 1.25• 78.99 ± 1.19• 89.50 ± 1.15• 95.89 ± 0.31•
DNN-CT 91.84 ± 0.31• 88.12 ± 0.27• 79.81 ± 1.08• 96.12 ± 0.44 78.50 ± 0.59• 83.65 ± 0.46• 95.96 ± 0.34•
DNN-APAAC 90.09 ± 0.20• 91.66 ± 0.27• 88.45 ± 0.56• 91.77 ± 0.33• 80.25 ± 0.39• 90.03 ± 0.23• 95.89 ± 0.03•

2.5. Comparison with Existing Methods

Meanwhile, in order to further investigate the effective of DNNs, we separately train the different
state-of-the-art predictors on S. cerevisiae dataset using LCTD to encode amino acid sequences,
these predictors include support vector machine (SVM) [35], k neighbor nearest (kNN) [36], random
forest (RF) [37], and adaboost [38]. Then, we compare the prediction performance based on the six
already introduced evaluation metrics. In this study, five-fold cross validation is employed to reduce
the impact of data dependency and enhance the reliability of the experiments. The results are shown in
Figure 3. From Figure 3 we can see that a high average accuracy of 93.11% is obtained by DNN-LCTD.
The average accuracy of adaboost, kNN, random forest, and SVM are 92.83%, 86.87%,92.28%, 92.76%,
respectively. DNNs have the highest prediction performance across all evaluation metrics except in RE
and SPE. In practice, grid search is used to seek the optimal parameters of these comparing algorithms.
We also show the training speed of different comparing methods in Table 6. We can observe that
DNN-LCTD with central processing unit (CPU) is separately 2, 25 and 39 times faster than random
forest, adaboost and SVM. In order to speed up training of DNN-LCTD, GPU is employed. We can see
that the training time of DNN-LCTD with GPU is 3 times faster than that with CPU, 4, 9.5, 97.5 and
148 times than k neighbor nearest, random forest, adaboost and SVM. According to these experimental
results, we can conclude that DNN-LCTD can accurately and efficiently predict PPIs from amino
acid sequences.
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Figure 3. Performance comparison of other algorithms with LCTD descriptor on S. cerevisiae dataset.

Table 6. Comparison of training times of different comparing algorithms.

Method DNN-LCTD (GPU) DNN-LCTD (CPU) SVM kNN Random Forest Adaboost

Times (s) 718 2680 106,347 2814 6906 70,026

2.6. Results on Independent Datasets

To further assess the practical prediction ability of DNN-LCTD and other comparing methods,
we firstly train different models with optimal configurations (details in Section 2.2) using PPIs of
S. cerevisiae dataset (34,514 protein pairs). After that, five independent datasets that only contain
the samples of interactions, including Caenorhabditis elegans (4013 interacting pairs), Escherichia coli
(6954 interacting pairs), Helicobacter pylori (1420 interact-ing pairs), Homo sapiens (1412 interacting pairs),
and Mus musculus (313 interacting pairs), are used as test sets to evaluate the prediction performance
of these trained models. The prediction results are shown in Table 7. From Table 7, we can observe
that the accuracy of DNN-LCTD on C. elegans, E. coli, H. pylori, H. sapiens, and M. musculus are 93.17%,
94.62%, 87.38%, 94.18%, and 92.65%, respectively. DNN-LCTD has a higher accuracy than DeepPPI [22]
and SVM + LD [33] on E. coil, H. sapiens, and M. musculus. The accuracy of SVM + LD [33] is far lower
than DNN-LCTD on C. elegans and H. pylori. These prediction accuracies are satisfying except on H.
pylori. The reason is that we use S. cerevisiae as the training set to train models, the trained model is
inclined to species that are closer to S. cerevisiae. In reality, S. cerevisiae has closer relationship with
other four datasets than with H. pylori. These prediction results indicate that DNN-LCTD has a good
generalization ability for predicting PPIs.

Table 7. Prediction results on five independent PPIs datasets, PPIs of S. cerevisiae are used as the
training set.

Species Test Pairs
ACC

DNN-LCTD Du’s Work [22] Zhou’s Work [33]

C. elegans 4013 93.17% 94.84% 75.73%
E. coli 6984 94.62% 92.19% 71.24%

H. sapiens 1412 94.18% 93.77% 76.27%
H. pylori 1420 87.38% 93.66% 75.87%

M. musculus 313 92.65% 91.37% 76.68%
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3. Materials and Methods

In this section, we briefly introduce the datasets we used for experiments, including S. cerevisiae
and other five independent datasets. Then, we introduce the details of LCTD, a novel feature
representation descriptor. Finally, we present a brief introduction of deep neural networks (DNNs),
including characteristics and skills.

3.1. PPIs Datasets

To reliably evaluate the performance of DNN-LCTD, a validation benchmark dataset is necessary.
We adopt the S. cerevisiae dataset used by Du et al. [22] for experiments. This dataset was collected
from the database of interacting proteins (DIP; version 20160731) [39]. The protein pairs of this dataset
exclude proteins with fewer than 50 amino acids and ≥40% sequence identity [19]. Finally, this
dataset contains 17,257 positive protein pairs. Negative examples impact the prediction results of
PPIs. The common approach is based on annotations of cellular localization [40,41]. The negative
set is obtained by pairing proteins whose subcellular localizations are different. The strategy must
meet the following requirements [18,19]: (1) the non-interaction pairs cannot appear in the positive
dataset, and (2) the contribution of proteins in the negative set should be as harmonious as possible,
which means that proteins without subcellular localization information, or denoted as ’putative’,
’hypothetical’ are excluded for constructing the negative set. Finally, 48,594 negative pairs are
generated via this strategy. In the end, S. cerevisiae contains 34,514 protein pairs, where half are
from positive dataset and the other (17,257 negative pairs) are randomly selected from the whole
negative set. Other five independent PPIs datasets, including Caenorhabditis elegans (4013 interacting
pairs), Escherichia coli (6954 interacting pairs), Helicobacter pylori (1420 interacting pairs), Homo sapiens
(1412 interacting pairs), and Mus musculus (313 interacting pairs) [33], are used as independent
test datasets to assess the generalization ability of DNN-LCTD. These datasets are available at
http://ailab.ahu.edu.cn:8087/DeepPPI/index.html.

3.2. Feature Vector Extraction

Whether the encoded features are reliable or not can heavily affect the performance of PPIs
prediction. The main challenge is how to effectively describe and represent an interacting protein pairs
by a fixed length feature vector, in which the essential information content of interacting proteins is fully
encoded. Various sequence-based methods are proposed to predict new PPIs, but one flaw of them is
that they cannot adequately capture interaction information from continuous and discontinuous amino
acid segments at the same time. To overcome this problem, we introduce a novel local conjoint triad
descriptor (LCTD), which incorporates the advantage of local descriptor (LD) [20,33] and conjoint triad
(CT) [18] sequence representation approach. To clearly introduce the LCTD, we first briefly introduce
the feature representation methods of CT [18] and LD [20,33] in the following two subsections.

3.2.1. Conjoint Triad (CT) Method

Shen et al. [18] introduced the conjoint triad (CT). In order to conveniently represent the
20 standard amino acids and to suit synonymous mutation, they firstly divided these 20 standard
amino acids into 7 groups based on the dipoles and volumes of the side chains as shown in Table 8.
After that, the conjoint triad method is introduced to extract the sequence information, which includes
the properties of one amino acid and its vicinal amino acids and regards any three continuous amino
acids as a unit [18]. The process of generating descriptor vectors is described as follows.

Table 8. Division of amino acids into seven groups based on the dipoles and volumes of the side chains.

Group 0 Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

A, G, V C F, I, L, P M, S, T, Y H, N, Q, W K, R D, E
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Firstly, they replaced each amino acid in the protein sequence by the index depending on
its grouping. For instance, protein sequence “VCCPPVCVVCPPVCVPVPPCCV” is replaced by
0112201001220102022110. Then, binary space (V, F) stands for a protein sequence. Here, V is the vector
space of the sequence features, and each feature vi represents a kind of triad type [18]. For example,
v1, v7, and v10 are separately representing the triad unit of 100, 010, 310. F is the frequency vector
corresponding to V, and the value of the ith dimension of F (fi) is the frequency of type vi appearing
in amino acid sequence [18]. As the amino acids grouped into seven classes, the size V should be
7 × 7 × 7; therefore, i = 0, 1, · · · , 342. The detailed definition and description is shown in Figure 4.
Clearly, each protein has a corresponding F vector. Nevertheless, the value of fi relates to the
length of amino acid sequence. A longer amino acid sequence generally have a larger value of
fi, which complicates the comparison between two heterogeneous proteins. As such they employed
the normalization to solve this problem as follows:

di = (fi − min{f0, f1, · · · , f342})/max{f0, f1, · · · , f342} (7)

where the value of di is normalized in the range [0, 1]. fi is the frequency of conjoint triad unit vi
appearing in the protein sequence. Finally, they connected the vector spaces of two proteins to present
the interaction features. Thus, a 686-dimensional vector (343 for each protein) is generated for each
pair of proteins.

Figure 4. Schematic diagram for conjoint triad. The number is the classes grouped by the dipoles and
volumes of the side chains. fi is the frequency that triad type appears in the protein sequence. F is the
vector set for all fi.

3.2.2. Local Descriptor (LD)

Local descriptor (LD) is an alignment-free approach previously used to classify several proteins
families [42,43]. Yang et al. [20] and Zhou et al. [33] employed this method to extract the interactions
information from amino acid sequences. 20 standard amino acids are grouped into 7 groups based
on the dipoles and volumes of the side chains at first, as shown in Table 8. Then each entire protein
sequence is divided into 10 segments as shown in Figure 5. For each local region, three local descriptors
including composition (C), transition (T) and distribution (D) are employed to extract the feature
information. C represents the composition of each amino acid group. T stands for the frequency from
a type of amino acids to another type. D describes the distribution pattern along the entire region by
measuring the location of the first 25%, 50%, 75% and 100% of residues of a given group [33,44].
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Figure 5. The 10 descriptor regions (A–J) are split for a hypothetical protein sequence. The regions
A–D and E–F are obtained by dividing the entire amino acid sequence into four equal regions and two
equal regions [20,33], respectively. G stands for the central 50% of the amino acid sequence. Regions H,
I, and J represent the first, final and central 75% of the amino acid sequence, respectively.

Then, each local region split is replaced by the index depending on the classification of
amino acids. For example, protein sequence “VCCPPVCVVCPPVCVPVPPCCV” is replaced by
0112201001220102022110 based on classification of amino acids as shown in Figure 6. There have
eight ‘0’, seven ‘1’, and seven ‘2’ in the protein sequence. The composition for these three symbols is
8 × 100%/(8 + 7 + 7) = 36.36%, 7 × 100%/(8 + 7 + 7) = 31.82%, and 6 × 100%/(8 + 7 + 7) = 31.82%,
respectively. There are 7 transitions from ‘0’ to ‘1’ or from ‘1’ to ‘0’ in this sequence, and the percentage
frequency of these transitions is (7/21) × 100% = 33.33%. Similarly, the transitions from ‘0’ to ‘2’ or ‘2’
to ‘0’ and transitions from ‘1’ to ‘2’ or ‘2’ to ‘1’ are respectively calculated as (3/21) × 100% = 14.29%
and (4/21) × 100% = 19.05%. For distribution D, there are 8 residues encoded as ‘0’ in the example of
Figure 6, the position of the first residue ‘0’, the second residue ‘0’ (25% × 8 = 2), the fourth residue ‘0’
(50% × 8 = 4), the sixth ‘0’ residue (75% × 8 = 6), and the eight residue ‘0’ (100% × 8 = 8) in the encoded
sequence are 1, 6, 9, 15, and 22, respectively. Thus D descriptor for ‘0’ is: (1/22 × 100% = 4.55%),
(2/22 × 100% = 9.09%), (4/22 × 100% = 18.18%), (6/22 × 100% = 27.27%) and (8/22 × 100% = 36.36%),
respectively. Similarly, the D descriptor for ‘1’ and ‘2’ is (9.09%, 13.64%, 45.45%, 63.64%, 95.45%) and
(18.18%, 22.73%, 54.55%, 72.73%, 86.36%), respectively.

For each local region, three descriptors (C, T, D) are computed and concatenated into
a 63-dimensional feature vector, 7 for C, 21 (7 × 6/2) for T and 35 (7 × 5) for D. Then all descriptors
from 10 regions are concatenated into an 630-dimensional vector. Finally, LD concatenates the vectors
of two individual amino acid sequences. Thus, a 1260-dimensional vector is constructed to characterize
each protein pair.
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Figure 6. A hypothetical protein sequence figuring the structure of composition, transition and
distribution pattern of a protein region.

3.2.3. Local Conjoint Triad Descriptor (LCTD)

From the process of LD descriptor [20,33], we can find that it only considers the neighboring effect
of adjacent two types of amino acids. Therefore, it cannot sufficiently extract information of neighbor
amino acids, but can sufficiently discover information of discontinuous segments of the amino acid
sequence. Meanwhile, we observe that the conjoint triad method [18] considers the neighboring effect
of adjacent three types of amino acid, but ignores the discontinuous information. Thus, we advocate to
integrate the merits of LD [20,33] and conjoint triad (CT) [18] to introduce a novel feature representation
of amino acid sequence called LCTD. LCTD groups the 20 standard amino acids into 7 groups on
the dipoles and volumes of the side chains at first as shown in Table 8. Then it divides the entire
protein sequence into 10 segments as done by LD [20,33]. Next, for each local region, we calculate four
descriptors, composition (C), transition (T) and distribution (D), and conjoint triad (CT). C represents
the composition of each amino acid group. T stands for the frequency from a type of amino acid to
another type. D describes the distribution pattern along the entire region by measuring the location
of the first 25%, 50%, 75% and 100% of residues of a given group [33,44]. Conjoint triad considers
the properties of one amino acid and its vicinal amino acids, it regards any three continuous amino
acids as a unit [18]. These descriptors are introduced in Sections 3.2.1 and 3.2.2. For each local region,
the four descriptors (C, T, D, CT) are calculated and concatenated, and a total of 63 + 343 descriptors
are generated: 7 for C, 21 (7 × 6/2) for T and 35 (7 × 5) for D, and 343 for CT. After that, all descriptors
from 10 regions are concatenated into an 4060-dimensional vector. Finally, LCTD concatenates the
vectors of two individual proteins. Thus, a 8120-dimensional vector is constructed to encode each
protein pair. The corresponding equations are shown as follows:

DAi = C ⊕ T ⊕ D ⊕ CT (i = 1, 2, · · · , 10) (8)

DBi = C ⊕ T ⊕ D ⊕ CT(i = 1, 2, · · · , 10) (9)

DA = DA1 ⊕ DA2 ⊕ · · · ⊕ DA10 (10)

DB = DB1 ⊕ DB2 ⊕ · · · ⊕ DB10 (11)
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DAB = DA ⊕ DB (12)

where A and B are a pair of proteins, ⊕ is the vector concatenating operator. DA, DB is the extracted
feature vector from A and B, respectively. i refers to any segment in 10 split segments. DAB is the
extracted feature of two amino acid sequences. These 8120-dimensional feature vectors are used as
input of DNNs for training and prediction.

3.3. Deep Neural Network

Deep learning, a popular type of machine learning algorithms, consists with an artificial neural
network of multiple nonlinear layers. It is inspired by the biological neural network that constitutes
animal brains. The characteristics of deep learning are that it can learn suitable features from the
original data without designed by human engineers, and discover hierarchical representations of
data [45]. The depth of a neural network corresponds to the number of hidden layers, and the width
is the maximum number of neurons in one of its layers [27]. Neural network with a large number of
hidden layers (three or more hidden layers) is called deep neural network [27].

The basic structure of DNN consists of an input layer, multiple hidden layers, and an output
layer, the special configuration of our neural network is shown in Figure 7. In general, input data (x)
are given to the DNN, the output values are sequentially computed along the layers of the network.
Neurons of a hidden layer or output layer are connected to all neurons of the previous layer [27].
Each neuron computes a weighted sum of its inputs and applies a nonlinear activation function to
calculate its outputs f (x) [27]. The representations in the layer below are transformed into slightly
more abstract representations by the computation in each layer [46]. In general, the nonlinear activation
function including sigmoid, hyperbolic tangent, or rectified linear unit (ReLU) [47]. The sigmoid and
ReLU are used in this study.

In this work, we use the mini-batch gradient descent [48] and Adam algorithm [49] to reduce the
sensitivity to the specific choice of learning rate [27], and speed up training using GPU. The dropout
technique is employed to avoid the overfitting, which the activation of some neurons is randomly set
to zero during training in each forward pass as shown in Figure 7 [27]. The dotted line means this
neuron will not be activated and calculated. The activation function of ReLU [47] and the loss of cross
entropy is employed because they can both accelerate the model training and obtain better prediction
results [50]. Batch normalization approach is also employed to reduce the dependency of training with
the parameter initialization, speed up training and minimize the risk of over-fitting. The following
equations are used to calculate the loss:

Hi1 = σ1(Wi1Xi1 + bi1)(i = 1, · · · , n) (13)

Hi(j+1) = σ1(WijHij + bij)(i = 2, · · · , n, j = 1, · · · , h) (14)

L = − 1
n

n

∑
i=1

[yi ln(σ2(WihHih + bih) + (1 − yi)ln(1 − σ2(WihHih + bih))] (15)

where n is the number of PPIs for batch training. σ1 is the activation function of ReLU, σ2 is the
activation function of the output layer with sigmoid, X is the batch training inputs, H is the outputs of
hidden layer, and y is the corresponding desired outputs. h is the depth of the DNN, W is the weight
matrix between the input layer and the output layer and b is the bias.
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Figure 7. The structure of the adopted DNN with LCTD features and the dropout technique.

4. Conclusions

In this article, we propose an efficient approach for predicting PPIs from protein primary
sequences by a novel local conjoint triad feature representation with DNNs. The LCTD takes PPIs
of continuous segments and discontinuous segments in protein sequence into account at the same
time. The feature sets, characterized by LCTD, are capable of capturing more essential interactions
information from the continuous and discontinuous binding patterns within a protein sequence.
We then train a DNN with LCTD feature sets as inputs. Finally, the trained DNN is employed
to predict the new PPIs. The experimental results indicate that DNN-LCTD is very promising for
predicting PPIs and can be an available supplementary tool to other approaches.

The high prediction accuracy can be partially attributed to a biased selection of positive/negative
training data. In practice, the available PPIs are incomplete and have a high rate of false positives and
false negative. Furthermore, constructing the negative data set by subcellular localization information
may also result in bias. How to construct a high quality negative set and how to reduce the impact of
noisy and bias of PPIs data are future pursues. Another possible reason for the high accuracy is that
DNN can model complex relationship between molecules by hidden layers and reduce the impact of
noisy and bias of PPIs data.
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Abstract: With the avalanche of biological sequences in public databases, one of the most challenging
problems in computational biology is to predict their biological functions and cellular attributes.
Most of the existing prediction algorithms can only handle fixed-length numerical vectors. Therefore,
it is important to be able to represent biological sequences with various lengths using fixed-length
numerical vectors. Although several algorithms, as well as software implementations, have been
developed to address this problem, these existing programs can only provide a fixed number of
representation modes. Every time a new sequence representation mode is developed, a new program
will be needed. In this paper, we propose the UltraPse as a universal software platform for this
problem. The function of the UltraPse is not only to generate various existing sequence representation
modes, but also to simplify all future programming works in developing novel representation
modes. The extensibility of UltraPse is particularly enhanced. It allows the users to define their own
representation mode, their own physicochemical properties, or even their own types of biological
sequences. Moreover, UltraPse is also the fastest software of its kind. The source code package,
as well as the executables for both Linux and Windows platforms, can be downloaded from the
GitHub repository.

Keywords: pseudo-amino acid compositions; pseudo-k nucleotide compositions; extensible software

1. Introduction

Over the last two decades, huge numbers of biological sequences have been deposited in public
databases. Until today, the number of these sequences is still increasing exponentially. However,
the cellular and functional attributes of these sequences, no matter whether they are nucleotide
sequences or protein sequences, remain largely unknown. It is a very important task for computational
biology to predict the functional and cellular attributes of these sequences.

In the view of machine learning, most of these prediction tasks can be formulated as pattern
classification problems. As elaborated in a series of publications [1–8], one of the most challenging parts
is to represent a biological sequence with a fixed-length numerical vector, yet still keep a considerable
amount of the sequence-order information. This is because almost every existing algorithm for these
tasks can only handle fixed-length vectors, but not the sequences.

For protein and peptide sequences, Chou proposed pseudo-amino acid compositions (PseAAC) [9]
and amphiphilic pseudo-amino acid compositions (AmPseAAC) [10]. Ever since the concepts of
pseudo-factors were introduced, they have rapidly penetrated into almost every area of computational
proteomics [11–20]. As elaborated in a review article, the form of classic pseudo-amino acid
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compositions has been generalized to contain various types of information [21], which is known
as the general-form pseudo-amino acid compositions. The applications of PseAAC concepts have been
summarized in the review papers [22,23].

Recently, the concept of PseAAC has been extended to represent nucleotide sequences [24].
Chen et al. developed pseudo-dinucleotide compositions (PseDNC) to predict DNA recombination
hostspots [25]. This formulation was then extended as pseudo-k nucleotide compositions (PseKNC),
which have been applied in predicting splicing sites [26], predicting translation initiation sites [27],
predicting nucleosome positions [28], predicting promoters [29], predicting DNA methylation sites [30],
predicting microRNA precursors [31] and many others [32–41].

In the early days of pseudo-amino acid compositions, every study had to implement
PseAAC independently. Although the algorithms in every implementation are identical, different
implementations may introduce computational discrepancies due to technical details. For example,
different implementations may give results with different precisions. This kind of differences may be
amplified by machine-learning based predictors, which may eventually produce different prediction
results. For another example, different implementations may have very different computational
efficiencies. This means one implementation may only use a second to process a dataset, while
another program may require over an hour to achieve the same results on the same dataset with the
same parameters.

To solve these problems, a universal implementation of the algorithm should be provided. Many
efforts have been made for this purpose [42–52]. The first program focus on the PseAAC formulation is
the PseAAC server [43], which was brought online in the year 2008. The PseAAC server can compute
Type-I and Type-II PseAAC using six different kinds of physicochemical properties of amino acids.
The PseAAC server has a friendly user interface, which is convenient and efficient for small datasets.
However, for large datasets and the repeatedly parameter scanning process, the computational
efficiency of the PseAAC server is not ideal. The PseAAC-Builder [45], which was released in the year
2012, is dedicated to improving the efficiency. Unlike the PseAAC server, the PseAAC-Builder is a
stand-alone program that can be executed locally. It has a simple graphical user interface (GUI) for
the users’ convenience. It can also be executed in a command line environment. The computational
efficiency of PseAAC-Builder is much higher than the PseAAC server, especially in the command line
environment. Although the PseAAC-Builder includes over 500 different types of physicochemical
properties, it did not provide the ability to compute general form PseAAC. PseAAC-General [46], which
is a major upgrade to the PseAAC-Builder, was developed to solve this problem. PseAAC-General
provides the ability to compute several commonly used general forms of PseAAC, such as the GO
mode, the functional domain mode and the evolutionary mode. The users of PseAAC-General can
slightly extend its ability by using Lua scripts.

After Chen et al. proposed the PseKNC representations for nucleotide sequences, similar software
and services were needed for DNA and RNA sequences. Chen et al. released the PseKNC [48] and
PseKNC-General [49] packages for converting DNA/RNA sequences into its PseKNC or general form
of PseKNC representations. Liu et al. developed the repDNA [50], repRNA [51], and Pse-In-One [52]
services for more types of descriptors. The Pse-In-One service attempts to be a universal online service
that can be applied on both protein and nucleotide sequences.

However, all existing software packages and online services suffer from three problems. (1) Lack of
extensibility. Most of the existing software can only be used to produce existing modes of representation.
The users cannot extend the software to handle their own novel representation modes. Although
PseAAC-General can be extended by using Lua script, it can only be used for protein sequences;
(2) Lack of flexibility. Most of the existing software can only handle one type of biological sequences,
either nucleotide sequences or protein sequences. Pse-In-One is the only existing service that can handle
protein sequence as well as nucleotide sequences. However, no program can handle user-defined
sequence types. For example, when studying the protein phosphorylation sites, the modified residues
should have different notations of sequences, which are not in the standard 20 letters. The users
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need to define the extra letters to represent the modified residues. As far as we know, no program
can handle this kind of sequence; (3) Lack of computational efficiency on large datasets. Most of the
existing programs are not designed to handle large datasets. They may need many minutes to process
a million sequences. If a user needs to repeatedly scan parameters of a representation, the processing
time may be days or even weeks.

In this paper, we proposed the UltraPse program, which is a universal and extensible software
platform for all possible sequence representation modes. The UltraPse program unified the processing
of nucleotide and protein sequence in one program, as well as the user-defined sequence types.
UltraPse supports two forms of extension modules, the BSOs (Binary Shared Objects) and the Lua
scripts, which are called the TDFs (Task Definition Files) in UltraPse. The users can develop their own
modes by just writing several lines of Lua scripts. UltraPse has very high computational efficiency. It is
even faster than the PseAAC-General, which used to be the fastest program of its kind. For the users’
convenience, we have integrated many existing modes within the UltraPse. We expect that the UltraPse
program can be a useful platform which simplifies all future programming works in developing novel
sequence representation modes. All source codes of UltraPse, including some extension modules can
be downloaded freely under the term of GNU GPL (GNU General Public License) v3 from the GitHub
repository: https://github.com/pufengdu/UltraPse.

2. Results and Discussion

2.1. Computational Efficiency Analysis

We compared the computational efficiency of UltraPse to that of PseAAC-General and Pse-In-One
under the same conditions. As in Figure 1, the UltraPse can process over 120 thousand sequences per
second, while PseAAC-General can process about 85 thousand sequences per second. Unfortunately,
the Pse-In-One can process only less than one thousand sequences per second. According to these
results, the computational efficiency of UltraPse is roughly 1.5 times of the PseAAC-General, and about
185 times of Pse-In-One. Since the algorithms of the three programs are essentially the same, the reason
for the efficiency differences resides in the technical details of the implementations.

Figure 1. Computational efficiency comparisons. Three programs are compared. The comparison was
carried out by letting the three programs compute amino acid compositions on the same dataset on the
same machine. Every program was executed with the same parameters for three times. The average
execution time was applied in calculating the computational efficiency. The computational efficiency is
measured by the average number of sequences that are processed every second. Pse-In-One: A program
in literature [52]; PseAAC-General: A program in literature [46]; UltraPse: A program of this work.
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2.2. Flexibility and Extensibility

We integrated 35 sequence representation modes within the UltraPse. The representation modes
can be organized hierarchically as in Figure 2. The integrated modes can be used to represent protein,
as well as DNA and RNA sequences. The modes cover most of the representation modes that can be
generated by PseAAC-General, PseKNC-General, and Pse-In-One. Moreover, UltraPse can generate
even more modes, for example, the commonly used one-hot encoding mode [53–55]. The sequence
representation modes of UltraPse can be extended by using BSOs and TDFs. According to our
own works, using UltraPse in developing novel representation modes can save over half of the
programing labor.

Figure 2. Hierarchical organization of integrated sequence representation modes. UltraPse integrated
the sequence representation modes in its distribution package. Most of these modes can also be
applied in user-defined sequence types, as long as the users provide proper definitions of the
physicochemical properties.

Besides the user-defined representation modes of protein and nucleotide sequences, the users
of UltraPse can define their own sequence types using TDFs. They are allowed to choose a set of
letters other than the standard ones to represent additional information. For example, a user can
use C for cytidines on a DNA sequence, and M for methylated cytidines. The choice of the letter M
totally depends on the users. Even more, the users of UltraPse can define their own physicochemical
properties with TDFs.

The TDFs of UltraPse is written using Lua language, which is a simple, powerful and extensible
programming language which has been applied in bioinformatics software previously [56]. We provide
over 20 UltraPse specific functions and interfaces. Users can access and modify UltraPse internal data
structures using these functions in TDFs. We compared the flexibility and the extensibility of different
software in Table 1.
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Table 1. Software function comparison in terms of flexibility and extensibility.

Software Functions Sequence Types Extensibility

UltraPse DNA, RNA, Protein,
User-defined types

Users can define their own sequence
types, representation modes and

physicochemical properties

PseAAC-General [46] Protein Users can define their own
representation modes

PseAAC-Builder [45] Protein No extensibility

Pse-In-One [52] DNA, RNA, Protein Users can define their own
physicochemical properties

PseKNC [48] DNA, RNA Users can define their own
physicochemical properties

PseKNC-General [49] DNA, RNA Users can define their own
physicochemical properties

2.3. Compatibility and Robustness

UltraPse can recognize FASTA format files that are directly downloaded from one of the following
five databases: GenBank, UniProt, EMBL, DDBJ, and RefSeq. The sequence identifiers and comments
in these public databases can be automatically recognized. For FASTA file that are not from these
public databases, UltraPse can also recognize them as long as the comment line of every sequence is
unique in the FASTA file. Besides the FASTA format requirements, there is no additional restriction on
input data format. As indicated in Table 2, this is a unique advantage of UltraPse.

According to Chou’s five step rule [12,21,57–60], before converting biological sequences into
numerical vectors, a high-quality benchmark dataset must be constructed. The construction of a
dataset usually includes a step to filter out the sequences containing non-standard letters. For example,
B, J, or X appear in protein sequences in the UniProt database. However, the sequences containing
these letters are hardly suitable for further analysis in many cases. As indicated in Table 2, UltraPse
provides a user-controllable data fault tolerant ability. According to users’ choice, when one of
these sequences is encountered, UltraPse can automatically skip the sequence or abort all further
computations. This function is useful in adopting third-party datasets in practical works, because
filtering out the sequences usually requires tedious programming work.

Table 2. Software function comparison in terms of data processing ability.

Software Output Formats Input Formats Data Fault Tolerant a

UltraPse SVM b, TSV c, CSV d
Multi-line FASTA (Automatic ID

recognition for UniProt, GenBank,
EMBL, DDBJ and RefSeq)

User-controllable behavior
on data faults

PseAAC-General [46] SVM, TSV, CSV Single-line FASTA (With
restrictions on comment line) e

Automatically ignore and
report data faults

PseAAC-Builder [45] SVM, TSV, CSV Single-line FASTA (With
restrictions on comment line)

Automatically ignore and
report data faults

Pse-In-One [52] SVM, TSV, CSV Mutlti-line FASTA Abort processing on
data faults

PseKNC [48] SVM, TSV, CSV Mutlti-line FASTA Abort processing on
data faults

PseKNC-General [49] SVM, TSV, CSV Mutlti-line FASTA Abort processing on
data faults

a Data fault tolerant: The behavior of a software when it encounters some invalid data records. Here, the invalid
data records include the sequences with non-standard letter and the sequence without sufficient length; b SVM:
data format for libSVM [61]; c TSV: tab separated vector; d CSV: comma separated vector; e Single-line FASTA:
the sequence of a record in the file must not spread to multiple lines. Both PseAAC-General and PseAAC-Builder
have the same restrictions.
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2.4. Technical Detail Comparison

Most state-of-the art software is written in Python, while PseAAC-General and UltraPse are
written in C++. This difference eventually made the difference in computational efficiency. Since the
computational efficiencies of PseAAC-General and UltraPse are comparable, we can compare several
technical details of them.

PseAAC-General is a program that can be extended by using Binary Extension Modules (BEMs).
However, it should be noted that, the BEMs of PseAAC-General are completely different to the BSOs
in UltraPse. A BEM of PseAAC-General is just a compressed data block. However, how this data
block should be used, was still implemented by the PseAAC-General main program. In the UltraPse,
a BSO is actually a dynamically loaded library, which contains all the information and instructions for
constructing one or more sequence representation modes. Therefore, the BSOs of UltraPse are much
more flexible than the BEMs of PseAAC-General.

We have seen that UltraPse has roughly 1.5 times the efficiency of PseAAC-General. This
advantage is achieved by an internal representation scheme and a pre-computing mechanism of
UltraPse. In PseAAC-General, the sequences are converted to a series of physicochemical properties.
The sequence descriptors are then computed according to the corresponding algorithms. However,
this intuitive implementation requires repeatedly computing dot-product or Euclidean distance
between physicochemical vectors of different amino acids. Since the combination of two different
amino acids is limited, we pre-compute the dot-product and Euclidean distance for all possible
combinations in UltraPse. The sequences in UltraPse are not converted into a series of physicochemical
properties. They are converted into UltraPse internal indices, which can be used to quickly find
correct values that have been pre-computed. When computing only the amino acids compositions,
the implementations of PseAAC-General and UltraPse are similar. However, UltraPse still benefits
from converting all sequences into internal indices first. Because, the amino acids counting procedure
becomes simpler, this allows the compiler to do more optimization for speed. This is why UltraPse is
faster than PseAAC-General.

2.5. Future Works in Plan

Besides the practical application of UltraPse program in research projects, there is still much work
to do in terms of software development. The work at first priority is to add an automated unit-testing
facility in the source code of UltraPse. Unit-testing is good practice in software engineering to ensure
robustness of large scale software. It will be very important for the future versions of UltraPse. The next
work in plan is to enable UltraPse support more data formats as input files. As far as we can tell,
no existing program in representing biological sequences can handle file formats other than FASTA. We
will make the next version of UltraPse handle FASTA, FASTQ, and several other formats of input file.

2.6. Availability

The UltraPse software is provided as source codes and binary packages. All the source codes
can be downloaded from the GitHub repository (Available online: https://github.com/pufengdu/
UltraPse). The binary distribution packages can also be downloaded from the Release sub-directory
in the GitHub repository. Currently, there are binary packages for Windows and Linux platforms.
The Windows binary program can be executed directly. The Linux binary package has been tested on a
freshly installed Ubuntu Linux Server 16.04.3.

3. Methods

3.1. Efficiency Comparison Protocols

We performed computational efficiency comparisons on a server with an Intel Xeon X3470
processor and 32 GB memory. To perform a fair comparison, we installed Pse-In-One locally on the
server. We also locally compiled and installed PseAAC-General and UltraPse on the same server.
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The testing dataset is the “huge” testing dataset that can be obtained from the official website of
PseAAC-General. This dataset contains 516,081 protein sequences. Since the Pse-In-One keeps
complaining about non-standard letters and too short sequences in the dataset, we excluded all
the sequences that have non-standard letters. The remaining 513,536 protein sequences were fed
into three programs independently. All three programs are configured to compute only amino acid
compositions. The computational times are measured by the “real” time value of the standard
Linux time command. To eliminate random errors, every program was executed consecutively with
exactly the same configuration three times. The average computational time was used in calculating
computational efficiency.

3.2. Abstracted Software Design

We illustrate the internal structure and the data-flows of UltraPse in Figure 3. There are four
major parts within UltraPse. They are the FASTA parser, sequence preprocessor, computing engine,
and the result writer. The FASTA parser is responsible for loading FASTA format sequences into the
memory from a hard drive. It also organizes the sequences according to their identifiers and their
sequence types. These sequences are then sent to the sequence preprocessor, where the sequences
are converted to UltraPse internal indices according to the sequence type definitions. The computing
engine is composed of several mode modules, which are configured according to user requirements.
The internal indices go through all mode modules. Eventually, sequence descriptors are generated.
The result writer exports these descriptors on the hard drive according to the format requirements.

 
Figure 3. The abstracted software design and data flow chart of UltraPse.

3.3. Implementation Technology

The UltraPse main program is written using standard C++ language, following C++14 standard.
The destination hardware architecture is x86-64. The dependencies of the UltraPse main program
include GNU standard C library and the embedded interpreter of Lua scripting language. The BSOs of
UltraPse are also written using C++, following the same rules as the main program.

On the Linux platform, the compiler for producing binary executables is the GNU g++ version 7.2.
The users should first install Lua scripting language. The configuration and compilation of UltraPse
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need the library provided by the Lua package. On the Windows platform, the MinGW64 version
g++ compiler is applied. Several independent libraries are required to compile the codes. For the
convenience of Windows users, we provide a binary executable package for the Windows platform.

The TDFs are provided as platform-independent Lua scripts, which can be viewed, edited,
and loaded as their original form. The internal data structures of UltraPse can be accessed by Lua
scripts using UltraPse specific functions and interfaces. The details on how to write TDFs can be found
in the software manual.

3.4. A Practical Example

Figure 4 demonstrate a practical example. The classic pseudo-amino acid composition modes,
including type-I and type-II, are implemented using a TDF in UltraPse. The TDF for classic
pseudo-amino acid compositions can be found in the “tdfs” subdirectory of UltraPse. The right
part of Figure 4 is a part of this TDF. With this TDF, the users only need to specify some parameters on
the command line. For example, the “–l 10 –w 0.05” on the command line indicate the value of λ and
ω in the PseAAC formulations. Unlike PseAAC-General, where the meanings of all command line
options are fixed, the meanings of command line options can be altered by the TDFs in the UltraPse.
This is to simplify the development of novel sequence representation modes, where parameters are
required to perform correct and efficient computations.

 

Figure 4. An example on using UltraPse. UltraPse was used to implement classic pseudo-amino acid
compositions. A TDF: classic-pseaac.lua, was applied. The FASTA format sequences are stored in
the demo.fas file. The command options indicate that the Type 2 PseAAC will be computed with
parameters: λ = 10 and ω = 0.05. The output format is compatible to libSVM.

4. Conclusions

In this paper, we described our new software, the UltraPse (Available online:
https://github.com/pufengdu/UltraPse). UltraPse is a universal and extensible software
platform for generating biological sequence representations. Since many programs have already been
released for various sequence representations, UltraPse has no intention to be a new competitor on
the same playground. We expect that UltraPse can work side-by-side with other existing programs,
such as PseAAC-General, PseAAC-Builder and Pse-In-One, to accelerate the process of generating
sequence representations under various working environments.

Although we have integrated many existing sequence modes within the UltraPse, it should be
noted that the major advantage of UltraPse is its flexibility and extensibility. It was designed to be
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a software platform rather than a program with specific functions. It aims at simplifying all future
programming works in developing novel sequence representations.

Web servers have already been proved to be a good method in releasing software. However,
presenting UltraPse with a web server will severely damage its computational efficiency. Therefore,
we do not provide an online web server for UltraPse. We would rather provide it as a local program.
The users need to compile and install it on their own servers. The graphical user interfaces (GUI) is
useful on platforms like Microsoft Windows. We will develop a GUI for UltraPse on the Windows
platform in future.
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Abstract: Kernel discriminant analysis (KDA) is a dimension reduction and classification algorithm
based on nonlinear kernel trick, which can be novelly used to treat high-dimensional and complex
biological data before undergoing classification processes such as protein subcellular localization.
Kernel parameters make a great impact on the performance of the KDA model. Specifically, for
KDA with the popular Gaussian kernel, to select the scale parameter is still a challenging problem.
Thus, this paper introduces the KDA method and proposes a new method for Gaussian kernel
parameter selection depending on the fact that the differences between reconstruction errors of edge
normal samples and those of interior normal samples should be maximized for certain suitable kernel
parameters. Experiments with various standard data sets of protein subcellular localization show that
the overall accuracy of protein classification prediction with KDA is much higher than that without
KDA. Meanwhile, the kernel parameter of KDA has a great impact on the efficiency, and the proposed
method can produce an optimum parameter, which makes the new algorithm not only perform as
effectively as the traditional ones, but also reduce the computational time and thus improve efficiency.

Keywords: protein subcellular localization; kernel parameter selection; kernel discriminant analysis
(KDA); Gaussian kernel function; dimension reduction

1. Introduction

Some proteins can only play the role in one specific place in the cell while others can play the role
in several places in the cell [1]. Generally, a protein can function correctly only when it is localized to a
correct subcellular location [2]. Therefore, protein subcellular localization prediction is an important
research area of proteomics. It is helpful to predict protein function as well as to understand the
interaction and regulation mechanism of proteins [3]. Now, many methods have been used to predict
protein subcellular location, such as green fluorescent protein labeling [4], mass spectrometry [5],
and so on. However, these traditional experimental methods usually have many technical limitations,
resulting in high cost of time and money. Thus, prediction of protein subcellular location based on
machine learning has become a focus research in bioinformatics [6–8].

When we use the methods of machine learning to predict protein subcellular location, we must
extract features of protein sequences. We can get some vectors after feature extraction, and then
we use the classifier to process these vectors. However, these vectors are usually complex due to
their high dimensionality and nonlinear property. In order to improve the prediction accuracy of
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protein subcellular location, an appropriate nonlinear method for reducing data dimension should be
used before classification. Kernel discriminant analysis (KDA) [9] is a nonlinear reductive dimension
algorithm based on kernel trick that has been used in many fields such as facial recognition and
fingerprint identification. The KDA method not only reduces data dimensionality but also makes
use of the classification information. This paper newly introduces the KDA method to predict
protein subcellular location. The algorithm of KDA first maps sample data to a high-dimensional
feature space by a kernel function, and then executes linear discriminant analysis (LDA) in the
high-dimensional feature space [10], which indicates that kernel parameter selection will significantly
affect the algorithm performance.

There are some classical algorithms used to select the parameter of kernel function, such as genetic
algorithm, grid searching algorithm, and so on. These methods have high calculation precision but
large amounts of calculation. In an effort to reduce computational complexity, recently, Xiao et al.
proposed a method based on reconstruction errors of samples and used it to select the parameters
of Gaussian kernel principal component analysis (KPCA) for novelty detection [11]. Their methods
are applied into the toy data sets and UCI (University of CaliforniaIrvine) benchmark data sets to
demonstrate the correctness of the algorithm. However, their innovation in the KPCA method aims
at dimensional reduction rather than discriminant analysis, which leads to unsatisfied classification
prediction accuracy. Thus, it is necessary to improve the efficiency of the method in [11] especially for
some complex data such as biological data.

In this paper, an improved algorithm of selecting parameters of Gaussian kernel in KDA is
proposed to analyze complex protein data and predict subcellular location. By maximizing the
differences of reconstruction errors between edge normal samples and interior normal samples,
the proposed method not only shows the same effect as the traditional grid-searching method, but also
reduces the computational time and improves efficiency.

2. Results and Discussion

In this section, the proposed method (in Section 3.4) and the grid-searching algorithm (in
Section 4.4) are both applied to predict protein subcellular localization. We use two standard data sets
as the experimental data. The two used feature expressions are generated from PSSM (position specific
scoring matrix) [12], which are the PsePSSM (pseudo-position specific scoring matrix) [12] and the
PSSM-S (AAO + PSSM-AAO + PSSM-SAC + PSSM-SD = PSSM-S) [13]. Here AAO means consensus
sequence-based occurrence, PSSM-AAO means evolutionary-based occurrence or semi-occurrence of
PSSM, PSSM-SD is segmented distribution of PSSM and PSSM-SAC is segmented auto covariance of
PSSM. The k-nearest neighbors (KNN) is used as the classifier in which Euclidean distance is adopted
for the distance between samples. The flow of experiments is as follows.

• First, for each standard data set, we use the PsePSSM algorithm and the PSSM-S algorithm
to extract features, respectively. Then totally we obtain four sample sets, which are GN-1000
(Gram-negative with PsePSSM which contains 1000 features), GN-220 (Gram-negative with
PSSM-S which contains 220 features), GP-1000 (Gram-positive with PsePSSM which contains
1000 features) and GP-220 (Gram-positive with PsePSSM which contains 220 features).

• Second, we use the proposed method to select the optimum kernel parameter for the Gaussian
KDA model and then use KDA to reduce the dimension of sample sets. The same procedure
is also carried out for the traditional grid-searching method to form a comparison with the
proposed method.

• Finally, we use the KNN algorithm to classify the reduced dimensional sample sets and use some
criterions to evaluate the results and give the comparison results.

Some detailed information in experiments is as follows. For every sample set, we choose the
class that contains the most samples to form the training set [8]. Let S = [0.1, 0.2, 0.3, 0.4, 1, 2, 3, 4] be a
candidate set of the Gaussian kernel parameter, which is proposed at random. When we use the KDA
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algorithm to reduce dimension, the number of retained eigenvectors must be less than or equal to C− 1
(C is the number of classes). Therefore, for sample sets GN-1000 and GN-220, the number of retained
eigenvectors, which is denoted as d, can be from 1 to 7. For the sample sets GP-1000 and GP-220, d
can be 1, 2, and 3. As far as the parameter u is concerned, when it is 5–8% of the average number
of samples, good classification can be achieved [14]. Besides, we demonstrate the robustness of the
proposed method with the variation of u in Section 2.2. So here we simply pick a general value for u,
say 8. To sum up, in the following experiments, when certain parameters need to be fixed, their default
values are as follows. The value of d is 7 for sample sets GN-1000 and GN-220, and 3 for GP-1000 and
GP-220; the value of u is 8 and the k value in KNN classifier is 20.

2.1. The Comparison Results of the Overall Accuracy

2.1.1. The Accuracy Comparison between the Proposed Method and the Grid-Searching Method

In this section, first, the proposed method and the grid-searching method are respectively used in
the prediction of protein subcellular localization with different d values. The experimental results are
presented in Figure 1.
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Figure 1. The overall accuracy versus d for four sample sets.

In Figure 1, all four sample sets suggest that when we use the KDA algorithm to reduce dimension,
the larger the number of retained eigenvectors, the higher the accuracy. The overall accuracy of the
proposed method is always the same as that of the grid-searching method, no matter which value of d.
The proposed method is effective for selecting the optimal Gaussian kernel parameter.

Then, in the analyses and experiments, we find that superiority of the proposed method is the
low runtime, which is demonstrated in Table 1 and Figure 2.

263



Int. J. Mol. Sci. 2017, 18, 2718

Table 1. The overall accuracy and the ratio of runtime for two methods.

Sample Sets Overall Accuracy Ratio (t1/t2)

GP-220 (PSSM-S)
The proposed method 0.9924

0.7087Grid searching method 0.9924

GP-1000 (PsePSSM)
The proposed method 0.9924

0.7362Grid searching method 0.9924

GN-220 (PSSM-S)
The proposed method 0.9801

0.7416Grid searching method 0.9801

GN-1000 (PsePSSM)
The proposed method 0.9574

0.7687Grid searching method 0.9574
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Figure 2. The overall accuracy and the ratio of runtime for two methods.

In Table 1, t1 and t2 are the runtimes of the proposed method and the grid-searching method,
respectively. The overall accuracy and the ratio of t1 and t2 are presented in both Table 1 and Figure 2,
from which we can see that for each sample set, the accuracy of the proposed method is always the same
as that of the grid-searching method; meanwhile, the runtime of the former is about 70–80% of that of
the latter, indicating that the proposed method has a higher efficiency than the grid-searching method.

2.1.2. The Comparison between Methods with and without KDA

In this experiment, we compare the overall accuracies between the cases of using KDA algorithm
or not, with k values of the KNN classifier varying from 1 to 30. The experimental results are shown in
Figure 3.

For each sample set, Figure 3 shows that the accuracy with KDA algorithm to reduce dimension
is higher than that of without it. However, the kernel parameter has a great impact on the efficiency
of the KDA algorithm, and the proposed method can be used to select the optimum parameter that
makes the KDA perform perfect. Therefore, accuracy can be improved by using the proposed method
to predict the protein subcellular localization.
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Figure 3. The overall accuracy versus k value with or without KDA algorithm.

2.2. The Robustness of the Proposed Method

In the proposed method, the value of u will have an impact on the radius value of neighborhood so
that it can affect the number of the selected internal and edge samples. Figure 4 shows the experimental
results when the value of u ranges from 6 to 10, in which the overall accuracies of the proposed method
and the grid-searching method are given.
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Figure 4. The overall accuracy for four sample sets with different u values.

It is easily seen from Figure 4 that the accuracy keeps invariable with different u values.
The number of the selected internal and edge samples has little effect on the performance of the
proposed method. Therefore, the method proposed in this paper has a good robustness.
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2.3. Evaluating the Proposed Method with Some Regular Evaluation Criterions

In this subsection, we compute the values of some regular evaluation criterions with the proposed
method for two standard data sets, which is show in Tables 2 and 3, respectively. In Table 3, “-” means
an infinity value, corresponding to the cases when the denominator is 0 in MCC.

Table 2. The values of evaluation criterion with the proposed method for the Gram-positive.

Sample Set
Protein Subcellular Locations

Cell Membrane Cell Wall Cytoplasm Extracell

Sensitivity
GP-220 1 0.9444 0.9904 0.9919
GP-1000 0.9943 0.9444 1 0.9837

Specificity
GP-220 0.9943 1 1 09950
GP-1000 0.9971 1 0.9937 0.9925

Matthews coefficient correlation (MCC)
GP-220 0.9914 0.9709 0.9920 0.9841
GP-1000 0.9914 0.9709 0.9921 0.9840

Overall accuracy (Q)
GP-220 0.9924
GP-1000 0.9924

Table 3. The values of evaluation criterion with the proposed method for the Gram-negative.

Sample Set
Protein Subcellular Locations

(1) (2) (3) (4) (5) (6) (7) (8)

Sensitivity
GN-220 1 0.9699 1 0 0.9982 0 0.9677 1
GN-1000 1 0.9323 1 0 0.9659 0 0.9516 0.9556

Specificity
GN-220 0.9924 0.9902 1 1 0.9978 1 1 0.9953
GN-1000 0.9608 0.9872 1 1 0.9967 1 1 0.9992

Matthews coefficient correlation (MCC)
GN-220 0.9866 0.9324 1 - 0.9956 - 0.9823 0.9814
GN-1000 0.9346 0.8957 1 - 0.9681 - 0.9733 0.9712

Overall accuracy (Q)
GN-220 0.9801
GN-1000 0.9574

(1) Cytoplasm, (2) Extracell, (3) Fimbrium, (4) Flagellum, (5) Inner membrane, (6) Nucleoid, (7) Outer membrane,
(8) Periplasm.

Tables 2 and 3 show that the values of the evaluation criterion are close to 1 for the proposed
method. Then the selection of the kernel parameter using the proposed method will benefit the protein
subcellular localization.

3. Methods

3.1. Protein Subcellular Localization Prediction Based on KDA

To improve the localization prediction accuracy, it is necessary to reduce dimension of
high-dimensional protein data before subcellular classification. The flow of protein subcellular
localization prediction is presented in Figure 5.
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Figure 5. The flow of protein subcellular localization.

As shown in Figure 5, first, for a standard data set, some features of protein sequences such as
PSSM-based expressions are extracted to form the sample sets. The specific feature expressions used in
this paper are discussed in Section 4.2. Second, the kernel parameter is selected in an interval based on
the sample sets to reach its optimal value in KDA model. Third, with this optimal value, we used the
KDA to realize the dimension reduction of the sample sets. Lastly, the low dimensional data is treated
by certain classifier to realize the classification and the final prediction.

In the whole process of Figure 5, dimension reduction with KDA is very important, in which
the kernel selection is a key step and constructs the research focus of this paper. Kernel selection
includes the choice of the type of kernel function and the choice of the kernel parameters. In this paper,
Gaussian kernel function is adopted for KDA because of its good nature, learning performance, and
catholicity. So, the emphasis of this study is to decide the scale parameter of the Gaussian kernel,
which plays an important role in the process of dimensionality reduction and has a great influence on
prediction results. We put forward a method for selecting the optimum Gaussian kernel parameter
with the starting point of reconstruction error idea in [15].

3.2. Algorithm Principle

Kernel method constructs a subspace in the feature space by the kernel trick, which makes normal
samples locate in or nearby this subspace, while novel samples are far from it. The reconstruction
error is the distance of a sample from the feature space to the subspace [11], so the reconstruction
errors of normal samples should be different from those of the novel samples. In this paper, we use
the Gaussian KDA as the descending algorithms. Since the values of the reconstruction errors are
influenced by the Gaussian kernel parameters, the reconstruction errors of normal samples should be
differentiated from those of the novel samples by suitable parameters [11].

In the input space, we usually call the samples on the boundary as edge samples, and call those
within the boundary as internal samples [16,17]. The edge samples are much closer to novel samples
than the internal samples, while the internal samples are much closer to normal states than the edge
samples [11]. We usually use the internal samples as the normal samples and use the edge samples as
the novel samples, since there are no novel samples in data sets. Therefore, the principle is that the
optimal kernel parameter makes the reconstruction errors have a reasonable difference between the
internal samples and the edge samples.

3.3. Kernel Discriminant Analysis (KDA) and Its Reconstruction Error

KDA is an algorithm by applying kernel trick into linear discriminant analysis (LDA). LDA is an
algorithm of linear dimensionality reduction together with classifying discrimination, which aims to
find a direction that maximizes the between-class scatter while minimizing the within-class scatter [18].
In order to extend the LDA theory to the nonlinear data, Mika et al. proposed the KDA algorithm,
which makes the nonlinear data linearly separable in a much higher dimensional feature space than
before [9]. The principle of the KDA algorithm is shown as follows.
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Suppose the N samples in X can be divided into C classes and the ith class contains Ni samples

satisfying N =
C
∑

i=1
Ni. The between-class scatter matrix Sφb and the within-class scatter matrix nφ

n of X

are defined in the following equations, respectively:
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is the mean vector of the ith class, and mφ = 1
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∑

i=1
φ(xi) is the total mean of

X. To find the optimal linear discriminant, we need to maximize J(W) as follows:

max J(W) =
WTSφb W

WTSφwW
(3)

where W = [w1, w2, · · · , wd]
T(1 ≤ d ≤ C − 1) is a projection matrix, and wk(k = 1, 2, · · · , d) is a

column vector with N elements. Through certain algebra, it can be deduced that W is made up of the
eigenvectors corresponding to the top d eigenvalues of Sφw−1Sφb . Also, the projection vector wk can be
represented by a linear combination of the samples in the feature space:

wk =
N

∑
j=1

ak
j j
(
xj
)

(4)

where ak
j is a real coefficient. The projection of the sample X onto wk is given by:

wT
k ×φ(x) =
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ak
i K

(
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)
(5)

Let a =
[
a1, a2, · · · , ad]T be the coefficient matrix where ak =

[
ak

1, ak
2, · · · , ak

N
]T is the coefficient vector.

Combining Equations (1)–(5), we can obtain the linear discriminant by maximizing the function J(a):

max J(a) =
aTM̃a
aTL̃a

(6)

where M̃ =
C
∑

i=1
Ni(Mi − M) (Mi − M)T, L̃ =

C
∑

i=1
Ki

(
E − 1

Ni
I
)

KT
i , the kth component of the vector

Mi is (Mi)k = 1
Ni

Ni
∑

j=1
K
(

xk, xi
j

)
(k = 1, 2, · · · , N), the kth component of the vector M is (M)k =

1
N

N
∑

j=1
K
(

xk, xi
j

)
(k = 1, 2, · · · , N), Ki is a N × Ni matrix with (Ki)mn = K

(
xm, xi

n
)
, E is the Ni × Ni

identity matrix, and 1
Ni

I is the Ni × Ni matrix that all elements are 1
Ni

[9]. Then, the projection matrix a

is made up of the eigenvectors corresponding to the top d eigenvalues of L̃
−1

M̃.
According to the KDA algorithm principle in (3) or (6), besides the Gaussian kernel parameter s,

the number of retained eigenvectors d also affects the algorithm performance. Generally, in this paper,
the proposed method is mainly used to screen an optimum S under a predetermined d value.
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The Gaussian kernel function is defined as follows:

K
(
xi, xj

)
= exp(−‖xi − xj‖2

σ2 ) (7)

where σ is the scale parameter which is generally estimated by s. Note that ‖φ(x)‖2 = K(x, x) = 1.
The kernel-based reconstruction error is defined in the following equation:

RE(x) = ‖φ(x)− W t(x) ‖2 = ‖φ(x) ‖2 − ‖ t(x) ‖2

= K(x, x)− ‖ t(x) ‖2 (8)

where t(x) is the vector obtained by projecting φ(x) onto a projection matrix a.

3.4. The Proposed Method for Selecting the Optimum Gaussian Kernel Parameter

The method of kernel parameter selection relies on the reconstruction errors of the internal
samples and the edge samples. Therefore, first we find a method to select the edge samples and the
interior samples, then we propose the method for selection of the Gaussian kernel parameter.

3.4.1. The Method for Selecting Internal and Edge Samples

Li and Maguire present a border-edge pattern selection method (BEPS) to select the edge samples
based on the local geometric information [16]. Xiao et al. [11] modified the BEPS algorithm so that
it can select both the edge samples and internal samples. However, their algorithm has the risk of
making all samples in the training set become the edge samples. For example, when all samples are
distributed on a spherical surface in a three-dimensional space, every sample in the data set will be
selected as the edge samples since its neighbors are all located on one side of its tangent plane. In order
to solve this problem, this paper innovatively combines the ideas in [19,20] to select the internal and
edge samples, respectively, which is not dependent on the local geometric information. The main
principle is that the edge sample is usually surrounded by the samples belonging to other classes while
the internal sample is usually surrounded by the samples belonging to its same class. Further, the edge
samples are usually far from the centroid of this class, while the internal samples are usually close
to the centroid. So, a sample will be selected as the edge sample if it is far from the centroid of this
class and there are samples around it that belongs to other classes, otherwise it will be selected as the
internal sample.

Specifically, suppose the ith class Xi =
{

x1, x2, · · · , xNi

}
in the sample set X is picked out as the

training set. Denote ci be the centroid of this class:

ci =
1

Ni

Ni

∑
i=1

xi (9)

We use the median value m of the distances from all samples in a class to its centroid to measure
the distance from a sample to the centroid of this class. A sample is conserved to be far from the
centroid of this class if the distance from this sample to the centroid is greater than the median value.
Otherwise, the sample is considered to be close to the centroid.

Denote dist
(
xi, xj

)
as the distance between any two samples xi and xj, and Nε(x) as the

ε-neighborhood of X:
Nε(x) = {y|dist(x, y) ≤ ε, y ∈ X } (10)

The value of neighborhood ε is given as follows. Let u be a given number which satisfies
0 < u < Ni. Densityu(Xi) is the mean radius of neighborhood of Xi for the given number u:

Densityu(Xi) =
1

Ni

Ni

∑
i=1

distu(xi) (11)
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where distu(xi) is the distance from xi to its uth nearest neighbor. So, Densityu(Xi) is used as the value
of ε for the training set Xi. The flow for the selection of the internal and edge samples is shown in
Table 4.

Table 4. The Selection of Internal and Edge Samples.

Input: X = {X1, X2, · · · , XC}, the training set Xi = {x1, x2, · · · , xNi
} (1 ≤ i ≤ C).

1. Calculate the radius of neighborhood ε using Equation (11).
2. Calculate the centroid ci of the ith class according to Equation (9).
3. Calculate the distances distj(j = 1, 2, · · · , Ni) from all samples in training set to ci, respectively, and the
median value m of them.
4. For each training sample xj of the set Xi

• Calculate the Nε

(
xj
)

according to Equation (10).
• If distj > m and there are samples in Nε

(
xj
)

belonging to other classes, xj is selected as an edge sample.
• If distj < m and no sample in Nε

(
xj
)

belongs to other classes, xj is selected as an internal sample.

Output: the selected internal sample set Ωin, the selected edge sample set Ωed.

In Table 4, a sample X is considered to be the edge one when the distance from X to the centroid
is larger than the median m and there are samples in Nε(x) belonging to other classes in this case.
A sample X is considered to be the internal one when the distance from X to the centroid is less than m
and in this case all samples of Nε(x) belong to this class.

3.4.2. The Proposed Method

In order to select the optimum kernel parameter, it is necessary to propose a criterion aiming to
distinguish reconstruction errors of the edge samples from those of the internal samples. A suitable
parameter not only maximizes the difference between reconstruction errors of the internal samples and
those of the edge samples, but also minimizes the variance (or standard deviation) of reconstruction
errors of the internal samples [11]. According to the rule, an improved objective function is proposed in
this paper. The optimal Gaussian kernel parameter S is selected by maximizing this objective function.

s = argmax
s

f(s) = arg max
s

‖RE(Ωed) ‖∞ − ‖RE(Ωin) ‖∞
std{RE(Ωin)} (12)

where ‖ · ‖∞ is the infinite norm which computes the maximum absolute component of a vector
and std(·) is a function of the standard deviation. Note that in the objective function f(s), our key
improvement is to use the infinite norm to compute the size of reconstruction error vector since it can
lead to a higher accuracy than many other measurements, which has been verified by a series of our
experiments. The reason is probably that the maximum component is more reasonable to evaluate the
size of a reconstruction error vector than others such as the 1-norm, p-norm (1 < p < +∞) and the
minimum component of a reconstruction error vector in [11].

According to (8), when the number of retained eigenvectors is determined, we can select the
optimum parameter s from a candidate set using the proposed method. The optimum parameter
ensures that the Gaussian KDA algorithm performs well in dimensionality reduction, which improves
the accuracy of protein subcellular location prediction. The proposed method for selecting the Gaussian
kernel parameter can be presented in Table 5.
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Table 5. The Method for Selecting the Gaussian KDA Parameter.

Input: A reasonable candidate set S = {s1, s2, · · · , sm} for Gaussian kernel parameter, X = {X1, X2, · · · , XC},
the training set Xi = {x1, x2, · · · , xNi} (1 ≤ i ≤ C), the number of retained eigenvectors d.

1. Get the internal sample set Ωin and the edge sample set Ωed from the training set Xi using Algorithm 1.
2. For each parameter si ∈ S, i = 1, 2, · · · , m

• Calculate the kernel matrix K using Equation (7).
• Reduce dimension of the K using the Gaussian KDA algorithm.
• Calculate RE(Ωed) and RE(Ωin) using Equation (8).
• Calculate the value of objective function f(si) using Equation (12).

3. Select the optimum parameter s = argmax
si∈S

f(si)

Output: the optimum Gaussian kernel parameter S.

As the end of this section, we want to summarize the position of the proposed method in protein
subcellular localization once more. First, two kinds of regularization forms of PSSM are used to extract
the features in protein amino acid sequences. Then, the KDA method is performed on the extracted
features for dimension reduction and discriminant analysis according to the KDA algorithm principle
in Section 3.3 with formulas (1)–(6). During the procedure of KDA, the novelty of our work is to
give a new method for selecting the Gaussian kernel parameter, which is summarized in Table 5.
Finally, we choose the k-nearest neighbors (KNN) as the classifier to cluster the dimension-reduced
data after KDA.

4. Materials

In this section, we introduce the other processes in Figure 5 except KDA model and its parameter
selection, which are necessary materials for the whole experiment.

4.1. Standard Data Sets

In this paper, we use two standard datasets that have been widely used in the literature for
Gram-positive and Gram-negative subcellular localizations [13], whose protein sequences all come
from the Swiss-Prot database.

For the Gram-positive bacteria, the standard data set we found in the literature [13,14,21]
is publicly available on http://www.csbio.sjtu.edu.cn/bioinf/Gpos-multi/Data.htm. There are
523 locative protein sequences in the data set that are distributed in four different subcellular locations.
The number of proteins in each location is given in Table 6.

Table 6. The name and the size of each location for the Gram-positive data set.

No. Subcellular Localization Number of Proteins

1 cell membrane 174
2 cell wall 18
3 cytoplasm 208
4 extracell 123

For the Gram-negative bacteria, the standard data set of subcellular localizations is presented in
the literature [13,22], which can be downloaded freely from http://www.csbio.sjtu.edu.cn/bioinf/
Gneg-multi/Data.htm. The data set contains 1456 locative protein sequences located in eight different
subcellular locations. The number of proteins in each location is shown in Table 7.
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Table 7. The name and the size of each location for the Gram-negative data set.

No. Subcellular Localization Number of Proteins

1 cytoplasm 410
2 extracell 133
3 fimbrium 32
4 flagellum 12
5 inner membrane 557
6 nucleoid 8
7 outer membrane 124
8 periplasm 180

4.2. Feature Expressions and Sample Sets

In the prediction of protein subcellular localizations with machine learning methods, feature
expressions are important information extracted from protein sequences, which have certain
proper mathematical algorithms. There are many efficient algorithms used to extract features of
protein sequences, in which two of them, PsePSSM [12] and PSSM-S [13], are used in this paper.
The two methods rely on the position-specific scoring matrix (PSSM) for benchmarks which is obtained
by using the PSI-BLAST algorithm to search the Swiss-Prot database with the parameter E-value of
0.01. The PSSM is defined as follows [12]:

PPSSM =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1→1 M1→2 · · · M1→20

M2→1 M2→2 · · · M2→20
...

...
...

...
Mi→1 Mi→2 · · · Mi→20

...
...

...
...

ML→1 ML→2 · · · ML→20

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13)

where Mi→j represents the score created in the case when the ith amino acid residue of the protein
sequence is transformed to the amino acid type j during the evolutionary process [12].

Note that, usually, multiple alignment methods are used to calculate PSSM, whose chief drawback
is being time-consuming. The reason why we select PSSM instead of simple multiple alignment
in this paper to form the total normalized information content is as follows. First, since our
focus is to demonstrate the effectiveness of dimensional reduction algorithm, we need to construct
high-dimensional feature expressions such as PsePSSM and PSSM-S, whose dimensions are as high as
1000 and 220, respectively. Second, PSSM has many advantages, such as those described in [23]. As far
as the information features are concerned, PSSM has produced the strongest discriminator feature
between fold members of protein sequences. Multiple alignment methods are used to calculate PSSM,
whose chief drawback is being time-consuming. However, in spite of the time-consuming nature of
constructing a PSSM for the new sequence, the extracted feature vectors from PSSM are so informative
that are worth the cost of their preparation [23]. Besides, for a new protein sequence, we only need to
construct a PSSM for the first time, which could be used repeatedly in the future for producing new
normalization forms such as PsePSSM and PSSM-S.

4.2.1. Pseudo Position-Specific Scoring Matrix (PsePSSM)

Let P be a protein sample, whose definition of PsePSSM is given as follows [12]:

Pξ
Pse−PSSM =

[
M1M2 · · ·M20Gξ

1 Gξ
2 · · ·Gξ

20

]T
(ξ = 0, 1, 2, · · · , 49) (14)
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Mj =
1
L

L

∑
i=1

Mi→j(j = 1, 2, · · · , 20) (15)

Gξ
j =

1
L − ξ

L−ξ

∑
i=1

[
Mi→j − M(i+ξ)→j

]2

(j = 1, 2, · · · , 20; ξ < L) (16)

where L is the length of P, Gξ
j is the correlation factor by coupling the ξ-most contiguous

scores [22]. According to the definition of PsePSSM, a protein sequence can be represented by a
1000-dimensional vector.

4.2.2. PSSM-S

Dehzangi et al. [13] put forward a new feature extraction method, PSSM-S, which combines four
components: AAO, PSSM-AAO, PSSM-SD, and PSSM-SAC. According to the definition of the PSSM-S,
it can be represented a feature vector with 220 (20 + 20 + 80 + 100) elements.

4.2.3. Sample Sets

For the two benchmark data, PsePSSM and PSSM-S are used to extract features, respectively.
Finally we get four experimental sample sets GN-1000, GN-220, GP-1000 and GP-220, shown in Table 8.

Table 8. Sample sets.

Sample
Sets

Benchmarks for
Subcellular Locations

Extraction
Feature Method

The Number of
Classes

The Dimension of
Feature Vector

The Number of
Samples

GN-1000 Gram-negative PsePSSM 8 1000 1456
GN-220 Gram-negative PSSM-S 8 220 1456
GP-1000 Gram-positive PsePSSM 4 1000 523
GP-220 Gram-positive PSSM-S 4 220 523

4.3. Evaluation Criterion

To evaluate the performance of the proposed method, we use Jackknife cross-validation, which has
been widely used to predict protein subcellular localization [13]. The Jackknife test is the most objective
and rigorous cross-validation procedure in examining the accuracy of a predictor, which has been
used increasingly by investigators to test the power of various predictors [24,25]. In the Jackknife test
(also known as leave-one-out cross-validation), every protein is removed one-by-one from the training
dataset, and the predictor is trained by the remaining proteins. The isolated protein is then tested by
the trained predictor [26]. Let x be a sample set with N samples. For each sample, it will be used as the
test data, and the remaining N − 1 samples will be used to construct the training set [27]. In addition,
we use some criterion to assess the experimental results, defined as follows [12]:

MCC(k) =
TPk × TNk − FNk × FPk√

(TPk + FNk) (TPk + FPk) (TNk + FPk) (TNk + FNk)
× 100% (17)

Sen(k) =
TPk

TPk + FNk
× 100% (18)

Spe(k) =
TNk

TPk + FPk
× 100% (19)

Q =

C
∑

k=1
TPk

N
× 100% (20)

where TP is the number of true positive, TN is the number of true negative, FP is the number of
false positive, and FN is the number of false negative [12]. The value of MCC (Matthews coefficient
correlation) varies between −1 and 1, indicating when the classification effect goes from a bad to
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a good one. The values of Specificity (Spe), sensitivity (Sen), and the overall accuracy (Q) all vary
between 0 and 1, and the classification effect is better when their values are closer to 1, while the
classification effect is worse when their values are closer to 0 [13].

4.4. The Grid Searching Method Used as Contrast

In this section, we introduce a normal algorithm for searching S, the grid-searching algorithm,
which is used as a contrast with the proposed algorithm in Section 3.4.

The grid-searching method is usually used to select the optimum parameter, whose steps are as
follows for the candidate parameter set S [28].

• Compute the kernel matrix k for each parameter si ∈ S, i = 1, 2, · · · , m.
• Use the Gaussian KDA to reduce the dimension of K.
• Use the KNN algorithm to classify the reduced dimensional samples.
• Calculate the classification accuracy.
• Repeat the above four steps until all parameters in S have been traversed. The parameter

corresponding to the highest classification accuracy is selected as the optimum parameter.

5. Conclusions

Biological data is usually high-dimensional. As a result, it is necessary to reduce dimension
to improve the accuracy of the protein subcellular localization prediction. The kernel discriminant
analysis (KDA) based on Gaussian kernel function is a suitable algorithm for dimensional reduction in
such applications. As is known to all, the selection of a kernel parameter affects the performance of
KDA, and thus it is important to choose the proper parameter that makes this algorithm perform well.
To handle this problem, we propose a method of the optimum kernel parameter selection, which relies
on reconstruction error [15]. Firstly, we use a method to select the edge and internal samples of the
training set. Secondly, we compute the reconstruction errors of the selected samples. Finally, we select
the optimum kernel parameter that makes the objective function maximum.

The proposed method is applied to the prediction of protein subcellular locations for
Gram-negative bacteria and Gram-positive bacteria. Compared with the grid-searching method,
the proposed method gives higher efficiency and performance.

Since the performance of the proposed method largely depends on the selection of the internal
and edge samples, in the future study, researchers may pay more attention to select more representative
internal and edge samples from the biological data set to improve the prediction accuracy of protein
subcellular localization. Besides this, it is also meaningful to research how to further improve the
proposed method to make it suitable for selecting parameters of other kernels.
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Abstract: The function of a protein is of great interest in the cutting-edge research of biological
mechanisms, disease development and drug/target discovery. Besides experimental explorations,
a variety of computational methods have been designed to predict protein function. Among these
in silico methods, the prediction of BLAST is based on protein sequence similarity, while that of
machine learning is also based on the sequence, but without the consideration of their similarity. This
unique characteristic of machine learning makes it a good complement to BLAST and many other
approaches in predicting the function of remotely relevant proteins and the homologous proteins
of distinct function. However, the identification accuracies of these in silico methods and their false
discovery rate have not yet been assessed so far, which greatly limits the usage of these algorithms.
Herein, a comprehensive comparison of the performances among four popular prediction algorithms
(BLAST, SVM, PNN and KNN) was conducted. In particular, the performance of these methods was
systematically assessed by four standard statistical indexes based on the independent test datasets
of 93 functional protein families defined by UniProtKB keywords. Moreover, the false discovery
rates of these algorithms were evaluated by scanning the genomes of four representative model
organisms (Homo sapiens, Arabidopsis thaliana, Saccharomyces cerevisiae and Mycobacterium tuberculosis).
As a result, the substantially higher sensitivity of SVM and BLAST was observed compared with
that of PNN and KNN. However, the machine learning algorithms (PNN, KNN and SVM) were
found capable of substantially reducing the false discovery rate (SVM < PNN < KNN). In sum, this
study comprehensively assessed the performance of four popular algorithms applied to protein
function prediction, which could facilitate the selection of the most appropriate method in the related
biomedical research.

Keywords: false discovery rate; machine learning; protein function prediction; support vector
machine; BLAST

1. Introduction

The function of a protein is of great interest in the current research of biological mechanisms [1],
disease development [2] and drug/target discovery [3–7], and a variety of databases is available

Int. J. Mol. Sci. 2018, 19, 183 277 www.mdpi.com/journal/ijms



Int. J. Mol. Sci. 2018, 19, 183

for providing functional annotations from the perspectives of the sequence [8], protein-protein
interaction [9,10], the biological network [11–15] and many specific functional classes [16–22]. However,
a substantial gap is still observed between the total number of protein sequences discovered and that of
proteins characterized with known function [23]. To cope with this gap, thousands of high-throughput
genome projects are under study [24], and over 13 million sequences have been discovered, but only
1% of these validated by experimental annotation [25]. Apart from those experimental approaches,
many in silico methods have been designed and extensively used to discover protein functions [26].
These include clustering of sequences [27], gene fusion [28], sequence similarity [29,30], evolution
study [31], structural comparison [32], protein-protein interaction [33,34], functional classification
via the sequence-derived [35–38] and domain [39–43] feature, omics profiling [44–47] and integrated
methods, which collectively consider multiple methods and data to promote the performance of
function prediction [48–51].

Among these in silico methods [52], the basic local alignment search tool (BLAST) [53] revealing
protein functions based on excess sequence similarity [54] demonstrated great capacity and attracted
substantial interest from the researchers of this field [55,56]. Apart from BLAST, machine learning
algorithms have been frequently applied in recent years for functional prediction [57–62], and a variety
of online software tools based on machine learning was developed as predictors without considering
the similarity in sequence or structure [36,63]. This unique characteristic makes machine learning a
good complement to other in silico approaches in predicting the function of remotely relevant protein
and the homologous proteins of distinct functions [64,65].

So far, three machine learning algorithms, including K-nearest neighbor (KNN), probabilistic
neural network (PNN) and support vector machine (SVM), have been extensively explored to
classify proteins into certain functional families by analyzing the sequence-based physicochemical
property [64,65] and to assess protein functional classes collectively [63]. These algorithms are
recognized as powerful alternative methods for predicting the function of both proteins [66–70]
and other molecules [71]. However, over one third of the protein sequences in UniProt [26] are still
labeled as “putative”, “uncharacterized”, “unknown function” or “hypothetical”, and the difficulty in
discovering the function of the remaining proteins is reported to come mainly from the false discovery
rate of in silico algorithms [55,56,72]. Moreover, the identification accuracies of those approaches
still need to be further improved [55,56,73]. Thus, it is urgently needed to assess the identification
accuracies and false discovery rates among those different in silico approaches.

In this study, the performances of four popular functional prediction algorithms (BLAST,
SVM, KNN and PNN) were comprehensively evaluated from two perspectives. In particular,
the identification accuracies (measured by four standard statistical indexes) of various algorithms
were systematically evaluated based on the independent test data of 93 functional families.
Secondly, the false discovery rates of these algorithms were compared by scanning the genomes
of four representative model species (Homo sapiens, Arabidopsis thaliana, Saccharomyces cerevisiae and
Mycobacterium tuberculosis). In sum, these findings provided detailed information on the performances
of those algorithms that are popular for protein function prediction, which may facilitate the choice of
the appropriate algorithm(s) in the related biomedical research.

2. Results and Discussion

2.1. Assessment of the Identification Accuracies Measured by Four Popular Metrics

The statistical differences in sensitivity (SE) (Figure 1A), specificity (SP) (Figure 1B), accuracy
(ACC) (Figure 1C) and Matthews correlation coefficient (MCC) (Figure 1D) among four popular
functional prediction algorithms are illustrated. As illustrated in Figure 1A, the SE of BLAST measured
by the independent test dataset of 93 families was roughly equivalent to that of SVM, but statistically
higher than that of both PNN and KNN. In particular, the SE of 93 functional families was 50.00~99.99%
for SVM, 43.93~99.99% for BLAST, 65.52~99.99% for PNN and 51.09~99.99% for KNN, and the
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SE median values of BLAST, SVM, PNN and KNN equaled 90.59%, 90.52%, 84.38% and 76.54%,
respectively. As shown in Figure 1B, the majority of the SPs of all algorithms surpassed 98.00%; SPs of
93 functional families were 95.90~99.99% for SVM, 97.56~99.99% for BLAST, 98.87~99.99% for PNN
and 97.77~99.43% for KNN; and the SP median value of BLAST, SVM, PNN and KNN was 98.90%,
99.72%, 99.67% and 99.44%, respectively. These results revealed a relatively low level of false discovery
rates for all popular functional prediction algorithms.

 

Figure 1. Statistical differences in the performance of four protein function prediction algorithms
(BLAST, SVM, PNN and KNN) assessed by four metrics: (A) sensitivity (SE); (B) specificity (SP);
(C) accuracy (ACC); and (D) Matthews correlation coefficient (MCC). Significant and moderately
significant differences were shown by a p-value of < 0.01 (**), respectively.

Due to the dominant number of negative samples in the independent test datasets, the statistical
difference in ACC was very similar to that of SP (Figure 1C). The majority of the ACCs of all algorithms
surpassed 97%. The ACCs of 93 functional families were between 95.61% and 99.99% for SVM, between
66.68% and 99.98% for BLAST, between 95.81% and 99.99% for PNN and between 81.39% and 99.77%
for KNN. Moreover, median values of ACCs of BLAST, SVM, PNN and KNN equaled 98.78%, 99.66%,
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99.61% and 99.16%, respectively. MCC was frequently applied to reflect the stability of the protein
function predictor and was considered as one of the most comprehensive parameters because of its
full consideration of TP, TN, FP and FN. As shown in Figure 1D, the MCC of both SVM and PNN
was better than that of BLAST and KNN. The majority of MCCs were over 0.6 and 0.4 for SVM-PNN
and BLAST-KNN, respectively. In particular, MCCs of 93 functional families were between 0.15 and
0.99 for SVM, between 0.22 and 0.94 for BLAST, between 0.11 and 0.97 for PNN and between 0.13 and
0.76 for KNN. The median values of MCCs for BLAST, SVM, PNN and KNN equaled 0.62, 0.74, 0.72
and 0.50, respectively. In sum, there were consistently low levels of the false discovery rate among all
algorithms as assessed by the metric SP. However, when the positive discovery rates (SEs) and the
stability of prediction (MCC) were considered, SVM, PNN and BLAST stood out as more powerful
algorithms for protein function prediction.

2.2. Evaluating the Statistical Differences in SE and MCC among Four Metrics

For the machine learning algorithms (SVM, PNN and KNN), there was a significant statistical
difference in their SEs and MCCs. As shown in Figure 1A, the statistical difference in SEs between
SVM and PNN equaled 3.5 × 10−6, while that between SVM and KNN was 1.0 × 10−11. Moreover,
there was a significant statistical difference between PNN and KNN (p-value = 0.01). In particular,
the number of families with SEs of >90%, ≤90% and >80% and ≤80% for SVM equaled 49, 33 and 11,
respectively; the number of families with SEs of >90%, ≤90% and >80% and ≤80% for PNN equaled
17, 25 and 20, respectively; and the number of functional families with SEs of >90%, ≤90% and >80%
and ≤80% for KNN equaled 19, 13 and 45, respectively. Similar to the SE, the statistical difference in
MCC between SVM and PNN was 0.08, and that between SVM and KNN was 2.2 × 10−16. Moreover,
there was a clear statistical difference between PNN and KNN (p-value = 2.2 × 10−16). In particular,
the number of families with MCCs of >0.85, ≤0.85 and >0.7 and ≤0.7 for SVM was 26, 26 and 41,
respectively; the number of functional families with MCCs of >0.85, ≤0.85 and >0.7 and ≤0.7 for PNN
equaled 6, 29 and 27, respectively; and there were no protein families with MCCs over 0.7 for KNN.
In summary, there were clear ascending trends in both SE and MCC as shown in Figure 1A,D (from
KNN to PNN to SVM).

Similar to SVM, BLAST also demonstrated great performances in both SE and MCC. The statistical
differences (measured by p-value) in the SE and MCC between BLAST and SVM were 0.88 and
2.0 × 10−7, respectively. As demonstrated in Table 1 and Table S1, the SE of BLAST surpassed that of
SVM in 51 families, but was worse than that of SVM in 40 families. Moreover, the SEs’ median values
(90.52% for BLAST and 90.59% for SVM) and mean values (88.92% for BLAST and 89.08% for SVM)
indicated that the SE of SVM was slightly better than that of BLAST and significantly better than that
of PNN and KNN. Meanwhile, MCC of SVM was higher than that of BLAST in 68 families, but was
lower than that of BLAST in 20 families. The MCCs’ median values (0.62 for BLAST, 0.74 for SVM) and
mean values (0.61 for BLAST, 0.73 for SVM) indicated a slight improvement in prediction stabilities
by SVM.

The amphibian defense peptide family (KW-0878; KW, keyword) was the family with the highest
SE (99.99%) for SVM, BLAST and KNN, which was known to be a rich source of antimicrobial
peptides with a broad spectrum of antimicrobial activities against pathogenic microorganisms [74–76].
The superior SE of this family may come from its nature as a conserved element of the defense system
of various species [77].
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2.3. In-Depth Assessment of the False Discovery Rate by Genome Scanning

Genome scanning has been frequently used to evaluate the false discovery rate of function
prediction tools [78,79]. To have a comprehensive understanding of methods’ false discovery rate,
the genomes of four model organisms representing four kingdoms (Homo sapiens from Animalia,
Arabidopsis thaliana from Plantae, saccharomyces cerevisiae from Fungi and Mycobacterium tuberculosis
from Bacteria) were collected. As demonstrated in Table 2 and Table S2, the genome scanning revealed
that the number of proteins in any of those 93 studied families predicted by SVM, PNN and KNN did
not exceed 10% of the total number of proteins in the whole genome, and this was the same situation
for the majority (82%) of the 93 studied families by BLAST. The higher number of proteins predicted for
a certain functional family may indicate a higher false discovery rate [78,79]. For the human genome,
the number of proteins identified by SVM was equivalent to or was slightly higher than that of both
PNN and KNN, but was significantly lower than that of BLAST (Figure 2a). In addition, the proteins
identified by PNN were lower than that of KNN in 11 families and higher in 20 families.

Figure 2. The false discovery rates reflected by the percentage of proteins identified from the genomes
of (a) Homo sapiens, (b) Arabidopsis thaliana, (c) Saccharomyces cerevisiae and (d) Mycobacterium tuberculosis.
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Moreover, 15 protein families only existing in plants, microbes or viruses (Table S3, not existing in
the human genome) were collected for assessing the false discovery rate of each algorithm. For example,
the covalent protein-RNA linkage family (KW-0191) contained proteins attaching covalently to the
RNA molecules in virus [80], and the storage protein (KW-0758) included the proteins as a source
of nutrients for the development or growth of the organism in plants. For these families (Table S3),
SVM did not identify any proteins from the human genome, while 0.06% and 0.25% of the proteins in
the human genome were falsely assigned by BLAST to the family of covalent protein-RNA linkage
protein and storage protein, respectively. As illustrated in Figure 3, several other families (such as
plant defense, virulence) also demonstrated a significantly higher false discovery rate by BLAST than
that of SVM.

 

Figure 3. The false discovery rates reflected by the percentage of proteins of 15 protein families only
existing in plants, microbes or viruses, but not existing in the human genome identified from the
genomes of Homo sapiens.

For the other three genomes, their situation was similar to the human genome. Take the
Arabidopsis thaliana genome as an example: proteins identified by SVM were equivalent to or slightly
higher than those by PNN and KNN in all protein families, but lower than that of BLAST in 77 families,
and the number of protein discovered by PNN was lower than that of KNN in 26 families. In summary,
the level of false discovery rate (Figure 2b–d) could be ordered as BLAST > SVM > PNN and KNN.
These results revealed that BLAST was more prone to generate a false discovery rate than the other
three machine learning methods (SVM > PNN ≈ KNN).

As reported [81–85], an open web-server is recognized as useful for constructing effective methods
and tools. A variety of web-servers have increasing impacts on medical sciences [86], driving medicinal
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chemistry to an unprecedented revolution [87], and efforts will be further made to develop web-based
services for the performance assessment discussed in this study.

3. Materials and Methods

To construct a valid statistical model for a biology problem based on protein sequences [88–97],
a rule of five steps is needed [98]. Firstly, a valid construction of datasets for both training and testing
the model is required. Secondly, an effective conversion of the sequence to the digital feature vector is
asked to represent their targeted properties. Thirdly, a powerful statistical method should be designed
for the functional prediction. Fourthly, the accuracies of the constructed statistic model should be
validated correctly. Fifthly, a web-server based on the constructed model may be further developed
for public access. The corresponding methods and steps adopted in this study are provided and
described below.

3.1. Collecting the Protein Sequences of Different Functional Families

Table 1 provides a full list of 93 protein families collected from UniProt [43], and the performances
of the popular protein function prediction methods (BLAST, KNN, PNN, SVM) were measured via
independent test datasets (the way to generate an independent dataset is shown in the following
Section 2.2). These 93 included 12 families of binding molecules (e.g., sodium-, potassium-, SH3- and
RNA-binding), 15 ligand families (e.g., plastoquinone ligand, vitamin C ligand and ubiquinone ligand),
58 families defined by Gene Ontology (40 molecular functions and 18 biological processes) and 8 broad
families defined by UniProt [43]. All families were contained in the keyword categories of UniProt,
and the majority (82.7%) of these 93 families were able to be mapped to GO terms (Table 1). Protein
entries that have not been manually annotated and reviewed by UniProtKB curators in a keyword
category were not considered for analysis in this study. As a result, 107~49,517 protein-entries from
93 families were collected.

3.2. Construction of the Training and Testing Datasets

The independent test dataset was frequently constructed to evaluate the performances of protein
function predictors in recent years [99–104]. To construct a valid set of data for building the predictor
of each family, the datasets of the training, testing and independent test were generated by a strictly
defined process after the data collection described in Section 2.1. Firstly, all proteins of different
sequences in a specific family are assigned randomly with a number, which is within the range of
the total number of proteins in that family. Secondly, these sequences in each protein function family
were sequentially selected based on the number assigned and then iteratively added to the training,
testing and independent test datasets. Samples in these datasets are all known as the positive samples.
Thirdly, the Pfam families [16] of the proteins of a certain functional family were retrieved from the
Pfam database [16] for generating negative samples. The Pfam family with protein(s) of this functional
family was defined as the “positive” one, and the remaining families were grouped into the “negative”
ones. Finally, 3 representatives were randomly picked out of the negative families and sequentially
added to the training, testing and independent test datasets, and samples in these datasets are thus
known as the negative samples. It is necessary to emphasize that there was no overlap among the
datasets of the training, testing and independent test [60,61].

To assess the false discovery rate among algorithms, the genomes of four model organisms
representing four kingdoms (Homo sapiens from Animalia, Arabidopsis thaliana from Plantae,
Saccharomyces cerevisiae from Fungi and Mycobacterium tuberculosis from Bacteria) were collected
from UniProt. The protein entries without any manual annotation and review by the UniProtKB
curators were not taken into consideration. In total, 20,183, 15,169, 6721 and 2166 protein sequences
in FASTA format were collected for human, Arabidopsis thaliana, Saccharomyces cerevisiae and
Mycobacterium tuberculosis, respectively.
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3.3. Feature Vectors Used for Representing the Protein Sequence

The conversion of the protein sequence into the digital feature vector was conducted
based on properties of each residue within that protein. These properties include: (1) charge;
(2) polarizability; (3) polarity; (4) surface tension; (5) amino acid (AA) composition; (6) van der
Waals volume via normalizing; (7) hydrophobicity; (8) solvent accessibility; and (9) protein secondary
structure [36,105–107]. Then, 3 features were applied to describe each property [36]. These features
contained: (a) composition (No. of AAs of a particular property over the total No. of AAs; (b) transition
(the percentage of AAs with a certain property was followed by AAs with a different property); and (c)
distribution (the sequence lengths within which the first, one fourth, half, three-quarters and all of
the AAs of specific property were localized). The detailed procedure for generating the feature vector
from the sequence was described in previous publications [36,65]. These features have already been
successfully applied to facilitate the prediction of enzyme functional [108] and structural classes [107].

3.4. Functional Prediction of Protein Constructed by Machine Learning

To construct the prediction model, the parameters of machine learning methods were optimized
using the testing dataset for each training process. Once suitable parameters were discovered,
a new training set was constructed by combining the original training and testing datasets, and the
corresponding parameters were directly accepted for training a new model. To assess the performance
of the constructed models and detect possible over-fitting, the independent test set was further
applied. It is necessary to emphasize that all duplicates in the protein sequence were removed during
datasets’ construction.

3.5. Construction of Protein Functional Prediction Model Based on Sequence Similarity

Sequence similarity was assessed by the NCBI Protein-Protein BLAST (Version 2.6.0+) [53,54].
Firstly, the combined training and testing dataset was adopted to form the BLAST database, and the
sequences in the independent test dataset were used as queries. The BLAST E-value and percentage
sequence identity were usually applied to represent the level of similarity between sequences [109].
The functional variation between proteins was reported to be rare when their sequence identity was
more than 40% [110,111]. Thus, an E-value of 0.001 and a sequence identity of 40% were adopted as
the cutoffs in this study to assess the functional conservation of BLAST hits.

3.6. Assessing the Identification Accuracies of the Studied Methods

The performance of protein function prediction algorithms was systematically assessed by four
popular metrics, sensitivity (SE), specificity (SP), accuracy (ACC) and Matthews correlation coefficient
(MCC), based on the independent test datasets generated from the 93 studied families (Supplementary
Materials Table S1). All 4 metrics were widely used in assessing the performance of protein function
predictors [112–117]. In particular, SE is defined by the percentage of true positive samples correctly
identified as “positive” [118,119] (shown in Equation (1)):

SE =
TP

TP + FN
(1)

SP indicates the proportion of true negative samples that were correctly predicted as
“negative” [118,119] (in Equation (2)):

SP =
TN

TN + FP
(2)

ACC refers to the number of true samples (positive plus negative) divided by the number of all
samples studied (shown in Equation (3)):

ACC =
TP + TN

TP + FN + TN + FP
(3)
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The MCC was an important metric reflecting the stability of a protein function predictor, which
described the correlation between a predictive value and an actual value [118,119]. It has been
considered as one of the most comprehensive parameters in any category of predictors due to its full
consideration of all four results. In particular, the MCC could be calculated by Equation 4:

MCC =
(TP ∗ TN − FP ∗ FN)√

(TP + FN) ∗ (TP + FP) ∗ (TN + FP) ∗ (TN + FN)
(4)

In particular, those four results were TP (No. of true positive samples), TN (No. of true negative
samples), FP (No. of false positive samples) and FN (No. of false negative samples) [118,119]. It is
very important to emphasize that these four metrics are applicable to the single-class situations
(each protein is grouped into just one family). For the multi-class situations frequently observed
in complicated biological networks [81–84] and biomedical researches [84,89,117], different metrics
should be defined [120].

3.7. The Rates of False Discovery of the In Silico Methods Studied Here

As reported, genome scanning was a comprehensive method to evaluate the capacity of protein
functional prediction tools in identifying and classifying protein families [78,79]. In this paper,
an evaluation of the false discovery rate of the studied protein function predictors was performed by
scanning the genomes of 4 model organisms representing 4 kingdoms (Homo sapiens from Animalia,
Arabidopsis thaliana from Plantae, Saccharomyces cerevisiae from Fungi and Mycobacterium tuberculosis
from Bacteria). The false discovery rates were assessed by reconstructing the prediction models of those
in silico algorithms. In particular, the sequences of proteins in a certain functional family were all put
into the reference database for BLAST scanning and were also used to reconstruct the machine learning
models using the optimized parameters obtained in Section 3.4. In reality, the total amount of proteins
not belonging to a certain family should be much larger than that of proteins in that family. Therefore,
a tiny reduction in the value of SP may lead to a significant discovery of false positive hits, which
reminded us to use SP as an effective indicator when evaluating the model’s false discovery rates.

4. Conclusions

This study discovered substantially higher sensitivity (SP) and stability (MCC) of BLAST and
SVM than that of PNN and KNN. However, the machine learning algorithms (PNN, KNN and SVM)
were found capable of significantly reducing the false discovery rate (with PNN and KNN performed
the best). In conclusion, this study comprehensively assessed the performances of popular algorithms
applied to protein function prediction, which could facilitate the selection of the appropriate method
in the related biomedical research.

Supplementary Materials: The Supplementary Materials are available online at www.mdpi.com/1422-0067/19/
1/183/s1.
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