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Editorial

Special Issue Editorial “Symmetric Distributions, Moments and
Applications”

Zivorad Tomovski

Department of Mathematics, Faculty of Science, University of Ostrava, 70103 Ostrava, Czech Republic;
zhivorad.tomovski@osu.cz

1. Introduction

In 1933, Kolmogorov published his book, Foundations of the Theory of Probability, laying
the modern axiomatic foundations of probability theory and establishing his reputation
as the world’s leading expert in this field. The concept of the probability distribution and
the random variables they describe underlies the mathematical discipline of probability
theory and the science of statistics. The probability distribution and the random variables
serve as mathematical models in many branches of science, complex dynamical systems,
population dynamics modeling, finance mathematics, insurance, physical sciences, and
any field where stochastic modeling is used. In mathematics, the moments of a function
are quantitative measures related to the shape of the function’s graph. If the function is
a probability distribution, then the first moment is the expected value, the second central
moment is the variance, the third standardized moment is the skewness, and the fourth
standardized moment is the kurtosis. That is, the moments describe the location (mean),
size (variance), and shape (skewness and kurtosis) of a probability density function (PDF).
The mathematical concept is closely related to the concept of moment in physics. The
classical diffusion equation (heat equation) yields an approximation of the time evolution
of the probability density function, associated with the position of the particle going under
a Brownian movement under the physical definition.

The continuous time random walk (CTRW) method is the basis for a heuristic expla-
nation of the physical behavior of normal and anomalous diffusion processes. The CTRW
method can be characterized by the moments of the random mean motion. If the process
is non-local or has a memory waiting time density, then the second moment EX2 of the
random variable X of the jumps is proportional to a power tα of order α of time, when the
time is sufficiently large. This type of stochastic model lets us characterize sub-diffusion,
normal diffusion, and super-diffusion, where 0 < α < 1, α = 1, and 1 < α < 2 respec-
tively. A well-known method to calculate moments is using moment-generating functions
or characteristic functions (CF). Since the coefficients of the Taylor expansion of the CF
are related to the integer moments of a random variable, we usually state that the proba-
bilistic description of a random variable may also be given in terms of integer moments.
In the 1970s, the fractional moments of the type EXρ, ρ ∈ R, were studied, showing that
the knowledge of some EXρ improves the convergence speed of the maximum entropy
method. Fractional moments of a non-negative random variable are expressible by the
Mellin transform of PDF, and this fact has been widely used in the literature principally in
the field of the algebra of random variables [1]. That is, the Mellin transform is the principal
mathematical tool to handle problems involving products and quotients of independent
random variables. Another research direction on Mellin applications in probability is
represented by the use of special functions such as the Mittag–Leffler, H-Fox, and Maijer’s
G-functions, due principally to A.M. Mathai and his co-workers. Such functions are in-
deed representable as Mellin–Barnes integrals of the product of gamma functions and are
therefore suited to represent statistics of products and quotients of independent random
variables whose fractional moments are expressible as gamma or gamma-related functions.

Symmetry 2022, 14, 1863. https://doi.org/10.3390/sym14091863 https://www.mdpi.com/journal/symmetry1
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The stable distributions are a fascinating and fruitful area of research in probability theory;
furthermore, nowadays, they provide valuable models in physics, astronomy, economics,
and communication theory. The general class of stable distributions was introduced and
given this name by the French mathematician Paul Levy in the early 1920s; see Levy (1924,
1925). The inspiration for Levy was the desire to generalize the celebrated Central Limit
Theorem, according to which any probability distribution with finite variance belongs
to the domain of attraction of Gaussian distribution. Formerly, the topic attracted only
moderate attention from leading experts, though there were also enthusiasts, of whom
the Russian mathematician Alexander Yakovlevich Khintchine should be mentioned first
of all. The concept of stable distributions took full shape in 1937 with the appearance
of Levy’s monograph (see Levy (1937–1954)), soon followed by Khintchine’s monograph
(1938). We can now cite the paper by Mainardi, Luchko, and Pagnini (2001), where the
reader can find (convergent and asymptotic) representations and plots of the symmetric
and non-symmetric stable densities generated by fractional diffusion equations.

This Special Issue includes seven papers with original results of symmetric ran-
dom walks and their characterization, stochastic processes, computational number the-
ory, stochastic integrals, probability inequalities, statistics parameter estimation, entropy,
Stochastic differential equations, finance mathematics, optimization, information theory,
Bayesian methods, Monte Carlo methods, etc.

In the paper “Convolutions for Bernoulli and Euler–Genocchi Polynomials of Order
(r,m) and Their Probabilistic Interpretation”, R. Frontczak and Z. Tomovski [2] introduced
a new class of extended Bernoulli and Euler–Genocci polynomials of order (r,m) for which
some convolutions, recurrence formulas, and combinatorial sums are presented. By using
the concept of moment-generating functions, it is shown that the Bernoulli and Euler–
Genocci polynomials can be expressed as moments of order n for some discrete random
variables in the standard probability space. A new PDF associated with Bernoulli numbers
is defined for which the mathematical expectation is calculated.

In the paper “A Flexible Extension to an Extreme Distribution”, published by Mo-
hamed S.Eliwa et al. [3], a new flexible extension of an extreme distribution with three
parameters has been proposed, which generalizes the inverse exponential distribution.
Furthermore, it can be utilized for modeling asymmetric “positive and negative” as well as
symmetric datasets and can be used to model over- and under-dispersed data. Statistical
and reliability properties of the extreme distribution, such as quantile function, skewness,
kurtosis, incomplete moments, and entropy, are presented. The model parameters have
been estimated utilizing the maximal likelihood approach. Finally, four data applications
that illustrate the flexibility of the new extension and its excellence over other models have
also been analyzed.

The paper “Taming Tail Risk: Regularized Multiple β Worst-Case CVaR Portfolio”
published by Kei Nakagawa and Katsuya Ito [4] contains an optimization problem reduced
to a linear programming problem, using mixture probability distributions as well as semi-
nonparametric distribution. They performed experiments on well-known benchmarks in
finance to evaluate the proposed portfolio. Their portfolio shows superior performance in
terms of having both higher risk-adjusted returns and lower maximum drawdown despite
the lower turnover rate.

The goal of the paper “Inventory Models for Non-Instantaneous Deteriorating Items
with Expiration Dates and Imperfect Quality under Hybrid Payment Policy in the Three-
Level Supply Chain” [5] is to determine an optimal replenishment cycle and the total
annual cost function by exploring the functional properties of the total annual cost function
and showing that the total annual cost function is convex. Theoretical analysis of the
optimal properties shows the existence and uniqueness of the optimal solution. Then, the
authors obtained simple and easy solution procedures for the inventory system. Moreover,
numerical analysis of the inventory model was conducted, and the corresponding examples
are considered with the ai of illustrating the application of the supply-chain model that is
investigated in this article. The authors have established a sustainable inventory system in
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which the retailer sells the non-instantaneous deteriorating item that is fully deteriorated
close to its expiry date and has imperfect quality such as those in seasonal products, food
products, electronic components, and others. In order to manage the quality of the items, an
inspection will occur during the state in which there is no deterioration. On the other hand,
the supplier demands the retailer a distinct payment scheme, such as partial prepayment
or cash and trade credit; in turn, the retailer grants customers partial cash and trade credit.
The paper also presents convexity and monotonicity properties to develop efficient decision
rules for the optimal replenishment cycle time T*.

In the next paper, “An Alternate Generalized Odd Generalized Exponential Family
with Applications to Premium Data” [6] an exponentiated odd generalized exponential
(OGE2-G) class of distribution is proposed and studied with some mathematical properties
such as ordinary and incomplete moments, mean deviations, Rényi entropy, and gener-
ating functions. The maximum likelihood (MLL) approach is used to estimate the model
parameters. Then, the authors focussed their attention on one of the special members of the
family defined with the Fréchet distribution, called the OGE2Fr distribution. They estab-
lished the optimized the maximum likelihood methodology in particular, with the goal of
effectively estimating model parameters, and validated their convergence by a simulation
study, ensuring that the projections have asymptotic properties. The authors evaluated the
sensitivity of the method of estimations using the MLL of OGE2Fr distribution parameters
using the Monte Carlo simulation technique.

Stress-strength reliability, R = P(X < Y), has been extensively investigated as a stress-
strength model, and the research has also been extended to multi-component systems.
For numerous statistical models, several scholars have examined the estimation of the
stress-strength parameter. Several authors discussed Bayesian and maximum-likelihood
estimation methods of reliability for point estimation of the parameter model. The authors
Ehab M. Almetwally et al. in the paper “Optimal Plan of Multi-Stress–Strength Reliability
Bayesian and Non-Bayesian Methods for the Alpha Power Exponential Model Using
Progressive First Failure” [7] considered the inference for multi-reliability using unit alpha
power exponential distributions for stress–strength variables based on the progressive
first failure. The Fisher information and confidence intervals such as asymptotic, boot-p,
and boot-t methods are also examined. Various optimal criteria were found. Monte Carlo
simulations and real-world application examples were used to evaluate and compare the
performance of the various proposed estimators.

The stochastic differential equation has been used to model various phenomena and
investigate their properties, such as the moments, variance, and conditional moments, which
are beneficial for estimating parameters that play significant roles in several practical applica-
tions. For example, financial derivative prices, such as moment swaps, can be obtained by
calculating the conditional moments of their payoffs under the risk-neutral measure.

In “Simple Closed-Form Formulas for Conditional Moments of Inhomogeneous Non-
linear Drift Constant Elasticity of Variance Process” [8], the authors presented closed-form
expressions for conditional moments of the inhomogeneous, nonlinear, drift-constant elas-
ticity of variance (IND-CEV) process, without having a condition on eigenfunctions or the
transition PDF. The analytical results are examined through Monte Carlo simulations.

This volume will be of interest to mathematicians, physicists, and engineers interested
in probability theory, statistics, complex systems, finance mathematics, and insurance.

Funding: The research was supported by the Department of Mathematics, Faculty of Sciences,
University of Ostrava.

Conflicts of Interest: The author declares no conflict of interest.
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Convolutions for Bernoulli and Euler–Genocchi Polynomials of
Order (r,m) and Their Probabilistic Interpretation †

Robert Frontczak 1,‡ and Živorad Tomovski 2,*

1 Landesbank Baden-Württemberg (LBBW), 70173 Stuttgart, Germany; robert.frontczak@lbbw.de
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Abstract: The main purpose of this article is to derive several convolutions for generalized Bernoulli
and Euler–Genocchi polynomials of order (r, m), B(r,m)

n (x) and A(r,m)
n (x), respectively. These poly-

nomials have been introduced recently and contain the generalized Bernoulli, Euler and Genocchi
polynomials as special members. Some of our results extend the results of M. Merca and others
concerning Bernoulli numbers and polynomials. Probabilistic interpretations of the presented results
are also given.

Keywords: Bernoulli number; generalized Bernoulli polynomial; generalized Euler–Genocchi
polynomial; functional equation; convolution; probability distribution; moment-generating function;
moments

MSC: 11B68; 11S40; 05A15; 60E05

1. Introduction

Bernoulli numbers (Bn)n≥0 are defined by

B(z) =
∞

∑
n=0

Bn
zn

n!
=

z
ez − 1

(|z| < 2π).

A generalization of Bernoulli numbers are Bernoulli polynomials Bn(x), x ∈ C, de-
fined by

B(x, z) =
∞

∑
n=0

Bn(x)
zn

n!
=

z
ez − 1

exz (|z| < 2π).

These numbers (polynomials) are fascinating objects, appearing in many mathematical
branches such as number theory, combinatorics and analysis. The basic properties of
Bernoulli numbers and polynomials are discussed in [1,2].

Closely related to Bernoulli polynomials are the Euler and Genocchi polynomials.
These polynomials are defined for |z| < π by

∞

∑
n=0

En(x)
zn

n!
=

2
ez + 1

exz and
∞

∑
n=0

Gn(x)
zn

n!
=

2z
ez + 1

exz.

Finding recurrences and convolutions for these polynomials is still an active field of
research. Many interesting identities for Bernoulli, Euler and Genocchi polynomials can be
found in the articles [3–10] for instance. See [11–14] for some properties of generalizations
of these polynomials.

Symmetry 2022, 14, 1220. https://doi.org/10.3390/sym14061220 https://www.mdpi.com/journal/symmetry5



Symmetry 2022, 14, 1220

The popularity and importance of Bernoulli numbers and polynomials in number
theory comes also from their connection to the Riemann zeta function

ζ(2n) = (−1)n+1 (2π)2n

2 · (2n)!
B2n,

where

ζ(s) =
∞

∑
n=1

1
ns , �(s) > 1,

is the Riemann zeta function [15]. A great deal of proof for this relation has been provided
over the years. See [16] for references. Recently, Merca [16] proved the following relation
between Bernoulli numbers:

n

∑
k=0

(
n
k

)
2kBk = (2 − 2n)Bn. (1)

This relation can be used to derive a recurrence relation for ζ(2n). Moreover, in his
next article on the topic, Merca [17] used recurrence relations for Bernoulli polynomials
Bn(x) to derive two new infinite families of linear recurrence relations for the Riemann
zeta function at positive even integer arguments. Merca’s elegant results are based on
the following relations (Theorems 2.1 and 3.1 in [17]): Let n be a positive integer and
x, α ∈ C. Then

n

∑
k=0

(
n
k

)
Bk(x)(αn−k − (−1)k(2x − 1 + α)n−k) = 0, (2)

and

� n
2 �

∑
k=0

(
n
2k

)
α2kBn−2k(x) =

n

∑
k=0

(
n
k

)
(−1)n−k (2x − 1 + α)k + (2x − 1 − α)k

2
Bn−k(x). (3)

In fact, identities Equations (1) and (2) have been widely known and used already in
the 19th century as immediate consequences of the simple functional relations

B(2z)(ez + 1) = 2B(z) and B(x, z)eyz = B(x,−z)e(2x−1+y)z.

It may be very difficult to identify the first pioneers who discovered them after all this
time. We refer to the notable books by Saalschütz [18], Nielsen [19] and Hansen [20] as a
resource in which a large number of classical identities, mainly developed in the 18th and
the 19th centuries, can be found. In addition, Equation (1) can be extended to [21]

n

∑
k=0

(
n
k

)
mkBk

m−1

∑
i=0

in−k = mBn,

valid for all integers m ≥ 1. Thus, Equation (1) is the special case for m = 2. Next, we can
define the function Φ(m)

n (x, y), m ≥ 1, x, y ∈ C, by

Φ(m)
n (x, y) =

n

∑
k=0

(
n
k

)
mkBk(x)yn−k.

Then, the following identity has been known for a long time:

Φ(m)
n (x, y) =

n

∑
k=0

(
n
k

)
(−m)kBk(x)(2mx − m + y)n−k, m ≥ 1. (4)

The identity Equation (4) reduces to Equation (2) when m = 1 and y = α. It is easy to
see that Φ(m)

n (x, y) satisfies the following functional equation.

6
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Proposition 1. For all m, n ∈ N the following functional equation holds:

Φ(m)
n (x,−(2mx − m + y)) = (−1)nΦ(m)

n (x, y). (5)

In addition, we can examine a calculation of the sum Φ(m)
n (x, y)+Φ(m)

n (x,−y). We have

Φ(m)
n (x, y) + Φ(m)

n (x,−y) =

{
2 ∑

�n/2�
l=0 (n

2l)m
n−2l Bn−2l(x)y2l , if n − k = 2l;

0, otherwise.

In view of such an identity, we recognize that Equation (3) is an obvious consequence
of Equation (2). Finally, we remark that if n − k is odd, then Φ(m)

n (x, y) = −Φ(m)
n (x,−y),

i.e., the function Φ(m)
n (x, y) is an odd or asymmetric function with respect to y.

We conclude this section by recalling the definition of B(r,m)
n (x), which comes from [22].

Definition 1. For integers r, m ≥ 1 the generalized Bernoulli polynomials of order (r, m) are
defined by the generating function

B(r, m; x, z) =
∞

∑
n=0

B(r,m)
n (x)

zn

n!
=

( zr

ez − 1

)m
exz (|z| < 2π). (6)

The numbers B(r,m)
n (0) = B(r,m)

n are called generalized Bernoulli numbers of order r and m.

The polynomials B(r,m)
n (x) belong to the family of Appell polynomials. We mention

that they are defined for n ≥ m(r − 1), i.e., B(r,m)
j (x) = 0 for j < m(r − 1). From the

definition, it is obvious that B(1,1)
n (x) = Bn(x) and B(1,m)

n (x) = B(m)
n (x) are the generalized

Bernoulli polynomials of order m. Moreover, B(1,1)
n = Bn are the Bernoulli numbers.

The goal of the present article is to derive several convolutions for generalized
Bernoulli polynomials of order (r, m), B(r,m)

n (x). First, we will generalize Merca’s results for
Bernoulli polynomials to the more general class of polynomials. This will be performed in
Section 2. In Section 3, we will prove the analogue identities for generalized Euler–Genocchi
polynomials A(r,m)

n (x). A range of additional convolutions for B(r,m)
n (x) and A(r,m)

n (x) will
be given in Section 4. Among other things, we will rediscover identity Equation (1) as a
special case of our findings. In Sections 5 and 6 we will state some additional remarks
concerning applications and future work.

2. Notes on Merca’s Identities

Our first result is an extension of Theorem 2.1 of [17].

Theorem 1. Let r and m be positive integers and x, y ∈ C. Then,

n

∑
k=0

(
n
k

)
B(r,m)

k (x)(yn−k − (−1)m(r−1)+k(2x − m + y)n−k) = 0. (7)

Especially, with y = m, we have

n

∑
k=0

(
n
k

)
B(r,m)

k (x)(mn−k − (−1)m(r−1)+k(2x)n−k) = 0. (8)

7
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Proof. For |z| < 2π we have from Equation (6)

( ∞

∑
n=0

B(r,m)
n (x)

zn

n!

)( ∞

∑
n=0

yn zn

n!

)
=

( zr

ez − 1

)m
exzeyz

=
zrm

(−1)m(e−z − 1)m e−xze(y+2x−m)z

= (−1)m(r−1)
( (−z)r

e−z − 1

)m
e−xze(y+2x−m)z

= (−1)m(r−1)B(r, m; x,−z)e(y+2x−m)z

= (−1)m(r−1)
( ∞

∑
n=0

B(r,m)
n (x)(−1)n zn

n!

)( ∞

∑
n=0

(y + 2x − m)n zn

n!

)
=

∞

∑
n=0

( n

∑
k=0

(
n
k

)
(−1)m(r−1)+kB(r,m)

k (x)(y + 2x − m)n−k
) zn

n!
.

On the other hand, using Cauchy’s rule, it is obvious that

( ∞

∑
n=0

B(r,m)
n (x)

zn

n!

)( ∞

∑
n=0

yn zn

n!

)
=

∞

∑
n=0

( n

∑
k=0

(
n
k

)
B(r,m)

k (x)yn−k
) zn

n!
.

Comparing the coefficients for zn in the two power series proves the formula.

For (r, m) = (1, 1) Theorem 1 reduces to Merca’s Theorem 2.1. For (r, m) = (1, m) our
theorem gives a convolutional relation for generalized Bernoulli polynomials:

Corollary 1. For x, y ∈ C the following relation holds for generalized Bernoulli polynomials:

n

∑
k=0

(
n
k

)
B(m)

k (x)(yn−k + (−1)k+1(2x − m + y)n−k) = 0. (9)

Corollary 2. For x ∈ C the following relation holds:

B(r,m)
n (x) =

n

∑
k=0

(
n
k

)
(−1)m(r−1)+kB(r,m)

k (x)(2x − m)n−k. (10)

Especially for the generalized Bernoulli polynomials we have the identity

B(m)
n (x) =

n

∑
k=0

(
n
k

)
(−1)kB(m)

k (x)(2x − m)n−k. (11)

Proof. Set y = 0 in Theorem 1.

Next, for x, y ∈ C, we define the function

F(r,m)
n (x, y) =

n

∑
k=0

(
n
k

)
B(r,m)

k (x)yn−k, r, m ≥ 1. (12)

Then, we note the following functional equation:

Proposition 2. For all r, m, n ∈ N the following functional equation holds:

F(r,m)
n (x,−(2mx − m + y)) = (−1)n+m(r−1)F(r,m)

n (x, y). (13)

Proof. Replacing y with−(2x−m+ y) in Equation (12), using Equation (7), we get the result.

8
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We can also calculate

F(r,m)
n (x, y) + F(r,m)

n (x,−y) =

{
2 ∑

�n/2�
l=0 (n

2l)B(r,m)
n−2l (x)y2l , if n − k = 2l;

0, otherwise,

and

F(r,m)
n (x, y)− F(r,m)

n (x,−y) =

{
2 ∑

�(n−1)/2�
l=0 ( n

2l+1)B(r,m)
n−2l−1(x)y2l+1, if n − k = 2l + 1;

0, otherwise.

These calculations confirm the following facts.

(i) If n − k is odd, then F(r,m)
n (x, y) = −F(r,m)

n (x,−y), i.e., the function F(r,m)
n (x, y) is an

odd or asymmetric function with respect to y.
(ii) If n − k is even, then F(r,m)

n (x, y) = F(r,m)
n (x,−y), i.e., the function F(r,m)

n (x, y) is an
even or symmetric function with respect to y.

The above observations lead to the next corollary, which provides an extension of
Theorem 3.1 of [17] to the class B(r,m)

n (x).

Corollary 3. Let r and m be positive integers and x, y ∈ C. Then,

� n
2 �

∑
k=0

(
n
2k

)
y2kB(r,m)

n−2k(x)

= (−1)m(r−1)
n

∑
k=0

(
n
k

)
(−1)n−k (2x − m + y)k + (2x − m − y)k

2
B(r,m)

n−k (x) (14)

and

� n−1
2 �

∑
k=0

(
n

2k + 1

)
y2k+1B(r,m)

n−2k−1(x)

= (−1)m(r−1)
n

∑
k=0

(
n
k

)
(−1)n−k (2x − m + y)k − (2x − m − y)k

2
B(r,m)

n−k (x). (15)

We conclude this section with the following results.

Corollary 4. Let r and m be positive integers and x, y ∈ C. Then,

� n
2 �

∑
k=0

(
n
2k

)
(−1)ky2kB(r,m)

n−2k(x)

= (−1)m(r−1)
n

∑
k=0

(
n
k

)
(−1)n−kB(r,m)

n−k (x)
k

∑
p=0

(
k
p

)
yp cos

(πp
2

)
(2x − m)k−p (16)

and

� n−1
2 �

∑
k=0

(
n

2k + 1

)
(−1)ky2k+1B(r,m)

n−2k−1(x)

= (−1)m(r−1)
n

∑
k=0

(
n
k

)
(−1)n−kB(r,m)

n−k (x)
k

∑
p=0

(
k
p

)
yp sin

(πp
2

)
(2x − m)k−p. (17)

Proof. Replace y by iy with i =
√−1 in Corollary 3 and simplify.

9
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Corollary 5. Let r and m be positive integers and x ∈ C. Then,

� n
2 �

∑
k=0

(
n
2k

)
(−1)km2kB(r,m)

n−2k(x)

= (−1)m(r−1)
n

∑
k=0

(
n
k

)
(−1)n−k2k−1(xk + (x − m)k)B(r,m)

n−k (x) (18)

and

� n−1
2 �

∑
k=0

(
n

2k + 1

)
(−1)km2k+1B(r,m)

n−2k−1(x)

= (−1)m(r−1)
n

∑
k=0

(
n
k

)
(−1)n−k2k−1(xk − (x − m)k)B(r,m)

n−k (x). (19)

Proof. Set y = m in Corollary 3 and simplify.

3. Analogue Relations for Generalized Euler–Genocchi Polynomials

The definition of generalized Euler–Genocchi polynomials of order (r, m) also comes
from the paper [22], where many basic properties of the polynomials are discussed.

Definition 2. Let r and m be integers with r ≥ 0 and m ≥ 1. The generalized Euler–Genocchi
polynomials of order (r, m), A(r,m)

n (x), x ∈ C, are defined by the generating function

A(r, m; x, z) =
∞

∑
n=0

A(r,m)
n (x)

zn

n!
=

( 2zr

ez + 1

)m
exz (|z| < π) (20)

with A(r,m)
j (x) = 0 for j < rm. The numbers A(r,m)

n (0) = A(r,m)
n are called the generalized

Euler–Genocchi numbers of order r and m.

We see that A(0,m)
n (x) = E(m)

n (x) and A(1,m)
n (x) = G(m)

n (x) are the generalized Euler
and Genocchi polynomials, respectively, where

∞

∑
n=0

E(m)
n (x)

zn

n!
=

( 2
ez + 1

)m
exz (|z| < π) (21)

and
∞

∑
n=0

G(m)
n (x)

zn

n!
=

( 2z
ez + 1

)m
exz (|z| < π). (22)

Finally, we mention that the degenerated case m = 0 gives A(r,0)
n (x) = xn for all r ≥ 0.

The first analogue result of Merca’s identities is stated in the next theorem.

Theorem 2. Let r and m be integers with r ≥ 0 and m ≥ 1, and x, y ∈ C. Then,

n

∑
k=0

(
n
k

)
A(r,m)

k (x)(yn−k − (−1)mr+k(2x − m + y)n−k) = 0. (23)

Especially, with y = m, we have

n

∑
k=0

(
n
k

)
A(r,m)

k (x)(mn−k − (−1)mr+k(2x)n−k) = 0. (24)

10
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Proof. Due to the high degree of similarity in the proofs, we only sketch the proofs.
The identity basically follows from

A(r, m; x, z)eyz =
( 2zr

ez + 1

)m
exzeyz = (−1)mr

( 2(−z)r

e−z + 1

)m
e−xze(2x+y−m)z.

Corollary 6. For x, y ∈ C the following relations hold:

n

∑
k=0

(
n
k

)
E(m)

k (x)(yn−k + (−1)k+1(2x − m + y)n−k) = 0 (25)

and
n

∑
k=0

(
n
k

)
G(m)

k (x)(yn−k + (−1)m+k+1(2x − m + y)n−k) = 0. (26)

Proof. Set r = 0 and r = 1 in Theorem 2.

Corollary 7. For x ∈ C the following relation holds:

A(r,m)
n (x) =

n

∑
k=0

(
n
k

)
(−1)mr+k A(r,m)

k (x)(2x − m)n−k. (27)

Proof. Set y = 0 in Theorem 2.

Theorem 3. Let r and m be integers with r ≥ 0 and m ≥ 1, and x, y ∈ C. Then,

� n
2 �

∑
k=0

(
n
2k

)
y2k A(r,m)

n−2k(x)

= (−1)mr
n

∑
k=0

(
n
k

)
(−1)n−k (2x − m + y)k + (2x − m − y)k

2
A(r,m)

n−k (x) (28)

and

� n−1
2 �

∑
k=0

(
n

2k + 1

)
y2k+1 A(r,m)

n−2k−1(x)

= (−1)mr
n

∑
k=0

(
n
k

)
(−1)n−k (2x − m + y)k − (2x − m − y)k

2
A(r,m)

n−k (x). (29)

Proof. The proof follows the same arguments as the proof of Theorem 3.

The special cases where y is replaced by iy and y = m are obvious. We continue
skipping the presentation of these explicit results.

4. More Convolutions for B(r,m)
n (x) and A(r,m)

n (x)

In this section, several other convolutions for B(r,m)
n (x) and A(r,m)

n (x) are derived. The
first two theorems contain convolutions involving B(r,m)

n (x) and powers of 2.

Theorem 4. Let r and m be positive integers and x, y ∈ C. Then

n

∑
k=0

(
n
k

)
2kB(r,m)

k (x)yn−k = 2m(r−1)
n

∑
k=0

(
n
k

)
B(r,m)

k (2x + y)E(m)
n−k(0), (30)

11
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where E(m)
n (x) is the generalized Euler polynomial of order m.

Proof. For |z| < 2π we have from Equation (6)

B(r, m; x, 2z)eyz =
( ∞

∑
n=0

2nB(r,m)
n (x)

zn

n!

)( ∞

∑
n=0

yn zn

n!

)
=

∞

∑
n=0

( n

∑
k=0

(
n
k

)
2kB(r,m)

k (x)yn−k
) zn

n!
.

On the other hand, we observe that

B(r, m; x, 2z)eyz = 2rm
( zr

e2z − 1

)m
e(2x+y)z

= 2m(r−1)
( zr

ez − 1

)m
e(2x+y)z

( 2
ez + 1

)m

= 2m(r−1)
( ∞

∑
n=0

B(r,m)
n (2x + y)

zn

n!

)( ∞

∑
n=0

E(m)
n (0)

zn

n!

)

Comparing the coefficients for zn in the two power series proves the formula.

Remark 1. From the above proof, it is clear that we can also write

n

∑
k=0

(
n
k

)
2kB(r,m)

k (x)yn−k = 2m(r−1)
n

∑
k=0

(
n
k

)
B(r,m)

k (x + y)E(m)
n−k(x)

= 2m(r−1)
n

∑
k=0

(
n
k

)
B(r,m)

k (x)E(m)
n−k(x + y)

= 2m(r−1)
n

∑
k=0

(
n
k

)
B(r,m)

k (y)E(m)
n−k(2x).

Corollary 8. Let r and m be positive integers and x ∈ C. Then,

2nB(r,m)
n (x) = 2m(r−1)

n

∑
k=0

(
n
k

)
B(r,m)

k (2x)E(m)
n−k(0), (31)

n

∑
k=0

(
n
k

)
(−1)n−k2kB(r,m)

k (x)xn−k = 2m(r−1)
n

∑
k=0

(
n
k

)
B(r,m)

k (x)E(m)
n−k(0) (32)

and
n

∑
k=0

(
n
k

)
(−1)n−kB(r,m)

k (x)xn−k = 2m(r−1)−n
n

∑
k=0

(
n
k

)
B(r,m)

k (0)E(m)
n−k(0). (33)

Proof. Set y = 0, y = −x and y = −2x in (30), respectively.

Evidently, the sums in the Corollary contain some interesting special cases. The eval-
uations with (r, m) = (1, 1), and x = 0 and x = 1/2, respectively, yield the following
identities for Bernoulli numbers:

n−1

∑
k=0

(
n
k

)
2 − 2n+2−k

n + 1 − k
BkBn+1−k = (2n − 1)Bn, (34)

n−1

∑
k=0

(
n
k

)
(−1)k 2 − 2n+2−k

n + 1 − k
BkBn+1−k = (2 − 2n − (−1)n)Bn, (35)

12
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n−1

∑
k=0

(
n
k

)
(−1)n−k(1 − 2k−1)Bk = (2n − 1)Bn (36)

and
∑n

k=0 (
n
k)(−1)n−k22k(21−k − 1)Bk = −2n+1 ∑n

k=0 (
n
k)

(21−k−1)(2n+1−k−1)
n+1−k BkBn+1−k, (37)

where we have employed the following relations

En−1(x) =
2
n
(Bn(x)− 2nBn(x/2)),

and
Bn(1/2) = (21−n − 1)Bn.

It is difficult to say whether the Bernoulli identities Equations (34)–(37) are original.
We could not find them in the book [20]. Hence, they are maybe not classical. However,
they may have appeared elsewhere before. Furthermore, setting r = m = 1, x = 0 and
y = 1 in Equation (30) gives

n

∑
k=0

(
n
k

)
2kBk =

n

∑
k=0

(
n
k

)
Bk(1)En−k(0) = 2nBn(1/2), (38)

where we have used Equation (31). Hence, we rediscover Merca’s identity Equation (1).

Theorem 5. Let r and m be positive integers and x, y ∈ C. Then,

∑n
k=0 (

n
k)2

kB(r,m)
k (x)yn−k = 2m(r−1) ∑m

j=0 (
m
j )(−1)m−j2j ∑n

k=0 (
n
k)B(r,m)

k (0)E(m−j)
n−k (2x − m + y), (39)

where E(m)
n (x) is the generalized Euler polynomial of order m.

Proof. The identity follows from

B(r, m; x, 2z)eyz = 2rm
( zr

e2z − 1

)m
e(2x+y)z

= 2rme(2x−m+y)z
( zr

ez − 1
− zr

e2z − 1

)m

= 2rme(2x−m+y)z
( m

∑
j=0

(
m
j

)
(−1)m−j

( zr

ez − 1

)j( zr

e2z − 1

)m−j)
= 2rm

( zr

ez − 1

)m
e(2x−m+y)z

( m

∑
j=0

(
m
j

)
(−1)m−j

( 1
ez + 1

)m−j)
= 2rm

( zr

ez − 1

)m( m

∑
j=0

(
m
j

)
(−1)m−j2j−m

( 2
ez + 1

)m−j
e(2x−m+y)z

)
= 2r(m−1)

m

∑
j=0

(
m
j

)
(−1)m−j2j

( zr

ez − 1

)m( 2
ez + 1

)m−j
e(2x−m+y)z.

Corollary 9. For x, y ∈ C the generalized Bernoulli polynomials of order (r, m) satisfy the
following relation:

n

∑
k=0

(
n
k

)
(−1)k−m(r−1)2kB(r,m)

k (x)yn−k

= 2m(r−1)
m

∑
j=0

(
m
j

)
(−1)m−j2j

n

∑
k=0

(
n
k

)
B(r,m)

k (0)E(m−j)
n−k (m + y − 2x). (40)

13
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Proof. Replace x with m − x and use the reciprocal relation (see [22])

B(r,m)
n (m − x) = (−1)n−m(r−1)B(r,m)

n (x). (41)

Setting r = m = 1 and using the fact that E(0)
n (x) = xn, we obtain:

Corollary 10. For x, y ∈ C the Bernoulli polynomials satisfy the following relation:

n

∑
k=0

(
n
k

)
2kBk(x)yn−k =

n

∑
k=0

(
n
k

)
Bk(2(2x − 1 + y)n−k − En−k(2x − 1 + y)) (42)

and

n

∑
k=0

(
n
k

)
(−1)k2kBk(x)yn−k =

n

∑
k=0

(
n
k

)
Bk(2(1 + y − 2x)n−k − En−k(1 + y − 2x)). (43)

Inserting x = (1 − y)/2 in Equation (42) or x = (1 + y)/2 in Equation (43) yields

n

∑
k=0

(
n
k

)
2kBk

(1 − y
2

)
yn−k = (2 − 2n)Bn (44)

and
n

∑
k=0

(
n
k

)
(−1)k2kBk

(1 + y
2

)
yn−k = (2 − 2n)Bn (45)

for each y ∈ C. We can see that y = 1 or y = −1 produce Merca’s identity Equation (1). It
is also worth mentioning the special cases of the above results for y being a power of 2.

We now focus on presenting other types of convolutions. Some types follow straight-
forwardly from the definitions Equations (6) and (20). For instance, it is fairly easy to
deduce that for each integer p ≥ 0 and x, y ∈ C

n

∑
k=0

(
n
k

)
B(r,m)

k (x)B(r,p)
n−k (y) = B(r,m+p)

n (x + y)

and
n

∑
k=0

(
n
k

)
A(r,m)

k (x)A(r,p)
n−k (y) = A(r,m+p)

n (x + y).

Setting p = x = 0 corresponds to the representation

n

∑
k=0

(
n
k

)
B(r,m)

k xn−k = B(r,m)
n (x) and

n

∑
k=0

(
n
k

)
A(r,m)

k xn−k = A(r,m)
n (x).

Theorem 6. For m, p ≥ 0 and x, y ∈ C we have

∑n
k=0 (

n
k)B(r,m)

k (x)B(r,p)
n−k (y) =

∑n
k=0 (

n
k)(−1)(r−1)(m+p)+kB(r,m+p)

k (x)(2x + y − (m + p))n−k
(46)

and
∑n

k=0 (
n
k)A(r,m)

k (x)A(r,p)
n−k (y) =

∑n
k=0 (

n
k)(−1)r(m+p)+k A(r,m+p)

k (x)(2x + y − (m + p))n−k.
(47)

Proof. The first identity follows from( zr

ez − 1

)m
exz ·

( zr

ez − 1

)p
eyz = (−1)(r−1)(m+p)

( (−z)r

e−z − 1

)m+p
e−xze(2x+y−(m+p))z.

14
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The other one can be proved similarly.

Theorem 7. For r, m ≥ 1 and x, y ∈ C, we have the following convolution

m
n

∑
k=0

(
n
k

)
B(r,m)

k (x)B(r,1)
n−k (y + 1 − m) = (x + y − m)(n)rB(r,m)

n−r (x + y − m)

−(n + 1 − r(m + 1))(n)r−1B(r,m)
n+1−r(x + y − m), (48)

where (n)r denotes the falling factorial defined by

(n)r =

{
1, r = 0;
n(n − 1) · · · (n − r + 1), r ≥ 1.

(49)

Proof. Since

d
dz

e(x+y−m)z

(ez − 1)m = (x + y − m)
e(x+y−m)z

(ez − 1)m − m
e(x+y+1−m)z

(ez − 1)m+1 ,

we have the relation

m
( zr

ez − 1

)m+1
e(x+y+1−m)z = (x + y − m)zr

( zr

ez − 1

)m
e(x+y−m)z − zr(m+1) d

dz
e(x+y−m)z

(ez − 1)m .

Replacing x with m − x and using (41), we immediately get the alternating version of
Theorem 7.

Corollary 11. For r, m ≥ 1 and x, y ∈ C we have the following convolution

m
n

∑
k=0

(
n
k

)
(−1)k−m(r−1)B(r,m)

k (x)B(r,1)
n−k (y + 1 − m) = (y − x)(n)rB(r,m)

n−r (y − x)

−(n + 1 − r(m + 1))(n)r−1B(r,m)
n+1−r(y − x). (50)

For (r, m) = (1, m) the above results reduce to convolutions for generalized
Bernoulli polynomials:

m
n

∑
k=0

(
n
k

)
B(m)

k (x)Bn−k(y + 1 − m) = (x + y − m)nB(m)
n−1(x + y − m)

−(n − m)B(m)
n (x + y − m), (51)

and

m ∑n
k=0 (

n
k)(−1)kB(m)

k (x)Bn−k(y + 1 − m) = (y − x)nB(m)
n−1(y − x)− (n − m)B(m)

n (y − x). (52)

These results generalize the known convolutions for Bernoulli polynomials, which are
obtained for (r, m) = (1, 1). The analogue convolution for A(r,m)

n (x) is given next.

Theorem 8. For r, m ≥ 1 and x, y ∈ C, the following convolution result holds:

m
n

∑
k=0

(
n
k

)
A(r,m)

k (x)A(r,1)
n−k (y + 1 − m) = 2(x + y − m)(n)r A(r,m)

n−r (x + y − m)

−2(n + 1 − r(m + 1))(n)r−1 A(r,m)
n+1−r(x + y − m). (53)
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For r = 0, the result becomes

m ∑n
k=0 (

n
k)E(m)

k (x)En−k(y + 1 − m) = 2(x + y − m)E(m)
n (x + y − m)− 2E(m)

n+1(x + y − m). (54)

Proof. Use

m
(

2zr

ez+1

)m+1
e(x+y+1−m)z =

2(x + y − m)zr
(

2zr

ez+1

)m
e(x+y−m)z − 2m+1zr(m+1) d

dz
e(x+y−m)z

(ez+1)m .

Corollary 12. For r, m ≥ 1 and x, y ∈ C the following convolution result holds:

m
n

∑
k=0

(
n
k

)
(−1)k−rm A(r,m)

k (x)A(r,1)
n−k (y + 1 − m) = 2(y − x)(n)r A(r,m)

n−r (y − x)

−2(n + 1 − r(m + 1))(n)r−1 A(r,m)
n+1−r(y − x). (55)

For r = 0 the result becomes

m
n

∑
k=0

(
n
k

)
(−1)kE(m)

k (x)En−k(y + 1 − m) = 2(y − x)E(m)
n (y − x)− 2E(m)

n+1(y − x). (56)

Proof. This result follows from the reciprocal relation for A(r,m)
n (x) (see [22])

A(r,m)
n (m − x) = (−1)n−mr A(r,m)

n (x). (57)

Theorem 9. For r, m ≥ 1 and x, y ∈ C the following convolution result holds:

2nB(r,m)
n

( x + y
2

)
= 2m(r−1)(n)rm

n−rm

∑
k=0

(
n − rm

k

)
B(r,m)

k (x)A(r,m)
n−rm−k(y). (58)

Proof. Use ( (2z)r

e2z − 1

)m
e(x+y)z = 2m(r−1)z−rm

( zr

ez − 1

)m
exz

( 2zr

ez + 1

)m
eyz.

Upon replacing x with m − x and y with m − y and using Equations (41) and (57), we
also get the alternating version of the previous result.

Corollary 13. For r, m ≥ 1 and x, y ∈ C the following convolution result holds:

2nB(r,m)
n

(
m − x+y

2

)
= (−1)n−m(r−1)2m(r−1)(n)rm ∑n−rm

k=0 (n−rm
k )B(r,m)

k (x)A(r,m)
n−rm−k(y).

(59)

The case (r, m) = (1, 1) produces relations involving Bernoulli and Genocchi polynomials:

2nBn

( x + y
2

)
= n

n−1

∑
k=0

(
n − 1

k

)
Bk(x)Gn−1−k(y) (60)
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and

2nBn

(
1 − x + y

2

)
= (−1)nn

n−1

∑
k=0

(
n − 1

k

)
Bk(x)Gn−1−k(y). (61)

5. Probabilistic Interpretation of Bernoulli and Euler–Genocchi Polynomials

In this section, we indicate a possible application of the polynomials discussed in
this work.

Consider a probability measure space (Ω,F , P), where Ω is a non-empty space, F is
a σ-algebra of events and P is a probability measure on F . Let X be a random variable
which is a measurable real function on the probability space (Ω,F , P), and let p(x) be a
probability density function of X. Then mathematical expectation and moments of order n
of X are defined by

E[X] =
∫ ∞

−∞
xp(x) dx and E[Xn] =

∫ ∞

−∞
xn p(x) dx,

with E[X1] = E[X]. The moment-generating function of X is defined by

μ(t) = E[etX ] =
∫ ∞

−∞
etx p(x) dx, t ∈ R.

The relation between the moment generating function μ(t) and and moments E[Xn] is
given by

μ(t) =
∞

∑
k=0

tk

k!
E[Xk].

Suppose that (6), (20), (21) and (22) are moment-generating functions of random
variables X1, X2, . . . , X5. Then,

E[Xn
1 ] =

dn

dzn

{( zr

ez − 1

)m
exz

}∣∣∣
z=0

= B(r,m)
n (x),

E[Xn
2 ] =

dn

dzn

{( z
ez − 1

)m
exz

}∣∣∣
z=0

= B(m)
n (x),

E[Xn
3 ] =

dn

dzn

{( 2zr

ez + 1

)m
exz

}∣∣∣
z=0

= A(r,m)
n (x),

E[Xn
4 ] =

dn

dzn

{( 2
ez + 1

)m
exz

}∣∣∣
z=0

= E(m)
n (x),

E[Xn
5 ] =

dn

dzn

{( 2z
ez + 1

)m
exz

}∣∣∣
z=0

= G(m)
n (x).

Another interpretation is the next example. Let X be a discrete random variable on
(Ω,F , P). Then, we can define a probability distribution for X by

P(X = k) =
(n

k)B(r,m)
k

B(r,m)
n (1)

, k = 0, 1, . . . , n.

Note that
n

∑
k=0

P(X = k) =
∑n

k=0 (
n
k)B(r,m)

k

B(r,m)
n (1)

=
B(r,m)

n (1)

B(r,m)
n (1)

= 1.

Next, replacing k by n − k in the identity

n

∑
k=0

(
n
k

)
B(r,m)

k xn−k = B(r,m)
n (x)
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we get
n

∑
k=0

(
n
k

)
B(r,m)

n−k xk = B(r,m)
n (x),

which, upon differentiating with respect to x, yields

n

∑
k=0

k
(

n
k

)
B(r,m)

n−k xk−1 = nB(r,m)
n−1 (x).

Inserting x = 1 gives
n

∑
k=0

k
(

n
k

)
B(r,m)

n−k = nB(r,m)
n−1 (1),

which shows that
E[X] = nB(r,m)

n−1 (1).

In an analogous fashion, the quantity A(r,m)
n (x) can be interpreted probabilistically.

6. Conclusions and Future Work

In this paper, mainly focusing on convolutions, we established additional properties of
the generalized Bernoulli and Euler–Genocchi polynomials B(r,m)

n (x) and A(r,m)
n (x), respec-

tively. These properties provide generalizations of some known facts about generalized
Bernoulli and Euler polynomials, respectively. In the future, we intend to work in two dif-
ferent directions. First, it seem desirable to find some new kinds of closed-form expressions
for our polynomials (such as combinatorial, integral, hypergeometric and determinantal
ones). Such expressions will provide us with new and significant properties of these polyno-
mials. Second, it is possible to study the Apostol-type generalized polynomials B(r,m)

n (x; λ)
associated with the complex parameter λ �= 0, which are defined by the generating function

B(r, m; x, z; λ) =
( zr

λez − 1

)m
exz =

∞

∑
n=0

B
(r,m)
n (x; λ)

zn

n!
.

Then, it is fairly easy to identify the relations B(r, m; x, z) = B(r, m; x, z; 1) and
A(r, m; x, z) = (−2)mB(r, m; x, z;−1). Therefore, by means of B(r,m)

n (x; λ) it is possible to
discuss both B(r,m)

n (x) and A(r,m)
n (x), at once.
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Abstract: The aim of this paper is not only to propose a new extreme distribution, but also to
show that the new extreme model can be used as an alternative to well-known distributions in the
literature to model various kinds of datasets in different fields. Several of its statistical properties are
explored. It is found that the new extreme model can be utilized for modeling both asymmetric and
symmetric datasets, which suffer from over- and under-dispersed phenomena. Moreover, the hazard
rate function can be constant, increasing, increasing–constant, or unimodal shaped. The maximum
likelihood method is used to estimate the model parameters based on complete and censored
samples. Finally, a significant amount of simulations was conducted along with real data applications
to illustrate the use of the new extreme distribution.

Keywords: probability distributions; skewed and symmetric data; maximum likelihood estimation;
hazard rate function; censored samples

1. Introduction

Data analysis has become of great interest in many fields of science such as health sci-
ences, reliability analysis, industry, environmental studies, and others. The requirement of
obtaining suitable models and statistical distributions has become essential, since defining
new distributions will enable us to better describe and predict phenomenal and experimen-
tal data. See for example [1–9], among others.

Recently, several methods of obtaining new distributions from old ones have been
developed. Many generalized classes of life time distributions have been discussed in
the literature. It has been proven in many papers that the new generalizations are more
flexible in modelling and better fit real-life data. These new distributions also have several
desirable properties such as the asymptotic behavior of their probability density function
and the hazard rate function’s monotonicity, which has made them superior to the original
distribution. All of this has encouraged authors to work more on developing new life-
time distributions using different generalization methods. Here, we refer to the papers
of [10] for the Marshall–Olkin class, [11] for the Beta and Gamma classes, [12] for the odd
exponentiated half-logistic-G (OEHL-G) family, [13] for the flexible Weibull class, [14] for
the odd log-logistic Lindley class, [15] for the odd Chen class, [16] for the exponentiated
odd Chen class, [17] for a new Kumaraswamy generalized class, [18,19] for the extended
Gamma and log-Bilal models, respectively, [20] for type I half logistic odd Weibull-G
and [21] for the Poisson transmuted-G family, among others.

Symmetry 2021, 13, 745. https://doi.org/10.3390/sym13050745 https://www.mdpi.com/journal/symmetry21
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Here, we use the OEHL-G family of distributions to build a new flexible model with
three parameters. The cumulative distribution function (CDF) of the OEHL-G family with
two positive shape parameters α and λ can be reported as

Π(x; λ, Θ, α) =

⎧⎨⎩1 − e
−λ G(x;Θ)
1−G(x;Θ)

1 + e
−λ G(x;Θ)
1−G(x;Θ)

⎫⎬⎭
α

; x ∈ ℵ ⊂ R (1)

where G(x; Θ) is the CDF of the baseline distribution under consideration (for more details,
see Afify et al., 2017). In our study, the baseline CDF is the inverse exponential (IEx)
distribution. The IEx model can be utilized to model datasets which have inverted bathtub
failure rates (see, [22]), but it lacks model datasets that are highly skewed “asymmetric”
(see, [23]). Therefore, it is essential to have a skewness property in the IEx distribution
so that it would be able to fit asymmetry in the datasets that are heavily skewed. Hence,
our goal is to obtain a generalized distribution of the IEx model such that it will extend the
IEx distribution and also add more flexible features to this life-time model. Many authors
have proposed some inverted models due to their flexibility in modeling various types
of datasets in different fields (for instance, [24,25]). The basic motivations for using the
odd exponentiated half-logistic inverse exponential (OEHLIEx) distribution in practice are
the following:

1. The PDF, CDF, and HRF can be derived in closed-forms.
2. The HRF can be constant, increasing, increasing–constant or unimodal shaped,

which makes the proposed model able to be used to analyze different types of datasets.
3. It can be used to model both symmetry and asymmetric datasets.
4. It has more flexibility as compared to well-known models, especially the IEx model.
5. It can be used to model platykurtic-shaped data.
6. It can be used to model over- and under-dispersed data (See Section 6).

2. The OEHLIEx Distribution

A random variable X is said to have the IEx distribution with parameter β if its CDF

G(x; β) = e
−β
x . Using the CDF of the IEx model in Equation (1), we obtain the CDF of the

OEHLIEx distribution, which can be expressed as

F(x; λ, β, α) =

{
1 − e−λ(e

β
x −1)

−1
}α{

1 + e−λ(e
β
x −1)

−1
}−α

; x > 0, (2)

where α and λ are the positive shape parameters, while β is the positive scale parameter.
The corresponding probability density function (PDF) to Equation (2) is

f (x; λ, β, α) = 2αλβx−2e−
β
x e−λ(e

β
x −1)

−1{
1 − e−

β
x

}−2
{

1 − e−λ(e
β
x −1)

−1
}α−1{

1 + e−λ(e
β
x −1)

−1
}−α−1

. (3)

The PDF of the OEHLIEx model can be represented as an infinite mixture of an
exponentiated IEx (Exp-IEx) distribution:

f (x; λ, β, α) =
∞

∑
k,l=0

ϕk,l τk+l+1(x), (4)

where

ϕk,l = 2αλ
∞

∑
j,i=0

(−1)j+k+l(λ(i + j + 1))k

k!(k + l + 1)

( −α − 1
i

)(
α − 1

j

)( −k − 2
l

)

and

τk+l+1(x) =
(k + l + 1)β

x2 e−
(k+l+1)β

x ,
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represents the Exp-IEx density with the power parameter (k + l + 1). The corresponding
reliability function to Equation (2) can be obtained as

R(x; λ, β, α) = 1 −
{

1 − e−λ(e
β
x −1)

−1
}α{

1 + e−λ(e
β
x −1)

−1
}−α

; x > 0. (5)

For the proposed model, the hazard rate function (HRF) and its cumulative can be
reported, respectively, as

h(x; λ, β, α) =

2αλβx − 2e − β
x

{
1 − e − β

x

} − 2
{

1 − e − λ(e
β
x − 1)

− 1
}α − 1{

1 + e − λ(e
β
x − 1)

− 1
} − 1

eλ(e
β
x − 1)

− 1
({

1 + e − λ(e
β
x − 1)

− 1}α

−
{

1 − e − λ(e
β
x − 1)

− 1}) (6)

and

H(x; λ, β, α) = − log

⎛⎝1 −
{

1 − e−λ(e
β
x −1)

−1
}α{

1 + e−λ(e
β
x −1)

−1
}−α

⎞⎠, (7)

where the cumulative hazard function is the integral of the hazard function. Figure 1
shows the PDF plots and its HRF for different parameter values. It is immediate that
the PDF is unimodal shaped and can be used to discuss right- and left-skewed datasets,
whereas the HRF can be increasing, constant, increasing–constant, or unimodal shaped.
Therefore, the OEHLIEx distribution can be utilized to analyze various types of data in
several practical fields.

Figure 1. The PDF “left panel” and HRF “right panel” plots.

3. Statistical and Reliability Properties

3.1. Quantile Function (QF), Skewness, and Kurtosis

The QF of the OEHLIEx distribution is given as follows: if U has a uniform random
variable on U(0, 1), then

XU = −β

⎧⎨⎩ln

⎛⎝ − ln
(

1 − u
1
α

)
+ ln

(
1 + u

1
α

)
λ − ln

(
1 − u

1
α

)
+ ln

(
1 + u

1
α

)
⎞⎠⎫⎬⎭

−1

. (8)

Equation (8) can be used to generate a random sample, and the median can be
derived at u = 0.5. Moreover, it can be used to obtain the skewness and kurtosis, where
skewness =

X3/4 + X1/4−2X2/4
X3/4− X1/4

and Kurtosis =
X3/8− X1/8+ X7/8− X5/8

X6/8− X2/8
. Tables 1–3 report
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some numerical values of the quantiles, skewness, and kurtosis of the OEHLIEx model
using Maple software.

Table 1. The quantiles, skewness, and kurtosis for λ→∞.

Parameter ↓ Measure →
X1/4 X2/4 X3/8 X5/8 Skewness Kurtosis

α β λ

0.5 0.5

0.5 0.311 0.733 0.491 1.055 0.296 1.268

0.9 0.238 0.492 0.349 0.678 0.270 1.263

2.0 0.177 0.314 0.239 0.406 0.221 1.246

3.5 0.149 0.243 0.193 0.302 0.181 1.229

100 0.075 0.095 0.085 0.104 −0.007 1.183

150 0.071 0.088 0.079 0.596 −0.021 1.181

Table 2. The quantiles, skewness, and kurtosis for β→∞.

Parameter ↓ Measure →
X1/4 X2/4 X3/8 X5/8 Skewness Kurtosis

α λ β

0.3 1.5

0.2 0.046 0.093 0.066 0.132 0.345 1.348

0.8 0.184 0.373 0.264 0.529 0.345 1.348

1.5 0.345 0.699 0.495 0.991 0.345 1.348

5.0 1.150 2.332 1.649 3.305 0.345 1.348

10 2.301 4.664 3.299 6.609 0.345 1.348

100 23.008 46.639 32.995 66.095 0.345 1.348

Table 3. The quantiles, skewness, and kurtosis for α→∞.

Parameter ↓ Measure →
X1/4 X2/4 X3/8 X5/8 Skewness Kurtosis

β λ α

1.5 2.0

0.02 0.00 0.00 0.00 0.063 1.000 1.548

0.05 0.00 0.108 0.076 0.159 0.169 1.784

0.1 0.108 0.216 0.153 0.318 0.464 1.808

0.2 0.216 0.429 0.305 0.615 0.393 1.457

0.8 0.795 1.279 1.027 1.572 0.162 1.242

1.5 1.231 1.756 1.491 2.056 0.127 1.259

Regarding Tables 1–3, the proposed model is suitable for modelling asymmetric as
well as symmetric datasets that are platykurtic shaped.

3.2. Incomplete Moments

The sth incomplete moments can be listed as

ωs(t) =
∞

∑
k,l=0

ϕk,l ω∗
s (t), (9)
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where ω∗
s (t) =

∫ t
0 xsτk+l+1(x)dx. Thus, the sth incomplete moments of the OEHLIEx model

can be proposed as

ωs(t) =
∞

∑
k,l,n=0

ϕk,l
{−β(k + l + 1)}n

n!(s − n − 1)
ts−n−1. (10)

3.3. Reliability Function of Linear Consecutive, Parallel, Series, and Bridge Type Network Systems

If the random variable X has the OEHLIEx distribution, then the reliability function of
the linear consecutive k − out − o f n : F system can be expressed as

 

 

(11)

for more details concerning the values of m, N(j; k, n), and j, see [26]. In the special case
of the system k − out − o f − n : F, the parallel and series system when k = n and k = 1,
respectively.

Consider two systems: one of them is parallel, whereas the other is a series with
independent n components. Each component has the OEHLIEx model; thus, the reliability
function in the case of the parallel system can be reported as

RP−S(x) = 1 −
⎡⎣{

1 − e−λ(e
β
x −1)

−1
}α{

1 + e−λ(e
β
x −1)

−1
}−α

⎤⎦n

, (12)

where as the reliability function in the case of the series system can be expressed as

RS−S(x) =

⎡⎣1 −
{

1 − e−λ(e
β
x −1)

−1
}α{

1 + e−λ(e
β
x −1)

−1
}−α

⎤⎦n

. (13)

In reliability theory, there exists another type of engineering system in the so-called
bridge-type network or a complex system, which has many applications in this field.
Such systems as these can be evaluated by using many approaches such as conditional
probability, a connection matrix, and tree diagrams, as well as cut and tie sets. Assume a
bridge-type network consists of five components (A, B, C, D, and E) where each component
has the OEHLIEx model, these components can be connected as follows:

Consider the previous network in which success requires that at least one of the
paths AC, BD, AED, or BEC is good. To evaluate the reliability function of this network,
the conditional probability approach has been utilized. The previous network in Figure 2
can be subdivided into two systems, one with E considered bad, i.e., it always failed,
and one with E considered good, i.e., it cannot fail. Thus,

RNW = RNW(if E is good)RE(x; λ, β, α) + RNW(if E is bad)FE(x; λ, β, α)
= {(1 − FA(x; λ, β, α)FB(x; λ, β, α))(1 − FC(x; λ, β, α)FD(x; λ, β, α))}RE(x; λ, β, α)

+{1 − (1 − RA(x; λ, β, α)RC(x; λ, β, α))(1 − RA(x; λ, β, α)RD(x; λ, β, α))}FE(x; λ, β, α),
(14)

where F∗ = 1 − R∗ represents the unreliability function of a component (*). Since RA =
RB = RC = RD = RE, then the reliability RNW can be expressed as

RNW = 2
{

R(x; λ, β, α)2 + R(x; λ, β, α)3 + R(x; λ, β, α)5
}
− 5R(x; λ, β, α)4. (15)
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Figure 2. Bridge-type network.

Assume four different systems, namely, parallel, serious, linear consecutive, and bridge
network; each system consists of 20 components, except the bridge network which consists
of five components. Tables 4–6 list some numerical values of the reliability function for
these systems using Maple software.

Table 4. Some numerical values of the reliability for different systems for various values of α.

System ↓
Parameter →

α=1.5 α=5 α=10

β=0.5 λ=0.5 β=0.5 λ=0.5 β=0.5 λ=0.5

Parallel 0.4036 0.8215 0.9681

Series 1.4×10−32 2.2×10−22 9.7×10−17

Linear Consecutive 0.0157 0.0179 0.0967

Bridge Network 0.00133 0.01453 0.0551

Table 5. Some numerical values of the reliability for different systems for various values of β.

System ↓
Parameter →

β=0.5 β=0.8 β=1.5

α=0.1 λ=0.1 α=0.1 λ=0.1 α=0.1 λ=0.1

Parallel 0.8041 0.9213 0.9798

Series 7.5×10−23 3.5 ×10−19 9.5 ×10−16

Linear Consecutive 0.0597 0.0689 0.0794

Bridge Network 0.0130 0.0309 0.0695

Table 6. Some numerical values of the reliability for different systems for various values of λ.

System ↓
Parameter →

λ=0.3 λ=0.6 λ=0.9

α=0.8 β=0.7 α=0.8 β=0.7 α=0.8 β=0.7

Parallel 0.9873 0.4459 0.0771

Series 7.3 ×10−15 1.8 ×10−31 1.1 ×10−48

Linear Consecutive 0.0567 0.0426 0.0411

Bridge Network 0.0855 0.0017 3.2×10−6

Regarding Tables 4–6, it is clear that the reliability of parallel, series, linear consecutive,
and bridge network systems increases in two cases, one of them for fixed values of β and λ
with α → ∞ , and the other for fixed values of α and λ with β → ∞ . Whereas, the reliability
of these systems decreases for fixed values of α and β with λ → ∞.
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3.4. Entropy

The Rényi entropy of a positive random variable X representing a measure of variation
of the uncertainty is defined by

Iρ(X) = 1
1−ρ log

(∫ ∞
0 f ρ(x; λ, β, α)dx

)
; ρ > 0 and ρ �= 1.

= 1
1−ρ log

(
∞
∑

k,l=0
Ωk,l

∫ ∞
0 gρ(x)Gk+l(x)dx

)

= 1
1−ρ log

(
∞
∑

k,l=0
Ωk,l

β1−ρ Γ(2ρ−1)
(ρ+k+l)2ρ−1

)
,

(16)

where (2ρ − 1) �= −1,−2,−3, . . . . and

Ωk,l = (2αλ)ρ
∞

∑
j,i=0

(−1)j+k+l(λ(i + j + 1))k

k!

( −αρ − ρ
i

)(
ρα − ρ

j

)( −k − 2ρ
l

)
.

The binomial coefficients will be computed with the negative values using built-in
functions in Maple software. The Shannon entropy is a special case of the Rényi entropy
when ρ → 1 . Tables 7–9 list some numerical values of entropies using Maple software.

Table 7. Entropies for different values of β.

Entropy ↓ Parameter → β=0.5 β=0.8 β=1.5

α=0.1 λ=0.1 α=0.1 λ=0.1 α=0.1 λ=0.1

Renyi 0.2569 0.3697 0.4302

Shannon 0.1987 0.1997 0.2159

Table 8. Entropies for different values of α.

Entropy ↓ Parameter → α=1.5 α=5 α=10

β=0.5 λ=0.5 β=0.5 λ=0.5 β=0.5 λ=0.5

Renyi 2.3694 2.5976 3.6871

Shannon 2.5364 2.6974 2.7639

Table 9. Entropies for different values of λ.

Entropy ↓ Parameter → λ=0.3 λ=0.6 λ=0.9

α=0.8 β=0.7 α=0.8 β=0.7 α=0.8 β=0.7

Renyi 3.2168 3.0197 2.4398

Shannon 3.1020 3.009 2.9578

Regarding Tables 7–9, it is clear that the entropy increases in two cases, one of them
for fixed values of α and λ with β → ∞ , and the other for fixed values of β and λ with
α → ∞ . Whereas, the entropy decreases for fixed values of α and β with λ → ∞.
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4. Parameters Estimation

4.1. Maximum Likelihood Estimation (MLE) Based on Complete Samples.

In this section, we derive the MLE of the unknown parameters λ, β, and α of the
OEHLIEx model based on complete samples. Consider a random sample X1, X2, . . . , Xn
from the OEHLIEx model; then, the log-likelihood (LL) function can be expressed as

L =
n

∑
i=1

log f (xi; λ, β, α). (17)

By substituting from Equation (3) into Equation (17), the MLEs of the OEHLIEx
parameters can be obtained by maximizing

LL = n log 2αλβ − 2
n
∑

i=1
log xi − β

n
∑

i=1

1
xi

− λ
n
∑

i=1

(
e

β
xi − 1

) − 1
− 2

n
∑

i=1
log

(
1 − e − β

xi

)
+

(α − 1)
n
∑

i=1
log

(
1 − e − λ(e

β
xi − 1)

− 1)
− (α + 1)

n
∑

i=1
log

(
1 + e − λ(e

β
xi − 1)

− 1)
,

(18)

with respect to λ, β, and α. We used R software to obtain the parameters’ values. The (1 − δ)
100% confidence intervals (CIs) of the model parameters can be calculated using the
following relations:

λ̂ ± Z δ
2

√
var

(
λ̂
)
, β̂ ± Z δ

2

√
var

(
β̂
)

and α̂ ± Z δ
2

√
var(α̂),

where Z δ
2

is the upper
(

δ
2

)
th percentile of the standard normal distribution.

4.2. MLE Based on Type-II Censored Samples

The likelihood function for a type-II censored sample can be reported as

l =
n!

(n − k)!
(R(xk))

n−k
k

∏
i=1

f (xi), (19)

where n represents the number of components, and the experiment is stopped when k
items failed. If X1, X2, . . . , Xn represent an independent and identically distributed
random sample from the OEHLIEx distribution and X1, X2, . . . , Xk, k ≤ n represent an
ordered sample obtained from a type-II right censoring sample, then the log-likelihood
(LL∗) function is

LL∗ = ln
n!

(n − k)!
+ (n − k) ln R(xk; λ, β, α) +

k

∑
i=1

log f (xi; λ, β, α). (20)

By substituting from Equations (3) and (5) into Equation (20), the MLEs of the
OEHLIEx parameters can be obtained by maximizing results of the equation with respect
to λ, β, and α.

5. Simulation Results

We assessed the performance of the MLE approach with respect to various samples
size. The assessment was based on a simulation study:

1. Generate 1000 samples of size n = 10, 20, 30, 50, 75, 100, 150 from the OEHLIEx
model under various values of the parameters.

2. Compute the MLEs for the 1000 samples, say θ̂j for j = 1, 2, . . . , 1000.
3. Compute the biases and mean-squared errors (MSEs), where

Bias(θ) =
1

1000

1000

∑
j=1

(
θ̂j − θ

)
and MSE(θ) =

1
1000

1000

∑
j=1

(
θ̂j − θ

)2
.
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The empirical results for complete data are given in Tables 10–14 using OEHLIEx(1.5,
0.5,0.9), OEHLIEx(2.5,2.5,2.5), OEHLIEx(0.5,0.8,0.9), and OEHLIEx(0.5,0.5,0.5), respec-
tively. Whereas the empirical results for type-II censored data when k = 20 are given
in Tables 15–17 for OEHLIEx(0.7,0.8,0.9), OEHLIEx(0.5,1.5,2.5), OEHLIEx(0.01,0.5,0.1.5),
and OEHLIEx(0.1,1.5,0.5), respectively.

Table 10. The bias and MSE (in parentheses) for schema I.

Parameters ↓ Sample Size → 10 20 30 50 75 100 150

λ
0.12578

(0.15964)
0.11467

(0.15083)
0.11025

(0.14998)
0.11012

(0.14322)
0.09987

(0.10021)
0.04237

(0.06867)
0.01983

(0.01325)

β
0.10361

(0.13555)
0.10318

(0.13200)
0.10251

(0.11036)
0.10112

(0.10998)
0.09876

(0.08655)
0.05217

(0.03524)
0.02649

(0.00145)

α
0.11666

(0.12372)
0.10008

(0.10187)
0.09866

(0.08873)
0.07624

(0.05326)
0.03654

(0.02361)
0.01254

(0.01023)
0.01001

(0.00147)

Table 11. The bias and MSE (in parentheses) for schema II.

Parameters ↓ Sample Size → 10 20 30 50 75 100 150

λ
0.11769

(0.15793)
0.10987

(0.14026)
0.10644

(0.13657)
0.08657

(0.11087)
0.05634

(0.08741)
0.01237

(0.03219)
0.00558

(0.00543)

β
0.10222

(0.11236)
0.10104

(0.10658)
0.10057

(0.09874)
0.08741

(0.05324)
0.05234

(0.01240)
0.03201

(0.00874)
0.00874

(0.00149)

α
0.10984

(0.10037)
0.10567

(0.09759)
0.10111

(0.05687)
0.07876

(0.04217)
0.05234

(0.03217)
0.023264
(0.01007)

0.00951
(0.00188)

Table 12. The bias and MSE (in parentheses) for schema III.

Parameters ↓ Sample Size → 10 20 30 50 75 100 150

λ
0.10998

(0.13067)
0.10756

(0.12361)
0.10564

(0.12248)
0.102341
(0.10252)

0.08764
(0.03101)

0.035418
(0.01097)

0.00429
(0.00574)

β
0.09987

(0.09996)
0.09153

(0.09864)
0.08635

(0.05314)
0.053243
(0.03221)

0.022324
(0.01002)

0.020011
(0.00517)

0.008214
(0.00120)

α
0.076249

(0.057681)
0.075324

(0.056341)
0.063397

(0.042224)
0.048891

(0.033364)
0.039217
(0.02109)

0.011871
(0.00996)

0.003814
(0.00225)

Table 13. The bias and MSE (in parentheses) for schema IV.

Parameters ↓ Sample Size → 10 20 30 50 75 100 150

λ
0.110542

(0.102201)
0.100214

(0.101123)
0.095874

(0.082210)
0.086554

(0.053329)
0.045638

(0.033415)
0.023211
(0.00524)

0.010014
(0.00221)

β
0.085761

(0.065354)
0.056639

(0.032544)
0.0355621
(0.023517)

0.0322624
(0.021030)

0.020132
(0.007461)

0.020100
(0.00712)

0.005624
(0.00230)

α
0.075641

(0.063099)
0.0655327
(0.052201)

0.039640
(0.044671)

0.028634
(0.033249)

0.019652
(0.007956)

0.005536
(0.004310)

0.004187
(0.002140)
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Table 14. The bias and MSE (in parentheses) for schema V.

Parameters ↓ Sample Size → 10 20 30 50 75 100 150

λ
0.12578

(0.15964)
0.11467

(0.15083)
0.11025

(0.14998)
0.11012

(0.14322)
0.09987

(0.10021)
0.04237

(0.06867)
0.01983

(0.01325)

β
0.10361

(0.13555)
0.10318

(0.13200)
0.10251

(0.11036)
0.10112

(0.10998)
0.09876

(0.08655)
0.05217

(0.03524)
0.02649

(0.00145)

α
0.11666

(0.12372)
0.10008

(0.10187)
0.09866

(0.08873)
0.07624

(0.05326)
0.03654

(0.02361)
0.01254

(0.01023)
0.01001

(0.00147)

Table 15. The bias and MSE (in parentheses) for VI.

Parameters ↓ Sample Size → 10 20 30 50 75 100 150

λ
0.11458

(0.12694)
0.11536

(0.10083)
0.11256

(0.09844)
0.10123

(0.08436)
0.08563

(0.06369)
0.01326

(0.03698)
0.002366
(0.00743)

β
0.11963

(0.11538)
0.11326

(0.10563)
0.11269

(0.10269)
0.10269

(0.10111)
0.08963

(0.07488)
0.02301

(0.02398)
0.00147

(0.00789)

α
0.17896

(0.13698)
0.16236

(0.12856)
0.14265

(0.10328)
0.12488

(0.09994)
0.08963

(0.09602)
0.03521

(0.05326)
0.00723

(0.00117)

Table 16. The bias and MSE (in parentheses) for VII.

Parameters ↓ Sample Size → 10 20 30 50 75 100 150

λ
0.21653

(0.19691)
0.18856

(0.16136)
0.16456

(0.15452)
0.13698

(0.14236)
0.09856

(0.12013)
0.05602

(0.09695)
0.00147

(0.01369)

β
0.22985

(0.17803)
0.21360

(0.16636)
0.17203

(0.14447)
0.13695

(0.11029)
0.08563

(0.09301)
0.03214

(0.01238)
0.00983

(0.00650)

α
0.10256

(0.09635)
0.09362

(0.08503)
0.07452

(0.06416)
0.03698

(0.03694)
0.00968

(0.01236)
0.00236

(0.00632)
0.00063

(0.00085)

Table 17. The bias and MSE (in parentheses) for VIII.

Parameters ↓ Sample Size → 10 20 30 50 75 100 150

λ
0.12690

(0.11231)
0.12369

(0.11197)
0.11015

(0.11017)
0.10850

(0.10856)
0.10369

(0.10285)
0.06369

(0.07458)
0.00856

(0.00469)

β
0.043028

(0.040695)
0.030258
(0.03312)

0.022136
(0.02635)

0.014369
(0.01802)

0.010236
(0.01132)

0.008896
(0.008309)

0.001539
(0.00239)

α
0.119980
(0.15891)

0.11743
(0.13264)

0.08830
(0.10239)

0.05237
(0.09721)

0.02138
(0.07128)

0.00856
(0.02598)

0.00038
(0.00653)

From Tables 10–17, we can say that the MLE approach can be used effectively to
estimate the model parameters for both a small and large sample size. This due to the
consistency properties of the estimators when n grows.

6. Data Analysis

6.1. Data Analysis and Discussion Based on Complete Samples

In this section, we illustrate the empirical importance of the OEHLIEx distribution
using three applications on real data. These data are used to compare the fits of the
OEHLIEx distribution with some competitive models such as the inverse exponential
(IEx), exponential (Ex), exponentiated half-logistic (EHL), generalized half-logistic (GHL),
and normal (N) models. For the comparison of the models, we should use the values of LL,
and Kolmogorov–Smirnov (K-S) test with its p-value.
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The first data set (I) represents the relief times of twenty patients receiving an anal-
gesic (see, [27]).

The second data set (II) represents the strengths of glass fibers (see, [28]).
The third data set (III) represents the failure times (in minutes) for a sample of

15 electronic components in an accelerated life test (see, [29]).
Tables 18–20 list the MLEs with their corresponding standard errors (in parentheses),

and goodness-of-fit (GoF) measures for the datasets.

Table 18. The MLE(s) and GoF statistics for data set I.

Model ↓ Parameter →
MLE(s) [Std-err]

−LL
K-S

(p-Value)α β λ

OEHLIEx 18.389 [12.430] 0.070 [0.175] 0.159 [0.399] 16.327 0.134
(0.863)

IEx 1.724 [0.385] — — 32.668 0.387
(0.005)

Ex 0.526 [0.117] — — 32.837 0.439
(0.001)

GHL 0.731 [0.163] — — 29.464 0.398
(0.003)

EHL 2.780 [0.621] — — 22.908 0.281
(0.085)

N 1.90 [0.1535] 0.6863 [0.1085] — 20.8498 0.2079
(0.3528)

The (1 − δ)100% CIs of the parameters α, β, and λ are, respectively, [0, 42.752], [0, 0.413], and [0, 0.943].

Table 19. The MLE(s) and GoF statistics for data set II.

Model ↓ Parameter →
MLE(s) [Std-err]

−LL
K-S

(p-Value)α β λ

OEHLIEx 82.594 [41.246] 0.013 [0.003] 0.047 [0.013] 22.602 0.071
(0.887)

IEx 1.526 [0.192] — — 92.805 0.468
(< 0.001)

Ex 0.618 [0.078] — — 93.222 0.472
(< 0.001)

GHL 0.896 [0.113] — — 82.074 0.446
(< 0.001)

EHL 2.278 [0.287] — — 65.942 0.396
(< 0.001)

N 1.6156 [0.0602] 0.4779 [0.0426] — 42.8871 0.1774
(0.033)

The (1 − δ)100% CIs of the parameters α, β, and λ are, respectively, [1.754, 163.435], [0.006, 0.020], and [0.021, 0.073].
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Table 20. The MLE(s) and GoF statistics for data set III.

Model ↓ Parameter →
MLE(s) [Std-err]

−LL
K-S

(p-Value)α β λ

OEHLIEx 0.962 [0.0435] 2.259 [4.711] 0.115 [0.231] 63.946 0.098
(0.996)

IEx 9.559 [2.468] — — 69.055 0.263
(0.209)

Ex 0.036 [0.009] — — 64.738 0.155
(0.807)

GHL 0.037 [0.009] – — 64.592 0.151
(0.833)

EHL 28.874 [7.455] — — 367.295 0.799
(<0.001)

N 27.5467 [5.1793] 20.0593 [3.6623] — 66.2645 0.1897
(0.5885)

The (1 − δ)100% CIs of the parameters α, β, and λ are, respectively, [0.437, 2.410], [0, 7.803], and [0, 0.694].

Regarding Tables 18–20, it is clear that the OEHLIEx model is the best model among
all tested models. Regarding data set I, it is noted that the TrIEx and EHL models work
quite well besides the OEHLIEx model where p-value > 0.05, but we always search for the
most fitting model. Thus, we recommend using the OEHLIEx model to analyze data set I.
Similarly, for dataset III, it is found that the TrIEx, IEx, Ex, and GHL models work quite
well besides the OEHLIEx model, but we also recommend utilizing the OEHLIEx model to
analyze these data.

Figures 3–5 show the empirical estimated CDF “ECDF”, probability–probability (PP),
and fitted PDF “FPDF” plots for data sets I, II, and III, respectively, which support the
results of Tables 18–20. Moreover, it is noted that the datasets plausibly came from the
OEHLIEx model.

Figure 3. The ECDF “left panel”, PP “middle panel”, FPDF “right panel” plots for data set I.
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Figure 4. The ECDF “left panel”, PP “middle panel”, FPDF “right panel” plots for data set II.

Figure 5. The ECDF “left panel”, PP “middle panel”, FPDF “right panel” plots for data set III.

Figures 6–8 show the profiles of the LL function “PLLF” based on data sets I, II, and III.

Figure 6. The PLLF for data set I.
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Figure 7. The PLLF for data set II.

Figure 8. The PLLF for data set III.

Regarding Figures 6–8, it clear that the estimators have a unique solution where the
profiles of the LL function are unimodal shaped. Figure 9 shows the total time in test (TTT)
plots for data sets I, II, and III. It is clear that the datasets suffer from an increasing hazard
rate. Thus, the proposed model can be used to model the HRF for these data sets.

Figure 9. The TTT plots for data I “left panel”, data II “middle panel”, and data III “right panel”.

Table 21 lists some computational statistics for the three datasets by utilizing the
OEHLIEx model.

Based on the model parameters, data sets I and II suffer from under-dispersed phe-
nomena (index of dispersion < 1), whereas data set III suffers from over-dispersion (index
of dispersion > 1). Moreover, data sets I, II, and III represent positive-skewed data with a
platykurtic shape.
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Table 21. Some computational statistics for data sets I, II, and III.

Data Set Mean Variance Index of Dispersion Skewness Kurtosis Entropy

I 1.900 0.496 0.261 0.119 1.278 0.756

II 1.615 0.232 0.144 0.118 1.277 0.931

III 27.546 431.116 15.650 0.185 1.239 1.676

6.2. Dataset IV: Analysis and Discussion Based on Type-II Right Censored Samples

The censored data have been obtained from (http://www.biochemia-medica.com,
accessed on 6 March 2021). They represent the recovery time of 50 patients suffering from
cancer, monthly. The MLEs of the unknown parameters, −LL*, K-S, and p-value for the
proposed model are given in Table 22.

Table 22. The MLE(s) and GoF statistics for data set IV.

Model ↓ Parameter →
MLE(s) [Std-err]

−LL*
K-S

(p-Value)α β β

OEHLIEx 131.228 0.008 0.031 17.691 0.104
(0.611)

IEx 1.575 — — 75.162 0.463
(<0.001)

Ex 0.599 — — 75.561 0.526
(<0.001)

EHL 2.388 — — 52.789 0.394
(<0.001)

GHL 0.862 — — 66.682 0.501
(<0.001)

Depending on −LL*, K-S, and p-values, it is noted that the OEHLIEx model is ap-
propriate to analyze data set IV. The (1 − δ)100% CIs of the parameters α, β, and λ are,
respectively, [126.999, 137.201], [0, 0.019], and [0, 0.107]. Figure 10 shows the TTT and PP
plots based on the type-II right censored sample.

Figure 10. The TTT “left panel” and PP “right panel” plots for data set IV.

According to Figure 10, it is observed that the proposed model fits the data well.
Moreover, the shape of the HRF increases. Table 23 shows some computational statistics
for data IV utilizing the OEHLIEx model.
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Table 23. Some computational statistics for data set IV.

Data Set Mean Variance Index of Dispersion Skewness Kurtosis Entropy

IV 1.667 0.260 0.156 0.324 1.876 1.998

Regarding Table 23, it is noted that the dataset IV suffers from under-dispersed
phenomena which are positive skewed and platykurtic shaped.

7. Conclusions

In this article, a new flexible extension of an extreme distribution with three-parameter
has been proposed, which generalized the inverse exponential distribution. The HRF of
the new extension can be constant, increasing, increasing–constant, or unimodal shaped.
Furthermore, it can be utilized for modelling asymmetric “positive and negative” as well
as symmetric datasets and can be used to model over- and under-dispersed data. Thus,
the new extension can be used effectively to model different kinds of data in several fields.
The model parameters have been estimated utilizing the MLE approach. A simulation has
been performed for different samples sizes, and it was found that the MLE technique works
quite well for estimating the parameters for datasets considered herein. Finally, four data
applications which illustrate the flexibility of the new extension and its excellence over
other models have been also analyzed.
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Abstract: The importance of proper tail risk management is a crucial component of the investment
process and conditional Value at Risk (CVaR) is often used as a tail risk measure. CVaR is the asym-
metric risk measure that controls and manages the downside risk of a portfolio while symmetric risk
measures such as variance consider both upside and downside risk. In fact, minimum CVaR portfolio
is a promising alternative to traditional mean-variance optimization. However, there are three major
challenges in the minimum CVaR portfolio. Firstly, when using CVaR as a risk measure, we need
to determine the distribution of asset returns, but it is difficult to actually grasp the distribution;
therefore, we need to invest in a situation where the distribution is uncertain. Secondly, the mini-
mum CVaR portfolio is formulated with a single β and may output significantly different portfolios
depending on the β. Finally, most portfolio allocation strategies do not account for transaction costs
incurred by each rebalancing of the portfolio. In order to improve these challenges, we propose a
Regularized Multiple β Worst-case CVaR (RM-WCVaR) portfolio. The characteristics of this portfolio
are as follows: it makes CVaR robust with worst-case CVaR which is still an asymmetric risk measure,
it is stable among multiple β, and against changes in weights over time. We perform experiments
on well-known benchmarks to evaluate the proposed portfolio.RM-WCVaR demonstrates superior
performance of having both higher risk-adjusted returns and lower maximum drawdown.

Keywords: RM-WCVaR; tail risk; portfolio optimization

1. Introduction

The problem of finding the optimum portfolio for investors is known as a portfo-
lio optimization problem. The portfolio optimization problem has been an important
research theme, both academically and practically as it is a crucial part of managing risk
and maximizing returns from a set of investments. The classical portfolio optimization
approach is mean-variance optimization (MVO), which mainly concerns the expectation
and variability of return (i.e., mean and variance [1]). Although the variance would be
the most fundamental risk measure to be minimized, it has a crucial drawback: variance
is a symmetric risk measure. Controlling the variance leads to a low deviation from the
expected return with regard to both the downside and the upside.

Hence, asymmetric risk measures such as the Value-at-Risk (VaR) measure, which
controls and manages the downside risk in terms of percentiles of the loss distribution of
portfolio, have been proposed [2].

Instead of considering both the upside and downside of the expected return, the VaR
risk measure focuses on only the downside of the expected return as the risk and represents
the predicted maximum loss with a specified confidence level β (e.g., 99%). VaR became
so popular that it was approved as a valid approach for calculating risk charges by bank
regulators such as the Basel Accord II [3].

However, the VaR measure, if studied in the framework of coherent risk measures [4],
lacks subadditivity, and, therefore, convexity in the case of general loss distributions.
This drawback entails both inconsistencies with the well-accepted principle of portfolio

Symmetry 2021, 13, 922. https://doi.org/10.3390/sym13060922 https://www.mdpi.com/journal/symmetry39



Symmetry 2021, 13, 922

diversification, i.e., diversification reduces risk. The VaR risk measure is non-convex and
not smooth, making it difficult to optimize [5]. To reduce the computational burden of
minimizing VaR, ref. [5] proposed a new mixed integer LP optimization based on the
symmetric property of VaR. Besides, both variance and VaR ignore the magnitude of
extreme or rare losses by their definition. Both risk measures cannot deal with extremely
unlikely, but potentially catastrophic, events i.e., managing the tail risk [6].

The Conditional VaR (CVaR) risk measure responds to the aforementioned drawbacks
of variance and VaR. CVaR is defined as the expected value of the portfolio loss that occurs
beyond a certain probability level β. Obviously, CVaR is a more conservative risk measure
than VaR. In [7], it was proven that the CVaR risk measure is a coherent risk measure
that exhibits subadditivity and convexity. Additionally, the minimum CVaR portfolio that
minimizes the CVaR results in a tractable optimization problem [8,9]. For example, when
the portfolio loss is defined as the minus return of the portfolio, and a finite number of
historical observations of returns are used in estimating CVaR, its minimization problem
can be presented as a Linear programming (LP) optimization and can be solved efficiently.
The minimum CVaR portfolio is a promising alternative to MVO for those reasons. In fact,
the effectiveness of CVaR in portfolio construction designs has been demonstrated in a
large number of recently published contributions, including index tracking and enhanced
indexing [10–12].

However, there are three major challenges in the minimum CVaR portfolio. Firstly,
when using CVaR as a risk measure, we need to determine the distfribution of asset returns,
but it is difficult to actually grasp the distribution; therefore, we need to invest in a situation
where the distribution is uncertain [13–15]. Secondly, the minimum CVaR portfolio is
formulated with a single β and may output significantly different portfolios depending
on how the β is selected [16]. In the context of MVO, this is called error maximization,
which is the phenomenon that even small changes in the inputs can result in huge changes
in the whole portfolio structure [17]. Thirdly, most portfolio optimization strategies do
not account for transaction costs incurred by each rebalancing of the portfolio [18]. When
buying and selling assets on the markets, commissions and other costs are incurred, such
as globally defined transaction costs that are charged by the brokers or the financial
institutions serving as intermediaries. Most of these transaction costs are incurred for
portfolio turnovers. Transaction costs represent the most important feature to consider
when selecting a real portfolio, given that they diminish net returns and reduce the amount
of capital available for future investments [19].

The objective of this study is to propose a new tail risk-controlling portfolio con-
struction method that addresses the above challenges and to confirm its performance. In
this paper, we propose Regularized Multiple β Worst-case CVaR (RM-WCVaR) Portfolio
Optimization. The characteristics of our portfolio are as follows. It makes CVaR robust
with worst-case CVaR (WCVaR), which is an asymmetric risk measure and used in sit-
uations where the information on the underlying probability distribution is not exactly
known [14,15]. Our portfolio is formulated with the multiple probability levels β of WC-
VaR not to depend on a single β level. Finally, to control transaction costs, we add the
L1-regularization term on the portfolio as stated in [18,20]. However, unlike these studies,
we impose L1-norm penalty on portfolio turnovers rather than portfolio weights.

We also prove that the RM-WCVaR Portfolio Optimization problem is written as an
LP optimization problem such as the single β-CVaR and WCVaR portfolio. We perform ex-
periments on well-known benchmarks to evaluate the proposed portfolio. Compared with
various portfolios, our portfolio demonstrates superior performance of having both higher
risk-adjusted returns and lower maximum drawdown despite the lower turnover rate.

In the following sections, we first review the existing methods in Section 2. We formu-
late the VaR, CVaR, and WCVaR risk measures and the portfolio optimization with them in
Section 3 and then, we propose the RM-WCVaR Portfolio in Section 4 and investigate the
empirical effectiveness of the our portfolio in Section 5. Finally, we conclude in Section 6.
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2. Related Work

MVO assumes that investment decisions on getting a diversified portfolio depend
on the two inputs: expected returns and the covariances of asset returns. However, as the
estimation errors, mainly in expected return parameters, are amplified by optimization and
then propagate into the solution of the optimization, extreme portfolio weights and a lack
of diversification are commonly observed. This phenomenon has eventually ruined the
out-of-sample performance of MVO [17,21]. To date, many efforts have been expended to
handle the estimation risk on the parameter uncertainty. In order to reduce estimation error,
the conventional regularization models have been applied for the MVO by [18,20]. They
demonstrated superior portfolio performances when various types of norm regularities
are combined into the optimization problem. Analogously, ref. [22] considered L1 and
L2-norms for the mean-CVaR portfolio and [16] considered L1-norms for the multiple CVaR
portfolio. Our paper extends this regularization literature to a multiple WCVaR Portfolio.

Robust portfolio optimization is another approach considering the estimation error
and has been receiving increased attention [23]. Recently, ref. [24] proposed a robust
portfolio optimization approach based on quantile statistics. Robust optimization also
has been adopted on the other portfolio optimization problems. In [13], robust portfolio
optimization using worst-case VaR was investigated, where only partial information on
the distribution was known. In [15], the concept of WCVaR was introduced for the situa-
tion where the probability distributions are only partially known, and the properties of
WCVaR are studied, such as coherency. Another approach is using a semi-nonparametric
distribution, which may asymptotically capture the true density. This approach has been
successfully tested for CVaR [25,26]. Our paper extends this robust portfolio optimization
literature to a multiple β WCVaR portfolio.

Another direction to reduce the estimated error is to construct a risk-based portfolio
that does not use expected returns. The minimum variance portfolio [27], risk parity
portfolio [28,29], and maximum diversification portfolio [30] have been proposed as rep-
resentative risk-based portfolio construction methods. The risk-based portfolio has the
desirable property that the portfolio and its performance do not change greatly in response
to changes to inputs [31,32]. Furthermore, an extension of each of them has been proposed
such as minimum VaR and CVaR portfolio [33], risk and complex risk diversification
portfolio [34,35] and higher order risk based portfolio [36]. Various empirical analyses and
backtests of stock portfolios and asset allocations have shown better performance than
mean-variance portfolios and market capitalization-weighted portfolios [37]. Our paper
adds a minimum WCVaR-based portfolio to this risk-based portfolio construction literature.

3. Preliminary

In this section, we define VaR, CVaR, and WCVaR. After which, we formulate a
minimum WCVaR portfolio optimization problem. Let rj be the return of stock j (1 ≤
j ≤ n) and wj be the portfolio weight for stock j. We denote r = (r1, ..., rn)� and w =

(w1, ..., wn)�. Here, rj is a random variable and follows the continuous joint probability
density function p(r). L(w, r) refers to portfolio loss function and throughout this paper,
we assume L(w, r) = −w�r. The probability that the loss function is less than α is

Φ(w, α) =
∫

L(w,r)≤α
p(r)dr (1)

When the portfolio weight w is fixed, Φ(w, α) which is the function of α is non-
decreasing and is continuous from the right, but is generally non-continuous from the left.
For simplicity, we assume that Φ(w, α) is a continuous function with respect to α. We can
define VaR and CVaR as follows.

Definition 1.

VaR(w|β) := α(w|β) = min(α : Φ(w, α) ≥ β) (2)
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Definition 2.

CVaR(w|β) := φ(w|β) (3)

= (1 − β)−1
∫

L(w,r)≥α(w|β)
L(w, r)p(r)dr

Ref. [4] proposed the coherent risk measure, which characterizes the rationale of
risk measure.

Definition 3. The risk measure ρ that maps random loss X to a real number and satisfies the
bellow four conditions is called a coherent risk measure.

Subadditivity: for all random losses X and Y , ρ(X + Y) ≤ ρ(X) + ρ(Y)

Positive homogeneity: for positive constant a ∈ R+, ρ(aX) = aρ(X)

Monotonicity: if X ≤ Y for each outcome, then ρ(X) ≤ ρ(Y)

Translation invariance: for constant m ∈ R, ρ(X + m) = ρ(X) + m

It is well known that CVaR is a coherent risk measure and VaR is not a coherent risk
measure as it does not satisfy the Subadditivity [6].

Next, we consider WCVaR. Rather than assuming exact knowledge of the return vector
r distribution, we presume that the density function p(·) is only considered to belong to a
certain set P of distributions, i.e., p(·) ∈ P.

The concept of the WCVaR is introduced in [15] as follows:

Definition 4.

WCVaR(w|β) := sup
p(·)∈P

CVaR(w|β) (4)

Ref. [15] have shown that the WCVaR is a coherent risk measure as well as CVaR.
Hereafter, we assume that the return vector’s distribution is only considered to be-

long to a set of distributions that includes all mixtures of any predetermined density
distributions, i.e.,

PM = {
l

∑
i=1

λi p(i); λi ≥ 0,
l

∑
i=1

λi = 1, i = 1, . . . , l} (5)

where p(i)(·) denotes the i-th density distribution, and l denotes the number of the den-
sity distributions.

Since it is difficult to handle when the set P contains an infinite number of p(i)(·), we
consider approximating P with a convex linear combination of a finite number of p(i)(·).
In this study, the mixture of density distributions PM is represented by blocks of divided
empirical distributions.

To compute the WCVaR, we define the auxiliary function Fi(w, α|β) as

F(i)(w, α|β) = α + (1 − β)−1
∫

Rn
[−w�r − α]+p(i)(r)dr (6)

where i = 1, . . . , l and [t]+ := max(t, 0). Then, the following lemma holds.

Lemma 1 (Ref. [15]). For an arbitrarily fixed w and β, WCVaR(w|β) with respect to PM is
given by

WCVaR(w|β) = min
α

max
i∈L

F(i)(w, α|β) (7)

where L = {1, . . . , l}.
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Moreover, denote
FL(w, α|β) = max

i∈L
F(i)(w, α|β) (8)

Minimizing the WCVaR(w|β) overall w ∈ X is equivalent to minimizing FL(w, α|β) overall
(w, α) ∈ X × R, in the sense that

min
w∈X

WCVaR(w|β) = min
(w,α)∈X×R

FL(w, α|β) (9)

From now on, we discuss the computational aspect of minimization of WCVaR.
Lemma 1 helps us to translate the minimization problem to a more tractable one. The
WCVaR minimization is equivalent to the following problem:

Problem 1.

min
(w,α,C)∈X×R×R

C (10)

s.t. α + (1 − β)−1
∫

Rn
[−w�r − α]+p(i)(r)dr ≤ C, (i = 1, . . . , l) (11)

We approximate the function F(i)(w, α|β) by sampling a random variable r(i), i =
1, . . . , l from the density function p(i)(·). r(i)[q] is the q-th sample with respect to the i-th
density distribution p(i)(·), and Ni ⊆ {1, . . . , N} denotes the set of corresponding samples.
The auxiliary function F(i)(w, α|β) is approximated as follows.

F(i)(w, α|β) � α + (|Ni|(1 − β))−1 ∑
q∈Ni

[−w�r(i)[q]− α]+ (12)

Finally, we can formulate the minimum WCVaR portfolio as a linear programming
problem, as shown below.

Problem 2.

min
w,α,tiq

C (13)

s.t.α +
(∣∣∣N (i)

∣∣∣(1 − β)
)−1

∑
q∈Ni

tiq ≤ C (i = 1, . . . , l) (14)

tiq ≥ −w�r(i)[q]− α (i = 1, . . . , l, q ∈ Ni) (15)

tiq ≥ 0 (i = 1, . . . , l, q ∈ Ni) (16)

4. Regularized Multiple β WCVaR Portfolio Optimization

In this section, we propose a RM-WCVaR portfolio that takes into account the mul-
tiple β WCVaR values and portfolio turnover. Our approach is similar in spirit to that
of [38], given that our approach estimates the simultaneously approximating multiple
conditional quantiles.

The intuition behind the formulation is to minimize the max margin among multiple
β levels of WCVaR (Figure 1). Figure 1 illustrates it where βk = {0.97, 0.98, 0.99} and each
WCβk is given as a solution to Problem 1.

Here, WCβk , k = 1, . . . , K is the value of WCVaR obtained by solving Problem 2. Then,
we minimized C, considering that WCβk is a main problem in this paper.
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Figure 1. The intuition behind the formulation of RM-WCVaR portfolio (Problem 3).

Problem 3.

min
(w,C)∈X×R

C (17)

s.t.WCVaR(w|βk) ≤ C + WCβk (k = 1, . . . , K) (18)

As in Lemma 1, We define FL(w, αk|βk) = maxi∈L F(i)(w, αk|βk). Then, Problem 3 can
be written as follows.

Problem 4.

min
(w,C)∈X×R

C (19)

s.t. min
αk

FL(w, αk|βk) ≤ C + WCβk (k = 1, . . . , K) (20)

Thereafter, we consider the following Problem 5.

Problem 5.

min
(w,C,α)∈X×R×RK

C (21)

s.t.FL(w, αk|βk) ≤ C + WCβk (k = 1, . . . , K) (22)

where α = (α1, · · · , αK)
�.

According to the Lemma 2, Problem 3 and 5 are equivalent.

Lemma 2.

1. If (w∗, C∗) is the optimal value for Problem 4, then (w∗, C∗, α∗) is the optimal value of
Problem 5.

2. If (w∗∗, C∗∗, α∗∗) is the optimal value for Problem 5, then (w∗∗, C∗∗) is the optimal value for
Problem 4.

Proof. Assume that (w∗, C∗) is the optimal value for Problem 4. Given that (w∗, C∗) is a
feasible solution of Problem 4, minαk FL(w∗, αk|βk) ≤ C∗ + WCβk holds. We defined α∗k =

(α∗1, . . . , α∗K)� as α∗k := argminαk∈RFL(w∗, αk|βk)(k = 1, . . . , K). Then, (w∗, C∗, α∗) became
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a feasible solution of Problem 5 since FL(w∗, α∗k
∣∣βk

) ≤ C∗ + WCβk holds. If (w∗, C∗, α∗) is
not the optimal solution of Problem 5, there exists a feasible solution (ŵ, Ĉ, α̂) satisfying
Ĉ < C∗. Then, minαk∈RFL(ŵ, αk|βk) ≤ FL(ŵ, α̂k|βk) ≤ Ĉ + WCβk (k = 1, . . . , K) holds.
Therefore, (ŵ, Ĉ) is a feasible solution of Problem 4, thereby contradicting that C∗ is the
optimal solution of Problem 4. Therefore, (w∗, C∗, α∗) is the optimal solution. Assume that
(w∗∗, C∗∗, α∗∗) is the optimal value for Problem 5. Then, because (w∗∗, C∗∗, α∗∗) is a feasible
solution of Problem 5, FL(w∗∗, α∗∗k

∣∣βk
) ≤ C∗∗ + WCβk (k = 1, . . . , K) holds. (w∗∗, C∗∗) is

a feasible solution for Problem 4 given that minαk∈RFL(w∗∗, αk|βk) ≤ FL(w∗∗, α∗∗k

∣∣βk
) ≤

C∗∗ + WCβk (k = 1, . . . , K) holds. If (w∗∗, C∗∗) is not the optimal solution of Problem 4,
there exists a feasible solution (ŵ, Ĉ) satisfying Ĉ < C∗∗. We defined α̂ = (α̂1, . . . , α̂K)

� as
α̂k := arg min

αk

FL
βk
(ŵ, αk). Then, (ŵ, Ĉ, α̂) became a feasible solution of Problem 5, thereby

contradicting that C∗∗ is the optimal solution of Problem 5. Therefore, (w∗∗, C∗∗) is the
optimal solution.

Here, r(i)[q] is the q-th sample with respect to the i-th density distribution p(i)(r), and
Ni denotes the set of corresponding samples. The function F(i)(w, αk|βk) is approximated
as follows.

F̃(i)(w, αk|βk) � αk +
1

|Ni|(1 − βk)
∑

q∈Ni

[−w�r(i)[q]− αk]
+ (23)

Finally, we derive the RM-WCVaR Portfolio, where the objectives are minimizing
multiple WCVaR values and also controlling the portfolio turnover. Controlling the port-
folio turnover is realized through imposing the L1-regularization term as ‖w − w−‖1 =

∑n
j=1 |wj − w−

j | where w−
i denotes the portfolio weight before rebalancing.

Based on the above discussion, the RM-WCVaR Portfolio Optimization problem can
be formulated as follows:

Problem 6.

min
(w,C,α)∈X×R×RK

C + λ‖w − w−‖1 (24)

s.t.F̃(i)(w, αk|βk) ≤ C + WCβk

(i = 1, . . . , l, k = 1, . . . , K) (25)

We can easily prove that Problem 6 is a linear programming problem similar to the
usual CVaR minimization problem.
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Theorem 1. The Regularized Multiple β WCVaR Portfolio Optimization problem is equivalent to
the following linear programming problem.

min
C,w,α,t,u

C +
n

∑
j=1

uj

s.t. uj ≥ λ
(

wj − w−
j

)
uj ≥ −λ

(
wj − w−

j

)
tiqk ≥ 0

tiqk ≥ −w�r(i)[q]− αk

αk +
1

|Ni|(1 − βk)
∑

q∈Ni

tiqk ≤ C + WCβk

(i = 1, . . . , l, k = 1, . . . , K)

1�w = 1

wj ≥ 0 (j = 1, ..., n)

Proof. Using a standard approach in optimization, we can replace the absolute value term
λ‖w − w−‖1 in the objective function with u ≥ λ(w − w−) and u ≥ −λ(w − w−) in the
constraint. Thereafter, the objective and constraints all became linear.

The Algorithm 1 summarizes the sequential procedure of the RM-WCVaR portfolio.

Algorithm 1 Regularized Multiple β WCVaR Portfolio Optimization.

Input: K probability levels βk ∈ (0, 1) (k = 1, . . . , K),
Coefficient of the regularization term λ ∈ R>0,
Number of blocks of a partition l ∈ Z>0 and
Return matrix Rt ∈ Rn×N (t = 1, . . . , T)

Output: Set of optimal weights W = {wt ∈ Rn}T
t=1

1: for t = 1, . . . , T do
2: Calculate WCβk via solving Problem 2 (k = 1, . . . , K).
3: Randomly divide the set {1, . . . , N} into blocks of a partition {Ni}l

i=1 s.t. |Ni| = N
l

(i = 1, . . . , l)
4: w− ← wt−1
5: Solve the linear programming introduced in

Theorem 1
6: Add to the output set W the solution w∗ as wt
7: end for
8: return W

5. Experiment

In this section, we report the results of our empirical experiment with well-known
benchmarks in finance.

5.1. Dataset

In the experiments, we use well-known academic benchmarks called Fama and French
(FF) datasets [39] to ensure the reproducibility of the experiment. This FF dataset is public
and is readily available to anyone (https://mba.tuck.dartmouth.edu/pages/faculty/ken.
french/data_library.html). The FF datasets have been recognized as standard datasets
and are heavily adopted in finance research because of their extensive coverage of asset
classes and very long historical data series. We use FF25, FF48 and FF100 dataset. For
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example, the FF25 and FF100 dataset include 25 and 100 portfolios formed based on size
and book-to-market ratio, while the FF48 dataset contains monthly returns of 48 portfolios
representing different industrial sectors. We use all datasets as monthly data from January
1989 to June 2020.

5.2. Experimental Settings

In our experiment, we use the following portfolio models.

• “EW” stands for equally-weighted (EW) portfolio [40].
• “MV” stands for minimum-variance portfolio. We use the latest 10 years (120 months)

to compute for the sample covariance matrix [41].
• “DRP” stands for the doubly regularized minimum-variance portfolio [18]. We use the

latest 10 years (120 months) to compute for the sample covariance matrix. We set com-
binations of two coefficients for regularization terms to λ1 = {0.001, 0.005, 0.01, 0.05}
and λ2 = {0.001, 0.005, 0.01, 0.05}.

• “EGO” stands for the Kelly growth optimal portfolio with ensemble learning [42].
We set n1 (number of resamples) = 50, n2 (size of each resample) = 5τ, τ (number of
periods of return data) = 120, n3 (number of resampled subsets) = 50, n4 (size of each
subset) = n0.7, where n is number of assets (i.e., n = 25, 48, 100).

• “RMCVaR” stands for the regularized multiple CVaR portfolio [16]. We set K = 5
(k = 1, . . . , K) as five patterns of βk = {0.95, 0.96, 0.97, 0.98, 0.99} to calculate Cβk . We
also set Q (number of sampling periods of return data) as 10 years (120 months).
For the coefficient of the regularization term, we implemented four patterns of
λ = {0.001, 0.005, 0.01, 0.05}.

• “WCVaR” stands for minimum WCVaR portfolio with β (Problem 2). We implemented
five patterns of β = {0.95, 0.96, 0.97, 0.98, 0.99}. We used the latest 50 years’ (N = 600
months) data and split them randomly into l ∈ {1, 2, . . . , 10} divisions.

• “AWCVaR” stands for the average portfolio calculated by the simple average of
minimum WCVaR portfolio of different β = {0.95, 0.96, 0.97, 0.98, 0.99} at each month.

• “RM-WCVaR” stands for our proposed portfolio. We set K = 5 (k = 1, . . . , K) as
five patterns of βk = {0.95, 0.96, 0.97, 0.98, 0.99} to calculate WCβk . We use the latest
50 years’ (N = 600 months) data and split them randomly into l ∈ {1, 2, . . . , 10}
divisions. For the coefficient of the regularization term, we implement four patterns
of λ = {0.001, 0.005, 0.01, 0.05}. The RM-WCVaR Portfolio presented in Algorithm 1 is
straightforward in terms of implementation.

We use the first-half period, i.e., from January 1989 to December 2004, as the in-sample
period in terms of deciding the hyper-parameters of each portfolio. After that, we use the
second half-period, i.e., from January 2005 to June 2020, as the out-of-sample period. Each
portfolio is updated by sliding one-month-ahead.

5.3. Performance Measures

The following measures widely used in finance to evaluate portfolio strategies [43]
are chosen. The portfolio return at time t is defined as Rt = ∑n

j=1 rj,twj,t−1 where rj,t is the
monthly return of j asset at time t, wj,t−1 is the weight of j asset in the portfolio at time
t − 1, and n is the total number of assets.

The annualized return (AR), annualized risk as the standard deviation of return (RISK),
and risk-adjusted return (R/R) are defined as follows:

AR =
12
T

×
T

∑
t=1

Rt, (26)

RISK =

√√√√ 12
T − 1

×
T

∑
t=1

(Rt − μ̂)2, μ̂ = 1/T ×
T

∑
t=1

Rt, (27)

R/R = AR/RISK. (28)
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Among them, R/R is the most important measure for a portfolio strategy. We also
evaluate the maximum draw-down (MaxDD), which is another widely used risk mea-
sure [44] for the portfolio strategy. In particular, MaxDD is the largest drop from a peak
defined as

MaxDD = min
t∈[1,T]

(
0,

Wt

maxτ∈[1,t] Wτ
− 1

)
, (29)

where Wk is the cumulative return of the portfolio until time k; that is, Wt = ∏t
t′=1(1 + Rt′).

The turnover (TO) indicates the volumes of rebalancing [18]. Since a high TO inevitably
generates high explicit and implicit trading costs, the portfolio return tends to be reduced.
The TO is a proxy for the transaction costs of the portfolio. The one-way annualized
turnover is calculated as an average absolute value of the rebalancing trades over all the
trading periods:

TO =
12

2(T − 1)

T−1

∑
t=1

||wt − w−
t ||1 (30)

where T − 1 indicates the total number of the rebalancing periods and w−
t = wt−1⊗(1+rt)

1+w�
t−1rt

is

the re-normalized portfolio weight vector before rebalance. Here, rt is the return vector of
the assets at time t, wt−1 is the weight vector at time t − 1, and the operator ⊗ denotes the
Hadamard (element-wise) product.

5.4. Experimental Results

Tables 1–3 reports the overall performance measures of RM-WCVaR Portfolio, our
proposed portfolio, and the 11 compared portfolios introduced in the Experimental Settings
section for FF25, FF48, and FF100 dataset. The out-of-sample period is from January 2005
to June 2020. Among the comparisons of the various portfolios, the best performance is
highlighted in bold.

Table 1 shows that the RM-WCVaR Portfolio outperformed all the compared portfolios
in all performance measures. It achieved the highest AR and R/R and the lowest RISK,
MaxDD and TO.

Table 1. The out-of-sample performance of each portfolio for FF25 dataset.

FF25 AR[%] ↑ RISK[%] ↓ R/R↑ MaxDD[%] ↓ TO[%] ↓
EW 8.92 18.60 0.48 −54.12 12.36

MV 9.75 14.34 0.68 −50.69 33.10

DRP 9.74 14.35 0.68 −50.72 9.35

EGO 8.64 19.59 0.44 −57.26 76.52

RMCVaR 9.65 15.50 0.62 −49.59 34.96

AWCVaR 9.14 16.03 0.57 −55.82 23.11

WCVaR

95% 9.12 16.56 0.55 −54.23 18.19

96% 9.01 15.82 0.56 −53.29 20.82

97% 9.01 15.94 0.56 −57.11 26.00

98% 9.41 16.04 0.58 −55.91 22.41

99% 9.08 16.15 0.56 −58.43 31.22

RM-WCVaR 10.44 14.26 0.73 −45.26 8.12

Performance measures are the annualized return (AR), annualized risk (RISK), annualized return–risk ratio (R/R),
maximum drawdown (MaxDD) and turnover rate (TO). The out-of-sample period is from January 2005 to June
2020. Among the comparisons of the various portfolios, the best performance is highlighted in bold.

In Table 2, we can see the RM-WCVaR Portfolio had the best AR, R/R, MaxDD and
TO. Only the RISK was the best for the DRP portfolio.
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Table 2. The out-of-sample performance of each portfolio for FF48 dataset.

FF48 AR[%] ↑ RISK[%] ↓ R/R↑ MaxDD[%] ↓ TO[%] ↓
EW 9.36 17.12 0.55 −52.90 22.03

MV 8.86 12.77 0.69 −43.84 28.48

DRP 8.78 12.20 0.72 −38.92 17.15

EGO 11.11 20.61 0.54 −57.39 79.60

RMCVaR 8.27 12.82 0.65 −38.28 129.31

AWCVaR 11.70 13.01 0.90 −42.60 39.44

WCVaR

95% 11.43 13.29 0.85 −42.65 43.98

96% 10.95 13.25 0.83 −43.56 41.38

97% 11.28 13.14 0.86 −41.58 37.66

98% 12.12 13.15 0.92 −44.35 44.27

99% 12.77 13.21 0.97 −40.91 40.84

RM-WCVaR 14.48 14.63 0.99 −36.66 7.87

Performance measures are the annualized return (AR), annualized risk (RISK), annualized return–risk ratio (R/R),
maximum drawdown (MaxDD) and turnover rate (TO). The out-of-sample period is from January 2005 to June
2020. Among the comparisons of the various portfolios, the best performance is highlighted in bold.

In Table 3, the RM-WCVaR Portfolio had the best AR, R/R, and MaxDD. The TO for
the RM-WCVaR portfolio was the second lowest after the EW portfolio.

Table 3. The out-of-sample performance of each portfolio for FF100 dataset.

FF100 AR[%] ↑ RISK[%] ↓ R/R↑ MaxDD[%] ↓ TO[%] ↓
EW 8.86 18.87 0.47 −54.53 16.18

MV 9.47 14.13 0.67 −50.69 39.10

DRP 9.92 14.42 0.69 −51.23 19.20

EGO 8.66 20.12 0.43 −57.79 78.65

RMCVaR 9.87 15.42 0.64 −49.97 35.20

AWCVaR 8.74 16.33 0.54 −43.02 23.27

WCVaR

95% 7.82 16.59 0.47 −40.19 18.31

96% 9.09 16.44 0.55 −37.12 20.97

97% 9.10 16.55 0.55 −40.74 26.18

98% 9.63 16.14 0.60 −43.89 22.57

99% 8.04 16.59 0.48 −52.50 31.44

RM-WCVaR 14.26 20.67 0.69 −37.10 18.00
Performance measures are the annualized return (AR), annualized risk (RISK), annualized return–risk ratio (R/R),
maximum drawdown (MaxDD) and turnover rate (TO). The out-of-sample period is from January 2005 to June
2020. Among the comparisons of the various portfolios, the best performance is highlighted in bold.

In all datasets, the proposed RM-WCVaR Portfolio achieved the highest AR and R/R,
and the lowest MaxDD.

Unsurprisingly, the RM-WCVaR Portfolio was different from ACVaR, which is the
simple average of five probability levels’ WCVaR portfolios. RM-WCVaR Portfolio also
exceeded the individual β levels of WCVaR portfolios in terms of AR, R/R, MaxDD and TO.
This is because the RM procedure implies a minimization of the maximum margin among
multiple WCVaR levels, which enables more efficient portfolio construction. Analyzing the
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relationship between the margin level and performance of RM-WCVaR is an important
future task.

Therefore, we can confirm that the RM-WCVaR Portfolio has high R/R and avoids a
large drawdown despite the lower turnover rate. Since the TO is the lowest of all compared
portfolios, the results do not change when transaction costs are taken into account. We
consider the RM-WCVaR portfolio to have had a good R/R because it reduced tail risk,
resulting in lower drawdowns and higher returns.

6. Conclusions

Our study makes the following contributions. We propose a Regularized Multiple β
WCVaR Portfolio, which solves three challenges in the minimum CVaR portfolio. We prove
that the optimization problem reduces to a linear programming problem. We perform
experiments on well-known benchmarks in finance to evaluate our proposed portfolio.
Our portfolio shows superior performance in terms of having both higher risk-adjusted
returns and lower maximum drawdown despite the lower turnover rate.

Directions of promising future work include (1) constructing a more sophisticated
mixture distribution by assuming a probability distribution as in [15], rather than a simple
empirical distribution in this study, (2) directly using a semi-nonparametric distribution
capturing true CVaR as in [25,26] instead of WCVaR, and (3) obtaining a higher R/R by
incorporating the expected return into our proposed portfolio.
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Abstract: This article considers an inventory model for non-instantaneous deteriorating items with
expiration dates, such as seasonal items, first-hand vegetables, and fruits. Interestingly, an inspection
will be performed to manage the quality of the items during the state of no deterioration because it is
difficult to purchase items with 100% perfection. Additionally, we assume that the upstream member
has the power of controlling or influencing downstream members’ decisions. That is, the supplier
asks the retailer for a partial advance payment to avoid cancellation of orders and offers them a
credit payment to stimulate sales; in turn, the customer must pay some cash when placing an order
and pay the remainder in credit for the retailer. The goal of this article is to determine an optimal
replenishment cycle and the total annual cost function, so we explore the functional properties of
the total annual cost function and show that the total annual cost function is convex. Theoretical
analysis of the optimal properties shows the existence and uniqueness of the optimal solution. Then,
we obtain simple and easy solution procedures for the inventory system. Moreover, numerical
analysis of the inventory model is conducted, and the corresponding examples are considered with
a view to illustrating the application of the supply chain model that we have investigated in this
article. Finally, in the concluding section, we have not only provided the motivation and the need for
our usages of mathematical analytic solution procedures based upon the convexity, monotonicity
(increasing and decreasing) and differentiability properties of the object function (that is, the total
annual cost function), which involve some symmetry aspects of the object function, but we have also
indicated the limitations and shortcomings in our investigation, which will naturally lead to some
potential directions for further research on the supply chain model, which we have considered and
mathematically analyzed in this article.

Symmetry 2021, 13, 1695. https://doi.org/10.3390/sym13091695 https://www.mdpi.com/journal/symmetry53
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Keywords: inventory modeling; mathematical analytic solution procedures; economic order quantity
(EOQ) model; deteriorating products; imperfect quality; hybrid payment policy; non-instantaneous
deterioration; expiration date; trade credit financing; permissible delay in payments; object function
(that is total annual cost function); supply chain management

1. Introduction

In today’s competitive business environment, more than 80% of businesses offer
their products on various short-term, interest-free credit terms (that is, a credit payment)
with a view to stimulate sales and to reduce inventory in the United Kingdom and the
United States of America. Likewise, trade credit financing is used by approximately 60% of
international trade transactions, rendering it to be the second after that of banks and other
financial institutions in the United States of America. Additionally, in order to avoid the
risk of order cancellation and non-payment risks, the business frequently offers a partial
credit period to the downstream members, who must pay a portion of the procurement
amount at the time of placing an order and then receive a permissible delay on the rest of
the outstanding amount (that is, a cash-credit payment). On the other hand, granting trade
credit increases not only the opportunity loss, but also the default risk from the viewpoint
of the business, so the powerful businesses may ask the downstream members to prepay
the entire or a fraction of the procurement amount before the delivery to mitigate interest
loss and default risks (that is, an advance payment). For example, insurance companies
generally require an advance payment in order to extend coverage to the insured party.

In existing literatures, Zhang [1] proposed an advance payment plan because it may
save time and money for a customer to prepay, for example 80.00 USD for 4 months of
water bills, instead of paying 20.00 USD each month for 4 months. All the above mentioned
payment types can be combined such that, for example, the supplier demands the retailer
to prepay 5 to 10% of the total procurement cost as a good-faith deposit when both sign
a contract of agreement to install some item(s). Upon delivery of the item(s), a cash-
on-delivery payment to cover the supplier’s cost of the item(s) is then required. In this
contractual arrangement, the retailer will pay the remainder of the total cost after the work
is completed.

In reality, the deteriorating items have a maximum lifetime due to their physical
nature and must be disposed of after the expiration date, due to the fact that consumers
evaluate the freshness of a deteriorating item by checking its expiration date before making
a purchase, and the willingness to purchase a deteriorating item decreases throughout its
shelf-life. Furthermore, the expiration date is the most important factor that is time-bound
and plays an important role in developing the inventory model. In practice, most of the
products maintain their quality or original situation over a span; that is, during this span,
deterioration does not occur, and then they begin to deteriorate in the next period. It is
observed that foodstuffs, first-hand vegetables, and fruits have a short span during which
fresh quality is maintained and there is almost no spoilage. These processes are defined as
the non-instantaneous deterioration of the product.

The quality of the products is considered to be another direct factor to affect a con-
sumer’s purchase decision as well. Furthermore, this article assumes that the retailer
receives the items with a time-varying deterioration rate depending on its expiration date,
such as seasonal products, and that an inspection will occur during the state of no deterio-
ration in order to manage the quality of the products. By performing the screening process,
the retailer detects the imperfect items and throws them out.

In this article, we first establish an inventory model for non-instantaneous deteriorat-
ing items with expiration dates and imperfect quality in which we assume a 100% screening
process to identify imperfect items. We then consider that the supplier asks the retailer to
prepay a fraction of the procurement cost when signing a contract to buy products, to pay
another fraction of the procurement cost in cash upon receiving the ordered quantity, and
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to receive a short-term interest-free credit term on the remaining procurement cost (that is,
an advance-cash-credit payment). Likewise, the retailer gives the customer the opportunity
to pay a fraction of the procurement cost after delivery of the ordered items and then to pay
the remaining procurement cost at a later date without any additional charges to reduce the
risk of cancellations of the order from customers (that is, a cash-credit payment). It is worth
mentioning that, by the usage of the mathematical analytic solution procedures, the present
article shows that the total annual cost function is convex by exploring the functional
properties of the total annual cost function such as, for example, the continuity, convexity,
monotonicity (increasing and decreasing), and differentiability properties, whereby one
can also see the symmetry aspects of the total annual const function. Furthermore, by
applying the mathematical analytic solution procedures again, we prove that the retailer’s
optimal replenishment cycle not only exists, but it also is unique. With a view to illustrating
and validating the proposed inventory model, we have considered numerical examples
involving different fixed markup rates. Finally, in the concluding section of this article
(Section 6), we have briefly discussed the limitations and shortcomings of this investigation
in that we have concentrated upon the inventory system without shortage and that it can
affect the supply chain from the producer to the retailer. Furthermore, this model has the
potential to be extended to incorporate inflation and quantity discount effects, different
demand forms such as credit-linked promotion-dependent demand and other issues under
the system with shortages. Additionally, this article has considered the deterministic situ-
ation, so considering the stochastic situation, such as stochastic demand, can be another
future research direction on the subject of this article.

Literature Review

There is a large volume of published studies concerning the inventory models with
cash payments, credit payments, or advance payments, such as those that we have reviewed
or cited below.

In these literatures, Taleizadeh et al. [2] established an economic order quantity (EOQ)
model with partial backordering in which the supplier asks the retailer to pay a frac-
tion of the purchasing cost in advance and allows them to divide the prepayment into
multiple equal installments during a lead time. Taleizadeh [3] extended the inventory
model of Taleizadeh et al. [2] to the cases of deteriorating items with and without short-
ages. Taleizadeh [4] used an advance-cash-payment plan to develop an EOQ model for
an evaporating item with partial backordering for a real case study of a gasoline sta-
tion. Zhang et al. [5] developed an inventory model under advance payment, which
includes all payments in advance and partially advanced-partially delayed payment plans.
Eck et al. [6] explored the role of cash-in-advance financing for export decisions in firms.
Lashgari et al. [7] considered an EOQ model with hybrid partial payment, such as upstream
partial prepayment and downstream partial delayed payment without shortage, with full
backordering, or with partial backordering. Tavakoli and Taleizadeh [8] gave a lot-sizing
model for decaying item for the retailer to pay all the purchasing cost in advance with no
shortage or with full backordering shortage or partial lost sale. Heydari et al. [9] assumed
the demand is stochastic and credit-dependent under the two-level trade credit, then they
found the optimal ordering quantity and the length of the credit period. Feng and Chan [10]
expanded the two-level trade credit to include joint pricing and production decisions for
new products with pronounced learning-by-doing phenomenon. Much of the current re-
search attention has been directed towards trade-credit inventory models for deteriorating
items with its own expiration date. For example, Chen and Teng [11] established an inven-
tory model for deteriorating items under two-level trade credit by discounted cash flow
analysis in which the deterioration rate is non-decreasing over time and near 100 percent
particularly close to its expiration date. Then, they demonstrated that the retailer’s optimal
credit period and cycle time not only exist, but are also unique. Mahata [12] discussed
an EOQ model for deteriorating items having fixed lifetime under two-level trade credit.
He showed that the retailer’s optimal replenishment cycle time not only exists but is also
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unique. Wu et al. [13] examined an inventory model with expiration date dependent dete-
rioration under an advance-cash-credit payment scheme to find the optimal replenishment
cycle time and the fraction of no shortages such that the total profit is maximized. Moreover,
some related recent articles are those by, for example, Zia and Taleizadeh [14], Wu et al. [15],
Chen et al. [16], Teng et al. [17], Diabat et al. [18], Feng et al. [19], Mahata and De [20],
Tiwari et al. [21], Taleizadeh et al. [22], Li et al. [23,24], Taleizadeh [25], Krommyda et al. [26],
Tsao et al. [27], Mashud et al. ([28,29]), AlArjani et al. [30], and Hou et al. [31].

There is a large volume of published studies describing the inventory models for
non-instantaneous deteriorating items. Udayakumar and Geetha [32] considered time,
value of money, and the effect of inflation to develop an economic-ordering policy for
non-instantaneous deteriorating items over a finite time horizon in which the demand is
a deterministic function of selling price and advertisement cost. They found the optimal
length of replenishment and the optimal order quantity. Lashgari et al. [33] presented an
EOQ model for non-instantaneous deteriorating items under an advance-delay payment
when shortages are allowed in a partial form. They found the optimal order and shortage
quantities to minimize the retailer’s total inventory cost function. Udayakumar and
Geetha [34] developed an EOQ model for non-instantaneous deteriorating items with
capacity constraint under a trade credit policy. They found the optimal replenishment cycle
time and order quantity to minimize the total inventory cost. Babangida and Baraya [35]
showed an inventory model for non-instantaneous deteriorating items with two-phase
demand rates, capacity constraint and complete backlogged under trade credit policy.
They provided the necessary and sufficient conditions for the existence and uniqueness
of solutions. Soni and Suthar [36] revealed an inventory model for non-instantaneous
deteriorating items with partial backlogging; they considered that the demand rate has
a negative and positive exponential effect of price and promotional effort, respectively,
while the item is not in a state of deterioration and then found the joint optimal pricing and
replenishment policy for the non-instantaneous deteriorating items. Cenk Çalışkan [37]
deals with the inventory model for deteriorating items in which the opportunity cost
is based on compound interest, and backorders are allowed. The article determines a
near-optimal and intuitive closed-form solution, which is simple to the practitioners.
Under a variety of practical conditions, some researchers have considered the above
items, such as Tiwari et al. [38], Tsao [39], Geetha and Udayakumar [40], Jaggi et al. [41],
Maihami et al. [42], Mashud et al. [43], Bounkhel et al. [44], and Udayakumar et al. [45].

Given that it is worthwhile studying the effect of defective items on inventory prob-
lems, numerous researchers, such as Khanna et al. [46], have developed inventory models
for deteriorating imperfect quality items with allowable shortages and permissible delays
in payments. Zhou et al. [47] found a synergy economic order quantity model, in which
the concepts of imperfect quality, inspection error, and shortages with trade credit are
considered. They found the annual profit function is concave and obtained the closed form
optimal solution to the model. Datta [48] proposed a production-inventory model with
defective items. The model incorporates additional investment opportunity on quality
improvement for reducing the proportion of defective products. Taleizadeh et al. [49]
developed an imperfect EPQ model with upstream trade credit periods linked to raw
material order quantity and downstream trade credit periods. Pal and Mahapatra [50]
developed an inventory model with imperfect products for a three-level supply chain,
and three different ways of dealing with defective products were investigated in their
model. Khakzad and Gholamian [51] investigated the effect of inspection time on the
deterioration rate; they showed the convexity of the model and illustrated the uniqueness
of the solution. Taleizadeh et al. [52] revealed an EOQ inventory model with imperfect
items and partial backordering. They assumed a percent of the products in a lot is imperfect
and the imperfect items are replenished by perfect ones at a higher cost. The objective
is to obtain the optimal value of the length period and the percent of period duration
in which the inventory level is positive. Some imperfect production models with trade
credit have been studied, in recent years, by (among others) Wang et al. [53], Alamri
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et al. [54], Palanivel and Uthayakumar [55], Aghili and Hoseinabadi [56], Tsao et al. [57,58],
Khanna et al. [59], Liao et al. [60], Kazemi et al. [61], Liao et al. [62], Mashud et al. [63], and
Srivastava et al. [64].

We remark, in passing to the next section, that the mathematical analytic solution
procedures, which we have used in the mathematical analysis and discussions of the
inventory and supply chain models considered in this article, are full of elaborate usages of
the intricate techniques of calculus in determining the continuity, convexity, monotonicity
(increasing or decreasing), and differentiability properties of the object functions (that is,
the total optimal cost functions). We have stated our main results of this investigation in
the form of five theorems (Theorems 1 to 5), which we have proved by appealing also to
two Lemmas (Lemma 1 and Lemma 2). For the sake of brevity and compact presentation,
the proof of Lemma 2 has been given in the Appendix A instead of the main text. It is quite
natural to expect such a format and style in a mathematically oriented article. Furthermore,
as we have already mentioned, for the accuracy, completeness, and safe applicability
of the results and discussions presented in this article, the usage of the mathematical
analytic solution procedures, which are based upon the elaborate and intricate techniques
of calculus, is essential here.

2. Mathematical Formulation of the Supply Chain Model and Its Analysis

Based on the above assumptions, the inventory level drops at the demand rate and
the defective rate during the time interval [0, td]. Then, the inventory level drops to zero
due to the demand and the deterioration with the expiration dates during the time interval
[td, T]. Furthermore, the variations in the inventory level with respect to time t can be
expressed below.

The differential equation representing the inventory status during the time interval
t ∈ [0, ts], ts =

y
x , is given by

dI1(t)
dt

= −D (1)

where t is restricted, as in Equation (2). Under the condition I1(0) = y, by solving
Equation (1), we obtain

I1(t) = y − Dt, 0 < t ≤ ts (2)

In the second interval [ts, td], the differential equation represents the inventory status:

dI2(t)
dt

= −D, ts ≤ t ≤ td (3)

Under the condition I2(td) = (1 − p)y − Dtd, Equation (3) yields

I2(t) = (1 − p)y − Dt, ts ≤ t ≤ td (4)

During the third interval [td, T], the change in the inventory level is represented by
the following differential equation:

dI3(t)
dt

+ θ(t) · I3(t) = −D, td ≤ t ≤ T (5)

Under the condition I3(T) = 0, the solution of Equation (5) is given by

I3(t) = D(1 + m − t) · ln(
1 + m − t
1 + m − T

), td ≤ t ≤ T (6)

Making use of the continuity property of I2(td) = I3(td), it follows from Equations (4)
and (6) that

(1 − p)y − Dtd = D(1 + m − td) ln(
1 + m − td
1 + m − T

) (7)
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which implies that the order quantity is given by

y =
D

(1 − p)
[td + (1 + m − td) · ln(

1 + m − td
1 + m − T

)] (8)

Substituting Equation (8) into Equations (2) and (4), we get

I1(t) =
D

(1 − p)
[td + (1 + m − td) · ln(

1 + m − td
1 + m − T

)− (1 − p)t] (9)

and
I2(t) = D[td + (1 + m − td) · ln(

1 + m − td
1 + m − T

)− t] (10)

Additionally, this article focuses on ts ≤ td, so we have T ≤ R∗ if and only if ts ≤ td.
Here,

R∗ = (1 + m)− (1 + m − td) · e
− [(1−p)x−D]td

D(1+m−td) (11)

We now calculate the annual total relevant cost which results from the following components:

1. Order cost = o
T

2. The holding cost (excluding interest charges) after receiving y units at time 0 is
given below:
Case 1. When 0 < T < td,
The holding cost

= h
T [
∫ y

x
0 (y − Dt)dt +

∫ T
y
x

D(T − t)dt] = hD
(1−p) [

(1−p)T
2 + pDT

x(1−p) ]

Case 2. When td ≤ T

The holding cost = h
T

{∫ y
x

0 I1(t)dt +
∫ td

y
x

I2(t)dt+
∫ T

td
I3(t)dt

}

= h
T

{
D
2 t2

d + D(1 + m − td) · td ln( 1+m−td
1+m−T ) +

pD2

x(1−p)2

×[td + (1 + m − td) · ln( 1+m−td
1+m−T )]

2
+ D

2 (1 + m − td)
2 · ln( 1+m−td

1+m−T )

+D
4 (1 + m − T)2 − D

4 (1 + m − td)
2
}

3. The procurement cost per replenishment cycle is:
Case 1. When 0 < T < td
The procurement cost = cy

T = cD
(1−p)

Case 2. When td ≤ T
The procurement cost = cy

T = cD
(1−p)T [td + (1+m − td) · ln( 1+m−td

1+m−T )]

4. The screening cost per replenishment cycle is
Case 1. When 0 < T < td
The screening cost = sy

T = sD
(1−p)

Case 2. When td ≤ T
The screening cost = sy

T = sD
(1−p)T [td + (1+m − td) · ln( 1+m−td

1+m−T )]

5. The cost of deteriorated units
Case 1. When 0 < T < td
The cost of deteriorated units is zero.
Case 2. When td ≤ T
The cost of deteriorated units = c

T [(1 − p)y − DT]

=
cD
T

[td + (1+m − td) · ln(
1 + m − td
1 + m − T

)− T]
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6. The interest charged for advance payment per replenishment cycle is

cIk DT
T (

N∫
−L

αdt) + cIk D
T

∫ T+N
N α(T + N − t)t

= αcIk DT
T (N + L) + αcIk DT2

2T

7. The interest charged for cash payment per replenishment cycle is

cIkDT
T

(

N∫
0

βdt) +
cIkD

T

∫ T+N

N
β(T + N − t)dt =

βcIkDTN
T

+
βcIkDT2

2T

8. The interest charged for credit payment per replenishment is
Case 1. When N ≤ M and M ≤ T ≤ T + N
The interest charged for credit payment

=
τcDIk

T

{
ρ[

∫ T+N

M
(T + N − t)dt]+(1−ρ)[

∫ T

M
(T − t)dt

}

=
τcDIk

2T

{
ρ(T + N − M)2+(1−ρ

)
(T − M)2

}
Case 2. When N ≤ M and T ≤ M ≤ T + N
The interest charged for credit payment

=
τcDIk

T

[
ρ
∫ T+N

M
(T + N − t)dt

]
=

τcDIk
2T

[
ρ(T + N − M)2

]
Case 3. When N ≤ M and T + N ≤ M
The interest charged for credit payment is zero.
Case 4. When N > M and M ≤ T
The interest charged for credit payment

=
τcDIk

T

{
ρ[

∫ N

M
Tdt +

∫ T+N

N
(T + N − t)dt]+(1−ρ)[

∫ T

M
(T − t)dt

}

=
τcDIk

2T

{
ρ[T2 + 2(N − M)T] + (1−ρ

)
(T − M)2

}
Case 5. When N > M and M ≥ T
The interest charged for credit payment

= τcDIk
T

{
ρ
[∫ N

M Tdt +
∫ T+N

N (T + N − t)dt]}
= τcDIk

2T
{

ρ[T2 + 2T(N − M)
]}

9. The interest earned for credit payment per replenishment is
Case 1. When N ≤ M and M ≤ T ≤ T + N
The interest earned for credit payment

= τνDIe
T

{
ρ
∫ M

N (t − N)dt+(1−ρ
)∫ M

0 tdt
}
= τνDIe

2T

[
ρ(M − N)2+(1−ρ

)
M2]

Case 2. When N ≤ M and T ≤ M ≤ T + N
The interest earned for credit payment

=
τνDIe

T

{
ρ
∫ M

N
(t − N)dt + (1 − ρ)[

∫ T

0
tdt +

∫ M

T
Tdt

]
}
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=
τνDIe

2T

{
ρ(M − N)2 + (1 − ρ)

[
T2+2T(M − T)]}

Case 3. When N ≤ M and T + N ≤ M
The interest earned for credit payment

=
τνDIe

T

{
ρ[

∫ T+N

N
(t − N)dt +

∫ M

T+N
Tdt] + (1 − ρ)[

∫ T

0
tdt +

∫ M

T
Tdt]

}

=
τνDIe

2T

{
ρ[T2 + 2T(M − T − N)] + (1 − ρ) [T2 + 2T(M − T)]

}
Case 4. When N > M and M ≤ T
= τνDIe

T [(1 − ρ)
∫ M

0 tdt] = τνDIe
2T [(1 − ρ)M2]

Case 5. When N > M and N ≥ T

= τνDIe
T

{
(1 − ρ)[

∫ T
0 tdt +

∫ M
T Tdt]

}
= τνDIe

T
{
(1 − ρ)[T2 + 2T(M − T)]

}
Finally, the total annual relevant cost TC(T) is obtained as follows:
TC(T) = ordering cost + stock holding cost (excluding interest charges) + procurement

cost + screening cost + deterioration cost + interest charged – interest earned.
Furthermore, we obtain the following cases:
Case I. Suppose that N ≤ M
Case (I-1). Suppose that td < M − N < M

TC(T) =

⎧⎪⎪⎨⎪⎪⎩
TC1(T) if 0 < T < td
TC2(T) if td ≤ T < M − N
TC3(T) if M − N ≤ T < M
TC4(T) if M ≤ T ≤ R∗

(12)

where

TC1(T) = o
T + hD

(1−p) [
(1−p)T

2 + pDT
x(1−p) ] +

(c+s)D
1−p + cIk DT

T [α(N + L) + β N]

+ cIk DT2

2T (α + β)− τνDIe
2T

{
ρ[T2 + 2T(M − T − N)] + (1 − ρ)[T2 + 2T(M − T)]

} (13)

TC2(T) = o
T + h

T

{
D
2 t2

d + D(1 + m − td) · td · >ln( 1+m−td
1+m−T ) +

pD2

x(1−p)2 [td + (1 + m − td)

× ln( 1+m−td
1+m−T )]

2 + D
2 (1 + m − td)

2 · ln( 1+m−td
1+m−T ) +

D
4 (1 + m − T)2 − D

4 (1 + m − td)
2
}

+ (c+s)D
(1−p)T [td + (1 + m − td) · ln( 1+m−td

1+m−T )] +
cD
T [td + (1 + m − td) · ln( 1+m−td

1+m−T )− T]

+ cIk DT
T [α(N + L) + βN] + cIk DT2

2T (α + β)− τνDIe
2T

{
ρ[T2 + 2T(M − T − N)]

+(1 − ρ)[T2 + 2T(M − T)]
}

(14)

TC3(T) = o
T + h

T

{
D
2 t2

d + D(1 + m − td) · td · ln( 1+m−td
1+m−T ) +

pD2

x(1−p)2 [td + (1 + m − td)

× ln( 1+m−td
1+m−T )]

2 + D
2 (1 + m − td)

2 · ln( 1+m−td
1+m−T ) +

D
4 (1 + m − T)2 − D

4 (1 + m − td)
2
}

+ (c+s)D
(1−p)T [td + (1 + m − td) · ln( 1+m−td

1+m−T )] +
cD
T [td + (1 + m − td) · ln( 1+m−td

1+m−T )− T]

+ cIk DT
T [α(N + L) + β N] + cIk DT2

2T (α + β) + τcDIk
2T [ρ(T + N − M)2

]
− τνDIe

2T

{
ρ(M − N)2 + (1 − ρ)[T2 + 2T(M − T)]

}
(15)

TC4(T) = o
T + h

T

{
D
2 t2

d + D(1 + m − td) · td · ln( 1+m−td
1+m−T ) +

pD2

x(1−p)2 [td + (1 + m − td)

× ln( 1+m−td
1+m−T )]

2 + D
2 (1 + m − td)

2 · ln( 1+m−td
1+m−T ) +

D
4 (1 + m − T)2 − D

4 (1 + m − td)
2
}

+ (c+s)D
(1−p)T [td + (1 + m − td) · ln( 1+m−td

1+m−T )] +
cD
T [td + (1 + m − td) · ln( 1+m−td

1+m−T )− T]

+ cIk DT
T [α(N + L) + βN] + cIk DT2

2T (α + β) + τcDIk
2T [ρ(T + N − M)2

+(1−ρ)(T − M)2]− τνDIe
2T [ρ(M − N)2 + (1 − ρ)M2]

(16)

Since TC1(td) = TC2(td), TC2(M − N) = TC3(M − N) and TC3(M) = TC4(M),
TC(T) is continuous and well-defined on T > 0.
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Case (I-2). Suppose that M − N < td < M

TC(T) =

⎧⎪⎪⎨⎪⎪⎩
TC1(T) if 0 < T < M − N
TC5(T) if M − N ≤ T < td
TC3(T) if td ≤ T < M
TC4(T) if M ≤ T ≤ R∗

(17)

where

TC5(T) = o
T + hD

(1−p) [
(1−p)T

2 + pDT
x(1−p) ] +

(c+s)D
1−p + cIk DT

T [α(N + L) + βN]

+ cIk DT2

2T (α + β) + τcDIk
2T [ρ(T + N − M)2

]
− τνDIe

2T

{
ρ(M − N)2

+(1 − ρ)[T2 + 2T(M − T)]
} (18)

Since TC1(M − N) = TC5(M − N), TC5(td) = TC3(td) and TC3(M) = TC4(M),
TC(T) is continuous and well-defined on T > 0.

Case (I-3). Suppose that M − N < M < td

TC(T) =

⎧⎪⎪⎨⎪⎪⎩
TC1(T) if 0 < T < M − N
TC5(T) if M − N ≤ T < M
TC6(T) if M ≤ T < td
TC4(T) if td ≤ T ≤ R∗

(19)

where

TC6(T) = o
T + hD

(1−p) [
(1−p)T

2 + pDT
x(1−p)

]
+ (c+s)D

1−p + cIk DT
T [α(N + L) + βN]

+ cIk DT2

2T (α + β) + τcDIk
2T [ρ(T + N − M)2+(1 − ρ)(T − M

)2
]

− τνDIe
2T [ρ(M − N)2 + (1 − ρ)M2]

(20)

Since TC1(M − N) = TC5(M − N), TC5(M) = TC6(M) and TC6(td) = TC4(td),
TC(T) is continuous and well-defined on T > 0.

Case II. Suppose that N > M
Case (II-1). Suppose that td < M

TC(T) =

⎧⎨⎩
TC7(T) if 0 < T < td
TC8(T) if td ≤ T < M
TC9(T) if M ≤ T ≤ R∗

(21)

where

TC7(T) = o
T + hD

(1−p) [
(1−p)T

2 + pDT
x(1−p)

]
+ (c+s)D

1−p + cIk DT
T [α(N + L) + βN]

+ cIk DT2

2T (α + β) + τcDIk
2T

{
ρ[T2 + 2T(N − M)

]}
− τνDIe

2T
{
(1 − ρ)[T2 + 2T(M − T)]

} (22)

TC8(T) = o
T + h

T

{
D
2 t2

d + D(1 + m − td) · td · ln( 1+m−td
1+m−T ) +

pD2

x(1−p)2 [td + (1 + m − td)

× ln( 1+m−td
1+m−T )]

2 + D
2 (1 + m − td)

2 · ln( 1+m−td
1+m−T ) +

D
4 (1 + m − T)2 − D

4 (1 + m − td)
2
}

+ (c+s)D
(1−p)T [td + (1 + m − td) · ln( 1+m−td

1+m−T )] +
cD
T [td + (1 + m − td) · ln( 1+m−td

1+m−T )− T]

+ cIk DT
T [α(N + L) + βN] + cIk DT2

2T (α + β) + τcDIk
2T

{
ρ[T2 + 2T(N − M)]

}
− τνDIe

2T
{
(1 − ρ)[T2 + 2T(M − T)]

}
(23)
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TC9(T) = o
T + h

T

{
D
2 t2

d + D(1 + m − td) · td · ln( 1+m−td
1+m−T ) +

pD2

x(1−p)2 [td + (1 + m − td)

× ln( 1+m−td
1+m−T )]

2 + D
2 (1 + m − td)

2 · ln( 1+m−td
1+m−T ) +

D
4 (1 + m − T)2 − D

4 (1 + m − td)
2
}

+ (c+s)D
(1−p)T [td + (1 + m − td) · ln( 1+m−td

1+m−T )] +
cD
T [td + (1 + m − td) · ln( 1+m−td

1+m−T )− T]

+ cIk DT
T [α(N + L) + β N] + cIk DT2

2T (α + β) + τcDIk
2T

{
ρ[T2 + 2T(N − M)]

+(1−ρ ) (T − M)2
}
− τνDIe

2T (1 − ρ)M2

(24)

Since TC7(td) = TC8(td) and TC8(M) = TC9(M), TC(T) are continuous and well-
defined on T > 0.

Case (II-2). Suppose that td ≥ M

TC(T) =

⎧⎨⎩
TC7(T) if 0 < T < M
TC10(T) if M ≤ T < td
TC9(T) if td ≤ T ≤ R∗

(25)

where

TC10(T) = o
T + hD

(1−p) [
(1−p)T

2 + pDT
x(1−p) ] +

(c+s)D
1−p + cIk DT

T [α(N + L) + βN]

+ cIk DT2

2T (α + β) + τcDIk
2T

{
ρ[T2 + 2T(N − M)] + (1−ρ ) (T − M)2

}
− τνDIe

2T (1 − ρ)M2

(26)

Since TC7(M) = TC10(M) and TC10(td) = TC9(td), TC(T) is continuous and well-
defined on T > 0.

3. The Convexity and Monotonicity Properties of TCi(T)
(i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

In this section, we continue the derivations described in above section and adopt
Equations (13)–(16), (18), (20), (22)–(24) and (26) to find the first-order and the second-order
derivatives of the annual total relevant costs TCi(T) with respect to T in order to obtain
the convexity properties as follows:

TC′
1(T) =

1
T2

{
−o +

hD
2

[1 +
2pD

x(1 − p)2 ]T
2 +

cIkD
2

(α + β)T2 +
τνDIe

2
T2

}
(27)

TC′′
1(T) =

2o
T3 > 0 (28)

TC′
2(T) = 1

T2

{
−o + h · G(T) + [ (2−p)c+s

1−p ] · [D(1 + m − td) · T
1+m−T − Dtd

−D(1 + m − td) · ln( 1+m−td
1+m−T )] +

cIk D
2 (α + β)T2 + τνDIe

2 T2
} (29)

TC′′
2(T) = 1

T3

{
2o + h · H(T) + [ (2−p)c+s

1−p ] · [D(1 + m − td) · (1+m)T
(1+m−T)2

−3D(1 + m − td)
T

1+m−T + 2Dtd + 2D(1 + m − td) · ln( 1+m−td
1+m−T )]

} (30)

TC′
3(T) = 1

T2

{
−o + h · G(T) + [ (2−p)c+s

1−p ] · [D(1 + m − td) · T
1+m−T − Dtd

−D(1 + m − td) · ln( 1+m−td
1+m−T )] +

cIk D
2 (α + β)T2 + τcDIk

2

{
ρ [T2 − (N − M)2]

}
+ τvDIe

2 [ρ(M − N)2 + (1 − ρ)T2]
} (31)

TC
′′

3(T) = 1
T3

{
2o + h · H(T) + [ (2−p)c+s

1−p ] · [D(1 + m − td) · (1+m)T
(1+m−T)2

−3D(1 + m − td)
T

1+m−T + 2Dtd + 2D(1 + m − td) · ln( 1+m−td
1+m−T )]

+τcDIkρ (N − M)2 − τvDIeρ(M − N)2
} (32)
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TC′
4(T) = 1

T2

{
−o + h · G(T) + [ (2−p)c+s

1−p ] · [D(1 + m − td) · T
1+m−T − Dtd

−D(1 + m − td) · ln( 1+m−td
1+m−T )] +

cIk D
2 (α + β)T2 + τcDIk

2

{
ρ [T2 − (N − M)2]

+(1 − ρ)(T2 − M2)
}
+ τvDIe

2 [ρ(M − N)2 + (1 − ρ)M2]
} (33)

TC′′
4(T) = 1

T3

{
2o + h · H(T) + [ (2−p)c+s

1−p ] · [D(1 + m − td) · (1+m)T
(1+m−T)2

−3D(1 + m − td)
T

1+m−T + 2Dtd + 2D(1 + m − td) · ln( 1+m−td
1+m−T )]

+τcDIk[ρ (N − M)2 + (1 − ρ)M2]− τvDIe[ρ(M − N)2 + (1 − ρ)M2]
} (34)

TC′
5(T) = 1

T2

{
−o + hD

2 [1 + 2pD
x(1−p)2 ]T2 + cIk D

2 (α + β)T2 + τcDIk
2

{
ρ [T2 − (N − M)2]

}
+ τvDIe

2 [ρ(M − N)2 + (1 − ρ)T2]
} (35)

TC′′
5(T) =

1
T3

{
2o + τcDIkρ (N − M)2 − τvDIeρ(M − N)2

}
(36)

TC′
6(T) = 1

T2

{
−o + hD

2 [1 + 2pD
x(1−p)2 ]T2 + cIk D

2 (α + β)T2 + τcDIk
2

{
ρ [T2 − (N − M)2]

+(1 − ρ)(T2 − M2)
}
+ τvDIe

2 [ρ(M − N)2 + (1 − ρ)M2]
} (37)

TC′′ 6(T) = 1
T3

{
2o + τcDIk[ρ (N − M)2 + (1 − ρ)M2]− τvDIe[ρ(M − N)2 + (1 − ρ)M2]

}
(38)

TC′
7(T) = 1

T2

{
−o + hD

2 [1 + 2pD
x(1−p)2 ]T2 + cIk D

2 (α + β)T2 + τcDIk
2 ρT2

+ τvDIe
2 (1 − ρ)T2

} (39)

TC′′
7(T) =

2o
T3 > 0 (40)

TC′
8(T) = 1

T2

{
−o + h · G(T) + [ (2−p)c+s

1−p ][D(1 + m − td)
T

1+m−T

−Dtd − D(1 + m − td) · ln( 1+m−td
1+m−T )] +

cIk D
2 (α + β)T2 + τcDIk

2 ρT2

+ τvDIe
2 (1 − ρ)T2

} (41)

TC′′ 8(T) = 1
T3

{
2o + h · H(T) + [ (2−p)c+s

1−p ][D(1 + m − td)
(1+m)T

(1+m−T)2

−3D(1 + m − td)
T

1+m−T + 2Dtd + 2D(1 + m − td) · ln( 1+m−td
1+m−T )]

} (42)

TC′
9(T) = 1

T2

{
−o + h · G(T) + [ (2−p)c+s

1−p ][D(1 + m − td)
T

1+m−T

−Dtd − D(1 + m − td) · ln( 1+m−td
1+m−T )] +

cIk D
2 (α + β)T2 + τcDIk

2 [T2 − (1 − ρ)M2]

+ τvDIe
2 (1 − ρ)M2

} (43)

TC′′ 9(T) = 1
T3

{
2o + h · H(T) + [ (2−p)c+s

1−p ][D(1 + m − td)
(1+m)T

(1+m−T)2

−3D(1 + m − td)
T

1+m−T + 2Dtd + 2D(1 + m − td) · ln( 1+m−td
1+m−T )]

+τcDIk(1 − ρ)M2 − τvDIe(1 − ρ)M2} (44)

TC′
10(T) = 1

T2

{
−o + hD

2 [1 + 2pD
x(1−p)2 ]T2 + cIk D

2 (α + β)T2 + τcDIk
2 [T2 − (1 − ρ)M2]

+ τvDIe
2 (1 − ρ)M2

} (45)

and
TC′′

10(T) =
1

T3

{
2o + τcDIk(1 − ρ)M2 − τvDIe(1 − ρ)M2

}
(46)

where

G(T) = D(1 + m − td) · td
T

1+m−T + 2pD2

x(1−p)2 (1 + m − td)[td + (1 + m − td)

× ln( 1+m−td
1+m−T )] · T

1+m−T + D
2 (1 + m − td)

2 · T
1+m−T − D

2 (1 + m − T)T

−D
2 t2

d − D(1 + m − td) · td · ln( 1+m−td
1+m−T )− pD2

x(1−p)2 [td + (1 + m − td) · ln( 1+m−td
1+m−T )]

2

−D
2 (1 + m − td)

2 · ln( 1+m−td
1+m−T )− D

4 (1 + m − T)2 + D
4 (1 + m − td)

2

(47)
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and

H(T) = D(1 + m − td)td
T2

(1+m−T)2 +
D
2 (1 + m − td)

2 T2

(1+m−T)2 +
D
2 T2

−2D(1 + m − td) · td
T

1+m−T − D(1 + m − td)
2 T

1+m−T + D(1 + m − T)T
+Dt2

d + 2D(1 + m − td)td · ln( 1+m−td
1+m−T ) + D(1 + m − td)

2 ln( 1+m−td
1+m−T )

+D
2 (1 + m − T)2 − D

2 (1 + m − td)
2 + 2pD2

x(1−p)2 (1 + m − td)
2 T2

(1+m−T)2

+ 2pD2

x(1−p)2 (1 + m − td)[td + (1 + m − td) · ln( 1+m−td
1+m−T )]

T2

(1+m−T)2

− 4pD2

x(1−p)2 (1 + m − td)[td + (1 + m − td) · ln( 1+m−td
1+m−T )]

T
1+m−T

+ 2pD2

x(1−p)2 [td + (1 + m − td) · ln( 1+m−td
1+m−T )]

2

(48)

Obviously, it is shown that TC1(T) and TC7(T) are convex functions on (0, ∞), respec-
tively.

Now, we let
W1= 2o − τvIeDρ(M − N)2 (49)

W2= 2o − τvIeD[ρ(M − N)2 + (1 − ρ)M2] (50)

and
W3= 2o − τvIeD(1 − ρ)M2 (51)

Then, we have the following convexity results.

Lemma 1. Each of the following assertions holds true:

(A) TCr(T) (r = 2, 8) is convex on [td, ∞).
(B) If W2 ≥ 0 , then TCl(T) (l = 3, 4, 5, 6, 9, 10) is convex on [td, ∞).
(C) If W1 < 0, then TCi(T) (i = 3, 5) is increasing on [td, ∞).
(D) If W2 < 0, then TCj(T) ( j = 4, 6) is increasing on [td, ∞).
(E) If W3 < 0, then TCk(T) ( k = 9, 10) is increasing on [td, ∞).

Remark 1. In our proof of Lemma 1, we need the assertions of Lemma 2.

Lemma 2. Each of the following assertions holds true:

(A) G(T) > 0 if T ≥ td

(B) D(1 + m − td)
T

1+m−T − Dtd − D(1 + m − td) · ln( 1+m−td
1+m−T ) > 0 if T ≥ td

(C) H(T) > 0 if T ≥ td

(D)
D(1 + m − td)

(1+m)T
(1+m−T)2 − 3D(1 + m − td)

T
1+m−T

+2Dtd + 2D(1 + m − td) · ln( 1+m−td
1+m−T ) > 0

if T ≥ td

Remark 2. The proof of Lemma 2 is given in the Appendix A.

Proof of Lemma 1.

(A) Lemma 2(C) and 2(D) reveal that TC′′ r(T) > 0 (r = 2, 8) for T ≥ td.
Furthermore, TCr(T) (r = 2, 8) is convex on [td, ∞) .

(B) If W2 > 0, then W1 > 0 and W3 > 0. Moreover, Equations (32), (34), (36), (38), (44)
and (46), together with Lemma 2(C) and 2(D), yield

TC′′
i(T) >

1
T3

{
2o − τvDIeρ(M − N)2

}
> 0, i = 3 and 5
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TC′′
j(T) >

1
T3

{
2o − τvDIe[ρ(M − N) + (1 − ρ)M2]

}
> 0 , j = 4 and 6

and
TC′′

k(T) >
1

T3

{
2o − τvDIe[(1 − ρ)M2]

}
> 0 , k = 9 and 10 (52)

The above results imply that TCl(T) (l = 3, 4, 5, 6, 9, 10) is convex on [td, ∞).
(C) When W1 < 0, from Equations (31) and (33) and Lemma 2(A) and 2(B), we have the

following results:
TC′

i(T) > 1
2T2

{
−2o + τvDIeρ(M − N)2

}
> 0 , i = 3 and 5

Furthermore, TCi(T) (i = 3, 5) is increasing on [Td, ∞) .
(D) When W2 < 0, from Equations (35) and (37) and Lemma 2(A) and 2(B), we have the

following results:

TC′
j(T) >

1
2T2

{
−2o + τvDIe[ρ(M − N)2 + (1 − ρ)M2

}
> 0 , j = 4 and 6

Furthermore, TCj(T) ( j = 4, 6) is increasing on [td, ∞).
(E) When W3 < 0, from Equations (43) and (45) and Lemma 2(A) and 2(B), we have the

following results:

TC′
k(T) >

1
2T2

{
−2o + τvDIe(1 − ρ)M2

}
> 0 , k = 9 and 10

Furthermore, TCk(T) (k = 9, 10) is increasing on [td, ∞). This completes the proof of
Lemma 1. �

4. The Main Theorems for Optimal Replenishment Cycle Time T∗ of TC(T)

In this section, we apply the convexity and monotonicity properties in order to develop
efficient decision rules for the optimal replenishment cycle time T∗ of TC(T).

4.1. Decision Rule of the Optimal Replenishment Cycle Time T∗ When N ≤ M
4.1.1. Decision Rule of the Optimal Replenishment Cycle Time T∗ When td < M − N < M

From Equation (12), we have

TC(T) =

⎧⎪⎪⎨⎪⎪⎩
TC1(T) if 0 < T < td
TC2(T) if td ≤ T < M − N
TC3(T) if M − N ≤ T < M
TC4(T) if M ≤ T < R∗

All TCi(T) (i = 1, 2, 3, 4) and TC(T) are defined on T > 0. From Equations (27), (29),
(31) and (33), we have

TC′
1(td) = TC′

2(td) =
Δ1

t2
d

TC′
2(M − N) = TC′

3(M − N) =
Δ2

(M − N)2

TC′
3(M) = TC′

4(M) =
Δ3

M2

and
TC′

4(R∗) = Δ∗

R∗2

where
Δ1 = −o +

hD
2

[1 +
2pD

x(1 − p)2 ]t
2
d +

cIkD
2

(α + β)t2
d +

τνDIe

2
t2
d (53)
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Δ2 = −o + h · G(M − N) + [ (2−p)c+s
1−p ] · [D(1 + m − td) · (M−N)

1+m−(M−N)
− Dtd

−D(1 + m − td) · ln( 1+m−td
1+m−(M−N)

)] + cIk D
2 (α + β)(M − N)2 + τνDIe

2 (M − N)2 (54)

Δ3 = −o + h · G(M) + [ (2−p)c+s
1−p ] · [D(1 + m − td) · M

1+m−M − Dtd

−D(1 + m − td) · ln( 1+m−td
1+m−M )] + cIk D

2 (α + β)M2 + τcDIk
2

{
ρ [M2 − (N − M)2]

}
+ τvDIe

2 [ρ(M − N)2 + (1 − ρ)M2]

(55)

and
Δ∗ = −o + h · G(R∗) + [ (2−p)c+s

1−p ] · [D(1 + m − td) · R∗
1+m−R∗ − Dtd

−D(1 + m − td) · ln( 1+m−td
1+m−R∗ )] +

cIk D
2 (α + β)R∗2 + τcDIk

2

{
ρ [R∗2 − (N − M)2]

+(1 − ρ)(R∗2 − M2)
}
+ τvDIe

2 [ρ(M − N)2 + (1 − ρ)M2]

(56)

From the above results, we have Δ1 < Δ2. In addition, if W1 ≥ 0, then Δ1 < Δ2 <
Δ3 < Δ∗. Otherwise, if W1 < 0, we obtain 0 < Δ2 < Δ3 < Δ∗. From the above discussions,
the following results are achieved.

Theorem 1. Suppose that td < M − N < M. Then, each of the following results holds true:

(I) If W1 ≥ 0, then

(A) If Δ1 < 0, Δ2 < 0, Δ3 < 0 and Δ∗ < 0, then TC(T∗) = TC4(R∗).
(B) If Δ1 < 0, Δ2 < 0, Δ3 < 0 and Δ∗ ≥ 0, then TC(T∗) = TC4

(
T∗

4
)
.

(C) If Δ1 < 0, Δ2 < 0, Δ3 ≥ 0 and Δ∗ ≥ 0, then TC(T∗) = TC3(T∗
3 ).

(D) If Δ1 < 0, Δ2 ≥ 0, Δ3 ≥ 0 and Δ∗ ≥ 0, then TC(T∗) = TC2(T∗
2 ).

(E) If Δ1 ≥ 0, Δ2 ≥ 0, Δ3 ≥ 0 and Δ∗ ≥ 0, then TC(T∗) = TC1
(
T∗

1
)
.

(II) If W1 < 0, then

(A) If Δ1 < 0, Δ2 ≥ 0, Δ3 ≥ 0 and Δ∗ ≥ 0, then TC(T∗) = TC2(T∗
2 ).

(B) If Δ1 ≥ 0, Δ2 ≥ 0, Δ3 ≥ 0 and Δ∗ ≥ 0, then TC(T∗) = TC1
(
T∗

1
)
.

Proof. The proof of Theorem 1 follows immediately from the above discussions. �

4.1.2. Decision Rule of the Optimal Replenishment Cycle Time T∗ When M − N < td < M

From Equation (17), we have

TC(T) =

⎧⎪⎪⎨⎪⎪⎩
TC1(T) i f 0 < T < M − N
TC5(T) i f M − N ≤ T < td
TC3(T) i f td ≤ T < M
TC4(T) i f M ≤ T ≤ R∗

Herein, TC5(T) is defined on T > 0 as well. Equations (27), (31) and (35) imply that

TC′
1(M − N) = TC′

5(M − N) =
Δ4

(M − N)2

and
TC′

5(td) = TC′
3(td) =

Δ5

t2
d

where
Δ4 = −o + hD

2 [1 + 2pD
x(1−p)2 ](M − N)2 + cIk D

2 (α + β)(M − N)2 + τvDIe
2 (M − N)2 (57)

and

Δ5 = −o + hD
2 [1 + 2pD

x(1−p)2 ]t2
d +

cIk D
2 (α + β)t2

d +
τcDIk

2

{
ρ [t2

d − (N − M)2]
}

+ τvDIe
2 [ρ(M − N)2 + (1 − ρ)t2

d]
} (58)

66



Symmetry 2021, 13, 1695

From the above results, we have these three situations: one is Δ4 < Δ5 < Δ3 < Δ∗ if
W2 ≥ 0, another is Δ4 < Δ5 < Δ3 < Δ∗ and 0 < Δ3 < Δ∗ if W2 < 0 and W1 ≥ 0, and the
other is 0 < Δ4 < Δ5 < Δ3 < Δ∗ if W1 < 0. Furthermore, we have the following results.

Theorem 2. Suppose that M − N < td < M Then, each of the following results holds true:

(I) If W2 ≥ 0, then

(A) If Δ4 < 0, Δ5 < 0, Δ3 < 0 and Δ∗ < 0, then TC(T∗) = TC4(R∗).
(B) If Δ4 < 0, Δ5 < 0, Δ3 < 0 and Δ∗ ≥ 0, then TC(T∗) = TC4(T∗

4 ).
(C) If Δ4 < 0, Δ5 < 0, Δ3 ≥ 0 and Δ∗ ≥ 0, then TC(T∗) = TC3(T∗

3 ).
(D) If Δ4 < 0, Δ5 ≥ 0, Δ3 ≥ 0 and Δ∗ ≥ 0, then TC(T∗) = TC5(T∗

5 ).
(E) If Δ4 ≥ 0, Δ5 ≥ 0, Δ3 ≥ 0 and Δ∗ ≥ 0, then TC(T∗) = TC1(T∗

1 ).

(II) If W2 < 0 and W1 ≥ 0, then

(A) If Δ4 < 0, Δ5 < 0 and Δ3 ≥ 0, then TC(T∗) = TC3(T∗
3 ).

(B) If Δ4 < 0, Δ5 ≥ 0 and Δ3 ≥ 0, then TC(T∗) = TC5(T∗
5 ).

(C) If Δ4 ≥ 0, Δ5 ≥ 0 and Δ3 ≥ 0, then TC(T∗) = TC1(T∗
1 ).

(III) If W1 < 0, then

(A) If Δ4 ≥ 0, Δ5 ≥ 0 and Δ3 ≥ 0, then TC(T∗) = TC1(T∗
1 ).

Proof. The proof of Theorem 2 follows immediately from the above discussions. �

4.1.3. The Decision Rule of the Optimal Replenishment Cycle Time T∗ When
M − N < M < td

TC(T) =

⎧⎪⎪⎨⎪⎪⎩
TC1(T) if 0 < T < M − N
TC5(T) if M − N ≤ T < M
TC6(T) if M ≤ T < td
TC4(T) if td ≤ T ≤ R∗

Likewise, TC6(T) is defined on T > 0, Equations (33), (35) and (37) imply that

TC′
5(M) = TC′

6(M) =
Δ6

M2

and
TC′

6(td) = TC′
4(td) =

Δ7

t2
d

where
Δ6 = −o + hD

2 [1 + 2pD
x(1−p)2 ]M2 + cIk D

2 (α + β)M2 + τcDIk
2

{
ρ [M2 − (N − M)2]

}
+ τvDIe

2 [ρ(M − N)2 + (1 − ρ)M2]
(59)

and

Δ7 = −o + hD
2 [1 + 2pD

x(1−p)2 ]t2
d +

cIk D
2 (α + β)t2

d +
τcDIk

2

{
ρ [t2

d − (N − M)2]

+(1 − ρ)(t2
d − M2)

}
+ τvDIe

2 [ρ(M − N)2 + (1 − ρ)M2]
(60)

In addition, there are three situations to occur here: one is Δ4 < Δ6 < Δ7 < Δ∗
when W2 ≥ 0, another is Δ4 < Δ6 and 0 < Δ6 < Δ7 < Δ∗ when W2 < 0 and W1 ≥ 0,
and the other is 0 < Δ4 < Δ6 < Δ7 < Δ∗ when W1 < 0. Furthermore, we have the
following results.

Theorem 3. Suppose that M − N < M < td. Then, each of the the following results holds true:

(I) If W2 ≥ 0, then

(A) If Δ4 < 0, Δ6 < 0, Δ7 < 0 and Δ∗ < 0, then TC(T∗) = TC4(R∗).
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(B) If Δ4 < 0, Δ6 < 0, Δ7 < 0 and Δ∗ ≥ 0, then TC(T∗) = TC4(T∗
4 ).

(C) If Δ4 < 0, Δ6 < 0, Δ7 ≥ 0 and Δ∗ ≥ 0, then TC(T∗) = TC6(T∗
6 ).

(D) If Δ4 < 0, Δ6 ≥ 0, Δ7 ≥ 0 and Δ∗ ≥ 0, then TC(T∗) = TC5(T∗
5 ).

(E) If Δ4 ≥ 0, Δ6 ≥ 0, Δ7 ≥ 0 and Δ∗ ≥ 0, then TC(T∗) = TC1(T∗
1 ).

(II) If W2 < 0 and W1 ≥ 0, then

(A) If Δ4 < 0, Δ6 ≥ 0, Δ7 ≥ 0 and Δ∗ ≥ 0, then TC(T∗) = TC5(T∗
5 ).

(B) If Δ4 ≥ 0, Δ6 ≥ 0, Δ7 ≥ 0 and Δ∗ ≥ 0, then TC(T∗) = TC1(T∗
1 ).

(III) If W1 < 0, then Δ4 > 0 and TC(T∗) = TC1(T∗
1 ).

Proof. The proof of Theorem 3 follows immediately from the above discussions. �

4.2. The Decision Rule of the Optimal Replenishment Cycle Time T∗ When N > M
4.2.1. The Decision Rule of the Optimal Replenishment Cycle Time T∗ When td < M

From Equation (21), we have

TC(T) =

⎧⎨⎩
TC7(T) i f 0 < T < td
TC8(T) i f td ≤ T < M
TC9(T) i f M ≤ T ≤ R∗

All TCv(T) (v = 7, 8, 9) are defined on T > 0. From Equations (39), (41), and (43),
we have

TC′
7(td) = TC′

8(td) =
Δ8

t2
d

TC′
8(M) = TC′

9(M) =
Δ9

M2

and
TC′

9(R∗) = Δ∗∗

R∗2

where

Δ8 = −o +
hD
2

[1 +
2pD

x(1 − p)2 ]t
2
d +

cIkD
2

(α + β)t2
d +

τcDIk
2

ρt2
d +

τvDIe

2
(1 − ρ)t2

d (61)

Δ9 = −o + h · G(M) + [ (2−p)c+s
1−p ][D(1 + m − td)

M
1+m−M − Dtd

−D(1 + m − td) · ln( 1+m−td
1+m−M )] + cIk D

2 (α + β)M2 + τcDIk
2 ρM2

+ τvDIe
2 (1 − ρ)M2

(62)

and
Δ∗∗ = −o + h · G(R∗) + [ (2−p)c+s

1−p ][D(1 + m − td)
R∗

1+m−R∗ − Dtd

−D(1 + m − td) · ln( 1+m−td
1+m−R∗ )] +

cIk D
2 (α + β)R∗2 + τcDIk

2 [R∗2 − (1 − ρ)M2]

+ τvDIe
2 (1 − ρ)M2

} (63)

Additionally, if W3 ≥ 0, then Δ8 < Δ9 < Δ∗∗. Otherwise, if W3 < 0, we have Δ8 < Δ9
and 0 < Δ9 < Δ∗∗. Furthermore, we have the following Theorem.

Theorem 4. Suppose that td < M Then, each of the following results holds true:

(I) If W3 ≥ 0, then

(A) If Δ8 < 0, Δ9 < 0 and Δ∗∗ < 0, then TC(T∗) = TC9(R∗).
(B) If Δ8 < 0, Δ9 < 0 and Δ∗∗ ≥ 0, then TC(T∗) = TC9(T∗

9 ).
(C) If Δ8 < 0, Δ9 ≥ 0 and Δ∗∗ ≥ 0, then TC(T∗) = TC8(T∗

8 ).
(D) If Δ8 ≥ 0, Δ9 ≥ 0 and Δ∗∗ ≥ 0, then TC(T∗) = TC7(T∗

7 ).

(II) If W3 < 0, then

(A) If Δ8 < 0, Δ9 ≥ 0 and Δ∗∗ ≥ 0, then TC(T∗) = TC8(T∗
8 ).

(B) If Δ8 ≥ 0, Δ9 ≥ 0 and Δ∗∗ ≥ 0, then TC(T∗) = TC7(T∗
7 ).
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Proof. The proof of Theorem 4 follows immediately from the above discussions. �

4.2.2. Decision Rule of the Optimal Replenishment Cycle Time T∗ When td ≥ M

From Equations (25), we have

TC(T) =

⎧⎨⎩
TC7(T) if 0 < T < M
TC10(T) if M ≤ T < td
TC9(T) if td ≤ T ≤ R∗

Herein, TC10(T) is defined on T > 0. From Equations (39), (43), and (45), we have

TC′
7(M) = TC′

10(M) =
Δ10

M2

and
TC′

10(td) = TC′
9(td) =

Δ11
t2
d

where

Δ10 = −o +
hD
2

[1 +
2pD

x(1 − p)2 ]M
2 +

cIkD
2

(α + β)M2 +
τcDIk

2
ρM2 +

τvDIe

2
(1 − ρ)M2

}
(64)

and

Δ11 = −o + hD
2 [1 + 2pD

x(1−p)2 ]t2
d +

cIk D
2 (α + β)t2

d +
τcDIk

2 [t2
d − (1 − ρ)M2]

+ τvDIe
2 (1 − ρ)M2

} (65)

Likewise, if W3 ≥ 0, then Δ10 < Δ11 < Δ∗∗. Otherwise, if W3 < 0, we have 0 < Δ10 <
Δ11 < Δ∗∗. From above arguments, we have the following theorem.

Theorem 5. Suppose that td ≥ M Then, each of the following results holds true:

(I) If W3 ≥ 0, then

(A) If Δ10 < 0, Δ11 < 0 and Δ∗∗ < 0, then TC(T∗) = TC9(R∗).
(B) If Δ10 < 0, Δ11 < 0 and Δ∗∗ ≥ 0, then TC(T∗) = TC9(T∗

9 ).
(C) If Δ10 < 0, Δ11 ≥ 0 and Δ∗∗ ≥ 0, then TC(T∗) = TC10(T∗

10).
(D) If Δ10 ≥ 0, Δ11 ≥ 0 and Δ∗∗ ≥ 0, then TC(T∗) = TC7(T∗

7 ).

(II) If W3 < 0, then Δ10 ≥ 0 and TC(T∗) = TC7(T∗
7 ).

Proof: The proof follows immediately from the above discussions. �

5. Illustrative Numerical Examples

In this section, we will provide numerical examples to illustrate the theoretical results.
We assume that the maximum lifetime of the deteriorating items is 2 years (m = 2).

The computed results are shown in Tables 1–9.
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Table 1. The optimal replenishment policy used Theorem 1(I).

Theorem 1(I) If W1 ≥ 0

td = 0.008, N = 0.01

Δ1 Δ2 Δ3 Δ∗ o h M R∗ T∗ TC(T∗)

(A) <0 <0 <0 <0 0.200 1.5 0.02 0.0237 R∗ = 0.0237 1329.5

(B) <0 <0 <0 ≥0 0.150 1.5 0.02 0.0237 T∗
4 = 0.0218 1327.4

(C) <0 <0 ≥0 ≥0 0.080 1.5 0.02 0.0237 T∗
3 = 0.0166 1323.7

(D) <0 ≥0 ≥0 ≥0 0.010 1.5 0.02 0.0237 T∗
2 = 0.0086 1317.9

(E) ≥0 ≥0 ≥0 ≥0 0.005 1.5 0.02 0.0237 T∗
1 = 0.0072 1317.2

Table 2. The optimal replenishment policy used Theorem 1(II).

Theorem 1(II) If W1 < 0

o = 0.002, N = 0.01, M = 0.02

Δ1 Δ2 Δ3 Δ∗ h D x p Ik td R∗ T∗ TC(T∗)

(A) <0 ≥0 ≥0 ≥0 0.01 95 1000 0.001 0.13 0.002 0.0210 T∗
2 = 0.0021 1238.6

(B) ≥0 ≥0 ≥0 ≥0 1.50 100 300 0.010 0.15 0.008 0.0237 T∗
1 = 0.0014 1316.1

Table 3. The optimal replenishment policy used Theorem 2(I).

Theorem 2(I) If W2 ≥ 0

td = 0.012, R∗ = 0.1240

Δ4 Δ5 Δ3 Δ∗ o h N M T∗ TC(T∗)

(A) <0 <0 <0 <0 6.00 0.01 0.01 0.02 R∗ = 0.1240 1315.4

(B) <0 <0 <0 ≥0 4.00 0.01 0.01 0.02 T∗
4 = 0.1190 1299.2

(C) <0 <0 <0 ≥0 0.01 0.01 0.01 0.02 T∗
3 = 0.0131 1239.5

(D) <0 ≥0 ≥0 ≥0 0.01 1.50 0.01 0.02 T∗
2 = 0.0106 1240.3

(E) ≥0 ≥0 ≥0 ≥0 0.01 2.00 0.01 0.02 T∗
1 = 0.0094 1240.6

Table 4. The optimal replenishment policy used Theorem 2(II) and (III).

Theorem 2(II) If W2 < 0 and W1 ≥ 0

Δ4 Δ5 Δ3 Δ∗ o h D c v x Ik Ie td

(A) <0 <0 ≥0 ≥0 0.0005 0.0001 94 0.005 3 100 0.14 0.10 0.0125

(B) <0 ≥0 ≥0 ≥0 0.0020 0.0100 95 3.000 4 1000 0.13 0.12 0.0120

(C) ≥0 ≥0 ≥0 ≥0 0.0020 0.1000 95 3.000 4 1000 0.13 0.12 0.0120

Theorem 2(II) If W2 < 0 and W1 ≥ 0

Δ4 Δ5 Δ3 Δ∗ N M R∗ T∗ TC(T∗)

(A) <0 <0 ≥0 ≥0 0.012 0.013 0.0133 T∗
3 = 0.0125 941.4161

(B) <0 ≥0 ≥0 ≥0 0.010 0.020 0.1240 T∗
5 = 0.0104 1238.82

(C) ≥0 ≥0 ≥0 ≥0 0.010 0.020 0.1240 T∗
1 = 0.0094 1238.9

Theorem 2(III) If W1 < 0

Δ4 Δ5 Δ3 Δ∗ o h D c v x Ik Ie td N

(A) ≥0 ≥0 ≥0 ≥0 0.0002 0.01 95 3 4 100 0.13 0.12 0.012 0.01

Theorem 2(III) If W1 < 0

Δ4 Δ5 Δ3 Δ∗ M R∗ T∗ TC(T∗)

(A) ≥0 ≥0 ≥0 ≥0 0.02 0.1240 T∗
1 = 0.0033 1238.6
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Table 5. The optimal replenishment policy used Theorem 3(I).

Theorem 3(I) If W2 ≥ 0

Δ4 Δ6 Δ7 Δ∗ o h td N M R∗ T∗ TC(T∗)

(A) <0 <0 <0 <0 8 1 0.025 0.01 0.02 0.0827 R∗ = 0.0827 4057.5

(B) <0 <0 <0 ≥0 6 1 0.025 0.01 0.02 0.0827 T∗
4 = 0.0795 4033.2

(C) <0 <0 ≥0 ≥0 0.1 1 0.025 0.01 0.02 0.0827 T∗
6 = 0.0225 3919.9

(D) <0 ≥0 ≥0 ≥0 0.1 2 0.025 0.01 0.02 0.0827 T∗
5 = 0.0168 3922.8

(E) ≥0 ≥0 ≥0 ≥0 0.1 8 0.025 0.01 0.02 0.0827 T∗
1 = 0.0089 3933.3

Table 6. The optimal replenishment policy used Theorem 3(II) and (III).

Theorem 3(II) If W2 < 0 and W1 ≥ 0

td = 0.025

Δ4 Δ6 Δ7 Δ∗ o h D N M R∗ T∗ TC(T∗)

(A) <0 ≥0 ≥0 ≥0 0.004 0.01 200 0.010 0.020 0.1232 T∗
5 = 0.0102 2608.0

(B) ≥0 ≥0 ≥0 ≥0 0.001 0.10 300 0.010 0.020 0.0827 T∗
1 = 0.0037 3911.4

Theorem 3(III) If W1<0

(A) ≥0 ≥0 ≥0 ≥0 0.001 0.01 300 0.025 0.003 0.020 0.0827 T∗
1 = 0.0042 3910.8

Table 7. The optimal replenishment policy used Theorem 4(I).

Theorem 4(I) If W3 ≥ 0

Δ8 Δ9 Δ∗∗ o h D td N M R∗ T∗ TC(T∗)

(A) <0 <0 <0 2.00 1.0 200 0.01 0.03 0.02 0.0497 R∗ = 0.0497 2672.5

(B) <0 <0 ≥0 1.00 0.5 100 0.01 0.03 0.02 0.0986 T∗
9 = 0.0570 1334.7

(C) <0 ≥0 ≥0 0.10 1.0 200 0.01 0.03 0.02 0.0497 T∗
8 = 0.0151 2618.0

(D) ≥0 ≥0 ≥0 0.01 2.0 100 0.01 0.03 0.02 0.0986 T∗
7 = 0.0092 1306.4

Table 8. The optimal replenishment policy used Theorem 4(II).

Theorem 4(II) If W3 < 0

Δ8 Δ9 Δ∗∗ o h D td N M R∗ T∗ TC(T∗)

(A) <0 ≥0 ≥0 0.01 0.10 250 0.01 0.04 0.03 0.0398 T∗
8 = 0.0103 3262.4

(B) ≥0 ≥0 ≥0 0.01 2.00 250 0.01 0.04 0.03 0.0398 T∗
7 = 0.0058 3264.2

Table 9. The optimal replenishment policy used Theorem 5(I) and 5(II).

Theorem 5(I) If W3 ≥ 0

Δ10 Δ11 Δ∗∗ o h D td N M R∗ T∗ TC(T∗)
(A) <0 <0 <0 10 1.0 300 0.03 0.04 0.02 0.0991 R∗ = 0.0991 4074.2

(B) <0 <0 ≥0 0.2 1.0 100 0.03 0.04 0.02 0.2878 T∗
9 = 0.0362 1312.7

(C) <0 ≥0 ≥0 0.05 1.0 100 0.03 0.04 0.02 0.2878 T∗
10 = 0.0279 1308.0

(D) ≥0 ≥0 ≥0 0.01 1.0 100 0.03 0.04 0.02 0.2878 T∗
7 = 0.0121 1306.1

Theorem 5(II) If W3 < 0

(A) ≥0 ≥0 ≥0 0.005 1.0 300 0.03 0.04 0.02 0.0991 T∗
7 = 0.0049 3915.4

Example 1. h = 1.5, c = 3, ν = 4, D = 100, x = 300, p = 0.01, s = 10, td = 0.008,
N = 0.01 year, M = 0.02 year, L = 0.3, Ik= $0.15/$/year, Ie = $0.12/$/year, τ = 0.3, α = 0.3,
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β = 0.4 and ρ = 0.3, Theorem 1(I) (if W1 ≥ 0) is applied to obtain optimal solution The
computed result is shown in Table 1.

Example 2. o = 0.0002, c = 3, ν = 4, s = 10, N = 0.01 year, M = 0.02 year, L = 0.3,
Ie = $ 0.12/$/year, τ = 0.3, α = 0.3, β = 0.4 and ρ = 0.3, Theorem 1(II) (if W1 < 0) is applied
to obtain optimal solution. The computed result is shown in Table 2.

Example 3. c = 3, ν = 4, D = 95, x = 300, p = 0.01, s = 10, td = 0.012, N = 0.01 year,
M = 0.02 year, L = 0.3, Ik = $0.15/$/year, Ie = $ 0.12/$/year, τ = 0.3, α = 0.3, β = 0.4 and
ρ = 0.3, Theorem 2(I) (if W2 ≥ 0) is applied to obtain optimal solution. The computed result
is shown in Table 3.

Example 4. p = 0.01, s = 10, L = 0.3, τ = 0.3, α = 0.3, β = 0.4 and ρ = 0.3, Theorem 2(II) (if
W2 < 0 and W1 ≥ 0) and Theorem 2(III) (if W1 < 0) are applied to obtain optimal solution.
The computed result is shown in Table 4.

Example 5. c = 3, ν = 4, D = 300, x = 1000, p = 0.001, s = 10, td = 0.025, N = 0.01 year,
M = 0.02 year, L = 0.3, Ik = $0.13/$/year, Ie = $ 0.12/$/year, τ = 0.3, α = 0.3, β = 0.4 and
ρ = 0.3, Theorem 3(I) (if W2 ≥ 0) is applied to obtain optimal solution. The computed result
is shown in Table 5.

Example 6. c = 3, ν = 4, x = 1000, p = 0.001, s = 10, td = 0.025, M = 0.02 year, L = 0.3,
Ik = $0.13/$/year, Ie = $ 0.12/$/year, τ = 0.3, α = 0.3, β = 0.4 and ρ = 0.3, Theorem 3(II) (if
W2 < 0 and W1 ≥ 0) and Theorem 3(III) (if W1 < 0) are applied to obtain optimal solution.
The computed result is shown in Table 6.

Example 7. c = 3, ν = 4, x = 1000, p = 0.001, s = 10, td = 0.01, N = 0.03 year, M = 0.02 year,
L = 0.3, Ik = $0.13/$/year, Ie = $ 0.12/$/year, τ = 0.3, α = 0.3, β = 0.4 and ρ = 0.3, Theorem 4(I)
(if W3 ≥ 0) is applied to obtain optimal solution. The computed result is shown in Table 7.

Example 8. o = 0.01, c = 3, ν = 4, D = 250, x = 1000, p = 0.001, s = 10, td = 0.01,
N = 0.04 year, M = 0.03 year, L = 0.3, Ik = $0.13/$/year, Ie = $ 0.12/$/year, τ = 0.3, α = 0.3,
β = 0.4 and ρ = 0.3, Theorem 4(II) (if W3 < 0) is applied to obtain optimal solution. The
computed result is shown in Table 8.

Example 9. h = 1, c = 3, ν = 4, D = 250, x = 1000, p = 0.001, s = 10, = 0.03, N = 0.04
year, M = 0.02 year, L = 0.3, Ik = $0.13/$/year, Ie = $ 0.12/$/year, τ = 0.3, α = 0.3, β = 0.4
and ρ = 0.3, Theorem 5(I) (if W3 ≥ 0) and Theorem 5(II) (if W3 < 0) are applied to obtain
optimal solution. The computed result is shown in Table 9.

Additionally, in Tables 1–9, R∗ and Δ∗ is defined as Equations (11) and (56), respec-
tively. T∗ is the optimal cycle time so that TC(T∗) is the minimum.

6. Conclusions and Potential Directions for Further Research

In our present investigation, we have established a sustainable inventory system in
which the retailer sells the non-instantaneous deteriorating item that is fully deteriorated
close to its expiry date and has imperfect quality such as those in seasonal products, food
products, electronic components, and others. In order to manage the quality of the items, an
inspection will occur during the state in which there is no deterioration. On the other hand,
the supplier demands the retailer a distinct payment scheme, such as partial prepayment
or cash and trade credit; in turn, the retailer grants customers partial cash and trade credit.

We have observed that some of the optimization methods lack mathematical rigor,
and some of them are based on intuitive arguments, which result in the solution procedures
being questionable from the logical viewpoints of mathematical analysis, such as those
in the earlier works by Chang et al. (2004), Ouyang et al. (2006), and Cheng and Wang
(2009). They ignored explorations of interrelations of functional behaviors of the total cost
function to locate the optimal solution, so those shortcomings will naturally influence
the implementation of their considered inventory model. Essentially, in order to explore
the functional behaviors (such as continuity, monotonicity (increasing and decreasing)
properties, differentiability, etc.) of the object functions (that is, the total cost functions),
one can and should apply the mathematically accurate and reliable solution procedures.
Moreover, if the object function (that is, the total cost functions) are convex, it is easier to
find the optimal solution by using the convexity property. Consequently, the discussion
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of the convexity of the total annual cost function is one of the main research topics of
this article.

The object function (that is, the total cost function) of this article is a piecewise continu-
ous function; it is increasing or decreasing in its own domain and we discuss the continuity
of the object function, especially at its extreme point(s). Furthermore, the main purpose of
this article has been to provide accurate and reliable mathematical analytic solution proce-
dures for different scenarios by studying the convexity of the total annual cost function
and the functional behaviors of the object function. For the proposed models, the convexity
of the object functions has been proved and the closed-form optimal solution has been
derived. Numerical examples, which illustrate the behavior of proposed models and the
applied solution method, have been considered; a retailer, using the model obtained in this
article, can effectively determine the optimal replenishment cycle.

Finally, the limitation of this article is that we have concentrated upon the inventory
system without shortage, which can affect the supply chain from the producer to the
retailer. Furthermore, this model has the potential to be extended to incorporate inflation
and quantity discount effects, different demand forms such as credit-linked promotion-
dependent demand, and other issues under the system with shortages. Additionally, this
article has considered the deterministic situation, so considering the stochastic situation,
such as stochastic demand, can be another future research direction on the subject of
this article.
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Notations

If and where needed, additional notations will be introduced throughout the paper.

o the ordering cost in dollars per order;

h
unit stock holding cost, excluding interest charges
($/unit/year);

y the order quantity in units;
c unit purchasing cost ($/unit);
ν unit selling price ($/unit), (ν > c);
D the market annual demand rate in units;
x the screening rate, (x > D);
p the percentage of defective items in y;
s the screening cost per unit;

m
the expiration date or the maximum lifetime of the
deteriorating item in years, (0 < m < 5);

73



Symmetry 2021, 13, 1695

θ(t)
the time-varying deterioration rare at time t, where
0 ≤ θ(t) ≤ 1;

td the fresh product time;
ts the screening time per cycle;
M the upstream credit period by the supplier to the retailer;
N the downstream credit period by the retailer to customers;
Ie the interest earned per dollar per year;
Ik the interest charged by the supplier per dollar per year;

L
the length of time in years during which the prepayments
are paid;

α
the fraction of procurement cost to be prepaid before the
time of delivery, 0 ≤ α ≤ 1;

β
the fraction of procurement cost to be paid at the time of
delivery, 0 ≤ β ≤ 1;

τ

the fraction of procurement cost granted a credit period
from the supplier to the retailer, 0 ≤ τ ≤ 1 and
α + β + τ= 1;

ρ
the fraction of the sales revenue offered a credit period by
the retailer to the customers, 0 ≤ ρ ≤ 1;

TC(T) the total annual relevant cost in dollars;
T the length of inventory cycle time in years, T ≤ m;
T∗ the (fixed) optimal cycle time of TC(T);

I1(t)
the inventory level at time t ∈ [0, ts] in which the product
has no deterioration;

I2(t)
the inventory level at time t ∈ [ts, td] in which the product
has no deterioration;

I3(t)
the inventory level at time t ∈ [td, T] in which the product
has deterioration;

Assumptions

1. All deteriorating items continuously deteriorate with time and cannot be sold when time
exceeds the expiration date m. To make the problem tractable, we assume the same as in
Wang et al. [65] and Chen et al. [16], that the deterioration rate is θ(t) = 1

1+m−t , 0 ≤ t ≤ T ≤ m.
2. There is no replacement or repair of deteriorated items during the replenishment cycle time

(0, T].
3. The demand rate is known and constant.
4. Shortages are not allowed.
5. The replenishment rate is infinite.
6. The time horizon is infinite.
7. There exists an inspection process that is 100% effective.
8. The screening rate is faster than the demand rate.
9. The supplier imposes a prepayment policy to the retailer, in which the retailer should prepay

a fraction of procurement cost (α percent) at the moment they place an order to the supplier
(at time L), they pay another β percentage of procurement cost at time 0 upon the receipt of
all items, and receive an upstream credit period of M years on the remaining τ portion of
procurement cost.

10. During the selling period, the retailer offers the partial trade credit to his customers, in which
their customers must immediately make a partial payment (at the rate 1 − ρ) to the retailer
in cash at the time of purchasing items and then receive credit period N on the outstand-
ing amount.

11. If M ≥ N, then the retailer deposits the sales revenue into an interest bearing account. If
M ≥ T + N (i.e., the permissible delay period is longer than the time at which the retailer
receives the last payment from its customers), then the retailer receives all revenue and pays off
the entire purchase cost at the end of the permissible delay M. Otherwise, (if M ≤ T + N), the
retailer pays the supplier the sum of all units sold by M − N and the collateral deposit received
from N to M, keeps the profit for the use of the other activities, and starts paying for the interest
charges on the items sold after M − N.
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12. If N ≥ M, then the retailer finances and pays its supplier the entire amount of the delayed
payment (1 − ρ)cDT at the end of the trade credit M, and then pays down the loan after time
N at which the retailer starts to receive sales revenue from its customers. For the collateral
deposit the retailer deposits the sales revenue into an interest bearing account until the end
of the permissible delay M. If T ≥ M, then the retailer pays the supplier all units sold by M,
keeps the profit for the use of the other activities, and starts paying for the interest charges on
the items sold after M.

Appendix A

Proof of Lemma 2. In proving Lemma 2, we consider the assertions of Lemma 2 item-wise.

(A) Taking the first-order derivative of G(T) with respect to T, we obtain

G′(T) = D(1+m−td)tdT
(1+m−T)2 + 2pD2

x(1−p)2 {[td + (1 + m − td)·
ln( 1+m−td

1+m−T )] · (1+m−td)T
(1+m−T)2 + (1+m−td)

2T
(1+m−T)2 }

+D
2 (1 + m − td)

2 · T
(1+m−T)2 +

DT
2

> 0

and

G(td) =
pD2

x(1 − p)2 > 0

Furthermore, we see that G(T) > 0 if T ≥ td.
(B) We define g(T) as follows:

g(T) = D(1 + m − td)
T

1 + m − T
− Dtd − D(1 + m − td) · ln(

1 + m − td
1 + m − T

)

Taking the first-order derivative of g(T) with respect to T, we derive

g′(T) = D(1 + m − td)T

(1 + m − T)2 > 0

and
g(td) = 0

Furthermore, we have

D(1 + m − td)
T

1 + m − T
− Dtd − D(1 + m − td) ln(

1 + m − td
1 + m − T

) > 0 if T ≥ td

(C) Taking the first-order derivative of H(T) with respect to T, we obtain

H′(T) = 4pD2

x(1−p)2 (1 + m − td)[td + (1 + m − td) · ln( 1+m−td
1+m−T )]

T2

(1+m−T)3

+ 6pD2

x(1−p)2 (1 + m − td)
2 T2

(1+m−T)3

and

H(td) =
Dt3

d
(1 + m − td)

+
2pD2

x(1 − p)2 · t3
d

(1 + m − td)
> 0

Furthermore, we have H(T) > 0 if T ≥ td.
(D) We define h(T) by

h(T) = D(1 + m − td)
(1+m)T

(1+m−T)2 − 3D(1 + m − td)
T

1+m−T + 2Dtd

+2D(1 + m − td) · ln( 1+m−td
1+m−T )
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Taking the first-order derivative of h(T) with respect to T, we find that

h′(T) = D(1 + m − td)
2T2

(1 + m − T)3 > 0

and

h(td) =
Dt2

d
(1 + m − td)

> 0

So, we finally have

D(1 + m − td)
(1+m)T

(1+m−T)2 − 3D(1 + m − td)
T

1+m−T

+2Dtd + 2D(1 + m − td) · ln( 1+m−td
1+m−T ) > 0

(A1)

if T ≥ td.
We thus have completed the proof of Lemma 2. �
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Abstract: In this article, we use Lehmann alternative-II to extend the odd generalized exponen-
tial family. The uniqueness of this family lies in the fact that this transformation has resulted in
a multitude of inverted distribution families with important applications in actuarial field. We
can characterize the density of the new family as a linear combination of generalised exponential
distributions, which is useful for studying some of the family’s properties. Among the structural
characteristics of this family that are being identified are explicit expressions for numerous types
of moments, the quantile function, stress-strength reliability, generating function, Rényi entropy,
stochastic ordering, and order statistics. The maximum likelihood methodology is often used to
compute the new family’s parameters. To confirm that our results are converging with reduced
mean square error and biases, we perform a simulation analysis of one of the special model, namely
OGE2-Fréchet. Furthermore, its application using two actuarial data sets is achieved, favoring its
superiority over other competitive models, especially in risk theory.

Keywords: generalized exponential distribution; generalized exponential distribution; OGE-G
family; Rényi entropy; order statistic

1. Introduction

In recent years, there has been a dramatic growth in the number of generalisations
of well-known probability distributions. Most notable generalizations are achieved by
(i) inducting power parameters in well established parent distributions, (ii) extending the
classical distribution by modification in their functions, (iii) introducing special functions
such as W[K(x)] as generators and (iv) by compounding of distributions. This heaped
surge of generalized families is due to the flexibility in modelling phenomenons related to
the changing scenarios of contemporary scientific field including demography, actuarial,
survival, biological, ecological, communication theory, epidemiology and environmental
sciences. However, a clear understanding of the applicability of these models in most
applied areas is necessary if one is to gain insights into systems that can be modeled as
random processes. The model, thus obtained, acquires improved empirical results to the
real data that is collected adaptively.

Although there exist many functions which act as generators to produce flexible
classes of distributions, in this project, we will emphasize generalizations in which a ratio
of survival function (sf) has been used in some form, commonly known as the odd ratio. In
the reference [1], a proportional odd family viz. a viz. the Marshall Olkin-G (MO-G) was
generalized by sf K(x) = 1 − K(x), where K(x) is the distribution function (cdf) of parent
distribution, with the induction of a tilt parameter. Gleaton and Lynch, in the reference [2],

Symmetry 2021, 13, 2064. https://doi.org/10.3390/sym13112064 https://www.mdpi.com/journal/symmetry79
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used the odd function as generator when they defined a log odd family (OLL-G). In the
reference [3], defined the odd Weibull family, as an asymptotically equivalent log-logistic
model for larger values of θ, the scale parameter. The reference [4] used the Transformed
-Transformer (TX) family, due to the reference [5], to define odd Weibul-G families of
distribution. Since then, a myriad of distributions has been generalized using odd function.
Some of the important families include [6–31], among others.

Focussing on the origins and motivations of our proposed scheme, the authors in [32]
proposed the odd generalized exponential family (which we refer to OGE-G) as a better
alternative to generalized exponential (GE) family using Lehmann Alternative-I (LA-I).
The cdf of the two parameter OGE-G family is mentioned below:

FOGE-G(x; α, λ, ψ) =

⎛⎜⎜⎝1 − e
−λ

K(x; ψ)

K(x; ψ)

⎞⎟⎟⎠
α

, x > 0, α > 0, λ > 0.

In the reference [33], an odd family of GE was proposed so-called generalized odd
generalized exponential family (which we refer to OGE1-G). The cdf of OGE1-G family is
presented as:

FOGE1-G(x; α, β, ψ) =

⎛⎜⎝1 − e
− Kα(x; ψ)

1 − Kα(x; ψ)

⎞⎟⎠
β

, x > 0, α > 0, β > 0.

Because of its capacity to simulate variable hazard rate function (hrf) forms of all
traditional types in lifetime data analysis, we believe OGE-G offers a sensible combination
of simplicity and flexibility. However, the relevance of OGE1-G to lifespan modelling
in domains such as reliability, actuarial sciences, informatics, telecommunications, and
computational social sciences (just to highlight a few) is still debatable. According to the
reference [34], the Lehmann Alternative-II (LA2) approach has received less attention. This
motivated us to use LA2 approach to develop the exponentiated odd generalized expo-
nential (OGE2-G), in the same vein as OGE-G and OGE1-G. Adhering to the framework
defined in the reference [5], if T follows GE random variable (rv), then the cdf of OGE2-G
family is mentioned below:

FOGE2-G(x; α, β, ψ) =

[
1 − e

− 1−K(x;ψ)α

K(x;ψ)α

]β

, x > 0, α, β > 0 (1)

where α and β are shape parameter and ψ is the vector of baseline parameter.
Consider the following points to emphasise the model’s distinctiveness; (i) In the

literature, the proposed model in its current form has not been studied to the best of
our knowledge, (ii) From an analytical standpoint, the OGE2-G family has a significantly
better configuration and practicality than OGE-G and OGE1-G for inverted models with
minimal chance to counter non-identifiability issues, (iii) The OGE2-G has several curious
connections to other families. When α approaches 0, F(x; α, β, ψ) tends to GE with λ = 1,
when α = 1 F(x; α, β, ψ) tends to OGE-G, if α → 0 and β = 1 then F(x; α, β, ψ) tends
to odd exponential (OE) (iv) This new dimension allowed us to explore models which
are naturally constituted by LA2. The generalizations, thus attained, produced skewed
distributions with much heavier tails enabling its practicality in risk evaluation theory
with far better results, (v) The successful application of OGE2-G family motivates future
research, as it outperforms nine well-established existing models, (vi) We present a physical
explanation for X when α and β are integers. Consider there be a parallel system consisting
of β identically independent components. Suppose that the lifetime of a rv Y with a specific
K(x; ψ) with α components in a series system such that the risk of failing at time x is
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represented by the odd function as 1−K(x;ψ)α

K(x;ψ)α . Consider that the randomness of this risk is
represented by the rv X, then we can assume the following relation holds

Pr(Y ≤ x) = Pr(X ≤ 1 − K(x; ψ)α

K(x; ψ)α
) = F(x; α, β, ψ) ,

explicitly given in Equation (1). The OGE2-G family is offered and explored in this re-
search, emphasising its diversity and scope for application to real life phenomenons. The
major features of the OGE2-G family, including the pdf, hrf, qf, and ten unique models
from OGE2-G family presented in Table 1, are provided in the first half. Then, certain
mathematical properties of the OGE2-G such as series expansion of the exponentiated pdf,
moments, parameter estimation, order statistics, Rényi entropy, stress-strength analysis and
stochastic dominance results are investigated. Furthermore, Fréchet is specified as baseline
model termed as OGE2-Fréchet (denoted as OGE2Fr) and the maximum likelihood (ML)
technique is then used to construct statistical applications of the special model. We choose
to study OGE2Fr specifically as its nested model include inverse-Rayleigh (IR) and inverse
exponential (IE), favoring its suitability over sub-models as well. It is applied to fit two sets
of premium data from actuarial field. Using key performance indicators, we reveal that
OGE2Fr outperforms nine competing models. A portion pertinent to specific risk measures,
with an emphasis on the value at risk (VaR) and the expected shortfall (ES), is presented.
Eventually, the estimation of risk measures for the examined data sets is then discussed,
with the proposed methodology yielding a rather satisfying result. Equation (1) can be

useful in modelling real life survival data with different shapes of hrf. Table 1 lists 1−K(x;ψ)α

K(x;ψ)α

and the corresponding parameters for some special distributions which are considered to
be the potential sub-models of OGE2-G family.

Table 1. Distributions and corresponding 1−K(x;ψ)α

K(x;ψ)α functions.

Distribution
1−K(x;ψ)α

K(x;ψ)α ψ

Fréchet (x > 0)
[
1 − e(a/x)b

]−α − 1 (a, b)

Generalized exponential (x > 0)
[
1 − (1 − e−λx)θ

]−α − 1 (λ, θ)

Power function (0 < x < a)
[
1 − (x/a)b

]−α − 1 (a, b)

Burr III (x > 0)
[
1 − (1 + x−c)−k

]−α − 1 (c, k)

Half-logistic (x > 0)
[
2(ex + 1)−1]−α − 1 (α)

Log-logistic (x > 0)
[
1 + (x/a)b

]α − 1 (a, b)

Inverse Rayleigh (x > 0)
[
1 − eγ/x2

]−α − 1 (γ)

Inverse Exponential (x > 0)
[
1 − eγ/x

]−α − 1 (γ)

Normal (−∞ < x < ∞)
[
1 − φ( x−μ

σ )
]−α − 1 (μ, σ)

Gumbel (−∞ < x < ∞)
[

1 − e−e
x−μ

σ

]−α

− 1 (μ, σ)

The following is a breakdown of how the paper is constructed. In Section 2, we
acquaint the readers to the new family with basic properties and ten potential baseline
models which can become members of OGE2-G family. Section 3 is comprised of the
mathematical properties of the OGE2-G family. Section 4 progresses by taking Fréchet
(Fr) as sub-model to propose OGE2Fr and related statistical and inferential properties.
Section 5 specifies two applications of actuarial data sets with emphasis on risk evaluation
(premium returns) and the proposed model’s veracity is established. Furthermore, the
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model is applied to compute some actuarial measures. Section 6 is the final section, with
some annotations and useful insights.

2. The OGE2G Family

In this segment, basic statistical properties of the newly proposed family characterized
by the cdf, in Equation (1) are presented. Functional forms of ten sub models are also
defined.

2.1. Definition of pdf and hrf

The pdf in agreement with Equation (1) is given as (2).

fOGE2−G(x; α, β, ψ) = α β k(x; ψ)K(x; ψ)−α−1 e
−
{

1−K(x;ψ)α

K(x;ψ)α

}[
1 − e

−
{

1−K(x;ψ)α

K(x;ψ)α

}]β−1

(2)

Using the results defined in Equations (1) and (2), the hrf is defined as

τ(x; α, β, ψ) =
fOGE2−G(x; α, β, ψ)

1 − FOGE2−G(x; α, β, ψ)

= αβ k(x; ψ)K(x; ψ)−α−1e
−
{

1−K(x;ψ)α

K(x;ψ)α

}[
1 − e

−
{

1−K(x;ψ)α

K(x;ψ)α

}]β−1

×
⎡⎣1 −

(
1 − e

−
{

1−K(x;ψ)α

K(x;ψ)α

})β−1
⎤⎦ (3)

The hazard rate is just a calculation of the change in survivor rate per unit of time.
Hence, its importance in reliability and survival analysis is crucial. The hrf has some
characteristic shapes which include monotonic (increasing, decreasing), non-monotonic
(bathtub or upside down bathtub) or constant. Standard statistical distribution yield
maximum three shapes, but OGE2-G family can yield a diverse range of shapes (including
increasing-decreasing-increasing) depending upon the choice of special model. For further
details on hrf, see [35].

2.2. Quantile Function and Potential Sub-Models

The OGE2-G family may be readily approximated by reversing Equation (1) as shown
below: If indeed the distribution of u is uniform u(0, 1), therefore

x = QK

[
1 −

{
1 − log

(
1 − u1/β

)}−1/α
]

. (4)

Equation (4) can be useful to define statistical measures such as median, skewness, and
kurtosis based on quartiles, deciles, or percentiles. These measures facilitates to concisely
define the skewness and kurtosis measures which are significant tool to comprehend the
shape(s) of the distribution.

Theorem 1 shows how the OGE2 family is related to other distributions.

Theorem 1. Let X ∼ OGE2-G(α, β; ψ), then

(a) If Y = 1 − K(x; ψ)α, then FY(y) =
(

1 − e−
Y

1−Y

)β
, 0 < y < 1, and

(b) If Y = 1−K(x;ψ)α

K(x;ψ)α , then Y ∼ GE(1, β).
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3. Mathematical Properties of OGE2-G Family

To capture the family’s modelling capacity, numerous mathematical features of the
OGE2-G are examined in this section. Some of the key results established in this section are
then applied in Section 5.

3.1. Linear Expansion of cdf

We provide a useful expansion for (1) in terms of linear combinations of exp-G density
functions using the following series expansion as

(1 − z)η−1 =
∞

∑
i=0

(−1)iΓ(η)
i!Γ(η − i)

zi,

whereas the expansion holds for all |z| < 1 and η > 0 a non-integer value. Then, the cdf of
OGE2-G class in (1) can indeed be phrased with

F(x) =
∞

∑
i=0

(−1)iΓ(β + 1)
i! Γ(β + 1 − i)

e
−i

(
1−Kff

Kff

)
. (5)

Using series expansion and power series expansion in Equation (5), will yield the
following cdf

F(x) = F(x : α, β, ψ) =
∞

∑
�=0

ξ� H�(x) , (6)

where H�(x) = K(x; ψ)� (for � ≥ 1) denotes the cdf of exp-G distribution with power
parameter � and

ξ� = (−1)�
∞

∑
i,j=1

j

∑
k=0

(−1)i+j+k Γ(β + 1)
i!j!Γ(β + 1 − i)

(
j
k

)(
α(k − i)

�

)
.

Through differentiating Equation (6) the OGE2-G family density, we may express it as
a combination of exp-G densities.

f (x : α, β, ψ) =
∞

∑
i,j=1

ξ�h�(x) , (7)

where h�(x) = �K�−1(x; ψ) k(x; ψ) is the exp-G pdf with power parameter �. As a result,
numerous features of the proposed model may be deduced from the exp-G distribution’s
attributes. Most modern computation frameworks, such as MathCad, Maple, Mathematica,
and Matlab, can efficiently handle the formulas derived throughout the article, which can
currently operate using the use of analytic formulations of enormous size and complexity.

3.2. Numerous Types of Moments

The fundamental formula for the pth moment of X is supplied by (7) as

μ′
p =

∞

∑
i,j=0

ξ� E(Xp
� ). (8)

where E(Xp
� ) =

∫ ∞
0 xph�(x)dx. Setting p = 1 in (8) can provide explicit expression for the

mean of several parent distributions.
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A another expression for μ′
p is taken from (8) as far as the baseline qf is concerned

μ′
p =

∞

∑
i,j=0

ξ� τ(p, �− 1). (9)

where τ(p, �− 1) =
∫ 1

0 QG(u)p u�du.
The central moments (μp) and cumulants (κp) of X can follow from Equation (8)

as μp = ∑
p
k=0 (

p
k) (−1)k μ

′p
1 μ′

p−k and κs = μ′
s − ∑s−1

k=1 (
s−1
k−1) κk μ′

s−k, respectively, where
κ1 = μ′

1.
The rth lower incomplete moment of X can be determined from Equation (7) as

mr(y) =
∞

∑
i,j=0

ξ�

∫ G(y)

0
QG(u)r ul−1du. (10)

For most G distributions, the final integral may be calculated.

3.3. Inference Related to OGE2 Family

The strategy of maximum likelihood (MLL) approach is used to estimate the unknown
parameters of the new class. Let x1, . . . , xn be n observations from the OGE2-G density
class (2) with parameter vector Θ = (α, β, ψ)�. Then the likelihood function L(α, β, δ) on
the domain Θ is defined as

L = n log(α) + n log(β) +
n

∑
i=1

log k(xi; ψ)− (α + 1) log K(xi; ψ)

−V(xi; α, ψ) + (β − 1)
n

∑
i=1

log
[
1 − e−V(xi ;α,ψ)

]
, (11)

where V(xi; α, ψ) = 1−K(xi ;ψ)α

K(xi ;ψ)α .

The elements of the score vector U(Θ) are as described in the following:

Uα =
n
α
−

n

∑
i=1

log K(xi; ψ)− V′ (α)(xi; α, ψ)

+
n

∑
i=1

(
β − 1

)
e−V(xi ;α,ψ)V′ (α)(xi; α, ψ)(
1 − e−V(xi ;α,ψ)

) ,

Uβ =
n
β
+

n

∑
i=1

log
[
1 − e−V(xi ;α,ψ)

]
,

Uψ =
n

∑
i=1

[
k ′(xi; ψ)

k(xi; ψ)

]
+ (α + 1)

n

∑
i=1

[
k(xi; ψ)k ′(xi; ψ)

K(xi; ψ)

]
− V′ (ξk)(xi; α, ψ)

+(β − 1)
n

∑
i=1

[
e−V(xi ;α,ψ)

{
V′ (ξk)(xi; α, ψ)

}
1 − e−V(xi ;α,ψ)

]
,

where V′ (α)(.) and V′ (ψk)(.) means the derivative of the function V with respect to α and
ψ, respectively.

The next elements are produced by the components of the score vector J(Θ).
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Jαα = − n
α2 +

n

∑
i=1

k(xi; α, β, ψk)V′ (ψk)

K̄(xi; α, β, ψk)
− V′′ (α α) + (β − 1)

×
n

∑
i=1

e−V(xi ;α,ψ)V′(xi; α, α) + e−V(xi ;α,ψ)(V′(xi; α))2

(1 − e−V(xi ;α,ψ))2
,

Jαβ =
n

∑
i=1

e−V(xi ;α,ψ) V′ α(xi; α, ψ)

[1 − e−V(xi ;α,ψ)]2
,

Jαψ =
n

∑
i=1

k(xi; α, β, ψ)k′(xi; α, β, ψ)

K̄(xi; α, β, ψ)
− V′′ (α ψ)(xi; α, ψ) + (β − 1)

×
n

∑
i=1

[
e−V(xi ;α,ψ)]2V′ (α)(xi; α, ψ)V′ (ψ)(xi; α, ψ)− e−V(xi ;α,ψ)V′′( αψ)(xi; α, ψ)

(1 − e−V(xi ;α,ψ))2

−(β − 1)
n

∑
i=1

e−V(xi ;α,β,ψ)V′ (α)(xi; α, ψ)V′ (ψ)(xi; α, ψ)

(1 − e−V(xi ;α,ψ))2

+(β − 1)
n

∑
i=1

[
e−V(xi ;α,ψ)]2V′ (α)(xi; α, ψ)V′ (ψ)(xi; α, ψ)

(1 − e−V(xi ;α,ψ))2
,

Jββ = − n
β 2 ,

Jβψ =
n

∑
i=1

e−V(xi ;α, ψ)V′ (ψ)(xi; α, ψ)

1 − e−V(xi ;α, ψ)
,

Jψψ =
n

∑
i=1

k(xi;ψ)k′′(xi;ψ)−
[
k′(xi;ψ)

]2[
k(xi;ψ)

]2 + (α + 1)
n

∑
i=1

[ k(xi;ψ)k′(xi;ψ){−k′(xi;ψ)}2

K̄2((xi;ψ))

]

−V′′ (ψ ψ)(xi;ψ) − (β − 1)
n

∑
i=1

[
e−V(xi ;α,ψ)V′ (ψ)(xi; α, ψ)

]2

(1 − e−V(xi ;α,ψ))2

−(β − 1)
n

∑
i=1

e−V(xi ;α,ψ)V′′ (ψ ψ)(xi; α, ψ) + e−V(xi ;α,ψ)[V′ (ψ)(xi; α, ψ)]2

(1 − e−V(xi ;α,ψ))2

+(β − 1)
n

∑
i=1

[
e−V(xi ;α,ψ)

]2
V′′ (ψ ψ)(xi; α, ψ) +

[
e−V(xi ;α,ψ)V′ (ψ)(xi; α, ψ)

]2

(1 − e−V(xi ;α,ψ))2
,

where V′′ (α α)(.) is the derivative of V′ (α)(.) with respect to α, V′′ (α ψ)(.) is the derivative
of V′ α(.) with respect to ψk and V′′ψ ψ(.) is the derivative of V′ (ψ)(.) with respect to ψ.

3.4. Entropy

The Rényi entropy due to [36], is characterized as

IR(γ) =
1

1 − γ
log

(∫ ∞

0
f γ(x)dx

)
,

Let us consider

f γ(x) = (α β)γ kγ(x; ψ)K(x; ψ)γ(−α−1) e
−γ

[
1−K(x;ψ)α

K(x;ψ)α

]

×
{

1 − e
− 1−K(x;ψ)α

K(x;ψ)α

}γ(β−1)

. (12)
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Expanding Equation (12) as in Section 3.1, the Rényi entropy reduces to

IR(γ) =
1

1 − γ
log

{
∞

∑
i=0

i

∑
l=0

ζ∗i,l
∫ ∞

0
kγ(x)K −{α(γ+i−l)−γ}dx

}
, (13)

where ζ∗i,l =
(−1)i+l

i! (α β)γ(i
l)∑i

j=0(−1)j(j + i)i(γ(β−1)
j ).

3.5. Order Statistics

Assume that X1, . . . , Xn is a random sample (RS) from the OGE2-G . Furthermore,
assume that Xi:n denote the ith order statistic (OS). Consequently, pdf of Xi:n may be
interpreted as

fi:n(x) =
1

β(i, n − i + 1)
f (x) F(x)i−1 {1 − F(x)}n−i.

=
1

β(i, n − i + 1)

n−i

∑
j=0

(−1)j
(

n − i
j

)
f (x) F(x)j+i−1.

Inserting Equations (1) and (2) in the last equation, and expanding it as in Section 3.1,
we get

fi:n(x) =
n−i

∑
j=0

ηj hm(x) , (14)

where

ηj =
(−1)j

β(i, n − i + 1)

(
n − i

j

) ∞

∑
m=0

ξ∗m

and

ξ∗m = (−1)m
∞

∑
i,k=0

i

∑
l=0

(−1)i+k+l(k + 1)iΓ{β(i + j)}
i!k!Γ{β(i + j)− k}

(
i
l

)(−α(i + l + 1)− 1
m

)
.

3.6. Stress-Strength Reliability

Supp X1 ∼ OGE2-G(α, β1; ψ) and X2 ∼ OGE2-G(α, β2; ψ) are two continuous rvs with
pdfs f1(x) and f2(x) and cdfs F1(x) and F2(x), therefore the reliability R is supplied via

R = P(X1 > X2) =
∫ ∞

0
f1(x) F2(x) dx. (15)

Theorem 2. Assume that X1 and X2 are two independent rvs established previously with constant
parameters β1 and β2. Eventually,

R = β1

∞

∑
i=0

(
β1 − 1

i

)
(−1)iΓ(i + 1)− β1

∞

∑
i=0

(
β1 − 1

i

)(
β2

j

)
(−1)i+jΓ(i + j + 1). (16)

Proof. Using Equations (1) and (2) in Equation (15), we have

∫ ∞

0
f1(x) F2(x) dx =

∫ ∞

0
αβ1k(x; ψ)K(x; ψ)−(α+1)e

−
{

1−K(x;ψ)α

K(x;ψ)α

}

×
∞

∑
i=0

(
β1 − 1

i

)
(−1)i

{
1 − K(x; ψ)α

K(x; ψ)α

}i

×
[

1 −
∞

∑
j=0

(
β2

j

)
(−1)j

{
1 − K(x; ψ)α

K(x; ψ)α

}j]
dx.
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Equation (16) follows immediately after solving the integral with any mathemati-
cal software.

3.7. Stochastic Ordering

Stochastic ordering has indeed been acknowledged as an essential tool for assessing
comparative behavior in reliability theory and other disciplines. Assume X and Y be two
rvs via cdfs, sfs and pdfs F1(x) and F2(x), F̄1(x) = 1 − F1(x) and F̄2(x) = 1 − F2(x), and
f1(x) and f2(x), respectively. In the specific planning, the rv X1 is considered to be lower
than X2:

1. Stochastic order (symbolized via X1 ≤st X2) if F̄1(x) ≤ F̄2(x) for all x;
2. LL ratio order (symbolized via X1 ≤lr X1) if f1(x)/ f2(x) is decreasing in x ≥ 0;
3. Hazard rate order (symbolized via X1 ≤hr X2) if F̄1(x)/F̄2(x) is decreasing in x ≥ 0;
4. Reversed hazard rate order (symbolized via X1 ≤rhr X2) if F1(x)/F2(x) is decreasing

in x ≥ 0.

All these four stochastic orders studied in (1)–(4) are connected to one another as a
result of [37] and the accompanying ramifications apply:

(X1 ≤rhr X2) ⇐ (X1 ≤lr X2) ⇒ (X1 ≤hr X2) ⇒ (X1 ≤st X2).

when sufficient conditions are met, the OGE2-G distributions are ordered with regard to
the strongest LL ratio ordering, as shown by the next theorem.

Theorem 3. Assume X1 ∼ OGE2(α1, β; ψ) and X2 ∼ OGE2(α2, β; ψ). If α1 < α2, then
X1 ≤lr X2.

Proof. First, we have the ratio

f1(x)
f2(x)

=

α1β k(x)K−α1−1e−
{

1−Kα1
Kα1

}[
1 − e−

{
1−Kα1

Kα1

}]β−1

α2β k(x)K−α2−1e−
{

1−Kα2
Kα2

}[
1 − e−

{
1−Kα2

Kα2

}]β−1 .

After simplification, we obtain

f1(x)
f2(x)

=

α1K(α2−α1)e−
{

1−Kα1
Kα1

}
+
{

1−Kα2
Kα2

}[
1 − e−

{
1−Kα1

Kα1

}]β−1

α2

[
1 − e−

{
1−Kα1

Kα1

}]β−1 .

Next,

log
[

f1(x)
f2(x)

]
= − log(α2 − α1) + (α2 − α1) log(K)−

{
1 − Kα1

Kα1

}
+

{
1 − Kα2

Kα2

}

+(β − 1) log
[

1 − e−
{

1−Kα1
Kα1

}]
−(β − 1) log

[
1 − e−

{
1−Kα2

Kα2

}]
.

If a1 < a2, we obtain
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d
dx

log
[

f1(x)
f2(x)

]
= (α2 − α1) k(x)K −(α1+α2) + (β − 1) k(x)K−1

×
[

α1k
−α1

e−
{
− 1−Kα1

Kα1

}
− 1

− α2K−α2

e−
{
− 1−Kα2

Kα2

}
− 1

]
< 0.

Thus, f1(x)/ f2(x) is decreasing in x and hence X1 ≤lr X2.

4. OGE2-Fréchet Distribution

In this section, we study the first special model defined in Section 2.2, the OGE2-
Fréchet (OGE2Fr), in view of its practical application.

The OGE2Fr model can be defined from (1) by taking K(x; ψ) = e−(a/x)b
and k(x; ψ) =

b abx−(b+1)e−(a/x)b
, as cdf and pdf of the baseline Fréchet distribution with a, b > 0,

respectively. The cdf and pdf of OGE2Fr distribution are, respectively, given by

F(x; α, β, a, b) =

⎡⎣1 − e
1−

{
1−e−(

a
x )

b
}−α

⎤⎦β

, x > 0 α, β, a, b > 0 , (17)

and

f (x; α, β, a, b) = ab α b βx−b−1e
1−( a

x )
b−

(
1−e−(

a
x )

b
)−α(

1 − e−(
a
x )

b
)−α−1

×
⎡⎣1 − e

1−
(

1−e−(
a
x )

b
)−α

⎤⎦β−1

, (18)

where α, β and b are shape parameters while a is scale parameter.
The hrf and qf of the OGE2Fr distribution are obtained as

h(x) = abαb βx−b−1e
1−( a

x )
b−

{
1−e−(

a
x )

b
}−α[

1 − e−(
a
x )

b
]−α−1

×
⎡⎣1 − e

1−
{

1−e−(
a
x )

b
}−α

⎤⎦1−β
⎡⎢⎣1 −

⎧⎨⎩1 − e
1−

(
1−e−(

a
x )

b
)−α

⎫⎬⎭
β
⎤⎥⎦ (19)

Q(u) =
[

a
{
− log

(
1 −

[
1 − log

(
1 − u1/β

)]−1/α
)}]−1/b

. (20)

Figure 1 depicts a visualisation of the pdf and hrf functions, exhibiting the range of
shapes that all these functions can take at random input parametric values. The OGE2Fr
distribution’s pdf can be gradually decreasing, unimodal, and right-skewed, with different
curves, tail, and asymmetric aspects, as shown in Figure 1. The hrf, on the other hand,
offers an extensive range of increasing, decreasing, unimodal, and increasing-decreasing-
increasing (IDI) forms. Given a wide variety of hrf shapes being offered, the OGE2Fr
distribution can in fact be a useful tool to model unpredictable time-to-event phenomena.

4.1. Linear Representation and Related Properties

The cdf of the OGE2Fr distribution is quite straightforward and is achieved by using
the result defined in Equation (6) as

F(x) = F(x : α, β, a, b) =
∞

∑
�=0

ξ�

[
e−(a/x)b

]�
� ≥ 1 , (21)
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where � is the power parameter and noting that ∑∞
�=0 ξ� is unity.

For simplicity, we can rewrite the above result as

F(x) = F(x : α, β, a, b) =
∞

∑
�=0

ξ� e−�(a/x)b
.

By differentiating the last term, we can express the density of OGE2Fr model as follows

f (x : α, β, a, b) =
∞

∑
i,j=1

ξ�Π(x; �, a, b) , (22)

where Π(x; �, a, b) = � b abx−b−1e−�( a
x )

b
represents the Fréchet density function with power

parameter �. Equation (22) enforces the fact that OGE2Fr density is a linear combination
of Fréchet densities. Thus, we can derive various mathematical properties using Fréchet
distribution.
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Figure 1. (a) Plots of density and (b) hazard rate of the OGE2Fr model for some random parameter
values.

Moments are the heart and soul of any statistical analysis. Moments can be used to
evaluate the most essential characteristics such as mean, variance, skewness, and kurtosis
of a distribution. We now directly present the mathematical expressions for the moments
of OGE2Fr model as follows. Let Y� be a random variable with density Π(x; �, a, b). Then,
core properties of X can follow from those of Y�. First, the pth ordinary moment of X can
be written as

μ′
p =

∞

∑
i,j=1

ξ�� ap �1−p/b

Γ(1 − p/b)
. (23)

Second, the cumulants (κp) of X can be determined recursively from (23) as κs = μ′
s −

∑s−1
k=1 (

s−1
k−1) κk μ′

s−k, respectively, where κ1 = μ′
1. The skewness γ1 = κ3/κ3/2

2 and kurtosis
γ2 = κ4/κ2

2 of X can be calculated from the third and fourth standardized cumulants. Plots
of mean, variance, skewness and kurtosis of the OGE2Fr distribution are displayed in
Figure 2. These plots signifies the significant role of the parameters α and β in modeling
the behaviors of X.

Third, the pth incomplete moment of X, denoted by mp(y) = E(Xp | X ≤ y) =∫ y
0 xp fOGE2Fr(x)dx, is easily found changing variables from the lower incomplete gamma

function γ(v, u x) =
∫ ∞

0 xv−1 e−u xdx when calculating the corresponding moment of Y�.
Then, we obtain

mp(y) =
∞

∑
i,j=1

ξ� ap �1+p/bΓ
(

1 − p/b, � (a/x)b
)

. (24)
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Fourth, the first incomplete moment m1(z) is used to construct the Bonferroni and
Lorenz curves as discussed in Section 3.2. Figure 3 provides the income inequality curves
(Bonferroni & Lorenz) of the proposed distribution which can easily be derived from (24),
respectively, where q = Q(π) is the qf of X derived from Equation (20).
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Figure 2. Plots of (a) mean, (b) variance, (c) skewness and (d) kurtosis of the OGE2Fr distribution.
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4.2. Parameter Estimation

Let x1, . . . , xn be a sample of size n from the OGE2Fr distribution given in Equation (18).
The log-likelihood function � = �(Θ) for the vector of parameters Θ = (α, β, a, b) is

� = nb log(a) + n log(αβ b)− (b + 1)
n

∑
i=1

log(xi)−
n

∑
i=1

(
a
xi

)b
+

n

∑
i=1

[
1 −

{
1 − e−(a/xi)

b
}−α

]

−(α + 1)
n

∑
i=1

log
[

1 − e−( a
xi
)b
]
+ (β − 1)

n

∑
i=1

log

⎡⎣1 − e
1−

(
1−e

−( a
xi

)b
)−α⎤⎦. (25)

The components of score vectors U(Θ) are

Uα =
n
α
−

n

∑
i=1

log

[
1 − e−

(
a
xi

)b
]
+

n

∑
i=1

[
1 − e−

(
a
xi

)b
]−α

log

[
1 − e−

(
a
xi

)b
]

+(β − 1)
n

∑
i=1

{
1 − e−

(
a
xi

)b}−α

log
{

1 − e−
(

a
xi

)b}
1 − e−1+

{
1−e

−
(

a
xi

)
b}−α

,

Uβ =
n
β
+

n

∑
i=1

log

⎡⎢⎣1 − e
1−

{
1−e

−
(

a
xi

)
b
}−α⎤⎥⎦ ,

Ua =
n b
a

− ab b
a

n

∑
i=1

x−b
i − ab b(α + 1)

a

n

∑
i=1

x−b
i

e
(

a
xi

)b

− 1

− ab bα

a

n

∑
i=1

x−b
i

{
1 − e−

(
a
xi

)b
}−α

1 − e−
(

a
xi

)b

+
α(β − 1) ab b

a

n

∑
i=1

x−b
i

{
1 − e−

(
a
xi

)b
}−α

[
1 − e

(
a
xi

)b
][

1 − e−1+
{

1−e
−
(

a
xi

)b}−α] ,

Ub =
n
b
+ n log(a)−

n

∑
i=1

log(xi)− ab
n

∑
i=1

x−b
i log

(
a
xi

)

−(α + 1) ab
n

∑
i=1

x−b
i log

(
a
xi

)
e
(

a
xi

)b

− 1

+ α ab
n

∑
i=1

x−b
i log

(
a
xi

){
1 − e−

(
a
xi

)b
}−α

e
(

a
xi

)b

− 1

+ α ab(β − 1)
n

∑
i=1

x−b
i log

(
a
xi

){
1 − e−

(
a
xi

)b
}−α

[
e
(

a
xi

)b

− 1
][

1 − e−1+
{

1−e
−
(

a
xi

)b}−α] .

4.3. Order Statistics

For a random sample of X1, . . . , Xn taken from the OGE2Fr distribution with Xi:n as
the ith order statistic. For i = 1, 2, 3, . . . , n, the pdf corresponding to Xi:n can be expressed as
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fi:n(x) =
1

β(i, n − i + 1)
f (x) F(x)i−1 {1 − F(x)}n−i.

=
1

β(i, n − i + 1)

n−i

∑
j=0

(−1)j
(

n − i
j

)
f (x) F(x)j+i−1 ,

where f (x) and F(x) are the pdf and cdf of OGE2Fr distribution, respectively. Inserting
Equations (17) and (18), and using the result defined in Section 3, we have

fi:n(x; m a, b) =
n−i

∑
j=0

ηj m b ab x−b−1e−m(a/x)b
, (26)

where

ηj =
(−1)j

β(i, n − i + 1)

(
n − i

j

) ∞

∑
m=0

ξ∗m

and

ξ∗m = (−1)m
∞

∑
i,k=0

i

∑
l=0

(−1)i+k+l(k + 1)iΓ{β(i + j)}
i!k!Γ{β(i + j)− k}

(
i
l

)(−α(i + l + 1)− 1
m

)
.

fi:n(x; m a, b) is the probability density function of the OGE2Fr distribution with
parameters m a and b.

4.4. Stochastic Ordering

In several areas of probability and statistics, stochastic ordering and disparities are be-
ing adhered to at an accelerating rate. For example, in analyzing the contrast of investment
returns to random cash flows; two manufacturers may use distinct technologies to make
gadgets with the same function, resulting in non-identical life distributions or comparing
the strength of dependent structures. Here, we use the term stochastic ordering to refer to
any ordering relation on a space of probability measures in a wide sense. Let X and Y be
two rvs from OGE2Fr distributions, with assumptions previously mentioned in Section 3.
Given that a1 < a2, and for X1 ≤lr X2, f1(x)/ f2(x) shall be decreasing in x if and only
if the following result holds Let X and Y be two rvs from OGE2Fr distributions, with
assumptions previously mentioned in Section 3. Given that a1 < a2, and for X1 ≤lr X2,
f1(x)/ f2(x) shall be decreasing in x if the following result holds

d
dx

log
[

f1(x)
f2(x)

]
= (α2 − α1) b abx−(b+1)e−(a/x)b

1 − e−(a/x)b −(α1+α2)

+(β − 1)
[
b abx−(b+1)e−(a/x)b

](
1 − e−(a/x)b

)−1

×

⎡⎢⎣ α1

(
1 − e−(a/x)b

)−α1

e−
(

1−e−(a/x)b
)−a1−1 − 1

⎤⎥⎦
+(1 − β)

[
b abx−(b+1)e−(a/x)b

]
{1 − e−(a/x)b}−1

×

⎡⎢⎣ α1

(
1 − e−(a/x)b

)−α2

e−
(

1−e−(a/x)b
)−a2−1 − 1

⎤⎥⎦ < 0.

4.5. Simulation Study

By using the result defined in Equation (25), we evaluate the sensitivity of the
method of estimations using the MLEs of OGE2Fr distribution parameters by Monte
Carlo simulation technique. The simulation study is conducted for sample sizes n =
50, 100, 200, 300, 500, 600 and parameter combinations, denoted by ω(.), are:
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• ω1: α = 0.3, β = 1.7, a = 0.8 and b = 0.5;
• ω2: α = 0.5, β = 1.5, a = 0.8 and b = 0.7;
• ω3: α = 1.5, β = 2.4, a = 1.5 and b = 0.5.

We use Equation (20) to generate the random observations. For each ω(.) , the empirical
bias and MSE values are the average of the values from N = 1000 simulated samples for
given sample size n. The formula to evaluate the mean squared error (MSEs) and the
average bias (Bias) of each parameter, is given below

MSE(Θ̂) =
N

∑
i=1

(Θ̂i − Θ)2

N
and Bias(Θ̂) =

N

∑
i=1

Θ̂i
N

− Θ.

We report the results of the AE, Bias and MSE for the parameters α, β, a and b in
Table 2. The MSE of the estimators increases when the assumed model deviates from the
genuine model, as anticipated. When the sample size grows larger and the symmetry
degrades, the MSE shrinks. Generally speaking, the MSE decreases when the kurtosis
grows. Similarly, when the asymmetry rises, the bias grows, and vice versa. As the kurtosis
grows, the bias becomes smaller. In conclusion, it is apparent that the MSEs and Biases
decrease when the sample size n increases. Thus, we can say that the MLEs perform
satisfactorily well in estimating the parameters of the OGE2Fr distribution.

Table 2. AEs, MSEs and Biases for ω1, ω2 & ω3.

ω1 ω2 ω3

θ AE MSE Bias AE MSE Bias AE MSE Bias

n = 50 α 1.14 2.267 0.982 1.97 0.997 1.787 2.14 2.892 0.447
β 2.77 1.367 0.531 2.14 1.459 0.508 3.04 1.667 0.771
a 1.70 1.119 0.539 1.45 1.517 0.621 2.12 1.486 0.541
b 1.23 0.997 0.408 1.67 0.899 0.447 1.19 1.035 0.546

n = 100 α 0.65 1.892 0.877 1.88 0.901 1.205 2.02 2.793 0.420
β 2.61 1.213 0.509 1.99 1.312 0.472 2.91 1.522 0.656
a 1.31 1.092 0.511 1.11 1.349 0.555 1.93 1.397 0.502
b 0.82 0.901 0.388 1.40 0.835 0.420 1.08 0.923 0.522

n = 300 α 0.52 1.407 0.853 1.56 0.866 0.773 1.72 2.771 0.407
β 2.33 1.809 0.477 1.83 1.292 0.443 2.67 1.487 0.629
a 1.19 0.934 0.483 0.92 1.293 0.507 1.86 1.203 0.488
b 0.78 0.866 0.363 1.32 0.801 0.417 0.87 0.847 0.497

n = 400 α 0.39 0.775 0.639 0.89 0.519 0.651 1.55 1.636 0.374
β 1.89 0.686 0.393 1.59 0.897 0.370 2.53 0.883 0.409
a 0.93 0.473 0.411 0.85 0.945 0.477 1.59 0.860 0.359
b 0.55 0.519 0.287 0.81 0.569 0.374 0.57 0.580 0.338

n = 500 α 0.32 0.701 0.497 0.54 0.298 0.455 1.48 1.475 0.325
β 1.67 0.529 0.376 0.51 0.774 0.323 2.46 0.661 0.373
a 0.81 0.355 0.337 0.83 0.670 0.435 1.52 0.663 0.323
b 0.49 0.393 0.264 0.75 0.411 0.325 0.49 0.444 0.317

n = 600 α 0.31 0.472 0.316 0.51 0.252 0.424 1.45 1.437 0.311
β 1.65 0.333 0.288 0.49 0.554 0.311 2.45 0.516 0.361
a 0.80 0.271 0.298 0.80 0.655 0.409 1.50 0.577 0.305
b 0.50 0.313 0.224 0.71 0.405 0.317 0.50 0.440 0.313

5. Application of OGE2Fr to Premium Data

Most skewed distributions are suitable to measure risk measures associated with
actuarial data. The risks involve credit, portfolio, capital, premiums losses, and stocks
prices among others. We focus our attention on the stakes based on premiums. Premiums
are the payments for insurance that the customer pay to the company to which they are
insured. In this section, we apply the OGE2Fr lifetime model for the statistical analysis of
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two real life data sets both of which include premium losses. Our aim is to compare the fits
of the OGE2Fr model with other well-known generalizations of the Fréchet (Fr) models
given in Table 3.

The first premium data set, designated as PD1, is derived from complaints upheld
against vehicle insurance firms as a proportion of their overall business over a two-year
period. The study was conducted by DFR (Darla Fry Ross) insurance and investment
company (2009–2016), registered in New York state. The most common complaints are over
delays in the settlement of no-fault claims and non-renewal of insurance. Top of the list are
insurers with the fewest upheld complaints per million USD of premiums. The companies
with the greatest complaint ratios are at the bottom of the list. The data understudy is from
the year 2016. The second premium data, denoted by PD2, signifies the net premiums
written (in billions of USD) to insurers which, under Article 41 of the New York Insurance
Law, are required to meet minimum financial security requirements. Table 4: Descriptives
statistics of PD1 and PD2.

Table 3. The comparative fitted models.

Distribution Author(s) Θ

BFr Nadarajah and Gupta [38]; Barreto and Souza [39] (α, β, a, b)
KwFr Cordiero et al. [40] (α, β, a, b)
EGFr Cordiero et al. [41] (α, β, a, b)
MOFr Krishna et al. [42] (θ, a, b)

EFr Nadarajah and Kotz [43] (θ, a, b)
GaFr Da Silva et al. [44] (γ, a, b)
TLFr Abbas et al. [45] (θ, a, b)
OLiFr Silva et al. [29] (λ, a, b)

Fr Fréchet [46] (a, b)

Table 4. The descriptive statistics related to PD1 & PD2.

Data Sample Size μ σ Lowest Highest Skewness Kurtosis

PD1 89 14.08 638.38 1.048 204.17 5.31 34.97
PD2 34 3629.40 59,372,161 7.567 36,502.53 3.06 9.18

The OGE2Fr model is validated through the discriminatory criterions (DCs) we consid-
ered for each data set. It includes the negative log-likelihood (−̂�) of the model taken at the
corresponding MLEs, the Akaike Information Criterion (AICs), Bayesian Information Crite-
rion (BICs), Anderson-Darling (AD), Cramér–von Mises (CvM), and Kolmogrov-Smirnov
(KS) as well as the p-value (P-KS) of the related KS test. We use the method of maximum
likelihood estimation to estimate the unknown parameters as presented in Section 4.2. For
each criterion (except p-value (KS)) with highest value), the smallest values is gained by
the OGE2Fr model, indicating the best fit among its competitive models.

Some descriptive statistics related to these data are given in Table 4. The skewness and
kurtosis are indicative of exponentially tailed data (reversed-J shape). The TTT plots for the
both data sets are given in Figure 4. In particular, the TTT plots show largely decreasing hrf,
permitting to fit OGE2Fr model on these data sets. The estimated hrf in Figure 5 matches
Figure 4. In Table 5, we present the estimates (MLEs) along with their respective standard
errors(SEs) while the DCs are listed in Table 6 for PD1 & PD2, respectively. For a more
visual view, the estimated pdf, cdf, sf and Q-Q plots of the OGE2Fr model for two data sets
are displayed in Figures 6 and 7. Furthermore, the PP-plots of OGE2Fr and its three other
competitive 4-parameter models for PD1 and PD2 are displayed in Figures 8 and 9. The
log-likelihood function profiles for PD1 and PD2, respectively, are provided in Figures 10
and 11 to highlight the universality of the MLEs of Θ vector. The graphical visualizations
are indicative of nice fits for the OGE2Fr model.
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Figure 4. TTT plots of (a) PD1 and (b) PD2.

Table 5. Estimates and standard errors for PD1 & PD2.

Distribution Θ MLE(PD1) SE(PD1) MLE(PD2) SE(PD2)

OGE2Fr α 0.065 0.004 2.202 0.649
β 1.177 0.145 0.298 0.143
a 2.336 0.099 24.064 19.485
b 5.685 0.109 0.327 0.124

BFr α 5.623 4.692 30.671 13.743
β 1.699 1.324 34.622 16.797
a 0.855 0.646 11.391 9.267
b 0.759 0.453 0.175 0.126

KwFr α 6.581 4.779 6.282 3.189
β 1.409 1.161 15.235 4.679
a 0.606 0.496 5.735 3.726
b 0.858 0.390 0.157 0.124

EGFr α 12.927 9.199 6.758 5.059
β 62.076 36.099 53.635 39.338
a 21.399 17.982 22.629 16.084
b 0.158 0.119 0.106 0.091

MOFr θ 105.267 67.873 105.566 88.076
a 0.060 0.028 0.302 0.224
b 14.866 0.177 0.723 0.107

EFr θ 1.409 1.161 1.097 0.554
a 5.442 4.611 167.306 163.093
b 0.858 0.391 0.452 0.128

GaFr γ 5.642 3.889 14.715 5.016
a 0.186 0.460 0.008 0.002
b 2.060 0.769 1.603 0.395

TLFr θ 0.075 0.009 0.122 0.098
a 53.724 46.329 78.317 54.389
b 0.953 0.114 0.425 0.089

OLiFr λ 23.260 14.666 35.788 8.969
a 6.036 0.653 8.583 1.458
b 0.274 0.049 0.124 0.050

Fr a 4.178 0.564 10.630 3.207
b 1.042 0.087 0.469 0.061

95



Symmetry 2021, 13, 2064

0 20 40 60 80

0.
05

0.
10

0.
15

x

fa
ilu

re
 r

at
e

OGE2Fr

10 20 30 40 50

0.
00

30
0.

00
35

0.
00

40
0.

00
45

0.
00

50

x

fa
ilu

re
 r

at
e

OGE2Fr

(a) (b)

Figure 5. Estimated hazard rate plots of (a) PD1 and (b) PD2 of OGE2Fr.

Table 6. The statistics �̂, AIC, CAIC, BIC, HQIC, AD, CvM, KS and p-value (KS) for the PD1 & PD2.

Distribution �̂ AIC CAIC BIC HQIC AD CvM KS p-Value (KS)

Premium data 1
OGE2Fr 302.22 612.44 612.92 622.39 616.45 0.38 0.077 0.074 0.69

BFr 306.63 621.25 621.72 631.23 625.27 0.86 0.158 0.093 0.39
KwFr 306.70 621.40 621.85 631.35 625.42 0.88 0.164 0.092 0.41
EGFr 306.76 621.51 621.99 631.47 625.52 0.84 0.152 0.098 0.34
MOFr 311.09 628.17 628.46 635.64 631.18 1.12 0.178 0.110 0.22

EFr 306.70 619.40 619.69 626.86 622.41 0.88 0.164 0.092 0.41
GaFr 305.72 617.44 617.72 624.90 620.44 0.77 0.146 0.090 0.45
TLFr 305.65 617.29 617.58 624.76 620.30 0.71 0.133 0.090 0.43
OLiFr 308.403 622.81 623.09 630.24 625.80 0.981 0.140 0.116 0.17

Fr 306.79 617.58 617.72 622.56 619.59 0.95 0.180 0.094 0.39
Premium data 2

OGE2Fr 286.09 580.18 581.56 586.29 582.26 0.18 0.027 0.083 0.96
BFr 287.43 582.87 584.25 588.97 584.95 0.29 0.042 0.101 0.84

KwFr 287.45 582.89 584.27 588.99 584.97 0.30 0.044 0.100 0.86
EGFr 288.21 584.41 585.79 590.52 586.50 0.39 0.053 0.102 0.84
MOFr 288.66 583.32 584.11 587.89 584.86 0.40 0.060 0.103 0.83

EFr 288.70 583.40 584.20 587.98 584.96 0.47 0.063 0.119 0.68
GaFr 287.62 581.24 582.04 585.82 582.81 0.33 0.045 0.101 0.85
TLFr 287.70 581.39 582.19 585.97 582.96 0.35 0.047 0.102 0.84
OLiFr 287.52 581.54 581.84 586.62 582.60 0.310 0.077 0.094 0.894

Fr 288.79 581.58 581.97 584.63 582.62 0.49 0.065 0.104 0.82
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Figure 6. Estimated (a) density, (b) cdf, (c) sf, and (d) QQ-plot for PD1.
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Figure 7. Estimated (a) density (b) cdf (c) sf, and (d) QQ-plot for PD2.
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Figure 8. PP-plots of (a) OGE2Fr alongside competitive (b) BFr, (c) KwFr and (d) EGFr (4-parameter
models) for PD1.
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Figure 9. PP-plots of (a) OGE2Fr alongside competitive (b) BFr, (c) KwFr and (d) EGFr (4-parameter
models) for PD2.
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Figure 10. Profiles of the log-likelihood function for the parameters α, β, a and b, respectively, of the
OGE2Fr for the PD1.

5.1. Actuarial Measures

One of the most important duties of actuarial sciences organizations is to assess market
risk in a portfolio of instruments, which originates from changes in underlying factors
such as equities prices, interest rates, or currency rates.One of the most important duties of
actuarial sciences organizations is to assess market risk in a portfolio of instruments, which
originates from changes in underlying factors such as equities prices, interest rates, or
currency rates. We compute several important risk measures for the suggested distribution
in this section, such as Value at Risk (VaR) and Expected Shortfall (ES), which are important
in portfolio optimization under uncertainty.
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Figure 11. Profiles of the log-likelihood function for the parameters α, β, a and b, respectively, of the
OGE2Fr for the PD2.

5.1.1. Value at Risk

The quantile premium principal of the distribution of aggregate losses, commonly
known as Value at risk (VaR), is the most widely used measure to evaluate exposure to
risk in finance. VaR of a rv is the pth quantile of its cdf. If X ∼ OGE2Fr denotes a random
variable with cdf (17), then its VaR is

VaRp =

[
a
{
− log

(
1 −

[
1 − log

(
1 − p1/β

)]−1/α
)}]−1/b

. (27)

5.1.2. Expected Shortfall

Artzner et al. [47,48] recommended the use of conditional VaR instead of VaR, fa-
mously called Expected Shortfall (ES). The ES is a metric that quantifies the average loss in
situations where the VaR level is exceeded. It is defined by the following expression

ESp =
1
p

∫ p

0
VaRxdx , where 0 < p < 1.

The ES of OGE2Fr is given by

ESp =
1
p

∫ p

0

[
a
{
− log

(
1 −

[
1 − log

(
1 − p1/β

)]−1/α
)}]−1/b

dx. (28)

Figure 12 illustrates VaR and ES for some random parameter combinations of OGE2Fr.

5.1.3. Numerical Calculation of VaR and ES

The results of OGE2Fr presented in Section 4 allowed us to further explore its ap-
plication to these risk measures. From Table 5, we take the values of MLEs of PD1 and
PD2, respectively, to measure the volatility associated with these measures. Higher values

100



Symmetry 2021, 13, 2064

of these risk measures signify heavier tails while lower values indicate a much lighter
tail behavior of the model. It is worth mentioning that the OGE2Fr model produced sub-
stantially more significant results than its counterparts, indicating that the model has a
heavier tail. In Table 7, we show the numerical results of VaRs and ESs of PD1 and PD2,
respectively, of the proposed model. For the convenience of the reader, Figure 13 show the
results graphically.
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Figure 12. Plots of (a) VaR (b) ES for some parameter values.
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Figure 13. Estimated VaR (a,c) with ES (b,d) for PD1 & PD2.
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Table 7. Numerical measures of VaRs and ESs of PD1 & PD2.

Level of Significance VaRs(PD1) ESs(PD1) VaRs(PD2) ESs(PD2)

0.55 6.782 3.245 698.117 184.508
0.60 8.023 3.589 965.385 237.819
0.65 9.581 3.988 1343.206 307.461
0.70 11.588 4.456 1887.655 399.670
0.75 14.263 5.016 2693.364 523.906
0.80 18.005 5.704 3932.723 695.305
0.85 23.638 6.581 5957.838 1309.704
0.90 33.238 7.768 9636.239 1933.041
0.95 54.610 9.578 18,069.512 3659.730

6. Discussion

The OGE2-G class of distribution is proposed and studied with some mathematical
properties such as ordinary and incomplete moments, mean deviations and generating
functions. The maximum likelihood approach is used to estimate the model parameters.
Then, we focussed our attention to one of the special member of the family defined with
the Fréchet distribution, called the OGE2Fr distribution. We established the optimized
maximum likelihood methodology in particular, with the goal of effectively estimating
model parameters and validated their convergence by a simulation study, ensuring that the
projections have asymptotic properties. To demonstrate the potentiality of the proposed
model, two applications to real data sets are provided. The creation of various regression
models, Bayesian parameter estimates, and studies of new data sets will all be part of a
future effort. We feel that the OGE2-G family can be useful for professionals in statistical
analyses beyond the scope of this research because of its several other features.
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Abbreviations

The following abbreviations are used in this manuscript:

GE generalized exponential
LA-I Lehmann alternatives I
LA-II Lehmann alternatives II
OGE-G Odd generalized exponential
OGE1-G generalized odd generalized exponentia distributionl
OGE2-G generalized Odd generalized exponential distribution
sf survival function
hrf hazard rate function
pdf probability density function
cdf cumulative distribution function
rv random variable
OGE2Fr generalized Odd generalized exponential distribution
Fr Fréchet
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Abstract: It is extremely frequent for systems to fail in their demanding operating environments
in many real-world contexts. When systems reach their lowest, highest, or both extreme operating
conditions, they usually fail to perform their intended functions, which is something that researchers
pay little attention to. The goal of this paper is to develop inference for multi-reliability using unit
alpha power exponential distributions for stress–strength variables based on the progressive first
failure. As a result, the problem of estimating the stress–strength function R, where X, Y, and Z
come from three separate alpha power exponential distributions, is addressed in this paper. The
conventional methods, such as maximum likelihood for point estimation, Bayesian and asymptotic
confidence, boot-p, and boot-t methods for interval estimation, are also examined. Various confidence
intervals have been obtained. Monte Carlo simulations and real-world application examples are used
to evaluate and compare the performance of the various proposed estimators.

Keywords: multi-stress–strength; progressive first failure censoring; balanced loss functions; Lindley’s
approximation; Markov Chain Monte Carlo; symmetric and asymmetric loss functions; bootstrap
confidence intervals

1. Introduction

Systems failing to perform in their harsh working settings is a common occurrence
in real-life scenarios. When crossing their lower, upper, or both extreme operating condi-
tions, systems frequently fail to perform their intended roles. Stress–strength reliability,
often known as R = p(X < Y), has been extensively investigated in the literature. When
the applied stress exceeds the system’s strength, a system working under such stress–
strength conditions fail to function. Refs. [1–11] are only a few of the significant efforts
in this direction. Moreover, the study of stress–strength models has been expanded to
multi-component systems, which are systems with several components. Despite the fact
that Ref. [12] developed the multi-component stress–strength model decades ago, it has
garnered a lot of attention in recent years and has been explored by numerous scholars for
both complete and filtered data [13–17]. Stress–strength reliability, R = P(X < Y), has
been extensively investigated as a stress–strength model, and the research has also been
extended to multi-component systems. However, an equally important practical scenario
in which equipment fails in extreme lower and upper working environments receives
significantly less attention. When electrical equipment is placed below or above a specified
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power supply, for example, it will fail. A person’s systolic and diastolic pressure limits
should not be exceeded at the same time. There are a plethora of such applications, many
of them are straightforward and natural, reflecting sound correlations between diverse
real-world events. It is a valuable relationship in a variety of subfields of genetics and
psychology, where strength Y should not only be more than stress X, but also less than stress
Z. For numerous statistical models, several scholars have examined the estimation of the
stress–strength parameter. Refs. [18–20] investigated the estimation of R = P(X < Y < Z)
based on independent samples. Ref. [21] obtained the estimation in the stress–strength
model with the assumption that a component’s strength lies in an interval and the probabil-
ity R = P(X1 < Y < X2), where X1 and X2 are random stress variables and Y is a random
strength variable. When (Y1, Y2, . . . , Yk) are normal random variables, X is another inde-
pendent normal random variable, and the estimation of R = P[max(Y1, Y2, . . . , Yk) < X]
is considered. Ref. [22] calculated the reliability of a component that was subjected to
two separate stresses that were unrelated to the component’s strength. Ref. [23] used a
multi-component series stress–strength model to predict system reliability. Using current
U-statistics, Ref. [24] proposed a straightforward computation procedure for P(X < Y < Z)
and its variance. P(X < Y < Z) was used by Ref. [24] to study the cascade system.
Nonparametric statistical inference for P(X < Y < Z) was studied by Ref. [25]. Ref. [26]
achieved inference of R = P(X < Y < Z) for the n-Standby System: a Monte-Carlo
simulation approach. Ref. [27] discussed R = P(X < Y < Z) for the progressive first
failure of the Kumaraswamy model.

Many articles appeared in the censored sample, including a multi-component stress–
strength model with adaptive hybrid progressive censored data. Ref. [28] discussed
Bayesian and maximum likelihood estimation methods of reliability. Weibull distribu-
tion is a type of probability distribution. Using progressively first-failure censored data,
Ref. [29] determined the reliability of a multi-component stress–strength system based
on the Burr XII distribution. Under adaptive hybrid progressive censoring, Ref. [30] pro-
posed multi-component stress–strength estimation of a non-identical component strengths
system. Ref. [31] used progressive Type-II censoring data to estimate the reliability of multi-
component stress–strength with a generalized linear failure rate distribution. Ref. [32]
studied the estimation of multi-component reliability based on progressively Type-II cen-
sored data from unit Weibull distribution.

When dealing with reliability features in statistical analysis, even when it is known
that some efficiency loss may occur, different censoring strategies, or early deletions of
active units, are frequently utilized to save time and money. The Type-II censoring scheme,
progressive Type-II censoring system, and progressive first failure censoring method, for
example, are all well-known censoring schemes. Ref. [33] presented the progressive first
failure censoring scheme, which combines progressive Type-II censoring and first failure
censoring strategies to create a new life-test plan.

The progressive first failure censoring system can be summarized as follows. Assume
that a life test is administered to n independent groups, each having k items. The R1 units
and the group in which the first failure is identified are randomly withdrawn from the
experiment once the first failure Y1;m,n,k has occurred. The R2 units and the group in
which the second failure is observed are randomly withdrawn from the remaining live
(n − R1 − 2) groups at the moment of the second failure Y2;m,n,k. When the m-th observa-
tion Ym;m,n,k fails at the end, the remaining living units Rm are removed from the test. The
resultant ordered observations Y1;m,n,k, . . . , Ym;m,n,k are then referred to as progressive first-
failure censored with a progressive censored scheme described by R = (R1, R2, . . . , Rm),
where m are failures and the sum of all removals equals n, that is, n = m + ∑m

i=1 Ri. The
progressive first-failure censoring scheme is reduced to a first-failure censoring scheme
when R1 = R2 = . . . = Rm = 0. Similarly, first-failure Type-II censoring is a special in-
stance of this censoring technique when R1 = R2 = . . . = Rm−1 = 0 and Rm = n − m. The
progressive first-failure censoring scheme is simplified to the progressive Type-II censoring
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scheme with the premise that each group contains precisely one unit, k = 1. Progressive
first-failure censoring is a generalization of progressive censoring.

Letting Y1;m,n,k, . . . , Ym;m,n,k denote a progressive first-failure Type-II censored popu-
lation sample with probability density function (PDF) fX(.) and cumulative distribution
function (CDF) FX(.) and the progressive censoring scheme of R, on the basis of considering
progressive first-failure, the likelihood function is based on Ref. [34]. The following is a
censored sample:

f1,2,...,m(Y1;m,n,k, . . . , Ym;m,n,k) = AKm ∏m
i=1 f(Yi;m,n,k)[1 − F(Yi;m,n,k)]

k(Ri+1)−1, 0 < Y1;m,n,k, . . . , Ym;m,n,k < ∞, (1)

where A = n(n − R1 − 1)(n − R1 − R2 − 2) . . .
(

n − ∑m−1
i=1 Ri − m + 1

)
.

Ref. [35] constructed the APE distribution from the exponential baseline distribution
and explored its essential aspects as well as parameter estimation. Ref. [36] developed
the alpha power Weibull distribution and demonstrated that it outperforms certain other
variants of the Weibull distribution using two real data sets. Ref. [37] used the generalized
exponential baseline distribution and the APE approach to introduce the alpha power
generalized exponential (APGE) distribution. Closed-form formulas for the APGE distribu-
tion’s moment properties were established by Ref. [38]. Because of APE flexibility, recently,
many studies gave been conducted, such as in Refs. [39,40]. The PDF and hazard functions
of the APE distribution are similar to the Weibull, gamma, and GE distributions. As a result,
it can be used to replace the popular Weibull, gamma, and GE distributions. Because the
APE distribution’s CDF may be precisely defined, it can also be used to evaluate censored
data. The PDF, CDF, and hazard rate function of the APE with parameters α and β are
described by

f(y;α,β) =
β log(α)e−βyα1−e−βy

α− 1
, y ≥ 0,α,β > 0, (2)

F(y;α,β) =
α1−e−βy

α− 1
, y ≥ 0,α,β > 0, (3)

and

h(y;α,β) =
β log(α)e−βyα1−e−βy

1 − α1−e−βy , y ≥ 0,α,β > 0, (4)

To the best of our knowledge, statistical inference and optimality on multi-component
stress–strength models have been derived for some well-known models using progressively
censored sample conditions; this subject has not received much attention under censored
data. As a result, we plan to introduce multi-component reliability inference where stress–
strength variables follow unit APE based on progressive first-failure. This work addresses
the problem of predicting the stress–strength function R, where X, Y, and Z are three
independent APE. The moments, skewness, and kurtosis measures of APE are computed.
The assessment of likelihood based on increasing first-failure point estimation filtered,
asymptotic confidence interval, boot-p, and boot-t approaches are also covered. Using
Markov chain Monte Carlo (MCMC), Bayesian estimate methods based on progressive
first-failure censoring are produced. A Bayesian estimate has made use of both symmetric
and asymmetric loss functions. Based on progressive first-failure censored samples, the
balanced and unbalanced loss functions were utilized to assess the reliability of the multi-
stress–strength APE distribution. The different optimal schemes of the progressively
censored samples are obtained. Monte Carlo simulations and real-world application
examples are utilized to assess and compare the performance of the various proposed
estimators.

The remainder of the paper is structured as follows: Moments of APE are calculated
in Section 2. Section 3 considers the traditional point estimates, maximum likelihood
estimation of R, and the parameter model under progressive first failure. Fisher informa-
tion matrix of the parameter model is obtained in Section 4, while confidence intervals,
namely asymptotic intervals, boot-p, and boot-t, are computed in Section 5. In Section 6, the
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Bayesian approach is considered. Optimization criterion is used to choose the appropriate
progressive censoring approach in Section 7. Simulation research is carried out to demon-
strate the relative effectiveness of multi-stress–strength reliability under progressive first
failure based on different censoring methods in Section 8. Section 9 provides real-world
data application examples. Finally, Section 10 has the concluding remarks of this paper.

2. Moments

Let X ∼ APE(α,β) and Y ∼ APE(α, 1). Then, we have X = Y/β. Thus, we have
E(X) = 1

βE(Y) and E
(

X2
)
= 1

β2 E
(

Y2
)

.

Lemma 1. We have

E(Y) =
α

α− 1
{loglog(α) + Γ(0, log(α)) + γ},

where Γ is the incomplete gamma function defined by Γ(s, x) =
∫ ∞

x ts−1e−tdt, and γ is the
Euler-Mascheroni constant given by γ ≈ 0.5772156649.

Proof. First, we derive E(Y). The PDF of Y is given by

f(y) =
α log(α)
α− 1

e−yα−e−y
=

α log(α)
α− 1

e−ye− log (α)e−y
.

Using the change of variable (t = e−ylogα), we have

E(Y) =
∫ ∞

0
y f(y) dy =

α

α− 1

∫ logα

0
(loglog(α)− log(t))e−tdt, (5)

= loglog(α)− α

α− 1

∫ log (α)

0
log(t)e−tdt.

Then, it suffices to obtain
∫ log (α)

0 e−t log(t) dt. It should be noted that γ =

− ∫ ∞
0 e−t log(t) dt. For more details, refer to Identity (6) of Ref. [41]. Thus, we have∫ log (α)

0
e−t log(t) dt =

∫ ∞

0
e−t log(t) dt −

∫ ∞

logα
e−t log(t) dt = −γ−

∫ ∞

logα
e−t log(t) dt (6)

Using the integration by parts, we have∫ ∞

log (α)
e−t log(t) dt = [− log(t)e−t]

∞
log (α) +

∫ ∞

log (α)

1
t

e−tdt =
loglog(α)

α
+ Γ(0, log(α)). (7)

Substituting (8) into (7), we have

∫ log (α)

0
e−t log(t) dt = −γ− loglog(α)

α
− Γ(0, log(α)). (8)

Substituting (9) into (6), we have

E(Y) =
∫ ∞

0
yf(y)dy = loglog(α) +

α

α− 1

{
γ+

loglog(α)
α

+ Γ(0, log(α))
}

=
α

α− 1
{loglog(α) + Γ(0, log(α)) + γ},

which completes the proof. �
Thus, we have

E(X) =
1
β
· α

α− 1
{loglog(α) + Γ(0, log(α)) + γ}.
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Lemma 2. We have

E
(

Y2
)
=

2α log(α)
α− 1

·3 F3(1, 1, 1; 2, 2, 2;− logα).

here, pFq(·) is the generalized hypergeometric function [42,43] defined as

pFq
(
a1, . . . , ap; b1, . . . , bq; z

)
=

∞

∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n!
,

where (a)n is the Pochhammer symbol for the rising factorial defined as (a)0 = 1 and
(a)n = a(a + 1) · · · (a + n − 1) for n = 1, 2, . . ..

Proof. Using the change of variable (t = e−ylogα), we have

E
(

Y2
)
=

∫ ∞
0 y2f(y)dy = α

α−1

∫ logα
0 (loglogα− logt)2e−tdt = α

α−1 [(loglogα)2 ∫ logα
0 e−tdt−

2loglogα
∫ logα

0 logt e−tdt +
∫ logα

0

(
logt)2e−tdt

]
Since

∫ log (α)
0 e−tdt = 1− 1/α and

∫ log (α)
0 logt e−tdt = −γ− loglogα/α− Γ(0, logα)

from (8), we have

E
(

Y2
)
= α

α−1 [(loglog(α))2
(

1 − 1
α

)
= −2loglog(α)

{
−γ− 1

α loglog(α)− Γ(0, log(α))
}

+
∫ logα

0 (log(t))2e−tdt = α
α−1 [(loglog(α))2

(
1 + 1

α

)
+ 2loglog(α){γ+ Γ(0, log(α))}+ ∫ log (α)

0 (log(t))2e−tdt.
(9)

Now, it suffices to evaluate
∫ log (α)

0 (log(t))2e−tdt, which is in the last term in (5). After
tedious calculus and algebra along with the help of Mathematica [44], we have∫

(log(t))2e−tdt = 2t ·3 F3(1, 1, 1; 2, 2, 2;−t)− log(t)
{(

1 + e−t) log(t) + 2Γ(0, t) + 2γ
}

along with
∫ 1

0 (log(t))2e−tdt = 23F3(1, 1, 1; 2, 2, 2;−1). Thus, we have

∫ log (α)
0 (log(t))2e−tdt =

∫ 1
0 (log(t))2e−tdt +

∫ logα
1 (log(t))2e−tdt

= 2 log(α) ·3 F3(1, 1, 1; 2, 2, 2;− log(α))− loglog(α)
{(

1 + 1
α

)
loglog(α) + 2Γ(0, log(α)) + 2γ

}
= 2 log(α) ·3 F3(1, 1, 1; 2, 2, 2;− log(α))− (loglog(α))2

(
1 + 1

α

)
− 2loglog(α){Γ(0, log (α)) + γ}

Substituting the above into (10), we have

E
(

Y2
)
=

2α log(α)
α− 1

·3 F3(1, 1, 1; 2, 2, 2;− log(α))

which completes the proof. �

Then, using Lemmas 1 and 2, we have

E(X) = 1
β · α

α−1{loglog(α) + Γ(0, log(α)) + γ}
E
(

X2
)
=

2α log(α)

β2(α−1)
·3 F3(1, 1, 1; 2, 2, 2;− log(α)).

(10)

Var(X) =
1
β2

[
2α log(α)
(α− 1)

·3 F3(1, 1, 1; 2, 2, 2;− log(α))− α2

(α− 1)2 {loglog(α) + Γ(0, log(α)) + γ}2

]
Using E(X) and E(X2) in the above, we can obtain the method-of-moments estimate

as follows. We can set
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E(X2)

{E(X)}2 =
2(α− 1) log(α) ·3 F3(1, 1, 1; 2, 2, 2;− log(α))

α{loglog(α) + Γ(0, log(α)) + γ}2 =
1
n ∑n

i=1 X2
i

( 1
n ∑n

i=1 Xi)
2 .

Thus, by solving the above for α, we can estimate α. We denote this estimate as α̂.
Then, the estimate of β can be explicitly obtained by setting E(X) = 1

n ∑n
i=1 Xi with (11),

which is given by β̂ = 1
1
n ∑n

i=1 Xi
· α̂

α̂−1{loglog( α̂) + Γ(0, log( α̂)) + γ}.

Figure 1 shows the skewness (SK) and kurtosis (KT) by using moment measures of
quartile with different values of parameters. Table 1 discusses the first quartile, median,
and third quartile and well as SK and KT of the APE distribution with different values.

Figure 1. Three-dimensional plot of skewness and kurtosis with different values of parameters.

Table 1. Different measures of the moment by different values of parameters.

α β Q1 Median Q3 SK KT

0.15

0.15 0.8973 2.2992 5.1031 0.33333 0.93528

1.3 0.1035 0.2653 0.5888 0.33330 0.93527

2.45 0.0549 0.1408 0.3124 0.33333 0.93536

3.6 0.0374 0.0958 0.2126 0.33342 0.93537

4.75 0.0283 0.0726 0.1611 0.33342 0.93564

1.5

0.15 2.2878 5.3284 10.2600 0.23720 0.63055

1.3 0.2640 0.6148 1.1838 0.23721 0.63060

2.45 0.1401 0.3262 0.6282 0.23723 0.63052

3.6 0.0953 0.2220 0.4275 0.23719 0.63057

4.75 0.0722 0.1683 0.3240 0.23715 0.63062

2.85

0.15 3.0063 6.5448 11.8495 0.19972 0.53889

1.3 0.3469 0.7552 1.3673 0.19971 0.53887

2.45 0.1841 0.4007 0.7255 0.19978 0.53887

3.6 0.1253 0.2727 0.4937 0.19972 0.53893

4.75 0.0949 0.2067 0.3742 0.19967 0.53882

4.2

0.15 3.5129 7.3072 12.7711 0.18033 0.49144

1.3 0.4053 0.8431 1.4736 0.18035 0.49140

2.45 0.2151 0.4474 0.7819 0.18030 0.49140

3.6 0.1464 0.3045 0.5321 0.18043 0.49148

4.75 0.1109 0.2308 0.4033 0.18031 0.49143
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3. Estimation in the Classical Style

In this part, the classical point and interval estimation methods are discussed, namely
maximum likelihood estimation for finding point estimates of R and asymptotic, boot-p,
and boot-t intervals for R for obtaining interval estimates.

Maximum Likelihood R Estimation

Let X ∼ APE(β1,α), Y ∼ APE(β2,α) and Z ∼ APE(β3,α) be independent functions.
Assuming α is known in this the case, we have

R = p(X < Y < Z) =
∫ ∞

−∞
FX(y)dFY(y)−

∫ ∞

−∞
FX(y)FZ(y)dFY(y), (11)

=
β1

[
2β2

1 + 2β2
2 + 0.5β2

3 + 1.5β1β3 + 3β1β2

]
(β1 + β2)(β1 + 2β2)(β1 + β3)(2β1 + β3)

Figure 2 shows the different plot of multi-stress–strength reliability for different values
of parameters, which explains that the multi-stress–strength reliability has different ranges.

  

Figure 2. Three-dimensional plot of multi-stress–strength reliability with different values of parameters.

To obtain the MLE of R, we must first obtain the MLEs of β1, β2 and β3. Let(
X1;m1,n1,k1 , . . . , Xn1;m1,n1,k1

)
,
(
Y1;m2,n2,k2 , . . . , Yn2;m2,n2,k2

)
, and

(
Z1;m3,n3,k3 , . . . , Zn3;m3,n3,k3

)
be three progressively first-failure censored samples from APE(βi,α) distribution with
censoring schemes Rx = (Rx1 , . . . , Rxm1), Ry =

(
Ry1

, . . . , Rym2

)
, Rz = (Rz1 , . . . , Rzm3). Using

the formulas from (2) and (3), the likelihood function of β1, β2 and β3 is given by

L(β1,β2,β3)

∝
3

∏
j=1

(
βjkj

)mj
(

logα
α−1

)(m1+m2+m3) m1
∏
i=1

e−β1xi(k1Rxi+1)α1−e−β1xi(Rxi+1) m2
∏
i=1

e−β2yi(k2Ryi+1)α1−e−β2yi(k2Ryi+1)

m3
∏
i=1

e−β3zi(k3Rzi+1)α1−e−β3zi(k3Rzi+1)
,

(12)

We use xi instead of Xi1;m1,n1,k1 to simplify notation. Similarity between yi and zi.
The log-likelihood function, � can now be written as follows:

�(β1,β2,β3) ∝ ∑3
j=1 mj

(
lnkj + lnβj

)
+ (m1 + m2 + m3)[ln(logα)− ln(α− 1)]

−∑m1
i=1 β1xi(k1Rxi + 1)+∑m1

i=1

(
1 − e−β1xi(Rxi+1)

)
ln(α)− ∑m2

i=1 β2yi
(
k2Ryi

+ 1
)

+∑m2
i=1 1 − e−β2yi(k2Ryi+1) ln(α)− ∑m3

i=1 β3zi(k3Rzi + 1) + ∑m3
i=1 1 − e−β3zi(k3Rzi+1) ln(α)

(13)

Taking the derivative of (14) with respect to β1, β2 and β3, we obtain

∂�

∂β1
=

m1

β1
− ∑m1

i=1 xi(k1Rxi + 1) + ln(α)∑m1
i=1 xi(Rxi + 1)e−β1xi(Rxi+1), (14)
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∂�

∂β2
=

m2

β2
− ∑m2

i=1 yi
(
k2Ryi

+ 1
)
+ ln(α)∑m2

i=1 yi
(
k2Ryi

+ 1
)
e−β2yi(k2Ryi+1) (15)

∂�

∂β3
=

m3

β3
− ∑m3

i=1 zi(k3Rzi + 1) + ln(α)∑m3
i=1 zi(k3Rzi + 1)e−β3zi(k3Rzi+1) (16)

It is noted that the MLEs of β1, β2 and β3 can not be found in closed form. Thus, by
solving the system of nonlinear Equations (15)–(17), numerical solutions to the nonlinear
system in (15)–(17) can be found using an iterative approach, such as Newton–Raphson.
Then, the MLEs β̂1, β̂2 and β̂3 can be obtained. To obtain the MLE of R, by replacing β1, β2
and β3 in (5) with β̂1, β̂2 and β̂3 as follows:

R̂ =
β̂1

[
2β̂2

1 + 2β̂2
2 + 0.5β̂2

3 + 1.5β̂1β̂3 + 3β̂1β̂2

]
(
β̂1 + β̂2

)(
β̂1 + 2β̂2

)(
β̂1 + β̂3

)(
2β̂1 + β̂3

) (17)

4. Fisher Information

The Fisher information matrix of the ϕ = (β1, β2 ,β3) is expressed as

I3×3 = −E

⎡⎣A11 A12 A13
A21 A22 A23
A31 A32 A33

⎤⎦, (18)

where A11 = E

(
∂2�
∂β2

1

)
, A12 = A21 = E

(
∂2�

∂β2∂β1

)
, A13 = A31 = E

(
∂2�

∂β1∂β3

)
, A22 = E

(
∂2�
∂β2

2

)
,

A23 = A32 = E
(

∂2�
∂β2∂β3

)
A33 = E

(
∂2�
∂β2

3

)
,

∂2�

∂β2
1
=

−m1

β2
1

+ ln(α)∑m1
i=1[xi(Rxi + 1)]2e−β1xi(Rxi+1),

∂2�

∂β2∂β1
=

∂2�

∂β1∂β3
=

∂2�

∂β2∂β3
= 0

∂2�

∂β2
2
=

−m2

β2
+ ln(α)∑m2

i=1

[
yi
(
k2Ryi

+ 1
)]2e−β2yi(k2Ryi+1),

∂2�

∂β2
3
=

−m3

β3
+ ln(α)∑m3

i=1[zi(k3Rzi + 1)]2e−β3zi(k3Rzi+1).

5. Confidence Intervals

In this section, the parameters’ confidence intervals (CIs) are computed. Because our
point estimate is the most likely value for the parameter, we should build the confidence
intervals on it. CIs are a set of values (intervals) that serve as good approximations of an
unknown population parameter. In this investigation, two types of CIs were computed.

5.1. Approximate Confidence Intervals

Because the APE distribution’s PDF is not symmetric, asymptotic CIs based on normal-
ity do not perform well. The underlying distribution is assumed to be APE. As a result, we
believe that the parametric bootstrap percentile interval is preferable to the nonparametric
one. Furthermore, it is well known that the nonparametric bootstrap percentile interval
does not perform well in general. See Section 5.3.1 of Ref. [45] for more information. The
parametric bootstrap interval with normal approximation or Studentization can be used.
However, because this CI is symmetric, it may not be suitable for our asymmetric instance.
According to large sample theory, the MLE results are consistent and regularly distributed,
subject to certain regularity restrictions. According to large sample theory, the MLE results
are consistent and regularly distributed, subject to certain regularity restrictions. Because
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parameter MLE values are not in closed form, correct CIs cannot be obtained; instead,
asymptotic CIs based on the asymptotic normal distribution of MLE values are computed.

Assume thatϕ = (β1,β2,β3, R).
[(
β̂1 −β1

)
,
(
β̂2 −β2

)
,
(
β̂3 −β3

)
,
(

R̂ − R
)]

is known
to yield the asymptotic distribution of MLE values of N(0,σ), where σ = σij,
i, j = 1, 2, 3, is the variance–covariance matrix of the unknown parameters. As previously
established, the inverse of the Fisher information matrix is an estimator of the asymptomatic
variance–covariance matrix.

The approximate 100(1 −ω)% two-sided CIs for ϕ are provided by

(ϕ̂iL, ϕ̂iU) : ϕ̂i ∓ z1−ω
2

√
σ̂ij, i = 1, 2, 3, 4. (19)

where z1−ω
2

is the 100
(
1 − ω

2
)
-th upper percentile of the standard normal distribution.

5.2. Bootstrap Confidence Intervals

In this paragraph, we propose to employ two additional confidence intervals based
on parametric bootstrap methods: percentile bootstrap technique (Boot-p) and bootstrap-t
method (Boot-t). Obtaining the step-by-step illustrations of the two ways is shown briefly
below; for more information, see Ref. [46].

5.2.1. Methods of Boot-p

• Use the sample
{

X1;m1,n1,k1 , . . . , Xm1;m1,n1,k1

}
,
{

Y1;m2,n2,k2 , . . . , Ym2;m2,n2,k2

}
, and{

Z1;m3,n3,k3 , . . . , Zm3;m3,n3,k3

}
to compute β̂1, β̂2 and β̂3.

• Based on Rx censoring technique, a bootstrap progressive first-failure Type-II censored
sample indicated by X∗

1;m1,n1,k1
, . . . , X∗

m1;m1,n1,k1
is constructed from the APE(α,β1).

From the APE(α,β2), a bootstrap progressive first-failure Type-II censored sample
designated by Y∗

1;m2,n2,k2
, . . . , Y∗

m2;m2,n2,k2
is constructed using Ry censoring scheme.

Based on Rz censoring scheme, a bootstrap progressive first-failure Type-II censored
sample, indicated by Z∗

1;m3,n3,k3
, . . . , Z∗

m3;m3,n3,k3
, is constructed from the APE(α,β3).

Based on
{

X∗
1;m1,n1,k1

, . . . , X∗
m1;m1,n1,k1

}
,
{

Y∗
1;m2,n2,k2

, . . . , Y∗
m2;m2,n2,k2

}
, and{

Z∗
1;m3,n3,k3

, . . . , Z∗
m3;m3,n3,k3

}
, construct the bootstrap sample estimate of R using (5),

say R̂∗.
• Step 2 should be repeated Np times.

• Assume G(x) = P
(

R̂∗ ≤ x
)

, where R̂∗ is the cumulative distribution function. For

a given x, define R̂Boot−p (x) = G −1(x). The approximation of 100(1 −ω)% percent
confidence interval of R is given by(

R̂Boot−p

(ω
2

)
, R̂Boot−p

(
1 − ω

2

))
.

5.2.2. Methods of Boot-t

• Use the sample
{

X1;m1,n1,k1 , . . . , Xm1;m1,n1,k1

}
,

{
Y1;m2,n2,k2 , . . . , Ym2;m2,n2,k2

}
, and{

Z1;m3,n3,k3 , . . . , Zm3;m3,n3,k3

}
to compute β̂1, β̂2 and β̂3.

• Use β̂1 to generate a bootstrap sample X∗
1;m1,n1,k1

, . . . , X∗
m1;m1,n1,k1

, β̂2 to generate a
bootstrap sample Y∗

1;m2,n2,k2
, . . . , Y∗

m2;m2,n2,k2
, and similarly, β̂3 to generate a bootstrap

sample Z∗
1;m3,n3,k3

, . . . , Z∗
m3;m3,n3,k3

. Based on
{

X∗
1;m1,n1,k1

, . . . , X∗
m1;m1,n1,k1

}
,{

Y∗
1;m2,n2,k2

, . . . , Y∗
m2;m2,n2,k2

}
and

{
Z∗

1;m3,n3,k3
, . . . , Z∗

m3;m3,n3,k3

}
, compute the bootstrap

sample estimate of R using (5), say R̂∗ and the following statistic:

T∗ =

√
m

(
R̂∗ − R̂

)
√

V
(

R̂∗)
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• Step 2 should be repeated Np times.
• After obtaining Np a number of T∗ values, the boundaries 100(1 −ω)% of R percent

confidence interval are determined as follows: Assume T∗ has a cumulative distribu-
tion function given by H(x) = P(T∗ ≤ x). Define R̂Boot−t = R̂ +

√
V
(
R̂
)
mH−1(x) for

a given x.
• 100(1 −ω)% percent boot-t confidence interval of R is calculated as (R̂Boot−t (

ω
2 ),

R̂Boot−t (1 − ω
2 ))

• To achieve better estimates of parameters or any function of parameters, it is often
advantageous to incorporate prior knowledge about the parameters, which could be
prior data, expert opinion, or some other medium of knowledge. A Bayesian technique
is used to include such prior knowledge into the estimation process. As a result, we
now go through the Bayesian approach of estimation in depth, which incorporates
previous knowledge in the form of prior distributions.

6. Bayesian Approach

Bayesian inference has gained appeal in a variety of sectors in recent years, including
engineering, clinical medicine, biology, and so on. Its capacity to analyze data using
prior knowledge makes it valuable in dependability studies, where data availability is
a major issue. The model parameters β1,β2,β3 and R Bayesian estimates, as well as the
corresponding credible intervals, are derived in this section.

6.1. Prior Information and Loss Function

Because the gamma distribution can take on different shapes based on the parameter
values, using various gamma priors is simple and can result in more expressive posterior
density estimates. As a result, we investigated gamma density priors, which are more
adaptable than other challenging prior distributions and APE distribution under progres-
sive first-failure censoring model parameters. As a result, under progressive first-failure
censoring model parameters gamma

(
aj, bj

)
; j = 1, . . . , 4, independent gamma PDFs are

assumed for the APE distribution. The joint prior is as follows

π(β1,β2,β3, R) ∝ β1
a1−1e−b1β1 β

a2−1
2 e−b2β2 β

a3−1
3 e−b3β3 Ra4−1e−b4R, (20)

where aj, bj; j = 1, . . . , 4 indicate prior knowledge of the unknown parameters β1,β2,β3
and R and are anticipated to be non-negative.

According to the literature, choosing the symmetric loss function (SLF), (squared loss
function) (SEL) is a critical issue in Bayesian analysis. The SEL function is the most often
utilized SLF in this study for estimating the considered unknown values.

L
(

R, R̃
)
=

(
R̃ − R

)2
, L

(
β1, β̃1

)
=

(
β̃1 − β1

)2
, L

(
β2, β̃2

)
=

(
β̃2 − β2

)2
, L

(
β3, β̃3

)
=

(
β̃3 − β3

)2
,

where R̃, β̃1, β̃2 and β̃3 are approximations of R, β1,β2 and β3. The posterior mean of
R, θ1, θ2 and θ3 is utilized to compute the objective estimate of R̃, θ̃1, θ̃2, and θ̃3. In contrast,
any other loss function can be easily incorporated.

6.2. Posterior Analysis by SLF

Observing the APE distribution under progressive first-failure censoring sample data
from the likelihood function and the prior knowledge given both yield the joint posterior
density function.

L(R, β1,β2,β3|t) ∝ π(R, β1,β2,β3)∏3
i=1 ∏ni

j=1 g
(
tij
)(

1 − G
(
tij
))ci , (21)

The Bayesian estimator of R, θ1, θ2 and θ3 such as R̃, θ̃1, θ̃2, and θ̃3, under the SEL
function, is the posterior expectation of R, θ1, θ2 and θ3. The marginal posterior distribu-
tions for each of the parameters (R, θ1, θ2 and θ3) must be gathered in order to generate
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these estimates. However, due to the implied mathematical calculations, precise formu-
lations for the marginal PDFs for each unknown parameter are plainly not realistic. As
a result, we would like to generate Bayesian estimates and credible intervals utilizing
simulation approaches such as MCMC.

The Metropolis–Hastings (MH) algorithm, which is used to generate random samples
using the posterior density distribution and an independent proposal distribution to
approximate Bayesian estimates and to create the associated Highest Posterior Density
(HPD) credible intervals, is one of the most useful MCMC algorithms. In addition, this
method provides a chain version of the Bayesian estimate that is simple to use in practice.

7. Optimization Criterion

In recent years, there has been a lot of interest in finding the optimal censoring scheme
in the statistical literature; for example, see Refs. [47–53]. Possible censoring schemes
refer to any R1, . . . , Rm combinations such that n = m + ∑m

i=1 Ri and finding the optimum
sampling approach means locating the progressive censoring scheme that offers the most
information about the unknown parameters among all conceivable progressive censoring
schemes for fixed n and m. The first difficulty is, of course, how to generate unknown
parameter information measures based on specific progressive censoring data, and the
second is how to compare two distinct information measures based on two different
progressive censoring techniques. The next subsections go through some of the optimality
criteria that were employed in this situation. In practice, we want to select the filtering
scheme that delivers the most information about the unknown parameters; see Ref. [54] for
further information. In our example, Table 2 presents a number of regularly used measures
to help us choose the appropriate progressive censoring approach.

Table 2. Some practical censoring plan optimum criteria.

Criterion Method

O1 Maximize trace [I3×3(.)]

O2 Minimize trace [I3×3(.)]
−1

O3 Minimize det [I3×3(.)]
−1

O4 Minimize Var
[
log

(
t̂p
)]

, 0 < p < 1

In terms of O1, our goal is to maximize the observed Fisher I3×3(.) information values.
Furthermore, our goal for criterion O2 and O3 is to minimize the determinant and trace
of [I3×3(.)]

−1. Comparing multiple criteria is simple when dealing with single-parameter
distributions; however, when dealing with unknown multi-parameter distributions, com-
paring the two Fisher information matrices becomes more difficult because the criterion O2
and O3 are not scale-invariant; see Ref. [55]. However, the optimal censoring scheme of
multi-parameter distributions can be chosen using scale-invariant criteria O4. The criterion
O4, which is dependent on the value of p, clearly tends to minimize the variance of log-
arithmic MLE of the p-th quantile, log

(
t̂p
)
. As a result, the logarithmic for t̂p of the APE

distribution is supplied by

log
(
t̂p
)
= log

{−1
β

log
[

1 − log(p(α− 1))
logα

]}
, 0 < p < 1,

The delta approach is applied to (3) to produce the approximated variance for log
(
t̂p
)

of
the APE distribution as

Var
(
log

(
t̂p
))

=
[∇ log

(
t̂p
)]TI−1

3×3
(
β̂1, β̂2, β̂3

)[∇ log
(
t̂p
)]

,
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where[∇ log
(
t̂p
)]T

=

[
∂

∂β1
log

(
t̂p
)
,

∂

∂β2
log

(
t̂p
)
,

∂

∂β3
log

(
t̂p
)]

(β1=β̂1,β2=β̂2,β3=β̂3)
.

The optimal progressive censoring, however, corresponds to a maximum value of the
criterion O1 and a minimum value of the criteria Oi i,= 1, 2, 3, 4.

8. Simulation Study

A simulation study is carried out to illustrate the relative efficiency of multi-stress–
strength reliability under the progressive first failure based on different censored schemes
and to evaluate it as a function of changing factors of a parameter. For a better understand-
ing of this model, we use the following procedure to produce samples from the progressive
first failure based on different censored schemes for APE distribution described in Section 3.

A large number N = 1000 of progressively first-failure censored samples for a true
value of parameters α, β1,β2, and β3 different combinations of n (number of groups), m
(progressively first-failure-censoring data), and k (number of items within each group) are
generated from the APE by using the algorithm described in Balakrishnan and Sandhu
(1995). In each case, the MLE and Bayesian of the multi-stress–strength reliability are
computed. The asymptotic CIs and two parametric bootstrap CIs are used for MLE
computation purposes. The HPD CIs are used for Bayesian computation purposes. The
MSE and Bias values are used to compare different estimators. The average lengths are
also used to compare the performances of the two-sided 95% asymptotic CI/HPD credible
intervals, where the length of asymptotic CI is (LACI), length of bootstrap-p CI is (LBPCI),
length of bootstrap-t CI is (LBTCI), and length of credible CI is (LCCI). Comparison between
censoring schemes is made with respect to their optimum criteria measures; see Table 1,
where we consider the various sampling schemes listed as follows:

Scheme I: Rm = n − m and Ri = 0; i = 1, . . . , m − 1,
Scheme II: R1 = n − m and Ri = 0; i = 2, . . . , m.

The simulation study was conducted with various values of (k, n, m), such as n = 20,
50, and k = 2 and 4 for each group size. When the number of failed participants reaches or
exceeds a specified value m, the test is over, where m =12 and 18 when n = 20, and m = 35
and 45 when n = 50. The joint posterior distribution of the unknown four parameters
is proportional to the likelihood function based on the non-informative priors of hyper-
parameters ai, bi for I = 1, . . . , 4. As a result, we employed an informative prior of, and using
elective hyper-parameters, the values of hyper-parameters are chosen to satisfy the prior
mean, resulting in the expected value of the corresponding parameter; see Refs. [56,57]. The
Bayesian estimation based on 12,000 MCMC samples and discarding the first 2000 values
as “burn-in” are generated using the M-H sampler technique introduced in Section 3.

The progressive first failure of censored samples was generated from APE distribution
for four sets of parametric values:

In Table 2: α = 0.8, β1 = 1.8,β2 = 0.8,β3 = 0.2 and α = 2, β1 = 1.8,β2 = 0.8,β3 = 0.2.
In Table 3: α = 0.8, β1 = 3,β2 = 2,β3 = 1.5 and α = 2, β1 = 3,β2 = 2,β3 = 1.5.

In computational analysis, extensive computations were carried out using the R
statistical programming language software, with the “coda” package proposed by Ref. [58],
and the “maxLik” package proposed by Henningsen and Toomet (2011), which uses the
Newton–Raphson method of maximizing the computations. The average results of MLE
and Bayesian for multi-stress–strength reliability are presented in Tables 2 and 3.
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Table 3. MLE and Bayesian point and interval estimations for multi-stress–strength reliability with
optimality measures when β1 = 1.8,β2 = 0.8,β3 = 0.2.

β1 = 1.8, β2 = 0.8, β3 = 0.2 MLE Bayesian MLE HPD Optimality

α n k Scheme m Bias MSE Bias MSE LACI LBPCI LBTCI LCCI O1 O2 O3

0.8

20

2
I

12 0.0244 0.0051 0.0491 0.0038 0.2621 0.0085 0.0083 0.1397 21.3816 0.00079670 1315.0742

18 0.0137 0.0031 0.0487 0.0029 0.2099 0.0065 0.0064 0.0909 4.1313 0.00000699 1860.8153

II
12 0.0142 0.0051 0.0257 0.0019 0.2750 0.0083 0.0086 0.1332 6.5200 0.00010403 1137.2594

18 0.0152 0.0027 0.0402 0.0021 0.1966 0.0063 0.0062 0.0807 3.2014 0.00000570 1541.9155

4
I

12 0.0231 0.0043 0.0215 0.0041 0.2271 0.0072 0.0071 0.1299 32.0128 0.00002417 4326.9511

18 0.0110 0.0023 0.0103 0.0021 0.1695 0.0054 0.0053 0.0757 7.1082 0.00000042 5887.7508

II
12 0.0218 0.0038 0.0179 0.0037 0.2274 0.0071 0.0072 0.1124 13.6802 0.00001076 4260.3735

18 0.0278 0.0024 0.0020 0.0020 0.1602 0.0052 0.0052 0.0689 5.7489 0.00000036 4892.7823

50

2
I

35 −0.0026 0.0019 0.0025 0.0015 0.1694 0.0076 0.0076 0.1309 5.4335 0.00000781 2173.0070

45 −0.0018 0.0013 0.0016 0.0013 0.1399 0.0062 0.0062 0.0876 0.9871 0.00000027 2673.3238

II
35 0.0038 0.0027 −0.0034 0.0008 0.2033 0.0093 0.0095 0.1027 1.4849 0.00000062 1446.0044

45 0.0026 0.0020 0.0233 0.0010 0.1764 0.0079 0.0080 0.0801 1.0515 0.00000015 1889.7725

4
I

35 0.0016 0.0029 −0.0039 0.0005 0.2119 0.0099 0.0099 0.0795 2.7322 0.00000005 4818.0247

45 0.0054 0.0018 0.0341 0.0016 0.1642 0.0070 0.0071 0.0688 1.8893 0.000000008 6547.6266

II
35 0.0148 0.0016 0.0408 0.0015 0.1434 0.0062 0.0062 0.0693 1.9652 0.00000001 12,058.2247

45 0.0171 0.0010 0.0740 0.0010 0.1042 0.0047 0.0047 0.0534 1.4447 0.000000002 14,466.0555

2

20

2
I

12 0.0252 0.0053 0.0389 0.0029 0.2687 0.0122 0.0118 0.1378 44.8698 0.00028752 1298.6571

18 0.0138 0.0025 0.0383 0.0019 0.1901 0.0083 0.0083 0.0824 10.6874 0.000007058 1724.2822

II
12 0.0118 0.0047 0.0151 0.0012 0.2650 0.0118 0.0119 0.1133 18.6539 0.00006624 1221.1348

18 0.0138 0.0028 0.0319 0.0014 0.1998 0.0090 0.0090 0.0797 10.2767 0.000007664 1692.4905

4
I

12 0.0362 0.0044 0.0958 0.0041 0.2189 0.0098 0.0097 0.1120 71.0129 0.00003361 3458.2427

18 0.0305 0.0023 0.0739 0.0022 0.1469 0.0064 0.0065 0.0646 17.4184 0.000000603 4725.7657

II
12 0.0284 0.0053 0.0352 0.0018 0.2632 0.0123 0.0124 0.0918 30.5605 0.000007690 3241.6188

18 0.0311 0.0027 0.0570 0.0025 0.1628 0.0072 0.0073 0.0606 14.7362 0.00000051 4491.3445

50

2
I

35 0.0149 0.0018 0.0475 0.0018 0.1565 0.0069 0.0071 0.0939 6.3239 0.000000503 3853.6782

45 0.0119 0.0012 0.0396 0.0011 0.1287 0.0058 0.0056 0.0564 2.9557 0.00000007 4607.4580

II
35 0.0120 0.0016 0.0029 0.0004 0.1479 0.0066 0.0067 0.0780 3.5200 0.000000218 3587.6918

45 0.0135 0.0011 0.0278 0.0010 0.1215 0.0053 0.0054 0.0543 2.6907 0.00000007 4509.7376

4
I

35 0.0305 0.0020 0.0796 0.0017 0.1285 0.0059 0.0058 0.0817 13.5622 0.000000060 9487.8097

45 0.0247 0.0013 0.0652 0.0012 0.1001 0.0046 0.0047 0.0521 5.5558 0.00000001 12,885.4276

II
35 0.0264 0.0019 0.0119 0.0003 0.1350 0.0060 0.0060 0.0459 5.9567 0.000000015 10,036.4394

45 0.0253 0.0014 0.0402 0.0013 0.1085 0.0048 0.0048 0.0480 4.1892 0.00000000 12,893.1857

Tables 3 and 4 show that APE based on the multi-stress–strength model MLE and
Bayesian of multi-stress–strength reliability is excellent in terms of MSE, Bias, and CI
length (LCI). The MSE, Bias, and LCI drop as n and m rise, as expected. Furthermore, the
MSE, Bias, and LCI drop as group size k grows. In terms of MSE, Bias, and LCI, Bayesian
estimation utilizing gamma informative prior is also superior to MLE because it includes
prior knowledge. In terms of the length of CI values, HPD credible intervals outperform
asymptotic CI for interval estimation. As a result, we recommend using the M-H approach
to estimate multi-stress–strength reliability using Bayesian point and interval estimates.
Furthermore, when comparing Scheme I and Scheme II, it is obvious that the MLE optimum
criteria measures for Scheme II are higher than for Scheme I.
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Table 4. MLE and Bayesian point and interval estimations for multi-stress–strength reliability with
optimality measures when β1 = 3,β2 = 2,β3 = 1.5.

β1 = 3, β2 = 2, β3 = 1.5 MLE Bayesian MLE HPD Optimality

α n k Scheme m Bias MSE Bias MSE LACI LBPCI LBTCI LCCI O1 O2 O3

0.8

20

2
I

12 0.0141 0.0035 0.0204 0.0015 0.2243 0.0098 0.0095 0.1263 32.7192 0.851629 59.1656

18 0.0062 0.0020 0.0075 0.0004 0.1737 0.0079 0.0078 0.0721 5.3389 0.007162 95.2781

II
12 0.0054 0.0041 0.0079 0.0010 0.2489 0.0109 0.0109 0.1141 8.4620 0.140559 93.5644

18 0.0041 0.0020 0.0066 0.0004 0.1755 0.0076 0.0077 0.0753 3.8724 0.005310 68.8098

4
I

12 0.0086 0.0017 0.0514 0.0014 0.1601 0.0069 0.0071 0.1405 41.6896 0.040229 181.3487

18 0.0101 0.0011 0.0207 0.0008 0.1233 0.0056 0.0057 0.0726 8.0888 0.000366 197.4359

II
12 0.0060 0.0029 0.0252 0.0017 0.2111 0.0093 0.0093 0.1170 10.7009 0.005277 123.4315

18 0.0108 0.0014 0.0160 0.0006 0.1426 0.0062 0.0061 0.0715 5.8162 0.000307 140.7154

50

2
I

35 0.0053 0.0011 0.0412 0.0010 0.1291 0.0056 0.0055 0.1019 5.5126 0.000537 262.9994

45 0.0019 0.0006 0.0163 0.0006 0.0982 0.0043 0.0042 0.0641 1.7133 0.000035 247.1240

II
35 0.0038 0.0010 0.0161 0.0008 0.1262 0.0056 0.0057 0.0920 1.4508 0.000110 130.4385

45 0.0002 0.0007 0.0114 0.0004 0.1059 0.0048 0.0047 0.0648 1.0404 0.000031 148.3842

4
I

35 0.0028 0.0005 0.0923 0.0004 0.0857 0.0038 0.0039 0.1058 7.7591 0.000029 704.7141

45 0.0025 0.0003 0.0411 0.0002 0.0723 0.0033 0.0033 0.0717 2.8182 0.000002 710.6756

II
35 0.0046 0.0009 0.0333 0.0006 0.1163 0.0052 0.0053 0.0854 2.1859 0.000007 399.3411

45 0.0055 0.0005 0.0279 0.0004 0.0836 0.0037 0.0039 0.0686 1.6343 0.000002 465.4802

2

20

2
I

12 0.0111 0.0030 0.0250 0.0019 0.2118 0.0095 0.0094 0.1366 48.2769 0.309823 47.0611

18 0.0096 0.0021 0.0070 0.0004 0.1750 0.0078 0.0080 0.0737 12.2381 0.008539 65.7453

II
12 0.0031 0.0036 0.0084 0.0011 0.2352 0.0106 0.0105 0.1259 19.2689 0.059121 39.0353

18 0.0088 0.0020 0.0062 0.0004 0.1710 0.0073 0.0074 0.0710 10.0978 0.006465 53.7042

4
I

12 0.0121 0.0018 0.0592 0.0015 0.1611 0.0071 0.0071 0.1328 73.0888 0.029018 112.0391

18 0.0117 0.0011 0.0215 0.0009 0.1243 0.0056 0.0056 0.0815 17.7696 0.000577 137.7838

II
12 0.0064 0.0027 0.0247 0.0015 0.2010 0.0090 0.0091 0.1186 16.6365 0.001927 101.0923

18 0.0106 0.0013 0.0151 0.0006 0.1342 0.0060 0.0062 0.0770 11.7618 0.000317 136.2249

50

2
I

35 0.0033 0.0009 0.0416 0.0008 0.1198 0.0055 0.0055 0.0975 6.9337 0.000501 111.1543

45 0.0022 0.0007 0.0165 0.0006 0.1023 0.0045 0.0045 0.0632 3.0112 0.000064 143.9309

II
35 0.0034 0.0011 0.0105 0.0006 0.1271 0.0059 0.0058 0.0869 3.6038 0.000188 110.5934

45 0.0040 0.0008 0.0100 0.0004 0.1094 0.0049 0.0049 0.0686 2.6286 0.000058 140.2241

4
I

35 0.0113 0.0006 0.0822 0.0005 0.0895 0.0039 0.0037 0.0869 13.8108 0.000054 281.3838

45 0.0089 0.0005 0.0375 0.0004 0.0780 0.0036 0.0036 0.0656 5.6687 0.000006 388.0669

II
35 0.0100 0.0010 0.0195 0.0007 0.1191 0.0054 0.0056 0.0689 5.7857 0.000014 313.3802

45 0.0093 0.0004 0.0238 0.0004 0.0839 0.0037 0.0036 0.0595 4.3141 0.000004 395.1895

9. Application of Real Data

The analysis of real data is presented in this part for demonstration reasons. We look
at data from three distinct voltages of 36, 34, and 32 KV that show times to breakdown of
an insulating fluid between electrodes. This information is taken from page 105 of [59].

Data set 1: Times to breakdown of an insulated fluid at 32 KV (Z): 0.27, 0.40, 0.69, 0.79,
0.75, 2.75, 3.91, 9.88, 13.95, 15.93, 27.80, 53.24, 82.85, 89.29, 100.58, 215.10.

Data set 2: Times to breakdown of an insulated fluid at 34 KV (Y): 0.19, 0.78, 0.96, 1.31,
2.78, 3.16, 4.15, 4.67, 4.85, 6.50,7.35, 8.01, 8.27, 12.06, 31.75, 32.52, 33.91, 36.71, 72.89.
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Data set 3: Times to breakdown of an insulated fluid at 36 KV (X): 0.35, 0.59, 0.96, 0.99,
1.69, 1.97, 2.07, 2.58, 2.71, 2.90,3.67, 3.99, 5.35, 13.77, 25.50.

Ref. [60] discusses the estimation of R = P[Y < X < Z] of the Weibull distribution.
Table 5 discusses parameter estimation with stander error (SE) for this model and R = P[Y <
X < Z] by the MLE method.

Table 5. MLE with SE and R = P[Y < X < Z] for the Weibull model.

Estimates SE Lower Upper

β 0.6813 0.0911 0.5026 0.8599

θ1 0.6861 0.2586 0.1793 1.1928

θ2 0.4150 0.1424 0.1358 0.6942

θ3 0.2266 0.0892 0.0518 0.4015

R 0.3342

First, we check the fitting of APE distribution to this data; see Table 6. Distance of
Kolmogorov–Smirnov (DKS) with p values (PVKS) for three distinct voltages data. The
values of KSD statistics are found to be 0.2598, 0.1612, and 0.1427 with corresponding
PVKS 0.2214, 0.6492, and 0.8786. The p values indicate that the APE distribution with the
above-mentioned parameters is a suitable model for modeling these three data sets. The
plots of the estimated PDF, CDF, and PP plot of the three data sets in Figures 3–5 also
confirm the same.

Table 6. MLE with SE, KSD, and different measures for three distinct voltages data.

Estimates SE KSD PVKS VAIC VBIC VCVM VAD

x1
α 0.0854 0.1495

0.2598 0.2214 142.1859 143.6020 0.0431 0.3264
β 0.0147 0.0082

x2
α 0.1094 0.2142

0.1612 0.6492 140.8927 142.7816 0.0584 0.3580
β 0.0409 0.0253

x3
α 0.0421 0.1392

0.1427 0.8786 77.8128 79.2289 0.0669 0.4317
β 0.0943 0.0885

Figure 3. Plots of the estimated PDF, CDF, and PP of APE distribution in data set I.

119



Symmetry 2022, 14, 1306

Figure 4. Plots of the estimated PDF, CDF and PP plot of APE distribution in data set II.

Figure 5. Plots of the estimated PDF, CDF, and PP plot of APE distribution in data set III.

Based on the complete data, the MLE and Bayesian estimate for the APE model of
R = P[Y < X < Z] are found to be 0.4523 and 0.4570, respectively, as shown in Table 7.
Here, it is to be noted in the Bayesian estimation of parameters that we use informative
priors, as gamma prior is available regarding the model parameters. From the results of
Table 7, we show that the Bayesian estimation is the best estimation of this model where
the multi-stress–strength reliability R = P[Y < X < Z] is larger than MLE. In addition, the
SE of Bayesian is smaller than MLE. Figure 6 shows the contour plot of the log-likelihood
function of this model with different values of parameters to check the unique and global
values of these parameters. Figure 7 discusses the MCMC trace, convergence, and plot of
the posterior distribution of this model.

Table 7. MLE and Bayesian estimation for the parameters and R = P[Y < X < Z] for the APE model.

MLE Bayesian

Estimates SE Lower Upper Estimates SE Lower Upper

α 0.0811 0.0168 0.0481 0.2791 0.0837 0.0125 0.0426 0.1297

β1 0.1126 0.0515 0.0116 0.2135 0.1252 0.0444 0.0485 0.2212

β2 0.0375 0.0173 0.0036 0.0714 0.0405 0.0102 0.0167 0.0663

β3 0.0145 0.0066 0.0014 0.0275 0.0156 0.0035 0.0053 0.0275

R 0.4523 0.4570

120



Symmetry 2022, 14, 1306

Figure 6. Contour plot of log-likelihood function with different values of parameters; complete sample.
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Figure 7. MCMC trace, convergence and plot of posterior distribution; complete sample.

10. Conclusions

In this paper, inference for multi-reliability using unit alpha power exponential dis-
tributions for stress–strength variables based on the progressive first failure is considered.
The conventional methods such as maximum likelihood and Bayesian methods for point
estimation of the parameter model and R are obtained. The Fisher information and confi-
dence intervals such as asymptotic, boot-p, and boot-t methods are also examined. Various
optimal criteria have been found. Monte Carlo simulations and real-world application
examples are used to evaluate and compare the performance of the various proposed
estimators.
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Abstract: The stochastic differential equation (SDE) has been used to model various phenomena
and investigate their properties. Conditional moments of stochastic processes can be used to price
financial derivatives whose payoffs depend on conditional moments of underlying assets. In general, the
transition probability density function (PDF) of a stochastic process is often unavailable in closed form.
Thus, the conditional moments, which can be directly computed by applying the transition PDFs, may be
unavailable in closed form. In this work, we studied an inhomogeneous nonlinear drift constant elasticity
of variance (IND-CEV) process, which is a class of diffusions that have time-dependent parameter
functions; therefore, their sample paths are asymmetric. The closed-form formulas for conditional
moments of the IND-CEV process were derived without having a condition on eigenfunctions or the
transition PDF. The analytical results were examined through Monte Carlo simulations.

Keywords: conditional moment; constant elasticity of variance process; Feynman–Kac formula

MSC: 34A30; 60G65; 62M20; 65C05

1. Introduction

The stochastic differential equation (SDE) has been used to model various phenomena
and investigate their properties, such as the moments, variance and conditional moments,
which are beneficial for estimating parameters that play significant roles in several practical
applications. For example, financial derivative prices, such as moment swaps, can be
obtained by calculating the conditional moments of their payoffs under the risk neutral
measure; see for more concrete studies Araneda et al. [1], Cao et al. [2], He and Zhu [3]
and Nonsoong et al. [4]. Actually, such moments can be directly computed by employing
SDE’s transition probability density function (PDF). However, the transition PDF is often
unavailable in closed form; so is the formula for those conditional moments of the SDE.
Investigating properties of those SDEs is still imperative and challenging.

There are several empirical studies confirming that a mean-reverting drift process, such
as the Vašíček, Ornstein–Uhlenbeck (OU) [5] and Cox–Ingersoll–Ross (CIR) [6] processes,
should not necessarily be linear. Indeed, the behaviors and dynamics of interest rate and its
derivatives prefer nonlinearity in the mean-reverting drift rather than linear drift processes;
see for more details in [7–10]. In order to extend the OU process, a nonlinear diffusion
process was introduced by Cox [11], namely, the constant elasticity of variance (CEV)
process. The CEV process is useful and has many applications in various fields. However,
the drift term of Cox’s CEV process is still linear. For many reasons described in the
existing literature [7,8], an extended case of Cox’s CEV process was first studied by Marsh
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and Rosenfeld [12]. The process is sometimes called the Marsh–Rosenfeld (MR) process,
and its transition PDF that can be straightforwardly calculated by using Itô’s lemma and
the transition PDF of the CIR process are very complicated; the closed-form formula for
conditional moments of the MR process is also complicated or unavailable in general; see for
more details in [13]. It gets even more complicated for an inhomogeneous-time MR process
that extends the MR process by replacing the constant parameters in the process with
time-dependent functions. From now on, we subsequently call the inhomogeneous-time
MR process in general an inhomogeneous nonlinear drift constant elasticity of variance
(IND-CEV) process.

Conditional moments have been extensively used in modern financial markets. For
example, they can be used to price moment swaps. Unfortunately, the conditional moments,
which can be directly computed by applying the transition PDFs, are often unavailable in
closed form because the transition PDFs are hardly known. The Feynman–Kac technique is
used to overcome this problem for calculating the conditional moments of many stochastic
processes. There has still been little research on the analytical formula for conditional
moments regarding the IND-CEV process. In this work, a novel approach is developed
based on the Feynman–Kac theorem, where the partial differential equation (PDE) is solved
analytically, and some combinatorial techniques are used to simplify the system of recursive
ordinary differential equations (ODEs) associated with the conditional moment.

The rest of the paper is organized as follows. Section 2 provides an overview of the
IND-CEV process and sufficient conditions of the time-dependent parameter functions
in the process. The key methodology and main results are given in Section 3. Section 4
proposes some essential properties such as conditional moments, conditional variance
and central moments, conditional mixed moments, conditional covariance and correlation.
Section 5 provides the formula of the unconditional moments of the IND-CEV process with
constant parameters. Experimental validations for our results applied with Monte Carlo
(MC) simulations are addressed in Section 6. Conclusions, limitations and future researches
are discussed in Section 7.

2. IND-CEV Process

This section presents the IND-CEV process and sufficient assumptions for the process
in order to have a unique positive solution. The dynamics of the short-term interest rate
over time are assumed to follow the SDE:

drt = κ(t)
(

θ(t)r2β−1
t − rt

)
dt + σ(t)rβ

t dWt, (1)

with the initial condition r0 > 0, where κ(t), θ(t) and σ(t) are smooth and bounded
time-dependent parameter functions and Wt is a standard Brownian motion, which has
asymmetric sample paths, under a probability space (Ω,F ,P) with filtration {Ft}t≥0. In
this study, we only focus on the case that β < 1 in the SDE (1). Let � := 2 − 2β. Henceforth,
the dynamics of the process rt are considered via the following SDE:

drt = κ(t)
(

θ(t)r−(�−1)
t − rt

)
dt + σ(t)r

−( �−2
2 )

t dWt (2)

where � > 0. The process rt in (2) is called an IND-CEV process. In addition, the SDE (2) is
called the extended Cox–Ingersoll–Ross (ECIR) process when � = 1; see for more details
in [14–17]. From (2), if the parameters κ(t), θ(t) and σ(t) are constants written by κ, θ and
σ, respectively, then the SDE (2) can be rewritten as:

drt = κ
(

θr−(�−1)
t − rt

)
dt + σr

−( �−2
2 )

t dWt (3)

where � > 0. We will consider SDEs (2) and (3) on a time domain [0, T].
We first discuss the solution of SDE (2).
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Assumption 1. The parameter functions θ(t), κ(t) and σ(t) in SDE (2) are strictly positive and
continuously differentiable on [0, T]. Moreover, κ(t)/σ2(t) is locally bounded on [0, T].

Assumption 2. 2κ(t)θ(t) > σ2(t) for all t ∈ [0, T].

Theorem 1. For SDE (2), if Assumptions 1 and 2 hold with r0 > 0, then there exists a pathwise
unique strong solution process rt > 0 for all t ∈ [0, T].

Proof. Transforming vt = r�t with the Itô lemma yields:

dvt = (�)r�−1
t

(
κ(t)

(
θ(t)r−(�−1)

t − rt

)
dt + σ(t)r−

�−2
2

t dWt

)
+

1
2
(�)(�− 1)r�−2

t

(
σ(t)r−

�−2
2

t dWt

)2

=

(
�κ(t)

(
θ(t)− r�t

)
+

1
2
(�)(�− 1)σ2(t)

)
dt + �σ(t)r

1
2 �
t dWt

= �κ(t)
(

θ(t)− r�t +
(�− 1)σ2(t)

2κ(t)

)
dt + �σ(t)r

1
2 �
t dWt

= �κ(t)
(

θ(t) +
(�− 1)σ2(t)

2κ(t)
− vt

)
dt + �σ(t)

√
vtdWt

= A�(t)(B�(t)− vt)dt + C�(t)
√

vtdWt,

where A�(t) = �κ(t), B�(t) = θ(t) + (�− 1)σ2(t)/2κ(t) and C�(t) = �σ(t). Thus, vt is an
ECIR process. Under Assumptions 1 and 2, the functions A�, B� and C� are strictly positive,
smooth and continuous time-dependent parameter functions on [0, T]. Additionally, we
have that:

2A�(t)B�(t) = 2�κ(t)
(

θ(t) +
(�− 1)σ2(t)

2κ(t)

)
= �

(
2κ(t)θ(t) + (�− 1)σ2(t)

)
> �

(
σ2(t) + (�− 1)σ2(t)

)
= C2

� (t).

By the Feller condition [18], the SDE (2) has a pathwise unique strong solution in which vt
avoids zero almost surely under measure P for all 0 < t ≤ T and so does rt.

From now on, we will always assume Assumptions 1 and 2 with r0 > 0.

3. Main Results

In this section, we give the closed-form formula of conditional moments of processes (2)
and (3). Applying the Feynman–Kac technique and assuming a special form of the condi-
tional moment, we can express the solution of the resulting PDE as an infinite series and
solve the system of recursive ODEs to obtain coefficients for the closed-form formula. The
results for some special cases are also displayed.

In this work, under the probability measure P and σ−field Ft, we first propose the
integral-form formula for the conditional moment of an IND-CEV process for γ > 0:

u〈γ〉
� (r, τ) := E

[
rγ

T | rt = r
]
, (4)

for all r > 0 and τ := T − t ∈ (0, T]. Obviously, u〈γ〉
� (r, 0) = rγ. The key idea involves a

system with a recurrence differential equation that brings about the PDE by involving an
asymmetric matrix. The form of PDE’s solution associated with the conditional moment (4)
is a polynomial expression motivated by [16,17,19–24]. Hence, we can solve its coefficients
to obtain a closed-form formula directly.
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Theorem 2. Let rt be an IND-CEV process satisfying (2). Assume that the γth conditional moment
can be expressed in the form:

u〈γ〉
� (r, τ) =

∞

∑
k=0

A〈k〉
� (τ)rγ−�k (5)

in which the infinite series uniformly converges on D〈γ〉
� ⊆ (0, ∞)× (0, T]. Then, the coefficients

in (5) can be expressed recursively by:

A〈0〉
� (τ) := e−

∫ τ
0 P〈0〉

� (T−ξ)dξ ,

A〈k〉
� (τ) :=

∫ τ

0
e−

∫ τ
η P〈k〉

� (T−ξ)dξ Q〈k−1〉
� (T − η)A〈k−1〉

� (η)dη,
(6)

for all k ∈ N, where:

P〈j〉
� (τ) := (γ − �j)κ(τ), (7)

Q〈j〉
� (τ) := (γ − �j)

(
1
2
(γ − �j − 1)σ2(τ) + κ(τ)θ(τ)

)
. (8)

Proof. Applying the Feynman–Kac formula to the SDE (2), we have that the function
u := u〈γ〉

� (r, τ) satisfies the PDE:

uτ − 1
2

σ2(T − τ)r−(�−2)urr − κ(T − τ)
(

θ(T − τ)r−(�−1) − r
)

ur = 0 (9)

for all r > 0 and 0 < τ ≤ T, with the initial condition:

u〈γ〉
� (r, 0) = E

[
rγ

T | rT = r
]
= rγ. (10)

From (5), u〈γ〉
� (r, 0) =

∞
∑

k=0
A〈k〉
� (0)rγ−�k. Comparing this with (10) implies that A〈0〉

� (0) = 1

and A〈k〉
� (0) = 0 for all k ∈ N. Substituting (5) into (9), we have that:

0 =
∞

∑
k=0

d
dτ

A〈k〉
� (τ)rγ−�k

− 1
2

σ2(T − τ)r−(�−2)
∞

∑
k=0

(
(γ − �k)(γ − �k − 1)A〈k〉

� (τ)rγ−�k−2
)

− κ(T − τ)
(

θ(T − τ)r−(�−1) − r
) ∞

∑
k=0

(
(γ − �k)A〈k〉

� (τ)rγ−�k−1
)

or it can be simplified as:

0 =

(
d

dτ
A〈0〉
� (τ) + γκ(T − τ)A〈0〉

� (τ)

)
rγ

+
∞

∑
k=1

(
d

dτ
A〈k〉
� (τ) + P〈k〉

� (T − τ)A〈k〉
� (τ)− Q〈k−1〉

� (T − τ)A〈k−1〉
� (τ)

)
rγ−�k.

Under the assumption that the solution is in the form (5) over D〈γ〉
� , this equation can be

solved through the system of ODEs:

0 =
d

dτ
A〈0〉
� (τ) + γκ(T − τ)A〈0〉

� (τ),

0 =
d

dτ
A〈k〉
� (τ) + P〈k〉

� (T − τ)A〈k〉
� (τ)− Q〈k−1〉

� (T − τ)A〈k−1〉
� (τ),

(11)
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with initial conditions A〈0〉
� (0) = 1 and A〈k〉

� (0) = 0 for k ∈ N. Hence, the coefficients in the
infinite series (5) can be directly acquired by solving the system (11), which turns out to be
the recursive relation given in (6).

Note that when we define variables or notations using the := sign, e.g., Equations (6)–(8),
we will use those variables or notations throughout this work.

Observe that (5) becomes a finite sum when one of the two factors for Q〈j〉
� (τ) in (8)

is zero. For fixing � > 0, we give the consequence of (5) in Theorem 2 when γ/� ∈ Z+.
The infinite sum in (5) is cut off at a finite order and can be presented as in the following
corollary.

Corollary 1. Let rt be an IND-CEV process satisfying (2). For the positive real number γ such
that γ/� ∈ Z+, the γth conditional moment is explicitly given by:

u〈γ〉
� (r, τ) =

γ/�

∑
k=0

A〈k〉
� (τ)rγ−�k, (12)

for all (r, τ) ∈ (0, ∞)× (0, T].

Proof. From (8), when j = γ/�, we acquire that Q〈j〉
� (τ) = 0. From (6), the coefficients

A〈k〉
� (τ) = 0 for all integers k ≥ γ/�+ 1. Hence, the infinite sum (5) is actually just the

finite sum (12). Since any integration of a continuous function over a compact set is finite,
the finite sum (12) exists for all (r, τ) ∈ (0, ∞)× (0, T]; hence, the infinite sum (5) uniformly
converges to the finite sum (12) and D〈γ〉

� = (0, ∞)× (0, T].

Another consequence of (5) in Theorem 2 is shown in the following corollary.

Corollary 2. Assume that rt follows SDE (2) and there exists m ∈ Z
+
0 such that:

γ = 1 − 2κ(τ)θ(τ)

σ2(τ)
+ �m (13)

for all τ ∈ (0, T]. Then,

u〈γ〉
� (r, τ) =

m

∑
k=0

A〈k〉
� (τ)rγ−�k, (14)

for all (r, τ) ∈ (0, ∞)× (0, T].

Proof. From (8), when j = m, we have that Q〈j〉
� (τ) = 0. From (6), the coefficients A〈k〉

� (τ) =
0 for all integers k ≥ m + 1. With the same reasoning as in the proof of Corollary 1, we
acquire the desired result.

One main concern when we investigate the conditional moments described by the IND-
CEV process is that the integral terms (6) in Theorem 2 cannot be directly evaluated. Thus,
a very accurate numerical integration scheme is applied via the Chebyshev integration
method; see [25–28] for more details.

Next, we consider the case when κ(τ), θ(τ) and σ(τ) are constant functions.

Theorem 3. If rt follows the SDE (3) and the γth conditional moment can be expressed in the
form (5), then the γth conditional moment is given by:

u〈γ〉
� (r, τ) =

∞

∑
k=0

e−γκτ

k!

(
eκτ� − 1

κ�

)k(k−1

∏
j=0

Q̃〈j〉
�

)
rγ−�k, (15)
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for all (r, τ) ∈ D〈γ〉
� , where:

Q̃〈j〉
� :=

(
γ − �j

)(1
2
(γ − �j − 1)σ2 + κθ

)
. (16)

Note that the product from 0 to −1,
−1
∏
j=0

Q̃〈j〉
� , is defined to be 1.

Proof. We will prove by induction that:

A〈k〉
� (τ) =

e−γκτ

k!

(
eκτ� − 1

κ�

)k(k−1

∏
j=0

Q̃〈j〉
�

)

for all k ∈ N ∪ {0}. From (6) with the constant parameters κ, θ and σ, we have that
A〈0〉
� (τ) = e−γκτ and

A〈k〉
� (τ) = Q̃〈k−1〉

�

∫ τ

0
e−(τ−η)(γ−�k)κ A〈k−1〉

� (η)dη, (17)

for all k ∈ N. By substituting k = 1 in (17), we obtain:

A〈1〉
� (τ) = e−γκτ

(
eκτ� − 1

κ�

)
Q̃〈0〉

� .

Let k ∈ N. Assume that:

A〈k−1〉
� (τ) =

e−γκτ

(k − 1)!

(
eκτ� − 1

κ�

)k−1(k−2

∏
j=0

Q̃〈j〉
�

)
.

From (17), we have that:

A〈k〉
� (τ) = e−(γ−�k)κτQ̃〈k−1〉

�

∫ τ

0
e(γ−�k)κη A〈k−1〉

� (η)dη

=
e−(γ−�k)κτ

(k − 1)!(κ�)k−1

(
k−1

∏
j=0

Q̃〈j〉
�

)∫ τ

0
e−k�κη

(
eκη� − 1

)k−1
dη

=
e−γκτ

k!

(
eκτ� − 1

κ�

)k(k−1

∏
j=0

Q̃〈j〉
�

)
.

From Corollaries 1 and 2, when κ(τ), θ(τ) and σ(τ) are constant functions, we have
the following corollaries.

Corollary 3. Assume that rt follows SDE (3). For a positive real number γ such that γ/� ∈ Z+,
the γth conditional moment is explicitly given by:

u〈γ〉
� (r, τ) =

γ/�

∑
k=0

e−γκτ

k!

(
eκτ� − 1

κ�

)k(k−1

∏
j=0

Q̃〈j〉
�

)
rγ−�k, (18)

for all (r, τ) ∈ (0, ∞)× (0, T]. Note that the product of Q̃〈j〉
� in (18) for k = 0 is defined to be 1.

Corollary 4. Assume that rt follows the SDE (3). If there exists m ∈ Z
+
0 such that

γ = 1 − 2κθ

σ2 + �m, (19)

130



Symmetry 2022, 14, 1345

then

u〈γ〉
� (r, τ) =

m

∑
k=0

e−γκτ

k!

(
eκτ� − 1

κ�

)k(k−1

∏
j=0

Q̃〈j〉
�

)
rγ−�k, (20)

for all (r, τ) ∈ (0, ∞)× (0, T].

For SDE (3), characterization for the convergence of the series (15) can be provided.

Theorem 4. Assume that rt follows SDE (3) and Q̃〈j〉
� �= 0 for all j ∈ Z

+
0 . Then, the series (15)

diverges for all (r, τ) ∈ (0, ∞)× (0, T].

Proof. Since Q̃〈j〉
� �= 0 for all j ∈ Z

+
0 , we have that γ− �k �= 0 and (γ− �k− 1)σ2/2+ κθ �= 0

for all k ∈ Z
+
0 .

lim
k→∞

∣∣∣∣∣ A〈k+1〉
� (τ)rγ−�(k+1)

A〈k〉
� (τ)rγ−�k

∣∣∣∣∣ = lim
k→∞

∣∣∣∣∣∣∣∣∣∣
e−γκτ

(k+1)!

(
eκτ�−1

κ�

)k+1
(

k
∏
j=0

Q̃〈j〉
�

)
rγ−�(k+1)

e−γκτ

k!

(
eκτ�−1

κ�

)k
(

k−1
∏
j=0

Q̃〈j〉
�

)
rγ−�k

∣∣∣∣∣∣∣∣∣∣
= lim

k→∞

∣∣∣∣∣∣∣
(

eκτ� − 1
)(

γ − �k
)(

1
2 (γ − �k − 1)σ2 + κθ

)
(k + 1)κ�r�

∣∣∣∣∣∣∣.
The above expression is O(k) as k → ∞; hence, the limit diverges. By ratio test, the
series (15) diverges for all (r, τ) ∈ (0, ∞)× (0, T].

From Corollaries 3 and 4, and Theorem 4, we have the following result.

Corollary 5. Assume that rt follows SDE (3). Then, the series (15) converges for all (r, τ) ∈
(0, ∞)× (0, T] if and only if:

1. γ
� ∈ Z+, or

2. 1
�

(
γ − 1 + 2κθ

σ2

)
∈ Z

+
0 .

The convergent results for case 1 and 2 are given in Corollaries 3 and 4, respectively.

4. Probabilistic Properties

This section illustrates some usefulness of our results from Section 3 including the first,
second and fractional conditional moments; conditional variance and central moments;
conditional mixed moments; and conditional covariance and correlation.

Example 1 (The conditional moments). From Corollary 1, the nth conditional moment of an
IND-CEV process when the parameter � = 1/L for some L ∈ N is given by:

E[rn
T | rt = r] = u〈n〉

� (r, τ) =
nL

∑
k=0

A〈k〉
� (τ)rn− k

L ,

where:

A〈0〉
� (τ) = e−

∫ τ
0 P〈0〉

� (T−ξ)dξ ,

A〈k〉
� (τ) =

∫ τ

0
e−

∫ τ
η P〈k〉

� (T−ξ)dξ Q〈k−1〉
� (T − η)A〈k−1〉

� (η)dη,
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for k ∈ N, where:

P〈j〉
� (τ) =

(
n − j

L

)
κ(τ),

Q〈j〉
� (τ) =

(
n − j

L

)(
1
2

(
n − j

L
− 1

)
σ2(τ) + κ(τ)θ(τ)

)
.

For constants κ, θ and σ, we use u〈1〉
� (r, τ) and u〈2〉

� (r, τ) in Corollary 3. Then, for L = 1, the first
and second conditional moments are given by:

E[rT | rt = r] = (r − θ)e−κτ + θ (21)

and

E
[
r2

T | rt = r
]
=e−2κτr2 +

(σ2/2 + κθ)e−2κτ

κ

(
r(eκτ − 1) + θ(eκτ − 1)2

)
. (22)

For L = 2, the first and second conditional moments are given by:

E[rT | rt = r] = e−κτ

⎛⎝r + θ
(

e
κτ
2 − 1

)⎛⎝2r
1
2 +

(
e

κτ
2 − 1

)
κ

(
−σ2

4
+ κθ

)⎞⎠⎞⎠ (23)

and

E
[
r2

T | rt = r
]
=e−2κτ

⎛⎝r2 +
(

e
κτ
2 − 1

)(σ2

2
+ κθ

)⎛⎝ 4
κ

r
3
2 +

6
(

e
κτ
2 − 1

)
κ2

(
σ2

4
+ κθ

)
r

⎞⎠⎞⎠
+ e−2κτ

4
(

e
κτ
2 − 1

)3

κ2

(
σ2

2
+ κθ

)(
σ2

4
+ κθ

)
θr

1
2

+ e−2κτ

(
e

κτ
2 − 1

)4

κ2

(
σ2

2
+ κθ

)(
σ2

4
+ κθ

)(
−σ2

4
+ κθ

)
θ. (24)

Additionally, for � = 3/4, the conditional moment with γ = 3/2 is given by:

E

[
r

3
2
T | rt = r

]
=e−

3
2 κτr

3
2 + 2e−

3
2 κτ

(
e

3
4 κτ − 1

κ

)(
σ2

4
+ κθ

)
r

3
4

+ e−
3
2 κτ

(
e

3
4 κτ − 1

κ

)2(
σ2

4
+ κθ

)(
−σ2

8
+ κθ

)
. (25)

Next, we propose the consequences of Example 1, which are the conditional vari-
ance and central moments, conditional mixed moments, and conditional covariance and
correlation, as follows.

Example 2 (The conditional variance and nth central moment). By applying Corollary 3, (21)
and (22), the conditional variance of the IND-CEV process can be given by:

Var[rT |rt = r] =E
[
(rT − E[rT | rt])

2 | rt = r
]
= u〈2〉

� (r, τ)−
(

u〈1〉
� (r, τ)

)2
,
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where u〈1〉
� (r, τ) and u〈2〉

� (r, τ) are derived in (21) and (22) for the CIR process. In general, the nth
central moment is presented by:

μn(r, τ) := E
[
(rT − E[rT | rt])

n | rt = r
]
=

n

∑
j=0

(−1)n−j
(

n
j

)(
u〈j〉
� (r, τ)

)(
u〈1〉
� (r, τ)

)n−j

where u〈0〉
� (r, τ) := 1.

Example 3 (The conditional mixed moments). By applying the tower property for 0 ≤ t <
T1 < T2, where τ1 = T1 − t and τ2 = T2 − T1 and Corollary 1, the conditional mixed moment of
the IND-CEV process (2) with � = 1/L is given by:

E
[
rn1

T1
rn2

T2
| rt = r

]
=E

[
rn1

T1
E
[
rn2

T2
| rT1

]
| rt = r

]
= E

[
rn1

T1
u〈n2〉
� (rT1 , T2 − T1) | rt = r

]
=

n2L

∑
k=0

A〈k〉
� (τ2)E

[
rn1+n2− k

L
T1

| rt = r
]

=
n2L

∑
k=0

A〈k〉
� (τ2)u

〈n1+n2− k
L 〉

� (r, T1 − t)

=
n2L

∑
k=0

(n1+n2)L−k

∑
j=0

A〈k〉
� (τ2)A〈j〉

� (τ1)rn1+n2− k+j
L . (26)

In addition, the general formula for conditional mixed moments E
[
rn1

T1
rn2

T2
· · · rnk

Tk
| rt = r

]
, where

n1, n2, . . . , nk ∈ Z+ and 0 ≤ t < T1 < T2 < · · · < Tk, for the process (3) can be analytically
derived by using Corollary 3.

Example 4 (The conditional covariance and correlation). The conditional covariance of the
CIR process for 0 ≤ t < T1 < T2, where τ1 = T1 − t and τ2 = T2 − T1, is given by:

Cov
[
rT1 , rT2 | rt = r

]
:= E

[(
rT1 − E

[
rT1 | rt

])(
rT2 − E

[
rT2 | rt

]) | rt = r
]

= E
[
rT1 rT2 | rt = r

]− E
[
rT1 | rt = r

]
E
[
rT2 | rt = r

]
=

1

∑
k=0

2−k

∑
j=0

A〈k〉
� (τ2)A〈j〉

� (τ1)r2−k−j − u〈1〉
� (r, τ1)u

〈2〉
� (r, τ2). (27)

Applying the results from (26) and (27), we obtain that the conditional correlation of the CIR process
is given by:

Corr[rT1 , rT2 | rt = r] : =
Cov[rT1 , rT2 | rt = r]

Var[rT1 | rt = r]1/2 Var[rT2 | rt = r]1/2

=

1

∑
k=0

2−k

∑
j=0

A〈k〉
� (τ2)A〈j〉

� (τ1)r2−k−j − u〈1〉
� (r, τ1)u

〈2〉
� (r, τ2)(

u〈2〉
1 (r, τ1)−

(
u〈1〉

1 (r, τ1)
)2

)1/2(
u〈2〉

1 (r, τ2)−
(

u〈1〉
1 (r, τ2)

)2
)1/2 . (28)

We can generalize (27) and (28) by using (26) as the closed forms of Cov
[
rn1

T1
, rn2

T2
| rt = r

]
and

Corr
[
rn1

T1
, rn2

T2
| rt = r

]
, where n1 and n2 are positive integers.

5. Unconditional Moments of the IND-CEV Process

This section provides the formula of the unconditional moments of the IND-CEV pro-
cess with constant parameters as τ → ∞ reduced from the formula of conditional moments.
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Theorem 5. Assume that rt follows SDE (3). Then, for all γ/� ∈ Z+,

lim
τ→∞

u〈γ〉
� (r, τ) =

γ/�

∏
j=1

2κθ + (�j − 1)σ2

2κ
. (29)

Proof. Let s = γ/� ∈ Z+. By considering (18) in Corollary 3, the coefficient terms of rγ−�k

converge to 0 as τ → ∞ for k = 0, 1, 2, . . . , s − 1. Thus, the summation (18) is reduced to
only one term, where k = s,

lim
τ→∞

u〈γ〉
� (r, τ) = lim

τ→∞

e−γκτ

s!

(
eκτ� − 1

κ�

)s(s−1

∏
j=0

Q̃〈j〉
�

)
rγ−�s

=
1

s!(κ�)s

(
s−1

∏
j=0

Q̃〈j〉
�

)
lim

τ→∞
e−γκτ

(
eκτ� − 1

)s

=
1

s!(κ�)s

(
s−1

∏
j=0

Q̃〈j〉
�

)
lim

τ→∞

(
1 − e−κτ�

)s

=
1

s!(κ�)s

(
s−1

∏
j=0

Q̃〈j〉
�

)
,

where Q̃〈j〉
� is defined in (16). By expressing Q̃〈j〉

� to the above equation, it can be performed
to

lim
τ→∞

u〈γ〉
� (r, τ) =

1
s!(κ�)s

s−1

∏
j=0

(
γ − �j

)(1
2
(γ − �j − 1)σ2 + κθ

)
=

γ/�

∏
j=1

2κθ + (�j − 1)σ2

2κ
.

Note that the formula for unconditional moments does not rely on the initial value r,
and these unconditional moments represent the moments of the stationary distribution of
the process (3).

6. Experimental Validation

In this section, we validate the closed-form formulas presented in Theorem 2 and
Corollaries 1 and 2. The Euler–Maruyama (EM) method was applied to simulate the
process (2) and approximate the conditional moments based on the symmetry concept. For
an interval [0, τ], let Δ = τ/N for a fixed N ∈ N and ti = Δi for i = 0, 1, . . . , N. We denote
a numerical solution of the IND-CEV process at time ti by r̂ti . The EM approximation of (2)
on the interval [0, τ] is defined as r̂0 = r and

r̂ti+1 = r̂ti + κ(ti)
(

θ(ti)r̂
−(�−1)
ti

− r̂t

)
Δt + σ(ti)r̂

−(�−2)
2

ti

√
ΔWi+1 (30)

where W1, W2, . . . , WN are N independent standard normal random variables. In this
validation, the MC simulations based on the EM method (30) were conducted by MATLAB
R2021a software on a quadcore Intel Core i5-1035G1 with 8 GB RAM.

Example 5. In this example, we apply the MC simulations based on the CEV process [15]:

drt = κ

(
σ2

0 de2σ1t

4κ
r−(�−1)

t − rt

)
dt + σ0eσ1tr−

�−2
2

t dWt (31)

where κ and σ0 are positive constants, σ1 is a non-negative constant and d is a positive integer
greater than 2. By considering (31) and (2), the parameter functions for SDE (31) are κ(t) = κ,
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θ(t) = dσ2
0 e2σ1t/4κ and σ(t) = σ0eσ1t. Note that Assumptions 1 and 2 hold for these parameter

functions. By Theorem 2, we have that:

u〈γ〉
� (r, τ) = e−γκτ

∞

∑
k=0

ξk (32)

where:

ξk :=
1
k!

⎛⎝k−1

∏
j=0

(γ − �j)(d + 2(γ − �j − 1))

⎞⎠⎛⎝σ2
0 e2σ1(T−τ)

(
e2σ1τ+κτ� − 1

)
4(2σ1 + κ�)

⎞⎠k

rγ−�k. (33)

However, Formula (32) can be reduced to a finite sum for a particular situation. By Corollary 1, if
γ/� ∈ Z+, then:

u〈γ〉
� (r, τ) = e−γκτ

γ/�

∑
k=0

ξk. (34)

By Corollary 2, if there exists m ∈ Z
+
0 such that γ = 1 − 2κ(τ)θ(τ)/σ2(τ) + �m, which is

1 − d/2 + �m in this example, for all τ ∈ (0, T], then:

u〈γ〉
� (r, τ) = e−γκτ

m

∑
k=0

ξk. (35)

Our experiments are classified into three cases: (i) γ/� ∈ Z+, (ii) (γ − 1 + d/2)/� ∈ Z
+
0 ,

and (iii) γ/� /∈ Z+ and (γ − 1 + d/2)/� /∈ Z
+
0 . The algorithm of our validation is given in

Algorithm 1. The parameters � = 2/3, σ0 = 0.01, σ1 = 0.02, κ = 0.03 and T = 10 in the
process (31) are set for all of these three cases. MC simulations were performed at each initial value
r = 0.1, 0.2, . . . , 2 and τ = 1, 2, . . . , 10.

Algorithm 1 MC validation for the process (31)

1: Set the values for parameters �, γ, d, κ, σ0, σ1, T

2: N0 ←

⎧⎪⎨⎪⎩
γ/� ifγ/� ∈ Z+

(γ − 1 + d/2)/� if(γ − 1 + d/2)/� ∈ Z+

the number of terms in (32) ifγ/� /∈ Z+and(γ − 1 + d/2)/� /∈ Z+

3: Compute u(r, τ) = e−γκτ
N0
∑

k=0
ξk according to (33) for a refined grid of variables r and τ

4: Plot a surface of u(r, τ) representing the conditional moments from our formulas
5: Construct a grid of variables r and τ to perform MC simulation
6: For each initial value r and final time τ, apply the EM method with 1000 time steps to

the process (31) to get r̂τ with 1000 sample paths and compute the average value of r̂γ
τ

7: Plot the resulting values and compare them with the surface of u(r, τ)

For the case when γ/� ∈ Z+, we set d = 3 and consider two different values of γ. Here, we
choose γ = 2 and 8/3. Figure 1 shows the comparison between Formula (34) and MC simulations.
The results from MC simulations are presented by blue star markers, and Formula (34) is presented by
the solid surfaces. All markers perfectly match with the surfaces. This indicates that our formula from
Corollary 1 is correct. The validation runtimes for γ = 2 and 8/3 were 23.82 and 22.30 s, respectively.

For the case when (γ − 1 + d/2)/� ∈ Z
+
0 , we set d = 4 and consider γ = 1 and 5/3.

Figure 2 demonstrates the comparison between Formula (35) and MC simulations. Evidently,
the results from MC simulations and the surfaces from Formula (35) are completely coincident.
Validation runtimes for γ = 1 and 5/3 were 22.34 and 22.63 s, respectively.
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(a) γ = 2 (b) γ = 8
3

Figure 1. The validation of conditional moments for process (31) where � = 2/3, σ0 = 0.01, σ1 = 0.02,
κ = 0.03, T = 10 and d = 3 with MC simulations.

(a) γ = 1 (b) γ = 5
3

Figure 2. The validation of conditional moments for process (31) where � = 2/3, σ0 = 0.01, σ1 = 0.02,
κ = 0.03, T = 10 and d = 4 with MC simulations.

For the case when γ/� /∈ Z+ and (γ − 1 + d/2)/� /∈ Z
+
0 , we set d = 5 and consider

γ = 1. Observe that from (33), |ξk+1/ξk| is O(k) as k → ∞; thus, limk→∞|ξk+1/ξk| = ∞ for
(r, τ) ∈ (0, ∞)× (0, T]. By the ratio test, the summation ∑∞

k=0 ξk diverges; hence, Formula (32)
diverges for all (r, τ) ∈ (0, ∞) × (0, T]. This means that the conditional moment cannot be
expressed in the form (5). However, our experiment shows that finite terms of the summation in
Formula (32) can be used to approximate the conditional moment. Figure 3 shows the comparison
between the formula

Sn(r, τ) := e−γκτ
n

∑
k=0

ξk (36)

for n = 10, 1000 and MC simulations. The results from MC simulations coincide with the surface
from Formula (36) with n = 10. For n = 1000, the results from Formula (36) could not be computed
by our machine. This supports our theory that Formula (32) diverges. Validation runtimes for
n = 10 and n = 1000 were 22.76 and 26.98 s, respectively.
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(a) n = 10 (b) n = 1000
Figure 3. The validation of conditional moments for process (31) where � = 2/3, γ = 1, σ0 = 0.01,
σ1 = 0.02, κ = 0.03, T = 10 and d = 5 with MC simulations.

The next example shows a similar result of the third case in Example 5 for the IND-CEV
process with constant parameter functions.

Example 6. For SDE (3) with � = 2/3, κ = 0.03, θ = 0.003, σ = 0.01, γ = 1 and T = 10,
we have that γ/� /∈ Z+ and (γ − 1 + 2κθ/σ2)/� /∈ Z

+
0 . From Corollary 5, u〈1〉

2/3(r, τ) cannot be
expressed in the form (5). However, our experiment shows that finite terms of the summation in
Formula (15) can be used to approximate the conditional moment. Let:

S̃n(r, τ) :=
n

∑
k=0

e−κτ

k!

(
e2κτ − 1

2κ

)k
⎛⎝k−1

∏
j=0

(
1 − 2j

)(
κθ − jσ2

)⎞⎠r1−2k. (37)

Figure 4 shows the comparison for Formula (37) between n = 10, 1000 and MC simulations. All
blue markers match with the surface from the formula with n = 10, even though S̃n(r, τ) diverges
as n → ∞. Validation runtimes for n = 10 and n = 1000 were 22.79 and 26.96 s, respectively.

(a) n = 10 (b) n = 1000
Figure 4. The validation of conditional moments for process (3) where � = 2/3, γ = 1, κ = 0.03,
θ = 0.003 and σ = 0.01 and T = 10 with MC simulations.

7. Conclusions, Limitations and Future Researches

In this study, we focused on the IND-CEV process (2) and a special case when the
parameter functions are constants, which leads to process (3). We gave the sufficient
conditions for SDE (2) in order to have a unique positive path-wise strong solution. We
have derived the explicit formulas of conditional moments for this process. The derived
formula for process (2) is shown in Theorem 2 in terms of infinite series. The formula can be
reduced from infinite sum to finite sum for two situations: (i) the case when γ/� ∈ Z+, and
(ii) condition (13), which are shown in Corollaries 1 and 2. Furthermore, we have presented
the formula for process (3), where the parameter functions are constant, in Theorem 3. As
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a consequence, formulas for special situations are expressed in Corollaries 3 and 4. The
characterization for the convergence of the infinite sum in the formula for process (3) is
discussed in Theorem 4 and summarized in Corollary 5.

The use of our results was illustrated. This includes conditional moments, conditional
variance and central moments, conditional mixed moments, conditional covariance and
correlation. In addition, the moments of the stationary distribution of process (3) were
proposed in Theorem 5.

Moreover, we have validated our closed-form formulas for process (2) by comparing
the calculated values of conditional moments from our formula with the MC simulations
via a number of experimental examples in Section 6. Our results in each situation have
completely matched with MC simulations. Moreover, for some moments γ whose formula
cannot be reduced to a finite sum, we can approximate the conditional moments by display-
ing the numerical result of the finite sum with suitable order. It turns out that the obtained
results have good accuracy when compared with the MC simulations.

One major concern is that our proposed formulas in Theorem 2 and Corollaries 1 and 2
are not in closed form when integral terms cannot be analytically computed. In this case, a
numerical method can be applied to calculate the coefficients numerically; see [28,29].

In the context of future works, our proposed closed-form formulas under the IND-CEV
process have further beneficial aspects for pricing financial derivatives, such as moment
swaps and the asset whose payoff can be generated by the conditional moments, see more
details in [23,30]. In addition, since the transition PDF of process (2) is complicated and
does not exist in closed form, our closed-form formulas can also be applied for parameter
estimations of the behavior and dynamic of observed data; see more details in [9].
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CEV Constant elasticity of variance diffusion
CIR Cox–Ingersoll–Ross
ECIR Extended Cox–Ingersoll–Ross
EM Euler–Maruyama
IND Inhomogeneous nonlinear drift
MC Monte Carlo
MR Marsh–Rosenfeld
ODE Ordinary differential equation
OU Ornstein–Uhlenbeck
PDE Partial differential equation
PDF Probability density function
SDE Stochastic differential equation
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