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Editorial

Kinetic Theory-Based Methods in Fluid Dynamics

Zhen Chen 1,*, Liangqi Zhang 2 and Liming Yang 3

1 School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University,
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3 Department of Aerodynamics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
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Kinetic theory stems from the statistical mechanics established at the mesoscopic
scale. In the area of fluid dynamics, kinetic theory outperforms macroscopic interpretations
(represented by the Navier–Stokes equations) in multiple aspects: it provides theoretical
generality with no restrictions from the continuum assumption, clear interpretation of the
streaming and collision of fluid particles in a physical process, simple algebraic formulas
instead of partial differential equations in numerical evolution, and convenient implemen-
tation in parallel computation. Various methods, such as the discrete velocity method,
gas kinetic scheme, unified gas kinetic scheme, lattice Boltzmann method, etc., have been
developed within the framework of kinetic theory. These methods play unique and im-
portant roles in almost all studies of fluid dynamics. However, their broader application
to engineering problems is often hindered by intrinsic limitations. Kinetic theory-based
methods usually consume larger virtual memory than macroscopic methods. Additionally,
high-fidelity simulations of flows beyond the continuum regime are still time-consuming.
Therefore, developing robust and efficient kinetic theory-based methods is an urgent need
in the fluid dynamics community.

This Special Issue is a timely forum for presenting recent advances in the very active
area of kinetic theory-based methods in fluid dynamics. After a year-long preparation
and a rigorous peer-review process, 12 articles were finally accepted for publication in
this Special Issue. These articles report the latest developments in kinetic-theory-related
numerical schemes [1,2] and typical applications in multiphase flows [3], thermal flows [4],
micro/nano flows [5,6], flows in porous media [7], and compressible flows [8,9], as well
as other areas of fluid dynamics [10–12]. Specifically, Song et al. [1] proposed a simplified
linearized Boltzmann method for the effective simulation of acoustic propagation with
a lower cost of virtual memory. Xiao [2] developed a well-balanced unified gas-kinetic
scheme to model the dynamics of multicomponent gaseous flows under gravity, which
allows for evolving a gravitational system under any initial condition to the hydrostatic
equilibrium, and thus could be a proper solver for long-term evolving systems such as
galaxy formation. Yang et al. [3] managed to remove the force imbalance in the direct
implementation of a lattice Boltzmann free-energy model on the discrete unified gas kinetic
scheme and successfully derived a robust free-energy model for van der Waals fluid.
Feng et al. [4] utilized the multiple-relaxation-time lattice Boltzmann method to investigate
the thermal behaviors of convection melting in metal foam under sinusoidal temperature
boundary conditions. Wu and Zhou [5] presented an application of the lattice Boltzmann
flux solver to the modelling of the natural convection process within a square cavity filled
by nanofluid. Guo and Hou [6] derived an anisotropic slip boundary condition based on
nonlinear velocity profiles near the wall, consolidated this new boundary treatment into the
discrete unified gas kinetic scheme, and investigated the effects of anisotropic slip on the
two-sided orthogonal oscillating micro-lid-driven cavity flow through three-dimensional
simulations. Liu et al. [7] carried out a series of simulations using the smoothed particle
hydrodynamics method to shed light on the physics under the imbibition phenomenon
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in porous media. Zhou et al. [8] employed the gas-kinetic BGK scheme and performed
a thorough analysis of the thermal protection system for vehicles operating in extreme
conditions of hypersonic flows. Jiang et al. [9] investigated the aerodynamic characteristics
of an X38-like vehicle considering strong viscous interactions and complicated rarified
effects, which could be of reference value to engineering designs. Morozov and Titarev [10]
utilized three numerical tools to study the dynamics of gas expansion due to intense
nanosecond laser evaporation into vacuum, with specific attention paid to factors that are
essential for experimental measurements. Megías and Santos [11] established a numerical
model to interpret interactions between the dilute granular gases and a thermal bath made
from smaller particles, and found that the Sonine approximation performs better than the
Maxwellian approximation in revealing inelasticity, drag nonlinearity and memory effects.
Qi et al. [12] employed an immersed boundary-lattice Boltzmann method to simulate
self-propelled particles in a simple shear flow, and studied the effects of multiple flow
parameters (swimming Reynolds number, flow Reynolds number and blocking rate) on
the kinematics and flow patterns.
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Numerical Study on Heat-Transfer Characteristics of
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Temperature Boundary Conditions
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3 Xi’an Thermal Power Research Institute Co., Ltd., Xi’an 710054, China
4 Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology,

Shenzhen 518055, China
5 School of Resource Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
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Abstract: Convection melting in metal foam under sinusoidal temperature boundary conditions is
numerically studied in the present study. A multiple-relaxation-time lattice Boltzmann method, in
conjunction with the enthalpy approach, is constructed to model the melting process without iteration
steps. The effects of the porosity, phase deviation, and periodicity parameter on the heat-transfer
characteristics are investigated. For the cases considered in this work, it is found that the effects of
the phase deviation and periodicity parameter on the melting rate are weak, but the melting front
can be significantly affected by the sinusoidal temperature boundary conditions.

Keywords: convection melting; sinusoidal side wall temperature; lattice Boltzmann method; metal
foams; latent heat storage

1. Introduction

Latent heat storage (LHS), which uses solid–liquid phase-change materials (PCMs)
as thermal-energy storage media, has been widely employed in industrial waste heat
utilization to build energy saving systems, solar thermal utilization systems, etc. LHS
with solid–liquid PCMs has become an important research topic during the past 30 years,
and numerous reviews about this topic have been published. Zalba et al. [1] carried out a
comprehensive review of the materials, the heat transfer process, and applications of LHS
using solid–liquid PCMs. Farid et al. [2] reviewed the efforts in developing new PCMs
for LHS applications. In a recent review by Nazir et al. [3], the applications of various
PCMs, based on their thermophysical properties, were summarized, and the strategies for
improving the characteristics of thermal-energy storage through nanomaterial additives, as
well as encapsulation, were discussed in detail.

LHS with the use of solid–liquid PCMs has gradually become the preferred thermal-
energy storage pattern, as solid–liquid PCMs have some outstanding features, such as the
energy storage density being very high and the temperature fluctuation being small. How-
ever, the thermal conductivities for most of the solid–liquid PCMs are low
(0.1~0.6 W/(m·K) [4]). This serious shortcoming strongly slows down the charging and dis-
charging rates of thermal energy. To improve the LHS system’s thermal performance, three
main kinds of enhancement approaches have been employed: improving the uniformity
of heat-transfer process, enhancing the thermal conductivity of PCMs, and extending the
heat-transfer surface [5]. Among these enhancement approaches, enhancing the thermal

Entropy 2022, 24, 1779. https://doi.org/10.3390/e24121779 https://www.mdpi.com/journal/entropy3
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conductivity performance of PCMs is an efficient way to improve the LHS system’s ther-
mal performance. High-porosity metal foams attract great attention for LHS applications
because of their attractive advantages, such as high thermal conductivity and large specific
surface areas.

In recent decades, numerous numerical studies on the characteristics of solid–liquid
phase change in metal foams (porous media) have been performed. Weaver and Viskanta [6]
numerically and experimentally investigated the melting process of ice in a cylindrical
capsule filled with glass or aluminum beads. Beckermann and Viskanta [7] studied the
melting and solidification processes of gallium in a square cavity filled with glass beads.
They found that the shape of the interface can be considerably influenced by the convection
effect in the liquid region. Tong et al. [8] performed a numerical study on the melting and
freezing of a water–aluminum matrix system in a cylindrical annulus. They found that the
heat-transfer rates of enhanced cases were increased by one order of magnitude, compared
with that of the base case without an aluminum matrix.

In the numerical studies [6–8], the local thermal equilibrium (LTE) assumption is
adopted, as the thermal conductivity of the solid matrix is low. However, for high-thermal-
conductivity metal foams, such as copper or aluminum foam, the local thermal non-
equilibrium (LTNE) effect (temperature difference) between a PCM and a metal matrix
during the melting process should be considered. Harris et al. [9] developed an approximate
theoretical enthalpy model (LTNE model) in which a temperature difference between the
PCM and the walls of the pores was maintained. Based on the approximate model, the
conditions for the occurrence of LTE were analyzed. Mesalhy et al. [10] developed a two-
temperature model to analyze the LTNE effect between the PCM and the metal matrix,
and a parametric study was performed to investigate the effects of thermal conductivity
and porosity. Krishnan et al. [11] also proposed an LTNE model for simulating convection
melting in metal foams, and the merits of using metal foam for enhancing thermal storage
systems’ effective thermal conductivity were discussed. An LTNE model regarding the
volume change of the PCM was proposed by Yang and Garimella [12], and the effects
of volume expansion/shrinkage were analyzed. Li et al. [13] investigated the melting of
paraffin embedded in open-cell copper foam, and the effects of the morphology parameters
of the metal foam on the temperature distributions were investigated. Zhao et al. [14]
performed a numerical investigation on melting and solidification in copper foam, and the
kinetic undercooling of solidification was analyzed. Wang et al. [15] studied the pore-scale
melting in metal foams; different metal foams combined with paraffin and other PCMs
were investigated to obtain the composite materials’ effective thermal conductivity.

The above literature review indicates that many numerical studies have been carried
out on the heat-transfer performance of PCMs in metal foams based on an LTNE model.
Moreover, our literature survey with respect to improving an LHS system’s thermal perfor-
mance using metal foams found that nearly all of the numerical studies were conducted
under constant wall heat flux or constant wall temperatures (uniform thermal boundary
conditions). A fundamental understanding of the heat-transfer characteristics of melting in
metal foams under non-uniform thermal boundary conditions is still lacking, and more
studies are required. For natural convection in enclosures, previous studies indicated that
non-uniform thermal boundary conditions (e.g., sinusoidal temperature boundary condi-
tions) can significantly affect the flow structures and heat-transfer characteristics [16–18].
As expected, new heat-transfer characteristics can be created in the solid–liquid phase
change of PCMs under sinusoidal temperature boundary conditions. Hence, this work
aimed to study the heat-transfer characteristics of convection melting in metal foam under
sinusoidal temperature boundary conditions. A multiple-relaxation-time (MRT) lattice
Boltzmann (LB) method, in conjunction with the enthalpy approach, was constructed to
model the melting process without iteration steps. This work will help in providing a
valuable reference for improving the thermal performance of LHS systems.
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2. Model Description

2.1. Physical Model

The problem considered in this work is shown in Figure 1. Initially, the temperatures
of the PCM and metal foam are equal to Ti (Ti < Tmelt). At t = 0, a sinusoidally varying
temperature T = Th + ΔT sin(2kπy/L + ϕ) (Th > Tmelt) is imposed on the left wall, and
then the PCM begins to melt. Note that the average temperature of the left wall is Th,
ΔT = Th − Tmelt is the characteristics temperature, k is the periodicity parameter, and ϕ is
the phase deviation (phase of the sinusoidal profile).

Figure 1. Physical model.

2.2. Governing Equations

For convection melting of solid–liquid PCMs embedded in metal foams, the following
assumptions are made: (1) metal foam (m) is homogeneous and the pore diameter is
uniform; (2) the flow (liquid region) is incompressible and laminar; (3) the volume change
is neglected, i.e., ρ f = ρl = ρs (the subscript f denotes PCM, l denotes liquid PCM and
s denotes solid PCM). Based on the LTNE model, the governing equations are provided
by [11,19–21]

∇ · u = 0 (1)

∂ u

∂ t
+ (u · ∇)

(
u

φ

)
= − 1

ρ f
∇(φp) + ve∇2u + F (2)

∂

∂ t

(
φρ f cp f Tf

)
+∇ ·

(
ρl cpl Tf u

)
= ∇ ·

(
ke f∇Tf

)
+ hm f am f

(
Tm − Tf

)
− ∂

∂t
(φρl La fl) (3)

∂

∂ t
[
(1 − φ)ρmcpm Tm

]
= ∇ · (kem∇Tm) + hm f am f

(
Tf − Tm

)
(4)

where u and p are the velocity and pressure in the liquid region, respectively; ρ f is the
density; T is the temperature; φ is the metal foam’s porosity; cp is the specific heat; ve is the
effective kinematic viscosity; ke is the effective thermal conductivity; hm f is the interfacial
heat-transfer coefficient; am f is the specific surface area of metal matrix; fl is the liquid
fraction; and La is the PCM’s latent heat.

The total body force F is determined by [22,23]

F = −φv
K

u − φFφ√
K
|u|u + φ G (5)

where v is the liquid PCM’s kinematic viscosity and K and Fφ are the metal foam’s perme-
ability and inertia coefficient, respectively. G is the buoyancy force approximated by

G = −gβ
(

Tf − T0

)
fl (6)
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where g is the gravitational acceleration, T0 is the reference temperature, and β is the
thermal-expansion coefficient.

For metal foams (e.g., aluminum or copper foam), the correlations of Fφ and K can be
found in [24,25]. The effective thermal conductivities ke f and kem can be determined by
analytical models [25,26]. In previous studies, the correlation for convection heat transfer
through a bank of staggered cylinders proposed by Churchill and Chu [27] was widely
employed to determine hm f . The empirical formula for am f can be found in [25]. To
determine the temperature-dependent (thermodynamic or dynamic mechanical) properties
of complex materials, such as the cross-linking of polymers, the methods proposed by
Likozar and Krajnc [28–30] can be employed.

3. Numerical Method

As a mesoscopic approach evolved from the lattice-gas automata [31], the LB method [32–
34] has become an efficient numerical methodology for modeling solid–liquid phase-change
problems [35,36]. In this section, the MRT-LB method, in conjunction with the enthalpy
approach, is introduced to model the melting process without iteration steps.

3.1. MRT-LB Equation for Flow Field

For the 2D problem considered in this work, the D2Q9 lattice is employed [34]

ei =

⎧⎪⎨⎪⎩
(0, 0), i = 0
(cos[(i − 1)π/2], sin[(i − 1)π/2])c, i = 1 ∼ 4
(cos[(2i − 9)π/4], sin[(2i − 9)π/4])

√
2c, i = 5 ∼ 8

(7)

where c = δx/δt is the lattice speed (δx is the lattice step and δt is the time step). In this
work, c is set to 1 (δx = δt).

The MRT-LB equation for the flow field can be written as [37–39]

fi(x + eiδt, t + δt) = fi(x, t)− Λij

(
f j − f eq

j

)∣∣∣(x, t) + δt

(
S̃i − 0.5ΛijS̃j

)
(8)

where fi(x, t) is the density distribution function, f eq
i (x, t) is the equilibrium value of

fi(x, t), Λ = [Λij] is the collision matrix, and S̃i is the forcing term.
The MRT-LB Equation (8) can be divided into two parts: a collision part and a stream-

ing part. By multiplying a transformation matrix M, the collision part can be carried out in
moment space as

m∗(x, t) = m(x, t)− Λ(m − meq)
∣∣∣(x, t) + δt

(
I − Λ

2

)
S (9)

The streaming part is performed in velocity space as

fi(x + eiδt, t + δt) = f ∗i (x, t) (10)

where Λ is the relaxation matrix (Λ = MΛM−1= diag
(
1, 1, 1, se, sv, sv, sq, sq, sε

)
), m =

|m〉 = Mf, meq = |meq〉 = Mfeq, S = |S〉 = MS̃, in which f = | f 〉, feq = | f eq〉, and
S̃ =

∣∣∣S̃〉. Here, Dirac notation |·〉 denotes a nine-dimensional column vector, e.g., |m〉 =
(m0, m1, . . . , m8)

T . f ∗i is determined by f∗ = | f ∗〉 = M−1m∗.

6
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M is a non-orthogonal transformation matrix [39]

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 1 1 1 1 2 2 2 2
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1
0 0 0 0 0 1 1 −1 −1
0 0 0 0 0 1 −1 −1 1
0 0 0 0 0 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(11)

The equilibrium moments
{

meq
i

}
are determined by

meq
0 = ρ f , meq

1 = ρ f ux, meq
2 = ρ f uy, meq

3 = 2
3 ρ f +

ρ f (u2
x+u2

y)
φ , meq

4 =
ρ f (u2

x−u2
y)

φ

meq
5 = ρ f uxuy, meq

6 = 1
3 ρ f uy, meq

7 = 1
3 ρ f ux, meq

8 = 1
9 ρ f +

1
3

ρ f (u2
x+u2

y)
φ

(12)

The source terms
{

Si
}

are determined by

S0 = 0, S1 = ρ f Fx, S2 = ρ f Fy, S3 =
2ρ f (ux Fx+uy Fy)

φ , S4 =
2ρ f (ux Fx−uy Fy)

φ

S5 =
ρ f (ux Fy+uy Fx)

φ , S6 = 1
3 ρ f Fy, S7 = 1

3 ρ f Fx, S8 = 2
3

ρ f (ux Fx+uy Fy)
φ

(13)

To implement the non-slip velocity boundary condition on the phase interface accu-
rately, the volumetric LB scheme [40] is employed; then, a new density distribution function
is defined:

f+i = fl fi + (1 − fl) f eq
i

(
ρ f , us

)
(14)

In Equation (14), the superscript “+” denotes that the solid-phase effect has been
considered, and us = 0 (the solid phase is static). Accordingly, ρ f and u are defined as

ρ f =
8

∑
i=0

fi (15)

ρ f u =
8

∑
i=0

ei f+i +
δt

2
ρ f F (16)

p is defined as p = ρc2
s /φ (cs = 1/

√
3 is the sound speed). Explicitly, u can be

calculated via [41]
u =

v

l0 +
√

l2
0 + l1|v|

(17)

where

ρ f v =
8

∑
i=0

ei f+i +
δt

2
ρ f φG (18)

l0 =
1
2

(
1 + φ

δt

2
v
K

)
, l1 = φ

δt

2
Fφ√

K
(19)

The kinetic viscosity v = c2
s
(
s−1

v − 0.5
)
δt and the bulk viscosity ξ = c2

s
(
s−1

e − 0.5
)
δt.
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3.2. MRT-LB Equation for the Temperature Field of the PCM

Equation (3) can be rewritten as

∂Hf

∂ t
+∇ ·

( cpl Tf u

φ

)
= ∇ ·

( ke f

φρl
∇Tf

)
+

hm f am f

(
Tm − Tf

)
φρl

(20)

where Hf = σcpl Tf + La fl is the effective enthalpy and σ =
ρ f cp f
ρl cpl

=
fl ρl cpl+(1− fl)ρscps

ρl cpl
is the

heat-capacity ratio. When fl = 1 (liquid region), Hf = cpl Tf + La and σl = 1; when fl = 0
(solid region), Hf = σscpl Tf and σs =

ρscps
ρl cpl

.
For the temperature field of the PCM, governed by Equation (20), the D2Q5 lattice is

adopted and {ei|i = 0, . . . , 4} are provided in Equation (7). The enthalpy-based MRT-LB
equation is determined by

g(x + eδt, t + δt) = g(x, t)− N−1Θ
(

ng − n
eq
g

)∣∣∣(x, t) + δtN
−1SPCM (21)

where gi is the enthalpy distribution function and Θ= diag(1, ζα, ζα, ζe, ζe) is the relaxation
matrix.

Through the transformation matrix N, the collision part of the MRT-LB Equation (21)
is carried out in moment space as

n∗
g(x, t) = ng(x, t)− Θ

(
ng − n

eq
g

)∣∣∣(x, t) + δtSPCM (22)

The streaming part is performed in velocity space as

gi(x + eiδt, t + δt) = g∗i (x, t) (23)

where ng = Ng is the moment, and n
eq
g = Ngeq is the corresponding equilibrium moment.

Here, geq
i is the equilibrium value of gi, and g∗ = N−1n∗

g.
N is a non-orthogonal transformation matrix [39]

N =

⎡⎢⎢⎢⎢⎣
1 1 1 1 1
0 1 0 −1 0
0 0 1 0 −1
0 1 1 1 1
0 1 −1 1 −1

⎤⎥⎥⎥⎥⎦ (24)

The equilibrium moment n
eq
g is

n
eq
g =

(
Hf ,

cpl Tf ux

φ
,

cpl Tf uy

φ
, �1cpl Tf , 0

)T

(25)

where �1 ∈ (0, 1). Correspondingly, geq
i is given by

geq
i =

⎧⎨⎩Hf − �1cpl Tf , i = 0
1
4 �1cpl Tf

(
1 + ei ·u

c2
s f φ

)
, i = 1 ∼ 4

(26)

where cs f =
√

�1/2 is the sound speed.
The source term SPCM is chosen as

SPCM = SPCM(1, 0, 0, 0, 0)T (27)

where SPCM = Sr f + 1
2 δt∂tSr f and Sr f = hm f am f

(
Tm − Tf

)
/(φρl).

8
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Hf is defined as

Hf =
4

∑
i=0

gi (28)

Tf can be determined via the following equation:

Tf =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Hf /

(
σscpl

)
, Hf ≤ Hf s

Tf s +
Hf −Hf s
Hf l−Hf s

(
Tf l − Tf s

)
, Hf s < Hf < Hf l

Tf l +
(

Hf − Hf l

)
/
(

σl cpl

)
, Hf ≥ Hf l

(29)

where Tf s is solidus temperature and Tf l is liquidus temperature (Tf s ≤ Tf l); Hf s (Hf l) is
the effective enthalpy corresponding to Tf s (Tf l).

fl is determined by

fl =

⎧⎪⎪⎨⎪⎪⎩
0, Hf ≤ Hf s
Hf −Hf s
Hf l−Hf s

, Hf s < Hf < Hf l

1, Hf ≥ Hf l

(30)

αe f is defined as

αe f =
ke f

φρl cpl
= c2

s f

(
ζ−1

α − 1
2

)
δt (31)

3.3. MRT-LB Equation for the Temperature Field of Metal Foam

Equation (4) can be rewritten as

∂
(
cpm Tm

)
∂ t

= ∇ ·
(

kem

(1 − φ)ρm
∇Tm

)
+

hm f am f

(
Tf − Tm

)
(1 − φ)ρm

(32)

For the temperature field of metal foam, governed by Equation (32), the MRT-LB
equation based on D2Q5 lattice is as follows:

h(x + eδt, t + δt) = h(x, t)− N−1Q
(

nh − n
eq
h

)∣∣∣(x, t) + δtN
−1Smetal (33)

where hi(x, t) is the temperature distribution function, Q = diag(1, ηα, ηα, ηe, ηe) is the
relaxation matrix, and N is given by Equation (24).

The collision part of the MRT-LB Equation (33) is performed in moment space as

n∗
h(x, t) = nh(x, t)− Q

(
nh − n

eq
h

)∣∣∣(x, t) + δtSmetal (34)

where nh = Nh is the moment, and n
eq
h = Nheq is the corresponding equilibrium moment.

Here, heq
i is the equilibrium value of hi. The streaming step is carried out in the velocity

space as follows:
hi(x + eiδt, t + δt) = h∗i (x, t) (35)

where h∗ = N−1n∗
h. The equilibrium moment n

eq
h is defined as

n
eq
h =

(
cpmTm, 0, 0, �2cpmTm, 0

)T (36)

where �2 ∈ (0, 1). heq
i is determined by

heq
i =

{
(1 − �2)cpmTm, i = 0
1
4 �2cpmTm, i = 1 ∼ 4

(37)

9



Entropy 2022, 24, 1779

The source term Smetal is chosen as

Smetal = Smetal(1, 0, 0, 0, 0)T (38)

where Smetal = Srm + 1
2 δt∂tSrm and Srm = hm f am f

(
Tf − Tm

)
/[(1 − φ)ρm].

Tm is defined by

Tm =
1

cpm

4

∑
i=0

hi (39)

αem is given by

αem =
kem

(1 − φ)ρmcpm
= c2

sm

(
η−1

α − 1
2

)
δt (40)

where csm =
√

�2/2 is the sound speed.

4. Numerical Results

In this section, numerical simulations are performed to investigate the effects of the
porosity, the phase deviation, and the periodicity parameter on the heat-transfer per-
formance of the convection melting of solid–liquid PCM embedded in metal foam un-
der sinusoidal temperature boundary conditions. The characteristic parameters include
Pr = v f l/α f l (Prandtl number), Ra = gβΔTL3/

(
v f lα f l

)
(Rayleigh number), Da = K/L2

(Darcy number), J = ve/v f l (viscosity ratio), λ = km/k f l (thermal conductivity ratio),

Γ = αm/α f l (thermal diffusivity ratio), σ̂ = ρmcpm/
(

ρl cpl

)
(metal foam to liquid PCM

heat capacity ratio), Hv = hm f am f d2
p/k f (volumetric heat transfer coefficient), Fo = tα f l/L2

(Fourier number), and St = cplΔT/La (Stefan number), where α f = k f /
(
ρcp

)
f is thermal

diffusivity of PCM, αm = km/
(
ρcp

)
m is thermal diffusivity of metal foam, and dp is mean

pore diameter.
In simulations, the required parameters are chosen as follows: Pr = 50, Fφ = 0.068,

Da = 10−4, St = 1, δx = δy = δt = 1 (c = 1), cpl = cps = 1, J = σ̂ = 1, Hv = 5.9,
λ = Γ = 103, dp/L = 0.0135, k f = 0.0005 and �1 = �2 = 1/2. The relaxation rate
ζe is determined by ζe = 2 − ζα to reduce the unphysical numerical diffusion [21,42].
The non-equilibrium extrapolation scheme [43] is adopted to realize the velocity and
thermal boundary conditions. Numerical simulations are performed based on a grid size
of Nx × Ny = 150 × 150. First, comparisons between the results predicted by the finite-
volume method (FVM) [11] and the present method are made to validate the reliability
of the present method. The predicted results are shown in Figures 2 and 3, where the
melting front (solid–liquid interface) and temperature profiles (θ = (T − Tmelt)/ΔT) at
different times for Ra = 106 and 108 with φ = 0.8 are presented. In the figures, it can be
seen that the present results match well with the results in [11]. In what follows, the effects
of the porosity, the phase deviation, and the periodicity parameter on the heat-transfer
performance are investigated.
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(a)  (b)  

Figure 2. The melting front ( fl = 0.5) at different Fo.

 
(a)  (b)  

Figure 3. Temperature profiles (y/L = 0.5) at different Fo.

4.1. Effects of the Porosity and Phase Deviation

In this subsection, the effects of the porosity and the phase deviation are investigated.
In Figure 4, the total liquid fractions for different φ with Ra = 106, ϕ = π/4 and k = 0 are
shown. As can be seen in Figure 4, the melting rate decreases as φ increases. When φ = 0.8,
the completely melting time Fo = 0.00485. As φ increases to 0.9 and 0.95, the completely
melting time Fo augments to 0.0103 and 0.0209, respectively. When φ increases from 0.8 to
0.9, the completely melting time increases by 112.37%; when φ increases from 0.9 to 0.95,
the completely melting time increases by 102.91%. The influence of the porosity on the
melting rate is induced by two factors: one is that the mass of the metal foam decreases as
the porosity increases, which reduces the effective thermal conductivity, and consequently,
the performance of heat transfer is deteriorated; the other is that the mass of the PCM
increases as the porosity increases, which results in melting-time augmentation.
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Figure 4. The total liquid fractions for different φ with Ra = 106, ϕ = π/4 and k = 0.

In Figure 5, the total liquid fractions for φ = 0.8 and 0.95 under non-uniform
(T = Th + ΔT sin(2πy/L + π/4) at t = 0) and uniform (T = Th at t = 0) thermal boundary
conditions are presented. One can observe that the melting rate of the uniform case is
only a little faster than that of the non-uniform case with the given parameters, as the
characteristics temperatures are equal for the cases considered. In Figure 6, the total liquid
fractions for different ϕ with Ra = 106 and k = 0 under non-uniform thermal boundary
conditions are shown. It can be observed that the melting rate increases as ϕ increases from
0 to π/2. As shown in Figures 5 and 6, it seems that the effects of the phase deviation on
the total liquid fraction are not very strong. This is because the average temperature of the
left wall (with sinusoidally varying temperature) equals a constant.

Figure 5. The total liquid fractions for φ = 0.8 and 0.95 under non-uniform and uniform thermal
boundary conditions.
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(a)  

(b)  

Figure 6. The total liquid fractions for different values of ϕ under non-uniform thermal
boundary conditions.

In Figures 7 and 8, the liquid-fraction fields for different values of ϕ
with φ = 0.8 and 0.95 under non-uniform thermal boundary conditions are shown. As
mentioned above, the effects of the phase deviation on the total liquid fraction are weak.
However, in Figures 7 and 8 it can be clearly observed that the melting process can be
significantly affected by the phase deviation. For the cases under uniform heating (Figures
7a and 8a), the melting front is almost parallel to the vertical walls, as the conduction effect
dominates the heat-transfer process. For the cases under sinusoidal temperature boundary
conditions, the phase interface is in a bending shape. This is because under the non-uniform
thermal boundary condition, the convection effect in the related region is much stronger
than that in the rest of the region. As shown in the figures, for 0 < ϕ < π/2, the convective
effect near the bottom wall is stronger and the melting front moves faster near the bottom
wall. Obviously, this feature is rather valuable for practical LHS applications, as it offers a
possible tool for controlling the melting front.
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(a) uniform case (b)  

 
(c)  (d)  

Figure 7. The liquid-fraction fields for different values of ϕ with Φ = 0.8 under non-uniform thermal
boundary conditions (Fo = 0.0025, Ra = 106, k = 0, Nx × Ny = 150 × 150).

 
(a) uniform case (b)  

 
(c)  (d)  

Figure 8. The liquid-fraction fields for different values of ϕ with Φ = 0.95 under non-uniform thermal
boundary conditions (Fo = 0.0065, Ra = 106, k = 0, Nx × Ny = 150 × 150).
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4.2. Effects of the Periodicity Parameter

In this subsection, the effects of the periodicity parameter k on the performance of
heat transfer are studied. In Figure 9, the total liquid fractions for different values of the
periodicity parameter k with Ra = 106, φ = 0.9 and ϕ = 0 are shown. As presented in the
figure, the effects of the periodicity parameter on the total liquid fraction are weak. As k
increases, the melting rate slightly increases, and approaches that of the uniform heating
case. The liquid-fraction fields for different k at Fo= 0.002 under non-uniform thermal
boundary conditions are presented in Figure 10, and one can observe that the melting front
can also be affected by the periodicity parameter. As k increases to 4, the melting front is
almost parallel to the vertical walls, which is similar to the situation of the uniform case.

Figure 9. The total liquid fractions for different values of ϕ under non-uniform thermal boundary
conditions (Ra = 106, Φ = 0.9 and ϕ = 0).
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(a)  (b)  

 
(c)  (d)  

 
(e) uniform case 

Figure 10. The liquid-fraction fields for different values of k under non-uniform thermal boundary
conditions (Fo = 0.002, Ra = 106, Φ = 0.9, ϕ = 0, Nx× Ny = 150 × 150).

5. Conclusions

An MRT-LB method in conjunction with the enthalpy approach was constructed for
simulating convection melting in metal foam under sinusoidal temperature boundary
conditions. The effects of the porosity, the phase deviation, and the periodicity parameter
on the heat-transfer characteristics were investigated. The main conclusions are listed
as follows:
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(1) The melting rate decreases as φ increases. The influence of the porosity on the melting
rate is induced by two factors: one is that the mass of the metal foam decreases as
the porosity increases, which reduces the effective thermal conductivity; the other is
that the mass of the PCM increases as the porosity increases, which results in melting
time augmentation.

(2) The melting rate increases as the phase deviation increases from 0 to π/2. Although
the effects of the phase deviation on the melting rate (total liquid fraction) are weak,
the melting front can be significantly affected by the phase deviation.

(3) The effects of the periodicity parameter on the total liquid fraction are weak. However,
the melting process can also be affected by the periodicity parameter. The above
results provide a valuable reference for practical applications of LHS systems.

Author Contributions: Conceptualization, X.-B.F., X.-T.X. and F.L.; methodology, X.-B.F.; software,
S.-F.H. and Q.L.; validation, X.-B.F., S.-F.H. and Q.L.; investigation, X.-B.F.; resources, X.-B.F.; data
curation, S.-F.H.; writing—original draft preparation, X.-B.F. and S.-F.H.; writing—review and editing,
X.-T.X. and F.L.; supervision, X.-T.X. and F.L.; funding acquisition, X.-T.X. and F.L. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China
(No. 22008103) and the Natural Science Foundation of Shanxi Province (Nos. 2021JM-355
and 2020JQ-919).

Conflicts of Interest: The authors declare that there is no conflict of interest.

References

1. Zalba, B.; Marín, J.M.; Cabeza, L.F.; Mehling, H. Review on thermal energy storage with phase change: Materials, heat transfer
analysis and applications. Appl. Therm. Eng. 2003, 23, 251–283. [CrossRef]

2. Farid, M.M.; Khudhair, A.M.; Razack, S.A.K.; Al-Hallaj, S. A review on phase change energy storage: Materials and applications.
Energy Convers. Manag. 2004, 45, 1597–1615. [CrossRef]

3. Nazir, H.; Batool, M.; Osorio, F.J.B.; Isaza-Ruiz, M.; Xu, X.; Vignarooban, K.; Phelan, P.; Inamuddin; Kannan, A.M. Recent
developments in phase change materials for energy storage applications: A review. Int. J. Heat Mass Transf. 2019, 129, 491–523.
[CrossRef]

4. Pielichowska, K.; Pielichowski, K. Phase change materials for thermal energy storag. Prog. Mater. Sci. 2014, 65, 67–123. [CrossRef]
5. Tao, Y.B.; He, Y.L. A review of phase change material and performance enhancement method for latent heat storage syste. Renew.

Sust. Energy. Rev. 2018, 93, 245–259. [CrossRef]
6. Weaver, J.A.; Viskanta, R. Melting of frozen, porous media contained in a horizontal or a vertical, cylindrical capsule. Int. J. Heat

Mass Transf. 1986, 29, 1943–1951. [CrossRef]
7. Beckermann, C.; Viskanta, R. Natural convection solid/liquid phase change in porous media. Int. J. Heat Mass Transf. 1988,

31, 35–46. [CrossRef]
8. Tong, X.; Khan, J.A.; Amin, M.R. Enhancement of heat transfer by inserting a metal matrix into a phase change material. Numer.

Heat Transf. A 1996, 30, 125–141. [CrossRef]
9. Harris, K.T.; Haji-Sheikh, A.; Nnanna, A.G.A. Phase-change phenomena in porous media—A non-local thermal equilibrium

model. Int. J. Heat Mass Transf. 2001, 44, 1619–1625. [CrossRef]
10. Mesalhy; Lafdi, K.; Elgafy, A.; Bowman, K. Numerical study for enhancing the thermal conductivity of phase change material

(PCM) storage using high thermal conductivity porous matrix. Energy Convers. Manag. 2005, 46, 847–867. [CrossRef]
11. Krishnan, S.; Murthy, J.Y.; Garimella, S.V. A two-temperature model for solid-liquid phase change in metal foams. J. Heat Transf.

2005, 127, 995–1004. [CrossRef]
12. Yang, Z.; Garimella, S.V. Melting of phase change materials with volume change in metal foams. J. Heat Transf. 2010, 132, 062301.

[CrossRef]
13. Li, W.Q.; Qu, Z.G.; He, Y.L.; Tao, W.Q. Experimental and numerical studies on melting phase change heat transfer in open-cell

metallic foams filled with paraffin. Appl. Therm. Eng. 2012, 37, 1–9. [CrossRef]
14. Zhao, Y.; Zhao, C.Y.; Xu, Z.G.; Xu, H.J. Modeling metal foam enhanced phase change heat transfer in thermal energy storage by

using phase field method. Int. J. Heat Mass Transf. 2016, 99, 170–181. [CrossRef]
15. Wang, G.; Wei, G.S.; Xu, C.; Ju, X.; Yang, Y.; Du, X. Numerical simulation of effective thermal conductivity and pore-scale melting

process of PCMs in foam metals. Appl. Therm. Eng. 2019, 147, 464–472. [CrossRef]
16. Deng, Q.H.; Chang, J.J. Natural convection in a rectangular enclosure with sinusoidal temperature distributions on both side

walls. Numer. Heat Transf. A 2008, 54, 507–524. [CrossRef]
17. Sivasankaran, S.; Malleswaran, A.; Lee, J.; Sundar, P. Hydro-magnetic combined convection in a lid-driven cavity with sinusoidal

boundary conditions on both sidewalls. Int. J. Heat Mass Transf. 2011, 54, 512–525. [CrossRef]

17



Entropy 2022, 24, 1779

18. Wu, F.; Zhou, W.; Ma, X. Natural convection in a porous rectangular enclosure with sinusoidal temperature distributions on both
side walls using a thermal non-equilibrium model. Int. J. Heat Mass Transf. 2015, 85, 756–771. [CrossRef]

19. Gao, D.; Tian, F.B.; Chen, Z.; Zhang, D. An improved lattice Boltzmann method for solid-liquid phase change in porous media
under local thermal non-equilibrium conditions. Int. J. Heat Mass Transf. 2017, 110, 58–62. [CrossRef]

20. Gao, D.; Chen, Z.; Chen, L. A thermal lattice Boltzmann model for natural convection in porous media under local thermal
non-equilibrium conditions. Int. J. Heat Mass Transf. 2014, 70, 979–989. [CrossRef]

21. Liu, Q.; He, Y.L.; Li, Q. Enthalpy-based multiple-relaxation-time lattice Boltzmann method for solid-liquid phase-change heat
transfer in metal foams. Phys. Rev. E 2017, 96, 023303. [CrossRef] [PubMed]

22. Nithiarasu, P.; Seetharamu, K.N.; Sundararajan, T. Natural convective heat transfer in a fluid saturated variable porosity medium.
Int. J. Heat Mass Transf. 1997, 40, 3955–3967. [CrossRef]

23. Hsu, C.T.; Cheng, P. Thermal dispersion in a porous medium. Int. J. Heat Mass Transf. 1990, 33, 1587–1597. [CrossRef]
24. Vafai, K. Convective flow and heat transfer in variable-porosity media. J. Fluid Mech. 1984, 147, 233–259. [CrossRef]
25. Calmidi, V.V. Transport Phenomena in High Porosity Fibrous Metal Foams; University of Colorado Denver: Denver, CO, USA, 1998.
26. Calmidi, V.V.; Mahajan, R.L. The effective thermal conductivity of high porosity fibrous metal foams. J. Heat Transf. 1999,

121, 466–471. [CrossRef]
27. Churchill, S.W.; Chu, H.H.S. Correlating equations for laminar and turbulent free convection from a horizontal cylinder. Int. J.

Heat Mass Transf. 1975, 18, 1049–1053. [CrossRef]
28. Likozar, B.; Krajnc, M. Kinetic and heat transfer modeling of rubber blends’ sulfur vulcanization with N-t-butylbenzothiazole-

sulfenamide and N, N-di-t-butylbenzothiazole-sulfenamide. J. Appl. Polym. Sci. 2007, 103, 293–307. [CrossRef]
29. Likozar, B.; Krajnc, M. A study of heat transfer during molding of elastomers. Chem. Eng. Sci. 2008, 63, 3181–3192. [CrossRef]
30. Likozar, B.; Krajnc, M. Cross-linking of polymers: Kinetics and transport phenomena. Ind. Eng. Chem. Res. 2011, 50, 1558–1570.

[CrossRef]
31. Frisch, U.; Hasslacher, B.; Pomeau, Y. Lattice-gas automata for the Navier-Stokes equation. Phys. Rev. Lett. 1986, 56, 1505–1508.

[CrossRef]
32. McNamara, G.R.; Zanetti, G. Use of the Boltzmann equation to simulate lattice-gas automata. Phys. Rev. Lett. 1988, 61, 2332–2335.

[CrossRef] [PubMed]
33. Higuera, F.J.; Succi, S.; Benzi, R. Lattice gas dynamics with enhanced collisions. Europhys. Lett. 1989, 9, 345–349. [CrossRef]
34. Qian, Y.H.; d’Humières, D.; Lallemand, P. Lattice BGK models for Navier-Stokes equation. Europhys. Lett. 1992, 17, 479–484.

[CrossRef]
35. Li, Q.; Luo, K.H.; Kang, Q.J.; He, Y.L.; Chen, Q.; Liu, Q. Lattice Boltzmann methods for multiphase flow and phase-change heat

transfer. Prog. Energy Combust. Sci. 2016, 52, 62–105. [CrossRef]
36. He, Y.L.; Liu, Q.; Li, Q.; Tao, W.Q. Lattice Boltzmann methods for single-phase and solid-liquid phase-change heat transfer in

porous media: A review. Int. J. Heat Mass Transf. 2019, 129, 160–197. [CrossRef]
37. Lallemand, P.; Luo, L.-S. Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and

stability. Phys. Rev. E 2000, 61, 6546–6562. [CrossRef]
38. McCracken, M.E.; Abraham, J. Multiple-relaxation-time lattice-Boltzmann model for multiphase flow. Phys. Rev. E 2005,

71, 036701. [CrossRef]
39. Liu, Q.; He, Y.L.; Li, D.; Li, Q. Non-orthogonal multiple-relaxation-time lattice Boltzmann method for incompressible thermal

flows. Int. J. Heat Mass Transf. 2016, 102, 1334–1344. [CrossRef]
40. Huang, R.; Wu, H. Total enthalpy-based lattice Boltzmann method with adaptive mesh refinement for solid-liquid phase change.

J. Comput. Phys. 2016, 315, 65–83. [CrossRef]
41. Guo, Z.; Zhao, T.S. Lattice Boltzmann model for incompressible flows through porous media. Phys. Rev. E 2002, 66, 036304.

[CrossRef]
42. Huang, R.; Wu, H. Phase interface effects in the total enthalpy-based lattice Boltzmann model for solid-liquid phase change. J.

Comput. Phys. 2015, 294, 346–362. [CrossRef]
43. Guo, Z.L.; Zheng, C.G.; Shi, B.C. Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the

lattice Boltzmann method. Chin. Phys. 2002, 11, 366.

18



Citation: Morozov, A.; Titarev, V.

Planar Gas Expansion under

Intensive Nanosecond Laser

Evaporation into Vacuum as Applied

to Time-of-Flight Analysis. Entropy

2022, 24, 1738. https://doi.org/

10.3390/e24121738

Academic Editors: Zhen Chen,

Liangqi Zhang and Liming Yang

Received: 31 October 2022

Accepted: 24 November 2022

Published: 28 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Planar Gas Expansion under Intensive Nanosecond Laser
Evaporation into Vacuum as Applied to Time-of-Flight Analysis

Alexey Morozov 1,2 and Vladimir Titarev 2,*

1 Kutateladze Institute of Thermophysics of the Siberian Branch of the Russian Academy of Sciences,
Lavrentyev Ave. 1, Novosibirsk 630090, Russia

2 Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences,
Vavilova Str. 44/2, Moscow 119333, Russia

* Correspondence: vladimir.titarev@frccsc.ru

Abstract: A computational investigation of the dynamics of gas expansion due to intense nanosecond
laser evaporation into vacuum has been carried out. The problem is solved in a one-dimensional
approximation, which simplifies calculations and at the same time allows one to analyze the main
features of the expansion dynamics. For analysis we use three different approaches. Two of them
are based on kinetic analysis via the direct simulation Monte Carlo (DSMC) method and numerical
solution of the model Bhatnagar–Gross–Krook (BGK) equation. The third one focuses on derivation
of an analytical continuum solution. Emphasis is placed on the analysis of the velocity distribution
function and the average energy of particles passing through the time-of-flight detector on the normal
to the evaporation surface, which is important for interpreting experimental measurements. The
formulated problem is quite difficult as the considered flow is time-dependent, contains disconti-
nuities in boundary conditions and involves large variations of local Knudsen numbers as well as
steep gradients of the velocity distribution function. Data were obtained on the particle energy in the
time-of-flight distribution for the range of regimes from the free molecular flow to continuum one.
The maximum attainable average energy of particles in the time-of-flight distribution is determined.
The non-monotonicity of the energy increase was found, which is explained based on analysis of the
velocity distribution of particles.

Keywords: DSMC; BGK model; gas expansion; pulsed laser evaporation; time-of-flight; rarefied gas;
Nesvetay; LasInEx; discrete velocity scheme; ALE

1. Introduction

Various modern technologies for thin film deposition, nanoparticle synthesis, and
surface treatment employ pulsed laser ablation of solid targets with nanosecond pulses
of moderate intensity [1]. Such a process leads to the formation of a vapor cloud of the
ablation products, which then expands into the surrounding space. Investigation of the
dynamics of this process is useful in applications to control and monitor the gas phase.

In experiments, a small detector is usually located at a large distance from the target
in the direction normal to the evaporation surface. One of the main instruments to experi-
mentally control the laser ablation and desorption processes is the measurements of the
so-called time-of-flight (TOF) distributions of particles passing through this detector [2–9].
By analyzing the TOF distributions, one can improve understanding of the ablation mecha-
nism as well as estimate the temperature of the evaporating surface [6] and the composition
of the surface material [10]. Correct interpretation of the TOF distributions can significantly
advance the understanding of the processes accompanying pulsed laser ablation and hence
facilitate the development of various laser ablation-based techniques.

The theoretical analysis of the problem in question is based mostly on various compu-
tational approaches. For low laser fluence the gas can be considered neutral since the effects
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of laser radiation absorption in the plume and gas ionization are negligible. Typically, the
neutral plume expansion in vacuum is studied numerically using the direct simulation
Monte Carlo (DSMC) method [11]. In the first works this method made it possible to
study angular distributions of particles under pulsed desorption of a few monolayers
based on one-dimensional calculations [12,13]. Later, based on two-dimensional calcula-
tions, the influence of the size of the evaporation spot on the expansion of particles was
investigated [14] and the structure of the forming laser-induced plume and its expansion dy-
namics has been studied [15]. The influence of chemical reactions [16] and the interatomic
interaction potential in the plume [17] on the expansion dynamics has been investigated
as well. The effect of the pressure of the evaporated substance on the forming angular
distributions of particles has been studied [18]. Special attention was paid to the effects
of separation of the components of the gas mixture during ablation of multicomponent
substances [10,19,20].

In a number of papers, the TOF distributions under pulsed laser evaporation into
vacuums have been analyzed. The influence of the heat of vaporization and chemical
reactions on the TOF distribution was studied [21]. Introduction of high-energy particles
into the calculation to take into account the effect of ion recombination made it possible to
describe TOF distributions under the conditions of plasma formation in the laser plume [22].
It was shown that using the calculated database of TOF distributions allows determining the
irradiated surface temperature from the experimental TOF signals [23], while the commonly
used fitting formulas greatly overestimate the surface temperature [24]. It was explained
why the energy of particles in the TOF distribution can be several times higher than the
energy of particles during evaporation and it was shown how this energy depends on the
number of evaporated monolayers Θ [25,26]. It was shown that taking into account the
time evolution of laser irradiation [27,28] and its spatial non-uniformity [29] has little effect
on the energy and the velocity distribution function (VDF) of particles at the TOF detector.

However, the obtained data on the dependence of energy in the TOF distribution
on the number of evaporated monolayers Θ were not completely clear and explainable.
The previous calculations show a complicated dependence of the energy on the number
of monolayers Θ with the formation of a bend [25,26] or even a flat-shaped region for
large evaporation spots [28,29] for 1 < Θ < 10, followed by a further increase in energy
at 10 < Θ < 100. This contradicts the general idea that, in the limit, the energy should
approach to a certain value corresponding to the continuum solution.

Such a strange behavior of the energy dependence gave reason to assume that the
calculations for Θ > 10 were inaccurate. It would be interesting and useful to determine the
maximum achievable energy in the continuum limit. However, it is very difficult to solve
this problem in the axisymmetric formulation under intense evaporation (for Θ > 100, when
we approach the continuous regime), since this requires large computing resources. On the
other hand, it is possible to derive an exact solution in the one-dimensional formulation and,
on its basis, analyze the flow in the entire range of rarefaction, up to the continuous medium.

For nanosecond laser ablation, the radius of the spot is usually significantly larger
than the plume length during the pulse action. As a result, the initial stage of the plume
expansion can be considered as one-dimensional, which paves the way to commonly used
simplified theoretical analysis [12,13,17,30–32]. This is vital because in laser ablation appli-
cations only a small amount of material typically evaporates and therefore the molecular
collisions inside the plume occur only during the one-dimensional expansion. The subse-
quent three-dimensional expansion can be considered collisionless, greatly simplifying the
analysis. Normally, the collisional stage of the gas expansion ends at a distance similar in
size to the evaporation spot (~0.1 mm). Since the distance to the detector is much greater
(~100 mm), the collisionless expansion can be regarded as if from a point source. Therefore,
to estimate the energy of the particles on the TOF detector, it is enough to compute the
energy of those particles that move along the normal to the surface inside a cone with a
small opening angle. An analysis of the time evolution of this energy makes it possible
to trace the transition to the collisionless stage of the gas expansion and to determine the

20



Entropy 2022, 24, 1738

energy of particles arriving at the TOF detector. The initial stage of the time evolution of
the energy for a given duration of evaporation will be the same for both one-dimensional
and three-dimensional calculations. The larger the evaporation spot is, the longer the
three-dimensional calculation corresponds to the one-dimensional one.

Numerically, the formulated problem is quite difficult as the considered flow is time-
dependent, contains discontinuities in boundary conditions and involves large variations
of local Knudsen numbers as well as steep gradients of the VDF. To make our results more
reliable and credible, in addition to the DSMC method, it is worth adding another model-
ing approach—the direct numerical solution of the model Bhatnagar–Gross–Krook (BGK)
kinetic equation computed by the Nesvetay code [33,34]. Previously, good agreement has
been obtained using this code both with the DSMC method and with the numerical solution
of the exact Boltzmann equation for moderate evaporation (for the number of monolayers
Θ < 100) [33]. However, the question of solving the problem under conditions of nearly
continuum regime remains open. Traditional discrete velocity methods (DVM) for kinetic
equations are highly inefficient when applied to the problem under consideration. The
recent incorporation [35] of the Arbitrary Lagrangian-Eulerian (ALE) methodology com-
bined with the introduction of the special unstructured mixed-element velocity meshes [33]
allows us now to compute the solution of the problem up to 100 times faster and hence
has made it possible to significantly improve the accuracy of calculations and analyze the
particle velocity distribution in the laser plume.

The present work focuses on the particular case of the plane expansion into vacuum
during intense evaporation. The emphasis is made on the analysis of the VDF and the
average energy of particles passing through the time-of-flight detector normal to the
evaporation surface, which is important for interpreting experimental measurements. In
our analysis we employ three methods. First, two methods are kinetic—the DSMC method
and the numerical solution of the model BGK equation. The third method, which is
only possible in the planar expansion case, is the analytical continuum solution, which
approaches the kinetic solutions for the number of monolayers greater than 1000. The use of
three independent analysis methods makes it possible to cross verify the results and increase
the credibility of the analysis. The paper also demonstrates the good potential of using
model kinetic equations to study flow problems, which need an accurate calculation of not
just mean quantities (density, velocity, etc.), but also of the velocity distribution function.

2. Formulation of the Problem

A one-dimensional planar problem of pulsed evaporation of molecules into vacuum is
considered. The laser-induced plume is assumed to be neutral. The mechanism of normal
evaporation [36] is supposed when the relation between the surface temperature and the
saturated gas pressure is described by the Clausius-Clapeyron equation. This mechanism
is commonly considered to be adequate for describing experiments for moderate laser
fluences for nanosecond ablation of different materials, e.g., metals, semiconductors, or
graphite [37].

Molecules are evaporated with the energy corresponding to a surface temperature T0.
It is assumed that during time interval τ particle flux Ψ is constant and equal to Ψ = n0uT/4,
where n0 is the density of the saturated vapor corresponding to the temperature T0,
uT = 2u0/

√
π, u0 =

√
2kT0/m is the most probable thermal speed, k is the Boltzmann

constant, m is the mass of an evaporated molecule. All backscattered molecules which reach
the evaporating surface are assumed to recondense on the surface. The monatomic gas is
considered. The hard sphere model is used to simulate the process of particle collisions.

The concept of evaporated monolayers is often used [14,16,26] to describe the amount
of evaporated material. One monolayer corresponds to such a number of particles that they
cover the evaporating surface completely. The total number of evaporated molecules is
equal to

Nvap = τΨvapS, (1)
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where S = πR2 is the spot area. The number of evaporated monolayers is defined as

Θ =
N

S/Σ
= τΨvapΣ =

τ

8
√

2πt0
, (2)

where Σ = σ/4 is an area occupied by one molecule at the surface and t0 = λ0/u0 is the
average time between collisions in the saturated vapor with density n0 and temperature
T0, λ0 is the mean free path. Since we consider regimes up to the continuum medium, the
interesting range of monolayers is Θ = 0.01–10,000. To characterize the degree of rarefaction,
one can determine the Knudsen number at the initial stage of expansion based on the plume
length L = uTτ as

Kn =
λ0

L
=

1
16
√

2Θ
. (3)

The indicated range of the number of monolayers Θ corresponds to the range of Knudsen
numbers Kn = 4–4 × 10−6. It is obviously that it ranges from a continuum solution to a
free-molecular one.

Let us estimate the number of model particles required for simulating a typical near-
continuum regime by the DSMC method in the axisymmetric formulation. The gas density
near the evaporation surface during evaporation is close to density at the boundary of the
Knudsen layer nK. To correctly simulate the gas flow near the surface, the cell size should
be no larger than the local mean free path Δx = λK = λ0n0/nK. In addition, there must be
at least one model particle in the smallest cell in the computational domain (cell size of
Δx3, near the flow axis). The maximum density and the maximum number of particles in
the flow field are realized at the moment of time t = τ. At this time, the total number of
real molecules in the plume in the continuum limit can be estimated as Nmol = nKuKτS,
where uK = cK =

√
γkTK/m is velocity at the boundary of the Knudsen layer (where

the Mach number M = u/c = 1), TK is the temperature at the boundary of the Knudsen
layer, γ = (5 + j)/(3 + j) is the adiabatic exponent, and j is the number of internal degrees
of freedom.

The total number of model particles in one-dimensional plane modeling can be esti-
mated as the ratio of the total number of molecules in the plume to the number of molecules
in the smallest cell near the surface:

Nmodel,1D =
nKuKτΔx2

nKΔx3 =
uKτ

λK
=

8nKΘ
n0

√
γπTK

T0
≈ 4.7 · Θ. (4)

Here, we use the data on the values at the Knudsen layer boundary obtained by the
numerical solution of the model kinetic equation [38]

TK/T0= 0.6434, nK/n0 = 0.3225. (5)

To estimate the number of model particles in the axisymmetric calculation, it is necessary
to compare the evaporation spot area S = πR2 with the area of one cell S1 = Δx2. Expressing
the spot radius in dimensionless form as b = R/(uTτ), we obtain

S
S1

=
πb2u2

Tτ
2

Δx2 = 512π

(
nK
n0

)2
b2Θ2 = 167 b2Θ2. (6)

The total number of model particles in the axisymmetric calculation is

Nmodel,3D =
S
S1

Nmodel,1D = 792 b2Θ3. (7)

For example, for a typical evaporation spot b = 10 and Θ = 1000 we obtain Nmodel,3D ≈ 8 × 1013,
which is beyond the limits of possible computational possibilities, while for one-dimensional
calculation the minimum number of model particles is only Nmodel,1D ≈ 5 × 103. It should
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be noted that the axisymmetric DSMC calculation requires the same large number of model
particles as the corresponding three-dimensional calculation, and only the number of cells
in physical space decreases. In principle, the number of model particles can be significantly
reduced by using in the radial direction the cell size larger than the mean free path (and
thus increasing the volume of the smallest cell) or by using weighting factors. However,
such approaches are nontrivial and can also distort the calculation results. Sometimes,
the cell size is set larger than the mean free path, which also makes it possible to reduce
the number of model particles, but in this case, the accuracy of the resulting numerical
solution requires a separate study [39]. Thus, it can be seen that the high-accurate nu-
merical solution of this problem by the DSMC method in the axisymmetric formulation
is exceedingly computational costly, if even possible, which explains the need to use the
one-dimensional approach.

3. Methods of the Analysis

3.1. DSMC

The first of the two considered numerical approaches is the DSMC scheme. We use
the standard version of the method [11] with some improvements borrowed from [40].
Broadly speaking, the DSMC approach works as follows. The gas cloud is described by
the so-called model molecules. The state of each molecule is determined by its position in
space and the velocity vector. Temporal evolution of the flow field during one time step is
conducted via the so-called time splitting approach and consists of two stages. The first
stage is collisionless movement of particles over the mesh in the physical domain, based on
their position and velocity. The second stage involves the simulation of the interparticle
collisions in accordance with the “no-time-counter” scheme.

The outlined computational DSMC algorithm was implemented by the first author in
the parallel FORTRAN code LasInEx (Laser-Induced-Expansion) and has been successfully
used in various studies, e.g., [15,20,26,34]. In the current work the computational domain
in physical space is initially divided into cells of equal size. Its right boundary is pushed
forward so that no particle can escape from the domain. At each moment of time when the
domain length is updated and mesh is rebuilt, the maximum density in the computational
region was calculated, and the cell size was set equal to the corresponding mean free
path. Since the density decreases during the gas cloud plume expansion, the cell size
grows accordingly.

3.2. BGK Model Equation

The second numerical approach is based on solving numerically the BGK model kinetic
equation [41]. The state of the gas at position x at time moment t is described by the velocity
distribution function f (t, x,ξ) where ξ = (ξ1, ξ2, ξ3) are the components of the molecular
velocity vector. Density, velocity, temperature, and pressure are defined by means of the
integrals over the complete velocity space. For the considered one-dimensional problem
the kinetic equation reads as follows:

∂
∂t f + ∂

∂x (ξ1 f ) = ν( fM − f ), ν = p
μ ,

fM = n
(2πkT/m)3/2 exp

(
−m(ξ−u)2

2kT

)
, p = nkT,

where ν is the collision frequency. For the hard sphere model, the viscosity coefficient is
μ(T) ∼ √

T.
The standard approach to solve a model kinetic equation for transient problems with

sharp gradients is a discrete-velocity method (DVM). The essence of the method consists of
replacing the infinite velocity domain by a finite integration domain and subsequently pass-
ing from the kinetic equation to the system of equations for finite set of integration points.
The resulting system of kinetic equations can be solved by a variety of modern advection
schemes [42,43]. However, the traditional DVM schemes are highly inefficient when applied
to the problem under consideration. Instead, we use a recent ALE method [35], which uses
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deforming spatial meshes and expanding spatial domains. For the basic explanation of the
ALE approach see, e.g., [44,45]. The test calculations, using the code Nesvetay developed
by the second author [46–48], showed the ALE-DVM scheme to be up to 100 times more
efficient as compared to the conventional DVM methods. It has been recently successfully
used for studying gas expansion into background gas [34]. For flow into a vacuum, some
modifications of the baseline scheme were made in order to improve its robustness. It is
also important to note that to avoid division by zero the initial condition of vacuum is
replaced by the background gas with the small number density value 10−15 n0. Background
gas temperature value is not too important and for simplicity is set to be equal to T0. Our
numerical experiments have shown that the use of even smaller values does not change
the outcome of the calculations. The initial value of the VDF is then set to be the locally
Maxwellian function with the background gas density and temperature.

In the physical space, the initial domain extends up to 5 cm and is divided into 800 cells.
During the calculations, it expands in such a way that the advancing wave never reaches
the right boundary of the calculation domain. A specially constructed unstructured mixed-
element velocity mesh, proposed in [33], is used in the velocity mesh. This is due the need
to calculate the TOF distributions of particles, which involves the integration of the VDF
over the cones with a small opening angle in the velocity space. Our approach to velocity
mesh construction borrows ideas from computational astrophysics, see [49] and references
therein. The mesh topology is different depending on the part of the velocity domain. For
ξ1 > 0, the mesh is constructed by extruding in the radial direction a triangular mesh on a
unit sphere. This results in layers of prismatic cells together with one layer of tetrahedrons
near the origin. For ξ1 < 0, we use a conventional hexahedron mesh. Overall, the resulting
velocity mesh contains 840 thousand cells and allows the integration for cones with half
angles as low as 0.1◦.

To reduce the required computing time, the calculations by the Nesvetay code are run
on parallel computers using two-level MPI+OpenMP approach. By default, 8 OpenMP
threads are assigned to each MPI process.

3.3. Analytical Continuum Solution

To obtain a solution in the limiting case of the continuous medium, we use an analytical
solution of the continuity and Euler’s equations for pulsed adiabatic expansion of gas
desorbing into vacuum [50]. The applicability of this solution to the considered problem is
due to the fact that the adiabaticity assumption is violated only in a small subsonic layer
near the evaporation surface, while in the rest of the flow field is well satisfied. On the
other hand, the continuum description of the flow is violated only at the plume front or for
evaporation of a small number of monolayers.

The position of the plume front x̃ f and the point of the maximum plume density xmax
(for t > τ) are determined by the relations

x̃ f (t̃) =
γ + 1
γ − 1

t̃, x̃max(t̃) =
γ + 1
γ − 1

(
t̃ − t̃

3−γ
γ+1

)
, (8)

where t̃ = t/τ, x̃ = x/(uKτ). Solution for the zone x̃max< x̃ < x̃ f is determined by the
formulas for plane continuum unsteady expansion into vacuum [51]{

ũ(x̃, t̃) = 1 + 2
γ+1

x̃
t̃
,

c̃(x̃, t̃) = 1 − γ−1
γ+1

x̃
t̃
,

(9)

where ũ = u/uK, c̃ = c/cK, u is velocity, c is the speed of sound.

24



Entropy 2022, 24, 1738

Solution in the zone 0 < x̃ < x̃max should be found separately for any particular case of
γ [50]. For monatomic gas (γ = 5/3), the solution is{

t̃(ũ, c̃) = (18c̃2+3c̃ũ−12c̃−ũ2+2ũ+8)(3c̃+ũ+2)
108c̃3 ,

x̃(ũ, c̃) = − (9c̃2−ũ2+4ũ)(3c̃+ũ+2)(3c̃−ũ−2)
108c̃3 .

(10)

Further, assuming the adiabatic relation n = const · c2/(γ−1), temperature and density can
be calculated. To compare the DSMC calculation with the analytical solution, one should
use known values of density and temperature (5) at the boundary of the Knudsen layer.

To calculate the energy of particles moving in a velocity cone with an angle α, an ap-
proach based on the Monte Carlo method is used. Based on the analytical solution (9)–(11),
we calculate density, velocity, and temperature profiles. Then, at every point in space,
the particle velocity components (u’, v’, w’) are generated in accordance with the local
Maxwellian VDF and for each particle it is determined whether it is inside the velocity
cone with an angle α or not (i.e., whether the conditions u’ > 0 and

√
v′2 + w′2/u′ < tgα are

satisfied). To calculate the average energy, integration is carried out over the entire space,
taking into account density at each point.

4. Results and Discussion

4.1. Distribution of Molecules in the Velocity Cone

Figure 1 shows typical density and temperature profiles for various numbers of
evaporated monolayers. With an increase in the number of evaporated monolayers, the
plume is accelerated with a corresponding drop in temperature due to collisions between
particles in the plume. So, for time 10τ, the maximum density value for Θ = 1000 is 2 times
smaller as compared to Θ = 0, whereas the maximum temperature is 10 times smaller.

Figure 1. Profiles of density (a) and temperature (b) in time t = 10τ for different numbers of evaporated
monolayers Θ: DSMC (solid lines) vs. BGK model (dashed lines) and continuum solution (dash-
dotted line).

To analyze experimentally measured distributions of particles at a time-of-flight detec-
tor, we consider the distribution of particles moving inside a velocity cone with a given
angle α. Figure 2 shows numerical results for particles moving along the x axis inside a
velocity cone with an angle of 3◦ (i.e., particles for which

√
v′2 + w′2/u′ < tg 3◦, where

(u′, v′, w′) are the components of the particle velocity vector). It is these particles that will
arrive at the time-of-flight detector with a size of Ltg3◦ (here L is the distance to the detector)
under the condition of collisionless expansion. The distribution differs significantly from
the one shown in Figure 1a. With an increase in the number of monolayers, the fraction
of particles that arrive at the time-of-flight detector increases strongly. It can be seen that
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faster particles from the plume front with a low temperature arrive at the detector, while
slower particles from the plume back with a relatively high temperature move away to the
sides. The fraction of particles that arrive at the detector is quite small. One can see that the
maximum density of particles in the velocity cone in Figure 2 for Θ ≥ 1000 is 0.002, while
the maximum particle density in Figure 1 is 0.012, i.e., 6 times higher. Particles at the plume
front (x > 30 uKτ) for a large number of monolayers move with almost zero temperature,
strictly forward, so most of them will arrive at the detector.

Figure 2. The DSMC calculated spatial distribution of particles moving along the x axis in the 3◦

velocity cone at time t = 10τ.

Figure 3 shows the distribution of the fraction of particles that arrive at the detector
with a size of Ltg3◦. In fact, this is equivalent to the probability of a particle being inside
the velocity cone with an angle of 3◦. It can be seen that with an increase in the number
of monolayers from Θ = 10 to 10,000, the probability of a particle arriving at the detector
increases from 0.1 to 0.95. For the continuum solution, the probability reaches unity. It is
important to note that the numerical solution actually begins to coincide with the analytical
continuum solution only for the number of monolayers Θ = 10,000, which corresponds to
an extremely small Knudsen number Kn = 4 × 10−6.

Figure 3. The DSMC calculated probability of a particle to be inside a 3◦ velocity cone at time t = 10 τ.
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The number of particles moving in a velocity cone with an angle α and correspondingly
arriving at the detector of size Ltgα depends on the number of evaporated monolayers Θ
and the angle α and varies with time. Figure 4 shows the time evolution of the number
of particles for different cone angles. To normalize this number, we use the area of the
spherical segment S′ ∼ 1 − cos α ≈ α2/2. The larger the number of monolayers Θ, the
larger the number of collisions between particles during expansion and, correspondingly,
the larger the number of particles moving along the normal in the velocity cone. It can
be seen that for Θ = 100 for the angle α = 1◦, 3% of the evaporated particles arrive at the
detector, while for Θ = 1, only 0.2%.

Figure 4. Time evolution of the number of particles moving along the x axis in the velocity cone with
an angle α = 0.3◦, 1◦, 3◦, 10◦, 20◦ for the number of monolayers Θ = 1 and 100.

4.2. Temporal Evolution of Average Energy of Molecules

Figure 5 shows the time evolution of the average energy of particles moving in the
velocity cone with different values of the cone angle α. One can see good agreement
between the DSMC results and the kinetic equation for Θ > 1. The solution for the number
of monolayers 10,000 agrees very well with the analytical continuum solution. For Θ < 1,
there is a monotonic increase in energy with time. Similarly, for Θ > 1, the energy increases
in the initial period of time, up to t = (3–10)τ. This energy rise is caused by two factors, the
gas-dynamic acceleration of the plume in the forward direction and the kinetic selection of
high-speed particles [26]. In this case, due to separation of molecules for non-stationary
expansion, collisions occur mostly between molecules with a close velocity component in
the normal direction to the surface. This leads to the transfer of energy from the radial
component (along the surface) to the axial component (parallel to the normal to the surface)
and to the focusing of molecules in the direction of the normal. This effect has been seen
in previous DSMC studies of pulsed evaporation in vacuum [12,14,26]. For Θ ≥ 1, after
time t = (3–10)τ, the energy begins to decrease. This effect can be explained as follows.
With increase in the number of evaporated monolayers, the region of collisional expansion
becomes larger. In this case, low-speed molecules, which move to the side at lower values
of Θ, undergo additional collisions, which direct them in the forward direction. Thus, the
low-speed “tail” of the VDF increases and the total energy decreases accordingly.
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Figure 5. Time evolution of the average energy of particles moving inside a velocity cone with an
angle of 1◦ (a) and 10◦ (b) for different numbers of evaporated monolayers Θ.

As an illustration, Figure 6 shows the distributions of those particles that move along
the axis x inside a cone with an angle of 1◦ and 10◦. The flow regime with strong effect
is selected, for Θ = 100. As shown in Figure 4, the number of molecules moving along
the axis constantly increases with time. The VDF changes, on the one hand, due to a
change in the velocities of molecules moving inside the cone, and on the other hand, due
to the appearance of new molecules in the cone. To separate these processes, the function
is normalized by the number of molecules in the cone at the end of the evaporation, as
f̃axial(t, α, u) = faxial(t, α, u)/

∫ ∞
0 faxial(τ, α, u)du. For t = τ this function coincides with the

usual VDF.

Figure 6. The velocity distribution function of molecules moving along the axis in the cone with
angle α = 1◦ (a) and 10◦ (b) for the number of monolayers Θ = 100: DSMC calculation (solid lines) in
comparison with the BGK model (dashed lines).

There is a qualitative difference in the VDF evolution for the small angle (α = 1◦) and
the large angle (α = 10◦). For the small angle initially up to a time of t = 10τ there is an
increase in the number of high-speed molecules, which leads to an increase in the average
energy of these particles. Later, for t > 5τ, there is a proportional increase in the number of
both fast and slow molecules, which results in the conservation of the average energy of
the molecules. However, for the large angle the situation is qualitatively different. After a
time of t = 5τ, the number of low-speed molecules increases mostly, which considerably
decreases the energy Eaxial.

28



Entropy 2022, 24, 1738

It should be noted that the total number of molecules moving inside the cone for
α = 1◦ increases by a factor of 23 during expansion (from 0.0014 at time t = τ to 0.033 at
time t = 100τ, see Figure 4), while for α = 10◦ only by a factor of 5 (from 0.0012 to 0.006 over
the same time interval). It should be expected that with an increase in the number of
monolayers (in the continuum limit), with time approaching infinity, all particles should
move strictly along the axis. As a result, the energy ratio approaches the unit value
Eaxial/E0 = 1.

These data are vital for understanding the patterns observed in two-dimensional
calculations. It was found out earlier that for a given number of monolayers with an
increase in the size of the evaporation spot (increase in b up to 5), the corresponding rise in
the energy of particles passing through the TOF detector takes place [25]. However, with
further increasing the spot (for b > 5), some decreasing energy is observed. Since an increase
in the spot size is equivalent to an increase in the duration of the one-dimensional flow
regime, the presence of an energy maximum for relatively large spots (b~5) is equivalent
to the presence of an energy maximum for a relatively long time of one-dimensional
calculation (t~5τ) and apparently has the same reason. In one-dimensional calculations,
it is possible to obtain highly accurate numerical data for almost arbitrarily small angles
of the cone and a large number of evaporated monolayers, thus revealing general trends.
However, in two-dimensional calculations it is much more difficult due to the requirement
of significant computational resources.

4.3. Generalizing Dependences on Average Energy of Molecules

Figure 7 depicts average axial energy computed at time t/τ = 10 and 100 for different
angles. Previously, similar dependences were obtained for t/τ = 25 for the number of
monolayers Θ < 100 [33]. It can be seen that as the number of monolayers increases
from 100 to 10,000, the energy tends to a certain limiting value, which coincides with the
analytical continuum solution. At the same time, there is some curve bend in the Section 1
<Θ < 100, and for the angle α ≥ 5◦, there is even an energy maximum for Θ = 1. These
features are associated with an increase in the number of low-velocity particles in the
velocity cone, as shown in Figure 6.

Figure 7. Average axial energy Eaxial(t, α, Θ) as a function of the number of evaporated monolayers
Θ at time t = 10 τ (a) and 100 τ (b): DSMC calculation (solid lines) in comparison with the BGK
model (crosses).

The dependences of the average energy of particles in the time-of-flight distribution
for t = 10τ are similar to those in axisymmetric calculations for a small evaporation spot
(b = 10) [25,26]. The flat-shaped section of energy for 1 < Θ < 10 for t = 100τ in Figure 7b

29



Entropy 2022, 24, 1738

is in good agreement with the flat-shaped section for 1 < Θ < 10 for a large evaporation
spot (b ≥ 30) [28,29]. It can be concluded that the observed peculiarity of the energy change
in the axisymmetric calculation is of the same nature as in our plane calculation. It can
also be expected that with an increase of the number of monolayers in the axisymmetric
calculation (which is technically difficult due to computational limitations), the energy of
particles at the TOF detector should reach some limiting continuum value. This limiting
value can be estimated on the basis of our one-dimensional calculations. Figure 8 shows
the dependences of the average axial energy on the angle, calculated on the basis of the
analytical continuum solution. It can be seen that as the angle decreases, the energy value
reaches a certain limit value. Thus, a decrease in the angle from α = 1◦ to 0.1◦ leads to an
increase in energy by only 4%. It is important to note that the energy value with decreasing
angle depends very weakly on time. Increasing the time from 10τ to 100τ only increases the
energy by 1%. The maximum achievable energy of particles at the TOF detector is 2.32 E0.
This corresponds to the case of evaporation from an infinitely large evaporation spot, and
in the case of evaporation from any other spot, the energy at the TOF detector should not
exceed this value. This is consistent with previous axisymmetric calculations in which the
observed energy was less than this maximum value [25,26,28,29].

Figure 8. Average axial energy Eaxial as a function of the angle α at time t = 10, 25, 100τ based on the
analytical continuum solution.

For the largest possible angle (90◦) in Figure 8 the particle energy in the plume is about
1.19E0. This increase in energy is due to the fact that the total energy of the plume during ex-
pansion is not conserved since a considerable fraction of low-energy particles backscatters
and recondenses at the evaporation surface [52–54]. It was shown that during evaporation
of 1000 monolayers, the fraction of particles returning back to the evaporation surface for the
entire time of expansion is β = 0.275, with the back flux during evaporation being β1 = 0.163
and after evaporation being β2 = β − β1 = 0.112 [54]. The corresponding kinetic energies of
backscattering particles can be estimated as Eβ,1 ≈ 0.6E0 [52,53] and Eβ,2 ≈ 0.3E0 [53]. Then, we
can estimate the total plume kinetic energy as Eplume ≈ (E0 − β1Eb,1 − β2Eb,2)/(1 − β) ≈ 1.2E0,
which agrees well with our analytical estimation.

5. Conclusions

The dynamics of gas expansion under intense nanosecond laser evaporation into
vacuum is studied. The use of two different kinetic approaches (the DSMC method and
the solution of the model BGK equation) allowed obtaining a reliable solution that agrees
well with the analytical continuum solution for a large number of monolayers. An analysis
of the velocity distribution function and the average energy of particles passing through
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a time-of-flight detector on the normal to the evaporation surface is carried out. The use
of the analytical continuum model made it possible to determine the maximum possible
particle energy in the time-of-flight distribution. Based on the analysis of the distribution of
particle velocities, the peculiarities of the energy increase in the time-of-flight distribution
are explained. The data obtained are important for the interpretation of experimental
time-of-flight measurements.
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Abstract: A simplified linearized lattice Boltzmann method (SLLBM) suitable for the simulation of
acoustic waves propagation in fluids was proposed herein. Through Chapman–Enskog expansion
analysis, the linearized lattice Boltzmann equation (LLBE) was first recovered to linearized macro-
scopic equations. Then, using the fractional-step calculation technique, the solution of these linearized
equations was divided into two steps: a predictor step and corrector step. Next, the evolution of the
perturbation distribution function was transformed into the evolution of the perturbation equilibrium
distribution function using second-order interpolation approximation of the latter at other positions
and times to represent the nonequilibrium part of the former; additionally, the calculation formulas
of SLLBM were deduced. SLLBM inherits the advantages of the linearized lattice Boltzmann method
(LLBM), calculating acoustic disturbance and the mean flow separately so that macroscopic variables
of the mean flow do not affect the calculation of acoustic disturbance. At the same time, it has other
advantages: the calculation process is simpler, and the cost of computing memory is reduced. In
addition, to simulate the acoustic scattering problem caused by the acoustic waves encountering
objects, the immersed boundary method (IBM) and SLLBM were further combined so that the method
can simulate the influence of complex geometries. Several cases were used to validate the feasibility
of SLLBM for simulation of acoustic wave propagation under the mean flow.

Keywords: simplified linearized lattice Boltzmann method; immersed boundary method; computa-
tional aeroacoustics

1. Introduction

The phenomenon of acoustic waves propagating in complex flows such as shear layers
or a vortex often exists in aerospace engineering [1–4]. Studies have shown that such
flow structures will change the characteristics of acoustic wave propagation, leading to
refraction, reflection, and scattering and thus affect the measurement and localization
of sound source [5,6]. Therefore, it is of great significance to carry out research on the
propagation of acoustic waves in the flow.

Numerical simulation is an important means for such research. The main method
used is direct numerical simulation (DNS) [7,8], which combines acoustic disturbance and
the mean flow and then simulates acoustic waves propagation directly by solving the
Navier–Stokes equations. However, DNS requires a very fine grid and a small time step,
making its computational cost extremely high. In addition, because acoustic disturbance
is usually several orders of magnitude smaller than the mean flow, the calculation of
the two parts combined smoothens out the effect of acoustic disturbance, resulting in
large error. To overcome these shortcomings, methods of solving perturbation equations
such as linearized Euler equations (LEE) [9–11] or linearized Navier–Stokes equations
(LNSE) [12,13] have been proposed to simulate acoustic wave propagation. These methods
essentially solve macroscopic equations, which require high-precision schemes to ensure
accuracy. Therefore, the numerical simulation of acoustic wave propagation still needs
further development.
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Over the last few decades, the lattice Boltzmann method (LBM) has become a popular
computational fluid dynamics method [14–18]. LBM is based on molecular dynamics
theory, which abstracts fluid into a large number of microscopic particles that collide
and migrate through discrete grids according to simple motion rules to illustrate the
evolution of the flow field; it reveals macroscopic motion characteristics of a fluid using a
particle-distribution function. LBM does not entail solving complex differential equations
directly; it only requires solving algebraic equations, which make the calculation process
simpler. It has been applied to computational aeroacoustics [19–22]. Studies have shown
that LBM has lower dissipation under the same accuracy, and it is easy to carry out
parallel calculations [23], which makes the method suitable for large-scale aeroacoustics
simulation. However, in acoustic waves propagation simulation, LBM combines the
calculation of acoustic disturbance and the mean flow, which can lead inaccuracies. To
better simulate the propagation of acoustic disturbance, the linearized lattice Boltzmann
method (LLBM) was established [24,25], which divides the distribution function into a
mean component and perturbation parts. Based on the moment relationship between
the perturbation distribution function and the perturbation macroscopic variables, the
linearized lattice Boltzmann equation (LLBE) can be recovered to linearized macroscopic
equations through Chapman–Enskog (C-E) expansion analysis and the evolution of the
perturbation distribution function is realized using the standard LBM. It should be pointed
out that because the standard LBM can only be applied to uniform grids; special methods
are required if it is applied to nonuniform grids. At the same time, it stores the particle
velocities and the distribution function of all lattice velocity directions at each grid point,
which requires a lot of memory. These deficiencies make it difficult for standard LBM
or LLBM to simulate acoustic wave propagation. To solve these deficiencies, Shu et al.
proposed the lattice Boltzmann flux solver (LBFS) employing the finite volume method to
calculate the flux at an interface [26–30]. Zhan et al. further developed a linearized lattice
Boltzmann flux solver (LLBFS) suitable for acoustic propagation simulation [31], wherein
the solution of the interface satisfies the lattice Boltzmann equation; this is more in line
with physical laws, and the calculation load is comparable to the traditional flux scheme.
However, LBFS and LLBFS involve two models, the finite volume method (FVM) and the
LBM, which are inconvenient for researchers. Chen et al. recently proposed a simplified
lattice Boltzmann method (SLBM) [32,33], which approximates the nonequilibrium part
of the distribution function by second-order interpolation of the equilibrium distribution
function at other locations and times, so that the evolution of the distribution function can
be transformed into the evolution of the equilibrium distribution function. SLBM further
simplifies the calculation, and, at the same time, the distribution function in the lattice
velocity direction of each particle at each grid point does not need to be stored, which
makes it less memory-demanding.

In this paper, a simplified linearized lattice Boltzmann method (SLLBM) that combines
the advantages of LLBM and SLBM was proposed and used for acoustic wave propagation
simulation. Through C-E expansion analysis, the LLBE was recovered to linearized macro-
scopic equations; this process was divided into a predictor step and a corrector step using
the fractional-step calculation technique. Using second-order interpolation approximation
of the perturbation equilibrium distribution function at other positions and times to rep-
resent the nonequilibrium part of the perturbation distribution function, the evolution of
the latter was transformed into the evolution of the former, and the calculation formulas of
SLLBM were deduced. SLLBM inherits the advantages of the LLBM, calculating acoustic
disturbance and the mean flow separately so macroscopic variables of the mean flow do
not affect the calculation of acoustic disturbance. At the same time, in the SLLBM, the
perturbation macroscopic variables were directly evolved so that the evolution and storage
of the perturbation distribution function were avoided, which implies only the perturbation
macroscopic variables instead of the values of perturbation distribution functions along all
lattice velocity directions at each grid point needing to be stored and the physical bound-
ary conditions can be directly processed without converting the perturbation distribution
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function and perturbation macroscopic variables to each other according to the moment
relationships. As a result, SLLBM requires less memory and is simpler to operate than the
standard LBM. In addition, to simulate the scattering effect of acoustic waves encountering
objects, the immersed boundary method (IBM) was introduced into the framework of
SLLBM so that the method can simulate the influence of complex geometries.

The remainder of this paper is arranged as follows. In Section 2, theories related
to SLLBM are introduced, including the LLBE and its recovered form, the derivation
process of SLLBM, the IBM under the framework of SLLBM, boundary conditions, and
the computational sequence. In Section 3, several cases are used to validate the feasibility
of SLLBM for acoustic wave propagation simulation. Finally, conclusions are drawn in
Section 4.

2. Methodology

2.1. LLBE and C-E Expansion Analysis

For the lattice Boltzmann equation, the density distribution function f can be divided
into the steady mean component f and the perturbation part f ′, i.e., f = f + f ′. Using
the perturbation distribution function, the LLBE with the Bhatnagar–Gross–Krook (BGK)
approximation is obtained:

∂ f ′α
∂t

+ ξα · ∇ f ′α = − 1
τ

(
f ′α − f ′αeq) (1)

where τ = υ
c2

s δt
+ 1

2 is the nondimensional relaxation time, which is associated with the kine-

matic viscosity υ of the fluid, ξα and f ′α represent the component of the lattice velocity and
the perturbation distribution function f ′ in direction α, respectively; f ′αeq is the perturbation
equilibrium distribution function, which is given by [25]:

f ′αeq =
ρ′

ρ
f

eq
α + ρwα

(
ξα · u′

c2
s

+
(ξα · u′)(ξα · u)

c4
s

− u′ · u

c2
s

)
(2)

where cs = 1/
√

3 is the speed of sound, wα is the weight coefficient of the lattice in direction
α; ρ, u, and ρ′, u′ denote the macroscopic variables, which are divided into the mean flow
and acoustic disturbance, respectively; f

eq
α is the steady equilibrium distribution function:

f
eq
α = ρwα

(
1 +

ξα · u

c2
s

+
(ξα · u)2

2c4
s

− |u|2
2c2

s

)
(3)

The linearized macroscopic variables ρ, u, and ρ′, u′ and mesoscopic variables have
the following moment relationship:

ρ′ = ∑
α

f ′αeq (4)

ρu′ + ρ′u = ∑
α

ξα f ′αeq (5)

For two-dimensional problems, the LBM adopts the D2Q9 model; the lattice velocity
ξα and weight coefficient wα are given by:

|ξ0| = 0, |ξ1−4| = 1, |ξ5−8| =
√

2
w0 = 4

9 , w1−4 = 1
9 , w5−8 = 1

36
(6)

C-E expansion analysis is often used to link the kinetic theory of gases and the macro-
scopic equations of motion [24]. It can also be used to link LLBE and LNSE. By C-E
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expansion analysis, the perturbation distribution function, time derivative, and spatial
derivative can be expanded into the following forms, respectively:

f ′α = f ′α(0) + Kn f ′α(1) + Kn2 f ′α(2) (7)

∂

∂t
= Kn

∂

∂t0
+ Kn2 ∂

∂t1
(8)

∇ = Kn · ∇1 (9)

where Kn is the Knudsen number.
By substituting Equations (7)–(9) into the Taylor expansion of LLBE (Equation (1)), the

decomposition forms of different orders can be obtained:

O
(

Kn0
)

: f ′α(0) = f ′αeq (10)

O
(

Kn1
)

:
(

∂

∂t0
+ ξα · ∂

∂r1

)
f ′α(0) +

1
τ

f ′α(1) = 0 (11)

O
(

Kn2
)

:
∂ f ′α(0)

∂t1
+

(
1 − 1

2τ

)(
∂

∂t0
+ ξα · ∇1

)
f ′α(1) +

1
τδt

f ′α(2) = 0 (12)

Sum the zero-order moments and first-order moments of Equations (11) and (12) under
the O

(
Kn1) and O

(
Kn2) orders in all lattice velocity directions and multiply the results

with Kn and Kn2, respectively; by adding the results separately, we obtain the governing
equations of the LLBE recovered by C-E expansion analysis:

∂ρ′

∂t
+∇ ·

(
∑
α

ξα f ′αeq

)
= 0 (13)

∂(ρ′u + ρu′)
∂t

+∇ ·
(

∑
α

ξi
αξ

j
α f ′αeq +

(
1 − 1

2τ

)
∑
α

ξi
αξ

j
α f ′αneq

)
= 0 (14)

where f ′αneq = Kn f ′α(1) = −τδtD f ′αeq denotes the perturbation non-equilibrium distribution
function, and it satisfies the following moment relationship:

∑
α

f ′αneq =0, ∑
α
ξα f ′αneq =0 (15)

In addition, to restore Equations (13) and (14) to LNSE, the mesoscopic and macro-
scopic variables need to satisfy the following moment relationship in addition to
Equations (4) and (5):

∑
α

ξi
αξ

j
α f ′αeq = ρ′c2

s δi,j + ρu′u + ρ′uu + ρuu′ (16)

∑
α

ξi
αξ

j
α f ′αneq = −μ

(
∇u′ + (∇u′)T

)
− μ′

(
∇u + (∇u)T

)
(17)

where μ = μ + μ′ = τδt(ρ + ρ′)c2
s is the dynamic viscosity of the fluid.

2.2. SLLBM

According to the fractional-step calculation technique, Equations (13) and (14) can be
decomposed into two steps: a predictor step and a corrector step:

The predictor step is formulated as follows:

∂ρ′

∂t
+∇ ·

(
∑
α

ξα f ′αeq

)
= 0 (18)
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∂(ρ′u + ρu′)
∂t

+∇ ·
(

∑
α

ξi
αξ

j
α f ′αeq +

1
2τ ∑

α

ξi
αξ

j
α f ′αneq

)
= 0 (19)

The corrector step is formulated as follows:

∂ρ′

∂t
= 0 (20)

∂(ρ′u + ρu′)
∂t

+∇ ·
((

1 − 1
τ

)
∑
α

ξi
αξ

j
α f ′αneq

)
= 0 (21)

In the predictor step, the solution can be advanced using the following relations:

ρ′∗ = ∑
α

f ′αeq(r − ξαδt, t − δt) (22)

ρu′∗ + ρ′∗u = ∑
α

ξα f ′αeq(r − ξαδt, t − δt) (23)

where δt is the time step and ∗ is the intermediate value of the perturbation macroscopic vari-
ables obtained by solving the predictor step. It can be proven that Equations (22) and (23)
can be used to accurately solve Equations (18) and (19).

The Taylor expansion of the perturbation equilibrium distribution function can be
obtained by:

f ′αneq(r − ξαδt, t − δt) = f ′αeq(r, t)− δtD f ′αeq(r, t)− δt

2τ
D f ′αneq(r, t) + O(δ3

t ) (24)

By substituting Equation (24) into Equations (22) and (23) and combining the outcome
with Equation (15), we obtain:

ρ′∗ = ∑
α

f ′αeq(r, t)− δt

[
∂
∂t ∑

α
f ′αeq(r, t) +∇ · ∑

α
ξα f ′αeq(r, t)

]
− δt

2τ

[
∂
∂t ∑

α
f ′αneq(r, t) +∇ · ∑

α
ξα f ′αneq(r, t)

]
+ O(δ3

t )
(25)

ρu′∗ + ρ′∗u = ∑
α
ξα f ′αeq(r, t)− δt

[
∂
∂t ∑

α
ξα f ′αeq(r, t) +∇ · ∑

α
ξi

αξ
j
α f ′αeq(r, t)

]
− δt

2τ

[
∇ · ∑

α
ξi

αξ
j
α f ′αneq(r, t)

]
+ O(δ3

t )
(26)

According to the moment relationship introduced in Section 1, Equations (25) and (26)
are transformed into the following form:

∂ρ′

∂t
+∇ ·

(
∑
α

ξα f ′αeq

)
+ O(δ2

t ) = 0 (27)

∂(ρu′ + ρ′u)
∂t

+∇ ·
[
∑
α

ξi
αξ

j
α f ′αeq(r, t) +

1
2τ ∑

α

ξi
αξ

j
α f ′αneq

]
+ O(δ2

t ) = 0 (28)

where O(δ2
t ) is a second-order small parameter, which can be ignored. Thus, Equations (27)

and (28) can accurately recover the predictor step Equations (18) and (19).
For the linear continuous equation (Equation (13)), the predictor step can be used

directly to solve without correction, i.e., ρ′n+1 = ρ∗, where the superscript n+1 represents
the perturbation macroscopic variables at the next time step. However, for the linear

momentum equation (Equation (14)), there is still a deviation ∇ ·
[(

1 − 1
τ

)
∑
α
ξi

αξ
j
α f ′αneq

]
between Equation (28) and Equation (14), i.e.,:
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ρu′n+1
+ ρ′n+1

u = ρu′∗ + ρ′∗u −∇ ·
[(

1 − 1
τ

)
∑
α

ξi
αξ

j
α f ′αneq

]
(29)

To calculate Equation (29), similar to the derivation of the predictor step, we can apply
Equation (15) into the Taylor expansion of the perturbation nonequilibrium distribution
function f ′αneq(r − ξαδt, t), and the following relationship can be deduced:

−∇ ·
[(

1 − 1
τ

)
∑
α

ξi
αξ

j
α f ′αneq(r, t)

]
=

(
1 − 1

τ

)
1
δt

∑
α

ξα f ′αneq(r − ξαδt, t) (30)

By using Equation (30), Equation (29) can be written as:

ρu′n+1
+ ρ′n+1

u = ρu′∗ + ρ′∗u +

(
1 − 1

τ

)
∑
α

ξα f ′αneq(r − ξαδt, t) (31)

We therefore obtained simplified calculation formulas for LLBM, which are summa-
rized as follows:

For the linear continuous equation, the perturbation density at the next time step is
directly calculated by:

ρ′n+1
= ∑

α

f ′αeq(r − ξαδt, t − δt) (32)

For the linear momentum equation, the perturbation velocity at the next time step is
obtained through the predictor–corrector process as shown below:

It is obtained in the predictor step as follows:

ρu′∗ + ρ′∗u = ∑
α

ξα f ′αeq(r − ξαδt, t − δt) (33)

It is obtained in the corrector step as follows:

u′n+1
=

(
ρu′∗ + ρ′∗u +

(
1 − 1

τ

)
∑
α

ξα f ′αneq(r − ξαδt, t)− ρ′n+1
u

)
/ρ (34)

The perturbation nonequilibrium distribution function f ′αneq is given by:

f ′αneq(r, t) = −τδtD f ′αeq(r, t) = −τ
[

f ′αeq∗(r, t)− f ′αeq(r − ξαδt, t − δt)
]

(35)

where f ′αeq∗(r, t) denotes the perturbation equilibrium distribution function calculated by
the intermediate value of the linear macroscopic variables.

2.3. IBM

The idea of the IBM is to imagine immersion of the solid in the fluid [34–39], and the
interaction between the fluid and the solid wall is realized by adding a boundary force
term to the right side of the linear momentum equation. Through this treatment, the linear
momentum equation can be written as:

∂(ρu′+ρ′u)
∂t +∇ · (ρu′u + ρ′uu + ρuu′) =

−∇(ρ′c2
s ) +∇ ·

[
μ
(
∇u′ + (∇u′)T

)
+ μ′

(
∇u + (∇u)T

)]
+ f

(36)

f(r, t) =
∫
Γ

F(s, t)δ(r − R(s, t))ds (37)

where r and R represent the positions of the Euler point and the Lagrangian point, f and F

represent the boundary force terms of the Euler point and the Lagrangian point, δ is the
Dirac delta function, and s is the index of the Lagrangian point.
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The key to wall boundary processing is to solve the boundary force term of the
Lagrangian point. In this paper, the method of Chen et al. [37] was used to revise the
perturbation velocity u′n+1. In the following derivation process, the revised result of the
perturbation velocity u′n+1 is recorded as u′

I
n+1, which can be evaluated by:

u′
I
n+1 = u′n+1

+ Δu′ (38)

where Δu′ denotes the revise of u′n+1.
The boundary force term f of the Euler point in Equation (36) can be related to Δu′

according to the following formula:

f = ρ′n+1 Δu′

δt
(39)

The no-slip boundary condition was adopted for perturbation velocity on the wall
boundary, that is, the perturbation velocity of fluid at the Lagrangian point is the same as
the perturbation velocity of the immersed object, which can be written as follows:

U′
I
n+1(Rl) = U′

B(Rl) (40)

where U′
I
n+1 and U′

B represent the perturbation velocity of the fluid and boundary, re-
spectively, and the former is obtained by of the perturbation velocity of the Euler point as
follows:

U′
I
n+1(Rl) = ∑

e
u′n+1(re)K(re − Rl)δ

2
e

l = 1, 2, . . . , N e = 1, 2, . . . , M
(41)

where N and M represent the number of Lagrangian points and Euler points, respectively;
δe is the grid scale of the Euler grid; and K is the kernel function related to the positions of
Lagrangian points and Euler points, which is defined by:

K(re − Rl) = δ(re1 − Rl1)δ(re2 − Rl2) (42)

where δ is written as:

δ(r) =

{
1 + cos(π|r|/2)

4 |r| ≤ 2
0 |r| > 2

(43)

In Equation (38), the revised perturbation velocity is obtained by interpolating the
perturbation velocity at the Lagrangian point, and the mathematical relationship that
satisfies the no-slip boundary condition is as follows:

Δu′(re) = ∑
l

δu′
lK(re − Rl)δl l = 1, 2, . . . , N e = 1, 2, . . . , M (44)

where δl is the scale of the Lagrangian grid.
Combining Equations (38)–(44), a linear system for solving the correction velocity at

Lagrangian points can be obtained:
A · X = B (45)

where

A = δ2
e

⎡⎢⎢⎢⎣
K11 K12 · · · K1M
K21 K22 · · · K2M

...
...

. . .
...

KN1 KN2 KN3 KNM

⎤⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎣
K11 K12 · · · K1N
K21 K22 · · · K2N

...
...

. . .
...

KM1 KM2 KM3 KMN

⎤⎥⎥⎥⎦ (46)

X =
[
δu′

l
1δ1

l , δu′
l
2δ2

l , . . . , δu′
l
NδN

l

]T
(47)
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B =

⎡⎢⎢⎢⎢⎣
U′1

B
U′2

B
...

U′N
B

⎤⎥⎥⎥⎥⎦−

⎡⎢⎢⎢⎣
K11 K12 · · · K1M
K21 K22 · · · K2M

...
...

. . .
...

KN1 KN2 KN3 KNM

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

u
′∗
1

u
′∗
2
...

u
′∗
M

⎤⎥⎥⎥⎥⎦ (48)

2.4. Boundary Conditions
2.4.1. Periodic Boundary Condition

Here, we adopted the periodic boundary condition [40]. Taking the two-dimensional
flow shown in Figure 1 as an example, the fluid flows in from the left and out to the right.
There are two layers of virtual grid points x0 and xN+1 outside the entrance x1 on the left
and the exit xN on the right, respectively; the periodic boundary conditions are:

q′1,5,8(x0, j, t) = q′1,5,8(xN , j, t) (49)

q′3,6,7(xN+1, j, t) = q′3,6,7(x1, j, t) (50)

where q′ represents the perturbation macroscopic variables.

Figure 1. Schematic model of periodic boundary condition.

2.4.2. Nonequilibrium Extrapolation Boundary

To process the perturbation nonequilibrium distribution function at the boundary, this
paper adopts a nonequilibrium extrapolation boundary condition, which is obtained by
interpolating two grid points inside the boundary:

f ′i
neq(x0) = f ′i

neq(x1) +
[

f ′i
neq(x1)− f ′i

neq(x2)
] xi0 − xi1

xi1 − xi2
(51)

where x0, x1, and x2 represent the boundary points and the grid points of the first layer and
the second layer adjacent to the boundary, respectively. Because the calculation adopts a
uniform grid, Equation (51) can be expressed as:

f ′i
neq(x0) = 2 f ′i

neq(x1)− f ′i
neq(x2) (52)

2.5. Computational Sequence

The computational steps of the SLLBM can be summarized as follows:

(1) Determine the mesh size parameters δx and the time step δt and then calculate the
relaxation time τ.

(2) Calculate the predictor step of the linear governing equations by Equation (33) and
obtain the intermediate value of the perturbation macroscopic variables q′∗ of the new
time step.

(3) According to Equation (35), calculate the perturbation nonequilibrium distribution
function f ′αneq, selecting appropriate boundary conditions for f ′αneq.
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(4) Use Equation (34) to calculate the corrector step of the linear momentum equation,
and obtain the perturbation velocity u′n+1 of the next time step.

(5) Implement appropriate boundary conditions for the perturbation macroscopic vari-
ables and repeat the above process until the results convergent.

For the sound propagation problem that needs to calculate the interaction between
the fluid and the solid wall in the fluid, it is necessary to use the IBM derived in Section 1.
In this case, the perturbation velocity needs to be revised after step 5. The specific process
is as follows:

(1) Solve Equation (45) to obtain the perturbation velocity revision term at the La-
grangian point.

(2) According to the perturbation velocity obtained by Equation (34), combined with
Equations (38) and (44), the perturbation velocity of the Euler grid point at the next
moment u′

I
n+1 can be obtained.

2.6. Memory Cost

As can be seen from the introduction in Section 2.2, in the SLLBM, the perturbation
macroscopic variables were directly evolved so that the evolution and storage of the
perturbation distribution function were avoided, which implies only the perturbation
macroscopic variables, instead of the values of perturbation distribution functions along all
lattice velocity directions at each grid point, need to be stored. As a result, SLLBM requires
less memory than the standard LBM.

For instance, during the simulation of the acoustic wave propagation in the two-
dimensional imcompressible isothermal flow by the D2Q9 model, only six variables includ-
ing the present values and the intermediate values of perturbation velocity and density
need to be stored at each grid point. Compared with the standard LBM, the number of
variables to be stored at each grid point was reduced from 9 to 6, implying the SLLBM can
theoretically save about 33.3% of memory [32]. In the simulation of the three-dimensional
problem by D3Q19 model, the number of variables to be stored at each grid point was
reduced from 19 to 8, which means the SLLBM can theoretically save about 57.9% of
memory [41].

3. Numerical Examples

In this section, some numerical examples are used to verify the correctness of the
SLLBM for the simulation of acoustic waves propagation in the fluid; we consider the
following scenarios: (1) propagation of a Gaussian pulse, (2) propagation of a time-periodic
sound sources, (3) propagation of plane wave, (4) a Gaussian pulse interacting with a solid
wall, and (5) a Gaussian pulse scattered by a stationary circular cylinder.

Cases (1), (2), and (3) test the feasibility and accuracy of SLLBM through the simulation
of three different sound sources. Case (4) evaluates the feasibility of SLLBM for calculating
the acoustic reflections by a solid wall. Case (5) is used to test the feasibility of introducing
the IBM into the SLLBM framework to study the interaction between acoustic waves and
complex boundaries.

In these examples, the variables are all nondimensionalized, and the nondimensional
parameters of density, velocity, and pressure are ρ∞, c∞, and ρ∞c2

∞, respectively.

3.1. Case 1: Propagation of a Gaussian Pulse

As shown in Figure 2, the computational domain of Gaussian pulse propagation is
[−200, 200]× [−200, 200], the grid points are uniformly arranged, the grid scale δx = 1.0,
the time step δt = 1.0, and the relaxation time τ = 0.5. At the initial moment, a Gaussian
pulse was applied with the following formula:⎧⎨⎩

ρ′(x, y, 0) = ε exp
(−β

(
x2 + y2)) ρ = ρ0

u′(x, y, 0) = 0 u = u0
v′(x, y, 0) = 0 v = v0

(53)
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where ρ0 = 1.0 represents the density of the uniform mean flow, ε = 0.01 is the density
pulse amplitude; and β is the source shape factor obtained by β = ln 2/b2, where b = 8
representing the half-width Gaussian factor. For this form of Gaussian impulse propagation,
the exact solution for the perturbation density ρ′ is described by [42]:

ρ′(x, y, t) =
ε

2β

∫ ∞

0
exp

(
−ψ2/4β

)
cos(cstψ)J0(ψη)ψdψ (54)

where η =
[
(x − u0t0)

2 + y2
] 1

2 , and J0(·) is the zero-order Bessel function of the first kind.
For both cases of stationary medium u = 0.0 and moving medium u = 0.3, Figure 3
shows the contours of instantaneous perturbation density at t = 80, and Figure 4 shows
a comparison of the instantaneous perturbation density and the exact solution along the
centerline at y = 0. The calculation results of the SLLBM are in good agreement with the
exact solutions regardless of whether there is the convective effect, which shows that SLLBM
can simulate the acoustic waves propagation problems in stationary and moving medium.

Figure 2. Computational model of a Gaussian pulse propagation.

Figure 3. Instantaneous perturbation density contours of a Gaussian pulse obtained by the SLLBM at
t = 80. (a) stationary medium (u = 0.0), (b) moving medium (u = 0.3).
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Figure 4. Instantaneous perturbation density distribution along the centerline at y = 0 for t = 80.
(a) stationary medium (u = 0.0), (b) moving medium (u = 0.3).

3.2. Case 2: Propagation of a Time-Periodic Acoustic Source

As the second case, we simulate the propagation of a time-periodic acoustic source in
a stationary medium. The acoustic source is given by the following formula:⎧⎨⎩

ρ′(x, y, 0) = ε sin(ωt) ρ = ρ0
u′(x, y, 0) = 0 u = u0
v′(x, y, 0) = 0 v = v0

(55)

where ε = 0.01 is the density pulse amplitude, ω = π/10 represents the frequency of
the time-periodic acoustic source; and (ρ0, u0, v0) = (1.0, 0.0, 0.0) are the variables in the
stationary flow. The computation domain is a [−50, 50]× [−50, 50] square, and a uniform
grid is used, giving the grid spacing and the time step of 1.0.

For the static medium, Figure 5 shows the instantaneous perturbation density contours
of the time-periodic acoustic source in the stationary medium at t = 75 for two relaxation
times τ = 0.6 and 1.0. The SLLBM clearly captures the sound wave generated at the origin
and as it propagates outward, and the attenuation speed of the acoustic waves amplitude is
significantly greater when τ = 1.0. For quantitative analysis, Figure 6 shows a comparison
of the instantaneous perturbation density curve along the centerline at t = 75 with the
exact solution [43]. As can be seen, the results calculated by SLLBM are in good agreement
with the exact solution.

Figure 5. Instantaneous perturbation density contours of a time-periodic acoustic source in a station-
ary flow obtained by the SLLBM at t = 75. (a) τ = 0.6, (b) τ = 1.0.
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Figure 6. Instantaneous perturbation density distribution along centerline at t = 75 for y = 0.
(a) τ = 0.6, (b) τ = 1.0.

For the moving medium, the Mach number of the uniform flow was set as 0.1 or 0.2,
and relaxation time as τ = 0.6. Figure 7 shows the perturbation density contours at t = 100.
It can be seen that the wavelengths were shorter in the left and longer in the right of the
sound source because of the Doppler effect. The wavelengths of acoustic waves located on
the left and right sides of the sound source should be [43]:

λle f t,right = (cs ∓ u)T (56)

Figure 7. Instantaneous perturbation density contours of a time-periodic acoustic source in a uniform
flow obtained by the SLLBM at t = 100. (a) u = 0.1, (b) u = 0.2.

Since T = 2π
ω = 20, cs = 0.586, and u = 0.1 or 0.2, the wavelengths of acoustic waves

located on the left sides of the sound source should be 9.72 and 7.72, and the wavelengths
on the right side should be 13.72 and 15.72, respectively. For quantitative analysis, the
instantaneous perturbation density curves along the centerline at t = 100 are shown in
Figure 8, from which the Doppler effect is clear. It can be seen that the wavelengths of
acoustic waves located on the left sides of the sound source λle f t ≈ 9.64 or 7.80, and the
wavelengths on the right side λright ≈ 13.57 or 15.73, which shows that SLLBM can also
well simulate the convection effect of the moving medium.
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Figure 8. Instantaneous perturbation density distribution along centerline at t = 100 for y = 0.
(a) u = 0.1, (b) u = 0.2.

3.3. Case 3: Propagation of Plane Wave

In this case, we simulate the propagation of a one-dimensional plane wave. The
calculation model is shown in Figure 9. On the top and bottom boundaries, a periodic
boundary was applied, the right side is a nonequilibrium extrapolation boundary, and the
left side is a sound source, which is given by the following formula:⎧⎨⎩

ρ′(x, y, 0) = ε sin(ωt) ρ = ρ0
u′(x, y, 0) = csε sin(ωt)/ρ u = u0

v′(x, y, 0) = 0 v = v0

(57)

where ε = 0.01, (ρ0, u0, v0) = (1.0, 0.0, 0.0) are the variables in the stationary flow, ω =
2πcs/λ represents the frequency of the sound source, and λ denotes the wavelength.
For this defined one-dimensional plane wave propagation, the exact solution for the
perturbation velocity u′ is given by:

u′(x, t) =
csε

ρ0
e−ϕx sin(ωt − kx) (58)

where ϕ = 4π2υ/csλ2 represents the attenuation coefficient of the acoustic wave. The
calculation domain was set at [0, 20]× [0, 1000], the calculation grid adopts a uniform grid,
the grid scale δx = 1.0, and the time step δt = 1.0.

Figure 9. Schematic model of the plane wave calculation model.

Figure 10 provides the perturbation density contours for different kinematic viscosities
and different wavelengths at t = 75. The plane wave propagates in the form of a band,
and the larger the wavelength and the smaller the kinematic viscosity, the slower the
acoustic waves decays during the propagation process. To specifically judge the influence of
wavelength and kinematic viscosity on the propagation of the one-dimensional plane wave,
Figure 11 plots the comparison of the instantaneous perturbation velocity u′ distribution
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with the exact solution at the position y = 10. During the propagation of a one-dimensional
plane wave, the wavelength determines the phase of the acoustic wave, and the kinematic
viscosity determines the amplitude. For plane wave propagation with different kinematic
viscosities or wavelengths, the results obtained by SLLBM are in good agreement with the
exact solutions.

Figure 10. Instantaneous perturbation density contours of plane wave obtained by the SLLBM at
t = 5000. (a) (υ, λ) = (0.1, 50), (b) (υ, λ) = (0.1, 100), (c) (υ, λ) = (0.05, 100).

Figure 11. Instantaneous perturbation density distribution along the centerline y = 10 at t = 5000.
(a) υ = 0.1, (b) λ = 100.
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3.4. Case 4: Propagation of a Gaussian Pulse with Wall Reflection

This case simulates the propagation of a Gaussian pulse with wall reflections by
SLLBM. The calculation model is shown in Figure 12 and the sound source is defined by:⎧⎪⎨⎪⎩

ρ′(x, y, 0) = ε exp
(
−β
(
(x − 0)2 + (y + 75)2

))
ρ = ρ0

u′(x, y, 0) = 0 u = u0
v′(x, y, 0) = 0 v = v0

(59)

where ε = 0.01, (ρ0, u0, v0) = (1.0, 0.0, 0.0) are the variables in the stationary flow and
β = ln 2/32. The calculation domain was set at [−100, 100]× [−100, 100], the calculation
adopts a uniform grid, the grid scale δx = 0.5, and the time step δt = 0.5, and the relaxation
time τ = 0.5. The exact solution for the perturbation density ρ′ is defined by:

ρ′(x, y, t) =
ε

β

∫ ∞

0
exp

(
−ψ2/4β

)
cos(cstψ)[J0(ψη1) + J0(ψη2)]ψdψ (60)

where η1 =
[
(x − u0t)2 + (y + 75)2

]0.5
, η2 =

[
(x − u0t)2 + (y + 125)2

]0.5
.

Figure 12. Computational model of Gaussian pulse propagation with wall reflection.

Figure 13 shows the perturbation density contours at t = 26, 120, and 160 obtained
by the SLLBM. Figure 14 shows the perturbation density distributions along the reflecting
wall y = −100 and x = y + 100 at these three moments calculated by the SLLBM and
compared with the exact solution. There are two peaks along x = y + 100 at t =120, 160,
the inner peak is generated by the reflection of the pulse with the wall, and the outer one is
generated by the propagation of the pulse. The numerical solutions are in good agreement
with the exact solution, which shows that SLLBM can simulate the problem of acoustic
waves encountering wall reflections.
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Figure 13. Instantaneous perturbation density contours of a Gaussian pulse with wall reflection
obtained by the SLLBM. (a) t = 26, (b) t = 120, (c) t = 160.

Figure 14. Instantaneous perturbation density distribution at different locations at t = 26, 120, 160.
(a) y = −100, (b) x = y + 100.

3.5. Case 5: A Gaussian Pulse Scattered by a Stationary Cylinder

In this problem, a stationary circular cylinder (radius R = 10) is located at the origin.
At the initial moment, the sound source is applied as follows (Figure 15):

50



Entropy 2022, 24, 1622

⎧⎪⎨⎪⎩
ρ′(x, y, 0) = ε exp

(
−β
(
(x − 400.0)2 + (y − 0.0)2

))
, ρ = ρ0

u′(x, y, 0) = 0 u = u0
v′(x, y, 0) = 0 v = v0

(61)

where ε = 0.01, (ρ0, u0, v0) = (1.0, 0.0, 0.0), and β = ln2. The calculation grid adopts a
uniform grid, the grid scale δx = 1.0, and the time step δt = 1.0. The circular cylinder was
treated using the immersion boundary method, the surface is described by 150 uniform
Lagrangian points, and the far-field was treated using the nonequilibrium extrapolation
method. Three monitoring points A, B, and C are located at (0, 5), (5 cos(3π/4), 5 sin(3π/4)),
(−5, 0) in the computational domain. Figure 16 shows the instantaneous density contours
at tcs = 4, tcs = 6, tcs = 10, and tcs = 12. The propagation of the pulse wave and the
interaction with the circular cylinder are shown. Figure 17 shows a comparison of the
perturbation density at the three monitoring points with the exact solution.The numerical
solution calculated by SLLBM-IBM is in good agreement with the exact solution [44], which
quantitatively verifies the correctness of this method.

Figure 15. Computational model of a Gaussian pulse scattered by a stationary circular cylinder.

Figure 16. Disturbance density contours of Gaussian pulse scattering with a circular cylinder obtained
by the SLLBM-IBM. (a) tcs = 4, (b) tcs = 6, (c) tcs = 10, (d) tcs = 12.
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Figure 17. Disturbance density curves of a Gaussian pulse scattering with a circular cylinder obtained
by the SLLBM-IBM. (a) point A, (b) point B, (c) point C.

4. Conclusions

SLLBM was proposed and applied to the simulation of acoustic wave propagation in
fluids. This method recovered the LLBE to LNSE by C-E expansion analysis, and adopted
the fractional-step calculation technique; the predictor-corrector formula of SLLBM was
derived. Because the perturbation nonequilibrium distribution function can be approxi-
mated by second-order interpolation of the perturbation equilibrium distribution function
at other positions and times, the evolution of the perturbation distribution function could
be transformed into the evolution of the perturbation equilibrium distribution function.
Compared with standard LBM, SLLBM calculates the acoustic disturbance and the mean
flow separately, so macroscopic variables of the mean flow do not affect the calculation of
acoustic disturbance. At the same time, SLLBM has other advantages: the calculation pro-
cess is simpler, and the cost of computing memory is reduced. In addition, to simulate the
scattering effect of acoustic waves encountering objects, the immersed boundary method
(IBM) is within the framework of SLLBM so that the method can simulate the influence of
complex geometries.

Various numerical cases, including the propagation of a Gaussian pulse and the
interaction with a wall or cylinder, the propagation of a time-periodic acoustic source, and
plane wave, were simulated to validate the accuracy of SLLBM. The results obtained by
SLLBM are in good agreement with the exact solutions, which proves the accuracy and
feasibility of SLLBM in the simulation of acoustic wave propagation.
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Abbreviations

cs speed of sound ξ lattice velocity
f density distribution function w weight coefficient of the lattice
f boundary force terms of the Euler point ρ denisity
F boundary force terms of the Lagrangian point υ kinematic viscosity
K kernel function μ dynamic viscosity
Kn Knudsen number τ relaxation time
M number of the Euler points
N number of the Lagrangian point Superscripts
r position of the Euler point ′ perturbation part
s index of the Lagrangian point steady mean part
u velocity vector eq equilibrium distribution function
UI velocity of the fluid neq non-equilibrium distribution function
UB velocity of the immersed boundary ∗ intermediate variables
R position of the Lagrangian point n + 1 variables at the next time step
δt time step
δx lattice spacing Subscripts
δe scale of the Euler grid α direction
δl scale of the Lagrangian grid e Euler grid point
λ wavelength l Lagrangian grid point
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Abstract: In the present study, mathematical modeling was performed to simulate natural convection
of a nanofluid in a square enclosure using the thermal lattice Boltzmann flux solver (TLBFS). Firstly,
natural convection in a square enclosure, filled with pure fluid (air and water), was investigated to
validate the accuracy and performance of the method. Then, influences of the Rayleigh number, of
nanoparticle volume fraction on streamlines, isotherms and average Nusselt number were studied.
The numerical results illustrated that heat transfer was enhanced with the augmentation of Rayleigh
number and nanoparticle volume fraction. There was a linear relationship between the average
Nusselt number and solid volume fraction. and there was an exponential relationship between the
average Nusselt number and Ra. In view of the Cartesian grid used by the immersed boundary
method and lattice model, the immersed boundary method was chosen to treat the no-slip boundary
condition of the flow field, and the Dirichlet boundary condition of the temperature field, to facilitate
natural convection around a bluff body in a square enclosure. The presented numerical algorithm
and code implementation were validated by means of numerical examples of natural convection
between a concentric circular cylinder and a square enclosure at different aspect ratios. Numerical
simulations were conducted for natural convection around a cylinder and square in an enclosure.
The results illustrated that nanoparticles enhance heat transfer in higher Rayleigh number, and the
heat transfer of the inner cylinder is stronger than that of the square at the same perimeter.

Keywords: natural convection; nanofluid; thermal lattice Boltzmann flux solver; immersed
boundary method

1. Introduction

Natural convection has received widespread attention by many researchers because it
is relevant to many engineering applications, such as heat exchangers, solar energy and
nuclear reactors. Conventional fluids, such as water and ethylene glycol mixture, are not
effective heat transfer medias, due to low thermal conductivity. Therefore, nanofluids
have gained attention as an alternative and effective heat transfer medium, due to having
higher thermal conductivities [1]. There are two main research approaches for studying
nanofluids: experiments and numerical simulations. In view of experiments, Song et al. [2]
measured the thermal performance of SiC nanofluid in a water pool boiling experiment,
and investigated the enhancement for critical heat flux. Nikhah et al. [3] carried out an
experimental investigation on the convective boiling of dilute CuO-water nanofluids in an
upward flow inside a conventional heat exchanger. Alkasmoul et al. [4] investigated the
turbulent flow of Al2O3-water, TiO2-water and CuO-water nanofluids in a heated, hori-
zontal tube with a constant heat flux. The results showed that the efficiency of nanofluids
in enhancing heat transfer was not high for turbulent flows. Qi et al. [5] carried out an
experimental study on boiling heat transfer of an α-Al2O3-water nanofluid.

More researchers have applied numerical methods to study the performance of
nanofluids. Khanafer et al. [6] directly solved the macroscopic governing equations to
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investigate heat transfer enhancement in a two-dimensional enclosure utilizing nanoflu-
ids for various pertinent parameters, including Grashof numbers and volume fractions.
The results indicated that heat transfer increased with the volumetric fraction of the cop-
per nanoparticles in water at any given Grashof number. Fattahi et al. [7] carried out a
study on water-based nanofluid, containing Al2O3 or Cu nanoparticles, in a square cavity
for Rayleigh number 103–106 and solid volume fraction 0–0.05, by means of the lattice
Boltzmann method. The results indicated that the average Nusselt number increased by
increasing the solid volume fraction and the effects of solid volume fraction on Cu were
stronger than on Al2O3. He et al. [8] applied the single-phase lattice model to simulate con-
vection heat transfer utilizing Al2O3-water nanofluid in a square cavity. Qi et al. [9] applied
the two-phase lattice Boltzmann model for natural convection of nanofluid. From the above
analysis, the lattice Boltzmann method (LBM) has obtained remarkable achievements in
simulating incompressible viscous laminar nanoflow. Saadat et al. [10] developed a com-
pressible LB model on standard lattices to solve supersonic flows involving shock waves,
based on the consistent D2Q9 LB model, and with the help of appropriate correction terms
introduced into the kinetic equations to compensate for deviations in the hydrodynamic
limit. Huang et al. [11] improved the lattice Boltzmann model with a self-tuning equation
of state to simulate the thermal flows beyond the Boussinesq and ideal-gas approximations.
Hosseini et al. [12] derived the appropriate form of the correction term for the space- and
time-discretized LB equations, through a Chapman–Enskog analysis for different orders of
the equilibrium distribution function. As a mesoscopic approach, LBM can easily solve the
macroscopic variables used by distribution functions and the linear streaming and collision
processes can effectively simulate the nonlinear convection and diffusion effects in the
macroscopic state. With the development of Lattice models in recent years, LBM can solve
various flow problems successfully, including incompressible, compressible and thermal
flows, by introducing a variety of applicable models. However, the solutions of flow for
High Mach number and turbulence problems of complex shape are limited because the
standard LBM is strictly limited to using the uniform Cartesian mesh due to the lattice
uniformity for flow.

Recently, the idea of coupling the LBM and conventional methods (including finite
difference method and finite volume method) has been proposed for computational fluid
dynamics. It effectively combines the merits of macroscopic and mesoscopic methods.
The coupling algorithm can be divided into the whole region coupling algorithm and the
partition coupling algorithm. The whole region coupling algorithm solves the different
variables used by different numerical algorithms. Nie et al. [13] and Mezrhab et al. [14]
used the LBM-FDM coupling method to solve natural convection problems, in which LBM
solved flow problems and FDM analyzed heat transfer. Chen et al. [15] used the LBM-FDM
coupling method to solve the two-phase interface convection problem, in which LBM solved
the velocity field and FDM solved the concentration field. Mishra et al. [16] used LBM-FVM
to solve heat conduction and radiation problems. Sun and zhang [17] used LBM-FVM for
conduction and radiation in irregular geometry. The partition coupling algorithm divides
the whole region into several sub-regions and realizes the coupling function through
information transfer between the sub-regions. Luan et al. [18–20] simulated complex flows
in porous media using LBM-FVM. Chen et al. [21–23] used LBM-FVM to study the multi-
scale flow, multi-component mass transfer, proton conduction and electrochemical reaction
processes. Li et al. [24,25] used LBM-FVM to study natural convection and the solid–liquid
variation problem. Feng et al. [26] developed a thermal lattice Boltzmann model with a
hybrid recursive regularization collision operator on standard lattices for simulation of
subsonic and sonic compressible flows without shock by LBM-FVM. Essentially, the main
advantage of the above two coupling methods is to improve the calculation efficiency of
LBM and expand the applications of macroscopic computational fluid dynamics.

A new coupling idea gas been proposed in the past five years. This coupling method
adopts the finite volume method to discretize macroscopic governing equations and uses
local lattice Boltzmann equation solutions to calculate interface flux, on the basis of con-
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sidering migration and collision processes. This method realizes the coupling of the
macroscopic method and the mesoscopic model and is named the lattice Boltzmann flux
solver (LBFS). Yang et al. [27,28] proposed LBFS based on compressible models, which is
suitable for calculating viscous and compressible multi-component flows. Shu et al. [29]
and Wang et al. [30–32] developed LBFS for incompressible viscous flow problems. This
method integrates the advantages of the macroscopic method and the mesoscopic model,
to not only realize the unified solution of non-viscous flux and viscous flux, but also to
improve calculation efficiency without using a uniform grid in the whole calculation do-
main. Based on the above development, Wang et al. [33] developed the thermal lattice
Boltzmann flux solver (TLBFS) and successfully used it to simulate the natural convec-
tion problem. Cao [34] proposed a variable property-based lattice Boltzmann flux solver
(VPLBFS) for thermal flows with partial or total variation in fluid properties in the low
Mach number limit.

In this paper, we attempted to build mathematical modeling to simulate the natural
convection of Al2O3/water nanofluid in a square enclosure using the thermal lattice Boltz-
mann flux solver (TLBFS), which is a coupling method combining the finite volume method
to discretize the macroscopic governing equations in space, and reconstructed flux solutions
at the interface between two adjacent cell centers by using the single-relaxation-time Lattice
Boltzmann model. The top mpotivating priority of this paper was to establish a simple and
effective numerical calculation method to solve natural convection problems. Therefore, it
was necessary to introduce the boundary treatment technique in the solver. Tong et al. [35]
applied the multiblock lattice Boltzmann method with a fixed Eulerian mesh, and the foul-
ing layer was represented by an immersed boundary with Lagrangian points. The shape
change of the fouling layer could be carried out by deforming the immersed boundary,
while keeping the mesh of flow simulation unchanged. Suzuki et al. [36] simulated lift and
thrust generation by a butterfly-like flapping wing body model by means of immersed
boundary lattice Boltzmann simulations. The immersed boundary method is an effective
and simple method to treat solid surface boundary conditions and the numerical method
based on a non-body-fitted grid can avoid the abundant work involved in grid genera-
tion. Therefore, the immersed boundary method was applied to implement the no-slip
boundary condition and Dirichlet boundary condition was applied for natural convection
around a bluff body in a square enclosure with the purpose of effective treatment of surface
boundaries. Natural convection problems were investigated at different Rayleigh numbers
and nanoparticle volume fractions. Influences of the Rayleigh number and nanoparticle
volume fraction on the streamlines, isotherms and average Nusselt number were studied.

2. Governing Equations and Numerical Method

2.1. The Macroscopic Governing Equations

For incompressible thermal nanofluid, in consideration of single phase and constant
properties flow conditions, the macroscopic governing equations of natural convection in a
two-dimensional enclosure can be written as follows:

Continuity equation;
∂ρn f

∂t
+∇ · ρn f u = 0 (1)

Momentum equation;

∂

∂t

(
ρn f u

)
+∇

(
ρn f uu

)
= −∇p + μn f∇

[(
∇u + (∇u)T

)]
+ Fn f (2)

Energy equation;

∂

∂t

(
ρn f e

)
+∇

(
ρn f ue

)
= χn f∇2

(
ρn f e

)
(3)
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where ρ, u, p and m represent fluid density, velocity, pressure, dynamic viscosity coefficient,
respectively; e stands for internal energy defined as e = DRT/2, where D is the dimension,
R is the gas constant and T represents the temperature; χ is the thermal diffusivity. The
subscript nf denotes the nanofluid.

Natural convection heat transfer in nanofluids is studied in a two-dimensional en-
closure. Nanoparticles considered to be spherical and frictional forces are neglected. The
flow is assumed as laminar with a single-phase homogeneous mixture. The buoyancy force
always plays an essential role as an external force. Using the Boussinesq approximation,
the force source term can be defined as:

Fn f = ρn f βn f g(T − Tm)j (4)

where g represents the gravity acceleration, β is the thermal expansion coefficient and Tm is
the average temperature.

According to Chapman-Enskog analysis, the relationships can be established between
the fluxes and the distribution functions of the lattice Boltzmann model. Based on the
thermal lattice Boltzmann flux solver (TLBFS), the governing Equations (1)–(3) can be
rewritten as:

∂ρn f

∂t
+∇ ·

(
∑
α

eα f eq
α

)
= 0 (5)

∂ρn f u
∂t

+∇ · ∏1 = Fn f (6)

∂ρn f e
∂t

+∇ · ∏2 = 0 (7)

where

∏1 =
N

∑
α=0

(eα)β(eα)γ

[
f eq
α + (I − 1

2τv
) f neq

α

]
(8)

∏2 =
N

∑
α=0

eα

[
geq

α + (I − 1
2τc

)gneq
α

]
(9)

τv = μn f /(ρn f c2
s δt) + 0.5 (10)

τc = χn f /
(

2cs
2δt

)
+ 0.5 (11)

From the above process, the macroscopic flow variables and fluxes can be computed
by equilibrium and non-equilibrium distribution functions of the lattice model for the
governing equations of nanofluid. Equations (8) and (9) are used to solve the macroscopic
flow variables, and fluxes can be evaluated by the thermal lattice Boltzmann flux solver,
which is introduced in detail in the next section. The force source term is added at the cell
center during the calculation process.

2.2. Thermal Lattice Boltzmann Flux Solver

The discrete term of the governing Equations (5)–(7) by finite volume method:

dWi
dt

=
1

ΔVi
∑
k

RkdSk + F (12)

where W = [ρn f , ρn f u, ρn f v, ρn f e]T; dVi and dSk are the volume of ith control volume and
the area of the kth interface. For the 2D case, the D2Q9 lattice velocity model [37] is used
for momentum and energy fluxes. The expression of the fluxes Rk at the cell interfaces is
as followed:
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Rk =

⎛⎜⎜⎜⎝
nx

(
f eq
1 − f eq

3 + f eq
5 − f eq

6 − f eq
7 + f eq

8

)
+ ny

(
f eq
2 − f eq

4 + f eq
5 + f eq

6 − f eq
7 − f eq

8

)
nx
(

fˆ1 + fˆ3 + fˆ5 + fˆ6 + fˆ7 + fˆ8
)
+ ny

(
fˆ5 − fˆ6 + fˆ7 − fˆ8

)
nx
(

fˆ5 − fˆ6 + fˆ7 − fˆ8
)
+ ny

(
fˆ2 + fˆ4 + fˆ5 + fˆ6 + fˆ7 + fˆ8

)
nx
(

ĝ1 − ĝ3 + ĝ5 − ĝ6 − ĝ7 + ĝ8
)
+ ny

(
ĝ2 − ĝ4 + ĝ5 + ĝ6 − ĝ7 − ĝ8

)
⎞⎟⎟⎟⎠
(13)

fˆα = f eq
α + (1 − 1

2τv
) f neq

α (14)

ĝα = geq
α + (1 − 1

2τc
)gneq

α (15)

From Equations (13)–(15), it can be seen that the important segment to solve fluxes is
to accurately evaluate the f eq

α , fˆα and ĝα terms.
The simplified thermal lattice Boltzmann model with BGK approximation can be

written as:
fα(r + eαδt, t + δt)− fα(r, t) = − 1

τv

[
fα(r, t)− f eq

α (r, t)
]

(16)

gα(r + eαδt, t + δt)− gα(r, t) = − 1
τc

[
gα(r, t)− geq

α (r, t)
]

(17)

In which equilibrium density distribution function and equilibrium internal energy
distribution function is given as:

f eq
α (r, t) = ρwα

[
1 +

eα · u
c2

s
+

(eα · u)2 − (cs|u|)2

2c4
s

]
(18)

geq
α (r, t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
− 2ρ

3
|u|2
c2 , α = 0

ρe
9

[
3
2 + 3

2 · eα ·u
c2 + 9

2 · (eα ·u)2

c4 − 3
2 · |u|2

c2

]
, α = 1, 2, 3, 4

ρe
36

[
3 + 6 · eα ·u

c2 + 9
2 · (eα ·u)2

c4 − 3
2 · |u|2

c2

]
, α = 5, 6, 7, 8

(19)

Using the second-order Taylor series expansion, Equations (16) and (17) can be trans-
formed as below:

δt

(
∂

∂t
+ eα · ∇

)
fα +

δ2
t

2

(
∂

∂t
+ eα · ∇

)2
fα +

1
τ

(
fα − f eq

α

)
+ O

(
δ3

t

)
= 0 (20)

δt

(
∂

∂t
+ eα · ∇

)
gα +

δ2
t

2

(
∂

∂t
+ eα · ∇

)2
gα +

1
τ

(
gα − geq

α

)
+ O

(
δ3

t

)
= 0 (21)

By the multi-scale Chapman-Enskog expansion, the distribution function, the temporal
and spatial derivatives, the non-equilibrium density and energy distribution functions can
be transformed into an expression only related to the equilibrium distribution functions
and can be derived from:

f neq
α (r, t) = −τv

[
f eq
α (r, t)− f eq

α (r − eαδt, t − δt)
]

(22)

gneq
α (r, t) = −τc

[
geq

α (r, t)− geq
α (r − eαδt, t − δt)

]
(23)

From Figure 1, the flow properties of eight vertices of the D2Q9 model can be evaluated
by interpolation with the given flow properties at the cell centers of two adjacent control
volumes. The values ri, ri+1 and r are defined as the physical positions of the two cell
centers and their interfaces, respectively. The interpolation formulation can be given as:

ψ(r − eαδt, t − δt) =

{
ψ(ri) + (r − eαδt − ri) · ∇ψ(ri) r − eαδt in Ωi

ψ(ri+1) + (r − eαδt − ri+1) · ∇ψ(ri+1) r − eαδt in Ωi+1
(24)

61



Entropy 2022, 24, 1448

where ψ stands for the flow properties, including ρ, u, v and e. f eq
α (r − eαδt, t − δt) and

geq
α (r − eαδt, t − δt) can be obtained by the corresponding equilibrium density distribution

function and energy distribution function. Then, the flow properties of the cell interface
can be written as:

ρ(r, t) = ∑
α=0

f eq
α (r − eαδt, t − δt) (25)

ρ(r, t)u(r, t) = ∑
α=0

eα f eq
α (r − eαδt, t − δt) (26)

ρ(r, t)e(r, t) = ∑
α=0

geq
α (r − eαδt, t − δt) (27)

Figure 1. Local flux reconstruction at cell interface.

Next, f eq
α (r, t) and geq

α (r, t) can also be easily solved by distribution functions. After
obtaining the equilibrium distribution functions, the fluxes can be evaluated according
to Equation (13).

2.3. Computational Sequence

The complete numerical simulation procedures for each time step of the proposed
method are summarized below.

1. According to the fluid properties of the nanofluid, determine initial velocity and
temperature field;

2. Based on the grid size, identify a streaming time step at each interface and then the
single relaxation parameters, including dynamic viscosity and the thermal diffusivity;

3. Apply the D2Q9 model to compute the density and energy equilibrium distribution
functions f eq

α (r − eαδt, t − δt) and geq
α (r − eαδt, t − δt) around the middle point r of

each interface;
4. Compute the macroscopic flow properties of nanofluid at the cell interface and

then compute f eq
α (r, t) and geq

α (r, t) by the equilibrium distribution functions of the
D2Q9 model;

5. Compute fˆα and ĝα terms, then the fluxes at the cell interface can be solved by
Equation (13);

6. Calculate the force source term and add this term to the fluxes;
7. Solve Equations (5)–(7) to obtain the macroscopic flow properties of the nanofluid;
8. Repeat steps (3)–(7) until the following convergence criterion is satisfied.

3. Numerical Examples of Natural Convection in a Square Enclosure

3.1. Problem Description

The computational domain and boundary conditions are shown in Figure 2. From this
figure, it can be seen that the no slip boundary condition was applied on four walls. The
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adiabatic condition was set on the top and bottom walls and temperatures of 1 and 0 were
applied on the left and right walls, respectively. The non-dimensional parameters, Prandtl
number Pr and Rayleigh number Ra, were applied to determine the dynamic similarity
as follows:

Pr = ν/χ (28)

Ra =
V2

c · L2

ν · χ
(29)

where L = 1 is the characteristic length of the square cavity and Vc is the characteristic
thermal velocity which is constrained by the low Mach number limit. In the present
simulations, Vc = 0.1 was set in order to ensure incompressible viscous flow.

Figure 2. Computational domain and boundary conditions.

In the present study, Al2O3/water nanofluid was used. The thermophysical properties
of the water and nanoparticles are listed in Table 1. The homogeneous model for nanofluid
was adopted. Physical properties of the nanofluids, including density, specific heat and
thermal expansion coefficient, were obtained using the classical formula developed for
conventional solid–liquid mixtures as follows:

ρn f = (1 − φ)ρ f + φρs (30)(
ρcp
)

n f = (1 − φ)
(
ρcp
)

f + φ
(
ρcp
)

s (31)

βn f = (1 − φ)β f + φβs (32)

where φ refers to the volume concentration of nanoparticles and the subscripts s, f denote
the particle and base fluids.

Table 1. Thermophysical properties of fluid and nanoparticles.

Properties Fluid Phase (Water) Solid Phase (Al2O3)

ρ (kg/m3) 997 3880
cp (J/kg·K) 4179 765

β (1/K) 0.00021 0.0000085
k (W/m·K) 0.613 40
μ (kg/m·s) 0.000855 -

The effective viscosity and thermal conductivity of the nanofluid strongly affect the heat
transfer rate and flow characteristics of nanofluids. The effective viscosity could be estimated
by experimental correlation for 47 nm Al2O3/water nanofluid by Angue Mintsa et al. [38]
and thermal conductivity was given by Gherasim et al. [39] as follows:

μn f = 0.904e14.8φμ (33)
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κn f = (1.72φ + 1.0)κ f (34)

In the present simulations, the convergence criterion for flow field and temperature
field were respectively given as follows:

Error1 =
∑ij

∣∣∣∣√(u(i, j, t + δt))
2 + (v(i, j, t + δt))

2 −
√
(u(i, j, t))2 + (v(i, j, t))2

∣∣∣∣
∑ij

√
(u(i, j, t + δt))

2 + (v(i, j, t + δt))
2

≤ 1 × 10−7 (35)

Error2 =
∑ij|T(i, j, t + δt)− T(i, j, t)|

∑ij T(i, j, t + δt)
≤ 1 × 10−7 (36)

3.2. Natural Convection of Pure Fluid in a Square Enclosure

To testify as to the accuracy and performance of the lattice Boltzmann flux solver based
on the population model, the classical natural convection in a square enclosure filled with
air and water was studied at Ra = 103, 104, 105 and 106.

Firstly, a grid independent study was conducted on five different uniform grids of
101 × 101, 151 × 151, 201 × 201, 251 × 251 and 301 × 301 for the natural convection problem
at Ra = 106 and Pr = 0.7. As shown in Table 2, when the mesh size was 201 × 201, or even
larger, the average Nusselt number did not change much and the value was between the
benchmark solutions of Davis [40] and Hortmann et al. [41]. When the mesh size was larger
than 151 × 151, the maximum horizontal velocity on the vertical mid-plane, the maximum
vertical velocity on the horizontal mid-plane and their locations were in agreement with
the benchmark solutions of Davis [40]. The above results illustrated grid independence on
uniform grids of 201 × 201, for the case of Ra = 106.

Table 2. Grid independent study on uniform of natural convection at Ra = 106.

Method Grids Nuavg y umax x vmax

Present

101 × 101 8.788 0.855 64.22 0.0350 217.60
151 × 151 8.809 0.850 64.66 0.0367 219.32
201 × 201 8.816 0.853 64.99 0.0375 220.05
251 × 251 8.819 0.854 66.18 0.0380 220.17
301 × 301 8.819 0.852 66.99 0.0383 220.14

De Vahl Davis [40] 8.800 0.850 64.63 0.0397 219.36
Hortmann et al. [41] 8.825 - - - -

Based on the above results, the grid independent study was conducted on non-uniform
grids by using the size of less than 201 × 201. Table 3 shows the numerical results of
six different non-uniform grids of natural convection at Ra = 106. From this table, the
results were close to the data of uniform grids of 201 × 201 when the non-uniform mesh
was more than 121 × 121. In order to ensure the accuracy and efficiency of numerical
simulations, the non-uniform grid of 141 × 141 was chosen to simulate natural convection
in a square enclosure.

Table 3. Grid independent study on non-uniform of natural convection at Ra = 106.

Grids Nuavg y umax x vmax

81 × 81 8.803 0.856 64.77 0.0358 218.98
101 × 101 8.811 0.855 64.99 0.0349 219.16
121 × 121 8.816 0.854 65.04 0.0400 219.37
141 × 141 8.818 0.853 65.03 0.0388 220.15
161 × 161 8.819 0.853 65.03 0.0379 220.14
181 × 181 8.820 0.853 65.06 0.0372 220.22
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The average Nusselt number results at different Rayleigh numbers are listed in Table 4,
and it can be seen that the numerical simulation results were in good agreement with
previous literature results at different Rayleigh numbers. This illustrated the accuracy of
the present method for natural convection.

Table 4. Comparison of average Nusselt numbers at different Rayleigh numbers.

Ra
Air Water

Present Davis [40] Khanafer et al. [6] Qi [9] Present Kahveci [42] Lai and Yang [1]

103 1.118 1.118 1.118 1.118 1.119 - 1.128
104 2.246 2.243 2.245 2.247 2.278 2.274 2.286
105 4.522 4.519 4.522 4.522 4.725 4.722 4.729
106 8.818 8.800 8.826 8.808 9.204 9.230 9.173

Figure 3 shows the temperature distribution at horizontal midsections of the enclosure.
For the enclosure filled with air, the results of Ra = 105 were compared with the numerical
results of Khanafer et al. [6] and the experimental results of Krane and Jessee [43]. For the
enclosure filled with water, the results were compared with numerical results of Lai and
Yang [1]. It was noted from the comparisons that the solutions were in excellent agreement.
This illustrated that the method in this paper could capture the temperature field very well.

Figure 3. Comparison of temperature distribution at horizontal midsections with previous literatures.

The streamlines and isotherms of air and water at various Rayleigh numbers are
shown in Figures 4 and 5, respectively. It can be seen that the natural convection and heat
transfer between the wall and fluid were enhanced as Ra increased. For Ra ≤ 104, the flow
characteristic was to appear as a central vortex. For Ra > 104, the central vortex became
more expanded and finally broke up into two vortices so that temperature boundary layers
were formed. The above phenomenon agreed well with previous studies.

3.3. Natural Convection of Nanofluid in a Square Enclosure

After validating the numerical method for natural convection in a square enclosure
filled with pure fluid, the natural convection in a square enclosure filled with Al2O3-water
nanofluid of nanoparticles having volume fraction φ = 1–4% at Ra = 103–106 was simulated
to validate the present numerical algorithm. The presented averaged Nusselt numbers
were compared with the numerical results of Lai and Yang [1] and listed in Table 5. It
shows that there was a good agreement and the relative errors were less than 0.8%, which
further illustrated that the present numerical method could simulate the natural convection
of nanofluid at different Rayleigh numbers and nanoparticle volume fractions.
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Figure 4. Streamlines and isotherms of air at various Rayleigh numbers.

Figure 5. Streamlines and isotherms of water at various Rayleigh numbers.

Table 5. Comparison of average Nusselt numbers with the previous studies.

Ra φ Present Ref [1] Relative Error (%)

103

0.01 1.139 1.147 0.697
0.02 1.158 1.167 0.771
0.03 1.177 1.186 0.756
0.04 1.196 1.206 0.829

104

0.01 2.317 2.326 0.387
0.02 2.357 2.366 0.380
0.03 2.396 2.406 0.416
0.04 2.435 2.445 0.409

105

0.01 4.807 4.811 0.008
0.02 4.890 4.894 0.008
0.03 4.972 4.977 0.010
0.04 5.054 5.059 0.010

106

0.01 9.366 9.331 0.375
0.02 9.528 9.492 0.386
0.03 9.688 9.653 0.363
0.04 9.849 9.813 0.367
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In the present numerical simulations, the effect of nanoparticle suspensions (Al2O3-
water) on flow and temperature characteristics for Ra = 103–106 and nanoparticles volume
fraction φ = 0–10% were studied. The variation of average Nusselt number against solid
volume fraction for different Rayleigh numbers is shown in Figure 6a and the variation of
average Nusselt number against Rayleigh number for different solid volume fractions is
shown in Figure 6b.

Figure 6. Variation of average Nusselt number against (a) solid volume fraction for different Rayleigh
number; (b) Rayleigh number for different solid volume fraction.

Numerical results indicated that average Nusselt number increased with the increase
of Ra and φ. This illustrated that the function of heat transfer was enhanced with the
augmentation of nanofluid thermal conductivity, which indicated that the major mechanism
of heat transfer in flowing fluid was thermal dispersion. At the same Ra, the relationship
of the average Nusselt number and solid volume fraction was almost linear. At the same
solid volume fraction, the relationship of the average Nusselt number and Ra presented an
exponential form. At higher Rayleigh number, the greater the heat transfer rate that could
be obtained.

Figures 7 and 8 indicate the isotherms and streamlines of nanofluid (Al2O3-water)
at Ra = 103–106 and φ = 0%, 5% and 10%, which show the effect of volume fraction and
Ra on flow field and temperature field very well. From Figure 7, it can be seen that
heat transfer between the wall and fluid were enhanced as Ra increased. As the volume
fraction of nanoparticles increased, the isotherm changed slightly. That was because the
mixture flow became more viscous, due to the nanoparticles. The velocity of flow fluid
reduced and then natural convection weakened. However, the function of heat transfer in
total computational domain was enhanced, which was attributed to the augmentation of
nanofluid thermal conductivity.

From Figure 8, it can be observed that the flow appeared as a central vortex for lower
Ra. As Ra increased, the central vortex became more expanded and finally broke up into
two vortices, so that temperature boundary layers were formed. For pure fluid, the vortex
formed in the enclosure as a result of the buoyancy effect. By increasing the volume fraction
of nanoparticles, the intensity of streamlines increased, due to the high energy transport
through the flow as a result of irregular motion of the ultra-fine particles.
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Figure 7. Isotherms of nanofluid at various Ra and φ.

Figure 8. Streamlines of nanofluid at various Ra and φ.

4. Numerical Examples of Natural Convection around Bluff Body in a Square Enclosure

4.1. Problem Description

The boundary condition-enforced immersed boundary method was chosen for treat-
ment of the solid boundary conditions. Based on the immersed boundary method and
thermal lattice Boltzmann flux solver (IB-TLBFS), the macroscopic governing equations can
be rewritten as:

∂ρn f

∂t
+∇ ·

(
∑
α

eα f eq
α

)
= 0 (37)
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∂ρn f u
∂t

+∇ · ∏1 = Fn f + fb (38)

∂ρn f e
∂t

+∇ · ∏2 = qb (39)

where the force source term fb and the heat source term qb are both generated by the
immersed boundary. To solve the governing equations, the calculation process is divided
into two steps: the first step predicts the state variables without taking account of the
boundary function and the second step corrects velocity and temperature by the immersed
boundary method.

In this work, the implicit velocity correction scheme proposed by Wang et al. [44]
was be applied in view of satisfaction of the no slip boundary. The implicit heat source
scheme proposed by Ren et al. [45] was applied for the Dirichlet boundary conditions of
the temperature field.

Natural convection of a heated bluff body in a square enclosure was studied. The
physical models, computational domain and boundary conditions are presented in Figure 9.
All boundaries were no-slip and isothermal boundary conditions. The flow was assumed
to be laminar and driven by the temperature difference.

Figure 9. The physical models, computational domain and boundary conditions between bluff body
and square enclosure. (a) Cylinder (b) Square.

Numerical investigations were carried on two types of bluff bodies, a circular cylinder
and a square. The four side walls of the outer square enclosure were cooled isothermally at
TC and the side length was L. The wall of the inner bluff body was heated isothermally at
TH and D and a represent the diameter of the circular cylinder and the side length of the
square, respectively. For fixed Rayleigh number, numerical simulation cases were designed
to have a fixed perimeter for different bluff bodies and the influences of geometry on the
heat transfer is discussed in detail.

4.2. Natural Convection in the Annulus between Concentric Circular Cylinder and Square Enclosure

After validating the numerical algorithm of the thermal lattice Boltzmann flux solver,
natural convection in the annulus between concentric circular cylinder and square enclosure
at Ra = 104, 105 and 106 were simulated to validate the immersed boundary method and
code implementation. Numerical simulations were conducted for three different aspect
ratios (Ar = 1.67, 2.5 and 5.0). The average Nusselt number was also computed and
compared with reference data in the literature.

The computed average Nusselt numbers are compared in Table 6 with those of
Ren et al. [45], Shu et al. [46] and Moukalled et al. [47]. From this table, it can be seen
that the present results of the method combining IBM and TLBFS agreed very well with
reference data. Besides this, the results revealed that the average Nusselt number greatly
depended on Rayleigh number and aspect ratio. Due to buoyancy-induced convection, the
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average Nusselt number increased with increase of Ra, while it decreased with increase of
Ar, due to the effect of annulus gap space.

Table 6. Comparison of average Nusselt numbers at different Ra and Ar.

Ra Ar Present Ren et al. [45] Shu and Zhu [46] Moukalled and Acharya [47]

104
1.67 5.425 5.303 5.40 5.826
2.50 3.256 3.161 3.24 3.331
5.00 2.090 2.051 2.08 2.071

105
1.67 6.285 6.171 6.21 6.212
2.50 4.954 4.836 4.86 5.080
5.00 3.809 3.704 3.79 3.825

106
1.67 11.943 11.857 12.00 11.620
2.50 9.002 8.546 8.90 9.374
5.00 6.110 5.944 6.11 6.107

The streamlines and isotherms in the annulus at various Rayleigh numbers and aspect
ratios are shown in Figure 10. Conduction dominated the flow field and a relatively weak
convective flow could be observed in the annulus at the lower Ra. As the Rayleigh number
increased, the strength of the convective flow grew and the center of the recirculation eddy
changed its position. When Ra = 106, a relatively stronger convective flow dominated
the fluid field and a higher temperature gradient could be observed. In contrast, stronger
convective flow and higher temperature gradient could be observed in the case of lower
values of Ar.

Figure 10. Streamlines and isotherms at various Ra and Ar.

4.3. Natural Convection of Nanofluid between Bluff Body and Square Enclosure

In the present study, numerical investigations of natural convection between heated
bluff body and square enclosure were conducted for nanoparticles having volume fractions
of φ = 0%, 2% and 4% and Rayleigh numbers of Ra = 104, 105 and 106.

The averaged Nusselt numbers are listed in Table 7. The numerical simulation results
indicated that average Nusselt number increased with increase of Ra and φ, which was the
same as occurred in natural convection of square enclosure. By comparison, the averaged
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Nusselt number of the natural convection around a circular cylinder in an enclosure was
greater than that of the square at the same calculation conditions. This illustrated that a
smooth geometrical shape was beneficial to heat transfer.

Table 7. Comparison of average Nusselt numbers at various Ra and φ.

Cylinder Square

φ Ra = 104 Ra = 105 Ra = 106 Ra = 104 Ra = 105 Ra = 106

0.00 3.131 5.080 9.144 2.9432 4.8675 8.6541
0.02 3.132 5.098 9.200 2.9447 4.8884 8.7186
0.04 3.134 5.117 9.263 2.9463 4.9103 8.7883

Figures 11 and 12 present the distribution of the isotherms for different Rayleigh
numbers (Ra = 105 and 106) and values of nanoparticle volume fractions (φ = 0 and 0.04).
An overview of this figure indicated that the thermal fields strongly depended on Rayleigh
number. When Ra = 105 or even lower, the isotherms of φ = 0 were almost close to that
of φ = 0.04, which illustrated that nanoparticle volume fraction played a smaller role in
heat transfer and flow pattern. When Ra = 106, there were significant differences between
the isotherms of φ = 0 and φ = 0.04, which illustrated that nanoparticle volume fraction
played a role in heat transfer and flow pattern for high Ra. The thickness of the thermal
boundary layer decreased as the volume fraction increased, which was due to the increasing
conduction heat transfer by adding nanoparticle volume fraction.

Figure 11. Isotherms for natural convection around cylinder at different nanoparticles volume
fraction. Green line: φ = 0.00, red line: φ = 0.04.

Figure 12. Isotherms for natural convection around square at different nanoparticles volume fraction.
Green line: φ = 0.00, red line: φ = 0.04.

Figure 13 shows the streamlines for natural convection around a circular cylinder and
square at nanoparticle volume fractions φ = 0.04 and Ra = 106. From Table 7, it can be seen
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that the preferable heat transfer effect could be acquired by the cylinder in comparison with
the square at the same perimeter. That was because the velocity and temperature gradients
around the sharp corners of the square dramatically changed, which prevented the heat
transfer effect.

Figure 13. Isotherms and streamlines for natural convection at nanoparticles volume fraction φ = 0.04
and Ra = 106.

5. Conclusions

The thermal lattice Boltzmann flux solver (TLBFS) was applied to simulate natural
convection of nanofluid in a square enclosure. This method couples the finite volume
method and lattice Boltzmann models to realize the solution of incompressible thermal
flow. To validate the accuracy and performance of this method, natural convection in
a square enclosure filled with pure fluid (air and water) was first studied. There were
good agreements with previous literature. Numerical investigations of fluid flow and
convective heat transfer were performed. The effects of some parameters, such as the
Rayleigh number (Ra), and volume fraction of nanoparticles (φ), on natural convection
were analyzed. With increase in the Rayleigh number and nanoparticle volume fraction,
the heat transfer rate increased and the nanofluid flow became more viscous and this led to
a decrease in nanofluid motion velocity. The average Nusselt number was an increasing
exponential function of the Rayleigh number and an increasing linear function of the
nanoparticle volume fraction. Then, natural convection around a bluff body in a square
enclosure was studied by a method combining TLBFS and immersed boundary method.
Natural convection problems in the annulus between concentric circular cylinder and
square enclosure without nanofluid were simulated, which validated the feasibility of the
numerical algorithm and code implement. Numerical investigations of natural convection
between heated bluff body (cylinder and square) and square enclosure were conducted
for different nanoparticle volume fractions and Rayleigh numbers. The numerical results
illustrated that heat transfer effect increased with increase of Ra and φ. At lower Ra, the
function of heat transfer with the augmentation of nanofluid thermal conductivity was
counteracted by the more viscous flow. Nevertheless, nanoparticles played a better role in
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enhancing natural convection at higher Ra. The above results declare that the TLBFS is a
promising method for heat transfer of nanofluids of the future.
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Abstract: We study a dilute granular gas immersed in a thermal bath made of smaller particles with
masses not much smaller than the granular ones in this work. Granular particles are assumed to
have inelastic and hard interactions, losing energy in collisions as accounted by a constant coefficient
of normal restitution. The interaction with the thermal bath is modeled by a nonlinear drag force
plus a white-noise stochastic force. The kinetic theory for this system is described by an Enskog–
Fokker–Planck equation for the one-particle velocity distribution function. To get explicit results of
the temperature aging and steady states, Maxwellian and first Sonine approximations are developed.
The latter takes into account the coupling of the excess kurtosis with the temperature. Theoretical
predictions are compared with direct simulation Monte Carlo and event-driven molecular dynamics
simulations. While good results for the granular temperature are obtained from the Maxwellian
approximation, a much better agreement, especially as inelasticity and drag nonlinearity increase, is
found when using the first Sonine approximation. The latter approximation is, additionally, crucial to
account for memory effects such as Mpemba and Kovacs-like ones.

Keywords: granular gases; kinetic theory; Enskog–Fokker–Planck equation; direct simulation Monte
Carlo; event-driven molecular dynamics

1. Introduction

Since the late 20th century, the study of granular materials has become of great
importance in different branches of science, such as physics, engineering, chemistry, and
mathematics, motivated by either fundamental or industrial reasons. It is well known
that rapid flows in granular gases in the dilute regime are well described by a modified
version of the classical Boltzmann’s kinetic theory for hard particles. The most widely used
model for the granular particles is the inelastic hard-sphere (IHS) one, in which particles
are assumed to be hard spheres (or, generally, hard d-spheres) that lose energy due to
inelasticity, as parameterized by a constant coefficient of normal restitution.

Theoretical predictions have been tested by different experimental setups in the freely
evolving case [1,2]. However, it is rather difficult to experimentally replicate the latter
granular gaseous systems due to the fast freezing implied by the dissipative interactions.
Then, energy injection is very common in granular experiments [3–10]. In addition, granu-
lar systems are never found in a vacuum on Earth. From a quick but attentive glance at
our close environment, grains might be found, for example, in the form of dust or pollen
suspended in the air, sand, or dirtiness, diving down or browsing through a river, or even
forming part of more complex systems such as soils. Therefore, fundamental knowledge
about driven granular flows contributes to the understanding of a great variety of phe-
nomena in nature. This is one of the reasons why the study of driven granular flows has
become quite important, besides its intrinsic interest at physical and mathematical levels.
Consequently, modeling driven granular flows constitutes a solid part of granular matter
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research, with theorists combining different collisional models and distinct interactions
with the surroundings [11–20].

Recent works [21–23] introduced a model for a molecular gas in which the interaction
of the particles with a background fluid is described by a stochastic force and a drag force
whose associated drag coefficient has a quadratic dependence on the velocity modulus.
This latter dependence is motivated by situations where the particle masses in the gas
and the background fluid are not disparate [24–26]. The nonlinearity of the drag force
implies an explicit coupling of the temperature with higher-order moments of the velocity
distribution function (VDF) of the gas, implying the existence of interesting memory effects,
such as Mpemba or Kovacs-like ones, as well as nonexponential relaxations [21–23]. On
the other hand, the elastic property of the molecular particles implies that the system
ends in an equilibrium state described by the common Maxwell–Boltzmann VDF, unlike
granular gases, both driven and freely evolving [11,12,14,17,18,27–30], where a coupling of
the hydrodynamic quantities with the cumulants of the VDF is always present. To imagine
a real situation, one might possibly consider, for example, a microgravity experiment of
pollen grains in a dust cloud.

Throughout this work, we study the properties of homogeneous states of a dilute
inelastic granular gas immersed in a background fluid made of smaller particles, the
influence of the latter on the former being accounted for at a coarse-grained level by the
sum of a deterministic nonlinear drag force and a stochastic force. This gives rise to a
competition between the pure effects of the bath and the granular energy dissipation. In
fact, we look into expected nonGaussianities from a Sonine approximation of the VDF,
commonly used in granular gases. The theoretical results are tested against computer
simulations, with special attention on the steady-state properties and memory effects.

The paper is organized as follows. We introduce the model for this system and the
associated kinetic-theory evolution equations in Section 2. In Section 3, the Maxwellian and
first Sonine approximations are constructed, and the steady-state values are theoretically
evaluated. Then, Section 4 collects simulation results from the direct simulation Monte
Carlo (DSMC) method and the event-driven molecular dynamics (EDMD) algorithm,
which are compared to the theoretical predictions for steady and transient states, including
memory effects. Finally, some conclusions of this work are exposed in Section 5.

2. The Model

We consider a homogeneous, monodisperse, and dilute granular gas of identical
inelastic hard d-spheres of mass m and diameter σ, immersed in a background fluid made
of smaller particles. In a coarse-grained description, the interactions between the grains
and the fluid particles can be effectively modeled by a drag force plus a stochastic force
acting on the grains. If the mass ratio between the fluid and granular particles is not very
small, the drag force becomes a nonlinear function of the velocity [24–26]. The model, as
said in Section 1, has previously been studied in the case of elastic collisions [21–23] but
not, to our knowledge, in the context of the IHS model. Figure 1 shows an illustration of
the system and its modeling.
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Figure 1. Illustration of the system considered in this paper. A granular gas of hard particles
(represented by large yellowish spheres) is coupled to a thermal bath (made of particles represented
by the small grayish spheres) via a drag force Fdrag = −mξ(v)v, where ζ(v) is a velocity-dependent
drag coefficient, and a stochastic force Fnoise = mχ(v)η, where η is a Gaussian white-noise term. In
addition, the granular particles are subjected to binary inelastic collisions, represented by the red
gleam-like lines.

2.1. Enskog–Fokker–Planck Equation

The full dynamics of the system can be studied from the inelastic homogeneous
Enskog–Fokker–Planck equation (EFPE),

∂t f (v; t)− ∂v

[
ξ(v)v +

χ2(v)
2

∂v

]
f (v; t) = J[v| f , f ], (1)

where f is the one-particle VDF, so that n =
∫

dv f (v; t) is the number density, and J[v| f , f ]
is the usual Enskog–Boltzmann collision operator defined by

J[v1| f , f ] ≡ σd−1gc

∫
dv2

∫
+

dσ̂ (v12 · σ̂)
[
α−2 f (v′′

1 ) f (v′′
2 )− f (v1) f (v2)

]
. (2)

Here, α is the coefficient of normal restitution (see below), v12 = v1 − v2 is the relative
velocity, σ̂ = (r1 − r2)/σ is the intercenter unit vector at contact, gc = limr→σ+ g(r) is the
contact value of the pair correlation function g(r),

∫
+ dσ̂ ≡ ∫ dσ̂ Θ(v12 · σ̂), Θ being the

Heaviside step-function and v′′
i refers to the precollisional velocity of the particle i. Within

the IHS model, the collisional rules are expressed by [18,30]

v′′
1/2 = v1/2 ∓ 1 + α−1

2
(v12 · σ̂)σ̂. (3)

From Equation (3), one gets (v12 · σ̂) = −α(v′′
12 · σ̂); this relation defines the coefficient of

normal restitution, which is assumed to be constant.
The second term on the left-hand side of Equation (1) represents the action of a net

force F = Fdrag + Fnoise describing the interaction with the particles of the background fluid.
The deterministic nonlinear drag force is Fdrag = −mξ(v)v, where the drag coefficient
ξ(v) depends on the velocity. In turn, Fnoise = mχ2(v)η is a stochastic force, where χ2(v)
measures its intensity, and η is a stochastic vector with the properties of a zero-mean
Gaussian white noise with a unit covariance matrix, i.e.,

〈ηi(t)〉 = 0, 〈ηi(t)ηj(t′)〉 = Iδijδ(t − t′), (4)
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where i and j are particle indices, and I is the d × d unit matrix so that different Cartesian
components of ηi(t) are uncorrelated. The functions ξ(v) and χ2(v) are constrained to
follow the fluctuation-dissipation theorem as

χ2(v) = v2
bξ(v), (5)

vb =
√

2Tb/m being the thermal velocity associated with the background temperature Tb.
The drag coefficient ξ is commonly assumed to be independent of the velocity.

However, a dependence on v cannot be ignored if the mass of a fluid particle is not
much smaller than that of grain [24–26]. The first correction to ξ = const is a quadratic
term [21–23], namely

ξ(v) = ξ0

(
1 + 2γ

v2

v2
b

)
, (6)

where ξ0 is the drag coefficient in the zero-velocity limit and γ controls the degree of
nonlinearity of the drag force.

2.2. Dynamics

It is well known that, in the case of driven granular gases [11,12,14,17–19,31,32], there
exists a competition between the loss and gain of energy due to inelasticity and the action
of the thermal bath, respectively. This eventually leads the granular gas to a steady state, in
contrast to the freely cooling case [18].

The basic macroscopic quantity characterizing the time evolution of the system is the
granular temperature, defined analogously to the standard temperature in kinetic theory as

T(t) =
m
dn

∫
dv v2 f (v; t). (7)

While in the case of elastic collisions, the asymptotic steady state is that of equilibrium
at temperature Tb, i.e., limt→∞ T(t) = Tb, in the IHS model, the steady state is a nonequi-
librium one and, moreover, limt→∞ T(t) = Tst < Tb. From the EFPE, one can derive the
evolution equation of the granular temperature, which is given by

∂tT
ξ0

= 2(Tb − T)
[

1 + (d + 2)γ
T
Tb

]
− 2(d + 2)γ

T2

Tb
a2 − ζ

ξ0
T, (8)

where
ζ(t) ≡ − m

dT(t)n

∫
dv v2 J[v, f , f ] (9)

is the cooling rate and

a2(t) ≡ d
d + 2

n
∫

dv v4 f (v; t)

[
∫

dv v2 f (v; t)]2
− 1 (10)

is the excess kurtosis (or fourth cumulant) of the time-dependent VDF. The coupling of
T(t) to a2(t) is a direct consequence of the quadratic term in the drag coefficient. As for the
cooling rate ζ(t), it is a consequence of inelasticity and, therefore, vanishes in the elastic
case (conservation of energy). Insertion of Equation (2) into Equation (9) yields [18]

ζ(t) = (1 − α2)
ν(t)√
2dn2

Γ
(

d
2

)
Γ
(

d+3
2

) ∫ dv1

∫
dv2

[
v12

vth(t)

]3
f (v1; t) f (v2; t). (11)

Here, vth(t) =
√

2T(t)/m is the time-dependent thermal velocity and

ν(t) = gcKdnσd−1vth(t), Kd ≡ πd−1
√

2Γ(d/2)
, (12)

78



Entropy 2022, 24, 1436

is the time-dependent collision frequency.
Let us rewrite Equation (8) in dimensionless form. First, we introduce the reduced

quantities

t∗ ≡ νbt, θ(t∗) ≡ T(t)
Tb

, ξ∗0 ≡ ξ0

νb
, μ�(t∗) ≡ − 1

nν(t)

∫
dv

[
v

vth(t)

]�
J[v| f , f ], (13)

where νb = gcKdnσd−1vb is the collision frequency associated with the background
temperature Tb. Note that the control parameter ξ∗0 measures the ratio between the charac-
teristic times associated with collisions and drag. In the molecular case, ξ∗0 depends on the
bath-to-grain density, size, and mass ratios, but otherwise, it is independent of Tb [21,26].
In terms of the quantities defined in Equation (13), Equation (8) becomes

θ̇

ξ∗0
= 2(1 − θ)[1 + (d + 2)γθ]− 2(d + 2)γθ2a2 − 2μ2

d
θ3/2

ξ∗0
, (14)

where henceforth, a dot over a quantity denotes a derivative with respect to t∗, and we
have taken into account that ζ(t)/ν(t) = 2μ2(t∗)/d and ν(t)/νb = θ1/2(t∗).

Equation (14) is not a closed equation since it is coupled to the full VDF through a2
and μ2. More generally, taking velocity moments on the EFPE, an infinite hierarchy of
moment equations can be derived. In dimensionless form, it reads

Ṁ�

ξ∗0
=�

{[
(�− 2)γ +

μ2

d

√
θ

ξ∗0
+ (d + 2)γθ(1 + a2)− 1

θ

]
M� − 2γθM�+2 +

d + �− 2
2

M�−2
θ

}

− μ�

√
θ

ξ∗0
, (15)

where M�(t∗) ≡ n−1
∫

dv [v/vth(t)]� f (v; t). In particular, M0 = 1, M2 = d
2 , M4 =

d(d+2)
4 (1 + a2), and M6 = d(d+2)(d+4)

8 (1 + 3a2 − a3), a3 being the sixth cumulant.
Equation (15) is trivial for � = 0 and � = 2. The choice � = 4 yields

ȧ2

ξ∗0
=4γθ

[
2(1 + a2)

θ
+ (d + 2)(1 + a2)

2 − (d + 4)(1 + 3a2 − a3)

]
− 4

a2

θ

+
4
d

[
μ2(1 + a2)− μ4

d + 2

]√
θ

ξ∗0
. (16)

Equations (14)–(16) are formally exact in the context of the EFPE, Equation (1).
Nevertheless, they cannot be solved because of the infinite nature of the hierarchy (15) and
the highly nonlinear dependence of the collisional moments μ� on the velocity moments of
the VDF. This forces us to devise tractable approximations in order to extract information
about the dynamics and steady state of the system.

3. Approximate Schemes

3.1. Maxwellian Approximation

The simplest approximation consists of assuming that the VDF remains very close to
a Maxwellian during its time evolution so that the excess kurtosis a2 can be neglected in
Equation (14), and the reduced cooling rate μ2 can be approximated by [11,12,17,18,28,33,34]

μ2 ≈ μ
(0)
2 = 1 − α2. (17)
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In this Maxwellian approximation (MA), Equation (14) becomes

θ̇

ξ∗0
≈ 2(1 − θ)[1 + (d + 2)γθ]− 2(1 − α2)

d
θ3/2

ξ∗0
. (18)

This is a closed equation for the temperature ratio θ(t∗) that can be solved numerically
for any initial temperature. The steady-state value θst in the MA is obtained by equating
to zero the right-hand side of Equation (18), which results in a fourth-degree algebraic
equation.

3.2. First Sonine Approximation

As we will see later, the MA given by Equation (18) provides a simple and, in general,
rather accurate estimate of θ(t∗) and θst. However, since the evolution of temperature
is governed by its initial value only, the MA is unable to capture memory phenomena,
such as Mpemba- or Kovacs-like effects, which are observed even in the case of elastic
particles [21–23]. This is a consequence of the absence of any coupling of θ with some other
dynamical variable(s).

The next simplest approximation beyond the MA consists of incorporating a2 into
the description but assuming it is small enough as to neglect nonlinear terms involving
this quantity, as well as higher-order cumulants, i.e., ak

2 → 0 for k ≥ 2 and a� → 0 for
� ≥ 3. This represents the so-called first Sonine approximation (FSA), according to which
Equations (14) and (16) become

θ̇

ξ∗0
≈ 2(1 − θ)[1 + (d + 2)γθ]− 2(d + 2)γθ2a2 −

2
[
μ
(0)
2 + μ

(1)
2 a2

]
d

θ3/2

ξ∗0
, (19a)

ȧ2

ξ∗0
≈4γθ

[
2

1 + a2

θ
+ (d + 2)(1 + 2a2)− (d + 4)(1 + 3a2)

]
− 4

a2

θ

+
4
d

{
μ
(0)
2 − μ

(0)
4

d + 2
+

[
μ
(0)
2 + μ

(1)
2 − μ

(1)
4

d + 2

]
a2

}√
θ

ξ∗0
, (19b)

where we have used [11,12,17,18,28,33,34]

μ2 ≈ μ
(0)
2 + μ

(1)
2 a2, μ4 ≈ μ

(0)
4 + μ

(1)
4 a2, (20)

with

μ
(1)
2 =

3
16

μ
(0)
2 , μ

(0)
4 =

(
d +

3
2
+ α2

)
μ
(0)
2 , (21a)

μ
(1)
4 =

3
32

(
10d + 39 + 10α2

)
μ
(0)
2 + (d − 1)(1 + α). (21b)

Equations (19) make a set of two coupled differential equations. In contrast to the MA, now
the evolution of θ(t∗) is governed by the initial values of both θ and a2. This latter fact
implies that the evolution of temperature depends on the initial preparation of the whole
VDF, this being a determinant condition for the emergence of memory effects, which will
be explored later in Section 4.1.

3.2.1. Steady-State Values

The steady-state values θst and ast
2 in the FSA are obtained by equating to zero the

right-hand sides of Equations (19), i.e.,
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θ̇ = 0 ⇒ F0(θ
st) + F1(θ

st)ast
2 =

[
μ
(0)
2 + μ

(1)
2 ast

2

] (θst)3/2

ξ∗0
, (22a)

ȧ2 = 0 ⇒ G0(θ
st) + G1(θ

st)ast
2 =

{
μ
(0)
4

d + 2
− μ

(0)
2 +

[
μ
(1)
4

d + 2
− μ

(0)
2 − μ

(1)
2

]
ast

2

}
(θst)3/2

ξ∗0
, (22b)

where

F0(θ) =d(1 − θ)[1 + (d + 2)γθ], F1(θ) = −d(d + 2)γθ2, (23a)

G0(θ) =2dγθ(1 − θ), G1(θ) = dγθ[2 − θ(d + 8)]− d. (23b)

Eliminating ast
2 in Equation (22), one gets a closed nonlinear equation for θst in our FSA.

Once numerically solved, ast
2 is simply given by either Equation (22a) or Equation (22b).

For instance, Equation (22a) gives

ast
2 = − F0(θ

st)− μ
(0)
2 (θst)3/2/ξ∗0

F1(θst)− μ
(1)
2 (θst)3/2/ξ∗0

. (24)

Figure 2 compares the MA and FSA predictions of θst for three- and two-dimensional
granular gases with ξ∗0 = 1. We observe that the breakdown of equipartition (as measured
by 1 − θst) is stronger in 2D than 3D and increases with increasing inelasticity but decreases
as the nonlinearity of the drag force grows. Apart from that, the deviations of the MA
values with respect to the FSA ones increase with increasing nonlinearity and inelasticity,
the MA values tending to be larger (i.e., closer to equipartition) than the FSA ones.

0.0 0.2 0.4 0.6 0.8 1.0
α

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

γ

0.80

0.900.85

0.95

(a)

0.75

0.80

0.85

0.90

0.95

1.00

0.0 0.2 0.4 0.6 0.8 1.0
α

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

γ

0.80

0.90

0.85

0.95

(b)

0.75

0.80

0.85

0.90

0.95

1.00

0.0 0.2 0.4 0.6 0.8 1.0
α

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

γ

0.80

0.900.75

0.85

0.95

(c)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.0 0.2 0.4 0.6 0.8 1.0
α

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

γ

0.80

0.90

0.75

0.85

0.95

(d)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Figure 2. Theoretical predictions for the steady-state value of the reduced temperature θst as a function
of the coefficient of normal restitution α and of the nonlinearity control parameter γ with ξ∗0 = 1.
Panels (a,c) correspond to the MA, while panels (b,d) correspond to the FSA. The dimensionality of
the system is d = 3 in panels (a,b) and d = 2 in panels (c,d). The contour lines are separated by an
amount of Δθst = 0.05.
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The FSA predictions of ast
2 are displayed in Figure 3. First, it is quite apparent that the

departure from the Maxwellian VDF (as measured by the magnitude of ast
2 ) is higher in 2D

than 3D. It is also noteworthy that ast
2 starts growing with increasing γ, reaches a maximum

at a certain value γ = γmax(α, ξ∗0), and then it decreases as γ increases beyond γmax(α, ξ∗0);
this effect is more pronounced for small α.
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Figure 3. FSA predictions for the steady-state value of the excess kurtosis ast
2 as a function of the

coefficient of normal restitution α and of the nonlinearity control parameter γ with ξ∗0 = 1. The
dimensionality of the system is d = 3 in panel (a) and d = 2 in panel (b). The contour lines are
separated by an amount of Δast

2 = 0.005. The thickest black line corresponds to the contour ast
2 = 0.

Another interesting feature is that ast
2 takes negative values (in the domain of small

inelasticity) only if γ is smaller than a certain value γc. Of course, ast
2 (α, γ)

∣∣
α=1 = 0 for any

γ (since the steady state with α = 1 is that of equilibrium), but ∂αast
2 (α, γ)

∣∣
α=1 < 0 if γ < γc

and ∂αast
2 (α, γ)

∣∣
α=1 > 0 if γ > γc. Thus, the critical value γc is determined by the condition

∂αast
2 (α, γc)

∣∣
α=1 = 0. Interestingly, the result obtained from the FSA, Equation (24), is quite

simple, namely

γc =
1

3(d + 2)
, (25)

which is independent of ξ∗0 .

3.2.2. Special Limits
Absence of Drag

Let us first define a noise temperature Tn as Tn = Tbξ∗2/3
0 ∝ (ξ0Tb)

2/3, so that θ3/2/ξ∗0 =

(T/Tn)3/2. Now we take the limit of zero drag, ξ0 → 0, with finite noise temperature Tn.
This implies Tb → ∞, and thus, the natural temperature scale of the problem is no longer
Tb but Tn, i.e., θst → 0 but Tst/Tn = finite. From Equations (23) we see that F0(0) = d,
F1(0) = 0, G0(0) = 0, and G1(0) = −d. Therefore, Equations (22) reduce to

θ̇ = 0 ⇒ d
(

Tn

Tst

)3/2
=μst

2 , (26a)

ȧ2 = 0 ⇒ −d
(

Tn

Tst

)3/2
ast

2 =
μst

4
d + 2

− μst
2 (1 + ast

2 ), (26b)

where, for the sake of generality, we have undone the linearizations with respect to ast
2 .

By the elimination of
(
Tn/Tst)3/2, one simply gets (d + 2)μst

2 = μst
4 , from which one

can then obtain ast
2 upon linearization [11,12]. The steady-state temperature is given by

Tst/Tn = (d/μst
2 )

2/3.
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Homogeneous Cooling State

If, in addition to ξ0 → 0, we take the limit Tn → 0, the asymptotic state becomes the
homogeneous cooling state. In that case, T does not reach a true stationary value, but a2
does. As a consequence, Equation (26a) is not applicable, but Equation (26b), with Tn = 0,
can still be used to get (d + 2)μst

2 (1 + ast
2 ) = μst

4 , as expected [11,12,17].

Linear Drag Force

If the drag force is linear in velocity (i.e., γ = 0), we have F0(θ) = d(1 − θ), F1(θ) = 0,
G0(θ) = 0, and G1(θ) = −d. Using Equation (22b), ast

2 is given by

ast
2 = − μ

(0)
4 − (d + 2)μ(0)

2

μ
(0)
4 − (d + 2)

[
μ
(0)
2 + μ

(1)
2 − dξ∗0 /(θst)3/2

] , (27)

thus recovering previous results [31,32].

Collisionless Gas

If the collision frequency νb is much smaller than the zero-velocity drag coefficient ξ0,
the granular dynamics is dominated by the interaction with the background fluid and the
grain–grain collisions can be neglected; therefore, the grains behave as Brownian particles.
In that case, the relevant dimensionless time is no longer t∗ = νbt but τ = ξ0t = ξ∗0 t∗ and
the evolution equations (19) become

dθ

dτ
≈ 2(1 − θ)[1 + (d + 2)γθ]− 2(d + 2)γθ2a2, (28a)

da2

dτ
≈ 4γθ

[
2

1 + a2

θ
+ (d + 2)(1 + 2a2)− (d + 4)(1 + 3a2)

]
− 4

a2

θ
, (28b)

It is straightforward to check that the steady-state solution is θst = 1 and ast
2 = 0, regardless

of the value of γ, as expected.

4. Comparison with Computer Simulations

We have carried out DSMC and EDMD computer simulations to validate the the-
oretical predictions. The DSMC method is based on the acceptance-rejection Monte
Carlo Metropolis decision method [35] but adapted to solve the Enskog–Boltzmann equa-
tion [36,37], and the algorithm is, consequently, adjusted to agree with the inelastic colli-
sional model [12,17] and reflect the interaction with the bath [23]. On the other hand, the
EDMD algorithm is based on the one exposed in Ref. [23], but is adequated to the IHS
collisional model. The main difference between DSMC and EDMD is that the latter does
not follow any statistical rule to solve the Boltzmann equation but solves the equations of
motion of the hard particles. Simulation details about the characteristics of the schemes
and numerical particularities can be found in Appendix A.

In Figure 4, results from simulations are compared with the theoretical predictions of
θst (from MA and FSA) and of ast

2 (from FSA) in a three-dimensional (d = 3) IHS system
with ξ∗0 = 1. It can be observed that both the DSMC and EDMD results agree with each
other. From Figure 4a, one can conclude that, as expected, FSA works in the prediction
of θst much better than MA for values of γ close to γmax(α, ξ∗0) (which corresponds to the
maximum magnitude of ast

2 ). Moreover, FSA gives reasonably good estimates for the values
of ast

2 , although they get worse for increasing inelasticity, i.e., decreasing α. One might also
think that the increase in γ produces a poorer approach; however, according to the theory,
the performance of FSA improves if γ > γmax(α, ξ∗0), which corresponds to a decrease in
|ast

2 |. Of course, nonlinear terms or higher-order cumulants might play a role that is not
accounted for within FSA.
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Figure 4. Plots of the steady-state values of (a) the temperature ratio θst and (b) the excess kurtosis
ast

2 vs. the coefficient of normal restitution α for ξ∗0 = 1, d = 3, and different values of the nonlinear
parameter: γ = 0, 0.01, 0.1, 0.2. The symbols stand for DSMC (�, �, �, ◦) and EDMD (Y, +, ∗, ×)
simulation results, respectively. Dashed (– –) and solid (----) lines refer to MA (only in panel (a)) and
FSA predictions, respectively. The horizontal gray dotted lines (· · · ) correspond to the steady-state
values in the elastic limit. As representative values, note that, at ξ∗0 = 1, one has γmax = 0.25, 0.19, 0.17
for α = 0.8, 0.5, 0.2, respectively.

Apart from the steady-state values, we have studied the temporal evolution of θ and a2,
starting from a Maxwellian VDF at temperature Tb, i.e., θ(0) ≡ θ0 = 1 and a2(0) ≡ a0

2 = 0.
Note that this state is that of equilibrium in the case of elastic collisions (α = 1), regardless
of the value of the nonlinearity parameter γ. The theoretical and simulation results are
displayed in Figure 5 for d = 3, ξ∗0 = 1, and some characteristic values of α and γ.

0.0 0.5 1.0 1.5 2.0
t∗

1.00

0.95

0.90

0.85

0.80

0.75

θ

γ = 0

(a)

α = 0.8 (DSMC,EDMD)

α = 0.5 (DSMC,EDMD)

α = 0.2 (DSMC,EDMD)

Theory (MA,FSA)

0.0 0.5 1.0 1.5 2.0
t∗

1.00

0.95

0.90

0.85

0.80

0.75

θ

γ = 0.01

(b)

0.0 0.5 1.0 1.5 2.0
t∗

1.00

0.95

0.90

0.85

0.80

θ

γ = 0.1

(c)

0.0 0.5 1.0 1.5 2.0
t∗

1.000

0.975

0.950

0.925

0.900

0.875

0.850

θ

γ = 0.2

(d)

0.0 0.5 1.0 1.5 2.0
t∗

−0.005

0.000

0.005

0.010

0.015

0.020

0.025

a
2

γ = 0
(e)

0.0 0.5 1.0 1.5 2.0
t∗

−0.005

0.000

0.005

0.010

0.015

0.020

0.025

a
2

γ = 0.01

(f)

0.0 0.5 1.0 1.5 2.0
t∗

−0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

a
2

γ = 0.1

(g)

0.0 0.5 1.0 1.5 2.0
t∗

−0.01

0.00

0.01

0.02

0.03

0.04

a
2

γ = 0.2

(h)

Figure 5. Plots of the time evolution of (a–d) the temperature ratio θ(t∗) and (e–h) the excess kurtosis
a2(t∗) for ξ∗0 = 1, d = 3, and different values of the coefficient of normal restitution (α = 0.8, 0.5, 0.2)
and the nonlinearity parameter: (a,e) γ = 0, (b,f) γ = 0.01, (c,g) γ = 0.1, and (d,h) γ = 0.2. The
symbols stand for DSMC (◦, �, �) and EDMD (×, ∗, +) simulation results, respectively. Dashed (– –)
and solid (----) lines refer to MA (only in panels (a–d)) and FSA predictions, respectively. All states
are initially prepared with a Maxwellian VDF at the bath temperature, i.e., θ0 = 1 and a0

2 = 0.

We observe that the relaxation of θ is accurately predicted by MA, except for the later
stage with small α and/or large γ, in accordance with the discussion of Figure 4. This is
remedied by FSA, which exhibits an excellent agreement with simulation results in the
case of θ and a fair agreement in the case of a2, again in accordance with the discussion
of Figure 4. It is also worth mentioning the good mutual agreement between DSMC and
EDMD data, even though fluctuations are much higher in a2 than in θ because of the rather
small values of |a2|.
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4.1. Memory Effects

Whereas the temperature relaxation from Maxwellian initial states is generally accurate
from MA, it misses the explicit dependence of the temperature evolution on the fourth
cumulant (see Equation (14)), which, however, is captured by FSA (see Equation (19a)).
This coupling of θ to a2 is a signal of preparation dependence of the system, hence, a signal
of memory effects, as occurs in the elastic case reported in Refs. [21–23].

4.1.1. Mpemba Effect

We start the study of memory effects with the Mpemba effect [38–42]. This counterintu-
itive phenomenon refers to situations in which an initially hotter sample (A) of a fluid—or,
more generally, a statistical-mechanical system—cools down sooner than an initially colder
one (B) in a cooling experiment. We will refer to this as the direct Mepmba effect (DME).
Analogously, the inverse Mpemba effect (IME) occurs in heating experiments if the initially
colder sample (B) heats up more rapidly than the initially hotter one (A) [21,23,40,41,43]. In
the special case of a molecular gas (i.e., α = 1), an extensive study of both DME and IME
has recently been carried out [21,23].

Figure 6a,b present an example of DME and IME, respectively. As expected, FSA
describes the evolution and crossing for temperatures of samples A and B very well. On
the contrary, MA does not predict this memory effect. In addition, from Figure 6c,d we can
conclude that FSA captures the relaxation of a2 toward ast

2 �= 0 quite well.
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Figure 6. Time evolution of (a,b) θ(t∗)/θst and (c,d) a2(t∗) for two samples (A and B) with α = 0.9,
ξ∗0 = 1, d = 3, and γ = 0.1. Panels (a, c) illustrate the DME with initial conditions θ0

A = 1.1 � 1.15θst,
a0

2A = 0.4, θ0
B = 1 � 1.04θst, a0

2B = −0.35, while panels (b, d) illustrate the IME with initial conditions
θ0

A = 0.9 � 0.94θst, a0
2A = 0.4, θ0

B = 0.85 � 0.89θst, a0
2B = −0.35. The symbols stand for DSMC (◦,

�) and EDMD (×, ∗) simulation results, respectively. Solid (----) and dashed (– –) lines correspond
to FSA predictions for samples A and B, respectively, whereas black dotted (· · · ) and dash-dotted
(– · –) lines in panels (a,b) refer to MA predictions for samples A and B, respectively. The gray thin
horizontal lines correspond to the steady-state values. Note that ast

2 �= 0, despite what panels (c,d)
seem to indicate because of the vertical scale.
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4.1.2. Kovacs Effect

Next, we turn to another interesting memory effect: the Kovacs effect [44,45]. In
contrast to the Mpemba effect, the Kovacs effect has a well-defined two-stage protocol
and does not involve a comparison between two samples. In the context of our system,
the protocol proceeds as follows. First, the granular gas is put in contact with a bath
at temperature Tb1 and initialized at a temperature T0 > Tst

1 , Tst
1 = θstTb1 being the

corresponding steady-state temperature (note that θst is independent of Tb1 at fixed ξ∗0). The
system is allowed to relax to the steady state during a time window 0 < t < tK, but then, at
t = tK, the bath temperature is suddenly modified to a new value Tb, such that T(tK) = Tst,
Tst = θstTb being the new steady-state value. If the system did not retain a memory of its
previous history, one would have T(t) = Tst for t > tK, and this is, in fact, the result given
by the MA. However, the temperature exhibits a hump for t > tK, before relaxing to Tst.
This hump is a consequence of the dependence of ∂tT on the additional variables of the
system. According to Equation (14), and maintained in the FSA, Equation (19a), the first
relevant quantity to be responsible for a possible hump is the excess kurtosis of the VDF, as
occurs in the elastic limit [22]. In fact, at time t∗ = t∗K, such that θ(t∗K) = θst, the slope of the
temperature according to FSA, Equation (19a), reads

θ̇(t∗K) ≈ 2θst

[
(d + 2)ξ∗0 γθst +

μ
(1)
2
d

√
θst

][
ast

2 − a2(t∗K)
]
. (29)

Thus, a nonzero difference ast
2 − a2(t∗K) implies the existence of a Kovacs-like hump, its

sign being determined by that of this difference; that is, we will obtain an upward hump if
a2(t∗K) < ast

2 or a downward hump if a2(t∗K) > ast
2 .

For simplicity, in our study of the Kovacs-like effect, we replace the first stage of
the protocol (0 < t∗ < t∗K) by just generating the state at t∗ = t∗K with θ(t∗k ) = θst and
a2(t∗K) �= ast

2 (see Appendix A). The effect is illustrated in Figure 7 for the same system as in
Figure 6 with the choices a2(t∗K) = −0.35 < ast

2 and a2(t∗K) = 0.4 > ast
2 . Again, the DSMC

and EDMD results agree with each other and with the theoretical predictions. However, in
the case a2(t∗K) = −0.35 (upward hump), Figure 7a, we observe that the theoretical curve
lies below the simulation results. This might be caused by a nonnegligible value of the sixth
cumulant a3(t∗K) = −0.375, as reported in Ref. [23] in the elastic case. Apart from this small
discrepancy, FSA captures the magnitude and sign of the humps, as well as the relaxation
of the fourth cumulant, very well.
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Figure 7. Time evolution for t∗ > t∗K of (a) θ(t∗)/θst and (b) a2(t∗) for a system with α = 0.9, ξ∗0 = 1,
d = 3, and γ = 0.1. The figure illustrates Kovacs-like effects with conditions θ(t∗K) = θst and either
a2(t∗K) = −0.35 (◦, �, —) or a2(t∗K) = 0.4) (×, ∗, - - -). The symbols stand for DSMC and EDMD
simulation results, while the lines refer to FSA predictions.

5. Conclusions

In this work, we have looked into the dynamics of a dilute granular gas immersed in a
thermal bath (at temperature Tb) made of smaller particles but with masses comparable to
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those of the grains. To mathematically characterize this system, we have worked under
the assumptions of Boltzmann’s kinetic theory, describing the system by the one-particle
VDF, whose evolution is monitored by the EFPE, Equation (1), for the IHS model of hard
d-spheres. The action of the bath on the dynamics of the granular gas is modeled by a
nonlinear drag force and an associated stochastic force. At a given dimensionality d, the
control parameters of the problem are the coefficient of normal restitution (α), the (reduced)
drag coefficient at zero velocity (ξ∗0), and the nonlinearity parameter (γ).

After a general presentation of the kinetic theory description in Section 2, we obtained
the evolution equation of the reduced temperature θ(t∗) ≡ T(t)/Tb (Equation (14)), which
is coupled explicitly with the excess kurtosis, a2, and depends on every velocity moment
through the second collisional moment μ2 (which is nonzero due to inelasticity). Therefore,
the whole dynamics in the context of the EFPE is formally described by Equation (14)
and the infinite hierarchy of moment equations given by Equation (15). In order to give
predictions, we proposed two approximations. The first one is MA, which consists of
assuming a Maxwellian form for the one-particle VDF, whereas the second one, FSA
consists of truncating the Sonine expansion of the VDF up to the first nontrivial cumulant
a2. Their evolution equations are given by Equations (18) and (19), respectively. The
predictions for the steady-state values are exposed in Figures 2 and 3, which show some
small discrepancies in θst between MA and FSA as we increase the inelasticity (decreasing
α). Moreover, we observed that, for fixed α and ξ∗0 , ast

2 gets its maximum value when the
nonlinearity parameter is γ = γmax(α, ξ∗0). Another interesting feature is the existence of a
critical value γc, such that for γ > γc, the values of ast

2 are always positive for every value
of α, while for γ < γc, we find ast

2 < 0 for inelasticities small enough. Interestingly, the
value of γc given by Equation (25) is found to be independent of ξ∗0 . In addition, some
already known limits are recovered in Section 3.2.2.

Furthermore, in order to check the predictions from MA and FSA equations, we
carried out DSMC and EDMD simulations for hard spheres (d = 3) with fixed ξ∗0 = 1
(which corresponds to comparable time scales associated with drag and collisions). First,
from Figure 4a, we can conclude that, whereas MA provides good predictions of θst, except
for large inelasticities and values of γ close to γmax, FSA is much more accurate because
it takes into account the influence of ast

2 . The latter approach is generally reliable for ast
2 ,

as observed in Figure 4b, although, not unexpectedly, it slightly worsens as |ast
2 | grows.

Relaxation curves starting from a Maxwellian initial state in Figure 5 show that FSA agrees
very well with both DSMC and EDMD; however, MA exhibits good agreement during the
first stage of the evolution but becomes less reliable as the steady state is approached.

A relevant feature of these systems, as already studied in the elastic case [21–23], is
the emergence of memory effects, which are not contemplated by MA. FSA predicts the
emergence of the Mpemba effect very well for both DME and IME, as can be seen in Figure 6.
Analogously, Kovacs-like humps, both upward and downward, are correctly described
by FSA, as observed in Figure 7, although the FSA humps are slightly less pronounced
(especially the upward one) than the simulation ones. This is presumably due to the role
played by a3 and higher-order cumulants, as occurs in the elastic limit reported in Ref. [23].

To conclude, we expect that this work will motivate research about this type of system
and the emergence of memory effects. For instance, one can extend the study to other
collisional models (such as that of rough spheres), to nonhomogeneous states, or to a more
detailed description of the memory effects observed.
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Abbreviations

The following abbreviations are used in this manuscript:

DME Direct Mpemba effect
DSMC Direct simulation Monte Carlo
EDMD Event-driven molecular dynamics
EFPE Enskog–Fokker–Planck equation
FSA First Sonine approximation
IHS Inelastic hard spheres
IME Inverse Mpemba effect
MA Maxwellian approximation
VDF Velocity distribution function

Appendix A. Simulation Details

Throughout the elaboration of this work, we have used two different algorithms
to simulate the considered system: DSMC and EDMD methods. Whereas the former is
based on statistical properties and subjected to the assumptions of the Boltzmann equation,
such as Stosszahlansatz, the latter solves the trajectory of each particle without any extra
assumption. On the other hand, the original algorithms are slightly modified for the proper
collisional model and the interaction with the thermal bath, as explained below.

In general, the simulation results shown in this work are obtained from averaging over
100 samples in both simulation schemes, and steady-state results come from averaging over
50 points in the mean trajectory once stationary behavior is observed.

Appendix A.1. Direct Simulation Monte Carlo

The DSMC algorithm used in this work is based on the original works of G.A.
Bird [36,37], but modified for the IHS collisional model and the implementation of the
nonlinear drag. As we considered homogeneous states, only the velocities of the N gran-
ular particles, {vi}N

i=1, are used to numerically solve the EFPE. Whereas initial velocities
for results in Figures 4 and 5 were drawn from a Maxwellian VDF with θ0 = 1; in the case
of Figures 6 and 7, velocities were initialized from a Gamma VDF (see Refs. [23,30] for
additional details). After initialization, particles were updated with a fixed time step, Δt,
much smaller than the mean free time. The method is properly divided into two stages:
collision and free streaming [12].

In the collision stage, a number � 1
2 NωmaxΔt� of pairs are randomly chosen with

equiprobability—the ignored decimals in the rounding are saved for the next iterative
step—ωmax being an upper bound estimate for the one-particle collision rate. Then, given
a chosen pair ij, a collision is accepted with probability Θ(vij · σ̂ij)ωij/ωmax, where σ̂ij is
a random vector drawn from a uniform probability distribution in the unit d-sphere, and
ωij =

2πd/2

Γ(d/2) gcnσd−1|vij · σ̂ij|. Acceptance implies that the velocities are updated according

to the collisional rules in Equation (3), i.e., vi/j(t) → vi/j(t + Δt) = vi/j ± 1+α
2 (vij · σ̂ij).
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In the free-streaming stage, each particle velocity is updated according to an Euler
numerical algorithm of a Langevin-like equation derived from an Itô interpretation of the
Fokker–Planck part of the EFPE (see Ref. [23]),

vi(t) → vi(t + Δt) = vi(t)− [ξ(vi(t))− 2ξ0γ]viΔt + χ(vi(t))
√

ΔtYi, (A1)

where Yi is a random vector drawn from a Gaussian probability distribution with unit
variance, P(Y) = (2π)−d/2e−Y2/2.

In the implementations of the DSMC algorithm, we used N = 104 hard spheres (d = 3)
and a time step Δt = 10−2λ/vb, λ = (

√
2πnσ2)−1 being the mean free path.

Appendix A.2. Event-Driven Molecular Dynamics

EDMD methods compute the evolution of particles driven by events: particle–particle
collisions, boundary effects, or other more complex interactions. Analogously to the
splitting described in the DSMC algorithm, free streaming of particles occurs between two
consecutive events. Here, we need to consider the influence of the stochastic and drag
forces not only in the velocities but also in the positions of the N granular particles, {ri}N

i=1.
In order to account for this, we followed the approximate Green Function algorithm proposed
in Ref. [46]. Whereas the velocities are updated according to Equation (A1), the positions
follow

ri(t) → ri(t + Δt) = ri(t) + vi(t)Δt
[

1 − Δt
ξ(vi(t))− 2γξ0

2

]
+

1
2

χ(vi(t))Δt3/2Wi, (A2)

where Wi = Yi +
√

5/3Y′
i, Y′

i being another random vector drawn from P(Y) = (2π)−d/2

e−Y2/2.
In the EDMD simulations, we defined a set of N = 8 × 103 hard spheres (d = 3),

with a reduced number density nσ3 = 10−3, implying a box length L/σ = 2 × 102, and
used a time step Δt ≈ 10−3λ/vb. Periodic boundary conditions were imposed, and no
inhomogeneities were observed.
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Abstract: One major problem in the development of hypersonic vehicles is severe aerodynamic heat-
ing; thus, the implementation of a thermal protection system is required. A numerical investigation
on the reduction of aerodynamic heating using different thermal protection systems is conducted
using a novel gas-kinetic BGK scheme. This method adopts a different solution strategy from the con-
ventional computational fluid dynamics technique, and has shown a lot of benefits in the simulation
of hypersonic flows. To be specific, it is established based on solving the Boltzmann equation, and the
obtained gas distribution function is used to reconstruct the macroscopic solution of the flow field.
Within the finite volume framework, the present BGK scheme is specially designed for the evaluation
of numerical fluxes across the cell interface. Two typical thermal protection systems are investigated
by using spikes and opposing jets, separately. Both their effectiveness and mechanisms to protect the
body surface from heating are analyzed. The predicted distributions of pressure and heat flux, and
the unique flow characteristics brought by spikes of different shapes or opposing jets of different total
pressure ratios all verify the reliability and accuracy of the BGK scheme in the thermal protection
system analysis.

Keywords: gas-kinetic scheme; BGK model; thermal protection system; hypersonic flow

1. Introduction

Increasing attention is being paid to hypersonic vehicles within the aerospace commu-
nity because of their fast access to space, rapid military response at long ranges, and fast
means of commercial air travel. In the long-term development of hypersonic vehicles, one
of the most important problems is severe aerodynamic heating at the nose of the vehicle [1].
This makes the design and use of a thermal protection system (TPS) essential, especially for
sustained long-range maneuverable flights.

Currently, many thermal protection systems have been constructed. These can be
categorized into two types: active method and passive method. Active methods protect
the body surface from heating by using injection gases or mechanical devices, such as
evaporation cooling [2], film cooling [3], opposing jet [4], mechanical spike [5], and directed
energy air spike [6]. Passive methods generally use heat protection materials [7] and
ablators [8]. In the present study, active thermal protection systems are considered for
their reusability and fine controllability. As the design of such TPS largely depends on the
aero-thermal loads acting on the vehicle, accurate prediction of aerodynamic heating plays
a vital role [9].

Hypersonic flows are usually characterized with a thin shock layer, complex wave
structures, and various shock–boundary interactions. This demands higher requirements
from the numerical methods. In conventional computational fluid dynamics (CFD) technol-
ogy, the total fluxes across the cell interface are split into inviscid and viscous parts, and
different solution strategies are adopted for them. Over the past few years, a variety of
important numerical algorithms have been developed specifically to deal with inviscid
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fluxes. Most of them are constructed based on the mathematical and physical properties of
the Euler equations and can work well for flows at moderate Mach numbers. However,
they may exhibit different numerical behaviors in hypersonic flows. For instance, the JST
scheme has gained popularity in aircraft design due to its lower cost, but it may encounter
instabilities and accuracy degradation at a higher Mach number. The Van Leer’s flux-vector
splitting scheme works very well in the case of Euler equations, but may provide inaccurate
stagnation temperatures for hypersonic viscous flows. The Roe’s flux-difference splitting
upwind scheme shows a high resolution in the boundary layers and a good solution for
shocks, but the well-known “carbuncle” phenomenon may occur in multi-dimensional
and high-speed problems. Even for the AUSM-family schemes that are very popular in
hypersonic flow simulation, sometimes local pressure oscillations are found in the vicinity
of shocks and in cases where the flow is aligned with the grid. Considering these defects,
many improvements have been proposed to enhance the modeling capabilities, mostly
through some mathematical or artificial corrections [10–12]. However, as has been pointed
out by Xu [13], these numerical difficulties are inherently due to the deficiencies of the
Euler equations at describing the realistic flow evolution process around the cell interface.
Using some special modifications not only brings uncertainties and inconveniences to
computations, but also covers up this inherent defect.

In the last decade, many attempts have been made to develop numerical schemes
based on solving more fundamental governing equations of physics, e.g., the Boltzmann
equation. Particularly, the gas-kinetic Bhatnagar–Gross–Krook (BGK) scheme [14,15] has
been shown to be a promising Boltzmann-type method. Its main advantages are the
following. First, using the BGK collision model gives superior dissipation characteristics,
which are important for capturing flow discontinuities. Second, the BGK scheme has been
proven to satisfy the entropy condition and thus avoids unphysical solutions such as the
“carbuncle” phenomenon. Third, its inherent positive property ensures good robustness
in low-density regions. Furthermore, from the perspective of implementation, the BGK
scheme allows for calculating the total fluxes in a unified way. In a pioneering study,
Xu et al. [16] proposed a multi-dimensional BGK scheme for accurately predicting viscous
stress and heat flux, where flow gradients in both parallel and perpendicular directions
are considered. Later, Li et al. [17] developed a BGK method with kinetic boundary
conditions and applied it to the numerical study of hypersonic flow past a hollow cylinder
flare model. Recently, by introducing effective relaxation time into the BGK equation,
Tan et al. [18] extended the method for hypersonic turbulence simulations. Other notable
works include those of Li and Fu [19], Li and Zhang [20], Yang and co-workers [21,22], to
mention only a few. All of the above studies show the good prospect of the BGK scheme in
hypersonic applications.

The goal of this paper is to apply the gas-kinetic BGK scheme to thermal protection
system analysis, which has rarely been seen in the literatures to the best of our knowledge.
This is also a further extension of the previous work [23] on the algorithm improvement
of the original method. Here, two commonly used active TPSs were chosen to be studied,
i.e., the spike and the opposing jet. As the implementation of both will greatly increase the
complexity of hypersonic flow fields and bring a lot of new aerodynamic and aerothermal
phenomena, the capabilities of the BGK scheme for hypersonic flow simulation in the
presence of TPS are highlighted. It is also noted that changes in the spike configurations
(spike length, shape, etc.) or opposing jet parameters (mass flow rate, total pressure
ratio, etc.) could produce diverse flow fields and significantly affect the performance
of the TPS; thus, the abilities of the BGK scheme to capture these characteristics were
also examined.

This paper is organized as follows: Section 2 describes the BGK model for the con-
cerned governing equations. Section 3 describes the construction and implementation of
the BGK scheme. Section 4 presents the numerical results and an analysis of the typical
thermal protection systems using the developed method. The last section is the conclusion.

92



Entropy 2022, 24, 1325

2. BGK Model for the Governing Equations

Because the thermal protection systems studied in this work are axisymmetric with
respect to the geometry and flow conditions, the two-dimensional (2D) axisymmetric
Navier-Stokes (N-S) equations are solved, which can be written as

∂

∂t

∫
Ω

WdΩ +
1
y

∮
∂Ω

yFdS =
∫

Ω
QdΩ (1)

where t is time, Ω is the control volume, and y is the coordinate in the radial direction. The
vectors of conservative variables W, total fluxes F, and source terms Q are given by

W =

⎡⎢⎢⎣
ρ

ρu
ρv
ρE

⎤⎥⎥⎦, F =

⎡⎢⎢⎣
ρV

ρuV + nx p − nxτxx − nyτxy
ρvV + ny p − nxτyx − nyτyy
(ρE + p)V − nxΘx − nyΘy

⎤⎥⎥⎦, Q =

⎡⎢⎢⎣
0
0

p − τθθ

0

⎤⎥⎥⎦ (2)

where ρ, u, v, E, and p denote the density, the velocity components in the axial and radial
direction, the total energy per unit mass, and the pressure, respectively. The contravariant
velocity is defined as V = nxu + nyv, with nx, ny being components of the unit normal
vector. The notations τxx, τxy, τyx, τyy, τθθ represent components of the viscous stress tensor
and Θx, Θy are the terms describing the work of the viscous stresses and heat conduction.
Details of their formulations can be seen in [10].

It should be noted that the axisymmetric equations can be transformed to the 2D planar
N-S equations by removing the terms related to the radius and the additional source term.

The present BGK scheme is designed to discretize the fluxes F by reconstructing the
gas distribution function f at the cell interface. The time evolution of f is governed by the
2D Boltzmann equation with the BGK collision model

∂ f
∂t

+ ξx
∂ f
∂x

+ ξy
∂ f
∂y

= − 1
τ
( f − g) (3)

where ξx and ξy denote the particle streaming velocities, τ is the collision time, and g is
the equilibrium distribution function approached by f . The equilibrium state is generally
assumed to be a Maxwellian distribution

g = ρ

(
λ

π

) K+2
2

e−λ((ξx−u)2+(ξy−v)2+ζ2) (4)

where λ = ρ/2p for perfect gases, K denotes the number of degrees of the internal variables
ζ and is equal to 3 for diatomic gases in the 2D case, and ζ2 = ζiζi.

Because of the conservations of mass, momentum, and energy in the particle collision
process, the following compatibility condition is satisfied∫ g − f

τ
ψdΞ = 0 (5)

where ψ is a vector of the collision invariants, defined as

ψ =

[
1, ξx, ξy,

1
2
(ξ2

x + ξ2
y + ζ2)

]T
(6)

with the notation dΞ = dξxdξydζ1dζ2 · · · dζk used.
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From the definition of the gas distribution function, the macroscopic mass, momentum,
and energy densities of the gas flow can be written as

W =

⎡⎢⎢⎣
ρ

ρu
ρv
ρE

⎤⎥⎥⎦ =
∫

f ψdΞ =
∫

f

⎡⎢⎢⎣
1
ξx
ξy

1
2 (ξ

2
x + ξ2

y + ζ2)

⎤⎥⎥⎦dΞ (7)

3. Gas-Kinetic BGK Scheme

3.1. Solution of the BGK Equation

It can be proven from the Chapman–Enskog expansion that the above BGK model
recovers the governing axisymmetric N-S equations, which serves as the theoretical basis
for the present BGK scheme. By using the method of characteristics, the generalized
solution of Equation (3) at any time t and any cell interface xi+1/2 is

f (xi+1/2, t, ξ, ζ) =
1
τ

∫ t

0
e−(t−t′)/τ g(x(t′), t′, ξ, ζ)dt′ + e−t/τ f0(x(0), 0, ξ, ζ) (8)

where x(t′) = xi+1/2 − (t − t′)ξ describes a particle motion trajectory with t′ ∈ [0, t] and
ξ = [ξx, ξy]

T . The solution f describes the gas evolution process, which starts with an initial
state f0 and approaches its equilibrium state g. In the following, we show how to determine
these two unknowns. For simplicity, the x¯direction and y¯direction are assumed as the
normal and tangential directions to the local cell interface, respectively, and xi+1/2 = [0, 0]T

is assumed. Note the difference between this local coordinate system and the previous
global axial–radial system.

First, we construct the initial state f0. To account for the flow discontinuities, which are
common in hypersonic flows, both equilibrium and non-equilibrium distribution functions
should be considered. The second-order accuracy is constructed as

f0(x(0), ξ, ζ) =

{
gl
[
1 − (al · ξ)t − τ(Al + al · ξ)

]
, ξx > 0 ⇔ x < 0

gr[1 − (ar · ξ)t − τ(Ar + ar · ξ)], ξx ≤ 0 ⇔ x ≥ 0
(9)

where gl and gr denote the local Maxwellians defined at the left and right sides of the

cell interface, respectively, and the corresponding slopes al(r) = [al(r), bl(r)]
T

and Al(r) are
related to the spatial and temporal derivatives of gl(r), respectively

al(r)gl(r) = ∂gl(r)

∂x

bl(r)gl(r) = ∂gl(r)

∂y

Al(r)gl(r) = ∂gl(r)

∂t

(10)

The derivatives of gl(r) can be directly derived from Equation (4), where the left and
right macroscopic states are reconstructed using the second-order MUSCL scheme. The
minmod limiter is used to prevent unphysical oscillation and spurious solutions in the
shock regions. By using the chain rule for the derivatives in Equation (10) and rearranging
the terms, the spatial and temporal slopes can be expressed as a linear combination of the
collision invariants

al(r) = al(r)
α ψα

bl(r) = bl(r)
α ψα

Al(r) = Al(r)
α ψα

, α = 1, 2, 3, 4 (11)
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where al(r)
α , bl(r)

α , and Al(r)
α are local constant coefficients and have explicit formulations.

For example, the expressions for al(r)
α are given by (omit the superscripts)

a1 = ∂ρ
ρ∂x − 2λ

(
u ∂u

∂x + v ∂v
∂x

)
+
(

K+2
2λ − u2 − v2

)
∂λ
∂x

a2 = 2
(

u ∂λ
∂x + λ ∂u

∂x

)
a3 = 2

(
v ∂λ

∂x + λ ∂v
∂x

)
a4 = −2 ∂λ

∂x

(12)

The same holds for bl(r)
α , only by changing ∂/∂x to ∂/∂y. The flow gradients in the

above formulations are obtained by applying Green’s theorem to the respective cells. As for
Al(r)

α , because the non-equilibrium part of f0 does not directly contribute to conservative
variables, thus we have

Al(r)
α

∫
gl(r)ψαψdΞ = −

∫
gl(r)(al(r)ξx + bl(r)ξy)ψdΞ (13)

from which Al(r)
α can be solved.

Next we construct the time-dependent equilibrium state g shown in Equation (8). Also
to the second-order accuracy, it can be expressed as

g(x(t′), t′, ξ, ζ) =

⎧⎨⎩ g0

[
1 + At′ − alξx(t − t′)− b

l
ξy(t − t′)

]
, ξx > 0 ⇔ x < 0

g0

[
1 + At′ − arξx(t − t′)− b

r
ξy(t − t′)

]
, ξx ≤ 0 ⇔ x ≥ 0

(14)

where g0 is an initial Maxwellian. The corresponding slopes
¯
a

l(r)
= [al(r), b

l(r)
]
T

and A are
linked to the spatial and temporal derivatives of g0, respectively

al(r)g0 =
(

∂g0
∂x

)l(r)

b
l(r)

g0 =
(

∂g0
∂y

)l(r)

Ag0 = ∂g0
∂t

(15)

The derivatives of g0 are also derived from Equation (4), where the “average” macro-
scopic parameters ρ, λ, u, v are obtained from Equations (8) and (9) with the limits
x → (0, 0) and t′ → 0 used. This gives

¯
W =

⎡⎢⎢⎣
ρ

ρu
ρv
ρE

⎤⎥⎥⎦ =
∫

[gl H(ξx) + gr(1 − H(ξx))]

⎡⎢⎢⎣
1
ξx
ξy

1
2 (ξ

2
x + ξ2

y + ζ2)

⎤⎥⎥⎦dΞ (16)

with H(ξx) the Heaviside function.

Then al(r) and b
l(r)

are determined similar to Equations (11) and (12), and the gradients
of “average” flow variables are obtained by applying Green’s theorem to both sides of the
cell interface.
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Substituting the expressions of f0 and g into Equation (8), the generalized solution f
of the BGK equation can be written as

f (xi+1/2, t, ξ, ζ)

= γ1g0 + γ2g0 A + γ3g0

[
(
¯
a

l
· ξ)H(ξx) + (

¯
a

r
· ξ)(1 − H(ξx))

]
+γ4

[
gl(1 − τAl)H(ξx) + gr(1 − τAr)(1 − H(ξx))

]
+γ5

[
gl(al · ξ)H(ξx) + gr(ar · ξ)(1 − H(ξx))

] (17)

with the definitions of

γ1 = 1 − e−t/τ γ2 = t − τ(1 − e−t/τ)
γ3 = te−t/τ − τ(1 − e−t/τ) γ4 = e−t/τ

γ5 = −(t + τ)e−t/τ
(18)

For the remaining unknown A in Equation (17), we can solve it using time integration
of the compatibility condition (Equation (5)) over a whole time step Δt, i.e.,

∫ Δt

0

∫
( f − g)ψdΞ = 0 (19)

For the simulation of viscous flows, the collision time τ is constructed as

τ =
μL + μT

p
+ cΔt

|pl − pr|
|pl + pr| (20)

where μL and μT denote the laminar viscosity and eddy viscosity at the cell interface,
respectively. The laminar viscosity μL is calculated using the Sutherland formula, and
the eddy viscosity μT is obtained by employing a turbulence model, such as the Spalart–
Allmaras model [24] used here. The second term was designed for stability reasons, where
c is a constant and can be chosen in the range of 1 to 5.

3.2. Evaluation of Numerical Fluxes

Once the time evolution of f has been obtained, the numerical fluxes at each cell
interface can be evaluated according to the relations between the macroscopic variables
and the microscopic distribution function, i.e.,

F(xi+1/2, t) =
∫

ξxψ f (xi+1/2, t, ξ, ζ)dΞ (21)

Because the original BGK model recovers the macroscopic equations with a Prandtl
number of Pr = 1, in order to deal with arbitrary Pr, a Prandtl number fix is used based on
the modification of the energy flux. According to the definition of q, we have

q = 1
2

∫
(ξx − u)((ξx − u)2 + (ξy − v)2 + ζ2) f dΞ

=
∫

ξx

(
1
2 (u

2 + v2)ψ1 + ψ4 − uψ2 − vψ3

)
f dΞ − u

∫ ( 1
2 (u

2 + v2)ψ1 + ψ4 − uψ2 − vψ3

)
f dΞ

(22)

By substituting the expression of f into the above equation, we obtain an accurate
time-dependent q. It should be noted that all of the terms in Equation (22) were already
obtained when solving the BGK equation, thus no extra moment computations are required.

Then, the Prandtl number fix is achieved by modifying the energy flux as

F f ix
4 = F4 +

(
1

Pr
− 1
)

q (23)
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For the turbulent simulations, q is divided into the laminar heat flux qL and turbulent
heat flux qT according to the respective viscosities, i.e.,

qL =
qμL

μL + μT
, qT = qμT

μL+μT
(24)

and the modified energy flux becomes

F f ix
4 = F4 +

(
1

Pr
− 1
)

qL +

(
1

PrT
− 1
)

qT (25)

with PrT being the turbulent Prandtl number.
In the present work, a perfect gas is assumed with Prandtl numbers of Pr = 0.72 and

PrT = 0.9, and a specific heat ratio of γ = 1.4. The thermal conductivity coefficient k is
calculated from the relationship k = cp(μL/Pr + μT/PrT), with cp being the specific heat
coefficient at a constant pressure.

3.3. Update of Flow Variables

It is seen from Equations (17) and (21) that both the solution f and the numerical fluxes
F are time-dependent. To update the flow variables, a direct idea is to adopt explicit time
integration methods such as the popular multistage schemes. However, to ensure correct
flux balance throughout a cell, the computational time step Δtc should be set to be identical
in the whole flow field. Moreover, for numerical stability, this can be no greater than the
minimum value among all of the local time steps, i.e., Δtc ≤ min(Δt). Accordingly, this
may significantly decrease the computational efficiency for steady-state flow computations.
Instead, we adopt a more efficient approach by using a separate discretization in space and
time (i.e., the method of lines), and the time-averaged fluxes are introduced as follows

¯
F(xi+1/2) =

1
Δt

∫ Δt

0

∫
ξxψ f (xi+1/2, t, ξ, ζ)dΞ (26)

where Δt is called the flux time averaging step, so as to distinguish from the computational
time step Δtc. With this approach, local time stepping is used to accelerate the convergence,
and a non-uniform Δtc is allowed that can take a value much larger than in the original
BGK scheme.

By using the cell-centered finite volume method in Equation (1) for spatial discretiza-
tion, we obtain

∂W
∂t

= − 1
Ω

NF

∑
m=1

(
¯
FΔS)m + Q = R (27)

where NF = 4 for structured grids, ΔSm is the area of the face m, and R represents the
residual vector.

To further improve the computational efficiency, the above equation is solved in an
implicit way (

Ω
Δtc

I +
∂R
∂W

)
ΔW(n) = −R(n) (28)

where ΔW(n) = W(n+1) − W(n) denotes the update of the solution in time and n and n + 1
are the current and new time levels, respectively. The recently-developed JFNK–BGK
method [25] was employed to solve the above linearized system so as to quickly obtain an
update of the flow variables. As a result, the present implicit BGK scheme has a comparable
computational efficiency to conventional CFD methods.

3.4. Code Validation

To ensure that the thermal protection analysis results obtained by the BGK scheme
are reliable and accurate, validating the developed code through the simulation of “clean”
hypersonic flow is essential. An example of a cylindrical leading-edge model in a Mach
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6.47, Reynolds number 9.98 × 105 flow (based on the model diameter) was selected to
be studied. The experimental investigation of this model was conducted in the NASA
Langley’s high temperature tunnel [26]. The free-stream pressure and temperature are
648.1 Pa and 241.5 K, respectively. The cylindrical surface is assumed to have a uniform
temperature of Twall = 294.4. For this planar model, the computational model and the grid
used are shown in Figure 1.

 

Figure 1. Computational model of the cylindrical leading-edge case and the grid used.

Different from our previous studies making assumptions about laminar flows, this
work accounts for the turbulence effects. The first cell height to wall Δs is determined by the
condition of y+ ≤ 1. A grid sensitivity study is performed in advance, and a 101 × 201 grid
(in tangential and normal directions, respectively) with Δs = 1 × 10−6 m is selected to
be used. This results in a grid-independent value of stagnation-point heat flux qstag of
488.7 kW/m2. This value agrees well with those from Zhang et al. [27] (485.5 kW/m2),
Dechaumphai et al. [28] (482.6 kW/m2), and our previous laminar computation [23]
(488.5 kW/m2), although all of the experimental data are below (670.0 kW/m2). This
discrepancy can be attributed to neglecting the 3D effects, the uncertainty in turbulence
modeling, and measurement errors.

Figure 2 shows the computed distribution of temperature along the symmetry line. A
typical aerothermal phenomenon in hypersonic flows around a blunt body is observed. The
free-stream temperature first undergoes a rapid increase across the shock, and then drops
suddenly from over 2000 K to the fixed wall temperature within a thin thermal boundary
layer. It is also found that the thicknesses of the shock and boundary layer are favorably
thin, indicating a high accuracy of the BGK scheme for capturing discontinuities. The
predicted shock location (−54.9 mm) shows good agreement with those from Guo et al. [29]
(−54.6 mm) and Zhang et al. [27] (−55.0 mm).

The computed pressure and heat flux distributions along the cylinder wall are shown
in Figure 3. The abscissa is defined as the angle from the stagnation point of the cylindrical
body. Both the pressure and heat flux are normalized by their stagnation-point values,
respectively, and those from the experiment are also presented. As shown in the figure,
for both pressure and heat flux distributions, the present results agree very well with the
experimental data.
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(a) (b) 

Figure 2. Computed distribution of (a) temperature and (b) pressure along the symmetry line.

 
(a) (b) 

Figure 3. Distributions of (a) pressure and (b) heat flux along the cylinder wall.

Finally, the computed density contour is compared to that from the Schlieren photo-
graph [26]. As shown in Figure 4, good agreements were observed in the captured shock.
All of the above results validate the satisfactory accuracy of the present BGK scheme for
hypersonic flows.

 

Figure 4. Computed density contour (lower) and Schlieren photograph (upper).
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4. Numerical Results and Discussions

In this section, two widely used thermal protection systems are investigated using the
developed method. One is using the spike and the other one is using the opposing jet. Both
their performances and mechanisms to reduce heat flux are analyzed.

4.1. Thermal Protection System by Using Spike

The first case is a spiked blunt body experimentally investigated by Motoyama et al. [5].
The experiments are conducted in a 0.2 m radius Mach 7 hypersonic wind tunnel. The
stagnation temperature is 860 K and the free-stream Reynolds number is 4 × 105 (based
on the diameter of the hemispherical body). Various configurations are tested in the
experiment, and three typical models are considered in this case. One is a conical spike,
the second is a hemispherical spike, and the third uses a hemispherical disk on a spike
nose. The first two are often referred to as an aerospike model, while the third belongs to
the aerodisk model. Their configurations are given in Figure 5, together with the original
hemispherical body without a spike.

  
(a) No spike (b) Conical spike 

  
(c) Hemispherical spike (d) Hemispherical disk 

Figure 5. Different configurations of the spike attached to a hemispherical body.

Because of the axis symmetry of geometry and flow conditions, the computation is
simplified using a 2D axisymmetric model. Multi-block structured grids are employed to
discretize the computational domain. The total number of grid cells used for these four
models is about 0.12 million, which has been shown to be fine enough through a previous
grid independence study. The first cell height to wall is set to keep y+ near 1.
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Figure 6 presents the computed surface pressure distributions of the hemispherical
body from the present method and a conventional N-S solver using the AUSM+ scheme.
The abscissa represents the angle from the stagnation point of the hemisphere body, and
the pressure data are normalized by the specific heat ratio and free-stream pressure. The
experimental and theoretical results are also presented for comparison, if available. For all
of the cases, both methods predict very similar pressure distributions. The numerical results
of the no-spike case agree better with the experimental data than the inviscid theory [30].
This verifies the reliability of the BGK scheme for axisymmetric hypersonic flows. In the
aerospike cases (conical spike and hemispherical spike), the predicted variations of pressure
are, in general, consistent with the experimental data, despite the discrepancy in the
shoulder location of the sharp pressure peak. As can be seen later, this region corresponds
with the high heat flux region where reattachment of the shear layer occurs. In contrast, the
change in pressure on the hemispherical body with the aerodisk (hemispherical disk) is
relatively smooth, and, meanwhile, better agreements are found between the computed
and experimental results.

 
(a) No spike (b) Conical spike 

 
(c) Hemispherical spike (d) Hemispherical disk 

Figure 6. Surface pressure distributions of the hemispherical body with the use of different spikes.

As a result of the lack of instantaneous surface temperature data in the original report,
a uniform and constant wall temperature is assumed. Figure 7 shows the comparisons
of the heat flux distributions for the same four cases, where the theoretical heat flux is
obtained from the laminar flow theory [31]. Overall, the computed results are in line
with the experimental trends, but the comparisons are less satisfactory. Particularly, in the
aerospike cases, the predicted heat flux peaks appear earlier in the hemispherical body
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surface and seem higher and more sharp. A similar phenomena can also be found in
references [32,33], and the deviations can be attributed to the assumption of a uniform
wall temperature and experimental errors. In fact, it was argued in the original report [5]
that “In the aerospike case, the heat flux distribution curve has a more-rounded peak than
expected because of the estimated data around the peak in that case. For this reason, the
actual heat flux at the shoulder of the body may be higher in the aerospike case”. Despite
this, good agreements between the two methods indicate the effectiveness of the BGK
scheme in the thermal protection analysis of the spike. As shown in the figure, the use of
each spike can reduce the heat flux near the stagnation point of the hemispherical body.
However, the heat fluxes at the shoulder of the hemispherical body are higher than the
no-spike case, and the values may even exceed the stagnation-point value of the no-spike
case, except for the hemispherical disk. Therefore, aerodynamic heating is more effectively
reduced with use of an aerodisk.

 
(a) No spike (b) Conical spike 

 
(c) Hemispherical spike (d) Hemispherical disk 

Figure 7. Surface heat flux distributions of the hemispherical body with the use of different spikes.

The above findings can be more intuitively seen in Figure 8. It is first observed that the
computed density contours are close to the Schlieren photographs of the flowfield. In the
aerospike cases, the thin shock wave from the spike nose, the shear layer from the near-wall
separation, and the recompression shock from the reattachment point are clearly visible.
However, the predicted location of the reattachment point is slightly ahead of the experi-
mental measurement, which yields the errors in peak location shown in Figures 6 and 7.
In addition, a high temperature region can be observed around the reattachment point
of the shear layer (which is not shown here). Then, in the aerodisk case, a bow shock is
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generated far from the hemispherical body. The body is mostly enveloped within the large
recirculation region, which is separated from the inviscid flow within the bow shock by the
flow separation that caused a shear layer. The captured reattachment shock agrees well
with the Schlieren photograph in terms of both the location and structure. Furthermore, as
the oblique shock does not directly impinge on the body surface, the temperature rise is
not as significant as that in the aerospike cases.

  
(a) Conical spike (b) Hemispherical spike 

 
(c) Hemispherical disk 

Figure 8. Density contours (lower) and Schlieren photographs (upper) for different spikes.

4.2. Thermal Protection System by Using Opposing Jet

The second case is a blunt body experimentally studied by Hayashi et al. [34] in a
blowdown-type supersonic wind tunnel. The blunt body has a diameter of 50 mm and
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the nozzle exit has a diameter of 4 mm. The free-stream conditions include Mach number
M∞ = 3.98, total pressure p0 = 1.37 MPa, and total temperature T0 = 397 K. A uniform wall
temperature Tw = 295 K is assumed. An opposing jet is blown with a coolant gas at a total
temperature T0j = 300 K and specified total pressure ratio PR. The jet Mach number is 1.0,
and the Reynolds number is 2.1 × 106 (based on the diameter of the blunt body). The total
pressure ratio PR is defined as the ratio of the total pressure of jet p0j to the total pressure
of the free stream p0∞, i.e.,

PR =
p0j

p0∞

Four stable jet conditions of PR = 0, 0.4, 0.6, 0.8 are studied, where PR = 0 represents
no jet. The computational model for this case is shown in Figure 9. The computational grid
used has a size of 401 × 301 and the first cell height to wall is Δs = 1 × 10−6 m. The grid is
tangentially clustered near the nozzle exit. The physical properties at the nozzle exit are
determined by using the isentropic relations together with the prescribed total pressure
ratio and total temperature.

Figure 9. Computational model for the hypersonic flow past a blunt body with an opposing jet.

Before showing the computed results, it is worth mentioning that a slight self-induced
oscillation phenomenon is found in the flow fields of the opposing jet. Fortunately, these
oscillations are small and become weakened with the increase in the total pressure ratio,
and thus the results are evaluated by some averaging.

Figure 10 compares the computed surface pressure distributions with the numerical
results of Hayashi et al. [35]. The horizontal axis is the angle from the stagnation point
of the blunt body. For the no-jet case, both methods predict almost the same results. For
the cases where the opposing jet blows, the overall pressure significantly decreases due to
the presence of flow recirculation. In these cases, good agreements are observed over the
majority of the curves, although the present results predict higher peaks and lower valleys
near the recirculation region for PR = 0.4 and 0.6. It is also found that as PR increases, the
pressure in the recirculation region gradually decreases.
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Figure 10. Surface pressure distributions for different total pressure ratios.

The comparisons of the heat flux distributions for different total pressure ratios are
shown in Figure 11. As in the experiments, the Stanton number St is used to compare each
heat flux distribution, which is defined as

St = qw
cp(Taw−Tw)ρ∞V∞

Taw = T∞

[
1 +

3√Pr(γ−1)M2
∞

2

]
where qw is the heat flux, Taw is the adiabatic wall temperature, and Tw is the wall temperature.

 
(a) No jet (b) PR = 0.4 

 
(c) PR = 0.6 (d) PR = 0.8 

Figure 11. Surface heat flux distributions for different total pressure ratios.
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As shown in the figures, the heat flux in the no-jet case can be reduced using the
opposing jet. With the increase in PR, this heat reduction is more effective. In the no-
jet case, good agreements with experiment are obtained. In the cases of blowing the
opposing jet, the values of heat flux are higher than the reference [35], but the peaks appear
ahead. This is directly caused by the difference in the predicted recirculation regions.
The discrepancy between the computed and experimental results is probably as a result
of the surface roughness of the experimental model and the turbulence modeling error.
Nevertheless, the present results show overall better agreements with the experiment,
indicating the effectiveness of the BGK scheme in the thermal protection analysis of the
opposing jet.

Figure 12 further shows the computed density contours and Schlieren photographs. In
the no-jet case, the predicted bow shock agrees very well with that of the experiment, while
in other cases, the position of the bow shock is located slightly upstream. This discrepancy
is also seen in [35]. At each non-zero PR, a lot of unique characteristics are clearly and
accurately captured by the present method, including Mach disk, contact surface, barrel
shock wave, recompression shock wave, and the triple point. Particularly, the predicted
Mach disk and barrel shock agree well with the experimental results.

  
(a) No jet (b) PR = 0.4 

  
(c) PR = 0.6 (d) PR = 0.8 

Figure 12. Density contours (lower) and Schlieren photographs (upper) for different total pressure ratios.
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Finally, the computed temperature contours and streamlines are shown in Figure 13.
From the visualizations of the flow fields and the curves of the heat flux distributions, it is
found that the opposing jet reduces the heat flux mainly through two mechanisms: one is to
prevent the hot flow downstream of the bow shock from reaching the body surface, and the
other one is to form the recirculation region to protect the body surface. For the former one,
the jet flow acts similarly to a mechanical spike. When it passes through the Mach disk and
meets the free stream, the contact surface is formed. The contact surface moves upstream
with an increase in the total pressure ratio. For the latter one, the recirculation region is
formed around the nozzle exit and the recompression shock starts from the reattachment
point. The jet flow passing through the barrel shock has a relatively low temperature,
covering the recirculation region with cool gas. When the total pressure ratio increases, this
cool flow region becomes larger and the temperature of the recirculation region decreases,
resulting in a stronger cooling effect. This tendency is shown in Figure 12.

 
(a) No jet (b) PR = 0.4 

 
(c) PR = 0.6 (d) PR = 0.8 

Figure 13. Temperature contours and streamlines for different total pressure ratios.
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5. Conclusions

In recent years, the gas-kinetic BGK scheme has shown to be very promising in the
simulation of hypersonic flows because of its advantages of having a delicate dissipation
mechanism, automatic satisfaction of entropy condition, and positivity preserving. Moti-
vated by this, it is herein extended to thermal protection system analysis, which is essential
to vehicles at a hypersonic flight speed. Within a finite volume framework, the present
BGK scheme is designed for the evaluation of the total fluxes across the cell interface by
reconstructing the solution of the Boltzmann equation. A benchmark hypersonic flow past
a cylindrical leading-edge model is first used to validate the developed code. Then, two
representative thermal protection systems using spikes and opposing jets are investigated.
In addition to predict the reduction of aerodynamic heating, different shapes of spikes and
their effectiveness are analyzed in the former TPS and the effects of total pressure ratio of
the jet are studied in the latter TPS. The computed results are compared with experimental,
theoretical, or other numerical results. The mechanisms to reduce aerodynamic heating
using two TPSs are also discussed. It is concluded that the BGK scheme shows good
reliability and accuracy in thermal protection system analysis and has bright prospects in
engineering applications.
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Abstract: Over recent decades, studies in porous media have focused on many fields, typically in
the development of oil and gas reservoirs. The imbibition phenomenon, a common mechanism
affecting multi-phase flows in porous media, has shown more significant impacts on unconventional
reservoir development, where the effect of the pore space increases with decreased pore sizes. In
this paper, a comprehensive SPH method is applied, considering the binary interactions among
the particles to study the imbibition phenomenon in porous media. The model is validated with
physically meaningful results showing the effects of surface tension, contact angle, and pore structures.
A heterogeneous porous medium is also constructed to study the effect of heterogeneity on the
imbibition phenomenon; it can be referred from the results that the smaller pore throats and wetting
surfaces are more preferred for the imbibition. The results show that the SPH method can be applied
to solve the imbibition problems, but the unstable problem is still a sore point for the SPH method.

Keywords: SPH method; two-phase; porous media

1. Introduction

The two-phase problem is common in the academic and engineering fields [1,2]. For
example, the flooding processes in the development of petroleum, which include liquid
flooding and gas flooding [3,4], are usually accompanied by multi-phase problems. In
the oil and gas reservoir, porous media are occupied by the liquid and gas phases with
the states of liquid bridges and clusters, and the pore size ranges from nanometers to
micrometers [5]; accordingly, the two-phase problem is the key point in the development of
reservoirs. Furthermore, the cohesion and the contact angle are always the main research
points academically [6].

A number of methods have been used to handle the two-phase problem due to their
applicability [7–11]. The non-linear partial differential equation of the two-phase and
incompressible fluid was proposed and applied in a porous media [12]. The finite volume
method was applied to the two-phase flow in a fractured porous media with fully implicit
discretization [13]. The finite element method was also developed for the two-phase
immiscible flow problems [14,15].

Apart from the mesh method, the particle method, such as the molecular dynamics,
was also applied to the multi-phase problems, revealing the mechanism of phase behaviors
at the atomic scale [16–19]. The smoothed particle hydrodynamics (SPHs) method, a mesh-
free method, is fully particle discretized [20], which is good at dealing with the free surface
and large deformation problems [6,21]. If the gas phase is taken into consideration based
on the free surface problem, it turns into a two-phase problem [22,23].

The SPH method is applied for multi-phase problems using several computational
fluid dynamics techniques [10,24–26]. For example, the technique of interface tracking
between different fluid phases is usually carried out by the color function, and the re-
lation between the surface tension and curvature is controlled by the Young–Laplace
equation [27,28]. In the unconventional reservoir, such as the shale reservoir, the pore
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size is extremely small; as a result, the effects of the micro-confined space cannot be ig-
nored [29–31]. Abdolahzadeh et al. [32] studied the mixing processes for the two-phase
flow in a single channel with various structures by the meshless SPH method. Tartakovsky
et al. [33] studied the mineral precipitation and reaction flow in porous media using the
SPH method. They found that the SPH method was good at studying the flow and trans-
port behaviors in pore-scale space. Bui et al. [34] developed the SPH method by coupling
the behaviors of the fluid and solid phases in porous media, and the results show that the
two-phase SPH method is promising for coupled problems. Kazemi et al. [35] used the
spatial averaging method to obtain the mass and momentum conservation equations for
comparative research of previous studies. In this case, the pairwise force SPH method has
been proposed [36,37], but further studies of its application and validation are still needed.

In this work, the SPH method, which considers the effect of the interaction force be-
tween particles, is applied to imbibition problems of the gas and liquid phases innovatively.
The homogeneous and inhomogeneous porous media are built, where the particles of the
gas and liquid phases are filled as the shapes of bridges and clusters. The sensitivity of the
porous media’s structure, the pore size, and the contact angle are also examined.

2. Methodology

2.1. The Governing Equations

In this work, the weakly compressible fluid is adopted, and the non-linear term in
the momentum equation is not taken into consideration [38,39]. The equation of state is
needed to calculate the pressures as follows [40]:

dρ

dt
= −ρ∇·u (1)

ρ
du

dt
= −∇p +∇·

(
μ
(
∇u +∇uT

))
+ g + FS (2)

p = peq
n

neq
, (3)

where the ρ denotes the density of the fluid, the u denotes the fluid velocity, the g denotes
the gravity acceleration, the FS denotes the surface tension term, the peq denotes the pressure
in the equilibrium state, the neq denotes the number density in the equilibrium state, the p
denotes the pressure of the fluid, and the n denotes the number density of the fluid. The
Young–Laplace equation is adopted to build the sharp interface model as follows [27,40,41]:(

pl − pg
)
n =

(
τl − τg

)·n + kσn (4)

σlg cos θe + σsl = σsg, (5)

where the pl and pg denote the pressures of the liquid and gas phases, respectively; the τl
and the τg denote the viscous stress tensors of the liquid and gas phases, respectively; the
n denotes the normal unit vector perpendicular to the interface; the σ denotes the surface
tension coefficient; and the θe denotes the equilibrium contact angle.

2.2. The SPH Model

The SPH method, which is meshless, is carried out by the kernel function approxima-
tion and particle approximation as follows:

A(r) ≈
∫

A
(

r’
)

W
(

r − r’, h
)

dr′ (6)

A(r) ≈ ∑b mb
Ab
ρb

A
(

r’
)

W(r − rb, h), (7)

where the A(r) denotes the field function; the W denotes the kernel function; the r denotes
the distance between particles; the h denotes the smooth length; the mb, ρb, and Ab denote
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the mass, density, and field function of particle b, respectively. According to Equations (6)
and (7), the differential operators can be discretized in the SPH forms as follows:

∇Aa ≈ ∑
b

mb
Ab
ρb

Aa∇Wab (8)

∇·Aa ≈ ∑
b

mb
Ab
ρb

Aa·∇Wab (9)

∇× Aa ≈ ∑
b

mb
Ab
ρb

Aa ×∇Wab, (10)

where Wab = Wa − Wb. By balancing the coding complexity and computational efficiency,
the cubic spline kernel function is adopted as follows [20]:

W(r, h) = σd

⎧⎨⎩
6
(
q3 − q2)+ 1, 0 ≤ q ≤ 0.5
2(1 − q)3, 0.5 < q ≤ 1 ,

0, q > 1
(11)

where q = ‖r‖/h, the σd denotes the normalization factor of the kernel function, σ1D = 4/(3h),
σ2D = 40/

(
7πh2), and σ3D = 8/

(
πh3). Therefore, the continuity equation of weakly com-

pressible fluid can be written in the form of SPH discretization as follows [41]:

dρa

dt
= ∑

b
mbuab·∇aWab, (12)

where uab = ua − ub and ∇aWab = −∇bWab. However, in the momentum equation, it is
not a good choice to use the direct discretization form of the pressure gradient since the
symmetric form is more stable for the multi-phase problem [6,42], as written in Equation (13).(

1
ρ
∇p
)

a
= ∑b mb

(
pa + pb

ρaρb

)
∇aWab. (13)

By using the divergence operator and the discretization of the SPH method, the viscosity
term can be written as follows [43,44]:(

μ

ρ
∇2u

)
a
= ∑

b
mb

(μa + μb)rab·∇aWab

ρaρb
(
r2

ab + 0.01h2
) uab, (14)

where the term 0.01h2 is used to avoid the singularities [45]. To handle the problem of the
gas and liquid phases, the pairwise force is calculated in the surface tension term, where
the attractive and repulsive forces can be addressed as follows [46]:

Fs
ab =

{−sαβrab[AΨε0(rab) + Ψε(rab)]
0

rab ≤ h
rab > h

, (15)

where the Fs
ab denotes the interfacial tension force between particles a and b and the sαβ

denotes the strength coefficient of the interaction. For the two-dimensional cases, ε = h
3.5 ,

ε0 = ε
2 , Ψε(rab) = e

r2
ab

2ε2 , and A =
(

ε
ε0

)3
. The two-phase problem in this study is immiscible;

thus, the particles in the same phase need a larger interaction force, and the strength
coefficients can be calculated as follows [46,47]:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

sαα = sββ = 0.5n−2
(

h
3

)−5
σ
λ

ssα = 0.5n−2
(

h
3

)−5
σ
λ (1 + 0.5 cos θ)

ssβ = 0.5n−2
(

h
3

)−5
σ
λ (1 − 0.5 cos θ)

(16)
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where the n denotes the average number density of the fluid, the σ denotes the surface
tension coefficient, and λ = 3

4π2

(
27 − 32 × 24π2 + 33π4). Therefore, sαα = sββ = ssα = ssβ

if the contact angle is 90º, which suggests that the neutral wetting condition can be obtained.
The boundary conditions are as follows [21]:

Fbound
i =

Nbound

∑
j=1

fbound
ij (17)

fbound
ij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−
⎡⎣U2

max

min
(
(ui−uj)·^nj ,−1

)
Wij Hij

^
nj

|rij ·nj|

⎤⎦,
(
ui − uj

)·^
nj < 0

0,
(
ui − uj

)·^
nj > 0

(18)

where the i denotes the index of the fluid particle, the j denotes the index of the solid

particle, the ui denotes the fluid velocity, the uj denotes the solid velocity, and the
^
nj

denotes the normal vector for the solid particle j. The solid particles’ velocity and pressure
are obtained as follows:

uj = −∑
Nf
i uiWij

∑
Nf
i Wij

(19)

pj =
∑

Nf
i piWij +

(
g − bj

)·∑
Nf
i ρirijWij

∑
Nf
i Wij

(20)

where the Nf denotes the number of fluid particles, the Nbound denotes the number of solid
particles, and the bj denotes the prescribed acceleration for solid particles.

2.3. The Relaxation of the Solid Boundary

The arrangement of the particles affects the interaction between the fluid and solid
particles, and the relaxation of the solid phase can make the results more accurate. The
solid particles are filled within the specific region randomly. After that, the particles are
relaxed, and the particles that move out of the region will be pushed back manually using
the level-set method [48,49]. Finally, the relaxed solid particles can be obtained, and the
result is shown in Section 3.1.

3. Results and Discussion

In Section 3.1, the validation of the SPH method is verified on the two-phase problems.
The sensitivity of the porous media’s structure is tested in Section 3.2. Section 3.3 presents
the phase behaviors of the gas and liquid phases in heterogeneous porous media.

3.1. The Validation of the Scheme

In order to verify the method for the two-phase problem of the gas and liquid, two sim-
ple cases are studied without gravity. The realistic three-dimensional porous media model
is not adopted because the computational resources are huge for the three-dimensional
cases. Although the realistic porous media model can present realistic results, the regular
model can show the validation of the method more clearly. As shown in Figure 1, the solid
particles are adopted to build a box for the simulation, and the gas and liquid particles
are filled within the box. The size of the box is 2 cm × 1 cm. The initial distribution of
the liquid particles is rectangular. With the effect of the surface tension between the two
phases, the liquid phase tends to form the shape of a droplet, and the particles show a good
arrangement on the interface, presenting a good match with previous studies [50,51]. The
properties of the gas and liquid phases are shown in Table 1.
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(a) (b) 

Figure 1. The (a) initial state and (b) equilibrium state for the gas–liquid phases in the center of the
system. The red particles represent the liquid phase, the blue particles represent the gas phase, and
the black particles are solid wall particles. The size of the box is 2 cm × 1 cm.

Table 1. The parameters of the gas and liquid phases.

Phase Density/(kg·m−3) Viscosity/(mPa·s)

Gas 1.225 0.019
Liquid 1000 0.925

The contact angle between the liquid droplet and solid wall is also verified in the same
condition, as seen in Figure 2. The liquid particles are filled at the bottom of the box with a
rectangular shape. After the equilibrium simulation, the liquid phase formed a wetting
droplet on the wall’s surface with the contact angle of 50◦, which has a good match with
the preset value. Figure 2c presents a non-wetting case with a contact angle of 130º. These
two basic cases show the good validation of the SPH method on the two-phase problem.

  
(a) (b) 

 
(c) 

Figure 2. The (a) initial state and equilibrium states with (b) the contact angle of 50◦ and (c) 130◦ for
the gas–liquid phases on the wall’s surface.

In addition, the solid phase is relaxed using the level-set method [49] because the
arrangement of solid particles affects the fluid–solid interactions, such as the solid structure
in Figure 3a. As shown in Figure 3b, the solid particles are packed randomly, and the solid
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particles are relaxed within the solid region [52,53]. Finally, the relaxed solid structure can
be obtained in Figure 3c.

   
(a) (b) (c) 

Figure 3. (a) The regular arrangement of solid particles. (b) The initial state before relaxing and
(c) the relaxed state.

3.2. The Sensitivity of the Porous Media’s Structure for the Two-Phase Behavior

As shown in Figure 3, a simple porous media model is built with a number of solid
spheres to represent the rock matrixes. The common states for the liquid in the rock pores
are the liquid bridge and the liquid cluster. Therefore, in order to examine the effects of
porous media on the imbibition problem, different initial liquid states are adopted in this
study. Figure 4a presents an initial stripe state for the liquid phase, and the equilibrium state
is shown in Figure 4b. In the wetting condition, the phenomenon of liquid bridge states can
be observed [54]. In porous media, the liquid phase, with the effect of the surface tension,
tends to move into the pore throat between the solid matrixes. Due to the homogeneity of
the porous media, the liquid phase is in a balanced condition and cannot transport across
the pore throat. The curvature of the matrix is also a reason why transportation is inhibited.
Because the smallest pore size is in the center of the pore channel, the pore size tends to be
larger if the liquid particles move out from the center position.

  
(a) (b) 

Figure 4. The phase distributions of the gas and liquid phases in the homogeneous porous media
(contact angle = 50◦). The (a) initial state and (b) equilibrium state for a liquid bridge are depicted in
the system.

Apart from the liquid bridge state, the cluster state is also common in porous media.
In order to judge the effect of solid matrixes accurately, the edges of the initial region are
defined at the centers between different solid matrixes, as shown in Figure 5a. According
to the results in Section 3.1, the liquid phase tends to be a sphere droplet in the center of
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the domain. However, because of the effects of the porous media and surface tension, the
liquid phase still shows a smoothed square shape. Furthermore, the particles on the solid
matrix’s surface tend to be taken apart by the surface tension, but the sphere shape of the
solid matrix maintains the stability of the liquid film relatively.

  
(a) (b) 

Figure 5. The phase distributions of the gas and liquid phases in the homogeneous porous media
(contact angle = 50◦). The (a) initial state and (b) equilibrium state for a liquid cluster are depicted in
the system.

There are various structures of rock matrixes in the reservoir. To test the effects of
the solid structures clearly, the square shape of the matrix is studied in this section. The
bridge and cluster liquid states are constructed initially, which are the same as that in
the sphere matrix system. Figure 6b depicts the equilibrium state of the liquid bridge,
which corresponds to the state in Figure 4b, but the liquid phase can go further into the
square pore throat than the throat with the curvature because the throat size is constant. In
Figure 6d, the wider liquid bridge is also tested, and the trapezoidal shape of the liquid
bridge can be observed due to the edge effect of the square solid matrix [55]. In addition,
the results of liquid cluster distributions are presented in Figure 7. The main difference is
that the liquid cluster is separated at the positions of sharp corners, which is caused by the
surface tension. As exhibited in Figure 7c, the separated liquid particles can move into the
pore throat. Therefore, the pore throat with the curvature can block the fluid flow more
easily than the square pore throat. In addition, as shown in Figure 8, the larger initial liquid
cluster tends to invade the pore throats as a result of the wetting boundary condition. The
particle resolution independence test is also presented in Figure 9, and the results show
that the imbibition phenomenon addressed by the SPH method is relatively independent
of resolutions. Figure 9a,c exhibit the imbibition trends toward the smaller pore space.

    
(a) (b) (c) (d) 

Figure 6. The phase distributions of the gas and liquid phases in the homogeneous porous media
(contact angle = 50◦), where the solid matrixes are represented by square solid particles. The (a) initial
state and (b) equilibrium state for a liquid bridge are depicted in the system. The (c) initial state and
(d) equilibrium state for the wider liquid bridge are also depicted in the system.
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(a) (b) (c) 

Figure 7. The phase distributions of the gas and liquid phases in the homogeneous porous media
(contact angle = 50◦), where the solid matrixes are represented by square solid particles. The (a) initial
state, (b) transition state, and (c) equilibrium state for a liquid cluster are depicted in the system.

  
(a) (b) 

Figure 8. The phase distributions of the gas and liquid phases in the homogeneous porous media
(contact angle = 50◦), where the solid matrixes are represented by square solid particles. The (a) initial
state and (b) equilibrium state for a larger liquid cluster are depicted in the system.

   

(a) (b) (c) 

Figure 9. The phase distributions of the gas and liquid phases in the homogeneous porous media
(contact angle = 50◦) with various resolutions, (a) 50 × 50, (b) 100 × 100, and (c) 200 × 200.

3.3. The Two-Phase Behavior in the Heterogeneous Porous Media

The pore network in porous media is usually heterogeneous, especially in the uncon-
ventional reservoir [56], and the heterogeneity of porous media is performed by the solid
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matrix with different sizes, inducing the different phase distributions of fluid particles. As
depicted in Figure 10, the radii of solid matrixes do not change the phase distributions
much in the homogeneous porous media. Therefore, the solid matrixes with different radii
are inserted in the bulk of pores, as shown in Figure 11, in order to test the results in hetero-
geneous porous media. The imbibition effect is stronger in the results in Figure 11a,b, where
the liquid phase particles already move around the inserted solid matrixes. However, in
Figure 11c, the liquid phase is stopped at the position of the inserted solid matrixes because
the smaller radius induces the larger pore size, which weakens the effect of interfacial
tension of the liquid phase. The quantitative results are also presented in Figure 12.

    
(a) (b) (c) (d) 

Figure 10. The equilibrium state for the liquid cluster in the homogeneous porous media (contact
angle = 50◦), and (a) R = 0.5 mm, (b) R = 0.6 mm, (c) R = 0.7 mm, (d) R = 0.8 mm, where R is the
radius of each sphere wall.

   
(a) (b) (c) 

Figure 11. The phase distributions of the gas and liquid phases in the heterogeneous porous media
(R = 0.6 mm, contact angle = 50◦), where the solid matrixes with different sizes are filled in the bulk
pores on the left side, and (a) r = 0.6 mm, (b) r = 0.48 mm, (c) r = 0.36 mm, where r is the radius of
each inserted sphere wall.

Apart from the size of the solid matrix, the contact angle is also a key point in studying
the phase distribution in heterogeneous porous media. Hence, different contact angles
between the liquid and solid phases are adopted and tested, which correspond to the
condition of wetting, neutral, and non-wetting boundaries. As shown in Figure 13a,
the liquid phase can easily perform the phenomenon of imbibition within the wetting
system. In the neutral system, the imbibition of the liquid phase happens with the effect
of the surface tension, but the preference of the pore size cannot be judged. Figure 13c
shows the distribution of the liquid and gas phases in the non-wetting system; the liquid
phase is excluded from the dense part of porous media, as shown in Figure 14. This also
corresponds to previous studies because the liquid phase turns into the non-wetting phase
in this condition [57–59].
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Figure 12. The proportion of the liquid phase distribution at the left and right sides and the imbibition
distance of the liquid phase in the cases with different inserted solid matrix radii.

   
(a) (b) (c) 

Figure 13. The phase distributions of the gas and liquid phases in the heterogeneous porous media
(R = 0.6 mm), where the different contact angles are examined, and (a) contact angle = 30◦, (b) contact
angle = 90◦, (c) contact angle = 150◦.

 
Figure 14. The proportion of the liquid phase distribution at the left and right sides and the imbibition
distance of the liquid phase in the cases with different contact angles.
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4. Conclusions

In this work, the SPH method is adopted to study the gas–liquid imbibition problem
in porous media. Firstly, the porous media model is built by solid particles, and the
liquid and gas particles are filled in the model regularly. The SPH algorithm is verified by
the basic gas–liquid models in the wetting and non-wetting systems, and the validation
of the surface tension is also confirmed with a droplet model. Due to the complexity
of reservoirs, the sensitivity of the porous media’s structure is examined, and the solid
boundary with the curvature tends to inhibit the imbibition of the liquid phase. To mimic
the heterogeneity of reservoirs, the heterogeneous porous media model is built, and the
effects of the solid matrix’s size and contact angle are also tested. The smaller pore size
facilitates the imbibition of the liquid phase, and the wetting solid boundary for the liquid
phase contributes to the imbibition process. In contrast, the non-wetting solid boundary
makes the gas the wetting phase, and the process is inversed accordingly. The imbibition
behavior simulated by the SPH method is meaningful for understanding the development
of oil and gas reservoirs. In this study, the applications of the SPH method in the multi-
phase cases still have some problems, such as volume expansion and interface tracking,
which are the points to address in our future research.
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Abstract: The multiphase model based on free-energy theory has been experiencing long-term
prosperity for its solid foundation and succinct implementation. To identify the main hindrance
to developing a free-energy-based discrete unified gas-kinetic scheme (DUGKS), we introduced
the classical lattice Boltzmann free-energy model into the DUGKS implemented with different
flux reconstruction schemes. It is found that the force imbalance amplified by the reconstruction
errors prevents the direct application of the free-energy model to the DUGKS. By coupling the well-
balanced free-energy model with the DUGKS, the influences of the amplified force imbalance are
entirely removed. Comparative results demonstrated a consistent performance of the well-balanced
DUGKS despite the reconstruction schemes utilized. The capability of the DUGKS coupled with
the well-balanced free-energy model was quantitatively validated by the coexisting density curves
and Laplace’s law. In the quiescent droplet test, the magnitude of spurious currents is reduced to a
machine accuracy of 10−15. Aside from the excellent performance of the well-balanced DUGKS in
predicting steady-state multiphase flows, the spinodal decomposition test and the droplet coalescence
test revealed its stability problems in dealing with transient flows. Further improvements are required
on this point.

Keywords: free-energy model; discrete unified gas-kinetic scheme; multiphase flow; flux reconstruction

1. Introduction

Multiphase fluid flow characterized by the concurrent presence of multiple ther-
modynamic phases is frequently encountered in industrial processes and engineering
applications. Insightful understanding of the multiphase flow behavior could facilitate im-
provements in manufacturing technology and production efficiency. Due to the restriction
on measurement technology and the experimental platform, it is particularly challenging to
reveal the flow details by experimental methods. Benefiting from the substantial improve-
ments in computing power, numerical simulation technology has been developed into a
powerful tool for the study of complicated behaviors arising in multiphase fluid flow. By
numerically solving the set of interface capturing and hydrodynamic equations, a multitude
of research studies [1–4] vividly detail the interface dynamics and flow structures from a
macroscopic perspective. Essentially, the interfacial phenomenon represents the macro-
scopic manifestation of the microscopic interactions among fluid molecules [5]. Numerical
methods based on realistic microscopic physics could offer in-depth findings regarding
multiphase phenomena, but the heavy computational requirement of such methods for
industry-scale multiphase problems is far beyond affordable. In recent years, numerical
schemes constructed with the mesoscopic theory [6] have been emerging as a compelling
methodology for resolving multiphase flow patterns as this bridges the gap between
the macroscopic descriptions of multiphase dynamics and microscopic intermolecular
interactions and, thus, generates insightful understandings at an affordable cost.
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Among various previously proposed mesoscopic approaches [7–9], the lattice Boltz-
mann (LB) method [7] has received particular attention for its concise and intuitive way
of representing intermolecular interactions. Generally, the lattice Boltzmann multiphase
models developed in the past few decades can be categorized into four classifications: the
color-gradient model [10], the phase-field model [11,12], the pseudopotential model [13],
and the free-energy model [14]. The phase-field model employs independent sets of dis-
tribution functions to separately transfer mass and momentum, which could cause mass
non-conservation problems near the interface region [15]. The pseudopotential model and
the free-energy model employ a single set of distribution functions to ensure a coherent
transport of mass and momentum, which conforms to the physical reality that mass and
momentum are simultaneously transferred by the unique molecules. Compared to the
pseudopotential model, where interactions are built heuristically, the free-energy model
is constructed upon the stationary-action principle, which possesses a firm physical back-
ground. Over the last couple of decades, the free-energy lattice Boltzmann method has been
successfully applied to numerically tackle a variety of flow issues including the contact
line movement [16,17], multicomponent fluids’ flow [18,19], wetting boundaries [20,21],
and large-density-ratio fluid flow [22,23]. The primitive free-energy multiphase model
proposed by Swift et al. [14] reflects the interaction effects via a modified equilibrium dis-
tribution function, whose second-order moment incorporates a nonideal thermodynamic
pressure tensor. However, this primitive model suffers from a lack of Galilean invariance
due to the superfluous terms recovered in the momentum equation. Later, Swift et al. [24]
tried to remedy this defect by introducing additional terms to the pressure tensor, but an
analysis through the Chapman–Enskog expansion demonstrated that the lack of Galilean
invariance cannot be entirely eliminated. Based on Swift et al.’s work, Inamuro et al. [25]
proposed a Galilean-invariant free-energy model with the guidance of asymptotic theory.
Kalarakis et al. [26] restored the Galilean invariance of the free-energy model to second-
order accuracy by modifying the zero-order momentum flux tensor. Wagner and Li [27]
replaced the contribution of the nonideal pressure tensor with a corrected force term and
improved the Galilean invariance of the model in large velocity situations. Meanwhile, Lee
and Fischer [28] reformulated the pressure form of the interaction force into a potential
form and reduced the magnitude of the spurious velocity to a machine level, at the cost
of including the information in next-nearest-neighbor cells. Subsequently, Guo et al. [5]
spotted that the spurious velocity originates from the force imbalance at the discrete level.
Based on this finding, Lou and Guo [29] applied the Lax–Wendroff scheme to the lattice
Boltzmann free-energy model and successfully mitigated the effects of the force imbalance.
Very recently, Guo [30] proposed a well-balanced lattice Boltzmann scheme with which the
spurious velocity can be ultimately minimized to the machine accuracy. The previously
mentioned improvements were carried out within the framework of the lattice Boltzmann
method, which inherits its advantages such as great simplicity and high efficiency. How-
ever, the uniformity requirement on the grid types posed by the LB method prevents its
application in industrial cases.

Developed in the framework of the finite volume method, the discrete unified gas-
kinetic scheme (DUGKS) [31] suffers no restriction in terms of the grid types. With the
information of the Knudsen number incorporated in the construction of the interface flux,
the DUGKS exhibits the capability of properly modeling a wide range of fluid flows ranging
from the continuum regime to the free-molecule regime [32]. Over the past decade, the
DUGKS has proven its excellent performance in predicting microscale gas flows [33,34],
multicomponent gas flows [35,36], turbulent flows [37–39], compressible flows [40–42],
radiative heat transfer [43,44], and so forth [45]. A comparative study [46] has demon-
strated the stability superiority of the DUGKS over that of the LB method in terms of
nearly incompressible flows. However, the DUGKS studies centered on multiphase fluid
flows remain limited [47,48] and the multiphase DUGKS has been primarily confined to
the phase-field model [49]. Although Yang et al. [50] developed a pseudopotential-based
DUGKS for binary fluid flow, a free parameter is needed to guarantee the isotropic prop-
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erty of the fluid interface. Inspired by the well-balanced LB scheme [30], Zeng et al. [51]
proposed a well-balanced DUGKS for two-phase fluid flows using the free-energy model.
Comparative results demonstrated the superior performance of the DUGKS over that of
the LB method. Nevertheless, there is still a lack of an insightful comprehension as to
the isotropic property of free-energy-based DUGKS. In this research, we elucidate the
mechanism for the nonisotropic phenomena produced by the free-energy-based DUGKS
using different reconstruction approaches. Then, we couple the well-balanced free-energy
model with the DUGKS implemented with different reconstruction schemes to investigate
practical van der Waals (vdW) fluid flows. The rest of this paper is organized as follows. In
Section 2, the primitive and the well-balanced free-energy models are introduced, followed
by the detailed explanation of the Strang-splitting DUGKS. The comparative numerical
results, as well as brief discussions are presented in Section 3. Finally, a summary is given
in Section 4.

2. Numerical Methodology

In this section, the first part theoretically introduces the free-energy model based on
the vdW chemical potential and the second part exhaustively explains the Strang-splitting
DUGKS implemented with different reconstruction schemes.

2.1. Free-Energy Model

Considering a multiphase system, the free-energy functional in terms of the fluid
density ρ can be expressed as [14,24]

F =
∫

φ(ρ,∇ρ)dΩV =
∫ (

Ef (ρ) +
κ

2
|∇ρ|2

)
dΩV , (1)

where ΩV is the spatial region occupied by the system, φ(ρ,∇ρ) denotes the total free-
energy density, in which Ef (ρ) represents the bulk free-energy density, and κ

2 |∇ρ|2 signifies
the interface free-energy density. The parameter κ is a positive constant determined by
the interface thickness and the surface tension coefficient. Minimization of the free-energy
F that is subject to the constraint of a constant mass M evolves the system towards the
equilibrium condition, where

M =
∫

ρdΩv. (2)

To impose the mass constraint, a transformed free-energy functional L is constructed using
the method of Lagrange multipliers:

L = F − λM, (3)

where λ is the Lagrange multiplier. Minimization of the constrained free-energy demands
the corresponding first variation to be zero:

δL = 0, (4)

which yields the following Euler–Lagrange equation:

∂ψ

∂ρ
−∇ ·

(
∂ψ

∂(∇ρ)

)
=

dEf

dρ
− κ∇2ρ − λ = 0, (5)

where
ψ(ρ,∇ρ) = φ(ρ,∇ρ)− λρ. (6)

The chemical potential μc is defined as the variation of the free-energy F with respect to
the density [52]:

μc =
δF
δρ

=
dEf

dρ
− κ∇2ρ. (7)
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As the integrand of transformed free-energy L does not explicitly contain any spatial
coordinates, it remains invariant regardless of the spatial translations [3]. Noether’s the-
orem [53] says that the invariance of the free-energy with respect to spatial translations
corresponds to a conserved tensorial current J satisfying [54]:

∇ · J = 0, (8)

where J is a second-rank tensor given by

J = −ψI +∇ρ ⊗ ∂ψ(ρ,∇ρ)

∂(∇ρ)
, (9)

in which I is the identity matrix. Substituting Equations (5) and (6) into Equation (9) leads to

J =
(

ρμc − Ef − κ

2
|∇ρ|2

)
I + κ∇ρ∇ρ. (10)

The bulk pressure pb is connected to the bulk free-energy density Ef via the Legendre
transform [54]:

pb(ρ) = ρ
dEf

dρ
− Ef (ρ), (11)

with which the conserved current tenor J can be identified as the thermodynamic pressure
tensor P in such a way that

P ≡ J =
(

pb − κρ∇2ρ − κ

2
|∇ρ|2

)
I + κ∇ρ∇ρ. (12)

With some basic algebraic manipulations, the divergence of the pressure tensor can be
simplified as

∇ · P = ρ∇μc. (13)

In the traditional free-energy model [28], the total effects of excess pressure accounting for
the phase interactions can be represented by the following interaction force

F = ∇ · P0 −∇ · P = ∇p0 − ρ∇μc, (14)

where P0 = p0 I denotes the pressure tensor of an ideal gas. In the well-balanced free-energy
model [30], the interaction force is defined as

F = −ρ∇μc (15)

in order to eliminate the force imbalance at the discrete level.
The only remaining task is to determine the bulk free-energy density Ef . In the work

of Zeng et al. [51], Ef takes a double-well form, which relates to no specific equation of
state (EOS). In the current research, the bulk pressure is evaluated by the nonideal van der
Waals EOS [55] expressed as

pb =
ρRT

1 − bρ
− aρ2, (16)

where parameter a denotes the intermolecular interaction strength, parameter b indicates
the volume correction, R stands for the gas constant, and T represents the temperature. The
corresponding bulk free-energy density can be obtained by solving Equation (11):

Ef (ρ) = ρRTln
(

ρ

1 − bρ

)
− aρ2. (17)
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The chemical potential can then be obtained according to Equation (7):

μc = RT
[

ln
(

ρ

1 − bρ
+

1
1 − bρ

)]
− 2aρ − κ∇2ρ, (18)

with which the interaction force F can be evaluated. In the current research, the parameters
in the vdW-EOS were set as [56] a = 9/392, b = 2/21, R = 1. κ was fixed at 0.02 if
not otherwise specified. The critical density and temperature are given as ρc = 3.5 and
Tc = 1/14.

2.2. Strang-Splitting DUGKS

In this subsection, the evolution process of the discrete unified gas-kinetic scheme
is exhaustively clarified. Then, the Strang-splitting scheme for the incorporation of the
interaction force is introduced.

2.2.1. Discrete Unified Gas-Kinetic Scheme

The investigation of multiphase flow problems in the current research was conducted
by numerically solving the Boltzmann-BGK equation:

∂ f
∂t

+ ξ · ∇x f = Ω ≡ − f − f E

τ
, (19)

where f = f (x, ξ, t) denotes the distribution function (DF), referring to a cluster of particles
residing at position x with a velocity of ξ at time t, τ indicates the relaxation time, and f E

represents the Maxwellian distribution function approached by f within each collision. The
nondimensionalization of Equation (19) is presented in the Appendix A. The moments of
distribution functions correspond to the conservative flow variables via

ρ =
∫

f dξ =
∫

f Edξ, ρu =
∫

ξ f dξ =
∫

ξ f Edξ, (20)

where u denotes the velocity of the flow field. To numerically solve Equation (19), dis-
cretization of the physical and velocity space is a prerequisite. To determine the discrete
velocity points along each single dimension, the three-point Gauss–Hermite quadrature is
employed. The two-dimensional discrete velocity points can be derived from the tensor
product of the single-dimensional velocities, which turns out to be the D2V9 velocity model
commonly used in the LB community:

ξ i =
√

3c2
s

[
0 1 0 −1 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

]
,

where ξ i is the ith discrete velocity and cs = 1/
√

3 is the model speed of sound. The ideal
gas pressure p0 shown in Equation (14) relates to the density ρ through p0 = ρc2

s .
With the discretization of the velocity space, the Boltzmann-BGK equation turns into

∂ fi
∂t

+ ξ i · ∇x fi = Ωi ≡ − fi − f E
i

τ
, (21)

where the subscript i indicates the distribution function for particles possessing a velocity
of ξ i. Subdividing the physical space into a set of grid cells and integrating Equation (21)
over a certain cell lead to

d
dt

∫
Vc

fi(x, t)dx +
∫

∂Vc
(ξ · n) fi(x, t)dS =

∫
Vc

Ωi(x, t)dx, (22)
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where Vc denotes the integral cell centered at position xc, ∂Vc denotes the surface boundary
of the cell, dS is the surface element, and n is the unit vector normal to the surface element.
Integrating Equation (22) over a time step of length Δt = tn+1 − tn yields

f n+1
i − f n

i +
Δt
|Vc| Fn+1/2

i =
Δt
2

[
Ωn+1

i + Ωn
i

]
, (23)

where |Vc| measures the volume of cell Vc and f n
i and Ωn

i approximate the cell averages of
Vc in such a way that

f n
i =

1
|Vc|

∫
Vc

fi(x, tn)dx, (24a)

Ωn
i =

1
|Vc|

∫
Vc

Ωi(x, tn)dx. (24b)

Fn+1/2
i measures the kinetic flux at the mid-time tn + Δt/2 by

Fn+1/2
i =

∫
∂Vc

(ξ i · n) fi(x, tn + Δt/2)dS. (25)

Note that the midpoint rule is applied to compute the time integral of the kinetic flux
and the trapezoidal rule is applied to evaluate the time integral of the collision term
in Equation (23). To remove the implicit treatment of the collision term, two auxiliary
distribution functions are introduced:

f̃i = fi − Δt
2

Ωi, f̃+i = fi +
Δt
2

Ωi. (26)

Substituting Equation (26) into Equation (23), we obtain a fully explicit evolution equation:

f̃ n+1
i = f̃+,n

i +
Δt
2

Fn+1/2
i . (27)

To obtain the kinetic flux Fn+1/2
i , the primitive distribution function fi(x f , tn+1/2) on

the cell surface needs to be first evaluated. To this end, we integrate Equation (21) along
the characteristic line over a time step length of δt = Δt/2:

fi(x f , tn+1/2)− fi(x f − ξ iδt, tn) =
δt
2

[
Ωi(x f , tn+1/2) + Ωi(x f − ξ iδt, tn)

]
. (28)

Note that the trapezoidal rule is once again applied for the time integral of the collision term.
Similar to the treatment of Equation (23), the implicitness of Equation (28) is eliminated
with the help of the following auxiliary distribution functions:

f̄ = f − δt
2

Ω, f̄+ = f +
δt
2

Ω. (29)

Equation (28) can then be rearranged as

f̄i(x f , tn+1/2) = f̄+i (x f − ξ iδt, tn). (30)

The auxiliary distribution function f̄+i (x f − ξ iδt, tn) on the right-hand side of
Equation (30) can be interpolated from the cell-centered f̄+i (xc, tn), which could be di-
rectly constructed via Equation (29). Based on the expansion point of the Taylor series [57],
the reconstruction schemes can be classified into the face-based reconstruction scheme
(FRS) or the cell-based reconstruction scheme (CRS). The FRS takes the form of

f̄+i (x f − ξ iδt, tn) = f̄+i (x f , tn)− ξ iδt · ∇ f̄+i (x f , tn), (31)
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in which the face-centered f+i (x f , tn) can be reconstructed from the cell-centered f+i (xc, tn)
via the central difference (CD) scheme [31] or the weighted essentially non-oscillatory
(WENO) scheme [58]. The upwind CRS takes the form of

f̄+i (x f − ξ iδt) =

{
f̄+i (xl) + (δxl − ξ iδt) · ∇ f̄+i (xl) + (δxl − ξ iδt)2:∇2 f̄+i (xl)/2, ξ i · n ≤ 0,

f̄+i (xr) + (δxr − ξ iδt) · ∇ f̄+i (xr) + (δxr − ξ iδt)2:∇2 f̄+i (xr)/2, ξ i · n > 0,
(32)

where δxl = x f − xl measures the distance from the face center x f to the adjacent cell
center xl on one side, while δxr = x f − xr measures the distance from the face center x f to
the adjacent cell center xr on the other side. An average value is used if ξ i · n = 0. After
finishing the reconstruction of f̄+i (x f − ξ iδt, tn), the face-centered auxiliary distribution
function f̄i(x f , tn+1/2) can be directly obtained via Equation (30). With a straightforward
transformation of Equation (29), the primitive distribution function fi(x f , tn+1/2) can be
calculated by

f =
2τ

2τ + δt
f̄ +

δt
2τ + δt

f E. (33)

The kinetic flux Fn+1/2
i can then be evaluated by its definition. After that, the auxiliary

distribution function f̃i(xc, tn+1)at the next time step can be updated by Equation (27).
Similarly, with a transformation of Equation (26), the primitive distribution function can be
calculated by

f =
2τ

2τ + Δt
f̃ +

Δt
2τ + Δt

f E. (34)

The equilibrium distribution function f E
i for the primitive free-energy model is expressed as

f E
i = ωiρ

[
1 +

ξ i · u
c2

s
+

uu : (ξ iξ i − c2
s I)

2c4
s

]
, (35)

where ωi = 4/9 for i = 0, ωi = 1/9 for i = {1, 2, 3, 4}, and ωi = 1/36 for i = {5, 6, 7, 8}.
The equilibrium distribution function f E

i for the well-balanced free-energy model is defined as

f E
i =

{
ρ + ω0ρs0(u), i = 0,
ωiρsi(u), i �= 0,

(36)

where

si(u) =
[

ξ i · u
c2

s
+

uu : (ξ iξ i − c2
s I)

2c4
s

]
. (37)

Obviously, the information of macroscopic conservative variables should be first evaluated
for the updating of the equilibrium distribution function. Considering the relationship
between the auxiliary DF and the primitive DF presented in Equations (26) and (29), the
cell-centered conservative variables are updated by

ρ = ∑
i

fi = ∑
i

f̃i, ρu = ∑
i

ξ i fi = ∑
i

ξ i f̃i, (38)

and the face-centered conservative variables are updated by

ρ = ∑
i

fi = ∑
i

f̄i, ρu = ∑
i

ξ i fi = ∑
i

ξ i f̄i. (39)

The time step length Δt is determined by the Courant–Friedrichs–Lewy (CFL) condition:

Δt = C
Δx√
3c2

s
, (40)

where C denotes the CFL number and Δx measures the grid spacing.
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2.2.2. Strang-Splitting Scheme

To date, the evolution process of DUGKS without considering force terms has been
exhaustively clarified. To incorporate the interaction effects between different phases, a
source distribution function f S

i accounting for the force effects is introduced. To correctly
recover the macroscopic hydrodynamic equation, the expression of f S

i for the primitive
free-energy model is defined as

f S
i = ωi

[
ξ i · F

c2
s

+
uF :

(
ξ iξ i − c2

s I
)

c4
s

]
, (41)

where F is the interaction force defined in Equation (14). The expression of f S
i for the

well-balanced free-energy model is defined as

f S
i = ωi

[
ξ i · F

c2
s

+
u
(

F + c2
s∇ρ

)
:
(
ξ iξ i − c2

s I
)

c4
s

+
1
2

(
ξ2

i
c2

s
− D

)
(u · ∇ρ)

]
, (42)

where D = 2 is the spatial dimension. To circumvent the calculation of the interaction force
on the cell interface, the Strang-splitting scheme is employed [59]. With such a treatment,
the force effects are considered before and after the evolution process of the DUGKS:

∂ fi
∂t

=
1
2

f S
i , (43a)

∂ fi
∂t

+ ξ i · ∇x fi = Ωi ≡ − fi − f E
i

τ
, (43b)

∂ fi
∂t

=
1
2

f S
i , (43c)

As Equation (43b) remains identical to Equation (21), it can be solved by the DUGKS
procedure addressed previously. Equations (43a) and (43c) can be numerically solved by
the forward Euler method:

f ∗i = f n
i +

Δt
2

f S,n
i . (44)

The conservative variables should be accordingly updated via

ρ∗ = ρn, u∗ = un +
Δt
2

Fn

ρn . (45)

The gradient operator and Laplacian operator appearing in Equations (7), (14) and (15) are
implemented via the isotropic difference scheme [60].

3. Numerical Results

In this section, several numerical tests are conducted by the Strang-splitting DUGKS to
compare the performance of the primitive free-energy model and that of the well-balanced
free-energy model. The nonisotropic property caused by the reconstruction procedure
in the DUGKS is especially discussed. For steady tests, the iteration terminates once the
L2-norm error satisfies

E(Q) =

√
∑x |Q(x, tn)− Q(x, tn−1000)|2

∑x |Q(x, tn)|2 < e, (46)

where Q is either the flow density ρ or the flow velocity u, tn−1000 denotes the moment
1000 time steps ahead of tn, and e is the error threshold.
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3.1. Flat Interface

As a benchmark test, the flat interface has been widely applied to validate the perfor-
mance of newly proposed models [30,55,56]. The computational domain is a L0 × 16L0
rectangular region with L0 = 16. A uniform Cartesian mesh with a grid spacing of unity
is employed to subdivide this domain. Initially, the region bounded by yL = 4L0 and
yH = 12L0 is filled up with the liquid fluid, while the rest is occupied by the gas fluid. The
periodic boundary condition is applied to all the sides. The relaxation time τ was fixed at
0.3. The CFL number was set as 0.5. The reduced temperature Tr = T/Tc ranged from 0.55
to 0.95. The density field is initialized by

ρ(x, y) = ρg +
ρl − ρg

2

[
tanh

2(y − yL)

W
− tanh

2(y − yH)

W

]
, (47)

where W measures the interface thickness and ρl and ρg represent the liquid density and
the gas density, respectively. Three reconstruction schemes were utilized to explore the
influences of varying reconstruction errors on the performance of the DUGKS coupled
with different free-energy models. Figure 1a illustrates the coexisting curves predicted
by the DUGKS coupled with the primitive free-energy model. It can be observed that
varying the reconstruction schemes offers different coexisting results. The central difference
face-based reconstruction scheme (CD-FRS) provides satisfactory results in conditions of
a high reduced temperature Tr. As Tr decreases, the results deviate apparently from the
theoretical results generated by the Maxwell equal-area law [61]. The WENO-Z face-based
reconstruction scheme (WENO-Z-FRS) and the upwind cell-based reconstruction scheme
(CRS) produce inconsistent results in conditions of high Tr. As Tr decreases, both of them
suffer from the stability problem. The fact that different reconstruction schemes generate
divergent outcomes results from the force imbalance in the primitive free-energy model [30].
As the standard LB method involves no reconstruction process, the influences of the force
imbalance on the numerical results remain limited. When it is coupled with numerical
methods containing a reconstruction process, the effect of the force imbalance becomes
amplified by the reconstruction errors. Figure 1b illustrates the results produced by the
DUGKS coupled with the well-balanced free-energy model, in which the force imbalance
was entirely eliminated. It can be identified that the coexisting densities predicted by
different reconstruction schemes coincide exactly with the theoretical results. Moreover,
the DUGKS implemented with different reconstruction schemes performs equally well
in conditions of a low reduced temperature Tr, which demonstrates the fundamental
accuracy and stability of this method. Figure 2 illustrates the comparative chemical potential
profiles produced by the DUGKS coupled with different free-energy models at Tr = 0.75,
τ = 0.3, C = 0.5. Regardless of the reconstruction schemes utilized, the well-balanced
free-energy-based DUGKS provides a nearly constant chemical potential profile, while
the primitive free-energy-based DUGKS offers a varied chemical potential profile across
the interfaces. Taking a closer look at the comparative profiles, we can identify that the
chemical potential value produced by the DUGKS coupled with the primitive model varies
along with the reconstruction schemes used, which should be attributed to the differences
in the reconstruction errors. The chemical potential produced by the DUGKS coupled with
the well-balanced model holds a nearly constant value of 0.006126, which demonstrates
the excellent performance of the well-balanced DUGKS in predicting steady two-phase
systems governed by free-energy theory.
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Figure 1. Coexisting curves produced by the DUGKS coupled with (a) primitive model and (b) well-
balanced model, τ = 0.3, C = 0.5.
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Figure 2. Profiles of chemical potential μc produced by the DUGKS with (a) CD-FRS, (b) WENO-Z-
FRS, and (c) CRS, Tr = 0.75, τ = 0.3, C = 0.5.

3.2. Quiescent Droplet

The quiescent droplet test serves as one of the fundamental benchmarks for validating
the basic capability of the newly proposed multiphase methods. A circular droplet is
initially placed at the center of an L0 × L0 square domain, with L0 = 256. A uniform
Cartesian mesh is used to discretize the physical domain, with the grid spacing Δx fixed at
unity. The density field is initialized according to

ρ(x, y) =
ρl + ρg

2
− ρl − ρg

2
tanh

⎡⎣2
(√|x − xc|2 + |y − yc|2 − Rd

)
W

⎤⎦, (48)

where ρl and ρg correspond, respectively, to the coexisting liquid and gas densities, (xc, yc)
indicates the center location of the square domain, Rd denotes the droplet radius, and W
measures the interface thickness. The computing process terminates once the L2-norm
error of density evaluated by Equation (46) is below 10−10. Figures 3–5 illustrate the
density contours produced by the DUGKS coupled with different free-energy models
and implemented by various reconstruction schemes at Tr = 0.9, τ = 0.6, C = 0.5. The
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interfaces produced with the primitive free-energy model suffer from the nonisotropic
problem regardless of the reconstruction scheme utilized, which is caused by the force
imbalance addressed previously. The second-order central-difference face-based recon-
struction scheme (CD-FRS) evolves the initially circular interface into a roughly square
interface, which should be attributed to the relatively large reconstruction errors. With a
long time evolution, the fifth-order WENO-Z face-based reconstruction scheme (WENO-
Z-FRS) shifts the quiescent droplet away from the center position. The interface profile
deforms less than that produced by the CD-FRS, which might be attributed to the low level
of reconstruction errors of WENO-Z. The interface profile generated by the third-order
cell-based reconstruction scheme (CRS) is rather close to circular, which is due to the less
nonisotropic reconstruction errors. A similar phenomenon can be observed in the results
produced by the pseudopotential-based DUGKS. The interface profiles produced with the
well-balanced free-energy model preserve a universal isotropic property across all recon-
struction schemes, which demonstrates the elimination of the force imbalance. Figure 6
illustrates the contour of the velocity field produced by the DUGKS implemented with
the CRS at Tr = 0.9, τ = 0.6, C = 0.5. When the steady-state is reached, the velocity field
produced by the primitive model exhibits a typical patten of large spurious currents, while
the velocity field obtained with the well-balanced model provides spurious currents of
machine accuracy. The excellent performance of the well-balanced DUGKS is thus verified
by the comparative results.

(a) (b)

Figure 3. Density contours produced by DUGKS implemented with CD-FRS coupled with
(a) primitive model and (b) well-balanced model, Tr = 0.9, τ = 0.6, C = 0.5.

(a) (b)

Figure 4. Density contours produced by DUGKS implemented with WENO-Z-FRS coupled with
(a) primitive model and (b) well-balanced model, Tr = 0.9, τ = 0.6, C = 0.5.
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(a) (b)

Figure 5. Density contours produced by DUGKS implemented with CRS coupled with (a) primitive
model and (b) well-balanced model, Tr = 0.9, τ = 0.6, C = 0.5.

 

Figure 6. Velocity contours produced by DUGKS implemented with CRS coupled with (a) primitive
model and (b) well-balanced model, Tr = 0.9, τ = 0.6, C = 0.5.

To quantitatively assess its capability, Laplace’s law is validated by the well-balanced
DUGKS implemented with the CRS. Figure 7 illustrates the relations between the pressure
jump ΔP and the reciprocal of radius Rd obtained at τ = 0.3, C = 0.8. The linear relation
can be clearly identified from the results, which conforms to Laplace’s law: ΔP = σ/Rd.
The chemical potential varies along with the reduced temperature Tr, which results in the
alteration of the surface tension coefficient σ. The CFL number was set as 0.8, at which the
FRS fails to operate properly. The stability superiority of the CRS over that of the FRS in the
condition of a large time step size makes it more appealing for multiphase flow simulations.

3.3. Spinodal Decomposition

Previous benchmark tests were limited to steady-state problems. Here, the spinodal
decomposition test was adopted to assess the capability of DUGKS in dealing with transient
problems. The computational domain is an L0 × L0 square region subdivided by the uniform
Cartesian mesh. The grid spacing Δx = 1, and the characteristic length L0 = 512. The periodic
boundary condition was applied to all the sides. The density field is initialized by

ρ(x, y) = (ρl + ρg)/3 + random(0, 1)/100, (49)

where ρl and ρg represent the liquid density and the gas density and random(0, 1) creates
density fluctuations that induce the spinodal decomposition process. Figures 8–12 illustrate
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the snapshots of the density distribution produced by the DUGKS coupled with the well-
balanced free-energy model at Tr = 0.9, τ = 0.6, C = 0.5. In the early stages, the tiny
fluctuations generate local inhomogeneities, which initialize the phase separation. As the
system evolves, the inhomogeneities drive the material of the heavy fluid into small droplets
and interfaces separating different phases begin to emerge. With the continual evolution
of the whole system, some of these droplets gradually coalesce into large ones. Eventually, a
complete quiescent droplet is formed. It can be identified that the results produced by the
central difference face-based reconstruction scheme (CD-FRS) are nearly identical to those
generated by the third-order cell-based reconstruction scheme (CRS), which demonstrates the
consistent behaviors of the well-balanced DUGKS. The WENO-Z face-based reconstruction
scheme (WENO-Z-FRS) fails to provide a converged solution in such a condition. Moreover,
the well-balanced DUGKS fails to predict the evolution process of the spinodal decomposition
when the reduced temperature is below 0.8. To investigate the multiphase flow dynamics by
the well-balanced DUGKS, further improvements are required.
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Figure 7. Validation of Laplace’s law, τ = 0.3, C = 0.8.

(a) (b)

Figure 8. Snapshots of the density distribution produced by the DUGKS implemented with
(a) CD-FRS and (b) CRS, Tr = 0.9, τ = 0.6, C = 0.5, t = 2500.
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(a) (b)

Figure 9. Snapshots of the density distribution produced by the DUGKS implemented with
(a) CD-FRS and (b) CRS, Tr = 0.9, τ = 0.6, C = 0.5, t = 6000.

(a) (b)

Figure 10. Snapshots of the density distribution produced by the DUGKS implemented with
(a) CD-FRS and (b) CRS, Tr = 0.9, τ = 0.6, C = 0.5, t = 7500.

(a) (b)

Figure 11. Snapshots of the density distribution produced by the DUGKS implemented with
(a) CD-FRS and (b) CRS, Tr = 0.9, τ = 0.6, C = 0.5, t = 25,000.
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(a) (b)

Figure 12. Snapshots of the density distribution produced by the DUGKS implemented with
(a) CD-FRS and (b) CRS, Tr = 0.9, τ = 0.6, C = 0.5, t = 250,000.

3.4. Droplet Coalescence

Simulations of the droplet coalescence phenomenon were used to further investigate
the capacity of the well-balanced DUGKS for transient problems. The computational
domain is a rectangle 2L0 × L0 domain with L0 = 256. The domain was subdivided into
finite grid cells by a uniform Cartesian mesh with a grid spacing of unity. To avoid wall
boundary influence, a periodic boundary condition was used in all directions. Initially, two
circular droplets were arranged in accordance with [51]

ρ(x, y) =
ρl + ρg

2
+

ρl − ρg

2

[
1 − tanh

(
2dA
W

)
− tanh

(
2dB
W

)]
, (50)

where ρl and ρg correspond separately to the liquid and gas densities, W measures the
interface thickness, and dA and dB are defined as

dA =
√
(x − xA)2 + (y − yA)2 − R0, dB =

√
(x − xB)2 + (y − yB)2 − R0, (51)

in which R0 denotes the droplet radius and (xA, yA) = (L0 − R0 − W/2, L0/2) and
(xB, yB) = (L0 + R0 + W/2, L0/2) represent the central position of droplets A and B,
respectively. Other parameters were set as κ = 0.02, R0 = 0.2L0, W = 5, and τ = 0.3. The
initial profile of two droplets is illustrated in Figure 13. The coalescence process starts when
the droplets come in contact with each other. As the process continues, a liquid bridge of
radius rb that connects the two droplets is formed [51]. Previous research [62] identified
the linear relation between the scaled radius r∗ and the dimensionless time t∗, with

r∗ = rb/R0, t∗ = t/
√

ρl R3
0σ, (52)

where σ is the surface tension coefficient. According to the validation of Laplace’s law
illustrated in Figure 7, the surface tension coefficient is 0.1203 for Tr = 0.8 and 0.0435 for
Tr = 0.9. Figure 14 presents the radius variation of the liquid bridge with regard to the
dimensionless time t∗. The linear coefficient for the fitting result provided by the DUGKS
using the primitive model is 1.4, while the linear coefficient for the fitting result produced
with the well-balanced model is 1.03, which is in good agreement with the result predicted
by Zeng et al. [51]. The evolution of the L2-norm of the velocity field produced by the
DUGKS using the well-balanced model at Tr = 0.8 and Tr = 0.9 is shown in Figure 15. It
can be identified that the L2-norm of the velocity field reaches a magnitude of 10−14, which
is consistent with the results predicted at the steady-state. Figure 16 illustrates the density
and velocity contours produced by the well-balanced DUGKS at t = 6 × 106, Tr = 0.8,
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τ = 0.3, C = 0.8. It can be observed that the interface maintains excellent isotropy and
the velocity field holds a maximum magnitude of 10−16, which demonstrates the excellent
ability of the well-balanced DUGKS. However, it is important to note that when the lowered
temperature Tr is less than 0.7, the DUGKS is unable to predict the coalescence process.
More efforts are required to increase the stability of the well-balanced DUGKS.

Figure 13. Initial distribution of the density field.
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Figure 14. Radius variation of the liquid bridge with regard to the dimensionless time produced by
DUGKS coupled with (a) primitive model and (b) well-balanced model, τ = 0.3, C = 0.8.
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Figure 15. L2-norm of the velocity field produced by the well-balanced DUGKS with the evolution of
time, τ = 0.3, C = 0.8.
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(a)

 

(b)

Figure 16. Contours of (a) density field and (b) velocity field produced by the well-balanced DUGKS
at t = 6 × 106, Tr = 0.8, τ = 0.3, C = 0.8.

4. Conclusions

A free-energy-based discrete unified gas-kinetic scheme (DUGKS) was developed by
coupling the well-balanced free-energy model with the DUGKS to investigate the van der
Waals fluid. The performance of this well-balanced scheme was compared against the
counterpart of the DUGKS coupled with the primitive free-energy model. Comparative
results produced with different reconstruction schemes demonstrated the force imbalance
in the primitive free-energy model, which prevents its direct application to the DUGKS. By
coupling the well-balanced free-energy model with the DUGKS, the amplified effects of the
force imbalance are entirely eliminated and the influences of nonisotropic reconstruction
errors on the fluid interfaces are totally removed. Numerical tests of a flat interface, quies-
cent droplet, spinodal decomposition, and droplet coalescence were adopted to assess the
performance of the DUGKS coupled with the well-balanced free-energy model. Coexisting
density curves and Laplace’s law were utilized to evaluate its capability quantitatively. It
was proven that the well-balanced DUGKS could always produce consistent results despite
the reconstruction schemes utilized in steady cases. When dealing with transient problems,
the reconstruction scheme employing WENO-Z to evaluate face unknowns tends to be
more unstable. When the reduced temperature is below 0.7, the DUGKS coupled with the
well-balanced free-energy model suffers from stability problems. Further improvements
are required to apply this scheme to predict transient multiphase fluid flows.

Author Contributions: Z.Y.: methodology, software, validation, formal analysis, data curation,
writing—original draft preparation. S.L.: funding acquisition, methodology, writing—review and
editing. C.Z. (Congshan Zhuo): supervision, funding acquisition, resources, investigation, writing–
review and editing. C.Z. (Chengwen Zhong): project administration, funding acquisition, conceptual-

142



Entropy 2022, 24, 1202

ization, writing—reviewing and editing. All authors have read and agreed to the published version
of the manuscript.

Funding: This study is sponsored by the National Numerical Wind Tunnel Project, the National
Natural Science Foundation of China (Nos. 11902266, 11902264, 12072283), and the 111 Project of
China (B17037).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Acknowledgments: This work was supported by the high-performance computing power and
technical support provided by Xi’an Future Artificial Intelligence Computing Center.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Nondimensionalization of the Boltzmann-BGK Equation

The nondimensionalization process of the Boltzmann-BGK equation is analyzed in
this part. The dimensional Boltzmann-BGK equation with a source term reads

∂ f
∂t

+ ξ · ∇x f = − 1
τ

(
f − f E

)
+ f S, (A1)

where f represents the distribution function, t is the time, x is the position, ξ is the particle
velocity, τ is the relaxation time, f E indicates the equilibrium distribution function, and f S

accounts for the source distribution function. Introducing the characteristic length lc, the
characteristic velocity uc, the characteristic density ρc, and multiplying Equation (A1) by
lc/(ρcuc) on both sides, we have

∂ f ∗

∂t∗ + ξ∗ · ∇x∗ f ∗ = − lc
ucτ

(
f ∗ − f E,∗

)
+ f S,∗, (A2)

where

t∗ = tuc

lc
, ξ∗ = ξ

uc
, x∗ = x

lc
, f ∗ = f

ρc
, f E,∗ = f E

ρc
, f S,∗ = f Slc

ρcuc
. (A3)

As the relaxation time τ is evaluated by τ = μ/ρcc2
s , where μ is the dynamic viscosity, the

multiplier lc/(ucτ) becomes
lc

ucτ
=

lcρcc2
s

ucμ
=

Re
Ma

, (A4)

where
Ma =

uc

cs
, Re =

ρclccs

μ
. (A5)

Equation (A2) turns into

∂ f ∗

∂t∗ + ξ∗ · ∇x∗ f ∗ = − Re
Ma

(
f ∗ − f E,∗

)
+ f S,∗, (A6)

which is the dimensionless Boltzmann-BGK equation. In multiphase simulation involving
droplet dynamics, the Reynolds number is generally defined as

Red =
ρcuclc

μ
. (A7)

With this definition, the dimensionless Boltzmann-BGK equation becomes

∂ f ∗

∂t∗ + ξ∗ · ∇x∗ f ∗ = − Red

Ma2

(
f ∗ − f E,∗

)
+ f S,∗. (A8)
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Abstract: The study of the evolution of the atmosphere requires careful consideration of multicompo-
nent gaseous flows under gravity. The gas dynamics under an external force field is usually associated
with an intrinsic multiscale nature due to large particle density variation along the direction of force.
A wonderfully diverse set of behaviors of fluids can be observed in different flow regimes. This poses
a great challenge for numerical algorithms to accurately and efficiently capture the scale-dependent
flow physics. In this paper, a well-balanced unified gas-kinetic scheme (UGKS) for a gas mixture is
developed, which can be used for the study of cross-scale multicomponent flows under an external
force field. The well-balanced scheme here indicates the capability of a numerical method to evolve
a gravitational system under any initial condition to the hydrostatic equilibrium and to keep such
a solution. Such a property is crucial for an accurate description of multicomponent gas evolution
under an external force field, especially for long-term evolving systems such as galaxy formation.
Based on the Boltzmann model equation for gas mixtures, the UGKS leverages the space–time integral
solution to construct numerical flux functions and, thus, provides a self-conditioned mechanism
to recover typical flow dynamics in various flow regimes. We prove the well-balanced property of
the current scheme formally through theoretical analysis and numerical validations. New physical
phenomena, including the decoupled transport of different gas components in the transition regime,
are presented and studied.

Keywords: fluid mechanics; kinetic theory; rarefied gas dynamics; multicomponent flows; well-
balanced schemes

1. Introduction

The challenge of modeling and simulating real gas evolution in engineering and
environmental applications has attracted continuous attention from the CFD community.
To be precise, the Earth’s atmosphere needs to be considered, at least as a binary mixture
of nitrogen and oxygen under a gravitational field. Compared with the classical fluid
dynamics of pure gas, theoretical and numerical studies on multicomponent gas systems
under an external force field are very limited. The goal of this paper is to advance the
cutting-edge research in this direction, with a particular focus on multiscale and non-
equilibrium flows.

The characteristic scale and flow regime is usually categorized by the Knudsen number
Kn. When Kn is large, the Boltzmann equation is established at the molecular mean free
path and traveling time between successive intermolecular collisions. Such spatiotemporal
scales can be referred to as the kinetic scale. Based on the first physical principle, it is
natural to extend the Boltzmann equation to gas mixtures by tracking the evolution of each
component. With a different molecular mass and gas constant R, different gas components
transport with different velocity u ∼ √

RT, where T is temperature, leading to strong
non-equilibrium transport phenomena. Such an effect occurs dramatically when the mass
ratio is large, such as the rounding motion of ions and electrons in plasma physics.

On the other hand, when Kn is small, the characteristic scale of flow structures is
basically much larger than the mean free path, and a macroscopic model is favored to
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Entropy 2022, 24, 1110

describe the flow evolution collectively. In the hydrodynamic limit, the Euler and Navier–
Stokes equations are routinely used, where different gas components present consistent
collective behavior. Additional constitutive equations are required to track the evolution
of different components. Such additional equations can be the equations for the volume
fraction, mass fraction, or ratio of specific heats of a mixture [1,2]. It is a nontrivial task since
the information of particle interactions among different components at the kinetic scale is
lost during the coarse-grained process and should be modeled back to the macroscopic
system in a consistent fashion.

Different equations and the corresponding numerical algorithms are scale-dependent
methods to describe flows at a certain level. However, in real-world gaseous flows, there
may not exist a clear scale separation between different flow regimes. For example, under
the gravitational field, the density varies significantly along the direction of force, as does
the mean free path and local Knudsen number. As a result, the atmosphere can thus be
divided into several layers, and a continuous variation of flow physics will emerge from
the kinetic physics in the upper atmospheric layer to the hydrodynamics in the lower high-
density region. Due to such an intrinsic multiscale nature, the corresponding numerical
algorithm should have the capability of capturing the cross-scale flow physics effectively.

For a gas dynamic system under a steady external force field from an arbitrary initial
condition, the entropy-increasing process leads to a hydrostatic equilibrium state. Such
a static solution is achieved and preserved due to the balance between the external force
and inhomogeneous fluxes. The capacity to capture such an equilibrium solution along a
physically accurate path is the so-called well-balanced property, which is important for a
numerical algorithm to solve long-term fluid dynamics under an external force field. For
the equilibrium flow when Kn approaches zero, such as the gravitational Euler system,
many efforts have been devoted to the construction of well-balanced schemes for single-
component flow [3–5]. For more general gas dynamic equations with the inclusion of
viscosity and heat conductivity, a few works have been performed based on the gas-kinetic
scheme [6–8]. However, to the best of the author’s knowledge, the study of the cross-scale
modeling and computation of multicomponent gas dynamics under an external force field
is very limited.

In recent years, the unified gas-kinetic scheme (UGKS) has been developed for the
simulation of multiscale gaseous flow [9,10]. Based on the Boltzmann model equation, the
UGKS uses an analytical integral solution in the construction of numerical flux functions.
The coupled modeling of particle transport and the collision of the evolution solution
guarantees the multiscale nature of the method. For the gas dynamic system related to an
external force, in order to develop a well-balanced gas-kinetic scheme, it is important to
take the external force effect into the flux transport across a cell interface accurately. Based
on this idea, a well-balanced unified gas-kinetic scheme for single-component flow [11]
has been proposed. In this paper, a similar methodology is used in the flux function for
the further development of the unified gas-kinetic scheme for a gas mixture. It is worth
mentioning that, due to the versatility of kinetic theory, it is natural to develop kinetic
schemes for other multi-particle systems, including shallow water equations [12], radiative
transfer [13], weakly coupled plasma physics [14], etc.

This paper is organized as follows. Section 2 is a brief introduction of the kinetic
theory of multicomponent gases and the asymptotic analysis of the current Boltzmann
model. Section 3 presents the construction of the well-balanced unified gas-kinetic scheme
for a gas mixture under an external force field. Section 4 includes numerical examples to
demonstrate the performance of the scheme. The last section is the conclusion.
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2. Kinetic Theory

2.1. Boltzmann Equation and Relaxation Model

The kinetic theory describes the evolution of gases in a statistical fashion. The Boltz-
mann equation for single-component flows is written as

∂ f
∂t

+ ui
∂ f
∂xi

+ φi
∂ f
∂ui

= Q( f , f ),

where ui = (u, v, w) is the particle velocity, φi is the external forcing term, and Q( f , f )
denotes the two-body collision term. Here, Einstein’s summation convention is adopted
for tensor operations. The above equation can be extended to a gas mixture, where the
evolution equation for the distribution function of each species s is written as

∂ fs

∂t
+ ui

∂ fs

∂xi
+ φi

∂ fs

∂ui
= Qs( f , f ). (1)

The collision term can be written as

Qs( f , f ) =
N

∑
r=1

Qsr( fs, fr) =
N

∑
r=1

∫
R3

∫
S2
( f ′s f ′r − fs fr)gsrσsrdΩduri, (2)

where f ′ is the post-collision distribution and r is the index of different gas species. The
term gsr is the relative speed of two molecular classes, and σsrdΩ is the differential cross-
section for the collision specified. Here, Qss( fs, fs) is called the self-collision term and
Qsr( fs, fr) is the cross-collision term.

Due to the complexity of the collision integral in Equation (2), simplified kinetic models
have been proposed for single-component gas evolution [15]. Such a model is expected to
satisfy some key structures of the original Boltzmann equation, such as positivity, correct
exchange coefficients, entropy inequality, and indifferentiability. Here, we introduce a
BGK-type model proposed by Andries, Aoki, and Perthame (AAP) [16], which could satisfy
all the properties required above. In the AAP model, a single collision operator for species
s is defined as

Qs( f ) =
f+s − fs

τs
. (3)

Here, the equilibrium state is defined based on modified macroscopic variables, i.e.,

f+s = ns

(
ms

2πkBT′
s

)3/2
exp

(
− ms

2kBT′
s
(us − U′

s)
2
)

, (4)

where {U′
s, T′

s} is the modified bulk velocity and temperature, ns is the number density, ms
is the molecular mass, and kB is the Boltzmann constant. The determination of modified
temperature T′

s and velocity U′
s can be found in [17] to take into account the interaction

among different gas species:

U′
si = Usi + τs ∑

r �=s
2

ρr

ms + mr
θsr(Uri − Usi),

3
2

kBT′
s =

3
2

kBTs − ms

2
(U′

s − Us)
2

+ τs ∑
r �=s

4ms
ρr

(ms + mr)2 θsr

(
3
2

kBTr − 3
2

kBTs +
mr

2
(Ur − Us)

2
)

,

(5)

where ρ = mn is the mass density.
The collision frequency is determined by

1
τs

= β ∑
r

θsrnr, (6)
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where β can be chosen as either theunit for simplicity or to coincide with the collision time
of the single-component gas when all components are the same species. The parameter θsr
is defined as

θsr =
4
√

π

3

(
2kBTs

ms
+

2kBTr

mr

)1/2(ds + dr

2

)2
, (7)

for the hard sphere model and

θsr = 0.422π

(
asr(ms + mr)

msmr

)
, (8)

for the Maxwell molecule, where ds, dr are the molecular diameters and asr is the propor-
tionality of the intermolecular force.

With the defined collision operator, the BGK-type kinetic model equation can be
written as

∂ fs

∂t
+ ui

∂ fs

∂xi
+ φi

∂ fs

∂ui
=

f+s − fs

τs
. (9)

2.2. Asymptotic Analysis

The macroscopic conservative flow variables can be obtained from the moments of the
particle distribution function , i.e.,

Ws =

⎛⎝ ρs
ρsUsi
ρsEs

⎞⎠ =
∫
R3

fsψdΞ,

where ψ =
(

ms, msui, 1
2 msuiui

)T
is a vector of moments for collision invariants and dΞ =

dudvdw. Taking the moments of Equation (9) yields the balance laws of density, momentum,
and energy in each species s, i.e.,

∂ρs

∂t
+

∂ρsUsi
∂xi

= 0,

∂ρsUsi
∂t

+
∂ρsUsiUsj

∂xj
+

∂Tsij

∂xj
= ρsφi +

∫
R3

uiQs( f )dΞ,

∂ρsEs

∂t
+

∂ρsEsUsi
∂xi

+
∂(TsijUsj + qsi)

∂xi
= ρsUsiφi +

∫
R3

1
2

uiuiQs( f )dΞ.

(10)

The term Tij is the stress tensor, and qi is the heat flux. It is noticeable that, due to the
momentum and energy exchanges among different species in the mixture, the collision
integrals

∫
uiQs( f , f )dΞ and

∫ 1
2 uiuiQs( f , f )dΞ are no longer equal to zero, while the total

density, momentum, and energy are still conserved in the flow evolution. Therefore,
summing up the above equations, we can obtain

∂ρs

∂t
+

∂ρsUi
∂xi

= −∂Jsi
∂xi

,

∂ρUi
∂t

+
∂ρUiUj

∂xj
+

∂Tij

∂xj
= ρφi,

∂ρE
∂t

+
∂ρEUi

∂xi
+

∂(TijUj + qi)

∂xi
= ρUiφi.

(11)

where Jsi =
∫
(ui − Ui) fsdΞ. As shown in [16], by inserting the Chapman–Enskog expan-

sion, e.g., the zeroth-order approximation:

fs � f+s + O(τs),
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and the first-order approximation:

fs � f+s − τs(∂t f+s + ui∂xi f+s ) + O(τ2
s ),

into the determination of the stress tensor and heat flux, one can derive the Euler and
Navier–Stokes equations, respectively.

For multicomponent flows, the mass transfer is another important topic. Here, we
used diffusive scaling to illustrate the mechanism of mass transfer and diffusion in the
current model. We introduce dimensionless variables denoted with asterisks:

t = t∗t0, x = x∗x0, ui = u∗
i u0, f = f ∗ f0,

where t0 is the reference time scale, x0 is the reference length scale, and so on. With the
dimensionless terms plugged into Equation (9), we obtain (after immediately dropping the
asterisks)

St
∂ fs

∂t
+ ui

∂ fs

∂xi
+ φi

∂ fs

∂ui
=

1
Kn

Qs( f ),

where St = x0/u0t0 is the Strouhal number and Kn is the Knudsen number. In the diffusive
limit, we assume St � Kn = ε. The stiff term 1/ε on the right-hand side implies that the
limiting solution limε→0 f ε

s is close to the local equilibrium. We make this assumption and
compute the moment system in the same way as Equations (10) and (11), which yields

ε
∂nε

s
∂t

+ ε
∂(nε

s Uε
si)

∂xi
= 0,

ε2 ∂ρε
s Uε

si
∂t

+ ε2
∂(ρε

s Uε
siU

ε
sj)

∂xi
+

∂(nε
s kBTε)

∂xi
=

1
ε

∫
msuiQs( f ε)dΞ + ε2ρε

s φi.

For simplicity, here, we adopt the number density in the continuity equation. Truncating
the above equations at the leading order in ε leads to

∂nε

∂t
+

∂nεUε
i

∂xi
= 0,

∂nε
s kBTε

∂xi
=

1
ε

∫
msuiQs( f ε)dΞ.

If the isothermal assumption is made, the second equation with ε → 0 reduces to

∂nε
s

∂xi
=

1
εkBTε

∫
msuiQs( f ε)dΞ =

U′
si − Usi

εkBT

= ∑
r �=s

(Uri − Usi)

Dij
,

(12)

where the coefficients Dij are determined by the collision time in Equation (6) and the
interaction model in Equation (5). Equation (12) is exactly the Maxwell–Stefan diffusion
law [18]. As analyzed, even though the Maxwell–Stefan theory is basically understood as a
more generalized law than Fick’s law to describe mass transfer, its applicability is mainly
limited to the continuum limit and thermodynamic equilibrium. To study the mass and
heat transfer in multiscale and non-equilibrium fluids, we must resort to reliable numerical
methods, which is the core task in the next section.

3. Numerical Algorithm

3.1. Construction of Interface Distribution Function

The key ingredient in the UGKS is the integral solution constructed from the BGK-type
relaxation model. Here, we used the one-dimensional case to illustrate the construction of
the numerical algorithm first. Without loss of generality, we assumed the interface between
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two neighbor cells xi+1/2 = 0 and tn = 0. Given a local constant collision time τs, the
integral solution of Equation (9) along the characteristic line is written as

fs(0, t, uk) =
1
τs

∫ t

0
f+s (x′, t′, u′

k)e
−(t−t′)/τdt′

+ e−t/τ( fs)0(x0, 0, u0
k),

(13)

where x′i = xi − u′
i(t − t′)− 1

2 φi(t − t′)2 denotes the particle trajectories in physical space,
u′

i = ui − φi(t − t′) is the particle velocities under acceleration, (x0, u0) is the initial location
in the phase space for the particle that passes through the cell interface at time t, and ( fs)0
is the particle distribution function of species s at the beginning of the n-th time step.

In the numerical algorithm, the initial gas distribution function ( fs)0 of each gas
component s around the cell interface xi+1/2 is reconstructed as follows:

( fs)0(x, 0, uk) =

{
( fs)

L
i+1/2,k + (σs)i,kx, x ≤ 0,

( fs)
R
i+1/2,k + (σs)i+1,kx, x > 0,

(14)

where ( fs)
L,R
i+1/2,k are the reconstructed values of the initial distribution functions from

both sides of the cell interface. Based on the reconstructed distribution functions, the
macroscopic conservative variables at a cell interface can be evaluated through

Ws = ∑
uk>0

f L
i+1/2,kψdΞ + ∑

uk<0
f R
i+1/2,kψdΞ,

which can be used to determine the modified macroscopic variables W′
s in Equation (5) and

the equilibrium distribution ( fs)
+
0 in Equation (4).

For the second part of the integral solution, the equilibrium distribution is expanded
in space and time around a cell interface as

f+s = ( fs)
+
0

[
1 + (1 − H[x])aLx + H[x]aRx + At

]
, (15)

where H[x] is the Heaviside step function. Here, aL
s , aR

s , and As are from the Taylor expan-
sion of a Maxwellian:

aL,R
s = aL,R

1 + aL,R
2 u + aL,R

3
1
2

u2 = aL,R
α ψα,

As = A1 + A2u + A3
1
2

u2 = Aαψα.

The spatial slopes aL
s , aR

s can be obtained from the slopes of modified conservative variables
on both sides of a cell interface:(

∂W′
s

∂x

)L

=
∫

aL
s ( fs)

+
0 ψdΞ,

(
∂W′

s
∂x

)R

=
∫

aR
s ( fs)

+
0 ψdΞ.

The time derivative As of f+s is related to the temporal variation of conservative flow
variables:

∂W′
s

∂t
=
∫

As( fs)
+
0 ψdΞ,

and it can be calculated via the time derivative of the overall compatibility condition for
the gas mixture:

d
dt

∫ s

∑
r=1

( f+r − fr)ψdΞ |x=0,t=0= 0.

Once we determine all the coefficients, the integral solution can be rewritten as
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fs(0, t, uk) =
(

1 − e−t/τ
)
( fs)

+
0

+
(

τ(−1 + e−t/τ) + te−t/τ
)

aL,R
s uk( fs)

+
0

−
[

τ
(

τ(−1 + e−t/τ) + te−t/τ
)
+

1
2

t2e−t/τ

]
aL,R

s φx( fs)
+
0

+ τ
(

t/τ − 1 + e−t/τ
)

As( fs)
+
0

+ e−t/τ

[(
( fs)

L
i+1/2,k0 +

(
−(uk − φxt)t − 1

2
φxt2

)
(σs)i,k0

)
H[uk − 1

2
φxt]

+

(
( fs)

R
i+1/2,k0 +

(
−(uk − φxt)t − 1

2
φxt2

)
(σs)i+1,k0

)
(1 − H[uk − 1

2
φxt])

]
,

(16)

from which we can evaluate the numerical fluxes for both the particle distribution function
and macroscopic conservative variables.

3.2. Two-Dimensional Case

Following the integral solution of the relaxation model, it is natural to extended the
UGKS to the multidimensional case. Under the force φ = (φx, φy), the integral solution of
the AAP kinetic model in the two-dimensional Cartesian coordinate system is written as

fs(x, y, t, u, v) =
1
τ

∫ t

tn
f+s (x′, y′, t′, u′, v′)e−(t−t′)/τdt′

+ e−(t−tn)/τ( fs)
n
0 (xn, yn, tn, un, vn),

(17)

where x′ = x − u′(t − t′)− 1
2 φx(t − t′)2, y′ = y − v′(t − t′)− 1

2 φy(t − t′)2, u′ = u − φx(t −
t′), and v′ = v − φy(t − t′). For simplicity, we will drop the subscript s to denote a single
gas species.

In the unified scheme, at the center of a cell interface (xi+1/2, yj), the solution fi+1/2,j,k,l
is constructed from the integral solution Equation (17). With the notations xi+1/2 = 0, yj = 0
at tn = 0, the time-dependent interface distribution function for species s goes to

f (0, 0, t, uk, vl) =
1
τ

∫ t

0
f+(x′, y′, t′, u′

k, v′l)e
−(t−t′)/τdt′

+ e−t/τ f0(−ukt +
1
2

φxt2,−vlt +
1
2

φyt2, 0, uk − φxt, vl − φyt).

To second-order accuracy, the initial gas distribution function f0 is reconstructed as

f0(x, y, 0, uk, vl) =

{
f L
i+1/2,j,k,l + σi,j,k,l x + θi,j,k,ly, x ≤ 0,

f R
i+1/2,j,k,l + σi+1,j,k,l x + θi+1,j,k,ly, x > 0,

(18)

where f L
i+1/2,j,k,l and f R

i+1/2,j,k,l are the reconstructed initial distribution functions on the
left- and right-hand sides of a cell interface. The slope of f at the (i, j)-thcell and the
(k, l)-thdiscretized velocity point in the x-direction and y-direction are denoted by σi,j,k,l
and θi,j,k,l .

The modified equilibrium distribution function around a cell interface is constructed as

f+ = f+0
[
1 + (1 − H[x])aLx + H[x]aRx + by + At

]
,

where f+0 is the equilibrium distribution at (x = 0, t = 0). The coefficients above can be
determined in the same way as the one-dimensional case.
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The time-dependent interface distribution function is written as

f (0, 0, t, uk, vl) =
(

1 − e−t/τ
)

f+0

+
(

τ(−1 + e−t/τ) + te−t/τ
)

aL,Ruk f+0

−
[

τ
(

τ(−1 + e−t/τ) + te−t/τ
)
+

1
2

t2e−t/τ

]
aL,Rφx f+0

+
(

τ(−1 + e−t/τ) + te−t/τ
)

bvl f+0

−
[

τ
(

τ(−1 + e−t/τ) + te−t/τ
)
+

1
2

t2e−t/τ

]
bφy f+0

+ τ
(

t/τ − 1 + e−t/τ
)

A f+0

+ e−t/τ

[(
f L
i+1/2,k0,l0 +

(
−(uk − φxt)t − 1

2
φxt2

)
σi,k0,l0

+

(
−(vl − φyt)t − 1

2
φyt2

)
θi,k0,l0

)
H[uk − 1

2
φxt]

+

(
f R
i+1/2,k0,l0 +

(
−(uk − φxt)t − 1

2
φxt2

)
σi+1,k0,l0

+

(
−(vl − φyt)t − 1

2
φyt2

)
θi+1,k0,l0

)
(1 − H[uk − 1

2
φxt])

]
.

(19)

The extension of the above method to the three-dimensional case is straightforward.

3.3. Update Algorithm

With the cell-averaged distribution function for species s in the gas mixture:

fxi ,yj ,tn ,uk ,vl = f n
i,j,k,l =

1
Ωi,j(x, y)Ωk,l(u, v)

∫
Ωi,j

∫
Ωk,l

f (x, y, tn, u, v)dxdydudv,

the direct modeling for its evolution gives the conservation laws of macroscopic variables
and the particle distribution function in a discretized space:

Wn+1
i,j =Wn

i,j +
1

Ωi,j

∫ tn+1

tn ∑
i=1

ΔLi · Fidt

+
1

Ωi,j

∫ tn+1

tn

∫
Ωi,j

Qi,jdxdydt +
1

Ωi,j

∫ tn+1

tn

∫
Ωi,j

Gi,jdxdydt,

(20)

f n+1
i,j,k,l = f n

i,j,k,l +
1

Ωi,j

∫ tn+1

tn ∑
i=1

ui f̂i(t)ΔLidt

+
1

Ωi,j

∫ tn+1

tn

∫
Ωi,j

Q( f )dxdydt +
1

Ωi,j

∫ tn+1

tn

∫
Ωi,j

G( f )dxdydt,

(21)

where Fi is the flux of conservative variables across the cell interface ΔLi = ΔLini, f̂i is the
time-dependent gas distribution function at the cell interface, and ΔLi is the cell interface
length. Qi,j, Q( f ) are the source terms from intermolecular collisions, and Gi,j, G( f ) are
the external forcing terms:

Q( f ) =
f+i,j,k,l − f n+1/2

i,j,k,l

τ
,

Qi,j =
∫

Ωk,l

f+i,j,k,l − f n+1/2
i,j,k,l

τ
ψdudv,

(22)
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G( f ) = −φx
∂

∂u
f n+1/2
i,j,k,l − φy

∂

∂v
f n+1/2
i,j,k,l ,

Gi,j =
∫

Ωk,l

(
−φx

∂

∂u
f n+1/2
i,j,k,l − φy

∂

∂v
f n+1/2
i,j,k,l

)
ψdudv.

(23)

In the UGKS, we use the semi-implicit method to model the collision term and the
fully implicit one for the external forcing term:

f n+1
i,j,k,l = f n

i,j,k,l +
1

Ωi,j

(
Fi−1/2,j,k,l − Fi+1/2,j,k,l

)
+

1
Ωi,j

(
Fi,j−1/2,k,l − Fi,j+1/2,k,l

)

+
Δt
2

⎛⎝ f+(n+1)
i,j,k,l − f n+1

i,j,k,l

τn+1 +
f+(n)
i,j,k,l − f n

i,j,k,l

τn

⎞⎠− Δt
(

φx
∂

∂u
f n+1
i,j,k,l + φy

∂

∂v
f n+1
i,j,k,l

)
.

(24)

In order to update the gas distribution function implicitly, we solve Equation (20) first,
and its solution can be used for the construction of the equilibrium state in Equation (24) at
tn+1. In the current scheme, the collision term for macroscopic variables is treated as

1
Ωi,j

∫ tn+1

tn

∫
Ωi,j

Qi,jdxdydt =
Δt
τ
[(W′)n − Wn], (25)

where (W′)n is the modified macroscopic conservative variable. For the external forcing
source, we adopted the numerical methodology proposed by Slyz and Prendergast [19],
where the energy source term from the external force can be absorbed into the energy flux
as ΦFρ, where Fρ is the mass flux, to ensure the accurate conservation of energy. A similar
implicit upwind update as [11] was adopted to update the particle distribution function.

With the help of the implicit update algorithm, the time step is not restricted by the
collision time and is fully determined by the CFL condition:

Δt = CFL min
{

ΔxΔy
umaxΔy + vmaxΔx

,
ΔuΔv

|φx|Δv + |φy|Δu

}
, (26)

where CFL is the CFL number, {umax = max(|uk|), vmax = max(|vl |)} is the largest dis-
cretized particle velocity of all gas components in the x- and y-directions, and {Δu, Δv} is
the distance between two neighboring velocity points.

3.4. Analysis on the Well-Balanced Property

In this part, we prove the well-balanced property of the current scheme theoretically. In
the continuum regime with intensive intermolecular collisions, the fluid element picture can
be used to describe the bulk property of flow transport. We adopted the one-dimensional
Euler equations for multicomponent flow under force field Φ, i.e.,

(ρ1)t + (ρ1U)x = 0,

(ρ2)t + (ρ2U)x = 0,

(ρU)t + (ρU2 + p)x = ρφx,

(ρE)t + ((ρE + p)U)x = ρUφx.

where ρ, ρU, ρE, p are the total density, momentum, energy, and pressure. It is clear that the
equations above allow a simply hydrostatic solution where the macroscopic flow is absent
and the pressure gradient is balanced by the density stratification:

ρ = ρ(x) = ρ1(x) + ρ2(x), U = 0, px = (p1)x + (p2)x = (ρ1 + ρ2)φx.
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Given a constant force field φx, the above solution can be rewritten as

ρ = ρ1 + ρ2 = ρ0 exp
(

φxx
RT

)
, U = 0, p = p1 + p2 = p0 exp

(
φxx
RT

)
, (27)

where R is the gas constant. Such a steady-state solution needs to be maintained due to the
exact balance between the gravitational source term and the inhomogeneous flux function
for each gas component in the mixture, i.e.,

1
Δx

∫ tn+1

tn
(Fi−1/2 − Fi+1/2)dt +

1
Δx

∫ tn+1

tn

∫ xi+1/2

x1−1/2

Gidt = 0. (28)

In the hydrodynamic scale where Δt � τ, under hydrostatic balance, the intensive
particle collision will converge the interface distribution function in Equation (16) to

fi+1/2 = f+0 − τau f+0 − τ2aφx f+0 . (29)

The velocity moments
∫

uα f+0 du = ρ〈uα〉 of the above solution can be evaluated analytically.
The coefficient a in Equation (29) can be determined by the slopes of conservative variables:

a3 =
4(λ′

0)
2

(K + 1)ρ0

[
2(ρE′)x +

(
(U′

0)
2 − K + 1

2λ′
0

)
ρx − 2Ū0(ρU′)x

]
,

a2 =
2λ′

0
ρ0

[
(ρU′)x − U′

0ρx
]− U′

0a3,

a1 =
1
ρ0

ρx − U′
0a2 − 1

2

(
(U′

0)
2 +

K + 1
2λ′

0

)
a3,

where (U′
0, λ′

0) are the modified primitive variables in Equation (5). In the isothermal and
static case, the above equation can be further reduced to

a1 =
1
ρ0

∂ρ

∂x
, a2 = a3 = 0.

Therefore, the fluxes of density, momentum, and energy can be obtained via Fi+1/2 =∫
u fi+1/2ψdu, i.e.,

Fρ
i+1/2 = 0,

FρU
i+1/2 =

ρi+1/2

2λ′ ,

FρE
i+1/2 = 0.

At the same time, the source term in Equation (28) is

Gi =
∫

−φx fuψdu.

The source term from the external force can be integrated as

Gρ = 0,

GρU = ρφx,

GρE = ρUφx = 0.

For the momentum balance equation, we can use the exponential density distribution in
Equation (27) to check the well-balanced relationship in Equation (28). As the temperature
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is uniform in the flow domain, the modified λ′ is equivalent to each component’s λ, and
the balance relationship is∫ xi+1/2

xi−1/2

GρU
i dx =

∫ xi+1/2

xi−1/2

ρφxdx = RT(ρi+1/2 − ρi−1/2) = −(Fi−1/2 − Fi+1/2),

from which we can see that the well-balanced property is precisely satisfied in the current
scheme.

In another limit of the Knudsen regime, where τ � Δt, the current method recovers a
purely upwind method:

fi+1/2,k =

⎧⎪⎪⎨⎪⎪⎩
f L
i+1/2,k0 +

(
−ukt +

1
2

φxt2
)

σi,k0 , uk − 1
2

φxt ≥ 0,

f R
i+1/2,k0 +

(
−ukt +

1
2

φxt2
)

σi+1,k0 , uk − 1
2

φxt < 0.

With the forcing effect on each particle, the particle distribution function will become
distorted in the velocity space, and the deviation from the equilibrium state is restricted
with the particle collision time τ. There is no more isothermal equilibrium due to the
non-equilibrium heat transfer induced by the force field, as analyzed in [20]. In this case,
the good hydrostatic balance is only a coarse-grained concept based on statistical averaging.

3.5. Summary of the Algorithm

A detailed numerical solution algorithm for the current well-balanced UGKS is pro-
vided in Figure 1, and its implementation is available at the GitHub repository [21].

Calculate time step by Equation (26)

Reconstruct the distribution function by Equation (14) and Equation (18)

Calculate the interface flux based on the time-dependent solution Equation (16) and Equation (19)

Calculate source terms from the external force and interspecies collision

Update the conservative variables Wn+1 by Equation (20)

Calculate the equilibrium distribution f+(n+1) and collision time τn+1

Calculate the external forcing source with an upwind finite difference approach

Update the distribution function f n+1 by Equation (24)

Figure 1. Numerical algorithm of the UGKS.

4. Numerical Experiments

In this section, we present numerical examples of a binary gas mixture to validate
the well-balanced UGKS for multiscale and multicomponent flow. Multiscale simulations
from free molecule flow to continuum two-species Euler solutions under a external force
field are presented to demonstrate the capability of the unified scheme. The flow features
in different regimes can be well captured by the unified scheme. Some interesting non-
equilibrium phenomena, such as the characteristic behavior of different gas components in
different flow regimes, are discussed. The hard sphere (HS) monatomic gas was employed
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in all test cases. With the overall number density n = n1 + n2 and molecular diameter
d = (d1 + d2)/2, the Knudsen number can be defined as

Kn =
1√

2πd2n
,

and the parameter θ12 in Equation (7) becomes

θ12 =
4
√

π

3

(
1

λ1
+

1
λ2

)1/2 1√
2πKn(n1 + n2)

,

with which we can determine the modified macroscopic variables and collision frequency
in Equations (5) and (6). The parameter β in Equation (6) was chosen to be the unit.

In the current calculations, we considered a binary gas mixture with γ = 5/3 only.
With the defined reference molecular mass and number density:

mre f =
m1n1re f + m2n2re f

n1re f + n2re f
, ρ0 = mre f nre f = mre f (n1re f + n2re f ),

the dimensionless variables are introduced as

x̂ =
x
L0

, ŷ =
y
L0

, ρ̂ =
ρ

ρ0
, T̂ =

T
T0

,

ûi =
ui

(2kT0/mre f )1/2 , Ûi =
Ui

(2kT0/mre f )1/2 , f̂ =
f

n0(2kT0/mre f )3/2 ,

P̂ij =
Pij

ρ0(2kT0/mre f )
, q̂i =

qi

(ρ0/2)(2kT0/mre f )3/2 , φ̂i =
φi

2kT0/(L0mre f )
,

where ui is the particle velocity, Ui is the macroscopic flow velocity, Pij is the stress tensor,
qi is the heat flux, and φi is the external force acceleration. We drop the hat notation to
denote dimensionless variables for simplicity henceforth.

4.1. Validation

In this part, we provide benchmark test cases to validate the current method. Both
convection-dominated and diffusion-dominated flow problems are considered.

4.1.1. Normal Shock Structure

The first case is the normal shock structure for a binary gas mixture [22]. The two
components A and B are assumed to have a molecular diameter and different masses
mA/mB = 2. The upstream and downstream statuses are coupled by the Rankine–Hugoniot
relationship, and the initial distribution functions are set as Maxwellian.

In the simulation, 100 uniform physical meshes were employed in physical domain
x ∈ [−25, 25] and 101 quadrature points were used in velocity space u ∈ [−10, 10]. The
upstream Mach number was Ma = 1.5, and the Knudsen number was Kn = 1.0. The CFL
number was set to be 0.7. Different number density fractions nA/(nA + nB) = 0.1, 0.5, and
0.9 were considered.

Figures 2–4 present the normalized numerical solutions under different density con-
centrations. The benchmark solutions from the full Boltzmann equation computed by
the fast spectral method [23,24] are provided as a reference. As can be seen, the results
from the UGKS and the Boltzmann equation exhibit good agreement under different
number density fractions. This test case validates the UGKS in convection-dominated
non-equilibrium flows.
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Figure 2. Normal shock profiles at nA/(nA + nB) = 0.1. (a) Number density. (b) Velocity. (c)
Temperature.
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Figure 3. Normal shock profiles at nA/(nA + nB) = 0.5. (a) Number density. (b) Velocity. (c)
Temperature.
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Figure 4. Normal shock profiles at nA/(nA + nB) = 0.9. (a) Number density. (b) Velocity. (c)
Temperature.

4.1.2. Fourier Flow

The second case is the Fourier flow. The two gas components were set in the same
way as Section 4.1.1. The heat transfer problem was considered between two walls with
different temperatures, i.e., TL = 1 and TR = 0.5. Maxwell’s diffusive boundary condition
was considered at both ends. The initial gas was stationary and had a uniform density and
temperature.

In the simulation, 100 uniform physical meshes were employed in physical domain
x ∈ [0, 1] and 72 quadrature points were used in velocity space u ∈ [−8, 8]. The CFL
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number was set to be 0.7. Different Knudsen numbers were considered, i.e., Kn = 1 and
0.1.

Figures 5 and 6 present the temperature and density profiles. The benchmark full
Boltzmann solutions are provided as a reference. It is clear that good agreement between
the UGKS and reference solutions was achieved. In the rarefied regime, the number density
profiles of two components deviate. Due to the different average molecular speeds, light
molecules B tend to move towards hot regions, while heavy molecules to cold regions. This
is a typical non-equilibrium flow phenomenon, which corresponds to the Soret effect [25].
In addition, the conservation of the system was checked. After 50 dimensionless time units
when the convergent solution was obtained, the absolute error of the total mass was below
0.004‰. This test case validates the UGKS in diffusion-dominated non-equilibrium flows.
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Figure 5. Kn = 0.1. (a) Temperature. (b) Number density .

X

T
em

p
er

at
u

re

0.2 0.4 0.6 0.8

0.86

0.88

0.9

0.92

0.94

UGKS
Boltzmann

(a)
X

N
u

m
b

er
 d

en
si

ty

0.2 0.4 0.6 0.8

0.96

0.98

1

1.02

1.04

1.06

A
B

(b)
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4.2. Perturbed Hydrostatic Equilibrium Solution

In the first test case, we studied the one-dimensional wave propagation from the
hydrostatic equilibrium flow field [3]. The binary gas mixture was stillinitially at the
hydrostatic equilibrium solution, and the domain x ∈ [0, 1] was under the external force
field φx = −1.0, which points towards the negative x-direction, i.e.,

ρ0(x) = p0(x) = exp(φxx), u0(x) = 0.

The equilibrium solution was perturbed by the following pressure perturbation:

p(x, t = 0) = p0(x) + 0.01 exp(−100(x − 0.5)2).

Here, ρ0 and p0 are the total density and pressure. In the gas mixture, the molecular mass
ratio m2/m1 and number density ratio n2/n1 need to be specified to distribute the partition
of density and pressure for each gas component.

In the simulation, 100 uniform physical meshes were employed in the physical domain
and 101 quadrature points were used in the velocity space. The continuum flow regime
was considered, and the Knudsen number was set as 10−5. Two cases were simulated
with different molecular mass and number density ratios. The first case was set up with
m2/m1 = 0.8, n2/n1 = 1, while in the second case, m2/m1 = 0.5, n2/n1 = 0.25. Figure 7
shows the pressure profiles at t = 0.18 in the two cases. It can be seen that the small
perturbation was well captured by the current well-balanced scheme without destroying
the equilibrium solution in the bulk region. Such a capability is due to the unified treatment
of particle transports and collisions under an external force field, as analyzed in [3,6]. Due
to frequent intermolecular collisions in the continuum regime, different gas components
behave coincidentally as a simple gas.
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Figure 7. Pressure perturbation from a hydrostatic equilibrium solution. (a) m2/m1 = 0.8, n2/n1 = 1.
(b) m2/m1 = 0.5, n2/n1 = 0.25.

4.3. Riemann Problem under an External Force Field

Next, we considered the discontinuous solutions developed in the hyperbolic system.
The Sod shock tube problem was employed as the test case [7]. Similarly, two cases were
considered with different molecular mass and number density ratios. In the first case, it
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was set up with m2/m1 = 0.5, n2/n1 = 1, and m2/m1 = 0.5, n2/n1 = 0.25 in the second
case. The initial condition was set as

ρ = 1.0, U = 0.0, p = 1.0, x ≤ 0.5,

ρ = 0.125, U = 0.0, p = 0.1, x > 0.5.

In the simulation, the external force φx = −1.0 that points leftwards was considered.
Different Knudsen numbers in the reference state were considered, Kn = 0.0001, Kn = 0.01,
and Kn = 1.0, with respect to different flow regimes. The computational domain x ∈ [0, 1]
was divided into 100 cells, and 101 quadrature points were used in the velocity space. The
specular reflection boundary condition was employed at both ends.

The profiles of macroscopic variables at t = 0.2 are presented in Figures 8 and 9. Under
an external force field, the particles were driven towards the negative x-direction, resulting
in the appearance of negative flow velocity near the left tube end. In comparison with
the case without gravity, the thermodynamic quantities such as density, temperature, and
pressure in the left side of the tube increase all together.

This numerical experiment validates the capability of the current method to simulate
discontinuous cross-scale flow physics under an external force field. In the continuum
limit with Kn = 0.0001, the limited resolution in space and time results in the two-species
Euler solution, and the current scheme plays the role of a shock-capturing algorithm. The
frequent collisions prevent the particle penetration between fluid elements, and different
gas components show consistent behaviors, just like a single gas. With the increment of
the Knudsen number and the collision time, the degree of freedom for the free transport
of individual gas components increases and the flow physics changes significantly. There
is a smooth transition from the Euler solution of the Riemann problem to a collisionless
Boltzmann solution. As different gas components have a specific molecular mass, the
light gas transports much faster than the heavier one in the tube, which is shown in
Figures 8b and 9b.
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Figure 8. Cont.
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Figure 8. Sod test under an external force field with m2/m1 = 0.5, n2/n1 = 1. (a) Number density.
(b) Velocity. (c) Temperature. (d) Pressure.
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Figure 9. Sod test under an external force field with m2/m1 = 0.5, n2/n1 = 0.25. (a) Number density.
(b) Velocity. (c) Temperature. (d) Pressure.

4.4. Rayleigh–Taylor Instability

We turn to the two-dimensional case and consider the Rayleigh–Taylor instability [3].
The initial condition of the gas dynamic system in a polar coordinate (r, θ) was set as

ρ0(r) = e−α(r+r0), p0(r) =
1.5
α

e−α(r+r0), U0 = 0,

where⎧⎨⎩
α = 2.68, r0 = 0.258, r ≤ r1,

α = 5.53, r0 = −0.308, r > r1,
and

⎧⎨⎩
r1 = 0.6(1 + 0.02 cos(20θ)), for density,

r1 = 0.62324965, for pressure.

The molecular mass and number density ratio in the gas mixture was set up with m2/m1 =
0.8, n2/n1 = 1, and m2/m1 = 0.25, n2/n1 = 1. The external force potential satisfies
dΦ/dr = 1.5, and the force points towards the origin of the polar coordinates. Different
Knudsen numbers in the reference state were considered as Kn = 0.0001, 0.01, and 1.0, The
computational domain was divided into 60 × 60 uniform cells, and 29 × 29 quadrature
points were used in the velocity space. The specular reflection condition was considered
at all boundaries. Due to the density inversion contained in the initial flow field, the
Rayleigh–Taylor instability will occur naturally as time evolves. A well-balanced method
is expected to capture the flow motions around the unstable interface, while keeping the
hydrostatic equilibrium solution in the bulk region.

Figures 10 and 11 plot the density contours and cross-sections of densities in all cells
versus the radius with m2/m1 = 0.8 at different output times under different Knudsen
numbers Figures 12 and 13 present the same results with m2/m1 = 0.25. As can be seen, in
different flow regimes, different flow physics emerge around the Rayleigh–Taylor interface.
In the continuum regime, the frequent intermolecular interactions provide the effective
mechanism to quickly initiate and strengthen the flow mixing. As the Kn increases, the
particle transport phenomena dominate the flow evolution, and thus, the particles have
a greater chance of penetrating directly through the mixing layer into the inner zone.
Therefore, the strength of the Rayleigh–Taylor instability is greatly reduced. Due to the
fact that different gas components have different molecular masses, the profiles of different
species can be different, corresponding to different Knudsen numbers. Figure 14 presents
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the density profiles of the two components at t = 0.08 and Kn = 0.01. It is clear that,
while the lighter components have already completed the density inversion, the heavy
components are still in the mixing process. This is due to the fact that molecules with
smaller masses have a faster mean speed. In all cases, it is clear that the hydrostatic
solution is well preserved by the current well-balanced scheme, and the mixing of fluids
occurs locally.
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Figure 10. Density evolution under gravity at m2/m1 = 0.8 and reference Knudsen numbers 0.0001
(1st row), 0.01 (2nd row), and 1 (3rd row). (a) t = 0. (b) t = 0.8. (c) t = 1.4. (d) t = 2.0. (e) t = 0. (f) t = 0.08.
(g) t = 0.16. (h) t = 0.24. (i) t = 0. (j) t = 0.08. (k) t = 0.16. (l) t = 0.24.
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Figure 11. Density distribution along the radial direction at m2/m1 = 0.8 and reference Knudsen
numbers 0.0001 (1st row), 0.01 (2nd row), and 1 (3rd row). (a) t = 0. (b) t = 0.8. (c) t = 1.4. (d) t = 2.0.
(e) t = 0. (f) t = 0.08. (g) t = 0.16. (h) t = 0.24. (i) t = 0. (j) t = 0.08. (k) t = 0.16. (l) t = 0.24.
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Figure 12. Density evolution under gravity at m2/m1 = 0.25 and reference Knudsen numbers 0.0001
(1st row), 0.01 (2nd row), and 1 (3rd row). (a) t = 0. (b) t = 0.8. (c) t = 1.4. (d) t = 2.0. (e) t = 0. (f) t = 0.08.
(g) t = 0.16. (h) t = 0.24. (i) t = 0. (j) t = 0.08. (k) t = 0.16. (l) t = 0.24.
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Figure 13. Cont.

167



Entropy 2022, 24, 1110

Radius

D
en

si
ty

0.2 0.4 0.6 0.8 1 1.2 1.4

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Mixture
Species 1
Species 2

(e)

Radius

D
en

si
ty

0.2 0.4 0.6 0.8 1 1.2 1.4

0.2

0.4
Mixture
Species 1
Species 2

(f)

Radius

D
en

si
ty

0.2 0.4 0.6 0.8 1 1.2 1.4

0.2

0.4

Mixture
Species 1
Species 2

(g)

Radius

D
en

si
ty

0.2 0.4 0.6 0.8 1 1.2 1.4

0.2

0.4

Mixture
Species 1
Species 2

(h)

Radius

D
en

si
ty

0.2 0.4 0.6 0.8 1 1.2 1.4

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Mixture
Species 1
Species 2

(i)

Radius

D
en

si
ty

0.2 0.4 0.6 0.8 1 1.2 1.4

0.2

0.4
Mixture
Species 1
Species 2

(j)

Radius

D
en

si
ty

0.2 0.4 0.6 0.8 1 1.2 1.4

0.2

0.4

Mixture
Species 1
Species 2

(k)

Radius

D
en

si
ty

0.2 0.4 0.6 0.8 1 1.2 1.4

0.2

0.4

Mixture
Species 1
Species 2

(l)

Figure 13. Density distribution along the radial direction at m2/m1 = 0.25 and reference Knudsen
numbers 0.0001 (1st row), 0.01 (2nd row), and 1 (3rd row). (a) t = 0. (b) t = 0.8. (c) t = 1.4. (d) t = 2.0.
(e) t = 0. (f) t = 0.08. (g) t = 0.16. (h) t = 0.24. (i) t = 0. (j) t = 0.08. (k) t = 0.16. (l) t = 0.24.
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Figure 14. Density distribution for two gas components along the radial direction at t = 0.08 with
reference Knudsen number 0.01. (a) Species 1. (b) Species 2.

4.5. Lid-Driven Cavity under Gravity

The lid-driven cavity problem is a standard test case for both hydrodynamic and
kinetic solvers, which contains complex flow physics related to compressibility, shearing
structure, heat transfer, the boundary effect, non-equilibrium effects, etc. In this case, we
calculated a lid-driven cavity problem under an external force, which serves as a typical
case for the multiscale algorithms.
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A binary gas mixture is enclosed by four walls with L = 1. The upper wall moves
in a tangential direction with a velocity Uw = 0.15. The external force was set to be
φy = 0.0,−0.5,−1.0, respectively, in the negative y-direction. The magnitude of gravity φy
is denoted by g. The initial density and pressure were set up with

ρ(x, y, t = 0) = 2 exp(φyy), p(x, y, t = 0) = exp(φyy).

The molecular mass and number density ratio in the gas mixture was set up with m2/m1 =
0.5, n2/n1 = 1.

The Knudsen number in the reference state was set as Kn = 0.05. There were 45 × 45
uniform cells used in the physical space and 41 × 41 quadrature points used in the velocity
space. Maxwell’s diffusive boundary condition was used throughout the computation, and
the wall temperature was Tw = 1.

Figures 15–17 present the numerical solutions related to different magnitudes of the
external force. Due to the existence of a force field, along the forcing direction, the gas
density changes significantly along the vertical direction of the cavity, as does the local
Knudsen number. As as result, the gas inside the cavity, depending on the position of the y-
axis, can stay in different flow regimes. Similar to the results of a single-component gas [26],
the temperature of the gas around the upper surface of the cavity decreases in spite of the
viscous heating effect. Such a phenomenon happens during the energy exchange among
gravitational and kinetic energy and can be explained as a result of the non-equilibrium
heat transfer driven by an external force. Different from the equilibrium thermodynamics,
the shift and distortion of the gas distribution function due to the external forcing term
provide the dominant mechanism for particle transports, especially in the rarefied regions.
The density and velocity distributions at the central lines of the cavity, as well as the local
Knudsen number are presented in Figures 18 and 19. As plotted, the increased external
force results in the stabilizing effect, i.e., to reduce the rotating speed of the main vortex.
With the increment of the force magnitude, the velocity profile is flattened, indicating a
weaker vortex motion. This numerical results validates the current well-balanced method
for the study of non-equilibrium flows under an external force field.
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Figure 15. Lid-driven cavity solutions at Knre f = 0.05 and φy = 0. (a) Number density. (b) U-velocity.
(c) V-velocity. (d) Temperature.
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Figure 16. Lid-driven cavity solutions at Knre f = 0.05 and φy = −0.5. (a) Number density. (b) U-
velocity. (c) V-velocity. (d) Temperature.
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Figure 17. Lid-driven cavity solutions at Knre f = 0.05 and φy = −1.0. (a) Number density. (b) U-
velocity. (c) V-velocity. (d) Temperature.
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Figure 18. U,V velocity along the horizontal and vertical center lines of the cavity. (a) U-velocity.
(b) V-velocity.
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Figure 19. Number density and local Knudsen number along the vertical center line of the cavity.
(a) Number density. (b) Local Knudsen number.

5. Conclusions

The atmosphere is composed of multicomponent flows under an external force. In
this paper, a well-balanced unified gas-kinetic scheme for multicomponent flows has been
developed. The well-balanced property of the unified scheme was validated through both
theoretical demonstrations and numerical tests. The detailed strategy for the construction of
the current algorithm was illustrated. Many numerical cases were provided to validate the
scheme. New physical observations, such as the consistent transport in the hydrodynamic
regime and the decoupled transport in the rarefied regime of different components, were
clearly identified and discussed. The well-balanced UGKS provides an alternative choice
for the study of real non-equilibrium gaseous flow on the Earth and beyond, which is
useful in astronautical and astrophysical applications.
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Abstract: The specific objective of the present work study is to propose an anisotropic slip boundary
condition for three-dimensional (3D) simulations with adjustable streamwise and spanwise slip length
by the discrete unified gas kinetic scheme (DUGKS). The present boundary condition is proposed
based on the assumption of nonlinear velocity profiles near the wall instead of linear velocity profiles
in a unidirectional steady flow. Moreover, a 3D corner boundary condition is introduced to the
DUGKS to reduce the singularities. Numerical tests validate the effectiveness of the present method,
which is more accurate than the bounce-back and specular reflection slip boundary condition in
the lattice Boltzmann method. It is of significance to study the lid-driven cavity flow due to its
applications and its capability in exhibiting important phenomena. Then, the present work explores,
for the first time, the effects of anisotropic slip on the two-sided orthogonal oscillating micro-lid-
driven cavity flow by adopting the present method. This work will generate fresh insight into the
effects of anisotropic slip on the 3D flow in a two-sided orthogonal oscillating micro-lid-driven cavity.
Some findings are obtained: The oscillating velocity of the wall has a weaker influence on the normal
velocity component than on the tangential velocity component. In most cases, large slip length has a
more significant influence on velocity profiles than small slip length. Compared with pure slip in both
top and bottom walls, anisotropic slip on the top wall has a greater influence on flow, increasing the
3D mixing of flow. In short, the influence of slip on the flow field depends not only on slip length but
also on the relative direction of the wall motion and the slip velocity. The findings can help in better
understanding the anisotropic slip effect on the unsteady microflow and the design of microdevices.

Keywords: anisotropic slip; boundary condition; DUGKS; superhydrophobic surface; oscillating
wall motion

1. Introduction

Surface characteristics play a critical role in designing and fabricating microfluidic
devices. Superhydrophobicity is an important aspect of surface characteristics, which
can significantly control flow and reduce drag [1–10]. Based on the knowledge of fluid
mechanics, the no-slip boundary condition is valid at the solid–liquid interface. However,
the liquid slip velocity is observed on the superhydrophobic surface. Unlike gas slip caused
by Knudsen effects, liquid slip is modelled with two strategies [11]: introducing the force
that repels water in the multiphase system; and modelling the slip boundary condition. For
the former strategy, the forces are not well understood and determined. Existing research
recognizes the critical role played by the latter strategy; therefore, it is emphasized in the
present work.

The appropriate boundary condition is an important area in the simulation of fluid
flows [12,13]. Recently, researchers have shown an increased interest in slip boundary
conditions. For example, Min and Kim [14,15] directly modelled the hydrophobic wall with
Navier’s slip boundary condition by direct numerical simulation (DNS) based on the macro-
scopic Navier–Stokes equations. However, the Navier’s slip boundary condition cannot be
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introduced to the lattice-Boltzmann-based methods, because the lattice-Boltzmann-based
methods track the particle distribution function instead of the macroscopic variables. The
lattice Boltzmann method (LBM) is appropriate for simulating mesoscopic physics that
are hard to describe macroscopically. It has the advantages of simple algorithms, natural
parallelization, and saving computing costs for simulating microflow [16], which proves
to be a promising tool. Slip boundary conditions have been proposed and employed in
the LBM, such as bounce-back and specular reflection (BSR) [11,17], discrete full diffusive
and specular reflection (DSR) [18,19], discrete full diffusive and bounce-back (DBB) [20,21],
and tangential momentum accommodation coefficient (TMAC) scheme [22]. Coupled with
Navier’s slip model [23], liquid slip can be characterized and adjusted by slip length. With
assumption of the 2D unidirectional flow at a lower Reynolds number, the relation between
the slip length and combination parameter of the coupled schemes [24–26] is determined.
However, it is not valid in three-dimensional (3D) flows and turbulent flows. Moreover,
the slip should be considered in streamwise and spanwise directions [1]. Existing studies
about rice leaves have found that the anisotropic groove-like microstructures can lead to
the anisotropic slip behavior of water droplets on the surfaces [27–29]. More recent studies
have considered superhydrophobic surfaces with randomly distributed textures in stream-
wise and spanwise directions [8,30–35], indicating that the slip is anisotropic. For example,
both spanwise and streamwise slip lengths have been measured on a randomly textured
superhydrophobic surface [35]. Therefore, the present study considers the anisotropic slip
in streamwise and spanwise directions for the 3D system based on the nonlinear velocity
profiles near the wall, which is close to the actual situation.

Moreover, Guo et al. proposed a new finite-volume scheme named discrete unified
gas kinetic scheme (DUGKS) based on the lattice Boltzmann equation [36]. The DUGKS
has also been proved to be a promising numerical tool to simulate fluid flow [37–42], such
as 3D turbulent channel flow. It is found that the DUGKS, even with a coarse nonuniform
mesh, is overall better than the LBM [37]. So, the numerical simulation will be performed
by the DUGKS in this work. Up to now, no attention has been paid to the 3D slip boundary
condition in the DUGKS. Therefore, in the present study, the new slip boundary condition
is proposed for the DUGKS instead of the LBM. The DUGKS is performed to simulate 3D
flows with the proposed slip boundary condition. It is hoped that we provide a superior
method to describe and characterize anisotropic slip on superhydrophobic surfaces.

To study the effect of anisotropic slip on flows in benchmark geometries, the present
method is applied to the lid-driven cavity flow. It is an important problem in the field of
fluid mechanics due to its applications, such as cooling of electronic gadgets, oil extraction,
design of heat exchangers, solar ponds, acoustic liner, float glass productions, insulation
materials, multiscreen gadgets for nuclear reactors, coating, food processing, crystal growth,
etc. [43–49]. Moreover, it has capability in exhibiting important phenomena such as eddies,
secondary flows, instabilities, transition, and turbulence [50]. The liquid slip flow in
two-sided, orthogonal, oscillating, micro-lid-driven cavities has largely been oversighted.
Recently, two-sided motion [51–54] and oscillatory flows in the cavity have also caught
the necessary attention, except single-sided steady flows. The purposes of the literature
cornering oscillatory flows in lid-driven cavities include:

1. To test and validate numerical solvers, such as least-squares finite element meth-
ods [55], Taylor-series-expansion- and least-squares-based lattice Boltzmann methods [56]
and conservative level-set methods [57]. 2. To understand industrial applications, such
as surface viscometer [58] and optimization of fluid mixing [59,60]. 3. To understand the
flow characteristics, such as the single-sided oscillatory rarefied gas flows inside two- and
three-dimensional cavities [61–63], and two-sided oscillating flows in two-dimensional
lid-driven cavities [64].

The studies mentioned above have been solely restricted to the no-slip flow; the liquid
slip flow in lid-driven cavities have largely been oversighted. Slip should be carefully
considered in the design of micro-devices with moving parts. This work will generate
fresh insight into the effects of anisotropic slip on the 3D flow in a two-sided oscillating
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micro-lid-driven cavity. In this work, for the first time, there are mainly two types of
slip distribution: (1) pure streamwise slip emerges on both top and bottom wall surfaces;
(2) both streamwise and spanwise slips emerge on the top wall surface. In a 3D global
coordinate system, the unit velocity vector of the moving top and bottom walls is (1,0,0)
and (0,1,0), respectively. The motion direction of the top and bottom walls is orthogonal.
To the best of the authors’ knowledge, no such study has been conducted before.

It is hoped that the present study will provide a superior method and contribute to a
deeper understanding of the anisotropic slip. The paper is organized as follows. In Section 2,
the D3Q19 lattice model and DUGKS are introduced, and the new slip boundary condition
and corner boundary condition for the D3Q19 lattice model are derived theoretically. In
Section 3, numerical validation is performed by simulating the 3D microchannel flow.
Numerical results of 3D flow in a two-sided, oscillating, lid-driven cavity are discussed in
Section 4. Section 5 gives the conclusions.

2. Numerical Methods

2.1. D3Q19 Lattice Model

D3Q19 lattice model [65] is adopted in this work. As shown in Figure 1, there are
19 discrete velocities in the D3Q19 lattice model, including one rest velocity (α = 0) and
18 non-rest velocities (α = 1, ..., 18).

 

Figure 1. D3Q19 lattice model (a) 2D view; (b) 3D view.

As shown in Table 1, the velocity set includes the velocities {ξα} and the corresponding
weights {Wα}. The speed of the sound is c =

√
3RT = 1.

Table 1. The velocity set for the D3Q19 lattice model.

Velocities ξα Number Length |ξα| Weight Wα

(0,0,0)c 1 0 1/3
(±1, 0, 0)c, (0, ±1, 0)c, (0, 0, ±1)c 6 1 1/18

(±1, ±1, 0)c, (±1, 0, ±1)c, (0, ±1, ±1)c 12
√

2 1/36

2.2. Discrete Unified gas Kinetic Scheme

The discrete Boltzmann equation with the Bhatnagar–Gross–Krook (BGK) collision
model [66] is the governing equation of the DUGKS:

∂ fα

∂t
+ ξα · ∇ fα = Ω ≡ fα

eq − fα

τ
(1)
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It is assumed that fluid particles move with the velocity ξα at position x and time t, so
the velocity distribution function is fα = fα(x, ξα, t). Ω and τ represent the collision term
and relaxation time, respectively.

fα
eq represents the Maxwellian equilibrium distribution function, which is approxi-

mated by Taylor expansion around zero particle velocity at low Mach number:

fα
eq = Wαρ

[
1 +

ξα · u

c2
s

+
(ξα · u)2

2c4
s

− |u|2
2c2

s

]
, c2

s = RT (2)

The velocities {ξα} and the corresponding weights {Wα} are presented in Table 1.
The computational domain is divided into cuboid cells Vi,j,k = ΔxiΔyjΔzk centered at

xi,j,k = (xi, yj, zk) in the DUGKS. As a new finite volume scheme, the volumes-averaged
values of the distribution function and collision term need to be computed. For example,
the volumes-averaged value of the distribution function f n

α (xi,j,k) is computed as,

f n
α (xi,j,k) =

1
|Vi,j,k|

∫
Vi,j,k

fα(x, tn)dV (3)

In the DUGKS, the governing equation needs to be integrated on each cell, and the
time step Δt is assumed to be constant. Equation (1) is integrated on a cell Vi,j,k centered at
xi,j,k from time tn = nΔt to time tn+1 = (n + 1)Δt, and the evolution of the distribution is
advanced from tn to tn+1 as,

f n+1
α − f n

α = − Δt
|Vi,j,k|F

n+1/2
α +

Δt
2

[
Ωn

α + Ωn+1
α

]
(4)

The scalar variable Fn+1/2
α represents the flux across the cell interface,

Fn+1/2
α

(
xi,j,k

)
=
∫

∂Vi,j,k
(ξα · n) f n+1/2

α (xb)dS =

= [ f n+1/2
α (xi,j,k + 0.5Δxiex)− f n+1/2

α (xi,j,k − 0.5Δxiex)]ξα,xΔyjΔzk

+[ f n+1/2
α (xi,j,k + 0.5Δyjey)− f n+1/2

α (xi,j,k − 0.5Δyjey)]ξα,yΔxiΔzk

+[ f n+1/2
α (xi,j,k + 0.5Δzkez)− f n+1/2

α (xi,j,k − 0.5Δzkez)]ξα,zΔxiΔyj

(5)

where f n+1/2
α (xb) represents the distribution at the cell interface xb at the time tn+1/2 = tn +

h (h = Δt/2), and ex, ey, and ez are unit vectors in x, y, and z directions, respectively.
For clarity, new distribution functions are introduced:

f̃ n
α ≡ f n

α − Δt
2

Ω( f n
α ), f̃+,n

α ≡ f n
α +

Δt
2

Ω( f n
α ) (6)

The collision term can be expanded in the BGK collision model, and Equation (6) can
be converted to the following equations:

f n
α,j =

2τ

2τ + Δt
f̃ n
α,j +

Δt
2τ + Δt

f eq,n
α,j , f̃+,n

α,j =
2τ − Δt
2τ + Δt

f̃ n
α,j +

2Δt
2τ + Δt

f eq,n
α,j . (7)

The evolution equation of DUGKS from tn to tn+1 is simplified as:

f̃ n+1
α,j = f̃+,n

α,j − Δt
|Vi,j,k|F

n+1/2
α,j (8)

Based on the conservation of mass, momentum, the density ρ, and velocity u can be
computed from f̃α:

ρn = ∑
α

f̃ n
α , ρnun = ∑

α

ξα f̃ n
α (9)
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All other forms of the distribution function can be expressed in terms of f̃α and fα
eq.

So, the distribution function f̃α is mainly computed in the code.
The critical step is to evaluate the interface flux Fn+1/2

α,j . The midpoint integral formula

is employed to evaluate Fn+1/2
α,j , due to its easy implementation and fast computation. For

DUGKS with higher-order accuracy, more intermediate time steps need to be selected; for
example, the flux at the cell interface at t * = tn + Δt/6 and t * = tn+ 3Δt/4 need calculating.

In the present study, Equation (1) is integrated within a half time step (h = Δt/2) along
the characteristic line with the endpoint (xb) located at the cell interface, and the following
formula is obtained:

f n+1/2
α (xb)− f n

α (xb − hξα) =
h
2

[
Ω
(

f n+1/2
α (xb)

)
+ Ω( f n

α (xb − hξα))
]

(10)

Similarly, new distribution functions are introduced and can be computed by expand-
ing the collision term:

f
n+1/2
α (xb) ≡ f n+1/2

α (xb)− h
2

Ω
(

f n+1/2
α (xb)

)
=

2τ + h
2τ

f n+1/2
α (xb)− f eq,n+1/2

α (xb) (11)

f
+,n
α (xb − hξα) ≡ f n

α (xb − hξα) +
h
2 Ω( f n

α (xb − hξα)),

f
+,n
α = 2τ−h

2τ+h f
n
α +

2h
2τ+h f eq,n

α .
(12)

With new distribution functions, Equation (10) is converted to the following equation:

f
n+1/2
α (xb) = f

+,n
α (xb − hξα) (13)

With the Taylor expansion around the endpoint (xb) located at the cell interface, the
right term of Equation (13) can be approximated as:

f
+,n
α (xb − hξα) = f

+,n
α (xb)− hξα · ∇ f

+,n
α (xb) (14)

where f
+,n
α (xb) and its gradients ∇ f

+,n
α (xb) can be approximated by the linear interpola-

tions. In x-direction, e.g.,

∂ f
+,n
α (xi,j,k+0.5Δxiex)

∂x ≈ f
+,n
α (xi+1,j,k)− f

+,n
α (xi,j,k)

(Δxi+Δxi+1)/2 ,

f
+,n
α

(
xi,j,k + 0.5Δxiex

)
≈ f

+,n
α

(
xi,j,k

)
+

∂ f
+,n
α (xi,j,k+0.5Δxiex)

∂x
Δxi

2 ,

(15)

The distribution function f
+,n
α can be computed from f̃α, as follows,

f
+,n
α =

2τ − h
2τ + Δt

f̃ n
α +

3h
2τ + Δt

f eq,n
α (16)

Then, we obtain the function f
n+1/2
α (xb). The density and velocity at the cell inter-

face can also be evaluated, which can be used for the equilibrium distribution function
f eq,n+1/2
α (xb) ,

ρn+1/2|xb
= ∑

α

f
n+1/2
α (xb), (ρu)

n+1/2 |xb
= ∑

α

ξα f
n+1/2
α (xb) (17)

Finally, the flux Fn+1/2
α,j is evaluated according to Equation (5) after the distribution

function f n+1/2
α at the cell interface is determined by Equation (11). The tracked distribution

function f̃α can be updated to the next time step after the flux is obtained.

179



Entropy 2022, 24, 907

Particularly, the following equation will be used in the DUGKS,

f̃+,n
α =

4
3

f
+,n
α − 1

3
f̃ n
α (18)

For the present DUGKS, the relaxation time τ is computed from τ = μ/p, where μ is
the dynamic viscosity coefficient. p (p = ρRT) is the pressure, where R is the specific gas
constant. In the following simulations, the temperature T is constant in the isothermal flow
with cs

2 = RT = 1/3. The time step Δt is determined by the Courant–Friedrichs–Lewy
(CFL) condition [67], which is independent of the relaxation time τ for all flow regimes.

2.3. The Present Slip Boundary Condition

It can be seen intuitively that, considering the actual case with anisotropic slip, slip
boundary conditions derived by adopting two-dimensional unidirectional flow are not
valid. Therefore, a new anisotropic slip boundary condition is proposed in 3D flows. In
this work, the anisotropic slip boundary condition is characterized and constructed by
adjusting the relative magnitude of the streamwise and spanwise slip lengths. It is noted
that x, y, and z denote the streamwise, spanwise, and wall-normal directions, respectively.
It is noted that the DUGKS tracks the distribution function f̃α, unlike the LBM.

Considering the impermeable wall boundary (UWz = 0), the unknown distributions
are obtained by the specular reflection ( f̃ sr

α ) and the stress exerted by the wall ( f̃ w
α ).

f̃α = f̃ sr
α + f̃ w

α (ξα · n > 0) (19)

As shown in Figure 2, the unknown distributions are f̃4, f̃8, f̃9, f̃12, f̃14.

 

Figure 2. 2D sketch of the upper horizontal wall boundary in 3D.

The specular reflection f̃ sr
α can be obtained by:

f̃ sr
4 = f̃3, f̃ sr

8 = f̃10, f̃ sr
9 = f̃7, f̃ sr

12 = f̃13, f̃ sr
14 = f̃11 (20)

With f̃ sr
α determined, USR can be obtained by:

ρ = ∑
α

f̃α (21)

ρUSR = ∑
ξα ·n≤0

(
f̃αξα

)
||
+ ∑

ξα ·n>0

(
f̃ sr
α ξα

)
||

(22)
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The stress f̃ w
α contributes to the change in tangential momentum caused by the wall

surface, as shown in the following equations:

σ′ρ(UW − USR) = ∑
ξα ·n>0

(
f̃ w
α ξα

)
||

(23)

0 = ∑
ξα ·n>0

(
f̃ w
α ξα

)
⊥

(24)

0 = f̃ w
α (for normal direction) (25)

UW and USR are the tangential velocity of the wall and the average tangential velocity
under the specular reflection by the impermeable boundary, respectively. σ′ represents a
modified tangential momentum accommodation coefficient. n is the normal direction of
the wall toward the fluid field. The subscripts “||” and “⊥” represent the tangential and
normal directions, respectively. The sum of normal parts is zero, ensuring that the function
f̃ w
α only changes the tangential momentum. It is also shown that the calculation of density

is not determined by ∑ f̃ w
α .

The following relations can be obtained for the case in Figure 2.

x - direction : ρUSRx = f̃1 − f̃2 + 2( f̃7 − f̃10) (26)

y - direction : ρUSRy = f̃8 − f̃5 + 2( f̃13 − f̃11) (27)

The momentum can change due to the shear stress imposed on the wall:

x - direction :σ′
xρ(UWx − USRx) = ∑

ξα ·n>0

(
f̃ w
α ξα

)
x
= f̃ w

9 − f̃ w
8 (28)

y - direction :σ′
yρ
(
UWy − USRy

)
= ∑

ξα ·n>0

(
f̃ w
α ξα

)
y
= f̃ w

12 − f̃ w
14 (29)

For positive normal direction of the wall (i.e., +z direction):

0 = ∑
ξα ·n>0

( f̃ w
α ξα)z = f̃ w

4 + f̃ w
8 + f̃ w

9 + f̃ w
12 + f̃ w

14 (30)

0 = f̃ w
4 (31)

Based on the Maxwell equilibrium distribution function and Ref. [22], the density can
be calculated,

ρ = f̃0 + f̃1 + f̃2 + f̃5 + f̃6 + f̃15 + f̃16 + f̃17 + f̃18 + 2( f̃3 + f̃7 + f̃10 + f̃11 + f̃13) (32)

Then, f̃ w
8 , f̃ w

9 , f̃ w
12, f̃ w

14 and USRx, USRy are still unknown. σ′
x, σ′

y are the manually
adjustable parameters, which are related to the streamwise and spanwise slip lengths,
respectively.

There are five known equations in the system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρUSRx = f̃1 − f̃2 + 2( f̃7 − f̃10)

ρUSRy = f̃8 − f̃5 + 2( f̃13 − f̃11)

σ′
xρ(UWx − USRx) = ∑

ξα ·n>0

(
f̃ w
i ξα

)
x
= f̃ w

9 − f̃ w
8

σ′
yρ
(
UWy − USRy

)
= ∑

ξα ·n>0

(
f̃ w
i ξα

)
y
= f̃ w

12 − f̃ w
14

0 = f̃ w
8 + f̃ w

9 + f̃ w
12 + f̃ w

14

(33)
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To make the system closed, the hypothesis is proposed:

f̃ w
8 = − f̃ w

9 or f̃ w
12 = − f̃ w

14 (34)

In summary, a new slip boundary condition is proposed for the upper horizontal wall
boundary in 3D:

f̃4 = f̃3

f̃8 = f̃10 − 1
2 σ′

x

{
ρUWx − ( f̃1 − f̃2 + 2( f̃7 − f̃10))

}
f̃9 = f̃7 +

1
2 σ′

x

{
ρUWx − ( f̃1 − f̃2 + 2( f̃7 − f̃10))

}
f̃12 = f̃13 +

1
2 σ′

y

{
ρUWy − ( f̃6 − f̃5 + 2( f̃13 − f̃11))

}
f̃14 = f̃11 − 1

2 σ′
y

{
ρUWy − ( f̃6 − f̃5 + 2( f̃13 − f̃11))

}
(35)

With the external forcing term, the local velocities u are computed by,

u =
1
ρ∑

i
ξα f̃α +

Δt · →a
2

(36)

To eliminate the numerical slip due to force tangential to the wall, the external forcing
term is introduced to the new slip boundary condition:

f̃4 = f̃3

f̃8 = f̃10 − 1
2 σ′

x

{
ρ(UWx − 0.5Δtax)− ( f̃1 − f̃2 + 2( f̃7 − f̃10))

}
f̃9 = f̃7 +

1
2 σ′

x

{
ρ(UWx − 0.5Δtax)− ( f̃1 − f̃2 + 2( f̃7 − f̃10))

}
f̃12 = f̃13 +

1
2 σ′

y

{
ρ(UWy − 0.5Δtay)− ( f̃6 − f̃5 + 2( f̃13 − f̃11))

}
f̃14 = f̃11 − 1

2 σ′
y

{
ρ(UWy − 0.5Δtay)− ( f̃6 − f̃5 + 2( f̃13 − f̃11))

}
(37)

Similar manipulations can be applied to the lower wall and side walls boundary.

2.4. Relation between the Combination Parameters and Slip Lengths

Then, the relation between combination parameters (σ′
x, σ′

y) and slip lengths (bx, by)
is deduced to implement the new slip boundary condition. Previous research on the
derivation of the relation is studied by taking the two-dimensional unidirectional steady
flow as an example, which is expressed as [24–26]:

ρ = const, uy = 0, ay = 0,
∂φ

∂x
= 0,

∂φ

∂t
= 0 (38)

where φ denotes flow variable, such as the velocity or density.
In this work, it is assumed that the anisotropic slip includes two components in

streamwise and spanwise directions. Take the liquid slip on a horizontal plane (perpen-
dicular to the z-axis) as an example. The slip length includes two components, bx, by in
the x and y directions, respectively. With the assumption of anisotropic slip, the simula-
tion and characterization of the slip effect on a superhydrophobic surface can match the
actual situation.

The upper wall in 3D is employed to derive the relationship between the parameters
σ′

x, σ′
y and the slip lengths bx, by.

The flow near the wall satisfies the continuity equation:

∂ρ

∂t
+

∂ρux

∂x
+

∂ρuy

∂y
+

∂ρuz

∂z
= 0 (39)
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With the assumption of no density change in the incompressible flow, the continuity
equation can be written as,

∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z
= 0 (40)

In the 3D directional flows, the velocity distribution near the wall is assumed to be
satisfied the following equations:

∂ux

∂y
= 0,

∂uy

∂x
= 0, uz = 0 (41)

As shown in Figure 2, the local coordinate system (x, y, z) in 3D is established in the
lattice unit, where a node on the wall is served as the origin. The x − y plane is located
on the wall. The z direction is normal along the wall. In the local coordinate system, the
boundary of the upper wall is located at the plane z = 1, and the solid is located in the
region (z < 1), e.g., the plane z = 0.

As shown in Ref. [68], the measured velocity profiles across the channel with a
parabolic fit are observed and recorded. Therefore, in this work, it is assumed that the
nonlinear velocity profiles near the wall are parabolic in the z direction, conforming to the
quadratic term fitting. The velocity profiles can be linear when the quadratic coefficient is 0.
Then, the function of velocity profiles near the wall will be simplified as follows:

ux(x, z) = ux(x) + α1z2 + β1z + e1 (42)

uy(y, z) = uy(y) + α2z2 + β2z + e2 (43)

The acceleration can be approximated by relations as follows [69]:

ax ≈ −ν
∂2ux(x, z)

∂z2 , ay ≈ −ν
∂2uy(y, z)

∂z2 . (44)

Then, the coefficients can be obtained by the acceleration, α1 = −0.5 ax/ν, α2 = −0.5 ay/ν.
The slip velocity can be expressed as:

usx = ux(x, z)|z=1 − UWx, usy = uy(y, z)|z=1 − UWy. (45)

The slip velocity on a wall is characterized in the form of a Navier slip boundary
condition in both the streamwise direction and the spanwise direction [35]:

usx = bx
∂ux

∂z
|wall , usy = by

∂uy

∂z
|wall (46)

Considering Equations (42) and (43), (46) can be written as:

usx = bx
∂ux

∂z
|z=0 = bxβ1, usy = by

∂uy

∂z
|z=0 = byβ2. (47)

With the Taylor expansion around the z = 1 in the local coordinate system, ux(z) and
uy(z) can be approximated,

ux(z)|z=2 = ux(z)|z=1 + Δz
∂ux(z)

∂z
|z=1 +

Δz2

2
(

∂2ux(z)
∂z2 )|z=1 + O(Δz3) (48)

uy(z)|z=2 = uy(z)|z=1 + Δz
∂uy(z)

∂z
|z=1 +

Δz2

2
(

∂2uy(z)
∂z2 )|z=1 + O(Δz3) (49)
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With the assumption of parabolic velocity profiles near the wall, substitute the above
equations, and the following equations can be obtained,

ux(x, z)|z=2 − ux(x, z)|z=1 = (Δz2 + 2Δz)α1 + Δzβ1,
uy(y, z)|z=2 − ux(y, z)|z=1 = (Δz2 + 2Δz)α2 + Δzβ2.

(50)

Then, the relations between the coefficients are given as,

β1 =
(3 − Δz2 − 2Δz)
Δz − 1 + O(Δz)

α1 (51)

β2 =
(3 − Δz2 − 2Δz)
Δz − 1 + O(Δz)

α2 (52)

For D3Q19 lattice model, with ρu =
18
∑

α=0
ξα fα known, the local velocities ux, uy at z = 1

and 2 can be calculated as,

ρux|z=1 = f̃ 1
1 − f̃ 1

2 + f̃ 1
7 − f̃ 1

10 + f̃ 1
9 − f̃ 1

8 ,
ρux|z=2 = f̃ 2

1 − f̃ 2
2 + f̃ 2

7 − f̃ 2
10 + f̃ 2

9 − f̃ 2
8 ,

(53)

ρuy|z=1 = f̃ 1
6 − f̃ 1

5 + f̃ 1
13 − f̃ 1

11 + f̃ 1
12 − f̃ 1

14,
ρuy|z=2 = f̃ 2

6 − f̃ 2
5 + f̃ 2

13 − f̃ 2
11 + f̃ 2

12 − f̃ 2
14.

(54)

Combined with the proposed slip boundary condition, the following relations can be
obtained:

f̃9 − f̃8 = f̃7 − f̃10 + σ′
x

{
ρUWx − [ f̃1 − f̃2 + 2( f̃7 − f̃10)]

}
,

f̃12 − f̃14 = f̃13 − f̃11 + σ′
y

{
ρUWy − [ f̃6 − f̃5 + 2( f̃13 − f̃11)]

}
.

(55)

Then,
ρux|z=1 = (1 − σ′

x)[ f̃ 1
1
− f̃ 1

2
+ 2( f̃ 1

7
− f̃ 1

10
)] + σ′

xρUWx,
ρux|z=2 = (1 − σ′

x)[ f̃ 2
1
− f̃ 2

2
+ 2( f̃ 2

7
− f̃ 2

10
)] + σ′

xρUWx,
ρuy|z=1 = (1 − σ′

y)[ f̃ 1
6
− f̃ 1

5
+ 2( f̃ 1

13
− f̃ 1

11
)] + σ′

yρUWy,
ρuy|z=2 = (1 − σ′

y)[ f̃ 2
6
− f̃ 2

5
+ 2( f̃ 2

13
− f̃ 2

11
)] + σ′

yρUWy.

(56)

The difference value between velocity at z = 1 and z = 2 can be written as:

ux|z=2 − ux|z=1 = 1
ρ (1 − σ′

x){( f̃ 2
1
− f̃ 2

2
)− ( f̃ 1

1
− f̃ 1

2
) + 2[( f̃ 2

7
− f̃ 2

10
)− ( f̃ 1

7
− f̃ 1

10
)]},

uy|z=2 − uy|z=1 = 1
ρ (1 − σ′

y){( f̃ 2
6
− f̃ 2

5
)− ( f̃ 1

6
− f̃ 1

5
) + 2[( f̃ 2

13
− f̃ 2

11
) + ( f̃ 1

13
− f̃ 1

11
)]}.

(57)
Inspired by Guo et al. [69], the collision and streaming rule in the LBM is adopted to

establish the relationship between velocities near the wall. Considering the collision and
streaming rule of LBE with BGK operator [70], the following relations can be obtained:

x - direction : f̃ 1
7 − f̃ 1

10 = f̃
2

7 − f̃
2

10, f̃ 2
9 − f̃ 2

8 = f̃
1

9 − f̃
1

8 (58)

y - direction : f̃ 1
13 − f̃ 1

11 = f̃
2

13 − f̃
2

11, f̃ 2
12 − f̃ 2

14 = f̃
1

12 − f̃
1

14 (59)

where f̃ denotes the tracked distribution function in the collision.
Then, Equation (57) can be simplified as follows:

ux|z=2 − ux|z=1 =
3σ′

x

τ(1 − σ′x)
(ux|z=1 − UWx) (60)
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uy|z=2 − uy|z=1 =
3σ′

y

τ(1 − σ′y)
(uy|z=1 − UWy) (61)

The slip velocity could be calculated as:

usx = bx
∂ux

∂z
|z=0 = bxβ1 = ux|z=1 − UWx =

τ(1 − σ′
x)

3σ′x
(ux|z=2 − ux|z=1) (62)

usy = bx
∂uy

∂z
|z=0 = byβ1 = uy|z=1 − UWy =

τ(1 − σ′
y)

3σ′y
(uy|z=2 − uy|z=1) (63)

Finally, the relations between the slip lengths and parameters are obtained:

bx =
τ(1 − σ′

x)

3σ′x
(ux|z=2 − ux|z=1)/β1 = (Δz2 + 2Δz)

α1

β1
+ Δz (64)

by =
τ(1 − σ′

y)

3σ′y
(uy|z=2 − uy|z=1)/β1 = (Δz2 + 2Δz)

α2

β2
+ Δz (65)

With the known values of α1/β1, α2/β2, Equations (64) and (65) can be simplified,

σ′
x =

1

1 + 3bx
Aτ

, σ′
y =

1

1 + 3by
Aτ

. (66)

where A denotes the correction coefficient and is determined by:

A = (Δz2 + Δz)
Δz − 1 + O(Δz3)

3 − Δz2 − 2Δz
+ Δz (67)

where Δz is the lattice grid spacing.
For the upper horizontal wall boundary in 3D, a new slip boundary condition is

significantly determined by Equations (35), (66), and (67). Similar derivation and operation
can be applied to the lower wall and side walls.

2.5. Corner Boundary Condition

The above discussion on boundary conditions focuses on straight surfaces. Consider-
ing the singularity, the treatment of corners should not be ignored in numerical simulations
of the flow, such as the lid-driven cavity flow. Although corners account for only a few
nodes, these corners should not be underestimated because the particle can stream in the
fluid domain, which has influences on the performance of the numerical simulation. One
single point may contaminate the numerical solution everywhere [71]. One of the earliest
systematic approaches to treating corners in DUGKS was proposed by Guo et al. [72].
However, this approach is limited to 2D implementations. In this work, to reduce the sin-
gularities and improve the performance of numerical simulation, an approach to treating
the corner boundary condition is proposed for the DUGKS based on the D3Q19 model with
19 independent moments [73].

0th : ρ = ∑
i

fi; 1st : ρuα = ∑
i

fiξiα; 2nd : Παβ = ∑
i

fiξiαξiβ;

3rd : Qαβγ = ∑
i

fiξiαξiβξiγ; 4th : Sαβγδ = ∑
i

fiξiαξiβξiγξiδ.
(68)

The 0th moment has 1 equation, the 1st moment has 3 equations, the 2nd moment
has 6 equations, the 3rd moment has 6 equations, and the 4th moment has 3 equations. In
the 3D domain, there are 12 unknowns at every corner. So, 12 linearly independent
moments are required. For the D3Q19 model, as shown in Figure 1b, the unknown
functions are f1, f3, f6, f7, f9, f10, f11, f12, f13, f15, f16, f17, considering the low-south-west
corner. We select the momenta ρux, ρuy, ρuz, the momentum fluxes and shear stresses
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Πxx, Πyy, Πzz, Πxy, Πxz, Πyz, and three higher-order moments Qxxy, Qyyz, Qxzz as 12 lin-
early independent moments.

rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f̃1 + f̃9 − f̃10 + f̃15 − f̃16 + f̃17 ρux

f̃6 − f̃11 + f̃12 + f̃13 − f̃15 + f̃16 + f̃17 ρuy

f̃3 + f̃7 − f̃9 + f̃10 + f̃11 − f̃12 + f̃13 ρuz

f̃1 + f̃9 + f̃10 + f̃15 + f̃16 + f̃17 Πxx

f̃6 + f̃11 + f̃12 + f̃13 + f̃15 + f̃16 + f̃17 Πyy

f̃3 + f̃7 + f̃9 + f̃10 + f̃11 + f̃12 + f̃13 Πzz

f̃17 − f̃15 − f̃16 Πxy

f̃7 − f̃9 − f̃10 Πxz

f̃13 − f̃11 − f̃12 Πyz

f̃17 − f̃15 + f̃16 Qxxy

f̃7 + f̃9 − f̃10 Qxzz

f̃13 + f̃11 − f̃12 Qyyz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 12 (69)

The moments can be approximated by the Chapman–Enskog expansion as follows:

Παβ = Π(0)
αβ + εΠ(1)

αβ + O(ε2) ≈ Π(0)
αβ , Qαβ = Q(0)

αβ + εQ(1)
αβ + O(ε2) ≈ Q(0)

αβ (70)

where the equilibrium part of the momentum flux tensor (Π(0)
αβ ) and the third-order moment

(Q(0)
αβ ) can be expressed as:

Π(0)
αβ = ∑

i
f (0)i ξiαξiβ = ρuαuβ + ρc2

s δαβ,

Q(0)
αβγ = ∑

i
f (0)i ξiαξiβξiγ = ρc2

s (uαδβγ + uβδαγ + uγδαβ).
(71)

The velocity is set to 0 at the corner, and some terms are assumed to be negligible. The
momentum fluxes and shear stresses Πxx, Πyy, Πzz, Πxy, Πxz, Πyz, and three higher-order
moments Qxxy, Qyyz, Qxzz are written as follows:

Πxx = Πyy = Πzz = ρc2
s = ρ/3,

Πxy = ρuxuy = 0, Πxz = ρuxuz = 0, Πyz = ρuyuz = 0,
Qxxy = ρ

3 (uxδxy + uxδxy + uyδxx) =
ρ
3 uy = 0,

Qyyz =
ρ
3 (uyδyz + uyδyz + uzδyy) =

ρ
3 uz = 0,

Qxzz =
ρ
3 (uxδzz + uxδxz + uzδxz) =

ρ
3 ux = 0.

(72)

The unknown functions are calculated as:

f̃1 = − ρ
3 + f̃2 + 2 f̃5 + 4 f̃14 + 4 f̃18

f̃3 = − ρ
3 + f̃4 + 2 f̃2 + 4 f̃8 + 4 f̃18

f̃6 = − ρ
3 + f̃5 + 2 f̃4 + 4 f̃8 + 4 f̃14

f̃7 = ρ
6 − f̃2 − f̃8 − 2 f̃18

f̃9 = f̃8

f̃10 = ρ
6 − f̃2 − f̃8 − 2 f̃18

f̃11 = f̃14

f̃12 = ρ
6 − f̃4 − f̃14 − 2 f̃8

f̃13 = ρ
6 − f̃4 − f̃14 − 2 f̃8

f̃15 = ρ
6 − f̃5 − f̃18 − 2 f̃14

f̃16 = f̃18

f̃17 = ρ
6 − f̃5 − f̃18 − 2 f̃14

(73)
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The density at the low-south-west corner is calculated as:

ρ = f̃0 + 2( f̃2 + f̃4 + f̃5) + 4( f̃8 + f̃14 + f̃18). (74)

Similar manipulations can be applied to other corner nodes.

2.6. Algorithm

The updating of f̃α from time tn = nΔt to time tn+1 = (n + 1)Δt in the DUGKS can be
performed as the following brief algorithm.

1. Initialize the density, velocity, and viscosity. Obtain the values of f eq,n
α and f̃ n

α at
time t = 0.

2. Compute the distribution functions f
+,n
α and f̃+,n

α using Equations (16) and (18).

3. Compute the value of ∇ f
+,n
α (xb) and f

+,n
α (xb) using Equation (15).

4. Compute the distribution function f
n+1/2
α (xb) using Equations (14) and (13).

5. Get the macro values of density and velocity using Equation (17). Compute the

equilibrium distribution function f eq,n+1/2
α (xb) .

6. Compute the distribution function f n+1/2
α (xb) using Equation (13). Obtain the flux

Fn+1/2
α by Equation (5).

7. For the unknown distribution functions at the boundary or corner, the boundary
conditions are employed, such as Equations (35) or (73).

8. Update the distribution function f̃ n+1
α using Equation (8). Obtain the macro values of

density and velocity.
9. Repeat steps (2)–(8) until the convergence criterion is satisfied.

In C++ DUGKS computer code, the convergence criterion for attaining the steady-state
solution is ∑ |u(t)− u(t − 1000Δt)|/∑ |u(t)| < 10−6, where u(t) represents the velocity in
the flow field.

3. Numerical Validation

The flow in a 3D channel is a fundamental case in science and engineering. Only a few
references on the anisotropic slip boundary condition are available for comparison, so the
flow in the 3D channel is selected as the case for numerical validation.

3.1. Comparison with Single-Component Lattice Boltzmann Simulation

In Ref. [11], the slip boundary condition is modelled by combining the bounce-back
and specular reflection (BSR) scheme using the single-component lattice Boltzmann method.
The relevant parameters in the present simulation remain the same as those in Ref. [11].
As shown in Figure 3, the microchannel’s length, width, and height are 600 μm, 300 μm,
and 30 μm, respectively. With the grid convergence study, the spatial discretization with
resolution 400 × 200 × 20 (X, Y, and Z directions, respectively) is selected for the subsequent
numerical simulations. The inlet and outlet along the X-direction adopt the periodic
boundary condition. The remaining four walls adopt the no-slip/slip boundary conditions.
For the no-slip case, the bounce-back scheme in LBM is used without treating the corner
in Ref. [11], and the bounce-back scheme in DUGKS is used with the corner boundary
condition in the present work. For the slip case, the BSR scheme is employed in Ref. [11],
and the present method is employed in this work.

In the no-slip case, the present results agree well with the exact solution [74] and
experimental result [9], as shown in Figure 4a. It is observed that the present results agree
a little better with the exact solution than the BSR scheme in Ref. [11], which shows that the
3D corner boundary condition improves the accuracy.
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Figure 3. The diagram of a 3D microchannel.

In the slip case, the present results are closer to the experimental results [9] than those
in Ref. [11], as shown in Figure 4b. The present method is more accurate than the BSR
scheme in Ref. [11], which may be partly explained by the case that the BSR scheme can
generate numerical slip, but the present method with the external force term can eliminate
the numerical slip.

 

Figure 4. Cont.
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Figure 4. Velocity profiles in the no-slip case (a) and slip case (b). The data are obtained from the line
(X = 300 μm, Z = 15 μm) normal to the right sidewall as a function of Y.

3.2. Comparison with Direct Numerical Simulation

In Ref. [14], the value of the streamwise slip length is set to equal the spanwise slip
length. Furthermore, the case where the value of streamwise slip length is not equal to the
spanwise slip length should be considered. With the different values of streamwise and
spanwise slip lengths, the effect of anisotropic slip on velocity profiles and drag has been
addressed using direct numerical simulations (DNS) of a turbulent channel flow [75]. In
Ref. [75], the Navier slip length boundary condition adopts a linear slip length model. In
this work, the present boundary condition is related to the second partial derivative of the
velocity, with the assumption of nonlinear velocity profiles near the wall.

To test the accuracy of predicting the drag and velocity, the present method is per-
formed in six different cases at Reτ = uτ0δ/ν = 180: (1) Case 1: bx

+0 = 0.1, by
+0 = 1;

(2) Case 2: bx
+0 = 0.316, by

+0 = 1; (3) Case 3: bx
+0 = 3.16, by

+0 = 1; (4) Case 4: bx
+0 = 10,

by
+0 = 1; (5) Case 5: bx

+0 = 0.631, by
+0 = 1; (6) Case 6: bx

+0 = 2.51, by
+0 = 10. δ and ν denote

the channel half-height and kinematic viscosity, respectively. uτ0 denotes the wall shear
(friction) velocity in channel flow with no-slip walls. It is noted that the superscript +0
indicates slip length scales given in units of the viscous length scale ν/uτ0 in the respective
no-slip reference case [76].

The numerical results of the present method are compared to the data in Ref. [75]. The
mean streamwise velocity profile is shown in Figure 5, and the root-mean-square (rms)
velocity fluctuations are shown in Figure 6. As shown in Figures 5 and 6, the present
method is also accurate in predicting the velocity profiles in a turbulent channel flow
with an anisotropic slip wall. Similar conclusions to those reported by A. Busse and
N. D. Sandham [75] are obtained: the streamwise slip length is mainly responsible for
determining mean velocity profiles. Streamwise slip length always has a reducing effect
on the intensity of the turbulent fluctuations, and the reducing effect will increase with
increasing slip length. Finite streamwise slip length can limit the turbulence-intensifying
effects of infinite spanwise slip, thereby limiting the adverse effects of spanwise slip.
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Figure 5. The mean streamwise velocity profiles.

To investigate the influence of an anisotropic slip on drag, the DUGKS simulations
are conducted by adjusting the streamwise and spanwise slip lengths with the present slip
boundary condition. The investigated slip length values are selected randomly. The present
results are compared with those in Ref. [75].

Figure 6. Cont.
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Figure 6. The rms velocity fluctuations of the streamwise velocity (a) and the spanwise velocity (b).

The percentage change in drag (DD) is defined by DD = (dp/dx–dp/dx|0)/(dp/dx|0),
where dp/dx and dp/dx|0 represent the mean streamwise pressure gradient in the present
and reference case, respectively. If DD < 0, the drag is reduced. The DD values are obtained
from numerical results in the case of Reτ0 = 180 based on friction velocity uτ0 in the
reference case.

As shown in Figure 7, the dots match well with the lines, indicating that the present
method is also accurate in predicting the change in drag. The same trends reported by
Min and Kim [14] are recovered: drag is reduced in cases with pure streamwise slip and
isotropic slip, but drag is increased in cases with pure spanwise slip.

 

Figure 7. The percentage change in drag versus the streamwise and spanwise slip lengths. (Dots:
present, Lines: DNS data [75]).
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4. Application to the Two-Sided Orthogonal Oscillating Micro-Lid-Driven
Cavity Flow

4.1. Problem Description

The problem is the micro-lid-driven cavity flow with two moving walls, as shown in
Figure 8. For two-sided oscillating wall motion, the top and bottom walls move with oscillating
velocity U = U0cos(ωt), where U0 = 1.0 m/s, oscillating frequency ω = 1875 π/s. The directions
of the top and bottom walls are positive X-direction and Y-direction, respectively. The size of
the cavity is 400 μm × 400 μm × 400 μm. The cavity is filled with water. The density and
kinematic viscosity of water are ρ = 1000 kg/m3 and υ = 1.0 × 10−6m2/s, respectively. The
Reynolds number is calculated as Re = U0 × L/ν = 1.0 × 0.0004/10−6 = 400. For simplicity, ω
has been dimensionalized as ω’ = ωL/U0 = 0.75π, and St = ωL2/ν = ω’Re = 300π.

Figure 8. The two-sided orthogonal oscillating wall motion of the micro-lid-driven cavity.

4.2. Convergence Validation Study

To choose an optimal lattice size utilizing fewer computational resources, lattice size
convergence is studied. Numerical simulations with two-sided uniformly moving wall
motions are performed at Re = 400 using three lattice sizes: 803 (coarse), 1203 (medium), and
1603 (fine). Figure 9 shows the negligible improvement in the velocity profile on increasing
the lattice size from 1203 to 1603.

So, the spatial discretization with resolution 120 × 120 × 120 is used for performing
subsequent numerical simulations with two-sided orthogonal oscillating wall motions. To
keep Re = 400, U0lattice = 1.0/15 and the kinematic viscosity is set to νlattice = 0.02. The
present slip boundary condition is applied to the top and bottom wall, and the corner
boundary condition is applied to four corner nodes in the cavity. The four side walls remain
at rest with the no-slip boundary condition.
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Figure 9. Velocity profiles for W on the horizontal centerlines of plane at y/L = 0.5.

4.3. Results and Discussion

There are mainly two types of slip distribution: pure streamwise slip emerges on
both the top and bottom wall surfaces; and both streamwise and spanwise slips emerge
on the top wall surface. For comparison, fourteen cases are considered: (a) both top and
bottom walls: bx = by = 0; (b) top wall: bx = 0.1, by = 0, bottom wall: bx = by = 0; (c) top wall:
bx = by = 0, bottom wall: bx = 0,by = 0.1; (d) top wall: bx = 0,by = 0.1, bottom wall: bx = by = 0;
(e) top wall: bx = 0.1, by = 0, bottom wall: bx = 0, by = 0.1; (f) top wall: bx = 0.1,by = 0.1,
bottom wall: bx = by = 0; (g) top wall: bx = 0.1, by = 0, bottom wall: bx = 0,by = 0.05; (h) top
wall: bx = 0.1, by = 0.05, bottom wall: bx = by = 0; (i) top wall: bx = 0.05, by = 0, bottom
wall: bx = 0, by = 0.1; (j) top wall: bx = 0.05, by = 0.1, bottom wall: bx = by = 0; (k) top wall:
bx = 0.1, by = 0, bottom wall: bx = 0, by = 0.2; (l) top wall: bx = 0.1, by = 0.2, bottom wall:
bx = by = 0; (m) top wall: bx = 0.2, by = 0, bottom wall: bx = 0, by = 0.1; (n) top wall: bx = 0.2,
by = 0.1, bottom wall: bx = by = 0. In Ref. [9], their work yields a slip length of approximately
1 μm at the wall coated with hydrophobic octadecyltrichlorosilane for water flow. In the
present work, considering actual value of slip length, the values of 0.05, 0.1, and 0.2 in the
lattice unit correspond to 0.25 μm, 0.5 μm, and 1 μm, respectively. The symbols bx and by
represent the slip length in the X and Y directions, respectively.

The velocity components and vorticity are Important and common parameters to
describe the flow. The present work performs a comprehensive parametric study discussing
flow velocity components and vorticity. It is noted that U, V, and W are used to denote the
velocity component in the X, Y, and Z directions, respectively. The vorticity magnitude is
calculated as

√
{(∂W/∂Y-∂V/∂Z)2 + (∂U/∂Z-∂W/∂X)2 + (∂V/∂X-∂U/∂Y)2}.

The contours for velocity U, V, and W and the vorticity magnitude of cases (a-n) at t
= T, 0.25 T and 0.5 T are shown in Supplementary Material. It is found that nonphysical
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phenomena and numerical singularity do not exist, which shows that the present method
is effective and the present results are credible. Furthermore, the centerline velocity profiles
in the X, Y, and Z directions at t = T, 0.25 T and 0.5 T are shown in Figures 10–22.

 

Figure 10. U along the centerline Z-axis at t = T. The red circles represent the points of intersection.

Figure 10 shows U (the velocity component in the X direction) along the centerline
Z-axis at t = T and its magnified view. As shown in Figure 10, the 14 curves are divided
into four groups according to the level of bx (bx = 0, 0.05, 0.1, and 0.2): group 1: cases (a, c,
and d); group 2: cases (i and j); cases (b, e, f, g, h, k, and l); cases (m, and n). The slip length
bx has greater influence on U than by. It is found that velocity profiles in each group are
very close. Therefore, for bx at the same level, the existence of by on the top or bottom wall
has almost no influence on the change in U along the centerline Z-axis. The greater bx is,
the greater the influence it has on the change in U along the centerline Z-axis for z/L < 0.9
(U < 0). For z/L > 0.9, U increases rapidly, and the closer the location is to the top wall,
the faster U increases, and the greater the velocity gradient. When the curves intersect,
the relative magnitude of the curves changes. The distribution of the intersection points is
chaotic, as shown in the red circle in Figure 10. Therefore, when bx = 0.1, the promotion
effect of by on increasing U will change with the change in of z.
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Figure 11. U along the centerline Y-axis at t = T. The red circles represent the points of intersection.

Figure 11 shows U (the velocity component in the X direction) along the centerline
Y-axis at t = T and its magnified view. As shown in Figure 11, U is negative along the
centerline Y-axis in cases (c-n), which indicates that the existence of by on the top wall or
bottom wall results in the negative U along the centerline Y-axis. The anisotropic slip on
the top wall with a larger slip length has a greater influence on the negative U along the
centerline Y-axis, such as case (l) and case (n). For y/L < 0.52018, the absolute value of U in
case (n) is less than that in case (l). For y/L > 0.52018, the absolute value of U in case (l)
is less than that in case (n). Maybe there are more intersecting points near y/L = 0.5 and
y/L = 0.915 because of the motion of the top and bottom walls and the interaction of the
sidewalls and fluid.
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Figure 12. V along the centerline Z-axis at t = T. The red circles represent the points of intersection.

Figure 12 shows V (the velocity component in the Y direction) along the centerline
Z-axis at t = T and its magnified view. As shown in Figure 12, the results of different slip
combinations are relatively close with a slight difference, indicating that anisotropic slip has
a minor influence on V along the centerline Z-axis. However, it can still be seen that the slip
combination in case (l) has the greatest influence on V along the centerline Z-axis, where
the absolute value of negative V is the largest, as shown in the magnified view. Near the top
wall, the anisotropic slip in case (l) results in the maximum positive V. For z/L > 0.06554,
the intersection points of the curves are mostly evenly distributed along the centerline
Z-axis, indicating that the strong or weak influence of slip distribution on V will change at
most positions along the centerline Z-axis. It may be caused by the time-dependent motion
of both top and bottom walls. Maybe, in this condition, the velocity V is mainly influenced
by the disordered flow driven by the walls, and the influence of slip on V is negligible. So,
the effect of slip may be greatly reduced in the disordered flow.
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Figure 13. V along the centerline X-axis at t = T.

Figure 13 shows V (the velocity component in the Y direction) along the centerline
X-axis at t = T. As shown in Figure 13, all curves have two troughs. For the no-slip condition,
two troughs are located at x/L ≈ 0.07 and x/L ≈ 0.93. The slip condition makes the troughs
closer to the center than the no-slip condition. Under the action of anisotropic slip, two
peaks appear in the curve. The fluctuation range is large at large slip lengths, such as case
(l) and case (n). Compared with pure slip in both top and bottom walls, anisotropic slip
on the top wall results in stronger fluctuation disturbance and increases the 3D mixing
of flow. The results of different slip combinations are similar near the side walls, and a
great difference occurs in the cavity (0.2 < x/L < 0.8). The influence of slip on flow hardly
propagates to the side walls, but mostly to the cavity.
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Figure 14. W along the centerline X-axis at t = T.

Figure 14 shows W (the velocity component in the Z direction) along the centerline
X-axis at t = T and its magnified view. As shown in Figure 14, 14 curves were divided into
four groups according to the level of bx: bx= 0,0.05, 0.1, 0.2. The larger bx is, the greater
the influence it has on the change in W along the centerline X-axis, and the larger the
fluctuation range is, the closer the position of the peak or trough is to the center. For the
same level of bx, the existence of by on the top or bottom wall has little effect on the change
in W along the centerline X-axis. For x/L ≈ 0.5, the direction of W reverses under the
interaction of the top and bottom walls. This can be explained by the fact that the liquid
inside the cavity flows clockwise.
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Figure 15. W along the centerline Y-axis at t = T.

Figure 15 shows W (the velocity component in the Z direction) along the centerline
Y-axis at t = T. As shown in Figure 15, the large slip length will enhance the oscillation
phenomenon of W along the centerline Y-axis and promote the increase in fluctuation
amplitude, such as case (m) and case (n). This can be explained by the fact that the large
slip length significantly increases the moving velocity of the wall. The existence of by on
the top wall has a stronger effect on enhancing the amplitude of the left peak, and the
existence of by on the bottom wall has a stronger effect on enhancing the amplitude of
the right peak. The direction of by intersects with the motion direction of the top wall
vertically, enhancing the disturbance of W near the left side wall; the direction of by is the
same as the motion direction of the bottom wall, enhancing the disturbance of W near
the right sidewall. So, the influence of slip on flow also depends on the slip direction
and wall motion direction.
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Figure 16. U along the centerline Z-axis at t = 0.25 T.

Figure 16 shows U (the velocity component in the X direction) along the centerline
Z-axis at t = 0.25 T and its magnified view. As shown in Figure 16, the 14 curves are divided
into four groups according to the level of bx (bx = 0, 0.05, 0.1, 0.2): group 1: cases (d, a, and
c); group 2: cases (j and i); cases (l, f, h, b, g, e, and k); cases (n and m). It is found that
velocity profiles for U in each group are very close. Therefore, for bx at the same level, the
existence of by on the top or bottom wall has almost no influence on the change in U along
the centerline Z-axis. So, the direction of slip is also an important consideration. The larger
bx results in a larger peak near the top wall, which has a greater influence on the change in
U along the centerline Z-axis. When bx and by are fixed, the anisotropic slip on the top wall
has a greater effect on the positive U than the pure slip on the top and bottom walls. This
may be explained by the directional inconsistency. When U > 0, there is no intersection
point in 14 curves, and with fixed bx = 1, larger by on the top wall results in larger U. With
the existence of by on the top wall, the increase in velocity is facilitated.

Figure 17 shows U (the velocity component in the X direction) along the centerline
Y-axis at t = 0.25 T. As shown in Figure 17, the pure slip on the top and bottom walls makes
the curve symmetrical, and the anisotropic slip on the top wall makes the trough closer to
the right-side wall. The asymmetry can be caused by the direction of slip normal to the
wall motion direction.
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Figure 17. U along the centerline Y-axis at t = 0.25 T.

 

Figure 18. V along the centerline Z-axis at t = 0.25 T.
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Figure 18 shows V (the velocity component in the Y direction) along the centerline
Z-axis at t = 0.25 T and its magnified view. With the existence of by, the slip velocity
component in the Y direction appears on the top wall, and the larger slip length makes
the non-negative value of V larger, such as with the case (l). In the magnified view, the
order of peak value is k, c, i, e, m, g, a, d, b, j, h, f, l, and n. With the existence of by on the
bottom wall, the larger by results in a larger peak value. The existence of by can contribute
to influencing the flow. With fixed by = 0.1, the larger bx results in a smaller peak value.

Figure 19. V along the centerline X-axis at t = 0.25 T.

At t = 0.25 T, the top and bottom walls move with oscillating velocity U = U0cos(ωt) = 0,
but the slip drives the flow in the cavity. The trough near the bottom wall is more obvious in
Figure 19 than that in Figure 13, owing to the different oscillating velocity. The trend in curves
in Figure 20 is similar to that in Figure 14. The order of peak value near the right side wall
in Figure 21 is consistent with that in Figure 15, which shows that the oscillating velocity of
the top and bottom wall has a weaker influence on W than on U and V. It is found that W is
positive along the centerline Y-axis in case (n) at t = 0.25 T. Anisotropic slip with large slip
length can result in the disruptive change. Maybe, in this condition, the flow is dominated by
anisotropic slip.
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Figure 20. W along the centerline X-axis at t = 0.25 T.

As shown in Figure 22, the profiles of U along the centerline Y-axis at t = 0.5 T show
no qualitative similarity with those at t = T and t = 0.25 T. The other five types of profiles at
t = 0.5 T show some approximative mirror symmetry with those at t = T. Because the top
and bottom walls move with oscillating velocity U = U0cos(ωt), the direction of velocity at
t = 0.5 t is opposite to that at t = T.

As shown in Figures S1, S5, S6, S10, S11 and S15 in the Supplementary Materials,
the contour of vorticity magnitude is concentrated on the top and bottom walls, owing to
shear stress affected by the motion of the top and bottom walls. As shown in Table 2, the
maximum vorticity magnitude at t = T and 0.5 T is about an order of magnitude larger
than that at t = 0.25 T, owing to the time-dependent oscillating velocity of the top and
bottom walls. Compared to the no-slip case, the maximum vorticity magnitude in slip
cases changes very little at t = T and 0.5 T, and the maximum percentage change is 3% in
case (k). Compared to the no-slip case, case (m) and case (n) obtain about a 120% increase
in the percentage of the maximum vorticity magnitude at t = 0.25 T. It is found that the
maximum vorticity magnitude makes no change at t = T and 0.5 T when the anisotropic
slip exists on the top wall.
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Figure 21. W along the centerline Y-axis at t = 0.25 T.

 

Figure 22. Centerline velocity profiles in X, Y, and Z directions at t = 0.5 T.
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Table 2. Maximum vorticity magnitude at t = T, 0.25 T, 0.5 T.

t
a b c d e f g h i j k l m n

Case

T 11.3139 11.3139 11.4836 11.3139 11.4836 11.3139 11.3988 11.3139 11.4836 11.3139 11.6533 11.3139 11.4836 11.3139
0.25 T 1.08977 1.20004 1.0898 1.09042 1.20004 1.20603 1.20004 1.20154 1.07988 1.08963 1.20004 1.22381 2.40009 2.40309

0.5 T 11.3139 11.3139 11.1442 11.3139 11.1442 11.3139 11.2291 11.3139 11.1442 11.3139 10.9745 11.3139 11.1442 11.3139

5. Conclusions

The present method is validated by simulating the microchannel flow in 3D. Compared
with the reference data, the present method is more accurate than the bounce-back and
specular reflection slip boundary condition in LBM in Ref. [11]. The effect of anisotropic
slip boundary conditions on turbulent flow is investigated by considering different slip
lengths in streamwise and spanwise directions. Good agreement with DNS results shows
that the present method is also accurate and stable to simulate fluid slip on 3D hydrophobic
microchannel walls in a turbulent flow. The present method is effectively accurate and
stable to capture velocity profiles and predict drag changes to study the effect of anisotropic
slip. Then, the present method is applied to the two-sided, orthogonal, oscillating, micro-
lid-driven cavity flow. Some findings are obtained from the simulation results, which can
help in better understanding the anisotropic slip effect on the unsteady microflow and the
design of microdevices:

The oscillating velocity of the wall has a weaker influence on W than on U and V. In
most cases, large slip length has a more significant influence on velocity profiles than small
slip length. However, for V along the centerline Z-axis at t = 0.25 T, the larger streamwise
slip length on the top wall results in a smaller peak value with a fixed spanwise slip length.
Compared with pure slip in both top and bottom walls, anisotropic slip on the top wall has
a greater influence on flow, increasing the 3D mixing of flow. In short, the influence of slip
on the flow field depends not only on slip length but also on the relative direction of the
wall motion and the slip velocity.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/e24070907/s1. Figure S1: Contours for Velocity U, V, W and
Vorticity magnitude at t = T in case (a) and case (b). Figure S2: Contours for Velocity U at t = T
in cases (c–n). Figure S3: Contours for Velocity V at t = T in cases (c–n). Figure S4: Contours for
Velocity W at t = T in cases (c–n). Figure S5: Contours for Vorticity magnitude at t = T in cases (c–n).
Figure S6: Contours for Velocity U, V, W and Vorticity magnitude at t = 0.25 T in case (a) and case (b).
Figure S7: Contours for Velocity U at t = 0.25 T in cases (c–n). Figure S8: Contours for Velocity V at
t = 0.25 T in cases (c–n). Figure S9: Contours for Velocity W at t = 0.25 T in cases (c–n). Figure S10:
Contours for Vorticity magnitude at t = 0.25 T in cases (c–n). Figure S11: Con-tours for Velocity U, V,
W and Vorticity magnitude at t = 0.5 T in case (a) and case (b). Figure S12: Contours for Veloc-ity U
at t = 0.5 T in cases (c–n). Figure S13: Contours for Velocity V at t = 0.5 T in cases (c–n). Figure S14:
Contours for Velocity W at t = 0.5 T in cases (c–n). Figure S15: Contours for Vorticity magnitude at
t = 0.5 T in cases (c–n). Figure S16: Contours for Velocity U, V, W and Vorticity magnitude at t = 0.75 T
in case (a) and case (b). Figure S17: Contours for Velocity U at t = 0.75 T in cases (c–n). Figure S18:
Contours for Velocity V at t = 0.75 T in cases (c–n). Figure S19: Contours for Velocity W at t = 0.75 T
in cases (c–n). Figure S20: Contours for Vorticity magnitude at t = 0.75 T in cases (c–n).
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Abstract: The hydrodynamic properties of a squirmer type of self-propelled particle in a simple
shear flow are investigated using the immersed boundary-lattice Boltzmann method in the range
of swimming Reynolds number 0.05 ≤ Res ≤ 2.0, flow Reynolds number 40 ≤ Rep ≤ 160, blocking
rate 0.2 ≤ κ ≤ 0.5. Some results are validated by comparing with available other results. The effects
of Res, Rep and κ on the hydrodynamic properties of squirmer are discussed. The results show that
there exist four distinct motion modes for the squirmer, i.e., horizontal mode, attractive oscillation
mode, oscillation mode, and chaotic mode. Increasing Res causes the motion mode of the squirmer to
change from a constant tumbling near the centerline to a stable horizontal mode, even an oscillatory
or appealing oscillatory mode near the wall. Increasing the swimming intensity of squirmer under
the definite Res will induce the squirmer to make periodic and stable motion at a specific distance
from the wall. Increasing Rep will cause the squirmer to change from a stable swimming state to a
spiral motion or continuous rotation. Increasing κ will strengthen the wall’s attraction to the squirmer.
Increasing swimming intensity of squirmer will modify the strength and direction of the wall’s
attraction to the squirmer if κ remains constant.

Keywords: self-propelled particles; hydrodynamic properties; simple shear flow; immersed boundary-lattice
Boltzmann method

1. Introduction

Various movements of self-propelled particles play an essential role in the medicinal,
biophysical and engineering applications. Sperm, bacteria, protists and algae are examples
of self-propelled microorganisms in nature. They achieve self-propulsion by using their
own motor organs such as cilia and flagella, tail and fins, cell deformation and so on.
Movement of microorganisms is associated with a variety of biological activities such
as sperm swimming in mammalian cervical mucus [1], biofilm formation [2], paramecia
swimming to avoid predators [3], and bacteria and algae coordinating their movement to
nutrient-rich habitats [4]. The motion of self-propelled particles in the flow will be affected
by the fluid motion, with the motion of self-propelled particles in the shear flow being of
special importance [5–7].

Alqarni and Bearon [8] found that cells would generate a spiral swimming trajectory
in the weak shear flow but could achieve a stable equilibrium direction in the strong shear
flow. They also numerically simulated the trajectories of cells in a non-uniformly sheared
vertical channel flow and found that helical swimming cells would aggregate toward or
away from the channel center. Ishimoto and Crowdy [9] provided an analytical solution
for the motion of circular self-driven particles in a simple shear flow near a non-slip wall,
and demonstrated that particles couldn’t migrate stably at a fixed distance from the wall,
but could only oscillate periodically along the wall or move away from it. According to the
results given by Ishimoto and Gaffney [10], the fluid rheology could be used to direct sperm
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into the egg, and sperm moved under the combined effect of self-driving, wall constraint
and fluid shear force. Jiang and Chen [11] investigated the dispersion model of dilute
suspensions of self-propelled particle in a confined flow and found that the accumulation of
spherical particles in shear flow would reduce overall dispersion, whereas the accumulation
of rod-like self-propelled particles in shear flow would increase dispersibility because
the particles were aligned with the streamlines. Brady et al. [12] simulated the stress
tensor and diffusion tensor of spherical particles in the simple shear flow and pressure-
driven flow. Hagen et al. [13] studied the Brownian motion of self-propelled particles
in a linear shear flow, and indicated that the particles moved at a constant speed along
the wave direction and were subjected to a constant torque. In addition, Wagner and
Kalman [14] developed the flow-ultra-small-angle neutron scattering method for probing
colloidal microstructures under steady-state flow conditions, and found that the formation
of water clusters caused reversible shear thickening in colloidal suspensions due to the
predominance of short-range lubrication- hydrodynamic interactions at relatively high
shear rates. Siebenbürger et al. [15] conducted comprehensive research of viscoelasticity
and shear flow of concentrated amorphous colloidal suspensions. Lettinga and Dhont [16]
investigated the phase and flow behavior of rod-shaped particles in the shear flow, and
calculated the whole phase diagram of rod-shaped particles from low concentration to
two-phase area and to nematic region. Blaak et al. [17] investigated the effect of shear flow
on homogeneous crystal nucleation and found that a uniform shear rate could significantly
reduce crystal nucleation rate while increasing critical nucleation size. They also indicated
that the nuclei orientation was inclined with respect to the shearing direction. Dhont and
Nagele [18] examined the critical viscoelastic behavior of colloidal suspensions and found
that the microstructural distortion generated by static shear flow had a significant impact
on the spectrum of the linear viscoelastic response function.

It can be seen from the above research that there is still a lack of studies on the effects
of swimming Reynolds number, flow Reynolds number and blocking rate on the hydrody-
namic properties and stable equilibrium position of self-propelled particle. Therefore, the
aim of this study is to numerically simulate the hydrodynamic properties of self-propelled
particles moving in a simple shear flow using the lattice Boltzmann-immersed boundary
method, and explore the effects of swimming Reynolds number, flow Reynolds number
and blocking rate on the hydrodynamic properties and stable equilibrium position of
self-propelled particle.

2. Basic Model

2.1. Squirmer Model

The squirmer model proposed by Lighthill [19] and Blake [20] has been widely used
in the study of self-propelled particles. The model of two-dimensional squirmer driven
with tangential surface velocity is:

uθ = B1 sin θ + 2B2 sin θ cos θ, (1)

the squirmer’s self-driving velocity is determined by the first term on the right hand side of
Equation (1), U/Re=0 = B1/2 and an irrotational velocity field with a decay rate of 1/r2 is
generated; the second term is related to the squirmer’s stress, which causes the Stokes flow
to decay at a rate of 1/r, generating vortices near the squirmer surface [21]. Squirmers are
classified into three categories based on the values of β = B2/B1(B1 > 0): puller (β > 0),
pusher (β < 0), and neutral squirmer (β < 0). Puller, such as Chlamydomonas, creates
thrust from the front with a breaststroke-like motion. Pusher, such as E. coli, pushes itself
forward with their backward flagella [22].

Squirmer is assumed a rigid body, and the squirmer’s motion is described by the
Newton’s second law:

m
d2xc

dt2 = F,
d(J·Ω)

dt
= T , (2)
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where m and xc represent the squirmer’s mass and centroid position, respectively; J and
Ω represent the squirmer’s moment of inertia and angular velocity, respectively; F and T
represent the force and torque exerted by the fluid on the squirmer, respectively.

2.2. Collision Mode

There will be an interaction between the squirmer and wall when the squirmer is close
to the wall. The short-range repulsion model provided by Glowinski et al. [23] is employed
to avoid the overlapping of squirmer and the wall:

fr =

{
Cm
ε

(
d−dmin−Δr

Δr

)
er, d ≤ dmin + Δr

(0, 0), d > dmin + Δr
, (3)

where Cm = MU2/a0 is the characteristic force; M, U are a0 the squirmers’ mass, velocity
and radius, respectively; ε = 10−4 is a constant positive value; d is the distance between the
squirmer and the wall; dmin = a0 is the minimum possible distance between the squirmer
and the wall; Δr = 2Δx represents the size of the two lattices in the numerical simulation,
which is the area where the repulsion exists; er indicates that the center of the squirmer
points to the normal direction of the wall.

3. Numerical Methods and Verification

3.1. Immersion Boundary-Lattice Boltzmann Method

The immersed boundary-lattice Boltzmann method [24,25] is utilized. In this method,
the regular Euler grid is used in the flow and the lattice Boltzmann equation is solved with
the velocity discrete model of DdQm to obtain the macroscopic information of the flow.
The Lagrangian grid is used to model particles moving in the flow, and two sets of grids
are used to exchange force and velocity information between the Lagrangian points of the
particle border and the Euler points of the surrounding flow.

The N-S equation for an incompressible flow is:

∂u
∂t

+ (u·∇)u = −∇p
ρ

+
μ

ρ
∇2u + f (4)

∇·u = 0 , (5)

where ρ, u and p are the fluid density, velocity and pressure, respectively; f is the external
force exerting on the fluid.

The D2Q9 velocity model [26] is employed and the appropriate velocity vector is:

eα =

⎧⎨⎩
(0, 0) α = 0

(±1, 0), (0,±1) α = 1 ∼ 4
(±1,±1) α = 5 ∼ 8

. (6)

The corresponding single relaxed lattice Boltzmann equation with external force term
is:

fα(x + eαΔt, t + Δt) = fα(x, t)− 1
τ

[
fα(x, t)− f eq

α (x, t)
]
+ Δt

wαρ

c2
s

eα· f , (7)

where Δt is the time step of simulation; τ is the relaxation time; fα(x, t) is the density
distribution function of fluid particle for the velocity direction eα in x at time t; cs =
c/

√
3 = 1/

√
3 is the speed of sound; f is an external force; wα is the weight function,

w0 = 4/9, wα = 1/9 for α = 1 − 4, wα = 1/36 for α = 5 − 8; f eq
α is the equilibrium

distribution function:

f eq
α (x, t) = ρwα

[
1 +

eα·u
c2

s
+

(eα·u)2

2c2
s

− u2

2c2
s

]
. (8)

211



Entropy 2022, 24, 854

The macroscopic velocity and density of the fluid are:

ρ = ∑ fα , ρu = ∑ fαeα . (9)

For the exchange of velocity and force information between the solid boundary and
the flow, the force exerted on the solid boundary by the fluid is:

F(x, t) =
Ud(x, t + Δt)− U∗(x, t + Δt)

Δt
, (10)

where Ud(x, t) is determined by the motion of the particle. As shown in Figure 1, at the point
xb, Ud(xb, t) is the sum of translational and rotational velocities of the particle,U∗(xb, t) is
obtained by interpolating the fluid around the boundary:

U∗(xb, t) = ∑ f D
(

x f − xb

)
·u∗
(

x f , t
)

, (11)

where u∗
(

x f , t
)

is the fluid velocity at x f without considering the external force; D(x) is a
two-dimensional Dirac delta function [27].

Figure 1. Distribution of Euler points and Lagrangian points.

Similar to Equation (10), the forces exerted on the fluid by the solid boundary is:

f
(

X f , t
)
= ∑

b
D
(

X f − Xb

)
·F(Xb, t). (12)

where F is the force exerted on the solid boundary by fluid, D is the Dirac delta function.

3.2. Verification of Numerical Method

As shown in Figure 2, the motion of a single particle in a Newtonian shear flow is
simulated to verify the validity and accuracy of the method in dealing with the fluid-
particle problem. Firstly, the different periodic channel lengths (1000, 2000 and 3000) are
set in the flow direction to simulate the particle trajectory, and the results are shown in
Figure 3 where we can see that the results are almost the same for the three lengths, so
the channel length L and width H are selected as 2000 × 80Δx in the following simulation.
The present numerical results of particle trajectory are shown in Figure 4 where the other
results [28–30] are also given as a comparison, it can be seen that the results simulated by
different methods agree well.
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Figure 2. Particle moving in a simple shear flow.

Figure 3. Particle trajectories for different channel lengths.

Figure 4. Comparison of particle trajectories. : Ref. [28]; : Ref. [29]; : Ref. [30]; —: present result.

4. Results and Discussion

As shown in Figure 5, a squirmer with a diameter of 20Δx is released in a simple shear
flow with an initial inclination angle θ and a distance h from the wall. The channel length
L is set to 100D with D being the squirmer’s diameter, the blocking rate κ = D/H, and
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κ = 0.25 unless otherwise specified. The flow Reynolds number is defined as
Rep = 2Uw H/μ with Uw being the velocity difference between upper and lower walls. The
swimming Reynolds number is defined as Res = B1d/2ν, where B1 is related to swimming
strength as shown in Equation (1) and ν is the kinematic viscosity. No-slip and impenetra-
ble boundary conditions are used for the upper and lower walls, and periodic boundary
conditions are used at the inlet and outlet.

Figure 5. Initial condition of squirmer in a simple shear flow.

4.1. Effect of Initial Condition on the Squirmer’s Motion

A puller with initial positions h = 0.75 d, d, 1.25 d and initial orientation angles
θ = 0◦, 45◦, 90◦ is released in a simple shear flow, and the changes of trajectory and
orientation angle of puller with time are shown in Figure 6. We can see that the changes of
trajectory and orientation angle of puller are independent of initial conditions. Therefore,
the initial position and orientation angle are set to h = 0.75 d and θ = 0◦, respectively, in the
following simulation.

 
(a) (b) 

Figure 6. Changes of (a) trajectory and (b) orientation angle of a puller with time in simple shear
flow (Rep = 80, Res = 1, β = 5).

4.2. Effect of the Swimming Reynolds Number

To explore the effect of Res on the motion pattern of a squirmer swimming near the
wall, a squirmer with a radius of 20Δx is released in the flow. Figure 7 shows the changes of
trajectory and orientation angle of a squirmer along the flow direction for different Res and
β, it can be seen that there exist four distinct modes for squirmer motion, i.e., horizontal
mode, attractive oscillation mode, oscillation mode, and chaotic mode. When Res = 0.1,
the squirmer will keep rolling as it moves to a constant position near the centerline of the
channel, and will make a steady horizontal motion above (Res = 1.0, β = 3) or below
(Res = 0.5, β = 5) the midline as Res grows.
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(a)  (b) 

Figure 7. Changes of (a) trajectory and (b) orientation angle of a squirmer along the flow direction
for different Res and β (Rep = 80).

When Res continues to increase to 1.5, the repulsion force exerted on the squirmer
by the wall decreases because Res = B1d/2ν, the larger Res is, the larger d is, the smaller
the repulsion force is, as shown in Equation (3), and an attractive oscillation mode (β = 5)
or oscillation mode (β = 3) will be formed near the wall, which is similar to the trend of
squirmer moving near the non-slip wall [10]. When β increases from 3 to 5, the squirmer
will escape from the wall and make a periodic stable motion at a specific distance from the
wall at Res = 1.5 because the self driving ability of squirmer is enhanced with the increase
of swimming intensity. The phase diagram of Res and β for the transition of different modes
are shown in Figure 8.

Figure 8. Phase diagram of Res and β for the transition of different modes. Mode 1: horizontal; Mode
2: attractive oscillation; Mode 3: oscillation; Mode 4: chaos.

4.3. Effect of the Flow Reynolds Number

Effects of Rep and β on the motion pattern of a squirmer are shown in Figure 9 where
we can see that the puller (β = 7) will move towards the outlet of the flow and form a
stable trajectory below the centerline when Rep = 40. However, the pusher (β = −5) will
be attracted by the wall, move in the opposite direction after colliding with the wall first,
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and then move in the direction of the entrance across the center line, finally form a stable
trajectory above the centerline. When Rep is increased to 60, the trajectory of the pusher
(β = −5) is more complicated, but eventually a stable motion pattern is formed below the
centerline. As Rep increases to 100, the trajectory of the pusher (β = −5) forms a closed
loop. When Rep continues to increase to 160, the puller (β = 7) will move to the centerline
and form a spiral trajectory near the centerline. However, the pusher (β = −5) will keep
rotating at a fixed position close to the centerline because an increase of Rep means an
increase in shear strength, causing the pusher to gradually change from a stable motion
state to a non-stop rotating or helical motion, which is similar to the sperm swimming
up and down in the airflow when the airflow to the uterus is generated in the oviduct of
mammals [11]. The phase diagram of Rep and β for the transition of different modes are
shown in Figure 10.

 
(a) (b) 

Figure 9. Changes of (a) trajectory and (b) orientation angle of a squirmer along the flow direction
for different Rep and β (Res = 0.5).

β

Rep

Figure 10. Phase diagram of Rep and β for the transition of different modes. Mode 1: horizontal;
Mode 2: attractive oscillation; Mode 3: oscillation; Mode 4: chaos.

4.4. Effect of the Blocking Rate

Figure 11 shows the effects of κ and β on the motion pattern of a squirmer. It can
be seen that, with the increase of κ, the motion pattern of a squirmer changes from both
periodic motion (β = 7) and attractive oscillation (β = 5) to the horizontal motion, and
the squirmer finally moves stably near the lower wall. The reason can be attributed to
that increasing κ will change the magnitude of the total moment exerted on the squirmer,
making it move horizontally and stably. As κ increases from 0.2 to 0.25, it can be clearly
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found that the motion direction of squirmer is diametrically opposite for β = 3, the
equilibrium position during stable motion also changes from below the centerline to above
the centerline. Furthermore, with the increase of β, the motion pattern of squirmer changes
from a horizontal mode (β = 3) near the upper wall to an appealing oscillation mode
(β = −5) near the lower wall at κ = 0.25, and finally to an oscillation mode near the
midline (β = 7), the direction and strength of the attraction force of the wall to the squirmer
will change. The phase diagram of κ and β for the transition of different modes are shown
in Figure 12.

(a) (b) 

Figure 11. Changes of (a) trajectory and (b) orientation angle of a squirmer along the flow direction
for different κ and β (Res = 1.0, Rep = 80).

Figure 12. Phase diagram of κ and β for the transition of different modes. Mode 1: horizontal; Mode
2: attractive oscillation; Mode 3: oscillation; Mode 4: chaos.

5. Conclusions

The hydrodynamic properties of a squirmer type of self-propelled particle in a simple
shear flow are investigated using the immersed boundary-lattice Boltzmann method. The
present numerical results of particle trajectory are compared with the literature data, and
the results agree well. The main conclusions are summarized as follows: there exist four
distinct motion modes for the squirmer, i.e., horizontal mode, attractive oscillation mode,
oscillation mode, and chaotic mode. The changes of trajectory and orientation angle of
puller are independent of the initial conditions. Increasing Res causes the motion mode
to change from a constant tumbling near the centerline to a stable horizontal mode, even
an oscillatory or appealing oscillatory mode near the wall. Increasing β will induce the

217



Entropy 2022, 24, 854

squirmer to make periodic and stable motion at a specific distance from the wall. The
squirmer will form a stable pattern of horizontal motion above or below the channel
centerline when Rep = 40 − 60. At large Rep, the squirmer’s trajectory will become
closed loop, spiral, or even chaotic. Increasing κ will strengthen the wall’s attraction to the
squirmer, make the squirmer’s motion progressively become steady, and cause the squirmer
to move from an oscillation mode to attracting oscillation mode, and finally to horizontal
motion mode. Increasing β will modify the strength and direction of the wall’s attraction to
the squirmer. The conclusions obtained in this paper have reference value for mastering
the hydrodynamic characteristics of self-propelled particles and controlling them.
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Abstract: Strong viscous interaction and multiple flow regimes exist when vehicles fly at high altitude
and high Mach number conditions. The Navier–Stokes(NS) solver is no longer applicable in the above
situation. Instead, the direct simulation Monte Carlo (DSMC) method or Boltzmann model equation
solvers are usually needed. However, they are computationally more expensive than the NS solver.
Therefore, it is of great engineering value to establish the aerodynamic prediction model of vehicles
at high altitude and high Mach number conditions. In this paper, the hypersonic aerodynamic
characteristics of an X38-like vehicle in typical conditions from 70 km to 110 km are simulated using
the unified gas kinetic scheme (UGKS), which is applicable for all flow regimes. The contributions of
pressure and viscous stress on the force coefficients are analyzed. The viscous interaction parameters,
Mach number, and angle of attack are used as independent variables, and the difference between the
force coefficients calculated by UGKS and the Euler solver is used as a dependent variable to establish
a nonlinear viscous interaction model between them in the range of 70–110 km. The evaluation of
the model is completed using the correlation coefficient and the relative orthogonal distance. The
conventional viscous interaction effect and rarefied effect are both taken into account in the model.
The model can be used to quickly obtain the hypersonic aerodynamic characteristics of X38-like
vehicle in a wide range, which is meaningful for engineering design.

Keywords: X38-like vehicle; hypersonic; aerodynamic characteristics; viscous interaction effect;
rarefied effect; modelling

1. Introduction

The viscous interaction effect, which describes the mutual interaction process between
the boundary layer and the outer inviscid flow, is one of the three main effects [1] on hy-
personic vehicles for ground-to-flight extrapolation. Depending on the degree of feedback
from the inviscid flow on the boundary layer, strong viscous interaction and weak viscous
interaction can be defined.

Traditionally, a similarity parameter, χ = M3
∞
√

C/
√

Re, is used to ascertain whether
an interaction region is strong or weak. Re = ρeUex/μe is the conventional Reynolds
number based on properties, ρe, Ue and μe at the outer edge of the boundary layer:
C = μwρw/(μeρe). Large values of χ correspond to the strong interaction and small values
of χ indicate a weak region. For pressure and force coefficients on simple configurations
such as a flat plate or a sharp cone, a different correlation parameter, ν∞ = M∞

√
C/

√
Re, is

usually used. The study of viscous interaction correlation for force coefficients derived from
the space shuttle program has identified a modified viscous interaction parameter ν′∞ [2],
which has been widely used in the literature to correlate the aerodynamic characteristics
obtained by different means such as wind tunnel, flight, or numerical calculation. ν′∞ is
defined as ν′∞ = M∞

√
C′/

√
ReL∞. ReL∞ is the Reynolds number based on the characteristic

length of the vehicle. C′ = μ′T∞/(μ∞T′). T′/T∞ is the ratio of the reference temperature
in the boundary layer to the incoming flow temperature.
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Gong et al. [3] and Chen et al. [4] conducted numerical simulation and proved that for
the OV-102 orbiter, ν′∞ is an accurate and effective correlation parameter for aerodynamic
ground-to-flight extrapolation. Mao et al. [5] carried out correlative analyses for the viscous
interaction effect based on the similarity solution for hypersonic boundary layers and
concluded that the difference between the wall pressure on the surfaces of the effective
body and the real body is proportional to the viscous interaction parameter at a high
effective angle of attack. Hypersonic flow fields around a lifting body vehicle have been
simulated by them to validate their conclusion. Han et al. [6] designed a gliding wave-rider
vehicle and studied the effect of viscous interaction on the aerodynamic characteristics. It
was found that the relationship between the difference of the pitching moment coefficient
due to the viscous interaction and the viscous interaction parameter is nonlinear. The
sign of the difference is opposite to that of the difference on the space shuttle-like vehicle,
indicating that the region and intensity of the viscous interaction effects are configuration-
dependent. Wang [7] proposed a joint correlative parameter to correlate experimental data
with flight data for a lifting body vehicle. On the basis of experimental and numerical
results of the lifting body, correlative results between joint correlative parameters with
the axial force coefficient are improved efficiently compared with other parameters in
terms of precision and accuracy. Zhang et al. [8] proposed a viscous interaction model
of longitudinal aerodynamic coefficients under perfect gas conditions for a hypersonic
wing-body configuration. The quantitative uncertainty of the prediction by the viscous
interaction model is also presented in the form of relative orthogonal distance.

Molecular motion and collision at the microscopic level are two important mechanisms
that determine the thermodynamic state of macroscopic fluids [9,10]. Two limiting states
exist. One is the state in which the molecules are in equilibrium at all time and can be
described macroscopically by the Euler equation, and the other is the state of free molecular
flow without any collision between molecules. The motion of the molecules leads to
viscosity. In general, the NS equation can be used when the deviation from the equilibrium
state is not too great. The traditional numerical study of viscous interaction is based on the
NS equation solver with the continuum assumption, so the viscous interaction model or the
ground-to-flight extrapolation can only be used in the continuum regime. If the collisions
between molecules are further reduced, the continuum assumption breaks down, and the
so-called rarefied gas effect will appear. Rarefied gas dynamics methods are then needed to
predict the rarefied effect. In views of the deviation from the thermodynamic equilibrium
state, the viscous interaction effect and the rarefied gas effect are homologous. Both can be
considered as the thermodynamic non-equilibrium effect. While for the viscous interaction
effect flows deviate slightly from the equilibrium, for the rarefied gas effect flows deviate
strongly from the equilibrium.

In fact, regardless of the amount of computation, most rarefied gas dynamics methods,
such as DSMC [10] and the Boltzmann model equation solvers [11–41], can recover the NS
solution in the continuum regime. Based on these methods, a viscous interaction model
can be established for all flow regimes. Thus, both the traditional viscous interaction effect
and the rarefied gas effect at high altitude are taken into account.

However, solving model equations in six dimensions for complex configurations at
hypersonic conditions is always challenging work. Accuracy, efficiency, parallelization,
robustness, memory cost, etc., are all concerns. Li [18–21] has developed a model solver
called the gas-kinetic unified algorithm (GKUA). The GKUA has been validated and applied
for many vehicles, such as the reusable sphere-cone satellite, the reentry spacecraft, and a
complex wing-body combination shape. A total of 727 billion cells in a six-dimensional
mesh and 23,800 cores on almost the largest computer systems available in China in 2015
were used in the last case [20]. Titarev [11–16] has developed an implicit parallel code,
Nesvetay, in recent years. A breakthrough in Nesvetay is the adaptive velocity mesh which
is almost linearly dependent on the free-stream Mach number [14]. For a M = 25 flow
around the TsaGI reentry space vehicle, 18 billion six-dimensional mesh cells and only
5000 core-hours of computer time are consumed, which is state of the art. By comparison
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with DSMC results, Titarev also evaluated the BGK and Shakhov model equations as
applied to hypersonic flows for both aerodynamics and heat transfer in [14–16]. Apart from
the unstructured mesh technique used in Nesvetay, another efficient approach based on
an adaptive octree velocity mesh is proposed by Baranger [17]. The octree mesh contains
many fewer points than a traditional Cartesian mesh. In 2010, Xu [22] proposed the unified
gas kinetic scheme (UGKS) method which is based on the integral solution of the model
equation. The NS solution can be recovered from the UGKS in the hydrodynamic limit [23].
Good agreements between UGKS and DSMC results have also been achieved in rarefied
regime [22–27]. Many advanced techniques such as the adaptive velocity method [28,29],
implicit method [30–35], multigrid method [36], and memory-saving method [37] have been
implemented. UGKS has been widely used in the simulation of flow fields from low speed
to high speed, from continuum flow to rarefied flow [22–40]. For hypersonic validations
and applications, Jiang [31] has conducted a UGKS simulation and verified its accuracy
by comparing the pressure, stress, and heat flux distributions on an M = 25 cylinder for
different regimes with DS2V results. Li [40] has conducted a kinetic blind comparative
study on the aerodynamic characteristics of a complex-scaled X38-like vehicle which is the
same as the one under study in the current paper. The free-stream Mach number is 8 with
four different Knudsen numbers, 0.00275, 0.0275, 0.275, and 2.75. Two in-house kinetic
solvers are used based on the DSMC method and UGKS method, respectively. Despite
having different methods (statistical vs. deterministic) and different meshes (unstructured
vs. structured), both UGKS and DSMC solvers gave similar and reasonably consistent
results. The average relative errors for the lift and drag coefficients are only 0.98% and
2.01%, respectively.

Based on the above understanding and our practical experiences with UGKS in the past
decade, the goal of this paper was to establish a viscous interaction model applicable to all
regimes. An in-house UGKS solver was used to predict the aerodynamic characteristics of a
complex X38-like configuration at high altitude (70–110 km) and high Mach number (≥10).
The viscous interaction correlation method derived from the space shuttle program [2] was
used for reference.

The difference between the aerodynamic characteristics obtained by UGKS and the
solution of inviscid Euler equations was used as the dependent variable. A prediction
model relating the difference and the viscous interaction parameter was proposed. The
model was evaluated using the concepts of correlation coefficient and relative orthogonal
distance. Some new cases were selected and calculated by UGKS and the prediction model
to verify the accuracy of the model prediction results.

2. Numerical Methods

2.1. The Inviscid Solver

The governing equations are the three-dimensional compressible Euler equations in
general curvilinear coordinates. The equations are discretized based on the finite volume
method and solved by the implicit LUSGS method. See [41] for more details.

2.2. The Viscous Solver

The governing equation is the Shakhov model equation [42] which can be written in
non-dimensional form:

ft + u · ∇ f = f+− f
τ

τ = μ
pRe∞

, f+ = gM + gM(1 − Pr) 8λ2

5
c·q
ρ

(
λc2 − 5

2
)

gM = ρ
(

λ
π

) 3
2 e−λ((u−U)2+(v−V)2+(w−W)2), λ = γM2

∞
2T , Re∞ =

ρ∞ |U∞ |Lre f
μ∞

(1)

Here f is the distribution function which is a function of the space x, the particle
velocity u, and time t. τ is the collision time. gM is the local Maxwellian distribution
function. The second term in f+ is a correction term based on the original BGK model
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equation in order to obtain a reasonable Prandtl number, Pr.c and q are the random velocity
vector and the heat vector, respectively. μ, ρ, and p are the non-dimensional viscosity,
density, and pressure, respectively. Re∞ and M∞ are the free stream Reynolds number and
Mach number, respectively. Dimensional free stream density ρ∞, velocity modulus |U∞|,
temperature T∞, and viscosity μ∞ are used to obtain the non-dimensional macroscopic
quantities in the following way

p =
p∗

ρ∞U2
∞

, ρ =
ρ∗

ρ∞
, μ =

μ∗

μ∞
, T =

T∗

T∞
, U =

U∗

|U∞| , V =
V∗

|U∞| , W =
W∗

|U∞| , q =
q∗

ρ∞U3
∞

(2)

The superscript ‘∗’ denotes dimensional quantities. The power-law intermolecular in-
teraction μ = Tω is assumed. The total length of the vehicle Lre f is used as scale of
length. t∞ = Lre f /|U∞| is the scale of temporal variable. ρ∞/|U∞|3 is used to obtain
non-dimensional distribution function f .

Unless explicitly specified, all variables in the following are non-dimensional.
The relations between the macroscopic conserved quantities Q, the stress P, the heat q

and the distribution function are

Q =
∫

fψdΞ ψ = (1, u,
1
2

u2) (3)

P =
∫

cc f dΞ q =
∫ 1

2
c·c2 f dΞ (4)

where ψ is the vector of moments and dΞ = dudvdw is the volume element in the phase
space.

In UGKS, at the cell interface (i + 1/2,j,k) an integral solution of the Shakhov model in
the following form is used to construct the solution:

fi+1/2,j,k,l,m,n = 1
τ

∫ t
0 f+(xi+1/2 − ul(t − t′), t′, ul,vm, wn)e−(t−t′)/τdt′

+e−t/τ f0(x − ult, 0, ul,vm, wn)
(5)

where f+ = g + g+ will be approximated separately. The subscripts i,j,k and l,m,n denote
the indexes in three structured physical mesh directions and three Cartesian velocity mesh
directions, respectively. x′ = xi+1/2 − ul(t − t′) is the particle trajectory and f0 is the initial
gas distribution function at the beginning of each time step around the cell interface xi+1/2
at particle velocity u = (ul , vm, wn).

As the distribution function inside each control volume is known at the beginning of
each time step. f0 can be obtained using TVD reconstruction.

f0,l,m,n =

{
f L
i+1/2,j,k,l,m,n + σi,j,k,l,m,nx x ≤ 0

f R
i+1/2,j,k,l,m,n + σi+1,j,k,l,m,nx x > 0

(6)

where a nonlinear limiter is used to reconstruct f L
i+1/2,j,k,l,m,n, f R

i+1/2,j,k,l,m,n and the corre-
sponding slopes σi,j,k,l,m,n,σi+1,j,k,l,m,n.

The equilibrium state g around the cell interface xi+1/2 can be expanded with two slopes

g = g0

[
1 + (1 − H[x])aLx + H[x]aRx + At

]
(7)

where H[x] is the Heaviside function. g0 is a local Maxwellian distribution located at the
cell interface. It can be determined by the corresponding macroscopic flow variables. aL,
aR, and A are related to the derivatives of a Maxwellian distribution in space and time. For
details to obtain g0, aL, aR and A, see [22,25,26].

With the determination of equilibrium state and the heat flux at the cell interface, the
additional term g+ in the Shakhov model can be determined.
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Substituting Equations (6) and (7) into Equation (5), the gas distribution function at
the cell interface with particle velocity (ul , vm, wn) can be expressed as

fi+1/2,j,k,l,m,n

(
xj+1/2, yj, zk, t, ul , vm, wn

)
=
(

1 − e−t/τ
)
(g0 + g+)

+
(

τ
(
−1 + e−t/τ

)
+ te−t/τ

)(
aL H[ul ] + aR(1 − H[ul ])

)
ul g0

+τ
(

t/τ − 1 + e−t/τ
)

Ag0

+e−t/τ
(

f L
i+1/2,j,k,l,m,nH[ul ] + f R

i+1/2,j,k,l,m,n(1 − H[ul ])
)

−te−t/τ
(

σi,j,k,l,m,nul H[ul ] + σi+1,j,k,l,m,nul(1 − H[ul ])
)

(8)

From the cell interface distribution function we can obtain the distribution function flux
and macroscopic flux. We will update the macroscopic variables first with the macroscopic
fluxes. Subsequently, we can immediately obtain the local Maxwellian gζ+1

M and the
additional term f+,ζ+1 at ζ + 1 time step inside each cell. Therefore, based on Equation (1)
the update of distribution function in UGKS becomes

Δ fi,j,k,l,m,n = f ς+1
i,j,k,l,m,n − f ς

i,j,k,l,m,n = −∫ Δt
0

⎡⎢⎣( f f · S)i+1/2,j,k − ( f f · S)i−1/2,j,k
+( f f · S)i,j+1/2,k − ( f f · S)i,j−1/2,k
+( f f · S)i,j,k+1/2 − ( f f · S)i,j,k−1/2

⎤⎥⎦dt

+Δt
2

(
f+i,j,k,l,m,n

ς+1− f ς+1
i,j,k,l,m,n

τ
ς+1
i,j,k

+
f+i,j,k,l,m,n

ς− f ς
i,j,k,l,m,n

τ
ς
i,j,k

) (9)

where f f is the distribution function flux across the interface and S is the interface area.
The trapezoidal rule has been used for time integration of the collision time.

Equation (9) can be rearranged as

f ς+1
i,j,k,l,m,n =

⎛⎝1 +
Δt

2τ
ς+1
i,j,k

⎞⎠−1

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
−∫ Δt

0

⎡⎢⎣ ( f f · S)i+1/2,j,k − ( f f · S)i−1/2,j,k
+( f f · S)i,j+1/2,k − ( f f · S)i,j−1/2,k
+( f f · S)i,j,k+1/2 − ( f f · S)i,j,k−1/2

⎤⎥⎦dt

+Δt
2

(
f+i,j,k,l,m,n

ς+1

τ
ς+1
i,j,k

+
f+i,j,k,l,m,n

ς− f ς
i,j,k,l,m,n

τ
ς
i,j,k

)
⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

(10)

This is the original explicit UGKS in [22,25].
To accelerate the convergence for steady flow, the authors of [34] introduced the

implicit discrete ordinate method for an unstructured physical mesh [12,13] into UGKS. A
brief introduction is given below.

Rewriting Equation (1) for f with a particle velocity u = (ul , vm, wn) in a physical
space cell (i,j,k)

∂ fi,j,k,l,m,n

∂t
+ ul

∂ fi,j,k,l,m,n

∂x
+ vm

∂ fi,j,k,l,m,n

∂y
+ wn

∂ fi,j,k,l,m,n

∂z
=

(
f+i,j,k,l,m,n − fi,j,k,l,m,n

)
τ

(11)

Treating the loss term of collision integral semi-implicitly and the gain term explicitly we
can find (

1 + Δt · 1
τζ +Δt · ul,m,n∇)(Δ f )i,j,k,l,m,n = Δt · Rζ

i,j,k,l,m,n

Rζ
i,j,k,l,m,n = −ul

∂ f ζ
i,j,k,l,m,n

∂x − vm
∂ f ζ

i,j,k,l,m,n
∂y − wn

∂ f ζ
i,j,k,l,m,n

∂z + 1
τζ ( f+ − f )

= −R′ + 1
τζ ( f+ − f )

(12)
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where R′ is the net cell flux averaged over the evolution time step, which can be expressed as

R′ = 1
Δt̃

∫ Δt̃

0

⎡⎢⎣( f f · S)i+1/2,j,k − ( f f · S)i−1/2,j,k
+( f f · S)i,j+1/2,k − ( f f · S)i,j−1/2,k
+( f f · S)i,j,k+1/2 − ( f f · S)i,j,k−1/2

⎤⎥⎦dt (13)

The evolution time step Δt̃ is determined by the following

Δt̃ ≤ Δtmin

CFL
(14)

where Δtmin is the minimum marching time step determined by the stability condition.
CFL is the CFL number.

Equation (12) can be further written as(
1 + Δt · 1

τζ

)
(Δ f )i,j,k,l,m,n

+ Δt
|Vi,j,k|

6
∑

ii=1
(ul,m,n · nii) ·

∣∣∣Si,j,k,ii

∣∣∣ · FF
(
(Δ f )i,j,k,l,m,n, (Δ f )i1,j1,k1,,l,m,n

)
= Δt · Rζ

i,j,k,l,m,n

(15)

where the subscript ii indicates the six faces of the physical cell (i,j,k). Si,j,k,ii is the area of
the iith face. Vi,j,k is the cell volume. The subscript (i1,j1,k1) indicates the cell which shares
the iith face with cell (i,j,k). nii is the outer normal vector of the iith face.

FF
(
(Δ f )i,j,k,l,m,n, (Δ f )i1,j1,k1,l,m,n

)
= 1

2

[
(Δ f )i,j,k,l,m,n + (Δ f )i1,j1,k1,l,m,n

]
+ 1

2 sign(ul,m,n · nii)
[
(Δ f )i,j,k,l,m,n − (Δ f )i1,j1,k1,l,m,n

] (16)

Substituting Equation (16) into Equation (15), we can obtain(
1 + Δt · 1

τζ

)
(Δ f )i,j,k,l,m,n

+ Δt
|Vi,j,k|

6
∑

ii=1
(ul,m,n · nii) ·

∣∣∣Si,j,k,ii

∣∣∣[ 1
2 (1 + sign(ul,m,n · nii)) · (Δ f )i,j,k,l,m,n

]
+ Δt
|Vi,j,k|

6
∑

ii=1
(ul,m,n · nii) ·

∣∣∣Si,j,k,ii

∣∣∣[ 1
2 (1 − sign(ul,m,n · nii)) · (Δ f )i1,j1,k1,l,m,n

]
= Δt · Rζ

i,j,k,l,m,n

(17)

After a simple deformation, it can be written as[
1 + Δt · 1

τζ + Δt · bi,j,k,l,m,n

]
(Δ f )i,j,k,l,m,n

+
6
∑

ii=1
Δt · ci,j,k,l,m,n · (Δ f )i1,j1,k1,l,m,n = Δt · Rζ

i,j,k,l,m,n

bi,j,k,l,m,n =
6
∑

ii=1
(ul,m,n · nii) · (1 + sign(ul,m,n · nii))

|Si,j,k,ii|
2|Vi,j,k|

ci,j,k,l,m,n = (ul,m,n · nii) · (1 − sign(ul,m,n · nii))
|Si,j,k,ii|
2|Vi,j,k|

(18)
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Continuing to deform

(Δ f )i,j,k,l,m,n +
6
∑

ii=1
Δt · zi,j,k,l,m,n · (Δ f )i1,j1,k1,l,m,n = Δt

χi,j,k,l,m,n
· Rζ

i,j,k,l,m,n

χi,j,k,l,m,n = 1 + Δt · 1
τζ + Δt · bi,j,k,l,m,n

zi,j,k,l,m,n =
ci,j,k,l,m,n
χi,j,k,l,m,n

(19)

Writing in matrix form

(I + Δt · Zl,m,n) · (Δf)l,m,n = Δt · X−1
l,m,n · R

ζ
l,m,n

(Δf)l,m,n =

⎛⎜⎜⎝
(Δ f )1,1,1,l,m,n
(Δ f )2,1,1,l,m,n
· · ·
(Δ f )NI−1,NJ−1,NK−1,l,m,n

⎞⎟⎟⎠R
ζ
l,m,n =

⎛⎜⎜⎜⎜⎝
Rζ

1,1,1,l,m,n
Rζ

2,1,1,l,m,n
· · ·
Rζ

NI−1,NJ−1,NK−1,l,m,n

⎞⎟⎟⎟⎟⎠

Xl,m,n =

⎛⎜⎜⎝
χ1,1,1,l,m,n 0 · · · 0
0 χ2,1,1,l,m,n · · · 0
0 0 · · · 0
0 0 · · · χNI−1,NJ−1,NK−1,l,m,n

⎞⎟⎟⎠
(20)

where (I + Δt · Zl,m,n) is a seven-diagonal matrix. NI, NJ, and NK are the total points in the
i, j, and k directions of a block in the structured physical mesh, respectively. Applying the
LU decomposition yields

I + Δt · Zl,m,n = Ll,m,n · Ul,m,n +�(Δt2) (21)

Ll,m,n, Ul,m,n are both matrices.

lpq =

{
Δt · zpq p < q
0 p > q

upq =

{
0 p < q
Δt · zpq p > q

lpp = upp = 1

(22)

The final form of the implicit UGKS is

Ll,m,n · Ul,m,n · (Δ f )l,m,n = Δt · X−1
l,m,n · R

ζ
l,m,n (23)

By performing direct and backward substitutions in a structured physical mesh, (Δ f )i,j,k,l,m,n
can be found. We can then obtain the distribution function fi,j,k,l,m,n at time step ς + 1. After
that, macroscopic variables can be obtained with Equations (3) and (4).

The tests [34] on the flows over a cylinder with different free stream Mach numbers
showed that the above implicit method can give the same result as the original explicit
method with a properly chosen evolving time step. Meanwhile, the computational effi-
ciency can be improved by 1~2 orders.

Due to the explicit treatment of f+i,j,k,l,m,n in the above method, slow convergence exists
in small Knudsen number cases. To further accelerate the convergence, Zhu et al. [35]
proposed a macroscopic variable prediction technique to deal with f+i,j,k,l,m,n in their implicit
UGKS, which is proved to be efficient in all flow regimes.

Under the support of the National Numerical Wind Tunnel Program, an aerody-
namic characteristics prediction software applicable for multiple flow regimes called NNW-
UGKS [38] has been established, and the viscous flow in the current paper was simulated
by this software. Decomposition both in the physical and velocity meshes is applied for
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MPI parallelism, which is similar to the one in [39]. The composite Newton–Cotes quadra-
ture formula which can be used for any kinds of flow simulation including the current
hypersonic or highly non-equilibrium flows, was chosen for integration.

The diffusive reflection wall boundary condition and perfect gas assumption was used.

3. Results and Modeling

As a demonstrator of the Crew Return Vehicle (CRV), the X38 vehicle has a number
of advantages, such as relatively high lift-to-drag ratio and volumetric efficiency [43]. Al-
though the X38 project has long been terminated, research on similar shapes still continues.

The sketch of the vehicle is shown in Figure 1. The reference length of the vehicle, Lre f ,
is 4.67 m.

Figure 1. Sketch of the X38-like vehicle.

Free-stream conditions are given in Table 1. A total number of 24 cases and 4 cases are
simulated by viscous and inviscid solvers, respectively. The structured physical mesh is
illustrated in Figure 2. The number of cells is 334,434 for altitudes lower than 110 km. For
110 km, the outer boundary is not large enough and additional 82,656 cells were added.
The minimum distance near the wall is 1.67 mm which is nearly two times and 0.3% of
the free stream mean free paths of 70 km and 110 km, respectively. The velocity mesh is
65 × 65 × 65 and 81 × 81 × 81 for M = 10 and M = 15, respectively, ranging from −2.5|U∞|
to 2.5|U∞|.

Table 1. Free-stream conditions.

Height/km Mach Number Angle of Attack/Degrees Solvers

70, 80, 85, 90, 100, 110 10 20, 30, 40 inviscid, viscous
70, 80, 85, 90, 100, 110 15 20 inviscid, viscous
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Figure 2. Structured multi-block physical mesh.

To conduct a thorough mesh convergence for such a problem is almost impossible.
As is shown in our previous paper [40] for a 1:16.7 scaled model, good agreements with
the DSMC results can be obtained for four different free stream conditions. For the DSMC
method, the cell size should be adjusted according to the free stream condition to be smaller
than the local mean free path of particles. While for UGKS method, the same physical
structured mesh can be used for different free stream conditions. This may be due to the
coupling mechanism of the particle transport and collision in UGKS method. The cell size
can be larger than the mean free path of particles.

3.1. Flow Field Characteristics

Figure 3 shows the pressure contour of the flow field and the velocity vector on the
symmetry plane at two altitudes. For sake of clarity, the grid in the vector diagram is one
out of three. The viscous boundary layer can be clearly distinguished from the figure. With
the increase in altitude, the shock stand-off distance and the thickness of boundary layer
increase, and the wall slip velocity, increases obviously.
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Figure 3. Velocity vector and pressure contour.

Figure 4 shows the streamlines on the symmetry plane and near the body surface. No
flow separation on the windward and leeward sides can be observed. At 70 km, there is a
small separation at the bottom. At 100 km, no separation exists due to the smaller bottom
adverse pressure gradient.

Figure 4. Streamlines on the symmetry plane and near the body surface.

Figure 5 shows the local Knudsen number distribution on the symmetry plane and
near the body surface at two altitudes.

The local Knudsen number is defined [44] as

KnGLL =
lm f p

ρ/|∇ρ| (24)

where lm f p is the local mean free path. The Knudsen number of this form has a great
physical meaning. Traditionally, different flow regimes are defined according to the Knudsen
numbers [10]. For continuum regime, Kn is smaller than 0.01. For a transitional regime,
Kn ranges between 0.01 and 10. When Kn is larger than 10, the flow is considered as free-
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molecular. Thus, when KnGLL is much less than unity the flow can be regarded as locally
slightly perturbed from equilibrium which is a fundamental assumption of the NS equations.
Therefore, it is an appropriate parameter to indicate the degree of non-equilibrium.

Figure 5. Local Knudsen number distribution on the symmetry plane and near the body surface.

Figure 6 shows the local Knudsen number comparison along the y = 500 mm line in
front of the vehicle. The local Knudsen number is large inside the bow shock which usually
locates in the first peak from left, and near the wall which has been marked on the right.
Even at 70 km, the local Knudsen number near the wall and inside the shock is on the order
of 0.01, where the continuum assumption may break down. Thus, it is necessary to use
UGKS for simulation.

Figure 6. Local Knudsen number comparison along the y = 500 mm line.
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Figure 7 shows the comparison of the pressure distribution on the centerlines. The
pressure distribution on the windward centerline shows an increasing trend with the
increase in altitude. While on the leeward centerline it increases first and then decreases
with the increase in altitude. The magnitude is about an order smaller than that on the
windward centerline.

Figure 7. Comparison of pressure on the centerlines.

Figure 8 shows the variation in the pressure change, Δp, due to viscous interaction at
several typical stream-wise positions on the centerlines.

Figure 8. Variation in pressure change on the centerlines with viscous interaction parameter.

In early research on simple configurations, figures similar to Figure 8 have been
frequently given and linear relationships have been obtained. For the current complex
vehicle, in the range of 70~85 km and X/L = 0.1~0.5, there is a good linear relationship
between the pressure change and the viscous interaction parameter on the windward side
for 20 degrees angle of attack. In other areas and the whole leeward side, no good linear
relationships can be seen.
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3.2. Aerodynamic Characteristics and Viscous Interaction Modelling

Figure 9 shows the aerodynamic force coefficients computed by the Euler and UGKS
solvers. For the UGKS results, the contributions of the pressure and friction are separated.
With the increase in the viscous interaction parameter, the axial force and the normal force
coefficients increase, and the pressure part and viscous part also increase at the same time.
For the axial force, the viscous part increases rapidly as the altitude increases, from 34% at
70 km to 87% at 110 km. At 80 km and above, the viscous part exceeds the pressure part.
For the normal force, the pressure part is dominant, decreasing from 95% at 70 km to 74%
at 110 km, and the viscous part is relatively small.

Figure 9. Aerodynamic force coefficients for different ν′∞.

Figure 10 shows the viscous force coefficients with the third viscous interaction pa-
rameter. Note that the viscous force coefficient is defined as the quantity due to viscous
interaction [45] which is equal to the difference between UGKS and Euler solutions. Thus,
it is different from the viscous part of UGKS.

Figure 10. The viscous axial force coefficient vs. ν′∞.

At an altitude less than 100 km where ν′∞ is about 0.33 (M = 10), the viscous axial force
coefficient has a weak linear relationship with the third viscous interaction parameter. The
higher the altitude is, the more serious the deviation from the linear relationship is. In order
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to correlate the results for all ranges of calculation, it is assumed that the change in the
aerodynamic coefficients due to the viscous interaction satisfies the following relationship:

ΔC
(
ν∞

′, M∞, α
) ≈ a(M∞, α) + b(M∞, α)ν∞

′ + c(M∞, α)ν∞
′2 (25)

As a preliminary study, it is further assumed that

a(M∞, α) ≈ a0 + a1(M∞) + a2(α)
b(M∞, α) ≈ b0 + b1(M∞) + b2(α)
c(M∞, α) ≈ c0 + c1(M∞) + c2(α)

(26)

According to the calculated aerodynamic force coefficients and the parameters in Equa-
tion (26), the following expression of the viscous axial force coefficient can be obtained by
fitting with the least square method,

ΔCA(ν∞
′, M∞, α) ≈ aA(M∞, α) + bA(M∞, α)·ν∞

′ + cA(M∞, α)·ν∞
′2

aA = −1.26 × 10−2 − 3.21×10−3

M2
∞

+ 6.14 × 10−4·α − 5.38 × 10−6·α2

bA = 1.31 + 2.72×101

M2
∞

− 2.23 × 10−4·α − 7.08 × 10−5·α2

cA = −0.787 − 2.81×101

M2
∞

+ 1.69 × 10−2·α − 1.36 × 10−4·α2

(27)

From the expressions of aA, bA, and cA, we can conclude that the effect of Mach number can
be ignored under the condition of high Mach number. In fact, the effect of Mach number
may be mainly reflected in the viscous interaction parameter.

Usually, Equation (27) is called a viscous interaction model for the axial force coefficient.
Models for other viscous force coefficients can be obtained in a similar way.

Figure 11 shows the correlation curve between the viscous interaction model prediction
data which is represented by suffix ‘_ model’ and the numerical simulation data which is
represented by suffix ‘_ UGKS’. The data are basically distributed near the correlation line
at different angles of attack and Mach numbers. It can be seen that the correlation between
the data is good.

Figure 11. Correlation between viscous interaction model and numerical simulation results.

234



Entropy 2022, 24, 836

The Pearson Correlation Coefficient r, which is widely used in statistics, is chosen to
characterize the degree of correlation between the aerodynamic prediction data and the
numerical simulation data, and its expression is

r =

n
∑

i=0
(xi − x)(yi − y)√

n
∑

i=0
(xi − x)2 · n

∑
i=0

(yi − y)2

(28)

The closer r is to 1, the better agreement between the predicted values of the model and
the numerical results we obtain. The Pearson correlation coefficients of axial force, normal
force and pitching moment are 0.999996, 0.999973, and 0.999863, respectively. They are all
very close to 1, indicating that the correlation between the predicted data and the numerical
simulation data is very good.

In order to further assess the viscous interaction model, the relative orthogonal dis-
tance, dri, is defined to characterize the relative degree of deviation of the data from the
correlation curve, as shown in the following,

dri =
di
xr

(29)

The dri of the viscous axial force is shown in Figure 12. The maximum fitting deviation is
only 1.8%.

Figure 12. Relative orthogonal distance of the viscous axial force coefficient.

Finally, the accuracy of the prediction model is preliminarily evaluated. The UGKS
and the viscous interaction models are used to calculate two new cases with altitudes
equal to 80 km and 90 km, respectively. The angle of attack is 30 degrees with a Mach
number of 15. The results and relative errors are shown in Table 2. The relative error of
viscous axial force is small partially due to its large magnitude. While the error of viscous
pitching moment is large due to its small magnitude compared with the viscous axial force.
However, the relative error of the pitching moment itself is small. Taking the 80 km case as
an example, the relative error of predicted viscous pitching moment is 9.87%. However, the
pitching moments obtained by UGKS simulation and predicted by the model are −0.2158
and −0.2180, respectively, resulting in a relative error of only 1.01%.
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Table 2. Comparison between model predictions and UGKS simulation results.

No
Altitude

(km)

UGKS Simulation Model Prediction Relative Error

dCA dCN dCm dCA dCN dCm dCA dCN dCm

1 80 0.0918 0.0448 −0.0221 0.0904 0.0486 −0.0243 −1.58% 8.66% 9.87%
2 90 0.2056 0.1019 −0.0477 0.1993 0.1064 −0.0516 −3.07% 4.47% 8.18%

4. Conclusions

Hypersonic viscous and inviscid flow fields around the X38-like vehicle are simulated
by UGKS solver and Euler solver, respectively. Viscous force coefficients at different
altitudes, Mach numbers, and attack angles are obtained by subtracting the two solutions
and correlated by the third viscous interaction parameter. A nonlinear viscous interaction
model of force coefficients is established, and some preliminary conclusions are as follows,

(1) For the X38-like vehicle, the contribution of the viscous part to the axial force
coefficients increases rapidly with altitude, and reaches 87% at 110 km for the typical
conditions, with Ma = 10 and AOA = 20. The contribution of the viscous part to the normal
force coefficients is small, and can only reach 26% at 110 km.

(2) For complex configurations such as the current X38-like vehicle, the changes of
wall pressure and aerodynamic coefficients due to viscous interaction cannot be expressed
linearly with the viscous interaction parameters in the whole flow field.

(3) A viscous interaction model can be established by taking the viscous interaction
parameters as the independent variables combined with the inviscid solution and the
viscous solution, which is helpful to quickly obtain the aerodynamic characteristics at
moderate to high altitudes and has certain application value in engineering design.

In this paper, the idea of modeling the viscous interaction based on UGKS solver is
applied to the X38-like vehicle, and a satisfactory result has been achieved. The prediction
model can take into account both the viscous interaction effect and rarefied gas effect.
However, the Cartesian velocity mesh in our UGKS solver causes huge waste both in
computation and memory. The next step is to introduce an unstructured velocity mesh into
our solver to reduce the cost and give a more accurate prediction model for more complex
configurations.
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