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Abstract: Speech is the most spontaneous and natural means of communication. Speech is also
becoming the preferred modality for interacting with mobile or fixed electronic devices. However,
speech interfaces have drawbacks, including a lack of user privacy; non-inclusivity for certain users;
poor robustness in noisy conditions; and the difficulty of creating complex man–machine interfaces.
To help address these problems, the Special Issue “Future Speech Interfaces with Sensors and Machine
Intelligence” assembles eleven contributions covering multimodal and silent speech interfaces; lip
reading applications; novel sensors for speech interfaces; and enhanced speech inclusivity tools
for future speech interfaces. Short summaries of the articles are presented, followed by an overall
evaluation. The success of this Special Issue has led to its being re-issued as “Future Speech Interfaces
with Sensors and Machine Intelligence-II” with a deadline in March of 2023.

Keywords: multimodal speech; silent speech interfaces; lip reading; speech sensors

1. Introduction

It was not long after the advent of digital computers in the 1950’s that the idea of using
computers to recognize speech began to be investigated. In the ensuing years, numerous
techniques for treating the speech signal were developed by researchers worldwide, giving
rise today to a wide variety of tools such as Automatic Speech Recognition (ASR) appli-
cations, powerful speech compression tools, Text-To-Speech (TTS) synthesis, as well as
speaker identification and, more recently, diarization tools, to name only a few. Despite
these enormous gains, though, we may rightfully speak of a new kind of revolution in
speech processing today.

Indeed, while speech has always been something of a “specialist” field, requiring
fluency in topics such as Mel Frequency Cepstral Coefficients (MFCC), Gaussian Mixture
Model—Hidden Markov Models (GMM-HMM), and the like, the staggering growth of
Machine Learning techniques and an increasing preference for Open Source solutions
are today propelling speech processing into the mainstream. And concomitant with this
“democratization” of speech processing is a desire to free Future Speech Interfaces from
some inherent difficulties that have traditionally handicapped speech applications:

• Robustness: It is well known that speech understanding degrades rapidly in noisy
conditions, both for human interaction and for machine communication.

• Privacy: Based on an audible acoustic signal, overheard speech can be merely a
nuisance, a real source of interference, or even a troublesome security problem.

• Inclusivity: Some sectors of the population cannot use speech in traditional ways due
to health issues. In addition, the complexity of producing high performance speech
applications has often meant that less-frequently heard languages or dialects lack the
kind of tools available, for example, for English or Mandarin.

Sensors 2023, 23, 1971. https://doi.org/10.3390/s23041971 https://www.mdpi.com/journal/sensors1
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• Fluidity: It has proven difficult to deploy automatic speech interfaces possessing the
robustness, fluidity, and intricacy of genuine face-to-face human interactions.

The present Special Issue brings together eleven recent original research contributions
addressing one or more of the above concerns. The basic approaches represented in the
works fall into three broad categories:

• Audio-Visual Speech Recognition (AVSR): The key in AVSR is to combine speech
modalities in order to improve robustness to noise, interference, and other environ-
mental effects. A typical application might combine speech signals from a microphone
with lip video taken by an external camera.

• Silent Speech Interfaces (SSI): Silent Speech Interfaces completely do away with an
audio signal, either because the audio is unexploitable or because articulation was
done silently, and perform ASR using other sensors as input—a camera, of course, but
also electrical signals, ultrasound, etc. If visual input is used, the technique is called
Visual Speech Recognition or VSR, including lipreading applications. SSI/VSR are
useful for addressing privacy issues as well as in speech interfaces for persons unable
to speak in a traditional manner.

• Novel interfaces, for example:

� Low-resource language-specific algorithms to address specificities of particular
languages or dialects, enhancing inclusivity in speech processing.

� Avatar-like entities for more natural speech interaction.

We may also classify the contributions according to the types of tools adopted—or
created:

• Sensors: The use of cameras has already been invoked above; however, particularly in
SSIs, more exotic techniques such as surface electromyography (sEM), electromagnetic
articulography (EMA), ultrasound or radar may be employed.

• Machine Learning (ML): Development of novel Machine Learning techniques to deal
with the specific tasks arising in innovative speech interfaces, like stream-combining
techniques for multimodal speech recognition, or adaptation techniques to combine
data from different subjects.

• New tools: Some contributions benefit from the availability of neural synthesis tech-
niques, recent AVSR databases, or Open Cloud speech processing modules; while
others propose new image processing tools, for example in ultrasound image analysis

In what follows, we provide brief summaries of the eleven articles chosen for publica-
tion in the Special Issue Future Speech Interfaces with Sensors and Machine Intelligence.
The articles are grouped by topic according to the categories described above. A conclusion
as well as some prospects for the future follow the summaries. Indeed, due to its success
and popularity, a second edition of the Special Issue, “Future Speech Interfaces with Sensors
and Machine Intelligence II”, was opened for submissions with a deadline in March 2023.

2. AVSR Articles

2.1. Yu, Zeiler, and Kolossa

The first article in the AVSR category is “Reliability-Based Large-Vocabulary Audio-
Visual Speech Recognition” by Wentao Yu, Steffen Zeiler and Dorothea Kolossa, at the
Institute of Communication Acoustics, at Ruhr University in Bochum, Germany. The
authors propose a novel dynamic stream weighting technique for combining the audio
and visual input streams for AVSR, in order to improve the robustness of AVSR in noisy
conditions. Called the Dynamic Fusion Network (DNF), the approach employs aspects of
existing decision and representation fusion strategies in a unified view using the posterior
probabilities of the single-modality models as representations of the uni-modal streams.
Implemented as a ML architecture leveraging off of standard audio and video reliability
measure, the DNF is evaluated on the Oxford BBC LRS2 and LRS3 large vocabulary
lipreading corpora. Remarkably, using DFN, Word Error Rates (WER) are improved
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compared to audio-only input by about 50% for a hybrid recognizer, and 43% for an End to
End recognizer.

2.2. Jeon and Kim

A trio of papers by the team of Sanghun Jeon and Mun Sang Kim, at the Gwangju
Institute of Science and Technology (GIST) in South Korea, features new contributions both
in sensor development and the use of open cloud services. In the first article of the trio,
“Noise-Robust Multimodal Audio-Visual Speech Recognition System for Speech-Based
Interaction Applications”, the authors target a virtual aquarium edutainment application, in
which users instrumented with a lightweight audio-visual helmet interact in real time with
the virtual aquarium information system. The approach leverages an existing pretrained
Open Cloud Speech Recognition System (OCSR), for the audio channel, by coupling its
outputs to features extracted in a bespoke visual speech recognition system. For the
video channel, lip/face images sequences are analyzed with 3D Convolutional Neural
Networks (3DCNN), augmented with a novel Spatial Attention Module, to produce feature
vectors that are then concatenated with audio features before entering a Connectionist
Temporal Classification (CTC) module. The visual recognition dataset was prepared by
a team of volunteers, instrumented with the audio-visual helmet, who repeat a set of
54 commands. After training, the final evaluation step is carried out in an in situ virtual
aquarium environment, using 4 different additive noise profiles. In a typical trial using the
system, combined audio-visual features improved performance from 91% Word Accuracy
Rate to 98%.

In a second contribution, the same team proposes “End-to-End Lip-Reading Open
Cloud-Based Speech Architecture”, an extension of the research described above. In this
case, several OCSR, including Google, Microsoft, Amazon, and Naver, were evaluated,
using as a training corpus 20 commands selected from the Google Voice Command Dataset
v2, recited by the same team of volunteers as above, albeit with a standard microphone and
remote camera rather than a special helmet. Furthermore, the noise scenario portfolio was
extended to eight different environments, and a concatenation of three types of 3DCNN
used in the feature extraction step. WAR values, measured over a range of audio Signal to
Noise Ratios, varied according to the OCSR and noise profile used; however, on average,
audio-visual recognition improved WAR by some 14% percentage points (on the scale of
0% to 100% WAR) compared to pure audio recognition. Based on performance, Microsoft
Azure was chosen as the principal API for the detailed comparisons in the article.

In the final entry of this trio of articles, “End-to-End Sentence-Level Multi-View
Lipreading Architecture with Spatial Attention Module Integrated Multiple CNNs and
Cascaded Local Self-Attention-CTC”, the focus is on rendering the visual input channel
more robust through the inclusion of 4 different camera angles of the face and lips: frontal,
30◦, 45◦, and 60◦. In addition, a modified version of the Spatial Attention Module cited in
the first article of the trio, is employed, in order to enhance features in the specific case of
words having similar pronunciations. The OuluVS2 dataset, which employs 40 speakers
for training and 12 for testing, on digit, phrase, and TIMIT sentence corpora, was used
to evaluate the proposed ML speech recognition architecture. Here, results using any of
the single camera inputs improved upon baseline audio-only input by about 5%; whereas
including the full complement of 4 cameras brought an overall gain of about 9%, indicating
that the multi-view visual input approach is indeed a useful innovation.

3. SSI/VSR Articles

3.1. Cao, Wisler, and Wang

The first article in the field of Silent Speech interfaces is “Speaker Adaptation on
Articulation and Acoustics for Articulation-to-Speech Synthesis”, by Beiming Cao, Alan
Wisler, and Jun Wang. This article concerns speech reconstruction from Electromagnetic
Articulographic (EMA) data, where the position of articulators is directly measured using
sensors attached to the articulators. The output of the system is the speech waveform
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(created from speech features using the Waveglow vocoder), and the contribution of this
study is speaker adaptation in both EMA input and acoustic target space. This is a key
requirement for creating large SSI systems, since it is practically impossible to collect large
amounts of data from a single speaker. Using Procrustes matching in the EMA space
and Voice Conversion in the acoustic space achieves significant improvements over the
speaker-independent baseline, measured using the objective Mel Cepstral Distance (MCD)
criterion.

3.2. Csapó et al.

The collection of SSI articles continues with “Optimizing the Ultrasound Tongue
Image Representation for Residual Network-Based Articulatory-to-Acoustic Mapping”,
by Tamás Gábor Csapó, Gábor Gosztolya, László Tóth, Amin Honarmandi Shandiz, and
Alexandra Markó. Here ultrasound tongue images (UTI) of the vocal tract are used as input
for a speech reconstruction system; which offers a way to capture vocal tract information
very different from EMA considered in the study above, having its own set of advantages
and challenges. In particular, the data needs to be interpreted using image processing
techniques, where state-of-the-art systems work best on raw input data. While classical
UTI systems perform data preprocessing which is adapted for manual inspection (e.g.,
by a medical doctor), new systems also provide access to raw data. In this study, raw
and preprocessed input are directly compared using a standard underlying UTI-to-speech
system based on a multilayer ResNet architecture. While no significant differences between
the two input types could be ascertained, it is shown that it is possible to reconstruct speech
of optimal quality using rather small input images, thus allowing to use smaller neural
networks which are faster to train on large amounts of input data.

3.3. Ferreira et al.

The third SSI article is “Exploring Silent Speech Interfaces Based on Frequency-
Modulated Continuous-Wave Radar”, by David Ferreira, Samuel Silva, Francisco Curado,
and António Teixeira. Here the input consists of features obtained from a radar sensor.
Unlike for the systems presented in the previous articles, where speech is directly recon-
structed as audio waveform, the goal in this study is to obtain textual output, i.e., to
perform speech recognition from radar sensor data. 13 different words are distinguished
with an accuracy of 88% in a speaker-dependent setup and 82% in a speaker-independent
setup; in particular the latter result is noteworthy since speaker discrepancies are a known
cause of problems in many SSI systems. A further advantage of the radar sensor is the
contactless recording, which it shares with video-based methods, but not with systems
based on electrical biosignals.

3.4. Jeon, Elsharkaway, and Kim

The fourth, and last “classical” SSI article, is “Lipreading Architecture Based on
Multiple Convolutional Neural Networks for Sentence-Level Visual Speech Recognition”,
by Sanghun Jeon, Ahmed Elsharkawy, and Mun Sang Kim. In contrast with Audiovisual
speech recognition, as exposed above, the system presented here uses only visual input,
namely the video part of the well-known GRID audiovisual speech corpus. The GRID
dataset is a relatively small dataset, but it presents a very relevant challenge: namely, a
large number of words are very short (e.g., the letters of the alphabet) and thus difficult to
recognize. In this study, the authors develop a specific architecture based on convolutional
neural networks to mitigate this problem, obtaining accurate prediction even for short
visual-acoustic units. here.

3.5. Wrench and Balch-Tomes

Finally, the study “Beyond the Edge: Markerless Pose Estimation of Speech Artic-
ulators from Ultrasound and Camera Images Using DeepLabCut” by Alan Wrench and
Jonathan Balch-Tomes pursues an objective different from the papers presented above,
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namely, the goal is to estimate the position of speech articulators from ultrasound images
without the explicit use of any form of markers or objects attached to the subject’s face. This
is in stark contrast to methods like EMA (which we have above in the first SSI publication),
where sensors are directly attached to a person’s articulators. Innovative image processing
techniques are used for the task, just a small amount of hand-labeled images are required
for training the system.

4. Novel Interface Articles

4.1. Oneat,ă et al.

The paper “FlexLip: A Controllable Text-to-Lip System” by Dan Oneat,ă, Beáta Lőrincz,
Adriana Stan, and Horia Cucu deals with creating lip landmarks from textual input. These
landmarks can then be used to generate natural lip contours for speech, for example for
generation of animated movies and videos. The contribution of this paper is a flexible
modular architecture which disentangles the text-to-speech component from the final
generation of lip contours. This makes the system amenable to fast adaptation to new
speakers, which does not only involve adapting the audio generation component, but
also requires fine tuning the lip shapes to the new speaker. Based on several objective
measures, the system performs on par with monolithic baseline systems trained on much
larger corpora.

4.2. Baniata, Ampomah, and Park

The final paper in the issue, “A Transformer-Based Neural Machine Translation Model
for Arabic Dialects That Utilizes Subword Units” by Laith H. Baniata, Isaac. K. E. Ampomah,
and Seyoung Park, deals with the task of Machine Translation (MT). In the specific case of
the Arab language and the multitude of its dialects, it has been observed that MT systems
perform badly since many words appear very infrequently in available text corpora. This
paper tackles the problem by introducing a transformer-based model which encodes such
scarce words by putting together linguistically relevant sub-units (word pieces). The system
is successfully evaluated on multiple translation tasks from Arabic vernacular dialects to
standard Arabic.

5. Discussion and Conclusions

The special Issue “Future Speech Interfaces with Sensors and Machine Intelligence”
has thus brought together a wide and varied palette of contributions to speech interface
technology, from AVSR, for enhancing audio speech with other sensors and new techniques,
to VSR and SSI, which seek to provide speech processing even in the absence of a viable
acoustic signal, through brand new types of interfaces for multimodal speech processing
and for low-resource languages. The published articles have in most cases made important
improvements compared to the state of the art; while others have advanced the state of the
art to new frontiers.

Using computers for audio processing to facilitate man’s interaction with machines
has been around for many years, and tools such as high quality audio recording, speech
compression, automatic speech recognition, and speech synthesis including text-to-speech
have become industry standards and have reached a level of sophistication now taken
for granted. Advanced speech interfaces such as multimodal, silent, lip-reading and the
like, began as science fiction dreams in the style of the lip-reading HAL-9000 computer in
Stanley Kubrick’s 1968 classic, 2001 Space Odyssey. Research in VSR began to emerge in the
1980’s [1], developing through the 2000s [2], with SSI being formally introduced in 2010 [3],
and a resurgence in lip-reading occurring in the 2000-teens [4]. The special issue provides
a snapshot of the current state-of-the art in future speech interfaces that use sensors and
machine intelligence. The progress in the past several years has been astounding, as amply
illustrated in the collection of articles provided.

As a “specialty” field, nonetheless, novel speech interfaces like those presented here
have not always received the same amount of attention in the research community as the
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more “core” technologies. This is in part due to the added difficulty of handling non-
acoustic speech signals, as discussed in the context of SSI in [5]. As such, novel speech
interface technologies quite naturally lag behind somewhat as far as some of the latest
developments enjoyed in core speech technologies. In particular, we may reference the
stunning recent developments in the audio-visual speech representations of Deepfakes [6]
as well as the hugely powerful new language models used in ChatGPT [7,8].

At the same time, some more recent arrivals to the field of future speech interfaces
are now making use of generative AI techniques [9,10]. Prompted by ChatGPT and other
recent advances, other researchers have also stressed that future developments in AI—
and by extension, speech—will need to be based on a concerted effort joining together
academia, industry, and governments [11]. Research reports along these lines, simply as
an example, would be welcome contributions to the second edition of our special issue:
“Future Speech Interfaces with Sensors and Machine Intelligence II”, which is currently
open for submissions.
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Article

Reliability-Based Large-Vocabulary Audio-Visual
Speech Recognition

Wentao Yu *, Steffen Zeiler and Dorothea Kolossa
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steffen.zeiler@rub.de (S.Z.); dorothea.kolossa@rub.de (D.K.)
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Abstract: Audio-visual speech recognition (AVSR) can significantly improve performance over audio-
only recognition for small or medium vocabularies. However, current AVSR, whether hybrid or
end-to-end (E2E), still does not appear to make optimal use of this secondary information stream
as the performance is still clearly diminished in noisy conditions for large-vocabulary systems. We,
therefore, propose a new fusion architecture—the decision fusion net (DFN). A broad range of time-
variant reliability measures are used as an auxiliary input to improve performance. The DFN is used
in both hybrid and E2E models. Our experiments on two large-vocabulary datasets, the Lip Reading
Sentences 2 and 3 (LRS2 and LRS3) corpora, show highly significant improvements in performance
over previous AVSR systems for large-vocabulary datasets. The hybrid model with the proposed
DFN integration component even outperforms oracle dynamic stream-weighting, which is considered
to be the theoretical upper bound for conventional dynamic stream-weighting approaches. Compared
to the hybrid audio-only model, the proposed DFN achieves a relative word-error-rate reduction of
51% on average, while the E2E-DFN model, with its more competitive audio-only baseline system,
achieves a relative word error rate reduction of 43%, both showing the efficacy of our proposed
fusion architecture.

Keywords: audio-visual speech recognition; hybrid models; end-to-end recognition; reliability
measures; decision fusion net

1. Introduction

When people converse in noisy environments, they often subconsciously focus on
the speaker’ s lips to obtain supplementary information. It was also shown in [1] that the
integration of visual information is of great benefit to human listening and comprehension.
Even in clean speech, simply seeing the speakers articulatory movements influences percep-
tion, which is impressively demonstrated by the McGurk effect [2]. Machine audio-visual
speech recognition (AVSR) is partly inspired by the genuine ability of humans to integrate
audio-visual information, and its history reaches back into the late 1990s [3]. Multiple
studies have provided evidence for dramatic improvements regarding small-vocabulary
AVSR tasks when compared to their audio-only speech recognition counterparts with
otherwise equivalent set-ups [4–7].

Nevertheless, AVSR remains difficult for large-vocabulary tasks, e.g., in large-vocabulary
lip-reading tasks, with many pairs of phonemes corresponding to identical visemes. This
fact makes many words almost indistinguishable to a vision-only system, as for example
“do” and “to”. This intrinsic difficulty makes it difficult to improve the lip-reading perfor-
mance and furthermore could worsen the AVSR performance on large- or open-vocabulary
tasks. On the other hand, current AVSR stream-fusion strategies, whether for hybrid or
end-to-end (E2E) models, still do not seem to integrate the additional information stream
optimally, and thus word error rates (WERs) have long remained unsatisfactory in noisy
conditions [3,8,9].
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Decision fusion is regarded an effective fusion strategy for AVSR. Individual decisions
of multiple classifiers’ are integrated into a single joint decision. Decision fusion covers
many different forms, such as dynamic stream-weighting [10] or state-based decision fu-
sion (SBDF), e.g., in [11–14]. In [15], the output logits of the single-modality networks
were fed into a fully connected layer. Instead of fusing decisions, representation fusion
is an alternative fusion approach for AVSR, e.g., via multi-modal attentions [16] or via
gating [17,18]—for example in [18], which proposed the gated multi-modal unit to dy-
namically fuse different feature streams. Another example for representation fusion is
in [19–21], which used deep feed-forward networks to first create and secondly fuse audio
and video representations.

Inspired by the decision and representation fusion strategies, in this work, based
on [22,23], a unified view of both fusion strategies is presented, using the posterior proba-
bilities p(s|oi

t) of i = 1 . . . M single-modality models as representations of the uni-modal
streams. This new viewpoint opens up a variety of exciting possibilities, centered around
these single-modality representations. On the one hand, new multi-modal models can be
built from multiple pre-trained uni-modal ASR models. On the other hand, optimal stream
integration networks can be learned. These can utilize the reliability information inherent
in the posterior probabilities and may also incorporate longer temporal context into their
fused stream outputs.

In this paper, we compare the performance of the proposed fusion network in both
hybrid and E2E models. Two large-vocabulary datasets, the Lip Reading Sentences 2 and 3
(LRS2 and LRS3) corpora [9,24] are used in our experiments. To analyze the performance
in different noise conditions, realistic noise and reverberation are added to all the acoustic
data. Our baseline models are introduced in Section 2. Section 3 describes the proposed
model structure in both hybrid and E2E models. Our models rely on a range of reliability
measures that are used as auxiliary inputs to inform the fusion network. These measures
are detailed in Section 4. Section 5 provides the experimental details and our results for both
hybrid and E2E models are demonstrated in Section 6. The lessons learned are discussed in
Section 7, which also provides perspectives for future work.

2. Fusion Models Furthermore, Baselines

Many fusion strategies are available in AVSR research. This section provides a brief
introduction to the various fusion strategies that are used as baseline models for this work.
In all baselines, M single-modality models are combined. oi

t are the features of stream i,
where i = 1, · · · , M. Further details are given in Section 5.2.

2.1. Hybrid Baselines

Hybrid speech recognition models have been studied for many years [25]. Although
hybrid models have the disadvantage of higher complexity, they show excellent results
in many studies–for example in [26]—and are still the model of choice for low-resource
settings. They also provide a convenient interface for many fusion strategies, the most
widely used of which are described in the following.

2.1.1. Early Integration

Early integration simply fuses the information of all input streams at the level of the
input features via

ot = [(o1
t )

T , · · · , (oM
t )T ]T . (1)

Here, superscript T denotes the transpose.

2.1.2. Dynamic Stream Weighting

For the fusion of different information streams, stream weighting is a successful and
theoretically sound approach. It addresses the problem that the various streams may
be reliable and informative in distinct ways. Consequently, many researchers employ
the strategy of weighting different modalities [6,14,27]. Many operate static weights; for
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example, Ref. [28] trained audio and video speech recognizers separately, and the different
model state posteriors were combined with constant stream weights λi according to

log p̃(s|ot) =
M

∑
i

λi · log p(s|oi
t). (2)

Here, log p(s|oi
t) is the log-posterior of state s in stream i at time t, and log p̃(s|ot) is

its estimated combined log-posterior.
However, determining optimal weights is a difficult endeavor that has significant

consequences for the overall system quality [29]. In different environmental conditions,
the performance of the different streams varies greatly. Specifically, the visual information
may be more useful in good lighting conditions, yet audio information is most beneficial in
frames with high SNRs. Therefore, the weights ought to be optimized dynamically for the
best performance and to reliably prevent any instances of catastrophic fusion.

As a baseline approach, we therefore re-implemented dynamic stream weighting [30],
which is realized through a weighted combination of the DNN state posteriors of all modalities:

log p̃(s|ot) =
M

∑
i

λi
t · log p(s|oi

t). (3)

The dynamic stream weights λi
t are predicted by a feedforward network from the

estimated reliability indicators, as discussed in detail in Section 4.
Many studies have shown that reliability information is of great benefit to multi-modal

integration [5,6,31,32]. Reliability indicators enhance system performance by informing the
integration model about the degree of reliability in the separate information streams across
time. This approach to integrated stream information can effectively and significantly
improve the recognition accuracy in lower signal-to-noise ratios (SNRs).

In contrast to many other strategies, such as [10,33,34], reliability-based stream in-
tegration does not suffer from wide disparities in audio and video model performance.
This is greatly beneficial to our case as we wish to design a system that least avoids any
performance degradation due to the inclusion of multiple streams and that ideally profits
from the visual modality under all, even under clean, acoustic conditions.

2.1.3. Oracle Weighting

As an interesting reference point, so-called oracle stream weights [30] were also im-
plemented. These oracle weights are computed by minimizing the cross-entropy with the
ground-truth forced alignment information, which is obtained from the clean acoustic data
set. Since this method requires the ground-truth text transcription of the test set, this is not
strictly a baseline but, rather, it defines a theoretical upper performance bound for dynamic
stream-weighting approaches. The computed oracle stream weights λi

t are used to calculate
the estimated log-posterior through Equation (3).

2.2. End-to-End Baselines

End-to-end speech recognition is drawing a great deal of attention and has quickly
gained widespread popularity for AVSR tasks [35–37]. End-to-end models typically predict
text sequences directly from signals. In this work, we select the sequence-to-sequence (S2S)
transformer model (TM) [38] with connectionist temporal classification (CTC) [39] as a
baseline, denoted by TM-CTC [9].

This joint model has achieved high performance in many different tasks [9,40]. In the
TM-CTC model, the CTC component learns to align features and transcriptions explicitly,
which is helpful for model convergence [41]. The E2E AVSR model in [9] trains the
transformer and CTC separately. The transformer combines the audio and video context
vectors to realize the information stream integration, and, in the CTC part, the transformer
audio and video encoder outputs are simply concatenated.

9
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In this work, we re-implemented the same structure, with the difference that the model
was trained with the joint CTC/transformer strategy, serving as our E2E AVSR baseline
model [41]. This joint training strategy leads to better overall performance for the AVSR
task than the separate training in [9]. For the joint TM-CTC optimization, the training stage
uses an objective function that linearly combines the CTC and S2S objectives

L = α · log pctc(s|o) + (1 − α)log ps2s(s|o), (4)

with s as the states and α as the constant hyper-parameter. During decoding, an RNN
language model pLM(s) is also used; thus, the decoder optimizes the objective:

log p∗(s|o) = α log pctc(s|o) + (1 − α) log ps2s(s|o) + θ log pLM(s), (5)

where θ controls the contribution of the language model.

3. System Overview

Our proposed decision fusion net (DFN) can be employed both in hybrid and E2E
models. Both model architectures are introduced briefly in the following.

3.1. Hybrid System

In hybrid speech recognition systems, the ASR task is split into two constituent phases:
an estimation of state posteriors from the extracted acoustic features and a decoding
stage that utilizes these posteriors in finding an optimal path by a graph search through
a decoding graph. This graph can be obtained and decoded efficiently on the basis of
weighted finite state transducers (WFSTs) [42]. Thus, the hybrid structure provides a
natural interface for stream fusion at the level of the estimated pseudo-posteriors of all
modalities p(s|oi

t).
For our hybrid AVSR model, all modalities are therefore dynamically combined

through the proposed DFN (Figure 1). The state posteriors of each modality represent
the instantaneous feature input of the DFN. Different reliability indicators are also used
as auxiliary inputs, which help in estimating the multi-modal log-posteriors log p̃(s|ot)
for the decoder. In the hybrid system, we investigate M = 3 single-modality models, one
acoustic and two visual. The estimated posterior log p̃(s|ot) is computed via

log p̃(s|ot) = DFN([p(s|oA
t )

T , p(s|oVA
t )T , p(s|oVS

t )T , RT
t ]

T), (6)

where p(s|oA
t ), p(s|oVA

t ) and p(s|oVS
t ) are the state posteriors of the audio model and of

the appearance-based and a shape-based video model, respectively. Rt is the vector of all
reliability measures at time t as detailed in Section 4.

oVA
t

p(s|oVA
t )

Graph search

ŵ

log p̃(s|ot)

DFN

Acoustic
model

Video shape
model

Rt

p(s|oA
t ) p(s|oVS

t )

oA
t

Video
appearance

model

oVS
t

Figure 1. Audio-visual fusion based on the DFN, applied to one stream of audio and two streams of
video features.
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The hybrid AVSR fusion model is trained with the cross-entropy loss

LCE = − 1
T

T

∑
t=1

S

∑
s=1

p∗(s|ot) · log p̃(s|ot). (7)

Here, p∗(s|ot) is the goal state probability of state s, calculated by forced alignment
of the clean acoustic training data. The estimated vector of log-posteriors log p̃(s|ot) is
obtained from Equation (6). Finally, the decoder utilizes these estimated log-posteriors to
find the optimum word sequence by graph searching through the decoding graph [43].

3.2. E2E System

Our E2E AVSR model is based on the TM-CTC model, which combines a transformer
model (TM) and a connectionist temporal classification (CTC) model through Equation (4)
during the training stage and through Equation (5) in the decoding stage. In all E2E
experiments, M = 2 modalities are considered, one acoustic and one visual (oA and oVI

in Figure 2). The following sections describe the encoder and decoder architecture, which
both needed modifications for our proposed stream integration approach.

hA hVI ρ i

oA

Transformer
Encoder

Bresenham’s
Algorithm

3D/2D ResNet

Mouth ROI

Sub-sampling

Ri

Transformer
Encoder

oVI

Figure 2. Audio encoder (left), video encoder (middle) and reliability measure encoder (right) for
both modalities i ∈ A, VI. The blue blocks are used to align video features with audio features; the
turquoise block shows the transformer encoder.

3.2.1. Encoder Architecture

The structure of the conventional transformer encoder is depicted in Figure 3. The
features are first fed into a sub-sampling block comprised of two 2D convolution layers
with a kernel size of 3 and stride of 2, which are used to decrease the computational effort.
The input has dimension [batch, 1, Nf , d f ], where NF is the number of frames and d f is the
input feature dimension. With two 2D convolution layers and a feed-forward layer, the
sub-sampling layer reduces the sequence length from NF to NF/4 and changes the feature
size d f to a common dimension datt = 256. A stack of 12 encoder blocks, consisting of
a multi-head self-attention and a fully connected feed-forward layer, yields the desired
encoder output hi for each modality.

Figure 2 depicts all encoders in the E2E system—an audio encoder, a video encoder
and a reliability encoder. As described in [41], for a joint TM-CTC model, the output
sequence of the transformer encoder is used in both the transformer and the CTC decoder.
The video features are extracted according to [9] via a pre-trained spatio-temporal visual
front-end [44] (the 3D/2D ResNet in Figure 2). The extracted video features are then passed
through the transformer encoder. Due to the different frame rates of the audio and video
features, a Digital Differential Analyzer (comparable to Bresenham’s algorithm [45]) is used
to optimally replicate the video features to achieve the same sequence length.
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In the multi-head self-attention block in Figure 3, the queries Q, keys K and values V

are identical. The attention transform matrix [38] of every attention head with index j is
computed via

Tj = softmax

⎛⎜⎝
(

WQ
j QT

)T(
WK

j KT
)

√
dk

⎞⎟⎠. (8)

The attention is computed as

αj = attentionj(Q, K, V) = Tj

(
WV

j VT
)T

, (9)

where W∗
j are the learned parameters, dk = datt

h and h is the number of attention heads.
In the attention mechanism, the attention transform matrix Tj indicates the relevance of
the current keys for the current queries. Tj is of sizeNQ × NK, where NQ and NK are the
lengths of Q and K, respectively. A fully connected layer is used in the self-attention block
to project the concatenated outputs of all heads αj. Finally, the output of the self-attention
block is input to a feed-forward layer, which yields the encoder output hi.

hi

Feed-forward

Multi-head self-
attention block

× 12

Sub-sampling

oi

Figure 3. Transformer encoder for both modalities i ∈ A, VI. The blue block shows the sub-sampling,
whereas the turquoise blocks comprise the the transformer encoder.

3.2.2. Decoder Architecture

Figure 4 shows the TM-CTC decoder components for each stream. As in the baseline
model [9], the CTC decoder consists of a stack of six multi-head self-attention blocks and
the output layer. The transformer decoder is comprised of a stack of six decoder blocks,
each containing a multi-head attention block. For each decoder, the keys (K) and values
(V) are the encoder outputs hi—both of size (NF/4)× 256. The queries (Q) come from
the previous decoder block and are transformed by a multi-head self-attention block. Q

is a NT × 256 matrix, where NT represents the length, or the number of tokens, of the
transcription. In the decoder, the attention transform matrix Tj is of size NT × NF/4, which
transforms the sequence length from NF/4 to NT . Hence, the length of the transformer
posteriors is NT .

Our goal is to integrate the stream-wise posteriors given all the stream reliability
measures. Fortunately the integration step for the CTC model is straightforward, because
the stream-wise posteriors pctc(s|oi) are already temporally aligned with the reliability
metrics ρ i—both of length NF/4.

In contrast, the integration for the transformer remains difficult. The reliability metrics
ρ i in Figure 2, are of length NF/4; however, we expect them to temporally match the token-
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by-token posteriors ps2s(s|oi). Therefore, a transformation from the linear time domain
of length NF/4 to length NT is necessary at this point. As shown in Figure 4, there are
six multi-head attention blocks in the transformer decoder, and each block has its own
attention transform matrix Ti

j. Here, the transform matrix in the final block of modality i is

reused to transform the length of ρ i from NF/4 to NT . The transformed reliability attention
of head j (ρ̃ i

j ) is computed by

ρ̃ i
j = Ti

j ·
(

W
iρ
j (ρ

i)T
)T

. (10)

The final reliability embedding vector ρ̃ i is obtained by projecting a concatenation of
all heads of the transformed reliability attentions via a fully connected layer.

Figure 5 shows the topology of the multi-modal fusion for the E2E model. The posterior
probabilities from all modalities are the inputs, and the corresponding reliabilities ρ i, or
their embeddings ρ̃ i are used to estimating the multi-modal log-posteriors log p̃(s|o),
for both the CTC and the S2S model. Finally, the estimated log-posteriors from both
transformer and CTC model are combined through Equation (4) in the training stage and
via Equation (5) in the decoding stage.

Feed-forward

Multi-head
Attention block

Multi-head self-
attention block

ps2s(s|oi)

Linear layer +
Softmax

hi

K, V:(NF/4)× 256

× 6

pctc(s|oi)

Feed-forward

Multi-head self-
attention block

× 6

hi

Linear layer +
Softmax

Q:NT × 256

Figure 4. Transformer decoder (left) and CTC decoder (right) for both modalities i ∈ A, VI.

log p̃type(s|ot)

ptype(s|oA) ptype(s|oVI) ρ A(ρ̃ A) ρ VI(ρ̃ VI)

DFNtype

Figure 5. DFN fusion topology for E2E model, type ∈ s2s, ctc.

4. Reliability Measures

As stated before, in this work, we aim to fuse stream-wise posteriors into joint pos-
teriors according to the respective stream reliabilities. Therefore, a variety of reliability
measures are extracted to inform the integration model of the time varying reliability of the
separate streams. Although the reliabilities for the hybrid and E2E models are similar, there
are some subtle differences. These will be discussed in more detail in the following part.
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4.1. Reliabilities for the Hybrid Model

For the dynamic stream weighting in our proposed DFN hybrid model, both model-
based and signal-based reliability measures (e.g., see Table 1) are extracted; most of them
were previously introduced in [30].

Table 1. Overview of reliability measures.

Model-Based
Signal-Based

Audio-Based Video-Based

Entropy
Dispersion
Posterior difference
Temporal divergence
Entropy and dispersion ratio

MFCC
ΔMFCC
SNR
f0
Δ f0
voicing probability

Confidence
IDCT
Image distortion

To obtain the model uncertainty information, a number of model-based measures
are extracted, i.e., entropy, dispersion, posterior difference, temporal divergence, entropy-
and dispersion-ratio. The model-based measures consider the audio and video models
separately. All these measures are derived from the log-posterior probabilities of their
respective single-modality models.

Signal-based measures are used to estimate the signal quality in each stream. They can
be subdivided into audio- and video-based measures. The audio reliability measures are
the first five MFCC coefficients with their temporal derivatives ΔMFCC, again as in [30].
The signal-to-noise ratio (SNR) is an important indicator related to the intelligibility of
the audio signal. However, due to the acoustic data augmentation with realistic noise,
conventional SNR estimation is not able to provide adequate results.

For this reason, the deep learning approach DeepXi [46] is used here to estimate the
frame-wise SNR. Furthermore, as pitch appears to influence the reliability of acoustic
features, specifically of MFCC [47,48], the estimated pitch f0 and its temporal derivative,
Δ f0, are also used as reliability indicators. The probability of voicing [48] is also a valuable
reliability indicator, which is computed from the Normalized Cross-Correlation Function
(NCCF) values for each frame.

For the video stream, OpenFace [49] is used for face detection and facial landmark
extraction. Here, the confidence of the face detector in each frame is considered as a video
signal quality indicator. The Inverse Discrete Cosine Transform (IDCT), as well as the image
distortion estimates, are also included and computed as in [30].

4.2. Reliabilities for the E2E Model

The E2E model focuses on signal-based reliability measures, e.g., the confidence of
the face detector. Additionally, some Facial Action Units (AUs) [49,50] about the chin, jaw
and lip movements (AU12, AU15, AU17, AU23, AU25 and AU26) were also selected to
help to improve the performance of the visual model. Different from the hybrid model, the
E2E model does not use the image distortion estimates as part of the reliability measures,
as our experimental results indicated these estimates to be detrimental to performance in
initial experiments. More detailed analyses and discussions can be found in Section 6.1.
The audio-based reliability measures comprise the first five MFCC coefficients, estimated
SNR, the pitch f0 and its first temporal derivative as well as the probability of voicing.

5. Experimental Setup

This section introduces the databases and the feature extraction for both streams and
it details our experimental setup.
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5.1. Dataset

The Oxford-BBC Lip Reading Sentences (LRS) 2 and 3 corpora [9,24] were selected for
our experiments, see Table 2 for their statistics.

Table 2. Characteristics of the utilized datasets.

Subset Utterances Vocabulary Duration [hh:mm]

LRS2 pre-train 96,318 41,427 196:25
LRS2 train 45,839 17,660 28:33

LRS2 validation 1082 1984 00:40
LRS2 test 1243 1698 00:35

LRS3 pre-train 118,516 51 k 409:10

The hybrid model experiments used the LRS2 corpus. All acoustic, visual and AV
models were trained with the combined LRS2 pre-train and training set. To compare the
performance of our proposed E2E model with the baseline model [9], the LRS3 corpus pre-
train set was also used in the E2E experiments. In AVSR tasks, the acoustic model is always
in a dominant position. To analyze the performance in different noise environments and
counter the audio-visual model imbalance, we applied data augmentation. The acoustic
noise data comes from the MUSAN noise corpus [51]. For the hybrid model dataset, the
acoustic data was augmented with the ambient noise, which contains noises, such as wind,
footsteps, paper rustling and rain as well as indistinct crowd noises. SNRs were randomly
selected from −9 to 9 dB in steps of 3 dB, where the SNRs are computed by:

SNRdB = 10log10
Psignal

Pnoise
(11)

with Psignal and Pnoise as the signal and noise energy, respectively.
Since the LRS2 dataset does not contain highly reverberant data, the acoustic data was

artificially reverberated by convolutions with measured impulse responses. These impulse
responses also came from the MUSAN corpus. The E2E model training set augmenta-
tion was the same as that in hybrid model, with ambient noise and SNRs were between
−9 and 9 dB. The video sequences were augmented with random cropping and horizontal
flips with a 50% probability. To check the robustness of our model, new acoustic noise
conditions that are unseen in the training data were added to the test set. Both ambient and
music noise were used, from −12 to 12 dB. Similarly, Gaussian blur and salt-and-pepper
noise were also applied to the visual data for the test set. The acoustic data augmentation
was realized through a Kaldi Voxceleb example recipe.

5.2. Features

Both our hybrid and the E2E models used log-mel features together with the estimated
pitch f0 and its derivative, Δ f0, and the voicing probability as the audio features. The frame
size was 25 ms with a 10 ms frameshift. The Kaldi hybrid model extracts audio features with 40
triangular mel filters, while in the ESPnet E2E model, the number of mel-frequency bins is 80.

For both systems, OpenFace [49] was used for face detection and facial landmark
extraction. The speaker's face was detected at 25 frames per second. The digital differential
analyzer, which uses the Bresenham algorithm, was used to align the audio and video
streams. In the hybrid model, two kinds of video features were extracted: The video
appearance model (VA) used 43-dimensional IDCT coefficients of the gray-scale region
of interest (ROI) as features, where the mouth ROI was extracted from the facial mouth
landmarks with a rectangular box.

The video shape model (VS), in contrast, is based on the 34-dimensional non-rigid
shape parameters described in [49]. For the E2E model, the mouth ROI was fed directly
into a pre-trained video model [44], which first performed 3D convolutions on the image
sequence and then utilized a 2D ResNet to extract the final facial feature representation.
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5.3. Hybrid Model Implementation Details

In the hybrid model, the Kaldi toolkit [52] was used for speech recognition. The LRS2
pre-train and training set were used together for model training. The hybrid model starts
with HMM-GMM training, which follows the standard Kaldi AMI recipe, i.e., monophone
training followed by triphone training. Afterwards, a linear discriminate analysis (LDA)
stacks the context of features to obtain discriminative short-term features. Finally, the
speaker adaptive training (SAT) is used to compensate the speaker characteristics. Each
step produces a better forced alignment based on the current model for later network
training. The subsequent HMM-DNN training used the nnet2 p-norm network [53] recipe,
which is efficiently parallelizable.

The estimated log-posteriors log p(s|oi
t) for each stream were obtained from each

trained single modality. As shown in Figure 6, the posteriors of all modalities were the
inputs for our proposed decision fusion net (DFN). The corresponding reliability measures
were used to estimating the multi-modal log-posteriors log p̃(s|ot), which was finally used
in graph searching through a decoding graph to obtain the best word sequence. In the
hybrid model, all modalities were trained separately. To ensure that all modalities search
through the same decoding graph, the phonetic decision tree was shared between all
single modalities. For this reason, the number of states for each modality was identical—
specifically 3856.

Log-Softmax

log p̃(s|o)

FC

Tanh Dropout

3 BLSTMs

Hidden Layer,
ReLU,Dropout,

LN

× 3

[p(s|oA); p(s|oVA); p(s|oVS);Rt]

Figure 6. Decision fusion net structure for the hybrid model. The turquoise block indicates the
successively repeated layers.

For the hybrid model, there were 41 reliability indicators, therefore, the input of the
DFN was (3 × 3856 + 41) = 11,609 dimension. The three hidden layers in Figure 6 contain
8192, 4096 and 1024 units, respectively, each followed by a ReLU activation function, layer
normalization (LN) and with a dropout rate of 0.15. After hidden layers are three BLSTM
layers with 1024 memory cells for each direction, with the tanh activation function. A fully
connected (FC) final layer projects the data to the output dimension of 3856. A log-softmax
function finally yields the log-posteriors.

To avoid overfitting, we applied early stopping and check every 7900 iterations. When
the validation loss did not decrease for 23,700 iterations, the training was stopped. Finally,
the trained model was evaluated on the test set. To evaluate the effect of bi-directional
inference, two experiments with the proposed DFN strategy were conducted. The first one
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used the BLSTM-DFN—exactly as shown in Figure 6. The second employed an LSTM-DFN,
replacing the BLSTM layers with LSTM layers.

The initial learning rate was 0.0005, and this was decreased by 20% if the validation
loss did not reduce in the early stopping check. The batch size was 10. The DFN model
fine-tuning was based on the PyTorch library [54] with the ADAM optimizer. The training
was performed with a GeForce RTX 2080 Ti GPU. Each single-modality model and the
early integration training took around 7 days. A complete training of the BLSTM-DFN or
LSTM-DFN stream integration model ran for approximately 15 days.

E2E Model Implementation Details

To compare the performance between our proposed E2E AVSR model and the baseline
model, all E2E models, which were trained by ESPnet, were pre-trained on the same data,
the LRS2 and LRS3 pre-train set. However, training with such an enormous dataset is time-
consuming. To save computational effort, in the pre-training stage, the parameters of the
ResNet video feature extractor were frozen, which is the same as in the baseline model [9].
Then, in the training stage, all parameters, including those of the ResNet, were fine-tuned on
the LRS2 training set. To improve the performance, our proposed TM-CTC AVSR model was
initialized with the audio- and video-only model, which were trained separately.

All ESPnet E2E models share the same language model, which always predicts one
character at a time and receives the previous character as its input. It was implemented as a
unidirectional four-layer recurrent network, with each layer having 2048 units. This work was
based on a pre-trained language model, which was trained on the LibriSpeech corpus [55].

As shown in Figure 7, in the E2E model, the single-modality posteriors are the inputs
and, together with the corresponding reliability information, they are used to estimate the
multi-modal log-posteriors, log p̃(s|o), for both the CTC and the S2S model. Both DFNctc
and DFNs2s in Figure 7 start with three hidden layers, which have 8192, 4096 and 512 units,
each using the ReLU activation function and layer normalization (LN).

Log-Softmax

log p̃ctc(s|o)

FC

Tanh Dropout

3 BLSTMs

Hidden Layer,
ReLU,Dropout,

LN

× 3

[pctc(s|oA); pctc(s|oVI);ρ A;ρ VI]

log p̃s2s(s|o)

Log-Softmax

FC

Tanh Dropout

Hidden Layer,
ReLU,Dropout,

LN

× 3

[ps2s(s|oA); ps2s(s|oVI); ρ̃ A; ρ̃ VI]

Figure 7. DFNctc (left) and DFNs2s (right). The turquoise blocks indicate the successively repeated layers.

The dropout rate was 0.15. DFNctc contained three BLSTM layers with 512 memory
cells for each direction, using the tanh as their activation function. BLSTM layers for the
DFNs2s were also tested; however, this resulted in overfitting. Similarly to the hybrid
model, again, the final layer was realized as a fully connected (FC) layer followed by a
log-softmax function, which gives us the estimated log-posteriors. In Equations (4) and (5),
the language model contribution parameter θ is 0.5; α is 0.3. h = 4 heads were used in
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the attention blocks. The transformer-learning factor controls the learning rate. In the
pre-training stage, the factor was 5.0, while in the fine-tuning stage, it was 0.05.

The ESPnet E2E models were trained by NVIDIA’s Volta-based DGX-1 multi-GPU
system with seven Tesla V100 GPUs, each with 32 GB memory. All single-modality models
were trained for 100 epochs. The AVSR baseline model and our proposed model were
pre-trained for 65 epochs and fine-tuned for 10 epochs.

6. Results

In this section, we compare the performance of our experimental results based on the
hybrid and E2E models.

6.1. Hybrid Model

The performance of all hybrid baseline models and our fusion strategies are first
shown in this part. In the following, some intuitive exemplary decoding results of our
experiments are given in Table 3. Comparing all results, the proposed BLSTM-DFN had
better performance compared with the other baseline strategies.

Table 3. Decoding results for three exemplary sentences S1, S2 and S3. RT represents the reference
transcription; AO is audio only model; EI is early integration; CE and MSE represent dynamic stream
weighting with CE and MSE as loss functions; OW is the oracle stream-weighting; and LSTM-DFN
and BLSTM-DFN are variants of our proposed integration model.

Type Result

RT However, what a surprise when you come in
AO However, what a surprising coming
EI However, what a surprising coming
CE However, what a surprising coming

S1 MSE However, what a surprising coming
OW However, what a surprising coming
LSTM-DFN However, what a surprising coming
BLSTM-DFN However, what a surprise when you come in

RT I’m not massively happy
AO I’m not mass of the to
EI Some more massive happy
CE I’m not massive into

S2 MSE I’m not massive into
OW I’m not mass of the happiest
LSTM-DFN I’m not massive it happened
BLSTM-DFN I’m not massively happy

RT Better street lighting can help
AO Benefit lighting hope
EI However, the street lighting and hope
CE Benefit lighting hope

S3 MSE Benefit lighting hope
OW In the street lighting hope
LSTM-DFN However, the street lighting and hope
BLSTM-DFN Better street lighting can help

The estimated log-posterior probabilities for the target state sequence, log p̃(s∗t |ot),
are plotted in Figure 8 to show the discriminative power of different models. Larger
log-posterior probabilities indicate that the estimated state is closer to the target state. As
expected, the BLSTM-DFN produced larger log-posteriors on the reference states, compared
to the other fusion strategies. This corresponds with the better performance of the BLSTM-
DFN that was observed on this example.
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Figure 8. Estimated log-posteriors of sentence S2 for the target state s∗t , with additive noise at −9 dB.
All abbreviations are the same as in Table 3. The whiskers show the maximum and minimum values;
the upper and lower bounds of the green blocks represent the respective 25th and 75th percentile; the
yellow line in the center of the green block indicates the median.

Figure 9 gives an overall comparison of the performance of the audio-only model
and AVSR models in different noise conditions. Our proposed fusion strategy improved
the Word Error Rate (WER) in every SNR environment and even for the clean acoustic
data. In worse SNR conditions, the proposed DFN reduced the WER over 10%. The DFN
with BLSTM layers outperformed the—realistically unachievable—oracle weighting (OW)
in many cases, while the latter is based on the ground-truth transcription information of
the test set and could be considered as the upper limit for the dynamic stream-weighting
method (as described in Equation (3)).

Figure 9. WER (%) on the test set of the LRS2 corpus in different noise conditions.
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Table 4 gives the detailed results of all our experiments under additive noise. The aver-
age WERs of the visual models exceeds 80%, which means that lipreading is still difficult for
the large-vocabulary task. One potential reason is that the video input is highly correlated
in each frame, making the GMM model challenging to train. We also aimed to improve the
performance of the visual models by using the pre-trained spatio-temporal visual front-end
from [44] to extract high-level visual features but without seeing improvements.

Table 4. Word error rate (%) on the LRS2 test set under additive noise.

Model
dB −9 −6 −3 0 3 6 9 Clean Avg.

AO 48.96 41.44 33.07 30.81 22.85 18.89 16.49 10.12 27.83
VA 85.83 87.00 85.26 88.10 87.03 88.44 88.25 88.10 87.25
VS 88.11 90.27 87.29 88.88 85.88 85.33 88.58 87.10 87.68

EI 40.14 32.47 23.96 26.59 20.67 16.68 14.76 10.02 23.16

MSE 46.48 37.79 27.45 27.47 19.52 16.58 15.09 9.42 24.98
CE 45.79 37.14 26.32 28.03 19.40 16.68 14.76 9.42 24.65
OW 30.33 26.47 15.41 21.25 13.66 11.66 10.45 7.54 17.10

LSTM-DFN 33.30 27.22 21.26 21.25 19.17 13.97 15.84 10.32 20.29
BLSTM-DFN 27.55 23.11 17.89 16.35 14.93 10.25 10.78 7.84 16.09

Early integration (EI) showed a relative WER reduction of 16.78%; however, the
improvement was not as significant as the proposed DFN approach. Comparing the
BLSTM-DFN and the LSTM-DFN, the former showed the better performance for non-real-
time decoding. Both the LSTM- and BLSTM-DFN used recurrent layers with 1024 cells. A
BLSTM-DFN using 512 memory cells per layer was also tested to balance the number of
the model parameters. The average WER of this was 16.14%, which is still better than that
of the LSTM-DFN with 1024 cells.

We tested the improvements that we were seeing for statistical significance, comparing
in each case, with the audio-only model by using the NIST Scoring Toolkit SCTK (https:
//github.com/usnistgov/SCTK, accessed on 28 October 2021). All results are summarized
in Table 5. As can be seen, the BLSTM-DFN yielded highly significant improvements over
the audio-only model (AO). In contrast, the early integration model, EI, only considerably
improved the performance at lower SNR conditions (at SNRs < 3 dB).

Table 5. Asterisks indicate a statistically significant difference compared with the audio-only model
(AO). *** denotes p � 0.001, ** shows 0.001 < p � 0.01, * corresponds to 0.01 < p � 0.05, and ns
indicates results where p > 0.05.

Model
dB −9 −6 −3 0 3 6 9 Clean Avg.

EI *** *** *** * ns ns ns ns ***

MSE * *** *** ns * ** ** ns ***
CE ns *** *** ns * ** ** ns ***
OW *** *** *** *** *** *** *** *** ***

LSTM-DFN *** *** *** *** * *** ns ns ***
BLSTM-DFN *** *** *** *** *** *** *** * ***

Far-field AVSR (by artificially reverberating the audio data through convolutions with
measured impulse responses) was also evaluated. According to Table 6, the BLSTM-DFN
still outperformed the other fusion strategies; however, in this case, it did not reach the
performance of oracle weighting (which uses oracle knowledge for optimal weighting,
see Section 2.1.3). One reason for this may be an insufficient amount of reverberant acoustic
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training signals—while the (non-realistic, upper-bound) OW setup requires few parameters
to be estimated, the DFN actually learns an optimal, non-linear fusion strategy, for which
more data may be required.

As can also be seen, all audiovisual models significantly improved the performance
compared with the AO model. Here, again, the improvement of early integration was
inferior to the other proposed models, rendering DFN as the most effective of all practical
approaches. It can also be noted that the unidirectional LSTM-DFN was successful for
this dataset, which would thus allow for real-time implementations as well. Overall, the
introduced DFN was generally superior to instantaneous dynamic stream weighting.

Table 6. Far-field AVSR WER (%) and statistically significance compared with the AO model on the
LRS2 dataset. *** denotes p � 0.001, ** shows 0.001 < p � 0.01

AO EI MSE CE OW LSTM-DFN BLSTM-DFN

23.61 19.15 (**) 19.54 (***) 19.44 (***) 12.70 (***) 15.67 (***) 15.28 (***)

It is also interesting to analyze which kinds of reliability measures are the most infor-
mative and effective. Therefore, after comparing the performance between our proposed
model and the baseline models, we also conducted experiments, in which we utilized
different reliability measure sets in our proposed BLSTM-DFN model. Both model-based
and signal-based reliabilities were taken into consideration. Table 7 lists the experimental
results based on different reliability indicator groups.

Our experimental results indicate that image distortion estimates were actually detri-
mental to performance (RV and All in Table 7). Consequentially, we repeated the BLSTM-
DFN model training without these estimates (RṼ and Ãll in Table 7). Both audio- and
video-based reliability indicators were able to improve the model performance. The audio-
based measures outperformed the video-based measures on average. However, combining
both audio- and video-based measures led to the best performance (Ãll), achieving a
relative word-error-rate reduction of 50.59% compared to the audio-only model.

Table 7. BLSTM-DFN word error rates (%) on the LRS2 test set under additive noise. All: apply all
reliability indicators as shown in Table 1; RA: all audio-based reliability indicators; RV: all video-
based reliability indicators; RṼ: using the video-based reliability indicators, excluding the image
distortion estimates; Ãll: using all reliability indicators except for image distortion estimates; None:
proposed model without reliabilities. Avg: Average performance, together with the significance of
improvements (compared with None). ns: not significant and ***: p � 0.001.

R
dB −9 −6 −3 0 3 6 9 Clean Avg.

All 27.55 23.11 17.89 16.35 14.93 10.25 10.78 7.84 16.09 ns

RA 23.39 17.96 14.51 15.68 12.97 8.44 10.67 6.94 13.82 ***
RV 98.12 98.50 98.76 98.22 99.43 98.79 99.46 98.81 98.76
RṼ 25.97 21.23 17.66 17.58 14.24 10.85 9.70 7.54 15.60 ns

None 24.48 21.70 17.55 18.35 16.07 9.35 12.07 8.43 16.00

Ãll 22.20 18.52 14.40 15.46 13.66 8.04 9.91 7.84 13.75 ***

We also tested the improvements that were obtained when adding reliability infor-
mation for their statistical significance. While the visual reliabilities slightly boosted the
performance relative to the model without reliability information (None), these improve-
ments were not statistically significant. This stands in contrast with the effect of acoustic
reliability indicators, which provided highly significant improvements by themselves as
well as in combination.
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6.2. E2E Model

To compare the performance of the hybrid model and the E2E model directly, and an
additional audio-only model was trained on the LRS2 corpus. The E2E audio-only model
yielded a WER of 3.7%, while the hybrid audio-only model showed a WER of 11.28%.
Table 8 shows the experimental results in all noise conditions. As expected, the audio-only
model outperformed the video-only model. Comparing the performance between the
baseline by [9] and our proposed AVSR model, our introduced DFN resulted in a better
performance in all noise environments. Even in clean acoustic conditions, the proposed
model clearly reduced the WER.

On average, the new system gained a relative word error rate reduction of 43%
compared to the audio-only setup and 31% compared to the audio-visual end-to-end
baseline. Table 9 also shows the results of the NIST statistical significance tests between
different model setups.Our work compares the AV baseline and the DFN with the audio-
only model and shows the difference between the AV baseline and the proposed DFN, all
in different noise augmentation types.

The AV baseline only significantly improved the performance compared with the
AO model in lower noise conditions (SNR < 0 dB). In contrast, our proposed DFN model
substantially outperformed both the AO recognizer and the AV baseline, not only in most
noise environments but also in clean acoustic conditions. It was also effective at information
integration with blurred or noisy video data, again significantly improving over audio-only
recognition as well as over the AV baseline model.

Table 8. Performance of the audio-visual and uni-modal speech recognition (WER [%]). AO: audio
only. VO: video only. AV: AV baseline [9]. DFN: proposed DFN fusion. m: music noise. a: ambient
noise. vc: clean visual data. gb: visual Gaussian blur. sp: visual salt-and-pepper noise.

Model
dB −12 −9 −6 −3 0 3 6 9 12 Clean Avg.

AO (m) 18.9 13.7 11.2 8.4 6.3 6.8 4.5 4.1 4.3 4.2 8.2
AO (a) 25.7 23.4 18.5 11.6 8.2 9.0 5.9 3.8 4.4 4.2 11.5
VO (vc) 58.7 61.0 61.7 69.6 69.6 63.5 64.6 63.6 66.6 61.9 64.1
VO (gb) 66.6 69.2 71.0 68.5 68.5 71.1 62.7 69.4 67.6 66.9 68.2
VO (sp) 68.5 72.5 73.7 70.1 70.1 70.6 68.3 69.1 73.1 67.9 70.4

AV (m.vc) 14.6 11.8 6.4 7.9 7.9 6.3 5.2 4.4 3.4 4.0 7.2
DFN (m.vc) 11.1 8.7 5.5 4.8 4.8 4.5 3.6 3.3 2.2 2.4 5.1

AV (a.vc) 19.1 19.0 14.3 7.3 6.3 6.0 5.7 4.5 4.9 4.0 9.1
DFN (a.vc) 14.3 11.9 8.1 4.8 4.0 5.4 3.7 2.8 3.6 2.4 6.1

AV (a.gb) 20.6 18.9 15.0 7.7 6.8 7.5 5.9 3.9 4.8 4.0 9.5
DFN (a.gb) 14.9 12.8 9.4 5.2 4.2 5.5 3.8 3.0 4.1 2.6 6.6

AV (a.sp) 19.5 19.9 15.3 7.7 7.2 6.3 5.6 4.4 4.6 4.3 9.5
DFN (a.sp) 15.4 12.8 9.9 5.2 4.7 5.5 3.4 2.6 4.0 2.5 6.6

For the E2E model, we also tested the effect of the different groups of reliability measures.
Again, both model-based and signal-based reliabilities were taken into consideration. Table 10
shows that the models with the audio- or video-based reliability indicators (RA and RV)
outperformed those without reliability measures (None). The audio-based reliabilities were,
again, more effective than the video-based measures, particularly in high-SNR conditions.

Furthermore, as in the hybrid model, combing the audio- and video-based reliability
indicators delivered the best performance (All in Table 10). The last column in Table 10
shows the results of a statistical significance test of those improvements. The audio-
based reliability measures are clearly more effective than the visual ones. Similarly to
the hybrid model in Table 7, using all reliability measures jointly led to the best overall
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performance, with highly significant improvements in comparison to the case without
reliability information.

Table 9. Statistical significance tests, comparing the results of different model setups *** denotes
p � 0.001, ** shows 0.001 < p � 0.01, * corresponds to 0.01 < p � 0.05, and ns indicates results where
p > 0.05; the other abbreviations are described in Table 8.

Model
dB −12 −9 −6 −3 0 3 6 9 12 Clean Avg.

AO-AV (m.vc) * ns *** ns ns ns ns ns ns ns ***
AO-DFN (m.vc) *** *** *** ** ns ** ns ns * *** ***
AV-DFN (m.vc) ** ** ns ** *** * ns * ns ** ***

AO-AV (a.vc) *** ** ** ** ns ** ns ns ns ns ***
AO-DFN (a.vc) *** *** *** *** *** *** ** ns ns *** ***
AV-DFN (a.vc) ** *** *** * * ns ** ns ns ** ***

AO-DFN (a.gb) *** *** *** *** *** *** * ns ns ** ***
AV-DFN (a.gb) *** *** *** * ** * ** ns ns * ***
AO-DFN (a.sp) *** *** *** *** ** ** *** ns ns ** ***
AV-DFN (a.sp) * *** *** * * ns ** * ns ** ***

Table 10. Performance of the proposed E2E DFN fusion (WER [%]), based on the different E2E
reliability indicator configurations. Among these, RA applies only audio-based reliability indicators
and RV applies only video-based reliability indicators. None: proposed model without reliability
information; All: use all reliability indicators. Other abbreviations as defined in Table 8. Avg:
Average performance, together with the significance of improvements (compared with None). ns: not
significant, ***: p � 0.001, **: 0.001 < p � 0.01 and *: 0.01 < p � 0.05.

Model

dB
−12 −9 −6 −3 0 3 6 9 12 Clean Avg.

RA (m.vc) 11.2 9.4 6.5 4.3 5.4 5.5 3.6 3.1 2.3 2.4 5.4 *
(a.vc) 14.9 14.5 10.0 6.6 4.2 5.8 4.3 2.8 2.8 2.4 6.8 ns

(a.gb) 16.4 14.3 10.7 6.3 4.8 6.0 4.6 3.0 2.6 2.5 7.1 **
(a.sp) 17.1 15.7 11.3 6.6 4.4 6.1 4.5 2.8 2.9 2.5 7.4 ns

RV (m.vc) 10.1 8.5 6.2 5.3 5.3 5.6 3.7 3.1 2.6 2.7 5.3 *
(a.vc) 14.3 14.9 11.0 6.4 5.6 6.6 5.2 3.3 3.6 2.7 7.4 ns

(a.gb) 16.4 15.2 11.3 6.9 4.9 6.4 4.7 3.6 3.4 2.6 7.5 ns

(a.sp) 16.1 15.0 11.4 6.6 5.3 6.1 5.1 3.1 3.4 2.5 7.5 ns

None (m.vc) 11.8 8.8 6.7 7.5 6.0 5.6 3.6 3.6 3.0 3.7 6.0
(a.vc) 14.9 15.2 11.3 6.0 5.2 5.9 5.6 3.8 3.3 3.7 7.5
(a.gb) 17.2 15.1 12.6 6.8 5.7 6.3 6.6 4.4 3.6 3.6 8.2
(a.sp) 16.7 16.6 12.4 6.1 6.0 5.9 5.7 3.4 3.4 3.5 8.0

All (m.vc) 11.1 8.7 5.5 4.8 4.8 4.5 3.6 3.3 2.2 2.4 5.1 **
(a.vc) 14.3 11.9 8.1 4.8 4.0 5.4 3.7 2.8 3.6 2.4 6.1 ***
(a.gb) 14.9 12.8 9.4 5.2 4.2 5.5 3.8 3.0 4.1 2.6 6.6 ***
(a.sp) 15.4 12.8 9.9 5.2 4.7 5.5 3.4 2.6 4.0 2.5 6.6 ***

7. Conclusions

Large-vocabulary end-to-end speech recognition still faces a number of difficulties.
However, as our experiments have shown, fusing the audio and video stream can bring
a significant benefit to this task. For realizing those benefits, stream integration is a
key possibility. Here, to optimally combine the audio and video information, a new decision
fusion net (DFN) was proposed. This architecture utilized the posterior probabilities of
the acoustic and visual model as stream representations for integration. Corresponding
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reliability measures of both streams were used to guide the DFN in estimating optimal
multi-modal posteriors.

This fusion strategy was applied on both the conventional hybrid model, using the
Kaldi toolkit, and on the joint CTC/transformer E2E model, based on the ESPnet toolkit.
Comparing both experimental setups, the proposed DFN with reliability measures showed
notable improvements in all noise conditions. In the hybrid AVSR setup, our system
resulted in a relative word-error-rate reduction of 51% over audio-only recognition, also
outperforming all baseline models.

Our proposed model was even superior to oracle stream weighting, which is consid-
ered a theoretical upper bound for instantaneous stream weighting approaches. In the joint
CTC/transformer E2E architecture, the proposed model again surpassed the audio-only sys-
tem, as well as the AV baseline models, achieving a relative word-error-rate reduction of 43%
compared to the audio-only setup and 31% compared to the audio-visual end-to-end baseline.

Future work on stream integration still needs to answer many open questions. While
our architecture is highly effective when sufficient training data is available for all con-
ditions, we believe that information integration will truly come into its strengths when
encountering new conditions that are unseen in training. In such scenarios, we also believe
that uncertainty information and well-calibrated models will be essential. If all of these
are appropriately designed, however, we are optimistic that information integration can
pave the way towards robust models that are capable of operating successfully in unseen
environments and capitalizing on their potential for multi-modal disambiguation and
self-guided adaptation.
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Abstract: Speech is a commonly used interaction-recognition technique in edutainment-based sys-
tems and is a key technology for smooth educational learning and user–system interaction. However,
its application to real environments is limited owing to the various noise disruptions in real envi-
ronments. In this study, an audio and visual information-based multimode interaction system is
proposed that enables virtual aquarium systems that use speech to interact to be robust to ambient
noise. For audio-based speech recognition, a list of words recognized by a speech API is expressed as
word vectors using a pretrained model. Meanwhile, vision-based speech recognition uses a composite
end-to-end deep neural network. Subsequently, the vectors derived from the API and vision are
classified after concatenation. The signal-to-noise ratio of the proposed system was determined
based on data from four types of noise environments. Furthermore, it was tested for accuracy and
efficiency against existing single-mode strategies for extracting visual features and audio speech
recognition. Its average recognition rate was 91.42% when only speech was used, and improved by
6.7% to 98.12% when audio and visual information were combined. This method can be helpful in
various real-world settings where speech recognition is regularly utilized, such as cafés, museums,
music halls, and kiosks.

Keywords: deep learning; audiovisual speech recognition; lipreading; multimodal interaction;
edutainment; virtual aquarium

1. Introduction

Recently, with the rapid development of deep learning, the educational, experiential,
and auxiliary situations in which various deep learning technologies are applied have in-
creased [1–4]. In particular, in terms of edutainment, various recognition technologies based
on deep learning are being developed to recognize interactions such as speech, gestures,
eye and head tracking, and even physical objects. The term edutainment, a portmanteau of
education and entertainment, is an approach designed to be simultaneously educational
and fun, and is widely used in robot platforms, museums, science centers, and aquari-
ums [5–7]. Edutainment techniques that simultaneously provide both education and fun
reportedly have an effect on learning outcomes, and numerous systems have consequently
been developed [3,8–10]. They are also useful for interacting with the elderly [1].

Speech is one of the most commonly used interaction-recognition techniques in
edutainment-based systems, and is a key technology for smooth educational learning
and interaction between the system and the user [10–14]. Speech involves the perception of
both auditory and visual information and is the most commonly used human engagement
and communication mode. Janowski et al. [15] compared gestures and speech experimen-
tally for four separate interaction tasks (navigation, selection, dialogue, and manipulation)
in a virtual environment. They reported that in object manipulation, both speech and
gestures were preferred. However, despite the increasing preference for interaction using
speech, the application of interaction using speech to real environments is quite limited
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owing to the various noise disruptions that can occur in real environments. Therefore, core
technology that is robust to difficult acoustic scenarios and various noises in real environ-
ments is essential. Consequently, in this study, an audio and visual information-based
multimode interaction system is proposed that enables virtual aquarium systems that use
speech to interact to be robust to ambient noise. Figure 1 gives a conceptual overview of
the proposed system being utilized for interaction via speech in a virtual aquarium.

 

Figure 1. Composition of the proposed system and an example usage scenario. (a) Hardware
components of the system and a virtual aquarium interaction usage scenario; (b) audio module for
generating word vectors; (c) visual extraction module for extracting feature vectors; (d) audiovisual
module for classification.

Multisensory integration has an important effect on human communication, and each
sensory organ transmits specific sensory information [16]. The human nervous system
is organized into multiple nonoverlapping sensory organs and uniquely processes the
received input, which enables it to sense very reliably. Depending on the received input
information, information from different senses can be connected to each other, thereby
synergistically enhancing the ability to recognize and evaluate [17,18].

People can improve their ability to understand speech in noisy environments or where
it is otherwise difficult to understand speech by detecting the movements of the tongue
and teeth and the area around the speaker’s lips. In other words, when the speech signal
is not clear, visual speech information has a significant positive effect on speech compre-
hension [18–23]. As such, humans tend to process visual information first when visual and
auditory information are received simultaneously. This phenomenon is called “synesthesia”
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or the “McGurk effect” in cognitive psychology [24]. Therefore, we judge many things
visually to the extent that the sound we hear depends on what we see. For example, if
people see a person’s face expressing “ba” and hear the sound “ga,” many of them will
infer the third sound “da” that combines the two. The fusion approach can contribute to
robust recognition of speech interactions in real life and overcome the problem of auditory
and visual ambiguity of words with similar pronunciation in noisy environments.

This work offers a noise-robust system for use in virtual aquariums by integrating a
deep neural network-based end-to-end visual speech recognition architecture with an open
cloud speech recognition (OCSR) API system (Figure 1). The performance of this system is
superior to that of single-mode systems that use either audio or visual speech recognition
technologies. For audio-based speech recognition, a pretrained model is used to express
word vectors for a list of words that have been identified by the speech API. Meanwhile,
vision-based speech recognition uses a new deep neural network-based lipreading archi-
tecture consisting of end-to-end neural subnetworks. We consecutively combined three
3D convolutional neural networks (CNNs) for feature sequence extraction, shortening
the training time by reducing the number of parameters, and referring to the existing 2D
DenseNet [25] to suppress overfitting. The 3D densely connected CNN is composed of the
components of a multichannel 3D CNN to extract the multichannel features of different
levels. A bidirectional gated recurrent unit (GRU) followed by a linear layer is used to
overcome the scarce visual information caused by the time-series input data and to obtain
specific image features. A vector matrix is formed by connecting the word and feature vec-
tor output to the audio- and visual-based model. By inserting a SoftMax layer at each time
step and then applying the connectionist temporal classification (CTC) loss function [26] to
all time steps, the concatenated vector matrix is trained to acquire predictive words.

We also compared the accuracy and efficiency of the proposed system with existing
single-mode techniques for extracting visual features and multiple OCSR APIs from the
collected dataset. The results of extensive evaluations verified that the proposed system
achieved faster convergence speed, higher computational efficiency, and superior per-
formance. Thus, our system, which integrates the existing OCSR API system with an
end-to-end lipreading architecture using visual information, is widely utilizable for diverse
speech-based interaction settings such as cafés, music halls, and virtual aquariums.

The main contributions of this paper are as follows:

• We propose a novel audiovisual speech recognition system using multimode interac-
tion for virtual aquarium applications that is robust to ambient noise;

• We compare the accuracy and efficiency of the proposed system with those of existing
single-mode techniques for extracting visual features and multiple OCSR APIs from a
collected dataset;

• We show that the proposed system provides faster convergence speed, higher com-
putational efficiency, and superior performance compared with the existing OCSR
API system.

The remainder of this paper is organized as follows. Section 2 of this paper gives an
overview of research related to this study. Section 3 provides the details of each element of
the proposed system. Section 4 provides information on the datasets collected, data aug-
mentation techniques, and experimental setup. Section 5 presents the training procedure,
convergence rate, optimization, and performance evaluation results of the proposed sys-
tem. Sections 6 and 7 discuss the experimental results according to the research objectives,
suggest directions for future research, and provide our conclusions.

2. Related Work

Google has released an open cloud-based speech API [27] along with various func-
tions and application scenarios for finance, automobiles, and hospitals. It has advanced
capabilities such as distinct speaker identification, automated speech language detection,
data logging, and speech-to-text conversion with multiple channels, as well as support
for over 125 languages. IBM’s Watson AI service [28] supports 11 languages and provides
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services such as dialogue dialing of the speaker and word extraction and filtering, along
with the ability to customize specific volume conditions by applying the system according
to the usage environment. However, to use the pretrained language model, there is also
a difficulty, in that it needs to be tuned to the customer management domain, and this
requires adding a new corpus. In addition, Microsoft offers the speech-to-text capabilities
of the Speech Service, part of Azure Cognitive Services [29], as a cloud service package.
According to the official website, the Speech Service includes real-time speech synthesis,
asynchronous synthesis of long audio, prebuilt neural network speech, and viseme technol-
ogy. Xiong et al. [30] reported that it achieved human-level accuracy for the first time in a
switchboard test in 2017. Amazon Alexa [31] is an artificial intelligence (AI) smart personal
assistant with a speech-activated platform that enables voice interaction and Q&A. Alexa
has various other capabilities, including the ability to play music, set alarms, and obtain
weather information. It can also be used to operate smart home technology devices.

Owing to rapid improvements in the field, deep learning has lately delivered good
performance in various applications in diverse research domains, including VSR systems.
Deep learning-based algorithms outperform traditional prediction methods. For example,
the systems proposed by Ji et al. [32] and Petridis and Pantic [33] distinguish different
visemes by integrating the traditional approach with a CNN, and add time information after
obtaining the CNN output using the hidden Markov model framework. Wand et al. [34] and
Cooke et al. [35] integrated histograms of oriented gradients (HoG) with long short-term
memory (LSTM) to evaluate a GRID benchmark dataset consisting of short phrases. In ad-
dition, the LSTM classifier was trained on the OuluVS and AVLetters datasets [35] using the
discrete cosine transform, and word prediction evaluation was performed. Noda et al. [36]
applied the sequence-to-sequence (seq2seq) model to lipreading. The model has a deep
speech recognition architecture capable of recognizing and predicting the output of full
input sequences. In addition, performance evaluation was performed on a benchmark
dataset composed of real words by integrating all the audiovisual information.

Assael et al. [37] introduced LipNet, an end-to-end deep learning model, and it was
trained and its performance evaluated on the GRID corpus, a sentence-level dataset. The
GRID corpus was divided into overlapped and unseen-speaker database structures, and it
achieved word error rates of 4.8% and 11.4%, respectively. However, the evaluation was
performed with the same database, and the experienced human lip reader had a low success
rate of 47.7%. Fenghour et al. [38] presented a deep learning network model for viseme-
to-word translation that used an attention-based GRU and enhanced the performance of
predicting spoken sentences by reaching a word accuracy of 79.6%. Li et al. [39] proposed
an efficient two-stream model for learning dynamic information. The model extracts
static characteristics from a single frame and dynamic information between multiple
frame sequences using two distinct channel capacity CNN streams. Utilizing a more
effective convolutional structure for each component in the front-end model yielded an 8%
improvement. Xu et al. [40] implemented and evaluated a digit sequence prediction and an
architecture similar to the CTC cascaded model on audiovisual datasets. Deep learning-
based approaches are more resilient to huge data and visual ambiguity than conventional
information-extraction techniques, and they can extract more precise, detailed, and accurate
information from audiovisual data.

The evaluation and comparison of the recognition performance of previously available
OCSR APIs have been the focus of several studies [41–43]. Contrastingly, the goal of this
study is to enhance the interactive performance in a virtual aquarium by incorporating
visual information into the already-existing OCSR API system. Compared with the tradi-
tional OCSR API system, the method performs better recognition and reduces the error
rates in noisy environments. Consequently, in this work, we present an interaction model
that, in contrast to the current interaction approach that only utilizes auditory information,
employs audiovisual information based on deep learning and uses a system with a low
error rate even in noisy environments.
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3. Architecture of the Proposed System

Our proposed deep learning audiovisual speech recognition interaction system, which
is integrated with the open cloud-based speech API, is shown in Figure 1. As shown
in Figure 1b, human speech is input and the recognized words are converted into word
vectors using a pretrained word embedding model. Simultaneously, as shown in Figure 1c,
a face video matching the human speech is received and extracted as a sequence feature
vector. Subsequently, the audiovisual module (Figure 1d) predicts a word or sentence
by integrating the word and sequence feature vectors output from the audio and visual
modules (Figure 1b,c).

3.1. Audio Module

In the audio speech recognition module, the speech API receives the user’s speech via
a microphone and sends it to an open cloud-based recognition system. The open cloud-
based speech recognition API is a publicly available API for developing applied speech
recognition systems. It has a speech recognition engine created by collecting large amounts
of speech data via a cloud computing service and learning on large amounts of data with
high-performance computing. Cloud firms provide these speech recognition engines so
that anyone can use them without difficulty via the voice recognition Open API, saving
significant amounts of development time, effort, and expense.

Figure 2 is a block diagram of the proposed audio speech recognition module; it utilizes
two general algorithms. The human speech is input via a local device such as a microphone,
and the recorded speech is delivered to an open cloud server provided by a commercial
engine, Microsoft Azure, for further processing [44]. Through speech recognition by the
OCSR API, which is closed-source, it is possible to quickly implement a user-optimized
speech recognition system and has the usability advantage of being immediately applicable
to various fields. Therefore, developers using application speech recognition systems
should choose the appropriate OCSR API based on the capabilities of the system. In
addition, the performance of the OCSR API is constantly updated by many companies
that provide API services, and it depends on the study date and the type of training data.
Therefore, we used the Microsoft Azure API, which has been proven to be superior in the
results of previous studies [45]. In addition, the existing speech API can be replaced if
another speech API with better performance is released and is not affected by performance
changes over time. The word lists output through the OSCR API are output as individual
word vectors using Google’s pretrained Word2Vec embedding model. These word vector
representations may have hundreds of dimensions in the Word2Vec model, also known
as word embeddings [46,47]. For academic use, Google offers a Word2Vec model that has
been pretrained on 100 billion words from the Google News corpus, producing 3 million
300-dimensional word embeddings. Therefore, a list of words is output, transformed into a
300-dimensional vector, and concatenated into a single vector.

3.2. Visual Module

Figure 3 is a detailed schematic of the proposed visual speech recognition module. It
consists of three modules: feature extraction, sequence processing, and transcription. The
feature extraction module consists of three CNNs: 3D CNN to extract fine motion around
the lip, 3D dense connection CNN to reduce model parameters and prevent overfitting,
and multiscale 3D CNN to extract rich features with different level features. The sequence-
processing module uses Bi-GRU to comprehend a wide sequential feature context, and the
transcription module combines the local self-attention mechanism in a cascaded approach
to compensate for the shortcomings of the CTC loss function, focusing only on local
information in the nearby frame.

3.2.1. Feature Extraction Module

Figure 4a shows that the 2D CNN collects encoded information about single-image
data and transforms the information into a 2D feature map to calculate spatial-dimensional
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features. However, a 2D CNN cannot extract motion information in consecutive frames
extracted from video.

 

Figure 2. Block diagram of the proposed audio speech recognition module.

 

Figure 3. Detailed schematic of the proposed visual speech recognition module.

 

Figure 4. (a) Two-dimensional convolution operation. (b) Three-dimensional convolution operation.

As shown in Figure 4b, we need a 3D CNN that can simultaneously calculate spatial
and temporal dimensional features to detect various peripheral information such as tongue
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and tooth movement information around the lips. The 3D CNN is a widely used technique
to detect spatial and temporal information in time-series sequence data and has been proven
to be effective in extracting spatial and temporal information in numerous studies [32,37].
In this study, CNN layers comprising 64 3D kernels of size 3 × 7 × 7 were constructed to
extract and encode visual feature information into input sequential lip data, and combined
with the batch normalization layer and ReLU. Subsequently, the spatial scale of the 3D
feature map was reduced by connecting the max-pooling 3D layer (Figure 3a). The details
of the proposed model hyperparameters are presented in Table A1.

Following the 3D CNN, a 3D dense-connection CNN is used to reduce the parameters
of the model to save processing resources and effectively prevent overfitting. With this
method, relationships between several linked layers are generated, facilitating network
depth, vanishing gradients, and full functional utilization (Figure 5). We extend the 3D
volumetric feature extraction task by referring to the existing 2D densely connected CNN
structure composed of the l-th layer of the nonlinear transformation Hl . The output of
the l-th layer of the existing 2D structure can be represented by xl (Equation (1)), where
x0, x1, . . . , x1−1 are generated in the previous layer and [. . .] denotes the concatenation
operation [24].

xl = Hl([x0, x1, . . . , x1−1]) (1)

Figure 5. Detailed 3D dense-connection CNN architecture. (a) Three-dimensional transition layer;
(b) three-dimensional dense block.

This approach utilizes two modules: a 3D transition layer module and a 3D dense block
module. The feature maps processed in the 3D CNN are reduced by the bottleneck layers
(Figure 5b) and then multichannel feature volumes are integrated. As the previous feature
information still exists, subsequent layers are applied only to a few feature volumes, and the
hyperparameter ta controlling the degree of compression is also included in the transition
layer (Figure 5a) to increase compressibility. Thus, reduced growth rates can be achieved
by using bottlenecks and transition layer tiers in succession. The dense block structure
is doubly connected in the following order: batch normalization (BN) layer, activation
function (ReLU), and 3D convolutional layer (Figure 5b). The transition layer connected
after the dense block structure has the same structure as the dense block structure, and
an average-pooling 3D layer of 2 × 2 × 2 is additionally connected (Figure 5a). The 3D
convolutional layer used for the dense block structure is 3 × 1 × 1, and is composed of
3 × 3 × 3 3D convolutional layers of the transition layer.

By implementing them in various sizes and depths, we coupled multiscale 3D CNNs
to extract various layers of spatial and visual information. In the multiscale 3D CNN,
multiple convolutional layers of different level sizes can generate different level features
based on different depths and filters, and this strategy can be used to extract richer feature
information with a layered approach (Figure 3c). The proposed multiscale 3D CNN
architecture is shown in Figure 6; it is divided into four structures. The three modules are
composed of different kernel sizes based on the structure of Figure 6b. The first module,
Figure 6b, connects to a 3D convolution layer with a 3D kernel size of 32 in order of batch
normalization and activation functions (ReLU). The second module (Figure 6c) and third

33



Sensors 2022, 22, 7738

module (Figure 6d) add standard and spatial dropouts with 3D convolution layers of
different 3D kernel sizes of 64 and 96, and then add activation functionality (ReLU).

 

Figure 6. Multilayer 3D CNN architectures: (a) spatial attention module; (b) first architecture; (c) sec-
ond architecture with standard dropout approach; (d) third architecture with spatial dropout approach.

The function of the standard dropout is to prevent strongly correlated activations
in the image feature map by randomly dropping pixels, thereby preventing overfitting
and overtraining, which affect the CNN performance improvement. Therefore, it plays
an important role in small benchmark datasets compared to large datasets such as image
classification datasets [48]. The spatial dropout of the third module outperforms and
performs in strongly spatially correlated image classification by dropping the corresponding
channel rather than pixels [49,50]. It is particularly effective in extracting the fine motion
features of the lips, teeth, and tongue with strong spatial correlation. Additionally, to focus
on the location of the information section and complement the attention channel, all three
modules are combined with spatial attention modules of the same structure (Figure 6a).
The spatial attention module focuses on utilizing interspace interactions to better select the
most identifiable and useful portions of the input image [51]. It initially runs max-pooling
and average-pooling operations along the channel axis and then connects them to create an
efficient feature descriptor that calculates spatial attention. Therefore, the output of each
multiscale 3D CNN and spatial attention module is merged and concatenated.

3.2.2. Sequence Processing Module

Because the feature extraction module extracts only fixed short viseme-level features,
it is difficult to distinguish the longer context information of random-length time-series
input data. We use a GRU that learns to propagate and control the flow of time-series data
information using update and reset gates [52]. The GRU is derived from the LSTM unit that
determines which information should be conveyed and which should be ignored, allowing
for the use of update and reset gates to solve the gradient loss problem. A bidirectional GRU
is configured with the feature sequence of the feature extraction module as input to provide
forward and backward information so that both networks can obtain rich information.

3.2.3. Transcription Module

We use the CTC method, which does not require end-to-end alignment of deep neural
networks and parameterizes the distribution of a label token sequence using a loss function.
The marginal distributions created at each time step of the temporal module are condition-
ally independent of CTC. This is because it restricts the use of autoregressive connections
to handle the inter-time-step dependencies of the label sequence. When the probabilities
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of the language model are ambiguous, the CTC models are decoded using a beam search
approach to restore label temporal dependency.

4. Experimental Evaluation

4.1. Dataset, Data Preprocessing, and Augmentation

To evaluate the proposed model, we constructed a new dataset for the interaction
of the virtual aquarium by referring to the Word Choice part of the most used speech
recognition commands in IoT or real life in Google Speech Command Dataset V2 [53].
Currently, because most benchmark datasets are audio-based or consist of datasets used in
real-world applications, datasets for the interaction of virtual aquariums are insufficient.
Therefore, we constructed the dataset ourselves to evaluate the proposed model (Table 1).

Table 1. Collected speech commands datasets: (a) control commands; (b) marine life; (c) numbers;
(d) emotions.

(a) Control Commands (20)

front back side over under
inside outside top center bottom
right left on off up
down go start pause stop

(b) Marine Life (15)

turtle fish shark crab dolphin
jellyfish octopus whale starfish shrimp

coral squid otter lobster

(c) Numbers (11)

one two three four five
six seven eight nine ten

zero

(d) Emotions (8)

anger fear anticipation surprise joy
sadness trust disgust

To perform aquarium interaction in a virtual environment, data were collected by
dividing them into two categories—an operation command to manipulate the system and
a command to control objects in the virtual environment. As the unit for operating the
system is not a complete sentence but a word or a short phrase, the collected words are
generally useful as commands for automobile and robot applications [53].

For data collection, 40 participants (20 males and 20 females; average age: 29.14 years)
who were familiar with speech recognition equipment were recruited and ultimately
compensated with gift certificates worth USD 20. To ensure balance in the data, 10 males
and 10 females were native English speakers, and the other 10 males and 10 females were
bilingual advanced English-speaking participants. The participants wore a head-mounted
device that combined a webcam with a camera and microphone (Figure 7). Each participant
stared at the display (Figure 8b) located in front and repeated the 54 keyword lists 100 times
at 2 s intervals in sequence.

The collected video underwent frame extraction and was output as shown in Figure 8c.
We collected a total of 216,000 video clips for audio and video information. We used a
Logitech webcam (C920 HD PRO WEBCAM) with the following specifications for data
collection: video resolution of 1920 × 1080 (FHD), frame rate of 30 fps, and a stereo
microphone. The face-facing webcam fixture was made with a 3D printer. The video data
were recorded for 2 s with a resolution of 640 × 480 pixels at 30 fps, and the audio was
stereo with a sample rate of 44,100 Hz.
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Figure 7. Data-recording environment and image extraction procedure: (a) Data-recording envi-
ronment; (b) during data collection, the participant’s face information is visible to the camera, and
the green line demarcates the lip detection area; (c) frame sequence images extracted from the
acquired video.

 

Figure 8. (a) Participant in the real-world interaction environment; (b) head-mounted device design;
(c) target object approaching as a result of speech interaction.
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We trained the proposed model on data fired 100 times per class and divided the data
into training and validation sets in a 7:3 ratio. During the data collection process, there were
participants whose pronunciation became weaker as the number of experiments increased
because of the repetitive speech. Therefore, to prevent training overfitting from the problem
of poor pronunciation, we used the most focused early (20–30) utterances, middle (50–60)
utterances, and finally some of the utterances when concentration was lowest among the
100 utterances for validation. The utterances were selected and divided into training and
validation sets in a 7:3 ratio. Specifically, the training dataset comprised utterances 1–9,
10–20, 31–50, 61–80, and 91–100, and the validation dataset comprised utterances 21–30,
51–60, and 81–90.

We used the Dlib [54] face detector with a HoG feature-based linear classifier to
search the target region as a preliminary step for extracting human lip information in
the data preprocessing step. The Dlib library, which can utilize image processing and
different machine learning methods, is a general-purpose cross-platform software library
developed in C++ that can use HoG features or a trained CNN model for face recognition.
To create a bounding box around the mouth, the detected output was presented as (x, y)
diagonal edge coordinates. Then, 68 landmarks and the same lip point as the data obtained
from the training dataset with the online Kalman filter iBug [55] program were extracted.
Using affine transformation, we extracted pictures with a size of 100 × 50 pixels from the
target face region that was extracted in relation to the mouth’s center region. We then
normalized the RGB channels of the entire training set so that the mean and unit variance
were both zero. Furthermore, because—unlike other image classification data—overfitting
may occur owing to the small amount of data, data augmentation was performed to prevent
overfitting [41]. All models were trained and assessed using the same dataset pretreatment
and augmentation approaches, and normal and horizontally mirrored image sequences
were used for data augmentation throughout the training phase.

4.2. Implementation

The diagram on the left side of Figure 8 is a schematic of the overall system for
processing the respective audio and visual information. Figure 8a shows a participant
interacting with a virtual aquarium through speech commands. The participant wears a
device that combines a wireless microphone and a small camera, as shown in Figure 8b,
and controls the target object (e.g., a shark) via speech commands. A single-channel
wireless head microphone is used to acquire the experimenter’s voice information, which is
wirelessly transmitted to a remote computer. Simultaneously, visual information is acquired
using a camera module attached to the wireless head microphone, and the connected single-
board computer, Raspberry Pi, uses the robot operating system (ROS) to wirelessly transmit
the visual information to the remote computer.

We used the CTC decoder with the beam search method to evaluate the character
accuracy rate (CAR) of the proposed model. The evaluation environment consisted of
an Intel® CoreTM i7-7700K CPU running the Linux Ubuntu 18.04 LTS operating system,
with 32 GB RAM, and an NVIDIA GeForce RTX 2080-Ti GPU. In addition, Keras based
on the TensorFlow backend was used to evaluate the performance of the CTC decoder.
Table A1 provides information on the architecture utilized for the evaluation. The specific
requirements for each layer of the proposed model are listed as hyperparameters.

For model optimization during training, three evaluations were performed: optimization,
batch size, and learning rate. To perform model optimization, AdaDelta [56], AdaGrad [57],
adaptive moment estimation (Adam) [58], stochastic gradient descent (SGD) [59], RMSprop [55],
AdaMax, and Nadam [59] were evaluated with a mini-batch of four and a learning rate
of 0.0001. After performing model optimization, the model was executed to determine
the optimal mini-batch size (0.1, 0.001, 0.000.1, 0.00001, or 0.000001) and learning rate (4,
8, 16, 32, or 64). A maximum batch size of 64 was used because of the limitations of our
GPU memory.
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We performed data collection and performance evaluation while considering factors
such as lighting that could have a detrimental effect on the proposed system. The per-
formance evaluation was conducted in an environment different from the conventional
data collection environment, and for the evaluation, participants used a head-mounted
webcam device (Figure 8). The performance evaluation environment was a natural en-
vironment without any controls, i.e., an environment with natural light and noise. The
examination was separated into three sections: audio only, visual only, and combined
auditory and visual information. Furthermore, none of the individuals that engaged in
data collection during the performance evaluation stage participated in the generalized
performance evaluation.

While taking into account external elements impacting the accuracy, such as illumi-
nation, the proposed system was assessed in an environment that differed from the data
gathering setting. The participants used a head-mounted device with a webcam and did
the evaluation while standing 1.5 m away from the virtual aquarium screen during the
performance evaluation stage (Figure 8). In the experiment room, it was performed with
normal lighting and noise, and only participants who had not taken part in the data collec-
tion were selected. The multimodal technique used in this investigation was divided into
three categories: audio-only, visual-only, and audiovisual speech.

4.3. Performance Evaluation Metrics

We examined the learning loss, batch size, and optimization to assess the learning
state throughout the proposed model’s training process, and we utilized the character
error rate to assess the accuracy. Specifically, we converted the error rate measure to a
percentage by calculating the total edit distance and compared the predicted text with the
original text. In addition, we used a confusion matrix approach for visualization of the
predicted data. The CAR for accuracy evaluation consists of five variables (C, S, D, I, N).
They signify the characters (C), false prediction characters (S), number of deleted characters
(D), unselected characters (I), and total number of correct characters (N). The proposed
model is a maximum-probability prediction method that performs the CTC beam search
technique. The CAR equation is expressed as follows:

CAR (%) = 100 −
(

CS + CD + CI

CN

)
× 100 (2)

To visualize and analyze the predicted data after learning, we used a confusion
matrix, which is commonly used to summarize the performance of a classification model.
The matrix compares the real findings with the test data to the number of properly and
incorrectly categorized samples. Using the confusion matrix as a tool for evaluation
provides the benefit of allowing a more thorough analysis in the event that the dataset is
imbalanced, as opposed to depending solely on the fraction of correctly recognized samples
(which could cause misleading conclusions). In Table 2, the confusion matrix for two classes
is presented.

Table 2. Confusion matrix for two classes.

Predicted Class

Actual Positive Actual Negative

Actual
Class

Predictive Positive True Positive (TP) False Positive (FP)
Predictive Negative False Negative (FN) True Negative (TN)

The true-positive, false-positive, true-negative, and false-negative values in the con-
fusion matrix served as the basis for the algorithms’ performance parameters. Precision,
recall, and F1-score were among the metrics computed. Classwise accuracy, recall, and
F1-score were used to assess the classification models. These performance metrics were
calculated using the following formulas.
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Precision denotes the outcome of a scenario that is thought to be positive:

Precision =
TP

(TP + FP)
(3)

Recall reveals the estimation of the success of positive situations:

Recall =
TP

(TP + FN)
(4)

The F1-score, which represents the overall classification accuracy, is calculated as the
harmonic average of recall and precision:

F1 − score =
2 × Precision × Recall
(Precision + Recall)

(5)

Additionally, noise was generated with a signal-to-noise ratio (SNR) approach using
the gathered source data to assess the trained model’s quantitative performance. Both
the commonplace noise found in daily life and the multichannel acoustic noise database
(DEMAND) served as the source of noise data for the noise-generation process. DEMAND
comprises different types of noise from eight environments (parks, corridors, restaurants,
stations, cafés, plazas, cars, living) and ambient noise (Table 3).

Table 3. Noise database structure: categories and recordings conducted in each category.

Category Place Environment

(a) Office Hallway
Hallway inside an office building, with
individuals and groups passing
by occasionally

(b)
Public

Cafeteria Busy office cafeteria

(c) Station Main transfer area of a busy
subway station

(d) Street Cafe Terrace of a cafe at a public square

5. Results

5.1. Training Procedure and Convergence Rate

Figure 9 compares the learning loss and convergence rates for different batch sizes and
learning rates, respectively. Batch size and learning rate are important hyperparameters in
model training, and various studies related to the effect of batch size and learning rate on
model training have been conducted [60–62]. Masters and Luschi [60] showed that higher
test accuracy can be obtained with a small batch size by changing the batch size while fixing
the learning rate. In addition, the results of fixing the batch size and changing the learning
rate showed that when a small batch is used, stable learning is possible over a wider range
of learning rates. In addition, Keskar et al. [63] showed that the use of a large batch size
increases the likelihood of convergence to a sharp minimum of the training function, which
lowers the generalization performance. Therefore, we evaluated the optimal batch size and
learning rate to optimize the proposed model.

Figure 9a–c show the evaluation of different batch sizes, and Figure 9d–f show the
evaluation of different learning rates. In training and validation loss, as the batch size
increased, the convergence speed became slower, and when the batch size was four, it
showed the fastest convergence speed. A moving average strategy was used to better
discern the visualization as smooth. Figure 9 illustrates how the smoothed value was
displayed as a curve and the real value was expressed as the shadow portion of the image
for the proposed model’s training. The uneven fluctuation of the real value caused by
the small batch size was also addressed, and smoothing was performed to improve the
understanding of the curve. In the case of learning rate, there was no training at 0.1 and
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0.001, and 0.1 showed a tendency to diverge. On the other hand, among the remaining
three learning rates, the 0.0001 value resulted in the fastest convergence speed. Thus, the
proposed model exhibits the fastest convergence rate for the collected dataset, with a batch
size of four and a learning rate of 0.0001.

 

Figure 9. Training and validation loss of the collected dataset. (a) Different training batch sizes; (b) dif-
ferent validation batch sizes; (c) different validation batch sizes using moving average; (d) different
training learning rates; (e) different validation learning rates; and (f) different validation learning
rates using moving average.

5.2. Optimization

Hyperparameters that affect training are typically used to determine optimal model
updates (e.g., batch size and learning rate). Prior to decreasing the error or loss function
caused by the difference between the actual and predicted values, the optimizer must
update the weight parameters repeatedly with different weights. However, selecting the
right optimizer for the best model training might be challenging. To increase the prediction
accuracy and learning rate, training an ideal model is crucial. To determine the model
that fits the data the best, we employed the optimization models SGD, RMSprop, Adam,
Nesterov-accelerated Adam (Nadam), AdaMax, AdaGrad, and AdaDelta, which are the
models most often used for deep learning neural network training.

In comparison to other deep learning neural networks, the SGD [59] optimization
strategy is quicker and simpler to train because it eliminates duplication by performing
one update at a time. The objective function has considerable fluctuations when the
frequent update method with high variance is used, and these fluctuations then have the
ability to shift the parameters to new and improved local minima. Because of the ongoing
overshooting of SGD, convergence to an accurate minimum is challenging. AdaGrad [57]
is a gradient-based optimization approach that adjusts the learning rate of parameters
to perform larger updates on repeatedly occurring parameters, while performing fewer
updates on less frequently occurring parameters. This approach is suitable for processing
sparse data and significantly improves the robustness of SDG optimization [59]. The
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AdaDelta [56] optimization approach is an extended version of AdaGrad optimization that
reduces the learning rate aggressively and monotonically, with parameters varying the
learning rates and the learning process stopping after a particular point. The RMSprop [55]
optimization approach was developed to overcome the rapidly decreasing learning rate of
AdaGrad. It is an adaptive learning rate method, and uses variable learning rates that vary
with the results for each sample of each iteration. The Adam [58] optimization approach
was developed based on SDG, AdaDelta, and RMSprop. It dynamically calculates the
learning rate for each sample of the dataset based on parameters to be used as adaptive
optimization approaches with limited memory. The optimization strategy used by Nadam
is almost identical to that used by Adam, with the slight difference being that Adam’s and
Nesterov’s momentums are combined in Nadam to replace the flat momentum, which
greatly improves its performance. The AdaMax [59] optimization approach is an extended
approach to Adam optimization that consists of a simpler constraint than the parameter
update size of Adam optimization, resulting in stable weight update rules.

We compared the training results using a Bi-GRU classifier for the optimization
approach of the proposed model. Figure 10 shows the loss curve of learning and validation
of the optimization approach. Among the seven optimization techniques, Adam shows
the fastest learning process and convergence rate, which means that Bi-GRU classifiers
were trained more successfully than other optimization approaches. Conversely, the
AdaDelta optimization approach exhibits the lowest learning rate. Consequently, in the
optimization approach following batch size and learning rate, Adam was adopted as the
optimal approach best suited for training lip-based classification by the proposed model.

 

Figure 10. Loss curves comparing various optimizers. (a) Training loss; (b) validation loss; (c) valida-
tion loss using moving average.

5.3. Performance and Accuracy

The performance evaluation results of the proposed model are presented in Figure 11
and Table 4. The proposed model obtained the best results, with a CAR of 98.698% at four,
the smallest size among different batch sizes, and the CAR decreased as the batch size
increased (Figure 11a,b and Table 4). At different learning rates, 0.0001 yielded the best per-
formance, and the remaining 0.01 and 0.0001 yielded similar performances (Figure 11c,d).
However, at 0.1 and 0.001, they were excluded from the performance evaluation owing to
divergence in the process of training the model. Among the seven optimization approaches,
Adam optimization yielded the highest results, followed by Nadam and RMSprop with
similar performance (Figure 11e,f). In addition, SGD and AdaMax showed good perfor-
mance in that order, and AdaGrad showed low performance at 46.392%. AdaDelta was
excluded from the performance evaluation because it diverged during the training process
of the model. Thus, the proposed model exhibited the best performance when trained with
a batch size of four, a learning rate of 0.0001, and the Adam optimization approach.
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Figure 11. Training steps for character accuracy rate (CAR) comparing different batch sizes, learning
rates, and optimizers: (a) Different batch sizes; (b) different batch sizes using moving average;
(c) different learning rates; (d) different learning rates using moving average; (e) different optimizers;
(f) different optimizers using moving average.

Table 4. Performance of different batch sizes, learning rates, and optimizers on the collected dataset.

Batch Size Top-1 CAR (%) Learning Rate Top-1 CAR (%) Optimizer Top-1 CAR (%)

4 98.698 0.1 - SGD 94.867
8 97.663 0.01 97.301 Adam 98.698
16 97.657 0.001 - Nadam 97.500
32 96.972 0.0001 98.698 AdaMax 92.953
64 96.126 0.00001 97.095 AdaGrad 46.392

AdaDelta -
RMSprop 97.323
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5.4. Confusion Matrix

The performance of the proposed model was evaluated using 30% of the dataset as a
validation sample. The results are shown in Figures 12 and A1 as confusion matrices and
Figure 13 as a classification report. The average (mean) precision of each of the proposed
models was 0.9870%, recall was 0.9869%, and F1-score was 0.9869% (shown in Table A2). In
the classified recognition results, misclassification occurred in “go”, “on”, and “off”, where
the mouth was opened only to a small degree and the duration of utterance was shortest.
Further, a small misclassification occurred in “center” and “under”, and “fish”, “jellyfish”,
and “starfish”, which have similar utterance endings. As reported by Kaburagi et al. [1],
this is a problem that occurs because of the similar lip shape at the beginning and end of
speech, but it is not a factor that has a great influence on the overall performance evaluation.
Based on our evaluation of the proposed model, it is clear that it can help overcome
technical obstacles to practical implementation.

 
Figure 12. Confusion matrix of the model that proposed many misclassifications out of 53 classes.

Figure 13. Cont.
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Figure 13. Comparing classification scores of the proposed model trained on 53 classes. (a) Control
commands; (b) marine life; (c) number; (d) emotion.

5.5. Performance and Accuracy

Figure 8 shows the actual experimental scene where participants interacted using their
speech in a virtual aquarium environment, and Figure 14 and Table A3 show the perfor-
mance of each recognizer at different SNR (dB) levels considering the case of four noises.
In Figure 14a, which was evaluated at different SNR levels considering the case of corridor
noise, it was 91.14% ± 1.24% in clean, and the highest accuracy was 90.88% ± 1.08% in
40 dB. The visual-only accuracy for various SNR levels was 88.79% ± 0.73%, and because
this value depends only on visual information, it is not affected by the clearance of the
audio signal or the SNR level. Participants who participated in the data collection stage did
not participate in the performance evaluation of the proposed model, and there were no
external factors such as lighting for clear data collection during data collection. In addition,
in order not to control external factors, the experiment was carried out naturally without
limitations of variables (such as mouth shape during pronunciation by participants or
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mouth shadow according to lighting). The multimodal approach using both auditory and
visual signals was 97.87% ± 0.62%, which improved recognition rates by 6.73% and 9.08%,
respectively, compared to recognition using only auditory and visual signals. As a result,
speech may be inferred even in the presence of background noise by utilizing a mix of
sound and visual information.

Figure 14. Standard variation of the identification accuracy rate across four noise situations. Standard
deviation is shown by error bars. The audio recognition result is shown by the black (single-modal
recognition) line, the visual recognition result is represented by the blue (single-modal recognition)
line, and the audiovisual recognition result is represented by the red (multimodal recognition) line.
The identification outcome in a true experimental setting is called clean SNR.

Based on the previous results, different noises were synthesized and compared for the
three components. For the results in Figure 14b and Table A3b, the performance evaluation
was performed by synthesizing cafe noise at various SNR levels, and only audio was used
for recognition at the clean level in 92.90% ± 1.64% of cases. On the other hand, when
audio and visual information were used together for recognition, it was 98.17%± 0.52%,
an improvement of 5.27% compared to when only audio was used. Figure 14c,d consist
of noise from two different environments: a cafeteria and a subway station. The cafeteria
is a busy office cafeteria environment, and the subway is the noise of the main transit
area of a crowded subway station. When only audio is used, the recognition rates are
91.26% ± 1.69% and 90.37% ± 1.10%, respectively; and when audio and visual are used
together, the recognition rates are 98.60% ± 0.70% and 97.85% ± 0.51%, respectively. The
recognition rates were improved by 7.34% and 7.48%, respectively, compared to the case
where only audio was used.

The statistical significance of the three-group t-test for four noise settings is shown in
Figure 15 for each noise environment. In all the noise environments, the recognition rate
was improved by 6.04% on average in the case of using both audio and visual compared
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to the case of using only audio. On the other hand, the recognition rate was improved
by 9.33% compared to the case where only vision was used. Additionally, the standard
deviation was reduced when audio and visual information were used together, compared
to when only audio was used, and a similar recognition rate for repeated experiments was
also observed.

 

Figure 15. Average recognition accuracy rates in four noisy scenarios. The error bars show the
standard deviation. t-tests with statistical significance between each group are indicated by asterisks
(* for p < 0.05, ** for p < 0.01, *** for p < 0.001). The gray (single-modal recognition), blue (single-modal
recognition), and red (multimodal recognition) boxes show the results of auditory-only, visual-only,
and audiovisual recognition, respectively.

6. Discussion

Recently, owing to the exponential increase in large-capacity data-processing capability,
speech recognition-based interactive edutainment systems have become more widespread.
Along with gesture interaction, speech interaction is used in various applications, and more
difficult acoustic scenarios have to be considered than in the past for extensive practical
applications, taking into account the challenging issue of adequate noise management
for varied settings. We conducted a study on speech interaction in a virtual aquarium
considering various scenarios.

In this study, an end-to-end visual speech recognition-based interaction system for
speech interaction in a virtual aquarium environment was proposed. Recognized words
were vectored by combining pretrained word embedding with Microsoft API, which
showed the best performance and dense dispersion in previous studies [45]. Feature vector-
ization was performed on the image sequence input through video via the visual processing
module, and word vectorization was combined to output the predicted word. For the
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optimization of the proposed model, the performance was evaluated using different batch
sizes, learning rates, and optimization approaches. In addition, performance evaluation
was performed by synthesizing the data used in the actual evaluation and four noise types
using different SNR levels.

The system performance in terms of SNR was evaluated using four sets of synthesized
data associated with four noise environments along with other evaluation data. Compared
to the speech recognition system using only audio, which has a large standard deviation in
the four noise environments, the system using visual information showed small standard
deviation and superior performance. Furthermore, in the case of clean, the average recogni-
tion rate was 91.42% when only speech was used in the four noise environments, whereas
when audio and visual information were used together, the recognition rate was improved
by 6.7% to 98.12%.

The utilization of multimodal interactions based on visual information is necessary
to develop antinoise automated speech recognition (ASR) systems. The proposed system
could help patients who have difficulty with noise during conversation. It can also provide
an opportunity for people with hearing problems to have a conversation. However, it is
difficult to apply this technique to real-world conversation recognition. Therefore, in future
studies, we will consider expanding the system’s ability to identify non-keyword-centric
phrases. Additionally, by displaying an actual virtual aquarium in a science museum, we
will assess the efficiency of the proposed model in a real environment and create a reliable
portable gadget for real-world usage.

7. Conclusions

By combining visual information with the existing speech interaction-based edutain-
ment system, a new visual information-based speech recognition system that is robust to
noise was applied to a virtual aquarium and demonstrated. The proposed system com-
bines audio and visual information, and for optimization, the performance was evaluated
considering three factors (batch size, learning rate, and optimization approach), and the
performance was further evaluated in four noise environments. It was shown that vi-
sual information contributed to the improvement of speech recognition by using visual
information, unlike the existing method that used only speech to interact. To achieve
consistent and high performance in diverse noise conditions, our technique blends visual
speech recognition, a technology that can enhance speech recognition systems, with current
cloud-based speech recognition systems. This method offers the potential for real-world
speech recognition applications in noisy locations. It can be utilized for speech interaction
in venues such as museums and scientific centers that have significant amounts of interior
noise and noise from visitors, and it also has the potential for use in diverse applications
that employ voice recognition in noise, such as IoT and robot applications.
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Appendix A

The following Tables A1–A3 and Figure A1 provide (1) the details of the hyperparam-
eters associated with the proposed architecture, (2) the confusion matrix of the proposed
model trained on 53 classes, (3) the average word accuracy and standard deviation of the
proposed system in four noise environments, and (4) the performance in terms of precision,
recall, and F1-score, respectively.

Table A1. Hyperparameters associated with the proposed architecture.

Layers Size/Stride/Pad
Visual Audio

Output Size

Input Layer - 40 × 100 × 50 × 3

3D Conv Layer [3 × 5 × 5]/(1, 2, 2)/(1, 2, 2) 40 × 50 × 25 × 64

1500

3D Max Pooling [1 × 2 × 2]/(1, 2, 2) 40 × 50 × 13 × 64

Densely Connected
3D CNN

[3 × 1 × 1] 3D Conv
(×6) 40 × 25 × 13 × 96

[3 × 3 × 3] 3D Conv

[3 × 1 × 1] 3D Conv
40 × 12 × 6 × 6

[1 × 2 × 2] average pool/(1 × 2 × 2)

[3 × 1 × 1] 3D Conv
(×12) 40 × 12 × 6 × 38

[3 × 3 × 3] 3D Conv

[3 × 1 × 1] 3D Conv
40 × 6 × 3 × 3

[1 × 2 × 2] average pool/(1 × 2 × 2)

[3 × 1 × 1] 3D Conv
(×24) 40 × 12 × 6 × 38

[3 × 3 × 3] 3D Conv

[3 × 1 × 1] 3D Conv
40 × 3 × 1 × 1

[1 × 2 × 2] average pool/(1 × 2 × 2)

[3 × 1 × 1] 3D Conv
(×16) 40 × 3 × 1 × 33

[3 × 3 × 3] 3D Conv

Multiscale 3D CNN (1) [3 × 5 × 5]/(1, 2, 2)/(1, 2, 2) 40 × 3 × 1 × 32

Multiscale 3D CNN (2) [3 × 5 × 5]/(1, 2, 2)/(1, 2, 2) 40 × 3 × 1 × 64

Multiscale 3D CNN (3) [3 × 5 × 5]/(1, 2, 2)/(1, 2, 2) 40 × 3 × 1 × 92

Spatial Attention (1)
[1 × 2 × 2] max pool/(1 × 2 × 2)

40 × 3 × 1 × 32[1 × 2 × 2] average pool/(1 × 2 × 2)
[3 × 7 × 7]/(1, 2, 2)/(1, 2, 2)

Spatial Attention (2)
[1 × 2 × 2] max pool/(1 × 2 × 2)

40 × 3 × 1 × 64[1 × 2 × 2] average pool/(1 × 2 × 2)
[3 × 7 × 7]/(1, 2, 2)/(1, 2, 2)

Spatial Attention (3)
[1 × 2 × 2] max pool/(1 × 2 × 2)

40 × 3 × 1 × 96[1 × 2 × 2] average pool/(1 × 2 × 2)
[3 × 7 × 7]/(1, 2, 2)/(1, 2, 2)

Bi-GRU (1) 256 40 × 512

Bi-GRU (2) 256 40 × 512

48



Sensors 2022, 22, 7738
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Layers Size/Stride/Pad
Visual Audio

Output Size

Concatenation - 40 × 2012

Dense Layer 27 + blank 40 × 2012

Softmax 40 × 28

 

Figure A1. Confusion matrix of the proposed model trained on 53 classes.

Table A2. Average word accuracy and standard deviation of the proposed system in four
noise environments.

SNR (dB) −20 −10 0 10 20 30 40 Clean

(a) Hallway

A 1.84% ±
0.62%

21.98% ±
4.30%

56.26% ±
4.63%

78.01% ±
4.42%

88.60% ±
0.88%

90.59% ±
1.07%

90.88% ±
1.08%

91.14% ±
1.24%

V 88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

AV 88.84% ±
0.65%

89.27 ±
0.70%

92.33 ±
1.41%

95.19 ±
0.96%

96.84 ±
0.58%

97.20% ±
0.44%

97.58% ±
0.54%

97.87% ±
0.62%
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Table A2. Cont.

SNR (dB) −20 −10 0 10 20 30 40 Clean

(b) Cafe

A 1.99% ±
0.28%

19.05% ±
4.99%

55.77% ±
4.54%

74.42% ±
3.05%

89.34% ±
2.04%

92.04% ±
2.01%

92.23% ±
2.50%

92.90% ±
1.64%

V 88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

AV 87.70% ±
1.51%

88.17% ±
1.29%

91.16% ±
1.43%

94.70% ±
1.15%

96.48% ±
0.93%

98.02% ±
0.61%

98.10% ±
0.65%

98.17% ±
0.52%

(c) Cafeteria

A 1.44% ±
0.31%

25.74% ±
6.92%

57.30% ±
5.00%

79.23% ±
2.81%

84.06% ±
2.57%

89.90% ±
1.05%

91.76% ±
1.54%

91.26% ±
1.69%

V 88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

AV 88.92% ±
0.79%

89.94% ±
0.57%

90.07% ±
1.36%

92.05% ±
1.43%

94.13% ±
1.04%

96.63% ±
1.30%

98.17% ±
0.46%

98.60% ±
0.70%

(d) Station

A 2.08% ±
0.69%

19.49% ±
5.64%

48.84% ±
4.30%

68.79% ±
4.46%

78.61% ±
2.67%

86.31% ±
1.17%

88.23% ±
1.34%

90.37% ±
1.10%

V 88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

88.79% ±
0.73%

AV 88.57% ±
0.99%

90.64% ±
0.96%

93.10% ±
1.12%

95.34% ±
1.20%

96.34% ±
1.05%

97.06% ±
0.63%

97.67% ±
0.47%

97.85% ±
0.51%

Table A3. Precision, recall, and F1-score performance of in four noise environments. (a) control
commands; (b) marine life; (c) numbers; (d) emotions.

(a) Control Commands (b) Marine Life

Word Precision Recall F1-Score Word Precision Recall F1-Score

front 1.0000 1.0000 1.0000 turtle 0.9706 0.9900 0.9802
back 1.0000 1.0000 1.0000 fish 0.9500 0.9500 0.9500
side 1.0000 0.9800 0.9899 shark 1.0000 1.0000 1.0000
over 1.0000 1.0000 1.0000 crab 1.0000 0.9900 0.9950

under 0.9118 0.9300 0.9208 dolphin 1.0000 1.0000 1.0000
inside 1.0000 1.0000 1.0000 jellyfish 0.9388 0.9200 0.9293

outside 1.0000 0.9900 0.9950 octopus 1.0000 1.0000 1.0000
top 1.0000 0.9900 0.9950 whale 0.9901 1.0000 0.9950

center 0.9286 0.9100 0.9192 starfish 0.9697 0.9600 0.9648
bottom 1.0000 1.0000 1.0000 shrimp 1.0000 0.9900 0.9950

right 1.0000 1.0000 1.0000 coral 0.9804 1.0000 0.9901
left 1.0000 1.0000 1.0000 squid 1.0000 0.9900 0.9950
on 0.9479 0.9100 0.9286 otter 1.0000 1.0000 1.0000
off 0.8857 0.9300 0.9073 lobster 0.9709 1.0000 0.9852
up 0.9901 1.0000 0.9950

down 1.0000 1.0000 1.0000
go 0.9293 0.9200 0.9246

start 1.0000 1.0000 1.0000
pause 0.9901 1.0000 0.9950
stop 1.0000 1.0000 1.0000
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Table A3. Cont.

(c) Numbers (d) Emotions

Word Precision Recall F1-Score Word Precision Recall F1-Score

one 0.9900 0.9900 0.9900 anger 1.0000 1.0000 1.0000
two 1.0000 1.0000 1.0000 fear 0.9901 1.0000 0.9950

three 1.0000 0.9800 0.9899 anticipation 1.0000 1.0000 1.0000
four 1.0000 1.0000 1.0000 surprise 0.9802 0.9900 0.9851
five 1.0000 1.0000 1.0000 joy 1.0000 1.0000 1.0000
six 1.0000 1.0000 1.0000 sadness 1.0000 1.0000 1.0000

seven 1.0000 1.0000 1.0000 trust 1.0000 1.0000 1.0000
eight 1.0000 1.0000 1.0000 disgust 1.0000 1.0000 1.0000
nine 1.0000 1.0000 1.0000
ten 1.0000 1.0000 1.0000

zero 1.0000 1.0000 1.0000
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Abstract: Deep learning technology has encouraged research on noise-robust automatic speech
recognition (ASR). The combination of cloud computing technologies and artificial intelligence
has significantly improved the performance of open cloud-based speech recognition application
programming interfaces (OCSR APIs). Noise-robust ASRs for application in different environments
are being developed. This study proposes noise-robust OCSR APIs based on an end-to-end lip-reading
architecture for practical applications in various environments. Several OCSR APIs, including Google,
Microsoft, Amazon, and Naver, were evaluated using the Google Voice Command Dataset v2 to
obtain the optimum performance. Based on performance, the Microsoft API was integrated with
Google’s trained word2vec model to enhance the keywords with more complete semantic information.
The extracted word vector was integrated with the proposed lip-reading architecture for audio-visual
speech recognition. Three forms of convolutional neural networks (3D CNN, 3D dense connection
CNN, and multilayer 3D CNN) were used in the proposed lip-reading architecture. Vectors extracted
from API and vision were classified after concatenation. The proposed architecture enhanced the
OCSR API average accuracy rate by 14.42% using standard ASR evaluation measures along with the
signal-to-noise ratio. The proposed model exhibits improved performance in various noise settings,
increasing the dependability of OCSR APIs for practical applications.

Keywords: audio-visual speech recognition; lip-reading; application programming interface;
multi-modal interaction; deep neural networks

1. Introduction

Automatic speech recognition (ASR) uses algorithms implemented in devices such as
computers or computer clusters to convert voice signals into a sequence of words or other
linguistic entities [1,2]. Previous ASR applications were based on interactive voice response,
device control by voice, content-based voice audio search, and robotics. However, ASR
technology has improved significantly in recent years owing to the exponential increase
in data and processing power, which makes it possible to perform difficult applications.
Voice search using mobile devices, voice control in home, and numerous speech-centric
information processing applications that benefit from the downstream processing of ASR
outputs are some of the examples of advancements in ASR technology [3]. Thus, noise
robustness has become an essential core technology for large-scale, real-world applications
given that OCSR APIs must exhibit improved functionality because of the significantly
demanding acoustic scenarios.

In this study, we propose a noise enhancement system that uses a multimodal interaction
approach based on multisensory integration that refers to the interplay of information from
several senses. Multisensory integration often influences the perception of human speech. The
human nervous system comprises several specialized sensory organs, each of which conveys
certain sensory information [4]. The organization of sensory organs in the human body is
advantageous considering that each organ serves as a non-redundant source of information,
which allows organisms to detect critical sensory events with higher certainty by separately
examining the input received from each sense. However, when several sources of information
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are merged, information from different senses can be linked [5], and this can synergistically
influence the capacity to notice, assess, and start reactions to sensory events (Figure 1) [6].
The brain is divided into four lobes; Figure 1 shows the audio (red, temporal lobe) and visual
(green, occipital lobe) information in multisensory integration.

 
Figure 1. Multisensory integration comprising both auditory and visual information.

Several studies have shown that the contemporaneous observation of visual speech, such
as the movement around the speaker’s lips, significantly affects speech perception. Visual
speech information improves the ability to understand speech in scenarios when words are
spoken with an accent, or when the surrounding environment is noisy [7–9]. For example,
lip-reading can substantially improve the understanding of speech if the audio signal is
unclear [10–12]. The McGurk effect illustrates how mismatched auditory and visual speech
information affects speech perception [13]. For example, when we hear the sound “ba” while
seeing a person’s face express “ga”, many people hear “da”, a third sound that is a combination
of the two. This fusion approach contributes to the robustness of speech detection in a variety
of real-world applications, such as human–machine interaction, by overcoming the problems
of noise, auditory ambiguity, and visual ambiguity.

To the best of our knowledge, this is the first study that proposes a noise-robust
OCSR API system based on an end-to-end lipreading architecture for practical applications
in various environments. This system exhibits performance superior to those systems
that comprise only audio or visual speech recognition technology. For auditory-based
speech recognition, we evaluated the performance of four OCSR APIs (Google, Microsoft,
Amazon, and Naver) using Google Speech Commands Dataset v2 and the collected dataset
prepared by us to select the best API for our design. The word lists recognized in the
highest-performance API were expressed as word vectors using the Google Word2Vec
model, which was trained using the dataset of 1,791,232-word sentences. Similarly, we
developed a new end-to-end lipreading architecture comprising two end-to-end neural
subnetworks for visual-based speech recognition. The feature extraction method consists of
the following components: a 3D convolutional neural network (CNN), 3D dense connection
CNN for each time step to reduce the number of model parameters and avoid overfitting,
and multilayer 3D CNN to capture multichannel information in the temporal dimension
of the entire video to overcome insufficient visual information and obtain specific image
features. A bi-directional gated recurrent unit (GRU) with two layers, followed by a linear
layer, was used in the sequence processing module. Therefore, the integrated values of
word vectors obtained from speech API and the integrated values of vectors obtained
from the lip-reading model were concatenated to form vector matrix. After introducing
a SoftMax layer at each time step with a concatenated vector matrix, the entire network
was trained using the connectionist temporal classification (CTC) loss function to obtain
probabilities. Furthermore, we compared the proposed system’s accuracy and efficiency
with those of existing standalone techniques that extract the visual features and several
OCSR APIs for the collected datasets. An extensive assessment revealed that the proposed
system achieved an excellent performance and efficiency. Thus, we propose a noise-robust
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open cloud-based speech recognition API system based on an end-to-end lip-reading
architecture for practical applications.

The remainder of this paper is organized as follows. Section 2 examines relevant
research on OCSR APIs and visual speech recognition VSR systems. Section 3 introduces
the architecture of the proposed system. Section 4 presents information on the benchmark
datasets, custom collected datasets, audio-visual information processing, augmentation
technique, experimental setup, and evaluation. Finally, Section 5 presents the discussion
and conclusions.

2. Related Work

Google has published “Google Assistant” (an AI voice recognition assistant) and
various speech recognition features for autos and consumer electronics as an open API.
The technology, which supports more than 120 languages, includes various features, such
as automatic punctuation, speaker distinction, automatic language identification, and
enhanced voice adaptability. As part of Watson’s AI service package, which currently
handles 11 languages, the company offers an ASR service. However, the custom acoustic
and language model desired by the user must be initially trained using user data. In other
words, to use a personalized acoustic model, the user’s own audio must be used, and a
new corpus must be added to expand the language model. Further, Microsoft offers a
cloud service package known as Azure, and speech-to-text is an API for speech recognition
provided by Azure’s cognitive services. According to the official website, Azure employs
“breakthrough voice technology” based on decades of study. Furthermore, their website
alludes to a 2017 publication where Microsoft achieved the first-ever human-level accuracy
on the switchboard test [14]. Alexa by Amazon is a voice-activated artificial intelligence (AI)
smart personal assistant that includes features such as voice interaction and the ability to
ask and answer questions. Further, Alexa can control smart gadgets featured in intelligent
home technology. Alexa is easily available on Amazon Echo, Echo Dot, Echo Plus, and
other smart speakers. In South Korea, the Naver collaboration aggressively developed
speech recognition by launching Clova speech recognition (CSR) on 12 May 2017 [15]. The
CSR now supports Korean, English, Japanese, and Chinese languages, although Korean
has a better recognition rate.

Deep learning technology has recently demonstrated remarkable performance in a
variety of applications, including VSR systems. Deep learning algorithms can achieve
higher accuracy compared to older approaches with traditional predictions. For example,
when a CNN is used in combination with conventional approaches, the CNN architecture
can differentiate different visemes, and temporal information is added after obtaining
CNN output using an HMM framework [16,17]. Furthermore, other studies [18,19] have
integrated long short-term memory (LSTM) with histograms of oriented gradients (HOGs)
and used the GRID dataset to input recognized short words. Similarly, word predictions
were generated using an LSTM classifier with a discrete cosine transformation (DCT)
trained with the OuluVS and AVLetters datasets [17]. The sequence-to-sequence model
(seq2seq) is a deep speech recognition architecture that can read and predict the output of
an entire input sequence. For longer sequences, it takes advantage of global information.
These studies [20,21] demonstrated the recognition of audio-visual speech in a dataset
based on real words using the first seq2seq model that incorporates both audio and visual
information. The initial model is LipNet to use the end-to-end model and be trained using
sentence-level datasets (GRID corpus) for performance evaluation [22]. The overlapped and
unseen-speaker databases had word error rates of 4.8% and 11.4%, respectively, whereas
human lip-readers had a success rate of 47.7% for the same database. In [23–25], digit
sequence prediction using 18 phonemes and 11 terms, and other similar architectures such
as the CTC cascade model were implemented to evaluate the convergence of audio-visual
features. Therefore, deep learning techniques can extract more detailed information from
experimental data, which demonstrates their high level of resiliency against big data and
visual ambiguity.
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Several previous studies [26–28] focused on evaluating the recognition performance
of existing disclosed OCSR APIs and aimed to apply them to applications such as robots.
However, this study focused on improving the system using visual information in the
existing OCSR API system and showed a low error rate in a noisy environment; as a result, a
high recognition performance was demonstrated. This study presents a model that achieves
a low error rate even in noisy environments using deep learning-based audio and visual
information compared to the existing OCSR APIs that rely solely on audio information.

3. Architecture of the Proposed Model

Our lipreading system is combined with existing cloud-based speech recognition
systems, and the proposed audio-visual speech recognition system is shown in Figure 2.
The audio architecture among Microsoft, Google, Amazon, and Naver was compared to
select and combine the best performing OCSR API. The vision architecture of the proposed
model was combined with the following feature extraction methods: LipNet (used as the
baseline method), LeNet-5, Autoencoder, ResNet-50, DenseNet-121, and multi-layer CNN,
all of which exhibit exceptional feature performance.

 

Figure 2. Block diagram of proposed audio-visual speech recognition system.

In all speech recognition engines, the user’s voice is transmitted to the recognition
system using a microphone (Figure 2). To this end, we used two generic algorithms. The
voice was processed on a local device, and the recorded voice was forwarded to a cloud
server provided by Google or Microsoft for additional processing. Microsoft Cortana and
Google are commercial engines that simultaneously separate speech recognition systems
into closed and open-source code systems [29]. Speech recognition in OCSR APIs, which
is a type of closed source, allows the rapid and easy construction of application speech
recognition systems. Application speech recognition systems can be developed easily using
OCSR APIs and are therefore gaining traction in a variety of sectors. Thus, developers of
application speech recognition systems need to select suitable OCSR APIs based on the
function and performance of the system. Furthermore, the performance of OCSR APIs
varies depending on the date of the research and the type of learning data. Words output
from the OCSR API are represented by word vectors using Google’s pre-trained Google’s
Word2Vec model. Word2Vec is a set of shallow neural network models developed by
Mikolov et al. to build “high-quality distributed vector representations that capture a large
number of exact syntactic and semantic word associations” [30,31]. The dimensions of these
word vector representations, also known as word embeddings, can be in the hundreds.
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To represent a document, word embeddings can be concatenated. Google has provided a
Word2Vec model that has been pre-trained on the 100 billion words in the Google News
corpus, resulting in 3 million 300-dimension word embeddings for academics. Therefore,
five-word list were outputted and converted into 300-dimensional vectors and summed
into one single vector (Figure 2).

As mentioned above, we present a deep-learning-based VSR architecture and propose
a new feature extraction method (Figure 2). Figure 3 and Supplementary Table S1 shows
the detailed hyperparameters of the proposed architecture.

 

Figure 3. Proposed VSR system architecture. (a) 3D CNN; (b) 3D dense connection CNN;
(c) multi-layer 3D CNN.

3.1. Convolutional Layer

CNNs use raw input data directly, which results in the automation of the feature
development process. For image recognition, a 2D CNN is used to collect encoded infor-
mation for a single picture dataset and to convert that information to 2D feature maps
for computing features from spatial dimensions. However, the motion information con-
tained in numerous contiguous frames fails when utilizing a 2D CNN for video recognition
(Figure 4a). We used a spatial-temporal 3D CNN to calculate spatial and temporal features
to capture distinct lip-reading actuations around the lips, such as tongue and teeth move-
ments. When spatial and temporal information from following frames is considered, 3D
CNNs have been found to be effective in extracting attributes from video frames in several
experiments [16,22] (Figure 4b).

In this experiment, all consecutive frames input to encode the visual information of
the lips were transmitted to the CNN layers in 64 3D kernels with a size of 3 × 7 × 7
to obtain feature information, as shown in Figure 3a. We reduced the internal covariate
transformation using a batch normalization (BN) layer and ReLU to accelerate the training
process. Additionally, a max-pooling 3D layer was added to reduce the spatial scale of the
3D feature maps (Supplementary Figure S1a).
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Figure 4. Comparison of convolutions in (a) 2D; (b) 3D.

A dense connection CNN generates relationships between multiple connected layers,
allowing for full feature usage, vanishing gradient, and network depth. The input features
are decreased by the bottleneck layer placed prior to the convolution layer. As a result,
following the bottleneck layer operation, multichannel feature volumes are fused. Because
the previous features are still present, the subsequent layer is only applied to a small
number of feature volumes. Transition layers are also incorporated to increase model
compactness due to the hyperparameter theta that controls the degree of compression. A
decreased growth rate was achieved by using bottleneck and transition layers, resulting
in a narrower network, reduced model parameters, efficiently controlled overfitting, and
reduced processing resources.

We implemented the 3D dense connection CNN architecture comprising transition
layers and dense blocks, as shown in Figure 5. The transition layers (Figure 5a) are
connected in the following order: BN layer, ReLU, 3D convolution layer (3 × 1 × 1), and
average pooling 3D layer (2 × 2 × 2). The dense blocks (Figure 5b) are organized in the
following order: BN layer, ReLU, 3D convolution layer (3 × 1 × 1), BN layer, ReLU, 3D
convolution layer, and 3D convolution layers (3 × 3 × 3).

Figure 5. 3D dense connection CNN architecture. (a) 3D transition layer structure; (b) 3D dense block
structure; (c) detailed 3D dense connection CNN.

To date, image classification tasks handled with various CNN models have demon-
strated exceptional performance. For example, using the fusion of several CNNs for feature
aggregation, it is feasible to extract diverse spatial and temporal information by building
different scales and depths [32]. In addition, a different convolutional layer can extract
different features for the multilayer 3D CNN training phase to obtain more diverse feature
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information. Furthermore, by using different depths and filters of varying sizes, multiple
features may be created from this training process. Certain associated qualities that were
lost in the layered design can be chosen using this strategy, resulting in a richer final feature.
The suggested multilayer 3D CNN architecture is shown in Figure 3c. The first module
follows the 3D dense connection convolution layer output feature in the order of a 3D con-
volution layer (64 3D kernels of size 3 × 5 × 5) and then a BN-ReLU layer (Figure 6a). The
second module (Figure 6b) includes a dropout layer to prevent overtraining and overfitting
that improves and generalizes the CNN’s performance by preventing strongly correlated
activations. This is important because of the small size of the benchmark dataset compared
to other image datasets [24]. The structure of the third module drops the entire feature map
by adding a spatial dropout layer to the structure of the first module (Figure 6c). Unlike the
traditional dropout method that removes pixels at random, this method uses CNN models
with significant spatial correlation to provide superior picture categorization [33]. As a
result, we used a spatial dropout layer to efficiently extract the shape of the lips, teeth, and
tongue, which are fine movements around the mouth, with a significant spatial correlation.

Figure 6. Multilayer 3D CNN architectures: (a) first architecture; (b) second design with the dropout
layer; (c) third architecture with the spatial dropout layer.

3.2. Structure of Comparative Feature Extraction Methods

We compared the proposed method to other feature extraction methods, such as
LipNet, LeNet-5, CNN Autoencoder, and ResNet-50, which all exhibit an outstanding
feature extraction performance. The feature extraction method of LipNet as a baseline
comprises 3 × (spatiotemporal convolutions, channel-wise dropout, and spatial max-
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pooling) [22]. LeNet-5 is the earliest model of deep learning and uses a gradient-based
CNN structure for handwritten digital recognition [34]. The input layer of a typical LeNet-5
structure diagram is a handwritten digital image of 0 with a size of 32 × 32, whereas the
output layer comprises 10 nodes corresponding to 0. LeNet-5 comprises six layers in total,
namely the input and output layers: three convolutional layers, two pooling levels, and
one fully connected layer. Convolutional core sizes in the convolutional and pooling layers
were set to 5 × 5 and 2 × 2, respectively. However, the training parameters were reduced
when the connection layer decreased the number of neurons from 120 to 84. Thus, an
unsupervised model that learns to rebuild the input is used as a typical autoencoder [35].

In several domains, such as speech recognition and computer vision, deep learn-
ing models can learn intricate hierarchical nonlinear features that can provide superior
representations of original data [36]. Encoder, hidden, and decoder layers comprise the
autoencoder. The hidden layer’s input is the encoder layer’s output, and the decoder
layer’s input is the encoder layer’s output. We created an autoencoder model using Lip-
Net’s feature extraction method for experimental comparison. ResNet-50, a convolutional
neural network with 50 layers, is a ResNet [37] version comprising 48 convolution layers, a
MaxPool layer, and an average pool layer. The deep residual learning architecture lies at
the heart of ResNet. ResNet-50 is substantially smaller than other current designs, with
50 layers and over 23 million trainable parameters; extremely deep neural networks can be
employed to circumvent the vanishing gradient problem.

3.3. Recurrent Layer

The GRU is one of the recurrent neural networks and is a method of governing and
propagating information flow across many time stages [25]. GRUs are derived from LSTM
units that determine what information should be carried forward and which should be
disregarded. Given that the 3D CNN only captures brief viseme-level data, it may be able to
comprehend wider temporal contexts, which is beneficial for ambiguity detection. Because
the GRU uses update and reset gates, the gradient vanishing problem can also be overcome.
A bi-directional GRU is used as a sequence processing module in the proposed architecture.
Compared to typical GRU deployment, a bi-directional GRU provides information in both
forward and backward directions to two distinct neural network topologies coupled to the
same output layer, allowing both networks to gain full knowledge of the input.

3.4. Transcription Layer

We used the CTC method, which employs a loss function to parameterize the distri-
bution of a label token sequence without requiring the alignment of the input sequence
to an end-to-end deep neural network. CTC is conditionally independent of the marginal
distributions established at each time step of the temporal module as it restricts the usage
of autoregressive connections to manage the inter-time-step dependencies of the label
sequence. Therefore, CTC models are decoded using a beam search procedure to restore
label temporal dependence, and the language model’s probabilities are mixed.

4. Experiment

4.1. Dataset

We utilized Google Speech Command Dataset v2 and gathered a dataset to analyze the
performances of the five OCSR APIs and the proposed model (Supplementary Figure S1a) [38].
Google Speech Command Dataset v2 was released in April 2018, and it contained 105,829,35 word
utterances in one second or less. Several experiments have been conducted using this dataset
to evaluate the performance of speech recognizers [39–41]. In addition, we employed the most
frequently used speech recognition command in IoT or real life from the Word Choice part of
Google Voice Command Data Set v2 to assess the proposed model [38]. In real-life applications,
because an important unit of speech recognition is not the entire sentence but words or short
phrases, we selected words useful as commands in automobiles, robot applications, etc. Data
were gathered by enlisting people acquainted with speech recognition technology. A total of
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40 people (20 males and 20 females with a mean age of 29.14 years) participated, and they were
compensated with a $20 voucher. The participants were provided pin microphones to wear,
as shown in Supplementary Table S2a. The participants stood at a distance of 1.2 m from the
front camera and lighting, and each participant received a list of 20 keywords. The participants
repeatedly uttered the same word 100 times at a rate of 2 s per keyword for 2 h; we stored the
audio and video information and generated a total of 80,000 videos (Supplementary Table S2b).

Using a Dlib face detector, the targeted area used as the input for the end-to-end
lip-reading was detected in the data pre-processing phase by employing a HoG-feature-
based linear classifier [23]. The output was subsequently supplied in the form of (x, y)
diagonal edge coordinates, which were then used to construct the bounding box around the
mouth. Then, using a facial landmark predictor to detect movement around the lips and
extract points of lips identical to those obtained from the training dataset, 68 land-marks and
online Kalman filters were used in the iBug program [42]. Using an affine transformation, a
mouth-centered region with dimensions of 100 × 50 pixels per frame was extracted, and the
RGB channels throughout the full training set were normalized to provide zero mean and
unit variance. To avoid overfitting, we adopted the data augmentation approach from [22]
for the training data. In the training procedure, regular and horizontally mirrored picture
sequences were employed. We used individual words as additional training cases with a
decay rate of 0.925, considering that the dataset contained the starting and ending terms
serving as timers for each “clip” sample to enhance training data at the word level. With a
probability of 0.05/frame to eliminate variation, we identified the movement speed and
duplicate frames. The same dataset pre-processing and augmentation approaches were
used to train and assess all models.

4.2. Implementation

We used custom Python scripts to build the OCSR API methods (Python3.6; Rossum, 2019).
These scripts were used as wrappers for loading and submitting audio recordings to OCSR
API providers and for saving the resulting transcripts. All four providers (Microsoft Azure,
Naver Clova, AWS, and Google Cloud) adopted OCSR APIs. While an entire chapter could
be transcribed in one instance using Microsoft Azure, Naver Clova, and AWS, only 60 s of
the audio per file could be transcribed using Google Cloud. Before analyzing the text, all
capitalization and punctuation were removed, and all numbers were converted to text. Our
metric for assessing the OCSR API performance was the percentage of correctly transcribed
phrases for each recording. In addition, to compare the predicted words to the actual
words, the recognition performance was evaluated. If the two words were found to be
the same, the recognized word would be true; otherwise, it would be false. The five-word
lists following the OSCR API were converted into vectors using the pre-trained Word2Vec
model and concatenated into one single vector.

All models of the end-to-end lip-reading architecture were constructed using Keras
with a TensorFlow backend and TensorFlow-CTC decoder to evaluate the character accuracy
rate (CAR) using the CTC beam search. The complete configuration and parameters
utilized for the layers in our proposed architecture are shown in Figure 3 and listed in
Supplementary Table S1. All model network parameters were initialized through He
initialization, with the exception of square GRU matrices with orthogonal initialization and
default hyperparameters. The proposed lip-reading model was trained in the multilayer
3D CNN using channel-wise dropped pixels and the dropped channel utilizing spatial
dropout, where the proposed lip-reading architecture was the baseline that was trained on
the collected dataset until overfitting. Therefore, our combined proposed system learned
using the Adam Optimizer [43] with a learning rate of 0.0001 and mini batches of size 8 by
combining the audio and visual vector. The combined proposed system was evaluated in
an environment different from that of the data collection, while considering factors affecting
accuracy, such as illumination. For the evaluation phase, a person stood 1.5 m away from the
KIOSK screen, and a webcam was installed above the screen (Supplementary Figure S1b).
The room had normal lightning conditions and controlled noise levels. The evaluation
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process was divided into three categories to test whether the different components of the
system not based on the participants contributed to model training. In the audio-only (A)
and visual-only (V) categories, only auditory or visual information was used for recognition,
whereas both auditory and visual information were used simultaneously for recognition
(multimodal information) in the AV category. None of the participants participated in the
data collection phase.

4.3. Performance Evaluation Metrics

We employed standard automated voice recognition assessment measures to evaluate
the proposed deep-learning model. The learning loss of all models was examined to
assess their learning status during the training process. In addition, we evaluated the
parameters, training time, and character accuracy rate (CAR) for each model to compare
their performances and computational efficiencies. The total edit distance was calculated to
convert the error rate measurements, which is used to evaluate accuracy, into percentages.
It was important to compare the decoded and original texts for analyzing misclassifications.
The CAR percentage is given by

CAR(%) = 100 −
(

CS + CD + CI

CN

)
× 100, (1)

where N, S, I, and D represent the total number of characters in the ground truth, number
of characters substituted for incorrect classifications, number of characters inserted for non-
picked characters, and number of deletions that should not be present for decoded characters,
respectively. As a result, CAR is computed using (N), with C denoting the words. We
generated an approximate maximum-probability prediction for all experimental models
with the CTC beam search using a Tensor-Flow-CTC decoder. We also analyzed the CAR
over the training period in terms of the number of parameters and computational efficiency.
To visualize the data, we employed the phoneme-to-viseme mapping approach reported
in [44]. The signal-to-noise ratio (SNR) was evaluated by synthesizing noise into the acquired
source data. The diverse environments multichannel acoustic noise database (DEMAND) was
collected using 16-channel array microphones [45]. For ambient noise, we used different types
of noises divided into eight environments (park, hallway, cafeteria, station, café, square, car,
and living), and we synthesized noise to evaluate the SNR (Supplementary Table S3). In each
sample, the target speech was mixed with eight noises.

5. Results

5.1. Performance of OCSR APIs

Figure 7 shows the mean and distribution of the individual and overall performances
for all 35 words of the Google Speech Commands Dataset V2 using 5 speech recognizer
APIs. Each word has a different number of datasets, and the results for the individual
performance are listed in Supplementary Table S4. The performance evaluation was
considered to be correct if the word was the same as the prediction result of the recognized
data. The Google API shows a low performance for certain words (e.g., forward, off,
and up) and a wide variance. Naver shows a low overall performance and has a wide
distribution, as shown in Figure 7b. Amazon shows better performance than the other two
APIs; however, it demonstrates lower recognition rates for certain words (e.g., off, tree,
and up) as well as the Google API. However, among all APIs, Microsoft shows the highest
performance for all words, with excellent average and dense distribution results. Thus,
Microsoft Azure was selected as the main API.
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Figure 7. (a) Comparison of the performance of speech recognition APIs for 35 individual words
in Google dataset V2; (b) Comparison of the mean and distribution of speech recognition APIs for
Google dataset V2. Error bars represent standard deviation. The squares on the left represent the
mean and distribution, and the 35 small structures on the right represent the respective accuracies for
35 words of Google dataset V2.

5.2. Training Procedure and Learning Loss

Figure 8 shows the training and validation losses that occurred when training the
collected dataset with the audio and visual information. For audio, words output from
the OCSR API are represented by word vectors using the pre-trained Google’s Word2Vec
model. For visual, the seven models have different visual feature extraction modules
at the front end and the same sequence processing modules at the back end (Table 1).
Model A contained the same architecture as LipNet, the baseline model, whereas Models B,
C, D, E, and F used the feature extraction methods of LeNet-5, Autoencoder, ResNet-50,
DenseNet-121, and Multilayer CNN, respectively (Section 3.2). The training and validation
losses of all seven models were in good agreement. However, the gap between the training
and validation losses was the largest in Model C, and its overfitting phenomenon was
higher compared to those of other models. Further, while Model F showed lower overfitting
results (smallest among all models), it exhibited a lower convergence speed rate than those
of Models A, B, D, and E. Therefore, the learning and convergence speeds of Model G
(proposed model) were high, and the gap was small. These findings show that the suggested
model for the gathered dataset had the smallest difference between training and validation
losses, hence preventing overfitting.

Table 1. Performance, number of parameters, and training time of proposed model compared to
those of the baseline and other models.

Model Audio
Vision

Parameters
Average

Epoch Time (s)
CAR (%)

Front-End Back-End

A

Google’s
Pertained

model

3D CNN

Bi-direction
GRU + CTC

4,571,388 914.74 89.654
B 3D CNN + 3D LeNet-5 3,651,038 847.18 88.948
C 3D CNN + Autoencoder 10,576,269 1242.89 89.189
D 3D CNN + 3D ResNet-50 66,705,692 1957.81 92.365
E 3D CNN + 3D DenseNet-121 2,247,537 798.77 91.237
F 3D CNN + Multilayer 3D CNN 44,327,404 1372.30 92.459
G Proposed architecture 3,455,857 849.44 95.893
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Figure 8. Training and validation loss of the collected dataset. Models (a) A; (b) B; (c) C; (d) D; (e) E;
(f) F; and (g) G.

5.3. Characteristic Accuracy Rate

The results of the comparison between the proposed model and current deep-learning
models are listed in Table 1. The suggested model obtained the best results, with a CAR of
95.893%, which was higher than those of the other models and baseline values in all cases.
Despite the increase in accuracy of Models (C), (E), (D), and (F) over the baseline, no signifi-
cant differences were detected (Table 1). Therefore, the proposed model outperformed the
existing models, including the baseline model, in terms of accuracy; this could be owing
to the combined use of various 3D CNN architectures. Figure 9 compares the proposed
model to all other models after training with CAR on the obtained dataset. In addition,
a dataset available from [46] was used to assess the performance of the suggested model.
The performance of the suggested model remained unchanged, proving its superiority for
both open and collected datasets.
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Figure 9. Training steps for CAR comparing the proposed model toother models: Models (a) A; (b) B;
(c) C; (d) D; (e) E; (f) F; and (g) G.

5.4. Model and Computational Efficiency

The model size and computational efficiency of the proposed systems are the main
limitations of real-time applications. We examined the accuracy and computational ef-
ficiency of the models using varying numbers of trained parameters and training times
(Figure 10). Figure 10a shows the performance according to the number of parameters;
Figure 10b shows the results of the average training time comparison of the seven models
for 160 epochs. Although the proposed model is similar to the baseline model (approxi-
mately 50 s), it showed a high CAR while using approximately 11.2 M fewer parameters
compared to the other six models that used the collected dataset listed in Table 1. Compared
with the baseline model performance, we were able to improve the accuracy while lowering
the number of training parameters by approximately 11.2 M and achieving a comparable
training time when using our database.
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Figure 10. CAR of the baseline and other models according to the (a) number of parameters;
(b) average epoch time.

5.5. Confusion Matrix

Visual analysis was conducted using IBM ViaVoice database mapping [44]. A con-
fusion matrix was created for the most confusing phoneme in the bilabial viseme class
(Figure 11), which included lip-rounding-based vowels, intra-visemes, and bilabial visemes.
The experimental results showed that {/AA/, /AO/} is frequently misclassified during the
text decoding process (Figure 11a). To produce the vowel sound /AA/, as in “bat”, the
mid-back portion of the tongue must be raised, followed by the front and back portions of
the tongue stretching in opposite directions. For producing the sound /AO/, as in “orange”
and “port”, the tongue and mouth become tighter than that when making the /AA/ sound.
The recognized experiment results showed that misclassification generated from “on” and
“off” with the shortest duration time with a small mouth opening and incorrect recognition
results were obtained from the “er” portion of “center” and “under”. The intra-viseme
categorical confusion matrix is shown in Figure 11b. As illustrated in the experimental
results for [p], [b], and [m] in Figure 11c, distinguishing homophones was difficult. Based
on our assessment of the proposed model considering different perspectives, this model
can assist in overcoming technological impediments to practical implementation.

 

Figure 11. Detailed proposed architecture confusion matrices for the (a) lip-rounding based vowels;
(b) intra-visemes; (c) bilabial groups. The three groups with the greatest confusions and confusions
inside viseme clusters were selected.

5.6. Performance of Combined System

Considering the case of park noise in Supplementary Table S5a, we described the
WAR for each recognizer (e.g., A, V, and AV) at different SNR levels. For an auditory-only
(A) recognizer, the highest word accuracy rate was 78.28% ± 4.21%, which was obtained
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at an SNR of 35 dB, as shown in Figure 12a. The WAR of visual-only (V) for various SNR
values were calculated as 74.54% ± 1.96%. The V recognition cases relied only on visual
information and remained unaffected by the clearance of the audio signal or SNR level.
Participants in the A, V, and AV recognition cases did not participate in the data collection
phase. The process of evaluating A, V, and AV recognition using the KIOSK for performance
was different from the data collection environment because the experiment was conducted
naturally without limiting variables such as the height of the speaker against the fixed
cameras, the shape of the mouth during pronunciation, and lighting. Therefore, different
factors could contribute to the difference in the WAR between learning outcomes and
evaluation in some real-world applications.

The AV recognition cases, in which both auditory and visual signals were used simul-
taneously for recognition, exhibited WAR scores of 90.94% ± 1.62%, which showed a 12.66%
improvement in the recognition rate compared to A recognition. Therefore, combining
sound and images can effectively infer spoken words in the presence of ambient noise.

Based on previous results, we compared the performance of multimodal recognition
cases (AV) and single-modal recognition (A) while changing the noise environment. We
switched the applied noise environment to a hallway-like noise environment, as listed in
Supplementary Table S5b. Thus, the WAR of AV was calculated as 92.09% ± 1.18% with
enhancement rates of up to 4.44% compared to the WAR of A.

Supplementary Table S5c,d show the results obtained when the noise environment is
switched to the cafeteria and station, respectively. For the cafeteria-like noise environment,
the (A) recognition cases scored the lowest value with a WAR of 74.53% ± 5.14%. However,
the recognition rate of the AV was 89.76% ± 1.96%, with a 15.23% improvement compared
to case A (Figure 12c). In the station noise environment, the AV recognition rate was
93.14% ± 1.51% with an improvement of 3.77% compared to that of A (89.37% ± 2.61%),
as shown in Figure 12d.

The street category comprised two different environments: a café and square. The
terrace of the café in a public square was considered, and the square was a public town
square with many tourists, as listed in Supplementary Table S5e,f, respectively. For the
café noise environment, the recognition rates for A and AV were 90.12% ± 3.21%, and
92.78% ± 1.35%, respectively, with an improvement in recognition accuracy up to 2.66% for
AV (Figure 12e). For the square noise environment, the recognition rates of A and AV were
89.96% ± 3.18%, and 92.93% ± 1.73%, respectively, with an improvement in recognition
accuracy of up to 2.97% for AV.

The environment in which audio-only recognition (A) had the highest recognition rate
was cars (Figure 12g and Supplementary Table S5g). The recognition rates for A and AV
were 93.68 ± 2.03%, and 95.01% ± 1.18%, respectively. The recognition accuracy for AV
was up to 1.33%.

For the living room noise listed in Supplementary Table S5h, the recognition rates of A
and AV were 77.71% ± 3.94% and 92.13% ± 1.35%, respectively. For AV, the recognition
rates were improved by 14.42% (Figure 12h).

Figure 13 shows the statistical significance of the t-test between each group. In general,
AV showed an average improvement in the recognition rate of 11.05% and 7.19%, respectively,
compared to A. Supplementary Table S6 lists a significant difference of 20.48% between
the highest (95.01%) and lowest (74.53%) recognition rates across all eight environments.
However, the difference between the maximum and minimum was significantly reduced from
19.15% (A (difference of cafeteria and car)) to 5.251.93% (AV, (cafeteria and car)) by combining
multimodal inputs (audio and visual) to recognize spoken words. Thus, unlike A, which
showed a good recognition rate in a specific environment (e.g., car noise environment), AV
exhibited a superior recognition rate in multiple noise environments (eight environments).
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Figure 12. Average recognition accuracy rate with a standard deviation under eight noise environ-
ments. Error bars represents standard deviation. The black (single-modal recognition) line represents
the audio recognition result, the blue (single-modal recognition) line represents the visual recognition
result, and the red (multimodal recognition) line represents the audio-visual recognition result.
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Figure 13. Best average recognition accuracy rates under eight noise environments. Error bars repre-
sent standard deviation. Asterisks represent statistical significance-based t-tests between each group
(* for p < 0.05, ** for p < 0.01, *** for p < 0.001). The gray (single-modal recognition) line represents the
audio recognition result, the blue (single-modal recognition) line represents the visual recognition result,
and the red (multimodal recognition) line represents the audio-visual recognition result.
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6. Discussion

In recent years, the ASR technology has significantly improved because of the expo-
nential increase in large data and processing power, which has made it possible to create
complex applications such as voice search and interactions with mobile devices, voice
control in home entertainment systems, and various speech-centric information processing
applications that benefit from the downstream processing of ASR outputs [3]. Considering
that OCSR APIs must function appropriately in demanding acoustic scenarios compared to
those in the past, noise robustness has become an essential core technology for large-scale,
real-world applications.

This study proposes noise-robust OCSR APIs based on an end-to-end lip-reading
architecture for practical applications in various environments. We compared the per-
formance of five OCSR APIs with excellent performance ability. Among all OCSR APIs,
Microsoft’s API achieved the best performance on the Google Speech Command Dataset
V2. Further, we evaluated the performance of several deep-learning models that analyzed
visual information to predict keyword sequences. The results show that the proposed
architecture achieves the best performance. Moreover, the proposed system requires fewer
parameters and provides faster training times than those of the existing models. Compared
to the baseline model, the proposed model decreased the number of parameters by 11.2 M
and increased the accuracy by 6.239%.

We measured the SNR of the combined proposed system by synthesizing eight noise
data and OCSR API outputs to compare the performance for various noise environments.
Audio-based speech recognition systems, which showed excellent performance in only
specific environment such as a car, demonstrated stable and excellent performance in
all environments using visual information. Supplementary Table S6 shows the highest
word accuracy and standard deviation values for each of the eight environments. The
lowest and highest recognition rates of audio-based speech recognition were calculated as
74.53% and 95.01%, respectively, with a difference of 19.15%, which indicates a significant
performance difference based on the specific environment. However, the difference between
the two performances was reduced from 19.15% to 5.25% by adding visual information
using multimodal interaction methods, and the same performance was achieved in several
environments. To solve problems based on the type of environment, two sets of experiments
(A, V, and AV) were conducted; stable performances were observed in all environments.
The proposed system showed consistent performance in various environments compared to
the performance of conventional audio-based speech recognition, which showed excellent
performance in only specific environments.

7. Conclusions

We demonstrated a speech recognition system robust to noise using multimodal inter-
action based on visual information. Our system consisted of an architecture that combines
audio and visual information, and its performance was evaluated under eight noise envi-
ronments. Unlike conventional speech recognition, which shows high performance only
in specific environments, we showed the same stable high performance in various noise
environments, and simultaneously showed that visual information contributed to improv-
ing speech recognition. Therefore, our method showed a stable and high performance in
various noise environments by combining lip-reading, a technology that can enhance the
speech recognition system, with existing cloud-based speech recognition systems. This
system has potential in various applications, such as IoT and robot applications, that use
speech recognition in noise and can be useful in various real-life applications where speech
recognition is frequently used, particularly indoors, including hallways, cars, and stations,
and outdoors, such as parks, cafés, and squares.

Future Work

Multimodal interactions based on visual information must be used to produce noise-
resistant ASR. The proposed system may be helpful for patients who have difficulty in
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conversation owing to problems with speech recognition in noisy environments. However,
applying this technology to conversation recognition is problematic. Therefore, we will seek
to expand the system’s capabilities to identify phrases rather than individual words in the
future. We will also examine the performance of the suggested system in real-world settings
involving humans and machines. Despite the intense effort invested into the development of
an accurate speech recognition system, the development of a lightweight system that is robust
with respect to real-life circumstances while accounting for all uncertainties is still challenging.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22082938/s1, Figure S1. (a) Data recording environment for
audiovisual data and (b) evaluation of auditory-visual speech recognition system; Table S1. Hy-
perparameters of the proposed CNN architecture; Table S2. (a) Google Speech Commands Dataset
v2 and (b) Collected Speech Commands Dataset; Table S3. Noise database structure: Categories
and recordings conducted in each category; Table S4. Performance evaluation of speech recognition
systems on Google Speech Commands Dataset V2; Table S5. Average word accuracy and standard
deviation of proposed system in eight environments; Table S6. Best word accuracy and standard
deviation of proposed system in eight environments.

Author Contributions: Conceptualization, S.J.; methodology, S.J.; software, S.J.; validation, S.J.;
formal analysis, S.J.; investigation, S.J.; resources, S.J.; data curation, S.J.; writing—original draft
preparation, S.J.; writing—review and editing, M.S.K.; visualization, S.J.; supervision, M.S.K.; project
administration, S.J.; funding acquisition, M.S.K. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by National Research Foundation of Korea (NRF) grant funded
by the Korea government (MSIT), grant number NRF-2018X1A3A1069795.

Institutional Review Board Statement: As a reason for indemnification, in accordance with Article
13 of the Enforcement Rules of “Research on Human Subjects”, “A study that does not collect and
record personal identification information, and one or more of the following studies are exempt from
deliberation, and in detail, it is a study that uses only simple contact measurement equipment or
observation equipment that does not cause physical changes”. Only human voice and lip information
were collected and used; thus, there is no personal identification information and only observation
equipment is used. Therefore, there is no IRB registration number owing to the indemnification reasons.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to ethical restrictions. The database
used in this article is Google Speech Commands Dataset V2. For details, please refer to [38].

Acknowledgments: We would like to thank Ahmed Elsharkawy and Dongwoo Koo for their help
with data collection, analytic review, editing, and experimentation.

Conflicts of Interest: The authors declare no conflict of interest. The funder had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References

1. Huang, X.; Acero, A.; Hon, H. Spoken Language Processing; Prentice Hall: Hoboken, NJ, USA, 2001.
2. Deng, L.; O’Shaughnessy, D. Speech Processing: A Dynamic and Optimization-Oriented Approach; CRC Press: London, UK, 2003.
3. He, X.; Deng, L. Speech-Centric Information Processing: An Optimization-Oriented Approach. Proc. IEEE 2013, 101, 1116–1135.

[CrossRef]
4. Venezia, J.; Matchin, W.; Hickok, G. Multisensory Integration and Audiovisual Speech Perception. Brain Mapp. Encycl. Ref. 2015,

2, 565–572.
5. Campbell, R. The Processing of Audio-Visual Speech: Empirical and Neural Bases. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008,

363, 1001–1010. [CrossRef] [PubMed]
6. Calvert, G.; Spence, C.; Stein, B.E. The Handbook of Multisensory Processes; MIT Press: London, UK, 2004.
7. Sumby, W.H.; Pollack, I. Visual Contribution to Speech Intelligibility in Noise. J. Acoust. Soc. Am. 1954, 26, 212–215. [CrossRef]
8. Dodd, B. The Role of Vision in the Perception of Speech. Perception 1977, 6, 31–40. [CrossRef] [PubMed]

73



Sensors 2022, 22, 2938

9. Jones, J.A.; Callan, D.E. Brain Activity During Audiovisual Speech Perception: An fMRI Study of the McGurk Effect. Neuroreport
2003, 14, 1129–1133. [CrossRef]

10. Risberg, A. The Importance of Prosodic Speech Elements for the Lipreader. Scand. Audiol. 1974, 4, 153–164.
11. Grant, K.W.; Ardell, L.H.; Kuhl, P.K.; Sparks, D.W. The Contribution of Fundamental Frequency, Amplitude Envelope, and

Voicing Duration Cues to Speechreading in Normal-Hearing Subjects. J. Acoust. Soc. Am. 1985, 77, 671–677. [CrossRef]
12. Bernstein, L.E.; Eberhardt, S.P.; Demorest, M.E. Single-Channel Vibrotactile Supplements to Visual Perception of Intonation and

Stress. J. Acoust. Soc. Am. 1989, 85, 397–405. [CrossRef]
13. McGurk, H.; MacDonald, J. Hearing Lips and Seeing Voices. Nature 1976, 264, 746–748. [CrossRef]
14. Xiong, W.; Wu, L.; Alleva, F.; Droppo, J.; Huang, X.; Stolcke, A. The Microsoft 2017 Conversational Speech Recognition System. In

Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, AB, Canada, 15–20
April 2018; pp. 5934–5938.

15. Kim, J.-B.; Kweon, H.-J. The Analysis on Commercial and Open Source Software Speech Recognition Technology. In Interna-
tional Conference Computability Science Intellettuale Appliance Informatics; Studies in Computational Intelligence; Springer: Cham,
Switzerland, 2020; pp. 1–15. [CrossRef]

16. Ji, S.; Xu, W.; Yang, M.; Yu, K. 3D Convolutional Neural Networks for Human Action Recognition. IEEE Trans. Pattern Anal. Mach.
Intell. 2012, 35, 221–231. [CrossRef] [PubMed]

17. Petridis, S.; Pantic, M. Deep Complementary Bottleneck Features for Visual Speech Recognition. In Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing, Shanghai, China, 20–25 March 2016; Volume 2016,
pp. 2304–2308.

18. Wand, M.; Koutník, J.; Schmidhuber, J. Lipreading with Long Short-Term Memory. In Proceedings of the 2016 IEEE International
Conference on Acoustics, Speech and Signal Processing, Shanghai, China, 20–25 March 2016; pp. 6115–6119.

19. Cooke, M.; Barker, J.; Cunningham, S.; Shao, X. An Audio-Visual Corpus for Speech Perception and Automatic Speech Recognition.
J. Acoust. Soc. Am. 2006, 120, 2421–2424. [CrossRef] [PubMed]

20. Noda, K.; Yamaguchi, Y.; Nakadai, K.; Okuno, H.G.; Ogata, T. Lipreading Using Convolutional Neural Network. In Proceedings
of the Fifteenth Annual Conference Interna Speech Commentata Associação, Singapore, 14–18 September 2014.

21. Zhou, Z.; Zhao, G.; Hong, X.; Pietikäinen, M. A Review of Recent Advances in Visual Speech Decoding. Image Vis. Comput. 2014,
32, 590–605. [CrossRef]

22. Assael, Y.M.; Shillingford, B.; Whiteson, S.; De Freitas, N. Lipnet: End-to-End Sentence-Level Lipreading. arXiv 2016,
arXiv:1611.01599.

23. Zhang, P.; Wang, D.; Lu, H.; Wang, H.; Ruan, X. Amulet: Aggregating Multi-Level Convolutional Features for Salient Object
Detection. In Proceedings of the IEEE International Conference Computability Vision, Venice, Italy, 22–29 October 2017;
pp. 202–211.

24. Graves, A.; Fernández, S.; Gomez, F.; Schmidhuber, J. Connectionist Temporal Classification: Labelling Unsegmented Sequence
Data with Recurrent Neural Networks. In Proceedings of the 23rd International Conference Machine Learning, Pittsburgh, PA,
USA, 25–29 June 2006; pp. 369–376.

25. Chung, J.S.; Zisserman, A. Learning to Lip Read Words by Watching Videos. Comput. Vis. Image Understand 2018, 173, 76–85.
[CrossRef]

26. Këpuska, V.; Bohouta, G. Comparing Speech Recognition Systems (Microsoft API, Google API and CMU Sphinx). Int. J. Eng. Res.
Appl. 2017, 7, 20–24. [CrossRef]

27. Yoo, H.J.; Seo, S.; Im, S.W.; Gim, G.Y. The Performance Evaluation of Continuous Speech Recognition Based on Korean
Phonological Rules of Cloud-Based Speech Recognition Open API. Int. J. Network Distr Comput. 2021, 9, 10–18. [CrossRef]
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Abstract: Concomitant with the recent advances in deep learning, automatic speech recognition
and visual speech recognition (VSR) have received considerable attention. However, although VSR
systems must identify speech from both frontal and profile faces in real-world scenarios, most VSR
studies have focused solely on frontal face pictures. To address this issue, we propose an end-to-
end sentence-level multi-view VSR architecture for faces captured from four different perspectives
(frontal, 30◦, 45◦, and 60◦). The encoder uses multiple convolutional neural networks with a spatial
attention module to detect minor changes in the mouth patterns of similarly pronounced words,
and the decoder uses cascaded local self-attention connectionist temporal classification to collect
the details of local contextual information in the immediate vicinity, which results in a substantial
performance boost and speedy convergence. To compare the performance of the proposed model for
experiments on the OuluVS2 dataset, the dataset was divided into four different perspectives, and
the obtained performance improvement was 3.31% (0◦), 4.79% (30◦), 5.51% (45◦), 6.18% (60◦), and
4.95% (mean), respectively, compared with the existing state-of-the-art performance, and the average
performance improved by 9.1% compared with the baseline. Thus, the suggested design enhances
the performance of multi-view VSR and boosts its usefulness in real-world applications.

Keywords: lipreading; visual speech recognition; multi-view VSR; deep learning; attention mech-
anism; spatial attention module; convolutional neural network; local self-attention; connectionist
temporal classification

1. Introduction

Hearing and vision, sometimes known as verbal and visual signals, are widely em-
ployed in communication. Because audio signals typically include more information than
visual signals, various experiments on automatic speech recognition (ASR) have been
performed. Consequently, ASR has attained a very high recognition rate without causing
significant signal deterioration. Moreover, it has been used in numerous applications. In
contrast, visual speech recognition (VSR) recognizes speech content based on the speaker’s
lip-movement features in the absence of speech signals, that is, the speech information
is inferred from the movement of the lips. In particular, the visual channel receives two-
dimensional visual information, which typically contains more redundant information
than that contained in the one-dimensional spoken information received via the auditory
channel. Overcoming these VSR limitations is challenging.

People with hearing loss frequently communicate using sign language or by reading
the movement of the person’s lips. However, sign language has limitations, such as learning
and comprehension difficulties, as well as insufficient expression skills. In this regard,
VSR can help people with hearing loss interact effectively with others [1,2]. In noisy
environments, interference from ambient noise can reduce audio recognition rates. By
contrast, the visual information required for VSR does not change; consequently, VSR can
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increase speech-recognition performance in noisy contexts [3,4]. In particular, owing to
the dominance of facial recognition technology in the field of security, including the use
of photographs, video playback, and 3D modeling, VSR technology has been subjected
to a large number of attacks. In this approach, including lip movement into a security
system might improve its reliability [5]. Additionally, conventional speech synthesis can
only generate a single voice in the primary domain of visual synthesis, whereas lipreading
technology may generate high-resolution speeches of several characters in a video [6].
Furthermore, lip gestures can be employed to increase sign-language identification accuracy
or comprehension [7,8].

Recent research has predominantly focused on lipreading from a frontal perspective [9–15].
This approach contradicts previous findings in the literature showing that human lipreaders
prefer non-frontal views [16,17], owing to noticeable lip protrusion and lip rounding at
these angles. Therefore, it might be practical to improve frontal-view lipreading abilities
using non-frontal lip view information. This information can also be helpful when a frontal
view of the mouth, which is the region of interest (ROI), is unavailable. This is true in
real-life situations in which the subject’s face is not visible [11,18,19]. In other words, in an
audio VSR or VSR system, the speaker is not continually facing the smart device, kiosk,
or camera.

Recently, several VSR systems have been proposed [20–26]. However, most VSR
studies focus on frontal facial images because of the shortage of published datasets that
include facial images from different angles. These investigations include lipreading studies,
in which the emphasis is on frontal, diagonal, and profile images. The OuluVS2 [27] dataset,
a publicly accessible multi-view VSR dataset, is typically used as a research corpus for
evaluating novel approaches.

Estellers and Thiranin [28] trained a system using both frontal (0◦) and profile (90◦)
faces and performed exploratory research on multi-view lipreading. Their study demon-
strated that the frontal perspective exhibited a lower word error rate (WER) than the profile
view. Isobe et al. [29] examined the frontal (0◦), left profile (90◦), and right profile (90◦)
viewpoints using a multi-angle approach. When the frontal perspective was used instead
of the other perspectives, the system performance improved. As a breakthrough sequence-
picture encoding approach, Saitoh et al. [21] proposed concatenated frame image encoding
(CFI). They developed a framework for a convolutional neural network (CNN) based on
CFI and compared two data augmentation methodologies for CFI.

Bauman et al. [16] observed that AI lipreaders perform better when human faces are
slightly inclined because of lip protrusion and rounding. They used the active appearance
model (AAM) to extract features from five distinct angles. Using a regression technique in
feature space to assess lipreading on both view-dependent and view-independent systems,
they reported that the view-dependent system outperformed benchmark models in all tests,
receiving a perfect score of 30. Aiming at blending diverse views, Zimmermann et al. [22]
coupled principal component analysis-based convolutional networks with long short-term
memory (LSTM), a deep learning model, a conventional voice recognition model, hidden
Markov models, and Gaussian mixture models. They found that a 30◦ face inclination pro-
duced the best effects. Anina et al. [27] recorded the best accuracy at 60◦. Lipreading with
a profile view produces lower WERs than lipreading with a frontal viewpoint, according
to Kumar et al. [20].

Deep learning has also been used to blend multiple view angles and edit photographs.
In particular, Komai et al. [30] implemented AAMs to transform frontal faces viewed from
various angles. Their results suggested that identification accuracy increased even when
the face orientation was rotated roughly 30◦ from the frontal perspective. The “View2View”
system developed by Koumparoulis and Potamianos [23] relies on a CNN-based encoder–
decoder paradigm. The technique converts non-frontal mouth photographs into frontal
mouth images. Their view-mapping method for VSR and audio-visual speech recognition
(AVSR) was reported to be successful.
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By synthesizing virtual frontal views from non-frontal images, Estellers et al. [28]
devised a position normalization technique and accomplished multi-view speech recog-
nition. Petridis et al. [24] proposed a multi-view bidirectional LSTM-based lipreading
model. The proposed approach considers data directly from pixels while simultaneously
performing VSR from various perspectives. They discovered that combining the frontal
and profile images boosted the accuracy when compared to using only the frontal view.
Zimmermann et al. [25] implemented a PCA-based CNN, LSTM network, and GMM–HMM
model to extract features in a decision fusion-based lipreading model. They reported that
the decision fusion was effective because Viterbi pathways were included. In addition, to
perform multi-angle lipreading, Sahrawat et al. [26] employed view-temporal attention
to expand a hybrid attention-based connectionist temporal classification (CTC) system.
Finally, Lee et al. [31] trained a CNN–LSTM model from beginning to end.

Evidently, numerous studies have been conducted based on deep learning. How-
ever, fewer studies have been conducted on multi-view lipreading than existing speech
recognition and front lipreading studies.

Therefore, considering the above-mentioned limitations, we propose a multi-view
VSR architecture that supports VSR when both frontal and non-frontal lip pictures are
identified. In particular, for non-frontal views, we developed an end-to-end sentence-level
multi-view lipreading neural-network architecture that outperforms traditional and current
deep learning VSR systems. Convolutional, recurrent, and transcriptional layers were
sequentially applied to develop the multi-view VSR architecture.

The remainder of this paper is structured as follows: Section 2 delves into the details
on the proposed architecture, Section 3 discusses the experiments, and Section 4 discusses
the results. Finally, Section 5 provides the concluding remarks of this study.

2. Proposed Architecture

In this section, we propose a novel feature-extraction approach. In particular, the
proposed architecture is divided into three layers (convolutional layer, recurrent layer,
transcription layer) based on an end-to-end neural network with four different perspective
inputs, as shown in Figure 1. The three layers are compared against various modules for
their performance evaluation. In the convolutional layer, based on the visual extraction
module proposed in a previous study [32], the model was modified to improve the feature
extraction performance and convergence speed. To compare the modules of the proposed
architecture, three current equivalent designs were implemented: multi-scale 3D CNN,
spatial attention module (SAM), and integrated multi-scale 3D CNN (Figure 1a). In addition,
the recurrent layer was compared as a sequence-processing module with other modules,
such as residual neural network (RNN), LSTM, gated recurrent unit (GRU), Bi-LSTM, and
Bi-GRU (Figure 1b). The transcription layer was compared as a process for decoding the
output features with other components, such as standard CTC, global self-attention-CTC,
and local self-attention-CTC (Figure 1c).
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Figure 1. Block diagram of the proposed multi-view lipreading architecture; (a) convolutional layer;
(b) recurrent layer; and (c) transcription layer.

2.1. Convolutional Layer

To encode visual information from the extracted lips, all input-image sequences
were loaded into a spatiotemporal CNN. We extracted spatiotemporal information from
an input image composed of numerous continuous frames using a three-dimensional
convolutional layer with 64 kernels; 3 × 5 × 5, (1, 2, 2), and (1, 2, 2) are the sizes, strides, and
pads, respectively. To minimize the transformation of internal variables, we used a batch
normalization (BN) layer and a rectified linear unit (ReLU) layer to accelerate the training
process. Subsequently, a max-pooling 3D layer was used to decrease the spatial size of the
3D feature maps. Thus, the output form was observed utilizing 40 × 50 × 25 × 64 tensors
with an input sequence of 40 × 100 × 50 × 3 frames.

A densely linked connection contains several connections. In this regard, CNN con-
nects numerous layers of a connection, allowing for efficient feature usage, decreased
gradient disappearance, and increased network depth. The input-feature volumes are
reduced by the bottleneck layer, which comes before the convolutional layer. The mul-
tichannel feature volumes are merged using the bottleneck layer approach. The second
layer is applied to only a fraction of the volume of the previous features because the
prior features remain visible. Additionally, transition layers are utilized to increase the
model’s compactness, with the hyperparameter theta controlling the degree of compression.
A bottleneck layer, transition layer, and slower growth rate are used to create a tight net-
work. This strategy saves computing power while minimizing model parameters and
preventing overfitting.

Dense connection CNN is an architecture that focuses on making deep learning
networks go even deeper, while simultaneously making them more efficient to train by
using shorter connections between the layers (Figure 2). Figure 2a displays a CNN, where
each layer is connected to all of the other layers that are deeper in the network, and it
consists of two important blocks other than the basic convolutional and pooling layers, that
is, the dense blocks and the transition layers. Dense block (1) was built using the following
layers in order: BN, ReLU, 3D convolutional, BN, ReLU, and 3D convolutional layers (see
Figure 2b). Dense blocks (2), (3), and (4) have the same structure as dense block (1). The
transition layer is depicted in Figure 2c, which comprises a BN layer, ReLU layer, three 3D
convolutional layers, and two 2D pooling layers.
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Figure 2. Details of 3D dense connection CNN architecture: (a) dense connection CNN; (b) dense
block layer structure; and (c) transition layer structure.

Different CNN models have yielded outstanding results in picture classification tasks.
One such example is feature aggregation using numerous CNNs, which allows the ex-
traction of diverse spatial and temporal information by creating separate structures and
depths [33]. Several convolutional layers with varying degrees of abstraction can be ex-
tracted during the multi-scale 3D CNN training phase. This training technique can also
produce a range of features with various depths and filter sizes. Some of the essential
characteristics lost in the layered design can be selected using this strategy, resulting in
a more feature-rich final product.

The attention mechanism can boost the feature representation strength of our interests
by telling us “what” and “where” to focus our attention. Attention weighting is used
in computer vision to boost the feature representation capacity by emphasizing relevant
characteristics and limiting inconsequential characteristics. Moreover, attention can be
regarded as a strategy for allocating a finite computational force to more informative
areas [34–36]. Hu et al. [37] proposed the “Squeeze-and-Excitation” module to describe
the channel-wise correlation of convolutional features without considering the spatial
information. The convolutional block attention module [38] empirically demonstrated that
both max-pooling and average-pooling operations contribute to the attention mechanism.
Additionally, the inter-spatial interactions feature may be utilized to produce a map of
spatial attention. Spatial attention, in contrast to channel attention, focuses on the locations
of informative sections and serves as a supplement to channel attention. As a result, the
weights associated with attention are distributed over two separate dimensions in this
model: channel and space.

The model initially executes average-pooling and max-pooling operations along the
channel axis before concatenating them to build an efficient feature descriptor to compute
spatial attention. To construct a spatial attention map Ms(F) ∈ RH×W, a convolutional
layer is applied to the concatenated feature descriptor. Subsequently, two pooling processes
are used to aggregate the channel information of a feature map, resulting in two 3D maps:
Fs

avg ∈ R
H×W and Fs

max ∈ R
H×W, each representing the average- and max-pooled features

over the channel. A 3D spatial attention map is created by concatenating and convolving
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them with a conventional convolutional layer. In brief, spatial attention is calculated using
the following formula:

Ms(F) = σ(f7×7([AvgPool(F); MaxPool(F)])), (1)

Ms(F) = σ(f7×7(
[

Fs
avg; Fs

max

]
)), (2)

where σ denotes the sigmoid function, and f7×7 represents a convolution operation with
a filter size of 7 × 7 (Figure 3b).

Figure 3. Details of the spatial attention module-integrated MLFF 3D CNN: (a) Block diagram of the
proposed module; (b) spatial attention module; (c) first module’s architecture; (d) second module’s
architecture with dropout layer; and (e) third module’s architecture with spatial dropout layer.

Because several existing studies implement learning approaches based on sentence
front-view datasets [32,39–41], it is difficult to expect high accuracy using the same model
for multiple viewpoints. Therefore, we propose an SAM-integrated-MLFF 3D CNN, which
is a network module focusing on spatial attention with different neighborhoods in the
feature maps (Figure 3a). The first module (Figure 3c) comprises a 3D convolutional layer
on a 3D dense connection convolutional layer output feature with 32 kernels, followed by
a BN layer and a ReLU layer. The second module (Figure 3d) is structured similarly to the
benchmark dataset, with a 3D convolutional layer with 64 kernels, followed by a dropout
layer to prevent overfitting. By inhibiting the formation of highly correlated activations,
the dropout layer enhances and generalizes the performance by avoiding overtraining
and overfitting [42].

The third module, which contains a 3D convolutional layer with 96 kernels, is similar
to the second module, except for the absence of a dropout layer (Figure 3e). In particular,
this method drops the entire feature map. Moreover, in contrast to the traditional dropout
method, which removes pixels at random, this method employs CNN models with substan-
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tial spatial correlation to improve image classification [43]. Consequently, we employed
a spatial dropout layer to extract lips, teeth, and tongue morphologies, which have strong
spatial connectivity and contain few movements. Each SAM multi-scale 3D CNN module
consists of 3D average-pooling, 3D max-pooling, and 3D convolutional layers, with 32,
64, and 96 3D kernel operations, respectively, along the channel axis and a concatenated
BN layer (Figure 3b). Therefore, the output of each multi-scale 3D CNN and SAM is
merged and concatenated. As a result, SAM exploits the inter-spatial interaction of the
characteristics to better select and focus on the most identifiable and helpful portions of
an tinput picture [38].

2.2. Recurrent Layer

Traditional recurrent neural networks (RNNs), LSTM, and GRU are examples of
previously implemented RNN algorithms. Owing to the gradient vanishing issue, a typical
RNN has difficulties in learning long-range dependent input and output data, owing to the
backpropagation technique’s inability to perform adequately with an increase in input data.
To overcome this issue, Hochreiter and Schmidhuber [44] created the LSTM network, which
is currently widely used in time-series-data processing [45–47]. By efficiently overcoming
the gradient vanishing issue through effective learning, LSTM and GRU achieve higher
levels of validation and prediction accuracy than traditional RNNs, particularly for long-
range dependent input and output data [45,47].

A GRU is an RNN that, through multiple stages, learns to manage and transmit
information flow [48]. GRUs are constructed using LSTM units that can decide which data
to retain and discard. While the 3D CNN only gathers data at the viseme level, GRUs
can differentiate across greater temporal contexts, which is crucial for resolving ambiguity.
GRU, which consists of an update gate and a reset gate, can also be used to address the
gradient vanishing issue.

A two-layer bidirectional GRU is implemented in the proposed architecture, providing
a faster convergence speed than a sequence processing module. The two-layer bidirectional
GRU is used to transfer information both ways to two distinct neural network topologies
coupled to the same output layer, enabling both networks to acquire substantial knowledge
of the input. The SAM-integrated-multi-scale 3D CNN provides the input to the two-layer
bidirectional GRU layer. For instance, to obtain an output containing 40 × 512 tensors, we
submitted a bidirectional GRU 40 × 3 × 1 × 384 frame sequence into the merging layer.

2.3. Transcription Layer

Assael et al. [18] used “LipNet” (their neural network, which had outperformed experi-
enced human lip readers) to train a network of end-to-end deep neurons on a benchmark
dataset, using the effective CTC loss function [49] for acoustic-based speech recognition. The
CTC loss function parameterizes the distribution of the label token sequence without having
to align the input sequence; it is conditionally independent of the surrounding distribution
generated at each time step. Therefore, the CTC model is a decoding method that uses
a beam search technique to detect the temporal dependence of labels.

It is worth noting that the CTC loss function assumes conditional independence of
independent labels (i.e., individual character symbols). Each output unit corresponds to
the probability of seeing one label at a time. As a result, although CTC is built on RNNs, it
is primarily concerned with local data (nearby frames) [50]. While this strategy is effective
for forecasting acoustic phonemes, it is not effective for predicting visemes, which require
additional background information to discern tiny variations.

Figure 4 illustrates that the self-attention mechanism [36,51] is a technique to better
encode the word at the target location by looking at the word at another location and taking
hints from each word in the input full-sequence sentence. Figure 4a depicts the processing
process of the self-attention mechanism, with the global area enclosed by a blue-line square
and the local area by a red dotted line. Furthermore, Figure 4b shows an example of the
mechanism processing process presented in Figure 4a for the sentence “Nice to meet you”.
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The multi-head self-attention modules that transformers are known for constitute their
distinguishing feature [36]. Given an input X ∈ R

T×n, where T is the number of time steps
and n is the hidden state dimension, a set comprising query, key, and value matrices is
generated using the weight matrices WQ

h , WK
h , and WV

h ∈ R
n×dk , respectively, where dk

is the dimension of the heads of the attention module. There is one embedding per head,
denoted by the subscript h.

Qh = XWQ
h , (3)

Kh = XWK
h , (4)

Vh = XWV
h . (5)

 

Figure 4. (a) Details regarding the global and local self-attention process: the blue line square encloses
the global area, and red dotted line square encloses the local area; and (b) self-attention mechanism
processing process presented for the sentence “Nice to meet you”. (* for dot product).

The keys and queries are multiplied to obtain a T × T attention matrix A. This matrix
encodes the relative relevance of each time step, that is, how much attention each time
step receives, by assigning a scalar to each pair of time steps. A SoftMax function with
temperature

√
dk is applied to convert this into a normalized distribution. The value matrix

is subsequently multiplied by the normalized attention matrix. Consequently, each time
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step has a linear combination of value embeddings, with the most significant embedding
receiving the largest weights as follows:

Atth = Softmax

(
QhKT

h√
dk

)
Vh. (6)

The heads are then concatenated and transformed back to the original dimension n
using the weight matrix Wout ∈ R

dk·nh×n, where nh is the number of heads. Moreover,
a residual connection connecting the output to the input is added as follows:

Xout = Concath(Atth)W
out + X. (7)

Subsequently, each time step is standardized via layer normalization. For time step
t, the overall mean of the feature dimension is subtracted from the input, which is then
divided by the standard deviation. This is rescaled and shifted by the learnable parameters
α and β as follows:

Xnorm
t =

Xout
t − μt
σt

·α+ β, (8)

where
μt =

1
n ∑

i
Xout

ti , (9)

σt =

√
1
n
(
Xout

ti − μt
)2. (10)

Next, a feedforward neural network is applied in a time-step-wise manner. This
part typically consists of two fully connected layers parameterized by weight matrices
W1 ∈ R

n×φn, W2 ∈ R
φn×n; bias vectors b1 ∈ R

φn, b2 ∈ R
n; and a residual connection

as follows:
f(Xnrom

t W1 + b1)W2 + b2 + Xnrom
t , (11)

where f (·) is an element-wise activation function, such as a ReLU or Gaussian error linear
unit. Here, φ is a scaling factor for the inner dimensions of the feedforward module. Finally,
another layer normalization is applied.

The encoder, decoder, and feedforward contexts were employed to accelerate transla-
tion and offer the most current translation findings, sentiment analysis, and other additional
operations. The success of self-attention in these tasks motivated the first study on self-
attention in speech recognition [52]. As a result, an attention-based encoder–decoder
paradigm was devised. Although self-attention was first employed for machine translation,
its versatility enabled it to be utilized for voice recognition as well [53–56]. Attention-based
encoder–decoder models rapidly learn the mapping between the auditory frame and the
letter sequence. These models generate a label at each output time step based on the
input and target label histories. Despite not requiring an external language model, the
attention model has a lower character error rate (CER) than CTC. However, the model
performs poorly in real-world conditions for various voice recognition tasks, owing to
the ease with which noise and other variables may impair the expected alignment in the
attention mechanism. Additionally, learning the model from start is difficult, owing to the
misalignment of extended input sequences [57,58].

This study used cascaded local self-attention CTC training criteria to improve perfor-
mance and accelerate learning for the above-mentioned difficulties. When scaling to larger
sequences, transformers scale quadratically in the input length. This problem is solved
using a unique speech enhancement transformer model based on local attention [59,60].
Local attention is especially well suited for speech augmentation because the predictions do
not require long-range correlations, as in natural language processing. Moreover, sufficient
information is frequently stored within a few seconds of the target period. Local attention
is naturally interwoven with this demand.
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The above approach results in huge advances in speech augmentation, where typical
sample lengths can involve up to hundreds of thousands of tokens or hours of speech.
This small focus incurs only a fraction of the processing and memory overhead associated
with attention throughout the entire feature. The windowed technique also allows a more
compact packing of padded features in mini-batches, thereby saving costs. Consequently,
this module acquires detailed local contextual information from the surrounding area. As
the foundational model, we employed cascaded local self-attention with a context size of 12.

3. Experimental Evaluation

3.1. Dataset

In this study, the proposed architecture was evaluated on the OuluVS2 [27] dataset.
This dataset comprises 52 speakers making three types of utterances (Digits, Phrases,
and TIMIT), three times each (except TIMIT), simultaneously recorded from five distinct
viewpoints (0◦, 30◦, 45◦, 60◦, and 90◦) for a total of 780 samples per utterance. There are ten
classes in total: “Please excuse me”, “Goodbye”, “Hello”, “How are you”, “Nice to meet
you”, “See you”, “I am sorry”, “Thank you”, “Have a nice time”, and “You are welcome”.
The impact of various mouth ROIs was evaluated by processing the lips from scratch rather
than from existing data, and the 90◦ data were omitted from the experiment because the
lips could not be recognized during the extraction process. For the recognition task, we
used the Phrase dataset in this investigation. In particular, we utilized the same data split
as in other previous studies [21,22,31], to provide a fair comparison. Twelve speakers were
used for testing (s06, s08, s09, s15, s26, s30, s34, s43, s44, s49, s51, and s52; 10 men and
2 women) and 40 for training from the database (s06, s08, s09, s15, s26, s30, s34, s43, s44,
s49, and s51). Note that s29 is not included in the list.

3.2. Data Preprocessing and Augmentation

A DLib face detector [61] was used in the data-preparation step to recognize the
targeted face and mouth. A HoG feature-based linear classifier [33] was used in the detector.
The diagonal edges’ (x, y) coordinates were obtained and used to build a bounding box
around the mouth. As a result, the iBug program was used to forecast facial landmarks [62],
considering 68 landmarks and an online Kalman filter. This method is widely used to
extract the lip points that match with those in the training dataset by reading lip motions.
These algorithms were utilized to extract a mouth region from each frame, and to perform
an affine transformation to equalize the RGB channels throughout the training set, resulting
in a mean and variance of zero. Moreover, we employed a data augmentation approach
for training data to avoid overfitting [18]. The training process considered both standard
and horizontally mirrored picture sequences. The degradation rate for these occurrences
was 0.925. Finally, to avoid variance, we identified the movement speed and repeated each
frame with a probability of 0.05. All models were trained and evaluated on the OuluVS2
dataset, using identical preprocessing and augmentation methods.

3.3. Implementation

To evaluate the performance of the CTC decoder, all models used Keras, based on
TensorFlow backend on Linux Ubuntu; the computer had an Intel® Core™ i7-7700K pro-
cessor, along with 64GB RAM and an NVIDIA GeForce RTX 2080-Ti GPU. The hyperpa-
rameters specified in Table 1 are the values for each layer of the proposed model. The
network parameters—other than the initialized GRU matrix and hyperparameters—were
initialized for all models. To perform the optimization of models, adaptive moment es-
timation (Adam) [63], stochastic gradient descent (SGD) [64], RMSprop [65], AdaMax,
and Nadam [64] optimizers were used in mini-batches of sizes 8 and 0.0001, trained at
the learning rate. The proposed model was trained in a multi-scale 3D CNN with SAM;
channel-wise dropped pixels and spatial dropout for the dropped channel were used,
and the proposed model contained the baseline model, trained on the dataset until it was
overfitted. The moving average strategy was used to smooth it down for better viewing.
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Regarding the accuracy of the proposed model, the genuine value was represented by the
shadow part of the image, while the curve represented the smoothed value. We selected a
smaller batch size of 75 images owing to the computer’s restricted capabilities, causing the
real value fluctuation to be uneven. Smoothing was performed to alleviate this problem
and to make the curves comprehensible.

Table 1. Hyperparameters of the proposed architecture.

Layer Output Shape Size/Stride/Pad Dimension Order

Input Layer 40 × 100 × 50 × 3 -

T × C × H × W

Convolution 3D Layer 40 × 50 × 25 × 64
[3 × 5 × 5]/(1, 2, 2)/(1, 2, 2)

[1 × 2 × 2] max pool/(1 × 2 × 2)

3D Dense Block (1) 40 × 25 × 13 × 96
[3 × 1 × 1] 3D Conv

(×6)
[3 × 3 × 3] 3D Conv

3D Transition Block (1) 40 × 12 × 6 × 6
[3 × 1 × 1] 3D Conv

[1 × 2 × 2] average pool/(1 × 2 × 2)

3D Dense Block (2) 40 × 12 × 6 × 38
[3 × 1 × 1] 3D Conv

(×12)
[3 × 3 × 3] 3D Conv

3D Transition Block (2) 40 × 6 × 3 × 3
[3 × 1 × 1] 3D Conv

[1 × 2 × 2] average pool/(1 × 2 × 2)

3D Dense Block (3) 40 × 6 × 3 × 35
[3 × 1 × 1] 3D Conv

(×24)
[3 × 3 × 3] 3D Conv

3D Transition Block (3) 40 × 3 × 1 × 1
[3 × 1 × 1] 3D Conv

[1 × 2 × 2] average pool/(1 × 2 × 2)

3D Dense Block (4) 40 × 3 × 1 × 33
[3 × 1 × 1] 3D Conv

(×16)
[3 × 3 × 3] 3D Conv

Multi-scale 3D CNN (1) 40 × 3 × 1 × 32 [3 × 5 × 5]/(1, 2, 2)/(1, 2, 2)

Multi-scale 3D CNN (2) 40 × 3 × 1 × 64 [3 × 5 × 5]/(1, 2, 2)/(1, 2, 2)

Multi-scale 3D CNN (3) 40 × 3 × 1 × 192 [3 × 5 × 5]/(1, 2, 2)/(1, 2, 2)

Spatial Attention (1) 40 × 3 × 1 × 32

[1 × 2 × 2] max pool/(1 × 2 × 2)

[1 × 2 × 2] average pool/(1 × 2 × 2)

[3 × 7 × 7]/(1, 2, 2)/(1, 2, 2)

Spatial Attention (2) 40 × 3 × 1 × 64

[1 × 2 × 2] max pool/(1 × 2 × 2)

[1 × 2 × 2] average pool/(1 × 2 × 2)

[3 × 7 × 7]/(1, 2, 2)/(1, 2, 2)

Spatial Attention (3) 40 × 3 × 1 × 96

[1 × 2 × 2] max pool/(1 × 2 × 2)

[1 × 2 × 2] average pool/(1 × 2 × 2)

[3 × 7 × 7]/(1, 2, 2)/(1, 2, 2)

Bidirectional GRU Layer 40 × 512 256 T × F

Bidirectional GRU Layer 40 × 512 256 T × F

Local Self-Attention Layer 40 × 512 15 T × F

Dense Layer 40 × 28 27 + blank T × F

SoftMax Layer 40 × 28 T × V
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3.4. Performance Evaluation Metrics

We used standard automated speech-recognition assessment criteria as the evaluation
metrics. The learning loss of each model was calculated to determine its learning status
during the training operation. Furthermore, we compared each model’s performance and
computational efficiency by examining its parameters, epoch period, and CER.

For the misclassification analysis, it is necessary to compare the original text and the
predicted text. The five variables used in the equation are the characters (C), the total
number of ground truth characters (N), the false predicted characters (S), the non-selected
characters (I), and the number of deleted characters (D). CTC beam search is performed for
maximum probability prediction, and the CER equation is as follows:

CER (%) =

(
CS + CD + CI

CN

)
× 100, (12)

We compared the CER for parameter count and computational efficiency during the
study period. The results are presented using a confusion matrix.

4. Results

4.1. Learning Loss and Convergence Rate

Figures 5–7 compare the learning loss and convergence speed rates for the convolu-
tional, recurrent, and transcription layers, respectively. Figure 5 shows the learning loss
(training and validation) on the OuluVS2 dataset for the convergence rates of the three
types of CNNs in the convolutional layer. The three models have different visual feature
extraction modules at the front end, and the same recurrent and transcription layers at
the back end. Model A consists of a densely connected 3D CNN, Model B combines the
multi-scale 3D structure following Model A, and Model C is configured by combining
a SAM with Model B. In addition, Figure 5 shows that the training and validation losses of
all three models are similar from all four angles. However, the gap between the training
and validation losses was the highest in Model A, and its degree of overfitting was higher
than those of the other models. Furthermore, although Model C increased the number
of parameters by 30 M compared to Model A, it exhibited lower overfitting results (the
smallest among all models) (Figure 5). This is because Model A comprised a model with
outstanding performance based on the DenseNet-121 [66] structure, thereby minimizing
the number of model parameters, successfully suppressing overfitting, and saving com-
putation. However, the combination of multi-scale 3D CNN (Model B) and SAM (Model
C) yielded improved results because this combination identified better by focusing on the
most distinguishable and beneficial areas of the input image. Therefore, the learning and
convergence speeds of Model C were high, and the gap was small. These findings indicate
that the proposed model had the smallest difference between the training and validation
losses, preventing overfitting on the OuluVS2 dataset.

Figure 6 shows the learning loss (training and validation) on the OuluVS2 dataset for
the convergence rates of the four types of RNN in the recurrent layer. The convolutional
and transcription layers had the same structure, and only the configuration of the recurrent
layers differed. The Bi-GRU exhibited the fastest learning convergence speed and best
prediction accuracy, as shown in Figure 6 and Figure 9e–f. In particular, all four RNN
unit types outperformed the RNN. The experimental results and prediction accuracy are
similar to the findings reported in Section 5 of [44], where LSTM and GRU displayed
improved validation accuracy and prediction accuracy compared to traditional RNNs
(Table 2), owing to their resistance to the vanishing gradient problem. Compared with
LSTM and Bi-LSTM, both GRU and Bi-GRU demonstrated faster convergence and lower
losses. The bidirectional models outperformed the unidirectional models on the training
set for both GRU and LSTM; they also outperformed their unidirectional counterparts on
the validation dataset. Consequently, Bi-GRU exhibited the best overall performance.
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Figure 5. Training and validation loss comparing convergence speed of convolutional layers (Models
A, B, and C): (a–d) Training loss at (a) 0◦; (b) 30◦; (c) 45◦; and (d) 60◦; (e–h) Validation loss at (e) 0◦;
(f) 30◦; (g) 45◦; and (h) 60◦.

Figure 6. Training and validation loss comparing convergence speed of recurrent layers (Models C,
D, E, F, and G). (a–d) Training loss at (a) 0◦; (b) 30◦; (c) 45◦; (d) 60◦. (e–h) Validation loss at (e) 0◦;
(f) 30◦; (g) 45◦; (h) 60◦.
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Figure 7. Training and validation loss comparing convergence speed of transcription layers
(Model C, Model H, and the proposed model). (a–d) Training loss at (a) 0◦; (b) 30◦; (c) 45◦; (d) 60◦;
(e–h) Validation loss at (e) 0◦; (f) 30◦; (g) 45◦; (h) 60◦.

Table 2. Performance of the proposed model compared to various models on the OuluVS2 dataset.

Model Method
Top 10 Accuracy (%)

0◦ 30◦ 45◦ 60◦ Mean

A * 3D dense connection CNN + Bi-GRU + CTC 90.44 88.73 86.93 87.72 88.45

B * 3D dense connection CNN + Multi-scale 3D
CNN + Bi-GRU + CTC 92.72 91.02 88.02 88.09 89.62

C * 3D dense connection CNN + Multi-scale 3D
CNN + SAM + Bi-GRU + CTC 94.14 92.86 91.34 89.97 92.08

D * 3D dense connection CNN + Multi-scale 3D
CNN + SAM + RNN + CTC 88.51 85.74 83.93 83.04 85.31

E * 3D dense connection CNN + Multi-scale 3D
CNN + SAM + LSTM + CTC 89.42 87.42 86.01 85.71 87.14

F * 3D dense connection CNN + Multi-scale 3D
CNN + SAM + Bi-LSTM + CTC 89.78 88.84 87.26 86.18 88.02

G * 3D dense connection CNN + Multi-scale 3D
CNN + SAM + GRU + CTC 92.85 91.23 90.91 89.67 91.14

H *
3D dense connection CNN + Multi-scale 3D

CNN + SAM + Bi-GRU + Global
self-attention + CTC

95.08 93.29 92.81 90.93 93.03

Our *
3D dense connection CNN + Multi-scale 3D

CNN + SAM + Bi-GRU + Local
self-attention + CTC

98.31 97.89 97.21 96.78 97.55

* Model trained with data augmentation.

The learning loss (training and validation) on the OuluVS2 dataset is shown in Figure 7
for the convergence rates of the proposed model’s three types of CTC loss functions in the
transcription layer. The convergence rate for learning was slower than that in the other two
situations, when only the basic CTC loss function was used. In particular, as the angle of
the detected lip changed, the convergence rate further decreased, while the two cases of
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cascaded self-attention exhibited similar convergence rate tendencies for all of the angles.
The two self-attention modules learned with similar convergence rate tendencies. However,
in all of the four results shown in Figure 7, the local self-attention module exhibited a faster
convergence rate than the global self-attention modules. First, the principle of the CTC
loss function assumes conditional independence for each label, and, since each output
unit denotes the probability of seeing a single label at a given moment, it provides a high
premium to the nearby local information [50]. Thus, ineffectiveness in predicting visemes
is a possible reason for the difference in convergence rates.

The cascaded self-attention CTC module (which generates an output sequence with
long-term temporal correlation) increases the speed of convergence, as compared to the CTC
decoder (which assumes the input is conditionally independent). The attention approach is
used in the CTC decoder’s pre-alignment stage to remove unnecessary paths. The CTC
decoder is then used to align the video frames and text labels, thereby allowing the attention
mechanism to focus on the video–text pairs in the correct order. As a result, fewer irrelevant
samples are created, resulting in the observed speedup. Second, the local self-attention
module’s windowed method results in more compact packaging of the padded features in
mini-batches, and, hence, further cost reductions. Consequently, this local self-attention
requires only a fraction of the computing and memory costs of attention over the entire
feature, while providing rich local contextual information in the small region.

4.2. Optimization

The update rules of the optimization algorithms are usually defined by the hyperpa-
rameters that influence their behavior (e.g., the learning rate). The optimizer’s responsibility
is to update the weight parameters prior to reducing the error or loss function, which is the
difference between the actual and predicted values. This requires several iterations with
varying weights. However, choosing an optimizer for network training can be tricky. Deep
learning employs iterative rules to modify or evaluate the data, utilizing numerous aspects
and techniques. Therefore, training models as quickly as possible is vital to complete the
iterative cycle and, as a result, enhance the prediction accuracy and speed. Consequently,
in this part, we study the following optimizers used to train deep learning neural networks:
SGD, RMSprop, Adam, Nesterov-accelerated Adam (Nadam), and AdaMax. After vali-
dating that AdaDelta and AdaGrad diverged without learning throughout the learning
process, we omitted them from the experiments.

SGD realizes one update at a time to avoid duplication, making it significantly faster
and easier to learn than other deep learning neural networks [67]. These frequent updates
of the method with high variance introduce significant fluctuation in the objective function.
This variation allows the parameters to move into new, possibly better, local minima.
However, as SGD continues to overshoot, converging to the precise minimum is challenging.
The parameters of AdaDelta have varying learning speeds, and the learning process comes
to a halt after a certain point. This problem was addressed using the RMSprop method [65].
For each sample in each iteration, RMSprop uses a variable learning rate that is changed
according to the results. RMSprop calculates the average of the first-order moments of the
gradients and accelerates convergence by ignoring distant previous locations. Moreover,
the squares of gradients and the average of the second-order moments are considered by
AdaDelta and RMSprop. In the Adam optimizer, the adaptive optimization method is
applied. Based on the parameters to be used, this optimizer dynamically modifies the
learning rate for each sample in the dataset. Adam is a fast thinker with a limited memory
span. Therefore, SGD, AdaDelta, and RMSprop [65] were used to create this algorithm.

Nadam combines Adam and Nesterov momentum. This method was developed
similarly to Adam, with the exception that the flat momentum is replaced with the Nesterov
momentum. The substitution causes a more considerable increase in performance than
that in momentum. [63,68]. Alternatively, AdaMax, an extension of the Adam optimizer,
was developed [63]. To update the weight parameters in AdaMax, the infinity norm of the
moment is used, instead of the second-order moment estimate. Therefore, the size of the

91



Sensors 2022, 22, 3597

parameter update in AdaMax has a simpler constraint structure than in Adam, and the
weight-updating rules are stable.

We used the Bi-GRU classifier to compare the training results and determine the most
successful optimizer. Figure 8 depicts the loss curves of the optimizers. In particular, Adam
performed better among the optimizers at all of the four angles. The Adam optimizer’s
loss converged at the quickest pace, implying that it trained the Bi-GRU classifier more suc-
cessfully than the other algorithms. The results show that Adam was the best optimizer for
training the Bi-GRU architecture’s lip-based classification model. Therefore, this approach
was employed in further trials in this study to train the Bi-GRU classifier.

Figure 8. Loss curves comparing various optimizers. (a–d) Training loss at (a) 0◦; (b) 30◦; (c) 45◦; and
(d) 60◦; (e–h) validation loss at (e) 0◦; (f) 30◦; (g) 45◦; and (h) 60◦.

4.3. Performance and Accuracy

The results presented in this section correspond to the OuluVS2 dataset phrases.
Tables 2 and 3 show that the proposed model outperformed existing deep learning models
by attaining state-of-the-art (SOTA) results: 3.31% (0◦), 4.79% (30◦), 5.51% (45◦), 6.18% (60◦),
and 4.95% (mean). These results show an improvement over the previous SOTA results in
all of the conditions. Figure 9 compares the accuracy results between the models by dividing
them into three layers: convolutional layer (Figure 9a–d), recurrent layer (Figure 9e–h), and
transcription layer (Figure 9i–l).

In the case of the convolutional layer (Figure 9a–d and Table 2), on average, the
performance improved by 3.63% for all of the four angles when MLFF 3D CNN and SAM
were combined than when only the DenseNet-121 structure was used. By combining
the SAM with MLFF 3D CNN, a 2.46% improvement was observed owing to improved
recognition among the inter-spatial relationships of features. This helped to better identify
and focus on the most distinguishable and informative areas of the input image.
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Table 3. Performance of existing models on the OuluVS2 dataset.

Year Model 0◦ (%) 30◦ (%) 45◦ (%) 60◦ (%) Mean (%)

2014 RAW-PLVM [69] 73.00 75.00 76.00 75.00 74.75

2016

CNN * [21] 85.60 82.50 82.50 83.30 83.48
CNN + LSTM [31] 81.10 80.00 76.90 69.20 76.80

CNN + LSTM, Cross-view Training [31] 82.80 81.10 85.00 83.60 83.13
PCA Network + LSTM + GMM–HMM [22] 74.10 76.80 68.70 63.70 70.83

CNN pretrained on BBC dataset * [52] 93.20 - - - -
CNN pretrained on BBC dataset + LSTM * [70] 94.10 - - - -

2017

End-to-End Encoder + BLSTM [24] 94.70 89.70 90.60 87.50 90.63
Multi-view SyncNet + LSTM * [71] 91.10 90.80 90.00 90.00 90.48
End-to-End Encoder + BLSTM [13] 84.50 - - - 84.50
End-to-End Encoder + BLSTM [72] 91.80 87.30 88.80 86.40 88.58

2018

CNN + Bi-LSTM [73] 90.30 84.70 90.60 88.60 88.55
CNN + Bi-LSTM [73] 95.00 93.10 91.70 90.60 92.60

Maxout-CNN-BLSTM * [74] 87.60 - - - -
CNN + LSTM with view classifier * [23] - 86.11 83.33 81.94 -

CNN + LSTM without view classifier * [23] - 86.67 85.00 82.22 -
2019 VGG-M + LSTM * [75] 91.38 - - - 91.38

2020
CNN(2D + 3D) without view classifier [76] 91.02 90.56 91.20 90.00 90.70

CNN with view classifier [76] 91.02 90.74 92.04 90.00 90.95

2021
CNN without view classifier [77] 91.02 90.56 91.20 90.00 90.70
CNN with view classifier * [77] 91.02 91.38 92.21 90.09 91.18

* Model trained with data augmentation.

Figure 9. Training steps for character error rate (CER) comparing our proposed model to the baseline
and other models: (a–d) Convolutional layer; (e–h) recurrent layer; (i–l) transcription layer.
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In the case of the recurrent layer (Figure 9e–h and Table 2), five RNN units (RNN,
LSTM, Bi-LSTM, GRU, and Bi-GRU) were compared. For all of the four angles, LSTM
and GRU exhibited higher accuracy than the standard RNN. This is because of their
robustness against gradient disappearance, which allows them to successfully learn long-
range dependent input data. Therefore, the average accuracy of LSTM increased by 1.83%
compared to when RNN was used. Similarly, the average accuracy of GRU increased by
4.17%. However, despite its similar performance, Bi-LSTM’s accuracy increased by 2.71%
compared to RNN, and Bi-GRU’s accuracy improved by 6.77% when unidirectional models
were used, compared to bidirectional models. The bidirectional models also achieved better
results on the validation dataset than their unidirectional counterparts. Thus, the best
overall performance was achieved using the Bi-GRU.

In the case of the transcription layer (Figure 9i–l and Table 2), we compared the
performance by combining the global and local self-attention mechanisms with the basic
CTC function in the cascade method. For all of the four angles, the two CTC loss functions
exhibited higher performance than the basic CTC loss function. When using the global
self-attention method, accuracy improved by 0.95%, while the local self-attention method
improved by 5.47%. The performance of the two models is better than that of the CTC loss
function because they overcome the disadvantage of assuming a conditionally independent
input. Moreover, the performance difference between the two methods exists because
the local self-attention module led to a more compact packing of the padded features in
mini-batches, resulting in additional savings. Therefore, this local self-attention required
a fraction of the compute and memory costs associated with attention over the entire
feature and rich local contextual information in the local region. Thus, the proposed model
surpasses current models, including the experimental model, in terms of accuracy, which
can be attributed to the three layers. The training approach with three layers is illustrated
in Figure 9, using the OuluVS2 dataset.

4.4. Statistical Analysis and Model Efficiency

We performed statistical analysis using the standard t-test to compare the significance
of the combined modules. Models A and B of the convolutional layer were compared,
based on Model C (Figure 10a–d), and Models C, D, E, F, and G were compared in the
current layer (Figure 10a–d). In addition, in the transcription layer, Models C and H and
the proposed model were compared (Figure 10e–h). For all four angles in Figure 10a–d,
the proposed model showed that the modules in the convolutional layer have significant
differences. That is, the performance increased by combining the MLFF 3D CNN and
the SAM with the DenseNet-121 model. In addition, in the recurrent layer, the use of
the Bi-GRU classifier (Model C) exhibited the highest performance and significant results
compared to the four RNN-type units. However, in the case of Model G, because the
unidirectional GRU model was used, there was no significant difference compared to
Model C, which is a bidirectional model. Figure 10e–h shows the statistical analysis
of the transcription layer. The performance of the two models using the self-attention
mechanism in the cascade method was higher and significant than that for learning based
on the basic CTC loss function. Consequently, the proposed model exhibited significant
performance improvement.

In practical applications, the primary limitations of the VSR systems are their size and
computing capacity. We explored the models’ computational efficiency by examining their
accuracy over various training settings and epochs. The system’s performance as a function
of the number of parameters is shown in Figure 11a–d. Furthermore, Figure 11e–h depict
the results of the average epoch–time comparison of the nine models for 500 epochs. As
demonstrated in Table 4, each model on the OuluVS2 dataset has a unique set of parameters
and epoch time. Compared to Model D, which presented the lowest accuracy among the
compared models, the proposed model had a parameter count difference of approximately
29 M. The average accuracy was improved by 12.24%. In comparison to Model F, which
had the most parameters, the proposed approach decreased the number of parameters by
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roughly 11 M, while increasing accuracy by 9.53%. In addition, the difference in learning
time compared to Model D, with the smallest number of parameters, differed by 5.54 s
on average per epoch, which is not significant. Furthermore, the difference in learning
time compared to that of Model F, which has the most parameters, was 13.05 s. Thus, the
proposed model is capable of enhancing accuracy and decreasing learning time without
considerably increasing the number of parameters.

Figure 10. Comparison between different models and the proposed model based on mean accuracy
of the last 10 epochs: (a–d) Convolutional layer and recurrent layer; (e–h) Transcription layer. Error
bars represent standard deviation. Asterisks represent statistical significance-based t-tests between
each group (* for p < 0.05, ** for p < 0.01, and *** for p < 0.001).

Figure 11. Comparison of character accuracy rate (CAR) between the proposed model and other
models according to the (a–d) number of parameters and (e–h) average epoch time.
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Table 4. Comparison between the number of parameters and epoch times of the proposed method
and different methods.

Model Method
Number of
Parameters

Epoch Time (s)

0◦ 30◦ 45◦ 60◦

A 3D dense connection CNN + Bi-GRU + CTC 2,247,537 34.57 36.07 34.43 33.97

B 3D dense connection CNN + Multi-scale 3D
CNN + Bi-GRU + CTC 3,456,369 36.48 36.58 34.93 35.43

C 3D dense connection CNN + Multi-scale 3D
CNN + SAM + Bi-GRU + CTC 5,273,457 43.37 41.44 40.01 43.03

D 3D dense connection CNN + Multi-scale 3D
CNN + SAM + RNN + CTC 2,429,362 35.27 36.78 36.15 35.86

E 3D dense connection CNN + Multi-scale 3D
CNN + SAM + LSTM + CTC 3,905,458 38.16 39.13 38.94 37.45

F 3D dense connection CNN + Multi-scale 3D
CNN + SAM + Bi-LSTM + CTC 6,421,426 54.35 53.18 53.04 57.86

G 3D dense connection CNN + Multi-scale 3D
CNN + SAM + GRU + CTC 3,413,426 34.18 32.98 33.48 33.48

H
3D dense connection CNN + Multi-scale 3D

CNN + SAM + Bi-GRU + Global
self-attention + CTC

5,306,290 40.95 42.13 41.78 43.48

Our
3D dense connection CNN + Multi-scale 3D

CNN + SAM + Bi-GRU +
Local self-attention + CTC

5,306,290 40.46 41.39 41.97 42.41

4.5. Confusion Matrix

We compared the confusion matrices of the two models that exhibited outstanding per-
formance in the three layers with that of the proposed model for the four angles. Specifically,
we evaluated Model C (Figure 12), which exhibited the highest accuracy in the convolu-
tional and recurrent layers; Model H (Figure 13), which exhibited excellent performance in
the transcription layer; and the proposed model (Figure 14). When comparing the results
shown in Figure 12, the proposed model realizes fewer incorrect predictions. In addition,
Model C had more erroneous predictions than the other two models for the four angles.
The number was particularly high for “Hello”, “Thank you”, and “See you” because they
are visually similar from the same viewpoint, furthermore, “Thank you” and “See you”
have identical viseme sequences around the beginning and end of the utterance, which
explains why these phase pairings have a higher number of false predictions. Because they
are visually comparable from the same viewpoint, the three pairs of sentences with the
highest error rate are the most demanding and confusing pairings with a high error rate, as
indicated by the confusion matrix [13,24,31].

However, when the global self-attention mechanism was combined with the tran-
scription layer, Model H exhibited better overall confusion pair results than Model C in
10 phases. Model H clearly demonstrated that confusion decreased compared to Model
C. Despite the decrease in confusion, some pairs show particularly high confusion rates
at each angle. As can be observed in Figure 13a, the predictions between “Nice to meet
you” and “How are you” were the lowest, and, as shown in Figure 13b,c, were confused
with “Nice to meet you” and “How are you” for “Thank you.” In addition, unlike the other
three angles, the 60◦ angle (Figure 13d) showed substantial confusion, wherein “Thank
you” and “How are you” exhibited the lowest predictions. Therefore, Model H, similar to
Model C, increased the number of confusions, due to the similarity of the visual view as
the angle increased. The last pronunciation, such as “you”, showed low predictions within
a similar phase.
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Figure 12. Comparison of confusion matrix models: (a–d) Model C.

Unlike the two models, the proposed model yields low confusion at all of the angles
using the local self-attention mechanism. In particular, for the 60◦ angle, both Models
C (Figure 12d) and H (Figure 13d) presented high confusion numbers. In contrast, the
proposed model (Figure 14d) presented low confusion numbers, similar to other angles.
In addition, the confusion between “Hello”, “Thank you”, and “See you” observed in
the other two models was reduced, and the predicted value increased. By comparing the
confusion matrices, we can easily define which of the models performs better. Thus, we
can establish that the proposed model outperformed the others on the OuluVS2 dataset,
distinguishing all comparable pronunciations in phase.
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Figure 13. Comparison of confusion matrix models: (a–d) Model H.
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Figure 14. Comparison of confusion matrix models: (a–d) the proposed model.

5. Discussion and Conclusions

Lipreading is difficult to execute because it cannot be purely performed from the
frontal perspective. Professional lip readers claim that a non-faceted approach, instead
of a front-view, provides more information than a front-view with more pronounced
lip protrusions and lip rounding. Consequently, the most significant limitation in using
lipreading technology in real-world applications is its performance when reading lips from
multiple angles. Therefore, we developed a multi-angle/multi-view VSR architecture that
performs VSR by detecting both frontal and non-frontal lip images.

This study provides an end-to-end infrastructure for recording multi-view video
surveillance. We obtained an accurate viseme prediction using SAM, multiple CNNs,
and cascaded local self-attention-CTC. This is the first time that a 3D CNN, 3D dense
connection CNN, and SAM have been combined with a multi-scale 3D CNN to extract lip
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motion characteristics as encoders. Following the decoder’s Bi-GRU, a transcription layer
based on cascaded local self-attention-CTC was used to extract exhaustive local contextual
information from the surrounding environment.

The advantages of each level of the proposed architecture can be summarized as fol-
lows. The 3D dense connection CNN helps in reducing gradient vanishing and deepening
the network (to use features) in an efficient manner. It also helps in reducing model pa-
rameters and preventing overfitting, thereby conserving computational resources. Finally,
the multi-scale 3D CNN is applied to the two dropout layers, using features at different
levels to effectively analyze the motion context in the temporal and spatial domains, with
fine motion and high spatial correlation. SAM and multi-scale 3D CNNs are combined
and concatenated to provide a single output. Consequently, SAM exploits the inter-spatial
interaction of characteristics to better select and focus on the most identifiable and practical
portions of an input picture. Moreover, cascaded local self-attention-CTC, following the de-
coder’s Bi-GRU, requires only a fraction of the computation and memory costs of attention
over the entire feature, leading to compact packaging of padded features in mini-batches
and significant savings. Hence, this module can be used to acquire detailed local contextual
information from the surrounding area.

We compared the outcomes of various deep learning models for predicting the se-
quence of phrases. The proposed architecture outperformed the others in terms of SOTA
CER (Tables 2 and 3). We also compared the convergence rate, optimization, accuracy,
statistical analysis, model efficiency, and confusion of the learning process for the three
layers (convolution, recurrent, and transcription). The proposed model exhibited a faster
convergence speed and higher accuracy compared to the other models, without a significant
difference in the number of parameters and epoch time.

The proposed model attained SOTA performance on the OuluVS2 dataset without
requiring external data or even data augmentation. The given mouth ROIs, on the other
hand, were appropriately cropped, which may not be the case when employing automated
mouth ROI identification techniques. Additionally, it would be interesting to investigate
the effect of automated mouth ROI cropping on multi-view lipreading because the accuracy
of automatic detectors is known to degrade with non-frontal views. Finally, because the
model can be readily expanded to other streams, we expect to incorporate an audio stream
to see how well it performs in audio-visual multi-view speech recognition.

Developing a multi-view VSR system that exclusively relies on visual data is crucial.
Speech recognition in loud situations, hearing impairment, and biometric identification
are some applications for which such a system will be practical. It could also be helpful
for people with speech difficulties. However, because speech involves auditory and visual
information, it is still challenging to perform ASR simply by using VSR. As a result, we plan
to widen our approach in the future to include performance optimization and identification
of potential uses for audio and visual data.
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Abstract: Silent speech interfaces (SSIs) convert non-audio bio-signals, such as articulatory movement,
to speech. This technology has the potential to recover the speech ability of individuals who have
lost their voice but can still articulate (e.g., laryngectomees). Articulation-to-speech (ATS) synthesis
is an algorithm design of SSI that has the advantages of easy-implementation and low-latency, and
therefore is becoming more popular. Current ATS studies focus on speaker-dependent (SD) models to
avoid large variations of articulatory patterns and acoustic features across speakers. However, these
designs are limited by the small data size from individual speakers. Speaker adaptation designs that
include multiple speakers’ data have the potential to address the issue of limited data size from single
speakers; however, few prior studies have investigated their performance in ATS. In this paper, we
investigated speaker adaptation on both the input articulation and the output acoustic signals (with
or without direct inclusion of data from test speakers) using the publicly available electromagnetic
articulatory (EMA) dataset. We used Procrustes matching and voice conversion for articulation and
voice adaptation, respectively. The performance of the ATS models was measured objectively by the
mel-cepstral distortions (MCDs). The synthetic speech samples were generated and are provided in
the supplementary material. The results demonstrated the improvement brought by both Procrustes
matching and voice conversion on speaker-independent ATS. With the direct inclusion of target
speaker data in the training process, the speaker-adaptive ATS achieved a comparable performance to
speaker-dependent ATS. To our knowledge, this is the first study that has demonstrated that speaker-
adaptive ATS can achieve a non-statistically different performance to speaker-dependent ATS.

Keywords: articulation-to-speech synthesis; silent speech interface; speaker adaption; voice conversion

1. Introduction

Laryngectomees are people who have their larynx partially or totally removed in
surgeries (laryngectomy), due to the treatment of laryngeal cancer [1]. Especially, for
people who have undergone total laryngectomy, their ability to produce normally voiced
speech is lost. Currently, they have three main options for their daily communication:
esophageal speech [2], tracheo-esophageal puncture (TEP) speech [3] and electro-larynx
(EL) [4,5]. The major common disadvantage of these approaches is they generate unnatural
or hoarse voices, which discourages their use and causes social isolation [6]. Silent speech
interfaces (SSIs) are devices that enable speech communication when a human’s phonatory
abilities are impeded [7–9]. SSIs convert (silent) articulatory motion to speech, which
have the potential of recovering speech ability for people who are unable to produce
speech sounds but are still able to articulate(e.g., laryngectomees). There are currently
two algorithmic designs in silent speech interfaces: the recognition-and-synthesis and the
directly articulation-to-speech (ATS) synthesis. The recognition-and-synthesis design [7,10]
recognizes textual information from non-audio articulatory signals with silent speech
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recognition [11], and then use a text-to-speech to convert recognized text to speech [12].
ATS is a procedure that directly maps a human’s articulatory bio-signals to speech. As
an end-to-end model and compared to the recognition-and-synthesis design, ATS has
become a popular software design for silent speech interfaces, because of its advantages of
low-latency and easier implementation [8].

Currently, most of the ATS studies focus on speaker-dependent (SD) design, in which
only the data from testing speakers are used to train the ATS model [13]. SD-ATS usually
suffer the restriction from insufficient training data since it is difficult to record a large
amount of articulatory data from the same speakers. The main reason is the current articula-
tory information capture approaches normally require directly [14–16] or indirectly [17,18]
attaching hardware such as sensors to subjects’ articulators. Hours of data recording ses-
sions will generally cause subjects to fatigue. Compared to speaker-dependent systems,
speaker-independent (SI) systems require no training data from testing speakers [13] by
using data collected from other speakers for training. Speaker-independent systems could
be a solution for insufficient training data from individual subjects. However, due to
the inter-speaker variability, they usually suffer lower performance than well-trained SD
systems. Therefore, speaker adaption approaches may be an alternative solution for ATS.
Speaker adaptation approaches adapt speaker-independent systems to the target speakers
(users) [13], which take the advantages of both speaker-independent (large training dataset)
and speaker-dependent (target speaker information involved) systems. Speaker adaptation
approaches have been actively studied and demonstrated to be effective in automatic
speech recognition (ASR) and text-to-speech (TTS) applications [13,19], but have been
relatively less studied in ATS [20,21]. To highlight these concepts and assist the description
in this paper, we list the major difference between these terminologies below.

• Speaker-dependent ATS (SD-ATS) is where training and testing data are from the same
speakers;

• Speaker-independent ATS (SI-ATS) is where training and testing data are from different
speakers;

• Speaker-adaptive ATS (SA-ATS) is where training data are from other speakers and
the target speaker.

Speaker adaptation for ATS is challenging because the inter-speaker variations take
place in both the input articulation and the output acoustics. In addition, to maintain the
identity of the output speech from SSI, the output side of ATS (speech voice) has to be as
similar as possible to the target speaker’s original voice. This characteristic restricted the
usage of some averaging-based [19] and warping-based speaker adaptation approaches
on the output audio, such as cepstral mean and variance normalization (CMVN) [22] and
vocal tract length normalization (VTLN) [23]. A valid approach to perform adaptation on
acoustic output is setting adapting other speakers’ acoustic data to the target speaker [24].
Therefore, in this study, we proposed a voice conversion-based audio adaptation approach
for ATS.

In this study, we performed an investigation on speaker adaptation of ATS with
voice conversion [24] and Procrustes matching [11]. The dataset used was a publicly
available, electromagnetic articulograph (EMA) and audio data set (Haskins Production
Rate Comparison database) [25]. The experiments were conducted in three sessions. The
first session is the speaker-independent ATS (SI-ATS) as the baseline performance, and the
speaker-dependent ATS as the target performance. Then we applied speaker adaptation
on acoustics and articulation to the SI-ATS. In this session, Procrustes matching [11,26,27]
was applied for the adaptation of the articulation, and voice conversion [24] models were
adopted to convert the acoustic features of the training speakers to that are similar to the
target speakers. Finally, we directly added the both articulatory and acoustic data of the
target speakers to the training set to train a kind of speaker-adaptive (SA) model, then
applied voice conversion and Procrustes matching on that to see if it could further improve
the performance.
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The ATS and voice conversion models used are long short-term memory (LSTM)-
recurrent neural network (RNN). The Waveglow vocoder [28] was employed as the vocoder
to convert the predicted acoustic features to speech waveforms. Due to the real-time
decoding preference of ATS, advanced sequence-to-sequence models were not used in this
study. Audible speech samples were generated and presented from the best ATS models in
each experiment stage. Detailed discussions were made based on the experimental results.

The contributions of this paper include: (1) proposed and verified applying voice
conversion for acoustics adaptation for speaker-independent (SI) ATS; (2) validated the
Procrustes matching in SI-ATS application, which has only been shown effective in speaker-
independent silent speech recognition [11,29]; (3) applied Waveglow vocoder [28] in EMA-
based ATS application for the first time; (4) presented audible synthetic speech samples
that were generated from multi-speaker (speaker-independent and speaker-adaptive) ATS.

2. Related Works

In the silent speech interface area, multiple techniques have been used for capturing
articulatory motion data for the SSI purpose including: electromagnetic articulograph
(EMA) [10,11,14,15], permanent magnet articulograph (PMA) [16,30–32], ultrasound im-
age (UI) [18,20,33,34], surface electromyography (sEMG) [17,35], non-audible murmur
(NAM) [36]. Doppler signals have been explored in the SSI application as well [37,38].
Kapur et al. used neuromuscular signals captured with electrodes as the input of SSI [39].
Recently, frequency-modulated continuous-wave radar has been investigated for SSI ap-
plication as well [40]. Sebkhi et al. [41] have proposed an inertial measurement unit
(IMU)-based PMA device that is suitable for SSI usage. As mentioned previously, most of
the studies above used a speaker-dependent design, one of which is speaker-dependent
and session-independent [35].

Only a few recent works studied speaker-independent and speaker-adaptive ATS
systems. Shandiz et al. [20] have conducted studies on embedding speaker information into
the ultrasound-based ATS to improve the performance on multiple speakers, in which the
data from the testing speakers were involved in the training set. Similarly, Ribeiro et al. [21]
also conducted multi-speaker ATS with ultrasound image data for a validation of their
newly proposed dataset. The authors of [42] presented a study on speaker-independent
mel-cepstrum estimator, in which the speaker-independent acoustic feature estimator was
improved by embedding d-vectors and using pre-averaged acoustic. This study focused
on speaker-independent systems [42], but the model predicted mel-cepstrum coefficients
only, without generating speech samples. Although these ATS performances have been
improved, no one has achieved a comparable performance by speaker-dependent ATS. In
addition, no previous study was able to generate audible speech samples in their SI- or
SA-ATS models.

This present study explored speaker-independent ATS and generated speech samples
from that. The speaker adaptation was performed in a strategy of adapting voice from train-
ing speakers to that from the targeting speakers, which requires training one specific ATS
model for one target speaker. This strategy is different to that in [20,42], which embedded
speaker information to train one ATS model that aims to work for all testing speakers.

3. Dataset

The dataset used in this study is a dataset collected by the Haskins Lab, Yale Uni-
versity [25], which is an open access dataset, in which the electromagnetic articulography
(EMA) data [14] and audio data were synchronously recorded from eight native American
English speakers (four males, four females). The stimuli are the 720 phonetically balanced
Harvard sentences from [43]. Each speaker read the 720 sentences at least two times, one in
a normal speaking rate, one in a fast speaking rate. After that, they read a varying number
of sentences in the normal speaking rate. In total, 1553 to 1738 sentences were recorded
from each speaker, the duration of recorded data from each speaker is about 1 h. Additional
details on the amount of data available for each speaker are provided in Table 1.
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Table 1. Number of sentences and duration recorded from each speaker.

Speaker Phrase Num. Duration (min)

F01 1738 61.75
F02 1560 60.58
F03 1617 58.63
F04 1618 59.71
M01 1553 55.67
M02 1554 57.47
M03 1610 60.31
M04 1620 59.65

Sum. 12,870 472.82
Ave. 1609 59.22

The EMA data were recorded with the NDI Wave system, 8 sensors were attached to
the tongue tip (TT), tongue blade (TB), tongue rear (TR), upper lip (UL), lower lip (LL),
mouth left (corner) (ML), jaw, and jaw left (canine) [25]. Three-dimensional (x: posterior
–> anterior, y: right –> left, z: inferior –> superior) articulatory movement of the sensors
were recorded in a sampling rate of 100 Hz. The trajectories of sensors have been filtered
with a 20 Hz Butterworth lowpass filter after recording. The audio data were recorded at
a sampling rate of 44,100 Hz. In this study, we used 6 of 8 sensors for the experiments:
tongue tip (TT), tongue blade (TB), tongue rear (TR), upper lip (UL), lower lip (LL), and
jaw (JAW), which is consist with the setup in the mngu0 EMA dataset [44]. The audio data
were downsampled from 44,100 Hz to 22,050 Hz, to make it consistent with the trained
Waveglow vocoder [28] used in this study.

Other than the dataset used in this study, EMA-MAE corpus [45] is another EMA
dataset that was collected from multiple speakers. EMA-MAE corpus is the EMA dataset
that was collected from a relatively large number of speakers (40 speakers in total). About
30 to 45 min data were collected from each speaker, and part of that are isolated words.
Therefore, the EMA-MAE dataset was not used in this study, due to the smaller amount of
data from single speakers.

4. Methods

4.1. Articulation-to-Speech Synthesis

Figure 1 provides an overview of the implementation of articulation-to-speech syn-
thesis models in this study. Articulatory movement of articulators (tongue, lips and jaw)
was captured with sensors and sampled into frames, then fed to the ATS to predict the
acoustic feature for speech synthesis. To maintain the real-time implementation of ATS,
the advanced sequence-to-sequence models were excluded in this study. The ATS model
used in this study is the long short-term memory-recurrent neural networks (LSTM-RNN),
which has been shown to outperform typical deep neural networks (DNN) [15,42]. The
bidirectional-LSTM (BLSTM) model has high performance in preliminary experiments, but
the BLSTM-based ATS models do not support real-time SSI implementation.

The vocoder used in this study is the Waveglow vocoder, which is a flow-based
network capable of generating high-quality speech from mel-spectrograms [28]. WaveGlow
combines insights from the invertible implementation Glow [46] and the high performance
neural vocoder WaveNet [47]. It has been demonstrated that WaveNet could generate
higher-quality speech samples than the conventional source-filter vocoders [12,47–49]
but in relatively high latency. WaveGlow showed a similar performance to WaveNet,
but in a very low latency [28]. In addition, [34] demonstrated that Waveglow vocoder
outperformed conventional vocoders [50–52] in ultrasound image-based ATS. Therefore,
WaveGlow vocoder was chosen as the vocoder in this study, and the trained Waveglow
model for English (WaveGlow-EN) provided by NVIDIA was directly adopted without
additional training.

108



Sensors 2022, 22, 6056

Figure 1. The overview illustration of a generic articulation-to-speech synthesis model.

The acoustic features are same as the default setup of Waveglow which were 80-
dimensional mel-spectrograms, the fast Fourier transform (FFT) size was 1024, hop size
(step size) was 256. The articulatory data were consisted of the 3-dimensional (3D) spatial
location of six sensors at a sampling rate of 100 Hz, as mentioned the sensors were attached
to six articulators: tongue tip (TT), tongue blade (TB), tongue rear (TR), upper lip (UL),
lower lip (LL), and jaw (JAW). The first- and second-order derivatives were concatenated
to the movement frames as the input frames, therefore the dimension of the ATS input
is 54 (3-dim. × 6 sensors × 3). Although the left–right dimension is not as significant as
the other two dimensions (front-back, and up-down) in speech production, 3D EMA data
have demonstrated higher performance the 2D in preliminary experiments. Finally, the
articulatory data of each phrase were scaled to the same length to the extracted acoustic
features accordingly by interpolation.

The experimental results were measured with the mel-cepstral distortions (MCDs) [53].
For the MCD computation, the mel-spectrogram features were converted to the mel-
frequency cepstral coefficients (MFCC) by applying discrete cosine transform (DCT). With
the first 13 MFCCs, the MCDs were computed with the Equation (1) [54], the first MFCC was
not included in the computation since it represents system energy gain rather than speech
quality information (Equation (1)). In Equation (1), Cm,d indicates the d-th (1 ≤ d ≤ D)
MFCC dimension at time step m (0 ≤ m ≤ T). D is equal to 13, which is the total
dimensional of MFCC included. T is the total number of MFCC frames generated.

MCD =
10

ln10 ∑ m=0
T

√√√√2
D

∑
d=1

(Cm,d − Cgen
m,d)

2 (1)

4.2. Acoustic Adaptation Using Voice Conversion

Voice conversion (VC) is a type of voice transformation which aims to convert speech
utterances of a source speaker to sound as if it was uttered by a target speaker [55]. There-
fore, VC could be a suitable technology for adapting the voice of training speakers to the
target speakers’ voice [24]. Figure 2 shows the schema of the VC-based speaker adaptation
for a single target speaker. The eight speakers take turns to be the target speaker in the
cross-validation loop. Then train voice conversion models with the phrases in the training
set of target and training speakers. The acoustic features of parallel phrases were aligned
to the same length by the dynamic time warping (DTW) [56]. With the aligned acoustic fea-
tures, VC models were trained for each of the target-training speaker pairs. After that, the
acoustic features of training speakers were converted to target speakers’ acoustic features
by the VC models, and used for the speaker-independent ATS model training.
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Figure 2. The pipeline of ATS Speaker adaptation using voice conversion. For each target speaker,
the other N (seven) speakers were training speakers.

4.3. Articulation Adaptation Using Procrustes Matching

Procrustes matching [27] is a robust statistical two-dimensional shape analysis tech-
nique [29,57]. In Procrustes analysis, shapes are composed of ordered series of landmarks
on articulators (Figure 3a,b). Shapes from different participants have different sizes, relative
locations, and different angles of tongue and lips, which leads to inter-speaker variations.
In this study, Procrustes matching was conducted in y (vertical) and z (anterior-posterior)
dimensions, which reduced the inter-speaker physiological difference. Procrustes matching
has shown improvement in the silent speech recognition studies [11,29,57]. In this study,
we applied Procrustes matching to all the EMA data as a normalization method for ATS.
Specifically, for instance, let (yi, zi) represents the i-th data point (spatial coordinates) of
a sensor, then for each sentence the speaker spoke, the data points will construct a set of
landmarks S (sensors). S can be represented as below:

S = {(yi, zi)}, i = 1, . . . , n (2)

n is the total number of data points. As mentioned, y is the vertical direction and z is
the front-back direction. A full procedure of Procrustes matching includes: (1) translating
all articulatory data of each speaker to the average position of all data points in the shape
(averaged across speaker); (2) rotating all shapes of each speaker to the angle that the
centroids of lower and upper lips movements defined the vertical axis [57]; (3) scaling
all shapes to unit size. Previous tests indicated that scaling will cause a slight increase
in the error rate in silent speech recognition, therefore scaling was eliminated from the
Procrustes matching approach in this experiment. The translation and rotation operations
in Procrustes matching are described with the equation below:[

ȳi
z̄i

]
=

[
cos θ − sin θ
sin θ cos θ

][
βy
βz

][
yi − cy
zi − cz

]
(3)

(cy, cz) are centroids of the two shapes which were used as translation factors; (βy, βz)
are the square roots of the sum of the squares of all data points along the y and z direc-
tions; θ is the angle to rotate [27]. An example of Procrustes matching is provided in
Figure 3. Figure 3a illustrates the original motion trajectories of a sample speaker when
producing the phrase “the birch canoe slid on the smooth planks”. Figure 3b illustrates
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those same trajectories after Procrustes matching has been used to align them to those of a
separate speaker.

Procrustes matching could be applied at two levels: sentence-level and speaker-
level. Sentence-level is to obtain the parameters in Equation (2) from the same sentences
produced by different speakers respectively. The speaker-level obtains the parameters from
all sentences produced by one speaker. During testing for both levels, individual (test)
shapes were translated and rotated according to the obtained parameters. Preliminary
results have shown that sentence-level Procrustes matching outperforms the speaker-level
matching. Therefore, only sentence-level Procrustes matching was reported in this paper.

(a) (b)

Figure 3. Example of shapes (motion path of the articulators) before and after Procrustes matching
for producing “the birch canoe slid on the smooth planks”. In this coordinate system, y is vertical
and z is anterior-posterior. (a) Before Procrustes matching. (b) After Procrustes matching.

5. Experimental Setup

In the ATS experiments of this study, 50 sentences from each speaker’s data were used
as the testing set, another 50 sentences as the validation set, and the rest for training. The
eight speakers took turns being chosen as the target speaker, and the other seven speakers
were used as training speakers (leave-one-subject-out cross-validation). As introduced, the
experiments in this study were conducted in three sessions: (1) speaker-independent (SI)
and speaker-dependent (SD) ATS; (2) speaker adaptation for speaker-independent ATS
on the acoustic (output) and articulation (input); (3) speaker-adaptive (SA) experiments
by adding target speakers’ data to the training set with and without further applying the
speaker adaptations in session (2). In the speaker-dependent experiment, the model was
trained, validated and tested with the same speakers. The speaker-independent experi-
ments trained and validated models with seven training speakers, then tested with the left
eighth speaker. The speaker-adaptive experiments directly adding the data from testing
speakers to the training set of SI, validated and tested with data from testing speakers. The
validation here indicates hyper-parameter exploration with the validation sets.

The detailed experimental setup of the deep learning models in this study were
presented in Table 2. As mentioned, we use LSTM-RNN for the ATS model to maintain the
real-time function of SSI, and BLSTM-RNN for the VC models for speaker adaptation. The
training of all models was conducted in a batch size of single whole sentences. ATS models
take 54-dim. EMA data as input and predict 80-dim. mel-spectrograms for Waveglow
vocoder. To achieve the best baseline performance of both SD- and SI-ATS models before
our improvement approaches (VC and Procrustes matching), we used distinct hyper-
parameters for them, including learning rates and max epochs. The hyperparameters were
chosen in a preliminary experiment, where a grid search of two to six layers LSTM and 128
to 512 nodes was performed. The hyper-parameter setups with the best performance were
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selected. Both input and output of VC were 80-dim. mel-spectrogram. All deep learning
models were implemented with the Pytorch toolkit [58].

Table 2. Topologies of the neural networks in this study.

Acoustic Feature
Mel-spectrogram 80-dim. vectors
Sampling rate 22,050 Hz
Windows length 1024
Step size 256

Articulatory Feature 54-dim. vectors
Articulatory movement (6 sensors) (18-dim. vectors) + Δ + ΔΔ (54-dim.)

SD-ATS LSTM Topology
Input 54-dim. articulatory
Output. 80-dim. acoustic feature
No. of LSTM nodes each hidden layer 256
Depth 3-depth layers
Batch size 1 sentence (one whole sentence per batch)
Max Epochs 50
Learning rate 0.0003
Optimizer Adam

SI-ATS LSTM Topology
Input 54-dim. articulatory
Output. 80-dim. acoustic feature
No. of LSTM nodes each hidden layer 256
Depth 3-depth layers
Batch size 1 sentence (one whole sentence per batch)
Max Epochs 30
Learning rate 0.00001
Optimizer Adam

VC BLSTM Topology
Input 80-dim. acoustic feature
Output. 80-dim. acoustic feature
No. of LSTM nodes each hidden layer 128
Depth 3-depth layers
Batch size 1 sentence (one whole sentence per batch)
Max Epochs 30
Learning rate 0.00005
Optimizer Adam

Toolkit Pytorch

5.1. Speaker-Dependent (Target) and Speaker-Independent (Baseline) ATS

We firstly conducted speaker-dependent (SD) and speaker-independent (SI) ATS
experiments for all speakers as the target (ceiling) and baseline performances, respectively.
The speaker-dependent ATS uses training, validation, and testing data from the same
speakers. Although no inter-speaker variation in SD experiments, normalization on the
input articulatory data could help accelerate training and improve performance. Therefore,
SD-ATS with and without z-score normalization were performed. The z-score normalization
on the input EMA data was conducted by firstly computing the dimension-wise mean
and standard deviation (STD) from the training set, then applying the mean and STD to
the training, validation, and testing set (Xnorm = (X− mean)/STD). Preliminary results
have indicated that z-score normalization provides consistent improvement on the SD-
ATS performance.

In speaker-independent ATS experiments, the training data are the mixture of train-
ing sets from seven training speakers. To maintain the concept of speaker-independent,
the validation data are the 50-sentence validation set of training speakers (7 speakers ×
50 = 350 sentences). Same as SD-ATS, z-score normalization improved SI-ATS as well.
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As mentioned, we also applied Procrustes matching on the input EMA data. One thing
that is worth noting is that when applying both of them together (z-score and Procrustes
matching), the translation operation in Procrustes matching was eliminated by the z-score
normalization, thus only the rotation operation affected the performance. In addition,
z-score normalization will be applied in all following experiments by default since it has
been demonstrated effective.

5.2. Acoustic Adaptation for SI-ATS Using Voice Conversion

Starting from the baselines speaker-independent ATS (with and without Procrustes
matching), we adopted voice conversion models for acoustic adaptation (Figure 2). For the
purpose of developing high performance and easy implementation, we used parallel voice
conversion models in which the data from the source and target speaker shared the same
stimulus. Across all eight speakers, 1428 parallel phrases were found in the dataset. These
1428 phrases were used for the VC model development, in which we use 14 for validating
VC model training, 14 for testing, and the rest 1400 for training.

The eight speakers took turns to be the target speaker in the cross-validation loop.
Figure 2 shows the pipeline of the VC-based speaker adaptation for a single target speaker.
Firstly we trained voice conversion models with the phrases in the training set of target
and training speakers. The acoustic features of parallel phrases were aligned to the same
length by the dynamic time warping (DTW) [56]. With the aligned acoustic features,
VC models were trained for each of the target-training speaker pairs. The VC models
were bi-directional LSTM (Table 2) since no real-time implementation was required at
this stage (voice conversion), and the BLSTM outperformed LSTM in the preliminary
experiment. After that, the acoustic features of training speakers were converted to target
speakers’ acoustic features by the VC models, and used for the later multi-speaker ATS
model training.

The speaker-independent ATS experiments with this VC speaker adaptation were
essentially not speaker-independent, since the audio data from the target speakers were
used during the adaptation (VC). However, for the convenience for describing the different
setups and for distinguishing the ATS experiments in which both articulation and audio
data from the target speaker were used for training, we still call these experiments “speaker-
independent with voice conversion” in the rest of this paper (SI-VC in Results section).

5.3. Speaker Adaptive ATS Including Training Data from Target Speakers

In this session, we directly added the training set from target speakers to the dataset
that trained speaker-independent with and without voice conversion, for a further speaker
adaptation to see if that could outperform speaker-dependent ATS (target performance).
As mentioned we named this a type of speaker-adaptive model in this study (SA). The
Procrustes matching (after z-score normalization) was used by default in this stage. In this
session, we maintained the method with target speakers, in which one ATS model was
trained for one target speaker (rather than one ATS model that works for all speakers). The
main difference was the validation sets were from the current target speaker, rather than all
of them. After that, we applied the voice conversion approach on this SA-ATS.

6. Results

Figure 4 shows the average mel-cepstral distortions (MCDs) across all speaker and
Table 3 details the MCD values of each speaker. Note that lower MCD values generally
indicate that the speech output of the ATS model is more similar to the participant’s
actual speech, and thus indicates a higher performance. As can be observed, on average,
the speaker-independent ATS with Procrustes matching (SI-P) outperforms that without
Procrustes matching (SI), across all speakers except M01 and M03. Speaker-independent
ATS with voice conversion adaptation (SI-VC) showed consistent improvement in the
speaker-independent experiments (Figure 4). When both of the Procrustes matching and
voice conversion were applied, we saw additional improvements in MCD (SI-VC and SI-VC-

113



Sensors 2022, 22, 6056

P). After adding the testing speakers’ data to the ATS training set (SA-P), the average MCD
decreased significantly and slightly outperformed speaker-dependent ATS (on average).
Voice conversion brought further improvement (SA-VC-P), but much less dramatic than in
speaker-independent experiments. Procrustes matching was used here by default since it
was verified effective for speaker normalization in the previous session. A Mann-Whitney
U test indicated the significant difference of the proposal SA approaches (SA-P and SA-VC-
P) outperformed the baseline approach (SI) (p < 0.001 for both SA-P and SA-VC-P) and
there were no significant differences with the target performance (SD).

Figure 4. Average MCDs of the experiments in this study. SD: speaker-dependent. SI: speaker-
independent. SI-P speaker-independent with Procrustes matching. SI-VC: speaker-independent ATS
with voice conversion. SA: data from targets speakers were directly added to the ATS training set.

Table 3. MCD of ATS experiments on each speaker.

SD SI SI-P SI-VC SI-VC-P SA-P SA-VC-P

Train: Tar SPK Src SPK Src SPK (P) VC-Src SPK VC-Src SPK (P) Src + Tar SPK (P) Tar + VC-Src SPK (P)
Test: Tar SPK Tar SPK Tar SPK (P) Tar SPK Tar SPK (P) Tar SPK (P) Tar SPK (P)

F01 4.98 7.80 7.48 6.63 5.79 5.26 5.08
F02 5.47 8.41 8.21 6.82 6.45 5.51 5.23
F03 6.02 9.04 8.66 8.03 6.99 6.11 6.20
F04 5.99 8.37 8.35 7.87 7.19 6.14 6.33
M01 8.96 10.41 10.44 9.45 9.33 8.22 8.23
M02 7.54 10.66 10.05 9.25 8.85 7.29 7.21
M03 6.59 8.18 8.37 7.95 7.55 6.87 6.85
M04 7.14 8.83 8.69 8.71 8.38 7.11 7.03

Mean 6.59 8.96 8.78 8.09 7.57 6.56 6.52
STD 1.27 1.04 0.98 1.03 1.21 0.99 1.05

The audio speech samples were generated from the experiments [59]. Figure 5 pro-
vides illustrations of the predicted (or original) mel-spectrogram and the synthetic speech
waveforms from different ATS models including speaker-independent ATS (with and
without Procrustes matching), ATS with speaker adaptation of voice conversion (with and
without directly adding the training set from target speakers), and the speaker-dependent
ATS. Visually, it appears that the most significant improvements in the frequency resolution
were brought by the voice conversion and directly adding the testing speakers’ data to the
training set since there is less visible stratification across the harmonics in the SI-ATS and
SI-P-ATS spectrograms. By contrast, the difference in frequency resolution and synthetic
waveform between SI and SI-P, SA-VC-P, and SD are not equivalently significant. Selected
synthetic speech samples are available at [59]. Speech samples from a speaker-independent
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(SI) ATS have rarely been presented. Perceptually, the SI-ATS speech samples in this study
sound like audible but less intelligible speech.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Figure 5. Examples of original and speaker-dependent ATS predicted mel-spectrograms and the
synthetic waveforms. (a) Mel-spectrogram from SI ATS. (b) Speech waveform from SI ATS. (c) Mel-
spectrogram from SI-P ATS. (d) Speech waveform from SI-P ATS. (e) Mel-spectrogram from SI-VC-P
ATS. (f) Speech waveform from SI-VC-P ATS. (g) Mel-spectrogram from SA-VC-P ATS. (h) Speech
waveform from SA-VC-P ATS. (i) Mel-spectrogram from SD ATS. (j) Speech waveform from SD ATS.
(k) Original mel-spectrogram. (l) Original speech waveform.
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The MCDs of voice conversion across all source-target speaker pairs were presented
in Table 4. The values in this table tell us the similarities between the source speakers and
the target speakers following the voice conversion process (lower MCD ≈ more similar).
Speakers with more similar speech characteristics will likely exhibit lower MCD values.

Table 4. MCD of voice conversion (dB) during the speaker adaptation on acoustics. The diagonal
cells are empty, because voice conversion is not applicable to the same speaker.

Source

Target
F01 F02 F03 F04 M01 M02 M03 M04

F01 6.32 7.23 6.71 7.08 6.86 7.91 8.69

F02 9.26 6.75 7.60 7.66 7.55 8.46 9.15

F03 7.43 7.01 7.02 6.85 7.04 7.83 8.77

F04 7.15 6.24 7.45 7.24 7.66 8.02 9.25

M01 6.64 6.40 6.32 7.38 7.03 7.68 8.52

M02 6.47 6.64 6.50 7.56 6.78 7.77 8.70

M03 6.97 6.63 6.65 7.51 6.70 7.05 8.50

M04 7.01 6.32 7.05 7.42 7.96 7.17 7.71

Average 7.30 6.51 6.85 7.31 7.18 7.19 7.91 8.80

7. Discussion

7.1. Acoustic and Articulation Adaptation Performances

Voice conversion has brought more significant improvement than the Procrustes match-
ing (Table 3). The Procrustes matching has brought additional and consistent improvement
when combined with voice conversion. Speaker-independent ATS has speaker variation in
both the input articulation and output acoustics. Therefore, it is natural that adapting both
articulation and acoustics outperform adapting only one of them. The Procrustes matching
is an average-based normalization approach, while the voice conversion in this study is
a “personalized” adaptation that converts all training speakers’ voice to that of the target
speakers. Therefore, it is expected that voice conversion improved speaker-independent
(SI) ATS more than the Procrustes matching. In practice, the voice conversion approach
proposed in this study is expected to reduce the effort of articulatory data collection, since
it only adopts audio data from the target speakers. Collecting acoustic data only is less
challenging than collecting synchronized acoustic and articulatory data. Audio data could
also be collected remotely, which is normally impractical for current SSI articulatory data
collection approaches. In addition, voice conversion requires less training data than ATS,
audible speech could be generated by a VC model trained with only 10–20 sentences [24].

As shown in the results, the inclusion of the data (both acoustic and articulatory) from
target speakers is a dominating advantage in training ATS (SA approaches), which has
significantly outperformed the speaker-independent experiments. The VC adaptation has
also shown less improvement here (6.56 –> 6.52 dB). Although not statistically significant,
both SA-P and SA-VC-P outperformed speaker-dependent ATS on average. It is worth
noting that the performance of each approach still varied significantly across speakers,
as seen in Table 3. Although the performance differences were somewhat marginal, they
illustrate the potential efficacy of speaker adaptation methods. These results demonstrated
that the data (both acoustic and articulatory) from target speakers is still a strong advan-
tage in training ATS, which also indicated the challenge in outperforming SD-ATS with
speaker adaptation approaches. Further improvements in the effectiveness of both SI and
SA methods are likely to come as datasets with larger groups of speakers. Such as in
speaker-independent ASR systems that generally use tens or hundreds of speakers in their
training data.
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It notes that, although our speaker-adaptive ATS obtained comparable performances
with SD-ATS, it does not mean speaker-adaptive ATS could outperform SD-ATS with
an increased number of subjects and data size from single speakers. As the number of
subjects increases, the inter-speaker variability in both articulation and acoustics increases.
Although SD-ATS may be still the first choice when developing new ATS algorithms, our
findings suggest SA-ATS may be a promising alternative solution.

7.2. Performance Variation across Speakers

Given the similar data amount, the eight speakers in the dataset have shown differ-
ent performances in both SD- and SI-ATS (Table 3). Due to the inter- and intra-speaker
variation, the MCDs have shown obvious differences across speakers in all experiments.
Speakers with lower intra-speaker variation may show higher performance in speaker-
dependent ATS. Speakers that have higher similarity to other speakers seem to have higher
performance in speaker-independent ATS (e.g., F01). Speakers’ data with higher intra- and
inter-speaker variation may demonstrate lower performance in SD and SI experiments,
respectively (e.g., M01 and M02).

7.3. Observations from the Synthetic Speech Samples

Interestingly, in the synthetic speech samples presented in [59], it was observed that
the speaker-independent ATS generated “gender-confused” speech samples. We expect
this because the training set includes data from both genders. While the speech samples
from speaker-independent ATS with VC adaptation show obvious gender characteristics
since the training data from the opposite gender were converted. Therefore, the voice
conversion adaptation may also improve the gender characteristic in the synthetic speech.
Gender-dependency in speaker-independent ATS might be a topic that is worth further
investigation in the future.

7.4. Relationship between VC and ATS Performances

Table 4 has shown the MCDs of voice conversion model development. The rows and
columns are the source and target speakers of voice conversion. The Pearson correlation
coefficients between the mean VC performance (Table 4) and the SI-VC performance across
all speakers (Table 3) was 0.84 and was decreased to 0.78 for the correlation between VC
and SI-VC-P (Table 3). The improvement from Procrustes matching reduced the correlation
between VC and the SI-VC-P. It is possible that an SI-ATS model for a target speaker got
strong acoustics adaptation by the voice conversion, while the Procrustes matching for
that speaker was not strong enough accordingly to form a good mapping between the
adapted articulation and the acoustics. Therefore, a matched adaptation of acoustics and
articulation might be more effective in the task of speaker adaptation for ATS.

7.5. Feasibility of Articulation Conversion

Other than the Procrustes matching, an alternative approach for articulation adaptation
is the articulation conversion, which has a similar procedure to the voice conversion in
this study. In the articulation conversion, the articulatory data from the training speakers
were converted to that of target speakers with the trained articulation conversion models.
However, the articulation conversion generated articulatory movement with a spatial RMSE
larger than 3 mm, which led to a performance decrease in the following ATS experiments.
The EMA data are low-frequency time domain signals, which might be more challenging
to precisely predict than the high-frequency frequency domain acoustic features. As an
end-to-end model, ATS might be very sensitive to the variation in the input articulation.
Therefore, we did not use articulation conversion in the current study. More studies are
needed to confirm the feasibility of this articulation conversion approach.
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8. Conclusions

In this study, we investigated speaker adaptation approaches for articulation-to-speech
synthesis using voice conversion and Procrustes matching. Procrustes matching was first
applied to reduce the speaker variations in the articulation. Then a framework of using
voice conversion for ATS voice adaptation was proposed and validated, in which voice
conversion (VC) models were trained for reducing the acoustic variations between training
and testing speakers. The experimental results have shown the effectiveness of both
Procrustes matching and voice conversion; the performance was further improved when
both were used in conjunction. Additionally, we performed speaker-adaptive (SA) ATS
experiments in which the data from the target speakers (both acoustic and articulatory)
were included in the training set (both with and without VC adaptation) and achieved
a similar performance to the speaker-dependent ATS. To our knowledge, this is the first
study that demonstrated the potential of speaker-adaptive ATS by showing a comparable
performance to that of speaker-dependent ATS. This study is also the first to demonstrate
audible speech output from speaker-independent and speaker-adaptive ATS systems.
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Abstract: Within speech processing, articulatory-to-acoustic mapping (AAM) methods can apply
ultrasound tongue imaging (UTI) as an input. (Micro)convex transducers are mostly used, which
provide a wedge-shape visual image. However, this process is optimized for the visual inspection
of the human eye, and the signal is often post-processed by the equipment. With newer ultrasound
equipment, now it is possible to gain access to the raw scanline data (i.e., ultrasound echo return)
without any internal post-processing. In this study, we compared the raw scanline representation
with the wedge-shaped processed UTI as the input for the residual network applied for AAM, and
we also investigated the optimal size of the input image. We found no significant differences between
the performance attained using the raw data and the wedge-shaped image extrapolated from it. We
found the optimal pixel size to be 64 × 43 in the case of the raw scanline input, and 64 × 64 when
transformed to a wedge. Therefore, it is not necessary to use the full original 64 × 842 pixels raw
scanline, but a smaller image is enough. This allows for the building of smaller networks, and will be
beneficial for the development of session and speaker-independent methods for practical applications.
AAM systems have the target application of a “silent speech interface”, which could be helpful for the
communication of the speaking-impaired, in military applications, or in extremely noisy conditions.

Keywords: speech processing; ultrasound imaging; deep learning

1. Introduction

Speech is used in our everyday human–computer interfaces when interacting with
mobile or fixed electronic devices. Future speech interfaces will go beyond current human–
machine communication systems because speech has several drawbacks: (1) it can be
easily captured by a third party; (2) speech communication is problematic for the speaking-
impaired (e.g., patients after laryngectomy); (3) speech understanding degrades rapidly in
noisy environments.

There has been an increased interest in the analysis, processing, prediction, and
synthesis of biosignals in the speech processing community. Such biosignals include: the
speech waveform, information about the articulators (larynx, tongue, lips, teeth, etc.),
neural pathways, or the brain itself. These biosignals can be used in scenarios such as
articulatory-to-acoustic mapping (AAM) or acoustic-to-articulatory inversion (AAI). Such
biosignals can typically be recorded with some external sensor or specific device, and
processing this data causes various challenges. In the AAM field, articulatory data (i.e.,
information about the movement of the articulatory organs) are recorded while the subject
is speaking, and machine learning methods (nowadays, typically deep neural networks
(DNNs)) are applied for predicting the speech signal, while the network is conditioned
on the articulatory input. Systems that can perform the automatic articulatory-to-acoustic
mapping are often referred to as “silent speech interfaces” (SSIs) [1–3], with the final aim of
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a target application where silent (mouthed) articulation can be converted to audible speech.
Such an SSI could be helpful for the communication of the speaking-impaired, in military
applications, or in extremely noisy conditions.

In the area of AAM, several different types of articulatory acquisition equipments have
been used, including ultrasound tongue imaging (UTI) [4–22], electromagnetic articulogra-
phy (EMA) [23–27], permanent magnetic articulography (PMA) [28,29], surface electromyo-
graphy (sEMG) [30–32], electro-optical stomatography (EOS) [33], lip video [5,6,34–36],
continuous-wave radar [37], or multimodal combination [38]. There are basically two dis-
tinct methods of SSI solutions, namely “direct synthesis” and “recognition-and-synthesis” [2].
In the first case, the speech signal is generated without an intermediate step, directly from
the articulatory data, typically using vocoders [4,7,9,11,12,15–17,25,26,29–31]. In the second
case, silent speech recognition (SSR) is applied on the biosignal, which extracts the content
spoken by the person (i.e., the result is text). This step is then followed by text-to-speech
(TTS) synthesis [5,6,10,23,24,28,32,33]. The drawback of the SSR+TTS approach might be
that the errors made by the SSR component inevitably appear as errors in the final TTS out-
put [2], and also that it causes a significant end-to-end delay. Furthermore, any information
related to speech prosody is totally lost, while several studies have showed that certain
prosodic components may be estimated reasonably well from the articulatory recordings
(e.g., energy [11] and pitch [12]). Depending on the use-case scenario, the two approaches
may have various advantages; for example, the smaller delay with the direct synthesis
approach might enable conversational use and potential research on human-in-the-loop
scenarios.

In this study, we focus on ultrasound tongue images as the articulatory input, with
the direct synthesis approach used for AAM.

1.1. Representations of Ultrasound Tongue Images

For investigating the tongue movement using ultrasound, a B-mode scan is typically
used with a (micro)convex transducer [39]. In a real-time B-scan ultrasound transducer, a
row of identical piezoelectric crystals emit sound waves and receive their reflected echoes
(for an illustration, see the left-hand side of Figure 1). The received echoes are converted to
an electrical signal, and are then sent to the internal computer of the ultrasound machine.
The internal computer reconstructs the returning echoes into a 2D grayscale image usually
shaped like a 90–120 degree wedge (see the right-hand side of Figure 1). Typically, during
recordings, a midsagittal orientation is maintained with the shadows of the jaw and the
hyoid bones visible at opposite sides of the scan wedge [39]. For linguistic studies, manual
tracing or the automatic tracking of the tongue is frequently performed [40,41], but, for
articulatory-to-acoustic mapping purposes, such a contour extraction is not typically used.

Figure 1. Ultrasond tongue image representations: raw scanlines during recording (left), array of
raw scanline data (middle), and a wedge-formatted image (right).

In the first AAM studies that had ultrasound images for recording the articulatory
movement, it was not possible to gain access to the raw echo data due to the restrictions
of the equipment. Instead, the ultrasound scanlines were interpolated and organized as
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a “fan-shaped”/“wedge” representation, as described above. In the earliest UTI-based
direct synthesis study by Denby et al. [4], the ultrasound images (recorded at 30 fps) were
first reduced to a 14 by 40 grid and automatic contour tracking was carried out on the fan-
shaped data to reduce dimensionality. A few years later, Hueber et al. [6] used fan-shaped
images (with an Aloka SSD-1000 machine), but post-processing algorithms, such as image
averaging and speckle reduction, were disabled. After this, with an analog system, an NTSC
video was created, limiting the time resolution to 29.97 Hz fps. In their next experimental
setup [5,7,9], a Terason T3000 ultrasound system was used with a dedicated software to
record the wedge-shaped articulatory data at 320 × 240 pixels and 60 fps, doubling the
time resolution. The fan-shaped ultrasound images were resized to 64 × 64 pixels and the
EigenTongues decomposition technique [42] was applied for dimension reduction, keeping
the first 30 coefficients. In the latest relevant study from the same research group [10],
the ultrasound images were resized to 32 × 32 pixels, and these images were used with
CNNs (without EigenTongues compression). Similarly, a 320 × 240 pixels ultrasound video
was recorded for the Silent Speech Challenge (SSC) dataset [14]. Wei et al. [8], with an
unspecified system, used a fan-shaped 64× 48 pixels UTI input (compressed with PCA and
autoencoders) for AAM and AAI. Kimura et al. [18] used a CONTEC CMS600P2 system
and a display-digitizing unit for converting the signal sent to the display to a 30 fps MPEG-4
movie file, and resized the fan-shaped images to 128 × 128 pixels for the AAM input. In
their next study [43], interpolated ultrasound videos were recorded with a resolution of
640 × 445 pixels. In most of the above studies, classical image processing of the ultrasound
input is not performed, and the feature extraction is left to the DNN. This is similar to
how other modalities are processed in related tasks such as lip images [34], MRI [44], or
EMA [27].

In our earlier studies on ultrasound-based articulatory-to-acoustic mapping, we used
raw scanline data as the input of the DNNs, recorded using a “Micro” system (developed
by Telemed Ltd., Vilnius, Lithuania, and distributed by Articulate Instruments Ltd., Mus-
selburgh, UK), a 2–4 MHz/64 element 20 mm radius convex ultrasound transducer at
80–85 fps [11–13,15–17,20,21]. In [11–13], data from a single female speaker were used,
and the raw echo-returns of 64 × 946 were resized to 64 × 119 pixels using a bicubic in-
terpolation. In [17], four speakers were used, and the raw images of 64 × 842 pixels were
resized to 64 × 128. Instead of using the full raw scanline data, in [11], we investigated
correlation-based feature selection, and, in [16], we tested the applicability of autoencoders
for dimensionality reduction. Besides the above works by our research group, there were
only a few studies that used raw scanlines. Ribeiro et al. [45] applied a raw ultrasound for
the classification of phonetic segments. Here, 63 × 412 echo-return data (recorded using
Ultrasonix SonixRP) were utilized as the input of DNNs and CNNs, and the raw data
input was compared with PCA and 2D-DCT-based compression. A subsequent study [46]
applied the raw scanlines of the “Micro” system, resized to 63 × 128 pixels.

The advantage of fan-shaped data is that they correspond to the physical/spatial
orientation of the speaking organs of the subject; therefore, comparisons across sessions
and speakers are relatively easy. Another benefit can be that CNNs might process the
wedge-shaped data easier as they do not contain nonlinear distortions. On the other hand,
the advantage of raw scanline data is that they can be acquired directly from the ultrasound
equipment, without any postprocessing. Therefore, feature extraction can be left up to the
machine learning algorithms. However, the disadvantage is that, because of the convex
transducer, the raw data do not correspond to the original mid-sagittal slice, and non-linear
interpolation is necessary to transform into real-world orientation. Therefore, a comparison
across sessions and speakers using the raw scanline data is a challenge.

1.2. Contributions of This Paper

In our previous studies, we hypothesized that the use of a raw scanline ultrasound
always results in lower errors during the prediction of spectral or excitation parame-
ters [11–13,15–17]. However, this hypothesis was never tested explicitly (neither by us,
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nor by other research groups). In the current paper, we compared raw scanline data with
the wedge-formatted ultrasound tongue image input for articulatory-to-acoustic mapping,
applying deep neural networks. Furthermore, we investigated the effect of reducing the
input image size.

2. Materials and Methods

2.1. Data Acquisition

The same dataset was used as in our previous studies [17,20]. Several Hungarian
male and female subjects with normal speaking abilities were recorded while reading
sentences aloud (altogether, 209 sentences each), of which, a female speaker (#048) was
chosen for the current study. The tongue movement was recorded in midsagittal orientation
using the “Micro” ultrasound system (Articulate Instruments Ltd.) with a 2–4 MHz/64
element 20 mm radius convex ultrasound transducer at 81.67 fps. The speech signal was
recorded with a Beyerdynamic TG H56c tan omnidirectional condenser microphone. At
the time of capturing an ultrasound frame, the “Micro” equipment generates a pulse at
the “frame sync” output, which was digitized together with the speech signal with an
M-Audio—MTRACK PLUS external sound card at 22 050 Hz (see Figure 2). The ultrasound
data and the audio signals were synchronized using a custom tool that is looking at the
rising edge of the peaks in the "frame sync" signal. More details about the recording set-up
can be found in [11,17]. The overall duration of the recordings was approximately 15 min,
which was partitioned into training, validation, and test sets in an 85:10:5 ratio.

Figure 2. Ultrasound synchronization signal: the rising edge of the pulses indicates the capture time
of ultrasound images.

2.2. Input 1: Ultrasound as Raw Scanlines (UTIraw)

In the first case, the raw scanline data (64 × 842 pixels, Figure 3/1) of the ultrasound
were used. To check the optimal image resolution, they were further resized to 64 × 421,
64 × 210, 64 × 105, 64 × 53, 64 × 26, and 64 × 13 pixels using bicubic interpolation (with
the skimage.transform function). The resized raw images served as the input of the deep
neural networks, which can be seen in Figure 3 and will be introduced in Section 2.6.
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Figure 3. ResNet-50 architecture for articulatory-to-acoustic mapping using ultrasound tongue
image (raw scanline vs. wedge) input and MGC-LSP target. ResNet image adopted from https:
//towardsdatascience.com/understanding-and-coding-a-resnet-in-keras-446d7ff84d33, accessed
date: 11 May 2020.

2.3. Input 2: Ultrasound as Raw Scanlines, Reshaped to Square (UTIraw-Padding)

In the second case, the scanline data (64 × 842 pixels) of the ultrasound were used, after
being transposed to a 512 × 512 square for ResNet input (see Figure 3/2). To check the optimal
image resolution, they were further resized to 256 × 256, 128 × 128, 64 × 64, 32 × 32, 16 × 16,
and 8 × 8 pixels using bicubic interpolation (with the skimage.transform function).

2.4. Input 3: Ultrasound as a Wedge-Shape (UTIwedge)

In the third case, the raw scanline data (left-hand side of Figure 1) were interpolated
to achieve a wedge-shape. For this, we used the pcolormesh function of matplotlib to
smooth and interpolate the data for a continuous wedge-shape, including aliasing (right-
hand side of Figure 1). The necessary details for the interpolation (e.g., angle between scan-
lines, zero offset) were extracted from the AAA software (V219.08, Articulate Instruments
Ltd.) that was used for the recordings. The generated image sequences (840 × 510 pixels)
were saved to MP4 video using ffmpeg, keeping the original scaling of the pixel values.
After this, the middle of the images was cropped to a 512 × 512 square box (region of
interest), and this was used as the input of the ResNet (see Figure 3/3). The further image
resizing steps were the same as those for the raw scanline data in Section 2.3, i.e., resized to
256 × 256, 128 × 128, 64 × 64, 32 × 32, 16 × 16, and 8 × 8 pixels using bicubic interpolation
(with the skimage.transform function).

2.5. Target: Spectral Features of the Vocoder

To create the speech synthesis targets, the speech recordings were analyzed using
mel-generalized log spectral approximation (MGLSA) [47] at a frame shift of 22,050 Hz/81.67 fps
= 270 samples in order to be synchronous with the ultrasound data. As shown in Figure 2,
this was achieved using the hardware sync output of the “Micro” equipment. This resulted in
25-dimensional spectral features (mel-generalized cepstrum–line spectral pair representation
(MGC-LSP)) [48]. The vocoder spectral parameters served as the training targets of the DNNs,
similarly to our earlier experiments in articulatory-to-acoustic mapping [11,17].

2.6. Training of Deep Neural Networks

We applied the ResNet-50 network [49] for the deep learning experiments. In our
earlier studies, we either used fully connected deep neural networks [11,12], convolutional
networks [15,17,20], LSTMs [15], 3D-CNNs [21], or GANs [22], but here, we opted for a
more advanced network. The advantage of ResNet is that, by using skip connections,
deeper convolutional networks can be trained than with simple DNNs or CNNs. By
using ResNet-50, the network is spatially deep enough to capture most information from
the ultrasound-based articulatory data. As ResNet was originally developed for image
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classification, the original output layer is “softmax”, which was replaced here by a “linear”
activation for the current regression task.

For all cases, we trained a speaker-specific ResNet model using the training data
(180 sentences). Altogether, 21 networks were trained (3 data representations × 7 image
sizes × 1 speaker). The cost function applied for the MGC-LSP regression task was the
normalized mean-squared error (NMSE), and the optimizer was ADAM. We trained the
network using backpropagation, and applied early stopping to avoid over-fitting. The
network was trained at most for 100 epochs, but the training was stopped when the
validation loss did not decrease within 10 epochs.

3. Results

After training the above ResNet models, we evaluated them by comparing the input
image representations and the output spectral features.

3.1. Demonstration Samples

A sample Hungarian sentence (not being present in the training data) was chosen for
demonstrating how the systems deal with the prediction of MGC-LSP spectral parameters.
Figure 4 shows the output spectral features with the three input representations and seven
image sizes.

Figure 4. Demonstration samples: predicted MGC-LSP spectral features as a function of input image
representation and size. Sentence: “Az Északi szél és a Nap”.

In the first column, we can compare the results when using ultrasound as a raw
scanlines input between 64 × 842–64 × 13 pixels. The predicted spectrograms follow the
original sentence for the most part, but we can observe some artifacts: in the case of
large input sizes (64 × 842, 64 × 421 and 64 × 210), the spectrogram is oversmoothed (i.e.,
formants are only weakly visible); and with a very small input size (64 × 13), unwanted
frequency components appear at the end of the sentence, after frame 130. The remaining
three figures in the middle (64 × 105, 64 × 53, and 64 × 26) seem to be the closest to the
original spectrogram.

The second column shows the results when using the ultrasound of raw scanlines
input, reshaped to a square, between 512 × 512–8 × 8 pixels. The tendencies are similar to
the first column: the largest (512 × 512) and smallest (8 × 8) images cause oversmoothing,
whereas those in between follow the spectral features or the original sentence with finer
details. Interestingly, the 128 × 128 image size resulted in some distortion at the end of the
sentence, between frames 140–160.
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In the third column of Figure 4, we can see the effect ofthe ultrasound as a wedge-
shape when used as an input of the ResNet, again between 512 × 512–8 × 8 pixels. The
middle images sizes (128 × 128, 64 × 64, and 32 × 32) resulted in a relatively well-predicted
spectrogram between frames 20–140; but after frame 140, distortion is visible in the case of
64 × 64. In the case of this demonstration sentence, the spectral prediction with 16 × 16
is extremely weak and almost constant, whereas in the case of the 8 × 8 image size, the
formant movements of the original spectrogram are at least roughly visible.

Overall, the best MGC-LSP spectrogram predictions could be achieved with input
image sizes of 64 × 53, 64 × 64, and 32 × 32 pixels on this single demonstration sentence.
To obtain more general evaluations, we measured errors on the whole validation set, which
will be introduced in the next section.

3.2. Comparison of Raw Scanline Data and Wedge Format

Figure 5 presents the validation loss results that we obtained after training the ResNet-
50 network separately for the three data representations as a function of the input image
size. When comparing (1) raw data (UTIraw), (2) raw data in square form (UTIraw-padding),
and (3) wedge-shaped ultrasound data (UTIwedge), we can see similar tendencies in the
validation error (which is NMSE measured on the validation data). All of the errors with
the raw scanlines and the wedge-formatted images are in the range of 0.44–0.55. The best
results (lowest errors) were achieved with the (1) raw scanline representation. This is
followed by the (2) raw data in square form, while the (3) wedge-shaped ultrasound data
have the weakest results—but the values do not seem to be significantly different.

Therefore, we can conclude that the wedge representation of ultrasound tongue images
(when extrapolated directly from the original raw scanlines) can result in roughly the same
errors during articulatory-to-acoustic mapping.

Figure 5. Final validation loss after ResNet-50 training as a function of input image representation
and size. UTIraw: ultrasound as raw scanlines; UTIraw-padding: ultrasound as raw scanlines,
reshaped to square; UTIwedge: ultrasound as a wedge shape.
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3.3. Relation of Input Image Size and NMSE

We can investigate the three subfigures in Figure 5 as a function of image size. The
tendencies are the same for all three data representations: the original image sizes (either
64 × 842 or 512 × 512 pixels) achieved a validation NMSE of around 0.48–0.49. When the
image size is decreased (64 × 421 or 256 × 256 pixels), the validation error of the network
will be lower. The optimal image size is around 64 × 64, resulting in a validation NMSE of
around 0.44–0.45. Here, we can find some differences with the three data representations:
(1) in the case of the raw scanline input (top subfigure), the image size causing the lowest
error is 64 × 53 pixels; (2) if the scanlines are in square representation, then the lowest
error is achieved with 256 × 256 pixels, but 64 × 64 results in almost the same values; (3) in
the case of the wedge input, then, again, 64 × 64 pixels is the optimal size. If we further
decrease the image size (64 × 26/64 × 13/32 × 32/etc.), then the error gets higher, until we
reach the weakest results: NMSE is 0.45 with 64 × 13, and 0.52/0.56 with 8 × 8 pixels input
images.

Based on the above comparison, we can conclude that the optimal image sizes are
64 × 53 and 64 × 64 when taking into account the validation error.

3.4. Training Time

Figure 6 shows the (wall clock) DNN training times expressed in seconds. For all three
input representations, this was measured on an Intel i7-2600 3.4 GHz PC with 16 GB RAM
and an NVidia Titan X video card. Note that the largest images (512 × 512, 64 × 842, and
64 × 421) were trained with a batch size of 2 in order to fit into GPU memory; whereas, for
the other image sizes, a batch size of 64 was used. The other parameters of DNN training
were the same for all networks.

Figure 6. ResNet-50 wall-clock training time (in seconds) as a function of image size.
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We can observe the tendency that networks with a middle-sized input image are
faster to train. In particular, the original images (512 × 512 and 64 × 842) are highly
disadvantageous when trained with ResNet-50 because of memory limitations (i.e., a
smaller batch size). Based on the training time, the optimal image size is around 64 × 64
and 64× 105 pixels (except for UTIwedge, where the training with the 128× 128 input image
size was the fastest). With UTIwedge representation, with all image sizes, the training time
was significantly larger than with UTIraw or UTIraw-padding.

4. Discussion

For articulatory-to-acoustic mapping, ultrasound tongue imaging is often applied as
an input, as shown in Section 1. Mostly, (micro)convex transducers are used, which provide
a wedge-shape visual image. However, this is optimized for the visual inspection of the
human eye (which is perfect for linguistic or medical studies), and the signal is often post-
processed by the equipment (which might be a problem for engineering studies). Examples
for such early systems are: Acoustic Imaging Performa 30 Hz ultrasound machine [4], Aloka
SSD-1000 machine [6], Terason T3000 ultrasound [5,7,9], and the CONTEC CMS600P2
system [18].

With newer ultrasound equipment, it is now possible to gain full access to the raw
scanline data (i.e., ultrasound echo return). A good example for this is the “Micro” system
(developed by Telemed Ltd., Vilnius, Lithuania, and distributed by Articulate Instruments
Ltd., Musselburgh, UK),which is available since 2016, and was also used for our recordings
in the MTA-ELTE Lendület Lingual Articulation Research Group [11,17,50]. In addition,
it was used for large-scale databases, such as UltraSuite [51] and UltraSuite-TaL [52]. The
advantage of the “Micro” ultrasound equipment in this context is that we can use the
data without any internal post-processing of the device, and the feature extraction can be
left up to the machine learning algorithms. For other scenarios, e.g., automatic tongue
contour tracking from ultrasound images, preprocessing the features has been shown to be
useful [53], but, for contour tracking in the above study, deep learning approaches have not
been used, which could help the feature learning.

The raw scanline data used in this study refer to the digitized, envelope-detected beam
vectors of the “Micro” ultrasound system. When the ultrasound is recorded internally in
the device, the envelopes of raw beamformed RF signals are generated from the delay and
sum of channel signals. After further demodulation, low-pass filtering, and amplitude
operation, the scanline data can be obtained, and the final B-mode images can also be
generated by image processing and coordinate transformation. Therefore, the significant
information differences should exist between the raw beamformed RF signals and raw
scanline data or final B-mode images, rather than raw scanline data and final B-mode
images. However, there is no control of beamforming in “Micro” and we cannot have
access to the above RF signal (p.c., Articulate Instruments Ltd.). With other ultrasound
equipment (e.g., “Art” system of Articulate Instruments Ltd.), one can record and process
the RF output, but, in this case, the hardware synchronization with the speech signal has to
be solved.

Although a large number of studies have already applied ultrasound tongue imaging
for articulatory-to-acoustic mapping, the optimal data representations and input image
sizes have not been deeply investigated before. In the current study, we compared the raw
scanline representation (digitized, envelope-detected beam vectors) with the wedge-shaped
processed UTI as the input for the residual network applied for AAM, and showed that
all input representations can result in a similar validation error while training DNNs. We
expect that, with a higher resolution ultrasound (e.g., higher fps, larger spatial resolution,
or 3D/4D ultrasound [54]), the synthesized speech would be more natural, i.e., result in a
lower MSE during DNN training.

However, a comparison across sessions and speakers (or designing speaker-independent
AAM systems) using the raw scanline data is a challenge. Because of the convex transducer,
the raw data do not correspond to the original mid-sagittal slice, and non-linear interpo-
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lation is necessary to transform into real-world orientation. Therefore, for comparisons
across sessions and speakers, the wedge-shape ultrasound images might be more useful
than the raw scanline data. By using tracing methods on wedge-shaped ultrasound images,
it is also possible to obtain a raw-like data representation [55], but this conversion cannot
revert the postprocessing methods of the equipment, and the back-and-forth conversion
obviously leads to some data loss.

In spite of the significant achievements of the last decade, potential SSI applications
seem to still be far away from a practically working scenario. Part of the reason is the lack
of fully developed cross-session and cross-speaker methodologies. With some articulatory
tracking devices, there have already been such experiments, e.g., signal normalization and
model adaptation for sEMG [56,57], domain-adversarial DNN training [32], inter-speaker
analysis for EOS [58], region of interest detection and cropping for lip video [43], and
articulation adaptation using Procrustes matching with EMA [27]. Ultrasound-based SSI
systems, however, might be less robust, as slight changes in probe positioning causes shifts
and rotations in the resulting image [59,60]. Therefore, the results of the current study can
help future cross-session and cross-speaker experiments.

5. Conclusions

In this study, we compared the raw scanline input with the wedge-shaped ultrasound
tongue image representation. In addition, we investigated the optimal input image size of
a residual network applied for articulatory-to-acoustic mapping. We found that there is no
significant difference between using the raw data (either in original form or transposed to a
square) and the wedge shape that is directly extrapolated from the raw data. We also found
that the optimal pixel size is 64 × 64 when taking into account the validation loss and
network training time. Therefore, it is not necessary to use the full original 64 × 842 pixels
raw scanline, but a smaller image is enough, which allows for the building of smaller
networks using less training data. In addition, the smaller image size enables the use
of multiple consecutive input images [11] or a recurrent neural network [15], as already
applied in our earlier work.

The advantage of fan/wedge-shaped data is that they correspond to the physi-
cal/spatial orientation of the speaking organs of the subject; therefore, comparisons across
sessions and speakers are relatively easy. In the future, we plan to apply the raw-to-wedge
conversion methods for experimenting with speaker-independent articulatory-to-acoustic
systems in order to develop practically working silent speech interface applications.

The Keras implementations are accessible at https://github.com/BME-SmartLab/
UTI-optimization, last accessed on 30 October 2022.
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Abstract: Speech is our most natural and efficient form of communication and offers a strong potential
to improve how we interact with machines. However, speech communication can sometimes be
limited by environmental (e.g., ambient noise), contextual (e.g., need for privacy), or health conditions
(e.g., laryngectomy), preventing the consideration of audible speech. In this regard, silent speech
interfaces (SSI) have been proposed as an alternative, considering technologies that do not require
the production of acoustic signals (e.g., electromyography and video). Unfortunately, despite their
plentitude, many still face limitations regarding their everyday use, e.g., being intrusive, non-portable,
or raising technical (e.g., lighting conditions for video) or privacy concerns. In line with this necessity,
this article explores the consideration of contactless continuous-wave radar to assess its potential for
SSI development. A corpus of 13 European Portuguese words was acquired for four speakers and
three of them enrolled in a second acquisition session, three months later. Regarding the speaker-
dependent models, trained and tested with data from each speaker while using 5-fold cross-validation,
average accuracies of 84.50% and 88.00% were respectively obtained from Bagging (BAG) and Linear
Regression (LR) classifiers, respectively. Additionally, recognition accuracies of 81.79% and 81.80%
were also, respectively, achieved for the session and speaker-independent experiments, establishing
promising grounds for further exploring this technology towards silent speech recognition.

Keywords: silent speech; continuous-wave radar; European Portuguese; machine learning

1. Introduction

Speech is a natural and efficient form of human communication, and, as such, the research
on speech technologies that can foster its use in domains such as Human–Computer Interaction
(HCI) is highly relevant. While Automatic Speech Recognition (ASR) is commonly used in
HCI environments, as in the case of Amazon’s Alexa and Apple’s Siri [1], there are still some
scenarios that cannot take the most out of speech interaction, including situations where privacy
is needed, environmental noise is present, silence is required, or in the most extreme cases, when
health conditions incapacitate speakers to produce acoustic signals.

To tackle such scenarios, Silent Speech Interfaces (SSI) emerged as a possible alternative
to consider, consisting of the process of speech communication in the absence of an audi-
ble/intelligible acoustic signal [2]. As speech production is a complex motor process, which
starts in the brain and ends with respiratory, laryngeal, and articulatory motion, each step of its
production process can be explored and physiologically measured through specialized sensors
and methods to potentially infer what the speaker is trying to say without relying on the acoustic
signal [3,4].

Although there are already a large set of proposed sensors and technologies for silent
speech recognition, most of them have characteristics that limit their use in everyday life, e.g.,
by being intrusive, non-portable, affected by noise, user-dependent, or just not affordable [5–8].

In light of these challenges, it is important to explore novel and improved technologies that
might bring SSI to a wider variety of scenarios and users. To this end, frequency-modulated
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continuous wave (FMCW) radar technology, already used in a wide variety of scenarios includ-
ing the automotive industry [9,10] and service robots [11,12], emerges as a possible candidate
to tackle some of these issues given its non-invasiveness, non-intrusiveness, portability, and
independence of ambient lighting. Furthermore, recent evolutions have made it less costly and
easily available commercially, making radar technology appear in many of our daily environ-
ments. The recent market launch of the first mobile phone with radar (Google pixel 4; 2019)
dedicated to proximity detection and identification of manual commands from the user without
direct contact with the device, points towards the vulgarization of this technology and opens
up prospects of its future exploitation for novel applications. In this regard, the exploration
of a technology that might already be present to bring SSI capabilities to the environment is a
promising path to follow. However, while a strong potential can be anticipated, given these
perceived advantages, radar technology has yet to prove its mettle for silent speech applications.

In previous work, the authors performed a preliminary study exploring the capabilities
of contactless radar-based technology for silent speech interfaces [13]. The achieved results,
obtained considering a corpus of 13 European Portuguese words and three speakers, demon-
strated good overall performance establishing the feasibility of the proposed approach and
yielding promising grounds for additional research. In this context, the main goal of the work
presented here is to expand on previous work regarding radar-based SSI and contribute to
the body of work in the field by (a) expanding the number of considered speakers, in regards
to our previous work, from three to four; (b) assessing session independence by considering
data obtained for the same speakers in two independent acquisition sessions; and (c) exploring
speaker-independent performance.

The remainder of this document is structured as follows. Section 2 presents a brief overview
on related work regarding non-invasive SSI, also covering previous research on SSIs for Euro-
pean Portuguese. Section 3 describes the adopted methods, from environment and acquisition
settings to data exploration, feature extraction, and classification approaches. Section 4 reports
the results for all the performed research experiments (i.e., per-speaker, intra-speaker, and
inter-speaker). In Section 5, these are further analyzed and discussed. Finally, Section 6 presents
some concluding remarks and ideas for further advancing this work.

2. Related Work on SSI

A distinguishing element of SSIs is speech recognition beyond the acoustic signal, exploring
other biosignals associated with the different stages of the speech production process [2,4]. From
brain waves to the visual aspects of speech, several approaches have been, and continue to be,
proposed towards silent speech recognition (SSR). While relevant work also exists for invasive
technologies, the overview provided in what follows focuses on non-invasive methods, as
they are in line with our goals. Along with the presented overview, Table 1 is also presented,
encompassing attained results from different considered technologies in the existing literature
in the most recent years. Apart from researches that mainly focused on classification purposes,
several others that studied the possibility of achieving session and speaker independence were
also included, as they are topics incident on this work that will be subject to further exploration.
Regarding the literature review process, Google Scholar was the search engine resorted to given
its vast scope of scholarly literature.

In SSI development research, surface EMG (sEMG) is the most commonly used technology
as it is easy to apply and is less prone to raise ethical concerns for volunteers [14,15]. Recent
work has privileged the evolution and consideration of increasingly imperceptible and highly
flexible sEMG electrodes (see, e.g., in [16–20]), and notable results include those of Liu et al. [16]
and Dong et al. [15], where accuracies greater than 80% (for a vocabulary of six words) and
70.00% (for a vocabulary of three words) were, respectively, achieved. Nevertheless, there is still
a high data variability between sessions due to the participants’ skin impedance [21].

Non-audible murmur (NAM) microphones are another technology widely used in SSI
development to capture and record murmured speech and other smooth vocal productions
resultant from the acoustic output. Recognition rates of nearly 70.00% were achieved in a total
of 21 tested utterances [22]. However, NAM is highly user-dependent due to participants’
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physiological differences, and its acquired waveforms typically lack in quality and intelligibility,
consisting of open challenges that still need addressing [22].

Electroencephalography (EEG) enables measuring electrical brain signals in a non-invasive
way. Recent studies (see, e.g., in [23,24]) attained accuracy rates around the 70% mark for corpora
of five syllables and six imagined sounds (i.e., non-articulated, just imagined by the subjects,
corresponding to the vocalization of the five vowels, a/i/u/e/o, and mute). Although allowing
visualization of the activation of the different brain areas associated with speech production,
this technology is highly sensitive to noise, and its recognition rates are user-dependent.

Table 1. Notable recent studies tackling silent speech recognition and the outcomes regarding
speaker and session independence. Apart from stating the considered technology, for each study, its
publication year and acquisition corpus (when applicable) are also presented.

Tech. Year Corpus Accuracy Inter-Speaker Intra-Speaker

Ma et al. [25] sEMG 2019 10 words 72.00% - -

Rameau et al. [26] sEMG 2020 2 isolated words 86.40% - -

Prorokovic et al. [27] sEMG 2019 - - - Lower WER than
conventional methods

Meltzner et al. [14] sEMG 2018
65 words
1200 word sequences

91.40% MFCC
94.20% with grammar
models

Thousands of recorded
hours are required
from diverse population

-

Wand et al. [28] sEMG 2018 - - - Lower WER than
conventional methods

Fernandes et al. [29] sEMG 2019 2 isolated words 84.00% for 2 words - -

Liu et al. [16] sEMG 2020
1 set of 5 words
1 set of 6 words

89.60% for set 1
92.70% for set 2

- -

Kapur et al. [20] sEMG 2018 15 words 92.01% Future Work -

Dong et al. [15] sEMG 2019 3 words 71.70% - -

Shah et al. [22] NAM 2018 21 utterances 64.33% - -

Sarmiento et al. [23] EEG 2019 5 syllables 69.73% to 72.67% - -

Morooka et al. [24] EEG 2018 6 sounds 79.70% - -

Chen et al. [30] US 2018 - - Future Work -

Zhao et al. [31] US 2019 - - Future Work -

Gosztolya et al. [32] US 2019 - - Future Work Future Work

Kimura et al. [33] US 2019 4 commands 65.00% - -

Csapó et al. [34] US 2019 9 sentences 78.84% - -

Sun et al. [35] VID 2018
20 commands limited
to usage context with
lip exaggeration

98.90% 95.40%
-

Vougioukas et al. [36] VID 2019 GRID database 73.40% 59.50% -

Uttam et al. [37] VID 2019 Oulu VS2 database - PESQ scores similar to
speaker-dependent
models

Petridis et al. [38] VID 2018
10 digits
10 phrases

- 70.50%
70.80%

-

Birkholz et al. [39] UWB 2018 25 phonemes 89.00% - -

Dash et al. [40] MEG 2019 5 phrases 79.93% imagination
22.10% without adapt.
55.08% with adapt.

-

sEMG = Surface Electromyography; NAM = Non-Audible Murmur; US = Ultrasound; VID = Video;
UWB = Ultra-Wideband; MEG = Magnetoencephalography.

Ultrasound (US) imaging is another technology widely considered in SSI research, as
it allows observing tongue movement sequences during the speech production process.
Some recent works include those of Chen et al. [30] and Xu et al. [41], in which, respectively,
a new technique for representing speech articulation resorting to an ultrasound-driven
finite element model of the tongue is presented, and a novel sequential feature extraction
approach for SSI systems is explored. Considering US studies, recognition results are
typically disregarded, as they are mainly focused on synthesizing speech that is further
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subject to subjective assessment regarding how natural they sound [33,34]. Nevertheless,
while US images yield good spatial and temporal resolutions, the images have relatively
low quality due to the presence of speckle noise [42].

Video imaging can be used to capture visible speech articulators. By resorting to dif-
ferent models and algorithms, which allow extracting the articulators of interest from
each frame, it is possible to obtain accuracy rates as high as 87.00% for a corpus of
eight consonants [43] and 98.00% for 20 commands limited to usage context with slight
over-articulation to increase the extent of lip movement [35]. Although generally being
low-cost, this technology is susceptible to raise privacy concerns and are typically strongly
affected by ambient illumination.

Regarding contactless radar-based silent speech recognition, and to the best of our
knowledge, not much has yet been explored apart from a recent work by Shin et al. [8]. In
this study, a recognition rate of 85.00% was reported for a corpus comprising 10 isolated
words considering a dynamic time warping (DTW) approach. However, as stated by the
authors, some limitations resided in the fact that distance and correlation amplitude were
the only considered features, and that there was recognition degradation due to slight head
movements of the participants throughout the acquisition sessions, something that would
require additional methods to mitigate.

Concerning SSI for European Portuguese (EP), several technologies have been re-
searched (e.g., EEG, sEMG, Ultrasonic Doppler (UD), Video, and Depth), also including
multimodal approaches [7]. Freitas et al. [44] proposed Visual Speech Recognition (VSR)
and Acoustic Doppler Sensors (ADS) for silent speech recognition, resorting to Dynamic
Time Warping (DTW), achieving a 91.40% accuracy rate. Later, in 2013, the same author [45]
selected four non-invasive modalities (Visual data from Video and Depth, sEMG, and UD)
and proposed a system that explores their synchronous combination into a multimodal
SSI. The same corpus as the one explored in this article was considered, and DTW and
KNN were used. It was verified that the combination of multiple modalities presented a
better recognition performance (93.80%), while subsets of the modalities produced lower
results, such as 71.40% for the Video and Depth combination. In a more recent work,
Teixeira et al. [46] proposed a VSR approach to enable real-time control of a media player,
having achieved an accuracy of 81.30% for a corpus comprising eight control commands.

3. Method

In line with our research goals, and regarding its acquisition settings, an approach
was established in which there was a compromise between keeping some aspects closer
to real scenarios (e.g., no chin rest during acquisitions) and establishing some controlled
conditions (e.g., frontal head orientation and fixed approximate distance from the radar).
Such considerations, while not compromising the study’s central purpose, should reduce,
at this stage, some of the complexity of its data acquisition and post-processing phases.

In this section, all steps that are inherent to this project’s methodology are described
and the key stages are illustrated in Figure 1.

Figure 1. Acquisition and classification pipeline. From left to right, the respective processing steps
are data acquisition, preprocessing, feature extraction, and classification.

3.1. Experimental Setup

The board considered for this investigation was the AWR1642BOOST-EVM from Texas
Instruments, Dalas, TX, USA, an evaluation board for the AWR1642 FMCW radar sensor.
This board is currently used at our research institute for a plethora of different purposes,
ranging from robot navigation and human detection [47] to biosignal measurement [48].
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The room selected for the acquisition sessions was free from any moving objects other than
the participant, ensuring that no interference would negatively impact the acquired data.

In addition to the room settings, it was also established that, throughout the acquisition
sessions, the participants would directly face the radar and sit at an approximate distance
of 15 cm from it, a similar setting to how speakers are positioned in front of a tabletop
microphone. However, and as we were aiming for reduced intrusiveness, we opted not to
fix the position of the participants’ heads, simply instructing them, without enforcing it, to
try and keep the same relative position towards the radar.

3.2. Data Acquisition

For the data acquisition sessions, we resorted to Texas Instruments’ DemoVisualizer
application, a software that enables radar configuration, data acquisition, and data visual-
ization. DemoVisualizer enabled testing different radar configurations while focusing on
the acquisition aspects that most suited the particular research experiments. As previously
explained, we privileged a less fixed head position, and this, as observed by the authors
of [8], might yield added challenges in using distance to the radar as the data considered
for recognition. Therefore, we opted for a configuration that prioritized the best possible
velocity resolution, envisaging the acquisition of the participants’ facial velocity dispersion
patterns while they produced speech.

To automatically manage the data acquisition process, custom software was designed
and developed. The participants were placed in front of the radar board, at approximately
15 cm from it (Figure 2). An LCD display, adequately positioned in the participant’s line of
sight, provided information about the word to be uttered. After signing the informed con-
sent, speakers were asked to speak at a normal rhythm, and, subsequently, the acquisition
procedure started. For each trial, a random corpus word would appear on the LCD, and a
beep (along with a change in color of the screen) would signal that the speaker should utter
it. After the beep, the acquisition software recorded radar data for two seconds.

It is also important to mention that, in addition to the first acquisition session, the
realization of a second session was scheduled for three months later for those participants
that could perform it to allow studying intra-speaker variability.

Figure 2. Radar setup for the data acquisition sessions. The participant is seated in front of the radar
board while a monitor continuously displays the words to be uttered, turning the background green
whenever the participant is asked to speak.

3.3. Corpus

Considering the team’s body of work on Ambient Assisted Living (AAL) and its
previous work in SSI research for these contexts, we adopted a previously considered
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corpus [45,49], presented in Table 2, containing a total of thirteen EP words. The words
aggregated in the chosen corpus are mostly command instructions typically used in AAL
contexts, such as when interacting with personal assistants (e.g., asking the personal
assistant to turn something on, contact someone, or help in any way it can).

Table 2. Corpus considered for all radar data acquisition sessions, containing a total of thirteen
European Portuguese words.

Ajuda (help) Anterior (previous)
Calendário (calendar) Contactos (contacts)
Email (email) Familia (family)
Fotografias (photographs) Lembretes (reminders)
Ligar (turn on) Mensagens (messages)
Pesquisar (search) Seguinte (next)
Vídeos (videos)

Four participants, all native EP speakers, enrolled in the data acquisition sessions:
(a) one of the authors, an Engineering Ph.D. student, 26 years old, male; (b) a 24 years old
female Psychologist; (c) a 50 years old female real estate manager; and (d) a 22 years old
female Physiotherapist. Two of the speakers (one of them, Speaker 1, the first author, and
Speaker 4) were asked to try and keep a more consistent speaking pattern throughout each
acquisition session. This would inform a best-case scenario where a prospective user would
be informed to be consistent in uttering the commands compared with speakers without
such information.

For each of the 13 words present in the corpus, 60 validated repetitions were considered
per participant. The validation stage mainly ensured the removal of the recordings in
which no usable data was produced (e.g., participant missing the recording slot or data
recording error).

3.4. Preprocessing

The preprocessing phase is mainly responsible for analyzing the produced data for
each participant and adequately annotating each file with its corresponding class name and
trial number. Besides organizing the data to a format convenient for the subsequent feature
extraction phase, it also ensures the removal of any data inadequately acquired. The main
difference between this processing step and the validation stage is that, while the validation
stage consists of an empirical process where missed time slots or mispronunciations are
removed through the observation of visual representations, this step removes the files at
the earliest stage possible, verifying if the files, as soon as they are acquired by the radar
board, are either corrupted or badly organized.

3.5. Feature Extraction

After the acquisition sessions, it was necessary to explore the data and define a set
of features to be tested and used for classification. During data acquisition, the signals
received by the RF front-end of the board are digitized and preprocessed by the built-in
ADC and DSP, respectively, and the raw data thus obtained are assembled into several
tag-length-value (TLV) packets. To process these packets, a parser was developed in Matlab
to extract all the detected objects’ relevant information (i.e., their Cartesian coordinates (X,
Y, Z) and relative velocities expressed in the radar frame of reference). These data include
the entire point cloud detected in the radar FoV, over the time acquisition windows, from
which distinct subsets of points are clustered and associated, in real-time, by the firmware
of the board, to represent different objects, or parts of a body, with dissimilar velocity
measures. However, besides including static and moving objects, these readings may also
contain “fake” target detections that often result from multiple reflections on walls or other
surfaces, which led us to define that all data beyond 30 cm from the radar board would be
filtered and excluded.
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Regarding the visualization of the acquired data, for each word instance, two represen-
tations were created, one depicting distance variations over time and another the velocities
dispersion over time (Figure 3).

Figure 3. Illustrative visual representations for the data corresponding to one acquisition of the word
“Ajuda” (Help): velocity dispersion pattern (left) and distance variation (right) over 1 second of
acquisition frames (along the vertical axis). For this case study, although distance variations were
acquired and presented, only the velocity representations were considered for model training and
subsequent classification.

Although distance information could potentially provide pertinent data for classi-
fication purposes, in this work, they were disregarded, given the verification that slight
distance differences between recordings of the same word would produce substantially
different representations. That is especially true in this specific case, as no chin rest was
used throughout the acquisition sessions. While additional postprocessing could help
minimize this issue [8], such consideration was left for future work, and we ultimately
opted for exploring the dispersion of velocity data associated with the users’ facial motions.

Classifier Training and Testing

For testing the different classification approaches, the velocity dispersion data (as
depicted in Figure 3) for each word instance (words being the classes) were provided to
the machine learning algorithms. Additionally, and towards understanding the impact
that different classifiers could have in the classification outcomes, several that have been
commonly used in works pertaining SSI development and similar classification tasks were
considered: Random Forests (RF), Linear Discriminant Analysis (LDA), Linear Regression
(LR), Support Vector Machine (SVM), and Bagging (BAG). To implement them, Scikit-
learning library was used with the different configuration parameters set to their default
values. Regarding the classification process, a 5-fold cross-validation approach was adopted
due to the limited size of the acquired data, ensuring that every observation from the
original dataset had the chance of appearing in both training and testing. Finally, to assess
the performance of the different classifiers, and due to the acquired dataset being class-
balanced (i.e., no disparity between the number of instances belonging to each class), the
Accuracy metric was adopted.

4. Results

As already mentioned, in this study, three experiments were conducted towards
validating and assessing FMCW radar-based technology’s silent speech recognition ca-
pabilities. Although the main objective was to understand if good classification results
could be achieved, understanding the possibility of creating session-independent and
speaker-independent models was also pivotal. This section is responsible for presenting
and describing the achieved results.
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4.1. Per-Session Speaker Performance

The first research experience of this study consisted of assessing FMCW radar technol-
ogy’s silent speech recognition capabilities. For this, the data acquired from both conducted
acquisition sessions were considered. It is, however, worth mentioning that, although the
initial plan was for all four speakers to participate in both sessions, one of them could
not make it to the second due to personal life complications. In light of this circumstance,
Table 3 presents the recognition results for the participants acquired on both sessions while
excluding Speaker 3 from the recognition of the second session’s data. In this experience,
the classification process was pretty straightforward, as the models were independently
created and tested with the data from each speaker per acquisition session.

Table 3. Mean (M), standard deviation (SD), and maximum (max) accuracy value for a specific k-fold
iteration, and average recognition scores per speaker obtained for the different classifiers. For each
column the highest recognition score is presented in bold face. All metrics were calculated and
present values that are respective to a particular acquisition session.

Classif. M SD max SPK1 SPK2 SPK3 SPK4
1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd

RF 83.50 86.00 7.30 3.70 93.60 91.00 88.10 88.20 76.00 - 80.60 82.00 89.40 88.00

BAG 84.50 86.20 8.70 4.00 95.50 91.70 91.50 87.60 74.00 - 82.20 81.90 90.10 89.10

LDA 81.40 86.30 9.80 5.40 94.20 93.60 88.70 89.70 71.70 - 74.50 79.80 90.80 89.60

LR 83.20 88.30 10.20 4.70 96.10 96.10 91.50 92.20 74.40 - 75.00 83.10 92.20 89.80

SVM 80.70 86.10 10.50 5.20 94.20 93.60 88.80 89.10 70.80 - 72.20 79.50 90.90 89.70

Through a careful analysis of the summarized classification results presented in Table 3,
and part displayed in graphical form in Figure 4, it is possible to verify that all mean accu-
racy values across all participants, for all different classifiers, were superior to 80.00%. For
session 1, the best mean accuracy value was obtained from the BAG classifier (M = 84.50;
SD = 8.70), while for session 2, the best mean accuracy value was obtained from the LR
classifier (M = 88.3; SD = 4.70). LR, however, produced the maximum accuracy values
of 96.10% for a specific k-fold iteration on both conducted sessions. The classifiers which
attained the lowest mean accuracy values were SVM (M = 80.70; SD = 10.50) for session 1,
and RF (M = 86.00; SD = 3.70) for session 2.

Regarding the accuracy values obtained for each speaker and classifier, it is possible to
verify that, for Speaker 1, both BAG and LR classifiers achieved the highest mean accuracy
values for session 1 (91.50%), while, for session 2, LR produced the highest value (92.20%),
for Speaker 2, which only enrolled in one of the acquisition sessions, the RF classifier
presented the highest mean accuracy value (76.00%), for Speaker 3, the BAG classifier
produced the highest mean accuracy value for session 1 (82.20%), while, for session 2, LR
classifier produced the highest value (83.10%), and, for Speaker 4, LR produced the highest
mean accuracy values for both session 1 (92.20%) and 2 (89.80%).

Considering the average accuracy results obtained from all classifiers, for all speak-
ers, as depicted in Figure 4, it is possible to verify that Speaker 1 and Speaker 4 pre-
sented higher accuracy values than the remaining, which, in turn, obtained results similar
between themselves.
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Figure 4. Boxplot representations depicting the average classification accuracies obtained for each ac-
quisition session: average accuracies per classifier (top) and average accuracies per speaker (bottom).
Speaker 2 only recorded one session.

To further understand the recognition results and identify the words that were most
commonly mistaken, thus, negatively contributing to the accuracy outcomes, two Con-
fusion Matrices were created (Figure 5). These matrices depict the average accuracy
classifications across all participants while considering the best classifier from each session
(i.e., BAG for the first session and LR for the second). By analyzing the first session’s
confusion matrix, it is possible to verify that the results were considerably worse for the
words “Lembretes” (Reminders) and “Ligar” (Turn on) (with a correspondingly average
accuracy, across all speakers, of 62.00% and 76.00%), typically being erroneously classified
as “Email” and “Seguinte” (Next), respectively. As per the second session’s confusion
matrix, the only classification result that scored below 80.00% was the one corresponding
to the word “Lembretes” (Reminders), having achieved an average accuracy of 74.00%,
being, just like in the first session, typically confused with the word “Email”.

143



Sensors 2022, 22, 649 10 of 17

Figure 5. Confusion matrices for the best classifiers in each session illustrating the average recognition
results across all participants. BAG classifier was considered for the first session (left), while LR
classifier was considered for the second (right). The matrix rows represent the word instances
submitted for recognition, while its columns represent the corresponding recognized words.

4.2. Session-Independence Performance

The possibility of achieving session-independent models is highly desirable across
the several technologies considered for SSR purposes [27,28,32]. The main factor for such
a necessity is that, for embracing such technologies in daily scenarios, it is mandatory
that different usages, even if considerably distant between different points in time, do not
deteriorate the recognition results due to slight variability in the acquired data [27]. One
example of a technology that severely suffers from such changes in the captured data across
different sessions is sEMG, as removing and reattaching the electrodes in-between sessions
causes variations in the recorded EMG signals [27,28].

As already mentioned, two acquisition sessions were performed for this research
project, being its central purpose to, while considering the same corpus and validated word
repetitions, capture a dataset equal to the first session’s one (besides the data acquired for
the missing participant, Speaker 2). Although contributing towards all research experiences
conducted in this study, its main intent was to allow performing this specific experiment, as
it would allow understanding to what extent the creation of session-independent models is
made possible by this technology.

After both datasets were acquired, the data belonging to the first session (session 1)
was used for training, while the data from the second session (session 2) was considered for
testing. The obtained recognition results are depicted in Table 4. In general, it is possible to
verify that Speaker 1 obtained higher recognition results overall, being the best accuracy
value obtained from the BAG classifier (M = 81.79). For Speaker 3, RF classifier produced
the best accuracy value of 67.95% and, for Speaker 4, BAG classifier produced the best
accuracy value of 71.79%.

Table 4. Mean accuracy values, produced by all classifiers, for the Intra-Speaker experiment. Acquired
data from the first session (session 1) was used for training, while data from the second session (session
2) was considered for testing. Relative variances between session-independent results and per-session
results are also presented for each speaker. The highest values in each column are highlighted using
bold face.

SPK 1 (S1)
-> (S2)

R.Variance
(S1)

R.Variance
(S2)

SPK 3 (S1)
-> (S2)

R.Variance
(S1)

R.Variance
(S2)

SPK 4 (S1)
-> (S2)

R.Variance
(S1)

R.Variance
(S2)

RF 74.10 14.00 (88.10) 14.10 (88.20) 67.95 12.65 (80.60) 14.05 (82.00) 65.90 23.50 (89.40) 22.10 (88.00)

BAG 81.79 9.71 (91.50) 5.81 (87.60) 65.77 16.43 (82.20) 16.13 (81.90) 71.79 18.31 (90.10) 17.31 (89.10)

LDA 75.38 13.32 (88.70) 14.32 (89.70) 63.97 10.53 (74.50) 15.83 (79.80) 66.15 24.65 (90.80) 23.45 (89.60)

LR 78.08 13.42 (91.50) 14.12 (92.20) 67.17 7.83 (75.00) 15.93 (83.10) 63.33 28.87 (92.20) 26.47 (89.80)

SVM 76.53 12.27 (88.80) 12.57 (89.10) 66.28 5.92 (72.20) 13.22 (79.50) 68.46 22.44 (90.90) 21.24 (89.70)
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Regarding the relative variance values between the session-independent and session-
dependent models, per speaker, it is possible to verify that Speaker 4 was the one that
presented a higher variability, having a relative variance, for the LR classifier, of 28.87%
for the first session’s data, and 26.47% for the second. Regarding Speaker 1, its session-
independent model presented a maximum relative variance of 14.00% with RF classifier for
session 1 and 14.32%, with LDA classifier, for session 1. For Speaker 3, its higher variances
were 16.43% and 16.13%, both produced with the BAG classifier, for session 1 and 2 models,
respectively.

4.3. Speaker-Independence Performance

Towards exploring and assessing FMCW radar-based technology’s capabilities regard-
ing the creation of speaker-independent models, a third research experiment ensued. In
this experiment, recognition models were created with data belonging to several speakers,
i.e., each speaker’s data was left out for testing while the models were trained with the data
belonging to the remaining speakers (n-1 models). The purpose of such consideration was
to maximize the data from training, trying to achieve a more generalized recognition model,
and approximate the case in which one intends to make a system that, after being trained,
can be used by someone without the need to retrain the model with additional data.

The summarized classification results for the speaker-independent models are pre-
sented in Table 5, depicting the obtained mean accuracy values for all classifiers.

Table 5. Mean accuracy values, produced by all classifiers, for the Inter-Speaker experiment. The data
belonging to each speaker were left out for testing, while the models considered for recognition were
trained with the data belonging to the remaining speakers. The results were obtained considering the
data for the first acquisition session, for each speaker. The highest mean accuracy obtained for each
experiment is shown in bold face.

SPK1 SPK2

Model SPK2 SPK2 + SPK3 SPK2 + SPK3 + SPK4 SPK1 SPK1 + SPK3 SPK1 + SPK3 + SPK4

RF 51.40 49.00 79.00 40.10 45.80 44.30

BAG 54.10 54.00 80.50 36.90 39.50 38.20

LDA 41.70 40.90 77.18 38.20 39.30 33.60

LR 52.80 50.00 67.90 38.30 46.20 43.80

SVM 57.20 52.20 77.60 39.70 49.00 47.30

SPK3 SPK4

Model SPK1 SPK1 + SPK2 SPK1 + SPK2 + SPK4 SPK1 SPK1 + SPK2 SPK1 + SPK2 + SPK3

RF 32.60 43.80 42.30 74.70 75.60 74.70

BAG 36.80 44.70 42.90 81.90 77.80 81.80

LDA 32.90 43.30 33.80 79.40 77.40 72.60

LR 36.00 41.50 38.00 79.50 74.90 66.40

SVM 35.10 45.30 43.40 81.20 78.50 71.90

Regarding the recognition results for Speaker 1, it is possible to verify that the BAG
classifier produced the best recognition result (M = 80.50) for the model trained with the
data from all other speakers. Concerning Speaker 2, SVM achieved the best recognition
accuracy (M = 47.30) for the model trained with the data from the remaining speakers,
however, it produced a better classification score for when the data from Speaker 4 was not
yet included (M = 49.00). Speaker 3 results share some similarities with the ones obtained
from Speaker 2, with SVM also achieving the best recognition accuracy (M = 43.40)
for the model trained with the data from the remaining speakers but produced a better
classification score for when the data from Speaker 4 was not yet included (M = 45.30).
Finally, for Speaker 4, BAG classifier produced the best recognition accuracy (M = 81.80)
for the model trained with the data from all other speakers.
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Figure 6 allows further verifying the mentioned recognition similarities between two
different groups of speakers (i.e., speakers 1 and 4, and speakers 2 and 3). Speakers 1 and 4
achieved higher recognition accuracies when the models were trained with data containing
each other’s data, being their accuracy rates, with the models trained with all the remaining
speakers’ data, superior to the ones achieved for speakers 2 and 3. However, for speakers 2
and 3, higher recognition accuracies were obtained when the models had not yet been fed
with speakers 1 and 4 data.

Figure 6. Study of speaker-independent models performance. Accuracy results, per speaker, when
considering the remaining one, two, or three speakers for model training and subsequent classification).

5. Discussion

This work aimed to assert if, by resorting to FMCW radar, and expanding our pre-
liminary work [13], three core aspects for SSI development could be tackled with this
technology: (a) how capable is radar-based technology of successfully recognizing silent
speech, (b) how discrepant can the results get when performing different acquisition ses-
sions for the same participant), and (c) to what extent can inter-speaker models be created
by resorting to this technology.

Concerning the per-speaker experiment, the average accuracy results of 84.50% using
the BAG classifier and 88.30% using the LR classifier for both acquisition sessions translate
into positive indications of FMCW radar-based technology SSR capabilities, particularly
given that a set of thirteen words was considered. Through a careful analysis of the ob-
tained results, it was possible to verify the positive impact that producing the words more
consistently throughout the acquisition sessions can have in the establishment of more
representative classification models. While the results were good for all speakers, this hints
that such a simple instruction given to the speaker can potentially improve the recognition
accuracies. Regarding the lower recognition accuracies for the words “Lembretes” (Re-
minders), sometimes recognized as “Email”, and “Ligar” (Turn On), sometimes recognized
as “Seguinte” (Next), we believe that this may be due to some notable articulatory sim-
ilarity, e.g., at the beginning or middle of the word that, at some elocution speeds and,
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eventually, as a consequence of coarticulatory effects, may turn their velocity dispersion
patterns more similar.

Comparing the obtained recognition results with previous works for the same AAL
corpus allowed verifying that radar-based SSR either obtained comparable or superior
accuracy values. In [49], an accuracy of 75.00% is reported for sEMG, and in [45], accuracies
of 71.40%, 72.60%, and 83.00% were obtained for Video, Depth, and UDS technologies,
respectively. Further comparing the obtained results with the ones in the existing literature
for several other technologies, although such comparisons may not be necessarily fair
given different considered corpus and technologies’ nuances, allowed verifying that either
comparable or superior results were also achieved. Two examples of such studies are
the work by Sarmiento et al. [23], where the authors resort to EEG obtaining accuracies
in the range of 67.78% and 72.67% for five syllables, and the work by Dash et al. [40],
exploring Magnetoencephalography (MEG), and achieving an accuracy rate of 79.93% for
five imagined phrases. Sun et al. [35] was capable of presenting an overall superior average
recognition than the ones obtained in this study for a set of 20 commands. Nevertheless,
the data considered resulted from asking the participants to over-articulate, something
that is not considered in our work. Another representative study that managed to get a
slightly superior recognition rate was the one by Kapur et al. [20], having achieved a 92.01%
accuracy rate for a corpus of 15 words while resorting to sEMG.

Towards assessing the possibility of creating session-independent models from FMCW
data, i.e., how a model created with data from one acquisition session can be used to per-
form recognition for another acquisition of the same speaker, a second research experiment
ensued. Session recordings variability for the same participants is an aspect that limits
several technologies considered towards SSR, typically requiring additional normalization
algorithms across different sessions [27,28]. An analysis of the obtained results confirmed
our initial hypothesis that whenever consistency is considered throughout the acquisition
sessions it has a positive influence on the model’s performance. Such aspect is clear from
the outcomes as speakers asked to attempt being consistent were the one with higher
recognition rates in the per-speaker experiment and also achieved higher performance
between sessions.

Further comparing the acquired results with those presented in the literature for other
technologies would be ideal. However, after an extensive review (Table 1), and to the
best of our knowledge, most of the studies that mention session-independence aspects
either focus their efforts on researching and developing normalization methods for tackling
data variance between different acquisition sessions for the same participants [27,28] or
highlight it as an aspect to explore in future work [32].

The final study’s assessment—speaker-independence—aimed to assess the extent to
which it was possible to create representative speaker-independent models by resorting to
FMCW radar-based technology. By analyzing the obtained accuracy values, what stands
out the most is that the results are significantly better when data from the two speakers
asked to be consistent throughout the acquisition sessions (SPK1 and SPK4) is considered.
Whenever one of these speakers is included in the training data, the accuracy for the other
shows a strong improvement. Therefore, consistency seems to also play a pivotal role, here,
enhancing the importance of particular patterns of articulation that are similar for these two
speakers. Nevertheless, the nature of this advantage is yet to be established, particularly if
it extends to more speakers observing a principle of consistency during the acquisition.

Another aspect worth noting concerns the higher (although to a smaller extent) recog-
nition accuracies achieved for speakers 2 and 3 when the models had not yet been fed
with data from speakers 1 and 4. The impact of the data from speaker 1 and 4 on the
performance of models created considering speakers 2 and 3 may be sourced in a wide
variety of factors: (1) first, we know that speakers 1 and 4 were instructed to be consistent
and, therefore, it is conceivable that their data patterns have some degree of similarity and
consistency, making the presence of one of them very favorable for the other, as our results
show; (2) this consistency probably makes speakers 1 and 4 diverge more from speakers
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2 and 3 and, thus, when these two ’kinds’ of data are mixed, the resulting model is less
capable of dealing with each of these latter speakers; and (3) naturally, this is potentiated
by the moderate amount of speakers and data considered. In this context, future tests with
a wider range of speakers may help clarify this aspect.

Still, the results obtained in this first experiment with speaker-independent models for
FMCW radar are quite positive as, for the models created with three of the speakers, the
worst case yielded 43.40% accuracy for a corpus of 13 words.

The possibility of creating speaker-independent models is an aspect that has been
highly desired towards the development and integration of SSI in more ecological set-
tings, allowing speakers to use the systems without requiring them to have previously
contributed to the data used to create the model. Several studies, exploring different
technologies (e.g., Video, US, sEMG, and MEG), have already stated the importance of
considering such speaker-independent models; however, most either achieve poor recog-
nition results or solely mention the topic and leave such consideration for future endeav-
ors [14,20,30–32,36,38,40]. In this regard, two studies are worth mentioning. Sun et al. [35]
explored video technology towards SSR and achieved an accuracy of 95.40% for 20 lim-
ited context-usage commands with over-articulation of the lips in speaker-independent
settings, while Petridis et al. [38], also having explored video technology, achieved results
ranging the 70.00% mark for two different corpus of respectively ten digits and ten phrases.
One aspect, however, that highly contributes towards this technology’s capability of cre-
ating speaker-independent models is that there already exist large volumes of data for
several different speakers, something that does not happen for many other technologies.
Nevertheless, video technology still remains dependent on ambient lighting and privacy
concerns. Besides video technology, several other studies also mention how relevant achiev-
ing speaker-independent models would be but rarely explore it, typically leaving such
consideration for future work [14,20,30–32].

Besides the promising results already presented, there are, nevertheless, some limita-
tions of the present work that are worth noting. Regarding the acquisition sessions, the
distance between the participant and the radar, although not being enforced as in similar
studies in the literature, see, e.g., in [8], was kept at around 15cm with minor variations
around this value. Although being less demanding and not obligating the speakers to be
attached to the technology or remain immobile during the acquisitions, as it frequently
happens in other technologies (e.g., US, EEG, and MEG), this is not yet the full extent of the
capabilities we envisage for the technology to serve the considered scenarios.

Another limiting aspect resides in the fact that the considered corpus, although already
comprising a word set comparable to the existing literature, contains inputs suited for
specific interaction scenarios. Although capable of serving multiple domains, considering
different interaction contexts usually requires different types of commands.

Finally, one last limitation concerns the number of speakers considered for acquisi-
tion. Promising results were achieved in all carried experiments with the four considered
speakers. However, considering a higher number of speakers would allow establishing
more generalized models by taking into account different individuals’ anatomies and
articulatory idiosyncrasies.

6. Conclusions

This paper proposes and demonstrates the consideration of a FMCW radar board to
assess the plausibility of contactless radar-based technology towards SSR. Besides demon-
strating its SSR capabilities, additional experiments were also performed to verify the
possibility of creating session and speaker-independent models.

Regarding the per-session speaker experiment, based on velocity dispersion features,
several classification models were trained and were subsequently capable of producing
average recognition accuracies as good as 84.50% for the first acquisition session and 88.30%
for the second one. Accuracies of 81.79% and 71.79% were also obtained for the session-
independence experiment, suggesting that this technology may be resilient to variations
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in the recording data across different acquisition sessions for the same speakers. For the
final carried experiment, Speaker-Independence, focusing on the possibility of training
speaker-independent models, recognition accuracies as high as 80.50% and 81.80% were
also achieved.

The obtained results, along with the inherent advantages of contactless radar-based
technology (e.g., its non-invasive and privacy-preserving nature, its portability, and robust-
ness against lighting conditions and environment noise), establish promising grounds for
further exploring and more frequently considering this technology towards SSI develop-
ment purposes.

Regarding future work, the team’s focus will be on acquiring a larger amount of radar
data from a wider range of speakers. This would allow us to consider other well-known
classification models that require larger volumes of data (e.g., artificial neural networks
(ANN) and convolutional neural networks (CNN)) and, most importantly, understand the
impact that data from several participants has in the creation of the so needed speaker-
independent models. Besides this central focus, the influence of speaker-to-radar distance
and head orientation are other aspects that are deserving our attention. Initial assessments
with different head orientations were already performed and allowed verifying that data
from different orientations, when considered together with the frontal one, can improve
recognition results, as the models learn how to more easily discern the word classes in
which there is articulatory ambiguity. However, more experiments still need to be carried
out including, e.g., multi-radar settings.
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Abstract: In visual speech recognition (VSR), speech is transcribed using only visual information to
interpret tongue and teeth movements. Recently, deep learning has shown outstanding performance
in VSR, with accuracy exceeding that of lipreaders on benchmark datasets. However, several problems
still exist when using VSR systems. A major challenge is the distinction of words with similar
pronunciation, called homophones; these lead to word ambiguity. Another technical limitation
of traditional VSR systems is that visual information does not provide sufficient data for learning
words such as “a”, “an”, “eight”, and “bin” because their lengths are shorter than 0.02 s. This report
proposes a novel lipreading architecture that combines three different convolutional neural networks
(CNNs; a 3D CNN, a densely connected 3D CNN, and a multi-layer feature fusion 3D CNN), which
are followed by a two-layer bi-directional gated recurrent unit. The entire network was trained
using connectionist temporal classification. The results of the standard automatic speech recognition
evaluation metrics show that the proposed architecture reduced the character and word error rates
of the baseline model by 5.681% and 11.282%, respectively, for the unseen-speaker dataset. Our
proposed architecture exhibits improved performance even when visual ambiguity arises, thereby
increasing VSR reliability for practical applications.

Keywords: 3D densely connected CNN; 3D multi-layer feature fusion CNN; convolutional neural
network; deep learning; lipreading; speech recognition; visual speech recognition

1. Introduction

Speech is the most common form of communication between humans and involves
the perception of both acoustic and visual information. In 1976, McGurk and McDonald
demonstrated that speech perception is influenced by vision, which is called the McGurk
effect [1]. This effect indicates the necessity of matching both auditory and visual phonemes
to perceive pronounced phonemes correctly.

Vision plays a crucial role in speech understanding, and the importance of utilizing
visual information to improve the performance and robustness of speech recognition has
been demonstrated [2–4]. Although acoustic information is richer than visual information
when speaking, most people rely on watching lip movements to fully understand speech [2].
Furthermore, people rely on visual information in noisy environments where receiving
auditory information is challenging. Similarly, people with hearing impairments depend
on visual information to perceive spoken words. However, comprehending oral language
using visual information alone, especially in the absence of context, can be challenging
because it is difficult to understand lipreading actuations such as lip, tongue, and teeth
movements without context [3]. Hearing-impaired people using visual information have
achieved an accuracy of 17 ± 12%, even for a small subset of 30 monosyllabic words, and
21 ± 11% for 30 compound words, according to Easton and Basala [4]. Chung et al. [5]
showed that experienced professional lip-leaders achieved 26.2% accuracy with the BBC
News benchmark dataset when they could watch an unlimited number of videos.
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The development of a visual speech recognition (VSR) system has enormous poten-
tial for various practical applications, such as speech recognition in noisy environments,
biometric identification for security, communication in underwater environments, and
silent movie analysis, and it can positively affect patients with speech impairments [6,7].
Therefore, it is important to develop a VSR system that exclusively uses visual information.

Recently, several researchers have investigated the possibility of developing a VSR
system by decoding speech using only visual information to mimic human lipreading
capability [8–13]. Despite their efforts, VSR systems still exhibit low performance and
accuracy compared to those of audio or audio-VSR systems. A major challenge is the
distinction of words with similar pronunciation, called homophones [9]; these lead to
ambiguity at the word level. For example, although some words, such as pack, back, and
mac, differ in their sound, the characters (e.g., [p], [b], and [m]) produce almost identical lip
movements, thereby making them difficult to distinguish. As such, word distinction is the
most difficult task for humans and crucial for accurate lipreading [14]. Another technical
limitation of traditional VSR systems is that visual information does not provide sufficient
data for learning words such as “a”, “an”, “eight”, and “bin” because their length is no
longer than 0.02 s [15].

To address the challenges of similar pronunciation and insufficient visual information,
this paper presents a novel lipreading architecture that exhibits superior performance
compared to those of traditional and existing deep learning VSR systems. This architecture
consists of two sub-networks using end-to-end neural networks: the visual feature extrac-
tion module is made of a 3D convolutional neural network (CNN), a 3D densely connected
CNN for each time step by reducing model parameters, and a multi-layer feature fusion
(MLFF) CNN for capturing multichannel information in the temporal dimension of the
entire video and localizing effective objects. The sequence processing module uses a two-
layer bi-directional gated recurrent unit (GRU), which is followed by a linear layer. After
applying a SoftMax layer to all time steps to obtain the probabilities, the entire network is
trained using the connectionist temporal classification (CTC) loss function.

In our experiment, we compared the accuracy and efficiency of our architecture
with those of other visual feature extraction models with excellent performance on a
benchmark dataset [16]. The models used for this comparison were LeNet-5 [17], VGG-
F [18], ResNet-50 [19], DenseNet-121 [20], and LipNet [21] as the baseline model. Extensive
evaluation results show that the proposed architecture achieves state-of-the-art results and
remarkable efficiency compared to existing deep learning methods.

The contributions of our work can be summarized as follows:

• We developed a novel lipreading architecture based on end-to-end neural networks
that relies exclusively on visual information;

• We compared the architecture of our proposed model with that of LipNet as the
baseline and those of 3D LeNet-5, 3D VGG-F, 3D ResNet-50, and 3D DenseNet-121 to
evaluate the reliability of our model for practical applications;

• We demonstrated improved accuracy and efficiency of the proposed architecture over
existing deep learning architectures applied to VSR system implementation.

The remainder of this paper is organized as follows. Section 2 reviews related work
on VSR systems and the traditional and existing deep learning approaches. Section 3 intro-
duces the proposed architecture. Section 4 presents information on benchmark datasets,
data processing, data augmentation, implementation, and performance evaluation metrics.
Along with certain comparative experiments and public processes, this section presents the
experimental results. Finally, Section 5 provides a discussion and our conclusions.

2. Related Work

This section summarizes the traditional and existing deep learning approaches for
VSR systems. Figure 1 illustrates the VSR processes of the traditional and deep-learning-
based methods.
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Figure 1. VSR process: (a) traditional step and (b) deep-learning step.

2.1. Traditional VSR

There are various traditional approaches for implementing VSR systems, such as
pre-processing of extracted image features and temporal video feature detection, involving
tasks such as optical flow, movement detection, and hand-worked vision pipelines. The
traditional approach to implementing the VSR method can be split into two phases. The
first phase involves the extraction of visual features from lip movements, and this process
relies primarily on hand-labeled features of the geometric information of the lip, such as
the lip contour. The existing visual feature extraction method for lip movement involves
four steps, starting with the detection and extraction of the region of interest (ROI), the lip,
from the video stream, followed by the extraction of lip features from the ROI. For reducing
the dimension of the extracted features, a visual feature transformation is required as a
complementary step during feature extraction. Different feature transformation algorithms
have been developed and used for lipreading tasks, such as linear feature transformation
(e.g., discrete cosine transformation (DCT) and discrete wavelet transform (DWT) [22]) and
geometry-, motion- [23], and statistical model-based feature transformations [24,25]. The
quality of these algorithms depends on the accuracy of training data that are hand-labeled,
a task that requires significant amounts of time and effort.

The second phase involves text prediction using the dynamic visual features (classifier
phase) and prediction of the words or sentences using a dynamic classifier such as the
hidden Markov model (HMM). Using a limited dataset and the HMM model, Goldschen
et al. [26] were the first to propose a visual-only sentence-level lipreading technique.
They extracted visual features of the mouth region from codebook images to predict
continuous sequences of tri-visemes. This study was followed by the development of
multi-stream HMMs [27] and the creation of expanded datasets such as model audio and
visual streams [22].

As the databases become increasingly complicated, issues such as a high number of
speakers, variations in posture, and alterations in the conditions of lighting and background
environment may arise. In addition, databases may possess other limitations such as
high feature dimension and variations in image quality. Consequently, a complex lip
feature extraction algorithm is required. Some classifiers run based on the conditional
assumption and are not ideal for modeling long-term dependencies or for operating general
classification tasks where several variables are merged.

2.2. Deep Learning VSR

In recent years, deep learning methods have been successfully applied to many fields,
including VSR systems. Unlike traditional approaches, in which predictions are limited,
deep learning methods attain high accuracy. For instance, when a CNN is combined
with traditional methods, the trained classifier CNN architecture can distinguish between
visemes, and an HMM framework is used to add temporal information after the CNN
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output [24,25]. Other researchers have combined long short-term memory (LSTM) with
histograms of oriented gradients (HoGs) and input recognized short phrases from the
GRID dataset [13,16]. Similarly, using the OuluVS and AVLetters datasets, a trained
LSTM classifier with DCT and deep bottleneck features was employed to make word
predictions [24].

The deep speech recognition architecture that reads the entire input sequence and
then predicts the output sentence is called the sequence-to-sequence model (seq2seq). This
model uses global information for longer sequences. Watch, listen, attend, and spell (WLAS)
was the first seq2seq model to consist of both audio and visual modules, and it was used to
recognize audio-visual speech from a real-world dataset [14,28].

The first suggested end-to-end model to deal with sentence-level lipreading and
predict character sequences was LipNet [21]. This model combined spatial-temporal convo-
lutions with Bi-GRU and was trained using the CTC loss function. A limited grammar and
vocabulary dataset (GRID corpus) was used to evaluate the performance of the LipNet ar-
chitecture: the word error rates in the overlapped and unseen-speaker databases were 4.8%
and 11.4%, respectively, whereas the success rate of human lipreaders for the same database
was 47.7%. Similar architectures have been introduced to investigate the convergence
of audio-visual features, where digit sequences were predicted using a small subset of
18 phonemes and 11 terms, and a CTC cascading model was used [29–31]. Thus, the deep
learning method can learn more deeply and extract more comprehensive features from the
experimental data, demonstrating strong robustness for big data and visual ambiguity.

3. Architecture

This section describes a VSR deep learning architecture and proposes a novel visual
feature extraction module (Figure 2c). The proposed module is compared with other
visual feature extraction modules that exhibit outstanding feature extraction performance:
(i) LipNet as the baseline module (Figure 2a) and (ii) four other comparative architectures
with different visual feature extraction modules, namely, 3D LeNet-5, 3D VGG-F, 3D ResNet-
50, and 3D DenseNet-121 (Figure 2b). Figure 3 and (Appendix A—Table A1) provide the
detailed hyperparameters describing the proposed architecture.

 

Figure 2. Schematic design of VSR architecture: (a) LipNet architecture (baseline), (b) four compared
architectures, and (c) proposed architecture.

156



Sensors 2022, 22, 72

 

Figure 3. Detailed architecture: (a) baseline and (b) proposed architecture.

3.1. Spatial-Temporal CNN

CNNs directly use raw input data, thereby automating the feature construction pro-
cess. When a 2D CNN is applied to an image recognition task, it captures the encoded
information for a single image’s data and then transfers the encoded information to com-
pute features from the spatial dimensions using 2D feature maps. However, the application
of a 2D CNN to a video identification task, where the motion information is encoded in
multiple contiguous frames, is ineffective (Figure 4a). Therefore, we use a 3D CNN, which
acts as a spatial-temporal CNN in the convolution process, to compute features of both
the spatial and temporal dimensions and to capture different lipreading actuations, such
as the movements of the lips, tongue, and teeth. This use of a 3D CNN is supported by
studies that have shown that 3D CNNs are effective for the extraction of features from
video frames, when spatial and temporal information encoded in subsequent frames is
considered (Figure 4b) [21,25].

By transforming a single video frame into a cube by stacking several consecutive
frames together, the spatial-temporal convolution uses a 3D kernel. In this construction,
the feature maps of the convolutional layer are bound to several consecutive frames of the
previous layer, which makes it possible to collect motion information during video analysis.
Formally, tan h(·) is the hyperbolic tangent function, bij is the bias for this feature map, Ri

is the size of the 3D kernel along the temporal dimension, wpqr
ijm is the (p, q, r)th value of the

kernel linked to the mth feature map in the previous layer, and the value at position (x, y, z)
on the jth feature map in the ith layer is given.

vxyz
ij = tan h(bij + ∑

m

Pi−1

∑
p=0

Qi−1

∑
q=0

Ri−1

∑
r=0

wpqr
ijmv(x+p)(y+q)(z+r)

(i−1)m ) (1)

The heights and weights of the kernels are given by Pi and Qi, respectively [25]. As 3D
convolutional kernels replicate kernel weights around the entire cube in this construction,
only one form of feature can be extracted from the frame cube.
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Figure 4. Comparison of (a) 2D and (b) 3D convolutions.

In our experiment, all the input video frames were fed into a spatial-temporal CNN
to encode the visual information of the extracted lips. To be precise, we obtained spatial-
temporal features using a 3D convolutional layer with 64 3D kernels of size 3 × 7 × 7 in the
input image extracted from multiple contiguous frames. We used a batch normalization
(BN) layer to decrease the transformation of internal covariates and ReLU to speed up the
training process. Then, to decrease the spatial scale of the 3D feature maps, a max-pooling
3D layer was added. Thus, the output shape was observed with 75 × 50 × 13 × 64 tensors
for an input sequence of 75 × 100 × 50 × 3 (time/width/height/channel) frames.

3.2. 3D Densely Connected CNN

A densely connected CNN creates relationships between various layers of the con-
nection, which helps enable full use of the features, reduces the gradient disappearance
problem, and deepens the network. Before the convolution layer, the bottleneck layer
reduces the input feature volumes. The multichannel feature volumes are then fused
following the bottleneck layer process. As the preceding features remain, the next layer is
only applied to a small set of feature volumes. In addition, with the hyperparameter theta
regulating the degree of compression, transition layers are included to improve the model
compactness further. Adopting a bottleneck layer, transition layer, and smaller growth
rate results in a narrower network. This strategy reduces the model parameters, effectively
suppresses overfitting, and saves computational power.

Although many researchers have used 2D CNNs and extracted visual information
separately [28,29], 3D densely connected CNNs were used by adding temporal dimensions
to densely connected convolution kernel and pooling layers. This approach was used
because 2D CNNs often require complex pre-processing and post-processing to perform the
same tasks. Therefore, we modified the 2D DenseNet-121 architecture into a 3D DenseNet-
121 architecture to 35 maintain dense connectivity to enable deep feature extraction, and
this architecture fully utilizes the information provided by the spatial-temporal CNN
simultaneously. The dense block is a primary structure composed of densely connected
composite functions in the 3D DenseNet-121 architecture, consisting of three sequential
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operations: BN, ReLU, and 3D convolution layers. The transition layers between different
dense blocks contain a BN, ReLU, 3D convolution layer, and average 3D pooling layer.

We extended the strengths of 2D DenseNet-121 to 3D volumetric image processing
tasks. The 2D DenseNet-121 network consists of l layers, where each layer represents
a nonlinear transformation Hl . The output of the lth layer can then be written as xl ,
defined as:

xl = Hl([x0, x1, . . . , x1−1]) (2)

where x0, x1, . . . , x1−1 are the volumes of the 3D features produced from the previous
layers, and [. . .] refers to the operation of concatenation. Figure 5a illustrates a 3D densely
connected CNN architecture consisting of four adjacent dense blocks and three transition
layers. Dense block (1) was constructed using a BN layer, ReLU, 3 × 1 × 1 3D convolution
layer, BN layer, ReLU, and 3 × 3 × 3 3D convolution layer (Figure 5b). The structures
of dense blocks (2), (3), and (4) are similar to that of dense block (1). Figure 5c shows
the transition layer composed of a BN layer, ReLU, 3 × 1 × 1 3D convolution layer, and
2 × 2 × 2 average 3D pooling layer.

 

Figure 5. Densely connected 3D CNN architecture: (a) detailed densely connected 3D CNN; (b) 3D
dense block structure; and (c) 3D transition layer structure.

3.3. MLFF 3D CNN

Currently, outstanding performance has been achieved for image classification prob-
lems using different CNN models. An example is the fusing of multiple CNNs for feature
aggregation, where extracting various spatial and temporal features is possible by creating
different structures and depths [30]. Different convolutional layers can extract features at
various levels of abstraction for the MLFF 3D CNN training phase. Various features can
also be derived from this training process with varying depths and filters of different sizes.
Using this approach, some of the related features lost in the layered architecture can be
selected, rendering the final feature richer.

The proposed MLFF 3D CNN architecture is shown in Figure 6. The first module
(Figure 6a) consists of a 3D convolutional layer with 64 3D kernels of size 3 × 5 × 5 on a
3D densely connected convolution layer output feature, followed by a BN layer and ReLU
layer. For the second module (Figure 6b), the structure of the first module is followed by a
dropout layer to alleviate overfitting as the benchmark dataset used is not large compared
with existing image datasets. The role of the dropout layer is to improve and generalize the
performance by preventing the creation of strongly correlated activations, which solves
overtraining and overfitting [31]. In the third module, the structure is similar to that of
the second module, except that the dropout layer is replaced by a spatial dropout layer
(Figure 6c), which is a method of dropping the entire feature map. Unlike the standard
dropout method, which randomly drops pixels, this method exhibits excellent image
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classification using CNN models with strong spatial correlation [32]. Therefore, we applied
a spatial dropout layer to effectively extract the shapes of the lips, teeth, and tongue with a
strong spatial correlation that includes fine movements.

 
Figure 6. Detailed MLFF 3D CNN: (a) first architecture; (b) second architecture with dropout layer
using dropped pixel; and (c) third architecture with spatial dropout layer using dropped channel.

3.4. GRU

The GRU is a recurrent neural network that learns to propagate and regulate the
flow of information over more time stages [33]. The GRU can distinguish longer temporal
contexts, which is helpful for discriminating ambiguity because 3D CNN captures only
short viseme-level features. Moreover, the gradient vanishing problem can be solved by
using a GRU, which uses an update gate and reset gate.

Our proposed architecture uses a two-layer bi-directional GRU as a sequence process-
ing module (Figure 7a). Unlike the typical deployment of GRU, a two-layer bi-directional
GRU is employed to present information in both forward and backward manners to two
separate neural network architectures that are connected to the same output layer, such
that both networks can obtain complete information regarding the input. The two-layer
bi-directional GRU layer receives its input from the MLFF 3D CNN sequentially and then
generates characters as output, as follows:

zt= σ(Wzat + Uzht−1 + bz) (3)

rt= σ(Wrat + Urht−1 + br) (4)

ht= (1 − zt ) ◦ ht−1+zt ◦ σr(What + Uh(rt ◦ ht−1) + bh) (5)

The GRU consists of four components (xt, zt, rt, and ht) and a given sequence of
image features a = (a1, a2, · · · , at). xt is an input vector with its resulting weight param-
eter matrix and vector. zt is an update gate vector with its resulting weight parameter
matrix and vectors Wz, Uz, and bz. rt is a reset gate vector with its resulting weight
parameter matrix and vectors Wr, Ur, and br. Finally, ht is an output vector with its
resulting weight parameter matrix and vectors Wh, Uh, and bh. ht−1 is the previously
hidden state output, which has the same structure as the current state. σ is the ReLU
function, used as an activation function. represents the Hadamard product. To obtain
an output with 75 × 512 tensors using the merge layer, we provided an input sequence of
75 × 3 × 1 × 192 (time/width/height/channel) frames in a bi-directional GRU.
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Figure 7. Sequence processing module: (a) a two-layer bi-directional GRU and (b) CTC.

3.5. Connectionist Temporal Classification (CTC)

We used the CTC approach and applied it to an end-to-end deep neural network. This
approach uses a loss function to parameterize the distribution of a label token sequence
without having to align the input sequence [34]. A single set of time step label tokens can
be expressed as V by using CTC, where the series of size-T given by the temporal module
is the output labeled by the blank symbols ‘� and consecutive symbols are repeated
(Figure 7b). We define a function B : (V ∪ {�})∗ → V∗ to delete adjacent characters
and to remove any blanks because the processed string may contain a blank token. It is
possible to obtain the probability of observing a labeled sequence y by marginalizing this
label, p(y|x) = ∑u∈B−1(y) p(u1|x) · · · p(uT |x), where x is the input video, for all possible
alignments. The standard CTC loss Lctc formula is defined as follows:

pctc(y|x) = ∑
w∈B−1(y)

pctc(w|x) = ∑
w∈B−1(y)

T

∏
t=1

qt
wt (6)

Lctc = −ln pctc(y|x) (7)

where T is the duration of the input sequence and qt
(wt)

represents the SoftMax probability
of the output label wt, where wt ∈ {a, ai, an, ao, · · · , zun, zuo, blank} at frame t. The
CTC path of a sequence is w = (w1, w2, · · · , wT), and y is the sentence label (ground
truth). B−1(y) is the set of all possible paths of the CTC that can be mapped to ground
truth y. As CTC prohibits the use of autoregressive connections to control the inter-time-
step dependencies of the label sequence, it is conditionally independent of the marginal
distributions generated at each time step of the temporal module. Therefore, CTC models
are typically decoded using a beam search procedure to restore the temporal dependency
of the labels, which blends the probabilities of that language model.
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4. Experiments and Results

This section describes the used dataset, data pre-processing, data augmentation,
and implementation.

4.1. Dataset

The GRID audio-visual dataset is widely used for audio-visual recognition and VSR
studies and is built on sentence-level audio video clips [16]. GRID is an openly available
corpus containing an audio-visual database from 34 speakers with 1000 utterances per
speaker and a total duration of 28 h. One sample has a single speaker clip, and each sample
in this database lasts 3 s at 25 frames/s. The visual data for speaker number 21 are missing
from the online available database corpus [16]. This database is sentence-level with a fixed
grammar and is composed of “command (4) + color (4) + preposition (4) + letter (26) +
digit (10) + adverb (4)”. It has 51 unique words, and each sentence is a randomly chosen
combination of these words.

To unify the test conditions for our experiment, we divided the training and validation
sets as follows [21]. In unseen-speaker datasets that were not historically used in the litera-
ture, 3971 videos were used for the evaluation data relevant to male speakers (1 and 2) and
female speakers (20 and 22). The remaining videos for the unseen speakers (28,775 videos)
were utilized to train the models. Following this strategy, the models were evaluated using
speakers that had not appeared in the training process, thus guaranteeing the general-
ized performance of the model. We employed sentence-level variants of segmentation for
overlapped-speaker datasets, where 255 random sentences from each speaker were used
for evaluation. For training, the leftover data from all speakers were pooled.

4.2. Data Pre-Processing and Augmentation

The data pre-processing stage detects the targeted face and mouth using a DLib face
detector [35]. This detector utilized a HoG feature-based linear classifier [35]. The output
is given as the (x, y) coordinates of the diagonal edges; these coordinates are used later
to draw the bounding box around the mouth. Subsequently, the iBug tool was used
with 68 landmarks coupled with an online Kalman filter as a face landmark predictor [36].
This tool is typically used to read lip movements and extract points on the lips, which
correspond to those obtained from the trained dataset. These tools were employed to
extract a mouth-centered area with dimensions of 100 × 50 pixels per frame using an affine
transformation and to standardize the RGB channels over the entire training set to have
zero mean and unit variance. For training data, we used the data augmentation process
from [21] to prevent overfitting. We performed training with both regular and horizontally
mirrored image sequences. As the dataset included start and end terms that acted as a
timer for each “clip” sample, we augmented the training data at the sentence level using
individual words as additional training instances. These instances had a decay rate of 0.925.
Finally, if necessary, we detected the movement speed and duplicated the frames to prevent
variation, and this process was conducted with a probability of 0.05/frame. All models
were trained and tested under the same pre-processing and augmentation processes for the
GRID dataset.

4.3. Implementation

All models were implemented using Keras with a TensorFlow backend and TensorFlow-
CTC decoder to measure the character error rate (CER) and word error rate (WER) scores
using CTC beam search. In Figure 3 and Table A1 (Appendix A), the detailed configu-
ration and parameters used for each layer in the proposed architecture are summarized.
The network parameters of all models were initialized via He initialization, except for
the orthogonally initialized square GRU matrices and the default hyperparameters. The
orthogonally initialized square GRU matrices were trained with mini batches of size 8
and used the optimizer ADAM [37] with a learning rate of 0.0001. The proposed model
was trained utilizing channel-wise dropped pixels and the dropped channel using spatial
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dropout in the MLFF 3D CNN, where the proposed models included the baseline model
trained on GRID until overfitting.

As mentioned earlier, LipNet is the baseline model in our study; therefore, we eval-
uated its performance for the categories of unseen and overlapped speakers. For the
unseen-speaker category, 8.534% CER and 16.341% WER were achieved, versus 6.400%
CER and 11.400% WER in the model paper [21]. In addition, for overlapped speakers, we
obtained CER of 5.657% and WER of 14.779%, whereas 1.900% CER and 4.800% WER were
mentioned in the model paper: our test results for the LipNet model are higher than those
of the original LipNet model. Due to these variations in outcomes, video clips of individual
words were not used for additional training instances or other defective operations in
the training phase. As one of the contributions of this analysis is a feasibility test of the
proposed model, to obtain the required CER and WER, we did not further subdivide the
baseline model. However, we compared the results acquired in our environment with those
obtained in the testing environments of the existing models to analyze both the existing
models and the proposed model.

4.4. Performance Evaluation Metrics

We used standard automatic speech recognition evaluation metrics to assess the pro-
posed model. The learning loss of all the models was measured to evaluate the learning
state during the training process. To compare the performances and computational ef-
ficiencies of all models, we evaluated the parameters, epoch time, CER, and WER, of
each model.

By calculating the total edit distance, the error rate metrics used for accuracy as-
sessment were obtained and converted into percentages. It is necessary to compare the
decoded text to the original text when assessing misclassifications. The equation is given,
wherein N is the cumulative number of characters in the ground truth, S is the number of
characters substituted for incorrect classifications, I is the number of characters inserted
for non-picked characters, and D is the number of deletions that should not be present for
decoded characters. Thus, the CER and WER are determined using Equations (8) and (9),
where C and W denote characters and words, respectively.

CER(%) =

(
CS + CD + CI

CN

)
× 100 (8)

WER(%) =

(
WS + WD + WI

WN

)
× 100 (9)

We performed a CTC beam search using a TensorFlow-CTC decoder implementation
to generate approximate maximum-probability predictions for all experimental models.
We also compared the CER and WER with respect to the number of parameters and
computational efficiency over the epoch time. To visualize the results, we used the phoneme-
to-viseme mapping described in [38].

4.5. Training Process and Learning Loss

The training and validation losses during training on the GRID corpus are shown in
Figures 8 and 9, and the definition of each tested model is presented in Table 1 for both the
unseen and overlapped-speaker categories. For the former category in Figure 8, the gaps
between training and validation in models A and B and the baseline model are similar, as
illustrated in Figure 8a–c. Furthermore, our proposed model shows large gaps relative
to those for the three models in Figure 8a–c, but slightly smaller gaps relative to those
in Figure 8d.
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Figure 8. Training and validation loss of unseen speakers: (a) baseline; (b) model-A; (c) model-
B; (d) model-D; (e) model-E.

Figure 9. Training and validation loss of overlapped speakers: (a) baseline; (b) model-A; (c) model-B;
(d) model-eC; (e) model-D; (f) model-E.

In the category of overlapped speakers, the training loss of each model started to
decrease earlier than the baseline, as shown in Figure 9. The validation loss of the baseline
and Figure 9b show similar tendencies, where the differences between the training and
validation losses in Figure 9c–e are lower than the difference in the baseline model.

We performed the training process with the 3D ResNet-50 model; however, it did not
perform as our experimental environment ran out of memory, and the results for unseen
speakers were excluded. Finally, these results indicate that our proposed model for the
two categories in the GRID dataset shows the lowest difference between the training and
validation losses, which effectively prevents overfitting.

4.6. WER and CER

The results are reported for the unseen and overlapped speakers of the GRID dataset.
The results of the comparison between our proposed model and the existing deep learning
models are presented in Table 2, which reveals that our proposed model achieved state-of-
the-art (SOTA) results: 2.853% CER and 5.059% WER for the unseen-speaker category and
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1.004% CER and 1.011% WER for the overlapped-speaker category. These results exhibit
decrease of all conditions over the current SOTA and baseline results.

Table 1. Number of parameters and epoch time of the proposed method compared to those of the
baseline and different methods.

Model
Method

Parameters
Unseen Speakers

Overlapped
Speakers

Frontend Backend Epoch Time (s) Epoch Time (s)

Baseline 3D CNN Bi-GRU + CTC 45.7M 1152 131

Model-A 3D CNN + 3D LeNet-5 Bi-GRU + CTC 36.5M 1104 118

Model-B 3D CNN + 3D VGG-F Bi-GRU + CTC 113.4M 1405 178

Model-C 3D CNN + 3D ResNet-50 Bi-GRU + CTC 667M - 256

Model-D 3D CNN + 3D DenseNet-121 Bi-GRU + CTC 22.4M 1272 126

Model-E Proposed architecture 34.5M 1286 127

Table 2. Performance of the proposed model compared to the baseline model and different existing
models with unseen and overlapped speakers.

Year Model
Unseen Speakers Overlapped Speakers

CER (%) WER (%) CER (%) WER (%)

Hearing-impaired person (avg.) [21] - 47.700 - -

2016 Baseline-LSTM [21] 38.400 52.800 15.200 26.300

2016 Baseline-2D [21] 16.200 26.700 4.300 11.600

2017 LipNet-NoLM [21] - - 2.000 5.600

2017 LipNet [21] 6.400 11.400 1.900 4.800

2017 WAS [5] - - - 3.300

2018 LCANet [39] - - 1.300 2.900

2018 LipNet + 3D-FPA [9] 7.246 14.178 - -

2019 LRNeuNet [40] 6.100 9.500 1.200 2.700

2019 LipSound [41] - - 1.532 4.215

2020 PCPG [42] - 11.200 - -

2020 FastLR [43] - - 2.400 4.500

2020 LipNet + LipsID [44] 5.200 9.900 1.200 3.300

2020 TVSR-Net + SC-Block [45] - 90.900 - -

2020 DualLip [46] - - 1.600 2.710

2021 3D-ResNet50-TCN-CTC [47] 4.100 6.200 1.200 1.100

Frontend Backend CER (%) WER (%) CER (%) WER (%)

Baseline 3D CNN Bi-GRU + CTC 8.534 16.341 5.657 14.779

Model-A 3D CNN + 3D LeNet-5 Bi-GRU + CTC 11.797 17.188 8.083 22.526

Model-B 3D CNN + 3D VGG-F Bi-GRU + CTC 8.395 11.914 3.499 10.482

Model-C 3D CNN + 3D
ResNet-50 Bi-GRU + CTC - - 3.089 8.203

Model-D 3D CNN + 3D
DenseNet-121 Bi-GRU + CTC 5.314 10.286 3.165 8.529

Model-E Proposed architecture 2.853 5.059 1.004 1.011

Although the accuracies of the models with 3D ResNet-50 and 3D DenseNet-121
architectures exceeded that of the baseline, no significant differences were detected (Table 2).
In the case of unseen speaker′s category (Figure 10a,b), Models A, B, D, and E exhibit an
almost steady learning behavior until approximately 250 epochs; subsequently, the error
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rates show a continuous decrement. On the other hand, both baseline and Model A with
a simple structure show higher error rates compared to others. Moreover, the smallest
error rates are achieved by our proposed Model E with the same training steps. For the
overlapped speaker category, Models B, C, and D show similar performance. Unlike
the comparable performance of Model A for the unseen speaker category, an obvious
degradation in performance is observed for the same model in the case of overlapped
speaker’s category (Figure 10c,d). For our proposed Model E, the error rate shows a
noticeable decrement after approximately 130 epochs. Therefore, in terms of accuracy, our
proposed model outperforms the existing models, including the baseline model, which can
be attributed to the combination of multiple 3D CNN architectures. Figure 10 shows the
training step with CER and WER on the GRID database.

 

Figure 10. Training steps for CER and WER comparing our proposed model against the baseline and
other models: (a) CER and (b) WER evaluated using unseen speakers, and (c) CER and (d) WER
evaluated using overlapped speakers.

4.7. Model and Computational Efficiency

The major limitations of VSR systems in practical applications are their model size
and computational efficiency. To evaluate the computational efficiencies of the models,
we compared their accuracies with different numbers of trained parameters and epoch
times (Figures 11 and 12). We summarized the number of parameters and epoch time for
individual models for the two dataset categories in Table 1. Although our proposed model
has an epoch time similar to that of the baseline model, lower CER and WER are seen due
to 10 M fewer parameters used. In addition, our model shows a faster epoch time and
lower number of parameters than those of the three other models except Model A with the
GRID dataset. LeNet-5 has a gradient-based learning CNN structure, which is divided into
an input layer, a convolution layer, a pooling layer, a fully connected layer, and an output
layer, and the input layer is removed, and a total of seven layers are included. Model A
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is a simple structure using two convolution layers and pooling layers from LeNet-5. This
simple structure has difficulty in processing high resolution images. Therefore, its accuracy
will be significantly lowered when used for an application like lip reading, which requires
delicate motion detection.

 
Figure 11. CER and WER of the baseline and different models according to the number of parameters,
measured on two splits: (a) CER and (b) WER evaluated using unseen speakers, and (c) CER and
(d) WER evaluated using overlapped speakers.

In conclusion, we obtained a lower error of GRID database while reducing the number
of parameters by approximately 11.2 M compared to that of the baseline model; we also
achieved a comparable epoch time.

4.8. Confusion Matrix

A mapping proposed by the IBM ViaVoice database was used for the visual analy-
sis [38]. It consists of 43 phonemes grouped into 13 classes of visemes, including a silence
class, vowels based on lip rounding (V), alveolar-semivowels (A), alveolar-fricatives (B),
alveolar (C), palato-alveolar (D), bilabial (E), dental (F), labio-dental (G), and velar (H). For
the bilabial viseme class, we plot a confusion matrix corresponding to the most confusing
phoneme (Figure 13a), which represents the vowels based on lip rounding. In the experi-
mental results, {/AE/, /IH/} is frequently misclassified during the text decoding process
(Figure 13a). At a first glance, the confusion between /IH/ (a rather close vowel) and /AE/
(a very open vowel) is unexpected but only occurs in “at”, a generally pronounced feature
word with a shortened, weak vowel /AH/ in sample /AE/. This effect is due to the similar
pronunciations of the {at, bin} text pair. Figure 13b represents the intra-viseme categorical
confusion matrix. Distinguishing homophones is a major challenge, and we present the
experimental results for [p], [b], and [m] in Figure 13c. Based on the evaluation of our
model from different aspects, this model can help overcome the technical barriers for the
practical implementation of VSR systems.
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Figure 12. CER and WER of the baseline and different models according to epoch time, measured
on two splits: (a) CER and (b) WER evaluated using unseen speakers, and (c) CER and (d) WER
evaluated using overlapped speakers.

The confusion matrix in [21] shows the results for frequent misclassifying words in
the text decoding process. Many errors occurred, but {/AA/, /AY/} and {/AE/, /IH/}
accounted for the largest proportion among them. Furthermore, similar pronunciation
between the text pairs of {r, i}, {at, bin}, and {four, two} causes frequent incorrect classi-
fication during the text decoding process for {/AA/, /AY /}, {/AE/, /IH/} and {/AO/,
/UW/} in [39]. Although it was difficult to distinguish words of similar pronunciation for
{/AE/, /IH/} in our proposed model, an enhancement can be noticed in Figure 13a for
correctly classifying similar pronunciations for {/AA/, /AY/} and {/AO/, /UW/}, unlike
their frequent misclassification in [21,39]. Additionally, we can determine the superiority
of our model performance by comparing it with the bilabial and intra-visemes categor-
ical confusion matrix in [21,39]. Therefore, our model showed excellent performance in
distinguishing all similar pronunciations on bilabial-visemes and intra-visemes.
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Figure 13. Detailed proposed architecture confusion matrices for the (a) lip-rounding based vowels;
(b) intra-visemes; and (c) bilabial groups. The three groups with the most confusions were selected,
as well as the confusions within viseme clusters.

5. Discussion and Conclusions

The primary reason lipreading is difficult is that much of the image in the video input
remains unchanged—the movement of the lips is the biggest distinction. However, it is
possible to perform action recognition, which is a type of video classification, from a single
image. When lipreading, it is always important to derive the characteristics relevant to the
speech content from a single image and to analyze the time relationship between the entire
series of images to infer the content. The key problem with lipreading is visual ambiguity.

This paper presented a novel lipreading architecture for sentence-level VSR. By apply-
ing multiple visual feature extraction methods, we achieved accurate viseme prediction. To
the best of our knowledge, this is the first time that a 3D CNN, 3D densely connected CNN,
and MLFF 3D CNN have been used in combination to extract the features of lip movements
as encoders. The strengths of each stage are as follows. The 3D CNN extracts features from
multiple consecutive video frames efficiently. The 3D densely connected CNN helps in
fully utilizing the features, effectively reducing the problem of gradient disappearance,
and making the network deeper. In addition, the bottleneck layer, translation layer, and
smaller growth rate make the network narrower, thereby reducing the number of model
parameters, suppressing overfitting and saving computational power. Lastly, the MLFF 3D
CNN with a dropout and spatial dropout layer avoids overfitting and effectively extracts
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shapes with strong spatial correlations with fine movements while exploring the context
information of the movement in both the temporal and spatial domains.

We compared several deep learning models for predicting sentence sequences, and
the results indicated that our proposed architecture achieves SOTA CER and WER values
(Table 2). Smaller numbers of parameter and faster epoch times than those of the existing
methods were realized using our proposed model. Moreover, the proposed architecture
showed reduced CER and WER values than those of the baseline model for both the
unseen-speaker and overlapped-speaker datasets.

It is important to develop a VSR system that exclusively uses visual information. This
system has practical potential for various applications in speech recognition in noisy or
underwater environments, biometric identification for security, and silent movie analysis;
furthermore, it could be beneficial for patients with speech impairments. However, it
remains difficult to perform automatic speech recognition using only VSR as speech uses
acoustic and visual information. Thus, in future work, we will investigate a solution that
can be directly applied to the loss function, because the loss function was not modified in
our proposed model. Moreover, we intend to expand our concept to pursue performance
enhancement and discover potential applications using both audio and visual information.
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Appendix A

The following table provides a detailed hyperparameters further describing the pro-
posed end-to-end lip-reading architecture.

Table A1. Hyperparameters of proposed architecture.

Layers Size/Strid/Pad Output Size Dimension Order

3D Conv [3 × 5 × 5]/(1, 2, 2)/(1, 2, 2) 75 × 50 × 25 × 64 T × C × H × W

3D Max Pooling [1 × 2 × 2]/(1, 2, 2) 75 × 50 × 13 × 64 T × C × H × W

3D Dense Block (1)
[3 × 1 × 1] 3D Conv

(×6) 75 × 25 × 13 × 96 T × C × H × W
[3 × 3 × 3] 3D Conv

3D Transition Block (1)
[3 × 1 × 1] 3D Conv

75 × 12 × 6 × 6 T × C × H × W
[1 × 2 × 2] average pool/(1 × 2 × 2)

3D Dense Block (2)
[3 × 1 × 1] 3D Conv

(×12) 75 × 12 × 6 × 38 T × C × H × W
[3 × 3 × 3] 3D Conv

3D Transition Block (2)
[3 × 1 × 1] 3D Conv

75 × 6 × 3 × 3 T × C × H × W
[1 × 2 × 2] average pool/(1 × 2 × 2)
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Table A1. Cont.

Layers Size/Strid/Pad Output Size Dimension Order

3D Dense Block (3)
[3 × 1 × 1] 3D Conv

(×24) 75 × 12 × 6 × 38 T × C × H × W
[3 × 3 × 3] 3D Conv

3D Transition Block (3)
[3 × 1 × 1] 3D Conv

75 × 3 × 1 × 1 T × C × H × W
[1 × 2 × 2] average pool/(1 × 2 × 2)

3D Dense Block (4)
[3 × 1 × 1] 3D Conv

(×16) 75 × 3 × 1 × 33 T × C × H × W
[3 × 3 × 3] 3D Conv

MLFF 3D CNN (1) [3 × 5 × 5]/(1, 2, 2)/(1, 2, 2) 75 × 3 × 1 × 64 T × C × H × W

MLFF 3D CNN (2) [3 × 5 × 5]/(1, 2, 2)/(1, 2, 2) 75 × 3 × 1 × 64 T × C × H × W

MLFF 3D CNN (3) [3 × 5 × 5]/(1, 2, 2)/(1, 2, 2) 75 × 3 × 1 × 64 T × C × H × W

Bi-GRU (1) 256 75 × 512 T × F

Bi-GRU (2) 256 75 × 512 T × F

Linear 27 + blank 75 × 512 T × F

Softmax 75 × 28 T × V
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Abstract: Automatic feature extraction from images of speech articulators is currently achieved by
detecting edges. Here, we investigate the use of pose estimation deep neural nets with transfer
learning to perform markerless estimation of speech articulator keypoints using only a few hundred
hand-labelled images as training input. Midsagittal ultrasound images of the tongue, jaw, and hyoid
and camera images of the lips were hand-labelled with keypoints, trained using DeepLabCut and
evaluated on unseen speakers and systems. Tongue surface contours interpolated from estimated and
hand-labelled keypoints produced an average mean sum of distances (MSD) of 0.93, s.d. 0.46 mm,
compared with 0.96, s.d. 0.39 mm, for two human labellers, and 2.3, s.d. 1.5 mm, for the best perform-
ing edge detection algorithm. A pilot set of simultaneous electromagnetic articulography (EMA) and
ultrasound recordings demonstrated partial correlation among three physical sensor positions and the
corresponding estimated keypoints and requires further investigation. The accuracy of the estimating
lip aperture from a camera video was high, with a mean MSD of 0.70, s.d. 0.56 mm compared with
0.57, s.d. 0.48 mm for two human labellers. DeepLabCut was found to be a fast, accurate and fully
automatic method of providing unique kinematic data for tongue, hyoid, jaw, and lips.

Keywords: multimodal speech; lip reading; ultrasound tongue imaging; pose estimation; speech
kinematics; keypoints; landmarks

1. Introduction

In speech science, kinematic analysis of speech articulators is a key methodology in the
quantification of speech production [1]. It can be used to relate movement to muscle activa-
tion and the timing of neural control signals. Biomechanical engineers can evaluate their
models, sociophoneticians can quantify changes in articulatory gestures, clinical phoneti-
cians can assess progress after intervention for speech disorders, and speech technologists
can use the objective measures as input for silent speech recognition or lip-reading.

Electromagnetic articulography (EMA) is an important method for measuring the
kinematics of speech articulators in 3D space. It has an advantage over image-based
techniques because it generates movement coordinates of keypoints on articulators, such
as tongue tip, blade and dorsum, lips, and jaw. It is the preferred technique for kinematic
speech studies and, since the decommissioning of X-ray microbeam facilities, unique in
providing intraoral keypoint data. Limitations on where the 2 mm × 3 mm electromagnetic
sensors can be attached means that movement of the posterior tongue surface and hyoid
cannot be monitored.

Ultrasound tongue imaging and camera video of the lips and face are instrumental
techniques within the budget of most speech laboratories and have become popular as a
source of articulatory speech data. They are non-invasive, convenient, and suitable for field
work. Dynamic MRI of the vocal tract is another fast-evolving imaging technique with the
important ability to image all the structures in the vocal tract although with significant
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disadvantages in cost, access, temporal/spatial resolution, unnatural recording conditions
and severe acoustic noise. All of the aforementioned imaging techniques provide data,
which must be postprocessed to extract measurable dynamic and static features of the vocal
tract. Postprocessing of speech articulator image data has almost exclusively taken the form
of edge detection or boundary segmentation. Accurate boundaries are useful for estimating
vocal tract area functions but not so useful for measuring kinematics of articulators. It is
also the case that edge detectors are sometimes fooled by imaging artefacts.

Recent advances in computer vision and machine learning offer an alternative ap-
proach, learning the mapping between an entire articulatory image and keypoints, labelled
by experts, which need not be related to an edge or boundary. This paper investigates
the potential of such pose estimation deep neural nets. We show that pose estimation can
estimate the position and shape of articulatory structures within an image to an accuracy
matching that of a human labeller. The movement of estimated keypoints partially corre-
lates with that of EMA sensors. Further, more rigorous investigation is required to establish
the limits of pose estimation in this regard.

1.1. State-of-the-Art in Ultrasound Tongue Contour Estimation

In order to determine which edge detection methods to compare with pose estimation
we will review the state-of-the-art. Early attempts to extract a tongue surface contour
from a midsagittal ultrasound image of the oral cavity were based on active contours (aka
snakes) [2]. The most frequently referenced technique is EdgeTrak [3], where a spline with
up to 100 control points is iteratively attracted to contiguous edge features in the image.
The technique must be “seeded” with a contour close to the desired edge. To avoid the
need to seed by hand every frame in a movie sequence, it is common to hand-label the first
image and proceed through the movie by seeding each following frame with the estimated
position of the contour in the preceding frame. This process leads to a tendency for the
estimated contour to drift away from the tongue contour over time and become longer
or shorter [4]. This approach is also, by design, bound to find an “edge” (continuous line
where pixels are brighter above than below or vice versa). It cannot estimate the position
of the tongue where there is no edge. SLURP [5] forms the most recent and successful
development of the active contour approach. It incorporates a particle filter to generate
multiple tongue configuration hypotheses. These hypotheses are used as seeding for the
active contour to avoid the problem of drift. It also employs an active shape model, trained
on a small number of tongue contour samples, for the purpose of constraining the shape
and iteratively driving the snake optimization.

Machine learning was first used to estimate ultrasound tongue contours by Fasel
and Berry [6]. They report a mean sum of distances (MSD, see Appendix A) accuracy of
0.7 ± 0.02 mm for their deep belief network, AutoTrace, which is remarkable given there
were only 646 inputs to the network, meaning each image was resized to 19 × 34 pixels.
The high accuracy score can be explained by the holdout method commonly used for
testing network performance whereby a small percentage of images are randomly selected
from the same dataset used for training and isolated for testing. Due to the slow rate of
change of tongue movement with respect to sampling frequency, many test images are
therefore almost identical to images seen in the training set. This ‘holdout’ method of testing
produces accuracy scores that are not representative of how the estimation network would
perform on data from unseen speakers and recording conditions. This was demonstrated by
Fabre et al. [7] who showed their MSD accuracy of 1.9 mm diminished to 4.1 mm when no
image frames from a test speaker were used in training, even when the recording conditions
(ultrasound model, probe geometry, depth, field of view and contrast) were the same. Fasel
and Berry [6] used a 20% holdout. Xu et al. [8] used a holdout of 8% of their hand-labelled
frames reporting a MSD accuracy of 0.4 mm. More recent work by Mozzaffari [9] used a
5% holdout. Akgul and Aslan [10] used a 44% holdout and reported an MSD of 0.28 mm.

Many previous attempts to use deep networks for tongue contour estimation (BowNet [9],
MTracker [11], and DeepEdge [12]) have adopted the U-net architecture [13] or U-net-like
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architecture (IrisNet [9]). U-Net is a convolutional neural network, developed for biomedical
image segmentation with an architecture designed to work with a few thousand training
images. This network classifies pixels with a probability of them belonging to a learned
boundary. TongueNet [9] constitutes the only previous report on using a network for
landmark feature identification as opposed to image segmentation. The authors indicate
that about 10 keypoints along the tongue surface is optimal for accurate performance
(see Table 1).

AutoTrace [6] was re-evaluated along with TongueTrack [14] and SLURP by Laporte [5].
The MSD accuracy scores are summarised in Table 1.

Table 1. Mean sum of distances (MSD) error scores reported in the literature for estimated vs. hand
traced contours quoted by authors for speaker independent tests.

Algorithm MSD (Mean/s.d.) mm

EdgeTrak 1 6.8/3.9
SLURP 1 1.7/1.1

TongueTrack 1 3.5/1.5
AutoTrace 1,2 2.6/1.2

DeepEdge (NN + Snake) 3 1.4/1.4
MTracker 4 1.4/0.7
BowNet 5 3.9/-

TongueNet 5 3.1/-
IrisNet 5 2.7/-

Human-human 0.9 6/-, 1.3 7

1 MSD values taken from Laporte et al. [5]. 2 when trained on the first 1000 frames of the test set. 3 MSD
values taken from Chen et al. [12] 5.7 pixels at 0.25 mm/pixel. 4 MSD values taken from Zhu et al. [11].
5 MSD values taken from Mozzafari et al. [9]. Value in mm estimated based on 128 × 128 images of 80 mm
depth = 0.638 mm/pixel. Trained and tested on the same dataset with 5% test holdout. 6 Reported MSD between
two hand-labellers Jaumard-Hakoun et al. [15]. 7 Reported RMSE standard deviation of 7 labellers Csapo and
Lulich [4].

From the contour estimation algorithms listed in Table 1, SLURP, DeepEdge, and
MTracker report the best performance with MSD values of 1.7, 1.4, and 1.4 mm, respectively.
The authors of these methods also provide code that can be freely downloaded. These algo-
rithms are therefore selected for further investigation and comparison with DeepLabCut
pose estimation.

1.2. Lip Contour Estimation

Estimating lip contours from video of the face has a similar history to ultrasound
tongue contour estimation. Early attempts used Snakes [16] and Active Shape Models [17].
Kaucic et al. [18] used Kalman filters to track the mucosal (inner) and vermillion (outer) bor-
ders of the lips. There is a need for lip feature extraction for the speechreading/lipreading
application. Since 2011, with the development of convolutional neural networks (CNNs),
this approach has dominated. However, the CNN lip feature encoders form part of a larger
network for speech recognition and are embedded with no means to extract the lip features.

In the speech science field, the most often referenced technique, and one currently
still in use for estimating lip contours for gestural speech research, is from a 1991 PhD by
Lalouche [19]. This requires the participant’s lips to be coloured blue. All blue pixels are
then extracted from the image by chroma key, and post-processing is carried out to estimate
the mucosal and vermillion borders. In a similar approach, but without the requirement
for blue lips, King and Ferragne [20] have used the semanticseg function in the MATLAB
deep learning toolbox to extract lip boundaries and postprocessed by fitting an ellipse to
the boundary shape to give an estimate of width and height of the vermillion border.

The Lalouche chroma key method cannot operate on greyscale images so evaluation
of DeepLabCut is compared here only with hand-labelling.
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2. Pose Estimation

Recent advances in computer vision and machine learning have dramatically im-
proved the speed and accuracy of markerless body-pose estimation [21]. There are a
growing number of freely available toolkits that apply deep neural networks to the es-
timation of human and animal limb and joint positions from 2D videos. These include
DeepLabCut [22], DeepPoseKit [23], and SLEAP [24]. These software packages all use
Google’s open-source TensorFlow platform to build and deploy convolutional deep neural
network models. The DeepLabCut toolkit (DLC) [21,22,25] has a broad user base and
has continuing support so was selected here for evaluation of pose estimation in the
speech domain.

DeepLabCut

Once installed, the Python-based DeepLabCut toolbox is run using a simple graphical
user interface (GUI) requiring no programming skills. The GUI makes it easy for users
to label keypoints, train the convolutional neural network, apply the resulting model to
identify pixel coordinates of keypoints in images, and output them in a simple comma
separated text file. The processes for training and estimating pose with DeepLabCut are
outlined in Figure 1. Auxiliary tools, for visualizing and assessing the accuracy of the
tracked keypoints are also available within the DLC graphical user interface. Deep learning
approaches require very large amounts of labelled data for training. Large, labelled corpora
are publicly available for classical problems, such as facial landmark detection and body
pose estimation [26,27], but not for ultrasound tongue image contouring. It is not practical
to hand-label tens of thousands of ultrasound images, but it is possible to leverage existing
networks trained on large datasets in one domain, and transfer learning to a new domain
using only a few hundred frames. DLC applies transfer learning from object recognition
and human pose estimation. With only a small number of training images and a few hours
of machine learning, the resultant network can perform to within human-level labelling
accuracy [22]. Here, we evaluate that performance claim on the domains of ultrasound
tongue imaging and lip camera imaging.

Figure 1. DeepLabCut training and analysis processes.

Deep net architectures designed for markerless pose estimations are typically com-
posed of a backbone network (encoder), which functions as a feature extractor, integrated
with body part detectors (decoders). DeepLabCut provides a choice of encoders (Mo-
bileNetV2 [28], ResNet [29], or EfficientNet [30]), all with weights pretrained on the Im-
ageNet corpus that consists of 1.4 million images labelled according to the objects they
contain. The body part detector algorithms are taken from a state-of-the art human pose
estimation network called DeeperCut [31] from which it takes its name. DeeperCut is in

176



Sensors 2022, 22, 1133

turn trained on the Max-Planck-Institut für Informatik human pose dataset [27], consisting
of 25,000 images containing over 40,000 people with annotated body joints. The “Lab”
nomenclature references the ability of DeepLabCut to transfer learning from human pose
estimation to other domains, such as animals or medical images, using only a few labelled
images, making the process manageable for a single research laboratory.

Encoders are continuously being redesigned to improve the speed and accuracy of
object recognition, and it has been shown that this improved encoder performance feeds
directly through to improve pose estimation [25], particularly with respect to:

1. Shorter training times.
2. Less hand-labelled data required for training.
3. Robustness on unseen data.

For each labelled keypoint, the decoder produces a corresponding output layer whose
activity represents a probability score-map (aka heat-map). These score-maps represent
the probability that a body part is at a particular pixel [31]. During training, a score-map is
generated with unity probability for pixels within a ‘pos_dist_threshold’ (default = 17) pixel
radius of the labelled keypoint pixel and zero elsewhere. Mathis et al. recommend a 17-pixel
distance threshold after experimenting on different threshold values for a 1062 × 720-pixel
resolution video input.

It is possible to use features of the score-maps such as the amplitude and width, or
heuristics such as the continuity of body part trajectories, to identify images for which the
decoder might make large errors. Images with insufficient automatic labelling performance
that are identified in this way can then be manually labelled to increase the training set and
iteratively improve the feature detectors.

DeepLabCut can use deep, residual networks, with either 50, 101, or 152 layers
(ResNet). The optional MobileNetV2 is faster for both training and analysis and make
analysis with CPU (as opposed to GPU) feasible. EfficientNet encoders are also available.

Labelling the training set with multiple related anatomical keypoints improves the
accuracy of individual keypoint estimates. Mathis [22] shows a network, trained with all
body part labels simultaneously, outperforms networks trained on only one or two body
parts by nearly twofold. DeepLabCut applies image augmentation to artificially expand
the training set by modifying the base set with images transformed by scaling, rotating,
mirroring, contrast equalization, etc. In this paper, only scaling and rotation were applied.

3. Materials and Methods

3.1. Ultrasound Data Preparation
3.1.1. Training Data

Ultrasound images were downsampled to fit in an image of 320 × 240 pixels. Where
the original image was not 4:3 aspect ratio, it was letterboxed to lie centrally, and a black
background added. The images were encoded using H.264 (greyscale, rate factor 23, zero
latency, and YUV_4_2_0 palate) to provide a compact data storage with minimal loss. The
original images had vertical heights of 80, 90, or 100 mm, and after letterboxing, the output
images had vertical heights of 100–125 mm, leading to a pixel resolution of approximately
0.4–0.5 smm per pixel. It is worth noting that the axial resolution in mm of a 3 MHz 3-cycle
ultrasonic pulse is 3 × 0.5 × 1540/3,000,000 × 1000 = 0.77 mm so our 320 × 240 image has
better resolution than the underlying data. Preliminary tests indicated that, compared to a
320 × 240 video, a 800 × 600 video took 5× longer to analyse and a 1200 × 900 video took
12× longer. Therefore, 320 × 240 was determined to be a practical resolution.

The tongue contour may be partly obscured by mandible or hyoid shadows or other-
wise indistinct. The labeller then has a choice either to omit keypoints in these regions or to
estimate their position based on clues elsewhere in the image or audio. For this paper, we
mainly adopted the latter approach.

Hand-labelling was carried out on 20 frames each, from 26 recordings. The frames
were selected by k-means clustering using the DLC labelling tool so that they were distinct

177



Sensors 2022, 22, 1133

from each other. A few frames were rejected if they had no discernible features leaving a
total of 520 test frames. The recordings comprised:

• A total of 10 recordings from 6 TaL Corpus [32] adult speakers (Micro system, 90◦ FOV,
64-element 3 MHz, 20 mm radius convex depth 80, 81 fps). These recordings were the
first few recordings from the corpus and not specially selected.

• A total of 4 recordings from 4 UltraSuite corpus [33] Ultrax typically developing chil-
dren (Ultrasonix RP system, 135◦ FOV, 128 element 5 MHz 10 mm radius microconvex,
depth 80 mm, 121 fps). These were randomly selected. 10 recordings of the authors, us-
ing the Micro system with 64-element, 20 mm radius convex probe, and with different
field of view and contrast settings

• A total of 2 recordings by Strycharczuk et al. [34] using an EchoB system with a
128-element, 20 mm radius convex probe. These data are from an ultrasound machine
not represented in the test set and included to generalize the model.

3.1.2. Test Data

Hand-labelling was carried out on 40 k-means selected frames from 25 recordings
using the DLC labelling tool to generate a total of 1000 test frames. Each recording was
from a different speaker and were taken from several publicly available corpora:

• A total of 10 TaL corpus adult speakers (Articulate Instruments Micro system, 90 FOV,
64-element 3 MHz, 20 mm radius convex depth 80, 81 fps).

• A total of 6 UltraSuite Ultrax typically developing children (Ultrasonix RP system,
135◦ FOV, 128 element 5 MHz 10 mm radius microconvex, depth 80 mm, 121 fps).

• A total of 2 UltraSuite Ultrax speech sound disordered children (recorded as previous).
• A total of 2 UltraSuite UltraPhonix children with speech sound disorders (SSD)

(recorded as previous).
• A total of 2 UltraSuite children with cleft palate repair. Ultrasound (Articulate instru-

ments Micro system, 133◦ FOV, 64-element 5 MHz, 10 mm radius microconvex, depth
90, 91 fps.

• A total of 3 UltraspeechDataset2017 [35] adults. Ultrasound images (Terason t3000
system, 140◦ FOV, 128-element, 3–5 MHz 15 mm radius microconvex, depth 70 mm,
60 fps).

None of the test speakers were used in the training set. The hand-labelling was
conducted by the first author with the same protocol used to train the DLC model (see
Section 3.1.3). The second author also hand-labelled 25% of the same test frames (every
fourth frame) for the purpose of comparing hand-labelling similarity.

3.1.3. Ultrasound Keypoint Labelling

Eleven points were selected along the upper surface of the tongue: vallecula, root1,
root2, back1, back2, dorsum1, dorsum2, blade1, blade2, tip1, tip2. This number is sufficient
to describe the shape of the surface. Separation between the consecutive blade and tip
points were approximately half that of other points in order to better represent the flexibility
of that part of the tongue. An attempt was made to maintain consistency in placement
relative to the tongue surface, even when these points were obscured by hyoid or mandible
shadow. This approach to labelling differs from traditional labelling, which is limited in
length to the extent of the bright edge visible in the image. In addition, keypoints were
labelled on the hyoid and on the mandible at its base and at the mental spine where the
short tendon attaches. The latter point is important as it forms the insertion point for the
fanned genioglossus muscle fibres. These fibres principally control the midsagittal shape of
the tongue body. Figure 2 shows the location of the labelled keypoints.
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Figure 2. Outline of midsagittal tongue contour and the labelled keypoints.

The bright surface of the epiglottis and any saliva bridge between the tip of the
epiglottis and the tongue root is often traced as part of the tongue (see Figure 3A for an
example). This may be an appropriate contour to trace if the boundary of the oral cavity
is being assessed, but for studies investigating tongue root retraction and for the sake of
consistently modelling the tongue surface, in this study, we elected to follow the surface of
the tongue to the vallecula rather than the visible surface of the epiglottis.

Figure 3. Ultrasound image showing (A) bright reflection from tip of epiglottis (B) double reflection
parasagittal surface (upper) and midsagittal surface (lower) of the tongue blade.

It is sometimes the case that there are two apparent edges (e.g., Figure 3B). This most
often occurs at the tongue blade when it is grooved to produce an (s) sound. In this
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study, we hand-labelled the lower of the two edges even when it was less distinct, as this
represents the contour of the midline of the tongue.

Where possible, the tongue tip position was estimated even when there was no bright
contour. In particular, the bright artefact often generated by the tip raising gesture was
not labelled as part of the tongue contour. This bright artefact is due to the ultrasound
beam reflecting off the surface of the tongue to the underside of the blade and back along
the same path (Figure 4). Again, this means that the hand labels do not strictly follow the
brightest edge.

Figure 4. Ultrasound image with beam tracing (blue) showing actual path of ultrasound beam
(dotted) and the resulting bright artefacts based on the equivalent time of travel in the direction of
the transmitted beam (solid). A—hyoid; B—mandible base; C—short tendon base.

Hyoid, mandible base, and short tendon base are indicated in Figure 4 as points A, B,
and C, respectively.

3.2. EMA-Ultrasound Test Data

Simultaneously recorded ultrasound and EMA data are rare. Some pilot data gener-
ously made available by Manchester and Lancaster Universities (UKRI grant AH/S011900/1)
were used here to evaluate the ability of DLC output to emulate EMA sensor movement.
EMA data were recorded using the Carstens 501 system (Carstens Medizinelektronik
GmbH, Bovenden, Germany) with three coils placed on the tongue tip (1 cm from apex),
tongue blade and dorsum (approximately 15 mm separation between each sensor). The
corpus consisted of three carrier phases “She said X clearly”, “She said X”, and “She said
X again”. Unfortunately, in many of the ultrasound recordings there was loss of tip in-
formation as the probe failed to make contact with the chin. As a result of the restricted
vocabulary and missing tip images, only five recordings were used to evaluate the ability
of DeepLabCut to estimate EMA sensor movement. These were all the phrase “She said X
clearly” with X = Bide, Bart, Bore, Bead, Bee.

3.3. Lip Camera Data Preparation
3.3.1. Training Data

The TaL sample corpus was used for training. A total of 24 recordings, one from each
of 24 speakers, were selected at random. Moreover, 7 or 8 frames were selected by k-means
clustering from each recording, providing 207 training frames.
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3.3.2. Test Data

Testing was carried out on 10 TaL corpus speakers who were not included in the
training set. A total of 40 frames were labelled from each speaker, providing 400 test frames.
These speakers were selected to represent a range of age, sex, ethnicity, and facial hair. A
second labeller re-labelled every fifth hand-labelled frame (20% of the test set).

3.3.3. Lip Keypoint Labelling

The lip video was taken from the TaL corpus [32], which uses a front facing camera.
This presents the opportunity to label the commissures (corners), midsagittal point on the
upper and lower mucosal boundary, and points midway between the commissures and
midpoints, as indicated in Figure 5.

Figure 5. Keypoints labelled on the lip video. Dotted line indicates mucosal border on the lower
lip that makes contact with the upper lip when the mouth is closed. A and B—commissures; C
and D—centre of the upper and lower lip, respectively (defined by philtrum midpoint and not
necessarily equidistant from A and B); E—equidistant from A and C; F—equidistant from A and D;
G—equidistant from B and C; H—equidistant from B and D.

3.4. Accuracy Measures

To assess the accuracy of an estimated tongue contour, Jaumard-Hakoun et al. [15]
proposed a mean sum of distances (MSD). For every point on the hand-labelled curve, the
distance to the closest point on the estimated curve was calculated, and for every point
on the estimated curve, the distance to the closest point on the hand-labelled curve was
calculated. The total sum of these distances was then divided by the total number of
distance measures. This per-frame mean sum of distances was then averaged across all
frames to give a single score. This curve similarity measure can give an identical score
for the case where two curves match perfectly but one is longer than the other, and the
case where the curves are the same length but do not match. We chose to separate these
two factors. We used the standard MSD calculation, but when considering the endpoints
of spline B, only one distance to a point on Spline A was included in the calculation: the
shortest one. This means that the MSD is not affected by the relative lengths of the splines.
Instead, we report a separate spline length difference measure (length hand-labelled spline—
length estimated spline). Each spline was cubically interpolated prior to performing this
MSD calculation so that it had 100 points regardless of its length.

181



Sensors 2022, 22, 1133

DeepLabCut includes a root mean square error (RMSE) for the distance between
hand-labelled points and estimated points. This measure is only applicable to DeepLabCut,
since it is the only point estimation algorithm being considered.

For lip analysis, the area bounded by the upper and lower lip contours was measured
in mm2. The width between commissures was measured. The MSD of the upper and lower
lips were reported separately.

For comparison between EMA tongue sensors and the estimated tongue tip, blade,
and dorsum keypoints, a Pearson correlation coefficient was calculated.

3.5. Ultrasound Tongue Contour Estimation Methods

The configuration of DeepLabCut, SLURP, MTracker, and DeepEdge are described in
the following sections and Table 2 summarises their training and analysis rates.

Table 2. Comparison of ultrasound contour tracking algorithms showing the analysis frame rate,
image size, training frame rate, and time for the network training to converge.

Algorithm
Frames per Second

1 (GPU/CPU)
Image Size

Training Data/Time
(Frames/Hours)

SLURP 2,3 NA/8.5 data N/A
DeepEdge (NN + Snake) 2.7/NA 64 × 64 2700/2

DeepEdge (NN only) 3.0/NA 64 × 64 2700/2
MTracker 27/NA 128 × 128 35,160/2

DeepLabCut (MobNetV2_1.0) 287/7.3 4 320 × 240 520/7.5
DeepLabCut (ResNet50) 157/4.0 4 320 × 240 520/16

DeepLabCut (ResNet101) 105/2.6 4 320 × 240 520/30
DeepLabCut (EfficientNet B6) 27/1.7 4 320 × 240 520/48

1 Using Windows laptop PC with Core i7-10750H 16GB RAM and NVIDIA RTX 2060 MaxQ. 2 SLURP is the only
algorithm tested here that does not use the NVIDIA GPU. 3 SLURP requires the first frame of each recording to be
manually seeded with at least 6 points using GetContours MATLAB GUI. The timing recorded here excludes this
manual labelling step. 4 Analysing using batch size 8.

3.5.1. DLC Ultrasound

For body tongue/hyoid/mandible inference, we used DeepLabCut (version 2.1.10.0) [22,36].
We used a MobileNetV2-1.0 [25] based neural network with default parameters *. We also
compared this with ResNet50, ResNet101, and EfficientNetB6 [25]. A total of 0.8 million
iterations were used for training after preliminary testing (see Appendix B) showed conver-
gence occurred with this amount of training. We validated with one held-out folder of the
1000 hand-labelled test frames. The image size was 320 × 240; ~0.5 mm/pixel. We then
used a p-cut-off of 0.6 to determine root mean square error scores. This network was then
used to analyse each of the test videos generating csv files of keypoints with associated
confidence values, which were imported into the AAA software package (version 219_06,
2021, Articulate Instruments Ltd., Musselburgh, UK). The 11 tongue keypoints were con-
verted into a single cubic tongue spline with 11 control points. The pixel to mm scale was
calculated separately for each recording. MSD and length measures in millimetres were
then made with respect to the hand-labelled keypoints similarly imported.

* ImgAug with ±25◦ rotation and random scaling in the range 0.5–1.25 (40% of the
original dataset); pos_dist_threshold of 17.

3.5.2. SLURP

The GetContours GUI [37] implemented in MATLAB was used to run the SLURP edge
detection function. SLURP employs tongue-shape models but does not provide tools for
in-domain training. Retraining the shape models on the training data used in this study
was thought unlikely to make a substantial difference to the performance. Two different
shape models provided by the author were tested and the one that gave the best results
was selected. Increasing the minimum number of particles did not substantially improve
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the performance. The resulting reduction in the analysis rate was therefore not justified
and the default settings were used:

Colormap = “gray”, Sigma = 5.0, Delta = 2.0, Band Penalty = 2.0, Alpha = 0.80,
Lambda = 0.95, Adaptive Sampling = Enabled, Particles = Min 10, Max 1000.

Each frame was seeded by hand with a 15-point spline. The tracker ran at 8.5 fps pro-
ducing 100 edge contour points. These spline points were downsampled to 50 by removing
every alternate point and imported into AAA software for MSD and length analysis.

3.5.3. MTracker

A region of interest was defined as the area between the coordinates [50,50] and
[200,300] relative to the top-left of the image. Dense U-Net model “dense_aug.hdf5” was
used. This model has 50% of the training data with image augmentation. The tracker ran
at 27 fps producing 100 points or fewer when the confidence threshold of 50% was not
reached. These spline points were downsampled to 50 by removing every alternate point
when imported into the AAA software for MSD and length analysis.

3.5.4. DeepEdge

DeepEdge version 1.5 ran under MATLAB R2021a with deep learning toolbox, image
processing toolbox, and computer vision toolbox. Three optional models are provided,
each trained on different datasets. A model trained on the same ultrasound system and
probe used in our 6 Ultrax TD child test recordings was tried first. However, this model
performed more poorly on the test set than another of the models. The best performing
model was (“DpEdg_CGM-OPUS5100_CLA651_21JUL2021”), and this was the model used
for this study. All videos were mirrored, such that the tongue was pointing to the left, then
after running DeepEdge and exporting the data, the results were then mirrored again to face
tongue tip right before importing into AAA. The tracker ran at 3 fps producing 20 edge
contour points. These contour points were imported into AAA software for MSD and
length analysis.

3.6. Method for Comparing EMA Position Sensors to DLC Keypoints

The ultrasound data were analysed using the DLC ResNet50 model trained as per
Section 3.5.1. The estimated tip1, blade1, and dorsum1 keypoints were picked as close
matches to the tip, blade, and dorsum EMA sensors. Sections of the five recordings
corresponding to the spoken utterances were selected. The sensor positions were compared
to the estimated keypoints for every ultrasound frame timepoint, and Pearson correlation
values recorded.

3.7. Method for Evaluating DLC Performance on Lip Camera Data

The same DeepLabCut configuration used for ultrasound images was used to train
lip images. Only MobileNetV2_1.0 and ResNet50 encoders were tested. Keypoints were
imported into the AAA analysis package (version 219_06, 2021, Articulate Instruments
Ltd., Musselburgh, UK) as an upper lip spline and lower lip spline. Both splines shared the
commissure keypoints as endpoints. MSD values were calculated for the upper lip and
lower lip separately. A width (distance between commissure keypoints) and aperture (area
enclosed by the upper and lower lip splines) were also recorded, as these are measures that
speech scientists are interested in.

4. Results

4.1. Ultrasound Contour Tracking

We evaluated DLC with the MobileNetV2_1.0 encoder by training on 100% (twice),
75%, 50%, and 25% of the 520 hand-labelled frames. A small difference in MSD scores
occurred between models generated in two separate training runs with 100% of the training
data. This is likely due to the random selection of frames for image augmentation and
the random amounts of augmented scaling and rotation. Table 3 shows that, compared to
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using 100% of the data, using 75% (390 frames) did not reduce performance significantly.
ResNet50 backbone also produced no significant difference when using 75% compared
to 100% of the training data. Using 50% of the total available hand-labelled frames, i.e.,
260 hand-labelled frames with distinct tongue shapes extracted from 26 recordings, gave
marginally poorer performance (p = 0.03). Performance was reduced when the number
of frames used to transfer learning from human pose estimation to ultrasound tongue
images was limited to 130. For this paper, we used models trained on all 520 hand-labelled
frames. While it is possible that generalization to a very different scanner and probe might
require the model to be retrained with supplementary frames from that domain, very few
additional images would be needed. Certainly, no more than 260 and likely less than 50.
The test set used here included recordings from a Terason scanner and probe unseen in the
training set and performed very well (mean MSD 1.00 SD 0.30 for speaker TH c.f. mean
MSD 1.06 SD 0.71 for all 25 speakers.

Table 3. Error scores vs. hand contoured for 20, 15, 10, and 5 frames per recording used for training.

MobileNetV2
Training Data

MSD (Mean, s.d., Median)
MSD

p Value 1
%Length Diff (Mean,

s.d., Median)

conf 80% 520 frames 1.06, 0.59, 0.90 1.00 +1.8, 7.0, +2.0
1.06, 0.71, 0.89 0.89 +1.8, 9.1, +1.8

conf 80% 390 frames 1.12, 0.86, 0.91 0.09 +2.8, 10.7, +2.5
conf 80% 260 frames 1.13, 0.71, 0.94 0.03 +1.9, 9.7, +1.7
conf 80% 130 frames 1.17, 0.79, 0.94 <0.001 +3.5, 8.1, +3.2

1 Two tailed t-test assuming equal variance with reference to the MSD data generated by the model corresponding
to the first row MSD distribution.

MSD mean and standard deviation values reported in Table 4 show SLURP, MTracker,
and DeepEdge all performed less well on the test set used for this study than previously
reported (1.7, 1.1 c.f. 2.3, 1.5) (1.4, 0.7 c.f. 3.2, 5.8) (1.4, 1.4 c.f. 2.7, 3.1). DeepLabCut
still performed better than the originally reported MSD values for these other methods.
0.9 mm vs. 1.4–1.7 mm.

Table 4. Error scores vs. hand contoured (including regions where hand labels had to be guessed at
tip and vallecula.

Algorithm
MSD (Mean, s.d.,

Median)
MSD

p Values 1
%Length Diff (Mean,

s.d., Median)

SLURP 2.3, 1.5, 1.9 <0.001 −3.8, 14.4, −4.6
DeepEdge (NN only) 2.8, 3.1, 1.9 <0.001 −27.5, 25.3, −26.0
MTracker 3.2, 5.8, 1.5 <0.001 −49.0, 28.7, −44.4
DLC (MobileNetV2_1.0 conf 80%) 1.06, 0.59, 0.90 0.04 +1.8, 7.0, +2.0
DLC (ResNet50 conf 80%) 0.93, 0.46, 0.82 0.29 +1.6, 8.8, +2.2
DLC (ResNet101 conf 80%) 0.96, 0.67, 0.81 0.80 +1.8, 9.1, +1.8
Inter-labeller 0.96, 0.39, 0.88 1.0 −4.3, 6.2, −4.8

1 Two tailed t-test assuming unequal variance with reference to the MSD data generated by the inter-labelling.

The quality of the ultrasound images may have been poorer in this test set than the
original SLURP, MTracker, and DeepEdge studies, partly explaining the reduction in perfor-
mance. It may also be the case that the training and test sets in the original studies were
closely matched and the trackers have a limited ability to generalise to unseen data. In
particular, DeepEdge comes with three models, each trained on a different system rather
than one general model. If DeepEdge were trained on the same dataset that DeepLabCut was
trained on it may have performed better, but DeepEdge requires at least 4× the available
hand-labelled frames to train successfully and no training software is provided. Further-
more, the hand-labelled contours, used here as ground truth, follow the tongue contour and
not necessarily the brightest edge. The original studies may have been evaluated against
hand-labels of the brightest edge.
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Table 4 shows that DLC with a ResNet50 encoder provided MSD scores equivalent to
the MSD between the two hand-labellers in this study. The inter-labeller mean of 0.96 mm
is close to the inter-labeller MSD of 0.9 mm reported by Jaumard-Hakoun [15]. It also
indicates that, while the second hand-labeller tended to assign tongue contours 4% shorter
than the first labeller, DLC was closer in length producing contours that were on average
only 2% longer. The slightly poorer performance of ResNet101 compared with ResNet50
may be due to overtraining or variance in performance vs. number of training iterations
(see Appendix B).

Table 5 shows the mean root mean square error scores across all keypoints with a
confidence greater than 0.6 (60%). For example, if a tongue tip keypoint is obscured by the
mandible shadow, then the network might generate a low confidence in its position and
this point would be ignored. Using MobileNetV2 with 520 training samples as a baseline,
the RMSE pixel accuracy is shown to decrease by up to 3.5% when less training data are
used and increase by up to 3% when using a ResNet encoder. Interestingly ResNets are less
accurate when all keypoints are considered but more accurate when unconfident points are
ignored. EfficientNetB6 performed poorly, perhaps because the amount of training data
were insufficient for such a large encoder network.

Table 5. Root mean square error scores on test set and times for training.

Network
RMSE

Test (p > 0.6) Pixels
Train Time 1 0.8

Million Iterations
Analyse Time 1

Frames/s

DLC (MobileNetV2_1.0) 6.15 7.5 h 190
DLC (MobileNetV2_1.0) 6.17 7.5 h 190
DLC (MobileNetV2_1.0) 75% 6.28 7.5 h 190
DLC (MobileNetV2_1.0) 50% 6.39 7.5 h 190
DLC (MobileNetV2_1.0) 25% 6.38 7.5 h 190
DLC (ResNet50) 6.07 16 h 100
DLC (ResNet101) 5.99 30 h 46
DLC (EfficientNet b6) 11.55 48 h 14

1 Time measured using a GTX 1060 GPU (slower than the GPU used for timings in Table 2).

Figure 6 shows two frames evaluated within DLC. Image (a) shows that, although the
11 tongue keypoints hug the tongue surface, producing a low MSD value, they sometimes
do not match the hand-labelled locations along that surface. This leads to RMSE scores of
6 pixels (~3 mm) compared to only 1 mm for MSD. Figures 7 and 8 show how the overall
results in Table 4 break down across test speakers. Speakers 01F_BL1 and PB both have
very poor image quality, with DLC ignoring keypoints in some frames, resulting in shorter
length estimates.

Figure 6. (a) Shows points estimated to lie on the tongue surface but distributed differently to
the hand labels; (b) an example where the positions are estimated accurately. ‘+’ indicates the
estimated position.
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Figure 7. Mean sum of distances (MSDs) between hand-labelled randomly selected frames (40 frames
for each speaker) and each of the assessed methods (DLC using MobileNetV2_1.0 encoder).

Figure 8. Relative length distance between hand contoured randomly selected frames (40 frames for
each participant) and each of the assessed methods (DLC using MobileNetV2_1.0 encoder).

Figure 9 shows plots of x-axis = MSD vs. y-axis = %length difference for every test
frame that generate the overall results in Table 4. An ideal estimator would have all points
at (0,0) (see Appendix A for why an MSD of 0.0 is unlikely). Of the three previously
reported estimators, SLURP is the most robust when MSD and length are considered. The
tighter cluster for DLC more closely matches the inter-labeller plot.
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Figure 9. MSD vs. %length difference (hand-label estimator) for SLURP, MTracker, DeepEdge, DLC
MobileNetV2, DLC ResNet50, and second labeller.

Figures 10–12 show every fifth hand-labelled test frame for the speakers 17ms (from the
TaL corpus), 03F_BL1 (from the UltraSuite UXSSD corpus) and DF (from the UltraSpeech
corpus). SLURP (green) has pretrained shape models, which restrict the shape of the
contour. In Figure 10, a plausible tongue shape does not always match the underlying data.
The flick upwards at the root of the tongue in Figure 11 may be as a result of how SLURP’s
shape model was trained. MTracker (yellow) fits the tongue surface quite well, but because
the length is controlled by a 50% confidence threshold, it very often omits the more difficult
tip and root sections of the tongue contour. When we raised the threshold, MTracker
performed very poorly in these regions. DeepEdge (pink) tended to underestimate the
length. The option to postprocess by applying EdgeTrak to the neural net output produced
poorer results, and so is not reported here. DLC ResNet50 (cyan) matches the hand-labelled
contour (blue) so well that, in many frames, it sits directly on top. Disagreements mainly
occur at the root where the hand-labelled contour is often speculative.
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Figure 10. Speaker TaL17ms; blue—hand-label; green—SLURP; yellow—MTracker; pink—DeepEdge;
cyan—DLC_ResNet50.

Figure 11. Speaker UXSSD03F; blue—hand-label; green—SLURP; yellow—MTracker; pink—
DeepEdge; cyan—DLC_ResNet50.
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Figure 12. Speaker UltraSpeechDF; blue—hand-label; green—SLURP; yellow—MTracker; pink—
DeepEdge; Cyan—DLC_ResNet50.

4.2. Ultrasound-EMA Point Tracking

The splines were scaled in mm and consisted of the 11 tongue-surface keypoints. The
TT1, TBl1, and TD1 keypoints were selected as being close to the positions of the three
EMA sensors on the tip blade and dorsum, respectively. The bite plane [38] was recorded
in both the EMA and ultrasound data (see Figure 13) and both sets of data were rotated so
that the bite plane formed the x-axis.

Figure 13. Image of the tongue pressed against a bite-plate and a green fiducial line superimposed.
All coordinates were rotated so that the green line formed the horizontal axis.

Figure 14 shows the comparison of x and y EMA sensor positions (red) with the
positions estimated by DLC ResNet50 (black) as the phrase “She said bead clearly” is
spoken. It is apparent that there is very little correlation in the x-axis, while there is a
modest correlation in the y-axis.
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Figure 14. The phrase ‘She said “bead” clearly’ showing x and y position against time for the tongue
tip (TT), blade (TBl), and dorsum TD. Red—EMA sensor; black—DLC estimated position. The y-axis
has no units.

Figure 15 plots, each EMA coordinate vs. the corresponding DLC estimated the
coordinate for every ultrasonic frame of the five simultaneous EMA/ultrasound recordings.
Again, correlation is only good for the y-coordinates of the tip and blade. Table 6 shows
that the Pearson correlation coefficients calculated across all ultrasound frames for the five
recordings confirm the visual findings.

Table 6. Pearson correlation values for each sensor coordinate calculated over the five recordings.

Sensor Coordinate Pearson Correlation Coefficient

Tongue tip x 0.37
Tongue tip y 0.88
Tongue blade x 0.39
Tongue blade y 0.93
Tongue dorsum x −0.03
Tongue dorsum y 0.44
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Figure 15. EMA coordinate vs. DLC estimated coordinate plotted for every ultrasonic frame of the 5 si-
multaneous EMA/ultrasound recordings. TT—tongue tip; TBl—tongue blade; TD—tongue dorsum.

4.3. Camera Lip Tracking

Table 7 shows RMSE scores for all lip keypoints. Unexpectedly, ResNet50 does not
significantly outperform MobileNetV2. It may be that although experiments on the ultra-
sound images showed that 260 frames were adequate for good MobileNetV2 performance,
the 207 training frames used here were insufficient for ResNet50 to reach its full potential.
We used fewer training frames because the training set was homogeneous as each speaker
was recorded under identical conditions.

Table 7. Root mean square error (average for all lip keypoints).

Network
RMSE

Test (p > 0.6) Pixels

DLC (MobileNetV2_1.0) 3.79
DLC (ResNet50) 3.74
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Table 8 shows a comparison of MSD for upper and lower lips, lip aperture and lip
width for the two DLC encoders and the second labeller. As with RMSE, these perfor-
mance indicators reveal that unlike for ultrasound images, DLC does not quite match the
inter-labeller lip performance. More training data might improve the performance. Lip
contouring does not follow a bright edge. Indeed, the lower lip contour labelling criterion
was to mark where it would meet the upper lip rather than the visible boundary of the lip
and oral cavity. As shown by the smaller average area estimates, DLC tends to mark this
visible boundary of the lips and oral cavity. This is also apparent in the labelled images
shown in Figures 16–18. Estimation of the commissures and, therefore, of the width of the
mouth is, however, as accurate as the inter-labeller score.

Table 8. MSD, aperture difference, and width difference comparing hand labels to DLC (Mo-
bileNetV2_1.0).

Lip Measure
Inter Labeller

Mean/s.d./Median

DLC MobileNetV2_1.0
Mean/s.d./Median

(p Value) 1

DLC ResNet50
Mean/s.d./Median

(p Value)

MSD upper lip (mm) 0.41/0.23/0.36 0.59/0.29/0.54 (<0.001) 0.59/0.40/0.47 (=0.001)
MSD lower lip (mm) 0.73/0.71/0.55 0.86/0.75/0.64 (0.17) 0.82/0.67/0.64 (0.65)
Lip aperture (mm2) 4.6/54/6.2 −23/61/−10 −19/48/−11
Lip width (mm) −0.1/3.6/-0.5 0.8/2.4/0.7 −0.2/3.7/0.4

1 Two tailed t-test assuming unequal variance with reference to the MSD data generated by the DLC inter-labeller
distribution. Not applicable to aperture and width.

Figure 16. Speaker 25fs; blue—hand-label; red—MobileNetV2; cyan—ResNet50.

Figure 17. Speaker 12me; blue—hand-label; red—MobileNetV2; cyan—ResNet50.
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Figure 18. Speaker 17ms; blue—hand-label; red—MobileNetV2; cyan—ResNet50.

Figure 19 shows the MSD values for lower and upper lips, comparing DLC Mo-
bileNetV2, DLC ResNet50, and inter-labeller. Of note, ResNet50 improves the estimates of
speaker 12me, but it performs more poorly on speaker 17ms (their lips are partially obscured
by a moustache). Example frames from these two speakers are shown in Figures 17 and 18,
respectively. MobileNetV2 estimates the lower lip closer to the lip edge for speaker 12me
than the labeller. For speaker 17ms, ResNet50 can be seen to perform very poorly and with
low confidence.

 

Figure 19. Mean sum of distances (MSDs) between hand-labelled randomly selected frames (40 frames
for each speaker) and DLC using MobileNetV2_1.0 and ResNet50 encoders. Upper lip and lower lip
shown separately.

Figures 20 and 21 show the lip aperture and width respectively, comparing DLC
MobileNetV2, DLC ResNet50 and inter-labeller for each speaker. As can be observed in
Figure 19, ResNet50 had trouble identifying the lip commissures for speaker 17ms, but
MobileNetV2 did surprisingly well. These figures also show that the second human labeller
had trouble following the instructions for the positioning of the lower lip boundary for
speakers 07me and 12me. They also overestimated the width in speaker 12me, where
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whiskers obscured the commissure positions. High Pearson correlation values of 0.95 for
hand-labelled vs. DLC lip aperture and 0.89 for hand-labelled vs. DLC lip width were
recorded for DLC MobileNetV2.

Figure 20. Difference in lip area between hand-labelled randomly selected frames (40 frames for each
speaker) and DLC MobileNetV2_1.0, DLC ResNet50 and a second hand-labeller.

Figure 21. Difference in lip width between hand-labelled randomly selected frames (40 frames for
each speaker) and DLC MobileNetV2_1.0, DLC ResNet50, and a second hand-labeller.

5. Discussion

In this study, we investigated an open tool for pose estimation applied to speech
articulator image data. By leveraging existing networks pretrained on general object
recognition and human body pose estimation, relatively small amounts of speech articulator
training data result in a model capable of achieving human-level accuracy on unseen data.
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In a field dominated by segmentation and edge-detection methods, we show the following
for the first time:

• Pose estimation is capable of learning how to label features that do not necessarily
correspond to edges.

• Pose estimation can estimate feature positions to the same level of accuracy as a
human labeller.

The hand-labels used here, as in similar studies, were subjectively determined. How-
ever, labelling, adhering to the prescribed guidance (see Section 3.1.3), could be learnt by
both another human and the DLC network equally well. From this, we can be encouraged
that if a more principled ground truth were to be established, perhaps by mapping points
from MRI or EMA onto the ultrasound images, then that ground truth would be learnt.

It is possible that the performance of SLURP, MTracker, and DeepEdge could be im-
proved if trained on the same data as DLC. However, Zhu et al. [11] test MTracker on two
of the test sets used here; namely, the Ultrax Child corpus and the French UltraSpeech
corpus. Looking at Figures 7 and 8, speakers from those datasets (02TD1M, 05TD1M,
07TD1F, 08TD1F, 09TD1, 11TD1F, TH, DF, PB) do not show broadly better performance
by MTracker. Conversely, the UltraSpeech corpus is not represented in the DLC training
data and Figures 7 and 8 do not show worse performance by DLC on TH, DF, and PB
than on other speakers. Neither DeepEdge nor MTracker make a training package publicly
available. If users could train these models on their data, it is questionable whether they
would choose to hand-label the 2000–35,000 frames needed to train these networks. By
contrast, the DLC model trained in this study appears to generalise well. DLC includes a
simple training package and the training data used in this study is available online. Thus,
if the model did perform poorly on a user’s dataset, a few (<100) hand-labelled frames
from that dataset could be added to the existing training data and the model retrained. The
small number of images required for training also permits time for more careful, consistent,
and expert labelling.

Outside the scope of this study, DeepLabCut can also estimate the position of the
hyoid, and jaw if these features lie within the image. These are point structures rather than
edges and cannot easily be estimated by segmentation or edge detection algorithms.

Where speed is a consideration, DLC MobileNetV2 and ResNet50 perform faster
(with a GPU) than real time even with ultrasound frame rates of 119 fps. DLC could
therefore perform tongue contour estimation on live ultrasound and lip images. Real-time
performance is important for live lipreading or visual feedback of tongue for speech therapy.
For offline analysis, DLC MobileNetV2 performs at 7 fps using a CPU and can process a
batch of recordings at this rate. It does not require manual intervention for each recording
so can be left to run overnight if necessary.

DeepLabCut analyses each frame independently. No frame-to-frame continuity is
applied. Given that it tracks so well, the absence of temporal continuity constraints can
be seen as an advantage because problems of “drift” in contour position cannot occur.
Frame-to-frame jitter in keypoint position can be filtered out in post-processing if the frame
rate is significantly faster than the articulator movement.

Pose estimation offers the possibility of tracking keypoint positions. Whether it is
possible to track points on the tongue remains an open question. Results from our pilot
investigation comparing the EMA sensor position to DLC estimates, and high RMSE values
(~3 mm) w.r.t. MSD values (~1 mm), both indicated poor estimation of the sensor position
along the tongue surface. This is likely due, in part, to inconsistency of training keypoint
placement by the human labeller, despite an effort in this study to try to label as if the
keypoints were attached to a specific flesh point. A further multi-speaker study where
simultaneous EMA and ultrasound is used to train and to evaluate the estimation of the
sensor positions is required.

Edge tracked partial tongue contours provide no indication of which part of the
contour corresponds to root, body, or tip. This has dictated what kind of further analysis
can be performed on estimated lip and tongue contours. The intersection of the tongue
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contour with a fixed measurement axis is often used to assess raising or lowering of a
part of the tongue. Measuring tongue tip movement in this way runs into problems when
the tip is retracted, and the contour no longer crosses the axis. Pose estimation opens the
possibility of measuring the contraction of the root, body, dorsum, and blade with respect
to the anatomically defined position of the short tendon where bundles of the genioglossus
muscle attach to the mandible (see Figure 2). This provides a measure independent of probe
rotation. Lip rounding can be identified not only using the overall width and aperture
measures but also the relative height of the midpoints compared to the parasagittal points.
With reference to Figure 5, a measure for lip rounding can be formulated as:

(abs (C − D) − 0.5 (abs (E − F) + abs (G − H))) / abs (A − B)

Pose estimation has recently been applied to sustained speech articulations recorded
using MRI of the vocal tract [39]. A total of 256 × 256-pixel images with 1 pixel/mm
resolution were analysed and RMSE accuracy results of 3.6 mm reported. These results are
similar to the RMSE scores reported here for ultrasound. Beyond the scope of the current
study, we piloted articulatory keypoint estimation using dynamic MRI of the vocal tract
taken from a public multi-speaker dataset [40]. The data consisted of 84 × 84-pixel images
(83 Hz) and perhaps because of the low spatial resolution, the method was less successful.
A larger amount of training data were perhaps required, and this would be something to
be investigated further.

DeepLabCut provides a package for estimating 3D positions using multicamera data
and could be applied to form a richer feature set for lip movement. A side-facing camera
would capture lip protrusion information. DeepLabCut could also be investigated as a
means for tracking other expressive facial features, such as eyebrows, or for monitoring
head movement. DeepLabCut also provides a package to run on a live video stream and
work is underway to implement this for live ultrasound input.

In summary, the combination of transfer learning and pose estimation, evaluated
here using DeepLabCut, provides a ground-breaking level of efficiency, practicality, and
accuracy when applied to feature labelling of speech articulatory image data. The models
generated by this study have been made available in Supplementary Materials for use and
further evaluation by other research groups.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s22031133/s1. Videos of all test recordings with DLC MobileNetV2
contour estimates superimposed; an AAA project freely accessible by downloading the AAA software
where all of the estimation methods can be compared.
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Appendix A

The mean sum of distances (MSDs) between two contours A and B each consisting of
n equally spaced x/y coordinates is defined by Jaumard-Hakoun et al. [15] as:

MSD(A, B) =
(
∑n

i=1 minj(‖Bi − Aj‖+ ∑n
j=1 mini(‖Ai − Bj‖

)
/2n

The MSD first considers each defining x/y coordinate of contour A and its distance
to the closest point on contour B, and then considers each point along contour B and its
distance to the closest point on contour A. It then averages the resulting 2n distances. Using
this formulation, the two sums in the MSD are considerably different in magnitude when
the length of one contour is significantly different from the length of the other.

In this paper we modified the above formula so that the MSD is unaffected by differ-
ence in length between the two contours. While measuring distances between the first point
on contour A and all points on contour B only the distance to the closest point on contour B
is accumulated and n is incremented only for this distance. The same process applies to the
last point on contour A. Then the process is repeated when taking points along contour B
and comparing to contour A. In this way, distances corresponding to disparate endpoints
of the contours are not counted. If contour B is very much shorter than contour A but the
two contours match exactly, then the MSD score will be close to zero.

Note: the mean tongue contour length is 86 mm. For this paper n = 100 so the distance
between contour vertices is on average 0.86 mm. If two contours sit perfectly on top of each
other but the vertices are offset by 0.43 mm then the MSD score would be 0.43 mm, not
zero. Our MSD results show very few image frames where the score was less than 0.4 mm.

Appendix B

Typical training loss and corresponding root mean square error (RMSE) for ultrasound
keypoint estimation showing hand-labelled data vs. test data.

Figure A1. Training iteration loss.

197



Sensors 2022, 22, 1133

Figure A2. RMSE for ultrasound test set (excludes points with confidence less than 0.6).
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Abstract: The task of converting text input into video content is becoming an important topic for
synthetic media generation. Several methods have been proposed with some of them reaching close-
to-natural performances in constrained tasks. In this paper, we tackle a subissue of the text-to-video
generation problem, by converting the text into lip landmarks. However, we do this using a modular,
controllable system architecture and evaluate each of its individual components. Our system, entitled
FlexLip, is split into two separate modules: text-to-speech and speech-to-lip, both having underlying
controllable deep neural network architectures. This modularity enables the easy replacement of each
of its components, while also ensuring the fast adaptation to new speaker identities by disentangling
or projecting the input features. We show that by using as little as 20 min of data for the audio
generation component, and as little as 5 min for the speech-to-lip component, the objective measures
of the generated lip landmarks are comparable with those obtained when using a larger set of training
samples. We also introduce a series of objective evaluation measures over the complete flow of our
system by taking into consideration several aspects of the data and system configuration. These
aspects pertain to the quality and amount of training data, the use of pretrained models, and the data
contained therein, as well as the identity of the target speaker; with regard to the latter, we show that
we can perform zero-shot lip adaptation to an unseen identity by simply updating the shape of the
lips in our model.

Keywords: text-to-lip; speech synthesis; text-to-speech; speech-to-lip; zero-shot adaptation; generative
models; deep learning; artificial intelligence; objective measures

1. Introduction

Over the past few years, our society has constantly been increasing the amount of
multimedia output. From online radio and television, to YouTube video bloggers and the
popular Facebook Lives, professionals and nonexperts alike generate multimedia content
at a tremendous pace. However, the costs and effort of generating high-quality multimedia
content become increasingly significant, and many parties are already looking into deep
learning for solutions to lessen the burden of pre- and postproduction, as well as end-to-end
media generation. In the area of spoken content generation, text-to-speech (TTS) systems
have already been, to a large extent, adopted by semiprofessional content creators, with the
most-known platform for providing this service to its users being TikTok. However, when
tackling the complete text-to-video synthesis, the solutions and quality of the available
systems are not at the same level of integration into the media platforms. Even though
there are numerous applications that it could address, such as anchor news delivery, video
podcasts, gaming characters generation, and so on.

In this context, our work focuses on the task of rendering a video of a person delivering
a spoken content starting from a given text, and optionally, a selected identity that can differ
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from the available training data. We decompose this complex task into a three module
pipeline—(i) text-to-speech, (ii) speech-to-keypoints, and (iii) keypoints-to-video—and set
out to derive a controllable and objectively measurable architecture for it. However, our
work does not focus on the complete head movement and generation of facial characteristics,
but rather it limits its scope to the generation of lip landmarks starting from an input text.
As a result, we only tackle the first two modules of the complete pipeline described before
and show an overview of our system in Figure 1. One reason for why we are not addressing
the final module is the fact that up to this moment, there are no generally agreed upon
objective measures for it, and most papers publish only perceptual, subjective evaluations.

Another important aspect of our work is the fact that most of the previous works
address only the second module, i.e., speech-to-lips [1,2]. Having a controllable, easily
adaptable TTS system integrated into the flow of the system can enable the end-user to
control all aspects of the media generation system, including the spoken content and
identity. As shown in Figure 1, the proposed architecture encompasses the ability to select
various speech identities, alter the prosodic patterns, while also being able to control or
disentangle the identity of the generated lips from the spoken one. For example, we could
generate speech with the voice of former president Obam, using the lip shape of former
president Trump and the face of former president Bush.

We can summarise the main contributions of our paper as follows:

• We propose a novel text-to-lips generation architecture, entitled FlexLip;
• We design its architecture as a flexible and highly controllable one;
• We analyse the effect of using synthesised speech as opposed to natural recordings;
• We propose a zero-shot adaptation of the speech-to-lips component;
• We show that by using as little as 20 min of spoken data, we can control the target

speaker’s identity;
• We also show that the controllability of the architecture enables us to perform more

accurate objective measures of its performance.

The paper is organised as follows: Section 2 introduces the works related to our
proposed method, with the method being described in Section 3. The experimental setup
and results are presented in Sections 4 and 5, and their conclusions are drawn in Section 6.

Hello
everybody!

text t audio a lips l

text-to-
speech

speech-
to-lips

{F0, Δ}
speech params

lips shape

Figure 1. Schematic illustration of the proposed FlexLip pipeline. Our approach allows for a high
degree of controllability by explicitly passing through the audio modality and permitting to specify
speech parameters (fundamental frequency F0, and phoneme durations Δ) and lips shape (as the
mean shape upon which the learnt displacements are applied).

2. Related Work

The task of generating video (i.e., a talking-head video) starting from speech or text
has recently gained interest in the research community next to other tasks converting one
modality to another, such as image-to-text or video-to-text, also called image or video
captioning. For addressing the transformation of text into video output, various pipelines
and different types of latent spaces were proposed. All studies that approach text-to-video
conversion use an initial text-to-speech system to generate speech or speech features [3,4].
When going from speech to video, some studies argue that having an intermediate repre-
sentation of the face or mouth can heighten the performance of the system [3–5], while in
other cases, the authors approach the issue in an end-to-end manner, going from speech
directly to video [1,2]. There are also studies that focus solely on the speech-to-keypoints
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task [6,7], as this is regarded as being more difficult than the subsequent keypoints-to-
video task, as there is no direct, one-to-one mapping from the text input to the individual
video frames. One of the first attempts to create a complete text-to-video pipeline was
introduced in [8]. A simple idea was explored, whereby mouth images extracted from
a video sequence were reordered to match a new, unseen phoneme sequence derived
from the input text. In following works, text-to-video synthesis was approached as an
extension of text-to-speech synthesis. Concatenative speech synthesis was extended to map
characters to visemes, defined as static mouth shapes [9] or as temporal movements of
the visual speech articulators [10]. Appropriate visemes were chosen from a large dataset
for a particular speaker and morphed from one to the other in order to generate smooth
transitions between successive visemes. In a more recent work, Fried et al. [11] approached
text-to-video synthesis from a slightly different perspective by proposing a method to edit
an existing video in order to reflect a new text input. This method still relies on a viseme
search, concatenation, and blending. To generate mouth movements matching the edited
text, visemes present in other parts of the video were used.

Inspired by the application of face keypoints in video prediction, where the keypoints
guide the generation of future frames [12], most recent methods in text-to-video synthesis
use face or mouth keypoints as intermediate representations [3,4]. Zhang et al. [4] addressed
the task in two steps: (i) transforming the text into a sequence of keypoints (which the
authors denote as poses), using a dictionary of (phoneme, keypoints) pairs; (ii) using a GAN-
based architecture to generate video from interpolated phoneme poses. Simultaneously, the
text was transformed into speech by a text-to-speech synthesis system. Kumar et al. [3] were
the first to propose a sequence of fully trainable neural modules to address text-to-video
conversion in three main steps. First, a text-to-speech system was used for audio generation
starting from characters, not phonemes. A second network was then employed to generate
mouth region keypoints synchronised with the synthetic speech. Finally, a video generation
network produced video frames conditioned on the mouth region keypoints.

A couple of recent studies focused on parts of the complete text-to-video pipeline
performing video synthesis directly from speech features [1,2,5] or approached just the
speech-to-keypoints task [6,7]. In the video synthesis systems presented in [1,5], the
mapping between audio features and mouth shapes are learnt by recurrent or convolutional
neural networks. The audio input is paired with either mouth region keypoints [5] or with
images of the target face [1] and the lip-synced video is predicted by the network. The
approach for audio-to-video generation described in [2] is based on a neural network
that includes a latent 3D representation of the face. As the keypoint-based intermediate
representation seems to be a common choice in previous studies and also paves the way for
creating speaker-independent systems, Eskimez et al. [6] proposed an LSTM trained with
27 subjects to solve the task that is able to generalise to new subjects. Greenwood et al. [7]
generated full-face keypoints, as opposed to only mouth region keypoints, for two subjects
using a BiLSTM.

For the evaluation of video synthesis methods, both objective and subjective mea-
sures are employed. In the objective evaluation, various difference metrics are computed
between the real (ground-truth) and generated videos. Chen et al. [13] used the mean
squared error, the Frechet video distance, based on the distance between features of the
real and generated videos reported in [12]. Human evaluations are frequently used as
subjective measures to capture the visual quality of the generated videos [12,14]. In a very
recent paper, Aldeneh et al. [15] proposed a perceptual evaluation model that can be used
to automatically and accurately estimate the subjective perceptual score for a given lip
motion sequence.

With respect to text-to-speech synthesis (TTS), there are numerous neural architectures
that achieve close to natural synthetic speech quality. Further, if at the beginning of the
deep learning era for TTS the research was oriented towards full end-to-end systems going
from input characters to audio waveforms [16], in recent years, the focus shifted towards
flexible and controllable architectures [17–19]. This type of architecture enables several
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factors of the synthetic speech to be easily tuned during inference. This is the case for
the FastPitch architecture [18], in which the duration, energy, and pitch of the output
speech can be specified or copied from a different audio input. In the context of evaluating
text-to-lip models, being able to control the duration of the synthesised speech means that
the original phoneme durations of a natural speech sample can be replicated. This can
provide a better alignment between the keypoints predicted from natural and synthetic
input speech, and no substantial additional error is introduced by the alignment, making
the objective evaluation more accurate.

In this context, our work resembles relatively well the work of Kumar et al. [3], but
bears a few important distinctions. First and most importantly, our aim was to assess in a
thorough and objective manner the quality of each component of a text-to-video pipeline.
As such, we did not address the keypoints-to-video task, which is inherently a subjective
one. Different from Kumar et al. [3], who do not evaluate their system subjectively, nor
objectively, we carefully designed the text-to-keypoints pipeline to allow for objective
evaluation and performed the evaluation of each component independently and at the
system-level as well.

In terms of evaluation of generated lip movements, our work is, to the best of our
knowledge, the first one to evaluate objectively the output of the text-to-keypoints task.
Many works evaluate the quality of the generated sequence when the system is fed natural
speech [6,7,15], but none of these start with text as input. One of the problems is that most of
the neural-based TTS systems do not enable the exact control of the duration of the output;
therefore, there is no one-to-one correspondence between the ground-truth frames and the
synthesised ones. With respect to this, we believe that managing to objectively assess the
quality for the text-to-keypoints seen as a whole is one of the important contributions of
our work.

3. Text-to-Lip System Description

Our text-to-lip system is composed of two independent modules: a text-to-speech

synthesis system and a speech-to-lip one. This independence ensures a more controllable
setup and each module can be easily replaced. The following sections describe the two
modules and their training procedures, while also focusing on their controllability.

3.1. The Text-to-Speech Component

When generating lip movements from speech, the quality of the input speech is
essential. If the input contains natural speech recordings, they should also be high-quality.
Therefore, for our text-to-speech synthesis component (TTS), we selected one of the latest
deep-neural-based architectures, able to generate speech that is very close to the natural
one. The architecture is FastPitch [18], and aside from its high performance, it uses a
fast-inference parallel architecture, and enables the control of the pitch and duration of
the input phonemes. The latter feature facilitates the tweaking of the output such that the
speech-to-lip module is better fitted to the target speaker. FastPitch is based on bidirectional
Transformers, which make up the encoder and decoder sections of the network. Separate
paths are allocated for the pitch and duration prediction, as well as (if this is the case)
for a speaker embedding layer. The encoder predicts one Mel-spectrogram frame per
phoneme, which is then augmented with the pitch information, and upsampled according
to the duration predictor. The prediction is then passed through the decoder to obtain the
smoothed, complete Mel-spectrogram.

The Mel-spectrogram is then transformed into a waveform with the help of the Wave-
Glow neural vocoder [20]. WaveGlow uses a normalising flow-based architecture inspired
from Glow [21] and WaveNet [16], but eliminates the autoregressive nature of them. The
architecture uses a single network trained to maximise the likelihood of the data and, based
on its flow nature, enables the computation of the true distribution of the training data.

As high-quality TTS systems commonly require large amounts of training data, we also
adopt a fine-tuning procedure for the FastPitch model. Two pretrained models were used:
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a single speaker one, and a multispeaker one for which the network was not conditioned on
the speaker identity. These models were then adapted to the target speaker using various
amounts of speech data, as described in Section 5.

3.2. The Speech-to-Lips Component

This subsection describes the speech-to-lips component, which takes as input an audio
of a person speaking and outputs the keypoints (the moving lips) that correspond to the
spoken words. Since the task is a sequence-to-sequence one (we want to map a sequence
of audio frames to a sequence of lip keypoints), we opt to implement the speech-to-lips
module as a Transformer network, which has shown remarkable performance on many
related tasks. The Transformer has two main components: an encoder module that uses
self-attention layers to pool the input audio, and a decoder module that uses attention
layers to aggregate information from both the encoded audio and previously generated
lips. The decoder predicts the lips keypoints at each time step in an autoregressive manner,
and is exposed to the entire input audio sequence.

Transferring representations. Given that the network processes audio streams, we
decided to reuse the encoder architecture and its pretrained weights from a state-of-the-art
speech recognition system. As such, we evaluate two variants of the network: one in
which the encoder is frozen to the pretrained weights and we train only the decoder part; a
second in which we train both components, the encoder and decoder. Note that training
the decoder is mandatory because the speech recognition decoder is designed to output a
sequence of characters, while in our task, the output is a sequence of keypoints.

Lips keypoints preprocessing. Video recordings of people talking involve variations
in terms of their position, size, and head pose. Since this information affects the lips’ coor-
dinates but is irrelevant to the task at hand, we remove these variations from our training
data by transforming the absolute coordinates of the lips into a normalised space. More
precisely, we apply the following three transformations to the extracted face landmarks:
translate such that they are centred on the lips; rotate such that the line connecting the eyes
is horizontal; scale such that the distance between the eyes is constant (we set an arbitrary
value of five).

A second preprocessing step consists in projecting the normalised lip coordinates
(40 coordinates of the lips: 20 keypoints with the x and y coordinates each) to a lower-
dimensional manifold using principal component analysis (PCA); we denote the principal
components by v1, . . . , vD. We use an eight-dimensional space for projection (D = 8),
which captures around 97% of the variation of the training data. Figure 2 illustrates the
axes of variation captured by the selected principal components. The reconstruction for
component i and magnitude s is given by μ + ∑ svi, where μ is the mean lip shape and the
scaling factor s ranges in {−1.5, 1.1, . . . , 1.5}. We observe that the principal components
capture the following variations in the data: open versus closed mouth is modelled by the
first and fifth components; 3D rotations (yaw, pitch, roll) are captured by the third (yaw),
fourth (pitch), and sixth (roll) components; lip thickness varies across the second, fifth,
seventh, and eight components.

To sum up, our method maps a stream of audio to a list of 8D points, which correspond
to the PCA coefficients α. Note that both preprocessing steps are invertible; so, at test time,
if we want to overlay the predicted lips on a given subject, we first reconstruct the lips l

based on the predicted PCA coefficients

l = μ + ∑ αivi, (1)

and then we reproject the normalised coordinates in the absolute coordinate space by
inverting the scaling, rotation, and translation transforms.

Zero-shot speaker adaptation. When predicting the lip movements of an unseen
speaker, we have observed that the lip dynamics are accurate, but unsurprisingly, their
shape resembles the one of the trained subject. We propose a method to adapt the lip shape
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to the one of the new person by replacing the lips mean in the PCA reconstruction with the
lips of the target speaker:

l′ = μ′ + ∑ αivi, (2)

where the coefficients α are obtained in the same way as before, but the mean μ′ is updated,
and is computed from the target, unseen speaker. This operation is inexpensive (as the
mean can be estimated on a few frames) and does not require retraining. Figure 3 shows the
lip shapes of three speakers and how they vary along the first principal component. Even if
the principal components were estimated on data from the first speaker, these qualitative
results suggest that the variations obtained for new speakers are plausible.

Figure 2. Axes of lips variation. On each row, we show the variation of the lips captured by one of
the top eight principal components. The reconstructions are obtained by adding the scaled principal
component to the mean lip shape. The scaling factor ranges from −1.5 to 1.5, as indicated on the top
of the columns.

Figure 3. Lip shapes. The middle column, denoted by μ, represents the shapes of the lips for three
speakers (one along each row). The columns show the variation of the shapes along the first principal
component v; more precisely, the lips in row r and column c are computed as μr + ∑ scv, with μr

being the (mean) lip shape and sc a scaling factor that ranges in {−1.5, 1.1, . . . , 1.5}. The PCA was
fitted on data from the first speaker.
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4. Experimental Setup

This section presents the datasets used for training and evaluating the proposed
methods (Section 4.1) and implementation details regarding the two components of our
system (Section 4.2).

4.1. Datasets

In order to evaluate a text-to-lip system, we need a three-modality dataset: video,
audio, and text. However, there are very few large, freely available datasets that ac-
complish this requirement. In this context, we decided to build our own dataset com-
prising high-quality data available on YouTube. For the audio part, we also relied on
well-established speech datasets. All the datasets used in our experiments are described in
the following subsections.

4.1.1. Obama Dataset

The former president of the United States, Barack Obama, has many videos on YouTube
in which he addresses the nation in a systematic fashion: front-facing the camera and
speaking clearly, with most of the videos being recorded in his office. From this series of
weekly addresses, we downloaded a set of 301 videos, which were originally introduced
by Suwajanakorn et al. [5] and subsequently used by Kumar et al. [3]. The YouTube
videos come along with both manual and automatically generated closed captions. While
the automatic captions are better aligned to the speech than the manual captions, the
latter are more accurate and also include punctuation. The punctuation is essential for
splitting the audio into sentence-length chunks, required by the TTS system. We split
the audio into sentences based on the end-of-sentence punctuation marks encountered in
the manual captions. This procedure leads to a set of around 10 k audio–video chunks
and their approximate transcripts. The duration of the chunks is between 1 and 20 s long
with transcripts between 15 to 500 characters. Very short and very long utterances were
discarded, as the TTS architecture has problems attending to short sequences, as well audio
sequences longer than 30 s. Some text examples are listed below:

Under my Administration, we’re producing more oil than at any other time in the last
eight years.

It had the support of 52 Democrats and 22 Republicans.

It’s our job as citizens to make sure we keep pushing this country we love toward our
most cherished ideals—that all of us are created equal, and all of us deserve an equal shot.

The total duration of the data is around 17 h, with most of the videos having a
resolution of 720p and a frame rate of 30 frames per second. The audio is sampled at
44.1 kHz and has a bit depth of 16. To speed up the preprocessing (in particular the face
landmark extraction), we downscaled the videos to 360p; for the speech-to-lip and TTS
systems training, we downsampled the audio data to 22 kHz and maintain the 16 bps.
Although the videos are recorded in quiet conditions, some reverberation and background
noise are present; therefore, we preprocessed the audio through the Postfish tool using
the default parameters (https://github.com/ePirat/Postfish (accessed on 15 May 2022)).
Volume normalisation and silence trimming were performed using the Librosa tool (https:
//librosa.org/doc/latest/index.html (accessed on 15 May 2022)).

The dataset was then split into train–validation–test subsets at video-level, meaning
there are no samples from a video that are independently assigned to the different splits. The
test set was composed of 500 utterance-length samples, randomly selected from 30 videos,
and was manually checked for alignment and transcription errors.

Text processing and data selection. Although the manual transcripts seemed to
be of very high-quality, combined with the splitting algorithm, we noticed that the cor-
respondence between the audio and the text was not completely accurate. Therefore,
we performed a series of postprocessing steps. The first step included the normalisa-
tion of all nonalphabetic symbols present in the captions, such as numbers, currency
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symbols, and so on. A first pass was performed using the Num2Words Python pack-
age (https://pypi.org/project/num2words/ (accessed on 15 May 2022)); then, the entire
dataset was manually checked for nonalphabetic symbols. The second step involved the
use of an automatic speech recognition (ASR) system [22] to transcribe the audio chunks.
A word error rate (WER) measure was computed between the ASR results and the closed
captions. High WER utterances were discarded. Even with a highly accurate ASR system,
errors can still propagate to the transcripts. As a result, we ran an additional quality check
based on the TTS system’s loss. We used an intermediate checkpoint trained on the entire
Obama data, set the batch size to 1, froze the layers, and ran the low WER utterances
through the architecture. Audio chunks exhibiting a low loss measure were considered as
having the correct transcripts, as the TTS system’s loss function includes the alignment of
audio-to-text. From this step, a set of 3281 samples were retained. In order to extend the
dataset as much as possible, we also manually checked 1480 samples and added them to
the training set. The total duration of the final audio dataset is 8 h.

Due to the rather complex grapheme-to-phoneme rules present in English, which
can make it hard for a TTS system to learn the appropriate alignment and pronunciation,
we performed the phonetic transcription of the text prompts associated with the audio
data. The front-end tool of the Festival TTS system [23] was used to generate the phonetic
representations of the transcripts.

4.1.2. Trump Dataset

To test the capabilities of our speech-to-lip system to adapt to unseen speakers, we
collected a small dataset of a different speaker: the former president, Donald Trump. We
manually inspected multiple videos of him found on YouTube and finally selected two
that satisfy the following criteria: are reasonably long; he is the single speaker appearing;
his head is mostly forward-facing, without extreme pose variations. The first video (https:
//www.youtube.com/watch?v=KJTlo4bQL5c (accessed on 15 May 2022)) is around one
hour long and represents his speech at the Conservative Political Action Conference; this
video was used for training. The second video (https://www.youtube.com/watch?v=
xrPZBTNjX_o (accessed on 15 May 2022)) is almost ten minutes long and represents his
presidential address on the COVID-19 pandemic; this video was used for testing. As for
the Obama dataset, we downscaled the video to a resolution of 360p. As we did not use
this speaker for the text-to-speech component, we did not extract the textual component of
the data.

4.1.3. Datasets for TTS and ASR Models’ Pretraining

Both text-to-speech and speech-to-lip components use pretrained models and fine-tuning
towards the target speaker. The following datasets were used for the model pretraining.

LibriSpeech is a corpus of approximately 1000 h of 16-kHz, multispeaker, read English
speech derived from read audiobooks of the LibriVox project, and has been carefully
segmented and aligned [24]. LibriSpeech was used in our experiments to pretrain the
ASR-based feature extractor in the speech-to-lip module.

LibriTTS [25] is derived from the LibriSpeech corpus and includes multispeaker En-
glish data of approximately 585 h sampled at a 24-kHz sampling rate. The LibriTTS corpus
is designed for TTS research and has normalised text transcripts, as well as an automatic se-
lection of samples that do not contain severe background noise and reverberation. LJSpeech
dataset [26] is a high-quality single female speaker dataset containing around 24 h of read
speech audio clips. The data are transcribed and aligned at utterance level. LibriTTS and
LJSpeech were used to pretrain the TTS models.

4.2. Implementation Details

Text-to-speech. For the TTS models’ training process, we focused on the Obama
dataset. In our initial experiments, we found that training a system only on the Obama
data yields subpar results in terms of naturalness of the synthetic output (see Table 1,
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system id O-8). Therefore, we decided to pretrain two large models on the LJSpeech and
LibriTTS datasets, and to fine-tune them towards our target data. The models were trained
over 1000 epochs and use the phonetic transcription provided by the Festival tool. In the
LibriTTS model, although it contains multiple speakers, we did not condition the output on
the speaker id, but rather aimed at obtaining an eigen voicelike model. For this model, as the
data are recorded in semiprofessional environments, we also performed a dereverberation
preprocessing step. We can summarise the two pretrained models as follows:

• LJ-24h—trained on the 24 h of LJSpeech dataset recordings, which translate into
13,077 utterances;

• LT-47h—trained on a subset of 31,526 utterances (around 47 h belonging to 558 speakers)
from the LibriTTS dataset.

Starting from the phonetic transcription, dereverberation process, and pretrained
models, we carried on the training procedure for several TTS systems using the Obama
dataset. The systems pertain to the different pretrained models, the use of dereverberation
for the Obama samples, and the amount of data selected to perform fine-tuning. The list of
Obama TTS systems is presented in Table 1, along with their objective evaluation in terms
of word error rate (WER) and cosine similarity to the natural recordings. The fine-tuning
was run over the data for an additional 500 epochs.

Table 1. TTS models trained for the target speaker and the objective evaluation over the test set in
terms of WER and cosine similarity to the natural recordings. The dereverberation column refers to
the target speaker’s data. The cosine similarity for the Natural and Natural-dvb rows is computed
as an intradata measure by comparing random sample pairs from within the speech set. The arrows
in the table header indicate the direction of best performance for the respective measure. Boldface
numbers highlight the best results for the respective column.

Training Data Cosine

ID Duration (h) No. of Utts Dereverb Init. WER ↓ Similarity ↑
Natural 8 4761 no – 9.32 0.684
Natural-dvb 8 4761 yes – 9.22 0.683

O-8 8 4761 no – 14.72 0.673

LJ-8 8 4761 no LJ-24h 8.48 0.697
LT-8 8 4761 no LT-47h 7.31 0.709
LJ-8-dvb 8 4761 yes LJ-24h 11.45 0.723
LT-8-dvb 8 4761 yes LT-47h 11.42 0.683

LJ-1 1 545 no LJ-24h 10.50 0.690
LT-1 1 545 no LT-47h 8.76 0.690
LJ-1-dvb 1 545 yes LJ-24h 9.48 0.722
LT-1-dvb 1 545 yes LT-47h 8.64 0.713

LJ-0.3 0.3 175 no LJ-24h 12.98 0.679
LT-0.3 0.3 175 no LT-47h 9.68 0.677
LJ-0.3-dvb 0.3 175 yes LJ-24h 11.43 0.704
LT-0.3-dvb 0.3 175 yes LT-47h 9.08 0.681

Speech-to-lip. The input to the speech-to-lip network are Mel filterbank features
extracted from the audio files. The output consists of lips landmarks extracted automatically
from the corresponding video. Concretely, we used the dlib library [27] to extract facial
landmarks, which produced 68 landmarks for each frame; we keep those twenty landmarks
corresponding to the lips (indices 48–68). Occasionally, dlib detects zero or more than one
face (most of the time erroneously since there is a single face appearing in the video shots);
we deal with these exceptions as follows: if there is no face detected, we interpolate in time
based on the neighbouring faces; if there is more than one face detected, we keep the one
with the largest confidence. Next, we project the absolute coordinates into a normalised
space by translating, rotating, and scaling (translate to centre the lips, rotate to have the
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eye-line horizontal, scale to ensure that the distance between eyes is five pixels). Finally, the
lips are projected to a low-dimensional space using a principal component analysis (PCA)
model fitted on a subset of landmarks from the train split of the Obama dataset. We use the
top eight principal components, which capture about 97% of the total data variation.

When training the speech-to-lip network, in order to have balanced batches and
improve the speed, each video shot is split into eleven-second chunks with an overlap of
one second. At test time, if we are given an audio file longer than eleven seconds, we carry
out a similar procedure as for training: we split the audio file into eleven-second chunks
with a second overlap; predict the lips for each of the chunks separately; then, average out
the overlapping regions (the averaging operation is carried in the low-dimensional space
of the PCA).

The training is set to 100 epochs and the final model averages the weights of the top
ten best models on the validation set [28]. We use a warm-up learning scheduler, which
increases the learning rate linearly for 5000 steps up to 0.02 and then decreases it as a
function of 1/

√
s, where s is the step value. The batch size is set to 6 samples.

5. Experimental Results

This section presents quantitative results for the two components described in the pa-
per (the text-to-speech module, in Section 5.1, and the speech-to-lips module, in Section 5.2)
as well as their integration (in Section 5.3). We also provide qualitative samples corre-
sponding to these results at the following link: https://zevo-tech.com/humans/flexlip/
(accessed on 15 May 2022).

5.1. Objective Evaluation of the TTS Models

The quality of a TTS system in general pertains to its naturalness and intelligibility, as
well as speaker similarity. To evaluate the TTS systems, we analysed the objective measures
of word error rate (WER) and a speaker–encoder-based cosine similarity over the entire
Obama test set. These two measures have recently been found to have a high correlation
to the perceptual measures obtained in listening tests [29,30]. The WERs are extracted
based on the automatic transcripts provided by the SpeechBrain ASR system [22], while
the cosine similarity uses SpeechBrain’s speaker embedding network. Both the ASR and
the speaker embedding networks are based on an ECAPA-TDNN architecture [31]. For the
speaker similarity measure, we averaged the cosine similarity measure values between the
synthesised samples and their natural counterparts. To estimate the cosine similarity over
the natural samples, we employed an intradata evaluation and compared random pairs of
samples. This means that the linguistic content is different, and it can affect the estimation
of the speaker similarity, as these types of speaker embedding networks do not truly factor
out the spoken content and background conditions. The results are shown in Table 1. We
explore several different dimensions of the TTS system’s training procedure: (i) using only
the target speaker’s data (id: O-8) vs. using a pretrained model (ids: LT-* and LJ-*);
(ii) using dereverberation over the target data; (iii) number of training samples used from
the target speaker. We should point out the fact that the 1- and 0.3-hour subsets are selected
from the manually checked training set, and that the dereverberation refers to the target
speaker’s data, not the pretraining data. By inspecting the results, the first interesting
thing to notice is that the WER over the natural samples (id: Natural) is worse than the
best-performing system (id: LJ-8). However, during the manual check of the test set, we
noticed that some of the samples contained high background noise and reverberation. This
can definitely affect the performance of the ASR system. Although, even after applying
the dereverberation method over the natural samples (id: Natural-dvb), the results were
similar. We could explain this by the fact that the background noise is one of the major
causes of degradation, while for the TTS system, the different background conditions are,
in principle, averaged out within the model.

Dereverberation. Being also within the area of background conditions, the dereverber-
ation algorithm was employed as a measure to improve the quality of the output synthetic

210



Sensors 2022, 22, 4104

speech; the cosine similarity measures support this preprocessing step. All systems trained
with the dereverberated data exhibit higher cosine similarity measures with the natural
samples. On the other side, in terms of WER, it seems that only when using the manually
checked speech data does the dereverberation improves the overall results. When using all
the data available (ids: LJ-8 and LT-8), the results over the dereverberated data are not as
good as for the original dataset. The interpretation of these results can be based on the fact
that, although the full target speaker dataset may still contain some transcription errors and
various background noises, the high amount of available data is able to leverage the errors.
It is also true that, although the dereverberation algorithm ensures a better perceptual
quality of the audio samples, it may introduce signal-level artefacts that will interfere with
the model training step. When using a smaller amount of the target speaker’s data (i.e.,
20 min or 1 h), any improvement of the training data is directly transposed into the output
of the synthesis system, and the dereverberated versions of these systems perform better
than their non-dereverberated counterparts.

Pretrained models. With respect to the use of pretrained models, when using only the
target speaker’s data (id: O-8), the WER and cosine similarity results are less-performing
than any of the fine-tuned models. It also appears that, even though the complete 8-h
dataset from the target speaker may still contain alignment errors between the audio and
the transcript, these are not reflected in the overall results of the LJ-8 and LT-8 systems.
This concludes the fact that having large amounts of data can average out some of the
errors in the transcript. However, using only an eighth of the speech data (i.e., 1 h) can
nearly match the top-line results of our TTS systems (see system id LT-1). Another result of
our analysis is the fact that having multiple speakers in the pretrained model can provide a
better starting point for our target speaker adaptation—comparing LJ-* with LT-* systems
in terms of WER—and improve its intelligibility. However, it does not influence the speaker
similarity, where the results are rather similar.

Amount of training data. As a general conclusion, using as little as 20 min of tran-
scribed data can achieve similar results as the top-line systems. This means that in scenarios
where only limited data are available, given a pretrained multispeaker model, good-quality
TTS systems for the target speaker can still be obtained.

5.2. Evaluating the Speech-to-Lips System

This section presents an empirical evaluation of the speech-to-lips networks and
their variants. We measure the performance of the systems by mean squared error (MSE)
between the ground-truth lips and the predicted lips averaged across the number of
keypoints, frames, and video segments. Unless specified otherwise, the MSE is computed
in the normalised and low-dimensional space (eight-dimensional).

Transferring representations. Instead of training the speech-to-lip network from
scratch (from random initial weights), we incorporate learned audio representations into
the speech-to-lip module by transfer learning. We initialise the audio encoder from a
state-of-the-art ASR system and evaluate two variants: either keep the encoder frozen
or allow to update its weights together with the decoder’s. The results are presented in
Table 2. We observe that the best results are obtained when the audio encoder is initialised
from the ASR and is fine-tuned with the rest of the system. This approach has conceptual
advantages over the other two variants: compared with a fully random initialisation, it has
the benefit of reusing learnt information; compared with the frozen pretrained encoder, it
has the advantage of being more flexible.

Speaker adaptation and zero-shot adaptation. In the next set of experiments, we
investigate the best ways of reusing a pretrained speech-to-lip model for an unseen speaker.
We explore three adaptation strategies: (i) Applying the pretrained model “as is” on audio
data from the new speaker; (ii) Fine-tuning the pretrained model on a small amount of data
from the new speaker (we attempt with datasets of 5, 10, 20, and 40 min); (iii) performing
zero-shot adaptation by updating the PCA mean with the lip shape of the unseen speaker
(as described in Section 3.2).
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Table 2. Transferring representations. Evaluation of the speech-to-lip system in terms of the mean
squared error (MSE) on the Obama test set. We consider three combinations of encoding the audio
input in terms of initialisation (either random or from a pretrained automatic speech recognition
system) and whether we train this component or keep it frozen. The arrows in the table header
indicate the direction of best performance. Boldface numbers highlight the best results for the
respective column.

Encoder

Init. Train MSE ↓
random yes 0.130

from ASR frozen 0.132
from ASR yes 0.064

The impact of data. To understand how the amount of training data affects the speech-
to-lip model, we performed a systematic study in which we trained the model on varying
quantities of data: from the full training dataset (of 16 h) to smaller fractions (eight hours,
four hours, and so on until only 15 min). The subsampling of the training data was carried
at the video level, and not at the chunk level. We believe that this setup is more realistic,
as it emulates the scenario in which we have access only to a few videos. Note, however,
that this subsampling strategy might yield less-diverse training samples than subsampling
chunks from the entire training dataset. For these experiments, we adjusted the warm-up
cycle of the learning rate for the smaller datasets. More precisely, we linearly scaled the
number of warm-up steps with the fraction of the data used.

The quantitative results are presented in Figure 4. We notice two regimes: (i) using
at least four hours of video seems to yield reasonable performance, close to that obtained
using the entire dataset of sixteen hours; (ii) using less than one hour of data, the results
are degraded.

Figure 4. The impact of training data. We report the mean squared error (MSE) on the Obama test set
for multiple speech-to-lip networks trained on varying fractions of data—1/64, 1/32, 1/16, and so
on—up to the entire dataset, which consists of around 16 h of data. All models have their encoder
initialised from a pretrained ASR and fully trained (not frozen).

We start from the best speech-to-lip model trained on the full Obama data, with
the encoder initialised from an ASR and fully fine-tuned (the model corresponding to
the last row in Table 2). The evaluation setup follows the previous one, but differs in a
couple of aspects:

• Data: for evaluation and fine-tuning, we used the Trump dataset, which was trawled
from the internet, as described in Section 4.1.2. For simplicity, we evaluate on chunks
of data (eleven-second chunks with overlap of one second), preprocessed in the same
way as for training; based on the experiments on the Obama dataset, we have found
very similar results for the per-chunk and per-sentence evaluations.
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• Evaluation metrics: in addition to the mean squared error (MSE) computed in the
normalised PCA space (8-dimensional; 8D), we also report the MSE computed in the
original, 40-dimensional (40D) space. This second evaluation is especially relevant for
the zero-shot adaptation method, which only affects the reconstructed lips.

The results are presented in Table 3. We observe that the first adaptation approach,
which directly uses the Obama-trained model, yields a performance of 0.345 MSE 8D or
0.071 MSE 40D. Unsurprisingly, the results are much worse than what we observed when
applying the model to the in-domain Obama dataset, 0.064 MSE 8D (as shown in Table 2),
likely due to the mismatch of the datasets. The performance can be improved by the second
adaptation method, fine-tuning on the speaker-specific data, which leads to better results
with more data, reaching the best value of 0.096 MSE 8D and 0.021 MSE 40D (shown in bold
in Table 3). These results are close to those obtained on the Obama dataset with around
two–four hours of data (see Figure 4), showing that starting from a pretrained model can
alleviate the need of large quantities of training data. Finally, we see that the proposed
zero-shot adaptation method yields a significant improvement over the baseline: the error
halves from 0.071 to 0.034 MSE 40D (the figure in italics from Table 3), which is close to
the best result we achieve, of 0.021 MSE 40D. Note that this performance improvement is
obtained without performing any training on the new speaker: we just update the PCA
mean at test time.

As an additional experiment, we attempt to combine the second and third approaches
for adaptation: we update the mean of the PCA to Trump’s lips shape also for the fine-tuned
models. While the results are better than the zero-shot variant, they do not improve over
the fine-tune-only variant that uses Obama’s lips shape. We believe that this happens
because the fine-tuning process helps in adjusting for the new speaker’s lip shape, which
then—when changed at test time—negatively affects the system.

Table 3. Speaker adaptation and zero-shot adaptation. We report two variants of the mean squared
error (MSE) on the Trump test set: one computed in the 8-dimensional PCA space (MSE 8D), the other
computed in the reconstructed 40-dimensional original space (MSE 40D). The table presents results
for three adaptation methods, as follows: 1. The first two entries from the first row correspond to the
system pretrained on the Obama dataset. 2. The entries in rows 2–5 correspond to the pretrained
model fine-tuned on various amounts of Trump data. 3. The third column corresponds to updating
the PCA mean at test time to Trump’s shape; the first entry in the third column (shown in italics)
represents the proposed zero-shot speaker adaptation. The arrows in the table header represent the
direction of the best performance for the respective measure. Boldface numbers highlight the best
results for the respective column.

MSE ↓ 8D MSE ↓ 40D

Training PCA Mean

Data Obama Trump

1 obama 0.345 0.071 0.034
2 trump 5 m 0.109 0.024 0.024
3 trump 10 m 0.101 0.022 0.032
4 trump 20 m 0.099 0.022 0.031
5 trump 40 m 0.096 0.021 0.030

5.3. Evaluating the Complete Text-to-Keypoints System

In this section, we evaluate our text-to-lip method in an end-to-end manner—that is,
given a text input, we want to asses the quality of the generated lips. A major challenge of
this joint evaluation is that the generated lips are not guaranteed to be synchronised with
the ground-truth lips, since the synthesised audio is not necessarily synchronised with the
natural audio. To address this issue, we propose two approaches, both aimed at aligning the
intermediary audio representation. The first approach uses dynamic time warping (DTW)
to align the Mel-frequency cepstral coefficient (MFCC) representation of the two audio
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sources. We use forty-dimensional MFCCs, and to facilitate the transfer of the alignment
at the lip level, we extract the MFCCs using a hop length that yields the same number of
coefficient vectors as the number of video frames. In the second approach, we make crucial
use of our model’s ability to control the phoneme-level durations within the TTS system.
More precisely, we set the durations to those obtained by running a forced-aligner over the
phonetically transcribed evaluation text and its corresponding natural audio.

For the current evaluation, we consider the best TTS models as determined from the
objective evaluation, i.e., LJ-8 and LT-8 (see Table 1) in terms of WER. We consider that the
intelligibility of the speech is more likely to affect the correct lip movement, as opposed
to having a speech input, which has a smaller speaker similarity measure. To estimate an
upper bound of the performance, we also measure the performance obtained by starting
with natural audio. As in the previous experiments, we report the mean squared error
(MSE) computed in the 8D PCA space between the generated lips and the automatically
extracted landmarks from the original video sequence.

The results are shown in Table 4. We can observe that using a DTW-based alignment,
the estimated MSE measure is worse than the one obtained when using the original phone
durations. This means that being able to control this particular aspect of the generated
audio enables us to perform a more accurate evaluation of the speech-to-lip component.
With respect to the natural vs. synthesised speech, the differences are not substantial,
0.094 vs. 0.064 in favour of natural speech. These differences partially pertain to the fact
that the forced aligner is not perfect, and slight alignment errors are still present between
the natural and synthesised audios. However, it is impossible to evaluate how much of
the total error is determined by the misalignments versus the lip landmark generation
network. Perceptual differences over the lip generation performance between the two types
of speech inputs can also be analysed from our samples’ page (https://zevo-tech.com/
humans/flexlip/ (accessed on 15 May 2022)).

Table 4. From text to keypoints. We report the mean squared error on the Obama test set with respect
to the use of natural vs. synthetic audio data. We also report the MSE values over the Dynamic Time
Warping (DTW) alignments of the synthetic audio to the natural audio vs. controlling the phoneme
durations (phone Δ) within the TTS system. The arrow in the table header represent the direction of
best performance for the respective measure.

Audio Alignment MSE ↓
Natural – 0.064

TTS · LJ-8 DTW 0.179
TTS · LT-8 DTW 0.181

TTS · LJ-8 phone Δ 0.095
TTS · LT-8 phone Δ 0.094

6. Conclusions

In this paper, we proposed a flexible text-to-speech-to-lip pipeline that allows the user
to control various facets of its outputs: the phone durations, the pitch contour of the voice,
the audio altogether, the shape of the lips. Our model is based on two components: a
text-to-speech network and a speech-to-lip network. For the text-to-speech component, we
proposed using the FastPitch [18] architecture, which we carefully evaluated in multiple
settings (involving the quantity and quality of the training data) and showed that the
synthetic speech of the best models is intelligible and resembles the original speaker’s voice.
For the speech-to-lip part, we used a Transformer network to map the Mel-spectrogram
representation of the audio to PCA-encoded lips, which capture the dynamics of the lip
movements. We have made the observation that the shape is encoded by the PCA mean
and this can be easily replaced at test time (in a zero-shot adaptation setting), yielding
results close to those obtained when retraining with 40 min of data. Finally, we have
made crucial use of the controllability of our pipeline to carry out an objective end-to-end
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evaluation—by setting the phone durations to match the natural audio, we managed to
obtain synchronised generated and natural lips, ensuring a relevant score. Importantly,
these results have shown that the speech-to-lip module is robust to using synthetic data
at input, as the performance of the full pipeline is close to that of the speech-to-lip with
natural audio. As future work, we plan to extend our pipeline to the video domain (with
a keypoints-to-video component) and use the proposed objective evaluation approach to
evaluate objectively the output of the end-to-end system.

Author Contributions: Methodology, D.O., B.L., A.S. and H.C.; software, D.O., B.L., A.S. and H.C.;
writing—review and editing, D.O., B.L., A.S. and H.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by Humans DNA and Zevo Technology. This work was sup-
ported in part by a grant of the Romanian Ministry of Education and Research, CNCS-UEFISCDI,
project number PN-III-P1-1.1-PD-2019-0918, within PNCDI III.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The processed datasets used in this paper can be obtained from
the authors.

Acknowledgments: All the authors contributed equally to this work.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Qualitative samples are available on FlexLip’s webpage: https://zevo-tech.
com/humans/flexlip/ (accessed on 15 May 2022).

References

1. Chung, J.S.; Jamaludin, A.; Zisserman, A. You said that? arXiv 2017, arXiv:1705.02966.
2. Thies, J.; Elgharib, M.; Tewari, A.; Theobalt, C.; Nießner, M. Neural voice puppetry: Audio-driven facial reenactment. In

Proceedings of the European Conference on Computer Vision, Virtual, 23–28 August 2020; pp. 716–731.
3. Kumar, R.; Sotelo, J.; Kumar, K.; de Brébisson, A.; Bengio, Y. ObamaNet: Photo-realistic lip-sync from text. arXiv 2017,

arXiv:1801.01442.
4. Zhang, S.; Yuan, J.; Liao, M.; Zhang, L. Text2Video: Text-driven Talking-head Video Synthesis with Phonetic Dictionary. arXiv

2021, arXiv:2104.14631
5. Suwajanakorn, S.; Seitz, S.M.; Kemelmacher-Shlizerman, I. Synthesizing Obama: Learning lip sync from audio. Acm Trans. Graph.

2017, 36, 1–13. [CrossRef]
6. Eskimez, S.E.; Maddox, R.K.; Xu, C.; Duan, Z. Generating talking face landmarks from speech. In Proceedings of the International

Conference on Latent Variable Analysis and Signal Separation, Guildford, UK, 2–6 July 2018; pp. 372–381.
7. Greenwood, D.; Matthews, I.; Laycock, S. Joint learning of facial expression and head pose from speech. In Proceedings of the

Interspeech, Hyderabad, India, 2–6 September 2018.
8. Bregler, C.; Covell, M.; Slaney, M. Video Rewrite: Driving Visual Speech with Audio. In Proceedings of the 24th Annual

Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, 3–8 August 1997; pp. 353–360.
9. Ezzat, T.; Poggio, T. Visual Speech Synthesis by Morphing Visemes. Int. J. Comput. Vision 2000, 38, 45–57. [CrossRef]
10. Taylor, S.L.; Mahler, M.; Theobald, B.J.; Matthews, I. Dynamic Units of Visual Speech. In Proceedings of the ACM SIG-

GRAPH/Eurographics Symposium on Computer Animation, Lausanne, Switzerland, 29–31 July 2012; Eurographics Association:
Goslar, Germany, 2012; pp. 275–284.

11. Fried, O.; Tewari, A.; Zollhöfer, M.; Finkelstein, A.; Shechtman, E.; Goldman, D.B.; Genova, K.; Jin, Z.; Theobalt, C.; Agrawala, M.
Text-Based Editing of Talking-Head Video. ACM Trans. Graph. 2019, 38, 1–14. [CrossRef]

12. Kim, Y.; Nam, S.; Cho, I.; Kim, S.J. Unsupervised keypoint learning for guiding class-conditional video prediction. arXiv 2019,
arXiv:1910.02027.

13. Chen, L.; Wu, Z.; Ling, J.; Li, R.; Tan, X.; Zhao, S. Transformer-S2A: Robust and Efficient Speech-to-Animation. arXiv 2021,
arXiv:2111.09771.

14. Villegas, R.; Yang, J.; Zou, Y.; Sohn, S.; Lin, X.; Lee, H. Learning to generate long-term future via hierarchical prediction. In
Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 3560–3569.

15. Aldeneh, Z.; Fedzechkina, M.; Seto, S.; Metcalf, K.; Sarabia, M.; Apostoloff, N.; Theobald, B.J. Towards a Perceptual Model for
Estimating the Quality of Visual Speech. arXiv 2022, arXiv:2203.10117.

16. van den Oord, A.; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals, O.; Graves, A.; Kalchbrenner, N.; Senior, A.; Kavukcuoglu, K.
WaveNet: A Generative Model for Raw Audio. arXiv 2016, arXiv:1609.03499.

215



Sensors 2022, 22, 4104

17. Ren, Y.; Hu, C.; Tan, X.; Qin, T.; Zhao, S.; Zhao, Z.; Liu, T.Y. FastSpeech 2: Fast and High-Quality End-to-End Text to Speech. In
Proceedings of the International Conference on Learning Representations, Virtual, 3–7 May 2021.
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Abstract: Languages that allow free word order, such as Arabic dialects, are of significant difficulty
for neural machine translation (NMT) because of many scarce words and the inefficiency of NMT
systems to translate these words. Unknown Word (UNK) tokens represent the out-of-vocabulary
words for the reason that NMT systems run with vocabulary that has fixed size. Scarce words are
encoded completely as sequences of subword pieces employing the Word-Piece Model. This research
paper introduces the first Transformer-based neural machine translation model for Arabic vernaculars
that employs subword units. The proposed solution is based on the Transformer model that has
been presented lately. The use of subword units and shared vocabulary within the Arabic dialect
(the source language) and modern standard Arabic (the target language) enhances the behavior of
the multi-head attention sublayers for the encoder by obtaining the overall dependencies between
words of input sentence for Arabic vernacular. Experiments are carried out from Levantine Arabic
vernacular (LEV) to modern standard Arabic (MSA) and Maghrebi Arabic vernacular (MAG) to MSA,
Gulf–MSA, Nile–MSA, Iraqi Arabic (IRQ) to MSA translation tasks. Extensive experiments confirm
that the suggested model adequately addresses the unknown word issue and boosts the quality of
translation from Arabic vernaculars to Modern standard Arabic (MSA).

Keywords: neural machine translation (NMT); transformer; Arabic dialects; modern standard Arabic;
subword units; multi-head attention; shared vocabulary; self-attention

1. Introduction

The area of Machine Translation (MT) is undergoing unbelievable development thanks
to deep learning and artificial neural network models. Although a few years ago, machine
translation research tried to produce a high-quality translation for the most popular and
resourceful languages, today’s level of translation quality has increased the need and
significance of low-resource languages and the solution of further and more interesting
translation tasks [1]. In particular, even national language varieties such as Arabic dialects,
which are practiced by large populations (450 million) in the Arab world, lands as a spoken
verity of modern standard Arabic (MSA) and has been largely ignored by industry and
research. At the moment, commercial machine translation services do not provide transla-
tion services for any Arabic vernaculars. Conventional translation systems that perform
translation from Arabic dialects to MSA generate inconsistent outputs such as mixing
lexical parts. These systems translate parts of the source sentence twice and do not produce
high translation quality. Moreover, in Arabic, a linguistic phenomenon known as diglossia
occurs, in which language speakers practice local vernaculars for informal environments
and they practice modern standard Arabic language for formal contexts. For example,
communities in Morocco use both “standard” Arabic and Maghrebi vernacular, depending
on the context and situation. This Maghrebi vernacular reflects their own identity, his-
tory, lived experiences, and culture. Dialects by region are immense, such as Levantine,
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Maghrebi, Yemeni, Iraqi, Nile basin (Egypt and Sudan), and Gulf. Still, Arabic vernaculars
also change even within individual Arabic-speaking countries. A further difficulty is
mixing Arabic dialects and modern standard Arabic language together. To illustrate the
importance of dealing with Arabic vernaculars, Ethnologue reported that Arabic has the
5th largest number of L1 speakers scattered all over 21 regional vernaculars. There are four
types of machine translation: statistical machine translation (SMT), rule-based machine
translation (RBMT), hybrid machine translation and neural machine translation (NMT).

Traditional methods such as statistical machine translation (SMT) require powerful
computing devices. SMT is not suitable for managing the problem of word order, one of
the Arabic vernacular’s main syntactic problems. To study the word order, we need to
know where the verb, object and subject in the phrases are. According to the research
studies, languages can be categorized as verb-object-subject VOS (Arabic), subject-object-
verb SOV (Hindi language), subject-verb-object SVO (English), and other languages such
as Arabic vernaculars that allow the free word order feature. The word order does not only
convey any information about the subject and the object but possible different information
(old and new). These profound differences pose a challenge to the statistical translation
systems due to the fact that as sentences become lengthier, they do not just contain an
object, verb, and a subject, but instead, the sentence will have a complex structure made
up of several parts. In the case of Neural Machin Translation (NMT) systems, the encoder
compresses the input sequence into a single vector representation as noted in the encoder-
decoder structure, where the decoder uses this vector representation to produce the output
sequence. However, this structure has the disadvantage that input sequence information is
lost and the quality of translation declines when the input sentence is longer. Furthermore,
the lack of standardized spelling for Arabic dialects presents a challenge in developing
an NMT models for these vernaculars. The lack involves morphological dissimilarities
which are apparent by using affixes and suffixes that are not used in MSA. Basically,
for NMT systems training, we need large amounts of annotated data, which is not possible
in languages with low resources such as Arabic vernaculars. Moreover, the quality of
translation is decreasing alongside a decrease in the amount of the training data for low
resource languages.

In Arabic dialects, the translation of rare words is a clear problem. Typically, there
are 30,000–50,000 words confined to the neural model’s vocabulary. Nonetheless, trans-
lation is an open-vocabulary problem, mainly in languages that use productive word-
formation processes such as compounding and agglutination; models of translation require
methods below word level. For instance, in word-level NMT systems, the translation
for the out-of-vocabulary words was discussed via back-off to a dictionary lookup [2,3].
We note that these techniques usually make incorrect assumptions in reality. For instance,
due to the differences in the morphological synthesis between Arabic vernacular and mod-
ern standard Arabic language, one-to-one connection between source words and target
words is not constantly occurring. Furthermore, word-level NMT systems are ineffective
in translating and generating unseen words. One of the approaches is to copy unknown
words into the target text as done by [2] and [3]. It is a suitable strategy for names, but
it requires transliteration and morphological changes, particularly when the characters
are different. In the case of transformer model that was proposed newly [4], it has out-
performed recurrent neural network (RNN)-based models [5–7] and convolutional neural
network (CNN)-based models [8] on various translation tasks, drawing the attention of MT
researchers. The Transformer model, which applies a self-attention approach to measure
the strength of a relationship within two words in a sentence, has contributed to raising
performance in MT and various natural languages processing tasks, for instance, semantic
role labeling and the language modeling. The techniques to tackle the difficulties of Arabic
vernaculars translation are under research and investigation. There has been no earlier
research project that concentrated exclusively on developing a Transformer-based NMT
model running from Arabic vernaculars to modern standard Arabic language at the level
of subword units.
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A Transformer-based NMT model is presented in the current research, using subword
units to perform translation tasks from various Arabic vernaculars to modern standard
Arabic language. Moreover, this research study introduced and developed a Word-Piece
model to create subword units for the Arabic dialects. Experiments showed that machine
translation tasks, computed using Bilingual Evaluation Understudy (BLEU) metric and
human evaluation metric, have been enhanced on the performance of Arabic vernaculars
to modern standard Arabic language. Furthermore, we found that the proposed NMT sub-
word model based on transformers achieves higher efficiency for the translation of scarce
words in comparison with models that have a large vocabulary and back-off dictionaries.
The model can produce new words that are not seen during training time. Moreover, the
proposed Transformer-based NMT subword model achieved high translation accuracy
per sequence for Arabic dialects. Additionally, the research investigated the impact of
training the model with subword embeddings and with different dimensions. Moreover,
this research study investigated the influence of utilizing subword units on the Arabic
dialect’s translation quality. This research project investigated the impact of training the
model with a different number of encoders and decoders and with a different number of
attention heads in the self-attention (MHA) sub-layer in the decoder and encoder.

2. Related Work

Despite that machine translation research area has been investigated for several years
and decades, the majority of research effort has focused on high-resource translation
pairs, for instance, French–English and German–English which have many free parallel
datasets. Nevertheless, most language pairs in the world do not have large parallel data.
Research attention in these low-resource translation settings has been growing during
the last five years. Translations from and to written language varieties are mainly based
on phrase-based SMT systems, such as those for Croatian, Serbian and Slovenian [9],
Hindi and Urdu [10], and Arabic vernaculars [11]. Pourdamghani et al. [12] developed
an unsupervised deciphering design to translate similarly associated languages with no
need for parallel training data. Costa-jussà [13] showed the comparison of the Catalan–
Spanish language pairs amongst rule-based systems, phrase-based systems, and NMT
systems. The performance of NMT is better and more reliable than other systems when an
in-domain test set is applied. Experiments in the out-of-domain test dataset have shown
that better performance was provided by the rule-based method from Spanish language to
Catalan language and phrase-based method from Catalan language to Spanish language. In
order to translate texts from Kurman to Sorani, Hassani [14] introduced and developed an
Intralingual MT model. The model performed a word-to-word translation either direct or
literal translation between Kurman and Sorani dialects. The outcomes have been estimated
by native speaker evaluators. The experiments confirmed, according to human raters, that
this strategy can produce significantly clear results. Experiments also revealed that this
strategy could be regarded as a fundamental solution to the lack of corpus problem.

The first NMT system that was trained to translate among language varieties was
presented by Costa-jussà et al. [15]. The authors utilized language variety pairs, European
Portuguese and Brazilian Portuguese for experiments, as well as a corpus of subtitles for
neural machine translation training. The authors gained an additional 0.9 BLEU points
for translating from European Portuguese to Brazilian Portuguese compared to the SMT
system trained on similar data and an additional 0.2 BLEU points when translating in
reverse direction. The results show that the neural machine translation model offers more
reliable translation in terms of BLEU scores and seven native speakers’ evaluation than
the SMT model. Lakew et al. [16] investigated NMT training difficulties from English into
special pairs of language varieties, analyzing parallel texts and low-resource situations,
both labeled as well as unlabeled. The authors conducted experiments from English to
two languages, European Brazilian Portuguese and European Canadian French and two
standardized pairs, from Croatian language to Serbian and from Bahasa Indonesia to
Malay. The researchers demonstrate that a significant BLEU score increases over basic
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models when translation into related languages is learned as a multilingual task with
shared representations.

The main focus of research for Arabic vernaculars has been on SMT and rule-based
methods. PADIC is a multi-dialect-Arabic corpus that was introduced by Meftouh et al. [17].
The PADIC corpus includes MSA, Levantine vernaculars (Syrian and Palestinian) and
Maghrebi vernaculars (Tunisian and Algerian). In comparison to many other approaches,
diverse experiments were applied on different SMT models with all language pairs (vernac-
ulars and standard Arabic). In changing the smoothing methods, the researchers examined
the influence of the language model on MT by interpolating them with a larger one.
The most reliable translation outcomes were obtained in Algerian vernacular, which is
not remarkable because there is no closeness between the Algerian vernacular and the
MSA; therefore, the SMT model during training could not capture the whole semantic and
syntactic features of Algerian vernacular. It also was noticed that because of the closeness
of the vernaculars, MT performances within Palestinian and Syrian were relatively high.
As far as MSA is concerned, Palestinian vernacular has achieved the most reliable results
of MT. Sadat et al. [18] presented an approach to do translation of the Tunisian social media
vernacular into modern standard Arabic. This system depends on a bilingual lexicon that
was designed for this translation task. A collection of syntactic mapping rules alongside a
disambiguation phase is used to choose the most appropriate translation phrases, depend-
ing on language model for MSA. The translation system should be noted as word-based.
By using a test dataset of 50 sentences of Tunisian vernacular, it achieves a BLEU score [19]
of 14.32 (the reference was done by hand). Bakr et al. [20] proposed a comprehensive
system for translating Egyptian vernacular phrases to enunciated versions of modern
standard Arabic phrases. The authors applied the statistical method to tokenize and tag
Arabic phrases. The technique for producing diacritics for the target phrases in MSA was
explicitly selected based on important rules. The research was assessed using a dataset
that contains 1000 Egyptian vernacular sentences where the training set is 800 and the test
set is 200. The method obtained a performance of 88% when translating vernacular words
to modern standard Arabic words and an accuracy of 78% when generating the words in
their correct order.

The majority of the methods discussed earlier concentrated on SMT system and
rule-based system. The rule-based translation method has a notable shortcoming: the
development of the before-mentioned methods requires a significant quantity of time. It is
essential to adjust the rules to raise the rule-based MT quality, which needs an exceptional
degree of lingual understanding. The statistical methods require high computing devices
and these methods are unable to manage one of the Arabic vernacular syntactic problems:
the problem of word order. There have been relatively few publications in NMT discussing
the translation of closely related languages. Multitasking is widely regarded as a highly
effective technique for boosting the effectiveness of translation for Arabic vernaculars.
A new study that investigates NMT for Arabic vernaculars was first introduced by Baniata
et al. [21]. For translation from Arabic vernaculars to modern standard Arabic, the re-
searchers presented a multi-task neural machine translation system. The suggested system
is based upon multitask learning, where the language pairs share a single decoder and
every source language has a separate encoder. The practical experiments demonstrate that
by employing small amount of training dataset, the multitask NMT model can generate a
correct MSA phrase and produce a translation with very good quality and learning the pre-
dictive information of various targets at the same time. Among many methods to translate
Arabic dialects, one of the most significant is the incorporation of outer knowledge into the
neural network models for Arabic dialects. Baniata et al. [22] proposed a Multitask NMT
model that shares an encoder between two types of tasks; Arabic vernacular to modern
standard Arabic translation task and POS task on segment level. Between translation tasks,
the system shares two layers; shared layer and invariant layer. By alternatively training
translation and POS tagging tasks, the proposed model may exploit distinctive knowledge
and enhance the translation effectiveness from Arabic vernaculars to modern standard
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Arabic. Practical experiments involve translation tasks from Levantine Arabic to modern
standard Arabic and from Maghrebi Arabic to modern standard Arabic.

Nguyen et al. [23] created a lexical semantic framework for unique features of Ko-
rean text as an information database to develop a morphological analysis and word sense
disambiguation system called Utagger. Moreover, the authors created a corpus for Korean–
Vietnamese where they utilized the word segmentation algorithm RDRsegmenter for
Vietnamese text and Utagger for Korean text. This research team was able to build a
bidirectional Korean–Vietnamese NMT system, using the encoder-decoder approach with
attention. These experimental findings showed that the usage of UTagger and RDRseg-
menter in the Korean–Vietnamese NMT system might increase its performance, obtaining
exceptional outcomes from Korean to Vietnamese with BLEU score of 27.79 and TER score
of 58.77 and in reverse way a BLEU score of 25.44 and TER score of 58.72. Park et al. [24]
proposed the first ancient Korean NMT system based on the use of a Transformer. The
method improves translator performance by instantly generating a draft translation for
different ancient documents that remain untranslated. Moreover, shared vocabulary and
the entity restriction byte pair encoding is a new subword tokenization approach that was
proposed by the authors recently. This approach depends on the textual characteristics
of ancient Korean sentences. By using this proposed approach, the effectiveness of the
traditional subword tokenizing approaches such as the byte pair encoding will rise by
5.25 BLEU points. Additionally, several decoding algorithms such as the ensemble mod-
els and n-grams blocking contribute an additional 2.89 BLEU points to the performance.
Luo et al. [25] suggested an NMT model in which the network is trained sequentially on
not closely related high resource language pairs, intermediate language pairs which is
related and low resource language pairs. These parameters are transferred and tuned
from one layer to another for initialization step in the same way. Thus, the hierarchical
transfer learning design unites data amounts benefits of languages with large resources
with grammatical propinquity benefits the related language. For data preprocessing, the
researchers applied byte pair encoding and character level embedding, which completely
address the issue of shortage of vocabulary (OOV). Experiments analyzing Uygur–Chinese
and Turkish–English translations illustrate the suggested method’s superiority over the
neutral machine translation model with parent–child framework. Few publications have
been published on the subject of MT for Arabic vernaculars that employ subword units.

Aqlan et al. [26] suggested employing a romanization method that turns Arabic
texts into subword units. The authors analyzed the impact of this strategy on Neural
MT performance in various segmentation settings and measure the findings to methods
trained on modern standard Arabic. Additionally, the authors combine Romanized Arabic
text as an input component for Arabic-sourced neural machine translation compared to
well-known components, including lemma, POS tags, and morph characteristics. The
experiments that were performed on Arabic–Chinese translation show that recommended
methodologies address the unknown word issue and improve the translation quality for
the Arabic source language. This work carries out further experiments with the NMT
system and develops it on Chinese–Arabic translation. Prior to conducting the experiments,
the researchers created a criteria for filtering the text in the parallel corpus to remove
the noise. Included sentence patterns have been shown to improve the performance of
MT, particularly SMT and RNN-based NMT [27–29]. Further, Strubell et al. [30] have
enhanced a Transformer-based SRL design by adding dependency formations of phrases
into self-attention, which is named linguistically-informed self-attention (LISA). In LISA,
one of the attention heads of a multi-head self-attention system is trained with constraints
based on dependency relations to attend to syntactic parents for each token.

3. Background

Recently, the NMT has been offered as an exciting framework that has the possibility
to overcome the shortcomings of the standard SMT methods. The strength of the NMT
approaches is their capability in learning the mapping from the input text to the corre-
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sponding output text directly, in an end-to-end pattern. Neural models in the domain are
not new, as Neco et al. [31] proposed an approach years ago. Other models [32,33] were
introduced later, but Chao et al. [6] and Sutskever et al. [7] were the first to design a robust
machine translation system. Peyman et al. [34] presented an encoder-decoder structure
in which two RNNs are trained to maximize a target sequence’s conditional probability
(possible translation). y = y1, . . . , ym, given a source sentence x = x1, . . . , xn. Sequentially,
the input words are processed until the end of the input string is reached. The encoder
reads the input sequence and turns it into fixed length representation. Every time in step t
an input word is received; the hidden state is updated. Equation (1) illustrates this process:

ht = f (Ex [xt], ht−1) (1)

where ht ∈ Rd is the hidden state (vector) at the time step t and f (.) is a recurrent function
such as the long short-term memory (LSTM) [35] or the gated recurrent unit (GRU). f (.)
is reasonable for updating the hidden state of the layer and other associated unit (if there
are any, such as memory unit, etc). Ex ∈ R|Vx |×d is an embedding matrix for the source
symbols (d is the embedding size). The embedding matrix is a lookup table whose cells are
treated as a network parameters and updated during training. The embedding (numerical
vector) for the vth word in vx (vocabulary) resides in the vth row of the table. In the next
step, the model undertakes processing for all words in the source sentence; hn is a summary
of input sequence, referred to as context vector (c). Another RNN is initialized by c and
seeks to produce a target translation. There is one word sampled from a target vocabulary
vy at each step of the process. The decoder conditions the probability of picking a target
word yt on the context vector, the last predicted target symbol, and the decoder’s sate. This
can be expressed in Equation (2):

yt = g(Ey[yt−1], St, c) (2)

St = f
(
Ey[yt−1], St−1, c

)
where St is the hidden state of the decoder. Since we compute the

probability of choosing yt as the target word, g(.) should give a value in the range [0, 1].
The most common function for g(.) is Softmax. The encoder and decoder RNNs are trained
together to maximize the log probability of generating a target translation and are given an
input sequence x, so the training standards can be defined as in Equation (3):

max
θ

1
K

k

∑
k=1

log(yk|xk) (3)

where θ signifies a set of network parameters and K denotes the training set’s size. As previ-
ously noted, the recurrent functions used in encoder-decoder models are not conventional
mathematical functions.

4. The Proposed Transformer Based-NMT Model for Arabic Dialects That Utilizes
Subword Units

Even while the translation is considered to be an open vocabulary issue, systems of
NMT always work with word vocabularies that are fixed (names, numbers, dates, etc.).
To address out-of-vocabulary (OOV) words, there are two broad approaches. One strategy
is to try to copy and obtain scarce words from source language and place them in the target
language (since most of the scarce words are numbers or names so the right translation
is a copy), either through the use of an attention mechanism [2], external alignment
approach [3], or through the use of a complex special purpose pointing framework [36].
An extra group of methods is the subword units such as the combined word/characters or
more knowledgeable subwords [37]. Subword segmentation is fundamentally an algorithm
used under the assumption that a word consists of a combination of several subwords.
Even Arabic dialects and MSA are languages based on Arabic characters, and many words
are made of subwords. Therefore, breaking into subword units through suitable subword
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detection can reduce the number of vocabularies and efficiently reduce sparsity. In addition
to reducing sparsity, the most representative outcome of subword segmentation is a useful
coping with unknown (UNK) tokens. The majority of the deep learning NLP algorithms,
including Natural Language Generation (NLG), take sentences as inputs simply as word
sequences. So, when UNK appears, the probability of the language model in the future is
very ruined. Therefore, it is difficult to encode or generate suitable sentences. Especially
for sentence generation such asautomatic machine translation, it is more difficult because
it predicts the next word based on the previous word. However, through subword units’
utilization, it is possible to create a combination of known tokens by dividing UNKs such
as new words or typo into units of subwords or characters. In this way, by eliminating
UNK itself, you can completely cope with UNK and boosts the translation quality of
Arabic vernaculars. Many word patterns were generated from the same origin and root
in Arabic vernaculars and modern standard Arabic, fragmenting the data and generating
scattered data.

Various research papers introduced statistical segmentation for the Arabic language in
order to divide words down into their morphemes, which are the smallest meaningful unit
in the language. This subtask is a fundamental part of a variety of natural language process-
ing applications. For example, machine translation (MT) is powerful for the representation
of the input and needs consistency across test and train data. Thus, by segmenting Arabic
vernaculars and MSA words into subword units, the affixes and suffixes that are attached to
the words are separated and the proposed model will capture more semantic and syntactic
features of the input source sentence and produce a high-quality MSA sentence. This re-
search paper developed an Arabic dialects Transformer-based NMT model that utilizes AD
and MSA Subwords units to translate from different Arabic vernaculars to MSA. We created
the model depend on the Transformer model introduced recently by Vaswani et al. [4].
For the proposed Transformer-Based NMT Subword model, as illustrated in Figure 1, both
the decoder and encoder consist of a stack of 12 layers. Every layer has two different
sub-layers: multi-head attention sub-layer and position wise feed forward sublayer (FFN).
The encoder and the decoder in the suggested Transformer NMT model architecture for
Arabic dialects make use of an attention model and feed-forward net to create sequences
of changeable lengths without the need to use the RNN unit or CNN unit. The operation
of attention across the various layers is based on multi-head attention (see Section 4.1).
An input sequence of symbol representations (source sentence) X = (x1 , x2, . . . , xnenc)T is
mapped to an intermediate vector. Next, the decoder creates an output sequence (target
sentence) Y = (y1 , y2, . . . , yndec)T, given the intermediate vector. Because the transformer
architecture does not contain convolutional or recurrent structure, it encodes positional
word information as sinusoidal positional encodings:

P(pos ,2i) = sin
(

pos/100002i/d
)

(4)

P(pos ,2i+1) = cos
(

pos/100002i/d
)

(5)

where pos is position, i is considered to be the dimension, and d is the dimension of the
intermediate representation. At the first layer of both encoder and the decoder, the posi-
tional encodings computed by Equations (4) and (5) are summed to the input embeddings.
The encoder subnetwork comprises a stack of L similar layers so that L is set to different
numbers 12, 8, and 4.
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Figure 1. The Architecture of Transformer Based-Neural Machine Translation Subword Model for Arabic dialects.

Every encoding layer has two layers: a multi-head attention sub-layer and position
wise feed forward sub-layer. To ease training and improve performance, residual con-
nection mechanism [38] and a layer normalization unit (LayerNorm) [39] are employed
around each sublayer. Formally, the outcome of every layer l (Hl

e) is calculated as below:

Sl
e = LayerNorm

(
MHA

(
Hl−1

e , Hl−1
e , Hl−1

e

)
+ Hl−1

e

)
, (6)

Hl
e = LayerNorm

(
FFN

(
Sl

e

)
+ Sl

e

)
, (7)

where Sl
e is considered to be the output from multi-head attention sublayer calculated

based upon source sentence representation of previous encoding layer (l − 1). Moreover,
the decoder consists of a stack of L similar layers in which L is set to different numbers 12,
8, and 4. Unlike the encoder, every layer in the decoder consists of three sublayers, a multi-
head attention sublayer and a position wise feed forward sublayer. However, the encoder
decoder multi-head attention sublayer is placed between them. The (encoder-decoder)
multi-head attention sublayer is utilized to perform attention calculations for the output of
encoder HL

e particularly, output of every decoding layer l (Hl
d) is computed as:

Sl
d = LayerNorm

(
MHA

(
Hl−1

d , Hl−1
d , Hl−1

d

)
+ Hl−1

d

)
, (8)

El
d = LayerNorm

(
MHA

(
Sl

d, HL
e , HL

e

)
+ Sl

d

)
, (9)

Hl
d = LayerNorm

(
FFN

(
El

d

)
+ El

d

)
(10)

where Sl
d is considered to be the output of multi-head attention sub-layer computed from

target representation from previous decoder layer (l − 1). El
d is considered to be the output

of the encoder decoder MHA sub-layer generated based upon Sl
d and HL

e . The top-level
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layer output (HL
d ) of the decoder is used by a linear transformation layer to generate

the target sequence. Specifically, the linear transformation layer via Softmax activation
computes probability distribution of the output for target vocabulary.

4.1. Multi-Head Attention (MHA)

A neural attention mechanism is an essential feature of the seq2seq structure, which is
used to solve a variety of sequence generating challenges, including document summa-
rization [40] and NMT. The Transformer Based-NMT subword model perform the scale
dot product attention function as shown in Figure 2. This takes three vectors as inputs, the
queries Q, values V and keys K. It outlines the provided query and key–value pairs to an
output weighted sum of the values. The weights show the association among every query
and key. An attention is illustrated below:

Attention(Q, K, V) = so f tmax(α)V (11)

α = score(Q, K) (12)

score(Q, K) =
Q × KT
√

dk
(13)

where k ∈ RJ×dk is the key, V ∈ RJ×dv is the value Q ∈ RZ×dk is a query. Z and J are
considered to be the lengths of sequences expressed by Q and K, respectively. dk and
dv are considered to be the dimension of value and key vectors, respectively. The query
dimension is expressed by dk to perform the dot product calculation.

Figure 2. The Multi-Head Attention consist of several attention layers running in parallel.

The division of Q × KT by
√

dk is performed to measure the output of the prod-
uct operation so maintaining the calculation Vaswani et al. [4]. The overall attention
weight distribution is obtained by applying the so f tmax(.) operation to the attention score
α ∈ RZ×J . For better performance, the transformer architecture uses MHA, which com-
prises Nh (number of head attentions) measured dot product attention operations. Provided
the Q, K, and V, multi-head attention computation is shown below:

MHA(Q, K, V) = O, (14)

O = HWo, (15)

H = concat
(
head1, head2, . . . . . . , headNh

)
(16)

headh = Attention
(

QWQ
h , KWk

h , VWv
h

)
(17)
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where QWQ
h , KWk

h and VWv
h are projections of query, key and value vectors for hth head, re-

spectively. These projections are made with metrics WQ
h ∈ Rdmodel×dk , Wk

h ∈ Rdmodel×dk ,
Wv

h ∈ Rdmodel×dv . The inputs to the MHA(.) are K ∈ RJ×dmodel , V ∈ RJ×dmodel and
Q ∈ RZ×dmodel . headh ∈ RJ×dv is the output of measured dot product calculation for
the hth head. The Nh measured dot product operation are united by using the concatena-
tion function concat(.) to generate H ∈ RZ×(Nh .dv). Eventually, the output O ∈ RZ×dmodel is
produced from the projections of H utilizing the weight matrix Wo ∈ R(Nh .dv)×dmodel . The
MHA contains the same number of parameters as vanilla attention if

dk = dv =
dmodel

Nh
(18)

4.2. Segmentation Approach: Wordpiece Model

The subword units are the best approach for handling the problems and challenges of
Arabic dialects. This study uses the WordPiece Model (WPM) implementation, which was
originally used by Google to tackle a Japanese–Korean segmentation challenge [41]. This
method is entirely data-driven and guarantees that any possible Arabic dialect sequences
are segmented in a deterministic way. It is similar to the approach used in Neural Machine
Translation [37] to address rare words. To begin the process of the random words, we
divide these words to word pieces using a trained wordpiece method. Prior to training the
model, accurate word boundary symbols are added to ensure that original word sequence
is extracted without ambiguity of word piece sequence. At the time of decoding, this
model produces the wordpiece sequence, where this wordpiece sequence is reshaped to
an identical word sequence. The example below illustrates the sequence of the word and
equal word piece sequence for a sentence in Levantine Arabic vernacular:

Word: “
�� �����	
 � � ���� ���� � ��� ����

�� �����”

Word Translation: “Where can I take a bus to the city exit”
Wordpieces: “ _ �����_ �� ��

��_ � ���_ ��� �_ � ����_ �� �����	
 �”

As illustrated in the above example: The Arabic word in LEV dialect “����
��” “ I can ”

is decomposed into two-word pieces “ ��
��” “particle that derives a preposition from ����

��”
and “_ �� ,” “ particle that derives a suffix from ����

��” while the word “ ����” “ a bus ” is

decomposed into word pieces “ �” “ particle that derives an affix from ����” and “_ ���”
“particle that derives a noun from ����”. The remaining of the words are maintained
as single word pieces. Wordpiece design is constructed by employing the data driven
method which maximizes the language model probability for the training data given a
word description. In the availability of parallel corpus for training and set of tokens R,
the optimization challenge is by choosing R word pieces in a way where the final corpus
contains the fewest word pieces when segmented by the word piece method. A unique
token is utilized at the beginning of words rather than two ends. Additionally, the number
of primary characters is decreased to a changeable number based upon the data. Moreover,
the remaining characters are mapped to a particular unknown alphabet to avoid connecting
word piece vocabulary with divided characters.

We noticed that when exploiting a vocabulary within 100,000-to-24,000 word pieces,
it leads to a high BLEU score and fast decoding quality for all language pairs that were
evaluated. It is advantageous in translation to copy scarce names or numbers from source
language to target language in a direct way. We utilized a shared word piece approach for
the source language (Arabic dialect) and the target language (modern standard Arabic)
to facilitate this type of direct copying. When this strategy is applied, the same string is
segmented precisely in the same way in the source and target sentences, which makes it
more straightforward for the model to copy these tokens. Word pieces accomplish sta-
bility between words’ efficiency and alphabets’ flexibility. The motivation behind can be
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summarized in two points. The first point illustrates that the processing for the source
language (Arabic vernaculars) and the target language (MSA) is done by exploiting the
shared vocabulary approach. The encoder of the proposed model shares the same vocab-
ulary with the decoder. By applying the shared vocabulary approach between decoder
and encoder, the proposed model substitutes the words in input sentence with translation
words in target language. The second point, as illustrated by Lample et al. [42], a shared
vocabulary enhances the alignment of embedding vectors. We also notice that when we use
wordpieces, our suggested model achieves superior overall BLEU scores, which is most
likely due to the proposed model’s ability to deal with an effectively unlimited vocabulary
without simply relying on characters. The latter would require more computation and
greatly increase average lengths for output and input sequences.

5. Experimental Results

Multiple experiments were conducted to evaluate the proposed Transformer-based
NMT subword system on a variety of translation tasks. The introduced model is evaluated
on the basis of its ability to translate from Arabic vernaculars to modern standard Arabic.
Practical experiments were carried out with five different dialects of Arabic: Levantine,
Nile Basin, Maghrebi, Gulf and Iraqi. Levantine Arabic is an Arabic dialect spoken widely
in Jordan, Syria, Lebanon and Palestine. The Maghrebi variety is commonly practiced in
Algeria, Morocco, Tunisia, Libya. Arabic in Nile Basin is a popularly spoken dialect used
in Egypt, Sudan and South Sudan. Gulf Arabic is a spoken dialect commonly spoken in
KSA, UAE, Qatar, Oman, Kuwait and Bahrain. Iraqi Arabic is a dialect spoken in Iraq. For
the language of low resources, the proposed Transformer-Based NMT subword model will
be applied.

5.1. Data

For the translation tasks, we grouped the Maghrebi vernaculars (Moroccan vernacular,
Algerian vernacular, Tunisian vernacular and Libyan vernacular) unitedly from PADIC
corpus [17], MPCA corpus [43] and MADAR corpus [44] into a single corpus, we will
name it PMM-MAG. The Levantine vernaculars (Jordanian vernacular, Syrian vernacular,
Lebanese vernacular and Palestinian vernacular), which are grouped collectively from
PADIC corpus, MPCA corpus and MADAR corpus are grouped into a single corpus, and
we will name it PMM-LEV. Furthermore, we concatenated Nile Basin Dialects (Egyptian
vernacular, Sudanese vernacular) from MADAR corpus and the Gulf Dialects (Saudi
Dialect, Omani Dialects and Qatari Dialect) are concatenated together from the same
corpus. Moreover, we used the MADAR Corpus for the translation task of the Iraqi dialect.
Figure 3 presents an example translation graph with nodes and dotted edges. We will use
this graph as our running example. The Transformer NMT subword system was trained
on 36,850 sentence pairs for Levantine vernacular, 54,736 sentence pairs for Maghrebi
vernacular, 18,000 sentence pairs for Nile Basin Dialect, 18,000 sentence pairs for Gulf
vernacular and 5000 sentence pairs for Iraqi vernacular. Textual information was gathered
from many resources such as television episodes, films and social media. Regarding
the test dataset, the proposed system was tested on 3000 sentence pairs for Levantine
vernaculars, 3000 sentence pairs for Maghrebi vernacular, 2000 sentence pairs for Nile
Basin vernacular, 2000 sentence pairs for Gulf vernacular, and 1000 sentence pairs for Iraqi
vernacular. Moreover, the suggested system was trained with 13,805 sentence pairs for
Levantine vernacular and it was trained on 17,736 sentence pairs for Maghrebi vernacular
from the same corpus that was utilized by Baniata et al. [22] and tested on 2000 sentence
pairs for Levantine vernacular and 2000 sentence pairs for Maghrebi vernacular.
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Figure 3. Translation graph: Arabic dialects (nodes), Parallel Corpora (dotted edges).

The parallel corpus for each Arabic dialect was divided into two parts: 80% for train-
ing and 20% for testing. Additionally, each Arabic dialect’s test set was drawn from the
same domain. The corpora employed in this study contain unprocessed information that
may affect the proposed model’s performance. Therefore, all categories of Arabic vernac-
ulars and modern standard Arabic sentences have undergone pre-processing. Hashtags,
punctuation, non-Arabic characters and diacritics were excluded in Arabic vernaculars
and modern standard Arabic. Additionally, the orthographic normalization process was

applied. As an example, the characters
�
�
� 
� � were converted to the �alphabet. Stop word

removal or stemming have not been applied. The modern standard Arabic (MSA) includes
various tokens found in Arabic dialects (AD), and the AD Sentences are shorter than those
found in MSA. Three cross-validation strategies are commonly applied to determine a
predictor’s predicted success rate: jackknife test approach, K-fold cross validation and
independent dataset test. Among these procedures, the jackknife test is considered to be the
least arbitrary and the most thematic, and as a result, it is popularly known and regularly
chosen by researchers in order to evaluate the quality of different predictors. However,
this strategy consumes the time and consumes the source because its estimated standard
error tends to be slightly larger than other methods. Moreover, the jackknife test performs
poorly when the estimator is not sufficiently smooth. Accordingly, K-fold cross-validation
is applied in this paper, which sets K to 2 to create a train/ test split to assess the proposed
Transformer-Based NMT Subword model. To avoid model overfitting, we used the Early
stopping option where the patience parameter is set to 3 epochs and the model checkpoint
is used to save the best weights for the evaluation of the proposed model.

5.2. Model Setup

The proposed model was developed using Python, Keras and TensorFlow. The experi-
ments on the LEV–MSA, MAG–MSA, GULF–MSA, Nile–MSA and IRQ–MSA translation
tasks are conducted based on these basic and advanced configurations where the subword
embedding dimension has the three values which are 1024, 512 and 256, hidden state has
two values which are 1024 and 512 and the attention heads are set to two values which are 8
and 4. The position-wise FFN has a filter of dimensions 512 and 1024. The proposed Arabic
dialect Transformer-based NMT Subword model trained on the LEV–MSA, MAG–MSA,
GULF–MSA, Nile–MSA and IRQ–MSA translation tasks consists of a 12, 8 and 4-layer
encoder subnetwork. Moreover, it consists of a 12, 8 and 4-decoder subnetwork.

5.3. Traning and Inference

For the translation tasks LEV–MSA, MAG–MSA, GULF–MSA, Nile–MSA, and IRQ–
MSA, the proposed model is trained for 13k iterations with batch size 2048 tokens and
the maximum sequence length is set to 100 subword tokens. Moreover, the maximum
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subword tokens length is set to 150 subword tokens. The optimizer employed to train the
model in this research study is Adam optimizer [45] with (β1 = 0.9, β2 = 0.98, ε = 1 × 10−9).
Further, the number of epochs is set to 6 for all translation tasks. By following So et al. [46],
a single cosine cycle with a warm up is applied for the learning rate schedule algorithm.
The target sentences are produced by using beam search during the inference stage. For the
LEV–MSA, MAG–MSA, GULF–MSA, Nile–MSA, IRQ–MSA, LEV–MSA (Baniata et al. [22]
Corpus) and MAG–MSA (Baniata et al. [22] Corpus) translation tasks, beam size of 6
and length penalty of 1.1 are applied. The study used a shred vocabulary for the source
language and target language. This research study employed 21,000-subword vocabularies
for Levantine vernacular (LEV)—MSA translation task, 21,000 subword vocabularies for
Maghrebi vernacular (MAG)–MSA translation task, 21,000 subword vocabularies for the
Nile Basin Arabic (NB)—MSA translation task, 21,000 subword vocabularies for the Gulf
Arabic (Gulf)—MSA translation task and 9235 subword vocabularies for the Iraqi Arabic
(IRQ)—MSA translation task. Twenty-nine thousand five hundred subword vocabularies
are employed for the corpus applied by Baniata et al. [24] on the Levantine Arabic (LEV)–
MSA translation task and on the Maghrebi vernacular (MAG)–MSA translation task. Relu
dropout value and attention dropout value are 0.1. The suggested model proved to be very
fast and required 268 s per epoch for MAG–MSA task (Baniata et al. [22] Corpus), 419 s per
epoch for LEV–MSA task (Baniata et al. [22] Corpus), 251 s per epoch for the MAG–MSA
task, 216 s per epoch for Nile–MSA task, 254 s per epoch for LEV–MSA task, 231 s per
epoch for Gulf–MSA task, 152 s per epoch for IRQ–MSA task. For each translation task, the
proposed model is trained to minimize cross-entropy loss.

5.4. Results
5.4.1. Automatic Metric

Many practical experiments were carried out with the proposed Transformer-based
NMT model through exploiting subword units and shared vocabulary for Arabic vernacu-
lars and MSA. The proposed Transformer-based subword model was experimented with
different subword embeddings to find the most efficient subword embedding dimension
of the proposed model. Moreover, the proposed model was trained with different number
of encoders and decoders and with different number of heads in multi-head attention
sublayer to find the most efficient number of attention heads for the proposed model.
The translation quality is reported based on the sacreBLEU. SacreBLEU is a standard
BLEU [19] implementation that manages WMT datasets, creates scores on detokenized
outputs and reports a string encapsulating BLEU parameter, helping the generation of
sharable, comparable BLEU scores. This section shows the performance evaluation of
the suggested transformer-based NMT subword model for Arabic dialects on five Arabic
dialects translation tasks. The findings of the LEV–MSA translation task are summarized
in Table 1. For the MAG–MSA, Nile–MSA, Gulf–MSA and Iraqi–MSA translation tasks,
Tables 2–5 illustrate the results. Table 1 shows Transformer-Based NMT subword model
results with different settings on the test dataset for the LEV–MSA translation task. The
results in Table 1 show the effectiveness of the proposed transformer machine translation
subword model. As illustrated from Table 1, the suggested model achieved an outstanding
63.71 BLUE score where the number of encoders’ layer and decoders’ layer value is 12,
number of attention heads is 4 and the subword embedding value is 512. The findings
are obvious as a result of the close connection between Levantine vernacular and modern
standard Arabic, and the fact that both languages share a large number of vocabularies.
It can be noticed from Table 1 that the experiments’ settings with low dimensions of sub-
word embeddings achieved better BLUE score results in comparison to experiments with a
high dimension of subword embeddings.
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Table 1. Results of the Transformer-Based NMT Subword Model on PMM-LEV corpus for LEV–MSA
translation task, where SW-E-D is the Subword embedding dimension, FS is the filter size, EL is the
encoder layer, DL is the decoder layer and AH is the attention heads number.

SW-E-D FS EL DL AH BLEU

512 1024 4 4 4 61.65
512 1024 8 8 4 63.56
512 1024 12 12 4 63.71
1024 1024 4 4 4 59.68
1024 1024 4 4 8 59.53
512 512 4 4 4 60.04

Table 2. Results of the Transformer-Based NMT Subword Model on PMM–MAG corpus for MAG–
MSA translation task, where SW-E-D is the Subword embedding dimension, FS is the filter size, EL is
the encoder’s layers, DL is the decoder’s layers and AH is the attention heads number.

SW-E-D FS EL DL AH BLEU

512 1024 4 4 4 59.46
512 1024 8 8 4 63.02
512 1024 12 12 4 65.66
1024 1024 4 4 4 59.54
1024 1024 4 4 8 62.17
512 512 4 4 4 56.68

Table 3. Results of the Transformer-Based NMT Subword Model on MADAR–Nile Basin corpus for
NILE–MSA translation task, where SW-E-D is the Subword embedding dimension, FS is the filter
size, EL is the encoder layer, DL is the decoder layer and AH is the attention heads number.

SW-E-D FS EL DL AH BLEU

512 1024 4 4 4 47.51
512 1024 8 8 4 48.19
512 1024 12 12 4 47.58
1024 1024 4 4 4 42.02
1024 1024 4 4 8 44.08
512 512 4 4 4 47.52

Table 4. Results of the Transformer-Based NMT Subword Model on MADAR–Gulf corpus for GULF–
MSA translation task, where SW-E-D is the Subword embedding dimension, FS is the filter size, EL is
the encoder layer, DL is the decoder layer and AH is the attention heads number.

SW-E-D FS EL DL AH BLEU

512 1024 4 4 4 47.26
512 1024 8 8 4 46.66
512 1024 12 12 4 47.18
1024 1024 4 4 4 43.48
1024 1024 4 4 8 43.68
512 512 4 4 4 46.35
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Table 5. Results of the Transformer-Based NMT Subword Model on MADAR–Iraqi corpus for IRQ–
MSA translation task, where SW-E-D is the Subword embedding dimension, FS is the filter size, EL is
the encoder layer, DL is the decoder layer and AH is the attention heads number.

SW-E-D FS EL DL AH BLEU

512 1024 4 4 4 56.50
512 1024 8 8 4 49.03
512 1024 12 12 4 47.14
1024 1024 4 4 4 25.51
1024 1024 4 4 8 40.17
512 512 4 4 4 55.23

Table 2 illustrates the findings of the suggested model on test dataset for the MAG–
MSA translation task. We observed that the proposed Transformer-based NMT subword
model, as shown and highlighted with bold text in Table 2 is able to translate the Maghrebi
Arabic sentences to MSA with a 65.66 BLEU score. It is clear that Maghrebi vernacular is a
combination of many diverse languages such as the Berber language, African Romance,
old Arabic expressions, Turkish language, Spanish, Italian and Niger Congo languages,
as well as some new vocabularies borrowed from French and English. Therefore, the
proposed Transformer-based NMT subword system was able to capture the semantic and
syntactic features of Maghrebi dialect and improved the translation performance on the
(MAG)–MSA translation task despite that the Maghrebi dialect is not close to the MSA in
terms of expressions and vocabularies. Conventional NMT models [21,22] were not able to
produce a high translation quality for the Maghrebi vernacular because Maghrebi dialect
has expressions from many other languages. By utilizing subword units as an input to the
encoder, there will be a sharing of information between the subwords forms and words
forms and the model will generate MSA sentences with high quality.

Table 3 reveals the proposed model results with diverse settings on the test dataset for
the Nile–MSA translation task. As seen from Table 3, the proposed system achieved a 48.19
BLUE score and the model was able to translate the Egyptian and Sudanese sentences to
MSA correctly. Tables 4 and 5 present satisfied results on Gulf–MSA, Iraqi–MSA translation
tasks, respectively. The proposed model proved to produce high translation quality of
Arabic Gulf sentences with a 47.26 BLEU score and 56.50 BLEU score on the Iraqi–MSA
translation task. Furthermore, the model was applied on Maghrebi–MSA, Levantine–MSA
parallel Corpora used by Baniata et al. [22]. It can be shown from Tables 6 and 7 that
the proposed Transformer-based NMT subword system has achieved 57.85 and 57.92
BLUE scores on Maghrebi–MSA, Levantine–MSA translation tasks, respectively. Therefore,
it can be summarized as illustrated in Tables 6–8 that the proposed Transformer-Based
NMT model that utilizes Arabic dialects subword units outperforms the multitask NMT
system with part of speech tags that was proposed by Baniata et al. [22] on Maghrebi–MSA,
Levantine–MSA translation tasks. These results were an indication of the effectiveness of
utilizing subwords units and the usage of the shared vocabulary between Arabic dialect
and MSA in the proposed model. Exploiting subwords’ units of Arabic dialects (Levantine,
Maghrebi, Nile Basin, Gulf and Iraqi) as an extra feature in the Transformer-based machine
translation model is advantageous for word order problem and it generated a high quality
MSA sentences. By using subword units and Self-attention (multi-Head attention), the
proposed model could better represent and obtain more semantic features from AD source
language and solve the grammatical problem for AD: the word ordering issue.
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Table 6. Results of the Transformer-Based NMT Subword Model on corpus used by Baniata [22] for
MAGHREBI–MSA translation task, where SW-E-D is the Subword embedding dimension, FS is the
filter size, EL is the encoder layer, DL is the decoder layer and AH is the attention heads number.

SW-E-D FS EL DL AH BLEU

512 1024 4 4 4 57.06
512 1024 8 8 4 57.41
512 1024 12 12 4 57.85
1024 1024 4 4 4 37.15
1024 1024 4 4 8 49.47
512 512 4 4 4 55.14

Table 7. Results of the Transformer-Based NMT Subword Model on corpus used by Baniata [22] for
LEVANTINE–MSA translation task, where SW-E-D is the Subword embedding dimension, FS is the
filter size, EL is the encoder layer, DL is the decoder layer and AH is the attention heads number.

SW-E-D FS EL DL AH BLEU

512 1024 4 4 4 56.38
512 1024 8 8 4 53.98
512 1024 12 12 4 57.92
1024 1024 4 4 4 44.13
1024 1024 4 4 8 56.49
512 512 4 4 4 55.46

Table 8. Results of Multi-Task NMT Model with POS tagging using FAST Text Embedding that was
proposed by Baniata [22].

Model Pairs Epochs Accuracy BLEU

NMT+POS_LEV LEV–MSA 90 - 43.00
NMT+POS_LEV MSA-ENG 50 - 30.00

POS_LEV POS_LEV 40 98% -
NMT+POS_MAG MAG–MSA 50 - 34.00
NMT+POS_MAG MSA-ENG 30 - 29.00

POS_MAG POS_MAG 20 99% -

5.4.2. Human Evaluation

The human evaluation experiments confirm the results that were obtained by the
automatic evaluation. The pilot rating experiments were selected [15]. Participants were
requested to evaluate the translations on a 1 to 7 Likert metric. We evaluated the translation
quality for LEV–MSA, MAG–MSA, Nile–MSA, Gulf–MSA and Iraqi–MSA tasks asking
seven speakers who know modern standard Arabic and understand every Arabic vernacu-
lar to evaluate sentences generated from the proposed transformer NMT subword model.
We offered to the speakers a segment in LEV, MAG, Gulf, Nile and Iraqi and one translation
in MSA for each Arabic dialect. We selected at random 100 segments and divided them
into five subsets of twenty segments each. We give every annotator a subset and request
them to evaluate the translations considering adequacy and fluency applying Likert metric
from 1 to 7. The average results that were produced through every model using pilot rating
experiments are illustrated in Tables 9 and 10. The average results pointed out that native
speakers have positive and real judgment regarding the translations generated through the
proposed Transformer-Based NMT subword model. The average score on the LEV–MSA
translation task captured by multitask NMT part of speech tags system that was proposed
by Baniata et al. [22] was 5.9. Furthermore, the average score on the MAG–MSA translation
task captured through multitask NMT with part of speech tags system was 4.4. The av-
erage score on LEV–MSA translation task captured through the Transformer-Based NMT
subword model is 6.0 and the average score obtained for the MAG–MSA is 6.2. Moreover,
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the average score for Gulf–MSA, Nile–MSA and Iraqi–MSA translation tasks obtained by
the proposed model is 5.85, 5.8, 6.10, respectively. The findings of pilot rating experiments
give confirmation that the Transformer-Based NMT subword model (T-NMT-Subword)
generates better translation quality than the multitask NMT with part of speech tags system
for all translation tasks.

Table 9. Human Evaluation Scores -Pilot Rating Experiments (PRE).

Model Pairs Average Score

Transformer-NMT-Subword LEV–MSA 6.35
Transformer-NMT-Subword MAG–MSA 6.3
Transformer-NMT-Subword Gulf–MSA 5.85
Transformer-NMT-Subword Nile–MSA 5.8
Transformer-NMT-Subword IRQ–MSA 6.1

Table 10. Human Evaluation Scores -PRE for Levantine Arabic (LEV) and Maghrebi Arabic (MAG).

Model Pairs Average Score

Transformer-NMT-Subword LEV–MSA 6.0
Transformer-NMT-Subword MAG–MSA 6.2

Multi-Task Learning-NMT [22] LEV–MSA 1.4
Multi-Task Learning-NMT [22] MAG–MSA 1.3

MTL-NMT+POS [22] LEV-MAG 5.9
MTL-NMT+POS [22] MAG–MSA 4.4

6. Analysis

This analysis clarifies the positive effect of utilizing subword units on Arabic vernacu-
lars to modern standard Arabic translation task efficiency. Table 11 shows sample transla-
tions from the Transformer-based NMT subword model on the LEV–MSA, MAG–MSA,
Gulf–MSA, Nile–MSA, and Iraqi–MSA translation tasks. Due to the lack of standardization
for the Arabic vernaculars, Conventional NMT methods for Arabic dialects are incapable
of translating parts of input source sentences. Affixes and clitics are not obtained and
captured effectively without the need to utilize the Subword units and multi-head attention.
In Table 11, the proposed Transformer-Based NMT subword model translated 100% of
Maghrebi vernacular sentences correctly. For Levantine Arabic, the proposed model trans-
lated 99% of whole Levantine Arabic phrases properly with the exact meaning regardless
the word !����"#� �$%�“some friends” in the generated sentence is not the same word

&�
 �����"�“my friends” in the reference sentence, but it gives the same meaning. For the Gulf

Arabic, the proposed model was able to translate 95% of the Gulf Arabic sentence fluently
except the words

�'( )*�+ �, -)�,“as you see “, the proposed model could not translate them

well and translated it to �.(/�� ��0“it will not be “rather than ���� �����“you see”. Further-
more, the Transformer-based NMT subword model achieves the overall best translation
performance for Nile–Arabic and Iraqi–Arabic sentences. The translation quality of the
suggested Transformer-Based NMT subword system for Arabic vernaculars has enhanced
in comparison to Multitask NMT system (with POS tags) that was recently suggested
by Baniata et al. [22] that applied experiments on the same corpus as seen in Table 12.
The proposed Transformer-Based NMT subword model translated the source sentences of
Maghrebi dialect and Levantine dialect to MSA fluently and with high translation quality
without any translation mistakes.

233



Sensors 2021, 21, 6509

Table 11. Translation Examples for MAG, LEV, NILE, GULF and IRQ.

Source Language: MAG (Maghrebi) �'� ��� -1 �� 2"� � �� �� �'� ��� ���
)30 � 4�5 �6�78� � �9��

English Translation (MAG) Yeah, but that’s so much and I ate lot

Target Language: MSA -% �:0�� ��%� ); ��:0� ��9 �<�)�� � ��5 ��/0� -9 �
Transformer-NMT Subword Model -% �:0�� ��%� ); ��:0� ��9 �<�)�� � ��5 ��/0� -9 �
English translation for output of the
Transformer-NMT Subword model Yes, but that’s too much and I’m already full

Source Language: LEV (Levantine) ��= ��
>? @, � �� �

English Translation (LEV) I am with my dudes

Target Language: MSA &�
 �����"� @, ��

�� �� �

Transformer-NMT Subword Model !����"#� �$%� @, � �� �
English translation for output of the
Transformer-NMT Subword model I am with some Friends

Source Language: GULF �A�B �6(; ��
��5 �'( )*�+ �, -)�, C D���� ����� E ���(B E����

English Translation (GULF) You got your passport and your ticket? as you see,
this is a duty-free market

Target Language: MSA

�7 ��, � ��F �� ���� ����� C �A�� ����0 �� � �:*0� ���(B D%, -5
G(;�0� ��, & �:%,

Transformer-NMT Subword Model
�7 ��, E���� �.(/�� ��0 C D���� ����� E� �:; ���(B D���0 -5

G(;�0� ��, & �:%,

English translation for output of the
Transformer-NMT Subword model

Do you have your passport and ticket? You see,
this is a duty-free shop

Source Language: Nile (Egypt, Sudan) �.�� ���80 ��	
 �H, -I�� �����
English Translation (Nile) I wanna do a call to Japan

Target Language: MSA �.�� ���0 �� ��� �:���5 J�K�+#� �����
Transformer-NMT Subword Model �.�� ���0 �� ��� �:���5 J�K�+#� �����
English translation for output of the
Transformer-NMT Subword model I want to do a phone call to Japan

Source Language: IRQ (Iraqi) )L81 ��
���� �4��� ��

�=�%,� �A4��< � LB�

English Translation (IRQ) I feel cold and my stomach is hurting me a lot

Target Language: MSA ��9 ��
�=�%, ��

��	
  (��� �A4��< � �% );�

Transformer-NMT Subword Model ��9 ��
�=�%, ��

��	
  (��� �A4��< � �% );�

English translation for output of the
Transformer-NMT Subword model I feel cold and my stomach hurts so much
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Table 12. Translation Examples for Maghrebi Arabic and Levantine Arabic, Baniata [22] Corpus.

Source Language: MAG (Maghrebi)
("� �9 (5 � ��B �' ���:���M0� 4�5 N ��7

�K�+ ��
��8� �� ��

�� �� �O�
D��8� )P2 �7����, � �,#� 4�5 ���:��

English Translation (MAG)
If you accept to sacrifice in this way, he is also

obliged to appreciate this matter and not abandon
you

Target Language: MSA
�Q� �< �� D0 ��� (F �� ���:���M0� A ��RS ��7

�K�+ �.�� ��8� �� ����� � �4 �
D ��� �Q �7���� #� � �,#� � ��5 ���:�� �.�

Transformer-NMT Subword Model
�Q� �< �� D0 ��� (F �� ���:���M0� A ��RS ��7

�K�+ �.�� ��8� �� ����� � �4 �
D ��� �Q �7���� #� � �,#� � ��5 ���:�� �.�

English translation for output of the
Transformer-NMT Subword model

If you accept to sacrifice in this way, he is also
obliged to appreciate this matter and not abandon

you

Source Language: LEV (Levantine)
�%� L+ J�#� G(��0 � ��

�� ��7�� ��, �M%0� ���TU�� �� �� �R �V�TU�� A�
D��5

English Translation (LEV) yeah, it smells like perfume, good on the first day,
but later on

Target Language: MSA
�W�� �� ��/0 J�#� G(��0 � ��

�� �A���B �M%0� ���T U ��� �R �V�T U �� X%��
�%�

Transformer-NMT Subword Model
�W�� �� ��/0 J�#� G(��0 � ��

�� �A���B �M%0� ���T U ��� �R �V�T U �� X%��
�%�

English translation for output of the
Transformer-NMT Subword model

Yes, it smells as good as perfume on the first day, but
later on

The influence of utilizing subword units and shared vocabulary between Arabic
dialects and MSA and applying the self-attention mechanism on translation quality for Ara-
bic vernaculars is significantly evident. The proposed Transformer-Based NMT Subword
model is well-suited to handle the issue of free word ordering and create a right context
and a correct order for the target language sentences, as illustrated in Tables 11 and 12.
Furthermore, the proposed system can obtain excellent translation effectiveness with vari-
ous language pairs, as illustrated in Tables 11 and 12 for MAG–MSA, LEV–MSA, Nile–MSA,
Gulf–MSA and IRQ–MSA tasks. The proposed model was evaluated on the same parallel
corpus that was applied by Baniata et al. [22] for Maghrebi Arabic and Levantine Arabic.
Compared to the multitask NMT with part of speech tags system that was trained on
the same parallel corpus, the suggested Transformer NMT subword system scored an
effectiveness of 56.49 BLEU score for translating from Levantine Arabic vernacular to
MSA and 57.06 BLEU score for translating from Maghrebi Arabic vernacular to MSA. The
findings show that the proposed Transformer NMT subword model performs outstanding
translation quality than the multitask NMT with part of speech (POS) tagging system by
evaluating the systems using BLEU score and experiments of human assessment.

The Transformer-based NMT subword model obtained remarkable results BLEU
score for all Arabic dialects in comparison with various NMT systems, as shown in
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Figures 4 and 5. It should be noted that the representation of source language learned via
the proposed model significantly improves the translation effectiveness for language pairs.
Generally, the suggested model is capable to produce fluent sentences in MSA language
and transfer the information regarding the subject, object and verb for a free word order
language such as Arabic vernacular. This section presents more analysis to know the effect
of utilizing subword units on the performance of the proposed Transformer NMT subword
system. This analysis includes (a) contribution of different numbers of encoder layers to the
translation effectiveness of the proposed system (b) impact of translation quality regarding
source sentence length, (c) impact of varying beam size concerning the effectiveness of
the suggested model, (d) the impact of the encoder’s self-attention and, (e) quantitative
analysis of the proposed model. These analyses are applied to the MAG–MSA because of
the dataset’s size and the number of layers used to train the model.

Figure 4. Levantine Arabic-MSA BLEU Score with different models, where C 1 is a random embed-
ding, C 2 a pre-trained/Fast-text, C 3 a pre-trained/Polyglot.

Figure 5. Maghrebi Arabic-MSA BLEU Score with different models, where C 1 is a random embed-
ding, C 2 a pre-trained/Fast-text, C 3 a pre-trained/Polyglot.
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6.1. Impact of Hayperparameter n

Tables 1–7 show that performing the Transformer-Based NMT subword model across
various source representations obtained from several encoding layers significantly enhances
the performance of the proposed model for all Arabic vernaculars. n represent the number
of encoding layers in the proposed Transformer-Based NMT subword model. This part
studies the impact of varying the value n (using only the representations from top n
encoding layers). The proposed Transformer based NMT subword model is trained with
various values of n where n is set to 4, 8 and 12. Where n = 4 indicates a setup for a simple
model, n = 8 indicates a configuration for a medium-sized model and n = 8 indicates
a configuration for a large model. As seen from Table 2, for example, in the Maghrebi
Arabic-MSA task (and in all translation tasks), there is (in most cases) a significant change
in BLEU score as the value of n changes.

6.2. Length of Source Sentence

Obtaining contextual information and long-distance dependencies between the source
sentence’s tokens can considerably increase the performance of longer sentences’ transla-
tion. As mentioned by (Luong et al. [47]) sentences that have the same lengths (number of
source tokens) are collected together. The grouping is arranged by the lengths of source
sentences (the number of subword tokens in every source sentence) over the MAG–MSA
test set. We selected the MAG–MSA translation task to investigate the translation quality
of long sentences because of the large size of the MAG–MSA corpus. The comparison in
this research project is based upon these lengths: >50, 40–50, 30–40, 20–30, 10–20 and <10.
Regarding every length interval, BLEU score metric is computed for the output of the sug-
gested Transformer-Based NMT subword model. As can be noted in Figure 6, the proposed
model performance improves while the input sentence lengths increase, particularly for
the lengths between 40 and 50 subword tokens and for the lengths larger than 50 subword
tokens with 61.76 and 62.17 BLEU scores, respectively. The proposed model, through the
use of self-attention sublayers, is capable of modeling or obtaining contextual knowledge
and dependencies within the tokens regardless of their distance or location within Arabic
dialect sentence input. However, the performance of the suggested model decreased for
very short sentences that have lengths smaller than 10 (in terms of the number of subword
tokens). The performance increased for sentences with lengths larger than 50 (in terms of
the number of subword tokens). Moreover, the proposed model performed inadequately
on few numbers of short sentences with length less than 10 subword tokens with the
lowest BLEU score (23.37). This occurs because these very short AD sequences contain
only subword tokens (suffixes, affixes and morphemes) and they are cannot be aligned to
the corresponding words in the target language. Overall, the performance of the proposed
Transformer-Based NMT subword model obtained across the different groups motivates
the hypothesis that employing subword units and using shared vocabulary between source
language (Arabic dialect) and target language (MSA) enhances the encoder’s self-attention
sublayers’ effectiveness in effectively capturing the global dependencies between words in
the input sentences.
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Figure 6. BLEU Score on MAG–MSA test dataset for the Transformer-NMT Subword model with
respect to different source sentence length.

6.3. Beam Size Evaluation

A comparison is conducted for the performance of the proposed model by modifying
the beam size. The experiments are carried out based on the Transformer NMT subword
model for Arabic vernaculars. We employed Wordpiece model for subword tokenization.
Beam size has a large impact on the decoding speed (as words per second) and translation
quality (in BLEU). Table 13 shows the outcomes of the experiments on the MAG–MSA
translation task and results show that the optimum performance (in BLEU) of the proposed
model is achieved when beam size has the value 6 and the fastest decoding speed of the
model is obtained with beam size 6.

Table 13. Change in BLEU Score According to Beam Size.

Beam Size BLEU

1 52.82
2 58.10
3 59.69
4 60.31
5 61.70
6 65.66
7 61.22
8 61.35
9 60.72

10 61.36

6.4. The Effect of the Encoder Self Attention

The encoding layers’ effectiveness is determined by the capability of several heads of
the multi-head attention sub-layer placed inside each layer to capture important structural
information. These attention heads, to varying degrees, capture structural information.
As remarked by Raganato et al. [48] and Vig et al. [49], some of the heads in multi-head
attention sublayer hold the long-distance relations among input token. Other heads in the
multi-head attention sub-layer hold the short distance relations among input tokens. This
makes the suggested Transformer-Based NMT Subword model obtain the structural and
fundamental characteristics efficiently for the input source sentence of Arabic vernacular
to increase the effectiveness [48]. As previously stated, the use of Subword units influ-
ences how the source language information is handled through the layers of the encoder.
As mentioned by Vig et al. [49], this approach is examined through computing two things;

238



Sensors 2021, 21, 6509

the attention entropy and the attention distance spanned through several attention heads

within every encoding layer multi-head attention sublayer. The mean distance Dl
h that is

spanned by attention head h for encoding layer l is calculated a weighted average distance
within tokens pairs every sentence of a given corpus X. So:

Dl
h =

∑x∈X ∑
|x|
i=1 ∑i

y=1 wh
i,j·(i − j)

∑x∈X ∑
|x|
i=1 ∑i

y=1 wh
i,j

(19)

where wh
i,j is attention weight from the input token xi to xj for attention head h.i and j

signifies the tokens’ places xi and xj in source sentences. By performing aggregation for the

attention distance for every head, the mean attention distance spanned Dl with reference
to the encoding layer l is computed as:

Dl
=

1
Nh

·
Nh

∑
h=1

Dl
h (20)

where Nh indicates the number of attention heads that are used within the layer. Mean
attention distance provides no information about how the attention weight is distributed
through the input tokens for a particular attention head. Attention head that has greater
mean attention distance may concentrate on sequences of same tokens that are sepa-
rated [49,50]. To estimate the dispersion or concentration pattern for attention head h inside
layer l for input token xi, entropy of attention distribution [50], El

h (xi) for attention head h
is calculated as:

El
h (xi) = −

i

∑
j=1

wh
i,j log wh

i,j (21)

The mean entropy of the attention distribution for encoding layer l is computed
similarly to the attention distance spanned as:

El (xi) =
1

Nh

Nh

∑
h=1

El
h (xi) (22)

Attention heads with larger entropy have a more distributed attention pattern, whereas
attention heads with a lower entropy have a more focused attention weight distribution.
Attention distance and the entropy of attention analysis are conducted based on the at-
tention weights produced for a random 2000 sentences from the MAG–MSA task’s test
split (PMM-MAG Corpus). Figure 7 presents mean attention distance span and the mean
entropy of attention distribution for every attention head for every encoding layer of the
proposed Transformer NMT subword model for Arabic vernaculars. As remarked, some
heads focus on short-distance relations among input tokens, other self-attention heads
obtain the long-distance relations between input tokens. Furthermore, the entropy of the
attention distribution changes through layers. Moreover, the entropy of the attention distri-
bution change for the attention heads within the same layer. The mean average attention
distance and entropy for all heads in the multi-head attention through the encoder layers
are shown in Figure 8. As shown in Figure 7, for the suggested model, most of the attention
heads that have a high mean attention span and much more stable values of attention
distribution are located in fourth layer. Despite, a large mean attention distance does not
indicate stable attention distribution. The preceding layers have multiple attention heads
that have high value of distance span but significantly less consistent attention weights
distribution. For instance, in the second layer, attention heads 1 and 4 have the largest
mean attention spans (3.09 and 3.24, respectively), but the lowest mean entropy scores
(0.22 and 0.23). As Vig et al. [49] highlight, attention heads that have large value of mean
attention distance span concentrate their attention to word in repeated sentences that
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occurs in various places within the source sentence. This can justify their reduced entropy
of weight distribution over the sequence of input tokens. Attention heads with a stable or
less stable weight distribution and low attention distance span focus significantly more
on nearby tokens. Those attention heads that have changeable mean attention distance
and changeable entropy enable suggested transformer NMT subword model for Arabic
vernaculars to learn efficiently changeable structural information across its layers. This
demonstrates the Transformer-Based architecture’s superiority over seq2seq architectures
such as RNN and CNN.

Figure 7. Variation of mean attention distance span and attention distribution entropy with respect to the encoding layers and
the attention heads for the suggested model.

Figure 8. Variation of the average mean attention distance and variation of the average entropy of head attention distribution
with respect to each encoder layer for the suggested model.

In the proposed model, the Subword units have a strong influence on multi-head
attention sub-layer inside the encoding layer. As illustrated in Figures 7 and 8, exposing
the encoder layers to the decoder network, enables the encoder subnetwork to learn
the source information in a more customized manner. Figure 8 illustrates the change in
average mean attention distance span and entropy of the attention weight distribution
for different attention heads over various layers of the encoder. As illustrated in Figure
8, the proposed Transformer based subword model concentrated the attention heads that
has a shorter attention span over the layers l ≤ 3. These layers are employed to learn
the short rang contextual and local knowledge within the neighborhood of input source
tokens. The upper layers learn the long-distance interaction within the input source
tokens. Generally, utilizing subword units explained how the source information (Arabic
dialects) is captured over several attention heads and layers in the encoder as revealed
by the entropy of attention weight distribution and attention distance. This improves the
proposed Transformer-based NMT subword model’s performance at learning the source
semantic information that is required to enhance the quality of translation.
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6.5. Quantitative Analysis

The proposed model provides a method of examining the alignment of words in
generated translation with words in source sentence. This method is performed through
the visualization of annotation weights as illustrated in Figure 9. Every row of the matrix
in every plot indicates the weights linked with the annotations where the x-axis represents
the input sentence (Maghrebi Arabic) and the y-axis represents the generated sentence
in MSA. This reveals which locations in the source sentence were rated more signifi-
cant when the target word was generated. As illustrated in Figure 9, the alignment of
words between Maghrebi Arabic (MAG) and MSA is primarily monotonic. Along the
diagonals of each matrix, we see strong weights. Although, we see several non-trivial,
non-monotonic alignments. Typically, nouns and adjectives are ordered differently in MAG
and MSA, as illustrated in the upper left part of Figure 9. From Figure 9, we see that the
model correctly translates a MAG dialect sentence ( ��7	YZ (0 ��= �� [�� �:�� ���:�� ��� ���8� �/;�)
“it has been closed from outside, can you open my door please” into MSA sentence
(C D8 �K �� ��, ��= �� [�� �:�� �.� ��/	\� -5 N �� 0 � ��Q� �]8 ��� ��:0) “the door has been closed while I am

inside, can you open my door please”. The proposed transformer-based NMT subword
model was able to correctly align ( ��� ���8� �/;�) “it has been closed from outside” with

(N �� 0 � ��Q� �]8 ��� ��:0) which means “the door has been closed”, the proposed model was able

to understand the contextual clues (N �� 0 �) “the door” of Maghrebi Arabic and translated
the MAG sentence to MSA correctly. Additionally, the model often handles source and
target sentences of variable length. Furthermore, sub-word units approach can be applied
on various Arabic NLP tasks such as sentiment analysis [51] and text summarization.

Figure 9. (a–d) Four Sample Alignments.

7. Conclusions

This research project introduced a Transformer-Based NMT model for Arabic dialects
that utilize Subword units. Through training the suggested model on translation tasks
from diverse Arabic dialects to MSA, the model’s translation performance was significantly
improved. Utilizing various source representations captured by stacked encoding layers
enhance the efficiency of the transformer NMT subword system. The findings of this
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research project confirm that the Transformer NMT subword model that exploits subword
units enhanced the translation BLEU score for MAG–MSA, LEV–MSA, Nile–MSA, Gulf–
MSA and IRQ–MSA tasks. The utilization of subword units by using the Wordpiece
Model showed that this method is promising and significant for low-resource languages
such as Arabic vernaculars. Additionally, using a changeable number of heads in self
attention sublayer and training the model with a different number of encoders and decoders
improved the quality of translation from Arabic vernaculars to modern standard Arabic.
Experimental results on MAG–MSA, LEV–MSA, Nile–MSA, Gulf–MSA and IRQ–MSA
translation tasks showed that the proposed model improved the BLEU score’s effectiveness
in comparison to other NMT systems. However, the experimental analysis performed
reveals that performance gain is reliant on the value of the number of encoding layers
considered. Additional analysis reports that increasing the layers of encoder and decoder
subnetworks adjust how the local and general contextual knowledge is obtained and
captured by employing multi-head attention sublayer used within each encoding layer. The
current proposed Transformer-Based NMT subword model can deal with the issue of low
availability of Arabic dialects training data. Additionally, the suggested system addressed
the Arabic dialect’s grammatical problem; free word ordering. The proposed model with
subword units’ utilization is effective and suitable to perform machine translation for low
resource languages such as Arabic vernaculars.
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