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Non-Invasive Breath Analysis for Disease Screening
and Diagnoses

Hyun Jin Jung and Ronny Priefer *

Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Sciences University,
Boston, MA 02115, USA; hjung1@stu.mcphs.edu
* Correspondence: ronny.priefer@mcphs.edu

Lower respiratory infections are a deadly communicable disease ranked as the fourth
leading cause of death globally, with nearly 2.6 million succumbing annually [1]. Acute
lower respiratory tract infections in children have sadly been shown to increase the risk
of developing a chronic respiratory disease later in life. Additionally, respiratory tract
infections caused by influenza kill between 250,000 and 500,000 people globally and costs
between USD 71 and 167 billion annually [2]. Early detection and accurate diagnosis of
infectious disease are important to ultimately improve the effectiveness of treatments,
determine the correct use of antibiotics, avoid long-term complications, and help prevent
or stop an outbreak.

Many different laboratory tests are currently used to identify infectious microorgan-
isms. These include tests on blood, urine, tissue, cerebrospinal fluid, stool, sputum, and
mucus from the nose or throat, as well as fluid from the genital area [3]. These existing
methods can also be divided into either invasive or non-invasive. Invasive methods include
esophagogastroduodenoscopy (EGD), with collection for gastric biopsies and subsequent
histological staining. It is often used to detect Helicobacter pylori infection in the gut. This
is expensive, causes patient discomfort, and sometimes yields false negative results due
to sampling errors. However, there are a growing number of non-invasive methods for
detecting H. pylori infection, such as serological, fecal antigen, and 13C-urea breath testing
(13C-UBT) [4,5].

Utilizing the breath to screen or diagnose diseases has become increasingly popular.
Human-exhaled breath contains over 3000 volatile organic compounds (VOCs). Breath
VOCs are produced by our own biologic processes, as well as by microorganisms as part of
their metabolism. These can be detected and quantified utilizing various instrumentations,
such as gas chromatography/mass spectrometry or eNose detection [6]. These and other
advanced technologies specifically examine the volatile metabolic fingerprints generated by
our body and its microorganism flora in order to discriminate between different aliments.
Thus, VOCs are being evaluated extensively as potential biomarkers and as a non-invasive
approach to analyze a multitude of diseases, such as diabetes, lactose intolerance, cancer,
infections, [7–9] and/or lifestyle choices, such as keto-diet [10] or cannabis use [11]. For
example, Gastric Emptying Breath Test (GEBT), H2 breath monitoring, and NIOX® are
FDA-approved tests [7,12,13]. GEBT is used to diagnose gastroparesis, H2 breath analy-
sis is used for the diagnosis of lactose intolerance [9], and NIOX measures markers for
airway inflammation. By identifying disease-specific biomarkers, early detection could
prevent serious complications, lowering mortality rates and reducing the unnecessary use
of medicines.

With the fantastic advances in technology, especially nanotechnology, the opportunity
to use these in the realm of healthcare, specifically to detect small quantities of biomarkers, is
an obvious next step. This Special Issue, “Non-invasive Medical Devices for Detection and
Monitoring within Healthcare”, is designed not only to showcase what has already been
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accomplished to improve detection efficacy, but also the translation of these advancements
into improving patient experiences and outcomes.
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Abstract: The COVID-19 pandemic has changed people’s lives and has brought society to a sudden
standstill, with lockdowns and social distancing as the preferred preventative measures. To lift these
measurements and reduce society’s burden, developing an easy-to-use, rapid, and portable system to
detect SARS-CoV-2 is mandatory. To this end, we developed a portable and semi-automated device
for SARS-CoV-2 detection based on reverse transcription loop-mediated isothermal amplification
followed by a CRISPR/Cas12a reaction. The device contains a heater element mounted on a printed
circuit board, a cooler fan, a proportional integral derivative controller to control the temperature,
and designated areas for 0.2 mL Eppendorf® PCR tubes. Our system has a limit of detection of
35 copies of the virus per microliter, which is significant and has the capability of being used in
crisis centers, mobile laboratories, remote locations, or airports to diagnose individuals infected
with SARS-CoV-2. We believe the current methodology that we have implemented in this article is
beneficial for the early screening of infectious diseases, in which fast screening with high accuracy
is necessary.

Keywords: SARS-CoV-2; COVID-19; point of care testing; rapid diagnostics

1. Introduction

The SARS-CoV-2 virus causes COVID-19, a serious and life-threatening disease with a
wide spectrum of symptoms, ranging from fever and cough to dyspnea, and in severe cases,
resulting in intensive care unit (ICU) admission of patients, organ failure, and death [1,2].
The continuing spread of COVID-19 and its high transmissibility have become a major
concern and prompted the rapid development of diagnostic methods. Conventional
diagnostic methods such as quantitative reverse transcription polymerase chain reaction
(RT-qPCR) have been developed and are used routinely for SARS-CoV-2 detection [3].
Although RT-qPCR is the gold standard technique to diagnose SARS-CoV-2, laboratories
with RT-qPCR capabilities are often centralized, making this method less suitable in settings
such as aged care facilities and ports of entry where on-site screening is required [4].
In addition, other diagnostic methods have been developed based on the detection of
antibodies and antigens, which are simple, quick, and cheap and do not necessitate the
use of specific instrumentation or trained users [5]. Since antibodies against SARS-CoV-
2 take days to weeks to be produced in the patient’s body, antigen-based methods are

Biosensors 2021, 11, 369. https://doi.org/10.3390/bios11100369 https://www.mdpi.com/journal/biosensors3
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not recommended to diagnose acute COVID-19 cases. Moreover, these diagnostic tests
targeting the viral proteins are usually less sensitive than RT-qPCR tests detecting the viral
nucleic acids. Therefore, these tests may not be considered highly sensitive methods for
early detection of COVID-19 [6].

Recent studies have focused on the development of integrated molecular diagnostic
devices based on microfabrication technologies to provide rapid and reliable methods
for SARS-CoV-2 detection, enabling faster clinical decisions [7]. In this study, we report
the development and validation of a portable, integrated, and semi-automated device
for in vitro COVID-19 molecular diagnosis. This device involves nucleic acid reverse
transcription and isothermal amplification using loop-mediated amplification (RT-LAMP)
of viral ribonucleic acid (RNA) extracted from nasopharyngeal or oropharyngeal swabs
followed by Cas12a detection and readout with lateral flow assay (LFA) strips. Given
the low reagent consumption, the compact size, and integration capability with a power
bank, this wireless device can be conveniently used in crisis centers, mobile laboratories,
remote locations, or airports to diagnose individuals infected with SARS-CoV-2. Our device
consists of a small thermocycler machine integrated into a portable box containing sample
tubes that can be potentially used for simultaneous testing of five tests in just 35 min with
minimal hands-on processing.

A total of 10 samples were collected from Serology and Virology laboratories at the
Prince of Wales Adult Hospital (Sydney, NSW, Australia) under the Biosafety (ETH-5127)
protocol. Each patient, who had symptoms of respiratory disease and a positive RT-qPCR
result for COVID-19, participated in this study voluntarily after signing an informed con-
sent form. Next, the patient’s nasopharyngeal or oropharyngeal swab sample was collected
in the Copan universal transport medium for viruses and vortexed at maximum speed
for 1–2 min followed by passing through the 0.45 μm Minisart® filter (Sartorius Stedim
Biotech, Goettingen, Germany). Then viral RNA was extracted from 200 μL of samples
using the MagNA Pure LC Total Nucleic Acid Isolation Kit (Roche Diagnostics, Sydney,
Australia) according to the manufacturer’s instructions. Then, the purity and quantity of
extracted RNA samples were evaluated using NanoDrop (One UV-Vis Spectrophotometer,
Thermofisher Scientific, Waltham, MA, USA) and stored at −80 ◦C for further analysis.
First, we set the RT-LAMP primers to target the E (envelope) and N (nucleoprotein) genes
of SARS-CoV-2, covering the regions followed by protocols validated by the World Health
Organization (WHO) and US Centers for Disease Control and Prevention (CDC) assays,
as well as the RNase P gene as a control [8]. To this aim, the RT-Lamp reaction for the
preamplification of viral RNA has been performed by preparing 25 μL of a reaction mix
containing the WarmStart LAMP master mix (2×), fluorescent dye (50×), and 4 μM LAMP
primer mix followed by incubation at 65 ◦C for 30 min [9]. Then, we set the Cas12a gRNAs
to detect the control gene, E gene, and specifically the N gene in SARS-CoV-2 [8]. We con-
ducted a series of experiments using a higher concentration of SARS-CoV-2 RNA (1 × 105

copies/μL) to assess the functionality of the RT-LAMP reactions in a q-PCR machine (CFX
Connect™ Real-Time PCR System. Bio-Rad, Hercules, CA, USA). Using this q-PCR appara-
tus and fluorescent intercalating dye in the first place enabled us to track the RT-LAMP
reaction in real-time and optimize the optimal temperature and time for SARS-CoV-2 RNA
gene target amplification. The amplification was performed at a temperature gradient of
58 to 70 ◦C for 30 min. The optimal amplification proceeded at 65 ◦C for 25 min (Figure
1A), and no amplification was observed in negative samples (containing all the reaction
materials except viral RNA). We then evaluated the performance of the detection step by
combining pre-amplified viral and control RNA targets with the Cas12a-gRNA ribonucleo-
protein (RNP) assays followed by the LFA strips readout (Figure 1B). Each pre-amplified
target was added to a separate tube containing a specific Cas12a-gRNA and a FAM-biotin
reporter molecule, prepared as suggested by the assay manufacturer (New England Biolabs,
Ipswich, MA, USA) [9]. After incubation for 10 min at 37 ◦C, the completed reaction was
read out using LFA strips placed into the tubes, showing the results after 2 min.
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Figure 1. (A) RT-LAMP reaction performed in an RT-qPCR machine using N, E, and RNase P primers at an optimal
temperature and time. (B) Schematic illustration of CRISPR-Cas12a reaction on pre-amplified SARS-CoV-2 target genes,
followed by visualization with lateral flow strips. (C) The detection limit of the RT-qPCR assay (left) using PCR machine
and RT-LAMP/Cas12a assay (right) using clinical samples.

We observed concordance between our results from fluorescence-based readouts for
positive/negative RT-LAMP samples in q-PCR and those from lateral flow strips by the
appearance of one (negative sample) or two (positive sample) lines. With the presence of
N, E, and Rnase P target genes amplified during the RT-LAMP step, Cas12a can specifically
bind to targets using its gRNAs, resulting in the activation of indiscriminate Cas12a
cleavage and cutting of the FAM-biotin reporter molecules. Visualization of the Cas12a
cleavage activity was achieved by applying LFA strips designed to capture FAM- and
Biotin-tagged nucleic acids (Milenia HybriDetect 1, TwistDx, Cambridge, UK). For the
positive samples, two lines were observed on the lateral flow strips: Uncut reporters
captured at the first line (control) and cut reporters captured at the second line (test); while
in negative samples, only one line (control) of captured uncut reporters was detected.

After validating the feasibility of our approach for detecting the SARS-CoV-2 virus,
we determined the limit of detection (LoD) in a controlled situation using lab-based
instruments before the final design and production of our portable RT-LAMP/CRISPR

5
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machine for rapid COVID-19 screening. First, we quantified the number of viral copies
in one sample using q-PCR (N = 3) after preparing a standard curve using a GenScript
RT-qPCR detection assay. The standard curve was prepared using six dilutions of N-
positive control plasmids (3 × 105 copies/μL) with three replicates at each dilution. After
determining the RNA copy numbers in our selected sample, we prepared a series of diluted
samples with concentrations of 35,000, 3500, 350, 35, 15, 5, 1, and 0.02 copies per μL. The
copy number of each sample was confirmed and the LoD of commercial RT-qPCR assay
for SARS-CoV-2 detection was determined using the cycle threshold (Ct) values (Figure
1C). Finally, we determined the LoD of the RT-LAMP/Cas12a assay by assessing the ability
to generate visible test and control lines on lateral flow strips after testing three replicates
of all eight diluted samples. The minimum copy numbers that could be detected using the
RT-qPCR assay was 5 copies per μL (consistent in all 3 replicates), compared with 35 copies
per μL of targets with the RT-LAMP/CRISPR-Cas12a approach (Figure 1C).

Having shown the proof of concept of our approach in the laboratory setting, modifi-
cations were made to build a portable device to be utilized for SARS-CoV-2 point-of-care
testing. The RT-LAMP step requires a heater that should have accurate thermal stability, i.e.,
the temperature at each step should be accurate and consistent without variation. Although
laboratory instruments for thermal control of various tubes and vessels exist, these facilities
are often bulky and expensive. Moreover, in some of these facilities, condensation occurs
on the tube walls and lid, resulting in performance loss and reduced efficiency [10]. As a
result, they are not favorable for point-of-care devices, especially in resource-poor settings.
Although there are ongoing efforts to improve lab-scale heaters’ temperature uniformity,
this feature is yet to be optimized and is not fully functional [11]. To address this issue and
make the process semi-automated, we designed a portable machine for accurate control of
the heating process during the experiment. In our design, a heater element is mounted on
a printed circuit board (PCB). A small fan that is directly connected to the board was used
to reduce the temperature. The device is able to reach any temperatures within the range
of 20 to 95 ◦C. The system’s temperature is controlled and regulated using a proportional
integral derivative (PID) controller, which is among the most stable, reliable, and accurate
controllers and uses a loop feedback approach to control the system [12]. These components
were mounted on a PCB board, programmed using Python and layout software packages.
Tubes with reagents were placed on the heater with a closed lid for better temperature
control and enhanced efficiency. The device operates on power obtained from a USB Type-C
connection, meaning that it can be connected to a USB port of any computer, Power Bank,
or battery with a minimum rating of 2A. The device can fit in a single hand or a pocket,
with approximate dimensions of 3.5 cm × 3 cm × 13 cm, and can handle up to 10 samples
in the sample position and reaction zone (Figure 2). Python programing of the system
enabled us to turn on the device at a specific time and increase or decrease the temperature
of the system at a specific point. This means that amplification and detection in our system
are essentially automated (except for tube handling). Because the PID controller adjusts
the temperature, and the reaction zone (Figure 2) is relatively small, there is no heat loss
or temperature variation in the system, with minimum condensation on tube lids and
walls. To decrease the temperature for the CRISPR/Cas12a reaction, the fan reduces the
temperature of the RT-LAMP step to 37 ◦C directly via the PID controller.
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Figure 2. Schematic representation of the experimental procedure for the detection of SARS-CoV-
2 with a portable device using an RT-LAMP/CRISPR-Cas12a approach. The workflow includes
SARS-CoV-2 virus sampling from confirmed patients, virus deactivation and RNA extraction, RNA
transcription and amplification by RT-LAMP, Cas12a reaction, and lateral flow strips visualization.
Our portable device, along with its integrated electronic board, is demonstrated at the center of the
figure. Samples in red and green are food dye for better illustration.

We have repeated SARS-CoV-2 detection for all 10 patient samples using the modified
portable device. The device was connected to a 2600 mAh Cellularline Power Bank, which
has an estimated battery life of up to 10 h without the need of recharging, representing
a significant step forward for a point-of-care diagnostic device. For the RT-LAMP stage,
the temperature was set at 65 ◦C for 25 min. After completing this stage, the temperature
was set at 37 ◦C for 10 min for the CRISPR/Cas12a reaction. To minimize the risk of
cross-contamination between the test samples, microtubes are moved and opened in the
sample position once the RT-LAMP reaction has been completed. Finally, the LFA strips
were placed in the tubes and the results were analyzed. As shown in Figure 2, all the results
were replicable, and an LOD of 35 copies was achieved, similar to that obtained using a
lab-based PCR machine.

In conclusion, we were able to successfully design and develop a low-cost, portable,
and semi-automated device leveraging RT-LAMP/CRISPR technologies that can be used
for early SARS-CoV-2 detection with an LOD of 35 copies per microliter. Through multi-
plexing our portable machine and increasing the number of wells in the reaction zone, up to
500 samples can be processed simultaneously in just 35 min. Moreover, with multiplexing
the CRISPR/Cas technology, our device can offer co-detection of SARS-CoV-2 and the
flu in a single reaction with minimal sample requirements. After further screening of
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different SARS-CoV-2 variants in several patient populations, our portable machine holds
significant potential for being rapidly used as a point-of-care testing device in crisis centers
and mobile laboratories.
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Abstract: The current standard of diabetes management depends upon the invasive blood pricking
techniques. In recent times, the availability of minimally invasive continuous glucose monitoring
devices have made some improvements in the life of diabetic patients however it has its own
limitations which include painful insertion, excessive cost, discomfort and an active risk due to
the presence of a foreign body under the skin. Due to all these factors, the non-invasive glucose
monitoring has remain a subject of research for the last two decades and multiple techniques of
non-invasive glucose monitoring have been proposed. These proposed techniques have the potential
to be evolved into a wearable device for non-invasive diabetes management. This paper reviews
research advances and major challenges of such techniques or methods in recent years and broadly
classifies them into four types based on their detection principles. These four methods are: optical
spectroscopy, photoacoustic spectroscopy, electromagnetic sensing and nanomaterial based sensing.
The paper primarily focuses on the evolution of non-invasive technology from bench-top equipment
to smart wearable devices for personalized non-invasive continuous glucose monitoring in these four
methods. With the rapid evolve of wearable technology, all these four methods of non-invasive blood
glucose monitoring independently or in combination of two or more have the potential to become a
reality in the near future for efficient, affordable, accurate and pain-free diabetes management.

Keywords: optical spectroscopy; photoacoustic spectroscopy; electromagnetic sensing; nanomaterials;
diabetes management

1. Introduction

Diabetes mellitus ranks among the top ten lethal disease globally as approximately
451 million people suffer from diabetes across the world according to WHO estimates [1].
As of 2020, in the US alone, the prevalence of diabetes is officially estimated to be around
37.3 million [2], approximately 11% of the total US population. The actual number could be
much higher because of unavailability of adequate/efficient infrastructure and/or lack of
willingness to preventive check-ups among the population.

The non invasive blood glucose monitoring has the potential to become wearable and
continuous in the near future is particularly important for patients with hypoglycemia
which is known to cause death during sleep due to unexpected changes in blood glucose
levels and is a common occurrence among insulin-dependent diabetics [3]. Hypoglycemia
unawareness results from reduced sympathetic adrenal response and patients have diffi-
culty to recognize hypoglycemia events which puts them at high risk of adverse health
events [3].These adverse health events include cardiovascular ischemia [4], dementia [5],
falls [6], and even deaths [7]. Hypoglycemia-related events resulted in 100,000 visits to emer-
gency rooms and 30,000 hospital admissions between 2007 and 2011 in the US [8]. On the
other hand, poorly managed hyperglycemia can also lead to adverse health events such as
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cerebrovascular accidents, cardiovascular events, and peripheral vascular disease [9]. Dia-
betic ketoacidosis (DK) and Hyperglycemic hyperosmolar state (HHS) are life-threatening
emergencies among diabetic patients. Patients with oliguria, unconsciousness for a period
tend to have poor prognosis. Complications like cerebral edema, hypokalemia, rhabdomy-
olysis (more common during HHS) and respiratory failure due to secondary infection can
occur [10]. Blood sugar reaches more than 250 mg/dL in DK and 600 plus in HHS [11].
Thus, prompt and real time identification of rapid fluctuations in the blood sugar is the
key to successful management of diabetes-related emergencies and increases the likelihood
of better prognosis. Thus, noninvasive blood glucose monitoring which has the potential
for real time diagnosis can be used to identify the development of DK and HHS early and
avoid all the aforementioned complications without any pain.

As a result of these, there have been multiple research articles published on various
types and techniques of noninvasive glucose monitoring in the last two decades. Multiple
review articles have also been published highlighting and discussing the progresses and
challenges of these original research. The current review paper distinguishes from the
previously published review articles by discussing recent papers in a concise manner using
four detection methods widely investigated for noninvasive glucose monitoring. In this
paper, the classification of these four methods are based on the detection principles as
explained in Section 3. Furthermore, the uniqueness of the paper comes from the systematic
progress in reporting original research papers on noninvasive glucose monitoring starting
with tabletop in-vitro sensing to in-vivo wearable/compact/portable continuous blood glu-
cose monitoring with advanced technology (such as Machine learning/Internet of Things
(IoT)/advanced nanomaterials etc.) or its high possibility in near future. To exemplify,
the classification of sensing in the current paper is based on the principles of excitation and
detection of glucose unlike [12] that is based on the location where the sensor is placed or
on the types of human excretion (saliva, tears, urine etc.). In [13], developments of seven
optical noninvasive glucose monitoring techniques are reviewed without reporting on the
electromagnetic and nanomaterial based sensing, whereas in [14], the use of microwave
planar resonant sensors to track changes in glucose concentration has been only assessed.
In [13,15], photoacoustic spectroscopy has been classified under optical methods unlike
the current paper where it has been differentiated from the optical approach based on its
detection principle of acoustics. Recent developments on non-invasive machine learning
and neural network methods are discussed in [16]. None of these papers focus on the
technology evolution from bench-top to a wearable device.

2. Background

This section describes the two currently used modes of blood glucose monitoring for
diabetes management. They are the conventional invasive blood extraction and pricking
technique and the recently popular minimally invasive continuous glucose monitoring.

2.1. Diabetes Management via Conventional Blood Pricking Invasive Device

The gold standard for the determination of blood glucose concentration is the Hexoki-
nase Method [17]. This procedure involves the extraction of a 1.5 mL blood sample using
a specialised laboratory equipment. The method is not portable, real time and cannot be
operated in home environment. Due to this, a method that relies on using an invasive finger
pricking approach has become the most widely used standard of successful management
and effective treatment of diabetes. This makes use of capillary glucometers, where a
test strip interacts with with a drop of blood, extracted by the pricking in the finger [18].
However, the finger prick technique is not necessarily accurate [19].

Some techniques have evolved to make the these sensors to be more accurate. To make
insulin prediction with less amount of invasive procedure and some degree of accuracy,
a local fuzzy reconstruction method based on chaos theory for predicting fasting blood
glucose at peak time was reported in [20]. The prediction achieves a 70–90% success rate.
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In recent times, techniques based on machine learning has been introduced for insulin
prediction [21] for similar reasons.

However, these techniques do not eliminate the greatest agony of the invasive proce-
dure: pain and discomfort. In addition, there is always a high probability for the finger
pricking procedure to cause infection. The daily usage of lancets and testing strips causes
potentially unsafe bio-hazards. Furthermore, a pre-emptive action on the part of the patient
or caretaker is always necessary for the drawing and testing of blood. As earlier explained,
for patients with complex medical conditions and aggressive forms of type-2 diabetes,
continuous monitoring is highly desired so that unexpected changes in blood glucose
levels, known to cause death due to sudden hypoglycemia during sleep, can be detected.

2.2. Diabetes Management via Minimally Invasive Continuous Glucose Monitoring

The extreme fluctuations in the blood sugar level can cause cardiovascular events [4,22]
and even deaths. Therefore, there is a need to monitor blood glucose levels continu-
ously [23]. Continuous glucose monitoring (CGM) devices can be helpful to identify these
extreme fluctuations in the blood sugar and can alert the patient thereby enhancing self
or parental management which can lead to avoidance of severe outcomes related to hypo
or hyperglycemia. Very recently, multiple such commercial (CGM) devices (Dexcom [24],
Adobe FreeStyleLibre [25], Eversense [26] etc.) have come up but none of them is com-
pletely non-invasive and wearable as it needs some part to be periodically implanted
subcutaneously. Current versions of CGM uses a metal inserted into the skin and remains
in contact with blood. It monitors blood sugar level by measuring the charge on the electri-
cal current which emerges from the oxidation of glucose from the enzymes that the device
releases. Besides the painful insertion, discomfort and the risk due to the presence of a
foreign body under the skin always remains active. Moreover, the adhesives used in CGM
systems can cause skin irritation and contact dermatitis in some cases [27]. These skin
problems can cause emotional distress among diabetics and can inversely affect adherence
to CGM [28]. Current versions of CGM are semi-invasive where a metal is inserted into
the skin and serves as a sensor. It emits blood sugar oxidizing enzyme. The interaction
of this enzyme with blood sugar molecules results in the formation of hydrogen perox-
ides amongst other compounds. The reaction also results in the generation of a current.
The charge on this current is measured and it corresponds to the appropriate amount of
blood sugar in the interstitial cells. The lag time currently is 1 to 5 min [23]. Although the
CGM systems have been quite accurate and efficient in monitoring blood glucose levels
among insulin-dependent diabetics [29], high costs particularly among those who are
uninsured or underinsured and difficulty in placement of these devices on the body and
the dislike of skin attachment of the subcutaneous implant were among the major barriers,
particularly among adolescents [30,31]. Therefore, there is a need of a strategy that is
non-invasive, affordable but accurate at the same time at par with CGM and traditional
invasive methods. To this end, numerous research findings thus far suggest that a work-
able complete non-invasive blood glucose monitoring solution is feasible and multiple
techniques are being pursued to build a glucose monitor that is non-invasive, accurate,
wearable, low-cost and continuous.

3. Principles of Non Invasive Glucose Monitoring

Multitude principles and techniques of non-invasive glucose monitoring have been
pursued in academic research as well as in industry in recent times. Among them, broadly
four particular non-invasing glucose monitoring principles are widely investigated and
reported. These four principles are differentiated based on the their principles of detection
of glucose. They are as follows:

• Optical Spectroscopy (Optical Detection)
• Photoacoustic Spectroscopy (Acoustic Detection)
• Electromagnetic Sensing (Electromagnetic Detection)
• Nanomaterial Based Sensing (Electrochemical Detection)
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These four techniques are illustrated in Figure 1 and are reviewed in Sections 4–7.
The principles of these four techniques are explained in the following subsections.

Figure 1. The four different types of noninvasive glucose monitoring technique are illustrated based
on their principle of detection.

3.1. Optical Spectroscopy

The detection principle of the Optical Spectroscopy is based on the fact that glucose
influences the optical signal passing through it by absorption of light at some particular
overtones and combination band wavelengths in the mid infrared (mid-IR) and near
infrared (NIR) spectrum regions. Among the mid-IR spectrum of glucose light interactions,
a first OH overtone band is designated at 1408 nm. The 1536 nm band can be designated
as an OH and CH combination band whereas, the 1688 nm band is designated as a CH
overtone band [32]. In the NIR spectrum, the combination bands are a second OH overtone
band at 939 nm and a second harmonic CH overtone band at 1126 nm [32]. Due to this
absorbance at these particular wavelengths, the intensity of light transmitted through the
glucose either in-vitro or in-vivo decreases as concentration of the glucose increases and
vice versa. Using optical sensors like photodiodes, this phenomenon is utilized in the
measurement of the blood glucose concentration from the transmitted or reflected intensity
of light [32]. Another way to measure glucose concentration using optical detection is
Surface Plasmon Resonance (SPR), where a beam of light is passed through the prism
on the back of the SPR metal surface which then bends on to the detector. Unlike the
intensity of the light, the method exploits information on angular shift to identify the
glucose concentration. At a certain resonance angle (refractive index), the light excites the
electrons on the metal part of the chip. When an analyte is introduced to the SPR surface,
the shift of the reflection intensity curve is observed. The direct measurement of blood
sugar is based on the change in angle of the SPR reflection intensity curve [33].

3.2. Photoacoustic Spectroscopy

The photoacoustic glucose monitoring is a hybrid approach, which combines optical
excitation and acoustic detection in determining the glucose concentration. Here, the optical
energy from the excitation is converted into an acoustic energy by a multistage energy
conversion process [34]. The optical excitation of the glucose molecules in blood leads to the
localized heating of the solution, which produces a small temperature rise, resulting in the
volumetric thermal expansion of the optical interaction region. The associated ultrasonic
pressure pulse is then measured by an ultrasonic piezoelectric transducer, which is then
converted into electrical signals for determining the glucose concentration.
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3.3. Electromagnetic Sensing

The frequency dependency of body tissue has been investigated since early 20th
century. The propagation of electromagnetic waves through any media depends on the
permittivity of that media. The permittivity is a frequency-dependent parameter unique
for each material. These investigations have found that the complex permittivity of tissue
is strongly frequency dependent. The underlying mathematical principle is derived from
the Debye’s relaxation theory. The mathematical equations can be written as [35,36]:

εr(ω, χ) = ε∞(χ) +
εstat(χ)− ε∞(χ)

1 + jωτ(χ)
(1)

where, εr (ω) is the complex and frequency-dependent relative permittivity of a dispersive
material, εstat is the static permittivity at lower frequencies, ε∞ is the permittivity at high
frequencies and τ is the characteristic relaxation time of the medium. ω and χ are the
angular frequency and the concentration, respectively.

Human blood consists of 55% of plasma. The blood plasma consists of around 90% of
water. Water being a dipolar compound, the polarization is high. This makes the relative
permittivity to be high as well. In contrast, glucose has a smaller relative permittivity,
being less polarized. Thus, the overall increase or decrease in glucose concentration in
the same volume of blood sample reduces or elevates the relative permittivity of blood
plasma, respectively. The measure of the relative permittivity by multiple techniques of
electromagnetic sensing at a particular microwave/mm-wave frequency gives the value
of the glucose concentration in blood in the form of measured electrical power in a very
effective manner which helps in the measurement of blood glucose. In other words,
the common measurement principle of these sensors is the electromagnetic interaction
between the sensor and the material under test (MUT) (either blood or glucose solutions
in cuvette) where the amplitude and/or phase variations in the scattering parameters are
measured, when the dielectric properties of the MUT change. It is important to note that the
dielectric properties of blood are modified because the change in blood glucose levels is of
much greater extent than due to changes of other compounds present in the blood [37,38].

3.4. Nanomaterial Based Sensing

The emergence of nanomaterials, starting from metallic gold, silver, copper oxide, iron
oxide to polymer composites, carbon nanotubes and graphene, as primary components in
sensing technologies, has significantly upgraded the modern-day biosensors, extracting
valuable physiological data and useful information from essential body fluids like urine,
saliva, sweat and tears. The impact of nanomaterials in sensing applications is remarkable
as they exhibit large surface area, enhanced sensitivity and selectivity, improved catalytic
activities which are essential prerequisites for an accurate and precise estimation of glucose
levels in humans [39,40].

4. Optical Spectroscopy

The optical spectroscopy is perhaps the most popular among all the four methods for
non-invasive blood glucose monitoring. As explained earlier, glucose responses to light
at specific wavelengths in the near infra red (NIR) and mid-infra red (mid-IR) regions.
The Light Emitting Diode (LED) is mostly used for the excitation in the NIR region with
some exceptions [41], however, the use of laser is seen in all cases of mid-IR regions.
The signal from either the LED or the laser is pulsed at a certain frequency and is allowed
to fall and pass through the glucose. One of the wavelengths at the NIR region is at 940 nm
and multiple experiments have been reported at this wavelength using the transmittance
principle of glucose light from using a simple operational amplifier [42] to digital detection
and processing [41,43]. In the method transmittance spectroscopy, the excited optical light
is allowed to transmit through the layers of epidermis, dermis and subcutaneous tissue of
the finger tip, before it is detected by a photodetector.
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In addition to the transmittance another method was proposed using the dermis
tissue spectra [44]. Here the glucose content in dermis tissue traces the variations in blood
glucose and the epidermis acts as an interference in skin tissue. This method is termed
diffused reflectance. Multiple other works that have used this technique to determine the
blood glucose solution are reported in [45–48]. In [49], a phase sensitive front end based
compact design has been reported for continuous wearable applications. The protocols of
Oral Glucose Tolerant Test (OGTT) was used to compare with the invasive blood pricking
technique. This work uses both the transmittance and the diffused reflectance approach.
This work has been depicted in Figure 2 as an example of optical spectroscopy with both
transmittance and diffused reflectance techniques.

Cardoso et al. [50] implemented an architecture composed of two light emitters,
with a wavelength of 940 nm and 805 nm. Another work [51] used 950 nm in addition
to 940 nm and have shown that the output voltages are nearly linear with the increment
of glucose concentration. In [52], average value of three different wavelengths was used
to determine the blood glucose concentration. Besides the popular 940 nm, two other
wavelengths at 850 nm and 880 nm were used. Comparative analysis with an invasive
technique following either OGTT protocol or Clarke Error Grid gives a good accuracy for
the non-invasive device.

Analysis with classification based machine learning models was carried out in [53].
In this work, in addition to 940 nm, transmission measurements show a high correlation
value of 0.98 between glucose concentration and transmission intensity for three other
wavelengths: 485 nm, 645 nm and 860 nm. The feasibility of a cellular automata based
tracking method of blood glucose through skin impedance measurement was introduced
in [54]. Recently, Yan et al. [55] using a portable NIR Spectrometer and advanced machine
learning models have shown the model based on the combination of synergy interval,
genetic algorithm and extreme learning machine as the most accurate for blood glucose
detection. A partial least squares method was used in [56] to obtain a correlation coefficient
of 93.2% and a prediction error of 0.23 mmol/L.

Figure 2. (a) Experimental set up of NIR spectroscopy with LED (b) In-vitro NIR spectra of glucose in
water solution. Light absorption is proportional to glucose concentration (Inset). (c) In-vivo results
from experiments on a human subject. Comparison of the transmittance and diffused reflectance
techniques with the blood-pricking invasive technique following OGTT protocol. Reproduced with
permission from [49]. Copyright 2018, IEEE.
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Mid-infra red spectroscopy is another mode within the optical spectroscopy used to
determine glucose concentration. The glucose has a better response in some selected mid
infrared bands than the NIR bands as reported in [32]. Using a laser diode, the prospect
of mid-infrared spectroscopy was reported in [57] for concentrations between 75 and
160 mg/dL. Partial least squares regression was employed to predict the glucose concen-
tration. An average error of 2% in comparison to a commercial electrochemical sensor
was observed. In another study [58], the mid-infrared spectroscopy is used in the range
of 3333∼2857 nm and a strong correlation between the transmittance approach and blood
glucose concentration was presented. Using Fourier transform infrared spectroscopy (FT-
IR) of attenuated total reflection, the spectra of a human finger was measured. Further,
in [59–61], the techniques of Fourier transform infrared spectroscopy (FT-IR) of attenuated
total reflection (ATR) were used to accurately determine the glucose concentration.

A customised multi-modal spectroscopy combining impedance spectroscopy and
multi-wavelength infrared spectroscopy is proposed in [62] as an application specific
integrated circuit (ASIC) in 0.18 μm 1P6M CMOS technology. It occupies an area of
12.5 mm2 and dissipates a peak power of 38 mW. The three wavelengths used are 850 nm,
950 nm and 1300 nm. The work further uses an artificial neural network (ANN) algorithm
to achieve high accuracy in glucose estimation value. The use of ASIC together with ANN
enabled the sensor to be area and power efficient for practical wearable applications of
blood glucose monitoring with high accuracy. Together with the application of Healthcare
IoT [63], the potential of this approach for diabetes management seems to be very bright.

In the technique of SPR, the researchers used attached glucose/galactase binding
protein to SPR surface and detected blood glucose and determined the binding equilibrium
of glucose molecules to the SPR surface [64]. The analysis of this equilibrium can be a
key in continuous glucose monitoring. The SPR method can yield a high sensitivity in
the detection of blood glucose at 1050 nm/refractive index unit [33] The sensitivity was
reported to be highest at the refractive index of 0.982 nm [65]. Another study reported
similar result with greatest sensitivity with refractive index in the range of 1.0000 to
1.0007 [66]. In [67], imprinted hybrid microgels achieved root-mean-squared error of
predication (RMSEC) as low as ~0.2 mg/dL over a clinically relevant glucose concentration
range of 1.8–360 mg/dL. In case of SPR techniques and other similar techniques that resort
to large bench-top equipment for measurement and analysis, the prospect of down-scaling
the technique in form-factor to that of a wearable device is minimal. Those techniques
such as Optical Polarimetry, Raman Spectroscopy, Optical Coherence Tomography are not
discussed in this review and can be referred in [13,15].

The accuracy of optical spectroscopy is affected by several factors which include, skin
color and temperature and therefore an algorithmic correction is required [15]. According
to some studies, skin can cause birefringence of light due to scattering of contents in the
skin leading to lesser degree of polarization of light than expected [15,68]. The detection
requires person specific calibration to mitigate the skin color and advanced machine
learning algorithm to separate signals coming out of proteins and lipids [69].

5. Photoacoustic Spectroscopy

A large amount of work on glucose monitoring with photoacoustic spectroscopy
have been also reported. As earlier explained, although this technique shares the same
excitation principle with the optical spectroscopy however the detection mechanism is
entirely different and is based on the principles of acoustics. The feasibility of photoa-
coustic spectroscopy with the depth profiling of a skin model for non-invasive glucose
measurement was reported in [70]. The measurable depth of 2–3 mm with a modulation
frequency of 1000–2000 Hz provided the necessary confidence to work with this technique.
This led to an early work that investigated the feasibility of photoacoustic spectroscopy
as an independent technique for blood glucose monitoring and reported in [71]. This
work implemented a laser diode to excite the glucose medium and the signal was detected
using a piezoelectric transducer followed by a low noise amplifier. The validation was
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implemented using the established OGTT method. It is important to note that the laser
excitation in the cases described above, were pulsed at a certain frequency and is allowed
to fall and pass through the glucose.

Optical excitation, where laser was not pulsed but continuous were also reported. Such
continuous laser excitation with desktop based lock-in-amplifiers were reported for accurate
phase-sensitive detections in [72] and later differential continuous-wave photoacoustic
spectroscopy (DCW-PAS) in [73]. The DCW-PAS technique utilizes amplitude modulation
of dual wavelengths of light to determine changes in glucose concentration. Both of these
works also use the laser diode for the optical excitation. Very recently, Faheem et al., has
implemented a laser based photoacoustic glucose monitoring system using a phase sensitive
amplifier in wearable form factor as reported in [74]. This work replaces the desktop based
lock-in amplifier with an integrated modulator/demodulator microchip working as a
lock-in-amplifier for practical wearable applications in diabetes management. The work
further analyzes the results using classification based machine learning algorithms and
achieve a correlation coefficient of 97% and p-value 5.6e-6. This work has been depicted
in Figure 3 as an example of photoacoustic spectroscopy with compact instruments for
potential wearable applications. In [75], a portable photoacoustic embedded system is
implemented using field programmable gate array (FPGA). The glucose measurement
technique is verified both in-vitro and in-vivo. This work further advances to include a
kernel-based regression algorithm using multiple features of the photoacoustic signal to
estimate glucose concentration [76]. The work also uses cloud service using a mobile device
in as an example of Healthcare IoT for glucose monitoring. Some other works that were
reported and used laser diodes are [77–80].

Figure 3. (a) Compact instrumentation for in vitro glucose measurement with phase sensitive
detection using PAS. All the instruments are portable and can be replicated for wearable in vivo
glucose monitoring (b) The electronics circuit for the optical stimulation and the phase sensitive
detection of the proposed compact instrumentation system using the micrchip AD630 (c) Linear
regression calculations of the Amplitude of the signal. Reproduced with permission [74]. Copyright
2022 IEEE under CC BY

In comparison to the optical spectroscopy, this technique is yet to gain similar pop-
ularity. This is because the optical excitation in this technique depends mostly on laser,
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unlike an LED as in the case of the NIR Optical Spectroscopy. The laser has multiple safety
concerns and health issues and is therefore not recommended for continuous blood glucose
monitoring. A major challenge to replace it with NIR/mid-IR LED that has the potential
to be a continuous wearable system will be to compromise on the signal to noise ratio
(SNR) of the detected signal. In this method, the SNR is comparatively less than the optical
approach because the acoustic signal coming as an electric signal out of a transducer is
relatively weak in comparison to a direct optical detection with a photodetector as in the
case of an optical approach. A few works have attempted to mitigate this issue. In [81],
an NIR LED based photoacoustic glucose monitoring system is reported. They make use
of a box that has a good sound shielding characteristic to attenuate noise from outside
without compromising on the SNR. The challenge to improve the SNR quality can be
further resolved by implementing different signal processing techniques such as signal
averaging reported in [82,83] in the context of photoacoustic imaging.

The measurement of blood glucose using this method is also challenged by skin
thickness, roughness and moisture and other skin conditions [69]. These factors interfere
the absorption of light in the skin and the glucose signal will not be as strong. The presence
of other contents in the blood such as lipids and proteins. Similar to the optical approach,
person specific calibration, signal averaging and advanced machine learning techniques
will be able to mitigate these effects.

6. Electromagnetic Sensing

The electromagnetic sensing can be further categorized broadly into Planar Microwave
Resonant Sensors and Antenna Sensing, based on the instrument used and principles of
microwave theory. They are described as follows:

6.1. Planar Microwave Resonant Sensors

Planar microwave sensors are considered an attractive choice to non-invasively probe
the dielectric attributes of biological tissues due to their low cost, simple fabrication,
miniature scale, and minimum risk to human health. This method relies on the change
in the permittivity of blood due to the variation in glucose content resulting out of small
shifts in the sensor’s frequency response. However, there are certain challenges that should
be taken into consideration. In [84], Volkan et al., has investigated the external factors those
play a major role in the resonant sensor’s response, making it challenging to achieve the
accuracy needed for blood glucose measurements in these small shifts in frequency.

A split-ring resonator has been used in [85], to measure the glucose concentration at
1.4 GHz. The sensor has two spatially separated rings, one of which interacts with the
change in glucose level of the device under test while the second ring is used as a reference.
The observed OGTT trend showed nice correlation of frequency shift and the glucose
concentration comparable to a commercial sensor, including a CGM device and a blood
pricking device. This work has been depicted in Figure 4 as an example of planar microwave
sensors. In [86], the sensor has a microfluidic container on top and works at a frequency
of 2 GHz in-vitro. The sensor responds to permittivity change with glucose solutions at
varying concentrations. The range of glucose concentrations used are from 50 mg/dL
to 300 mg/dL. A multi-layer is approach is proposed in [87]. The paper analyses three
different microwave resonator structure and finds the ground plane coplanar waveguide
to be the most suitable amongst them. In [88], a microwave resonator comparable to the
size of a coin has been fabricated. The device was sensitive enough to detect as low as
10 mg/dL change in glucose concentration.

In [89], a metamaterial structure monitors the variation of blood glucose concentration
on human body and increases the sensitivity by the addition of a diode. The change in
frequency and magnitude (reflection loss) of 1.4 MHz and 0.7 dB, respectively, increases to
5.2 MHz and 1.2 dB, respectively. The improvements exploit the nonlinear effects of the
diode. Another microwave sensor is suggested with a sensitivity performance of about
6.2 dB/(mg/mL) that operates in the range of 1–6 GHz [90]. The sensor gets excited by
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a coupled microstrip transmission-line that is etched on the bottom side of the substrate
and monitor the glucose concentration changes by recording the frequency response of the
maximum reflection and transmission loss. An interdigital capacitor sensor was reported
in [91] at 4.080 GHz. The measurement principle here is based on the fringing electric field
produced on top of the interdigital capacitor sensor of the MUT. In [92], an ultrawideband
microwave technique has been proposed for non-invasive blood glucose monitoring in the
frequency range of 3–10 GHz. In this frequency range, there is a regularity of the energy
of the received signal in the blood glucose concentration of varied from 70 to 400 mg/dL.
The technique uses a single pair of antennas to achieve this. The gain ranges from 0 to 2 dB
for blood glucose level from 50 to 400 mg/dL.

Figure 4. (a) A 3D structure of a double split-ring resonator sensor. (b) Noninvasive sensor data
against the commercially available continuous invasive sensor (Medtronic) and blood strip glucometer
(Bayer). Reproduced with permission [85]. Copyright 2014 IEEE.

The transmission properties of glucose solutions with different concentrations, in-
cluding the amplitude and phase responses, are reported in [93]. With modeling and
experiment, two glucose solutions utilizing saline and distilled water are studied at 17 GHz
Ku-band. At 40 GHz, a sensitivity of 0.2◦ phase shift per 10 mg/dL was achieved in [94].
The transmission phase of glucose solutions is shown to have a linear response to glucose
concentration from hypoglycemia to hyperglycemia, indicating that microwave technol-
ogy in the Ku-band has a lot of promise for developing non-invasive glucose monitoring
systems [95]. In [96], two spatially separated split-ring resonators are reported, with one
interacts with the change in glucose level of a sample under test while the other ring is
used as a reference. The comparative analysis of the two split rings following the OGTT
protocol is used for validation purposes.

6.2. Antenna as Sensors

The change in permittivity with varying glucose concentration can effect both an
antenna in near field coupling and electromagnetic transmission. This enables an antenna
to work as a sensor following the principles of electromagnetic sensing. To this end, several
research work has been reported. In [97], two different antennas: a patch and integrated
slot antenna have been designed. The two-port analysis shows the measured gain responds
to the glucose concentration change at a frequency of 5.5 GHz using the patch antenna.
The slot antenna on the other hand did not produce any glucose sensitive measurements.
In [98], the sensor is modeled as a microstrip antenna made of flat sheet of metal separated
by a dielectric substrate at a frequency of 2.4 GHz. The return loss for an antenna with
microstrip feed is determined to be 36 dB at that frequency. However, the paper does not
give any information on the return loss change with varying glucose concentrations. In [99],
the sensitivity of the antenna is determined by swarm optimization with a frequency shift
of 85.5 MHz corresponding to change in aqueous glucose of 50% and 10%.

In [100], the sensor output is an amplitude-only measurement of the standing wave
with frequency on a microstrip line that is spiral shaped with an open-terminated end.
A comparative analysis similar to Clarke Error Grid with a commercial device shows
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promising results. The response of a single-spiral microstrip sensor has been demonstrated
to alter significantly in response to changes in recorded blood glucose levels in numerous
test participants [101]. A monopole antenna is placed in a cuff and wrapped around the
wrist in [102]. Using a realistic tissue model of a human hand, simulations have been
performed to obtain the antenna input impedance. The shift in resonant frequency was
used to determine the blood glucose level. The frequency targeted for this study is in the
range of 1.5–2 GHz. The maximum reflection loss shifts to 1.45 GHz, 1.48 GHz, 1.43 GHz
for normoglycemia, hypoglycemia and hyperglycemia, respectively, from 1.78 GHz that is
observed in the absence of tissue.

At an operating frequency of 19 GHz, a two-port microstrip line sensor was designed
in [103]. A water solution which mimics the permittivity of blood glucose is kept at a tank
under the model to fill a slot between the two parts of the substrate. The slot is used for
electromagnetic waves to interact with the water glucose solution underneath. The sensor
achieves a sensitivity of 2◦ phase change per 10 mg/dL glucose concentration variation.
A truncated microstrip patch antenna was designed in [104]. The sensitivity of the antenna
could detect minor changes (10%) in blood’s dielectric characteristics from the transmission
coefficient in the range of 21 GHz to 29.6 GHz. In [105], two facing microstrip patch antennas
operating at 60 GHz that are placed across the glucose solution are designed. The measured
transmission coefficient which depends on the permittivity change along the signal path,
was correlated with determine the change in glucose concentration. The work was extended
in [106], by utilizing an Intravenous Glucose Tolerance Test for in vivo applications.

Chaithanya et al., has implemented the power level of the Received Signal Strength
Indicator (RSSI) of a Blutooth Low Energy (BLE) signal at 2.4 GHz to identify the blood
glucose level in [107] in a wearable form-factor. Concurrent measurements with the com-
mercial invasive finger pricking approach using the OGTT protocol have shown promising
results. This work has been depicted in Figure 5 as an example of sensing with antenna.

Figure 5. (a) Experimental set-up for both the in-vitro and in-vivo measurements with a bluetooth
enabled MCU (Antenna as Sensors) (b) The RSSI power level dependence on glucose concentration
with in-vitro experiment (c) Comparison with in-vivo experimental results of the noninvasive device
with the blood-pricking invasive technique following OGTT protocol on a human subject. Reproduced
with permission [107]. Copyright 2019 IEEE.

The challenges in the detection of blood glucose using electromagnetic method is
limited by uncertainty of change in dielectric properties of blood glucose. The sensitivity
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and selectivity need improvement using advanced machine learning and signal averaging
techniques that can mitigate background noise in the data from the contents in the blood
to separate high and low amplitude signaling effectively improving the accuracy. Unlike
to the previous two optical excitation approaches, this method does not require person
specific calibration for skin color differentiation. With the custom development of smart
minuscule transceiver system in advanced CMOS technology, the future of this method
seems very promising for continuous detection of blood glucose as a non-invasive wearable
device (see Figure 5).

7. Nanomaterial Based Sensing

Nanomaterial-based precise glucose monitoring strategies for early-stage detection of
diabetes in patients have largely been explored and investigated. Here, we will primarily
be discussing nanomaterial-based biosensors which have witnessed extensive applications
for precise detection of glucose levels in human urine, saliva, sweat and tears. These
techniques are depicted in Figure 6.

Figure 6. (a)The important bio-fluids like tears, saliva, sweat, and urine used to build non-invasive
glucose monitoring devices. Typical biosensors based on (b) saliva, (c) sweat and (d) tear. Reproduced
with permission [108] Copyright 2022, Ivyspring International Publisher under CC BY. Reproduced
with permission [109] Copyright 2018, John Wiley & Sons.

Metallic, metal alloy, metal oxide and magnetic nanostructures, carbon-based nano-
materials and even their hybrid/composite structures have been significantly used for
non-invasive glucose sensing technologies [110–113]. Most of these nanomaterials, in par-
ticular, metal oxides and ferrite nanoparticles exhibit intrinsic peroxidase-like activity
which plays a catalytic role in glucose detection [111,114–117].

When sugar levels in human blood is on the higher side, excess glucose gets excreted
out through urine. The ready availability of urine and its easy collection makes urine-based
glucose sensing a non-invasive approach for the diagnosis of diabetes [110]. Su et al. have
successfully demonstrated the application of ZnFe2O4 nanoparticles for the detection of
glucose levels in urine [111]. The method is based on colorimetric sensing using glucose
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oxidase (GOx). Recently, colorimetric based sensor using plasmonic gold nanoparticles on
graphitic carbon nitride nanosheets (Au nanoparticles @g-C3N4) was used to determine
the urine glucose levels [118]. Furthermore, hybrid nanostructures like Co3O4/graphene
nanocomposites have been employed as electrode material to detect sugar concentration in
urine samples. This is a non-enzymatic electrochemical-based sensor having a detection
limit of 0.5 mM [119].

The glucose content in human saliva can also carry useful information regarding the
diabetic condition in humans. An early glucose analyzing sensor was developed in [120].
The transducer used here is an enzyme amperometric glucose sensor and has three elec-
trodes. The working electrode made with platinum is covered with an albumin membrane,
over which H2O2 based immobilized enzyme membrane is placed. The concentration
of H2O2 determines the output current from sensor and which is detected by the amper-
ometry circuit of the saliva analyzing system. A similar study was carried out in [121].
Chakraborty et al. reported fabrication of a non-enzymatic porous CuO nanostructures
based electrochemical sensor for salivary glucose monitoring [122]. Similarly, in a recent
study, porous NiO nanostructures have been utilized as electrode materials for estimating
salivary glucose levels with a detection limit as low as 84 nM [123].

Sometimes morphological changes in nanomaterials have been introduced to offer an
enhanced diagnosis approach. Very recently, non-enzymatic and highly sensitive glucose
sensors based on composite nanosystems like cuprous oxide nanocubes embedded on
graphene have been adopted for a systematic probing of salivary glucose levels [124].
Several other enzyme-free electrochemical-based salivary glucose sensors developed in
the recent past based on composite structures include Au nanoparticles on CuO nanorods
(∼2009 μA mM−1), IrO2@NiO core–shell nanowires (1439.4 μA mM−1cm−2), CuBr@CuO
nanoparticles (3096 μA mM−1cm−2), Cu-Pt nanoparticles on glassy carbon electrode
(2209 μA mM−1cm−2), and many more [112,125–127].

The physiological data obtained from human sweat or perspiration also possess valu-
able imprints regarding the glucose concentration in humans. In an attempt to modernize
non-invasive glucose detection approaches, several sweat sensors have been developed
using nanomaterials of zinc oxide, gold, silver, graphene oxide, carbon nanotubes and their
composite systems [128–134].

Tear based sensing approach using nanomaterials have also gathered significant atten-
tion in the development of this kind of non-invasive biosensors [135–138]. Nanostructures
embedded in highly sophisticated and biocompatible contact lenses are capable of detect-
ing glucose levels accurately, sometimes having a detection limit as low as 211 nM [139].
In the commercial arena, a small and flexible spring like device was introduced and termed
Noviosense [140].

In the last decade, the nanomaterials have been hugely exploited for advanced biomed-
ical applications [141–145]. As already stated, mostly nano-ferrites and metal oxide nano-
materials as well as graphene oxides and carbon nanotubes show intrinsic peroxidase-like
activities [111,116,117,146,147]. Consequently, it is advisable to employ more of these
nanostructures, particularly in the form of composites to design and fabricate sophisticated
glucose monitoring devices having a much higher degree of sensitivity. Ferrite-based nanos-
tructures are already established candidates in gas sensing applications [148,149]. There
lies a good possibility of further exploring these iron oxide-based ferrites for non-invasive
glucose sensing applications. Tailoring the physicochemical properties of ferrites and some
prominent metal oxide nanostructures, primarily by incorporating suitable dopants (transi-
tion metals, rare-earths etc.) and also by introducing shape and surface anisotropies in the
system, creating structures like nanowires, nanorods, nano-octopods etc. can possibly have
a significant impact in better quantification of glucose levels in humans.

Therefore, these nanomaterial-based sensors have a tremendous future ahead particu-
larly in the design and development of highly sensitive, cost-effective non-invasive glucose
monitoring devices. This non-invasive mode of quantifying glucose levels in pre-diabetic
and diabetic patients carry immense possibility which could register a giant leap in the
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healthcare industry as opposed to the traditional blood glucose sensing invasive strategies.
These nanomaterial-based biosensors could be the next generation non-invasive technology
for efficient and precise quantification of sugar levels in diabetic patients.

8. Hybrid, Integrated and Other Methods

Besides these four techniques, some other approaches have also been investigated
such as Nuclear Magnetic Resonance [150] at 400 MHz. In [151], a feasibility study of a
non-invasive sensor integrating three different types of techniques: electromagnetic, acous-
tic speed and near infra-red spectroscopy with compensation techniques results. Another
study [152] involved an integrated approach combining Near Infra Red (NIR) absorption
and bio-impedance measurements using artificial neural network and stochastic methods.
An attempt was made to measure the blood glucose level using a capacitance measurement
technique in [153] using a parallel plate capacitor, with the forearm in between acting as a
dielectric medium. Two metal plates of equal dimensions were placed near left wrist as
electrodes. A semi-cylindrical capacitive sensor was similarly proposed in [154]. In [155],
the change in dielectric permittivity of saliva estimates the glucose concentration. A corre-
lation between blood glucose levels with saliva glucose was investigated. A microwave
biosensor was used at the microwave frequency to measure the shift in resonant frequency
of the resonator. However, these techniques or approaches are not widely pursued and
investigated so far.

9. Conclusions

The aim of this concise and systematic review is to highlight the clinical significance
of non-invasive methods in glucose monitoring and bring out the progression of these
methods for potential diabetes management in the near future. There are four methods of
non-invasive glucose monitoring that were reviewed here and classified primarily based on
their principles of detection of the signal from the MUT, which is either a glucose solution
(in-vitro) or blood glucose (in-vivo/ex-vivo). These four methods are optical spectroscopy,
photoacoustic spectroscopy, electromagnetic sensing and nanomaterial based sensing.
Furthermore, integration of these different approaches to bring out a cohesive and hybrid
blood monitoring device were also reviewed. The developments observed from all of these
investigations suggest that the non-invasive glucose monitoring has a huge potential to
replace the current standard of invasive and minimally invasive approaches with a pain-free,
efficient and accurate diabetes management in the near future.
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Abstract: Diabetes is a serious health condition that requires patients to regularly monitor their
blood glucose level, making the development of practical, compact, and non-invasive techniques
essential. Optical glucose sensors—and, specifically, NIR sensors—have the advantages of being
non-invasive, compact, inexpensive, and user-friendly devices. However, these sensors have low
accuracy and are yet to be adopted by healthcare providers. In our previous work, we introduced a
non-invasive dual-channel technique for NIR sensors, in which a long channel is utilized to measure
the glucose level in the inner skin (dermis) layer, while a short channel is used to measure the noise
signal of the superficial skin (epidermis) layer. In this work, we investigated the use of dual-NIR
channels for patients with different skin colors (i.e., having different melanin concentrations). We
also adopted a Monte Carlo simulation model that takes into consideration the differences between
different skin layers, in terms of blood content, water content, melanin concentration in the epidermis
layer, and skin optical proprieties. On the basis of the signal-to-noise ratio, as well as the sensitivities
of both the epidermis and dermis layers, we suggest the selection of wavelengths and source-to-
detector separation for optimal NIR channels under different skin melanin concentrations. This work
facilitates the improved design of a compact and non-invasive NIR glucose sensor that can be utilized
by patients with different skin colors.

Keywords: bioinstrumentation; dual-channel; glucose; near-infrared; NIR technology; sensors

1. Introduction

Diabetes is a long-lasting health condition that impacts the process of turning food
into energy in the human body, commonly known as metabolism. Over time, diabetes
can lead to serious health issues, such as heart disease, kidney disease, and vision loss.
Therefore, the regular monitoring of blood glucose levels is vital for diabetic patients.
Over the past few years, scientists and engineers have developed practical invasive and
non-invasive techniques that allow patients to regularly monitor their blood glucose level.
Invasive electrochemical sensors are considered to be the gold standard for measuring
blood glucose [1]. The review article [2] comprehensively investigated recent advancements
in non-invasive blood glucose sensors that are optical, electrochemical, and microwave-
based sensors. Non-invasive microwave blood glucose sensors have attracted the attention
of many researchers due to their high skin penetration depth and low cost. Nevertheless,
the sensitivity of microwave-based sensors still needs to be improved to be clinically
accepted [2]. Non-invasive electrochemical reaction techniques are currently available, but
their accuracy and lifetime are limited [3–5]. Moreover, continuous glucose monitoring
(CGM) electrochemical devices are currently in use. CGM devices are minimally invasive
techniques based on an implanted needle [6,7]. The article [8] identified 34 non-invasive
and 31 minimally invasive glucose monitoring products, and it reviewed their regulatory,
technological, and consumer features.
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Optical glucose measurement devices are emerging and promising techniques. These
techniques have the advantages of being non-invasive, compact, and user-friendly de-
vices [9,10]. Photoacoustic spectroscopy [11], optical coherence tomography [12,13], Ra-
man spectroscopy [14], and near-infrared (NIR) technology are all non-invasive optical
techniques that have been investigated for the measurement of glucose. One study [10]
reviewed the recent developments of different optical techniques, and their features and
limitations were also highlighted. NIR techniques are the most-used and -studied optical
techniques, due to their compactness and low cost. They contain three main parts—an
NIR source, a tissue sample, and a photodiode—to detect the scattered or attenuated
transmitted NIR light. NIR spectroscopy has been utilized in many medical applications,
such as neuroimaging [15,16], the detection of breast cancer [17–19], and for blood glucose
measurements and monitoring [20–22].

There have been great efforts in the scientific community to tackle the complexity
of skin optical measurements. Notably, the article [23] studied the effect of changing the
glucose concentration on light transport using a Monte Carlo simulation model. It is evident
that, with a single wavelength approach, there is a potential challenge to measure glucose
concentration due to the optical complexity of the skin. Another study [24] proposed an
optical probe model with two concentric rings to measure the reflected optical signals at
two different positions. This allowed estimating the variations in skin optical properties
by variations in the blood glucose level. The authors of [25] proposed a technique using
Monte Carlo simulation to reduce glucose prediction errors produced by temperature and
scattering variations. The authors found that small changes in the temperature or volume
fraction of the scattering particle would lead to large glucose prediction errors.

In a previous study [26], we introduced an optimized NIR sensor with two channels
for blood glucose measurements. The long channel is utilized to measure the glucose
level in the inner skin (dermis) layer. This measured signal carries important information
regarding the glucose content. The short channel is used to estimate the interference noise
arising from the superficial skin (epidermis) layer. Thus, the long channel signal can be
used to determine the glucose content in the dermis layer, and the short channel signal can
then be eliminated from the long channel signal. The dual-channel NIR sensor approach
uses two sources with different wavelengths. The two wavelengths of the two sources and
source–detector separation (SDS) were determined on the basis of a Monte Carlo simulation
(MCS) model. The module was specifically investigated for the NIR wavelength range
between 1200 and 1900 nm. However, this model does not consider the detailed anatomical
features of skin layers, such as blood, water, and melanin concentrations. These parameters
are important to consider specifically when investigating the diagnostic window of the NIR
spectrum, which ranges between 450 and 1000 nm [16,27,28].

In this manuscript, we systematically studied the effect of the diagnostic window of
the NIR wavelength spectrum, the effect of different skin colors (i.e., different skin melanin
concentrations), and the source-to-detector separation (SDS) of these wavelength ranges on
the optimal selection of the short and long NIR channels. In addition, an improved and
more detailed skin model [29–32] was adopted for Monte Carlo simulation (MCS). This
model takes into consideration the differences between different skin layers, in terms of
the blood volume fraction, water volume fraction, melanin concentrations in the epidermis
layer, and optical skin proprieties. The absorption of this NIR range (from 450 to 1050 nm)
by the melanin of the epidermis layer and by different dermis layers differs. Therefore, we
expect the optimal selections of the short and long NIR channels to be different for different
wavelengths and for different skin colors.

2. Methods

Monte Carlo Skin Model

The Monte Carlo simulation (MCS) method was used in this study, which was de-
scribed in [33,34]. The light source was modeled as a pencil beam light towards the
z-direction. A detector with a radius of 2 mm is located at a distance from the source as
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shown in Figure 1. The photons detection replay mode described in the paper [35] was
utilized. In brief, the method, initiated by launching millions of photons (here, 100 million)
and the propagation of any launched photon in the skin layers, is calculated on the basis of
the optical properties of the tissues.

Figure 1. Schematic drawing of the skin model for Monte Carlo simulation. The light propagation
distribution, having a “banana shape”, is illustrated by the dashed lines between the source (S) and
the detector (D).

The skin media are represented as a 3D volume, and each section in the volume is
labeled to represent a specific layer of the skin. Therefore, the location of each voxel in the
skin layers is pre-identified. At the reflection interface, the reflection coefficient is calculated
based on Fresnel’s equation. The coefficient is then multiplied by the photon packet weight.
For more details, the reader is referred to [33,34]. The history of each propagated photon
is tracked with prior knowledge of the optical properties of different skin layers. In the
MCS of the tissue, we considered the absorption coefficient (μa), scattering coefficient (μs),
and refractive index (n) of each skin layer. These optical properties are all wavelength-
dependent. As a photon travels deeper into the tissue, it loses its energy, which results
in a low signal-to-noise ratio (SNR) at the detector side. Therefore, with a long SDS, one
can measure deeper layers; however, this requires a highly sensitive detector to measure
signals with a low SNR. On the other hand, with a short SDS, one can detect photons that
are scattered from superficial layers with a good SNR. Therefore, the choice of both the
operating source wavelength and the optimal SDS is critical in the design of both the long
and short channels for NIR glucose sensors.

For this study, a skin model was built to mimic the propagation of light photons in
the NIR diagnostic window, which ranges from 450 to 1050 nm, with an increment of
100 nm. It is also worth noting that, when choosing the operating source wavelengths, [36]
was considered for spectral glucose absorptivity. The spectral range 450–1050 nm, known
as the “diagnostic window”, has attracted the interest of researchers for many different
diagnostic applications because water absorption is at its minimum [10,16]. This allows
light to penetrate deeper into the tissue. In [36], the authors showed the wavelength-
dependent absorptivity of glucose in an aqueous solution and a glassy state. This range
is less sensitive for temperature changes on the absorptivity of glucose in comparison to
longer wavelengths (>1200 nm).

The anatomical skin model consisted of seven layers, where the layers were optically
inhomogeneous. The different skin layers are illustrated in Figure 1.
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In this model, according to [29], the absorption coefficients for each dermis layer
were calculated considering the differences of important anatomical parameters between
different layers:

μ
layer
a (λ) = (1 − S)γVbloodμHb

a (λ) + SγVbloodμHbO2
a (λ) + (1 − γVblood) VH2O μH2O

a (λ)

+(1 − γVblood)
(
1 − VH2O

)
μother

a (λ),
(1)

where Vblood and VH2O are the blood and water volume fractions, respectively; μH2O
a , μHb

a ,
and μHbO2

a are the absorption coefficients for water, deoxyhemoglobin, and oxyhemoglobin,
respectively; γ is calculated on the basis of the assumption that hemoglobin is only con-
tained in the erythrocytes, which is zero for the stratum corneum and epidermis layers and
0.1 for the dermis layers [29]; μother

a is the calculated absorption coefficient for hemoglobin-
free tissue, which can be estimated as follows [29,37]:

μother
a (λ) = 7.84 × 107 × λ−3.25. (2)

According to [29,31], the absorption coefficients (μa) for the stratum corneum and the
epidermis layers are calculated as follows:

μStratum
a (λ) =

(
0.1 − 8.3 × 10−4 × λ

)
+ 0.125 × μother

a (λ), (3)

μ
epidermis
a (λ) = Vmel μmel

a (λ) + VH2O μHbO2
a (λ) +

(
1 − (

Vmel + VH2O
) )

μother
a (λ), (4)

where μmel
a is the melanin absorption coefficient, estimated as

μmel
a (λ) = 6.6 × 1010 × λ−3.33. (5)

According to the values reported in [38,39] for melanosome volume concentrations
(Vmel) in the epidermis layer for people having different skin colors, Vmel ranges between
1% and 3% for light-skinned Caucasians, from 11% to 16% for Mediterranean people, and
from 18% to 43% for darkly pigmented Africans. In this study, we used values of 2%, 10%,
20%, and 30% to study the effect of the melanin concentration on the optimal selection of
the NIR channels.

Table 1 summarizes the values utilized in Equation (1) for the estimation of the
absorption coefficients of the various skin layers. The values of other optical properties
utilized in this model, including the scattering coefficients μs and the absorption coefficients
for water (μH2O

a ), deoxyhemoglobin (μHb
a ), and oxyhemoglobin (μHbO2

a ), are illustrated in
Figure 2. The refractive index values used in this model are 1 for air and 1.4 for tissue [31].

Table 1. Values utilized in Equation (1) for the estimation of the absorption coefficients. The values
were taken from [31].

Skin Layer Vblood VH2O Thickness (mm)

Stratum corneum 0 0.05 0.02 mm
Epidermis 0 0.2 0.25 mm

Papillary dermis 0.04 0.5 0.1 mm
Upper blood net dermis 0.3 0.6 0.08 mm

Reticular dermis 0.04 0.7 0.2 mm
Deep blood net dermis 0.1 0.7 0.3 mm

Subcutaneous tissue 0.05 0.7 2 mm
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Figure 2. Other optical properties values in the utilized in MCS model: scattering coefficients μs and
absorption coefficients for water (μH2O

a ), deoxyhemoglobin (μHb
a ), and oxyhemoglobin (μHbO2

a ) [27,31,38].

To systematically assess the performance when changing the wavelength and the SDS
in order to choose the optimal NIR channel for measuring glucose content, we previously
introduced [26] three metrics. Briefly, the first metric is the epidermis sensitivity, which is
the summation of the photon density function (PMDF) for all voxels in the epidermis layer
over the summation of all photon density functions (PMDF) in the model:

ES = 100 × ∑Epidermis PMDF

∑total, PMDF
(6)

The PMDF is computed by taking the voxelwise product of the fluence distribution of
the source and the fluence distribution of the detector; details on the computation of the
PMDF can be found in [40]. The second metric is the dermis sensitivity, which is calculated
similarly to that for the epidermis, as follows:

DS = 100 × ∑Dermis PMDF
∑total, PMDF

(7)

These metrics can provide an indication of how sensitive a particular NIR channel
(with a specific wavelength and SDS) is to the epidermis and the dermis layers, respectively.

The third metric involves the calculation of the SNR for each NIR channel. As the SDS
increases, light penetrates deeper into the tissue, i.e., the dermis layer, but the SNR decreases.
Therefore, there is a tradeoff between a good SNR and a high depth of light penetration
into the tissue. Thus, a balance between high dermis sensitivity and an acceptable SNR
should be carefully considered.

By running the MCS for multiple independent seeded simulations, one can calculate
the mean (μ) and standard deviation (σ) at each voxel in the model. Thus, one can calculate
the SNR (in decibels) as follows [26]:

SNR(SD) = 20log10
μ(SD)

σ(SD)
(8)

The SNR is calculated for all MCS models, i.e., for all different wavelengths and all
different ranges of the SDS. To calculate μ and σ, all the voxels in the model are considered.
The calculation of the SNR was introduced and detailed [41]. As indicated above, the
study was conducted considering various important parameters. First, the simulation
was performed for the wavelength range from 450 to 1050 nm with an increment of
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100 nm. For each wavelength, the simulation was completed for a range of source-to-
detector separations (SDSs); specifically from 0.5 to 8 mm with a step size of 0.5 mm. In
a previous study [26], we found that, by running multiple independently seeded MCSs
(N = 15 to 30) for each wavelength and SDS, one could achieve an acceptable convergence
when calculating the SNR. Here, N = 15 was sufficient for calculating the SNR for longer
wavelengths, while N = 20 was sufficient for shorter wavelengths. For consistency, we
adopted N = 20 for all MCS runs.

3. Results and Discussion

The calculated sensitivity for the epidermis layer is shown in Figure 3. The epidermis
sensitivity was calculated for different melanin concentrations, ranging from 2% (which
represents light skin) to 30% (which is for dark skin). The figure also shows the effect of
different wavelengths (450 to 1050 nm) and the effect of increasing the SDS from 0.5 to
8 mm. There was a clear reduction in epidermis sensitivity when increasing the melanin
concentration from 2% to 10%, but the reduction in epidermis sensitivity was not strong
when the melanin concentration was further increased from 20% to 30%. In darker skin, the
epidermis layer was very sensitive to wavelengths from 450 to 650 nm for an SDS of up to
2.5 mm. For light skin (2% melanin concentration), the epidermis layer was very sensitive
to the same wavelengths from 450 to 650 nm, and the SDS could be up to 4.5 mm.

Figure 3. Epidermis sensitivity for various melanin concentrations and with the wavelength ranging
between 450 and 1050 nm. Sensitivity also shown for SDS ranging from 0.5 to 8 mm.

Similarly, the calculated sensitivity for the dermis layers is shown in Figure 4. For
shorter wavelengths, dermis sensitivity increased as the melanin concentration increased.
The SDS from 4 to 8 mm had high dermis sensitivity. However, for a 2% melanin con-
centration, dermis sensitivity was only 50% when the SDS was longer than 5.5 mm. For
darker skin, the wavelengths of 650 and 750 nm had 50% dermis sensitivity when the SDS
was longer than 3 mm. For all different melanin concentrations, wavelengths from 450 to
650 nm had the lowest dermis sensitivity (less than 20%) with the SDS less than 2.5 mm.
For all wavelengths at all different melanin concentrations, for an SDS of 1.5 mm or less,
dermis sensitivity was always less than 30%.

34



Biosensors 2022, 12, 805

 
Figure 4. Dermis sensitivity for various melanin concentrations and with the wavelength ranging
between 450 and 1050 nm. Sensitivity also shown for SDS ranging from 0.5 to 8 mm.

Figure 5 shows the calculated SNR for all scenarios. As the melanin concentration
increased, the SNR clearly deceased. For lighter skin (2% melanin concentration) and wave-
lengths between 650 and 1050 nm, the SNR was always above 15 dB. As the wavelength
increased, the general trend of the SNR increased as well. For wavelengths of 450 and
550 nm, the SNR was almost zero for darker skin when the SDS was longer than 1.5 mm.
The SNR was better for light skin at these two wavelengths, where the signal could be
measured up to 1.5 mm at 450 nm and up to 4 mm at 550 nm.

Figure 5. Calculated SNR for all different melanin concentrations, wavelengths, and SDSs.
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At a 30% melanin concentration, one needs to go longer than the 750 nm wavelength to
have a good SNR with a longer SDS. More specifically, the 850 nm wavelength had an SNR
of 5–10 dB with the SDS ranging from 4–7.5 mm. For the same SDS range, a wavelength
of 950 nm had a better SNR, of 20–30 dB. Similarly, the SNR was greatly improved for the
same SDS range when increasing the wavelength to 1050 nm, to about 25–32 dB.

As the SDS increased, the general trend of the SNR decreased. In comparison to
light skin, the SNR in darker skin decreased at a higher rate when the SDS increased. For
an SDS of 0.5 to 1 mm, the SNR range was always above 20 dB for all different melanin
concentrations and wavelengths.

In the design of dual-channel NIR glucose sensors, epidermis and dermis sensitivity,
as well as SNR factors should be considered. From a practical perspective, the channels
should have enough source-to-detector separation such that the sensor is easy to design
and build. The aim of the short channel is to suppress the noise arising from the superficial
epidermis layer. In contrast, the long channel is employed to measure the glucose content
confined in the blood-containing inner dermis layer.

For light skin (2% melanin concentration), wavelengths of 450 and 550 nm at an SDS
of up to 2.5 mm showed the highest epidermis sensitivity (Figure 3). However, looking at
the SNRs of the two wavelengths at the same SDS range, it is clear that a wavelength of
550 nm at a 2.5 mm SDS is a better choice for the short channel. For the long channel, we
looked for the highest dermis sensitivity (Figure 4), which was at the long SDS, and the
SNR was only good for longer wavelengths. Therefore, the optimal long channel uses the
wavelength of 650 nm with an SDS between 4 and 6 mm.

For skin with a 10% melanin concentration, epidermis sensitivity was 80% at 550 nm
and 70% at 650 nm at a 2 mm SDS. The SNR at 550 nm was 5 dB, while it was 25 dB at
650 nm at the same SDS. Therefore, the optimal short channel uses the wavelength of 650 nm
at a 2 mm SDS. For the long channel, the maximal dermis sensitivity for all wavelengths
was between 4.5 and 8 mm SDS. As shown in Figure 4, the dermis sensitivity decreased
with increasing wavelength. The optimal long channel uses a wavelength of 650 nm with an
SDS between 4.5 and 6 mm.

For darker skin (20% and 30% melanin concentration), the challenge for choosing
the short channel was that the SNR was attenuated very quickly with increasing the SDS,
specifically for the wavelengths of 450 and 550 nm, which had the highest epidermis
sensitivity. Therefore, one must choose a very short SDS, of 1.5 mm or less, at 550 nm. For
the long channel, one can choose 750 nm at a 4 to 5 mm SDS. However, for very dark skin
(30% melanin concentration), one must assume a longer channel (950 or 1050 nm) to ensure
a good SNR. Table 2 summarizes the selections of the wavelengths of the sources and the
SDSs for the optimal NIR channels under different skin melanin concentrations.

Table 2. Summary of suggested optimal NIR channels.

Melanin
Concentration

Optimal for Short Channel Optimal for Long Channel

Wavelength SDS Wavelength SDS

2% 550 nm 2.5 mm 650 nm 4–6 mm
10% 650 nm 2 mm 650 nm 4–6 mm
20% 550 nm 1.5 mm 750 nm 4–5 mm
30% 550 nm 1.5 mm 950/1050 nm 4–5 mm

4. Conclusions

In this work, we investigated the selection of the optimal dual-NIR channels for
glucose measurements under different skin melanin concentrations, specifically for the
diagnostic window of the NIR spectrum. The selection was based on the SNR and the
sensitivity of both the epidermis and dermis layers considering different skin melanin
concentrations. The detailed skin layer model that was adopted through MCS allowed us
to take into consideration the differences between different skin layers, in terms of blood
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volume fraction, water volume fraction, melanin concentration in the epidermis layer, and
optical skin proprieties. Since this work focused on the design of the dual-channel and the
verifications of its parameters using MC simulation, future work should be experimentally
conducted. Future work should also investigate the signal processing for this sensor and
may include adopting an estimation model to filter the “noise” measured by the short
channel.
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Abstract: Electrochemical voltammetric sensors are some of the most promising types of sensors for
monitoring various physiological analytes due to their implementation as non-invasive and portable
devices. Advantages in reduced analysis time, cost-effectiveness, selective sensing, and simple tech-
niques with low-powered circuits distinguish voltammetric sensors from other methods. In this work,
we developed a Cu2O-based non-enzymatic portable glucose sensor on a graphene paste printed
on cellulose cloth. The electron transfer of Cu2O in a NaOH alkaline medium and sweat equivalent
solution at very low potential (+0.35 V) enable its implementation as a low-powered portable glucose
sensor. The redox mechanism of the electrodes with the analyte solution was confirmed through cyclic
voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy studies.
The developed biocompatible, disposable, and reproducible sensors showed sensing performance
in the range of 0.1 to 1 mM glucose, with a sensitivity of 1082.5 ± 4.7% μA mM−1 cm−2 on Cu2O
coated glassy carbon electrode and 182.9 ± 8.83% μA mM−1 cm−2 on Cu2O coated graphene printed
electrodes, making them a strong candidate for future portable, non-invasive glucose monitoring
devices on biodegradable substrates. For portable applications we demonstrated the sensor on
artificial sweat in 0.1 M NaOH solution, indicating the Cu2O nanocluster is selective to glucose from
0.0 to +0.6 V even in the presence of common interference such as urea and NaCl.

Keywords: glucose sensor; Cu2O nanomaterial; electrochemical sensor; non-enzymatic sensor

1. Introduction

Portable sensors are receiving significant and growing interest in healthcare manage-
ment, especially for monitoring chronic diseases such as diabetes and chronic wounds.
It has been noted that one of the major causes of mortality is diabetes related diseases,
affecting 537 million people in 2021, a number that is expected to significantly grow in
the coming years [1,2]. The increasing glucose levels in the world population denote the
importance of developing new sensors which can monitor glucose levels in a cost-effective
and simple manner. The present generation of glucose monitoring devices are minimally
invasive and measure real-time interstitial fluid glucose levels; however, they still rely on
skin piercing, with many patches lasting up to 10 days or less [3]. Other common methods
include measurement of blood glucose by finger pricking or blood tests, which is inconve-
nient and painful [4]. Although these blood-based monitoring systems are well established
and frequently used, not all diabetic patients comply with the protocol due to the pain
and inconvenience associated with the invasive detection process [5]. As diabetes affects
a large share of the population, new non-invasive methods, such as portable or wearable
systems, are being extensively researched to increase the level of comfort in patients. As
such, market growth for non-invasive glucose-monitoring devices is expected to reach USD
11.35 million between 2021 and 2025 [6]. However, most non-invasive devices incorporate
complicated technologies that rely either on spectroscopy or optical techniques specifically
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tailored to a particular type of diabetes and/or a specific age group [6]. Therefore, cheap
and reliable non-invasive techniques are still needed, especially to enhance the viability of
routine glucose checkups and other applications in low-income and hard-to-reach areas.
In this manner, electrochemical paper-based monitoring devices offer an opportunity for
non-invasive detection by using biological fluids other than blood. They have the potential
to generate robust, sensitive methods for the detection of metabolic changes in the medium
and short term. However, the glucose pathway from blood to sweat has yet to be fully
clarified [7]. There are also limitations in accuracy and sensitivity to environmental factors.
As a result, the development of proper sampling techniques is urgently needed in order to
estimate blood glucose via sweat. Recently, wearable electronics have begun to address
these shortcomings with the development of integrated sensor arrays [8–11]. Electrochem-
ical sensors offer the possibility of miniaturized, low-cost, portable sensors that require
fewer reagents and no specialized personnel to operate them. Furthermore, the sensing
range, cross-sensitivity, and stability can be improved by modifying the sensitive material.

In conventional electrochemical biosensors, the glucose oxidase enzyme is used to
detect glucose in physiological pH conditions, since it provides good selectivity and sen-
sitivity. However, enzymes are sensitive to changes in pH, temperature, and humidity,
as well as interference from some electro-oxidizable reagents [5]. To overcome the issues
due to the enzymatic process, metal and metal-oxide-based glucose sensors have been
developed [12–14]. These are usually based on a composition of noble metals (e.g., Au and
Pt) [15–17], transition metals (e.g., Cu, Ni, Zn, and Co) [18–20], metal-oxides (e.g., CoO,
NiO, and CuO/Cu2O) [21,22], and their combination with carbon materials [14]. In particu-
lar, Cu-based glucose sensors have attracted attention as Cu is a low-cost material and has a
wide crustal abundance. Moreover, Cu2O is a stable Cu oxide, and a p-type semiconducting
material with a 2.17 eV bandgap, making it a versatile material for various applications,
including solar cells, sensors, and batteries [23–26]. Its low net surface charge prevents the
material from being affected by interference from other compounds that commonly affect
noble metals [14]. The change of oxidation state from Cu(II) to Cu(III) mediates the electro-
catalytic activity of copper nanocomposites, with the possibility of tailoring the synthesis
to form nanostructures such as nanoflowers, nanowires, and nanocubes [27–29]. Therefore,
Cu2O is a suitable non-enzymatic alternative for glucose sensing. For the fabrication of
single-use biosensors, cellulose-based substrates are non-toxic and provide enhanced bio-
compatibility and biodegradability [30–32]. It is the most naturally abundant material in the
form of wood and cotton, among others [33]. The highly porous structure and large surface
area of the cellulose make it a sensible choice as a substrate for electrochemical biosensors.

In this work, a non-invasive, portable sweat-based glucose sensor was fabricated by
hand printing graphene paste electrodes on sustainable biodegradable and biocompatible
cellulose substrates. Cu2O nanoclusters were employed as the sensitive material and drop
casted on top of the working electrode (WE) to complete the affordable, voltammetric
glucose sensors. To study the feasibility of the Cu2O nanoclusters for glucose sensing,
cyclic voltammetry (CV), differential pulsed voltammetry (DPV), and electrochemical
impedance spectroscopy (EIS) studies were conducted in 0.1 M sodium hydroxide (NaOH)
and artificial sweat/NaOH solutions using Cu2O a coated glassy carbon electrode (GCE)
or graphene paste printed electrodes (PEs). Commercial graphene paste was used for the
printed electrodes, Ag/AgCl commercial paste was used for the pseudo-reference electrode
(RE), and the WE was further modified with drop casted Cu2O nanoclusters. The schematic
fabrication is shown in Figure 1. As a proof of concept to validate these portable glucose
sensors, voltammetric sensors were tested in 0.1 M NaOH and artificial sweat/NaOH solu-
tions with varying concentrations of glucose. X-ray diffraction (XRD) and scanning electron
microscopy (SEM) were employed to study the morphology of the Cu2O nanoclusters
and the interface of the sensitive material with the printing pastes and substrate. These
biocompatible disposable and reproducible sensors showed good sensing performance
in the range of 0.1 to 1 mM glucose, with a sensitivity of 1082.5 ± 4.7% μA mM−1 cm−2
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on the GCE and 182.9 ± 8.83% μA mM−1 cm−2 on graphene PEs, making them a strong
candidate for portable, non-invasive sweat glucose monitoring devices.

Figure 1. Schematic fabrication of the glucose sensor. (i) Cu2O nanoclusters drop casted on the GCE
for material study. (ii) Graphene paste printed on cellulose cloth with a Ag/AgCl RE. (iii) Modified
WE with Cu2O on the graphene printed cellulose substrate.

2. Materials and Methods

2.1. Cu2O Synthesis

The Cu2O nanocrystals were synthesized by modifying a previously published work [28].
Briefly, the synthesis consists of an ascorbic acid (C6H8O6) and NaOH reduction route
at room temperature. The addition of C6H8O favors the formation of Cu2O, and the
concentration of NaOH dictates the nanoparticle shape [34]. The reaction mechanism is as
follows [34]:

2Cu(OH)2 + C6H8O6 → Cu2O + C6H8O6 + 3H2O (1)

Firstly, 0.1 mmol of CuCl2 and 0.1 g of polyvinylpyrrolidone were dissolved in 40 mL.
After a dropwise addition of 2.5 mL of 0.2 M NaOH aqueous solution, the mixture was
stirred for 5 min. Then, 2.5 mL of 0.1 M aqueous ascorbic acid was added dropwise, and the
solution was stirred for further 5 min. The Cu2O crystals were recovered by centrifugation
and washed two times with ethanol. The crystals were dried and suspended in deionized
water (1 mg/mL) to be used for further experiments.

2.2. Sensor Fabrication

For the initial experiments, the sensitive electrode was fabricated on the top of the
glassy-carbon electrode (GCE). For this, 5 μL of the Cu2O aqueous solution (1 mg/mL) was
drop casted on the GCE and dried at 80 ◦C for 5 min. For the printed sensor fabrication, first
a three-electrode layer was hand printed on top of a cellulose substrate using a graphene
paste (JESC-7771G, JE Solutions Consultancy, UK). The RE and the CE were 3 mm × 1.5 cm
lines, and the WE consisted of a 3 mm × 2 cm line and a 1 × 0.5 cm rectangle. Among
these three electrodes, one was employed as a CE, and the surface of the second electrode
was converted to a RE. For RE fabrication, a silver/silver chloride (Ag/AgCl) paste (JESC-
7713AgCl, JE Solutions Consultancy, London, UK) was hand printed on the top of graphene
electrode and heat treated at 80 ◦C for 1 h in the oven. Wires were attached to the contact
pads using graphene paste and dried at 80 ◦C for 30 min. Before use, the WEs were further
modified by drop casting 20 μL of the Cu2O aqueous solution and dried at 80 ◦C for a few
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minutes. Finally, the contact pads were covered with insulative tape, and only the active
area of sensor was exposed to the solution.

2.3. Material Characterization

The structural characterization of the sensitive electrode was carried out with an X-Ray
diffractometer (XRD, P’Analytical X‘Pert with Cu Kα (λ = 1.541 Å)). The morphological char-
acterization and the atomic composition of the electrodes alongside the energy-dispersive
X-ray spectroscopy (EDS, Oxford Instruments Energy 250) mapping were performed using
a scanning electron microscope (SEM, Philips/FEI XL30 ESEM at 20 kV). The SEM images
were analyzed using the ImageJ software.

2.4. Electrochemical Characterization

For electrochemical measurements all reagents were used as received and all solutions
were prepared in deionized (DI) water unless otherwise mentioned. The CV, DPV, and EIS
analyses of the sensors were carried out using a Gamry potentiostat (Interface 1010E). A
three-electrode system, with a commercial glass Ag/AgCl RE, a platinum counter electrode
(Pt CE), and a standard GCE, was employed in the initial material studies. A PE with drop
casted Cu2O (as WE) with a commercial RE and CE was used for initial testing of the printed
material, and the full printed sensor was employed for the final tests. The experiments
were performed under normal ambient conditions. The CV and DPV electrochemical
measurements were carried out in 0.1 M NaOH (pH 13) aqueous solution or artificial sweat
alkaline solution (15 mM sodium chloride (NaCl), 3 mM potassium chloride, (KCl), and
22 mM urea in 0.1 M NaOH with a final pH of 13) with a glucose concentration varying
from 100–1000 μM with a 100 or 300 μM glucose stepwise addition. The limit of detection
(LOD) was calculated by using the standard deviation (SD) of the lowest calculation and
the calibration slope (S). The equation used was LOD = (SD/S) ∗ 3. The EIS analysis was
carried out with 0.1 mM glucose in 0.1 M NaOH from 100 kHz to 0.1 Hz.

3. Results and Discussion

3.1. Material Characterization

The XRD spectra and the SEM images for the Cu2O materials and PEs are presented in
Figure 2. The XRD spectra of the Cu2O synthesized powder and the Cu2O coated PE were
compared to the simulated Cu2O spectrum (COD #96-100-0064), shown in Figure 2a. The
powder and the Cu2O coated PE peaks matched the simulated cuprite data, indicating a
successful synthesis. The Cu2O PE peaks were much less intense due to the low amount of
drop casted Cu2O in relation to the surface of the WE. Some peaks were also slightly shifted
to the right, indicating a change in microstructure parameters such as crystallite size and
strain. This could be due to cuprite interaction with the graphene paste and agglomeration
when drop casting. The Cu2O coated PE XRD spectrum also presented some new peaks
from other crystalline materials present in the graphene paste and the substrate. Figure
S1a displays the cellulose substrate and the PE with and without the drop casted Cu2O
for comparison. The cellulose contribution is most prominent around 10 < 2θ < 28◦ due to
the influence of its intra- and intermolecular bonding patterns on the cellulose polymer
chain [30]. The other intense peaks correspond to the (002) and (004) peaks of graphite in
the graphene paste [35].
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Figure 2. (a) XRD spectrum of simulated Cu2O, synthesized powder Cu2O, and WE drop casted
with Cu2O nanoclusters (Cu2O PE). (b) SEM images of the Cu2O drop casted on the PEs: (b) Cu2O
nanoclusters, (c) graphene paste and (d) EDS mapping of the interface between Cu2O and the
graphene paste with an inset of the SEM image. Green corresponds to Cu, blue to O, and red to C.

The morphological structure of the Cu2O nanoclusters drop casted on the PEs can
be seen in Figure 2b–d. The Cu2O nanomaterial appears to form clusters on top of the
graphene-paste-based electrode. These clusters are a few micrometers in size and closely
dispersed (Figure S2a). The graphene paste adhered well on the cellulose substrate, forming
tightly packed layers. This is due to the fibrous, porous structure of cellulose, shown in
Figure S2b, which facilitates strong adhesion of materials to its surface. From the EDS
mapping (Figure 2d), a clear interface from the drop casted Cu2O crystals and the graphene
paste can be observed, indicating where the cupric material dried and clustered. The EDS
spectrum (Figure S2c) showed the presence of Cl, C, O, and Cu on the drop casted site. This
could indicate that not all CuCl2 was washed and remained in the final suspension. The
graphene paste has odd spots of Cu that could have appeared due to splatters or material
run off. On the Cu2O side, both Cu and O are present, with oxygen sites exposed to the
surface. This facilitates the formation of hydroxyl groups and the CuOOH configuration,
responsible for the glucose oxidation process [29].

3.2. Cu2O Nanocluster Study on GCE

Firstly, the Cu2O nanoclusters were studied with a standard three-electrode configura-
tion by drop casting the material on a commercial GCE. The material was utilized as an
enzyme-free glucose detection method, and its electrochemical activity was characterized
by CV and DPV on 0.1 M NaOH from 0.0 to +0.6 V, shown in Figure 3. This potential range
is commonly employed in the detection of glucose by Cu-based materials [21,29]. The Cu
material showed a clear redox response with the addition of glucose, from 100 to 1000 μM.
Glucose concentration in sweat is significantly lower than blood glucose, ranging from 10 to
1100 μM [8]. Therefore, the Cu2O nanoclusters seem suitable for sweat applications. From
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the DPV (Figure 3b), an increase in peak current can be observed with every 100 μM addi-
tion of glucose. By setting the peak current at +0.35 V over three sets of drop casted Cu2O
GCEs, a calibration curve was acquired (Figure 3c). A sensitivity of 1082.5 μA mM−1 cm−2

with a root mean square deviation (RMSD) of ±4.7% and R2 = 0.959. The upper limit of
detection seems to be 1000 μM, where the linear curve starts to stabilize. The calculated
LOD was 12 μM.

Figure 3. CV (a) and DPV (b) of Cu2O nanoclusters on GCE with varying glucose concentrations
(100–1000 μM) in 0.1 M NaOH. (c) Calibration curve at 0.35 V from DPV analysis.

We studied the electron transfer process of the Cu2O nanoclusters with 1 mM of
glucose at 0.1 M NaOH by changing the CV scanning rate from 50 to 300 mV/s (Figure S3).
The oxidation peak current of glucose increases with faster scanning rates and shifts to
slightly more positive potentials. The positive potential shift indicates a slow electron
transfer process, while the linear fit of the anodic and cathodic peak currents implies a
surface diffusion-limited process [36] due to porous electrode surface as confirmed in
SEM image in Figure 2b. This is in line with other literature reports for Cu2O/CuO-based
glucose electrocatalysis in alkaline media [37,38]. The mechanism of glucose oxidation
on cuprite is not fully understood, but it is assumed that the CuOOH oxidant reagent
is responsible for the glucose oxidation into gluconolactone [29,39]. The reaction can be
expressed as follows:

Cu2O + 2OH− + H2O → 2Cu(OH)2 + 2e− (2)

Cu(OH)2 → CuO + H2O (3)

CuO + OH− → CuOOH + e− (4)

CuOOH + e− + glucose → CuO + OH− + gluconolactone (5)

2CuO + H2O + 2e− → Cu2O + 2OH− (6)

Equations (2)–(6) show the importance of an alkaline medium in providing the nec-
essary OH− group for the oxidation process. The cuprite material was also validated in
an artificial sweat solution in 0.1 M NaOH (Figure S5). The material presented a similar
performance to that of 0.1 M NaOH, indicating that common substances found in sweat
(urea, NaCl, KCl) did not affect the oxidation process.

3.3. Printed Glucose Sensor Characterization

The performance of the printed glucose sensors was initially validated using the
Cu2O coated PEs with commercial RE and CE. The measured CV and DPV for various
concentrations of glucose in 0.1 M NaOH solution are given in Figure 4a,b respectively.
We noted that the peaks in CV and DPV were not as clear in the Cu2O coated on PE as
compared to the Cu2O coated on top of GCE. Although the peaks were not as clear, the
Cu2O PE could still be calibrated at +0.35 V. The calibration curve for three Cu2O PEs is
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seen in Figure 4c, with a sensitivity of 182.9 ± 8.83% μA mM−1 cm−2 and R2 = 0.938 and a
calculated LOD of 52.7 μM. As the material was drop casted, it is difficult to calculate the
effective area of the electrode, so the total graphene WE area was used in the calculation
even though the Cu2O did not cover the whole area. This could underestimate the area
sensitivity of the printed electrode, explaining the lower value. The calibration curve
was obtained by subtracting the base current without the addition of glucose to each
concentration point. Interestingly, this improved the calibration performance of the Cu2O
PE but only marginally improved it for the GCE (Figure S4). While the R2 went from 0.843
to 0.938, and the RMSD from 14.9% to 8.83% for the Cu2O PEs, the GCE only saw a change
of 0.01 for the R2 and 0.09% for the RMSD. This indicates that the baseline current is more
significant for the PEs than for the GCE, and a correction is necessary to lower the error
between different electrodes.

Figure 4. CV (a) and DPV (b) of Cu2O nanoclusters on printed WE with varying glucose concentra-
tions (100–1000 μM) in 0.1 M NaOH. (c) Calibration curve at 0.35 V from DPV analysis.

The measurement shows that both the CV and DPV peaks were not as defined as
on the GCE. This variation in performance could be due to the influence of the graphene
printed electrode with the solution and less surface area available due to the agglomeration
of the Cu2O on the surface of the PE as observed in Figure 2b. Further investigation of
the influence of electrodes on the electrochemical Cu2O response was carried out using
EIS analysis. Figure 5a shows the complex impedance data of Cu2O coated GCE through
the Nyquist and Bode impedance magnitude plot (inset of the Figure 5a) for 0.1 M NaOH
with a 100 μM concentration of glucose. For a similar solution, the impedance data plot for
Cu2O coated on PE is shown in Figure 5b. The impedance data on the Nyquist plot shows
that both GCE- and PE-based electrodes have an almost straight line in low frequency
range. This could be due to the diffusion controlled reaction given in Figure S3b. However,
we noted that the Cu2O coated GCE has a very high impedance value when compared to
the low impedance presented by the PE. It reveals that the electrolyte distribution on the
surface of the PE electrode is much better than on the GCE, leading to a lower resistance of
the solution reaction with the electrode. Moreover, both the pseudo-capacitance of Cu2O
and the electrochemical double layer capacitance from the printed graphene electrode
contribute to the electrochemical properties of electrodes. The diffusion of ions in the
bulk of the printed electrode can be confirmed from the small semicircle arc in the high
frequency range in Figure 5b. In the GCE-based electrode the redox reaction due to the
Cu2O material is more prominent, which can be observed by the distinguishable redox
reaction in Figure 3a as opposed to the quasi-rectangle CV curve on the PE in Figure 4a.
This difference in electrode–electrolyte reaction while coating on GCE or PE causes the
variation in sensitivity of both sensors.
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Figure 5. Nyquist plot of 0.1 M NaOH with 100 μM glucose solution of (a) Cu2O coated GCE with
magnitude of impedance inset and (b) Cu2O coated on PE with magnitude of impedance inset.

Finally, for a portable application we tested the performance of fully printed sensors
(Figure 1(iii)) in 0.1 M NaOH and artificial alkaline sweat (Figure 6). The CV and DPV
for fully printed sensors in 0.1 M NaOH solution with various glucose concentrations are
given in Figure 6a,b. The CV and DPV performance of the sensor in artificial sweat with
0.1 M NaOH is given in Figure 6c,d. The preliminary investigation showed an increase
in current up to 500 μM in both media. However, the artificial sweat in 0.1 M NaOH
presented more defined peaks and stable oxidation peaks, around the same potential as
that observed in previous results, while in 0.1 M NaOH solution the peaks shifted to
the left. This could be the influence of the pseudo-Ag/AgCl RE, as the artificial sweat
solution provides Cl− ions to replenish the salt layer, while the NaOH does not provide
the same favorable conditions. Although the preliminary results are promising, further
investigation is needed to fabricate reliable fully printed glucose sensors that can support
a wider range of glucose concentrations. The printed sensor performance was compared
to other printed CuO/Cu2O-based glucose sensors (Table 1). It can be observed that the
fabricated PE-based sensor is comparable to other reported works. Moreover, the low cost
of fabrication, biocompatible substrate and electrodes, and biodegradable materials are
the major advantages. The sensor size and biodegradable and sustainable textile-based
substrate together with its facile fabrication steps facilitate its implementation as a portable
glucose sensor.

Table 1. Comparison of CuO/Cu2O-based non-enzymatic electrochemical glucose sensors.

Electrode Material Substrate
Sensitivity

(μA mM−1 cm−2)
Linear Range

(mM)
Applied Potential

(V)
LOD
(μM)

Reference

CuO nanofibers GCE 431.3 0.006–2.5 0.4 0.8 [39]

Cu2O nanocubes SPCE 1040 0.007–4.5 0.7 31 [23]

Cu2O nanocubes/nafion GCE 2864 0.05–5.65 0.7 1.7 [40]

Cu2O NPs/nafion GCE 190 0.05–1.1 0.5 47.2 [41]

Cu2O nanowires Cu foil 4060 0.001–2.0 0.55 0.58 [25]

Cu2O nanowires Cu foam 6680.7 0.001–1.8 0.5 0.67 [42]

CuO/Cu2O nanosheets Cu foil 1541 0.001–4 0.6 0.57 [22]

Cu2O nanoclusters GCE 1082.5 0.1–1 0.35 (DPV) 12 This work

Cu2O nanoclusters Cellulose PE 182.9 0.1–1 0.35 (DPV) 52.7 This work

SPCE = screen printed carbon electrode; NPs = nanoparticles.
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Figure 6. Electrochemical analysis of fully printed Cu2O-based glucose sensors over a glucose
concentration range of 100–700 μM. (a) CV and (b) DPV in 0.1 M NaOH. (c) CV and (d) DPV artificial
sweat in 0.1 M NaOH.

4. Conclusions

Non-invasive, portable glucose sensors are necessary for increasing the wellbeing
of patients living with diabetes. In this paper, we introduce a disposable non-enzymatic
Cu2O-based sensor for portable glucose detection. We synthesized Cu2O crystals using
a simple ascorbic acid reduction route and studied the material performance for glucose
detection. The Cu2O formed nanoclusters and stayed on the surface of the graphene paste,
with oxygen exposed to the surface. The Cu2O nanomaterial showed good performance
towards glucose detection in basic medium, with a sensitivity of 1082.5 μA mM−1 cm−2

on GCE and 182.9 ± 8.83% μA mM−1 cm−2 at +0.35 V on graphene PEs. The RMSD
was comparably low even on the printed sensors, indicating suitability for disposable
sensors. Both the Cu2O on GCE and Cu2O PEs demonstrated a similar performance in the
artificial sweat in 0.1 M NaOH solution, indicating that the Cu2O nanocluster is selective
to glucose from 0.0 to +0.6 V even in the presence of common interference such as urea
and NaCl. To assess their suitability for portable glucose detection, fully printed sensors
were tested in 0.1 M NaOH and artificial sweat. The sensors showed a similar performance
to the Cu2O PEs, supporting that these cheap, biodegradable sensors can be employed
as portable disposable glucose sensors. However, drop casting the Cu2O material on the
printed sensitive electrodes caused a decrease in sensitivity due to poor material dispersion
and adhesion. By further improving the Cu2O nanomaterial and testing new techniques
for better adhesion of the sensitive material on the carbon electrode, e.g., screen-printing
and inkjet printing, these sensors could be employed in portable glucose sensing and
hard-to-reach zones to simplify glucose monitoring.
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with 1 mM glucose in 0.1 M NaOH. (b) Relationship between peak current and square root of scan
rate. Figure S4: Unmodified calibration curves (without subtracting the baseline) of (a) Cu2O GCEs
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Abstract: The ketogenic diet, while originally thought to treat epilepsy in children, is now used for
weight loss due to increasing evidence indicating that fat is burned more rapidly when there is a low
carbohydrate intake. This low carbohydrate intake can lead to elevated ketone levels in the blood
and breath. Breath and blood ketones can be measured to gauge the level of ketosis and allow for
adjustment of the diet to meet the user’s needs. Blood ketone levels have been historically used, but
now breath acetone sensors are becoming more common due to less invasiveness and convenience.
New technologies are being researched in the area of acetone sensors to capitalize on the rising
popularity of the diet. Current breath acetone sensors come in the form of handheld breathalyzer
devices. Technologies in development mostly consist of semiconductor metal oxides in different
physio-chemical formations. These current devices and future technologies are investigated here
with regard to utility and efficacy. Technologies currently in development do not have extensive
testing of the selectivity of the sensors including the many compounds present in human breath.
While some sensors have undergone human testing, the sample sizes are very small, and the testing
was not extensive. Data regarding current devices is lacking and more research needs to be done to
effectively evaluate current devices if they are to have a place as medical devices. Future technologies
are very promising but are still in early development stages.

Keywords: breathalyzer; acetone; ketogenic diet; semi-conductor metal oxides

1. Introduction

A ketogenic diet has many variations in micronutrients, timing, portion size, fre-
quency of meals, and caloric restriction, but the main tenet is reduced carbohydrate intake.
A precursor to the modern ketogenic diet was first introduced for epileptic children in 1911
where physicians in France used starvation as a method of controlling seizures and noted
positive progress, although without quantifiable evidence [1]. Subsequent studies have
shown that there may be some benefit, specifically with a low carbohydrate diet in control-
ling children’s epilepsy [2,3]. At the Mayo Clinic, RM Wilder coined the term “ketogenic
diet” after he observed the increased ketone levels in the patients that had reduced carbohy-
drate intake [4]. The modern ketogenic diet has now become a popular method of weight
loss, and has lost favor in seizure control, due to more advanced antiepileptic medications.
Many people struggle with obesity because of the prevalence of highly carbohydrate dense
meals, including ingredients such as high fructose corn syrup. The ketogenic diet has been
shown to aid with weight loss when combined with exercise [5–7]. With this popularity,
the ketogenic diet, including supplements, foods, education, and devices has a market of
around $10 billion and a projection of $15 billion by 2027 [8].

The human breath contains hundreds of volatile organic compounds (VOCs) [9,10]
as first noted by Linus Pauling in 1971 [11]. The most recognizable of these markers is
ethanol through the use of alcohol breathalyzers [12]. While ethanol in the breath dictates
the same compound in the blood, acetone is not present in the blood in a significant
quantity but is rather a metabolic step in the breakdown of fatty acids. This breakdown
yields three compounds of interest with respect to the ketogenic diet: specifically, β-
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hydroxybutyrate (BHB), acetoacetate (AcAc), and acetone [13]. These ketone bodies are
markers of a ketogenic state in which the body is not using glucose for energy, but rather
free fatty acids. The term “ketogenic diet” or “ketodiet” is a derivation of ketone-genesis,
or the making of ketones. This state of ketosis is hypothesized to assist in weight loss by
increasing the rate of lipolysis [5–7,14,15]. The breaking down of fatty acids leads to AcAc
production in the blood, which is then further metabolized into BHB and acetone. The
majority of acetone is formed when AcAc is enzymatically decarboxylated via acetoacetate
decarboxylase located in various tissues throughout the body (Figure 1). This process is
dependent on blood glucose levels, with a higher level of glucose correlating with lower
levels of acetone production, while lower levels of glucose correlate with higher acetone
production [13]. In states of starvation, or low glucose, the body needs energy in the form
of ATP and this lipolysis is essential in supplying the ketone bodies needed to produce
it. It is hypothesized that by measuring the levels of either AcAc, BHB, or acetone, an
estimated level of ketosis can be gauged [2,5,7,14,16–23].

Figure 1. Human ketone metabolic pathways summary.

Acetone specifically can be measured in the breath and has been shown to correlate
with the level of ketosis such as BHB detection in the blood [2,17]. Other VOCs have been
explored as biomarkers for the diagnosis and management of disease states and monitoring
of lifestyle. These can range from epilepsy [2,3], various cancers [24,25], diabetes [17,26],
lactose intolerance [27] exposure to pollutants [9], and ketogenic diets where the level
of acetone measured in exhaled air has been reported to correlate with the degree of
ketosis [2,3,5–7,14,18,28,29]. This is of interest to those on a ketogenic diet because it
indicates “how well” their diet is working and if adjustments are needed. It is important
for dieters to know where they are along the axis to help guide their decisions and for type
1 diabetics to avoid ketoacidosis, a severe ketogenic state characterized by extremely high
ketone levels and very low blood glucose which could result in a coma [30].

This zone of ketogenesis that has been suggested to be optimal is in the range of 1.5–
3.0 mmol/L of BHB, if measuring blood ketones, and 2–40 ppm of acetone if measuring in
the breath [14]. Falling within this range would inform dieters if they are in a state of ketosis.
Breath acetone (BrAce) and BHB have been positively correlated showing R2 values ranging
from 0.7 [18] to 0.9 [2,5]. Blood BHB is routinely measured in clinics across the country as a
normal laboratory assay. BrAce has only recently come into popularity due to emerging
technologies. Early renditions of acetone breathalyzers used similar redox reactions as their
ethanol counterparts in the hopes of crossover, but ultimately lacked specificity. Modern

52



Biosensors 2021, 11, 26

renditions of the breathalyzers have adopted newer technologies to increase sensitivity
and specificity. Many current approaches employ the use of semiconductor metal oxides
as a reactive sensor [31–35]. These can take many forms, with respect to the metal used
and physicochemical arrangements. A small portion of BrAce meters on the market utilize
photoionization detectors which detect acetone’s absorbance under different wavelengths
to determine the concentration present in the breath [36]. Future technologies currently
in development mostly revolve around development of novel metal oxides to increase
specificity, sensitivity, and durability.

2. Current Technology

Current ketone sensing technologies employ mass spectrometry, photoionization, gas
chromatography, light-addressable potentiometric sensors, quantum cascade lasers, and
semiconductor metal oxides [26]. These approaches can be used to detect ketones in the
urine, breath, and blood. Previous technologies predominately involved the use of mass
spectrometry and gas chromatography. However, these technologies are limited due to their
cost and bulk. Tests would need to be ordered with the patient’s samples being sent to the
lab which would take time to receive results. Because of the cost and inconvenience, these
tests were not routinely done. The current standard of care for diabetics is to check glycated
hemoglobin and blood glucose levels using a blood test to mostly monitor high levels of
glucose. Ketone sensing technology has been proposed as a supplemental diagnostic tool
for high levels of ketones [26].

Current trends in ketone sensing technologies revolve around handheld breath acetone
detectors. These devices are capable of detecting levels of acetone in the breath usually
in ppm levels and report it to the user. Utility of this with respect to the ketogenic diet
comes from linking the degree of ketosis to BrAce. Some key factors need to be identified
before confidently accepting the breathalyzer’s readout. These include the patient health,
the device has high sensitivity and specificity for acetone, the dieter has not ingested
anything that could interfere with the signal, and the timing between meals and exercise.
Additionally, there are some identified factors that affect BrAce readout, some of which
are; exercise, obesity, garlic ingestion, disulfiram, and variability in body temperatures [7].
Exercise has been shown to increase BrAce in adults because energy in the form of glucose
has been depleted and the body moves to metabolize fat stores [37]. Obese individuals have
been shown to have lower levels of BrAce. This mechanism is not fully understood and
may be related to insulin resistance where fat oxidation is limited [21]. Garlic ingestion has
been shown to moderately increase BrAce by possibly inhibiting acetone metabolism [38].
Disulfiram, a drug used to treat alcohol dependence, may also increase BrAce through
its acetaldehyde dehydrogenase inhibition. Temperature extremes also have effects on
overall metabolic rate in humans and variations may correlate with BrAce changes [39].
These factors are important to consider when using single point measurements of BrAce.
Repeated measurements over a day provide ketone exposure rather than immediate ketosis
status which may be more useful for long term dieters.

The majority of current devices use semiconductor metal oxide (SMO) sensors to
detect BrAce. This is due to the cheap manufacturing cost, portability, low energy input,
and the wide range of evidence supporting their accuracy [26,40–43]. Many SMOs are
available with sensitivity and specificity to acetone. A number of current commercially
available devices are generic versions with no patent that have been rebranded by multiple
companies [35]. This makes it difficult to determine their exact makeup, technology, and
reliability.

Evidence for currently available commercial ketone breathalyzers is lacking. Many
studies have assessed the utility of novel sensors in the ketogenic diet [25,41–68], but very
few have evaluated currently available devices. The BIOSENSE™ device is a breathalyzer
with published clinical trial data detailing its efficacy. However, the data reported in
this trial should be taken lightly because an independent reviewer was not present and
the sample size was very small. The parent company, Readout Health, has published
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prospective observational cohort study of 21 subjects using the BIOSENSE™ and Precision
Xtra devices. The Precision Xtra is an FDA cleared device from Abbot Laboratories,
Inc., Abbot Park, IL, USA that measures blood ketones and glucose [69]. The subjects
recruited were majority female (81%), described as ethnically diverse, and divided between
a ketogenic diet and standard diet. They self-reported daily values for blood ketones and
BrAce. Values were measured five times throughout the day and subjects were adherent at
a rate of 100%, 93%, and 63% to three, four, and fives daily tests, respectively. A total of
1214 measurements comparing BrAce and blood ketones were run in a linear regression
analysis and obtain the coefficient of determination to be R2 = 0.57 (p < 0.0001) [70].
Additionally, measurements from each individual were plotted separately for each day
giving a total of 248 total subject days and used to examine the daily ketone exposure
(DKE). The value derived from the area under the curve (AUC) of ketone concentration
over time [70]. This DKE value for both BrAce and blood BHB was analyzed and another
linear regression was calculated giving R2 = 0.80 [70].

This Readout Health study produced valuable results with respect to DKE. The
authors demonstrated that ketone levels throughout the day are highly variable, thus
limiting the utility of single point measurements. By measuring multiple times throughout
the day, a DKE calculation can be obtained to give overall ketone exposure. More data is
needed to determine the utility of DKE calculations in comparison to single point readings.
The BIOSENSE™ device measures single point readings, but a mobile application also
determines a DKE calculation called a “Ketone Score” [70].

However, the utility of the BIOSENSE™ device cannot be accurately assessed. There
are many limitations to the study and not enough data. The sample size of the device is
only 21 which is very low for a clinical trial. The subjects’ baseline characteristics were
never described in the study and only mentioned to be ethnically diverse which limits
the generalizability of the results. There was a lack of gender distribution with 80% of
the subjects being female. The DKE calculation was determined using days that had four
or five readings and those readings had adherences of 93% and 63%, respectively which
again limits the sample size and generalizability. The specific build of the device was only
mentioned as a metal oxide semiconductor with no details beyond that. The subjects’ diet
was also not monitored even though the authors recognized that certain factors and drugs
can influence BrAce. This study was also conducted by the same company that produced
the BIOSENSE™ device with no data handling by a third party, so accuracy of the data is
questionable.

Another reported device is the METRON disposable acetone sensor. This device is
not currently commercially available but has a mechanism unique to other acetone sensors.
The device is described by US Patent 8,871,521 [71] as a hollow tube with a liquid and
powder component. The subject would break a seal and combine the two components
and then blow through the device. A reaction between sodium nitroprusside (SNP) and
an ammonium salt would occur facilitated by acetone in the breath. The level of BrAce
would correlate with reaction extent via colorimetric spectroscopy. A purple color would
be observed with 1.4 mg/dL of BrAce, or a “positive” result. This device is no longer
commercially available.

The INVOY breathalyzer contains a liquid nanoparticle sensor as detailed in US Patent
9,486,169 [72]. The specific metal oxide was not mentioned, and no studies have evaluated
its effectiveness. It is described in the patent as containing liquid cartridges that can react
with BrAce and produce a colorimetric change that is detected by a camera and relayed to
a sensing system which then gives an approximate BrAce level.

The Ketoscan device developed by Sentech GMI corp. in Korea uses a photoionization
detector calibrated for acetone, as described in its patent application [73]. There is no pub-
lished data describing its specificity or sensitivity or use in a ketogenic diet. The Ketoscan
company has posts on its website claiming of undergoing clinical trials; however, there
are no published results in any scientific journal and only simple results comparing the
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detected fat lost with the device to actual fat lost are indicated; however, this data is not
currently verifiable.

Other ketone breathalyzers listed in Table 1 have very limited data on their functional-
ity, build, and effectiveness. Some can be assumed to be SMO containing due to similar user
steps and build, but no data is currently available evaluating these devices. Their accuracy
with respect to specificity and sensitivity is questionable and may or may not be provided.
More studies are needed to evaluate current available ketone sensing systems. FDA status
is also indicated in the table because it may indicate the intentions of the manufacturer and
quality of the device.

End-tidal breath or the last air out of a breath is noted to contain the true concentration
of acetone [74]. What this means for sensors is that a sustained breath is needed to
accurately detect the breath acetone level. Currently available sensors do not indicate they
have a specific mechanism for this, but most direct the user to exhale for around 10 s which
gets around the end-tidal volume of air for healthy people.

Table 1. Current commercially available breath acetone sensing devices.

Brand Technology FDA Status Strengths Limits

METRON [71] SNP c, ammonium
sulfate powder N/A b Disposable Off Market

INVOY [72,75] Liquid Cartridges with
Metal Oxide d Registered Class 1 Available through a

nutrition program Disposable cartridges

Ketoscan [36,73] Photoionization Detector Registered Class 1 Undergoing trials Limited data
House of Keto [35] Metal Oxide Detector N/A b Cheap cost Generic build, Limited data

Ketonix [76] N/A a Registered Class 1 Cheap cost Limited data
Qetoe [34] Metal Oxide Detector N/A b Cheap cost Generic build, Limited data

Lencool [33] Metal Oxide Detector N/A b Cheap cost Generic build, Limited data
Lexico health [32] Metal Oxide Detector N/A b Cheap cost Generic build, Limited data

KetoPRX [77] N/A a N/A b Cheap cost Generic build, Limited data
Keyto [78] N/A a N/A b Easy use Limited data

LEVL [79] N/A a Registered Class 1 Clinician coaching
included Expensive, limited data

Biosense [31,70] Metal Oxide Detector Registered Class 1 Data available expensive
a Technology in use was not publicly available. b The device listed is not registered with the FDA or the status could not be determined.
c Sodium Nitroprusside (SNP). d Specific details regarding composition of liquid and the metal oxide was not listed.

3. Future Technologies

The main sensors presented here are metal oxides and light-based sensors. Semicon-
ductor metal oxides at their basic level detect resistance changes along their surface when
exposed to the different gases. Oxygen is present on their surface which is reduced, and
that electron changes the resistance of the sensor. These sensors are no longer plain metal
oxides but consist of many different nano-arrangements and can also be doped with other
metals, changing their porosity and overall function. The challenge many researchers have
is to find the right ratio of metals to combine, an adequate nano-arrangement, and a cheap
and simple process for development [80]. Light based sensors are also presented as an
alternative to the bulk gas chromatography and mass spectrometry. They emit light that is
then picked up by a sensor and in between the emitter and sensor is the gas. Certain gases
affect the light differently and this can be calibrated into the sensors to find the exact gas
concentration present [43].

3.1. Metal Oxides and Organic Based Sensors

Many sensors in development are utilizing metal oxides as its base and experimenting
with augmentations to the metal in an effort to increase the sensitivity, specificity, efficiency,
and durability. Plain metal oxides have some utility in sensors, but do not have the
sensitivity and selectivity of the novel augmented sensors being researched today. Other
metals in certain nano conformations, such as nanosheets, nanoparticles, and nanotubes
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are being researched to allow for more VOC and oxygen adsorption to their surface and
increase selectivity toward acetone. One variation between the sensors seen is the operating
temperature. This is the temperature that the researchers have selected for the device to
operate at in order to achieve maximum response. This temperature is not sustained but
exists for a small amount of time in the sensor. A lower operating temperature would be
ideal because a lower power consumption and higher temperature tend to lower stability
of the sensors. Here we explore some BrAce sensors utilizing metal oxides and discuss
their effectiveness and utility. A summary of highlighted data is provided on Table 2.

3.1.1. Zinc Oxide, Cadmium Based

Graphene quantum dots (GQD) are nanostructures with use in many different ap-
plications including gas sensing. Liu et al. [54] have developed a GQD-functionalized
three-dimensional ordered mesoporous (3DOM) ZnO sensor for acetone detection. The
goal was to improve upon basic ZnO sensors and demonstrate a manufacturing process
for assembling the sensor. First polymethyl methacrylate (PMMA) spheres were perme-
ated with ZnO(NO3)2 and underwent a calcination process to remove volatiles, yielding
a 3DOM ZnO structure. GQDs were made by dispersing graphite powder with strong
acids. This solution was subsequently washed, dried, and heated to produce the GQDs.
The 3DOM ZnO were spin-coated with the GQDs to produce the sensor backbone and
tested on various gases. Operating temperature of this sensor was lower than other 3DOM
ZnO sensors (320 ◦C vs. 380 ◦C) which is crucial since there is a concern of decomposition
of the GQDs at temperatures greater than 350 ◦C. The addition of the GQD yielded faster
response and recovery times (at 1 ppm of acetone GQD 3DOM ZnO (9/16 s) vs. 3DOM
ZnO (16/27 s). The incorporation of the GQD sensor also led to a lower detection limit
of 50 ppb vs. 200 ppb with the 3DOM ZnO sensor. With regards to selectivity, the GQD
3DOM ZnO sensor exhibited poor response to water and was highly selective to acetone
compared to other gases (Rair/Rgas = 15.2 at 1 ppm). NO2, H2S, NH3, toluene, ethanol,
methanol, isopropanol, and NO were tested with values lower than 4.1. As for stability,
the sensor was measured to have lost 3% weight when subjected to temperatures from
50–200 ◦C. This weight loss was attributed to the decomposition of water present in the
samples by the authors. The authors described that this sensor has potential utility as a
diabetic diagnostic tool to detect high ketones in the breath, but the same concept can be
applied to a ketogenic diet [54].

Researchers at Shenzhen University in China have developed two ZnO based sensors
which are Au or Pd doped to enhance the acetone sensing capabilities [53]. The sensor
was prepared using microwave assisted solvothermal reactions. The Au doped sensors
achieved a maximum response of Rair/Rgas = 102 at 150 ◦C with 2.0 wt% Au, while the
Pd doped sensor achieved a maximum response of Rair/Rgas = 69 at 150 ◦C with 1.5 wt%
Pd. Selectivity for acetone was compared to ethanol, methanol, H2, NH3, and SO2. Both
sensors displayed selectivity, with the Au doped sensor being more selective to acetone.
The response and recovery times of the Au doped sensor was 8 and 5 s, respectively, while
the plain ZnO sensor was 9 and 7 s, respectively. Sensor stability was noted to be excellent
by the authors with only slight variation in response at 150 ◦C [53].
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Šetka et al. developed a new sensor capable of working at room temperature using
cadmium telluride/polypyrrole (CdTe/PPy) nanocomposites which were integrated into
Love mode surface acoustic wave (L SAW) sensors [50]. This new sensor achieved high
specificity and selectivity for VOCs, including acetone. The sensor was made up of two
components, the first being PPy, which is a conductive polymer, and the second being
CdTe. The PPy was meant to overcome weaknesses associated with plain conductive
polymers such as high working temperature, poor selectivity, or low response speed [50].
By incorporating a metal in the form of CdTe, these limitations could be overcome. The
CdTe quantum dots (QD) were first formed using CdCl2, tri-sodium citrate dihydrate,
and mercaptopropionic acid (MPA). The pH was adjusted, and sodium tellurite and
sodium borohydride were added. The solution was mixed and heated to form the CdTe
QDs which were combined with the polypyyrole by mixing the solutions and then spin
coating. CdTe and PPY were combined in two different concentrations (CdTe/PPy 1:10
and 1:2) and another sensor was left with only PPy. The 1:10 CdTe/PPy sensor showed
the highest response while the 1:2 CdTe/PPy sensor showed the lowest. The PPy sensor
had sensitivity to acetone (652 Hz/ppm), while the 1:10 CdTe/PPy sensor was improved
with approximately 1.2× greater sensitivity. Overall, this technique and new sensor is
promising; however, human testing needs to be conducted to assess its function once
exposed to the hundreds of VOCs found within the human breath. A positive attribute to
this sensor is the ability to operate at room temperature with low energy requirement.

Researchers in Vietnam have synthesized ultrathin porous ZnO nanoplates via a urea
mediated synthesis [66]. These nanoplates are 2D structures which are hypothesized to
have excellent sensitivity due to their exposed planes. The nanoplates were synthesized via
a hydrothermal method. A scanning electron microscope was used to observe the structures
and demonstrate their ultrathin and porous structure which is thought to contribute to
their gas sensing ability. The sensor was tested with acetone, ethanol, methanol, toluene,
and NH3 gases at temperatures ranging from 350 to 450 ◦C. The sensor was found to be
temperature dependent with a decrease in temperature leading to decreased response. At
125 ppm of acetone, the sensor had a response of 20 (Rair/Rgas). The response and recovery
time for the sensor were calculated from transient resistance versus time when flow was
switched from air to gas and back to air. The sensor had response and recover times at
acetone concentration of 50 ppm, of 23 and 637 s, respectively and at concentrations of
50–125 ppm, of 7 and 550 s, respectively. Compared to the aforementioned GQD 3DOM
ZnO [53] and the CdTe/PPy [50] sensors, the response/recovery time is very high. The
operating temperature of 450 ◦C is also very high and would require a greater energy input.
Despite the high temperature, the sensor displayed excellent stability over 10 exposures to
acetone over 10,000 s with little variation in response.

A miniaturized gas chromatographic column utilizing ZnO QD was developed by
researchers in the Republic of Korea [43]. These QDs were synthesized using a: Zn acetate,
N,N-dimethylformamide, and tetramethylammonium hydroxide then laid on the sensor.
A patient would breathe into a sampling loop, and a pump would slowly push 1 mL of the
sample through a packed column. The acetone was then detected on the ZnO QDs based
on changes in the resistance of the sensor. Using this method, the gasses are physically
separated before to ensure greater accuracy. Responses were recorded in terms of (Δlog(R))
and were positively correlated with stock acetone gas in ppm with an R2 of 0.9915. The
device was tested on three subjects with one undergoing a ketogenic diet. It was noted
there was an increased response correlating with higher BrAce in the subject undergoing
the ketogenic diet. The correlation is very strong at R2 = 0.9915 [43]; however, the sample
size of 3 is very small with only a few data points, and thus not enough to draw conclusions
about the device’s utility.

3.1.2. Iron Oxides

LaxFeO3 based sensors have rising popularity with researchers looking to optimize
and enhance current sensors. LaxFeO3 has stability at high temperatures and can be
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formed into specific crystal arrangements to allow ultralow detection limits of acetone.
Chen et al. in China have developed nano-LaFeO3 thick-films in an attempt to reach ppb
levels of acetone detection [41]. To make their sensor, lanthanum nitrate, ferric nitrate, and
citric acid were mixed and formulated using the sol-gel method, then heated in an oven
and mixed with water to make a paste to spread onto the sensor plate. The sensor was
determined to have the highest response when annealed at 800 ◦C. The sensor exhibited
different responses depending on the concentration of acetone. For acetone concentrations
of 0.5 ppm, 1 ppm, 5 ppm, 10 ppm, the responses were 2.068, 3.245, 5.195, and 7.925
(Rair/Rgas), respectively. Ethanol and acetone were compared at 5 ppm and ethanol had a
higher response, 2.44 vs. 1.936 showing poor selectivity. Compared to other gases such
as HCHO, NH3, and methanol, the sensor had greater selectivity for acetone. Optimal
operating temperature was determined to be 260 ◦C with response times from 37–51 s and
recovery times of 82–155 s.

A Bi1−xLaxFeO3 (x = 0–0.2) sensor was developed by Peng at al. in China [47]. The
authors’ goal was ultralow levels of acetone detection. A sol-gel method was used to make
the sensor using: Bi(NO3)3·5H2O, Fe(NO3)3·9H2O, and La(NO3)3·6H2O mixed in acids
and then heated to yield the final powder, which was cast on a gold sensor plate. Using
Bi1−xLaxFeO3 (x = 0.1) at 50 ppb acetonitrile, tetrahydrofuran, N-hexane, CHCl3, CH2Cl2,
NH3, and xylene were tested alongside acetone and there was no detectable response, while
with acetone there was a response of 8 (Rair/Rgas). The highest response achieved was 40
(Rair/Rgas) at 100 ppm of acetone and 260 ◦C. The sensor was tested in 55%, 70%, and 90%
RH with response decreasing as the RH was increased and acetone test gas concentration
decreased. The lowest response was 2.8 (Rair/Rgas) at 90% RH and 50 pbb of acetone and
the highest was around 16 (Rair/Rgas) at 55% RH and 1000 ppb. Response/recovery time
was exceptional at 260 ◦C and 15 and 13 s, respectively. The sensors were tested for stability
over 4 weeks and found little variation in response when tested at 50, 600, and 1000 ppb of
acetone. This sensor was not tested on human subjects, but has been proposed as a diabetic
or ketogenic diet device [47].

3.1.3. Tin Oxides

Li et al. in China incorporated Pd and Au onto SnO2 nanosheets (NSs) for another
sensor. This sensor was made to compare the effects of Pd and Au on enhancing the
gas sensing performance of SnO2 nanosheets. To make the sensor, a hydro-solvothermal
method was used to produce SnO2 nanosheets. Pd and Au were then added along with
ascorbic acid to produce the doped nanosheets. Two separate sensors with only either Pd
or Au on the SnO2 nanosheets were also made for comparison. The Pd/Au SnO2 sensor
outperformed bother sensors in all categories and required a lower operating temperature.
The sensor was not tested on humans, but the authors noted that under 94% RH the sensor
performed well. It exhibited a 45 ppb detection limit which is very low compared to other
sensors and had a response of 6.5 (Rair/Rgas) at 2 ppm of acetone under an operating
temperature of 250 ◦C and very fast response/recovery times of 5/4 s possibly owing
the fast times to a highly exposed surface area and porosity from the unique nanosheet
structure. This sensor was made as an enhancement of a basic SnO2 sensor to demonstrate
how Pd and Au can improve the sensor. Compared to a basic SnO2 sensor, the PdAu/SnO2
sensor has over three times the response to acetone at 1 ppm. Stability over 40 days was
tested and a response reduction of 3–5% was detected when measuring at 250 ◦C [48].

Similarly, another SnO2 sensor was developed by Cho et al. [63] to maximize gas sens-
ing performance by increasing porosity. This was done by using SnO2 spheres made via a
novel electrostatic spraying method which also incorporated Pt into the nanostructures
resulting in Pt-pore-loaded hierarchical SnO2 (Pt-PH-SnO2) spheres. These were compared
to PH-SnO2 spheres and hierarchical SnO2 spheres. The benefit of the new Pt-PH-SnO2
spheres as compared to previous sensors is the pores which allow for about a 20% en-
hanced gas sensing response. This sensor also demonstrated a novel electrostatic spraying
technique which allows an easier and more robust method of SMO sensor synthesis. The
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maximum response of the Pt-PH-SnO2 sensor was 44.83 (Rair/Rgas) at 5 ppm compared to
a much lower 6.61 (Rair/Rgas) from the PH-SnO2 sensor. The operating temperature is on
the higher end at 400 ◦C. The detection limit is 200 ppb which is intermediate compared
to other sensors discussed. The response time of the Pt-PH-SnO2 sensor was noted to be
7 s, but no acetone concentration was given [63]. The recovery time was noted to be fast;
however, no value was mentioned. This sensor was evaluated in 90% RH and exhibited
similar performance with or without humidity. Stability of the sensor was noted to be great.
Measurements were taken at 18 months and the response was reduced to 34.18 at 5 ppm.
No human tests were conducted and more data on this sensor is needed, such as complete
response and recovery times and accuracy compared to other sensors.

3.1.4. Tungsten Oxides

Tungsten Oxides are very popular in current BrAce sensor research. Ding et al. have
developed a WO3 sensor and compared its functionality when doped with chromium [52].
This sensor follows the process of Cr doping from research in 2008 to form a similar
sensor [82]. The sensors were not tested on humans but was tested in 40% RH. The sensor
had a low detection limit of 298 ppb, an operating temperature of 250 ◦C, and a response
of 71.52 (Rair/Rgas) at 100 ppm. The plain WO3 sensor was noted to have a response three
times lower than the chromium doped one. Through thorough investigation by Ding et al.,
tungsten annealed at 450 ◦C and 100 mg of chromium were determined to give the best
response [52]. Tungsten oxide was also used in another sensor made and tested by Kim
et al. in Korea and the United States. WO3 nanofibers incorporated with Pt nanoparticles
were encapsulated in a protein cage and then heat treated to give the desired dispersion
of Pt nanoparticles. The sensor was tested under varying RH up to 90%, but not tested
on humans. The response/recovery times and detection limits were not addressed by the
researchers. A response of 88.04 (Rair/Rgas) at 5 ppm was noted. This sensor utilizes a
novel method of a sacrificial template in the form of a protein which allows for a different
method of dispersing nanoparticles on a medium [42].

Platinum and palladium have been historically used in their pure form as electrodes
for various electronic application. Current uses, with respect to breath acetone sensors,
involve the addition of Pt or Pd in the sensor to enhance its functionality. One such
sensor has been developed by Deng et al. in China where WO3·H2O hollow spheres
were modified with 0.02% PtCu nanocrystals to improve response by up to 9.5 times [56].
Deng at al.’s sensor exhibited maximum response of 204.9 (Rair/Rgas) with 0.02% PtCu
at a temperature of 280 ◦C using a stock 50 ppm acetone sample [56]. Their sensor also
demonstrated good selectivity for acetone when compared to other gases, including the
following: methylbenzene, ethanol, formaldehyde, methanol, benzene, ammonia, and
hydrogen with acetone achieving a response 4 times greater than any of the aforementioned
gases, but was not tested for in humid conditions nor tested on humans [56]. An early
tungsten-based sensor from 2012 was developed by researchers from Switzerland and
Austria using Si-doped WO3 nanostructured films [49]. This sensor has limited data on its
capabilities such as maximum response. The fast response and recovery times of 10 and 35 s,
respectively, and very low detection limit of 20 ppb seem very promising. Revisiting this
sensor may be warranted to possibly optimize it and further test with humans. It was tested
on five healthy male participants in 2012 with limited data regarding the tests. It seemed
to exhibit very high selectivity when comparing the acetone response to the second best
response of ethanol with a value of around 18. This may not accurately represent the sensor
as a whole due to only testing against ethanol in the 2012 study. This sensor was further
tested in 2013 on 8 healthy subjects to correlated glucose levels and breath components
and found a strong correlation of 0.98 after overnight fasting [82]. Further testing of this
sensor on 20 volunteers in 2017 on fat metabolism showed that the elevated breath acetone
post exercise was correlated with elevated blood BHB and that the sensor is suitable as an
exercise monitor [83]. A year later in 2018, this sensor was tested again with a ketogenic diet
and 11 volunteers and found that a ketogenic diet raised ketone levels. The breath acetone
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level was compared to blood BHB and the levels were in agreement. The authors noted
that the sensor could be suitable for tracking a ketogenic diet along with ketosis status of
an epileptic patient. Further research on this sensor incorporated it into a sensing array
for human detection in collapsed buildings. The array would include this Si:WO3 sensor,
a Si:MoO3 sensor, and a Ti:ZnO sensor. This array was set to detect acetone, ammonia,
and isoprene concentrations at 19, 21, and 3 ppb respectively. This was a unique approach
to using breath acetone monitoring [84]. Lastly in 2020, the sensor was enhanced with a
catalytic filter made of Al2O3 nanoparticles which was heated to 135 ◦C before the sensor
was heated to 400 ◦C. This allows it to have an enhanced selectivity of over 250 against
many analytes including alcohols, aldehydes, aromatics, isoprene, ammonia, hydrogen
gas, and carbon monoxide. Stability was excellent with responses staying constant when
subjected to 145 days at 90% relative humidity [81].

3.1.5. Nickel Oxides

Nickel containing sensors have some popularity in gas sensors and a current research
exists to try and find optimal chemical and physical configurations. Liu et al. in China
have developed a nickel-based sensor using stabilized zirconia and NiTa2O6. Their sensor
had a detection range of 0.2–200 ppm of acetone, sensitivity of −11/−27 (mV/decade),
response and recovery times in seconds of 9 and 18, respectively. The selectivity was not
great with ethanol and methanol achieving around half of the response to acetone under
various conditions. The response of the sensor fluctuated between −2.5–1.5 mV in relative
humidity ranges of 20–98%, which demonstrates good applicability for human breath. The
operating temperature of 600 ◦C was quite high; however, the sensor demonstrated good
stability over repeated use [61]. Another nickel-based sensor was developed by researchers
from India and Italy using MgNi2O3 nanoparticles. The sensor did not have a linear
response for detecting acetone concentration, but a calibration was possible to determine a
concentration based on previous known values. The sensor has an operating temperature
of 200 ◦C, which is much lower compared to the aforementioned NiTa6O6 sensor. The
response to acetone at 10 ppm was 2.3 (Rair/Rgas). A detection limit was extrapolated to be
0.3 ppm with values only measuring down to 0.5 ppm. The response and recovery times
were 25 and 250 s, respectively. The sensor was also proposed to be able to directly measure
blood glucose levels. The long-term stability of the sensor was not discussed; however,
the sensor was noted to be stable over the fluctuations of the test with a constant response.
This sensor was not tested in humid conditions nor tested on human subjects [59].

3.2. Light Based

New sensors are under development utilizing light absorbance and diffraction. Lasers
are often used for these applications due to their precision and stability which allows for
more accurate measurements [85–89]. Schwarm et al. have developed a laser sensor that
has been tested on subjects undergoing a ketogenic diet [37]. The sensor follows classic
Beer–Lambert law by measuring absorbance of a gas and comparing it to known levels
of acetone to determine the concentration present in exhaled breath. The sensor has an
array of fiber optic cables and mirrors to lay out the laser path. This sensor uses an 8.2 μm
region which was determined to give the least interference. Accuracy has only been tested
against known concentrations of acetone in N2 gas in a testing chamber and not compared
with gas chromatography or mass spectroscopy in humans. Human testing was done to
determine if the sensor can detect changes in BrAce but not for accuracy. Five subjects were
enrolled out of UCLA medical center and underwent a ketogenic diet. They had baseline
BrAce measured before the diet and began a 36-h ketogenic diet. All subjects demonstrated
elevated BrAce from baseline for the duration of the diet and 3 h post diet. The sensor was
the exclusive BrAce measuring device used and accuracy of the results are not clear. This
sensor is in the early stages and seems promising if more human testing is done.

Another light-based sensor from the UK uses direct Ultraviolet (UV) absorbance to
measure acetone [45]. Acetone of known concentrations were measured using the sensor
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and gas chromatography. The sensor was tested on 10 healthy human subjects against
gas chromatography and showed a linear correlation with an R = 0.971 [45]. The human
breath samples were collected into Tedlar® bags and not directly measured with either gas
chromatography or the sensor to obtain more consistent results. This sensor also had a
detection limit of 0.7 ppm. Being a light-based sensor, the values governing the sensors are
different than the SMOs and a direct comparison may be difficult. The largest advantage
of this sensor is the use of cheap UV LEDs which also have a low energy requirement
compared to traditionally employed lasers.

3.3. Comparisons

Certain metal oxides are used because of their cheap cost and are easy to work with
such as zinc and iron, which can be acquired cheaply. Tungsten is sought after as a
sensor because of its unique ability to be formed in complex crystalline and nanoparticle
morphologies. Current research does not include bare metal oxides and most sensors
are doped with other metals such as Cr, Pd, Pt, Au, and Si in hopes of enhancing their
abilities. The versatility of these metal oxides comes at a price, however. Historically, these
bare metal oxides had poor stability with repeated exposure to humidity and the various
analytes. Progress has been made to enhance stability, but there is a limit to this because
the sensor will always be in direct contact with the analytes and humidity. Light based
sensors can be beneficial because of this, and allow for a closed loop system to protect the
sensors and offer long term stability such as Li et al.’s [45].

The more prominent sensors discussed here are the semiconductor metal oxides.
They differ in their material, operating temperature, output data (selectivity, sensitivity,
response), and the extensiveness of their testing. Humidity is necessary to test in because
human breath is very humid and before human testing can begin, the sensor must be
validated in humid conditions. Many sensors test in humid conditions and even test
long term stability in humid conditions which is very valuable such as Weber et al.’s
sensor [82]. More than half the sensors discussed here were not tested on humans. In the
early stages of development this is acceptable, but to further pursue them as commercial
devices, they should undergo the testing. The selectivity of the sensors is very important to
differentiate between different VOCs. The highest selectivity (250) was seen with Weber
et al.’s sensor [81]. This is due to the catalytic process added to eliminate other analytes
before they reach the sensor. The maximum response was also noted for each sensor
and the highest was noted with Deng et al.’s sensor with a response of 204 (Rair/Rgas) at
50 ppm. The maximum response is important because it needs to be significant enough
to be detected, but also it needs to vary from other analytes to have good selectivity. The
response and recovery times are also crucial because it allows for convenience and ease
of use. A sensor with a long response or recovery time might not see commercial success.
The lowest times reported were with Li et al.’s sensor 5/4 s response and recovery times
respectively at 2 ppm of acetone. The operating temperature is another crucial parameter.
A high operating temperature can be dangerous and thus requires significant power to use
the sensor. A lower temperature is preferred to also keep the sensor stable.

For a manufacturer to decide on the use of the different technologies, it comes down
to their needs. A high operating temperature sensor may be suitable if it is cheap and the
company can afford the excess power needed in a new power delivery system. A sensor
with low selectivity may find success with a company that then adds a step before it to
reduce other analytes such as Weber et al.’s design with the catalytic step prior [81]. There is
not a sensor that is best all around, but there are certainly sensors that have valuable traits.

4. Conclusions

The rising popularity of the ketogenic diet is expanding the use of acetone breathalyz-
ers owing to, in part, the data demonstrating the possible benefit of the diet with respect
to diabetes management and weight loss. This popularity has founded a new market for
acetone breathalyzers. Many breathalyzers are currently on the market, but there is a lack
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of scientific evaluation of these sensors. Most sensors do not have any data regarding their
utility for use in a ketogenic diet. Novel sensors being developed provide some of the data
and testing, but more is still needed. Novel sensors have been developed utilizing SMOs,
lasers, UV light, nanoparticles, and organic scaffolds. SMO sensors typically containing
basic metal oxides such as zinc, iron, and tungsten, however, are being phased out in
favor of sensors doped with other metals such as gold, platinum, and palladium and/or
nanoparticles. There is a significant body of research on these sensors regarding their
sensitivity, selectivity, efficiency, and durability. Many of these novel technologies report
high responses to acetone; however, many of these have not undergone human testing
and may show conflicting results compared to simulated breath in the lab. Selectivity is
especially an area of concern because the sensors need to differentiate between the different
analytes. Some sensors have not reported selectivity data and others have only reported
against a few analytes which does not adequately simulate real world applications. To
more adequately compare the various sensors on the market and in development, more
rigorous testing is needed which can pave the way for more FDA registered devices.
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Abstract: Measuring continuous blood pressure (BP) in real time by using a mobile health (mHealth)
application would open a new door in the advancement of the healthcare system. This study aimed
to propose a real-time method and system for measuring BP without using a cuff from a digital artery.
An energy-efficient real-time smartphone-application-friendly one-dimensional (1D) Squeeze U-net
model is proposed to estimate systolic and diastolic BP values, using only raw photoplethysmogram
(PPG) signal. The proposed real-time cuffless BP prediction method was assessed for accuracy,
reliability, and potential usefulness in the hypertensive assessment of 100 individuals in two publicly
available datasets: Multiparameter Intelligent Monitoring in Intensive Care (MIMIC-I) and Medical
Information Mart for Intensive Care (MIMIC-III) waveform database. The proposed model was used
to build an android application to measure BP at home. This proposed deep-learning model performs
best in terms of systolic BP, diastolic BP, and mean arterial pressure, with a mean absolute error of
4.42, 2.25, and 2.56 mmHg and standard deviation of 4.78, 2.98, and 3.21 mmHg, respectively. The
results meet the grade A performance requirements of the British Hypertension Society and satisfy the
AAMI error range. The result suggests that only using a short-time PPG signal is sufficient to obtain
accurate BP measurements in real time. It is a novel approach for real-time cuffless BP estimation by
implementing an mHealth application and can measure BP at home and assess hypertension.

Keywords: blood pressure (BP); Squeeze U-net; photoplethysmogram (PPG); mHealth; real time;
deep learning

1. Introduction

Fluctuations in blood pressure (BP) correlate strongly with vital organ damage in the
case of high BP or hypertension [1]. Early detection and control of hypertension problems
are crucial, but they rely on precise and accessible measurements [2]. According to statistics
from the World Heart Federation (WHF), almost half of cardiac strokes are the reason for
hypertension [3]. It also raises your chances of having a hemorrhagic stroke, cardiac failure,
a heart attack, or chronic renal diseases [3,4]. By the time of 2025, the number of persons
suffering from hypertension is intended to reach almost 1.5 billion. Any healthcare system
would be overburdened by the consequences of this sickness [2]. Epidemiological studies
reveal that hypertension prevalence and control have plateaued in developed countries
since the middle of the 2000s [5,6]. As a result, proper blood pressure regulation is essential
for preventing both primary and secondary coronary heart diseases; thus, introducing a
reliable and comfortable method to measure BP values is mandatory.

The first and most reliable process of measuring continuous BP is the invasive or direct
way, also called the invasive arterial BP (ABP). In order to monitor real-time continuous
BP, a catheter is placed inside an artery for invasive ABP measurement. In this process, BP
can be measured in every cardiac cycle, and variations in blood pressure can be tracked
in a more precise way. Hence, it is widely regarded as the gold standard in the field of
BP measurement methods [7]. However, this method requires arterial puncture. The kits
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used are non-reusable and have a high risk of complications and infections. Moreover, the
measurement needs to be performed by trained professionals; thus, this method is only
used for critically ill patients. The difficulties associated with the invasive methods initiate
the necessity of introducing noninvasive measurement methods.

Traditionally and most commonly, noninvasive cuff-based auscultatory and oscillo-
metric measurements are used to check BP. The measured results are expressed as systolic
BP (SBP) and diastolic BP (DBP). To measure BP, cuff-based equipment is widely used
in houses and hospitals [8]. Even a wireless cuff-based BP measurement device with a
smartphone was also proposed [9]. However, the measurement process is discontinuous
and takes a long time, and the result varies for different cuff sizes. Furthermore, continuous
BP measurement is impossible because repetitive cuff inflation causes discomfort. With
technological advancement, research has been conducted widely to measure BP more accu-
rately at a low cost. Almost everyone has a smartphone in their hand. Wearable devices are
becoming increasingly popular. So, signals acquired using different sensors for accurate
BP measurement are nowadays a wide research topic. It also paves the way for real-time
continuous BP measurements.

Recently, an increase in interest has been observed in the prediction of cuffless real-time
BP values to enable an easy and comfortable way of predicting BP in real time by using fea-
tures of different easily measurable biosignals. Several noninvasive cuffless BP estimation
methods have been proposed using photoplethysmogram (PPG) and electrocardiogram
(ECG) signals, including ultrasound-based [10], pulse transit time (PTT)-based [11–15], and
feature-based approaches [8,16–19].

The ultrasound-based technique was developed for continuous real-time BP measure-
ment; however, higher complexity existed [19]. Reviewing the complexities, a comparably
lower complex PTT-based approach [11–15] was studied extensively for a long time. PTT is
the time needed for the pulse pressure waveform of the artery to reach a peripheral site
(e.g., fingertip) from the semilunar valves. Usually, it is measured from the start of the
R-wave on the ECG signal to the arrival of the PPG signal at the fingertip [20]. Thus, the
time can be calculated by using two channels of biosignals, and frequent calibrations are
needed to ensure prediction accuracy [12].

Furthermore, feature-based approaches [8,16–19,21] have been proposed to improve
the PTT-based BP estimation methods. In a feature-based approach, multiple features
that influence BP are extracted from the ECG and PPG signals and merged to obtain BP
values with improved accuracy. Different machine-learning models, such as the random
forest, support vector machine, and neural networks, are used to predict BP values by
using the extracted features. However, two channels of biosignals are required for most
of these methods. Feature-based models using one-channel ECG [18] or PPG [22] signals
exhibit an inferior performance. Moreover, additional sensors are needed to acquire ECG
signals that are impossible to acquire by using smartphones. Feature-based methods need
complicated feature extraction and selection processes that urge high-quality waveforms to
extract proper features [23]. Moreover, it is difficult to get a generalized model by using
a definite number of features. A study also used different BP and bodily parameters to
predict BP values by using different machine learning models and ensemble methods [24].
However, they obtained very low accuracy.

Deep learning (DL) approaches can automatically learn useful features. Based on
this property of DL, S. Baker et al. proposed continuous BP estimation by using raw ECG
and PPG signals [25], and K. Qin et al., G. Slapničar et al., and T. Athaya et al. proposed
that estimation techniques using only raw PPG signals can be actualized [23,26,27]. Using
a one-channel raw PPG signal is more suitable than using two channels of biosignals to
estimate continuous BP by using smartphones and wearable devices [28]. G. Slapničar
et al. proposed a complex GRU-based spectro-temporal deep neural network by using both
derivatives and information of PPG signal frequency domain information with lower accu-
racy [26]. K. Qin et al. and T. Athaya et al. predicted BP waveform by using raw PPG signal,
and from the predicted BP waveform, SBP, DBP, and ABP values were predicted [23,27].
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However, T. Athaya et al. used the U-net model, which needs many parameters and is
thus unsuitable for real-time mHealth applications [27]. Furthermore, K. Qin et al. used
regularized deep autoencoder (RDAE), which provides lower accuracy [23]. Moreover, the
model is not generalized for every BP value, and calibration is needed to obtain a better
performance. Although continuous methods are proposed in these studies, none of the
methods ensures real-time BP estimation.

Unlike the abovementioned methods, herein, the prediction of real-time continuous
BP values and implementation using a smartphone application are proposed. A real-time
application-friendly Squeeze U-net model was used to predict the BP values by directly
feeding a one-channel raw PPG signal as the model input. The proposed model ensures a
user-friendly and generalized system to measure BP values ubiquitously and unobtrusively
without calibration to obtain accurate results. The proposed architecture of the model
provides low computational complexity and higher efficiency to estimate BP. The main
contributions herein are as follows:

• Real-time BP values are estimated by using a single-channel raw PPG signal as the
input of the mobile application-friendly modified 1D Squeeze U-net model.

• This study is a novel approach to implementing a DL 1D Squeeze U-net model in an
mHealth application, using PPG signals without any feature selection to generate BP
values with high accuracy and at no cost.

The rest of the study is organized as follows: Section 2 describes the used materials and
proposed methodology. Section 3 shows the results from using the chosen materials and
methods. Section 4 discusses the implications of the proposed approach. Finally, Section 5
concludes the study.

2. Materials and Methods

2.1. Data Acquisition

DL works best when huge amounts of data are utilized to train, validate, and test
the models. The invasive ABP and fingertip PPG signals were needed herein. The first
step of Figure 1 is data collection. The signals are acquired from two publicly available
popular databases containing health-related data. The databases contain simultaneous
recordings of the fingertip PPG, ABP, one or more ECG, pulmonary arterial pressure, and
central venous pressure signals. The databases are as follows:

• Multiparameter Intelligent Monitoring in Intensive Care (MIMIC) database [29].
• Medical Information Mart for Intensive Care III (MIMIC-III) waveform database [30,31].

2.2. Data Preparation

The next step in Figure 1 is data preparation. The Squeeze U-net was used for predict-
ing BP values. As the Squeeze U-net is the SqueezeNet type of the U-net model, the data
preparation for training and validation of the model is the same as the process used for the
U-net model [27]. First, the PPG signal acquired from the two databases is filtered by using
an Equiripple FIR bandpass filter using a cutoff frequency of 0.5–8 Hz. Frequencies of less
than 0.5 Hz and higher than 8 Hz are considered to be noise and are, thus, filtered out.

In the databases, the ABP signals are obtained from the brachial artery, and the PPG
signals are obtained from the digital artery. As blood enters first in the brachial artery
and then in the digital artery, a phase difference is shown between the two signals, even if
they are recorded simultaneously. To remove the delay between the two signals measured
from different sources, the filtered PPG signals are phase matched with the respective
ABP signals, using the cross-correlation technique for properly replicating the output ABP
signals, using PPG signals as the input. Afterward, the phase-matched signals are divided
into segments of 256 samples.

Next, the segments are checked for artifacts and divided into two classes: acceptable
and unacceptable signals. The unacceptable segments with artifacts are removed from
the final dataset by using a random forest machine-learning model [32]. In Reference [32],
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real-time artifact detection of PPG signals is shown. As our system is also in real time, we
used the approach. As much variation of the PPG signal as possible was maintained in the
final dataset to enable the generalization of the trained model.

Next, the data were shuffled for unbiased training of the model. Finally, the acquired
signals were normalized by using Equation (1) to nullify the variation of PPG and ABP
signal values for different individuals [27,33].

xnorm(i) =
(xi − xmin)

xmax − xmin
, (1)

where xi refers to the ith signal segment, and xmax and xmin are the highest and lowest
values of all segmented signals, respectively. Note that xmax = 2.9 mV and xmin = −2.4 mV
for PPG and xmax = 192.24 mmHg and xmin = 50.33 mmHg for ABP.

 

Figure 1. Proposed methodology to train, validate, and test the proposed Squeeze U-net model.

Herein, 45 individuals of the MIMIC-I dataset and a subset of 55 individuals of the
MIMIC-III waveform dataset comprising fingertip PPG and ABP signals with a 125 Hz
sampling rate were used. Finally, recordings of 100 individuals were acquired for the
whole experiment.

2.3. Proposed Architecture of Squeeze U-Net Model

The second step of Figure 1 is the training and validation of the proposed Squeeze
U-net model. The proposed model is modified to one-dimensional (1D) convolutional
blocks despite comprising 2D convolutional blocks such as the original one. Inspired by
the SqueezeNet type of the U-net model for biomedical image segmentation, the proposed
model has been presented to ease the development of deep neural networks on embedded
systems, while minimizing the computational and memory requirements, especially for
real-time smartphone applications [34].

The SqueezeNet fire module [35] architecture was introduced in both the contracting
and expansion paths while designing the proposed model. Note that the convolution
blocks of the fire modules were changed to 1D for our proposed modified model. The
initial depth-wise convolution of the fire module reduces the number of channels, and this
is compensated by two parallel convolutions in the expansion units, with each convolution
having half the number of output channels of that of the squeeze unit. Both parallel
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convolutions support avoiding feature loss and vanishing gradients, which can occur when
the number of channels is reduced [36].

The fire module (Figure 2) comprises a squeeze, two expansion convolution units, and
a concatenate unit. The squeeze unit has a 1 × 1 convolution filter. The output of this unit
expands the convolution units of 1 × 1 filters (left) and 3 × 1 filters (right) in parallel. The
convolution filters in the 1 × 1 squeeze unit, 1 × 1 expansion unit, and 3 × 1 expansion
unit are denoted as s1×1, e1×1, and e3×1, respectively. While using fire modules, s1×1 is
set less than (e1×1 + e3×1) to limit the number of input samples. In CNN, to decrease the
number of parameters, it is necessary to minimize the number of input samples. Thus, the
output of the expansion units goes to the concatenate unit to give (e1×1 + e3×1) filters. The
result of the concatenate unit is the output of the fire module.

Figure 2. Structure of the proposed fire module of Squeeze U-net.

The proposed 1D Squeeze U-net model is illustrated in Figure 3. The model has
contracting and expansion paths on the left and right sides, respectively. The contracting
and expansion paths comprise several contraction blocks (CBs) and expansion blocks (EBs),
as the U-net does. The numeral on the left side of the blocks illustrates the size of the input
vector or sample. The numeral on the right side of every output unit illustrates the size of
the feature vector.

2.3.1. Contracting Path

In the first contraction block (CB1) of the proposed model, the PPG segment of 256
samples was used as the input. The input is passed to the 3 × 1 convolution unit with
stride 2 in CB1. Striding helps decrease the number of samples to 128 and increases the
model’s expressiveness. The feature vectors are 64 after the 3 × 1 convolution operation
with stride 2 in CB1. In CB2, the output of the convolution unit of CB1 goes to the 2 × 1
max-pooling layer. No convolution operation is performed in CB2. Max-pooling halves
the samples from 128 to 64, and the number of feature vectors remains the same. The CB2
output is passed into two fire modules and one 2 × 1 max-pooling in CB3.

In the Squeeze U-net network, fire modules are introduced for down-sampling units
in the contracting path. The fire modules are used to reduce the total parameter number for
the model. After passing the first fire module, the number of feature vectors doubles and
remains the same after the next fire module and max-pooling operation. The fire modules
of CB3 have 16 squeeze filters (s1×1) and 64 expand filters (e1×1 and e3×1). Then the 4th
block (CB4) of the contracting path comes, which has a similar structure as CB3. The fire
modules of CB4 have 32 s1×1, 128 e1×1, and e3×1, making the number of feature vectors
256 after two consecutive fire modules. The last block (CB5) of the contracting path is
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max-pooled and passes four fire modules. The first two fire modules have 48 s1×1, 192 e1×1,
and e3×1. The other two fire modules have 64 s1×1, 256 e1×1, and e3×1. Next, the dropout is
performed, and the output is passed into a 1D convolution transpose unit with stride 1. The
output of this block is concatenated with the output of the second fire module of block CB5.
The concatenated output goes to a fire module. This fire module has 48 s1×1, 192 e1×1, and
e3×1. The output of this fire module again passes into the 2 × 1 1D convolution transpose
unit with stride 1. The output of this block is concatenated with the input of the first fire
module of CB5, and the concatenated result is passed into a fire module. This fire module
has 32 s1×1, 128 e1×1, and e3×1. At the end of CB5, the number of feature vectors becomes
256. Similar to the structure of U-net, this Squeeze U-net network uses the Leaky ReLU
activation function in every convolution unit.

Figure 3. The proposed architecture of one-dimensional (1D) Squeeze U-net DL model.

2.3.2. Expansion Path

The expansion path has four expansion blocks, which are denoted as EB1, EB2, EB3,
and EB4. Each EB1 and EB2 block comprises a 2 × 1 1D convolution transpose unit with
stride 2. The output of the convolution transpose unit is passed into the concatenation
units. After passing the concatenation units, in EB1 and EB2, the number of feature vectors
becomes 192 and 96, respectively. The EB1 and EB2 blocks of the expansion path also have
fire modules. The outputs of the concatenation units go to these fire modules. The EB1 fire
module of the expansion path has 16 s1×1, 64 e1×1, and e3×1, and EB2 has 16 s1×1, 32 e1×1,
and e3×1. After passing the fire modules in EB1 and EB2, the number of feature vectors
becomes 128 and 64, respectively. Each EB3 and EB4 block has a 2 × 1 up-sampling unit.
The output of the up-sampling unit of EB3 is concatenated with the input layer of CB2.
The output of the concatenated unit passes into a 3 × 1 convolution unit of stride 1 in EB3.
The EB3 output goes through a 2 × 1 up-sampling unit in EB4. The output of the EB4
up-sampling unit again passes to the 3 × 1 convolution unit in EB4 and gives the output
ABP window of 256 samples.
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2.4. Training and Testing of Squeeze U-Net Model

The normalized PPG signals are used as the input of the 1D Squeeze U-net model
to obtain the normalized ABP-like signals in the testing phase (Figure 1). Of the overall
pre-processed data, 70% were used to train the network, 15% to validate, and the left 15%
to test. The training, validating, and testing data were totally different from each other. The
network is trained and tested by using Keras. The training data are needed for iterative
model training until the maximum number of epochs is reached to obtain a generalized
model with the highest performance. The network performance is monitored dynamically.
The validation is performed to fine-tune the hyperparameters and stop the training process
when no improvement is seen to generalize the network. Then the testing was performed
by using the highest-performing network structure with the test dataset.

The Adam optimizer was used to train the network, and the chosen loss function was
mean squared error. For the Squeeze U-net model, the learning rate was set at 10−4, and
the batch size was set to 10. The learning rate and batch size of the network were both
determined through experimentation. When there was no improvement in the consecutive
six epochs, early stopping was applied, and the Squeeze U-net model’s training was ended
after 33 epochs. The epoch performance in reduced validation loss was automatically saved
for each epoch in this training method. An NVIDIA GTX 1080 Ti 10 GB graphics card with
a GPU server and 257 GB RAM was used in this experiment. Python language was used to
write all the codes.

2.5. BP Estimation

In the final step, the BP values are estimated as depicted in Figure 1. The obtained
signal was denormalized by using the stored denormalization factors of the training phase.
Next, a standard peak detection algorithm [37] was used to estimate the SBP and DBP
values. From these values, the mean arterial pressure (MAP) was estimated by using
Equation (2) [38].

MAP =
1
3

SBP +
2
3

DBP (2)

3. Results

3.1. Performance of Squeeze U-Net Model

The dataset for performance evaluation is distributed from different BP values of all
ranges. The data summary is displayed in Table 1. We tried making a dataset comprising
all kinds of BP values for proper result evaluation.

Table 1. Summary of data used for testing network performance.

BP Values Min (mmHg) Max (mmHg) Mean (mmHg) STD (mmHg)

SBP 75.69 192.24 130.05 23.79

DBP 50.33 111.23 64.66 13.28

MAP 62.69 130.74 84.08 15.61

Different performance matrices have been used in different studies to show the per-
formance of the model. We tried incorporating all performance matrices to evaluate the
performance of the proposed model for real-time BP estimation. The mean error (ME),
mean absolute error (MAE), standard deviation (STD), root mean square error (RMSE), and
Pearson’s correlation coefficient (r) evaluation factors were used [39].

The performance details of the proposed Squeeze U-net model to estimate the real-
time SBP, DBP, and MAP values are presented in Table 2. In all three cases, the evaluation
factors provide good values, indicating that the network can be used to estimate SBP,
DBP, and MAP accurately. The real-time SBP, DBP, and MAP estimation results using the
Squeeze U-net model are illustrated in Figure 4. The figure shows the similarity between
the predicted and actual values.
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Table 2. Performance detail of Squeeze U-net models for systolic blood pressure (SBP), diastolic
blood pressure (DBP), and mean arterial pressure (MAP) values measurement.

BP Values ME (mmHg) MAE (mmHg) STD (mmHg) RMSE (mmHg) r

SBP −1.002 4.42 4.78 6.50 0.970

DBP 0.019 2.25 2.98 3.73 0.964

MAP −0.315 2.56 3.21 4.10 0.971

 
Figure 4. An example of real-time systolic blood pressure (SBP), diastolic blood pressure (DBP), and
mean arterial pressure (MAP) estimation.

Figure 5 shows the histogram plots of the prediction error, using the 1D Squeeze U-net
model for SBP, DBP, and MAP values. For three cases, the error values lie at zero, indicating
an accurate prediction of most values. The prediction accuracy of MAP is the highest.

Figure 5. Histograms of error for estimated real-time SBP, DBP, and MAP values.

Figure 6 shows that the proposed network performs well in all four BP stages: normal,
prehypertension, hypertension stage-1, and hypertension stage-2 [40]. In the normal stage,
the SBP and DBP estimation accuracy rates are 93.94% and 99.24%, with the latter being
the highest. The SBP prediction accuracy is better in the prehypertension stage than that
of DBP. For hypertension stage-1, the percentage of prediction accuracy is low for both
SBP and DBP. For SBP 30.36% and DBP 31.8%, the values are inaccurately predicted as

74



Biosensors 2022, 12, 655

prehypertension stage. Despite minor variations in predicting hypertension stage-1, the
prediction accuracy for hypertension stage-2 is fairly good. For a vast amount of data,
relatively fewer values are discovered in a deviation area of more than 20 mmHg, which
is trivial.

 

Figure 6. Prediction accuracy of SBP and DBP values in four BP stages.

Figure 7 depicts the scatter plots of our anticipated outcome vs. the actual SBP, DBP,
and MAP values. It has been demonstrated that the acquired result yields a linear relation,
demonstrating that the anticipated outcome is largely correct, except in some situations.

Figure 7. Linear regression plot for SBP, DBP, and MAP results.

The Bland–Altman analysis for the proposed deep learning model is displayed in
Figure 8 according to the AAMI norm [41]. No Bland–Altman plot exists for MAP in the
AAMI norm. The x-axis shows SBP pressures ranging from 80 to 190 mmHg and DBP
pressures ranging from 30 to 140 mmHg. The y-axis represents inaccuracies ranging from
30 to +30 mmHg. From 15 to +15 mmHg, reference horizontal dotted lines are provided at
5 mmHg intervals. The mean of each actual BP and its related projected BP is represented by
a point across their difference. Differences more than 30 mmHg are shown at 30 mmHg, and
differences less than 30 mmHg are plotted at 30 mmHg. Most SBP and DBP discrepancies
are between ±5 mmHg in both scenarios.
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Figure 8. Bland–Altman analysis for real-time SBP and DBP values.

3.2. Result Evaluation and Comparison

Although several studies are found in the web of science that can estimate BP or
continuous BP, few studies predicted BP values in real time. The results were compared with
recent works that predicted continuous BP or real-time BP. Furthermore, the comparison of
the obtained results was actualized by using two established standards: AAMI [42] and
British Hypertension Society (BHS) standards [43].

To satisfy the AAMI error range, the testing device used to measure BP values must
have ME ≤ 5 mmHg and STD ≤ 8 mmHg, with above 85 subjects. Table 3 compares our
results based on the AAMI standard. In References [25,44], it is observed that calculating
the ME gives incorrect estimations, as a lower ME may result in a higher MAE. Herein, both
ME and MAE were included in all papers. The standard norm for AAMI is passed for all
three BP values using our 1D Squeeze U-net model. Our results obtained a comparatively
better MAE and STD than all other papers.

Table 3. Comparison with related works based on AAMI standard.

Works BP Values MAE ME STD Result

AAMI [42] BP ≤5 ≤8 Passed

[17]

SBP 6.726 4.638 14.505 Failed

DBP 2.516 3.155 6.442 Passed

MAP - - - -

[18]

SBP 7.10 −0.11 9.99 Failed

DBP 4.61 −0.03 6.36 Passed

MAP 4.66 −0.01 6.29 Passed

[19]

SBP 6.13 1.62 7.76 Failed

DBP 4.54 1.49 5.52 Passed

MAP 4.81 1.53 6.03 Passed

[25]

SBP 4.41 - 6.11 Failed

DBP 2.91 - 4.23 -

MAP 2.77 - 3.88 -

[23]

SBP 7.945 1.447 10.375 Failed

DBP 4.114 −0.417 5.504 Passed

MAP 3.834 0.204 5.130 Passed

[27]

SBP 3.68 - 4.42 -

DBP 1.97 - 2.92 -

MAP 2.17 - 3.06 -

This work

SBP 4.42 −1.002 4.78 Passed

DBP 2.25 0.019 2.98 Passed

MAP 2.56 −0.315 3.21 Passed
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The testing device is divided into three grades (A, B, or C) based on the conditions
of the BHS grading standard [43] (Table 4). The criterion of a device to satisfy the BHS
standard error range is that it must reach the minimum Grade B in estimating the SBP
and DBP values. According to the BHS grading standard criteria, the proposed model
obtained grade A in predicting SBP and DBP values. The SBP, DBP, and MAP results are
shown in Table 4 according to the BHS standard. References [17–19] obtained grade B
in predicting the SBP value. Reference [23] obtained grade C for SBP prediction without
calibration. Since a generalized model is desired, calibration-free results are considered.
Only References [25,27] obtained grade A for SBP prediction. All papers obtained grade
A in predicting the DBP values, indicating that DBP correlates strongly with the PPG and
ECG signals. Compared to the other models, our work obtained grade A for all three values,
indicating the superiority of our results over those in References [17–19,23], according to
the BHS standard.

Table 4. Comparison with related works based on British Hypertension Society (BHS) protocol.

Works BP Values
Cumulative Error (%)

Grade≤5 mmHg ≤10 mmHg ≤15 mmHg

BHS standard

- 60.00% 85.00% 95.00% A

- 50.00% 75.00% 90.00% B

- 40.00% 65% 85% C

[17]

SBP 59.46% 79.97% 88.85% B

DBP 76.95% 95.72% 99.97% A

MAP - - - -

[18]

SBP 50.07% 76.40% 90.39% B

DBP 65.66% 89.77% 96.63% A

MAP 65.14% 89.58% 96.61% A

[19]

SBP 51.00% 81.00% 94.00% B

DBP 62.00% 92.00% 99.00% A

MAP 60.00% 90.00% 98.00% A

[25]

SBP 67.66% 89.82% 96.82% A

DBP 82.79% 96.12% 99.09% A

MAP 84.21% 97.38% 99.58% A

[23]

SBP 46.30% 72.10% 85.20% C

DBP 73.20% 91.90% 97.00% A

MAP 76.00% 92.30% 96.90% A

[27]

SBP 76.21% 93.66% 97.71% A

DBP 93.51% 98.70% 99.46% A

MAP - - - -

This work

SBP 64.20% 87.85% 95.26% A

DBP 95.58% 99.35% 99.67% A

MAP 90.80% 98.61% 99.51% A

Comparisons based on real-time BP measurement, methodology, dataset, RMSE,
and Pearson’s correlation coefficient (r) with recent papers are presented in Table 5.
Y.-H. Li et al. [17] proposed the BiLSTM network that uses ECG and PPG features to pre-
dict SBP and DBP values in real time. They showed an implementation of their real-time
algorithm in the MATLAB interface. ResNet with a bidirectional LSTM was used by
F. Miao et al. [18]. The 50-layered networks are combined to extract features from prepro-
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cessed signals. The BP values were estimated by using the features. The study showed
no device implementation of their real-time algorithm. In contrast, F. Miao et al. used
a multi-sensor regression algorithm with their self-made database, using both ECG and
PPG signals from multiple sensors [19]. They used a USB port to send the digital signal
to show it on a personal computer in real time. Unlike the feature-based works, S. Baker
et al. combined the CNN and LSTM models with raw PPG and ECG signals to predict
continuous BP [25]. However, their method is not in real time, and the correlation coeffi-
cient is comparatively low. The abovementioned studies either used a combination of two
signals or ECG signals. However, as mentioned before, the ECG signal is complicated and
cost ineffective. The signal cannot be obtained by using smartphones or smartwatches. To
acquire the ECG signal, additional sensors are needed.

Table 5. Comparison with related works based on real-time BP estimation.

Works Method Database Input RMSE Pearson r Real Time Device Demonstration

[17] BiLSTM MIMIC-II ECG, PPG
(Features)

SBP: 8.051
DBP: 3.998
MAP: N/A

- Yes Yes

[18] ResLSTM MIMIC-III ECG
(Features) -

SBP: 0.88
DBP: 0.71
MAP: 0.85

Yes No

[19] Multi-instance
regression algorithm Self-made ECG, PPG

(Features) -
SBP: 0.90
DBP: 0.84
MAP: 0.88

Yes Yes

[25] CNN–LSTM MIMIC-III ECG, PPG
(Raw) -

SBP: 0.80
DBP: 0.85
MAP: 0.86

No No

[23] RDAE MIMIC-II PPG - - No No

[27] U-net MIMIC-I and
MIMIC-III PPG (Raw)

SBP: 5.75
DBP: 3.52
MAP: 3.75

SBP: 0.97
DBP: 0.96

MAP: N/A
No No

This work 1D Squeeze U-net MIMIC-I and
MIMIC-III PPG (Raw)

SBP: 6.50
DBP: 3.73
MAP: 4.10

SBP: 0.97
DBP: 0.96
MAP: 97

Yes Yes

Unlike in these works, K. Qin et al. and T. Athaya et al. used raw PPG signals, using
regularized convolution-based deep autoencoder (RDAE) and U-net models, respectively,
to obtain continuous BP values [23,27]. The result of Reference [23] was unsatisfactory
and needs calibration for improvement. However, the performance of Reference [27] was
good, but it needs several parameters, operations, and prediction time (Table 6) to make it
unsuitable for real-time implementation. Both works cannot measure BP in real time.

Table 6. Quantitative comparison between U-net and Squeeze U-net regarding model size, number
of operations, and prediction time.

Model #Parameters Size (MB) #Float Operations Time/Prediction (ms)

U-net [27] 10,812,682 126.91 162,176,642 2.00

Squeeze U-net 819,921 101.44 1,637,678 0.32

Reduction Factor 13× 1.3× 99× 6.1×

Different from the stated methods, our 1D Squeeze U-net method can predict BP
values in real time by using raw PPG signals, with comparatively better accuracy and
lower computational complexity; it is also suitable for mHealth application implementation.
Table 6 showed the number of parameters, model size, number of operations, and prediction
time of the proposed model which is comparatively lower to get better accuracy. As we
used the proposed system to implement in an android device, keeping the computational
complexity lower is very important.

3.3. mHealth Application

The computationally efficient Squeeze U-net model was used to calculate the real-time
continuous BP, using an android application. Note that no other related works used an

78



Biosensors 2022, 12, 655

android application to predict real-time BP values, as per our knowledge. All stages of
prior signal processing are performed in the android studio platform. The trained Squeeze
U-net model is loaded by using TensorFlow Lite [45]. This model is used to predict SBP,
DBP, and MAP values for new subjects.

For the implementation phase, the filtering process differs from the training phase. The
PPG data are recorded by using the back camera of an android smartphone. A real-time
Equiripple FIR bandpass filter is used in the implementation phase to estimate the BP
values in real time. The real-time implementation process is shown in Figure 9. Placing
the fingertip in the back camera, frames are acquired from the camera. Each time, a
signal sample is calculated from the frame by taking the average of the red channel. The
sampling frequency of the recorded signal using an android back camera is 30 Hz. The
sampling frequency of the recorded signals must match the trained model; thus, linear
interpolation [46] is performed with the recorded PPG signals [32]. Real-time Equiripple
FIR bandpass filtering is performed on the red channel of the PPG signal by using the same
filter coefficients used in the training phase. A single sample of the filtered PPG signal is
taken in a 256 fixed-size queue. The segment is then normalized and used as the input
of the trained Squeeze U-net model to get the predicted signal of 256 samples. Then the
denormalization, peak detection, and estimation of BP values are performed sequentially.

 

Figure 9. Implementation of real-time PPG signal filtering and BP values estimation.

The step-by-step real-time BP measurement process using this smartphone application
is shown in Figure 10. By placing the index finger lightly on the camera, the PPG signal is
acquired by using the rear camera of the smartphone to see the BP values in real time. To
obtain accurate measurement results, neither the finger nor camera should not be moved
until the measurement is completed. The graphs and BP values (Figure 10) are updated
every second.

 

Figure 10. Real-time BP measurement using mHealth application.
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4. Discussion

The analysis of the results evidently provides comparable performances for real-time
SBP, DBP, and MAP predictions. Mobile health diagnosis has been proven to be successful
and scalable in identifying and managing chronic diseases. By utilizing the optical and
computational power of smartphones, physiological information may be assessed from
the shape of pulse waves, and, hence, it can estimate BP without using a cuff. So, the
proposed Squeeze U-net model that uses a smartphone application can easily measure
real-time BP values without any cost and replace cuff-based devices. However, individual
variations present unique challenges to the robustness and generalized prediction ability of
the prediction model. Thus, the application needs to be tested with the data of persons of
different ages, BP levels, and genders, and then it can be commercially used.

Note that PPG signals can have different kinds of artifacts, and the signal quality
varies from person to person based on the muscle layer’s volume and thickness, dermal
and epidermal layers of skin, and volume of subcutaneous fats in a cross-section of the
skin. The estimation result varies for the difference in finger pressure because the PPG
signal is sensitive to finger pressure [47]. These parameters affect the estimation result.
Although our study tried accumulating all kinds of PPG signals for a generalized model,
some uncertainties still remain that might result in a high error level. Thus, the preliminary
target of this application is for home use. However, if the proposed model is calibrated for
each person, it should provide higher accuracy in real-time BP prediction, as the individual
calibration process includes uncertain parameters.

In this study, the data from ICU patients were used. Because of different diseases, ICU
patients exhibit abnormal PPG signals; thus, more normal subjects need to be included in
the study in order to obtain more reliable predictions. Furthermore, the model’s response
to the sudden change in BP values has not yet been explored, which is a challenging topic
that can be explored in further studies. In the future, the model can be trained with an
equal amount of data from patients in the four BP stages shown in Figure 6. Individual
calibration can be added to remove the uncertainty of individual parameters and to control
the sudden change in BP values. We will also perform research to set up a system so that
the finger movement can be controlled. This can help the system to be used not only at
home but also in hospitals and medical settings for regular and accurate prediction.

5. Conclusions

Herein, a novel 1D Squeeze U-net model that is efficient for android smartphones
was proposed to predict real-time continuous BP, using a raw PPG signal, with simple
preprocessing. The performance of the DL model was tested on 100 individuals of MIMIC
and MIMIC-III waveform databases and provided promising results in real-time BP esti-
mation. When checking the compliance of our model with the standards defined by the
healthcare organizations AAMI and BHS, our network achieved impressive performance.
The computationally efficient model was implemented in an android application that can
measure BP in real time. After performing certain tests, we have determined that the
application can be a useful tool for detecting hypertension in various circumstances, such
as low-income nations, where smartphones are widely available and access to healthcare
is limited, as they can have access to this application without any cost. Overall, our re-
sults show convincing evidence that the proposed Squeeze U-net model that uses a raw
PPG signal can be reliably used for real-time BP estimation, thus incorporating real-time
continuous BP value prediction in mHealth applications.
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9. İlhan, İ.; Yıldız, İ.; Kayrak, M. Development of a wireless blood pressure measuring device with smart mobile device. Comput.
Methods Programs Biomed. 2016, 125, 94–102. [CrossRef]

10. Zakrzewski, A.M.; Huang, A.Y.; Zubajlo, R.; Anthony, B.W. Real-Time Blood Pressure Estimation From Force-Measured Ultra-
sound. IEEE Trans. Biomed. Eng. 2018, 65, 2405–2416. [CrossRef]

11. Ding, X.-R.; Zhang, Y.-T.; Liu, J.; Dai, W.-X.; Tsang, H.K. Continuous Cuffless Blood Pressure Estimation Using Pulse Transit Time
and Photoplethysmogram Intensity Ratio. IEEE Trans. Biomed. Eng. 2016, 63, 964–972. [CrossRef]

12. Ding, X.; Zhang, Y.; Tsang, H.K. Impact of heart disease and calibration interval on accuracy of pulse transit time-based blood
pressure estimation. Physiol. Meas. 2016, 37, 227–237. [CrossRef] [PubMed]

13. Zheng, Y.-L.; Yan, B.P.; Zhang, Y.-T.; Poon, C.C.Y. An Armband Wearable Device for Overnight and Cuff-Less Blood Pressure
Measurement. IEEE Trans. Biomed. Eng. 2014, 61, 2179–2186. [CrossRef]

14. Ding, X.-R.; Zhao, N.; Yang, G.-Z.; Pettigrew, R.I.; Lo, B.; Miao, F.; Li, Y.; Liu, J.; Zhang, Y.-T. Continuous Blood Pressure
Measurement From Invasive to Unobtrusive: Celebration of 200th Birth Anniversary of Carl Ludwig. IEEE J. Biomed. Health
Inform. 2016, 20, 1455–1465. [CrossRef] [PubMed]

15. Mukkamala, R.; Hahn, J.-O.; Inan, O.T.; Mestha, L.K.; Kim, C.-S.; Töreyin, H.; Kyal, S. Toward Ubiquitous Blood Pressure
Monitoring via Pulse Transit Time: Theory and Practice. IEEE Trans. Biomed. Eng. 2015, 62, 1879–1901. [CrossRef]

16. He, R.; Huang, Z.-P.; Ji, L.-Y.; Wu, J.-K.; Li, H.; Zhang, Z.-Q. Beat-to-beat ambulatory blood pressure estimation based on random
forest. In Proceedings of the 2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN),
San Francisco, CA, USA, 14–17 June 2016; pp. 194–198. [CrossRef]

17. Li, Y.-H.; Harfiya, L.N.; Purwandari, K.; Lin, Y.-D. Real-Time Cuffless Continuous Blood Pressure Estimation Using Deep Learning
Mode. Sensors 2020, 20, 5606. [CrossRef]

18. Miao, F.; Wen, B.; Hu, Z.; Fortino, G.; Wang, X.-P.; Liu, Z.-D.; Tang, M.; Li, Y. Continuous blood pressure measurement from
one-channel electrocardiogram signal using deep-learning techniques. Artif. Intell. Med. 2020, 108, 101919. [CrossRef]

19. Miao, F.; Liu, Z.-D.; Liu, J.-K.; Wen, B.; He, Q.-Y.; Li, Y. Multi-Sensor Fusion Approach for Cuff-Less Blood Pressure Measurement.
IEEE J. Biomed. Health Inform. 2020, 24, 79–91. [CrossRef]

20. Pitson, D.J.; Sandell, A.; van den Hout, R.; Stradling. Use of pulse transit time as a measure of inspiratory effort in patients with
obstructive sleep apnoea. Eur. Respir. J. 1995, 8, 1669–1674. [CrossRef]

21. Mejía-Mejía, E.; May, J.M.; Elgendi, M.; Kyriacou, P.A. Classification of blood pressure in critically ill patients using photoplethys-
mography and machine learning. Comput. Methods Programs Biomed. 2021, 208, 106222. [CrossRef]

81



Biosensors 2022, 12, 655

22. Lin, W.-H.; Wang, H.; Samuel, O.W.; Liu, G.; Huang, Z.; Li, G. New photoplethysmogram indicators for improving cuffless and
continuous blood pressure estimation accuracy. Physiol. Meas. 2018, 39, 025005. [CrossRef]

23. Qin, K.; Huang, W.; Zhang, T. Deep generative model with domain adversarial training for predicting arterial blood pressure
waveform from photoplethysmogram signal. Biomed. Signal Processing Control. 2021, 70, 102972. [CrossRef]

24. Huang, J.-C.; Tsai, Y.-C.; Wu, P.-Y.; Lien, Y.-H.; Chien, C.-Y.; Kuo, C.-F.; Hung, J.-F.; Chen, S.-C.; Kuo, C.-H. Predictive modeling of
blood pressure during hemodialysis: A comparison of linear model, random forest, support vector regression, XGBoost, LASSO
regression and ensemble method. Comput. Methods Programs Biomed. 2020, 195, 105536. [CrossRef]

25. Baker, S.; Xiang, W.; Atkinson, I. A hybrid neural network for continuous and non-invasive estimation of blood pressure from
raw electrocardiogram and photoplethysmogram waveforms. Comput. Methods Programs Biomed. 2021, 207, 106191. [CrossRef]
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Abstract: Breath analysis using an electronic nose (e-nose) is an innovative tool for exhaled volatile
organic compound (VOC) analysis, which has shown potential in several respiratory and systemic
diseases. It is still unclear whether cigarette smoking can be considered a confounder when analyzing
the VOC-profile. We aimed to assess whether an e-nose can discriminate exhaled breath before
and after smoking at different time periods. We enrolled 24 healthy smokers and collected their
exhaled breath as follows: (a) before smoking, (b) within 5 min after smoking, (c) within 30 min
after smoking, and (d) within 60 min after smoking. Exhaled breath was collected by a previously
validated method and analyzed by an e-nose (Cyranose 320). By principal component analysis,
significant variations in the exhaled VOC profile were shown for principal component 1 and 2 before
and after smoking. Significance was higher 30 and 60 min after smoking than 5 min after (p < 0.01 and
<0.05, respectively). Canonical discriminant analysis confirmed the above findings (cross-validated
values: baseline vs. 5 min = 64.6%, AUC = 0.833; baseline vs. 30 min = 83.6%, AUC = 0.927; baseline
vs. 60 min = 89.6%, AUC = 0.933). Thus, the exhaled VOC profile is influenced by very recent
smoking. Interestingly, the effect seems to be more closely linked to post-cigarette inflammation than
the tobacco-related odorants.

Keywords: electronic nose; volatile organic compounds; breath analysis; smoking

1. Introduction

Breathomics is the study of exhaled breath composition, which could ease the diagnosis
and phenotyping of several respiratory diseases [1]. Exhaled breath contains thousands of
volatile organic compounds (VOCs), including exogenous VOCs such as environmental
compounds, food, drinks, and drugs and endogenous VOCs such as metabolic derivates
and microbiota. Basically, any changes occurring in the cell biochemistry, including those
caused by pathologies, can change the blood composition and can be reflected in breath by
the interchange of VOCs in the lungs [2]. Breath is a less complex medium compared to
blood, stool, and urine, making its sampling and/or data analysis less complicated [2].

Gas chromatography–mass spectrometry (GC–MS) is the gold standard for measuring
exhaled breath VOCs. However, GC–MS is a cumbersome and expensive instrument and
requires well-trained personnel; thus, its application in breath analysis is limited [1].

The electronic nose (e-nose) is a quick and non-invasive tool which can detect exhaled
VOC profiles. Interestingly, an increasing number of studies have shown its potential in
various respiratory diseases, including asthma, COPD, lung cancer, pneumonia, interstitial
lung disease [1], and even non-respiratory conditions such as breast and colon cancer,
neurodegenerative diseases, diabetes mellitus, and liver failure [3].

Despite being a promising diagnostic technique, before obtaining full validation of
exhaled breath profiling, there are still several methodological limitations due to different
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factors such as smoking, diet, race, physical exercise, pregnancy, and medication use, which
may have an impact on the exhaled VOC composition [4].

Among the aforementioned factors, smoking plays a crucial role, since VOCs derive
from metabolic and inflammatory processes related to physiological and/or pathophysio-
logical changes occurring in the respiratory tract [5], and smoking may contribute to the
alteration of these processes [6]. Moreover, more than 90 VOCs are known to be present in
the mainstream smoke of cigarettes, including nitrogenous compounds, aldehydes, esters,
alkenes, aromatic hydrocarbons, ketones, alcohols, furfurans, acids, alkanes, and ethers,
which have well-known injurious and carcinogenic effects [7,8].

To date, it remains unclear how exhaled VOCs are influenced by smoking status. Based
on the above, the aim of our study was to assess whether an e-nose can discriminate exhaled
breath before and after smoking at different time periods in a group of healthy volunteers.

2. Materials and Methods

2.1. Patients

A total number of 24 healthy smokers (11 males, 13 females) were enrolled in our
study. All participants had a negative clinical history of chest symptoms and/or systemic
diseases, and none of the subjects were taking any medications. The age range was 24–47.
All individuals had a normal lung function. Subjects with upper or lower respiratory
tract infections in the four weeks before testing were excluded from the study. Baseline
characteristics are shown in Table 1.

Table 1. Clinical characteristics of the studied population.

Parameter Value

Subjects (n.) 24

M/F (n.) 11\13

Age (y.) 35.4 ± 11.3

FEV1%pred. 101.5 ± 11.8

BMI (kg/m2) 25.77 ± 3.2

Current smokers (n.) 24

Comorbidities (n.) 0
FEV1 = forced expiratory volume in the 1st second.

Exhaled breath was collected from all individuals as follows: (a) before smoking (T0),
(b) within 5 min after smoking (T1), (c) within 30 min after smoking (T2) and (d) within
60 min after smoking (T3).

All participants were volunteers and were enrolled from hospital staff relatives.
The current study was previously approved by the local ethics committee (protocol

number 46403/15), and all individuals were required to sign an informed consent form
before participating in the current study.

2.2. Study Design

A longitudinal study was performed. Two separate visits were required to complete
all measurements. During visit one, all participants were judiciously screened for inclu-
sion/exclusion criteria and, after definitive inclusion in the study, flow-volume spirometry
was executed (MasterscreenPneumo, Jaeger, Würzburg, Germany).

During visit two, exhaled breath was collected before smoking (T0) and after smoking
one cigarette (tar content: 10 mg, nicotine level: 0.8 mg, carbon monoxide level: 10 mg) at
T1, T2, and T3 as described above and immediately analyzed by the e-nose. All participants
were asked not to smoke at least 12 h prior to the test. Subjects were asked to refrain from
eating and drinking, as well as from performing active physical activity, for at least 3 h
before visit two. Exhaled breath was collected as previously validated [6,7]: first, a 5-min
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wash-in period by a 3-way non-rebreathing valve connected to an inspiratory VOC filter
(A2; North Safety, Middelburg, the Netherlands) to minimize the impact of environmental
VOCs and to an expiratory silica reservoir to reduce the effect of humidity on sensors
(which are very sensitive to H2O). Subsequently, participants exhaled into a Tedlar bag
connected to the e-nose until approximately reaching their residual volume. A nose clip
was worn during all the maneuvers. All participants were remotely monitored by text
messages or phone calls for any kind of symptoms within 24 h from breath collection. None
of the participants experienced hyperventilation or other related symptoms during breath
collection and in the following 24 h.

2.3. Electronic Nose

A commercially available e-nose was used for the current study (Cyranose 320, Sensi-
gent, Irwindale, CA, USA). It is based on a nano-composite array of 32 organic polymer
sensors. If exposed to VOC combinations, the polymers swell, thereby modifying their
electrical resistance. Raw data are registered the as increase in resistance of any single
sensors in an onboard built database, resulting in a “breathprint” which labels the VOC
spectrum and that can be successively used for pattern-recognition algorithms (Figure 1).
According to the instruction manual, we used the following operating parameters: baseline
purge: 30 s (pump speed: low); sampling time: 60 s (pump speed: medium), purging
time: 200 s (pump speed: high), total run time: 300 s, temperature 42 ◦C. Post-run purges
between samples: 5 min. Moreover, before the first sample of the day, 5 min exposure to
room air followed by a “blank measurement” was performed to stabilize sensor outputs.
Relative humidity for exhaled samples was around 55%.

Figure 1. Working principle of Cyranose 320: it is based on a nano-composite array of 32 organic
polymer sensors. If exposed to VOC combinations, the polymers swell, thereby modifying their
electrical resistance. Raw data are registered as the increase in resistance of any single sensors and
the combination of all signals results in a “breathprint”.

2.4. Statistical Analysis

All data analyses were performed using SPSS for Windows 26.0 (SPSS, Chicago, IL,
USA). The normal distribution of our data was verified by Kolmogorov–Smirnov and
Shapiro–Wilk tests. We analyzed categorical values with the Fisher’s exact test or χ2 test as
appropriate and reported as n (%). We compared continuous variables by ANOVA and
Student’s t-test for independent samples. Continuous parameters with normal distribution
were reported as mean ± standard deviation (SD).

We performed data reduction of the whole set of 32 sensors by principal component
analysis. All 4 principal components (PCs) were compared at different times (before
smoking, 5 min after smoking, 30 min after smoking, and 60 min after smoking) by ANOVA
test. When significant, the individual groups were compared 2 to 2 with Student’s t-test for
independent samples.

The significant principal components were analyzed by linear discriminant analysis
(CDA) for categorizing VOC patterns. The “leave-one-out” validation method was used
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to calculate the cross-validated accuracy % (CVA%), which estimates the accuracy of
a predictive model in practice. Additionally, a receiver operating characteristic curve
(ROC curve) was built using predicted probabilities to determine the area under the curve
(AUC). The sample size was estimated to limit the standard error to 10%. Assuming
80% accuracy, the current sample size per subgroup sufficed. We considered a p-value of
<0.05 as statistically significant.

3. Results

The characteristics of the study population are described in Table 1. Males and females
were almost equal, and the lung function as well as body mass index (BMI) were within
ranges of normality.

We verified by the Kolmogorov test that the principal component had a normal
distribution. By principal component analysis (PCA), significant variations in the exhaled
VOC profile were shown for PCs 2 and 4 before and after smoking (Table 2); hence, we
selected these two factors for further analysis. Interestingly, significance was higher 30
and 60 min after smoking than 5 min after (T0 vs. T2 and T0 vs. T3, p < 0.01 and T0 vs.
T1 p < 0.05, see Table 3). The two-dimensional PCA plot showed the discrimination of
breathprints before smoking and 5 min after smoking (Figure 2). Similarly, the 2-D PCA plot
showed the distinction of breathprints before smoking and 30 min after smoking (Figure 3).
Finally, the discernment of breathprints before smoking and 60 min after smoking was also
shown (Figure 4). Subsequent linear discriminant analysis confirmed the above findings
with the following cross-validated values: T0 vs. T1 = 64.6%, T0 vs. T2 = 83.6% and T0 vs.
T3 = 89.6%. The area under the curve of the ROC curve for the discrimination between
exhaled VOC profiles before and after smoking were the following: T0 vs. T1 = 0.832, T0 vs.
T2 = 0.927 and T0 vs. T3 = 0.933 (Figure 5).

Figure 2. Two-dimensional PCA plot showing the discrimination of breathprints before smoking
(blue circles) and 5 min after smoking (red squares). REGR = regression.
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Figure 3. Two dimensional PCA plot showing the discrimination of breathprints before smoking
(blue circles) and 30 min after smoking (green diamonds). REGR = regression.

Figure 4. Two-dimensional PCA plot showing the discrimination of breathprints before smoking
(blue circles) and 60 min after smoking (black stars). REGR = regression.

Table 2. ANOVA of principal components at different time periods.

PC1 PC2 PC3 PC4 p

T0 −0.259 ± 0.499 0.858 ± 1.215 −0.210 ± 0.723 0.654 ± 1.092 0.114

T1 −0.009 ± 0.644 0.151 ± 0.800 0.023 ± 1.004 −0.114 ± 0.854 0.000

T2 0.402 ± 0.506 −0.218 ± 0.609 0.381 ± 0.947 −0.235 ± 0.753 0.140

T3 −0.133 ± 1.718 −0.790 ± 0.382 −0.193 ± 1.209 −0.305 ± 1.012 0.002
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Table 3. Discriminant analysis by means of PC2 and PC4 between before smoking and after smoking
time periods.

Time Cross Validate Value (%) AUC [CI]; p Value

T0 vs. T1 64.6 0.832 [0.715–0.948]; p < 0.05

T0 vs. T2 83.6 0.927 [0.853–1.000]; p < 0.01

T0 vs. T3 89.6 0.933 [0.977–1.000]; p < 0.01

Figure 5. ROC curves between T0 and T1 (upper), between T0 and T2 (center), and between T0 and
T3 (lower).

4. Discussion

In our study, we demonstrated that the use of an e-nose to analyze the exhaled VOC
profiles is influenced by very recent smoking. Interestingly, the effect seems to be more
closely linked to the post-cigarette inflammation than the tobacco-related odorants.

E-nose-based exhaled breath analysis has been increasingly used in recent years for
various pathologies for screening and diagnostic purposes [1,9]. Breath analysis might
be preferrable compared to other biological samples such as blood, feces, and urine since
breath is a totally non-invasive matrix, much easier to acquire, and has the potential to offer
real-time monitoring [2].

88



Biosensors 2022, 12, 520

The novelty of our study is the assessment of e-nose analyzed exhaled breath VOC
composition in relation to short-term smoke exposure in a population of well-characterized,
healthy subjects.

The strengths of our study are the careful selection of our population of smokers,
with the exclusion of any known diseases and the use of standardized methods for e-nose
analysis, with all participants smoking the same type of cigarette. On the other hand, a few
limitations must be disclosed. The first is our relatively small number of enrolled subjects.
However, based on previous observations, [10,11] and based on our sample size estimation,
we believe that our total population of 24 individuals might warrant further investigations
including larger cohorts and a validation group.

Second, we arbitrarily chose sampling periods after smoking for each group and
we lack data on longer periods after smoking; therefore, we may have missed some
relevant information.

Third, although being non-invasive, easy to use, and with promptly available results,
e-nose analysis does not allow the identification and quantification of single VOCs. Incon-
testably, further investigations should integrate chemical analytical techniques such as gas
chromatography–mass spectrometry (GC–MS) to identify discriminant VOCs.

How can we interpret our data?
Tobacco smoke is known to directly affect the level of several VOCs in human

breath [12]. Nonetheless, previous studies on exhaled breath analyzed by an e-nose indi-
cate that signals most likely derive from pathophysiological modifications driven by the
underlying chronic airway disease and by chronic smoking exposure. In detail, a recent
investigation by Principe et al. [13] showed that an e-nose could discriminate ever- from
never-smokers in a population of subjects with COPD and asthma. However, their e-nose
could not distinguish recent smokers as effectively, denoting that recent smoking might not
be a confounding factor of the VOC spectrum [13].

Similarly to the above, previous studies with e-nose recruiting smoking or ex-smoking
patients with asthma and COPD concluded that several types of e-nose can discriminate
among patients with chronic smoking habits, whereas it cannot detect active smoking in
patients according to the time of last cigarette consumption [14–20].

Our data are in line with the above observations; thus, we may speculate that e-nose
detects the effect of cigarette smoking on airways rather than the smoke itself.

5. Conclusions

In conclusion, our data indicate that very short-term smoking may be considered
as a confounder which affects e-nose measurements. Therefore, we suggest that patients
should abstain from smoking for a certain period before testing their exhaled breath for
e-nose-based VOC analysis. Future studies with larger cohorts and with different types
of e-nose technology should be addressed to extend our findings and to explore other
confounding factors.
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Abstract: The prevalence of chronic kidney disease (CKD) is increasing, and it brings an enormous
healthcare burden. The traditional measurement of kidney function needs invasive blood tests, which
hinders the early detection and causes low awareness of CKD. We recently designed a device with
miniaturized coplanar biosensing probes for measuring salivary conductivity at an extremely low
volume (50 μL). Our preliminary data discovered that the salivary conductivity was significantly
higher in the CKD patients. This cross-sectional study aims to validate the relationship between
salivary conductivity and kidney function, represented by the estimated glomerular filtration rate
(eGFR). We enrolled 214 adult participants with a mean age of 63.96 ± 13.53 years, of whom 33.2%
were male. The prevalence rate of CKD, defined as eGFR < 60 mL/min/1.73 m2, is 11.2% in our study.
By multivariate linear regression analyses, we found that salivary conductivity was positively related
to age and fasting glucose but negatively associated with eGFR. We further divided subjects into
low, medium, and high groups according to the tertials of salivary conductivity levels. There was a
significant trend for an increment of CKD patients from low to high salivary conductivity groups
(4.2% vs. 12.5% vs. 16.9%, p for trend: 0.016). The receiver operating characteristic (ROC) curves
disclosed an excellent performance by using salivary conductivity combined with age, gender, and
body weight to diagnose CKD (AUC equal to 0.8). The adjusted odds ratio of CKD is 2.66 (95% CI,
1.10–6.46) in subjects with high salivary conductivity levels. Overall, salivary conductivity can serve
as a good surrogate marker of kidney function; this real-time, non-invasive, and easy-to-use portable
biosensing device may be a reliable tool for screening CKD.

Keywords: chronic kidney disease; salivary conductivity; non-invasive; portable; biosensor

1. Introduction

Chronic kidney disease (CKD) is one of the most important public health issues and it
brings an enormous socioeconomic burden [1]. The prevalence of CKD is increasing, and it
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affects 8–16% of the general population worldwide currently [2–4]. The progression of CKD
is not only associated with end-stage renal disease but also is responsible for a wide range of
morbidity and mortality. Decreased renal function is also related to longer hospitalization
and poor quality of life [5–7]. CKD is estimated to become the fifth leading cause of
death globally by 2040 [8]. It is well known that early identification of CKD with timely
intervention plays a crucial role in preventing disease progression [9]. However, several
studies have found that greater than 90% of patients with stage 3 CKD were not aware of
their disorder [3,10]. The current diagnosis or staging of CKD is based on the estimated
glomerular filtration rate (eGFR) which is calculated from serum creatinine [11,12]. The
need for invasive procedures to collect serum creatinine is a great limitation for screening
and monitoring of CKD outside the hospital. Since most patients with early-stage CKD is
asymptomatic, it makes the early diagnosis difficult if a blood test is not performed [13].
In addition, blood collection may cause short-term complications such as hematomas
after venipuncture, vasovagal fainting, or phlebitis [14]. Therefore, developing an easy-
to-use, non-invasive, and cost-effective biodevice for the detection of CKD is essential for
large-scale screening and reducing undiagnosed CKD.

Saliva is a kind of body fluid that can be obtained easily in a non-invasive man-
ner and serves as a potential specimen for monitoring our health situation [15–18]. The
saliva has complex compositions, such as electrolytes, cytokines, enzymes, antibodies,
metabolites, etc. [19]. The complexity of salivary components renders it a promising
diagnostic fluid to reflect the biological changes of systemic diseases. Recent literature
has demonstrated the usefulness of saliva as a monitoring biological indicator in several
diseases [20–22]. Moreover, the area of using salivary biomarkers for screening CKD is
attracting considerable interest because it can be performed non-invasively, repeatedly
without trained personnel in a low-resource setting. An increasing number of clinical
studies have tried to adopt saliva as a diagnostic material for CKD [14,23–27]. Most of
these studies focused on the usage of salivary urea nitrogen or salivary creatinine levels to
detect CKD. In early-stage CKD, reduced permeability of salivary gland cells and reduced
plasma-to-saliva gradient would lead to incorrect measurement of salivary creatinine level.
Compared to salivary creatinine, salivary urea has been shown as a more sensitive marker
for CKD, particularly in earlier stages [23]. Although some studies reported that salivary
urea was a useful screen tool for CKD [26,27], a cohort study by Evans et al. showed
suboptimal diagnostic performance of salivary urea with the area under the receiver op-
erating characteristic (ROC) curve equal to 0.61 [23]. Therefore, our research team has
been committed to exploiting a portable, miniaturized, and ready-to-use saliva detection
instrument, and trying to explore more reliable diagnostic biomarkers for CKD.

The composition of saliva changes with progressive CKD [23]. Salivary concentrations
of urea nitrogen, creatinine, and most electrolytes, except calcium, are significantly higher
in CKD patients than in healthy controls. The change of pH, increase in electrolytes, and
accumulation of uremic particles may contribute to the alteration of the electrical con-
ductivity of saliva. We recently fabricated a novel biodevice with miniaturized sensing
probes for measuring salivary conductivity [28]. The features of this portable sensing
system include a disposable printed-circuit-board (PCB) electrode and the usage of highly
biocompatible, stable, and reusable gold as the conductive material. Additionally, with the
co-planar design of coating-free gold electrodes, the conductivity test could be achieved
with a saliva specimen at an extremely low volume (50 μL). This reduces the difficulty of
collecting saliva, eliminates the need for trained personnel, and increases people’s willing-
ness to the test. Our previous study has shown that the increase in salivary conductivity
was associated with the increase in serum and urinary osmolality in dehydrated healthy
adults [29]. Moreover, we also noticed that age and serum osmolality correlated well
with salivary conductivity in hemodialysis patients [30]. Our preliminary data including
10 CKD patients and 10 healthy controls discovered that the salivary conductivity was
significantly higher in the CKD population [28]. Although this result is encouraging, it still
needs to be confirmed by large-scale studies. Consequently, this pilot study aims to validate
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the correlation between salivary conductivity and eGFR in a healthy population and to
investigate whether the biodevice can act as a useful tool for screening and detecting CKD.

2. Materials and Methods

2.1. The Sensing Device and System

The portable biodevice was implemented to measure salivary conductivity. In brief,
the construction steps were composed of three main steps, including biodevice design, the
collection and analysis of saliva, and the test of reusability and selectivity of the electrodes.

2.1.1. Design of the Biodevice for Measuring Conductivity

The proposed system is composed of two main parts, including a PCB with coating-
free gold electrodes and a conductivity meter (Figure 1). The size of the micro-fabricated
electrode is 2 × 2 mm2 which can be covered with testing samples with only 50 μL required.
The 10 × 5.5 × 2.2 cm3 conductivity meter was fabricated as the previous study, which
composes of an analog-to-digital converter (ADC) (AD5933, Analog Devices, Norwood,
MA, USA), a micro control unit (MCU system) (STMicroelectronics, Geneva, Switzerland),
a temperature sensor (Aosong, Guangzhou, China), and an organic light-emitting diode
(OLED) (Zhongjingyuan, Henan, China). The electrode was bonded to the PCB by using
nickel immersion gold wired. The conductivity meter can be implemented with 1 Vpp and
1 kHz sine waves via ADC to accomplish the measurement. The electrical conductivity
parameters can be acquired through a discrete Fourier transform. The conductivity signal
at 25 ◦C can be calculated through temperature compensation by the MCU system and be
displayed on the OLED within 10 s.

2.1.2. The Collection and Analysis of Saliva

Salivary samples of all eligible subjects were collected and processed as previously
described [28,29]. Briefly, the participants were asked to swallow several times for emptying
their mouths before collection. The saliva was then collected by placing a mouth care cotton
swab (diameter = 0.9 cm, length = 15.24 cm) under the tongue for 2 min. The collected
salivary specimens were loaded into the well of the sensing probe and then analyzed for
electrical conductivity through the conductivity meter which was connected to the portable
device through a USB port (Figure 2). With the design of coplane, miniaturized, and coating-
free gold electrodes, the conductivity test could be achieved with a saliva specimen at an
extremely low volume (50 μL). A minimum measurement volume of 50 uL was determined
according to the area of the electrodes, as this is the appropriate sample volume to fully
cover the surface of micro-electrodes. Furthermore, stable conductivity data can be obtained
when evaluating under this condition. The conductivity meter was pre-calibrated using the
standard conductivity solution and examined coefficient of variation was less than 1%. The
detection time including sample preparation is within 5 min. The saliva solution is quite
stable during the period. We had demonstrated that there was no significant change in
the conductivity measurement of salivary samples at room temperature for at least 15 min
(Figure S1 in Supplemental Materials).

2.1.3. Reusability of the Electrode

For testing the reusability of the electrode, salivary samples were tested 20 times
with the same electrode. We used ultrapure water to clean the well until confirming the
conductivity drops to the same level as the baseline before every measurement. In the
clinical study, each PCB electrode was used with no more than five salivary samples to
ensure the quality of the clinical data.
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Figure 1. A tailor-made portable biodevice for measuring conductivity. (A) The device is composed
of two parts, including a PCB with a coating-free gold microelectrode sensor in the sample well and a
conductivity meter with a size of 10 × 5.5 × 2.2 cm3. (B) Design of the co-planar microelectrode and
the sample well. The gap between two microelectrodes is only 100 μm. (C) Electronic schematics of
the fabricated conductivity meter. Abbreviations: ADC, analog-to-digital converter; C, capacitance;
GND, ground; IIC, inter-integrated circuit; MCU, micro control unit; OLED, organic light-emitting
diode; R, resistance; RGB, red, green, blue color model; VCC, volt current condenser.

Figure 2. The saliva collection and salivary conductivity analysis protocol.

2.1.4. Selectivity of the Sensor

Saliva is composed of 99% water, 1% protein and salts, etc. [31]. Our sensor is used to
measure the salivary conductivity which is determined by the electrical admittance between
the electrodes which mostly reflects the concentration of the electrolytes. To increase the
selectivity of the sensor and eliminate the interfering factors, we have adopted some special
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designs for our device. First, since the signal obeys the path of least impedance, the electro-
path of electro-impedance spectroscopy is mainly at the edge of microelectrodes, which is
approved according to the previous study [32]. Therefore, most of the interference effect
caused by large particles such as food debris and nasal secretion, which fall at the top of
the co-planar electrode can be minimized and have better selectivity. Second, the protein in
saliva may decrease electrode sensitivity for detecting electrolytes because some proteins
will adhere to the electrodes. However, with our microfabricated co-planar electrodes
design, the interfering factor can be decreased compared to the commercial electrodes.
This can be explained by the fact that the microelectrode edge is less vulnerable to protein
adhesions than the electrode surface. To justify the hypothesis of our design, we have
conducted experiments that measured the conductivity of ultrapure water, bovine serum
albumin (BSA), phosphate-buffered saline (PBS) solution, different BSA concentrations
mixed with PBS solution, and healthy participants’ saliva. According to Lin et al., BSA can
be a surrogate of the proteins secreted by the salivary glands, which is optimal for testing
the selectivity of our sensor, and the mean value of human salivary protein ranged from
0.72 to 2.45 mg/mL [33]. In addition, PBS solution can be a surrogate of the electrolytes. The
conductivity of each solution was measured six times repeatedly and the average was used
to compare the difference between the groups. Besides, other experiments were conducted
to compare our microelectrode with the commercial electrode by detection of ultrapure
water spiked in with BSA to determine whether our microfabricated co-planar electrodes
design has less interference with protein factors. Third, because interference particles can
accumulate on the surface of the salivary solution with time, we further experimented to
test the stability of the saliva sample. The conductance of six different salivary samples was
repeatedly tested for 15 min with an interval of 3 min. The serial change can also reflect
the stability of the saliva. Fourth, only a 50 μL saliva sample is required to perform the
test. Therefore, we can assume that the sample temperature achieves equilibrium with the
ambient temperature within a short period of time. It means that temperature is also not an
interfering factor.

2.2. Clinical Study Design and Participants

This is a cross-sectional pilot study including adults aged ≥18 years who attended
the annual health examination at Yunlin Branch of the Chang Gung Memorial Hospital, a
regional teaching hospital in southern Taiwan, in August 2021. Before the investigation,
we conducted a sample size calculation using PASS V.15 (NCSS, Kaysville, UT, USA).
Assuming a CKD prevalence rate of 12% [2,3], with 80% power, at a two-sided statistical
significance level of 5% (α = 0.05), the sample size needed for an acceptable area under the
ROC curve of 0.70 is 171. During the study period, 241 consecutive subjects completed
the general health examinations. Among them, nine subjects could not cooperate with
the saliva collection. Another 18 subjects were excluded owing to active illness, recent
hospitalization for acute diseases, or past histories of head and neck treatments, such
as surgery or radiotherapy. Therefore, a total of 214 adult subjects were included in the
final analysis, exceeding the sample size required for the desired study power. The post
hoc power analysis demonstrated a sample size of 214 achieved 99% power for salivary
conductivity plus age and 80% power for only salivary conductivity as diagnostic tools
at a 5% significance level. This study complied with the guidelines of the Declaration of
Helsinki and was approved by the Medical Ethics Committee of Chang Gung Memorial
Hospital (institutional review board number: 202000109B0 and 202002186B0). Before the
beginning of the study, all participants agreed and signed the informed consent form.

2.3. Procedures of Clinical Study

Before health examination, all subjects received a comprehensive questionnaire sur-
vey conducted by trained nurses to provide information about previous head and neck
surgery or radiotherapy and comorbid diseases, including diabetes, hypertension, chronic
kidney disease, ischemic heart disease, stroke, dyslipidemia, gout, and chronic liver disease.
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Anthropometric data of their body weight (kg) and height (cm) were obtained, and the
corresponding body mass index (BMI) was calculated as weight in kilograms divided by
height in meters squared (kg/m2). The blood pressure was measured with a validated elec-
tronic automated sphygmomanometer on the right arm of seated participants after 15 min’
rest in a quiet and comfortable environment. Two blood pressure readings were obtained at
an interval of 5 min; if the readings differed by more than 20 mmHg, a third measurement
was made, and the two closest blood pressure values were averaged. After an 8 to 12 h
overnight fasting, venous blood and salivary samples were collected. Blood specimens
were left undisturbed at room temperature for 30 min to allow the blood to clot. The clot
was then removed by centrifuging at 3000 rpm for 10 min. The resulting supernatant was
the serum which was analyzed for biochemical data using an automatic chemistry analyzer
(Beckman DXC880i, Brea, CA, USA) following standardized laboratory procedures.

2.4. Definition of Chronic Kidney Disease

We used the revised Modification of Diet in Renal Disease (IDMS-MDRD) equation to
calculate the eGFR: 175 × Cr−1.154 × Age−0.203 × (0.742, if female) [34]. The definition of
chronic kidney disease is the presence of an eGFR less than 60 mL/min/1.73 m2.

2.5. Statistical Analysis

Continuous variables are expressed as means ± standard deviations and categorical
variables are displayed as numbers with their percentages. For examining the normality of
numerical variables, the Kolmogorov–Smirnov method was performed. The independent
two-tailed Student’s t-test was used to compare the means of the continuous variables of
normal distribution, while the Mann–Whitney U test was applied for continuous but not
normally distributed data. For comparison between multiple groups, the Analysis of Vari-
ance (ANOVA) with post hoc analysis were used for quantitative variables. The Pearson’s
chi-square test was conducted for the comparison of categorical variables. The association
between salivary conductivity and other quantitative variables was analyzed by univariate
linear regression models. Furthermore, the multivariate linear regression analysis with
backward selection was utilized to form a predictive model for salivary conductivity. Sta-
tistically significant factors identified in the univariate analysis were incorporated into the
multivariate regression analysis. ROC curve analysis was used to evaluate the diagnostic
accuracy of salivary conductivity on CKD. To improve the diagnostic ability, we performed
the multivariable logistic regression analysis with backward selection using combined
variables. The diagnostic power of different models was determined by calculating the area
under the ROC curve (AUROC). Multivariate logistic regression with stepwise backward
selection was utilized to estimate the odds ratios (ORs) of CKD, with salivary conductivity
and other risk factors as independent variables. Subgroup analyses for heterogeneity in
saliva conductivity effect were further performed, with subgroups defined according to age
(<75 years or ≥75 years), gender, BMI (<25 kg/m2 or ≥25 kg/m2), history of diabetes (yes
or no), underlying hypertension (yes or no), and coexisting dyslipidemia (yes or no). All
statistical analyses were two-sided and were performed using the Statistical Program for
Social Sciences (SPSS) version 22 (IBM Corporation, Armonk, NY, USA). Values of p < 0.05
were considered statistically significant.

3. Results

3.1. Reusability of the Sensor

After serial measurements of the salivary conductivity of the same saliva sample
20 times, the mean absolute percentage error (MAPE) is 0.88%, with a maximum error of
2.39% (Figure 3).
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Figure 3. Serial measurements of the salivary conductivity of the same saliva sample 20 times.

3.2. Selectivity of the Sensor

For determining the selectivity of the sensor, we measured the conductivity of ul-
trapure water, BSA, PBS solution, different BSA concentrations mixed with PBS solution,
and healthy participants’ saliva. The results revealed that our co-planar microelectrodes
have almost no interference from BSA and the majority of the conductivity was originated
from the electrolytes in the solution (Figure 4A). By detection of ultrapure water spiked in
with BSA, we noticed that the slope of the commercial electrode is three times significantly
higher than our tailor-made design, which means our design is less vulnerable to BSA
influence (Figure 4B). In addition, the conductivity of the saliva samples was stable for at
least 15 min, which indicates that the proposed device has great resistance to interference
particles accumulation (Figure 4C).

3.3. Demographic Characteristics of Study Participants

This cross-sectional study included 214 subjects with a mean age of 63.96 ± 13.53 years,
of whom 33.2% were male. The mean salivary conductivity value was 5.91 ± 1.79 ms/cm.
Diabetes mellitus, hypertension, chronic kidney disease, ischemic heart disease/stroke,
dyslipidemia, gout, and chronic liver disease were recognized in 26 (12.1%), 62 (29.0%),
3 (1.4%), 16 (7.5%), 30 (14.0%), 9 (4.2%) and 24 (11.2%) participants, respectively. Their
mean eGFR was equal to 86.33 ± 22.81 mL/min/1.73 m2. Other biochemical parameters,
anthropometric data, and blood pressure were shown in Table 1.

97



Biosensors 2022, 12, 178

 
 

Figure 4. (A) Conductivity of the solution with different components. (B) Detection of the con-
ductance of ultrapure water spiked in with BSA comparing our co-planar microelectrode and the
commercial electrode. (C) Serial conductance measurements of the 6 individuals’ saliva at different
time points. Abbreviations: BSA, bovine serum albumin; PBS, phosphate-buffered saline. * indicates
p < 0.05 compared to ultrapure water; # indicates p < 0.05 compared to the BSA.

Table 1. Characteristics of the study population and the correlation between salivary conductivity
and continuous variables.

All (N = 214) Pearson r p Value for r

Salivary conductivity, ms/cm 5.91 ± 1.79

Demographics
Age, years 63.96 ± 13.53 0.362 <0.01
Gender (male), n (%) 71 (33.2)
Body weight, kg 63.08 ± 10.79 0.049 0.48
Body height, cm 158.97 ± 7.67 0.037 0.59
Body mass index, kg/m2 24.90 ± 3.36 0.027 0.69
Systolic blood pressure, mmHg 131.26 ± 20.74 0.193 <0.01
Diastolic blood pressure, mmHg 75.24 ± 11.79 0.046 0.50
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Table 1. Cont.

All (N = 214) Pearson r p Value for r

Comorbid conditions, n (%) @

Diabetes mellitus 26 (12.1)
Hypertension 62 (29.0)
Chronic kidney disease 3 (1.4)
Ischemic heart disease/stroke 16 (7.5)
Dyslipidemia 30 (14.0)
Gout 9 (4.2)
Chronic liver disease 24 (11.2)

Laboratory parameters
BUN, mg/dL 15.26 ± 5.28 0.178 <0.01
Creatinine, mg/dL 0.81 ± 0.26 0.251 <0.01
eGFR, mL/min/1.73 m2 86.33 ± 22.81 −0.323 <0.01
Serum osmolality, mOsm/kgH2O 287.69 ± 5.48 0.106 0.12
Fasting glucose, mg/dL 103.09 ± 25.31 0.153 0.03
Hemoglobin A1c, % 5.89 ± 0.98 0.045 0.51
ALT, U/L 22.10 ± 20.91 0.027 0.70
Triglyceride, mg/dL 113.19 ± 74.33 0.105 0.13
Total cholesterol, mg/dL 198.86 ± 39.48 −0.056 0.41
LDL-C, mg/dL 120.77 ± 33.63 −0.066 0.33
HDL-C, mg/dL 55.56 ± 13.22 −0111 0.11

Values are expressed as the mean ± standard deviation or number (percentage). @ The information of comorbid
conditions was obtained by questionnaires. Abbreviations: ALT, alanine aminotransferase; BUN, blood urea
nitrogen; eGFR, estimated glomerular filtration rate; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-
density lipoprotein cholesterol.

3.4. Association between Salivary Conductivity and Clinical Variables

The relationship between salivary conductivity and continuous variables was analyzed
by Pearson’s correlation coefficient. Salivary conductivity was positively associated with
age, systolic blood pressure, blood urea nitrogen (BUN), creatinine, and fasting glucose,
but was inversely related to the eGFR (Table 1).

We then conducted the backward multivariate linear regression analyses to determine
the salivary conductivity level from clinical parameters. Only Significant factors identified
in the simple regression analysis were applied to the multivariate analysis. A co-linearity
analysis showed all tolerance > 0.1 and variance inflation factor (VIF) < 5, thus no co-
linearity exists among independent variables (Table S1). Adjusted variables in regression
model 1 consisted of age, systolic blood pressure, BUN, fasting glucose, and eGFR. Only
older age (standardized β = 0.264, p < 0.001), higher fasting glucose (standardized β = 0.132,
p = 0.037), and lower eGFR (standardized β = −0.186, p = 0.010) were significantly associated
with higher salivary conductivity (R2 = 0.176, model 1 in Table 2). Because eGFR is
calculated from serum creatinine, we replaced eGFR with creatinine in regression model
2. It is noted that creatinine was still positively correlated with salivary conductivity
(standardized β = 0.151, p = 0.024, model 2 in Table 2).

3.5. The Prevalence of Chronic Kidney Disease (CKD) Increases with Salivary Conductivity

To investigate the association of salivary conductivity and CKD, we divided study
subjects into low, medium, and high salivary conductivity groups based on the tertial
of conductivity levels (Figure 5). There was a significant trend for an increment of CKD
prevalence rate from low to high salivary conductivity levels (4.2% in low vs. 12.5% in
middle vs. 16.9% in high conductivity group, p for trend = 0.016).
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Table 2. Multivariate linear regression analyses of determinants associated with the salivary conductivity.

Model 1
Unstandardized Coefficients

β (Standard Error)
Standardized β p Value

Constant 3.974 (1.062) <0.001
Age 0.035 (0.010) 0.264 <0.001
Fasting glucose 0.009 (0.004) 0.132 0.037
eGFR −0.015 (0.006) −0.186 0.010

R2 = 0.176

Model 2
Unstandardized Coefficients

β (Standard Error)
Standardized β p Value

Constant 1.452 (0.724) 0.046
Age 0.040 (0.009) 0.306 <0.001
Fasting glucose 0.010 (0.004) 0.141 0.026
Creatinine 1.043 (0.459) 0.151 0.024

R2 = 0.170

Parameters included in model 1: age, systolic blood pressure, BUN, fasting glucose, and eGFR. Parameters
included in model 2 are the same as in model 1, except that creatinine is used to replace eGFR. Abbreviations:
BUN, blood urea nitrogen; eGFR, estimated glomerular filtration rate. The backward multivariate linear regression
analysis method was conducted.

Figure 5. Bar chart of the number of CKD patients with low to high salivary conductivity levels. Par-
ticipants were separated into low, middle, and high salivary conductivity levels based on the tertials
of conductivity levels (low ≤ 4.84 ms/cm; 4.84 ms/cm < middle ≤ 6.60 ms/cm; high > 6.60 ms/cm).
The number and percentage of patients with CKD were shown in the bar chart (p for trend: 0.016).
CKD, chronic kidney disease.

3.6. The Use of Salivary Conductivity to Detect Individuals with CKD

To examine the diagnostic ability of salivary conductivity on CKD, the ROC curve
analysis was conducted. The AUROC was equal to 0.648 (95% CI: 0.542–0.755) when sali-
vary conductivity is the only predicting factor. To improve the diagnostic performance, age,
gender, and body weight were further combined into the prediction model. This combina-
tion model demonstrated a significant increase in AUROC to 0.798 (95% CI: 0.726–0.871)
(Figure 6A). Strikingly, the AUROC would be 0.751 (95% CI: 0.577–0.926) with salivary con-

100



Biosensors 2022, 12, 178

ductivity as the only predictor if the study group was restricted to individuals ≥75 years
old (Figure 6B).

 

Figure 6. The receiver operating characteristic curve analysis. (A) Three ROC models for the diagnosis
of CKD. The AUC was equal to 0.65 when salivary conductivity is the only predicting factor. The
combination of salivary conductivity, age, gender, and body weight as the predicting factors showed
the AUC was increased to 0.80. (B) The ROC curve analysis for the diagnostic accuracy of salivary
conductivity on CKD among subjects older than 75 years. AUC, area under the ROC curve; CKD,
chronic kidney disease; ROC, receiver operating characteristic.

3.7. Characteristics of Low Versus High Salivary Conductivity Population

To further evaluate the risk of CKD concerning salivary conductivity, the subjects were
stratified into low and high salivary conductivity level groups based on the cutoff value of
the ROC curve calculated by using only salivary conductivity as the predictor (6.59 ms/cm).
The characteristics of low versus high salivary conductivity groups were summarized in
Table 3. The mean salivary conductivity of the low and high salivary conductivity groups
was 4.84 ± 1.01 and 7.94 ± 1.02 ms/cm, respectively. It was noticed that subjects with high
salivary conductivity were older (69.92 ± 10.93 vs. 60.81 ± 13.75 years, p < 0.01). They also
had higher systolic blood pressure (135.68 ± 21.91 vs. 128.93 ± 19.78 mmHg, p = 0.02),
higher BUN (16.97 ± 5.78 vs. 14.34 ± 4.77 mg/dL, p < 0.01), higher creatinine (0.90 ± 0.30 vs.
0.76 ± 0.22 mg/dL, p < 0.01), lower eGFR (77.17 ± 21.27 vs. 91.18 ± 22.17 mL/min/1.73 m2,
p < 0.01), higher serum osmolality (288.69 ± 6.15 vs. 287.16 ± 5.04 mOsm/kgH2O, p = 0.05),
higher fasting glucose level (108.16 ± 20.34 vs. 100.41 ± 27.27 mg/dL, p < 0.01), higher
hemoglobin A1c (5.97 ± 0.83 vs. 5.85 ± 1.05%, p = 0.03), and a higher percentage of un-
derlying diabetes mellitus (20.5 vs. 7.9%, p < 0.01). There were no significant differences
in gender, body weight and height, body mass index, diastolic blood pressure, the preva-
lence of hypertension, chronic kidney disease, ischemic heart disease/stroke, dyslipidemia,
gout, and chronic liver disease, ALT, triglyceride, total cholesterol, LDL-C, and HDL-C
between groups.
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Table 3. Population characteristics of low and high salivary conductivity groups.

Low Salivary
Conductivity

Group * (N = 140)

High Salivary
Conductivity

Group (N = 74)
p Value

Salivary conductivity, ms/cm 4.84 ± 1.01 7.94 ± 1.02 <0.01 #

Demographics

Age, years 60.81 ± 13.75 69.92 ± 10.93 <0.01 #

Gender (male), n (%) 42 (30.0) 29 (39.2) 0.17
Body weight, kg 62.94 ± 10.60 63.35 ± 11.21 0.94
Body height, cm 159.08 ± 7.39 158.76 ± 8.24 0.45
Body mass index, kg/m2 24.82 ± 3.34 25.07 ± 3.40 0.61
Systolic blood pressure, mmHg 128.93 ± 19.78 135.68 ± 21.91 0.02 #

Diastolic blood pressure, mmHg 74.76 ± 11.60 76.14 ± 12.16 0.42

Comorbid conditions, n (%) @

Diabetes mellitus 11 (7.9) 15 (20.5) <0.01 #

Hypertension 36 (25.7) 26 (35.6) 0.13
Chronic kidney disease 1 (0.7) 2 (2.7) 0.27
Ischemic heart disease/Stroke 7 (5.0) 9 (12.3) 0.05
Dyslipidemia 20 (14.3) 10 (13.7) 0.91
Gout 4 (2.9) 5 (6.8) 0.17
Chronic liver disease 16 (11.4) 8 (11.0) 0.92

Laboratory parameters

BUN, mg/dL 14.34 ± 4.77 16.97 ± 5.78 <0.01 #

Creatinine, mg/dL 0.76 ± 0.22 0.90 ± 0.30 <0.01 #

eGFR, mL/min/1.73 m2 91.18 ± 22.17 77.17 ± 21.27 <0.01 #

Serum osmolality, mOsm/kgH2O 287.16 ± 5.04 288.69 ± 6.15 0.05 #

Fasting glucose, mg/dL 100.41 ± 27.27 108.16 ± 20.34 <0.01 #

Hemoglobin A1c, % 5.85 ± 1.05 5.97 ± 0.83 0.03 #

ALT, U/L 22.89 ± 24.87 20.62 ± 9.74 0.69
Triglyceride, mg/dL 107.50 ± 62.19 123.95 ± 92.62 0.10
Total cholesterol, mg/dL 198.18 ± 36.15 200.15 ± 45.37 0.73
LDL-C, mg/dL 120.09 ± 30.79 122.05 ± 38.65 0.69
HDL-C, mg/dL 56.46 ± 12.81 53.84 ± 13.89 0.17

Values are expressed as mean ± standard deviation or number (percentage). * Study populations were stratified
into low and high groups according to the cutoff value of salivary conductivity (6.59 ms/m). @ The information
of comorbid conditions was obtained by questionnaires. # indicates p-value < 0.05. Abbreviations: ALT, alanine
aminotransferase; BUN, blood urea nitrogen; eGFR, estimated glomerular filtration rate; HDL-C, high-density
lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol.

3.8. Subgroup Analysis of the Risk of CKD, Comparing High versus Low Salivary Conductivity

The subgroup analysis of the risk of CKD, comparing high versus low salivary con-
ductivity was shown in Figure 7. Overall, the risk of CKD was higher in the high salivary
conductivity group, with an adjusted odds ratio of 2.66 (95% CI, 1.10–6.46). There was no
significant difference in the risk for CKD among subgroups of age and BMI. In the male
population, and those without DM, without hypertension, and without dyslipidemia, the
risk of CKD was significantly higher in the high salivary conductivity group, with the odds
ratio of 4.60 (95% CI, 1.01–21.04), 2.99 (95% CI, 1.15–7.73), 3.71 (95% CI, 1.11–12.37), and
3.29 (95% CI, 1.27–8.55), respectively. To avoid bias introduced by unequal distribution
of confounding variables, we further conducted sensitivity analyses in subjects without
histories of diabetes and hypertension (Tables S2-1 and S2-2 in Supplemental Materials)
and used a propensity score-matched dataset. The results were in concordance with the
original analysis (Tables S3-1 and S3-2 in Supplemental Materials).
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Figure 7. Forest plot for subgroup analysis of CKD risk. The adjusted odds ratio (OR) is for the high
versus low salivary conductivity group. Study subjects were divided into high and low salivary
conductivity groups based on the cutoff value of the ROC curve analysis (6.59 ms/cm). BMI, body
mass index; CKD, chronic kidney disease; DM, diabetes mellitus; HTN, hypertension.

4. Discussion

The results reported here reveal that salivary conductivity is negatively correlated with
eGFR and can serve as a potential biomarker for detecting CKD. Traditionally, the golden
standard of measuring kidney function requires the collection of 24 h urine creatinine
amount and the blood test of serum creatinine, which is cumbersome for patients [11,35].
Simplified estimation of renal function by MDRD equation still needs an invasive venipunc-
ture. As mentioned in the Results section, there was a notably negative correlation between
salivary conductivity and eGFR in the simple and multivariate Pearson’s correlation analy-
ses (Tables 1 and 2). In addition, there was an increasing trend of CKD prevalence from
low to high salivary conductivity levels (Figure 5). Hence, the salivary conductivity may
be an alternative surrogate marker for kidney function.

The prevalence rate of CKD, defined as eGFR < 60 mL/min/1.73 m2 by the revised
MDRD equation, is 11.2% in our study. A large-scale cohort study based on 462,293 adults
in Taiwan showed that the national prevalence of CKD was 11.93% [3]. This indicates the
representativeness of our research subjects. In addition, only three participants in our study
answered that they had CKD by the questionnaire. It revealed that the awareness of CKD in
our study population was very low (12.5%). In line with this observation, previous research
has also pointed out the serious problem of unawareness in the management of CKD,
especially in patients with early-stage CKD [3,10,36]. Since saliva collection is an easier and
non-invasive method, this makes large-scale screening or continuous self-monitoring of
CKD less difficult.

Furthermore, multivariate linear regression analyses also showed a significantly posi-
tive correlation between salivary conductivity with age or fasting glucose (Table 2). Subjects
with high salivary conductivity were prone to be older and had higher fasting sugar, higher
hemoglobin A1c, and a higher percentage of diabetic history (Table 3). Several studies
have found that the secretion and properties of saliva change with age [37,38]. Similar to
CKD patients, most electrolytes increase in the saliva of healthy elderly individuals [23,37],
which may contribute to the increase in salivary conductivity. Recent studies have also
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shown a strong association between salivary conductivity and age [30,39]. Further, salivary
glucose concentrations were proved to be related to serum glucose levels [40,41]. Since
CKD patients are mostly the elderly and prone to develop hyperglycemia [42], this may
partly explain why they have higher salivary conductivity. Besides, we also noticed a
significant correlation between systolic blood pressure and salivary conductivity. Subjects
in the high salivary conductivity group were shown to have higher systolic blood pressure.
A recent report by Labat et al. has shown that salivary electrolytes increased with age and
were associated with hypertension [39], which was compatible with our findings.

The ROC curve of our study implied that using salivary conductivity combined with
age, gender, and body weight can yield an excellent prediction model with AUC equal
to 0.8 [43]. The traditional concept of the elderly is defined as an age of 65 years or older.
However, many of the elderly, especially those aged younger than 75 years, are still healthy
and active due to the progress of modern medicine and nutritional support. Ouchi et al.
had redefined aged from 65 to 74 years as pre-elderly and aged over 75 years as the new
definition of elderly [44]. In addition, aging is a significant risk factor for developing CKD.
Mallappallil et al. had demonstrated that the patients aged from 75 to 79 years had a
40% higher risk of having CKD than those aged from 65 to 74 years. [45]. Therefore, we
further performed ROC curve and logistic regression analyses among patients greater than
75 years. Although using only salivary conductivity to predict CKD was not good enough
with AUC only equal to 0.65, we found the model could perform well in the subgroup of
individuals older than 75 years with AUC equal to 0.75 (Figure 6). This finding is consistent
with the result in Figure 7 that older patients with higher salivary conductivity had a
higher odds ratio to have CKD. A previous finding that salivary electrolytes concentration
increases with age [39] provides support for these results. The morphology and function
of nephrons are affected by the aging process, which causes the elderly vulnerable to
acute or chronic kidney damages [46]. The prevalence of CKD is markedly higher in elder
populations [47,48]. The property of better diagnostic performance in the high-risk elderly
makes salivary conductivity a promising tool for CKD screening.

Figure 7 shows a strong association of salivary conductivity with the risk of CKD.
Although there was a tendency for higher blood pressure and higher fasting blood glu-
cose in subjects with high salivary conductivity (Tables 1 and 3), the subgroup analyses
demonstrated that salivary conductivity distinguished CKD better among subjects without
diabetes, hypertension, and dyslipidemia (Figure 7). One possible explanation for this
discrepancy was that subjects with these comorbidities were little in number, 26, 72, and
30 respectively, which created a wider confidence interval. Despite that higher salivary
conductivity in the patients older than 75 years did not have a significantly higher risk of
CKD, there was a trend of increasing risk for CKD compared to those younger than 75 years
old. However, the phenomenon of better discrimination of CKD in healthier subjects may
represent salivary conductivity as a good diagnostic tool. Further analysis with a larger
population is warranted to clarify these findings. In addition, patients with CKD usually
had many comorbidities such as diabetes and hypertension. Salivary conductivity may
merely reflect the comorbidities but not kidney function. However, we can find that those
patients with higher salivary conductivity but without diabetes or hypertension still had
a higher risk of having CKD. This finding can again suggest our conclusion that salivary
conductivity has a positive correlation with CKD.

There are several limitations needed to be mentioned in this research. First, this is a
cross-sectional study; therefore, the true relationship between salivary conductivity and
eGFR or CKD could not be confirmed by a single test. Second, CKD in our study was
defined by a single eGFR measurement, which may erroneously include subjects with acute
kidney injury. Third, CKD was defined as an eGFR < 60 mL/min/1.73 m2, thus individuals
of higher eGFR but with kidney damage were not diagnosed. This would underestimate
the occurrence or risk of CKD. In addition, current criteria for diagnosing CKD need eGFR
and albuminuria or proteinuria data. A lack of urinalysis, proteinuria, or albuminuria data
in study participants may underestimate the prevalence of CKD. However, the percentage
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of CKD is 11.2% in our study, which was comparable with the reported 12% national
prevalence of CKD in Taiwan, reported by Wen et al. [3]. This suggests that our research
subjects are still representative. Fourth, this study was performed only in the Asian
population, thus the results may not be correctly applied to other ethnicities. Besides,
serum electrolytes status was not measured during the health examination. Since salivary
electrolyte concentrations may vary with serum, the lack of serum electrolyte data may
affect the assessment of salivary conductivity. Finally, we did not analyze the components
of saliva in CKD versus non-CKD subjects. Therefore, we could not fully explain the nature
of why salivary conductivity increases in CKD subjects.

5. Conclusions

Timely screening and detection for undiagnosed CKD are decisive for delaying the
disease progression and reducing its complications or mortality. The results of this study
demonstrate a significant correlation between salivary conductivity and eGFR. Higher
salivary conductivity is associated with an increased risk of CKD. We have also shown an
acceptable diagnostic accuracy and sensitivity of salivary conductivity in distinguishing
CKD, especially for the elderly. Taken together, salivary conductivity can serve as a good
surrogate marker of renal function; this real-time, non-invasive, and easy-to-use portable
biosensing device may be a reliable tool for screening early-stage CKD.
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Abstract: Tremors are the most prevalent movement disorder that interferes with the patient’s
daily living, and physical activities, ultimately leading to a reduced quality of life. Due to the
pathophysiology of tremor, developing effective pharmacotherapies, which are only suboptimal
in the management of tremor, has many challenges. Thus, a range of therapies are necessary in
managing this progressive, aging-associated disorder. Surgical interventions such as deep brain
stimulation are able to provide durable tremor control. However, due to high costs, patient and
practitioner preference, and perceived high risks, their utilization is minimized. Medical devices are
placed in a unique position to bridge this gap between lifestyle interventions, pharmacotherapies,
and surgical treatments to provide safe and effective tremor suppression. Herein, we review the
mechanisms of action, safety and efficacy profiles, and clinical applications of different medical
devices that are currently available or have been previously investigated for tremor suppression.
These devices are primarily noninvasive, which can be a beneficial addition to the patient’s existing
pharmacotherapy and/or lifestyle intervention.

Keywords: tremor; medical devices; transcutaneous electrical nerve stimulation; electrical stimula-
tion systems; wearable orthoses; assistive feeding devices

1. Introduction

Tremors, as defined by the task force of the International Parkinson and Movement
Disorder Society (IPMDS), are an involuntary, rhythmic, oscillatory movement of a body
part [1]. Essential tremor (ET) is recognized as the most prevalent pathological tremor
among adults, affecting about 0.9% of the global population [2]. However, the true preva-
lence of ET may be higher, as it is believed that these patients may not seek medical
attention [3]. Tremors, usually asymmetrically distributed, are frequently seen in patients
with Parkinson’s disease (PD), which affects more than six million individuals world-
wide [4]. The presence of resting tremor supports the diagnosis of PD [5]. Different
clinical subtypes and classifications of tremor disorders have also been identified [1]. The
etiologies of tremor include other neurodegenerative diseases such as Wilson’s disease,
chromosomal aneuploidy, mitochondrial genetic disorders, infectious and inflammatory
diseases, endocrine and metabolic disorders, neuropathies and spinal muscular atrophies,
toxin-/drug-induced tremor pathology, and brain neoplasms and injury, as well as several
environmental causes [1].

Tremors impact many aspects of the patient’s daily living and interfere with many
physical activities at home and in the workplace [6–10]. One clinical-epidemiological
study compared the quality of life, including physical and psychosocial aspects, between
patients with ET and PD using the Quality of Life in Essential Tremor (QUEST) question-
naire [11]. Patients with ET had a higher QUEST total score and QUEST physical subscore
than patients with PD (p < 0.05). This suggests that patients with ET suffers significantly
more physical and psychosocial impairment than those with PD [11]. Additionally, among
patients suffering from tremor, their psychological strain may be significantly more affected
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than their physical disabilities [6,12]. The psychological toll of tremor may extend beyond
the patients themselves. The Clinical Pathological Study of Cognitive Impairment in Es-
sential Tremor (COGNET), a longitudinal study that evaluates cognitive function in older
adults with ET, reported that both patients with ET and those close to them suffer psycho-
logical stress [13]. In addition, patients may develop feelings of social isolation [11,14] and
depression [6,11,13]. Due to the incredible burden put on individuals diagnosed with ET
or PD, a multitude of approaches have been investigated to improve the symptoms and
quality of life of those afflicted. These range from lifestyle interventions, pharmacotherapy,
and surgical treatments.

Lifestyle interventions focusing on the use of weighted utensils can reduce the ampli-
tude of tremor and alleviate the challenges patients face in their activities of daily living
(ADLs) [15,16]. With additional weights, these utensils (e.g., spoon) can assist patients
to eat and drink. In 2017, the National Institute for Health and Care Excellence (NICE)
produced guidelines for the management of PD in adults [5]. Patients in the early stages of
PD may benefit from physio- and occupational therapy if they experience motor symptoms
or have difficulties with ADLs [5]. However, lifestyle and the nonpharmacological man-
agement of ET were not discussed in the guidelines produced by the American Academy
of Neurology (AAN) and the IPMDS [17–19]. A systematic review of 19 studies found that
physical therapy, limb cooling, vibration therapy, use of limb weights, bright light ther-
apy, and transcranial magnetic stimulation were all examples of investigated treatments
of tremor [20]. However, these studies mainly included convenience samples, and the
long-term effectiveness of these interventions was not assessed [20].

Pharmacotherapy for the treatment of ET is suboptimal and only treats the symptoms.
Many patients do not respond to the existing medications indicated for ET and do not
experience a significant improvement in their daily living. Currently, propranolol and
primidone are the two first-line therapies [15–19,21]. Across randomized controlled tri-
als (RCTs), propranolol and primidone monotherapy produce a mean reduction in the
tremor amplitude of 54.1% and 59.9%, respectively, as measured by accelerometry [22].
Nonetheless, 56.3% of patients eventually discontinued the use of either medications [23].
Topiramate is also recommended as a first-line therapy by the guidelines of the Italian
Movement Disorders Association (IMDA) [24] and is considered clinically useful at higher
doses by the IPMDS task force [19]. However, it is recommended by the AAN guidelines
as a second-line therapy [17,18]. Second-line medications have been reported to be less
efficacious in reducing the amplitude of tremors. These include alprazolam, atenolol,
gabapentin, and sotalol, as well as the aforementioned topiramate [17,18]. In contrast,
there is no consensus in the management of PD tremors. The current NICE guidelines
recommend levodopa as the first-line therapy for management of all motor symptoms in
patients in the early stages of PD [5].

Deep brain stimulation (DBS), whose efficacy has been demonstrated through closed
loop approaches [25,26] and interleaving stimulation [27], is the most common surgical
treatment to date, providing durable tremor control, especially for patients with medically
refractory ET or advanced PD. The effectiveness of DBS in ET and PD tremor is thought to
be due to the direct electrical stimulation to the ventral intermediate nucleus (VIM) possibly
disrupting the synchronous firing of thalamic neurons [28,29]. In addition to the VIM, the
subthalamic nucleus, internal globus pallidus, and pedunculopontine nucleus are also
effective targets for DBS in patients with PD tremors [30]. The use of DBS was approved by
the Food and Drug Administration (FDA) for ET in 1997, for advanced PD in 2002, and for
mid-stage PD in 2016. As of late, radiofrequency thalamotomy has become less favored.
An RCT comparing DBS with thalamotomy in 68 patients with tremor due to ET, PD, or
multiple sclerosis found that DBS results in fewer adverse effects (p = 0.024) and a greater
increase in the Frenchay Activities Index score, which assess 15 ADLs. This suggests
a greater improvement in the functional status when compared to thalamotomy [31].
Although surgical treatments for tremors, including DBS, stereotactic radiosurgery (SRS),
and magnetic resonance-guided focused ultrasound (MRgFUS), are more efficacious than
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pharmacotherapy [32], the utilization of these procedures remains low. Limiting factors
may include high surgical costs [33,34], access to care [35,36], and patient preference [35].
Other perceived barriers to DBS include practitioner preference [34,37], high resource and
labor intensity [34,38], and perceptions of serious surgical risk [34,38,39].

Thus, a growing unmet need for safe and effective tremor control and suppression
sets the stage for a range of therapies to bridge this gap between lifestyle modifications,
pharmacotherapy, and surgical treatment. Using a variety of noninvasive suppression
mechanisms, medical devices fit within this gap to provide effective tremor suppression at
a lower risk than surgery. The increasing interest in this area has led to the birth of a new
classification of external upper limb tremor stimulators. In 2018, the de novo classification
request of Cala ONE (Cala Health, Burlingame, CA, USA) received FDA approval [40].

Herein, we focus on the mechanisms of action, safety and efficacy profiles, and
clinical applications of different categories of medical devices that are available clinically or
previously investigated for tremor suppression. Furthermore, we highlight the limitations
of these devices. Such information may then be translated biomechanically and clinically
for potential future advancements of medical device for tremor suppression.

2. Early Innovations

Over the past several decades, a variety of different orthotic and stimulatory ap-
proaches has been proposed to target or reverse the abnormal rhythmic activities in the
neural pathways of the cerebellum and the thalamus. Beginning 1987, Rosen and colleagues
proposed several devices that employed energy dissipation to suppress tremors. The
damped joystick is a hand control device designed to facilitate the control of wheelchairs
and other applications [41–44]. This device consists of a sealed chamber filled with viscous
fluid and a spherical ball that acts as a damping element to suppress the involuntary
movements of the position-sensing actuator. The controlled energy-dissipation orthosis
(CEDO) is a wheelchair-mounted device that provides velocity-dependent loading with
magnetic particle brakes to a limb coupling cuff [45–47]. Similarly, the modulated energy
dissipation (MED) manipulator also provides damping via magnetic particle brakes with
real-time digital control [48,49].

The success of these early works in showing that velocity-dependent loading can
attenuate tremor and involuntary motions led to the development of wearable orthosis
with mechanical loading. Other approaches, including electrical stimulation systems and
assistive feeding devices, have also been proposed. Most of these are classified as Class I
medical devices, meaning that they are registered with the FDA but not subjected to any
premarketing review.

3. Electrical Stimulation Systems

3.1. Median and Radial Nerve Excitation

High frequency transcutaneous electrical nerve stimulation (TENS) has been widely
studied and used in the treatment of nociceptive and neuropathic pain [50–53]. The use
of TENS in the treatment of movement disorders, including myoclonic dystonia and
ET, was first explored by Toglia and Izzo in 1985 [54]. While the exact mechanism of
TENS remains unclear, putative mechanisms focus on its ability to modulate the afferent
transmission of sensory information from the periphery to the central nervous system
(CNS) [50]. Conventional TENS intends to selectively stimulate the large, myelinated
peripheral proprioceptive A-beta (Aβ) sensory fibers [50]. The excitation of the Aβ fibers
reduces the transmission of the sensory signals elicited by noxious stimulus, thereby reduc-
ing the pain perception [55–58]. These Aβ fibers carry proprioceptive sensory information
into the thalamic circuits that are hypothesized to be involved in tremor generation [59].
Most [54,60–63], but not all [64], studies suggest that treatment with TENS in patients
who have tremors was associated with improved muscle strength and tremor reduction.
However, sham-controlled randomized trials are needed to confirm these findings due to
potential confounding effects associated with the reason for use.
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In 2018, Cala ONE was the first wearable transcutaneous electrical nerve stimulator
to be approved by the FDA [40]. The newer version of this device, Cala Trio (Cala Health,
USA; previously known as Cala TWO), is currently FDA-registered. The PROspective
study for SymPtomatic relief of Essential tremor with Cala Therapy (PROSPECT) pivotal
trial for Cala Trio was completed in 2019 [65], but it is still waiting for approval by the FDA.
Clinically, Cala Trio is designed to replace Cala ONE for use in the transient, symptomatic
relief of hand tremors in adults with ET. This device can be worn for therapy on the left or
right wrist.

Cala Trio involves two working electrodes positioned over the median and radial
nerves on the anterior surface of the wrist and a counter electrode placed on the posterior
surface of the wrist. An accelerometer within this device measures the frequency of the
patient’s tremor, allowing individualized calibration of the stimulation intensity. The two
working electrodes deliver electrical signals that intermittently excite the median and radial
nerves in the upper limbs. Peripheral sensory nerves, including the median and radial
nerves, also project to the VIM and the neural circuits that are implicated in ET. Similar to
DBS, electrical stimulation of the VIM peripherally via the median [66,67] and radial [68]
nerves elicits very fast oscillations, which induce thalamicneuronal oscillations and disrupt
the pathological oscillations of tremors (Figure 1). A study involving five patients with
tremors due to ET or PD demonstrated that electrical stimulation of the median and radial
nerves leads to a 57% tremor suppression (p < 0.01) [69]. Over time, this stimulation with
Cala Trio aims to normalize the neural firing in the pathological tremor network in the
CNS to reduce tremors.

The pivotal trial for Cala ONE, a sham-controlled randomized trial of a single 40-min
TENS session among 77 patients with ET, found no significant improvements in the
Archimedes spiral task, as measured using the Tremor Research Group Essential Tremor
Rating Assessment Scale (TETRAS) (p = 0.26) [70]. However, the Cala ONE stimulation did
show significantly improved upper limb TETRAS tremor scores (p = 0.017) and subject-
rated Bain and Findley ADL scores (p = 0.001), corresponding to a 42% (versus 28% with
sham) and a 49% (versus 27% with sham) reduction in tremor amplitude, respectively [70].
The PROSPECT pivotal trial for Cala Trio, an open-label study of TENS treatment in adults
with ET, compared twice-daily home therapy TENS sessions over a three-month period
among 263 patients [71]. The results, based on 205 patients who completed the study,
showed that TENS treatment via Cala Trio resulted in significant improvements in both
the TETRAS and subject-rated Bain and Findley ADL scores (p < 0.0001) [71]. Among the
193 patients included in the secondary analysis, 54% experienced a ≥50% reduction in
tremor amplitude [71]. However, 14 patients did not respond to the therapy, suggesting
that not all patients with ET will benefit from Cala Trio [71]. It is important to note that the
open label, single-arm design of the PROSPECT trial limits the generality of Cala Trio’s
effect; therefore, future studies with more robust designs (e.g., RCTs) would be valuable to
assess its efficacy.

Device-related adverse events were mild to moderate in severity. Nonserious adverse
events were observed in 18% of patients, including skin irritations (redness, itchiness,
and/or swelling); soreness or lesions; and discomfort (stinging and/or sensation of weak-
ness) or burns [71]. These adverse events were all resolved with the use of a topical
ointment, decreased stimulation intensity, or discontinued therapy [71]. Contraindications
to the use of Cala Trio include having currently implanted electrical medical device (e.g.,
pacemaker, defibrillator, and deep brain stimulator), suspected or diagnosed epilepsy
or other seizure disorders or pregnancy. This device should also not be applied on skin
eruptions, open wounds, cancerous lesions, or swollen/infected/inflamed areas.

112



Biosensors 2021, 11, 99

Figure 1. Cala Trio transcutaneous electrical nerve stimulation. The median and radial nerves, which project to the ventral
intermediate nucleus of the thalamus, are stimulated by Cala Trio (Cala Health, Burlingame, CA, USA) through two working
electrodes placed on the anterior surface of the wrist.

A 50% reduction of tremor amplitude is comparable to the first-line propranolol and
primidone pharmacotherapies [17], which are considered clinically useful for the treatment
of ET [19]. Cala Trio can play an important role in patients who are not eligible for surgical
intervention or do not respond to pharmacotherapy. It has a similar, favorable safety
profile to Cala ONE, whose risk and benefit determination met the FDA’s requirements.
This device is noninvasive, with 85% of patients reporting its convenience and ease of
use [71]. Currently, it is uncertain whether Cala Trio could reduce or replace the need
of medications in the treatment of ET. Thus, physicians need to evaluate how it will
fit along with pharmacotherapy and/or lifestyle interventions for each patient with the
consideration of tremor severity. Post-approval studies could address this question and
provide further insights into the long-term safety and efficacy of Cala Trio.

3.2. Antagonistic Muscles Activation

In contrast to TENS, which stimulates sensory nerves, functional electrical stimulation
(FES) provides stimulation to motor nerves to trigger muscle contraction. FES for tremor
suppression was pioneered by Prochazka and colleagues in 1989 [72,73] and clinically
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assessed in 1992 [74,75]. Briefly, FES was associated with a tremor suppression of 73% in
ET, 62% in PD tremors, and 38% in cerebellar tremors [75]. The recognized limitations
of these early works included the potentially unreliable placement of surface electrodes,
which could lead to insufficient tremor suppression [74,75]. Although the implantation of
percutaneous intramuscular electrodes could solve this problem, this approach is invasive
and reserved for patients with severe tremor [64]. Nonetheless, the results from these
pilot works led to the first functional electrical stimulator developed specifically for tremor
suppression [76,77]. Comparing the previous approach using an analog filter [72–75], the
use of an optimized digital filter [76,77] in a portable functional electrical stimulator, with
the enabled self-tuning and adaptation of more complex algorithms, showed improvements
in suppressing tremors. In six participants who were healthy or with PD tremor, the
functional electrical stimulator based on a digital filter showed an 84% tremor suppression,
compared to a 65% when an analog filter was used [77]. The current approaches in utilizing
FES to suppress tremors echo these early works, involving primarily two strategies: out-of-
phase and co-contraction stimulations [78].

The MOTIMOVE system (3F-Fit Fabricando Faber, Belgrade, Serbia), based on an
out-of-phase stimulation, obtained a CE marking for use in the European Union in 2019 but
has not been approved by the FDA (Figure 2). The use of the MOTIMOVE system has been
studied in patients with ET, PD tremors [79], and hemiplegia [80]. Two prototypes, the
TREMOR neurorobot and the Tremor’s glove, have adapted the co-contraction stimulation.
Both devices have been assessed in patients with ET or PD but are currently not approved
for clinical use.

Figure 2. MOTIMOVE functional electrical stimulation system. This device (3F-Fit Fabricando Faber,
Serbia) comprises a multichannel stimulator that attaches to several electrodes placed on the flexor
and extensor muscles of the forearm, enabling muscle activation.

The MOTIMOVE system consists of a multichannel stimulator that provides support
to activate several electrodes, placed on the forearm and upper arm above the flexor
and extensor muscle points, that enable the selective muscle activation via distributed,
asynchronous electrical stimulation. The inertial sensors within MOTIMOVE deliver real-
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time estimation of tremulous movements to a host computer, which provides control over
the stimulation of muscles. This system delivers out-of-phase stimulation by sending
electrical current pulses to the flexor and extensor muscles, triggering the depolarization
of motor neurons that counteracts the tremorgenic activity. A pilot study of MOTIMOVE
revealed a 67% tremor suppression in six of seven patients with ET or PD [79]. One patient,
however, did not respond, suggesting that out-of-phase stimulation may not work for all
patients with tremor [79]. Additional clinical studies evaluating the MOTIMOVE system
are claimed to be currently in progress in Serbia, France, and Hungary, which will hopefully
demonstrate its efficacy in tremor suppression and feasibility.

The TREMOR neurorobot and the Tremor’s glove adopt a similar design as the MO-
TIMOVE, consisting of electrodes that provide muscle stimulation, inertial sensors that
capture biomechanical characterization signals of tremor, and a controller. Both devices
adapt the co-contraction stimulation strategy, which applies mechanical loading via contin-
uous transcutaneous stimulation to a pair of antagonistic muscles, increasing the stiffness
of the limb. In turn, this filters out the mechanical manifestation of tremorgenic activity,
which are oscillations in the muscle tissue. Like MOTIMOVE, the TREMOR neurorobot
stimulates the flexor and extensor muscles of the forearm. This device was found to have a
52% tremor suppression in six patients with ET or PD tremors (p < 0.001) [81]. Conversely,
the Tremor’s glove stimulates the abductor pollicis brevis and the first and second dorsal
interossei muscles of the hand. In a sham-controlled randomized trial of 30 patients with
medically refractory tremor in PD, the use of the Tremor’s glove was associated with
a significant reduction in the Unified Parkinson’s Disease Rating Scale (UPDRS) score
(p = 0.001), suggesting improved experiences of daily living and motor complications [82].

The A-alpha (Aα) sensory fiber, a primary afferent nerve fiber that innervates antag-
onistic muscle pairs, appears to have a crucial role in the complex neural pathways that
are involved in tremor pathophysiology. The reciprocal inhibition of Aα fibers seems to
decrease the excitability of antagonist motor neurons and increase the excitability of agonist
motor neurons [83]. While it is not entirely clear whether the reciprocal activation of Aα
fibers results in tremor, intermittent stimulation of the Aα fibers innervating the flexor and
extensor muscles via FES has been studied in patients with ET or PD, showing a 58% tremor
suppression [78]. Another study of 14 patients with PD tremor also observed reduction in
tremor amplitude and frequency [84]. This suggests that the excitability of antagonist and
agonist motor neurons can be modulated, thereby supporting the mechanism by which
FES attenuates tremor.

Muscle fatigue is commonly seen as a nonserious adverse event in patients who are
treated with FES, owing to the fact that both out-of-phase and co-contraction stimulations
lead to the activation of joints and muscle contraction [85]. The use of the Tremor’s glove can
also result in numbness of the hand and burning sensation [82]. Contraindications for FES
include a prior implanted electrical device, cancer, osteomyelitis, thrombosis/hemorrhage,
epilepsy, or pregnancy [86]. In each case, it is incumbent on physicians to evaluate the risk
and benefit of a FES treatment based on the patient’s medical history.

Functional electrical stimulators are minimally invasive and demonstrate sufficient
efficacy in the suppression of tremor. However, muscle fatigue during repeated FES-
induced contraction limits their long-term use. To address this limitation, several emerging
technologies have been proposed to reduce or counter muscle fatigue during FES [85].
These functional electrical stimulators have only been studied in small cohorts of patients.
Large scale, sham-controlled randomized trials are necessary to validate the efficacy and
safety of these devices.

4. Wearable Orthoses

The first reported mechanical solution for the suppression of hand tremors was
focused on clasping the patient’s arm to prevent involuntary spasms, patented by Terry
and Hoyt in 1980 [87]. However, this approach was not developed further. In 1998, the
Viscous Beam orthosis [88] was developed based on previously established principles of
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energy dissipation [45,46,48] to suppress tremor along the wrist flexion/extension. This
device showed success, demonstrating that energy dissipation could be employed in an
orthosis. However, it was limited by the fixed damping rate, leading to inconsistent tremor
suppression [88].

Tremor suppression orthoses for the upper limbs, wrist, and elbow joints are classified
into active, semi-active, or passive. Active orthoses work by generating an active force that
counteracts the involuntary motions while supporting the voluntary motions in patients
with tremors. In contrast, semi-active and passive orthoses leverage energy dissipation
or absorption to suppress involuntary movements. Unlike passive orthoses, the damp-
ing magnitude of semi-active orthoses can be adjusted by an active controller. Tremelo
(Five Microns, Fresno, CA, USA), Steadi-One (Steadiwear, Toronto, ON, Canada), and
Readi-Steadi (Readi-Steadi, Gonzales, LA, USA) are the three passive orthoses currently
available for use in patients with tremor. Both Tremelo and Steadi-One are FDA-registered,
while Readi-Steadi is FDA-exempted. Active and semi-active orthoses are currently being
researched but are not clinically available.

4.1. Active Suppression

In 2005, the Wearable Orthosis for Tremor Assessment and Suppression (WOTAS)
exoskeleton was developed as part of the Dynamically Responsive Interventions for Tremor
Suppression (DRIFTS) project of the European Commission [89–92]. WOTAS consists of
sensors that measure rotational motions around the joints, electrical direct current (DC)
motors that act as actuators to exert force to suppress tremor by converting electrical
energy into mechanical energy, and a controller. This device is placed parallel to the upper
limb, suppressing tremor in the wrist flexion/extension and pronation/supination and
the elbow flexion/extension. In ten patients with tremors, WOTAS demonstrated a 40%
tremor suppression [92]. The major drawback of this device is that it is large and bulky,
posing social exclusion concerns [91].

Subsequent active orthoses were developed with similar designs and mechatronics to
WOTAS but vary in the types of actuators to reduce the weight and improve the tremor
suppression efficacy. The pneumatic actuator, which has a large power-to-weight ratio,
was implemented in an orthosis, along with an adaptive tremor estimation algorithm, to
suppress tremors in the wrist flexion/extension and adduction/abduction [93–95]. The
results at the testbench using datasets from ten patients with ET or PD tremor showed
a 98.1% tremor suppression [95]. The adaptive disturbance rejection controller, utilizing
a permanent magnet linear motor (PMLM), demonstrated a 97.6% tremor suppression
when examined with five tremulous signals from patients with PD [96]. Compared to
the pneumatic actuator, the PMLM is simpler and faster to control and requires only one
sensor [96]. The voluntary-driven elbow orthosis, using an electronically communicated
(EC) motor, provided a 99.8% tremor suppression in lab simulation using data from a
patient with ET [97]. The wearable tremor suppression glove (WTSG), consisting of an
actuation box that includes a multi-channel mechatronic splitter (MMS), aims to provide
power support from a single input source to multiple output applications [98]. The MMS
incorporates a power EC motor and a steering EC motor to suppress tremors in the wrists
and hands [98]. The efficacy of this actuation system, however, has not been evaluated.

Other active orthoses have sought to integrate complex sensor systems to characterize
voluntary motions and detect tremors. The myoelectric-controlled upper limb orthosis
incorporated an algorithm that recognizes and extracts voluntary movements from surface
myoelectric signals [99–102]. The results from six participants who were healthy or with
ET showed a recognition rate of 82% [102]. The newer version of this orthosis adopted a
different design that improved flexibility and ease of wear [103,104]. In a healthy partici-
pant with FES-induced muscle contraction, the myoelectric-controlled orthosis reduced
oscillations in the elbow flexion/extension by about 50–80% [104]. Huen and colleagues
implemented context aware body sensor network (BSN) sensors into an upper limb orthosis
to enable the detection of six ADLs [105]. In six healthy participants with simulated tremor
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movements, the BSN-integrated exoskeleton exhibited a 70% accuracy rate in identifying
ADLs and a 77% tremor suppression [105].

4.2. Semi-Active Suppression

Several semi-active orthoses utilize magnetorheological (MR) fluids as a strategy to
provide tremor suppression. MR fluids consist of magnetizable, microscopic particles
dispersed in oil or water. Upon encountering a magnetic field, these particles experience
attractive force, and the viscosity of the MR fluids increases, opposing the existing flow.
This rheological property has been exploited in tremor suppression orthoses by varying
magnetic field intensities to tune the resistance force for tremor suppression [106].

The Double Viscous Beam (DVB) orthosis, positioned on the dorsal surface of the
forearm, consists of a chamber of MR fluids and two shear plates to make up a passive
actuator, applying mechanical loads for tremor suppression [107]. Compared to the pre-
vious approach [88], the DVB orthosis has an improved responsiveness to the viscous
resistance as a result of the increased shear strength. This orthosis is coupled to a sensor
and a controller to optimize the actuation performance.

Case and colleagues developed a wearable orthosis that incorporated four MR dampers
for the wrist flexion/extension and abduction/adduction, the elbow flexion/extension,
and the forearm pronation/supination [108–111]. An estimation algorithm for tremor
frequency and a controller were used to measure the amount of resistance force needed
to counteract tremulous movements. The resistance force generated by the MR dampers
depends on a piston-coil design.

More recently, the MR damper-based soft exoskeleton for the tremor suppression
(SETS) system was proposed to suppress tremor in the wrist [112]. Unlike previously
designed semi-active orthoses, the SETS system equips a controllable flexible semi-active
actuator that dynamically adapts to the motions of the wrist joint, providing tremor
suppression in the wrist flexion/extension, abduction/adduction, rotation. This device
also integrates passive suppression with two hyper-elastic blades, which suppress tremor
in the wrist supination/pronation. The SETS system demonstrates potential clinical utility
with its compatibility with the human wrist, real-time tunability based on tremor frequency,
and lightweight design.

The carbon fiber-based, lightweight orthosis developed by Herrnstadt and Menon is
magnetically activated by an electromagnetic brake (EB) [113]. When the tremor frequency
and joint angular displacement are detected by a sensor and potentiometer, respectively,
a pulse width modulation signal is sent from the controller to produce a magnetic field,
exciting the EB. In turn, the EB actuates the orthosis to generate a resistive force for tremor
suppression. In comparison to electric motors such as the DC motor, EBs are capable of
producing a higher force while consuming less power. In three healthy participants with
simulated tremor motions, the use of the EB-based orthosis demonstrated an 88% tremor
suppression [113].

Apart from magnetically driven semi-active orthoses, Kalaiarasi and Kumar designed
a pneumatically controlled hand cuff [114]. Similarly, this device is built along with an
accelerometer that sends tremor frequency data to a controller. When the threshold is met,
an air pump inflates the hand cuff, yielding a resistance force in a reciprocating, linear
motion to suppress the tremor. Inflation and deflation of the hand cuff are enabled by two
separate valves. The limited efficacy of this approach was observed in one patient with ET
who experienced a 30% tremor suppression [114].

4.3. Passive Suppression

Tremelo utilized two tuned vibration absorbers (TVAs) that are positioned over the
dorsal and ventral surfaces of the arm (Figure 3). Each TVA contains a mass-spring-damper
system in which the vibration energy of involuntary motions of the shaking arm during
tremor are transferred from the spring to the added mass. This results in reduced tremulous
movements and substantial motions of the added mass within the TVA. This device is
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purely mechanical, eliminating the need of a power source. Preliminary results showed an
85% tremor suppression in a patient with PD tremors [115]. Recruitment for a pilot clinical
study is ongoing, which should provide further data.

Figure 3. Tremelo passive orthosis. The vibration energy of tremor is being transferred to a mass-spring-damper system
within the two tuned vibration absorbers of Tremelo (Five Microns, Fresno, CA, USA), positioned over the dorsal and
ventral surfaces of the arm to counteract the involuntary motions.

Steadi-One is mechanical device that integrates a tuned mass damper (TMD), which
obviates the need for a power source [116] (Figure 4). Like TVAs, the TMD embodies a
mass-spring-damper system. The difference between TMDs and TVAs is the presence of a
dissipating element, which, in Steadi-One, is a non-Newtonian fluid in the interior space of
the TMD. When the vibration energy is transferred to the added mass, this non-Newtonian
fluid becomes viscous, reducing its amplitude of motions. There are no publicly available
data to support its efficacy. However, it is claimed (https://www.steadiwear.com, accessed
on 26 March 2021) to have an 85–90% tremor suppression during the lab simulation.

Figure 4. Steadi-One passive orthosis. The non-Newtonian fluid within the tuned mass damper
of Steadi-One (Steadiwear, Toronto, ON, Canada) becomes viscous when the vibration energy of
tremor is transferred to a mass-spring-damper system, acting as a dissipating element that reduces
the amplitude of motions.

The Readi-Steadi glove embeds a multitude of metal disks that aims to add inertia
to the tremulous hand. A preliminary study involving 40 participants who were healthy
or with ET observed a 50% tremor suppression [117]. The metal disks function as sensory
tricks that influence the aberrant sensorimotor integration to suppress tremor. While there
is no study that examines the effectiveness of the sensory trick phenomenon in patients
with ET or PD tremor, it has been studied in 30 patients with musician’s dystonia [118].
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By wearing a glove, patients with more severe symptoms of dystonia showed better
improvements in fine motor control (Pearson’s r = −0.45; p = 0.01) [118].

The Task-Adjustable Passive Orthosis (TAPO) has a textile glove design to enhance
wearability and comfort for daily activities. An air-filled structure, inflated on-demand
by hand or electrical pump, is fitted within the glove on the dorsal surface of the hand.
The inflated TAPO applies pressure to the back of the hand and the forearm, suppressing
the involuntary motions in the wrist flexion/extension, ulnar/radial deviation, and prona-
tion/supination. The proof of concept of TAPO has been examined in a patient with PD
tremors performing six ADLs. The use of TAPO was associated with a significant tremor
suppression in three specific tasks, including 82% while drinking (p = 0.03), 79% while
pouring (p = 0.03), and 74% while drawing a spiral (p = 0.03) [119].

More recently, Lu and Huang examined and established a mechanical model for parti-
cle damping for passive vibration suppression in tremors [120]. Particle dampers involve
the potential of energy absorption and dissipation through momentum exchange between
moving particles and vibrating walls. There are several advantages of using particle
dampers, including simple construction, low cost, robustness and reliability, wide damping
frequency band, and insensitivity to extreme temperature [120]. At a high tremor frequency,
the provided damping of the particle damper became nearly independent to the frequency
and amplitude of tremor, indicating that it is suitable for tremor suppression [120].

Two other passive orthoses have also been previously investigated for their use in
tremor suppression. The Vib-Bracelet, also designed with an incorporated TMD, sup-
presses tremors in the wrist pronation/supination [121,122]. The result at the testbench
using tremor data from one patient with PD showed an 85% tremor suppression [122].
Another approach, proposed by Takanokura and colleagues [123], involved implement-
ing air dashpots into an orthosis to suppress tremors in the wrist flexion/extension and
ulnar/radial deviation, as well as the elbow flexion/extension. In a healthy participant
with electrical stimulation-induced muscle contraction, this orthosis demonstrated an in-
voluntary movement suppression of 62% in the wrist when two air dashpots were used
and 82% in the elbow [123].

4.4. Mechanism Underpinning the Efficacy of Wearable Orthoses in Tremor Suppression

Although some of the underlying causes of tremors remain unknown, several putative
interactive factors contributing to the motor expression of tremor have been hypothesized.
These include the oscillating tendencies of the joint and muscular mechanical systems,
short- and long-loop reflexes of the spinal cord and the brainstem, and the closed-loop
feedback systems of higher motor centers such as the cerebellum [124]. Unlike electrical
stimulation systems, wearable orthoses target the clinical manifestations of tremors. By
generating an opposite force of equal magnitude, these devices attempt to mechanically
counteract the involuntary movements.

4.5. Comparing Active, Semi-Active, and Passive Orthoses for Tremor Suppression

Unlike semi-active and passive orthoses, active orthoses often rely on actuators cou-
pled to a signal transmission system, resulting in their heavy and unwieldy nature. A re-
duction in the overall weights to improve their wearability is an important research priority.
For example, Kelley and Kauffman recently proposed substituting the traditional actuators
with the soft and compliant dielectric elastomer stack actuators to enable an orthosis con-
forming to the human joints [125,126]. In lieu of the metallic structure of previous orthoses,
the BSN-integrated exoskeleton leveraged plastic materials to reduce the weight [105]. By
using an MMS to support multiple output applications with one drive motor, the WTSG
has a reduced size and weight [98].

Wearable orthoses are primarily noninvasive in suppressing tremors. However, their
safety profile has not been established, because most wearable orthoses were only assessed
in small cohorts of patients or at the testbench with data simulation. Furthermore, the
small sample size of these studies may undermine the reliability of the data. It is likely
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that wearable orthoses will become the most widely used medical devices for tremor
suppression, given their promising efficacy. Major challenges include developing orthoses
that are lightweight and soft in texture, studying the orthotic placement that will result
in maximized tremor suppression, and improving the ergonomic design based on the
anatomy of the upper limbs. Addressing these questions with further studies should
enhance our understanding of the feasibility and practicality of clinically implementing
wearable orthoses to suppress tremor.

5. Assistive Feeding Devices

The Neater Eater (Neater Solutions, Derbyshire, UK) was introduced by Michaelis in
1988 [127]. However, it was not available for use in the US until its registration with the
FDA in 1993. This is a table-mounted device that involves internal spring-assisted lifting to
support a clip-on utensil to enable eating. It relies on viscous damping to absorb tremors
and fast movements via the flowing of a viscous fluid that dissipates the kinetic energy.
A brief report interviewing 39 participants with various neuromuscular conditions found
that the Neater Eater is associated with positive impacts in independence, self-confidence,
and quality of life [128]. Follow-up and monitoring may be necessary to prevent fatigue
and muscle build-up from using this device on a regular basis.

Liftware Steady (Verily Life Sciences, South San Francisco, CA, USA), registered with
the FDA in 2013, is a handheld device designed to help patients with ET or PD tremors
eat. It consists of a motion-generating platform, capable of directing two DC motors
to move the utensil opposite to the direction of the tremor. The patient’s involuntary
movements are detected by an accelerometer, which are then transmitted to a controller,
providing control over the motion-generating platform. A pilot study involving 15 patients
with ET demonstrated an improvement in tremor with the device, as measured by Fahn-
Tolosa-Marin Tremor Rating Scale (TRS), while holding (p = 0.016), eating (p = 0.001), and
transferring objects (p = 0.001) [129]. When using the device, patients expressed improved
symptoms of ET while eating (p < 0.001) and transferring objects (p = 0.013) but not
holding them (p = 0.14), as measured by the subject-rated Clinical Global Impression Scale
(CGI-S) [129]. Data demonstrated a 73% tremor suppression across the three tasks [129].
Compared to other adaptive utensils in 22 patients with ET or PD tremor, Liftware Steady
was preferred [130].

The Gyenno Spoon (GYENNO Technologies, Shenzhen, China), another handheld as-
sistive feeding device, consists of a longitudinal motor and a transverse motor that are able
to generate movements in two different directions opposite to the tremor direction [131].
Both motors are linked to a control module, which receives vibration data from multiple
movement sensors within the device. Its ergonomic design and proposed efficacy led to
its registration with the FDA in 2016 for use for patients with ET or PD tremors. While it
claims (https://www.gyenno.com/spoon-en, accessed on 26 March 2021) to have an 85%
tremor suppression, no clinical data has been published.

Contrary to Liftware Steady and the Gyenno Spoon, the Neater Eater requires no
power supply and has the ability to automatically bring the spoon forward to the patient’s
mouth with an internal spring. However, both Liftware Steady and the Gyenno Spoon
enable data collection of the patient’s tremor. This can be beneficial in allowing physicians
to monitor their patients’ tremor improvement or progression when Liftware Steady or the
Gyenno Spoon is supplemented with pharmacotherapy. Nonetheless, it is important to
note that the functionality of these devices is limited to provide support in feeding only.

6. Other Devices

6.1. Gyroscopic Stabilization

The GyroGlove (GyroGear, London, UK) is developed with a plurality of gyroscopes,
mounted to a fabric glove on the dorsal surface of the hand, that function to counteract
tremors [132]. Each gyroscope includes a rotatable disc that is capable of rotating about an
axis to resist involuntary motions. This allows its angular momentum to be conserved when
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a rotational displacement is encountered, with opposing force inputs from any direction.
Unlike previous gyroscopic devices using a single gyroscope [133,134], the use of multiple
gyroscopes in the GyroGlove allows it to suppress involuntary movements in multiple
planar directions. This device is currently in the advanced stage of development, and data
is needed to inform its efficacy.

6.2. Haptic Stimulation Systems

The Emma Watch (Microsoft, Redmond, WA, USA) is a wrist-worn device consist-
ing of several vibration-generating actuators aimed at providing haptic stimulation to
the wrist. Mechanosensitive receptors, such as the Pacinian and Meissner corpuscles
in the upper limbs, deliver afferent signals to the cuneate nucleus in response to vibra-
tory stimuli [135,136]. Proprioceptive inputs from the cuneate nucleus are projected to the
thalamus [136–138], implicating its possible role in the neural pathway associated with
tremors [139]. However, a study involving 18 patients with ET reported that a mechanical
vibration to the hand and forearm via piezoelectric actuators resulted in no homogenous
effect in the tremor amplitude [139]. Across different frequencies of vibratory stimuli,
50–72% of patients experienced an increase in tremor amplitude, while 5–22% of patients
showed a decrease [139]. The Emma Watch will require clinical validations, since the use
of haptic stimulation for tremor suppression has, to date, only led to questionable efficacy.

7. Tremor Suppression Devices: Place in Therapy

The onset of ET can occur early in childhood due to familial factors, but the majority
of cases of ET appeared after the age of 40 [140]. One study investigated the correlation
between the age of onset and the progression of ET in 115 patients [141]. Patients with
an age of onset later than 60 years experienced a more rapid progression when compared
to patients with a younger age of onset (p < 0.001) [141]. Since the onset of ET and PD
tremors typically occurs in middle to late adulthood, aging-associated diseases such as
dementia [142,143] and mild cognitive impairment [144–146] intersect with both of these
conditions. These neurological disorders may further preclude patients from adhering to
pharmacotherapies.

The medical devices described above offer alternative options for the suppression
of tremors (Table 1), especially in patients who are not eligible for surgical interventions
(i.e., DBS, SRS, and MRgFUS). However, the use of these devices is patient specific. For
example, although Cala Trio has an aesthetic design that will likely not pose any social
concerns, wearable orthoses may be a better option if the patient has any contraindication
to the use of electrical stimulation systems. Depending on the patient’s needs, assistive
feeding devices may be a useful addition to the patient’s daily living. Most of the devices
that are available for use are subjected to the FDA’s Class I general control for safety and
efficacy assurance. In addition to the general control, Cala ONE requires Class II special
control for its performance standards and special prescriber labeling.
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Table 1. Summary of the tremor suppression devices and study results.

Type of Device Study Participants (n) Efficacy Risks Refs

Electrical Stimulation Systems: Transcutaneous Electrical Nerve Stimulators

Cala ONE ‡ ET (77)

• Improved upper limb
TETRAS tremor scores
(p = 0.017)

• Improved subject-rated
BF-ADL scores (p = 0.001)

• Skin irritations
(redness, itchiness,
and swelling)

• Soreness or lesions
• Discomfort (stinging

and sensation of
weakness) or burns

[70]

Cala Trio * ET (205)

• Improved upper limb
TETRAS tremor scores
(p < 0.0001)

• Improved subject-rated
BF-ADL scores (p < 0.0001)

[71]

Electrical Stimulation Systems: Functional Electrical Stimulators

MOTIMOVE ET (3); PD tremor (4) 67% tremor suppression

Muscle fatigue

[79]

TREMOR neurorobot ET (4); PD tremor (2) 52% tremor suppression [81]

Tremor’s glove PD tremor (30) Reduced UPDRS score
(p = 0.001) [82]

Wearable Orthoses: Active Orthoses

WOTAS exoskeleton
ET (7); MS tremor (1);
Posttraumatic tremor
(1); Mixed tremor (1)

40% tremor suppression [92]

Not reported

[89–92]

Pneumatic
actuator-based orthosis ET (5) §; PD tremor (5) § 98.1% tremor suppression [95] [93–95]

PMLM-based orthosis PD tremor (5) § 97.6% tremor suppression [96]

Voluntary-driven
elbow orthosis ET (1) § 99.8% tremor suppression [97]

MMS-based WTSG Not reported Not reported [98]

Myoelectric-controlled
orthosis ET (2); Healthy (4) Not reported [99–102]

Myoelectric-controlled
orthosis (ver. 2) Healthy (1) 50–80% tremor suppression [104] [103,104]

BSN-based orthosis Healthy (6) § 77% tremor suppression [105]

Wearable Orthoses: Semi-Active Orthoses

Double viscous beam
orthosis Not reported Not reported

Not reported

[107]

MR damper-based
orthosis Not reported Not reported [108–111]

SETS system Not reported Not reported [112]

Electromagnetic
brake-based orthosis Healthy (3) § 88% tremor suppression [113]

Pneumatic hand cuff ET (1) 30% tremor suppression [114]
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Table 1. Cont.

Type of Device Study Participants (n) Efficacy Risks Refs

Wearable Orthoses: Passive Orthoses

Tremelo * PD tremor (1) 85% tremor suppression

Not reported

[115]

Steadi-One * Lab simulation 85–90% tremor suppression [116]

Readi-Steadi * ET (20); Healthy (40) 50% tremor suppression [117]

Task-Adjustable
Passive Orthosis PD tremor (1)

• 82% tremor suppression
while drinking (p = 0.03)

• 79% tremor suppression
while pouring (p = 0.03)

• 74% tremor suppression
while drawing a spiral
(p = 0.03)

[119]

Particle Damper Not reported Not reported [120]

Vib-Bracelet PD tremor (1) § 85% tremor suppression [121,122]

Air-dashpot-based
orthosis Healthy (1) ¶

• 20–62% tremor suppression
in the wrist

• 82% tremor suppression in
the elbow

[123]

Assistive Feeding Devices

Neater Eater * Not reported Not reported

Not reported

[127]

Liftware Steady * ET (15)

• Improved FTM-TRS while
holding, eating, and
transferring objects
(p = 0.001)

• 73% tremor suppression

[129]

Gyenno Spoon * Not reported 85% tremor suppression
(claimed) [131]

Gyroscopic Stabilizers

GyroGlove * Not reported Not reported Not reported [132]

Haptic Stimulation Systems

Emme Watch Not reported Not reported Not reported

BF-ADL, Bain and Findley Activities of Daily Living; BSN, body senor network; ET, essential tremor; FTM-TRS, Fahn-Tolosa-Marin
Tremor Rating Scale; MMS, multi-channel mechatronic splitter; MS, multiple sclerosis; PMLM, permanent magnet linear motor; SETS,
soft exoskeleton for tremor suppression; TETRAS, Tremor Research Group Essential Tremor Rating Assessment Scale; PD, Parkinson’s
disease; UPDRS, Unified Parkinson’s Disease Rating Scale; WOTAS, Wearable Orthosis for Tremor Assessment and Suppression; and
WTSG, wearable tremor suppression gloves. * FDA-registered; Class I medical device. ‡ FDA-approved; Class II medical device. § Test
bench simulation. ¶ Induced muscle contraction.

ET is associated with a staggering cost of direct medical expenses, indirect productivity
and income losses, nonmedical expenses, and disability benefits. The unemployment rate
increases to about 88% in patients whose ET progresses from mild to severe [147], leading
to forced early retirements. Collectively, patients with mild ET have a 1.83-year average
loss of employment, corresponding to a $280 billion in income loss [147]. In patients with
moderate to severe tremors, the average loss of employment is 6.5 years [147]. ET and PD
tremors likely increase the economic burden more than currently estimated due to their
progressive natures and the underreported cases. The development of a medical device
for tremor suppression is an under-researched area. Most of the investigational devices
discussed were abandoned before entering the market. However, it is imperative that
the search for safe and effective tremor suppression devices continues, given the overall
economic burden of tremors. Given that most of the currently available devices are based
on preliminary data, more investigation is needed to understand the safety and efficacy
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of these devices before their use in clinical practice can be supported. Cost-effectiveness
data are necessary and important to convince insurance programs to provide coverage,
alleviating the financial constraints on patients and caregivers.

8. Future Perspectives

The devices currently studied have employed distinctive mechanistic approaches. The
weight of evidence supporting their efficacy challenges the notion that tremors originate
from a single, dominant pathway. Additional pathological insights, such as the loss of
Purkinje cells in ET [148,149] and increased central oscillator synchronization in the basal
ganglia in PD tremors [150], along with several mechanistic targets of tremor suppression
devices, highlight the advances in our understanding of how tremors may be generated.
Perhaps the most pertinent pathway implicated in tremors is the cortico-ponto-cerebello-
thalamo-cortical loop, which serves as the basis for successful surgical interventions [21].
These findings suggest an integrative multi-pathway model for tremor pathogenesis. The
relevance of these pathways necessitates a further clarification of the complexities and
inter-related causes of tremors, which is central to spur the future development of safer
and more effective devices for tremor suppression.

The lack of consensus on the characterization and electrophysiology of tremor pre-
viously represented two major diagnostic pitfalls [151]. However, in 2018, the IPMDS
task force reviewed the vast uncertainties to update its consensus classification criteria for
tremor disorders [1]. Besides ET and PD tremors, it is important to recognize that a wide
range of other tremor conditions also affect the upper limbs with varying clinical features
and etiologies [1]. Future studies could investigate whether the efficacy of these devices is
generalizable to other tremor conditions. As seen in the pivotal Cala ONE trial [70], tremor
suppression can, in part, be attributed to the surgical placebo effect. Since the studies of
most of these devices were descriptive in design, sham-controlled randomized trials are
warranted to confirm their efficacy. Lastly, evaluating the concurrent use of one or more
devices, along with pharmacotherapy/lifestyle interventions, may derive insightful data
to explain the benefits and overall impact of a multimodal strategy in the management
of tremors.

9. Conclusions

Although tremors are not a life-threatening movement disorder, they can be disabling
and negatively impact the patient’s quality of life. Our limited knowledge of the patho-
physiology of tremors has given rise to the challenge of developing effective or curative
pharmacotherapies. In the past several decades, many medical devices, with a broad range
of mechanisms, have been developed to suppress tremors in different aspects of daily living.
Based on the current evidence, some of these devices appear to have promise as potentially
safe and effective options in the medical armamentarium for tremor suppression. Most of
these devices are noninvasive and placed externally around the wrists or the upper limbs.
It is important to note that externally wearing a device could pose a cosmetic and social
concern, so understanding the acceptability of tremor medical devices among patients with
tremors is warranted. Nonetheless, it is likely that the future of tremor management will
benefit from the addition of medical devices into the patient’s existing pharmacotherapy
and/or lifestyle intervention. However, given the high variability in the quality of the
current studies, future research is needed to better understand the long-term efficacy, safety,
and cost-effectiveness of the tremor suppression devices to fulfill this promise.
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Abstract: Vascular Access (VA) is often referred to as the “Achilles heel” for a Hemodialysis (HD)-
dependent patient. Both the patent and sufficient VA provide adequacy for performing dialysis and
reducing dialysis-related complications, while on the contrary, insufficient VA is the main reason
for recurrent hospitalizations, high morbidity, and high mortality in HD patients. A non-invasive
Vascular Wall Motion (VWM) monitoring system, made up of a pulse radar sensor and Support
Vector Machine (SVM) classification algorithm, has been developed to detect access flow dysfunction
in Arteriovenous Fistula (AVF). The harmonic ratios derived from the Fast Fourier Transform (FFT)
spectrum-based signal processing technique were employed as the input features for the SVM
classifier. The result of a pilot clinical trial showed that a more accurate prediction of AVF flow
dysfunction could be achieved by the VWM monitor as compared with the Ultrasound Dilution
(UD) flow monitor. Receiver Operating Characteristic (ROC) curve analysis showed that the SVM
classification algorithm achieved a detection specificity of 100% at detection thresholds in the range
from 500 to 750 mL/min and a maximum sensitivity of 95.2% at a detection threshold of 750 mL/min.

Keywords: arteriovenous fistula; SVM; harmonic ratio; vascular wall motion monitor

1. Introduction

The National Kidney Foundation Kidney Disease Outcomes Quality Initiative (NKF-
K/DOQI) guidelines suggest two monitoring methods for VA flow surveillance, physical
examination, and the measuring of arteriovenous VA flow through special equipment [1].
Guideline 13 of the NKF-K/DOQI specifically states that the underlying cause of AV access
flow dysfunction is either stenosis or thrombosis. Hence, the purpose of flow dysfunction
surveillance is to detect stenosis early on before the development of thrombosis, which
then requires surgical intervention to replace the AV access.

Amongst the current monitoring instruments available, the Ultrasound Dilution (UD)
flow monitoring instrument has been extensively studied. For example, the benefits of
AV Fistula (AVF) flow surveillance using the UD measurement was studied [2], where the
effectiveness of UD measurement in detecting stenosis and predicting thrombosis was in-
vestigated [3–5]. Our clinical experience regarding the application of the UD measurement
technique shows that it is limited due to its cost, the disposable consumables used, and its
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dependence on the operator’s experience with the instruments. However, through the use
of skillful operation techniques, it has been accepted as a reference standard for AV access
flow surveillance.

Studies have been performed surrounding the use of optical sensor and machine
learning algorithms for the detection of stenosis or flow dysfunction. However, either two
finger Photoplethysmography (PPG) sensors were used, which may cause measurement
uncertainties [6] or additional physiological measurements other than the PPG signal were
required as input features for classification of the algorithm [7,8]. Phono-angiography
employs a digital stethoscope to record bruit sounds in the AVF. However, four locations
are required in order to search for the most probable stenosis site [9,10]. Therefore, for
the most part, detection sensitivity and specificity of the aforementioned methods do not
meet the requirements for them to be reliable monitoring instruments. A qualified moni-
toring technique should possess standardized diagnostic thresholds, as well as sufficient
sensitivity and specificity for the detection of flow dysfunction.

The physical examination techniques for VA flow surveillance include inspection,
palpation (pulse, thrill), and auscultation (bruit) [1]. One of the clinical indicators for VA
flow dysfunction is alterations in the pulse characteristics such as weak and persistent
pulses which are difficult to compress in the area of stenosis. Although recommended by
the NKF-K/DOQI guidelines, the technique of pulse palpation relies upon the subjective
experiences of the examiner. Studies performed on the hemodynamics of stenosis in
arteries were reviewed [11]. In a stenotic blood vessel, turbulent blood flow is generated
approximately 1.5 to 6.0 diameters downstream from the site of stenosis. Finite element
numerical simulation was employed to investigate pulsatile and turbulent blood flow in
an elastic artery with single as well as double stenosis, with the results showing that the
displacement of the arterial walls in the pre-stenotic regions was higher than that in the
post-stenotic regions [12]. Raminari et al. investigated the potential clinical application
of ultrasound Tissue Doppler Imaging (TDI) of arterial wall motion in order to quantify
simple wall motion indices in normal and diseased carotid arteries. Their results showed
a wide variation in arterial wall motion indices across the stenotic region. However,
their experimental data showed noticeable changes in the morphology of the diseased
arterial wall motion waveforms when compared to those of normal arteries [13]. The
aforementioned studies demonstrate that stenosis of the arterial blood vessel, which is
the underlying cause of flow dysfunction, can be detected by analyzing the characteristic
changes in the waveform of arterial wall motion.

In the present work, the spectral analysis technique was adopted by analyzing the
variations in the spectrum of the distorted VWM waveform due to the AVF flow dys-
function. A machine learning algorithm based on Support Vector Machines (SVM) was
chosen to classify the spectrum data of VWM monitoring data. Through a comparison
with the corresponding UD flow measurements, the performance of the SVM classifier was
evaluated in terms of its detecting sensitivity, specificity, and accuracy.

2. Materials and Methods

2.1. The Sensing Device and System

The VWM monitor consists of a pulse radar sensor, a Microcontroller Unit (MCU),
as well as a data analysis and classification unit, as shown in Figure 1A. The pulse radar
sensor serves the purpose of sensing the motion of the A-V fistula vessel wall [14,15]. The
operation principle of the pulse radar sensor is described as follows. Damped sinusoidal
pulses with a pulse duration of 4 ns and repetition frequency of 250 K Hz are generated
in the pulse generator, with its input connected to the square wave generator. As shown
in Figure 1B, a sequence of damped sinusoidal pulses is emitted by the transmit antenna
towards the patient’s arm where the AVF is located. The damped sinusoidal pulses can
be expressed by Equation (1), where A is the pulse envelope of X̃(t) and fp is the carrier
frequency of X̃(t).

X̃(t) = Asin
(
2π fpt

)
(1)
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Figure 1. The system diagram of the VWM monitor and the principle of measuring the AVF vessel
wall movement (A). The diagram of pulse radar sensor detect blood flow (B). The diagram of pulse
Doppler radar emit and receive the signals of wave (C).

The scattered pulses from the AVF wall to the receiving antenna is then expressed
by Equation (2), where R(t) is the distance between the antenna and the AVF wall,
c (meter/sec) is the speed of light, and ∈ is the effective permittivity of the skin and
subcutaneous tissue.

Ỹ(t) = X̃
(

t − 2R(t)
c/

√∈
)

(2)

Due to variations in blood pressure, the AVF wall is displaced towards the radar
(Figure 1C), with the distance expressed by Equation (3), where Ro is the initial distance
between the antenna and the AVF wall and Δr(t) is the displacement of the AVF wall.
Substitute Equation (3) into Equation (2) and the scattered pulses are expressed by Equa-
tion (4).

R(t) = Ro − Δr(t) (3)

Ỹ(t) = Asin

(
2π fp

(
t − 2(Ro − Δr(t))

c√∈

))
(4)

The reference pulse (shown in Figure 1A) with a time delay of X̃(t) can be expressed.

X̃(t − τ)= Asin
(
2π fp(t − τ)

)
(5)

The received signal Ỹ and the delayed reference pulse X̃(t − τ) is then mixed and the
carrier frequency component is filtered out to leave the baseband signal B(t) expressed by
Equation (6), where λp = c√∈ · 1

fp
is the wavelength of the emitted and scattered pulses in

the subcutaneous tissue.

B(t) = Bsin
(

4π(Ro − Δr(t))
λp

)
(6)

For hemodialysis patients, the distance Ro between the AVF wall and skin is less
than 6 mm and the diameter of the AVF is larger than 6 mm [16], with the periodical
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variation of the radius of the AVF, Δr estimated to be 0.028 mm [17]. Since Δr(t) 
 Ro, the
motion of the AVF wall can be linearized to the following Equations (7) and (8), where
C1=B(sin

(
4π
λp

Ro

)
and C2 = B 4π

λp
cos

(
4π
λp

Ro

)
are constants.

B(t) = B[
(

sin
(

4π

λp
Ro

)
− 4π

λp
cos

(
4π

λp
Ro

)
(Δr(t))

)
(7)

B(t) = C1 − C2 ∗ (Δr(t)) (8)

Therefore, as derived in Equation (8), the baseband signal B(t) is linearly related to the
displacement of the AVF wall Δr(t).

The pulse radar sensor is fabricated on a flexible substrate (polyimide, size 8.0 × 3.5 cm,
thickness 0.25 mm). Both antennas are planar microstrip monopoles. The input to each
antenna is connected to a 50-ohm coplanar transmission microstrip line. The antenna input
impedance matching was measured using a Vector Network Analyzer (Rohde & Schwartz,
Muehldorfstrasse 15, 81671 Munich, Germany). The return loss was −20 dB at a resonant
frequency of 1.38 GHz and the −10 dB bandwidth was 120 MHz. This lower antenna
resonant frequency was chosen so that emitted pulses could penetrate the subcutaneous
tissue surrounding the AVF vessel [18]. Since the antenna is working in the near field
region, the medium between the sensor and skin surface is critical for coupling signal
power through the skin barrier and subcutaneous tissues. Merli et al. [19] showed that
the radiation efficiency of implanted antennas depended upon the dielectric properties of
an insulating layer which separated the antenna from the surrounding muscle tissues. In
the present work, it was found that a thin layer (0.25 to 1.0 mm) of textile material such as
cotton or polyester cotton blended fiber is suitable for providing the desired properties. In
addition to the insulating properties, the material’s biocompatibility and adherence to the
skin are also important factors when selecting coupling materials.

The active low-pass filter smooths the mixed pulsatile signal into the baseband signal
B(t) (Figure 1A). The cutoff frequency of the active low pass filter is 25 Hz. The baseband
signal is then amplified and fed into the MCU (Nordic Semiconductor, Trondheim, Norway),
in which the A to D converter’s sampling frequency is set to 64 Hz. The digitized data are
then transferred to a mobile phone using the built-in Low Energy Bluetooth Transceiver
(LEBT) of the MCU. An App has been designed to display the signal waveform on the
mobile phone during testing of the patient. To preserve the essential frequency contents of
the baseband signal, a Hamming window-based bandpass, linear phase FIR filter has been
designed using MATLAB 2020a (MathWorks, 1 Apple Hill Drive Natick, MA 01760, USA)
in the frequency range of 0.2 to 10 Hz. The filtered data is then stored in the mobile phone
and sent to a PC via a USB communication link for data analysis and classification.

Figure 2A shows baseband signals of three patients having normal AVF flows (1410,
1380, and 790 mL/min, respectively), in which stable and consistent VWM waveforms are
evident. Figure 2B shows baseband signals of three patients having abnormal AVF flows
(350, 430, and 360 mL/min, respectively), in which unstable and superimposed oscillations
were observed on the VWM waveforms.
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Figure 2. (A) Baseband signals of normal AVF with stable and consistent VWM waveforms. (B) Baseband signals of
abnormal AVF with unstable and superimposed oscillations on VWM waveforms.

2.2. A Clinical Testing Protocol

The clinical trial was approved by the Institutional Review Board of Taichung Veterans
General Hospital (TCVGH). A total of 46 patients regularly treated at the hemodialysis
center in TCVGH were chosen for the clinical trial according to the inclusion criteria. There
were 18 females with 67.9 ± 11.4 years old and 28 males with 61.9 ± 12.5 years old. One
patient was excluded from the trial as his blood flow was not measurable due to difficulty
in finding suitable sites for needle puncture. Informed consent was obtained from each
patient prior to the start of the test session. The AVF locations on the tested patients were
in various positions, from the wrist to the upper arm. The pulse radar sensor was attached
according to each patient’s AVF location, and positioned near the venous outflow side
distal to the AVF, as shown in Figure 3. The patient was instructed to remain still for
1 min with their arm supported on the table top. The acquired VWM data were wirelessly
transferred using a Bluetooth transceiver in real time from the pulse radar sensor to the
mobile phone, where the signal waveform was displayed and data stored. The stored data
were then transferred from the mobile phone through the USB communication link to a
laptop PC. The hemodialysis treatment was then applied to the same patient, with AVF
flow measured by the UD flow instrument (HD03, Transonic Systems Inc., Ithaca, NY, USA)
within the first 30 min of the hemodialysis treatment session. The measured flow data was
recorded and stored in a laptop PC for later analysis.
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Figure 3. The hemodialysis patient during testing using a pulse radar sensor. Note that the App
displays the signal waveform on a mobile phone. The detailed strategy of immobilizing as developed
by the VWM monitoring system on patients, shown in Appendix A.

2.3. Data Processing and SVM Classification

The VWM data were converted to spectrum data using the Fast Fourier Transform
algorithm in MATLAB 2020a. Due to its advantage in classifying small-sized complex
datasets, the SVM machine learning classification algorithm was developed to predict the
patient’s AVF status using the features derived from the FFT spectrum data. The Radial
Basis Function (RBF) kernel was chosen to train the SVM algorithm for classification of
the non-linear datasets. The cutoff value between the abnormal and normal data sets was
chosen according to the suggestions of the NKF-K/DOQI guidelines with a threshold of
600 mL/min and followed up in the hemodialysis center in TVGH for the detection of flow
dysfunction. In addition to this regularly used cutoff value, the ROC analysis was used to
verify the performance of the SVM classifier and to search for an optimal threshold in the
detection of flow dysfunction.

The spectral (frequency-domain) analysis of physiological variables, using the fast
Fourier transformation (FFT), has been reported [20]. A total of five features was used
in this study, which are the ratios of FFT spectral peaks of the higher harmonics to those
of the nearest lower harmonics, defined as the Harmonic Ratio (HR), i.e., P2/P1, P3/P2,
P4/P3, P5/P4, and P6/P5. For example, Figure 4 compares the FFT spectrum of a normal
VWM signal (left panel) with that of an abnormal VWM signal (right panel), in which a
distinct difference exists in the ratio of P3 to P2. To validate the HRs as being features for
VSM classification, the mean differences between the HRs of abnormal FFT spectrums and
those of normal FFT spectrums were tested using the independent T-test (α = 0.05). Table 1
shows that P5/P4 is a sensitive feature for a detection threshold of 600 mL/min (p = 0.008),
and that P3/P2 is a sensitive feature for a detection threshold of 750 mL/min (p = 0.041).
Based on this sensitivity analysis, the HRs for each patient were chosen to be the input
features for the SVM classification algorithm.
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Figure 4. FFT spectrum of normal AVF wall motion signal (left), FFT spectrum of abnormal AVF wall motion signal (right).

Table 1. Independent T-test of the mean difference in harmonic ratios between low flow cases and high flow cases relative
to cutoff values at 600 and 750 mL/min (referenced in Figure 4). Notice symbol * represents the p-value < 0.05.

Harmonic
Ratio

≤600 (n = 11) >600 (n = 34)
Difference p-Value

≤750 (n = 21) >750 (n = 24)
Difference p-Value

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

P2/P1 0.357 (0.203) 0.380 (0.178) −0.023 0.722 0.347 (0.168) 0.398 (0.195) −0.051 0.356
P3/P2 0.665 (0.313) 0.491 (0.285) 0.174 0.093 0.630 (0.277) 0.449 (0.296) 0.181 0.041 *
P4/P3 0.591 (0.289) 0.785 (0.456) −0.193 0.195 0.774 (0.475) 0.705 (0.387) 0.069 0.591
P5/P4 1.075 (0.601) 0.711 (0.273) 0.365 0.008 * 0.818 (0.510) 0.784 (0.293) 0.035 0.777
P6/P5 0.659 (0.235) 0.751 (0.347) −0.092 0.417 0.696 (0.352) 0.758 (0.300) −0.062 0.529

3. Results

Figure 5 displays the results of training the SVM classifier with detection thresholds
of 600 mL/min. Each data point in the figure represents a set of two values in which the
correponding value on the x axis is the value of the decision function, while that on the y
axis is the measured flow data by UD. The value of the decision function shows whether
an output by the SVM classifier lies to the right or left side of the hyperplane (y axis), as
well as how far it is from the hyperplane. The hyperplane is an optimal plane separating
the two classes with maximum margin. When the output value of the decision function
is close to zero on the hyperplane, it represents a low-confidence decision, whereas when
the output values of the decision function are a larger magnitude of positive or negative
values, the more confident the decisions are. The locations of the data points relative
to both the detection threshold (horizontal red line) and hyperplane determine whether
the classification results are true or false. As defined by the hyperplane and detection
threshold, when a data point is located either in the lower left or upper right region, it is
being classified correctly as true positive or true negative, respectively. Alternatively, when
a data point is located either in the upper left or lower right region, it is being classified
incorrectly as fase positive or false negative, respectively. For a detection threshold of
600 mL/min, the outputs of the SVM classifier were mostly located in the true positive and
true negative regions, with no false positive predictions and only one false negative being
classified (shown in Figure 5).

The trained SVM classifier was validated using the method of 10-fold cross validation.
Table 2 summarizes the validated results of the VSM classifier with a detection threshold
of 600 and 750 mL/min. The performance of the SVM classifier shows a sensitivity of
90.9% (95.2%), specificity of 100.0% (100.0%), and an accuracy of 97.8% (97.8%) for 600
(750) mL/min. Notice that the prediction accuracy is 100.0% if measured by the positive
prediction value.

As mentioned in the NKF-K/DOQI guidelines, there exists a need for standardized
diagnostic thresholds with sufficient sensitivity as well as specificity. In the present work,
the ROC curve analysis was performed with the results showing that the Area Under the
Curve (AUC) was 0.994. The specificity and positive prediction value for the detection
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thresholds of 750, 650, 600, and 500 mL/min were all 100%, with the maximum sensitivity
being 95.2% at a detection threshold of 750 mL/min (shown in Figure 6). This result
indicates that the VWM monitor-based AVF flow dysfunction detector provides an excellent
correlation with the UD flow monitor within a large range of AVF flow. However, a single
optimal detection threshold could not be determined solely on the value of sensitivity.
Instead, two levels of detection thresholds, e.g., firth level at 750 mL/min and second level
at 600 mL/min, may be more reliable for the early detection of flow dysfunction before
proceeding to pre-emptive angioplasty.

Figure 5. Results of SVM classifier training with a detection threshold of 600 mL/min.

Table 2. The 10-fold cross validation results for SVM classifier at a detection threshold of 600 and 750 mL/min, respectively.

Ground Truth

Threshold Prediction Flow ≤ 600 Flow > 600 Total %Correct Index

600

Flow ≤ 600 10 0 10 90.9 Sensitivity
Flow > 600 1 34 35 100.0 Specificity

Total 11 34 45 97.8 Accuracy

Threshold Prediction Flow ≤ 750 Flow > 750 Total %Correct Index

750

Flow ≤ 750 20 1 21 95.2 Sensitivity
Flow > 750 0 24 24 100.0 Specificity

Total 20 25 45 97.8 Accuracy
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Figure 6. The results of ROC analysis on the performance of the SVM classifier.

4. Discussion

The wall motion in a stenotic carotid artery was investigated by Kanber et al. [21].
Due to the difficulty to measure stable signals in the stenotic region, the proximal shoulder
of the atherosclerotic region was chosen as the measurement site, with ultrasound image
sequences being acquired over several cardiac cycles. Results showed that both absolute
and percentage diameter changes did not have any statistically significant relationship to
the degree of stenosis. In the present work, measurement sites on patients’ arms were all
located at the venous outflow side of AVFs distal to where the periodical generation of
flow turbulence took place. The signals acquired by the VWM monitor showed differences
in waveform morphology between the abnormal flow cases and those of the normal
flow cases. Figure 7A shows an example of a distorted AVF VWM signal (low flow,
flow = 360 mL/min) whose waveform morphology displayed oscillations superimposed
on one cycle of the original AVF VWM waveform. This is believed to be the result of the
modulation of two signals, i.e., the original VWM signal and the signal with oscillations due
to flow turbulence. Consequently, as shown in Figure 7B, new harmonics P3 and P5 appear
with higher strengths in the FFT spectrum than those of the original VWM signal. Since
the oscillating frequency is three to five times the fundamental frequency, the modulation
effect would increase the strength of the higher frequency harmonics. This observation
could be the basis for future work on detection of flow dysfunction by combining time
domain and frequency domain analytical techniques.

Tessitore et al. [5] investigated the optimal thresholds for stenosis detection using the
UD flow measurement. Their results showed that a detection threshold of 750 mL/min
was optimal for AVFs at the wrist and 1000 mL/min for AVFs at the mid-forearm. In the
present work, 50% of AVFs were located on patients’ mid-forearms, 40% on patients’ wrists,
and the remaining 10% on patients’ elbows. The ROC analysis results of the SVM classifier
found that maximum sensitivity was achieved at a detection threshold of 750 mL/min,
which was identical to that reported in [5] on stenosis detection. In the future, through the
use of fistulography as the gold standard, an expanded clinical study will be needed in
order to validate the SVM classifier in predicting stenosis.
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Figure 7. (A) Abnormal oscillations superimposed on one cycle of the VWM waveform. (B) The abnormal FFT spectrum
with more pronounced spectral peaks at P3 and P5.

5. Conclusions

In conclusion, this study is based on previous studies which demonstrated that
stenosis of the arterial blood vessel could be detected by analyzing the characteristic
changes in the waveform of VWM. In this work, the operating principle of the pulse radar
sensor for detection of VWM was derived theoretically and the performance of the VWM
monitoring system was verified clinically. The VWM monitoring system was applied to
detect the flow dysfunction in AVFs on patients who were receiving the hemodialysis
treatment. Harmonic ratios derived from the FFT spectrum of the VWM monitoring
signals were used as the input features to a SVM classification algorithm. Ten-fold cross
validation results revealed an excellent correlation between the VWM monitor and UD
flow monitor. To ensure the operation reliability of the VWM monitoring system, the
long-term reproducibility of the as developed VWM monitoring system will be evaluated
in the near future.

By adapting the two-level detection threshold method for early detection, the VWM
monitoring technique for self-tests at home, or regular screening in hemodialysis centers,
can provide the benefits of both reducing the present workload in testing AVF flow dys-
function in the hospital, as well as assuring the quality of care needed to preserve AVF
patency. Meanwhile, the long-term reproducibility of the as developed VWM monitoring
system should be evaluated in the near future.
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Appendix A

A detailed strategy of immobilizing the as developed VWM monitoring system on
patients, as illustrated below.

1. Place the arm on the table top. Make sure that the side of the arm with AVF is in
parallel with the table top and the weight of the arm should be fully supported by the
table, as shown in Figure A1.

2. Position the pulse radar sensor in Figure A2 near the venous outflow junction of the
AVF, as shown in Figure A3.

3. Attach the pulse radar sensor to the skin using the soft cloth tape.
4. Start the measurement while keeping the body still for 1 min.

 

Figure A1. Placement of the arm with the AVF to be tested.

141



Biosensors 2021, 11, 297

Figure A2. The pulse radar sensor.

 

Figure A3. Attachment of the pulse radar sensor.
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Abstract: Paper is a popular platform material in all areas of sensor research due to its porosity, large
surface area, and biodegradability, to name but a few. Many paper-based nanocomposites have been
reported in the last decade as novel substrates for surface-enhanced Raman spectroscopy (SERS).
However, there are still limiting factors, like the low density of hot spots or loss of wettability. Herein,
we designed a process to fabricate a silver–chitosan nanocomposite layer on paper celluloses by a
layer-by-layer method and pH-triggered chitosan assembly. Under microscopic observation, the
resulting material showed a nanoporous structure, and silver nanoparticles were anchored evenly
over the nanocomposite layer. In SERS measurement, the detection limit of 4-aminothiophenol was
5.13 ppb. Furthermore, its mechanical property and a strategy toward further biosensing approaches
were investigated.

Keywords: cellulose paper; chitosan; layer-by-layer; self-assembly; nanocomposite; SERS spectroscopy

1. Introduction

Surface-enhanced Raman spectroscopy (SERS) is a sensitive analytical tool for the
detection of chemical and biological analytes [1,2]. It reveals the intrinsic vibrational mode
of chemicals in the manner of label-free detection with high sensitivity [3–5]. In recent
years, diverse nanoscale structures, including those of noble metal nanocomposites, have
led to the development of new substrates for label-free detection via Raman spectroscopy.
Resonance-enhancing spaces known as “hot spots” can be generated between nanoparticles
or at the sharp edges of individual nanoparticles, which locally enhances electromagnetic
fields; thus, high density is regarded as the key to obtaining better Raman signals.

Since the first SERS effect was utilized in molecular detection by Richard P. Van Duyne
and other peers, there have been attempts to connect it to the biosensing approach using
biosensing molecules like enzymes and antibodies [6,7]. SERS benefits from multiplex
detection and spectrometric approaches in biosensing. Also, the feasible formation of
coordinate bonds between those sensing molecules and noble nanoparticles makes SERS
highly applicable to biosensor research, i.e., thiol–gold, thiol–silver, amine–gold, and so
on. Combined with established biosensing strategies such as ELISA [8], it can expand
the analytical performance of biosensing to ultrasensitive levels. There have been several
reports showing how SERS can be applied to biosensing [9–11].

SERS-active substrates are generally categorized as colloidal liquids or solid materials.
Colloidal SERS substrates are relatively simpler in their preparation, and they can derive
various shapes of nanoparticles to target a specific analyte. However, colloidal stability
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is more important due to the risk of particle aggregation, precipitation, and loss of col-
loidality. Thus, solid materials binding to individual nanoparticles, such as paper, glass,
silicone, polydimethylsiloxane (PDMS), graphene nanosheets, and polymer films, may
be preferred in some applications [12–16]. In particular, porosity is widely sought as it
effectively improves the density, dispersion, and consistency of hot spots over a whole
dimension [5,17–19]. Moreover, the following features of these materials are thought to be
beneficial in SERS analysis: (1) effective adsorption of analytes, (2) ease of multiple adjacent
nanostructure formation to increase hot spots, (3) support fixtures for nanoparticle growth,
and (4) filtering for selective detection. Some recent studies in the literature elucidated how
such nanoporous materials improve analytical performance. A network of carbon wires
and pores showed high absorptivity and high-density hot spots, enhancing signals [20]. A
porous silicon material resulted in signal enhancement around 5 times stronger than that of
SERS using a flat silicon surface [21]. A nanoparticle-embedded polymer hydrogel showed
high sensitivity and filtration functions excluding small matrix molecules [22].

Recently, paper as a porous base material has received attention due to its reforma-
bility, low cost, and biocompatibility, to name but a few [23–26]. There are some notable
reports exploiting its filtrating and microfluidic characteristics for renovative SERS sens-
ing [23,27–29]. These paper-based substrates can be fabricated by well-established technolo-
gies, including core–shell nanoparticles/hybridization of metals [30], chemical vaporizing
deposition [31,32], and hydrophobization with wax or siloxane [24], all of which enhance
sensitivity in SERS analysis.

In this study, we maximize the porosity of paper using nanoporous silver/chitosan
nanocomposites on the cellulose surface, which increase the number of hot spots and
provide a filtration function for small molecules. Chitosan was chosen due to its chemical
similarity to cellulose. That is, the whole structure can be stabilized in a paper matrix,
enhancing its mechanical and thermal stability to a level suitable for SERS-active paper
substrates [33,34]. Layer-by-layer (LbL) processing was employed for a better firm structure
of this soft material. This low-cost silver/chitosan nanocomposite substrate was used
to detect a low concentration of a model small chemical, 4-aminothiophenol (4-ATP).
Lastly, we suggest a way to enhance the analytical performance of this substrate by simply
cutting it.

2. Materials and Methods

2.1. Materials and Reagents

Chitosan oligosaccharide lactate ((C12H24N2O9)n, >90% deacetylated, average Mn = 5000,
oligosaccharide 60%), acetic acid (CH3COOH, 99%), and 4-aminothiophenol (C6H7NO,
>97%) were purchased from Sigma Aldrich. Silver nitrate (AgNO3, >99%), sodium cit-
rate dihydrate (Na3C6H5O7·2H2O, >99%), and anhydrous absolute ethanol (C2H5OH,
99.5%) were purchased from Daejung Chemical, Inc. (Siheung-si, Gyeonggi-do, Korea),
and sodium hydroxide (NaOH, >93%) and sodium borohydride (NaBH4, >98%) were pur-
chased from Duksan Chemical, Inc. (Ansan-si, Gyeonggi-do, Korea). Whatman standard
chromatography paper (Whatman 1 CHR, Cytiva, Marlborough, MA, USA) and a dialysis
tubing cellulose membrane (flat width 25 mm, Sigma Aldrich, Burlington, MA, USA) were
used as the base materials in SERS measurement and SEM imaging, respectively.

2.2. Fabrication of the Paper SERS Substrate

Whatman standard chromatography papers 2.5 × 7.0 cm2 in size were employed. A
slide rack was used to fabricate multiple sheets at once, prepared with slide glasses as
dividers between the papers. To fabricate the silver/chitosan nanocomposite, a 0.1 w/v%
chitosan solution (in 1% of acetic acid), a 50 mM sodium hydroxide solution, a 20 mM silver
nitrate solution, and reductant solutions (20 mM sodium borohydride, 20 mM sodium
citrate dihydrate) were prepared. The silver/chitosan nanocomposite was formed after the
paper cellulose was dipped into the chitosan solution for 1 hour, the sodium hydroxide
solution for 15 min, the silver nitrate solution for 30 min, and the reductant solution for
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30 min, sequentially. After each immersion step, except for that in the chitosan solution, the
paper was rinsed in water under magnetic stirring for 20 min. We then dried the paper in an
oven at 60 degrees for 30 min, making this the LbL 1 cycle. This was repeatedly performed
on the single-cycled paper via the same method described above to obtain 2 cycles, 3 cycles,
and so on (Figure 1a).

 
(a) 

 
(b) 

Figure 1. (a) Schematic illustration of the layer-by-layer process used to coat cellulose paper with
silver/chitosan nanocomposite, where the paper substrate was submerged in each reagent solution,
stepwise; (b) Configured silver/chitosan nanocomposite by coordinate bonds between citrate-capped
silver nanoparticles and self-assembled chitosan.

To explain the synthesis process in detail, an acetic acid solution was used to dis-
solve the chitosan. This makes the chitosan molecules electrically positive through the
protonation of amino groups at low pH, and this property increases the water solubility.
The dissolved chitosan has an electrostatic attraction with cellulose, which is a polyanion,
in aqueous solution. When the paper is placed in the next sodium hydroxide solution,
the amine groups of chitosan become insoluble at high pH and may become harder on
the paper. Rinsing off unwanted ions that are not used for binding and immersing the
paper in a silver nitrate solution and a reductant solution results in negatively charged
silver nanoparticles capped with a citrate capping agent. By repeating the cycle, citrate-
capped silver nanoparticles can be coordinated with chitosan to obtain a three-dimensional
nanocomposite (Figure 1b).

The synthesis method for the non-LbL model was identical to the first cycle step,
but from the second cycle onwards, it consisted only of the silver nitrate solution and
the reductant solution without the chitosan solution or the sodium hydroxide solution.
The volume of solution used in the experiment was adjusted according to the size of the
paper to be produced. For the ten sheets of paper mentioned above, amounts of 0.5 L of
the solutions were used. After completion of production, the dried paper samples were
wrapped in aluminum foil and stored under refrigeration at about 4 ◦C.

2.3. Sampling for the Detection of 4-ATP

Paper samples for the SERS measurements were cut into 4 mm diameter circles using
a perforated punch. These were immersed in a 1.5 mL tube with 0.5 mL 4-ATP (12.5 ppm
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in ethanol) for 18 h at 45 degrees and then dried at room temperature for use with the SERS
measurements. The other paper sample used here with capillary action was 4 mm wide and
20 mm long, and the tip was prepared as an isosceles triangle with a height of 4 mm. These
samples were immersed in the same manner as the circle sample above, except that the
volume of 4-ATP used was 1.5 mL. After immersion for 18 h, the dried sample was placed
vertically in a 60 mm diameter Petri dish covered with ethanol to approximately 1 mm
high. One minute after the ethanol reached the tip of the paper, it was taken out and dried
at room temperature, after which a 4 mm high triangle was cut, and SERS measurements
were taken.

2.4. Calculation of the Limit of Detection

The detection limit was obtained by the following formula:

Im = Ibl + k σbl (1)

where Im is the minimum distinguishable intensity of the signal, Ibl is the Raman signal
generated by a blank measurement of the SERS substrate in the absence of the analyte. k is
the proportionality constant, and σbl is the standard deviation of blank measurements [35].
In addition, the amount of analyte providing 3 times the σbl value as a signal equal to or
greater than the signal of the blank was considered (using k = 3 proposed by Kaiser [36]).

I = m Cm + Ibl (2)

Cm was calculated by substituting Im obtained by Equation (1) into I of the quantified linear
function in Equation (2). m is the slope of the calibration curve at the concentration of
interest, and Cm is the concentration at the limit of detection.

2.5. Instruments

Optical microscopy (Zeiss Primo star, ZEISS International, Jena, Germany) was used
to obtain the color shift of the LbL model compared to the non-LbL model. Field emission
scanning electron microscopy (FE-SEM, Hitachi SU8010, Hitachi, Tokyo, Japan) was used
to image the surface and cross section of the substrate. The cross-sectional view was
obtained using this cellulose membrane (thickness of around 20 μm) and by fracturing
after immersing it in cryo liquid. The silver/chitosan nanocomposite layered samples were
pre-treated with a Pt coating and then subjected to analysis. A universal testing machine
(Instron 3400 series) was used for micro-tensile testing of the LbL fabricated paper samples.
The Raman signals were measured using a C12710 Raman spectrometer from Hamamatsu.
This device has a built-in laser with a wavelength of 785 mm. Here, the laser output was
50 mW (Raman mode) or 3 mW (SERS mode) and the acquisition time was 1500 ms. Raman
intensity values were determined from 10 spots and averaged.

2.6. Statistics

Statistical analyses using Student’s t-test and the standard deviation (of all error bars)
were conducted using SPSS 18 (SPPS, Inc. Chicago, IL, USA) and Microsoft Excel (Microsoft,
Inc. Redmond, WA, USA).

3. Results and Discussion

3.1. Characterization of Silver/Chitosan Nanocomposite Layered Paper
3.1.1. Physical Properties

To confirm the in situ formation of silver/chitosan nanocomposites on paper, the
optical properties of the LbL model and the non-LbL model were compared. The first
cycle performed on cellulose paper was identical in both models, i.e., chitosan immersion
followed by the reduction of the silver nanoparticles (Ag NPs). The LbL model underwent
repeated production steps sequentially, while in the non-LbL model, the reduction of Ag
NPs was performed without submersion in chitosan. Comparing the optical micrographs of
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the two models in Figure 2a, a dramatic color change in the non-LbL model was observed.
The distinct decrease in the brightness of the non-LbL sample is presumably due to the
interference of the optical path, judging from the increase in the size or the aggregation of
Ag NPs. The paper formulated by the non-LbL model turned darker during the cycling
process because the spacing of the paper fibers became narrow. When the same molar
concentration of silver ions was added at each cycle in the LbL model, fiber spaces were
possibly preserved by the chitosan multilayer. Since chitosan can act as a spacer between
Ag NPs, the aggregation of Ag NPs is prevented by chitosan in the LbL model, as illustrated
in Figure 2b [37,38]. The optical intensities in both red and green maintained less than a
20% change in RG chromaticity (Figure S1). This observation indicated that the aggregation
of Ag NPs was prevented by crosslinked chitosan in the LbL model, such that nanoparticles
of similar sizes could be distributed without aggregation or unwanted growth.

  
(a) (b) (c) 

Figure 2. (a) Optical micrographs of LbL and non-LbL paper that underwent the fabrication process
for 14 cycles, representing the effects of chitosan on colloidal stability; (b) Illustration showing how
chitosan oligomer prevents the aggregation of particles during the LbL process; (c) Changes in the
tensile strength of the substrate when proceeding with each step, implying mechanical enhancement
by chitosan self-assembly and crosslinks with silver nanoparticles.

A micro-tensile test was conducted to evaluate the physical properties of the nano-
scale material inside the nanocomposite layered paper. With the acid-catalyzed glycosidic
hydrolysis, the tensile strength of the hydrolyzed paper was significantly reduced compared
to that of the cellulose paper (Figure 2c). Meanwhile, the physical strength of the substrate
was recovered through the doped chitosan crosslinked with Ag NPs.

3.1.2. Morphology of the Silver/Chitosan Nanocomposite

The distribution and conformation of the nanoparticles are two of the major sources of
SERS enhancement. Accordingly, the morphologies of the silver/chitosan nanocomposites
on cellulose paper were characterized by SEM. Chemically untreated chromatography
paper was chosen as a control paper; however, it was easily torn by the electron beam
of the SEM and was photographed at low magnification. Figure 3 shows the evenly
spread Ag NPs over the surface of the cellulose fiber as a consequence of LbL cycling.
The size of the Ag NPs did not increase by more than 50 nm, even when the cycling was
repeated. The histogram distribution also confirmed that the Ag NP reduction rates were
consistent throughout the cycles, exhibiting an average nanoparticle size of 26.99 ± 5.74 nm
(Figure S2). We believe that the particle size is not affected by further solution immersion
steps as the citrate works as capping agent, stabilizing and inhibiting the over-growth of Ag
NPs while also preventing their aggregation and coagulation formed in the previous cycle.
Sodium citrate can also chemically crosslink with chitosan between protonated amines and
carboxylate ions through a heat treatment [39,40]. Since the paper after the dipping step in
the citrate-containing reductant goes through an oven-drying process at about 60 degrees,
the above reaction is likely to occur. Chitosan not only binds to silver nanoparticles but also
binds to the citrate capping agent to form a stable three-dimensional layer. Therefore, it
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appears that the silver ions are prevented from diffusing and, consequently, have a constant
reduction rate and maintain a uniform particle size over multiple cycles.

 

Figure 3. SEM micrographs of the resulting LbL papers after each cycle (from top right: original
paper; 4, 6, 8, 12, and 14 cycles) where silver nanoparticles are evenly anchored to the surface of fibers
without significant changes in particle size.

This corresponds to the overall Ag NP sizes in each cycle, 20 to 30 nm, as calculated
from the SEM images, implying that the Ag NPs created by the LbL cycling did not
aggregate but maintained a relatively constant size. It is well known that constant size
and regularity of plasmonic nanoparticles are crucial factors related to SERS performance
outcomes because these factors can affect the formation of local electromagnetic fields on
the surfaces of the nanoparticles [41]. In the LbL model, Ag NPs between the chitosan
multilayers not only prevented aggregation but also maintained a suitable size of the
nanoparticles for the SERS signal.

Figure 4 presents an SEM image of a cross section of the nanocomposite layer on the
cellulose surface (the specifications of the materials are shown in the methodology section).
A cross-sectional view demonstrates the fabricated multilayer (thickness of approx. 575 nm
at 14 cycles) and its nanoporous structure. Notably, the nanoporous structure was well
refined and evenly formed over the layers with similar pore sizes of up to 30 nm in diameter
(Figure S3). Chitosan oligomers associated with the surface shrank to themselves, while
the high concentration of hydroxide induced self-assembly of these oligomers, and the
structure was then fixed after being dried out. This nanoporous structure brings more
functions to our substrate; it can promote the high acquisition of SERS signals as a ‘spacer’,
but it can also selectively filtrate for target analytes by molecular size to allow for low
matrix effects due to proteins in biological samples.

 

Figure 4. Cross-sectional view of Ag–chitosan nanocomposite on the cellulose substrate (thickness of
Ag–chitosan nanocomposite, approx. 575 nm; diameter of nanopores, up to 30 nm).
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3.1.3. Raman Spectroscopy

The chemical structures of each paper layer up to 14 cycles were analyzed by Raman
spectroscopy using a 785 nm incident laser at 50 mW. Figure 5 shows the Raman spectra of
the untreated cellulose paper, the chitosan-doped cellulose paper, the Ag NP-crosslinked
paper, and the LbL 14-cycle paper. The high-intensity peak at 1090 cm−1 represents C-O
ring stretching and/or glycosidic ring stretching [42,43]. Bands from ring stretches were
detected in all samples. Chitosan and cellulose have similar molecular structures, with the
difference being the existence of an amine group, NH2 or NHCOCH3, located at the C2
site in the case of chitosan. The Raman band of the amine group in chitosan was located at
1593 cm−1 [44], and the silver peak was measured in the LbL 1-cycle sample at 789 cm−1.
Comparing the Raman signals of the nanocomposite layered paper and the untreated
cellulose paper, the position of the cellulose peak in the LbL 14-cycle paper was 1085 cm−1,
which shifted to a wavenumber lower than that of the control paper. Studies of deformation
mechanisms have shown that a shift in the Raman band is indicative of stress in the
fiber [45,46]. The Raman shift to a lower wavenumber means that the vibrational frequency
of the molecule is decreased, which could be considered as evidence of the lengthening
of the chemical bond due to tensile stress. As the silver/chitosan nanocomposites were
repeatedly deposited, stress was applied to the C-O stretching motion of cellulose, which is
almost parallel to the chain axis, and a shift of the Raman band was observed [47].

Figure 5. Raman spectra obtained from original cellulose, chitosan-doped, LbL 1-cycle, and LbL
14-cycle substrates, where the yellow bands represent the chemical motifs of the following: glycosidic
ring stretching, 1090 cm−1; amine group in chitosan, 1593 cm−1; and silver, 789 cm−1.

3.2. SERS Measurement
3.2.1. Detection of 4-Aminothiophenol

Figure 6 shows the SERS intensity with increasing number of synthesis cycles. The
standard 4-aminothiophenol (4-ATP) was employed to study the SERS performance of
the silver/chitosan nanocomposite layered paper. The characteristic peak of 4-ATP is
at 1070 cm−1, corresponding to C-S stretching vibration [48]. Each cycled LbL paper
showed amplification of the Raman signal with increasing cycle number as compared to
the untreated paper. It appears that the silver nanoparticles inside the nanocomposite were
spaced by chitosan, effectively increasing the number of hot spots. A strong electromagnetic
field occurred with the interparticle distance decreased to a few nanometers; the chitosan
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backbone structure prevented the silver nanoparticles from aggregating, while still keeping
them quite close. In addition, the three-dimensional structure of cellulose paper and
chitosan appears to have contributed to the increased hot spot density due to the porous
structures of these components.

Figure 6. SERS spectra showing an increment in each peak of 4-ATP (12.5 ppm) with increasing
number of LbL cycles.

For quantitative analysis, a series of solutions with different concentrations of 4-ATP
were measured via SERS, as shown in Figure 7. The intensity of the Raman signal at
1070 cm−1 increased with a rise in the concentration of 4-ATP. The bands at 1135, 1385, and
1430 cm−1 indicate b2 vibration modes that are selectively enhanced via the charge transfer
mechanism, so their quantification is unstable [49,50]. Among several bands, 1070 cm−1,
representing C-S stretching vibration, was chosen as a specific peak for quantitative analysis.
The coefficient of determination (R2) was determined to be 0.936 according to a linear
regression analysis. The detection limit was found to be 5.13 ppb, which is equivalent to
approximately 41 nM. This is comparable sensitivity to that of other rapid-testing SERS
substrates and very refined nanomaterials achieving nanomolar detection of environmental
pollutants, while ours retains feasibility in terms of the fabrication and wettability of the
paper material. We look forward to the use of this substrate as a superb candidate platform
for on-site biosensors [25,51].

 

Figure 7. SERS intensity at 1070 cm−1 obtained from a series of different concentrations of 4-ATP
dropped onto prepared SERS substrates (analyte concentration ranging from 0.00125 ppm to
12.5 ppm).
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3.2.2. Application to Biosensing Approaches

While our SERS substrate has shown competent functionality, further potential was
observed when recalling the traits of paper celluloses: large surface area, conformation of
the scaffold structure, capillary flow, and free evaporation, to name but a few. This implies
that this substrate can be used to implement novel biosensing applications, for instance,
the real-time monitoring of bacterial metabolites during cultivation [52]. The nanoporous
structure observed via SEM is thought to filter large matrix molecules like proteins, increase
the surface area, and specifically target small molecules. Further, capillary flow and free
evaporation have been considered a simple but effective strategy to concentrate analytes.

In paper, the cellulose fibers are irregularly interspersed, and it is expected that the
spaces inside show microtubule-like behavior; thus, we tested the efficiency of analyte-
containing fluid transport in the paper. After the chromatography process was carried
out with ethanol as a solvent, an isosceles triangle with a height of 4 mm was cut out and
used for 10 SERS measurements from different spots (Figure 8a). The Raman signals of the
control and the experimental sample with 12.5 ppm of 4-ATP at 1070 cm−1 were 823.39 and
1455.02, respectively, showing an improvement by approximately 76% (p = 0.0006, p < 0.001;
differences for which p was less than 0.01 were regarded as statistically significant), as
shown in Figure 8b. It was noted that the solvent migrated together with the analyte,
contributing to an increase in the molecular density of the analyte around the hot spots.
Also, the relative standard deviation (%RSD) of the Raman signal was reduced from 32.1%
to 17.7%. Consequently, the capillary phenomenon, enabled by the characteristics of the
paper, enhanced the detection sensitivity of the paper sensor.

 
(a) (b) 

Figure 8. (a) Photograph of LbL paper substrate cut into an arrow shape with a lateral transportation
and detection zone where the sample liquid moves and is vaporized, consequently focusing analyte
molecules on the tip; (b) Signal enhancement by simply cutting the LbL paper substrate (black dot,
mean; black solid line in box, median; box height, sample variability from 25% to 75%; error bar,
standard deviation; *** p < 0.001).

4. Conclusions

A new approach to generating high-density hot spots in a paper matrix was introduced
herein. The layer-by-layer process with a pH-based self-assembly step enabled feasible
and robust fabrication that resulted in good traits regarding mechanical characterization
and surface-enhance Raman spectrometry. The synthesized Ag nanoparticles maintained a
certain size even after repeated cycles, at an average of 26.99 ± 5.74 nm, which is suitable
for amplifying the electromagnetic field and contributing to enhanced SERS signals. These
findings show that the cellulose, chitosan, and silver nanoparticles were strongly bonded
by coordinate bonds, indicating that coating on fibrils was successfully achieved. In
SERS signal analysis using 4-ATP, sufficiently enhanced signals were obtained to detect
5.13 ppb. Meanwhile, combining the general traits of paper celluloses and the functionality
of this nanocomposite offers potential for novel biosensing applications, such as real-time
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monitoring during microbial cultivation and lateral flow sensing, as we mentioned. Our
results obtained by employing a capillary-actuated fluid transport scheme showed how
this substrate can be used for applications ranging from simple analyte concentration up to
a more complicated sensing approach. We expect that this multilayered paper will serve in
the detection and monitoring of various disease factors in human body fluids, including
blood, tears, and sweat, as well as environmental samples.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bios12050266/s1, Figure S1: RG chromaticity diagram of the LbL
and non-LbL model paper samples up to 14 cycles. The number of cycles of both models increases
along the direction of the arrow. Inset pictures are optical micrographs of the cellulose paper and
14 cycles in both models; Figure S2: Histogram of the diameters of the Ag NPs overall; Figure S3:
Cross-sectional SEM image of an Ag–chitosan nanocomposite with pore size measurements; Figure S4:
Tensile strength of silver/chitosan nanocomposite layered papers from cellulose paper (0 cycles) to
14 cycles [53].
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Abstract: Many neurological and musculoskeletal disorders are associated with problems related
to postural movement. Noninvasive tracking devices are used to record, analyze, measure, and
detect the postural control of the body, which may indicate health problems in real time. A total
of 35 young adults without any health problems were recruited for this study to participate in a
walking experiment. An iso-block postural identity method was used to quantitatively analyze
posture control and walking behavior. The participants who exhibited straightforward walking and
skewed walking were defined as the control and experimental groups, respectively. Fusion deep
learning was applied to generate dynamic joint node plots by using OpenPose-based methods, and
skewness was qualitatively analyzed using convolutional neural networks. The maximum specificity
and sensitivity achieved using a combination of ResNet101 and the naïve Bayes classifier were 0.84
and 0.87, respectively. The proposed approach successfully combines cell phone camera recordings,
cloud storage, and fusion deep learning for posture estimation and classification.

Keywords: iso-block postural identity; OpenPose; fusion deep learning

1. Introduction

The OpenPose algorithm is a deep learning method in which part affinity fields (PAFs)
are used to detect the two-dimensional (2D) postures of humans in images [1]. The relation-
ship between posture stability, motor function, and quality of life has been determined [2,3].
Moreover, the OpenPose algorithm has been used for checking the medication situations of
patients and for their physical monitoring [4,5]. The evaluation of the cardinal symptoms
of resting tremor and bradykinesia for Parkinson's disease has been conducted using an
OpenPose-based deep learning method [6,7]. Furthermore, in [8], the OpenPose framework
was used to create a human behavior recognition system for skeleton posture estimation.
Quantitative gait (motor) variables can be estimated and recorded using pose tracking
systems (e.g., OpenPose, AlphaPose, and Detectron) [9]. These factors are useful for mea-
suring the quality of life of older adults [10–12]. Moreover, parkinsonian motion features
have been created using deep-learning-based 2D OpenPose models [13,14]. For people
with autism spectrum disorder, skeleton posture characteristics are correlated with long-
term memory in the field of action recognition [15–17]. The physical function of a patient
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should be assessed according to their health data obtained using a skeleton pose tracking
device and gait analysis [18–21]. Many neurological and musculoskeletal disorders are
associated with problems related to postural movement, which can be estimated using a
pose-capturing device [22]. Therefore, noninvasive tracking devices are used to record,
analyze, measure, and detect the postural control of the body, which may indicate health
problems in real time. In this study, fusion deep learning was used to generate dynamic
joint node plots (DJNPs) by using OpenPose-based methods, and skewness in walking was
qualitatively analyzed using convolutional neural networks (CNNs) [23]. An iso-block pos-
tural identity (IPI) method was used to perform the quantified analysis of postural control
and walking behavior. This proposed approach combines cell phone camera recordings,
cloud storage, and fusion deep learning for postural estimation and classification.

2. Materials and Methods

2.1. Research Ethics

All the experimental procedures were approved by the Institutional Review Board of
E-DA Hospital [with approval number EMRP52110N (04/11/2021)]. Verbal and written
information on all the experimental details was provided to all the participants before they
provided informed consent. Written informed consent was obtained from the participants
prior to experimental data collection.

2.2. Flow of Research

In this study, videos walking toward and away from a cell phone camera were recorded
using the camera (Step 1 in Figure 1). The videos were recorded at 24-bit (RGB), 1080p
resolution, and 30 frames per second. The videos were uploaded to Google Cloud through
5G mobile Internet or Wi-Fi (Step 2 in Figure 1). The workstation used in this study
downloaded a video, extracted a single frame from the video, and then applied a fusion
artificial intelligence (AI) method to this frame (Step 3 in Figure 1). In the aforementioned
step, single frames were extracted from an input video (Step 3A), frames with static walking
were identified using an OpenPose-based deep learning method (Step 3B), and the joint
nodes of the input video were merged into a plot (Step 3C). The obtained DJNP was
categorized as representing straight or skewed walking (Step 3D). CNNs were used to
classify DJNPs into one of the aforementioned two groups. Two types of deep learning
methods were used in the fusion AI method adopted in this study: an OpenPose-based
deep learning method and CNN-based methods. The OpenPose-based method is useful
for estimating the coordinates of joint nodes from an input image [1]. The adopted CNNs
are suitable for the classification of images with high accuracy and robustness.

2.3. Participants

A total of 35 young adults without any health problems were recruited to participate
in a walking experiment. The age range was 20.20 ± 1.08 years. The inclusion criteria were
healthy adults who were willing to participate and could walk more than 5 m. People with
musculoskeletal pain (such as muscle soreness), those who had drunk alcohol or taken
sleeping pills within 24 h before the commencement of the experiment, and individuals
with limited vision (such as nearsighted people without glasses) were excluded from
this study.
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Figure 1. Flow of research.

2.4. Experimental Design

The experimental setup is depicted in Figure 2. The total length of the experimental
space was greater than 7 m. The ground was level, free of debris, and smooth to ensure
a straight and smooth walking path. The cell phone was placed 1 m above the ground
(approximately equal to the height of a medium-sized adult holding a cell phone) and
2 m from the endpoint of the walking path. The entire body of a participant was recorded
during the walk. The participants were required to wear walking shoes and not slippers
while walking. Participants walked away from the cell phone and then turned back and
walked toward the cell phone. The participants walked for 5 m toward and away from the
camera three times each. One video was captured for each 5-m walk; thus, six videos were
recorded for each participant. A series of single (static) frames was extracted from a video
every 0.3 s. For example, for a 3-s input video, 10 frames were extracted to estimate the
coordinates of joint nodes. A static frame of one DJNP was extracted per 0.3 s for one video.
For example, a 10 s walking video with frame rate 30 (frames/second), the total static frame
in one DJNP are 90 frames (i.e., 90 = 10 (second) × 30 (frames/second) × 0.3 (second)).
Hence, the DJNP was a variety of frames according to the length of a walking video. The
filmmakers are not medical experts but are trained in motion assessment. The video is
analyzed by an expert in image analysis and an occupational therapist specializing in
rehabilitation Table 1 lists the number of participants and the mean and standard deviation
(STD) of velocity (m/s) and time (s) for each group.

Table 1. Information on the number of participants and the mean and standard deviation (STD) of
velocity (m/s) and time (s) for each group.

Group N Mean Velocity (m/s) STD Velocity (m/s) Mean Time (s) STD Time (s)

Skew 102 0.68 0.08 7.48 0.84
Straight 108 0.69 0.08 7.39 0.91
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Figure 2. Experimental setup (the cell phone was placed 1 m above the floor and 2 m from
the participant).

2.5. Measurement of Joint Nodes through Openpose-Based Deep Learning

OpenPose is a well-known system that uses a bottom-up approach for real-time
multiperson body pose estimation. In the proposed OpenPose-based method, PAFs are
used to obtain a nonparametric representation for associating body parts with individuals
in an image [1]. This bottom-up method achieves high accuracy in real time, regardless
of the number of people in the image. It can be used to detect the 2D poses of multiple
people in an image and to perform single-person pose estimation for each detection. In
this study, the OpenPose algorithm was mainly used to output a heat map of joint nodes
(Figure 3). The center coordinates of joint nodes were estimated by using the geometric
centroid formula.

Figure 3. Dynamic joint node plot (DJNP) (right) obtained by merging the heat maps of joint nodes
from t1 to t5 by using the OpenPose algorithm.

2.6. Definition of the Control and Experimental Groups

The data for the control group comprised DJNPs that indicated straightforward walk-
ing toward and away from the camera. The experimental group comprised DJNPs that
indicated skewed walking. The data for the control and experimental groups comprised
102 and 108 DJNPs, respectively, which were classified using different CNNs.

2.7. Classification Using Pretrained CNNs and Machine Learning Classifiers

Pretrained CNNs were used to extract the features of DJNPs, and machine learning
classifiers were used to construct classification models. The eight pre-trained CNNs used
in this study were AlexNet, DenseNet201, GoogleNet, MobileNetV2, ResNet101, ResNet50,
VGG16, and VGG19. Moreover, the three machine learning classifiers used in this study
were logistic regression (LR), naïve Bayes (NB), and support vector machine (SVM).
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CNNs have a high learning capacity, which makes them suitable for image classifica-
tion. They extract features and learn data according to variations in the breadth and depth
of features. Table 2 lists the features that were extracted by CNNs and served as the inputs
for the LR, NB, and SVM. A deep CNN network comprises five types of primary layers:
a convolutional layer, a pooling layer, a rectified linear unit layer, fully connected layers,
and a softmax layer. Information on the pretrained CNNs used in this study is provided
in Table 2. The fully connected layers of the CNNs extracted and stored the features of
the input image. In the present study, eight CNNs and three classifiers with four batch
sizes and 20 random splits were adopted. The four batch sizes selected in this study for
the CNNs were 5, 8, 11, and 14. The total number of investigated models was 8 (CNNs)
× 3 (machine learning techniques) × 4 (batch size settings) × 20 (instances of random
splitting) = 1920. Therefore, the 1920 models represent the 1920 possible combinations of
one CNN, classifier, batch size, and random data split. CNNs have demonstrated utility
and efficiency in image feature extraction in the fields of biomedicine and biology [23–27].

Table 2. Information on the adopted convolutional neural networks.

CNN Image Size Layers Parametric Size (MB) Layer of Features

AlexNet 227 × 227 25 227 17th (4096 × 9216)
DenseNet201 224 × 224 709 77 706th (1000 × 1920)

GoogleNet 224 × 224 144 27 142nd (1000 × 1024)
MobileNetV2 224 × 224 154 13 152nd (1000 × 1280)

ResNet101 224 × 224 347 167 345th (1000 × 2048)
ResNet50 224 × 224 177 96 175th (1000 × 2048)
VGG16 224 × 224 41 27 33rd (4096 × 25,088)
VGG19 224 × 224 47 535 39th (4096 × 25,088)

LR is a process of modeling the probability of a discrete outcome when an input
variable is given. This process is often used to analyze associations between two or more
predictors or variables. LR does not require the existence of a linear relationship between
inputs and output variables. This method is useful when the response variable is binary,
but the explanatory variables are continuous. LR is also an effective analysis method for
classification problems. The LR method is used for the development of classification models
in the field of machine learning because of its capacity to provide hierarchical or tree-like
structures. Many fields have adopted LR for prediction and classification. LR is suitable
for classification problems related to health issues, such as whether a person has a specific
ailment or disease when a set of symptoms are given.

NB classifiers are based on Bayes’ theorem with a naïve independence hypothesis
between the adopted predictors or features. These classifiers are the most suitable ones
for solving classification problems in which no dependency exists between a particular
feature and other features of a certain class. NB classifiers offer high flexibility for linear or
nonlinear relations among variables (features or predictors) in classification problems and
provide increased accuracy when combined with kernel density estimation. NB classifiers
exhibit higher performance for categorical input data than for numerical input data. These
classifiers are easy to implement and computationally inexpensive, perform well on large
datasets with high dimensionality, and are extremely sensitive to feature selection.

SVM classifiers are highly powerful classifiers that can be used to solve two-class
pattern recognition problems. They transform the original nonlinear data into a higher-
dimensional space and then create a separating hyperplane defined by various support
vectors in this space to maximize the margin between two datasets. Data can be linearly
separated in the higher-dimensional space by using a kernel function. Many useful kernels
are available to improve the classification performance and reduce the false rate. SVM
is a supervised learning method for the classification of linear and nonlinear data and is
generally used for the classification of high-dimensional or nonlinear data.
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The computing time of using SVM is in linear time, rather than by expensive iterative
approximation, which is performed by many other types of classifiers. The LR, NB, and
SVM methods were applied as deep and machine learning methods to extract features of
DJNPs and classify the postural control of the straight and skewed walking groups.

2.8. Validation of Classification Performance

The data for the control and experimental groups comprised 102 and 108 DJNPs,
respectively. A random splitting schema was employed to separate the training (70%)
and testing (30%) sets; 71 and 31 samples from the control group were used for training
and testing, respectively, and 76 and 32 samples from the experimental group were used
for training and testing, respectively. Testing sets and confusion matrices were used to
evaluate the models with respect to the kappa value, accuracy, sensitivity, specificity,
positive predictive value (PPV), and negative predictive value (NPV). These indices were
sorted in the ascending order of the corresponding kappa value, and a radar plot was then
generated to present the aforementioned indices of the adopted models.

3. Results

In this study, 70% of the samples of each group were randomly used to train the
adopted classifiers, and the remaining 30% of samples were used to perform validation.
Figure 4 shows a scatter plot for the specificity and sensitivity of the 1920 models for the
validation dataset. The maximum specificity and sensitivity of 0.84 and 0.87, respectively,
were achieved by the ResNet101 and NB classifiers, respectively.

Figure 4. Scatter plot for the specificity and sensitivity of the 1920 models for the validation dataset.

In Figure 5, a radar plot was constructed for six performance indices with the results
sorted by the maximum kappa value for 96 models (the abbreviations of the investigated
models are written in Appendix A). The best performing model was M53, which is a com-
bination of ResNet101 and naïve Bayes. The kappa, accuracy, sensitivity (Sen), specificity
(Spe), PPV, and NPV values were 0.71, 0.86, 0.87, 0.84, 0.84, and 0.87, respectively. All of the
performance indices are over 0.7. The optimized model, ResNet101 with naïve Bayes, had
acceptable agreement results and the highest accuracy.
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Figure 5. Radar plot of the six performance indices sorted in the ascending order of the kappa value
for 96 models (the abbreviations are explained in the Appendix A). Sen represents the sensitivity, and
Spe represents the specificity.

Table 3 lists the 13 models with kappa values greater than 0.59. These models com-
prised four (30.8%) AlexNet models, three DenseNet201 models (23.1%), three ResNet101
models (23.1%), two VGG16 models (15.4%), and one VGG19 model (7.7%). AlexNet,
DenseNet201, and ResNet101 accounted for 10 of the aforementioned 13 models (76.9%).
SVM and NB were the main machine learning classifiers that performed well in this study.
The numbers of the aforementioned 13 models with SVM and NB classifiers were 3 and 10,
respectively. Thus, NB performed well. Finally, the batch sizes of the 13 models were 5, 8,
11, and 14 useable in this work.
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Table 3. Models with kappa values greater than 0.59.

CNN Classifier Batch Size Model Kappa Accuracy Sen Spe PPV NPV

ResNet101 NB 5 M53 0.71 0.86 0.87 0.84 0.84 0.87
AlexNet NB 11 M7 0.65 0.83 0.81 0.84 0.83 0.82

ResNet101 NB 14 M56 0.65 0.83 0.81 0.84 0.83 0.82
AlexNet NB 5 M5 0.62 0.81 0.77 0.84 0.83 0.79
VGG16 NB 14 M80 0.62 0.81 0.77 0.84 0.83 0.79

DenseNet201 SVM 11 M23 0.62 0.81 0.68 0.94 0.91 0.75
ResNet101 NB 8 M54 0.59 0.79 0.90 0.69 0.74 0.88

VGG19 NB 11 M91 0.59 0.79 0.84 0.75 0.77 0.83
AlexNet NB 14 M8 0.59 0.79 0.81 0.78 0.78 0.81

DenseNet201 SVM 5 M21 0.59 0.79 0.74 0.84 0.82 0.77
DenseNet201 SVM 14 M24 0.59 0.79 0.77 0.81 0.80 0.79

VGG16 NB 8 M78 0.59 0.79 0.77 0.81 0.80 0.79
AlexNet NB 8 M6 0.59 0.79 0.71 0.88 0.85 0.76

4. Discussion

4.1. Measurement of Postural Control

IPIs were used to measure the skewness or displacement. Figure 6 illustrates the
fusion of a DJNP with the IPI generated for a series of time points. In this study, an IPI was
created every 0.3 s, and all the IPIs were fused with DJNPs.

Figure 6. Iso-block postural identity (IPI) generated for a series of times and fusion of the IPI with a
DJNP (right).

Figure 7 presents the skewness or displacement for a walking video at three time
points (i.e., t0, t1, and t2). Figure 7A,C,D,F depict DJNPs and IPIs for skewed walking.
Figure 7B,E depict DJNPs and IPIs for straight walking. These DJNPs can be used to
measure skewness and horizontal postural movement.

The parameters Θr and Θl represent the angles of the right and left sides of the body
during captured images, respectively (Figure 7E). The ratio of two angles (i.e., SR = Θl/Θr)
was used to measure the skewness tendency. When this ratio is >1, the body tends to
skew to the right. When SR = 1, the body is almost straight. When SR is <1, the body
tends to skew to the left. The displacement of the body between two time points was
quantified by estimating the distance covered between these time points. For example, in
Figure 7B,E, Dr,0,1 and Dl,0,1 represent the displacements of the right and left sides of the
body, respectively between t0 and t1. Similarly, Dr,1,2 and Dl,1,2 represent the displacements
of the right and left sides of the body, respectively, between t1 and t2. Therefore, the ratio of
Dr,i-1,i to Dl,i-1,i (i.e., MD = Dr,i-1,i/Dl,i-1,i, i = 0, 1, 2) could be used to determine the dominant
side of body displacement. When MD was >1, the right side was the dominant side of
displacement. When MD was 1, the walking posture was almost straight. Moreover, when
MD was <1, the left side was the dominant displacement side.
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Figure 7. Graphical representation of the skewness or displacement for a walking video at three time
points (i.e., t0, t1, t2). (A,D), (B,E), and (C,F), respectively, present postural skew to the left, postural
balance, and postural skew to the right with participants walking toward the camera.

4.2. Literature for Health Issues and Postural Control during Walking

Poor postural control during walking may indicate health problems. An individual’s
postural control considerably influences their quality of life [2,3]. Equipping participants
with wearable devices that assess their posture can be challenging [4]. Nevertheless, this
problem can be overcome by incorporating deep learning into Internet of things monitoring
systems to effectively detect motion and posture [5]. Resting tremors and finger tapping
have been detected using OpenPose-based deep learning methods [6,7]. Moreover, skeleton
normality has been determined through the measurement of angles and velocities by using
the aforementioned methods [8–10]. Such methods are useful for not only generating
three-dimensional poses [11,12] but also for identifying the relationship between postural
behavior and functional diseases, such as Parkinson’s disease [6,13,14], autism spectrum
disorder [15], and metatarsophalangeal joint flexions [16]. OpenPose-based deep learning
methods can be used for skeleton, ankle, and foot motion [8,17] detection; physical function
assessment [18,19]; and poststroke study [20].

Thus, noninvasive tracking devices play crucial roles in the recording [21], analysis,
measurement, and detection of body posture, which may indicate health issues in real time.

5. Conclusions

In this study, fusion deep learning was applied to generate DJNPs by using an
OpenPose-based method and quantify skewness by using CNNs. The adopted approach
successfully incorporates cell phone camera recording, cloud storage, and fusion deep
learning for posture estimation and classification. Moreover, the adopted IPI method can
be used to perform a quantified analysis of postural control and walking behavior.

The research conducted in the present study can be considered preliminary. We
developed the IPI method and attempted a quantified analysis of postural control and
walking behavior to identify factors indicative of possible clinical gait disorders. However,
at the time of writing, the research is in the preliminary phase and will remain as such
until the automated analysis is completed through the IPI method. The highlights of our
proposed method include its suitability for use with computer vision for identifying signs
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of gait problems for clinical application, as well as its replacement of a dynamic joint node
plot. In addition, the IPI method is straightforward and allows for real-time monitoring.
A video of walking behavior can be conveniently recorded in real-time by using a mobile
device. A user can easily remove the background from the video and generate dynamic
joint node coordinates through fusion AI methods. The developed IPI method allows for
use with computer vision to identify postural characteristics for clinical applications.

Future studies can apply the proposed approach to individuals with health problems
to validate this approach.
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Appendix A

Table A1. The 96 combinations of investigated models with abbreviation are listed below.

CNN Classifier
Batch
Size

Model CNN Classifier
Batch
Size

Model CNN Classifier
Batch
Size

Model

AlexNet LR 5 M1 GoogleNet SVM 5 M33 ResNet50 NB 5 M65
AlexNet LR 8 M2 GoogleNet SVM 8 M34 ResNet50 NB 8 M66
AlexNet LR 11 M3 GoogleNet SVM 11 M35 ResNet50 NB 11 M67
AlexNet LR 14 M4 GoogleNet SVM 14 M36 ResNet50 NB 14 M68
AlexNet NB 5 M5 MobileNetV2 LR 5 M37 ResNet50 SVM 5 M69
AlexNet NB 8 M6 MobileNetV2 LR 8 M38 ResNet50 SVM 8 M70
AlexNet NB 11 M7 MobileNetV2 LR 11 M39 ResNet50 SVM 11 M71
AlexNet NB 14 M8 MobileNetV2 LR 14 M40 ResNet50 SVM 14 M72
AlexNet SVM 5 M9 MobileNetV2 NB 5 M41 VGG16 LR 5 M73
AlexNet SVM 8 M10 MobileNetV2 NB 8 M42 VGG16 LR 8 M74
AlexNet SVM 11 M11 MobileNetV2 NB 11 M43 VGG16 LR 11 M75
AlexNet SVM 14 M12 MobileNetV2 NB 14 M44 VGG16 LR 14 M76

DenseNet201 LR 5 M13 MobileNetV2 SVM 5 M45 VGG16 NB 5 M77
DenseNet201 LR 8 M14 MobileNetV2 SVM 8 M46 VGG16 NB 8 M78
DenseNet201 LR 11 M15 MobileNetV2 SVM 11 M47 VGG16 NB 11 M79
DenseNet201 LR 14 M16 MobileNetV2 SVM 14 M48 VGG16 NB 14 M80
DenseNet201 NB 5 M17 ResNet101 LR 5 M49 VGG16 SVM 5 M81
DenseNet201 NB 8 M18 ResNet101 LR 8 M50 VGG16 SVM 8 M82
DenseNet201 NB 11 M19 ResNet101 LR 11 M51 VGG16 SVM 11 M83
DenseNet201 NB 14 M20 ResNet101 LR 14 M52 VGG16 SVM 14 M84
DenseNet201 SVM 5 M21 ResNet101 NB 5 M53 VGG19 LR 5 M85
DenseNet201 SVM 8 M22 ResNet101 NB 8 M54 VGG19 LR 8 M86
DenseNet201 SVM 11 M23 ResNet101 NB 11 M55 VGG19 LR 11 M87
DenseNet201 SVM 14 M24 ResNet101 NB 14 M56 VGG19 LR 14 M88
GoogleNet LR 5 M25 ResNet101 SVM 5 M57 VGG19 NB 5 M89
GoogleNet LR 8 M26 ResNet101 SVM 8 M58 VGG19 NB 8 M90
GoogleNet LR 11 M27 ResNet101 SVM 11 M59 VGG19 NB 11 M91
GoogleNet LR 14 M28 ResNet101 SVM 14 M60 VGG19 NB 14 M92
GoogleNet NB 5 M29 ResNet50 LR 5 M61 VGG19 SVM 5 M93
GoogleNet NB 8 M30 ResNet50 LR 8 M62 VGG19 SVM 8 M94
GoogleNet NB 11 M31 ResNet50 LR 11 M63 VGG19 SVM 11 M95
GoogleNet NB 14 M32 ResNet50 LR 14 M64 VGG19 SVM 14 M96
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Abstract: There is no consensus on the role of electromyographic analysis in detecting and charac-
terizing the asymmetries of jaw muscle excitation in patients with temporomandibular disorders
(TMD). To analyze the TMD patients (n = 72) in comparison with the healthy controls (n = 30), the
surface electromyography (sEMG) of the temporalis anterior muscle (TA) and masseter muscle (M)
was recorded while a maximal biting task was performed. The differences in the asymmetry of the
relationship between the masseter muscles were assessed in a module to determine the sensitivity
(Sn) of binomial logistic models, based on the dominance of the TA or the M muscle, in accurately
predicting the presence of TMD. All assumptions were met, and comparisons between the groups
showed significant differences for the TA muscle ratio (p = 0.007), but not for the M muscle ratio
(p = 0.13). The left side was predominant over the right side in the TMD group for both the TA
(p = 0.02) and M muscles (p = 0.001), while the non-TMD group had a higher frequency of the right
side. Binary logistic regression showed a significant model (χ2 = 9.53; p = 0.002) for the TA muscle
with Sn = 0.843. The model for the M muscle also showed significance (χ2 = 8.03; p = 0.005) with
Sn = 0.837. The TMD patients showed an increased TA muscle ratio and asymmetry of left dominance,
compared to the healthy subjects. Both of the binomial logistic models, based on muscle dominance
TA or M, were moderately sensitive for predicting the presence of TMD.

Keywords: electromyography; facial pain; temporomandibular joint disorders; jaw muscles; diagnosis

1. Introduction

The prevalence of temporomandibular disorders (TMD) is 27–38% in the adult pop-
ulation [1]. Chronic TMD affects the patient’s ability to work and interact in the social
environment, and results in an impaired quality of life [2,3]. An accurate diagnosis of
TMD is critical for treatment planning and increases the chances of successful outcomes.
Evidence suggests that individuals with TMD have a lower rate of motor unit discharge
in painful muscles [4–6] and early fatigue, compared with individuals without TMD [7,8].
Surface electromyography (sEMG) provides a direct and objective assessment of muscle
excitation [4,5] and can aid in the diagnosis of TMD, particularly the assessment of mas-
ticatory muscle activity in patients with impaired function and altered jaw movement
patterns [9,10].

Some studies suggest that the use of sEMG to assess masticatory muscle excitation
can discriminate against women with and without TMD [5,11–13]. In this sense, some
features of muscle functionality in TMD patients have been reported, but the results of
specific thresholds for raw electromyography of the masticatory muscles showed poor
responsiveness and accuracy in discriminating between healthy and TMD patients [14,15].
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One possible solution to this is to compare the excitation asymmetries between the sides
and muscles to prioritize intervention [10]. However, no consensus has been reached
on the usefulness of sEMG and the presence of muscle excitation asymmetries in TMD
patients [14].

Aside from the above-mentioned issues, understanding the musculoskeletal impair-
ments associated with TMD diagnoses is critical to providing effective treatments. There-
fore, clarifying the relationship between the excitation of the major jaw muscles between
sides during biting could provide insights into managing patients with this complex disor-
der. In this sense, the primary objective of the present study was to evaluate the difference in
the modular relationship between the excitation of the side-to-side muscles by electromyo-
graphy of the TA and M in TMD patients and healthy subjects, bilaterally. A secondary
objective was to evaluate the possible differences, considering a nominal side-to-side pre-
dominance in both groups, and to establish possible predictive models with combined
sensitivity and specificity analysis. The first hypothesis was that the TMD patients would
have an increased asymmetry of ratio and dominance, compared with the healthy subjects.
The second hypothesis was that a binomial logistic model, based on the dominance of the
TA or M muscle, would be able to accurately predict the presence of TMD.

2. Materials and Methods

2.1. Participants

Participants (Table 1) were recruited through public invitations, via recruitment posters
and personal contacts. A sample of 112 women were interested in participating. The inclu-
sion criterion for the TMD group was a diagnosis of TMD arthralgia that was associated
with myofascial pain, according to the Diagnostic Criteria for Temporomandibular Dis-
orders (RDC/TMD), for at least 6 months’ duration. The RDC/TMD is internationally
recognized as the gold standard for TMD diagnosis [16]. The assessment included ex-
ternal palpation, using a calibrated pressure algometer (MED.DOR pressure algometry,
Governador Valadares, Brazil) [17]. Internal to the mouth, the index finger was calibrated
using the pressure algometer to palpate the medial pterygoideus muscles. The inclusion
criteria for both groups were having a minimum of 28 permanent teeth and an age between
18 and 45 years. All patients were evaluated by a dentist for periodontal problems. The
exclusion criteria for both groups were as follows: a history of trauma to the face and
temporomandibular joints; systemic diseases such as arthritis; fibromyalgia; pain due to
confirmed migraine; headache or neck pain unrelated to TMD; ongoing use of analgesics,
anti-inflammatory drugs, muscle relaxants or psychotropic medications; acute infections
or other serious dental, ear, eye, nose, or throat conditions; and neurologic or cognitive
deficits. After the initial screening, 10 participants were excluded. The 102 included partici-
pants were divided into 2 groups, according to RDC/TMD axis I: 1. The non-TMD group
(n = 30 individuals without TMD), 2. The TMD group (n = 72 individuals with TMD). This
cross-sectional study was approved by the Ethics Committee of the Federal College of Juiz
de Fora (number 68457617.6.0000.5147). Participants were informed of the benefits and
potential risks before signing a written informed consent form, before participating in the
study. An a priori sample size was calculated based on a previous study. An effect size
of 0.88 was considered (variable: side-to-side electrical excitation %), with α = 0.05 and
a power (1-β) of 0.95. The analysis yielded an actual sample power of 0.949, with a total
sample size of 60 participants. Considering a drop-out of 20%, the recommended sample
included at least 72 participants. G-Power software (version 3.1.5, Franz Faul, College of
Kiel, Düsseldorf, Germany) was used to calculate the sample size.
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Table 1. Participants’ Characteristics.

Characteristic TMD Non-TMD p

N 72 30 -

Age (years) 29 (6) 29 (4) 0.44

Weight (Kg) 64 (13) 68 (16) 0.18

Height (cm) 163 (6) 164 (5) 0.41

Bite Force (kgf) 13.2 (4.3) 15.1 (2.6) 0.09

Severity
(Sample %)

None 0 100 -
Low 62.5 0 -

Moderate 37.5 0 -
Severe 0 0 -

Pain Side
Predominance

Left 57% - -
Right 20% - -
Both 23% - -

2.2. Electromyography

All the sEMG procedures and the device’s specifications were in accordance with
the recommendations of the International Society of Electrophysiology and Kinesiology
(https://isek.org/, accessed on 25 June 2021). The conversion of analog to digital signals
was performed by an A/D board with an input range of 16-bit resolution, a sampling
frequency of 2 kHz, a joint-rejection module of more than 100 dB, a signal-to-noise ratio
of less than 03 μV root mean square, and an impedance of 109 Ω. The sEMG signals
were recorded as root mean square in μV, using surface Meditrace™ (Ludlow Technical
Products, Gananoque, ON, Canada) Ag/AgCl electrodes with a diameter of 2 cm and a
center-to-center spacing of 2 cm, placed in transverse alignment, parallel to the underlying
fibers at a muscle site. Differential bipolar sensors were attached to the electrodes to reduce
the constant noise. A reference electrode was placed on the left lateral humeral epicondyle.
The sEMG signals were amplified and filtered (Butterworth 4th order, 20–450 Hz bandpass
filter, 60 Hz notch filter). All information was recorded and processed using Miotec
Suite® software (Miotec Biomedical Equipments, Porto Alegre, RS, Brazil) [7,8,18]. Before
placement of the sEMG electrodes, the skin was cleaned with 70% alcohol to remove
fatty residues, followed by exfoliation with a special sandpaper for the skin and a second
cleaning with alcohol. As the TM and M electrodes’ locations were not described in the
Surface Electromyography for the Non-Invasive Assessment of Muscles (SENIAM) site
(http://seniam.org/, accessed on 25 June 2021), the electrodes were placed on both the left
and right sides, according to previous studies’ descriptions [7,8,18].

2.3. Maximal Voluntary Isometric Contraction

The excitation of M and TA muscles was assessed during a maximal bite force test.
Each participant performed a 10 s maximal isometric contraction (MVIC), while biting
on a load cell (maximum tension–compression = 200 Kgf, precision of 0.1 Kgf, maximum
measurement error = 0.33%; Miotec™ Biomedical Equipment, Porto Alegre, RS, Brazil).
Subjects were asked to sit comfortably while the adapted arms of the load cell were
positioned on the incisors (Figure 1). A disposable material was used to cover the adapted
arms for each subject. Forward head posture was controlled during all procedures by
positioning the load cell closer to the participant so that participants could bite in their
natural head posture. Standardized verbal commands (“begin”, “continue biting”, and
“stop”) were used by the same experimenter for all recordings. A 5 s familiarization period
was followed by a 3 min pause before the task. The load cell was coupled and synchronized
with the electromyograph.
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Figure 1. The adapted load cell. (A) laboratory-grade load cell; (B) adapted arms.

2.4. Data Extraction

All data were extracted offline using Miotec Suite™ software (Miotec™, Biomedical
Equipments). Because the load cell was synchronized with the electromyography channels,
the trained rater determined the interval based on the increase in force. After three 1 s
windows of rest were collected, onset was defined by three times the standard deviation
from the average rest intervals, plus the mean itself (Figure 2). The interval began when
the signal exceeded the onset threshold. Conversely, the end of the interval was defined
by the same threshold. For statistical analysis, the mean values of the force intervals were
used [7]. The sEMG ratio was calculated using the maximum value (in μV), divided by
the minimum value (in μV), so that the difference could always be modular (with positive
values). Thus, the difference values were displayed regardless of the side. To determine the
sEMG side predominance, a nominal classification was used. If the voltage on the right
side had the highest value, the participant’s result was classified as “1”. Conversely, if the
left side was higher than the right side, the result was classified as “2”.

2.5. Statistical Analysis

The between-group differences were assessed using the independent samples t-tests.
The 95% confidence interval was also used to set the lower and the upper limits of signifi-
cance. The effect size (ES) was set using Cohen’s d coefficient. The magnitude of the ES
was qualitatively interpreted using the following thresholds: <0.2, trivial; 0.2–0.6, small;
0.6–1.2, moderate; 1.2–2.0, large; 2.0–4.0, very large; and >4.0, huge [19]. The Chi-square test,
with continuity correction, was used to verify the frequency differences for nominal side
predominance. To provide a predictive model, binary logistic regressions were performed
for M and TA analysis. The assumptions of the absence of multicollinearity (Variance
Inflation Factor [VIF] less than 5) and outliers were evaluated. The best fit model was
judged based on the values of the Chi-square test, Nagelkerk’s R2 and odds ratio (OR),
considering its confidence intervals (OR [95% CI]). In addition, the likelihood ratio test,
Akaike Information Criteria (AIC), and Bayesian Information Criteria (BIC) values were
inspected to assess the model fit (i.e., the lower the better). The sensitivity (Sn) and the
specificity (Sp) were also investigated for each model. The correlation between the pain
side and the outcome variables were assessed using Pearson’s coefficient (r), accompanied
by the adjusted coefficient of determination (r2), which is used to measure how well a sta-
tistical model predicts an outcome. They were qualitatively interpreted using the following
thresholds: <0.1, trivial; 0.11–0.3, small; 0.31–0.5, moderate; 0.51–0.7, large; 0.71–0.9, very
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large; and >0.9, nearly perfect [19]. All data analysis was performed using the JAMOVI
software (v. 1.6.15.0, The JAMOVI Project, 2022), with significance level set at 5%.

 

Figure 2. Example of the raw (image above–in μV) and processed RMS signal (image below–in μV).

3. Results

The between-group comparisons showed significant differences for the TA muscle
ratio (TMD: 2.17 [1.74] μV vs. non-TMD: 1.50 [1.28] μV; p = 0.007; 95% CI: −0.43 to −0.04;
ES = 0.35 [small]), but not for the M muscle ratio (TMD: 1.80 [1.46] μV vs. non-TMD:
1.29 [0.23] μV; p = 0.13; 95% CI: −0.23 to 0.02; ES = 0.19 [trivial]). In terms of frequency, the
left side was predominant over the right side on the TMD group for both the TA muscle
(46.6% vs. 31.4%; χ2 = 5.41; p = 0.02) and the M muscle (46% vs. 30.9%; χ2 = 11; p = 0.001),
while the non-TMD group showed a higher frequency of the right side (TA: 13.5% vs. 8.4%
and M: 17% vs. 6.4%). The side of pain was only significantly and positively correlated to
the temporal ratio index (r = 0.30; p = 0.007).

The binary logistic regression showed a significant model (likelihood χ2 = 9.53;
p = 0.002; Nagelkerk’s R2 = 0.119) for the TA muscle, with a 1.07 μV cutoff point. The
VIF values confirmed the absence of collinearity (VIF = 1), and the low AIC (=136) and BIC
(=141) confirmed the model fit. The model’s Sn was 0.843, with an Sp of 0.431 for an OR of
4.08 (95% CI = 1.599 to 10.400). The M muscle regression model also showed significance,
with a cutoff point of 1.11 μV (likelihood χ2 = 8.03; p = 0.005; Nagelkerk’s R2 = 0.056). The
VIF (=1), AIC (=137), and BIC (=142) values confirmed the absence of collinearity and the
model fit. The analysis highlighted an OR of 3.64 (95% CI = 1.429 to 9.255), with an Sn of
0.837 and an Sp of 0.415.

173



Biosensors 2022, 12, 654

4. Discussion

The results showed that the TA muscle percentage was two times significantly higher
in the TMD group, compared with the non-TMD group. Moreover, the left side was
electromyographically predominant in the TMD patients. Conversely, the right side was
predominant in the non-TMD participants. The results also showed a predictive value in
distinguishing the TMD and non-TMD patients, when considering the TA (OR = 4.08) or
the M’s (OR = 3.64) frequency of asymmetry, with a high Sn to detect those with TMD. The
primary hypothesis was partially confirmed because differences were observed only in the
TA muscle.

Other studies examined the responsiveness of individual variables to distinguish
the subjects with TMD from those without TMD. One study examined the pressure–pain
threshold (PPT) in 200 subjects of both sexes, aged 19–27 years [20]. Each subject described
the result of pressure algometry for the superficial and deep parts of the masseter muscle,
the anterior and posterior parts of the temporalis muscle, and the tissues adjacent to the
lateral and dorsal parts of the temporomandibular joint capsule, by selecting the pain
intensity on a visual analog scale (VAS) each time. A receiver operating characteristic curve
analysis showed a specificity of 95.3% in identifying healthy subjects and a sensitivity of
58.4% in identifying patients with TMD symptoms, at a cut-off point of 7.4 VAS and an
accuracy of 68.1%. Another study examined a sample of 49 women who were divided
into the following three groups: TMJ osteoarthritis, asymptomatic disk displacement, and
control group [21]. The authors aimed to determine a cut-off point for PPT and determined
the sensitivity and specificity. The specificity determined was 89.6% and the sensitivity was
70%, for a cutoff point of 1.36 kgf/cm2 (area under the curve = 0.90). In a previous study,
PPT, sensitivity, and specificity were found to be 0.67 and 0.85 for the masseter muscle,
and 0.77 and 0.87 for the temporal muscle, respectively, with a cutoff point one standard
deviation below the mean PPT of subjects who did not have TMD [20]. Given these results,
pressure algometry has severe limitations when used as a single diagnostic tool because of
its limited ability to detect true positives (Sn).

The sEMG technique has also been studied, but methodological problems tend to
compromise its ability to predict and distinguish the TMD patients from the healthy
controls. A previous study showed altered coactivation and coordination strategies of
the jaw muscles during mastication, resulting in higher relative energy expenditure and
impaired differential recruitment [22]. Another study showed that women with TMD
myalgia had greater jaw muscle work than healthy control subjects [9]. However, the same
study showed that the activity of the temporalis anterior muscle (TA) and the masseter
muscle (M) were similar when comparing the right and left sides in both the TMD and
healthy groups, but the TMD group had greater M activity, compared to TA activity.
Other studies examined the electromyographic muscle asymmetry between the sides when
comparing TMD and healthy subjects [10,13], but the authors reported no differences at
rest or during isometric contractions. One study showed the moderate accuracy (0.74–0.84)
of raw sEMG in the TA, M, and the suprahyoid muscles in diagnosing TMD at rest, and
in the suprahyoid muscles during maximal contraction on parafilm [11]. In addition, the
sensitivity ranged from 71.3% to 80% and the specificity ranged from 60.5% to 76.6%. Such
conflicting results are often due to different methods of analyzing the electromyographic
signal; differences in how TMD patients have been previously diagnosed; and the inclusion
of small samples, combined with the lack of sample size calculation. In the present study,
the gold standard method for TMD diagnosis was used in conjunction with a large sample
size and an a priori calculated power of 0.95. These procedures were performed to ensure
further inference on the assessment of asymmetry, instead of the usual raw values for sEMG
analysis. Despite the moderate Sp in the current analysis, the main objective was to identify
the women with TMD, instead of their healthy counterparts. The analysis yielded values
of over 80% sensitivity for the detection of TMD, using nominal side-predominance, with
well-established cutoff points. The ideal Sn value is 100%, meaning that all individuals with
TMD are detected [23]. However, this value is rarely achieved in clinical or even research
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studies. Given the possible effect-size bias associated with an inappropriate sample size
(type I error), a post-hoc power calculation would demonstrate the value of the results. In
the present work, the two-sided post hoc power calculation returned that the power was
0.96 or 96%, with a maximum possible power of 1 or 100% considering the input ES of 0.35,
with the sample of 102 participants.

An important issue that must be addressed is the predominance of pain to the left
side (57%) over the right side (20%), and over the combination of both sides (23%) for the
occurrence of pain (see Table 1). That predominance could be a possible confounding factor
that may lead to an interpretation bias of the current results. In fact, the single significant
correlation occurred between the pain location and the temporal ratio. However, it was
classified as small (r = 0.30; p = 0.007), with a trivial coefficient of determination (r2 = 0.09).
This result means that only 9% of the data fits the predicted model. As a positive correlation,
the pain would increase following the increase in the temporal ratio in the TMD patients,
but not in an exact linear trend. This means that muscle excitation would also weakly
increase proportionally to the pain predominance. The impact of such a left predominance
of pain in TMD patients should be further studied, but in the present work its relevance
is questionable.

The current study did not aim to establish which side is predominant for all people
with TMD, as this may vary according to the location, population age, and other factors to be
set in further studies. Instead, the present results reinforce the sEMG as an important factor
to account for TMD evaluation, using an alternative index and a nominal classification. As
noticed, the imbalance is not restricted to TMD patients, but it is also present (in a different
direction) for healthy people. However, the modular ratio showed the intensification of the
index for TMD. A limitation of the present study was the cross-sectional design, which did
not allow cause–effect inferences. The present study also focused on women in a limited
age range. Those with other levels of functional limitations might show a different pattern
than their male counterparts of the same age. Not all intrinsic factors were addressed
(such as the predominant side for chewing), and the results could be biased by those
issues. However, as it also constitutes a memory recall, it was not possible to be sure of
such factors for the analysis. Instead, they were pondered by the most usual factors set
in previous studies.

5. Conclusions

TMD patients exhibit increased TA muscle ratio and an asymmetry of left dominance,
compared with healthy subjects. Both binomial logistic models, based on TA or M muscle
predominance, were moderately sensitive to predicting the presence of TMD.
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Abstract: Salivary biomarkers are increasingly being used as an alternative to diagnose and monitor
the progression of various diseases due to their ease of use, on site application, non-invasiveness,
and most likely improved patient compliance. Here, we highlight the role of salivary biosensors in
the general population, followed by the application of saliva as a diagnostic tool in the pediatric pop-
ulation. We searched the literature for pediatric applications of salivary biomarkers, more specifically,
in children from 0 to 18 years old. The use of those biomarkers spans autoimmune, developmental
disorders, oncology, neuropsychiatry, respiratory illnesses, gastrointestinal disorders, and oral dis-
eases. Four major applications of salivary proteins as biomarkers are: (1) dental health (caries, stress
from orthodontic appliances, and gingivitis); (2) gastrointestinal conditions (eosinophilic esophagitis,
acid reflux, appendicitis); (3) metabolic conditions (obesity, diabetes); and (4) respiratory conditions
(asthma, allergic rhinitis, small airway inflammation, pneumonia). Genomics, metabolomics, micro-
biomics, proteomics, and transcriptomics, are various other classifications for biosensing based on
the type of biomarkers used and reviewed here. Lastly, we describe the recent advances in pediatric
biosensing applications using saliva. This work guides scientists in fabricating saliva-based biosensors
by comprehensively overviewing the potential markers and techniques that can be employed.

Keywords: biosensors; biomaterials; oral diagnostics; pediatric population; salivary diagnostics;
salivary biomarkers

1. Introduction

Currently, blood and urine tests are commonly carried out to assess one’s immune
status, neuropsychiatric state, and development status. However, invasive screening,
diagnostic, and prognostic tests induce a high-stress level in the pediatric population and
their parents. Recent research has shown that salivary biomarkers can be an alternative
non-invasive test, particularly useful in reducing stress in children between 0 and 18. This
study aims to screen the current research on the use of salivary biomarkers in diagnosing
autoimmune diseases, developmental disorders, and cancer, as well as neuropsychiatric,
pulmonary, gastrointestinal, and oral diseases. It is an effort to highlight the role of saliva
as a sample for its utilization in biosensing applications (Figure 1).
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Figure 1. Prospects for saliva-based biosensors: various biomarkers have been identified in systemic
conditions; discussed here are autoimmune disorders, developmental conditions, neuropsychiatric
conditions, metabolic disorders, gastrointestinal disorders, pulmonary diseases, and oral diseases.
For biosensing applications, they should be assessed for: their reproducibility at different time points,
locations, and populations; specificity towards the marker and disease; sensitivity, meaning they
should be able to detect as low a concentration of the markers as possible, ideally lower than a
clinically available test; the response time of the assay, preferably shorter for quicker results; and
validation in clinical conditions in larger population sizes.

2. Materials and Methods

2.1. Study Design

This study involved an Ovid database search with the following search strategy:
(1) saliva.mp. (69,706 articles); (2) salivary diagnostics.mp. (172 articles); (3) saliva*.mp.
(131,830 articles); (4) oral.mp. (767,765 articles); (5) 1 or 2 or 3 or 4 (876,003 articles);
(6) biomarkers.mp. or Biomarkers, Tumor/or Biomarkers/or Biomarkers, Pharmacolog-
ical/(639,768 articles); (7) 5 and 6 (24,223 articles); (8) pediatrics.mp. or Pediatrics/or
Child/(1,892,565 articles); (9) 7 and 8 (1285 articles).
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2.2. Study Participants

The publication year was limited to “2015 to current”, resulting in a total of 698 articles
that fit the criteria above at the time of preparing this manuscript in August 2022. We
established inclusion and exclusion criteria for this study to filter those articles further.
Inclusion criteria: the research paper must focus on using salivary biomarkers to diagnose
a specific disease or disorder in the pediatric population, between 0 years old and 18 years
old. Exclusion criteria: review articles and case reports were excluded.

2.3. Data Collection

We selected 161 articles and divided them into 7 sections: pulmonary and gastrointesti-
nal diseases; developmental disorders; infectious diseases; neuropsychiatric diseases; oral
diseases; oncology; and autoimmune diseases. There were: 9 articles related to autoimmune
diseases; 27 articles for developmental disorders; 7 articles for infectious diseases; 57 articles
for neuropsychiatric diseases; 27 articles for oral diseases; 3 articles for oncology; and 31
for pulmonary and gastrointestinal diseases. Each section is further divided into 5 specific
applications of salivary biomarkers: metabolomics, proteomics, genomics, transcriptomics,
and microbiomics.

3. Salivary Biomarkers as Diagnostic Tools in Autoimmune Disorders

3.1. Metabolomics

A study by Aral et al. investigated the salivary oxidative status of children with Type I
Diabetes Mellitus (T1DM) and its implications regarding the risk of periodontal disease (PD)
development. The authors observed that, when compared to their healthy counterparts,
children with T1DM have a greater Oxidative Stress Index (OSI) (p < 0.05) [1]. To explain
this finding, the authors observe that chronic hyperglycemia impairs reactive oxygen
species (ROS) elimination. The elevated ROS produces tissue damage, thus contributing to
the development of PD. This finding highlights the potential of salivary OSI as a prognostic
tool for PD in children with T1DM, which would enable physicians to intervene earlier to
improve the course of the patient’s periodontal disease and, by extension, the duration of
their diabetes.

3.2. Proteomics

A study by Collin et al. compared the salivary levels of several cytokines in children
with Juvenile Idiopathic Arthritis (JIA) to those in healthy children. While IL-8 levels
initially seemed to be higher in children with JIA, the authors ultimately concluded that
there was no significant difference in the level of any investigated cytokines across the
two group [2]. To explain this finding, the authors highlight that the children with JIA
were taking immunosuppressive therapy throughout the study, which could hold their
immune activity, and thus salivary cytokine levels, in check. Despite this, it could be
possible to create a prognostic tool for children with JIA based on salivary cytokine levels.
Such a tool would help monitor the children’s response to therapy and the prognosis of
their symptoms.

Immunoglobulin-free light chains (FLCs) were identified as a strong predictor in the
prognosis of Pediatric-Onset Multiple Sclerosis (POMS), and its relapse [3]. Detecting
the higher levels of free light chains early can potentially enable physicians to initiate
stronger therapy to reduce the severity of the children’s symptoms. Additionally, compared
to current prognostic modalities, saliva collection is significantly less invasive than a
lumbar puncture; it avoids gadolinium’s potentially harmful deposition in the brain from
repeated MRIs.

In a similar fashion to the studies above, Gomez Hernandez et al. investigated the
saliva of children with Sjogren’s Syndrome (SS) for cytokines, chemokines, and biomarkers
(CCBM) that can serve as a diagnostic instrument for the condition [4]. The authors found
43 CCBM levels significantly elevated in children with SS, compared to healthy controls.
Judging that number is too high for practical use; the authors recommend a test based on
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IL-27 and CCL-4 alone, or a quintuple test of IL-27, MIA, CCL-4, TNFRSF18 and TNFA,
to aid in diagnosing SS. The authors encourage the pursuit of further studies to link these
CCBM to Sjogren’s, as identifying such salivary biomarkers, which would appear early
before the onset of symptoms, would enable physicians to intervene early and avert the
course of the disease. A common limitation of the studies reviewed here is the small
sample size. Indeed, the authors of the above papers invite further research to consolidate
their findings. Further, other markers pertaining to transcriptomics and genomics can be
explored for such conditions (Table 1).

Table 1. Investigated autoimmune disorders and their respective biomarkers.

Disease Observed Biomarker Methodology Ref.

1. Type I Diabetes
Mellitus

Oxidative Stress Index
(OSI), assessed by
examining:

- Total Antioxidant
Status (TAS)

- Total Oxidant Status
(TOS)

Commercially
available assay kits
(Rel Assay, Mega
Tıp, Gaziantep,

Turkey)

[1]

2.
Juvenile

Idiopathic
Arthritis

TNF-alpha, TNFRSF1B,
MMP-1, MMP-2, MMP-3,

MMP-13, IL-1alpha,
IL-1beta, IL-1 RII, IL-2, IL-6,

IL-6Ralpha, IL-8, IL-10,
IL-12, CCL2, CCL3, CCL11,

CCL22, CXCL9, S100A8

Customized
R&D-bead based

immunoassay (R&D
SYSTEMS/Bio-

Techne; Minneapolis,
MN, USA)

[2]

3.
Pediatric-Onset

Multiple
Sclerosis

FLC as Monomers &
Dimers (kapapaM,
lambdaM, kappaD,

lambdaD)

Gel Analysis &
Blotting using rabbit
antibodies to human

Ig kappa and
lambda light chains

[3]

4. Sjogren’s
Syndrome

IL27, MIA, CCL4,
TNFRSF18 and TNF-alpha

(Among others)

Multiplex
fluorescent

microparticle-based
immunoassays

[4]

4. Salivary Biomarkers as Diagnostic Tools in Developmental Conditions

4.1. Metabolomics

Bone-specific alkaline phosphatase (B-ALP) is a bone formation marker whose levels
fluctuate with puberty. Al-Khatieeb et al. hypothesized that the level of ALP and LDH
could affect the compliance of patients to monoblock therapy for orthoskeletal treatment.
A high level of these enzymes was observed but was not significant after performing
statistical analysis [5]. In another study, ALP, protein concentration, and chronological age
with cervical vertebral maturation stages (CVMS) were used as non-invasive biomarkers to
determine skeletal maturity. Salivary levels of ALP in conjunction with chronological age
were accurate predictors for CVMS in 53.2% of cases [6]. ALP levels were co-related with
variable stages of skeletal maturity (p = 0.0003) [7].

The early diagnosis and intervention of those with Autism Spectrum Disorder (ASD)
have been linked with enhanced functional outcomes. The diagnosis, intervention, and
prognosis would be facilitated by biomarker sampling, particularly salivary zinc concentra-
tions. Low salivary zinc in those with ASD may contribute to the pathogenesis of autism [8].
Salivary metabolites were found to be higher in children experiencing pain when compared
to those not experiencing pain. Collecting these non-invasive biomarkers may contribute
to future pain management interventions in children with ASD [9].
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4.2. Proteomics

It was found that insulin-like growth factor (IGF-1) and insulin-like growth factor
binding protein-3 (IGFBP-3) may be used to estimate skeletal maturity. It was found that
low salivary IGF-1 levels were present during puberty and lowered as pubertal growth
ended. As a result, these salivary levels may be used to predict the completion of skeletal
growth and may help predict when children would be most amenable to orthodontic
treatments [10,11].

Increased levels of salivary proinflammatory markers, such as interleukin-6 (IL-6) and
c-reactive protein (CRP), have been associated with child maltreatment. IL-6 secretions
have been found to follow a clear circadian rhythm, suggesting that a disrupted rhythm is
indicative of a dysfunctional inflammatory system. These findings suggest that a disrupted
IL-6 rhythm, and, as a result, a disrupted inflammatory system, may be linked with
childhood traumas (p = 0.031) [12]. Mucosal secretory immunoglobulin A (s-IgA) plays
a critical role in the immune system. It has been found that acute psychosocial stress
stimulates s-IgA secretion in adults and children who have undergone maltreatment.
This is suggestive of child maltreatment prematurely aging their immune system [13].
Familial social and economic instability in early childhood has been linked to immune
system dysregulation, as is evidenced by DNA shedding of the Epstein-Barr virus (EBV)
salivary biomarkers. Traumatic early childhood events resulted in a 100% increase in EBV
DNA shedding among previously infected adolescents. This indicates that the salivary
biomarkers of EBV may be indicative of childhood trauma [14].

The protein composition of saliva has been studied from early on to find associated
markers for the diagnosis and prognosis of ASD [15,16]. The mass spectrometric analysis
of a patient cohort of 132 proteins were increased in ASD-positive patients, 25 of which
were associated with a severe to moderate group of the elevated proteins, suggested as
biomarkers for ASD calmodulin-3, plastin-2, and protein s100-a7 [17].

4.3. Genomics

Those with Cleft Lip Palate (CLP), one of the most common congenital malformations
of the head and neck, are found to be more likely to present with accompanying anomalies
including Defects of Enamel (DDE). Matrix Metallopeptidase 2 (MMP2), a membrane-
bound protein containing collagen-degrading capabilities, plays a crucial role in tooth
formation and mineralization. The findings suggest that MMP2 may play a role in a
genomic approach to establish any potential risks for those with CLP [18]. Supernumerary
teeth are one of the most common dental anomalies seen in the pediatric population. An
immunohistochemistry panel showed that those with supernumerary teeth presented with
an enhanced expression of Wingless (Wnt) and Sonic Hedgehog (SHH) proteins, both of
which are pro-tumorigenic proteins [19].

It has been shown that psychological stress elicits telomere shortening. Through
salivary samples via PCR testing, it was found that families with an ASD child endure
exceeding levels of psychological stress [20]. Using these biomarkers may contribute to
the early diagnosis of any psychological stress and respective intervention, which would
optimize mental well-being and the quality of life. Maternal stress affects an infant’s
neurocognitive development before, during, and post-pregnancy. Certain CpGs were
found to be linked genetically, including YAP1, TOMM20, and CSMD1.

Additionally, two differentiated methylation groups (DMR), DAXX and ARL4D, were
found to be related to maternal stress measures. An early assessment of maternal stress may
contribute to preventative health measures for the infant, further optimizing their health
and the quality of life [21]. Upon examining polymorphisms of the STS and SULT2A1 genes,
dehydroepiandrosterone (DHEA) and its sulfated form, DHEA-A, and their relationship to
Attention Deficit Hyperactivity Disorder (ADHD), it was found that the levels of DHEA
were positive correlated with attention. This may highlight the potential role of ADHD and
its pathogenesis with regard to STS polymorphisms and neurosteroid levels [22] (Table 2).
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Table 2. Most commonly recurring developmental conditions and their respective biomarkers.

Disease Observed Biomarker Methodology Ref.

1.
Autism

Spectrum
Disorder

Salivary zinc Plasma emission
spectroscopy [8]

16s rRNA 16s RNA gene
amplicon sequencing [23,24]

Calmodulin-3
Plastin-2
S100-a7

Bio-Rad protein assay [17]

2.
Skeletal
Maturity

LDH Spectrophotometry [5]

ALP ALP and protein assay [6]

Salivary B-ALP ELISA [7]

IGF-1
IGFBP-3 Spectrophotometry [10,11]

3.
Attention Deficit

Hyperactivity
Disorder

DHEA
CpG methylation TaqMan assay [22]

4.4. Transcriptomics

Circulating microRNA (miRNA) was compared to cerebrospinal fluid miRNA levels
when assessing miRNA as a biomarker for pediatric concussions. Six miRNAs had similar
changes in both CSF and salivary levels, including miR-182-5p, miR-221-3p, mir-26b-5p,
miR-320c, miR-29c-3p, and miR-30e-5p. More specifically, concentrations of miR-320c were
found to be directly correlated with attention deficit. This suggests that salivary miRNA
may be an accurate potential biomarker for traumatic brain injuries [25].

Several miRNAs have been found to potentially be used as biomarkers in diagnosing
and treating those with ASD. The most accurate miRNAs to differentiate between typically
developing children and those with ASD were miR-23a-3p, miR-32-5p, and miR-628-5p [24].

4.5. Microbiomics

ASD has been linked with many comorbidities, including gastrointestinal abnor-
malities, dental disease, and allergies. Oral and gut microbiomes are suggested to play
important roles in inflammation and immune dysfunction pathogenesis. More specifically,
16S rRNA gene amplicon sequencing helps distinguish the oral and gut macrobiotics of
patients with ASD. Altering the oral and gut microbiome may potentially address and
ameliorate co-morbidities associated with those with ASD [23].

5. Salivary Biomarkers as Diagnostic Tools in Neuropsychiatry

5.1. Metabolomics

A plethora of evidence supports that measuring salivary cortisol and alpha-amylase
levels serves as stress biomarkers. The application of salivary stress biomarkers spans
from pediatric dental anxiety to internalizing or externalizing disorders. The partial hy-
pofunction of hypothalamus-pituitary-adrenal (HPA) was found to be associated with
pediatric patients suffering from ADHD by assessing the cortisol levels to induced stress,
which was found to be reduced in positive patients (p = 0.034) [26]. In addition, salivary
immune biomarker secretory immunoglobin A (s-IgA) is often measured alongside HPA
biomarkers to explore the interactions between stress, the HPA axis, and the immune sys-
tem [27]. Obtaining samples through saliva is a great alternative to blood collection in the
pediatric population, especially for children with cerebral palsy. In patients with cerebral
palsy, the sympathetic nervous system predominates, causing vasoconstriction and making
peripheral venous blood more difficult to access. A study demonstrated, with non-invasive
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salivary diagnostics, that higher levels of inflammatory markers in patients with cerebral
palsy are associated with excessive constipation and a reduced quality of life [28].

While using salivary stress biomarkers, such as cortisol and alpha-amylase, as a di-
agnostic tool is largely favorable, they are far from perfect. For instance, they cannot
distinguish between acute fear and chronic anxiety [29]. Additionally, salivary cortisol
concentrations reflect free serum cortisol concentrations, which is the unbound and bio-
logically active 5% of total cortisol under basal conditions. On the other hand, measuring
plasma cortisol concentration yields total cortisol. In other words, salivary cortisol can only
be a surrogate for free serum cortisol concentrations [30]. Another study demonstrated that
the validity of assessing manganese exposure through saliva samples needs further study.
The correlation between manganese exposure in water and salivary levels is the weakest of
the candidate biomarkers, including saliva, hair, and toenails [31].

5.2. Proteomics

Soluble salivary immune mediators such as C-reactive protein (CRP), interleukin-6
(IL-6), IL-1beta, IL-8, tumor necrosis factor-alpha (TNF-alpha), and secretory immunoglobin
A (s-IgA), can be measured in salivary samples and serve as markers for systemic inflam-
mation, including gingival inflammation [32]. In the case of children and youth with
Obsessive-Compulsive Disorder (OCD), the elevated salivary levels of lysozyme, alpha-
amylase, secretory s-IgA, CRP, IL-6, IL-1beta, and TNF-alpha are found to be associated
with OCD diagnosis and symptom severity [32,33]. Melatonin secretion can also be de-
tected and collected in saliva to evaluate one’s sleep [34], with the possibility of an at-home
collection [35].

5.3. Genomics

Salivary extracellular vesicles (EVs) are reliable diagnostic biomarkers for detecting
mild traumatic brain injury (TBI). Genetic profiling with the real-time PCR of salivary EVs
showed that more than 50 genes, and more significantly three of them (CDC2, CSNK1A1,
and CTSD), are upregulated in emergency department patients and in concussion clinic
patients, compared to control groups (p < 0.05) [36]. Salivary DNA samples can also help
researchers determine epigenetic changes in maltreated school-aged low-income children.
The increase or the decrease in methylation varies depending on the sex of the child
and the timing of maltreatment. In general, the mean difference in methylation between
maltreated children and the control group was 6.2%. Epigenetic modifications are also
seen in the glucocorticoid receptor gene (nuclear receptor subfamily 3, group C, member 1
genes), dopaminergic gene (ankyrin repeat and kinase domain containing 1) and alcohol-
metabolizing gene (aldehyde dehydrogenase 2), which are particularly important for the
development of psychopathology in maltreated children [37].

5.4. Transcriptomics

MicroRNA (miRNA) expression in the saliva is shown to be an accurate biomarker for
traumatic brain injury (TBI) in Hicks’ study. The 2018 article published in the Journal of
Neurotrauma compared changes in miRNA concentration after childhood TBI in CSF and
in saliva. A total of 214 miRNAs were detected in CSF, where 63% of them were also present
in saliva, and 10% had parallel changes in both saliva and CSF. Six miRNAs had similar
changes in both CSF and saliva: miR-182-5p, miR-221-3p, mir-26b-5p, miR-320c, miR-
29c-3p, and miR-30e-5p; three of them were related to neuronal development. Attention
difficulty reported by the child and parent was directly correlated with the concentration of
miR-320c [25].

Another study explored the relationship between miRNA expression in saliva and
detecting prolonged concussion symptoms [38]. Researchers could accurately identify
patients with prolonged symptoms using levels of 5 miRNAs (miR-320c-1, miR-133a-5p,
miR-769-5p, let-7a-3p, and miR-1307-3p) and logistic regression (area under the curve, 0.856;
95% CI, 0.822–0.890). One month after injury, the expression of three miRNAs was associ-
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ated with specific symptoms: miR-320c-1 was associated with memory difficulty; miR-629
with headaches; and let-7b-5p with fatigue. Similarly, a study compared salivary miRNA
expression in two groups of children: those with persistent post-concussive symptoms
(PPCS); and those without PPCS, at three different time points (within one week of injury,
one to two weeks post-injury and four weeks post-injury) [39]. The study analyzed a total
of 827 miRNAs, 91 of which had higher expression levels than the calculated background
threshold and were included in the differential gene expression analysis. Among these 91
miRNAs, 13 had significantly different expression levels in children with PPCS at all the
time points (Table 3).

Table 3. Neuropsychiatric conditions and their respective biomarkers.

Condition Observed Biomarker Methodology Ref.

1. Stress

s-IgA s-IgA ELISA kit (EUROIMMUN AG;
Luebeck, Germany) [27]

Cortisol Commercial ELISA kit (Salimetrics, USA) [27]

Alpha-amylase

Commercially available
chemoimmunoluminiscence assay kits

(Cobas integra400 plus, Roche
Diagnostics, Risch-Rotkreuz,

Switzerland) and analyzer (Cobas e411,
Roche Diagnostics, Risch-Rotkreuz,

Switzerland)

[29]

2. Cerebral Palsy

IL-1β
IL-6
IL-8
IL-10

TNF-α

CBA Cytokine Inflammatory Kit (Becton
Dickinson, CA, USA) [28]

3. Systemic Inflammation

C-reactive proteins
Commercially available enzyme-linked

immunoassay kit from Salimetrics,
Suffolk, UK

[32]

Cytokine concentrations (IL-1β, IL-6,
IL-8, and TNF-α)

MILLIPLEX MAP HCYTOMAG-60K-04
kit (Millipore, Billerica, MA, USA) [31]

s-IgA
Colorimetric immunoenzymatic assay

(ELISA) using an s-IgA saliva kit
(DiaMetra, Milano, Italy)

[31]

4. Mild TBI

CDC2, CSNK1A1 and CTSD

NanoSight NS500 instrument (Nanosight,
Malvern, UK), transmission electron

microscopy, Western blot analysis,
Taqman

[36]

miR-182-5p, miR-221-3p, mir-26b-5p,
miR-320c, miR-29c-3p, miR-30e-5p

Oragene RE-100 saliva collection kit
(DNA Genotek; Ottawa, Canada) [25]

5. Child Maltreatment ALDH2, ANKK1 and NR3C1 Oragene DNA Self-Collection kits [37]

6. Prolonged Concussion
Syndrome

miR-320c-1, miR-133a-5p, miR-769-5p,
let-7a-3p, and miR-1307-3p

Plasma/Serum Circulating and
Exosomal RNA Purification Kits (Norgen

Biotek)
[38,40]

hsa-miR-95-3p, hsa-miR-301a-5p,
hsa-miR-626, hsa-miR-548y,

hsa-miR-203a-5p, hsa-miR-548e-5p,
hsa-miR-585-3p, hsa-miR-378h,
hsa-miR-1323, hsa-miR-183-5p,

hsa-miR-200a-3p, hsa-miR-888-5p,
hsa-miR-199a-3p + hsa-miR-199b-3p

nCounter® human V3 miRNA assay kit
(NanoString Technologies Inc., Seattle,

WA, USA)
[39]

7. Depression EBV QiaAmp blood kit (Qiagen, Valencia, CA,
USA) [40]

5.5. Microbiomics

A study measured the number of EBV copies shed in saliva and assessed depressive
symptoms using the Center for Epidemiologic Studies-Depression scale in female and male
adolescents aged 11–17 years. Their study showed that the presence of salivary shedding
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of reactivated EBV is linked to depressive symptoms in female adolescents only. In fact, the
interaction between sex and depressive symptoms with EBV reactivation was statistically
significant (p < 0.01) [40].

6. Salivary Biomarkers as Diagnostic Tools in Metabolic, Gastrointestinal, and
Pulmonary Diseases

6.1. Metabolomics

A pilot cohort study revealed that hepatic steatosis, or non-alcoholic fatty liver dis-
ease (NAFLD)—an important feature linked to metabolic syndrome—can be detected by
elevated salivary uric acid levels in children with obesity. Saliva was sampled using a
non-invasive swab collection device and analyzed using gas chromatography-mass spec-
trometry. Moreover, salivary uric acid increased was associated with elevated homeostatic
model assessment-insulin resistance values. Despite the small sample, its findings revealed
the hopeful use of salivary markers as a screening and preventive tool for hepato-metabolic
comorbidities, including hepatic steatosis, with high sensitivity, specificity, and accuracy
among children with obesity [41].

6.2. Proteomics

Studies have confirmed a significant increase in CRP and insulin concentrations in
the saliva of children with obesity. An observational study in Spain followed a cohort of
children from ages 8 to 12 and measured the levels of circulating inflammatory cytokines
to detect the signs of obesity-related inflammation and glucose intolerance, a predisposing
factor responsible for the progression of diabetes and metabolic syndrome. Increased
salivary CRP, leptin, and insulin levels in assays detected differences in the body-mass
index, dietary characteristics, and physical activity levels in a sex-dependent manner [42].
A large cohort study constructed and evaluated a continuous approach to a scoring system
for metabolic syndrome risk factors adapted to children. The diagnostic tool proposed by
Shi et al. incorporates a combination of clinical parameters, such as waist circumference
and systolic blood pressure. It uses salivary measures of fasting glucose and high-density
lipoprotein cholesterol as surrogates of plasma measures. In addition to finding correlations
between obesity and the salivary measures of insulin, CRP, and adiponectin, the progressive
nature of their suggested scoring system, as opposed to the binary definition of the disease
in adults, revealed a higher level of sensitivity for pediatric populations [43].

Evaluating systemic changes in saliva can also be a potential tool for diagnosing,
predicting, and monitoring pulmonary diseases in pediatrics. Like obesity, salivary CRP
is suggested to be a predictor of pediatric acute respiratory illness, more importantly in
pediatric pneumonia. The clinical utility of salivary CRP can be seen in an acute pediatric
setting and helps predict serum CRP above 100 mg/L with high specificity. This can replace
the invasive use of venipuncture in young outpatients [44]. Finally, salivary biosensors can
detect early childhood asthma and predict asthma exacerbations. In their analytical cross-
sectional study of children aged 6 to 12, Zamora-Mendoza et al. proposed a non-invasive
method based on immunoassay and surface-enhanced Raman spectroscopy. The study
identified the proteomic profile of bronchial inflammation, including elevated levels of IL-8,
IL-10, and sCD163 [45]. Another small cohort study conducted by Okazaki et al. revealed
that salivary surfactant protein D (SP-D) in children with asthma using ELISA was much
higher than in healthy controls. This reflected the degree of bronchial inflammation in
response to allergen exposure causing airway resistance and correlated with the increased
indices measured by the forced oscillation technique. Increased salivary SP-D levels were
associated with a higher degree of asthma exacerbation [46].

In the field of liver diseases, proteomic methodologies were also applied to look for
a non-invasive method of monitoring. With the salivary cytokine profile using ELISA
quantification, Davidovich et al. were able to reflect a similar pattern of serum inflamma-
tory parameters describing the immunosuppressive status in liver-transplanted children
undergoing tacrolimus therapy. The potential markers of inflammation in saliva using
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proteomics were identified, such as the reduced levels of IL-6 and IL-10 and the elevated
levels of IL-1b [47].

6.3. Microbiomics

Two studies examined oral microbiota dysbiosis using bacterial 16S rRNA gene se-
quence analysis in children with various liver diseases. Iwasawa et al. showed that
subjects with Pediatric-Onset Primary Sclerosing Cholangitis (PSC) presented significantly
decreased Haemophilus and increased Oribacterium colonies in their saliva, compared
to healthy participants to patients with Ulcerative Colitis (UC). By observing significant
differences between PSC and UC salivary bacterial profiles, microbiome markers in the
saliva can help distinguish these two diseases and provide accurate diagnosis in a non-
invasive manner [48]. Another cohort study performed microbial profiling from oral swabs
in children diagnosed with non-alcoholic fatty liver disease. Systemic inflammation, cirrho-
sis, and advanced liver disease progression were associated with increased levels of oral
Veillonella and Prevotella [49]; however, further microbial profiling is needed with larger
heterogeneous sample sizes, as mentioned previously (Table 4).

Table 4. Common metabolic, gastrointestinal, and pulmonary conditions and their respective
biomarkers.

Condition
Observed
Biomarker

Methodology Ref.

1. Non-Alcoholic Fatty
Liver Disease

Uric acid Gas chromatography-mass
spectrometry [41]

Veillonella
colonies
Prevotella
colonies

Bacterial 16S rRNA gene
sequencing [49]

2. Liver Graft versus Host
Rejection

IL-6
IL-10
IL-1b

ELISA [47]

3. Primary Sclerosing
Cholangitis

Haemophilus
colonies

Oribacterium
colonies

Bacterial 16S rRNA gene
sequencing [48]

4. Obesity

Insulin
Multiplex magnetic bead

assays

[42]
CRP [43]

Leptin
Adiponectin

5. Pediatric Pneumonia
CRP ELISA [44]
CP-D ELISA [46]

6. Asthma
IL-8
IL-10

sCD163

Immunoassay and
surface-enhanced Raman

spectroscopy
[45]

7. Salivary Biomarkers as Diagnostic Tools in Oral Diseases

In clinical practice, caries, gingivitis, and periodontitis diagnosis is mostly based
on clinical, visual, and radiological findings. The following section overviews research
where various proteins, microbes, and metabolites, were associated with childhood caries
or periodontal disease. This research can be a basis for biochemical diagnostic tools in
dental settings. Adopting such a biochemical diagnosis can improve treatment outcomes
by enabling dentists to tailor therapeutic interventions to a patient’s specific biochemical
needs (Table 5).
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Table 5. Oral diseases and their respective studied biomarkers.

Disease Observed Biomarker Methodology Ref.

1. Dental Caries

Leptin and Ghrelin
Multiplex Magnetic

Bead Panels on a
Luminex 200 Platform

[50]

NO (measured as total nitrates and
nitrites) Griess reaction method [51]

Carbonic Anhydrase-VI Zymography method [52]

Beta-defensin-2
Histatin-5 ELISA [53]

IL6
IL8

TNF-alpha
ELISA [54,55]

Streptococcus mutans spp.
C. albicans

Paludibacter
Neisseria

(Among others)

16S rRNA [56,57]

2. Periodontal Disease

Phosphate Multiplex Magnetic
Bead Panels [58]

Alkaline Phosphatase
(In T1DM patients only) DEA-AMP Method [59]

7.1. Metabolomics

In the case of dental caries, one study by Alqaderi et al. associated a later bedtime
in Kuwaiti children with an increased incidence of caries [50]. To explain this association,
the authors highlight that a later bedtime leads to changes in hormonal levels, notably a
lower leptin level and a higher ghrelin level. This hormonal change leads to more frequent,
carbohydrate-rich snacking in children, thus predisposing them to caries. This observation
opens the door for cost-efficient, easy-to-implement sleep interventions in susceptible
children to reduce their caries risk. Additionally, these hormonal changes can be detected
relatively simply and non-invasively in saliva. Another study by Syed et al. associated a
lower level of salivary nitric oxide (NO) and its metabolites with an increased risk of caries
in children. This association can be explained by the antimicrobial role of NO in protection
against caries [51]. Thus, screening children for salivary NO levels enables dentists to
identify those at high-risk for caries, and tailor a dietary intervention with relatively easier
compliance to raise their NO levels, and thus protect them from caries.

As for gingivitis and periodontal disease, Goodson et al. found an association between
dietary phosphate intake and gingivitis in children. Indeed, phosphate acts as a local
pro-inflammatory in the gingiva by reducing IL-4 production and raising that of IL-1b [58].
Thus, by screening children for salivary phosphate levels, we can identify those at high-risk
for gingivitis and intervene by reducing their dietary intake to protect them from caries.
Lastly, a study by Sridharan et al., focusing on periodontal disease in children with Type I
Diabetes Mellitus (T1DM), observed that children with a higher alkaline phosphatase level
had a greater gingival index and pocket pocking depth [59]. Thus, evaluating the salivary
level of alkaline phosphatase in children with T1DM enables dentists to intervene early to
avert the course of the disease and improve the children’s outcomes.

7.2. Proteomics

This sub-section will also focus only on caries lesions. A study by de-Sousa et al. [52]
found an association between the activity of carbonic anhydrase-VI (CA-VI) and caries
incidence in children. Indeed, a lower activity level of salivary CA-VI predisposes children
to caries and can thus be used as a prognostic factor for caries development. Another
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work by Jurczak et al. associated higher levels of salivary b-defensin-2 and histatin 5, two
proteins with antimicrobial properties, with more advanced carious lesions [53]. Higher
levels of 1β, IL-6, IL-8, IL-10, and TNF-a are seen to be increased in gingivitis and caries-
prone children [54,55]. Lastly, while this does not constitute a salivary biomarker, Hertel
et al. observed a higher level of Mucin 5b, Mucin 7, and IgA, in the pellicle of caries-active
children compared to their caries-free counterparts [60].

While the authors of the studies above recognize a limitation in their work, namely
their small sample sizes, they encourage the pursuit of larger-scale trials to confirm their
observed associations. Much like we would test gene panels to identify a defective gene
in an individual, to diagnose and prognose a suspected genetic disorder, one could do
a “salivary biomarker screen”, which would include the various metabolites, microbes,
and proteins associated with oral disease. Such a screening tool would enable dentists to
pinpoint a patient’s biochemical risk factors for oral disease and develop individualized
treatment plans for their patients.

7.3. Microbiomics

This sub-section focuses exclusively on childhood caries. One study by Kim et al.
observed that caries-free Korean children had greater diversity in their oral microbiota than
their caries-active counterparts [61]. Additionally, children with caries had greater propor-
tions of bacteria that exhibit pro-caries behavior, such as Streptococcus and Granulicatella,
which invade epithelial cells, as well as Staphylococcus and Veillonella, which are involved in
D-alanine metabolism. In contrast, caries-free children had greater proportions of bacteria
that antagonize caries formation, notably Neisseria and Lautropia, which are involved in
linoleic acid metabolism, and Capnocytophaga, which is involved in flavonoid biosynthesis.
Another study by Hemadi et al. observed higher salivary levels of Streptococcus mutans
spp., C. albicans, and Prevotella spp. in children with caries, compared to their caries-free
counterparts [56]. Lastly, Manzoor et al. observed higher levels of sugar fermenters, such
as Paludibacter and Labrenzia, in children with caries [57].

8. Current Status and Advances in Saliva-Based Biosensors

The importance of saliva as a diagnostic tool came into light during the advent of the
COVID-19 pandemic. Its non-invasiveness and the ease of collection ensured the safety of
healthcare workers; nonetheless, nasopharyngeal swabs remained the gold standard. It
evidenced how saliva can become an essential part of diagnostic procedures. Antibody
antigen-based reactions can be efficiently utilized and detected by colorimetric or spec-
trophotometric changes. A prototype for a saliva-based MMP8 detector using specific
antibodies and surface acoustic wave (SAW) technology was developed for periodon-
tal disease and was seen to have comparable sensitivity and specificity to the standard
ELISA-based methods [62] (Figure 2).
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Figure 2. A typical saliva-based biosensor. Briefly, it consists principally of three components, a
surface (carbon-based or metal) to accommodate the biorecognition element (probes, antibodies,
or enzymes), which captures the target (genomic material, antibodies, proteins, etc.). The molec-
ular interactions induce colorimetric or spectrometric changes, which can be observed with their
corresponding detection technologies. Image used with permission from Goldoni et al., 2021 [63].

Stefan-van Staden et al. proposed a new method of assay of estradiol (E2), testosterone
(T2), and dihydrotestosterone (DHT) based on stochastic microsensors that allow the
earlier detection and prevention of hormonal, metabolic, and developmental problems
in children. This could replace the classical measurement of electrochemical markers
using ELISA or liquid chromatography-tandem mass spectrometry. The biosensor is
designed using diamond paste as the matrix and three different electroactive materials:
maltodextrin, a-cyclodextrin, and 5,10,15,20-tetraphenyl-21H,23H porphyrin [64]. The
response to stochastic microsensors is based on channel conductivity, which is the degree of
alteration of a current traversing a channel under a controlled potential of 125 mV when a
steroidal hormone binds onto the channel wall. By manipulating the channel conductivity
of analytes, stochastic sensors are described as having high reliability and selectivity,
which could overcome the limitations of the standard method, such as its insufficient
sensitivity for children’s saliva. The results demonstrated that, compared to the standard
method using ELISA, the stochastic biosensor could perform reliable pattern recognition,
identification, and the quantification of the three hormones at very low concentrations in
saliva samples [64].

Lukose et al. also highlighted optical technologies using photonics to rapidly screen
abnormal health conditions and viral infections rapidly and universally through saliva.
The article explored optical spectroscopy techniques that more precisely involve the UV-
visible-infrared region, including surface plasmon resonance, Raman, IR spectroscopy, and
laser-induced fluorescence [65]. For instance, a previous section of our paper discussed
the potential use of surface-enhanced Raman spectroscopy to detect the proteomic char-
acteristics of asthma in children. Non-invasive, photonic-based biosensors constitute a
hopeful field of new diagnostic tools due to their capacity to provide the remote, contact-
less evaluation and identification of conditions, including communicable diseases such as
COVID-19. In addition to detecting viral, bacterial, and parasitical infections, photonics
can be applied in a wide range of health conditions, such as various cancers, oral diseases,
metabolic and systemic diseases, as well as the detection of drug-related biomarkers in
saliva [65]. Finally, Lukose and al. suggested the possibility of a multi-modal approach
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in which a combination of photonics tools, accompanied by artificial intelligence, could
further optimize the specificity and sensitivity of these promising biosensors.

9. Conclusions

We have reviewed several methodologies that performed with good sensitivity and
specificity, as well as additional advantages covering some of the important limitations of
standard diagnostic tests performed today in the pediatric population. Acknowledging its
non-invasiveness and ubiquitous applications, saliva as a probing biofluid sample remains
highly attractive. It requires further investigations with larger samples and better analytical
and comparative evidence. The pursuit of further studies on these biomarkers can be
highly impactful. Indeed, salivary diagnostic/prognostic tools are less invasive and less
harmful than current tools and enable physicians to intervene early, altering the course of
the disease and significantly reducing suffering and disability in patients.

While sensitivity and specificity to the target molecules are satisfactory in the studies
explored, the specificity to a particular condition remains a challenge. For example, pro-
inflammatory markers can be commonly identified in autoimmune disorders, stress, poor
oral health, and pulmonary conditions. Identifying a marker highly specific to each
condition is imperative. Nonetheless, diagnosing infectious diseases like COVID-19, and
periodontal diseases, using microbiome-specific screens, specific proteins in ASD, and
miRNAs in various systemic conditions, are promising as salivary biosensor applications.
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