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Groupe de Mécanique et Gravitation 
Université de Mons–UMONS 

Belgium

Editorial Office

MDPI
St. Alban-Anlage 66

Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal Universe

(ISSN 2218-1997) from 2017 to 2018 (available at: http://www.mdpi.com/journal/universe/special

issues/HS)

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number,

Page Range.

ISBN 978-3-03842-997-5 (Pbk)

ISBN 978-3-03842-998-2 (PDF)

Articles in this volume are Open Access and distributed under the Creative Commons Attribution

(CC BY) license, which allows users to download, copy and build upon published articles even for

commercial purposes, as long as the author and publisher are properly credited, which ensures

maximum dissemination and a wider impact of our publications. The book taken as a whole is
c© 2018 MDPI, Basel, Switzerland, distributed under the terms and conditions of the Creative

Commons license CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/4.0/).



Contents

About the Special Issue Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Preface to ”Higher Spin Gauge Theories” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Carlo Iazeolla, Ergin Sezgin and Per Sundell

On Exact Solutions and Perturbative Schemes in Higher Spin Theory
Reprinted from: Universe 2018, 4, 5, doi: 10.3390/universe4010005 . . . . . . . . . . . . . . . . . . 1

Stefan Prohazka and Max Riegler

Higher Spins without (Anti-)de Sitter
Reprinted from: Universe 2018, 4, 20, doi: 10.3390/universe4010020 . . . . . . . . . . . . . . . . . 36

Dmitri Sorokin and Mirian Tsulaia

Higher Spin Fields in Hyperspace. A Review
Reprinted from: Universe 2018, 4, 7, doi: 10.3390/universe4010007 . . . . . . . . . . . . . . . . . . 69

Rakibur Rahman

Frame- and Metric-Like Higher-Spin Fermions
Reprinted from: Universe 2018, 4, 34, doi: 10.3390/universe4020034 . . . . . . . . . . . . . . . . . 114

Jin-Beom Bae, Euihun Joung and Shailesh Lal

Exploring Free Matrix CFT Holographies at One-Loop
Reprinted from: Universe 2017, 3, 77, doi: 10.3390/universe3040077 . . . . . . . . . . . . . . . . . 128

Thomas Basile

A Note on Rectangular Partially Massless Fields
Reprinted from: Universe 2018, 4, 4, doi: 10.3390/universe4010004 . . . . . . . . . . . . . . . . . . 163

Xavier Bekaert, Maxim Grigoriev and Evgeny Skvortsov

Higher Spin Extension of Fefferman-Graham Construction
Reprinted from: Universe 2018, 4, 17, doi: 10.3390/universe4020017 . . . . . . . . . . . . . . . . . 199

Roberto Bonezzi

Induced Action for Conformal Higher Spins from Worldline Path Integrals
Reprinted from: Universe 2017, 3, 64, doi: 10.3390/universe3030064 . . . . . . . . . . . . . . . . . 225

Ioseph L. Buchbinder, S. James Gates, Jr. and Konstantinos Koutrolikos

Higher Spin Superfield Interactions with the Chiral Supermultiplet: Conserved Supercurrents
and Cubic Vertices
Reprinted from: Universe 2018, 4, 6, doi: 10.3390/universe4010006 . . . . . . . . . . . . . . . . . . 242

Andrea Campoleoni, Dario Francia and Carlo Heissenberg

Asymptotic Charges at Null Infinity in Any Dimension
Reprinted from: Universe 2018, 4, 47, doi: 10.3390/universe4030047 . . . . . . . . . . . . . . . . . 269

Simone Giombi, Igor R. Klebanov and Zhong Ming Tan

The ABC of Higher-Spin AdS/CFT
Reprinted from: Universe 2018, 4, 18, doi: 10.3390/universe4010018 . . . . . . . . . . . . . . . . . 305

Yasuaki Hikida and Takahiro Uetoko

Three Point Functions in Higher Spin AdS3 Holography with 1/N Corrections
Reprinted from: Universe 2017, 3, 70, doi: 10.3390/universe3040070 . . . . . . . . . . . . . . . . . 358

v



Dmitry Ponomarev

A Note on (Non)-Locality in Holographic Higher Spin Theories
Reprinted from: Universe 2018, 4, 2, doi: 10.3390/universe4010002 . . . . . . . . . . . . . . . . . . 382

Evgeny Skvortsov and Tung Tran

AdS/CFT in Fractional Dimension and Higher-Spins at One Loop
Reprinted from: Universe 2017, 3, 61, doi: 10.3390/universe3030061 . . . . . . . . . . . . . . . . . 399

Pavel Smirnov and Mikhail Vasiliev

Gauge Non-Invariant Higher-Spin Currents in AdS4

Reprinted from: Universe 2017, 3, 78, doi: 10.3390/universe3040078 . . . . . . . . . . . . . . . . . 420

Mauricio Valenzuela

Higher Spin Matrix Models
Reprinted from: Universe 2017, 3, 74, doi: 10.3390/universe3040074 . . . . . . . . . . . . . . . . . 435

Yurii M. Zinoviev

Infinite Spin Fields in d = 3 and Beyond
Reprinted from: Universe 2017, 3, 63, doi: 10.3390/universe3030063 . . . . . . . . . . . . . . . . . 448

vi



About the Special Issue Editors

Nicolas Boulanger was born in Namur, Belgium, in 1977. He obtained his Ph.D. Degree in Physics

from ULB Brussels (Belgium) in 2003. After post-doctoral stays at the DAMTP (Cambridge, U.K.),

University of Mons (Mons, Belgium) and Scuola Normale Superiore (Pisa, Italy), he got a permanent

F.R.S.-FNRS research position at the University of Mons (UMONS) in 2009. In October 2015, he took

the direction of the group Mécanique et Gravitation inside the unit of Theoretical and Mathematical

Physics of UMONS. The same year, he received the Théophile De Donder prize for Mathematical

Physics from the Royal Academy of Belgium. In 2017, he was promoted Senior Research Associate

of the F.R.S.-FNRS. The research activities of his group are focused on the quantization of gauge

theories, duality, supergravity and higher-spin gauge theory, the main expertise of the group. He has

been Visiting Professor at the Universities of Tours and Aix-Marseille, France.

Andrea Campoleoni was born in Varese, Italy, in 1981. He studied physics at the University of

Pisa and at Scuola Normale Superiore di Pisa (Italy). He obtained his Ph.D. in Physics from Scuola

Normale Superiore in 2009. He then held postdoctoral fellowships at the Max Planck Institute for

Gravitational Physics of Potsdam (Germany) and at the Université libre de Bruxelles (Belgium). He
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Preface to ”Higher Spin Gauge Theories”

Higher-spin gauge theory has been a fascinating field of research since the dawn of quantum

field theory and remains a topic of active fundamental investigations. After the 1984 String Theory

revolution, it also triggered important researches from string theorists. It was indeed argued that

higher-spin gauge theory should describe a maximally symmetric phase of string theory, emerging in

the tensionless limit of the string.

Many years of efforts aiming at building consistent interactions among massless fields of arbitrary

spin, along the lines of the program formalized by Fronsdal in the late seventies, led to Vasiliev’s

equations. The latter are, to this day, the only known set of non-linear equations that describe, after

linearisation around four dimensional (anti-)de Sitter spacetime, the free propagation of an infinite

set of higher-spin gauge fields featuring the graviton. These last few years have seen a surge of

activities in the study of these equations, their perturbative expansion, their generalizations as well

as their links with string theory and conformal field theory via the AdS/CFT correspondence. The

new results partly confirmed some expectations on the subject and they also showed that more

work is required for a better understanding of the weak-field expansion of Vasiliev’s equations

around (A)dS4. On the one hand, the holographic reconstruction from the free O(N) model in three

dimensions seems to reproduce, as expected from the AdS/CFT conjecture, a non-Abelian gauge

theory of higher spin fields in (A)dS4, at least up to cubic order in the weak fields. On the other

hand, the Vasiliev equations display some seemingly unavoidable non-localities in their perturbative

regime around (A)dS4, which opens a possible new window on classical field theory. In parallel,

recent works performed in the light-cone gauge brought back to the scene some results obtained by

Metsaev in the early nineties, pointing to the existence of a consistent and interacting higher-spin

theory in flat background. Other recent exciting developments include, for instance, a quantitative

connection between string theory and higher-spin gauge theory via topological open string theories

of the Cattaneo-Felder type and the discovery of a remarkable web of dualities within CFT3, leading

to 3D bosonisation, triggered by the higher-spin/CFT duality.

The present collection of reprints is gathering together original contributions focusing on exciting

and timely questions at the forefront of research in higher-spin gauge theories. The topics covered

include conformal higher-spin theory, AdS/CFT duality in various dimensions, infinite-spin theories,

matrix models and higher-spin extension of BMS symmetries, to cite but a few. In addition, four

review papers are provided, that will prove very useful to both experts and newcomers in the active

field of higher-spin gauge theories.

Nicolas Boulanger, Andrea Campoleoni

Special Issue Editors
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Abstract: We review various methods for finding exact solutions of higher spin theory in
four dimensions, and survey the known exact solutions of (non)minimal Vasiliev’s equations.
These include instanton-like and black hole-like solutions in (A)dS and Kleinian spacetimes.
A perturbative construction of solutions with the symmetries of a domain wall is also described.
Furthermore, we review two proposed perturbative schemes: one based on perturbative treatment
of the twistor space field equations followed by inverting Fronsdal kinetic terms using standard
Green’s functions; and an alternative scheme based on solving the twistor space field equations
exactly followed by introducing the spacetime dependence using perturbatively defined gauge
functions. Motivated by the need to provide a higher spin invariant characterization of the exact
solutions, aspects of a proposal for a geometric description of Vasiliev’s equation involving an infinite
dimensional generalization of anti de Sitter space are revisited and improved.

Keywords: higher-spin gravity; exact solutions; higher-spin geometry

1. Introduction

Higher spin (HS) theory in four dimensions, in its simplest form and when expanded about
its (anti-)de Sitter vacuum solution, describes a self-interacting infinite tower of massless particles
of spin s = 0, 2, 4 .... The full field equations, proposed long ago by Vasiliev [1–3] (for reviews,
see [4,5]), are a set of Cartan integrable curvature constraints on master zero-, one- and two-forms
living on an extension of spacetime by a non-commutative eight-dimensional twistor space. The latter
is fibered over a four-dimensional base, coordinatized by a Grassmann-even SL(2,C)-spinor oscillator
ZA = (zα, z̄α̇), and the fiber is coordinatized by another oscillator YA = (yα, ȳα̇); the master fields
are horizontal forms on the resulting twelve-dimensional total space, valued an infinite-dimensional
associative algebra generated by YA, that we shall denote by A, and subject to boundary conditions on
the base manifold.

A key feature of Vasiliev’s equations is that they admit asymptotically (anti-)de Sitter solution
spaces, obtained by taking the HS algebra A to be an extension of the Weyl algebra, with its Moyal star
product, by involutory chiral delta functions [6,7], referred to as inner Klein operators, relying on a
realization of the star product using auxiliary integration variables [4]. Introducing a related class of
forms in Z-space, that facilitates a special vacuum two-form in twistor space, the resulting linearized
master fields can be brought to a special gauge, referred to as the Vasiliev gauge, in which their symbols
defined in a certain normal order are real analytic in twistor space, and the master zero- and one-forms
admit Taylor expansions in Y at Z = 0 in terms of Fronsdal fields on the mass shell and subject to
physical boundary conditions.

Universe 2018, 4, 5 1 www.mdpi.com/journal/universe
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Although the Vasiliev equations take a compact and elegant form in the extended space, their
analysis in spacetime proceeds in a weak field expansion which takes an increasingly complicated
form beyond the leading order. Indeed, they have been determined so far only up to quadratic
order. In performing the weak field expansion, a number of challenges emerge. Firstly, obtaining
these equations requires boundary conditions in twistor space, referring to the topology of Z space
and the classes of functions making up A [2,8,9]. The proper way of pinning down these aspects
remains to be determined. Second, the cosmological constant, Λ, which is necessarily nonvanishing in
Vasiliev’s theory (as the transvection operators of the isometry algebra are realized in A as bilinears
in Y), appears in the effective equations to its first power via critical mass terms, but also to arbitrary
negative powers via non-local interactions [4,10]. Thus, letting φ denote a generic Fronsdal field,
it follows that ∂φ ∼ √|Λ|φ on-shell, and hence interactions with any number of derivatives are of
equal relevance (at a fixed order in weak field amplitudes). This raises the question of just how badly
nonlocal are the HS field equations, the attendant problem of divergences arising even at the level
of the amplitudes [11,12], and what kind of field redefinitions are admissible. One guide available is
the holographic construction of the bulk vertices [13–15]. Clearly, it would be desirable to find the
principles that govern the nonlocal interactions, based on the combined boundary conditions in twistor
space as well as spacetime, such that an order by order construction of the bulk vertices can proceed
from the analysis of Vasiliev equations. The simple and geometrical form of Vasiliev equations, in turn,
may pave the way for the construction of an off-shell action that will facilitate the computation of the
quantum effects.

In an alternative approach to the construction of HS equations in spacetime, it has been proposed
to view Vasiliev’s equations as describing stationary points of a topological field theory with a path
integral measure based on a Frobenius-Chern-Simons bulk action in nine dimensions augmented by
topological boundary terms, which are permitted by the Batalin-Vilkovisky formalism, of which only
the latter contribute to the on-shell action [16,17].

This approach combines the virtues of the on-shell approach to amplitudes for massless particles
flat spacetime with those of having a background independent action, in the sense that the on-shell
action is fixed essentially by gauge symmetries and given on closed form, which together with the
background independence of Vasiliev’s equations provides a machinery for perturbative quantum
computations around general backgrounds.

In this context, it is clearly desirable to explore in more detail how the choice of boundary
conditions in the extended space influences the classical moduli space of Vasiliev’s equations,
with the purpose of spelling out the resulting spaces, computing HS invariant functionals on-shell,
and examining how the strongly coupled spacetime nonlocalities are converted into physical
amplitudes using the aforementioned auxiliary integral representation of star products in twistor space.

The aim of this article is to review three methods that have been used to find exact solutions of the
Vasiliev equations, and to describe two schemes for analyzing perturbations around them. In particular
we will describe the gauge function method [18,19] for finding exact solutions and summarize the first
such solution found in [20], as well as its generalization to de Sitter spacetime studied in [21] together
with the solutions of for a chiral version of the theory with Kleinian (2, 2) signature. As we shall see,
this method uses the fact that the spacetime dependence of the master fields can be absorbed into
gauge functions, upon which the problem of finding exact solutions is cast into a relatively manageable
deformed oscillator problem in twistor space. The role of different ordering schemes for star product
as well as gauge choices to fix local symmetries in twistor space will also be discussed.

Next, we will describe a refined gauge function method proposed in [22], where the twistor
space equations are solved by employing separation of twistor variables and holomorphicity in the
Z space in a Weyl ordering scheme and enlarging the Weyl algebra in the fiber Y space by inner
Kleinian operators. This approach provides exact solution spaces in a particular gauge, that we refer
to as the holomorphic gauge, after which the spacetime dependence is introduced by means of a
sequence of large gauge transformations, by first switching on a vacuum gauge function, taking the
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solutions to what we refer to as the L-gauge, where the configurations must be real analytic in Z space,
which provides an admissibility condition on the initial data in holomorphic gauge. The solutions can
then be mapped further to the Vasiliev gauge, where the linearized, or asymptotic, master fields, are
real analytic in the full twistor space and obey a particular gauge condition in Z space which ensures
that they consist of decoupled Fronsdal fields in a canonical basis; the required gauge transformation,
from the L gauge to the Vasiliev gauge, can be constructed in a perturbation scheme, which has so far
been implemented mainly at the leading order. We will describe a black hole-like solution in some
detail and mention other known solutions obtained by this method so far, including new solutions
with six Killing symmetries [23].

We shall also outline a third method, in which the HS equations are directly tackled without
employing gauge functions. In this method, solving the deformed oscillators in twistor space also
employs the projector formalism, though the computation of the gauge potentials does not rely on the
gauge function method. The black hole-like solution found in this way in [24] will be summarized.

We shall also review two approaches to the perturbative treatment of Vasiliev’s equations. One of
them, which we refer to as the normal ordered scheme, is based on a weak field expansion around
(anti-)de Sitter spacetime [3,4,25]. It entails nested parametric integrals, introduced via a homotopy
contraction of the de Rham differential in Z space used to solve the curvature constraints that have
at least one form index in Z space, followed by inserting the resulting perturbatively defined master
fields into the remaining curvature constraints with all form indices in spacetime. In an alternative
scheme, the equations are instead solved exactly in the aforementioned L-gauge, and a perturbatively
realized large HS gauge transformation is then performed to achieve interpretation in terms of Fronsdal
fields in asymptotically (anti-)de Sitter spacetimes in Vasiliev gauge [7]. The advantages of the latter
approach in describing the fluctuations around more general HS backgrounds will be explained.

A word of caution is in order concerning the usage of ‘black hole’ terminology in describing certain
types of exact solutions to HS equations. This terminology is, in fact, misleading in some respects since
the notion of a line interval associated with a metric field is not HS invariant. Indeed, the apparent
singular behaviour at the origin may in principle be a gauge artifact. This point is discussed in more
detail in Section 4.2. Moreover, given the nonlocal nature of the HS interactions, the formulation of
causality, which is crucial in describing the horizon of a black hole, is a challenging problem without
any proposal for a solution yet in sight; in fact, a more natural physical interpretation of the black
hole-like solutions may turn out to be as smooth black-hole microstates [7,26]. Another aspect of
the known black hole-like solution in HS theory is that they activate fields of all possible spins, and
apparently it is not possible to switch of all spins except one even in the asymptotically AdS region.

So, what is meant by a black hole solution in HS theory? Firstly, the SO(3)× SO(2) symmetry of
the solution (which is part of an infinite dimensional extended symmetry forming a subgroup of the
HS symmetry group) is in common with the symmetry group arising in the asymptotically AdS BH
solution of ordinary AdS gravity. Second, the solution contains a spin-two Weyl tensor field which
takes the standard Petrov type D form, with a singularity at the origin; more generally, the spin-s Weyl
tensors are of a generalized Petrov type D form, given essentially by the s-fold direct products of a
spin-one curvature of the Petrov type D form. The BH terminology is thus used in the context of HS
theory with the understanding that it is meant to convey these properties, albeit they do not constitute
a rigorous definition of a black hole in HS theory.

The use of HS invariants for exact solutions to capture their physical characteristics has been
considered and in some cases they have been computed successfully. These particular invariants alone
do not, however, furnish an answer to the question of whether it makes any sense to think about event
horizons in HS theory at all, and if so, how to define them; in fact, their existence rather supports
the aforementioned microstate proposal, wherein the HS invariants can be interpreted as extensive
charges defining HS ensembles.

Motivated by the quest for giving a physical interpretation of the exact solution in the context of
underlying HS symmetries, a geometrical approach to HS equations was proposed in [27]. We shall

3
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summarize this proposal in which the HS geometry is based on an identification of an infinite
dimensional structure group in a fibre bundle setting, and the related soldering phenomenon that
leads to a HS covariant definition of classes of (non-unique) generalized vielbeins and related metrics,
and as such an infinite dimensional generalization of AdS geometry. In doing so, we will improve the
formulation of [27] by dispensing with the embedding of the relevant infinite dimensional coset space
into a larger one that involves the extended HS algebra that includes the twistor space oscillators.

Finally, we are not aware of any exact solutions of HS theories in dimensions D > 4 [28,29],
while in D = 3, assuming that the scalar field is coupled to HS fields, we can refer to [8,30,31] for
the known solutions. Purely topological HS theory, which has no dynamical degrees of freedom,
and which allows a more rigorous definition of black holes, is known to admit many exact solutions
whose description goes beyond the scope of this review.

2. Vasiliev Equations

2.1. Bosonic Model in (A)dS

Vasiliev’s theory is formulated in terms of horizontal forms on a non-commutative fibered space
C with four-dimensional non-commutative symplectic fibers and eight-dimensional base manifold
equipped with a non-commutative differential Poisson structure. On the total space, the differential
form algebra Ω(C) is assumed to be equipped with an associative degree preserving product �, a
differential d, and an Hermitian conjugation operation †, that are assumed to be mutually compatible.
The base manifold is assumed to be the direct product of a commuting real four-manifold X4 with
coordinates xμ, and a non-commutative real four-manifold Z4 with coordinates ZA; the fiber space
and its coordinates are denoted by Y4 and YA, respectively. The non-commutative coordinates are
assumed to obey

[YA, YB]� = 2iCAB , [ZA, ZB]� = −2iCAB , [YA, ZB]� = 0 , (2.1)

where CAB is a real constant antisymmetric matrix. The non-commutative space is furthermore
assumed to have a compatible complex structure, such that

YA = (yα, ȳα̇) , ZA = (zα, z̄α̇) , (2.2)

(yα)† = ȳα̇ , (zα)† = −z̄α̇ , (2.3)

where the complex doublets obey [yα, yβ]� = 2iεαβ and [zα, zβ]� = −2iεαβ. The horizontal forms can be
represented as sets of locally defined forms on X4 ×Z4 valued in oscillator algebras A(Y4) generated
by the fiber coordinates glued together by transition functions, that we shall assume are defined locally
on X4, resulting in a bundle over X4 with fibers given by Ω(Z4)⊗A(Y4). The algebra A(Y4) can be
given in various bases; we shall use the Weyl ordered basis, and the normal ordered basis consisting
of monomials in a± = Y ± Z with a+ and a− oscillators standing to the left and right, respectively.
We assume that the elements in Ω(Z4)⊗A(Y4) have well-defined symbols in both Weyl and normal
order. The normal order reduces to Weyl order for elements that are independent of either Y or Z,
and in the cases where depend on both Y and Z, they can be composed using the Fourier transformed
twisted convolution formula in normal ordered scheme as

( f � g)(Z; Y) =
1

(2π)4

∫
R4×R4

d4Ud4V f (Z + U; Y + U) g(Z − V; Y + V) eiVAUA . (2.4)

The model is formulated in terms of a zero-form Φ, a one-form

A = dxμWμ + dzαVα + dz̄α̇V̄α̇ , (2.5)

4
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and a non-dynamical holomorphic two-form

J := − ib
4

dzα ∧ dzα κ , (2.6)

with Hermitian conjugate J = (J)†, where b is a complex parameter and

κ := κy � κz , κy := 2πδ2(y) , κz := 2πδ2(z) , (2.7)

are inner Klein operators obeying κy � f � κy = πy( f ) and κz � f � κz = πz( f ) for any zero-form f ,
where πy and πz are the automorphisms of Ω(Z4)⊗A(Y4) defined in Weyl order by

πy(x; z, z̄; y, ȳ) = (x; z, z̄;−y, ȳ) , πz(x; z, z̄; y, ȳ) = (x;−z, z̄; y, ȳ) . (2.8)

It follows that dJ = 0, J � f = π( f ) � J and π(J) = J, idem J, with

π := πy ◦ πz , π̄ := πȳ ◦ πz̄ . (2.9)

It is useful to note that the inner Kleinian takes the following forms in different ordering schemes:

κ =

{
eiyαzα in normal ordering scheme

(2π)2δ2(y)δ2(z) in Weyl ordering scheme
(2.10)

The nonminimal and minimal models with all integer spins and only even spins, respectively,
are obtained by imposing the conditions

Non-minimal model (s = 0, 1, 2, 3, ...) : π ◦ π̄(A) = A , π ◦ π̄(B) = B , (2.11)

Minimal model (s = 0, 2, 4, ...) : τ(A) = −A , τ(B) = π̄(B) , (2.12)

where τ is the anti-automorphism

τ(xμ; YA, ZA) = f (xμ; iYA,−iZA) , τ( f � g) = τ(g) � τ( f ) , (2.13)

It follows that τ(J, J̄) = (−J,− J̄). Models in Lorentzian spacetimes with cosmological constants
Λ are obtained by imposing reality conditions as follows [21]:

ρ(B†) = π(B) , ρ(A†) = −A , ρ :=

{
π , Λ > 0
Id , Λ < 0

(2.14)

Basic building blocks for Vasiliev equations are the curvature and twisted-adjoint covariant
derivative defined by

F := dA + A � A , DB := dB + [A, B]π , (2.15)

respectively, where the π-twisted star commutators is defined as

[ f , g]π := f � g − (−1)| f ||g|g � π( f ) , (2.16)

and
d := dx + dZ , dx = dxμ∂μ , dZ = dzα∂α + dz̄α̇ ∂̄α̇ . (2.17)

Vasiliev equations of motion are given by

F + B � (J − J) = 0 , DB = 0 , (2.18)

5
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which are compatible with the kinematic conditions and the Bianchi identities, implying that the
classical solution space is invariant under the following infinitesimal gauge transformations:

δA = Dε := dε + [A, ε]� , δB = −[ε, B]π , (2.19)

for parameters obeying the same kinematic conditions as the connection.
It remains a challenging problem to determine if these equations can be derived from a suitable

tensionless, or critical tension, limit followed by a consistent truncation of string field theory on a
background involving AdS4. It will be very interesting to also determine if these equations follow
from a consistent quantization of a topological string field theory. For a more detailed discussion and
progress in this direction, see [32,33]. The component fields of VA do not transform properly under the
Lorentz transformations generated by ( 1

4i (y
αyβ − zαzβ)− h.c). To remedy this problem and achieve

manifest Lorentz covariance, one introduces the field-dependent Lorentz generators [4,25]

Mαβ = M(0)
αβ + S(α � Sβ) , M(0)

αβ := y(α � yβ) − z(α � zβ) , (2.20)

and their complex conjugates, where

Sα = zα − 2iVα , S̄α̇ = z̄α̇ − 2iV̄α̇ . (2.21)

Next one defines
W ′

μ = Wμ − 1
4i

(
ω

αβ
μ Mαβ + ω̄

α̇β̇
μ M̄α̇β̇

)
, (2.22)

where (ω
αβ
μ , ω

α̇β̇
μ ) is the canonical Lorentz connection.

It is defined up to tensorial shifts [27] that can be fixed by requiring that the projection of W ′ onto
M(0)

αβ and its complex conjugate, vanish at Z = 0, that is

∂2

∂yα∂yβ
W ′|Y=Z=0 = 0 ,

∂2

∂ȳα̇∂ȳβ̇
W ′|Y=Z=0 = 0 . (2.23)

The above redefinitions ensure that under the Lorentz transformations with parameters

εL =
1
4i

Λαβ Mαβ , ε
(0)
L =

1
4i

Λαβ M(0)
αβ , (2.24)

the master fields transform properly under the Lorentz transformations as [25]

δLB = [ε
(0)
L , B]� , (2.25)

δLSα = [ε
(0)
L , Sα]� + Λα

β Sβ , idem S̄α̇ , (2.26)

δLW ′
μ = [ε

(0)
L , W ′

μ]� +
1
4i

(
∂μΛαβ Mαβ + h.c.

)
. (2.27)

Using (2.21), the component form of Vasiliev equations reads

dxW + W � W = 0 , (2.28)

dxB − [W, B]π = 0 , (2.29)

dxSα + [W, Sα]� = 0 , dxS̄α̇ + [W, S̄α̇]� = 0 , (2.30)

[Sα, B]π = 0 , [S̄α̇, B]π = 0 , [Sα, S̄β̇]� = 0 , (2.31)

[Sα, Sα]� = 4i(1− bB � κ) , [S̄α̇, S̄α̇]� = 4i(1− b̄B � κ̄) . (2.32)
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This is the form of the equations typically used to seek exact solutions as it displays the role of the
deformed oscillator algebra in the last two equations. Here one may exploit the technology developed
in the study of noncommutative field theories and the construction of projection operators in a suitably
defined oscillator space.

2.2. The Nonminimal Chiral Model in Kleinian Space

In this model the spinor oscillators are now representations of SL(2,R)L × SL(2,R)R, and as such
their hermitian conjugates are now given by

(yα)† = yα , (zα)† = −zα , (ȳα̇)† = ȳα̇ , (z̄α̇)† = −z̄α̇ . (2.33)

The field equations are now given by

F = J � B , DB = 0 , J := − i
4

dzα ∧ dzα κ , (2.34)

with reality conditions A† = −A and B† = π(B), and kinematical conditions

Minimal model (s = 0, 2, 4, ...) : τ(A) = −A , τ(B) = π̄(B) , (2.35)

Non-minimal model (s = 0, 1, 2, 3, ...) : π ◦ π̄(A) = A , π ◦ π̄(B) = B . (2.36)

The field equations in components take the same form as in (2.28)–(2.32), but now with

b = 1 , b̄ = 0 . (2.37)

These models are referred to as chiral in view of the half-flatness condition on the twistor space
curvature, namely F̄α̇β̇ = 0. These models admit the coset space H3,2 = SO(3, 2)/SO(2, 2) as a vacuum
solution, which has the Kleinian signature (2, 2). For a detailed description of these spaces, including
the curved Kleinian geometries, see [34]. Our motivation for highlighting this case is due to the fact
that the first exact solution of the Vasiliev equation in which all HS fields are nonvanishing was found
for this model [21], and that the Kleinian geometry is relevant to N = 2 superstring as well as to
integrable models.

3. Gauge Function Method and Solutions

3.1. The Method

In order to construct solutions to Vasiliev’s equations, one may consider the approach [19] in
which they are homotopy contracted in simply connected spacetime regions U to deformed oscillator
algebras in twistor space at a base point p ∈ U; the constraints

Fμν = 0 , Fμα = 0 , DμB = 0 , (3.1)

are thus integrated in U using a gauge function g = g(Z, Y|x) obeying

g|p = 1 , (3.2)

and initial data
B′ = B|p , S′A = SA|p , (3.3)

7
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subject to

[S′α, B′]π = 0 , [S̄′̇α, B′]π = 0 , [S′α, S̄′̇
β
]� = 0 , (3.4a)

[S′α, S′α]� = 4i(1− bB′ � κ) , [S̄′α̇, S̄′̇α]� = 4i(1− b̄B′ � κ̄) . (3.4b)

The fields in U can then be expressed explicitly as

Wμ = g−1 � ∂μg , SA = g−1 � S′A � g , B = g−1 � B′ � π(g) , (3.5)

after which the Lorentz covariant HS gauge fields can be obtained from (2.22) subject to (2.23),
which serves to determine the spin connection ωμab. Thus, the deviations in the spacetime HS gauge
fields away from the topological vacuum solution, that is the solution with Wμ = 0, thus come from
the gauge function g as well as the non-linear shift on the account of achieving manifest Lorentz
covariance. The deformed oscillator algebra requires a choice of topology for Z4, initial data for B′ and
a flat background connection. In what follows, we shall assume that Z4 has the topology of R4 with
suitable fall-off conditions at infinity [7,17], and impose

C′(Y) = B′|Z=0 , S′A|C′=0 = ZA; (3.6)

for nontrivial flat connections on Z4, that are not pure gauge, see [21]. The gauge function represents a
gauge transformation that is large in the sense that it affects the asymptotics of gauge fields so as to
introduce additional physical degrees of freedom to the system, over and above those contained in the
twistor space initial data and flat connection; strictly speaking, in order to define such transformations,
one should first introduce a set of classical observables forming a BRST cohomology modulo a set of
boundary conditions on ghosts, after which a large gauge transformation is a gauge transformation
that does not preserve all the classical observables. In particular, in order to describe asymptotically
maximally symmetric, or Weyl flat, solutions, one may take

g|B′=0 = L , (3.7)

where L = L(Y|x) is a metric vacuum gauge function, to be described below. In order to obtain exact
solutions, we shall choose g = L for all C′, that we refer to as the L-gauge. However, in order to extract
Fronsdal fields in the asymptotic region, one has to impose a gauge condition in twistor space to the
leading order in the weak field expansion in the asymptotic region, which introduces a dressing of the
vacuum gauge function by an additional perturbatively determined gauge function; see Section 6.

3.2. Vacuum Solutions

In order to obtain solutions containing locally maximally symmetric asymptotic regions,
one may take the gauge function L(Y|x) to be corresponding coset representatives. In what
follows, we shall focus on the spaces AdS4 = SO(3, 2)/SO(3, 1), dS4 = SO(4, 1)/SO(3, 1) and
H3,2 := SO(3, 2)/SO(2, 2), which can be realized as the embeddings

XAXBηAB ≡ −(X0)2 + (X1)2 + (X2)2 + (X3)2 + ε(X5)2 = −λ−2 , (3.8)

where (
ε,

λ2

|λ2|
)
=

⎧⎪⎪⎨⎪⎪⎩
(−,+) for AdS4

(+,−) for dS4

(−,−) for H3,2

(3.9)
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These spaces can be conveniently described in a unified fashion using the stereographic
coordinates xa±(a = 0, 1, 2, 3) obtained by means of the parametrization

XM|U± ≈
(

2xa±
1− λ2x2±

,±�
1 + λ2x2±
1− λ2x2±

)
, −1 ≤ λ2x2± < 1 , (3.10)

x2± := xa±xb±ηab , ηab = diag(ε, λ2/|λ2|,+,+) , � = |λ|−1 , (3.11)

where U± denotes the two stereographic coordinates charts, each covering one half of the space (3.9);
on the overlap one has λ2x2± = −1, and the coordinate transition function

xa± = Ra(x∓) , λ2x2± < 0 , (3.12)

where the reflection map

Ra(v) := − va

λ2v2 . (3.13)

The boundary is given by λ2x2± = 1, which has the topology of S2 × S1 in the case of AdS4 and
H3,2, and S3 ∪ S3 in the case of dS4. Instead of covering the vacuum manifold with two charts, one may
extend either one of the charts to R4 \ {xa : λ2x2 = 1}, which provides a global cover using a single
chart, with the understanding that {xa : λ2x2 = 1−} ∪ {xa : λ2x2 = 1+} provides a two-sheeted cover
of the boundary. The induced line element ds2

0 = dXAdXBηAB|λ2X2=−1 is given by

ds2
0 =

4dx2

(1− λ2x2)2 . (3.14)

On |λ2|x2 < 1, the corresponding vacuum gauge function

L =
2h

1 + h
exp(−iyαaα

α̇ȳα̇) , (3.15)

where
aαα̇ =

λxαα̇

1 + h
, xαα̇ = (σa)αα̇xa , h =

√
1− λ2x2 . (3.16)

W0 ≡ e0 + ω0 = L−1 � dL =
1
4i

[
ω0

αβyαyβ + ω̄0
α̇β̇ȳα̇ȳβ̇ + 2e0

αα̇yαȳα̇

]
, (3.17)

where

e0
αα̇ = −λ(σa)αα̇dxa

h2 , ω0
αβ = −λ2(σab)αβdxaxb

h2 . (3.18)

A global description can be obtained using two gauge functions L± = L(Y|x±) defined on U±;
the Z2-symmetry implies that if Φ±|p± = C′, where p± := x−1± (0), then the two locally defined
solutions on U± can be glued together using the gauge transition function T+− := L−1

+ � L− = 1 defined
on the overlap region where λ2x2± = −1.

For later purposes, it is convenient to introduce alternative coordinate systems which are defined
by the embeddings (with |λ|2 = 1)

AdS4 : x2 > 0 : X0 = sinh τ sinh ψ , Xi = ni cosh τ sinh ψ , X5 = cosh ψ ,

x2 < 0 : X0 = sin τ cosh ψ , Xi = ni sin τ sinh ψ , X5 = cos τ ,
(3.19)

dS4 : x2 > 0 : X0 = sinh τ sin ψ , Xi = ni cosh τ sin ψ , X5 = cos ψ ,

x2 < 0 : X0 = sinh τ cosh ψ , Xi = ni sinh τ sinh ψ , X5 = cosh τ ,
(3.20)
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The metrics for (A)dS in these coordinate systems are given in (3.41)–(3.44). In the case of H3,2,
we will find the following coordinate system to be useful (with |λ2| = 1)

X0 = r sin t , Xi = ni
√

1 + r2 , X5 = r cos t , (3.21)

where ninjδij = 1, 0 ≤ r < ∞ and 0 ≤ t ≤ 2π.

3.3. Instanton Solutions of Minimal Model in (anti) de Sitter Space

Having obtained a vacuum gauge function, the next task is to solve the deformed oscillator
problem (3.4) subject to the initial data in twistor space. To this end, it is helpful to constrain the primed
configurations further by assuming that they preserve a nontrivial amount of HS symmetries. This can
be achieved by imposing symmetry conditions by seeking a subspace k′ of HS gauge parameters ε′

that are unbroken, i.e.,
δε′B

′ = 0 , δε′S
′
α = 0 , (3.22)

for all ε′ ∈ k′; upon switching on the gauge function g, the resulting full solution is invariant under
gauge parameters in the space k = g−1 � k′ � g. For example, one may require that an n-dimensional
subalgebra gn of the maximal finite dimensional subalgebra g10 of the HS algebra remains unbroken,
which implies that k′ is given by the intersection of Env(gn) and the HS algebra. In particular,
taking n = 10 yields the vacuum solution

W ′ = W0 , SA = zA , B = 0 , (3.23)

which preserves the HS algebra itself. Taking n < 10, the first distinct cases with nontrivial Weyl
zero-form arise for n = 6; the space k′ is then given exactly, as we shall describe below for a particular
realization of g6, or perturbatively. In the latter case the g6 will be realized as a subalgebra of the HS
algebra in the leading order.

In [20], asymptotically anti-de Sitter solutions with g6 = o(1, 3) were constructed by taking k to be
generated by the full Lorentz generators Mαβ from (2.20). Thus, in the primed basis, the corresponding
symmetry conditions read

[M′
αβ, B′]π = 0 , [M′

αβ, S′γ]� = 0 , [M′
αβ, S̄′̇γ]� = 0 , (3.24)

and complex conjugates, where M′
αβ = M(0)

αβ + S′(α � S′
β), which are given by yαyβ plus perturbative

corrections, and whose star product commutators close modulo Lorentz transformations acting on
the component fields; thus, consistency of the invariance conditions implies that all canonical Lorentz
tensors that are not singlets must vanish. Alternatively, it is possible to use other embeddings of o(1, 3)
into the algebra of primed HS gauge transformations; for example, one can simply take yαyβ, as we
shall comment on in Section 5, though it remains an open problem whether the resulting solutions
are gauge equivalent to those that will be presented below. Taking gn to be generated by unperturbed
functions of Y is useful, however, in considering unbroken symmetry algebra involving transvection
operators, as we shall spell out in further detail in Section 5 in the case of domain walls and related
time dependent solutions.

Turning to (3.24), the simplest possible ansatz for B′ is a constant, viz.,

B′ = ν , (3.25)

10
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which leads to a deformed oscillator problem with exact solutions closely related to those of the 3D HS
theory constructed by Prokushkin and Vasiliev [8]. Adapting to the 4D Type A model, for which b = 1,
the following solution for the twistor space connection was found in [20]

S′α = zα + zα

∫ 1

−1
dt q(t) exp

(
i
2
(1 + t) u

)
, u := yαzα , (3.26)

q(t) = −ν

4

(
1F1

[
1
2

; 2;
ν

2
log

1
t2

]
+ t 1F1

[
1
2

; 2;−ν

2
log

1
t2

])
. (3.27)

Expanding exp(itu/2) results in integrals of the degenerate hypergeometric functions times
positive algebraic powers of t, which improve the convergence at t = 0. Thus Vα is a power series
expansion in u with coefficients that are functions of ν that are well-behaved provided this is the case
for the coefficient of u0. This is the case for ν in some finite region around ν = 0, as discussed in detail
in [20,35]. Indeed, as we shall see below after carrying out the integration over t, ν must lie in the
interval −3 ≤ ν ≤ 1.

The solution in spacetime is obtained in the two regions λ2x2 < 1 and λ2 x̃2 < 1 using the
stereographic gauge functions L ≡ L(x|Y) and L̃ ≡ L(x̃|Y) where x and x̃ are related by the reflection
map in the overlap region where λ2x2 < 0 and λ2 x̃2 < 0. From (3.16), one finds [20]

B = ν(1− λ2x2) exp
[−iλxαα̇yαȳα̇

]
. (3.28)

This shows that the physical scalar field is given in the xa-coordinate chart by

φ(x) = B|Y=Z=0 = ν(1− λ2x2) , λ2x2 < 1 , (3.29)

while the Weyl tensors for spin s = 2, 4, . . . vanish. Using instead L̃, the physical scalar field in the
x̃a-coordinate chart is given by

φ̃ = ν(1− λ2 x̃2) , λ2 x̃2 < 1 . (3.30)

As a result, the two scalar fields are related by a duality transformation in the overlap region

φ̃(x̃) =
νφ(x)

φ(x)− ν
, λ2x2 = (λ2 x̃2)−1 < 0 . (3.31)

Thus, if the transition takes place at λ2x2 = λ2 x̃2 = −1, then the amplitude of the physical scalar
never exceeds 2ν.

The master fields SA and W ′
μ are obtained from (3.5) and (2.22). The generating functional for the

spacetime gauge fields is given by [20] 1

W ′|Z=0 = W0 − 1
4i

Qωμ
αβ
[
(1 + a2)2yαyβ + 4(1 + a2)aα

α̇yβȳα̇ + 4aα
α̇aβ

β̇ȳα̇ȳβ̇

]
− h.c. , (3.32)

1 An Euclidean version of this solution has been obtained in [21], and as the spin connection plays an eminent role in
this solution and assuming that the action, as proposed in [17], is finite on this solution, we use the terminology of
“instanton solution”.
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subject to (2.23), which serve to determine the spin connection, and where aαα̇ is defined in (3.16), and

a2 := aαα̇aαα̇ =
1−√

1− λ2x2

1 +
√

1− λ2x2
, −1 ≤ a2 ≤ 1 , (3.33)

Q = −1
4
(1− a2)2

∫ 1

−1
dt

∫ 1

−1
dt′ q(t)q(t′)(1 + t)(1 + t′)

(1− tt′a2)4 . (3.34)

This gives [20]

Q = − (1− a2)2

4

∞

∑
p=0

[
(2p+3

2p )

(√
1− ν

2p+1 −
√

1 + ν
2p+3

)2
a4p (3.35)

−(2p+4
2p+1)

(√
1− ν

2p+3 −
√

1 + ν
2p+3

)2
a4p+2

]
,

exhibiting branch cuts for Re ν ≤ −3 and Re ν ≥ 12. For ν � 1, and in the interval −1 ≤ a2 ≤ 1,
this function can be approximated by [20]

Q � ν2(1− a2)2

48a4

[
1− 2a2

(1− a2)2 +
(1− a2)2

2a2 log
1− a2

1 + a2

]
. (3.36)

Using (2.23), one determines ωαβ and eαα̇ from (3.32), while the HS Fronsdal potentials φμa1 ... as

vanish for s > 2:

φμ
a1...as−1 =

∂2s−2

∂yα1 · · · ∂yαs−1 ∂̄ȳα̇1 · · · ∂̄ȳα̇s−1
W ′|Z=Y=0 = 0 , s > 2 . (3.37)

Even though the HS fields vanish, it is to be noted that the solution of the metric and scalar field
constitute a solution of a highly nonlinear system of equations in which all higher derivatives play
a role. One can reverse engineer a two derivative action describing the coupling of gravity to scalar
field that admits the same solution [20] but such an action is clearly of limited use in the context of
HS theory.

An advantage of presenting the solutions in stereographic coordinates is that it facilitates their
unified description for (A)dS. In these coordinates the solution for the scalar field is given by (3.29)
and the metric by

ds2 =
4Ω2(d(g1x))2

(1− λ2g2
1x2)2

, (3.38)

Ω =
(1− λ2g2

1x2) f1

2g1
, g1 = exp

(
1
2

∫ x2

1

f2(t) dt
f1(t)

)
, (3.39)

where

f1(x2) =
2 f
h2

[
1 + (1− a2)2Q

]
, f2(x2) =

16Q f
h2(1 + h)2 ,

f (x2) =
[
1 + (1 + 6a2 + a4)Q

]−1
, (3.40)

2 The unitary representations of Wigner’s deformed oscillator algebra can obtained starting from the standard Fock space and
factoring out ideals that depend on integer part of (1 + ν)/2, that is, the ideal jumps for odd values of ν [36–39]. It would
be interesting to examine to what extent it is possible to extend the solution to general ν properly taking into account the
branch points in Q at odd ν.
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and it is understood that the integration variable in (3.39) is t = x2.
It is also convenient to give the result in the coordinate system defined in (3.19). In these

coordinates, the solution takes the form [35]

AdS4 : x2 > 0 : ds2 = dψ2 + η2 sinh2 ψ
(
−dτ2 + cosh2 τ dΩ2

)
, (3.41)

φ = ν sech2 ψ

2
,

x2 < 0 : ds2 = −dτ2 + η2 sin2 τ
(

dψ2 + sinh2 ψ dΩ2

)
, (3.42)

φ = ν sec2 τ

2
,

dS4 : x2 > 0 : ds2 = dψ2 + η2 sin2 ψ
(
−dτ2 + cosh2 τ dΩ2

)
, (3.43)

φ = ν sec2 ψ

2
,

x2 < 0 : ds2 = −dτ2 + η2 sinh2 τ
(

dψ2 + sinh2 ψ dΩ2

)
, (3.44)

φ = ν sech2 τ

2
,

where we have set |λ|2 = 1 and

η =
f1h2

2
=

1 + (1− a2)2Q
1 + (1 + 6a2 + a4) Q

. (3.45)

AdS4 : a2 =

{
tanh2 ψ

4 for x2 > 0

− tan2 τ
4 for x2 < 0

dS4 : a2 =

{
− tan2 ψ

4 for x2 > 0

tanh2 τ
4 for x2 < 0

(3.46)

In addition to the SO(3, 1) symmetry generated by M′
αβ, the solution is also left invariant by

additional transformations with rigid HS parameters

ε′ =
∞

∑
�=0

ε′� , (3.47)

where the �’th level is given by [20]

ε′� = ∑
m+n=2�+1

Λα1...α2m ,α̇1...α̇2n M′
α1α2

� · · · � M′
α2m−1α2m

� M̄′̇
α1α̇2

� · · · � M̄′̇
α2n−1α̇2n

− h.c. , (3.48)

with constant Λα1 ... α2m ,α̇1 ... α̇2n . The full symmetry algebra is thus a higher-spin extension of
SO(3, 1) � SL(2,C), that we shall denote by

hsl(2,C; ν) ⊃ sl(2,C) , (3.49)

where sl(2,C) is generated by M′
αβ and its hermitian conjugate, and we have indicated that in general

the structure coefficients may depend on the deformation parameter ν.
Turning back to the solutions given above, a holographic and cosmological interpretation of (3.41)

has been discussed in [35], where a bouncing cosmology scenario was observed, and its comparison
with a similar phenomenon occurring supergravities [40,41] was made. In this context, it is useful to
examine the behaviour of the solutions, both with AdS and dS asymptotics, near the boundary as well
as distant future.
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For |ν| � 1 and near the boundary, where λ2x2 → 1, or equivalently a2 → 1, the scale factors η

and Ω behaves as3

λ2x2 → 1 =⇒ η → 1

1− ν2

3

, Ω → 1 , (3.50)

which means that the solutions are asymptotically maximally symmetric spacetimes with
undeformed radius.

Another interesting limit to consider is η → 0; for |ν| � 1 this takes place for a2 + 1 � 1, that is,
for a2 close but not equal to −1, which corresponds to τ → ±τcrit in the AdS case, and ψ → ψcrit in the
dS case. In the former case, we have4

AdS4 : η � ν2

6

[
exp

(
3

2ν2

)]
(τcrit − τ) , τcrit � sin−1

[
2 exp

(−3
2ν2

)]
. (3.51)

In the Einstein frame5, it takes infinite proper time to reach the critical surface, which means that
one may interpret the future region of the solution as a singularity free SO(3, 1) invariant cosmology
with a finite asymptotic scalar field, as

φ → φcrit � 4ν exp
(

3
ν2

)
. (3.52)

In the dS case, one may instead interpret the critical limit as a domain wall at an infinite proper
space-like distance from the center of the solution.

3.4. Solutions of the Non-Minimal Chiral Model in Kleinian Space

In obtaining the solutions described above, symmetries on the master fields were imposed. In [21]
projection operators were used as well. In the case of the non-minimal chiral model6 in Kleinian space,
it is possible to use projectors to build solutions with non-vanishing Weyl zero-form and HS fields.
They are

B′ = (1− P) � κ , S′α = zα � P , S̄′̇α = z̄α̇ � (1− 2P̄) , (3.53)

where

P � P = P , P̄ � P̄ = P̄ , [P, P̄]� = 0 , (3.54)

and satisfy the conditions π ◦ π̄(P, P̄) = (P, P̄). The projectors P and P̄ are independent. Consider the
simplest case in which

P = 2e−2uv = 2eyby , P̄ = 0 , (3.55)

where, in terms of constant spinors (λα, μα) we have defined

u = λαyα , v = μαyα , bαβ = 2λ(αμβ) , λαμα =
i
2

. (3.56)

3 The result for the limits of η and Ω given here correct Equations (4.67) and (4.68) in [20].
4 The expression for η and τcrit corrects a factor of two in [35].
5 This is the (torsion-free) frame obtained by rescaling the vielbein as ea → η−1ea.
6 The solution can be constructed for the minimal model as well by working with a convenient integral presentation of the

projection operators.
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Upon the L-dressing, and expanding the result in Y-oscillators, the following component results
are found in [21]:

φ = −1 , Cα1...α2s = 0 , (3.57)

while the anti-self-dual Weyl tensors take the form

C̄α̇1···α̇2s = −22s+1(2s − 1)!!
(

h2 − 1
h2

)s

ū(α̇1
· · · ūα̇s v̄α̇s+1 · · · v̄α̇2s)

, (3.58)

where
ūα̇ =

xa
√

x2
(σ̄aλ)α̇ , v̄α̇ =

xa
√

x2
(σ̄aμ)α̇ . (3.59)

In stereographic coordinates, the Kleinian space is covered in two charts with 0 ≤ h2 ≤ 2,
and hence the Weyl tensors blow up in the limit h2 → 0 preventing the solution from
approaching H3,2 in this limit. In coordinate system introduced in (3.21), the metric reads
ds2 = −(dr2 + r2dt2) + (1 + r2)dΩ2

2, and the pre-factor in this solution reads(
h2 − 1

h2

)s

= 2−s(1− r cos t)s . (3.60)

which, indeed, diverges at the boundary r → ∞ as noted above. In [21], it was also found that

ea
μ =

−2
(h2 + 2h−2)

[
(1 + 2h−2)δa

μ + 2λ2h−4xμxa +
6λ2

h4 − 4
(Jx)μ(Jx)a

]
, (3.61)

where
Jab = (σab)

αβ bαβ , Ja
c Jc

b = −δb
a . (3.62)

For the spin connection, the result is

ωαβ =
1

1− 4h−4

[
ω

αβ
0 − 8h−4(b ω0 b)αβ

]
+

4h−4

(1− 2h−4)(1− 4h−4)
bαβ bγδ ω

γδ
0 ,

ω̄α̇β̇ = ω̄
α̇β̇
0 + 4(1 + h)2h−4

[
−(āba)α̇β̇bγδ + 2(āb)α̇γ(āb)β̇δ

]
ωγδ .

(3.63)

Note that in the last term of the second equation the full spin connection ωγδ arises. The metric
gμν = ea

μeb
ν ηab takes the form

gμν =
4

(h2 + 2h−2)2

[
(1 + 2h−2)2ημν + 4h−4

(
(1− h2)h−4 + (1 + 2h−2)

)
xμxν

+
12

1− 4h−4

(
3(1− h2)

1− 4h−4 + (1 + 2h−2)

)
(Jx)μ(Jx)ν

]
, (3.64)

The vierbein has potential singularities at h2 = 0 and h2 = 2. The limit h2 → 0 is a boundary
at which eμ

a ∼ h−2xμxa, i.e., a scale factor times a degenerate vierbein. In the limit h2 → 2 one
approaches the boundary of a coordinate chart. Also in this limit, the vierbein becomes degenerate,
viz., eμ

a ∼ h−2(Jx)μ(Jx)a.

3.5. Perturbative Construction of Domain-Wall Solution

As mentioned earlier, if we wish to construct a solution of the HS equations that has a symmetry
group that includes any translation generators Pa, given that there is no known realization of these
generators that would form a closed algebra with the full Lorentz generators Mαβ, the symmetry
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conditions (3.22) need to be imposed in terms of the undeformed generators that are bilinear in the
oscillators. The deformation of this symmetry to accommodate nonlinear corrections can then be
computed perturbatively in a weak field expansion scheme. This is the framework which was pursued
in considerable detail in [20], where the perturbative construction of solutions with 3, 4 and 6 parameter
isometry subgroups of the AdS group were considered. Here we shall outline the key aspects of this
constructions by describing the example of a domain-wall solution having ISO(2, 1) symmetry and its
appropriate HS extension [20].

The ISO(2, 1) algebra is generated by

ISO(2, 1) : Mij , Pi = (αMabLb + βPa)La
i , α2 − β2 = 0 , (3.65)

where α and β are real parameters and (La
i , La) is a representative of the coset SO(3, 1)/SO(2, 1), obeying

LaLa = ε = ±1 , La
i La = 0 , La

i Lja = ηij = diag(+,+,−) , (3.66)

and the generators are taken form the oscillator realization of SO(3, 2) algebra given by

Mab = −1
8

[
(σab)

αβyαyβ + (σ̄ab)
α̇β̇ȳα̇ȳβ̇

]
, Pa =

1
4
(σa)

αβ̇yαȳβ̇ , (3.67)

In particular [Pi, Pj] = i(β2 − α2)Mij vanishes for α2 = β2, as required for ISO(2, 1).
Thus, the symmetry conditions to be imposed are

[Mij, C′] = 0 , [Pi, C′]π = 0 . (3.68)

As shown in [20], these conditions are solved by

C′(P) = (μ1 + μ2P)e4iP , P :=
1
4

La(σa)αα̇yαȳα̇ . (3.69)

Denoting the ISO(2, 1) transformations discussed above by ε′(0), we can seek its nonlinear
deformation by expanding

ε′ = ε′(0) + ε′(1) + ε′(2) + · · · , (3.70)

where ε′(n) is constant in spacetime but may depend on Y and Z. The symmetry condition at first order
is satisfied by C′ given in (3.69). To establish the symmetry at second order, we need to satisfy(

[ε′(1), C′]π + [ε′(0), B′
(2)]π

)
Z=0

= 0 , (3.71)

where B′
(2) is obtained from the normal ordered perturbative scheme (see Section 6 below) to be [20]

B′
(2) = f + τπ̄ f + π( f + τ f̄ )† ,

f := −zα
∫ 1

0
dt(V′(1)

α � C′)Z→tZ ,

V′(1)
α = − i

2
zα

∫ 1

0
tdtB′(−tz, ȳ)κ(tz, y) . (3.72)

This condition (3.71) is solved in [20] where it is found that

ε′(1) = −
∫ 1

0
dt

∫ 1

0
t′dt′

(
itt′

2
λαβzαzβ + λαβ̇zα∂̄β̇

)
C′(−tt′z, ȳ)eitt′yz − h.c. , (3.73)
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where λαβ, λαβ̇ are arbitrary constant parameters. For a more detailed discussion of the procedure
outlined above, see [20].

3.6. Other Known Solutions

The solutions described in Section 3.3 were generalized in [21] to find new Lorentz-invariant
vacuum solutions, in which, in addition to the continuous parameter ν, an infinite set of independent
and discrete parameters θk = {0, 1}, each turning on a Fock-space projector Pn(u), were activated.
Should they be proved to be gauge-inequivalent to AdS4, as they seem to be, they would represent
monodromies of flat but non-trivial connections (Vα, V̄α̇) on Z . An interesting limit of this solution
arises upon setting ν = 0 and (θk − θk+1)

2 = 1, leading to the degenerate metric

ds2 =
4(xadxa)2

λ2x2(1− λ2x2)
. (3.74)

The methods above can also be extended to the Prokushkin-Vasiliev theory in D = 3, giving rise
to Lorentz-invariant instanton solutions (with additional twisted sectors of the theory excited, and the
characteristic extra deformation parameter λ that allows to vary the mass of the scalar), as well as to
the above projector vacua [31].

Finally, in [42] a different class of exact solutions was constructed by means of the gauge function
method coupled with a different choice of gauge in twistor space, there referred to as axial gauge.
As for the perturbative construction of solutions, it is worth mentioning the plane wave solution
of [4,19], whose elevation to an exact solution remains to be investigated, to our best knowledge.

4. Factorization Method and Solutions

4.1. The Method

The method developed in [6,7,22] for finding exact solutions of Vasiliev equations also exploits the
gauge function method to solve for (B, V, W) in terms of (B′, V′) from (3.5) and (2.22), which, in turn,
are to be determined by solving (3.4). It is here that the method differs from the method described
above, by making the following factorized ansatz for (B′, V′):

B′(Z, Y) = νΨ(y, ȳ) � κy , (4.1)

V′
α(Z, Y) = V′

α(z; Ψ) = ∑
n≥1

V(n)
α (z) � Ψ�n . (4.2)

Note that this ansatz for V′
α is holomorphic in z, and in the following we shall refer to the solution

in this form as given in holomorphic gauge [7]. In this section we shall consider the nonminimal model
in which we recall that conditions (2.35) apply. It is shown in [7] that this ansatz solves the fully
non-linear Equation (3.4) provided that

πz(V
(n)
α (z)) = −V(n)

α (z) , (4.3)

and that
sα := zα − 2i ∑

n≥1
V(n)

α (z)νn , (4.4)

obeys the deformed oscillator algebra

[sα, sβ]� = −2iεαβ(1− νκz) , κz � sα = −sα � κz . (4.5)
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Note that only the first power of ν in (4.4) survives in the commutator (4.5). One class of solutions
is given by [6]

∑
n≥1

V(n)
α (z)νn = − iν

2
zα

∫ +1

−1

dt
(t + 1)2 exp

(
i
t − 1
t + 1

z+
(0)z

−
(0)

)
1F1(

1
2 ; 1; bν log t2) , (4.6)

where the constant spinors v±
(0)α are used to defined the projected oscillators

v+α
(0)v

−
(0)α = 1 , z±

(0) = v±α
(0)zα . (4.7)

The presence of z+z− term breaks manifest Lorentz covariance, which will be restored when we
consider the field dependent gauge transformation in Section 7 that is needed to cast the results into a
form that can be interpreted in terms of Fronsdal fields that obey the standard boundary conditions.

At this point, B′ and V′
α are determined, with Ψ(Y) representing an arbitrary initial datum.

One can proceed to compute (B, V, W ′) from (3.4), (3.5) and (2.22). However, one needs to ensure that
the star products involving Ψ are well defined. The analyticity properties of the resulting (B, V, W ′)
also require special care. The strategy adopted in [6,7,22] is to employ projection operators with well
defined group theoretical origin, and easily deducible symmetry properties. We shall illustrate aspects
of this procedure below with a relatively simple example, namely the black hole-like solution [7]
closely related to that of [24], which we shall also describe in a subsequent section below.

4.2. Black Hole Solution

We are seeking an exact solution of Vasiliev’s equations which has the symmetries of 4D static black
hole solution that is asymptotically AdS4, namely spatial rotations and time translations generated by

SO(3)× SO(2) : Mrs (r, s = 1, 2, 3) , and M05 = E =
1
4
(σ0)αα̇ yαȳα̇ . (4.8)

The first instance of such a solution was found in [24] in a different approach that will be
summarized later. In both approaches the following projector plays an important role:

Ψ = νP′ , P′ � P′ = P′ , (4.9)

where P′ is given by
P′ = 4e−4E , (4.10)

and the reality conditions dictate that
ν = iM , (4.11)

with M ∈ R. This projector clearly has the desired symmetry property since [Mrs, P′]� = 0 and
[E, P′]� = 0. In performing the L-dressing, we need the result

P = L−1 � 4e−4E � L = 4 exp
(
−1

2
KABYAYB

)
, (4.12)

where KAB are the Killing parameters taking the form

KAB =

(
uαβ vαβ̇

v̄α̇β ūα̇β̇

)
. (4.13)
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In terms of the x-dependent eigenspinors of uαβ, these parameters can be expressed as

uαβ = 2r u+
(α

u−
β)

, vαβ̇ =
√

1 + r2
(

u+
α ū+

β̇
+ u−α ū−

β̇

)
,

u−1
αβ =

2
r

u+
(α

u−
β)

, 2u−
[α

u+
β]
= εαβ . (4.14)

The Kerr-Schild vector kαα̇ associated with E is obtained via a projection of vαα̇ with the
eigenspinors of uαβ, ūα̇β̇, and can be written as7

kαα̇ =
1√

1 + r2
u+

α ū+
α̇ . (4.15)

In obtaining the above results, the computation is first done in stereographic coordinates, and
then a coordinate change is made to go over to the spherical (global) coordinate system in which the
AdS metric reads ds2 = −(1 + r2)dt2 + (1 + r2)−1dr2 + r2dΩ2

2.
From the point of view of the factorized Ansatz (4.1)–(4.2), the fact that Ψ is proportional to a

projector can be seen as a way of enforcing the Kerr-Schild property of a black-hole solution, as it
effectively causes a collapse of all non-linear correction in V′

α, V̄ ′̇
α down to the linear order, at least from

the point of view of the oscillator dependence. Coupled with the gauge freedom on Sα this allows
to effectively reach a gauge in which the full solution only contains first order deformations in ν [6].
Another noteworthy fact is that, due to the factorized dependence on Y and Z, one can effectively
separately rotate the two oscillators by means of a factorized gauge function

g = L(x, Y) � L̃(x, Z) . (4.16)

As discussed in [6,7,22], turning on the second factor is useful since by choosing it appropriately
one can achieve collinearity between the spin-frame (v+, v−)(x) on Z (which is obtained by pointwise
rotation of v(0) given in (4.7) by L̃) and the eigenspinors (u+

α , u−β ) of uαβ in order to remove singularities
that appear in the solution for the master one-form, that are gauge artifacts. We note that the factor
L̃(x, Z), being purely Z-dependent, does not affect B and only acts non-trivially on Vα, V̄α̇.

Thus, dressing the primed fields given above by the gauge function g defined in (4.16),
the following results have been obtained [6]

B =
4M

r
exp

[
1
r2

(
1
2 yαuαβyβ + 1

2 ȳα̇ūα̇β̇ȳβ̇ + iyαuαβvβ
α̇ȳα̇

)]
, (4.17)

Sα = zα + 8Paα

∫ 1

−1

dt
(t + 1 + ir(t − 1))2 j(t) exp

[
i(t − 1)

t + 1 + ir(t − 1)
a+a−

]
, (4.18)

W ′ = W0 + L̃−1 � dx L̃ −
{

ω−− [
y+y+ + 8P( f1 − f2)a+a+

]
(4.19)

+ω++
[
y−y− + 8P( f1 − f3)a−a−

]− 2ω−+
[
y+y− − 8P( f1 + f4)a+a− − r( f5 + f6)

] }
,

where y± = uα±yα, and similarly(a±, ω++, ω−−, ω−+) are projections of aα, ωαβ with uα±, and the
function j(t) is defined as

j(t) = −ν

4 1F1

[
1
2

; 2;
ν

2
log

1
t2

]
. (4.20)

7 In stereographic coordinates these read [7] uαβ = 2xi(σi0)αβ/(1− x2) and vαβ̇ = (σ0)αβ̇ − 4x[0xi(σi])αβ̇/(1 − x2).
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The modified oscillators (aα, āα̇) are defined as

Z̃A := (aα, āα̇) = ZA + iKA
BYB , [Z̃A, Z̃B] = 4iεAB . (4.21)

Furthermore, we have defined the functions

f1 =
∫ 1

−1
dt q(t)(t + 1)ξ3 exp

[
i(t − 1)ξa+a−

]
, (4.22a)

f2 =
∫ 1

−1

∫ 1

−1
dt dt′ j(t)j(t′) 2t ξ̃3 exp

[
i(tt′ − 1)ξ̃ a+a−

]
, (4.22b)

f3 =
∫ 1

−1

∫ 1

−1
dt dt′ j(t)j(t′) 2t′ ξ̃3 exp

[
i(tt′ − 1)ξ̃ a+a−

]
, (4.22c)

f4 =
∫ 1

−1
dt q(t)ξ2 exp

[
i(t − 1)ξa+a−

]
, (4.22d)

f5 =
∫ 1

−1

∫ 1

−1
dt dt′ j(t)j(t′) (tt′ + 1) ξ̃3 exp

[
itt′ ξ̃a+a−

]
, (4.22e)

f6 =
∫ 1

−1

∫ 1

−1
dt dt′ j(t)j(t′) ξ̃2 exp

[
i(tt′ − 1)ξ̃a+a−

]
, (4.22f)

and
ξ :=

1
t + 1 + ir(t − 1)

, ξ̃ :=
1

tt′ + 1 + ir(tt′ − 1)
. (4.23)

The modified oscillators aα appear naturally in Vα as a consequence of the factorized form of (4.2)
with Ψ�n ∝ P, and of the fact that zα � P = aαP (analogously for āα̇ in V̄α̇). A consequence of the
modified oscillator appearing in the solution is that V′

α does not obey the standard Vasiliev gauge
ZAVA = 0.

As noted earlier, this solution is closely related to that of Didenko and Vasiliev [24]. Indeed,
the solution for B is the same, while the relationship between the solutions for (SA, W ′) is more subtle
and it will be discussed in the next section.

Note that B does not depend on Z. Thus, B|Z=0 = B = C(Y), and its holomorphic components
give the Petrov type -D Weyl tensors

Cα1...α2s =
4M
rs+1 u+

(α1
. . . u+

αs u−αs+1
. . . u−

α2s)
, (4.24)

and similarly for the anti-holomorphic components giving C̄α̇1...α̇2s . The singularity of individual Weyl
tensors does not necessarily imply a physical singularity in HS gravity for the following reasons. At the
level of the master fields, r = 0 also appears as the only point at which Vα, as well as W ′, acquire a
pole on a plane in Z × Y defined by aα|r=0 = zα + i(σ0ȳ)α = 0, due to the zero at t = −1 that the
denominator of the integrand in (4.18) develops at r = 0. The master-field curvature is however given
by B � κ and one can argue that at the master-field level, which is the only sensible way to look at
such solution in the strong-field region, B remains, in fact, regular at r = 0. Qualitatively this can be
understood as follows. r appears in (4.17) as the parameter of a delta sequence: away from the origin
one has a smooth Gaussian function, approaching a Dirac delta function on Y as r goes to zero [6].
However, unlike the delta function on a commutative space, the delta function in noncommutative
twistor space, thought of as a symbol for an element of a star product algebra, is smooth. Indeed, it is
possible to show [6] that by changing ordering prescription one can map the delta function to a regular
element, and the smoothness of such change of basis manifests itself in the fact that the solution of
the deformed oscillator problem obtained in the new ordering can be mapped back smoothly to the

20



Universe 2018, 4, 5

solution above. In this sense, the singularity in r = 0 may be an artifact of the ordering choice for the
infinite-dimensional symmetry algebra governing the Vasiliev system.

In order to extract the x-dependence of even just the spin-2 component of W ′, one still needs to
evaluate the complicated parametric integrals in (4.22a). However, as the Weyl-tensors take the simple
form in x-space given in (4.24), we expect that a suitable gauge transformation exists that will give the
metric in the standard Kerr-Schild form, namely gμν = gAdS

μν + 2Mkμkν/r.
Finally, let us note that the basic black hole-like solution reviewed above has a generalization

in which infinite sets of projection operators Pn and twisted projection operators P̃n are introduced8.
The twisted projectors P̃n are invariant under SO(3)× SO(2) discussed above while the projectors Pn

are invariant under SO(3) and the (B′, S′A) sector of the solution takes the form [6,7,22]

B′ = ∑
n=±1,±2,...

(
νnP̃′

n + ν̃nP′
n

)
, P̃′

n = P′
n � κy , (4.25)

S′A = zA − 2i ∑
n=±1,±2,...

(
Vn,A � P′

n + Ṽn,A � P̃′
n

)
, (4.26)

with

P′
n(E) = 2(−1)n− 1+ε

2
∮

C(ε)

dη

2πi

(
η + 1
η − 1

)n
e−4ηE , ε := n/|n| , (4.27)

P̃′
n(E) := P′

n(E) � κy = 4π(−)n− 1+ε
2

∮
C(ε)

dη

2πi

(
η + 1
η − 1

)n
δ2(y − iησ0ȳ) , (4.28)

where the contour integrals are performed around a small contour C(ε) encircling ε. The expressions
for (Vn,A, Ṽn,A), and their g = L � L̃ dressing can be found in [7]. It turns out that the solutions with
only νn parameters switched on correspond to black hole-like solutions, of which the case summarized
above arises for n = 1. Solutions with only nonvanishing ν̃n parameters correspond to massless
particle modes, and surprisingly black hole modes as well entering from second order onwards in
a perturbative treatment of the solution; for a detailed description of this phenomenon see [7,26].
Note that the SO(3) invariant projectors are associated with spin-0 modes. To extend this construction
to spin-s particle modes, one needs the spin-s generalization of the projectors P′

n discussed above.
A particular presentation of such projectors can be found in [43].

4.3. Other Known Solutions

By means of the same factorized Ansatz (4.1)–(4.2) black-hole-like solutions with biaxial symmetry
have also been found [6,22,44], some of which being candidate HS generalizations of the Kerr black
hole [44]. The separation of variables in holomorphic gauge was also instrumental to finding solutions
with g6 isometries of cosmological interest, that we shall present in a forthcoming paper [23].

5. Direct Method and the Didenko-Vasiliev Solution

While, as we have seen so far, the gauge function method is in general of great help in constructing
exact solutions, it is sometimes possible to attack the equations directly, by virtue of some other
simplifying Ansatz or gauge condition. We shall generically refer here to any method which does
not rely on the use of gauge function as direct method. One such solution has been found so far in
this way by Didenko and Vasiliev [24], which has nonvanishing HS fields, and which contains the
Schwarzschild black hole solution in the spin 2 sector.

8 Even though P̃′
n � P̃′

n = P′
n, we refer to P̃′ as twisted projector to emphasize the fact that it is related to the projector P′

n by the
relation P̃′

n = P′
n � κy.
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Indeed, motivated by the phenomenon that solutions of Einstein equations that can be put in
Kerr-Schild form solve the linearized as well as the nonlinear form of the equations, the Authors
of [24] thought of an Ansatz that would generalize some distinctive features of black hole solutions in
gravity. First, it is based on an AdS timelike Killing vector, in the sense that the Weyl tensor will be a
function of some element KAB as (4.13). More precisely, if f (K) satisfies the Killing vector equation,
a proper ansatz for a solution of the linearized twisted adjoint equation will be given by f (K) � κy .
Second, they chose f (K) in such a way that the Ansatz linearize the Vasiliev equations. For the latter
purpose it is important that the function f (K) is a projector—in fact, a Fock-space vacuum projector
that coincides with (4.12). Such choice in particular reduces Equations (2.31) and (2.32) to two copies
of the 3D (anti)holomorphic deformed oscillator problem that arises in Prokushkin-Vasiliev HS theory
in 3D [8] in terms of the oscillators in (4.21)9.

The ansatz [24]

B = MP � κy , Sα = zα + P fα(a|x) , S̄α̇ = z̄β̇ + P f̄α̇(ā|x) , (5.1)

where M is a constant and ( fα, f̄α̇) are functions to be determined, indeed reduces the Equations (2.31)
and (2.32) to two deformed oscillator problems in terms of the latter functions. A specific gauge choice
on the ( fα, f̄α̇), while bringing about a further breaking of the manifest Lorentz covariance, effectively
linearizes their equations, which are then solved by means of the standard perturbative methods of
Section 6. A further ansatz [24]

W = W0 + P [g(a|x) + ḡ(ā|x)] , (5.2)

where g is another function to be determined is then employed to deal with the remaining equations
that involve W, namely (2.28), (2.29) and (2.30). The resulting exact solution is given by [24]

B =
4M

r
exp

[
1
r2

(
1
2 yαuαβyβ + 1

2 ȳα̇ūα̇β̇ȳβ̇ + yαuαβvβ
α̇ȳα̇

)]
, (5.3a)

S+ = z+ + MP
a+

r

∫ 1

0
dt exp

(
t
r

a+a−
)

, idem S̄+ , (5.3b)

S− = z− , idem S̄− , (5.3c)

W = W0 +
1
2r

MP
[

dτ−−a+α a+β

∫ 1

0
dt(1− t) exp

(
t
r

a+a−
)
+ h.c.

]
+

1
8r

MP
[
uαβ ω

αβ
0 + h.c. + 2(vαα̇ + kαα̇) eαα̇

0

]
, (5.3d)

where

ταβ =
uαβ

r
, τ−− = uα−uα−ταβ , z± = uα±zα , a± = uα±aα ,

dταβ = −1
r

ω0(α
γ uβ)γ +

1
r

eγγ̇
0

(
εγ(α vβ)γ̇ +

1
2r3 vγ̇

δuαβuγδ

)
.

(5.4)

Note also that SA does not satisfy the Vasiliev gauge S(Z, Y)|Z=0 = 0, and that W above has not
been redefined as in (2.22). Nonetheless, it has been noted in [24] that a HS transformation of the form

9 In this section we shall use the conventions of [24] which differ form ours.
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δW = D0ε(1) with ε(1) =
(
− 1

2

∫ 1
0 dtzαSα|z→tz + h.c. + f (Y|x)

)
and arbitrary f (Y|x) maps W to Wphys

given by

Wphys =
4M

r
eαα̇

0 kαα̇ exp
(
−1

2
kββ̇yβȳβ̇

)
, (5.5)

whose spin 2 component gives the frame field and the associated metric

ea
μ = eμ

a(AdS) +
M
r

kμka , gμν = gAdS
μν +

2M
r

kμkν , (5.6)

where kμ = eαα̇
0 kαα̇. This is the metric of a black hole of mass M in AdS4 in Kerr-Schild form.

The terminology of black hole in HS context requires caution as discussed in the introduction.
In addition to the SO(3) × SO(2), the solution summarized above has been shown to also have
1/4 of the N = 2 supersymmetric HS symmetry of the model, and their infinite dimensional extension
thereof [24].

The solution (5.3) differs from (4.17)–(4.19) both in the form of the internal connection (V±, V̄±)
and in that of the gauge field generating functions. As for the internal connection, the difference can
be ascribed to the two choices employed in [6] and [24] for solving the deformed oscillator problem
(referred to as “symmetric” and “most asymmetric”, respectively, in [6,22]). One can show that the
resulting internal connections can be connected via a gauge transformation (see [6]), although the
small or large nature of this transformation is yet to be investigated. The comparison of W ′ in (4.19)
and W in (5.3) is technically more complicated, as the two differ also by the shift of the Lorentz
connection (2.22), and it will be postponed to a future work, but we note that having the same B
identical in both solutions strongly suggests that the physical gauge fields should be equivalent, and
in particular equivalent to (5.5).

It is worth mentioning that even by working without the gauge function method, with a specific
choice of gauge the Didenko-Vasiliev solution can be simplified in such a way that the W connection is
reduced to the vacuum one W0. This simplification was studied in [45], along with the embedding of
the solution in the N = 2 and N = 4 supersymmetric extensions of the bosonic Vasiliev equations.

6. Perturbative Expansion of Vasiliev Equations

In this Section, we shall summarize the standard perturbative expansion of the Vasiliev equations,
benefiting from [4,6,12,25,27,46] (for more recent treatments, see [47,48]).

In the normal order, defined by the star product formula (2.4), the inner Klein operators become
real analytic in Y and Z space, viz.,

κ = κy � κz = exp(iyαzα) , κ̄ = κȳ � κz̄ = exp(iȳα̇ z̄α̇) . (6.1)

Assuming that the full field configurations are real-analytic on Z4 for generic points in X4, one may
thus impose initial conditions

B|Z=0 = C , Wμ|Z=0 = aμ , (6.2)

where the x-dependence is understood. In order to compute the Z-dependence of the fields one
may choose VA|C=0, which is a trivial flat connection, to vanish, and a homotopy contractor for the
de Rham differential on Z4, which entails imposing a gauge condition on VA. One may then solve
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the constraints on DAB, FAB and FAμ on Z4 in a perturbative expansion in C. This procedure gets
increasingly complex with increasing order in the expansion, which schematically can be written as

B = ∑
n�1

B(n) , B(1)(C) ≡ C , (6.3)

V = ∑
n�1

V(n) , (6.4)

W = ∑
n�0

W(n)(aμ) , W(0)(aμ) ≡ aμ , (6.5)

where B(n), V(n) and W(n)(aμ) are n-linear functionals in C, and W(n)(aμ) is a linear functional in aμ.
These quantities, which are constructed using the homotopy contractor on Z4, depend on Z, and are
real-analytic in Y4 × Z4 provided that C and aμ are real analytic in Y-space and all star products
arising along the perturbative expansion are well-defined. As for the remaining equations, that is, that
Fμν = 0 and DμB = 0, it follows from the Bianchi identities that they are perturbatively equivalent to
Fμν|Z=0 = 0 and DμB|Z=0 = 0, which form a perturbatively defined Cartan integrable system on X4

for C and aμ.
To Lorentz covariantize, one imposes

W ′|Z=0 = w , (6.6)

with W ′ from (2.22), that is

aμ = wμ +
1
4i

(ω
αβ
μ Mαβ + ω̄

α̇β̇
μ M̄α̇β̇)

∣∣∣
Z=0

, (6.7)

where w does not contain any component field proportional to yαyβ and ȳα̇ȳβ̇ in view of (2.23).

Upon substituting the above relation into W(n)(aμ; C, . . . , C), it follows from the manifest Lorentz
covariance that the dependence of Fμν|Z=0 and DμB|Z=0 on the Lorentz connection arises only via the
Lorentz covariant derivative ∇ and the Riemann two-form (rαβ, rα̇β̇). Thus, the resulting equations in
spacetime take the form [6]

∇w + w � w +
1
4i

(
rαβyαyβ + h.c.

)
+ i ∑

n1 + n2 � 1
n1,2 � 0

(
rαβV(n1)

α � V(n2)
β + h.c.

) ∣∣∣
Z=0

+ ∑
n1 + n2 � 1

n1,2 � 0

W(n1)(w) � W(n2)(w)
∣∣∣
Z=0

= 0 , (6.8)

∇C + ∑
n1 + n2 � 1

n1 � 0, n2 � 1

[W(n1)(wμ), B(n2)]π
∣∣∣
Z=0

= 0 , (6.9)

where

∇w := dxw + [ω(0), w]� , ∇C := dxC + [ω(0), C]� , ω(0) =
1
4i

ωαβ M(0)
αβ − h.c. , (6.10)

rαβ := dωαβ − ωαγ ∧ ωγ
β , r̄α̇β̇ := dω̄α̇β̇ − ω̄α̇γ̇ ∧ ω̄γ̇

β̇ . (6.11)
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Alternatively, in order to stress the perturbation expansion around the maximally symmetric
background, including the spin-two fluctuations, it is more convenient to work in terms of the original
one-form aμ. The perturbative expansion up to 3rd order in Weyl curvatures reads

da = a � a + V(a, a, C) + V2(a, a, C, C) +O(C3) , (6.12)

dC = a � C − C � π(a)− U (a, C, C) +O(C3) , (6.13)

where (V ,V2,U ) are functionals that can be determined from (6.8) and (6.9). One next assumes that
the homotopy contraction in Z-space is performed such that

zAVA = 0 , (6.14)

which we refer to as the Vasiliev gauge, and expands

a = W0 + a1 + a2 + · · · , C = C1 + C2 + · · · . (6.15)

where W0 is the maximally symmetric background; a1 a and C1 are linearized fields; an and Cn are nth
order fluctuations. The resulting linearized field equations on X-space provide an unfolded description
of a dynamical scalar field

φ = C1 |Y=0 , (6.16)

and a tower of spin-s Fronsdal fields

φa(s) =

(
eμa

0

(
(σa)

αα̇ ∂2

∂yα∂ȳα̇

)s−1

a1,μ

) ∣∣∣∣∣
Y=0=Z

, (6.17)

where we use the convention that repeated indices are symmetrized. Computing the functional
V(W0, W0, C), the linearized unfolded system is given by [4]

D0a1 = − i
4

Hαβ∂α∂βC1(y, 0)− i
4

H̄α̇β̇ ∂̄α̇ ∂̄β̇C1(0, ȳ) (6.18)

D0C1 = 0 , (6.19)

where

D0a1 := dxa1 + {W0, a1}� , D0C1 := dxC + [W0, C1]� , (6.20)

hαα̇ := e0
αα̇ , Hαβ := hαγ̇ ∧ hβ

γ̇ , H̄α̇β̇ := h̄α̇γ ∧ h̄β̇
γ . (6.21)

The oscillator expansion of (6.18) furnishes the definition of the spin−s Weyl tensors, and gives the
field equations for spin-s fields which remarkably do not contain higher than second order derivatives,
and indeed they are the well known Fronsdal equations for massless spin s-fields in AdS. As for (6.19),
its oscillator expansion gives the AdS massless scalar field equation in unfolded form.

Perturbative expansion around AdS at second order is rather complicated but still manageable.
Schematically the equations take the form

D0a2 − V(W0, W0, C2) = a1 � a1 + 2V(W0, a1, C1) + V(W0, W0, C1, C1) , (6.22a)

D0C2 = [a1, C1]π + U (W0, C1, C1) . (6.22b)

Even though these terms have been known in the form of parametric integrals for some time, their
detailed structure and consequences for the three point functions were considered much later in [11,49],
where the field equation for the scalar field was examined, and used for computing the three-point

25



Universe 2018, 4, 5

amplitude for spins 0 − s1 − s2. If s1 �= s2, only the first source term in (6.22b) contributes and gives a
finite result, in agreement with the boundary CFT prediction. However, if s1 = s2, only the second
source term in (6.22b) contributes and gives a divergent result [11,49]. This divergence was confirmed
later in [12,50] where the divergence in the three point amplitude for spins s − 0− 0, resulting from
the last term in (6.22a). Soon after, it was shown that a suitable redefinition of the master zero-form
cures this problem [48,51], as has been also confirmed with the computation of relevant three-point
amplitudes [52,53]. A similar redefinition in the one-form sector has also been determined so that the
divergence problem arising in the last term in the first equation above has also been removed [54].

In determining the higher order terms in the perturbative expansions of Vasiliev equations,
it remains to be established in general what field redefinitions are allowed in choosing the appropriate
basis for the description of the physical fields. In wrestling with this problem, the remarkable simplicity
of the holographic duals of this highly nonlinear and seemingly very complicated interactions may
provide a handle by means of their holographic reconstruction. Such reconstruction has been achieved
for the three and certain four-point interactions [13–15]. Putting aside the analysis and interpretation
of the nonlocalities [14,55,56], which are present, and nonetheless in accordance with holography by
construction, the issue of how to extract helpful hints from them with regard to the nature of the
allowed field redefinitions in perturbative analysis of Vasiliev equation remains to be seen.

Of course, ultimately it would be desirable to have a direct formulation of the principles that
govern the nonlocal interactions, based on the combined boundary conditions in twistor space as well
as spacetime, as we shall comment further below.

7. A Proposal for an Alternative Perturbation Scheme

In what follows, we shall show that for physically relevant initial data Ψ(Y) given by particle and
black hole-like states, the solutions obtained using the factorization method can be mapped to the
Vasiliev gauge used in the normal ordered perturbation scheme at the linearized level. Whether the
Vasiliev gauge is compatible with an asymptotic description in terms of Fronsdal fields to all orders in
perturbation theory, or if it has to be modified, possibly together with a redefinition of the zero-form
initial data, is an open problem. In finding the proper boundary conditions in both spacetime and
twistor space it may turn out to be necessary to require finiteness of a set of classical observables
involving integration over these spaces.

One can define formally the aforementioned map to all orders of classical perturbation theory by
applying a gauge function

G = L � H , (7.1)

to the holomorphic gauge solution space, where H = 1 + ∑n�1 H(n) is a field dependent gauge
function to be fixed as to impose the Vasiliev gauge in normal ordering. To begin with, let us consider
fluctuations around AdS for which Ψ(Y) consists of particle states, focusing, for concreteness, to the
case of scalar particle states worked out in [7]. Upon switching on the gauge function L, the field
V(L)

α := L−1 � V′
α � L develops non-analyticities in the form of poles in Y-space in the particle sector [7].

Applying H removes these poles and expresses the results in terms of Fronsdal fields (at the same time
restoring the manifest Lorentz covariance, as we shall see), at least in the leading order. This can be see
as follows. We want to obtain V(G)

α such that

zαV(G)
α + h.c. = z+V(G)− − z−V(G)+ + h.c. = 0 . (7.2)

The leading order gauge transformation reads

V(G)(1)
α = V(L)(1)

α + ∂αH(1) . (7.3)
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Contracting by zα and using the fact that by definition ZAV(G)
A = 0, one finds

H(1) = −
(

1
zβ∂β

zAV(L)(1)
A + h.c.

)
. (7.4)

In particular, activating only the scalar ground state (and its negative-energy counterpart) via the
parameters ν̃±1 in the projector ansatz for B (see (4.25)), this was computed in [7] with the result

H(1) = − i
4

1− x2

1− 2ix0 + x2
1

ỹ+ỹ−
ỹ+z− + ỹ−z+

ũ

(
eiũ − 1

)∣∣∣∣
η=+1

+ idem|η=−1 , (7.5)

where we have set b = ν̃1 = ν̃−1 = 1, and

ũ := ỹαzα = ỹ+z− − ỹ−z+ , ỹα = yα + Mα
β̇(x, η)ȳβ̇ . (7.6)

The matrix Mα
β̇(x, η) can be found in Section 5.2.1 of [7].

This result for H(1) is regular in Z but has a pole in Y .
It follows that

V(G)(1)
α = −1

2
1− x2

1− 2ix0 + x2
zα

ũ

[
eiũ − eiũ − 1

iũ

]
+ idem|η=−1 , (7.7)

B(Y|x) =
4(1− x2)

1− 2ix0 + x2 eiyα Mα
β̇ ȳβ̇

∣∣∣∣
η=+1

+ idem|η=−1 . (7.8)

We observe that V(G)(1)
α is now real-analytic everywhere on C.

Furthermore, it was shown in [7] that the above expressions for (B, Vα) lead to the relation

V(G)(1)
α = zα

∫ 1

0
dt t B(−tz, ȳ) eityαzα (7.9)

in agreement with the result obtained in the standard perturbative analysis of Vasiliev equations
at leading order. The emergence of zα in (7.7) shows that manifest Lorentz covariance is restored,
in comparison with the expression for V(L)(1)

α . The prefactor in (7.7) is a consequence of the fact that we
are considering the lowest mode alone in the solution for Fronsdal equation the scalar field, as opposed
to summing all the full set of modes.

Expressing the exact solutions obtained in holomorphic gauge in terms of Fronsdal fields amounts
to setting up an alternative perturbation scheme in which one constructs the higher orders of the
gauge function H(n) subject to dual boundary conditions, that is, to conditions restricting the both the
twistor-space dependence of the master fields and their spacetime asymptotic behaviour. Indeed,
one requires that after having switched on H, the master fields have symbols in normal order that
are real-analytic at Y = Z = 0, and symbols in Weyl order that belong to a (associative) star-product
subalgebra with well-defined classical observables defined by traces over twistor space and integrations
over cycles in spacetime. The proposal is that this problem admits a non-trivial solutions, and that it
fixes H(n) up to residual small HS gauge transformations and the initial data for the master zero-form
B to all orders in classical perturbation theory. It would be interesting to see whether these type of
field redefinitions are related to those recently proposed by Vasiliev in order to obtain a quasi-local
perturbation theory in terms of Fronsdal fields [51,54]. An important related issue is whether the gauge
function G is large in the sense that it affects the values of the HS zero-form charges, which are special
types of classical observables given by traces over twistor space defining zero-forms in spacetime that
are de Rham closed [20,27,57].
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A nontrivial test of the factorization approach is first to show that the solution is finite after
performing the higher order H(n) gauge transformations, and second, to show that the resulting
n-point correlators are in agreement with the result expected from holography. The corrections beyond
the leading order remain to be determined, while the computation of correlators has been performed in
which the second order solution in standard perturbative scheme has been used. It has been shown that
a naive computation of B(2) in the standard perturbative scheme leads to divergences [11,12], and later
it was shown that these divergences can be removed by a suitable redefinition of C(Y|x) [48,51].
Whether there exists a principle based on any notion of quasi-locality in spacetime that governs the
nature of such redefinitions to all orders in perturbation is not known, to our best knowledge.

An advantage of the factorization method is that here we start from a full solution to Vasiliev’s
theory, defined as a classical field theory on the product of spacetime and twistor space (not referring
a priori to the conventional perturbative approach). This provides a convenient framework for the
description of the solutions with particles fluctuating around nontrivial backgrounds. The key principle
here is that linear superposition principle holds for the zero-form initial data Ψ(Y). For example, if we
want to describe the solution to Vasiliev equations for particles propagating around BH solution of
Section 4, one simply takes Ψ = νnPn + ν̃nP̃n. The exact solution for the combined system is obtained in
this way, but in small fluctuations of a particle propagating in a fixed and exact black hole background,
one may treat the parameter ν̃n and νn as small and large, respectively. A very interesting open problem
is thus to combine this scheme with the aforementioned proposal for dual boundary conditions in
order to work out new types of generating functions for HS amplitudes.

8. Aspects of Higher Spin Geometry

HS theory has been mostly studied at the level of the field equations and in terms of locally defined
quantities in ordinary spacetimes or twistor space extensions thereof. It is clearly desirable to develop a
globally defined framework for the classical theory, in order to provide geometric interpretations of the
exact solutions, and shed further light on the important issue of the choice of boundary conditions on
the master fields on the total space required for Vasiliev’s equations to produce physically meaningful
anti-holographic duals of boundary conformal field theories. An attempt at a global description of
HS theory was made in [27] where bundle structures based on different choices of structure groups,
soldering forms and classical observables were considered10. Here, we shall highlight a particularly
interesting choice of structure group, and the resulting infinite dimensional coset description involving
tensorial coordinates, and associated generalized frame field and resulting metrics.

8.1. Structure Group

Noting that Vasiliev equations are Cartan integrable in arbitrary number of commuting
dimensions, yet without changing the local degrees of freedom associated to the zero-forms (more on
this below), we consider the formulation of Vasiliev’s theory in terms of the master fields (W, B, Sα, S̄α̇)

thought of as horizontal forms on a noncommutative fibered space C with eight-dimensional fibers
given by Y4 ×Z4 and base given by an infinite-dimensional commuting real manifold M, consisting
of charts coordinatized by XM. In each chart, the one-form field W = dXMWM thus takes its values in
the HS Lie algebra

ĥs(4) :=
{

P̂(Y, Z) : τ(P̂) = (P̂)† = − P̂
}

, (8.1)

and the deformed oscillators (Sα, S̄α̇) and the deformation field B are thought of as zero-forms on
M, valued in representations of the HS Lie algebra as described in Section 2, where the τ-map is
also defined. The extended equations of motion are given by Equations (2.28)–(2.32), with the only
difference being that the manifold χ4 is replaced by M.

10 We refer the reader to [27] for considerable amount of details albeit using a a considerably different notation.
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In order to define the theory globally on M, we glue together the locally defined master fields
using transition functions from a structure group, which by its definition is generated by a structure
algebra h given by a subalgebra of hs(4). One interesting choice is [27]

h = ĥs+(4)⊕ sl(2,C) , ĥs+(4) :=
1
2
(1 + π)ĥs(4) , (8.2)

where sl(2,C) is the algebra of canonical Lorentz transformations. The corresponding connection,
also referred to as the generalized Lorentz connection, is given by

Ω := W+ ⊕ ω , W± :=
1
2
(1 ± π)W ′ , (8.3)

where ω is the canonical Lorentz connection, while the projection

E := W− , (8.4)

is assumed to form a section11. The Vasiliev equations and gauge transformations in terms of these
master fields are spelled out in [27].

8.2. Soldering Mechanism

The horizontal differential algebra on C, which is quasi-free in the sense that the curvature
constraints are cartan integrable modulo zero-form constraints, can be projected to a free horizontal
differential algebra on the reduced total space C|Z=0. To this end, one first solves the constraints on Z
given initial data

w(Y|X) ≡ dXMwM = dXM Ŵ ′
M

∣∣∣
Z=0

, C(Y|X) = B
∣∣∣
Z=0

, (8.5)

where w(Y|X) belongs to the reduced HS algebra

hs(4) := ĥs(4)
∣∣∣
Z=0

, (8.6)

and C(Y|X) belongs to its twisted adjoint representation. Next, defining

Γ ⊕ ω := Ω
∣∣∣
Z=0

∈ hs+(4)⊕ sl(2,C) , E := E
∣∣∣
Z=0

∈ hs(4) / hs+(4) , (8.7)

where hs+(4) := 1
2 (1 + π)hs(4), we assume that M is soldered by E, that is, the tangent space of M is

assumed to be identified with the coset hs(4) / hs+(4) via E. Thus, expanding

E = dXMEA
MPA , π(PA) = −PA , (8.8)

where PA is a basis for the π-odd elements of hs(4), and denoting the inverse of the frame field EM
A

by EM
A, the local translations with gauge parameters ξ = ξ APA can be identified by usual means [27]

as infinitesimal diffeomorphisms generated by globally defined vector fields �ξ = ξAEM
A�∂M combined

with local generalized Lorentz transformations with parameters (ı�ξ Γ, ı�ξ ω).

11 It is worth noting that in [27], the form E was considered to be a soldering form on a manifold M with tangent space
isomorphic to the coset ĥs(4)/ĥs+(4) and containing M as a submanifold. We have simplified the geometrical framework
here by formulating the system directly on M.
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8.3. Elimination of Tensorial Coordinates

The framework described above can be used to write the zero-form constraint on M×{Z = 0},
up to leading order in C, as

DA(Γ, ω)C + {PA, C}� = 0 , (8.9)

where D(Γ, ω) = ∇+ adΓ with ∇ representing the Lorentz covariant derivative. This constraint can
be analyzed by decomposing PA =

{
PA�

}∞
�=0 into levels of increasing tensorial rank, viz.,

PA�
=
{

Pa(2�+1),b(2k)

}�

k=0
=

{
M{a1b1

� · · · � Ma2kb2k
� Pa2k+1 � · · · � Pa2�+1}

}�

k=0
, (8.10)

where (Mab, Pa) are the generators of SO(3, 2) and Pa(2�+1),b(2k) is a Lorentz tensor of type (2�+ 1, 2k).
The zeroth level of the zero-form constraint reads

Da(Γ, ω)C + {Pa, C}� = 0 , a = 1, ..., 4 , (8.11)

where the translation generator is given by the twistor relation Pa = (σa)αα̇yαȳα̇/4, which implies that
Cα(n+2s),α̇(n) is identifiable as the nth order symmetrized covariant vectorial derivative of the primary
spin-s Weyl tensor Cα(2s) [25]. On the other hand, the �th level of the zero-form constraint implies

Da(2�+1)(Γ, ω)C + {Pa(2�+1), C}� = 0 , (8.12)

where the higher translation generator is now given by the enveloping formula

Pa(2�+1) = P{a1
� · · · Pa2�+1} . (8.13)

As a result, the tensorial derivatives ∇a(2�+1)(Γ, ω) factorize on-shell into multiple vectorial
derivatives; for example, the tensorial derivative of the physical scalar φ = C|Y=0 factorizes into

Da(2�+1)(Γ, ω)φ ∝ D{a1
(Γ, ω) · · · Da2�+1}(Γ, ω)φ . (8.14)

It follows that no new strictly local degrees of freedom are introduced due to the presence of the
tensorial coordinates of M.

8.4. Generalized Metrics

Taking traces of �-products of generalized vielbeins E = dXMEM and adjoint operators on twistor
space, one can construct structure group invariants that are tensor fields on M [27]; in particular,
we may consider symmetric rank-r tensor fields

G(r) := dXM1 · · · dXMr Tr
[
K �

(
EM1 � V k1,k̄1

λ1,λ̄1

)
� · · · �

(
EMr � V kr ,k̄r

λr ,λ̄r

)]
, (8.15)

where K ∈ {1, κκ̄} and

V k,k̄
λ,λ̄ :=

{
exp�

[
i(λαSα + λ̄α̇S̄α̇)

]}
� (B � κ)�k � (B � κ̄)�k̄ , k, k̄ ∈ N , (8.16)

where (λα, λ̄α̇) are auxiliary twistor variables, and

Tr [ f (Z, Y)] :=
∫
Y×Z

d4Yd4Z
(2π)4 f (Z, Y) . (8.17)

Given a (compact) p-cycle [Σ] in the homology of M, one can consider the formally
defined minimum

Amin[Σ, G(r)] := min
Σ′∈[Σ]

A[Σ′, G(r)] , (8.18)
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of the area functional

A[Σ′, G(r)] :=
∫

Σ′
dpσ

⎛⎜⎝εm1[p] · · · εmr [p] ( f ∗G)m1...mr · · · ( f ∗G)m1...mr︸ ︷︷ ︸
p times

⎞⎟⎠
1/r

, (8.19)

defined using the totally anti-symmetric tensor density εm1 ... mp and induced metric

( f ∗G)m1 ... mr = ∂m1 XM1 · · · ∂mr XMs GM1 ... Mr
, (8.20)

on Σ′ equipped with local coordinates σm. The area functional is structure group invariant, and
its minimum, if well-defined, is Diff(M) invariant, hence serving as a classical observable for the
HS theory. Clearly, the dressings by the vertex operator-like operators result in a large number of
inequivalent metrics for each r, but this is not a novelty in HS theory, as it is possible to consider
similar dressings of the Einstein frame metric in ordinary gravity. The tensorial calculus pertinent to
examining the variational principles for r = 2 is well understood, whereas for r > 2 it remains to be
investigated further. In particular, one may ask whether there exists any principle for singling out a
preferred metric (possibly of rank two), using, for example, calibrations based on abelian p-forms of
the type that will be discussed below. The application of these ideas to a geometrical characterization
of the exact solutions of HS theory remains to be investigated.

8.5. Abelian p-Form Charges

Another type of intrinsically defined classical observables facilitated by the introduction of
soldering one-forms are the charges of on shell closed abelian p-forms, viz.,

Q[Σ, H] =
∮

Σ
H(E , B, Sα, S̄α̇, rαβ, r̄α̇β̇) , (8.21)

where Σ are closed p-cycles in M or open p-cycles with suitable boundary conditions, and H are
globally defined differential forms that are cohomologically nontrivial on shell, namely dH = 0 and
δΛ H = 0 (Λ ∈ h), and H is not globally exact. We also recall that rαβ is defined in (6.11). The abelian
p-forms were considered in [27]

H[p] = Tr
[
(E � E + r(S)+)�(p/2) � κ

]
, p = 2, 4, 6, ... (8.22)

where
r(S)+ =

1
8i
(1 + π)rαβSα � Sβ − h.c. (8.23)

The conservation of these charges can be checked directly by replacing the exterior derivative
by the structure group covariant derivative D(Ω) inside the trace and using the fact that
D(Ω)(E � E + r(S)+) = 0 on shell.

8.6. On-Shell Actions

Actions have been proposed that imply the Vasiliev equations [16,17] upon applying the
variational principle. Their on-shell evaluations involve subtleties stemming from their global
formulation and the crucial role played by the boundary conditions. Thus, it remains unclear whether
these actions vanish on-shell. Nonetheless, one can still employ the abelian p-form charges discussed
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above as off-shell topological deformations. To this end, one set of candidates that have been considered
are [27]

Stop[Σ2] = Re
{

τ2

∮
Σ2

Tr [κ � R]
}

Stop[Σ4] = Re
{∮

Σ4

Tr
[

κ �

(
τ4R � R + τ̃4

(
(E � E + r(S)+) � R +

1
2
(E � E + r(S)+)�2

))]}
,

(8.24)

where τ2, τ4 and τ̃4 are complex constants, Σ2,4 are submanifolds of M (where Lagrange multipliers
vanish), and

R := ∇W+ + W+ � W+ +
1
4i
(ωαβ M(0)

αβ + ω̄α̇β̇ M̄(0)
α̇β̇

) , (8.25)

which is the curvature of Ω. Using the field equation [27]

R + E � E + r(S)+ = 0 , (8.26)

we can express Stop[Σ4] on-shell as

Stop[Σ4] ≈ Re
{
(τ4 − 1

2
τ̃4)

∮
Σ4

H[4]

}
, (8.27)

where H[4] given in (8.22). Infinities arise from the integration over Σ4 as well as twistor space.
Assuming that the divergence from the AdS vacuum has a definite reality property, such that it can
be removed by choosing τ4 appropriately, one is left with an integral over perturbations that may in
principle be finite modulo a prescription for integration contours; for related discussions, see [49,58].
Provided that one considers perturbations corresponding to boundary sources, it would be natural to
interpret Stop[Σ4] as the generating functional for the boundary correlation functions.

One may also construct topological two-forms given on-shell by

Stop[Σ2] ≈ − Re
{

τ2

∮
Σ2

H[2]

}
, (8.28)

with H[2] given in (8.22). One application of this surface operator is to wrap Σ2 around a point-like
defect or singularity such as the center of the rotationally symmetric and static solution of [24]. In this
case, the leading order contribution, which comes from the AdS vacuum, is a divergent integral
over twistor space. If the divergence has a definite reality property, one can cancel it by choosing τ2

appropriately. One would then be left with an integral over the perturbations. As the latter involve
nontrivial functions in twistor space, the integral may be finite. It would be interesting to seek an
interpretation of the resulting value of Stop[Σ2] as some form of entropy of the black hole solutions
reviewed above.

An alternative framework in which certain 2- and 4-forms in x-space, referred to as the Lagrangian
forms, are introduced was proposed in [59], where their possible application for the computation of HS
invariant charges and generating functional for the boundary correlations functions were discussed;
see also [60] for the computation of such HS charges on black-hole solutions at the first order in the
deformation parameters. Asymptotic charges in HS theories have also been described in [61–63].

32



Universe 2018, 4, 5

Their relation to the HS charges12 and their evaluation on certain exact solutions will be discussed
elsewhere [26].
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Abstract: Can the holographic principle be extended beyond the well-known AdS/CFT correspondence?
During the last couple of years, there has been a substantial amount of research trying to find answers
for this question. In this work, we provide a review of recent developments of three-dimensional
theories of gravity with higher spin symmetries. We focus in particular on a proposed holographic
duality involving asymptotically flat spacetimes and higher spin extended bms3 symmetries.
In addition, we also discuss developments concerning relativistic and nonrelativistic higher spin
algebras. As a special case, Carroll gravity will be discussed in detail.

Keywords: higher spin; non-anti-de sitter; flat space; holography; nonrelativistic holography

1. Introduction

Higher spin theories on Anti-de Sitter (AdS) backgrounds provide many useful insights into
various aspects of the holographic principle. Many of these works were inspired by the seminal work
of Klebanov and Polyakov [1–3] who conjectured a holographic correspondence between the O(N)

vector model in three dimensions and Fradkin–Vasiliev higher spin gravity on AdS4 [4–6] (see [7–9]
for reviews and [10–16] for some key developments). There are many features of higher spin theories
that make them interesting to study. In the context of holography, one of these features is that it is
a weak/weak correspondence [17,18]. In contrast, the usual AdS/CFT correspondence [19–21] is
a weak/strong correspondence that makes it useful for applications, but harder to check in detail since
calculations are often feasible only on one side of the correspondence.

In particular, three-dimensional higher spin theories are useful in this context, since (in contrast
to the higher-dimensional examples) one can truncate the otherwise infinite tower of higher spin
excitations [22]. Furthermore, the equations that describe the propagation of a massless field of spin s
in three dimensions imply that there are no local degrees of freedom when s ≥ 2. Thus, one can also
formulate three-dimensional higher spin theories as Chern–Simons theories [23] with specific boundary
conditions [24–28]. This is a considerable simplification in comparison with the more complicated
higher-dimensional case. Developments in three-dimensional higher spin theories in AdS include1,
e.g., the discovery of minimal model holography [44–46], higher spin black holes [31,47–49] and higher
spin holographic entanglement entropy [50,51].

Since higher spin holography in AdS backgrounds has lead to many interesting insights, a natural
question to ask is how to generalize this duality such that it involves other spacetimes or quantum
field theories. Additionally, indeed, there are many applications where one has spacetimes that
do not asymptote to AdS or do so in a weaker way compared to the Brown–Henneaux boundary
conditions [52]. Some examples include Lobachevsky spacetimes [53–55], null warped AdS and
their generalizations Schrödinger [56–60], Lifshitz spacetimes [61–63], flat space [64–67] and de Sitter

1 Further examples can be found in [29–43].
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holography [68–70]. Some of these spacetimes play an important role as gravity duals for nonrelativistic
CFTs, which are a common occurrence in, e.g., condensed matter physics and thus may be able to
provide new insight into these strongly interacting systems. Schrödinger spacetimes for example can
be used as a holographic dual to describe cold atoms [56,57].

Even though non-AdS higher spin holography is a rather new field of research there has been
quite a lot of research in this direction during the last couple of years. Our aim with this review is to
give an overview of the results and ideas that have been accumulated over the years. A special focus
of this review will be on higher spin theories in three-dimensional flat space as well as the construction
of new higher spin theories using kinematical algebras as bulk isometries.

This review is organized as follows. In Section 2, we present an overview of non-AdS holography
that makes use of non-AdS boundary conditions of certain higher spin gravity theories. In Section 3,
we focus on a specific example of non-AdS higher spin holography, namely flat space higher spin
gravity. Section 4 can be read independently of Sections 2 and 3 and explains a different approach
of studying non-AdS higher spin theories not via boundary conditions, but rather by using different
choices of gauge algebras realizing certain higher spin theories in the bulk.

2. Non-AdS through Boundary Conditions

A lot of the progress in non-AdS higher spin holography has been achieved by imposing suitable
boundary conditions that in turn allow one to compare physical boundary observables with their
bulk counterpart. In three dimensions, this can be done rather nicely using a first order formulation
of gravity [71,72]. In order to set the stage for non-AdS higher spin holography, we give now a brief
review2 of this formulation for the case of Einstein gravity, as well as AdS higher spin gravity.

2.1. The (Higher Spin) Chern–Simons Formulation of Gravity

In many situations, it is advantageous to not describe gravity in terms of a metric formulation,
but rather in terms of local orthonormal Lorentz frames. That is, one exchanges the metric gμν with
a vielbein e and a spin connection ω. In three dimensions, the dreibein e and dualized spin connection
ω can have the same index structure in their Lorentz indices. Thus, one can combine these two
quantities into a single gauge field:

A ≡ eaPa + ωaJa, (1)

where the generators Pa and Ja generate the following Lie algebra3:

[Pa, Pb] = ∓ 1
�2 εabcJ

c, [Ja, Jb] = εabcJ
c, [Ja, Pb] = εabcPc. (2)

• For − 1
�2 , i.e., de Sitter spacetimes, this gauge algebra is so(3, 1).

• For � → ∞, i.e., flat spacetimes, this gauge algebra is isl(2,R).
• For + 1

�2 , i.e., anti-de Sitter spacetimes, this gauge algebra is
so(2, 2) ∼ sl(2,R)⊕ sl(2,R).

It has been shown [71,72] that the Chern–Simons action:

SCS[A] =
k

4π

∫
M

〈
A∧ dA+

2
3
A∧A∧A

〉
, (3)

defined on a three-dimensional manifold M = Σ ×R, with the invariant nondegenerate symmetric
bilinear form:

〈Ja, Pb〉 = ηab, 〈Ja, Jb〉 = 〈Pa, Pb〉 = 0, (4)

2 Parts of this review are based on [73–75]. There is also a slight overlap with [76].
3 We raise and lower indices with η = diag(−,+,+) and ε012 = 1.
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is equivalent (up to boundary terms) to the Einstein–Hilbert–Palatini action4 with vanishing
cosmological constant, provided one identifies the Chern–Simons level k with Newton’s constant G in
three dimensions as:

k =
1

4G
. (5)

The just mentioned bilinear form is also called an invariant metric. Its properties are important
for each component of the Chern–Simons gauge field to have a kinematical term (non-degeneracy)
and for the action to be invariant under gauge transformations (invariance). This is the general setup
for Einstein gravity in three dimensions using the Chern–Simons formalism.

AdS spacetimes in particular have some very nice features in this formalism that allow for
a very efficient treatment of many physical questions. Maybe the most convenient feature from
a Chern–Simons perspective is that the isometry algebra of AdS so(2, 2) is a direct sum of two copies
of sl(2,R). This also means that one can split the gauge field A into two parts A and Ā. On the level of
the generators, this split can be made explicit by introducing the generators:

Ta =
1
2
(Ja + �Pa) , T̄a =

1
2
(Ja − �Pa) . (6)

These new generators satisfy:

[Ta, T̄b] = 0, [Ta, Tb] = εabcT
c, [T̄a, T̄b] = εabcT̄

c. (7)

Both Ta and T̄a satisfy an sl(2,R) algebra. From (4), one can immediately see that the invariant
bilinear forms are given by:

〈Ta, Tb〉 = �

2
ηab, 〈T̄a, T̄b〉 = − �

2
ηab. (8)

The gauge field A in terms of this split can now be written as:

A = AaTa + ĀaT̄a. (9)

Thus, after implementing this explicit split of so(2, 2) into sl(2,R)⊕ sl(2,R), the Chern–Simons
action (3) also splits into two contributions:

SAdS
EH [A, Ā] = SCS[A] + SCS[Ā], (10)

where the invariant bilinear forms appearing in the Chern–Simons action are given by (8). Since both Ta

and T̄a satisfy an sl(2,R) algebra, it is usually practical to not distinguish between the two generators,
i.e., setting Ta = T̄a. This in turn also means that the invariant bilinear form in both sectors will be the
same. From (8), however, one knows that the invariant bilinear form in both sectors should have the
opposite sign. This is not a real problem since this relative minus sign can be easily introduced by
hand by not taking the sum, but rather the difference of the two Chern–Simons actions:

SAdS
EH = SCS[A]− SCS[Ā] =

1
16πG

[∫
M

d3x
√
|g|

(
R+

2
�2

)
−
∫

∂M
ωa ∧ ea

]
. (11)

4 For a nice and explicit calculation, see Appendix A in [51].
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As the factor of � in (8) only yields an overall factor of � to the action (11), one can also absorb this
factor simply in the Chern–Simons level as:

k =
�

4G
. (12)

The form of the Chern–Simons connection (11) is usually the one discussed in the literature on
AdS holography in three dimensions. The big advantage of this split into an unbarred and a barred
part in the case of AdS holography is that usually one only has to explicitly treat one of the two sectors,
as the other sector works in complete analogy, up to possible overall minus signs.

Aside from this technical simplification, there is another reason why the Chern–Simons
formulation is very often used in AdS and non-AdS holography alike. While a generalization to
higher-dimensional gravity is easier in the metric formulation, higher spin extensions are more
straightforward in this setup. Since a Chern–Simons gauge theory with gauge algebra sl(2,R)⊕ sl(2,R)
corresponds to spin-2 gravity with AdS isometries, it is natural to promote the gauge algebra to
sl(N,R) ⊕ sl(N,R)5 in order to describe gravity theories with additional higher spin symmetries.
Indeed, in [23], it was shown that for N ≥ 3, such a Chern–Simons theory describes the nonlinear
interactions of gravity coupled to a finite tower of massless integer spin-s ≤ N fields.

From a holographic perspective, one point of interest is the asymptotic symmetries of these
higher spin gravity theories for given sets of boundary conditions. The first set of consistent boundary
conditions that lead to interesting higher spin extensions of the Virasoro algebra has been worked out
in [24,25].

Aside from extending the gauge algebra, one also has to take care of the normalization of the
Chern–Simons level k. This has to be done in such a way that the spin-2 part of the resulting higher spin
theory coincides with Einstein gravity. In order to give the Chern–Simons description an interpretation
in terms of a metric, one needs to re-extract the geometric information hidden in the gauge field A.
For AdS, as well as flat space higher spin theories (in the principal embedding), this can be done via:

gμν = #〈ez
μ, ez

ν〉, (13)

where # is some normalization constant and ez
μ is the so-called zuvielbein that can be seen as a higher

spin extension of the dreibein eμ encountered previously. The expression zuvielbein is a German
expression meaning “too many legs” to emphasize that the object ez

μ now contains more geometric
information than the usual dreibein found in spin-2 gravity. In the well-known AdS case, the previous
equation can be equivalently written as [40,48]:

gμν = #
〈

Aμ − Āμ, Aν − Āν

〉
. (14)

2.2. Boundary Terms and Higher Spins

After this brief reminder about the Chern–Simons formulation of (AdS) higher spin theories
in three dimensions, we now want to set the stage for the transition to non-AdS spacetimes. All of
the interesting physics aside from global properties in three-dimensional gravity are governed by
degrees of freedom at the boundary. Thus, it is of utmost importance to make sure that one can impose
consistently fall off conditions on the gauge field6 at the asymptotic boundary. Consistent in this
context means that one still has a well-defined variational principle after imposing said boundary

5 To be more precise: the spectrum of the higher spin gravity theory depends on the specific embedding of sl(2,R) ↪→ sl(N,R).
A very popular choice in the literature on AdS higher spin holography is the principal embedding of sl(2,R) ↪→ sl(N,R).
This is due to the fact that all generators in that particular embedding have a conformal weight greater or equal to two and
thus can be interpreted as describing fields with spin s ≥ 2.

6 Or the metric in a second order formulation.
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conditions. This is crucial since a consistent variational principle is the core principle underlying the
definition of equations of motion of a physical system described by some action, as well as the one
needed in the path integral. Thus, the necessity of having such a well-defined variational principle in
turn also influences the possible set of boundary conditions that can be consistently imposed.

In order to see this, take a closer look at the variation of the Chern–Simons action (3):

δSCS[A] =
k

2π

∫
M

〈δA∧ F〉+ k
4π

∫
∂M

〈δA∧A〉 . (15)

This expression only vanishes on-shell, i.e., when F = 0, if the second term on the right-hand side
vanishes as well. Assuming that the boundary ∂M is parametrized by a timelike coordinate t and an
angular coordinate ϕ, this amounts to:

k
4π

∫
∂M

〈
δAtAϕ − δAϕAt

〉
. (16)

This term vanishes, for instance, if either Aϕ or At are equal to zero at the boundary. This is
quite a stringent condition on possible boundary conditions. Thus, it would be nice to have a way of
enlarging the possible set of consistent boundary conditions. This can be most easily done by adding
a boundary term B[A] to the Chern–Simons action (3). One could consider for example the following
boundary term:

B[A] =
k

4π

∫
∂M

〈AϕAt
〉

. (17)

Including this boundary term, the total variation of the resulting action is on-shell:

δSCS[A]Tot =
k

2π

∫
∂M

〈
δAtAϕ

〉
. (18)

Vanishing of the total variation then can be achieved for example via:

Aϕ

∣∣∣
∂M

= 0 or δAt

∣∣∣
∂M

= 0. (19)

Choosing δAt

∣∣∣
∂M

= 0, one is thus able to enlarge the possible set of boundary conditions by

making sure that the variation of a part of the Chern–Simons connection vanishes.

2.3. Examples of Non-AdS Spacetimes Realized with Higher Spin Symmetries

Adding a suitable boundary term to the Chern–Simons connection in order to allow for a bigger
set of possible boundary conditions is one of the necessary prerequisites for doing non-AdS holography.
The second one is due to an observation first made explicit in [77]. That is, higher spin isometries,
i.e., isometries based on sl(N,R), can be used to realize certain non-AdS spacetimes asymptotically.

Take for example a direct product of maximally symmetric spacetimes such as AdS2 × R or
H2 ×R, where H2 is the two-dimensional Lobachevsky plane. Then, assume that the gauge algebra
of the Chern–Simons connection is given by a direct sum of an embedding of sl(2,R) ↪→ sl(N,R)
that contains at least one singlet S with tr(S2) �= 0 and whose sl(2,R) generators are labeled as Ln.
Furthermore, assume that the manifold M where the Chern–Simons theory is defined has the topology
of a cylinder with radial coordinate ρ and boundary coordinates x1 and x2. Then, using (14) and
the connection:

A = L0 dρ + a1eρL+ dx1, Ā = −L0 dρ + eρL− dx1 + Sdx2, (20)

where a1 is some non-zero constant, one obtains the following non-vanishing metric components:

gρρ = 2tr(L2
0), g11 = −a1tr(L+L−)e2ρ, g22 =

1
2

tr(S2). (21)

40



Universe 2018, 4, 20

Depending on the sign of a1, this metric is locally and asymptotically either AdS2 ×R or H2 ×R.
This was a first indication that one can model Lobachevsky spacetimes using higher spin

gauge-invariant Chern–Simons theories. Following up on this, a natural question to ask is whether or
not one can introduce boundary conditions in this setup that lead to interesting boundary dynamics.
In [53,55], it was shown that this is, indeed, possible using a very general algorithm7. This algorithm
can roughly be summarized by the following steps:

Identify Bulk Theory and Variational Principle:

The first step in this algorithm consists of identifying the bulk theory8 one wants to describe.
After that, one has to propose a suitable generalized variational principle, i.e., add appropriate
boundary terms that are consistent with the theory under consideration.

Impose Suitable Boundary Conditions:

After having chosen the bulk theory, the next step in this algorithm is choosing appropriate
boundary conditions for the Chern–Simons connection A. This is the most crucial step in the whole
analysis as the boundary conditions essentially determine the physical content of the putative dual
field theory at the boundary. Since one is dealing with a Chern–Simons gauge theory, one also has
some gauge freedom left that can be used to simplify computations. Choosing a gauge:

Aμ = b−1
(
aμ + a(0)μ + a(1)μ

)
b + b−1 db, b = b(ρ), (22)

one can then identify the following three contributions to the Chern–Simons connections:

• aμ denotes the (fixed) background that was chosen in the previous step.
• a(0)μ corresponds to state-dependent leading contributions in addition to the background that

contains all the physical information about the field degrees of freedom at the boundary.
• a(1)μ are subleading contributions.

Choosing suitable boundary conditions in this context thus means choosing a(0)μ and a(1)μ in such
a way that there exist gauge transformations that preserve these boundary conditions, i.e.,

δεAμ = O
(

b−1a(0)μ b
)
+O

(
b−1a(1)μ b

)
, (23)

for some gauge parameter ε, which can also be written as:

ε = b−1
(

ε(0) + ε(1)
)

b. (24)

The transformations ε(0) usually generate the asymptotic symmetry algebra, while ε(1) are trivial
gauge transformations.

Perform Canonical Analysis and Check the Consistency of Boundary Conditions:

Once the boundary conditions and the gauge transformations that preserve these boundary
conditions have been fixed, one has to determine the canonical boundary charges. This is a standard

7 See also, e.g., [52,78,79].
8 This usually boils down to choosing an appropriate embedding of sl(2,R) ↪→ sl(N,R) and then fixing the Chern–Simons

connections A and Ā in such a way that they correctly reproduce the desired gravitational background.
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procedure that is described in great detail for example in [78,79] and is based on the results of [80].
This procedure eventually leads to the variation of the canonical boundary charge:

δQ[ε] =
k

2π

∫
∂Σ

〈
ε(0)δa(0)ϕ

〉
dϕ, (25)

where ϕ parametrizes the cycle of the boundary cylinder. Of course, one also has to check whether
or not the boundary conditions chosen at the beginning of the algorithm are actually physically
admissible. For the three-dimensional higher spin gravity gravity examples that are treated in this
review, that means that the variation of the canonical boundary charge is finite, conserved in time
and integrable in field space. However, we want to stress that there are also other examples such as,
e.g., [81], where one can also have physically interesting boundary conditions where the canonical
boundary charges do not necessarily meet all of the previously stated conditions.

Determine Semiclassical Asymptotic Symmetry Algebra:

This step consists of working out the Dirac brackets between the canonical generators G that
directly yield the semiclassical asymptotic symmetry algebra. There is a well-known trick that can
be used to simplify calculations at this point. Assume that one has two charges with Dirac bracket
{G[ε1],G[ε2]}. Then, one can exploit the fact that these brackets generate a gauge transformation as
{G[ε1],G[ε2]} = δε2G and read of the Dirac brackets by evaluating δε2G. This relation for the canonical
gauge generators is on-shell equivalent to a corresponding relation only involving the canonical
boundary charges:

{Q[ε1],Q[ε2]} = δε2Q, (26)

which in most cases is straightforward to calculate. This directly leads to the semiclassical asymptotic
symmetry algebra including all possible semiclassical central extensions.

Determine the Quantum Asymptotic Symmetry Algebra:

This part of the algorithm first appeared in [24]. One insight of this paper was that the asymptotic
symmetry algebra derived in the previous steps is only valid for large values of the central charges.
For non-linear algebras, such as W-algebras that are frequently encountered in higher spin holography,
that means in particular that one has to think about how normal ordering affects the algebra when
passing from a semi-classical to a quantum description of the asymptotic symmetries. One particularly
simple way of doing this is to take the semi-classical symmetry algebra, normal order non-linear terms
and add all possible deformations to the commutation relations. Requiring that the resulting algebra
satisfies the Jacobi identities (see, e.g., [82]) is usually enough to fix all the structure constants yielding
the quantum asymptotic symmetry algebras.

Identify the Dual Field Theory:

With the results from all the previous steps, one can then proceed in trying to identify or put
possible restrictions on a quantum field theory that explicitly realizes these quantum asymptotic
symmetries. Once this dual field theory is identified, one can perform further nontrivial checks of the
holographic conjecture.

2.3.1. Lobachevsky Spacetimes

As an explicit example of this algorithm, let us consider the Lobachevsky case worked out
in [53,55]. In this work, the non-principal embedding of sl(2,R) ↪→ sl(3,R) was used to describe
fluctuations around the background:

ds2 = dt2 + dρ2 + sinh2 ρ dϕ2. (27)
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In a Chern–Simons formulation, this means that one can consider a connection of the form:

At = 0, Āt =
√

3 S, Aρ = L0, Āρ = −L0, (28a)

Aϕ = −1
4
L1 eρ +

2π

kCS

(J (ϕ)S+ G±(ϕ)ψ±
− 1

2
e−ρ/2 + L(ϕ)L−1 e−ρ

)
, (28b)

Āϕ = −L−1 eρ +
2π

kCS

J̄ (ϕ)S, (28c)

where the non-principal embedding of sl(2,R) ↪→ sl(3,R) is characterized by three sl(2) generators Ln

(n = −1, 0, 1), two sets of generators ψ±
n (n = − 1

2 , 1
2 ) and one singlet S.

Performing the algorithm described previously, one finds that the (quantum) asymptotic
symmetry algebra is given by a direct sum of the Polyakov–Bershadsky algebra [83,84] and a û(1)
current algebra.

Defining k̂ = −k − 3/2 and denoting normal ordering with respect to a highest-weight
representation by : :, the asymptotic symmetry algebra is given by:

[Jn, Jm] = κ n δn+m,0 = [J̄n, J̄m], (29a)

[Jn, Lm] = nJn+m, (29b)

[Jn, G±m ] = ±G±m+n, (29c)

[Ln, Lm] = (n − m)Lm+n +
c

12
n(n2 − 1) δn+m,0, (29d)

[Ln, G±m ] =
(n

2
− m

)
G±n+m, (29e)

[G+n , G−m ] =
λ

2
(
n2 − 1

4
)

δn+m,0

− (k̂ + 3)Lm+n +
3
2
(k̂ + 1)(n − m)Jm+n + 3 ∑

p∈Z
: Jm+n−pJp :, (29f)

with the û(1) level:

κ =
2k̂ + 3

3
, (30)

the Virasoro central charge:

c = 25− 24
k̂ + 3

− 6(k̂ + 3), (31)

and the central term in the G± commutator:

λ = (k̂ + 1)(2k̂ + 3) . (32)

Looking at unitary representations of this algebra, one finds that there is only one value where
there are negative norm states that are absent, and that is for k̂ = −1 and thus also c = 1. Hence,
a natural guess for a dual quantum field theory is a free boson.

Applying the same logic to other non-principally embedded sl(N,R) Chern–Simons theories,
it became quickly clear that the requirement of having no negative norm states is a very simple
tool in restricting possible values of the Chern–Simons level. Furthermore, one could also see that
with increasing N, also the allowed values for the central charges started to grow. In [54,85], it was
shown that a Chern–Simons theory with next-to-principally embedded sl(2,R) ↪→ sl(N,R) allows for
boundary conditions that yield a W (2)

N Feigin–Semikhatov [86] algebra as an asymptotic symmetry
algebra. Looking at negative norm states for these algebras, one finds again restrictions on the allowed
values of the central charge c that depend on N in such a way that the central charge can take arbitrarily
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large (but finite9) values. This is quite an interesting result since this provides an example of a unitary
theory of gravity whose boundary dynamics are covered by a dual quantum field theory that allows
both for a semiclassical (large values of the central charge), as well as an ultra quantum (central charge
of O(1)) regime. Thus, this family of W (2)

N models provides a novel class of models that may be good
candidates for toy models of quantum gravity in three dimensions.

2.3.2. Lifshitz Spacetimes

Even though the Lobachevsky case was the first example where higher spin symmetries proved
useful for describing asymptotics beyond AdS, it is by far not the only case considered in the
literature so far. Another example that gained quite a bit of attention is the case of asymptotic
Lifshitz spacetimes [61]:

ds2 = �2
(

dr2 + dx2

r2 − dt2

r2z

)
, (33)

where z ∈ R is a scaling exponent.
The authors of [62] used the Chern–Simons higher spin formulation successfully to describe

non-rotating black holes in three-dimensional Lifshitz spacetimes with z = 2. In addition, this allowed
them also to study the thermodynamic properties of these black holes in detail.

Another very interesting aspect of describing Lifshitz spacetimes using higher spin symmetries
has been explored in [63]. The starting point of the analysis was again an sl(3,R)⊕ sl(3,R) higher spin
Chern–Simons theory with boundary conditions such that the corresponding metric asymptotes to the
Lifshitz spacetime (33). Looking at the resulting form of the asymptotic symmetry algebra, the authors
found two copies of a W3 algebra with a central charge c = 3�

2G . This is quite an interesting result,
since this is exactly what one would get starting with a spin-3 extension of AdS3 [25,27]. It was then
later argued in [60] that this may be due to the non-invertibility of the zuvielbein in the higher spin
Lifshitz case, and thus, the metric interpretation of Lifshitz spacetimes in higher spin theories might
be questioned.

These are not the only interesting features that have been explored in the context of Lifshitz
holography using higher spin symmetries. Furthermore, very interesting relations to integrable
systems have been discovered in [88–90].

2.3.3. Null Warped, Schrödinger Spacetimes

Null warped AdS:

ds2 = �2
(

dr2

4r2 + 2r dt dϕ + f (r, z)dϕ2
)

, (34)

with f (r, z) = rz + βr + α2 and where z is a real parameter and α and β constants of motion, is another
case of spacetimes that have been linked to higher spin theories. In [59], the authors proposed
boundary conditions that asymptote to null warped AdS and found a single copy of the W (2)

3
Polyakov–Bershadsky algebra (29) as asymptotic symmetries.

Last, but not least, we also want to mention that Schrödinger spacetimes:

ds2 = −r2z dt2 − 2r2 dt dx− +
dr2

r2 + r2 dxi, (35)

can be treated in a higher spin context, both in three dimensions, as well as in higher dimensions [91,92].

9 In [87], it has been shown that any embedding of sl(2,R) ↪→ sl(N,R) that contains a singlet contains negative norm states
for c → ∞.
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Even though this review is focused on higher spins without anti-de Sitter, we also want to point
out some work on higher spins in de Sitter [68–70], as well an example of chiral higher spin theories in
AdS10 [94].

3. Flat Space Higher Spin Theories as Specific Examples

Besides the examples of non-AdS higher spin theories that have already been mentioned in
the previous section, there is another quite prominent example of a holographic correspondence
involving higher spins, that is flat space. Before we go into more details regarding higher spins in flat
space, we want to give a brief overview of important developments regarding flat space holography
in general.

The first indications that there might be a holographic correspondence in asymptotically flat
spacetimes were worked out in [95–97]. In the last decade, there has been a lot of progress
in that direction especially in three spacetime dimensions. In 2006, Barnich and Compère [98]
presented a consistent set of boundary conditions for asymptotically flat spacetimes at null infinity11

that extended previous considerations of [102]. Using these boundary conditions, Barnich and
Compère were able to show that the corresponding asymptotic symmetry algebra is given by
the three-dimensional Bondi–Metzner–Sachs algebra (bms3) [103,104]. Since the discovery of the
Barnich–Compère boundary conditions, many other boundary conditions in asymptotically flat
spacetimes have been found leading to either extensions of the bms3 algebra as asymptotic symmetry
algebra such as [105–110] or to other algebras such as a warped conformal algebra [111], Heisenberg
algebras [112] or an isl(2)k algebra [113].

In particular, the Barnich–Compère boundary conditions, and the associated bms3 asymptotic
symmetries were used quite extensively for various non-trivial checks of a putative holographic
correspondence [114–132].

The previously mentioned developments were mainly focused on either pure Einstein gravity or
supersymmetric extensions thereof. Now, what about (massless) higher spin theories in flat space?
In four or higher dimensional flat space, there are in fact quite a number of no-go theorems that forbid
non-trivial higher spin interactions such as the Coleman–Mandula theorem [133], its generalization by
Pelc and Horwitz [134], the Aragone–Deser no-go result [135], the Weinberg–Witten theorem [136],
and others. For a very nice overview of all these various no-go theorems, please refer to [137].
This seems like bad news for non-trivial interacting (massless) higher spin theories. However,
every no-go theorem is only as good as its premises, and as such, there are various ways of
circumventing these theorems such as, e.g., having a non-zero cosmological constant [6]. Interestingly
enough, the no-go theorems mentioned previously do not apply in three dimensions, and thus, it seems
possible to have non-trivial interacting (massless) higher spin theories in three dimensions12.

Indeed, in [64,65], the first consistent boundary conditions for a higher spin extension of the
Poincaré algebra were found.

3.1. Flat Space Spin-3 Gravity

Higher spin theories in three-dimensional flat space can be described in a very similar fashion as
in the AdS3 case, that is by a suitable Chern–Simons formulation. In the AdS3 case, the basic gauge
symmetries of the Chern–Simons gauge field are given by a direct sum of two copies of sl(N,R)
(or more general hs[λ]). In the flat space case, the corresponding connections take values in isl(N,R).

10 The boundary conditions in this work can be seen as the spin-3 extension of the boundary conditions found in [93].
11 These are boundary conditions for either future or past null infinity. Thus, to be more precise, one obtains one copy of bms3

on future and another copy on past null infinity. For successful efforts of connecting these two algebras, see [99–101].
12 Even though (A)dS backgrounds favor interactions of massless higher spin fields, higher spin interactions are not

completely ruled out even in higher-dimensional flat space. For recent developments regarding higher spins in four
or higher-dimensional flat space, see, e.g., [138–141].
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The structure of isl(N,R) is that of a semidirect sum of sl(N,R) with an abelian ideal that is isomorphic
to sl(N,R) as a vector space. One nice thing about this structure is that it can be straightforwardly
obtained by suitable İnönü–Wigner contractions [142], and thus, one has a direct way of obtaining
these algebras from the well-known AdS3 higher spin gauge symmetries13. These kinds of contractions
have been used quite successfully to obtain new higher spin algebras in flat space (both isometries
and asymptotic symmetries) [66,73,147], as well as flat space analogues of important formulas like the
(spin-3) Cardy formula [125,148].

Thus, the starting point for a spin-3 theory in flat space is a Chern–Simons action with gauge
algebra14 isl(3,R) equipped with an appropriate bilinear form. Then, one can choose boundary
conditions as [64,65]:

A = b−1 db + b−1a(u, ϕ)b, b = e
r
2M−1 , (36)

with:
a(u, ϕ) = aϕ(u, ϕ)dϕ + au(u, ϕ)du, (37)

where:

aϕ(u, ϕ) =L1 − M
4
L−1 − N

2
M−1 +

V
2
U−2 +ZV−2, (38a)

au(u, ϕ) =M1 − M
4
M−1 +

V
2
V−2. (38b)

The operators Ln, Mn with n = ±1, 0 and Um, Vm with m = ±2,±1, 0 span the isl(3,R) algebra15

with invariant bilinear form:

〈LnMm〉 = −2ηnm, 〈UnVm〉 = 2
3
Knm, (39)

where ηnm = antidiag(1,− 1
2 , 1) and Knm = antidiag(12,−3, 2,−3, 12). The zuvielbein can be

extracted from the gauge connection by using that A = e(2)n Mn + e(3)n Vn + ω
(2)
n Ln + ω

(3)
n Un. Using

these ingredients, one can determine the metric16

gμν = ηabe(2)a
μ e(2)bν +Kabe(3)a

μ e(3)bν . (40)

Thus, consequently, these boundary conditions describe the following metric and spin-3 field:

ds2 = Mdu2 − 2 dr du + 2N du dϕ + r2 dϕ2, Φμνλ dxμ dxν dxλ = 2V du3 + 4Z du2 dϕ. (41)

From a geometric point of view, the metric is nothing else than flat space in Eddington–Finkelstein
coordinates. Working out the asymptotic symmetries, one finds that these boundary conditions lead to
the following non-linear, centrally-extended asymptotic symmetry algebra:

13 Please refer to [117,119,126,132,143–146] for early, as well as recent work in flat space holography in three dimensions that
rely on contractions.

14 To be more precise, it is the principal embedding of isl(2,R) ↪→ isl(3,R).
15 The commutation relations are identical to the ones in (42) after restricting the mode numbers as already mentioned and in

addition dropping all non-linear terms.
16 The spin-3 field can be determined in analogy by using the cubic Casimir of the sl(3,R) subalgebra.
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[Ln, Lm] =(n − m)Ln−m +
cL
12

n(n2 − 1)δn+m,0, (42a)

[Ln, Mm] =(n − m)Mn−m +
cM
12

n(n2 − 1)δn+m,0, (42b)

[Ln, Um] =(2n − m)Un+m, (42c)

[Ln, Vm] =(2n − m)Vn+m, (42d)

[Mn, Um] =(2n − m)Vn+m, (42e)

[Un, Um] =(n − m)(2n2 + 2m2 − nm − 8)Ln+m +
192
cM

(n − m)Λn+m

− 96cL

c2
M

(n − m)Θn+m +
cL
12

n(n2 − 1)(n2 − 4)δn+m,0, (42f)

[Un, Vm] =(n − m)(2n2 + 2m2 − nm − 8)Mn+m +
96
cM

(n − m)Θn+m

+
cM
12

n(n2 − 4)(n2 − 1)δn+m,0, (42g)

with:
Λn = ∑

p∈Z
LpMn−p, Θn = ∑

p∈Z
MpMn−p, (43)

and:
cL = 0, cM =

3
G

. (44)

This algebra is usually denoted by FW3 to denote its role similar to the W3 algebra in AdS3 higher
spin holography. Furthermore, this algebra can be obtained as a specific İnönü–Wigner contraction
that can be interpreted as a limit of vanishing cosmological constant of the the AdS3 spin-3 asymptotic
W3 symmetries.

Assuming that one starts with two copies of a quantum17 W3 algebra [149] whose generators are
labeled as Ln, L̄n and Wn, W̄n, then one can define the following linear combinations:

Ln :=Ln − L̄−n, Mn :=
1
�

(Ln + L̄−n
)

, (45a)

Un :=Wn − W̄−n, Vn :=
1
�

(Wn + W̄−n
)

, (45b)

and in the limit � → ∞ obtain exactly (42). It should also be noted that besides the contraction (45),
one can also perform a so-called nonrelativistic contraction using the following alternative
linear combination:

Ln :=Ln + L̄n, Mn := −ε
(Ln − L̄n

)
, (46a)

Un :=Wn + W̄n, Vn := −ε
(Wn − W̄n

)
, (46b)

that in the limit ε → 0 yields another kind of non-linear, centrally-extended algebra [147] that can be
seen as natural (quantum) higher spin extension of the Galilean conformal algebra gca2. In the spin-2
case, these two limits yield two isomorphic algebras, namely the bms3 and gca2 algebra, respectively.
However, as soon as one adds higher spins, these two limits do not yield isomorphic algebras anymore.
The reason for this is basically that each limit favors different representations. The ultrarelativistic
limit that leads to the bms3 algebra favors so-called (unitary) induced representations, whereas the

17 That means that all non-linear terms are normal ordered with respect to some highest-weight representation and the central
terms have O(1) corrections that are necessary to satisfy the Jacobi identities when the non-linear terms are normal ordered.
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nonrelativistic contraction favors (generically non-unitary [66]) highest-weight representations [147].
Since normal ordering requires a notion of vacuum, what is meant by normal ordering differs as soon
as there are non-linear terms present in the algebra and as such also influences the structure constants.

3.2. Flat Space Cosmologies with Spin-3 Hair

Cosmological solutions in flat space [150,151] are well known and thoroughly studied objects.
As such, another very interesting thing to study in the context of higher spin theories is comprised of
cosmological solutions in flat space that also carry higher spin hair. This has been done successfully
first in [67] and subsequently also in [152]. The basic idea of describing such cosmological solutions is
by taking the ϕ-part of the connection (37) and extending the u-part by arbitrary, but fixed chemical
potentials in such a way that the equations of motion F = 0 are satisfied. By imposing suitable
holonomy conditions18, one can then determine, the inverse temperature, angular potential and higher
spin chemical potentials and subsequently also the thermal entropy of cosmological solutions with
additional spin-3 hair. If one denotes the spin-2 charges by N , M, the spin-3 charges by Z , V and
introducing the dimensionless ratios:

R− 1
4R3/2 =

|V|
M3/2 , R > 3, and P =

Z√MN , (47)

one obtains the following formula for the thermal entropy of cosmological solutions with spin-3 hair:

STh =
π

2G
|N |√M

2R− 3− 12P√R
(R− 3)

√
4− 3/R . (48)

This result can also be understood in terms of a limiting procedure of the AdS spin-3 results
for the thermal entropy of BTZsolutions with spin-3 hair [148]. In complete analogy to the limiting
procedure of the BTZ black hole entropy, one has to consider the following expression that can be seen
as a inner horizon entropy formula of spin-3 charged BTZ black holes:

Sinner = 2π

∣∣∣∣∣
√

cL
6

√
1− 3

4C
−
√

c̄ L̄
6

√
1− 3

4C̄

∣∣∣∣∣ , (49)

where c = c̄ = 3�
2G and the dimensionless ratios C and C̄ are given by:√

c
6L3

W
4

=
C − 1

C
3
2

,
√

c̄
6L̄3

W̄
4

=
C̄ − 1

C̄
3
2

. (50)

In order to take the limit, one also has to introduce suitable relation of the AdS spin-2 and spin-3
charges L, L̄, W , W̄ with their flat space counterparts N , M and Z , V . If one chooses the relations as:

M = 12
(L

c
+
L̄
c̄

)
, N = 6�

(L
c
− L̄

c̄

)
, (51a)

V = 12
(W

c
+
W̄
c̄

)
, Z = 6�

(W
c
− W̄

c̄

)
, (51b)

and in addition defines:

C = R+
2
�

D(R,P ,M,N ), C̄ = R− 2
�

D(R,P ,M,N ). (52)

18 Alternatively, one can also use a closed Wilson loop wrapped around the horizon [153] in order to determine the
thermal entropy.
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with:

D(R,P ,M,N ) =
N
M

R
(
R 3

2 P + 3R− 3
)

(R− 3)
, (53)

then it is straightforward to show that, indeed, one reproduces the entropy formula (48) in the limit
� → ∞.

Having an entropy formula like (49) at hand also allows one to study possible phase transitions of
these higher spin cosmological solutions in flat space by looking at the free energy. Indeed, one finds
the usual phase transition to hot flat space first described in [118] plus additional phase transitions
because of the additional spin-3 charges. Interestingly and in contrast to the possible phase transitions
in AdS [154], there can also be first order phase transitions between various thermodynamical phases
in the flat space case.

3.3. Higher Spin Soft Hair in Flat Space

Soft hair excitations of black holes as possible solutions19 to the black hole information paradox
have attracted quite some research interest lately; see, e.g., [157,158]. Especially, three-dimensional
gravity proved to be quite an active playground to study soft hair on (higher spin) black holes in
AdS [159–162], higher-derivative theories of gravity [163], as well as flat space [112,164]. What is most
intriguing about all these near horizon boundary conditions is that they all lead to a (number of) û(1)
current algebra(s), but the entropy is always given in a very simple form:

STh = 2π
(
J+0 + J−0

)
, (54)

where J±0 are the spin-2 zero modes of the near horizon symmetry algebras. In the following, we give
a brief overview on how to obtain this result for the entropy for spin-3 gravity in flat space.

The starting point is again a Chern–Simons formulation of gravity with a gauge algebra isl(3,R)
as in Section 3.120. However, one is now interested in describing near horizon boundary conditions of
flat space cosmologies with additional spin-3 hair in contrast to the examples previously that focused
on the asymptotic symmetries of such configurations. These near horizon boundary conditions can be
described by:

A = b−1(a + d) b (55)

where the radial dependence is encoded in the group element b as [112]:

b = exp
(

1
μP

M1

)
exp

( r
2
M−1

)
, (56)

and the connection a reads:
a = av dv + aϕ dϕ , (57)

with:

aϕ = J L0 + P M0 + J (3) U0 + P (3) V0 , (58a)

av = μP L0 + μJ M0 + μ
(3)
P U0 + μ

(3)
J V0 . (58b)

All the functions appearing in (58) are in principle arbitrary functions of the advanced time v and
the angular coordinate ϕ. Based on these boundary conditions, it is straightforward to determine the
near horizon symmetry algebra as:

19 For a contrasting view on the role of soft hair in solving the black hole paradox, see, e.g., [155,156] and the references therein.
20 Please note that instead of the retarded time coordinate u it is more natural to use the advanced time coordinate v.
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[Jn, Pm] = k n δn+m,0 [J
(3)
n , P(3)m ] =

4k
3

n δn+m,0 (59)

where k = 1
4G , which can also be brought into a different form by:

J±±n =
1
2
(Pn ± Jn) J

(3)±
±n =

1
2
(P

(3)
n ± J

(3)
n ) . (60)

The generators J±n and J
(3)±
n then satisfy:

[J±n , J±m ] =
k
2

nδn+m,0 [J+n , J−m ] = 0 , (61a)

[J
(3)±
n , J(3)±m ] =

2k
3

nδn+m,0 , [J
(3)+
n , J(3)−m ] = 0 . (61b)

Thus, the near horizon symmetries are given by two pairs of û(1) current algebras.
Calculating both the Hamiltonian (in order to check that these excitations are, indeed, soft), as well as
the thermal entropy, which is given by (54), is a straightforward exercise, and we refer the interested
reader to [164] for more details.

With a simple result like (54) for the thermal entropy of a spin-3 charged flat space cosmology
and a rather complicated one like (48), a natural question to ask is: How exactly are these two related?
Is there a way to construct the asymptotic state-dependent functions M, N , V and Z in terms of the
near-horizon state-dependent functions J , P , J (3) and P (3)?

In order to answer these questions, one has to find a gauge transformation that maps these
two connections into each other without changing the canonical boundary charges. Such a gauge
transformation can, indeed, be found and gives the relations:

M = J 2 +
4
3

(
J (3)

)2
+ 2J ′, (62a)

N = J P +
4
3
J (3)P (3) + P′, (62b)

V =
1
54

(
18J 2J (3) − 8

(
J (3)

)3
+ 9J ′J (3) + 27J J (3)′ + 9J (3)′′

)
, (62c)

Z =
1
36

(
6J 2P (3) − 8P (3)

(
J (3)

)2
+ 3P (3)J ′ + 3J (3)P′

+9J P (3)′ + 9PJ (3)′ + 12PJ J (3) + 3P (3)′′
)

(62d)

that are basically (twisted) Sugawara constructions for the spin-2 and spin-3 fields. One can use these
relations and an appropriate Fourier expansion in order to solve for the zero modes P0 = J+0 + J−0 ,
which gives:

P0 = J+0 + J−0 =
1

4G

N
(

4R− 6 + 3P√R
)

4
√M(R− 3)

√
1− 3

4R
(63)

and correctly reproduces (48). Thus, one sees that also for flat space cosmologies, there seems to
be a much easier way to count the microscopical states contributing to the thermal entropy; that is,
in terms of near horizon variables instead of asymptotic ones.

3.4. One Loop Higher Spin Partition Functions in Flat Space

One loop partition functions often provide very useful insights on the consistency of the spectrum
for a possible interacting quantum field theory. On (A)dS backgrounds, this feature has been
exploited quite successfully. In three bulk dimensions for example, the comparison between bulk and
boundary partition functions [165–167] has been an important ingredient in defining the holographic
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correspondence between higher spin gauge theories and minimal model CFTs [45]. In spacetime
dimensions higher than three, the analysis of one-loop partition functions of infinite sets of higher spin
fields provided the first quantum checks [168–172] of analogous AdS/CFT dualities [1].

Since the study of one-loop higher spin partition functions has proven to be quite a fruitful line
of research, a natural question to ask is whether or not one can extend such considerations also to
higher spin theories in d-dimensional flat space. This venue has been successfully pursued in [173],
where one-loop partition functions of (supersymmetric) higher spin fields in d-dimensional thermal
flat space with angular potentials�θ and inverse temperature β have been computed for the first time
using both a heat kernel, as well as a group theoretic approach. Also in this case, the three-dimensional
case is of special interest since for d = 3, one can explicitly show that suitable products of massless
one-loop partition functions:

Z[β,�θ] = eδs,2
βcM

24

∞

∏
n= s

1
|1− ein(θ+iε)|2 , cM = 3/G, (64)

coincide with vacuum characters of FWN algebras:

χFWN = eβcM/24
N

∏
s=2

(
∞

∏
n=s

1
|1− ein(θ+iε)|2

)
. (65)

3.5. Further Aspects of Higher Spins in 3D Flat Space

As some final remarks regarding higher spins in flat space, we want to describe a little bit more
explicitly the content of the two works [174,175].

The first work [174] shows how higher spin symmetries could be used to get rid of the causal
singularity in the Milne metric21 in three dimensions [115,116]. The basic idea here is that one can
reformulate the Milne metric equivalently in terms of a Chern–Simons connection and then enlarging
the gauge algebra of the Chern–Simons connection from isl(2,R) to isl(3,R). Requiring that the
holonomies of the higher spin connection match those of the original spin-2 connection does place
some restrictions on the possible spin-3 extensions of the Chern–Simons gauge field; however, it still
leaves enough freedom that can be used to get rid of the causal singularity that is present in the
spin-2 case at the level of the Ricci scalar22 and in addition have a non-singular spin-3 field supporting
the geometry.

The second work in this context that we would like to mention explicitly is [175]. One very important
ingredient in establishing a (higher-spin) holographic principle in asymptotically flat spacetimes is to
find concrete theories that are invariant under the corresponding asymptotic symmetries. For Einstein
gravity without a cosmological constant and Barnich–Compère boundary conditions, this would be the
bms3 algebra, and indeed, for this case, it has been suggested in [181] that a flat limit of Liouville theory
would be a suitable candidate23. The work [175] extended the previous considerations accordingly to
a two-dimensional action invariant under a spin-3 extension of the bms3 algebra. The corresponding
action can also be obtained as a suitable limit of sl(3,R) Toda theory as expected.

4. Non-AdS through the Choice of Gauge Group

After the considerations of the preceding sections, it is natural to ask if there are higher spin
theories based on Lie algebras beyond (A)dS and Poincaré. This is of interest because it became clear

21 See [176] for a work along similar lines, however, for a null-orbifold of flat space [177–180].
22 It should be noted that there is still the possibility that a possible spin-3 generalization of the Ricci scalar is singular. However,

there is at the moment no full geometric interpretation of higher spin symmetries that would be necessary in order to
check this.

23 See also [131] for a more group theoretic approach to the problem.
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that for nonrelativistic holography, also nonrelativistic geometries play a fundamental role; for a review,
see, e.g., [182]. In Section 2.3, the focus was on obtaining geometries beyond (A)dS using different
backgrounds and boundary conditions than (A)dS, while still working in a theory given by the gauge
group of AdS and its higher spin generalizations. In this section (like in Section 3), we are going to
make non-(A)dS geometries manifest by changing the gauge algebra.

Since the tools that were used in the derivation of kinematical algebras and their Chern–Simons
theories are the same for the spin-2 case and their spin-3 generalization, we will first focus on the
former and comment afterwards on the latter.

4.1. Kinematical Algebras

A classification of interesting kinematical algebras, consisting of generators of time and spatial
translations H and Pa

24 , rotations J and inertial transformations Ga has been given by Bacry and
Levy-Leblond [183]. The classification was provided under the assumptions that:

1. Space is isotropic.
2. Parity and time-reversal are automorphisms of the kinematical groups.
3. Inertial transformations in any given direction form a non-compact subgroup.

This analysis led to other Lie algebras besides the already mentioned (A)dS and Poincaré algebras.
Other prominent examples are the Galilei algebra and Carroll algebra and their cousins that appear in
the context of spacetimes with non-vanishing cosmological constant. All of them can be conveniently
summarized as a cube of İnönü–Wigner contractions25 starting from the (A)dS algebras; see Figure 1.
Since contractions are physically seen as approximations, they often automatically provide insights
from the original to the contracted theory.

(Anti-)de Sitter

Poincaré

Newton–Hooke

Para-Poincaré

Galilei

Para-Galilei

Carroll

Static

Space-time; ∞ ← �

Speed-space;c→
∞

Speed-time; 0 ← c

Figure 1. This cube summarizes the kinematical Lie algebras [183]. Each dot represents a kinematical
Lie algebra, given explicitly in Appendix A, and each arrow represents an İnönü–Wigner contraction.

24 The indices take now the values a, b, m = (1, 2).
25 We will use the term İnönü–Wigner contractions here to denote contractions of the form originally defined in [142],

sometimes called simple İnönü–Wigner contractions. In contrast to some generalizations like generalized İnönü–Wigner
contraction, they are linear in the contraction parameter.
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The double arrows mean that there are two contractions since we start with two Lie algebras (AdS
and dS). The algebras on the back surface and therefore of finite (A)dS radius � can be considered
as cosmological algebras. The top and bottom surfaces can be understood as relative and absolute
time Lie algebras, connected by the nonrelativistic limit c → ∞. Sending the speed of light c to zero,
the ultrarelativistic limit, leads to absolute space Lie algebras. The parameters of the limits should not
be taken too serious since, one of course cannot take the limit of c → 0 and c → ∞ simultaneously
(there are actually three parameters involved). They should merely make intuitively clear that the light
cone either closes in the ultrarelativistic limit or opens up as for the nonrelativistic one.

To define an İnönü–Wigner contraction, one starts with a Lie algebra g, which is a vector space
direct sum of h and i, i.e., g = h⊕ i. One then rescales i �→ 1

ε i. The commutation relations before and
after the contraction are then explicitly given by:

[h, h] = h+
�
��1

ε
i, [h, h] = h, (66)

[h, i] = εh+ i, ε→0−→ [h, i] = i, (67)

[i, i] = εh+ ε2i, [i, i] = 0 . (68)

The term on the right-hand side of the [h, h] commutator that has been crossed out basically shows
that the contraction is convergent in the ε → 0 limes, and therefore well defined, if and only if h is a Lie
subalgebra of g [142]. Specifying h completely determines the İnönü–Wigner contraction (up to an
isomorphism) [184], and one can therefore enumerate possible contractions by specifying a subalgebra.
With this knowledge, we start with the three-dimensional (anti)-de Sitter algebra (the upper sign is the
AdS algebra, the lower for dS),

[J, Ga] = εamGm, [J, Pa] = εamPm, (69)

[Ga, Gb] = −εabJ, [Ga, H] = −εamPm, (70)

[Ga, Pb] = −εabH, [H, Pa] = ±εamGm, (71)

[Pa, Pb] = ∓εabJ, (72)

and specify the contractions according to Table 1. Consecutive İnönü–Wigner contractions then lead to
the cube of Figure 1. For completeness, all the Lie algebras are explicitly given in Table A1 and A2 in
Appendix A. For nontrivial contractions, i.e., g �= h, the resulting algebra is always non-semisimple
due to the abelian ideal spanned by i.

Table 1. The four different İnönü–Wigner contractions classified in [183].

Contraction h i

Space-time {J, Ga} {H, Pa}
Speed-space {J, H} {Ga, Pa}
Speed-time {J, Pa} {Ga, H}
General {J} {H, Pa, Ga}

4.2. Carroll Gravity

As already discussed in Section 2.1, if one wants to write a Chern–Simons theory for the
Lie algebras at hand, it is important for the Lie algebra to admit an invariant metric. While the
three-dimensional Carroll algebra automatically admits an invariant metric, others like the Galilei
algebra do not. We will discuss in the next section why this is no surprise, but first, we want to show
how to construct a Chern–Simons theory with the Carroll algebra and impose boundary conditions
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(we will follow closely [185], to which we also refer to for more details). Carroll geometries were
recently studied because of their relation to asymptotically flat spacetimes [186,187].

The Carroll algebra:

[J, Ga] = εamGm, [J, Pa] = εamPm, [Ga, Pb] = −εabH, (73)

has the invariant metric:

〈H, J〉 = −1, 〈Pa, Gb〉 = δab . (74)

The connection:

A = τ H+ ea Pa + ω J+ Ba Ga, (75)

is the one-form that takes values in the Carroll algebra, and the action is the usual Chern–Simons
action (3). The next step is to construct Brown–Henneaux-like boundary conditions around the Carroll
vacuum configuration:

e1
ϕ = ρ, e2

ρ = 1, e1
ρ = e2

ϕ = 0, (76)

which one can also write as

ds2
(2) = eaebδab = ρ2dϕ2 + dρ2 . (77)

We assume that ρ is a radial coordinate and ϕ is an angular coordinate that is periodically
identified by ϕ ∼ ϕ + 2π. Moreover, on the background, the time-component should be fixed as:

τ = dt . (78)

This can be accomplished by the gauge transformation:

A = b−1(ρ)
(
d + a(t, ϕ)

)
b(ρ), b(ρ) = eρP2 , (79)

and using [185]:

aϕ = −J+ h(t, ϕ) H+ pa(t, ϕ) Pa + ga(t, ϕ) Ga (80)

at = μ(t, ϕ) H . (81)

These off-shell boundary conditions lead to:

ds2
(2) =

[(
ρ + p1(t, ϕ)

)2
+ p2(t, ϕ)2] dϕ2 + 2p2(t, ϕ) dϕdρ + dρ2, (82)

=
(
ρ2 +O(ρ)

)
dϕ2 +O(1) dρdϕ + dρ2, (83)

and:

τ = μ(t, ϕ) dt +
(
h(t, ϕ)− ρ g1(t, ϕ)

)
dϕ . (84)

= μ(t, ϕ) dt +O(ρ) dϕ . (85)
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The analysis of the asymptotic symmetries leads to conserved, integrable and finite charges,
and using a suitable Fourier decomposition, these lead to the asymptotic symmetry algebra:

[J, Pa
n] = εab P

b
n (86)

[J, Ga
n] = εab G

b
n (87)

[Pa
n, Gb

m] = −(εab + inδab
)
H δn+m, 0 . (88)

It is interesting to note that the zero-mode generators J,H, Pa
0 and Ga

0 span a subalgebra that equals
again the original Carroll algebra. Thus, this asymptotic symmetry algebra mirrors constructions from
three-dimensional asymptotically flat and anti-de Sitter spacetimes. Two further sets of boundary
conditions, which can be seen as a limit from AdS, were proposed in [113], one of which we will briefly
describe in the following.

Assume again that Carroll gravity can be described by a Chern–Simons action with gauge
algebra (73) and invariant metric (74). Choosing a connection like:

aϕ = K(t, ϕ)J+ J (t, ϕ)H+ Ga(t, ϕ)(Ga + Pa) at = μ(t, ϕ) H (89)

it is straightforward to determine the asymptotic symmetry algebra that reads in terms of the Fourier
modes of the state dependent functions K, J and Ga:

[Kn, Jm] = knδm+n,0, (90a)

[Jn, G a
m] = εa

bG
b
n+m, (90b)

[Ga
n, Gb

m] = −2εabKn+m − 2nk δabδn+m,0 . (90c)

One puzzling aspect of these boundary conditions is that they appear to describe solutions that
carry entropy despite (seemingly) having no horizon.

The spin-3 Carroll algebras (see Section 4.4), like their spin-2 subalgebras, admit an invariant
metric and thus can be written, without obstructions, as a Chern–Simons theory. While they have been
analyzed at a linear level, no boundary conditions were proposed so far.

4.3. Invariant Metrics and Double Extensions

The connection between Lie algebras and their invariant metrics has been greatly clarified by
Mediny and Revoy [188] (here, we will follow [189]). They proved a structure theorem that explains
how all Lie algebras permitting such an invariant nondegenerate symmetric bilinear form26 can be
constructed. This provides a useful guiding principle for the construction of Lie algebras with invariant
metrics and, as will be shown later, also explains why the Carroll algebras inherit their invariant metric
from the Poincaré algebra.

For that, one first restricts to indecomposable Lie algebras. We call a Lie algebra indecomposable
if it cannot be decomposed as an orthogonal direct sum of two Lie algebras g1 and g2, i.e., it cannot
be written in such a way that the two algebras commute [g1, g2] = 0 and that they are orthogonal
〈g1, g2〉 = 0. Additionally, one has to define double extensions [188]. The Lie algebra d = D(g, h)
defined on the vector space direct sum g⊕ h⊕ h∗ (spanned by Gi, Hα and Hα, respectively) by:

26 These Lie algebras are sometimes called symmetric self-dual or quadratic.
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[Gi, Gj] = f k
ij Gk + f k

αi Ωg
kjH

α, (91)

[Hα, Gi] = f j
αi Gj, (92)

[Hα, Hβ] = f γ
αβ Hγ, (93)

[Hα, Hβ] = − f β
αγ Hγ, (94)

[Hα, Gj] = 0, (95)

[Hα, Hβ] = 0, (96)

is a double extension of g by h. It has the invariant metric:

Ωd
ab =

⎛⎜⎜⎜⎝
Gj Hβ Hβ

Gi Ωg
ij 0 0

Hα 0 hαβ δ
β

α

Hα 0 δα
β 0

⎞⎟⎟⎟⎠, (97)

where Ωg
ij is an invariant metric on g and hαβ is some arbitrary (possibly degenerate) symmetric

invariant bilinear form on h.
An example is the Poincaré algebra; see Equation (2) with � → ∞. In this case, g is trivial, and h and

h∗ is spanned by Ja and Pa, respectively. The invariant metric is then given by (4). Similar considerations
apply to the Carroll algebra of Section 4.2. These two algebra are actually related by a natural
generalization of the İnönü–Wigner contractions to double extensions; see Section 5.3 in [75]. For that,
one needs to apply the “dual contraction” on the dual part of a subspace of h. Explicitly, this means
that one takes the Poincaré algebra (see Table A1) and rescales Ga �→ 1

cGa. Since Pa is in the dual part,
this can be read off of Equation (4). One then applies the dual contraction Pa �→ cPa. Using these
rescalings leads to:

[J, Ga] = εamGm, [J, Pa] = εamPm, [Ga, Pb] = −εabH, (98)

[Ga, Gb] = −c2εabJ, [Ga, H] = −c2εamPm, (99)

and therefore to the Carroll algebra for c → 0. The part that makes this new interpretation interesting
is that it automatically leaves the invariant metric untouched since 〈Ga, Pb〉 �→ 〈 1

cGa, cPb〉 = 〈Ga, Pb〉.
That this is not just a coincidence, but that these non-simple Lie algebras actually have to be a double
extension is explained by the following theorem.

Every indecomposable Lie algebra that permits an invariant metric, i.e., every indecomposable
symmetric self-dual Lie algebra, is either [188,189]:

1. A simple Lie algebra.
2. A one-dimensional Lie algebra.
3. A double extended Lie algebra D(g, h) where:

(a) g has no factor p for which the first and second cohomology group vanishes
H1(p,R) = H2(p,R) = 0. This includes semisimple Lie algebra factors.

(b) h is either simple or one-dimensional.
(c) h acts on g via outer derivations.

Since every decomposable Lie algebra can be obtained from the indecomposable ones, this theorem
describes how all of them can be generated; see Figure 2 [75].
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Simple One-dimensional

⊕ ⊕

Semisimple Abelian

D(g, h)

⊕

Double extensions

⊕

Symmetric self-dual

or

⊕

Figure 2. This diagram shows how all Lie algebras with an invariant metric, i.e., symmetric self-dual
Lie algebras, are constructed. The fundamental indecomposable building blocks are the simple and
the one-dimensional Lie algebras, and they need to be accompanied by the operations of direct sums
(⊕) and double extensions (D(g, h)). Direct sums of simple and one-dimensional Lie algebras lead to
semisimple and abelian ones, respectively. To construct new indecomposable Lie algebras that admit
an invariant metric, one needs to double extend an abelian or an already double extended Lie algebra
(as explained, it should not have a simple factor).

4.4. Kinematical Higher Spin Algebras

We now want to investigate in which sense the kinematical Lie algebras can be generalized to
higher spins; specifically, we will focus on spin-two and three fields. For that, it is again useful to start
with the (semi)simple, (A)dS algebras27 explicitly given in Table 2.

The spin-2 part is a subalgebra and is extended by the spin-3 generators Ja, Ha, Gab, Pab.
For the generalization of the contractions to the higher spin algebra, the following restrictions are
imposed [185]:

• The İnönü–Wigner contractions are restricted such that the contracted spin-2 Lie subalgebra of the
contracted one coincides with the kinematical ones of Bacry and Levy-Leblond [183] (see Table 1
and Appendix A).

• The commutator of the spin-3 fields should be non-vanishing. This ensures that the spin-3 field
also interacts with the spin-2 field.

Using these restrictions, one can systematically examine the possible contractions summarized
in Table 3 [185]28. These contractions can then be performed leading to the kinematical higher spin
algebras. Consecutive contractions span the (higher spin) cube of Figure 3.

27 Semisimple Lie algebras are a natural starting point for these kinds of considerations since no (nontrivial) contraction can
lead to a semisimple Lie algebra.

28 We ignore the traceless contractions in this review.
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Table 2. Higher spin versions of the (A)dS algebras. The upper sign is for AdS and the lower sign for dS.

hs3(A)dS(−)
+

Equations (69) to (72)

[J, Ja] εamJm
[J, Gab] −εm(aGb)m
[J, Ha] εamHm
[J, Pab] −εm(aPb)m
[Ga, Jb] −(εamGbm + εabGmm)
[Ga, Gbc] −εa(bJc)
[Ga, Hb] −(εamPbm + εabPmm)
[Ga, Pbc] −εa(bHc)
[H, Ja] εamHm
[H, Gab] −εm(aPb)m
[H, Ha] ±εamJm
[H, Pab] ∓εm(aGb)m
[Pa, Jb] −(εamPbm + εabPmm)
[Pa, Gbc] −εa(bHc)
[Pa, Hb] ∓(εamGbm + εabGmm)
[Pa, Pbc] ∓εa(bJc)

[Ja, Jb] εabJ

[Ja, Gbc] δa(bεc)mGm
[Ja, Hb] εabH

[Ja, Pbc] δa(bεc)mPm
[Gab, Gcd] δ(a(cεd)b)J

[Gab, Hc] −δc(aεb)mPm
[Gab, Pcd] δ(a(cεd)b)H

[Ha, Hb] ±εabJ

[Ha, Pbc] ±δa(bεc)mGm
[Pab, Pcd] ±δ(a(cεd)b)J

Table 3. The contractions to the kinematical higher spin algebras. They can be summarized again as
a (higher spin) cube; see Figure 3.

Contraction # h i

Space-time 1 {J, Ga, Ja, Gab} {H, Pa, Ha, Pab}
2 {J, Ga, Ha, Pab} {H, Pa, Ja, Gab}

Speed-space 3 {J, H, Ja, Ha} {Ga, Pa, Gab, Pab}
4 {J, H, Gab, Pab} {Ga, Pa, Ja, Ha}

Speed-time 5 {J, Pa, Ja, Pab} {Ga, H, Ha, Gab}
6 {J, Pa, Ha, Gab} {Ga, H, Ja, Pab}
7 {J, Ja} {H, Pa, Ga, Ha, Gab, Pab}

General 8 {J, Gab} {H, Pa, Ga, Ja, Ha, Pab}
9 {J, Ha} {H, Pa, Ga, Ja, Gab, Pab}

10 {J, Pab} {H, Pa, Ga, Ja, Ha, Gab}
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hs3(A)dS

hs3poi

hs3nh

hs3ppoi

hs3gal

hs3pgal

hs3car

hs3st

#3
#4

#5

#6

#1 #2

Figure 3. This figure [185] summarizes the contractions of Table 3. There are 2 space-time (blue; #1,#2),
2 speed-space (red; #3,#4) and 2 speed-time (black; #5,#6) contractions, and combining them leads
to the full cube. The explicit commutators of all algebras can be found in the Appendix of [185].
In comparison to Figure 1, we have for clarity omitted the double lines.

Given the zoo of higher spin algebras, each corner of the higher spin cube representing one,
the question arises if they permit an invariant metric. For the (semi)simple (A)dS algebras, this is
obvious, but not so much for the other ones. For the case of the higher spin Poincaré algebras,
the considerations of Section 2 generalize, and for the higher spin Carroll algebras, there are again
invariant metric preserving contractions [75] analogous to the ones discussed in Section 4.4.

For the Galilei algebras, the situation is different, and the knowledge of double extensions
proves to be useful. Already in the case of spin-2, the three-dimensional Galilei algebra has no
invariant metric [190]. However, it is possible to centrally extend the Galilei algebra by two nontrivial
central extensions (out of three possible ones [191]) to obtain a Lie algebra with an invariant metric.
One of these central extensions is possible in any dimension and corresponds to the mass in the
so-called Bargmann algebra. Due to the second extension that is a peculiarity of three spacetime
dimensions, this algebra is called extended Bargmann algebra and makes a Chern–Simons formulation
possible [190].

The higher spin Galilei generalizations also do not permit any invariant metric [185]. In contrast
to the spin-2 case, central extensions are not sufficient to provide an invariant metric, but double
extensions provide guidance. Interestingly, the double extension of the spin-3 Galilei algebras leads
naturally to Lie algebras where the spin-2 part is exactly the just mentioned extended Bargmann
algebra. Therefore, the higher spin generalization of the Galilei algebra can be considered the spin-3
extended Bargmann algebra. Furthermore, the properties of the higher spin Carroll and extended
Bargmann theories have been studied in detail [185].
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5. Conclusions and Outlook

Three-dimensional higher spin theories beyond (anti)-de Sitter can be roughly separated by the
gauge algebra that is used in their Chern–Simons formulation. As reviewed in Section 2, using the
higher spin (A)dS gauge algebras, one is able to construct backgrounds and boundary conditions
for Lobachevsky, Lifshitz, null warped and Schrödinger spacetimes. Going beyond the (A)dS gauge
algebra, the best understood cases so far are flat space higher spin theories that were discussed in
Section 3. The interesting question if there are higher spin algebras beyond these cases has been
answered by the construction of the kinematical higher spin algebras reviewed in Section 4.

While some progress has been made up until now, there are certainly interesting open problems
that demand further investigation.

5.1. Boundary Conditions and Boundary Theories

While it was shown that AdS higher spin gauge algebras permit backgrounds and boundary
conditions beyond the standard AdS choices, their asymptotic symmetry algebras often turned out
to be related to already known ones. It would be interesting to further investigate if these boundary
conditions and their asymptotic symmetry algebras can be further specialized in order to yield,
e.g., Lifshitz-like asymptotic symmetries.

While for the Carroll case, boundary conditions have been proposed [113,185], for most of the
other kinematical algebras, and especially the higher spin generalizations, no consistent boundary
conditions have been established yet. Further examination is also needed for the mysterious result
that it seems that one can assign entropy to Carroll geometries [113]. It would be interesting to see if
this result can be generalized to the higher spin case. A generalization and interpretation of higher
spin entanglement entropy [50,51] in these setups would be another intriguing option.

Another interesting generalization would be the calculation of one loop partition functions.
Here, Newton–Hooke and Para-Poincaré seem to be intriguing options. This is due to the still
non-vanishing cosmological constant, and one might therefore hope that they exhibit the “box-like”
behavior of AdS.

For the higher spin cases, it would be interesting to see if the asymptotic symmetry algebras lead
to nonlinear generalizations similar to the WN algebras for AdS (some of them might be related to the
ones discussed in [192]).

One interesting observation is related to possible dual theories of the Chern–Simons theories
treated in this review to the Wess–Zumino–Novikov–Witten (WZNW) models [193,194]. Here, again,
WZNW models based on a Lie algebra that admits an invariant metric play a distinguished role since
they admit a (generalized) Sugawara construction [195]. Double extensions and the Medina–Revoy
theorem are fundamental for the proof that the Sugawara construction factorizes in a semisimple and
a non-semisimple one [196].

5.2. Kinematical (Higher Spin) Algebras

For the spin-2 extended Bargmann algebras, it was shown that they emerge as contractions
of (anti)-de Sitter algebras that have been (trivially) centrally extended by two one-dimensional
algebras [190]29. It is also not clear as of yet which (semisimple) algebra can be naturally contracted to
yield the double extended higher spin versions of the Bargmann algebra. This is interesting, because
the deformed theories are often seen as more fundamental. We are not aware of a systematic discussion
of contractions and double extensions; see however Section 5 in [75] for a start. Furthermore, it might
be interesting to also look at the Chern–Simons theories based on the Lie algebras that have not been
double extended.

29 See also Section 9.2 in [75].
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For many considerations, a generalization to the supersymmetric case seems possible; especially
since the supersymmetric analog of double extensions exists [197] and an analog of the structure
theorem of Section 4.3 has been proposed [198]. A Chern–Simons theory based on a supersymmetric
version of the extended Bargmann algebra has already been investigated in [199].

Since the Chern–Simons theory based on the extended Bargmann algebra has been shown to be
related to a specific version of Hořava-Lifshitz gravity [200], it would be interesting to see if the higher
spin extended Bargmann theories lead to a spin-3 Hořava-Lifshitz theory.

Last, but not least, two obvious generalizations are to higher spins (s > 3), as well as to
higher dimensions.
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Appendix A. Explicit Kinematical Algebra Relations

Table A1. (Anti-)de Sitter, Poincaré, Newton–Hooke and para-Poincaré algebras. The upper sign is for
AdS (and contractions thereof) and the lower sign for dS (and contractions thereof).

(A)dS(−)
+

poi nh ppoi

[J, J] 0 0 0 0
[J, Ga] εamGm εamGm εamGm εamGm
[J, H] 0 0 0 0
[J, Pa] εamPm εamPm εamPm εamPm
[Ga, Gb] −εabJ −εabJ 0 0
[Ga, H] −εamPm −εamPm −εamPm 0
[Ga, Pb] −εabH −εabH 0 −εabH

[H, Pa] ±εamGm 0 ±εamGm ±εamGm
[Pa, Pb] ∓εabJ 0 0 ∓εabJ

Table A2. Carroll, Galilei, para-Galilei and static algebra. The upper sign is for AdS (and contractions
thereof) and the lower sign for dS (and contractions thereof).

car gal pgal st

[J, J] 0 0 0 0
[J, Ga] εamGm εamGm εamGm εamGm
[J, H] 0 0 0 0
[J, Pa] εamPm εamPm εamPm εamPm
[Ga, Gb] 0 0 0 0
[Ga, H] 0 −εamPm 0 0
[Ga, Pb] −εabH 0 0 0
[H, Pa] 0 0 ±εamGm 0
[Pa, Pb] 0 0 0 0
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1. Introduction

Every consistent theory of interacting higher spin fields necessarily includes an infinite number of
such fields. For this reason, it is extremely important to develop a formalism which effectively includes
an infinite number of fields into a simpler field-theoretical object. This formalism should yield correct
field equations first of all at the free level and then be promoted to an interacting theory. An elegant
geometrical approach to higher spin theories of this kind is known as the method of tensorial spaces.
This approach was first suggested by Fronsdal [1]. Its explicit dynamical realization and further
extensive developments have been carried out in [2–28].

In a certain sense, the method of tensorial spaces is reminiscent of the Kaluza–Klein theories.
In such theories, one usually considers massless field equations in higher dimensions and then,
assuming that the extra dimensions are periodic (compact), one obtains a theory in lower dimensions,
which contains fields with growing masses. In the method of tensorial (super)spaces, one also considers
theories in multi-dimensional space–times, but in this case the extra dimensions are introduced in
such a way that they generate the fields with higher spins instead of the fields with increasing masses.
A main advantage of the formulation of the higher spin theories on extended tensorial (super) spaces
is that one can combine curvatures of an infinite number of bosonic and fermionic higher spin fields
into a single “master” (or “hyper”) scalar and spinor field which propagate through the tensorial
supesrpaces (also called hyperspaces). The field equations in the tensorial spaces are invariant under
the action of Sp(2n) group, whereas the dimensions of the corresponding tensorial spaces are equal
to n(n+1)

2 . The case of four space–time dimensions D = 4 is of particular interest since the approach
of tensorial (super)spaces comprises all massless higher spin fields from zero to infinity. The free
field equations are invariant under the Sp(8) group, which contains a four dimensional conformal
group SO(2, 4) as a subgroup. In fact, the entire structure of the Sp(8) invariant formulation of the
higher spin fields is a straightforward generalization of the conformally invariant formulation of the
four-dimensional scalar and spinor fields. This allows one to use the experience and intuition gained
from the usual conformal field theories for studying the dynamics of higher spin fields on flat and AdS
backgrounds, and to construct their correlation functions.

Being intrinsically related to the unfolded formulation [29–33] of higher-spin field theory,
the hyperspace approach provides an extra and potentially powerful tool for studying higher spin
AdS/CFT correspondence (for reviews on higher-spin holography, see, e.g., [34,35]). The origin of
higher-spin holographic duality can be traced back to the work of Flato and Fronsdal [36] who showed
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that the tensor product of single-particle states of a 3D massless conformal scalar and spinor fields
(singletons) produces the tower of all single-particle representations of 4D massless fields whose
spectrum matches that of 4D higher spin gauge theories. The hyperspace formulation provides
an explicit field theoretical realization of the Flato-Fronsdal theorem in which higher spin fields are
embedded in a single scalar and spinor fields, though propagating in hyperspace. The relevance of the
unfolded and hyperspace formulation to the origin of holography has been pointed out in [33]. In this
interpretation, holographically dual theories share the same unfolded formulation in extended spaces
which contains twistor-like variables and each of these theories corresponds to a different reduction,
or “visualization”, of the same “master” theory.

In what follows, we will review main features and latest developments of the tensorial
space approach, and associated generalized conformal theories. It is mainly based on
Papers [3,8,10,13,23,24,27]. We hope that this will be a useful complement to a number of available
reviews on the higher-spin gauge theories which reflect other aspects and different approaches to
the subject

• Frame-like approach in higher-spin field theory [37–42].
• Metric-like approach [43–55].
• Review that address the both approaches [56].
• Higher-spin Holography [34,35,57,58].
• Reviews which contain both the metric-like approach and the hyperspace approach [59,60].
• A short review on the hyperspace approach [61].
• A short review that contains frame-like approach, hyperspaces and higher-spin holography [62].

The review is organized as follows. In Section 2 we introduce a general concept of flat hyperspaces.
To this end we use somewhat heuristic argument, which includes a direct generalization of the famous
twistor-like representation of a light-light momentum of a particle to higher dimensional tensorial
spaces i.e., to hyperspaces. The basic fields in this set up are one bosonic and one fermionic hyperfield,
which contain infinite sets of bosonic and fermionic field strengths of massless fields with spins
ranging from zero to infinity. Physically interesting examples are hyperspaces associated with ordinary
space–times of dimensions D = 3, 4, 6 and 10. In what follows, we will always keep in mind these
physical cases, though from the geometric perspective the tensorial spaces of any dimension have the
same properties.

We demonstrate in detail that the solutions of wave equations in hyperspace are generating
functionals for higher spin fields. These equations are nothing but a set of free conformal higher spin
equations in D = 3, 4, 6 and 10. The case of D = 3 describes only scalar and spinor fields, the case
of D = 4 comprises the all massless bosonic and fermionic higher spin fields with spins from 0 to ∞
and the cases of D = 6 and D = 10 describe infinite sets of fields whose field strengths are self-dual
multiforms. These fields carry unitary irreducible representations of the higher-dimensional conformal
group and are sometimes called “spinning singletons” [63].

We then describe a generalized conformal group Sp(2n) which contains a convention conformal
group SO(2, D) as its subgroup (for D = 3, 4, 6, 10 and n = 2, 4, 8, 16, respectively) and show how
the coordinates in hyperspace and the hyperfields transform under these generalized conformal
transformations.

In Section 3, we consider an example of curved hyperspaces which are Sp(n) group manifolds.
An interesting property of these manifolds is that they are hyperspace generalizations of AdSD spaces.
Similarly to the AdSD space which can be regarded as a coset space of the conformal group SO(2, D),
the Sp(n) group manifold is a coset space of the generalized conformal group Sp(2n). This results in
the fact that the property of the conformal flatness of the AdSD spaces (i.e., the existence of a basis in
which the AdS metric is proportional to a flat metric) is also generalized to the case of hyperspaces.
In particular, a metric on the Sp(n) group manifold is flat up to a rotation of the GL(n) group,
the property that we call “GL–flatness”.
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In Section 4, we briefly discuss how the field equations given in the previous Sections can be
obtained as a result of the quantization of (super)particle models on hyperspaces.

In Section 5, we derive the field equations on Sp(n) group manifolds. We show that the field
equations on flat hyperspaces and Sp(n) group manifolds can be transformed into each other by
performing a generalized conformal rescaling of the hyperfields. We discus plane wave solutions
on generalized AdS spaces and present a generalized conformal (i.e., Sp(2n)) transformations of the
hyperfields on the Sp(n) group manifolds. In all these considerations, the property of GL(n) flatness
plays a crucial role.

Section 6 describes a supersymmetric generalization of the construction considered in Section 2
and Section 7 deals with the supersymmetric generalization of the field theory on Sp(n) introduced in
Section 3. The generalization is straightforward but nontrivial. Instead of hyperspace, we consider
hyper-superspaces and instead of hyperfields we consider hyper-superfields. The generalized
superconformal symmetry is the OSp(1|2n) supergroup and the generalized super-AdS spaces are
OSp(1|n) supergroup manifolds. We show that all the characteristic features of the hyperspaces and
hyperfield equations are generalized to the supersymmetric case as well.

The direct analogy with usual D-dimensional CFTs suggests a possibility of considering
generalized conformal field theories in hyperspaces. Sections 8 and 9 deal with such a theory which
is based on the invariance of correlation functions under the generalized conformal group Sp(2n).
The technique used in these Sections is borrowed from usual D-dimensional CFTs and the correlation
functions are obtained via solving the generalized Ward identities in (super) hyperspaces.

In Section 8, we derive OSp(1|2n) invariant two-, three- and four-point functions for scalar
super-hyperfields. The correlation functions for component fields can be obtained by simply expanding
the results in series of the powers of Garssmann coordinates. Therefore, we shall not consider the
derivation of Sp(2n) invariant correlation functions for the component fields separately.

Finally, in Section 9, we introduce generalized conserved currents and generalized stress-tensors.
Their explicit forms and the transformation rules under Sp(2n) can be readily obtained from the free
field equations and the transformation rules of the free hyperfields.

Further, we show how one can compute Sp(2n) invariant correlation functions which involve the
basic hyperfields together with higher rank tensors such as conserved currents and the generalized
stress tensor. We show that the Sp(2n) invariance itself does not impose any restriction on the
generalized conformal dimensions of the basic hyperfields even if the conformal dimensions of the
current and stress tensor remains canonical.

However, the further requirements of the conservation of the generalized current and generalized
stress tensor fixes also the conformal dimensions of the basic hyperfields, implying that the generalized
conformal theory will not allow for nontrivial interactions.

We briefly discuss possibilities of avoiding these restrictions by considering spontaneously broken
Sp(2n) symmetry or local Sp(2n) invariance, which may lead to an interacting hyperfield theory.

Appendices contain some technical details such as conventions used in the review, a derivation of
the field equations on Sp(n) group manifolds and some useful identities.

2. Flat Hyperspace

Let us formulate the basic idea behind the introduction of tensorial space. We shall mainly
concentrate on a tensorial extension of four-dimensional Minkowski space–time. A generalization to
higher dimensional D = 6 and D = 10 spaces will be given later in this Section.

Consider a four dimensional massless scalar field. Its light-like momentum pm pm = 0,
m = 0, 1, 2, 3 can be expressed via the Cartan–Penrose (twistor) representation as a bilinear
combination of a commuting Weyl spinor λA and its complex conjugate λȦ (A, Ȧ = 1, 2)

pm = λA(σm)AȦλ̃Ȧ, or PAȦ = λAλȦ. (1)
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Obviously, since the spinors are commuting, one has λAλBεAB ≡ λAλA = 0 = λ
Ȧ

λȦ and
therefore PAȦPAȦ = 0, where the spinor indices are raised and lowered with the unit antisymmetric
tensors εAB and εAB.

In order to generalize this construction to higher dimensions note that one can equivalently
rewrite Equation (1) in terms of four-dimensional real Majorana spinors λα (α = 1, ..., 4)

pm = λαγm
αβλβ. (2)

Due to the Fierz identities

(γm)αβ(γm)γδ + (γm)αδ(γm)βγ + (γm)αγ(γm)δβ = 0 (3)

satisfied by the Dirac matrices (γm)αβ = (γm)βα one has pm pm = 0. (The four-component spinor
indices are raised and lowered by antisymmetric charge conjugation matrices Cαβ and Cαβ see
the Appendix A.) Let us note that since identities similar to (3) hold also in D = 3, 6 and 10,
the Cartan–Penrose relation (2) is valid in these dimensions as well.

Let us continue with the four-dimensional case. The momentum PAȦ is canonically conjugate to
coordinates xAȦ. One can easily solve the quantum analogue of Equation (1)(

∂

∂xAȦ
− iλAλȦ

)
Φ(x, λ) = 0 (4)

to obtain a plane wave solution for the massless scalar particle

Φ(x, λ, λ̄) = φ(λ, λ̄)eixAȦλAλȦ , (5)

or in terms of the Majorana spinors

Φ(x, λ) = φ(λ)eixmλαγm
αβ λβ

, (6)

with φ(λ) being an arbitrary spinor function.
Let us now consider the equation

Pαβ = λαλβ, (7)

which looks like a straightforward generalization of (1) and see its implications. A space–time described
by the coordinates Xαβ (conjugate to Pαβ) is now ten-dimensional, since Xαβ is a 4× 4 symmetric matrix.
A basis of symmetric matrices is formed by the four Dirac matrices γm

αβ and their six antisymmetric

products γmn
αβ = −γmn

αβ . In this basis, Xαβ has the following expansion

Xαβ =
1
2

xm(γm)
αβ +

1
4

ymn(γmn)
αβ. (8)

The analogue of the wave Equation (4) is now(
∂

∂Xαβ
− iλαλβ

)
Φ(X, λ) = 0, (9)

whose solution is
Φ(X, λ) = eiXαβλαλβ φ(λ). (10)

At this point, one might ask the question what is the meaning of Equation (9) and of the extra
coordinates ymn and λα? As we shall see, the answer is that Equation (9) is nothing else but Vasiliev’s
unfolded equations for free massless higher-spin fields in four-dimensional Minkowski space–time [29].
The wave function Φ(X, λ) depends on the coordinates xm, ymn and λα. While xm parameterize the
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conventional four-dimensional Minkowski space–time, the coordinates ymn (and/or λα) are associated
with integer and half-integer spin degrees of freedom of four-dimensional fields with spin values
ranging from zero to infinity.

2.1. Higher Spin Content of the Tensorial Space Equations

To demonstrate the above statement let us first Fourier transform the wave function (10) into a
conjugate representation with respect to the spinor variable λα considered in [4]

C(X, μ) =
∫

d4λ e−iμαλα Φ(X, λ) =
∫

d4λ e−iμαλα+iXαβλαλβ φ(λ). (11)

The function C(X, μ) obeys the equation(
∂

∂Xαβ
− i

∂2

∂μα∂μβ

)
C(X, μ) = 0. (12)

Let us expand the function C(X, μ) in series of the variables μα

C(X, μ) =
∞

∑
n=0

Cα1···αn(X) μα1 · · · μαn = b(X) + fα(X)μα + · · · . (13)

and insert this expansion into the Equation (12). Then one finds that all the components of C(X, μ)

proportional to the higher powers of μα are expressed in terms of two fields the scalar b(X) and the
spinor fα(X). As a result of (13), these fields satisfy the relations [4]

∂αβ∂γδ b(X)− ∂αγ∂βδ b(X) = 0 , (14)

∂αβ fγ(X)− ∂αγ fβ(X) = 0 . (15)

The basic fields b(X) and fα(X) depend on xm and ymn. Let us now expand these fields in series
of the tensorial coordinates ymn

b(x, y) = φ(x) + ym1n1 Fm1n1(x) + ym1n1 ym2n2 R̂m1n1,m2n2(x)
+∑∞

s=3 ym1n1 · · · ymsns R̂m1n1,··· ,msns(x) ,
(16)

f α(x, y) = ψα(x) + ym1n1 R̂α
m1n1

(x)

+∑∞
s= 5

2
ym1n1 · · · y

m
s− 1

2
n

s− 1
2 R̂α

m1n1,··· ,m
s− 1

2
n

s− 1
2

(x) . (17)

Each four-dimensional component field in this expansion is antisymmetric under the permutation
of the indices mi and ni and is symmetric with respect to the permutation of the pairs (mi, ni)

with (mj, nj). In order to answer the question about the physical meaning of these fields, let us
first consider the scalar field Equation (14). Using the expression (8) for the tensorial coordinates and
four-dimensional γ-matrix identities, one can decompose (14) as follows

∂p ∂p b(xl , ymn) = 0,
(

∂p ∂q − 4 ∂pr ∂r
q

)
b(xl , ymn) = 0, εpqrt∂pq ∂rs b(xl , ymn) = 0,

εpqrt∂q ∂rt b(xl , ymn) = 0, ∂
p

q ∂p b(xl , ymn) = 0 . (18)

where ∂p = ∂
∂xp and ∂pq = ∂

∂ypq . The meaning of Equations (18) is the following. The first equation is a
Klein-Gordon equation. The second equation implies that the trace (with respect to the 4D Minkowski
metric) of the tensor which comes with the s-th power of ymn in the expansion (14) is expressed via
the second derivative of the tensor which comes with the (s − 2)-th power of ymn. Therefore, traces
are not independent degrees of freedom and the independent tensorial fields under consideration
are effectively traceless. The third and fourth Equation in (18) imply that the tensor fields satisfy the
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four-dimensional Bianchi identities, and the last equation implies that they are co–closed. These are
equations for massless higher-spin fields written in terms of their curvatures R̂α

m1n1,··· ,m
s− 1

2
n

s− 1
2

(x).

In four dimensions these equations are conformally invariant. Therefore one can conclude that in the
expansion (16) the field φ(x) is a conformal scalar, Fmn(x) is the field strength of spin-1 Maxwell field,
the field R̂m1n1,m2n2(x) is a linearized Riemann tensor for spin-2 graviton, etc.

The treatment of Equation (15) which describes half-integer higher-spin fields in terms of
corresponding curvatures is completely analogous to the bosonic one (14). The independent equations
for the conformal half-integer spin fields are

γp∂p f (xl , ymn) = 0, (19)

(∂p − 2γr∂pr) f (xl , ymn) = 0 (20)

From (19)–(20) one can derive the equation

∂mn f (x, y) =
1
2

γ[m∂n] f (x, y) +
1
2
(∂mn +

1
2

εmnpq∂pqγ5) f (x, y). (21)

This equation describes the decomposition of the spinor-tensor ∂mn f into the part which
contains the D = 4 space–time derivative of f and the “physical” part which is self-dual and
gamma-traceless, i.e.,

γm(∂mn +
1
2 εmnpq∂pqγ5) f (x, y) = 0

(∂mn +
1
2 εmnpq∂pqγ5) f (xl .ymn) = 1

2 εmnrs(∂rs + 1
2 εrspq∂pqγ5) f (x, y)

(22)

Therefore, one can conclude that due to Equations (19) and (20) the field ψα(x) in the expansion (17)
is a spin- 1

2 field, the field R̂α
m1n1

(x) corresponds to the field strength of the spin- 3
2 Rarita–Schwinger

field, while the other fields are the field strengths of the half-integer conformal higher-spin fields
in D = 4.

Finally, let us define the hyperspaces associated with D = 6 and D = 10 space–time. The dynamics
of the fields will be again determined by the equation (7) with the corresponding hyperspaces and the
twistor-like variables λα defined as follows.

In D = 10 the twistor-like variable λα is a 16–component Majorana–Weyl spinor.
The gamma–matrices γ

αβ
m and γ

αβ
m1···m5 form a basis of the symmetric 16× 16 matrices, so the n = 16

tensorial manifold is parameterized by the coordinates

Xαβ =
1

16

(
xmγ

αβ
m +

1
2 · 5!

ym1...m5 γ
αβ
m1...m5

)
= Xβα , (23)

(m = 0, 1, . . . , 9 ; α, β = 1, 2, . . . , 16) ,

where xm = Xαβγm
αβ are associated with the coordinates of the D = 10 space–time, while the

anti-self-dual coordinates

ym1...m5 = Xαβγm1...m5
αβ = − 1

5!
εm1...m5n1...n5 yn1...n5 ,

describe spin degrees of freedom.
The corresponding field Equations are again (14) and (15) and the entire discussion repeats as

in the case of D = 4. The crucial difference is that now the expansions (16) and (17) is performed
in terms of the coordinates ym1...m5 . As a result one obtains a description of conformal fields whose
curvatures are self-dual with respect to each set of indexes (mini piqiri). These traceless rank 5s tensors
R[5]1···[5]s are automatically irreducible under GL(10,R) due to the self-duality property, and are
thus associated with the rectangular Young diagrams (s, s, s, s, s) which are made of five rows of
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equal length s (“multi-five-forms”). The field equations, which are ten-dimensional analogues of the
four-dimensional Equations (18), can be found in [13].

In D = 6 the commuting spinor λα is a symplectic Majorana–Weyl spinor. The spinor index can be
decomposed as follows α = a ⊗ i (α = 1, . . . , 8; a = 1, 2, 3, 4; i = 1, 2). The tensorial space coordinates
Xαβ = Xai bj are decomposed into

Xai bj = 1
8 xm γ̃ab

m εij + 1
16·3! ymnp

I γ̃ab
mnp τ

ij
I ,

m, n, p = 0, . . . , 5 ; a, b = 1, ..., 4 ; i, j = 1, 2 ; I = 1, 2, 3
(24)

where ε12 = −ε12 = 1, and τ
ij
I (I = 1, 2, 3) provide a basis of 2× 2 symmetric matrices, They are related

to the usual SU(2)-group Pauli matrices τI ij = εjj′ σI i
j′ . The matrices γ̃ab

m (where γm
ab = 1/2 εabcdγ̃m cd)

form a complete basis of 4 × 4 antisymmetric matrices with upper (lower) indices transforming under
an (anti)chiral fundamental representation of the non-compact group SU∗(4) ∼ Spin(1, 5). For the
space of 4× 4 symmetric matrices with upper (lower) indices, a basis is provided by the set of self-dual
and anti-self-dual matrices (γ̃mnp)ab and γ

mnp
ab , respectively,

(γ̃mnp)ab =
1
3!

εmnpqrsγ̃ab
qrs , γ

mnp
ab = − 1

3!
εmnpqrs(γqrs)ab . (25)

The coordinates xm = xai bj γm
ab εij are associated with D = 6 space–time, while the self-dual

coordinates
ymnp

I = xai bj γ
mnp
ab τI ij = − 1

3!
εmnpqrsyI

qrs , (26)

describe spinning degrees of freedom.
The consideration proceeds as in the D = 4 and D = 10 case. Because of the form of the tensorial

coordinates in (24) the six-dimensional analogue of the expansions (16) and (17) contains powers
of ymnp

i . Corresponding field strengths, which again describe conformal fields in six dimensions,
are self-dual with respect to each set of the indexes (mini pi). In other words, one has an infinite
number of conformally invariant (self-dual) “multi-3-form” higher-spin fields in the six-dimensional
space–time which form the (2[s] + 1)-dimensional representations of the group SO(3).

In [9,16,21] Equation (12) has been generalized to include several commuting spinor variables μpα

(p, q = 1, ..., r) (
∂

∂Xαβ
± iηpq ∂2

∂μpα∂μqβ

)
Cr±(X, μ) = 0. (27)

where ηpq = ηqp is a nondegenerate metric. The value of r is called the “rank". As we explained above,
the free higher-spin fields in D = 4 are described by the rank-one equations in the ten-dimensional
tensorial space. The higher-spin currents are fields of rank-two r = 2. These currents obey the
equations with off-diagonal ηpq [19]. The currents J(X, μp) are bilinear in the higher-spin gauge fields
C+ and C−, which obey the rank-one equation (27) J = C+C−.

On the other hand, when considering rank-two equations the corresponding tensorial space can
be embedded in the higher-dimensional tensorial space. From the discussion above, it follows that
a natural candidate for such higher-dimensional space is the tensorial extension of D = 6 space–time.
In this way one effectively linearizes the problem since the conformal currents in four dimensions are
identified with the fields in D = 6 [21].

2.2. Four Dimensional Unfolded Higher-Spin Field Equations from the Hyperspace Field Equations

Let us rewrite, in the case of the D = 4 theory, the hyperspace relations in terms of the Weyl spinors.
The momenta (7) take the form

PAB = λAλB , PȦḂ = λȦλḂ , PAȦ = λAλȦ , (28)
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while Equation (7) splits into(
σmn

AB
∂

∂ymn + i
∂2

∂μA∂μB

)
C(x, y, μ) = 0,

(29)(
σmn

ȦḂ
∂

∂ymn − i
∂2

∂μȦ∂μḂ

)
C(x, y, μ) = 0

and (
σm

AȦ
∂

∂xm + i
∂2

∂μA∂μ̄Ȧ

)
C(x, y, μ) = 0 . (30)

Equations (29) relate the dependence of C(x, y, μ) on the coordinates ymn to its dependence on μα.
Thus, using this relation, one can regard the wave function C(xm, μα) := C(Xαβ, μα)|ymn=0 as the
fundamental field.

The expansion of C(xm, μ) in series of μA and μȦ is

C(xp, μA, μȦ) =
∞

∑
m,n=0

1
m!n!

CA1...Am , Ḃ1...Ḃn
(xp) μA1 . . . μAm μḂ1 . . . μḂn , (31)

where the reality of the wave function implies (CA1...Am , Ḃ1...Ḃn
)∗ = CB1...Bn , Ȧ1...Ȧm

, and by construction
the spin-tensors are symmetric in the indices Ai and in Ḃi.

The consistency of (30) implies the integrability conditions

∂2

∂μ[A∂xB]Ḃ
C(x, μ) = 0,

∂2

∂μ̄[Ȧ∂xḂ]B
C(x, μ) = 0 . (32)

We have thus obtained the equations of the Vasiliev’s unfolded formulation of free higher spin
fields in terms of zero–forms. In this formulation the C0,0 component (a physical scalar), CA1...A2s ,0 and
C0,Ȧ1,...Ȧ2s

components of the expansion (31) correspond to the physical fields, while the other fields
are auxiliary. The latter two fields are the self-dual and anti-self-dual components of the spin–s field
strength. The nontrivial equations on the dynamical fields are [38] the Klein–Gordon equation for the
spin zero scalar field ∂m∂mC0,0 = 0 and the massless equations for spin s > 0 field strengths

∂BḂCBA1...A2s−1(x) = 0 , ∂BḂCḂȦ1...Ȧ2s−1
(x) = 0 , (33)

which follow from (32). All the components of C(xm, μA, μȦ) that depend on both μA and μȦ

are auxiliary fields expressed by (30) in terms of space–time derivatives of the dynamical fields
contained in the analytic fields C(xm, μA, 0) and C(xm, 0, μȦ) and thus one arrives at the unfolded
formulation of [38].

Let us summarize what we have considered by now. To describe the dynamics of higher-spin
fields in four dimensions we have introduced extended ten-dimensional tensorial space, hyperspace,
parameterized by the coordinates Xαβ (8). The main object is a generating functional for higher-spin
fields described by C(X, μ) or by Φ(X, λ). The generating functional depends on the tensorial
coordinates Xαβ and on the commuting spinors μα or λα. The dynamics is described by the field
Equation (9) or (12). To obtain from these the higher-spin field equations in the ordinary space–time
parameterized by the coordinates xm one can use two options. In the first approach one gets rid of the
tensorial coordinates ymn and arrives at Vasiliev’s unfolded formulation in terms of the functional (31).
Alternatively, one can first get rid of the commuting spinor variables and arrive at the equations for the
bosonic (16) and fermionic (17) hyperfields. Both pictures provide the equations for the field strengths
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of the higher-spin potentials, the difference being that these field strengths are realized either as tensors
or spin-tensors.

2.3. Generalized Conformal Group Sp(2n)

Let us consider in more detail the symmetries of Equation (7) in which now the Greek indices
α, β, . . . run from 1 to an arbitrary even integer 2n. However, as we explained in the previous Section,
the physically interesting cases are associated with n = 2, 4, 8, and 16, which correspond to the number
of space–time dimensions equal to 3, 4, 6 and 10, respectively.

It turns out that Equation (7) is invariant under the transformations of the Sp(2n) group [5,8]

δλα = g β
α λβ − kαβXβγλγ, (34)

δXμν = aμν + (Xμρgρ
ν + Xνρgρ

μ)− XμρkρλXλν . (35)

The constant parameters aαβ = aβα, g α
γ and kαβ = kβα correspond to the generators of generalized

translations Pαβ, generalized Lorentz transformations and dilatations G α
β (generated by the GL(n)

algebra) and generalized conformal boosts Kαβ. The differential operator representation of these
generators have the form

Pμν = −i
∂

∂Xμν ≡ −i∂μν, (36)

Gν
μ = −2iXμρ ∂ρν (37)

and
Kμν = iXμρXνλ∂ρλ (38)

These symmetries are the hyperspace counterparts of the conventional Poincaré translations,
Lorentz rotations, dilatations and conformal boosts of Minkowski space–time. The generalized Lorentz
rotations are generated by the traceless operators Lμ

ν = Gμ
ν − 1

n δν
μ Gλ

λ, forming the SL(n)–algebra,
whereas dilatations are generated by the trace of Gμ

ν. The generators (36), (37) and (38) form the
Sp(2n) algebra which plays the role of a generalized conformal symmetry in the hyperspace

[Pμν, Pρλ] = 0, [Kμν, Kρλ] = 0, [Gν
μ, Gλ

ρ] = i(δμ
λ Gν

ρ − δ
ρ
ν Gλ

μ) ,

[Pμν, Gλ
ρ] = −i(δρ

μPνλ + δ
ρ
ν Pμλ), [Kμν, Gλ

ρ] = i(δμ
λKνρ + δν

λKμρ) , (39)

[Pμν, Kλρ] = i
4 (δ

ρ
μGν

λ + δ
ρ
ν Gμ

λ + δλ
μ Gν

ρ + δλ
ν Gμ

ρ) .

From the structure of this algebra, one can see that the flat hyperspace Mn can be realized as
a coset manifold associated with the translations P = Sp(2n)

K×⊃GL(n) where K×⊃ GL(n) is the semi–direct
product of the Abelian group generated by the generalized conformal boosts Kμν and the general
linear group.

The generators of the translations, Lorentz rotations and conformal boosts of the conventional
conformal group can be obtained from the Sp(2n) generators as projections onto the x-space,
for example pm = (γm)μνPμν, etc.

Let us note that the Sp(2n) algebra can be conveniently realized with the use of the twistor-like
variables λα and their conjugate μα

[μα, λβ] = δα
β. (40)

In the twistor representation the generators of the Sp(2n) group have the following form

Pαβ = λαλβ, G β
α = λαμβ, Kαβ = μαμβ. (41)
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Equations (14) and (15) are invariant under the Sp(2n) transformations (35), provided that the
fields transform as follows

δb(X) = −(aμν∂μν +
1
2

gμ
μ + 2gν

μXνρ∂μρ − kμν(
1
2

Xμν + XμρXνλ∂ρλ))b(X) , (42)

δ fρ(X) = −(aμν∂μν +
1
2 gμ

μ + 2gν
μXνλ∂μλ − kμν(

1
2 Xμν + XμτXνλ∂τλ)) fρ(X)+

−(gρ
ν − kλρXλν) fν(X) .

(43)

Note that these variations contain the term 1
2 (gμ

μ − kμνXμν), implying that the fields have the
canonical conformal weight 1/2. A natural generalization of these transformations to fields of a generic
conformal weight Δ is [4]

δb(X) = −(aμν∂μν + Δ (gμ
μ − kμνXμν) + 2gν

μXνρ∂μρ − kμνXμρXνλ∂ρλ)b(X) , (44)

δ fρ(X) = −(aμν∂μν + Δ (gμ
μ − kμνXμν) + 2gν

μXνλ∂μλ − kμνXμτXνλ∂τλ) fρ(X)

−(gρ
ν − kλρXλν) fν(X) .

(45)

3. Hyperspace Extension of AdS Spaces

A hyperspace extension of AdSD spaces is another coset of the Sp(2n) group. Recall that the
usual AdSD space can be realized as the coset space (Here, K and D denote the generalized conformal
boosts and dilatation, respectively.) SO(2,D)

K×⊃(SO(1,D−1)×D)
parameterized by the coset element ePm xm

.
The generators of the AdSD boosts Pm can be singled out from the generators of the four dimensional
conformal group SO(2, D) by taking a linear combination of the generators of the Poincaré translations
Pm and conformal boosts Km as Pm = Pm − ξ2Km, where ξ is the inverse of the AdSD radius.

Analogously, for the case of the hyperspace extension of the AdSD space let us consider
the generators

Pαβ = Pαβ − ξ2

16
Kαβ, [P ,P ] ∼ M, [P , M] ∼ P , (46)

where Kαβ = CαγCβδKγδ, Mαβ stands for the symmetric part of the GL(n) transformations
Mαβ = G(α

γCγβ) ≡ 1
2 (Gα

γCγβ + Gβ
γCγα) and Cαβ = −Cβα is the Sp(n)-invariant symplectic metric.

One can see that the corresponding manifold is an Sp(n) group manifold [8] which can be realized as

a coset space Sp(2n)
K×⊃GL(n) with the coset element e(P− ξ2

16 K)αβ Xαβ
. Indeed, let us recall that Sp(n) group is

generated by n × n symmetric matrices Mαβ which form the algebra

[
Mαβ, Mγδ

]
= − iξ

2

[
Cγ(α Mβ)δ + Cδ(α Mβ)γ

]
, α, β = 1, ..., n . (47)

As a group manifold, Sp(n) is the coset [Sp(n)L × Sp(n)R]/Sp(n) which has the isometry group
Sp(n)L × Sp(n)R, the latter being the subgroup of Sp(2n) generated by

ML
αβ = Pαβ − ξ2

16
Kαβ − ξ

4
Mαβ MR

αβ = Pαβ − ξ2

16
Kαβ +

ξ

4
Mαβ , (48)

as one may see from the structure of the Sp(2n) algebra (39). The generators Mαβ form the diagonal
Sp(n) subalgebra of Sp(n)L × Sp(n)R.

Let us note that, for the case of n = 4, i.e., for the case of four space–time dimensions, AdS4 space
is a coset subspace of Sp(4) ∼ SO(2, 3) of the maximal dimension. For n > 4, an AdSD space is also
a subspace of Sp(n) manifold but is no longer the maximal coset of this group.
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3.1. GL-Flatness of Sp(n) Group Manifolds

Let us describe a property of GL-flatness of the Sp(n) group manifolds which is a generalization
of the conformal flatness property of AdSD spaces. By GL-flatness we mean that, in a local coordinate
basis associated with Xαβ, the corresponding Sp(n) Cartan form Ωαβ has the form

Ωαβ = dXμνGμ
α(X)Gν

β(X) , (49)

with the matrix Gμ
α(X) being

Gμ
α(X) = δα

μ +
∞

∑
k=1

(
− ξ

4

)k
(Xk)μ

α . (50)

This expression implies that the Sp(n) Cartan form is obtained from the flat differential dXμν by
a specific GL(n) rotation of the latter.

This property can be demonstrated by showing that the Cartan forms (49) satisfy the Sp(n)-group
Maurer–Cartan equations (see [8,23], for technical details)

dΩαβ +
ξ

2
Ωαγ ∧ Ωγ

β = 0 . (51)

The matrix G−1μ
α (X) inverse to (50) depends linearly on Xα

μ and has a very simple form

G−1μ
α (X) = δ

μ
α +

ξ

4
Xα

μ . (52)

Note that the possibility of representing the Cartan forms in the form (49) is a particular feature
of the Sp(n) group manifold since, in general, it is not possible to decompose the components of the
Cartan form into a “direct product" of components of some matrix Gμ

α.

3.2. An Explicit Form of the AdS4 Metric

Let us now demonstrate that, for the case of n = 4 (D = 4), the pure xm-dependent part of
the matrix Gμ

α(X) indeed generates the metric on AdS4 in a specific parameterization. To this end,
we should evaluate the expression

Ωαβ(xm) =
1
2

dxm(γm)
δσGδ

αGσ
β =

1
2

dxmea
m(γa)

αβ +
1
4

dxmωab
m (γab)

αβ, (53)

where the dependence of the matrices Xαβ on the coordinates ymn (see Equation (8)) was discarded,
i.e., Xα

β = 1
2 xn(γn)α

β. Denoting

x2 = xmxnηmn, xm = ηmnxn (54)

and, using the explicit form (50) of Gμ
α(X), one obtains

Ωαβ(x) =
1
2

dxm

[1− ( ξ
8 )

2x2]2

[
(γ�)

αβ
(
[1 + ( ξ

8 )
2x2]δ�m − 2( ξ

8 )
2ηmnxnx�

)
− ξ

4 xn(γmn)
αβ
]

. (55)

In this way, we obtain a four-dimensional space vierbein and spin-connection

ea
m =

1

[1− ( ξ
8 )

2x2]2

(
[1 + ( ξ

8 )
2x2]δa

m − 2( ξ
8 )

2xaxm

)
, (56)

ωab
m =

−2ξ

[1− ( ξ
8 )

2x2]2
δ
[a
m xb] = − 8( ξ

8 )

(1− ( ξ
8 )

2x2)2
(xaδb

m − xbδa
m) . (57)
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The corresponding metric is

gmn =
1

[1− ( ξ
8 )

2x2]4

(
[1 + ( ξ

8 )
2x2]2ηmn − 4( ξ

8 )
2xmxn

)
, (58)

It is well-known (see also Section 5.1) that the metric on AdSD can be represented as an embedding
in a flat (D + 1)-dimensional space

ds2 = ηmndymdyn − (dyD)2 , (59)

via the embedding constraint

ηmnymyn − (yD)2 = −r2 . (60)

Choosing the embedding coordinates for AdS4 to be

ym =
1 + ( ξ

8 )
2x2

[1− ( ξ
8 )

2x2]2
xm, y4 =

√√√√r2 + x2 1 + ( ξ
8 )

2x2

[1− ( ξ
8 )

2x2]2
, (61)

one readily recovers the metric (58), with the parameter ξ being related to the AdS4 radius r as follows

ξ =
2
r

. (62)

Finally, computing the Riemann tensor

Rab
mn = −32( ξ

8 )
2 1 + ( ξ

8 )
2x2

[1− ( ξ
8 )

2x2]4

(
[1 + ( ξ

8 )
2x2]δ

[a
mδ

b]
n + 4( ξ

8 )
2x[aδ

b]
[mxn]

)
, (63)

and the Ricci scalar

R = −192
(

ξ

8

)2
= −3ξ2 , (64)

one verifies that the metric (58) indeed corresponds to a space with constant negative curvature, i.e.,
the AdS4 space.

4. Particles in Hyperspaces

In this Section, we would like to explain the physical meaning of the tensorial space coordinates
as spin degrees of freedom from the perspective of the dynamics of a particle in hyperspace.

Historically, the first dynamical system in which the Fronsdal hyperspace proposal for
higher–spin fields was realized explicitly was the twistor-like superparticle model of Bandos and
Lukierski [2] which, for D = 4, possesses the generalized superconformal symmetry under OSp(1|8).
The original motivation behind this model was a geometric interpretation of commuting tensorial
charges in an extended supersymmetry algebra. Its higher–spin content was found later in [3,64]
where the quantum states of the superparticle were shown to form an infinite tower of massless
higher–spin fields, and the relation of this model to the unfolded formulation was assumed.
This relation was analyzed in detail in [4,5,8,10,13]. In addition to the relation to higher spins,
the model of Bandos and Lukierski [2] has revealed other interesting features, such as the invariance
under supersymmetry with tensorial charges (which are usually associated with brane solutions of
Superstring and M–Theory). Moreover, it has provided the first example of a dynamical BPS system
preserving more than half of the bulk supersymmetries. BPS states preserving 2n−1

2n supersymmetries
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(with n = 16 for D = 10, 11) were then shown to be building blocks of any BPS states, and this led to
a natural conjecture that they can be elementary constituents or “preons” of M–theory [65].

Let us consider the generic case of a particle moving in an Sp(2n)-invariant hyperspace M
described by the action

S[X, λ] =
∫

Eαβ (X(τ)) λα(τ) λβ(τ), (65)

where Xμν(τ) are the hyperspace coordinates of the particle. The auxiliary commuting variables λα(τ)

(α = 1, · · · , n) is a real spinor with respect to Sp(n) and a vector with respect to GL(n) (introduced
in Section 2). Finally Eαβ(X(τ)) = Eβα(X(τ)) = dXλρ(τ)Eμν

αβ(X) is the pull–back on the particle
worldline of the hyperspace vielbein. For flat hyperspace

Eαβ(X(τ)) = dτ ∂τXαβ (τ) = dXαβ (τ), (66)

and for the case of the Sp(n) group manifold

Eαβ(X(τ)) = Ωαβ(X), (67)

where Ωαβ is an Sp(n) Cartan form. The latter can be taken in the GL-flat realization as in (49).
The dynamics of particles on the OSp(N|n) supergroup manifolds was considered for N = 1
in [8,10,66] and for generic values of N in [4,5], and, as we have already mentioned, the twistor-like
superparticle in the n = 32 super-hyperspace was considered in [67] as a point-like model for BPS
preons [65], the hypothetical 31

32 -supersymmetric constituents of M-theory.
The action (65) is manifestly invariant under global GL(n) transformations and implicitly invariant

under global Sp(2n) transformations, acting linearly on λρ and non-linearly on Xρν. Thus, the model
possesses the symmetry that Fronsdal proposed as an underlying symmetry of higher–spin field theory
in the case n = 4, D = 4 [1]. To make the Sp(2n) invariance manifest, it is convenient to rewrite the
action (65) in a twistor form (for simplicity we consider the flat case (66))

S[λ, μ] =
∫

(dμα(τ) λα(τ)− μα(τ) d λα(τ)) =
∫

dZAZA , (68)

where
μα = Xαβ λβ , (69)

and
ZA = (λα, μβ) ZA = CAB ZB = (μα, −λβ), A = 1, · · · , 2n , (70)

form a linear representation of Sp(2n)

δZA = SAB ZB , SAB =

(
g β

α kαγ

aδβ −(g δ
γ )

T

)
. (71)

Hence, the bilinear form dZA ZA is manifestly Sp(2n) invariant. Note that, as it follows from the
action (68), the variables μα and λβ are canonically conjugate coordinates and momenta of the particle.
Upon quantization, they become the operators introduced in Section 2.3, Equation (40).

Using the relation (69) one can easily recover the Sp(2n) transformation (35) of Xαβ.
Applying the Hamiltonian analysis to the particle model described by (65) and (66), one finds

that the momentum conjugate to Xαβ is related to the twistor-like variable λα via the constraint

Pαβ = λαλβ . (72)

As we have already mentioned, this expression, e.g., in the case n = 4 for which Xαβ is given in (8),
is the direct analog and the generalization of the Cartan–Penrose (twistor) relation for the particle
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momentum Pm = λ̄ γm λ. A difference is that in D = 4 the Penrose twistor relation is invariant under
the phase transformation

λα → eiϕ γ5
λα, (73)

or in the two–component Weyl spinor notation λA → eiϕ λA, while Equation (72) does not possess
this symmetry. rather the symmetry of the model is Z2 (λα → − λα) subgroup of U(1) and as a result
in the model under consideration the phase component ϕ of λα is a dynamical degree of freedom.
It turns out that upon quantization it is associated with the infinite number of massless quantum states
(particles) with increasing spin (helicity). This is in contrast to the conventional twistor-like (super)
particle models with a finite number of quantum states, considered e.g., in [68–79].

To understand the physical meaning of the phase ϕ, let us notice that Equation (72) is a constraint
on possible values of the canonical momenta of the particle in the hyperspace. In the case n = 4 the
Majorana spinor λα has four independent components. One of these components can be associated
with the phase ϕ. The momentum Pm = λ̄ γm λ of the particle along the four conventional Minkowski
directions xm = 1

2 Xμν γm
μν of the hyperspace (8) is light-like. Therefore, Pm depends on three

components of λα. It does not depend on the phase ϕ of λα, since it is invariant under the phase
transformation (73). The momentum Pmn = λ̄ γmn λ of the particle along the six additional tensorial
directions ymn = 1

4 Xαβ γmn
αβ is not invariant under the phase transformations and, hence, depends on

the four components of λα. However, we have already associated three of them with the light-like
momentum Pm in D = 4. Therefore, the only independent component of the momentum Pmn is
associated with the U(1) phase ϕ of λα, and as a result the motion of the particle along the six
tensorial directions ymn is highly constrained. This means that, effectively, the particle moves in the
four-dimensional Minkowski space and along a single direction in the six additional dimensions
whose coordinate is conjugate to the compact momentum–space direction parameterized by the
periodic phase ϕ. As shown in [3,64], the coordinate conjugate to the compactified momentum ϕ takes,
upon quantization, an infinite set of integer and half-integer values associated with the helicities of
higher–spin fields. The half-integer and integer–spin states are distinguished by the discrete symmetry
Z2 (λα → − λα).

The resulting infinite tower of discrete higher–spin states can be regarded [3,64] as an alternative
to the Kaluza–Klein compactification mechanism akin to Fronsdal’s original proposal. In contrast
to the conventional Kaluza–Klein theory, in the hyperspace particle model, the compactification
occurs in momentum space and not in coordinate space. The phase ϕ in (73) can be regarded as
a compactified component of the momentum (72), while the corresponding conjugate hyperspace
coordinate is quantized and labels the discrete values of spin of fields in the effective conventional
space–time.

As we have already seen by virtue of the Fierz identity (3) the twistor particle momentum is
light-like (PmPm = 0) in D = 3, 4, 6 and 10. Therefore, in the hyperspaces corresponding to these
space–time dimensions the first–quantized particles are massless [2,3,64]. Moreover, since the model
is invariant under the generalized conformal group Sp(2n), the quantum states of this particle in
the hyperspaces containing the D = 3, 4, 6 and 10 Minkowski spaces as subspaces correspond to the
conformal higher–spin fields introduced in Section 2.

Let us conclude this section with a brief comment on the model describing a particle propagating
on the Sp(n) group manifold. Its action has the form (65), with the corresponding Cartan form given
by (67). The property of GL-flatness greatly simplifies the analysis of this case. Namely, since the
Cartan forms of the Sp(n) group manifold and the flat hyperspace are related as in Equation (49),
one can simply reduce the classical Sp(n) action to the flat one by redefining the spinor variables as
follows λα → G−1β

α (X)λβ. However, when quantizing this system we should work with variables
that appropriately describe the geometry of the Sp(n) background in which the particle propagates.
Thus upon quantization one gets Equation (92) as explained in detail in [10].
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5. Field Equations on Sp(n) Group Manifold

5.1. Scalar Field on AdSD. A Reminder

Before deriving the field equations of hyperfields on Sp(n) group manifolds, let us recollect some
well known facts about a scalar field propagating on AdSD background. In the next subsection we will
see that the form of the scalar field equation on Sp(n) and its certain solutions are somewhat similar to
those of the AdS scalar.

Conformally invariant scalar on AdS4 is described by the field equation [80](
DmDm +

2
r2

)
φ(x) = 0, (74)

here Dm is the usual covariant derivative on AdS4.
Equation (74) can be written in a so-called ambient space formalism. The ambient space is

obtained by introducing one more time-like dimension and considering AdSD as a hyperboloid in this
higher dimensional space (for applications of this formalism to the description of higher-spin fields on
AdSD see for example [81–87])

ηAByAyB = −r2, ηAB = diag(−1, 1, .., 1,−1), A = 0, 1, .., D . (75)

The AdSD ambient-space generalization of (74) has the form(
∇A∇A +

2(D − 3)
r2

)
φ(y) = 0, (76)

where
∇A = θAB ∂

∂yB (77)

and

θAB = ηAB +
yAyB

r2 (78)

is a projector, since in view of the relation (75) one has

θABθBC = θAC, yAθB
A = 0, yA∇A = 0, ∇AyA = D, (79)

where the indexes A, B are raised and lowered with the metric ηAB and ηAB.
One also has the following identities

[∇A,∇B] = −yA∇B + yB∇A, [∇C∇C, yA] = 2∇A + DyA, (80)

[∇C∇C,∇A] = (2− D)∇A + 2yA∇D∇D

where we have set r2 = 1. The generators of the SO(2, D − 1) group can be expressed as

MAB = yA∇B − yB∇A. (81)

One can check that the generators (81) can also be represented as

MAB = yA∂B − yB∂A, ∂A =
∂

∂yA . (82)

To form the SO(2, D) conformal algebra we need extra generators. These generators are

M(D+1)A = ∂A + yAyB∂B + lyA (83)

83



Universe 2018, 4, 7

Here l is the conformal weight of a field. For the scalar l = 1.
One can derive (83) as follows. Obviously (75) is invariant under the SO(2, D − 1) rotations.

In order to realize the conformal transformations in the ambient space one adds to it one
more dimension i.e., considers D + 2 dimensional space, parameterized by the coordinates zM,
where M = 0, 1, .., D + 1. These coordinates are subject to the constraint

− (z0)
2
+ (z1)

2
+ (z2)

2
+ · · ·+ (zD−1)

2 − (zD)
2
+ (zD+1)

2
= zMzN gMN = 0 (84)

which is invariant under the group of rotations SO(2, D) with the generators

MMN = zM∂N − zN∂M. (85)

One can solve the constraint (84) by introducing

yA = r
zA

zD+1 , (86)

satisfying Equation (75).
The generators MMN (85) contain the generators MAB of the AdSD isometry group SO(2, D − 1)

and the generators M(D+1),A which extend the latter to the conformal group SO(2, D) by taking the
functions on the cone (84) to be homogeneous of degree −l

zM ∂

∂zM f (z) = −l f (z). (87)

In this way, one gets (83).
Then using the explicit realization of the generators (81), (83) as well as the commutation

relations (80) between the operators it is straightforward to check invariance of the field Equation (76)
under the conformal group SO(2, D).

5.2. Sp(n) Group-Manifold Equations

In the previous subsection we considered in detail a conformal scalar field on AdSD. As we
discussed in Section 3, the hyperspace generalization of AdS spaces are Sp(n) group manifolds.
We will now consider an Sp(n) counterpart of the conformal scalar field Equation (74).

Let us start with an Sp(n) analogue of Equation (9). To this end one should replace the flat
derivative ∂αβ with the covariant derivative on Sp(n) group manifold. The covariant derivatives ∇αβ

satisfy the Sp(n) algebra

[∇αβ,∇γδ] =
ξ

2
(Cα(γ∇δ)β + Cβ(γ∇δ)α) . (88)

Due to the GL-flatness these covariant derivatives have a simple form

∇αβ = G−1μ
α (X)G−1ν

β (X)∂μν , (89)

where G−1μ
α (X) was defined in (52). Further, one should replace the spinor product λαλβ in (8) with

an expression which like the covariant derivatives ∇αβ also satisfies the Sp(n) algebra. This can be
done by introducing new variables

Ỹα ≡ λα +
iξ
8

∂

∂λα
(90)

Obviously, the spinorial variables Yα do not commute among each other

[Ỹα, Ỹβ] =
iξ
4

Cαβ. (91)
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Using the covariant derivatives ∇αβ and the variables Yα. one can write an Sp(n) analogue of
Equation (9) as [

∇αβ − i
2
(ỸαỸβ + ỸβYα)

]
Φ(X, λ) = 0 . (92)

Similarly, one finds an Sp(n) version of Equation (12)[
∇αβ − i

2
(YαYβ + YβYα)

]
C(X, μ) = 0, Yα ≡ ξ

8
μα + i

∂

∂μα
. (93)

To obtain the equations for component fields one should expand, e.g. the functional C(X, μ) in
power of μα

C(X, μ) =
∞

∑
n=0

Cα1···αn(X) μα1 · · · μαn = B(X) + Fα(X)μα + · · · . (94)

Plugging this expansion into (92) one can show that similarly to the case of the flat hyperspace only
zeroth and the first components in the expansion in terms of the variables μα are independent fields
whereas the other fields are expressed in terms of derivatives of the independent ones. The independent
hyperfields B(X) and Fα(X) satisfy Equations [10]

∇α[β∇γ]δB(X) = ξ
16

(
Cα[β∇γ]δ − Cδ[γ∇β]α + 2Cβγ∇αδ

)
B(X)

+ ξ2

64

(
2CαδCβγ − Cα[βCγ]δ

)
B(X),

(95)

∇α[βFγ](X) = − ξ

4

(
Cα[γFβ](X) + 2CβγFα(X)

)
. (96)

The derivation of these equations which are Sp(n) versions of Equations (14) and (15) is
straightforward and is given in the Appendix B.

Note that if one introduce the covariant derivatives Dαβ acting on the spinors as follows (see [23]
for more details)

DαβFγ(X) = ∇αβFγ(X) +
ξ

4
Cγ(αFβ)(X) (97)

the form of Equations (95) and (96) simplifies to

Dα[βDγ]δB(X) =
ξ2

82

(
2CαδCβγ − Cα[βCγ]δ

)
B(X), (98)

Dα[βFγ](X) = 0 . (99)

We see that Equation (98) reminds that of the AdS scalar field (74), especially when we contract
its indices.

5.2.1. Connection between the Fields in Flat Hyperspaces and Sp(n) Group Manifolds

One can check [23] using the equations

∂μνG−1αβ(X) =
ξ

8
(δα

μδ
β
ν + δ

β
μδα

ν ) , (100)

and
∂μν(det G(X))k =

ξk
8
(det G(X))k(Gμν(X) + Gνμ(X)) , (101)

that the fields B(X) and Fα(X) satisfying Equations (95) and (96) are related to the fields b(X) and
fμ(X) satisfying the flat hyperspace Equations (14) and (15) as follows

B(X) = (det G(X))−
1
2 b(X) , (102)
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Fα(X) = (det G(X))−
1
2 G−1

α
μ(X) fμ(X). (103)

These relations are similar to the relations between the conformally invariant scalar and spinor
equations in the conventional flat and AdS spaces and reduce to them in the case of n = 2, D = 3.

5.2.2. Plane Wave Solutions

Equations (92) and (93) can be solved to obtain “plane-wave” solutions. Let us consider the case
of the Sp(4) group manifold. One can check that Equations (92) and (93) have the following solutions

Φ(X, λ) =
∫

d4μ
√

det G−1(X) eiXαβ(λα+
ξ
8 μα)(λβ+

ξ
8 μβ)+iλαμα

ϕ(μ) , (104)

C(X, μ) =
∫

d4λ
√

det G−1(X) eiXαβ(λα+
ξ
8 μα)(λβ+

ξ
8 μβ)−iλαμα

ϕ(λ) . (105)

These solutions describe plane-wave-like fields in the GL–flat parameterization of the metric [10].
They can be compared with the plane-wave solutions for the higher-spin curvatures on AdS4 given
in [8,88]. The latter can be found by solving the AdS4 deformation of the field Equations (33)

DMṀCA1,...,An+2s ,Ȧ,...,Ȧn
(x) =

eAȦ
MṀCA1,...,An+2s ,A,Ȧ,...,Ȧn Ȧ(x)− n(n + 2s)eMṀ,{AȦCA2,...,An+2s ,Ȧ,...,Ȧn

(x)
(106)

where DMṀ is a covariant derivative on AdS4 and eAȦ
MṀ are the corresponding vierbeins in the Weyl

spinor representation. The physical higher-spin curvatures satisfy the equations

eMṀ
AȦ DMṀCA1,...,A2s(x) = 0 (107)

whereas the auxiliary fields are expressed via derivatives of the physical fields with the help of
Equation (106). Choosing the AdS4 metric in the conformally flat form

eAȦ
MṀ = e

ρ(x)
2 δA

MδȦ
Ṁ, ρ(x) = ln

4

(1− ( x
r )

2)
2 (108)

one can find the plane wave solutions of Equation (107)

CA1,...,A2s(x) =
∂

∂μA1
...

∂

∂μA2s
C(x, μ, μ)|μ=μ=0 (109)

with
C(x, μ, μ) =

∫
d2λd2λΦ(λ, λ)·

exp
(

i(μAμȦ + λAλȦ)xAȦ − ρ(x)
2 +

(
1− ( x

r
)2
) 1

2
(μAλA + μȦλȦ)

)
.

(110)

Comparing (110) with (105), one can see that the latter is a direct generalization of the AdS4

plane-wave solution to the case of the Sp(4) group manifold.
As a simplest example of this construction let us note that the conformal scalar on AdS4 discussed

in Section 5.1 admits a plane-wave solution [8] of the form

φ(x) =
∫

d2λd2λe ixAȦλAλȦ− 1
2 ρ(x)φ0(λ, λ) (111)

which can be checked substituting the expression (111) into the field Equation (74).
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5.3. Sp(2n) Transformations of the Fields

Using the relation between the fields of weight Δ = 1
2 on flat hyperspace and on Sp(n) group

manifold (102) we have the following relation between the Sp(2n) transformations of the weight- 1
2

fields on Sp(n) and in flat hyperspace

δB(X) = (det G(X))−
1
2 δb(X) , (112)

δFα(X) = (det G(X))−
1
2 G−1μ

α (X) δ fμ(X) . (113)

Note that in the above expressions the matrix Gα
μ(X) is not varied since it is form-invariant, i.e.,

G(X′) has the same form as G(X).
Then, the Sp(n)-variations of B(X) and Fα(X) have the following form [23]

δB(X) = −(aαβDαβ +
1
2 (gα

α − kαβXαβ) + 2gβ
αXβγDαγ

−kαβXαγXβδDγδ)B(X) ,
(114)

δFσ(X) = −(aαβDαβ +
1
2
(gα

α − kαβXαβ) + 2gβ
αXβγDαγ

−kαβXαγXβδDγδ)Fσ(X)− (gσ
β − kσαXαβ)Fβ(X),

where the derivative Dαβ is defined as

Dαβ = ∂αβ +
ξ

16
(Gαβ(X) + Gβα(X)) . (115)

Using

∂μνGρ
σ(X) =

ξ

8
(Gρμ(X)Gν

σ(X) + Gρν(X)Gμ
σ(X)) , (116)

one can check that these derivatives commute with each other [Dαβ,Dγδ] = 0 just as in the flat case.
Let us note that the relation between the flat and Sp(n) hyperfields of an arbitrary weight Δ and

the form of the corresponding Sp(2n) transformations require additional study since for this one should
know the form of Sp(2n)-invariant equations satisfied by these fields, which is still an open problem.

6. Supersymmetry

In this Section, we present a supersymmetric generalization of the Sp(2n) invariant systems.
We will mainly follow [24].

6.1. Flat Hyper-Superspace and Its Symmetries

The concept of hyperspaces, hyperfields and of the corresponding field equations can be
generalized to construct supersymmetric OSp(1|2n) invariant systems and the corresponding
infinite-dimensional higher-spin supermultiplets. In this section we shall describe this generalization
in detail.

The flat hyper–superspace (see e.g., [3,4,12]) is parameterized by n(n+1)
2 bosonic matrix

coordinates Xμν = Xνμ and n real Grassmann–odd “spinor” coordinates θμ (μ = 1, · · · , n).
The supersymmetry variation

δθμ = εμ, δXμν = −iε(μθν) , (117)

leaves invariant the Volkov-Akulov-type one-form

Πμν = dXμν + iθ(μdθν) . (118)
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The supersymmetry transformations form a generalized super–translation algebra

{Qμ, Qν} = 2Pμν, [Qμ, Pνρ] = 0 , [Pμν, Pρλ] = 0 , (119)

with Pμν generating translations along Xμν.
The realization of Pμν and Qμ as differential operators is given by

Pμν = −i
∂

∂Xμν ≡ −i∂μν , Qμ = ∂μ − iθν∂νμ , ∂μ ≡ ∂

∂θμ , (120)

The algebra (119) is invariant under rigid GL(n) transformations

Q′
μ = gμ

ν Qν , P′
μν = gμ

ρ gν
λ Pρλ, (121)

generated by

Gμ
ν = −2i(Xνρ +

i
2

θνθρ)∂ρμ − iθν Qμ , (122)

which act on Pμν and Qμ as follows

[Pμν, Gλ
ρ] = −i(δρ

μPνλ + δ
ρ
ν Pμλ) , [Qμ, Gν

ρ] = −iδρ
μ Qν , (123)

and close into the gl(n) algebra as in (39)

[Gν
μ, Gλ

ρ] = i(δμ
λ Gν

ρ − δ
ρ
ν Gλ

μ) . (124)

The algebra (119), (123) and (124) is the hyperspace counterpart of the conventional
super–Poincaré algebra enlarged by dilatations. That this is so can be most easily seen by taking
n = 2 (i.e., μ = 1, 2), in which case this algebra is recognized as the D = 3 super–Poincaré algebra
with Gμ

ν − 1
2 δν

μ Gρ
ρ = Mm(γm)μ

ν (m = 0, 1, 2) generating the SL(2, R) ∼ SO(1, 2) Lorentz rotations
and D = 1

2 Gρ
ρ being the dilatation generator. Note that the factor 1

2 in the definition of the dilatation
generator is required in order to have the canonical scaling of the momentum generator Pμν with
weight 1 and the supercharge Qμ with weight 1

2 , as follows from Equation (123).
This algebra may be further extended to the OSp(1|2n) algebra, generating generalized

superconformal transformations of the flat hyper–superspace, by adding the additional set of
supersymmetry generators

Sμ = −(Xμν +
i
2

θμθν)Qν , (125)

and the generalized conformal boosts

Kμν = i(Xμρ +
i
2

θμθρ)(Xνλ +
i
2

θνθλ)∂ρλ − iθ(μSν) . (126)

The generators Sμ and Kμν form a superalgebra similar to (119)

{Sμ, Sν} = −2Kμν, [Sμ, Kνρ] = 0 , [Kμν, Kρλ] = 0 , (127)

while the non-zero (anti)commutators of Sμ and Kμν with Qμ, Pμν and Gμ
ν read

{Qμ, Sν} = −Gμ
ν , [Sμ, Pνρ] = iδμ

(ν
Qρ),

[Qμ, Kνρ] = −iδ(νμ Sρ) , [Sμ, Gν
ρ] = iδμ

ν Sρ .
(128)

Let us note that in the case n = 4, in which the physical space–time is four-dimensional
the generalized superconformal group OSp(1|8) contains the D = 4 conformal symmetry group
SO(2, 4) ∼ SU(2, 2) as a subgroup, but not the superconformal group SU(2, 2|1). The reason being that,
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although OSp(1|8) and SU(2, 2|1) contain the same number of (eight) generators, the anticommutators
of the former close on the generators of the whole Sp(8), while those of the latter only close on
an U(2, 2) subgroup of Sp(8), and the same supersymmetry generators cannot satisfy the different
anti-commutation relations simultaneously. In fact, the minimal OSp–supergroup containing SU(2, 2|1)
as a subgroup is OSp(2|8).

6.2. Scalar Superfields and Their OSp(1|2n)-Invariant Equations of Motion

Let us now consider a superfield Φ(X, θ) transforming as a scalar under the super–translations (120)

δΦ(X, θ) = −(εαQα + iaμνPμν)Φ(X, θ) . (129)

To construct equations of motion for Φ(X, θ) which are invariant under (129) and comprise the
equations of motion of an infinite tower of integer and half-integer higher-spin fields with respect to
conventional space–time, we introduce the spinorial covariant derivatives

Dμ = ∂μ + iθν∂νμ , {Dμ, Dν} = 2i∂μν , (130)

which (anti)commute with Qμ and Pμν.
The Φ–superfield equations then take the form [12]

D[μDν]Φ(X, θ) = 0 , (131)

As was shown in [12], these superfield equations imply that all the components of Φ(X, θ) except
for the first and the second one in the θμ-expansion of Φ(X, θ) should vanish

Φ(X, θ) = b(X) + iθμ fμ(X) + iθμθν Aμν(X) + · · · , (132)

(i.e., Aμ1...νk = 0 for k > 1) while the scalar and spinor fields b(X) and fμ(X) satisfy Equations (14) and
(15).

The superfield Equations (131) are invariant under the generalized superconformal OSp(1|2n)
symmetry, provided that Φ(X, θ) transforms as a scalar superfield with the “canonical” generalized
scaling weight 1

2 , i.e.,

δΦ(X, θ) = −(εμ Qμ + ξμ Sμ + iaμν Pμν + ikμν Kμν + igμ
ν Gν

μ)Φ(X, θ)

− 1
2

(
gμ

μ − kμν(Xμν + i
2 θμθν) + ξμ θμ

)
Φ(X, θ) ,

(133)

where the factor 1
2 in the second line is the generalized conformal weight and εμ, ξμ, aμν, kμν and gμ

ν

are the rigid parameters of the OSp(1|2n) transformations.
Scalar superfields with anomalous generalized conformal dimension Δ transform under

OSp(1|2n) as

δΦ(X, θ) = −(εμ Qμ + ξμ Sμ + iaμν Pμν + ikμν Kμν + igμ
ν Gν

μ)Φ(X, θ)

−Δ
(

gμ
μ − kμν(Xμν + i

2 θμθν) + ξμ θμ
)

Φ(X, θ) .
(134)

It is instructive to demonstrate how the generalized conformal dimension Δ, which is defined
to be the same for all values of n in OSp(1|2n), is related to the conventional conformal weight of
scalar superfields in various space–time dimensions. As we have already mentioned in Section 6.1,
the dilatation operator should be identified with D = 1

2 Gμ
μ. Therefore, considering a GL(n)

transformation (134) with the parameter gμ
ν

δΦ(X, θ) = −igμ
ν Gν

μΦ(X, θ),
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the part of the transformation corresponding to the dilatation reads

δDΦ(X, θ) = − i
n

gμ
μ Gν

νΦ(X, θ) = −2i
n

gμ
μDΦ(X, θ) = −ig̃DΦ(X, θ) , (135)

where g̃ = 2
n gμ

μ is the genuine dilatation parameter. From (134), it then follows that the conventional
conformal weight ΔD of the scalar superfield is related to the generalized one Δ via

ΔD =
n
2

Δ , D =
n
2
+ 2. (136)

In the n = 2 case corresponding to the N = 1, D = 3 scalar superfield theory the two definitions
of the conformal dimension coincide, whereas in the case n = 4 describing conformal higher-spin
fields in D = 4 one finds Δ4 = 2Δ. Relation (136) indeed provides the correct conformal dimensions of
scalar superfields (and consequently of their components) in the corresponding space–time dimensions.
For instance, when Δ = 1

2 , in D = 3 one finds 1
2 as the canonical conformal dimension of the scalar

superfield, while in the cases D = 4 and D = 6 (n = 8) it is found to be equal to one and two,
respectively. For convenience, we shall henceforth associate the scaling properties of the fields to the
universal D– and n–independent generalized conformal weight Δ.

6.3. Infinite-Dimensional Higher-Spin Representation of N = 1, D = 4 Supersymmetry

Using the example of n = 4 (D = 4) we will now show that in four space–time dimensions,
the fields of integer and half-integer spin s = 0, 1

2 , 1, · · · , ∞ encoded in b(X) and fμ(X) (see Section 2.1)
form an irreducible infinite-dimensional supermultiplet with respect to the supersymmetry
transformations generated by the generalized super–Poincaré algebra (119). The hyperfields b(X)

and fμ(X), satisfying (14) and (15), transform under the supertranslations (129) as follows

δb(X) = −iεμ fμ(X) , δ fμ(X) = −εν ∂νμ b(X) . (137)

and their expansion in terms of the ymn coordinates is given in (16) and (17).
The fact that the higher– spin fields should form an infinite-dimensional representation of the

generalized N = 1, D = 4 supersymmetry (119) is prompted by the observation that the spectrum of
bosonic fields contains a single real scalar field φ(x), which alone cannot have a fermionic superpartner,
while each field with s > 0 has two helicities ±s. Indeed, from (137), we obtain an infinite entangled
chain of supersymmetry transformations for the D = 4 fields

δφ(x) = −iεμ ψμ(x),

δψμ(x) = εν(γm
νμ ∂mφ(x) + γmn

νμ Fmn(x)),

δFmn(x) = −iεμ

(
Rμ mn(x)− 1

2
∂[m(γn]ψ)μ(x)

)
, (138)

δRμ mn(x) =
1
2

∂[m(γn]δψ(x))μ − 1
2

εν γ
p
νμ ∂pFmn(x)

−εν γ
pq
νμ

(
Rpq,mn(x)− 1

2
∂qηp[m∂n]φ(x)

)
,

and so on.
The algebraic reason behind the appearance of the infinite-dimensional supermultiplet of the

D = 4 higher–spin fields is related to the following fact. In the n = 4, D = 4 case the superalgebra (119)
takes the following form

{Qμ, Qν} = (γm)μνPm + (γmn)μνZmn , (139)

where Pm is the momentum along the four-dimensional space–time and Zmn = −Znm are the tensorial
charges associated with the momenta along the extra coordinates ymn.
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On the other hand, the conventional N = 1, D = 4 super–Poincaré algebra is

{Qμ, Qν} = (γm)μνPm . (140)

Though both algebras have the same number of the supercharges Qμ, their anti-commutator closes
on different sets of bosonic generators. Thus, the super–Poincaré algebra (140) is not a subalgebra
of (139). Hence the representations of (139) do not split into (finite-dimensional) representations of
the standard super–Poincaré algebra. In this sense the supersymmetric higher–spin systems under
consideration differ from most of supersymmetric models of finite-dimensional super–Poincaré or
AdS higher–spin supermultiplets considered in the literature (see e.g., [40,46,89–112]).

7. Hyperspace Extension of Supersymmetric AdS Spaces

In Section 3 we have seen that the hyperspace extension of AdS spaces are Sp(n) group
manifolds. In this section we consider their minimal supersymmetric extension, namely OSp(1|n)
supergroup manifolds.

The OSp(1|n) superalgebra is formed by n anti-commuting supercharges Qα and n(n+1)
2

generators Mαβ = Mβα of Sp(n)

{Qα,Qβ} = 2Mαβ , [Qα, Mβγ] =
iξ
2 Cα(β Qγ),

[Mαβ, Mγδ] = − iξ
2 (Cγ(α Mβ)δ + Cδ(α Mβ)γ) , (141)

The OSp(1|n) algebra (141) is recognized as a subalgebra of OSp(1|2n) (see the Section 6.1) with
the identifications

Qα = (Qα +
ξ

4
Sα), Mαβ = Pαβ − ξ2

16
Kαβ − ξ

4
G(αβ) . (142)

The OSp(1|n) manifold is parameterized by the coordinates (Xμν, θμ) and its geometry is
described by the Cartan forms

Ω = O−1dO(X, θ) = −iΩαβ Mαβ + iEαQα , (143)

where O(X, θ) is an OSp(1|n) supergroup element. The Cartan forms satisfy the Maurer–Cartan
equations associated with the OSp(1|n) superalgebra (141)

dΩαβ +
ξ

2
Ωαγ ∧ Ωγ

β = −iEα ∧ Eβ, dEα +
ξ

2
Eγ ∧ Ωγ

α = 0 , (144)

with the external differential acting from the right.

7.1. GL Flatness of OSp(1|n) Group Manifolds

There is a supersymmetric generalization of the GL(n) flatness property of Sp(n) group manifolds
to the case of OSp(1|n) supergroup manifolds [8]. In particular, the Maurer–Cartan Equations (144)
are solved by the following forms

Ωαβ = dXμνGμ
αGν

β(X) +
i
2
(ΘαDΘβ + ΘβDΘα) = Πμν Gμ

α Gν
β(X, Θ), (145)

Eα = P(Θ2)DΘα − ΘαDP(Θ2) (146)

where Θ is related to θ as follows

θα = ΘβG−1α
β P−1(Θ2), Θ2 = ΘαΘα, P2(Θ2) = 1 +

iξ
8

Θ2 , (147)
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while the covariant derivative
DΘα = dΘα +

ξ

4
Θβ ωβ

α(X) , (148)

contains the Cartan form of the Sp(n) group manifold

ωαβ(X) = dXμνGμ
α(X)Gν

β(X), (149)

and
Gα

β(X, Θ) = Gα
β(X)− iξ

8
(Θα − 2Gα

γ(X)Θγ)Θβ, (150)

where Gα
β(X) is given in (50). The inverse matrix of (150) is

G−1β
α (X, Θ) = G−1β

α (X)− iξ
8 (Θ

δG−1
δα (X)) (Θδ G−1β

δ (X))P−2(Θ2)

= G−1β
α (X)− iξ

8 θα θβ = δ
β
α + ξ

4 (Xα
β − i

2 θα θβ)
(151)

with G−1β
α (X) given in (52).

7.2. Field Equations on OSp(1|n) Supergroup Manifold

The scalar superfield equation on OSp(1|n) has the form [12](
∇[α∇β] −

iξ
8

Cαβ

)
ΦOSp(X, θ) = 0 , (152)

where the Grassmann–odd covariant derivatives ∇α and their bosonic counterparts ∇αβ satisfy the
OSp(1|n) superalgebra similar to (141), namely

{∇α,∇β} = 2i∇αβ (153)

[∇γ,∇αβ] =
ξ

2
Cγ(α ∇β), (154)

[∇αβ,∇γδ] =
ξ

2
(Cα(γ∇δ)β + Cβ(γ∇δ)α) . (155)

while the OSp(1|n) covariant derivatives are obtained from the flat superspace ones by the following
GL transformations

∇α = G−1 μ
α (X, Θ) Dμ ,

∇αβ = G−1 μ
α (X, Θ) G−1ν

β (X, Θ)
(

∂μν + 2iD(μ ln
(
(det G(X))

1
2 P−1(Θ2)

)
Dν)

)
.

(156)

Connection between Superfields on Flat Hyper-Superspace and on OSp(1|n) Supergroup Manifolds

Using the relations given in Appendix C one can show that the superfield ΦOSp(X, θ)

satisfying (152) is related to the superfield Φ(X, θ) satisfying the flat superspace Equation (131) by the
super–Weyl transformation

ΦOSp(1|n)(X, θ) = (detG(X, Θ))− 1
2 Φ f lat(X, θ)

= (det G(X))− 1
2 P(Θ2)Φ f lat(X, θ),

(157)

Substituting (132) into (157) and using the definition (147), together with the fact that on the mass
shell all higher components in (132) vanish, we find

ΦOSp(n)(X, θ) = (det G(X))− 1
2 b(X)

+Θα(det G(X))− 1
2 G−1μ

α (X) fμ(X) + O(Θ2, b(X)),
(158)
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where the first two terms are the fields

B(X) = (det G(X))−
1
2 b(X), Fα(X) = (det G(X))−

1
2 G−1μ

α (X) fμ(X) (159)

propagating on the Sp(n) group manifold, and O(Θ2, b(X)) stands for higher order terms in Θ2

which only depend on b(X). The fields (159) satisfy the equations of motion on Sp(n) group
manifolds (95)–(96). Note that in these equations the covariant derivatives are restricted to the
bosonic group manifold Sp(n), i.e., ∇αβ = G−1 μ

α (X) G−1 ν
β (X) ∂μν.

7.3. OSp(1|2n) Transformations of Superfields

Since the flat superspace field equation is invariant under the generalized superconformal
OSp(1|2n) transformations (133), the above relation leads us to conclude that also the OSp(1|n)
superspace Equations (152) are invariant under the OSp(1|2n) transformations, under which the
superfield ΦOSp(X, θ) varies as follows

δΦOSp(X, θ) = −(εμ Qμ + ξμ Sμ + iaμν Pμν + ikμν Kμν + igμ
ν Gν

μ)ΦOSp(X, θ)

− 1
2

(
gμ

μ − kμν(Xμν + i
2 θμθν) + ξμ θμ

)
ΦOSp(X, θ) .

(160)

Here,

Pμν = −iDμν = −i(∂μν +
ξ

8
G(μν)(X, Θ)) , (161)

and
Qμ = Qμ − iξ

8
ΘμP(Θ) . (162)

Using the relations given in the Appendix C one may check that the operators (161) and (162)
obey the flat hyperspace supersymmetry algebra

[Pμν,Pρσ] = 0, {Qμ,Qν} = −2Pμν, [Pμν,Qρ] = 0 . (163)

The other generators of the OSp(1|2n) are

Sμ = −(Xμν +
i
2

θμθν)Qν , Gμ
ν = −2i(Xνρ +

i
2

θνθρ)Dρμ − iθν Qμ , (164)

and
Kμν = i(Xμρ +

i
2

θμθρ)(Xνλ +
i
2

θνθλ)Dρλ − iθ(μSν) . (165)

Taking into account the commutation relations (163) we see that the operators Qμ,Sμ,Pμν,Gμ
ν

and Kμν obey the same OSp(1|2n) algebra as the operators Qμ, Sμ, Pμν, Gμ
ν and Kμν considered in the

Section 6.1.

8. Generalized CFT. Part I. Correlation Functions in OSp(1|2n)-Invariant Models

In the previous sections, we have described the generalized conformal group Sp(2n) and
generalized conformal supergroup OSp(1|2n). We introduced the fundamental fields and superfields
and showed how they transform under generalized conformal transformations.

In this Section we shall construct two-, three- and four-point correlation functions of these
fields, by requiring the Sp(2n) symmetry of the correlators, i.e., by solving the corresponding Ward
identities. In other words we will follow the conventional approach adopted in multidimensional
CFTs (see e.g., [113]). In particular, we will consider OSp(1|2n) invariant correlation functions from
which the Sp(2n) invariant correlation functions can be recovered as components of the expansions
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of the former in series of the Grassman coordinates θμ. Sp(2n)-invariant correlation functions in the
tensorial spaces have been studied in [11,23,24,27] and in the unfolded formulation in [114].

8.1. Two-Point Functions

Let us denote the two-point correlation function by

W(Z1, Z2) = 〈Φ(X1, θ1)Φ(X2, θ2)〉 . (166)

The invariance under supersymmetry transformation generated by the operators Q,
Equation (120), requires that

εμ

(
∂

∂θ
μ
1
− iθν

1
∂

∂Xμν
1

+
∂

∂θ
μ
2
− iθν

2
∂

∂Xμν
2

)
W(Z1, Z2) = 0 , (167)

which implies
〈Φ(X1, θ1)Φ(X2, θ2)〉 = W(det|Z12|), (168)

where
Zμν

12 = Xμν
1 − Xμν

2 − i
2

θ
μ
1 θν

2 −
i
2

θν
1 θ

μ
2 (169)

is the interval between two points in hyper–superspace which is invariant under the rigid
supersymmetry transformations (117).

We next require the invariance of the correlator under the S-supersymmetry (125)

ξμ

[
(Xμν

1 +
i
2

θ
μ
1 θν

1)

(
∂

∂θν
1
− iθρ

1
∂

∂Xνρ
1

)
+ (Xμν

2 +
i
2

θ
μ
2 θν

2)

(
∂

∂θν
2
− iθρ

2
∂

∂Xνρ
2

)]
·

W(det|Z12|) (170)

+ξμ

(
i
2

θ
μ
1 +

i
2

θ
μ
2

)
W(det|Z12|) = 0 ,

which is solved by

W(det|Z12|) = c2(det|Z12|)− 1
2 ⇒ 〈Φ(X1, θ1)Φ(X2, θ2)〉 = c2(det|Z12|)− 1

2 . (171)

The two-point function (171) reproduces the correlators of the component bosonic and fermionic
hyperfields b(X) and fμ(X) after the expansion of the former in powers of the Grassmann coordinates

θ
(μ
1 θ

ν)
2 . Since on the mass shell the superfield (132) has only two non-zero components, all terms in the

θ-expansion of the two-point function (171), starting from the ones quadratic in θ
(μ
1 θ

ν)
2 , should vanish.

This is indeed the case, as a consequence of the field equations.
To see this, let us recall that in the separated points the two-point function of the bosonic hyperfield

of weight 1
2 satisfies the free field equation. Therefore for X1

αβ �= X2
αβ one has (when the two points

coincide, one can define an analog of the Dirac delta-function in the tensorial spaces, see [5] for the
relevant discussion)

(∂1
μν∂1

ρσ − ∂1
μρ∂1

νσ)〈b(X1)b(X2)〉 = (∂1
μν∂1

ρσ − ∂1
μρ∂1

νσ)(det|X12|)− 1
2 = 0 . (172)

Similarly, for X1
αβ �= X2

αβ the fermionic two-point function satisfies the free field equation for the
fermionic hyperfield. Written in terms of the superfields, these equations are encoded in the superfield
equation (for Z12 �= 0)

(D1
μD1

ν − D1
νD1

μ)〈Φ(X1, θ1)Φ(X2, θ2)〉 = (D1
μD1

ν − D1
νD1

μ)(det|Z12|)− 1
2 = 0. (173)
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Expanding the two-point function (det|Z12|)− 1
2 in powers of the Grassmann variables

(det|Z12|)− 1
2 = (det|X12|)− 1

2

−i∂αβ(det|X12|)− 1
2 θ

(α
1 θ

β)
2 − 1

2 ∂γδ∂αβ(det|X12|)− 1
2 θ

(α
1 θ

β)
2 θ

(γ
1 θ

δ)
2 + . . . ,

(174)

one may see that the terms in the expansion starting from (θ
(μ
1 θ

ν)
2 )2 vanish due to the free field

Equation (172). From Equations (171) and (174) and from the explicit form of the superfield (132),
one may immediately reproduce the correlation functions for the component fields [11]

〈b(X1)b(X2)〉 = c2(det|X12|)− 1
2 , (175)

〈 fμ(X1) fν(X2)〉 = ic2

2
(X12)

−1
μν (det|X12|)− 1

2 . (176)

The two-point functions on the OSp(1|n) manifold may now be obtained from (171) via the
rescaling (157), which relates the superfields in flat superspace and on the OSp(1|n) group manifold

〈ΦOSp(X1, θ1)ΦOSp(X2, θ2)〉 =
(det G(X1))

− 1
2 P(Θ2

1)(det G(X2))
− 1

2 P(Θ2
2)〈Φ(X1, θ1)Φ(X2, θ2)〉 .

(177)

Finally, as in the D = 3 case, one may derive the superconformally invariant two-point function
for superfields carrying an arbitrary generalized conformal weight Δ, which on flat hyper superspace
has the form

〈ΦΔ1(X1, θ1)Φ
Δ2(X2, θ2)〉 = c2(det|Z12|)−Δ , Δ1 = Δ2 = Δ . (178)

8.2. Three-Point Functions

The three-point functions for the superfields with arbitrary generalized conformal dimensions
Δi, (i = 1, 2, 3)

W(Z1, Z2, Z3) = 〈Φ(X1, θ1)Φ(X2, θ2)Φ(X3, θ3)〉 , (179)

may be computed in a way similar to the two-point functions using the superconformal Ward
identities. The invariance under Q–supersymmetry implies that they depend on the superinvariant
intervals Zij, i.e.,

〈Φ(X1, θ1)Φ(X2, θ2)Φ(X3, θ3)〉 = W(Z12, Z23, Z31) , (180)

where
Zμν

ij = Xμν
i − Xμν

j − i
2
(θ

μ
i θν

j + θν
i θ

μ
j ) , i, j = 1, 2, 3 . (181)

Invariance under S–supersymmetry then fixes the form of the function W to be

〈Φ(X1, θ1)Φ(X2, θ2)Φ(X3, θ3)〉 (182)

= c3(det Z12)
− 1

2 (Δ1+Δ2−Δ3)(det Z23)
− 1

2 (Δ2+Δ3−Δ1)(det Z31)
− 1

2 (Δ3+Δ1−Δ2) .

Let us note that the three-point function is not annihilated by the operator entering the free
equations of motion (131) for generic values of the generalized conformal dimensions, including the
case in which the values of all the generalized conformal dimensions are canonical

(D1
μD1

ν − D1
νD1

μ)〈Φ(X1, θ1), Φ(X2, θ2), Φ(X2, θ2)〉
= c3(D1

μD1
ν − D1

νD1
μ)
(
(det|Z12|)− 1

4 (det|Z23|)− 1
4 (det|Z31|)− 1

4

)
�= 0 .

(183)

Again, the three-point functions on the supergroup manifold OSp(1|n) can be obtained via the
Weyl rescaling (157), as in the case of the two-point functions (177)
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〈ΦOSp(X1, θ1)ΦOSp(X2, θ2)ΦOSp(X3, θ3)〉
= (det G(X1))

− 1
2 P(Θ2

1)(det G(X2))
− 1

2 P(Θ2
2)(det G(X3))

− 1
2 P(Θ2

3)·
〈Φ(X1, θ1)Φ(X2, θ2)Φ(X3, θ3)〉 .

(184)

8.3. Four-Point Functions

Finally, let us consider, first in flat hyper superspace, the correlation function of four real scalar
superfields with arbitrary generalized conformal dimensions, Δi (i = 1, 2, 3, 4)

W(Z1, Z2, Z3) = 〈Φ(X1, θ1)Φ(X2, θ2)Φ(X3, θ3)Φ(X4, θ4)〉 . (185)

Invariance under Q–supersymmetry again implies that the correlation function depends only
on the superinvariant intervals Zμν

ij (181). Following the analogy with conventional conformal field
theory we find

W(X1, X2, X3, X4) = c4 ∏
ij,i<j

1

(det |Zij|)kij
W̃

(
z, z′

)
, (186)

with W being an arbitrary function of the cross-ratios

z = det
( |Z12||Z34|
|Z13||Z24|

)
, z′ = det

( |Z12||Z34|
|Z23||Z14|

)
, (187)

subject to the crossing symmetry constraints

W̃(z, z′) = W̃
(

1
z

,
z′

z

)
= W̃

(
z
z′ ,

1
z′

)
. (188)

Furthermore, the kij’s are constrained by the invariance of the four-point function under the
S–supersymmetry to satisfy

∑
j �=i

kij = Δi . (189)

Similar to the case of two- and three-point functions, the four-point function of the scalar
superfields on OSp(1|n) can be obtained from (186) via the Weyl re-scaling (157).

8.4. An Example. N = 1 D = 3 Superconformal Models

As we mentioned earlier, the case of D = 3 is the simplest example of “hyperspace” which
in this case coincides with the three-dimensional space time itself, and the fundamental fields are
just the scalar b(x) and the two-component spinor fα(x). All known results for three-dimensional
(super)conformal theories are reproduced from the above generic formulas restricted to the case of
n = 2 and D = 3, as we will show on the example of N = 1 D = 3 superconformal two– and
three-point functions.

The superconformally invariant two- and three-point correlation functions of the N = 1, D = 3
scalar supermultiplet model have been constructed in [115].

Let us use the spinor–tensor representation for the description of the three-dimensional space–time
coordinates

xαβ = xβα = xm(γm)
αβ, (190)

where now α, β = 1, 2 are D = 3 spinorial indices and m = 0, 1, 2 is the vectorial one. Since (190)
provides a representation of the symmetric 2× 2 matrices xαβ, no extra coordinates, like ymn, are present
and, hence, no higher-spin fields.

The inverse matrix of (190), x−1
αβ

xαβ x−1
βγ = δ

γ
α , (191)
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takes the simple form

x−1
αβ = − 1

xmxm
xn(γn)αβ = − 1

x2 xαβ . (192)

We may now consider a real scalar superfield in D = 3

Φ(x, θ) = φ(x) + iθα fα(x) + θαθαF(x) , (193)

with φ(x) being a physical scalar, fα(x) a physical fermion and F(x) an auxiliary field.
If (193) satisfies the free equation of motion (131), which in the D = 3 case reduces to

DαDαΦ(x, θ) = 0 . (194)

This equation implies that on the mass shell the auxiliary field F(x) vanishes, the scalar field φ(x)
satisfies the massless Klein–Gordon equation and fα(x) satisfies the massless Dirac equation. The field
Equation (194) is superconformally invariant if the superfield Φ(x, θ) has the canonical conformal
weight Δ = 1

2 .
Let us consider a superconformal transformation of (193). The Poincaré supersymmetry

transformations of Φ are

δΦ(x, θ) = εα

(
∂

∂θα
− iθβ ∂

∂xαβ

)
Φ(x, θ) = εαQαΦ(x, θ) . (195)

They encode the supersymmetry transformations of the component fields

δφ(x) = iεα fα(x) , (196)

δ fα(x) = −2iεαF(x)− εβ∂αβφ(x) , (197)

δF(x) =
1
2

εα∂αβ f β(x) , (198)

where we have made use of the identity

θαθβ =
1
2

Cαβ(θγθγ) . (199)

Under conformal supersymmetry, Φ(x, θ) transforms as follows

δΦ(x, θ) = ξα(xαβ +
i
2

θαθβ)QβΦ(x, θ)− i(ξαθα)ΔΦ(x, θ) , (200)

where Δ is the conformal weight of the superfield. The superconformal transformations of the
component fields are

δφ(x) = iξα xαβ fβ(x), (201)

δ fα(x) = −2iξβ xβ
αF(x) + ξβ xβγ ∂γαφ(x) + ξαΔφ(x), (202)

δF(x) =
1
2

ξα xαβ∂βγ f γ(x)− 1
2

ξα

(
1
2
− Δ

)
f α(x). (203)

The conformal weights of φ, fα and F are Δ, Δ + 1
2 and Δ + 1, respectively.

As we have already seen, the two-point function for a superfield of an arbitrary noncannonical
dimension has the form (178). Expanding the expression on the right hand side of (178) in powers of θ,
we obtain

(det|z12|)−Δ = (det|x12|)−Δ − i∂αβ(det|x12|)−Δ θ
(α
1 θ

β)
2

− 1
2 ∂γδ∂αβ(det|x12|)−Δ θ

(α
1 θ

β)
2 θ

(γ
1 θ

δ)
2 .

(204)
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Using the identities
∂αβ(det|x|)−Δ = −Δ x−1

αβ det|x|−Δ , (205)

and

∂αβ∂γδ(det|x|)−Δ = Δ
(

Δ x−1
αβ x−1

γδ +
1
2

x−1
αγ x−1

βδ +
1
2

x−1
βγ x−1

αδ

)
(det|x|)−Δ , (206)

one may rewrite the expression (204) as

(det |z12|)−Δ = (det |x12|)−Δ
(

1− iΔ
xm

12(γm)αβ

x2
12

θα
1 θ

β
2 − (2Δ−1)Δ

4
1

x2
12

θ2
1θ2

2

)
.

(207)

Thus, from Equation (204) or (207), one may immediately read off the expressions for the
correlation functions of the component fields of the superfield (193)

〈φ(x1)φ(x2)〉 = c2(det|x12|)− 1
2 , (208)

〈 fα(x1) fβ(x2)〉 = −ic2∂αβ(det|x12|)− 1
2 , (209)

〈φ(x1) fα(x2)〉 = 0 , 〈F(x1)φ(x2)〉 = 0 , 〈F(x1) fα(x2)〉 = 0 , (210)

〈F(x1)F(x2)〉 = − c2

8
∂αβ∂αβ(det|x|)−Δ . (211)

Let us note that when the superfield Φ(x, θ) has the canonical conformal dimension Δ = 1
2 , due to

the identity

CαγCβδ∂1
αβ∂1

γδ(det|x12|)− 1
2 = −1

2
ηmn ∂

∂xm
1

∂

∂xn
1
(det|x12|)− 1

2 , (212)

the last term in (204) is proportional to the δ–function if one moves to the Euclidean signature. Then,
one has for the two-point function for the auxiliary field

〈F(x1)F(x2)〉 = −π

4
c2δ(3)(x1 − x2). (213)

Note that the correlation functions of the auxiliary field F with the physical fields and with itself
(for xm

1 �= xm
2 ) vanish.

On the other hand, if the conformal weight of the superfield (193) is anomalous, i.e., Δ �= 1
2 ,

the correlators of the auxiliary field with the physical ones still vanish (in agreement with the fact that
their conformal weights are different), but the 〈FF〉 correlator is

〈F(x1)F(x2)〉 = −c2
(2Δ−1)Δ

4
1

x2
12
(det |x12|)−Δ

= −c2
(2Δ−1)Δ

4 (det |x12|)−Δ−1.
(214)

This situation may correspond to an interacting quantum N = 1 superconformal field
theory [116], where the auxiliary field is non-zero, and fields acquire anomalous dimensions due
to quantum corrections.

The consideration of three-point functions is analogous. Using the expression for the three-point
function (182) and expanding it in series of the θ

μ
i variables, we get for the component fields whose

labels of scaling dimension we skip for simplicity

〈φ(x1)φ(x2)φ(x3)〉 = c3(det |x12|)−k1(det |x23|)−k2(det |x31|)−k3 , (215)

〈 fα(x1) fβ(x2)φ(x3)〉
= −ic3

k1xm
12(γm)αβ

x2
12

(det |x12|)−k1(det |x23|)−k2(det |x31|)−k3

= −ic3k1xm
12(γm)αβ(det |x12|)−k1−1(det |x23|)−k2(det |x31|)−k3 ,

(216)
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〈 fα(x1)F(x2) fβ(x3)〉
= c3

k1k2
2x2

12x2
23
(γm)α

δ(γn)δβ(xm
12)(xn

23)(det |x12|)−k1(det |x23|)−k2(det |x31|)−k3

= c3
k1k2

2 (γm)α
δ(γn)δβ(xm

12)(xn
23)(det |x12|)−k1−1(det |x23|)−k2−1(det |x31|)−k3 ,

(217)

〈F(x1)F(x2)φ(x3)〉 = − c3

8
∂m∂m((det |x12|)−k1)(det |x23|)−k2(det |x31|)−k3 . (218)

The remaining three-point functions containing an odd number of fermions, as well as
the correlator 〈Fφφ〉, vanish. Note that, dimensional arguments would allow for a non-zero
〈Fφφ〉 correlator, but supersymmetry forces it to vanish. The correlator 〈F(x1)F(x2)F(x3)〉 is zero
as well, since it is proportional to (γmγnγp)xm

12xn
23xp

31 = 2iεmnpxm
12xn

23xp
31 = 0.

Moreover, from the above expressions we see that superconformal symmetry does not fix the
values of the scaling dimensions Δi. This indicates that quantum operators may acquire anomalous
dimensions and the quantum N = 1, D = 3 superconformal theory of scalar superfields can be
non-trivial, in agreement e.g., with the results of [116].

If the value of Δ were restricted by superconformal symmetry to its canonical value and no
anomalous dimensions were allowed (for all the operators which are not protected by supersymmetry)
one would conclude that the conformal fixed point is that of the free theory. This is the case, for instance,
for the N = 1, D = 4 Wess-Zumino model in which the chirality of N = 1 matter multiplets and
their three-point functions restricts the scaling dimensions of the chiral scalar supermultiplets to be
canonical. This implies that in the conformal fixed point the coupling constant is zero, i.e., the theory
is free [117,118].

9. Generalized CFT. Part II

In this Section, we shall continue our consideration of the generalized CFT based on the
symmetries of the generalized conformal group Sp(2n). We shall mainly follow [27].

9.1. Conserved Currents

In Section 2, we introduced the bosonic and fermionic fields in hyperspace which play the role of
the scalar and fermionic fields in ordinary conformal field theory. In order to continue the analogy
with CFTs let us consider the fields bA

Δ (X) and f A
μΔ(X) where now A = 1, ...N is an index of an internal

O(N) group (not to be confused with the Weyl spinor indices of the previous Sections) and Δ are
corresponding generalized conformal weights.

The two point functions of these fields are similar to those obtained in the previous section, with
an obvious generalization including the “color” indexes

〈bA
Δ1
(X1), bB

Δ2
(X2)〉 = cbb(det|X12|)−Δ δAB, (219)

〈 f A
α(Δ1)

(X1), f B
β(Δ2)

(X2)〉 = c f f (det|X12|)−Δ(X12)
−1
αβ δAB, (220)

where Δ1 = Δ2 = Δ, and (X12)αβ = (X1)αβ − (X2)αβ.
Having introduced global O(N) symmetry, one can construct bosonic and fermionic biliniears

JAB
μν (X) = bA(X)∂μνbB(X)− bB(X)∂μνbA(X), (221)

JAB
μν (X) = f A

μ (X) f B
ν (X) + f A

ν (X) f B
μ (X). (222)

These bilinears correspond to conserved O(N) currents. Indeed one can check that the
currents (221) and (222) satisfy the generalized conservation conditions (first introduced in [6])

∂μν JAB
αβ (X)− ∂μα JAB

νβ (X)− ∂βν JAB
αμ (X) + ∂βα JAB

νμ (X) = 0 (223)

provided that the fields bA(X) and f A
μ (X) satisfy the free equations of motion (14) and (15).
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Knowing the Sp(2n) transformations (42) and (43) of the fields bA(X) and f A
μ (X) and using

Equations (221) and (222), one can derive the Sp(2n) transformations of the conserved currents

δa JAB
μν (X) = −aαβ∂αβ JAB

μν (X) (224)

δg JAB
μν (X) = −

(
gα

α + 2gα
βXαγ∂βγ

)
JAB
μν (X)− 2g(μ

ρ JAB
ρν) (X) (225)

δk JAB
μν (X) = (kαβXαβ + kαβXαγXβδ∂γδ)JAB

μν (X) + 2k(μαXαβ JAB
βν)(X) (226)

From this transformation laws i.e, from the coefficients in front of the terms gα
α and kαβXαβ one

can conclude that the generalized conformal dimension ΔJ of the currents (221) and (222) is equal to 1.
The same conclusion can be reached from the fact that (221) and (222) correspond to free currents and
the generalized conformal dimension of the fields b(X) and fμ(X) is equal to 1

2 . Using the general
expression (136), one can see that the generalized conformal dimension is related to the usual scaling
dimension as follows. Recall (see Section 2.3) that SL(n) subalgebra of GL(n) algebra is parameterized
by lμν = gμ

ν − 1
n δν

μgρ
ρ. Let us rewrite Equation (225) as

δg JAB
μν (X) = −

(
n + 2

n
gα

α + 2gα
βXαγ∂βγ

)
JAB
μν (X)− 2l(μ

ρ JAB
ρν) (X) (227)

and define a weight Δ1 as follows

Δ1 = 1 +
2
n

. (228)

Then using the relations (136) one can see that

ΔD,1 = D − 1 (229)

which is the canonical conformal weight of a spin-1 field.

9.2. Stress Tensor

Since we are considering a generalized CFT it is natural to define a generalized stress tensor,
which contains a usual CFT stress tensor when projected to the x-subspace. Taking

T̃μν,ρσ(X) = (∂μνb(X))(∂ρσb(X))− 1
3

b(X)(∂μν∂ρσb(X)) (230)

and
T̃μν,ρσ(X) = fρ(X)∂μν fσ(X) (231)

we define the generalized stress tensor as a symmetrized combination

Tμν,ρσ(X) = T̃μν,ρσ(X) + T̃μρ,νσ(X) + T̃μσ,νρ(X) (232)

The reason of taking the expression (232) as a definition for the generalized stress tensor instead
of (230) and (231) is that (232) transforms properly under the Sp(2n) transformations

δaTμνρσ(X) = −aαβ∂αβTμν,ρσ(X), (233)

δgTμνρσ(X) = −(gα
α + 2gαβXαγ∂βγ)Tμνρσ(X)

−gμ
αTανρσ(X)− ...− gσ

αTμνρα(X),
(234)

δkTμνρσ(X) = (kαβXαβ + kαβXαγXβδ∂γδ)Tμνρσ(X)

+kμαXαβTβνρσ(X) + ... + kσαXαβTμνρβ(X).
(235)
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The transformations above are again derived using the transformations for the free fields (42)
and (43) and the explicit form of the stress energy tensor (232). Again, using (136), one can see that the
generalized conformal dimension of the stress tensor is ΔT = 1, whereas the conformal dimension Δ2

(analogous to the expression (228) for s = 1 current) is

Δ2 = 1 +
4
n

(236)

and the canonical spin-2 field weight is
ΔD,2 = D

in compliance with the general formula ΔD,s = D + s − 2.
Like the conserved current JAB

μν , the stress energy tensor satisfies the generalized conservation
conditions

∂μνTαβγδ(X)− ∂μαTνβγδ(X)− ∂βνTαμγδ(X) + ∂βαTνμγδ(X) = 0 (237)

provided the fields satisfy the free equations of motion (14) and (15).

9.3. Higher Spin Conserved Currents

By analogy with Jαβ(X) and Tαβγδ(X) one can introduce [6] higher-spin conserved currents
Tα1...α2s(X) (2s = 1, 2, 3, . . .) which transform under Sp(2n) as follows

δaTα1...α2s(X) = −aμν∂μνTα1...α2s(X), (238)

δgTα1...α2s(X) = −(Δs gμ
μ + 2gν

μXνρ∂μρ)Tα1...α2s(X)

−2sl(α1
μTα2...α2s)μ

(X),
(239)

δkTα1...α2s(X) = (kμνXμν + kμνXμρXνλ∂ρλ)Tα1...α2s(X)

+4kμ(α1
XμνTα2...α2s)ν

(X),
(240)

where
Δs = 1 +

2s
n

. (241)

Again, using the relations (136), one can see that

ΔD,s = D + s − 2 (242)

which is a conventional expression for a canonical conformal weight for a field with spin s.
The higher spin currents obey Sp(2n) conservation conditions [6]

∂μνTαβγ(2s−2)(X)− ∂μαTνβγ(2s−2)(X)− ∂βνTαμγ(2s−2)(X) + ∂αβTμνγ(2s−2)(X) = 0. (243)

9.4. Two-Point Correlation Functions of the Currents

We have already considered two-point functions for scalar and spinorial hyperfields (219) and (220).
Using these expressions as well as the expressions for the generalized conserved currents (221)
and (222), it is straightforward to compute the two-point functions of two currents

〈JAB
αβ (X1), JCD

μν (X2)〉 = CJJ(det |X12|)−1(P12)αβ,μν(δ
ACδBD − δADδBC). (244)

Here, we introduced an Sp(2n)-invariant tensor structure (When checking the invariance under
the generalized conformal boosts notice that the first pair of the indices of (P12)αβ,γδ gets rotated with
the matrix kασXσδ

1 and the second pair gets rotated with kμσXσδ
2 ) (which we call P–structure)

(Pab)αβ,μν = (X−1
ab )μα(X−1

ab )νβ + (X−1
ab )να(X−1

ab )μβ (245)
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a, b = 1, 2 and a �= b. which will be one of the building blocks for higher point correlation functions
as well.

One more building block for the correlation functions is (X12)
−1
αβ which is Sp(2n) invariant when

considered as a bilocal tensor

δtot(X−1
12 )αβ = −(X−1

12 )αγ(δX1 − δX2)
γδ(X−1

12 )δβ

+ 2g(α
γ(X−1

12 )β)γkαγXγδ
1 (X−1

12 )δβ − (X−1
12 )αδXδγ

2 kγβ = 0 .

Similarly, for the two stress tensors one finds

〈Tαβγδ(X1), Tμνρσ(X2)〉 = CTT
1

det |X12|
(
(P12)αβ,μν(P12)γδ,ρσ + symm.

)
, (246)

where the total symmetrization of the both sets of indices (αβγδ) and (μνρσ) is assumed.
It is instructive to recall the similar expressions for two-point functions in the usual CFT

〈T(l)
μ1,...,μn(x1), T(l)

ν1,...,νn(x2)〉 = cTT
gμ1ν1(x12)...gμnνn(x12)

(x12)l − traces (247)

with
gμν = δμν − xμxν

x2 . (248)

Obviously, the Sp(2n)-invariant structure (P12)αβ,γδ is a generalization of gμν. Notice also that
the expressions for two-point functions (244)–(246) can be obtained from solving generalized Ward
identities, as it has been done for the case of scalar and spinor hyperfields. The generalized Ward
identity for an n-point function

〈ΦΔ(1)

α1...αr1
(X1) . . . ΦΔ(k)

β1...βrk
(Xk)〉 ≡ Gα1...αr1 ,...,β1...βrk

(X1, . . . , Xk) . (249)

is as follows

∑k
i=1

[
Δi(gμ

μ − kμνXμν
i ) + δXμν

i
∂

∂Xμν
i

]
Gα1...αr1 ,...,β1...βrk

(X1, . . . , Xk)

+∑1
j=1(gαj

μj − kαjνX
νμj
1 ) Gμ1...μj ...μr1 ,...,β1...βrk

(X1, . . . , Xk) + · · · (250)

+∑rk
j=1(gβ j

μj − kβ jνX
νμj
k ) Gα1...αrk ,...,μ1...μj ...μrk

(X1, . . . , Xk) = 0 ,

It is straightforward to check that the two-point functions solve Equations (250).

9.5. Three Point Functions: bbb and f f b

Three-point functions for three scalars and for two fermions and a scalar (computed firstly in [11])
have been given in Section 8.2 in the supersymmetric form and as a particular example for D = 3
were given in Section 8.4. The only difference with the case without supersymmetry is that the overall
constants in front of the non-supersymmetric ones are independent of each other

〈bΔ1(X1)bΔ2(X2)bΔ3(X3)〉 = Cbbb (det |X12|)−k3 (det |X23|)−k1 (det |X13|)−k2 , (251)

〈 fα(X1) fβ(X2)b(X3)〉 = c f f b (X−1
12 )αβ(det |X12|)−k3 (det |X23|)−k1 (det |X13|)−k2 . (252)

ka =
1
2
(Δ(a+1) + Δ(a+2) − Δ(a)), cycl. (a = 1, 2, 3). (253)
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9.6. Three-Point Functions with J and T

Now, we would like to consider three-point functions which include the generalized conserved
current JAB

αβ (X) and generalized stress tensor Tαβγδ(X). These can give us an answer whether
an interacting generalized conformal field theory based on Sp(2n) symmetry exists. As we shall
see below, the answer to this question is negative.

Our strategy is as follows. As we have seen the generalized conformal weighs of JAB
αβ (X) and

Tαβγδ(X) are equal to one, ΔJ = ΔT = 1. If we assume that the corresponding symmetries are not
broken by interactions, then the values of ΔJ and ΔT will remain the same. Therefore, we would like
to construct Sp(2n)-invariant three- and higher-order correlation functions which include JAB

αβ (X),
Tαβγδ(X) and other operators O and see if the conservation conditions (223) and (237) along with
Sp(2n) invariance allow for the operators O to have anomalous dimensions. We will find that this is
unfortunately not the case for n > 2.

First let us introduce one more Sp(2n)-invariant tensor structure (which we call Q–structure)

(Qc
ab)αβ = (X−1

ac )αβ − (X−1
bc )αβ, a, b, c = 1, 2, 3 (254)

This structure, along with (245) and

(pab)αβ = (Xαβ
a − Xαβ

b )−1, a, b = 1, 2, a �= b. (255)

is a building block for all the Sp(2n)-invariant correlation functions. In other words, the most general
multi-point function can be written as a sum over all possible polynomials of a required rank of the
three structures pab = X−1

ab , Pab and Qc
ab times a pre-factor

〈Φ...Φ〉 = G(pab, Pab, Qc
ab|Xab). (256)

Following this prescription one can immediately write the simplest three-point function of two
scalars (with generalized conformal dimensions Δ1 = Δ2 = Δ) and a conserved current (with ΔJ = 1)

〈bΔ1(X1)bΔ2(X2)Jαβ(X3)〉 =
= CbbJ(det |X12|)−k3(det |X13|)−k2(det |X23|)−k1(Q3

12)αβ,
(257)

and a three-point function of the two scalars (with Δ1 = Δ2 = Δ) and the stress tensor (with ΔT = 1)

〈b(X1)b(X2)Tαβγδ(X3)〉 = CbbT(det |X12|)−k3(det |X13|)−k2×
(det |X23|)−k1((Q3

12)αβ(Q3
12)γδ + (Q3

12)αγ(Q3
12)βδ + (Q3

12)αδ(Q3
12)βγ),

(258)

where ka are restricted according to (253). One can see that Sp(2n) invariance alone does not impose
any requirement on the generalized conformal dimension Δ of the scalar field.

The next step is to require the conservation of the current JAB
αβ (X) and the stress tensor Tαβγδ(X)

according to Equations (223) and (237). This implies

k1 = k2 =
1
2

, and any k3 . (259)

Therefore, in this case, no restriction on generalized conformal dimension of the scalar field
appears i.e., anomalous dimension and therefore interactions are allowed. At this, the current and the
stress tensor remain conserved, and their dimensions remain canonical ΔJ = ΔT = 1.
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The next nontrivial example is a three point-function of two conserved currents and one scalar
operator O(X) of dimension Δ. From the Sp(2n)-invariance condition we have

〈Jμν(X1)O(X2)Jαβ(X3)〉 = (det |X12|)− Δ
2 (det |X13|)− 2−Δ

2 (det |X23|)− Δ
2

× (A[(Q3
12)αβ(Q1

23)μν] + B(P13)μν,αβ

) (260)

where A and B are some constants. Again, one can see that Sp(2n) symmetry alone does not impose
any restriction on the generalized conformal dimension of O(X).

However, imposing the current conservation condition (223), one gets

A = B, and Δ = 1 , (261)

that is the dimension of the operator O(X) is fixed (Since the canonical dimension of the field b(X)

is equal to 1
2 it is natural to assume that the operator O(X) is a composite one O(X) = b2(X).)

by the current conservation condition. Let us note that from the point of view of the x-space the
current JAB

αβ (X) contains higher spin currents as a result of its expansion in series of y coordinates.
Therefore, this result is in accordance with the theorem of [119] stating that the conformal field theories
which contain conserved higher-spin currents should be free.

Let us note, however, that in the simplest case of n = 2, i.e., D = 3 CFTs with the Sp(4) conformal
group the two conditions (261) are reduced to one (see [27] for technical details)

A(D − 1− Δ)−BΔ = 0 . (262)

This means that the conformal dimension Δ of the operator O(X) remains undetermined, and
hence this analysis does not ban the existence of interacting D = 3 CFTs, as is well known.

9.7. General Case

Let us now discuss the general structure of the three-point correlators of conserved currents which
are symmetric tensors of rank r = 2 s with s being an integer “spin”. To this end, it is convenient to
hide the tensor indices away by contracting them with auxiliary variables λα

a , where a refers to the
point of the operator insertion:

(pab)αβ ⇒ pab = (X−1
ab )αβ λα

a λ
β
b no summation over a, b . (263)

(Pbc)αβ,γδ ⇒ Pab = 2pab pba = (Pab)αβ,γδ λα
a λ

β
a λ

γ
b λδ

b no summation over a, b , (264)

(Qa
bc)αβ ⇒ Qa

bc = (Qa
bc)αβ λα

a λ
β
a no summation over a . (265)

For instance, the correlator of two scalar operators O of the same dimension Δ with a conserved
current of an integer spin-s obeying (243) is

〈O(X1)O(X2)Js(X3)〉 = C(det |X12|)− 2−Δ
2 (det |X13|)− 1

2 (det |X23|)− 1
2 (Q3

12)
s . (266)

The current conservation condition leads to the same result as for the case of s = 1, 2, i.e.,
k1 = k2 = 1

2 , which means that the dimensions of the scalar operators are arbitrary.
However, if we consider a three-point function of a scalar operator and two conserved currents

Js(X) = Jα1...α2s(X)λα1 · · · λα2s (267)
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of ranks 2s1 and 2s2 with s ≥ 1, we will again find that, up to an overall factor, all the free parameters
in the correlator are fixed. For example,

〈J3(X1)J1(X2)O(X3)〉 = C
(Q1

23)
3Q2

13 − 3(Q1
23)

2P12(
det |X12|det |X13|det |X23|

)1/2 . (268)

From the discussion above, one can conclude that in order to describe the Sp(2n)-invariant
three-point functions, we can borrow the generating functions of 3-point correlators of free symmetric
higher-spin fields in conventional conformal theories [114,120–123] simply because the Sp(2n) group
contains the corresponding conformal group SO(2, D) as a subgroup, or, in other words, the correlators
in the free CFTs can be covariantly embedded into the Sp(2n) invariant correlators. For example,
a generating function of the three-point functions of currents built out of free scalars b(X) is

〈J(X1)J(X2)J(X3)〉 =
cos(p12) cos(p13) cos(p23) exp

(
1
2 [Q

1
23 + Q2

13 + Q3
12]
)

(det |X12|det |X23|det |X13|)1/2 . (269)

It contains the operators Js(X), s = 0, 1, 2, ... and the correlator 〈Js1 Js2 Js3〉 is obtained as the coefficient
in front of (λ1)

2s1(λ2)
2s2(λ3)

2s3 .
The generating function obtained from the currents built out of the free fermions fα(X) is

〈J(X1)J(X2)J(X3)〉 =
sin(p12) sin(p13) sin(p23) exp

(
1
2 [Q

1
23 + Q2

13 + Q3
12]
)

(det |X12|det |X23|det |X13|)1/2 . (270)

The generating function of multi-point correlators can be found in [114,122–125].
The above expressions deal with the bosonic symmetric tensor currents of even rank.

The generating function which produces three-point correlators involving two fermionic currents of
odd ranks is similar, see e.g., [119].

As a further development of this subject, it would be of interest to carry out the study of other
aspects of the Sp(2n)-invariant higher-spin systems, in particular, to explore their links to recent results
on conformal higher-spin theories in AdSD backgrounds (see e.g., [126–130]) and to Sp(2n)-invariant
unfolded higher-spin structures discussed in [131].

9.8. Breaking Sp(2n) Symmetry

As it follows from the discussion above, to have an interacting generalized conformal field theory
based on Sp(2n) symmetry, one has to break this symmetry down to a subgroup. Obviously, to still
use Sp(2n) symmetry as a symmetry of the theory, it should be broken spontaneously rather then
explicitly. On the other hand, the question whether a symmetry is broken spontaneously or explicitly
could be simpler to address if one had the corresponding Lagrangian, which would produce the field
Equations (14) and (15) (and/or their possible nonlinear or massive deformations). Unfortunately,
such a Lagrangian is still lacking.

In this respect, let us mention that the issue of breaking Sp(8) symmetry via current interactions in
the unfolded formulation has been addressed in [26]. In particular, analyzing the system of equations

DC(x, μ, μ) = F(ω, J(x, μ, μ)), D2 J(x, μ, μ) = 0, (271)

where D = d + ω is a spin connection, J is a current which is billinear in the higher-spin functional C
and D2 is the corresponding kinetic operator (see the discussion around the Equation (27)), the authors
showed that the Sp(8) symmetry is broken to the four-dimensional conformal group SO(2, 4).
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In the hyperspace framework, one may try to approach this problem as follows. First, one should
construct a nonlinear deformation of Equations (14) and (15)

∂αβ∂γδ b(X)− ∂αγ∂βδ b(X) = Fb(b, f , A) , (272)

∂αβ fγ(X)− ∂αγ fβ(X) = Ff (b, f , A) . (273)

with some unknown functions Fb(b, f , A) and Ff (b, f , A). It is natural to expect that these functions
depend also on higher-spin potentials A, in addition to the higher-spin curvatures contained in the
hyperfields b(X) and fμ(X). Note that, in the unfolded description of the Sp(8)-invariant system,
higher-spin gauge potentials were introduced, at the linearized level, in [16]. As a necessary step
forward, one should understand whether and how the Equations (272) may result from a (non-linear)
generalization of the construction of [16].

The right hand sides of the Equation (272) should be chosen under the requirement that the
analysis of the Equations (272) and (273), similar to the one carried out for the free equations in
Section 2.1 leads to a physically meaningful nonlinear equations in the x–space. This is an interesting
open problem for a future study.

10. Conclusions

The idea to formulate higher-spin theories in an extended (super) space, where extra coordinates
generate higher spins (by analogy with the Kaluza–Klein theories where compact extra dimensions
generate “higher masses”) seems to be very attractive, especially taking into account a level of
complexity of higher-spin theories formulated in an ordinary space–time.

The underlying symmetry of this formulation is the Sp(2n) group, which contains the
corresponding D-dimensional conformal group as a subgroup. This allows one to borrow, for the
analysis of the Sp(2n)-invariant systems, an intuition and techniques from conventional Conformal
Field Theories.

To summarize, the reviewed appraoch generalizes familiar concepts to higher-dimensional
tensorial spaces and the correspondence looks schematically as follows

• Space–time coordinates xm are extended to tensorial coordinates Xαβ.
• Cartan–Penrose relation PAȦ = λAλȦ gets extended to the hyperspace twistor-like relation

Pαβ = λαλβ which determines free dynamics of fields in the tensorial space with the momentum
Pαβ conjugate to Xαβ.

• AdSD space is extended to the Sp(n) group manifold.
• Conformal scalar φ(x) and conformal spinor ψμ(x) become the “hyperscalar” b(X) and the

“hyperspinor” fμ(X).
• D-dimensional conformal group SO(2, D) is extended to the Sp(2n) group which underlies the

Generalized Conformal Field Theory of the fields b(X) and fμ(X).

We have shown that the hyperspace approach describes (in D = 3, 4, 6 and 10) free dynamics of an
infinite set of massless conformal higher-spin fields in an elegant compact form. An important
and non-trivial problem is to find a non-linear generalization of this formulation which would
correspond to an interacting higher-spin theory. This problem has been addressed by several authors.
As we have seen, it is related to the necessity to break the Sp(2n) symmetry in an appropriate
way. Attempts to construct such a generalization in the framework of hyperspace supergravity
and a non-linear realization of the OSp(1|8) supergroup were undertaken, respectively, in [12,14].
Obstacles encountered in these papers may be related to the fact that their constructions utilized only
higher-spin field strengths but did not include couplings to higher-spin gauge potentials, while the
consistent formulation of nonlinear equations of massless higher-spin fields contains both [37–39].
Therefore, to successfully address the problem of interactions it is important to incorporate higher-spin
potentials in the hyperspace approach, e.g., by further elaborating on the construction of [16].
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Another issue, which can be related to the previous one, is a question of consistent breaking Sp(2n)
symmetry. The manifestation of this breaking was observed e.g. in higher-spin current interactions [26].
As we have seen in Section 9, when considering generalized CFT based on global Sp(2n) invariance
(see [27]), the requirement of generalized current conservation turns out to be too strong to allow for
the basic hyperfields to have anomalous conformal dimensions and again points at the necessity to
(spontaneously) break Sp(2n) invariance.

Theories with spontaneously broken Sp(2n) symmetry might be also useful for studying massive
higher-spin fields in hyperspaces. A consideration of theories with local Sp(n) invariance i.e., some sort
of generalized gravity is yet another interesting and widely unexplored area.

Finally, let us mention that field Equations (14) and (15) for the fields in hyperspaces remind (a part
of) weak section conditions of exceptional field theories (see [132] for a review and references). This
similarity can be relevant for higher-spin extensions of these theories, provided the section conditions
can be properly relaxed (see e.g., [133,134] for a discussion of this point). It would be interesting to
further elaborate on this issue, as a connection to the E11 framework [18].
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Appendix A. Conventions

The γ–matrices satisfy the following anti-commutation relations

(γm)α
δ(γ

n)δ
β + (γn)α

δ(γ
m)δ

β = 2ηmnδα
β , (A1)

where m, n and other Latin letters are space–time vector indices, and α, β and other Greek letters
label spinorial indices. Throughout the paper “(, )” denotes symmetrization and “[, ]” denotes
antisymmetrization with weight one. The symplectic matrix Cαβ = −Cβα is used to relate upper
and lower spinorial indexes as follows

μα = Cαβμβ, μα = −Cαβμβ, CαγCγβ = −δα
β . (A2)

The differentiation by hypercoordinates Xαβ is as follows

dXαβ

dXγδ
≡ ∂αβXγδ =

1
2
(δα

γδ
β
δ + δ

β
γδα

δ ) , (A3)

∂μνX−1
αβ = −1

2
(X−1

μα X−1
νβ + X−1

μβ X−1
να ) (A4)

and
∂μν(det X) = X−1

μν (det X) (A5)

where
X−1

μν Xνα = δα
μ. (A6)

Let us note that the product of an even number of Xαβ matrices is antisymmetric in spinorial
indexes, whereas the product of an odd number of Xαβ is a symmetric matrix. For example,

XαγXγ
β = −XβγXγ

α, Xα
γXγ

δXδβ = +Xβ
δXδ

γXγα, etc. (A7)
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Appendix B. Derivation of the field Equations on Sp(n)

Let us evaluate the operator Y(αYβ) in (93):

1
2
(YαYβ + YβYα) ≡ Y(αYβ) = ( ξ

8 )
2μαμβ +

iξ
8

(
μα

∂
∂μβ + μβ

∂
∂μα

)
− ∂

∂μα
∂

∂μβ . (A8)

Appendix B.1. Fermionic Equation

Consider Equation (93). Substituting into it the expansion (94) one gets for the term linear in μα

∇αβFγ(X) μγ +
ξ

8
(CγαFβ(X) + CγβFα(X)) μγ = 0 (A9)

The second term comes from − i
2 (YαYβ + YαYβ) acting on Fγμγ. From this equation, one gets (96).

Appendix B.2. Bosonic Equation

Equation (93) to the zeroth order in μα becomes:

∇αβB(X) = iY(αYβ) · 1
2 Bγδ(X)μγμδ . (A10)

Obviously, only the double μ-derivative in Y(αYβ) will contribute to this order. Thus, we have:

∇αβB(X) = −i ∂
∂μα

∂
∂μβ · 1

2 B(γδ)(X)μγμδ (A11)

Therefore,

∇αβB(X) = −i B(αβ)(X) , (A12)

Which indicates that all the higher order components in the expansion (94) are expressed in terms
of B(X) and Fα(X).

To zeroth order in μα, we compute:

(∇αβ − iY(αYβ))(∇γδ − iY(γYδ))
[

B(X) + 1
2 Bρσ(X)μρμσ + 1

4! Bρστλ(X)μρμσμτμλ + . . .
]
= 0 . (A13)

0 =∇αβ∇γδB(X) + (CαγCβδ + CβγCαδ)B(X) + ( ξ
8 )

2B(αβγδ)(X)

+ i( ξ
8 )
[
CαγB(βδ)(X) + CαδB(βγ)(X) + CβγB(αδ)(X) + CβδB(αγ)(X)

]
(A14)

+ i
[
∇γδB(αβ)(X) +∇αβB(γδ)(X)

]
.

Now, using (A12), this becomes:

0 =∇αβ∇γδB(X) + ( ξ
8 )

2(CαγCβδ + CβγCαδ)B(X) + B(αβγδ)(X)

− ξ
8

[
Cαγ∇βδ + Cαδ∇βγ + Cβγ∇αδ + Cβδ∇αγ

]
B(X) (A15)

−
[
∇γδ∇αβ +∇αβ∇γδ

]
B(X) .

Using the algebra (155) for the covariant derivatives ∇αβ, we can write:

∇γδ∇αβB(X) =( ξ
8 )

2(CαγCβδ + CβγCαδ)B(X) + B(αβγδ)(X)− 1
2 [∇αβ,∇γδ]B(X) . (A16)
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From this equation, we obtain the bosonic Equation (95). Let us note that exchange of indexes as
α ↔ γ and β ↔ δ :

∇αβ∇γδB(X) =( ξ
8 )

2(CαγCβδ + CβγCαδ)B(X) + B(αβγδ)(X) + 1
2 [∇αβ,∇γδ]B(X) . (A17)

and subtraction of (A16) and (A17) leads to an identity.

Appendix C. Some Identities for Supercoordinates on OSp(1|n) Group Manifold

The supercoordinates on OSp(1|n) group manifold obey some useful relations in particular

θαGα
β = ΘβP(Θ2), θα = ΘβG−1α

β P(Θ2) , (A18)

QβΘα = P−1(Θ2)

(
Gβ

α +
iξ
8

ΘβΘα +
iξ
8

Gβ
σΘσΘα +

(
iξ
8

)2
Θ2ΘβΘα

)
, (A19)

(QβΘα)Θα = P(Θ2)

(
Gβ

σ +
iξ
8

ΘβΘσ

)
Θσ, (A20)

∂αβΘγ =
ξ

4
Θ(αGβ)

δ(δγ
δ +

iξ
8

ΘδΘγ) , (A21)

DβGα
γ =

iξ
4

P(Θ2) (Θα − 2Gα
ρΘρ)Gβ

γ (A22)

∂αβGγ
δ =

ξ

4
Gγ(α Gβ)

δ , (A23)

and
QαGμν = − iξ

4
P(Θ2)ΘνGμα . (A24)
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Abstract: Conventional descriptions of higher-spin fermionic gauge fields appear in two varieties:
the Aragone–Deser–Vasiliev frame-like formulation and the Fang–Fronsdal metric-like formulation.
We review, clarify and elaborate on some essential features of these two. For frame-like free fermions
in Anti-de Sitter space, one can present a gauge-invariant Lagrangian description such that the
constraints on the field and the gauge parameters mimic their flat-space counterparts. This simplifies
the explicit demonstration of the equivalence of the two formulations at the free level. We comment
on the subtleties that may arise in an interacting theory.

Keywords: higher-spin gauge theory; fermions; frame-like formulation; metric-like formulation

1. Introduction

Arbitrary-spin massless particles are expected to play a crucial role in the understanding of
quantum gravity. Lower-spin theories may be realized as low-energy limits of spontaneously-broken
higher-spin gauge theories since lower-spin symmetries are subgroups of higher-spin ones. It is
believed that the tensionless limit of string theory is a theory of higher-spin gauge fields. The study of
fermionic fields is interesting in this regard because they are required by supersymmetry.

Higher-spin gauge fields can be described in the framework of two different formulations:
frame-like and metric-like. The frame-like formulation generalizes the Cartan formulation of gravity
where the gauge fields are described in terms of differential forms carrying irreducible representations
of the fiber Lorentz group. This is available in Minkowski [1–3] as well as in Anti-de Sitter (AdS) [4–7]
spaces. The metric-like formulation, on the other hand, is a generalization of the metric formulation of
linearized gravity [8]. Originally developed by Fronsdal [9,10] and Fang–Fronsdal [11,12], it encodes
the degrees of freedom of higher-spin particles in symmetric tensors and tensor-spinors. In this
approach, the construction of a gauge-invariant action for a higher-spin field requires that the field and
the gauge parameter obey some off-shell algebraic constraints (see [13,14] for a recent review). Note
that the latter requirement can be avoided by recourse to other formulations [15–24] (see Appendix A).

Both of these approaches are geometric, albeit in different manners, in that the frame-like
formulation extends Cartan geometry, whereas the metric-like formulation extends Riemannian
geometry. The latter is however a particular gauge of the former just like in the case of gravity.
The construction of interacting theories for higher-spin fields, fermions in particular, appears to be
in dire need of the frame-like formulation. The metric-like formulation, in contrast, seems rather
clumsy in managing the non-linearities required by gauge-theoretic consistency. Yet, it has the
advantage of having a simplified field content that may make some features of the interactions more
transparent. Understanding the connections between the two formulations may therefore provide
valuable information [25–28].

In this article, we will focus exclusively on higher-spin gauge fermions. These fields appear
naturally in the supersymmetric versions of Vasiliev theory [29–35] (see [36] for a recent review)
and also in the tensionless limit of superstring theory compactified on AdS5 × S5. The frame-like
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formulation of gauge fermions [1–3,6] has been discussed more recently by various authors [37–42].
The Fang–Fronsdal metric-like approach for higher-spin fermions, on the other hand, has been studied
in arbitrary dimensions in [43–45]. We will consider the free theory of a spin s = n + 1

2 massless
fermionic field in flat and AdS spaces. Although we consider Majorana fermions for simplicity,
our main results are valid almost verbatim for Dirac fermions in arbitrary spacetime dimensions.
A crucial property of frame-like fermions in flat space is their shift symmetry w.r.t. a gauge parameter,
which is an irreducible tensor-spinor in the fiber space with the symmetry property of the Young
diagram Y(n − 1, 1). This symmetry makes it almost manifest that the free Lagrangian is equivalent to
that of the metric-like formulation [1]. In AdS space, however, the constraints on this parameter may
receive nontrivial corrections, which vanish in the flat limit [39,40]. This is tantamount to having no
such corrections provided that some appropriate mass-like terms appear in the gauge transformation.
In other words, one can have a gauge-invariant Lagrangian description for frame-like fermions in AdS
space that does not deform the flat-space constraints on the field and the gauge parameters.

The organization of this article is as follows. In the remainder of this section, we spell out our
notations and conventions. A review of frame-like higher-spin massless fermions in flat space appears
in Section 2, where we write down the free Lagrangian [40,42] and discuss its gauge symmetries
along with the constraints on the field and the gauge parameters. We also show how this theory
simplifies in D = 3, 4. Section 3 formulates the free theory in AdS space with a trivial, but convenient
modification of the well-known mass-like term [39,40]. By virtue of judiciously-chosen terms in the
gauge transformation, we ensure that the constraints on the field and the gauge parameters mimic their
flat-space counterparts. The value of the mass parameter, determined uniquely by gauge invariance,
is in complete agreement with the known results [45,46]. In Section 4, we demonstrate explicitly
the equivalence of the frame-like Lagrangian to the metric-like one at the free level. We conclude
in Section 5 with some remarks, especially on the subtleties that may arise in an interacting theory.
An appendix summarizes the essentials of the metric-like formulation of higher-spin gauge fermions.

Conventions and Notations

We adopt the conventions of [47], with mostly positive metric signature (− + · · ·+).
The expression (i1 · · · in) denotes a totally symmetric one in all the indices i1, · · · , in with no
normalization factor, e.g., (i1i2) = i1i2 + i2i1, etc. The totally antisymmetric expression [i1 · · · in] has the
same normalization. The number of terms appearing in the (anti-)symmetrization is assumed to be the
possible minimum. A prime will denote a trace w.r.t. the background metric, e.g., A′ = ḡμν Aμν = Aμ

μ.
The Levi–Civita symbol is normalized as ε01...D−1 = +1, where D is the spacetime dimension.

Fiber indices and world indices will respectively be denoted with lower case Roman letters
and Greek letters. Repeated indices with the same name (appearing all as either covariant or
contravariant ones) are (anti-)symmetrized with the minimum number of terms. This results in
the following rules: a(k)a = aa(k) = (k + 1)a(k + 1), a(k)a(2) = a(2)a(k) = (k+2

2 ) a(k + 2),
a(k)a(k′) = a(k′)a(k) = (k+k′

k ) a(k + k′), etc., where a(k) has a unit weight by convention, and so,
the proportionality coefficient gives the weight of the right-hand side.

The γ-matrices satisfy the Clifford algebra: {γa, γb} = +2ηab and γa † = ηaaγa. Totally
antisymmetric products of γ-matrices, γa1...ar = 1

r! γ
[a1 γa2 · · · γar ], have unit weight. A “slash” will

denote a contraction with the γ-matrix, e.g., �A = γa Aa.
A Majorana spinor χ obeys the reality condition: χC = χ. Two Majorana spinors χ1, 2 follow

the bilinear identity: χ̄1γa1...ar χ2 = tr χ̄2γa1...ar χ1, where a “bar” denotes Majorana conjugation,
and tr = ±1, depending on the value of r and spacetime dimensionality [47].

115



Universe 2018, 4, 34

2. Frame-Like Fermions in Flat Space

In the frame-like formulation, a fermion of spin s = n + 1
2 is described by a vielbein-like one-form

Ψa(n−1), which is a symmetric rank-(n − 1) irreducible tensor-spinor in the fiber space:

Ψa(n−1) = Ψμ
a(n−1)dxμ, γaΨab(n−2) = 0. (1)

The Minkowski background is described by the vielbein ē a = ē a
μdxμ that satisfies ηabē a

μ ē b
ν = ημν,

and the spin-connection ω̄ab = ω̄μ
abdxμ = −ω̄μ

badxμ, which fulfill the following equations:

Ta ≡ dē a + ω̄a
bē b = 0, ρab ≡ dω̄ab + ω̄a

cω̄cb = 0. (2)

In the Cartesian coordinates, in particular, the solution of Equation (2) is given by ē a
μ = δa

μ and
ω̄μ

ab = 0. We will however work with a generic coordinate system in order to facilitate the transition
to AdS space. The following quantities will be useful in the subsequent discussion:

∗ ēa1 . . . ēap ≡ 1
(D−p)! εa1...apap+1...aD ē ap+1 . . . ē aD , (3)

ηa1a2|b1b2 ≡ 1
2

(
ηa1b1 ηa2b2 − ηa1b2 ηa2b1

)
. (4)

The frame-like free action for a Majorana gauge fermion, in arbitrary dimensions (Majorana
fermions exist in D = 3, 4, 8, 9, 10 and 11. In dealing with such objects, it is important to assume the
anti-commuting nature of fermions already at the classical level (before quantization)), reads [40,42]:

S = − 1
2

∫ [
Ψ̄b1c(n−2)Aa1a2a3, b1b2 D̂Ψb2

c(n−2)
]
∗ ēa1 ēa2 ēa3 , (5)

where D̂ denotes the Lorentz covariant derivative, and:

Aa1a2a3, b1b2 ≡ 1
6n

(
γa1a2a3 ηb1b2 + 2(n − 1)ηb1b2|[a1a2 γa3]

)
. (6)

The action (5) enjoys the following gauge invariance:

δΨa(n−1) = D̂ζa(n−1) + ēbλb, a(n−1), (7)

where the zero-form gauge parameters ζa(n−1) and λb, a(n−1) are irreducible tensor-spinors of rank
(n − 1) and rank n respectively with the symmetry of the Young diagrams Y(n − 1) and Y(n − 1, 1), i.e.,

(8)

These irreducible tensor-spinors are subject to the following constraints:

γbζba(n−2) = 0, γbλb, a(n−1) = 0, γcλb, ca(n−2) = 0, λa, a(n−1) = 0. (9)

It is obvious that the action (5) is invariant, up to a total derivative term, under the gauge
transformation of the parameter ζa(n−1), since D̂2 = 0 in flat space. To prove the shift symmetry w.r.t.
the parameter λb, a(n−1), let us make use of the identity: ēc∗ ēa1 ēa2 ēa3 = ∗ ē[a1

ēa2 δc
a3]

, so that the variation
of the action can be written as:

δλS = −3
∫ [

Ψ̄b1
c(n−2)Aa1a2a3, b1b2 D̂λa3, b2c(n−2)

]
∗ ēa1 ēa2 . (10)
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Now, let us take a careful look at the identity:

6nAa1a2a3, b1b2 =
(

γa1a2 ηb1b2 + 2(n − 1)ηa1a2|b1b2
)

γa3 + (n − 1)γ[a1 ηa2]b1 ηa3b2

− γ[a1 ηa2]a3 ηb1b2 − (n − 1)γ[a1 ηa2]b2 ηa3b1 . (11)

When plugged into the gauge variation (10), the first line on the right-hand side of this identity
gives a vanishing contribution on account of the γ-trace constraints (9) on the gauge parameter
λb, a(n−1). The two terms in the second line, on the other hand, cancel each other, thanks to the property
λa, a(n−1) = 0. This proves the shift symmetry since δλS = 0.

Let us count the number of independent components of the parameters ζa(n−1) and λb, a(n−1).
Because the frame indices are γ-traceless, the number of possible values each index can take is
essentially (D − 1). Then, it is easy to compute the number of components of the corresponding Young
diagrams (8); they respectively turn out to be (D+n−3

n−1 ) fD and (n − 1)(D+n−3
n ) fD, where:

fD ≡ 2D/2+((−)D−5)/4, (12)

for a Majorana fermion in D dimensions. On the other hand, one needs to take into account the
vanishing of the trace when one contracts two indices from different rows of λb, a(n−1), which removes
(D+n−4

n−2 ) fD components. Therefore, the total numbers are given by:

Δζ =

(
D + n − 3

n − 1

)
fD, Δλ = (n − 1)

(
D + n − 3

n

)
fD −

(
D + n − 4

n − 2

)
fD. (13)

This counting will be useful later on.

Special Case: D = 3

The case of D = 3 is important in the context of hypergravity theories [3] (see also [48] for a recent
discussion). In this case, note that the quantity ∗ ēa1 ēa2 ēa3 reduces to the Levi–Civita tensor εa1a2a3 .
Furthermore, one has at one’s disposal the useful D-dimensional identity:

Aa1a2a3, b1b2 = 1
6 γa1a2a3 ηb1b2 +

(
n−1
6n

)
γa1a2a3b1b2 −

(
n−1
12n

) (
γb1 γb2 γa1a2a3 + γa1a2a3 γb1 γb2

)
. (14)

The second term on the right-hand side in the above identity is zero in D = 3, whereas the last
term gives a vanishing contribution because of the γ-trace condition on the field. On account of the
relation: γa1a2a3 εa1a2a3 = (3!)I, therefore, the action (5) reduces to the well-known Aragone–Deser
form [3]:

SD=3 = − 1
2

∫
Ψ̄a(n−1)D̂Ψa(n−1). (15)

On the other hand, the gauge symmetry (7)–(9) reduces to:

δΨa(n−1) = D̂ζa(n−1), γbζba(n−2) = 0. (16)

This is because in D = 3, the shift parameter λb, a(n−1) is trivial, but ζa(n−1) is not,

Δλ = 0, Δζ = n, (17)

as one can easily see from Equation (13).
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Special Case: D = 4

In this case, the quantity ∗ ēa1 ēa2 ēa3 reduces to the one-form εa1a2a3bē b, while only the first piece
on the right-hand side of the identity (14) contributes. Then, the dimension-dependent identity:
γa1a2a3 = −iεa1a2a3bγ5γb, reduces the action (5) to:

SD=4 = − i
2

∫
Ψ̄a(n−1)γ5γbē bD̂Ψa(n−1). (18)

Because Δζ = n(n + 1) �= 0, Δλ = (n − 1)(n + 2) �= 0, both the parameters ζa(n−1) and λb, a(n−1)

are nontrivial, and so, the gauge symmetry has the full general form of (7). The Lagrangian (18)
appeared in both [1,2], but only the former reference could correctly identify the gauge symmetries.

3. Frame-Like Fermions in AdS Space

The AdS background is described by the vielbein ē a = ē a
μdxμ that satisfies ηabēa

μ ēb
ν = ḡμν, and the

spin-connection ω̄ab = ω̄μ
abdxμ = −ω̄μ

badxμ, which fulfill the following equations:

Ta ≡ dē a + ω̄a
bē b = 0, ρab ≡ dω̄ab + ω̄a

cω̄cb = − 1
l2 ē a ē b, (19)

where l is the AdS radius. Let us write the free action for a Majorana gauge fermion in AdS space by
augmenting the kinetic term, already studied in the context of flat space, by a mass term:

S = − 1
2

∫ [
Ψ̄b1c(n−2)Aa1a2a3, b1b2 D̂Ψb2

c(n−2)
]
∗ ēa1 ēa2 ēa3 − 1

2 μ
∫ [

Ψ̄b1c(n−2)Ba1a2, b1b2 Ψb2
c(n−2)

]
∗ ēa1 ēa2 , (20)

where μ is some parameter with the dimensions of mass, to be specified later, and:

Ba1a2, b1b2 ≡ 1
2n

[
γa1a2 ηb1b2 + 2(n − 1)ηa1a2|b1b2 − 1

2

(
n−1

D+2n−4

) (
γb1 γb2 γa1a2 + γa1a2 γb1 γb2

)]
. (21)

Note that our choice of Ba1a2, b1b2 differs from that of [39,40] by a trivial term, which vanishes
upon implementing the constraint on the field. Yet, this term will be useful for our purpose.

It suffices to consider, invoking another mass parameter μ̃, the gauge transformation:

δΨa(n−1) = D̂ζa(n−1) + μ̃ēb

[
γbζa(n−1) − ( 2

D+2n−4
)

γaζa(n−2)b
]
+ ēbλb, a(n−1), (22)

which is compatible with the γ-trace constraint, γaΨab(n−2) = 0, on the field without requiring any
modification of the properties (8) and (9) of the gauge parameters. In other words, the choice of
this gauge transformation (22) is such that the field and the gauge parameters mimic their flat-space
properties. This point is implicit in the choice made in [39,40].

To see that the shift transformation w.r.t. the parameter λb, a(n−1) is a symmetry of the
Lagrangian (20), let us first note that the invariance of the kinetic term follows exactly the flat-space
logic. Then, from the variation of the mass term, we have:

δλS = −2μ
∫ [

Ψ̄b1c(n−2)Ba1a2, b1b2 λa2, b2
c(n−2)

]
∗ ēa1 . (23)

On account of the identity:

2nBa1a2, b1b2 = ηb1b2 γa1 γa2 + (n − 1)ηa1b1 ηa2b2 − 1
2

(
n−1

D+2n−4

) (
γa1a2b1 γb2 + ηb2[a1 γa2]

)
− ηa1a2 ηb1b2 − (n − 1)ηa1b2 ηa2b1 , (24)

we then see that δλS = 0. The cancellations happen in much the same way as the identity (11)
eliminates contributions from the kinetic term.
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The symmetry requirement of the Lagrangian (20) w.r.t. the ζ-transformation in (22) would relate
the mass parameters μ and μ̃ to each other and with the inverse AdS radius. There are a priori three
kinds of contributions resulting from the ζ-transformation: 2-derivative, 1-derivative and 0-derivative
ones. Not surprisingly, by virtue of the commutator formula:

D̂2ζa(n−1) = − 1
l2 ē b ē c

[
ηabζca(n−2) +

1
4 γbcζa(n−1)

]
, (25)

the two-derivative piece actually reduces to a zero-derivative piece. The explicit computation makes
use of the identities: ē bē c∗ ēa1 ēa2 ēa3 =

∗ ē[a1
δb

a2
δc

a3]
and ē b∗ ēa1 ēa2 =

∗ ē[a1
δb

a2]
, and leads straightforwardly to:

− (D+2n−3)(D+2n−4)
4 n

1
l2 − (D−2)(D+2n−3)

n(D+2n−4) μμ̃ = 0, (26)

in order that the even-derivative terms cancel each other. Cancellation of the one-derivative terms,
on the other hand, requires that the following condition be met:

− (D − 2)μ̃ − μ = 0. (27)

Conditions (26) and (27) can be combined into the relation:

μ2l2 =
(

n + D−4
2

)2
> 0, (28)

which gives, up to a sign, the real mass parameter μ in terms of the inverse AdS radius. The parameter μ̃

is then also determined from Equation (27). This uniquely fixes the Lagrangian (20), as well as the gauge
transformation (22), while the field and gauge parameters mimic their respective flat-space properties.

The physical significance of the mass parameter μ will be made clear in the next section as we
work out the gauge fixed equations of motion. To proceed, let us forgo the language of differential
forms and rewrite the action (20) as:

S = − 1
2

∫
dDx ē Ψ̄μ, ac(n−2)

(
6Aμρν, abD̂ρ + 2μBμν, ab

)
Ψν, b

c(n−2), (29)

where ē ≡ det ē a
μ is the determinant of the background AdS vielbein. The resulting Lagrangian

equations of motion for the frame-like fermion field Ψμ, a(n−1) take the form:

Rμ, a(n−1) ≡ ( 6
n−1

) (Aμρν, abD̂ρ +
1
3 μBμν, ab

)
Ψν, b

a(n−2) = 0. (30)

Here, the normalization factor keeps the equations of motion well defined also for n = 1, as we
will see. We emphasize that the equations of motion (30) are γ-traceless in the fiber indices, i.e.,

γbRμ, ba(n−2) = 0, (31)

as they should be. Actually, the very choices of Aμρν, ab and Bμν, ab made respectively in Equations (6)
and (21) were such that the action (29) manifestly has the following form:

S = − 1
2

∫
dDx ē Ψ̄μ, a(n−1)Rμ, a(n−1). (32)

Clearly, the equations of motion (30) share the gauge symmetries (22) of the action:

δΨμ, a(n−1) = D̂μζa(n−1) + μ̃ē b
μ

[
γbζa(n−1) −

( 2
D+2n−4

)
γaζa(n−2)b

]
+ ē b

μ λb, a(n−1) . (33)

In the next section, we will fix these gauge symmetries to find, among other things, the number of
physical degrees of freedom, which should match with that of a Majorana fermion of spin s = n + 1

2 .
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4. Equivalence of Frame- and Metric-Like Formulations

The first step to establish the equivalence of the frame- and metric-like descriptions of a gauge
fermion is to find a match in the respective number of local degrees of freedom. To count this for
a frame-like fermion [6], we rewrite the equations of motion (30) exclusively in terms of world indices:

Rμ, α(n−1) ≡ (
γμρν∇ρ + μγμν

)
Ψν,

α(n−1) + 1
2nCμνβ, αΨν, β

α(n−2) = 0, (34)

where Cμνβ, α is an operator antisymmetric in the μ, ν, β indices, given by:

Cμνβ, α ≡
[
γα, γμρνβ

]
∇ρ − μ

{
γα, γμνβ

}
− ( 2

D+2n−4
)

μγαγμνβ. (35)

Some of the dynamical modes however are not physical because of gauge invariance. In order to
exclude the correct number of pure gauge modes, let us rewrite the gauge transformations (33) as:

δΨμ, α(n−1) = ∇μζα(n−1) + μ̃
[
γμζα(n−1) −

( 2
D+2n−4

)
γαζα(n−2)μ

]
+ λμ, α(n−1) . (36)

Now, one can use this freedom to choose the following covariant gauge:

�Ψα(n−1) ≡ γμΨμ, α(n−1) = 0, =⇒ Ψ′
α(n−2) ≡ ḡμνΨμ, να(n−2) = 0. (37)

As a consequence, the equations of motion (34) reduce to the following form:

( � ∇ − μ)Ψμ,
α(n−1) − γμ∇νΨν, α(n−1) +

1
2nCμνρ,

α χν, ρα(n−2) = 0, (38)

where χμ, α(n−1) is the irreducible part of the field Ψμ, α(n−1) with the symmetry of the Young diagram
Y(n − 1, 1), i.e., it has exactly the same properties as the gauge parameter λμ, α(n−1). Its appearance in
the last term of Equation (38) is easy to understand. The antisymmetry property of Cμνρ, α removes the
completely symmetric part of Ψμ, α(n−1), while the γ-trace parts are trivial by the gauge choice (37).

The condition (37) is however not a complete gauge fixing. This can be seen by taking its gauge
variation, which results in the Dirac equation for ζα(n−1):

δ �Ψα(n−1) ≡
[
� ∇ −

(
D+2n−2
D+2n−4

)
μ
]

ζα(n−1) = 0. (39)

Not only does this allow for nontrivial solutions for ζα(n−1), but it also leaves λμ, α(n−1) completely
unaffected. Therefore, one can use to freedom of the shift parameter λμ, α(n−1) to further gauge fix:

χμ, α(n−1) = 0. (40)

This finally reduces the equations of motion (38) to the Dirac form plus the divergence constraint:

( � ∇ − μ)Ψμ, α(n−1) = 0, ∇μΨμ, α(n−1) = 0. (41)

To exhaust the residual freedom of ζα(n−1), let us choose the gauge:

Ψ0, α(n−1) = 0. (42)

Its is easy to see that no residual freedom of ζα(n−1) is left. A would-be residual parameter must
obey some screened Poisson equation with no source term, which has no nontrivial solutions.

The count of local physical degrees of freedom is now immediate. The system (41) describes
(D − 1)Δζ many dynamical variables, where Δζ is given in Equation (13). However, the gauge
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choices (37), (40) and (42) respectively remove Δζ , Δλ and Δζ degrees of freedom. Therefore, the total
number of physical degrees of freedom is (D − 3)Δζ − Δλ, which is the same as:

ΔFrame =

(
D + n − 4

n

)
fD . (43)

This confirms, in view of Equation (A13), that the count matches in the two formulations:
ΔFrame = ΔMetric.

The physical significance of the mass parameter μ is now clear from the Dirac equation in (41).
While Equation (28) says that μ must be real, one may choose μ > 0 without any loss of generality. Then,

μ =
1
l

(
n + D−4

2

)
> 0. (44)

Our μ corresponds to the lowest value of the mass parameter m for a fermion carrying a unitary
irreducible representation of the AdS isometry algebra:

( � ∇ − m)Ψμ, α(n−1) = 0, m ≥ μ > 0. (45)

The bound saturates for the massless representation [44–46], as we see.
Next, we will show that the two formulations are equivalent at the level of the free Lagrangian.

With this end in view, let us decompose the fermion field Ψμ, α(n−1) into totally symmetric, γ-traceless
mixed-symmetric and γ-trace parts:

Ψμ, α(n−1) = ψμα(n−1) + χμ, α(n−1) + γ[μθα]α(n−2), (46)

where the fields appearing on the right-hand side have the symmetry of the following Young diagrams:

(47)

We have imposed irreducibility conditions on χμ, α(n−1), so that it is subject to the following
constraints:

γμχμ, α(n−1) = 0, γβχμ, α(n−2)β = 0, χα, α(n−1) = 0. (48)

Of course, there will be additional constraints on the fields ψα(n) and θα(n−1) coming from the
γ-trace condition on the parent field Ψμ, α(n−1) in the α-indices. To find them, let us first take a γ-trace
of Equation (46) in an α-index. This results in:

�ψμα(n−2) − (D − 2)θμα(n−2) − (n − 1)γμ � θα(n−2) + γα � θμα(n−3) = 0. (49)

Another γ-trace w.r.t. the μ-index gives:

ψ′
α(n−2) − (Dn − 2n + 2) � θα(n−2) − γαθ′α(n−3) = 0. (50)

Now, a third γ-trace in an α-index yields:

�ψ ′
α(n−3) − (Dn + D − 4)θ′α(n−3) + γα � θ ′

α(n−4) = 0. (51)

On the other hand, one could also have obtained a triple γ-trace by first contracting the μ index
with an α index in Equation (46) and then taking a γ trace. This however produces a different result:

�ψ ′
α(n−3) − (D + n − 4)θ′α(n−3) + γα � θ ′

α(n−4) = 0. (52)
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Equations (51) and (52) impose the following constraints:

�ψ ′
α(n−3) = 0, θ′α(n−3) = 0, (53)

i.e., the symmetric rank-n field ψα(n) must be triply γ-traceless, whereas the symmetric rank-(n − 1)
field θα(n−1) must be traceless. This in turn results, from Equations (49) and (50), in the
following relation:

θα(n−1) =
(

1
D−2

) [
�ψα(n−1) −

(
1

nD−2n+2

)
γαψ′

α(n−2)

]
. (54)

Finally, plugging the above expression into the decomposition (46), we obtain:

Ψμ, α(n−1) = ψμα(n−1) + χμ, α(n−1) +
(

1
D−2

) [
γ[μ �ψα]α(n−2) −

( 2
Dn−2n+2

)
γμαψ′

α(n−2)

]
+ 1

(D−2)(Dn−2n+2)

[
(n − 2)γαγμψ′

α(n−2) − 2ḡα(2)ψ
′
μα(n−3)

]
. (55)

This decomposition generalizes that of [1] to arbitrary dimensions.
It will be convenient to write the covariant equations of motion (34) in the following form:

Rμ, α(n−1) ≡ Oμν, α(n−1)β(n−1)Ψν, β(n−1) = 0, (56)

where we have defined the operator O as:

Oμν, α(n−1)β(n−1) ≡ (
γμρν∇ρ + μγμν

)
ḡ α(n−1), β(n−1) + 1

2n(n−1)Cμνβ, α ḡ α(n−2), β(n−2), (57)

with ḡ α(k), β(k) ≡ 1
k2 ḡ αβ ḡ αβ . . . ḡ αβ (multiplicity k) denoting the unit-strength symmetric tensor product

of k background metric tensors. This enables us to present the corresponding Lagrangian as:

1√−ḡ L = − 1
2 Ψ̄μ, α(n−1)Oμν, α(n−1)β(n−1)Ψν, β(n−1) . (58)

When the decomposition (55) is plugged into the above Lagrangian, the irreducible
mixed-symmetric part χμ, α(n−1) completely drops out, thanks to the shift symmetry. The fact that
the parameter λμ, α(n−1) enjoys exactly the same properties as χμ, α(n−1) plays a crucial role in this
regard. The resulting Lagrangian contains only the completely symmetric part ψα(n) and can be
viewed as a gauge-fixed version of the original Lagrangian (58) with the gauge fixing: χμ, α(n−1) = 0.
The explicit derivation of this Lagrangian is tedious, but straightforward. The calculations can however
be simplified by noting that, on account of the γ-tracelessness of the equations of motion (56) in the
α-indices, the Lagrangian splits into the sum of two pieces:

1√−ḡ L = − 1
2 Ξ̄μ, α(n−1)Oμν, α(n−1)β(n−1)Ξν, β(n−1) +

1
2 ξ̄μ, α(n−2)γαOμν, α(n−1)β(n−1)γβξν, β(n−2) , (59)

where the tensor-spinors Ξμ, α(n−1) and ξμ, α(n−2) are given by:

Ξμ, α(n−1) = ψμα(n−1) +
(

1
D−2

) [
(n − 1)γμ �ψα(n−1) −

( 2
Dn−2n+2

)
ḡμαψ′

α(n−2)

]
,

ξμ, α(n−2) =
(

1
D−2

) [
−�ψμα(n−2) +

(
1

Dn−2n+2

) (
nγμψ′

α(n−2) − γαψ′
μα(n−3)

)]
. (60)

One can explicitly carry out the calculations to get to the following result:

− 2√−ḡ L = ψ̄α(n) ( � ∇− μ)ψ α(n) + n ¯�ψα(n−1) ( � ∇+ μ) �ψ α(n−1) − 1
4 n(n − 1)ψ̄′

α(n−2) ( � ∇− μ)ψ′ α(n−2)

−2n ¯�ψα(n−1)∇μψ μα(n−1) − n(n − 1)ψ̄′
α(n−2)∇μ �ψ μα(n−2). (61)

This indeed coincides with the Lagrangian (A7) for a metric-like gauge fermion in AdS
space. Because only the symmetric part of the parent field Ψμ, α(n−1) appears in this Lagrangian,
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the corresponding gauge symmetry is obtained simply by a total symmetrization of the indices in
Equation (36). The result is:

δψα(n) =
1
n

(
∇αζα(n−1) − 1

2l γαζα(n−1)

)
, (62)

which also matches perfectly with the metric-like gauge symmetry (A11).
This hardly comes as a surprise. The symmetric part of Ψμ, α(n−1) has all the characteristics of

a metric-like gauge fermion; in particular, it is triple γ-traceless, as we have shown in Equation (53).
Moreover, it transforms w.r.t. a symmetric γ-traceless gauge parameter ζα(n − 1). The gauge-invariant
Lagrangian description for such a system is unique [43–45]. Therefore, ψα(n) is a metric-like gauge
fermion in every sense.

5. Remarks

In this article, we have elaborated on some key features of higher-spin gauge fermions and the
connections between their frame- and metric-like formulations at the free level. A gauge-invariant
frame-like Lagrangian description in AdS space, with the constraints on the fields and the gauge
parameters resembling their flat-space cousins, facilitates the explicit derivation of the corresponding
metric-like Lagrangian as a gauge fixing. This derivation generalizes that of [1] to AdS space and
arbitrary dimensions. Although the equivalence of the frame- and metric-like formulations at the free
level may not come as a surprise, our work fills a gap in the literature.

As is well known, the frame-like formulation packages the non-linearities in an interacting
theory in a very efficient way. For higher-spin fermions, this can be seen in a very simple setup:
the Aragone–Deser hypergravity [3]−a consistent gauge theory of a spin s = n + 1

2 massless Majorana
fermion coupled to Einstein gravity in 3D flat space. While only fermion bilinears appear in the
frame-like formulation [3], the metric-like formulation will also include four-fermion couplings
that originate from integrating out the spin-connection, just like in supergravity [47]. Moreover,
the fermion-bilinear terms will look more complicated in the metric-like variables. To see this, note that
with frame-like fermions, the cubic cross-coupling in the covariant language has the simple form [49]:

L3 ∼ Ψ̄μ, α(n−1)γ
μνργσλΨν,

α(n−1)∂σhρλ, (63)

where hμν is the metric perturbation. Because the irreducible hook part χμ, α(n−1) of the frame-like
fermion is trivial in D = 3, the decomposition (55) amounts to a complicated field redefinition:

Ψμ, α(n−1) = ψμα(n−1) + γ[μ �ψα]α(n−2) +
(

1
n+2

) [
nγαγμψ′

α(n−2) − 2ημαψ′
α(n−2) + 2ηα(2)ψ

′
μα(n−3)

]
, (64)

where ψα(n) is the metric-like fermion. After this redefinition is performed, the cubic coupling (63) will
look cumbersome in terms of the metric-like fermion. Within the metric-like formulation, it would be
more difficult to construct or to prove the consistency of this cubic coupling, say using the techniques
of [50,51]. The fermion-bilinear cross-couplings do not stop at any finite order in the graviton
fluctuations, and the situation gets only worse at higher orders, while the frame-like formulation
captures all the non-linearities in a very neat way [3].

In higher dimensions, the difference between the two formulations becomes more drastic.
The hook part of the frame-like fermion never shows up in the interacting Lagrangian because
of the deformed shift symmetry. However, there appear the so-called “extra” fields: a set of additional
fields that arises when one tries to construct a complete set of gauge-invariant objects (curvatures) [52]
(The extra fields are generalizations of the spin-connection. The number of extra fields depends on the
spin; the higher the spin, the more are the extra fields needed for constructing curvatures. The extra
fields however do not enter the free action, and so, they are not expressed in terms of physical fields via
equations of motion) . To understand the role of these extra fields that are absent in the free Lagrangian,
one may express them in terms of the physical fields by means of appropriate constraints implemented
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via Lagrange multipliers [4,6,52–54]. Then, up to pure gauge parts, the extra fields are given by
derivatives of the physical fields. The extra fields therefore induce higher-derivative terms in the
interactions, while their absence in the free Lagrangian merely reflects the absence of higher-derivative
kinetic terms. Explicit solutions of the aforementioned constraints are difficult and actually not needed.
The main idea of the so-called Fradkin–Vasiliev formalism [52–54] is that one can treat the extra fields
as independent variables since most of the gauge-invariant curvatures vanish on shell.
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Appendix A. Metric-Like Formulation

The metric-like formulation of gauge fermions originated in the work of Fang and Fronsdal [11,12],
who studied the massless limit of the Lagrangian for massive higher-spin fermions. The Fang–Fronsdal
Lagrangian can be derived uniquely by considering gauge invariance and supersymmetry
transformations for a massless system involving the pair of spins

(
s, s + 1

2

)
[55]. The construction

was later generalized for maximally-symmetric spaces with arbitrary dimension in [43–45]. In the
metric-like formulation, a spin s = n + 1

2 gauge fermion is described by a completely symmetric rank-n
tensor-spinor ψμ(n) in the world indices. It satisfies the triple γ-trace condition:

�ψ′
μ(n−3) = 0. (A1)

It is convenient to describe metric-like theories in the operator formalism, where contraction and
symmetrization of indices are realized through auxiliary variables and tensor operations are simplified
in terms of operator calculus. Symmetric tensor-spinor fields are represented by:

ψ(x, u) = 1
n! ψμ1...μn(x) ē μ1

a1 (x)ua1 . . . ē μn
an (x)uan , (A2)

where ē μ
a (x) is the background vielbein and ua is an auxiliary tangent variable. The action of the

covariant derivative is defined as a differential operation involving both x and u:

∇μ = ∇̄μ + ω̄μ
abua

∂
∂ub , (A3)

where ∇̄μ is the standard covariant derivative acting on naked tensorial indices and ω̄μ
ab the

background spin connection. In what follows, we work only with the contracted auxiliary variable
and the associated derivative:

uμ ≡ ē μ
a (x)ua, ∂

μ
u ≡ ē μa(x) ∂

∂ua . (A4)

The vielbein postulate then implies that [∇μ, uν] = 0, as well as [∇μ, ∂ν
u] = 0. The commutator of

covariant derivatives on a spinor function of u and ∂u will be given by:

[∇μ,∇ν] = Rμνρσ(x)uρ∂σ
u +

1
4 Rμνρσ(x)γρσ. (A5)

One would have to use the following set of operators [43–45]:

G =
{
� ∇, ∂u ·∇, u·∇, �∂u, �u, ∂2

u, u2, u·∂u

}
. (A6)

The set comprises eight operators: the Dirac operator � ∇, divergence ∂u ·∇, symmetrized-gradient
u·∇, γ-trace �∂u, symmetrized-γ �u, trace ∂2

u, symmetrized-metric u2 and rank u·∂u. These operators
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have nontrivial commutation relations because of [∂μ
u , uν] = ḡ μν and the non-commutativity (A5) of

the covariant derivatives if the background is non-flat.
Then, the Lagrangian for a massless fermionic field in AdS space can be written as (for a Majorana

fermion, certain terms in the Lagrangian are equivalent up to total derivatives) [45]:

1√−ḡ L = − 1
2 ψ̄(∗n)

(
� ∇ − u·∇�∂u − �u ∂u ·∇+ �u � ∇�∂u + 1

2 �u u·∇ ∂2
u + 1

2 u2 ∂u ·∇ �∂u − 1
4 u2 � ∇ ∂2

u

)
ψ

+ 1
2 μ ψ̄(∗n)

(
1− �u �∂u − 1

4 u2 ∂2
u

)
ψ, (A7)

where the operation: (∗k) ≡
(←−

∂u · −→∂u

)k
enables contraction between two rank-k tensor-spinors and has

the properties: (∗k)uμ = k
←−
∂u

μ(∗k−1) and (∗k)
−→
∂u

μ = (k + 1)−1uμ(∗k+1) . The mass parameter:

μ =
1
l

(
n + D−4

2

)
, (A8)

is uniquely fixed by gauge invariance [44,45], where l is the AdS radius. The gauge symmetry of the
Lagrangian (A7) is w.r.t. a symmetric γ-traceless rank-(n − 1) tensor-spinor parameter:

ε = 1
(n−1)! εμ1...μn−1 uμ1 . . . uμn−1 , �∂uε = 0, (A9)

while the triple γ-tracelessness condition (A1) on the field translates in the operator formalism to:

�∂u∂2
uψ = ∂2

u �∂uψ = 0. (A10)

Explicitly, the gauge transformations are given by:

δψ = u·∇ε − 1
2l
�u ε. (A11)

This can be verified by using the commutator (A5), which reduces in AdS space to:

[∇μ,∇ν] = − 1
l2

(
u[μdν] +

1
2 γμν

)
, (A12)

and the various commutators of the operators in G given the properties (A9) and (A10).
The metric-like description of higher-spin gauge fermions in flat-space is easily obtained by taking

the limit l → ∞ of the gauge invariant system (A7)–(A12). The degrees of freedom count in flat [13]
and AdS [14] spaces are of course the same and given by:

ΔMetric =

(
D + n − 4

n

)
fD, (A13)

where fD for a Majorana fermion is given in Equation (12), while for a Dirac fermion, the value is
twice as much. Note that Equation (A13) counts the number of physical dynamical fields plus their
conjugate momenta. In AdS space, one of course gets the same number since the counting of dynamical
equations, constraints and gauge freedom works in the same way.

As already mentioned in the Introduction, the γ-trace constraints (A9)–(A10) on the gauge
parameter and the higher-spin fermionic field can be avoided by recourse to other formulations. These
include the non-local formulation [15], the Becchi–Rouet–Stora–Tyutin (BRST) formulation [17,22],
the higher-derivative compensator formulation [20], the quartet formulation [21] and the non-minimal
formulation with no higher derivatives [24].
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Abstract: We extend our recent study on the duality between stringy higher spin theories and free
conformal field theories (CFTs) in the SU(N) adjoint representation to other matrix models, namely
the free SO(N) and Sp(N) adjoint models as well as the free U(N)× U(M) bi-fundamental and
O(N)×O(M) bi-vector models. After determining the spectrum of the theories in the planar limit
by Polya counting, we compute the one loop vacuum energy and Casimir energy for their respective
bulk duals by means of the Character Integral Representation of the Zeta Function (CIRZ) method,
which we recently introduced. We also elaborate on possible ambiguities in the application of
this method.

Keywords: string theory, higher-spin gauge theory, partition functions

1. Introduction

The AdS/CFT duality [1] is a remarkable conjecture proposing the equivalence between a
quantum gravity in Anti de Sitter (AdS) space and a conformal field theory (CFT) defined on the
boundary of the same AdS space (see [2] for a review).

These dualities were observed in string theory, building on the observation [3] that the D-branes
of string theory and the black branes of supergravity are essentially complementary descriptions
of the same system, being valid respectively at weak and strong string coupling. The AdS theory
is the closed string theory—a theory of quantum gravity—that the black branes are embedded in,
and the CFT is the field theory which describes the low energy dynamics of the world volume of the
D-branes. We therefore expect that the AdS/CFT dualities would share two very common features.
First, fields in CFT should be matrix valued because of the CFT is the low energy effective theory of
a stack of D-branes. Second, since closed string theories contain supergravity as a low-energy limit,
there should be a regime in the parameter space of the duality where the AdS theory is described
well by supergravity. It turns out that, in field theory, this corresponds to taking the strongly coupled
limit. We also observe that supersymmetry is almost ubiquitous in these dualities, and is an important
ingredient for ensuring that the weak and strong string coupling descriptions can be extrapolated to
each other to lead to the duality.

It is interesting to contrast this situation with the case of AdS/CFT dualities involving higher-spin
theories and vector model CFTs [4,5]. These dualities are counterexamples to the above expectations
in almost every way. Firstly, they are non-supersymmetric, or at least there is no apparent benefit in
working with their supersymmetric extensions. Secondly, the CFT is a typically a vector model rather
than a matrix model, this leads to important simplifications in the spectrum of the bulk and boundary
theories and may also have important implications on black hole physics in these theories [6]. Thirdly,
there is no obvious point in the parameter space of the duality where we obtain bulk General Relativity.

Nonetheless, the study of these dualities might have important insights into the physics of ‘stringy’
AdS/CFT dualities. This turns out to be the case from two a priori distinct motivations. Firstly, while
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it is clearly desirable to use AdS/CFT dualities to probe bulk quantum gravity using the dual CFT,
in practice it is somewhat more difficult as the dynamics of a CFT at a generic coupling is extremely
complicated in itself. From this point of view, it is natural to consider AdS/CFT dualities involving free
CFTs to examine how the CFT repackages itself into a theory of quantum gravity1. Secondly, taking
the free ‘t-Hooft coupling limit on the CFT side corresponds to a particularly interesting limit on the
AdS side as well [7,8].

For definiteness, let us consider the case of the duality between Type IIB superstrings on AdS5 × S5

and N = 4 super Yang-Mills, where the dictionary between the bulk and boundary parameters reads as

N2 ∼
(
�AdS
�P

)8
, λ ∼ �4

AdS

(α′)2 . (1)

This dictionary indicates, as is familiar, that taking the planar limit of N = 4 super Yang-Mills
corresponds to taking the classical limit in the bulk, where the radii of AdS5 and S5 are much larger
than the Planck length. Further, now setting λ to zero corresponds to setting the string tension α′−1 to
zero or, equivalently, taking the string length to be much larger than the AdS5 radius. In either way of
thinking about this limit in the bulk, it should be clear that this is a very stringy limit as it corresponds
to working at an energy scale much larger than the string tension, at which point the string no longer
looks like a point object as it would to a low energy observer, which is essentially the supergravity
approximation, corresponding to taking λ to infinity.

Moreover, the tensionless limit is a window of string theory about which much remains to be
understood, however there are important hints that new symmetries should manifest themselves in this
phase [9–14] and indeed that higher-spin symmetry may be one such symmetry [12–14]. It is therefore
natural to explore this window of AdS/CFT duality both for gaining a foothold into tensionless string
theory and also for a more general program of extracting bulk physics from CFT data.

The approach we adopt in this paper is to assume that a CFT with an’t-Hooft expansion admits
an AdS dual in the planar limit, and then compute 1/N corrections in the duality. This approach also
provides an interesting point of view regarding a different but related question. In particular, how does one
couple massive representations of the higher-spin algebra to the Vasiliev system? Although the coupling of
massive and massless higher-spin fields in AdS has been studied at the cubic level in [15–17], directly
constructing the bulk theory is still quite difficult. However, since the single-trace operator spectrum
of a free matrix model CFT contains the conserved currents found in the vector model along with
conformal primaries lying above the unitarity bound, we expect its AdS dual to be a theory of massless
higher spins coupled to massive higher spins. Further, by varying the content of the CFT, the operator
spectrum can be quite easily varied. Hence this setting is expectedly useful for generating a zoo of theories
with massless and massive higher-spins coupled to each other in AdS.

As a preliminary exploration of the duality between tensionless strings in AdS and free matrix
model CFTs, it is particularly appealing to focus on one-loop quantum effects in the bulk, especially
the vacuum energy in AdS with sphere boundary and thermal AdS with torus boundary. We shall
refer these two quantities as one-loop vacuum energy and Casimir energy. The spectral problem
for arbitrary spin tensor (and spinor) fields has been almost completely solved for Laplacians on
hyperboloids [18–21], and this provides the vacuum energy of the corresponding particle. The full
result is expectedly determined by summing over contributions from every particles in the spectrum
of the bulk theory. This was very explicitly carried out for the higher spin theories in [22–33] and the
resulting computation matched. We refer the reader to [34] for a review higher spin holography in
general, including the one-loop computations mentioned here.

1 We consider ‘free’ CFTs as being obtained from a zero ‘t-Hooft coupling limit of the large-N expansion of a given CFT. Hence
the bulk theory still admits a semi-classical expansion, identified to the ’t-Hooft expansion of the dual CFT, and single trace
conformal primaries in the CFT correspond to fields in the bulk.
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It is clearly of interest to explore how these computations can be extended to the case of the
tensionless string, but there is an obvious complication. The higher-spin computations of one-loop
free energies rely on an explicit knowledge of the bulk spectrum. Further, summing over free energy
contributions of each particle leads to naively divergent sums that need to be regulated. Meanwhile,
an independent formulation of even the classical bulk theory for the tensionless string is lacking.
Even if we were to attempt to use the CFT data to reconstruct the bulk by identifying the CFT single
trace operator spectrum to the spectrum of bulk particles, there is so far no simple closed form
expression for the operator spectrum of a matrix valued CFT [35,36].

For these reasons, an alternate approach was adopted in [37–40] which bypasses both these
problems by expressing the one-loop vacuum energy of a given field in terms of a linear operator
acting on the conformal algebra character corresponding to the field. For technical reasons, this was
referred to as the Character Integral Representation of the Zeta Function (CIRZ) method. This method
completely reproduces the previous results for Vasiliev’s higher spin theory as well as readily extracts
the answers for the tensionless string as well as its bosonic cousins, the bulk duals of the free
SU(N)-adjoint scalar CFT and free SU(N) Yang-Mills. In particular, it was found that the one-loop
free energies of these bulk dual theories are non-zero, and equal to minus of the one-loop free
energy of the corresponding boundary conformal field (scalar, spin-1, etc.). Further, the computations
involved undergo simplifications for the maximally supersymmetric case which are seemingly quite
miraculous [40].

In this paper we shall discuss the extension of these results to the free CFTs in the adjoint
representation of SO(N) and Sp(N), as well as the bi-fundamental and the bi-vector representation of
U(N)×U(M) and O(N)×O(M), respectively. We concentrate our consideration on the AdS5/CFT4

dualities, but all our analysis can be generalized to any even d in a straightforward manner and to
odd d with a bit more effort (see [37] for AdS4/CFT3 case, and [33] for a generalization to arbitrary
dimensions.). Another aim of the current paper is to provide a concise summary of the series of our
recent works [37–39] and to append more details on the relevant technicalities such as the spectral
analysis of AdS space and the operator counting problem.

1.1. Organization of Paper

A brief overview of this paper is as follows. In Sections 2 and 3 we shall review the formalism for
one-loop computations in AdS5, recollecting the essential results for computing the Casimir Energy
and vacuum energy at one-loop. Section 4 provides a few more details about the duality between
the tensionless string and free matrix models, focusing strongly on a pedagogical treatment of Polya
counting, an essential tool for many of the computations presented here. Section 5 then presents
the applications of this formalism to adjoint Sp(N) and SO(N) CFTs, namely free scalar, Yang Mills
and N = 4 SYM, and bi-fundamental and bi-vector scalar and fermion models. Finally, some more
technical details are reviewed in the Appendices. Appendix A contains a review of some facts of
harmonic analysis on AdS spaces which are useful to these computations, while Appendix B reviews
key features of unitary representations of so(2, 4). Finally, Appendix C contains an overview of the
applications of the methods of Sections 2 and 3 to the higher-spin/CFT dualities.

2. Casimir Energy in Thermal AdS5

We begin with how the one-loop AdS/CFT Casimir energy may be computed in thermal AdS5.
In particular, we will review the observation of [25] that ‘naive’ computation of the AdS/CFT Casimir
energy for higher-spin theories yields a divergent answer which may be suitably regularized to obtain
a result consistent with CFT expectations. Importantly, the latter regularization also does not require us
to know the precise spectrum of the theory, except in some implicit way through the thermal partition
function of the theory, computed in the canonical ensemble. This is discussed below. Equally importantly,
the computations here contain the same key idea which is very useful for the analysis presented later,
but in a simpler setting.
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We begin with the Vasiliev Type A theory in AdS5. Its duality is discussed at somewhat greater
length in Appendix C but for now it is sufficient to note that the non-minimal Vasiliev theory contains
massless spins from spin equal to 1 to infinity appearing once each in the spectrum, along with a scalar
with Δ = 2, and is dual to the U(N) vector model. Further, there is a minimal Vasiliev system arrived
at by truncating the non-minimal one to even spins only, and this is dual to the O(N) vector model.
Next, we note that the Casimir energy of a massless spin-s field in AdS5 is given by [25]

E(s)
c = − 1

1440
s (s + 1)

[
18s2 (s + 1)2 − 14s (s + 1)− 11

]
. (2)

While the scalar of the theory is not massless, its Casimir energy can be determined from the
formula (2) by setting s = 0 in it. Therefore the Casimir energy for the non-minimal AdS theory is given
by Ec = ∑∞

s=0 E(s)
c , which is clearly divergent. This divergence can be regularized by means of an

appropriate zeta function, or by inserting an exponential damping e−ε
(

s+ 1
2

)
when evaluating the sum

and discarding all terms divergent in ε in the limit ε → 0. We thus obtain [25]

Ec =
∞

∑
s=0

E(s)
c e−ε

(
s+ 1

2

)
|finite = 0. (3)

As is apparent from the above analysis, carrying out this computation requires knowledge of the
precise spectrum of the theory, along with a prescription for regulating the divergence for summing
over the infinite number of fields in the spectrum of the theory. This data is unavailable for the bulk
duals of matrix CFTs at present. We will now show in below how this requirement may be evaded2.
Our starting point is the relation between the (blind) character

χV (β) = Tr
(

e−βH
)
= ∑

n
dn e−β En , (4)

computed over the UIR V of so(2, 4) and the Casimir energy in AdS of the corresponding field.
Here (En, dn) are the eigenvalues and degeneracies of the hamiltonian H. Given χV (β) we may take
its Mellin transform to obtain χ̃V (s) as

χ̃V (z) = LMellin [χV ; z] ≡
∫ ∞

0
dβ

βz−1

Γ (z)
χV (β) = ∑

n
dn E−z

n , (5)

which implies
χ̃V (−1) = ∑

n
dn En = Ec , (6)

where Ec is the Casimir energy [41]. Anticipating future developments, in the above we have defined a
linear functional LMellin which acts on the character χV to return the Mellin transform. Note that it is
straightforward to apply (6) to the case where V is the short representation

(
s + 2, s

2 , s
2
)

to obtain the
expression (2) for the Casimir energy of a massless spin-s field. For fermions, the Casimir energy is
defined with an overall minus sign, so we insert the fermion number operator into the character and
define a partition function ZV (β) = TrV

(
(−1)F e−βH

)
in terms of which we obtain Ec as (5) and (6).

2 Somewhat related arguments are also implicit in some computations of [25]. In particular, note their computations from
Equations (5.16)–(5.21) which are essentially a ‘one-shot’ computation of the full bulk Casimir energy from the thermal
partition function, much as we present here in (8).
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Now we use the fact that the Hilbert space H of one-particle excitations of the AdS5 theory
decomposes by definition into UIRs of the conformal algebra so(2, 4). Further, again by definition

ZH (β) = TrH
(
(−1)F e−βH

)
= ∑

{b}
nb χb(β)− ∑

{ f }
n f χ f (β) , (7)

where {b} and { f } denote respectively the sets of bosonic and fermionic fields in the theory. Then we
may use the linearity property of LMellin and act with it on the total partition function ZH (β) to find
the total Casimir energy

Ec = Z̃H (−1) ; where Z̃H (z) = LMellin [ZH; z] . (8)

It turns out that in all cases of which we are aware, this definition of the Casimir energy perfectly
reproduces the expressions found by the regularots such as (3) that are used in the literature. Further,
often it is possible to evaluate the full partition function χH without knowing the explicit spectrum of
the theory. Indeed matrix CFTs are an example of this possibility, as we review below. Therefore, the
definition (8) is particularly useful to apply to the cases of matrix model CFTs which we encounter in
‘stringy’ AdS/CFT dualities.

Finally, we also note that (5) may be efficiently evaluated by deforming the contour of β integration,
which originally stretches along the positive real β axis from 0 to ∞, to Figure 1 to get

Z̃H(z) =
i

2 sin(π z)

∮
C

dβ
βz−1

Γ(z)
ZH(β) . (9)

Re(β)

Im(β)

Figure 1. Integration contour for the zeta function.

Further, if the partition function χH(β) has no singularities on the positive axis of β except for
poles at β = 0 , then the contour C can be shrunk to a small circle around β = 0 to give

Ec = −1
2

∮
C

dβ

2 π i β2 ZH(β) , (10)

which may be evaluated by the residue theorem. We therefore find that the AdS Casimir energy is
simply − 1

2 of the O (β) term in the Laurent series expansion of ZH(β) about β = 0 .

3. Formalism for One-Loop Computations in AdS5

In this section we review the formalism and techniques for carrying out one-loop computations in
AdS5. The techniques are more generally applicable and extend to arbitrary odd-dimensional AdS spaces
straightforwardly and even-dimensional AdS spaces with a bit more effort.

3.1. Vacuum Energy in AdS5

Evaluating the one-loop partition function of a quantum theory reduces to the problem of
evaluating functional determinants:

Z(1) =
∫
DΨ e−

1
2 〈Ψ,KΨ〉 = 1√

detK , K(x1, x2) =
δ2S[Φ]

δΦ(x1)δΦ(x2)

∣∣∣
Φ=Φ̄

, (11)
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where S[Φ] is the classical action and Φ = Φ̄ + Ψ . The Φ̄ and Ψ are a background field and the
fluctuation over it, respectively. The bracket 〈·, ·〉 is the scalar product defined by

〈Ψ1, Ψ2〉 =
∫

dDx
√

g Ψ1(x)∗ · Ψ2(x) . (12)

Here, we suppressed all the indices for simplicity but one should understand that the fields Φ or
Ψ are tensors in general. ‘·’ is a Lorentz invariant scalar product that contracts the (suppressed) spin
indices of the fields Ψ.

The one-loop free energy Γ(1) or the vacuum energy is simply

Γ(1) = − ln Z(1) =
1
2

Tr lnK , (13)

hence, we need to evaluate the Tr ln (or functional determinant) of the operator K . If we treat the
operator K as if it is a finite dimensional diagonalizable matrix with eigenvalues κn, then we would get

Tr lnK = ∑
n

dn ln κn , (14)

where n parametrizes the eigenvalue and dn is the degeneracy. Defining the zeta function ζ(z) to be

ζ(z) = ∑
n

dn

κnz , (15)

it is easy to see that
ζ ′(0) = −Tr lnK = −2 Γ(1) . (16)

However, expressions such as (15) are not ideally suited for a direct evaluation in the case of a
differential operator K . Typically, the naive degeneracy corresponding to a given eigenvalue is infinite.
We shall therefore use the fact that given an orthonormal set of eigenvectors3

{
Ψ(n)

m

}
belonging to the

eigenvalue κn, the degeneracy may be defined as

dn = ∑
m
〈Ψ(n)

m , Ψ(n)
m 〉 . (17)

We emphasize that though (17) is a tautology for compact spaces, for non-compact spaces it is
essentially a non-trivial definition. When evaluated explicitly, the answer is still divergent but may
be regulated in accordance with general principles of AdS/CFT. We shall be applying these methods
to the typical kinetic operators K = −�+ c in AdS5, so it is useful to specialize a little to that case.
It turns out that the spectrum of eigenvalues is continuous, labeled by a positive real number u, and is
given by

κu = u2 + c′ . (18)

3 The operators we are interested in will be of the form −�+ c where c is a constant and −� = gμν∇μ∇ν. The spectral
problem for operators of this form has been explicitly solved for a wide class of spin fields in AdS space. In contrast, if we
wish to compute the same determinants over quotients of AdS, in principle we have to impose quantization conditions

over Ψ(n)
m . This may prove easy or difficult depending on the orbifold at hand. Nonetheless, for the quotients we are

interested in, it is possible to compute the determinants on the quotient space by the method of images. We review these
facts in Appendix.
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Here, c′ is a constant number, essentially encoded in the parameter c appearing in the bulk kinetic
operator. For physical fields it will be related to Δ, the conformal dimension of the dual operator on
the boundary. The zeta function for the operator K is then given by

ζ(z) =
∫

du ∑m〈Ψ(u)
m , Ψ(u)

m 〉
(u2 + c′)z , (19)

where the wave functions Ψ(u)
m now obey the orthonormality conditions

〈Ψ(u)
m , Ψ(u′)

m′ 〉 = δ(u − u′) δm,m′ . (20)

We now specialize to the case of global AdS5, to develop general expressions useful for the
forthcoming analysis. In this case, for a wide class of fields, the eigenfunctions of the Laplace operator
� = gμν∇μ∇ν have been explicitly computed [18–21,42]. Further, using the homogeneity of AdS,

it follows that ∑m Ψ(u)
m (x)∗ · Ψ(u)

m (x) is independent of x ∈ AdS5,4 and we define

∑
m

Ψ(u)
m (x)∗ · Ψ(u)

m (x) = ∑
m

Ψ(u)
m (0)∗ · Ψ(u)

m (0) ≡ μ(u) . (21)

Here x = 0 is a point on AdS5 which may be arbitrarily chosen. In practice, it is chosen so that all
but a finite number of eigenfunctions Ψ(u)

m (x) vanish at that point, and the sum over m may be easily
evaluated. Finally, we see that (19) reduces to

ζ(z) = VolAdS5

∫
du

μ(u)
(u2 + c′)z , (22)

where μ(u) plays the role of measure over the parameter u which indexes the eigenvalues of the
Laplacian. It is known as the Plancherel measure.

For the operator K corresponding the irreducible representation D(Δ, (�1, �2)) , the constant c′ is
given by

c′ = (Δ − 2)2 , (23)

and the measure μ(u) by

μ(u) =
1

3π2
�1 + �2 + 1

2
�1 − �2 + 1

2

(
u2 + (�1 + 1)2

) (
u2 + �2

2

)
. (24)

The derivation of the c′ and μ(u) is provided in Appendix A. The factor of the volume VolAdS5 is
infinity due to the non-compactness nature of AdS space. This IR divergence can be also regularized as

VolAdS5 = π2 log(μ R) , (25)

where R is the raduis of AdS space and μ the renormalization scale. See [43] for the details and
discussions. With the above result, suppressing the μ dependence, the AdS5 vacuum energy is given
always proportional to log R .

4 This statement is a generalization of the addition theorem for spherical harmonics on S2 to general spin fields on symmetric
spaces, and is particularly transparent when the group theory underlying harmonic analysis on symmetric spaces is used.
These facts are reviewed in Appendix A.
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3.2. Character Integral Representation of Zeta Function

We have seen in Section 2 that the Casimir energy for a theory in thermal AdS5 is naturally
encoded in the thermal partition function, or the blind character in other words, via a linear operator
acting on it. This provides a natural resummation of the Casimir energies of the individual fields
in the spectrum. In [37], we have shown how the character may be similarly used to resum the
one-loop free energies in global AdS5. That is, there exists a linear operator L which, like LMellin of
Section 2, acts on the character over a UIR V of so(2, 4) and returns the one-loop vacuum energy of
the corresponding field, now in global AdS. L again takes the form of a β integral over the character,
now with additional operations included, and returns the zeta function corresponding to the one-loop
determinant, as defined in Section 3.1. For this reason, we refer to this method as Character Integral
Representation of Zeta function (CIRZ).

Let us provide a brief summary of the result of [37]. The zeta function for a Hilbert space
H—which might be a single UIR space or any collection of them—can be written as the sum of
three pieces:

ζH(z) = ζH|2(z) + ζH|1(z) + ζH|0(z) , (26)

where ζH|n are the Mellin transforms,

Γ(z) ζH|n(z)
log R

=
∫ ∞

0
dβ

( β
2
)2(z−1−n)

Γ(z − n)
fH|n(β) , (27)

of the functions fH|n(β) given by

fH|2(β) =
sinh4 β

2
2

χH(β, 0, 0) ,

fH|1(β) = sinh2 β
2

[
sinh2 β

2
3

− 1− sinh2 β
2

(
∂2

α1
+ ∂2

α2

)]
χH(β, α1, α2)

∣∣∣∣
αi=0

,

fH|0(β) =

⎡⎣1 +
sinh2 β

2

(
3− sinh2 β

2

)
3

(
∂2

α1
+ ∂2

α2

)

− sinh4 β
2

3

(
∂4

α1
− 12 ∂2

α1
∂2

α2
+ ∂4

α2

)]
χH(β, α1, α2)

∣∣∣∣
αi=0

.

(28)

Here χH is the character defined by

χH(β, α1, α2) = TrH
(

e−β H+i α1 M12+i α2 M34
)

. (29)

Since both of the relations (27) and (28) are linear, they define a linear map L between the zeta
function and the character: ζH(z) = L[χH; z].

One can recast the β integral (27) with sufficently large Re(z) into an integral over the contour
which runs from the positive real infinity and encircles the branch cut generated by β2(z−1−n) in the
counter-clockwise direction (see Figure 1) as

Γ(z) ζH|n(z)
log R

=
i (−2)2(n+1−z)

2 sin(2πz) Γ(z − n)

∮
C

dβ
fH|n(β)

β2(n+1−z)
. (30)

Now the right hand side of the above equation is well defined in the z → 0 limit. Defining

γH|n = −(−4)n n!
∮ dβ

2 π i
fH|n(β)

β2(n+1)
, (31)
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the total one-loop vacuum energy of the AdS5 theory is given by the sum

Γ(1)
H = log R

(
γH|2 + γH|1 + γH|0

)
. (32)

When the function fH|n does not have any singularities in positive real axis of β the contour
can be eventually shrunken to a small circle around β = 0. The functions fH|n for any one particle
state in AdS5 as well as for the spectrum of Vasiliev’s theory indeed satisfy this property. However,
quite generically, the functions fH|n for the AdS dual to a matrix model CFT do have additional poles or
branch cuts. Physically, this corresponds to the fact that higher-spin theories do not have a Hagedorn
transition [6] while string theory does [7].

When there are bulk fermionic degrees of freedom to be summed over, as in the case of
supersymmetric theories, it is sufficient to use the CIRZ method as presented for bosons, but instead
of using the thermal partition function, use the weighted partition function

ZH(β, α1, α2) = TrH
(
(−1)F e−β H+i α1 M12+i α2 M34

)
, (33)

introduced in [11,44].

4. Computing Partition Functions by Polya Counting

The large N expansion qualitatively works in the same way in the vector model as the matrix one:
all the correlation functions can be organized in terms of the color loop number. At the leading order
of N, it is sufficient to consider the single trace operators, i.e., those made with a single color loop.
On these single trace operators, there is important difference between vector models and matrix models.
In vector models, the single trace operators are the scalar product of two fields in vector representation,

∂∂ · · · ∂�φ1 · ∂∂ · · ·�φ2 , (34)

whereas in matrix models they are the traces of arbitrary number of fields in a matrix
valued representation,

Tr
[(

∂∂ · · · ∂φ1
)(

∂∂ · · · ∂φ2
) · · · (∂∂ · · · ∂φn

)]
. (35)

In (34) and (35), we suppressed all the indices and the field operators φn can be either scalar,
spinor or vector in four dimensions. Therefore, even though the number of single trace operators is
infinite in both cases, the number is infinitely larger in matrix models than vector models.

One of difficulties in matrix models is the control or organization of infinitely many single trace
operators. For this reason, one often focuses on a certain class of single trace operators, such as BPS
operators, whose study does not invoke the knowledge of the rest of operators. However, in studying
the total one-loop Casimir or vacuum energy, we need the full operator spectrum of the theory. This can
in principle be identified by decomposing the operators (35) into irreducible so(2, 4) representations.
The decomposition requires a particular symmetrization of indices which projects the operator (35) to
the irreducible representation. Finding out the exact forms of these projections is not easy, but this
process can be cast as a standard group theoretical problem. For the scalar product or inside of a trace,
we put derivatives of field operator up to its equation. They form a basis for the Hilbert space V of the
conformal field φ carrying a short-representation of so(2, 4) :

V = Span{ φ, ∂φ, ∂∂φ, . . . } = Span{vi} , (36)

where the i is the index indicating one of descedant (or primary) states of φ , hence it is infinite
dimensional.

In vector models, we construct single trace operators by using two elements of V as (34), hence the
vector space of single trace operators is the tensor product V ⊗V . When the field�φ1 and�φ2 are the same,
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which is the case in the O(N) vector model, single trace operators are symmetric in the exchange of
1 and 2 as the latter label is dummy. Then the corresponding vector space of single trace operators
are the symmetrized tensor product of two V’s, denoted by V ∨ V . In order to find out the operator
spectrum, we need to decompose V ∨ V into so(2, 4) UIRs and it can be conveniently done in terms
of the so(2, 4) characters. In addition, the symmetrizations of the tensor product, or the plethysm,
can be also handily treated at the level of characters. Suppose that for an element g ∈ SO(2, 4), V has
eigenvalues {λi} (since only the conjugacy class of g matters due to the trace, we can focus on the
Cartan subgroup as in (A43)), then the character reads χV(g) = TrV(g) = ∑i λi . Then, the character
for V ∨ V is

χV∨V(g) = ∑
i≤j

λi λj =
(∑i λi)

2 + ∑i λ2
i

2
. (37)

Since ∑i λ2
i = TrV(g2) , we get the relation

χV∨V(g) =
χV(g)2 + χV(g2)

2
. (38)

In the case of matrix models, we need to consider n tensor product of V and impose appropriate
symmetrization compatible with trace and also the gauge group.

4.1. SU(N) Adjoint Models

When the gauge group is SU(N), the fields ∂∂ · · · ∂φp have the cyclic symmetry in p → p + 1
(p = 1, . . . n, p + 1 ≡ 1) due to the trace operation. Then, the projection to the cyclic invariant requires
only some combinatorial consideration. For intuitive understanding let us consider a few lower n’s
where n is the number of operators in the trace. First, the n = 2 cyclic symmetry is nothing but the
permutation symmetry. For n = 3, the character of cyclic 3 tensor product of V, denoted by Cyc3(V), is

χCyc3(V)(g) = ∑
i=j=k∨ i=j �=k∨ i<j<k∨ i<k<j

λi λj λk

= ∑
i

λ3
i + ∑

i �=j
λ2

i λj + 2 ∑
i<j<k

λi λj λk . (39)

where the summation over (i, j, k) is chosen for the proper counting of elements with the cyclicity
(i, j, k) ≡ (j, k, i) . Since (

∑
i

λi

)3

= ∑
i

λ3
i + 3 ∑

i �=j
λ2

i λj + 6 ∑
i<j<k

λi λj λk , (40)

We find that

χCyc3(V)(g) =
(∑i λi)

3 + 2 ∑i(λi)
3

3
=

χV(g)3 + 2 χV(g3)

3
. (41)

As one can see from this example, the point is the counting of (i1, . . . , in) taking into account
the cyclic equivalence. This is well-know problem of counting inequivalent necklaces with n beads
(see Figure 2). The index ip indicates the type or color of beads (which, in our context, corresponds to
the descendant state of the conformal field φ).

The solution to this problem is provided by Polya’s enumeration theorem as

χCycn(V)(g) = ∑
cyclic (i1,...,in)

λi1 · · · λin =
1
n

n

∑
k=1

(
∑

i
λ

n
gcd(k,n)
i

)gcd(k,n)

. (42)
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Here, gcd(k, n) is the greatest common divisor of k and n . Alternatively, the above can be written as

χCycn(V)(g) =
1
n ∑

k|n
ϕ(k)

(
∑

i
λk

i

) n
k

=
1
n ∑

k|n
ϕ(k) χV(gk)

n
k , (43)

where k|p denotes the divisor k of p and the Euler totient function ϕ(p) is the number of relative
primes of p in {1, . . . , p} .

The total partition function is the sum of the above from n = 2 to infinity. Hence, we are temped
to sum χCycn(V) over n. It turns out that it is possible to at least partially sum over n in (43) via [7,45,46]

χCyc(V)(g) =
∞

∑
n=2

χCycn(V)(g) =
∞

∑
n=2

1
n ∑

k|n
ϕ(k) [χV(gk)]

n
k

= −χV(g) +
∞

∑
k=1

∞

∑
m=1

1
m k

ϕ(k) [χV(gk)]m

= −χV(g) +
∞

∑
k=1

ϕ(k)
k

χlog,k(V)(g) , (44)

where χlog,k(V) are given by

χlog,k(V)(β, α1, α2) = − log [1− χV(kβ, kα1, kα2)] . (45)

· · · · · · · · ·

i1
i2

i3

i4

in

Figure 2. Necklace with n beads.

4.2. Sp(N) and SO(N) Adjoint Models

Now let us turn to the cases where the field φ takes value in the adjoint representation Sp(N).
Then the field is symmetric: φt = φ . Consequently, the single-trace operators (35) admit the
(anti-)symmetry,

Tr
(

∂k1 φ ∂k2 φ · · · ∂kn φ
)
= Tr

(
∂kn φ · · · ∂k2 φ ∂k1 φ

)
, (46)

under the flip of the ∂kφ ordering inside the trace. In terms of indices,

(i1, i2, . . . , in) ≡ (in, in−1, . . . , i1) . (47)

Hence, the space of independent single-trace operators corresponds now to the subspace
invariant under the actions of the dihedral group Dihn (which includes also reflections on top of the
cyclic rotations).

Let us again start the discussion with n = 3 case:

χDih+
3 (V)(g) = ∑

i=j=k∨ i=j,k∨ i<j<k
λi λj λk = ∑

i
λ3

i + ∑
i �=j

λ2
i λj + ∑

i<j<k
λi λj λk . (48)
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where the summation over (i, j, k) is chosen for the proper counting of elements with the cyclicity
(i, j, k) ≡ (j, k, i) ≡ (i, k, j) . Note that for n = 3, the dihedral group coincides with the symmetric
group. The above can be written as

χDih+
3 (V)(g) =

(∑i λi)
3 + 3

(
∑i λ2

i
) (

∑j λj

)
+ 2 ∑i λ3

i

6
, (49)

using (40) and (
∑

i
λ2

i

)(
∑

j
λj

)
= ∑

i
λ3 + ∑

i �=j
λ2

i λj . (50)

In terms of the basic character χV , it reads

χDih+
3 (V)(g) =

χV(g)3 + 2 χV(g3) + 3 χV(g2) χV(g)
6

=
1
2

χcyc3(V)(g) +
1
2

χV(g) χV(g2) . (51)

As one can see from this n = 3 example, the character of dihedrial tensor-product space Dih+
n (V)

is roughly half of the cyclic one, but not exactly. The precise formula is

χDih+
n (V)(g) =

1
2

χCycn(V)(g) +

⎧⎨⎩
1
2 χV(g) χV(g2)

n−1
2 [n odd]

1
4

(
χV(g)2 χV(g2)

n−2
2 + χV(g2)

n
2

)
[n even]

. (52)

If the field φ takes value in the adjoint representation of SO(N), it is antisymmetric: φt = −φ .
Then, the single trace operators have the following reflection property,

(i1, i2, . . . , in) ≡ (−1)n (in, in−1, . . . , i1) , (53)

in addition to the cyclicity. Due to the factor (−1)n we have less number of operators in the SO(N)

case compared to the Sp(N) case.
Again, let us consider the n = 3 example. Since (i, j, k) ≡ −(k, j, i), any repeated index vanish:

(i, i, j) ≡ (i, j, i) ≡ −(i, j, i). In the end, only strictly ordered set (i, j, k) with i < j < k survive. Hence,
the character is

χDih−3 (V)(g) = ∑
i<j<k

λi λj λk =
(∑i λi)

3 − 3
(
∑i λ2

i
) (

∑j λj

)
+ 2 ∑i λ3

i

6

=
χV(g)3 + 2 χV(g3)− 3 χV(g2) χV(g)

6
=

1
2

χcyc3(V)(g)− 1
2

χV(g) χV(g2) . (54)

One can notice that compared to the Sp(N) case of (51), we have minus sign after the last equality.
This pattern extends to an arbitrary odd n :

χDih−n (V)(g) =
1
2

χCycn(V)(g) +

⎧⎨⎩− 1
2 χV(g) χV(g2)

n−1
2 [n odd]

1
4

(
χV(g)2 χV(g2)

n−2
2 + χV(g2)

n
2

)
[n even]

, (55)

because, for odd n, cyclic operators can be split into either symmetric or anti-symmetric ones
under reflection.

Finally, one may attempt to sum χDih±n (V) over n. The term half of cyclic character can be treated
as the cyclic case, whereas the additional contributions can be summed as they are geometric series.
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It will be useful to consider the two partition functions obtained by summing separately over the even
and odd values of n. In particular

χeven(V) (g) =
1
4

∞

∑
n=2,4,6,···

(
χV(g)2χV(g2)

n−2
2 + χV(g2)n/2

)
=

1
4

χV(g)2 + χV(g2)

1− χV(g2)
,

χodd(V) (g) =
1
2

∞

∑
n=3,5,7,···

χV(g) χV(g2)
n−1

2 =
1
2

χV(g) χV(g2)

1− χV(g2)
.

(56)

In the end we get

χDih±(V)(g) =
1
2

χCyc(V)(g) + χeven(V) (g)± χodd(V) (g) . (57)

4.3. U(N)×U(M) Bi-Fundamental and O(N)×O(M) Bi-Vector Models

If the conformal fields φ carry bi-fundamental representations with respect to U(N) and U(M),
hence taking value in M × N complex matrix, then the single trace operators will take the form of

Tr
(

∂k1 φ ∂k2 φ† · · · ∂k2n φ†
)

. (58)

Note here that the operators involve always even number of fields in φ φ† form, and the operators
are invariant under the cyclic rotation by 2. This means that the basic vector space in this case is not
V but V ⊗ V and the single trace operators with 2n operators is governed by the cyclic group Cn .
The character can be constructed in an analogous manner and reads

χBf2n(V)(g) =
1
n ∑

k|n
ϕ(k) χV(gk)

2n
k . (59)

We can collect the above for n = 1, . . . , ∞ to get

χBf(V)(g) =
∞

∑
n=1

χBf2n(V)(g) = −
∞

∑
k=1

ϕ(k)
k

log
[
1− χV(gk)2

]
. (60)

The final case is the O(N)×O(M) bi-vector models where the scalar fields φ are real as opposed
to the U(N) × U(M) bi-fundamental models. Hence, the space of its single-trace operators are
spanned by

Tr
(

∂k1 φ ∂k2 φt · · · ∂k2n φt
)

, (61)

which has the reflection symmetry:

Tr
(

∂k1 φ ∂k2 φt · · · ∂k2n φt
)
= Tr

(
∂k2n φ · · · ∂k2 φ ∂k1 φt

)
, (62)

On top of the cyclic rotation by two. Again, the character of the bi-vector models is the half of
the bi-fundamental ones up to the contribution from the reflection symmetries. This time, the latter is
simpler and we end up with

χBv2n(V)(g) =
1
2

(
χBf2n(V)(g) + χV(g2)n

)
. (63)

The character for all single-trace operator is again the sum of the latter over all positive integer n
and reads

χBv(V)(g) =
∞

∑
n=1

χBv2n(V)(g) =
1
2

(
χBf(V)(g) +

χV(g2)

1− χV(g2)

)
. (64)
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4.4. Symmetric Group

Finally, we can consider the operators made by conformal fields which are fully symmetric in any
permutations. This is the symmetric group and the corresponding character is given by

χSymn(V)(g) = ∑
j1+2 j2+···+n jn=n

n

∏
k=1

χV(gk)
jk

kjk jk!
, (65)

or in terms of Bell polynomial as

χSymn(V)(g) =
1
n!

Bn(0! χV(g), 1! χV(g2), . . . , (n − 1)! χV(gn)) . (66)

The generating function or the full partition function has rather simple form,

χSym(V)(g) = exp

(
∞

∑
k=1

1
k

χV(gk)

)
, (67)

sometimes referred to as plethystic exponential (PE). Notice that here we do not have the notion of
large N expansion (and single trace, multi trace etc) hence we have also included the n = 1 operator,
that is φ itself.

In order to see the implication of the above formula, let us consider a few toy examples. We first
take the one-particle partition function of free scalar in two dimensions :

χV(q, q̄) =
q

1− q
+

q̄
1− q̄

. (68)

One can evaluate the sum over k by expanding first 1/(1− q) and 1/(1− q̄) as

∞

∑
k=1

1
k

qk

1− qk =
∞

∑
k=1

1
k

qk
∞

∑
n=0

qk n =
∞

∑
n=1

log
(

1
1− qn

)
, (69)

hence we get

χS(V)(q, q̄) =

(
∞

∏
n=1

1
1− qn

)(
∞

∏
n=1

1
1− q̄n

)
. (70)

This differs from the partition function of free boson by (q q̄)−1/24/ log(q q̄) . The (q q̄)−1/24

factor is missing because our character did not include the q−c/24 . The log(q q̄) factor is due to zero
mode contribution.

Let us consider the following toy partition functions inspired by the two-dimensional free boson,

χV(q) =
q

(1− q)d , (71)

which captures certain aspects of the scalar character in higher dimensions. By using

q
(1− q)d =

1
(d − 1)!

(
∂

∂s

)d−1 sd−1 q
1− s q

∣∣∣
s=1

, (72)

we get

log χS(V)(q) =
1

(d − 1)!

(
∂

∂s

)d−1 ∞

∑
n=1

sd+n−2 log
(

1
1− qn

) ∣∣∣
s=1

=
∞

∑
n=1

(
d + n − 2

d − 1

)
log

(
1

1− qn

)
. (73)
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In the end, the full partition function,

χS(V)(q) =
∞

∏
n=1

1

(1− qn)(
d+n−2

d−1 )
, (74)

gives the MacMahon’s (unsuccessful) guess formula for the generating function of
d-dimensional partitions.

4.5. Fermions

So far, our consideration was only on the Hilbert space V of bosonic conformal fields φ. Let us
now include the Hilbert space W of fermionic fields ψ :

W = Span{ψ, ∂ψ, ∂∂ψ, . . .} = Span{wp} . (75)

The total Hilbert space of conformal fields is then H = V ⊕W . We generalize the character to
cover the fermionic case as

Z(g) = Tr
(
(−1)F g

)
, (76)

where F is the fermionic number operator.
Let us reconsider the SU(N) adjoint partition function for single trace operators of lower n’s.

For n = 2, we have two additional class of operators. First, we have fermionic operators,

ZVW(g) = −TrV⊗W(g) = −∑
i,p

λi λp = ZV(g) ZW(g) . (77)

Second, there is the bosonic one made by two fermions,

ZWW(g) = TrW∧W(g) = ∑
p<q

λp λq =

(
∑p λp

)2 − ∑p λ2
p

2
=

1
2

(
ZW(g)2 + ZW(g2)

)
. (78)

In the end, we get the same form as (38):

ZHH(g) =
1
2

(
ZH(g)2 + ZH(g2)

)
. (79)

Moving to n = 3 , we have three more classes of operators, VVW, VWW and WWW . The first
and second are simply

ZVVW(g) = ZV(g)2 ZW(g) , ZVWW(g) = ZV(g) ZW(g)2 , (80)

and the last is

ZWWW(g) =
ZW(g)3 + 2 ZW(g3)

3
. (81)

Note that the fermionic nature does not play any role in WWW as the cyclic permutation can be
viewed as the commutation of bosonic WW and fermionic W space. In the end, we get

ZHHH(g) =
ZH(g)3 + 2 ZH(g3)

3
. (82)

In this way, one can convince her/himself that the partition fuction of single trace operators made
by both of bosonic and fermionic conformal fields has the same form as the character in the pure
bosonic case:

Zcycn(H)(g) =
1
n ∑

k|n
ϕ(k) ZH(gk)

n
k . (83)
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One can include fermions in the dihedral, bi-fundamental and bi-vector models in the same way.

5. One Loop Tests of Free Matrix CFT Holographies

In the previous section, we have computed the partition function of all single trace operators
in various free CFTs with fields in various different representations of the internal symmetry group.
Using the AdS/CFT dictionary, these operator spectrum can be identified to the spectrum of AdS
fields in the dual theory. Hence, the partition function for single trace operators computed above can
be simply interpreted as the partition function of the dual AdS theory. Then, the CIRZ formalism
presented in Section 3 can be readily applied to computing the one-loop vacuum energy. Analogously,
the methods of Section 2 can be used to compute the Casimir energy of such AdS theories. We now
turn to these computations.

A natural starting point is to evaluate the one-loop vacuum and Casimir energies of the AdS
fields dual to the single trace operators made by n boundary fields. The corresponding partition
functions are given by χCycn

(43), χDih+
n

(52), χDih−n (55), χBfn (59), χBvn (63) and χSymn
(65). The set of

AdS fields dual to the single trace operators appearing in each tensor product above will be referred to
as comprising the (n − 1)th order Regge trajectory, following [37,38,40].

In order to obtain the full vacuum energy we need analytic expressions for the vacuum energy
of the fields in a given Regge trajectory. As we shall show shortly, this is not available except for the
N = 4 theory. However, it is still possible to calculate these quantities for n’s large enough to observe
a certain pattern. Either from the pattern or from the analytic expression in the N = 4 case, we can see
that the one-loop vacuum and Casimir energies seem to diverge with increasing n.

Given this, we need an alternative prescription to sum over fields and one-loop energies to cure
this divergence. For intution, let us consider the corresponding computations for the higher-spin
theories dual to vector models [23–25,28]. In that case, divergence in the total energy can be traced
back to the fact that contributions from individual fields are computed first and summed over second.
Indeed, our computations of [37,38] reviewed in Appendix C show that this divergence is cured by
summing over states first, by computing the thermal partition function, and evaluating the vacuum
energy second. Hence it is natural to attempt to cure the divergence arising in matrix model CFTs
by applying the CIRZ technique directly to the full partition functions—χCyc (44), χDih± (57), χBf (60),
χBv (64) and χSym (67). We shall also carry out these computations here.

The rest of the section is organized as follows. Section 5.1 contains the computation of one-loop
vacuum and casimir energies for the bulk duals of the free Sp(N) and SO(N) scalar matrix models as
well as the free Yang Mills theories. Next, in Section 5.2 we turn to the corresponding computations for
the bulk dual of N = 4 super Yang-Mills. Finally in Section 5.3 we study the bulk duals of CFTs with
bifundamental matter, in particular, scalars and Majorana fermions.

Finally, some reminders of notation. In what follows, the partition function of the boundary scalar,
spin- 1

2 , and spin-1 fields is respectively denoted by χ0, χ 1
2

and χ1, and their explicit forms are given

in (A49), (A50) and (A51). The Casimir energy is denoted as E and the one-loop vacuum energy is
denoted as Γ(1). Often these quantities will have subscripts which indicate which fields or set of fields
they correspond to. For example, E0 is the Casimir energy for a boundary scalar, while Γ(1)

Dih+
n

is the

vacuum energy summed over all fields contained in the cyclic character for Sp(N) at some fixed n.

5.1. Non-Supersymmetric Sp(N) and SO(N) Adjoint Models

5.1.1. Bulk Dual of Free Scalar

At fixed values of n, the Casimir energies EDih±n and vacuum energy Γ(1)

Dih±n
for the free Sp(N) and

SO(N) adjoint scalar CFTs can be obtained by applying CIRZ methods to (52) and (55), where χV is
taken to be χ0. The results obtained up to n = 32 are exhibited graphically in Figure 3. We make
the following observations at this stage. Firstly, we note that the Sp(N) and SO(N) plots almost
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overlap each other. Secondly, upon normalizing by ϕ(n) E0 or ϕ(n) Γ(1)
0 , the chaotic pattern of the

results in Figure 3 maps to the constant 1
2 with very tiny fluctuations: see Figure 4. This is because

the correction terms in (52) and (55) very quickly decay as n increases. Further, it was also observed
for the SU(N) adjoint model in [37] that when n = 2m for an integer m, then the fluctuations exactly
vanish. This turns out to be no longer true for the dihedral models due to the presence of the correction
terms (52) and (55).

SU(N) (ECycn )
Sp(N) (EDihn+ )
SO(N) (EDihn- )
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Figure 3. Plot of the first 32 results for EDih±
n

and Γ(1)

Dih±
n

(in the unit of log R). (a) Casimir Energy; (b)
Vacuum Energy.
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Figure 4. Plot of EDih±
n

/(ϕ(n) E0) and Γ(1)

Dih±
n

/(ϕ(n) Γ(1)
0 ). (a) Casimir Energy; (b) Vacuum Energy.

In order to obtain the full Casimir or vacuum energy, we need to sum these results over n . In the
N → ∞ limit, the summation is from n = 2 to ∞. Since we do not have an analytic expression for n at
our disposal, we cannot evaluate this sum. However, if the pattern of Figure 4 persists, one can expect
from the pattern that the total results are divergent.

We will now examine if the CIRZ method can again be used to regulate this divergence by
summing over the spectrum first and evaluating the free energy afterwards. It is quickly apparent that
the CIRZ method, when applied to (57), returns a finite value for the Casimir energy for both Sp(N)

and SO(N) models. In particular,

EDih+ =
27
240

, EDih− =
28

240

(
E0 =

1
240

)
, (84)

where we have also presented the Casimir energy of the boundary scalar for comparison. We now
finally turn to the one-loop vacuum energy computation in the N → ∞ case, where we provide a few
more details. Firstly, again from examining (57) we see that it is useful to focus on the correction terms
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χeven and χodd computed in (56). Applying the CIRZ formalism, we see that the one-loop vacuum
energies receive the following contributions

Γ(1)
odd = − 1

180
log R, Γ(1)

even =
101
180

log R. (85)

Using these results, as well as the result [37]

Γ(1)
Cyc = − 1

90
log R. (86)

We see that for the bulk dual of the scalar matrix model

Γ(1)

Dih+ =
11
20

log R , Γ(1)

Dih− =
101
180

log R
(

Γ(1)
0 =

1
90

log R
)

. (87)

The vacuum energy for the boundary scalar is also presented above for comparison. We postpone
discussions of how to interpret these results to the conclusions.

5.1.2. Bulk Dual of Free Yang Mills

In contrast to the free scalar case, for free Yang Mills—we take χV = χ1—we see that the one-loop
vacuum and Casimir energies plotted in Figure 5a,b shows a runaway behavior. Further, though
the scale of the graph hides it, the contribution to the vacuum energy flips sign as n is increased.
This may be readily inferred from the fact that for n = 2 the Sp(N) and SO(N) partition functions (52)
and (55) are equal to the SU(N) partition function, for which the vacuum energy contribution was
computed in [38] and found to be + 62

45 log R, and the fact that for larger values of n the vacuum energy
contribution takes negative values.
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Figure 5. Plots of the Casimir energy and the one-loop vacuum energy of the bulk dual of free
Yang-Mills theory in SO(N) and Sp(N) adjoint representation up to n = 32. (a) Casimir Energy for
free Yang-Mills; (b) Vacuum Energy for free Yang-Mills; (c) Log plot of the Casimir Energy; (d) Log
plot of the Vacuum Energy.
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Hence, even in the Yang Mills case the one-loop free energies do not appear to converge as we
increase the value of n. It is therefore again natural to regulate the result by directly using the character
of the full partition function (57). In this way we obtain the total Casimir energy as

EDih+ =
1377
120

, EDih− =
1388
120

(
E1 =

11
120

)
. (88)

While for the total vacuum energy we find

Γ(1)

Dih+ =
791
10

log R , Γ(1)

Dih− =
7181

90
log R

(
Γ(1)

1 =
31
45

log R
)

. (89)

5.2. Bulk Dual of Free N = 4 SYM

We now turn to the maximally supersymmetric case of the AdS5 dual of free planar N = 4 super
Yang-Mills with gauge group SO(N) or Sp(N). The partition function to use is ZV = χ1 − 4 χ 1

2
+ 6 χ0,

as in the SU(N) case studied in [40] we again find that the computation can be analytically carried out
for arbitrary values of n, in contrast to the non-supersymmetric cases studied above.

We remind the reader here that the result for the one-loop vacuum and Casimir energies from the
n-th order Regge Trajectory in the SU(N) (i.e. cyclic) case was given by

Γ(1)
Cycn

= n log R, ECycn
=

3
16

n . (90)

The partition function for the n-th order Regge Trajectories in the Sp(N) and SO(N) adjoint
models is given in (52) and (55) respectively. We focus on the correction term in both expressions.
The contributions to the one-loop free energies from these terms readily be evaluated and
summarized as

Γ(1)

Dih±n
− 1

2
Γ(1)

Cycn
= log R

⎧⎨⎩± n
2 [n odd]

n
2 [n even]

, EDih±n − 1
2

ECycn
=

⎧⎨⎩± 3 n
32 [n odd]

3 n
32 [n even]

. (91)

Combining with the cyclic result, we obtain the one-loop free energies for the n-th order Regge
Trajectory in Sp(N) as

Γ(1)

Dih+
n
= n log R , EDih+

n
=

3 n
16

, (92)

while for SO(N) they are given by

Γ(1)

Dih−n
=

⎧⎨⎩0 [n odd]

n log R [n even]
, EDih−n =

⎧⎨⎩0 [n odd]

3 n
16 [n even]

. (93)

The total one-loop free energies are given formally as

Γ(1)

Dih+ = log R
∞

∑
n=2

n , EDih+ =
3
16

∞

∑
n=2

n ,

Γ(1)

Dih− = 2 log R
∞

∑
p=1

p , EDih− =
3
8

∞

∑
p=1

p , (94)

where for the SO(N) case we used n = 2p . The above involve clearly divergent sum ∑∞
p=1 p , which has

been regularized to zero in [27]. Hence, if we use the same regularization scheme, we would obtain

Γ(1)

Dih+ = − log R , Γ(1)

Dih− = 0 , EDih+ = − 3
16

, EDih− = 0 . (95)
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We can rederive the same result applying the CIRZ directly to the full partition functions χDih± (57).
However, we see that at β = 0, the N = 4 singleton partition function ZV equals 1. As a result,
the geometric series in (56) are divergent at that point. To avoid this, we introduce a factor rn−2 in summing
χDih±n from n = 2 to ∞ . With the regulator r, we find that the correction terms (56) give

Γ(1)
even = 1

2 q(r) log R , Γ(1)
odd =

1
2
(q(r)− 1) log R , (96)

Eeven = 3
32 q(r) , Eodd =

3
32

(q(r)− 1) , (97)

with
q(r) =

r + 1
(r − 1)2 . (98)

This immediately yields (95) in the SO(N) case as the function q(r) simply cancels out. In the
Sp(N) case, this function survives and becomes singular in the r → 1 limit. By adopting the scheme
‘q(1) = 0’ we can again recover (95) . We would however like to emphasize that the result obtained
by naively using (56) as the partition functions for N = 4 is finite and different from the above.
In particular, for the Sp(N) matrix model the Casimir and vacuum energies are − 371

1152 and − 1049
648 log R

respectively, while for the SO(N) matrix model they are − 3
128 and − 1

8 log R.

5.3. U(N)×U(M) Bi-Fundamental and O(N)×O(M) Bi-Vector Models

We now turn to a computation of the one-loop vacuum and Casimir energies for the bulk duals of
the free U(N)×U(M) bi-fundamental model, and next, the O(N)×O(M) bi-vector model. We will
consider the cases where the fundamental field is either a scalar (χV = χ0) or a Majorana fermion
(ZV = −χ 1

2
).

For the case of the U(N)×U(M) bi-fundamental model, it turns out that the one-loop vacuum
and Casimir energies are almost trivially zero. This is because both χ0(g) and χ 1

2
(g) are odd in β,

and hence χ0(gk)2 and χ 1
2
(gk)2 are even in β. Hence the functions fH|0, fH|1 and fH|2 are also even in

β and therefore possess no odd powers of β in the small β expansion. Hence the one-loop vacuum
energy for the corresponding AdS theories are trivially zero. By a similar reasoning, the one-loop
Casimir energy also vanishes.

Let us turn to the computation of the vacuum and Casimir energies for O(N)×O(M) bivector
model. Working first at fixed values of n (here 2n is the number of fields in single trace operators), we
observe that as n grows, the absolute value of the one-loop free energies EBvn and Γ(1)

Bvn
rapidly decay

for both scalar and fermion cases. To understand better this decaying behavior, we depict the log-plots
of the Casimir and vacuum energies for scalar and fermion bi-vector models in n at Figure 6: the linear
behavior implies that the one-loop free energies exponentially decay to zero in n, for both scalar and
fermion cases.

When N, M → ∞, the full one-loop free energies are the sum of all these results from n = 1 to ∞.
But, due to the absence of analytic expressions, we cannot evaluate this sum. Instead, we can again
apply the CIRZ method directly to the full partition functions (64). In the end, we find that the one-loop
free energies of the bulk duals of O(N)×O(M) bivector model are simply zero:

EBv = 0 , Γ(1)
Bv = 0 , (99)

both for the scalar and fermion cases. As a final comment, we note that if only N → ∞ while M is kept
finite, the single trace operators can involve only finite number of fields in a trace, hence possible value
of n is bounded above. An extreme case is the vector model with M = 1 where the only allowed value
of n is 2 (remind that 2n is the number of fields in a trace). Therefore, for finite M, the bulk dual theory
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will involve only finite number of Regge trajectories and the full one-loop free energies will be a finite
sum of EBvn and Γ(1)

Bvn
.
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Figure 6. The vacuum energy of the scalar bivector model (lower left) and fermion bivector model
(lower right); and the Casimir energy of the scalar bivector model (upper left) and fermion bivector
model (upper right).

5.4. Symmetric Group

Let us consider a toy AdS/CFT model based on free scalar with symmetric group, even though it
does not fit well in the standard picture on holography in many respects. Putting the interpretation
issues aside, let us simply provide the result of Casimir energy computations. Using the partition
functions (65), we calculate first 32 Casimir energies ESymn

and plot the result in Figure 7. We find the
Casimir energy has an oscillating behaviour with exponentially growing oscillation amplitude.
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Figure 7. Casimir energies for the first 32 results. (a) ESymn
; (b) f (ESymn

) with f (x) = sign(x) log |x|.

6. Summary and Concluding Remarks

In this paper we have computed the one-loop free energies for the holographic duals of a number
of free CFTs. These results are summarized in Table 1.
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Table 1. Summary of one-loop free energies computed for bulk duals of free matrix conformal field
theories (CFTs) in the N → ∞ limit. Γ(1) is in unit of log R. The fermion is Majorana.

Boundary CFT Symmetry Group Casimir Energy E Vacuum Energy Γ(1)

Adjoint Scalar Sp(N) 27
240

11
20

SO(N) 28
240

101
180

Yang Mills Sp(N) 1377
120

791
10

SO(N) 1388
120

7181
90

N = 4 SYM Sp(N) − 3
16 −1

SO(N) 0 0

Bi-fundamental Scalar U(N)×U(M) 0 0
Bi-vector Fermion U(N)×U(M) 0 0

Bi-vector Scalar O(N)×O(M) 0 0
Bi-vector Fermion O(N)×O(M) 0 0

We now briefly discuss the physical interpretation of these results in terms of matching the free
energies across the bulk and the boundary theories. For definiteness, we will focus on vacuum energy
in the scalar SO(N) adjoint model, though the discussion readily generalizes to the other dualities
discussed above. The CFT free energy on S4 has a logarithmic divergence corresponding to the a
anomaly, and is given by

FCFT =
N (N − 1)

2
1

90
log Λ , (100)

while the AdS free energy takes the form

FAdS =

(
g−1L0 +

101
180

+O(g)
)

log R , (101)

where g is the bulk coupling constant. Then by matching the free energies and using the correspondence
between log Λ and log R we see that

g−1 =
N (N − 1)

2
− 101

2
, L0 =

1
90

. (102)

Hence, in contrast to the SU(N) case, the one-loop shift in the definition of the coupling constant
is by a half-integer, and not an integer. Further, if we apply a similar process to interpret the Casimir
energy, we obtain

g−1 =
N (N − 1)

2
+ 28. (103)

Note that this shift is different from that obtained for global AdS5 with S4 boundary in (102).
This is an interesting counterpoint to the situation for higher-spin CFT dualities as well as SU(N)

matrix CFT dualities the shift was the same in both backgrounds and was always by an integer amount.
It would be interesting to have a better understanding of (102) and (103). While it is true that quantum
effects are sensitive to topologies, it is puzzling that the AdS/CFT dictionary itself can get altered in a
background dependent way. The results (102) and (103) might be indicating that putative AdS/CFT
dualities involving the free SO(N) and Sp(N) adjoint scalar model and free Yang Mills hold only in
the planar limit. It might also be possible that higher loop corrections can alter this discussion.

In this regard the situation for N = 4 super Yang Mills is perhaps more satisfactory, once an
appropriate regularization is adopted. In the Sp(N) case we find the shift

g−1 =
N(N + 1)

2
− 1 =

(N − 1)(N + 2)
2

. (104)
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While for the SO(N) case it does not shift at all from the tree-level identification

g−1 =
N(N − 1)

2
. (105)

An additional curiosity regarding the dihedral matrix models is that for all the matter content that we
have examined, be it the scalar, spin-1 or N = 4 supersymmetric, the following relations hold:

EDih− = EDih+ + Esingleton, Γ(1)
Dih− = Γ(1)

Dih+ + Γ(1)
singleton. (106)

Or in other words, the contribution of χodd(V) to the one-loop free energies is equal to −1/2 times
the contribution of χV .

We finally turn to a summary of possible ambiguities in the application of the CIRZ method that
we have so far only briefly discussed. These have to do with the presence of additional poles in the
CIRZ integrands fH|n and the partition function Z in the complex-β plane when we work with the full
partition function. Firstly, we note that due to the presence of terms of the form

log
[
1− χV

(
gk
)]

, and log
[

1− χV

(
gk
)2
]

(107)

the partition functions (57), (60) and (64) contain branch points in β, one of which lies on the positive
real axis5.

Since the reduction of the contours in (5) and (31) to small loops around β = 0 relies on the
integrands having no additional singularities in the complex β plane, the contribution of these branch
points to the β integrals may need to be separately accounted for. Next, as for the SU(N) case we also
choose to apply the CIRZ partition function on the partition functions χlog,k defined in (45) at fixed k.
This is again because of the singular points in β contained in (45) at fixed k. In particular, if βc is a
singular point for (45) at k = 1, then βc

k is a singular point of χCyc in (57) at arbitrary integer values
of k. Similar remarks apply to the singular points of (60) and (64). These singularities would tend to
cluster around β = 0, making the partition function highly non-analytic in that neighbourhood.

In addition, the presence of this pole in the complex β plane also introduces an additional
ambiguity which we have so far not discussed in much detail. In particular, the summation of the
geometric series carried out to evaluate (56) and (64) assumes that the absolute value of the character
χV (g) is less than 1. If the absolute value is greater than 1, the summed expression may be used as an
analytic continuation of the divergent geometric series. However, this breaks down when |χV (g) | is
equal to 1, and the resulting expressions for the partition functions (56) such as diverge. This is what
happens for the character of the N = 4 Maxwell multiplet at β = 0, and the role of the regulation with
r that we carried out above is essentially to discard the contribution of this singularity to the contour
integrals (5) and (31). Since the characters χ0(g) and χ1(g) become 1 at some positive real β, and not
at β = 0 we have implicitly carried out this prescription for the scalar matrix models and for free Yang
Mills. The inclusion of this additional pole leads to contributions to the free energy which are not
rational numbers.
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Appendix A. Harmonic Analysis on Spheres, Hyperboloids, and Their Quotients

In this section we will review some essential facts about the spectrum of the Laplacian
� = −gμν∇μ∇ν on Anti-de Sitter space, focusing mostly on Euclidean AdS5 and more generally

AdS2n+1. The extension to even dimensional subspaces has some subtleties which we mention below.
Our starting point is the observation that Euclidean AdS5 is the symmetric space SO(5, 1)/SO(5).
From this it follows, see [18,48] for a review of these facts, that the spectrum of the Laplacian over
arbitrary spin fields is determined in terms of the representation theory of SO(5, 1) and SO(5). Further,
since the results are more generally valid for all homogeneous spaces, we shall present the results for
the general case, giving concrete examples along the way.

Firstly, given Lie groups G and H ⊂ G, we define the coset space G/H to be the set of equivalence
classes of elements in G obtained by the right action of the subgroup H, i.e.,

g1 ≡ g2 if ∃ h ∈ H s.t. g1 = g2 · h. (A1)

The set of all g equivalent to an element go under this relation is denoted by go H. Now G is the
principle bundle over G/H with fibre isomorphic to H, and we can define the projection map from the
bundle to the base space

π : G → G/H, π (g) = gH, ∀ g ∈ G. (A2)

Further we can also define a section σ (x), x ∈ G/H, through

σ : G/H → G, σ (x) ∈ xH, (A3)

i.e., σ (x) is an element of the coset which contains x. Clearly, there is no canonical choice of section,
and all sections are equivalent to each other upto right multiplication by H. Therefore, given two
sections σ1 and σ2, at every xo ∈ G/H, there exists an h ∈ H such that σ1 (xo) = σ2 (xo) h. Then in this
case the spin of a given field is fixed by specifying a UIR S of H. Secondly, given a UIR S of H, let us
choose the set of all UIRs R of G that contain S. With these inputs, the eigenvalues of the Laplacian for
a spin-S field are given by

E(S)
R = − 1

a2 (C2 (R)− C2 (S)) , (A4)

where a is the AdS radius. The corresponding eigenfunctions are given by

ψI
a (x) =

1

N(s)
R

[
UR

(
σ (x)−1

)]I

a
. (A5)

Here I is an index for the vector space carrying the representation R and a is an index for the vector
space carrying the representation S. N(s)

R is a normalization constant, which we shall fix subsequently.
Notice that eigenfuctions carrying different values of I for the same R are necessarily degenerate.
Hence the degeneracy of the eigenvalue E(S)

R is at least 6 dR. With these inputs, we may write the zeta
function for the operator −�+ ν2 over a spin-S field on the space G/H as

6 The actual degeneracy can in principle be more as many representations R can carry the same quadratic Casimir C2(R). We
neglect this possibility below as it does not affect the subsequent analysis.
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ζν,S (z) = ∑
R

∑
I

∑
a

1(
E(s)

R + ν2
)z

∫
G/H

√
g ddx

[
ψI

a (x)
]∗ · ψI

a (x) . (A6)

Here the sum over a is the dot product over local spin indices and the sum over I is the sum
over degenerate eigenvalues while the sum over R is the sum over non-degenerate eigenvalues. Now,
using (A5), we have

∑
I

[
ψI

b (x)
]∗ · ψI

a (x) = 1
|N(s)

R |2
δb

a , (A7)

which is independent of the point x on the coset space7. Further, using the definition of degeneracy∫
ddx

√
g ∑

I,a

[
ψI

a (x)
]∗ · ψI

a (x) = dR, (A8)

we must have
1

|N(s)
R |2

=
dR
ds

1
VG/H

. (A9)

The zeta function (A6) is therefore perfectly consistent with the original definition

ζν,S (z) = ∑
R

dR(
E(s)

R + ν2
)z . (A10)

It should be immediately apparent, however, that the above procedure is at first sight ill-defined
for the case of hyperboloids like AdS5. In this specific example G is SO(5, 1), and its unitary
representations are necessarily infinite dimensional. Further, the volume VG/H is infinite. For this
reason, a slight modification of the above computation is adopted. We note from (A7) that the quantity
∑I

[
ψI

b (x)
]∗ · ψI

a (x) is independent of the point x. As a result, it is possible to define the coincident
zeta function

ζcoin
ν,S (z) = ∑

R
∑

I
∑
a

1(
E(s)

R + ν2
)z

[
ψI

a (x)
]∗ · ψI

a (x) , (A11)

such that
ζν,S (z) = VG/H ζcoin

ν,S (z) . (A12)

We shall now recapitulate the evaluation of the coincident zeta function of fields on AdS5 by
means of analytic continuation from S5. For definiteness we shall focus on the Laplace operator
−� but the discussion easily generalized to arbitrary ν. Firstly, we specify the spin S of the field by
the UIR of SO(5) that it carries. This representation is in turn specified by the quantum numbers
S = (s1, s2), where

s1 ≥ s2 ≥ 0. (A13)

To solve for the zeta function on S5, we consider all UIRs R of SO(6) that contain S when restricted
to SO(5). Firstly, UIRs of SO(6) are labelled by the triplet (�, m1, m2) where

� ≥ m1 ≥ |m2|, (A14)

7 While we are working here with compact groups, this statement should hold equally well when we consider AdS5 for which
G = SO(5, 1). This is the group theoretic origin of the Equation (21) which exploited the homogeneity of AdS5 to define the
Plancherel measure.
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and �, m1, m2 are all simultaneously integers or half-integers. The dimension of such a representation
R is given by

dR =
(�+ 2)2 − (m1 + 1)2

3
(�+ 2)2 − m2

2
4

(m1 + 1)2 − m2
2

1
. (A15)

This representation R contains S provided

� ≥ s1 ≥ m1 ≥ s2 ≥ |m2|. (A16)

We shall, however, consider the case that the given field satisfies irreducibility conditions, such as
transversality and tracelessness, where some of the inequalities in (A16) saturate to yield

� ≥ s1 = m1 ≥ s2 = |m2|. (A17)

Further, the eigenvalue of the Laplacian is determined from (A4) to be

E(s1,s2)
� = (�+ 2)2 − (s1 + s2)− 4, (A18)

and as a result, the coincident zeta function on a five-sphere of unit radius is given by

ζcoin
(s1,s2)

= 1
12 VS5 ∑

�≥s1

[
(�+ 2)2 − (s1 + 1)2

] [
(�+ 2)2 − s2

2

] [
(s1 + 1)2 − s2

2

]
(
(�+ 2)2 − (s1 + s2)− 4

)z . (A19)

Next, we move to the case of AdS5 where to carry out the above procedure we need to enumerate
all UIRs of SO(5, 1) which contain S when restricted to SO(5). UIRs of SO(5, 1) are labelled by the
triplet R = (iλ, m1, m2), where λ ∈ R+ and m1 ≥ |m2| ≥ 0 and contain S provided that

s1 ≥ m1 ≥ s2 ≥ |m2|. (A20)

Further, we shall apply the same irreducibility conditions on the field as we did on S5 to saturate
some inequalities in (A20). In particular, we take m1 = s1 and |m2| = s2. It was explicitly demonstrated
in [18–21,42] that for a wide class of fields, the coincident zeta function in AdS5 may be computed
from the corresponding S5 answer by means of the following analytic continutation

�+ 2 �→ iλ, λ ∈ R+. (A21)

As a result the coincident zeta function on AdS5 is given by

ζcoin
(s1,s2)

= 1
12 VS5

∫ ∞

0
dλ

[
λ2 + (s1 + 1)2

] [
λ2 + s2

2
] [

(s1 + 1)2 − s2
2

]
(λ2 + (s1 + s2) + 4)z . (A22)

We now provide an explicit example of computing the coincident zeta function on AdS5 for a
scalar field without using the analytic continuation proposed above. Also, as the analytic continuation
as presented above seems somewhat abstract, we shall use this example as an explicit setting to
demonstrate how this continuation works in practice.

Appendix A.1. The Scalar on AdS5 and S5

We begin with noting that the metric on SN of unit radius in spherical polar coordinates

ds2
SN = dχ2 + sin2 χ ds2

SN−1 (A23)

is related to the metric on the corresponding hyperbolic space AdSN or HN
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ds2
HN = dy2 + sinh2 y ds2

SN−1 (A24)

via χ = iy. The Laplace eigenvalue equation for scalar fields on SN is given by

� ϕ = � (�+ N − 1) ϕ, (A25)

and its solutions are given in terms of hypergeometric functions as

ϕ�mσ = (sin χ)m
2F1

(
�+ m + N − 1, m − �, m + N

2 ; sin2 χ
2

)
Ymσ. (A26)

The hypergeometric function of the second kind is ruled out by requiring smoothness at χ = 0
while requiring the eigenfunctions to be smooth at χ = π restricts m = 0, 1, . . . , �. The Ymσ solve
the Laplace equation on SN−1 with eigenvalue m (m + N − 2). Then the eigenfunctions of the scalar
Laplace equation on HN

� ϕ =
(

λ2 + ρ2
)

ϕ, ρ = N−1
2 , (A27)

are obtained by making the replacements χ = iy and �+ ρ = iλ in (A26). We therefore have

ϕλmσ = Nλm (i sinh y)m
2F1

(
iλ + ρ�+ m,−iλ + m + ρ, m + N

2 ;− sinh2 y
2

)
Ymσ, (A28)

where Nλm is an overall constant. Notice that these are purely local solutions on which the only
boundary condition that has been imposed is regularity at y = 0. Next, demanding that the
eigenfunctions be square integrable and a complete set fixes λ to be real and positive, while demanding
that they be Dirac delta normalized fixes

Nλm =

(
2N−2

π

)1/2 ∣∣∣∣√πΓ (iλ + (N − 1)/2 + m)

2N+m−2Γ (iλ) Γ (m + N/2)

∣∣∣∣ . (A29)

Note that � �→ iλ − ρ for N = 5 is precisely the analytic continuation used above from AdS5 to S5.
The coincident zeta function is therefore given by

ζcoin (z) =
∫ ∞

0
dλ ∑

m σ

ϕ∗λmσ ϕλmσ

(λ2 + ρ2)
z . (A30)

We choose to evaluate this quantity at y = 0 where the eigenfunction ϕλmσ vanishes unless
m = 0. Further, Ymσ for m = 0 is just the constant mode on SN−1, given by |VSN−1 |−1/2 for reasons of
normalization, and the sum over σ is also then trivial. We finally obtain

∑
m σ

ϕ∗λmσ ϕλmσ =
1

2N−2

∣∣∣∣Γ (iλ + (N − 1)/2)
Γ (iλ) Γ (N/2)

∣∣∣∣2 ∣∣∣∣Γ(N/2)
2πN/2

∣∣∣∣ . (A31)

For the case of N = 5 we obtain

∑
m σ

ϕ∗λmσ ϕλmσ =
1

12π3 λ2
(

λ2 + 1
)

. (A32)

Hence the coincident zeta function for scalar fields on AdS5 is given by

ζcoin (z) =
1

12π3

∫ ∞

0
dλ

λ2 (λ2 + 1
)

(λ2 + 4)z . (A33)

This matches perfectly with (A22) which was obtained by analytic continuation if we set s1 = 0
and s2 = 0 there.
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Appendix A.2. Zeta Functions of AdS5 Fields

To evaluate the partition function of the bulk theory to one-loop order it is sufficient to consider
the quadratic action for the fields about AdS5. For the case of massless symmetric rank-s fields, this is
given by the Fronsdal action

S
[
φ(s)

]
=

∫
dDx

√
gφμ1...μs

(
F̂μ1,...,μs −

1
2

g(μ1μ2
F̂μ3...μs)λ

λ

)
, (A34)

where

F̂μ1...μs = Fμ1...μs −
s2 + (D − 6) s − 2 (D − 3)

�2 φμ1...μs −
2
�2 g(μ1μ2

φμ3...μs)λ
λ, (A35)

and
Fμ1...μs = Δφμ1...μs −∇(μ1

∇λφμ2...μs)λ +
1
2
∇(μ1

∇μ2 φμ3...μs)λ
λ. (A36)

The expressions are true for AdSD though we shall explicitly consider the case of D = 5 only.
It may be shown that this action is invariant under the gauge transformation

φμ1...μs �→ φμ1...μs +∇(μ1
ξμ2...μs). (A37)

For a consistent description, it turns out that the fields φ necessarily satisfy a double-tracelessness
constraint φμ1...μs−4νρ

νρ = 0 for s ≥ 4 and ξ satisfies a tracelessness constraint ξμ1...μs−3ν
ν = 0. It is then

straightforward to evaluate the functional integral

Z(s) =
1

Vol(gauge group)

∫ [
Dφ(s)

]
e−S[φ(s)], (A38)

to obtain the partition function as a ratio of one loop determinants evaluated over symmetric transverse
traceless (STT) fields

Z (s) =

[
det

(
−�− (s−1)(3−D−s)

�2

)
(s−1)

] 1
2

[
det

(
−�+ s2+(D−6)s−2(D−3)

�2

)
(s)

] 1
2

. (A39)

The subscripts indicate that the numerator is evaluated over rank s − 1 STT fields and the
denominator is evaluated over rank s STT fields. The numerator is the ghost determinant that arises
from gauge fixing the freedom (A37). These determinants may be evaluated over quotients of AdS
space using the techniques of [49]. In the specific case of AdS5 where we turn on a temperature β

as well as chemical potentials α1 and α2 for the SO(4) Cartans, we find that the partition function is
given by

logZ (s) =
∞

∑
m=1

1
m

e−mβ(s+2)

|1− e−m(β−iφ1)|2|1− e−m(β−iφ2)|2
[
χ

SO(4)
(s,0) − χ

SO(4)
(s−1,0)e

−mβ
]

, (A40)

and φ1 = α1 + α2, φ2 = α1 − α2. The reader will recognize this as the partition function Tr
(

e−β H−αi Ji
)

computed in the grand canonical ensemble for the conformal primary with highest weights
(
s + 2, s

2 , s
2
)
.

It was observed in [50] that it is possible to formally invert this procedure, i.e., given a character of the
conformal algebra, one may infer the spectrum of the corresponding kinetic operator which gives rise
to the corresponding grand canonical partition function.

Appendix B. Unitary Irreducible Representations of the so(2, 4) Algebra

Fields in AdS5 carry quantum numbers under so(2, 4), the isometry algebra of AdS5, and fall into
its Unitary Irreducible Representations (UIRs). A necessary condition for any AdS/CFT duality is
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that for every field in AdS5, there is a ‘dual’ operator in the CFT4 carrying the same so(2, 4) quantum
numbers as the AdS5 field. We therefore review very briefly the set of UIRs of so(2, 4). These have
been extensively explored in [51,52] and particularly accessible accounts are available in [35,53].

The starting point is the Verma module V(Δ, (�1, �2)) of so(2, 4) . The numbers Δ and (�1, �2) label
the irreps of so(2)⊕ so(4) subalgebra carried by the lowest weight state of the module. Since so(4) �
su(2)⊕ su(2), we shall also use the su(2)⊕ su(2) label [j+, j−]. The two labels are simply related by
j± = (�1 ± �2)/2 . The Verma module V(Δ, (�1, �2)) is unitary and irreducible when Δ is greater than
the critical dimension Δ�1,�2 , which will be introduced shortly in below.

• The UIR belonging to the interior the unitary region of Δ is referred as to long representations.
They can be realized as higher-spin operators in CFT4 or as massive higher-spin fields in AdS5 with
the mass-squared given by M2 = [Δ(Δ− 4)− �1 − �2]/L2 (L is the radius of AdS5) [54–56].

In the critical cases lying on the boundary of the unitary region, the Verma module develops an
invariant subspace and an UIR can be obtained by quotienting the Verma module with the invariant
subspace. These ‘critical’ representations are again divided into two groups, semi-short and short,
depending on (�1, �2) .

• The semi-short UIR appears when �1 �= ±�2 and Δ reaches its critical value Δ�1,�2 = �1 + 2 ,
and the UIR is given by the quotient,

D(�1 + 2, (�1,±�2)) = V(�1 + 2, (�1,±�2))/V(�1 + 3, (�1 − 1,±�2)) . (A41)

The semi-short representations can be realized as conserved current operator in CFT4 or massless
(mixed-symmetry) higher-spin fields in AdS5 .

• The short representation arises when |�2| = �1 and Δ�1,±�1 = �1 + 1 . The invariant subspace of
the Verma module appearing in this case is a semi-short representation, hence again contains an
invariant subspace. Therefore, the UIR is given by a ‘double’ quotient,

D(�+ 1, (�,±�)) = V(�+ 1, (�,±�))/D(�+ 2, (�,±(�− 1))) ,

D(�+ 2, (�,±(�− 1))) = V(�+ 2, (�,±(�− 1)))/V(�+ 3, (�− 1,±(�− 1))) . (A42)

Differently from the long and semi-short representations, the short representations cannot be
realized as a propagating AdS5 field but only as a conformal field operator in CFT4 .

A convenient way to treat the representation spaces, in particular their tensor products and
decompositions, is to use the Lie algebra character. In case of so(2, 4), it is given by the trace,

χR(q, x+, x−) = TrR
(

qD x+ J+ x− J−
)

, (A43)

over a representation space R . Here D, J± are the Cartan subalgebra of so(2, 4) and corresponds to the
subalgebra so(2) and su(2)⊕ su(2) . Since all the UIRs are given in term of the Verma module. Their
characters can be also expressed by the Verma module character. It is given by the following simple
function,

χΔ,[j+ ,j− ](q, x+, x−) = qΔ P(q, x+, x−) χj+(x+) χj−(x−) , (A44)

where χj is the character of the spin-j representation of su(2) taking the form,

χj(x) =
xj+ 1

2 − x−j− 1
2

x
1
2 − x− 1

2
, (A45)
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and P(q, x+, x−) is given by

P(q, x+, x−) =
1(

1− q x
1
2
+ x

1
2−
)(

1− q x−
1
2

+ x
1
2−
)(

1− q x
1
2
+ x−

1
2−
)(

1− q x−
1
2

+ x−
1
2−
) . (A46)

In the case of long representations, its character is simply that of Verma module. About the
semi-short and short representations, the character is given by the difference,

χD(�1+2,(�1,�2))
= χ�1+2,(�1,�2)

− χ�1+3,(�1−1,�2)
, (A47)

χD(�+1,(�,±�)) = χ�+1,(�,±�) − χ�+2,(�+1,±(�−1)) + χ�+3,(�−1,±(�−1)) . (A48)

It is often useful to work with (β, α+, α−) variables which are related to (q, x+, x−) as q = e−β and
x± = ei α± . Interpreting the character as a partition function, the variables β and α± would correspond
to the inverse temperature and two angular chemical potentials.

As a final remark we explicitly evaluate (A48) for the case of the the boundary singletons that we
need. We obtain

χ0(g) = χD(1,(0,0)) =
eβ − e−β

4 (cos α1 − cosh β) (cos α2 − cosh β)
(A49)

for the scalar,

χ 1
2
(g) = χD( 3

2 ,( 1
2 , 1

2 ))
+ χD( 3

2 ,( 1
2 ,− 1

2 ))
=

(
e

β
2 − e−

β
2

)
cos α1

2 cos α2
2

(cos α1 − cosh β) (cos α2 − cosh β)
(A50)

for the fermion, and

χ1(g) =
e−2β

(−2eβ (cos α1 + cos α2) + e2β(2 cos α1 cos α2 + 1) + 1
)

2 (cos α1 − cosh β) (cos α2 − cosh β)
(A51)

for the spin-1 field. These expressions are useful for the computations in the main text.

Appendix C. Vector Models

Let us first consider the one-loop vacuum energy of the higher spin gravities in AdS5 , which are
dual to free vector model CFTs in four dimensions. In even boundary dimensions, we have more
possibilities of free CFT as there are infinitely many singleton representations. In four boundary
dimensions, they correspond simply to the massless spin j representations. Here, we consider the
j = 0, 1/2 and 1 cases whose AdS duals are referred to as the type A, B and C higher spin theories,
respectively. The other CFTs with j > 1 are rather exotic as they do not have local stress tensor (hence
the dual higher spin theory contains gravity inside). See [39] for the general j cases.

In each of these type A, B, C cases, we have again two different higher spin theories depending
on their spectrum contains only even spin fields or all integer spin fields. And these models are
referred to as minimal or non-minimal and correspond in boundary to O(N) or U(N) free CFT,
respectively. Practically they are distinguished whether the two fields in a bilinear operator are
symmetric. The non-minimal model does not enjoy such symmetry whereas the minimal model does so.
This symmetry of the bilinear CFT operators can be simply reflected at the level of character. The space
of bilinear operators without any symmetry, hence giving the U(N)-model operator spectrum, can be
obtained from

χU(N)(β, α1, α2) =
[
χsing(β, α1, α2)

]2 . (A52)

About the O(N) model, the space of bilinear operators symmetric in two fields can be
obtained from

χO(N)(β, α1, α2) =
1
2

[
χsing(β, α1, α2)

2 + (−1)Fsing χsing (2β, 2α1, 2α2)
]

. (A53)
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Here Fsing is the fermion number associated with the singleton representation. Following standard
conventions, it is 0 for bosonic fields, and 1 for fermionic fields. By AdS/CFT dualities, the contents
in (A52) and (A53) correspond to AdS5 fields in non-minimal and minimal theories, respectively.

With the above inputs, we will now use the techniques reviewed in Section 3 to compute the one-loop
vacuum energy for higher-spin theories in global AdS5 and the one-loop Casimir energy in thermal AdS5.
The singletons for type A, type B and type C dualities have the lowest weights [Δ, j+, j−],

A : [1, 0, 0] , B : [ 3
2 , 1

2 , 0]⊕ [ 3
2 , 0, 1

2 ] , C : [2, 1, 0]⊕ [2, 0, 1] , (A54)

respectively, and the corresponding characters can be determined from (A48). We will first focus on
the simpler case of Casimir energies.

Appendix C.1. Casimir Energies

Firstly, we note that though singletons do not represent propagating degrees of freedom, formally
their partition function may be evaluated through a one-loop determinant in AdS5 and the answer
matched with the CFT result. In particular, using the prescription of (10) and Laurent expanding the
characters (−1)Fsing χsing (β, 0, 0) about β = 0 and picking − 1

2 times the O (β) coefficient, we find

Ec;(0) =
1

240
, E

c;( 1
2 )

=
17
960

, Ec;(1) =
11
120

, (A55)

where the subscript (s) reminds us that this is the Casimir energy of a spin-s singleton. Next, the Casimir
energies of the corresponding bulk non-minimal and minimal higher-spin theories may be found using
the partition functions (A52) and (A53) respectively. We find that for the non-minimal version of all
three dualities the Casimir energy vanishes [38]

E non-min
c;(A/B/C) = 0. (A56)

In contrast, for the minimal cases [38]

E min
c;(A/B/C) = E

c;(0/ 1
2 /1)

respectively . (A57)

We now review the argument of [25] for interpreting the non-vanishing result as a shift in the
dictionary between the bulk coupling constant g and N. In particular, it turns out that the total Casimir
energy in the boundary theory scales as [25]

FO(N) sing (β) = N β Esing + F̂O(N) sing. (A58)

On the bulk side we find a non-vanishing result at one-loop. The bulk answer therefore has
the structure

ΓA/B/C, min =
1
g

SA/B/C, min + βE min
c;(A/B/C) + F̂A/B/C, min (β) + . . . , (A59)

where SA/B/C, min is the corresponding classical on-shell action. With F̂O(N) sing = F̂A/B/C, min, (A58)
and (A59) are consistent provided

g−1 = N − 1, SA/B/C, min = β E
c;(0/ 1

2 /1)
. (A60)

Appendix C.2. Vacuum Energies

We now turn to the computation of one-loop vacuum energies in global AdS5. The computations are
a bit more invloved in practice but conceptually they are very similar to the Casimir energy computations
presented above. The only difference is that instead of expanding the characters and corresponding
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partition functions, we shall first be computing the functions fH|n defined in (28) and Laurent series
expanding those to extract the corresponding γH|ns defined in (32). As in the Casimir energy case,
we have picked the computationally most convenient prescription to work in. We remind the reader
that all three prescriptions are equivalent for higher-spin partition functions, and emphasize that a priori
this will not be true for bulk duals of matrix CFTs. We also mention that while we are focussed here
on the cases of Higher-Spin/CFT dualities involving singletons carrying spins 0, 1

2 and 1, the results
presented here are valid for more general spin s [39]. For the singleton cases, it is straightforward to
compute the fsing|n and expand in β to extract the coefficients

γ(s)|2 =
15 s4 − 1

30
, γ(s)|1 =

6 s4 − 3 s2 + 1
18

, γ(s)|0 =
s4 − s2

2
. (A61)

Finally, summing these three numbers, we obtain the vacuum energy as

Γ(1) ren
(s) = (−1)2s

(
1− 1

2 δs,0

) 60 s4 − 30 s2 + 1
45

log R , (A62)

where (−1)2s arises from the possibly fermionic statistics of the singleton. The reader would recognize,
for the s = 0, 1

2 , 1 instances, the coefficient of the log R term as the conformal anomaly of the spin-s
singleton on S4.

We next turn to the vacuum energy of the non-minimal theory, whose partition function is given
by (A52). Again we may evaluate the fH|n and expand in β to obtain

γnon-min
(s)|2 =

2
105

ns

(
72 s4 − 24 s2 + 1

)
, γnon-min

(s)|1 =
4

315
ns

(
60 s4 − 27 s2 + 2

)
,

γnon-min
(s)|0 =

8
15

ns (s4 − s2) ,
(A63)

where ns =
(2s−1)2s(2s+1)

6 is an integer. The terms in (A63) add to give the full one-loop vacuum energy.
Using (A62), we find that

Γ(1) ren
A/B/C,non-min = 2 n0/ 1

2 /1 Γ(1) ren

(0/ 1
2 /1)

. (A64)

We thus reproduce the results that the one-loop vacuum energy vanishes for type A and B
theories [24] and equals twice that of the singleton for the type C theory [28].

Having thus reproduced the results for the non-minimal dualities, we now turn to the minimal
ones, where the thermal partition function is given by (A53). The contribution to the one-loop vacuum
energy of the first term there has already been evaluated in the minimal case, but for the overall factor
of 1

2 . It turns out that the second term contributes Γ(1) ren
(s) to the vacuum energy [37–39]. We finally obtain

Γ(1) ren
A/B/C,min =

1
2

Γ(1) ren
s,non-min + Γ(1) ren

(s) =
[
(−1)2s ns + 1

]
Γ(1) ren
(s) . (A65)

This reproduces using CIRZ, the results of [24] for the Type A, B dualities and of [28] for the Type
C duality.

We conclude this section with a discussion of the proposal of [23,24] for interpreting the non-zero
one-loop answer derived above for the bulk higher-spin theory. For definiteness, we will work with
a spin-0 field, but the discussion readily generalizes, and we will state the final result for all cases
discussed above. Firstly, the logarithmically divergent part of the free energy for a theory with N scalar
fields defined on S4 is [57,58]

FCFT4 =
N
90

log ΛCFT +O
(

Λ0
CFT

)
. (A66)
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Next, the computation of the one-loop vacuum energy above indicates that the bulk free energy
has the expansion

FAdS5 =

(L0

g
+

1
90

)
log R +O (g) , (A67)

where L0 log R is the on-shell action of the AdS5 theory. Then equating (A66) with (A67) while using
log ΛCFT ∼ log R and identifying L0 = 1

90 yields [24]

g−1 = N − 1. (A68)

This discussion generalizes for the Type B and Type C cases also. In summary, for the non-minimal
case, we find [24,28]

Type A, B: g−1 = N, Type C: g−1 = N − 1, (A69)

while for the minimal case we find [24,28]

Type A, B: g−1 = N − 1, Type C: g−1 = N − 2. (A70)

The corresponding expressions for spin-s singletons is available in [39].
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we find out that upon restriction to the subalgebra so(2, d − 1), these representations branch onto a
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worked out in the particular case of d = 4, where the appearance of a variety of mixed-symmetry
partially massless fields in this decomposition is observed.
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1. Introduction

The completion of the Bargmann-Wigner program in anti-de Sitter (AdS) spacetime 1 lead to some
surprising lessons concerning the definition of masslessness in other backgrounds than Minkowski
space. If nowadays, the most common way to discriminate between massless and massive fields in
AdS is whether or not they enjoy some gauge symmetry, other proposals which involve a particular
kind of so(2, d) representations known as “singletons”, were put forward [4,5]. Indeed, the proposed
notions of “conformal masslessness” and “composite masslessness” both rely on two crucial properties
of singletons, namely 2:

• They are unitary and irreducible representations (UIRs) of so(2, d) that remain irreducible when
restricted to UIRs of so(2, d − 1), or in other words they correspond to the class of elementary
particles in d-dimensional anti-de Sitter space which are conformal. This property is the very
definition of a conformally massless UIR, and it turns out that the singletons are precisely the
so(2, d) UIRs to which conformally massless so(2, d − 1) UIRs can be lifted.

• The tensor product of two so(2, 3) singletons contains all conformally massless fields in AdS4 [7].
In any dimensions however, the representations appearing in the decomposition of the tensor
product of two so(2, d) singletons (of spin 0 or 1

2 ) are no longer conformally massless but
make up, by definition, all of the composite massless UIRs of so(2, d) [6,8–10]. In other words,
composite massless UIRs are those modules which appear in the decomposition of the tensor
product of two singletons.

This tensor product decomposition, called the Flato-Frønsdal theorem, is crucial in the context of
Higher-Spin Gauge Theories and can be summed up as follows (in the case of two scalar singletons):

Rac⊗ Rac = Massive scalar ⊕
∞⊕

s=1

Gauge field of spin s , (1)

where Rac denotes the so(2, d) scalar singleton. Notice that the spin-s � 1 gauge fields are both
“composite massless” by definition, as well as massless in the modern sense (as they enjoy some
gauge symmetry), whereas the scalar field is considered massive in the sense of being devoid of said
gauge symmetries (despite the fact that it is also “composite massless”). The so(2, d) UIRs on the right
hand side make up the spectrum of fields of Vasiliev’s higher-spin gravity [11–14] (see e.g., [15–17]
for, respectively, non-technical and technical reviews). This decomposition can also be interpreted
in terms of operators of a free d-dimensional Conformal Field Theory (CFT) as on the left hand
side, the tensor product of two scalar singletons can be thought of as a bilinear operator in the
fundamental scalar field and the right hand side as the various conserved currents that this CFT
possesses. This dual interpretation of Equation (1) is by now regarded as a first evidence in favor
of the AdS/CFT correspondence [18–20] in the context of Higher-Spin theory [21,22]. This duality
relates (the type A) Vasiliev’s bosonic (minimal) higher-spin gravity to the free U(N) (O(N)) vector
model and has passed several non-trivial checks since it has been proposed, from the computation and
matching of the one-loop partition functions [23,24] to three point functions [25–27] on both sides of
the duality (see e.g., [28–31] and references therein for reviews of this duality). The possible existence
of such an equivalence between the type-A Higher-Spin (HS) theory and the free vector model opened
the possibility of probing interactions in the bulk using the knowledge gathered on the CFT side,
a program which was tackled in [32] (improving the earlier works [33–35]). This lead to the derivation

1 In the sense that for every so(2, d) UIRs of the lowest energy type, i.e., in the discrete series of representations, a realisation
on a space of solutions of a wave equation is known. It should be noted however that the recent works [1,2] uncovered
the existence of “continuous spin” fields on AdS which do not fall into the discrete series, but might correspond to so(2, d)
module induced from the non-compact subalgebra so(1, 1) ⊕ so(1, d − 1) (instead of the maximal compact subalgebra
so(2)⊕ so(d)) as noticed in [3].

2 See e.g., [6] where those properties were studied using the harmonic expansion of fields in (A)dS spacetimes.

164



Universe 2018, 4, 4

of all cubic vertices and the quartic vertex for four scalar fields in the bulk [36,37], as dictated by the
holographic duality, while [38] also raising questions on the locality properties of the bulk HS theory
(see e.g., [39–43] and references therein for more details).

The fact that the prospective CFT dual to a HS theory in AdSd+1 is free can be understood
retrospectively thanks to the Maldacena-Zhiboedov theorem [44] and its generalisation [45,46]. Indeed,
it was shown in [44] that if a 3-dimensional CFT which is unitary, obeys the cluster decomposition
axiom and has a (unique) Lorentz covariant stress-tensor plus at least one higher-spin current, then this
theory is either a CFT of free scalars or free spinors. This was generalised to arbitrary dimensions
in [45,46] 3, where the authors showed that this result holds in dimensions d � 3, up to the additional
possibility of a free CFT of ( d−2

2 )-forms in even dimensions. These free conformal fields precisely
correspond to the singleton representations of spin 0, 1

2 and 1 in arbitrary dimensions [5,48] 4. Due to
the fact that, according to the standard AdS/CFT dictionary, the higher-spin gauge field making up
the spectrum of the Higher-Spin theory in the bulk are dual to higher-spin conserved current on the
CFT side, this CFT should be free 5 as it falls under the assumption of the previously recalled results
of [44–46]. Hence, the algebra generated by the set of charges associated with the conserved currents
of the CFT whose fundamental field is a spin-s singletons corresponds to the HS algebra of the HS
theory in the bulk with a spectrum of field given by the decomposition of the tensor product of two
spin-s singletons. These HS algebras can be defined as follows:

hs
(d)
s ∼= U(so(2, d)

)
Ann

(Dsing.
s

) , (2)

where hs
(d)
s stands for the HS algebra associated with the spin-s singleton in AdSd+1, and U(so(2, d)

)
denotes the universal enveloping algebra of so(2, d) whereas Dsing.

s denotes the spin-s singleton
module of so(2, d) and Ann

(Dsing.
s

)
the annihilator of this module. For more details, see e.g., [6,52,53]

where the construction of HS algebras (and their relation with minimal representations of simple Lie
algebras [54]) is reviewed and [55] where HS algebras associated with HS singletons were studied.
Although Vasiliev’s Higher-Spin theory is based on the HS algebra hs

(d)
0 and the HS theory based

on hs
(d)
s with s = 1

2 , 1, . . . , is unknown 6, the latter algebras are quite interesting as they all describe
a spectrum containing mixed-symmetry fields. Even though this last class of massless field is well
understood at the free level (in flat space as well as in AdS) [56–74], little is known about their
interaction (see e.g., [52,75–78] on cubic vertices and [79–81] where mixed-symmetry fields have been
studied in the context of the AdS/CFT correspondence).

3 See also [47] where the authors derived the bulk counterpart of this theorem.
4 Singletons of spin-s > 1 do not appear here due to the fact that the free CFT based on these fields do not possess a conserved

current of spin-2, i.e., a stress-energy tensor and therefore are not covered by the theorem derived in [46]. This can be seen
for instance from the decomposition of the tensor product of two spin-s singletons spelled out in [10], where one can check
that there are no currents of spin lower than 2s.

5 Notice that by changing the boundary condition of fields in the bulk opens the possibility of having an HS theory dual to
an interacting CFT, see for instance [22,25,28,49,50]. From the CFT point of view, this corresponds to the modification of the
previously mentioned Maldacena-Zhiboedov theorem studied by the same authors in [51]. Instead of the existence of at
least one conserved higher spin current, it is assumed that the CFT possesses a parameter N together with a tower of single
trace, approximately conserved currents of all even spin s � 4, such that the conservation law gets corrected by terms of
order 1/N. As a consequence, the anomalous dimensions of these higher spin currents are of order 1/N, which translates
into the fact that the dual higher spin fields in the bulk acquire masses through radiative corrections, thereby leading to
changes in their boundary conditions.

6 Notice that this is true only for d > 3. For the AdS4 case however, due to the fact that the annihilator of the scalar and

the spin- 1
2 singleton are isomorphic (i.e., Ann(Dsing.

0 ) ∼= Ann(Dsing.
1/2 ), see e.g., [6] for more details), the HS algebra hs

(3)
1/2 is

isomorphic to hs
(3)
0 and is therefore known. This translates into the fact that the two corresponding HS theory have almost

the same spectrum of fields, the only difference being the mass of the bulk scalar field.

165



Universe 2018, 4, 4

A possible extension of the HS algebras associated with singletons can be obtained by applying
the above construction (2) with a generalisation of the singleton representations Dsing.

s , referred to
as “higher-order” singletons. The latter are also irreducible representations of so(2, d), which share
the property of describing fields “confined” to the boundary of AdS with the usual singletons but
which are non-unitary (as detailed in [82]). This class of higher-order singletons, which are of spin
0 or 1

2 , is labelled by a (strictly) positive integer �. In the case of the scalar singleton of order �,
such a representation describes a conformal scalar φ obeying the polywave equation:

��φ = 0 . (3)

When � = 1 one recovers the usual singleton (free, unitary conformal scalar field), whereas � > 1
leads to non-unitary CFT. Such CFTs were studied in [83] for instance, and were proposed to
be dual to HS theories [82] whose spectrum consists, on top of the infinite tower of (totally
symmetric) higher-spin massless fields, also partially massless (totally symmetric) fields of arbitrary
spin (theories which have been studied recently in [84–86]), thereby extending the HS holography
proposal of Klebanov-Polyakov-Sezgin-Sundell to the non-unitary case. The corresponding HS
algebras were studied in [87] for the simplest case � = 2 (as the symmetry algebra of the Laplacian
square, thereby generalising the previous characterisation of hs(d)0 as the symmetry algebra of the
Laplacian [88]) and for general values of � in [89–91]. As we already mentionned, the interesting feature
of such HS algebras is that their spectrum, i.e., the set of fields of the bulk theory, contains partially
massless (totally symmetric) higher-spin fields [82] (introduced originally in [92–95], and whose
free propagation was described in the unfolded formalism in [96]). Although non-unitary in AdS
background, partially massless fields of arbitrary spin are unitary in de Sitter background [97],
and hence constitute a particularly interesting generalisation of HS gauge fields to consider 7.
Partially massless fields, both totally symmetric and of mixed-symmetry, also appear in the spectrum
of the HS algebra based on the order-� spinor singleton [100]. It seems reasonable to expect that the
known spectrum of the HS algebras based on a spin-s singleton is enhanced, when considering the HS
algebras based on their higher-order extension, with partially massless fields of the same symmetry
type as already present in the case of the original singleton. Therefore, a natural question is whether
or not there exist higher-order higher-spin singletons. This question is adressed in the present note,
in which we study a class of so(2, d) modules which is a natural candidate for defining a higher-order
higher-spin singleton.

This paper is organised as follows: in Section 2 we start by introducing the various notations
that will be used throughout this note, then in Section 3 we first review the defining properties of the
well-known (unitary) higher-spin singletons before introducing their would-be higher-order extension
and spelling out the counterpart of the previously recalled characteristic properties. Finally, the tensor
product of two such representations is decomposed in the low-dimensional case d = 4 in Section 4.
Technical details on the branching and tensor product rule of so(d) can be found in Appendix A while
details of the proofs of Propositions 2 and 3 and are relegated to Appendix B.

2. Notation and Conventions

In the rest of this paper, we will use the following symbols:

• A so(2, d) (generalised Verma) module is characterised by the so(2)⊕ so(d) lowest weight [Δ; �],
where Δ is the so(2) weight (in general a real number, and more often in this paper, a positive
integer) corresponding to the minimal energy of the AdS field described by this representation and
� is a dominant integral so(d) weight corresponding to the spin of the representation. If irreducible,

7 Notice that partially massless HS fields have been shown to also appear in the spectrum of fields resulting from various
compactifications of anti-de Sitter spacetime [98,99].
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those modules will be denoted D(Δ; �), whereas if reducible (or indecomposable), they will be
denoted V(Δ; �).

• The spin � ≡ (�1, . . . , �r), with r := rank(so(d)) ≡ [ d
2 ] (and where [x] is the integer part of x),

is a so(d) integral dominant weight. The property that the weight � is integral means that its
components �i , i = 1, . . . , r are either all integers or all half-integers. The fact that � is dominant
means that the components are ordered in decreasing order, and all positive except for the
component �r when d = 2r. More precisely,

�1 � �2 � · · · � �r−1 � �r � 0 , for so(2r + 1) , (4)

and
�1 � �2 � · · · � �r−1 �|�r| , for so(2r) . (5)

• In order to deal more efficiently with weight having several identical components, we will use
the notation:

( �1, . . . , �1︸ ︷︷ ︸
h1 times

, �2, . . . , �2︸ ︷︷ ︸
h2 times

, . . . , �k, . . . , �k︸ ︷︷ ︸
hk times

) ≡ (�h1
1 , �h2

2 , . . . , �hk
k ) , with k � r , (6)

in other words the number h of components with the same value � appears as the exponent of the
latter. For the special cases where all components of the highest weight are equal either to 0 or to
1
2 , we will use bold symbols (and forget about the brackets), i.e.,

0 := (0, . . . , 0) , and 1
2 := ( 1

2 , . . . , 1
2) . (7)

We will also write only the non-vanishing components of the various so(d) weight encountered
in this paper, i.e.,

(s1, . . . , sk) := (s1, . . . , sk, 0, . . . , 0︸ ︷︷ ︸
r−k

) , for 1 � k � r . (8)

• If the spin is given by an irrep of an even dimensional orthogonal algebra, i.e., so(d) for d = 2r,
the last component �r of this highest weight (if non-vanishing) can either be positive or negative.
Whenever the statements involving such a weight does not depend on this sign, we will write
� = (�1, . . . , �r) with the understanding that �r can be replaced by −�r. However, if the sign of
the component �r matters, we will distinguish the two cases by writting:

�ε ≡ (�1, . . . , �r−1, �r)ε := (�1, . . . , �r−1, ε�r) , with ε = ±1 . (9)

It will also be convenient to consider the direct sum of two modules labelled by �+ and �−,
which we will denote by:

D(Δ; �0
)

:= D(Δ; �+
)⊕D(Δ; �−

)
. (10)

• Finally, a useful tool that we will use throughout this paper is the character χ
so(2,d)
V(Δ;�) (q,�x) of a

(possibly reducible) generalised Verma module V(Δ ; �
)
:

χ
so(2,d)
V(Δ;�) (q,�x) = qΔχ

so(d)
� (�x)P (d)(q,�x) , (11)

where q := e−μ0 and xi := eμi for i = 1, . . . , r with {μ0, . . . , μr} a basis of the weight space of
so(2, d), and

P (d)(q,�x) :=
1

(1− q)d−2r

r

∏
i=1

1
(1− qxi)(1− qx−1

i )
, (12)
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i.e., the prefactor 1
1−q is absent for d = 2r, and χ

so(d)
� (�x) is the character of the irreducible so(d)

representation �. Any irreducible generalised Verma module D(Δ ; �
)

can be defined as the
quotient of the (freely generated) generalised Verma module V(Δ ; �

)
by its maximal submodule

D(Δ′ ; �′
)

(for some so(2)⊕ so(d) weight [Δ′ ; �′] related to [Δ ; �]). An important property that
will be used extensively in this work is the fact that given two representation spaces V and W
of the same algebra with respective characters χV and χW , the characters of the tensor product,
direct sum or quotient of these two spaces obey:

χV⊗W = χV · χW , χV⊕W = χV + χW , χV/W = χV − χW . (13)

As a consequence, the character of an irreducible generalised Verma module D(Δ; �) takes
the form:

χ
so(2,d)
[Δ;�] (q,�x) = χ

so(2,d)
V(Δ;�) (q,�x)− χ

so(2,d)
D(Δ′ ;�′)(q,�x) , (14)

whenever V(Δ; �) possesses a submodule D(Δ′; �′). For more details on characters of so(2, d)
generalised Verma modules, see e.g., [10,101].

3. Higher-Order Higher-Spin Singletons

In this section, we start by reviewing the definition of the usual (unitary) higher-spin singletons
(about which more details can be found in the pedagogical review [102], and in [103] where they
were studied from the point of view of minimal representations), before moving on to the proposed
higher-order extension which is the main focus of this paper.

3.1. Unitary Higher-Spin Singletons

Higher-spin singletons have been first considered by Siegel [48], as making up the list of unitary
and irreducible representations of the conformal algebra so(2, d) which can lead to a free conformal
field theory. They were later identified by Angelopoulos and Laoues [4,5,8,104] as being part of the
same class of particular representations first singled out by Dirac [105], which is what is understood
by singletons nowadays. Initially, what lead Dirac to single out the so(2, 3) representations D( 1

2 ; (0)
)

and D(1; ( 1
2)
)

studied in [105] as “remarkable” is the fact that, contrarily to the usual UIRs of compact
orthogonal algebras, the former are labelled by an highest weight whose components are not both
integers or both half-integers but rather one is an integer and the other is an half-integer. In other words,
the highest weight defining this representation is not integral dominant. On top of that, the other
intriguing feature of these representations, which was later elaborated on significantly by Flato and
Frønsdal, is the fact they correspond respectively to a scalar and a spinor field in AdS which do
not propagate any local degree of freedom in the bulk. This last property is the most striking from
a field theoretical point of view. Indeed, the fact that representations of the so(2, d) algebra can be
interpreted both as fields in AdSd+1, i.e., the bulk, and as conformal fields on d-dimensional Minkowski,
i.e., the (conformal) boundary of AdSd+1 is at the core of the AdS/CFT correspondence. This last
characteristic translates into a defining property of the so(2, d) singleton modules, namely that they
remain irreducible when restricted to either one of the subalgebras so(2, d − 1), so(1, d) or iso(1, d − 1).
This is reviewed below after we define the singletons as unitary and irreducible so(2, d) modules.

First, let us recall that the unitarity conditions for generalised Verma modules of so(2, d) (i.e., in its
discrete series of representations) induced from the compact subalgebra so(2)⊕ so(d) were derived
independently in [57–59] and in [106] (where the more general result of [107] giving unitarity conditions
for highest weight modules of Hermitian algebras was applied to so(2, d)). The outcome of these
analyses is that the irreducible modules D(Δ ; �

)
which are unitary are:

• � = 0: modules with Δ � d−2
2 ;

• � = 1
2 : modules with Δ � d−1

2 ;
• � = (sp, sp+1, . . . , sr) with 1 � s > sp+1 � · · · � sr: modules with Δ � s + d − p − 1.
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With these unitarity bounds in mind for so(2, d) generalised Verma modules, let us move onto the
definition of unitary singletons:

Definition 1 (Singleton). A spin-s singleton is defined as the so(2, d) module:

D(s + d
2 − 1; (sr)

)
, (15)

for s = 0, 1
2 in arbitrary dimensions, and s ∈ N when d = 2r. Introducing the minimal energies of the scalar

and spinor singleton

ε0 :=
d − 2

2
, and ε1/2 :=

d − 1
2

≡ ε0 +
1
2 , (16)

all of the above modules can be denoted as D(ε0 + s ; (sr)
)
. Depending on the value of s the structure of the the

above module changes drastically:

• If s = 0 or 1
2 , then

Rac := D(ε0; 0
) ∼= V(ε0; 0

)
D(d − ε0; 0

) , Di := D(ε1/2; 1
2

) ∼= V(ε1/2; 1
2

)
D(d − ε1/2; 1

2

) , (17)

where D(d − ε0; 0
)
= V(d − ε0; 0

)
and D(d − ε1/2; 1

2

)
= V(d − ε1/2; 1

2

)
. Their character read [7,10]:

χ
so(2,d)
Rac (q,�x) = qε0 (1− q2)P (d)(q,�x) , and χ

so(2,d)
Di (q,�x) = qε1/2 (1− q) χ

so(d)
1
2

(�x)P (d)(q,�x) . (18)

• If s � 1 (and d = 2r), then:

D(s + d
2 − 1 ; (sr)

) ∼= V(s + d
2 − 1 ; (sr)

)
D(s + d

2 ; (sr−1, s − 1)
) . (19)

In this case, the structure of the maximal submodule D(s+ d
2 ; (sr−1, s− 1)

)
is more involved, the maximal

submodule D(s + d
2 ; (sr−1, s − 1)

)
can be defined through the sequence of quotients of generalized

Verma modules:

D(s + d
2 − 1 + k ; (sr−k, (s − 1)k)

)
:=

V(s + d
2 − 1 + k ; (sr−k, (s − 1)k)

)
D(s + d

2 + k ; (sr−k−1, (s − 1)k+1)
) , (20)

with k = 1, . . . , r− 1 andD(s+ d
2 + r− 1 ; ((s− 1)r)

) ≡ V(s+ d
2 + r− 1 ; ((s− 1)r)

)
is an irreducible

module. For more details on the structure of irreducible generalised so(2, d) Verma module, see the
classification displayed in [108]. Their character read [10]:

χ
so(2,d)

[s+ d
2−1;(sr)]

(q,�x) = qs+ d
2−1

(
χ
so(d)
(sr)

(�x) +
r

∑
k=1

(−)kqkχ
so(d)
(sr−k ,(s−1)k)

(�x)
)
P (d)(q,�x) . (21)

Remark 1. As advertised, all of the above modules corresponding to singletons are unitary. One can notice that
they actually saturate the unitarity bound and are all irreps of twist ε0 (the twist τ being the absolute value of
the difference between the minimal energy Δ and the spin of s of a so(2, d) irrep, τ :=|Δ − s|).

All of the above so(2, d) modules share a couple of defining properties recalled below:

Theorem 1 (Properties of the singletons [4,5]). A singleton on AdSd+1 is a module D(s + d
2 − 1; (sr)

)
of

so(2, d) with s = 0, 1
2 for any values d and s ∈ N for d = 2r, enjoying the following properties:
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(i) It decomposes into a (infinite) single direct sum of so(2)⊕ so(d) (finite-dimensional) modules in which
each irrep of so(d) appears only once (is multiplicity free) and with a different so(2) weight, i.e.,

D(s + d
2 − 1; (sr)

) ∼= ∞⊕
σ=0

Dso(2)⊕so(d)
(
s + d

2 − 1 + σ; (s + σ, sr−1)
)

. (22)

This was proven originally in [109] for the d = 3 case where only the spin-0 and spin- 1
2 singletons exist,

and extended to arbitrary dimensions and for singletons of arbitrary spin in [5].
(ii) It branches into a single irreducible module 8 of the subalgebras iso(1, d − 1), so(1, d) or so(2, d − 1),

in which case this branching rule reads:

D(s + r − 1 ; (sr)
) so(2,d)

↓
so(2,d−1)

D(s + r − 1 ; (sr−1)
)

, for d = 2r and s � 1 , (23)

and where the so(2, d − 1) module D(s + r − 1 ; (sr−1)
)

correspond to a massless field of spin (sr−1) in
AdSd. Conversely, singletons can be seen as the only iso(1, d − 1), so(1, d) or so(2, d − 1) modules that
can be lifted to a module of so(2, d) (which is D(s + d

2 − 1; (sr)
)
). From this point of view, this property

can be restated as “Singletons are the only (massless) particles, or gauge fields, in d-dimensional Minkowski,
de Sitter or anti-de Sitter spacetime which also admit conformal symmetries”, as they are the only
representations of the isometry algebra of the d-dimensional maximally symmetric spaces that can be
lifted to a representation of the conformal algebra in d-dimensions. Again, this property was first proven in
d = 3 in [4] and later extended to arbitrary dimensions in [5,110]. This was revisited recently in [111].

Proof. Considering that the couple of defining properties of the singletons are already known, we will
only sketch the idea of their proofs—that can be found in the original papers—by focusing on the
simpler, low-dimensional, case of so(2, 4) spin-s singletons, leaving the general case in arbitrary
dimensions to Appendix B.1.

(i) This decomposition can be proven by showing that the character of the module D(s + r − 1; (sr)
)

can be rewritten in the form:

χ
so(2,d)
[s+r−1;(sr)]

(q,�x) =
∞

∑
σ=0

qs+r−1+σ χ
so(d)
(s+σ,sr−1)

(�x) , (24)

which is indeed the character of the direct sum of so(2) ⊕ so(d) modules displayed in (22).
This was proven in [10], and in practice the idea is simply to use the property of the “universal”
function P (d)(q,�x) that it can be rewritten as:

P (d)(q,�x) =
∞

∑
σ,n=0

qσ+2n χ
so(d)
(σ)

(�x) , (25)

and then perform the tensor product between the so(d) characters appearing in the character
χ
so(2,d)
[s+r−1;(sr)]

(q,�x) with χ
so(d)
(s) (�x). Let us to do that explicitely for d = 4, where we can take

8 Or at most two, which is the case of the scalar singleton as will be illustrated later (in Proposition 1).
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advantage of the exceptional isomorphism so(4) ∼= so(3) ⊕ so(3) to deal with so(4) tensor
products:

χ
so(2,4)
[s+1;(s,s)](q,�x) = qs+1

(
χ
so(4)
(s,s) (�x)− qχ

so(4)
(s,s−1)(�x) + q2χ

so(4)
(s−1,s−1)(�x)

)
P (4)(q,�x) (26)

=
∞

∑
n=0

qs+1+2n
( 2s

∑
σ=0

qσ
σ

∑
k=0

χ
so(4)
(s+k,s+k−σ)

(�x) +
∞

∑
σ=2s+1

qσ
2s

∑
k=0

χ
so(4)
(σ+k−s,k−s)(�x) (27)

−
2s−1

∑
σ=0

qσ+1
σ

∑
k=0

χ
so(4)
(s+k,s+k−σ−1)(�x)−

2s−1

∑
σ=1

qσ+1
σ

∑
k=0

χ
so(4)
(s+k−1,s+k−σ)

(�x) (28)

−
∞

∑
σ=2s

qσ+1
2s−1

∑
k=0

[
χ
so(4)
(σ+k+1−s,k−s)(�x) + χ

so(4)
(σ+k−s,k+1−s)(�x)

]
(29)

+
2s−2

∑
σ=0

qσ+2
σ

∑
k=0

χ
so(4)
(s+k−1,s+k−σ−1)(�x) +

∞

∑
σ=2s−1

qσ+2
2s−2

∑
k=0

χ
so(4)
(σ+k+1−s,k+1−s)(�x)

)
=

∞

∑
n=0

qs+1+2n
( ∞

∑
σ=0

qσχ
so(4)
(s+σ,s)(�x)−

∞

∑
σ=1

qσ+1χ
so(4)
(s+σ−1,s)(�x)

)
(30)

=
∞

∑
σ=0

qs+1+σχ
so(4)
(s+σ,s)(�x) . (31)

This decomposition can be illustrated by drawing a “weight diagram”, representing the so(2)
weight of so(2) ⊕ so(d) modules as a function of the first component of their so(d) weights,
see Figure 1 below.

||
so(d) weight, spin

so(2) weight, energy

0 s . . .

ε0 + s

...

×
×

×
×

×
×

×
· ·

·

Figure 1. Weight diagram of the spin-s singleton.

The fact the weight diagram of singletons is made out of a single line, noticed in the case of the
Dirac singletons of so(2, 3) in [109] and later extended to singletons in arbitrary dimensions 9

in [5], is the reason for the name “singletons” [102].
(ii) In order to prove the branching rule from so(2, d) to so(2, d − 1), we will compare the so(2)⊕

so(d− 1) decomposition of the so(2, d) spin-s singleton on the one hand, obtained by branching 10

the so(d) components of the so(2)⊕ so(d) of these modules displayed in the previous item onto
so(d − 1), to the so(2)⊕ so(d − 1) decomposition of the so(2, d − 1) module D(s + r − 1; (sr−1)

)
describing a massless field with spin (sr−1). For the sake of brevity, we will only detail the low

9 Actually, it was even adopted as a definition of singletons in [8].
10 The branching rules for so(d) irreps are recalled in Appendix A.1.
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dimensional case of so(2, 4) spin-s singletons which captures the idea of the proof, and leave the
treatment of the arbitrary dimension case to Appendix B.1.

Let us start by deriving the so(2)⊕ so(3) decomposition of the so(2, 4) spin-s singleton module
D(s + 1; (s, s)

)
:

D(s + 1; (s, s)
) ∼=

∞⊕
σ=0

Dso(2)⊕so(4)
(
s + 1 + σ; (s + σ, s)

)
(32)

so(2,4)
↓

so(2,3)

∞⊕
σ=0

σ⊕
k=0

Dso(2)⊕so(3)
(
s + 1 + σ; (s + k)

)
(33)

∼=
∞⊕

σ,n=0
Dso(2)⊕so(3)

(
s + 1 + σ + n; (s + σ)

)
(34)

Next, we need to derive the so(2) ⊕ so(3) of a massless spin-s field corresponding to the
so(2, 3) module D(s + 1; (s)

)
. To do so, we will rewrite its character in a way that makes this

decomposition explicit:

χ
so(2,3)
[s+1;(s)](q, x) = qs+1

(
χ
so(3)
(s) (x)− qχ

so(3)
(s−1)(x)

)
P (d)(q, x) (35)

=
∞

∑
σ,n=0

qs+1+σ+2n
( s+σ

∑
τ=|s−σ|

χ
so(3)
(τ)

(x)− q
s−1+σ

∑
τ=|s−1−σ|

χ
so(3)
(τ)

(x)
)

(36)

=
∞

∑
n=0

qs+1+2n
(

χ
so(3)
(s) +

∞

∑
σ=1

qσ
[ s+σ

∑
τ=|s−σ|

χ
so(3)
(τ)

(x)−
s+σ−2

∑
τ=|s−σ|

χ
so(3)
(τ)

(x)
])

(37)

=
∞

∑
n=0

qs+1+2n (1 + q)
∞

∑
σ=0

qσχ
so(3)
(s+σ)

(x) =
∞

∑
σ,n=0

qs+1+σ+n χ
so(3)
(s+σ)

(x) , (38)

where we used the property (25) of the function P (4)(q,�x), namely

P (4)(q,�x) =
∞

∑
s,n=0

qs+2nχ
so(4)
(s) (�x) . (39)

This proves that the decomposition of the so(2, 3) module of a massless spin-s field in AdS4 reads:

D(s + 1; (s)
) ∼= ∞⊕

σ,n=0
Dso(2)⊕so(3)

(
s + 1 + σ + n; (s + σ)

)
, (40)

which coincide with the so(2)⊕ so(3) decomposition obtained after branching the so(2, 4) spin-s
singleton module onto so(2, 3), i.e., we indeed have

D(s + 1; (s, s)
) so(2,4)

↓
so(2,3)

D(s + 1; (s)
)

. (41)

This can be graphically seen by implementing the branching rule of the weight diagram in Figure 2.
Indeed, the branching rule for the so(2r) irrep (s + σ, sr−1) is:

(s + σ, sr−1)
so(2,d)
↓

so(2,d−1)

σ⊕
k=0

(s + k, sr−2) , (42)

which means that one should add on each line of the weight diagram (representing the so(d)
modules appearing at fixed energy, or so(2) weight) in Figure 2 a dot at each value of �1 to the left
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of the orignal one until �1 = s is reached. By doing so, an infinite wedge whose tip has coordinates
(E = s + ε0, �1 = s) precisely corresponding to the weight diagram of a massless field of spin
given by a rectangular Young diagram on maximal height and length s as can be seen from (40)
for d = 3 and in Appendix B.1 for arbitrary odd values of d.

||
�1

E

0 s . . .

ε0 + s

...

×
×

×
×

×
×

×
· ·

·

so(2,d)
↓

so(2,d−1)

||
�1

E

0 s . . .

ε0 + s

...

×
××

×××
××××

×××××
××××××

×××××××
· ·

·
··
·

Figure 2. (Left) so(2) ⊕ so(d) weight diagram of the spin-s singletons (with in abscisse the first
component of the so(d) weights, denoted �1); (Right) so(2) ⊕ so(d − 1) weight diagram of the
so(2, d − 1) module D(s+ d

2 − 1 ; (sr−1)
)

(with in abscisse the first component of the so(d− 1) weights,
denoted �1 as well). Lighter blue crosses × for a given so(2) weight E represent the so(d − 1)
representations coming from the branching rule of the so(d) representations in the so(2) ⊕ so(d)
module (with the same so(2) weight E) of the singleton decomposition represented by a darker blue
cross ×.

�

We did not, in the previous review of the proofs of the listed properties in Theorem 1, cover the
branching rule of the so(2, d) singletons onto iso(1, d − 1) or so(1, d) for the following reasons:

• From so(2, d) to iso(1, d − 1). As far as the branching rule from so(2, d) to so(1, d − 1) are
concerned, it can be recovered, assuming that the following diagram is commutative:

Dso(2,d)

Dso(2,d−1) Diso(1,d−1)

so(2,d)
↓

so(2,d−1)

so(2,d)
↓

iso(1,d−1)

so(2,d−1)−→
λ→0

iso(1,d−1)
, (43)

i.e., by combining the branching rule from so(2, d) to so(2, d− 1) and an Inönü-Wigner contraction.
That is to say, it is equivalent (i) to branch a representation Dso(2,d) from so(2, d) onto so(2, d − 1)
and then perform a Inönü-Wigner contraction by sending the cosmological constant λ to zero to
obtain a representation Diso(1,d−1) of iso(1, d− 1), and (ii) to branch the so(2, d) module Diso(1,d−1)
onto iso(1, d − 1) to obtain the same module Diso(1,d−1) than previously. Under this assumption,
we can use the branching rule (23) of the so(2, d) singleton module onto so(2, d − 1) and then
contracting it to a iso(1, d− 1) instead of deriving the branching rule from so(2, d) onto iso(1, d− 1).
The Inönü-Wigner contraction for massless fields in AdSd+1 (i.e., so(2, d) modules) is known as
the Brink-Metsaev-Vasiliev mechanism [112], which was proven in [65,66,72]. This mechanism
states that massless so(2, d) UIRs of spin given by a so(d) Young diagram Y contracts to the
direct sum of massless UIRs of the Poincaré algebra with spin given by all of the Young diagrams
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obtained from the branching rule of Y except those where boxes in the first block of Y have been
removed. Higher-spin singleton, as well as the massless so(2, d − 1) module onto which they
branch being labelled by a rectangular Young diagram, the BMV mechanism implies that they
contract to a single iso(1, d − 1) i.e.,

Dso(2,d)
(
s + r − 1 ; (sr)

) so(2,d)
↓

so(2,d−1)
Dso(2,d−1)

(
s + r − 1 ; (sr−1)

) −→
λ→0

Diso(1,d−1)
(
m = 0 ; (sr−1)

)
, (44)

as shown in [5].
• From so(2, d) to so(1, d). The so(1, d) generalised Verma modules are induced by, and decompose

into, so(1, 1) ⊕ so(d − 1) modules instead of so(2) ⊕ so(d − 1) in the case of so(2, d − 1).
As a consequence, the method used previously consisting in relying on the common
so(2)⊕ so(d − 1) cannot be applied here and we will therefore refer to the original paper [5]
for the proof of that branching rule.

3.2. Non-Unitary, Higher-Order Extension

Higher-order extension of the Dirac singletons (i.e., the scalar and spinor ones) are non-unitary
so(2, d) modules that share the crucial field theoretical property of singletons mentioned above,
namely they correspond to AdS (scalar and spinor) field that do not propagate local degree of
freedom in the bulk. They have been considered in [6] as well as in [82] where the confinement
to the conformal boundary of these remarkable fields was highlighted, but were excluded from the
exhaustive work 11 [5] because they fall below the unitary bound for representations of so(2, d) (recalled
in Subsection 3.1).

Definition 2 (Higher-order Dirac singletons). The scalar and spinor, order-� Dirac singletons are the so(2, d)
modules D(ε

(�)
0 ; 0

)
and D(ε

(�)
1/2; 1

2

)
respectively, where

ε
(�)
0 :=

d − 2�
2

, and ε
(�)
1/2 :=

d + 1− 2�
2

≡ ε
(�)
0 + 1

2 , (45)

and which are defined as the quotient:

Rac� := D(ε
(�)
0 ; 0

) ∼= V(ε
(�)
0 ; 0

)
D(d − ε

(�)
0 ; 0

) , and Di� := D(ε
(�)
1/2 ; 1

2

) ∼= V(ε
(�)
1/2 ; 1

2

)
D(d − ε

(�)
1/2 ; 1

2

) . (46)

Their character read:

χ
so(2,d)
Rac�

(q,�x) = qε
(�)
0 (1− q2�)P (d)(q,�x) , and χ

so(2,d)
Di�

(q,�x) = qε
(�)
1/2 (1− q2�−1) χ

so(d)
1
2

(�x)P (d)(q,�x) . (47)

These modules are non-unitary for � > 1, whereas they correspond to the original (unitary) Dirac singletons
of Definition 1 for � = 1.

On top of the confinement property, the Rac� and Di� singletons also possess properties analogous
to those of their unitary counterparts reviewed in Theorem 1. Specifically, they can be decomposed
as several direct sum of so(2)⊕ so(d) modules, making up not only one but now several lines in the
weight diagram, and they obey a branching rule (from so(2, d) to so(2, d − 1)) similar to that of Rac
and Di. The properties of the higher-order Dirac singletons are summed up below.

11 Although mentionned briefly in [8] as “multipleton”.
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Proposition 1 (Properties of Rac� and Di�). The so(2) ⊕ so(d) decomposition of the order-� scalar and
spinor singletons respectively read 12:

D(ε
(�)
0 ; 0

) ∼= �−1⊕
k=0

∞⊕
σ=0

Dso(2)⊕so(d)
(
ε
(�)
0 + σ + 2k ; (σ)

)
, (48)

and

D(ε
(�)
1/2 ; 1

2

) ∼= 2(�−1)⊕
k=0

∞⊕
σ=0

Dso(2)⊕so(d)
(
ε
(�)
1/2 + σ + k ; (σ + 1

2 , ( 1
2 )

r−1)
)

. (49)

These two modules obey the following branching rules 13:

D(ε
(�)
0 ; 0

) so(2,d)
↓

so(2,d−1)

2�−1⊕
k=0

D(ε
(�)
0 + k ; 0

)
, (50)

and

D(ε
(�)
1/2 ; 1

2

) so(2,d)
↓

so(2,d−1)

2(�−1)⊕
k=0

D(ε
(�)
1/2 + k ; 1

2

)
. (51)

Proof. As previsouly, we will use the property (25) of the function P (d)(q,�x) to rewrite the characters
of the order-� scalar and spinor singletons (47) as a sum of so(2)⊕ so(d) characters, starting with the
scalar Rac�:

χ
so(2,d)
Rac�

(q,�x) = qε
(�)
0 (1− q2�)P (d)(q,�x) =

∞

∑
σ,n=0

qε
(�)
0 +σ+2n(1− q2�) χ

so(d)
(σ)

(�x) (52)

=
�−1

∑
k=0

∞

∑
σ=0

qε
(�)
0 +2k+σ χ

so(d)
(σ)

(�x) (53)

⇔ Rac� =
�−1⊕
k=0

∞⊕
σ=0

Dso(2)⊕so(d)
(
ε
(�)
0 + 2k + σ ; (σ)

)
. (54)

For the Di� singleton we will also need the so(d) tensor product rule:

(σ)⊗ 1
2 = (σ + 1

2 , ( 1
2 )

r−1)⊕ (σ − 1
2 , ( 1

2 )
r−1) , for σ � 1 . (55)

Using the above identity and proceeding similarly to the scalar case, we end up with:

12 Notice that the so(2)⊕ so(d) decomposition (48) of the Rac� module was originally derived in [6] (where these singletons
are refered to as “scalar p-linetons”)

13 Notice that the module on the right hand side of the branching rules (50) and (51) for k = 0 are not the order � singleton,

due to the fact that ε
(�)
0 = d−2�

2 is not the critical energy of the Rac� singleton of so(2, d − 1).

175



Universe 2018, 4, 4

χ
so(2,d)
Di�

(q,�x) = qε
(�)
1/2(1− q2�−1) χ

so(d)
1
2

(�x)P (d)(q,�x) (56)

=
∞

∑
n=0

qε
(�)
1/2+2n(1− q2�−1)

( ∞

∑
σ=0

qσχ
so(d)

(σ+ 1
2 ,( 1

2 )
r−1)

(�x) +
∞

∑
σ=1

qσχ
so(d)

(σ− 1
2 ,( 1

2 )
r−1)

(�x)
)

(57)

=
∞

∑
n,σ=0

qε
(�)
1/2+2n+σ(1− q2�−1) (1 + q) χ

so(d)

(σ+ 1
2 ,( 1

2 )
r−1)

(�x) (58)

=
2(�−1)

∑
k=0

∞

∑
σ=0

qε
(�)
1/2+k+σ χ

so(d)

(σ+ 1
2 ,( 1

2 )
r−1)

(�x) (59)

⇔ Di� =
2(�−1)⊕

k=0

∞⊕
σ=0

Dso(2)⊕so(d)
(
ε
(�)
1/2 + σ + k ; (σ + 1

2 , ( 1
2 )

r−1)
)

. (60)

To prove the branching rule (50) and (51), we will follow the same strategy as previously,
namely we will compare the so(2) ⊕ so(d − 1) decomposition of the two sides of these identities.
This decomposition reads, for the Rac� singleton:

D(ε
(�)
0 ; 0

) ∼=
�−1⊕
k=0

∞⊕
σ=0

Dso(2)⊕so(d)
(
ε
(�)
0 + σ + 2k ; (σ)

)
(61)

so(2,d)
↓

so(2,d−1)

�−1⊕
k=0

∞⊕
σ=0

σ⊕
n=0

Dso(2)⊕so(d−1)
(
ε
(�)
0 + σ + 2k ; (n)

)
(62)

∼=
�−1⊕
k=0

∞⊕
σ=0

∞⊕
n=0

Dso(2)⊕so(d−1)
(
ε
(�)
0 + σ + 2k + n ; (σ)

)
, (63)

whereas for the Di� singleton:

D(ε
(�)
1/2 ; 1

2

) ∼=
2(�−1)⊕

k=0

∞⊕
σ=0

Dso(2)⊕so(d)
(
ε
(�)
1/2 + σ + k ; (σ + 1

2 , ( 1
2 )

r−1)
)

(64)

so(2,d)
↓

so(2,d−1)

2(�−1)⊕
k=0

∞⊕
σ=0

σ⊕
n=0

Dso(2)⊕so(d−1)
(
ε
(�)
1/2 + σ + k ; (n + 1

2 , ( 1
2 )

r−1)
)

(65)

∼=
2(�−1)⊕

k=0

∞⊕
σ=0

∞⊕
n=0

Dso(2)⊕so(d−1)
(
ε
(�)
1/2 + σ + k + n ; (σ + 1

2 , ( 1
2 )

r−1)
)

. (66)

On the other hand, the character of an irreducible so(2, d − 1) module D(Δ ; 0
) ≡ V(Δ ; 0

)
, i.e.,

a generalised Verma module which does not contain a submodule 14 can be rewritten as:

χ
so(2,d−1)
[Δ ; 0]

(q,�x) = qΔ P (d−1)(q,�x) =
∞

∑
σ,n=0

qΔ+2n+σ χ
so(d−1)
(σ)

(�x) (67)

⇔ D(Δ ; 0
) ∼=

∞⊕
σ=0

∞⊕
n=0

Dso(2)⊕so(d−1)
(
Δ + σ + 2n ; (σ)

)
(68)

14 A scalar so(2, d − 1) module V(Δ ; 0
)

possesses a submodule only if Δ = d−1−2�
2 , whereas a spin one-half module V(Δ ; 1

2

)
possesses a submodule only if Δ = d−2�

2 . In other words, only the Rac� and Di� modules are defined as quotients, see the
classification in [108].
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As a consequence,

D(ε
(�)
0 + 2k ; 0

)⊕D(ε
(�)
0 + 2k + 1 ; 0

) ∼= ∞⊕
σ=0

∞⊕
n=0

Dso(2)⊕so(d−1)
(
ε
(�)
0 + σ + n + 2k ; (σ)

)
, (69)

which proves (50). Finally, an irreducible so(2, d− 1) module D(Δ ; 1
2

) ≡ V(Δ ; 1
2

)
admits the following

so(2)⊕ so(d − 1) decomposition:

χ
so(2,d−1)

[Δ ; 1
2 ]

(q,�x) = qΔ χ
so(d−1)
1
2

(�x)P (d−1)(q,�x) (70)

=
∞

∑
n=0

qΔ+2n
( ∞

∑
σ=0

qσχ
so(d−1)

(σ+ 1
2 ,( 1

2 )
r−1)

(�x) +
∞

∑
σ=1

qσχ
so(d−1)

(σ− 1
2 ,( 1

2 )
r−1)

(�x)
)

(71)

=
∞

∑
σ=0

∞

∑
n=0

qΔ+σ+n χ
so(d−1)

(σ+ 1
2 ,( 1

2 )
r−1)

(�x) (72)

⇔ D(Δ ; 1
2

) ∼=
∞⊕

σ=0

∞⊕
n=0

Dso(2)⊕so(d−1)
(
Δ + σ + n ; (σ + 1

2 , ( 1
2 )

r−1)
)

, (73)

thereby proving (51). �

The branching rule (50) and (51) reproduce that given in [5,8] (and rederived in [113]) for the
Rac and Di singletons upon setting � = 1, and extend them to the higher-order Dirac singletons Rac�
and Di�.

From a CFT point of view, the order-� scalar and spinor singletons correspond to respectively
a non-unitary fundamental scalar or spinor fields of respective conformal weight ε

(�)
0 and ε

(�)
1/2,

and respectively subject to an order 2� and 2� − 1 wave equation (see e.g., [82] for more details).
The spectrum of current of these CFT contains an infinite tower of partially conserved totally symmetric
currents of arbitrary spin, which should be dual to partially massless gauge fields in the bulk [114].

3.3. Candidates for Higher-Spin Higher-Order Singletons

The extension we will be concerned with corresponds to the so(2, d) module, for d = 2r:

D(s + d
2 − t ; (sr)

) ∼= V(s + d
2 − t ; (sr)

)
D(s + d

2 ; (sr−1, s − t)
) , for 1 � t � s , (74)

whose structure is similar to the unitary spin-s singletons for s � 1 in the sense that the various
submodule to be modded out of V(s + d

2 − t ; (sr)
)

are defined throught the sequence:

D(s + d
2 + k ; (sr−k−1, (s − 1)k, s − t)

)
:=

V(s + d
2 + k ; (sr−k−1, (s − 1)k, s − t)

)
D(s + d

2 + k + 1 ; (sr−k−2, (s − 1)k+1, s − t)
) , (75)

for 0 � k � r − 2 and D(s + d − 1 ; ((s − 1)r−1, s − t)
) ≡ V(s + d − 1 ; ((s − 1)r−1, s − t)

)
. In other

words, except for the first submodule which is obtained by increasing the so(2) weight of t units and
removing t boxes from the last row of the rectangular Young diagram (sr) labelling the irreducible
module, the sequence of nested submodules are related to one another by adding one unit to the so(2)
weight of the previous submodule and removing one box in the row above the previously amputated
row. Correspondingly, the character of this module reads:

χ
so(2,d)

[s+ d
2−t;(sr)]

(q,�x) = qs+ d
2−t

(
χ
so(d)
(sr)

(�x) +
r−1

∑
k=0

(−)k+1qt+kχ
so(d)
(sr−1−k ,(s−1)k ,s−t)(�x)

)
P (d)(q,�x) . (76)
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This definition encompasses the unitary spin-s singletons, which correspond to the case t = 1
saturating the unitarity bound. For t > 1 (but always t � s), the module (74) is non-unitary and
describes a depth-t partially-massless field of spin (sr). The spin being given by a rectangular Young
diagram, we will refer to this class of module as “rectangular” partially massless (RPM) fields of
spin s and depth t. From the boundary point of view, the modules (74) correspond to the curvature
a conformal field of spin (sr−1) (hence the curvature is given by a tensor of symmetry described by
a rectangular Young diagram of length s and height r) obeying a partial conservation law of order t, i.e.,
taking t symmetrised divergences of this curvature identically vanishes on-shell (see e.g., [115] where
the d = 4 and t = 1 case was discussed, and [116] for a more details on mixed symmetry conformal
field in arbitrary dimensions).

Remark 2. Notice that formally, the modules of the Rac� and Di� singletons, as well as the module (74) that we
propose here as a higher-spin generalisation of the higher-order scalar and spinor singletons, can be denoted as:

D(s + ε
(t)
0 ; (sr)

)
, with s = 0, 1

2 , and s ∈ N if d = 2r (77)

with ε
(t)
0 = d−2t

2 as defined in Definition 2. On top of being notationally convenient, this coincidence is
actually the reason why the modules (74) are “natural” generalisations of the unitary higher-spin singletons:
by introducing the parameter t in this way, one considers a family of modules whose first representative is the
unitary singletons whereas for t > 1 the modules are non-unitary but their structure is almost the same than in
the unitary case.

Let us now study what are the counterpart of the properties displayed in Theorem 1 for
unitary singletons and Proposition 1 for the Rac� and Di� singletons, starting with the so(2)⊕ so(d)
decomposition of (74).

Proposition 2 (so(2) ⊕ so(d) decomposition). The so(2, d) module D(s + r − t; (sr)
)

for d = 2r,
describing a depth-t and spin-s RPM field, admits the following so(2)⊕ so(d) decomposition:

D(s + r − t; (sr)
) ∼=

t−1⊕
�=0

t−1−�⊕
n=0

∞⊕
σ=�

Dso(2)⊕so(d)
(
s + r − t + σ + 2n; (s − �+ σ, sr−2, s − �)

)
. (78)

Equivalently, this property means that the character (76) can bewritten as:

χ
so(2,d)
[s+r−t;(sr)]

(q,�x) =
t−1

∑
�=0

t−1−�

∑
n=0

∞

∑
σ=�

qs+r−t+σ+2nχ
so(d)
(s+σ−�,sr−2,s−�)

(�x) . (79)

Proof. As previously, we will only focus on the simpler d = 4 case and leave the proof of this property
in arbitrary dimension to Appendix B.2. We will proceed in the exact same way as we did for unitary
higher-spin singleton, that is we will use (25) in the character formula (76), so as to rewrite it in the
following way:
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χ
so(2,4)
[s+2−t;(s,s)](q,�x) = qs+2−t

(
χ
so(4)
(s,s) (�x)− qtχ

so(4)
(s,s−t)(�x) + qt+1χ

so(4)
(s−1,s−t)(�x)

)
P (4)(q,�x) (80)

=
∞

∑
n=0

qs+2−t+2n
( 2s

∑
σ=0

qσ
σ

∑
k=0

χ
so(4)
(s+k,s+k−σ)

(�x) +
∞

∑
σ=2s+1

qσ
2s

∑
k=0

χ
so(4)
(σ+k−s,k−s)(�x) (81)

−
t

∑
m=0

[ 2s−t

∑
σ=m

qσ+t
σ

∑
k=0

χ
so(4)
(s+k−m,s+k−σ−t+m)

(�x) +
∞

∑
σ=2s−t+1

qσ+t
2s−t

∑
k=0

χ
so(4)
(σ+k+t−s−m,k+m−s)(�x)

]
+

t−1

∑
m=0

[ 2s−t−1

∑
σ=m

qσ+t+1
σ

∑
k=0

χ
so(4)
(s+k−m−1,s+k−σ−t+m)

(�x) (82)

+
∞

∑
σ=2s−t

qσ+t+1
2s−t−1

∑
k=0

χ
so(4)
(σ+k+t−s−m,k+m+1−s)(�x)

])
=

∞

∑
n=0

qs+2−t+2n
( t−1

∑
σ=0

qσ
σ

∑
k=0

χ
so(4)
(s+k,s+k−σ)

(�x) +
t−1

∑
m=0

∞

∑
σ=t

qσχ
so(4)
(s+σ−m,s−m)

(�x) (83)

−
t

∑
m=1

∞

∑
σ=m

qσ+tχ
so(4)
(s+σ−m,s−t+m)

(�x)
)

(84)

=
∞

∑
n=0

qs+2−t+2n
t−1

∑
m=0

( ∞

∑
σ=m

qσχ
so(4)
(s+σ−m,s−m)

(�x)−
∞

∑
σ=t−m

qσ+tχ
so(4)
(s+σ−t+m,s−m)

(�x)
)

(85)

=
∞

∑
n=0

qs+2−t+2n
t−1

∑
m=0

∞

∑
σ=m

qσ(1− q2(t−m))χ
so(4)
(s+σ−m,s−m)

(�x) (86)

=
t−1

∑
�=0

t−1−�

∑
n=0

∞

∑
σ=�

qσ+s+2−t+2nχ
so(4)
(s−�+σ,s−�)

(�x) , (87)

where we used
t−1

∑
σ=0

qσ
σ

∑
k=0

χ
so(4)
(s+k,s+k−σ)

(�x) =
t−1

∑
m=0

t−1

∑
σ=m

qσχ
so(4)
(s+σ−m,s−m)

(�x) , (88)

between (83) and (85). Expression (87) shows that the depth-t PM module D(s + 2 − t; (s, s)
)

decomposes as the direct sum of so(2)⊕ so(4) modules:

D(s + 2− t ; (s, s)
) ∼=

t−1⊕
�=0

t−1−�⊕
n=0

∞⊕
σ=�

Dso(2)⊕so(4)
(
s + 2− t + σ + 2n ; (s + σ − �, s − �)

)
. (89)

�

With the previous so(2)⊕ so(d) decomposition at hand, we can now derive the branching rule of
the spin-s depth-t RPM module.

Proposition 3 (Branching rule). The so(2, d) module D(s+ r− t ; (sr)
)

for d = 2r, describing a depth-t and
spin-s RPM field, branches onto the direct sum of so(2, d− 1) modules D(s+ r− τ ; (sr−1)

)
with τ = 1, . . . , t

describing partially massless fields in AdSd of spin (sr−1) and with depth-τ:

D(s + r − t ; (sr)
) so(2,d)

↓
so(2,d−1)

t⊕
τ=1

D(s + r − τ ; (sr−1)
)

. (90)

Proof. Here again we will only display the proof for the low dimensional case d = 4 in order to
illustrate the general mechanism while being not too technically involved, and we leave the treatment
in arbitrary dimensions to the Appendix B.2.

In order to prove the branching rule (90) for so(2, 4), we will compare the so(2) ⊕ so(3)
decomposition of the so(2, 4) spin-s and depth-t singleton (obtained by first branching it onto so(2, 3))
to the so(2)⊕ so(3) decomposition of the so(2, 3) spin-s and depth-τ partially massless fields. Let us
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start with the latter, i.e., derive the so(2)⊕ so(3) decomposition of the so(2, 3) moduleD(s+ 2− τ ; (s)
)

using its character:

χ
so(2,3)
[s+2−τ;(s)](q, x) = qs+2−τ

(
χ
so(3)
(s) (x)− qτχ

so(3)
(s−τ)

(x)
)P (3)(q, x) (91)

=
∞

∑
n,σ=0

qs+2−τ+σ+2n
( s+σ

∑
k=|s−σ|

χ
so(3)
(k) (x)− qτ

s+σ−τ

∑
k=|s−σ−τ|

χ
so(3)
(k) (x)

)
(92)

=
∞

∑
n=0

qs+2−τ+2n
( ∞

∑
σ=0

qσ
s+σ

∑
k=|s−σ|

χ
so(3)
(k) (x)−

∞

∑
σ=τ

qσ
s+σ−2τ

∑
k=|s−σ|

χ
so(3)
(k) (x)

)
(93)

=
∞

∑
n=0

qs+2−τ+2n
( τ−1

∑
σ=0

qσ
s+σ

∑
k=|s−σ|

χ
so(3)
(k) (x) +

∞

∑
σ=τ

qσ
s+σ

∑
k=s+σ−2τ+1

χ
so(3)
(k) (x)

)
(94)

=
∞

∑
σ,n=0

τ−1

∑
k=0

qs+2−τ+n+σ+kχ
so(3)
(s+σ−k)(x) . (95)

Hence, the so(2) ⊕ so(3) decomposition of a so(2, 3) spin-s and depth-τ partially massless
field reads:

D(s + 2− τ ; (s)
) ∼=

∞⊕
σ=0

∞⊕
n=0

τ−1⊕
k=0

Dso(2)⊕so(3)
(
s + 2− τ + n + σ + k ; (s + σ − k)

)
. (96)

This can be represented graphically by the weight diagram displayed in Figure 3 for τ = 3.
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Figure 3. Weight diagram of a spin-s partially massless field of depth τ = 3. The contribution of the
sum over k in (96) are represented by: blue crosses × for k = 0, red circles ◦ for k = 1 and green
triangles # for k = 2.

Now starting with the so(2)⊕ so(4) decomposition (78) of the spin-s depth-t PM so(2, 4) module,
we can derive its so(2)⊕ so(3) decomposition:

D(s + 2− t ; (s, s)
) ∼=

t−1⊕
�=0

t−1−�⊕
n=0

∞⊕
σ=�

Dso(2)⊕so(4)
(
s + 2− t + σ + 2n ; (s + σ − �, s − �)

)
(97)

so(2,4)
↓

so(2,3)

t−1⊕
�=0

t−1−�⊕
n=0

∞⊕
σ=�

σ⊕
k=0

Dso(2)⊕so(3)
(
s + 2− t + σ + 2n ; (s + k − �)

)
(98)

∼=
t⊕

τ=1

τ−1⊕
k=0

∞⊕
σ=0

∞⊕
n=0

Dso(2)⊕so(3)
(
s + 2− τ + n + σ + k ; (s + σ − k)

)
(99)
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which matches the direct sum of the so(2) ⊕ so(3) decomposition of the spin-s partially massless
modules of depth τ = 1, . . . , t, i.e.,

D(s + 2− t ; (s, s)
) so(2,4)

↓
so(2,3)

t⊕
τ=1

D(s + 2− τ ; (s)
)

. (100)

This branching rule can also be represented graphically, by drawing on the one hand the
so(2)⊕ so(3) weight diagram of the spin-s and depth-t RPM field as read from (98) and on the other
hand by drawing the so(2)⊕ so(3) weight diagrams of the partially massless spin-s modules of depth
τ = 1, . . . , t, and comparing the two diagrams. This is done for the t = 2 case in Figure 4 below. �
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Figure 4. (Left) so(2)⊕ so(3) weight diagram of the spin-s and depth t = 2 PM field. The contribution
to the sum over � and n in (98) are represented by: blue crosses × for � = n = 0, green triangles #
for � = 0, n = 1 and red circles ◦ for � = 1, n = 0. The lowest energy/so(2) weight in this diagram is
s + 2− t = s for t = 2; (Right) Superimposed so(2)⊕ so(3) weight diagrams of the spin-s and depth
τ = 1 (blue circles ◦) and τ = 2 (black crosses × and +) partially massless modules. The lowest
energy/so(2) weight in this diagram is s + 2− τ = s for τ = 2.

Remark 3. Notice that the previous Proposition 3 encompasses the case of unitary higher-spin singleton,
corresponding to t = 1. The above decomposition reduce, in this special case t = 1 to those previously derived
and summed up in Theorem 1.

From so(2, d) to iso(1, d − 1).

Again assuming that the diagram (43) is commutative, the branching of the spin-s and depth-t
RPM can be obtained by performing an Inönü-Wigner contraction of the so(2, d − 1) modules.
Applying the BMV mechanism to a so(2, d − 1) partially massless fields of depth-t and spin given by
a maximal height rectangular Young diagram yields [65,66,112]:

Dso(2,d−1)
(
s + d − r − t ; (sr−1)

) −→
λ→0

t−1⊕
τ=0

Diso(1,d−1)
(
m = 0 ; (sr−2, s − τ)

)
. (101)

As a consequence, the branching rule of the so(2, d) spin-s and depth-t RPM module onto
iso(1, d − 1) reads:

Dso(2,d)
(
s + r − t ; (sr)

) so(2,d)
↓

iso(1,d−1)

t−1⊕
τ=0

(t − τ) Diso(1,d−1)
(
m = 0 ; (sr−2, s − τ)

)
. (102)

At this point, a few comments are in order. As emphasised in the first part of this section,
the crucial properties of unitary singletons is that (i) they constitute the class of representations that
can be lifted from so(2, d − 1) to so(2, d), i.e., they are AdS fields that are also conformal, and (ii) they
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describe AdS fields which are “confined” to its (conformal) boundary. The first property translates,
for unitary singletons, into the fact that these so(2, d) modules remain irreducible when restricted
to so(2, d − 1)—except in the case of the scalar singleton whose branching rule actually contains
two modules. The second property is related to the fact that the singleton modules also remain
irreducible when further contracting to the Poincaré algebra iso(1, d − 1) (thereby indicating that the
AdSd+1 field does not propagate degrees of freedom in the bulk).

In the case of the RPM fields of spin-s and depth-t studied in the present note, it seems difficult to
consider them as a suitable higher-order (i.e., non-unitary) extension of higher-spin singletons due
to the fact that their branching rule (90) shows the appearance of t modules. Indeed, the presence of
multiple modules in (90) for t > 1 prevent us from reading this decomposition “backward” (from right
to left) as the property for a single field in AdSd corresponding to a so(2, d − 1) module that can be
lifted to a so(2, d) module thereby illustrating that this AdSd field is also conformal. Notice that this
is in accordance with [110] where conformal AdS fields were classified, and confirmed in the more
recent analysis [111] where, without insisting on unitarity, the authors were lead to rule out partially
massless fields from the class of AdS fields which can be lifted to conformal representations. On top
of that, the contraction of (90) to iso(1, d − 1) given in (102) produces several modules, some of them
even appearing with a multiplicity greater than one, which seems to indicate that the “confinement”
property of unitary singletons is also lost when relaxing the unitarity condition in the way proposed
here (i.e., considering the modules D(s + d

2 − t; (sr)
)

with t > 1). It would nevertheless be interesting
to study a field theoretical realisation of these modules to explicitely see how this property is lost when
passing from t = 1 to t > 1.

4. Flato-Frønsdal Theorem

Let us now particularise the discussion to the d = 4 case, where we can take advantage of the
low dimensional isomorphism (4) ∼= so(3)⊕ so(3) to decompose the tensor product of two spin-s and
depth-t RPM fields.

The tensor product of two higher-spin unitary singletons was considered (in arbitrary dimensions)
in [10], and reads in the special case d = 4:

D(s+ 1; (s, s)0
)⊗2 ∼=

2s⊕
σ=0

D(2s+ 2; (σ, σ)0
)⊕ ∞⊕

σ=2s+1

D(σ+ 2; (σ, 2s)0
)⊕ ∞⊕

σ=2s
2D(σ+ 2; (σ)

)
. (103)

Considering singletons of fixed chirality, i.e., D(s + 1; (s, s)ε

)
, the decomposition of their tensor

product then reads:

D(s + 1; (s, s)ε

)⊗2 ∼=
2s⊕

σ=0
D(2s + 2; (σ, σ)ε

)⊕ ∞⊕
σ=2s+1

D(σ + 2; (σ, 2s)ε

)
, (104)

i.e., it contributes to the above tensor product by producing the infinite tower of mixed symmetry
massless fields D(σ + 2; (σ, 2s)ε

)
and the finite tower of massive fields D(2s + 2; (σ, σ)ε

)
. The tensor

product of two spin-s singletons of opposite chirality, on the other hand, contribute to (103) by
producing the infinite tower of totally symmetric massless fields D(σ + 2; (σ)

)
:

D(s + 1; (s, s)+
)⊗D(s + 1; (s, s)−

) ∼= ∞⊕
σ=2s

D(σ + 2; (σ)
)

. (105)

Remark 4. The Higher-Spin algebra on which such a theory is based [115] can be decomposed as:
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hs
(4)
s ∼=

∞⊕
σ=2s

σ − 1
σ − 1

⊕
∞⊕

σ=2s+1

σ − 1
σ − 1

2s

,

, (106)

In other words, it is composed of all the Killing tensor of the massless fields appearing in the decomposition
of two spin-s singletons.

The tensor product of two higher-order Dirac singletons was worked out in arbitrary dimensions
in [82,100], and hereafter we give the decomposition for the tensor product of two spin-s and depth-t
RPM fields, considered as a possible generalisation of those higher-order singletons, in the special case
d = 4.

Theorem 2 (Flato-Frønsdal theorem for rectangular partially massless fields). The tensor product of two
so(2, 4) rectangular partially massless fields of spin-s and depth-t decomposes as:

• If they are of the same chirality ε:

D(s + 2− t; (s, s)ε

)⊗2 ∼=
t⊕

τ=1

2(τ−1)⊕
m=0

ντ
m⊕

n=0

∞⊕
σ=2s+2τ−1−m−n

D(σ + 4− 2τ + m; (σ, 2s − m)ε

)
⊕

t⊕
τ=1

2(τ−1)⊕
m=0

ντ
m⊕

n=0

2s−n⊕
k=−μτ

m,n

D(2s + 4− 2τ + m; (k + m, k)ε

)
, (107)

where ντ
m := min(m, 2(τ − 1)− m) and

μτ
m,n :=

{
min(n, ντ

m − n) , if m < τ ,

m − τ + 1 + min(n, ντ
m − n) , if m � τ .

(108)

• If they are of opposite chirality:

D(s + 2− t; (s, s)+
)⊗D(s + 2− t; (s, s)−

) ∼= t⊕
τ=1

t−τ⊕
m=0

t−τ−m⊕
n=0

∞⊕
σ=2s−m

D(σ + 4− 2τ − n; (σ, n)0
)

.

(109)

Notice that in the above decomposition (109) of two singletons of opposite chirality, the irreps describing
totally symmetric partially massless fields, i.e., of spin given by a single row Young diagram, only appear
once despite what the notation (σ)0 would normally suggests.

Proof. In order to prove the above decomposition, we will use the two expressions of the character of
a spin-s and depth-t RPM:

χ
so(2,4)
[s+2−t;(s,s)](q,�x) = qs+2−t

(
χ
so(4)
(s,s) (�x)− qtχ

so(4)
(s,s−t)(�x) + qt+1χ

so(4)
(s−1,s−t)(�x)

)
P (4)(q,�x) (110)

=
t−1

∑
�=0

t−1−�

∑
n=0

∞

∑
σ=�

qs+2−t+σ+2nχ
so(4)
(s−�+σ,s−�)

(�x) , (111)

and will decompose their product as the sum of the characters of the different modules appearing
in (107) and (109). To do so, the idea is simply to look at the product of (110) and (111), decompose the
tensor product of the so(4) characters, and finally recognize the resulting expression as a sum of
characters of:
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• Partially massless fields of depth-τ and spin given by a two-row Young diagram (σ, n) which read:

χ
so(2,4)
[σ+3−τ;(σ,n)](q,�x) = qσ+3−τP (4)(q,�x)

(
χ
so(4)
(σ,n) (�x)− qτχ

so(4)
(σ−τ,n)(�x)

)
, (112)

• Massive fields of minimal energy Δ and spin given a two-row Young diagram (k, l) which read:

χ
so(2,4)
[Δ;(k,l)](q,�x) = qΔP (4)(q,�x)χso(4)

(k,l) (�x) . (113)

We will not display here the full computations for the sake of conciseness. �

5. Conclusions

In this note, we considered a class of non-unitary so(2, d) modules (for d = 2r) parametrised
by an integer t, as possible extensions of the higher-spin singletons. These so(2, d) modules describe
partially massless fields of spin (sr) and depth-t, and restrict (for d = 2r) to a sum of partially massless
so(2, d − 1) modules of spin (sr−1) and depth τ = 1, . . . , t, thereby naturally generalising the case of
unitary singletons corresponding to t = 1. Due to the fact that the branching rule (90) shows that
these modules cannot be considered as AdSd field preserved by conformal symmetries, and that the
branching rule (102) onto iso(1, d − 1) (deduced from (90) after a Inönü-Wigner contraction) seems to
indicate that those fields are not “confined” to the boundary of AdS, the family of so(2, d) module
D(s + d

2 − t; (sr)
)

does not appear to share the defining properties of singletons for t > 1.
The decomposition of their tensor product in the low-dimensional so(2, 4) case contains partially

massless fields of the same type than in the unitary (t = 1) case, i.e., fields of spin (σ) with σ � 2s
and spin (σ, 2s) with σ � 2s + 1, as could be expected from comparison with what happens for the
Rac� and Di� singletons. However, for t > 1, partially massless fields with a different spin also appear,
namely of the type (σ, n) with n either taking the values 1, 2, . . . , t − 1 or 2(s − t + 1), . . . , 2s. It is also
worth noticing that only for s = 1 the decomposition in Theorem 2 contains a conserved spin-2 current
(i.e., the module D(4 ; (2)

)
). It would be interesting to extend this tensor product decomposition to

arbitrary dimensions.
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Appendix A. Branching Rules and Tensor Products of so(d)

In this appendix we recall the branching and tensor product rules for so(d) irreps, as well as detail
the proofs of the branching rules (23) and (90) and the decomposition (78).

Appendix A.1. Branching Rules for so(d)

For d = 2r + 1, the so(d) irrep (s1, . . . , sr) branches onto so(d − 1) as:

(s1, . . . , sr)
so(d)
↓

so(d−1)

s1⊕
t1=s2

· · ·
sr−1⊕

tr−1=sr

sr⊕
tr=−sr

(t1, . . . , tr) , (A1)

whereas for d = 2r, the branching rule reads:

(s1, . . . , sr)
so(d)
↓

so(d−1)

s1⊕
t1=s2

· · ·
sr−1⊕

tr−1=sr

(t1, . . . , tr−1) . (A2)
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Appendix A.2. Computing so(d) Tensor Products

In order to prove the decomposition (22) and (78), as well as the similar decomposition for
(partially) massless fields with spin given by a rectangular Young diagram of arbitrary length s, we first
need to know know how to decompose the tensor product of two so(d) Young diagrams, one of which
being a single row of arbitrary length and the other one being an “almost” rectangular diagram, i.e.,
of the form:

↑
r − 1

↓

← s →

← s − 1 →
s − t

To do so, it is convenient to express the tensor product rule for so(d) in terms of that of gl(d)
which is considerably simpler. The rule for decomposing a tensor product of two gl(d) irreps labelled
by two Young diagrams λ := (λ1, . . . , λd) and μ = (μ1, . . . , μd), known as the Littlewood-Richardson
rule, goes as follows (see e.g., [117]):

• First, assign to the boxes of each rows of one of the Young diagrams (say μ) a label which keeps
track of the order of the rows (for instance, if the labels are letters of the alphabet, then each of the
μ1 boxes of the first row of μ are assigned the label “a”, each of the μ2 boxes of the second row of
μ are assigned the label “b”, etc.);

• Then, glue the boxes of μ to λ in all possible ways such that the resulting diagram obey the
following constraints:

– Boxes in the same column should not have the same label;
– When reading the row of the obtained Young diagram from right to left, and its columns

from top to bottom, the number of boxes encountered should be decreasing with their label
(i.e., less boxes of the second label are encountered than with the first label, less with the
third than the second, etc.);

– The resulting diagram should always be a legitimate Young diagram, i.e., the length of the
rows is decreasing from top to bottom, and it is composed of at most d rows.

For orthogonal algebras so(2r + 1), the tensor product of two irreps, � = (�1, . . . , �r) and (σ) can
be computed as follows:

(i) Branch each of the two Young diagrams into so(2r) and pair them by number of boxes removed
from the original ones until the products of one of these diagrams are exhausted;

(ii) Compute the tensor product between these pairs of diagrams using the Littlewood-Richardson
rule recalled above;

(iii) Discard the Young diagrams which are not acceptable for so(d), i.e., those for which the sum of
the height of their first two columns is stricly greater than d.

The tensor product �⊗ (σ) can therefore be represented as follows:

�⊗ (σ) =
min(σ,�1−�r)⊕

m=0

�1−�2⊕
n1=0

�2−�3⊕
n2=0

· · ·
�r⊕

nr=0
(�1 − n1, . . . , �r − nr) ⊗

gl(d−1)
(σ − m)

∣∣∣∣∣
so(d) OK

. (A3)

Example A1. Consider the tensor product between the so(5) irreps and branching rule for these
representations is:

so(5)
↓

so(4)
⊕ ⊕ , and

so(5)
↓

so(4)
⊕ ⊕ •

. (A4)
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Now computing the tensor products between those product paired by number of boxes removed, and using the
Littlewood-Richardson rule yields:

⊗gl = ⊕ ⊕
(A5)

⊗gl = ⊕ ⊕
(A6)

⊗gl • = . (A7)

Among the diagrams obtained above, one is not a legitimate so(5) Young diagram (as the sum of the height
of its two first columns is

⊗ = ⊕ ⊕ ⊕ ⊕ ⊕
. (A8)

the fact that two so(d) Young diagrams whose first column is of height c and d − c are equivalent, the initial
tensor product finally reads:

Notice that the well-known tensor product rule for so(3) can be recovered from the above
algorithm. Given two so(3) irreps (s) and (s′), i.e., two one-row Young diagram of respective length s
and s′, their tensor product decomposes as:

(s)⊗ (s′) =
⊕min(s,s′)

m=0 (s − m)⊗gl(3) (s′ − m)
∣∣∣
so(3) OK

=
⊕min(s,s′)

m=0
⊕min(s′−m,s−m)

k=0 (s + s′ − 2m − k, k)
∣∣∣
so(3) OK

. (A9)

The only Young diagrams that are so(3) acceptable in the previous equation are those for which
k = 0 or 1, i.e., the second row contains no more than one box. In the latter case, such a Young
diagram is equivalent to the one where the second row is absent, i.e. (s, 1) ∼= (s). As a consequence,
the decomposition reads:

(s)⊗ (s′) =
2 min(s,s′)⊕

m=0
(s + s′ − m) =

s+s′⊕
k=|s−s′ |

(k) , (A10)

which is indeed the tensor product rule for so(3).

Appendix B. Technical Proofs

Appendix B.1. Proof of the Branching Rule for Unitary HS Singletons

From now on, we will set d = 2r. In order to prove the branching rule:

D(s + r − 1 ; (sr)
) so(2,d)

↓
so(2,d−1)

D(s + r − 1 ; (sr−1)
)

, (A11)

we will need to derive the so(2) ⊕ so(d − 1) decomposition of the so(2, d) singleton module
D(s + r − 1 ; (sr)

)
and of the so(2, d − 1) spin (sr−1) massless field module D(s + r − 1 ; (sr−1)

)
.
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Decomposition of the Massless Modules.

To obtain the so(2)⊕ so(d− 1) decomposition of the so(2, d− 1) spin (sr−1) massless field module
D(s + r − 1 ; (sr−1)

)
, we will use its character and rewrite it as a sum of so(2)⊕ so(d − 1) characters.

Using the property (25) of the function P (d−1)(q,�x), the character of this module becomes:

χ
so(2,d−1)
[s+r−1;(sr−1)]

(q,�x) = qs+r−1 P (d−1)(q,�x)
(

χ
so(d−1)
(sr−1)

(�x) +
r−1

∑
k=1

(−1)kqkχ
so(d−1)
(sr−1−k ,(s−1)k)

(�x)
)

(A12)

=
∞

∑
σ,n=0

qs+r−1+σ+2n χ
so(d−1)
(σ)

(�x)
r−1

∑
k=0

(−q)kχ
so(d−1)
(sr−1−k ,(s−1)k)

(�x) .

Now we can use the tensor product rule recalled previously for so(d − 1) with d − 1 = 2r − 1 odd
to reduce the above expression. It turns out that most of the terms in its alternating sum cancel one
another. To see that, let us have a look at three consecutive terms in the above sum, that we will denote
by “RHS”. In order to make the expression more readable, we will also write � = (�1, . . . , �r) for the
character of the so(d − 1) representation �. A typical triplet of terms in the alternating sum composing
the character (A12) reads:

RHS =
∞

∑
σ=0

(
qσ+k(sr−k−1, (s − 1)k)− qσ+k+1(sr−k−2, (s − 1)k+1)+ qσ+k+2(sr−k−3, (s − 1)k+2)

)
⊗ (σ)

=
∞

∑
σ=0

qσ+k
min(σ,s−1)

∑
m=0

(sr−k−1, (s − 1)k−1, s − 1− m)⊗gl(d) (σ − m) (A13)

+
∞

∑
σ=1

qσ+k
min(σ−1,s−1)

∑
m=0

(sr−k−2, (s − 1)k , s − 1− m)⊗gl(d) (σ − 1− m) (A14)

−
∞

∑
σ=0

qσ+k+1
min(σ,s−1)

∑
m=0

(sr−k−2, (s − 1)k , s − 1− m)⊗gl(d) (σ − m) (A15)

−
∞

∑
σ=1

qσ+k+1
min(σ−1,s−1)

∑
m=0

(sr−k−3, (s − 1)k+1, s − 1− m)⊗gl(d) (σ − 1− m) (A16)

+
∞

∑
σ=0

qσ+k+2
min(σ,s−1)

∑
m=0

(sr−k−3, (s − 1)k+1, s − 1− m)⊗gl(d) (σ − m) (A17)

+
∞

∑
σ=1

qσ+k+2
min(σ−1,s−1)

∑
m=0

(sr−k−4, (s − 1)k+2, s − 1− m)⊗gl(d) (σ − 1− m) . (A18)

The second term (corresponding to the fourth and fifth line, i.e., (A15) and (A16) above) can be
rewritten as:

Second term = −
∞

∑
σ=1

qσ+k
min(σ,s)

∑
m=1

(sr−k−2, (s − 1)k, s − m)⊗gl(d) (σ − m) (A19)

−
∞

∑
σ=1

qσ+k+1
min(σ,s)

∑
m=1

(sr−k−3, (s − 1)k+1, s − m)⊗gl(d) (σ − m) . (A20)

Both of these terms are compensated, the first line above by rewritting (A14) as:

+
∞

∑
σ=1

qσ+k
min(σ,s)

∑
m=1

(sr−k−2, (s − 1)k, s − m)⊗gl(d) (σ − m) , (A21)

and the second line by rewritting (A17) as:

+
∞

∑
σ=1

qσ+k+1
min(σ,s)

∑
m=1

(sr−k−3, (s − 1)k+1, s − m)⊗gl(d) (σ − m) . (A22)
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Hence it appears that the second term in this triplet is completely compensated, in part by the
first terms and in part by the third one. Because this succession of three terms repeats itself in the
alternating sum of the character (A12), and that the last term is completely cancelled by the previous
one, only the part of the first term that is not compensated by the second one remains:

First two terms =
∞

∑
σ=0

qσ(sr−1)⊗ (σ)−
∞

∑
σ=0

qσ+1(sr−2, s − 1)⊗ (σ) (A23)

=
∞

∑
σ=0

qσ
min(σ,s)

∑
m=0

(sr−2, s − m)⊗gl(d) (σ − m) (A24)

−
∞

∑
σ=0

qσ+1
min(σ,s−1)

∑
m=0

(sr−2, s − 1− m)⊗gl(d) (σ − m)

− term that will be compensated (A25)

=
∞

∑
σ=0

qσ
min(σ,s)

∑
m=0

(sr−2, s − m) ⊗
gl(d−1)

(σ − m) (A26)

−
∞

∑
σ=1

qσ
min(σ,s)

∑
m=1

(sr−2, s − m) ⊗
gl(d−1)

(σ − m) (A27)

=
∞

∑
σ=0

qσ(sr−1) ⊗
gl(d−1)

(σ) =
∞

∑
σ=0

qσ(s + σ, sr−2)⊕
∞

∑
σ=1

qσ(s + σ − 1, sr−2) (A28)

=
∞

∑
σ=0

(1 + q) qσ(s + σ, sr−2) . (A29)

Notice that only two terms in the gl(d − 1) tensor product survived in (A28). Indeed, in full
generality, it would produce:

(sr−1) ⊗
gl(d−1)

(σ) =
min(s,σ)⊕

k=0

(s + σ − k, sr−2, k) , (A30)

however, only the first two terms are so(d − 1) acceptable Young diagrams, as they are the only ones
for which the sum of the heights of their first two columns is lower than d − 1. The character of the
so(2, d − 1) module D(s + r − 1 ; (sr−1)

)
therefore reads:

χ
so(2,d−1)
[s+r−1;(sr−1)]

(q,�x) =
∞

∑
n=0

∞

∑
σ=0

qs+r−1+2n+σ (1 + q) χ
so(d−1)
(s+σ,sr−2)

(�x) =
∞

∑
n=0

∞

∑
σ=0

qs+r−1+n+σ χ
so(d−1)
(s+σ,sr−2)

(�x) , (A31)

which proves that the so(2, d − 1) module of a spin (sr−1) massless field reads:

D(s + r − 1; (sr−1)
) ∼=

∞⊕
σ,n=0

Dso(2)⊕so(d−1)
(
s + r − 1 + σ + n; (s + σ, sr−2)

)
. (A32)

Decomposition of the Singleton Module.

The spin-s singleton module can be decomposed as an infinite direct sum of (finite-dimensional)
so(2)⊕ so(d) modules as [10]:

D(s + r − 1; (sr)
) ∼= ∞⊕

σ=0
Dso(2)⊕so(d)

(
s + r − 1 + σ; (s + σ, sr−1)

)
. (A33)
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In order to branch this module from so(2, d) to so(2, d − 1), one can simply branch the so(d) part
of the above decomposition onto so(d − 1), thereby yielding:

D(s + r − 1; (sr)
) so(2,d)

↓
so(2,d−1)

∞⊕
σ=0

σ⊕
τ=0

Dso(2)⊕so(d−1)
(
s + r − 1 + σ; (s + τ, sr−2)

)
(A34)

∼=
∞⊕

σ=0

∞⊕
n=0

Dso(2)⊕so(d−1)
(
s + r − 1 + σ + n; (s + σ, sr−2)

)
. (A35)

This so(2)⊕ so(d − 1) decomposition matches that of the so(2, d − 1) module of a spin (sr−1)

massless field, hence we proved:

D(s + r − 1 ; (sr)
) so(2,d)

↓
so(2,d−1)

D(s + r − 1 ; (sr−1)
)

. (A36)

Appendix B.2. Proof of the Branching Rule for Rectangular Partially Massless Fields

Following the same steps as in the previous section, we will now proceed to proving the
branching rule:

D(s + r − t ; (sr)
) so(2,d)

↓
so(2,d−1)

t⊕
τ=1

D(s + r − τ ; (sr−1)
)

. (A37)

Decomposition of the Partially Massless Modules for d = 2r + 1.

Let us start with the so(2) ⊕ so(d − 1) decomposition of the so(2, d − 1) module D(s + r −
τ; (sr−1)

)
corresponding to a partially massless field of spin (sr−1) and depth-τ. Using the same

notational shortcuts than in the previous section, its character can be rewritten as:
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χ
so(2,d−1)
[s+r−τ;(sr−1)]

(q,�x) =
∞

∑
σ,n=0

qs+r−τ+2n+σ(σ)⊗
(
(sr−1)+

r−2

∑
k=0

(−1)k+1qτ+k(sr−2−k , (s − 1)k , s − τ)
)

(A38)

=
∞

∑
n=0

qs+r−τ+2n
( ∞

∑
σ=0

qσ
min(s,σ)

∑
m=0

(σ − m) ⊗
gl(d−1)

(sr−2, s − m) (A39)

−
τ

∑
p=0

∞

∑
σ=p

qσ+τ
min(s−τ,σ−p)

∑
m=0

(σ − p − m) ⊗
gl(d−1)

(sr−3, s − p, s − τ − m)

+
r−2

∑
k=1

(−1)k+1
τ−1

∑
p=0

∞

∑
σ=p

qσ+τ+k × (A40)

min(s−τ,σ−p)

∑
m=0

(σ − p − m) ⊗
gl(d−1)

(sr−2−k , (s − 1)k−1, s − 1− p, s − τ − m)

+
r−3

∑
k=1

(−1)k+1
τ−1

∑
p=0

∞

∑
σ=p+1

qσ+τ+k × (A41)

min(s−τ,σ−p−1)

∑
m=0

(σ − p − 1− m) ⊗
gl(d−1)

(sr−3−k , (s − 1)k , s − 1 − p, s − τ − m)
)

=
∞

∑
n=0

qs+r−τ+2n
( ∞

∑
σ=0

qσ
min(s,σ)

∑
m=0

(σ − m) ⊗
gl(d−1)

(sr−2, s − m) (A42)

−
τ

∑
p=0

∞

∑
σ=p

qσ+τ
min(s−τ,σ−p)

∑
m=0

(σ − p − m) ⊗
gl(d−1)

(sr−3, s − p, s − τ − m) (A43)

+
τ−1

∑
p=0

∞

∑
σ=p

qσ+τ+1
min(s−τ,σ−p)

∑
m=0

(σ − p − m) ⊗
gl(d−1)

(sr−3, s − 1− p, s − τ − m)
)

(A44)

=
∞

∑
n=0

qs+r−τ+2n
( ∞

∑
σ=0

qσ
min(s,σ)

∑
m=0

(σ − m) ⊗
gl(d−1)

(sr−2, s − m) (A45)

−
∞

∑
σ=0

qσ+τ
min(s−τ,σ)

∑
m=0

(σ − m) ⊗
gl(d−1)

(sr−2, s − τ − m)
)

(A46)

=
∞

∑
σ,n=0

qs+r−τ+σ+2n
min(σ,τ−1)

∑
m=0

(σ − m) ⊗
gl(d−1)

(sr−2, s − m) . (A47)

Leaving aside the sum of n, the above equation can be re-expressed as:

∞

∑
σ=0

qσ
min(σ,τ−1)

∑
m=0

(σ − m) ⊗
gl(d−1)

(sr−2, s − m) =
τ−1

∑
k=0

∞

∑
σ=k

qσ(σ − k) ⊗
gl(d−1)

(sr−2, s − k) . (A48)

Using the Littlewood-Richardson rule yields:

∞

∑
σ=k

qσ(σ − k) ⊗
gl(d−1)

(sr−2, s − k) =
k

∑
p=0

∞

∑
σ=k+p

qσ (1 + q) (s + σ − k − p, sr−3) (A49)

=
k

∑
p=0

∞

∑
σ=2k−p

qσ (1 + q) (s + σ − 2k + p, sr−3, s − p) (A50)

=
k

∑
p=0

∞

∑
σ=p

qσ+2(k−p) (1 + q) (s + σ − p, sr−3, s − p) , (A51)

hence (A48) becomes:

τ−1

∑
k=0

k

∑
p=0

∞

∑
σ=p

qσ+2(k−p) (1 + q) (s + σ − p, sr−3, s − p) =
τ−1

∑
k=0

τ−1−k

∑
p=0

∞

∑
σ=p

qσ+2p (1 + q) (s + σ − k, sr−3, s − k) . (A52)
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Finally, the character of the so(2, d − 1) module D(s + r − τ; (sr−1)
)

can be expressed as:

χ
so(2,d−1)
[s+r−τ;(sr−1)]

(q,�x) =
∞

∑
n=0

τ−1

∑
k=0

τ−1−k

∑
p=0

∞

∑
σ=k

qs+r−τ+2p+σ+nχ
so(d−1)
(s+σ−k,sr−3,s−k)(�x) , (A53)

which proves that this module decomposes as:

D(s + r − τ; (sr−1)
) ∼= τ−1⊕

k=0

τ−1−k⊕
p=0

∞⊕
n=0

∞⊕
σ=k

Dso(2)⊕so(d−1)
(
s + r − τ + σ + n + 2p; (s + σ − k, sr−3, s − k)

)
. (A54)

Decomposition of the Rectangular Partially Massless Field Module for d = 2r.

Before deriving the so(2) ⊕ so(d − 1) decomposition of the spin-s and depth-t RPM module,
we will need to prove its so(2)⊕ so(d) decomposition:

D(s + r − t; (sr)
) ∼= t−1⊕

�=0

t−1−�⊕
n=0

∞⊕
σ=�

Dso(2)⊕so(d)
(
s + r − t + σ + 2n; (s − �+ σ, sr−2, s − �)

)
. (A55)

To do so, we will need to use the Weyl character formula:

χ
so(d)
� (�x) =

∑w∈Wso(d)
ε(w)e(w(�+ρ)−ρ,μ)

∏α∈Φ+
(1− e(α,μ))

, (A56)

where Φ+ is the set of positive roots of so(d), Wso(d) its Weyl group, ρ := 1
2 ∑α∈Φ+

α the Weyl vector,
ε(w) the signature of the Weyl group element w, ( , ) is inner product on the root space inherited
from the Killing form and μ = (μ1, . . . , μr) an arbitrary root used to define the variables xi on which
depends the character via xi := eμi . Defining

Cso(d)
� (�x) := e(�,μ) ∏

α∈Φ+

1
1− e(α,μ)

=
r

∏
i=1

x�i
i ∏

α∈Φ+

1
1− e(α,μ)

, (A57)

one can show
w
(Cso(d)

� (�x)
)

:= e(w(�),μ) ∏
α∈Φ+

1
1− e(w(α),μ)

= ε(w)Cso(d)
w·� (�x) , (A58)

with w · � = w(�+ ρ)− ρ. Hence, the Weyl character formula (A57) can be rewritten as:

χ
so(d)
� (�x) = ∑

w∈Wso(d)

w
(Cso(d)

� (�x)
)

:= Wso(d)

(
Cso(d)
� (�x)

)
. (A59)

The Weyl group for Wso(d) for d = 2r is the semi-direct product Sr � (Z2)
r−1 where Sr is the

permutation group of r elements. Any element of Wso(d) acts on the so(d) characters as a combination
of permutation of the variables xi and (pair of) sign flip of their exponents (for more details, see e.g., [10]
or the classical textbooks [118,119]). As a consequence, any function invariant under such operation
can go in and out of the Weyl symmetrizer Wso(d). In particular, P (d)(q,�x) being invariant under any
permutation and any inversion (xi → x−1

i ) of the variables xi, it has the property:

Wso(d)
(Cso(d)

� (�x)P (d)(q,�x)
)
= Wso(d)

(Cso(d)
� (�x)

)P (d)(q,�x) . (A60)

Using this property, as well as the fact that Cso(d)
� (�x) verifies:

Cso(d)
(�1,...,�j−1,�j+a,�j+1,...,�r)

(�x) = xa
j Cso(d)

(�1,...,�j−1,�j ,�j+1,...,�r)
(�x) , (A61)
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we can now prove that the character of the so(2)⊕ so(d) decomposition (A55) can be rewritten 15 as
the character of the spin-s and depth-t RPM module (76):

Decomposition =
t−1

∑
�=0

t−1−�

∑
n=0

∞

∑
σ=�

qs+r−t+2n+σχ
so(d)
(s+σ−�,sr−2,s−�)

(�x) (A62)

=
t−1

∑
�=0

qs+r−t+� 1− q2(t−�)

1− q2 Wso(d)

( ∞

∑
σ=0

qσxσ
1Cso(d)(sr−1,s−�)

(�x)
)

(A63)

=
qs+r

1− q2 Wso(d)

( t−1

∑
�=0

[
q−t+� − qt−�] x−�

r
1− qx1

Cso(d)
(sr)

(�x)
)

(A64)

=
qs+r−t

1− q2 Wso(d)

(1− (1− q2)qtx−t
r − (1− q2t)qxr − q2t+2

(1− qx1)(1− qxr)(1− qx−1
r )

Cso(d)
(sr)

(�x)
)

(A65)

=
qs+r−t

1− q2 P (d)(q,�x)× (A66)

Wso(d)

([
1− q2t+2 − (1− q2t)qxr (A67)

−(1− q2)qtx−t
r
]
(1− qx−1)

r−1

∏
i=2

(1− qxi)(1− qx−1
i )Cso(d)

(sr)
(�x)

)
. (A68)

Each terms of the above sum as some power of q times a so(d) character: using (A57), (A60) and
(A61) they are all of the form

Wso(d)

(
qβ

r

∏
i=1

xαi
i Cso(d)

(sr)
(�x)

)
= qβ χ

so(d)
(s+α1,s+α2,...,s+αr)

(�x) . (A69)

• The first piece, proportional to (1− q2t+2) reads:

Wso(d)

(
(1− qx−1) ∏r−1

i=2 (1− qxi)(1− qx−1
i ) Cso(d)

(sr)
(�x)

)
(A70)

= ∑
0�n�2r−3

n:=n1,−+∑r−1
i=2 ni,++ni,−

(−q)nχ
so(d)
(s−n1,− ,s+n2,+−n2,− ,...,s+nr−1,+−nr−1,− ,s)(�x) .

Using the symmetry property

χ
so(d)
(�1,...,�j ,�−1,�+1,�j+3,...,�r)

(�x) = −χ
so(d)
(�1,...,�j ,�,�,�j+3,...,�r)

(�x) , (A71)

of the so(d) characters, one can check that the previous sum reduces to a single contribution:

Wso(d)

(
(1− qx−1)

r−1

∏
i=2

(1− qxi)(1− qx−1
i ) Cso(d)

(sr)
(�x)

)
= χ

so(d)
(sr)

(�x) . (A72)

For instance, for r = 3:

Wso(d)

(
(1− qx−1)(1− qx2)(1− qx−1

2 ) Cso(d)
(sr)

(�x)
)

= (1 + q2)χ
so(d)
(s,s,s)(�x)− q

(
χ
so(d)
(s,s+1,s)(�x)

+χ
so(d)
(s,s−1,s)(�x)

)
−q(1 + q2)χ

so(d)
(s−1,s,s)(�x)

+q2(χ
so(d)
(s−1,s+1,s)(�x) + χ

so(d)
(s−1,s−1,s)(�x)

)
.

15 This technique was originally used in [10] (see appendix D) in order to derive the so(2)⊕ so(d) decomposition of the unitary
singleton modules. We merely adapt it here to the non-unitary case.
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The symmetry property (A71) implies that:

χ
so(d)
(s,s+1,s)(�x) = χ

so(d)
(s,s−1,s)(�x) = χ

so(d)
(s−1,s−1,s)(�x) = χ

so(d)
(s−1,s,s)(�x) = 0 , and χ

so(d)
(s−1,s+1,s)(�x) = −χ

so(d)
(s,s,s)(�x) ,

hence we indeed obtain:

Wso(d)

(
(1− qx−1)(1− qx2)(1− qx−1

2 ) Cso(d)
(sr)

(�x)
)
= χ

so(d)
(s,s,s)(�x) . (A73)

• The second piece, proportional to (1− q2t), also reduces to a single contribution upon using the
same symmetry property (A71):

Wso(d)

(
qxr(1− qx−1) ∏r−1

i=2 (1 − qxi)(1− qx−1
i ) Cso(d)

(sr)
(�x)

)
(A74)

= ∑
0�n�2r−3

n:=n1,−+∑r−1
i=2 ni,++ni,−

(−)nqn+1χ
so(d)
(s−n1,− ,s+n2,+−n2,− ,...,s+nr−1,+−nr−1,− ,s+1)(�x)

= q2 χ
so(d)
(sr)

(�x) (A75)

• Finally, the third piece (proportional to (1− q2)) contains more contributions:

Wso(d)

(
qtx−t

r (1 − qx−1) ∏r−1
i=2 (1− qxi)(1− qx−1

i ) Cso(d)
(sr)

(�x)
)

(A76)

= ∑
0�n�2r−3

n:=n1,−+∑r−1
i=2 ni,++ni,−

(−1)nqt+nχ
so(d)
(s−n1,− ,s+n2,+−n2,− ,...,s+nr−1,+−nr−1,− ,s−t)(�x)

=
r−1

∑
k=0

(−1)kqt+kχ
so(d)
(sr−1−k ,(s−1)k ,s−t)

(�x) . (A77)

Putting those three piece together yields:

t−1

∑
�=0

t−1−�

∑
n=0

∞

∑
σ=�

qs+r−t+2n+σχ
so(d)
(s+σ−�,sr−2,s−�)

(�x) =
qs+r−t

1 − q2

(
(1− q2t+2) χ

so(d)
(sr)

(�x)− (1− q2t) q2 χ
so(d)
(sr)

(�x) (A78)

−(1− q2)
r−1

∑
k=0

(−)kqt+k χ
so(d)
(sr−1−k ,(s−1)k ,s−t)

(�x)
)
P (d)(q,�x)

= qs+r−t P (d)(q,�x)
(

χ
so(d)
(sr)

(�x) (A79)

−
r−1

∑
k=0

(−)kqt+k χ
so(d)
(sr−1−k ,(s−1)k ,s−t)

(�x)
)

(A80)

= χ
so(2,d)
[s+r−t;(sr)]

(q,�x) , (A81)

thereby proving the so(2)⊕ so(d) decomposition (A55) of the spin-s and depth-t RPM module.
Finally, the so(2)⊕ so(d − 1) of this module reads:

D(s + r − t; (sr)
) ∼=

t−1⊕
�=0

t−1−�⊕
n=0

∞⊕
σ=�

Dso(2)⊕so(d)
(
s + r − t + σ + 2n; (s − �+ σ, sr−2, s − �)

)
(A82)

so(2,d)
↓

so(2,d−1)

t−1⊕
�=0

t−1−�⊕
n=0

∞⊕
σ=�

σ−�⊕
τ=0

�⊕
k=0

Dso(2)⊕so(d−1)
(
s + r − t + σ + 2n; (s + τ, sr−3, s − k)

)
(A83)

∼=
t⊕

τ=1

τ−1⊕
k=0

τ−1−k⊕
p=0

∞⊕
n=0

∞⊕
σ=k

Dso(2)⊕so(d−1)
(
s + r − τ + σ + n + 2p; (s + σ − k, sr−3, s − k)

)
,

thereby proving the branching rule:

D(s + r − t ; (sr)
) so(2,d)

↓
so(2,d−1)

t⊕
τ=1

D(s + r − τ ; (sr−1)
)

. (A84)
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Abstract: Fefferman-Graham ambient construction can be formulated as sp(2)-algebra relations on
three Hamiltonian constraint functions on ambient space. This formulation admits a simple extension
that leads to higher-spin fields, both conformal gauge fields and usual massless fields on anti-de
Sitter spacetime. For the bulk version of the system, we study its possible on-shell version which
is formally consistent and reproduces conformal higher-spin fields on the boundary. Interpretation
of the proposed on-shell version crucially depends on the choice of the functional class. Although
the choice leading to fully interacting higher-spin theory in the bulk is not known, we demonstrate
that the system has a vacuum solution describing general higher-spin flat backgrounds. Moreover,
we propose a functional class such that the system describes propagation of higher-spin fields over
any higher-spin flat background, reproducing all the structures that determine the known nonlinear
higher-spin equations.

Keywords: higher-spin theory; AdS/CFT; Fefferman-Graham

1. Introduction

The theory of higher-spin gravity is intimately tied to Anti de Sitter/Conformal Field theory
(AdS/CFT) correspondence [1–3] in the exotic regime of strong curvature/weak coupling [4–6].
Historically, the discovery of the deep relationship between AdS massless fields and elementary
fields living on the conformal boundary (aka “singletons”) by Flato and Fronsdal [7] anticipated some
ideas of AdS/CFT correspondence. Most presumably, both subjects (higher spins and holography)
still hold important insights worth exploring for their mutual benefit. Particular examples where the
connection between both subjects might deserve to be explored further are the ambient construction
of Fefferman and Graham and its relation to effective actions and higher-spin gauge fields that we
investigate in this work.

First of all, the Fefferman-Graham (FG) ambient construction (The seminal paper is [8] but see
e.g., [9] (and refs therein) for a comprehensive overview on the subject.) is one of the most important
mathematical pillar sustaining the AdS/CFT correspondence since its very birth. In fact, it was
instrumental in the holographic prescription, see e.g., [2,10,11]. In its simplest version it amounts to
the flat ambient space approach [12,13] whose underlying idea is to make conformal and/or AdS
symmetries manifest: conformal algebra acts on the projective hypercone, while AdS algebra acts on
the hyperboloid.

The FG construction can be understood as the curved generalization of the naive ambient space
approach. It can be used in several different ways: to study curved conformal geometry with the
tools of the Riemannian geometry by extending the conformal structure off the hypercone; to study

Universe 2018, 4, 17 199 www.mdpi.com/journal/universe
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Einstein equations with cosmological constant on the hyperboloid in terms of the Ricci flat ambient space
geometry. Also, for odd bulk dimensions the conformal gravity equations on the boundary arise as an
obstruction to extending the conformal structure to the FG ambient metric and can also be seen as arising
from holographic Weyl anomaly [11]. In a similar way, equations of motion/Lagrangians of conformal
gauge fields arise as an obstruction/holographic anomaly of the respective AdS gauge fields [11,14–17].

Typically, it is assumed that in the FG construction the ambient metric is subject to Ricci flatness
condition. With this condition omitted the FG construction is equivalent to Hamiltonian constraints:
three functions on ambient phase space (with Poisson bracket {XA, PB} = δA

B ) that obey the sp(2)
algebra (The fact that there is a triplet of operators that forms sp(2) and it is closely related to the FG
construction was pointed out in [18] (see also [19–22]). In the context of quantizing particle models
this system also appeared in [23]),

{F+, F−} = F0 , {F0, F±} = ±2 F± . (1)

and is referred to as “off-shell FG construction” in what follows. These three constraints have a
specific form: they contain no more than two powers of momenta. More precisely, one constraint
is independent of the momenta, F−, one is linear, F0, and one is quadratic, F+. The constraints can
be shown to imply the existence of an ambient metric GAB(X) and a homothety vector field (closely
related to what is known as “compensator field” in physics literature) VA(X) that satisfy the FG
conditions, which can be summarized as the relation GAB = ∇AVB.

When the off-shell FG construction is realized as sp(2) constraints, a higher-spin (HS) extension is
naturally obtained by allowing the constraints to be arbitrary functions on the phase space (The sp(2)
algebra (or its extensions) plays a prominent role in the unfolded approach [24] to HS theory at the
nonlinear level [25–27], but within a rather different framework). Since the HS extension is done in the
ambient space, one can consider it either in the vicinity of the (curved) hypercone V2 = 0 or in the
vicinity of the (curved) hyperboloid V2 = −1, which leads to two interpretations in terms of HS gauge
fields on the conformal space (the projectivization of the hypercone) and HS fields on the hyperboloid.

The formulations of HS fields based on the ambient space sp(2)-system have originally appeared
in the literature independently of FG ambient construction. The idea to describe a tower of HS fields
on projective hypercone as an sp(2)-system in ambient space was proposed in [28] and developed
further in [20,21]. In the context of HS fields on AdS an sp(2)-system was proposed in [29] where it
was shown to describe off-shell HS fields upon linearizing over the AdS vacuum solution. The same
system describes [17,30] the off-shell theory of conformal higher-spin (CHS) fields [31–34] provided
one subjects the system to certain extra algebraic gauge symmetries.

CHS fields arise as natural sources for conserved higher-rank tensors, likewise the conformal
graviton is a source for the stress-tensor in a CFT. Infinite multiplets of CHS fields are sources for HS
currents that are present in free CFT’s [35–39]. When CHS fields are viewed as infinitesimal sources,
the effective action is simply a generating functional of the free CFT correlators. While it is trivial
to couple the free scalar field to an arbitrary gravitational background, a remarkable fact [32] is that
one can couple the free scalar field to an arbitrary CHS background as well, i.e., to extend CHS fields
beyond infinitesimal sources. This requires an intricate structure of non-abelian symmetries that make
the effective action of the free scalar field gauge-invariant on an arbitrary CHS background. It is these
gauge symmetries for the CHS sources that the sp(2)-system describes, thereby encoding information
about the effective action on any background. Moreover, for even boundary dimension the effective
action has a local log-divergent part: it is the conformal gravity action if the background is gravitational
and the action of CHS gravity if a HS background is turned on [31–34].

On the hyperboloid, V2 = −1, the same sp(2)-system describes off-shell nonlinear bulk HS gauge
fields. More precisely, the sp(2)-system linearized over the AdS background can be put on-shell, giving
the ambient space description of the Fronsdal fields [40]. However, it is not clear how to extend this
beyond the free approximation: a natural suggestion to put the system on-shell at higher orders is
to introduce extra gauge symmetry factoring out the ideal generated by the sp(2)-fields themselves.
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This extra gauge symmetry is precisely the one needed to describe CHS fields on the boundary and
can also be seen as a natural gauge symmetry of the constrained system with constraints Fi, which is
related to a redefinition of the constraints (A somewhat similar factorization procedure is employed
in the Vasiliev system [27] in general space-time dimension. Precisely this gauge symmetry and its
constrained system interpretation was proposed in [41]).

On general grounds, putting the system on-shell by gauging away off-shell modes crucially
depends on the choice of the functional class. For instance, with naive but natural choice the procedure
yields an empty system. When formulated in such terms the problem seems to be closely related to the
issue of locality in field theory, more specifically in higher-spin theories (The degree of non-locality
was quantified in [42–44] by reconstructing the quartic vertex, which revealed that the vertex is highly
non-local. It should always be possible to manufacture interactions in AdS that would give the
expected CFT correlation functions [42,45–48], but it is unclear how to fix such interactions in the bulk
without having to invoke the AdS/CFT argument, which is due to a high degree of non-locality [43,44],
the problem being similar to that in flat spacetime). Indeed, the choice of a functional class controls the
derivative expansion of interactions, which is always strongly-coupled in higher-spin theories due to
the dimensionless coupling constant and unbounded number of derivatives starting from the quartic
order, see e.g., discussion in [49].

Instrumental in investigating various properties of gauge theories (in particular the sp(2)-system
we are interested in) is the parent approach [50–53]. One of the advantages of the parent approach in
the context of the AdS/CFT correspondence is that one can jump directly between bulk and boundary
simply by changing the compensator field from timelike (V2 = −1) to null (V2 = 0) [16,17]. The parent
equations of motion then rearrange themselves in accordance with the representation structure of the
AdS/conformal algebra.

In this work, with the help of the parent approach we demonstrate that the sp(2)-system can
be pushed one step further: the system has a class of exact solutions—higher-spin flat backgrounds.
We also show that one can put the HS fields on-shell over a HS-flat background, which is not necessarily
AdS and thereby probes interactions. More specifically, we propose a suitable functional class in the
auxiliary space of the parent formulation, which allows one to put the system on-shell. The resulting
equations have the correct form of a flatness condition deformed by a two-cocycle of the HS algebra [54].
These are the data that completely determine the Vasiliev equations [24,27].

It has been known for decades that HS fields are hard to make propagate consistently on anything
but constant curvature backgrounds [55]. Nevertheless, we observe that special backgrounds, those
given by flat connections of HS algebras, allow for propagation of HS fields. The flatness condition is
hard to interpret from the vantage point of Fronsdal fields [56]. It is worth mentioning that HS-flat
backgrounds were shown to describe rich physics of HS black holes in three-dimensions, see e.g., [57]
and references therein/thereon.

The outline of the paper is as follows. In Section 2, we discuss the off-shell FG construction and
show that it is equivalent to the sp(2) constraints (with some details delegated to Appendix A.4).
In Section 3, we review and discuss the on-shell FG construction. In Section 4, a HS extension is
proposed and it is discussed how it is related to the known HS systems. In Section 5, we show that the
HS extension can describe fluctuations of massless HS fields over any HS-flat background. Conclusions
and discussion are in Section 6.

2. Off-Shell Fefferman-Graham Theory

By “off-shell gravity” in d + 1 dimensions, we understand a gauge theory whose fields are the
components of the metric tensor gμν (μ, ν = 0, 1, . . . , d), which is assumed invertible and only (i.e., it is
“off-shell” in the sense that the fields are not subject to field equations.) subject to the usual gauge
transformations (infinitesimal diffeomorphisms):

δξ gμν = Lξ gμν := ξρ∂ρgμν + ∂μξρgρν + ∂νξρgμρ , (2)
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where ξμ are the components of a gauge parameter which is assumed unconstrained.
Similarly one defines “off-shell conformal gravity” in d dimensions via an invertible metric

tensor gab (a, b = 0, 1, . . . , d − 1) by introducing the extra gauge transformations (infinitesimal
Weyl transformations):

δξ, ωgab = Lξ gab + 2 ω gab , (3)

where ξa and ω are, respectively, parameters of the infinitesimal diffeomorphisms and Weyl transformations.
The “off-shell FG theory” defined in (d + 2)-dimensional ambient space (see Appendix A

for historical overview and technical details) parameterized by the coordinates XA requires two
ingredients: a nondegenerate ambient metric GAB (A, B = 0, 0′, 1, . . . , d) and a nowhere-vanishing
homothety vector field VA that are assumed to obey

LV GAB = 2 GAB , ∂AVB − ∂BVA = 0 , (4)

from which it follows that VA = ∂A(V2/2) and GAB = ∇AVB. The fields GAB and VA are subject to
usual diffeomorphisms as gauge transformations.

Equivalently, as is shown in Appendix A.4, the same relations can be defined in terms of three totally
symmetric polyvector fields of rank 2, 1 and 0 : GAB(X), VA(X), and F(X) defined on the (d+ 2)-dimensional
ambient space. The equations of motion can be reformulated as the sp(2) algebra relations:

{F+, F−} = F0 , {F0, F±} = ±2 F± , (5)

where
F+(X, P) = 1

2
GAB(X) PAPB , F0(X, P) = VA(X) PA , F−(X, P) = F(X) , (6)

i.e., we encoded the tensor fields in the three generating functions Fi (i = +,−, 0) using extra variables
PA which are ambient momenta, conjugate to the coordinates XA. The Poisson bracket { , } is defined by{

XB, PA

}
= δB

A . (7)

The gauge symmetries in the FG ambient theory are given by

δξ Fi = {ξ, Fi} , (8)

where ξ = ξ A(X) PA is the generating function of the gauge parameters. It is clear that these gauge
transformations are nothing but infinitesimal diffeomorphisms of the ambient space. At the same time,
these are particular canonical transformations of the phase space X, P.

As explained in Appendix A.4, when GAB is nondegenerate (and can thus be seen as the inverse
of a metric GAB), it follows from the three Equation (5) on the three functions (6) that

F(X) = − 1
2

GAB(X)VA(X)VB(X) (9)

and
∇AVB = δB

A , (10)

where ∇ is the Levi-Civita connection of the ambient metric GAB(X).
The off-shell FG theory in d + 2 dimensions is equivalent to off-shell gravity in d + 1 dimensions

provided one disregards the direction along VA(x) as a genuine spacetime dimension. Other way
around, any metric gμν in d + 1 dimensions can be lifted to an ambient metric GAB and homothety
vector field VA defined on the (d + 2)-dimensional ambient space such that the original space is a
“curved hyperboloid” determined by GABVAVB = −1, while the original metric is a pullback of GAB
to this level surface.
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3. On-Shell Fefferman-Graham Theory

We begin with the sp(2) system, i.e., (5) and (8):{
Fi , Fj

}
= Ck

ijFk , δεFi = {ε, Fi} , (11)

which we write in a compact way using sp(2) structure constants Ck
ij. Following [8], let us impose an

extra condition on the ambient metric entering F±:

RAB = 0 , (12)

i.e., one requires the ambient metric GAB to be Ricci flat. The system (11)–(12) defines “on-shell FG
theory”. More precisely, the ambient system should be understood within a certain expansion scheme,
called the FG expansion.

There are two interpretations of the on-shell FG theory in d + 2 dimensions:

• This system is equivalent to on-shell gravity in d+ 1 dimensions with a nonvanishing cosmological
constant (in other words the metric gμν is Einstein). The spacetime manifold can be identified
with the curved hyperboloid V2 = −1;

• This system describes conformal gravity in d dimensions. For d odd it is off-shell, while for d
even it is on-shell, the field equations resulting from the conformal anomaly (For d even, in the
original FG approach the Ricci flatness was imposed only up to a certain power of the defining
function so that the conformal gravity was always off-shell. Another point of view is to require
Ricci flatness at all orders which results in conformal gravity equations. Note that in this case the
system also describes subleading solutions). The spacetime manifold can be identified with the
projectivization of the curved hypercone V2 = 0;

There is another way to describe off-shell conformal gravity by introducing in place of (12) the
following gauge equivalence (A version of this description was proposed in [17,30]).

GAB ∼ GAB + λ GAB + λ(AVB) + λAB V2 , (13)

where λ, λA and λAB are gauge parameters. The parameter λ is related to the usual Weyl symmetry
while λA and λAB implement the equivalence relation up to components along the homothety vector
field and up to terms vanishing on the null-cone V2 = 0 (Note that this formulation (more precisely,
its parent version) of the off-shell conformal gravity gives a manifestly so(d, 2)-covariant description
of the respective jet-space and BRST complex employed [58,59] in classifying conformal invariants).
Both interpretations of the system (11)–(12) as well the system (11) and (13) have simple toy model
counterparts in the context of the scalar field in ambient space, described in Appendix C.

The condition (12) of Ricci flatness on the ambient metric in the FG construction can be understood
as a gauge-fixing condition for the arbitrariness (13) in the extension of the metric from the projective
null cone to the whole ambient space. This gives a field-theoretic explanation of the relation between
the two equivalent ambient descriptions of off-shell conformal gravity.

One can even try to exploit the relation further and to interpret the ambient system (11) and (13)
as defining a field theory on the curved hyperboloid V2 = −1. We postpone detailed discussion of
this approach till Section 5.2 and only mention that there is a simple example illustrating this idea.
Consider the following ambient system:

(VA∂A + Δ)Φ = 0 , Φ ∼ Φ + V2λ , (14)

where Φ is a scalar field on ambient space. Interpret this system as defining a scalar field on the curved
hyperboloid V2 = −1 rather than on the projective hypercone V2 = 0. In so doing one can try to
assume Φ harmonic by adding terms proportional to V2, i.e., try to pick a representative which obeys
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∇2Φ = 0. Of course, this is a subtle procedure and for it to work properly one needs to be careful with
functional issues.

To complete the discussion of the gauge equivalence (13) let us note that (13) can be compactly
written in terms of the generating functions Fi :

F+ ∼ F+ + λ F+ + λAPA F0 +
1
2

λABPAPB F− . (15)

In this form it is clear that this equivalence corresponds to the usual equivalence of constrained
systems related to an infinitesimal redefinition of the constraints. This system (more precisely, its BRST
extension) was considered in [30,41] in the context of AdS HS gauge theory.

4. Higher-Spin Extension of Fefferman-Graham Theory

The idea to describe HS fields by allowing all powers of momenta in the sp(2) constraints was at
the core of Bars’ proposal in [28]. Accordingly, a bold guess for a HS extension of the FG construction
is to remove the restriction on Fi to contain no more than two powers of ambient momentum PA:

F+(X, P) = Φ(X) + ΦA(X)PA +
1
2

GAB(X)PAPB + ΦABC(X)PAPBPC + . . . ,

F0(X, P) = V(X) + VA(X)PA +
1
2

VAB(X)PAPB + . . . ,

F−(X, P) = G̃(X) + G̃A(X)PA + . . . ,

(16)

where the dots denote possible terms of higher order in the momenta. Moreover, one should require
GAB(X) and VA(X) to remain, respectively, nondegenerate and nowhere vanishing. This requirement,
or the choice of a particular vacuum, will break the apparent democracy between the three constraints
Fi(X, P) even if one allows for arbitrary dependence on the momentum for all the three constraints.

We assume that the equations of motion remain the same, which makes the system consistent
with an arbitrary gravitational background (i.e., GAB and VC):{

Fi, Fj
}
= Ck

ijFk . (17)

Here Ck
ij are sp(2) structure constants. The gauge symmetries are

δεFi = {ε, Fi} . (18)

In what follows we analyze this system and relate it to other formulations of HS gauge fields.
As we are going to show, the same system with the Poisson bracket replaced with the Weyl
star-commutator is more appropriate in the context of HS fields. Although the above system has
something to do with both conformal HS fields in d dimensions and HS fields in d + 1 dimensions,
here we are mostly interested in the (d + 1)-dimensional interpretation.

The full system (17) and (18) with Fi as in (16) is known in the literature in various versions
(see e.g., [28,41]). In the context of HS fields in d + 1 dimensions, precisely this system was proposed
in [29] where it was proved to describe off-shell HS fields upon linearizing over the AdS background
solution. Note also that a version of this system with two generators fixed and F+ involving higher
powers in P was also suggested in [20] to describe HS fields in d dimensions and, moreover, the sp(2)
system was cast into an action principle in [21].

The above construction can also be phrased in terms of tractor fields which can be identified with
certain tensor fields in ambient space restricted to the hypercone [60–62]. In particular, this language
was employed to described HS fields in [63–67].
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4.1. Off-Shell Higher-Spin Fields on Gravitational Backgrounds

Suppose we are given a triplet of ambient functions F0
+(X, P), F0

0 (X, P), F0−(X, P) that are of
degree 2, 1, 0 in PA, respectively, and whose Poisson brackets satisfy the algebra sp(2). We assume that
F0
+(X, P) defines a nondegenerate metric and F0

0 (X, P) defines a nowhere-vanishing vector field. Then,
as was mentioned before, it follows that they are of the form (6) with the scalar field F(X) given by (9)
and the vector field VA(X) satisfying ∇AVB = δA

B .
As was shown by Fefferman and Graham, at least locally any metric gμν in d + 1 dimensions

can be lifted to an ambient metric GAB defined on the (d + 2)-dimensional ambient space such that
the original spacetime is a “curved hyperboloid” determined by GABVAVB = −1, while the original
metric gμν is a pullback of GAB to this surface.

We are going to interpret Fi = F0
i as a background solution of the full HS system, where only

gravitational fields are nonvanishing. In order to see that the full system indeed describes HS fields,
let us consider its linearization around Fi = F0

i . The linearized equations and gauge symmetries read:{
fi, F0

j

}
+
{

F0
i , f j

}
= Ck

ij fk , δε fi =
{

ε, F0
i

}
, (19)

where fi is a perturbation. In more detail, for the gauge transformations of f0 and f− one gets

δε f0 =
{

ε, F0
0

}
= (V · D − P · ∂P)ε , δε f− =

{
ε, F0−

}
= (V · ∂P)ε , (20)

where DM denotes the covariant derivative acting on generating functions: DM = ∂
∂XM + ΓK

MN PK
∂

∂PN

(see also Appendix B). Since VA is nowhere vanishing, this implies that the gauge f− = f0 = 0 is
reachable. Indeed, by picking a suitable coordinate system one can always assume that the homothety
vector field reads VA ∂

∂XA = ∂
∂ρ , where ρ is one of the coordinates. In such a coordinate system it is

clear that using suitable ε one can set both f− and f0 to zero.
Although the above argument applies to the linearized system, it extends in a usual way to the

nonlinear level provided one restricts oneself to solutions which are “sufficiently close” to F0
i . For such

solutions, the two remaining sp(2) relations involving the perturbation f+ (not necessarily small) imply:

(P · ∂P − V · D − 2) f+ = 0 , (V · ∂P) f+ = 0 , (21)

where F+ = F0
+ + f+. While the first equation uniquely determines f+ in terms of its value on the level

surface V2 = constant, the second one implies that f+ does not depend on the components of P along
V. Finally, such f+ are in one-to-one correspondence with totally symmetric tensor fields on the level
surface V2 = constant.

Similarly, in the gauge F0 = F0
0 and F− = F0− the residual gauge symmetries read as

δε f+ = {ε, F+} = (P · D)ε + {ε, f+} , with (V · ∂P)ε = 0 , (P · ∂P − V · D)ε = 0 .

The global reducibility parameters ε0 for the linearized symmetries in (19) are described by the sp(2)
centralizer equations

{
ε0, F0

i
}
= 0 which read more explicitly:

(P · D)ε0 = (P · ∂P − V · D)ε0 = (V · ∂P)ε0 = 0 . (22)

These global symmetries (= global reducibility parameters) define an “off-shell HS algebra”, by which
we simply mean the sp(2) centralizer (22) above, canonically equipped with a Lie algebra structure via
the Poisson bracket. More invariantly, the off-shell HS algebra arises here in a usual way (see e.g., [68]
for more details) as an algebra of gauge transformations preserving a given vacuum solution. Its Lie
bracket comes from the commutator of the respective gauge transformations. In particular, for the flat
vacuum VA = XA we get a version of the standard off-shell HS algebra.
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We comment more on various off-shell HS algebras below when the Poisson bracket is replaced
by the star-product. It is worth stressing that the off-shell HS algebra is defined on any gravitational
background, but it is generically trivial. In fact, the system of Equation (22) describes totally symmetric
Killing tensors in d + 1 dimensions, which may not admit nontrivial solutions on a generic background.

To summarize, the natural HS extension of the FG off-shell system provides an elegant description
of totally symmetric tensor gauge fields in d + 1-dimension subject to nonlinear gauge symmetries in
an arbitrary gravitational background (This does not contradict the usual no-go theorems (such as [55])
on the propagation of HS gauge fields in generic gravitational backgrounds since here the tensor gauge
fields are off-shell. For instance, at linearized level the covariantization of Fronsdal gauge transformations
is perfectly well defined. It is only its compatibility with the field equations which is problematic).

4.2. Poisson Bracket vs. Star-Product

If we are interested in the on-shell fields, then the construction of the previous section is not entirely
satisfactory. Moreover, even at the off-shell level the corresponding algebra of global symmetries
coincides with the familiar off-shell HS algebra as a linear space, but is a Lie algebra with respect to
the Poisson bracket, rather than the Weyl commutator as it should. This suggests that the construction
has to be modified by replacing the Poisson bracket with the Weyl �-commutator determined by

[XA, PB]� = δA
B . (23)

Another reason for considering the “quantum” version has to do with the interpretation of the
off-shell nonlinear system as describing background conformal HS fields in d dimensions to which a scalar
field can consistently couple (for more details, see e.g., [17,32–34,69,70]). Note that from this perspective
the Poisson bracket version naturally corresponds to background fields for the point particle. This in turn
is a mechanical model whose wave function is the above scalar field. The �-product is crucial for the scalar
field to couple to arbitrary HS background fields. It arises directly as a quantization of the phase space
{xa, pb} = δa

b where HS background fields correspond to arbitrary functions f (x, p). The sp(2)-system
provides an ambient space extension of this construction [17,41,71].

Therefore, we pass to the �-commutator instead of the Poisson bracket and the corresponding
version of the basic system (17) reads as

[Fi, Fj]� = Ck
ijFk , δεFi = [ε, Fi]� . (24)

Note that if one restricts to the spin-two version of this sp(2)-system, then the same solution (6),
(9) and (10) that satisfies the Poisson bracket version (11) also solves (24). This system of operators
plays an important role in the ambient description of scalar fields [18] (see also [72,73]), in particular
for the singleton (see Appendix C).

Let us now restrict ourselves to the flat vacuum solution: GAB = ηAB, VA = XA. It is easy to see
that in this case F0

i solves the above equations and hence gives a vacuum solution. Linearizing the
equations and the gauge symmetries around F0

i one gets

[F0
i , f j]� + [ fi, F0

j ]� = Ck
ij fk δε fi = [ε, F0

i ]� . (25)

It follows again that f0 and f− can be gauged away, resulting in the linearized system (Note that had we
linearized the system around general gravitational background the linearized gauge transformations
for a spin s-field would in general not only involve contributions from parameters of spin s − 1 but
also those with lower spin. This mixing can be traced back to nonlinear in X terms in F0

+ involved in
the star-commutator with the parameter. It is similar to the analogous mixing observed [69] in the case
of conformal HS fields on the boundary and is consistent with the fact that CHS fields are boundary
values of the bulk ones. We are grateful to A. Tseytlin for discussion of this point.)
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(X · ∂P) f+ = 0 , (P · ∂P − X · ∂X − 2) f+ = 0 ,

δε f+ = [ε, F0
+]� = (P · ∂X)ε , (X · ∂P)ε = 0 , (P · ∂P − X · ∂X)ε = 0 .

(26)

To see the relation with Fronsdal fields, let us recall their ambient space formulation. In terms
of the generating function Φ(X, P) = ∑s

1
s! ΦA1...As(X) PA1 . . . PAs , the equations of motion and gauge

symmetries read as

(∂X · ∂X)Φ = (∂P · ∂X)Φ = (∂P · ∂P)Φ = 0 , δεΦ = (P · ∂X)ε , (27)

(X · ∂X − P · ∂P + 2)Φ = (X · ∂P)Φ = 0 , (28)

which is equivalent to

(∇2 − m2
s )φμ1...μs = ∇μφμμ2...μs = φμ

μμ3...μs = 0 , δεφμ1...μs = ∇(μ1
εμ2...μs) , (29)

in terms of the fields defined on the hyperboloid, where ms is the mass of spin-s Fronsdal field
on (A)dSd+1.

It is clear from (27) that, in order to put the linearized off-shell system (26) on-shell, one has to
impose the equation of motion (∂X · ∂X) f+ = 0 (the remaining divergence and trace constraints arise
automatically as consistency conditions). The above analysis of the system (24) and its relation to
Fronsdal fields has been originally performed in [29] using the parent formulation technique.

To draw an analogy with the FG description of gravity note that (∂X · ∂X) f+ = 0 is a linearized HS
analogue of the Ricci flatness RAB = 0 condition. To find a nonlinear HS version of the Ricci flatness
remains a tantalizing open problem in the metric-like formulation. We pursue a different approach in
the next section.

5. Towards on-Shell Higher-Spin Theory

The sp(2)-system captures off-shell backgrounds, both gravitational and HS ones. In the case
of gravity, the (d + 1)-dimensional Einstein equations with cosmological constant result from Ricci
flatness in the (d + 2)-dimensional ambient space. A natural question is whether it is possible to
directly put the off-shell HS system (24) on-shell.

One possible way would be to find nonlinear corrections to the constraints in the first line of (27).
However, it is not clear which structures may control such deformation and in any case in this way
there is no obvious way to reconstruct the system nonperturbatively.

An alternative is to further exploit the analogy with constrained systems. The sp(2) relations
imposed on Fi can be interpreted as a condition that Fi are first-class constraints while gauge
transformations δεFi = [ε, Fi]� correspond to canonical transformations. The general first-class
condition (= closure of the algebra)

[Fi, Fj]� = Uk
ij � Fk (30)

is preserved by the following gauge transformations

δFi = λ
j
i � Fj , (31)

in addition to δεFi = [ε, Fi]�. The transformations (31) correspond to infinitesimal redefinitions of the
constraints (at classical level such symmetries preserve the constraint surface). The sp(2) system (24)
can be seen as a partial gauge-fixing of the system (30)–(31) (Strictly speaking one needs to prove that
such gauge is reachable. Although this is easy to see at the linearized level and hence this is also true
for the field configurations that are sufficiently close to the vacuum, a general statement is not known).
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To explain what symmetries (31) can be useful for, let us consider the linearization of the system
about the flat vacuum solution F0

i corresponding to GAB = ηAB and VA = XA, i.e., F0
+ = 1

2 P · P,
F0

0 = X · P and F0− = − 1
2 X · X. The linearization of (31) reads as

δ fi = λ
j
i � F0

j . (32)

At the formal level, these symmetries can be employed to make fi satisfy the constraints in the first
line of (27), i.e., (∂X · ∂X) fi = (∂P · ∂X) fi = (∂P · ∂P) fi = 0. For instance, in the space of polynomials in
X, P variables this is exactly the case.

As we have seen f0 and f− can be set to zero by the gauge symmetries δ fi = [ε, F0
i ]� (for i = 0 ,−).

As a result, there is only one field left, f+. It satisfies (27)–(28) and hence describes the Fronsdal
system (29). The problem with this formal argument is that the space of polynomials in X, P is not
the one where one can set to zero f0, f− (since one somehow has to “invert” the operators X · ∂P
and X · ∂X − P · ∂P). Moreover, it is not the functional space relevant for describing field theory
configurations. Other way around, the space (natural from the field theory perspective) of polynomials
in P and smooth functions in X defined in the vicinity of X2 = −1 allows one to eliminate f0, f− but,
in this space, the gauge transformations (31) can be used to set to zero all the fields fi.

It turns out that one can nevertheless use this system to describe on-shell fields by reformulating the
system in parent form (see Section 5.1) and requiring the fields to belong to a special functional class.

A heuristic explanation for why the extended system (30)–(31) is capable of describing on-shell
HS gauge fields in the bulk employs boundary analysis. More precisely, the extended system in the
vicinity of the hypercone V2 = 0 is known [17,30] to describe off-shell conformal HS gauge fields in d
dimensions. In their turn, these off-shell conformal fields are boundary values of the on-shell bulk
fields in d + 1 dimensions. However, in the ambient approach bulk fields and their boundary values
are described by exactly the same ambient system, considered either near V2 = −1 or near V2 = 0
(for more details see [16,17]). This justifies that the above extended system has something to do with
on-shell bulk fields provided one considers it near V2 = −1.

To give the above considerations a precise meaning it is useful to reformulate the system using
the parent approach which has proved to be instrumental in analyzing boundary values [16,17,74].

5.1. Parent Reformulation

The system (24) can be equivalently reformulated in parent form. The underlying idea is to put the
constrained system under consideration in an auxiliary space where genuine space-time coordinates
are replaced by formal variables, typically denoted by YA, so that the equations of motion and gauge
symmetries become purely algebraic. The parent formulation is then constructed as a gauge field
theory whose target space is the space of fields on the auxiliary space while the source space is the
original space-time. Moreover, in so doing the gauge parameters are promoted to 1-form fields of
the parent system while reducibility parameters to p-form fields. In other words, parent formulation
is an AKSZ sigma model [75] whose target space is the jet-space BRST complex of the intial theory.
The equivalence with the original formulation is maintained by imposing free differential algebra
relations and their associated gauge symmetries, on top of the auxiliary space version of the original
equations of motion and gauge symmetries. More details and references can be found in [50–53].

Being a sigma model of AKSZ type (or equivalently a free differential algebra with constraints)
the parent formulation can be consistently pulled back to any space-time submanifold or even put
(at least formally) on a totally different space-time manifold. This property is extremely useful in
analyzing the relation between the Hamiltonian and Lagrangian description [76], manifest realization
of symmetries [51,71] boundary values of gauge fields [16,77], and, more generally, holographic
dualities [17,77].

In the case at hand the parent reformulation is constructed by first extending XA and PB with
additional variables YA (The geometric meaning is that YA are coordinates on the fibres of the tangent
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bundle over the ambient space). Now XA are the usual space-time coordinate, while YA and PB
are auxiliary variables needed to conveniently pack fields into generating functions. Note however,
that Weyl �-product is now in the space of Y, P variables so that spacetime coordinates are not
explicitly involved. The field content consists of the original constraints Fi(X, Y, P) and a new field,
the connection one-form A = dXB AB(X, Y, P) associated to the original gauge parameter. The fields
Fi, A are interpreted as generating functions for the component fields identified as the respective
coefficients in the expansion over Y, P.

Due to the fact that the parent formulation contains an infinite number of fields the specification
of the functional class of Fi and A in the Y space is part of the definition of the system. The minimal
choice to begin with is that of formal power series in Y. With this choice the parent formulation is
equivalent to (24). Let us for definiteness and simplicity also restrict ourselves to polynomials in P,
so that we are dealing with polynomials in P with coefficients in formal power series in Y.

The parent form of the sp(2) system, the equations of motion we are going to study, read [29]

dA − 1
2
[A, A]� = 0 , dF − [A, F]� = 0 , [Fi, Fj]� − Ck

ijFk = 0 ,

δε A = dε − [A, ε]� , δεFi = [ε, Fi]� ,
(33)

where from now on [·, ·]� denotes the Weyl �-commutator (in the Y, P-space). The classical limit where
the star-product commutator is replaced by the Poisson bracket in the Y, P-space also makes sense but,
as we argued above, its interpretation from the effective action point of view is unclear.

The above parent system (33) is background independent and can be considered on
(d + 1)-dimensional manifolds. This can be done by pulling-back the system (33) to the curved
hyperboloid described by V2 = −1. The advantage of the parent formulation is that VA is
non-dynamical and can be conveniently manipulated. In particular, in the resulting theory defined on
V2 = −1 one can gauge fix VA such that VA is constant. Furthermore, in contrast to the X, P-space of
the previous sections, the auxiliary Y, P-space is flat and it is easier to impose algebraic conditions in
order to put the system on-shell.

There is a parent realization for the anti-de Sitter solution of the HS extension of the FG
construction, which reads: [29,41]

F0
+ = 1

2 P · P , F0
0 = 1

2{(V + Y)A, PA}� , F0− = 1
2 (V + Y) · (V + Y) , (34)

A0 = ωA
B (VB + YB)PA , (35)

where VA is constant, { , }� denotes the �-anticommutator and ω is a standard so(d, 2) flat connection
such that ∇μVB has rank d + 1. Note that there are more general solutions where, rather than (35),
A0 is taken to be any flat connection taking values in the off-shell HS algebra, i.e., dA0 − 1

2 [A0, A0]� = 0
and [F0

i , A0]� = 0, so that A0 is polynomial in Y. Note that although it is easy to check that (34)–(35)
is a solution by redefining variables YA + VA → YA, this redefinition is not well-defined for formal
power series in Y. In particular, the shift by V crucially affects the content of the theory.

The gauge symmetries leaving the vacuum solution (34)–(35) intact,

dε0 − [A0, ε0]� = 0 , [F0
i , ε0]� = 0 , (36)

are 1:1 with the off-shell HS algebra defined as the algebra of elements �-commuting with all F0
i ’s.

In contrast to Section 4.1, this off-shell HS algebra is not just a Lie algebra, but is an associative one
because the �-product of two sp(2)-singlets is a singlet again. This off-shell algebra is directly related
to the symmetries of the conformal Laplacian described by Eastwood [78], i.e., it has a two-sided ideal
that can be quotiented out as to get the on-shell HS algebra.

Let us consider the linearization of the parent system around (34). The linearized fluctuations
may be required to be totally traceless in which case one finds an on-shell version. This is analogous
to imposing (∂X · ∂X) f+ = 0 in Section 4.2. More precisely, it can be shown [29] that requiring the
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linearized fluctuations of (33) to be in the kernel of ∂Y · ∂Y, ∂Y · ∂P, and ∂P · ∂P results in the free Fronsdal
equations. The problem is to extend this beyond the linearized approximation. For spin-two, the Ricci
flatness provides a nonlinear completion of these equations but its HS analogue is still missing.

5.2. Factorization

We can push the on-shell HS extension of the FG construction a bit further and get equations that
describe propagation of HS fields on any HS-flat background. Indeed, there is a formally consistent
factorization of the system by the ideal generated by Fi. The factorization is obtained by imposing the
extra gauge symmetry:

δA = λi � Fi , δFi = λ
j
i � Fj , (37)

where λi, λi
j are gauge parameters, and requiring equations of motion to hold modulo terms

proportional to Fi. The full system of equations that is suitable for describing on-shell fields together
with gauge transformations is [30] (see also [41] for earlier versions)

dA − 1
2
[A, A]� = ui � Fi , δA = dε − [A, ε]� + λj � Fj , (38a)

dFi − [A, Fi]� = uj
i � Fj , δFi = [ε, Fi]� + λ

j
i � Fj , (38b)

[Fi, Fj]� − Ck
ijFk = uk

ij � Fk . (38c)

Here u’s are non-dynamical fields that transform under ε, λ
j
i , λj in an obvious way. Note that ui

jk are
not unconstrained and have to obey the relations following from the Jacobi identities. This system is a
candidate for the on-shell HS-extended FG theory.

Now we are going to study the above system perturbatively over a HS-flat vacuum solution,
where Fi = F0

i as in (34) while A0 is more general. To this end we introduce an appropriate functional
class that allows one to have gauge symmetry (37) without trivializing the solution space and such that
the off-shell HS algebra gets reduced to the correct on-shell HS algebra. The functional class C is that
of polynomials in P with coefficients that are formal power series in Y (It is important to distinguish C

from the space of formal power series in Y with coefficients that are polynomials in P). Having formal
power series in Y is important for being able to gauge away fluctuations of F−, F0. We also require that
C is of finite trace order, i.e., for any f (Y, P) ∈ C there exists an � ∈ N such that

(∂Y · ∂Y)
� f = 0 . (39)

Note that the space of functions of finite trace order is a module over polynomials in Y, P, i.e., we can
�-multiply f (Y, P) ∈ C by a polynomial p(Y, P) and the result, f (Y, P) � p(Y, P), is still in C. It then
follows that any function in C can be decomposed as

f = f0 + f i
1 � F0

i + f ij
2 � F0

i � F0
j + . . . , fn – totally traceless , (40)

such that the number of terms is finite. Having an element f decomposed as above, we define
a projector onto the traceless part: (Note that the trace decomposition is defined with respect to
F0− = − 1

2 (Y + V) · (Y + V), F0
0 = P · (Y + V), and F0

+ = 1
2 P · P i.e., this is not the usual decomposition

into traceless tensors f = f0 + Y ·Y f1 + ... due to the shift by V and due to the �-product).

Π f = f0 . (41)
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Now we can linearize the system and put it on-shell. As anticipated above, we take a slightly
more general vacuum, where A0 does not have to be just the flat connection (35) linear in P, describing
AdSd+1. The nontrivial part of the vacuum equations reads

dA0 − 1
2
[A0, A0]� = ui � F0

i , (42a)

[A0, F0
i ]� = uj

i � F0
j . (42b)

It follows that A0 is equivalent to a flat connection of the on-shell HS algebra. Indeed, the on-shell
HS algebra of Eastwood [78] can be defined within the present framework as follows: (An oscillator
realization of this algebra was given in [27]).

χ ∈ on-shell HS-algebra : [χ, F0
i ]� = 0 , χ ∼ χ + λi � F0

i , (43)

where χ, λi are in C. The sp(2)-singlet constraints solved for χ in C imply that χ is a polynomial in Y.
Next, for A0 entering (42a)–(42b), we can use gauge symmetry (37) on the vacuum solution

δA0 = λi � F0
i , (44)

as to gauge away all traces and arrive at A0(Y, P) satisfying ∂Y · ∂Y A0 = ∂Y · ∂P A0 = ∂P · ∂P A0 = 0
(i.e., A0 is a collection of traceless tensors in Y and P, or equivalently ΠA0 = A0). Then the traceless
part of (42a)–(42b) implies that A0 is a flat connection of the on-shell HS algebra:

dA0 =
1
2

Π
(
[A0, A0]�

)
. (45)

The gauge symmetries preserving the vacuum solution are determined by

dε0 = [A0, ε0]� + λi � F0
i , [F0

i , ε0]� + λ
j
i � F0

j = 0 . (46)

We can again decompose ε0 into the trace part that is proportional to F0
i and the traceless part. The trace

part unambiguously fixes the λ’s, while the traceless part is covariantly constant with respect to A0.
Therefore, the global symmetry parameters are parameterized by the on-shell HS algebra, as it should be.

Now we can study fluctuations over A0 and F0
i and determine the general structure of the

equations. Let us expand

A = A0 + a , Fi = F0
i + fi , (47)

where a and fi are assumed to belong to the functional class C. The linearized equations read

da − [A0, a]� = ui � F0
i , δa = dε − [A0, ε]� + λi � F0

i , (48a)

d fi − [A0, fi]� − [a, F0
i ]� = uj

i � F0
j , δ fi = [ε, F0

i ]� + λ
j
i � F0

j , (48b)

[F0
i , f j]� − (i ↔ j)− Ck

ij fk = uk
ij � F0

k . (48c)

We choose Πa = a, Π fi = fi as a legitimate gauge condition. Just like in X, P-space the residual gauge
symmetry δ fi = [ε, F0

i ]� can be employed to gauge away f0, f− in Y, P-space. The only subtlety is that
now both fi and ε are traceless and to see this one needs extra technique (see [51] for details).
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With f0, f− set to zero the equations for a, f+ imply

da = Π
(
[A0, a]�

)
, (49a)

d f+ = Π
(
[A0, f+]�

)
+ (P · ∂Y)a , (49b)

(Y + V) · ∂

∂P
a =

(
P · ∂

∂P
− (Y + V) · ∂

∂Y

)
a = 0 , (49c)

(Y + V) · ∂

∂P
f+ =

(
P · ∂

∂P
− (Y + V) · ∂

∂Y
− 2

)
f+ = 0 . (49d)

Note that for A0 a flat so(d, 2)-connection, the Π projector is not needed and Equation (49) are
known [51] to describe Fronsdal fields on AdS space.

The Equation (49) can be reduced even further down to the unfolded form using a suitable
generalization of the reduction put forward in [51]. Indeed, the procedure is purely algebraic and
allows to eliminate all the components in f+ which are in the image of the operator P · ∂

∂Y and all the
components in a which are not in the kernel of P · ∂

∂Y . The remaining fields f̄ and ā satisfy (49c) and
(49d) and are such that (P · ∂Y)ā = 0 and f̄ parametrizes the quotient f+ ∼ f+ + (P · ∂Y)ε. The reduced
equations have the following structure

dā = Π
(
[A0, ā]�

)
+ μ(A0, A0, f̄ ) ,

d f̄ = Π
(
[A0, f̄ ]�

)
,

(50)

where μ(A0, A0, f̄ ) is a trilinear form.
The structure of Equations (49) and (50) becomes more clear if one reformulates them in terms of

certain modules of the on-shell HS algebra. To this end let us consider the following two modules:

M0 = { f ∈ C : [F0−, f ]� = [F0
0 , f ]� = 0} , (51a)

M1 = { f ∈ C : [F0−, f ]� = [F0
0 , f ]� − 2 f = 0} . (51b)

Note that these are precisely the spaces (49c) and (49d) where a and f+ belong to. It is easy to see that
for any f ∈ M0,1 and B from the on-shell HS algebra (43), B � f and f � B belong to f ∈ M0,1 so that
f ∈ M0,1 are bimodules over the HS algebra seen as an associative algebra.

Furthermore, it is clear that the operator S† = [·, F0
+]� = P · ∂

∂Y defines a map M0 → M1 and
moreover S†(B � f ) = B � (S† f ) for any B in the HS algebra. It follows, that both m0 ≡ ker S† ⊂ M0

and m1 ≡ coker S† ⊂ M1 (i.e., the quotient of M1 modulo Im S†) are also modules of the HS algebra as
an associative algebra.

In what follows we consider M0,1 and m0,1 as modules of the HS algebra seen as a Lie algebra,
with the action being:

ρ(B) f = [B, f ]� (52)

In particular, M0,1 and m0,1 are modules over so(d, 2) which is a Lie subalgebra of the HS algebra.
It is now clear that Equations (49) and (50) are, up to an extra term, nothing but covariant-constancy
conditions with respect to the HS algebra connection A0.

Strictly speaking the above construction applies to the off-shell version of the algebra and modules.
The on-shell version is obtained by requiring all the elements to be totally traceless and applying the
projector Π when necessary. The modules m0,1 of the on-shell HS algebra are known in the literature
as, respectively, the adjoint and the twisted-adjoint modules [24] (also as, respectively, gauge and Weyl
modules). The above realization of the modules originates from [51] (see also [74]), where they were
considered as so(d, 2)-modules only.

System (50) describes propagation of free HS fields, encoded in ā and f̄ , over a background described
by the flat connection A0 taking values in the on-shell HS algebra. The most nontrivial part of the system
comes from the term μ(A0, A0, f̄ ) which is trilinear in the fields and cannot be reduced to a product
in the HS algebra. In the next section, we explain that this is a correct structure which is completely
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fixed by the HS algebra. Therefore, the parent form of the HS extension of the FG construction solves an
important problem of how to make HS fields propagate on backgrounds that differ from pure AdS space.
The derivation above was quite abstract and we do not aim at deriving the explicit form of μ(A0, A0, f̄ )
(its free approximation when A0 is an so(d, 2) connection was discussed many times, see e.g., [27,51,79]).
This is due to the fact that the explicit form of μ(A0, A0, f̄ ) can be changed by field redefinitions and it is
difficult to compare with vertices in the usual weak-field expansion.

Let us discuss if the on-shell conditions entering the full system (38) considered over the flat
vacuum A0, F0

i can be extended beyond the linear order. The general feature of the formulations
that are based on jet bundles is that the field space contains infinitely many auxiliary fields that,
as a consequence of equations of motion, encode derivatives of the fields of arbitrarily high order.
The advantage is that interaction terms can then be written in an algebraic form. However, this does
not come for free and non-linear expressions can easily contain infinitely many derivatives and make
locality properties obscure. This problem becomes visible when nonlinearities are at least bilinear in
fluctuations f̄ , i.e., are of order O( f̄ 2). This is due to the fact that the HS algebra has a well-defined
grading that is mapped to polynomial degree in Y + V, P. Therefore, expressions of order O(ā f̄ )
or O(āā f̄ ) are always local once we fix the spins (i.e., homogeneity in P) in ā and f̄ . However,
expressions of order O( f̄ 2) can have unbounded number of derivatives (Indeed, ā contains a finite
number of derivatives per spin and f̄ contains derivatives of unbounded order. Looking at the possible
contribution of the interaction vertices to a given equation we see that infinite sums over derivatives
require at least two f̄ ’s on the right-hand-side). Such non-localities arise at the quartic order in
weak-field expansion [42,43], i.e., O(ā f̄ 3) O(āā f̄ 2) in the parent formulation (38). In the framework
offered by the nonlinear system (38) understood perturbatively over the flat vacuum A0, F0

i the locality
problem manifest itself in that the functional class C is not closed under star-multiplication. Although
this does not affect the linearized system (49), at higher orders either the functional class or even the
system itself has to be amended.

5.3. Relation to Unfolded Equations

The system (50) can also be understood as a specific free differential algebra [80–82], unfolded
Equation [24] or AKSZ sigma model [75] associated to a certain target-space Q-manifold (see also [83]).
The underlying Q-manifold can be directly related to the deformation procedure that is relevant for
higher-spin theories [24]. Our aim is to show how (50) arises. The field content, or the coordinates of
the Q-manifold, consists of a connection of the on-shell HS algebra ω and a zero-form C that takes
values in the on-shell HS algebra as well. The deformation procedure starts with the flatness condition
for ω and a covariant constancy condition for C:

dω = ω ∗ ω , (53a)

dC = ω ∗ C − C ∗ π(ω) , (53b)

where the automorphism π is induced by an automorphism of so(d, 2) that flips the sign of the
transvection generators and leaves Lorentz generators intact. Note that in contrast to the previous
section ω and C take values in the on-shell HS algebra from the very beginning and the associative
product is denoted ∗. As we discussed in the previous section the twisted-adjoint covariant constancy
equation for C can be systematically derived from the parent system (49), which in turn arises from
the HS extended FG theory upon factorization.

System (53) involves a HS-flat background ω and a linear fluctuation C. When considered over
AdS background, given by ω belonging to the so(d, 2) subalgebra, the equation for C describes a scalar
field and s = 1, 2, 3, ... massless fields in terms of their gauge-invariant field strengths contained in C:
Faraday tensor, Weyl tensor and higher-spin generalizations thereof [24].
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The deformation procedure has C as an expansion parameter. Therefore, the first order
deformation of (53) involves a vertex that violates the flatness of ω:

dω = ω ∗ ω + V(ω, ω, C) +O(C2) , (54a)

dC = ω ∗ C − C ∗ π(ω) +O(C2) . (54b)

The consistency conditions on V follow from d d ≡ 0. The solution for V can be cast into the
form [54] (A crucial assumption needed to reduce a complicated problem of Chevalley-Eilenberg
cohomology of higher-spin algebra to a much simpler problem of Hochschild cohomology is to assume
that higher-spin theory should allow for Yang-Mills gaugings u(M) for any M. This assumption is
justified by AdS/CFT correspondence where higher-spin theories are dual to free CFT’s and it is
always possible to take a number of free fields as to have u(M) (times higher-spin algebra) as a global
symmetry on the CFT side and hence HS algebra tensored with matrices is a gauge symmetry on
the AdS side. Having this matrix factor allows one to reduce the problem [54] to the Hochschild
cohomology).

V(ω, ω, C) = Φ(ω, ω) ∗ π(C) , (55)

where Φ(•,•) is a Hochschild two-cocycle of the higher-spin algebra in the twisted-adjoint representation:

a ∗ Φ(b, c) + Φ(a ∗ b, c)− Φ(a, b ∗ c) + Φ(a, b) ∗ π(c) = 0 . (56)

The deformation does not stop at O(C2) order and higher orders are needed. For a large class of
algebras it can be shown [54,84] that there are no obstructions at higher orders. Therefore, any consistent
system that has (54) as the order-O(C) approximation can be completed to a solution to the full
non-linear deformation problem. The conclusion is that the full nonlinear system is determined by HS
algebra, its twisted-adjoint module and the vertex V(ω, ω, C).

The system that describes fluctuations of HS fields over any HS-flat background is obtained from (54)
by taking any flat connection A0 and expanding the system ω → A0 + ω to the first order in C and ω:

dA0 = A0 ∗ A0 , (57a)

dω = A0 ∗ ω + ω ∗ A0 + V(A0, A0, C) , (57b)

dC = A0 ∗ C − C ∗ π(A0) . (57c)

These equations are fully consistent, gauge invariant and do not require any higher order
corrections. They can be identified with Equations (45) and (50) obtained as a linearization of the
HS-extension of the FG-construction (38).

To sum up, we observe that all the structures governing HS theories within the unfolded approach
are already present in the linearization over a HS-flat background. In its turn this system and the
respective structures can be extracted from the nonlinear system (38), which in turn can be related to
the HS-extension of the FG construction. Equations (45) and (50) from the previous section are exactly
of this form. Fluctuations over a HS-flat background seems to be the farthest one can get without
facing the locality problem in this approach.

6. Conclusions and Discussion

In this work, we have shown that the sp(2)-constraints on the ambient phase space are equivalent
to the off-shell Fefferman-Graham theory, if the three constraints are of degree 0, 1, 2 in the momentum.
The HS extension then follows by letting the three constraints to have arbitrary powers of momenta.
The HS extended sp(2)-system has already been studied in the past, both in the context of bulk HS
theories [29] (see also [28,41]) and conformal HS fields on the boundary [17,20,30].

214



Universe 2018, 4, 17

It is more convenient to analyze the equations after reformulating the system in parent form, i.e.,
by moving the ambient space-time to the fiber and introducing an extra gauge field associated with
ambient diffeomorphisms. In so doing the original space time coordinates XA are promoted to the
components of the compensator field VA. In particular, the bulk theory can now be formulated in terms
of intrinsic geometry of AdS space by pulling back the ambient parent system to d + 1 dimensions and
setting V2 = −1.

Although it was known that the linearized parent formulation of sp(2)-system can be put on-shell
by supplementing the system with extra conditions, thereby giving rise to the infinite multiplet of
on-shell Fronsdal fields, it was not clear how to implement this beyond the linearized approximation
over the AdS vacuum. In this work, we propose a procedure that allows to go one step further such
approximation. More precisely, we consider a factorized version of the parent sp(2)-system. Although
with the simplest functional class the system is empty when considered over AdS background, we have
succeeded to find another functional class (in auxiliary space) such that the modified system admits
HS-flat vacuum solution and the respective linearized system is nonempty and properly describes
propagation of HS fields over a HS-flat background. Even though the extension to higher orders still
remains an open problem, this linearized system already contains all the structures determining the
Vasiliev equations.

It has been known for many years that free massless HS fields cannot be put on nontrivial
gravitational backgrounds as it leads to breakdown of gauge invariance. However, HS gauge fields can
propagate on nontrivial backgrounds that have other higher-spin gauge fields turned on—backgrounds
described by a flat connection of a HS algebra (In three dimensions HS fields do not have propagating
degrees of freedom but HS-flat backgrounds were found to contain many interesting solutions, e.g.,
black holes and conical defects). The resulting equations have a clear algebraic meaning of flatness
condition deformed by a Hochschild two-cocycle of the relevant HS algebra. This probes the structure
of interactions, even though it is hard to directly make a link to the vertices in the weak field expansion
over anti-de Sitter space.

It can be argued [54] that, at least within the formal deformation procedure, a HS algebra and its
Hochschild cocycle determine the full non-linear completion so that the knowledge of free fluctuations
over sufficiently general backgrounds is enough to recover the full structure of interactions. We showed
that all this information is already present in the factorized version of the parent sp(2)-system. The problem
of putting the system on-shell at higher orders is clearly related to the subtlety of higher-spin interactions
in anti-de Sitter space: the interactions are known to be non-local starting from the quartic order [42–44]
and the precise characterization of the appropriate functional class is not yet known.

The factorized version of the parent sp(2)-system employed in the paper also has a natural
interpretation in the context of CHS theories. Indeed, the same system considered on the boundary,
by setting V2 = 0, describes nonlinear CHS fields at the off-shell level. More specifically, it is equivalent
(at least perturbatively) to the system from [32] underlying the nonlinear theory of CHS fields.

It is not surprising that that the system describing off-shell conformal HS fields on the boundary
has something to do with on-shell HS fields in the bulk. Indeed, the former are the boundary values of
the later while in the ambient space formulation bulk fields and their boundary values are typically
described by one and the same ambient system considered, respectively, around the hyperboloid and
around the hypercone (see e.g., [17,85] for a parent formulation). Therefore, the parent sp(2)-system
provides a direct link between the symmetries of the effective action of the scalar field on CHS
background and HS gravity in the bulk.

From this perspective, the approach advocated in this paper can be viewed as a purely classical
version of the holographic reconstruction (see e.g., [10,42,43] for somewhat related approaches). Indeed,
the candidate system describing nonlinear on-shell HS fields in the bulk is obtained by pulling to
the bulk the boundary system describing off-shell conformal fields. It is a remarkable feature of the
ambient space formulation that it does not only allows one to go from bulk to boundary but also to
reverse the procedure in order to reconstruct bulk theory from the boundary values. Strictly speaking,
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to make it work one also employs the parent formulation as to fine-tune the system by picking specific
functional classes in the auxiliary space.

Possible generalizations and extensions of the above construction involve a number of cases:
theories of partially-massless higher-spin fields [17,30,86], which result from the same sp(2)-system but
making use of GJMS operators [18] for the higher-order singleton and a slightly different factorization
procedure [30,87]. It would be also interesting to consider other algebras of constraints. For example,
osp(1|2)-constraints should describe the yet-unknown Type-B theory that is dual to free massless
fermions and Gross-Neveu model. This problem was recently discussed in [21,88].

Finally, let us note that there exists an alternative approach to described (HS) fields in AdSd+1
in terms of sp(2)-system in (d + 3)-dimensional ambient space. In so doing one needs an additional
ingredient, the scale tractor, that breaks the conformal invariance of the tractor formulation [89,90].
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Appendix A. FG Ambient Construction as sp(2) Algebra of Constraints

Appendix A.1. Klein Flat Ambient Model

In modern conformal field theory and its holographic dual interpretation, a celebrated technique
for performing computations is the ambient formalism. Its principle goes back to Dirac’s cone
reformulation of conformal fields and their wave equations [13] corresponding to the case of flat
Lorentzian conformal geometry.

In turn, Dirac’s approach goes back to Klein’s model of flat Euclidean d-dimensional conformal
geometry, that is the round sphere Sd with conformal isometry algebra so(d+ 1, 1). The main idea of the
ambient approach is to make conformal symmetry manifest via an embedding of this geometry inside
an “ambient” (d + 2)-dimensional Minkowski space Rd+1,1. The (d + 1)-dimensional upper null cone
N ⊂ Rd+1,1, generated by light-like rays through the origin, plays a crucial role. The conformal sphere
Sd is realized as the projective future light-cone PN := N/R+ (with R+ the multiplicative group of
positive real numbers) inside the (d+1)-dimensional projective ambient space PRd+1,1 := Rd+1,1/R+.
The interior of the projective future light-cone PN ⊂ PRd+1,1 is a (d+1)-dimensional hyperbolic ball
Hd+1

∼= Bd+1, of which the d-dimensional sphere Sd is the conformal boundary.

Appendix A.2. Fefferman-Graham Ambient Construction

In 1985, Fefferman and Graham generalized the ambient construction of Klein to curved conformal
geometry (of any signature) [8].

Conformal space: The basic data of conformal geometry is a manifold M and a conformal metric [gab]

on M, i.e., an equivalence class of Riemanian metrics for the equivalence relation

g̃ab = Ω2gab ∼ gab (A1)

with Ω a nowhere vanishing function on M (which we will assume strictly positive Ω > 0).

Example. In the case of flat Euclidean conformal geometry, M = Sd and gab is the standard metric of the unit
sphere (which is conformally flat since the flat metric δab belongs to the same equivalence class [gab]).

Metric bundle: The first step in the construction of Fefferman and Graham is the introduction of a
principal R+-bundle N over M, whose fiber at a point (of coordinates xa with a = 1, · · · , d) is the
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collection of values at this point of all representatives g̃ab(x) = Ω2(x)gab(x) inside the conformal class.
The base manifold is recovered as the quotient M = N/R+. One may take (xa, t) as local coordinates
on N with t := Ω(x). This bundle is called the metric bundle because its sections are the representatives
g̃ab of the given conformal class [gab]. The fundamental vector field of the principal R+-bundle N will
be denoted v (= t∂t in local coordinates). The conformal class [gab] of metrics defines a degenerate
metric on N by pullback along the projection map π : N → M ,

ds2
N = t2 gab(x) dxadxb . (A2)

This metric is homogeneous of degree 2 under the action of R+ on N. However, this metric is
degenerate, it annihilates for instance the fundamental vector field v.

Example. In the case of flat Euclidean conformal geometry the metric bundle N, as it was introduced, has the
topology of a cylinder Sd ×R+, which can be interpreted as an upper cone (but it can be extended to a complete
cone if we extend the range of values of t to all real numbers). Together with its degenerate metric, it is indeed a
null cone, as mentioned in Section A.1.

Ambient space: The second step in the construction of Fefferman and Graham is to embed the
(d + 1)-dimensional manifold N inside a “slightly thicker” (d + 2)-dimensional ambient space, e.g.,
Ñ = N × I, where I ⊂ R is an open interval around zero. The natural extension to Ñ of the fundamental
vector field v on N is a vector field V on Ñ which one might call the homothety vector field. A defining
function ρ is a function on Ñ with homogeneity degree zero under the homothety vector field V, and
such that ρ = 0 but dρ �= 0 on N. The ambient space Ñ is endowed with local coordinates YM = (xa, t, ρ)
where ρ is a defining function. An ambient metric GMN is a metric on ambient space Ñ such that:

• its signature has one more timelike and one more spacelike direction with respect to gab,
• it is homogeneous of degree two with respect to the homotheties: LV GMN = 2 GMN ,
• it is an extension to Ñ of the degenerate metric (A2) on N,
• the one-form VM = GMNVN is closed.

There exists a local choice of coordinates such that the ambient metric reads [9]

ds2
Ñ = t2 gab(x) dxadxb + 2 ρ dt2 + 2 t dt dρ (A3)

and the vector field ∂/∂ρ is geodesic. The square of the homothety vector field is proportional to
the defining function ρ since, from (A3), one has GMNVMVN = t2ρ . Taking (A3) into account gives
VMdYM = 2ρ t dt + t2 dρ = d(t2ρ) in local coordinates.

Up to the well-known subtleties in the holographic reconstruction related to conformal anomalies,
the ambient metric is essentially uniquely specified (in an infinitesimally thick neighborhood around
N or, more precisely, as a formal power series in the variable ρ) if one further requires GMN to be Ricci
flat: RMN = 0.

Example. In the case of flat Euclidean conformal geometry, the ambient space is the Minkowski spacetime
Ñ = Rd+1,1 with ambient metric ηMN = diag(−1,+1,...,+1) in the Cartesian coordinates XM with M =

0, 1, · · · , d + 1. The homothety vector field reads V = XM∂M and the metric bundle N is embedded as the
light-cone through the origin V2 = 0 ⇔ ηMN XMXN = 0. The relation between the Cartesian coordinates
XM and the FG coordinates YM = (xa, t, ρ) is as follows: Xa = t xa, X0 − Xd+1 = t and X0 + Xd+1 =

t ( δabxaxb − 2ρ ) . In such case, ds2
Ñ
= ηMNdXMdXN reproduces (A3) with gab = δab .

Bulk: The third step in the construction of Fefferman and Graham provided its holographic
interpretation, cherished by theoretical physicists. The bulk space is the (d+1)-dimensional manifold
M̃ := (Ñ − N)/R+. One may take (xm, ρ) as local coordinates on the bulk space M̃ which can be
realized as the level hypersurface t2ρ = constant. It is endowed with a metric gμν which has [gab] as
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conformal class at conformal infinity (i.e., at ρ = 0). If the ambient metric GMN is Ricci flat (RMN = 0),
then the bulk metric is Einstein (Rμν = 1

d+1 R gμν).

Example. In the case of flat Euclidean conformal geometry, to be more precise the (d + 2)-dimensional
ambient space is the interior future light-cone Ñ inside the Minkowski spacetime Rd+1,1. Then the bulk
space is the (d + 1)-dimensional hyperbolic space Hd+1 realized as one sheet of a two-sheeted hyperboloid
ηMN XMXN = −1 of time-like vectors of constant square in ambient space. This corresponds to the level
hypersurface t2ρ = − 1

2 in the FG coordinates. Up to the change of coordinate z = 1/ t , this leads to the
standard form ds2

M̃
= z−2 ( δab dxadxb + dz2 ) of the hyperbolic space metric in Poincaré coordinates.

Appendix A.3. Properties of the Ambient Metric and of the Homothety Vector Field

The two main ingredients of Fefferman-Graham construction are the ambient metric GAB and the
homothety vector field VA. They are closely related to each other due to the two following properties:

(I) The ambient metric is of homogeneity degree two with respect to the homothety vector field:

LV GAB = 2 GAB . (A4)

(II) The homothety one-form is closed:
∂[AVB] = 0 . (A5)

In particular, the property (II) implies that, locally, VA = ∂A f . In particular, the homothety vector
field VA is hypersurface orthogonal to the level surfaces f = constant.

The properties (I) and (II) are equivalent to the following useful property:

(III) The ambient metric is equal to the covariant derivative of the homothety one-form:

GAB = ∇AVB = ∇BVA . (A6)

Equivalently,
∇AVB = δB

A . (A7)

Proof. While the relation (A4) is equivalent to

∇AVB + ∇BVA = 2 GAB , (A8)

the relation (A5) is equivalent to ∇[AVB] = 0, i.e.,

∇AVB − ∇BVA = 0 . (A9)

Summing Equations (A8) and (A9) gives (A6).

In turn, the property (III) implies the following corollary:

(IV) The homothety one-form is equal to half the gradient of the homothety vector field squared:

VA = ∂A

(V2

2

)
. (A10)

Proof. Contracting GAB =∇AVB with VB gives the relation VA = VB∇AVB which implies (A10).

In particular, the homothety vector field is hypersurface orthogonal to the level surfaces V2 = constant.
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Appendix A.4. Hypersurface Orthogonality and Homogeneity as sp(2) Algebra

Consider the cotangent bundle T∗Ñ of the ambient space. Local coordinates on T∗Ñ read (XM, PN)
and the canonical Poisson bracket on the algebra of functions on T∗Ñ is such that {XM, PN} = δM

N .
In the main text, we need the relation between the Fefferman-Graham ambient construction and the
sp(2) algebra of constraints.

Consider as data, three Hamiltonian constraints which are respectively quadratic, linear,
independent, of the momenta:

F+ =
1
2

PMPNGMN(X) (A11)

F0 = PMVM(X) (A12)

F− = F(X) (A13)

The first Hamiltonian constraint is quadratic in the momenta, thus its coefficients define
a covariant symmetric tensor GMN(X), which can be interpreted as an inverse metric if it is
nondegenerate. This fact will be called the nondegeneracy condition. The second Hamiltonian constraint
is linear in the momenta, thence its coefficients define a vector field VM(X). The third Hamiltonian
constraint is a scalar field F(X).

Proposition. Under the assumption of nondegeneracy, the property that the three
functions (A11)–(A12) on the ambient phase space form the sp(2) algebra

{F+, F−} = F0 , {F0, F+} = + 2 F+ , {F0, F−} = − 2 F− , (A14)

under the Poisson bracket is equivalent to the fact that

• the scalar field is equal to F(X) = − 1
2 VM(X) GMN(X)VN(X),

• the symmetric tensor field GMN(X) and the vector field VM(X) obey the properties (I)-(IV).

Proof. Since h = P · V(X) is linear in the momenta, the adjoint action of the constraint h via the
Poisson bracket is related to the Lie derivative along the homothety vector field, {h, ·} = −LV .
Therefore, the second relation in (6) is equivalent to the condition LV GMN = − 2 GMN ⇔ LV GMN =

2 GMN , i.e., it is equivalent to (A4). The first relation in (A14) gives the relation ∂MF = −VM,
i.e., it implies the property (II) in Section 2. Together with property (I), it implies the properties
(III)–(IV) of Section 2. In particular, the relation (A10) implies ∂MF = − ∂M

(V2

2
)
. This leads to

F(X) = C − 1
2 VM(X)GMN(X)VN(X), where C ∈ R an arbitrary constant which is enforced to vanish

by the third relation in (A14). Then, the third relation in (A14) is equivalent to the homogeneity
property LV GMN = 2 GMN .

Appendix B. Covariant Derivatives

Suppose we are given with the ambient metric gMN(X) and the compensator VM(X) such that
∇MVN = GMN , where ∇ denotes the covariant derivative determined by the Levi-Civita connection.

Introduce the covariant derivative acting on functions in X, P as follows:

DM f (X, P) := ∂M + ΓR
MN PR

∂

∂PN

so that e.g.,
DM(VN PN) = (∇MVN)PN .

It is easy to check that the Poisson bracket of functions in X, P can be written in terms of the
covariant derivative:

{F, G} := ∂F
∂XM

∂G
∂PM

− ∂F
∂PM

∂G
∂XM = DMF ∂G

∂PM
− ∂F

∂PM
DMG .
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For instance, for the adjoint action of sp(2) generators we have:{
VMPM, f

}
= (∂NVM)PM

(
∂

∂PN
f
)
− VM∂M f

= (∇NVM)PM

(
∂

∂PN
f
)
− ΓM

NRVRPM

(
∂

∂PN
f
)
− VM∂M f

= (∇NVM)PM

(
∂

∂PN
f
)
− VADA f

=
(

PM
∂

∂PM
− VADA

)
f .

(A15)

Similarly for the other generators.

Appendix C. Off-shell vs On-shell, Boundary vs. Bulk

The different physical interpretations of the FG ambient construction, mentioned in
Sections 2 and 3, can be illustrated in the simple case of a scalar field, which is an inspiring toy model
(For more details on the ambient formulation of the scalar field and its holographic interpretation (in
the case of the flat ambient space) see e.g., [16,17]). This simple example is actually of interest on its
own, since it corresponds to the first-quantization of the sp(2) Hamiltonian constraints. To be more
precise, we consider an ambient scalar field in a background of off-shell FG theory.

Appendix C.1. Off-Shell Boundary Scalar Field

The null cone V2(X) = 0 quotiented by the integral lines of the vector field V = VA∂A is a
d-dimensional conformal space. A scalar primary conformal field of conformal weight Δ on this
d-dimensional conformal space can be lifted uniquely to a scalar field on the null cone V2 = 0 with
homogeneity degree −Δ . However, the latter does not determine a unique scalar field Φ(X) in the
vicinity of the null cone, but only up to the following equivalence relation Φ ∼ Φ + V2 λ . This can be
summarized by saying that an off-shell conformal scalar field in d dimensions is equivalently described
by an ambient scalar field obeying to the following set of one equation and one equivalence relation:

(VA∂A + Δ)Φ(X) = 0 , Φ(X) ∼ Φ(X) + V2(X) λ(X) . (A16)

The consistency of the above equations amounts to the fact that the operators VA∂A and V2 form
a Lie algebra (the lower-triangular subalgebra of sp(2)).

Spin-two analogue: Off-shell conformal gravity determines the value of the ambient metric on the
null cone. The ambient metric in off-shell FG theory has homogeneity degree two and its extension
beyond the null cone is completely undetermined.

Appendix C.2. On-Shell Bulk Scalar Field

An on-shell scalar field on the d + 1 dimensional level manifold V2(X) = −1, i.e., a scalar field
obeying to Klein-Gordon equation in the bulk, can be lifted uniquely to a scalar field Φ(X) on the
region V2 < 0 of the ambient space. The lift is unique if the scalar field is of fixed homogeneity degree,
say −Δ ∈ R, along the homothety vector field V, i.e., LVΦ = −Δ Φ . More precisely, the ambient
scalar field obeys the following two equations:

(VA∂A + Δ)Φ(X) = 0 , ∇2Φ(X) = 0 , (A17)

where ∇2 = GAB∇A∇B is the Laplacian for the ambient metric. The consistency of the two conditions
in (A17) can be checked by using ∇AVB = δB

A and its consequence RAB|CDVD = 0 . Moreover, these
two operators form the upper-triangular subalgebra of sp(2).

When the scalar field Φ(X) admits a regular extension to the whole region V2 � 0 of the ambient
space, then its restriction to the null cone V2 = 0 corresponds to the asymptotic boundary data of the
on-shell bulk scalar field, with scaling behavior prescribed by Δ (see e.g., [16] for more details). To be
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more precise, two scaling behaviours are actually possible (Δ+ = Δ and Δ− = d − Δ), corresponding
to the two branches of solutions of the bulk Klein-Gordon equation.

Spin-two analogue: The Ricci flatness of the ambient metric is the analogue of the harmonicity
of the ambient scalar field, while Einstein equation with a cosmological constant of bulk gravity is
the analogue of Klein-Gordon equation of the bulk scalar field. The holographic reconstruction of
the (d + 1)-dimensional spacetime metric from the d-dimensional conformal boundary data via the
(d + 2)-dimensional ambient space is the essence of FG construction.

Appendix C.3. On-Shell Boundary Scalar Field (Aka Singleton)

For generic values of the conformal dimension Δ, the harmonicity ∇2Φ = 0 is incompatible
with the gauge equivalence Φ ∼ Φ + V2 λ . In such cases, the harmonicity can be interpreted as a
gauge-fixing condition for the gauge equivalence. This can be summarized by saying that the off-shell
boundary scalar field can be equivalently described as the ambient scalar satisfying (A16) or (A17).
However, when the conformal dimension takes the value Δ = (d − 2)/2 one can impose consistently

∇2Φ = 0 ,
(

VA∂A +
d − 2

2

)
Φ = 0 , Φ ∼ Φ + V2 λ . (A18)

The consistency of the system follows from the fact that (as was originally observed in [18]) the
operators ∇2, VA∂A + d+2

2 , V2 form the algebra sp(2). Note that these operators can be thought as
first-quantized versions of the sp(2)-constraints F+, F0, F−.

Identifying an equivalence class determined by the second and the third relations in (A18) with
an off-shell boundary scalar field, the first equation imposes the Yamabe equation for this conformal
scalar field in d dimensions. Another interpretation of the same fact is that the first two constraints
describe the bulk Klein-Gordon equation with critical mass. Considered in the vicinity of the boundary,
the equivalence relation described by the third relation in (A18) then eliminates the subleading
solutions. From this perspective, the Yamabe equation appears as an obstruction in extending the
unconstrained boundary value to an on-shell bulk field (or, equivalently, as an obstruction in the
near-boundary expansion of the on-shell bulk scalar field).

Spin-two analogue: Consider d = 4 for simplicity (but similar discussion holds for any even d).
The Bach tensor appears as an obstruction (related to the holographic anomaly) in the FG expansion of
bulk gravity in five dimensions. This obstruction is absent if and only if four-dimensional conformal
gravity is on-shell.
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Abstract: Conformal higher spin (CHS) fields, yet being non unitary, provide a remarkable example
of a consistent interacting higher spin theory in flat space background, that is local to all orders.
The non-linear action is defined as the logarithmically UV divergent part of a one-loop scalar
effective action. In this paper we take a particle model, that describes the interaction of a scalar
particle to the CHS background, and compute its path integral on the circle. We thus provide a
worldline representation for the CHS action, and rederive its quadratic part. We plan to come back to
the subject, to compute cubic and higher vertices, in a future work.

Keywords: higher spin fields; conformal symmetry; worldline formalism

1. Introduction

Four dimensional Maxwell (s = 1) theory is the first known example of a conformally invariant
physical system. Similarly, massless matter lagrangians (s = 0, 1/2) have conformal symmetry in flat
space, that can be enhanced to general covariance plus local Weyl symmetry when coupled to a curved
spacetime metric. On the other hand, for spin greater than one ordinary two-derivative theories,
such as (super)gravities (s = 2, 3/2) and massless higher spin theories (s > 2), are not conformal.
Weyl squared gravity, with higher derivative lagrangian L =

√
g(Wμνρσ)2 ≈ hμν�2hμν + . . . , and its

supersymmetric extensions [1–3] are alternative models for s ≤ 2 possessing local Weyl symmetry
besides diffeomorphism invariance, and hence rigid conformal symmetry around flat space.
Conformal higher spin fields (CHS) [3–14] are the s > 2 generalization of the Weyl graviton and
conformal gravitino. In four dimensional flat space they are described by the free lagrangian1

S[h] = ∑
s

∫
d4x hs Ps �

s hs , (1)

where hs = hμ1...μs and Ps is the spin-s transverse-traceless projector built out of s powers of
P1 := δ

μ
ν − ∂μ∂ν

� . The above action thus describes pure spin s states (transverse and traceless) off-shell,
and is invariant under differential and algebraic gauge transformations:

δhs = ∂εs−1 + η αs−2 (2)

generalizing linearized diffeomorphisms and Weyl symmetry of conformal (super)gravity. The higher
derivative2 kinetic operator ensures locality of the action, at the price of formally loosing unitarity.

1 We will discuss only bosonic totally symmetric fields. In arbitrary even dimensions one has to add a power �
d−4

2 of
the laplacian.

2 One can describe CHS dynamics with ordinary two-derivative lagrangians, at the expense of introducing auxiliary
fields [15,16].
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Contrary to the case of free massless higher spins, that propagate only on maximally symmetric
backgrounds, there is evidence [17–19] that conformal higher spins can propagate consistently
on Bach-flat backgrounds, i.e., on the equations of motion of Weyl squared gravity. In fact,
quite remarkably, the above action and linear gauge symmetry admit a consistent fully non-linear
completion [6,7,11], that is well defined around flat space and local to all orders in the fields.
Indeed, unlike the case of massless higher spins, the absence of dimensionful parameters fixes the
number of derivatives of each vertex uniquely.3 The CHS theory is power-counting renormalizable
but, since Weyl and higher order algebraic symmetries are gauged, it has to be free of conformal and
higher spin anomalies in order to be consistent at the quantum level. In the low spin case s ≤ 2 ,
vanishing of the total Weyl anomaly can be achieved only by N = 4 conformal supergravity coupled
to four N = 4 SYM multiplets [20,21]. In the case of four dimensional CHS with one field of each
integer spin, the a-coefficient4 of the Weyl anomaly vanishes upon a (regularized) summation over
all spins [22,23], while cancellation of the c-coefficient [23–26], as well as the higher spin algebraic
symmetries, seems less clear [19].

Besides being interesting on its own, as it gives a nontrivial example of an interacting higher spin
theory in flat space, CHS fields are intimately related to massless higher spin theories in Anti de Sitter
space [27–33] via the vectorial AdS/CFT correspondence [34–39]. Moreover, the non-linear CHS action
naturally arises as an induced action [6,7,11,40] in the holographic context: The free CFT of N complex
scalars admits an infinite number of conserved conformal currents of every spin in the U(N) singlet
sector, Js ∼ φ∗i ∂sφi . The dual fields to these conformal currents are identified with massless higher
spin gauge fields in AdS space, whose boundary values hs source the Js currents and can in turn be
seen as CHS fields on the boundary. The scalar path integral with sources ∑s Js hs yields the generating
functional Γ[h] of correlators of the conformal currents and, according to AdS/CFT correspondence,
should be equal to the on-shell value of the, yet unknown5, action of massless higher spins in AdS6.
However, the same generating functional Γ[h] can be interpreted7, from a pure boundary viewpoint,
as a one-loop effective action for the CHS fields hs , that inherit the linearized gauge symmetry (2)
thanks to conservation and tracelessness of the currents Js . The logarithmically divergent part of Γ[h]
is local and gauge invariant and can be thus identified as the classical non-linear action SCHS[h] for
conformal higher spins [7,11].

The aim of this paper is to construct a quantum mechanical path integral to represent the
effective action Γ[h] . Since the coupling ∑s Js hs is quadratic in the scalar fields, Γ[h] is given by
the functional determinant

Γ[h] = N log Det[−�+ Ĥ] , (3)

3 In arbitrary even dimension d the conformal weight of hs is 2 − s . Given an nth order vertex with fields of spin (s1, ..., sn) ,
the number of derivatives is fixed to N = d + ∑n

i=1 si − 2n .
4 In four dimensions the Weyl anomaly contains only two relevant structures: the Euler density, whose coefficient is usually

named a, and the square of the Weyl tensor, whose coefficient is c .
5 Vasiliev’s equations lack a standard variational principle. Non-standard actions of covariant hamiltonian type have been

proposed in [41–45] . From an holographic perspective, CFT correlators have been used to reconstruct AdS vertices
in [46–48].

6 Direct matching of free gauge theory correlators with AdS Witten diagrams has been investigated in [49–51] in order to
exploit open-closed string duality. In particular, in [49] one-loop open string diagrams in the field theory limit (hence
worldline loops) were shown to reproduce tree level diagrams in AdS by direct change of variables in the moduli space.

7 In the standard AdS/CFT context [52–54] the boundary values of bulk fields are fixed, non dynamical sources for CFT
correlators. From a pure boundary perspective, however, one can see the coupling ∑s Js hs as a Noether coupling that gauges
the infinite dimensional symmetry algebra [31,55] generated by the charges associated to the currents Js . Moreover, even in
the AdS/CFT context one can give different, Neumann type, boundary conditions to bulk fields, allowing them to fluctuate
on the boundary [22,56,57].
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where Ĥ is a differential operator linear in the CHS fields. Such type of one-loop effective actions is
the most suitable to be computed by using first-quantized worldline models [58–69]. For instance,
free massless scalar particles are described in first quantization by the relativistic worldline action

S[x, p, e] =
∫ 1

0
dτ

[
pμ ẋμ − e

2 p2
]

⇔ S[x, e] =
∫ 1

0
dτ

ẋ2

2e
, (4)

where e(τ) is the einbein, that enforces the mass-shell constraint p2 ≈ 0 and, equivalently, ensures
local τ-reparametrization invariance. Coupling to a background curved metric gμν(x) and U(1) gauge
field Aμ(x) can be readily achieved by

Sg,A[x, p, e] =
∫ 1

0 dτ
[

pμ ẋμ − e
2 gμν(pμ − Aμ)(pν − Aν)

]
⇔ Sg,A[x, e] =

∫ 1
0 dτ

[
1
2e gμν ẋμ ẋν + Aμ ẋμ

]
. (5)

Quantization of the above actions on the circle gives the scalar loop contribution to the QFT
one-loop effective action for gravitons and photons. To be precise, when the hamiltonian is not of
the form H = p2 + V(x) , as it is the case in curved spacetime [70], the naive classical action does
not give the correct quantum amplitudes, due to ordering issues in the quantum hamiltonian, and a
local counterterm has to be added to the action (5) before using it in the path integral. One can add
spinning degrees of freedom to the quantum particle [71–77], in order to give contributions of fields
with nonzero spin in the loop. In the present case, since we are interested in the effective action Γ[h]
generated by a scalar loop, the scalar particle example will suffice.

In order to describe the interaction of the relativistic particle to background CHS fields, we shall
employ the action proposed in [78], i.e.,

Sh[x, p, e] =
∫ 1

0
dτ

[
pμ ẋμ − e G(x, p)

]
, (6)

where in the generalized hamiltonian G(x, p) = p2 +H(x, p) the conformal higher spin fields,
contained in the p-power series expansion of H(x, p) , are treated as perturbations over the flat
space background p2 . In the low spin example (5) we gave the expression for the action both in
phase space and configuration space. In most worldline applications one employs the configuration
space action, but in the case at hand it seems much more convenient to stay with the phase space
action and to perform the path integral directly in phase space.8 Indeed, the arbitrary dependence on
momenta of H(x, p) makes the inversion p = p(ẋ) quite cumbersome, along with the appearence of
inverse powers of ẋ2 that would produce singularities in perturbation theory. The issue of quantum
ordering of the operator Ĥ of (3) in relation to the classical interaction vertex H(x, p) will be discussed
in the main text.

In the next section we start by reviewing the construction of [7,11], that allows to find the explicit
form of the operator Ĥ . We proceed by introducing the above worldline model and discuss its
symmetries. Finally, we quantize the action (6) by computing explicitly the path integral on the circle.
By doing so we end up with a Scwhinger proper time representation of the effective action Γ[h] that
allows to extract the logarithmic divergence defining the classical action SCHS[h] . For illustrative
purpose we shall rederive the quadratic action [3,7,11], while we plan to address cubic and higher
vertices in a future work. We conclude in Section 3 by pointing out some aspects of the present
formalism that may be improved, and discussing some interesting directions for future investigations.

8 For very similar reasons, phase space worldline path integrals have been used in [79,80] in the context of non-commutative
field theory.

227



Universe 2017, 3, 64

2. Induced Action for Conformal Higher Spins

Let us start by considering a massless complex scalar field in flat spacetime of even dimension d ,
with action

S0[φ] =
∫

ddx ∂μφ∗∂μφ . (7)

Being a free theory, it possesses an infinite number of conserved currents Jμ(s) = φ∗∂μ1 ...∂μs φ + ...9

of arbitrary integer spin s = 0, 1, 2, ... and conformal dimension ΔJs = d − 2 + s , that can be made
traceless thanks to conformal invariance [81,82]. Conservation ∂ν Jνμ(s−1) ≈ 0 and tracelessness
Jα

αμ(s−2) ≈ 0 hold on the scalar mass-shell �φ ≈ 0 . In this setting one can introduce conformal higher
spin fields (CHS) via the Noether interactions

Sint[φ, h] =
∞

∑
s=0

(i)s

s!

∫
ddx Jμ(s) hμ(s) , (8)

that are invariant, on the free field equations �φ ≈ 0 , under the gauge transformations

δlinhμ(s) = ∂μεμ(s−1) + ημμ αμ(s−2) , (9)

that are the linearized higher spin generalization of the gauge symmetries of conformal gravity.
These on-shell symmetries can be deformed to full off-shell ones leaving invariant the total action

S[φ, h] = S0[φ] + Sint[φ, h] , (10)

by supplementing both the gauge fields and the scalar with extra transformations of the form

δφ = O(φ) , δhs = δlinhs +O(h) . (11)

The UV logarithmically divergent part10 of the effective action Γ[h] , induced by the scalar
path integral

e−Γ[h] =
∫
Dφ∗Dφ e−S[φ,h] = Det−1 (−�+ Ĥ

)
, (12)

is local11 and invariant under the full transformation δhs = ∂εs−1 + η αs−2 +O(h) . It can thus be used
to define a fully non-linear classical action for conformal higher spin fields, and at the quadratic level
it has been shown to reproduce the free action of [3]. In (12) Ĥ is a differential operator linear in hs ,
whose precise form will be now reviewed following [11].

2.1. Noether Interaction and Symmetries

The generating function of all the traceless conserved currents Jμ(s)

J(x, u) :=
∞

∑
s=0

1
s!

Jμ1...μs(x) uμ1 ... uμs =
∞

∑
s=0

Js(x, u) (13)

obeying ∂u · ∂x J(x, u) ≈ 0 and ∂2
u J(x, u) ≈ 0 can be written as [11]

J(x, u) = Πd J (x, u) , J (x, u) := φ∗(x + u/2)φ(x − u/2) , (14)

9 Indices denoted with the same letter and groups of indices μ(k) are intended as symmetrized with strength one,
e.g., Jμ(s) := J(μ1...μs) .

10 The logarithmic divergence is present only in even dimensions, that is the only case we will treat here.
11 The induced action contains vertices with arbitrary powers of higher spin fields but, due to the absence of dimensionful

parameters, the number of derivatives is bounded by the number of fields and sum of the spins involved.
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where J (x, u) generates traceful conserved currents, that are mapped to the traceless ones by
the operator

Πd :=
∞

∑
n=0

1
n!(−N̂ − d−5

2 )n

[
∂2 − g�

16

]n

, (15)

with the Pochhammer symbol defined by (a)n := Γ(a+n)
Γ(a) , and

N̂ := u · ∂u , ∂ := u · ∂x , g := u2 . (16)

In terms of the higher spin generating function

h(x, u) :=
∞

∑
s=0

1
s!

hμ1...μs(x) uμ1 ... uμs =
∞

∑
s=0

hs(x, u) , (17)

the Noether interaction (8) can be written as

Sint[φ, h] =
∫

ddx J(x, i∂u) h(x, u)|u=0 =
∫

ddxJ (x, i∂u)H(x, u)|u=0

=
∫

ddx ei∂u ·∂vJ (x, v)H(x, u)|u,v=0 ,
(18)

where the transformed generating function of the gauge fields H(x, u) is obtained upon integrating by
parts the spacetime derivatives in Πd , and reads

H(x, u) = Pd h(x, u) , Pd :=
∞

∑
n=0

1
n!(N̂ + n + d−3

2 )n

[
∂∗2 − Tr�

16

]n

, (19)

the inverse map being given by [11]

h(x, u) = P−1
d H(x, u) , P−1

d :=
∞

∑
n=0

(−1)n

n!(N̂ + d−1
2 )n

[
∂∗2 − Tr�

16

]n

, (20)

where we defined the divergence ∂∗ := ∂u · ∂x and trace Tr := ∂2
u operators. Despite the infinite series

appearing in (19), each spin-s component of the conformal fields hs produces a finite tail of traces
and divergences, as it can be seen by rewriting

H(x, u) =
∞

∑
s=0

[s/2]

∑
n=0

1
n!(s − n + d−3

2 )n

[
∂∗2 − Tr�

16

]n

hs(x, u) . (21)

By introducing the Fourier transform of J (x, v) in v-space:

J (x, v) =
∫ dd p

(2π)d e−iv·pρ(x, p) , (22)

the interaction (18) can be further rewritten in the form

Sint[φ, h] =
∫ ddxdd p

(2π)d ρ(x, p)H(x, p) . (23)

In [83] it has been shown that, upon introducing the first quantized Hilbert space where xμ

and −i ∂
∂xμ realize the algebra [X̂μ, P̂ν] = i δ

μ
ν and whereby the field φ(x) can be written as the wave
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function 〈x|φ〉 , the “density matrix” ρ(x, p) is the Weyl symbol of the operator |φ〉〈φ| . This allows,
using the standard tools of Weyl quantization [84–86], to finally cast the action (23) as the inner product

Sint[φ, h] = Tr
[|φ〉〈φ|Ĥ]

= 〈φ|Ĥ|φ〉 , (24)

where Ĥ(X̂, P̂) is the operator with Weyl symbol given by H(x, p) , i.e.,

Ĥ(X̂, P̂) =
∫ ddxdd p

(2π)d H(x, p)
∫ ddyddk

(2π)d eik·(x−X̂)−iy·(p−P̂) . (25)

The total action entering the path integral (12) can thus be written as

S[φ, h] = 〈φ|P̂2 + Ĥ(X̂, P̂)|φ〉 , (26)

which is clearly invariant under

|φ〉 → Ô−1|φ〉 , (P̂2 + Ĥ) → Ô†(P̂2 + Ĥ)Ô . (27)

In terms of the hermitian operators Ê and Â defined by Ô = exp(Â + i Ê) , the infinitesimal gauge
transformations of the CHS fields contained in Ĥ are given by

δĤ = i [P̂2 + Ĥ, Ê] + {P̂2 + Ĥ, Â} = i [P̂2, Ê] + {P̂2, Â}+O(h) , (28)

the linearized transformations (9) descending from the action of the P̂2 part. The symmetries associated
to Ê correspond to the differential ones δεhs = ∂εs−1 + ... and are preserved at the quantum level,
while the generator Â , corresponding to the generalized Weyl symmetry δαhs = η αs−2 + ... , develops
a quantum anomaly due to the non invariant measure of the path integral (12). Nonetheless, it can
be shown [11] that the UV logarithmically divergent part of the effective action preserves the full
symmetry generated by Â + iÊ , and can indeed be identified with the conformal higher spin action.

2.2. Effective Action and Worldline Path Integral

The effective action Γ[h] is given by

Γ[h] = Tr log
(

P̂2 + Ĥ
)
= −

∫ ∞

0

dT
T

Tr
[
e−T(P̂2+Ĥ)

]
(29)

in Schwinger proper time representation. The trace of the heat kernel

K[T; h] := Tr
[
e−T(P̂2+Ĥ)

]
(30)

admits a Laurent expansion in powers of T when the higher spins in Ĥ are treated as a perturbation
over the flat spin two background P̂2 . Accordingly, upon introducing a cut-off Λ in the small-T region,
the UV-regulated effective action can be organized according to its divergencies as

ΓΛ[h] := −
∫ ∞

1
Λ2

dT
T

K[T; h] =
∞

∑
n=1

Λ2n Γn[h] + logΛ SCHS[h] + Γfin[h] +O(Λ−2) , (31)

where the local, gauge invariant coefficient of the logarithmic divergence defines the conformal higher
spin action being looked for.

As the heat kernel K[T; h] can be viewed as the trace of the (euclidean) evolution operator
associated to the quantum mechanical Hamiltonian P̂2 + Ĥ(X̂, P̂) , it is natural to represent it via a
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first quantized path integral. More so, the entire effective action (29) arises from the quantization of a
relativistic particle model [78] that we briefly discuss. Consider the point particle hamiltonian action

S[x, p; e] =
∫ 1

0
dτ

[
pμ ẋμ − e G(x, p)

]
, (32)

where
G(x, p) = p2 +H(x, p) ≈ 0 (33)

is the generalized mass-shell constraint imposed by the Lagrange multiplier e(τ) , that is associated
with τ-reparametrization invariance under

δxμ = ξ{xμ, G}P.B. , δpμ = ξ{pμ, G}P.B. , δe = ξ̇ , (34)

where {, }P.B. denotes the Poisson bracket and ξ(τ) is a worldline local parameter. The action (32)
describes the propagation of a relativistic spinless particle in the background of the CHS fields
contained in H according to (21). The Lagrange multiplier e(τ) , called einbein, is the gauge field for
τ-reparametrizations, and it can be viewed as an intrinsic frame field on the worldline. The infinitesimal
gauge transformations of the background fields, generated by

δεH(x, p) = {ε(x, p), p2 +H(x, p)}P.B. , (35)

leave the action invariant when accompanied by the phase space transformations

δεxμ = {xμ, ε(x, p)}P.B. , δε pμ = {pμ, ε(x, p)}P.B. . (36)

This is the first quantized realization of the Ê-type symmetries discussed in the field theory
language, while the counterpart of the generalized Weyl symmetries Â can be viewed as the invariance
of the constraint surface G(x, p) ≈ 0 under G(x, p) → eα(x,p) G(x, p) . The action is indeed invariant
under the combined transformations

δαH(x, p) = α(x, p)
(

p2 +H(x, p)
)

, δαe = −α(x, p) e (37)

and, as we shall see next, the transformation of the einbein is responsible for breaking the α-symmetry
at the quantum level.

As it is well known from the cases of interaction with scalar, vector and gravitational backgrounds,
the effective action Γ[h] can be obtained by quantizing the action (32) on the circle:

Γ[h] =
∫

S1

DxDpDe
VolGauge

e−SE [x,p;e] , (38)

where division by the gauge group volume entails the gauge fixing procedure for the local
τ-reparametrizations, and SE denotes the euclidean version of the action (32), i.e.,

SE[x, p; e] =
∫ 1

0
dτ

[−i pμ ẋμ + e G(x, p)
]

. (39)

As mentioned in the Introduction, when the quantum hamiltonian contains mixing of coordinates
and momenta, the naive path integral fails in general to provide the correct quantization. For a
given classical hamiltonian H(x, p) , the functional integral in phase space produces transition
amplitudes corresponding to the quantum Hamiltonian ĤW(x̂, p̂) obtained from the classical one
by Weyl ordering [87]. The correctness of the choice of H as classical vertex is thus ensured by the
relation (25), that greatly simplifies the model. In gauge fixing the local symmetry (34) on the circle,
it is customary to fix the einbein to a constant: e(τ) = T that plays the role of Schwinger’s proper
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time and breaks the Weyl symmetry (37). The ghost system associated to τ-reparametrizations has
locally trivial action, but its Faddeev-Popov determinant contributes on S1 topology with a factor of
T−1 , yielding

Γ[h] =
∫ ∞

0

dT
T

∫
S1

DxDp e−SE [x,p;T] , (40)

where the integral over T is the finite dimensional remnant12 of the functional e-integral, and the
gauge fixed action is simply obtained by replacing e(τ) = T . We shall now compute the trace of the
heat kernel

K[T; h] =
∫

S1
DxDp e−SE [x,p;T] (41)

by treating the phase space vertex H(x, p) as a perturbation over the free action

S2[x, p] =
∫ 1

0
dτ

[
T p2 − i pμ ẋμ

]
. (42)

First of all we shall extract the zero mode from the periodic trajectories xμ(τ) :

xμ(τ) = xμ + qμ(τ) , xμ :=
∫ 1

0
dτ xμ(τ) →

∫ 1

0
dτ qμ(τ) = 0 , (43)

so that the functional measure splits as
∫

S1 Dx =
∫

ddx
∫

PBC′ Dq , where PBC’ denotes periodic
boundary condition with the zero mode removed. Expectation values w.r.t. the free action (42)
are denoted by

〈F(q, p)〉 :=

∫
PBC′ Dq

∫
Dp F(q, p) e−S2[q,p]∫

PBC′ Dq
∫

Dp e−S2[q,p]
(44)

and the trace of the heat kernel can be written as

K[T; h] =
∫ ddx

(4πT)d/2

〈
e−T

∫ 1
0 dτ H(x+q,p)

〉
=

∫ ddx
(4πT)d/2

∞

∑
n=0

Tn Vn[T; h] , (45)

where (4πT)−d/2 is the value of the free path integral and the n-field effective vertex is given by

Vn[T; h] =
(−1)n

n!

∫ 1

0
dτ1 · · ·

∫ 1

0
dτn

〈
n

∏
i=1

H(
x + q(τi), p(τi)

)〉

=
(−1)n

n!

∫ 1

0
dτ1 · · ·

∫ 1

0
dτn

〈
e∑n

i=1 qi ·∂xi+pi ·∂ui

〉
H(x1, u1) · · · H(xn, un)|xi=x

ui=0

=: V̂n(T; ∂xi , ∂ui )H(x1, u1) · · · H(xn, un)|xi=x
ui=0

,

(46)

where qi := q(τi) , pi := p(τi) and we expanded the generating functions H(x + qi, pi) around (x, 0) .
In terms of the currents

jn(τ) :=
n

∑
i=1

δ(τ − τi)∂xi , kn(τ) :=
n

∑
i=1

δ(τ − τi)∂ui , (47)

the quantum average above can be recast in the form of a generating functional:〈
e∑n

i=1 qi ·∂xi+pi ·∂ui

〉
=
〈

e
∫ 1

0 dτ[q(τ)·jn(τ)+p(τ)·kn(τ)]
〉

. (48)

12 The quantity T =
∫ 1

0 dτ e(τ) is gauge invariant on the circle; hence it constitutes a modulus to be integrated over after
gauge fixing.
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This is a quadratic path integral and can be computed exactly, yielding

〈
e
∫ 1

0 dτ[q(τ)·jn(τ)+p(τ)·kn(τ)]
〉
= exp

{1
2

∫ 1

0
dτ

∫ 1

0
dσKT

n (τ) G(τ, σ)Kn(σ)
}

(49)

for the column vector Kn(τ) =

(
kn(τ)

jn(τ)

)
. Here G(τ, σ) is the matrix of the phase space

Green’s functions13

〈pμ(τ)pν(σ)〉 = 1
2T

ημν , 〈pμ(τ)qν(σ)〉 = i δν
μ f (σ − τ) , 〈qμ(τ)qν(σ)〉 = 2T ημν g(τ − σ) (50)

with propagators

f (τ) = −τ + 1
2 sign(τ) , g(τ) = 1

2 (τ
2 − |τ|+ 1

6 ) , τ ∈ [−1, 1] . (51)

By using the currents (47) in (49) one obtains

V̂n(T; ∂xi , ∂ui ) =
(−1)n

n!

∫ 1

0
dτ1 · · ·

∫ 1

0
dτn

×exp
1
2

n

∑
i,j=1

[
1

2T
∂ui · ∂uj + 2i f (τi − τj) ∂xi · ∂uj + 2T g(τi − τj) ∂xi · ∂xj

]
.

(52)

To manipulate it further, let us notice that ∑n
i=1 ∂xi ∼ 0 is a total derivative, according to (46)

and (45). This allows to consistently drop the constant part in every g(τ) propagator, leaving the
effective propagator ĝ(τ) := 1

2 (τ
2 − |τ|) . The rigid translation invariance under τi → τi + c , together

with the periodicity of the trajectories over S1 , allows to fix one τ variable14, let us say τn = 0 and,
thanks to the symmetry under permutations of the τi , that is manifest from the first line of (46),
one can also transform the τ-integral:

∫ 1
0 dτ1...

∫ 1
0 dτn−1 → (n − 1)!

∫ 1
0 dτ1

∫ τ1
0 dτ2...

∫ τn−2
0 dτn−1 , finally

obtaining for the effective vertex

Vn[T; h] =
(−1)n

n
e

1
4T ∂2

U

∫ 1

0
dτ1

∫ τ1

0
dτ2 · · ·

∫ τn−2

0
dτn−1

× exp
(τn=0)

∑
i<j

{
−i(τij − 1

2 )(∂xi · ∂uj − ∂xj · ∂ui ) + T τij(τij − 1)∂xi · ∂xj

}
H(x1, u1) · · · H(xn, un)|xi=x

ui=0

(53)

where τij := τi − τj and ∂U := ∑n
i=1 ∂ui . For any given set of spins {s1, ..., sn} of the CHS fields hsi ,

the maximal number of u-derivatives is bounded by S := ∑n
i=1 si , so that the exponential e∂2

U /4T

contributes with the maximal negative power T−[S/2] , making the Laurent expansion

Vn[T; h] =
∞

∑
k=−∞

Tk V (k)
n [h] (54)

13 See Appendix A for details.
14 This can be seen by just changing variables in integrals of periodic and translation invariant functions. However, a more

precise justification comes from the gauge fixing procedure on the circle: The einbein e(τ) possesses, on S1 topology, a Killing
vector that is not fixed by the gauge e(τ) = T and that generates global translations around the circle. A natural way to fix
the leftover global symmetry is then to fix the position of one vertex on the circle, e.g., by setting τn = 0 , as it is customary
in String Theory.
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well defined. The coefficient giving rise to the logarithmic divergence is thus the one of order k = d
2 − n ,

and the CHS action can be identified as15

SCHS[h] =
∫

ddx
∞

∑
n=2

V (d/2−n)
n [h] . (55)

All the vertices of (55) can be in principle computed using (53) but, since locality has to be manifest
in the spin decomposition of the h(x, u) basis, it would be desirable to develop a formalism that avoids
the introduction of the H(x, u) generating function. In such a case, all the differential operators
V̂n(T; ∂xi , ∂ui ) should reduce to finite polynomials of homogeneous degree in spacetime derivatives.

2.3. The Quadratic Action

The effective vertex (53) is an equivalent representation of the one obtained in [11], but for

illustrative purposes we shall rederive the quadratic action by computing V ( d
2−2)

2 [h] . From (53) one has

V2[T; h] = 1
2 e

1
4T ∂2

U+ i
2 ∂x ·∂UF (−i∂x · ∂U , T �)H(x, u)H(x′, u′)| x′=x

u,u′=0
(56)

where we used ∂x′ ∼ −∂x and

F (α, β) :=
∫ 1

0
dτ eατ+βτ(1−τ) =

∞

∑
n=0

1
n!

Fn(α) βn . (57)

The functions Fn(α) can be computed as hypergeometric integrals (A16):

Fn(α) =
(n!)2

(2n + 1)! 1F1(n + 1; 2n + 2; α) , (58)

and using Kummer’s Formula (A17) can be recast in terms of Bessel functions (A9), giving

V2[T; h] =
√

π
2 e

1
4T ∂2

U
∞

∑
n=0

(∂x · ∂U)
−n− 1

2 Jn+ 1
2

(
∂x · ∂U

2

)
(T �)n H(x, u)H(x′, u′)| x′=x

u,u′=0
. (59)

It is now possible to extract the contribution of order T
d
2−2 , yielding

V(
d−4

2 )
2 [h] =

√
π
8

[
1
2

√
−∂2

U⊥∂2
x

]− d−3
2

J d−3
2

(
1
2

√
−∂2

U⊥∂2
x

) (�
2

) d−4
2 H(x, u)H(x′, u′)| x′=x

u,u′=0
, (60)

where we used Lommel’s expansion Formula (A11), and the transverse projection is defined as

vμ
⊥ := vμ − v · ∂x∂

μ
x

�
, (61)

so that ∂2
U⊥� = ∂2

U�− (∂x · ∂U)
2 . The above result coincides with the one of [11], and it can be seen

that the Bessel function “undresses” the H fields, leaving a finite degree polynomial acting on the

15 The field independent V0(T) = 1 cannot contribute to the logarithmic divergence and neither can the linear V1[T; h] in d ≥ 4 .
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two h fields. To do so one applies Gegenbauer addition theorem (A13) to the above Bessel function,

with the triplet of variables Z := 1
2

√
−∂2

U⊥� and16 zi := 1
2

√
−∂2

ui⊥�i obeying

Z2 = z2 + z′2 − 2 zz′ w for w =
∂u⊥ · ∂u′⊥√

∂2
u⊥∂2

u′⊥
. (62)

The resulting Jn+ d−3
2
(zi) that appear from the addition theorem produce the inverse maps P−1

d

when acting on the corresponding H(xi, ui) as17

[
z−n− d−3

2
i Jn+ d−3

2
(zi)H(xi, ui)

]∣∣∣∣
n
= hn(xi, ui) , (63)

and one is left with

V(
d−4

2 )
2 [h] =

√
π
8

∞

∑
n=0

cn(d)
(�

2

)n+ d−4
2
(

∂2
u⊥∂2

u′⊥
)n/2

C
d−3

2
n

⎛⎝ ∂u⊥ · ∂u′⊥√
∂2

u⊥∂2
u′⊥

⎞⎠ h(x, u)h(x′, u′)| x′=x
u,u′=0

,

(64)

where Cν
n(w) is the Gegenbauer polynomial and cn(d) := 2−3n− d−3

2

Γ(n+ d−1
2 )( d−3

2 )n
. From the form of ∂ui⊥ one

can see that the above expression is indeed local for each n and of homogeneous degree 2n + d − 4 in
spacetime derivatives. It is also easy to view, from the definition of Gegenbauer polynomials (A14),
that the sum over n is diagonal in contractions, being of homogeneous degree (∂u∂u′)

n . The above
expression is proportional for each n to the corresponding transverse and traceless projector18Pn ,
that can be displayed to write the quadratic action in the form (1) that is manifestly gauge invariant
under the linearized transformations (9):

S2 CHS =
∫

ddx
∞

∑
s=0

cs hs(x, u) Ps

(←−
∂u ,

−→
∂v

)
�s+ d−4

2 hs(x, v) , (65)

where we discarded a spin-independent constant and cs =
1

23sΓ(s+ d−1
2 )

.

3. Discussion and Conclusions

In this paper we have provided a worldline path integral representation for the non-linear
conformal higher spin action [7,11] in arbitrary even dimensions. We have rederived the quadratic
part of the action, and we plan to come back in the future for the computation of cubic and higher
vertices, some of which have been computed in [88,89], in transverse-traceless gauge, in the context of
scattering amplitudes calculations.

The example of the quadratic action suggests that the “undressing” maps P−1
d should appear at

all orders in the differential operators V̂n(T; ∂xi , ∂ui ) , leaving finite degree polynomials acting on a
string of fields hs1 ...hsn . From the representation (53) it is not transparent how this should take place.
For this reason, it would be interesting to find a way to avoid the introduction of the dressed generating
function H(x, u) , and work directly in the basis of CHS h(x, u) . To this goal, when restricting to four
dimensions, a considerable advantage could come by working in terms of sl(2,C) spinors instead
of tensors. All the trace projections would become trivial and one could work directly in terms of
conformal primary currents Js .

16 In the variables zi one can exchange x with x′ for free.
17 For details see the original derivation [11].
18 See appendix C for the explicit form of the projectors.
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Another issue of (non-linear) field redefinitions is apparent when looking at the low spin content
of the Noether interaction (8): the linear coupling

2

∑
s=0

hs Js ∼ h0 φ∗φ + hμ
1 φ∗∂μφ + 1

2 hμν
2 φ∗∂μ∂νφ (66)

does not coincide with the standard Weyl and U(1) invariant coupling of a complex scalar to a vector
gauge field in curved spacetime, i.e.,

S =
∫

ddx
√

g
[

gμνDμφ∗Dνφ + d−2
4(d−1) R φ∗φ

]
, (67)

and the basis (h0, h1, h2) is related to the geometric (Aμ, gμν = ημν + hμν) by a non-linear field
redefinition. This issue has been discussed, for instance, in [7,11,89]. In fact, the covariant description of
CHS fields in curved (maybe Bach-flat) background is still an open problem [17–19], and it underpins
the question of vanishing Weyl anomalies. To this end, it would be interesting to find a first quantized
origin of CHS fields, since at the worldline (or worldsheet) level it could be easier to achieve a covariant
description, and the sum over spins, that is crucial in proving the vanishing of anomalies as well as
triviality of scattering amplitudes, would be accounted for by the worldline fields.
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Appendix A. Worldline Phase Space Propagators

In this section we will derive the phase space propagators associated with the euclidean worldline
action on the circle

S2[x, p] =
∫ 1

0
dτ

[
T p2 − i pμ ẋμ

]
. (A1)

Upon extracting the zero mode from the periodic trajectories xμ(τ) , one goes to Fourier space

xμ(τ) = xμ
0 + qμ(τ) , qμ(τ) = ∑

n∈Z\{0}
qμ

n e2πinτ ,

pμ(τ) = ∑
n∈Z

pμ n e2πinτ .
(A2)

The Fourier modes obey the reality conditions

(x0, p0) ∈ R , q∗n = q−n , p∗n = p−n (A3)

and the action (A1) reads

S2 = T p2
0 +

∞

∑
n=1

Z†
nKn Zn (A4)

in terms of the phase space vector Zn and kinetic matrix Kn

Zn :=

(
pn

qn

)
, Kn :=

(
2T 2πn

−2πn 0

)
, (A5)
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where we suppressed all the spacetime indices. From the inverse matrix

K−1
n =

(
0 − 1

2πn

1
2πn

2T
4π2n2

)
(A6)

it is immediate to extract the two-point functions

〈
pμ(τ) pν(σ)

〉
=

ημν

2T
,

〈
pμ(τ) qν(σ)

〉
= i δν

μ f (σ − τ) , 〈qμ(τ) qν(σ)〉 = 2T ημν g(τ − σ) . (A7)

The above propagators are defined in terms of their Fourier series and read

f (τ) :=
∞

∑
n=1

1
πn

sin(2πn τ) = −τ + 1
2 sign(τ) ,

g(τ) :=
∞

∑
n=1

1
2π2n2 cos(2πn τ) = 1

2 τ2 − 1
2 |τ|+ 1

12 ,
(A8)

where the latter expressions in terms of elementary functions hold in the interval [−1, 1] .

Appendix B. Special Functions

We collect here the definitions and formulas that are relevant to the main text. The Bessel function
of the first kind can be defined by the series

Jν(z) :=
∞

∑
k=0

(−1)k

k! Γ(ν + k + 1)

( z
2

)ν+2k
, (A9)

while the modified Bessel function Iν(z) is given by

Iν(z) :=
∞

∑
k=0

1
k! Γ(ν + k + 1)

( z
2

)ν+2k
= i−ν Jν(iz) . (A10)

The Lommel expansion formula reads

√
z + h

−ν
Jν

(√
z + h

)
=

∞

∑
k=0

1
k!

(
− h

2

)k √
z−ν−k Jν+k

(√
z
)

(A11)

and, for a triplet (ω, x, y) obeying

ω2 = x2 + y2 − 2 xy cos θ , (A12)

one has the Gegenbauer addition theorem:

ω−ν Jν(ω) = 2νΓ(ν)
∞

∑
n=0

(ν + n) x−ν Jν+n(x) y−ν Jν+n(y)Cν
n(cos θ) , (A13)

where Cν
n(z) is the Gegenbauer polynomial defined by

Cν
n(z) =

[n/2]

∑
k=0

(−1)k(ν)n−k
k! (n − 2k)!

(2z)n−2k . (A14)
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The generalized hypergeometric function pFq is defined by the series

pFq(a1, ..., ap; b1, ..., bq; z) =
∞

∑
n=0

(a1)n · · · (ap)n

(b1)n · · · (bq)n

zn

n!
. (A15)

The confluent hypergeometric function 1F1(a; b; z) admits the integral representation

1F1(a; b; z) =
Γ(b)

Γ(a)Γ(b − a)

∫ 1

0
du ezuua−1(1− u)b−a−1 (A16)

and for b = 2a it is related to the 0F1 series and thus to the Bessel function via Kummer’s formula:

1F1(a; 2a; z) = ez/2
0F1

(
; a + 1

2 ; z2

16

)
= ez/2

( z
4

) 1
2−a

Γ(a + 1
2 ) Ia− 1

2
(z/2) . (A17)

Appendix C. Transverse-Traceless Projectors

The transverse-traceless projectors Pμ(s)
ν(s) of spin s , obeying

ηαβ Pαβμ(s−2)
ν(s) = 0 = Pμ(s)

αβν(s−2) ηαβ , ∂αPαμ(s−1)
ν(s) = 0 = Pμ(s)

αν(s−1)∂α (A18)

with normalization
Pμ(s)

λ(s)Pλ(s)
ν(s) = Pμ(s)

ν(s) , (A19)

can be built from s powers of the corresponding spin one transverse projector

Pμ
ν := δν

μ −
∂μ∂ν

�
(A20)

as

Pμ(s)
ν(s) =

[s/2]

∑
k=0

αk(s)
(

Pμμ Pνν
)k (Pμ

ν
)s−2k , (A21)

with coefficients αk(s) being fixed by tracelessness as

αk(s) =
(−1)ks! Γ

(
s − k + d−3

2
)

4k k!(s − 2k)! Γ
(
s + d−3

2
) . (A22)

The generating function of the spin s projector:

Ps(u, v) :=
1
s!

uμ1 ... uμs Pμ(s)
ν(s) vν1 ... vνs , (A23)

acts on the generating function of a spin s field hs(x, u) = 1
s! hμ(s)(uμ)s as

(
Ps hs

)
(x, u) := 1

s! Pμ(s)
ν(s)hν(s)(x)(uμ)s = Ps(u, ∂v) hs(x, v) , (A24)

and it can be written in terms of Gegenbauer polynomials as

Ps(u, v) =
Γ
( d−3

2
)

2s Γ
(
s + d−3

2
) (|u⊥||v⊥|)s C

d−3
2

s

(
u⊥ · v⊥
|u⊥||v⊥|

)
, (A25)

where transverse vectors are defined by

uμ
⊥ := uμ − u · ∂∂μ

�
. (A26)
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Abstract: We investigate cubic interactions between a chiral superfield and higher spin superfields
corresponding to irreducible representations of the 4D, N = 1 super-Poincaré algebra. We do this
by demanding an invariance under the most general transformation, linear in the chiral superfield.
Following Noether’s method we construct an infinite tower of higher spin supercurrent multiplets
which are quadratic in the chiral superfield and include higher derivatives. The results are that a single,
massless, chiral superfield can couple only to the half-integer spin supermultiplets (s + 1, s + 1/2) and for
every value of spin there is an appropriate improvement term that reduces the supercurrent multiplet
to a minimal multiplet which matches that of superconformal higher spins. On the other hand a single,
massive, chiral superfield can couple only to higher spin supermultiplets of type (2l + 2 , 2l + 3/2)
(only odd values of s, s = 2l + 1) and there is no minimal multiplet. Furthermore, for the massless
case we discuss the component level higher spin currents and provide explicit expressions for the
integer and half-integer spin conserved currents together with a R-symmetry current.

Keywords: supersymmetry; off-shell supermultiplets; higher spin

PACS: 11.30.Pb; 12.60.Jv

1. Introduction

Higher spin theories [1–10] have a considerable history and for a number of years drove the
development of many ideas in theoretical physics. However, their role in fundamental interactions
is still not clear. On the one hand, all the elementary particles observed in nature so far seem to be
concentrated in a region of spin values (s) such that s ≤ 2. Moreover, this observation appears to be
supported by a substantial list of No-Go theorems [11–26] (for reviews look in [27,28]) suggesting that
nature stops with spin 2. On the other hand, if we want to understand relativistic field theories and their
quantum aspects in full generality, there is no a priori reason to exclude higher spin fields. In recent
decades, this point was made undeniable due to the crucial part that massless and massive higher
spin particles play in (i) the softness of string interactions at high energy scales, (ii) the possibilities to
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describe string effects in the framework of field theory, and (iii) investigations of some aspects of the
holographic principle1.

The construction of fully interacting higher spin theories is an extremely exciting topic but
also very difficult, mostly due to the road blocks placed by the no-go results and maybe due
to current lack of (still unknown) general principles. Also, one cannot exclude that higher spin
field theory is an effective theory for an underlying, so far unknown, more fundamental theory.
Nevertheless, there are few examples of successful approaches to higher spin theory such as Vasiliev’s
theory [10,29–31] (for reviews look in [32–34]) and the 3D Cherns-Simon higher spin-gravity
formulation [35–37]. Despite their actual successes, these theories still appear very complicated.
For example, Vasiliev’s theory provides an infinite set of on-shell equations of motion and many
conceptual questions about observables, Lagrangian formulation, locality2 and quantization require
continued study. In addition, the Chern-Simons description of interacting higher spins is restricted to
3D and has, in the massless case, no local degrees of freedom. Therefore, many important questions
concerning higher spin field theory are still open3.

In higher spin theories the structure of possible interaction vertices is essentially fixed
by higher-spin symmetries. We will consider the construction of the simplest vertices in the
supersymmetric higher-spin models. In this case, one can expect that the supersymmetry will impose
the additional restrictions on the form of vertices and therefore one can hope to uncover clarifications
and simplifications in comparison to non-supersymmetric higher-spin models.

The simplest higher spin interaction is described by the cubic vertex. Therefore, we will begin with
the construction of a cubic vertex for supersymmetric field theory. It is well known that supersymmetric
field models can be formulated on-shell in terms of component fields or off-shell in terms of appropriate
superfields (see the text books [56,57]). Both these ways of constructing supersymmetric field models
have their own advantages and disadvantages and complement each other. In this paper we will
follow the superfield approach which allows us to keep manifest supersymmetry off-shell.

One kind of cubic interaction vertex for two types of fields can be written in the form jh, where
j is a current constructed from fields of type φ (matter fields) and h is a field of another type (gauge
fields). Because the gauge field h is defined up to gauge transformations, the current j must satisfy
some conservation laws, i.e., it is conserved. Higher-spin interactions on the base of conserved current
have been constructed and explored by many authors (see e.g., [58–67])4.

In this work we will present the construction of the conserved N = 1 higher superspin
supercurrent and supertrace that generate the cubic interactions between super-Poincaré higher
spin supermultiplets which play the role of gauge fields and the chiral supermultiplet which will play
the role of matter. The higher spin supercurrent and higher spin supertrace together constitute the
higher spin supercurrent multiplet and are the corresponding analogues to the low-spin supercurrent
and supertrace of conventional supersymmetric theory (see [56,57]).

The strategy we follow is that of Noether’s method, which is a perturbative procedure that allows
one to constrain the allowed interactions by imposing invariance order by order in the number of
(super)fields. Such a treatment of interactions will be very clear and useful for the cubic order. In our
case the corresponding transformation for the matter superfield is the most general transformation,
consistent with its chiral nature and up to linear order terms in the superfield and for the higher spin
superfields is their gauge transformation.

1 For example, Fradkin-Vasiliev cubic interaction vertex of massless higher spin fields with gravity requires the AdS
background.

2 See e.g., [38,39].
3 At present time, there is an extensive literature on different aspects of higher spin field theory. For example see the recent

papers [40–55] and references therein.
4 A BRST approach to the construction of cubic vertex has been developed in [68].
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The paper is organized as follows. Section 2 is devoted to discussing Noether’s procedure and
specific features of 4D, N = 1 super-Poincaré higher spin theories. In Section 3, we find the most
general transformation of chiral superfield up to linear order and observe that the parameters of this
transformation match the structure of the gauge transformations of specific higher spin supermultiplets.
Sections 4–6 devoted to the construction of the higher spin supercurrent multiplet of a free massless
chiral and generate the cubic interactions with higher spins. We find that the massless chiral can be
coupled only to higher spin supermultiplets of type (s + 1, s + 1/2). In Section 7, we show that for
every value of integer s there are two types of higher spin supercurrent multiplets, the canonical and the
minimal and one can go from the canonical to the minimal by an appropriate choice of improvement
terms. Furthermore, we demonstrate that the minimal multiplet coincides with the supercurrent
multiplet generated by superconformal higher spins. In Section 8, we discuss the on-shell superspace
conservation equations for both supercurrent multiplets. For the case of minimal multiplet, we use
the conservation equation alone to derive a simpler expression for the higher spin supercurrent. In
Section 9, we project to components and find explicit expressions for the spacetime conserved integer
spin, half-integer spin and R-symmetry currents. The integer spin current has two contributions, one of
the boson - boson type that matches the known expressions for the integer spin currents of a complex
scalar and the other is of the fermion - fermion type which agrees with the known expressions of
integer spin currents of a spinor. The half-integer spin and R-symmetry currents, as far as we know,
appear in the literature for the first time. Section 10, is devoted to the massive chiral superfield. We
find that it can couple only to higher spin supermultiplets of type (2l + 2 , 2l + 3) and we present
new expressions for the higher spin supercurrent multiplet. For the massive chiral there is no minimal
multiplet. In Section 11, we summarize and discuss the results.

2. Noether’s Method

In general, finding consistent interactions is a very difficult problem if there is no guiding
principle. For the cases of spin 2 (GR) and spin 1 (YM) there is a very well developed geometrical
understanding (Riemannian Manifolds and Principle Bundles respectively) that plays the role of the
guiding principle, but for higher spins we do not have this geometrical input. In some extent, the
geometrical interpretation of higher spin fields is still mysterious. Therefore, we have to use alternative
methods. The idea is to relax any geometrical prejudice and have only algebraic requirements. In this
case the physical guiding principle is that of gauge invariance and consistent interactions are the ones
that are in agreement with gauge symmetries. Keep in mind that this is a physical requirement in
order for the interacting theory to have the same degrees of freedom as the free theory.

Noether’s method is a systematic, perturbative, analysis of the invariance requirement. In this approach
one expands the action S[φ, h] and the transformation of fields in a power series of a coupling constant g

S[φ, h] = S0[φ] + gS1[φ, h] + g2S2[φ, h] + . . . , (1)

δφ = δ0[ξ] + gδ1[φ, ξ] + g2δ2[φ, ξ] + . . . , (2)

δh = δ0[ζ] + gδ1[h, ζ] + g2δ2[h, ζ] + . . . (3)

where Si[φ, h] includes the interaction terms of order i + 2 in the number of fields and δi is the part of
transformations with terms of order i in the number of fields. Hence, invariance can now be written
iteratively up to the order we desire to investigate. For the free theory (g0) and the cubic interactions
(g1), which is the first step beyond free theory, invariance demands:

g0 :
δS0

δφ
δ0φ +

δS0

δh
δ0h = 0 , (4a)

g1 : g
δS0

δφ
δ1φ + g

δS1

δφ
δ0φ + g

δS0

δh
δ1h + g

δS1

δh
δ0h = 0 . (4b)
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In our case, the role of matter will be played by the chiral supermultiplet, described by a chiral
superfield Φ (D̄α̇Φ = 0). At the free theory level the chiral superfield does not have any gauge
transformation, δ0Φ = 0.

For the role of gauge fields we consider the massless, higher spin, irreducible representations of
the 4D, N = 1, super-Poincaré algebra. In the pioneer papers [5,6,69], using a component formulation,
free N = 1 supersymmetric massless higher spin models in four dimensions have been constructed.
A superfield formulation was proposed in [70–72] and further developed in subsequent papers [73,74]
and generalized by different authors5. The results are6:

1. The integer superspin Y = s supermultiplets (s + 1/2, s) are described by a pair of superfields
Ψα̇(s)α̇(s−1) and Vα(s−1)α̇(s−1) with the following zero order gauge transformations

δ0Ψα̇(s)α̇(s−1) = −D2Lα(s)α̇(s−1) +
1

(s−1)! D̄(α̇s−1)
Λα(s)α̇(s−2) , (5a)

δ0Vα(s−1)α̇(s−1) = Dαs Lα(s)α̇(s−1) + D̄α̇s L̄α(s−1)α̇(s) . (5b)

2. The half-integer superspin Y = s + 1/2 supermultiplets (s + 1, s + 1/2) have two descriptions.
One of them use the pair of superfields Hα(s)α̇(s), χα(s)α̇(s−1) with the following zero order
gauge transformations

δ0Hα(s)α̇(s) =
1
s! D(αs L̄α(s−1))α̇(s) − 1

s! D̄(α̇s Lα(s)α̇(s−1)) , (6a)

δ0χα(s)α̇(s−1) = D̄2Lα(s)α̇(s−1) + Dαs+1 Λα(s+1)α̇(s−1) (6b)

and the other one use the superfields Hα(s)α̇(s), χα(s−1)α̇(s−2) with

δ0Hα(s)α̇(s) =
1
s! D(αs L̄α(s−1))α̇(s) − 1

s! D̄(α̇s Lα(s)α̇(s−1)) , (7a)

δ0χα(s−1)α̇(s−2) = D̄α̇s−1Dαs Lα(s)α̇(s−1) +
s−1

s Dαs D̄α̇s−1 Lα(s)α̇(s−1) +
1

(s−2)! D̄(α̇s−2
Jα(s−1)α̇(s−3)) . (7b)

Consequently, the cubic interactions of the chiral superfield with the higher spin multiplets,
according to (4) must satisfy:

δS0

δΦ
δ1Φ +

δS1

δA δ0A = 0 (8)

where A is the set of superfields that participate in the description of higher spin supermultiplets
for any value of s. In this language, the collection of non-trivial supercurrents that generate the cubic
interaction terms correspond to the terms δS1

δA . The word non-trivial means that (i) the chiral superfield
may not interact with all possible higher spin supermultiplets (trivially zero supercurrents) and (ii)
for the ones that it interacts with, we must check that these interactions can not be adsorbed by
redefinitions of the chiral superfield.

3. First Order Gauge Transformation for Chiral Superfield

In the previous section, we saw that the higher spin supercurrents of a chiral superfield are
controlled by δ1Φ. That is the part of the transformation of Φ which is linear in Φ. Examples of
transformations of this type are generated by superdiffeomorphisms or the superconformal group
and have been used in the past [76,77] in order to find the coupling of the chiral supermultiplet
to supergravities.

5 See also a formulation of supersymmetric gauge theory in the framework of BRST approach [75].
6 This is the “economical” description according to [74].
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In this section we present the higher spin version of this transformation. The most general ansatz
one can write for such a transformation is7:

δgΦ = g
∞

∑
l=0

∞

∑
k=0

{
Aα(k+1)α̇(k)

l �l Dαk+1D̄α̇k Dαk . . . D̄α̇1Dα1 Φ (9)

+Γα(k)α̇(k+1)
l �l D̄α̇k+1 D2D̄α̇k Dαk . . . D̄α̇1Dα1 Φ

+Δα(k)α̇(k)
l �l D̄α̇k Dαk . . . D̄α̇1Dα1 Φ

+ Eα(k)α̇(k)
l �l D2D̄α̇k Dαk . . . D̄α̇1 Dα1 Φ

}
and depends on four infinite families of coefficients {Al

α(k+1)α̇(k), Γl
α(k)α̇(k+1), Δl

α(k)α̇(k), El
α(k)α̇(k)} with

independently symmetrized dotted and undotted indices. To make this transformation consistent with
the chiral nature of Φ we must have (D̄β̇δgΦ = 0):

Al
α(k+1)α̇(k) = − k+1

k+2 D̄α̇k+1 Δl
α(k+1)α̇(k+1) , (10a)

Γl
α(k)α̇(k+1) =

1
(k+1)! D̄(α̇k+1

Δl+1
α(k)α̇(k)) , (10b)

El
α(k)α̇(k) = D̄2Δl+1

α(k)α̇(k) , (10c)

D̄(β̇Δ0
α(k)α̇(k)) = 0 , (10d)

D̄β̇Δ0 = 0 . (10e)

The conclusion is that parameters Al
α(k+1)α̇(k), Γl

α(k)α̇(k+1), El
α(k)α̇(k) are not independent

and furthermore

Δ0 = D̄2
� , (11a)

Δ0
α(k)α̇(k) =

1
k! D̄(α̇k

�α(k)α̇(k−1)) , (11b)

Δl
α(k)α̇(k) is unconstrained for l ≥ 1 (11c)

where �, �α(k)α̇(k−1) are arbitrary.
From Equation (8) it is evident that the parameters which appear in the transformation of Φ must

also appear in the zeroth order gauge transformation of the higher spin superfields. Looking at the
gauge parameters that appear in (5)–(7) we find that there is no unconstrained parameter with the
structure of Δl+1

α(k)α̇(k), but Equations (6) and (7) include unconstrained gauge parameters which match
the structure of �α(k)α̇(k−1). The conclusion is that in order to construct invariant theories where the
chiral superfield couples to purely higher spin supermultiplets we have to consider the following
transformation of Φ:

δgΦ =−g
∞

∑
k=0

{
D̄2

�α(k+1)α̇(k) Dαk+1 D̄α̇k Dαk . . . D̄α̇1Dα1 Φ (12)

− 1
(k+1)! D̄

(α̇k+1�α(k+1)α̇(k)) D̄α̇k+1 Dαk+1 . . . D̄α̇1Dα1 Φ
}

+gD̄2
� Φ .

7 We use the conventions of Superspace [56] which include {Dα, D̄α̇} = i∂αα̇, DαDα = 2D2 and D̄α̇D̄α̇ = 2D̄2.
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The last term of (12) will generate coupling to the vector multiplet, thus in order to consider
purely higher spin interactions we should ignore it. However, for the sake of completeness we will not
do that.

The second conclusion we can already reach, is that a theory of a single chiral superfield can
couple only to half-integer superspin Y = s + 1/2 supermultiplets. This is a consequence of the
constraint (10d) whose solution matches the structure of the transformation of bosonic superfields of
half-integer superspin theories but crucially not that of integer superspin.

4. Constructing the Higher Spin Supercurrents I: Varying the Action

Having found the appropriate first order transformation for the chiral superfield, we use it to
perform Noether’s procedure for the cubic order terms, as described in Section 2 and construct the
higher spin supercurrents of the chiral supermultiplet. We consider a free massless chiral superfield,
so we start from the free action

So =
∫

d8z ΦΦ̄ (13)

and calculate its variation under δgΦ 8 :

δgSo = −g
∫ ∞

∑
k=0

{
D̄2

�α(k+1)α̇(k) Dαk+1D̄α̇k Dαk . . . D̄α̇1Dα1 Φ Φ̄ + c.c. (14)

− 1
(k+1)! D̄(α̇k+1�α(k+1)α̇(k)) D̄α̇k+1Dαk+1 . . . D̄α̇1 Dα1 Φ Φ̄ + c.c.

}
+g

∫ {
D̄2

�+ D2�̄
}

Φ Φ̄ .

However, in the above expression we can freely add any pair of terms Aα(k+1)α̇(k), Bα(k+1)α̇(k+1)
such that they identically satisfy the equation

D̄2 Aα(k+1)α̇(k) = D̄α̇k+1 Bα(k+1)α̇(k+1) . (15)

These terms play the role of improvement terms. We can prove that there are at least two pairs of them

1. Aα(k+1)α̇(k) = Wα(k+1)α̇(k) , Bα(k+1)α̇(k+1) =
k+1

(k+2)(k+1)! D̄(α̇k+1
Wα(k+1)α̇(k)) ,

2. Aα(k+1)α̇(k) =
1

(k+1)! D(αk+1
D̄α̇k+1Ūα(k))α̇(k+1) , Bα(k+1)α̇(k+1) =

1
(k+1)! D(αk+1

D̄2Ūα(k))α̇(k+1)

which will be relevant for our discussion. Hence, we can write for the variation of the So action:

δgSo = −g
∫ ∞

∑
k=0

{
D̄2

�α(k+1)α̇(k) Tα(k+1)α̇(k) + c.c. (16)

− 1
(k+1)! D̄(α̇k+1�α(k+1)α̇(k)) Jα(k+1)α̇(k+1) + c.c.

}
+g

∫ {
D̄2

�+ D2�̄
}
J

8 From this point forward, when the integration is over the entire superspace the measure d8z will not be explicitly written
but it will be implied.
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where

Tα(k+1)α̇(k) =
1

(k+1)!k! D(αk+1
D̄(α̇k

Dαk . . . D̄α̇1)
Dα1)

Φ Φ̄ + Wα(k+1)α̇(k) (17a)

+ 1
(k+1)! D(αk+1

D̄α̇k+1Ūα(k))α̇(k+1) ,

Jα(k+1)α̇(k+1) =
1

(k+1)!(k+1)! D̄(α̇k+1
D(αk+1

. . . D̄α̇1)
Dα1)

Φ Φ̄ (17b)

+ 1
(k+1)! D(αk+1

D̄2Ūα(k))α̇(k+1) +
k+1

(k+2)(k+1)! D̄(α̇k+1
Wα(k+1)α̇(k)) ,

J = ΦΦ̄ . (17c)

It is important to observe that these objects are not uniquely defined, but there is some freedom.
For example J is defined up to terms DαD̄2

λα + D̄α̇D2λ̄α̇ for an arbitrary λα
9, whereas Jα(k+1)α̇(k+1) is

defined up to terms D̄α̇k+2 Ξα(k+1)α̇(k+2). Also Tα(k+1)α̇(k) has the freedom

Tα(k+1)α̇(k) ∼ Tα(k+1)α̇(k)+D̄(α̇k
P(1)

α(k+1)α̇(k−1)) + D̄α̇k+1 P(2)
α(k+1)α̇(k+1) (18)

+D(αk+1
D̄2R(1)

α(k))α̇(k) + Dαk+2 D̄2R(2)
α(k+2)α̇(k) .

Furthermore, Equation (16) points towards a coupling of the chiral with the first formulation (6)
of (s + 1, s + 1/2) supermultiplets, but for that to happen we must have Jα(k+1)α̇(k+1) to be real. This is
a consequence of the reality of superfield Hα(s)α̇(s) and transformation (6a). Thus, in order to couple
the theory purely to half-integer superspin multiplet, we must make sure that we can select the
improvement terms such that Jα(k+1)α̇(k+1)=J̄α(k+1)α̇(k+1). This will depend on the detailed structure
of the real and imaginary part of the term 1

(k+1)!(k+1)! D̄(α̇k+1
D(αk+1

. . . D̄α̇1)
Dα1)

Φ Φ̄. The investigation
of these structures is the purpose of the following section. Due to the chiral nature of Φ, this term
can be simply written as ik+1∂(k+1)Φ Φ̄, where for simpicity we omit the uncontracted indices and
complete symmetrization of them with appropriate symmetrization factors is understood. The symbol
∂(k) denotes a string of k spacetime derivatives.

5. The Combinatorics of the Imaginary Part

First of all, we decompose the quantity ik+1∂(k+1)Φ Φ̄ to a real and an imaginary part

ik+1∂(k+1)Φ Φ̄ = ik+1

2

[
∂(k+1)Φ Φ̄ + (−1)k+1Φ ∂(k+1)Φ̄

]
(19)

+ ik+1

2

[
∂(k+1)Φ Φ̄ − (−1)k+1Φ ∂(k+1)Φ̄

]
and then we focus at the imaginary part with the goal to clarify whether the various improvement
terms (Wα(k+1)α̇(k), Uα(k+1)α̇(k)) can modify it in order to make Jα(k+1)α̇(k+1) real. Notice the difference
between even and odd values of k + 1

I (k+1) ≡ iIm[ ik+1∂(k+1)Φ Φ̄ ] =

⎧⎪⎪⎨⎪⎪⎩
i
2 (−1)l

(
∂(2l+1)Φ Φ̄ + Φ ∂(2l+1)Φ̄

)
, for k + 1 = 2l + 1, l = 0, 1, . . .

1
2 (−1)l

(
∂(2l)Φ Φ̄ − Φ ∂(2l)Φ̄

)
, for k + 1 = 2l, l = 1, 2, . . .

(20)

9 λα has its own redundancy λα ∼ λα + D̄α̇
ζαα̇ + iDα� with � = �̄.
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The type of terms that appear above are a special case to the more general type ∂(m)Φ ∂(n)Φ̄ terms.
It is easy to prove that this type of terms satisfy the following recursion relations:

∂(m)Φ ∂(n)Φ̄ = ∂
(

∂(m−1)Φ ∂(n)Φ̄
)
− ∂(m−1)Φ ∂(n+1)Φ̄ , (21)

∂(m)Φ ∂(n)Φ̄ = ∂
(

∂(m)Φ ∂(n−1)Φ̄
)
− ∂(m+1)Φ ∂(n−1)Φ̄ . (22)

Using these recursion formulas, one can prove that

∂(2l+1)Φ Φ̄ + Φ ∂(2l+1)Φ̄ =
l

∑
n=0

cn ∂(2n+1)
{

∂(l−n)Φ ∂(l−n)Φ̄
}

, (23)

∂(2l)Φ Φ̄ − Φ ∂(2l)Φ̄ =
l−1

∑
n=0

dn ∂(2n+1)
{

∂(l−n)Φ ∂(l−n−1)Φ̄ − ∂(l−n−1)Φ ∂(l−n)Φ̄
}

(24)

with

cn = (−1)l−n
[(

l + n + 1
l − n

)
+

(
l + n

l − n − 1

)]
, dn = (−1)l−n−1

(
l + n

l − n − 1

)
. (25)

These identities hold in general, not just for the chiral but for any (super)function Φ. An alternative
proof of them can be found by expanding the right hand side using the identity

∂(m) (A B) =
m

∑
i=0

(
m
i

)
∂(m−i)A ∂iB (26)

and matching the coefficients of the various terms with those of the left hand side. Doing that, one will
find the following consistency conditions

l

∑
i=0

ci

(
2i + 1

l + i − p + 1

)
=

{
1 for p = 0

0 for p = 1, 2, . . . , l
, (27)

l−1

∑
i=0

di

[(
2i + 1

l + i − p + 1

)
−
(

2i + 1
l + i − p

)]
=

{
−1 for p = 0

0 for p = 1, 2, . . . , l − 1
(28)

which define the coefficients cn, dn recursively and have (25) as solutions. Furthermore, due to (27)
and (28) the coefficients ci and di also satisfy

l

∑
i=0

ci

(
2i

l − p + i

)
= (−1)p ,

l−1

∑
i=0

di

[(
2i

l − p + i

)
−
(

2i
l − p + i − 1

)]
= (−1)p+1 . (29)

5.1. Odd Values of K + 1

With the above in mind, for the general odd case we get:

I2l+1 =
l

∑
n=0

(−1)l

2 cn ∂(2n) {D, D̄}
[
∂(l−n)Φ ∂(l−n)Φ̄

]
, l = 0, 1, . . . (30)

where using the supersymmetry algebra we have converted i∂ to the anticommutator of the spinorial
covariant derivatives. Notice that with the exception of this part of the expression, everything else is
real. So it will be beneficial if we convert the anticommutator of spinorial derivatives to a commutator
of spinorial derivatives using the following identity,

{D, D̄} = [D, D̄] + 2D̄D . (31)
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The part with the commutator will be a real contribution and the left over term has the structure
D̄D (. . . ). According to (17b) these terms can always be removed by an appropriate choice of
the improvement term Wα(2l+1)α̇(2l), thus the reality of Jα(2l+1)α̇(2l+1) can always be guaranteed.
Specifically we get:

I2l+1 = (−1)l
l

∑
n=0

cn ∂(2n)
[
∂(l−n)DΦ ∂(l−n)D̄Φ̄

]
(32)

− i
2 (−1)l

l

∑
n=0

cn ∂(2n)
[
∂(l−n+1)Φ ∂(l−n)Φ̄ − ∂(l−n)Φ ∂(l−n+1)Φ̄

]
+ (−1)l

l

∑
n=0

cn ∂(2n)D̄D
[
∂(l−n)Φ ∂(l−n)Φ̄

]
.

The conclusion of this analysis is that the term i2l+1∂(2l+1)Φ Φ̄ which appears in the expression of
Jα(2l+1)α̇(2l+1) can be written as:

i2l+1∂(2l+1)Φ Φ̄ = X(2l+1)
α(2l+1)α̇(2l+1) +

1
[(2l+1)!]2 D̄(α̇2l+1

D(α2l+1
Z(2l+1)

α(2l))α̇(2l)) (33)

where

X(2l+1)
α(2l+1)α̇(2l+1) =

i
2 (−1)l

[
∂(2l+1)Φ Φ̄ − Φ ∂(2l+1)Φ̄

]
(34)

− i
2 (−1)l

l

∑
n=0

cn ∂(2n)
[
∂(l−n+1)Φ ∂(l−n)Φ̄ − ∂(l−n)Φ ∂(l−n+1)Φ̄

]
+ (−1)l

l

∑
n=0

cn ∂(2n)
[
∂(l−n)DΦ ∂(l−n)D̄Φ̄

]
,

Z(2l+1)
α(2l)α̇(2l) = (−1)l

l

∑
n=0

cn ∂(2n)
[
∂(l−n)Φ ∂(l−n)Φ̄

]
(35)

and both these quantities are real. These expressions can be further simplified using (26) and (29) to

X(2l+1)
α(2l+1)α̇(2l+1) = i(−1)l

2l

∑
p=1

(−1)p ∂(p)Φ ∂(2l+1−p)Φ̄ + (−1)l
2l

∑
p=0

(−1)p ∂(p)DΦ ∂(2l−p)D̄Φ̄ , (36)

Z(2l+1)
α(2l)α̇(2l) = (−1)l

2l

∑
p=0

(−1)p ∂(p)Φ ∂(2l−p)Φ̄ . (37)

5.2. Even Values of K + 1

The same analysis can be done for the general even case. For that situation we get

I (2l) = 1
2 (−1)(l−1)

l−1

∑
n=0

dn ∂(2n)
[
∂(l−n+1)Φ ∂(l−n−1)Φ̄ − 2∂(l−n)Φ ∂(l−n)Φ̄ + ∂(l−n−1)Φ ∂(l−n+1)Φ̄

]
(38)

+ i(−1)(l−1)
l−1

∑
n=0

dn ∂(2n)
[
∂(l−n)DΦ ∂(l−n−1)D̄Φ̄ − ∂(l−n−1)DΦ ∂(l−n)D̄Φ̄

]
+ i(−1)(l−1)

l−1

∑
n=0

dn ∂(2n)D̄D
[
∂(l−n)Φ ∂(l−n−1)Φ̄ − ∂(l−n−1)Φ ∂(l−n)Φ̄

]
.

Hence, the term i2l∂(2l)Φ Φ̄ can be expressed in the following way:

i2l∂(2l)Φ Φ̄ = X(2l)
α(2l)α̇(2l) +

1
[(2l)!]2 D̄(α̇2l

D(α2l
Z(2l)

α(2l−1))α̇(2l−1)) (39)
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where

X(2l)
α(2l)α̇(2l) =

1
2 (−1)l

[
∂(2l)Φ Φ̄ + Φ ∂(2l)Φ̄

]
(40)

+ 1
2 (−1)(l−1)

l−1

∑
n=0

dn ∂(2n)
[
∂(l−n+1)Φ ∂(l−n−1)Φ̄ − 2∂(l−n)Φ ∂(l−n)Φ̄ + ∂(l−n−1)Φ ∂(l−n+1)Φ̄

]
+ i(−1)(l−1)

l−1

∑
n=0

dn ∂(2n)
[
∂(l−n)DΦ ∂(l−n−1)D̄Φ̄ − ∂(l−n−1)DΦ ∂(l−n)D̄Φ̄

]
,

Z(2l)
α(2l−1)α̇(2l−1) = i(−1)(l−1)

l−1

∑
n=0

dn ∂(2n)
[
∂(l−n)Φ ∂(l−n−1)Φ̄ − ∂(l−n−1)Φ ∂(l−n)Φ̄

]
.

As in the previous case, both X(2l)
α(2l)α̇(2l) and Z(2l)

α(2l−1)α̇(2l−1) are real. Using (26) and (29) we can
simplify these expressions further

X(2l)
α(2l)α̇(2l) = (−1)(l−1)

2l−1

∑
p=1

(−1)p ∂(p)Φ ∂(2l−p)Φ̄ + i(−1)l
2l−1

∑
p=0

(−1)p ∂(p)DΦ ∂(2l−1−p)D̄Φ̄ , (41)

Z(2l)
α(2l−1)α̇(2l−1) = i(−1)l

2l−1

∑
p=0

(−1)p ∂(p)Φ ∂(2l−1−p)Φ̄ . (42)

6. Constructing the Higher Spin Supercurrents II: Gauge Invariance and Cubic Interactions

The main point of the previous section is to prove that for every value of integer m we can write

i(k+1)∂(k+1)Φ Φ̄ = X(k+1)
α(k+1)α̇(k+1) +

1
[(k+1)!]2 D̄(α̇k+1

D(αk+1
Z(k+1)

α(k))α̇(k)) (43)

where X(k+1)
α(k+1)α̇(k+1) and Z(k+1)

α(k)α̇(k) are:

X(k+1)
α(k+1)α̇(k+1) = (−i)k−1

k

∑
p=1

(−1)p ∂(p)Φ ∂(k+1−p)Φ̄ + (−i)k
k

∑
p=0

(−1)p ∂(p)DΦ ∂(k−p)D̄Φ̄ , (44)

Z(k+1)
α(k)α̇(k) = (−i)k

k

∑
p=0

(−1)p ∂(p)Φ ∂(k−p)Φ̄ . (45)

Thus the expression for Jα(k+1)α̇(k+1) (17b) becomes:

Jα(k+1)α̇(k+1)= X(k+1)
α(k+1)α̇(k+1) +

1
(k+1)!(k+1)! D̄(α̇k+1

D(αk+1
Z(k+1)

α(k))α̇(k)) (46)

+ 1
(k+1)! D(αk+1

D̄2Ūα(k))α̇(k+1) +
k+1

(k+2)(k+1)! D̄(α̇k+1
Wα(k+1)α̇(k)) .

This is useful because it makes obvious that we can always make Jα(k+1)α̇(k+1) real by choosing

Wα(k+1)α̇(k) =− k+2
k+1 D2Uα(k+1)α̇(k) − k+2

k+1
1

(k+1)! D(αk+1
Z(k+1)

α(k))α̇(k) . (47)

With this choice we get

Jα(k+1)α̇(k+1) = X(k+1)
α(k+1)α̇(k+1) +

1
(k+1)! D(αk+1

D̄2Ūα(k))α̇(k+1) − 1
(k+1)! D̄(α̇k+1

D2Uα(k+1)α̇(k)) , (48)

Tα(k+1)α̇(k) =
1

(k+1)! D(αk+1
Tα(k))α̇(k) , (49)

Tα(k)α̇(k) = ik∂(k)Φ Φ̄ − k+2
k+1 Z(k+1)

α(k)α̇(k) +
k+2
k+1 Dαk+1Uα(k+1)α̇(k) + D̄α̇k+1Ūα(k)α̇(k+1) . (50)
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Due to Equation (49), the variation of the action can be enhanced from (16) to the following, with
the addition of the λα(k+2)α̇(k) term:

δgSo =−g
∫ ∞

∑
k=0

{ [
D̄2

�α(k+1)α̇(k) − Dαk+2 λα(k+2)α̇(k)
]

Dαk+1Tα(k)α̇(k) + c.c. (51)

− 1
(k+1)! D̄

(α̇k+1�α(k+1)α̇(k)) Jα(k+1)α̇(k+1) + c.c.
}

+g
∫ {

D̄2
�+ D2�̄

}
J .

In order to complete Noether’s procedure and get an invariant theory we have to add to the
starting action So the following higher spin, cubic interaction terms

SHS-Φ cubic interactions = g
∫ ∞

∑
k=0

{
Hα(k+1)α̇(k+1) Jα(k+1)α̇(k+1) (52)

+ χα(k+1)α̇(k) Dαk+1Tα(k)α̇(k) + c.c.
}

−g
∫

V J

where V is the real scalar superfield that describes the vector supermultiplet and has the gauge
transformation δ0V = D̄2

�+ D2�̄ and Hα(k+1)α̇(k+1), χα(k+1)α̇(k) are the superfields that describe the
super-Poincaré higher spin (k + 2, k + 3/2) supermultiplet with the gauge transformations of (6).
These cubic interaction terms generate the higher spin supercurrent Jα(k+1)α̇(k+1) and the higher spin
supertrace Tα(k)α̇(k).

As expected, the supercurrent Jα(k+1)α̇(k+1) and supertrace Tα(k)α̇(k) include higher derivative
terms. This is a corollary of the Metsaev bounds [78], where the number of derivatives that appear in
a non-trivial cubic vertex is bounded from below by the highest spin involved and from above by
the sum of the spins involved. In our case, there is no upper bound on the spins involved, which is
consistent with the higher spin algebra structure10 [79,80] thus making the number of derivatives that
appear in (52) unbounded (as in string field theory).

Due to the higher derivative terms and the fixed engineering dimensions of
Hα(k+1)α̇(k+1), χα(k+1)α̇(k) from the free theory of massless, super-Poincaré higher spins [73,74],
we need to have an appropriate dimensionful parameter M in order to balance the engineering
dimensions of (52)11, but since this effect can be easily tracked, for the sake of simplicity we will not
explicitly include it. However, it is important to remember its presence since it introduces a scale into the
theory. Also the parameter M gives the connection between the gauge parameters �α(k+1)α̇(k), λα(k+2)α̇(k)
that appear in (51) with the gauge parameters Lα(k+1)α̇(k), Λα(k+2)α̇(k) that appear in (6).

The conclusion of this section is that a single chiral superfield can have cubic interactions with
only the half-integer superspin supermultiplets (s + 1, s + 1/2) through the higher spin supercurrent
and supertrace that have been constructed above, but more importantly although there are two possible
descriptions of the (s + 1, s + 1/2) supermultiplet, the chiral superfield has a preference to only one of
them. The one that it chooses to interact with, is the one that appears in the higher spin, N=2 theories
as presented in [81].

10 The Jacobi identity requires an infinite tower of fields with unbounded spin.
11 Multiply the terms inside the curly bracket with

(
1
M

)k+1
.
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7. Minimal Multiplet of Noether Higher Spin Supercurrents

In the previous section, we found explicit expressions for the higher spin supercurrent and
supertrace of the chiral superfield. Using the terminology of [77] these define the canonical multiplet
of Noether higher spin supercurrents

{
Jα(k+1)α̇(k+1), Tα(k)α̇(k)

}
. In this section we will show that for

any value of the non-negative integer parameter k, there is another higher spin supercurrent multiplet,
called the minimal multiplet

{
J min

α(k+1)α̇(k+1), T min
α(k)α̇(k)

}
and we arrive at it by an appropriate choice of

the improvement terms such that T min
α(k)α̇(k) = 0. In order to get some intuition about this process, it will

be useful to examine first a simple example.

7.1. Coupling to Supergravity

For the case of k = 0 the canonical multiplet of supercurrents we obtain is

Jαα̇ = DαΦ D̄α̇Φ̄ + DαD̄2Ūα̇ − D̄α̇D2Uα , (53)

T = −ΦΦ̄ + 2DβUβ + D̄β̇Ūβ̇

and they generate the cubic interactions between the chiral and non-minimal supergravity
supermultiplet. To investigate whether Uα has the potential to completely eliminate one of these
supercurrents or reduce it to the point of being zero up to redefinitions of Φ, we consider the
following ansatz

Uα = f1 DαΦ Λ̄ + f2 Φ DαΛ̄ (54)

where Λ is the prepotential of the chiral field (i.e., Φ = D̄2Λ). It is straight forward to find that:

Jαα̇ = [1 + 2 f1 − 2 f2] DαΦ D̄α̇Φ̄ − i[ f1 − f2] ∂αα̇Φ Φ̄ + i[ f1 − f2] Φ∂αα̇Φ̄ (55)

+ [ f1 − f2] D̄α̇Dα

[
D2Φ Λ̄

]
− [ f1 − f2] DαD̄α̇

[
D̄2Φ̄ Λ

]
,

T = [−1 + 3 f2 − 3 f1] ΦΦ̄ + 2[ f1 − f2] D2Φ Λ̄ + [ f1 − f2] D̄2Φ̄ Λ (56)

+ 2[ f1 + f2] D2[Φ Λ̄] + [ f1 + f2]D̄
2
[Φ̄ Λ] .

It is obvious that there is no choice of coefficients, f1 and f2 that can make T vanish. However,
there is a choice that makes T proportional to the zeroth order (free theory) equation of motion of Φ.
This is important because terms of this type can be absorbed by field redefinitions. If we choose
− f1 = f2 = 1/6 we find

Jαα̇ = 1
3 {DαΦ D̄α̇Φ̄ + i∂αα̇Φ Φ̄ − iΦ∂αα̇Φ̄}+ 1

3

[
DαD̄α̇(ΛD̄2Φ̄) + c.c.

]
(57)

T = − 2
3 D2ΦΛ̄ − 1

3 D̄2Φ̄Λ

and therefore by redefining Φ in the following manner

Φ → Φ + 1
3 gD̄2

(Λ D̄α̇Dα Hαα̇)− 1
3 gD̄2

(Λ Dαχα)− 2
3 gD̄2

(Λ D̄α̇
χ̄α̇) (58)
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the So term will cancel the parts of the supercurrent and supertrace that have a D2Φ, D̄2Φ̄ dependence.
The outcome of this procedure is the minimal multiplet of Noether supercurrent for the case of
supergravity {J min

αα̇ , T min}, which is in agreement with the well known results in [77,82]12

J min
αα̇ = 1

3 {DαΦD̄α̇Φ̄ + i (∂αα̇Φ) Φ̄ − iΦ (∂αα̇Φ̄) } , (59a)

T min = 0 . (59b)

Furthermore, the cubic interaction of the chiral superfield with supergravity becomes

SSG-Φ cubic interactions = g
∫

Hαα̇ J min
αα̇ . (60)

Nevertheless, we must keep in mind that Φ’s redefinition (58) will generate order g2 terms which
we ignore because we focus on the cubic interaction terms. However, an interesting observation is that
part of these g2 terms modify our starting action So in the following way∫

ΦΦ̄ →
∫ {

1− 1
9 g2

[
D̄α̇DαHαα̇ − Dαχα − 2D̄α̇

χ̄α̇

] [
DαD̄α̇Hαα̇ + 2Dαχα + D̄α̇

χ̄α̇

]}
ΦΦ̄ . (61)

Of course this is nothing else than the perturbative construction of the volume element as one
should expect for a theory that couples to supergravity.

7.2. Coupling to Higher Superspin Supermultiplets

Based on the previous example, we should check whether the minimal multiplet exists for the
general case or not. According to (50), Tα(k)α̇(k) is a linear combination of terms ∂(p)Φ ∂(k−p)Φ̄ for
various values of the non-negative integer p. Therefore a relevant ansatz for the improvement term is:

U(p)
α(k+1)α̇(k) = f (p)

1 ∂(p)DΦ ∂(k−p)Λ̄ + f (p)
2 ∂(p)Φ ∂(k−p)DΛ̄ . (62)

Following the instructions of (50) we calculate Dαk+1U(p)
α(k+1)α̇(k)

Dαk+1U(p)
α(k+1)α̇(k)= f (p)

2
k+2
k+1 ∂(p)Φ ∂(k−p)Φ̄ + f (p)

1
k+2
k+1 ∂(p)D2Φ ∂(k−p)Λ̄ (63)

+ f (p)
2 ∂(p)Dαk+1 Φ ∂(k−p)DΛ̄ − f (p)

1 ∂(p)DΦ ∂(k−p)Dαk+1 Λ̄ .

To avoid potential confusion, the explicit expression of the term ∂(p)Dαk+1 Φ ∂(k−p)DΛ̄ is

1
(k+1)k! ∂(α1(α̇1

. . . ∂αp α̇p Dαk+1 Φ ∂αp+1α̇p+1 . . . ∂αk α̇k)
Dαk+1)

Λ̄

and by expanding the symmetrization of the indices, one can show that

∂(p)Dαk+1 Φ ∂(k−p)DΛ̄ =

− k−p+1
k+1 ∂(p)Φ ∂(k−p)Φ̄ + i k−p

k+1 ∂(p)DΦ ∂(k−p−1)D̄Φ̄ (64)

+ i p
k+1 ∂(p−1)D̄D2Φ ∂(k−p)DΛ̄ + i k−p

k+1 ∂(p)D2Φ ∂(k−p−1)D̄DΛ̄ − 1
k+1 ∂(p)D2Φ ∂(k−p)Λ̄

− i k−p
k+1 D2

[
∂(p)Φ ∂(k−p−1)D̄DΛ̄

]
+ 1

k+1 D2
[
∂(p)Φ ∂(k−p)Λ̄

]
.

12 Keep in mind the difference in conventions for the covariant spinorial derivatives.
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Similarly for the term ∂(p)DΦ ∂(k−p)Dαk+1 Λ̄ we get

∂(p)DΦ ∂(k−p)Dαk+1 Λ̄ =

p+1
k+1 ∂(p)Φ ∂(k−p)Φ̄ + i k−p

k+1 ∂(p)DΦ ∂(k−p−1)D̄Φ̄ (65)

+i p
k+1 ∂(p−1)D̄D2Φ ∂(k−p)DΛ̄ − i k−p

k+1 ∂(p)D2Φ ∂(k−p−1)DD̄Λ̄ +
p+1
k+1 ∂(p)D2Φ ∂(k−p)Λ̄

−i k−p
k+1 D2

[
∂(p)DΦ ∂(k−p−1)D̄Λ̄

]
− p+1

k+1 D2
[
∂(p)Φ ∂(k−p)Λ̄

]
.

Putting together all the above, we get

Dαk+1 U(p)
α(k+1)α̇(k) =

p+1
k+1

(
f (p)
2 − f (p)

1

)
∂(p)Φ ∂(k−p)Φ̄ + i k−p

k+1

(
f (p)
2 − f (p)

1

)
∂(p)DΦ ∂(k−p−1)D̄Φ̄ (66)

+D2 [ϑ] +O(D2Φ)

where D2 [ϑ] is the sum of the terms that have the structure D2 [. . . ] and O(D2Φ) is the sum of the
terms that depend on the combination D2Φ. Therefore the contribution of U(p)

α(k+1)α̇(k) to Tα(k)α̇(k) is

k+2
k+1 Dαk+1U(p)

α(k+1)α̇(k) + D̄α̇k+1Ū(p)
α(k)α̇(k+1) =

k+2
k+1

(
f (p)
2 − f (p)

1

)
∂(p)Φ ∂(k−p)Φ̄ + p+1

k+1

(
f (p)
2 − f (p)

1

)∗
∂(k−p)Φ ∂(p)Φ̄ − k−p

k+1

(
f (p)
2 − f (p)

1

)∗
∂(k−p−1)Φ ∂(p+1)Φ̄

+ k+2
k+1 D2 [ϑ] + D̄2 [

ϑ̄
]
+ k+2

k+1O(D2Φ) + Ō(D̄2Φ̄) + Dζ

(67)

where we used ∂(m)DΦ ∂(n)D̄Φ̄ = D
(

∂(m)Φ ∂(n)D̄Φ̄
)
− i∂(m)Φ ∂(n+1)Φ̄ and Dζ is the sum of terms

that have the structure D(. . . ). It is important to observe that due to (i) Equation (49), (ii) the freedom
in the definition of Tα(k+1)α̇(k) (18) and (iii) the freedom to redefine the chiral superfield in a manner
similar to Section 7.1, all the terms in the last line of (67) can be ignored. Furthermore, the terms in the
first line contribute to the appropriate terms of Tα(k)α̇(k). Hence, if we consider

Uα(k+1)α̇(k) =
k

∑
p=0

U(p)
α(k+1)α̇(k) (68)

we have enough freedom to completely cancel Tα(k)α̇(k). To illustrate this let us do this cancellation for
k = 1 and k = 2 and then for the general case.

1. k = 1: The canonical supertrace is i∂Φ Φ̄ − 3
2 Z(2) = − i

2 ∂Φ Φ̄ + i 3
2 Φ ∂Φ̄ .

The contribution of U(1) is 3
2 f (1) ∂Φ Φ̄ + f (1)

∗
Φ ∂Φ̄, where f (1) = f (1)2 − f (1)1 .

The contribution of U(0) is 1
2 f (0)

∗
∂Φ Φ̄ +

[
3
2 f (0) − 1

2 f (0)
∗]

Φ ∂Φ̄, where f (0) = f (0)2 − f (0)1 .
We can cancel the supertrace competely if we select

3
2 f (1) + 1

2 f (0)
∗
= i

2 ⇒ f (1) = i
10 , f (0) = − 7i

10 . (69)
f (1)

∗
+ 3

2 f (0) − 1
2 f (0)

∗
= − 3i

2

2. k = 2: The canonical supertrace is 1
3 ∂2Φ Φ̄ − 4

3 ∂Φ ∂Φ̄ + 4
3 Φ ∂2Φ̄ .

The contribution of U(2) is 4
3 f (2) ∂2Φ Φ̄ + f (2)

∗
Φ ∂2Φ̄, where f (2) = f (2)2 − f (2)1 .

The contribution of U(1) is
[

4
3 f (1) + 2

3 f (1)
∗]

∂Φ ∂Φ̄ − 1
3 f (1)

∗
Φ ∂2Φ̄, where f (1) = f (1)2 − f (1)1 .

The contribution of U(0) is 1
3 f (0)

∗
∂2Φ Φ̄− 2

3 f (0)
∗

∂Φ ∂Φ̄ + 4
3 f (0) Φ ∂2Φ̄, where f (0) = f (0)2 − f (0)1 .

If we select

4
3 f (2) + 1

3 f (0)
∗
= − 1

3
4
3 f (1) + 2

3 f (1)
∗ − 2

3 f (0)
∗
= 4

3 ⇒ f (2) = − 1
35 , f (1) = 13

35 , f (0) = − 31
35 (70)

f (2)
∗ − 1

3 f (1)
∗
+ 4

3 f (0) = − 4
3

255



Universe 2018, 4, 6

then we completely cancel the supertrace.
3. General k: For the general case, using (68) we can show that up to terms that can be ignored due

to chiral redefinition and the freedom in the definitions of the supertrace (18) and (49) we get:

k+2
k+1 Dαk+1Uα(k+1)α̇(k) + D̄α̇k+1Ūα(k)α̇(k+1) ={

k+2
k+1 f (k) + 1

k+1 f (0)
∗}

∂(k)Φ Φ̄ +
k−1

∑
p=0

{
k+2
k+1 f (p) + k+1−p

k+1 f (k−p)∗ − p+1
k+1 f (k−1−p)∗

}
∂(p)Φ ∂(k−p)Φ̄

where f (p) = f (p)
2 − f (p)

1 . Then in order to cancel the supertrace, according to (45) and (50) we
must have

(k + 2) f (k) + f (0)
∗
= (i)k , (71a)

(k + 2) f (p) + (k + 1− p) f (k−p)∗ − (p + 1) f (k−1−p)∗ = (−1)k+p (i)k (k + 2) , (71b)

p = 0, 1, . . . , k − 1 .

This is a system of k + 1 linear equations for the k + 1 parameters f (p), p = 0, 1, ..., k. The solution is

f (p) = (−1)k+p (i)k

k−p
∑

j=0
(k+j+1

p+j+1)(
k+1−j

p+1 )

(2k+3
k+2 )

, p = 0, 1, ..., k . (72)

The result is that for any value of k, we can find an improvement term in order to go to the
minimal multiplet of higher spin supercurrents { J min

α(k+1)α̇(k+1) , T min
α(k)α̇(k)} where

J min
α(k+1)α̇(k+1) = i f (k) ∂(k+1)Φ Φ̄ − i f (k)

∗
Φ ∂(k+1)Φ̄ (73)

+i
k

∑
p=1

{
(−1)k+p (i)k + f (p−1) − f (k−p)∗

}
∂(p)Φ ∂(k+1−p)Φ̄

+
k

∑
p=0

{
(−1)k+p (i)k − f (p) − f (k−p)∗

}
∂(p)DΦ ∂(k−p)D̄Φ̄ ,

T min
α(k)α̇(k) = 0 . (74)

For k = 1 and k = 2 we get

J min
αβα̇β̇

= − 1
10 ∂(2)Φ Φ̄ − 1

10 Φ ∂(2)Φ̄ + 2
5 ∂Φ ∂Φ̄ − 1

5 i DΦ ∂D̄Φ̄ + 1
5 i ∂DΦ D̄Φ̄ , (75)

J min
αβγα̇β̇γ̇

= − i
35 ∂(3)Φ Φ̄ + i

35 Φ ∂(3)Φ̄ + i 9
35 ∂(2)Φ ∂Φ̄ − i 9

35 ∂Φ ∂(2)Φ̄ (76)

− 3
35 ∂(2)DΦ D̄Φ̄ − 3

35 DΦ ∂(2)D̄Φ̄ + 9
35 ∂DΦ ∂D̄Φ̄ .

These expressions match the results of [41] which give the superconformal higher spin
supercurrent. In the minimal supercurrent multiplet, the cubic interactions of the chiral supermultiplet
with the higher spin supermultiplets are

SHS-Φ cubic interactions = g
∫ ∞

∑
k=0

Hα(k+1)α̇(k+1) J min
α(k+1)α̇(k+1) . (77)

8. On-Shell Conservation Equations

Using Noether’s method, we have constructed an invariant action up to order g. Hence, for every
unconstrained parameter �α(k+1)α̇(k) and � we generate a Bianchi identity, which express the invariance
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of the action. Once we go on-shell and take into account the equation of motion of Φ, the Bianchi
identities reduce to the following on-shell conservation equations for the canonical multiplet of the
higher spin supercurrents.

D̄α̇k+1Jα(k+1)α̇(k+1) =
1

(k+1)! D̄
2D(αk+1

Tα(k))α̇(k) , k = 0, 1, 2, . . . , (78)

D̄2J = 0 . (79)

It is straightforward to verify the validity of these on-shell equations using the expressions (48)–(50).
For the minimal multiplet, the conservation equation takes the much simpler form

D̄α̇k+1J min
α(k+1)α̇(k+1) = 0 , k = 0, 1, 2, . . . (80)

After a bit of work, one can verify that Equation (73) satisfies this conservation equation. However,
instead of using (73) we can get a simpler expression for the minimal higher spin supercurrent by
using the conservation equation to define the coefficients of the various terms. From the previous
section we know that the general ansatz for the minimal, higher spin supercurrent is

J min
α(s)α̇(s) =

s

∑
p=0

ap ∂(p)Φ ∂(s−p)Φ̄ +
s−1

∑
p=0

bp ∂(p)DΦ ∂(s−p−1)D̄Φ̄ . (81)

We also know that J min
α(s)α̇(s) must be real, hence

ap = a∗s−p , p = 0, 1, ..., s , (82)

bp = b∗s−p−1 , p = 0, 1, ..., s − 1 (83)

and the on-shell conservation ( D̄α̇sJ min
α(s)α̇(s) = 0 ), also gives the constraint

i ap+1

[
p+1

s

]
+ bp

[
s−p

s

]
= 0 , p = 0, 1, ..., s − 1 . (84)

The constraints (82)–(84) fix ap and bp to be (up to a real proportionality constant)

ap = (−1)p(i)s
(

s
p

)2
, (85)

bp = (−1)p(i)s+1
(

s − p
p + 1

)(
s
p

)2
(86)

and J min
α(s)α̇(s) is proportional to

J min
α(s)α̇(s) ∼ (i)s

s

∑
p=0

(−1)p
(

s
p

)2 {
∂(p)Φ ∂(s−p)Φ̄ + i

(
s − p
p + 1

)
∂(p)DΦ ∂(s−p−1)D̄Φ̄

}
. (87)

We can fix the overall constant of proportionality by comparing this expression to (73), thus we get

J min
α(s)α̇(s) =

(−i)s

(2s+1
s+1 )

s

∑
p=0

(−1)p
(

s
p

)2 {
∂(p)Φ ∂(s−p)Φ̄ + i

(
s − p
p + 1

)
∂(p)DΦ ∂(s−p−1)D̄Φ̄

}
. (88)

It is easy to check that this expression agrees with Equations (59a), (73), (75) and (76) and up to an
overall coefficient it also agrees with the results in [41].
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9. Component Discussion

In the literature there are various sets of conserved currents that generate the cubic interactions of
a complex scalar (two spin 0) and a spinor (one spin 1/2) with higher spins [58–63]. It is important to
find how the results of previous sections translate at the component description.

In principle, we can start with Equation (77) and switch to the component formulation by
evaluating the θ integrals in order to find the component analogue. However, for the purpose of
identifying the higher spin, conserved currents, a conceptual cleaner approach would be to start with
the superspace conservation Equation (80) and project it down to the component level, in order to
derive the spacetime conservation equation of the currents. The latter is the approach that we will
follow and the definition of components we will use is:

Φ(0,0)
α(n)α̇(m)

= Φα(n)α̇(m)|θ=0 , Φ(1,0)
βα(n)α̇(m)

= DβΦα(n)α̇(m)|θ=0 , (89)

Φ(0,1)
α(n)β̇α̇(m)

= D̄β̇Φα(n)α̇(m)|θ=0 , Φ(1,1)
βα(n)β̇α̇(m)

= − 1
2

[
Dβ, D̄β̇

]
Φα(n)α̇(m)|θ=0 ,

Φ(2,0)
α(n)α̇(m)

= −D2Φα(n)α̇(m)|θ=0 , Φ(0,2)
α(n)α̇(m)

= −D̄2Φα(n)α̇(m)|θ=0 ,

Φ(2,1)
α(n)β̇α̇(m)

= − 1
2

{
D2, D̄β̇

}
Φα(n)α̇(m)|θ=0 , Φ(1,2)

βα(n)α̇(m)
= − 1

2

{
D̄2, Dβ

}
Φα(n)α̇(m)|θ=0 ,

Φ(2,2)
α(n)α̇(m)

= 1
2{D2, D̄2}Φα(n)α̇(m)| − 1

4�Φα(n)α̇(m)|θ=0 .

The various components are labeled by the name of the superfield they come from and their
position (n, m) in its θ expansion

Φα(n)α̇(m) = Φα(n)α̇(m) + θβΦ(1,0)
βα(n)α̇(m)

+ θ̄
β̇Φ(0,1)

α(n)β̇α̇(m)
+ θ2Φ(2,0)

α(n)α̇(m)
+ θ̄

2Φ(0,2)
α(n)α̇(m)

(90)

+θβθ̄
β̇Φ(1,1)

βα(n)β̇α̇(m)
+ θβθ̄

2Φ(1,2)
βα(n)α̇(m)

+ θ2θ̄
β̇Φ(2,1)

α(n)β̇α̇(m)
+ θ2θ̄

2Φ(2,2)
α(n)α̇(m)

.

Furthermore, components with more than one index of the same type can be decomposed into
symmetric (S) and anti-symmetric (A) pieces as follows

Fβα(n)α̇(m) = F(S)
βα(n)α̇(m)

+ n
(n+1)! Cβ(αn F(A)

α(n−1))α̇(m)
, (91)

F(S)
βα(n)α̇(m)

= 1
(n+1)! F(βα(n))α̇(m) , F(A)

α(n−1)α̇(m)
= Cβαn Fβα(n)α̇(m) .

Using the above, it is straightforward to project Equation (80) and the results we find for the
bosonic components are:

∂αs α̇sJ min (0,0)
α(s)α̇(s) = 0 , (92a)

J min (0,2)
α(s)α̇(s) = 0 , (92b)

J min (1,1)(S,A)
α(s+1)α̇(s−1) = − i

2(s+1)! ∂(αs+1
α̇sJ min (0,0)

α(s))α̇(s) , (92c)

J min (1,1)(A,A)
α(s−1)α̇(s−1) = 0 , (92d)

∂αs+1α̇s+1J min (1,1)(S,S)
α(s+1)α̇(s+1) = 0 , (92e)

J min (2,2)
α(k+1)α̇(k+1) = − 1

4�J (0,0)
α(k+1)α̇(k+1) (92f)

and for the fermionic components we get:

J min (0,1)(A)
α(s)α̇(s−1) = 0 , (93a)
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J min (1,2)(S)
α(s+1)α̇(s) = i

2(s+1)! ∂(αs+1)
α̇s+1J min (0,1)(S)

α(s)α̇(s+1) , (93b)

J min (1,2)(A)
α(s−1)α̇(s) = 0 , (93c)

∂αs+1α̇sJ min (1,0)(S)
α(s+1)α̇(s) = 0 . (93d)

The lesson is that the component J min (1,1)(S,S)
α(s+1)α̇(s+1) is the minimal integer spin current and

Equation (92e) is its conservation equation. The cubic interactions it generates are of the type

∫
d4x

∞

∑
s=0

hα(s+1)α̇(s+1)J min (1,1)(S,S)
α(s+1)α̇(s+1) (94)

where the field hα(s+1)α̇(s+1) is the symmetric, traceless part of the free, massless, integer spin j = s + 1

( hα(s+1)α̇(s+1) ∼
[
D(αs+1

, D̄(α̇s+1

]
Hα(s))α̇(s))| ). From Equation (88) we get

J min (1,1)(S,S)
α(s+1)α̇(s+1) ∼ (−i)s

s

∑
p=0

(−1)p
(

s
p

)2 {
i ∂(p)φ ∂(s+1−p)φ̄ − i

[
2s+1−p

p+1

]
∂(p+1)φ ∂(s−p)φ̄ (95)

+
[

s+p+2
p+1

]
∂(p)χ ∂(s−p)χ̄ −

[
s−p
p+1

]
∂(p+1)χ ∂(s−p−1)χ̄

}
.

Observe, that there are two contributions into these integer spin currents. The first one is the
boson—boson contribution and includes the two terms of the first line, where φ = Φ|. This corresponds
to the bosonic integer spin current that appears in [59] and also the traceless part of the currents
in [58,63]. The second contribution is the fermion—fermion one and includes the two terms of the
second line, where χα = DαΦ|. This corresponds to the fermionic integer spin current that appears
in [59].

Furthermore, Equation (93d) gives the conservation of the half-integer spin current J min (1,0)(S)
α(s+1)α̇(s) .

The cubic interactions we get are:

∫
d4x

∞

∑
s=0

ψα(s+1)α̇(s)J min (1,0)(S)
α(s+1)α̇(s) + c.c. (96)

where ψα(s+1)α̇(s) is the symmetric, traceless and γ-traceless part of the free, massless, half-integer spin

j = s + 1/2 ( ψα(s+1)α̇(s) ∼
{

D(αs+1
, D̄2

}
Hα(s))α̇(s)| ). Again using (88) we get

J min (1,0)(S)
α(s+1)α̇(s) ∼ (−i)s

s

∑
p=0

(−1)p
(

s
p

)2 ( s + 1
p + 1

)
∂(p)χ ∂(s−p)φ̄ . (97)

This is the half-integer spin current and appears for the first time in the literature and it has only
one contribution of the fermion—boson type.

Finally, we notice that Equation (92a) is the conservation of another current. This corresponds to
the R-symmetry current and it has the form

J min (0,0)
α(s)α̇(s) ∼ (−i)s

s

∑
p=0

(−1)p
(

s
p

)2 {
∂(p)φ ∂(s−p)φ̄ + i

(
s − p
p + 1

)
∂(p)χ ∂(s−p−1)χ̄

}
. (98)
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10. Massive Chiral Superfield

10.1. Higher Spin Supercurrent and Supertrace

So far we have discussed the higher spin supercurrent multiplet of a free, massless chiral
superfield. In this section, we repeat the analysis for a massive chiral superfield, with a starting
action So + Sm where So is given by (13) and Sm is the mass term:

Sm = m
2

∫
d6z Φ2 + c.c. . (99)

The variation of this extra term under (12) is

δgSm = −gm
∞

∑
k=0

∫
d6z

{
D̄2

�α(k+1)α̇(k) ik∂(k)DΦ Φ + c.c. (100)

− D̄(α̇k+1�α(k+1)α̇(k)) ik+1∂(k+1)Φ Φ + c.c.
}

+gm
∫

d6z D̄2
� Φ Φ + c.c. .

It is straight forward to show that:

D̄2
�α(k+1)α̇(k) ik∂(k)DΦ Φ − D̄(α̇k+1�α(k+1)α̇(k)) ik+1∂(k+1)Φ Φ = (101)

1
2 D̄2

[
D̄2

�α(k+1)α̇(k)
{

ik∂(k)DΛ Φ + ik∂(k)DΦ Λ
}

− D̄(α̇k+1�α(k+1)α̇(k))
{

ik+1∂(k+1)Λ Φ + ik+1∂(k+1)Φ Λ
}]

,

D̄2
�Φ Φ = D̄2

[
D̄2

� Λ Φ
]

(102)

and by absorbing the overall D̄2 factor, we can convert the integration over the entire superspace:

δgSm = g
2 m

∫ ∞

∑
k=0

{
D̄2

�α(k+1)α̇(k)
[
ik∂(k)DΛ Φ + ik∂(k)DΦ Λ

]
+ c.c. (103)

− D̄(α̇k+1�α(k+1)α̇(k))
[
ik+1∂(k+1)Λ Φ + ik+1∂(k+1)Φ Λ

]
+ c.c.

}
−gm

∫
D̄2

� Λ Φ + c.c. .

From this expression we can extract the contribution of the mass term to Equations (17a) and (17b).
However, in order to couple the theory purely to higher spin supermultiplets the coefficient of
D̄(α̇k+1�α(k+1)α̇(k)) must be written as a real term plus total spinorial or spacetime derivative terms. For
the massless theory, we have proven this property via Equation (43) and it holds for any value of k.
The story for a massive chiral is different as we will show that only the even values of k = 2l can satisfy
such a requirement.

The relevant quantity for the mass term is ik+1∂(k+1)Λ Φ + ik+1∂(k+1)Φ Λ. It is easy to show that
this combination can be written in the following manner:
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ik+1∂(k+1)Λ Φ + ik+1∂(k+1)Φ Λ =

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
i∂

[
2l
∑

n=0
(−1)l+n ∂(n)Λ ∂(2l−n)Φ

]
, for k = 2l , l = 0, 1, 2, . . .

∂

[
l

∑
n=0

(−1)l+n+1 ∂(n)Λ ∂(2l+1−n)Φ +
2l+1
∑

n=l+1
(−1)l+n ∂(n)Λ ∂(2l+1−n)Φ

]
+ 2 ∂(l+1)Λ ∂(l+1)Φ ,

(104)

for k = 2l + 1 , l = 0, 1, 2, . . .

therefore, for odd values of k and due to the presence of the term ∂(l+1)Λ ∂(l+1)Φ, there is no
improvement term Wα(2l+2)α̇(2l+1) to eliminate the imaginary part of Jα(2l+2)α̇(2l+2). Hence, in order
to construct an invariant theory of a massive chiral interacting with irreducible higher spin
supermultiplets, all terms in δg (So + Sm) that correspond to an odd value of k must be set to
zero. For that reason the parameters � and �α(2l+2)α̇(2l+1) for l = 0, 1, 2, . . . must vanish and the
transformation of Φ we must consider in this massive case is reduced to:

δgΦ =−g
∞

∑
l=0

{
D̄2

�α(2l+1)α̇(2l) Dα2l+1 D̄α̇2lDα2l . . . D̄α̇1 Dα1 Φ (105)

− 1
(2l+1)! D̄

(α̇2l+1�α(2l+1)α̇(2l)) D̄α̇2l+1Dα2l+1 . . . D̄α̇1Dα1 Φ
}

.

Moreover, we can show that for the case of k = 2l the quantity i2l∂(2l)DΛ Φ + i2l∂(2l)DΦ Λ which
appears in (103) as the coefficient of D̄2

�α(2l+1)α̇(2l) can be expressed in the following way:

i2l∂(2l)DΛ Φ + i2l∂(2l)DΦ Λ = D
[
(−1)l Λ ∂(2l)Φ

]
+ ∂

[
2l−1

∑
n=0

(−1)l+n+1 ∂(n)DΛ ∂(2l−1−n)Φ

]
. (106)

With all the above into account, we get that

Jα(2l+1)α̇(2l+1)= X(2l+1)
α(2l+1)α̇(2l+1) +

1
(2l+1)!2 D̄(α̇2l+1

D(α2l+1
Z(2l+1)

α(2l))α̇(2l)) − im
2(2l+1)!2 ∂(α2l+1(α̇2l+1

Yα(2l))α̇(2l)) (107)

+ 1
(2l+1)! D(α2l+1

D̄2Ūα(2l))α̇(2l+1) +
2l+1

(2l+2)(2l+1)! D̄(α̇2l+1
Wα(2l+1)α̇(2l))

with

Yα(2l)α̇(2l) =
2l

∑
n=0

(−1)l+n ∂(n)Λ ∂(2l−n)Φ . (108)

Now it is obvious that we can always make Jα(2l+1)α̇(2l+1) real by selecting Wα(2l+1)α̇(2l) as
follows:

Wα(2l+1)α̇(2l) =− 2l+2
2l+1 D2Uα(2l+1)α̇(2l) − 2l+2

(2l+1)(2l+1)! D(α2l+1

[
Z(2l+1)

α(2l))α̇(2l) − m
2

(
Yα(2l))α̇(2l) + Ȳα(2l))α̇(2l)

)]
(109)

and the expressions for Jα(2l+1)α̇(2l+1) and Tα(2l+1)α̇(2l) become

Jα(2l+1)α̇(2l+1) = X(2l+1)
α(2l+1)α̇(2l+1) +

m
2(2l+1)!2

[
D̄(α̇2l+1

D(α2l+1
Ȳα(2l))α̇(2l)) − D(α2l+1

D̄(α̇2l+1
Yα(2l))α̇(2l))

]
(110)

+ 1
(2l+1)!

[
D(α2l+1

D̄2Ūα(2l))α̇(2l+1) − D̄(α̇2l+1
D2Uα(2l+1)α̇(2l))

]
,

Tα(2l+1)α̇(2l) =
1

(2l+1)! D(α2l+1
Tα(2l))α̇(2l) , (111)

Tα(2l)α̇(2l) = (−1)l∂(2l)Φ Φ̄ − 2(l+1)
2l+1 Z(2l+1)

α(2l)α̇(2l) +
m(l+1)

2l+1

(
Yα(2l)α̇(2l) + Ȳα(2l)α̇(2l)

)
+ m

2 Ωα(2l)α̇(2l) (112)

+ 2(l+1)
2l+1 Dα2l+1 Uα(2l+1)α̇(2l) + D̄α̇2l+1 Ūα(2l)α̇(2l+1)
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where

Ωα(2l)α̇(2l) = (−1)l+1 Λ ∂(2l)Φ + i
2l−1

∑
n=0

(−1)l+1+n ∂(n)D̄DΛ ∂(2l−1−n)Φ . (113)

The result for the variation of the So + Sm theory is

δg (So + Sm) =−g
∫ ∞

∑
l=0

{ [
D̄2

�α(2l+1)α̇(2l) − Dα2l+2 λα(2l+2)α̇(2l)
]

Dα2l+1Tα(2l)α̇(2l) + c.c. (114)

− 1
(2l+1)! D̄

(α̇2l+1�α(2l+1)α̇(2l)) Jα(2l+1)α̇(2l+1) + c.c.
}

where Jα(2l+1)α̇(2l+1) and Tα(2l+1)α̇(2l) are given by (110) and (112). Therefore to get the invariant theory
we have to add the following higher spin, cubic interaction terms

SHS-massive chiral = g
∫ ∞

∑
l=0

{
Hα(2l+1)α̇(2l+1) Jα(2l+1)α̇(2l+1) (115)

+ χα(2l+1)α̇(2l) Dα2l+1Tα(2l)α̇(2l) + c.c.
}

.

Apart from the various mass terms that deform the expressions for the higher spin supercurrent
and supertrace, the biggest difference from the massless chiral story is that the massive chiral
superfields has cubic interactions only with (2l + 2 , 2l + 3/2) supermultiplets that correspond
to superspin Y = 2l + 3/2. This includes supergravity (l = 0) but not the vector supermultiplet.

10.2. Minimal Multiplet of Higher Spin Supercurrents

Similar to the massless case, expressions (110) and (112) include an arbitrary improvement term
Uα(2l+1)α̇(2l), hence we have to check whether this freedom can be used to completely eliminate the
supertrace. For the case of supergravity the canonical supercurrent multiplet we get is:

Jαα̇ = DαΦ D̄α̇Φ̄ + m
2 D̄α̇Dα (Λ̄Φ̄)− m

2 DαD̄α̇ (ΛΦ) + DαD̄2Ūα̇ − D̄α̇D2Uα , (116)

T = −ΦΦ̄ + m
2 ΛΦ + mΛ̄Φ̄ + 2DαUα + D̄α̇Ūα̇ . (117)

It is easy to see that there is no choice of Uα that can cancel the terms of T proportional to the
mass. This is true not just for the case of supergravity, but for the higher spin supermultiplets as
well. The higher spin supertrace Tα(2l)α̇(2l) can not be eliminated and there is no minimal supercurrent
multiplet for massive chirals.

However, we can use the procedure of Section 7 in order to absorb all the m independent terms of
the supertrace and make it proportional to the mass. In this configuration the supercurrent will be the
same as the minimal supercurrent of massless chiral (73) plus terms proportional to mass. For the case
of supergravity this will give

Jαα̇ = J min
αα̇ − m

6 DαD̄α̇ (ΛΦ) + m
6 D̄α̇Dα (Λ̄Φ̄) , (118)

T = m
6 ΛΦ + m

3 Λ̄Φ̄ (119)

where J min
αα̇ is given in (59a).

10.3. Conservation Equation

The conservation equation that the Jα(2l+1)α̇(2l+1) and Tα(2l)α̇(2l) satisfy on-shell is

D̄α̇2l+1Jα(2l+1)α̇(2l+1) =
1

(2l+1)! D̄
2D(α2l+1

Tα(2l))α̇(2l) , l = 0, 1, 2, . . . (120)
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and it is straight forward to show that expressions (110) and (112) do that on-shell 13. As we did for
the massless chiral, we will use this conservation equation to derive a closed form expression for the
higher spin supercurrent and supertrace. Based on the previous results the general ansatz for the
higher spin supercurrent and supertrace is

Jα(s)α̇(s) = J min
α(s)α̇(s) + m

s−1

∑
p=0

γp ∂(p)DD̄Λ ∂(s−1−p)Φ + m
s−1

∑
p=0

δp ∂(p)D̄Λ ∂(s−1−p)DΦ (121)

−m
s−1

∑
p=0

γ∗
p ∂(p)D̄DΛ̄ ∂(s−1−p)Φ̄ − m

s−1

∑
p=0

δ∗p ∂(p)DΛ̄ ∂(s−1−p)D̄Φ̄ ,

Tα(s−1)α̇(s−1) = m
s−1

∑
p=0

ζp ∂(p)Λ ∂(s−1−p)Φ + m
s−1

∑
p=0

ξp ∂(p)Λ̄ ∂(s−1−p)Φ̄ (122)

+m
s−2

∑
p=0

σp ∂(p)D̄DΛ ∂(s−2−p)Φ

with J min
α(s)α̇(s) given by (88). The conservation Equation (120) fixes the coefficients δp, ξp, ζp, σp:

δp = −γp , p = 0, 1, . . . , s − 1 , (123a)

ξp = − s+1
s γ∗

p , p = 0, 1, . . . , s − 1 , (123b)

ζ0 = − 1
s γ0 , (123c)

ζp = − p+1
s γp +

s−p
s γp−1 , p = 1, 2, . . . , s − 1 , (123d)

σ0 = − i
s γ1 + i s−1

s γ0 , (123e)

σp = (−1)p+1 i
s γ1 + (−1)p i s−1

s γ0 + i
p

∑
n=1

(−1)p+n+1
[

n+1
s γn+1 − s−2n−1

s γn − s−n
s γn−1

]
(123f)

p = 1, 2, . . . , s − 2

and the coefficients γp satisfy the constraints:

γp + γs−p−1 =
(−1)s+p (i)s+1

(2s+1
s+1 )

p

∑
n=0

(
s
n

)2 [
s+1

s+1−n + (−1)s s+1
n+1

]
, p = 0, 1, . . . , s − 1 , (124a)

σs−2 = −i s−1
s γs−1 +

i
s γs−2 . (124b)

Notice that the left hand side of (124a) is invariant under p → s − 1 − p, therefore we get a
consistency condition [

1 + (−1)s
] s

∑
n=0

(
s
n

)2 s + 1
n + 1

= 0 (125)

which selects only the odd values of s, in agreement with (115). For s = 2l + 1, Equation (124a) fixes γl

γl =
l + 1

(4l+3
2l+2)

l

∑
n=0

(
2l + 1

n

)2 [
1

2l+2−n − 1
n+1

]
. (126)

A consequence of that is ξl �= 0 due to (123b). Therefore the supertrace can not be zero as in the
massless case. Moreover, the constraints (124a) and (124b) provide a system of l + 2 linear equations
for the 2l + 1, γp coefficients, so there is a freedom of choice for l − 1 of these coefficients. This freedom

13 Keep in mind that the on-shell equation of motion for a free massive chiral is D̄2Φ̄ = mΦ .
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corresponds to the fact that there is no unique canonical supercurrent multiplet, in contrast with the
massless case where the minimal multiplet is unique. An example of a choice is to have

γl+2 = γl+3 = · · · = γ2l = 0 . (127)

11. Summary and Discussion

Let us briefly summarize and discuss the results obtained. In Section 3 we presented the
most general ansatz for the transformation of a 4D, N = 1 chiral superfield with linear terms (9).
The consistence with chirality, constrained the parameters (10) and revealed structures similar to
the gauge transformations of free, massless, higher-superspin theories. This was a hint that chiral
superfields can have cubic interactions with higher spin superfields. Therefore, using (12) and
Noether’s method we:

(i) Proved that a single, massless, chiral superfield can have cubic interactions (52) only with the
half-integer superspin (s + 1, s + 1/2) irreducible representations of the super-Poincaré group.
Moreover, despite the fact that there are two different formulations of the half-integer superspin
supermultiplets, the chiral superfield has a clear preference to couple only to one of them, the one
that can be lifted to N = 2 higher spin supermultiplets.

(ii) Generated the canonical multiplet of higher spin supercurrents
{
Jα(k+1)α̇(k+1), Tα(k)α̇(k)

}
(48)

and (50) which satisfy conservation Equation (78) and leads to the cubic interactions

g
∫ ∞

∑
k=0

{
Hα(k+1)α̇(k+1)Jα(k+1)α̇(k+1) + χα(k+1)α̇(k)Dαk+1Tα(k)α̇(k) + χ̄α(k)α̇(k+1)D̄α̇k+1 T̄α(k)α̇(k)

}
. (128)

The objects Jα(k+1)α̇(k+1) and Tα(k)α̇(k) are the higher spin supercurrent and higher spin supertrace
respectively and are the higher spin analogues of the supercurrent and supertrace that appear
in supergravity.

(iii) Proved that for every k, there is a unique alternative multiplet of higher spin supercurrents, called

minimal
{
J min

α(k+1)α̇(k+1) , 0
}

(73) and (88) with conservation Equation (80). The cubic interactions
for the minimal multiplet have the simpler form

g
∫ ∞

∑
k=0

Hα(k+1)α̇(k+1)J min
α(k+1)α̇(k+1) . (129)

Furthermore, we presented the construction of the appropriate improvement term that will take
us from the canonical to the minimal multiplet. The supercurrent J min

α(k+1)α̇(k+1) matches exactly the
supercurrent generated by superconformal higher spins presented in [41].

The identification of the minimal multiplet with the results in [41] was expected because
superconformal higher spin description does not include a compensator like χα(k+1)α̇(k), hence the
cubic interaction terms of the chiral with the superconformal higher spin supermultiplets can only take
the form of (129). However, the superfield Hα(k+1)α̇(k+1) that appears in [41] is not the same because its
dynamics involve higher derivative terms and also has different engineering dimensions.

In Section 9, we discuss the component structure of the theory and specifically we searched for
the higher spin currents generated by the supercurrents. Starting from the superspace conservation
equation we project down to the component level and we find:

(iv) An expression for the integer spin current J min (1,1)(S,S)
α(s+1)α̇(s+1) (95). There are two contributions to this

current. The first is of the boson - boson type constructed out of a complex scalar φ which is defined
as the the θ independent term of Φ (φ = Φ|). The second contribution is of the fermion—fermion
type and is constructed out of a spinor χα defined as the θ term of Φ (χα = DαΦ). Both of these
contributions agree with known results.
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(v) An expression for the half-integer spin current J min (1,0)(S)
α(s+1)α̇(s) (97). This current appears for the

first time in the literature because it requires both the complex scalar and the spinor, therefore
non-supersymmetric theories can not be used to construct it.

(vi) An expression for an R-symmetry current J min (0,0)
α(s)α̇(s) (98). This current also appears for the first time.

It is important to emphasize that in general the higher spin supercurrent and higher spin
supertrace are independent quantities and the minimal multiplet can not always be reached. It depends
on the peculiarities of the starting action and its symmetries, such as superconformal, to decide whether
this can be done or not. In this work, we present a method of constructing the higher spin supercurrent
and supertrace which is not restricted by these considerations. In Section 10, we discuss the higher
spin supercurrent multiplet of a massive chiral superfield. Our results are:

(vii) A massive chiral can have cubic interactions only with the odd s [s = 2l + 1] half-integer superspin
supermultiplets (2l + 2 , 2l + 3/2).

(viii) The expressions for the higher spin supercurrent Jα(2l+1)α̇(2l+1) (110) and (121) and supertrace
Tα(2l)α̇(2l) (112) and (122) of the canonical multiplet. These expressions have not been
obtained before.

(ix) There is no minimal multiplet of supercurrents for this case since the supertrace can not be
adsorbed by improvement terms. However, it can be arranged to be proportional to the
mass parameter, so at the massless limit we land at the minimal multiplet of the massless
chiral superfield.

There are several directions for the further development and generalization of the superfield
interaction vertices studied in the paper. Firstly, the approach under consideration can directly be
applied to derivation of the cubic interaction of the higher-superspin superfield with chiral superfield
on the AdS superspace background. Secondly, it would be extremely interesting to construct the
supercurrent and corresponding cubic interaction vertex for 4D, N = 2 massless higher-superspin
gauge superfield. In this case the supercurrent should apparently be built from hypermultiplet
superfields on the framework of harmonic superspace [83] which provides unconstrained superfiled
description for 4D, N = 2 supermultiplets. Thirdly, it would be interesting to apply this approach to
other matter supermultiplets such as the complex linear.
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Abstract: We analyse the conservation laws associated with large gauge transformations of massless
fields in Minkowski space. Our aim is to highlight the interplay between boundary conditions and
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any spin.

Keywords: asymptotic symmetries; field theories in higher dimensions; Yang–Mills theory;
BMS symmetry; higher spin symmetry

1. Introduction

In a previous work [1], we investigated the asymptotic symmetries of massless bosons of spin
greater than two in four-dimensional Minkowski spacetime. We found that, upon assigning suitable
boundary conditions on the rank−s symmetric tensors ϕμ1 ··· μs , the asymptotic Killing equations for
the rank−(s − 1) gauge parameters ξμ1 ··· μs−1 admit an infinite-dimensional set of solutions providing
counterparts of the supertranslations emerging for spin-two fields in asymptotically flat spaces [2,3].
In particular, in strict analogy with the spin-two case [4,5]1, we found that Weinberg’s soft theorem for
any spin [7,8] could be derived as a consequence of the higher-spin supertranslation Ward identities.
In addition, we studied the full asymptotic Killing tensor equation in any space-time dimension D for
spin-three fields, finding in particular proper counterparts of superrotations in four dimensions [9,10].

In the present work, our goal is twofold: (1) to extend the analysis of asymptotic symmetries for
all spins to arbitrary values of the space-time dimension; and (2) to compute the resulting charges and
check their finiteness, thus proving the consistency of our choice of falloffs.

In order for our treatment to be as homogeneous as possible for any D, here we shall not make
use of the notion of conformal null infinity. Indeed, its construction was shown to be obstructed in
odd-dimensional spacetimes containing radiation because of singularities appearing in the components
of the Weyl tensor of the unphysical space [11,12]. Differently, focussing on the falloffs of the solutions
to the relevant equations of motion results in an exploration of null infinity that is devoid of such
issues and thus allows for the same type of analysis in all dimensions [13].

Our general procedure can be summarised as follows: for all spins, we assume a power-like
behaviour for the radial dependence of the field components keeping track of all possible subleading
contributions (with some subtleties for the case of Yang–Mills theory in D = 3, where logarithmic

1 See also [6] for a general review and more references.
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dependence is also taken into account). In addition, we fix our boundary data through a set of
Bondi-like conditions that can be interpreted as resulting from on-shell local gauge fixings. In this
framework, a difference emerges between even and odd dimensionalities: whenever D is odd and
greater than four, in order for both the radiation part and the Coulomb part of the solution to be
accounted for, one finds that the expansion in powers of r requires both integer and half-integer
exponents to be considered. Differently, only integer powers of r are needed whenever D is even.
Moreover, radiation and Coulombic contributions behave as r−(D−2)/2 and r3−D respectively, and thus
actually coincide in D = 4, thus justifying a separate analysis for dimensionalities higher than four on
the one hand, and lower or equal to four on the other. Leading and subleading falloffs are determined
by solving the equations of motion, while their consistency relies on checking that the energy flowing
to null infinity per unit of retarded time is indeed finite. Once the falloffs are determined, we proceed
to compute the asymptotic symmetries and the corresponding charges, while also checking finiteness
of the latter.

Proceeding along these lines, in Section 2 we provide a full analysis of the nonlinear Yang–Mills
theory in any dimension, starting from D = 3. The investigation of asymptotic symmetries and
related aspects in dimensions other than four (both for spin one and spin two) has been performed
in a number of works [14–19]. With respect to previous explorations of the Yang–Mills case in any
D [14,17], here we also add the explicit computation of the charges, while, for the three-dimensional
case already discussed in [16], we include the contribution of radiation. For the four-dimensional
analysis of the spin-one case, see also [20–27].

In Section 3, we revisit the case of asymptotically flat gravity, for which an analysis in any
dimension, both even and odd, can be found in [13]. Our review focusses on the linearised theory,
which is useful for us in order to set the stage for the ensuing generalisation to higher spins that
we first illustrate in Section 4 for the spin-three case. In particular, we complete the analysis in
arbitrary dimension presented in [1] by computing the charges corresponding to the asymptotic
symmetries. In Section 5, we pursue our exploration of the general spin−s case initiated in [1]. In this
respect, besides extending the study of large gauge transformations to higher space-time dimensions,
we determine explicitly the proper counterpart of superrotations for any spin in D = 4. In addition,
upon solving the equations of motion, we are led to a proposal for the boundary conditions eventually
leading to finite asymptotic charges, which is explicitly tested in examples where we illustrate the
on-shell cancellations of otherwise divergent terms.

The asymptotic symmetries that result from our analysis for all spins in D > 4 correspond to
the solution to the global Killing tensor equations, and thus do not display the infinite-dimensional
enhancement observed in D ≤ 4. While this result is in agreement with similar conclusions drawn for
spin two in previous works [28,29], it still leaves a number of questions unanswered, starting from the
ultimate origin of Weinberg’s soft theorem in D > 4.

While this work was in preparation, however, Ref. [19] appeared, with an alternative treatment
of boundary conditions allowing for infinite-dimensional symmetries for linearised gravity in any
even dimension, identified both as the origin of Weinberg’s result for D = 2k and as the sources of
even-dimensional counterparts of the memory effect. (see also [15,17,18,30] for earlier discussions on
the matter.)

The exploration of asymptotic symmetries for arbitrary-spin massless fields in any D, which we
started in [1] and in the present work, presents a number of open challenges on which we plan to focus
our attention in the future. Among the main ones, it ought to be stressed that our linearised analysis
does not allow one to get a concrete grasp on the properties of the putative non-Abelian algebra
underlying our findings, crucial to the issue of uncovering the physical meaning of such symmetries.
This is relevant in particular in order to assess the role of higher-spin asymptotic symmetries in the
high-energy regime of string scattering amplitudes (see e.g. [31–35]). In particular, in the latter respect,
although once again of general interest in itself, the investigation on the possible infinite-dimensional
enhancement of global asymptotic symmetries for all spins in D > 4 manifests special relevance.
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2. Yang–Mills Theory

In this section, we analyse the equations of motion for Yang–Mills theory in D-dimensional
Minkowski spacetime expanding their solutions in powers of 1/r, thereby identifying the data that
contribute to colour charge and to colour or energy flux at null infinity. In particular, we complement
the related discussions in [16,20–24,26,27] by providing a unified treatment of all spacetime dimensions,
and that in [14,17] by checking the finiteness of asymptotic charges in any dimension while also
including radiation for D = 3.

We adopt the retarded Bondi coordinates (xμ) = (u, r, xi), where xi, for i = 1, 2, . . . , n, denotes the
n := D − 2 angular coordinates on the sphere at null infinity. In these coordinates, the Minkowski
metric reads

ds2 = −du2 − 2dudr + r2γij dxidxj , (1)

where γij is the metric of the Euclidean n-sphere. The corresponding (flat) spacetime connection is
denoted by ∇μ, whose nonzero Christoffel symbols read

Γi
jr = r−1δi

j , Γu
ij = r γij = − Γr

ij , Γk
ij =

1
2

γkl
(

∂iγjl + ∂jγil − ∂lγij

)
. (2)

The Yang–Mills connection is denoted by Aμ := AA
μ TA , where the TA are the generators of

a compact Lie algebra g, whose gauge transformation is δεAμ = ∇με +
[Aμ, ε

]
. The corresponding

field strength is given by
Fμν = ∇μAν −∇νAμ +

[Aμ,Aν

]
, (3)

while the field equations are
Gν := ∇μFμν +

[Aμ,Fμν

]
= 0 . (4)

Furthermore, we enforce the radial gauge

Ar = 0 , (5)

which completely fixes the gauge in the bulk.

2.1. Boundary Conditions

For D > 3, we consider field configurations Aμ whose asymptotic null behaviour is captured by
an expansion2 in powers of 1/r, for r → ∞. More explicitly, we parameterise their leading-order terms
as follows:

Au(u, r, xi) = ra Au(u, xi) +O(ra−1) , Ai(u, r, xj) = rb Ai(u, xj) +O(rb−1) . (6)

In order to determine the leading falloffs, we begin our analysis by substituting the conditions (6)
into the u−component of the equations of motion, Gu = 0. To leading order:

− a ∂u Au ra−1 − ∂uDi Ai rb−2 + [ΔAu + a(a + 1)Au] ra−2

− γij [Ai, ∂u Aj
]

r2b−2 +
(
−Di [Au, Ai] + γij [∂i Aj, Au

])
ra+b−2 + γij [Ai,

[
Aj, Au

]]
ra+2b−2 = 0 ,

(7)

where Di denotes the covariant derivative on the Euclidean n-sphere, while Δ := DiDi.
Let us notice that, while the three linear terms in the first line are in principle independent, we can

combine them in pairs upon imposing either b = a + 1, or b = a. As we shall see, the different types
of solutions arising from these two options retain relevant physical meaning. Indeed, the first one

2 In the three-dimensional case (n = 1), to be discussed in Section 2.1.3, we shall also consider a logarithmic dependence in r.
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corresponds to radiation, with the familiar falloff3 Au ∼ r−n/2 of a spherical wave, which also carries
a finite amount of energy per unit time through null infinity. The latter, on the other hand, leads to
Coulomb-type solutions with the characteristic falloff Au ∼ r1−n of the Coulomb potential, hence giving
rise to a finite contribution to the colour charge.

Let us now discuss the asymptotic behaviour of colour and energy flux integrals. The definition
of conserved charges associated with gauge symmetries is a subtle issue and we shall provide more
details on the colour charge at null infinity in Section 2.2. Denoting the surface element of the n-sphere
with unit radius by dΩn, the A−th component of the colour charge at a given retarded time u is
expressed as the following integral over the sphere Su at a given value of u,

QA(u) = lim
r→∞

∫
Su

tr
(
FurTA

)
rndΩn . (8)

The energy flowing across Su per unit time, on the other hand, can be cast as4

P(u) = lim
r→∞

∫
Su

γij tr
(Fui(Frj −Fuj)

)
rn−2dΩn . (9)

The request that this quantity be finite imposes that the fields must go to zero at infinity in order to
compensate for the factor of r n−2, namely

a < 0 , b < 0 , (10)

whenever D > 4. Due to this simplification, we restrict the present analysis to D > 4 and defer the
discussion of the special cases D = 3 and D = 4 to a dedicated section.

In order to stress the relevant piece of physical information following from our choices of the
falloffs, we first consider the leading-order terms in the equations of motion Gμ = 0 and analyse
the outcome for the two options b = a + 1 and b = a. As a result, in particular, a radiation solution
(b = a + 1) is characterised by

Au = Au r−n/2 , Ai = Ai r1−n/2 , (11)

where the r−independent components of the potential satisfy

Au =
2
n

Di Ai , (12)

while, on the other hand, a Coulomb-type solution (b = a) is such that

Au = Ãu r1−n , Ai = Ãi r1−n , (13)

and obeys

∂u Ãu = 0 , ∂u Ãi =
1
n

Di Ãu . (14)

Let us stress that the presence of two distinct “branches” of solutions, radiation and Coulombic,
is apparent only for D > 4, while in the four-dimensional case they effectively coincide. Notice also
that, thanks to the condition (10), the nonlinear terms do not appear in these leading-order equations

3 The D-dimensional wave equation −∂2
t f + r−n∂r(rn∂r f ) + Δ f = 0, where t = u + r, admits spherically symmetric solutions

whose large-r behaviour is r−n/2 exp(iku).
4 The Yang–Mills Lagrangian for anti-Hermitian fields is L = 1

4 tr(FμνFμν), while the stress-energy tensor has the form
Tμν = − tr

(FμαF α
ν

)
+ 1

4 gμνtr
(FαβF αβ

)
. The energy flux across Su is then given by− ∫

Su
T r

u rndΩn =
∫

Su
(Tuu −Tur)rndΩn

as r → ∞.
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for D > 4. We are now in the position to further justify the names we gave to these two kinds of
solutions: a Coulomb solution has a generically non-zero colour charge at retarded time u,

QA(u) = (n − 1)
∫

Su
tr
(

ÃuTA
)

dΩn , (15)

whereas its energy flux across Su goes to zero, due to F ui ∼ r 1−n. On the other hand, a radiation
solution emits nonzero power at null infinity,

P(u) = −
∫

Su
γij tr

(
∂u Ai∂u Aj

)
dΩn . (16)

At this point, two general issues are in order. To begin with, it should be stressed that the
colour charge of a radiation solution diverges off-shell like rn/2−1 as r → ∞. However, employing
the relation (12) and recalling that the integral of any n-divergence Divi on Su is zero by Stokes’
theorem, we see that, at least to leading order, this potentially dangerous contribution vanishes
on-shell. Performing a more detailed analysis, in the next section, we will prove that these kinds of
cancellations ensure the finiteness of the colour charge to all orders.

In addition, one ought to study the behaviour of the colour flux for large r, namely the interplay
occurring between radiation and Coulomb solutions due to the nonlinear nature of the theory. To do so,
since the information on the colour charge is stored at order r1−n in the Au component, whereas
radiation contributes at order r−n/2 in the same component, we need to consider an expansion in 1/r
that bridges the gap between these asymptotic behaviours. Due to the appearance of a half-integer
exponent, the situation changes depending on the parity of the spacetime dimension, thus justifying to
differentiate the discussion into two sections.

2.1.1. Even Space-Time Dimension

When D > 4 is even, we can consider an expansion of the following type:

Au =
∞

∑
J=1

a(J)r1−n/2−J , Ai =
∞

∑
K=0

C(K)
i r1−n/2−K , (17)

where a(J) and C(K)
i are r-independent functions. On the basis of the previous discussion, we expect

a(1) = Au , C(0)
i = Ai , (18)

to play the role of radiation terms, and

a(n/2) = Ãu , C(n/2)
i = Ãi , (19)

to represent the Coulomb part of the solution. The components of the field strength are then given by:

Fur =
∞

∑
J=1

(n
2
− 1 + J

)
a(J)r−n/2−J ,

Fir =
∞

∑
K=0

(n
2
− J + K

)
C(K)

i r−n/2−K ,

Fui = ∂u Ai r1−n/2 +
∞

∑
J=1

(
∂uC(J)

i − Dia(J)
)

r1−n/2−J +
∞

∑
J=1

B(J)
ui r2−n−J ,

Fij =
∞

∑
K=0

(
DiC

(K)
j − DjC

(K)
i

)
r1−n/2−K +

∞

∑
K=0

B(K)
ij r2−n−K ,

(20)
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where B(J)
ui and B(K)

ij contain the nonlinear terms,

B(J)
ui :=

J

∑
L=1

[
a(L), C(J−L)

i

]
, B(K)

ij :=
K

∑
L=0

[
C(L)

i , C(K−L)
j

]
. (21)

We first substitute this expansion into the equation Gr = 0: denoting

G(J)
r :=

(n
2
− J

) (n
2
+ J − 1

)
a(J) −

(n
2
+ J − 2

)
DiC(J−1)

i , (22)

this yields

G(J)
r = 0 for J = 1, 2, . . . ,

n
2
− 1 , (23)

G(J)
r −

J−n/2

∑
L=0

(n
2
− 1 + L

)
γij

[
C(J+n/2−L)

i , C(L)
j

]
= 0 for J =

n
2

,
n
2
+ 1 . . . . (24)

Then, we insert our expansion into the equation Gu = 0: setting

G (J)
u :=

(n
2
+ J

)
∂uaJ+1 +

[(
J − n

2

) (n
2
− 1 + J

)
+ Δ

]
a(J) − DiC(J)

i , (25)

Ĝ (J)
u := DiB(J)

iu − γij
[
C(J)

i , ∂u Aj

]
(26)

−
J

∑
L=1

{(n
2
− 1 + L

) [
a(J+1−L), a(L)

]
+ γij

[
C(J−L)

i , ∂uC(L)
j − Dja(L)

]}
,

we obtain

n
2

∂u Au − Di Ai = 0 , (27)

G (J)
u = 0 , for J = 1, 2, . . . ,

n
2
− 2 , (28)

G (n/2−1)
u − γij[Ai, ∂u Aj] = 0 , (29)

G (J)
u + Ĝ (J−n/2+1)

u = 0 , for J =
n
2

,
n
2
+ 1, . . . , n − 2 , (30)

G (J)
u + Ĝ (J−n/2+1)

u,1 − γij
J−n+2

∑
L=1

[
C(J−n+2−L)

i , C(L)
j

]
= 0 , for J = n − 1, n, . . . , (31)

(when D = 6, Equation (28) reduces to (27)). It should be emphasised that the decoupling of the
nonlinear terms, namely the linearity of Equations (23), (27) and (28) is a direct consequence of
the assumptions (10) and only holds for D > 4. This asymptotic linearisation tells us that it is
consistent to choose as boundary conditions near null infinity the falloffs (17), constrained by the
linear Equations (23), (27) and (28). Indeed, this set of equations will allow us to then discuss the
behaviour of the charges, and its main features are the following. First, from Equation (23), we obtain
the constraints

a(J) =
2(n + 2J − 4)

(n − 2J)(n + 2J − 2)
DiC(J)

i for J = 1, 2, . . . ,
n
2
− 1 , (32)

namely that a(1)(= Au), a(2), . . . , a(n/2−1) are functions of the type Divi, i.e., n-divergences, whereas,
from Equation (24) evaluated for J = n/2, we note that Ãu = a(n/2) does not bear the same form.
Furthermore, Equations (27) and (28) together with (32) establish that ∂u Au, ∂ua(2), . . . , ∂ua(n/2−1) are
n-divergences as well. On the other hand, by (29) and (32),
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∂u Ãu =
1

n − 1
γij [Ai, ∂u Aj

]
+

1
n − 1

(
Di Ãi + (n − 2)a(n/2−1) − Δa(n/2−1)

)
=

1
n − 1

γij [Ai, ∂u Aj
]
+ (n-divergence) .

(33)

This equation allows one to compute the evolution of the leading Coulomb term Ãu along the
u−direction in terms of the leading radiation terms Ai, and will therefore be at the basis of our colour
flux formula across Su.

2.1.2. Odd Space-Time Dimension

In the case of odd dimensions D > 4, we have to include two distinct expansions in 1/r in order
to capture both radiation and Coulombic terms:

Au =
∞

∑
J=1

a(J)r1−n/2−J +
∞

∑
K=0

ã(K)r1−n−K ,

Ai =
∞

∑
K=0

C(K)
i r1−n/2−K +

∞

∑
K=0

C̃(K)
i r1−n−K ,

(34)

where we identify
a(1) = Au , C(0)

i = Ai , (35)

and
ã(0) = Ãu , C̃(0)

i = Ãi . (36)

The relevant components of the field strength are then

Fur =
∞

∑
J=1

(n
2
− 1 + J

)
a(J)r−n/2−J +

∞

∑
K=0

(n − 1 + K) ã(K)r−n−K ,

Fir =
∞

∑
K=0

(n
2
− 1 + K

)
C(K)

i r−n/2−K +
∞

∑
K=0

(n − 1 + K) C̃(K)
i r−n−K .

(37)

Likewise, the equations of motion will also contain two expansions in 1/r: one in integer powers
and one in half-integer powers. Expanding the equation Gr = 0, we see that(n

2
− J

) (n
2
− 1 + J

)
a(J) −

(n
2
− 2 + J

)
DiC(J)

i = 0 for J = 1, 2, . . . , n − 1 , (38)

while the terms containing Ãu = ã(0) cancel out identically.
Thus, in particular, the functions a(1)(= Au), a(2), . . . , a(n−1)/2 are n-divergences. Finally, the r−n

order of the equation Gu = 0 provides us with the evolution of Ãu along the u direction for
large r, namely

(n − 1) ∂u Ãu = γij [Ai, ∂u Aj
]

. (39)

Thus, we see that the phenomenon of asymptotic linearisation of the equations of motion,
emphasised in the previous section for even-dimensional spacetimes, also occurs for odd dimensions
and allowed us to derive the relevant set of boundary conditions for the definition of charge and
energy flux integrals.

2.1.3. Three and Four Space-Time Dimensions

In D = 4, i.e., when n = 2, the leading radiation term and the Coulombic term coincide: indeed,
finiteness of the energy flux (9) requires that, to leading order, a radiation solution behave like

Ai(u, r, x1, x2) = Ai(u, x1, x2) +O(r−1) , (40)
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while, using b = a + 1, we see that

Au(u, r, x1, x2) =
Au

r
(u, x1, x2) +O(r−2) . (41)

This also gives generically a non-vanishing colour charge on the surface Su via Equation (8).
Using the leading terms in Equations (40) and (41), the only relevant dynamical information arises
from Gu = 0, which gives

∂u Au = ∂uDi Ai + γij [Ai, ∂u Aj
]

. (42)

The situation for D = 3 (n = 1) is rather different with respect to the previous cases,
mainly because of two features. First, the factor of r−1 in Equation (9) tells us that, in order to
produce a finite energy flux across Su, the field components need not necessarily decay at infinity;
consequently, one expects no clear distinction between radiation and Coulomb terms in the solution
because no asymptotic linearisation occurs in the equations of motion. Second, the expression (15),
and more specifically the factor of r, suggests that Au should behave as log 1

r in order to give a
non-vanishing colour charge. These considerations motivate the following leading-order ansatz in
three dimensions:

Au(u, r, φ) ∼ q log
1
r
+ p , Aφ(u, r, φ) ∼

√
r

log r
C , (43)

where q, p and C are r-independent functions. Indeed, with this choice, the colour flux and the energy
flux read

QA(u) =
∫

Su
qAdφ , P(u) = −

∫
Su

tr([q, C][q, C])dφ . (44)

Using this ansatz, we find that the equation Gr = 0 is identically satisfied at the leading order r−2,
whereas the equation Gu = 0 gives

∂uq = − [q, p] , (45)

at order r−1. This equation describes the u-evolution of q at null infinity and, hence, together with the
first formula in (44), will lead to a formula for the colour flux.

2.2. Asymptotic Symmetries and Charges

In this section, we would like to discuss the form (8) of the colour charge at null infinity in the
various dimensions. For related analyses, see [26,36–38]. To begin with, let us discuss which large
gauge symmetries are admissible at null infinity. The residual gauge symmetry within the radial gauge
is parameterised by an r-independent gauge parameter, since

0 = δε Ar = ∇r ε + [Ar, ε] (46)

but Ar = 0, hence ∇rε = 0. Then, we look for those parameters ε that preserve the leading
falloff conditions imposed on the field Aμ. In the spirit of our previous illustration, we proceed
by distinguishing the case of D > 4 from those of D = 4 and D = 3.

When D > 4, where radiation gives the dominant behaviour at infinity, we find, to leading order

r−n/2 δε Au = ∂uε + r−n/2[Au, ε] , (47)

which requires ∂uε = 0. Furthermore,

r 1−n/2 δε Ai = ∂iε + r1−n/2[Ai, ε] , (48)

but, since 1− n/2 < 0, this implies ∂iε = 0. This means that ε is simply a constant. Hence, in D > 4,
asymptotic symmetries coincide with the global part of the gauge group and the asymptotic charge
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is the ordinary colour charge computed via Equation (8). For even space-time dimensions, using
Equation (20)

QA(u) = lim
r→∞

∫
Su

tr(FurTA) rndΩn

= lim
r→∞

∞

∑
J=1

rn/2−J
(n

2
− 1 + J

) ∫
Su

tr(a(J)TA) dΩn ,
(49)

where for J < n/2 all terms are integrals of n-divergences thanks to the relation (32), while the terms
with J > n/2 go to zero as r → ∞, thus

QA(u) = (n − 1)
∫

Su
tr(ÃuTA) dΩn . (50)

For odd space-time dimensions,

QA(u) = lim
r→∞

∞

∑
J=1

rn/2−J
(n

2
− 1 + J

) ∫
Su

tr(a(J)TA) dΩn

+ lim
r→∞

∞

∑
K=0

r−K (n − 1 + K)
∫

Su
tr(ã(K)TA) dΩn ,

(51)

and, by the relation (38), the only nonzero contribution comes from the K = 0 term of the second series,
giving again the result (50). For D > 4, we thus obtained that the colour charge is indeed expressed as
an integral of the leading Coulombic component on Su. Furthermore, on account of Equations (33)
and (39), the colour flux is written as

d
du

QA(u) =
∫

Su
γij [Ai, ∂u Aj

]A dΩn . (52)

This is indeed consistent with the interpretation of Ai as the leading radiation term: this formula
describes how Yang–Mills radiation across null infinity induces a change in the total colour of the
space-time at successive retarded times u.

In D = 4, the gauge parameter must satisfy:

r−1 δε Au = ∂uε + r−1[Au, ε] ,

δε Ai = ∂iε + [Ai, ε] .
(53)

The first equation again enforces ∂uε = 0, whereas the second allows for an ε(x1, x2) with arbitrary
dependence on the angles on the celestial sphere. The corresponding asymptotic charge is therefore

Qε(u) = lim
r→∞

∫
Su

tr(Furε) r2dΩ2 =
∫

Su
tr(Auε) dΩ2 . (54)

Taking into account Equation (42),

d
du

Qε(u) =
∫

Su
tr
[(

∂uDi Ai + γij[Ai, ∂u Aj]
)
ε
]

dΩ2 . (55)

To complete the picture, let us now turn to the situation in D = 3. There, neither Au nor Aφ fall
off at infinity, and hence any ε(u, φ) generates an allowed gauge transformation (the same result,
in a slightly different setting, was already obtained in [16]). Thus, using the notation of the
previous section,

Qε(u) =
∫

Su
tr(qε)dφ ,

d
du

Qε(u) =
∫

Su
tr(q∂uε)dφ −

∫
Su

tr([q, p]ε)dφ .
(56)
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Let us observe that these charges indeed form a representation of the underlying algebra: for D ≥ 4,
since δε Au = [Au, ε],

[Qε1 , Qε2 ] = δε1 Qε2 =
∫

Su
tr([Au, ε1]ε2)dΩn =

∫
Su

tr(Au[ε1, ε2])dΩn = Q[ε1,ε2]
; (57)

the same result holds for D = 3, noting that δεq = [q, ε] and δε p = ∂uε, but p does not enter the
charge formula. While the identity (57) holds in any dimension, it should be stressed that, when
D > 4, the corresponding charge algebra coincides with g, whereas in D = 4 and D = 3, it is in
fact an infinite-dimensional Kac–Moody algebra, owing to the arbitrary gauge parameters ε(x1, x2)

and ε(u, φ). In particular, we note the absence of a central charge, which could however emerge by
performing the analysis for the linearised theory around a nontrivial background, as pointed out
in [38].

Let us conclude this section by presenting some general observations that, although of basic nature,
we found useful in order to frame the correctness of our procedure. For Yang–Mills theory,
the following quantity

Qε =
∫

∂Σ
dxμν tr (Fμνε) , (58)

where Σ is a generic Cauchy surface, provides both the conserved charge, as obtained by the Noether
algorithm, and the Hamiltonian generator of the gauge symmetry parameterised by ε on the space
tangent to the surface of solutions, as calculated via covariant phase space methods. Indeed, a generic
variation of the Yang–Mills Lagrangian, after integrating by parts, reads

δL = − tr
(GμδAμ

)
+ ∂μtr (FμνδAν) =: −tr

(GμδAμ

)
+ ∂μθμ(δA) , (59)

where we defined the symplectic potential θμ(δA) = tr (FμνδAν), while Gμ denotes the Euler–Lagrange
derivatives of L, given in Equation (4). The presymplectic form is then given by

ωμ(δ1 A, δ2 A) = δ[1θμ(δ2]A) , (60)

with square brackets denoting antisymmetrisation, and correspondingly the formal variation of the
Hamiltonian generator of the gauge symmetry Hε is

/δ Hε =
∫

Σ
dxμωμ(δA, δε A) = δ

∫
∂Σ

dxμνtr(Fμνε)−
∫

Σ
dxμtr(δGμε) . (61)

Noting that the last term is proportional to the linearised equations of motion, i.e., that it vanishes
on the space tangent to the surface of solutions, we can write

/δ Hε ≈ δQε ,

which explicitly shows that /δ Hε is integrable and that we may choose to set Hε = Qε by requiring
a flat connection to have zero colour charge. Furthermore, the Noether charge is simply∫

Σ
dxμ θμ(δε A) = Qε −

∫
Σ

dxμ tr(Gμε) ≈ Qε , (62)

so that the two approaches agree in this case. The definition of Qε is in principle subject to ambiguities
stemming from θμ �→ θμ + ∂νλμν, where λμν = −λνμ, which does not alter the variation (59). In the
spirit of [39], we may choose to set to zero the corresponding additional terms, precisely because this
choice defines an integrable Hamiltonian, as shown above. Further motivation for the absence of these
terms is provided by the agreement with the general analysis of [37] and by the fact that they play no
role in the generation of Ward identities for residual gauge freedom [38].
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In order to finally make contact with Equation (8), we may then apply Equation (58) choosing as
a Cauchy surface

Σ = Σu ∪I +
<u ,

where Σu is any space-like hypersurface such that ∂Σu = Su while I +
<u is the portion of null infinity

up to the retarded time u. Then, using the general expression for the charge (58) and Stokes’ theorem,
we see that Qε can be expressed as a sum of the total charge at the retarded time u, as in Equation (8),
and the charge flown across I +

<u due to radiation.

3. Linearised Gravity

Boundary conditions giving finite energy and angular momentum at null infinity have been
first proposed for spacetimes of any even dimensions in [11] (see also [19,28,40]). The proposal has
been extended to encompass also odd space-time dimensions in [13,29]. We refer to these works
for a detailed analysis of asymptotic charges and fluxes at null infinity in nonlinear Einstein gravity.
Here, we revisit instead the problem within the linearised theory. In particular, we point out that
the boundary conditions discussed in previous works can be inferred by demanding finiteness of
the linearised asymptotic charges. In analogy with the Yang–Mills example, the fluxes of energy and
angular-momentum at null infinity are instead affected by interactions, so that they will be excluded
from our analysis. Besides its intrinsic interest, the ensuing discussion is also instrumental for us in
order to better frame the results that we will present for higher-spin fields in Sections 4 and 5.

3.1. Boundary Conditions

We parameterise the Minkowski background with the retarded Bondi coordinates (1),
and we analyse the linearised metric fluctuations in the “Bondi gauge”

hrμ = 0 , γijhij = 0 ⇒ gμνhμν = 0 . (63)

Differently from the spin-one radial gauge (5), these conditions cannot be reached by means of an
off-shell gauge fixing, but the number of constraints is the same as in the transverse-traceless gauge.
We therefore assume that they can be imposed on shell.5

When Equation (63) holds, the linearised vacuum Einstein equations reduce to

Rμν = �hμν −∇(μ∇ · hν) = 0 . (64)

In the following, we will solve these equations assuming that the metric fluctuations admit
an expansion in powers of 1/r around null infinity. The main idea, suggested by the Yang–Mills
example, is that asymptotically the interactions deform the linearised solutions only starting from
a subleading order in their expansion in powers of 1/r. The conditions (63) imply Rrr = 0 identically,
while the other equations of motion read6

Rru =
1
r2

{(
r2∂2

r + n r∂r

)
huu − ∂rD · hu

}
= 0 , (65)

Rri =
1
r2

(
r2∂2

r + (n − 2) r∂r − 2(n − 1)
)

hui − 1
r3 (r∂r − 2) D · hi = 0 , (66)

5 With hindsight, our choice is legitimated, e.g., by the agreement between the charges and asymptotic symmetries derived in
this framework and those obtained by assuming only suitable falloff conditions on the components of the metric that cannot
be set to zero with an off-shell gauge fixing (compare e.g. the conditions (63) with Equation (8) of [11]).

6 From now on, we shall often denote a derivative with respect to u with a dot, i.e., ∂u f = ḟ .
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Rij = − 1
r (2 r∂r + n − 4) ḣij +

1
r

{
(r∂r + n − 2) D(ihj)u + 2 γijD · hu

}
+ 1

r2

{(
Δ + r2∂2

r + (n − 4) r∂r − 2(n − 2)
)

hij − D(iD · hj)

}
−2 γij (r∂r + n − 1) huu = 0 .

(67)

When the previous equations are satisfied, the following ones are satisfied as well at almost all
orders in an expansion in powers of 1/r (see Section 5 for more details):

Ruu =
n
r

ḣuu − 2
r2 D · ḣu +

1
r2

(
Δ + r2∂2

r + n r∂r

)
huu = 0 , (68)

Rui = − 1
r (r∂r − 2) ḣui − 1

r2 D · ḣi +
1
r (r∂r + n − 2) ∂ihuu

+ 1
r2

{(
Δ + r2∂2

r + (n − 2) r∂r − n + 1
)

hui − DiD · hu
}
= 0 .

(69)

As for the Yang–Mills case, the only exception is given by the leading order of a stationary solution.
By substituting a power-law ansatz,

huu = raB(u, xk) +O(ra−1) , hui = rbUi(u, xk) +O(rb−1) , hij = rcCij(u, xk) +O(rc−1) , (70)

Equations (65)–(67) turn into

Rru = ra−2a(a + n − 1)B − rb−3b D ·U + · · · = 0 , (71)

Rri = rb−2(b − 2)(b + n − 1)Ui − rc−3(c − 2)D · Ci + · · · = 0 , (72)

Rij = − rc−1(2c + n − 4) Ċij + rb−1
{
(b + n − 2)D(iUj) + 2 γijD ·U

}
−2 ra(a + n − 1)γijB + · · · = 0 ,

(73)

where the dots stand for subleading terms. Imposing b = a + 1 and c = b + 1 allows one to mutually
cancel the addenda in Equations (71) and (72), while Equation (73) is solved to leading order provided
that the coefficient of rc−1 vanishes. This is the analogue of the choice that gives the radiation solution
in the Yang–Mills case: it does not impose any constraint on Cij while, for D > 3, it fixes the leading
exponents as follows:

a = − n
2

, b = − n
2
+ 1 , c = − n

2
+ 2 . (74)

Besides this formal analogy, one can verify that a solution of this type carries a finite amount of
energy per unit of retarded time through null infinity, 7

P(u) = lim
r→∞

∫
Su

(Tuu − Tur) rndΩn =
∫

Su
γi1 j1 γi2 j2 Ċi1i2 Ċj1 j2 dΩn , (75)

and can therefore be interpreted as a gravitational wave propagating on the Minkowski background,
thus providing a convincing justification for the falloffs (74). In Section 3.2, we shall also show that a
solution of the Einstein equations with these leading falloffs is endowed with finite energy and angular
momentum charges at null infinity.

7 The massless Fierz–Pauli Lagrangian L = 1
2 hμν(�hμν −∇(μ∇ · hν) +∇μ∇νhα

α − ημν(�hα
α −∇ · ∇ · h)) gives rise, in Bondi

gauge, to the canonical stress-energy tensor

Tαβ = ∇αhμν∇βhμν − 2∇ · hμ∇βhαμ + ηαβL .

While in our linearised setup one cannot capture the flux of energy associated with the self-interactions of the gravitational
field, it still makes sense to evaluate the flux pertaining to an eternal radiating source in the interior, which is constant over u.
Indeed, this is a quantity that is well defined also in the linearised theory and is given by (75).
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The charges actually depend on the subleading (for D > 3) terms in the expansion in powers of r
with exponents

a = b = c = 1− n . (76)

When n is even, these contributions are actually “integration constants” (they anyway admit
a dependence on xi) in the radiation solution with leading falloffs (74), while when n is odd they
appear as the leading order of a companion solution with its own expansion in powers of 1/r. For this
reason, we treat separately the two cases, while discussing the peculiarities of the n = 1 and n = 2
instances in Section 3.1.3.

3.1.1. Even Space-Time Dimension

When D = n − 2 is even, we consider the following ansatz for the linearised fluctuations in Bondi
gauge (63):

huu =
∞

∑
k = 0

r−
n
2 −kB(k)(u, xm) , hui =

∞

∑
k = 0

r−
n
2 −k+1U(k)

i (u, xm) , hij =
∞

∑
k = 0

r−
n
2 −k+2C(k)

ij (u, xm) , (77)

with γijC(k)
ij = 0. As discussed above, the leading falloffs have been chosen such that the linearised

solution carries a finite amount of energy per unit time at null infinity. From Equation (65), one can
then compute the coefficients of huu,

B(k) =

⎧⎨⎩
2(n+2k−2)

(n+2k)(n−2k−2) D ·U(k) for k �= n−2
2

2 mB for k = n−2
2

, (78)

while Equation (66) fixes hui as

U(k)
i =

⎧⎨⎩
2(n+2k)

(n+2k+2)(n−2k) D · C(k)
i for k �= n

2

Ni for k = n
2

. (79)

The quantities mB and Ni do not contribute to Equations (65) and (66) thanks to the cancellation
of the coefficients in front of the corresponding B(k) and U(k)

i . Their dependence on the retarded time
u is however fixed by Equations (68) and (69) that, when n > 2, read

ṁB =
3− n

4n(n − 1)
(Δ − n + 2) D · D · C( n−4

2 ) , (80a)

Ṅi =
1

n + 1

{
2 ∂imB − n − 1

n
(Δ − 1) D · C( n−2

2 )
i

}
, (80b)

where Δ = DiDi. These equations are solved by

mB(u, xj) = M(xj)− n − 3
4(n − 1)n

∫ u

−∞
du′ (Δ − n + 2) D · D · C( n−4

2 )(u′, xj) , (81a)

Ni(u, xj) = Ni(xj) +
2 u

n + 1
∂iM(xj)− n − 1

n(n + 1)

∫ u

−∞
du′ (Δ − 1) D · Ci

( n−2
2 )(u′, xj)

− n − 3
2(n − 1)n(n + 1)

∫ u

−∞
du′

∫ u′

−∞
du′′ Di (Δ − n + 2) D · D · C( n−4

2 )(u′′, xj) .
(81b)

Note that the expressions for mB and Ni (which are the linearised counterparts of the Bondi mass
and angular momentum aspects) contain two types of contributions: one depends on the “integration
constants” M and Ni, which enter in combinations with a fixed dependence on u, while the other
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depends on the integrals over u of certain combinations of the tensors C(k)
ij . We anticipate that in

Section 3.2 we shall show that, for n �= 2, the integration constants M and Ni completely specify
the asymptotic linearised charges, while the integral terms, which are not even present when the
dimension of spacetime is odd, do not contribute to them.

The tensors in the expansion of hij are instead fixed recursively in terms of Cij
(0)—whose

u-derivative is the linearised analogue of the Bondi news—up to an arbitrary function of xi for
each term of the expansion. Equation (67) indeed implies

Ċ(k+1)
ij = − 1

2(k + 1)

{ [
Δ − n(n − 2)

4
+ k(k + 1)− 2

]
C(k)

ij

− 4
(n + 2k + 2)(n − 2k)

[
n D(iD · Cj)

(k) − 2 γijD · D · C(k)
] }

∀ k �= n
2

.
(82)

The value of k excluded from this expression shows that from k = n+2
2 onwards the tensors also

depend on Ni:

Ċ( n+2
2 )

ij =
1

n + 2

{
D(i Nj) −

2
n

γijD · N − (Δ + n − 2)C( n
2 )

ij + D
(i D · C( n

2 )

j)

}
. (83)

These terms in the expansion (77), anyway, do not contribute to the linearised charges and,
generically, they receive nonlinear corrections in Einstein gravity [13,29].

For the values of k that do not impose any constraints on B(k) and Ui
(k), Equations (65) and (66)

imply instead

(n − 2)(n − 1) D · D · C( n−2
2 )

= 0 , D · C( n
2 )

i = 0 . (84)

These conditions do not constrain C(0) because they are compatible with the divergences of
Equation (82). For instance, it implies

D · D · Ċ(k+1) = − (n + 2k − 2)(n − 2k − 4)
2(k + 1)(n + 2k + 2)(n − 2k)

[
Δ − (n + 2k)(n − 2k − 2)

4

]
D · D · C(k) (85)

and, for n > 2, the r.h.s. vanishes for k + 1 = n−2
2 . Similarly, Equations (68) and (69) reduce to

divergences of Equation (82) for all values of k aside from those that fix the u−dependence (81) of the
Bondi mass and angular momentum aspects.

3.1.2. Odd Space-Time Dimension

When n is odd and greater than one, in order to obtain non-zero asymptotic charges at null
infinity, one has to complement the ansatz (77), that in this case contains half-integer powers of r,
with a companion expansion including integer powers of the radial coordinate. We therefore consider
the ansatz

huu =
∞

∑
k = 0

r−
n
2 −kB(k)(u, xm) +

∞

∑
k = 0

r1−n−kB̃(k)(u, xm) , (86a)

hui =
∞

∑
k = 0

r−
n
2 −k+1U(k)

i (u, xm) +
∞

∑
k = 0

r1−n−kŨ(k)
i (u, xm) , (86b)

hij =
∞

∑
k = 0

r−
n
2 −k+2C(k)

ij (u, xm) +
∞

∑
k = 0

r1−n−kC̃(k)
ij (u, xm) , (86c)

with γijC(k)
ij = γijC̃(k)

ij = 0. Since n is odd, the factors entering the expansion of Equations (65) and (66)
in powers of

√
r are always different from zero. As a result, for any k one has again
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B(k) =
2(n + 2k − 2)

(n + 2k)(n − 2k − 2)
D ·U(k) , U(k)

i =
2(n + 2k)

(n + 2k + 2)(n − 2k)
D · C(k)

i , (87)

while the tensors C(k) satisfy (82). These conditions imply that the Equations (68) and (69) are identically
satisfied. In Section 3.2, we shall see that the relations (87) guarantee that the radiation solution does
not contribute to the asymptotic charges. Equations (68) and (69) fix instead the u-evolution of the
leading terms in the Coulomb-type solution as

mB(u, xj) :=
B̃(0)

2
= M(xj) , (88a)

Ni(u, xj) := Ũi
(0) = Ni(xj) +

2 u
n + 1

∂iM(xj) . (88b)

The subleading terms in the expansion in powers of r are fixed by the analogues of the relations (82)
and (87). For instance,

B̃(l+1) = − n + l − 1
(l + 1)(n + l)

D · Ũ(l) , Ũ(l)
i = − n + l + 1

(l + 1)(n + l + 2)
D · C̃(l)

i , (89)

while the C̃(l) are fixed recursively by an equation with the same form as (82) with shifted coefficients
k → k − n/2− 1 (see also the general analysis in Section 5 for more details). At any rate, these relations
will be irrelevant for the computation of the charges in Section 3.2 and, in general, will receive nonlinear
corrections in Einstein gravity as shown by the comparison of our analysis with [13,29].

3.1.3. Three and Four Space-Time Dimensions

In three and four space-time dimensions, i.e., when n = 1 or n = 2, the previous analysis has to
be amended for some details, which however introduce significant physical consequences. We begin
by considering the peculiarities that emerge in four dimensions: in this case, inserting our ansatz (77)
in the equations of motion (65) and (66) leads to

huu =
2
r

mB +O(r−2) , hui =
1
2

D · Ci +
1
r

Ni +O(r−2) , hij = r Cij +O(1) , (90)

where, for brevity, we defined Cij := Cij
(0), while we used the same notation as in the previous

subsections for the leading terms of the Coulomb-like solution. Note that in the component huu the
leading order of the radiation and Coulomb-like solutions coincide. Moreover, Equation (65) does not
impose any constraint on the double divergence of Cij (the factor in front of it vanishes when n = 2 as
we recalled in Equation (84)), while D · Ci

(1) = 0 as for generic n. Since Cij has now a non-vanishing
double divergence, the equations fixing the dependence on u of mB and Ni have to be modified as
follows (cf. (80)):

ṁB =
1
4

∂uD · D · C , (91a)

Ṅi =
2
3

∂imB − 1
6
{(Δ − 1) D · Ci − DiD · D · C } . (91b)

Consequently, the leading terms of the Coulomb-like branch depend on the radiation solution
and on the usual set of integration constants as
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mB(u, xj) = M(xj) +
1
4

D · D · C(u, xj) , (92a)

Ni(u, xj) = Ni(xj) +
2 u
3

∂iM(xj)− 1
6

∫ u

−∞
du′ [(Δ − 1) D · Ci − 2 DiD · D · C ](u′, xj) . (92b)

The dependence on Cij in mB and Ni will be crucial in Section 3.2, where we shall compute the
asymptotic charges.

When n = 1, in the component huu the radiation branch becomes subleading with respect to the
Coulomb-type one. Given that in three space-time dimensions fields of spin two do not propagate any
local degrees of freedom, it is therefore natural to ignore the radiation branch altogether and work
with boundary conditions that only encompass Coulomb-type solutions of the equations of motion:

huu = 2M(φ) +O(r−1) , huφ = N (φ) + u ∂φM(φ) +O(r−1) , hφφ = 0 , (93)

where φ denotes the angular coordinate on the circle at null infinity while we already displayed
the constraints on the leading terms imposed by the equations of motion. Notice that we set to
zero the component hφφ, consistently with our choice of boundary conditions in any D according to
which the tensor h ij is traceless (and thus identically zero if n = 1). Alternatively, one can consider
hφφ = rC(φ) +O(1) [41]. Our choice is not restrictive, however, as it still allows for an enhancement
of the asymptotic symmetry algebra from Poincaré to bms3.

3.2. Asymptotic Symmetries and Charges

We can now identify the gauge transformations preserving the form of the linearised solutions,
which are the asymptotic symmetries of the system. These determine the asymptotic charges, which
play the dual role of being conserved quantities labelled by the parameters of asymptotic symmetries
and of generating the latter via the Poisson bracket derived from the action. In the Bondi gauge (63),
the asymptotic symmetries must satisfy

δhrμ = 0 , δhuu = O(r−
n
2 ) , δhui = O(r−

n
2 +1) , δhij = O(r−

n
2 +2) , (94)

where the variations are given by linearised diffeomorphisms δhμν = ∇(μξν) that leave (64) invariant.
These conditions are appropriate for spacetimes of both even and odd dimensions, since the differences
highlighted in Sections 3.1.1 and 3.1.2 only affect subleading terms in the expansion of the solutions.8

Equations (94) are solved by

ξr = −
(

T +
u
n

D · v
)

, (95a)

ξu =
r
n

D · v − 1
n
(Δ + n) T , (95b)

ξi = r2 vi + r Diξr , (95c)

where T and vi only depend on the angular coordinates xi and, when n > 2, are constrained by the
following differential conditions:

8 The exception is given by n = 1. Accordingly with the discussion in Section 3.1.3, in three dimensions, the conditions (94)
are substituted by

δhuu = O(1) , δhuφ = O(1) , δhφφ = 0 , δhrμ = 0 .
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D(ivj) −
2
n

γijD · v = 0 , (96)

D(iDj)T − 2
n

γijΔT = 0 . (97)

Equation (96), which states that vi is a conformal Killing vector on the sphere at null infinity,
actually holds in any space-time dimension, while T has to satisfy (97) only when n �= 2 (when n = 2
the variations of the field components which are proportional to the combination (97) are of the same
order as the falloffs (90)). When n > 2, these conditions imply that the ξμ of the form (95) are Killing
vectors of the Minkowski background, while for n ≤ 2 (i.e. D ≤ 4) a larger residual symmetry is
allowed. When n = 2, the constraint (97) is indeed absent, so that supertranslations generated by
an arbitrary T(xi) are allowed. Moreover, in this case, Equation (96) admits locally infinitely many
independent solutions, which generate superrotations. To analyse the n = 1 case, note that both (96)
and (97) are traceless combinations: as a result, they vanish identically when n = 1, so that both vφ(φ)

and T(φ) are arbitrary functions.
The asymptotically conserved charges corresponding to the previous residual symmetries are

given by

Q(u) = lim
r→∞

rn−1
∫

Su
dΩn

{
huu (r∂r + n) ξr +

1
r

γij [ ξi ∂r huj − hui ∂r ξ j − ξrDihuj
]}

, (98)

where the parameters ξμ are understood to satisfy Equations (95) and (96) (together with (97) when
n > 2). The integral is evaluated over the sphere Su at constant retarded time on null infinity as, e.g.,
in Equation (8) (see Appendix A for more details). When n is even, thanks to the limit r → ∞, for fields
satisfying the ansatz (77) Q(u) reduces to

Q(u) = −∑
n−2

2
k = 0 r

n−2k
2
∫

Su
dΩn

{
n+2k+2

2 viU(k)
i +

(
T + u

n D · v
)[

nB(k−1) + n+2k−2
2 r2 D ·U(k)

]}
− ∫

Su
dΩn

{
2n mB

(
T + u

n D · v
)
+ (n + 1) γijvi Nj

}
.

(99)

When n is odd, the only difference is that the extremum of the sum becomes n−3
2 , so that the

following considerations apply verbatim also to this case. As we shall see, at the linearised level,
the u−dependence of the charges will turn out to be fictitious when n �= 2. This is actually expected on
general grounds whenever the charges are computed on exact Killing vectors of the background [37],
as recalled in Appendix A.

The integrals in the first line must vanish in order to have finite asymptotic charges and this is
indeed the case if one considers the relations imposed by the equations of motion. From the form (79)
of the solutions, after integration by parts, one finds that, for each value of k, the first term in the charge
formula (99) contains a contribution proportional to

C(k)
ij D(ivj) = C(k)

ij

(
D(ivj) − 2

n
γijD · v

)
, (100)

where the trace condition γijC(k)
ij = 0 was also used. Similarly, by the relation (78), the second term

in (99), absent when n = 2, gives contributions than can be cast in the form

C(k)
ij D(iDj)

(
T +

u
n

D · v
)
= C(k)

ij

(
D(iDj)T − 2

n
γijΔT

)
+

u
n

C(k)
ij D(iDj)D · v . (101)

This implies that the combination (100) vanishes in any space-time dimension (including n = 2).
The contribution in T in (101) vanishes instead only when n > 2, but this does not cause any problem

285



Universe 2018, 4, 47

since the whole expression is actually absent when n = 2. The last term in Equation (101) vanishes as
well when n > 2, since the divergence of the conformal Killing Equation (96) implies

Δvi =
2− n

n
DiD · v − (n − 1) vi . (102)

Acting with the Laplacian operator on Equation (96) and substituting this identity, one eventually
obtains

(n − 2) D(iDj)D · v + 2 γij (Δ + 2) D · v = 0 , (103)

which implies C(k)
ij D(iDj)D · v = 0 for a traceless C(k)

ij (when n > 2).
Similar arguments allow one to prove that the integral terms in Equation (81) (which are absent

when n is odd—cf. (88)) do not contribute as well to the charges when n > 2. In evaluating the last
line of the charge formula (99), one eventually has to take into account the precise u dependence of Ni
dictated by (81b). For n �= 2, this gives

Q = −
∫

Sn
dΩn

{
2n TM+ (n + 1) viNi

}
, (104)

where the dependence on u in the gauge parameter and in the field precisely cancels. The linearised
Poincaré charges (104) depend on the “integration constants” that specify the Coulomb-type branch of
the solutions of the equations of motion.9 Each integration constant, in its turn, is conjugated in (104)
to one of generators of the asymptotic symmetries. Let us also notice that these asymptotic charges,
due to their constancy in u, should correspond in particular to the charges that one can measure
at spatial infinity. A dependence on the retarded time, reflecting the changes in the total energy of
the system induced by the flux of energy carried by the gravitational radiation, is reinstated when
considering interactions [11,13,28,29,40].

The four-dimensional (n = 2) case requires instead a separate analysis. As we have seen, the linear
divergence in r that appears in the charge (99) in this case vanishes on account of the identity (101) as for
generic n. By substituting the expansions (92) into the second line of Equation (99), one obtains instead

Q(u) = −
∫

Su
dΩn

{
T (4M+ D · D · C) + vi

(
3Ni − u

2
DiD · D · C + Di

∫ u

−∞
du′D · D · C

)}
. (105)

The terms that appear for generic n are reproduced, cf. (104), but there is a sharp difference
with respect to n = 2: the charges now depend also on the boundary data of the radiation part of
the solution, and this brings back a dependence on the retarded time. The charges associated with
ordinary Poincaré transformations, however, still take the same form as in Equation (104). For a
translation, Equation (97) indeed holds also in four dimensions. Similarly, for a Lorentz transformation,
one actually has D(iDj)D · v = 0 also when n = 2. These conditions are instead not satisfied by
the T and vi generating supertranslations and superrotations, respectively (see e.g. [43]). In the
latter case, in particular, in order for the charges to be well defined, one should impose in addition
suitable boundary conditions on DiD · D · C at the past boundary of null infinity. The corresponding
dependence on Cij in the asymptotic charges is instrumental in deriving Weinberg’s soft graviton
theorem from the Ward identities of the supertranslation symmetry [5].10

9 The same expression for the charges holds also when the dimension of spacetime is equal to three, and it corresponds
to the natural presentation of Q that one obtains in the Chern–Simons formulation of three-dimensional gravity (see e.g.
Section 4.2 of [42]). The only difference is that when n = 1 T and vi are arbitrary functions of the angular coordinate φ on
the circle at null infinity.

10 While this work was under completion, analogous, u-dependent asymptotic charges, associated with infinite-dimensional
asymptotic symmetries in any even space-time dimension, were presented in [19]. In addition, in this case, the arbitrary
function on the sphere generating the residual symmetry is conjugated to the boundary data of the radiation branch.
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4. Spin 3

We now consider a single spin-3 field on a Minkowski background and we prove that the boundary
conditions at null infinity proposed in [1] give finite higher-spin charges in any space-time dimension.
We work in the linearised theory, postponing to future work an analysis of the possible effects of the
known cubic vertices11 on the asymptotic charges and their canonical algebra.

4.1. Boundary Conditions

Following [1], we bound the spin-three field to satisfy the “Bondi-like gauge”

ϕrμν = 0 , γij ϕijμ = 0 , ⇒ gμν ϕμνρ = 0 , (106)

which is a natural generalisation of the Bondi gauge (63) that we used in the analysis of linearised
gravity. As in the latter case, the conditions (106) cannot be reached with an off-shell gauge fixing,
but the number of constraints is the same as in the transverse-traceless gauge. We therefore assume that
they can be imposed in a neighbourhood of null infinity and consider the reduced Fronsdal equations12

Fμνρ = �ϕμνρ −∇(μ∇ · ϕνρ) = 0 . (107)

The expansion of (107) in Bondi coordinates has been presented in Appendix A of [1], and can be
extracted from the general spin-s expressions presented below in Equations (140) and (141). Following
the same logic as in the previous section, one can substitute a power-law ansatz in the equations of
motion and realise that they are satisfied at the leading order provided that

ϕuuu = O(r−
n
2 ) , ϕuui = O(r−

n
2 +1) , ϕuij = O(r−

n
2 +2) , ϕijk = O(r−

n
2 +3) . (108)

These are the fall-off conditions that have been proposed in [1]; in the following, we shall exhibit
the full solution of the linear equations of motion with these falloffs and we prove that it carries
finite and non-trivial conserved spin-three charges at null infinity. As for gravity, the charges actually
depend on the subleading terms at order r1−n. We shall analyse separately even and odd space-time
dimensions also in this case, while discussing in a dedicated subsection the main peculiarities emerging
in three and four dimensions.

4.1.1. Even Space-Time Dimension

When n is even, we then consider the following ansatz for the fields in the Bondi gauge (106):

ϕuuu =
∞

∑
l = 0

r−
n
2 −l B(l)(u, xm) , ϕuui =

∞

∑
l = 0

r−
n
2 −l+1U(l)

i (u, xm) , (109a)

ϕuij =
∞

∑
l = 0

r−
n
2 −l+2V(l)

ij (u, xm) , ϕijk =
∞

∑
l = 0

r−
n
2 −l+3C(l)

ijk (u, xm) , (109b)

with γijV(l)
ij = γijC(l)

ijk = 0. This choice is further motivated by the observation that, in complete
analogy with the lower-spin cases, a solution of this type gives rise to a generically non-zero energy
flux through null infinity:

P(u) = lim
r→∞

∫
Su

(Tuu − Tur) rndΩn =
∫

Su
γi1 j1 γi2 j2 γi3 j3 Ċ(0)

i1i2i3
Ċ(0)

j1 j2 j3
dΩn , (110)

11 For recent works and extensive references, see [44–49].
12 Actually Equation (107), as well as its counterpart (139) for spin s, follows from the Lagrangian equations of an alternative

formulation for massless particles of any spin [50–52].
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where Tμν denotes the energy-momentum tensor of the solution (see Section 5 for more details). It can
be therefore interpreted as a spin-three wave reaching null infinity.

Substituting the ansatz (109) in the equations Frμν = 0, one obtains

B(k) =
2(n + 2k − 2)

(n + 2k)(n − 2k − 2)
D ·U(k) for k �= n − 2

2
, (111a)

U(k)
i =

2(n + 2k)
(n + 2k + 2)(n − 2k)

D · V(k)
i for k �= n

2
, (111b)

V(k)
ij =

2(n + 2k + 2)
(n + 2k + 4)(n − 2k + 2)

D · C(k)
ij for k �= n + 2

2
. (111c)

In the cases excluded from the previous formulae, the coefficients in front of, respectively, B( n−2
2 ),

U( n
2 ) and V( n+2

2 ) vanish and the equations of motion imply instead

(n − 2) D · D · D · C( n−2
2 )

= 0 , D · D · C( n
2 )

i = 0 , D · C( n+2
2 )

ij = 0 . (112)

The factor (n − 2) in the first constraint shows that C(0) remains arbitrary even when n = 2.
Substituting the same ansatz in the equation Fijk = 0, one obtains, for l �= n+2

2 ,

Ċ(l+1)
ijk = − 1

2(l + 1)

{ [
Δ − n(n − 2)

4
+ l(l + 1)− 3

]
C(l)

ijk

− 4
(n + 2l + 4)(n − 2l + 2)

[
(n + 2) D(iD · Cjk)

(l) − 2 γ(ijD · D · Ck)
(l)
] }

.
(113)

The value of l excluded from this expression shows that from there on the tensors C(l) also depend
on V( n+2

2 ),

Ċ( n+4
2 )

ijk =
1

n + 4

{
D
(iV

( n+2
2 )

jk) − 2
n + 2

γ
(ij D · V( n+2

2 )

k) − (Δ + 2n − 1)C( n+2
2 )

ijk

}
, (114)

although—as for gravity—these terms will not play any role in the analysis of the linearised charges.
The u-evolution of B( n−2

2 ), U( n
2 ) and V( n+2

2 ) is fixed instead by the equations Fuμν = 0 (with μ, ν �= r) as

B( n−2
2 ) = M− n − 3

6(n + 1)n

∫ u

−∞
du′(Δ − n + 2) D · D · D · C( n−4

2 ), (115a)

U( n
2 )

i = Ni +
u

n + 2
∂iM− n − 1

2(n + 1)(n + 2)

∫ u

−∞
du′(Δ − 1) D · D · C( n−2

2 )
i

− n − 3
6n(n + 1)(n + 2)

∫ u

−∞
du′

∫ u′

−∞
du′′ Di (Δ − n + 2) D · D · D · C( n−4

2 ) , (115b)

V( n+2
2 )

ij = Pij +
u

n + 3

(
D(i Nj) −

2
n

γijD · N
)
+

u2

2(n + 2)(n + 3)

(
D(iDj)M− 2

n
γij ΔM

)
− n + 1

(n + 2)(n + 3)

∫ u

−∞
du′(Δ + n − 2) D · C( n

2 )
ij + · · · . (115c)

The omitted terms in the last equation correspond to the multiple integrals in the retarded time
that one obtains by integrating the differential equation

V̇( n+2
2 )

ij =
1

n + 3

{
D
(iU

( n
2 )

j) − 2
n

γij D ·U( n
2 ) − n + 1

n + 2
(Δ + n − 2) D · C( n

2 )
ij

}
(116)
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given by the equation Fuij = 0. At any rate, in Section 4.2, we shall show that all integrals in these
expressions do not contribute to the linearised charges, provided that one impose suitable regularity
conditions that make them finite.

The relevant terms to determine the charges are therefore those depending on the “integration
constants” M, Ni and Pij, which actually admit an arbitrary dependence on the coordinates xm on
the sphere at null infinity. They all appear at order rn−1 in the expansions (109) and enter (115) in
combinations with a fixed polynomial dependence on the retarded time u. For all other powers
of 1/r, the equations Fuμν = 0 (with μ, ν �= r) reduce to divergences of Equation (113) and are
therefore identically satisfied (see (151) below for more details). As in the examples with lower spin,
the divergences of Equation (113) also imply the constraints (112) (to be more precise their derivative
in u). As a result, the latter do not impose any further condition on the C(l) with lower values of l.
Let us stress that some of the considerations above are valid only for n > 2; see Section 4.1.3 for a
discussion of the four- and three-dimensional cases.

4.1.2. Odd Space-Time Dimension

In complete analogy with linearised gravity, when n is odd, one has to add further terms to the
ansatz (109) in order to obtain non-trivial asymptotic charges at null infinity. We therefore consider
the ansatz

ϕuuu = ϕuuu[B] +
∞

∑
l = 0

r1−n−l B̃(l)(u, xm) , ϕuui = ϕuui[U] +
∞

∑
l = 0

r1−n−lŨ(l)
i (u, xm) , (117a)

ϕuij = ϕuij[V] +
∞

∑
l = 0

r1−n−lṼ(l)
ij (u, xm) , ϕijk = ϕijk[C] +

∞

∑
l = 0

r1−n−l C̃(l)
ijk (u, xm) , (117b)

where ϕuuu[B], etc. denote the terms introduced in the expansions (109), which are still necessary if
one desires to describe radiation, that is if one wishes to have a non-vanishing energy flux through
null infinity (which is still given by Equation (110)). The new contributions to the expansion of the
field components satisfy γijṼ(l)

ij = γijC̃(l)
ijk = 0. Since n is odd, all factors entering the expansion of the

equations of motion in powers of
√

r are different from zero. As a result, the tensors B(l), U(l) and V(l)

satisfy the same conditions as in (111), but without any constraint on the allowed values of l. Similarly,
the tensors C(l) satisfy Equation (113) for any l. The tensors appearing at the leading order of the new,
Coulomb-like branch of our ansatz must satisfy

B̃(0) = M , Ũ(0)
i = Ni +

u
n + 2

∂iM , (118a)

Ṽ(0)
ij = Pij +

u
n + 3

(
D(i Nj) −

2
n

γijD · N
)
+

u2

2(n + 2)(n + 3)

(
D(iDj)M− 2

n
γij ΔM

)
, (118b)

on account of the equations of motion Fuμν = 0 (with μ, ν �= r). Notice the similarity with
Equation (115): the only difference is that, when n is odd, there is no contribution from the data
of the solution that encode radiation (here stored in the

√
r branch). As we shall see below, the latter

terms anyway do not contribute to the linearised charges. The subleading O(r−n) terms in our ansatz
do not contribute as well to the linearised charges. For this reason, we refrain from displaying here the
relations that they have to satisfy in order to solve the equations of motion. The interested reader can
extract them from the general expression (156) presented in Section 5.

4.1.3. Three and Four Space-Time Dimensions

When n = 1 or n = 2, the previous analysis has to be modified, in complete analogy with what
we have seen for spin two. We begin by revisiting the four-dimensional case, where, in the component
ϕuuu, the leading order of the radiation and of the Coulomb-like solutions now coincide. Moreover,
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the equation Fruu = 0 does not impose any constraint on the triple divergence of C(0). As a result,
the equations fixing the dependence on u of B(0), U(1) and V(2) are slightly modified as follows:

B(0) = M+
1
6

D · D · D · C(0) , (119a)

Ui
(1) = Ni +

u
4

∂iM− 1
24

∫ u

−∞
du′

[
(Δ − 1) D · D · Ci

(0) − 2 DiD · D · D · C(0)
]

, (119b)

Vij
(2) = Pij +

u
5

(
D(i Nj) − γijD · N

)
+

u2

40

(
D(iDj)M− γij ΔM

)
+ · · · . (119c)

M, Ni and Pij are arbitrary functions of xi as in Equation (115) while in (119c) we omitted the integrals
that are obtained by the substitution of the previous formulae in the differential Equation (116),
which is not modified even when n = 2. In analogy with the spin-two case, the additional
terms in D · D · D · C(0) will be instrumental in building the charges associated with the spin-three
generalisations of supertranslations and superrotations identified in [1].

When n = 1, the radiation branch becomes again subleading with respect to the Coulomb-type
one in ϕuuu. Moreover, fields of spin greater than one do not propagate local degrees of freedom in three
dimensions. It is therefore natural to ignore the radiation branch and work with boundary conditions
that only encompass Coulomb-type solutions of the equations of motion. The only non-vanishing
components of the field in the Bondi gauge (106) are

ϕuuu = M(φ) +O(r−1) , ϕuuφ = N (φ) +
u
3

∂φM(φ) +O(r−1) , (120)

where φ denotes again the angular coordinate on the circle at null infinity and we already included the
constraints on the leading terms imposed by the equations of motion. The same conditions on the field
ϕμνρ have been previously obtained in [53,54] by translating boundary conditions proposed in the
Chern–Simons formulation of three-dimensional spin-three gravity. The latter were designed to obtain
asymptotic symmetries given by a contraction of the W3 ⊕W3 algebra of asymptotic symmetries of
spin-three gravity in AdS3 [55]. In analogy with the metric-like analysis performed in AdS3 in [56],
in the following we will recover the same infinite dimensional symmetries within our setup.

4.2. Asymptotic Symmetries and Charges

We now recall the key features of gauge transformations preserving the fall-off conditions (108),
which have been identified in [1]. Our current goal is to prove that the linearised charges associated
with these asymptotic symmetries are finite. In Appendix A, we show that, in the Bondi gauge (106),
the charges are expressed in terms of the fields and the parameters of asymptotic symmetries as

Q(u) = − lim
r→∞

rn−1

2

∫
Su

dΩn

{
r ϕuuu ∂r ξrr + ξrr (r∂r + 2n) ϕuuu − 2

r
ξrrD · ϕuu

− 2
r2 γij

[
ϕuui (r∂r + n) ξrj − 1

r
ξriD · ϕuj

]
+

1
r3 γikγjl [ ϕuij ∂r ξkl − ξij ∂r ϕukl

] }
.

(121)

As we shall see, also in this case at the linearised level the u−dependence of the charges will turn
out to be fictitious when n �= 2. (For n > 2, this is due to the fact that the only symmetries are exact
symmetries of the background.) As far as the computation of charges is concerned, the only relevant
components of the gauge parameters generating the residual gauge symmetry are
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ξrr = T − 2u
n + 1

D · ρ +
u2

(n + 1)(n + 2)
D · D · K , (122a)

ξri = r2
(

ρi − u
n + 2

D · Ki

)
+

r
2

Diξrr , (122b)

ξij = r4 Kij + r
(

D(iξ j)r −
2

n + 1
γij D · ξr

)
− r2

4

(
D(iDj)ξrr − 2(n + 3)

(n + 1)(n + 2)
γij

(
Δ +

2(n + 1)
n + 3

)
ξrr

)
.

(122c)

Here, Kij, ρi and T are tensors defined on the sphere at null infinity, which generalise the vector vi
and the function T that characterised the asymptotic symmetries of linearised gravity in Equation (95).
They thus depend only on the coordinates xm, while all dependence on u is explicit in the expressions
above, which have been determined assuming an expansion in powers of r and u. The remaining
components ξuu, ξur and ξui are also non-vanishing and depend on Kij, ρi and T. We refer to [1] for
their explicit expressions.

The tensors Kij, ρi and T that characterise the asymptotic symmetries are not arbitrary: for n > 2,
they are bound to satisfy the differential equations

Kijk ≡ D(iKjk) −
2

n + 2
γ(ijD · Kk) = 0 , γijKij = 0 , (123)

Rijk ≡ D(iDjρk) −
2

n + 2

(
γ(ijΔρk) + γ(ij

{
Dk), Dl

}
ρl
)
= 0 , (124)

Tijk ≡ D(iDjDk)T − 2
n + 2

(
γ(ijΔDk)T + γ(ij

{
Dk), Dl

}
DlT

)
= 0 . (125)

When the dimension of spacetime is equal to four, i.e., when n = 2, the last condition does
not apply and the function T(xm) is instead arbitrary [1]. In this case, the corresponding symmetry
is the analogue of gravitational supertranslations. Equation (123) generalises the conformal Killing
Equation (96) and states that Kij is a conformal (traceless) Killing tensor of rank-two on the celestial
sphere (see e.g. [57]). For n > 2, this equation admits a finite number of solutions, while, when n = 2,
locally there are infinitely many solutions, generalising gravitational superrotations. The same is
true for the less familiar Equation (124) satisfied by ρi: when n > 2, it admits a finite number of
solutions, while, for n = 2, locally one can build infinitely many independent solutions. For the details,
we refer again to [1]. All combinations above are traceless: as a result, they vanish identically when the
dimension of spacetime is equal to three, i.e., when n = 1. This implies that, in three dimensions, T(φ)
and ρ(φ) are arbitrary functions, while the symmetry generated by the traceless Kij is actually absent.

Substituting the gauge parameters (122) into the expression for the charges (121), one obtains

Q(u) = lim
r→∞

rn−1

2

∫
Su

dΩn

{
χ

(
T − 2u

n + 1
D · ρ +

u2

(n + 1)(n + 2)
D · D · K

)
+ χi

(
ρi − u

n + 2
D · Ki

)
+ χijKij

}
,

(126)
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with

χ = − (r∂r + 2n) ϕuuu − n − 1
r

D · ϕuu +
1
2r

∂rD · D · ϕu , (127a)

χi = 2(n + 2) ϕuui − 2
r
(r∂r − 2) D · ϕui , (127b)

χij = (r∂r − 4) ϕuij . (127c)

The next task is to evaluate the charge (126) on the solutions of the equations of motion discussed
above. For n even and greater than two Equations (111), (112) and (115) lead to

χ = −
n−4

2

∑
k = 0

r−
n
2 −k n + 2k − 2

2(n − 2k − 2)
D · D · D · C(k) − r1−n(n + 1)M

+ r1−n n − 3
6n

∫ u

−∞
du′(Δ − n + 2) D · D · D · C( n−4

2 ) + o(r1−n) , (128a)

χi =

n−2
2

∑
k = 0

r−
n
2 −k+1 2(n + 2k)

n − 2k
D · D · Ci

(k) + 2 r1−n
{
(n + 2)Ni + u ∂iM

}
+ o(r1−n)

− r1−n

n + 1

∫ u

−∞
du′

{
(n − 1) (Δ − 1) D · D · Ci

( n−2
2 ) +

n − 3
3n

∫ u′

−∞
du′′Di(Δ − n + 2) (D·)3C( n−4

2 )
}

, (128b)

χij = −
n
2

∑
k = 0

r−
n
2 −k+2 n + 2k + 2

n − 2k + 2
D · Cij

(k) (128c)

− r1−n
{
(n + 3)Pij + u

(
D(i Nj) −

2
n

γijD · N
)
+

u2

2(n + 2)

(
D(iDj)M− 2

n
γij ΔM

)}
+ · · · ,

where, in (128c), besides the terms o(r1−n), we also omitted the integrals in the retarded time that
one obtains by substituting (115c). For n = 2, the first two expressions are modified as follows:

χ = −1
r

{
3M+

1
2

D · D · D · C(0)
}
+O(r−2) , (129a)

χi = 2 D · D · Ci
(0) +

2
r

{
4Ni + u ∂iM+

1
6

∫ u

−∞
du′

[
(Δ − 1) D · D · Ci

(0) − 2 DiD · D · D · C(0)
]}

+O(r−2) . (129b)

The correct χij is instead obtained by setting n = 2 in (128c) and by correcting the integral terms
according to (119c). For n odd, the extrema of the sums become, respectively, n−3

2 , n−1
2 and n+1

2 ,
while the terms in the second lines of Equations (128) are absent.

Looking only at the r-dependence, the sums in the previous formulae would give a divergent
contribution to the charges. These vanish, however, thanks to the differential constraints on the
parameters in (123), (124) and, when, n > 2, (125). Let us begin by exhibiting this mechanism in the
simplest case: the term χijKij in the charge (126) contains divergent contributions that, integrating by
parts, can be cast in the form

C(l)
ijk D(iKjk) = C(l)

ijk

{
2

n + 2
γ(ijD · Kk) −Kijk

}
= 0 , (130)

where we recall that Kijk is the shortcut introduced in (123) to denote the differential equation satisfied
by Kij. This cancellation is the analogue of the one involving the conformal Killing equation in linearised
gravity: it holds because the conformal Killing tensor equation allows for substituting the symmetrised
gradient with a term in γij and the tensors C(l) are traceless. The next cancellation is slightly more
involved: integrating by parts one obtains
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∫
Su

dΩn χi
(

ρi − u
n + 2

D · Ki

)
∼ ∑

[
n − 1

2
]

l = 0 r
−n

2
−l∫

Su
dΩn C(l)

ijk

(
D(iDjρk) − u

n + 2
D(iDjD · Kk)

)
+ · · · . (131)

To cancel the contribution in ρi, one can use Equation (124), which again allows one to substitute
the symmetrised gradient with a term in γij. To cancel the contribution in Kij, one can instead use the
following consequence of the conformal Killing tensor Equation (123):

D(iDjD · Kk) = − 2 γ(ijD · Kk) +
3

n + 1
γ(ijDk)D · D · K

− n + 2
n

{
ΔKijk − D(iD · Kjk) +

1
n + 1

γ(ijD · D · Kk) + (n − 3)Kijk

}
.

(132)

Similar considerations apply to the integral terms in the second line of (128b). The remaining
contribution in the charge formula (126) contains three addenda whose divergent parts can be cast in
the following form by integrating by parts:

C(l)
ijk D(iDjDk)T , C(l)

ijk D(iDjDk)D · ρ , C(l)
ijk D(iDjDk)D · D · K . (133)

These terms are actually absent when n = 2. For n > 2, the first contribution vanishes thanks
to the differential constraint (125). The other two types of terms vanish thanks to the following
consequences of the equations satisfied by ρi and Kij:

D(iDjDk)D · ρ =
2

n + 2
γ(ijDk) (3Δ + 2(n − 1)) D · ρ + terms in Rijk , (134a)

D(iDjDk)D · D · K = − 8 γ(ijDk)D · D · K + terms in Kijk . (134b)

The precise form of the omitted terms is displayed in Equations (B.8) and (B.9) of [1].
We have therefore proven that, in the Bondi gauge (106), a spin-three field with the falloffs (108)

at null infinity given in [1] and satisfying the Fronsdal equations up to the contributions of order rn−1

to its components admits finite asymptotic linearised charges. For any n > 2, these depend on the
“integration constants” specifying the solution as

Q = −1
2

∫
Sn

dΩn

{
(n + 1) TM− 2(n + 2) ρiNi + (n + 3)KijPij

}
, (135)

where M, Ni and Pij are the tensors on the sphere at null infinity introduced in Equation (115) (cf. (118)
for n odd). As anticipated, the charges are constant along null infinity when the dimension of spacetime
is greater than four. The same is true also in three dimensions: in this case, both Kij and Pij are not
present and the asymptotic charges take the form

Q = −
∫

dφ
{

T(φ)M(φ)− 3 ρ(φ)N (φ)
}

, (136)

in agreement with the result derived in the Chern–Simons formulation [53,54]. When the dimension
of spacetime is equal to three or bigger than four, with our boundary conditions, the spin-three
charges thus display a structure very similar to that of the corresponding charges computed on anti de
Sitter backgrounds in [58]. The latter, indeed, in the limit of vanishing cosmological constant should
reproduce the flat-space charges at spatial infinity.
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When n = 2, the modifications in the dependence on u of the leading terms in the
Coulomb-type solution recalled in Equation (119) (and (129)) lead to the following expression for the
asymptotic charges:

Q(u) = −1
2

∫
Su

dΩn

{
3 T

(
M+

1
6

D · D · D · C(0)
)
− 8 ρiNi + 5 KijPij + · · ·

}
. (137)

In this formula, we omitted other u–dependent terms in C(0), whose form is not particularly
illuminating and can be readily obtained by substituting (129) in (126). The main information is
anyway that in four dimensions a dependence on the retarded time appears already in the linearised
theory, thanks to the contribution to the charges of the radiation solution. As shown in [1], where the
terms in T in the charge (137) have been actually already presented, the dependence on radiation data
is instrumental in deriving Weinberg’s theorem for spin-three soft quanta from the Ward identities of
the supertranslation symmetry generated by the arbitrary function T(xi).

5. Arbitrary Spin

In this section, we first extend to arbitrary values of the spin the analysis of the linearised equations
of motion displayed in Sections 3 and 4 for fields of spin two and three. We then perform a preliminary
study of the residual gauge symmetry preserving the form of the solutions. In particular, we fix the
structure of asymptotic symmetries to leading order in an expansion in powers of r. This allows us
both to exhibit some examples of on-shell cancellations of divergent contributions to the charges and
to propose a general expression for their finite part in terms of the integration constants, arising after
integration over u, which specify the solutions. This allows us to motivate a proposal for boundary
conditions giving finite asymptotic spin-s charges in Minkowski backgrounds of any dimension.

5.1. Boundary Conditions

In the retarded Bondi coordinates (1), we study Fronsdal’s equations in the “Bondi gauge”
defined by

ϕrμ1···μs−1 = 0 , γij ϕijμ1···μs−2 = 0 . (138)

These constraints imply that the fields are traceless, so that Fronsdal’s tensor take the Maxwell-like
form [51]

Fμs = �ϕμs −∇μ∇ · ϕμs−1 . (139)

Here and in the following, groups of symmetrised indices are denoted by a single Greek letter
with a label indicating the total number of indices, so that, e.g., ϕμ1···μs → ϕμs ; repeated indices denote
instead a symmetrisation involving the minimum number of terms needed and without any overall
factor, so that, e.g., AμBμ ≡ Aμ1 Bμ2 + Aμ2 Bμ1 . For more details, see [59]. As before, we also assume
that their solutions can be expanded in (half-integer) powers of r−1 in a neighbourhood of null infinity.

Equation (138) also implies that all components of the Fronsdal tensor with at least two radial
indices vanish identically. The components with a single radial index read instead

Fr us−k−1ik =
1
r2

{
r2∂2

r + (n − 2k) r∂r − 2k(n − 1)
}

ϕus−kik −
1
r3 (r∂r − 2k) D · ϕus−k−1ik . (140)

The remaining components, without any radial index, are

Fus−kik =
1
r
{(s − k − 2) r∂r + n(s − k − 1) + 2k} ϕ̇us−kik −

s − k
r2 D · ϕ̇us−k−1ik

+
1
r2

{[
Δ + r2∂2

r + (n − 2k) r∂r − k(n − k)
]

ϕus−kik − DiD · ϕus−kik−1

}
+

1
r

{
(r∂r + n − 2) Di ϕus−k+1ik−1

+ 2 γiiD · ϕus−k+1ik−2

}
− 2 (r∂r + n − 1) γii ϕus−k+2ik−2

.

(141)
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We begin by studying the previous equations for n even. In this case, we employ the ansatz

ϕus−kik =
∞

∑
l = 0

r−
n
2 +k−lCik

(k,l)(u, xm) . (142)

As in the previous examples, the leading behaviour of our ansatz is designed to give a finite flux
of energy per unit time across the sphere Su at fixed u, a feature that we interpret as radiation crossing
null infinity. The canonical energy-momentum tensor of the Fronsdal Lagrangian in Bondi gauge,

L =
1
2

ϕμs
(
�ϕμs −∇μ∇ · ϕμs−1 + ημμ∇ · ∇ · ϕμs−2

)
, (143)

reads indeed
Tαβ = ∇α ϕμs∇β ϕμs − s∇ · ϕμs−1∇β ϕαμs−1 + ηαβL . (144)

The corresponding power flowing through null infinity is then

P(u) = lim
r→∞

∫
Su

(Tuu − Tur) rndΩn =
∫

Su
γi1 j1 · · · γis js Ċ(s,0)

i1···is Ċ
(s,0)
j1···js dΩn . (145)

When substituting the ansatz (142), the components Frμs−1 of the Fronsdal tensor vanish
provided that

Cik
(k,l) =

2 [n + 2(k + l − 1)]
[n + 2(k + l)] [n + 2(k − l − 1)]

D · Cik
(k+1,l) for l �= n

2
+ k − 1 , (146)

while, for l = n/2 + k − 1, the equations of motion imply

(n + 2k − 2)D · Cik
(k+1, n

2 +k−1) = 0 . (147)

In the formula above, we exhibited the factor emerging in the computation that vanishes when
n = 2 and k = 0. This anticipates that the peculiarities of the four-dimensional case that we encountered
before persist for arbitrary values of the spin. At any rate, Equation (146) shows that, for all even
values of n, the tensors entering the ansatz (142) are fixed in terms of the C(s,l), with the exception of

Cik
(k, n

2 +k−1) ≡ Qik
(k) for k < s . (148)

The tensors C(s,l) are then determined (up to integrations constants) in terms of an arbitrary tensor
C(s,0)(u, xm) via the equation Fis = 0, which gives

Ċis
(s,l+1) = − 1

2(l + 1)

{ [
Δ − n(n − 2)

4
+ l(l + 1)− s

]
Cis

(s,l)

− 4(n + 2s − 4)
[n + 2(s + l − 1)][n + 2(s − l − 2)]

[
DiD · Cis−1

(s,l) − 2
n + 2s − 4

γiiD · D · Cis−2
(s,l)

] }
.

(149)

The remaining components of the equations of motion fix the u-evolution of the tensors Q(k)

defined in Equation (148). To this end, it is convenient to expand the Fronsdal tensor in powers of r−1.
When the ansatz (142) holds, one has

Fus−kik [C] =
∞

∑
l = 0

r−
n
2 +k−l−1Fik

(k,l)(u, xm) (150)

and, when the equations Frμs−1 = 0 are satisfied, one can recast the expansion in the following form:
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Fus−kik =
∞

∑
l = 0

l �= n
2 +k−2

2 r− n
2 +k−l−2

n + 2(k − l − 2)
D · Fik

(k+1,l+1)

+ r−n
{
(n + s + k − 2)Q̇ik

(k) − DiQik−1
(k−1) +

2
n + 2k − 4

γiiD · Qik−2
(k−1)

+
n + 2k − 3

(s − k)!(n + s + k − 3)
[Δ + k(k − 4) + n(k − 1) + 2] (D·)s−kC(s, n

2 +k−2)
}

.

(151)

This implies that, on shell, the Q(k) are n-divergences as the other C(k,l), however up to a set of
integrations constants M(k)(xm). The second line of Equation (151) actually dictates that Q(k) depends
on the integrations constants of all Q(l) with l < k with a precise polynomial dependence on u. As we
have seen in the previous examples, this is instrumental in making the independence on the retarded
time of the asymptotic charges explicit. Concretely, the Q(k) depend on the integrations constants as

Qik
(k) =

k

∑
l = 0

(n + s + k − l − 2)!
l!(n + s + k − 2)!

ul Di · · · Di︸ ︷︷ ︸
l terms

Mik−l
(k−l) + · · · . (152)

In this formula, we omitted both the terms in M(k−l) that make the expression above traceless
and the terms in the C(k,l) resulting from the integration of Equation (151). Both types of contributions
anyway will not contribute to the asymptotic charges when n > 2. When n = 2, Equation (151) has to
be modified in analogy with the discussions in Sections 3.1.3 and 4.1.3, since (D·)sC(0) does not vanish
anymore.

When n is odd, one has to consider an ansatz containing both integer and half-integer powers of r.
For n > 1, we set

ϕus−kik =
∞

∑
l = 0

r−
n
2 −l+kC(k,l)(u, xm) +

∞

∑
l = 0

r1−n−l C̃(k,l)(u, xm) , (153)

so that the leading order has the same form as in the ansatz (142). Equation (145) thus guarantees
that we have a finite flux of energy per unit time across Su in this case too. When n = 1, consistently
with the absence of propagating degrees of freedom for fields of spin s > 1 in three dimensions,
the radiation branch of the solution becomes subleading in the field component with only u indices
and we will ignore it as in the examples with spin two and three. Notice that, due to the trace constraint
in (138), in this case, the only non-vanishing components of the field are

ϕus = M(s)(φ) +O(r−1) , ϕus−1φ = N (s)(φ) +
u
s

∂φM(s)(φ) +O(r−1) . (154)

The boundary conditions therefore contain only two arbitrary functions for each value of the spin,
in analogy with what happens in AdS3 [55,56,60–62].

The equations Frμs−1 = 0 imply the relations (146) also when n is odd and greater than one, but
without any limitation on the allowed values of k. The leading order of the Coulomb branch is instead
not constrained by these equations, so that we can define

C̃(k,0) ≡ Q(k) for k < s . (155)

The remaining C̃(k,l) are again fixed in terms of the C̃(s,l) by Equation (146), provided that one
identifies C̃(k,l) = C(k, n

2 +k+l−1), which is

C̃(k,l+1) = − n + 2k + l − 1
(l + 1)(n + 2k + l)

D · C̃(k+1,l) . (156)
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Performing the same substitution in Equation (149) gives the relation fixing all C̃(s,l) in terms of an
arbitrary C̃(s,0)(u, xm) (again up to integration constants).

Expanding the contributions to the Fronsdal tensor of the terms with integer powers of r as

Fus−kik [C̃] =
∞

∑
l=0

r−n−lF̃(k,l)(u, xm) , (157)

one eventually obtains

Fus−kik =
∞

∑
l = 0

2 r− n
2 +k−l−2

n + 2(k − l − 2)
D · Fik

(k+1,l+1) −
∞

∑
l = 0

r−n−l−1

l + 1
D · F̃ik

(k+1,l)

+ r−n
{
(n + s + k − 2)Q̇ik

(k) − DiQik−1
(k−1) +

2
n + 2k − 4

γiiD · Qik−2
(k−1)

}
.

(158)

As a result, when n is odd, the Q(k) satisfy a relation analogous to Equation (152), where the
omitted terms, which anyway do not contribute to the charges, are actually absent.

By analogy with the examples of spin two and three, one is led to conclude that, in the Bondi
gauge (138), the boundary conditions to be imposed on a spin-s field in order to obtain finite asymptotic
charges for any D, even or odd, are the following:

ϕus−kik =
[ n+1

2 ]+k−2

∑
l = 0

r−
n
2 +k−l 2s−k(n + 2(k − l − 2))!!(n + 2(k + l − 1))

(n + 2(s − l − 2))!!(n + 2(s + l − 1))
(D·)s−kCik

(s,l)

+ r1−nQik
(k) +O(r−

n
2 −[ n

2 ]) ,

(159)

where the C(k,l) satisfy (146), while the Q(k) satisfy (152). In this work, we do not perform a complete
analysis of the asymptotic symmetries for fields of arbitrary spin. Still, we can provide support to the
correctness of the boundary conditions (159) by showing that they lead to the cancellation of some of
the potentially divergent contributions to the linearised charges, while also proving that the Q(k) give
a finite contribution to them. This is the goal of the next section.

5.2. Asymptotic Symmetries and Charges

In order to preserve the boundary conditions (159), the variations of the field components in
Bondi coordinates,

δϕrs−k−lul ik = l ξ̇rs−k−l ul−1ik +
s − k − l

r
(r∂r − 2k) ξrs−k−l−1ul ik

+ Diξrs−k−l ul ik−1
− 2r γiiξrs−k−lul+1ik−2

+ 2r γiiξrs−k−l+1ul ik−2
,

(160)

must satisfy (for n ≥ 2)
δϕrμs−1 = 0 , δϕus−kik = O(r−

n
2 +k) . (161)

When n = 1, one should have instead δϕus = O(1) and δϕus−1φ = O(1), while all other variations
must vanish.

From the examples discussed in the previous sections, we are led to consider the ansatz

ξrs−k−l−1ul ik = r2k+lλik
(k,l)(u, xm) +O(r2k+l−1) . (162)

Under these conditions, the terms in the second line of the variations (160) become subleading for
l > 0, while the first line gives a first-order differential equation in u which fixes the u-dependence of
the λ(k,l). To proceed, one can notice that the gauge parameters generating the residual symmetry must
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be both divergenceless and traceless. These constraints are indeed necessary to leave the gauge-fixed
version (139) of the equations of motion invariant. They imply

∇ · ξrs−k−l−1ul−1ik = − ξ̇rs−k−lul−1ik −
1
r
(r∂r + n) ξrs−k−l−1ul ik +

1
r2 D · ξrs−k−l−1ul−1ik

− s − k − l − 1
r3 ξ ′

rs−k−l−2ul−1ik +
1
r
(r∂r + n) ξrs−k−lul−1ik = 0 ,

(163)

and
ξrs−k−l ul−1ik − 2 ξrs−k−l−1ul ik +

1
r2 ξ ′

rs−k−l−2ul−1ik = 0 , (164)

where we denoted with a prime a contraction with the n-dimensional metric γij. Combining this
information with the requirement that the variations (160) vanish at leading order, one obtains

λ̇ik
(k,l) +

s − k − l − 1
n + s + k − 2

D · λik
(k+1,l) = 0 , (165)

which, as anticipated, fixes the u-dependence of the leading order in the expansion in powers of r.
From now on, we focus on the components of the gauge parameter that are relevant to the

computation of asymptotic charges. In Appendix A, we shall show that, in the Bondi gauge (138), they
can be expressed in terms of the non-vanishing field components as

Q(u) = − lim
r→∞

∫
Su

rn−1dΩn

(s − 1)!

s−1

∑
p= 0

(
s − 1

p

){
ϕus−pip (r∂r + n + 2p) ξus−p−1ip

+ ξus−p−1ip

[
(s − p − 2) (r∂r + n) ϕus−pip −

s − p − 1
r

D · ϕus−p−1ip

] }
.

(166)

Therefore, they only depend on the components ξrs−k−1ik = (−1)s−k−1ξus−k−1 ik of the gauge
parameters of asymptotic symmetries. According to Equations (162) and (165), these satisfy

ξrs−k−1ik = r2k

(
Kik

(k) +
s−k−1

∑
m= 1

(−1)mum

(n + s + k − 2)m

(
s − k − 1

m

)
(D·)mKik

(k+m)

)
+O(r2k−1) , (167)

where the tensors K(k)(xm) only depend on the coordinates on the n-dimensional sphere at null infinity,
while (a)n ≡ a(a + 1) · · · (a + n − 1) is the Pochhammer symbol. Moreover, at the leading order in r,
Equation (164) implies that the K(k) are traceless (with respect to contractions with γij). This implies
that, in three dimensions, only K(0) and K(1) are actually present, in analogy with the corresponding
reduction in the number of integration constants.

The tensors K(k) must also satisfy suitable differential constraints, which generalise those
displayed in Equations (123) and (124) for the spin-three case. To identify them, it is convenient
to focus on the variations of the field components without any u index. The absence of u-derivatives
indeed allows one to study the resulting equations order by order in an expansion in powers of u.
We can thus introduce the following expansion of the relevant components of the gauge parameter:13

ξrs−k−1ik =
k

∑
l = 0

r2k−l Aik
(k,l)(xm) + terms in u , (168)

ξrs−k−2uik =
k+1

∑
l = 0

r2k−l+1Bik
(k,l)(xm) + terms in u , (169)

13 We already encoded the information on the minimum power of r entering the decomposition that can be extracted starting
from the inspection of the equation δϕrs = 0 and substituting the result in the other variations of the form δϕrs−k ik .
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where A(k,0) ≡ K(k) as dictated by Equation (167). Substituting this decomposition in the variations
(160) gives

δϕrs−k−1ik+1
=

k

∑
l = 0

r2k−l
{
− (l + 1)(s − k − 1) Aik+1

(k+1,l+1) + Di Aik
(k,l)

− 2 γiiBik−1
(k−1,l) + 2 γii Aik−1

(k−1,l−1)
}
+ terms in u .

(170)

Preserving the boundary conditions (161) thus requires, for all k < s − 1,

Aik
(k,l) =

1
l(s − k)

Di Aik−1
(k−1,l−1) + γii (· · · ) ⇒ Ais−1

(s−1,l) =
1

(l!)2 (Di)
lKis−l−1

(s−l−1) + γii (· · · ) . (171)

Notice that, for any value of l, the omitted combination in the A(s−1,l) tensor contains at least
one new tensor of the B(k,l) family with respect to those appearing for lower values of l. As a result,
by substituting back in Equation (160) (with k = s − 1), one obtains the condition

δϕis =
s−1

∑
l = 0

r2s−l−2

(l!)2

{
(Di)

l+1Kis−l−1
(s−l−1) + γii Ξ is−2

(s−l−1)
}
+ terms in u = O(r−

n
2 +s) , (172)

where the tensors Ξ(k) can be considered as independent.14

If the space-time dimension is greater than four, i.e., if n > 2, the traceless tensors K(k) defined in
Equation (167) must therefore satisfy the differential constraints

Di · · · Di︸ ︷︷ ︸
s−k

Kik
(k) + γii Ξ is−2

(k) = 0 , γmnK(k)
ik−2mn , 0 ≤ k ≤ s − 1 , (173)

which, in particular, imply that the (s − k)th trace of Ξ(k) vanishes. Actually, these tensors can be
eliminated by computing successive traces of Equations (173). For instance, for k = s − 1, we obtained
the conformal Killing tensor equation on the sphere (see e.g. [57]); one can eliminate the tensor Ξ(s−1)

by computing a trace of (173) to obtain

DiKis−1
(s−1) − 2

n + 2s − 4
γiiD · Kis−2

(s−1) = 0 , γklK (s−1)
is−3kl = 0 , (174)

which is the formulation that we used in Equations (96) and (123) for fields of spin two and three,
respectively.

When n = 2, the last term in the sum (172) does not have to vanish in order to preserve the
boundary conditions. As a result, the function on the sphere denoted by K(0)(xm) is completely
arbitrary, as already pointed out in [1]. This infinite-dimensional enhancement of the asymptotic
symmetries, generalising BMS supertranslations, is accompanied by a local infinite-dimensional
enhancement of the symmetries generated by the tensors K(s−1)(xm). The conformal Killing tensor
Equation (174) admits in general 1

s+1 (
n+s+1

n+1 )(n+s
n ) independent globally defined solutions for n ≥ 2 [57].

When n = 2, in addition, one also finds the further, local solutions

K(s−1)
z···z = K(z) , K(s−1)

z̄···z̄ = K̃(z̄) , K(s−1)
z···z z̄···z̄ = 0 , (175)

where z = eix1
cot x2

2 together with its conjugate provide complex coordinates on the celestial sphere.
These local solutions provide an extension to arbitrary values of the spin of superrotations [9,10].

14 For instance, the dependence of the Ξ(k) on the K(k) tensors can be eliminated by redefining B(k,l) → B(k,l) + A(k,l−1) in (169).
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Moreover, for s = 3, in [1], we have shown that the equation for the tensor K(s−2) also admits locally
infinitely many solutions. We defer to future work a complete analysis of Equation (173), but it is
tempting to conjecture that all these equations admit infinitely-many solutions when the dimension of
space-time is equal to four, that is when n = 2.

When n = 1, the equations for the surviving tensors K(0)(φ) and K(1)(φ) trivialise. As a result,
for each spin-s field, the asymptotic symmetries are generated by two arbitrary functions of the angular
coordinate on the circle at null infinity, in analogy with the spin-three case [53,54]. The number of free
functions in the asymptotic symmetries is also the same as in AdS3 higher-spin theories [55,56,60–62].

Before moving to the actual evaluation of the linearised charges, let us mention that one should
complete our preliminary analysis of the asymptotic symmetries by studying the cancellation of the
subleading orders in the gauge transformations (160), as we did for s = 3 in [1]. Nevertheless,
we stress that the resulting (naively overdetermined) system of equations admits at least the
solutions corresponding to rank-(s − 1) traceless and divergenceless Killing tensors of the Minkowski
background. They indeed generate spin-s gauge transformations leaving the Minkowski background
invariant, so that they obviously satisfy the weaker conditions (161). Consequently, in analogy with
the spin-three example, besides the differential constraints (173), we do not expect any additional
constraint on the tensors K(k) that fully characterises the asymptotic symmetries.

We now return to the expression (166) for the asymptotic charges, aiming to make manifest
their u−independence for n �= 2. While performing this analysis, one first has to keep track of the
cancellation of all potentially divergent terms in the limit r → ∞. As we have seen in the previous
sections, these usually occur after integrations by parts; for instance, the coefficient of the leading
power in r is of the form∫

Su
dΩn K(s−1)

is−1
D · C(s,0) is−1 =

∫
Su

dΩn Di K(s−1)
is−1

C(s,0) is , (176)

and hence vanishes because K(s−1) satisfies the conformal Killing tensor Equation (174) and C(s,0)

is traceless. Although we do not perform here an exhaustive inspection of these cancellations,
the systematics suggested by the examples of spin one, two and three leads us to expect that they hold
in general. Assuming that this is indeed the case, the finite contribution to the charges is determined
by the Coulomb-like terms Q(k) in the boundary conditions (159). Substituting them into the charge
formula (166), while taking into account their dependence on the integration constants in (152), one
obtains after integration by parts

Q(u) =
∫

Su

dΩn

(s − 1)!

s−1

∑
p=0

s−p−1

∑
m=0

p

∑
l=0

(
s − 1

p

)(
s − p − 1

m

)(
p
l

)
(s + p + n − 2)(s + n + p − l − 2)!
(s + n + p − 2)m(s + n + p − 2)!

× (−1)s+m+p+l ul+mM(p−l)
ip−l

(D·)l+mK(m+p) ip−l (177)

=
∫

Su
∑
k,q

dΩn (−1)s+k(s + n + q − 2)!
(s − 1)!(s + n + k + q − 3)!

[
s−1

∑
p=0

(−1)p
(

s − 1
p

)(
s − p − 1
k + q − p

)(
p
q

)]
ukM(q)

iq (D·)kK(k+q) iq .

The final expression has been obtained by introducing the new labels k = l + m and q = p − l
and by swapping the sums, whose ranges precisely correspond to the values of the labels for which
the integrand does not vanish (with the convention (N

n ) = 0 for n < 0 or n > N). One can eventually
verify that the sum within square brackets in the second line of Equation (177) vanishes for any k > 0,
thus providing, via the disappearance of the u−dependence, a good consistency check of our formulae
for any value of the spin. The u-independent contribution then reads

Q =
∫

Sn

dΩn

(s − 1)!

s−1

∑
q= 0

(−1)s+q(s + n + q − 2)
(

s − 1
q

)
K(q)

iq M(q) iq , (178)
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in full analogy with the result that we presented for s = 3 in Equation (135).15

When the dimension of spacetime is equal to three, similar considerations apply, with the
additional simplification that the tensors K(k) with k ≥ 2 and the integration constants M(k) with
k ≥ 2 are actually absent. By defining K(0) ≡ T, M(0) = M and K(1)

φ ≡ v(φ), M(1)
φ ≡ N (φ), in this

case the charge (178) becomes

Q =
(−1)s

(s − 2)!

∫
dφ

{
T(φ)M(φ)− s ρ(φ)N (φ)

}
(179)

for any value of spin. In four dimensions, additional terms in u, depending on the data of the radiation
solution, do appear. In particular, in agreement with the discussion in sect. 3.2 of [1], the charge
formula (178) receives the following additional contribution in the supertranslation sector:

Q(u) =
(−1)ss
(s − 1)!

∫
Su

dΩn K(0)
(
M(0) +

1
s!
(D·)sC(0)

)
+ · · · . (180)

The contributions of the radiation data to the terms involving (generalised) superrotations can be
determined following the same steps as in Section 4.2.
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Appendix A. Spin-s Charges in Bondi Gauge

In this appendix, we consider the linearised charges at null infinity associated with bosonic gauge
fields of arbitrary spin. We work in generic space-time dimension and we express the charges in terms
of the non-vanishing components of the fields in the Bondi gauge (138).

Appendix A.1. On-Shell Closed Two-Form for Arbitrary Spin

We begin from the following on-shell closed two-form, which gives the spin-s linearised charges
upon integration on a codimension-two surface [63]:

k[αβ] =

√−g
(s − 1)!

{
∇[α ϕβ]

μs−1 ξμs−1 + ϕμs−1
[α∇β]ξμs−1 + (s − 1)∇ · ϕμs−2

[αξβ]μs−2

+ (s − 1) ξμs−2[α∇β]ϕμs−2 +
s − 1

2

(
ϕμs−2∇[αξβ]μs−2 −∇μ ϕμs−3

[αξβ]μs−2
)}

.
(A1)

As in Section 5, groups of symmetrised indices have been denoted by a single Greek letter with
a label denoting the total number of indices, while repeated indices denote a symmetrisation involving
the minimum number of terms needed and without any overall factor. Furthermore, omitted indices
denote a trace, that is ϕμs−2 = gαβ ϕαβμs−2 . Equation (A1) has been obtained by eliminating the triplet
auxiliary fields from Equation (48) of [63] and it applies to any space-time dimension D. If the field

15 In order to compare with the spin-two charge (104), one should take into account the factor of 2 introduced by the definition
of the Bondi mass aspect (see e.g. (78)) and that T = −K(0) as dictated by Equation (95).
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satisfies Fronsdal’s equations of motion and the gauge parameter satisfies the Killing tensor equation
∇μξμs−1 = 0, then ∇αk[αβ] = 0.

We are interested in the charges at null infinity, which are defined as an integral over the sphere of
dimension n = D − 2 at each point u, which we denote by Su. As a result, in the Bondi coordinates (1),
they involve only a specific component of the two-form (A1) and they are defined as

Q(u) = lim
r→∞

∫
Su

kur[ϕ, ξ] dx1 · · · dxn . (A2)

Appendix A.2. Rewriting in Bondi Gauge

We now wish to manifest the simplifications of Equation (A1) that are induced by the
conditions (138) defining the Bondi gauge. First of all, the terms in its second line involve the trace of
the field and therefore vanish in Bondi gauge. Since the only non-vanishing Christoffel symbols are
those displayed in Equation (2) and the non-vanishing components of the inverse metric are

gur = −1 , grr = 1 , gij = r−2γij , (A3)

these conditions also imply

∇u ϕrμs−1 = ∇r ϕrμs−1 = γij∇i ϕrjμs−2 = 0 . (A4)

As a result, in the “Bondi gauge”, the relevant component of the two-form (A1) reads

kur =
rn√γ

(s − 1)!
{

ξρs−1∇r ϕuρs−1 − ϕuρs−1∇r ξρs−1 + (s − 1) ξuρs−2∇ · ϕuρs−2

}
. (A5)

Using Equations (2) and (138), one can see that the covariant derivatives that are relevant for
Equation (A5) are

∇r ϕus−pip =
1
r
(r∂r − p) ϕus−pip , (A6a)

∇rξus−p−1ip =
1
r
(r∂r + p) ξus−p−1ip , (A6b)

∇ · ϕus−p−1ip = − 1
r
(r∂r + n) ϕus−pip +

1
r2 D · ϕus−p−1ip , (A6c)

where we recall that Di denotes the Levi–Civita connection for the metric γij on the sphere at
null infinity. All in all, by expanding Equation (A5) in components, one eventually gets:

kur =
rn−1√γ

(s − 1)!

{
ξ is−1 (r∂r − s + 1) ϕu is−1 − ϕu is−1 (r∂r + s − 1) ξ is−1

−
s−2

∑
p=0

(
s − 1

p

)[
(s − p − 2) ξus−p−1ip (r∂r + n) ϕus−pip

+ ϕus−pip (r∂r + n + 2p) ξus−p−1ip − s − p − 1
r

ξus−p−1ip D · ϕus−p−1ip

]}
.

(A7)

References

1. Campoleoni, A.; Francia, D.; Heissenberg, C. On higher-spin supertranslations and superrotations. J. High
Energy Phys. 2017, 2017, 120.

2. Bondi, H.; van der Burg, M.G.J.; Metzner, A.W.K. Gravitational waves in general relativity. VII. Waves from
axisymmetric isolated systems. Proc. R. Soc. Lond. A 1962, 269, 21–52.

3. Sachs, R. Asymptotic symmetries in gravitational theory. Phys. Rev. 1962, 128, 2851–2864.

302



Universe 2018, 4, 47

4. Strominger, A. On BMS Invariance of Gravitational Scattering. J. High Energy Phys. 2014, 2014, 152.
5. He, T.; Lysov, V.; Mitra, P.; Strominger, A. BMS supertranslations and Weinberg’s soft graviton theorem.

J. High Energy Phys. 2015, 2015, 151.
6. Strominger, A. Lectures on the Infrared Structure of Gravity and Gauge Theory. arXiv 2017, arXiv:1703.05448.
7. Weinberg, S. Photons and Gravitons in S-Matrix Theory: Derivation of Charge Conservation and Equality of

Gravitational and Inertial Mass. Phys. Rev. B 1964, 135, 1049–1056.
8. Weinberg, S. Infrared photons and gravitons. Phys. Rev. B 1965, 140, 516–524.
9. Barnich, G.; Troessaert, C. Symmetries of asymptotically flat 4 dimensional spacetimes at null infinity

revisited. Phys. Rev. Lett. 2010, 105, 111103.
10. Barnich, G.; Troessaert, C. Aspects of the BMS/CFT correspondence. J. High Energy Phys. 2010, 2010, 62.
11. Hollands, S.; Ishibashi, A. Asymptotic flatness and Bondi energy in higher dimensional gravity.

J. Math. Phys. 2005, 46, 022503.
12. Hollands, S.; Wald, R.M. Conformal null infinity does not exist for radiating solutions in odd spacetime

dimensions. Class. Quantum Gravity 2004, 21, 5139–5145.
13. Tanabe, K.; Kinoshita, S.; Shiromizu, T. Asymptotic flatness at null infinity in arbitrary dimensions.

Phys. Rev. D 2011, 84, 044055.
14. Barnich, G.; Lambert, P.H. Einstein-Yang–Mills theory: Asymptotic symmetries. Phys. Rev. D 2013 , 88,

103006.
15. Kapec, D.; Lysov, V.; Pasterski, S.; Strominger, A. Higher-Dimensional Supertranslations and Weinberg’s Soft

Graviton Theorem. Ann. Math. Sci. Appl. 2017, 2, 69–94.
16. Barnich, G.; Lambert, P.H.; Mao, P. Three-dimensional asymptotically flat Einstein-Maxwell theory.

Class. Quantum Gravity 2015, 32, 245001.
17. Mao, P.; Ouyang, H. Note on soft theorems and memories in even dimensions. Phys. Lett. B 2017, 774,

715–722.
18. Campiglia, M.; Coito, L. Asymptotic charges from soft scalars in even dimensions. arXiv 2017, arXiv:1711.05773.
19. Pate, M.; Raclariu, A.M.; Strominger, A. Gravitational Memory in Higher Dimensions. arXiv 2017,

arXiv:1712.01204.
20. Strominger, A. Asymptotic Symmetries of Yang–Mills Theory. J. High Energy Phys. 2014, 2014, 151.
21. He, T.; Mitra, P.; Porfyriadis, A.P.; Strominger, A. New Symmetries of Massless QED. J. High Energy Phys.

2014, 2014, 112.
22. He, T.; Mitra, P.; Strominger, A. 2D Kac–Moody Symmetry of 4D Yang–Mills Theory. J. High Energy Phys.

2016, 2016, 137.
23. Adamo, T.; Casali, E. Perturbative gauge theory at null infinity. Phys. Rev. D 2015, 91, 125022.
24. Campiglia, M.; Laddha, A. Asymptotic symmetries of QED and Weinberg’s soft photon theorem. J. High

Energy Phys. 2015 , 2015, 115.
25. Mao, P.; Ouyang, H.; Wu, J.B.; Wu, X. New electromagnetic memories and soft photon theorems. Phys. Rev. D

2017, 95, 125011.
26. Mao, P.; Wu, J.-B. Note on asymptotic symmetries and soft gluon theorems. Phys. Rev. D 2017, 96, 065023.
27. Pate, M.; Raclariu, A.M.; Strominger, A. Color Memory: A Yang-Mills Analog of Gravitational Wave Memory.

Phys. Rev. Lett. 2017, 119, 261602.
28. Hollands, S.; Ishibashi, A.; Wald, R.M. BMS Supertranslations and Memory in Four and Higher Dimensions.

Class. Quantum Gravity 2017, 34, 155005.
29. Tanabe, K.; Shiromizu, T.; Kinoshita, S. Angular momentum at null infinity in higher dimensions.

Phys. Rev. D 2012, 85, 124058.
30. Garfinkle, D.; Hollands, S.; Ishibashi, A.; Tolish, A.; Wald, R.M. The Memory Effect for Particle Scattering in

Even Spacetime Dimensions. Class. Quantum Gravity 2017, 34, 145015.
31. Gross, D.J. High-Energy Symmetries of String Theory. Phys. Rev. Lett. 1988, 60, 1229–1232.
32. Moeller, N.; West, P.C. Arbitrary four string scattering at high energy and fixed angle. Nucl. Phys. B 2005, 729,

1–48.
33. Sagnotti, A.; Taronna, M. String Lessons for Higher-Spin Interactions. Nucl. Phys. B 2011, 842, 299–361.
34. Sagnotti, A. Notes on Strings and Higher Spins. J. Phys. A 2013, 46, 214006.
35. Casali, E.; Tourkine, P. On the null origin of the ambitwistor string. J. High Energy Phys. 2016, 2016, 036.
36. Abbott, L.F.; Deser, S. Charge Definition in Nonabelian Gauge Theories. Phys. Lett. B 1982, 116, 259–263.

303



Universe 2018, 4, 47

37. Barnich, G.; Brandt, F. Covariant theory of asymptotic symmetries, conservation laws and central charges.
Nucl. Phys. B 2002, 633, 3–82

38. Avery, S.G.; Schwab, B.U.W. Noether’s second theorem and Ward identities for gauge symmetries. J. High
Energy Phys. 2016, 2016, 31.

39. Wald, R.M.; Zoupas, A. A General definition of ’conserved quantities’ in general relativity and other theories
of gravity. Phys. Rev. D 2000, 61, 084027.

40. Hollands, S.; Thorne, A. Bondi mass cannot become negative in higher dimensions. Commun. Math. Phys.
2015, 333, 1037–1059.

41. Barnich, G.; Compere, G. Classical central extension for asymptotic symmetries at null infinity in three
spacetime dimensions. Class. Quantum Gravity 2007, 24, 5.

42. Riegler, M.; Zwikel, C. Canonical Charges in Flatland. arXiv, 2017, arXiv:1709.09871.
43. Barnich, G.; Troessaert, C. BMS charge algebra. J. High Energy Phys. 2011, 2011, 105.
44. Metsaev, R.R. BRST-BV approach to cubic interaction vertices for massive and massless higher-spin fields.

Phys. Lett. B 2013, 720, 237–243.
45. Joung, E.; Lopez, L.; Taronna, M. Solving the Noether procedure for cubic interactions of higher spins in

(A)dS. J. Phys. A 2013, 46, 214020.
46. Boulanger, N.; Ponomarev, D.; Skvortsov, E.D. Non-abelian cubic vertices for higher-spin fields in anti-de

Sitter space. J. High Energy Phys. 2013, 2013, 8.
47. Sleight, C.; Taronna, M. Higher Spin Interactions from Conformal Field Theory: The Complete Cubic

Couplings. Phys. Rev. Lett. 2016, 116, 181602.
48. Conde, E.; Joung, E.; Mkrtchyan, K. Spinor-Helicity Three-Point Amplitudes from Local Cubic Interactions.

J. High Energy Phys. 2016, 2016, 40.
49. Francia, D.; Monaco, G.L.; Mkrtchyan, K. Cubic interactions of Maxwell-like higher spins. J. High Energy Phys.

2017, 2017, 68.
50. Francia, D. Low-spin models for higher-spin Lagrangians. Prog. Theor. Phys. Suppl. 2011, 188, 94–105.
51. Campoleoni, A.; Francia, D. Maxwell-like Lagrangians for higher spins. J. High Energy Phys. 2013, 2013, 168.
52. Francia, D. Generalised connections and higher-spin equations. Class. Quantum Gravity 2012, 29, 245003.
53. Afshar, H.; Bagchi, A.; Fareghbal, R.; Grumiller, D.; Rosseel, J. Spin-3 Gravity in Three-Dimensional Flat

Space. Phys. Rev. Lett. 2013, 111, 121603.
54. Gonzalez, H.A.; Matulich, J.; Pino, M.; Troncoso, R. Asymptotically flat spacetimes in three-dimensional

higher spin gravity. J. High Energy Phys. 2013, 2013, 16.
55. Campoleoni, A.; Fredenhagen, S.; Pfenninger, S.; Theisen, S. Asymptotic symmetries of three-dimensional

gravity coupled to higher-spin fields. J. High Energy Phys. 2010, 2010, 7.
56. Campoleoni, A.; Henneaux, M. Asymptotic symmetries of three-dimensional higher-spin gravity: The metric

approach. J. High Energy Phys. 2015, 2015, 143.
57. Eastwood, M.G. Higher symmetries of the Laplacian. Ann. Math. 2005, 161, 1645–1665.
58. Campoleoni, A.; Henneaux, M.; Hörtner, S.; Leonard, A. Higher-spin charges in Hamiltonian form. I. Bose

fields. J. High Energy Phys. 2016, 2016, 146.
59. Francia, D. Geometric Lagrangians for massive higher-spin fields. Nucl. Phys. B 2008, 796, 77–122.
60. Henneaux, M.; Rey, S.-J. Nonlinear W∞ as Asymptotic Symmetry of Three-Dimensional Higher Spin Anti-de

Sitter Gravity. J. High Energy Phys. 2010, 2010, 7.
61. Gaberdiel, M.R.; Hartman, T. Symmetries of Holographic Minimal Models. J. High Energy Phys. 2011, 2011, 31.
62. Campoleoni, A.; Fredenhagen, S.; Pfenninger, S. Asymptotic W-symmetries in three-dimensional higher-spin

gauge theories. J. High Energy Phys. 2011, 2011, 113.
63. Barnich, G.; Bouatta, N.; Grigoriev, M. Surface charges and dynamical Killing tensors for higher spin gauge

fields in constant curvature spaces. J. High Energy Phys. 2005, 2005, 10.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

304



universe

Article

The ABC of Higher-Spin AdS/CFT

Simone Giombi 1,*, Igor R. Klebanov 1,2 and Zhong Ming Tan 1,3

1 Department of Physics, Princeton University, Princeton, NJ 08544, USA; klebanov@princeton.edu (I.R.K.);
tanzhongm@gmail.com (Z.M.T.)

2 Princeton Center for Theoretical Science, Princeton University, Princeton, NJ 08544, USA
3 Département de Physique, École Normale Supérieure, 45 rue d’Ulm, 75005 Paris, France
* Correspondence: sgiombi@princeton.edu

Received: 27 October 2017; Accepted: 11 December 2017; Published: 19 January 2018

Abstract: In recent literature, one-loop tests of the higher-spin AdSd+1/CFTd correspondences were
carried out. Here, we extend these results to a more general set of theories in d > 2. First, we consider
the Type B higher spin theories, which have been conjectured to be dual to CFTs consisting of the
singlet sector of N free fermion fields. In addition to the case of N Dirac fermions, we carefully
study the projections to Weyl, Majorana, symplectic and Majorana–Weyl fermions in the dimensions
where they exist. Second, we explore theories involving elements of both Type A and Type B theories,
which we call Type AB. Their spectrum includes fields of every half-integer spin, and they are
expected to be related to the U(N)/O(N) singlet sector of the CFT of N free complex/real scalar and
fermionic fields. Finally, we explore the Type C theories, which have been conjectured to be dual to
the CFTs of p-form gauge fields, where p = d

2 − 1. In most cases, we find that the free energies at
O(N0) either vanish or give contributions proportional to the free-energy of a single free field in the
conjectured dual CFT. Interpreting these non-vanishing values as shifts of the bulk coupling constant
GN ∼ 1/(N − k), we find the values k = −1,−1/2, 0, 1/2, 1, 2. Exceptions to this rule are the Type B
and AB theories in odd d; for them, we find a mismatch between the bulk and boundary free energies
that has a simple structure, but does not follow from a simple shift of the bulk coupling constant.

Keywords: AdS/CFT correspondence; Higher-Spin Symmetry; 1/N expansion

1. Introduction

Extensions of the original AdS/CFT correspondence [1–3] to relations between the “vectorial”
d-dimensional CFTs and the Vasiliev higher-spin theories in (d + 1)-dimensional AdS space [4–8] have
attracted considerable attention (for recent reviews of the higher-spin AdSd+1/CFTd correspondence,
see [9,10]). The CFTs in question are quite well understood; their examples include the singlet sector of
the free U(N)/O(N) symmetric theories where the dynamical fields are in the vectorial representation
(rather than in the adjoint representation) or of the vectorial interacting CFTs such as the d = 3
Wilson–Fisher and Gross–Neveu models [11–13]. Some years ago, the singlet sectors of U(N)/O(N)

symmetric d-dimensional CFTs of scalar fields were conjectured to be dual to the Type A Vasiliev
theory in AdSd+1 [11], while the CFTs of fermionic fields to the Type B Vasiliev theory [12,13]. In d = 3,
the U(N)/O(N) singlet constraint is naturally imposed by coupling the massless matter fields to the
Chern–Simons gauge field [14,15]. While the latter is in the adjoint representation, it carries no local
degrees of freedom so that the CFT remains vectorial. More recently, a new similar set of dualities was
proposed in even d and called Type C [16–18]; it involves the CFTs consisting of some number N of(

d
2 − 1

)
-form gauge fields projected onto the U(N)/O(N) singlet sector.

The higher-spin AdS/CFT conjectures were tested through matching of three-point correlation
functions of operators at order N, corresponding to tree level in the bulk [9,19]; further work on the
correlation functions includes [20–25]. Another class of tests, which involves calculations at order N0,

Universe 2018, 4, 18 305 www.mdpi.com/journal/universe
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corresponding to the one-loop effects in the bulk, was carried out in [16–18,26–29]. It concerned the
calculation of one-loop vacuum energy in Euclidean AdSd+1, corresponding to the sphere free energy
F = − log ZSd in CFTd; in even/odd d, this quantity enters the a/F theorems [30–36]. Similar tests
using the thermal AdSd+1, where the Vasiliev theory is dual to the vectorial CFT on Sd−1 × S1, have also
been conducted [16–18,28,37]. Such calculations serve as a compact way of checking the agreement
of the spectra in the two dual theories. The quantities of interest are the formula for the thermal free
energies at arbitrary temperature β, as well as the temperature-independent Casimir energy Ec.

In this paper, we continue and extend the earlier work [16–18,26–29] on the one-loop tests of
higher-spin AdS/CFT. In particular, we will compare the Type B theories in various dimensions d and
their dual CFTs consisting of the Dirac fermionic fields (we also consider the theories with Majorana,
symplectic, Weyl or Majorana–Weyl fermions in the dimensions where they are admissible). Let us
also comment on the Sachdev–Ye–Kitaev (SYK) model [38,39], which is a quantum mechanical theory
of a large number N of Majorana fermions with random interactions; it has been attracting a great
deal of attention recently [40–44]. After the use of the replica trick, this model has manifest O(N)

symmetry [40], and it is tempting to look for its gravity dual using some variant of Type B higher spin
theory. Following [45], one may speculate that the SYK model provides an effective IRdescription of a
background of a Type B Vasiliev theory asymptotic to AdS4, which is dual to a theory of Majorana
fermions; this background should describe RGflow from AdS4 to AdS2 (one could also search for RG
flow from HStheory in AdSd+1 to AdS2 with d = 2, 4, . . .).

Two other types of theories with no explicitly-constructed Vasiliev equations are also explored.
First, we consider the theories whose CFT duals are expected to consist of both scalar and fermionic
fields, with a subsequent projection onto the singlet sector. These theories, which we call Type AB,
are then expected to have half-integral spin gauge fields in addition to the integral spin gauge fields of
Type A and Type B theories. Depending on the precise scalar and fermion field content, the Type AB
theories may be supersymmetric in some specific dimension d. For example, the U(N) singlet sector
of one fundamental Dirac fermion and one fundamental complex scalar is supersymmetric in d = 3,
and a similar theory with one fundamental Dirac fermion and two fundamental complex scalars is
supersymmetric in d = 5 [46].1 Second, we study the Type C theories, where the CFT dual consists of
some number of p-form gauge fields, with p = d

2 − 1; the self-duality condition on the field strength
may also be imposed. Such theories were studied in [16–18] for d = 4 and 6, and we extend them to
more general dimensions.

The organization of the paper is as follows. In Section 2, we review how the comparison of the
partition functions of the higher-spin theory and the corresponding CFT allows us to draw useful
conclusions about their duality. We will also go through the various HS theories that will be examined
in this paper. This will allow us to summarize our results in Tables 1, 2 and 6. In Section 3, we present
our results for the free energy of Vasiliev theory in Euclidean AdSd+1 space asymptotic to the round
sphere Sd. In addition, in Appendix A.1, we detail the calculations for the free energy of Vasiliev theory
in the thermal AdSd+1 space, which is asymptotic to Sd−1 × S1.

Note: Shortly before completion of this paper, we became aware of independent forthcoming
work on related topics by M.Gunaydin, E. Skvortsov and T. Tran [47]. After the original submission of
this paper, we also noticed a related paper by Y. Pang, E. Sezgin and Y. Zhu [48].

2. Review and Summary of Results

2.1. Higher Spin Partition Functions in Euclidean AdS Spaces

According to the AdS/CFT dictionary, the CFT partition function ZCFT on the round sphere
Sd has to match the partition function of the bulk theory on the Euclidean AdSd+1 asymptotic to Sd.

1 This theory may be coupled to the U(N) 5dChern–Simons gauge theory to impose the singlet constraint.
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This is the hyperbolic space Hd+1 with the metric, ds2 = dρ2 + sinh2ρ dΩd, where dΩd is the metric
of a unit d-sphere. After defining the free energy F = − log Z, the AdS/CFT correspondence implies
FCFT = Fbulk.

For a vectorial CFT with U(N), O(N) or USp(N) symmetry, the large N expansion is:

FCFT = N f (0) + f (1) +
1
N

f (2) + . . . . (1)

For a CFT consisting of N free fields, one obviously has f (n) = 0 for all n ≥ 1.
For the bulk gravitational theory with Newton constant GN the perturbative expansion of the free

energy assumes the form:

Fbulk =
1

GN
F(0) + F(1) + GN F(2) + . . . (2)

The leading contribution is the on-shell classical action of the theory; it should match the leading
term in the CFT answer which is of order N. Such a matching seems impossible at present due to the
lack of a conventional action for the higher spin theories.2 However, as first noted in [26], the one-loop
correction F(1) requires the knowledge of only the free quadratic actions for the higher-spin fields
in AdSd+1; it can be obtained by summing the logarithms of functional determinants of the relevant
kinetic operators. The latter were calculated by Camporesi and Higuchi [49–52], who derived the
spectral zeta function for fields of arbitrary spin in (A)dS. What remains is to carry out the appropriately
regularized sum over all spins present in a particular version of the higher spin theory.

The corresponding sphere free energy in a free CFT is given by FCFT = NF, where F may be
extracted from the determinant for a single conformal field (see, for example, [35]); the examples of the
latter are conformally coupled scalars, massless fermions, or p-form gauge fields. For vectorial theories
with double-trace interactions, such as the Wilson–Fisher and Gross–Neveu models, the CFT itself has
a non-trivial 1

N expansion, and so FCFT = NF +O(N0). To match the large N scaling, the Newton
constant of the bulk theory must behave as:

1
GN

∝ N, (3)

in the large N limit. If one assumes that 1
GN

F(0) = FCFT, then all the higher-loop corrections to Fbulk
must vanish for FCFT = Fbulk to hold. In [26,27], it was found that for the Vasiliev Type A theories
in all dimensions d, the non-minimal theories containing each integer spin indeed have a vanishing
one-loop correction to F. However, the minimal theories with even spins only were found to have a
non-vanishing one-loop contribution that matched exactly the value of the sphere free-energy of a
single conformal real scalar. This surprising result was then interpreted as a one-loop shift:

1
GN

∼ N − 1, (4)

where the one-loop contribution cancels exactly the shift in the coupling constant. Such an integer shift
is consistent with the quantization condition for 1

GN
established in [20,21]. The rule N → N − 1 does

not apply to all the variants of the HS theory. In [16,17] it was shown that the one-loop calculations in
Type C higher spin theories dual to free U(N)/O(N) Maxwell fields in d = 4 required that 1

GN
∼ N − 1

or N − 2 respectively. If the Maxwell fields are taken to be self-dual then 1
GN

∼ N − 1/2; in view of
this half-integer shift it is not clear if such a theory is consistent.

2 In the collective field approach to the bulk theory the action does exist, and the matching of free energies works by
construction [29]. However, the precise connection of this formalism with the Vasiliev equations remains an open problem.
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2.2. Variants of Higher Spin Theories and Key Results

The simplest and best understood HS theory is the Type A Vasiliev theory in AdSd+1, which
is known at non-linear level for any d [7]. The spectrum consists of a scalar with m2 = −2(d − 2)
and a tower of totally symmetric HS gauge fields (in the minimal theory, only the even spins are
present). This is in one to one correspondence with the spectrum of O(N)/U(N) invariant “single
trace” operators on the CFT side, which consists of the Δ = d − 2 scalar:

J0 = φ∗i φi (5)

and the tower of conserved currents:

Jμ1···μs = φ∗i ∂(μ1
· · · ∂μs)φ

i + · · · , s ≥ 1. (6)

This spectrum can be confirmed for instance by computing the tensor product of two free scalar
representations, which yields the result [8,53,54](

d
2
− 1; 0

)
⊗
(

d
2
− 1; 0

)
= (d − 2; 0, . . . , 0) +

∞

∑
s=1

(d − 2 + s; s, 0, . . . , 0) (7)

where the notation (Δ; m1, m2, . . .) indicates a representation of the conformal algebra with conformal
dimension Δ and SO(d) representation labeled by [m1, m2, . . .] (on the left-hand side, (d/2 − 1; 0)
is a shorthand for (d/2 − 1; 0, . . . , 0)). Equivalently, one may obtain the same result by computing
the “thermal” partition function of the free CFT on S1 × Sd−1, using a flat connection to impose the
U(N) singlet constraint [28,37]. Similarly one can consider real scalars and O(N) singlet constraint,
where one obtains the same spectrum but with odd spins removed (this corresponds to symmetrizing
the product in (7)).

Another version of the HS theory is the so-called “Type B” theory, which is defined to be the HS
gauge theory in AdSd+1 dual to the free fermionic CFTd restricted to its singlet sector. The field content
of such theories can be deduced from CFT considerations, by deriving the spectrum of singlet operators
which are bilinears in the fermionic fields. In the case of Dirac fermions, one has the following results
for the tensor product of two free fermion representations [8,54]: in even d:(

d−1
2 ; 1

2

)
⊗
(

d−1
2 ; 1

2

)
= 2(d − 1; 0, . . . , 0) + 2 ∑∞

s=1 [(d − 2 + s; s, 0, . . . , 0) + (d − 2 + s; s, 1, 0, . . . , 0)

+(d − 2 + s; s, 1, 1, 0, . . . , 0) + . . . + (d − 2 + s; s, 1, 1, 1, . . . , 1, 0)

+(d − 2 + s; s, 1, 1, . . . , 1, 1) + (d − 2 + s; s, 1, 1, . . . , 1,−1)]

(8)

and in odd d:(
d − 1

2
;

1
2

)
⊗
(

d − 1
2

;
1
2

)
= (d − 1; 0, . . . , 0) +

∞

∑
s=1

[(d − 2 + s; s, 0, . . . , 0)+

+(d − 2 + s; s, 1, 0, . . . , 0) + . . . + (d − 2 + s; s, 1, 1, . . . , 1, 0) + (d − 2 + s; s, 1, 1, . . . , 1, 1)] .

(9)

Note that in the case d = 3, the spectra of the Type A and Type B theory are the same, except
for the fact that the m2 = −2 scalar is parity even in the former and parity odd in the latter (and also
quantized with conjugate boundary conditions, Δ = 1 versus Δ = 2). In this special case, the fully
non-linear equations for the Type B HS gauge theory in AdS4 are known and closely related to those of
the Type A theory [6]. For all d > 3, however, the spectra of Type B theories differ considerably from
Type A theories, since they contain towers of spins with various mixed symmetries, see (8) and (9),
and the corresponding non-linear equations are not known. As an example, and to clarify the meaning
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of (8) and (9), let us consider d = 4 [28,55–57]. In this case, on the CFT side one can construct the two
scalar operators:

J0 = ψ̄iψ
i, J̃0 = ψ̄iγ5ψi , (10)

as well as (schematically) the totally symmetric and traceless bilinear currents:

Jμ1···μs = ψ̄iγ(μ1
∂μ2 · · · ∂μs)ψ

i + · · · , J̃μ1···μs = ψ̄iγ5γ(μ1
∂μ2 · · · ∂μs)ψ

i + · · · , s ≥ 1 , (11)

and a tower of mixed higher symmetry bilinear current,

Mμ1···μs ,ν = ψ̄iγν(μ1
∂μ2 · · · ∂μs)ψ

i + · · · , s ≥ 1 , (12)

where γνμ1 = γ[νγμ1]
is the antisymmetrized product of the gamma matrices. These operators are dual

to corresponding HS fields in AdS5. In particular, in addition to two towers of Fronsdal fields and
a tower of mixed symmetry gauge fields, there are two bulk scalar fields and a massive antisymmetric
tensor dual to ψ̄iγμνψi. Similarly, in higher dimensions one can construct the tower of mixed symmetry
operators appearing in (8) and (9) by using the antisymmetrized product of several gamma matrices.
In the Young tableaux notation, these operators correspond to the hook type diagrams:

︷ ︸︸ ︷⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
....

· · ·

(13)

where 1 < j ≤ p, with p = d/2 for even d and p = (d − 1)/2 for odd d. For s > 1, these operators are
conserved currents and are dual to massless gauge fields in the bulk, while for s = 1 they are dual to
massive antisymmetric fields.

For even d, we find evidence that the non-minimal Type B theory is exactly dual to the singlet
sector of the U(N) free fermionic CFT. The one-loop free energy of the Vasiliev theory vanishes exactly.
This generalizes the result given in [16] for the non-minimal Type B theory in AdS5; namely, there is
no shift to the coupling constant in the non-minimal Type B theory dual to the singlet sector of
Dirac fermions.

However, for all odd d, the one-loop free energy does not vanish. Instead, it follows
a surprising formula:

F(1)
type B =− 1

Γ(d + 1)

∫ 1/2

0
du u sin(πu)Γ

(
d
2
+ u

)
Γ
(

d
2
− u

)
, (14)

which has an equivalent form for integer d:

F(1)
type B =

1
2Γ(d + 1)

∫ 1

0
du cos (πu) Γ

(
d + 1

2
+ u

)
Γ
(

d + 1
2

− u
)

, (15)
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For example, for d = 3, 5, 7, one finds:

F(1)
type B = − ζ(3)

8π2 , d = 3 ,

F(1)
type B = − ζ(3)

96π2 −
ζ(5)
32π2 , d = 5 ,

F(1)
type B = − ζ(3)

720π2 −
ζ(5)

192π2 −
ζ(7)

128π2 , d = 7 .

(16)

and similarly for higher d. Obviously, these complicated shifts cannot be accommodated by an integer
shift of N. While the reason for this is not fully clear to us, it may be related to the fact that the
imposition of the singlet constraint requires introduction of other terms in F. For example, in d = 3
the theory also contains a Chern–Simons sector, whose leading contribution to F is of order N2.
Perhaps a detailed understanding of these additional terms holds the key to resolving the puzzle for
the fermionic theories in odd d.

We note that (14) always produces only linear combinations of ζ(2k + 1)/π2 with rational
coefficients. Interestingly, these formulas are related to the change in F due to certain double-trace
deformations [58]. In particular, the first formula gives (up to sign) the change in free energy due to the
double-trace deformation ∼ ∫

ddxO2
Δ, where OΔ is a scalar operator of dimension Δ = d−1

2 , and the
second formula is proportional to the change in free energy due to the deformation ∼ ∫

ddxΨ̄ΔΨΔ,
where ΨΔ is a fermionic operator of dimension Δ = d−2

2 . The reason for this formal relation to the
double-trace flows is unclear to us.

We also consider bulk Type B theories where various truncations have been imposed on the
non-minimal Type B theory and we provide evidence that they are dual to the singlet sectors of various
free fermionic CFTs. In d = 2, 3, 4, 8, 9 mod 8 we study the CFT of N Majorana fermions with the
O(N) singlet constraint, while in d = 5, 6, 7 mod 8 we study the theory of N symplectic Majorana
fermions with the USp(N) singlet constraint.3 We also study the CFT of Weyl fermions in even d,
and of Majorana–Weyl fermions when d = 2 mod 8. We will discuss these truncations in more detail in
Section 3.2.1. For even d, we find that under the Weyl truncation, the Type B theories have vanishing
F at the one-loop level. Under the Majorana/symplectic Majorana condition, the free energy of the
truncated Type B theory gives (up to sign) the free energy of one free conformal fermionic field on
Sd. This is logarithmically divergent due to the CFT a-anomaly, FSd

f = a f log(μR), where the anomaly
coefficient a f is given by [58]:

a f = 2
d
2

(−1)
d
2

πΓ(1 + d)

∫ 1

0
du cos

(πu
2

)
Γ
(

1 + d + u
2

)
Γ
(

1 + d − u
2

)
(17)

=

{
−1

6
,

11
180

,− 191
7560

,
2497

226, 800
,− 14, 797

2, 993, 760
,

92, 427, 157
40, 864, 824, 000

,− 36, 740, 617
35, 026, 992, 000

, · · ·
}

(18)

for d = {2, 4, 6, 8, . . .}. Finally, under the Majorana–Weyl condition, the free energy of the
corresponding truncated Type B theory reproduces half of the anomaly coefficients given in (18),
corresponding to a single Majorana–Weyl fermion.

For the odd d case, the minimal Type B theories dual to the Majorana (or symplectic Majorana)
projections again have unexpected values of their one-loop free energies. They are listed in Table 6.

3 Let us note that one can also consider a “non-minimal" USp(N) type-B model by starting with the free theory of N complex
fermions (with N even), and imposing a USp(N) singlet constraint on the spectrum (but not the symplectic Majorana
condition on the fermions). This can be done in any d, and the resulting higher-spin theories are the fermionic analog of
the symplectic type-A theories discussed in [26]. In AdS4, one obtains this way a spectrum containing a Δ = 2 parity odd
scalar, one tower of higher-spin fields of all even spins s ≥ 2, and three towers of odd-spin fields, as in the scalar case
in [26]. One can analogously work out the spectra of such non-minimal USp(N) type-B theories in higher dimensions,
following similar steps as outlined in Section 3.2.1 for minimal USp(N) theories.
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We did not find a simple analytic formula that reproduces these numbers, but we note that, as in the
non-minimal Type B result (14), these values are always linear combinations of ζ(2k + 1)/π2 with
rational coefficients. It would be very interesting to understand the origin of these “anomalous” results
in the Type B theories.

One may also consider free CFTs which involve both the conformal scalars and fermions in the
fundamental of U(N) (or O(N)), with action:

S =
∫

ddx
N

∑
i=1

[
(∂μφ∗i )(∂

μφi) + ψ̄i(/∂)ψi
]

. (19)

When we impose the U(N) singlet constraint, the spectrum of single trace operators contains not
only the bilinears in φ and ψ, which are the same as discussed above, but also fermionic operators of
the form:

Ψμ1···μs = ψ̄i∂(μ1
· · · ∂μ

s− 1
2
)φ

i + . . . , where s =
1
2

,
3
2

, · · · , (20)

The dual HS theory in AdS should then include, in addition to the bosonic fields that appear
in Type A and Type B theories, a tower of massless half integer spin particles with s = 3/2, 5/2, . . .,
plus a s = 1/2 matter field. We will call the resulting HS theory the “Type AB” theory. Note that in
d = 3 this leads to a supersymmetric theory, but in general d the action (19) is not supersymmetric.
One may also truncate the model to the O(N)/USp(N) by imposing suitable reality conditions.
There is no qualitative difference in the spectrum of the half-integer operators in the truncated models,
with the only quantitative difference being a doubling of the degrees of freedom of each half-integer
spin particle when going from O(N)/USp(N) to U(N) in the dual CFT.

The partition function for the Type AB theory is,

Z = e−F = e−
1

GN
F(0)+F(1)+GN F(2)+···, where F(1) = F(1)

f + F(1)
b , (21)

with Fb being for the contributions from bosonic higher-spin fields, which arise from purely Type A
and purely Type B contributions, and F(1)

f is the contribution of the HS fermions dual to (20). Up to
one-loop level, the bosonic and fermionic contributions are decoupled, as indicated in (21). A similar
decoupling of the Casimir energy occurs at the one-loop level, i.e., E(1)

c = E(1)
c, f + E(1)

c,b .

Our calculations for the Euclidean-AdS higher spin theory shows that F(1)
f = 0 at the one-loop

level for both U(N)/O(N) theories for all d. Similarly, the Casimir energies are found to vanish:
Ec, f = 0. In even d, from our results on the Type B theories and the earlier results on Vasiliev Type

A theories, we see that F(1)
b = 0 for the non-minimal Type AB theory, and this suggests that Type

AB theories at one-loop have vanishing F(1). For odd d, F(1) is non-vanishing with the non-zero
contribution coming from the Type B theory’s free energy, as discussed above.

Finally, we consider the Type C higher-spin theories, which are conjectured to be dual to the singlet
sector of massless p-forms, where p = ( d

2 − 1).4 The first two examples of these theories are the d = 4
case discussed in [16,17], where the dynamical fields are the N Maxwell fields, and the d = 6 case [18]
where the dynamical fields are N 2-form gauge fields with field strength Hμνρ. In these theories,
there are also an infinite number of totally symmetric conserved higher-spin currents, in addition to
various fields of mixed symmetry. We will extend these calculations to even d > 6.

As for Type B theories in d > 3, there are no known equations of motion for type C theories,
but we can still infer their free field spectrum from CFT considerations, using the results of [54].

4 The choice of the p-form is made to ensure that the current operators satisfy the unitary bound, as well as conformal invariance.
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The non-minimal theory is obtained by taking N complex (d/2− 1)-form gauge fields A, and imposing
a U(N) singlet constraint. One may further truncate these models by taking real fields and O(N)

singlet constraint, which results in the “minimal type C” theory. In addition, one can further impose
a self-duality condition on the d/2-form field strength F = dA. Since ∗2 = +1 in d = 4m + 2 and
∗2 = −1 in d = 4m, where ∗ is the Hodge-dual operator, one can impose the self-duality condition
F = ∗F only in d = 4m + 2 (for m integer); this can be done both for real (O(N)) and complex
(U(N)) fields. In d = 4m, and only in the non-minimal case with N complex fields, one can impose
the self-duality condition F = i ∗ F. Decomposing F = F1 + iF2 into its real and imaginary parts,
this condition implies F1 = − ∗ F2, and self-dual and anti-self-dual parts of F are complex conjugate of
each other.

As an example, let us consider d = 4 and take N complex Maxwell fields with a U(N) singlet
constraint. The spectrum of the the single trace operators arising from the tensor product F̄i

μν ⊗ Fρσ
i

can be found to be [17,54]:

(2; 1, 1)c ⊗ (2; 1, 1)c = 2(4; 0, 0) + (4; 1, 1)c + (4; 2, 2)c

+ 2
∞

∑
s=2

(s + 2; s, 0) +
∞

∑
s=3

(s + 2; s, 2)c
(22)

where we use the notation (2; 1, 1)c = (2; 1, 1) + (2; 1,−1), corresponding to the sum of the self-dual
and anti self-dual 2-form field strength with Δ = 2, and similarly for the representations appearing
on the right-hand side. Note that we use SO(4) notations [m1, m2] to specify the representation.
The operators in the first line are dual to matter fields in AdS5 in the corresponding representations,
while the second line corresponds to massless HS gauge fields. Note that a novel feature compared
to Type A and Type B is the presence of mixed symmetry representations with two boxes in the
second row:

s︷ ︸︸ ︷
· · · (23)

Imposing a reality condition and O(N) singlet constraint, one obtains the minimal spectrum [17]:

[(2; 1, 1)c ⊗ (2; 1, 1)c]symm = 2(4; 0, 0) + (4; 2, 2)c

+ ∑∞
s=2(s + 2; s, 0) + ∑∞

s=4,6,...(s + 2; s, 2)c .
(24)

Similarly, one may obtain the spectrum in all higher dimensions d = 4m and d = 4m + 2,
as will be explained in detail in Section 3.2.3. As an example, in the d = 8 type C theory we find
the representations:

s︷ ︸︸ ︷
· · · &

s︷ ︸︸ ︷
· · · &

s︷ ︸︸ ︷
· · ·

&

s︷ ︸︸ ︷
· · · &

s︷ ︸︸ ︷
· · · &

s︷ ︸︸ ︷
· · · (25)

&

s︷ ︸︸ ︷
· · · &

s︷ ︸︸ ︷
· · ·
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Our results for the one-loop calculations in type C theories are summarized in Table 1. We find
that the non-minimal U(N) theories have non-zero one-loop contributions, unlike the Type A and
type B theories (in even d). The results can be grouped into two subclasses depending on the spacetime
dimension, namely those in d = 4m or in d = 4m + 2, where m is an integer. In the minimal type C
theories with O(N) singlet constraint, we find that for all d = 4m the identification of the bulk coupling
constant is 1/GN ∼ N − 2, while in d = 4m + 2, the bulk one-loop free energy vanishes, and therefore
no shift is required. In the self-dual U(N)/O(N) theories, the one-loop free energy does not vanish,
but can be accounted for by half-integer shifts 1/GN ∼ N ± 1/2, as mentioned earlier. We find that all
of these results are consistent with calculations of Casimir energies in thermal AdS space, which are
collected in the Appendix.

Table 1. Summary of results of one-loop calculations for even d > 0. By no shift, we mean that there
are no shifts to the relation GN ∼ 1/N due to one-loop free energy of the particular theory. Results for
Type A theories taken from [27].

Type of Theory Shift to 1
GN

∼ N
Type A Theories

Non-Minimal U(N): No shift
Minimal O(N): N → N − 1

Type B Theories

Non-Minimal U(N): No shift

Minimal
O(N) in d = 2, 4, 8 (mod 8): N → N − 1

USp(N) in d = 6 (mod 8): N → N + 1

Weyl Projection: No shift

Majorana–Weyl: d = 2 (mod 8): N → N − 1
Type C Theories (p-Forms)

Non-minimal U(N)
d = 4, 8, 12, . . .: N → N − 1

d = 6, 10, 14, . . .: N → N + 1

Minimal O(N)
d = 4, 8, 12, . . .: N → N − 2

d = 6, 10, 14, . . .: No shift

Self-dual U(N)

d = 4, 8, 12, . . .: N → N − 1
2

d = 6, 10, 14, . . .: N → N +
1
2

Self-dual O(N)
d = 4, 8, 12, . . .: Not defined

d = 6, 10, 14, . . .: N → N − 1
2
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Table 2. Summary of results of one-loop calculations for odd d > 0. Again, by no shift, we mean
that there are no shifts to the coupling constant coming from the spectrum of the particular theory.
Results for Type A theories taken from [27].

Type of Theory Shift to 1
GN

∼ N
Type A Theories

Non-Minimal U(N): No shift

Minimal O(N): N → N − 1
Type B Theories

Non-Minimal U(N): Shifted by (14)

Minimal
O(N) in d = 3, 9 (mod 8): See Section 3.3.3

USp(N) in d = 5, 7 (mod 8): See Section 3.3.3

3. Matching the Sphere Free Energy

3.1. The AdS Spectral Zeta Function

Let us first review the calculation of the one-loop partition function on the hyperbolic space in the
case of the totally symmetric HS fields [26,27]. After gauge fixing of the linearized gauge invariance,
the contribution of a spin s (s ≥ 1) totally symmetric gauge field to the bulk partition function is
obtained as [59–61]:

Zs =

[
detSTT

s−1
(−∇2 + (s + d − 2)(s − 1)

)] 1
2

[
detSTT

s (−∇2 + (s + d − 2)(s − 2)− s)
] 1

2
(26)

where the label STT stands for symmetric traceless transverse tensors, and the numerator corresponds
to the contributions of the spin s − 1 ghosts. The mass-like terms in the above kinetic operators are
related to the conformal dimension of the dual fields. For a totally symmetric field with kinetic operator
−∇2 + κ2, the dual conformal dimension is given by:

Δ(Δ − d)− s = κ2 . (27)

For the values of κ in (26), one finds for the physical spin s field in the denominator5

Δph = s + d − 2 (28)

which corresponds to the scaling dimension of the dual conserved current in the CFT. Similarly
the conformal dimension obtained from the ghost kinetic operator in (26) is:

Δph = s + d − 1 . (29)

From CFT point of view, this is the dimension of the divergence ∂ · Js, which is a null state that
one has to subtract to obtain the short representation of the conformal algebra corresponding to
a conserved current.

5 We choose the root Δ+ above the unitarity bound. The alternate root corresponds to gauging the HS symmetry at the
boundary [62].
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The determinants in (26) can be computed using the heat kernel, or equivalently spectral zeta
functions techniques.6 The spectral zeta function for a differential operator on a compact space with
discrete eigenvalues λn and degeneracy dn is defined as

ζ(z) = ∑
n

dnλ−z
n . (30)

In our case, the differential operators in hyperbolic space have continuous spectrum, and the
sum over eigenvalues is replaced by an integral. Let us consider a field labeled by the representation
αs = [s, m2, m3, . . .] of SO(d)7, where we have denoted by m1 = s the length of the first row in the
corresponding Young diagram, which we may call the spin of the particle (for example, for a totally
symmetric field, we have αs = [s, 0, 0, . . . , 0]). For a given representation αs, the spectral zeta function
takes the form:

ζ(Δ;αs)(z) =
vol (AdSd+1)

vol(Sd)

2d−1

π
gαs

∫ ∞

0
du

μαs(u)[
u2 +

(
Δ − d

2

)2
]z , (31)

where μαs(u) is the spectral density of the eigenvalues, which will be given shortly, and gαs is the
dimension of the representation αs (see Equations (43) and (44) below). The denominator corresponds
to the eigenvalues of the kinetic operator, and Δ is the dimension of the dual CFT operator.8

The regularized volume of AdS is given explicitly by [63–65]:

vol(AdSd+1) =

⎧⎨⎩πd/2Γ(− d
2 ), d odd,

2(−π)d/2

Γ(1+ d
2 )

log R, d even,
(32)

where R is the radius of the boundary sphere. The logarithmic dependence on R in even d is related to
the presence of the Weyl anomaly in even dimensional CFTs. Finally, the volume of the round sphere
of unit radius is:

vol(Sd) =
2π(d+1)/2

Γ[(d + 1)/2]
. (33)

Once the spectral zeta function is known, the contribution of the field labeled by (Δ; αs) to the
bulk free energy is obtained as:

F(1)
(Δ;αs)

= σ

[
−1

2
ζ ′(Δ;αs)

(0)− ζ(Δ;αs)(0) log(�Λ)

]
, (34)

where σ = +1 or −1 depending on whether the field is bosonic or fermionic. Here � is the AdS
curvature, which we will set to one henceforth, and Λ is a UVcut-off. In general, the coefficient of the
logarithmic divergence ζ(Δ;αs)(0) vanishes for each αs in even dimension d, but it is non-zero for odd d.

When the dimension Δ = s + d − 2, the field labeled by αs is a gauge field and one has to subtract
the contribution of the corresponding ghosts in the αs−1 representation.9 We find it convenient to
introduce the notation:

6 The heat-kernel is related to the spectral zeta-function by a Mellin transformation.
7 This can be thought as the representation that specifies the dual CFT operator. From AdS point of view, one may view SO(d)

as the little group for a massive particle in d + 1 dimensions.
8 For the case of totally symmetric fields, this form of the eigenvalues can be deduced from the results of [51]. See for example

the Appendix of [16,18] for an explicit derivation in AdS5 and AdS7 for arbitrary representations.
9 As in the case of totally symmetric fields, the representation labeling the ghosts can be understood from CFT point of view

from the structure of the character of the short representations of the conformal algebra and the corresponding null states,
see [54].
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Z(Δph=s+d−2;αs)
(z) ≡ ζ(Δph;αs)

(z)− ζ(Δph+1;αs−1)
(z) (35)

to indicate the spectral zeta function of the HS gauge fields in the αs representation, with ghost
contribution subtracted. The full one-loop free energy may be then obtained by summing over all
representations αs appearing in the spectrum. For instance, in the case of the non-minimal Type A
theory, we may define the “total” spectral zeta function:

ζHS
type A(z) = ζ(d−2;[0,...,0])(z) +

∞

∑
s=1

Z(s+d−2;[s,0,...,0])(z) (36)

from which we can obtain the full one-loop free energy:

F(1)
type A =

[
−1

2
(ζHS

type A)
′(0)− 1

2
ζHS

type A(0) log(�2Λ2)

]
. (37)

Similarly, one can obtain ζHS
total(z) and the one-loop free energy in the other higher spin theories

we discuss. As these calculations requires summing over infinite towers of fields, one has of course to
suitably regularized the sums, as discussed in [26,27] and reviewed in the explicit calculations below.

3.1.1. The Spectral Density for Arbitrary Representation

A general formula for the spectral density for a field labeled by the representation α = [m1, m2, . . .]
was given in [52], and we summarize their result below.

In AdSd+1, arranging the weights for the irreps of SO(d) as m1 ≥ m2 ≥ · · · ≥ |mp|, where p = d−1
2

for odd d and p = d
2 for even d, we may define:

�j = mp−j+1 + j − 1, for d = even, (38)

�j = mp−j+1 + j − 1
2

, for d = odd . (39)

In terms of these, the spectral density takes the form of:

μα(u) =
π(

2d−1Γ
(

d+1
2

))2

p

∏
j=1

(u2 + �2
j ), for d = even, (40)

μα(u) =
π(

2d−1Γ
(

d+1
2

))2 f (u)u
p

∏
j=1

(u2 + �2
j ), for d = odd, (41)

where:

f (u) =

{
tanh(πu), �j = half-integer,

coth(πu), �j = integer.
(42)

The pre-factor of π

(2d−1Γ( d+1
2 ))

2 arises as a normalization constant found by imposing the condition

that as we approach flat space from hyperbolic space, the spectral density should approach that of
flat space.

The number of degrees of freedom gα is equal to the dimension of the corresponding
representation of SO(d), and is given by [66]:

gαs = ∏1≤i<j≤p
mi−mj+j−i

j−i ∏1≤i<j≤p
mi+mj+2p−i−j

2p−i−j , for d = 2p, (43)
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and:
gαs = ∏1≤i≤p

2mi+2p−2i+1
2p−2i+1 ∏1≤i<j≤p

mi−mj+j−i
j−i

×∏1≤i<j≤p
mi+mj+2p−i−j+1

2p−i−j+1 , for d = 2p + 1,
(44)

where α = [m1, . . . , mp]. As an example, in the Type A case in AdSd+1, the only representation we need
to consider is m1 = s, and for all j �= 1, mj = 0. This gives us:

μ[s,0,...,0](u) = π

(2d−1Γ( d+1
2 ))

2

[
u2 +

(
s + d−2

2

)2
] ∣∣∣∣ Γ(iu+ d−2

2 )
Γ(iu)

∣∣∣∣2

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

π(
2d−1Γ

(
d+1

2

))2

[
u2 +

(
s +

d − 2
2

)2
]
(d−4)/2

∏
j=0

(u2 + j2), d = even,

π(
2d−1Γ

(
d+1

2

))2 u tanh(πu)

[
u2 +

(
s +

d − 2
2

)2
]
(d−5)/2

∏
j=0

[
u2 + (j +

1
2
)2

]
, d = odd.

(45)

and:

g[s,0,...,0] =
(2s + d − 2)(s + d − 3)!

(d − 2)!s!
, d ≥ 3. (46)

The results agree with the formulas derived in [49] and used in [27].
In Type AB theories, we need the spectral density for fermion fields in the α = [s, 1/2, 1/2, . . . , 1/2]

representation. We find that the above general formulas for even and odd d can be expressed in the
compact form valid for all d:

μ[s, 1
2 ,..., 1

2 ]
(u) =

π(
2d−1Γ

(
d+1

2

))2

[
u2 +

(
s +

d − 2
2

)2
] ∣∣∣∣∣∣

Γ
(

iu + d−1
2

)
Γ(iu + 1

2 )

∣∣∣∣∣∣
2

, (47)

and:

g[s, 1
2 ,..., 1

2 ]
=

(s − 5
2 + d)!

(s − 1
2 )!(d − 2)!

nF(d), nF(d) =

{
2

d−2
2 , if d = even,

2
d−1

2 , if d = odd.
(48)

The spectral densities for the mixed symmetry fields appearing in Type B and C theories can be
obtained in a straightforward way from the above general formulas, and we present the explicit results
in the next sections.

3.2. Calculations in Even d

3.2.1. Type B Theories

Spectrum

The non-minimal Type B higher spin theory, which is conjectured to be dual to the U(N) singlet
sector of the free Dirac fermion theory, contains towers of mixed symmetry gauge fields of all integer
spins. From the spectrum given in (8), we obtain the total spectral zeta function:

ζHS
type B(z) = 2ζ(Δ=d−1;[0,0,...,0])(z)

+2 ∑∞
s=1

[
Z(Δph;[s,1,1,...,1,0])(z) + Z(Δph;[s,1,1,...,1,0,0])(z) + . . . + Z(Δph;[s,1,0,...,0])(z)

+Z(Δph;[s,0,0,...,0])(z)
]

+∑∞
s=1

[
Z(Δph;[s,1,1,...,1,1])(z) + Z(Δph;[s,1,1,...,1,1,−1])(z)

]
.

(49)
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In the third line of (49), the representations [s, 1, 1, . . . , 1, 1] and [s, 1, 1, . . . , 1,−1] give the self-dual
and anti-self-dual parts of the corresponding fields. At the level of the spectral ζ functions, they yield
equal contributions.10 Using the spectral zeta function formulas listed in Section 3.1.1 and summing
over all representations given above, we find that for all even d:

ζHS
type B(z) = O(z2) , (50)

and consequently the one-loop free energy in the non-minimal Type B theory in even d exactly vanishes:

F(1)
type B = 0 . (51)

There are various truncations to the non-minimal Type B theory that results in the Weyl,
Majorana and Majorana–Weyl projections on the free fermionic CFT. While the Weyl projection
can be applied in all even dimensions d, the Majorana projection can be applied in dimensions
d = 2, 3, 4, 8, 9 (mod 8), and the Majorana–Weyl projection only in dimensions d = 2 (mod 8).
An interesting example is d = 10 (AdS11), where we can consider all four types of Type B theories.

Weyl projection The projection from the non-minimal Type B theory described above is slightly
different when the theory is in d = 4m or d = 4m + 2. Using the results of [54] for the product of chiral
fermion representations, we find11

ζHS
type B Weyl(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∞

∑
s=1

[
Z(Δph;[s,0,0,...,0])(z) + Z(Δph;[s,1,1,0,...,0])(z) + . . . + Z(Δph;[s,1,1,...,1])(z)

]
, for d = 4m + 2,

∞

∑
s=1

[
Z(Δph;[s,0,0,...,0])(z) + Z(Δph;[s,1,1,0,...,0])(z) + . . . + Z(Δph;[s,1,1,...,1,0])(z)

]
, for d = 4m,

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∞

∑
s=1

1

∑
ti≥0
ti≥ti+1

Z(Δph;[s,t1,t1,...,tm ,tm ])(z), for d = 4m + 2,

∞

∑
s=1

1

∑
ti≥0
ti≥ti+1

Z(Δph;[s,t1,t1,...,tm−1,tm−1,0])(z), for d = 4m,

(52)

Note that under this projection, there are no scalars in the spectrum. The case d = 4 (AdS5) was
already discussed in [28]. Summing over all representations, we find that for all even d:

ζHS
type B Weyl(z) = O(z2) , (53)

and so
F(1)

type B Weyl = 0 . (54)

Minimal Theory (Majorana projection) The Majorana condition ψ̄ = ψTC, where C is the charge
conjugation matrix, can be imposed in d = 2, 3, 4, 8, 9 (mod 8), see for instance [67]. In these dimensions,
we can consider the theory of N free Majorana fermions and impose an O(N) singlet constraint.
In d = 6 (mod 8), provided one has an even number N of fermions, one can impose instead a
symplectic Majorana condition ψ̄i = ψT

j CΩij, where C is the charge conjugation matrix and Ωij the
antisymmetric symplectic metric. In this case, we consider the theory of N free symplectic Majoranas
with a USp(N) singlet constraint.

10 Note that, technically, for all Type B theories the field of spin s = 1 in the tower of spins of representation [s, 1, . . .] is
not a gauge field. However, for conciseness we still use the symbol Z(Δph;[s,1,...]) for these fields; the corresponding ghost
contribution is zero, so it does not make a practical difference.

11 To obtain this result, we note that in d = 4m, complex conjugation flips the chirality of a Weyl spinor, while in d = 4m + 2
the Weyl representation is self-conjugate. Therefore, in order to obtain U(N) invariant operators, we should use Equation
(4.20) of [54] for d = 4m, and Equation (4.23) of the same reference for d = 4m + 2.
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The operator spectrum in the minimal theory can be deduced by working out which operators of
the non-minimal theory are projected out by the Majorana constraint. The bilinear operators in the
non-minimal theory are of the schematic form:

Jμ1···μs ,ν1···νn−1 ∼ ψ̄i(Γ(n))ν1···νn−1(μ1
∂μ2 ∂μ3 · · · ∂μs)ψ

i + . . . (55)

where n = 0, . . . , d
2 − 1, and Γ(n) is the antisymmetrized product of n gamma matrices. For Majorana

fermions, we have ψ̄ = ψTC, and so the operators are projected out or kept depending on whether
CΓ(n) is symmetric or antisymmetric. If CΓ(n) is symmetric, then the operators with an even number
of derivatives (i.e., odd spin) are projected out; if it is antisymmetric, then the operators with an odd
number of derivatives (i.e., even spin) are projected out. In addition to (55), the non-minimal Type
B theories in even d include two scalars J0 = ψ̄iψ

i and J̃0 = ψ̄iγ∗ψi, where γ∗ ∼ Γ(d) is the chirality
matrix. When C is symmetric, J0 is projected out, and when Cγ∗ is symmetric, J̃0 is projected out.12

For instance, in d = 4, the non-minimal theory contains the operators given in (10)–(12). In d = 4,
one has that both C and Cγ5 are antisymmetric, so both scalars in (10) are retained. Then, one has that
Cγμ is symmetric while Cγμγ5 antisymmetric, and so we keep the first tower in (11) for even s and the
other tower for odd s: together, they make up a single tower in the [s, 0] representation with all integer
spins. Finally, CΓμν is symmetric, so we keep the mixed symmetry fields (12) with an odd number of
derivatives, i.e., the spectrum contains the representations [s, 1]c = [s, 1] + [s,−1] for all even s.

Higher dimensions can be analyzed similarly, using the symmetry/antisymmetry properties of
CΓ(n) in various d [67]. The results are summarized in Table 3. One finds that under the Majorana
projections the operators with the “heaviest” weight [s, 1, 1, . . . , 1]c always form a tower containing
all even s. The next representation [s, 1, . . . , 1, 0] form a tower of all integer s. Then, [s, 1, . . . , 1, 0, 0]
appears in two towers of all odd s. Finally, [s, 1, . . . , 1, 0, 0, 0] form a tower of all integer spins, after
which this cycle repeats. The number of scalars with Δ = d − 1 to be included also changes in a cycle
of 4. In AdS5, we have 2 scalars; in AdS7, we have 1 (this case, though, should be discussed separately,
see below); in AdS9, we have 0; in AdS11, we have 1, and the cycle repeats. In a more compact notation,
the total spectral zeta function in the minimal Type B theories dual to the O(N) Majorana theories is:

ζHS
type B Maj.(z) = χ(d)ζ(d−1;[0,0,...,0])(z)

+
∞

∑
s=2,4,6,...

1

∑
ti≥ti+1

ti≥0
∑w tw=w (mod 4)

(
Z(Δ;[s,t1,t2,...,tw−1,tw ])(z) + Z(Δ;[s,t1,t2,...,tw−1,−tw ])(z)

)

+ ∑
s=1,2,3,...

1

∑
ti≥ti+1

ti≥0
∑w tw=(w−1) (mod 4)

Z(Δ;[s,t1,t2,...,tw−1,tw ])(z) (56)

+ ∑
s=1,2,3,...

1

∑
ti≥ti+1

ti≥0
∑w tw=(w−3) (mod 4)

Z(Δph;[s,t1,t2,...,tw−1,tw ])
(z)

+ ∑
s=1,3,5,...

1

∑
ti≥ti+1

ti≥0
∑w tw=(w−2) (mod 4)

(
Z(Δph;[s,t1,t2,...,tw−1,tw ])

(z) + Z(Δph;[s,t1,t2,...,tw−1,−tw ])
(z)

)

where χ(d) = 1, 2, 0 when d = 0, 2, 4(mod 8) respectively. Explicit illustrations of this formula are
given in Table 3. Using these spectra we find, in all even d where the Majorana condition is possible:

12 As an example, consider the bilinear ψT Mψ. If M is symmetric, this operator clearly vanishes. On the other hand,
consider ψT M∂μψ. In this case, if M is an antisymmetric matrix, then this is equal to +∂μψT Mψ. In turn, this means that
ψT M∂μψ = 1

2 ∂μ(ψT Mψ), and so this operator is a total derivative and is not included in the spectrum of primaries.
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F(1)
type B Maj. = a f log R (57)

where R is the radius of the boundary sphere, and a f is the a-anomaly coefficient of a single Majorana
fermion in dimension d, given in (18). As explained earlier, this is consistent with the duality,
provided Gtype B Maj.

N ∼ 1/(N − 1). As mentioned above, in d = 6 (mod 8), i.e., AdS7(mod 8), we should
impose a symplectic Majorana condition and consider the USp(N) invariant operators. In terms
of the operators (55), since ψ̄ = ψTCΩ with Ω antisymmetric, all this means is that now odd spins
are projected out when CΓ(n) is antisymmetric, and even spins are projected out when CΓ(n) is
symmetric. Similarly, the scalar operators ψ̄iψ

i and ψiγ∗ψi are now projected out when C and Cγ∗ are
antisymmetric, respectively. In d = 6 (mod 8), one has that C is symmetric and Cγ∗ is antisymmetric,
so we retain a single scalar field. On the other hand, Cγμ and Cγμγ∗ are both antisymmetric, and so
we have two towers of totally symmetric representations of all even s.13 The projection of the mixed
symmetry representations can be deduced similarly. The total spectral zeta function is given by
the formula:

ζHS
type B Symp.Maj.(z) = ζ(d−1;[0,0,...,0])(z)

+
∞

∑
s=1,3,5,...

1

∑
ti≥ti+1

ti≥0
∑w tw=w (mod 4)

(
Z(Δph;[s,t1,t2,...,tw−1,tw ])

(z) + Z(Δph;[s,t1,t2,...,tw−1,−tw ])
(z)

)

+ ∑
s=1,2,3,...

1

∑
ti≥ti+1

ti≥0
∑w tw=(w−1) (mod 4)

Z(Δph;[s,t1,t2,...,tw−1,tw ])
(z) (58)

+ ∑
s=1,2,3,...

1

∑
ti≥ti+1

ti≥0
∑w tw=(w−3) (mod 4)

Z(Δph;[s,t1,t2,...,tw−1,tw ])
(z)

+ ∑
s=2,4,6,...

1

∑
ti≥ti+1

ti≥0
∑w tw=(w−2) (mod 4)

(
Z(Δph;[s,t1,t2,...,tw−1,tw ])

(z) + Z(Δph;[s,t1,t2,...,tw−1,−tw ])
(z)

)

An illustration of the formula is given in Table 3 for the AdS7 and AdS15 cases. Using these
spectra, we find that the one loop free energy of the minimal Type B theory corresponding to the
symplectic Majorana projection is given by:

F(1)
type B sympl.Maj. = −a f log R , (59)

i.e., the opposite sign compared to (57). This is consistent with the duality, provided Gtype B sympl.Maj.
N ∼

1/(N + 1).

Majorana–Weyl Projection

Finally the spectra arising from the Majorana–Weyl projection, which can be imposed in
dimensions d = 2(mod 8), is the overlap of the individual Majorana and Weyl projection. The resulting
spectrum yields the total zeta function:

13 Note that, had we tried to impose the standard Majorana condition, we would have retained the totally symmetric fields of
all odd spins. Then, the spectrum would not include a graviton, i.e., the dual CFT would not have a stress tensor.
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ζHS
Type B MW(z) =

∞

∑
s=2,4,6,...

1

∑
ti≥ti+1

ti≥0
∑w tw=w (mod 4)

Z(Δ;[s,t1,t2,...,tw−1,tw ])(z)

+ ∑
s=1,3,5,...

1

∑
ti≥ti+1

ti≥0
∑w tw=(w−2) (mod 4)

Z(Δph;[s,t1,t2,...,tw−1,tw ])
(z) .

(60)

Table 3. Projection of the non-minimal Type B theory to the Majorana/symplectic Majorana minimal
Type B theory in even d. Notice that in AdS7 and AdS15, where we impose a symplectic Majorana
projection, the pattern does not exactly follow the one seen in the other dimensions, as explained in
the text. Instead, they are ‘inverted’, with the swapping of the towers for each weight from being only
even integer spins to only odd integer spins. Their shift is highlighted in cyan. As defined earlier,
the subscript ‘c’ indicates that both self-dual and anti-self-dual parts are included, corresponding to the
weights [t1, . . . , tk−1, tk] and [t1, . . . , tk−1,−tk].

AdS3 O(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s] 2
Scalar (Δ = 1) 1

F(1) − 1
6 log R

AdS7 USp(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1, 1]c 1
[s, 1, 0] 1
[s, 0, 0] 2

Scalar (Δ = 5) 1

F(1) 191
7560 log R

AdS11 O(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1, 1, 1, 1]c 1
[s, 1, 1, 1, 0] 1
[s, 1, 1, 0, 0] 2
[s, 1, 0, 0, 0] 1
[s, 0, 0, 0, 0] 2

Scalar (Δ = 9) 1

F(1) − 14,797
2,993,760 log R

AdS15 USp(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1, 1, 1, 1, 1, 1]c 1
[s, 1, 1, 1, 1, 1, 0] 1
[s, 1, 1, 1, 1, 0, 0] 2
[s, 1, 1, 1, 0, 0, 0] 1
[s, 1, 1, 0, 0, 0, 0] 2
[s, 1, 0, 0, 0, 0, 0] 1
[s, 0, 0, 0, 0, 0, 0] 2

Scalar (Δ = 13) 1

F(1) − 36,740,617
35,026,992,000 log R

AdS19 O(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1, 1, 1, 1, 1, 1, 1, 1]c 1
[s, 1, 1, 1, 1, 1, 1, 1, 0] 1
[s, 1, 1, 1, 1, 1, 1, 0, 0] 2
[s, 1, 1, 1, 1, 1, 0, 0, 0] 1
[s, 1, 1, 1, 1, 0, 0, 0, 0] 2
[s, 1, 1, 1, 0, 0, 0, 0, 0] 1
[s, 1, 1, 0, 0, 0, 0, 0, 0] 2
[s, 1, 0, 0, 0, 0, 0, 0, 0] 1
[s, 0, 0, 0, 0, 0, 0, 0, 0] 2

Scalar (Δ = 15) 1

F(1) − 23,133,945,892,303
99,786,996,429,120,000 log R

AdS5 O(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1]c 1
[s, 0] 1

Scalar (Δ = 3) 2

F(1) 11
180 log R

AdS9 O(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1, 1, 1]c 1
[s, 1, 1, 0] 1
[s, 1, 0, 0] 2
[s, 0, 0, 0] 1

Scalar (Δ = 7) 0

F(1) 2497
226,800 log R

AdS13 O(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1, 1, 1, 1, 1]c 1
[s, 1, 1, 1, 1, 0] 1
[s, 1, 1, 1, 0, 0] 2
[s, 1, 1, 0, 0, 0] 1
[s, 1, 0, 0, 0, 0] 2
[s, 0, 0, 0, 0, 0] 1

Scalar (Δ = 11) 2

F(1) 92,427,157
40,864,824,000 log R

AdS17 O(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1, 1, 1, 1, 1, 1, 1]c 1
[s, 1, 1, 1, 1, 1, 1, 0] 1
[s, 1, 1, 1, 1, 1, 0, 0] 2
[s, 1, 1, 1, 1, 0, 0, 0] 1
[s, 1, 1, 1, 0, 0, 0, 0] 2
[s, 1, 1, 0, 0, 0, 0, 0] 1
[s, 1, 0, 0, 0, 0, 0, 0] 2
[s, 0, 0, 0, 0, 0, 0, 0] 1

Scalar (Δ = 15) 0

F(1) 61,430,943,169
125,046,361,440,000 log R

AdS21 O(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1, 1, 1, 1, 1, 1, 1, 1, 1]c 2
[s, 1, 1, 1, 1, 1, 1, 1, 1, 0] 1
[s, 1, 1, 1, 1, 1, 1, 1, 0, 0] 2
[s, 1, 1, 1, 1, 1, 1, 0, 0, 0] 1
[s, 1, 1, 1, 1, 1, 0, 0, 0, 0] 2
[s, 1, 1, 1, 1, 0, 0, 0, 0, 0] 1
[s, 1, 1, 1, 0, 0, 0, 0, 0, 0] 2
[s, 1, 1, 0, 0, 0, 0, 0, 0, 0] 1
[s, 1, 0, 0, 0, 0, 0, 0, 0, 0] 2
[s, 0, 0, 0, 0, 0, 0, 0, 0, 0] 1

Scalar (Δ = 17) 2

F(1) 16,399,688,681,447
149,003,207,337,600,000 log R
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An illustration of this can be seen in Table 4, where we list the spectra of AdS11 and AdS19.
Summing up over these spectra, we find the result:

F(1)
type B MW =

1
2

a f log R (61)

which is the a-anomaly coefficient of a single Majorana–Weyl fermion at the boundary.
In d = 6 (mod 8), one may impose a symplectic Majorana–Weyl projection. The resulting spectra

are the overlap between the symplectic Majorana and Weyl projections. For instance, in d = 6 we
find a minimal theory with a totally symmetric tower [s, 0, 0] of all even spins, and a tower of the
mixed symmetry fields [s, 1, 1] of all odd spins (see Table 4). In this case (and similarly for higher
d = 14, 22, . . .), we find:

F(1)
type B SMW = −1

2
a f log R . (62)

Since the a-anomaly of the boundary free theory of N symplectic Majorana–Weyl fermions is
aN SMW = N

2 a f , this result is consistent with a shift Gtype B SMW
N ∼ 1/(N + 1).

Table 4. Table of weights and their towers of spins for (top left) AdS11 and (top right) AdS19 under
Majorana–Weyl projection, and for (bottom left) AdS7 and (bottom right) AdS15 under the Symplectic
Majorana–Weyl projection. There are no subscripts c for the [s, 1, . . . , 1] representations because the
dual representations [s, 1, . . . , 1,−1] are not included.

AdS11 (Majorana–Weyl)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1, 1, 1, 1] 1
[s, 1, 1, 0, 0] 1
[s, 0, 0, 0, 0] 1

F(1) −14,797
5,987,520 log R

AdS7 (Symplectic Majorana–Weyl)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1, 1] 1
[s, 0, 0] 1

F(1) 191
15,120 log R

AdS19 (Majorana–Weyl)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1, 1, 1, 1, 1, 1, 1, 1] 1
[s, 1, 1, 1, 1, 1, 1, 0, 0] 1
[s, 1, 1, 1, 1, 0, 0, 0, 0] 1
[s, 1, 1, 0, 0, 0, 0, 0, 0] 1
[s, 0, 0, 0, 0, 0, 0, 0, 0] 1

F(1) − 23,133,945,892,303
199,573,992,858,240,000 log R

AdS15 (Symplectic Majorana–Weyl)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1, 1, 1, 1, 1, 1] 1
[s, 1, 1, 1, 1, 0, 0] 1
[s, 1, 1, 0, 0, 0, 0] 1
[s, 0, 0, 0, 0, 0, 0] 1

F(1) − 36,740,617
70,053,984,000 log R

Sample Calculations

AdS5 Following (49) for the non-minimal Type B theory,

ζHS
type B(z) = 2ζ(3;[0,0])(z) +

∞

∑
s=1

(
Z(Δph;[s,1])(z) + Z(Δph;[s,−1])(z)

)
+ 2

∞

∑
s=1

Z(Δph;[s,0])(z). (63)

We see that there are two weights to consider in AdS5, corresponding to [s, 0] and [s,±1]
representation. Using (31) and (40), we have:
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ζ(Δ;[s,1])(z)
log R = π2

∫ ∞
0 du (

u2+1)[(s+1)2+u2]
12π3

s(2+s)
[u2+(Δ−2)2]

z

= s(s+2)
8
√

πΓ(z)

[
(s+1)2(Δ−2)1−2zΓ(z− 1

2 )
3 +

((s+1)2+1)(Δ−2)3−2zΓ(z− 3
2 )

6

+
(Δ−2)5−2zΓ(z− 5

2 )
4

] (64)

In the above, we made use of the formula,

∫ ∞

0
du

u2p

[u2 + ν2]
z = ν2p+1−2z

∫ ∞

0
du

u2p

[u2 + 1]z
= ν2p+1−2z Γ(p + 1

2 )

2
Γ(z − p − 1

2 )

Γ(z)
, (65)

to go from the first to the second line.
In our regularization scheme, we sum over the physical modes separately from the ghost modes.

We introduce ζ(k, ν), the Hurwitz zeta function (analytically extended to the entire complex plane),
which is given by:

ζ(k, ν) =
∞

∑
s=0

1
(s + ν)k . (66)

Then, using Δgh = s + 3,

1
log R ∑∞

s=1 ζ(Δgh;[s−1,1])(z)

= 1
96
√

πΓ(z)

[
2ζ(2z − 7)Γ

(
z − 3

2
)
+ 3ζ(2z − 7)Γ

(
z − 5

2
)
+ 8ζ(2z − 6)Γ

(
z − 3

2
)

+6ζ(2z − 6)Γ
(
z − 5

2
)
+ 4ζ(2z − 5)Γ

(
z − 1

2

)
+ 12ζ(2z − 5)Γ

(
z − 3

2
)

+16ζ(2z − 4)Γ
(

z − 1
2

)
+ 8ζ(2z − 4)Γ

(
z − 3

2
)
+ 20ζ(2z − 3)Γ

(
z − 1

2

)
+8ζ(2z − 2)Γ

(
z − 1

2

) ]
.

(67)

Similarly, using Δph = s + 2,

1
log R ∑∞

s=1 ζ(Δph;[s,1])(z)

= 1
96
√

πΓ(z)

{
Γ
(
z − 5

2 , 1
) [

6ζ(2z − 6, 1) + 3ζ(2z − 7, 1)
]

+Γ
(
z − 3

2
) [

12ζ(2z − 5, 1) + 2ζ(2z − 7, 1) + 8ζ(2z − 6, 1)Γ + 8ζ(2z − 4, 1)
]

+
(

z − 1
2

) [
16ζ(2z − 4, 1)Γ + 8ζ(2z − 2, 1) + 20ζ(2z − 3, 1) + 4ζ(2z − 5, 1)

]}
(68)

Putting (67) and (68) together,

1
log R ∑∞

s=1

[
ζ(Δph;[s,1])(z)− ζ(Δgh;[s−1,1])(z)

]
= − 1

90 z + 1
180

[
56ζ ′(−6)− 160ζ ′(−4)− 120ζ ′(−2)− 2γ + 3ψ

(− 5
2
)− 5ψ

(− 3
2
)]

z2 +O(z3)
(69)

where ψ(x) is the digamma function, γ the Euler–Mascheroni constant, and ζ ′ the derivative of
the Riemann Zeta function ζ(z) (which is related to the Hurwitz Zeta function ζ(z) = ζ(z, 1)).
Similarly, for the totally symmetric representation [s, 0], we have:
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1
log R ∑∞

s=1 Z(Δph;[s,0])(z)

= 1
log R ∑∞

s=1

[
ζ(Δph;[s,0])(z)− ζ(Δgh;[s−1,0])(z)

]
= 1

24
√

πΓ(z)

[
3ζ(2(z − 3))Γ

(
z − 5

2
)
+ 4(ζ(2(z − 3)) + ζ(2(z − 2)))Γ

(
z − 3

2
)]

=
(

14
45 ζ ′(−6) + 4

9 ζ ′(−4)
)

z2 +O(z3)

(70)

Finally, for the massive scalar with Δ = 3, we have:

ζ(3;[0,0])(z)
log R =

∫ ∞
0 du

(s+1)2u2[(s+1)2+u2]
12π[(Δ−2)2+u2]

z

∣∣∣∣Δ=3,
s=0

=

[
(s+1)4(Δ−2)3−2zΓ(z− 3

2 )
48
√

πΓ(z) +
(s+1)2(Δ−2)5−2zΓ(z− 5

2 )
32
√

πΓ(z)

]
Δ=3,
s=0

=
Γ(z− 3

2 )
48
√

πΓ(z) +
Γ(z− 5

2 )
32
√

πΓ(z)

= 1
90 z + 1

180
[
2γ − 3ψ

(− 5
2
)
+ 5ψ

(− 3
2
)]

z2 +O(z3).

(71)

When summing (69)–(71) together, there are no terms of order O(z0) or O(z1) in the sum,
and hence, taking z → 0, we obtain F(1) = 0 for the non-minimal Type B theory.

For the Type B minimal theory, we should evaluate, according to (56), the following sum:

ζHS
Total−Type B(z) = 2ζ(3;[0,0])(z) + ∑

s=2,4,6,...

(
Z(Δph;[s,1])(z) + Z(Δph;[s,−1])(z)

)
+

∞

∑
s=1

Z(Δph;[s,0])(z). (72)

The first and third term of the sum have already been evaluated for in the non-minimal theory
in (70) and (71) respectively. For the second term,

∑s=2,4,6,...
(
Z(Δph;[s,1]) + Z(Δph;[s,−1])

)
= 2 ∑s=2,4,6,...

[
(s+1)2(s+2)s2−2zΓ(z− 1

2 )
24
√

πΓ(z) +
(s+2)((s+1)2+1)s4−2zΓ(z− 3

2 )
48
√

πΓ(z)

+
(s+2)s6−2zΓ(z− 5

2 )
32
√

πΓ(z)

]
log R

−2 ∑s=2,4,6,...

[
(s−1)s2(s+1)2−2zΓ(z− 1

2 )
24
√

πΓ(z) +
(s−1)(s2+1)(s+1)4−2zΓ(z− 3

2 )
48
√

πΓ(z)

+
(s−1)(s+1)6−2zΓ(z− 5

2 )
32
√

πΓ(z)

]
log R

(73)

To illustrate the zeta-regularization, let us consider the last term,

∑s=2,4,6,...
(s−1)(s+1)6−2zΓ(z− 5

2 )
32
√

πΓ(z)

= ∑s=2,4,6,...

[
(s+1)7−2zΓ(z− 5

2 )
32
√

πΓ(z) − 2
(s+1)6−2zΓ(z− 5

2 )
32
√

πΓ(z)

]
= ∑s=1,2,3,...

[
27−2z(s+ 1

2 )
7−2zΓ(z− 5

2 )
32
√

πΓ(z) − 2
26−2z(s+ 1

2 )
6−2zΓ(z− 5

2 )
32
√

πΓ(z)

]
=

22−2zζ(2z−7, 3
2 )Γ(z− 5

2 )√
πΓ(z) − 22−2zζ(2z−6, 3

2 )Γ(z− 5
2 )√

πΓ(z)

(74)
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where on the second line we used the substitution s → 2s, followed by rewriting 2s + 1 = 2(s + 1
2 ).

14

The partial results coming from summing each tower are given in Table A3. Putting everything
together, we obtain F(1)

type B Maj. =
11

180 log R = ad=4
f log R, which agrees with the results of [16].

Finally, for the Weyl truncated theory,

ζHS
type B Weyl(z) =

∞

∑
s=1

Z(Δph;[s,0])(z) = O(z2), (75)

which gives us F(1) = 0.
AdS11 We skip the d = 7, 9 case, whose spectrum for the various theories follow from the

discussion in Section 3.3.3. For reference, the calculated free energy of each weight F(1) is given in
Tables A4 and A5.

Instead, let us consider the d = 11 case, where we can compare the four different types of fermions:
non-minimal (U(N)), Weyl, minimal (O(N)), and Majorana–Weyl. The calculations of F(1) for each
the various weights and their spectra are given in Table A6. In the non-minimal and Weyl projected
theories, the bulk F(1) contributions sum to zero, whereas in the minimal and Majorana–Weyl theories,
the bulk F(1) contributions are −14, 797/2, 993, 760 log R and −14, 797/5, 987, 520 log R respectively.
The numerical parts of these free energies correspond exactly to the values of the free energy of one
real fermion, −14, 797/2, 993, 760 and one real Weyl fermion on S10, −14, 797/5, 987, 520.

3.2.2. Fermionic Higher Spins in Type AB Theories

Spectrum

We described earlier that there is only one irrep of SO(d) of interest here that describes the tower
of spins corresponding to the fermionic bilinears in Type AB theories, namely αs = [s, 1

2 , 1
2 , . . . , 1

2 ].
Therefore, in the non-minimal theories dual to complex scalars and fermions in the U(N) singlet sector,
the purely fermionic contribution to the total zeta function is:

ζHS
type AB ferm(z) = 2ζHS

(Δ1/2;[ 1
2 , 1

2 , 1
2 ,..., 1

2 ])
(z) + 2

∞

∑
s= 3

2 , 5
2 ,...

Z(Δph;[s, 1
2 , 1

2 ,..., 1
2 ])

(z), (76)

where Δ1/2 = 1
2 + d − 2 = d − 3

2 . Thus, the spectrum of spins gives us a massive Dirac fermion15,
and a tower of complex massless higher-spin fermionic fields.16

Sample Calculation: AdS5

After collecting our equations following (76), we have,

ζHS
type AB ferm(z) = 2ζHS

(Δ1/2;[ 1
2 , 1

2 ])
(z) + 2

∞

∑
s= 3

2 , 5
2 ,...

Z(Δph;[s, 1
2 ])

(z), (77)

with Δph = 2 + s. For the massive fermion contribution,

ζ(Δ1/2;[s, 1
2 ])

(z) =
22z−10

(
36Γ

(
z − 1

2

)
+ 20Γ

(
z − 3

2
)
+ 3Γ

(
z − 5

2
))

3
√

πΓ(z)
. (78)

14 Similar shifts and scaling will be applied in the higher dimensional Type B cases, as well as the Type AB and C cases,
and details of transformations to the Hurwitz-zeta function can be found in Appendix B.1.

15 With mass |m| = (Δ1/2 − d/2)/2 = (d − 3)/4.
16 The factor of two in (76) just accounts for the fact that the representations are complex.
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Then,

ζ
(Δ;[s, 1

2 ])
(z)

log R =
(s+ 1

2 )(s+
3
2 )

48π(Δ−2)2z−1Γ(z)

×
[
(Δ − 2)4Γ

( 5
2
)

Γ
(
z − 5

2
)
+ Γ

( 3
2
)

Γ
(
z − 3

2
)
(Δ − 2)2

(
1
4 + (s + 1)2

)
+Γ

(
1
2

)
Γ
(

z − 1
2

)
(s+1)2

4

]
.

(79)

This gives us,

∑s= 3
2 , 5

2 ,... ζ(Δph;[s, 1
2 ])

(z)

= 1
1536

√
πΓ(z)

{
6
[
4ζ

(
2z − 7, 3

2
)
+ 8ζ

(
2z − 6, 3

2
)
+ 3ζ

(
2z − 5, 3

2
)]

Γ
(
z − 5

2
)

+
[
16ζ

(
2z − 7, 3

2
)
+ 64ζ

(
2z − 6, 3

2
)
+ 96ζ

(
2z − 5, 3

2
)
+ 64ζ

(
2z − 4, 3

2
)

+15ζ
(
2z − 3, 3

2
)]

Γ
(
z − 3

2
)
+ 2

[
4ζ

(
2z − 5, 3

2
)
+ 16ζ

(
2z − 4, 3

2
)

+23ζ
(
2z − 3, 3

2
)
+ 14ζ

(
2z − 2, 3

2
)
+ 3ζ

(
2z − 1, 3

2
)]

Γ
(

z − 1
2

)}
.

(80)

The technicalities of the shift to the Hurwitz Zeta function in the sum above is similar to the case
for the minimal Type B theory in AdS5 which we worked out earlier. More details can be found in
Appendix B.1. Similarly,

∑s= 3
2 , 5

2 ,... ζ(Δgh;[s−1, 1
2 ])

(z)

= 1
1536

√
πΓ(z)

{
6
[
4ζ

(
2z − 7, 5

2
)− 8ζ

(
2z − 6, 5

2
)
+ 3ζ

(
2z − 5, 5

2
)]

Γ
(
z − 5

2
)

+
[
16ζ

(
2z − 7, 5

2
)− 64ζ

(
2z − 6, 5

2
)
+ 96ζ

(
2z − 5, 5

2
)− 64ζ

(
2z − 4, 5

2
)

+15ζ
(
2z − 3, 5

2
)]

Γ
(
z − 3

2
)
+ 2

[
4ζ

(
2z − 5, 5

2
)− 16ζ

(
2z − 4, 5

2
)

+23ζ
(
2z − 3, 5

2
)− 14ζ

(
2z − 2, 5

2
)
+ 3ζ

(
2z − 1, 5

2
)]

Γ
(

z − 1
2

)}
.

(81)

Quite clearly, the Hurwitz-zeta function shifts differently for the physical and ghost modes.
Adding all three contributions and expanding near z = 0,

ζHS
type AB ferm(z) = O(z2) (82)

which implies that F(1)
type AB ferm = 0, consistently with the duality.

For reference, we also report the expected expression of ζHS
type AB ferm(z) for AdS7 and AdS9,

expanded in z up to the second order, in Appendix C.2.

3.2.3. Type C Theories

Calculations for Type C theories are similar to those described above and we will not go through
all details explicitly. In the following sections, we list the spectrum of fields in these theories,
including their various possible truncations. The free energy contributions in a few explicit examples
are collected for reference in Appendix C.3.

Spectrum

The spectrum of the non-minimal type C theories, dual to the free theory of N complex d/2-form
gauge fields with U(N) singlet constraint, can be obtained from the character formulas derived in [54].
While the resulting spectra may look complicated, they follow a clear pattern that can be rather easily
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identified if one refers to the tables given in Appendix C.3. The results are split into the cases d = 4m
and d = 4m + 2. For d = 4m, the total spectral zeta function is given by17,18

ζHS
type C(z) = 2

1

∑
ki≥0

ki≥ki+1

ζ(4m;[k1,k1,...,km ,km ])(z)

+
∞

∑
s=2

[
2

∑
ti≥0
ti≥ti+1

2Z(Δph;[s,t1,t1,t2,t2,...,tm−1,tm−1,0])(z) (83)

+
2

∑
ji≥0
ji≥ji+1

(
Z(Δph;[s,2,j1,j1,j2,j2,...,jm−1,+jm−1])

(z) + Z(Δph;[s,2,j1,j1,j2,j2,...,jm−1,−jm−1])
(z)

)]

and for d = 4m + 2:

ζHS
type C(z) = 2

1

∑
ki≥0

ki≥ki+1

ζ(4m+2;[k1,k1,...,km ,km ,0])(z)

+
∞

∑
s=2

[
2

∑
ti≥0
ti≥ti+1

2Z(Δph;[s,2,t1,t1,t2,t2,...,tm−1,tm−1,0])(z) (84)

+
2

∑
ji≥0
ji≥ji+1

(
Z(Δph;[s,j1,j1,j2,j2,...,jm−1,+jm−1])

(z) + Z(Δph;[s,j1,j1,j2,j2,...,jm−1,−jm−1])
(z)

)]

Using these spectra and (40) to compute the zeta functions, we find the results:

F(1)
type C = 2ad/2−form log R , d = 4m

F(1)
type C = −2ad/2−form log R , d = 4m + 2

(85)

where ad/2−form is the a-anomaly coefficient of a single real (d/2 − 1)-form gauge field in dimension d.
The first few values in d = 4, 6, 8, . . . read [69]:

ad/2−form =

{
62
90

,−221
210

,
8051
5670

,−1, 339, 661
748, 440

,
525, 793, 111
243, 243, 000

,−3, 698, 905, 481
1, 459, 458, 000

, . . .
}

. (86)

Thus, we see that (85) is consistent with the duality provided Gtype C
N ∼ 1/(N − 1) in d = 4m,

and Gtype C
N ∼ 1/(N + 1) in d = 4m + 2.

Minimal Type C O(N) The “minimal type C” theory corresponds to the O(N) singlet sector
of the free theory of N (d/2 − 1)-form gauge fields. Its spectrum can be in principle obtained by
appropriately “symmetrizing” the character formulas given in [54] and used above to obtain the
non-minimal spectrum. The spectra in d = 4 and d = 6 were obtained in [16–18]. Generalizing those
results for all d, we arrive at the following total spectral zeta functions. In d = 4m,

17 (83) and (84) correspond to Equations (4.20) and (4.21) and (4.22) and (4.23) of [54] respectively, and the tensorial
decomposition in these quoted equations can be further simplified by the formulas on p. 104 of [68].

18 For all Type C theories, the field of spin s = 2 in the towers of spins of representation [s, 2, . . .] are not gauge fields, but we
will still use the symbol Z for conciseness. See footnote 10 for similar remarks.
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ζHS
min. type C(z) = 2

1

∑
ki≥0

ki≥ki+1

ζ(4m;[k1,k1,k1,k1,...,k& m
2 ' ,k& m

2 ' ,k& m
2 ' ,k& m

2 ' ,0])(z)

+
∞

∑
s=2

2

∑
ti≥0
ti≥ti+1

Z(Δph;[s,t1,t1,t2,t2,...,tm−1,tm−1,0])(z) (87)

+ ∑
s=2,4,6,...

2

∑
ji≥0
ji≥ji+1

∑i ji=0 (mod 2)

(
Z(Δph;[s,2,j1,j1,j2,j2,...,jm−1,+jm−1])

(z) + Z(Δph,s;[s,2,j1,j1,j2,j2,...,jm−1,−jm−1])
(z)

)

+ ∑
s=3,5,7,...

2

∑
ji≥0
ji≥ji+1

∑i ji=1 (mod 2)

(
Z(Δph;[s,2,j1,j1,j2,j2,...,jm−1,+jm−1])

(z) + Z(Δph;[s,2,j1,j1,j2,j2,...,jm−1,−jm−1])
(z)

)

and in d = 4m + 2,

ζHS
min. type C(z) =

1

∑
ki≥0

ki≥ki+1

ζ(4m+2;[k1,k1,...,km ,km ,0])(z)

+
∞

∑
s=2

2

∑
ti≥0
ti≥ti+1

Z(Δph;[s,2,t1,t1,t2,t2,...,tm−1,tm−1,0])(z) (88)

+ ∑
s=2,4,6,...

2

∑
ji≥0
ji≥ji+1

∑i ji=0 (mod 2)

(
Z(Δph;[s,j1,j1,j2,j2,...,jm ,+jm ])(z) + Z(Δph;[s,j1,j1,j2,j2,...,jm ,−jm ])(z)

)

+ ∑
s=3,5,7,...

2

∑
ji≥0
ji≥ji+1

∑i ji=1 (mod 2)

(
Z(Δph;[s,j1,j1,j2,j2,...,jm ,+jm ])(z) + Z(Δph;[s,j1,j1,j2,j2,...,jm ,−jm ])(z)

)
,

where &m
2 ' denotes the integer part of m

2 .
As a consistency check of these spectra, in Appendix A.1 we computed the corresponding

partition functions in thermal AdS with S1 × Sd−1 boundary. After summing up over all representations
appearing in the zeta functions above, the result matches the (symmetrized) square of the one-particle
partition function of a (d/2− 1)-form gauge field, see Equation (A29).

Evaluating the spectral zeta functions with the help of the formulas in Section 3.1.1, we obtain
the results:

F(1)
min. type C SD = 2ad/2−form log R , d = 4m

F(1)
min. type C SD = 0 , d = 4m + 2

(89)

These correspond to the shifts given in Table 1. Interestingly, in the minimal type C theory in
d = 6, 10, . . . the bulk one-loop free energy vanishes and no shift of the coupling constant is required.
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Self-dual U(N) In d = 4m, we can impose a self-duality constraint Fi = i ∗ Fi in the theory of
N complex p-forms. The resulting spectrum of U(N) invariant bilinears leads to the following total
zeta function in the bulk19

ζHS
type C SD(z) =

∞

∑
s=2

2

∑
ti≥0
ti≥ti+1

Z(Δph;[s,t1,t1,t2,t2,...,tm−1,tm−1,0])(z) . (90)

In d = 4m + 2, we can impose the self-duality condition Fi = ∗Fi, and the resulting truncated
spectrum gives the following total zeta function20

ζHS
type C SD(z) =

∞

∑
s=2

2

∑
ji≥0
ji≥ji+1

Z(Δph;[s,j1,j1,j2,j2,...,jm−1,+jm−1])
(z) . (91)

Using these spectra, we find the results:

F(1)
type C SD =

1
2

ad/2−form log R , d = 4m

F(1)
type C SD =− 1

2
ad/2−form log R , d = 4m + 2

(92)

which correspond to the shifts given in Table 1.

Self-dual O(N) In d = 4m + 2, we can impose a self-duality condition on the theory of N real
forms with O(N) singlet constraint. The spectrum is given by the “overlap" of the minimal type C and
self-dual U(N) spectra given above. The resulting total zeta function is given by:

ζHS
min. type C SD(z) = ∑

s=2,4,6,...

2

∑
ji≥0
ji≥ji+1

∑i ji=0 (mod 2)

Z(Δ;[s,j1,j1,j2,j2,...,jm ,+jm ])(z)

+ ∑
s=3,5,7,...

2

∑
ji≥0
ji≥ji+1

∑i ji=1 (mod 2)

Z(Δ;[s,j1,j1,j2,j2,...,jm ,+jm ])(z) (93)

from which we find the result:

F(1)
min. type C SD =

1
4

ad/2−form log R , d = 4m + 2 . (94)

3.3. Calculations in Odd d

3.3.1. Preliminaries

Alternate Regulators

In the calculations for even d discussed above, we chose to sum over the spins before sending
the spectral parameter z → 0. This analytic continuation in z is a natural way to regulate the sums.
In practice, this is possible in the even d case because the spectral density is polynomial in the
integrating variable u. In the case of odd d, summing before sending z → 0 is not easy to do, and we

19 This corresponds to Equation (4.20) in [54]. This is because in d = 4m complex conjugation maps self-dual to anti
self-dual forms.

20 This corresponds to Equation (4.23) in [54].
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will instead first send z → 0 and then evaluate the regularized sums over spins. There are two
equivalent ways to do this. The first involves using exponential factors to suppress the spins:

∑all spins
in αs

[
Z(Δph;αs)

(z)
∣∣∣
z=0

]
= limε→0 ∑all spins

in αs

e−ε(Δph− d
2 )(ζ(Δph;αs)

)(0)− limε→0 ∑all spins
in αs

e−ε(Δgh− d
2 )(ζ(Δgh;αs−1)

)(0),
(95)

and similarly:

∑all spins
in αs

[
∂
∂zZ(Δph;αs)

(z)
∣∣∣
z=0

]
= limε→0 ∑all spins

in αs

e−ε(Δph− d
2 )(ζ(Δph;αs)

)′(0)− limε→0 ∑all spins
in αs

e−ε(Δgh− d
2 )(ζ(Δgh;αs−1)

)′(0),
(96)

where we recall that Δph = s + d − 2 and Δgh = s + d − 1. In even d, one can show that this procedure,
with the shifted exponentials as above, gives the same result as first summing over all representations
and then sending the spectral parameter z → 0. Equivalently, instead of the exponential regulators,
one can use the analytic continuation of the Hurwitz zeta function by evaluating:

∑all spins
in αs

[
Z(Δph;αs)

(z)
∣∣∣
z=0

]
= limε→0 ∑all spins

in αs

(
Δph − d

2

)−ε
(ζHS

(Δph,s;αs)
)(0)− limε→0 ∑all spins

in αs

(
Δgh − d

2

)−ε
(ζHS

(Δgh;αs−1)
)(0),

(97)

and:

∑all spins
in αs

[
∂
∂zZ(Δph;αs)

(z)
∣∣∣
z=0

]
= limε→0 ∑all spins

in α

(
Δph − d

2

)−ε
(ζ(Δph;αs)

)′(0)− limε→0 ∑all spins
in αs

(
Δgh − d

2

)−ε
(ζHS

(Δgh;αs−1)
)′(0),

(98)

This method, which is closely related to the one previously used in [27],21 will be described in the
next sections in greater detail.

Note that, while in even d ζ(Δs ;αs)(0) vanishes identically for any representation, this is not true
in odd d. Vanishing of the logarithmic divergence in the one-loop free energy requires in this case
summing over all the bulk fields, as reviewed below.

Integrals

In all odd d calculations, we encounter the integrals of the type:

∫ ∞

0

uk

e2πu ± 1
log[u2 + b2] =

∫ ∞

0

uk du
e2πu ± 1

[
log(u2) +

∫ b2

0

1
u2 + x

dx

]
. (99)

We define:

A±
k (x) ≡

∫ ∞

0

uk

e2πu ± 1
du

u2 + x
, B±

k ≡
∫ ∞

0

uk

e2πu ± 1
. (100)

21 In that paper, an “averaged” regulator of ( Δph+Δgh

2 − d
2 )

−ε was preferred for the Type A theory calculations, and it can
be shown to give the same result as the regulators (97) and (98) that we will use in our calculations. In Type AB theories,
however, it appears that “averaged” regulator does not work, and we will use the shifts defined in (97) and (98) in all
theories consistently.
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There exists a recursive relation between the various Ak’s and Bk’s for any odd integer 2k + 1
(see Appendix B.2 for a proof):

A±
2k+1(x) = (−x)k A±

1 (x) +
k

∑
j=1

(−x)k−jB±
2j−1. (101)

As a consequence of this relation, we only need the explicit analytic expressions of the integrals
A±

1 ,22 which is given by [49]:

A+
1 (x) =

1
2

[
− log(

√
x) + ψ

(√
x +

1
2

)]
(103)

A−
1 (x) =

1
2

[
log(

√
x)− 1

2
√

x
− ψ(

√
x)
]

, (104)

where ψ(x) is the digamma function ψ(x) = Γ′(x)/Γ(x).

3.3.2. Calculational Method and Type A Example

To illustrate the method of calculation, we first review the calculation in the non-minimal Type A
theory [26,27]. The calculations for the various Type B theories are similar and we will not give all details.
Calculations for the Type AB theory are similar with slight differences that will be discussed below.

Unlike the even d case, the spectral function μα(u) is no longer polynomial in u, but a polynomial
in u multiplied by a hyperbolic function,

μα(u) = μ
poly
α (u)× f±(u), where f±(u) =

{
f+(u) = tanh(πu), for bosons,

f−(u) = coth(πu), for fermions.
(105)

Then, for a particular spectral weight α, the partition function can be written as:

ζ(Δ;α)(z) =
vol (AdSd+1)

vol(Sd)

2d−1

π

∫ ∞

0
du

gαμ
poly
α (u)[

u2 +
(

Δ − d
2

)2
]z f±(u). (106)

We will use the example of the Type A theory in AdS4 to walk us through the calculations. In the
non-minimal Type A theory in AdS4, the only representations are the totally symmetric ones α = [s],
s ≥ 0, and the spectral zeta function for a given spin s is:

ζ(Δ;αs)(z) = vol(AdS4)
vol(S3)

4
π

∫ ∞
0 du

g[s](s)μ
poly
[s] (u)[

u2+(Δph− 3
2 )

2]z f+(u)

=
∫ ∞

0 du
(2s+1)u

[
(s+ 1

2 )
2
+u2

]
6
[
(Δ− 3

2 )
2
+u2

]z tanh(πu),

(107)

where μ
poly
[s] (u) =

u
(

u2+(s+ 1
2 )

2)
8π2 and g[s] = 2s + 1.

To calculate the one-loop free energy, we will need to evaluate ∑ ζ(Δ;α)(0) and ∑ ζ ′(Δ;α)(0).

22 While not needed, the integral results for B±
k , can be identified with the Hurwitz-Lerch Phi function Φ(z, s, v),∫ ∞

0
du

uk

e2πu ± 1
=

∫ ∞

0
du

1
2π

( u
2π )ke−u

1± e−u =
Γ(k + 1)
(2π)k+1 Φ(±1, k + 1, 1) (102)
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Computing ∑ ζ(α;Δ)(0):

Setting z = 0 in (107), we find:

ζ(Δ;[s])(0) =
∫ ∞

0
du

(2s + 1)u
[(

s + 1
2

)2
+ u2

]
6

tanh(πu). (108)

Regulating this sum by inserting the prefactor (Δ − d
2 )

−ε as in (97), we find23

∑∞
s=1 ζ(Δph;[s])(0) = limε→0 ∑∞

s=1
∫ ∞

0 du
(2s+1)u

[
(s+ 1

2 )
2
+u2

]
6

(
s − 1

2

)−ε
tanh(πu)

=
∫ ∞

0
du
6 limε→0

[
2ζ

(
−1 + ε, 1

2

)
u3 + 2ζ

(
−3 + ε, 1

2

)
u + 6ζ

(
−2 + ε, 1

2

)
u

+6ζ
(
−1 + ε, 1

2

)
u + (2u3 + 2u)ζ

(
ε, 1

2

) ]
tanh(πu)

=
∫ ∞

0 du
[

u3

72 + 113u
2880

]
tanh(πu).

(109)

A similar calculation for the ghost modes using the prefactor (Δgh − d
2 )

−ε yields:

∞

∑
s=1

ζ(Δgh;[s−1])(0) =
∫ ∞

0

du
e2πiu + 1

[
233u
2880

+
13u3

72

]
tanh(πu). (110)

For the bulk scalar, we simply set s = 0 in ζ(Δph;[s])(0), and obtain ζ(1;[0])(0) =∫ ∞
0 du

[
u
24 + u3

6

]
tanh(πu). Putting all contributions together, the coefficient of the logarithmic

divergence in the one-loop free energy is:

ζHS
type A(0) = ζ(1;[0])(0) + ∑∞

s=1 ζ(Δph;[s])(0)− ∑∞
s=1 ζ(Δgh;[s−1])(0)

=
∫ ∞

0 du tanh(πu)
[

u3

72 + 113u
2880 − 233u

2880 − 13u3

72 + u
24 + u3

6

]
= 0.

(111)

It is remarkable that when we sum over the entire spectrum of bulk fields, we get:

ζHS
Total(0) = 0, (112)

which indicates that the one-loop free energies have no logarithmic divergences. We find that this
result holds not only in Type A theories [26,27], but also in all of the Type B and Type AB theories we
discuss below.

Computing ζ ′(Δ;αs)
(0):

The evaluation of ζ ′(0) in odd d is considerably more complicated. One may begin by splitting
the f±(u) term as: f±(u) = 1∓ 2

e2πiu±1 so that

ζ(Δ;α)(z) = ζ
poly
(Δ;α)(z) + ζ

exp
(Δ;α)(z) (113)

23 Alternatively, one could first write tanh(πu) = 1− 2/(e2πiu + 1), evaluate the integral coming from the first term by analytic
continuation in z, and the one coming from the second term directly at z = 0, since it converges.
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where:

ζ
poly
(Δ;α)(z) =

vol (AdSd+1)

vol(Sd)

2d−1

π

∫ ∞

0
du

gαμ
poly
α (u)[

u2 +
(

Δ − d
2

)2
]z (114)

ζ
exp
(Δ;α)(z) = ∓vol (AdSd+1)

vol(Sd)

2d−1

π

∫ ∞

0
du

gαμ
poly
α (u)[

u2 +
(

Δ − d
2

)2
]z

2
e2πiu ± 1

(115)

Additionally, by differentiating (113),

∂

∂z
ζ(Δ;α)(z)

∣∣
z=0 =

∂

∂z
ζ

poly
(Δ;α)(z)

∣∣
z=0 +

∂

∂z
ζ

exp
(Δ;α)(z)

∣∣
z=0 (116)

The integral in ζ
poly
(Δ;α)(z) may be evaluated at arbitrary z, and after taking the derivative and

summing over spins, one finds a zero contribution to the free energy. The evaluation of ζ
exp
(Δ;α)(z) is

more involved, and we refer the reader to Appendix B.3 and [26,27] for more details. The final result is
that, in the non-minimal theory [26]:

ζ ′(1;[0])(0) +
∞

∑
s=1

ζ ′(s+1;[s])(0)−
∞

∑
s=1

ζ ′(s+2;[s−1])(0) = 0 , (117)

which implies that the one loop free energy vanishes. In the non-minimal theory, one finds instead:

− 1
2

[
ζ ′(1;[0])(0) +

∞

∑
s=2,4,6,...

ζ ′(s+1;[s])(0)−
∞

∑
s=2,4,6,...

ζ ′(s+2;[s−1])(0)

]
=

log 2
8

− 3ζ(3)
16π2 , (118)

which is the free energy of a single real conformal scalar on S3. An analogous result is found for the
Type A theory in AdSd+1 for all d [27].

3.3.3. Type B Theories

Non-Minimal Theory

The full spectral zeta function for the non-minimal Type B theory in odd d follows from
Equation (9), and reads:

ζHS
type B(z) = ζ(d−1;[0,0,...,0])(z)

+∑∞
s=1

(
Z(Δph;[s,1,1,...,1,1])(z) + Z(Δph;[s,1,1,...,1,1,0])(z) + . . . + Z(Δph;[s,1,0,...,0])(z) + Z(Δph;[s,0,0,...,0])(z)

)
= ζ(d−1;[0,0,...,0])(z) + ∑∞

s=1 ∑1
ti≥ti+1

ti≥0
Z(Δph;[s,t1,t2,...,tw−1,tw ])

(z),
(119)

Note that instead of two towers, there is only one tower for each representation, due to the lack
of the chirality matrix. Using this spectrum and the procedure outlined above to regulate the sums,
we find that the logarithmic divergence correctly cancels:

ζHS
type B(0) = 0 . (120)

However, as summarized in Section 2.2, the evaluation of (ζHS
type B)

′(0) leads to a surprising result.
The one-loop free energy of the non-minimal Type B theories in all odd d does not vanish, but is given
by (14), or equivalently by (15). This apparent mismatch with the expected result F(1) = 0 remains to
be understood.
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Minimal Theories

Majorana fermions in odd d can be defined for d = 3, 9 (mod 8). When the Majorana condition is
not possible, one can impose the symplectic Majorana (SM) condition and consider the USp(N) singlet
sector of N free SM fermions, as explained in the even d case above.

The spectra of the minimal theories can be again deduced from the symmetry/antisymmetry
properties of the CΓ(n) matrices. In the Majorana case, if CΓ(n) is symmetric the operators of the
form (55) are retained for even spins and projected out for odd spins, and vice-versa if CΓ(n) is
antisymmetric. The scalar operator ψ̄iψ

i is projected out if C is symmetric. For instance, in d = 3 the
C matrix is antisymmetric and Cγμ is symmetric, and so the spectrum of the minimal theory includes
the Δ = 2 (pseudo)-scalar and the tower of totally symmetric fields of even spin. Higher dimensional
cases can be worked out similarly, and the first few examples are listed in Table 5. In a compact
notation, the total spectral zeta function of the minimal theories dual to the Majorana projected fermion
model reads:

ζHS
type B Maj.(z) = χ(d)ζ(d−1;[0,0,...,0])(z)

+
∞

∑
s=2,4,6,...

1

∑
ti≥ti+1

ti≥0
∑i ti=w (mod 4)

Z(Δ;[s,t1,t2,...,tw−1,tw ])(z) + ∑
s=1,3,5,...

1

∑
ti≥ti+1

ti≥0
∑i ti=(w−1) (mod 4)

Z(Δ;[s,t1,t2,...,tw−1,tw ])(z)

+ ∑
s=1,3,5,...

1

∑
ti≥ti+1

ti≥0
∑i ti=(w−2) (mod 4)

Z(Δph;[s,t1,t2,...,tw−1,tw ])
(z) + ∑

s=2,4,6,...

1

∑
ti≥ti+1

ti≥0
∑i ti=(w−3) (mod 4)

Z(Δph;[s,t1,t2,...,tw−1,tw ])
(z) (121)

where χ(d) = 1, 0 when d = 3, 9 (mod 8) respectively.
In d = 5, 7 (mod 8) we can impose instead the symplectic Majorana projection. In this case,

the condition for which spins are projected out is reversed compared to the Majorana case, in a way
analogous to what discussed earlier in the even d case. For instance, in d = 5 (AdS6) one has that
C is antisymmetric, and so the scalar operator ψ̄iψ

i is now projected out. Then, Cγμ is antisymmetric,
and so the spectrum includes the totally symmetric [s, 0] representations for even s only. Finally, Cγμν is
symmetric, and so we keep the representations [s, 1] with odd s only. Higher dimensional cases are
worked out similarly, and the first few examples are listed in Table 5. The total spectral zeta function
can be expressed as:

ζHS
type B Symp.Maj.(z) = χ(d)ζ(d−1;[0,0,...,0])(z)

+
∞

∑
s=1,3,5,...

1

∑
ti≥ti+1

ti≥0
∑i ti=w (mod 4)

Z(Δ;[s,t1,t2,...,tw−1,tw ])(z) + ∑
s=2,4,6,...

1

∑
ti≥ti+1

ti≥0
∑i ti=(w−1) (mod 4)

Z(Δ;[s,t1,t2,...,tw−1,tw ])(z)

+ ∑
s=2,4,6,...

1

∑
ti≥ti+1

ti≥0
∑i ti=(w−2) (mod 4)

Z(Δph;[s,t1,t2,...,tw−1,tw ])
(z) + ∑

s=1,3,5,...

1

∑
ti≥ti+1

ti≥0
∑i ti=(w−3) (mod 4)

Z(Δph;[s,t1,t2,...,tw−1,tw ])
(z) (122)

where χ(d) = 0, 1 when d = 5, 7 (mod 8) respectively. In both versions of the minimal truncation,
we find that the coefficient of the logarithmic divergence still vanishes after summing up over the full
spectrum. However, similarly to the non-minimal case, the minimal Type B theories in odd d appear to
have a non-zero one-loop free energy, which we report in Table 6.
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Table 5. Spectra of the minimal Type B theory dual to the fermionic vector model with Majorana
(or symplectic Majorana) projection. The corresponding values of F(1) can be found in Table 6.

AdS4 O(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s] 1
Scalar (Δ = 2) 1

AdS8 USp(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1, 1] 1
[s, 1, 0] 1
[s, 0, 0] 1
Scalar (Δ = 6) 1

AdS12 O(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1, 1, 1, 1] 1
[s, 1, 1, 1, 0] 1
[s, 1, 1, 0, 0] 1
[s, 1, 0, 0, 0] 1
[s, 0, 0, 0, 0] 1
Scalar (Δ = 10) 1

AdS16 USp(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1, 1, 1, 1, 1, 1] 1
[s, 1, 1, 1, 1, 1, 0] 1
[s, 1, 1, 1, 1, 0, 0] 1
[s, 1, 1, 1, 0, 0, 0] 1
[s, 1, 1, 0, 0, 0, 0] 1
[s, 1, 0, 0, 0, 0, 0] 1
[s, 0, 0, 0, 0, 0, 0] 1
Scalar (Δ = 14) 1

AdS6 USp(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1] 1
[s, 0] 1
Scalar (Δ = 4)

AdS10 O(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1, 1, 1] 1
[s, 1, 1, 0] 1
[s, 1, 0, 0] 1
[s, 0, 0, 0] 1
Scalar (Δ = 8)

AdS14 USp(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1, 1, 1, 1, 1] 1
[s, 1, 1, 1, 1, 0] 1
[s, 1, 1, 1, 0, 0] 1
[s, 1, 1, 0, 0, 0] 1
[s, 1, 0, 0, 0, 0] 1
[s, 0, 0, 0, 0, 0] 1
Scalar (Δ = 12)

We did not find an analytic formula for these results similar to (14). However, we note that all these
“anomalous” values only involve the Riemann zeta functions ζ(2k+ 1) divided by π2, and interestingly
all other transcendental constants that appear in intermediate steps of the calculation cancel out.

335



Universe 2018, 4, 18

Table 6. One-loop free energy of the minimal Type B HS theory in AdSd+1 for odd d.

d Fcomputed (Minimal Type B)

3
log(2)

8
− 5ζ(3)

16π2

5
3 log(2)

64
+

7ζ(3)
192π2 − 49ζ(5)

128π4

7
5 log(2)

128
+

227ζ(3)
3840π2 − 5ζ(5)

256π4 − 441ζ(7)
512π6

9 −35 log(2)
2048

+
315ζ(7)
2048π6 +

3825ζ(9)
4096π8 − 617ζ(3)

21, 504π2 − 85ζ(5)
2048π4

11
63 log(2)

16, 384
+

68, 843ζ(3)
10, 321, 920π2 +

31, 033ζ(5)
2, 211, 840π4 − 29ζ(7)

98, 304π6 − 13, 579ζ(9)
98, 304π8 − 31, 745ζ(11)

65, 536π10

13
231 log(2)

131, 072
+

1, 933, 151ζ(3)
619, 315, 200π2 +

27, 993, 331ζ(5)
3, 715, 891, 200π4 +

1, 056, 541ζ(7)
123, 863, 040π6 − 285, 799ζ(9)

11, 796, 480π8

−150, 541ζ(11)
786, 432π10 − 258, 049ζ(13)

524, 288π12

15
429 log(2)

524, 288
+

2, 423, 526, 031ζ(3)
1, 653, 158, 707, 200π2 +

41, 124, 367ζ(5)
10, 899, 947, 520π4 +

12, 837ζ(7)
2, 097, 152π6 +

47, 549ζ(9)
66, 060, 288π8

− 104, 687ζ(11)
2, 097, 152π10 − 503, 685ζ(13)

2, 097, 152π12 − 2, 080, 641ζ(15)
4, 194, 304π14

3.3.4. Type AB Theories

Spectrum and Results

As in the even d case, the only irrep of SO(d) describing the tower of half-integer spins is
αs = [s, 1

2 , 1
2 , . . . , 1

2 ]. Thus, the total spectral zeta function is given by the same equation as in (76).
The calculation is rather similar to the one we outlined for the Type A theory. The only difference

is that the spectral density μα(u) includes coth(πu) instead of tanh(πu). For example, in the Type AB
theory in AdS4, the higher-spin zeta-function is given by:

ζ(Δ;[s])(z) =
∫ ∞

0
du

(2s + 1)u
[(

s + 1
2

)2
+ u2

]
6
[(

Δ − 3
2
)2

+ u2
]z coth(πu). (123)

The calculations for ∑ ζ(Δ;αs)(0) are essentially identical to that of Type A theories, and in particular
we find that the contribution to the logarithmic divergence due to the fermionic fields vanishes after
summing over the whole tower. Heading straight to the calculation of ∑ ζ ′(Δ;αs)

(0), if we follow the
procedure outlined for the Type A case, we have:

ζ ′(Δ;[s])(0) = −
∫ ∞

0
du

(2s + 1)u
3(e2πu − 1)

[
u2 +

(
s +

1
2

)2
]

log

[(
Δ − 3

2

)2
+ u2

]
. (124)
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Rewriting the exponential terms using (99), we should use A−
1 (x) instead of A+

1 (x). This introduces

an extra 1
2
√

x term in ζ
HS−exp′
Δ,s;[s] (0), i.e.,

ζ
exp′
(Δ;[s])(0) = − ∫ ∞

0 du (2s+1)u
3(e2πu−1)

[
u2 +

(
s + 1

2

)2
]

log(u2)

− ∫ (s− 1
2 )

2

0 dx 1
12 (2s + 1)

[
(2s + 1)2 + 4u2] (− 1

2
√

x +
log(

√
x)

2 − ψ(
√

x)
2

) (125)

In any case, the terms involving 1
2
√

x , which we can call ζ
exp−sqrt′
(Δ;[s]) (0), will not contribute to the

value of ζ
exp′
(Δ;[s])(0). Only the contributions from the terms involving ψ(

√
x), namely the third term

inside the bracket of (125) will contribute. After putting all together, the end result is:

ζ ′
( 3

2 ;[ 1
2 ])

(0) + ∑
s= 3

2 , 5
2 ,...

(
ζ ′(s+1;[s])(0)− ζ ′(s+2;[s−1])(0)

)
= 0 , (126)

i.e., the tower of fermionic fields in Type AB theories yields a vanishing contribution to the bulk
one-loop free energy. This result extends to all higher d.
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Appendix A

Appendix A.1. S1 × Sd−1 Partition Functions and Casimir Energies

Besides testing the gauge/gravity duality by comparing the partition functions on the Euclidean
AdSd+1 (hyperbolic space) and CFTd on Sd, we can also compare thermal partition functions of
higher spin theories on thermal AdSd+1 and boundary CFTs defined on S1 × Sd−1, where the inverse
temperature β of the thermal AdS space is interpreted as the length of S1. Calculations of the thermal
free energy and Casimir energy serve as useful checks on our results in hyperbolic space with
Sd boundary. The results below follow and generalize [28], which considered Type A theories in
all d and Type B theories in d = 2, 3, 4, and [16–18], where Type B theories in d = 6 and type C theories
in d = 4, 6 were discussed.

The free energy on S1 × Sd−1 takes the form:

F = Fβ + βEc (A1)

where Fβ depends non-trivially on the temperature and goes to zero at large β, and Ec is the Casimir
energy. The latter is related to the “one-particle” partition function on S1 × Sd−1 by (see e.g., [28] for
a review):

Ec = σ
1
2

ζE(−1) = σ
1

2Γ(z)

∫ ∞

0
dββz−1Z(β)

∣∣∣∣∣
z=−1

. (A2)
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where σ = +1 for bosonic fields, and σ = −1 for fermionic ones, and Z(β) denotes the one-particle
partition function. This also determines Fβ by:

Fβ = −
∞

∑
m=1

1
m
Z(mβ) , boson

Fβ =
∞

∑
m=1

(−1)m

m
Z(mβ) , fermion

(A3)

Note that Ec vanishes for a CFTd in odd d, but it is non-zero in even d.
In the vector models restricted to the singlet sector, one finds that Fβ = O(N0), due to the

integration over the flat connection which enforces the gauge singlet constraint [28,37]. This term
should then match the temperature dependent part of the bulk one-loop thermal free energy,
obtained by summing over all fields in the AdS spectrum, and the agreement serves as a useful
check on the bulk spectra. The Casimir term, on the other hand, is just given by N times the Casimir
energy of a single conformal field. If no shift is expected in the map between the bulk coupling constant
and N, then the CFT Casimir contribution should be reproduced just by a classical calculation in AdS
(which we have no access to at present), and bulk loop corrections to the Casimir energy should vanish.
However, when a shift GN ∼ 1/(N − k) is expected, the one-loop correction to the Casimir energy
should precisely be consistent with such a shift. We will see below that this is the case in all higher
spin theories we considered in this paper.

On the CFT side, the one-particle partition functions of a conformal scalar and Majorana (or Weyl)
fermion are given by:

Z0(q) =
q

d
2−1(1 + q)
(1− q)d−1 , Z 1

2
(q) =

2& d
2 'q

d−1
2

(1− q)d−1 , q = e−β (A4)

Using (A2) and the identity (1− q)−b = ∑∞
n=1

(
n + b− 2

b− 1

)
qn−1, one then finds the Casimir energies:

Ec,0 =
∞

∑
n=0

(n + d − 3)!
(d − 2)!n!

[n +
1
2
(d − 2)]1−z|z=−1 ,

Ec,1/2 = −2&
d
2 '−1

∞

∑
n=0

(n + d − 2)!
(d − 2)!n!

[n +
1
2
(d − 1)]1−z|z=−1 .

(A5)

Evaluating this with Hurwitz zeta regularization, one obtains the values in d = 4, 6, 8, . . .:

Ec,0 =

{
1

240
,− 31

60, 480
,

289
3, 628, 800

,− 317
22, 809, 600

,
6, 803, 477

2, 615, 348, 736, 000
, . . .

}
Ec,1/2 =

{
17
960

,− 367
48, 384

,
27, 859

8, 294, 400
,− 1, 295, 803

851, 558, 400
,

5, 329, 242, 827
7, 608, 287, 232, 000

, . . .
} (A6)

For the real (d/2 − 1)-form gauge field, with no self-duality imposed on the d/2-form field
strength, the one-particle partition function is given by (see for instance Appendix D of [18]):

Z d
2 -form(q) =

2qd/2

(1− q)d−1

⎛⎝ d
2

∑
j=1

ad,j(−q)
d
2−j

⎞⎠ , ad,j =

(
d − 1
j − 1

)
. (A7)
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Note that when we expand Z d
2 -form(q) around q = 1, the leading pole term is,

Z d
2 -form(q) ∼ 2

(1− q)d−1 n(d), where n(d) =

(
d − 2
d
2 − 1

)
, (A8)

which gives the correct number of propagating degrees of freedom of a (d/2 − 1)-form gauge field.
Inserting (A7) into (A2), one finds the Casimir energies in d = 4, 6, 8, . . .: 24

Ec,d/2−form =

{
11

120
,− 191

2016
,

2497
25, 920

,− 14, 797
152, 064

,
92, 427, 157
943, 488, 000

, . . .
}

. (A9)

On the AdS side, at the level of the one-particle partition functions, the contribution of a bulk field
to the thermal free energy is given essentially by the character of the corresponding representation of
the conformal group. For the representations αs dual to massless gauge fields, we have:

Zαs(q) =
qΔph

(1− q)d [gαs − qgαs−1 ] , (A10)

where Δph = s + d − 2 and gαs is the dimension of the representation αs (the number of propagating
degrees of freedom in the bulk is gαs − gαs−1 ). For the massive fields, the ghost contribution is not
present, and one has:

Zα =
qΔ

(1− q)d gα . (A11)

One may obtain a “total” one-particle partition function Z(β) in the bulk by summing over all
representations in the spectrum, and from it one may then find the bulk one-loop Casimir energy
by (A2) and Fβ by (A3). In the following we summarize the result of these calculations in the various
higher spin theories considered in this paper.

Type A Theories

In [28], it was shown that:

Non-Minimal Type A: Z(β) = ∑
α

Zα(q) = [Z0(q)]2, (A12)

Minimal Type A: Z(β) = ∑
γ

Zγ(q) =
1
2

[
[Z0(q)]2 +Z0(q2)

]
(A13)

where α refers to the spectrum containing the weights [s, 0, . . . , 0] with each integer spin s = 0, 1, 2, . . .,
and γ refers to the spectra containing the weights [s, 0, . . . , 0] with each even integer spin s = 0, 2, 4, . . ..
The result on the right-hand side, where Z0(β) is the scalar one-particle partition function given
in (A4), precisely agrees with the singlet sector CFT calculation [28,37].

The bulk Casimir energy can be obtained by inserting the right-hand side of (A12) and (A13)
into (A2) (alternatively, one may compute the Casimir contributions spin by spin, and sum up at
the end). One finds that [Z0(q)]2 gives zero contribution to the Casimir energy,25 while Z0(q2) gives
a contribution equal to 2Ec,0. Then, Ec,type A = 0 and Ec,min. type A = Ec,0, consistently with the expected
shift of GN deduced from the Sd calculations.

24 The values obtained for d = 4, 6 agree with those in the literature [16–18], while the values for other dimensions are new as
far as we know.

25 This is because of symmetry under q → 1/q. Any function symmetric under this exchange gives a zero contribution under
the integral in (A2).
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Type B Theories

In the Type B theories and their various truncations, we find:

Non-Minimal Type B: ∑
α

Zα(q) = [Z 1
2
(q)]2, (A14)

Weyl-Projection: ∑
γ

Zγ(q) =
1
4
[Z 1

2
(q)]2, (A15)

Minimal Type B: ∑
δ

Zδ(q) =

⎧⎨⎩
1
2

[
[Z 1

2
(q)]2 −Z 1

2
(q2)

]
, for O(N),

1
2

[
[Z 1

2
(q)]2 +Z 1

2
(q2)

]
, for USp(N),

(A16)

Majorana–Weyl: ∑
ε

Zε(q) =
1
2

(
1
4
[Z 1

2
(q)]2 − 1

2
Z 1

2
(q2)

)
(A17)

Symplectic Majorana–Weyl: ∑
κ

Zκ(q) =
1
2

(
1
4
[Z 1

2
(q)]2 +

1
2
Z 1

2
(q2)

)
(A18)

where α, γ, δ are the spectra given by (49), (52), (56)–(58), and ε, κ the Majorana–Weyl truncations
discussed in Section 3.2.1.The right-hand side of all the above equations, with Z 1

2
(q) given in (A4),

is again in precise agreement with the thermal calculations in the singlet sector of the fermionic CFT
(with the relevant fermion projection and gauge group). As an explicit example, in AdS11, we have:

Non-Minimal Type B: ∑
α

Zα(q) =
1024q9

(q − 1)18 =

(
32q9/2

(1− q)9

)2

, (A19)

Weyl-Projection: ∑
γ

Zδ(q) =
256q9

(q − 1)18 , (A20)

Minimal Type B: ∑
δ

Zγ(q) =
1
2

(
1024q9

(1− q)18 −
32q9

(1− q2)
9

)
, (A21)

Majorana–Weyl: ∑
ε

Zε(q) =
1
2

(
256q9

(1− q)18 −
16q9

(1− q2)
9

)
, (A22)

which all agree with the formulas in (A14)–(A18). For instance, using the spectrum found in Table 3,
the explicit computations for the Majorana–Weyl case is as follows:

[s, 1, 1, 1, 1] : ∑s=2,4,6,...
qs+8

576(1− q)10

[
(s + 8)!

(s + 4)(s − 1)!
− q

(s + 7)!
(s + 3)(s − 2)!

]
= q8

(q−1)18(q+1)9

(− q13 − q12 + 8q11 + 134q10 + 98q9 + 3914q8 + 2948q7

+12, 984q6 + 4983q5 + 8799q4 + 924q3 + 1050q2)
(A23)

[s, 1, 1, 0, 0] : ∑s=1,3,5,...
qs+8

720(1− q)10

[
(s + 4)(s + 8)!

(s + 2)(s + 6)(s − 1)!
− q

(s + 3)(s + 7)!
(s + 1)(s + 5)(s − 2)!

]
= q7

(q−1)18(q+1)9

(
q18 + q17 − 8q16 − 8q15 + 29q14 + 29q13 − 64q12 − 64q11 + 1043q10

+923q9 + 6992q8 + 3760q7 + 10, 039q6 + 2407q5 + 3352q4 + 120q3 + 120q2)
(A24)
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[s, 0, 0, 0, 0] : ∑s=2,4,6,...
qs+8

20160(1− q)10

[
(s + 4)(s + 7)!

s!
− q

(s + 3)(s + 6)!
(s − 1)!

]
= q8

(q−1)18(q+1)9

(− q17 − q16 + 8q15 + 8q14 − 28q13 − 28q12 + 56q11 + 66q10

−61q9 + 59q8 + 140q7 + 392q6 + 98q5 + 218q4 + 44q3 + 54q2)
(A25)

Summing (A23)–(A25) up, we obtain (A22).
The bulk one-loop contribution to the Casimir energy in Type B theories can be obtained by

inserting the right-hand sides of (A14)–(A18) into (A2). The only non-zero contribution comes from
Z 1

2
(q2), which yields 2Ec,1/2. Then, we see that the bulk one-loop Casimir energies in all variants of

the Type B theories are in precise agreement with the shifts of the coupling constant summarized in
Table 1. Note that in odd d we get zero Casimir energy on both CFT and bulk sides, as it should be,
so this calculation does not shed light on the anomalous shifts we encountered in Type B theories in
odd d. A few explicit values of the bulk one-loop Casimir energies are collected in Table A1.

Table A1. Type B Casimir energies. The grey boxes indicate that the particular type of fermion is not
defined for the given dimension.

d Non-Minimal Weyl Minimal (O(N)/USp(N)) Majorana–Weyl

3 0 0

4 0 0
17
960

5 0 0

6 0 0
367

48, 384

7 0 0

8 0 0
27, 859

8, 294, 400
27, 859

16, 588, 800

9 0 0

10 0 0 − 12, 950, 803
851, 558, 400

− 12, 950, 803
1, 703, 116, 800

11 0 0
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Type AB Theories

In the purely fermionic sector of the Type AB theories, the only representations are given by the
weights [s, 1

2 , . . . , 1
2 ], which lead to a simple computation that gives for a generic d,

Ztype AB ferm(q) = qd− 3
2

(1−q)d g[1/2,1/2,...,1/2] + ∑s= 3
2 , 5

2 ,···
qs+d−2

(1−q)d

[
g[s,1/2,...,1/2] − qg[s−1,1/2,...,1/2]

]
= 2&

d
2 'qd− 3

2 (1+q)
(1−q)2(d−1) = Z0(q)Z 1

2
(q).

(A26)

A quick calculation gives us Ec = 0 for the contribution of the fermionic tower in the Type AB
theories, which is nicely consistent with what we obtained in the Sd calculations, namely that there are
no shifts due to the purely fermionic fields.

Type C Theories

In type C theories, summing up over the relevant bulk spectra given in Section 3.2.3, we find:

Non-Minimal Type C: ∑
α

Zα(q) = [Z d
2 -form(q)]2, (A27)

U(N) Self-Dual: ∑
γ

Zδ(q) =
1
4
[Z d

2 -form(q)]2, (A28)

Minimal Type C: ∑
δ

Zγ(q) =
1
2

[
[Z d

2 -form(q)]2 +Z d
2 -form(q2)

]
, (A29)

O(N) Self-Dual: ∑
ε

Zε(q) =
1
2

[1
4

(
Z d

2 -form(q)
)2

+
1
2
Z d

2 -form(q2)
]
, (A30)

where Z d
2 -form(q) is the one-particle partition function (A7) of a single real (d/2− 1)-form gauge field.

The results on the right-hand side have the correct structure expected from the CFT thermal free energy
in the U(N)/O(N) singlet sector of the theory of N differential form gauge fields. This calculation
was carried out explicitly in the S1 × S3 case in [17], and we expect it to generalize to all d.

The one-loop Casimir energies of Type C theories can be obtained by plugging the right-hand
side of (A27)–(A30) into (A2). The calculation can be simplified by noting that, due to the symmetry
properties under q → 1/q, the term [Z d

2 -form(q)]2 contributes 2(−1)d/2Ec,d/2−form after the integration

in (A2),26 and Z d
2 -form(q2) contributes 2Ec,d/2−form. Then we see that in all cases the one-loop Casimir

energies in the bulk are consistent with the shifts of the coupling constant summarized in Table 1.
A few explicit values are reported in Table A2.

26 See Appendix D of [18] for a discussion of this.
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Table A2. Type C Casimir energies. The grey boxes indicate that the particular type of p-form is not
defined for the dimension.

d Non-Minimal U(N) Self-Dual U(N) Minimal O(N) Self-dual O(N)

4
11
60

11
240

11
60

6
191

1008
191
4032

0 − 191
8064

8
2497

12, 960
2497

51, 840
2497

12, 960

10
14, 797
76, 032

14, 797
304, 128

0 − 14, 797
608, 256

12
92, 427, 157

471, 744, 000
92, 427, 157

1, 886, 976, 000
92, 427, 157

471, 744, 000

14
36, 740, 617

186, 624, 000
36, 740, 617
746, 496, 000

0 − 36, 740, 617
1, 492, 992, 000

Appendix B. Some Technical Details on the One-Loop Calculations in Hyperbolic Space

Appendix B.1. Hurwitz Zeta Regularization

To implement ζ-function regularization, we identify the conventionally divergent term
∑∞

s=1 1/(s + ν)k as ∑∞
s=0 1/(s + ν + 1)k, and treating it as the Hurwitz zeta function,

ζ(k, β) ≡
∞

∑
n=0

1
(n + β)k , (A31)

where we then analytically extend to the full complex plane. This allows us to regulate systematically
the sums to obtain their finite contributions.

Suppose we want to start summing all integer spins s ≥ � ≥ 0, then,

∞

∑
s=�

1
(s + ν)k = ζ(k, �+ ν). (A32)

This is the convention we applied in this paper, and avoids potential inconsistencies that can
occur with the Hurwitz zeta function. We might also consider sums that only incorporate a particular
subset of spins, such as either all odd integer spins or all even integer spins. To do so, we can transform
the summing variable of the original Hurwitz zeta function appropriately. We give two examples:

To sum over all even spins, consider:

∞

∑
s=2,4,6,...

1
(s + ν)k =

∞

∑
s=1

1
(2s + ν)k =

∞

∑
s=1

2−k(
s + ν

2
)k =

∞

∑
s=0

2−k(
s + ν

2 + 1
)k = 2−kζ

(
k,

ν

2
+ 1

)
. (A33)
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A similar scheme for summing over all odd spins is:

∞

∑
s=1,3,5,...

1
(s + ν)k =

∞

∑
s=1

1
(2s − 1 + ν)k =

∞

∑
s=1

2−k(
s + ν−1

2

)k = 2−kζ

(
k,

ν − 1
2

+ 1
)

. (A34)

Unlike conventional summation where rearrangement of terms may lead to problems, ζ-function
regularization allows for rearrangement. In particular, the ζ-function satisfies,

∞

∑
s=2,4,6,...

1
(s + ν)k +

∞

∑
s=1,3,5,...

1
(s + ν)k = ζ(k, ν + 1), (A35)

which allows us to obtain the regularization over both the odd or the even integer spins by just doing
one of the two calculation.

Appendix B.2. Identity for Odd d Free Energy Calculations

The relationship described in (101) can be derived by:

A±
k (x) =

∫ ∞
0

uk

e2πu±1
du

u2+x

= ∂
∂a

[ ∫ ∞
0 du uk−2

e2πu±1 log[au2 + x]

]
a=1

= ∂
∂a

{
log(a)

∫ ∞
0 du uk−2

e2πu±1 +
∫ ∞

0 du uk−2

e2πu±1 log
[
u2 + x

a
] }

a=1
=
∫ ∞

0 du uk−2

e2πu±1 − x
∫ ∞

0
uk−2

e2πu±1
du

u2+x
= B±

k−2(x)− xA±
k−2(x).

(A36)

Appendix B.3. Evaluating ζ ′Δ,α(0)

Here we collect some details on the evaluation of the term ∂zζ
exp
(Δ;αs)

(z)|z=0 in (115), in the explicit
example of the Type A theory in AdS4. The calculations in the other theories studied in this paper go
through in a similar way. After some integral identities and algebraic manipulations, we may write:

∂

∂z
ζ

exp
(Δ;αs)

(z)
∣∣
z=0 = ζ

exp−log−1′
(Δ;αs)

(0) + ζ
exp−log−2′
(Δ;αs)

(0) + ζ
exp−const′
(Δ;αs)

(0) + ζ
exp−ψ′
(Δ;αs)

(0). (A37)

The only overall non-zero contribution will come from the fourth term, ζ
exp−ψ′
(Δ;αs)

(0), and the
contributions of the first three will cancel out, after taking into account the ghost modes and all other
particles in the entire spectra of the theory.

To understand what these three terms are, let’s return to the Type A non-minimal theory, the l.h.s.
of (A37) is now,

∂

∂z
ζ

exp
(Δ;αs)

(z)
∣∣
z=0 =

∫ ∞

0
du

(2s + 1)u3 ((2s + 1)2 + u2) log
((

Δ − 3
2
)2

+ u2
)

12 (e2πu + 1)
. (A38)

Using (99), we can rewrite the above term into:

∫ ∞

0
du

(2s + 1)u3 ((2s + 1)2 + u2)
12 (e2πu + 1)

log(u2)︸ ︷︷ ︸
=ζ

exp−log−1′
(Δ;αs)

(0)

+
∫ ∞

0 du
∫ (s− 1

2 )
2

0 dx
(2s+1)u3((2s+1)2+u2)

12(e2πu+1)
1

u2+x (A39)

where Δph − 3
2 = s − 1

2 . The second term can then be explicitly integrated using the recursive relation

for
∫ k

0 dx uk

e2πiu±1
1

u2+x found in Appendix B.2,
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∫ (s− 1
2 )

2

0 dx
∫ ∞

0 du
(2s+1)u3((2s+1)2+u2)

12(e2πu+1)
1

u2+x

=
1
2

∫ (s− 1
2 )

2

0
dx log (x)

(
1
6

x(2s + 1)− 1
6

(
s +

1
2

)2
(2s + 1)

)
︸ ︷︷ ︸

≡ζ
exp−log−2′
(Δph;[s])

(0)

+
1
3

B+
1 (2s + 1)︸ ︷︷ ︸

≡ζ
exp−const′
(Δph;[s])

(0)

+
∫ (s− 1

2 )
2

0
dx ψ

(√
x +

1
2

)(
1
6

x(−2s − 1) +
1
6
(2s + 1)

(
s +

1
2

)2
)

︸ ︷︷ ︸
≡ζ

exp−ψ′
(Δph;[s])

(0)

,

(A40)

where B±
k :=

∫ ∞
0 du uk

e2πu±1 , and ψ(x) is the digamma function ψ(x) = Γ′(x)/Γ(x). We concentrate on
the last term including the digamma function, since it is the only term that contributes to the final
partition function. To integrate the digamma function, we make use of its integral representation:

ψ(x) =
∫ ∞

0

(
e−t

t
− e−xt

1− e−t

)
dt (A41)

so that we get:

ζ
exp−ψ′
(Δph;[s])

(0) =
∫ ∞

0 dt
∫ (s− 1

2 )
2

0 dx
(

e−t

t − e−(
√

x+ 1
2 )

1−e−t

)(
− 1

6 x(2s + 1) + 1
24 (2s + 1)3

)
=
∫ ∞

0 dt (2s+1)e−t

24(et−1)t

{
e−st+2t

[
− 4(4s2−8s+1)

t + 16s2 + 24−48s
t2 − 8s − 48

t3

]
+ 1

4
(
1− 4s2)2 (et − 1

)− 2e
3t
2

t3

[
(2st + t)2 − 24

]− 1
8 (1− 2s)4 (et − 1

) }
(A42)

The terms in the integrand above split into those that include a prefactor of e−st, and those that
do not. For the terms with the prefactor, we can sum over the spins easily and without a regulator,

∑∞
s=1

(2s+1)e−t

24(et−1)t

{
e−st+2t

[
16s2 − 8s + −16s2+32s−4

t + 24−48s
t2 − 48

t3

] }

= et

6(et−1)5t4

[
t2 + 3e3t (2t3 + 3t2 − 6t − 12

)
+ et (6t3 − 17t2 + 42t − 60

)
+e2t (36t3 − 41t2 − 18t + 84

)− 6t + 12

]
.

(A43)

For those terms without the prefactor, we sum using the same regulator as in the previous segment,

∑∞
s=1

(
s − 1

2

)−ε (2s+1)e−t

24(et−1)t

{
1
4
(
1− 4s2)2 (et − 1

)− 2e
3t
2

t3

[
(2st + t)2 − 24

]− 1
8 (1− 2s)4 (et − 1

) }
= et/2

6(et−1)t4 − 113et/2

1440(et−1)t2 +
1609e−t

241,920(et−1)t − 1609
241,920(et−1)t .

(A44)

Combining (A43) and (A44) under the integrand, we obtain the expression for ζ
exp−ψ′
Δph;[s]

(0).
Then, repeating the calculations for the ghost calculations, we obtain:
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ζ
exp−ψ′
(Δgh;[s−1])

(0) =
∫ ∞

0 dt

[
13et/2

6(et−1)t4 +
2

(et−1)2t4
− 4et

(et−1)3t4
− 4et(et+1)

(et−1)4t3
+ 1

(et−1)2t3

− 2et(et+1)
(et−1)4t2

− 233et/2

1440(et−1)t2 +
1

6(et−1)2t2
+ et

(et−1)3t2

− 4et(4et+e2t+1)
3(et−1)5t2

+ 349e−t

241,920(et−1)t − 349
241,920(et−1)t +

et

3(et−1)3t

− 4et(4et+e2t+1)
3(et−1)5t

]
.

(A45)

After combining these above with the integral representation for the scalar term, we then make
use of the integral representation of the Hurwitz-Lerch transcendental function,

Φ(z, s, ν) =
1

Γ(s)

∫ ∞

0
dt

ts−1e−νt

1− ze−t =
∞

∑
0
(n + ν)−szn, (A46)

to transform the expressions into sums of derivatives of Hurwitz-Lerch transcendental functions 27.
Finally, the Type A non-minimal theory will give us an expression of:

ζ
exp−ψ′
(1;[0]) (0) +

∞

∑
s=1

ζ
exp−ψ′
(Δph;[s])

(0)−
∞

∑
s=1

ζ
exp−ψ′
(Δgh;[s−1])

(0) = 0. (A48)

Appendix C. Spectra of Higher Spin Theories and Their Free Energy Contributions

Appendix C.1. Type B Theories

Table A3. Results for Type B theory in AdS5.

AdS5

Towers of Spins Contribution to F from One Tower Summed Over:

(Δph; α) s = 1, 2, 3, . . . s = 2, 4, 6, . . . s = 1, 3, 5, . . .

(Δph; [s, 1])

s︷ ︸︸ ︷
1

180
log R

13
360

log R − 11
360

log R

(Δph; [s, 0])

s︷ ︸︸ ︷
0

1
90

log R − 1
90

log R

Scalar Contribution to F by one scalar

(3; [0, 0]) − 1
180

log R

27 This makes use of the identity,

1
(1− e−t)n+1(1 + e−t)m+1 =

(−1)n

n!m!
∂n

z1
∂m

z2

[
1

z1 − z2

(
1

z1 − e−t −
1

z2 − e−t

)] ∣∣∣∣∣
z1=1,z2=−1

(A47)
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Table A4. Results for Type B theory in AdS7.

AdS7

Towers of Spins Contribution to F from One Tower Summed Over:

(Δph; α) s = 1, 2, 3, . . . s = 2, 4, 6, . . . s = 1, 3, 5, . . .

(Δph; [s, 1, 1])

s︷ ︸︸ ︷
1

1512
log R − 211

15, 120
log R

221
15, 120

log R

(Δph; [s, 1, 0])

s︷ ︸︸ ︷
4

945
log R − 2

315
log R

2
189

log R

(Δph; [s, 0, 0])

s︷ ︸︸ ︷
− 1

1512
log R − 1

504
log R

1
756

log R

Scalar Contribution to F by one scalar

(5; [0, 0, 0]) − 4
945

log R

Table A5. Results for Type B theory in AdS9.

AdS9

Towers of Spins Contribution to F from One Tower Summed Over:

(Δph; α) s = 1, 2, 3, . . . s = 2, 4, 6, . . . s = 1, 3, 5, . . .

(Δph; [s, 1, 1, 1])

s︷ ︸︸ ︷
23

226, 800
log R

3463
453, 600

log R − 1139
151, 200

log R

(Δph; [s, 1, 1, 0])

s︷ ︸︸ ︷
13

28, 350
log R

133
16, 200

log R − 293
37, 800

log R

(Δph; [s, 1, 0, 0])

s︷ ︸︸ ︷
353

113, 400
log R − 1189

226, 800
log R − 23

10, 800
log R

(Δph; [s, 0, 0, 0])

s︷ ︸︸ ︷
− 13

28, 350
log R − 29

113, 400
log R − 23

113, 400
log R

Scalar Contribution to F by one scalar

(7; [0, 0, 0, 0]) − 9
2800

log R
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Table A6. Results for Type B theory in AdS11.

AdS11

Towers of Spins Contribution to F from One Tower Summed Over:

(Δph; α) s = 1, 2, 3, . . . s = 2, 4, 6, . . . s = 1, 3, 5, . . .

(Δph; [s, 1, 1, 1, 1])

s︷ ︸︸ ︷

263
14, 968, 800

log R − 19771
4, 276, 800

log R
138, 923

29, 937, 600
log R

(Δph; [s, 1, 1, 1, 0])

s︷ ︸︸ ︷
31

467, 775
log R − 2273

374, 220
log R

11, 489
1, 871, 100

log R

(Δph; [s, 1, 1, 0, 0])

s︷ ︸︸ ︷
311

1, 069, 200
log R − 6599

2, 993, 760
log R

37, 349
14, 968, 800

log R

(Δph; [s, 1, 0, 0, 0])

s︷ ︸︸ ︷
1153

467, 775
log R − 3947

1, 871, 100
log R

19
53, 460

log R

(Δph; [s, 0, 0, 0, 0])

s︷ ︸︸ ︷
− 19

61, 600
log R − 5143

14, 968, 800
log R

263
7, 484, 400

log R

Scalar Contribution to F by one scalar

(9; [0, 0, 0, 0, 0]) − 1184
467, 775

log R

Appendix C.2. Calculation of ZHS
total(z) in Type AB Theories

Appendix C.2.1. AdS7

In this case,

ZHS
total(z) =

z2π

86, 016

(
− 11, 253ζ ′(−10) + 15, 300ζ ′(−8) + 119, 658ζ ′(−6)− 137, 900ζ ′(−4) + 21, 735ζ ′(−2)

)
+O (

z3) (A49)

which gives us F(1)
f = 0, as we set z → 0.

Appendix C.2.2. AdS9

In this case,

ZHS
total(z) =

π

16, 647, 192, 576, 000
[−136, 525ζ ′(−14) + 1, 242, 150ζ ′(−12) + 2, 651, 957ζ ′(−10)

−42, 097, 100ζ ′(−8) + 100, 665, 453ζ ′(−6)− 71, 501, 850ζ ′(−4) + 9, 993, 375ζ ′(−2)] z2

+O (
z3)

(A50)
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which gives us F(1)
f = 0, as we set z = 0.

Appendix C.3. Free Energy Values for Type C Theories in AdS9

Table A7. Results for Type C theory in AdS9.

AdS9 Type C

Towers of Spins Contribution to F from One Tower Summed Over:

(Δph; α) s = 2, 3, 4, . . . s = 2, 4, 6, . . . s = 3, 5, 7, . . .

(Δph; [s, 2, 2, 2])

s︷ ︸︸ ︷
23

1800
log R

2213
3600

log R −2167
3600

log R

(Δph; [s, 2, 0, 0])

s︷ ︸︸ ︷
3121
6300

log R
14, 281
37, 800

log R
127
1080

log R

(Δph; [s, 2, 1, 1])

s︷ ︸︸ ︷
19, 409
37, 800

log R
19, 679
75, 600

log R −19, 139
75, 600

log R

(Δph; [s, 2, 2, 0])

s︷ ︸︸ ︷
329

2700
log R − 569

5400
log R

409
1800

log R

(Δph; [s, 1, 1, 0])

s︷ ︸︸ ︷
31, 399
113, 400

log R
133

16, 200
log R

2539
9450

log R

(Δph; [s, 0, 0, 0])

s︷ ︸︸ ︷
35, 293
113, 400

log R − 29
113, 400

log R
841

2700
log R

Other Particles Contribution to F by one particle

(8; [1, 1, 1, 1]) − 908
2835

log R

(8; [1, 1, 0, 0]) − 1856
14, 175

log R

(8; [0, 0, 0, 0])
1978

14, 175
log R

Appendix C.3.1. Spectra of Spins for Type C Theories

In these following results, α = [t1, t2, . . . , tk−1, tk]c denote two towers α = [t1, t2, . . . , tk−1, tk] and
α = [t1, t2, . . . , tk−1,−tk], which at the level of computation of the spin factor gα(s) and μα(s) are
indistinguishable. Hence, a single tower of [t1, t2, . . . , tk−1, tk]c encompasses one of each of the towers,
and correspondingly, a 1/2 tower encompasses only the [t1, t2, . . . , tk−1, tk] tower (the one with the
positive tk).
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Abstract: We examine three point functions with two scalar operators and a higher spin current in
2d WN minimal model to the next non-trivial order in 1/N expansion. The minimal model was
proposed to be dual to a 3d higher spin gauge theory, and 1/N corrections should be interpreted
as quantum effects in the dual gravity theory. We develop a simple and systematic method to
obtain three point functions by decomposing four point functions of scalar operators with Virasoro
conformal blocks. Applying the method, we reproduce known results at the leading order in 1/N
and obtain new ones at the next leading order. As confirmation, we check that our results satisfy
relations among three point functions conjectured before.

Keywords: conformal field theory; W algebra; AdS/CFT correspondence; higher spin gauge theory

1. Introduction

Holography is expected to offer a way to learn quantum corrections of gravity theory from 1/N
corrections in dual conformal field theory. In this paper, we address this issue by utilizing one of the
simplest holographies proposed in [1]1, where 2d WN minimal model is dual to Prokushkin-Vasiliev
theory on AdS3 given by [6]. We examine three point functions with two scalar operators and one
higher spin current in the minimal model up to the next leading order in 1/N expansion. They should
be interpreted as one-loop corrections to three point interactions between two bulk scalars and
one higher spin gauge fields in the dual higher spin theory. We develop a simple and systematic
method to compute the three point functions by decomposing four point functions of scalar operators
with Virasoro conformal blocks. Among others, we expect that this way of computation makes
the dual higher spin interpretation easier. Applying the method, we reproduce known results at
the leading order in 1/N obtained by [7,8]. Exact results are available only up to correlators with
spin 5 current [9–11], but a simple relation was conjectured for generic s in [11]. We obtain the 1/N
corrections of correlators with spin s ≤ 8 current, and the results for s = 6, 7, 8 should be new. We check
that they satisfy the conjectured relation as confirmation of our results.

1 Recently, a different method to the issue has been adopted in [2–4] by analyzing the strongly coupled regime of conformal
field theories in 1/N expansion. This becomes possible because of recent developments on conformal bootstrap technique,
e.g., in [5].

Universe 2017, 3, 70 358 www.mdpi.com/journal/universe
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We would like to examine the WN minimal model in 1/N expansion, but we should specify the
expansion in more details. The minimal model has a coset description

su(N)k ⊕ su(N)1

su(N)k+1
(1)

whose central charge is given by

c = (N − 1)
(

1− N(N + 1)
(N + k)(N + k + 1)

)
(2)

The model has two parameters N, k. For our purpose, it is convenient to define the
’t Hooft coupling

λ =
N

N + k
(3)

and label the model by N, λ instead of N, k. We then expand the model in 1/N, where each order
depends on the other parameter λ. The expansion is almost the same as 1/c expansion because of
c ∼ N(1− λ2) +O(N0), but details are different.

The minimal model is argued to be dual to the higher spin theory of [6], which includes higher spin
gauge fields ϕ(s) (s = 2, 3, 4, . . .) and complex scalar fields φ± with mass m2 = −1 + λ2. The large N
limit of minimal model with λ in Equation (3) kept finite corresponds to the classical limit of higher
spin theory, where λ is identified with the parameter in bulk scalar mass. The higher spin gauge fields
ϕ(s) and bulk scalars φ± are dual to higher spin currents J(s) and scalar operators O±, respectively.
Here different boundary conditions are assigned to the bulk scalars φ± and the dual conformal
dimensions are given by Δ± = 2h± = 1± λ at the tree level.

Basic data of conformal field theory may be given by spectrum and three point functions of
primary operators. Since higher spin symmetry of the minimal model is exact, spectrum does not
receive any corrections in 1/N. Namely, there is no anomalous dimension for higher spin current J(s).
Therefore, as simple but non-trivial examples, we examine three point functions and specifically focus
on those with two scalar operators and one higher spin current as

〈O±(z1)Ō±(z2)J(s)(z3)〉 (4)

with s = 2, 3, 4, . . .. Here Ō± are complex conjugate of O±. In [7,8], the three point functions in the
large N limit of the minimal model have been computed from classical higher spin theory. They were
reproduced with conformal field theory approach in [8,12,13]2, but these methods are applicable only
to the leading order analysis in 1/N. Since the WN minimal model is solvable, for instance, by making
use of the coset description in Equation (1), we can obtain the three point functions in Equation (4) with
finite N, k in principle. However, in practice, the computation would be quite complicated, and only
explicit expressions are available only with spin 3, 4, 5 currents [9–11] (see also [15] for an alternative
algebraic method).

In this paper, we develop a different way to compute the three point functions in Equation (4)
from the decomposition of scalar four point functions by Virasoro conformal blocks. Our method may

2 The analysis in [12,13] were made in the context of N = 2 holographic duality in [14], but we can see that the analysis
reduces to that for the bosonic case under a suitable truncation at the leading order in 1/N.
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be explained as follows; Let us consider a generic operator product expansion of scalar operators Oi
with conformal weights (hi, hi) as

O1(z1)O2(z2) = ∑
p

C12p

z
h1+h2−hp
12 z̄

h1+h2−h̄p
12

Ap(z2) + · · · (5)

where the coefficient C12p includes the information of three point function. Moreover, Ap has conformal
weights (hp, h̄p), and dots denote contributions from descendants. Using the expansion, we can
decompose scalar four point function as

〈O1(∞)O2(1)O3(z)O4(0)〉 = ∑
p

C12pC34p

|z|2(h3+h4)
F (c, hi, hp, z)F̄ (c, hi, h̄p, z̄) (6)

Here F (c, hi, hp, z) is Virasoro conformal block, which can be fixed only from the symmetry
in principle. Once we know scalar four point functions and Virasoro conformal blocks, we can
read off coefficients as C12p by solving constraint equations coming from Equation (6). For our case
with Oi = O± or Ō±, four point functions can be computed exactly with finite N, k, for instance,
by applying Coulomb gas approach as in [16]. On the other hand, Virasoro conformal blocks are quite
complicated, but explicit forms may be obtained by applying Zamolodchikov’s recursion relation [17],
see also [18,19]. We can find other works on the 1/c expansion of Virasoro conformal blocks in,
e.g., [20–23]. Gathering these knowledges, we shall obtain the coefficients as C12p up to the next
leading order in 1/N expansion.

The paper is organized as follows; In order to study the decomposition in Equation (6), we need to
examine scalar four point functions and Virasoro conformal blocks. In the next section we decompose
scalar four point functions in terms of cross ratio z, and in Section 3 we give the explicit expressions of
Virasoro conformal blocks in expansions both in 1/N and z. After these preparations, we compute
three point functions in Equation (4) by solving constraint equations coming from Equation (6) in
Section 4. In Section 4.1 we reproduce known results at the leading order in 1/N. In Section 4.2 we
obtain the 1/N corrections of three point functions for s = 3, 4, . . . , 8, and check that they satisfy
the relation conjectured in [11]. Section 5 is devoted to conclusion and discussions. In Appendix A
we examine Virasoro conformal blocks in expansions of 1/c and z by analyzing Zamolodchikov’s
recursion relation. In Appendix B we compute three point functions with higher spin currents of
double trace type.

2. Expansions of Four Point Functions

We would like to obtain the coefficients as C12p by solving Equation (6). For the purpose, we need
information on the both sides of the equation, i.e., scalar four point functions and Virasoro conformal
blocks. In this section we examine scalar four point functions. We are interested in three point functions
of two scalar operators O± and a higher spin current J(s) as in Equation (4). We consider the following
four point functions with scalar operators O± as

G++(z) ≡ 〈O+(∞)Ō+(1)O+(z)Ō+(0)〉 (7)

G−−(z) ≡ 〈O−(∞)Ō−(1)O−(z)Ō−(0)〉 (8)

G−+(z) ≡ 〈O−(∞)O+(1)Ō+(z)Ō−(0)〉 (9)

Exact expressions with finite N, k may be found in [16]. From the expansions in z, we can read off
what kind of operators are involved in the decomposition by Virasoro conformal blocks. In the rest of
this section, we obtain the explicit forms of four point functions in z expansion for parts relevant to
later analysis.
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Let us first examine the z expansion of G++(z) in Equation (7), and see generic properties of the
four point functions. The expression with finite N, k is [16]

G++(z) = |z(1− z)|−2Δ+

[∣∣∣∣(1− z)1+λ
2F1

(
1 +

λ

N
,− λ

N
;−λ; z

)∣∣∣∣2
+N1

∣∣∣∣z1+λ
2F1

(
1 +

λ

N
,− λ

N
; 2 + λ; z

)∣∣∣∣2
] (10)

with

N1 = −Γ(1 + λ − λ
N )Γ(−λ)2Γ(2 + λ + λ

N )

Γ(−1− λ − λ
N )Γ( λ

N − λ)Γ(2 + λ)2
(11)

Here the exact value of conformal dimensions Δ+ = 2h+ is

Δ+ =
(N − 1)(2N + 1 + k)

N(N + k)
= 1 + λ − 1

N
− 1

N2 λ +O(N−3) (12)

which is expanded in 1/N up to the N−2 order.
In the expansion in z, we would like to pick up the terms corresponding to the three point function

in Equation (4). The operator product of O+ may be expanded as

O+(z)Ō+(0) =
1

|z|2Δ+
+ ∑

s

C(s)
+ zs

|z|2Δ+
J(s)(0)

+ ∑
(s1,s2;s′)

C(s1,s2;s′)
+ zs′

|z|2Δ+
J(s1,s2;s′)(0) + ∑

n,m
C(n,m)
+ znz̄mA(n,m)(0) · · ·

(13)

Here J(s1,s2;s′)(z) are higher spin currents of double trace type as

J(s1,s2;s′) = J(s1)∂s′−s1−s2 J(s2) + · · · (14)

with s′ ≥ 6 as s1, s2 ≥ 3 and s′ − s1 − s2 ≥ 0. If we use the normalization as 〈J(s) J(s)〉 ∝ N, then the
two point function of this type of operator becomes 〈J(s1,s2;s′) J(s1,s2;s′)〉 ∝ N2. This is related to the fact
that C(s)

+ ∝ N−1/2, while C(s1,s2;s)
+ ∝ N−1. There could be currents of other multi-trace type, but the

contributions are more suppressed in 1/N. Furthermore, A(n,m)(z) are double trace type operators of
the form as

A(n,m) = O+∂n∂̄mŌ+ + · · · (15)

and the conformal weights are (hn,m, h̄n,m) = (2h+ + n, 2h+ + m). The dots in Equation (13) include
the operators dressed by higher spin currents J(s)(z), J̄(s)(z̄) for instance.

The operator product expansion in Equation (13) suggests that the contributions from J(s) or its
descendants are included in terms like zs+l/|z|2Δ+ , where l = 0, 1, 2, . . . corresponds to the level of
descendant. In Equation (10), such terms appear as

G++(z) = |z|−2Δ+(1− z)−Δ++1+λ
2F1

(
1 +

λ

N
,− λ

N
;−λ; z

)
+ · · · (16)

Note that they also include effects from higher spin currents of double trace type J(s1,s2;s′)(z)
among others. For the first term in Equation (10), the other contributions involve at least one
anti-holomorphic current J̄(s)(z̄). For the second term in Equation (10), the expansions become
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polynomials of z and z̄ at the leading order in 1/N, and this implies that double trace type operators
A(n,m) should appear as Ap in Equation (5). At the leading order in 1/N, we can expand Equation (16)
around z ∼ 0 as

G++(z) ∼ |z|−2(λ+1) (17)

This corresponds to the expansion by the identity operator in Equation (13). Thus the non-trivial
contributions to our three point functions come form the terms at least of order 1/N.

At the next and next-to-next orders in 1/N, there are two types of contributions in Equation (16).
One comes from

(1− z)−Δ++1+λ = (1− z)
1
N + λ

N2 +O(N−3) (18)

which becomes

(1− z)
1
N (1− z)

λ
N2

= 1− 1
N ∑

k=1

1
k

zk +
1

N2

[
∞

∑
k=1

(
−λ

k
zk
)
+

∞

∑
k=2

1
k

Hk−1zk

]
+O(N−3) (19)

Here we have used for k ≥ 2

(
1
N
k ) =

Γ(1+ 1
N )

k!Γ(1−k+ 1
N )

= (−1)k−1 1
Nk!

(
1− 1

N

) (
2− 1

N

)
· · ·

(
k − 1− 1

N

)
= (−1)k−1 1

Nk

(
1− 1

N ∑k−1
i=1

1
i

)
+O(N−3)

(20)

and the definition of harmonic number

Hn =
n

∑
j=1

1
j

(21)

The other comes from the hypergeometric function, which can be similarly expanded in 1/N as

2F1

(
1 + λ

N ,− λ
N ,−λ; z

)
= Γ(−λ)

Γ(1+ λ
N )Γ(− λ

N )
∑∞

n=0
Γ(1+ λ

N +n)Γ(− λ
N +n)

Γ(−λ+n)
zn

n!

= 1 + Γ(1−λ)
N ∑∞

n=1
Γ(n)

Γ(n−λ)
zn + 1

N2

(
λz + λΓ(1− λ)∑∞

n=2
Γ(n)

nΓ(n−λ)
zn
)
+O(N−3)

(22)

In total, we have

|z|2Δ+G++(z) ∼ 1 +
1
N

∞

∑
n=1

(
− 1

n
+

Γ(1− λ)Γ(n)
Γ(n − λ)

)
zn +

1
N2

∞

∑
n=2

f (n)++zn (23)

where

f (n)++ = −
n−1

∑
l=1

Γ(1− λ)Γ(l)
(n − l)Γ(l − λ)

− λ

n
+

Hn−1

n
+

λΓ(1− λ)Γ(n)
nΓ(n − λ)

(24)
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First few expressions are

f (2)++ =
1
2

(
−2− 1

λ − 1
− λ

)
(25)

f (3)++ =
1
3

(
4

λ − 2
+

1
λ − 1

− λ

)
(26)

f (4)++ =
1
8

(
1− 18

λ − 3
+

8
λ − 2

+
14

λ − 1
− 2λ

)
(27)

We would like to move to another four point function G−−(z) in Equation (8), whose expression
with finite N, k can be again found in [16]. We use the four point function in order to obtain the three
point function in Equation (4) with the other type of scalar operator O−. As for G++(z), the relevant
part is

G−−(z) = |z|−2Δ−(1− z)
1
N − λ

N2 2F1

(
1− λ

N
,

λ

N
− λ2

N2 ; λ − λ2

N
; z
)
+ · · · (28)

Here we may need

Δ− = 2h− = N−1
N

(
1− N+1

N+k+1

)
= 1− λ − 1

N (1− λ2) + 1
N2 λ(1− λ2) +O(N−3)

(29)

Similarly to G++(z) we can expand G−−(z) in z as

|z|2Δ−G−−(z) ∼ 1 +
1
N

∞

∑
n=1

(
− 1

n
+

Γ(1 + λ)Γ(n)
Γ(n + λ)

)
zn +

1
N2

∞

∑
n=2

f (n)−−zn (30)

where
f (n)−− = −∑n−1

l=1
Γ(1+λ)Γ(l)
(n−l)Γ(l+λ)

+ λ
n + Hn−1

n + λΓ(1+λ)Γ(n)
Γ(n+λ)

(
∑n−1

k=1
λ

k+λ − 1
n

)
(31)

First few expressions are

f (2)−− =
λ

2
− 3

2(λ + 1)
+

1
(λ + 1)2 (32)

f (3)−− =
λ

3
− 13

3(λ + 1)
+

2
(λ + 1)2 +

20
3(λ + 2)

− 8
(λ + 2)2 (33)

f (4)−− =
λ

4
− 31

4(λ + 1)
+

3
(λ + 1)2 +

23
λ + 2

− 24
(λ + 2)2 −

63
4(λ + 3)

+
27

(λ + 3)2 +
1
8

(34)

From the four point functions G±±(z), we can read off the square root of coefficients (C(s)
± )2,

but relative phase factor cannot be fixed. In order to determine it, we also need to examine G−+(z) in
Equation (9), which can be computed as [16]

G−+(z) = |1− z|−2Δ+ |z| 2
N

∣∣∣∣1 + 1− z
Nz

∣∣∣∣2 (35)

with finite N, k. For later arguments, we need

|1− z|2Δ+G−+(z) ∼ 1 +
1
N

∞

∑
n=2

n − 1
n

(1− z)n (36)

which is expanded in (1− z) up to the 1/N order.
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3. Virasoro Conformal Blocks

In the previous section we analyzed the left hand side of Equation (6). In order to obtain
three point functions by solving the equations in Equation (6), we further need information on
F (c, hi, hp, z). In general, the forms of Virasoro conformal blocks are quite complicated. In practice,
we actually do not need to know closed forms but expansions in z up to some orders. For this
purpose, a standard approach may be solving Zamolodchikov’s recursion relation in [17]. Following
the algorithm developed in [18] (see also [19]), we obtain the expressions of Virasoro conformal blocks
to several orders in z and 1/c in Appendix A. Related works may be found in [19–23], and in particular,
some closed form expressions were given, e.g., in [20]. Our findings agree with their results after minor
modifications.

Let us consider the four point function in the decomposition of Equation (6) with h1 = h2 and
h3 = h4. In the decomposition, intermediate operator Ap can be the identity or other. As observed in
the examples of previous section, only the Virasoro conformal block with the identity operator (called
as vacuum block) survives at the leading order in 1/N. This simply means that the four point functions
are factorized into the products of two point ones at the leading order in 1/N. Virasoro conformal
block with Ap of single trace type would appear at the next leading order in 1/N. We would like to
examine 1/N corrections to three point functions, so we need 1/N corrections to the Virasoro block
of Ap. This also implies that we need the expression of vacuum block up to the next-to-next leading
order in 1/N.

Let us first examine the vacuum block with h1 = h3 = h±. As was explained in Appendix A,
the 1/c-expansion of vacuum block is given by

V0(x) = 1 + 2h1h3
c z2

2F1(2, 2; 4; z)

+ 1
c2

[
h2

1h2
3ka(z) + h1h3(h1 + h3)kb(z) + h1h3kc(z)

]
+O(c−3)

(37)

with

ka(z) = 2z4 + 4z5 +
28z6

5
+

34z7

5
+

2687z8

350
+O(z9)

kb(z) =
2z4

5
+

4z5

5
+

39z6

35
+

47z7

35
+

263z8

175
+O(z9) (38)

kc(z) =
2z4

25
+

4z5

25
+

109z6

490
+

131z7

490
+

1879z8

6300
+O(z9)

The 1/c order term corresponds to the exchange of spin 2 current (energy momentum tensor) in
terms of global block. We need to rewrite the expansion in 1/c by that in 1/N as

V0(z) = V (0)
0 (z) + V (1)

0 (z)
1
N

+ V (2)
0 (z)

1
N2 +O(N−3) (39)

The first two terms can be easily read off as

V (0)
0 (z) = 1 , V (1)

0 (z) =
1
2

(
1± λ

1∓ λ

)
z2

2F1(2, 2; 4; z) (40)

Since there are two types of contributions to V (2)
0 , we separate it into two parts as

V (2)
0 = V (2,1)

0 (z) + V (2,2)
0 (z) (41)
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One comes from the 1/c order term with the next leading contribution from h2±/c as

V (2,1)
0 (z) = f (2)±±z2

2F1(2, 2; 4; z)

= f (2)±±
(

z2 + z3 + 9z4

10 + 4z5

5 + 5z6

7 + 9z7

14 + 7z8

12

)
+O(z9)

(42)

where f (2)±± were given in Equations (25) and (32). Here we have used

2h2±
c = 1

2N

(
1±λ
1∓λ

)
+ 1

N2 f (2)±± +O(N−3) (43)

which are obtained from the 1/N expansions of h± as in Equations (12) and (29) and c in Equation (2) as

c = N(1− λ2)
[
1− 1

N

(
λ + 1

1+λ

)]
+O(N−1) (44)

The other comes from the 1/c2 order terms in Equation (37) as

V (2,2)
0 (z) =

(1± λ)2

16(1∓ λ)2 ka(z) +
(1± λ)

4(1∓ λ)2 kb(z) +
1

4(1∓ λ)2 kc(z) (45)

with ka(z), kb(z), and kc(z) in Equation (38).
We also need Virasoro blocks of Ap up to the next non-trivial order in 1/N. It is known that the

Virasoro block is expanded in 1/c as (see, e.g., [23])

Vp(z) = g(hp, z) +
1
c
[
h1h3 fa(hp, z) + (h1 + h3) fb(hp, z) + fc(hp, z)

]
+O(c−2) (46)

Here g(hp, z) is the global block of Ap and the expressions of fa(hp, z), fb(hp, z), and fc(hp, z)
were obtained in [23]. See also Appendix A. For our application, we set h1 = h3 = h± and hp = s.
We need the expansion in 1/N instead of 1/c as

Vs(z) = V (0)
s (z) + V (1)

s (z)
1
N

+O(N−2) (47)

The leading term V (0)
p (z) is given by the global block as

V (0)
s (z) = g(s, z) = zs

2F1(s, s; 2s; x) (48)

The next order contributions in 1/N are

V (1)
s (z) =

1
4

1± λ

1∓ λ
fa(s, z) +

1
(1∓ λ)

fb(s, z) +
1

(1− λ2)
fc(s, z) (49)
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where the functions fa(s, z), fb(s, z), and fc(s, z) are given by

fa(s, z) = zs
[
2z2 + (s + 2)z3 + (s+3)(5s(s+3)+6)z4

20s+10 + (s+3)(s+4)(5s(s+4)+8)z5

60(2s+1)

+O(z6)
]

fb(s, z) = s(s − 1)zs
[

z2

2s+1 + (s+2)z3

4s+2 + (s+3)(5s(s+4)+18)z4

20(4s(s+2)+3)

+ (s+3)(s+4)(5s(s+5)+24)z5

120(4s(s+2)+3) +O(z6)
]

fc(s, z) = s2(s−1)2

2(2s+1)2 zs
[
z2 + (s+2)z3

2 + (s+3)(s(10s(2s+11)+191)+108)z4

40(2s+3)2

+ (s+3)(s+4)(s(10s(2s+13)+243)+144)z5

240(2s+3)2 +O(z6)
]

(50)

4. Three Point Functions

After the preparations in previous sections, we now work on the decompositions of four point
functions by Virasoro conformal blocks as in Equation (6). In the current case, the decompositions are

|z|2Δ±G±±(z) = V0(z) +
∞

∑
s=3

(C(s)
± )2Vs(z) + ∑

(s1,s2;s′)
(C(s1,s2;s′)

± )2Vs′(z) + · · · (51)

Here G±±(z) are four point functions defined in Equations (7) and (8), and the expansions in
z were obtained as in Equations (23) and (30). Moreover, V0(z) is the vacuum block and Vs(z) is
the Virasoro block of higher spin current J(s) (or J(s1,s2;s)). Their expansions in z can be found in the
previous section.

Solving constraint equations from Equation (51), we read off the coefficients C(s)
± , which are

proportional to the three point functions in Equation (4). It is convenient to expand the coefficients in
1/N as

C(s)
± =

1
N1/2

(
C(s)
±,0 +

1
N

C(s)
±,1 +O(N−2)

)
(52)

Then we can see that the constraint equations from Equation (51) at the order N0 is trivially
satisfied as 1 = 1. The non-trivial conditions arise from order 1/N terms, and they determine the
leading order expressions C(s)

±,0 as seen in the next subsection. The main purpose of this paper is

to compute C(s)
±,1, which are 1/N corrections to the leading order expressions. We derive them by

solving order N−2 conditions up to s = 8 in Section 4.2. Notice that we should take care of C(s1,s2;s′)
± in

Equation (51) for s ≥ 6, which may be expanded as

C(s1,s2;s′)
± =

1
N

C(s1,s2;s′)
±,0 +O(N−2) (53)

The coefficients C(s1,s2;s′)
±,0 are analyzed in Appendix B.

4.1. Leading Order Expressions in 1/N

We start from three point functions at the leading order in 1/N. We examine the constraint
equations from Equation (51) up to 1/N order. Up to this order, the vacuum block is given by
(see Equation (37))

V0(z) = 1 +
1
N
(C(2)

±,0)
2z2

2F1(2, 2; 4; z) +O(N−2) (54)
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where we have defined

C(2)
±,0 =

√
2(h±)2

c

∣∣∣∣∣O(N−1/2)

=

√
1
2

1± λ

1∓ λ
(55)

The Virasoro block of J(s) is

Vs(z) = zs
2F1(s, s; 2s; z) +O(N−1) (56)

as in Equation (47) with Equation (48). Therefore, the expansion in Equation (51) can be written as

|z|2Δ±G±±(z) = 1 +
1
N

∞

∑
s=2

(C(s)
±,0)

2zs
2F1(s, s; 2s; z) + · · · (57)

up to the order of 1/N. The four point functions G±±(z) can be expanded as

|z|2Δ±G±±(z) ∼ 1 +
1
N

∞

∑
n=1

zn
(
− 1

n
+

Γ(1∓ λ)Γ(n)
Γ(n ∓ λ)

)
+ · · · (58)

as in Equations (23) and (30) up to the same order. On the other hand, the global blocks can be
written as

zs
2F1(s, s; 2s; z) =

Γ(2s)
(Γ(s))2

∞

∑
n=0

(Γ(s + n))2

Γ(2s + n)
zn+s

n!
(59)

Comparing the coefficients in front of zn, we obtain

− 1
n
+

Γ(1∓ λ)Γ(n)
Γ(n ∓ λ)

= (Γ(n))2
n

∑
s=2

Γ(2s)(C(s)
±,0)

2

(Γ(s))2Γ(s + n)(n − s)!
(60)

They are the constraint equations for (C(s)
±,0)

2 with s = 3, 4, . . ..
In order to fix relative phase factor, we examine G−+(z) in Equation (9) as well. The decomposition

in Equation (6) become

|1− z|2Δ+G−+(z) ∼ 1 +
1
N

∞

∑
s=2

(−1)sC(s)
−,0C(s)

+,0(1− z)s
2F1(s, s; 2s; 1− z) (61)

in this case. The extra phase factor (−1)s may require explanation; Now we need to use a slightly
different expression of operator product expansion as

O+(1)Ō+(z) = C(s)
+

(1− z)s

|1− z|2Δ+
J(s)(1) + · · · (62)

Then the coefficients in front of global blocks are given by

C(s)
+ 〈O−(∞)J(s)(1)Ō−(0)〉 = C(s)

+ (−1)s〈O−(∞)Ō−(1)J(s)(0)〉 ∝ (−1)sC(s)
− C(s)

+ (63)

Here the factor (−1)s can be obtained from the coordinate dependence of three point function,
which is completely fixed by conformal symmetry, see Equation (65) below. Therefore, we have
constraint equations for three point functions as

n − 1
n

= (Γ(n))2
n

∑
s=2

(−1)sΓ(2s)C(s)
−,0C(s)

+,0

Γ(s)2Γ(s + n)(n − s)!
(64)
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by comparing the coefficients in front of zn.
Now we have three types of constraint equation as in Equations (60) and (64), and we would like

to show that the known results satisfy these equations. At the leading order in 1/N, the three point
functions have been computed as [8]

〈O±(z1)Ō±(z2)J(s)(z3)〉 =
η
(s)
±

2π

Γ(s)2

Γ(2s − 1)
Γ(s ± λ)

Γ(1± λ)

(
z12

z13z23

)s
〈O±(z1)Ō±(z2)〉 (65)

The phase factors η
(s)
± depends on the convention of higher spin currents, but we may set η

(s)
+ = 1

and η
(s)
− = (−1)s. The two point function of higher spin current J(s) in Equation (65) is (see (6.1) of [8])

〈J(s)(z1)J(s)(z2)〉 = B(s)

z2s
12

, B(s) =
N

22sπ5/2
sin(πλ)

λ

Γ(s)Γ(s − λ)Γ(s + λ)

Γ(s − 1
2 )

(66)

at the leading order in 1/N. The coefficients C(s)
±,0 are given by normalization independent ratios as

C(s)
±,0 =

〈O±Ō± J(s)〉
〈O±Ō±〉〈J(s) J(s)〉1/2

∣∣∣∣∣O(N−1/2)

(67)

which become

C(s)
±,0 = η

(s)
±

√
Γ(s)2

Γ(2s − 1)
Γ(1∓ λ)

Γ(1± λ)

Γ(s ± λ)

Γ(s ∓ λ)
(68)

The first few coefficients are

C(3)
±,0 = η

(3)
±

√
1
6
(2± λ)(1± λ)

(2∓ λ)(1∓ λ)
, C(4)

±,0 =

√
1
20

(3± λ)(2± λ)(1± λ)

(3∓ λ)(2∓ λ)(1∓ λ)
(69)

along with Equation (55) for s = 2. Using these explicit expressions, we can check that the constraint
equations in Equations (60) and (64) are indeed satisfied3.

4.2. 1/N Corrections

We would like to move to the main part of this paper. In this subsection, we derive 1/N corrections
to three point functions by examining the equations in Equation (51). With the help of analysis in
previous sections, we have already ingredients necessary to the task. For examples, the expansions of
G±±(z) were given in Equations (23) and (30) up to order 1/N2. Moreover, the vacuum block and the
Virasoro block of J(s) are expanded as in Equations (39) and (47), respectively. Using these expansions,
the equations in Equation (51) become

∑∞
m=2 f (m)

±± zm = V (2)
0 (z) + ∑∞

s=3 2C(s)
±,1C(s)

±,0V (0)
s (z) + ∑∞

s=3(C
(s)
±,0)

2V (1)
s (z)

+∑(s1,s2;s′)(C
(s1,s2;s′)
±,0 )2V (0)

s′ (z)
(70)

at the order of 1/N2. Here f (m)
±± are defined in Equation (24) and Equation (31). At this order we should

include the effects from higher spin currents of double trace type as (C(s1,s2,s′)
±,0 )2 in Equation (70) with

s′ ≥ 6.

3 We have confirmed this for Equation (60) with spin s = 2, 3, . . . , 70 and for Equation (64) with all spin.
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Let us examine the equations in Equation (70) from low order terms in z. There are no z0 and z1

order terms in the both sides. We can see that the equality in Equation (70) is satisfied at the order of z2

from Equation (42). Non-trivial constraint equations appear at the z3 order as

f (3)±± = f (2)±± + 2C(3)
±,0C(3)

±,1 (71)

where f (2)±± comes from V (2,1)
0 in Equation (42). Solving them we find

C(3)
+,1

C(3)
+,0

= − 1
2

(
−λ + 1

1+λ + 4
2+λ

)
,

C(3)
−,1

C(3)
−,0

= 1
2

(
−λ + 1

λ+1 + 4
λ+2 − 6

)
(72)

The z4 order constraints are

f (4)±± = f (2)±±
9
10

+
(1± λ)2

8(1∓ λ)2 +
(1± λ)

10(1∓ λ)2 +
1

50(1∓ λ)2 + 2C(4)
±,0C(4)

±,1 + 2C(3)
±,0C(3)

±,1
3
2

where the contribution from Equation (45) starts to enter. The constraints lead to

C(4)
+,1

C(4)
+,0

= 1
10

(
5λ + 6

λ−1 − 11
λ+1 − 20

λ+2 − 45
λ+3

)
C(4)
−,1

C(4)
−,0

= 1
10

(
−5λ + 6

λ−1 − 1
λ+1 + 20

λ+2 + 45
λ+3 − 60

) (73)

We would like to keep going to the cases with s ≥ 5, where fa(s, z), fb(s, z), and fc(s, z) in
Equation (50) contribute. For s = 5, the conditions become

f (5)±± = f (2)±±
4
5
+

(1± λ)2

4(1∓ λ)2 +
(1± λ)

5(1∓ λ)2 +
1

25(1∓ λ)2 + 2C(5)
±,0C(5)

±,1 + 2C(4)
±,0C(4)

±,1 · 2

+2C(3)
±,0C(3)

±,1 ·
12
7

+ (C(3)
±,0)

2
[

1
2

1± λ

1∓ λ
+

6
7(1∓ λ)

+
18

49(1− λ2)

] (74)

We then find

C(5)
+,1

C(5)
+,0

= λ
2 + 25

7(λ−1) − 57
14(λ+1) − 2

λ+2 − 9
2(λ+3) − 8

λ+4

C(5)
−,1

C(5)
−,0

= − λ
2 + 25

7(λ−1) − 43
14(λ+1) +

2
λ+2 + 9

2(λ+3) +
8

λ+4 − 10
(75)

by solving the constraints.
For s ≥ 6, the contributions from higher spin currents of double trace type should be considered.

They are given by

J(3,3;6) ∼: J(3) J(3) : , J(3,4;7) ∼: J(3) J(4) : (76)

for s = 6, 7 and4

J(4,4;8) ∼: J(4) J(4) : , J(3,5;8) ∼: J(3) J(5) : , J(3,3;8) ∼: J(3)∂2 J(3) : (77)

4 There could be another current J(3,4;8) ∼: J(3)∂J(4), but it does not give any contribution as shown in Appendix B.
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for s = 8. Their precise forms are fixed such as to be primary in the sense of Virasoro algebra as
derived in Appendix B5. Once we have the expressions of these currents, we can obtain the coefficients

(C(s1,s2;s′)
±,0 )2, which are defined as

(C(s1,s2;s′)
±,0 )2 = 〈O±Ō± J(s1,s2;s′)〉2

〈O±Ō±〉2〈J(s1,s2;s′) J(s1,s2;s′)〉

∣∣∣∣O(N−2)
(78)

In Appendix B we also compute the three point functions 〈O±Ō± J(s1,s2;s′)〉 and the two point
functions 〈J(s1,s2;s′) J(s1,s2;s′)〉 for the currents in Equations (76) and (77) at the leading order in 1/N.

Utilizing these results, we obtain 1/N corrections to three point functions with single trace
currents of s = 6, 7, 8. The constraint equations for s = 6 are

f (6)±± = f (2)±± 5
7 + 7(1±λ)2

20(1∓λ)2 +
39(1±λ)

140(1∓λ)2 +
109

1960(1∓λ)2 + 2C(6)
±,0C(6)

±,1 + 2C(5)
±,0C(5)

±,1 · 5
2

+2C(4)
±,0C(4)

±,1 · 25
9 + 2C(3)

±,0C(3)
±,1 · 25

14 + (C(3)
±,0)

2
[

5
4

1±λ
1∓λ + 15

7(1∓λ)
+ 90

98(1−λ2)

]
+(C(4)

±,0)
2
[

1
2

1±λ
1∓λ + 4

3(1∓λ)
+ 8

9(1−λ2)

]
+ (C(3,3;6)

±,0 )2

(79)

where the effect of J(3,3;6) in Equation (76) enters. Solving these equations we find

C(6)
+,1

C(6)
+,0

= λ
2 − 5

3(λ−2) +
1315

84(λ−1) − 1357
84(λ+1) − 1

3(λ+2) − 9
2(λ+3) − 8

λ+4

− 25
2(λ+5)

C(6)
−,1

C(6)
−,0

= − λ
2 − 5

3(λ−2) +
1315

84(λ−1) − 1273
84(λ+1) +

11
3(λ+2) +

9
2(λ+3) +

8
λ+4

+ 25
2(λ+5) − 15

(80)

For spin 7, another double trace operator J(3,4;7) in Equation (76) should be considered as

f (7)±± = f (2)±± 9
14 + 17(1±λ)2

40(1∓λ)2 +
846(1±λ)

2520(1∓λ)2 +
131

1960(1∓λ)2 + 2C(7)
±,0C(7)

±,1 + 2C(6)
±,0C(6)

±,1 · 3

+2C(5)
±,0C(5)

±,1 · 45
11 + 2C(4)

±,0C(4)
±,1 · 10

3 + 2C(3)
±,0C(3)

±,1 · 25
14 + (C(3)

±,0)
2 (3467±42λ(89±24λ))

490(1−λ2)

+(C(4)
±,0)

2 (7±3λ)
6(1−λ2)

+ (C(5)
±,0)

2 (31±11λ)
242(1−λ2)

+ (C(3,3;6)
±,0 )2 · 3 + (C(3,4;7)

±,0 )2

(81)

5 From the decomposition by Virasoro conformal blocks as in Equation (6), we can read off three point functions among
primary operators including intermediate one Ap by construction. For s ≤ 5, only J(s) starts to contribute as the intermediate
operator at the zs order, so we do not need to worry about if the operator is primary or not. However, for s ≥ 6, there are

degeneracies among J(s) and J(s1,s2;s), and the 1/N corrections C(s)
±,1 could be read off once we have the information of

C(s1,s2;s)
±,0 , see Equation (70). Since we compute C(s1,s2;s)

±,0 by hand as explained in Appendix B, we have to explicitly construct
primary operators of double trace type. We only need the leading order expressions, so it is enough to use commutation
relations surviving in the large c limit as in Equation (A15) and higher spin charges at the leading order as in Equation (A18).
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which lead to

C(7)
+,1

C(7)
+,0

= λ
2 − 490

33(λ−2) +
8183

132(λ−1) − 8249
132(λ+1) +

424
33(λ+2) − 9

2(λ+3)

− 8
λ+4 − 25

2(λ+5) − 18
λ+6

C(7)
−,1

C(7)
−,0

= − λ
2 − 490

33(λ−2) +
8183

132(λ−1) − 8117
132(λ+1) +

556
33(λ+2) +

9
2(λ+3)

+ 8
λ+4 + 25

2(λ+5) +
18

λ+6 − 21

(82)

The constraint equations for C(8)
±,1 are

f (8)±± = f (2)±± 7
12 + (1±λ)2

(1∓λ)2
2687
5600 + (1±λ)

(1∓λ)2
263
700 + 1

(1∓λ)2
1879
25200 + 2C(8)

±,0C(8)
±,1

+2C(7)
±,0C(7)

±,1
7
2 + 2C(6)

±,0C(6)
±,1

147
26 + 2C(5)

±,0C(5)
±,1

245
44 ++2C(4)

±,0C(4)
±,1

245
66 + 2C(3)

±,0C(3)
±,1

7
4

+(C(3)
±,0)

2
(

387±418λ+113λ2

40(1−λ2)

)
+ (C(4)

±,0)
2
(

7(47977±41162λ+8833λ2)
21780(1−λ2)

)
+(C(5)

±,0)
2
(

7(31±11λ)2

484(1−λ2)

)
+ (C(6)

±,0)
2
(
(43±13λ)2

338(1−λ2)

)
+ (C(3,3;6)

±,0 )2 147
26 + (C(3,4;7)

±,0 )2 7
2

+(C(4,4;8)
±,0 )2 + (C(3,5;8)

±,0 )2 + (C(3,3;8)
±,0 )2

(83)

Here we have taken care of double trace operators J(4,4;8), J(3,5;8), and J(3,3;8) in Equation (77).
We then have

C(8)
+,1

C(8)
+,0

= λ
2 + 525

143(λ−3) − 12572
143(λ−2) +

101311
429(λ−1) − 203051

858(λ+1) +
12286

143(λ+2)

− 2337
286(λ+3) − 8

λ+4 − 25
2(λ+5) − 18

λ+6 − 49
2(λ+7)

C(8)
−,1

C(8)
−,0

= − λ
2 + 525

143(λ−3) − 12572
143(λ−2) +

101311
429(λ−1) − 202193

858(λ+1) +
12858

143(λ+2)

+ 237
286(λ+3) +

8
λ+4 + 25

2(λ+5) +
18

λ+6 + 49
2(λ+7) − 28

(84)

as solutions to the constraint equations.
Since the three point functions were already obtained with finite N, k in [9–11] for s = 3, 4, 5,

they can be compared to our results in principle. Instead of doing so, we utilize a simpler relation,
which is on the ratio of three point functions (see (4.52) of [11])

〈O+Ō+ J(s)〉
〈O−Ō− J(s)〉 = (−1)s (k + N + 1)

(k + N)

s−1

∏
n=1

[
nk + (n + 1)N + n

nk + (n − 1)N

]
(85)

The relation was derived for s = 2, 3, 4, 5 by using the explicit results and conjectured for generic
s based on them. The expression up to the 1/N order becomes

〈O+Ō+ J(s)〉
〈O−Ō− J(s)〉 =

C(s)
+,0+

1
N C(s)

+,1

C(s)
−,0+

1
N C(s)

−,1

+O(N−2)

= (−1)s ∏s−1
n=1

(
n+λ
n−λ

) [
1 + 1

N

(
λ + ∑s−1

m=1
mλ

m+λ

)
+O(N−2)

] (86)

Thus, at the leading order in 1/N, we have

C(s)
+,0

C(s)
−,0

= (−1)s
s−1

∏
n=1

(
n + λ

n − λ

)
(87)
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We can easily check that Equation (68) satisfy this condition. The relation in Equation (86) at the
next leading order in 1/N implies

C(s)
+,1

C(s)
+,0

− C(s)
−,1

C(s)
−,0

= λ +
s−1

∑
m=1

mλ

m + λ
(88)

We have confirmed our results (and the conjectured relation in Equation (86)) by showing that
our results on C(s)

±,1 for s = 3, . . . , 8 satisfy this equation.
Before ending this section, we would like to make comments on normalized three point functions

C(2)
± =

〈O±Ō± J(2)〉
〈O±Ō±〉〈J(2) J(2)〉1/2

(89)

with the energy momentum tensor T ∝ J(2). They do not appear in the decomposition of Virasoro
conformal blocks but can be fixed by the conformal Ward identity as

C(2)
± =

1
N1/2

(
C(2)
±,0 +

1
N

C(2)
±,1 +O(N−2)

)
=

√
2h2±

c
(90)

In particular, they lead to Equation (55) and

2C(2)
±,0C(2)

±,1 = f (2)±± (91)

with Equation (43), or equivalently

C(2)
+,1

C+,0
=

λ

2
− 1

2(λ + 1)
,

C(2)
−,1

C−,0
= −λ

2
+

1
2(λ + 1)

− 1 (92)

As a consistence check, we can show that they satisfy Equation (88) as well.

5. Conclusions and Open Problems

We have developed a new method to compute three point functions of two scalar operators
and a higher spin current in Equation (4) in 2d WN minimal model. This model can be described
by the coset in Equation (1) with two parameters N, k, and we analyze it in 1/N expansion in terms
of ’t Hooft parameter λ = N/(N + k) in Equation (3). We decompose scalar four point functions
G±±(z) in Equations (7) and (8) and G−+(z) in Equation (9) by Virasoro conformal blocks. The four
point functions were computed exactly with finite N, k in [16], and Virasoro conformal blocks can
be obtained including 1/N corrections, say, by analyzing Zamolodchikov’s recursion relation [17].
Solving the constraint equations from the decomposition, we can obtain three point functions including
1/N corrections. At the leading order in 1/N, we can easily reproduce the known results in [8] because
Virasoro conformal blocks reduce to global blocks in this case. At the next leading order, we have
obtained 1/N corrections to the three point functions up to spin 8. Previously exact results were
known for s = 3, 4, 5 in [9–11], and our findings for s = 6, 7, 8 are new. We have confirmed our results
by checking that the conjectured relation in Equation (88) is satisfied.

We have evaluated 1/N corrections only up to spin 8 case because of the following two obstacles.
One comes from 1/c corrections to Virasoro conformal blocks. Up to the required order in 1/c, closed
forms can be obtained, for instance, by following the method in [23] except for fc(s, z) in Equation (49).
In Equation (50) (or in [23]), the function fc(s, z) is given up to the order z5+s, but we need the
term at order z6+s with s = 3 for spin 9 computation. We have not tried to do so, but it should be
possible to obtain the terms at higher orders in z without a lot of efforts. Another is related to the
contributions from higher spin currents of double trace type as analyzed in Appendix B. In order
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to obtain primary operators of this type, we have used commutation relations in Equation (A15),
which are borrowed from [24]. For spin 9, a current of the form J(3,6;9) ∼: J(3) J(6) : would give some
contributions. However, in order to find its primary form, we need the commutation relation between
W, Y, which is currently not available. At the order in 1/c which do not vanish at c → ∞, we can derive
the commutation relations involving more higher spin currents, for instance, from dual Chern-Simons
description as in [25–28]. The computation is straightforward but might be tedious. In any case, it is
definitely possible to obtain the 1/N corrections of three point functions for s ≥ 9, and it is desired to
have expressions for generic s.

There are many open problems we would like to think about. Because of the simplicity of our
method, it is expected to be applicable to more generic cases. For example, it is worth generalizing the
current analysis to supersymmetric cases. Recently, it becomes possible to discuss relations between
3d higher spin theory and superstrings by introducing extended supersymmetry to the duality by [1].
Higher spin holography with N = 3 supersymmetry has been developed in a series of works [29–31],
while large or small N = 4 supersymmetry has been utilized through the well-studied holography with
symmetric orbifold in [32,33]. Previous works on the subject may be found in [34–36]. As mentioned
in introduction, the main motivation to examine 1/N corrections in 2d WN minimal model is to learn
quantum effects in dual higher spin theory. We would like to report on our recent progress in a separate
publication [37].
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Appendix A. Recursion Relations and Virasoro Conformal Blocks

In this appendix we derive the expressions of Virasoro conformal blocks in expansions of 1/c
and z by solving Zamolodchikov recursion relation in [17], and we compare our results to those
previous obtained especially in [23]. We decompose a four point function by Virasoro conformal blocks
F (c, hi, hp, z) as in Equation (6). In the following we set h1 = h2 and h3 = h4. The recursion relation
for Virasoro conformal blocks is [17]

F (c, hi, hp, z) = zhp 2F1(hp, hp; 2hp; z)

+∑∞
m≥1,n≥2

Rmn(hi ,hp)

c−cmn(hp)
F (cmn(hp), hi, hp + mn, z)

(A1)

Here the poles for c are located at c = cmn(hp) with

cmn(hp) = 13− 6
(

tmn(hp)
−1 + tmn(hp)

)
(A2)

where

tmn(hp) =

(
2hp + mn − 1 +

√
4hp(hp + mn − 1) + (m − n)2

)
/(n2 − 1) (A3)

The residua are

Rmn(hi, hp) = Amn(hp)Pmn(hi, hp) (A4)
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where

Pmn(hi, hp) = ∏
j,k

(
2l1 −

ljk

2

)(
2l3 −

ljk

2

)( ljk

2

)2

Amn(hp) =
−12(t−1

mn − tmn)

(m2 − 1)t−1
mn − (n2 − 1)tmn

∏
a,b

1
lab

(A5)

ljk(m, n, hp) = (j − ktmn)t−1/2
mn , li(m, n, hi, hp) = (hi + l2

11/4)1/2

The sum is taken over j = −m + 1,−m + 3, . . . , m − 1, k = −n + 1,−n + 3, . . . , n − 1,
a = −m + 1,−m + 2, . . . , m, b = −n + 1,−n + 2, . . . , n without (a, b) = (0, 0), (m, n).

For our purpose, it is enough to obtain first several terms of Virasoro blocks in z expansion,
and we obtain them by following the strategy of [18], see also [19]. We decompose Virasoro conformal
blocks by global blocks as

F (c, hi, hp, z) = zhp
∞

∑
q=0

χq(c, hi, hp)zq
2F1(hp + q, hp + q; 2(hp + q); z) (A6)

The generic expressions of χq are given in (2.28) of [18]. With h1 = h2 and h3 = h4, it can be shown
that χq = 0 for odd q. The explicit expressions for q = 2, 4, 6 can be found in (C.1) of the paper as

χ2(c, hp) = γ12(c, hp)

χ4(c, hp) = γ14(c, hp) + γ22(c, hp) + γ12(c, hp)γ12(c12(hp, hp + 2))

χ6(c, hp) = γ16(c, hp) + γ23(c, hp) + γ32(c, hp) + γ12(c, hp)γ14(c12(hp), hp + 2) (A7)

+ γ12(c, hp)γ22(c12(hp), hp + 2) + γ14(c, hp)γ12(c14(hp), hp + 4)

+ γ22(c, hp)γ12(c22(hp), hp + 4) + γ12(c, hp)γ12(c12(hp), hp + 2)γ12(c12(hp + 2), hp + 4)

with

γmn(c, hp) =
Rmn(hi, hp)

c − cmn(hp)
(A8)

Inserting these expressions into Equation (A6), we can obtain the Virasoro conformal blocks up to
the order of zhp+7.

Let us start from vacuum block. As discussed in the main context, we need its expression up to
the 1/c2 order. For hp = 0 the coefficients χq can be found in (2.15) of [18], and they are expended in
1/c as

χ2(c, hi, 0) =
2h1h3

c

χ4(c, hi, 0) =
2(5h2

1 + h1)(5h2
2 + h2)

25c2 +O(c−3) (A9)

χ6(c, hi, 0) =
(14h2

1 + h1)(14h2
3 + h3)

4410c2 +O(c−3)

Note that there is no 1/c-correction to χ2(c, hi, 0). Using

2F1(4, 4; 8; z) = 1 + 2z + 25
9 z2 + 10

3 z3 +O(z4)

2F1(6, 6; 12; z) = 1 + 3z +O(z2)
(A10)

and Equation (A6), we find Equation (37) with ka(z), kb(z), and kc(z) in Equation (38) but up to the
order z7.
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We would like to compare the expressions to Equation (3.14) in [23]. Firstly, there is no contribution
like ka(z)6. Secondly, our kb(z) is twice of the corresponding one in [23]. Finally, we can see that kc(z)
reproduces their expressions. In conclusion, we find very similar but different results. After carefully
repeated the analysis, say, in [23], we obtain

ka(z) = 2z4(2F1(2, 2; 4; z))2

kb(z) =
72
z2 ((z − 2)z log(1− z) + 2(1− z) log2(1− z)− 4z2) (A11)

kc(z) =
12
z2 (12(z − 2)zLi2(z) + 16z2 + 6(z − 1)2 log2(1− z) + (z − 2)z log(1− z))

This version matches the above expressions in z expansion. Using these closed form results,
we can go to more higher orders in z as in Equation (38).

Let us move to the case with non-trivial hp, where expressions are needed up to the 1/c order.
Using the expressions of χq in Equation (A7), we obtain

χ2(c, hp) =
1
c

(
h2

p(hp − 1)2

2(2hp + 1)2 + (h1 + h3)
hp(hp − 1)

2hp + 1
+ 2h1h3

)
+O(c−2)

χ4(c, hp) =
1
c

(
(hp − 1)2h3

p(hp + 3)

80(2hp + 1)(2hp + 3)2(2hp + 5)
(A12)

+(h1 + h3)
(hp − 1)h2

p(hp + 3)

20(2hp + 1)(2hp + 3)(2hp + 5)
+ h1h3

hp(hp + 3)
5(2hp + 1)(2hp + 5)

)
+O(c−2)

With the expansions of hypergeometric function in z such as

2F1(hp + 2, hp + 2; 2hp + 4; z) = 1 +
2 + hp

2
z +

(2 + hp)(3 + hp)2

4(5 + 2hp)
z2

+
(hp + 2)(hp + 3)(hp + 4)2

24(2hp + 5)
z3 +O(z4) (A13)

2F1(hp + 4, hp + 4; 2hp + 8; z) = 1 +
4 + hp

2
z +O(z2)

we find Equation (46), where the functions fa(hp, z), fb(hp, z), and fc(hp, z) are given by Equation (50)
but with s = hp. These were analyzed in [23] and, in particular, closed forms were obtained for fa(hp, z)
and fb(hp, z) as

fa(hp, z) = −12zhp−1
2F1(hp, hp; 2hp; z)(2z + (2z + (2− z) log(1− z)))

fb(hp, z) = 12hpzhp
(

2F1(hp, hp; 2hp; z)
(

log(1− z)
(

z−1 − 1
)
+ 1

)
(A14)

+ 1
2 log(1− z) 2F1(hp, hp; 2hp + 1; z)

)
Our results match with their findings in this case.

Appendix B. Higher Spin Currents of Double Trace Type

In this appendix, we analyze higher spin currents of double trace type with s′ = 6, 7, 8 in
Equations (76) and (77). We first present basics on higher spin algebra, which are needed to obtain

6 It seems that the authors of [23] did not consider this type of contribution because it is not new but essentially given by the
square of 1/c order term in Equation (37).
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the precise expressions of these currents primary with respect to Virasoro algebra. We then derive the

three and two point functions of these currents, which are used to obtain (C(s1,s2;s′)
±,0 )2 in Equation (78).

Appendix B.1. Higher Spin Algebra

In order to find out higher spin currents of double trace type, which are primary to Virasoro
algebra, we utilize commutation relations among higher spin currents given in [24] (see also [15,27,28]).
The currents are denoted as W, U, X, Y, which are proportional to J(s) with s = 3, 4, 5, 6. In order to

obtain the leading order expression (C(s1,s2;s′)
±,0 )2, we only need commutation relations up to the terms

vanishing at c → ∞ as7

[Lm, Ln] = (m − n)Lm+n +
c

12
m(m2 − 1)δm+n , [Lm, Wn] = (2m − n)Wm+n

[Lm, Un] = (3m − n)Um+n , [Lm, Xn] = (4m − n)Xm+n , [Lm, Yn] = (5m − n)Ym+n

[Wm, Wn] = 2(m − n)Um+n − N3

12
(m − n)(2m2 + 2n2 − mn − 8)Lm+n

− N3c
144

m(m2 − 1)(m2 − 4)δm+n

[Wm, Un] = (3m − 2n)Xm+n − N4

15N3
(n3 − 5m3 − 3mn2 + 5m2n − 9n + 17m)Wm+n

[Um, Un] = 3(m − n)Ym+n − n44(m − n)(m2 − mn + n2 − 7)Um+n (A15)

− N4

360
(m − n)(108− 39m2 + 3m4 + 20mn − 2m3n − 39n2 + 4m2n2 − 2mn2 + 3n4)Lm+n

− cN4

4320
m(m2 − 1)(m2 − 4)(m2 − 9)δm+n

[Wm, Xn] = (4m − 2n)Ym+n +
1
56

N5

N4
(28m3 − 21m2n + 9mn2 − 2n3 − 88m + 32n)Um+n ,

[Xm, Xn] = − cN5

241920
m(m2 − 1)(m2 − 4)(m2 − 9)(m2 − 16)δm+n + · · ·

The constants are

N3 = 1
5 (λ

2 − 4) , N4 = − 3
70 (λ

2 − 4)(λ2 − 9)

N5 = 1
105 (λ

2 − 4)(λ2 − 9)(λ2 − 16) , n44 = 1
30 (λ

2 − 19)
(A16)

in the current notation.
With the conventions, higher spin charges are given by

L0|O±〉 = h|O±〉 , W0|O±〉 = w|O±〉 , U0|O±〉 = u|O±〉
X0|O±〉 = x|O±〉 , Y0|O±〉 = y|O±〉

(A17)

Here |O±〉 ≡ O±(0)|0〉 and

h = 1
2 (1± λ) , w = ± 1

6 (2± λ)(1± λ) , u = 1
20 (3± λ)(2± λ)(1± λ)

x = ± 1
70 (4± λ)(3± λ)(2± λ)(1± λ) , y = 1

252 (5± λ)(4± λ)(3± λ)(2± λ)(1± λ)
(A18)

at the leading order in 1/c.

7 Here we have changed some signs, see, e.g., footnote 6 of [38]. The changes here are associated with redefinitions as
W → iW, U → −U, X → −iX, and Y untouched.
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Appendix B.2. Three and Two Point Functions

We start from spin 6 current J(3,3;6) ∼: J(3) J(3) : in Equation (76). Let us assume the form as

J(3,3;6)(0)|0〉 = J(3,3;6)
−6 |0〉 = (W−3W−3 + aU−6 + bL−6)|0〉 (A19)

Then the coefficients a, b are fixed by the condition L1 J(3,3;6)
−6 |0〉 = 0 as

a = −10
9

, b =
5N3

7
(A20)

We may rewrite

J(3,3;6)(z) = ∑m ∑n
:WmWn :
zm+n+6 + a

2 ∑n
(n+4)(n+5)Un

zn+6

+ b
24 ∑n

(n+2)(n+3)(n+4)(n+5)Ln
zn+6

(A21)

where the prescription of normal ordering is (see, e.g., (6.144) of [39])

: AB :m = ∑
n≤−hA

AnBm−n + ∑
n>−hA

Bm−n An (A22)

with hA as the conformal weight of A. We then obtain (C(3,3;6)
±,0 )2 with the three point function

〈O±|J(3,3;6)
0 |O±〉 = 〈O±|(W+2W−2 + W+1W−1 + W0W0 + 10aU0 + 5bL0)|O±〉

=
(

8
9 u + 1

14 N3h + w2
)
〈O±|O±〉

(A23)

and the normalization of higher spin current

〈J(3,3;6) J(3,3;6)〉 = 2
(
−5cN3

6

)2
(A24)

For spin 7 there is a double trace operator J(3,4;7) ∼: J(3) J(4) : as in Equation (76). As above, we can
show that

J(3,4;7)(0)|0〉 = J(3,4;7)
−7 |0〉 = (W−3U−4 + aX−7 + bW−7) |0〉 (A25)

with

a = −10
11

, b = −2
9

N4

N3
(A26)

is primary. Rewriting

J(3,4;7)(z) = ∑m≥1,n
:WmUn :
zm+n+7 + a

2 ∑n
(n+5)(n+6)Xn

zn+7

+ b
24 ∑n

(n+3)(n+4)(n+5)(n+6)Wn
zn+7

(A27)

we find that

〈O±|J(3,4;7)
0 |O±〉 = 〈O±| (U2W−2 + U1W−1 + U0W0 + 15aX0 + 15bW0) |O±〉

=
(

15
11 x − 2

15
N4
N3

w + uw
)
〈O±|O±〉

(A28)
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Normalization is given by

〈J(3,4;7) J(3,4;7)〉 =
(
−5cN3

6

)(
−7cN4

6

)
(A29)

There are three types as in Equation (77) for s = 8, and we start from J(4,4;8) ∼: J(4) J(4) :.
We assume its form as

J(4,4;8)(0)|0〉 = J(4,4;8)
−8 |0〉 = (U−4U−4 + aY−8 + bU−8 + dL−8)|0〉 (A30)

The condition L1 J(4,4;8)
−8 |0〉 = 0 fixes the constants as

a = −21
13

, b =
42
11

n44 , d =
7N4

9
(A31)

The operator J(4,4;8) is then obtained as

J(4,4;8)(z) = ∑m,n
:UmUn :
zm+n+8 +

a
2 ∑n

(n+6)(n+7)Yn
zn+8 + b

24 ∑n
(n+4)···(n+7)Un

zn+8

+ d
6! ∑n

(n+2)···(n+7)Ln
zn+8

(A32)

Thus we find

〈O±|J(4,4;8)
0 |O±〉

= 〈O±|(U3U−3 + U2U−2 + U1U−1 + U0U0 + 21aY0 + 35bU0 + 7dL0|O±〉 (A33)

=

(
− hN4

45
+

18n44u
11

+ u2 +
27y
13

)
〈O±|O±〉

The normalization is

〈J(4,4;8) J(4,4;8)〉 = 2
(
−7cN4

6

)2
(A34)

We then move to J(3,5;8) ∼: J(3) J(5) : in Equation (77). We find

J(3,5;8)(0)|0〉 = J(3,5;8)
−8 |0〉 = (W−3X−5 + aY−8 + bU−8)|0〉 (A35)

with

a = −10
13

, b = − 15
154

N5

N4
(A36)

is primary. With this expression, we compute

〈O±|J(3,5;8)
0 |O±〉 = 〈O±|(X2W−2 + X1W−1 + X0W0 + 21aY0 + 35bU0|O±〉 (A37)

=

(
−15N5u

77N4
+ wx +

24y
13

)
〈O±|O±〉 (A38)

and

〈Λ(3,5)Λ(3,5)〉 =
(
−5cN3

6

)(
−9cN5

6

)
(A39)

378



Universe 2017, 3, 70

For J(3,3;8) ∼: J(3)∂2 J(3) : in Equation (77), we define

J(3,3;8)
−8 |0〉 = (W−5W−3 + aW−4W−4 + bU−8 + dL−8)|0〉 (A40)

where the condition L1 J(3,3;8)
−8 |0〉 = 0 leads to

a = − 7
12

, b =
7

11
, d = −35N3

36
(A41)

Using

J(3,3;8)(z) = 1
2 ∑m,n

:(m+3)(m+4)WmWn :
zm+n+8 + a ∑m,n

:(m+3)Wm(n+3)Wn :
zm+n+8

+ b
24 ∑n

(n+4)···(n+7)Un
zn+8 + d

6! ∑n
(n+2)···(n+7)Ln

zn+8

(A42)

we find

〈O±|J(3,3;8)
0 |O±〉 = 〈O±| 1

2 (2W2W−2 + 6W1W−1 + 12W0W0)

+ a(5W2W−2 + 8W1W−1 + 9W0W0) + 21bY0 + 35dU0|O±〉 (A43)

=

(
hN3

36
+

3u
11

+
3w2

4

)
〈O±|O±〉

Here we have applied the normal ordering prescription as in Equation (A22). For instance,
we may set

Am = (m + 3)(m + 4)Wm , Bn = Wn, hA = 5 (A44)

The normalization is

〈J(3,3;8) J(3,3;8)〉 =
(
−5cN3

6

)(
−35cN3

2

)
+ 2a2 (−5cN3)

2 (A45)

There could be another spin 8 current of double trace type as J(3,4;8) ∼: J(3)∂J(4) :. We can see that

J(3,4;8)(0)|0〉 = J(3,4;8)
−8 |0〉 = (W−3U−5 + aW−4U−4 + bX−8 + dW−8)|0〉 (A46)

is primary for

a = −4
3

, b = −5
3

, d = −4N4

5N3
(A47)

Since J(3,4;8)(z) is given by

J(3,4;8)(z) = −∑m,n
:Wm(n+4)Un :

zm+n+8 − a ∑m,n
:(m+3)WmUn :

zm+n+8

− b
6 ∑n

(n+5)(n+6)(n+7)Xn
zn+8 − d

5! ∑n
(n+3)···(n+7)Wn

zn+8

(A48)

we find

〈O±|J(3,4;8)
0 |O±〉 = 〈O±| − (6U2W−2 + 5U1W−1 + 4U0W0)

−a(U2W−2 + 2U1W−1 + 3U0W0)− 35bX0 − 21dW0|O±〉 = 0
(A49)

which means that there is no contribution from J(3,4;8).
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Abstract: It was argued recently that the holographic higher spin theory features non-local
interactions. We further elaborate on these results using the Mellin representation. The main difficulty
previously encountered in this method is that the Mellin amplitude for the free theory correlator is
ill-defined. To resolve this problem, instead of literally applying the standard definition, we propose
to define this amplitude by linearity using decompositions, where each term has the associated Mellin
amplitude well-defined. Up to a sign, the resulting amplitude is equal to the Mellin amplitude for
the singular part of the quartic vertex in the bulk theory and, hence, can be used to analyze bulk
locality. From this analysis we find that the scalar quartic self-interaction vertex in the holographic
higher spin theory has a singularity of a special form, which can be distinguished from generic bulk
exchanges. We briefly discuss the physical interpretation of such singularities and their relation to
the Noether procedure.

Keywords: higher spin theory; AdS/CFT correspondence; Mellin amplitudes; (non)-locality

1. Introduction

There is an overwhelming evidence that in the conventional sense, local higher spin theories
do not exist in flat space. This evidence comes from numerous no-go results obtained within a wide
range of approaches [1–7]. This problem was recently reconsidered using the light-cone [8] and the
manifestly covariant [9,10] approaches. At the same time, recent analysis [11,12] indicates that at least
in the self-dual sector there exist consistent local higher spin theories with properties very similar to
those of their lower spin counterparts. One option could be to stop here and declare that higher spin
theories in flat space cannot go beyond the self-dual sector. Alternatively, one can try to relax locality
in some controllable way and push on with parity invariant higher spin theories.

So far in constructing higher spin theories locality was the main guiding principle and relaxing
it will make the problem too ill-defined, see, for example, [13]1. Also, usually non-locality has some
undesirable physical consequences, such as superluminal propagation, Ostrogradsky instability, etc.
This implies that the requirement of locality should be replaced with another guiding principle
that would ensure both that the problem of higher spin interactions is well-posed and that physical
pathologies are absent.

We do not have much to say on what these new guiding principles should be. However, what we
can do instead is to look at higher spin theory in AdS and see how locality is violated there. This can
give us a better idea of what locality violations to expect for putative parity invariant higher spin
theories in flat space. The advantage of considering the AdS setting is that in this case the higher spin
theory is known, at least at the level of scattering amplitudes. Indeed, via holography in the simplest

1 Analogous statements can also be proven within the light-cone deformation procedure [14].
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setup these can be identified with the correlators of the free O(N) vector model [15,16]2. The latter,
in turn, can be easily computed. Thus, by studying the free theory correlators one can learn whether
the bulk higher spin theory is local and if not, how exactly locality is violated. Another attractive
feature of the holographic higher spin theory is that, being dual to a healthy theory on the boundary,
it is unlikely to suffer from any serious problems.

Proceeding along these lines, recently it was argued [19] that holographic higher spin theory is
non-local, see [20–22] for earlier discussions. This conclusion is based on the fact that via combining
conformal block decompositions of bulk and boundary four-point functions in different channels one
can show that the conformal block decomposition for the bulk theory contact interaction contains
single trace conformal blocks. This, in turn, can be regarded as an indication that the quartic interaction
vertex in the holographic higher spin theory is non-local.

While this argument, indeed, strongly suggests that the relevant vertex is non-local, it would
be important to have an explicit formula clearly characterizing this non-locality. An explicit formula
for the non-local part of the contact interaction may help us to understand whether the associated
non-locality is general enough to trivialize the Noether procedure3 along the lines of the argument [13].
This information may be then used to amend the standard Noether procedure in a way, that makes the
problem of higher spin interactions a well-defined one. The resulting approach or, rather its flat space
version, can then be employed to construct higher spin theories in the Minkowski space.

In this paper we analyze the Mellin amplitude for the four-point correlator in the free O(N) vector
model. Previously, this question was addressed in [21,22]. These attempts encountered problems
that result into an ill-defined Mellin amplitude. Here we propose to define this amplitude using the
superposition principle. To be more precise, one can present the boundary correlator in the form of
a superposition of interfering processes and then define its Mellin amplitude as the sum of Mellin
amplitudes for each individual process. We then use this Mellin amplitude and the fact that the
boundary correlator up to a sign is equal to the singularity of the contact four-point interaction in the
bulk higher spin theory to characterize non-locality of the latter.

This paper is organized as follows. In Section 2 we review how locality is defined in AdS.
Then, in Section 3 we discuss how locality can be tested for holographic higher spin theories using the
conformal block decomposition. In particular, we review [19] and discuss various related subtleties.
Next, in Section 4 we propose a way to resolve a previously encountered problem with the definition
of the Mellin amplitude for the boundary correlator. Finally, we conclude in Section 5.

2. Definitions of Locality

First, let us specify what we mean by locality in AdS. For any scattering process in AdS one can
evaluate the Witten diagram, which results in some function An(xi) of n points on the boundary xi
associated with the external lines of the scattering process. A particularly insightful representation for
such amplitudes was recently proposed by Mack [24,25]

An(xi) = ∏
1≤i<j≤n

(∫ i∞

−i∞

dδij

2πi
Γ(δij)(xij)

−2δij

) n

∏
i=1

δ

(
Δi −

n

∑
j=1

δij

)
Mn(δij), (1)

where x2
ij = (xi − xj)

2, Δi are dimensions of operators on external lines, δij are variables dual to xij
and M(δij) is called the Mellin amplitude. The integration contours for independent δij that remain
after solving the delta-function constraints in (1) run parallel to the imaginary axes in a way that
the series of poles produced by each Gamma-function as well as by M(δij) stay on one side of the

2 Note that the idea of computing higher spin scattering amplitudes in AdS space from “the S-matrix” of singletons was
discussed long before higher spin holography acquired its modern form [17,18].

3 In the higher spin literature the procedure of perturbative construction of a gauge invariant action, see e.g., [23], is called the
Noether procedure.
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contours. The Mellin variables δij can be thought of as the AdS counterparts of qi × qj for flat space
scattering amplitudes, while operator dimensions Δi can be regarded as analogues of m2

i . Then, one can
see that the delta-functions in (1) impose constraints on δij, which are equivalent to putting external
momenta on-shell and imposing momentum conservation in flat space. Along these lines, the function
M(δij) plays the role of the AdS counterpart of the flat scattering amplitude. Moreover, it was
shown on numerous examples that Mellin amplitudes for scattering processes in AdS have a clear
analytic structure similar to the analytic structure of flat space scattering amplitudes for the same
processes [26–28]. In particular, it was shown that contact interactions with a finite number of
derivatives lead to polynomial Mellin amplitudes, while Mellin amplitudes for AdS exchanges are
meromorphic functions featuring poles at locations, associated with dimensions of exchanged operators
and their descendants. We refer the reader to [26–28] for more details.

This explains utility of the Mellin representation for studying locality in AdS. In flat space the
theory is usually called local if its Lagrangian has a finite number of derivatives. This implies that
the amplitudes associated with contact interactions should be polynomial. One can also consider a
weaker notion of locality, which only demands that contact interactions produce amplitudes being
entire functions. In this form, by employing Mellin amplitudes the notion of locality can be easily
transferred from flat space to AdS. This is how (weak) locality was defined in [20] and we will adopt
this definition here. To summarize, to verify whether the theory is local one would need to evaluate
Mellin amplitudes for its contact diagrams and check whether they are given by entire functions.

First the issue of locality appears for quartic vertices and it is enough to consider self-interaction of
scalar fields. Using holography, the associated amplitude can be defined by subtracting contributions
of four-point exchanges from the boundary correlator. Cubic vertices needed to define exchanges
are determined by matching three point Witten diagrams with the associated three-point boundary
correlators. This is the approach that was undertaken in [20,29].

Unfortunately, due to computational difficulties with spinning exchanges, completion of this
program directly within the Mellin representation remains technically prohibiting. Instead, quartic
self-interaction vertex was implicitly constructed in [20] using a certain spectral representation for the
conformal block decomposition, see [30] for a comprehensive review on the topic.

Luckily, locality can also be translated into the language of conformal blocks. In [31] it was shown
that all consistent four-point functions featuring only double trace conformal blocks4 in the conformal
block decomposition are in one-to-one correspondence with contact four-point Witten diagrams in
the bulk. On the other hand, conformal block decomposition of exchanges in the direct channel
contains single trace conformal blocks with dimensions equal to dimensions of the exchanged operator.
This suggests that absence/presence of single trace conformal blocks can be used as an alternative
criterion of locality/non-locality of the associated contact vertex, see [20].

An important subtlety here is that even the exchange, while being non-local by definition,
once expanded in the crossed channel, contains only double trace conformal blocks in the conformal
block decomposition [32,33]. This phenomenon is similar to the one for flat space amplitudes, when the
infinite series of local terms can hide a true singularity. Let us note, however, that in the same manner
one can expect that an infinite series of single trace conformal blocks may, in principle, obscure the
true locality nature of the vertex.

3. Locality in Holographic Higher Spin Theory

Let us now go into more details and see whether the quartic self-interaction vertex in the
holographic higher spin theory is local by the single trace conformal block test. Below we will

4 Primary operators containing one/two trace contractions are called single/double trace operators. For vector models these
are bilinear/quadrilinear operators in elementary fields. Conformal blocks with single/double trace operators exchanged
are called single/double trace conformal blocks.
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use the contact vertex in the crossing symmetric form, so it will be enough to check whether it has
single trace conformal blocks in the s-channel conformal block decomposition. As explained above,
the amplitude for the contact four-point vertex is defined as

Ac
4(xi) = G4(xi)−∑

l

(
Ae|s,l

4 (xi) +Ae|t,l
4 (xi) +Ae|u,l

4 (xi)
)

, (2)

where G ≡ 〈O(x1)O(x2)O(x3)O(x4)〉c is the connected part of the boundary correlator, and Ae|s,l
4 ,

Ae|t,l
4 and Ae|u,l

4 are s-, t- and u-channel exchanges respectively with l denoting spin of the exchange.
In [34] it was shown that once cubic vertices in the bulk theory agree with the CFT side at

three-point level, then exchanges accommodate all direct channel single trace conformal block
contributions of the boundary correlator. In other words, s-channel exchanges in (2) cancel all s-channel
single trace contributions from the boundary correlator. On the other hand, as it was already mentioned,
each of the exchanges in the crossed channels has only double trace conformal blocks in the s-channel
conformal block decomposition. So, naively, one can conclude that the amplitude (2) for the contact
vertex does not contain s-channel single trace conformal blocks and hence is local.

However, there is a flaw in this argument related to convergence of the spin sum for t- and
u-exchanges. Unfortunately, the s-channel conformal block decomposition for this sum cannot be
evaluated explicitly. However, one can see that it may hide s-channel singularities as follows.

First, we need to understand better the details of the conformal block decomposition of the
boundary correlator. It reads

〈O(x1)O(x2)O(x3)O(x4)〉c =
4
N

1(
x2

12x2
34
)Δ

[
u

Δ
2 +

(u
v

) Δ
2
+ u

Δ
2

(u
v

) Δ
2

]
, (3)

where u and v are conformally invariant cross-ratios

u =
x2

12x2
34

x2
13x2

24
, v =

x2
14x2

23
x2

13x2
24

(4)

and Δ ≡ d − 2 is the dimension of the operator O = φ2 of the free O(N) vector model in d dimensions.
For brevity, we denote the three terms on the right hand side of (3) as A, B and C.

It can be shown that A + B contains only single trace conformal blocks in the s-channel conformal
block decomposition, while C contains only double trace blocks in the same channel. By doing cyclic
permutations one can find analogous statements for conformal block decompositions in other channels.

Employing this information and the aforementioned result from [34], we can conclude that the
t-channel single trace contributions from Ae|t,l

4 add up to B + C, while the u-channel single trace

contributions from Ae|u,l
4 add up to A + C. In total this gives A + B + 2C, which, besides a double

trace contribution 2C, contains a single trace piece A + B, when viewed from the point of view of
the s-channel conformal block decomposition. This indirect argument allows to show that, in fact,
the contact vertex Ac

4(xi) has the s-channel singularity equal to minus that of the boundary correlator
G4(xi). Hence, the holographic higher spin theory is non-local by the single trace conformal block
test, see [19].

Let us point out few subtleties related to this argument. First of all, as we already mentioned,
while presence of a finite series of single trace conformal blocks in the conformal block decomposition
does imply presence of poles in the Mellin amplitude and, therefore, non-locality, it is not clear what
kind of singularity, if any, may be associated with an infinite series of single trace conformal blocks.
For the case in question, the conformal block decomposition does contain an infinite series of single
trace conformal blocks. Though, it is hard to expect that the singularity is absent at all, it would
be interesting to have a more qualitative understanding of what kind of singularity we are dealing
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with. This is important at least to check whether this singularity is general enough to trivialise the
deformation procedure along the lines of the argument in [13].

Secondly, the argument given above, strictly speaking, applies to the common domain of validity
of the conformal block decompositions in all three channels, which is empty

(u < 1) ∩ (v/u < 1) ∩ (v−1 < 1) = ∅. (5)

It was shown that the domains of convergence of conformal block decompositions are, in fact, much
larger and can be applied to correlators analytically continued by these decompositions [35,36].
While we do not expect any difficulties with the analytic continuation of (3) in the coordinate space,
for our purposes we rather need to make analytic continuations in the Mellin space, where neither we
are aware of similar convergence theorems nor analytic continuations are straightforward if Mellin
amplitudes involve distributions.

Finally, another subtlety is that exchanges besides single trace conformal blocks also inevitably
contain double trace conformal blocks in the conformal block decomposition. This double trace
contribution can be altered by field redefinitions, or, equivalently, by on-shell trivial cubic vertices.
Nevertheless, it is not at all arbitrary. Singularities potentially can be generated from summation of
these contributions over spin in the same way as it happens for single trace conformal blocks. This and
some other subtleties were discussed in [19].

It is also interesting to confront the locality issue discussed here with its p-adic version.
Holographic reconstruction of a quartic vertex in the p-adic case was performed in [37]. The striking
difference with the Archimedean, that is the standard, analysis is that due to peculiar properties of the
p-adics, one does not have any spinning operators and the sum (2) reduces to a single term with scalar
exchanges. For this reason single trace contributions cancel out on both sides and the quartic vertex
is local.

4. Mellin Amplitude for the Boundary Correlator

From the discussion in Section 2 it is clear that the conclusion about locality in the holographic
higher spin theory depends exclusively on what the analytic structure of the Mellin amplitude for the
boundary correlator is. Let us clarify what this amplitude is.

At four points (1) reads

A4(xi) =

(
v

x2
12x2

34

)Δ ∫ cs+i∞

cs−i∞

ds
2πi

∫ ct+i∞

ct−i∞

dt
2πi

× us/2v−(s+t)/2M4(s, t)Γ2
[

2Δ − s
2

]
Γ2

[
2Δ − t

2

]
Γ2

[
2Δ − u

2

]
, (6)

where we denoted

s ≡ Δ1 + Δ2 − 2δ12 = Δ3 + Δ4 − 2δ34,

t ≡ Δ1 + Δ3 − 2δ13 = Δ2 + Δ4 − 2δ24,

u ≡ Δ1 + Δ4 − 2δ14 = Δ2 + Δ3 − 2δ23, (7)

and then set Δi = Δ. The Mandelstam variables s, t and u are analogous to those in flat space and satisfy

s + t + u = 4Δ. (8)
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The reason why the amplitude M is called the Mellin amplitude is because of its connection to
the Mellin transform of A. The Mellin transform of a function f (u) is defined by

F(s) ≡ M[ f (u)](s) ≡
∫ ∞

0
du f (u)us−1. (9)

This integral typically converges when s belongs to a strip in the complex plane defined by a < Re(s) <
b with a and b real. The Mellin transform F(s) is then analytic in this strip and this strip is called the
strip of analyticity or the analyticity domain. The inverse transform is given by

f (u) =
∫ c+i∞

c−i∞

ds
2πi

F(s)u−s, (10)

where a < Re(c) < b. In other words, the integration contour in (10) runs parallel to the imaginary
axis anywhere within the strip of analyticity.

By comparing (6) with the inverse Mellin transform formula (10), we can expect that the
Mellin amplitude M can be obtained from the space-time amplitude A in the following two steps.
First, one performs the Mellin transform of the amplitude A(u, v) expressed as a function of two
independent cross-ratios u and v to find M(s, t), called the reduced Mellin amplitude

A4(xi) =

(
v

x2
12x2

34

)Δ ∫ i∞

−i∞

ds
2πi

∫ i∞

−i∞

dt
2πi

us/2v−(s+t)/2M4(s, t). (11)

Next one finds the Mellin amplitude M4(s, t) by factoring out the combination of Gamma-functions
from the reduced Mellin amplitude M4(s, t)

M4(s, t) = M4(s, t)Γ2
[

2Δ − s
2

]
Γ2

[
2Δ − t

2

]
Γ2

[
2Δ − u

2

]
. (12)

However, as it is not hard to see, for the correlator (3) this procedure leads to the ill-defined
Mellin amplitude.

Indeed, first problem that one encounters is the necessity to make the Mellin transform of the
power function, which according to the definition (9) leads to an integral that diverges for any s. Still,
there is a consistent framework that allows to define it as a distribution, see [38]

M[uΔ](s) ≡
∫ ∞

0
du uΔus−1 = δ(Δ + s). (13)

Note that here the strip of analyticity is understood as consisting of a single line Re(s) = Δ. Then it is
easy to verify that the inverse formula (10) does hold and the integration contour passes right through
the singularity of a delta-function.

Applying this formula to (3) we find

M4(s, t) =
16
N
(
δ(s − Δ)δ(t − Δ) + δ(s − Δ)δ(t − 2Δ) + δ(s − 2Δ)δ(t − Δ)

)
. (14)

Now we plug this into (12) to find the associated Mellin amplitude. The reduced Mellin amplitude M4

has support consisting of only three points and the same should be true for the Mellin amplitude M4

itself. Moreover, as it is not hard to see, for any of these three points the product of Gamma-functions
in (12) is singular. Hence, the Mellin amplitude is the sum of terms of the form x × δ(x), which
is zero as a distribution. If we keep the inverse transform formula (6) intact, the vanishing Mellin
amplitude implies that the correlator also vanishes in the coordinate representation, which is not the
case. This problem was encountered in [21,22].
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To summarize, the problem with a formal application of the rule that defines Mellin amplitudes
for the case of free CFT’s is as follows. The Mellin transform for each of the three terms in (3) is
known, well-defined, invertible and given in terms of distributions. Performing the Mellin transform
of the free correlator in the coordinate representation we find the associated reduced Mellin amplitude.
As a final step, we are instructed to divide it by the combination of Gamma-functions as in (12).
Usually, the reduced Mellin amplitude is a genuine function and this step does not cause any problems.
However, for free CFT’s the reduced Mellin amplitude is a distribution, which is, moreover, supported
on points where the double trace Gamma-functions are singular. As a result, an algebraic operation of
division by the product of double trace Gamma-functions is not invertible. One way to phrase this is
to say that the Mellin amplitude for the free CFT correlator (3) is ill-defined.

It is worth to point out that the reduced Mellin amplitude (14) is also, strictly speaking, ill-defined,
but for a different reason. As it was specified below (13), the Mellin transform of the power function is
defined in a strip of analyticity consisting of a single line in the complex plane. For the three terms in
(14) the strips of analyticity are

{Re(s) = Δ, Re(t) = Δ}, {Re(s) = Δ, Re(t) = 2Δ}, {Re(s) = 2Δ, Re(t) = Δ}. (15)

They do not overlap, so the reduced Mellin amplitude (14) has the domain, which is the empty set.

4.1. Inverse Mellin Transform vs. Superposition of Amplitudes

In the previous discussion the Mellin amplitude was primarily understood as an alternative
representation for the Witten diagrams and conformal correlators. In this respect, it was important that
there is an unambiguous connection between amplitudes in the standard coordinate representation and
in the Mellin form. So far this connection was realized via (1) and a prescription for the contour given
below it. Similarly, the inverse relation is also known and involves the Mellin transform (9) as discussed
in the previous section. For many relevant cases this dictionary is well-defined and is sufficient to
establish an unambiguous connection between the Mellin and the coordinate representations. There are,
however, cases, where a naive application of this dictionary leads to an ill-defined result. One of these
cases we encountered in the previous section. Below we will try to answer the question of what should
be our guiding principle for defining Mellin amplitudes if the standard dictionary with the coordinate
representation breaks down and how the Mellin amplitudes can be extracted once the coordinate
representation of the respective amplitudes is known.

As this guiding principle we suggest a natural requirement that the Mellin amplitude
for a superposition of processes is the sum of Mellin amplitudes for each individual process.
This superposition property is absolutely standard for probability amplitudes, so it is natural to require
that Mellin amplitudes satisfy it as well. In particular, it holds for amplitudes in the standard coordinate
representation. As we will see below, this property is in tension with the standard dictionary that relates
the Mellin and the coordinate representations. More precisely, as it is not hard to see, the superposition
property requires that the transform given by (1) is linear. This is only true if integration contours for
all Mellin amplitudes for superposed processes coincide. As it will be illustrated below, the standard
locations of the contours, as defined below (1), for different processes, relevant for the holographic
higher spin theory, are incompatible with each other. This implies that the Mellin amplitude for a
superposition of such processes can not be related in the standard way to the associated amplitude in
the coordinate representation. For these problematic cases we propose to define the Mellin amplitude
for a superposition of processes as a sum of constituent Mellin amplitudes irrespectively of the contour
location constraints associated with these amplitudes. This enables us to extend the standard definition
of the Mellin amplitude to cases for which it was previously inapplicable.

Below we will consider some natural examples of interfering processes in the holographic higher
spin theories, for which the Mellin amplitudes defined in a standard way require incompatible
integration contours. We will also discuss additional convergence subtleties that occur when the
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superposition involves an infinite set of processes. Our main goal is to understand how the Mellin
amplitude defined by linearity as specified above can be related to the amplitude in the coordinate
representation. Once this is clarified, we will propose the Mellin amplitude for the free theory correlator.

To start, we consider an example of the contact Witten diagram, for which the Mellin amplitude is
free of singularities. As it was mentioned below (1), the integration contours should not break any of
infinite series of poles generated by Γ(δij). For the four-point case (6), this implies that the contour for
s integration should go between the poles generated by Γ2[(2Δ − s)/2] and Γ2[(2Δ − u)/2], while the
contour for t integration should separate the poles of Γ2[(2Δ − t)/2] and Γ2[(2Δ − u)/2]. To this end,
one should require that

cs < 2Δ, ct < 2Δ, cu < 2Δ, (16)

where cu ≡ 4Δ − cs − ct.
To reproduce the coordinate representation of the amplitude, we can first evaluate the s integral

in (6). Closing the contour at s → ∞ and arguing that the infinite arc integral vanishes, we reduce
this integration to the sum of residues at s = 2Δ + n with n ≥ 0. This gives a power series in the
cross-ratio u/v with coefficients being functions of t. Then, for each term of the series we evaluate the
t integral. Closing the contour at t → ∞ we pick residues at t = 2Δ + m with m ≥ 0, which produces
an expansion in v−1. Eventually, having evaluated both integrals, we find the amplitude presented
as a power series in two cross-ratios u/v and v−1. The poles of the reduced Mellin amplitude, which
residues were evaluated to arrive to this representation are enclosed inside the red contour on Figure 1.
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Figure 1. This figure represents the real (s, t, u) plane and locations of singularities of the reduced
Mellin amplitude for the contact interaction. Singularities generated by Γ(δij) are shown as light-grey
lines. The bold triangle is the real projection of the analyticity domain associated with the inverse
Mellin transform of two variables, which defines admissible locations of the integration contour in
the complex (s, t, u) space. Depending on the way how we choose to close this integration contour at
infinity, we pick one of the three sets of poles, enclosed in the red, the blue and the green contours.
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Alternatively, one can close the integration contour at large t and u, which produces an expansion
of the amplitude in powers of the cross-ratios u−1 and v/u. The associated poles are enclosed inside
the green contour on Figure 1. Finally, by closing the contour at large u and s we produce an expansion
in powers of u and v. This expansion is generated by summing the residues of the reduced Mellin
amplitude within the blue contour on Figure 1. The three expansions that we thus obtain are valid in
the respective kinematics regimes. For domains where more than one expansion is valid, they produce
the same result by virtue of various hypergeometric identities.

Let us now consider bulk exchanges with fields of dimension Δ. The associated Mellin amplitudes
are well-known [26,27] and are given by hypergeometric functions. For generic dimensions of fields
on external lines, the s-channel exchange Mellin amplitude features a series of poles at s = Δ + 2n with
n ≥ 0. The requirement that these poles are not separated by the contour puts an additional constraint
cs < Δ on its location. So, combining all constraints together, one finds that the domain of analyticity
compared to the contact interaction case shrinks to, see Figure 2,

cs < Δ, ct < 2Δ, cu < 2Δ. (17)

As in the case of a contact interaction, there are three different ways to close the integration contour of
the Mellin integral, which results in three alternative representations of the Witten diagram as a series
in the conformal cross-ratios.

a) b)

c) d)

Figure 2. Here we illustrate the singularity structures of the reduced Mellin amplitudes for the contact
Witten diagram and for exchanges with the field of dimension Δ in s, t and u channels. These are
shown on figures (a–d) respectively. As before, bold triangles denote domains of analyticity of the
reduced Mellin amplitude. Solid and empty circles represent locations of singularities associated with
the three terms in the free theory correlator. Solid circles mean that the reduced Mellin amplitude has a
given singularity, while empty circles mean that the reduced Mellin amplitude is regular at this point.
The light-grey lines denote the leading single trace singularities of exchanges. For example, for the
s-channel exchange it appears at s = Δ.
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A special attention should be payed to singularities appearing at

(s, t, u) : (Δ, Δ, 2Δ), (Δ, 2Δ, Δ), (2Δ, Δ, Δ) (18)

as these produce contributions that remain in the complete boundary correlator (3). The reduced Mellin
amplitude for the s-channel exchange has singularities at two of these locations. One is generated by

1
(s − Δ)(t − 2Δ)

(19)

and contributes to the representation with the Mellin integration contour closed at s, t → ∞ (the red
contour) and does not contribute to the others. Another singularity is of the form

1
(s − Δ)(u − 2Δ)

(20)

and its residue only contributes to the integral with the contour closed at s, u → ∞ (the blue contour).
Similar structures of poles and contour locations is exhibited by reduced Mellin amplitudes for other
exchanges, see Figure 2.

It is now instructive to consider what happens if we add up three exchanges together. As we
have just discussed, each of them has a well-defined Mellin amplitude, which allows to reproduce the
associated amplitude in the coordinate representation using the standard dictionary. However, as it
is not hard to see, admissible locations of the contours for different exchanges are incompatible with
each other. For example, the analyticity domain for the t-channel exchange is

cs < 2Δ, ct < Δ, cu < 2Δ (21)

and it has an empty overlap with the analyticity domain for the s-channel exchange (17). This manifests
itself in a way that the singularity (20) at (s, t, u) = (Δ, Δ, 2Δ) for the s-channel exchange is inside the
blue contour, while the singularity

1
(t − Δ)(u − 2Δ)

(22)

of the t-channel exchange is also located at the same point, but should be strictly outside the blue
contour, as it is inside the green one. We would like to emphasize that contributions associated with
these singularities are present in the free theory correlator, which means that we should expect similar
inconsistencies with the contours for its Mellin amplitude as well.

How should we proceed in this situation? As we discussed previously, it seems natural to define
the Mellin amplitude for the process that involves three exchanges in different channels as a sum
of individual Mellin amplitudes associated with each exchange. This is what we are expected to do
for consistency with the amplitude’s superposition principle. In this case, however, the standard
relation between the Mellin and the coordinate representations breaks down. Instead, to reconstruct
the coordinate representation of the amplitude from its Mellin form one should first split the amplitude
into pieces and then use different contours for each of them. Of course, amplitudes can be split
into parts in different ways, which will result in different outcomes in the coordinate representation.
This means that under some circumstances Mellin amplitudes do not define amplitudes in the usual
coordinate form unambiguously, and, hence, do not give a faithful representation for scattering processes
in AdS or, equivalently, correlators in the CFT.

It is also instructive to understand what happens with integration contours when we sum an
infinite series of Witten diagrams. For example, one can expand the s-channel exchange in a series of
contact diagrams and consider Mellin amplitudes for each of these diagrams. Then, as it is not hard to
see from Figure 2, the constraint for the location of the contour for these diagrams is different from
that for the s-channel exchange. For example, the blue contour for contact interactions can go either
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below or above the point (s, t, u) = (Δ, Δ, 2Δ). At the same time, for the s-channel exchange diagram,
the only prescription that gives the desirable result is when the blue contour goes above this point.
The reason why this happens is clear. Namely, additional poles in the exchange Mellin amplitude
imply that the sum over contact Mellin amplitudes does not converge everywhere. As this expansion
is closely related to the Taylor expansion in s at s = 0, one would rather expect that it converges
when the blue contour goes above the pole at (s, t, u) = (Δ, Δ, 2Δ), because then it is closer to s = 0.
From this example we learned that when dealing with series of Mellin amplitudes we may generate
additional singularities and then the location of the contour should be chosen depending on where
this series converges.

Another subtlety is related to the procedure that reduces integrals along the contours that go
parallel to the imaginary axis to the sum of residues. For this procedure to commute with infinite
summation, one has to ensure that the sum converges both in the strip of analyticity, where the initial
contour runs, on the infinite arc contour that closes the initial contour and, in fact, everywhere inside
the closed contour formed by joining these two contours together. To avoid these requirements one
can deform the contour in the usual way before performing the summation. In this case it is enough
to require that the series of Mellin amplitudes converges only in the vicinity of the real axes, where
all their singularities are located. This, effectively, means that for the circumstances just described,
one may reconstruct the Mellin amplitude from the coordinate representation by requirement that the
reduced Mellin amplitude has correct residues irrespectively of what the standard Mellin integral gives.

4.2. Regularized Mellin Amplitude

Previous considerations motivate the following modification of the standard dictionary between
the Mellin and the coordinate forms of the free correlator. First of all, we leave the possibility of using
different integration contours for different terms in the reduced Mellin amplitude. To understand
which contour should be chosen for each term, we will rely on how their singularities are located with
respect to the contour in the reduced Mellin amplitudes for constituent Witten diagrams. Secondly,
we replace the standard contour that runs parallel to the imaginary axis by a deformed one, which,
essentially, replaces integration with the sum of residues of the reduced Mellin amplitude. As the
standard integration contour can be deformed in different ways, we will require that sums of residues
within each of the deformed contours produce the required coordinate representation.

With this said, let us adjust the reduced Mellin amplitude so that via the modified dictionary it
translates into the free correlator (3) in the coordinate representation. First, we fix singularities located
within the contour, which is closed at large values of s and t, that is the red contour, see Figures 1 and 2.
It already encloses singularities of the form

1
(s − Δ)(t − 2Δ)

,
1

(s − 2Δ)(t − Δ)
, (23)

contributed by exchanges. Residues of these terms produce two out of three necessary contributions to
the free theory correlator. As it is not hard to see, for constituent amplitudes the red contour never
encloses singularities capable to produce the remaining term. Still, considering that this term is present
in the correlator, the reduced Mellin amplitude should contain a singularity

1
(s − Δ)(t − Δ)

. (24)
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As we discussed previously, this can happen as a result of summation of infinite series, e.g., exchanges
over spin. Adding all contributions together, we find that the reduced Mellin amplitude, which is
necessary to produce the boundary correlator from residues inside the red contour, reads5

Mr
4 =

16
N

(
1

(s − Δ)(t − 2Δ)
+

1
(s − 2Δ)(t − Δ)

+
1

(s − Δ)(t − Δ)

)
. (25)

Analogously, for the green and the blue contours we find

Mg
4 =

16
N

(
1

(t − Δ)(u − 2Δ)
+

1
(t − 2Δ)(u − Δ)

+
1

(t − Δ)(u − Δ)

)
,

Mb
4 =

16
N

(
1

(u − Δ)(s − 2Δ)
+

1
(u − 2Δ)(s − Δ)

+
1

(u − Δ)(s − Δ)

)
. (26)

Then, the total reduced Mellin amplitude is given by

Mw
4 ≡ Mr

4 + Mg
4 + Mb

4 = 0. (27)

Accordingly, the Mellin amplitude for the free theory correlator (3) is

Mw
4 =

Mr
4 + Mg

4 + Mb
4

Γ2
[

2Δ−s
2

]
Γ2

[
2Δ−t

2

]
Γ2

[
2Δ−u

2

] (28)

and also formally vanishes. Here “formally” additionally highlights the fact that cancellation occurs
between Mellin amplitudes associated with incompatible integration contours.

In other words, we found that the total reduced Mellin amplitude for the free theory correlator
is zero. Let us stress again, that this is not in contradiction with the correlator being non-zero in
the coordinate representation—this happens, because to recover the coordinate representation of the
amplitude, one has to use different integration contours for different terms in the reduced Mellin
amplitude. To each term of the reduced Mellin amplitude (27) one can formally assign the following
constraints on locations of integration contours

Mr : cs < Δ, ct < Δ,

Mg : ct < Δ, cu < Δ,

Mb : cu < Δ, cs < Δ. (29)

However, let us emphasize again, that to recover the correlator in the coordinate representation, each
of reduced Mellin amplitudes Mr, Mg and Mb should be integrated not along the standard contour
that runs parallel to the imaginary axis, but rather along the deformed one, which runs in the vicinity
of the real axis and encloses all singularities of the reduced Mellin amplitude located there.

One may try to avoid a seemingly unattractive feature of this proposal of not having a single
integration contour for all components of the reduced Mellin amplitude by various regularizations.
Focusing first on the three terms in (25), (26) with a singularity at (s, t, u) = (Δ, Δ, 2Δ), one can
infinitesimally change these contributions, so that locations of singularities generated by these terms
shift one from another, thus developing a common domain of analyticity. Once this is done, the inverse
Mellin transform can be performed by simply adding these three contributions and integrating them
over a single integration contour inserted inside the common analyticity domain. Similar procedures

5 An analogous proposal for the Mellin transform for the power law function appeared in the context of the conformal
bootstrap in Mellin space [39].
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can be performed with singularities at other locations. An example of such regularization was recently
considered in [40].

It is worth to note that these regularizations do change the total reduced Mellin amplitude.
This can be illustrated by the following simple one-dimensional example

0 =
1
x
− 1

x
→ lim

ε→+0

(
1

x − iε
− 1

x + iε

)
= 2πi lim

ε→+0

(
1
π

ε

x2 + ε2

)
= 2πiδ(x), (30)

where regularization replaces zero by a delta-function. By virtue of analogous manipulations one can
replace the initial amplitude (25)-(26) by the one we started from in (14). As it was discussed above,
the amplitude (14) still requires to use three different integration contours for each of the three terms
in it. Hence, the necessity to use incompatible integration contours for different terms in the reduced
Mellin amplitude cannot be avoided.

To summarize, in (28) we proposed an expression for the Mellin amplitude in the free CFT, which
is defined not accordingly to a formal application of the Mellin transform as in [21,22], but rather as a
sum of Mellin amplitudes for constituent bulk Witten diagrams, which are well-defined and known.
Having studied how the integration contours of the inverse Mellin transform are located for each of
these diagrams, we found that the total Mellin amplitude can be reconstructed from the boundary
correlator in the coordinate representation by a certain modification of the standard procedure, which
is described above. In particular, the standard integrals appearing in the inverse Mellin transform
with integration contours going parallel to the imaginary axis were replaced by deformed ones going
parallel to the real axis and enclosing singularities of the reduced Mellin amplitude located there.
By doing that our goal was not to define a generalized version of the Mellin transform, but rather to
reconstruct the Mellin amplitude, defined as a sum of constituent Mellin amplitudes, without actually
evaluating this sum and imposing as little requirements on the convergence of this sum as possible.
One can imagine scenarios where such a contour deformation is not necessary and by evaluating the
standard Mellin integrals along imaginary axes one still reproduces the required power function in the
coordinate representation6. It would be interesting to see what actually happens by evaluating the
sum of the bulk Witten diagrams in the Mellin representation explicitly.

5. Conclusions

In conclusion, we briefly discuss what (28) implies for locality of the holographic higher spin
theory. First of all, given that the singular part of the Mellin amplitude for the quartic scalar
self-interaction in the higher spin theory differs from (28) just by the sign, we find that according to the
definition of locality based on the analytic structure of Mellin amplitudes, the holographic higher spin
theory is formally local. In all examples considered so far, this definition of locality appeared to be a
successful counterpart of flat space locality defined in a standard way. In particular, in both flat and
AdS spaces local interactions with a limited number of derivatives result into polynomial amplitudes,
while amplitudes for processes that involve exchanges have singularities. In other words, we believe
that our formal conclusion about locality of holographic higher spin theories has good reasons to be
taken seriously.

On the other hand, it appears that Mellin amplitudes do not represent faithfully all scattering
processes in AdS, in a sense that different processes may have identical Mellin amplitudes. Moreover,

6 Instead of (25)–(27) one could split zero into parts, so that each of them has a vanishing arc integral at infinity, which, in turn,
ensures that the standard Mellin integral along the imaginary axis can be replaced by the sum of residues. If integration
contours for different terms are located so that all singularities except one stay on one side of the contours, then contributions
from these singularities cancels out due to the fact that the total reduced Mellin amplitude is vanishing. Then, the only
non-vanishing contribution to the amplitude in the coordinate representation is given in terms of residues of the singularity
that for different terms appears on different sides of integration contours. Clearly, this contribution will be given by the
power function. Some concrete examples of this mechanism at work can be found in [40].
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this effect turns out to be crucial for amplitudes in the holographic higher spin theories. In particular,
the Mellin amplitude for the conformal four-point correlator and, hence, the complete four-point
higher spin scattering amplitude is formally zero. To be able to reconstruct a non-zero correlator
in the coordinate representation, the Mellin amplitude should be first split into three parts and for
each part one should use a different integration contour. The same effect is responsible for the formal
vanishing of the singularity in the contact four-point interaction in the bulk higher spin theory. For this
reason, one may argue that to make judgements about locality of the holographic higher spin theory,
each of the three terms should rather be considered separately. As these terms contain singularities,
one concludes that the associated non-localities are present in the bulk theory. In this way, our analysis
can be reconciled with the conclusion of [19] that the holographic higher spin theory is non-local.

At the same time, we would not go as far as claiming that presence of the singularity (28)
trivializes the Noether procedure as a tool to construct higher spin theories along the lines of the
argument [13]. What trivialises the Noether procedure is generic non-localities associated with
exchanges of fields present in the spectrum of the theory. For the holographic higher spin theory,
a generic s-channel exchange has the Mellin amplitude featuring a sequence of singularities at
s = Δ, Δ + 2, . . . . By inspecting explicit expressions in [26,27] one finds that for generic space-time
dimensions this sequence is infinite. On the contrary, leaving aside that (28) formally vanishes, each of
its terms has only a single singularity in each channel. In this respect it is more reminiscent of exchanges
with singletons on the boundary [41–43], but with the dimension being Δ (or 2Δ), not Δ/2. In fact,
this similarity is not surprising given that the same singularity is produced by the exchange with an
infinite tower of higher spin fields, which, in turn, via the Flato-Fronsdal theorem [44] can be related to
a two-particle state of boundary singletons.

It would be interesting to turn these observations into more concrete proposals of how the
functional class of admissible Lagrangians should be changed to make the Noether procedure for
higher spin theories non-trivial. For example, one can propose that vertices that result into Mellin
amplitudes with a finite number of poles are admissible7. Or, taking into account that the singularity
of the four-point contact interaction formally vanishes in Mellin space, one may stick to the initial
proposal of [20] and define locality as the requirement that the Mellin amplitude is an entire function.
These proposals are based on a rather formal mathematical way to describe the difference between
the known result (28) and a generic bulk exchange. Instead, it would be much more satisfactory if
we had better understanding of how different types of singularities in Mellin amplitudes manifest
themselves in bulk experiments. Then we would be able to motivate restrictions on functional classes of
Lagrangians by the requirement that these restrictions rule out only theories that result into undesirable
physical behavior. In this regard, let us stress again that being dual to physically healthy theories on
the boundary, higher spin theories are not expected to have serious physical pathologies.

It is worth to note that the Noether procedure with locality defined as the requirement that
Mellin amplitudes for contact interactions are free of poles has the following unattractive property:
it treats a sum of the four-point exchanges with holographically fixed cubic couplings as a local quartic
interaction. This means, in particular, that one can rescale all cubic couplings by a spin-independent
prefactor and by an appropriate local change of the quartic vertex keep the total four-point Witten
diagram intact. It is not hard to see that this procedure does not violate neither the consistency
conditions of the Noether procedure nor locality, which, in turn, implies that cubic couplings may be
fixed only up to an overall common factor. It is suggestive that the same pattern persists to all orders

7 Four-point exchange diagrams with specially tuned dimensions of the exchanged field and fields on external lines may have
a finite sequence of poles in the Mellin amplitude. This happens when the sequence of single trace poles of the reduced
Mellin amplitude, e.g., s = Δ + 2n with n ≥ 0 overlaps with poles of double trace Gamma-functions. In this case all
except a finite number of single trace singularities are cancelled in the Mellin amplitude by zeros from Γ−1(δij). Of course,
generic exchanges with fields in the spectrum of the theory should not be regarded as local interactions. This means that
for the special values of dimensions of fields as discussed above, locality cannot be defined as a requirement that contact
interactions result into Mellin amplitudes with finite sequences of poles.
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and the Noether procedure allows to define the theory up to one overall coupling constant at each order.
In other words, it does not allow to reproduce the holographic higher spin theory unambiguously.

At the same time, such ambiguity may be used to achieve locality in the sense of the single trace
conformal block test. Indeed, we can use the extra freedom to change the cubic couplings in a way
that in (2) single trace conformal blocks cancel exactly. One can proceed in a similar manner to higher
orders. A higher spin theory so defined is consistent in the sense of the bulk Noether procedure and
local in the sense of the single trace conformal block test. Of course, via holography it is incompatible
with the CFT consistency conditions, more precisely, with the OPE. It would be still interesting to see
whether this inconsistency has manifestations in terms of the purely bulk physics.

One may argue that technical difficulties with evaluation of Mellin amplitudes for generic vertices
make it hard to apply the amended Noether procedure in practice. In this respect we would like to
stress that our goal in this paper was not to give a practical recipe for derivation of higher spin theories
in AdS, but rather to explore at a formal level potential ways to define these theories perturbatively,
taking into account a particular type of singularity present in holographic higher spin theories. After all,
higher spin theories in AdS can already be reconstructed from holography and do not need another
derivation. One still may hope that such analysis may lead to a better understanding of how locality
should be relaxed and the Noether procedure be deformed for a more tractable problem of perturbative
construction of higher spin theories in flat space.

In summary, as it was shown in [19], the holographic higher spin theory features non-local
interactions. Possibly, the most lucid way to convey this statement without going into technical details
is to say that the singularity of the contact four-point interaction is proportional to the singularity of the
sum of exchanges in the theory. At the same time, this singularity takes a special form, which manifests
itself, in particular, in the fact, that it vanishes in the appropriately defined Mellin representation.
This information may be naturally used to define a non-trivial Noether procedure. It may also be
instructive to view such a form of the singularity and of the total correlator in the Mellin representation
as a consequence of the higher spin symmetry. In this respect, we would like to note that in the
conformal higher spin theory the symmetry forces amplitudes to vanish everywhere except for points
of zero measure in kinematic space [45,46]. It is also worth to note that in [47] the authors argued that
already the Lorentz part of the higher spin symmetry implies that amplitudes in higher spin theories
should be trivial. This conclusion is consistent with (28), if we add all contributions to the Mellin
amplitude together. On the other hand, the correlator in the coordinate representation is non-vanishing
and still covariant with respect to the higher spin symmetry. This once again highlights inequivalence
between two languages—the Mellin and the coordinate representation—and may hint towards a way
to go around no-go theorems for higher spin interactions in flat space.

Note added:

In the initial version of this paper we made a general observation that for constituent Witten
diagrams the integration contour appearing in the Mellin transform encloses singularities, but does
not go exactly through them as for the power law function. Based on that we suggested that the Mellin
amplitude in the free CFT should be a rational function with simple poles at the required locations.
The remaining ambiguities were fixed in a heuristic way. Then, in [40] the four-point correlator in IIB
supergravity was computed. It was found that in Mellin representation the free part of the correlator
arises as a regularization effect in the inverse Mellin transformation. This lead us to extend our
previous analysis by carefully taking into account where the contour is located for each constituent
Witten diagram. In agreement with [40] we found, that there is a consistent sense in which the Mellin
amplitude can be defined to be zero.
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Abstract: Large-N, ε-expansion or the conformal bootstrap allow one to make sense of some of
conformal field theories in non-integer dimension, which suggests that AdS/CFT may also extend
to fractional dimensions. It was shown recently that the sphere free energy and the a-anomaly
coefficient of the free scalar field can be reproduced as a one-loop effect in the dual higher-spin
theory in a number of integer dimensions. We extend this result to all integer and also to fractional
dimensions. Upon changing the boundary conditions in the higher-spin theory the sphere free energy
of the large-N Wilson-Fisher CFT can also be reproduced from the higher-spin side.

Keywords: higher-spin theory; AdS/CFT; large-N

1. Introduction

There is some evidence that the AdS/CFT correspondence [1–3] may extend to fractional
dimensions. Our goal is to support this idea by matching the sphere free energy of the free and critical
vector models with the one-loop corrections to the vacuum partition function in the higher-spin gravity.

It was conjectured in [4] that the large-N O(N) vector model, which describes the critical points of
O(N) magnets in three dimensions [5,6], should be dual to a theory with gauge fields of arbitrary high
spin in the spectrum, which are known as higher-spin theories.1 As it was mentioned already in [4],
see also [11], the fact that the Wilson-Fisher critical point exists in 4 − ε expansion should allow one to
make sense both of the dual higher-spin theory and of the duality itself in AdS5−ε/CFT4−ε. However,
it is difficult at present to come up with an observable amenable to computation on the higher-spin side,
especially in fractional dimension. In the paper we confirm the duality between free and critical large-N
O(N) vector models at the one-loop level with the AdS observable being the one-loop determinant of
the Type-A higher-spin theory in Euclidean AdSd+1 and with the dual CFT observable being the sphere
free energy F = − log ZSd . The result holds true in all integer and non-integer dimensions, which
extends and generalizes [12,13]. Upon changing the boundary conditions we reproduce the difference
between the sphere free energy under a double trace deformation (φ2)2 that drives the free model at
UV to the critical model in IR.

The inspiration comes mostly from the CFT side, which is much better understood: there are
different techniques available that allow one to make sense of at least some of the interacting conformal
field theories in fractional dimensions. For example, the large-N expansion, see e.g., [14–17], can be
used to compute the critical indices for any d, including non-integer ones. The large-N approximation
is also important for the quasi-classical expansion on the AdS-side since the coupling constant

1 See also [7–10] for other developments of this and related conjectures that involve higher-spin theories.
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in higher-spin theories G should be of order 1/N. Another ubiquitous method is the ε-expansion [6].
Also, the conformal bootstrap can be set up in fractional space-time dimensions [18] and used to get
predictions for the critical indices and to clearly show how the 2d Ising model smoothly turns into
the 3d Ising model and ends up on the free theory in 4d, the latter region can be accessed via the 4 − ε

expansion too. The whole range 2 < d < 4 is covered by the 1/N-expansion whenever N is large.
There are recent studies [19,20] pointing out that the critical vector model can be extended to a wider
range of dimension 4 ≤ d ≤ 6.

An interesting class of observables that can be computed on both sides of the duality comes
from the sphere free energy F = − log ZSd . It is also related to an important problem of how
to define a measure for the number of effective degrees of freedom in a general QFT. Such an
observable should decrease along RG flow and be stationary at fixed points which are described
by conformal field theories. The d = 2 case is solved by the c-theorem [21], while the 4d case by
the a-theorem [22,23]. Both the central charge c and the a anomaly can be extracted from the sphere
free energy: F = a log R, where R is the radius of the sphere and c = −3a in 2d. In d = 3 there is
no conformal anomaly but it was first conjectured [24–26] and then proved [27,28] that F works in
3d as well. More generally, F̃ = (−)(d−1)/2 log ZSd is expected [26] to work in odd d, in particular
in d = 1 it gives the g-theorem [29]. The last step [11] is to extend this definition to fractional
dimensions by introducing generalized sphere free energy F̃ = sin(πd

2 ) log ZSd . This observable can
be computed in non-integer dimension and the pole near even dimensions is resolved in such a way
that the a-anomaly is captured, F̃ = (−1)d/2πa/2. For free CFT’s or for the interactions induced by
a double-trace deformation F̃ was computed in [26,30–33]. For the free scalar field it is

F̃φ =
1

Γ(d + 1)

∫ 1

0
u sin(πu)Γ

(
d
2
+ u

)
Γ
(

d
2
− u

)
du , (1)

while for the change δF̃ induced by a double trace deformation due to an operator OΔ of dimension Δ
it is given by

δF̃Δ =
1

Γ(d + 1)

∫ Δ−d/2

0
u sin(πu)Γ

(
d
2
+ u

)
Γ
(

d
2
− u

)
du . (2)

and we are interested in the case Δ = d − 2 that corresponds to O = φ2.
On the dual AdS side the sphere free energy F should correspond to the partition function

in the Euclidean AdSd+1, whose boundary is the sphere Sd. Optimistically, one should be able to match
all the terms in the two expansions

− ln ZAdS = FAdS =
1
G

F0
AdS + F1

AdS + GF2
AdS + ... , (3)

− ln ZCFT = FCFT = NF0
CFT + F1

CFT +
1
N

F2
CFT + ... . (4)

This idea was pursued in [12] and elaborated further in [13,34–48]. Generic duals of higher-spin
theories are free CFT’s as it is only in free CFT’s one can have unbroken higher-spin symmetry [49–53].
For free CFT’s only the leading term F0

CFT is present, while it is not so for the large-N interacting vector
model. However, F0

AdS has not yet been computed since it should be equal to a regularized value of
the classical action, which is not yet available. Still one can proceed to the one-loop term F1

AdS that is
equal to the determinant | − ∇2 + m2| of the kinetic terms of free higher-spin fields summed over an
appropriate spectrum determined by the symmetry (or by the spectrum of the currents in the free CFT
dual). This one-loop vacuum partition function, i.e., the one-loop determinant, can be computed via
ζ-function [54,55] as

F1
AdS = −1

2
ζ ′Δ,s(0)− ζΔ,s(0) log lΛ (5)
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for each individual field of spin-s and dual operator dimension Δ and then summed up over a given
spectrum (with the ghosts of the massless fields subtracted). We restrict ourselves to the simplest
higher-spin theory, called Type-A, whose spectrum consists [56] of totally symmetric massless fields
with all integer spins s = 0, 1, 2, 3, 4, ... (non-minimal Type-A) or all even spins s = 0, 2, 4, 6, ... (minimal
Type-A). The minimal Type-A theory should be dual to free or critical O(N) vector model while
the non-minimal one should be dual to the U(N) versions of the same CFT’s. Whether the dual is free
or interacting depends on the boundary conditions imposed on the scalar field, s = 0, of the higher-spin
multiplet: Δ = d − 2 for the free dual and Δ = 2 for the (large-N) interacting one. Therefore, altogether
we have four different cases:2

ζHS,n.-m.(z) = ζΔ,0 + ∑
s=1,2,...

[ζd+s−2,s − ζd+s−1,s−1] ,

ζHS,min.(z) = ζΔ,0 + ∑
s=2,4,...

[ζd+s−2,s − ζd+s−1,s−1] ,
(6)

where Δ can be either d − 2 or 2. The one-loop free energy in the higher-spin gravity is

F1
HS = −1

2
ζ ′HS(0)− ζHS(0) log lΛ . (7)

It was shown in a number of integer dimensions [12,13,34] that: (i) while each term in the sum
may depend on the cutoff Λ, which makes the finite part ambiguous, the full one-loop vacuum
energy does not depend on the cutoff Λ, i.e., ζHS(0) = 0 for the (non)-minimal Type-A models;
(ii) the finite part vanishes for the non-minimal Type-A, ζ ′HS,n.-m.(0) = 0, and equals the sphere
free energy F or the a-anomaly of the free scalar field, i.e., a = − 1

2 ζ ′HS,min.(0) for d even and
F = − log ZSd = − 1

2 ζ ′HS,min.(0) for d odd. This result can be consistent with the AdS/CFT duality
provided the one-loop effect compensates for the integer shift in the relation between the bulk coupling
constant G and the number of fields N on the CFT side, G−1 ∼ N − 1 (provided that F0

AdS does
match F0

CFT).
The upshot of the one-loop computations in higher-spin theories is that the one-loop vacuum

energy can reproduce the a-anomaly coefficient of the free scalar CFT in even dimensions and the sphere
free energy in odd dimensions, which was shown for a number of dimensions. Upon changing
the boundary conditions for the s = 0 member it was also shown that the difference − 1

2 δζ ′HS(0),
which is due to the scalar field, matches the sphere free energy of the large-N interacting vector model
in d = 3 [12] and d = 5 [13].

It is worth stressing that the computations of ζHS are quite different for even and odd dimensions
and the requirement for d to be an integer has been a crucial one. Another common feature of
the one-loop computations in higher-spin theories is that the finite result for ζHS is obtained after an
appropriate regularization of the sum over spins.

In the paper we revise the problem of one-loop computations in Type-A higher-spin theory
aiming at the general proof for all integer dimensions and also for non-integer ones. We show that
1
2 sin(πd

2 )ζ ′HS(0) for the minimal Type-A theory does reproduce the generalized sphere free energy (1)
for all d. For Δ = 2 boundary conditions on the s = 0 field the one-loop result matches the change
in the sphere free energy (2) due to the double-trace deformation induced by operator (φ2)2 on the CFT
side [12,13,26]. Since the result is a technical one let us briefly discus the main steps. First of all, thanks
to Camporesi and Higuchi [57] there is a representation of the spectral density that enters ζΔ,s(z) such
that it can be extended to non-integer dimensions. Next, we apply the Laplace transform to the spectral
density, see also [42,43], which disentangles the integral over the spectral parameter and summation
over spins. Then, we convert the integral into a sum over the residues. In order to handle the sum

2 The second term in the brackets is to subtract the ghosts.
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we change the regularization prescription, see also [42], but it can be checked that this does not affect
the result. Low and behold we arrive at the expression, which we refer to as intermediate form, whose
regularized form gives (1). The intermediate form can also be obtained directly on the CFT side from
the determinant on the sphere. The interacting large-N vector model requires taking into account
the difference between the contributions of the s = 0 fields for Δ = d − 2 and Δ = 2. Some other
features and possible extensions are discussed in Conclusions.

2. Higher-Spin Partition Function in Fractional Dimensions

We first give in Section 2.1 the basic definitions related to the zeta-function and review
the computation of one-loop determinants in even and odd dimensions, stressing the difference.
Next, in Section 2.2, we proceed to non-integer dimensions and apply the main technical tools that
allow us to handle fractional dimensions: Laplace transform, contour integration and modified
regularization. In Section 2.3 we discuss the volume of the anti-de Sitter space that enters as an overall,
but important, factor. The last steps on the AdS side—summation over spins and extraction of ζHS(0)
and ζ ′HS(0) are done in Sections 2.4 and 2.5, where we arrive at certain intermediate form of the result
that can be matched with the CFT side. The intermediate form is directly related to the free and critical
vector models in Sections 2.6 and 2.7, which completes the proof.

2.1. Integer Dimensions

The general form of the spectral zeta-function in Euclidean anti-de Sitter space AdSd+1 for a field
of any symmetry type is [57]:

ζΔ,s =
vol(Hd+1)

vol(Sd)
vdg(s)

∫ ∞

0
dλ

μ(λ)[
(Δ − d

2 )
2 + λ2

]z , (8)

where μ(λ) is the most important factor—spectral density. It is normalized to its flat-space value:

μ(λ)|λ→∞ = wdλd , wd =
π

[2d−1Γ( d+1
2 )]2

. (9)

There are several overall factors that do not participate in the integral: g(s) is the number
of degrees of freedom, i.e., components of the irreducible transverse traceless tensor; vol(Hd+1) is
a regularized volume of the hyperbolic space [31]; and the leftover factor vd can be combined with wd:

vd =
2d−1

π
, ud = vdwd =

(vol(Sd))2

(2π)d+1 . (10)

We are interested in totally-symmetric massless spin-s fields that make the spectrum of the Type-A
higher-spin theory, in which case the number of degrees of freedom is

g(s) =
(d + 2s − 2)Γ(d + s − 2)

Γ(d − 1)Γ(s + 1)
= dimso(d) Y(s) . (11)

It counts the dimension of an irreducible so(d) tensor of rank-s. The spectral density depends
crucially on whether d is even or odd. For d even, the spectral density is a polynomial:

μ(λ) = wd

((
d − 2

2
+ s

)2
+ λ2

) d−4
2

∏
j=0

(
j2 + λ2

)
, (12)
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while for d odd it contains an additional tanh factor:

μ(λ) = wdλ tanh(πλ)

((
d − 2

2
+ s

)2
+ λ2

) d−4
2

∏
j=1/2

(
j2 + λ2

)
. (13)

The computation of ζ(z) in every even dimension d presents no difficulty, in principle, since
the spectral density is a polynomial and the integral can be done with the help of

∫ ∞

0
dλ

λk

(b2 + λ2)
z =

Γ
(

k+1
2

)
bk−2z+1Γ

(
− k

2 + z − 1
2

)
2Γ(z)

. (14)

Here, the spectral parameter z serves also as a regulator. The only problem left is to evaluate
the infinite sum over all spins (6) and there are several equivalent ways known how to do that [12,13,34].
Summation over spins can be done dimension by dimension with the complexity rapidly increasing
with d.

On contrary, the computation in every odd dimension is a challenge. The coefficient of the log
divergent piece, i.e., ζΔ,s(0) can still be computed for any spin and weight Δ after splitting the integrand
into the part that is simple and converges for z large enough and another part that is more complicated
but converges for z = 0, which is done with the help of

tanh x = 1 +
−2

1 + ex . (15)

Computation of ζ ′Δ,s(0) leads to some integrals that cannot be evaluated analytically, but whose
contribution cancels out after summing over the spectrum of the Type-A theory. Again the computation
can be done dimension by dimension. We refer to [12,13] for more detail, see also [45,46].

Another issue that requires a separate treatment is the factor of the regularized volume of
the Hyperbolic space Hd+1, which via dimensional regularization can be found to be [31]:

vol Sd =
2π(d+1)/2

Γ
(

d+1
2

) , volHd+1 =

⎧⎨⎩
2(−π)d/2

Γ( d
2 +1)

log R , d = 2k ,

πd/2Γ
(
− d

2

)
, d = 2k + 1 .

(16)

The appearance of log R signals conformal anomaly. The sphere free energy also has the log R
term, whose coefficient is the a-anomaly.

2.2. Fractional Dimensions

Coming to fractional dimensions we prefer to isolate all the factors, including the volume of
the hyperbolic space, and denote the leftover as μ̃(λ)

ζ(z) = N g(s)
∫ ∞

0
dλ

μ̃(λ)[
λ2 +

(
Δ − d

2

)2
]z , N =

vdwdvol(Hd+1)

vol(Sd)
. (17)

There is a representation of the spectral density that works in all dimensions [57]:

μ̃(λ) =

((
d − 2

2
+ s

)2
+ λ2

) ∣∣∣∣∣∣
Γ
(

d−2
2 + iλ

)
Γ(iλ)

∣∣∣∣∣∣
2

. (18)

This is our starting point. We will show that the higher-spin zeta-function can be computed
without having to make an assumption that d is an integer. The difference between even and odd
dimensions can be observed in (18): a simple polynomial is obtained for d even, (12), and an additional
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non-polynomial factor is present for d odd, (13). In fact, the spectral density is not a polynomial in all
dimensions, including fractional ones, except for the case of d even. Therefore, it is the case of d even
that is special, all other dimensions being on equal footing. The computation we perform below is
valid for all d except even (which is of measure zero on the real line). The result for d even is then
obtained as a continuation from non-integer d.

Let us begin with the expression for the zeta-function that is obtained by collecting all the factors
and expanding the gamma functions:

ζν,s(z) = N g(s)
π

∫ ∞

0
dλ

λ sinh(πλ)

(
λ2 +

(
d
2 + s − 1

)2
)

Γ
(

d
2 + iλ − 1

)
Γ
(

d
2 − iλ − 1

)
(λ2 + ν2)z , (19)

where ν = Δ − d
2 . The integrand is an even function of λ and therefore we can extend the range

of integration to (−∞, ∞) at the price of 1
2 . It is convenient to perform the Laplace transform,

see also [42,47],3

1
(λ2 + ν2)z =

√
π

Γ(z)

∫ ∞

0
dβ e−βν

(
β

2λ

)z− 1
2

Jz− 1
2
(λβ) . (20)

The main advantage is that the exponential e−βν times g(s) can be summed over all spins
in the spectrum directly. In other words, the sum over spins and the λ integral are now decoupled.
This is one of the crucial steps that allows us to calculate the full zeta function ζHS, (6), in arbitrary
dimension. Notice that in applying the Laplace transform we moved the branch point from ±iν in (19)
to 0. Next, we split the Bessel function into

Jα(x) = 1Hα(x) + 2Hα(x)
2

, (21)

where 1Hα(x) and 2Hα(x) are Hankel functions of the first kind and second kind.
Similarly to Green functions we close the contour for the part of 1Hα upward and the contour

for the part of 2Hα downward. Let us show how to compute the contour integral of the part with

1Hα in (21) first. In order to evaluate the contribution coming from 1Hα, we choose the contour as
on Figure 1.

One needs to make sure that the upper arc of the contour does not cross any pole that comes from
the Γ

(
d
2 + iλ − 1

)
. The residue theorem implies that

∮
C

f (λ) = 2πi
∞

∑
l=0

Res
λ→i( d

2 +l−1)

(
λ − i

(
d
2
+ l − 1

))
f (λ) , (22)

where we prefer to omit g(s)/π for a moment:

f (λ) = N
λ sinh(πλ)

(
λ2 +

(
d
2 + s − 1

)2
)

Γ
(

d
2 + iλ − 1

)
Γ
(

d
2 − iλ − 1

)
βz− 1

2 1Hz− 1
2
(βλ)

2(2λ)z− 1
2

(23)

We recall that the residues of Γ-function are

Res(Γ,−l) =
(−1)l

Γ(l + 1)
. (24)

3 One can represent the spectral zeta-function as a differential operator acting on some seed function that has enough
parameters to produce g(s)μ(λ). Character is an example of such a function [42,47], which is also indispensable for taking
tensor products. The characters are however difficult to define in non-integer dimension.
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Figure 1. The contour for the part contains 1Hα lies in upper half plane where the poles are those of

Γ
(

d
2 + iλ − 1

)
. As the λ integral approaches (−∞, ∞), the range of l also extends to infinity.

We, therefore, could change the integral over λ to an infinite sum over l. Before proceeding
further, let us make sure that the upper arc and the contour around the branch point do not contribute
to the whole contour integral. We make the change of variable λ = Reiθ :

∫
Ω

dλ f (λ) = lim
R→∞

∫ π

0
dθ f (Reiθ) and

∫
γ

dλ f (λ) = lim
R→0

∫ 0

π
dθ f (Reiθ) . (25)

Introducing z as a regulator [12,13,34,57] is useful in various ways. Let us consider the γ contour
first, if we set z large enough then there is no contribution from the small contour

lim
λ→0

λ sinh(πλ)Γ
(

d
2
+ iλ − 1

)
Γ
(

d
2
− iλ − 1

) βz− 1
2 1Hz− 1

2
(βλ)

2(2λ)z− 1
2

= 0 +O(λ2) (26)

Therefore, (23) vanishes and the integral over the contour near the branch point in (25) also
vanishes. Next, consider the large arc Ω, assuming that the contour goes in between the poles of
the gamma function. The integrand (23) will also vanish as we make z large enough in the limit where
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the radius R goes to infinity.4 Therefore, there is no contribution coming from γ and Ω arcs and (22) is
equal to

1
2

∫ ∞

−∞
dλ f (λ) =− πN

2

∞

∑
l=0

⎛⎜⎜⎝ βz− 1
2 1Hz− 1

2

(
i
(

d
2 + l − 1

)
β
)

(
2i
(

d
2 + l − 1

))z− 1
2

⎞⎟⎟⎠(
d
2
+ l − 1

)

×
((

d
2
+ s − 1

)2
−
(

d
2
+ l − 1

)2
)

sin
(

π

(
d
2
+ l − 1

))
Γ(d + l − 2)

Γ(l + 1)
(−1)l .

(27)

We notice that sin
(

π
(

d
2 + l − 1

))
= −(−1)l sin

(
πd
2

)
and hence

ζ(z) =
N g(s)

√
π

2Γ(z)

∫ ∞

0
dβ

∞

∑
l=0

e−βν

⎛⎜⎜⎝ βz− 1
2 1Hz− 1

2

(
i
(

d
2 + l − 1

)
β
)

(
2i
(

d
2 + l − 1

))z− 1
2

⎞⎟⎟⎠
×
(

d
2
+ l − 1

)((
d
2
+ s − 1

)2
−
(

d
2
+ l − 1

)2
)

sin
(

πd
2

)
Γ(d + l − 2)

Γ(l + 1)
.

(28)

It is difficult to say anything about the sum in general, but eventually we are interested only
in few terms around z = 0. In [42], it was argued that one can change the regularization prescription
so that the z → 0 behaviour is not modified. Indeed, it is clear that to the leading order in z-expansion
one can use

lim
z→0

βz− 1
2 1Hz− 1

2
(βλ)

2 (2λ)z− 1
2

=
eiβλ

√
πβ

+O(z) . (29)

This way we obtain the following contribution coming from the 1Hα function with the contour
in the upper half-plane, Figure 1:

ζ̂1 Hα(z) =
N g(s)

√
π

Γ(z)

∫ ∞

0
dβ

∞

∑
l=0

e−βν e−β( d
2 +l−1)

√
πβ

×
(

d
2
+ l − 1

)((
d
2
+ s − 1

)2
−
(

d
2
+ l − 1

)2
)

sin
(

πd
2

)
Γ(d + l − 2)

Γ(l + 1)
.

(30)

The presence of 1/Γ(z) ∼ z factor in (20) implies that in order to get the right ζ(0) we can take
only the constant term of (29) into account. However, there should be a discrepancy between ζ ′(0)
computed rigorously and the one after we drop the term O(z) in (29). The difference, which we call
the deficit, originates from the term of order O(z) in (29). As was noted in [42] the deficit vanishes for
representations that have even characters (even as a function of β, where q = e−β counts the energy via
insertion of qE). The deficit is discussed in Appendix B, where it is shown that it does not contribute to
the full ζ ′HS(0).

4 For a more detailed discussion see [57].
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Next, we repeat the same steps for the contribution coming from 2Hα in (21) where we close
the contour downwards. In this case, one has to use −2πi when applying residue theorem5 for
the poles of Γ

(
d
2 − iλ − 1

)
. We obtain the same structure as in (30) since

lim
λ→−i( d

2 +l−1)
lim
z→0

βz−1/2
2Hz− 1

2
(βλ)

2 (2λ))z− 1
2

=
e−β( d

2 +l−1)
√

πβ
+O(z) . (31)

Therefore, in order to compute the full one-loop free energy of the Type-A theory, (7), we can
write the zeta-function in a modified form as

ζ̃(z) =
N g(s)
Γ(2z)

∫ ∞

0
dβ

∞

∑
l=0

e−βνβ2z−1e−β( d
2 +l−1)

(
d
2
+ l − 1

)

×
((

d
2
+ s − 1

)2
−
(

d
2
+ l − 1

)2
)

sin
(

πd
2

)
Γ(d + l − 2)

Γ(l + 1)
.

(32)

2.3. Volume of Hyperbolic Space

In integer dimensions, we can use the volume form of the sphere Sd and Hyperbolic space as
in (16). This result arises [31] from the expansion of the formal volume πD/2Γ

(
−D

2

)
in D = d − ε:

volHd+1 =
Ld+1

ε
+ Vd+1 + O(ε) , (33)

where ε-pole signals the log R divergence in d = 2k and Vd+1 is the finite part that makes the leading
contribution for d = 2k+ 1. As it was already noted in [31], regularization of the volume IR divergences
is not independent of regularization of the UV divergences that arise in one-loop determinants.
Below, we propose an extension for the overall normalization factor which comes from the regularized
volume to non-integer dimension. Note that one can write the general volume for Lobachevsky
space as

volHd+1 = − π
d+2

2

Γ
(

d+2
2

)
sin

(
πd
2

) , (34)

which gives the right pole as in (33) and reduces to Vd+1 for d odd. The sin
(

πd
2

)
factor inside

the modified zeta function (32) will cancel with the one in (34) and gives us no poles for even
dimensions. Together with the factor N in (17), one arrives at the overall normalization factor in general
dimensions6

Ñ = N sin
(

πd
2

)
= − 1

Γ(d + 1)
. (35)

This overall normalization factor is strikingly simple since we do not need to treat the cases of
odd and even dimensions separately. Moreover, (35) can also be used in fractional dimension.

5 The contour is the reflection image of Figure 1 around the real axis.
6 Recall that vol Sd = 2π(d+1)/2

Γ( d+1
2 )

.
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2.4. Non-Minimal Type-A

Using the regularized volume, we can now write the full modified zeta-function for the Type-A as

ζ̃(z)ν,s =− g(s)
Γ(2z)Γ(d + 1)

∫ ∞

0
dβ

∞

∑
l=0

e−βνβ2z−1e−β( d
2 +l−1)

(
d
2
+ l − 1

)

×
((

d
2
+ s − 1

)2
−
(

d
2
+ l − 1

)2
)

Γ(d + l − 2)
Γ(l + 1)

(36)

We first show that the modified zeta-function leads to ζHS(0) = ζ ′HS(0) for the non-minimal
Type-A theory. The total ζ-function for the non-minimal Type-A is

ζ̃n.-m.(z) = ζ̃ d
2−2,0(z) +

∞

∑
s=1

(
ζ̃ d

2 +s−2,s(z)− ζ̃ d
2 +s−1,s−1(z)

)
, (37)

where the labels of the zeta functions correspond to ζν,s as in (19). Using (36) and (11) we can perform
the sum over all spins in (37) and get

ζ̃n.-m.(z) =
∞

∑
l=0

∫ ∞

0

dββ2z−1

Γ(d + 1)Γ(2z)

e
−βd

2 (−2 + d + 2l) cosh
(

β
2

)2
e−

β
2 (−2+d+2l)Γ(−2 + d + l)

(1− e−β)dΓ(l + 1)

× (d2 + 2(−2 + l)l + d(−1 + 2l)− 2l(−2 + d + l) cosh(β))

= 0 .

(38)

It is the sum over l that makes the expression in (38) vanish. Next, we need to compute ζ̃ ′n.-m.(0)
using the modified zeta-function. Remember that

lim
z→0

β2z−1

Γ(2z)
∼ 2z

β
+O(z2) . (39)

In other words, the part of (38) without 1/Γ(2z) is ζ̃ ′(0). For the non-minimal Type-A we see that
ζ̃ ′(0) vanishes. As a result we have proved that

ζ̃n.-m.(0) = ζ̃ ′n.-m.(0) = 0 . (40)

This extends the results of [12,13] to all odd dimensions as well as to fractional ones.

2.5. Minimal Type-A

The case of the minimal Type-A model is more interesting as we will not always find 0 = 0-type
of equality as in the non-minimal case. The ζ-function for the minimal Type-A is

ζmin.(z) = ζ d
2−2,0(z) +

∞

∑
s=2,4,...

(
ζ d

2 +s−2,s(z)− ζ d
2 +s−1,s−1(z)

)
. (41)

The final result after the summation is done has a very simple form:

ζ̃min.(z) = − 1
2Γ(2z)

∫ ∞

0
dβ

β2z−1e−β(2−d)(1 + e2β)2

(e2β − 1)d . (42)

To obtain (42), it is suggestive to sum over s in (36) first. To do this we need to absorb all
monomials in s into gamma functions. For example,

sΓ(d + s − 2) = Γ(d + s − 1)− (d − 2)Γ(d + s − 2) (43)
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After some algebra what we obtain are several terms of the form

ξ(ν, p(s)) = e−βν Γ(p(s))
Γ(s + 1)

. (44)

Here p(s) is of the form s + const with different const. The sums are of the usual “statistical” form.
Following (41) one should sum (44) according to

ξ

(
d
2
− 2, p(0)

)
+

∞

∑
s=2,4,...

ξ

(
d
2
+ s − 2, p(s)

)
− ξ

(
d
2
+ s − 1, p(s − 1)

)
, (45)

where ξ
(

d
2 + s − 1, p(s − 1)

)
correspond to the ghosts. We, then, arrive at the sum over l:

ζ̃min.(z) =
∞

∑
l=0

∫ ∞

0
dβ

e−β( d
2 +l−1)(−d + 2l − 2)Γ(d + l − 2)

Γ(d + 1)Γ(l + 1)
eβ(1− d

2 )(−1 + coth β) sinh β
2

(1− e−2β)d

× β2z−1

Γ(2z)

[
− 2(1 + e−β)d

(
cosh

β

2

)3 (
(−1 + d)d + 2(−2 + d)l + 2l2 − 2l(−2 + d + l) cosh β

)

+ cosh β((−1 + d)d + 2(−2 + d)l + 2l2 + 2l(−2 + l + 1) cosh β) sinh
β

2

(
1− e−β

)d
]

= − 1
2Γ(2z)

∫ ∞

0
dβ

β2z−1e−β(2−d)(1 + e2β)2

(e2β − 1)d = (42) .

Formula (42) is strikingly simple. Vanishing of ζ̃min.(0) is due to the fact that limz→0 1/Γ(2z) =
0 +O(z). For ζ̃ ′min.(0), using (39), we arrive at

ζ̃ ′min.(0) = −
∫ ∞

0
dβ

e−β(2−d)(1 + e2β)2

β(e2β − 1)d . (46)

The formula above is the intermediate7 form. After a suitable regularization it will give the correct
answer for the sphere free energy as we recall in the next Section. It is worth mentioning that some of
the intermediate, usually divergent, expressions on the AdS side can be directly matched with their
CFT cousins, see e.g., [34] for the Casimir Energy example. These facts accentuate the importance of
careful adjustment of the regularization prescriptions on both sides of the duality.

2.6. Matching Free Vector Model

Having arrived at the intermediate form (46), we would like to show that exactly the same
intermediate form emerges on the CFT side. It contains all the important information and can be
directly used to derive the sphere free energy.

Let us review the main steps in [11,26,58] as to get the (generalized) sphere free energy F̃.
The starting point is the expression for F for a free scalar field, which results from the sum over
the eigen values of the Laplace operator on the sphere Sd [30,31]:

Fφ
min. =

1
2

∞

∑
l=0

dl log
Γ( d

2 + l − 1)

Γ( d
2 + l + 1)

=
1
2

∞

∑
l=0

dl

∫ ∞

0

dβ

β

(
−2e−β + e−β(l+ d

2 ) + e−β( d
2 +l−1)

)
, (47)

7 We refer to it as intermediate as the integral is divergent and requires regularization.
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where

dl =
(d + 2l − 1)Γ(d + l − 1)

Γ(d)Γ(l + 1)
(48)

is the degeneracy of eigen values. There is a clearly divergent part proportional to the total number
of ’degrees of freedom’, ∑ dl . This sum can be shown to vanish in a number of ways. For example,
inserting cut-off e−εl we get

∞

∑
l=0

dle−εl ∼ ε−d . (49)

In order to regularize this divergence one can make d negative [31] and then continue d to
the positive domain. In practice, this is equivalent to saying that the total number of degrees of
freedom is zero:

∞

∑
l=0

dl = 0 . (50)

Therefore, we successfully drop the first term in (47). In order to pass from log Γ to the intermediate
form one needs to apply the integral representation of log Γ(x):

log
Γ(μ + ν + 1)

Γ(μ + 1)
=

∫ ∞

0

dβ

β

(
νe−β − e−βμ − e−β(μ+ν)

eβ − 1

)
. (51)

As a result, (47) simplifies to

Fφ
min =

1
2

∫ ∞

0

dβ

β
e−

β(2+d)
2

(1 + eβ)2

(1− e−β)d . (52)

By making a change of variable, β → 2β, we get exactly the intermediate form (46) obtained
in AdS up to a factor of (−2). By definition, the AdS one-loop free energy is related to the sphere free
energy as

Fφ
min = −1

2
ζ̃ ′min.(0) , (53)

which explains the factor (−2) difference. We also note that (47) leads to

Fφ
min. =

1
2

∞

∑
l=0

dl log
Γ( d

2 + l − 1)

Γ( d
2 + l + 1)

=
1

sin
(

πd
2

)
Γ(d + 1)

∫ 1

0
duu sin(πu)Γ

(
d
2
+ u

)
Γ
(

d
2
− u

)
. (54)

In Appendix A we show that the same result can be obtained directly from the intermediate
form, i.e., the AdS result suffices to reproduce (54) and there is no ’information loss’ in going to
the intermediate form. Then, the generalized sphere free energy F̃φ = − sin(πd

2 )Fφ is [11,58]:

F̃φ
min. =

1
Γ(d + 1)

∫ 1

0
du sin(πu)Γ

(
d
2
− u

)
Γ
(

d
2
+ u

)
. (55)

Finally, we have shown that the (generalized) sphere free energy of the free scalar field results
from the one-loop determinant in the minimal Type-A higher-spin theory:

− sin
(

πd
2

)
Fφ

min. = F̃φ
min. =

1
2

sin
(

πd
2

)
ζ̃ ′min.(0) , (56)

which completes the proof. Despite the fact that our proof requires d not to be an even integer, the final
result smoothly extrapolates to d = 2k, where there are poles that correspond to the a-anomaly.
This extends the proof to even dimensions as well.
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2.7. Matching Critical Vector Model

Let us consider the case of the duality between the critical O(N) vector model and
the (non)-minimal Type-A theory where the scalar field is quantized with Δ = 2 (ν̃φ = 2 − d

2 )
boundary condition. It is clear the we just need to add to ζ ′n.-m.(0) or ζ ′min.(0) the difference that is due
to the change of boundary conditions for the scalar field. In this case, we see that ν̃φ = −νφ. As we
consider the modified zeta function (36), the exponential exp(−βν) will change sign. Also, it is clear,
see Appendix B.2, that the deficit that can be missing from ζ ′(0) due to the modified zeta-function,
is absent thanks to ν̃φ = −νφ. Repeating the procedure above, we obtain

δζ̃ ′φ(0) = ζ̃ ′d
2−2,0

(0)− ζ̃ ′
2− d

2 ,0
(0) =

∫ ∞

0

(1 + eβ)
(

e2β − eβ(d−2)
)

β(eβ − 1)d+1 . (57)

This is the intermediate form that after using the same regularization as on the CFT side will give
the difference between the values of the generalized sphere free energy for the free and interacting
O(N) vector models:

δF̃ = F̃IR − F̃UV =
1

Γ(d + 1)

∫ d/2−2

0
u sin(πu)Γ

(
d
2
− u

)
Γ
(

d
2
+ u

)
du . (58)

Therefore, we come to the conclusion that

δF = −1
2

δζ̃ ′φ(0) (59)

Indeed, we can get (59) from the CFT side through an intermediate formula which is minus one
half of (57). To be more explicit,

δF =
1
2

∞

∑
l=0

dl log
Γ(l + 2)

Γ(l + d − 2)
=

1
2 ∑ dl

∫ ∞

0

dβ

β

(
(4− d)e−β − e−β(l+d−3) − e−β(l+1)

eβ − 1

)

= −1
2

∫ ∞

0

(1 + eβ)
(

e2β − eβ(d−2)
)

β(eβ − 1)d+1 .

(60)

The same procedure as in Appendix A allows one to relate the intermediate form to (58).

3. Discussion and Conclusions

Our main result is the derivation of the (generalized) sphere free energy F̃ of a free scalar field
as a one-loop effect in the minimal Type-A higher-spin theory. Along the way we had to prove
that the log-divergence, which is given by ζHS(0), vanishes identically both in the minimal and
non-minimal Type-A theories, as well as ζ ′HS(0) = 0 in the non-minimal Type-A theory. The main goal
was to extend this result to all integer dimensions as well as to fractional ones. Also, we reproduced
the O(1) corrections to the (generalized) sphere free energy in the large-N critical O(N) vector model,
which should be dual to the minimal Type-A theory with Δ = 2 boundary conditions for the scalar
field. This supports the conjecture that the AdS/CFT duality may extend to fractional dimensions
at least for some of the models and some of the observables that are well-defined in non-integer
dimensions.

It would be interesting to extend the results of this paper to other models. For example, it should
be possible to show directly in AdSd+1 that the generalized sphere free energy of higher-spin duals of
�kφ = 0 free CFT’s should follow

F̃ =
1

Γ(d + 1)

∫ Δ− d
2

0
u sin(πu)Γ

(
d
2
− u

)
Γ
(

d
2
+ u

)
du , Δ =

1
2
(d − 2k) , k = 1, 2, ... , (61)

411



Universe 2017, 3, 61

which is in accordance with the values for integer d computed in [48,59]. Another motivation comes
from the Type-B puzzle that has been observed in [12,44–46]. The Type-B is the higher-spin theory that
is supposed to be dual to free fermion in generic dimension or to the Gross-Neveu model for 2 < d < 4.
The AdS one-loop determinant gives the a-anomaly coefficient of the free fermion for d even. However,
the computations for d odd results in a sequence of numbers that do not match the sphere energy
of the free fermion, but still can be deduced from the change of the F-energy under a double-trace
deformation [45,46]. It would be interesting to see what happens in fractional dimensions with
the Type-B theory.

Let us note that, as was noted in [57], there is some relation between the zeta-function of Laplace
operator on the sphere Sd+1 and on the hyperbolic space Hd+1. This relation is obtained by choosing
certain contour for the integral over the spectral parameter λ. As a result the sum over the residues gives
the zeta-function on Sd+1, but there are other contributions as well. It would be advantageous to make
the relation between the computations on sphere and hyperbolic spaces more direct in the higher-spin
case. It is striking that the form for the zeta-function we obtained on the AdS side is very close to
the one for the Casimir energies in [34]. In this regard let us mention that it is sometimes possible [34]
to massage the AdS one-loop computations (the Casimir energy in the case of [34]) in such a way that
the formally divergent sum over the spins is of the same form as on the CFT side. In this case, it is
clear that one needs to use coherent regularizations on the two sides of the duality. Our computation
follows the same strategy and ends up on the convenient intermediate form of the one-loop result that
can be directly matched with the CFT one [11,26]. Mostly for technical reasons we used a modified
regularization, see also [42,43], which leads to a certain deficit for representations whose character
is not an even function of β. Fortunately, this issue does not affect the computation for the Type-A
theories (after the summation over spins is performed).8

Let us also briefly mention other results that support the conjecture that at least the higher-spin/
vector model duality should work in a continuous range of dimensions. The scalar cubic coupling
in the higher-spin theory turns out to be extremal in AdS4 [9,60] and vanishing of the coupling
constant near AdS4 for the dual of the bosonic vector-model [61] and near AdS3 for the dual of the
Gross-Neveu model [62] is properly compensated by the divergence of the bulk integral as a function
of d. In principle, it should also be possible to compute the anomalous dimensions of the higher-spin
currents in the critical vector and Gross-Neveu models that are well-defined for fractional dimensions.
On the CFT side the anomalous dimensions of the higher-spin currents are known up to the 1/N2

order, [15,62–68] and up to ε4 for the bosonic vector model in 4− ε expansion [6,68–70].
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Appendix A. From Intermediate to Final Form

As a result of the AdS computation we arrived at the intermediate form (52), which can easily be
seen to arise in the computation of the determinant on the CFT side. Let us now show how to reach
the (generalized) sphere free energy Fφ in its final form. In order to compute the β-integral we use

1
β
=

1
2

(
1

1− e−β

∫ 1

0
due−uβ − 1

1− eβ

∫ 1

0
dueuβ

)
. (A1)

This allows for an analytic evaluation of the β integral. One obtains

Fφ
min. =

Γ(−d)
4

∫ 1

0
du(d + 4(−1 + u)u)

⎛⎝Γ
(
−1 + d

2 + u
)

Γ
(

1− d
2 + u

) +
Γ
(

d
2 − u

)
Γ
(

2− d
2 − u

)
⎞⎠ . (A2)

After some straightforward algebra (A2) can be shown to split in two parts, the first one we can
bring to the form of (for Δ = d

2 − 1) [11,31]:

FΔ = Γ(−d)
∫ Δ− d

2

0
duu

[
Γ( d

2 − u)

Γ(1− u − d
2 )

− Γ( d
2 + u)

Γ(1 + u − d
2 )

]

= − 1
sin(πd

2 )Γ(d + 1)

∫ Δ− d
2

0
duu sin(πu)Γ

(
d
2
+ u

)
Γ
(

d
2
− u

)
,

(A3)

where the result for the free scalar field corresponds to Δ = d
2 − 1. The second part has the form

� =
1

4Γ(d) sin
(

πd
2

) ∫ 1

0
(1− 2u) sin(πu)Γ

(
−1 +

d
2
+ u

)
Γ
(

d
2
− u

)
. (A4)

However, this extra term vanishes due to the anti-symmetry of the integrand around u = 1/2.
This shows that

Fφ
min. =

1
2

∫ ∞

0

dβ

β

e−β(2+d)/2(1 + eβ)2

(1− e−β)d =
−1

Γ(d + 1) sin
(

πd
2

) ∫ 1

0
du u sin(πu)Γ

(
d
2
− u

)
Γ
(

d
2
+ u

)
.

Appendix B. Modified Zeta Function

In this Appendix we elaborate on the properties of the modified zeta-function we introduced
in Section 2.2. It follows from the definition that the value of ζΔ,s(0) is unaffected, which is illustrated
in Appendix B.1. The value of ζ ′Δ,s(0) differs in general from its true value. Fortunately, ζ ′(0) is still
the same for for the spectrum of (non)-minimal Type-A, which is studied in Appendix B.2. It is also
shown there that there is no deficit for the difference between the scalars with Δ = d − 2 and Δ = 2
boundary conditions.

Appendix B.1. Zeta

From (36), one can easily obtain the full zeta in various odd dimensions with the help of analytical
continuation to the Lerch transcendent and then set z → 0. For example,

d = 3 : ζ̃ν,s =
(2s + 1)(−17− 40s − 40s2 + 240ν4 − 120(ν + 2sν)2)

5760

d = 5 : ζ̃ν,s = − (1 + s)(2 + s)(3 + 2s)(−1835− 2142s − 714s2 − 1260(3 + 2s)2ν2 + 5040(5 + 2s(s + 3))ν4 − 6720ν6)

29030400
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It is easy to see that these polynomials in ν and s are exactly the zeta function for Type-A in [13],
see also [45]. Therefore, there is no deficit at z0 order, i.e.,

ζ̃ν,s(0)− ζν,s(0) = 0 +O(z) . (A5)

This explains how we can get all the correct ζ̃d,s(0) for individual spins in general odd dimensions.
There are many results on zeta-function at d = 3, see e.g., [12,13,71]. Let us illustrate that the modified
zeta-function is solid enough to obtain these results. The spin factor in d = 3 is

gA
3 (s) = 2s + 1 (A6)

Together with ν = s − 1
2 , (36) becomes

ζ̃ A
3 (z) = − (2s + 1)

3!Γ(2z)

∫ ∞

0
dβ

∞

∑
l=0

e−β(s− 1
2 )β2z−1e−β( 1

2+l)
(

1
2
+ l

)((
1
2
+ s

)2
−
(

1
2
+ l

)2
)

.

Now we can sum over l and obtain

ζ̃ A
3,s(z) =

1
12Γ(2z)

∫ ∞

0
dβ

β2z−1e−β(s−1)(1 + eβ)(1 + 2s)(s(1 + s) + e2βs(1 + s)− 2eβ(3 + s + s2))

(−1 + eβ)4

In order to get to the actual numbers one needs to plug s = 0, 1, 2, 3, ... then use the trick of
analytical continuation via the Hurwitz-Lerch zeta function [12,13]. For example,

ζ̃A
3,s(0) =

{
− 1

180
,−11

60
,−181

36
,−6097

180
, ...

}
(A7)

Note that, after the continuation to the Hurwitz-Lerch transcendent, there will be another Γ(2z)
function in the nominator. This will cancel 1/Γ(2z) factor in the modified zeta function. Therefore,
the modified zeta-function reproduces the correct result, which is expected.

Appendix B.2. Deficit

As we already explained in Section 2.2, we changed the regularization prescription. As a result
the values of ζ ′Δ,s(0) might be different from the correct ones for individual fields. It was noted in [42]
that the deficit vanishes for certain representations (with even character). In particular, the deficit
is absent for (non)-minimal Type-A theory. The purpose of this Section is to quantify the deficit for
a number of cases.

For example, let us take the scalar field in d = 3. The zeta-prime can be derived by calculating
ζ(z) at z order:

ζ3,0(z) =
ζ(−3+2z)

6 + ζ(−2+2z)
4 + ζ(−1+2z)

12 = − 1
180 +

(
1

72 − log A
6 + ζ ′(−3)

3 + ζ ′(−2)
2

)
z +O(z2) (A8)

One can already notice that there is a deficit between the value of ζ̃ ′A3,0(0) that is evaluated
by the standard zeta function and (A8). This was also discussed in Appendix (B.1) of [42], when
the authors use characters to evaluate ζ̃ ′(0) for different fields. Let us have a look at the deficit in d = 3
and d = 5 as to observe the general pattern.
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Appendix B.2.1. d = 3

The result before sending z to 0 for the modified zeta function is

ζ̃3
ν,s(z) =

(2s + 1)
24

[
ν
(
(1 + 2s)2 − 4ν2

)
ζ(2z, ν +

1
2
) + 4ζ(−3 + 2z, ν +

1
2
)

− 12νζ(−2 + 2z, ν +
1
2
) + (−1− 4s(1 + s) + 12ν2)ζ(−1 + 2z, ν +

1
2
)
]

.
(A9)

In order to compute the zeta-prime, one just needs to take the z derivative and set z = 0:

ζ̃ ′3ν,s(0) =
(2s + 1)

12

[
ν
(
(1 + 2s)2 − 4ν2

)
ζ ′(0, ν +

1
2
) + 4ζ ′(−3, ν +

1
2
)

− 12νζ ′(−2, ν +
1
2
) + (−1− 4s(1 + s) + 12ν2)ζ ′(−1, ν +

1
2
)
]

.
(A10)

We then follow the procedure in [42] to find the deficit. First, we set ν = 0 and obtain

ζ̃ ′30,s(0) =
(2s + 1)

12

(
4ζ ′(−3,

1
2
)− (2s + 1)2ζ ′(−1,

1
2
)

)
. (A11)

Recall that for the standard zeta-prime in d = 3, see [12,13], we have

ζ ′30,s(0) =
2s + 1

3

(
c3 +

(
s +

1
2

)2
c1

)
. (A12)

We note that

ζ ′(−n,
1
2
) = (−)

n+1
2 cn, where cn =

∫ ∞

0
du

2un log u
e2πu + 1

. (A13)

Therefore, ζ ′30,s(0) and ζ̃ ′30,s(0) do match. Then, we consider the ν derivatives for each of the zetas:

∂νζ̃ ′3ν,s(0) =
(2s + 1)

12

((
(2s + 1)2 − 12ν2

)
ζ ′(0, ν +

1
2
)− 12ζ ′(−2, ν +

1
2
) + 24νζ ′(−1, ν +

1
2
)

+ ν((2s + 1)2 − 4ν2)∂νζ ′(0, ν +
1
2
) + 4∂νζ ′(−3, ν +

1
2
)− 12ν∂νζ ′(−2, ν +

1
2
)

+ (−1− 4s(s + 1) + 12ν2)∂νζ ′(−1, ν +
1
2
) + ν((2s + 1)2 − 4ν2)∂νζ ′(0, ν +

1
2
)

) (A14)

∂νζ ′3ν,s(0) =
(2s + 1)

3

(
ν3

2
+

ν

24
+ ν

((
s +

1
2

)2
− ν2

)
ψ(ν +

1
2
)

)
(A15)

Next, using the identities for Hurwitz zeta function

∂νζ(s, ν) = −sζ(s + 1, ν), ∂νζ ′(0, ν) = ψ(ν) (A16)

we can reduce the ν derivative of the modified zeta-prime to

∂νζ̃ ′3ν,s(0) =
(2s + 1)ν((2s + 1)2 − 4ν2)ψ(ν + 1

2 )

12
(A17)

Subtracting (A17) and (A15) together, then integrating over ν, one obtains the deficit for individual
fields at order z:

δζ ′ν,s(0) = ζ̃ ′ν,s − ζ ′ν,s = − (2s + 1)(ν2 + 6ν4)

144
(A18)
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Since the deficit is an even function of ν, we can compute the difference between the scalars with
Δ = d− 2, 2 boundary conditions using the modified zeta function thanks to δζ ′d−2,0 − δζ ′2,0 = 0. Using

the cut-off e−ε(s+ d−3
2 ), one can sum over either all spins or even spins and observe that the deficit

does vanish:

∑
s

δζ ′ν,s(0) = 0 . (A19)

Therefore, the deficit is absent both for the non-minimal and minimal Type-A theories at order z,
which is what we need for ζ ′HS(0).

Appendix B.2.2. d = 5

In higher dimensions, there is another useful identity that we illustrate on the example of d = 5.
Following the procedure outlined above, we obtain

ζ̃ ′5ν,s(0) =
(1 + s)(2 + s)(3 + 2s)

5760

[
− 16ζ ′(−5, ν +

3
2
) + 8ν(−3(5 + 2s(3 + s)) + 20ν2)ζ ′(−2, ν +

3
2
)

+ 80νζ ′(−4, ν +
3
2
) + (−(3 + 2s)2 + 24(5 + 2s(3 + s))ν2 − 80ν4)ζ ′(−1, ν +

3
2
)

+ ν(−1 + 4ν2)(−9− 4s(3 + s) + 4ν2)ζ ′(0, ν +
3
2
) + 8(5 + 2s(3 + s)− 20ν2)ζ ′(−3, ν +

3
2
)

]
.

Setting ν = 0 we arrive at

ζ̃ ′50,s(0) =
(1 + s)(2 + s)(3 + 2s)

5760

[
− 16ζ ′(−5,

3
2
) + 8(5 + 2s(3 + s))ζ ′(−3,

3
2
)− (3 + 2s)2ζ ′(−1,

3
2
)

]
.

We massage the formula above as to be able to compare ζ ′(−k, 1
2 ) with cn, which can be done

with the help of

ζ(s, ν) = ζ(s, ν + m) +
m−1

∑
n=0

1
(n + ν)s (A20)

We arrive at

ζ̃ ′50,s(0) =− (1 + s)(2 + s)(3 + 2s)
5760

[
− 16ζ ′(−5,

1
2
) + 8(5 + 2s(3 + s))ζ ′(−3,

1
2
)− (3 + 2s)2ζ ′(−1,

1
2
)

]
, (A21)

which can be compared with the standard zeta-prime:

ζ ′50,s(0) = − (1 + s)(2 + s)(3 + 2s)
360

(
c5 + c3

(
1
4
+

(
s +

3
2

)2
)
+

c1

4

(
s +

3
2

)2
)

. (A22)

Using the identity (A13), it is easy to realize that (A21) and (A22) are the same. Next, one can
proceed as in the previous Section and get

δζ ′5ν,s = − (s + 1)(s + 2)(2s + 3)ν2(107 + 580ν2 − 240ν4 + 120s(1 + 6ν2) + 40s2(1 + 6ν2))

691200
. (A23)

The sum over all (even) spins can be found to vanish, which guarantees that the deficit does not
contribute to the zeta-prime of the (non)-minimal Type-A. Also the deficit is an even function of ν

and therefore the difference due to Δ = d − 2, 2 boundary conditions for the scalar field is also free of
any deficit.
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Let us note that the deficit has already appeared in implicit form in the literature. It is the leftover
of Pν,s in [45] without the part including c+n , see also [13] where the same structures are present but
in different notation.
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space, currents considered in this paper are not gauge invariant, but generate gauge-invariant
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1. Introduction

Gauge-invariant conserved currents are well known and were deeply studied in the literature [1–9].
In the general case, a conserved current carries a set of three spins (t, s1, s2), where t is a spin of the
current itself, and s1 and s2 are spins of the fields it is constructed from. For example, the so-called
gravitational stress pseudo-tensor [10] (s = t = 2 conserved current) is not gauge invariant. The same
fact is shown in [5] for the t = 2 current built from massless fields of spins s > 2. The spin-zero field
has no gauge symmetry; thus, the currents with s < 1 are gauge invariant, while the spin-one current
built from two massless spin-one fields is not.

The aim of this paper is to extend the Minkowski-space results of [11], presenting the full list
of gauge non-invariant currents with integer spins in AdS4 such that t < s1 + s2. Being gauge
non-invariant, these currents give rise to the gauge-invariant conserved charges. Gauge non-invariant
currents will be derived from the variation of the cubic action of [12,13], which is gauge invariant in
the lowest order.

Conventions

In this paper, we consider AdS4 space-time. Greek indices μ, ν, ρ, λ, σ are the base and range
from 0–3. Other Greek indices are spinorial and take values of one and two. The latter are raised and
lowered by the sp(2) antisymmetric forms: εαβ, εαβ, εα̇β̇, εα̇β̇

εαβεαγ = δ
β
γ, εα̇β̇εα̇γ̇ = δ

β̇
γ̇, (1)

Aα = Aβεβα, Aα = Aβεαβ, Aα̇ = Aβ̇ε β̇α̇, Aα̇ = Aβ̇εα̇β̇. (2)

Complex conjugation Ā relates dotted and undotted spinors. Brackets ([...]) {...} imply complete
(anti)symmetrization, i.e.,

A[αBβ] =
1
2
(AαBβ − AβBα) , A{αBβ} =

1
2
(AαBβ + AβBα). (3)

Aα(m) denotes a totally symmetric multispinor A{α1...αm}.
The wedge symbol ∧ is implicit.

Universe 2017, 3, 78 420 www.mdpi.com/journal/universe
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2. Fields, Equations, Actions

In the four-dimensional case considered in this paper, it is convenient to use the frame-like
formalism in two-component spinor notation. In these terms, a bosonic spin-s Fronsdal field [14] is
represented by multispinor one-forms [15]:

s ≥ 1 : ϕμ1...μs → {ωα(m)
,
β̇(n) | m + n = 2(s − 1)} , ωα(m)

,
β̇(n) = dxμωμ

α(m)
,
β̇(n),

which are symmetric in all dotted and all undotted spinor indices and obey the reality condition [15]:

ω†
α(m),β̇(n) = ωβ(n),α̇(m). (4)

The frame-like field is a particular connection at n = m = s − 1 (s is integer):

hμ
α(s−1)

,
β̇(s−1)dxμ := ωμ

α(s−1)
,
β̇(s−1)dxμ . (5)

By imposing appropriate constraints, the connections ωα(m),β̇(n) can be expressed via t = 1
2 |m − n|

derivatives of the frame-like field [15].
Background gravity is described by the vierbein one-form h̃α

,
β̇ and one-form connections

ω̃α̇β̇, ω̃αβ. Lorentz covariant derivative D̃ acts as usual:

D̃Aα(m)
,
β̇(n) = dAα(m)

,
β̇(n) + mω̃α

γ Aα(m−1)γ
,
β̇(n) + nω̃β̇

δ̇ Aα(m)
,
β̇(n−1)δ̇ (6)

for any multispinor Aα(m),β̇(n). The torsion and curvature two-forms are:

R̃α
,
β̇ = dh̃α

,
β̇ + ω̃α

γ h̃γ
,
β̇ + ω̃β̇

δ̇ h̃α
,
δ̇ , (7)

R̃αα = dω̃αα + ω̃α
γω̃αγ + λ2h̃α

,δ̇ h̃α,δ̇ , (8)

R̃β̇β̇ = dω̃β̇β̇ + ω̃β̇
γ̇ω̃β̇γ̇ + λ2h̃γ,

β̇ h̃γ,β̇, (9)

where the parameter λ is proportional to the inverse AdS radius λ ∼ r−1. AdS4 space is described by
the vierbein and connections obeying the equations:

R̃α
,
β̇ = 0, R̃αα = 0, R̃β̇β̇ = 0. (10)

Linearized higher-spin (HS) curvatures are:

R1
α(m)

,
β̇(n) = D̃ωα(m)

,
β̇(n) + n(θ(m − n) + λ2θ(n − m − 2))h̃γ,

β̇ωγα(m)
,
β̇(n−1)

+ m(θ(n − m) + λ2θ(m − n − 2))h̃α
,δ̇ωα(m−1)

,
β̇(n)δ̇, (11)

where θ(x) is the step-function:

θ(x) =

{
1 at x ≥ 0;

0 at x < 0.
(12)

Curvatures (11) obey the Bianchi identities [15]:

D̃R1
α(m)

,
β̇(n) = −λ(|m−n|/2)+1(mλ−|m−n−2|/2h̃α

,δ̇R1
α(m−1)

,
β̇(n)δ̇

+ nλ−|m−n+2|/2h̃γ,
β̇R1

α(m)γ
,
β̇(n−1)). (13)
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It is convenient to introduce two-forms Hαβ and H̄α̇β̇:

h̃α, β̇ h̃γ, δ̇ =
1
2

εαγH̄β̇δ̇ +
1
2

εβ̇δ̇ Hαγ , (14)

Hαβ := h̃α,γ̇ h̃β,
γ̇ , H̄α̇β̇ := h̃γ,α̇ h̃γ

,β̇. (15)

Free field equations for massless fields of spins s ≥ 2 in Minkowski space can be written in the
form [15]:

R1
α(m)

,
β̇(n) = 0 for n > 0, m > 0, n + m = 2(s − 1); (16)

R1
α(m) = Cα(m)γδ Hγδ for m = 2(s − 1); (17)

R1
β̇(n) = C̄β̇(n)γ̇δ̇ H̄γ̇δ̇ for n = 2(s − 1). (18)

Equations (16)–(18) are equivalent to the equations of motion, which follow from the Fronsdal action [14]
supplemented with certain algebraic constraints, which express connections ωα(m),β̇(n) via 1

2 |m − n|
derivatives of the dynamical frame-like HS field. The multispinor zero-forms Cα(2s) and C̄β̇(2s), which
remain non-zero on-shell, are spin-s analogues of the Weyl tensor in gravity.

HS gauge transformation is:

δωα(m)
,
β̇(n) = D̃εα(m)

,
β̇(n) + n(θ(m − n) + λ2θ(n − m − 2))h̃γ,

β̇εγα(m)
,
β̇(n−1)

+ m(θ(n − m) + λ2θ(m − n − 2))h̃α
,δ̇εα(m−1)

,
β̇(n)δ̇, (19)

where a gauge parameter εα(m)
,
β̇(n)(x) is an arbitrary function of x. Note that the limit λ → 0 gives the

proper description of HS fields in 4d Minkowski space.
As explained in [11], to obtain currents with odd and even spins, the connections ωi;α(m),β̇(n) and

curvatures Ri;α(m),β̇(n) should be endowed with a color index i = 1 . . . N, which labels independent
dynamical fields. To contract color indices, we introduce the real tensor cijk, which can be either
symmetric or antisymmetric. Color indices are raised and lowered by the Euclidean metric gij. It is
convenient to set gij = δij.

Free fields are described by the quadratic action [15]:

S2 =
1
2

∫
∑

m,n≥0

1
m!n!

ε(m − n) λ−|m−n| R1
i;α(m)

,
β̇(n)R1 i;α(m),β̇(n), (20)

where ε(x) = θ(x)− θ(−x) and m + n = 2(s − 1), s being a spin of the field.
Following [12,13], to obtain a cubic deformation of the quadratic action, the linear curvature R1 in

the action (20) has to be replaced by R = R1 + R2 where:

R2
i;α(m)

,
β̇(n) = ∑

p,q,k,l,u,v≥0
λ1+d0−d1−d2

m!n!
p!q!k!l!u!v!

ci
jk δp+q,mδu+v,n

× ω j;α(p)
γ(k),δ̇(l)

β̇(u) ωk;α(q)γ(k)
,
δ̇(l)β̇(v), (21)

d0 =
|m − n|

2
, d1 =

|p + k − l − u|
2

, d2 =
|q + k − l − v|

2
.

The nonlinear action is:

S =
1
2

∫
∑

m,n≥0

1
m!n!

ε(m − n) λ−|m−n| Ri;α(m)
,
β̇(n)Ri;α(m),β̇(n). (22)
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3. Problem

It is convenient to describe currents as Hodge-dual differential forms. The on-shell closure
condition for the latter is traded for the current conservation condition. In this paper, we consider
spin-t currents in AdS4 built from two connections of integer spins s1, s2 > 0 such that t ≤ s1 + s2 − 1.
Such currents contain the minimal possible number of derivatives of the dynamical fields. The analogous
problem in 4d Minkowski space has been solved in [11] for the case of s1 = s2. The form of the currents
will be derived from the nonlinear action (22).

An arbitrary variation of the action (22) can be represented in the form:

δS =
∫

∑
t,s1,s2

∑
m,n

δ(m + n − 2(t − 1))Jt,s1,s2
i;α(m)

,
β̇(n) δωi;α(m),β̇(n) . (23)

The current Jt,s1,s2
i;α(m)

,
β̇(n) carries the color index i. Actually, there are N copies of a current, one for

each value of i, and we can set i = 1 without loss of generality. In what follows, this index i = 1 will
be omitted in all current forms. Furthermore, it is convenient to set cjk := c1jk with cjk being either
symmetric or antisymmetric, i.e.,

cjk = ηckj , η2 = 1 . (24)

To define a nontrivial HS charge as an integral over a 3d space, one should find such a
current three-form Jt,s1,s2(x) built from dynamical HS fields that is closed by virtue of HS field
Equations (16)–(18), but not exact. The closed current three-form is:

Jt,s1,s2(x) = ∑
m,n

λ−|m−n|

m!n!
δ(m + n − 2(t − 1))ξα(m),β̇(n)(x)Jt,s1,s2

α(m)
,
β̇(n)(x), (25)

where the factor of λ−|m−n|
m!n! is introduced for convenience and ξα(m),β̇(n) are global symmetry parameters,

which can be identified with those gauge symmetry parameters that leave the background gauge fields
invariant. In accordance with (19), these parameters obey:

Dξα(m)
,
β̇(n) := D̃ξα(m)

,
β̇(n) + n(θ(m − n) + λ2θ(n − m − 2))h̃γ,

β̇ξγα(m)
,
β̇(n−1)

+ m(θ(n − m) + λ2θ(m − n − 2))h̃α
,δ̇ξα(m−1)

,
β̇(n)δ̇ = 0. (26)

One can see that:

dJt,s1,s2 = ∑
m,n

λ−|m−n|

m!n!

(
Dξα(m),β̇(n) Jt,s1,s2

α(m)
,
β̇(n) + ξα(m),β̇(n)DJt,s1,s2

α(m)
,
β̇(n)

)
. (27)

Hence, for parameters obeying (26), the conservation condition amounts to equations:

DJt,s1,s2
α(m)

,
β̇(n) � 0, m + n = 2(t − 1). (28)

For the currents defined via (23), the conservation condition (28) holds as a consequence of the gauge
invariance of the action proven in [12].

Conserved currents generate conserved charges. By the Noether theorem, the latter are generators
of global symmetries. Hence, one should expect as many conserved charges as global symmetry
parameters. For a spin t, there are as many global symmetry parameters as the gauge parameters
εα(m),β̇(n) with m + n = 2(t − 1).

In what follows, we will use notations:

Dtopωα(m)
,
β̇(n) := nθ(m − n)h̃γ,

β̇ ωγα(m)
,
β̇(n−1) + mθ(n − m)h̃α

,δ̇ ωα(m−1)
,
β̇(n)δ̇, (29)
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Dsubωα(m)
,
β̇(n) := nθ(n − m − 2)h̃γ,

β̇ ωγα(m)
,
β̇(n−1) + mθ(m − n − 2)h̃α

,δ̇ ωα(m−1)
,
β̇(n)δ̇, (30)

Dcurωα(m)
,
β̇(n) := R1

α(m)
,
β̇(n). (31)

As a consequence of (11):
Dcur = D̃ + Dtop + λ2Dsub. (32)

Since the λ-dependent term vanishes in the Minkowski case, it is convenient to introduce the “flat”
part of the covariant derivative:

D f l := D̃ + Dtop . (33)

It is also convenient to denote:
Dh := Dtop + λ2Dsub . (34)

Free field equations (16) imply that:

Dcurωα(m)
,
β̇(n) � δn,0Cα(m)γδ Hγδ + δm,0C̄β̇(n)γ̇δ̇ H̄γ̇δ̇ , (35)

where � implies on-shell equality.
If the three-form Jt,s1,s2 verifies (28) on-shell, the charge:

Qξ =
∫

M3

Jt,s1,s2 (36)

is conserved by virtue of (26). As a result, there are as many conserved charges Qξ as independent
global symmetry parameters ξ. Nontrivial charges are represented by the current cohomology,
i.e., closed currents Jt,s1,s2(x) modulo exact ones Jt,s1,s2 � dΨt,s1,s2 . Since the currents should be closed
on-shell, i.e., by virtue of the free field Equations (16)–(18), analysis is greatly simplified by the fact
that all linearized HS curvatures R1

α(m)
,
β̇(n) with m > 0, n > 0 are zero on-shell.

Conservation of currents does not imply that they are invariant under the gauge transformations
(19). However, as shown below, the gauge variation of Jt,s1,s2 is exact:

δJt,s1,s2(x) � dHt,s1,s2(x) (37)

so that the charge Qξ turns out to be gauge invariant.
Thus, the problem is:

• to find current three-forms (25) from the variation of action,
• to check that these forms obey the conservation condition (28),
• to check that in the flat limit λ → 0, these forms give currents of [11],
• to check that the HS charges are gauge invariant.

4. Variation of the Action

Variation of the nonlinear curvature Ri;α(m)
,
β̇(n) is:

δRi;α(m)
,
β̇(n) = δR1

i;α(m)
,
β̇(n) + δR2

i;α(m)
,
β̇(n), (38)

where:

δR1
i;α(m)

,
β̇(n) = D̃δωi;α(m)

,
β̇(n)

+ n(θ(m − n) + λ2θ(n − m − 2)) h̃γ,
β̇ δωi;γα(m)

,
β̇(n−1)

+m(θ(n − m) + λ2θ(m − n − 2)) h̃α
,δ̇ δωi;α(m−1)

,
β̇(n)δ̇ (39)
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and:

δR2
i;α(m)

,
β̇(n) = ∑

p,q,k,l,u,v
λ1+d0−d1−d2

m!n!
p!q!k!l!u!v!

(1 + (−1)k+lη) ci
jk δp+q,mδu+v,n

× δω j;α(p)
γ(k),δ̇(l)

β̇(u) ωk;α(q)γ(k)
,
δ̇(l)β̇(v) (40)

with η defined in (24).
Variation of the action (22) is:

δS =
∫

∑
m,n

ε(m − n)
λ−|m−n|

m!n!
(R1

i;α(m)
,
β̇(n)δR1 i;α(m),β̇(n) + R2

i;α(m)
,
β̇(n)δR1 i;α(m),β̇(n)

+ R1
i;α(m)

,
β̇(n)δR2 i;α(m),β̇(n) + R2

i;α(m)
,
β̇(n)δR2 i;α(m),β̇(n)). (41)

The first term is the variation of the action S2 (20), which vanishes on equations of motion (16)–(18).
The last term is cubic in connections ωi;α(m)

,
β̇(n), hence not contributing to bilinear currents. The

second and third terms give rise to the currents. Using (11), (17), (18), (32), (39) and (40) and integrating
by parts, we obtain:

δS �
∫

∑
m,n

ε(m − n)
λ−|m−n|

m!n!
[−D̃R2

i;α(m),β̇(n) δωi;α(m),β̇(n)

+ n(θ(m − n) + λ2θ(n − m − 2)) R2
i;α(m),θ̇ β̇(n−1) h̃γ

,θ̇ δωi;γα(m),β̇(n−1)

+ m(θ(n − m) + λ2θ(m − n − 2)) R2
i;α(m−1)γ,β̇(n) h̃γ,

δ̇ δωi;α(m−1),β̇(n)δ̇]

+
∫

∑
r>0

λ−r

r!
(Ci;α(r)γδ Hγδ δR2 i;α(r) − C̄i;β̇(r)γ̇δ̇ H̄γ̇δ̇ δR2 i;β̇(r)). (42)

Omitting the color index i = 1, this leads to the currents at t > 1 via:

Jt,s1,s2 = ∑
m,n

δ(m + n − 2(t − 1))ξα(m),β̇(n)
δS

δωα(m),β̇(n)
. (43)

5. Examples

5.1. Spin-Two Current

To illustrate the structure of the current three-form and analyze the flat limit λ → 0, consider a
current with t = 2, s1 = s2 = s > 1:

J2,s =
λ−2

2
ξαα J2,s

αα + ξα,β̇ J2,s
α

,
β̇ +

λ−2

2
ξβ̇β̇ J2,s

β̇β̇ , (44)

where J2,s := J2,s,s . Using (21), (31), (35) and (40), we obtain:

J2,s
αα = ∑

m,n

4λ2−|m−n|

(m − 1)!n!
cij[n(θ(m − n) + λ2θ(n − m − 2))ωi;αγ(m−1)ϕ

,
δ̇(n−1)ω j;α

γ(m−1),δ̇(n−1)θ̇ h̃ϕ,
θ̇

+ (m − 1)(θ(n − m) + λ2θ(m − n − 2))ωi;αγ(m−2)
,
δ̇(n)θ̇ω j;α

ϕγ(m−2),δ̇(n) h̃
ϕ

,θ̇

+ (θ(n − m) + λ2θ(m − n − 2))ωi;γ(m−1)
,
δ̇(n)θ̇ω j;α

γ(m−1),δ̇(n) h̃
α

,θ̇ ] , (45)
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J2,s
α

,
β̇ = ∑

m,n
2λ2−|m−n|[ 1

(m − 1)!n!
cijω

i;αγ(m−1)
,
δ̇(n)ω j;ϕ

γ(m−1),δ̇(n) h̃ϕ,
β̇

− 1
m!(n − 1)!

cijω
i;γ(m)

,
δ̇(n−1)θ̇ω j;

γ(m),δ̇(n−1)
β̇ h̃α,

θ̇ ]

+
2λ4−2s

(2s − 3)!
[cijCi;αγ(2s−3)ϕρ Hϕρ ωγ(2s−3)

β̇ − cijC̄i;δ̇(2s−3)β̇ψ̇θ̇ H̄ψ̇θ̇ ωα
δ̇(2s−3)] , (46)

J2,s
β̇β̇ = ∑

m,n

4λ2−|m−n|

m!(n − 1)!
cij[m(θ(n − m) + λ2θ(m − n − 2))ωi;γ(m−1)

,
δ̇(n−1)θ̇ β̇ω j;

ϕγ(m−1),δ̇(n−1)
β̇ h̃ϕ

,θ̇

+ (n − 1)(θ(m − n) + λ2θ(n − m − 2))ωi;ϕγ(m)
,
δ̇(n−2)β̇ω j;

γ(m),δ̇(n−2)θ̇
β̇ h̃ϕ,

θ̇

+ (θ(m − n) + λ2θ(n − m − 2))ωi;ϕγ(m)
,
δ̇(n−1)ω j;

γ(m),δ̇(n−1)
β̇ h̃ϕ,

β̇] . (47)

Recall that m + n = 2(s − 1), m, n ≥ 0.
The terms in (45), (46) and (47) that contain inverse powers of λ contain higher derivatives. To

obtain a proper λ → 0 limit, such terms should be compensated by an exact form dΨ2,s with:

Ψ2,s =
s−3

∑
m=0

2λ4−2(s−m)

m!(2s − 3− m!)
[ξααcijω

i;αγ(m)
,
δ̇(2s−3−m)ωi;α

γ(m),δ̇(2s−3−m)

+ ξα,β̇(cijω
i;αγ(2s−3−m)

,
δ̇(m)ω j;

γ(2s−3−m),δ̇(m)
β̇ − cijω

i;αγ(m)
,
δ̇(2s−3−m)ω j;

γ(m),δ̇(2s−3−m)
β̇)

− ξβ̇β̇cijω
i;αγ(2s−3−m)

,
δ̇(m)β̇ωi;

γ(2s−3−m),δ̇(m)
β̇] . (48)

At s = 2, it is not necessary to add this exact form since the current is regular in the flat limit.
The fact that complete antisymmetrization over any three two-component dotted or undotted

indices gives zero yields the relation:

cijω
i;αγ(m−1)

,
δ̇(n)ω j;ϕ

γ(m−1),δ̇(n) h̃ϕ,
β̇ = −cijω

i;αγ(m−1)
,
δ̇(n−1)β̇ω j;ϕ

γ(m−1),δ̇(n−1)
θ̇ h̃ϕ,θ̇

+ cijω
i;αγ(m−1)

,
δ̇(n−1)θ̇ω j;ϕ

γ(m−1),δ̇(n−1)
β̇ h̃ϕ,θ̇ (49)

to be used in the sequel.
Straightforward calculation gives:

Ĵ2,s = J2,s + dΨ2,s =
λ−2

2
ξαα Ĵ2,s

αα + ξα,β̇ Ĵ2,s
α

,
β̇ +

λ−2

2
ξβ̇β̇ Ĵ2,s

β̇β̇, (50)

where

Ĵ2,s
αα = 2λ2cij[ω

i;αϕγ(s−2)
,
δ̇(s−2)ω j;α

γ(s−2),δ̇(s−2)θ̇ h̃ϕ,
θ̇

+
s − 2
s − 1

ωi;αγ(s−3)
,
δ̇(s−1)θ̇ω j;α

ϕγ(s−3),δ̇(s−1) h̃
ϕ

,θ̇

+
1

s − 1
ωi;αγ(s−2)

,
δ̇(s−1)ω j;

γ(s−2),δ̇(s−1)
θ̇ h̃α

,θ̇ ] , (51)
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Ĵ2,s
α

,
β̇ =

1
s − 1

cij[ω
i;γ(s−2)

,
δ̇(s−1)θ̇ω j;

γ(s−2),δ̇(s−1)
β̇ h̃α

,θ̇

+ (s − 2)ωi;αγ(s−3)
,
δ̇(s−1)θ̇ω j;

ϕγ(s−3),δ̇(s−1)
β̇ h̃ϕ

,θ̇ + (s − 2)ωi;αϕγ(s−3)
,
δ̇(s−1)ω j;

γ(s−3),δ̇(s−1)
θ̇ β̇ h̃ϕ,θ̇

+ (s − 2)ωi;αγ(s−1)
,
δ̇(s−3)θ̇ω j;ϕ

γ(s−1),δ̇(s−3)
β̇ h̃ϕ,θ̇ + (s − 2)ωi;αϕγ(s−1)

,
δ̇(s−3)ω j;

γ(s−1),δ̇(s−3)θ̇
β̇ h̃ϕ,

θ̇

+ ωi;αγ(s−1)
,
δ̇(s−2)ω j;ϕ

γ(s−1),δ̇(s−2) h̃ϕ,
β̇] , (52)

Ĵ2,s
β̇β̇ = 2λ2cij[ω

i;ϕγ(s−2)
,
δ̇(s−2)β̇ω j;

γ(s−2),δ̇(s−2)θ̇
β̇ h̃ϕ,

θ̇

+
s − 2
s − 1

ωi;ϕγ(s−1)
,
δ̇(s−3)β̇ω j;

γ(s−1),δ̇(s−3)θ̇
β̇ h̃ϕ

θ̇

+
1

s − 1
ωi;ϕγ(s−1)

,
δ̇(s−2)ω j;

γ(s−1),δ̇(s−2)
β̇ h̃ϕ,

β̇] . (53)

Note that Ĵ2,s does not contain λ explicitly. One can check, that (51), (52) and (53) obey (28). As a result,
the form Ĵ2,s (50) is closed by virtue of (26).

Since the AdS4 current Ĵ2,s (50) does not depend explicitly on λm it preserves its form in the flat
limit λ → 0. From (51)–(53), one can see that:

Ĵ2,s = JM
2,s + D f lχ2,s, (54)

where JM
2,s at λ = 0 reproduces the spin-two current in Minkowski space and:

χ2,s =
cij

s − 1

(
ξαβ̇

(
ωi;αγ(s−2)

,
δ̇(s−1)ω j;

γ(s−2),δ̇(s−1)
β̇ − ωi;αγ(s−1)

,
δ̇(s−2)ω j;

γ(s−1),δ̇(s−2)
β̇
)

+ λ2(ξααωi;αγ(s−2)
,
δ̇(s−1)ω j;α

γ(s−2),δ̇(s−1) + ξβ̇β̇ωi;γ(s−1)
,
δ̇(s−2)β̇ω j;

γ(s−1),δ̇(s−2)
β̇
))

.

This proves that the flat limit of the current (50) reproduces the results of [11].
We observe that the current is Hermitian. It is nonzero if cij is symmetric.

5.2. Spin-One Current

Since the action (22) does not contain a kinetic term for spin-one field ωi carrying no spinor
indices, following [12], it should be added separately in a standard way:

SEM =
∫

Ri
∗Ri , (55)

where ∗ is the Hodge star operator and, in agreement with (11) and (21),

Ri = dωi + ∑
k,l≥0

λ1−|m−n|

k!l!
ci

jk ω j;
γ(k),δ̇(l) ωk;γ(k)

,
δ̇(l). (56)

The full action is S f ull = S + SEM with S (22). The spin-one part of the variation δSt=1 of this action is:

δSt=1 =
∫

∑
r>0

λ−r

r!
(Ci;α(r)γδ Hγδ δR2 i;α(r) − C̄i;β̇(r)γ̇δ̇ H̄γ̇δ̇ δR2 i;β̇(r)) + δSEM, (57)

where:
δSEM =

∫
[R1i

∗δR2
i + R2i

∗δR1
i]. (58)
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In the spin-one case equations, (16)–(18) amount to:

R1
i = Ci;γδ Hγδ + C̄i;γ̇δ̇ H̄γ̇δ̇ , (59)

where Ci;γδ and C̄i;γ̇δ̇ parametrize self-dual and anti-self-dual components of the spin-one field tensor.
Using properties of the Pauli matrices, one can also see that:

R1
i∗ = i(Ci;γδHγδ − C̄i;γ̇δ̇H̄γ̇δ̇). (60)

The sum of spin-one (t = 1) currents of fields of arbitrary spins s1 = s2 ≥ 1 can be expressed as
(the color index i is omitted):

ξ
δSt=1

δω
= J1,1 + ∑

s>1
J1,s, (61)

where ξ is a global symmetry parameter zero-form (26) with no spinor indices and:

J1,1 = 2ξλicij(Ci;γδHγδ − C̄i;γ̇δ̇ H̄γ̇δ̇)ω
j − d(ξR2

i∗), (62)

J1,s = 2λ3−2sξcij(Ci;α(2s−2)ϕρ Hϕρ ω j;
α(2s−2) − C̄i;β̇(2s−2)γ̇δ̇ H̄γ̇δ̇ ω j;

β̇(2s−2) ). (63)

In the case of t = 1, s1 = s2 = s = 1, one can transform J1,1 into:

Ĵ1,1 =
1
λ
(J1,1 + d(ξR2

i∗)) = 2ξicij(Ci;γδHγδ − C̄i;γ̇δ̇H̄γ̇δ̇)ω
j. (64)

It is not hard to see that the C-dependent terms are not exact provided that cij is antisymmetric. The
current (64) coincides with Minkowski current JM

1,1 from [11] modulo an overall factor of two.
In the case of t = 1, s1 = s2 = s > 1, the current results from the C-dependent terms of (42) by

virtue of (40):

J1,s = 2λ3−2sξcij(Ci;α(2s−2)ϕρ Hϕρ ω j;
α(2s−2) − C̄i;β̇(2s−2)γ̇δ̇ H̄γ̇δ̇ ω j;

β̇(2s−2) ). (65)

Note, that there are no currents with t = 1, s1 �= s2. Furthermore, note that Equation (64) is a particular
case of (65) at s = 1. The current three-form J1,s (65) is nontrivial if cij is antisymmetric.

For s > 1, J1,s (65) can be rewritten in the bilinear form in connections by adding an exact form:

Ĵ1,s = − 1
λ(−2)s−1s(s − 1)!

(J1,s + dΨ1,s) =

ξcij[ω
i;ϕγ(s−2)

,
δ̇(s−1)ω j;

γ(s−2),δ̇(s−1)θ̇ + ωi;ϕγ(s−1)
,
δ̇(s−2)ω j;

γ(s−1),δ̇(s−2)θ̇ ]h̃ϕ,
θ̇ , (66)

with:

Ψ1,s = 2ξλ3−2s
s−2

∑
m=0

(−1)m+12mλ2m (s − 1)!
(s − m − 1)!

cij(ω
i;α(2s−2−m)

,
β̇(m)ω j;

α(2s−2−m),β̇(m)

− ωi;α(m)
,
β̇(2s−2−m)ω j;

α(m),β̇(2s−2−m)) . (67)

This three-form is λ-independent, on-shell-closed, Hermitian and reproduces the result of [11]. Hence,
it is non-trivial.
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6. General Spins

The AdS4 conserved currents Jt,s1,s2 with 1 < t ≤ s1 + s2 − 1 (for definiteness, we set s1 ≥ s2)
result from the variation of action (42):

Jt,s1,s2 = ∑
m,n

ε(m − n)
λ−|m−n|

m!n!
[−ξα(m),β̇(n) Dh R2

α(m),β̇(n)|s1,s2

− n(θ(m − n) + λ2θ(n − m − 2)) ξα(m+1),β̇(n−1) R2
α(m),θ̇ β̇(n−1)|s1,s2 h̃α

,θ̇

+ m(θ(n − m) + λ2θ(m − n − 2)) ξα(m−1),β̇(n+1) R2
α(m−1)γ,β̇(n)|s1,s2 h̃γ,

β̇]

+ ∑
p,q,k,v

2λ1−|q+k−p−v|

p!q!k!v!
δ2p+q+v,2(t−1)δp+k,2(s1−1)δp+q+k+v,2(s2−1)cijξα(p+q),β̇(p+v)

× [Ci;α(p)γ(k)ϕρ Hϕρ ω j;α(q)
γ(k),

β̇(p+v) − C̄i;β̇(p)δ̇(k)ϕ̇ρ̇ H̄ϕ̇ρ̇ ω j;α(p+q)
,δ̇(k)

β̇(v)], (68)

where R2
α(m),β̇(n)|s1,s2 is the restriction of (21) to terms containing connections with spins s1 and s2.

These currents contain s1 + s2 − 2 derivatives of the frame-like fields.
To check the non-exactness of the three-form (68), it suffices to add an exact form:

dΨt,s1,s2 = d(∑
m,n

ξα(m)β̇(n)Ψt,s1,s2
α(m),β̇(n)) , n + m = 2(t − 1),

where:

Ψt,s1,s2
α(m),β̇(n) =

∑
p,q,k,l,u,v

2λ1− |p+k−l−u|−|q+k−l−v|
2

p!q!k!l!u!v!
δp+q,mδu+v,nδp+k+l+u,2(s1−1)δq+k+l+v,2(s2−1)

× θ(l + u − p − k − 1)cij[θ(m − n)ωi;α(p)γ(k),δ̇(l)β̇(u) ω j;α(q)
γ(k),δ̇(l)

β̇(v)

− θ(n − m)ωi;α(u)γ(l),δ̇(k)β̇(p) ω j;α(v)
γ(l),δ̇(k)

β̇(q)], (69)

One can see that Ψt,s1,s2
α(m),β̇(n) is adjusted to cancel the C-dependent terms.

The resulting current three-form:

Ĵt,s1,s2 := Jt,s1,s2 + dΨt,s1,s2 (70)

is

Ĵt,s1,s2
α(m),β̇(n) =

∑
p,q,k,l,u,v

2λ1+2|m−n|+|p+k−l−u|−|q+k−l−v|

p!q!k!l!u!v!
δp+q,mδu+v,nδp+k+l+u,2(s1−1)δq+k+l+v,2(s2−1)cij

× [θ(p + k − l − u − 1)Dh(θ(m − n)ωi;α(p)γ(k),δ̇(l)β̇(u) ω j;α(q)
γ(k),δ̇(l)

β̇(v)

− θ(n − m)ωi;α(u)γ(l),δ̇(k)β̇(p) ω j;α(v)
γ(l),δ̇(k)

β̇(q))

− n(θ(m − n) + λ2θ(n − m − 2))((u + 1)ωi;α(p−1)γ(k),δ̇(l)θ̇ β̇(u) ω j;α(v)
γ(k),δ̇(l)

β̇(v) h̃α
,θ̇

+ (v + 1)ωi;α(p)γ(k),δ̇(l)β̇(u) ω j;α(q−1)
γ(k),δ̇(l)

θ̇ β̇(v) h̃α
,θ̇)

+ m(θ(n − m) + λ2θ(m − n − 2)) ((p + 1)ωi;α(p)ϕγ(k),δ̇(l)β̇(u) ω j;α(q)
γ(k),δ̇(l)

β̇(v) h̃ϕ,
β̇

+ (q + 1)ωi;α(p)γ(l),δ̇(k)β̇(u−1) ω j;α(q)ϕ
γ(l),δ̇(k)

β̇(v−1) h̃ϕ,
β̇)] . (71)
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This current contains t− |s1 − s2| derivatives, which is the minimal possible number. The non-exactness
of the current three-form Ĵt,s1,s2 can be checked in the flat limit λ → 0 just as in [11].

In the case of s1 = s2 = s:

Ĵt,s = ∑
n,m

λ−|m−n|

m!n!
ξα(m),β̇(n) Ĵt,s

α(m)
,
β̇(n) , n + m = 2(t − 1),

where:

Ĵt,s
α(m)

,
β̇(n) =

λ|m−n|m!n!(θ(n − m − 4) ĝ(n) cijω
i;α(m)ϕγ(s−2)

,
δ̇(s−t)β̇(n−t+1)ω j;

γ(s−2),δ̇(s−t)θ̇
β̇(t−1) h̃ϕ,

θ̇

+ δn,t cij[2(t − 1)ωi;α(m)ϕγ(s−2)
,
δ̇(s−t)β̇ω j;

γ(s−2),δ̇(s−t)θ̇
β̇(n−1) h̃ϕ,

θ̇

+
t−2

∑
p=1

f̂ (p)ωi;α(m)ϕγ(s−p−1)
,
δ̇(s−t+p)ω j;

γ(s−p−1),δ̇(s−t+p)
β̇(n−1) h̃ϕ,

β̇]

+ δm,t−1δn,t−1cij[ω
i;α(t−1)ϕγ(s−2)

,
δ̇(s−t)ω j;

γ(s−2),δ̇(s−t)θ̇
β̇(t−1) h̃ϕ,

θ̇

+ ωi;α(t−1)ϕγ(s−t)
,
δ̇(s−2)ω j;

γ(s−t),δ̇(s−2)θ̇
β̇(t−1) h̃ϕ,

θ̇ ]

+ θ(m − n − 4) ĝ(m) cijω
i;α(t−1)ϕγ(s−t)

,
δ̇(s−2)ω j;α(m−t+1)

γ(s−t),δ̇(s−2)θ̇
β̇(n) h̃ϕ,

θ̇

+ δm,t cij[2(t − 1)ωi;α(m−1)ϕγ(s−t)
,
δ̇(s−2)ω j;α

γ(s−t),δ̇(s−2)θ̇
β̇(n) h̃ϕ,

θ̇

+
t−2

∑
p=1

f̂ (p)ωi;α(m−1)γ(s−t+p)
,
δ̇(s−p−1)ω j;

γ(s−t+p),δ̇(s−p−1)
θ̇ β̇(n) h̃α

,θ̇ ]), (72)

and:

ĝ(m) =
2(t − 1)!

(2t − m − 2)!(m − t + 1)!
, m ≥ t + 1, (73)

f̂ (1) =
t − 1

s − t + 1
, f̂ (p) = (t − 1)

(s − t)!(s − p)!
(s − 3)!(s − t + p)!

, p > 1. (74)

The second and last terms in (72) contribute to the special cases of n = t and m = t, respectively.
One can check that the current (68) at s1 = s2 reproduces that of [11] up to a D f l-exact form:

χt,s = D f l(∑
m,n

ξα(m)β̇(n)χt,s
α(m),β̇(n)) , n + m = 2(t − 1),

where:

χt,s
α(m)

,
β̇(n) =

θ(n − m − 2)g(n)cij

m+1

∑
p=1

ωi;α(m)γ(s−p),δ̇(s−t+p−1)β̇(n−t+1)ω j;
γ(s−p),δ̇(s−t+p−1)

β̇(t−1)

+ θ(m − n − 2)g(m)cij

n+1

∑
p=1

ωi;α(t−1)γ(s−t+p−1),δ̇(s−p)ω j;α(m−t+1)
γ(s−t+p−1),δ̇(s−p)

β̇(n)

+ δm,t−1δn,t−1 f cij

[ t
2 ]

∑
p=0

[ωi;α(t−p−1)γ(s−2),δ̇(s−t+1)β̇(p)ω j;α(p)
γ(s−2),δ̇(s−t+1)

β̇(s−t−p)

+ ωi;α(t−p−1)γ(s−1),δ̇(s−t)β̇(p)ω j;α(p)
γ(s−1),δ̇(s−t)

β̇(s−t−p)], (75)
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where:

f =
1

s − t + 1
, g(m) =

t − m
s − p

. (76)

The conserved currents are nontrivial if cij is antisymmetric for odd t + s1 + s2 and symmetric for
even.

Thus, the Hermitian current three-form Ĵt,s1,s2 is on-shell closed, but not exact. It generates the
corresponding real conserved charge Q =

∫
Ĵt,s1,s2 that contains as many symmetry parameters as

local HS gauge symmetries.

7. Gauge Transformations

Although the current three-form (68) is not invariant under the gauge transformations (19), its
gauge variation is exact. Schematically, the proof consists of the following steps. By virtue of (32), the
gauge variation of any term from (68) δ(ξω1ω2h) can be written as:

δ(ξω1ω2h) = ξω1(D̃ε2 + Dhε2)h + ξ(D̃ε1 + Dhε1)ω2h.

This gives:

δ(ξω1ω2h) = −D̃(ξω1ε2h − ξε1ω2h) + ξ(Dcurω1)ε2h + ξε1(Dcurω2)h

+ (Dhξ)ω1ε2h + ξ(Dhω1)ε2h − ξω1(Dhε2)h + (Dhξ)ε1ω2h + ξε1(Dhω2)h − ξ(Dhε1)ω2h.

All terms containing Dcur are canceled by δ(ξCHωh). All terms with Dh cancel each other.
This gives:

δJt,s1,s2 � dHt,s1,s2 ,

where:

Ht,s1,s2 =

− ∑
m,n

ε(m − n) ∑
p,q,k,l,u,v

δp+q,mδu+v,nδp+k+l+u,2(s1−1)δq+k+l+v,2(s2−1)cijξα(p+q),β̇(u+v)

× λ1− |m−n|
2 − |p+k−l−u|

2 − |q+k−l−v|
2

p!q!k!l!u!v!
[Dhεi;α(p)γ(k),δ̇(l)β̇(u) ω j;α(q)

γ(k),δ̇(l)
β̇(v)

− n(θ(m − n) + λ2θ(n − m − 2)) ξα(p+q+1),β̇(u+v−1)

× (εi;α(p)γ(k),δ̇(l)θ̇ β̇(u) ω j;α(q)
γ(k),δ̇(l)

β̇(v) h̃α
,θ̇ + εi;α(p)γ(k),δ̇(l)β̇(u) ω j;α(q)

γ(k),δ̇(l)
θ̇ β̇(v) h̃α

,θ̇)

− m(θ(n − m) + λ2θ(m − n − 2)) ξα(p+q−1),β̇(u+v+1)

× (εi;α(p)γ(k),δ̇(l)β̇(u) ω j;α(q)
γ(k),δ̇(l)

β̇(v) h̃α
,θ̇ + εi;α(p)ϕγ(k),δ̇(l)β̇(u) ω j;α(q)ϕ

γ(k),δ̇(l)
β̇(v) h̃ϕ,

β̇)]

+ 2 ∑
p,q,k,v

λ2−s1− |k−p|
2

p!q!k!v!
δ2p+q+v,2(t−1)δp+k,2(s1−1)δp+q+k+v,2(s2−1)cijξα(p+q),β̇(p+v)

× [Ci;α(p)γ(k)ϕρ Hϕρ εj;α(q)
γ(k),

β̇(p+v) − C̄i;β̇(p)δ̇(k)ϕ̇ρ̇ H̄ϕ̇ρ̇ εj;α(p+q)
,δ̇(k)

β̇(v)]. (77)

Details of the derivation of this formula are given in the Appendix for the case of t = 2, s1 = s2 = s > 1.
Thus, δJt,s1,s2 is exact on-shell. The same is true for the spin-one current (65). Hence, though the

current Jt is not gauge invariant, the corresponding charge is:

δQξ �
∫

dHt,s1,s2 = 0.
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8. Conclusion

In this paper, spin-t HS currents Jt,s1,s2 in AdS4, built from boson fields of arbitrary spins obeying
t ≤ s1 + s2 − 1 are found from the variation principle. Being represented as three-forms, Jt,s1,s2 are
closed, but not exact, hence leading to nontrivial HS charges. These charges are gauge invariant
because δJt,s1,s2 is shown to be exact.

In the 4d Minkowski case, in addition to natural parity-even currents, we found “mysterious”
parity-odd currents [11]. In agreement with the conjecture of [11], we were not able to extend parity-odd
currents to AdS4. The λ → 0 limit of Ĵt,s (72) reproduces the parity-even currents of [11].

Currents constructed from fields of half-integer spins can be found analogously. How to operate
with half-integer fields is shown in [15]. It is important to mention that for the currents built from fields
of half-integer spin, the computations are essentially different, because Equation (11) for half-integer
spins contains λ instead of λ2 [15].

Let us stress that the derivation of the currents via the action applied in this paper leads to
currents containing the non-minimal number of derivatives according to [16] with the higher-derivative
terms corresponding to certain improvements. This is however anticipated since consistent cubic HS
interactions are known [12] to contain higher-derivative terms allowing one to preserve HS gauge
symmetries associated with gauge fields of different spins.
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Appendix Example of the Gauge Variation of Jt,s

Consider the case of t = 2, s1 = s2 = s > 1 (44):

J2,s =
λ−2

2
ξαα J2,s

αα + ξα,β̇ J2,s
α

,
β̇ +

λ−2

2
ξβ̇β̇ J2,s

β̇β̇.

The gauge variation of (44) under the gauge transformation (19) is:

δJ2,s =
λ−2

2
ξααδJ2,s

αα + ξα,β̇δJ2,s
α

,
β̇ +

λ−2

2
ξβ̇β̇δJ2,s

β̇β̇, (A1)

where:

δJ2,s
αα = −Dh

(
∑
m,n

4λ2−|m−n|

(m − 1)!n!
cij[D̃εi;αγ(m−1)

,
δ̇(n)ω j;α

γ(m−1),δ̇(n)

− Dtopεi;αγ(m−1)
,
δ̇(n)ω j;α

γ(m−1),δ̇(n) − λ2Dsubεi;αγ(m−1)
,
δ̇(n)ω j;α

γ(m−1),δ̇(n)]
)

, (A2)
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δJ2,s
α

,
β̇ = ∑

m,n
2λ2−|m−n|[ 1

(m − 1)!n!
cijD̃εi;αγ(m−1)

,
δ̇(n)ω j;ϕ

γ(m−1),δ̇(n) h̃ϕ,
β̇

− 1
(m − 1)!n!

cijDtopεi;αγ(m−1)
,
δ̇(n)ω j;ϕ

γ(m−1),δ̇(n) h̃ϕ,
β̇

− λ2

(m − 1)!n!
cijDsubεi;αγ(m−1)

,
δ̇(n)ω j;ϕ

γ(m−1),δ̇(n) h̃ϕ,
β̇

− 1
m!(n − 1)!

cijω
i;γ(m)

,
δ̇(n−1)θ̇ D̃εj;

γ(m),δ̇(n−1)
β̇ h̃α,

θ̇

+
1

m!(n − 1)!
cijω

i;γ(m)
,
δ̇(n−1)θ̇ Dtopεj;

γ(m),δ̇(n−1)
β̇ h̃α,

θ̇ ]

+
λ2

m!(n − 1)!
cijω

i;γ(m)
,
δ̇(n−1)θ̇ Dsubεj;

γ(m),δ̇(n−1)
β̇ h̃α,

θ̇ ]

+
2λ4−2s

(2s − 3)!
cij[Ci;αγ(2s−3)ϕρ Hϕρ D̃εγ(2s−3)

β̇Ci;αγ(2s−3)ϕρ Hϕρ Dtopεγ(2s−3)
β̇

− C̄i;δ̇(2s−3)β̇ψ̇θ̇ H̄ψ̇θ̇ D̃εα
δ̇(2s−3) + C̄i;δ̇(2s−3)β̇ψ̇θ̇ H̄ψ̇θ̇ Dtopεα

δ̇(2s−3)] , (A3)

δJ2,s
β̇β̇ = −Dh

(
∑
m,n

4λ2−|m−n|

m!(n − 1)!
cij[D̃εi;γ(m)

,
δ̇(n−1)β̇ω j;

γ(m),δ̇(n−1)
β̇

− Dtopεi;γ(m)
,
δ̇(n−1)β̇ω j;

γ(m),δ̇(n−1)
β̇ − λ2Dsubεi;γ(m)

,
δ̇(n−1)β̇ω j;

γ(m),δ̇(n−1)
β̇]
)

. (A4)

Rearranging terms in (A1), one can obtain:

δJt,s = dH + χ,

where χ � 0 (vanishes on-shell) and dH is exact with:

H = −ξααDh( ∑
m,n

4λ2−|m−n|

(m − 1)!n!
cijε

i;αγ(m−1)
,
δ̇(n)ω j;α

γ(m−1),δ̇(n)
)

+ ∑
m,n

2ξα,β̇
λ2−|m−n|

(m − 1)!n!
cij(ε

i;αγ(m−1)
,
δ̇(n)ω j;ϕ

γ(m−1),δ̇(n) h̃ϕ,
β̇ + ωi;αγ(m−1)

,
δ̇(n)εj;ϕ

γ(m−1),δ̇(n) h̃ϕ,
β̇)

− ∑
m,n

2ξα,β̇
λ2−|m−n|

m!(n − 1)!
cij(ε

i;γ(m)
,
δ̇(n−1)θ̇ω j;

γ(m),δ̇(n−1)
β̇ h̃α,

θ̇ − ωi;γ(m)
,
δ̇(n−1)θ̇ εj;

γ(m),δ̇(n−1)
β̇ h̃α,

θ̇)

− ξβ̇β̇Dh( ∑
m,n

4λ2−|m−n|

m!(n − 1)!
cijε

i;γ(m)
,
δ̇(n−1)β̇ω j;

γ(m),δ̇(n−1)
β̇
)

. (A5)

Thus, the on-shell gauge variation of J2,s is exact.
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Abstract: We propose a hybrid class of theories for higher spin gravity and matrix models,
i.e., which handle simultaneously higher spin gravity fields and matrix models. The construction
is similar to Vasiliev’s higher spin gravity, but part of the equations of motion are provided by the action
principle of a matrix model. In particular, we construct a higher spin (gravity) matrix model related to
type IIB matrix models/string theory that have a well defined classical limit, and which is compatible
with higher spin gravity in AdS space. As it has been suggested that higher spin gravity should be
related to string theory in a high energy (tensionless) regime, and, therefore to M-Theory, we expect
that our construction will be useful to explore concrete connections.

Keywords: higher spin gravity; string theory; matrix models

1. Introduction

Vasiliev’s higher spin gravity (HSGR) is a gauge theory whose spectrum contains an infinite
tower of massless higher spin and matter fields that enjoy infinite dimensional higher spin symmetries.
In the tensionless (high-energy) limit of string theory, its spectrum is spanned by massless modes that
exhibits higher spin symmetries [1] (also in the first quantized level [2]), expectedly equivalent to
those of HSGR [3]. The latter arguments have led to the idea that higher spin gravity might describe a
high-energy/tensionless-limit of string theory (see e.g., [4–9]), or reciprocally that string theory might
appear as a broken symmetry phase of some version of higher spin gravity. This also suggests that
HSGR is a manifestation of M-theory.

As for matrix models (MMs), it has been argued that M-theory should be described by a matrix
model [10,11] in 0 ` 1 dimensions. It has been also conjectured in [12] that a certain matrix model in
zero dimension should describe an effective theory of type IIB strings. Both statements suggest that
matrix models might be useful for the description of non-perturbative aspects of strings and M-theory.

In this paper, we show that Vasiliev’s HSGR in D spacetime dimensions can be regarded as a
type of relativistic MM in D dimensions and we shall argue that certain modification of Vasiliev’s
equations that incorporate the action principle of matrix models will permit the construction of a new
type of higher spin gravities. The latter, dubbed here higher spin matrix models, will be straightforwardly
related to matrix models. In particular, we shall construct the type IIB higher spin matrix models that
combines vanishing (higher spin gravity) curvature and constant (matter fields) covariant derivatives
conditions with type IIB matrix model equations of motion [13].

2. Matrix Models and Higher Spin Gravity

There is an interesting connection between super-Yang–Mills and string theories in ten dimensions
proposed in [12]. The pure interaction part of super-Yang–Mills, extended with a chemical potential
term, obtained after compactification of all directions to size zero is given by the MM action,

SMM1 “
B

α

ˆ
´1

4
rAI , AJsrAI , AJs ´ 1

2
ψ̄γIrAI , ψs

˙
` β1

F
, I, J “ 0, 1, ..., D ´ 1. (1)
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Here, x¨y is the (super)trace of the theory, which respects the correspondent cyclic properties for
boson (A) and fermion (ψ) fields and α and β are some constants. When the size of the matrices A
and ψ goes to infinity, they may be regarded also as Hilbert space operators and therefore they must
possess a classical limit, where they become functions on a classical phase-space and their commutator
product will become a Poisson bracket. The classical limit of action (1) can be identified with a string
action treating the worldsheet as a phase-space and the fields A and ψ as functions on this phase-space.

Table 1. From IKKT model to type IIB string action.

IKKT Matrix Model String Theory

gauge field: AI

´ Classical limit Ñ
target space coordinate: XI

commutator: r¨, ¨s Worldsheet Poisson bracket: r¨, ¨sP
(super)trace: x¨y Integral operator:

ş
d2σ

a´gpσq
SMM1 SSchrY, ψ, gs

The conjecture of the authors [12] says that their (IKKT) matrix model is related to the type IIB
Green–Schwarz action in the Schild gauge [12,14] (see Table 1),

SSchrY, ψ, gs “
ż

d2σ

˜
α

˜
1

4
a´gpσq rYI , YJsPrYI , YJsP ´ i

2
ψ̄γIrYJ , ψsP

¸
` β

b
´gpσq

¸
, (2)

where YI are the spacetime coordinate components of the string and ψ is an (anti-commuting) Majorana
spinor. Here, the Poisson bracket is defined as

rX, YsP “ BX
Bσ1

BY
Bσ2 ´ BX

Bσ2
BY
Bσ1 ,

and
a´gpσq is the determinant of the induced metric on the worldsheet, which can be regarded also

as an independent scalar field.
The equations of motion obtained from Label (2) are

rYJ , rYI , YJsPsP “ 0 , γIrYI , ψsP “ 0,

and from the the variation of
a´gpσq,

´ α

4
a´gpσq2 rYI , YJsPrYI , YJsP ` β “ 0. (3)

Note that the current ψ̄γIψ vanishes owing to anti-symmetry of the fermion product ψαψβ and
the symmetry of the matrices pCγIqαβ “ pCγIqβα, where C is the conjugation matrix, and γI are in the
Majorana representation. From Label (3), we can solve for

a´gpσq, and replacing back its value in
action (2), it returns the Nambu–Goto form (see e.g., [15]),

SNGrY, ψs “ signpβq
b

2|α||β|
ż

d2σ

˜c
signpαβq

2
rYI , YJsPrYI , YJsP ´ isignpαβq1

2

d
|α|

2|β| ψ̄γIrYI , ψsP

¸
,

which is equivalent to

SNGrY, ψs “ ´T
ż

d2σ

˜c
´1

2
rYI , YJsPrYI , YJsP ` 2iψ̄γIrYI , ψsP

¸
, (4)
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for

signpβq “ ´1, T “
b

2|α||β|, signpαβq “ ´1,

d
|α|

2|β| “ 4.

This means,

α “ 4T, β “ ´ T
8

. (5)

Note that, in a flat background, the Poisson bracket is equivalent to the determinant of the induced
metric on the workdsheet,

detpgI JBαYIBβYJq “ 1
2

rYI , YJsPrYI , YJsP, α, β “ 1, 2,

so that Label (4) can be turned into the standard form found in many textbooks.
A variation of Label (1) more directly related to the string action (2) in the classical limit was proposed

in [13],

SMM2rA, ψ, φs “ Str
´

α
´

´ 1
4 φ´1rAI , AJsrAI , AJs ´ 1

2 ψ̄γIrAI , ψs
¯

` βφ
¯

, I, J “ 0, 1, ..., D ´ 1, (6)

where now φpσq is the matrix associated to
?´g. The equations of motion obtained from Label (6) are

rYJ , tφ´1, rYI , YJsus “ 0 , γIrYI , ψs “ 0,

´ α
4 φ´1rYI , YJsrYI , YJsφ´1 ` β “ 0,

(7)

where tX, Yu :“ XY ` YX, is the anti-commutator. The equations of motion of the IKKT model (1) are
obtained when φ “ constant.

The matrix models (1) and (6) are in particular related to string theory, but, more generally,
matrix models can be regarded as describing subspaces of non-abelian algebras (of functions in
non-commutative spaces) by means of constraints obtained from an action principle. The action of a
generic matrix model has the form

SrYs “ xLrYpyqsy, (8)

where x ¨ y is the (super)trace operation, and L is a functional of functions Ypyq defined on the basis
of the algebra Y Q y. From the variation of Y, δSrYpyqs “ xδYCrYpyqsy “ 0 produces the equation
of motion

CrYpyqs “ 0. (9)

It is easy to show that this equation enjoy the transformation symmetry

Ỹ “ gpyqYg´1pyq,

where gpyq and its inverse g´1pyq are functions of the generator ys. It is enough for this purpose to
assume a polynomial form of the constraints (9).

From Matrix Models to Higher Spin Gravity

Matrix models can be extended to fiber bundles locally equivalent to M ˆ UpYq, with local
sections given by a set of functions Ypy; xq, i.e., which at points x “ tx0, x1, ..., xD´1u P M are
expanded in the basis of an associative algebra UpYq constructed from polynomial functions of the
generators of a Lie (super)algebra Y . If the representation of the algebra Y is given in terms of finite
dimensional matrices, then UpYq will consist of a general linear algebra or some of its associative
subalgebras. For more general representations, including infinite dimensional ones, UpYq will be

437



Universe 2017, 3, 74

equivalent to the universal enveloping algebra of Y . We shall focus in the latter case. This is, the local
sections can be expanded as

Ypy; xq “
8ÿ
0

1
n!

Yαpnqpxqyαpnq, (10)

where yα P Y is an element of the Lie (super-)algebra Y and their symmetric products
yαpnq :“ ypα1

¨ ¨ ¨ yαnq P UpYq are given in Weyl order, for definiteness, and the sum is up to
infinity. Note that, considering formal Taylor expansions of the sections Ypy; xq in terms of the
basis generators ys, we can extend the universal enveloping algebra UpYq to non-polynomial classes of
functions/distributions (see [16,17] for their use in fractional spin gravity). If ys are finite dimensional,
the expansion (10) will be truncated.

The reader familiarized with HSGR will note already a similarity of Label (10) with the
fields of HSGR. Actually, their equivalence is up to determination of the algebra UpYq, which,
for higher spin gravity, it is typically a Weyl algebra of multiple oscillators and their products
with Clifford algebras [18–22]. As in HSGR, we shall require local invariance of the matrix model
in M-space, i.e., that the systems of constraints (9) must be constant with respect to a covariant
derivative. To satisfy this requirement, we have to introduce a gauge connection, say W, and a constant
curvature equation. The complete (integrable) system of constraints is given therefore by

(kinematic constraints) FW “ 0, DWY “ 0, (11)

(rigid/MM constraints) CpYq “ 0, (12)

where FW :“ dW ` W ^ W is the curvature of the gauge connection (one-form) W and Y should be
regarded now as a zero-form in the cotangent space of M, and DW “ d ` W is the covariant derivative,
with exterior derivative d “ dxμBμ. These equations can be split in two subsets, the “kinematic”
ones (11) that involve spacetime (exterior) derivatives d, and the “rigid” ones (12) consisting of
the algebraic constraints coming from the matrix model (8). Systems (11) and (12) is integrable,
i.e., it is closed under repeated action of the covariant derivative since DWCpYq “ 0 as consequence of
DWY “ 0 and DW DWY “ rFW , Ys “ 0 as consequence of FW “ 0, etc. Systems (11) and (12) are also
gauge invariant under infinitesimal transformations,

δW “ Dε, δY “ rY, εs.

Solving the kinematic equations can be done absorbing the spacetime dependency in gauge-group
elements g such that:

W “ gdg´1, Y “ gYog´1, (13)

where Yo is a spacetime-independent gauge-algebra element. The rigid constraint (12) is left invariant
so Yo must satisfy

CpYoq “ 0. (14)

Thus, the rigid constraints encode most of the dynamics of systems (11) and (12).
As we mentioned, Equations (11) and (12) look quite similar to Vasiliev’s HSGR equations (see an

alternative form of Vasiliev’s equations in [23]). The differences are in the details, the algebras involved
and the explicit form of the constraints (12). Another important detail is the preference for the use of
phase-space (deformation) quantization techniques [24,25], i.e., the use of classical functions endowed
with a ›-product to construct the associative (non-commutative) enveloping algebras UpYq, instead
of working with matrices or Hilbert-space operators (see the review [20] for further details). Though,
in this section, we have not referred explicitly to the ›-product, and the reader may assume that the
non-commutative algebras Y and UpYq are constructed in terms of classical functions and a ›-product.

The fusion of HSGR and MMs is given by Labels (11) and (12). This means, while the constraints (12)
encode the dynamics of a MM the kinetic extensions (11) will describe HSGR dynamics, i.e., the emergence
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of interacting generalized Lorentz connections (W) and matter fields (Y) with arbitrary spin, which
will extend standard gauge gravity.

Supporting these ideas, in Ref. [26], it was noticed that the physical degrees of freedom of higher
spin gravity coupled to matter fields in 2 ` 1 dimensions are encoded in a coordinates-free action
of the rigid type (12), which is actually a matrix model equivalent to a Yang–Mills theory in even
non-commutative dimensions. Actually, the equations of higher spin gravity in three dimensions are
given by [27,28]:

FW “ 0, DW B “ 0, DWSα “ 0, (15)

SαSα ` 2ip1 ` Bq “ 0, SαB ` BSα “ 0, (16)

where, compared to Labels (11) and (12), the kinetic constraints are given by Labels (15) and the rigid
ones by Labels (16), while the zero forms are given by Y “ tB, Sαu. Here α is a spinor index in
three dimensions. Now, according to the authors [26], systems (15) and (16) can be reduced, using the
gauge-function method (13), to the spacetime-coordinates-free equation (14) now given by the deformed
oscillator algebra [29,30],

sαsα ` 2ip1 ` bq “ 0, sαb ` bsα “ 0, (17)

related to Label (16) up to spacetime dependent similarity trasformation (13), Sα “ gsag´1, B “ gbg´1.
Another form of writing Label (17) is,

rq, ps “ ip1 ` νkq, tq, ku “ tp, ku “ 0,

which, for k2 “ 1, becomes equivalent to the Wigner deformed oscillator algebra [29]. Here, q and p
are the coordinate and the conjugated momentum of a deformed oscillator and the b field has been
factorized in the product of a scalar ν and the Klein operator k. It is worth mentioning that Label (17)
implies ospp1|2q (anti-)commutation relations with spp2q “ tq2, p2, qp ` pqu and supercharges q and p.
This can be extended to ospp2|2q treating k as an internal up1q generator and ´ikq and ´ikp as additional
supercharges. The matrix model action proposed in [26] is given by

SPSVrs, bs “ xisαsαb ´ 2b ´ b2y, (18)

from which Label (17) can be obtained variating b (even degree) and sα (odd degree) and using the
correspondent (anti-)cyclic property of the supertrace x¨y. Thus, the equations of higher spin gravity in
three dimensions are somehow a covariantization in M space of the Prokushkin–Segal–Vasiliev (PSV)
matrix model (18). The emergence of higher spin fields on non-commutative geometries has been also
observed in Refs. [31,32].

More generally, we shall refer to higher-spin–matrix models as the extension of matrix models and
HSGR, which can be described by the system of constraints

FW “ 0, DWY “ 0,
δSMMrYs “ 0,

(19)

where δSMMrYs “ 0, the rigid component of the equations of motion, are obtained from the variation of
the action of the matrix model SMMrYs. We say that higher spin matrix model (19) has the same type
of SMMrYs.
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3. Deformation Quantization of Type IIB Strings

In the former section, we omitted explicit reference to the ›-product. To transform our formulas
into a ›-product form, we shall assume that, for any two functions Fpy; xq and Gpy; xq of commutative
variables x and non-commutative variables y, which can be decomposed as

F :“ f pxqgpyq “ gpyq f pxq, F1 :“ f 1pxqg1pyq “ g1pyq f 1pxq,

where f pxq and f 1pxq are differential forms in M-space and gpyq and g1pyq are elements of the algebra
UpYq, the product Fpy; xqGpy; xq has inserted a ›-product such that

Fpy; xqGpy; xq :“ p f pxq f 1pxqqpgpyq›g1pyqq “ pgpyq›g1pyqqp f pxq f 1pxqq.

Let us define now the Groenewold–Moyal ›-product

f pyq›hpyq “
ż

d2ξ d2ζ

pπθq2 exp
´

´ 2i
θ pξ1ζ2 ´ ξ2ζ1q

¯
f py ` ξq hpy ` ζq .

For two arbitrary functions on the world-sheet f pyq and gpyq. The auxiliary variables ξ and ζ are
also world-sheet type, and the quantization (Planck) constant θ (with units of area) is the parameter of
deformation from the classical juxtaposition product f pyqhpyq “ hpyq f pyq. For example, the ›-product
of world-sheet coordinates is

yα›yβ “ yαyβ ` i
θ

2
εαβ,

where yαyβ “ yβyα is the classical part of the product and the quantum deformation is given by the
product of θ and the epsilon tensor ε12 “ ´ε21 “ 1. The ›-commutator is given by

r f pyq, hpyqs› :“ f pyq›hpyq ´ f pyq›hpyq,

and it is simple to show that in the classical limit

lim
θÑ0

rX, Ys›
iθ

“ rX, YsP,

and that
lim
θÑ0

X›Y “ XY “ YX.

Now let us deform the string actions (2) and (4). This is simple since these action principles can be
expressed in terms of the Poisson brackets. The deformation-quantization version of the Nambu–Goto
action is obtained substituting rX, YsP by rX, Ys›{iθ, so that

Sθ
NGrY, ψs “ ´T

ż
d2y

˜
›
c

1
2θ2 rYI , YJs› ›rYI , YJs› ` 2

θ
ψ̄›γIrYI , ψs›

¸
,

where ›? is defined such that ›a f › ›a f “ f . Thus, in the classical limit,

lim
θÑ0

Sθ
NGrY, ψs “ SNGrY, ψs.

Deforming Schild action (2) results in

Sθ
SchrY, ψ, φs “ ´T

ż
d2y

ˆ
1
θ2 φ´1› rYI , YJs››rYI , YJs› ` 2

θ
ψ̄›γIrYI , ψs› ` 1

8
φ

˙
, (20)
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where we have used value (5) and φ´1 is such that φ›φ´1 “ 1 “ φ´1›φ. In an operator representation,
which can be achieved by means of a Wigner map, the equivalent of action (20) is given by Label (6).
In the classical limit,

lim
θÑ0

Sθ
SchrY, ψ, φs “ SSchrY, ψ, φs.

The authors of [12,13] assume that the Poisson bracket produced in the classical limit of the
respective matrix models is defined in a two-dimensional phase space (the worldsheet). This condition
may be relaxed since there is no data of the phase space dimension in the matrix model. In the
deformation quantization approach, we can declare the dimension of the classical phase space in the
action itself

Sθ
IIBrY, ψs “ ´T

ż
d2dy

ˆ
1
θ2 φ´1› rYI , YJs››rYI , YJs› ` 2

θ
ψ̄›γIrYI , ψs› ` 1

8
φ

˙
, (21)

as an example of generalization of the model [12,13]. Now, the tension T has been rescaled according
to the choice of the dimensions of the phase space. Now, in the classical limit, what is produced is a
theory of extended objects. In this case, the ›-product will be given by

f pyq›gpyq “
ż

d2dξ d2dζ

pπθq2d exp
´

´ 2i
θ ξ̄ζ

¯
f py ` ξq gpy ` ζq , (22)

where ξ̄ζ “ ξαζα and we have used the symplectic matrix

Cαβ “ Cαβ :“
˜

0 1dˆd
´1dˆd 0

¸
.

To raise or lower the phase space index ξ̄ “ ξα according to the following conventions,

ξα “ Cαβξβ , ξα “ ξβCβα , where Cαβ “ Cαβ .

Thus, the ›-product of two vectors in phase space yields,

yα›yβ “ yαyβ ` iθ
2

Cαβ .

The equations of motion obtained from Label (21) are

rYJ , tφ´1, rYI , YJs›u›s› “ 0 , γIrYI , ψs› “ 0,

φ´1›rYI , YJs››rYI , YJs››φ´1 ´ 1
8 “ 0,

(23)

where tX, Yu› :“ X›Y ` Y›X, is the ›–anti-commutator. The analogy to the IKKT model (1) is obtained
when φ “ 1 and d “ 1 in Label (22). The equations of motion are obtained from the property

ż
d2dyA›B “ p´1q|A||B|

ż
d2dyB›A

for Grassmann parity |A| “ 0, 1.

4. Type IIB Higher Spin Matrix Models in D “ 2, 3, 4 Mod 8

Let us construct a specific model as an illustration of the ideas presented here. Now, making
explicit reference to the star-product (22), the equations of motion are:
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dW ` W› ^ W “ 0, (24)

dYI ` rW, YIs› “ 0, dΨ ` rW, Ψs› “ 0, dΦ ` rW, Φs› “ 0, (25)

rYJ , tΦ´1, rYI , YJs›u›s› “ 0 , γIrYI , Ψs› “ 0, (26)

Φ´1›rYI , YJs››rYI , YJs››Φ´1 ´ 1
8 “ 0, (27)

I Ñ tμrns “ rμ1μ2 ¨ ¨ ¨ μns , μ1 ă μ2 ă ¨ ¨ ¨ ă μn, μk “ 0, 1, ..., D ´ 1u. (28)

The kinetic (11) and rigid (12) equations are now Labels (24)–(27) respectively. The rank of
indices (28) will be explained below. In this specific case, the rigid equations are obtained from the
variation of the action for type IIB matrix models (21). To the theory, Labels (24)–(27), we shall refer as
to type IIB higher spin matrix model.

We have not declared what is the dimension of the spacetime D, neither the rank of the capital
indices I, J or the algebras involved. The system above is formally integrable, but the choices of the
algebras involved and of the dimension of the space-time is an engineering problem, it depends of
what we want to describe. In what follows we shall solve the system (24)–(27) employing similar
techniques than in reference [33].

Like in Vasiliev’s HSGR, let us consider the Heisenberg algebra,

Y “ tryα, yβs› “ iθCαβ ; α, β “ 1, ..., 2du,

whose universal enveloping algebra, i.e., the algebra of polynomials in Y , is given by

UpYq “ tyαpnq ; n “ 0, ..., 8u, (29)

where the symmetric products

yαpnq :“ ypα1
›yα2 › ¨ ¨ ¨ ›yαnq “ yα1 yα2 ¨ ¨ ¨ yαn , (30)

are by the properties of the ›-product equivalent to the classical monomial in the right hand side.
In (30) we have used standard notations for the symmetrization of the products, with the factorial
normalization. Now the fields (24)–(27) can be expanded in the basis of UpYq as follows

Wpy; xq “ ř
n,α,

1
n! W

αpnqpxqyαpnq, (31)

YIpy; xq “ ř
n,α

1
n! Y

I,αpnqpxqyαpnq, (32)

Ψpy; xq “ ř
n,α

1
n! ψ

αpnqpxqyαpnq, (33)

Φpy; xq “ ř
n,α

1
n! φ

αpnqpxqyαpnq, (34)

n “ 0, ..., 8, α “ 1, ..., 2d.

With respect to the ›-commutator product r¨, ¨s› the second order polynomials yαp2q generate a
representation of the spp2dq algebra, which for 2d “ 2rD{2s contains a representation of the anti de
Sitter algebra sopD ´ 1, 2q. The latter algebra can be used to make explicit the Lorentz covariance of
the system (24)–(27). Indeed the variables yαpnq transform in the spin n{2 adjoint representation of
the Lorentz algebra in D spacetime dimensions. From this observation it is clear that W contains at
level n “ 2 the AdSD Lorentz connection and for n ‰ 2 these are higher spin gravity gauge fields,
which justify the “higher spin gravity” part of the title of this paper. This is, the AdSD space is a natural
solution of the system of equations, if we put all the remaining fields to zero, for example. Now the
spacetime dimension is specified to be D, according to the choice of the algebra (29).
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Now we should clarify the meaning of indices (28). The rigid Equations (26) and (27) are
written in a form that reminds us of the type IIB matrix model field Equations (7)–(23), but,
as we shall justify, the fields involved admit more general labels, i.e., with I labeling target space
Lorentz multivectors instead of just vectors. As it was shown in [33], the phase space monomials
yαp2q (α “ 1, ..., 2rD{2s), in the classical level, parametrize an algebraic variety (say M) whose
coordinates are conveniently labeled by Lorentz multivectors in D dimensions. M admits a covariant
non-commutative deformation (quantization), i.e., introducing the ›-product (22) in the algebra of
functions in the space M, which is Lorentz covariant. Surprisingly enough, the coordinates of the
non-commutative version of M will satisfy the constraints (26) and (27). A posteriori, this result
justifies the use of multivector labels. Thus, we can change the notation YI by Yrμ1μ2¨¨¨μns “: Yμrns,
μk “ 0, ..., D ´ 1, for some values of n to be specified below. In order to observe this, let us introduce
the exterior algebra of real (Majorana) Dirac matrices

γμrns :“ γrμ1 ¨ ¨ ¨ γμns, μ “ 0, ..., D ´ 1, (35)

constructed from the Clifford algebra tγμ , γνu “ 2 ημν, with diagpημνq “ p´1, 1, ¨ ¨ ¨ , 1q. Here, n is
in the set of integers 1, 2 Mod 4 and n ď D for D even or n ď rD{2s for D odd (see [34]), for which
the γμrns matrices are independent. The matrices (35) span a representation of the spp2rD{2sq algebra,
which acts on the space of 2d “ 2rD{2s-components spinors. The symmetric monomials yαp2q also
span a representation of spp2rD{2sq, with respect to the r¨, ¨s› product, and indeed they can be given
multivector labels using the bi-linear combinations provided by Label (35). Thus,

Xμrns “ 1
4

ȳγμrnsy (36)

are spp2rD{2sq generators.
To make more explicit correspondences (28) I Ø μrns, let us split the interval

I P t1, ..., dimpspp2rD{2sqqu in subspaces

I P ‘nP1,2Mod 4 Irns, n “ 1, 2 Mod 4,

where Irns are intervals of integer numbers of size
`D

n
˘
, in correspondence with the independent components

of multivectors Xμrns. To each element in the subset Irns, we assign a single multivector index

I P Irns Ñ μrns “ rμ1μ2 ¨ ¨ ¨ μns , μ1 ă μ2 ă ¨ ¨ ¨ ă μn, μ “ 0, 1, ¨ ¨ ¨ D ´ 1.

For example, we have the correspondence

D “ 2 ` 1 : Ir1s “ t1, 2, 3u Ñ μ “ 0, 1, 2, Ir2s “ 4, 5, 6 Ñ μr2s “ r01s, r02s, r12s, (37)

D “ 3 ` 1 : Ir1s “ t1, ..., 4u Ñ μ “ 0, 1, 2, 3,
Ir2s “ t5, ..., 10u Ñ μr2s “ r01s, r02s, r03s, r12s, r13s, r23s,

in the respective space-time dimensions. We can write now

Yμrnspy; xq “
ÿ
m,α

1
m!

Yμrns,αpmqpxqyαpmq,

instead of Label (32), and
dYμrns ` rW, Yμrnss› “ 0,
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instead of dYI ` rW, YIs› “ 0 in Label (25). Now, the meaning of the rank of indices (28) is understood,
but we need to specify how we construct the invariants XI XI “ XI XJηI J . Indeed, XI XI is a spp2rD{2sq
invariant. In multivector notations, the sp-Killing-metric looks like

sign ηI J “ sign ημrnsăνrnsă “ p´1qrn{2ssign ημ1ν1 ημ2ν2 . . . ημnνn , (38)

where the tensor

ημrns νrns “ p´1qrn{2s
pn!q2 ημ1ρ1 ημ2ρ2 ¨ ¨ ¨ ημnρn δ

ρ1ρ2¨¨¨ρn
ν1ν2¨¨¨νn

is constructed from the product of the Lorentz metric tensor ημρ, and the indices μrnsă “ rμ1μ2...μns
are ordered, μ1 ă μ2 ă ... ă μn.

Now, the rigid constraints (26) and (27) look like

1ř
m“1,2 Mod4

p´1qrm{2s
m! rYμrms, tΦ´1, rYνrns, Yμrmss›u›s› “ 0 , (39)

1ř
m“1,2 Mod4

p´1qrm{2s
m! γμrmsrYμrms , Ψs› “ 0, (40)

1ř
m,n“1,2 Mod4

p´1qrm{2s`rn{2s
m!n! Φ´1›rYμrms, Yνrnss››rYμrms, Yνrnss››Φ´1 ´ 1

8 “ 0, (41)

where
ř1 means to count in the interval of integers n for which the γμrns’s span the basis of independent

matrices (35) (see comment below (35)).

4.1. Some Solutions

Let us show that
Yμrns “ Xμrns, Ψ “ 0, Φ “ constant, (42)

where Xμrns is given by Label (36), solve the systems of Equations (39)–(41). It is trivial that Ψ “ 0
solves Label (40). If Φ is constant, then (39) is reduced to

1ÿ
m“1,2 Mod4

p´1qrm{2s
m!

rYμrms, rYνrns, Yμrmss›s› “ 0.

That this equation is solved by Label (36) was shown in Ref. [33]. For that purpose, we can use
the identity

CαβCα1β1 ` Cα1βCαβ1 “ 1
2rD{2s´1

1ÿ
m“1,2 Mod 4

p´1qrm{2s`1

m!
pγνrmsqαα1 pγνrmsqββ1 ,

and that yαyα “ 0.
Similarly to Label (39), using Label (42) and

yαyβ›yξyζ “ yαyβyξyζ ` i
θ

2
`
Cαξyβyζ ` Cαζyβyξ ` Cβξyαyζ ` Cβζyαyξ

˘ ´ θ2

4
`
CαξCβζ ` CαζCβξ

˘
,

we can compute the value of

1ÿ
m,n“1,2 Mod4

p´1qrm{2s`rn{2s
m!n!

rYμrms, Yνrnss››rYμrms, Yνrnss›› “ 2θ422rD{2sp1 ` 22rD{2sq.

Hence, from Label (41), we obtain
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Φ “ ˘θ22rD{2s`2
a

1 ` 2rD{2s.

We can extend these solutions to solutions of the whole system (24)–(28) using gauge functions

g “ exp
´

ενrnspxqXνrns¯ ,

where ενrnspxq are functions of the point x of the spacetime, so that

W “ g›dg´1, Yμrns “ g›Xμrns›g´1, Ψ “ 0, Φ “ ˘θ22rD{2s`2
a

1 ` 2rD{2s.

As we observed, we can unify multivector types of matrix models and higher spin gravity.

5. Conclusions

We have presented general class higher spin gravity models that incorporate matrix models in their
own definition. The techniques are similar to standard Vasiliev’s higher spin gravity, and the difference
is in the internal algebras and in part of the equations of motion, which now are derived from matrix
models. These theories put in closer contact higher spin gravity and string theory, as, according to
e.g., [10,12,13], matrix models are candidates for non-perturbative theories of strings and M-theory.
We constructed and provided solutions for a particular model related to type IIB strings, therefore
called type IIB higher spin gravity. The matrix models constructed here extend those found in [33]
in that now spacetime dimensions are added. An interesting aspect of these matrix models is that
they incorporate coordinates of extended objects, as multivector coordinates of rank k are related to
k-dimensional objects. For instance, part of the rigid equations of motion for (multivector) matrix
model in 3 ` 1 dimensions (without fermions and for a constant scalar field) can be reduced to the form

rYν, rYμ, Yνs›s› ´ 1
2

rYνλ, rYμ, Yνλs›s› “ 0 ,

rYν, rYμρ, Yνs›s› ´ 1
2

rYνλ, rYμρ, Yνλs›s› “ 0 .

Some solutions of this system contain Plucker coordinates of planes through 3 ` 1 dimensions as
shown in [33]. An interesting problem to address is whether the classical limit of the respective matrix
models (24)–(27), or Label (24), Label (25), and Labels (39)–(41), reproduce Polyakov’s string theory in
3 ` 1 dimensions with fine structure [35].

Note that, in this paper, we have not studied the details of the physical degrees of freedom
contained in the constructed models. This can be done using similar methods such as matrix
models and higher spin gravity, i.e., by means of perturbation theory around some solutions of
the models—for instance, the ones provided in Section 4.1.

We would like to mention that multivector extensions of spacetime also appear in the context of
E11-type string theories and supergravities [36–38] and in the study of higher spin fields dynamics in
the approach [39–41]. These theories and ours suggest the existence of mutivector extended spacetimes,
which may be necessary, or just convenient, for the formulation of quantum theories of gravity.

We expect that our proposal will be useful to find deeper connections between string theories,
M-theory and higher spin gravity. We encourage interested readers to construct and study in detail
specific models falling into the category presented here.
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Abstract: In this paper, we consider the frame-like formulation for the so-called infinite (continuous)
spin representations of the Poincare algebra. In the three-dimensional case, we give explicit
Lagrangian formulation for bosonic and fermionic infinite spin fields (including the complete
sets of the gauge-invariant objects and all the necessary extra fields). Moreover, we find the
supertransformations for the supermultiplet containing one bosonic and one fermionic field, leaving
the sum of their Lagrangians invariant. Properties of such fields and supermultiplets in four and
higher dimensions are also briefly discussed.

Keywords: infinite spin fields; massive higher spins; gauge invariance; supersymmetry

1. Introduction

Besides the very well known finite-component massless and massive representations of the
Poincare algebra, there are rather exotic so-called infinite (or continuous) spin representations
(see e.g., [1,2]). In dimensions d ≥ 4, they have an infinite number of physical degrees of freedom and
so may be of some interest for the higher spins theory. Indeed, they attracted some attention recently
[3–8]. One of the reasons is that, contrary to the finite-component massless fields, such representations
are characterized by a dimensionful parameter (that can play the same role as the cosmological constant
for the massless theories and the mass for the massive ones) and so they may provide an interesting
alternative for the massless higher spin theory in the flat space. Note also that such representations
can appear in the tensionless limit of the string theory.

It has been noted several times that such infinite spin representations may be considered as a limit
of massive higher spin ones where spin goes to infinity and mass goes to zero while the product
remains fixed. Moreover, recently, Metsaev has shown that the metric-like Lagrangian formulation for
the bosonic [9] and fermionic [10] fields in AdSd spaces with d ≥ 4 can be constructed using exactly
the same technique as was previously used for the gauge-invariant formulation of massive higher spin
bosonic [11] and fermionic [12] fields.

The current paper is devoted to the frame-like formulation for such infinite spin fields. In the first
(and main) section, we construct gauge-invariant Lagrangian formulation for bosonic and fermionic
cases in d = 3. We also elaborate on the whole set of the gauge invariant objects (introducing all
necessary extra fields) and rewrite our Lagrangians in the explicitly gauge-invariant form. Moreover,
we managed to find supertransformations for the supermultiplet containing one bosonic and one
fermionic infinite spin field that leaves the sum of their Lagrangians invariant. For this, we heavily
use our previous results on the gauge-invariant formulation for massive bosonic and fermionic
higher spin fields in d = 3 [13,14] (see also [15–17]) as well as results on the massive higher spin
supermultiplets [18–20]. In the last two sections, we briefly discuss the properties of such fields and
supermultiplets in d = 4 and d ≥ 5 dimensions, concluding with explicit details on the forthcoming
publication.

Notations and conventions We will work in the frame-like multispinor formalism (mostly the
same as in [20] but we restrict ourselves to the flat Minkowski space). In this formalism, all objects are
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forms (3, 2, 1, 0-forms) that have totally symmetric local spinor indices. To simplify the expressions,
we will use the condensed notations for the spinor indices such that, e.g.,

Ωα(2k) = Ω(α1α2...α2k)

Also, we will always assume that spinor indices denoted by the same letters and placed on the
same level are symmetrized, e.g.,

Ωα(2k)ζα = Ω(α1...α2k ζα2k+1)

where symmetrization uses the minimal number of terms necessary without any normalization factor.
The coordinate-free description of the three-dimensional flat Minkowski space will use the background
frame (one-form) eα(2) and external derivative d

d ∧ d = 0

Basic elements of 1,2,3-form space are respectively eα(2), Eα(2), and E where the last two are
defined as the double and triple product of eα(2):

eαα ∧ eββ = εαβEαβ, Eαα ∧ eββ = εαβεαβE

Further on, the wedge product sign ∧ will be omitted.

2. Infinite Spin Fields in d = 3

In this section, we develop the frame-like formalism for the massless infinite spin bosonic and
fermionic fields as well as for the supermultiplet containing such fields.

2.1. Infinite Spin Boson

As we have already noted, there is a tight connection between the gauge invariant description for
the massive finite spin fields and the one for the massless infinite spin fields. Recall that the general
idea of such a description is to begin with the appropriate set of massless (finite component) fields and
then glue them together in such a way that keeps all their gauge symmetries. This, in turn, guarantees
the correct number of physical degrees of freedom. Thus, we will follow the same approach as in [13]
but this time without restriction on the number of components. So, we introduce an infinite set of
physical and auxiliary one-forms Ωα(2k), Φα(2k), 1 ≤ k ≤ ∞ as well as one-form A and zero-forms Bα(2),
πα(2) and ϕ 1. We begin with the sum of kinetic terms for all these fields (recall that the Lagrangians
are three-forms in our formalism):

L0 =
∞

∑
k=1

(−1)k+1[kΩα(2k−1)βeβ
γΩα(2k−1)γ + Ωα(2k)dΦα(2k)]

+EBα(2)B
α(2) − Bα(2)e

α(2)dA − Eπα(2)π
α(2) + πα(2)E

α(2)dϕ (1)

as well as their initial gauge transformations:

δ0Ωα(2k) = dηα(2k), δ0Φα(2k) = dξα(2k) + eα
βηα(2k−1)β, δ0 A = dξ (2)

1 Note that in three dimensions, such an infinite spin bosonic field (as any massive higher spin boson) has just two physical
degrees of freedom, while an infinite spin fermionic field (as any massive higher spin fermion) has just one. However it is
impossible to realize such representations using a finite number of components (see e.g., [6]).
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Then, following a general scheme, we add to the Lagrangian a set of cross terms gluing all these
components together:

L1 =
∞

∑
k=1

(−1)k+1[ãkΩα(2k)β(2)e
β(2)Φα(2k) + akΩα(2k)eβ(2)Φ

α(2k)β(2)]

+ã0Ωα(2)e
α(2)A − a0ΦαβEβ

γBαγ + â0πα(2)E
α(2)A (3)

and introduce appropriate corrections for the gauge transformations:

δ1Ωα(2k) =
(k + 2)

k
akeβ(2)η

α(2k)β(2) +
ak−1

k(2k − 1)
eα(2)ηα(2k−2)

δ1Φα(2k) = akeβ(2)ξ
α(2k)β(2) +

(k + 1)ak−1
k(k − 1)(2k − 1)

eα(2)ξα(2k−2)

δ1Ωα(2) = 3a1eβ(2)η
α(2)β(2), δ1Φα(2) = a1eβ(2)ξ

α(2)β(2) + 2a0eα(2)ξ (4)

δ1Bα(2) = 2a0ηα(2), δ1 A =
a0

4
eα(2)ξ

α(2), δ1 ϕ = −â0ξ

Here, consistency of the gauge transformations with the Lagrangian requires:

ãk = − (k + 2)
k

ak, ã0 = 2a0

At last, we introduce mass-like terms for all components and appropriate corrections to the
gauge transformations:

L2 =
∞

∑
k=1

(−1)k+1bkΦα(2k−1)βeβ
γΦα(2k−1)γ + b0Φα(2)E

α(2)ϕ + b̃0Eϕ2 (5)

δ2Ωα(2k) =
bk
k

eα
βξα(2k−1)β, δ2πα(2) = b0ξα(2) (6)

Now, we require that the whole Lagrangian L = L0 + L1 + L2 will be invariant under the gauge
transformations δ = δ0 + δ1 + δ2. This produces the following general relations on the parameters:

(k + 2)2bk+1 = k(k + 1)bk (7)

2(k + 2)(2k + 3)
(k + 1)(2k + 1)

ak
2 − 2(k + 1)

(k − 1)
ak−1

2 + 4bk = 0 (8)

as well as some relations for the lower components:

5a1
2 − a0

2 + 4b1 = 0

â0
2 = 64b1, b0 =

â0a0

4
, b̃0 =

3a0
2

2
The general solution of all these relations has two free parameters. In the massive finite spin case,

it is just the mass and spin but in our case we choose a0 and b1 as the main parameters. Then, all other
parameters can be expressed as follows:

bk =
4b1

k(k + 1)2 (9)

ak
2 =

k
(2k + 3)

[
3(k + 1)
2(k + 2)

a0
2 − 8k

(k + 1)
b1] (10)
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Now, we are ready to analyze the solution obtained. Let us begin with the case a0
2 < 16b1.

In general, it means that starting from some value of k, all ak
2 become negative so that we obtain

non-unitary theory. The only exceptions happen when one adjusts the values of a0
2 and b1 so that at

some k0 we obtain ak0 = 0. In this case, we obtain unitary theory with the finite number of components
and this case corresponds to the gauge-invariant description for the massive bosonic field with the
spin k0 + 1. Let us turn to the case a0

2 = 16b1 (this corresponds to the case μ0 = 0 in [9]). In this case,
we obtain:

ak
2 =

3k
2(k + 1)(k + 2)(2k + 3)

a0
2 (11)

so we get a unitary theory with an infinite number of components. Note that for the case a0
2 > 16b1 we

also obtain unitary theory but as it was shown by Metsaev [9] it corresponds to the tachyonic infinite
spin field. Thus, in what follows, we will restrict ourselves to the case a0

2 = 16b1 only.
Naturally, all the physical properties of the solutions obtained are the same as in the metric-like

formulation by Metsaev because metric-like and frame-like formalisms are equivalent and so, for the
free theories, which one to use is just a matter of preference. However, for the investigation of possible
interactions, the frame-like formalism may provide some advantages. In-particular, one of the nice
and general features of the frame-like formalism is that for each field (physical or auxiliary) one can
construct a corresponding gauge-invariant object. For the case at hand, we will follow the massive
case in [17,20]. For almost all fields, corresponding gauge-invariant objects can be directly constructed
from the known form for the gauge transformations given above (here, for convenience, we changed
the normalization for the zero-forms Bα(2) ⇒ 2a0Bα(2), πα(2) ⇒ b0πα(2)):

Rα(2k) = dΩα(2k) +
bk
k

eα
βΦα(2k−1)β +

(k + 2)
k

akeβ(2)Ω
α(2k)β(2) +

ak−1
k(2k − 1)

eα(2)Ωα(2k−2)

T α(2k) = dΦα(2k) + eα
βΩα(2k−1)β + akeβ(2)Φ

α(2k)β(2) +
(k + 1)ak−1

k(k − 1)(2k − 1)
eα(2)Φα(2k−2)

Rα(2) = dΩα(2) + b1eα
βΦαβ + 3a1eβ(2)Ω

α(2)β(2) − a0
2Eα

βBαβ + b0Eα(2)ϕ

T α(2) = dΦα(2) + eα
βΩαβ + a1eβ(2)Φ

α(2)β(2) + 2a0eα(2)A (12)

A = dA − 2a0Eα(2)B
α(2) +

a0

4
eα(2)Φ

α(2)

Φ = dϕ −
√

3
2

a0
2eα(2)π

α(2) + 2
√

3a0 A

However, to construct gauge-invariant objects for Bα(2) and πα(2), one must introduce a first pair
of the so-called extra fields 2 Bα(4) and πα(4):

Bα(2) = dBα(2) − Ωα(2) + b1eα
βπαβ + 3a1eβ(2)B

α(2)β(2)

Πα(2) = dπα(2) + eα
βBαβ − Φα(2) − 1√

3
eα(2)ϕ + a1eβ(2)π

α(2)β(2) (13)

which transform as follows:
δBα(4) = ηα(4), δπα(4) = ξα(4)

2 Recall that extra fields are the fields that do not enter the free Lagrangian but are necessary for the construction of the whole
set of gauge-invariant objects. Moreover, such fields play an important role in the construction of the interactions.
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However, to construct gauge-invariant objects for these new fields, one must introduce the next
pair of extra fields and so on. This results in the infinite chain of zero forms Bα(2k) and πα(2k), 1 ≤ k ≤ ∞
with the following set of gauge-invariant objects:

Bα(2k) = dBα(2k) − Ωα(2k) +
bk
k

eα
βπα(2k−1)β +

(k + 2)
k

akeβ(2)B
α(2k)β(2)

+
ak−1

k(2k − 1)
eα(2)Bα(2k−2)

Πα(2k) = dπα(2k) − Φα(2k) + eα
βBα(2k−1)β + akeβ(2)π

α(2k)β(2) (14)

+
(k + 1)ak−1

k(k − 1)(2k − 1)
eα(2)πα(2k−2)

Here:
δBα(2k) = ηα(2k), δπα(2k) = ξα(2k)

Now, we have an infinite set of gauge one-forms as well as an infinite set of Stueckelberg
zero-forms. As in the massive finite spin case [17,20], this allows us to rewrite the Lagrangian in the
explicitly gauge-invariant form:

L = −1
2

∞

∑
k=1

(−1)k+1[Rα(2k)Π
α(2k) + Tα(2k)Bα(2k)] +

1
2

eα(2)Bα(2)Φ (15)

By construction, each term here is separately gauge-invariant and the explicit values for all
coefficients are determined by the so-called extra field decoupling conditions:

δL
δBα(2k)

= 0,
δL

δπα(2k)
= 0, 2 ≤ k ≤ ∞

2.2. Fermionic Case

In this case, we will also follow the construction for the massive finite spin field [14] but this
time for the infinite set of components. So, we introduce a set of one-forms Ψα(2k+1), 0 ≤ k ≤ ∞ and
a zero-form ψα. Once again, we begin with the sum of kinetic terms for all fields:

1
i
L0 =

∞

∑
k=0

(−1)k+1

2
Ψα(2k+1)dΨα(2k+1) +

1
2

ψαEα
βdψβ (16)

as well as with their initial gauge transformations:

δ0Ψα(2k+1) = dζα(2k+1) (17)

Now we add a set of cross terms gluing them together

1
i
L1 =

∞

∑
k=1

(−1)k+1ckΨα(2k−1)β(2)e
β(2)Ψα(2k−1) + c0ΨαEα

βψβ (18)

and corresponding corrections to the gauge transformations:

δ1Ψα(2k+1) = ck+1eβ(2)ζ
α(2k+1)β(2) +

ck
k(2k + 1)

eα(2)ζα(2k−1),

δ1ψα = c0ζα (19)
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At last, we add the mass-like terms for all fields and appropriate corrections to the
gauge transformations:

1
i
L2 =

∞

∑
k=0

(−1)k+1 dk
2

Ψα(2k)βeβ
γΨα(2k)γ − m0

2
Eψαψα (20)

δ2Ψα(2k+1) =
dk

(2k + 1)
eα

βζα(2k)β (21)

Now, we require that the whole Lagrangian L = L0 + L1 + L2 will be invariant under the gauge
transformations δ = δ0 + δ1 + δ2. This produces a number of general relations on the parameters

(2k + 5)dk+1 = (2k + 3)dk (22)

(k + 2)(2k + 1)
(k + 1)(2k + 3)

ck+1
2 − ck

2 +
dk

2

(2k + 1)
= 0 (23)

as well as
8
3

c1
2 − c0

2 + 4d0
2 = 0, d0 =

m0

3
As in the bosonic case, the general solution for all these relations has two free parameters and we

choose c0 and m0 this time. Then, all other coefficients can be expressed as follows:

dk =
m0

(2k + 3)
(24)

ck
2 =

(2k + 1)
4(k + 1)

c0
2 − k

2(2k + 1)
m0

2 (25)

The properties of this solution appear to be the same as in the bosonic case. Namely, for the
case m0

2 > 2c0
2, in general, we obtain non-unitary theory. The only exceptions appear if one adjusts

these parameters so that at some k0 we get ck0 = 0. In this case, we obtain unitary theory with a finite
number of components which corresponds to the gauge-invariant description for a massive fermionic
field with spin k0 + 3/2. For the m0

2 = 2c0
2 (this corresponds to μ0 = 0 in [10]), we obtain

ck
2 =

c0
2

4(k + 1)(2k + 1)
(26)

that corresponds to the unitary massless infinite spin field while for the m0
2 < c0

2, we again obtain
tachyonic infinite spin case. As in the bosonic case, in what follows, we will restrict ourselves to the
case m0

2 = 2c0
2 only.

Now, we proceed with the construction of the full set of gauge-invariant objects. For all one-forms,
the construction is pretty straightforward (again, for convenience, we changed the normalization for
the zero-form ψα ⇒ c0ψα):

F α(2k+1) = dΨα(2k+1) +
dk

(2k + 1)
eα

βΨα(2k)β + ck+1eβ(2)Ψ
α(2k+1)β(2)

+
ck

k(2k + 1)
eα(2)Ψα(2k−1) (27)

F α = DΨα + d0eα
βΨβ + c1eβ(2)Ψ

αβ(2) − c0
2Eα

βψβ

However, to construct a gauge-invariant object for the zero-form, one must introduce a first
extra field:

Cα = dψα − Ψα + d0eα
βψβ + c1eβ(2)ψ

αβ(2), δψα(3) = ζα(3) (28)
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Then, to construct a gauge-invariant object for this field, one must introduce the second one and
so on. This results in the infinite set of zero-forms with the corresponding gauge-invariant objects:

Cα(2k+1) = dψα(2k+1) − Ψα(2k+1) +
dk

(2k + 1)
eα

βψα(2k)β + ck+1eβ(2)ψ
α(2k+1)β(2)

+
ck

k(2k + 1)
eα(2)ψα(2k−1) (29)

where
δψα(2k+1) = ζα(2k+1)

Now, we have an infinite set of one-form and zero-form fields and their gauge-invariant two and
one forms. This allows us to rewrite the Lagrangian in the explicitly gauge-invariant form:

L = − i
2

∞

∑
k=0

(−1)k+1Fα(2k+1)Cα(2k+1) (30)

As in the bosonic case, each term is separately gauge-invariant while the specific values of all
coefficients are determined by the extra field decoupling condition:

δL
δψα(2k+1)

= 0, 1 ≤ k ≤ ∞

2.3. Infinite Spin Supermultiplet

It is interesting (see e.g., [1]) that, similarly to the usual massless and massive fields, such massless
infinite spin fields can also form supermultiplets. In d = 3, the minimal supermultiplets contain just
one bosonic and one fermionic field. Due to the tight relation with gauge-invariant formulation for
the massive higher spin fields and supermultiplets, here we will heavily use the results of our recent
paper [20]. The main difference (besides the infinite set of components) is the essentially different
expressions for the coefficients ak and ck.

The general strategy will be to find the explicit form of the supertransformations for all fields
such that all gauge-invariant two and one forms transform covariantly and to check the invariance
of the Lagrangian. Let us begin with the bosonic fields. For the general case k ≥ 2, we will use the
following ansatz:

δΩα(2k) = iρkΨα(2k−1)ζα + iσkΨα(2k)βζβ

δΦα(2k) = iαkΨα(2k−1)ζα + iβkΨα(2k)βζβ (31)

and require that the corresponding two-form transform covariantly:

δRα(2k) = iρkF α(2k−1)ζα + iσkF α(2k)βζβ

δT α(2k) = iαkF α(2k−1)ζα + iβkF α(2k)βζβ (32)

First of all, this gives us an important relation

c0
2 = 6a0

2 (33)

Recall that the parameters a0 and c0 are the main dimension-full parameters that determine the
whole construction for the bosonic and fermionic fields. So this relation plays the same role as the
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requirement that masses of bosonic and fermionic fields in the supermultiplet must be equal. Further,
we obtain explicit expressions for all parameters

αk
2 = kα̂2, βk

2 =
(k + 1)

2k(2k + 1)
α̂2

σk
2 =

3a0
2

4k(k + 1)2 α̂2, ρk
2 =

3a0
2

8k3(k + 1)(2k + 1)
α̂2

where α̂ is an arbitrary parameter that can be fixed by the normalization of the superalgebra.
For the three bosonic components that require separate consideration, we obtain:

δΩα(2) = iρ1Ψαζα + iσ1Ψα(2)βζβ − i
√

3a0
2

4
α̂eα(2)ψβζβ

δA =
iα̂
2

Ψαζα +
i
√

3a0

2
α̂ψαeαβζβ, δϕ = −i

√
3a0α̂ψαζα (34)

At last, the supertransformations for the zero-forms look like:

δBα(2k) = iσkψα(2k)βζβ + iρkψα(2k−1)ζα

δπα(2k) = iβkψα(2k)βζβ + iαkψα(2k−1)ζα (35)

where all coefficients αk, βk, ρk and σk are the same as above.
Now, let us turn to the fermionic components. For the general case k ≥ 1, we will consider the

following ansatz:

δΨα(2k+1) =
αk

(2k + 1)
Ωα(2k)ζα + 2(k + 1)βk+1Ωα(2k+1)βζβ

+γkΦα(2k)ζα + δkΦα(2k+1)βζβ (36)

Then, the requirement that the corresponding two-forms transform covariantly:

δF α(2k+1) =
αk

(2k + 1)
Rα(2k)ζα + 2(k + 1)βk+1Rα(2k+1)βζβ

+γkT α(2k)ζα + δkT α(2k+1)βζβ (37)

gives us the same relation on the parameters a0 and c0 as before and also gives:

γk
2 =

3a0
2

4k(k + 1)2(2k + 1)2 α̂2

δk
2 =

3a0
2

2(k + 1)(k + 2)(2k + 3)
α̂2

Again, there are a couple of components that need to be considered separately:

δΨα = 2β1Ωαβζβ + δ0Φαβζβ + a0α̂eβ(2)B
β(2)ζα +

√
3a0α̂Aζα −

√
3a0

2
α̂ϕeα

βζβ

δψα =
2
√

3
3

α̂Bαβζβ +
a0

2
α̂παβζβ +

α̂

2
ϕζα (38)
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At last, for the Stueckelberg zero-forms, we obtain:

δψα(2k+1) =
αk

(2k + 1)
Bα(2k)ζα + 2(k + 1)βk+1Bα(2k+1)βζβ

+γkπα(2k)ζα + δkπα(2k+1)βζβ (39)

where all parameters αk, βk, γk and δk are the same as before.
We have explicitly checked that the sum of the bosonic and fermionic Lagrangians is invariant

under these supertransformations up to the terms proportional to the auxiliary fields Bα(2) and πα(2)

equations in the same way as in the case of massive higher spin supermultiplets [20].

3. Infinite Spin Fields in d = 4

Similarly to the three-dimensional case in d = 4, there exist just one bosonic and one
fermionic infinite spin representation corresponding to the completely symmetric (spin-)tensors.
Metric-like gauge-invariant Lagrangian formulation (valid also in d > 4) has been constructed
recently [9,10]. Frame-like Lagrangian formulation can be straightforwardly obtained from the
frame-like gauge-invariant formalism for the massive completely symmetric (spin-)tensors developed
in [21]. These results will be presented elsewhere.

The complete set of the gauge-invariant objects for the massive bosonic higher spin fields in d ≥ 4
has been constructed in [22]. It requires the following three sets of fields:

Φμ
a(k),b(l), Sa(k),b(l) 0 ≤ k ≤ s − 1, 0 ≤ l ≤ k

Wa(k),b(l) k ≥ s, 0 ≤ l ≤ s − 1

where notation Φμ
a(k),b(l) means that local indices correspond to the Young tableau with two rows.

Thus, we have two finite sets of gauge one-forms and Stueckelberg zero-forms as well as an infinite
number of gauge-invariant zero-forms. As in the three-dimensional case, one can try to consider the
limit where spin goes to infinity and mass goes to zero, but in d > 3 it appears to be a rather involved
task. As for the analogous formulation for the massive fermionic higher spin fields, to the best of our
knowledge, it still remains to be elaborated.

As is quite well known, in d = 4, there exist two types of massive higher spin N = 1
supermultiplets corresponding to the integer or half-integer superspins:⎛⎜⎝ s + 1

2
s s′

s − 1
2

⎞⎟⎠
⎛⎜⎝ s + 1

s + 1
2 s + 1

2
s

⎞⎟⎠
Their explicit Lagrangian description was constructed in [23] using gauge-invariant description for

massive bosonic and fermionic higher spin fields. The main idea was that the massive supermultiplet
can be constructed out of the appropriately chosen set of massless supermultiplets. The decomposition
of these two massive supermultiplets into the massless one is as follows:⎛⎜⎝ Φs+ 1

2

As Bs

Ψs− 1
2

⎞⎟⎠ ⇒
s

∑
k=1

⎛⎜⎝ Φk+ 1
2

Ak Bk
Ψk− 1

2

⎞⎟⎠ ⊕
(

Φ 1
2

z

)

⎛⎜⎝ As+1

Φs+ 1
2

Ψs+ 1
2

Bs

⎞⎟⎠ ⇒
(

As+1

Ψs+ 1
2

)
⊕

s

∑
k=1

⎛⎜⎝ Φk+ 1
2

Ak Bk
Ψk− 1

2

⎞⎟⎠ ⊕
(

Φ 1
2

z

)
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It was crucial for the whole construction that each pair of bosonic fields with equal spins must
have opposite parities and one has to consider a kind of duality mixing between these fields. Moreover,
such mixing arises already at the massless supermultiplets level so that even in the massless infinite
spin limit these pairs do not decouple and we still have two infinite spin bosonic and two infinite
spin fermionic components. It is still possible that by abandoning parity one can construct the
supermultiplet containing just one bosonic and one fermionic field but it remains to be checked.

The mixing angles for the bosonic components take rather different values for the two types of
supermultiplets but as can be seen from their explicit expressions in [23], in the infinite spin limit, they
all become equal. At the same time, the main structural difference between them—the presence of
the left most multiplet (As+1, Φs+1/2)—in the infinite spin limit disappears, so both types of massive
supermultiplets produce the same result (up to some field re-definitions).

4. Infinite Spin Fields in d ≥ 5

Contrary to the three- and four-dimensional cases in d ≥ 5, there exists an infinite number of
such infinite spin representations. Let us briefly reiterate how their classification arises [1]. For the
massless fields, we have pμ

2 = 0 and by the Lorentz transformations one can always bring this vector
to the canonical form pμ = (1, 0, . . . , 0, 1). This leads to the so-called little group (i.e., group of
transformations leaving this vector intact) that, besides the group SO(d − 2), contains pseudo
translations Ti, i = 1, 2, . . . , d − 2 that are specific combinations of spatial rotations and Lorentz
boosts. Usual finite helicity massless representations correspond to the case where all Ti = 0 while to
construct infinite spin representations one can follow the same root as for the Poincare group itself.
Namely, one can consider eigen vectors for these pseudo translations Ti|ξi >= ξi|ξi >, ξi

2 being
invariant. By using SO(d − 2) transformations, one can always bring such a vector to the form
(1, 0, . . . , 0) and this, in turn, leads to the so-called short little group SO(d − 3), leaving this vector
intact. Thus, infinite spin representations are determined by the corresponding representations of this
short little group.

Now, it is clear that for the d = 3 and d = 4, this short little group is trivial; that is why we have
just one bosonic and one fermionic representation while in d ≥ 5 there exists an infinite number of them.
For example, in d = 5 and d = 6, such representations can be labeled by the parameter l taking integer
l = 0, 1, 2, . . . or half integer l = 1

2 , 3
2 , . . . values for the bosonic and fermionic cases correspondingly.

Lagrangian formulation for such representations can be obtained from the frame-like gauge-invariant
formulation for the massive mixed symmetry bosonic and fermionic fields corresponding to the Young
tableau Y(k, l) with two rows developed in [24–26]. Namely, one has to consider a limit where mass
goes to zero, k goes to infinity while l remains fixed. This construction will be presented in the
forthcoming publication, so here let us just illustrate how the spectrum of such representations appears
(by the spectrum, we mean a collection of usual massless fields that we have to combine to obtain an
infinite spin one).

The completely symmetric case considered before corresponds to the l = 0 and has the following
spectrum (dot stands for the scalar field):

· . . .

For the first non-trivial case l = 1, we will have two infinite chains of components:

. . .

. . .
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The first line begins with the anti-symmetric second rank tensor, then it contains a hook and the
whole set of long hooks, while in the second line we again have completely symmetric tensors starting
with the vector field this time.

Let us give here one more concrete example for l = 3:

. . .

. . .

. . .

. . .

Hopefully, the general pattern is clear now. In general, in the upper left corner, we have a
rectangular diagram with length l. Moving to the right, we add one box to the first row, while moving
down we cut one box from the second row until we end again with the completely symmetric tensors
in the bottom line.

5. Conclusions

Thus, we have seen that the same frame-like gauge-invariant formalism that has been developed
for the description of massive higher spin fields can be successfully applied to the massless infinite
spin case as well providing an explicit realization for the general idea that massless infinite spin
representations can be obtained as an appropriate limit from the massive ones. As we have already
noted, the presence of the dimensionful parameter gives hope that it may be possible to consider
interactions for such fields directly in the flat space without any need to go to the anti de Sitter
space. A close relationship between the frame-like gauge-invariant description for the massive higher
spin fields and massless infinite spin fields means that we can try to use the same technique for the
construction of possible interactions, as in the massive case. At the same time, it means that we must be
ready to face the same technical difficulties as we have seen in our attempts to work with the massive
high spin fields.
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