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Preface to “Special Functions with Applications to
Mathematical Physics”

This MDPI booklet lists the articles published in the Special Issue of the journal Mathematics
devoted to special functions with applications in mathematical physics in the years 2020-2021.
The call for papers considered theories and applications of high transcendental functions,

including topics found mainly in the list of keywords:

- Mittag-Leffler and related functions, and their applications in mathematical physics;
- Wright and related functions and their applications in mathematical physics;
- Exponential integrals and their extensions with applications in mathematical physics;

- Generalized hypergeometric functions and their extensions with applications.

However, the Special Issue were not limited to the above list, for example, when the content of a
paper was clearly related to some high transcendental functions and their applications.

Special attention was reserved for distinct functions exhibiting some relevance in the framework
of the theories and applications of the fractional calculus and in their visualization through
illuminating plots.

Both research and survey articles were included in this booklet, according to the content list.

Francesco Mainardi
Editor
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Asymptotic Expansion of the Modified Exponential
Integral Involving the Mittag-Leffler Function

Richard Paris
Division of Computing and Mathematics, Abertay University, Dundee DD1 1HG, UK; r.paris@abertay.ac.uk
Received: 21 February 2020; Accepted: 10 March 2020; Published: 16 March 2020

Abstract: We consider the asymptotic expansion of the generalised exponential integral involving
the Mittag-Leffler function introduced recently by Mainardi and Masina [Fract. Calc. Appl. Anal. 21
(2018) 1156-1169]. We extend the definition of this function using the two-parameter Mittag-Leffler
function. The expansions of the similarly extended sine and cosine integrals are also discussed.
Numerical examples are presented to illustrate the accuracy of each type of expansion obtained.

Keywords: asymptotic expansions; exponential integral; Mittag-Leffler function; sine and cosine
integrals

MSC: 26A33; 33E12; 34A08; 34C26

1. Introduction
The complementary exponential integral Ein(z) is defined by

z 1 _ p—t _\n—1,n
Ein(z):/o 1-e dt:Z(LTZ (ze Q) (1)

t n=1

and is an entire function. Its connection with the classical exponential integral & (z) = j;o tle~tdt,
valid in the cut plane | arg z| < 7, is [1], p. 150.

Ein(z) = log z + 7 + &1(z), (2)

where v = 0.5772156.. .. is the Euler-Mascheroni constant.
In a recent paper, Mainardi and Masina [2] proposed an extension of Ein(z) by replacing the
exponential function in (1) by the one-parameter Mittag-Leffler function

?1

; Fan 1) (zeC, a>0),

which generalises the exponential function e*. They introduced the function for any « > 0 in the cut
plane |arg z| < 7

i _ Zl*Ea(ft”‘ o ( )n an+1
Em"‘(z)i/o ti ; an+ 1) (an+a+1) ®)

which when & = 1 reduces to the function Ein(z). A physical application of this function for 0 < a <'1
arises in the study of the creep features of a linear viscoelastic model; see Reference [3] for details. An
analogous extension of the generalised sine and cosine integrals was also considered in Reference [2].
Plots of all these functions for a € [0,1] were given.

Mathematics 2020, 8, 428; doi:10.3390 / math8030428 www.mdpi.com/journal /mathematics
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Here we consider a slightly more general version of (3) based on the two-parameter Mittag-Leffler
function given by

Enp(z) = ;r(#lﬁ) (zeC, a>0),

where B will be taken to be real. Then the extended complementary exponential integral we shall

consider is
ZliE"‘/S(i / pan—a gy
(an + T(an+ B)

Einm}g(z) :/0 71:“

Mz

n=1

o (=)=
; an+1)T(an+a+ B) ’ @

upon replacement of # — 1 by # in the last summation. When f = 1 this reduces to (3) so that
Ein, 1(z) = Eing(z).

The asymptotic expansion of this function will be obtained for large complex z with the parameters
«, B held fixed. We achieve this by consideration of the asymptotics of a related function using the
theory developed for integral functions of hypergeometric type as discussed, for example, in Reference
[4], §2.3. An interesting feature of the expansion of Ein, g(x) for x — +oo when a € (0,1] is the
appearance of a logarithmic term whenever a =1, %, %, ... . Similar expansions are obtained for the
extended sine and cosine integrals in Section 4. The paper concludes with the presentation of some
numerical results that demonstrate the accuracy of the different expansions obtained.

2. The Asymptotic Expansion of a Related Function for |z| — oo

To determine the asymptotic expansion of Ein, g(z) for large complex z with the parameters «
and f held fixed, we shall find it convenient to consider the related function defined by

_y X" R Y
F(x) = n;() (an+y)T(an+a+pB) nzzog( ) n! (x€C), ®)
where T(n+1) Tt )T+

g(n) = (an+y)T(an+a+B) Tlan+y+DT(an+a+p)’

It is readily seen that, when y =1,
Ein, g(z) = z F(—z").

The parameter iy > 0, but will be chosen to have two specific values in Sections 3 and 4; namely, ¥ = 1
and v = 1 + a. It will be shown that the asymptotic expansion of F(x) consists of an algebraic and an
exponential expansion valid in different sectors of the complex x-plane.

The function F(x) in (5) is a case of the Fox-Wright function

i Hle T(an+ay) x"

AT, (B + b) 7 ©

p\Pq(X) =

corresponding to p = q = 2. In (6) the parameters «, and B, are real and positive and a, and b, are
arbitrary complex numbers. We also assume that the «, and a, are subject to the restriction

wn—+ar #0,-1,-2,... (n=0,1,2,...;1<r<p)
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so that no gamma function in the numerator in (6) is singular. We introduce the following parameters
associated (empty sums and products are to be interpreted as zero and unity, respectively) with ,%;(x)
which play a key role in the analysis of its asymptotic behaviour. are given by

q 14 P q B
KZ]"’Z,B;'*Z“Y/ h:H“;ﬂfcyH,Br 7/
r=1 r=1 r=1 r=1
P q
0=Ya-Y b+i@q-p, O=1-0 @)
r=1 r=1

The asymptotic expansion of F(x) is discussed in detail in Reference [5] Section 12, and is
summarised in [4,6]. The algebraic expansion of F()) is obtained from the Mellin-Barnes integral
representation [4], p. 56.

ds,  Jarg(—x)| < m(1- 3a),

1 et T(—s)I (14 s)(xe™)®
FOo = 2mi /cfooi (as + 7)T(as +a + B)

where, with —y/a < ¢ < 0, the integration path lies to the left of the poles of I'(—s) ats =0,1,2,...
but to the right of the polesats = —y/aands = —k—1,k =0,1,2,.... The upper or lower sign is
taken according as arg x > 0 or arg x < 0, respectively. It is seen that when a = y/m, m = 1,2,...
the pole at s = —m is double and its residue must be evaluated accordingly. Displacement of the
integration path to the left when 0 < a < 2 and evaluation of the residues then produces the algebraic
expansion H(xe¥7), where

/0 X o (= )k k=1 ¥
sinyrt/a T(aw+ B —1y) +k§ (v —a(k+1))T (B — ak) (a # m)

H(x) = (8)
(_)m—lx—m m ) _\ky—k—1 oy
m{;logxw(ﬂﬁfv)% kgﬂ RS

k#m—1

and ¥ denotes the logarithmic derivative of the gamma function.
The exponential expansion associated with ,'¥;(x) is given by [6] p. 299, [4] p. 57.

E(n) =X Y AXT, X =x(hy)', ©)
=0

where the coefficients A jare those appearing in the inverse factorial expansion

1 ]_[f:1 I(arn+ ay)
T(1+s) [T, T(Bm+1by)

T L (O (10)
0 S T+ +)) ' Tlks+ 0+ M)

with ¢g = 1. Here M is a positive integer and pp(s) = O(1) for |s| — oo in |arg s| < 7. The constant
A is specified by

1 1 g P a,—1 4 1 p,
Ap = (27-[)2(?*‘7);(*7* Ha, b Hﬁ,z .
r=1 r=1

The coefficients cjare independent of s and depend only on the parameters p, g, a;, B, a, and b;.
For the function F(x), we have

k=a h=a% O9=-a-§ Ag=a"l.
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We are in the fortunate position that the normalised coefficients ¢; in this case can be determined
explicitly as ¢; = (a +  — 7);. This follows from the well-known (convergent) expansion given in
Reference [4,7], p. 41.

1 g po),

(as + 7)) (as +a+ p) = I'(as + ¢ + ) (R(s) > =7/w), (1D

to which, in the case of F(x), the ratio of gamma functions appearing on the left-hand side of (10)

reduces. Then, with X = x!/% we have from (9) the exponential expansion associated with F()
given by
1 & »
E(x) = X exp [ ) (w+p—y)x " (12)
j=0

From Reference [4] pp. 57-58, we then obtain the asymptotic expansion for |x| — oo when
0<a<2
E(x)+ H(xe™™) |arg x| < jra
E(x) ~ (13)
H(xe ™) larg(—x)| < (1 - 3a)

and, when o = 2, , 4
F(x) ~E(x) + E(xe™™) + H(xe™™)  |arg x| < 7. (14)

The upper and lower signs are chosen according as arg x > 0 or arg x < 0, respectively. It may
be noted that the expansions &(xeT2™) in (14) only become significant in the neighbourhood of
arg x = 7. When a > 2, the expansion of F()) is exponentially large for all values of arg x (see
Reference [4], p. 58) and accordingly we omit this case as it is unlikely to be of physical interest.

Remark 1. The exponential expansion & (x) in (13) continues to hold beyond the sector | arg x| < 17, where
it becomes exponentially small in the sectors T < | arg x| < %mx when 0 < o < 1. The rays arg x = £
are Stokes lines, where € (x) is maximally subdominant relative to the algebraic expansion H(xe™™). On these
rays, £(x) undergoes a Stokes phenomenon, where the exponentially small expansion “switches off” in a smooth
manner as | arg x| increases [1], §2.11(iv), with its value to leading order given by 1£(x); see Reference [8]
for a more detailed discussion of this point in the context of the confluent hypergeometric functions. We do not
consider exponentially small contributions to F(x) here, except to briefly mention in Section 3 the situation
pertaining to the case & = 1.

3. The Asymptotic Expansion of Ein, g(z) for |z| — oo

The asymptotic expansion of Ein, g(z) defined in (4) can now be constructed from that of F(x)
with the parameter y = 1. It is sufficient, for real &, B, to consider 0 < arg z < 7, since the expansion
when arg z < 0 is given by the conjugate value. With y = —z* = ¢~™z%, the exponentially large sector
|arg x| < 37a becomes | — 7 + warg z| < ma; thatis

T
Oy <argz <6+, 0y := E(fox). (15)

On the boundaries of this sector the exponential expansion is of an oscillatory character.
When 0 < & < %, we note that the exponentially large sector (15) lies outside the sector of interest
0<argz <.
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We define the algebraic and exponential asymptotic expansions

sin(n/uc)?/(ZJrﬁ -1) ﬂé a- i{ﬁﬁ};?&l k) (& #m™)
Hyp(z) = (<t . (< hgtoaterD) i (16)
Tagpon sz platp-1}+ k);) A a(ks DTG _al) =™ ),
ktm—1
where m = 1,2,...,and
Euplz) = (e7ez)” exp [e77/%z i (a+B—1);(e ™/ %z)7 (17)

o

where we recall that @ = —a — . Then the following result holds:

Theorem 1. Let m be a positive integer, with « > 0 and B real and 6y = 71(2 — «) / (2a). Then the following
expansions hold for |z| — co

Eing g(z) ~ Hyp(2) (0<argz<m) (18)
when 0 < & < % and
H, 5(2) (0 <argz <t

Ein, 3(z) ~ (19)
zEp(2) + Hyp(z) (60 < argz < 1)

when % < & < 2. Finally, when a = 2 we have Einy g(—z) = —Einy 4(z) and it is therefore sufficient to
consider 0 < arg z < %n. Then, from (14), we obtain the expansion when « = 2

Einz/ﬁ(z) ~ 2{52,/5(2) + Ez,ﬂ(zem)} + Hz,ﬁ(z) (0<argz< %71) (20)

We note from Theorem 1 that when z — —oo the value of Einﬂwg(z) is, in general, complex-valued.
In the case of main physical interest, when z = x > 0 is a real variable, we have the following
expansion:

Theorem 2. When z = x (> 0) we have from Theorem 1 the expansions

Eina,ﬁ(x) ~ Ha,lg(x) (21)
for 0 <« < 2,and from (17) and (20) when « = 2
(14 )
Eing g(x) ~ Hp g(x x~ 1P Z 'B cos [x — %7‘[(,3 +7)] (22)
j=

as x — +o0.

It is worth noting that a logarithmic term is present in the asymptotic expansion of Ein, g(x)
whenever « = 1, %, %,. e
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The Case x = 1

The special case & = 1 deserves further consideration. From (16) and (21) we obtain the expansion

oo _ 2\ —k
Eing g(x) ~ %{log x—9(B)} — k; % (x = +o0). (23)

If B = 1, the asymptotic sum in (23) vanishes and
Eing 1(x) ~ log x + 7 (24)

for large x. But we have the exact evaluation (compare (2))

n

I N
Eml,l(x)*xn;)m*bg x+ 7+ &(x)
e & ()]
~log x + 7+ N ];) J (x = +o0) (25)

by Reference [1], (6.12.1). The additional asymptotic sum appearing in (25) is exponentially small as
X — 400 and is consequently not accounted for in the result (24).

From Remark 1, it is seen that there are Stokes lines at arg z = £77(1 — «), which coalesce on the
positive real axis when a = 1. In the sense of increasing arg z in the neighbourhood of the positive
real axis, the exponential expansion & 4(z) is in the process of switching on across arg z = 71(1 — «)

and &) g(z) (where the bar denotes the complex conjugate) is in the process of switching off across

arg z = —7t(1 — «). When a = 1, this produces the exponential contribution
—_— e ¥ e (=)*(B);
%x{glrﬁ(x) + 51,5(x)} = 5 cos B 2 7]]
x =0 x
for large x. Thus, the more accurate version of (23) should read
. 1 @ (—x)7k e = (=)(B);
E ~ —{log x — -y = C R L) 26
lnlrﬁ(x) r(ﬁ){ Og x 1‘/](;3)} kgl kr( o k) Xﬂ cos TC‘B ];) X] ( )

as x — +o00. When 8 = 1, this correctly reduces to (25).
When § = 2, we have [9]

Eing(x) = xé% =log x — (2) + % +&(x) - ?

1, e & ()
Nlogx—zp(Z)—i-;—&—T]; i (x = +o0).

This can be seen also to agree with (26) after a little rearrangement.

4. The Generalised Sine and Cosine Integrals

The sine and cosine integrals are defined by [1], §6.2,

. Zsint . Z1—cost
Si(z) 7/0 Tdt' Cin(z) 7/0 fdt.



Mathematics 2020, 8, 428

Mainardi and Masina [2] generalised these definitions by replacing the trigonometric functions by

(7)nt(2n+1)a¢

) o ny2nu
ing () = t*Ey, =y W(B) = Eop g(—12%) = ()
sing (t) 2wa+p(—t) ,;)T(Zm’é—&-tx—i-ﬁ) cos (t) = Epgp(—t) n;() T(2na 1 B)

with B = 1 to produce

. o [Fsing(t) & (—)nz2na+1
Siny(2) = [ =% B
27)
. @ 1l—cos(t) ;& (—)nz2natatl
Cm,x(z)—/o Tdt_n;o(2noc+n¢+1)l"(2m+2a+1) )

Here we extend the definitions (27) by including the additional parameter g € R in the Mittag-Leffler
functions and consider the functions

. B 0 (_)nZanx
Singp(z) = an) (2na + 1) (2na +a + )
(28)
. - X o (7)n22na
Cingp(z) =z'* r;) (2na+a+ DT (2na+2a+p)

The asymptotics of Sin, g(z) and Cin, g(z) can be deduced from the results in Section 2. However,
here we restrict ourselves to determining the asymptotic expansion of these functions for large |z|
in a sector enclosing the positive real z-axis, where for 0 < a < 1 they only have an algebraic-type
expansion. We observe in passing that

Sina,ﬁ (Z) = EinZa,ﬁﬂ! (Z) (29)

Comparison of the series expansion for Sin, 5(z) with F(x) in Section 2, with the substitutions
« — 2, — B —aand v = 1 (or from the above identity combined with Theorems 1 and 2), produces
the following expansion:

Theorem 3. Form =1,2,...and 0 < a < 1 we have the algebraic expansions
Sin, g(2)

7'(/(20() ) (7)kzl—2a(k+l)

sin(7r/ (2a))T (a+B—1) +k§) (1—2a(k+1))T(B— (2k+ D)) (a # (2m)~1)

N -t o (—)kzl-2a(k+1) B (30)
Marp sz ¥etp-Di+ Y oy re- @ o ¢~ %)
k#m—1

as |z| — oo in the sector | arg z| < (1 —wa)/(2a).

A similar treatment for Cin, g(z) shows that with the substitutions & — 2«, f — Band ¥ =1+«
we obtain the following expansion:

Theorem 4. Form =1,2,...and 0 < « < 1 we have the algebraic expansions

Cin, 4(z)
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7(/(21)6) ) (_)kzlf(2k+1)a

cos(m/(2u))T (a+p—1) ZO (1 —(2k+1)a)I'(p — 2ak)

~ ( ) (7)kzl—(2k+l)a (31)
W{l"gz ylatp-1+ Z T @ Dot 2l “- @D
k#m 1

(a# (2m—-1)"1)

as |z| — oo in the sector | arg z| < (1 —a)/(2a).

The expansions of Sin, g(x) and Cin, g(x) as x — +oco when 0 < a < 1 follow immediately from
Theorems 3 and 4.

As x — +o00o when a = 1, the exponentially oscillatory contribution to Sin 4(x) can be obtained
directly from (22) together with (29). In the case of Cin; g(x), we obtain from (9) with x =2, h = %,
8 =-2-p,X=x"2and Ay = ] the exponential expansion

1 © . o
S(X) _ E)(19/2(_3)(13 [Xl/Z} ZC/'X 1/2’ x=e me’
j=0

with the coefficients ¢; = (B);. Then the exponential contribution to Ciny g(x) is
2{EG) +E(re™) *ﬁz coslx— m(B+))] (x> +oo).

Collecting together these results we finally obtain the following theorem.

Theorem 5. When o = 1 and B is real the following expansions hold:

oo (= )ex—2-1
Siny (x) kzo zk+1 (B—1-2k)
-t,-x*ﬁi(ﬁ—.)j sin [x—%n’(ﬁ +7)] (32)
=
and 1 o (Lyky2k
Cinp(x) ~ gy {log = (B)} - k_Zl 2T (B —26)
_x*ﬁi(i?j cos [x— %7‘[(‘3 +])] (33)
=
as x — —+oo.

When g > 0, it is seen that Sin g(x) approaches the constant value 7t/ (2I'(8)) whereas Ciny g(x)
grows logarithmically like log (x)/T(B) as x — +oo.

5. Numerical Results

In this section we present numerical results confirming the accuracy of the various expansions
obtained in this paper. In all cases we have employed optimal truncation (that is truncation at, or near,
the least term in modulus) of the algebraic and (when appropriate) the exponential expansions. The
numerical values of Ein, 4(x) were computed from (4) using high-precision evaluation of the terms in
the suitably truncated sum.

We first present results in the physically interesting case of 0 < # < 1 and p = 1 considered
in Reference [2]. Table 1 shows the values (In the tables we write the values as x(y) instead of x x 10Y.)
of the absolute relative error in the computation of Ein,;(x) from the asymptotic expansions in
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Theorem 2 for several values of x and different « in the extended range 0 < a < 2. The expansion
for 0 < a < 2 is given by the algebraic expansion in (21); this contains a logarithmic term for the
values & = i, %, 1. The progressive loss of accuracy when « > 1 can be attributed to the presence
of the approaching exponentially large sector, whose lower boundary is, from (15), given by 6y =
71(2 — &)/ (2a). In the final case a = 2, the accuracy is seen to suddenly increase considerably. This is
due to the inclusion of the (oscillatory) exponential contribution, which from (22), takes the form

Eing 1 (x) ~ LSRN —— cos(x — 1)) (x = 4o0).

In Figure 1 we show some plots of Ein, 1 (x) for values of « in the range 0 < « < 1. In Figure 2 the
asymptotic approximations for two values of « are shown compared with the corresponding curves of
Ei-ntx,l (x ) .

5 -
L a=10

0.25
4r 0.50

0.75
3r 1.00
2;
e

X
2 4 6 ] 10

Figure 1. Plots of Ein, 1 (x) for different values of .

Table 1. The absolute relative error in the computation of Ein,, 4(x) from Theorem 2 for different values
of a and x when § = 1.

X « = 0.25 « = 0.40 « = 0.50 « = 0.75 « = 1.00

5 1.602x107% 1678 x107° 2012x107% 2115x10°* 5249 x 1074
10 5733x1077 1.735x1077 4413x1077 2339x 1077 1.442x10°°
20 3.680x1071 3031 x1071 6526 x10712 9362x 10712 2753 x 10~
30 1.808x 10710 9384x 10716 1543 x10°1 1337 x10°1 7595 x 1016

X « = 1.20 « = 1.40 « = 1.60 « = 1.80 a = 2.00

5 1121 x 1073 1301 x107% 5279x107° 1407 x1072 1550 x 1073
10 4345x10°° 3168x107° 2103x107% 1536 x107*% 2.849 x10°°
20 2147 x10710  2277x107% 1671 x107® 4751 x107° 4926 x 10710
30 4388x1071% 2363x1071  2125x107% 6216 x107% 1.613x 10714
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Lo - a =075 Lof z

(a) (b)

Figure 2. Plots of Ein, 1 (x) (solid curves) and the leading asymptotic approximation (dashed curves)
for (a) « = 0.75and (b) « = 1.

Table 2 shows the values of the absolute relative error in the computation of Ein, g(z) from the
asymptotic expansions in Theorem 1 for complex z for values of « in the range 0 < a < 2. It will
noticed that there is a sudden reduction in the error when « = 1 and 6 = 71/4. In this case, the value of
0y = %7‘[ and a more accurate treatment would include the exponentially small contribution z&, (z).
When this term is included we find the absolute relative error equal to 6.935 x 10711,

Table 2. The absolute relative error in the computation of Ein, 4(z) from Theorem 1 for different « and
6 when z = 20¢® and 8 = 1/3.

0 a = 0.40 a = 0.50 « = 1.00 a = 1.50 a = 2.00

0 2400 x 1078 5494 x 10710 2702 %107 1572 x107¢ 5.119 x 1010
/4  2553x10°%  1.820x107? 1.142x 1077 1202x10°% 8204 x10°®
/2 3.026x107% 4057 x1077 1756 x 10710 2,021 x107®  3.684 x 1077
3/4 3.897x107%  8.028x1077 1.423x1077 2.320x 1077 8204 x 1078
b 5398 x 1078  1.617x107% 6457 x107? 3.005x 1073 5.119 x 1010

Finally, in Table 3 we present the error associated with the expansions of the generalised sine
and cosine integrals Sin, g(x) and Cin, g(x) as x — +oo given in Theorems 3-5. For Sin, 4(x), the
logarithmic expansion in (30) arises for « = 1 and « = ; for Cin, g(x) the logarithmic expansion in
(31) arises for a = % In Figure 3 are shown plots (We remark that the plot of Cin, (x) in Figure 3b
differs from that shown in Figure 4 of Reference [2].) of Sin, 1 (x) and Cin, 1 (x) for different a and in
Figure 4 the leading asymptotic approximations from the expansions in Theorem 5 are compared with
the corresponding plots of these functions.

In conclusion, it is worth mentioning that the function Eina,ﬁ (z), and also the generalised sine and
cosine integrals, can be extended by using the three-parameter Mittag-Leffler function (or Prabhakar
function) defined by

P (7) = .- ©)n 2"
Eﬂrﬁ( ) 7E‘bl"(om-f—ﬁ) n!’

A comprehensive discussion of this function and its applications can be found in Reference [10]; see
also Reference [6] Section 5.1, for details of its large-z asymptotic expansion.

10
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Table 3. The absolute relative error in the computation of Sin, 4(x) and Cin, 4(x) from Theorems 3-5
for different « and x when g = 4/3.

Sin, g (x)
X a=1/4 a=1/3 a=1/2 a=2/3 a=1
10 4.396x1077  1.394x 1078  1.785x107° 3410 x10~°  1.012 x 10~
20 3213x1071 1171 x 10718 3920 x 10711 2,076 x 1078 3.094 x 10~
25 2373x1071% 3792 x 1071 2098 x 10713 4437 x 10710 3270 x 1012
30 1.879x1071° 5065x10°1 1.172x1071° 8197 x10712 8010 x 10~ 1°
Cin, g(x)
x a=1/4 x«=1/3 a=1/2 a=2/3 a=1
10 9237 x1078 3787 x1077  6.608 x 1077 2270 x 107> 7.756 x 107®
20 1293x10712 4473 x 10712 1.090 x 10~11 2462 x 10710 2576 x 1010
25 8.066x1071% 2334x1071¢ 5326x1071* 6881 x 10711 1.437 x 10712
30 1160 x 1071 9285x 10" 2764 x 1071 2934 x10712 7716 x 1015
3.5
a = 0.25
3.0
25 0.50
2.0 0.75
1.5 1.00
1.0
0.5
4 6 8 10
(a)

Figure 3. Plots of the generalised sine and cosine integrals (a) Sin,,1(x) and (b) Cin,1(x) for & =
0.25,0.50,0.75, 1.

0.5

a = 1.00

Figure 4. Cont.

11



Mathematics 2020, 8, 428

¢ a =025 3.0
3 2.5
Z 0.75 a = 100
4 e 20 J
7 p,
3 -~ Z L5
_z
2 10
1 05 ]
x / x
2 4 6 8 10 llZ 2 4 6 8 10 12
(0 (d)

Figure 4. Plots of the generalised sine and cosine integrals (solid curves) and their leading asymptotic
approximations (dashed curves) from Theorems 3, 4 and 5: (a) Sin,;(x) when a = 0.25,0.75,

(b) Sing 1 (x) when a = 1, (c) Cing 1 (x) when a = 0.25,0.75 and (d) Cin, 1 (x) when a = 1.
6. Conclusions

The large-z asymptotic expansions of the modified exponential integral Ein, 4(z) involving the
two-parameter Mittag-Leffer function have been determined by exploiting the known asymptotic
theory developed for integral functions of hypergeometric type, namely the Fox-Wright function.
The appearance of logarithmic terms in the expansion of Ein, g (x) for x — 4-co for certain values of
« € (0,1] is emphasised. Similar expansions have been obtained for the extended sine and cosine
integrals.
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Abstract: A real scalar variable integral is known in the literature by different names in different
disciplines. It is basically a Bessel integral called specifically Krétzel integral. An integral transform
with this Kritzel function as kernel is known as Krétzel transform. This article examines some
mathematical properties of Kritzel integral, its connection to Mellin convolutions and statistical
distributions, its computable representations, and its extensions to multivariate and matrix-variate
cases, in both the real and complex domains. An extension in the pathway family of functions is
also explored.

Keywords: Mellin convolutions; Kritzel integrals; reaction-rate probability integral; continuous
mixtures; Bayesian structures; fractional integrals; statistical distribution of products and ratios;
multivariate and matrix-variate cases; real and complex domains
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1. Introduction

In this paper, real scalar mathematical or random variables are denoted by small letters x, v, z, ...
and the corresponding vector/matrix variables are denoted by capital letters X, Y, .... Variables in the
complex domain are denoted with a tilde such as %, 7, X, Y.... Constant vectors/matrices are denoted
by capital letters A, B, ... whether in the real or complex domain. Scalar constants are denoted by 4, b, ....
If X = (x;;) is a p x q matrix where the x;;s are distinct real scalar variables, then the wedge product
of the differentials is denoted by dX = /\f:] /\;7:1 dx;j. If x and y are real scalar variables, then the
wedge product of their differentials is defined as dx A dy = —dy A dx so thatdx Adx = 0,dy Ady = 0.
If X is in the complex domain, then X = Xj +iX, where X, X, are real and i = /(—1). Then,
dX = dX; A dX,. The determinant of a p x p real matrix X is denoted by |X| or det(X) and when
in the complex domain the absolute value of the determinant is denoted by |det(X)|. The trace of a
square matrix A is denoted by tr(A). The integral

B .
/A f(X)dX - O<A<X<B f(X)dX

means a real-valued scalar function f(X) of the p x p real positive definite matrix X is integrated
out over X > O (positive definite), X —A > O,B—X > O,A > O,B > O where Aand Bare p x p
constant positive definite matrices. The corresponding integral in the complex domain is denoted
as jf f(X)dX.

Mathematics 2020, 8, 526; doi:10.3390 / math8040526 www.mdpi.com/journal /mathematics
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1.1. Kriitzel Integral

Let x be a real scalar variable. Consider the following integrals:

Ky = / e tdx,a> 0,6 > 0,7 >0 (1)
0

Ky = / e b4y 05 0,6 > 0,9 > 0,6 > 0,p > 0. 2)
JO

This K; in Equation (2) is known as the generalized Krétzel integral and Equation (1) as the basic
Kritzel integral. When § = 1 in Equation (2), we have the Laplace transform of x7 e 2" with
Laplace parameter a. For 6 = 1,p = % in Equation (2), we have the basic reaction-rate probability
integral in nuclear and solar neutrino astrophysics (see [1,2]). When § = 1,p = 1, the integrand
in Equation (1) is the inverse Gaussian density for appropriate values of a,b, ¥ and multiplied by a
normalizing constant. In addition, Equation (2) is a generalized situation of the same and Equation
(1) provides the moment expression for the inverse Gaussian density, multiplied by a normalizing
constant. Krétzel transform is associated with Equation (1) (see [3]). Some authors call Equation (2) as
the generalized gamma, ultra gamma, Bessel integral, etc. In [4], it is shown that in the simple poles
case it is a Bessel series and hence it is more appropriate to call it as a generalized Bessel integral.

The highlight of the present discussion is to point out the importance and usefulness of Kratzel
function in various topics in widely different areas and to consider its extensions of various types.
Kratzel integrals appear in Mellin convolution of product of two functions; in statistical distribution
theory as the density of a product of two independently distributed generalized gamma random
variables; in Bayesian analysis when the conditional and marginal densities belong to generalized
gamma densities; in model building, especially in the pathway models where the limiting forms end
up in Kratzel functions; in nuclear reaction-rate theory; and in inverse Gaussian models in stochastic
processes, to mention a few topics. Kratzel function is also associated with generalized gamma
and ultra gamma integrals, Kobayashi integrals and generalized special functions such as G- and
H-functions. In the present discussion, we also consider extensions of Kritzel function to multivariate
cases involving many scalar variables, matrix-variate cases in the real and complex domains and
extensions involving multiple integrals.

1.2. Evaluation of the Integral in Equation (2)

One can evaluate Equation (2) by using different approaches. One can interpret Equation (2)
as the Mellin convolution of a product and then take the inverse Mellin transform to evaluate the
integral. One can draw a parallel to the statistical density of a product of two positive real scalar
random variables and then evaluate the density to obtain the value of Equation (2). One can treat
Equation (2) as a function g(b) of b. Then, the Mellin transform of g(b) with Mellin parameter s is the
following for v > 0,6 > 0,4 > 0,b > 0,57 > 0:

M, (s) :/ bsfl{/ x”fle*‘”&*bxipdx}db
0 0

N / ) / " p1a e e b P gy p d,
Jo Jo
Integrating out b first and then x, we have the following:

/ e b db = T(s)x", R(s) > 0
0

16
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where R(-) means the real part of (-). That is,

My(s) = — T )a 5 ®

Taking the inverse Mellin transform of Equation (3) we have g(b) or the integral in Equation (2)
as the following;:

1 1 et Y, P [N
Ky = —— T(s)T (< + =8)(bas)~°ds,i = /(-1 4
2= v | TG+ o) (0af) s = /(1) @
where the c in the contour is > 0. Note that Equation (4) can be written as a H-function.

_ 1 ooq, e
Ko = 2 Hi [baf 01,1 ©)
For the theory and applications of the H-function, see [5]. When p = J, we have Equation (5)
reducing to a Meijer’s G-function as the following:

1
Ky = 57%@5;3 [l 1] - ©6)

For the theory and applications of G-function, see [6].

1.3. Computable Series form for Equation (2)

Consider the Mellin—-Barnes integral representation in Equation (4). This integral can be evaluated
as the sum of the residues at the poles of the gammas I'(s) and I'(X + £s). The poles of I'(s) are at
s =0, —1,—2,.... When the poles of the integrand are simple. then the sum of the residues at the poles
of I'(s) is the following:

(a) ooty 3 ST - G oty
v=0

v!
The poles of F( ) are at 7 + %s = —v,v=0,1,2,... or the poles are at s = f% — %v and in
the simple poles case the sum of the residues is the following:
b% > v ) s
7 s
— — —v)(abr).
4 V;o PP

Hence, the sum of residues from (A) and (B) in the simple poles case is the following:

oy EDYL e
Ky = (éa7) 1]/;0 T G v)(baf)"
bR (D) B e
+ V;O i F(f;f?/)(ubﬂ). @)

1.4. G-function in the Simple Poles Case

Let p = 0 so that the H-function in Equation (5) becomes the G-function in Equation (6) and when
1 is not an integer then the G-function has simple poles. Consider this case and it is available from
Equation (7) by putting 6 = p. Then, the gammas reduce to the following:

y r(-1)

)
’Y—]/ = an - )=
I =v dI( ) -1 (Z+1),

(—1)V(—% + 1)y

17
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where, in general, the notation (a),, = a(a+1)..(a+m —1),a # 0,(a)y = 1 is the Pochhammer
symbol. Hence, K; in Equation (2) for this simple poles case and for § = p is the following:

,
I(1) = I(—2)b? e
Ko = —5 (ab) + —° (ab)"
pa% vg(l (*Z + 1! P = ( +1 Juv!
r(3) I(~2)b?
= pl 0F1(?_1+1?“b)+7p01:1( +1;ab), )
oar 0 o P

where (F is a hypergeometric series with no upper and one lower parameters. Observe that, in this
simple poles case, Equation (2) or K, of Equation (8) is a linear function of Bessel series and hence it is
appropriate to call Equation (1) as Bessel integral and Equation (2) as the generalized Bessel integral
rather than calling them as ultra gamma integral or generalized gamma integral or anything connected
with gamma integral.

1.5. Poles of Order Two, p = 5,% =mm=1,2,..

In this case, the polesats = 0, —1, =2, ..., —(m — 1) are simple and poles ats = —m, —m — 1,... are
of order two each. In this case, we may write (2) as the following:

]_ ]_ c+ico
K = / - I(s)T(m+s)(ab)~*ds. )
par 12711 Je—ico
Sum of the residues at the poles s = 0, —1, ... — (m — 1), coming from (9), is the following:

o 2 —v)(ab)".

Fors = —-m—v,v=0,1,..ors = —v,v = m,m+1, ... the poles are of order two and the residue,
denoted by Ry, is the following: Let hi(s) = I'(s)I'(m + s)(ab)*. Then,

Ry = lim S [(s4v)N(s)I(m +5)(ab) ]
—1)2 2 _
= lim, G T e ()T )]

" i[ (s+v+1)
0, ds (s+v—1)2. (s+m)2(s+m—1)..s

(ab)~°].
Observe that $h(s) = h(s) L Inh(s) and (ab) = = e *""(*). Note that

lim h(s) = M,v:m,m—&-l,...

sV vi(v —m)!
d . 2 2
Ggmvdilnh()_sg@v[2¢(5+v+1)is+v—l7'”75—‘,-7’}’1
1 1
T w5 In(ab)]
72(1)+2[1+1+ + ! 1+ ! + +1]—1n(ab)
=2 2 " v—m  v=m+1 T v

=¢pv+1)+¢(v—m+1)—In(ab).
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Therefore,

Ry=[pv+1)+ypv—m+1)— ln(ab)}[%],v =mm+1,...

Then, in this case, (2) reduces to the following:
1 m—1
K=YV

paf v=0

+ Z.o: v+ +ypv—m+1)— ln(ab)}[%(ub)"},v =mm+1,..

(-1

V!)Vl"(m —v)(ab)¥

=

where ¢(+) is the psi function or the logarithmic derivative of the gamma function, (z) = % InT(z).

The most general case is to consider I'(s)T'( + &s) having some poles of order one and the
remaining of order two. After writing this situation in a convenient way, one can use the procedure
in Section 1.5 to obtain the final result. Since the expressions would take up too much space, it is not
discussed here.

2. Kritzel Integral from Mellin Convolution

Letx; > 0and xp > 0 be real scalar variables. Let f(x1) and f(x2) be real-valued scalar functions
associated with xq and xp, respectively. Then, the Mellin transforms of f; and f», with Mellin parameter
s, are the following, whenever they exist:

My, (s) = /:o Xy f1 () dxy, My, (s) = /Om x5 fo () dxo. (10)
Then,
My, ()M, (s) = /0 ” /O " 1 () fa () dxy A dx
= /Ooo ,/0.oo ”s_lfl(v)ﬁ(%)%du Ado,u = x1x1,0 = 1,
= /Ooo we(u)du
where
8 = [ SAOACG
= [T A ne). -
That is,
Msls) = M (M5 ) 12)

This Equation (12) is the Mellin convolution of the product involving two functions and
Equation (11) is the corresponding integral representation. Let f; and f, be generalized exponential
functions of the following types:

.
—1 —g.x)
(D) fix) =2 e ;> 0,67 > 0,9, > 0,j=1,2.
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Then, Equation (11) becomes the following:

(E) g(u) = urt /OQ vVl’VZ*le*ﬂlv‘sl7112(%)52010
J0

(o) < -
0

Here, (E) and (Fi) provide equivalent representations for g(u). In (E), if ; = 6,41 = 4,8, = p,aou® =
b, 1 — 72 = 1, then the integral becomes Krétzel integral of (2) in Section 1. Hence, Kritzel integral is
also available as a Mellin convolution of a product involving two functions, see [7].

Instead of taking fj(x;) of the form in (D), if we take fi(x1) = ﬁx?(l —x1)* 1 for R(7) >
—1,R(a) > 0ora > 0,7 > —1 when real, and f(x2) = f(x2) where f(x3) is an arbitrary function,
then Equation (11) becomes the following:

800 = [ SACIAE = [ Fos2 (570 - 5 f(e)do Rie) > 0,%(7) > -1
= % /v>u 0" (v — u)* 1 f(v)do = K;fy‘ (13)

where K, ;‘ f in (13) is Erdélyi-Kober fractional integral of the second kind of order « and parameter
7, see [8]. Thus, the Mellin convolution of a product is also associated with fractional integral of the
second kind. A general definition of all versions of fractional integrals in terms of Mellin convolutions
of products and ratios is given in [8].

3. Kritzel Integral as the Density of a Product

Let x; > 0 and x, > 0 be two real scalar positive random variables, independently distributed
with density functions fi(x1) and f»(x2), respectively. Due to statistical independence their joint
density, denoted by f(x1, x2), is the product, f(x1,x2) = f1(x1) f2(x2). Let u = x1x, be the product
and let x; = v or x, = 0. Then, dx; Adx; = %du Adv. Let g(u, v) be the joint density of 1 and v. Then,

$0) = L AEAE) = LA A@)

and the marginal density of #, denoted by g1 (u) is the following:

1 u
81(u) = /v SN f()dv
1, ,u
= [SAG) fa@)dw. (14)
Let f;(x;) be a generalized gamma density of the form

s
7-1 —aix/

f]-(xj):cjxj e fl,a]->0,'yj>0,5]->0,j:1,2 (15)

where ¢; is the normalizing constant. For the f;(x;) in Equation (15), we have Equation (14) as
the following:

_ © 1 — 91 _ u\o,
g1(u) = creou™ 1/ pN T lemmvl—a ()2
0

do
1 1 —ay (5)01 — a0
= cicouM 1/ oYM lg—m(5)1—a202 g, (16)
0

Observe that the two expressions for g1 (1) in Equation (16) are not only generalized Krétzel
integrals but they are also statistical densities of a product. We can evaluate the explicit form of the
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density by using arbitrary moments and then inverting the expression. Consider the (s — 1)th moments
of x and x,. Then, E[x;x2]° " = E[x{ 1]E[x5"!] due to statistical independence, where E[-] denotes
the expected value of [-]. That is,

E[x;—l}:./o"" “fi(x))dyy = Mg (s),j = 1,2

whenever the expected values exist, where M £ (s) is the Mellin transform of the density f;, with Mellin

parameter s, when this Mellin transform exists. Evaluating E [x]s.*l] for the density in Equation (15),
we have the following:

j+s-1
a; ( 5 ) .
; 444}Z§Y447%0U+s71)>Q;:1@. 17)

Observe that in Equation (17) the explicit form of the normalizing constant c; is used, c; is such
that E[xjs-_l] = 1when s = 1. Then, taking the product

=2 e

2 . —
7/ -1 SN, 9
HIIPCG =+ 50 (18)

F)]

Sl]f{H
j=1

@‘\

for R(7y;+s—1) >0,j = 1,2. Then, the density g;(u) is available from the inverse Mellin transform
or by inverting Equation (18). That is,

1 c+ico 2 7]7] s 01 1
— _ 1_' 1 Sd
§100 = Co [ TIN5+ S} a a2 w)~ds
j=1 ] ]
o[ 4 b
= CHy, [“1]”22”|Ll; -1 1] (19)
( ) "51)’( 2 ’f’z)
1
2 af)j
c=[1-
-
i=1T(3)

Note that Equation (19) is the explicit form of the Krétzel integral as well as the statistical density
g1(u). Instead of generalized gamma density for f;(x;), suppose that the density of x; is a type-1 beta
density with the parameters (y + 1, &) and f,(x2) is an arbitrary density then f; is of the form

T(a+7y+1)

fi(x)) = mx?(l —x)*L0<x <1,a>0,9>—1.

Usually, the parameters in a statistical density are real. Then, g1 (1) becomes the following:

= [AG)hEd

_Tla+9+1) 1 u .

T Ty +1l(a) /@, S =) f(o)do

B %%) Lo 0 )
T(a+y+1)

_ —u _
= T +1) Kzﬂf,a>0,'y> 1 (20)
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where K, " f is Erdélyi-Kober fractional integral of the second kind of order « and parameter 7.
From Equation (20), note that this fractional integral is a constant multiple of a statistical density of a
product of positive random variables also. For generalizations of this result for the matrix-variate case,
in real and complex domains, see [8]. By taking the density of a ratio of real scalar positive random
variables, where the variables are independently distributed, with x; having a type-1 beta density
with the parameters (7, &) and x, having an arbitrary density we can show that the density of the ratio
u= % will produce a constant multiple of Erdélyi-Kober fractional integral of the first kind of order a
and parameter 7, details or the generalizations of this result may be seen [8].

4. Kritzel Integral and Bayesian Structures

In a simple Bayesian structure in Bayesian statistical analysis, we have a conditional density
of a random variables x, conditioned on a parameter 6, or written as fi(x|f) or the density of x,
given 6. Then, 6 has its own marginal density denoted by f,(0). Then, the joint density of x and 6
is f1(x|0) f2(6). When both x and 6 are continuous variables, we call this situation as a continuous
mixture. When one variable is discrete and the other continuous, we call it simply a mixture density.
Then, the unconditional density of x, denoted by f(x), is given by

£ = [ Fi(xl)ra(0)de. ey

A general format of the structure in Equation (21) is of the following type:
) = [ oo [ Al 10 Pl e 1) fia (it 50 fi(si)dr2 A e Al (22)
2 k

For an application of this type of unconditional density for k = 3, see [9]. When all the densities
involved in Equations (21) and (22) are continuous, we also call Equations (21) and (22) as continuous
mixtures. Consider Equation (21), where

ad 1 g
f1(x|0) = F(’Y)XAV e " ,x>06>006>07>0
and .
(UL g
fz(e):r(g)e e ,b>0,0>0,0>0,6>0
0
so that

o

fi(x10)£2(6) = %wlmé—a—le—xemm
Iy

Then, the unconditional density is the following, denoting # = v in the integral and denoting the
unconditional density of x, again by f(x):

00

flx) =G / pro-alg—xo’—bo? gy, (23)
where .
Clzﬂx%1 a>0,0>06>07>0,0>0x>0
a , ) ) 2 2 2 :
(L)

Observe that Equation(23) is of the same structure of the Kratzel integral of Equation (2) of
Section 1. Note that, if we use the general structure in Equation (22) and consider all densities as
generalized gamma densities, then we obtain a generalization and extension of Kritzel integral to a
multivariate situation. Such generalizations is considered below in this paper.
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5. Pathway Extension of Kritzel Integral

The author of [10] introduced a pathway model for rectangular matrix-variate case. By using a
pathway parameter there, one can go to three different families of functions. When a model is fitted to
a given data, then one member from the pathway family is sure to fit the data if the data fall into one
of the three wide families of functions or in the transitional stages of going from one family to another
family. The pathway model for real positive scalar variable situation is the following:

fa(x) = cax?" V1 +a(a— l)x‘s}’%,x >0,0>1,17>0,6>0,a>0. (24)
When a < 1, then we can write « — 1 = —(1 — «) so that the model in (24) switches to the model
fa(x) = cgx" 1 —a(1 - a)x‘f}&,a <1,7>0,a>00>0 (25)

and, further, 1 — a(1 — &)x® > 0 in order to create statistical density out of f4(x). Its support is finite or
it is a finite-range density, whereas in Equation (24) it is of infinite range and x > 0 there. Whena — 1,
both Equations (24) and (25) go to the model

fs(x) = csx?7 e 5> 0,x > 0,6 > 0,5 > 0. (26)

Thus, through the pathway parameter « one can move among the three families of functions
fj(x), j = 3,4,5. Both Equations (24) and (25) can be taken as extensions of Equation (26).
If Equation (26) is the ideal or stable situation in a physical system, then the unstable neighborhoods
are given by Equations (24) and (25). The movement of a also describes the transitional stages.
For the properties, generalizations and extension of the pathway model, see [11].The model in
Equation (25) fory =1,a =1,y =land fora <1,a > 1,a& — 1is Tsallis’ statistics in non-extensive
statistical mechanics [12]. Some properties and other aspects of the pathway model see [11,13].
The model in Equation (24) fora = 1,57 = 1,& > 1,& — 1 is superstatistics (see [14]). Superstatistics
considerations come from the unconditional density described in Section 4 when the conditional and
marginal densities belong to the exponential and gamma families of densities. Consider the model in
Equation (24) with different parameters, take f; and f, of Section 1, and consider Mellin convolutions.
Let f31 and f3; be two densities belonging to Equation (24) with different parameters. That is, let
j

7i—1 [ e 3
f3](X]) :c3jxj’ [1+IZ]'(D(]'—1)X].]} U 1,x]- >O,D(j > 1,aj >0,’)//‘ >O,5j >0 (27)
forj =1,2. Let u = x1x,v = x1. Consider the Mellin convolution of a product or let xj > 0,j=1,2be
independently distributed real scalar positive random variables with the densities f3; and f3; of (27)
respectively. Then, the density of u = x1x,, denoted by g, (u), where p stands for the pathway model,
is the following:

800 = [ 2 fn(@fn(5)do

i __n_
(G) = cyezu”! / o121 4y (g — 1)0%] oE
=0
U g -2
x [L4az(a =1)(7)?] = do (28)

fora; >1,a; >0,6; > 0,17; > 0,j = 1,2. See also the versatile integral discussed in [15]. Various types
of extensions of Kratzel integrals are involved in Equation (28). When a1 — 1, the first factor or the
density in (G) goes to the exponential form whereas the second part in Equation (28) remains in the
type-2 beta family form. This is one extension. In addition, when a; — 1, the second part density in
Equation (28) goes to the exponential form whereas the first part remains in the type-2 beta family
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of functions. When a4y — 1 and ap — 1, Equation (28) goes to the format of the Krétzel integral in
Equation (2) of Section 1. A model of the form in Equation (28) for the cases a; < 1,a; > 1,4; — 1,
individually, is studied in detail in [15].

Connection to Kobayashi Integrals

In Equation (28), let 1 — 1 and &y remain the same. Then, Equation (28) reduces to the
following form:

(e}

o

gp(u) — C31C32u7271/ o= 12— lg—amo
v=0

% [1+ ar(a 271)( )2 2T o, (29)

Observe that Equation (29) is a more general form of ultra gamma integral and Kobayashi integral.
The Kobayashi form is available from the Mellin convolution of a ratio. Let u; = % with x; = v,
and let x; and x; be independently distributed pathway random variables as described in Section 5.
Then, x; = v,x, = ujv and dx; A dx, = vduy A do. Then, the pathway density of u;, denoted by
gp1(u1), is the following for a; — 1:

00 o
_ -1 +yp—1,—ay0°1
gp1 (ul) — C31C3214'Yz / . Ntz oM
o=l

x [1+ aa(az — 1) (ur0)%] @1 (30)

fora; >0,7;>0,6; > 0,7, > 0,j = 1 2,a5 > 1. Kobayashi integral is obtained from Equation (30)

by putting a(xp — 1)uf 2. = 1, (see [16,17]). Some people call Kobayashi form as
ultra gamma integral. Observe that Equatlon (30) is a much more general and flexible format and for
varying a; we have three families of functions in Equation (30) including Kobayashi format. The Mellin
transform of 8p (11), with Mellin parameter s, is available from 1y = % form, namely

Mg, (s) = My, (2 — s)Mp,(s) or E[uj '] = E[x; **'E[x; ]
and these moments are available from the pathway densities of x; and x, with ay — 1.

6. Multivariate Extensions of Kritzel Integrals

Let us start with the case of three variables. Let xj>0,j=123 be three real scalar variables
and let the associated functions be f]-(x]-), j =1,2,3, respectively. If xj > 0,j = 1,2,3 are real scalar
random variables, independently distributed, then fj(x;), j = 1,2,3 may be the corresponding densities.
Let u = x1x2x3 be the product and let v = xox3,w = x3. Then, x; Adx; Adxz = —du Ado A dw.
Mellin convolution of a product involving three real scalar variables is considered in [18] Let

5
Filx)) =l e Y ;> 0,6, > 0,7 > 0,j =1,2,3 (31)
N J*i sl » 9j Vi /] ’2,

where c; is a constant and it may be normalizing constant if f; in Equation (31) is a density. Then,
the density of u or Mellin convolution of the product, again denoted by g(u), is the following:

/v/w 701 Gw ( )f3(w)dv/\dw 32)

vw z;w
= (21 L yn-1,13-1

Clczcs/v/w vw(v) (w) w
x e M (§)1=a2(F)2=a50% gy, A qop (33)
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where Equation (32) is the general structure whatever be the f;s, and Equation (33) is the case when
fis belong to Equation (31). Then, Equation (33) can be taken as a bivariate version of the Kratzel
integral. Observe that in the exponent we have v and w with positive and negative exponents. If we
take u = x1x2x3,v = X, w = x3, then the exponential part in g(u) is of the following form:

_ u_ o 0y _
e a1 (45 )°1 —axv —azw’3

In the format of Equation (33), we can take v = x1x2, w = X or v = xpx3,w = x1. These produce
two more different forms corresponding to Equation (33). We can also take 1 = x1x2x3 = u1px3, 1117 =
x1%2. We can get the density of u1; first by using f; and f5. Let the density of 11, be denoted as g1, (112)-
Then, by using g1, and f3, we can get the density of u. This produces another bivariate extension of the
Krétzel integral. Follow the same procedure by taking u = up3x7, 113X, Where 13 = xpx3, 1113 = X1X3.
In these cases, obtain the densities of 113 and up3 first and then proceed. These produce other different

bivariate extensions of Krétzel integrals. For example, let u = x1x2x3 = 112X3, 12 = x1X2. Let the
density of 115 be g12(1112). Then, from the two-variables case,

(H) gi2(u12) :/U%fl(%)fz(v)dv.

Let the density of u be g(u). Then,
() g0 = [ T3 Alode
=/1M¥#@mmmmmw
- // — (1123 £, (0) f3 (w)dv A duw.

However, we also have
u
() g12(u12) / ~fi(v 12)

Substituting for g1, from (J) into (H), we have the following and other forms from the
symmetry also:

sl :Afv'ﬁ )2(%)dol fo () o
/v/w—fl 2(4) fa(aw)do A dwo
_//—f1 (w)fo(2)do A dro
7// ) falw) fo(o)do A dew
—/v/w—f] (0)f3(5)do A dw
_//—f1 (%)fa(0)do A du.

A few such forms, as in (K), are described in [7] and hence these are not repeated here. From the
products of four or more variables xj > 0,j =4,5,....k, we can have several different extensions of
Kratzel integral for bivariate, trivariate and general multivariate cases. The method is similar to what
is explained above and hence further discussion is omitted. Even though hundreds of different integral
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representations are available for the density of 1 = x;...x, the explicit evaluation of the density g(u)
of u is possible by inverting the corresponding Mellin transform, namely

k
My (s) = [T Mg, (s)
j=1

and take the inverse Mellin transform of H;»‘Zl M f; (s) to obtain the density g of u = x7x3...x¢.

Connections to Fractional Integrals

Letx; >0, j =1,2,3 be real scalar random variables, independently distributed with densities
fj(xj),j =1,2,3, respectively. Let u = x1x0x3,0 = xp,w = x3. Then, dx; Adxy Adxz = #du Ado A
dw. Let fi be a real scalar type-1 beta density with the parameters (y + 1, «), or with the density:

I'(y+1+a)

L P Y1 =) L 0< v <1,a>0,v>—1.
T+ i@ ) 0sxms 7

filxr) =

Let f> and f3 be arbitrary densities. Then,

Fi60) = f() = i ()1 = (34)
Then, the density of u from (34), f, and f3, denoted again by g(1), is the following:
) = PTEED S [ (o) 1 o - ) o) (o A o

- s ). (3)

If f5 and the corresponding w are absent, then K, 7(f2, f3) = K, f> which is Erdélyi-Kober
fractional integral of the second kind and of order a and parameter y where the arbitrary function is f,.
Similarly, when f, and v are absent, we get Erdélyi-Kober fractional integral of the second kind of order
« and parameter y with the arbitrary function f3. Hence, Equation (35) is a bivariate generalization of
Erdélyi-Kober fractional integral of the second kind. This generalization in Equation (35) is different
from the multivariate case of Mathai [8] and multi-index case of Kiryakova [19]. Other extension to
bivariate case of fractional integrals are available from the various representations in (K) of Section 6
by taking one or two, out of the three functions there, as real scalar type-1 beta densities.

Letu; = % with x; = v so that x, = % and dx; Adx; = —u%dul A do. Then, the density of u1,
denoted by g1 (u1), is the following:

i) = [ G AOA (3)

Let f1(v) = f(v), be an arbitrary density and let f,(x,) be a real scalar type-1 beta density with the
parameters (7, «). Then, from Equation (36),

_Tly+a) [ o Vo v
gl(ul)fw/vuf%f(v)(a)'}’ 1(1—;]) 1d7}
—a—y
_ F(;(:&y—)u) llll(a) /v<ul ZJ,}I(M o v)”"lf(v)dv
-0 37)
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where K7 f is Erdélyi-Kober fractional integral of the first kind of order « and parameter -y. Consider
the generalization to three variables. Let u; = X2X3 , X2 = 0,x3 = w = x; = 9. Then, dx; Adxa A
dxs = ”“’dul A dv A dw and the marginal den51ty of 1, again denoted by g; (ul) is the following:

silm) = p 5 | /w = S R o A dw
_1"(1'1(7—,;—)&111 // ow) 7 (uy — vw)* " f5(v) f3(w)do A dw
=y KA )

where K 7(f2, f3) of Equation (38) may be called Erdélyi-Kober fractional integral of the first kind
of order « and parameter 7 in the bivariate case or with two arbitrary functions. Here, the integrals
areover 0 < v < 1,0 < w < 1,0 < vw < uy. This type of generalization is different from the
ones available in the literature. Various definitions of fractional integrals, fractional derivatives, and
fractional differentials equations and their properties may be seen in [20-22].

7. Kritzel Integral in the Real Matrix-variate Case

It is easier to interpret Kratzel integral in terms of statistical distributions. Let X; and X, be two
p % p real positive definite matrix random variables with the densities f1(X7) and f,(X3), respectively.
Density here means a real-valued scalar function f(X) of the positive definite matrix X > O, such that
f(X) > 0forall X > Oand [, ,f(X)dX = 1. Thatis, for X; > O,j = 1,2 ( positive definite),
fi(X;) > 0forall X; > O and /X Lo fiX)dX; =1,j =1,2. Let X;j > O have a real matrix-variate

gamma density. That is,

A1

1 ;s —
T, () =1z )

fi(X) = x| B e t(4X)) ,Xj > 0,A;>0,R(r;) > L=

2

where, in Equation (39), A; > Oisa p X preal positive definite constant matrix for j = 1,2.. Whenp = 1,
we have the corresponding scalar variable gamma density. The real matrix-variate gamma function
T'y(7)) is explained below. In the scalar case we have taken exponents §; > 0,j = 1,2 but if we
take exponents in the matrix-variate case then the transformations will not produce nice forms for
further derivations, see the types of difficulties from [23], and hence we have taken ¢; = d, = 1 in the
matrix-variate case. Let us consider symmetric product U = Xz% X3 Xz% where Xz% > O is the positive
definite square root of the positive definite matrix X, > O. We have taken the symmetric product
because the transformations are on symmetric cases. Let V = X;. Then, from Mathai [23], we can
derive dX; AdX, = |V| ~"3* U A dV and then proceeding as in the scalar variable case, the density of
U, denoted again by g(U), is given by the following:

= [ VI av-tuv b pviay (40)

where f; and f, in Equation (40) are some general densities. Consider the case when f]( ) is a real
matrix-variate gamma density given by the following:

e AT
509 =1,

1= e A%, (41)
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for A; >0, X; > O,R(vj) > 2 ,j = 1,2, where T',(7y;) is the real matrix-variate gamma given by

Ty(a) = 7 T ()T (0 — 2).T(a %),%(w) > ’%1. (42)

For the densities in Equation (41), with T’ p('yj) defined in Equation (42), the density of U is given
by the following;:

g(U) = C|U|717PTH / . |V|72*71*pTHe*fr(V7%A1V7%U)*tr(AzV)dV (43)
V>

for A; >0,V >0,U>0O,R(v)) > 2,]712where

2 14|
C= L
Erp(’h)

This Equation (43) is the Kratzel integral in the real matrix-variate case. Note that, if A; is a
positive scalar quantity, then it can be taken out of V and then V! will be obtained corresponding to
the real scalar case.

The model in Equation (41) is also connected to Maxwell-Boltzmann and Raleigh densities
in physics. Their matrix-variate, multivariate and rectangular matrix-variate extensions and some
applications in reliability analysis are given in [24]. Their complex matrix-variate analogs can be
worked out but they do not seem to be in print in the literature yet.

8. Kritzel Integral in the Complex Matrix-variate Case
Here, we consider p x p Hermitian positive definite matrices f(j > 0,j = 1,2 and Hermitian

1 - 1ol
positive definite square root X7. Consider the symmetric product U = X7 X;1X;,V = Xj. Then,
from [23] we have dX; A dX; = |det(V)|~PdU A dV. Let the density of U be denoted by §(UI) when
X;,j = 1,2 are independently distributed with the complex matrix-variate gamma densities given by

|det(A))["

fi(Xj) = )00,

|det(X;)[7Pe " (A%, X > O, R(7j) > p—1,j=1,2 (44)

where T («) is the complex matrix-variate gamma given by the following:

Tp(0) = "7 T(@)T(a = 1).T(a— p+1), R(w) > p—1. (45)

Then, from Equations (44) and (45), proceeding as in the real matrix-variate case the density of U,
denoted by §(U), is the following:

§(U0) = C|det(T1)|m~ p/ |det(V )|72—71—pe—tr(V’%A1V’%l'l)—tr(AzV)dV

for R(vj) > p—1,A; >0,V >0,U>0,j=1,2 where
ﬁ \det \7/
;)

j=1

9. Extension to Rectangular Matrix-variate Case

Let X = (x;;) bea p x q,9 > p matrix of full rank p where the elements x;;s are distinct real scalar
variables. Let A > O be p x p and B > O be g x q constant real positive definite matrices. Let a prime
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denote the transpose, let tr(-) be the trace of (-), and let, for example, AZ be the positive definite square
root of the positive definite matrix A > O. Consider the model

1
F(X) = ClATXBX' A |"|T + a1 (g1 — 1)(AIXBX'AZ)| i1
1
< |1+ ay(q2 — 1)(ATXBX'A2)1| @ 1 (46)

for aj > O,q]- >1,j=127> f% + ’%1. Observe that

1 1 1
lim T+ a;(g; — 1)(AIXBX/AZ)| T = e H(AZXBX'AZ) (47)
qi—=

forj=1,2. Let

A(X) = lim f(X), f(X) = lim (X), 5(X) = m ()

q1—1 7—1g—1

Then,

1 1
fi(X) = C1|ARXBX' A} |1~ m(AZXBX'A2)

1
< I+ ap(qy — 1) (A2XBX'A2) Y| @1, (48)

1
£2(X) = Co| ALXBX'A2|"|I + a1 (g1 — 1) (A2 XBX'A2)| a1

« efaztr(A%XBX’A%) 1' (49)

F(X) = C3|A%XBX/A%|7e—u1(A%XBX’A%)—az(A%XBX’A%)*l. (50)

Then, f3(X), coming from Equations (46) and (47), is the real rectangular matrix-variate version
of Krétzel integral. In a physical model building situation, if Equation (50) is the stable or ideal
situation, then Equations (46), (48) and (49) describe the unstable neighborhoods. From the discussion
in Sections 2 and 3, we can see that the model in Equations (46) and (48)—(50) can also be generated
by M-convolution of product or density of a product in the real matrix-variate case. In Equation (50),
for simplicity, we have taken the coefficient parameters as scalar quantities. We can evaluate the
normalizing constants C, C1, Cy, C3 by using the following steps: Let

(L) Y=A2XB? = dX = |A|"Z|B|"%dY

from the general linear transformation (see [23] for the Jacobian in (L) and other Jacobians to follow).
Let the corresponding function f(X) be denoted by fp1(Y). Then,

1
for(Y) = CLAI" 8Bl YY/|"| T+ ay (g — 1)(YY')| 7T
1
x |1+ ap(g2 — 1)(YY') "V =1 (51)

Let the corresponding functions f(X), f2(X), f3(X) be denoted by fi11(Y), f1(Y), f31(Y),
respectively. Note that Y has pq real scalar variables whereas S = YY’, which is a p x p real positive
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definite matrix, has only p(p + 1) /2 elements. However, we can obtain a relationship between dY and
dS (see [23]). It is the following:

g ptl

(M) dY = |27 dS,

where Y in (M) is p X g, whereas S is p x p. Let the corresponding functions of S be denoted by
f02(S), f12(S), f22(S), f32(8S), respectively. Then, for example, fp2(S) is the following:

1

foa(8) = ClAI 8 |BI 318|735 | T+ ay (1 — 1)(S)|
1
X I+ az(q2 — 1)(5)_1| [

9.1. Multivariate Situation

In Equation (46) and Equations (48)—(50), let p = 1 and g > 1; then, Y is 1 X q and of the form
Y = (y1,--,Yq)- Then, YY' = y7 + ... + y3. Then, for p = 1, the constant matrix A is 1 x 1 and let it be
az > 0. Then, from Equation (51),

1

_ 7% -3.2 2\v _ 2 2\ g1
for=Caz ?|BI"2(y + . +yg) "I+ an(qn — 1) (y7 + .. +yp)] @
1
X [1+ax(ga—1)(; + - +yg) ] 2

Then, f31 becomes the following:

_1 _q
f31(Y) = Caag 2 [B]2[(yi + - +y)]"
% efal(y%+...+y%)7a2(y%+...+y§)’l (52)

for —co < y; < 00,j = 1,..,9. We may call Equation (52) as the multivariate version of the basic Kritzel
integral and fo; for p = 1 as the pathway extended form of f3; in Equation (52).

Note that for a general p > 1 we do not take exponents for (A%X BX’ A%) because in the general
case matrix transformations create problems while computing the Jacobians. The types of problem
is described in [23]. However, for the scalar cases in fop, f12, f22, f32, we can take arbitrary exponents.
Hence, we have the general Kritzel integrals in the multivariate case as the following:

_1 _q
f3(Y) = Csag 2 [B]2[(yF + - +y3)]"
% e M (y%+m+y§)‘Laz(y%Jr“Hry%)’P (53)

for & > 0,p > 0. Corresponding exponents can be included in fo3, f13, f23 as well. For evaluating the
normalizing constant, we can do the following steps. Make use of the transformation and Jacobian in
(M) for p = 1. Then, S = s is a scalar variable. Then, for p = 1, Equation (53) becomes the following:

q

1 q9 712 q 5 -
faa(s) = a3 ?|B| 27 sTHa-lgmmst—asl
I'(3)
Since s is a real scalar variable here, one can use the scalar version of Mellin convolution of
a product or density of product of Sections 2 and 3, go to the Mellin transforms to evaluate the
normalizing constant. The same procedure works for all the models fo4, f14, f24 also.
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9.2. Evaluation of the Normalizing Constant

Let -
q J —p
/5:0 s1T2 7l b7 45 — o(b) say.

Let M, (t) be the Mellin transform of g(b) with Mellin parameter ¢. Then,
M, (t) = / b'*l{/ ri-Temas’ b 4o qp,
h J0 Js=0
Evaluating the b-integral we have the following:
/ b te b db = T(£)s, for R(t) > 0.
0

Now, evaluating the s-integral, we have the following:

o, s F(M
/ sTHatpt-lemasqs — W,?}?('y+pt +4q/2)>0.
0 oa 7
That is,
1 2
Mg(t) = r+q/2 r(t)r(’YJrq/ + Bt)ai%t'
6s 0 0 0

By taking the inverse Mellin transform, we have g(b) as the following:

_ 11 et Y+4q/2 p o,
300 = g | NOTCF G0t

1 20 [, &
= ———=Hj, |bas
s T 02 [ “ |<0,1>,<%““,%>}

a e
where H(-) is the H-function, see [5]. Then, the normalizing constant is the following:
r ( % ) Sa "Y+‘?/2

7
T2 2,0 [4
Hy) {ba 5|

o
C=aZ|B|2

<o,1>,<%"’2,§>}

Note that, when p = ¢, the H-function reduces to the G-function of the form Gg’g {ab‘ 0 7+q/2} .
) ,7+9/2

Then, replace the H-function by the G-function. Observe that, when p = 1, A is 1 x 1 and let it be
az > 0. This is the a3 appearing above.
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Abstract: In this work, properties of one- or two-parameter Mittag-Leffler functions are derived
using the Laplace transform approach. It is demonstrated that manipulations with the pair
direct-inverse transform makes it far more easy than previous methods to derive known and
new properties of the Mittag-Leffler functions. Moreover, it is shown that sums of infinite series
of the Mittag-Leffler functions can be expressed as convolution integrals, while the derivatives of
the Mittag-Leffler functions with respect to their parameters are expressible as double convolution
integrals. The derivatives can also be obtained from integral representations of the Mittag-Leffler
functions. On the other hand, direct differentiation of the Mittag-Leffler functions with respect
to parameters produces an infinite power series, whose coefficients are quotients of the digamma
and gamma functions. Closed forms of these series can be derived when the parameters are set to
be integers.

Keywords: derivatives with respect to parameters; Mittag-Leffler functions; Laplace transform
approach; infinite power series; integral representations; convolution integrals; quotients of digamma
and gamma functions

1. Introduction

At the beginning of the previous century, the exponential function was generalized by the Swedish
mathematician G.M. Mittag-Leffler, who introduced a new power series that is named after him
today [1]. Quite unexpectedly, enormous interest has developed regarding the Mittag-Leffler functions
over the last four decades because of their ability to describe diverse physical phenomena far more
easily than other approaches in a host of scientific and engineering disciplines. Consequently, the
Mittag-Leffler functions have become one of the most important special functions in mathematics.
Examples where they appear include kinetics of chemical reactions, time and space fractional diffusion,
nonlinear waves, viscoelastic systems, neural networks, electric field relaxations, and statistical
distributions [2-8]. In mathematics, the Mittag-Leffler functions play an important role in fractional
calculus, solution of systems with fractional differential, and integral equations [9,10]. As a result of
all this activity, there is now extensive literature on their properties and history [11-13]. A number
of reviews have been produced [14-16], and of these, the monograph by Gorenflo, Kilbas, Mainardi,
and Rogosin [17] occupies a special place.

The one-parameter, classical Mittag-Leffler function E,(z) is defined in the whole complex plane
by the following power series:

sl k
Eu(z) =Y ——, (1)
k;o I'(ak+1)

where Rea > 0.
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Later, Wiman [18] introduced the two-parameter Mittag-Leffler function E, 4(z), which is given by

-y _= 2
2 ;} T(ak + p) @

where Rea > 0 and Ref > 0. Only these two functions, not generalizations thereafter, will be studied here.

There are two main aims in this work. The first is to show that many well-known and new
functional relations can be easily derived via the Laplace transform theory and the second is to consider
differentiation with respect to the parameters o« and 3. Throughout this paper, all mathematical
operations or manipulations with functions, series, integrals, integral representations, and transforms
will be formal. There will be no proofs of validity of given expressions, though they are, without
doubt, correct. The following sections present many results that have been derived independently by
other methods, while the new results are verified by two different numerical procedures. Thus, in the
framework of applied operational calculus, the reported results are only valid for real positive values
of arguments and parameters.

My previous involvement with the Mittag-Leffler functions has been limited only to establishing
their connections to the Volterra functions. In my monograph devoted to the Volterra functions [19], I
presented in Appendix A some representations of the Mittag-Leffler functions in terms of other special
functions. They can also be derived directly using the Laplace transform technique when applied to
Eq(xt%) functions. Evidently, this restricts the transform-inverse pair only to the positive real axis.
New results, together with some from [19], are presented below.

According to the definitions of the Mittag-Leffler functions, there is a clear distinction between
the argument, z, and the parameters, a and B, as the latter appear in the coefficients. Nevertheless,
Eo(z) = f(@, z) and Eq () =f(a, B, z) can be regarded as the bivariate and trivariate functions, respectively.

As this is the first investigation dealing with mathematical operations with respect to variables
a and B, its scope is only limited to derivatives of the Mittag-Leffler functions. The special forms
of the Laplace transforms of E,(+t%) and E, g(+t*) functions will be studied extensively to establish
known properties of the Mittag-Leffler functions and to derive new functional relations. As will be
demonstrated, the differentiation operations will lead to power series with coefficients being quotients
of psi and gamma functions. In some cases, these series can be evaluated in a closed form, i.e., in
terms of elementary and special functions. Computation methods used in this investigation to obtain
the Mittag-Leffler functions and their derivatives with respect to a differ from those reported in the
literature. This results from the fact that the Mittag-Leffler functions are available as the build-in
functions in the MATHEMATICA program.

2. Properties of the Mittag-Leffler Functions in the Laplace Transform Approach

The Laplace transform of the Mittag-Leffler function E,(t°) is given by

T(pk+1) ( )
L{E4(t")} , 3
al 4 T'(ak +1) )
which is not valid to all values of p and « as discussed in [17].
For p = a, (3) becomes
o Sa—l
L{Ea(t")} = e 4
where Rea > 0 and Res > 1 and for negative * is
N Sa—l
UE(-#)) = S . ©
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In a similar manner, the Laplace transforms of two-parameter Mittag-Leffler functions,
tﬁ’lEa,ﬁ(iAt"), in [17] are found to be

2P
s¢—A7

L{tF Ey p(£A1)} = 6)
where Rea > 0, Ref > 0 and Res > [A|Ve,

Not only are the inverse transforms simple to derive from them results, but one is able
to identify functions for particular values of a and . Carrying this out will require algebraic
manipulations, the similarity properties of the Laplace transformation, the Heaviside expansion
theorem, the convolution (product) theorem, some substitution formulas, and other techniques and
rules of the operational calculus.

In the first application of the Laplace transform theory, we consider positive integer values of
from 1 to 4. Then, the Mittag-Leffler functions reduce to elementary or special functions due to the
simple inverse transforms.

For a = 1, one finds that

Ei(t) = LT'L{E (1)} = L-I{L} =e. @)

For a = 2, one obtains

EZ(tz) = Li]L{Ez(tz)} = Li]{szs_l} = Li]{(s—])s(swr])} =
cosht,

®)

where the dominator has been decomposed into partial fractions. However, the more expedient
method is to evaluate the contributions from the residues at s = +1.
Carrying out this procedure for —* yields

2y -1 -1 _
Ex(-#7) =17 L{Ez } {s2+1} L {(sfi)s(eri)} = ©)
it —it it it
%s:ﬂ' S;’Tis:ﬂ:%+7_COSt
For a = 3, one finds that
3y 71 3\ 712 ) -1 s _
Es(F) = L L{E3(t )} =L {535—1} =L {(s—l)(:2+s+1)} =
Lt s —
R e )
2 2 o~t(14iV3)/2 (10)
(+ R 1) | (1) s+ 1) | 1
2 H(1-iV3)/2 N —t/2 V3
- = zle' + 2¢ cos(—=-t)] .
(s=1)(s+ 1518 oo Lo 3l (4]
Similarly, for negative t¢, one arrives at
43y -1 EPECRY (R B
Es(-#) =L L{E3( t )}_L {s3+l}_ (11)

et 42072 cos(‘/Tgt)} .

The calculations become more tedious as a increases. However, for a = 1, an integer, we obtain in
general case

En(+t") = LIL{E, (+£")) = L—l{ss:__ll} . (12)
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It is obvious that for integer values of «, the Mittag-Leffler functions can be expressed in terms of
elementary functions, such as combination of exponential, hyperbolic, and trigonometric functions.

When « is not an integer, special functions are involved. Then, one must use a combination of
tables of inverse Laplace transforms, substitution formulas, the convolution theorem, and other rules.
For example, from the table of inverse transforms [20], we have

-t 1
)=k
L! \/51_1} = # +eterfe(— i), (13)

erfe(—11/2) = —erfc(t/2) = erf(11/2) - 1

Hence, we find that

E1ja(2VE) = L7UL{Ey o (2 VD)) = L_l{ S| 1@_1)} =

(14)
L -de e s b = l-erf(VA)

The cases with a = +1/4 are more complex. Therefore, only the final result for a = 1/4 from [19] is
presented here. This is

Eyjq(x /%) = L_IL{E1/4(it1/4)} = L_l{—53/4(5%/4_1)} =

-1 1 1 1 —
k {w Vo) G s—1>} -

B
t yah Ly } (15)
e{l—&-erf(\/f)i ré) + Fté) ,
y(a,t) =T(a)-T(a,t) = fx“‘le‘xdx,
0

where the last equation in (15) is the integral representation for the incomplete gamma function.
We can also determine relations between the Mittag-Leffler functions using the Laplace
transformation. Putting = a + 1in (6) yields

L{t*Eq i1 (1)) = T (16)

However, noting that

,l 1

we can derive the well-known relation for the Mittag-Leffler functions
Eo( ) =1 =t"Ep oy 1( ). (18)
A similar result for the two-parameter Mittag-Leffler function can be derived from

1

L:ta+ ﬁ_lEa/DH, ﬁ(ta)} = m , (19)
and o1 . . .
p-1 o PV P 1 1
L{t Ea, p(t%) r(,s)} F-D) F B (20)
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Hence, we arrive at

1
Ea,ﬁ( ta) = _) + ¢ Ea,zx+ ﬁ( ta) . (21)

(g

For a and § integers, (21) can be written as

Eig(t) = l"(lﬁ) +tEas1(t),
En,ﬁ(tn) (5)+t Enn+ﬂ( )
En,n(tn):( 1) + " EnZn( )/
") = Gty + 1" B+ w(t")

(22)

™
g
3
—~

-

Of the many substitution formulas in the Laplace transform theory, only three will be employed
here. From [21] we have

LFOL=F6),
L—]{% } _ L\Fof 112/4ff (23)

By wring the Laplace transform of E,(t%) as

Sa_l 1 ( ‘/—) 2a-1

L{E(t")} = 5 , (24)
TRV -
we find that the Mittag-Leffler function can be represented by
1 _ 2
E.(t%) = ‘ﬁofe WAE, () du . (25)
The operational rule for the Macdonald function Ky3(z) is
af 1 1 2u3/2
L 1{52/3 @3 = ;f\[ 1/3( ) (u) du . (26)
0
Writing the Laplace transform of E, (%) as
sa-1 (s1/3y>7!
L{E,(t%)} = = , 27
R N ETRT @7)
gives
1 2u3/2
= Ef \/7 1/3( )Ea o(1? @) du. (28)
0

For specific values of a, the Mittag-Leffler functions in the integrands of (25) and (28) can be
expressed as elementary or special functions. Then, the Mittag-Leffler functions on the left-hand side
will be represented by definite integrals over infinity.

The third substitution formula is

! f \/> (2 Veu) f(u) du, (29)

where J1(z) is the Bessel function of the first kind and of the first order
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F
rom sail 1 (]T)[X—]
W= B = - oy = (30)
it follows that .
Ea(t) -1 o du
e Of @ Vi) Eafu) 2 (31)

Many properties and functional relations for the Mittag-Leffler functions can be obtained from
the convolution theorem. These are found by expressing the Laplace transforms of E, (%) in various
forms and then evaluating the inverses via convolution integrals. For example, using

2a—1 2a—1
s s S 1
L{Ea(ta)} = s¢ —1 = 5205_1 +521¥—1 .57/

(32)

immediately yields
a-1
(@)

£ _ el 33
EZ“(tza)JrfEZa(uza)% du . (33)
0

Eo(t%) = Eza(£2%) + Eza (%)

All convolution integrals can be transformed into finite trigonometric integrals by a suitable
change of variable. Therefore, putting u = t[cos0]? in (33) yields

t
1 -1, —
WOIEZD‘ ) ~tdu =
"2 (34)
f sin(26) [(sin 6)* } Ez [t2%(cos 6)**] dO
0
Similarly, from
a—p 2a—f 20— 1
-1 PR s s 1
L{tF Eq p(t )}_Sa_1 i e R (35)
it follows that ,
-1
) Wl ()
Fap() = Eang(®) + [ (7] BangteP) S . o0
0
A different convolution integral can be derived from
1 s B 11 1
AR T [; - s‘”l] ’ 7
whose inverse Laplace transform is
t Y
f W Eqp(u ﬂ du . (38)
ﬁ +1) F(a+1)
0
Introducing the Laplace transform of E, s(+t) in the form
1 N
L{t’S Ea,lg(it‘ )} @1 s”‘_—lsﬁ_—l , (39)
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gives

*

_ _N\B2
1, p(£1*) = Eq(£t%) = fﬂx(ilﬂf")% du . (40)

For g = a, this becomes

(271 Eqa(#17) = Ea(#17) » ghi =
t a=2 (41)
f—
fEa(iu“)% du .
0
For a and , positive integers, (40) reduces to
t
F—u m—2
PR (£7) = f En(iu”)ﬁ . 42)

wheren=1,2,3,...andm=2,3,4,....
These convolution integrals are easily evaluated because the Mittag-Leffler functions reduce to
elementary functions. For example, for n = 1 and m = 2 and 3 and noting that E; (f) = €, it follows that

t
tEp(t) = [e'du=e -1,
o, (43)
P Ea(t) = [ (t—u)du=e —t-1
0

The Mittag-Leffler functions for n = 1 to 4 and m = 2 to 4 are presented in [19].

The operational rules of the Laplace transformation enable us to obtain representations for
derivatives of the Mittag-Leffler functions tﬁ’lEa,ﬁ (t%). It is obvious from (2) that the derivative for any
order is zero at the origin. In this case, differentiation of the Mittag-Leffler function is equivalent to
multiplying the Laplace transform by powers of s. Because

L{f (1)} = s"F(s),
£(0)=f(0) = f(0) =...= f"(0), (44)
n=123...,

we find that for Rea > 0, Ref > n + 1 and Res > 1

. sa—p sa—(B-n)
L{d?[tﬁ lEa,ﬁ(ta)]} = Sn(sa—_l) = Sa——l . (45)

Hence, the Laplace inverse transform becomes
a’rs- —n—
d?[tﬁ TEap(t)] = - Eg g (1) . (46)

In case of E,(t*) function, its value is unity at the origin. Only the first derivative has a simple
Laplace transform, which is

d N B a1 B 1 B a1 1
L{E[E“(t )]}_S(s“—l)_l_s"‘—l_(s"‘—l).s"‘_‘l' 47)
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the inverse transform of (47) is

&) = Ealy e s )
atr . Ta-1)’
However, according to (41), this convolution integral is also given by
d a a1 a
E[Ea(t ) =t Ega( t9). (49)

The n-dimensional integrals of the Mittag-Leffler functions are easily evaluated because this is
equivalent to dividing the Laplace transform, F(s), by s"

L j\ufz_lu-ff(ul)dul dup -+ duy y = —F(s), (50)
0 0 0

Then, we obtain

O%:

/f Eq s (u%) duy duty - -dun} = 2(s2) =

{J;f

(51)
The inverse transform of (51) is
boUp1 uy
uf B 1Ea,,3(u‘1’) duq dug - - - duy, = tPF "_1Ea,,3+ a (1Y) . (52)
0 0 0
Forn=1andp=1,
¢
JuP T Eqp(u®) du = tF Eqpia (1),
0 (53)

t
fEa(u“) du =t Eqo(t*).
0

Together with the linearity property of the Laplace transformation, operational calculus is able to
determine the sums of the Mittag-Leffler functions as power series. Consider the infinite and finite
geometrical series, namely,

2 k _ 1
T+x+x+... +x+...= 1=, (54)
Thx+a2+... o lqppn =2 =

where 0 <x < 1.
By taking the Laplace transforms of all the terms in the power series of the corresponding
Mittag-Leffler function, one obtains fors > 1,

E(s) = + + +...+ +., (55)

The inverse transform of F(s) is given by the following series of the Mittag-Leffler functions:

L™YF(s)} = Eq(t*) 4+t Eqp(t%) + 12 Eq3(t%) + ...
FH Egpp 1(#9) + o= L T EL (1) (56)
k=1
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In order to invert F(s), one must express (55) as

a—1 a-1
111 1
F(s) = + {—+s—2+s—3...+s—k+...}, 57)

s¢—1  s*—11s

The series inside the brackets is merely the geometric series. Using (54) one finds that

Safl 1 sa—l Sa—l 1
F(s) = +sa-1[1_(1/s)‘1]=s SN 58)

d—1 s¥-1 s-1

Finally, inverting F(s) yields
L FTEk(17) = Ea(tY) + Ea(t%) xef =
=1

¢
Eo(t%) + [ Eq(u®) du .
0

(59)

For the case of a finite series of the Mittag-Leffler functions, one requires the second result in (54)
to determine the Laplace transform F(s), which is given by

el a-1 (1/5)”71 _
F(s) = G + &= 1[ (1/s)-1 _1] =

(60)
a-1 a-1 (n+1) 1
;—,1+{;,1 —st—q}'mr
According to the convolution theorem, the inverse transform of this finite sum is
n
Z tk_lEa,k(ta) = Ea(ta) + ef * {Ea(ta) - tnEa/n + 1(ta)} =
k=1
t (61)
Eq(t%) + fe(f’“){Ea(u”‘) —u"Eqp + 1(u")} du .
0
Similarly, we can use (54) for negative value of x
loxbPmpbe = (62)
1+x’
Then, the corresponding Laplace transform becomes
S0 1
F(sl) = s“ 11 +3 54— ]{ % ] T + +. } (63)
a— a o a a 1
s+ (e 1)*5«1—3—1’571/
Inversion of this result yields
Y (1) HLE (19) = Eo(#) = Eq(#9) vt =
k=
oy (64)
Eo(t*) = [ e ="y (u®) du .
0
According to the binomial theorem for x < 1, we have
00 e ~ 1
P(x) =1-2c+32 -4+ = Y (-1) Tk = ——, (65)
k=1 (1+2x)
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The Laplace transform corresponding to this series is

() - s;”1{ -+

-1
ﬂ ) = o~ s

The inverse transform of the second term in (66) is

L_l{_sssjl[@fl)z + <si51>2]} -
—Eq(t%) #|te™ +2e7 (1 - 1)] = Ea(t) +[(t=2) '],

4

S

~::a_1+

\ ml)\)

kS "’le

Thus, the infinite series of the Mittag-Leffler functions in (65) and (67) is

Eqq(t%) = 2t Ega (1) + 312 Ens(t%) =43 Epa(t%) +...
Y () R E (1) =

k=1
Eo(#) + ft[(t —u=2) e ] Ey(u®) du .
0

(66)

(67)

(68)

From the preceding examples, it is obvious that if the function f(t) is expanded into the Taylor series,

A
:Z Kl

k=0

(69)

Then, the sum of the corresponding series of the Mittag-Leffler functions can be expressed in
terms of convolution integrals. This is only possible if the inverse Laplace transforms, L™![f(1/s) — 1],

are known.

Now, consider the binomial series with the power of 1/2. Then, we have some derivatives of the

function f(t), which are equal to zero at the origin

f(x):\/H_JCZ:l+x———+——

27 8 16 187"

The corresponding series of the Mittag-Leffler functions is

S(te) =
2 4
Ea,l(ta) + %Ea,S(ta) - %Ea,S( ) + 15Ea 7(ta) 128E419(ta)

while the Laplace transform of S(t%) after few manipulations is given by

L 1 1 5 -
Fs)=sq+oq{ie -t g o) =
sa-1 1 1

} et 2
o ssﬂ—l[\ll"‘(g -

== VET e

(70)

1)

(72)

Noting that the inverse Laplace transform of the Bessel function of the first kind and of the first

order is

o 1 B
L { s T _SZJrH}—h(t),

42

(73)



Mathematics 2020, 8, 657

one finds that the series of the Mittag-Leffler functions in (74) can be expressed as

I
Ea,l (ta) + _EaB(ta) Ea5(ta) + 16Ea 7(ta) 128E0< 9(ta)

= Eq1(t%) = Eq1(t%) * J1(t) = Eq1 (1) fEal(” ) Ji(t—u) du

/2
= En(t%) f tsin(20) Eq[t%(cos 0)%] J;[t(sin 0)?] dO .

(74)

3. Differentiation and Integration of the Mittag-Leffler Functions with Respect to Parameters in
the Laplace Transform Approach

The operational rules of the Laplace transformation are also appropriate in the evaluation of
derivatives of the Mittag-Leffler functions with respect to parameters. Differentiation under the integral
transform sign is permissible if the function f(f,«) is continuous with respect to the variable t and the
parameter a. Then, we have

da = Toa (75)
_1/ 9F(s, — af(t,
L EE — 1(G(s, ) = 2Lt
The Laplace transform G(s,«) of the derivative of the Mittag-Leffler function E,(t*) is
JEq (1Y) 9 (s 1Y _ [se1in 201
o) {542 - 35%) -2
— s Ins s s Ins
s4—1 s4-1 = %=1 s%-1 ga-1°

In order to avoid evaluating a complex integral in the inversion process, G(s,«) is expressed as
the product of three Laplace transforms. The convolution theorem can be applied for G(s,«r) because
inverse of the third term in (76) is given for ReA > 0 in [20]

1fIns\ A1 B
L {_S/\ }7—“” (1) -Int], 77)
From (76) and (77) it follows that

25 — )« a1+ { gy int - vl - 11} )

where a > 1.
Thus, due to two convolutions, the derivative with respect to a is expressed by a double convolution
integral. If the Laplace transform in (76) is written as

Gls,a)=-——— —— — 79)

the inverse transform of (79) becomes

IEq(t) _
da T

Ea(t) [P “Eaa ()] { iy it~ 9@ - 1)1}

(80)

where 0 < A <a<1.
The case a = 1 will be considered in the next section.
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In a similar manner, the Laplace transform of derivative of the Mittag-Leffler function th _1Ea,ﬁ(t0‘)
with respect to a is

ItP TVE,5(t%) a-p
G5, ) = {152t — 2 (5 =

- 81
— 2 Ins s 5P Ins ®1)
ST " 59-1 — -1 1 sa-17
This gives
I Eq (1))
T da
a- (82)
Ea(t) B Ea (1)}« { s - y(a - 1))}
where a > 1.

As expected, for g =1, (82) reduces to (78).
For 0 < a < 1, from (79), it follows that

G(s,a,p) = ——— o ——, (83)
and
AP Eap(t)]
A ey _
oA - (84)
(' Ea ()]« (P B 1)) Sy I - (o= 1)1}

O<A<ax<l.
For B, a variable, the Laplace transform of # ‘1Ealﬁ(ta ) derivative is

M VE, g(1Y) 5 -
His.a p) = {2 ae )

ap B 85
_ _*PFlns _ _s*BN Ins 5
I W e
and the inverse transform is
atﬂilEmB(ta) _ 4B -1 @ p-1 aE“‘/ﬁ(ta) —
g = 1 T Int B (1) + 71 =20 = )

g -0

where > A > 0.

As in the case with differential operations, there are rules in the Laplace transformation for
evaluation of integrals. The Laplace transform of the Mittag-Leffler function t# ’1Ea,ﬁ(t"‘) enables one to
derive the following integral

A
I(t,A) = | P Eqp(t) dp, (87)
/

The Laplace transform of (87) can be determined by changing the order of integration as follows:

) A Af o0
fest{ [t 1Eq5(t%) dﬁ} dt= [ { em P TE, g (1) dt} p =
0 0 010
t s4p 5 1 A | )
[ =T = ms
0
The inverse of (Ins)~! is closely related to a Volterra function [19] as
1 [
L-l{—} _ f du,
Ins T'(u) ! (89)
0
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It follows from (47) that

@ L d
L_l{sas_ 1} =o(t) + [Ea(t)] (90)

whereas (49) gives
L IEa(t)] = 4 Eqal 1), o)

The final result in terms of convolution integrals is

I(t,A) = [6(t) 1 B o (1) =By t“ f 92)
0
Two limits of integration in (87) can be altered to
[t Eqp5(t%) dp = [(‘)(t)th"‘ Epa ] f
% - (93)
S Eqp(t9) dp = [t 1Eq ] [t
A 0

The second term on the right-hand side of (88), written in a different form as inversion of the
Volterra function, is as follows

_ a-A _ a—-(A 1) _
L 1{;'—1 : ﬁ} =L 1{5 o 51115} =t"2E, ) 1 (19) + (1),
(94)

The connection between the Mittag-Leffler functions and the Volterra functions in the Laplace
transformation is discussed in detail in [19].

4. Derivatives of the Mittag-Leffler Functions with Respect to Parameters a and § Expressed as
Power Series

As it has been shown in the previous section, the differentiation with respect to parameters of the
Mittag-Leffler functions can be represented formally, in closed form, in terms of double convolution
integrals. Unfortunately, these convolution integrals are not amenable to numerical computations.
Hence, an alternative approach is required. Differentiating (1) and (2) with respect to a and f yields

JE,(t P(ak+1)
Tl =Gl = - Z ( ak+1))ktk’

o0 (95)
OEap(t) Y(ak+p) \ 1,k
da T k§1(F(ak+ﬁ))kt :
and
9 Eqp(t) S (ll)(ak+ﬁ)) k
A A— — |t 96
B k;() T'(ak+ B) ©6)
The second derivatives are
PEL(t) v [k + )P -9 (ak+1) |,
e~ Gt = kzl{ (ak+ 1) S 7
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and
92Ea,/3() DZO‘ { Y(a k+[§)]2 l/1<1 ak+[3)} tk
T T = T(ak+p) 8)
FEaplt) _ E{l vl kep)P -yt (ak+/5>}ktk
T oadp bt T (ak+p)

Higher derivatives with respect to a and f yield similar summands, only differing in powers of k.

Infinite series with the digamma functions in their summands do not appear often in mathematical
investigations [22,23]. This changed in 2008 with the huge collection of results in the book by
Brychkov [24]. Nevertheless, in their general form, infinite series with quotients of the digamma
and gamma functions in their summands are still unsolved. However, for specific values of o and g,
MATHEMATICA is able to determine closed forms for them, although they are rather cumbersome
with mixture of elementary and special functions. Their validity was checked by carrying out numerical
calculations with (95) and (96). Only a limited number of results will appear in this section, with the
remainder appearing in Tables 1 and 2.

Table 1. First derivatives of the Mittag-Leffler functions with respect to the parameter a.

a p OE,5(t)[0c
Skt yk+3)
1 3 -X T3

1- t+v(r+2) e +¢' (t-2)[Chi(t)—Shi(t)-Int]
tZ

w  kt* y(k+4) 4-81-32+2y (P+4z=t+6)—4e
1 4 - ; T = P +
[Cht(t Shl(t —Int
- kth,;(k+5) 36¢! (t—4) [Chi(t)=Shi(t)-Int]
1 5 ‘E‘ k5 — 361" +
6 [P +61>+18t+24]—[11 3454t>+108t—-36]-36¢!
36t4
5 Kk k+6) e (t=5)[Chi(t)=Shi(t)—Int]—e!
1 6 21 T(k+6) 5
25 4417613 +648 t>+1158 ¢
288 15 +
12 y [ #48F+36 £+96 24120 ++24]
288 1
_f k #* p(2k+3)
2 3 2k+3) -

2+4 ]/+smh \f)[(zcm(\[ —Int) Vi+4Shi(Vb)]
2 cosh( Vi) [2Chi( Vi) + fth(f)—lnHl]
4t

B E k 5 (2k+4)
2 4 [t T(2 k+4)

—sinh( V#)[6Chi( Vi)+2 ViShi( VE)-31nt+2] "
3/2
cosh( VE)[2 VEChi( \/%— VEIn t+6Shi( VE)]+4(y-1) Vi

443/2

_ E’: kit p(2k+5)
2 5 2 1‘(2k+5) -
sinh( VH)[ 2Vt Chi( Vi)— flnt+85hz(f)]+(2)/— )t

+
—2cosh(VH) [4 chz(\[)+\fshz(\[) —2Int+1]+8y+2
47
> kmp 2k+6) \ﬁ[*llt+6y(t+12)—72]

2 6 - Z T(2k+6) 361572
-9smh<«f)(lochz(x[)ﬂxfshy(«f) 51nt+z]Jr

9 cosh( Vi)[ \[(zcm(x[ lnt )+108hi( VE)]
36652
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Table 1. Cont.

a p OE,p(t)[0c

S kty@k
4 0 —Z ”ik))=

i t”"[ Shi(t'/*) cosh(t'/*)+Si(t'/*) cos(t'/*)—4 Ci(t'/*) sin(t'/*)]
2

/4sin(t'/4)—sinh(t'/4)] In t+4 +1/4Chi(t!/*)sinh (/%)
8

o kY@ k+2)  [sinh(#/4)~#/% cosh(t'/4)] In t—4sinh(t/4) +
T(dkt2) 32 17T

4Ch7(t1/4)[t1/4cosh(t‘“)—sinh(t‘“)]-¢—4cosh(tl/‘l)shi(tl/4)+

32 t1/4
1174 cos(2'/4)[4Ci(z!/*)~In t] =41/ *sinh (£/4)Shi(t'/*) n

3221/4
sin(t1/4)[-4-4Ci(#"/*)+In t+4£/4Si(1/4)]+48i(1/4)
32 t1/4

Table 2. First derivatives of the Mittag-Leffler functions with respect to the parameter p.

« P 9Eq5(t)/9p

S fP(k+3) b=y (HH1) el [Chi(t)=Shi(t)=Int]
- X T(k+3) — 2
1 3 ()" p(4k)  zY/4[sin(z"/*)=sinh(z'/*)]Inz
- Z Tan 5 +
421/4[Chl( 1/4) sinh(z!/4)~Shi(z'/*) cosh(z!/4)+
8

S Fy(k+a) et [Chi(t)—Shi(t)~Int]
1 4 - ): T(k4) — P
3!Z+4t =2y (P 42t+2)
48
S FY(k+5) e [Chi(t)=Shi(t)-In{]
- éo T(k+5) — [ +
1184272 +36t—6y (2+3t>+6t-+6)
36t
S Fyk+6) o [Chi(t)-Shi(H)~Int]
- ; T (k+6) [ +
2514+881‘+216t2+288t 12 y (H44P+122+241+24)
28815
S Fydk H/4[4CIH(H/4) sin(£/4)+In f][sin('/*)—sinh (/4
4 0 Z rlfél(»k) [4Ci(t!/%) sin( )8][>l( )=sinh( )]Jr
[ i(t1/%) cos(t!/4)—4Chi(t!/*) sinh(£'/4)-Shi(t'/*) cosh(t'/*)]
8

+

S FYd k) —Chi(t'/*) cosh(t'/*)-Ci(t'/*) cos(t'/*)
4 1 k; | TaRD 2 +
Shi(t'/*) sinh(t!/4)=Si(t'/*) sin('/*) + Int[cos(t!/4)+cosh(t'/4)]
2 8
_ o FPp@Ekt2)  =Ci(i4) sin(#/4)— Chl(t1/4)51nh(t1/4)
4 2 L T@k+2) 2417
Shi(t'/*) cosh(t'/*)+Si(t'/*) cos(t'/*) | Int[sin(t'/*)+sinh(t/4)]
pIivEs + S1/%
_ E FP(4k+3)  Ci(t*) cos(H/*)=Chi(t'/*4) cosh(t”")
4 3 L2 TERE) T Vi
Shi(t'/*)sinh(t'/4)+Si(t!/4) sin(#'/4) + In t[cos(t'/4)—cosh(t'/4)]
2Vt 8Vt
o P4 k+4)  Ci(#V4) sin(#/4)~Chi(£/4) sinh(t/*)
4 4 - Z T@k4) 2077 +
t”“)coa 1/4)—~Shi(t'/*) cosh(t'/*) lnt[sir\(ll/“)—sinh(ll/“)]
Si/3 SH1/%

Convergence conditions for the power series reported in this section were not established, and
therefore t values are in some cases restricted (e.g., in (99) and (100) for |f| < 1). These summands were
obtained from MATHEMATICA, but the validity was numerically checked for only some of them.
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The simplest cases occur when & and § equal zero or unity. Then, we find that

9 Eqplt) ¥(1) k_
Sa |l a=0p=1= ——12 kt
3Ea,ﬁ(t) K Yp)t
el *‘—Z =
JE a,B(

v (20 ek —
—9a la=1p=0= k§1(r(k))kt
t{e (1+t)[Chi(t) - Shi(t) - Int] + 1 ¢!}

"‘5{1( la=1p=1= ( ﬁi)ktk:
1—et{t[int+T(0,1)] +1} r(0,t)] = —Ei(-t),

and

9 Eap(t) o[ P(k+1) ,
e M i (ST

99)

(100)

(101)

(102)

(103)

where I'(0,t) = —Ei(—t), and the hyperbolic sine and cosine integrals and the exponential integral are

defined by
t

Shl( ) fsmhu du,
0
Chi(t) = fl —coshit gy 4y Int,

DO
—Ei(- f %
t

y represents Euler’s constant.
For a, B =0, 1, and 2, the following sums of infinite series are known:

IEqp(t < k+2
B0 ums=- E (5 -

1+y+e![(t-1) Chi(t)+Shi(t)—t (Shz( )+Int)+Int-1]
f

9Eqp(t) R (v -
oo | a= 28=0— _kzl(m) ktk =

VE [2Chi( VE)~Int][sinh( \/f)+:\/f cosh(VH]
2ViShi( V[ VE sinh(4\ﬁ)+cosh( Vb)]-2 Visinh( V)
1

7

JE, o (¢(2k+1) .
ﬁ | a=2p=1= _kgl(mm))kfk =
\/>smh \f [ZChI(\[ )—In t]—2 cosh( \ﬁ) [\ﬁS}1i(W)+1]+2
4

’

(9 (o9
|a 2{5—2*—2((;]:3)))“]‘:
[2Chl(\/') Int][ Vi cosh(\/') sinh( V)] ZSmh(\/;)+

\/'
[2Shi( Vt)[cosh( VE)— \ﬁ sinh( V)]
4t !

and

aaﬁ v (PE+2))
la=1p=2=" E‘o(r(”z))t =

y+e‘ [Shl(t) Chi(t)+In t]
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(107)

(108)

(109)
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aEa, (t) S 2k
~55la=2p=0=- L (_ffzk) =1+

K=o\ (110)
VE{sinh( VE)[2Chi( VE)~Int]-2 cosh( VE)Shi(t))
2 7
9Eap(~1) _ vy (9 k_
Vifsin( VE)[Ci( VE)-In£]-2 cos( VE)Si( \ﬁ)}
2
JE, o (9(2k+1)
ﬁ N ac2po1=- g(FZkJrl) 112)
Cosh( \ﬁ)[ZChl \f lnt]
—sinh( Vf)Shi( Vi) +
dE v ((2k+2)
T o
a=2p=27= k=0 T(2k+2) (113)
—2cosh( V) Shi( VE)+sinh( Vi) [2Chi( Vi) -In1]
2Vt !
and
dEqg(~ S w(2k+2) -
5 2 2p=2= k§0(r(zk+z))(_t)k*
[\f cosh( \f)—:’mh(\/'\/')][ZChl(\ﬁ)*lnt]+ (114)
4
Shi( V) [cosh( V- «/% sinh( Vf)]-sinh( V)
2t !
where the sine and cosine integrals are defined by
t .
Si(t) = [t gy,
0 . (115)

f cosu g,

t

A number of numerical methods for evaluating the Mittag-Leffler functions and their derivatives
with respect to the argument z are given in the literature [25-27]. Fortunately, the Mittag-Leffler
functions are available in MATHEMATICA, which means that the first and the second derivatives with
respect to & can also be evaluated. The results for 0.05 < @ < 5.0 and 0 < t < 2.25 can be obtained from
the author on request. Two numerical methods were used to verify the results. In the first method,
direct summation of infinite series (95) and (96) was performed in MATHEMATICA module, while in
the second method, the calculations were carried out by applying the central differences to O(h*) with

h =0.001.
d Ea(t) _ —Eor Zh(t) +8Ey+ h(t) — 8Ea—h(t) + Ea—2h(t) (116)
da 121

and
9 2Eq (1)

416 Eay (130 E(01416 Eary(0)-Ea (1) 17
12 h?

The above results of the Mittag-Leffler functions were evaluated in MATHEMATICA.

The Mittag-Leffler functions, f(«,t) = E4(t), as a function of « for constant ¢ are plotted in Figure 1.
The rapid exponential behavior of these functions means that only narrow intervals of the functions
can be plotted. As can be seen, they are always positive and become more divergent as ¢ increases.
For 0 < & < 1, they possess a maximum, which moves as t is increased. For large values o and , they
tend to zero.
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Figure 1. The Mittag-Leffler functions E,(t) as a function of « at constant values of argument f. 1—0.25;
2—0.50; 3—0.75; 4—0.85; 5—1.0; 6—1.5; 7—2.0.

The first derivatives of the Mittag-Leffler with respect to @ or G(x,t) = JdE,(t)/da are plotted in
Figure 2 Their behavior mirrors E,(t), except that they are inverted as they are always negative.

0.0

2 1

1\ 3 /
-4.0

Q
K
=

5] 6

-12.0 . .
0.0 1.0 2.0 3.0
(24

Figure 2. G(a,t)—First derivatives of the Mittag-Leffler functions with respect to a plotted at constant
values of t. 1—0.25; 2—0.50; 3—0.75; 4—0.85; 5—1.0; 6—1.5; 7—2.0.

The second derivatives with respect to a, G'(a,t) = 2E(1)/da? are presented in Figure 3. Their
behavior resembles that of the Mittag-Leffler functions (Figure 1). However, for small values of f,
they move from negative to positive values. The divergent behavior of G’(«,t) also applies for large
values of ¢, but for increasing values of @ and f, they tend to zero.
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Figure 3. G’(a,f)—Second derivatives of the Mittag-Leffler functions with respect to «a plotted at
constant values of t. 1—0.25; 2—0.50; 3—0.75; 4—0.85; 5—1.0; 6—1.5; 7—2.0.

5. Derivatives of the Mittag-Leffler Functions with Respect to Parameters o and f from Integral
Representations

Derivatives with respect to a and f can be determined by direct differentiation of the integrands
in integral representations of the Mittag-Leffler functions. Because no general expression exists for
integral representations [25,27-33], it is possible to use only those that are valid for real positive and
negative values of f and for restricted values of @ and f.

For0 <« <1andt >0, these are

ot sm P etu a1
Eq(t* — du, 118
at) = f u2® — 2y cos(mar) + 1 " (118)

sin(na) r et ol
Eqo(—t%) = du . 119
a(=t9) n fuzf" + 2u® cos(mar) + 1 " (119)

0
and -
up(19) = e_f 1 fe”“ u*PB{u sin(np) + sinfr(a — )]} | (120)
a 7 u2® — 2y cos(na) + 1
0
Eapl-1%) = 1 fe‘“‘ u"“ﬁz{u"‘ sin(np) + sin[r(a - B)]} . (121)
’ n u?® 4+ 2u% cos(na) +1

0

In (120) and (121),0 < <a + 1.
Direct differentiation of (118) and (119) with respect to o gives

)

JEL(tY) ot et ol
da T Ta2” cos(na) f 1222y cos(ma)+1 du~—
0 (122)
sin(na et Eut! [(1-029) Inu-2mu® 51n(7m)]

du,

[u2a—2ya cos(na)+l]

Q%g
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and

e}

IEa(=tY) _ et yet
da COS(T[O() fuz"+2u“‘ cos(na)+1 du+
0

(123)
du

sin(nar) j‘o ety 1(1-12%) In u+-2mu® sin(na)|

o 1224 2u¢ cos(ma)+1]*

where the first integrals in (122) and (123) can be written in terms of the Mittag-Leffler functions using
(118) and (119).

In the same manner, one can obtain derivatives of the Mittag-Leffler functions E,,g(+t%) with
respect to a and . Thus, we find that

OEqp(t) o R et 1P cos[n(a—p)]
da _% f uz“—Zu"‘ cos(na)+1 du—
1 (™ u P Inuf2u® sin(np)+sin[r(a—p)]}
f 12 =20 cos(mar)+1 du+ .
Zf e 2P Inufu® sin(np)+sin[r(a—p))} [u—cos(na)] du (124)
[u2a— 2u”c05(770¢)+1]2
e 129F sin(ra) {u® sin(TL,B)Jrsm [n(a=p)]}
+zbf [u2a—2ye cos(na)+l] du,
and
FEap(t") 1 Tt u* P Inufu® sin(r)+sin[r(a—p)]} d
B~ m f 1202y cos(ma)+1 u=
0 (125)
e utP{u® cos(np)—cos[r(a—p)]} d
of 1222y cos(ma)+1 u.
For the negative real axis, one obtains
OEqp(—t") _ R et o B cos[n(a—p)]
1 il
th- da - f U202 cos(na)+1 du-
1 e utPInu{2u® sin(rp)+sin[r(a—p)]}
;f uz"+2u" cos(mar)+1 du—
%o (126)
2f e 129F In u{u® sin(np)+sin[n(a—p)]} [u¥+cos(na)] du
) (122 +2u% cos(ma)+1)
}o e~ 4207F sin(na) {u® sin(np) +sm[n a—p)]} du
5 12020 cos(mar) +1]> !
and Pt
th- llntEaﬁ( 1) 4 th-1 Bﬁ =
~1 %~F In u{u® sin(np) +sin[m(a—p)]}
1 [
_Ef 1234207 cos(mar) +1 du+ (127)

}oe’“‘ uP{u® cos(np)—cos[r(a—p)]} du .

120427 cos(mar) +1

0

The infinite integrals in (122) to (127) are valid for restricted values of @ and . As can be expected,
they represent the Laplace transforms and are similar to convolution integrals in Section 3.

6. Conclusions

For the first time, the parameters of the Mittag-Leffler functions in (1) and (2) have been treated as
variables, and derivatives with respect to them have consequently been determined and discussed.
Thus, it has been shown that operational calculus is a powerful tool for determining the properties of
the Mittag-Leffler functions. Using the Laplace transform theory, new functional relations, together
with infinite and finite series of the Mittag-Leffler functions, have also been calculated. Moreover,
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derivatives with respect to @ and g have been found to be expressible in terms of convolution integrals.
Direct differentiation of (1) and (2) yields infinite power series with quotients of digamma and gamma
functions in their coefficients. For small integer values of a and g, closed forms are derived in terms of
elementary and special functions. The Mittag-Leffler functions, together with their first and second
derivatives, are graphed as functions of a and t. On a final note, it should be mentioned that Biyajima
etal. [30,31] have used (102) in their new blackbody radiation law, but not the closed form given here.
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Abstract: In this review paper, we stress the importance of the higher transcendental Wright functions
of the second kind in the framework of Mathematical Physics. We first start with the analytical
properties of the classical Wright functions of which we distinguish two kinds. We then justify the
relevance of the Wright functions of the second kind as fundamental solutions of the time-fractional
diffusion-wave equations. Indeed, we think that this approach is the most accessible point of view
for describing non-Gaussian stochastic processes and the transition from sub-diffusion processes to
wave propagation. Through the sections of the text and suitable appendices, we plan to address the
reader in this pathway towards the applications of the Wright functions of the second kind.
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1. Introduction

The special functions play a fundamental role in all fields of Applied Mathematics and
Mathematical Physics because any analytical results are expressed in terms of some of these functions.
Even if the topic of special functions can appear boring and their properties mainly treated in
handbooks, we would promote the relevance of some of them not yet so well known. We devote our
attention to the Wright functions, in particular with the class of the second kind. These functions,
as we will see hereafter, are fundamental to deal with some non-standard deterministic and stochastic
processes. Indeed, the Gaussian function (known as the normal probability distribution) must be
generalized in a suitable way in the framework of partial differential equations of non-integer order for
describing the anomalous diffusion and the transition from fractional diffusion to wave propagation.

Furthermore, their usefulness and meaningfulness also extends to other topics. For example,
these functions and their Laplace Transforms can be applied in electromagnetic problems, see the 1958
paper by Ragab [1] (where the Wright functions were used without knowing their existence) and the
recent 2020 paper by Stefariski and Gulgowski [2]. Recently, the Wright functions have been used in
the theory of coherent states by Garra, Giraldi, and Mainardi [3].

This survey article aims to discuss the relevance of the Wright Functions and also to focus on the
not well-known Four Sisters Functions and their importance in time-fractional diffusion-wave equations.

The plan of the paper is organized as follows. In Section 2, we introduce the Wright functions,
entirely in the complex plane that we distinguish in two kinds in relation to the value-range of the two
parameters on which they depend. In particular, we devote our attention to two Wright functions of
the second kind introduced by Mainardi with the term of auxiliary functions. One of them, known as

Mathematics 2020, 8, 884; doi:10.3390 / math8060884 www.mdpi.com/journal /mathematics
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M-Wright function, generalizes the Gaussian function so it is expected to play a fundamental role in
non-Gaussian stochastic processes.

Indeed, in Section 3, we show how the Wright functions of the second kind are relevant in the
analysis of time-fractional diffusion and diffusion-wave equations being related to their fundamental
solutions. This analysis leads to generalizing the known results r of the standard diffusion equation in
the one-dimensional case that is recalled in Appendix A by means of auxiliary functions as particular
cases of the Wright functions of the second kind known as M-Wright or Mainardi functions. For readers’
convenience, in Appendix B, we will also provide an introduction to the time-derivative of fractional
order in the Caputo sense We remind that nowadays, as usual, by fractional order, we mean a
non-integer order, so that the term “fractional” is a misnomer kept only for historical reasons.

In Section 4, we consider again the Mainardi auxiliary functions functions for their role in
probability theory and in particular in the framework of Lévy stable distributions whose general theory
is recalled in Appendix C.

In Section 5, we show how the auxiliary functions turn out to be included in a class that we denote
the four sister functions. On their turn, these four functions depending on a real parameter v € (0,1)
are the natural generalization of the three sisters functions introduced in Appendix A devoted to the
standard diffusion equation. The attribute of sisters was put in by one of us (F. M.) because of their
inter-relations, in his lecture notes on Mathematical Physics, so this is only a personal reason that we
hope to be shared by the readers.

Finally, in Section 6, we provide some concluding remarks paying attention to work to be done in
the next future.

We point out that we have equipped our theoretical analysis with several plots hoping they will
be considered illuminating for the interested readers. We also note that we have limited our review to
the simplest boundary values problems of equations in one space dimension referring the readers to
suitable references for more general treatments in Section 3.1.

2. The Wright Functions of the Second Kind and the Mainardi Auxiliary Functions

The classical Wright function that we denote by W, ,(z), is defined by the series representation
convergent in the whole complex plane,

n

= z
Waulz)i= ) —=—, A>-1, pefC, (1)
W)= L+ ) .
The integral representation reads as:
1 L7+Z(77/\ dU
=_— = A> -1 2
Wau(d) =5 [ @ A > 1, e @

where Ha_ denotes the Hankel path: this one is a loop which starts from —oo along the lower side of
negative real axis, encircling it with a small circle the axes origin and ends at —oo along the upper side
of the negative real axis.

W) ,u(z) is then an entire function for all A € (—1, +o0). Originally, Wright assumed A > 0 in
connection with his investigations on the asymptotic theory of partition [4,5] and only in 1940 he
considered —1 < A < 0, [6]. We note that, in the Vol 3, Chapter 18 of the handbook of the Bateman
Project [7], presumably for a misprint, the parameter A is restricted to be non-negative, whereas the
Wright functions remained practically ignored in other handbooks. In 1993, Mainardi, being aware
only of the Bateman handbook, proved that the Wright function is entire also for —1 < A < 0in his
approaches to the time fractional diffusion equation that will be dealt with in the next section.

In view of the asymptotic representation in the complex domain and of the Laplace transform for
positive argument z = r > 0 (r can be the time variable ¢ or the space variable x), the Wright functions
are distinguished in first kind (A > 0) and second kind (—1 < A < 0) as outlined in the Appendix F of
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the book by Mainardi [8]. In particular, for the asymptotic behavior, we refer the interested reader to
the two papers by Wong and Zhao [9,10], and to the surveys by Luchko and by Paris in the Handbook
of Fractional Calculus and Applications, see, respectively, [11,12], and references therein.

We note that the Wright functions are an entire of order 1/(1 + A); hence, only the first kind
functions (A > 0) are of exponential order, whereas the second kind functions (-1 < A < 0) are
not of exponential order. The case A = 0 is trivial since Wy ,,(z) = e*/T'(u). As a consequence of the
difference in the orders, we must point out the different Laplace transforms proved e.g., in [8,13],
see also the recent survey on Wright functions by Luchko [11]. We have:

e for the first kind, when A > 0

1 1
WA,;l(ir) - gE)\,y (ig> ; 3)
e for the second kind, when —1 < A < 0 and putting for convenience v = —Aso 0 <v <1
W_W(—r) + Evpv (—s) . 4)

Above, we have introduced the Mittag-Leffler function in two parameters « > 0, € C defined
as its convergent series for all z € C

; an+ﬁ ©®)

For more details on the special functions of the Mittag-Leffler type, we refer the interested readers
to the treatise by Gorenflo et al. [14], where, in the forthcoming 2nd edition, the Wright functions are
also treated in some detail.

In particular, two Wright functions of the second kind, originally introduced by Mainardi and
named F,(z) and M, (z) (0 < v < 1), are called auxiliary functions in virtue of their role in the time
fractional diffusion equations considered in the next section. These functions, F,(z) and M,(z),
are indeed special cases of the Wright function of the second kind W), ,,(z) by setting, respectively,
A= —vand pu =0oru =1-v. Hence, we have:

F/(z):=W_y0(—2), 0<v<], (6)

and
My(z) =W_y1_y(—2), 0<v <1 7)

Those functions are interrelated through the following relation:
F,(z) = vzM,(z), 8)

which reminds us of the second relation in (A9), seen for the standard diffusion equation.
The series representations of the auxiliary functions are derived from those of W, ,,(z). Then:

F(z) := i % = % i Tf(vn +1) sin (7tvn) 9)

and
_Z)n—l

(
(n—1)!

T'(vn)sin (7vn), (10)
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where in both cases the reflection formula for the Gamma function (Equation (11)) it has been used
among the first and the second step of Equations (9) and (10),

I(Ir(1—¢) = mn/sinmng. (11)

In addition, the integral representations of the auxiliary functions are derived from those of
W) u(2). Then:

- 1 ' o—zoY
F(z) := 5 /Ha, e do, zeC, 0<v<1 (12)
and 1 p
: v o
= o—20"
M, (z) = - /Hu e e zeC, 0<v<l (13)

Explicit expressions of F,(z) and M, (z) in terms of known functions are expected for some
particular values of v as shown and recalled by Mainardi in the first 1990s in a series of papers [15-18]
that is,

1 —Z
My )p(z) = N i, (14)
My 3(z) = 32/3Ai(z/3'/3). (15)

Liemert and Klenie [19] have added the following expression for v = 2/3
Majs(z) = 373 [31/32 A (2/3%7) — 3AT (2/3°)] &2/, (16)

where Ai and Ai’ denote the Airy function and its first derivative. Furthermore, they have suggested in
the positive real field R the following remarkably integral representation

1 v/(1-v) T )
M) = 2 5 [ @) e (=Cule)) 0 dg, a7
where /1)
_sin(1—v) [sinvg\""7
Cv(¢) = “sing (m) (18)

corresponding to Equation (7) of the article written by Saa and Venegeroles [20] .

The Wright function of both kinds and in particular the Mainardi auxiliary functions considerd
in this paper turn out to be particular cases of more general transcendental functions as the Fox H
functions, the Fox-Wright functions and the multi-index Mittag-Leffler functions. The relations with
the classical Mittag-Leffler functions with two parameters have already been pointed out so; for more
parameters, we refer the interested reader, e.g., to the papers by Kiryakova [21], Kilbas, Koroleva,
Rogosin [22], and references therein.

We outline that for more Laplace transform pairs involving the Wright and the Mittag—Leffler
functions the reader is referred to Ansari and Refahi Sheikhani [23] and to the tutorial survey by
Mainardi [24].

3. The Wright Functions of the Second Kind and the Time-Fractional Diffusion Wave Equation

As we will see, the Wright functions of the second kind are relevant in the analysis of the
Time-Fractional Diffusion-Wave Equation (TFDWE).

We find it convenient to show the plots of the M-Wright functions on a space symmetric interval
of R in Figures 1 and 2, corresponding to the cases 0 < v <1/2and 1/2 < v < 1, respectively.

From these figures, we recognize the non-negativity of the M-Wright function on R for
1/2 < v <1 consistently with the analysis on distribution of zeros and asymptotics of Wright functions
carried out by Luchko, see [11,25] and by Luchko and Kiryakova [26].
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Figure 2. Plots of the M-Wright function as a function of the x variable, for 1/2 <v < 1.

For this purpose, we introduce now the TFDWE as a generalization of the standard diffusion
equation and we see how the two Mainardi auxiliary functions come into play. The TFDWE is thus
obtained from the standard diffusion equation (or the D’ Alembert wave equation) by replacing the
first-order (or the second-order) time derivative by a fractional derivative (of order 0 < g < 2) in the
Caputo sense, obtaining the following Fractional PDE:

oPu %u
=D— <
1P Dax2 0<B<2 D>0, (19)
where D is a positive constant whose dimensions are [*T~# and u = u(x,t;f) is the field

variable, which is assumed again to be a causal function of time. The Caputo fractional derivative
is recalled in the Appendix B so that in explicit form the TFDWE (19) splits in the following
integro-differential equations:

t 2
ﬁ/o (tf'c)’ﬁ<g—:)dT:D37u, 0<p<1; 20)
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1 t 1 u o%u
—— [ - PSS )dtr=D=—, 1 <2. 21
F(z—ﬁ)/o( 7 (aﬂ)T o 1<P< @)
In view of our analysis, we find it convenient to put:
_B
v—z, 0<v<l (22)

We can then formulate the basic problems for the Time Fractional Diffusion-Wave Equation using
a correspondence with the two problems for the standard diffusion equation.
Denoting by f(x) and g(t) two given, sufficiently well-behaved functions, we define:

(a) Cauchy problem

u(x,0;v) = f(x), — 00 < x < +o9; )
u(+oo,t;v) =0, t>0
(b)  Signalling problem
u(x,0%;v) =0, 0<x < +oo; (24)
u(0t, v) = g(t), u(+oo,;v) =0, t >0

If1/2 < v <1 corresponding to 1 < f < 2, we must consider also the initial value of the first
time derivative of the field variable u;(x,0";v), since, in this case, Equation (19) turns out to be akin to
the wave equation and consequently two linear independent solutions are to be determined. However,
to ensure the continuous dependence of the solutions to our basic problems on the parameter v in the
transition from v = (1/2)~ tov = (1/2)", we agree to assume u;(x,0";v) = 0.

For the Cauchy and Signalling problems, following the approaches by Mainardi, see, e.g., [15]
and related papers, we introduce now the Green functions G.(x, £;v) and Gs(x,t;v) that for both
problems can be determined by the LT technique, so extending the results known from the ordinary
diffusion equation. We recall that the Green functions are also referred to as the fundamental
solutions, corresponding respectively to f(x) = é(x) and g(t) = d(t) with 4(-) is the Dirac delta
generalized function

The expressions for the Laplace Transforms of the two Green’s functions are:

- 1 y
3 L)) — (=[x|/vVD)s 25
Ge(x,s;v) Z\Fsl—ve (25)

and

gs(x,s;v) = e*(x/‘/ﬁ)sv (26)

Now, we can easily recognize the following relation:

d ~ ~
20 =—2wxG,, x>0 27)

which implies for the original Green functions the following reciprocity relation for x > 0’and t > 0 and
O<v<l:
2uxGe(x, tv) = tGs(x, v) = Fy(z) =vzMy(z) z= —— (28)

where z is the similarity variable and F,(z) and M, (z) are the Mainardi auxilary functions introduced in
the previous section. Indeed, Equation (28) is the generalization of Equation (A8) that we have seen for
the standard diffusion equation due to the introduction of the time fractional derivative of order v.

Then, the two Green functions of the Cauchy and Signalling problems turn out to be expressed in
terms of the two auxiliary functions as follows.
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For the Cauchy problem, we have

- B
Gel(x, t;v) = M( > —o<x< 40 t>0 29
et =27\ o )

that generalizes Equation (A5).
For the Signalling problem, we have:

Gl tv) = <L> x>0, £>0 (30)
Ss\x L \/5 v \/Etv =Y, =

that generalizes Equation (A7).

3.1. Complements to the Time-Fractional Diffusion-Wave Equations

The use of the Wright functions of the second kind in time fractional diffusion-wave equations has
appeared in several papers for a variety of different purposes, see, e.g., Bazhlekova [27], D’Ovidio [28],
Gorenflo, Luchko and Mainardi [29], Mentrelli and Pagnini [30], Mosley and Ansari [31], Pagnini [32],
Povstenko [33], and references therein.

The boundary value problems dealt with previously can be considered with a source data function
f(x) and g(t) different from the Dirac generalized functions, in particular with box-type functions as it
has been carried out recently by us, see [34].

An interesting generalization of the TFDWE is obtained by considering time-fractional derivatives
of distributed order. In this respect, we cite, e.g., the papers by Kochubei [35], Li, Luchko and
Yamamoto [36], Mainardi, Pagnini and Gorenflo [37], and Mainardi et. al [38].

The TFDWE can also be generalized in 2D and 3D space dimensions. so consequently the Wright
functions play again a fundamental role. However, we prefer to refer the interested reader to the
literature, in particular to the papers by Luchko and collaborators [11,25,39-43], by Hanyga [44] and
to the recent analysis by Kemppainen [45]. All of them are originated in some way from the seminal
paper by Schneider and Wyss [46]. In some of these papers, the authors have considered also fractional
differentiation both in time and in space, so that they have generalized to more than one dimension
the former analysis by Mainardi, Luchko, and Pagnini [47] on the space-time fractional diffusion-wave
equations.

4. The M-Wright Functions in Probability Theory and the Stable Distributions

We recognize that the Wright M-function with support in R™ can be interpreted as probability
density function (pdf) because it is non negative and also it satisfies the normalization condition:

/ M,y (x)dx =1. (31)
0
We now provide more details on these densities in the framework of the theory of probability.

Theorem 1. Let M, (x) be the M-Wright function in R, 0 < v < 1and § > —1. Then, the (finite) absolute

moments of order & are given by:
) _T(6+1)
/O x° My(x)dx = Two+ 1) (32)
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Proof. The proof is based on the integral representation of the M-Wright function:

had © 511 v do
5 5 T—X0
'/0 X Ml,(x)dx_/0 X {2 l./a?t? 1,V}dx

— i g *© —xo¥ <§ do (33)
C2mi ./Ha, ¢ {/0 ¢ dx ol-v
T(5+1) / ¢ o TE+1)
27w JHao oV9t1T T T(wd+1)
|
The exchange between two integrals and the following identity contributed to the final result for
Equation (33):
© v T(6+1)
X0V g
/0 e adx = T (34)

In particular, for 6 = n € N, the above formula provides the moments of integer order. Indeed,
recalling the Mittag—Leffler function introduced in Equation (5) witha = vand g = 1:

=L inryy V70 2€C )

the moments of integer order can also be computed from the Laplace transform pair
My (x) + Ey(—s) (36)

proved in the Appendix F of [8] as follows:

oo o L d CT(n+1)
/0 My ) dx = i (<1)" 5 Bo(-9) = i (37)

4.1. The Auxiliary Functions versus Extremal Stable Densities

We find it worthwhile to recall the relations between the Mainardi auxiliary functions and the
extremal Lévy stable densities as proven in the 1997 paper by Mainardi and Tomirotti [48]. For readers’
convenience, we refer to Appendix C for an essential account of the general Lévy stable distributions
in probability. Indeed, from a comparison between the series expansions of stable densities in (A41)
and (A42) and of the auxiliary functions in Equations (9) and (10), we recognize that the auxiliary
functions are related to the extremal stable densities as follows:

_ 1 _ o -~
La"‘(x):;P,,‘(x "‘):WM“(x ) 0<a<l x>0 (38)
a—2 1 1
L% (x):;Fl/a(x):EMl/a(x) l<a<2 —oco<x<+4o00. (39)
In the above equations, for &« = 1, the skewness parameter turns out to be § = —1, so we get the
singular limit
L7 (x) = My(x) = 0(x - 1). (40)

Hereafter, we show in Figures 3 and 4 the plots the extremal stable densities according to
their expressions in terms of the M-Wright functions, see Equations (38) and (39) for « = 1/2 and
« = 3/2, respectively.
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We recognize that the above plots are consistent with the corresponding ones shown by
Mainardi et al. [47] for the stable pdf’s derived as fundamental solutions of a suitable space-fractional

diffusion equation.

10°

I I L L L L
-4 -3 -2 -1 0 1 2 3 4 5
X

Figure 3. Plot of the unilateral extremal stable pdf for « = 1/2.

5 4 -3 2 -1 0 1 2 3 4 5

X

Figure 4. Plot of the bilateral extremal stable pdf for « = 3/2.

4.2. The Symmetric M-Wright Function

We easily recognize that extending the function M, (x) in a symmetric way to all of R (that is

putting x = |x|) and dividing by 2 we have a symmetric pd f with support in all of R.

As the parameter v changes between 0 and 1, the pdf goes from the Laplace pdf to two half discrete

delta pdfs passing for v = 1/2 through the Gaussian pdf.

To develop a visual intuition, also in view of the subsequent applications, we show n Figures 5
and 6 the plots of the symmetric M-Wright function on the real axis at f = 1 for some rational values

of the parameter v € [0,1]
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Figure 5. Plot of the symmetric M-Wright function M, (|x|) for 0 < v < 1/2. Note that the M-Wright
function becomes a Gaussian density for v = 1/2.
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Figure 6. Plot of the symmetric M-Wright type function M, (|x|)| for 1/2 < v < 1. Note that the
M-Wright function becomes a a sum of two delta functions centered in x = £1 for v = 1.

The readers are invited to look the YouTube video by Consiglio whose title is “Simulation of
the M-Wright function”, in which the author shows the evolution of this function as the parameter v
changes between 0 and 0.85 in a finite interval of R centered in x = 0.

Theorem 2. Let M, (|x|) be the symmetric M-Wright function pdf. Then, its characteristic function is:

F3Mullx])] = Exu(~2) (41)
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Proof. The proof is based on the series development of the cosine function and on Equation (33):

1 — Loftee +iKx
FlaMux] =5 [ ety (|x|)dx

= /0oo cos (xx) My (x)dx

©0 K2n 00 (42)
:n;)(_l)n(z”)!/o xz”MV(x)dx

o KZn
=) (‘U"m = Epy(—1%)

n=0

O

4.3. The Wright M-Function in Two Variables

In view of time-fractional diffusion processes related to time-fractional diffusion equations, it is
worthwhile to introduce the function in two variables

My(x,t) :==t"My(xt™") O0<v<1l xteRT (43)

which defines a spatial probability density in x evolving in time t with self-similarity exponent H = v.
Of course, for x € R, we have to consider the symmetric version of the M-Wright function. Hereafter,
we provide a list of the main properties of this function, which can be derived from the Laplace and
Fourier transforms for the corresponding Wright M-function in one variable.

From Equations (39) and (43), we derive the Laplace transform of M, (x, t) with respect to t € R,

v

LAM, (x,t);t — s} =s"" e ™5 | (44)

From Equation (18), we derive the Laplace transform of M, (x, t) with respect to x € R,
LA{M,(x,t);x = s} = E, (—st") . (45)

From Equation (55), we derive the Fourier transform of M, (| x|, t) with respect to x € R,
F{M,(|x|, t);x — x} = 2E,, (—Kztv> . (46)

Using the Mellin transforms, Mainardi et al. [49] derived the following interesting integral formula
of composition,

M, (x, {) = /OwM/\(x,T) M, (t,t)dt v =Ap. (47)

Special cases of the Wright M-function are simply derived for v = 1/2 and v = 1/3 from the
corresponding ones in the complex domain, see Equations (28) and (29). We devote particular attention
to the case v = 1/2 for which we get the Gaussian density in R,

1 .2
My o (|x[, ) = We X"/ (4t) . (48)

For the limiting case v = 1, we obtain

M (Jx], ) = 5 [6(x — 1) +3(x + 1)) (49)

N[~

We conclude this section pointing out that the M-Wright functions have been applied by several
authors in the theory of probability and stochastic processes, see, e.g., Beghin and Orsingher [50],
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Cahoy [51,52], Garra, Orsingher and Polito [53], Le Chen [54], Consiglio, Luchko and Mainardi [55],
Gorenflo and Mainardi [56], Mainardi, Mura and Pagnini [57], Pagnini [58], Scalas and Viles [59], and
references therein. Furthermore, these functions have been found in the first passage problem for Lévy
flights dealt by the group of Prof. Metzler, see e.g., [60,61].

5. The Four Sisters

In this section, we show how some Wright functions of the second kind can provide an interesting
generalization of the three sisters discussed in Appendix A. The starting point is a (not well- known)
paper published in 1970 by Stankovic [62], where (in our notation) the following Laplace transform
pair is proved rigorously:

AW () =sPe ™ 0<v<l pu>0 (50)

where x and t are positive. We note that the Stankovic formula can be derived in a formal way by
developing the exponential function in positive power of s and inverting term by term as described in
the Appendix F of the book by Mainardi [8].

We recognize that the Laplace Transforms of the Three Sisters functions (]7' (x,5), @ (x,s) and x(x,s)
are particular cases of the Equation (50) for v = 1/2 that is of

W o (x t) =57 e ¥Vs, (51)
according to the following scheme:
P(x,s) withpu =1; (x,s) withu =0; x(x,5) withu =1/2.
If v is no longer restricted to v = 1/2, we define Four Sisters functions as follows:

p=0, e =t TW_,o(—xt7"),

e _ _
p=1-v, ST W (—atY),
efxs‘/ 1 Y (52)
H=v, o S TWoy(—xtTY),
e—st ] _
u=1, R W_y1(—xt™").

Hereafter, in Figures 7-9, we show some plots of these functions, both in the t and in the x domain
for some values of v (v = 1/4,1/2,3/4).

Note that for v = 1/2 we only find three functions, that is the Three Sisters functions of
Appendix A.
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Four Sisters Functions (v = 1/4, x = 1)

Figure 7. Plots of the four sisters functions in linear scale with v = 1/4; top: versus t (x = 1), bottom:

versus x (t = 1).
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Figure 8. Plots of the three sisters functions in linear scale with v = 1/2; top: versus t (x = 1), bottom:

versus x (f = 1).

67



Mathematics 2020, 8, 884

Four Sisters Functions (v = 3/4, x = 1)
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Figure 9. Plots of the four sisters functions in linear scale with v = 3/4; top: versus t (x = 1), bottom:
versus x (t = 1).

6. Conclusions

In our survey on the Wright functions, we have distinguished two kinds, pointing out the
particular class of the second kind. Indeed, these functions have been shown to play key roles in
several processes governed by non-Gaussian processes, including sub-diffusion, transition to wave
propagation, Lévy stable distributions. Furthermore, we have devoted our attention to four functions
of this class that we agree to called the Four Sisters functions. All these items justify the relevance of the
Wright functions of the second kind in Mathematical Physics.
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Appendix A. The Standard Diffusion Equation and the Three Sisters

In this Appendix, let us recall the Diffusion Equation in the one-dimensional case

ou o%u

= —_p—= Al

ot ox? (AD
where u is the field variable, the constant D > 0 is the diffusion coefficient , whose dimensions are
L1271, and x, t denote the space and time coordinates, respectively.
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Two basic problems for Equation (A1) are the Cauchy and Signalling ones introduced hereafter
In these problems, some initial values and boundary conditions are set; specify the values attained
by the field variable and/or by some of its derivatives on the boundary of the space-time domain is
an essential step to guarantee the existence, the uniqueness and the determination of a solution of
physical interest to the problem, not only for the Diffusion Equation.

Two data functions f(x) and g(t) are then introduced to write formally these conditions; some
regularities are required to be satisfied by f(x) and g(t), and in particular f(x) must admit the
Fourier transform or the Fourier series expansion if the support is finite, while /() must admit
the Laplace Transform. We also require without loss of generality that the field variable u(x, t) is
vanishing for t < 0 for every x in the spatial domain. Given these premises, we can specify the two
aforementioned problems.

In the Cauchy problem, the medium is supposed to be unlimited (—oco < x < +400) and to be
subjected at t = 0 to a known disturbance provided by the data function f(x). Formally:

(A2)

t>0.

limy_g+ u(x,t) = f(x), —o0 < x < 4o0;
limy— 100 t(x, t) =0,

This is