
Edited by

Special Functions 
with Applications 
to Mathematical 
Physics 

Francesco Mainardi

Printed Edition of the Special Issue Published in Mathematics

www.mdpi.com/journal/mathematics



Special Functions with Applications to
Mathematical Physics





Special Functions with Applications to
Mathematical Physics

Editor

Francesco Mainardi

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin



Editor

Francesco Mainardi

University of Bologna

Bologna, Italy

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from Special Issue published online in the open access journal

Mathematics (ISSN 2227-7390) (available at: https://www.mdpi.com/journal/mathematics/special

issues/Special Functions Mathematical Physics).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,

Page Range.

ISBN 978-3-0365-6990-1 (Hbk)

ISBN 978-3-0365-6991-8 (PDF)

© 2023 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.



Contents

Preface to ”Special Functions with Applications to Mathematical Physics” . . . . . . . . . . . . vii

Richard Paris

Asymptotic Expansion of the Modified Exponential IntegralInvolving the Mittag-Leffler
Function
Reprinted from: Mathematics 2020, 8, 428, doi:10.3390/math8030428 . . . . . . . . . . . . . . . . . 1

Arak M. Mathai and Hans J. Haubold

Mathematical Aspects of Krätzel Integral and Krätzel Transform
Reprinted from: Mathematics 2020, 8, 526, doi:10.3390/math8040526 . . . . . . . . . . . . . . . . . 15

Alexander Apelblat

Differentiation of the Mittag-Leffler Functions with Respect to Parameters in the Laplace
Transform Approach
Reprinted from: Mathematics 2020, 8, 657, doi:10.3390/math8050657 . . . . . . . . . . . . . . . . . 33

Francesco Mainardi and Armando Consiglio

The Wright Functions of the Second Kind in Mathematical Physics
Reprinted from: Mathematics 2020, 8, 884, doi:10.3390/math8060884 . . . . . . . . . . . . . . . . . 55

Yuri Luchko

The Four-Parameters Wright Function of the Second kind and its Applications in FC
Reprinted from: Mathematics 2020, 8, 970, doi:10.3390/math8060970 . . . . . . . . . . . . . . . . . 81

Victor Kowalenko

Exact Values of the Gamma Function from Stirling’s Formula
Reprinted from: Mathematics 2020, 8, 1058, doi:10.3390/math8071058 . . . . . . . . . . . . . . . . 97

Dmitrii Karp and Elena Prilepkina

Transformations of the Hypergeometric 4F3 with One Unit Shift: A Group Theoretic Study
Reprinted from: Mathematics 2020, 8, 1966, doi:10.3390/math8111966 . . . . . . . . . . . . . . . . 125

Paolo Emilio Ricci

Laguerre-Type Exponentials, Laguerre Derivatives and Applications. A Survey
Reprinted from: Mathematics 2020, 8, 2054, doi:10.3390/math8112054 . . . . . . . . . . . . . . . . 147

Hyun Soo Chung

Some Relationships for the Generalized Integral Transform on Function Space
Reprinted from: Mathematics 2020, 8, 2246, doi:10.3390/math8122246 . . . . . . . . . . . . . . . . 165

Virginia Kiryakova

A Guide to Special Functions in Fractional Calculus
Reprinted from: Mathematics 2021, 9, 106, doi:10.3390/math9010106 . . . . . . . . . . . . . . . . . 181
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Preface to ”Special Functions with Applications to

Mathematical Physics”

This MDPI booklet lists the articles published in the Special Issue of the journal Mathematics

devoted to special functions with applications in mathematical physics in the years 2020–2021.

The call for papers considered theories and applications of high transcendental functions,

including topics found mainly in the list of keywords:

- Mittag-Leffler and related functions, and their applications in mathematical physics;

- Wright and related functions and their applications in mathematical physics;

- Exponential integrals and their extensions with applications in mathematical physics;

- Generalized hypergeometric functions and their extensions with applications.

However, the Special Issue were not limited to the above list, for example, when the content of a

paper was clearly related to some high transcendental functions and their applications.

Special attention was reserved for distinct functions exhibiting some relevance in the framework

of the theories and applications of the fractional calculus and in their visualization through

illuminating plots.

Both research and survey articles were included in this booklet, according to the content list.

Francesco Mainardi

Editor
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Asymptotic Expansion of the Modified Exponential
Integral Involving the Mittag-Leffler Function

Richard Paris

Division of Computing and Mathematics, Abertay University, Dundee DD1 1HG, UK; r.paris@abertay.ac.uk
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Abstract: We consider the asymptotic expansion of the generalised exponential integral involving
the Mittag-Leffler function introduced recently by Mainardi and Masina [Fract. Calc. Appl. Anal. 21

(2018) 1156–1169]. We extend the definition of this function using the two-parameter Mittag-Leffler
function. The expansions of the similarly extended sine and cosine integrals are also discussed.
Numerical examples are presented to illustrate the accuracy of each type of expansion obtained.

Keywords: asymptotic expansions; exponential integral; Mittag-Leffler function; sine and cosine
integrals

MSC: 26A33; 33E12; 34A08; 34C26

1. Introduction

The complementary exponential integral Ein(z) is defined by

Ein(z) =
∫ z

0

1− e−t

t
dt =

∞

∑
n=1

(−)n−1zn

nn!
(z ∈ C) (1)

and is an entire function. Its connection with the classical exponential integral E1(z) =
∫ ∞

z t−1e−t dt,
valid in the cut plane | arg z| < π, is [1], p. 150.

Ein(z) = log z + γ + E1(z), (2)

where γ = 0.5772156 . . . is the Euler-Mascheroni constant.
In a recent paper, Mainardi and Masina [2] proposed an extension of Ein(z) by replacing the

exponential function in (1) by the one-parameter Mittag-Leffler function

Eα(z) =
∞

∑
n=0

zn

Γ(αn + 1)
(z ∈ C, α > 0),

which generalises the exponential function ez. They introduced the function for any α > 0 in the cut
plane | arg z| < π

Einα(z) =
∫ z

0

1− Eα(−tα)

tα
dt =

∞

∑
n=0

(−)nzαn+1

(αn + 1)Γ(αn + α + 1)
, (3)

which when α = 1 reduces to the function Ein(z). A physical application of this function for 0 ≤ α ≤ 1
arises in the study of the creep features of a linear viscoelastic model; see Reference [3] for details. An
analogous extension of the generalised sine and cosine integrals was also considered in Reference [2].
Plots of all these functions for α ∈ [0, 1] were given.

Mathematics 2020, 8, 428; doi:10.3390/math8030428 www.mdpi.com/journal/mathematics
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Here we consider a slightly more general version of (3) based on the two-parameter Mittag-Leffler
function given by

Eα,β(z) =
∞

∑
n=0

zn

Γ(αn + β)
(z ∈ C, α > 0),

where β will be taken to be real. Then the extended complementary exponential integral we shall
consider is

Einα,β(z) =
∫ z

0

1− Eα,β(−tα)

tα
dt =

∞

∑
n=1

(−)n−1

Γ(αn + β)

∫ z

0
tαn−αdt

= z
∞

∑
n=0

(−)nzαn

(αn + 1)Γ(αn + α + β)
, (4)

upon replacement of n − 1 by n in the last summation. When β = 1 this reduces to (3) so that
Einα,1(z) = Einα(z).

The asymptotic expansion of this function will be obtained for large complex z with the parameters
α, β held fixed. We achieve this by consideration of the asymptotics of a related function using the
theory developed for integral functions of hypergeometric type as discussed, for example, in Reference
[4], §2.3. An interesting feature of the expansion of Einα,β(x) for x → +∞ when α ∈ (0, 1] is the
appearance of a logarithmic term whenever α = 1, 1

2 , 1
3 , . . . . Similar expansions are obtained for the

extended sine and cosine integrals in Section 4. The paper concludes with the presentation of some
numerical results that demonstrate the accuracy of the different expansions obtained.

2. The Asymptotic Expansion of a Related Function for |z| → ∞

To determine the asymptotic expansion of Einα,β(z) for large complex z with the parameters α

and β held fixed, we shall find it convenient to consider the related function defined by

F(χ) :=
∞

∑
n=0

χn

(αn + γ)Γ(αn + α + β)
=

∞

∑
n=0

g(n)
χn

n!
(χ ∈ C), (5)

where

g(n) =
Γ(n + 1)

(αn + γ)Γ(αn + α + β)
=

Γ(αn + γ)Γ(n + 1)
Γ(αn + γ + 1)Γ(αn + α + β)

.

It is readily seen that, when γ = 1,
Einα,β(z) = z F(−zα).

The parameter γ > 0, but will be chosen to have two specific values in Sections 3 and 4; namely, γ = 1
and γ = 1 + α. It will be shown that the asymptotic expansion of F(χ) consists of an algebraic and an
exponential expansion valid in different sectors of the complex χ-plane.

The function F(χ) in (5) is a case of the Fox-Wright function

pΨq(χ) =
∞

∑
n=0

∏
p
r=1 Γ(αrn + ar)

∏
q
r=1 Γ(βrn + br)

χn

n!
, (6)

corresponding to p = q = 2. In (6) the parameters αr and βr are real and positive and ar and br are
arbitrary complex numbers. We also assume that the αr and ar are subject to the restriction

αrn + ar �= 0,−1,−2, . . . (n = 0, 1, 2, . . . ; 1 ≤ r ≤ p)

2



Mathematics 2020, 8, 428

so that no gamma function in the numerator in (6) is singular. We introduce the following parameters
associated (empty sums and products are to be interpreted as zero and unity, respectively) with pΨq(χ)

which play a key role in the analysis of its asymptotic behaviour. are given by

κ = 1 +
q

∑
r=1

βr −
p

∑
r=1

αr, h =
p

∏
r=1

ααr
r

q

∏
r=1

β
−βr
r ,

ϑ =
p

∑
r=1

ar −
q

∑
r=1

br +
1
2 (q− p), ϑ′ = 1− ϑ. (7)

The asymptotic expansion of F(χ) is discussed in detail in Reference [5] Section 12, and is
summarised in [4,6]. The algebraic expansion of F(χ) is obtained from the Mellin-Barnes integral
representation [4], p. 56.

F(χ) =
1

2πi

∫ c+∞i

c−∞i

Γ(−s)Γ(1 + s)(χe∓πi)s

(αs + γ)Γ(αs + α + β)
ds, | arg(−χ)| < π(1− 1

2 α),

where, with −γ/α < c < 0, the integration path lies to the left of the poles of Γ(−s) at s = 0, 1, 2, . . .
but to the right of the poles at s = −γ/α and s = −k− 1, k = 0, 1, 2, . . . . The upper or lower sign is
taken according as arg χ > 0 or arg χ < 0, respectively. It is seen that when α = γ/m, m = 1, 2, . . .
the pole at s = −m is double and its residue must be evaluated accordingly. Displacement of the
integration path to the left when 0 < α < 2 and evaluation of the residues then produces the algebraic
expansion H(χe∓πi), where

H(χ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

π/α

sin γπ/α

χ−γ/α

Γ(α + β− γ)
+

∞

∑
k=0

(−)kχ−k−1

(γ− α(k + 1))Γ(β− αk)
(α �= γ

m
)

(−)m−1χ−m

Γ(α + β− γ)

{
m
γ

log χ− ψ(α + β− γ)

}
+

∞

∑
k=0

k �=m−1

(−)kχ−k−1

(γ− α(k + 1))Γ(β− αk)
(α =

γ

m
),

(8)

and ψ denotes the logarithmic derivative of the gamma function.
The exponential expansion associated with pΨq(χ) is given by [6] p. 299, [4] p. 57.

E(χ) := XϑeX
∞

∑
j=0

AjX−j, X = κ(hχ)1/κ , (9)

where the coefficients Aj are those appearing in the inverse factorial expansion

1
Γ(1 + s)

∏
p
r=1 Γ(αrn + ar)

∏
q
r=1 Γ(βrn + br)

= κA0(hκκ)s
{M−1

∑
j=0

cj

Γ(κs + ϑ′ + j)
+

ρM(s)
Γ(κs + ϑ′ + M)

}
(10)

with c0 = 1. Here M is a positive integer and ρM(s) = O(1) for |s| → ∞ in | arg s| < π. The constant
A0 is specified by

A0 = (2π)
1
2 (p−q)κ−

1
2−ϑ

p

∏
r=1

α
ar− 1

2
r

q

∏
r=1

β
1
2−br
r .

The coefficients cj are independent of s and depend only on the parameters p, q, αr, βr, ar and br.
For the function F(χ), we have

κ = α, h = α−α, ϑ = −α− β, A0 = α−1.

3
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We are in the fortunate position that the normalised coefficients cj in this case can be determined
explicitly as cj = (α + β− γ)j. This follows from the well-known (convergent) expansion given in
Reference [4,7], p. 41.

1
(αs + γ)Γ(αs + α + β)

=
∞

∑
j=0

(α + β− γ)j

Γ(αs + ϑ′ + j)
(�(s) > −γ/α), (11)

to which, in the case of F(χ), the ratio of gamma functions appearing on the left-hand side of (10)
reduces. Then, with X = χ1/α we have from (9) the exponential expansion associated with F(χ)
given by

E(χ) = 1
α

χϑ/α exp [χ1/α]
∞

∑
j=0

(α + β− γ)j χ−j/α. (12)

From Reference [4] pp. 57–58, we then obtain the asymptotic expansion for |χ| → ∞ when
0 < α < 2

F(χ) ∼

⎧⎪⎨⎪⎩
E(χ) + H(χe∓πi) | arg χ| < 1

2 πα

H(χe∓πi) | arg(−χ)| < π(1− 1
2 α)

(13)

and, when α = 2,
F(χ) ∼ E(χ) + E(χe∓2πi) + H(χe∓πi) | arg χ| ≤ π. (14)

The upper and lower signs are chosen according as arg χ > 0 or arg χ < 0, respectively. It may
be noted that the expansions E(χe∓2πi) in (14) only become significant in the neighbourhood of
arg χ = ±π. When α > 2, the expansion of F(χ) is exponentially large for all values of arg χ (see
Reference [4], p. 58) and accordingly we omit this case as it is unlikely to be of physical interest.

Remark 1. The exponential expansion E(χ) in (13) continues to hold beyond the sector | arg χ| < 1
2 πα, where

it becomes exponentially small in the sectors πα ≤ | arg χ| < 1
2 πα when 0 < α ≤ 1. The rays arg χ = ±πα

are Stokes lines, where E(χ) is maximally subdominant relative to the algebraic expansion H(χe∓πi). On these
rays, E(χ) undergoes a Stokes phenomenon, where the exponentially small expansion “switches off” in a smooth
manner as | arg χ| increases [1], §2.11(iv), with its value to leading order given by 1

2E(χ); see Reference [8]
for a more detailed discussion of this point in the context of the confluent hypergeometric functions. We do not
consider exponentially small contributions to F(χ) here, except to briefly mention in Section 3 the situation
pertaining to the case α = 1.

3. The Asymptotic Expansion of Einα,β(z) for |z| → ∞

The asymptotic expansion of Einα,β(z) defined in (4) can now be constructed from that of F(χ)
with the parameter γ = 1. It is sufficient, for real α, β, to consider 0 ≤ arg z ≤ π, since the expansion
when arg z < 0 is given by the conjugate value. With χ = −zα = e−πizα, the exponentially large sector
| arg χ| < 1

2 πα becomes | − π + α arg z| < 1
2 πα; that is

θ0 < arg z < θ0 + π, θ0 :=
π

2α
(2− α). (15)

On the boundaries of this sector the exponential expansion is of an oscillatory character.
When 0 < α < 2

3 , we note that the exponentially large sector (15) lies outside the sector of interest
0 ≤ arg z ≤ π.

4
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We define the algebraic and exponential asymptotic expansions

Hα,β(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

π/α

sin(π/α) Γ(α + β− 1)
+

∞

∑
k=0

(−)kz1−α(k+1)

(1− α(k + 1))Γ(β− αk)
(α �= m−1)

(−)m−1

Γ(α + β− 1)
{log z− ψ(α + β− 1)}+

∞

∑
k=0

k �=m−1

(−)kz1−α(k+1)

(1− α(k + 1))Γ(β− αk)
(α = m−1),

(16)

where m = 1, 2, . . . , and

Eα,β(z) =
(e−πi/αz)ϑ

α
exp [e−πi/αz]

∞

∑
j=0

(α + β− 1)j(e−πi/αz)−j (17)

where we recall that ϑ = −α− β. Then the following result holds:

Theorem 1. Let m be a positive integer, with α > 0 and β real and θ0 = π(2− α)/(2α). Then the following
expansions hold for |z| → ∞

Einα,β(z) ∼ Hα,β(z) (0 ≤ arg z ≤ π) (18)

when 0 < α < 2
3 , and

Einα,β(z) ∼

⎧⎪⎨⎪⎩
Hα,β(z) (0 ≤ arg z < θ0)

zEα,β(z) + Hα,β(z) (θ0 ≤ arg z ≤ π)

(19)

when 2
3 ≤ α < 2. Finally, when α = 2 we have Ein2,β(−z) = −Ein2,β(z) and it is therefore sufficient to

consider 0 ≤ arg z ≤ 1
2 π. Then, from (14), we obtain the expansion when α = 2

Ein2,β(z) ∼ z{E2,β(z) + E2,β(zeπi)}+ H2,β(z) (0 ≤ arg z ≤ 1
2 π). (20)

We note from Theorem 1 that when z → −∞ the value of Einα,β(z) is, in general, complex-valued.
In the case of main physical interest, when z = x > 0 is a real variable, we have the following

expansion:

Theorem 2. When z = x (> 0) we have from Theorem 1 the expansions

Einα,β(x) ∼ Hα,β(x) (21)

for 0 < α < 2, and from (17) and (20) when α = 2

Ein2,β(x) ∼ H2,β(x)− x−1−β
∞

∑
j=0

(1 + β)j

xj cos [x− 1
2 π(β + j)] (22)

as x → +∞.

It is worth noting that a logarithmic term is present in the asymptotic expansion of Einα,β(x)
whenever α = 1, 1

2 , 1
3 , . . . .

5
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The Case α = 1

The special case α = 1 deserves further consideration. From (16) and (21) we obtain the expansion

Ein1,β(x) ∼ 1
Γ(β)

{log x− ψ(β)} −
∞

∑
k=1

(−x)−k

k Γ(β− k)
(x → +∞). (23)

If β = 1, the asymptotic sum in (23) vanishes and

Ein1,1(x) ∼ log x + γ (24)

for large x. But we have the exact evaluation (compare (2))

Ein1,1(x) = x
∞

∑
n=0

(−x)n

(n + 1)2n!
= log x + γ + E1(x)

∼ log x + γ +
e−x

x

∞

∑
j=0

(−)j j!
xj (x → +∞) (25)

by Reference [1], (6.12.1). The additional asymptotic sum appearing in (25) is exponentially small as
x → +∞ and is consequently not accounted for in the result (24).

From Remark 1, it is seen that there are Stokes lines at arg z = ±π(1− α), which coalesce on the
positive real axis when α = 1. In the sense of increasing arg z in the neighbourhood of the positive
real axis, the exponential expansion E1,β(z) is in the process of switching on across arg z = π(1− α)

and E1,β(z) (where the bar denotes the complex conjugate) is in the process of switching off across
arg z = −π(1− α). When α = 1, this produces the exponential contribution

1
2 x{E1,β(x) + E1,β(x)} = e−x

xβ
cos πβ

∞

∑
j=0

(−)j+1(β)j

xj

for large x. Thus, the more accurate version of (23) should read

Ein1,β(x) ∼ 1
Γ(β)

{log x− ψ(β)} −
∞

∑
k=1

(−x)−k

k Γ(β− k)
− e−x

xβ
cos πβ

∞

∑
j=0

(−)j(β)j

xj (26)

as x → +∞. When β = 1, this correctly reduces to (25).
When β = 2, we have [9]

Ein1,2(x) = x
∞

∑
n=0

(−x)n

(n + 1)2(n + 2)n!
= log x− ψ(2) +

1
x
+ E1(x)− e−x

x

∼ log x− ψ(2) +
1
x
+

e−x

x

∞

∑
j=1

(−)j j!
xj (x → +∞).

This can be seen also to agree with (26) after a little rearrangement.

4. The Generalised Sine and Cosine Integrals

The sine and cosine integrals are defined by [1], §6.2,

Si(z) =
∫ z

0

sin t
t

dt, Cin(z) =
∫ z

0

1− cos t
t

dt.

6
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Mainardi and Masina [2] generalised these definitions by replacing the trigonometric functions by

sinα(t) = tαE2α,α+β(−t2α) =
∞

∑
n=0

(−)nt(2n+1)α

Γ(2nα + α + β)
, cosα(t) = E2α,β(−t2α) =

∞

∑
n=0

(−)nt2nα

Γ(2nα + β)

with β = 1 to produce⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Sinα(z) =

∫ z

0

sinα(t)
tα

dt =
∞

∑
n=0

(−)nz2nα+1

(2nα + 1)Γ(2nα + α + 1)

Cinα(z) =
∫ ∞

0

1− cosα(t)
tα

dt =
∞

∑
n=0

(−)nz2nα+α+1

(2nα + α + 1)Γ(2nα + 2α + 1)
.

(27)

Here we extend the definitions (27) by including the additional parameter β ∈ R in the Mittag-Leffler
functions and consider the functions⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Sinα,β(z) = z
∞

∑
n=0

(−)nz2nα

(2nα + 1)Γ(2nα + α + β)

Cinα,β(z) = z1+α
∞

∑
n=0

(−)nz2nα

(2nα + α + 1)Γ(2nα + 2α + β)
.

(28)

The asymptotics of Sinα,β(z) and Cinα,β(z) can be deduced from the results in Section 2. However,
here we restrict ourselves to determining the asymptotic expansion of these functions for large |z|
in a sector enclosing the positive real z-axis, where for 0 < α < 1 they only have an algebraic-type
expansion. We observe in passing that

Sinα,β(z) = Ein2α,β−α(z). (29)

Comparison of the series expansion for Sinα,β(z) with F(χ) in Section 2, with the substitutions
α → 2α, β → β− α and γ = 1 (or from the above identity combined with Theorems 1 and 2), produces
the following expansion:

Theorem 3. For m = 1, 2, . . . and 0 < α < 1 we have the algebraic expansions

Sinα,β(z)

∼

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

π/(2α)

sin(π/(2α))Γ(α+β−1)
+

∞

∑
k=0

(−)kz1−2α(k+1)

(1− 2α(k + 1))Γ(β− (2k + 1)α)
(α �= (2m)−1)

(−)m−1

Γ(α+β−1)
{log z−ψ(α+β−1)}+

∞

∑
k=0

k �=m−1

(−)kz1−2α(k+1)

(1− 2α(k + 1))Γ(β− (2k + 1)α)
(α = (2m)−1)

(30)

as |z| → ∞ in the sector | arg z| < π(1− α)/(2α).

A similar treatment for Cinα,β(z) shows that with the substitutions α → 2α, β → β and γ = 1 + α

we obtain the following expansion:

Theorem 4. For m = 1, 2, . . . and 0 < α < 1 we have the algebraic expansions

Cinα,β(z)

7
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∼

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

π/(2α)

cos(π/(2α))Γ(α+β−1)
+

∞

∑
k=0

(−)kz1−(2k+1)α

(1− (2k + 1)α)Γ(β− 2αk)
(α �= (2m− 1)−1)

(−)m−1

Γ(α+β−1)
{log z−ψ(α+β−1)}+

∞

∑
k=0

k �=m−1

(−)kz1−(2k+1)α

(1− (2k + 1)α)Γ(β− 2αk)
(α = (2m− 1)−1)

(31)

as |z| → ∞ in the sector | arg z| < π(1− α)/(2α).

The expansions of Sinα,β(x) and Cinα,β(x) as x → +∞ when 0 < α < 1 follow immediately from
Theorems 3 and 4.

As x → +∞ when α = 1, the exponentially oscillatory contribution to Sin1,β(x) can be obtained
directly from (22) together with (29). In the case of Cin1,β(x), we obtain from (9) with κ = 2, h = 1

4 ,
ϑ = −2− β, X = χ1/2 and A0 = 1

2 the exponential expansion

E(χ) = 1
2

χϑ/2 exp [χ1/2]
∞

∑
j=0

cjχ
−j/2, χ = e−πix2,

with the coefficients cj = (β)j. Then the exponential contribution to Cin1,β(x) is

x2{E(χ) + E(χeπi)} = −x−β
∞

∑
j=0

(β)j

xj cos [x− 1
2 π(β + j)] (x → +∞).

Collecting together these results we finally obtain the following theorem.

Theorem 5. When α = 1 and β is real the following expansions hold:

Sin1,β(x) ∼ π

2Γ(β)
−

∞

∑
k=0

(−)kx−2k−1

(2k + 1)Γ(β− 1− 2k)

+ x−β
∞

∑
j=0

(β)j

xj sin [x− 1
2 π(β + j)] (32)

and

Cin1,β(x) ∼ 1
Γ(β)

{log x− ψ(β)} −
∞

∑
k=1

(−)kx−2k

2kΓ(β− 2k)

− x−β
∞

∑
j=0

(β)j

xj cos [x− 1
2 π(β + j)] (33)

as x → +∞.

When β > 0, it is seen that Sin1,β(x) approaches the constant value π/(2Γ(β)) whereas Cin1,β(x)
grows logarithmically like log (x)/Γ(β) as x → +∞.

5. Numerical Results

In this section we present numerical results confirming the accuracy of the various expansions
obtained in this paper. In all cases we have employed optimal truncation (that is truncation at, or near,
the least term in modulus) of the algebraic and (when appropriate) the exponential expansions. The
numerical values of Einα,β(x) were computed from (4) using high-precision evaluation of the terms in
the suitably truncated sum.

We first present results in the physically interesting case of 0 < α ≤ 1 and β = 1 considered
in Reference [2]. Table 1 shows the values (In the tables we write the values as x(y) instead of x× 10y.)
of the absolute relative error in the computation of Einα,1(x) from the asymptotic expansions in

8
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Theorem 2 for several values of x and different α in the extended range 0 < α ≤ 2. The expansion
for 0 < α < 2 is given by the algebraic expansion in (21); this contains a logarithmic term for the
values α = 1

4 , 1
2 , 1. The progressive loss of accuracy when α > 1 can be attributed to the presence

of the approaching exponentially large sector, whose lower boundary is, from (15), given by θ0 =

π(2− α)/(2α). In the final case α = 2, the accuracy is seen to suddenly increase considerably. This is
due to the inclusion of the (oscillatory) exponential contribution, which from (22), takes the form

Ein2,1(x) ∼ 1
2

π − 1
x
−

∞

∑
j=1

j!
xj+1 cos(x− 1

2 π j) (x → +∞).

In Figure 1 we show some plots of Einα,1(x) for values of α in the range 0 < α ≤ 1. In Figure 2 the
asymptotic approximations for two values of α are shown compared with the corresponding curves of
Einα,1(x).

Figure 1. Plots of Einα,1(x) for different values of α.

Table 1. The absolute relative error in the computation of Einα,β(x) from Theorem 2 for different values
of α and x when β = 1.

x α = 0.25 α = 0.40 α = 0.50 α = 0.75 α = 1.00

5 1.602× 10−4 1.678× 10−5 2.012× 10−4 2.115× 10−4 5.249× 10−4

10 5.733× 10−7 1.735× 10−7 4.413× 10−7 2.339× 10−7 1.442× 10−6

20 3.680× 10−11 3.031× 10−11 6.526× 10−12 9.362× 10−12 2.753× 10−11

30 1.808× 10−16 9.384× 10−16 1.543× 10−16 1.337× 10−16 7.595× 10−16

x α = 1.20 α = 1.40 α = 1.60 α = 1.80 α = 2.00

5 1.121× 10−3 1.301× 10−4 5.279× 10−3 1.407× 10−2 1.550× 10−3

10 4.345× 10−6 3.168× 10−5 2.103× 10−4 1.536× 10−4 2.849× 10−6

20 2.147× 10−10 2.277× 10−8 1.671× 10−6 4.751× 10−5 4.926× 10−10

30 4.388× 10−14 2.363× 10−11 2.125× 10−8 6.216× 10−6 1.613× 10−14

9
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(a) (b)

Figure 2. Plots of Einα,1(x) (solid curves) and the leading asymptotic approximation (dashed curves)
for (a) α = 0.75 and (b) α = 1.

Table 2 shows the values of the absolute relative error in the computation of Einα,β(z) from the
asymptotic expansions in Theorem 1 for complex z for values of α in the range 0 < α ≤ 2. It will
noticed that there is a sudden reduction in the error when α = 1 and θ = π/4. In this case, the value of
θ0 = 1

2 π and a more accurate treatment would include the exponentially small contribution zEα,β(z).
When this term is included we find the absolute relative error equal to 6.935× 10−11.

Table 2. The absolute relative error in the computation of Einα,β(z) from Theorem 1 for different α and
θ when z = 20eiθ and β = 1/3.

θ α = 0.40 α = 0.50 α = 1.00 α = 1.50 α = 2.00

0 2.400× 10−8 5.494× 10−10 2.702× 10−10 1.572× 10−6 5.119× 10−10

π/4 2.553× 10−8 1.820× 10−9 1.142× 10−7 1.202× 10−8 8.204× 10−8

π/2 3.026× 10−8 4.057× 10−9 1.756× 10−10 2.021× 10−8 3.684× 10−7

3π/4 3.897× 10−8 8.028× 10−9 1.423× 10−9 2.320× 10−7 8.204× 10−8

π 5.398× 10−8 1.617× 10−8 6.457× 10−9 3.005× 10−3 5.119× 10−10

Finally, in Table 3 we present the error associated with the expansions of the generalised sine
and cosine integrals Sinα,β(x) and Cinα,β(x) as x → +∞ given in Theorems 3–5. For Sinα,β(x), the
logarithmic expansion in (30) arises for α = 1

4 and α = 1
2 ; for Cinα,β(x) the logarithmic expansion in

(31) arises for α = 1
3 . In Figure 3 are shown plots (We remark that the plot of Cinα1(x) in Figure 3b

differs from that shown in Figure 4 of Reference [2].) of Sinα,1(x) and Cinα,1(x) for different α and in
Figure 4 the leading asymptotic approximations from the expansions in Theorem 5 are compared with
the corresponding plots of these functions.

In conclusion, it is worth mentioning that the function Einα,β(z), and also the generalised sine and
cosine integrals, can be extended by using the three-parameter Mittag-Leffler function (or Prabhakar
function) defined by

Eρ
α,β(z) =

∞

∑
n=0

(ρ)n

Γ(αn + β)

zn

n!
.

A comprehensive discussion of this function and its applications can be found in Reference [10]; see
also Reference [6] Section 5.1, for details of its large-z asymptotic expansion.

10
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Table 3. The absolute relative error in the computation of Sinα,β(x) and Cinα,β(x) from Theorems 3–5
for different α and x when β = 4/3.

Sinα,β(x)

x α = 1/4 α = 1/3 α = 1/2 α = 2/3 α = 1

10 4.396× 10−7 1.394× 10−8 1.785× 10−6 3.410× 10−6 1.012× 10−5

20 3.213× 10−11 1.171× 10−13 3.920× 10−11 2.076× 10−8 3.094× 10−11

25 2.373× 10−13 3.792× 10−14 2.098× 10−13 4.437× 10−10 3.270× 10−12

30 1.879× 10−15 5.065× 10−15 1.172× 10−15 8.197× 10−12 8.010× 10−15

Cinα,β(x)

x α = 1/4 α = 1/3 α = 1/2 α = 2/3 α = 1

10 9.237× 10−8 3.787× 10−7 6.608× 10−7 2.270× 10−5 7.756× 10−6

20 1.293× 10−12 4.473× 10−12 1.090× 10−11 2.462× 10−10 2.576× 10−10

25 8.066× 10−14 2.334× 10−16 5.326× 10−14 6.881× 10−11 1.437× 10−12

30 1.160× 10−16 9.285× 10−17 2.764× 10−16 2.934× 10−12 7.716× 10−15

(a) (b)

Figure 3. Plots of the generalised sine and cosine integrals (a) Sinα,1(x) and (b) Cinα,1(x) for α =

0.25, 0.50, 0.75, 1.

(a) (b)

Figure 4. Cont.
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(c) (d)

Figure 4. Plots of the generalised sine and cosine integrals (solid curves) and their leading asymptotic
approximations (dashed curves) from Theorems 3, 4 and 5: (a) Sinα,1(x) when α = 0.25, 0.75,
(b) Sinα,1(x) when α = 1, (c) Cinα,1(x) when α = 0.25, 0.75 and (d) Cinα,1(x) when α = 1.

6. Conclusions

The large-z asymptotic expansions of the modified exponential integral Einα,β(z) involving the
two-parameter Mittag-Leffer function have been determined by exploiting the known asymptotic
theory developed for integral functions of hypergeometric type, namely the Fox-Wright function.
The appearance of logarithmic terms in the expansion of Einα,β(x) for x → +∞ for certain values of
α ∈ (0, 1] is emphasised. Similar expansions have been obtained for the extended sine and cosine
integrals.

Funding: This research received no external funding.

Acknowledgments: I would like to thank Francesco Mainardi for the invitation to contribute to this special
edition.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. (Eds.) NIST Handbook of Mathematical Functions;
Cambridge University Press: Cambridge, UK, 2010.

2. Mainardi, F.; Masina, E. On modifications of the exponential integral with the Mittag-Leffler function. Fract.
Calc. Appl. Anal. 2018, 21, 1156–1169. [CrossRef]

3. Mainardi, F.; Masina, E.; Spada, G. A generalization of the Becker model in linear viscoelasticity: Creep,
relaxation and internal friction. Mech. Time-Depend. Mater. 2019, 23, 283–294. [CrossRef]

4. Paris, R.B.; Kaminski, D. Asymptotics and Mellin-Barnes Integrals; Cambridge University Press: Cambridge,
UK, 2001.

5. Braaksma, B.L.J. Asymptotic expansions and analytic continuations for a class of Barnes integrals. Compos.
Math. 1963, 15, 239–341.

6. Paris, R.B. Asymptotics of the special functions of fractional calculus. In Handbook of Fractional Calculus with
Applications; Kochubei, A., Luchko, Y., Eds.; De Gruyter: Berlin, Germany, 2019; Volume 1, pp. 297–325.

7. Ford, W.B. The Asymptotic Developments of Functions defined by Maclaurin Series; University of Michigan Studies,
Scientific Series; University of Michigan Press: Ann Arbor, MI, USA, 1936; p. 11.

8. Paris, R.B. Exponentially small expansions of the confluent hypergeometric functions. Appl. Math. Sci. 2013,
7, 6601–6609. [CrossRef]

12



Mathematics 2020, 8, 428

9. Wolfram Research Inc. Mathematica, version 7; Wolfram Research Inc.: Champaign, IL, USA, 2008.
10. Guisti, A.; Colombaro, I.; Garra, R.; Garrappa, R.; Polito, F.; Popolizio, M.; Mainardi, F. A practical guide to

Prabhakar fractional calculus. Fract. Calc. Appl. Anal. 2020, 23, 9–54. [CrossRef]

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

13





mathematics

Article

Mathematical Aspects of Krätzel Integral and
Krätzel Transform

Arak M. Mathai 1 and Hans J. Haubold 2,*

1 Department of Mathematics and Statistics, McGill University, Montreal, PQ H3A 2K6, Canada;
a.mathai@mcgill.ca

2 Office for Outer Space Affairs, United Nations, Vienna International Centre, A-1400 Vienna, Austria
* Correspondence: hans.haubold@gmail.com

Received: 11 February 2020; Accepted: 22 March 2020; Published: 3 April 2020
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1. Introduction

In this paper, real scalar mathematical or random variables are denoted by small letters x, y, z, ...
and the corresponding vector/matrix variables are denoted by capital letters X, Y, .... Variables in the
complex domain are denoted with a tilde such as x̃, ỹ, X̃, Ỹ.... Constant vectors/matrices are denoted
by capital letters A, B, ... whether in the real or complex domain. Scalar constants are denoted by a, b, ....
If X = (xij) is a p× q matrix where the xijs are distinct real scalar variables, then the wedge product
of the differentials is denoted by dX = ∧p

i=1 ∧
q
j=1 dxij. If x and y are real scalar variables, then the

wedge product of their differentials is defined as dx ∧ dy = −dy∧ dx so that dx ∧ dx = 0, dy∧ dy = 0.
If X̃ is in the complex domain, then X̃ = X1 + iX2 where X1, X2 are real and i =

√
(−1). Then,

dX̃ = dX1 ∧ dX2. The determinant of a p× p real matrix X is denoted by |X| or det(X) and when
in the complex domain the absolute value of the determinant is denoted by |det(X)|. The trace of a
square matrix A is denoted by tr(A). The integral

∫ B

A
f (X)dX =

∫
O<A<X<B

f (X)dX

means a real-valued scalar function f (X) of the p × p real positive definite matrix X is integrated
out over X > O (positive definite), X − A > O, B− X > O, A > O, B > O where A and B are p× p
constant positive definite matrices. The corresponding integral in the complex domain is denoted
as
∫ B

A f̃ (X̃)dX̃.

Mathematics 2020, 8, 526; doi:10.3390/math8040526 www.mdpi.com/journal/mathematics

15



Mathematics 2020, 8, 526

1.1. Krätzel Integral

Let x be a real scalar variable. Consider the following integrals:

K1 =
∫ ∞

0
xγ−1e−ax− b

x dx, a > 0, b > 0, γ > 0 (1)

K2 =
∫ ∞

0
xγ−1e−axδ−bx−ρ

dx, a > 0, b > 0, γ > 0, δ > 0, ρ > 0. (2)

This K2 in Equation (2) is known as the generalized Krätzel integral and Equation (1) as the basic
Krätzel integral. When δ = 1 in Equation (2), we have the Laplace transform of xγ−1e−bx−ρ

with
Laplace parameter a. For δ = 1, ρ = 1

2 in Equation (2), we have the basic reaction-rate probability
integral in nuclear and solar neutrino astrophysics (see [1,2]). When δ = 1, ρ = 1, the integrand
in Equation (1) is the inverse Gaussian density for appropriate values of a, b, γ and multiplied by a
normalizing constant. In addition, Equation (2) is a generalized situation of the same and Equation
(1) provides the moment expression for the inverse Gaussian density, multiplied by a normalizing
constant. Krätzel transform is associated with Equation (1) (see [3]). Some authors call Equation (2) as
the generalized gamma, ultra gamma, Bessel integral, etc. In [4], it is shown that in the simple poles
case it is a Bessel series and hence it is more appropriate to call it as a generalized Bessel integral.

The highlight of the present discussion is to point out the importance and usefulness of Krätzel
function in various topics in widely different areas and to consider its extensions of various types.
Krätzel integrals appear in Mellin convolution of product of two functions; in statistical distribution
theory as the density of a product of two independently distributed generalized gamma random
variables; in Bayesian analysis when the conditional and marginal densities belong to generalized
gamma densities; in model building, especially in the pathway models where the limiting forms end
up in Krätzel functions; in nuclear reaction-rate theory; and in inverse Gaussian models in stochastic
processes, to mention a few topics. Krätzel function is also associated with generalized gamma
and ultra gamma integrals, Kobayashi integrals and generalized special functions such as G- and
H-functions. In the present discussion, we also consider extensions of Krätzel function to multivariate
cases involving many scalar variables, matrix-variate cases in the real and complex domains and
extensions involving multiple integrals.

1.2. Evaluation of the Integral in Equation (2)

One can evaluate Equation (2) by using different approaches. One can interpret Equation (2)
as the Mellin convolution of a product and then take the inverse Mellin transform to evaluate the
integral. One can draw a parallel to the statistical density of a product of two positive real scalar
random variables and then evaluate the density to obtain the value of Equation (2). One can treat
Equation (2) as a function g(b) of b. Then, the Mellin transform of g(b) with Mellin parameter s is the
following for γ > 0, δ > 0, a > 0, b > 0, η > 0:

Mg(s) =
∫ ∞

0
bs−1{

∫ ∞

0
xγ−1e−axδ−bx−ρ

dx}db

=
∫ ∞

0

∫ ∞

0
bs−1xγ−1e−axδ−bx−ρ

dx ∧ db.

Integrating out b first and then x, we have the following:∫ ∞

0
bs−1e−bx−ρ

db = Γ(s)xρs,�(s) > 0∫ ∞

0
xγ+ρs−1e−axδ

dx =
1
δ

Γ(
γ + ρs

δ
)a−(

γ+ρs
δ ),�(γ + ρs) > 0

16



Mathematics 2020, 8, 526

where �(·) means the real part of (·). That is,

Mg(s) =
1

δa
γ
δ

Γ(s)Γ(
γ + ρs

δ
)a−

ρ
δ s. (3)

Taking the inverse Mellin transform of Equation (3) we have g(b) or the integral in Equation (2)
as the following:

K2 =
1

δa
γ
δ

1
2πi

∫ c+i∞

c−i∞
Γ(s)Γ(

γ

δ
+

ρ

δ
s)(ba

ρ
δ )−sds, i =

√
(−1) (4)

where the c in the contour is > 0. Note that Equation (4) can be written as a H-function.

K2 =
1

δa
γ
δ

H2,0
0,2

[
ba

ρ
δ
∣∣
(0,1),( γ

δ , ρ
δ )

]
. (5)

For the theory and applications of the H-function, see [5]. When ρ = δ, we have Equation (5)
reducing to a Meijer’s G-function as the following:

K2 =
1

δa
γ
δ

G2,0
0,2

[
ab
∣∣
0, γ

δ

]
. (6)

For the theory and applications of G-function, see [6].

1.3. Computable Series form for Equation (2)

Consider the Mellin–Barnes integral representation in Equation (4). This integral can be evaluated
as the sum of the residues at the poles of the gammas Γ(s) and Γ( γ

δ + ρ
δ s). The poles of Γ(s) are at

s = 0,−1,−2, .... When the poles of the integrand are simple. then the sum of the residues at the poles
of Γ(s) is the following:

(A) δa
γ
δ )−1

∞

∑
ν=0

(−1)ν

ν!
Γ(

γ

δ
− ρ

δ
ν)(ba

ρ
δ )ν.

The poles of Γ( γ
δ + ρ

δ s) are at γ
δ + ρ

δ s = −ν, ν = 0, 1, 2, ... or the poles are at s = − γ
ρ − δ

ρ ν and in
the simple poles case the sum of the residues is the following:

(B)
b

γ
ρ

δ

∞

∑
ν=0

(−1)ν

ν!
Γ(−γ

ρ
− δ

ρ
ν)(ab

δ
ρ )ν.

Hence, the sum of residues from (A) and (B) in the simple poles case is the following:

K2 = (δa
γ
δ )−1

∞

∑
ν=0

(−1)ν

ν!
Γ(

γ

δ
− ρ

δ
ν)(ba

ρ
δ )ν

+
b

γ
ρ

δ

∞

∑
ν=0

(−1)ν

ν!
Γ(−γ

ρ
− δ

ρ
ν)(ab

δ
ρ )ν. (7)

1.4. G-function in the Simple Poles Case

Let ρ = δ so that the H-function in Equation (5) becomes the G-function in Equation (6) and when
γ
δ is not an integer then the G-function has simple poles. Consider this case and it is available from
Equation (7) by putting δ = ρ. Then, the gammas reduce to the following:

Γ(
γ

ρ
− ν) =

Γ( γ
ρ )

(−1)ν(− γ
ρ + 1)ν

and Γ(−γ

ρ
− ν) =

Γ(− γ
ρ )

(−1)ν( γ
ρ + 1)ν

,

17
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where, in general, the notation (a)m = a(a + 1)...(a + m − 1), a �= 0, (a)0 = 1 is the Pochhammer
symbol. Hence, K2 in Equation (2) for this simple poles case and for δ = ρ is the following:

K2 =
Γ( γ

ρ )

ρa
γ
ρ

∞

∑
ν=0

1
(− γ

ρ + 1)νν!
(ab)ν +

Γ(− γ
ρ )b

γ
ρ

ρ

∞

∑
ν=0

1
( γ

ρ + 1)νν!
(ab)ν

=
Γ( γ

ρ )

ρa
γ
ρ

0F1(;−
γ

ρ
+ 1; ab) +

Γ(− γ
ρ )b

γ
ρ

ρ
0F1(;

γ

ρ
+ 1; ab), (8)

where 0F1 is a hypergeometric series with no upper and one lower parameters. Observe that, in this
simple poles case, Equation (2) or K2 of Equation (8) is a linear function of Bessel series and hence it is
appropriate to call Equation (1) as Bessel integral and Equation (2) as the generalized Bessel integral
rather than calling them as ultra gamma integral or generalized gamma integral or anything connected
with gamma integral.

1.5. Poles of Order Two, ρ = δ, γ
δ = m, m = 1, 2, ...

In this case, the poles at s = 0,−1,−2, ...,−(m− 1) are simple and poles at s = −m,−m− 1, ... are
of order two each. In this case, we may write (2) as the following:

K2 =
1

ρa
γ
ρ

1
2πi

∫ c+i∞

c−i∞
Γ(s)Γ(m + s)(ab)−sds. (9)

Sum of the residues at the poles s = 0,−1, ...− (m− 1), coming from (9), is the following:

(C)
1

ρa
γ
ρ

m−1

∑
ν=0

(−1)ν

ν!
Γ(m− ν)(ab)ν.

For s = −m− ν, ν = 0, 1, ... or s = −ν, ν = m, m + 1, ... the poles are of order two and the residue,
denoted by Rν, is the following: Let h(s) = Γ(s)Γ(m + s)(ab)−s. Then,

Rν = lim
s→−ν

d
ds

[(s + ν)2Γ(s)Γ(m + s)(ab)−s]

= lim
s→−ν

d
ds

[(s + ν)2 (s + ν− 1)2...(s + m)2

(s + ν− 1)2...(s + m)2
(s + m− 1)...s
(s + m− 1)...s

Γ(s)Γ(m + s)(ab)−s]

= lim
s→−ν

d
ds

[
Γ2(s + ν + 1)

(s + ν− 1)2...(s + m)2(s + m− 1)...s
(ab)−s].

Observe that d
ds h(s) = h(s) d

ds ln h(s) and (ab)−s = e−s ln(ab). Note that

lim
s→−ν

h(s) =
(−1)m(ab)ν

ν!(ν−m)!
, ν = m, m + 1, ...

lim
s→−ν

d
ds

ln h(s) = lim
s→−ν

[2ψ(s + ν + 1)− 2
s + ν− 1

− ...− 2
s + m

− 1
s + m− 1

− ...− 1
s
− ln(ab)]

= 2ψ(1) + 2[1 +
1
2
+ ... +

1
ν−m

] + [
1

ν−m + 1
+ ... +

1
ν
]− ln(ab)

= ψ(ν + 1) + ψ(ν−m + 1)− ln(ab).

18
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Therefore,

Rν = [ψ(ν + 1) + ψ(ν−m + 1)− ln(ab)][
(−1)m(ab)ν

ν!(ν−m)!
], ν = m, m + 1, ....

Then, in this case, (2) reduces to the following:

K2 =
1

ρa
γ
ρ

m−1

∑
ν=0

(−1)ν

ν!
Γ(m− ν)(ab)ν

+
∞

∑
ν=m

[ψ(ν + 1) + ψ(ν−m + 1)− ln(ab)][
(−1)m

ν!(ν−m)!
(ab)ν], ν = m, m + 1, ...

where ψ(·) is the psi function or the logarithmic derivative of the gamma function, ψ(z) = d
dz ln Γ(z).

The most general case is to consider Γ(s)Γ( γ
δ + ρ

δ s) having some poles of order one and the
remaining of order two. After writing this situation in a convenient way, one can use the procedure
in Section 1.5 to obtain the final result. Since the expressions would take up too much space, it is not
discussed here.

2. Krätzel Integral from Mellin Convolution

Let x1 > 0 and x2 > 0 be real scalar variables. Let f1(x1) and f2(x2) be real-valued scalar functions
associated with x1 and x2, respectively. Then, the Mellin transforms of f1 and f2, with Mellin parameter
s, are the following, whenever they exist:

Mf1(s) =
∫ ∞

0
xs−1

1 f1(x1)dx1, Mf2(s) =
∫ ∞

0
xs−1

2 f2(x2)dx2. (10)

Then,

Mf1(s)Mf2(s) =
∫ ∞

0

∫ ∞

0
xs−1

1 xs−1
2 f1(x1) f2(x2)dx1 ∧ dx2

=
∫ ∞

0

∫ ∞

0
us−1 f1(v) f2(

u
v
)

1
v

du ∧ dv, u = x1x1, v = x1

=
∫ ∞

0
us−1g(u)du

where

g(u) =
∫ ∞

0

1
v

f1(v) f2(
u
v
)dv

=
∫ ∞

0

1
v

f1(
u
v
) f2(v)dv. (11)

That is,

Mg(s) = Mf1(s)Mf2(s). (12)

This Equation (12) is the Mellin convolution of the product involving two functions and
Equation (11) is the corresponding integral representation. Let f1 and f2 be generalized exponential
functions of the following types:

(D) f j(xj) = x
γj−1
j e−ajx

δj
j , aj > 0, δj > 0, γj > 0, j = 1, 2.
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Then, Equation (11) becomes the following:

(E) g(u) = uγ2−1
∫ ∞

0
vγ1−γ2−1e−a1vδ1−a2(

u
v )

δ2 dv

(F) = uγ1−1
∫ ∞

0
vγ2−γ1−1e−a1(

u
v )

δ1−a2vδ2 dv.

Here, (E) and (Fi) provide equivalent representations for g(u). In (E), if δ1 = δ, a1 = a, δ2 = ρ, a2uδ2 =

b, γ1 − γ2 = γ, then the integral becomes Krätzel integral of (2) in Section 1. Hence, Krätzel integral is
also available as a Mellin convolution of a product involving two functions, see [7].

Instead of taking f j(xj) of the form in (D), if we take f1(x1) = 1
Γ(α) xγ

1 (1− x1)
α−1 for �(γ) >

−1,�(α) > 0 or α > 0, γ > −1 when real, and f2(x2) = f (x2) where f (x2) is an arbitrary function,
then Equation (11) becomes the following:

g(u) =
∫

v

1
v

f1(
u
v
) f2(v)dv =

∫
v

1
Γ(α)

1
v
(

u
v
)γ(1− u

v
)α−1 f (v)dv,�(α) > 0,�(γ) > −1

=
uγ

Γ(α)

∫
v≥u

v−γ−α(v− u)α−1 f (v)dv = K−α
2,γ f (13)

where K−α
2,γ f in (13) is Erdélyi–Kober fractional integral of the second kind of order α and parameter

γ, see [8]. Thus, the Mellin convolution of a product is also associated with fractional integral of the
second kind. A general definition of all versions of fractional integrals in terms of Mellin convolutions
of products and ratios is given in [8].

3. Krätzel Integral as the Density of a Product

Let x1 > 0 and x2 > 0 be two real scalar positive random variables, independently distributed
with density functions f1(x1) and f2(x2), respectively. Due to statistical independence their joint
density, denoted by f (x1, x2), is the product, f (x1, x2) = f1(x1) f2(x2). Let u = x1x2 be the product
and let x1 = v or x2 = v. Then, dx1 ∧ dx2 = 1

v du ∧ dv. Let g(u, v) be the joint density of u and v. Then,

g(u, v) =
1
v

f1(v) f2(
u
v
) =

1
v

f1(
u
v
) f2(v)

and the marginal density of u, denoted by g1(u) is the following:

g1(u) =
∫

v

1
v

f1(v) f2(
u
v
)dv

=
∫

v

1
v

f1(
u
v
) f2(v)dv. (14)

Let f j(xj) be a generalized gamma density of the form

f j(xj) = cjx
γj−1
j e−ajx

δj
j , aj > 0, γj > 0, δj > 0, j = 1, 2 (15)

where cj is the normalizing constant. For the f j(xj) in Equation (15), we have Equation (14) as
the following:

g1(u) = c1c2uγ2−1
∫ ∞

0
vγ1−γ2−1e−a1vδ1−a2(

u
v )

δ2 dv

= c1c2uγ1−1
∫ ∞

0
vγ2−γ1−1e−a1(

u
v )

δ1−a2vδ2 dv. (16)

Observe that the two expressions for g1(u) in Equation (16) are not only generalized Krätzel
integrals but they are also statistical densities of a product. We can evaluate the explicit form of the
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density by using arbitrary moments and then inverting the expression. Consider the (s− 1)th moments
of x1 and x2. Then, E[x1x2]

s−1 = E[xs−1
1 ]E[xs−1

2 ] due to statistical independence, where E[·] denotes
the expected value of [·]. That is,

E[xs−1
j ] =

∫ ∞

0
xs−1

j f j(xj)dxj = Mfj
(s), j = 1, 2

whenever the expected values exist, where Mfj
(s) is the Mellin transform of the density f j, with Mellin

parameter s, when this Mellin transform exists. Evaluating E[xs−1
j ] for the density in Equation (15),

we have the following:

E[xs−1
j ] =

a
− (s−1)

δj
j Γ(

γj+s−1
δj

)

Γ(
γj
δj
)

,�(γj + s− 1) > 0, j = 1, 2. (17)

Observe that in Equation (17) the explicit form of the normalizing constant cj is used, cj is such
that E[xs−1

j ] = 1 when s = 1. Then, taking the product

E[us−1] = {
2

∏
j=1

a
1
δj
j

Γ(
γj
δj
)
}{

2

∏
j=1

Γ(
γj − 1

δj
+

s
δj
)a
− s

δj
j }, (18)

for �(γj + s− 1) > 0, j = 1, 2. Then, the density g1(u) is available from the inverse Mellin transform
or by inverting Equation (18). That is,

g1(u) = C
1

2πi

∫ c+i∞

c−i∞
{

2

∏
j=1

Γ(
γj − 1

δj
+

s
δj
)}(a

1
δ1
1 a

1
δ2
2 u)−sds

= CH2,0
0,2

[
a

1
δ1
1 a

1
δ2
2 u
∣∣
(

γ1−1
δ1

, 1
δ1
),( γ2−1

δ2
, 1

δ2
)

]
, (19)

C =
2

∏
j=1

a
1
δj
j

Γ(
γj
δj
)

.

Note that Equation (19) is the explicit form of the Krätzel integral as well as the statistical density
g1(u). Instead of generalized gamma density for f j(xj), suppose that the density of x1 is a type-1 beta
density with the parameters (γ + 1, α) and f2(x2) is an arbitrary density then f1 is of the form

f1(x1) =
Γ(α + γ + 1)
Γ(γ + 1)Γ(α)

xγ
1 (1− x1)

α−1, 0 ≤ x1 ≤ 1, α > 0, γ > −1.

Usually, the parameters in a statistical density are real. Then, g1(u) becomes the following:

g1(u) =
∫

v

1
v

f1(
u
v
) f2(v)dv

=
Γ(α + γ + 1)
Γ(γ + 1)Γ(α)

∫
v≥u

1
v
(

u
v
)γ(1− u

v
)α−1 f (v)dv

=
Γ(γ + α + 1)

Γ(γ + 1)
uγ

Γ(α)

∫
v≥u

v−γ−α(v− u)α−1 f (v)dv

=
Γ(α + γ + 1)

Γ(γ + 1)
K−α

2,γ f , α > 0, γ > −1 (20)
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where K−α
2,γ f is Erdélyi–Kober fractional integral of the second kind of order α and parameter γ.

From Equation (20), note that this fractional integral is a constant multiple of a statistical density of a
product of positive random variables also. For generalizations of this result for the matrix-variate case,
in real and complex domains, see [8]. By taking the density of a ratio of real scalar positive random
variables, where the variables are independently distributed, with x1 having a type-1 beta density
with the parameters (γ, α) and x2 having an arbitrary density we can show that the density of the ratio
u = x2

x1
will produce a constant multiple of Erdélyi–Kober fractional integral of the first kind of order α

and parameter γ, details or the generalizations of this result may be seen [8].

4. Krätzel Integral and Bayesian Structures

In a simple Bayesian structure in Bayesian statistical analysis, we have a conditional density
of a random variables x, conditioned on a parameter θ, or written as f1(x|θ) or the density of x,
given θ. Then, θ has its own marginal density denoted by f2(θ). Then, the joint density of x and θ

is f1(x|θ) f2(θ). When both x and θ are continuous variables, we call this situation as a continuous
mixture. When one variable is discrete and the other continuous, we call it simply a mixture density.
Then, the unconditional density of x, denoted by f (x), is given by

f (x) =
∫

θ
f1(x|θ) f2(θ)dθ. (21)

A general format of the structure in Equation (21) is of the following type:

f (x1) =
∫

x2

...
∫

xk

f1(x1|x2, ..., xk) f2(x2|x3, ..., xk)... fk−1(xk−1|xk) fk(xk)dx2 ∧ ...∧ dxk. (22)

For an application of this type of unconditional density for k = 3, see [9]. When all the densities
involved in Equations (21) and (22) are continuous, we also call Equations (21) and (22) as continuous
mixtures. Consider Equation (21), where

f1(x|θ) = θγδ

Γ(γ)
xγ−1e−θδx, x ≥ 0, θ > 0, δ > 0, γ > 0

and

f2(θ) =
ρb

α
ρ

Γ( α
ρ )

θ−α−1e−bθ−ρ
, b > 0, α > 0, ρ > 0, θ > 0

so that

f1(x|θ) f2(θ) =
ρb

α
ρ

Γ(γ)Γ( α
ρ )

xγ−1θγδ−α−1e−xθδ−bθ−ρ
.

Then, the unconditional density is the following, denoting θ = v in the integral and denoting the
unconditional density of x, again by f (x):

f (x) = C1

∫ ∞

v=0
vγδ−α−1e−xvδ−bv−ρ

dv (23)

where

C1 =
ρb

α
ρ

Γ(γ)Γ( α
ρ )

xγ−1, α > 0, ρ > 0, δ > 0, γ > 0, ρ > 0, x > 0.

Observe that Equation(23) is of the same structure of the Krätzel integral of Equation (2) of
Section 1. Note that, if we use the general structure in Equation (22) and consider all densities as
generalized gamma densities, then we obtain a generalization and extension of Krätzel integral to a
multivariate situation. Such generalizations is considered below in this paper.
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5. Pathway Extension of Krätzel Integral

The author of [10] introduced a pathway model for rectangular matrix-variate case. By using a
pathway parameter there, one can go to three different families of functions. When a model is fitted to
a given data, then one member from the pathway family is sure to fit the data if the data fall into one
of the three wide families of functions or in the transitional stages of going from one family to another
family. The pathway model for real positive scalar variable situation is the following:

f3(x) = c3xγ−1[1 + a(α− 1)xδ]−
η

α−1 , x > 0, α > 1, η > 0, δ > 0, a > 0. (24)

When α < 1, then we can write α− 1 = −(1− α) so that the model in (24) switches to the model

f4(x) = c4xγ−1[1− a(1− α)xδ]
η

1−α , α < 1, η > 0, a > 0, δ > 0 (25)

and, further, 1− a(1− α)xδ > 0 in order to create statistical density out of f4(x). Its support is finite or
it is a finite-range density, whereas in Equation (24) it is of infinite range and x > 0 there. When α → 1,
both Equations (24) and (25) go to the model

f5(x) = c5xγ−1e−aηxδ
, a > 0, x > 0, δ > 0, η > 0. (26)

Thus, through the pathway parameter α one can move among the three families of functions
f j(x), j = 3, 4, 5. Both Equations (24) and (25) can be taken as extensions of Equation (26).
If Equation (26) is the ideal or stable situation in a physical system, then the unstable neighborhoods
are given by Equations (24) and (25). The movement of α also describes the transitional stages.
For the properties, generalizations and extension of the pathway model, see [11].The model in
Equation (25) for γ = 1, a = 1, η = 1 and for α < 1, α > 1, α → 1 is Tsallis’ statistics in non-extensive
statistical mechanics [12]. Some properties and other aspects of the pathway model see [11,13].
The model in Equation (24) for a = 1, η = 1, α > 1, α → 1 is superstatistics (see [14]). Superstatistics
considerations come from the unconditional density described in Section 4 when the conditional and
marginal densities belong to the exponential and gamma families of densities. Consider the model in
Equation (24) with different parameters, take f1 and f2 of Section 1, and consider Mellin convolutions.
Let f31 and f32 be two densities belonging to Equation (24) with different parameters. That is, let

f3j(xj) = c3jx
γj−1
j [1 + aj(αj − 1)x

δj
j ]
−

ηj
αj−1 , xj > 0, αj > 1, aj > 0, γj > 0, δj > 0 (27)

for j = 1, 2. Let u = x1x2, v = x1. Consider the Mellin convolution of a product or let xj > 0, j = 1, 2 be
independently distributed real scalar positive random variables with the densities f31 and f32 of (27)
respectively. Then, the density of u = x1x2, denoted by gp(u), where p stands for the pathway model,
is the following:

gp(u) =
∫

v

1
v

f31(v) f32(
u
v
)dv

(G) = c31c32uγ2−1
∫ ∞

v=0
vγ1−γ2−1[1 + a1(α1 − 1)vδ1 ]

− η1
α1−1

× [1 + a2(α2 − 1)(
u
v
)δ2 ]

− η2
α2−1 dv (28)

for αj > 1, aj > 0, δj > 0, ηj > 0, j = 1, 2. See also the versatile integral discussed in [15]. Various types
of extensions of Krätzel integrals are involved in Equation (28). When α1 → 1, the first factor or the
density in (G) goes to the exponential form whereas the second part in Equation (28) remains in the
type-2 beta family form. This is one extension. In addition, when α2 → 1, the second part density in
Equation (28) goes to the exponential form whereas the first part remains in the type-2 beta family

23



Mathematics 2020, 8, 526

of functions. When α1 → 1 and α2 → 1, Equation (28) goes to the format of the Krätzel integral in
Equation (2) of Section 1. A model of the form in Equation (28) for the cases αj < 1, αj > 1, αj → 1,
individually, is studied in detail in [15].

Connection to Kobayashi Integrals

In Equation (28), let α1 → 1 and α2 remain the same. Then, Equation (28) reduces to the
following form:

gp(u) = c31c32uγ2−1
∫ ∞

v=0
vγ1−γ2−1e−a1η1vδ1

× [1 + a2(α2 − 1)(
u
v
)δ2 ]

− η2
α2−1 dv. (29)

Observe that Equation (29) is a more general form of ultra gamma integral and Kobayashi integral.
The Kobayashi form is available from the Mellin convolution of a ratio. Let u1 = x2

x1
with x1 = v,

and let x1 and x2 be independently distributed pathway random variables as described in Section 5.
Then, x1 = v, x2 = u1v and dx1 ∧ dx2 = vdu1 ∧ dv. Then, the pathway density of u1, denoted by
gp1(u1), is the following for α1 → 1:

gp1(u1) = c31c32uγ2−1
∫ ∞

v=0
vγ1+γ2−1e−a1η1vδ1

× [1 + a2(α2 − 1)(u1v)δ2 ]
− η2

α2−1 (30)

for aj > 0, γj > 0, δj > 0, ηj > 0, j = 1, 2, α2 > 1. Kobayashi integral is obtained from Equation (30)

by putting a2(α2 − 1)uδ2
1 = λ and η2

α2−1 = η, (see [16,17]). Some people call Kobayashi form as
ultra gamma integral. Observe that Equation (30) is a much more general and flexible format and for
varying α2 we have three families of functions in Equation (30) including Kobayashi format. The Mellin
transform of gp1(u1), with Mellin parameter s, is available from u1 = x2

x1
form, namely

Mgp1(s) = Mf1(2− s)Mf2(s) or E[us−1
1 ] = E[x−s+1

1 ]E[xs−1
2 ]

and these moments are available from the pathway densities of x1 and x2 with α1 → 1.

6. Multivariate Extensions of Krätzel Integrals

Let us start with the case of three variables. Let xj > 0, j = 1, 2, 3 be three real scalar variables
and let the associated functions be f j(xj), j = 1, 2, 3, respectively. If xj > 0, j = 1, 2, 3 are real scalar
random variables, independently distributed, then f j(xj), j = 1, 2, 3 may be the corresponding densities.
Let u = x1x2x3 be the product and let v = x2x3, w = x3. Then, x1 ∧ dx2 ∧ dx3 = 1

vw du ∧ dv ∧ dw.
Mellin convolution of a product involving three real scalar variables is considered in [18]. Let

f j(xj) = cjx
γj−1
j e−ajx

δj
j , aj > 0, δj > 0, γj > 0, j = 1, 2, 3 (31)

where cj is a constant and it may be normalizing constant if f j in Equation (31) is a density. Then,
the density of u or Mellin convolution of the product, again denoted by g(u), is the following:

g(u) =
∫

v

∫
w

1
vw

f1(
u

vw
) f2(

v
w
) f3(w)dv ∧ dw (32)

= c1c2c3

∫
v

∫
w

1
vw

(
u
v
)γ1−1(

v
w
)γ2−1wγ3−1

× e−a1(
u
v )

δ1−a2(
v
w )δ2−a3wδ3 dv ∧ dw (33)
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where Equation (32) is the general structure whatever be the f js, and Equation (33) is the case when
f js belong to Equation (31). Then, Equation (33) can be taken as a bivariate version of the Krätzel
integral. Observe that in the exponent we have v and w with positive and negative exponents. If we
take u = x1x2x3, v = x2, w = x3, then the exponential part in g(u) is of the following form:

e−a1(
u

vw )δ1−a2vδ2−a3wδ3 .

In the format of Equation (33), we can take v = x1x2, w = x2 or v = x2x3, w = x1. These produce
two more different forms corresponding to Equation (33). We can also take u = x1x2x3 = u12x3, u12 =

x1x2. We can get the density of u12 first by using f1 and f2. Let the density of u12 be denoted as g12(u12).
Then, by using g12 and f3, we can get the density of u. This produces another bivariate extension of the
Krätzel integral. Follow the same procedure by taking u = u23x1, u13x2 where u23 = x2x3, u13 = x1x3.
In these cases, obtain the densities of u13 and u23 first and then proceed. These produce other different
bivariate extensions of Krätzel integrals. For example, let u = x1x2x3 = u12x3, u12 = x1x2. Let the
density of u12 be g12(u12). Then, from the two-variables case,

(H) g12(u12) =
∫

v

1
v

f1(
u12

v
) f2(v)dv.

Let the density of u be g(u). Then,

(I) g(u) =
∫

w

1
w

g12(
u

u12
) f3(w)dw

=
∫

w

1
w
[
∫

v

1
v

f1(
u12

v
) f2(v)dv] f3(w)dw

=
∫

v

∫
w

1
vw

f1(
u12

v
) f2(v) f3(w)dv ∧ dw.

However, we also have

(J) g12(u12) =
∫

v

1
v

f1(v) f2(
u12

v
)dv.

Substituting for g12 from (J) into (H), we have the following and other forms from the
symmetry also:

g(u) =
∫

w

1
w
[
∫

v

1
v

f1(v) f2(
u
v
)dv] f3(w)dw

(K) =
∫

v

∫
w

1
vw

f1(v) f2(
u
v
) f3(w)dv ∧ dw

=
∫

v

∫
w

1
vw

f1(v) f2(w) f3(
u
v
)dv ∧ dw

=
∫

v

∫
w

1
vw

f1(
u
v
) f2(w) f3(v)dv ∧ dw

=
∫

v

∫
w

1
vw

f1(w) f2(v) f3(
u
v
)dv ∧ dw

=
∫

v

∫
w

1
vw

f1(w) f2(
u
v
) f3(v)dv ∧ dw.

A few such forms, as in (K), are described in [7] and hence these are not repeated here. From the
products of four or more variables xj > 0, j = 4, 5, ..., k, we can have several different extensions of
Krätzel integral for bivariate, trivariate and general multivariate cases. The method is similar to what
is explained above and hence further discussion is omitted. Even though hundreds of different integral
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representations are available for the density of u = x1...xk, the explicit evaluation of the density g(u)
of u is possible by inverting the corresponding Mellin transform, namely

Mg(s) =
k

∏
j=1

Mfj
(s)

and take the inverse Mellin transform of ∏k
j=1 Mfj

(s) to obtain the density g of u = x1x2...xk.

Connections to Fractional Integrals

Let xj > 0, j = 1, 2, 3 be real scalar random variables, independently distributed with densities
f j(xj), j = 1, 2, 3, respectively. Let u = x1x2x3, v = x2, w = x3. Then, dx1 ∧ dx2 ∧ dx3 = 1

vw du ∧ dv ∧
dw. Let f1 be a real scalar type-1 beta density with the parameters (γ + 1, α), or with the density:

f1(x1) =
Γ(γ + 1 + α)

Γ(γ + 1)Γ(α)
xγ

1 (1− x1)
α−1, 0 ≤ x1 ≤ 1, α > 0, γ > −1.

Let f2 and f3 be arbitrary densities. Then,

f1(x1) = f (
u

vw
) =

Γ(γ + 1 + α)

Γ(γ + 1)Γ(α)
(

u
vw

)γ(1− u
vw

)α−1. (34)

Then, the density of u from (34), f2 and f3, denoted again by g(u), is the following:

g(u) =
Γ(γ + 1 + α)

Γ(γ + 1)
uγ

Γ(α)

∫
v

∫
w
(vw)−γ−α(vw− u)α−1 f2(v) f3(w)dv ∧ dw

=
Γ(γ + 1 + α)

Γ(γ + 1)
K−α

2,γ( f2, f3). (35)

If f3 and the corresponding w are absent, then K−α
2,γ( f2, f3) = K−α

2,γ f2 which is Erdélyi–Kober
fractional integral of the second kind and of order α and parameter γ where the arbitrary function is f2.
Similarly, when f2 and v are absent, we get Erdélyi–Kober fractional integral of the second kind of order
α and parameter γ with the arbitrary function f3. Hence, Equation (35) is a bivariate generalization of
Erdélyi–Kober fractional integral of the second kind. This generalization in Equation (35) is different
from the multivariate case of Mathai [8] and multi-index case of Kiryakova [19]. Other extension to
bivariate case of fractional integrals are available from the various representations in (K) of Section 6
by taking one or two, out of the three functions there, as real scalar type-1 beta densities.

Let u1 = x1
x2

with x1 = v so that x2 = v
u1

and dx1 ∧ dx2 = − v
u2

1
du1 ∧ dv. Then, the density of u1,

denoted by g1(u1), is the following:

g1(u1) =
∫

v

v
u2

1
f1(v) f2(

v
u1

)dv. (36)

Let f1(v) = f (v), be an arbitrary density and let f2(x2) be a real scalar type-1 beta density with the
parameters (γ, α). Then, from Equation (36),

g1(u1) =
Γ(γ + α)

Γ(γ)Γ(α)

∫
v

v
u2

1
f (v)(

v
u1

)γ−1(1− v
u1

)α−1dv

=
Γ(γ + α)

Γ(γ)
u−α−γ

1
Γ(α)

∫
v≤u1

vγ(u− v)α−1 f (v)dv

=
Γ(γ + α)

Γ(γ)
K−α

1,γ f (37)
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where K−α
1,γ f is Erdélyi–Kober fractional integral of the first kind of order α and parameter γ. Consider

the generalization to three variables. Let u1 = x2x3
x1

, x2 = v, x3 = w ⇒ x1 = vw
u1

. Then, dx1 ∧ dx2 ∧
dx3 = − vw

u2
1

du1 ∧ dv ∧ dw and the marginal density of u1, again denoted by g1(u1), is the following:

g1(u1) =
Γ(γ + α)

Γ(γ)Γ(α)

∫
v

∫
w

vw
u2

1
(

vw
u1

)γ−1(1− vw
u1

)α−1 f2(v) f3(w)dv ∧ dw

=
Γ(γ + α)

Γ(γ)
u−γ−α

1
Γ(α)

∫
v

∫
w
(vw)γ(u1 − vw)α−1 f2(v) f3(w)dv ∧ dw

=
Γ(γ + α)

Γ(γ)
K−α

1,γ( f1, f2) (38)

where K−α
1,γ( f2, f3) of Equation (38) may be called Erdélyi–Kober fractional integral of the first kind

of order α and parameter γ in the bivariate case or with two arbitrary functions. Here, the integrals
are over 0 ≤ v ≤ 1, 0 ≤ w ≤ 1, 0 ≤ vw ≤ u1. This type of generalization is different from the
ones available in the literature. Various definitions of fractional integrals, fractional derivatives, and
fractional differentials equations and their properties may be seen in [20–22].

7. Krätzel Integral in the Real Matrix-variate Case

It is easier to interpret Krätzel integral in terms of statistical distributions. Let X1 and X2 be two
p× p real positive definite matrix random variables with the densities f1(X1) and f2(X2), respectively.
Density here means a real-valued scalar function f (X) of the positive definite matrix X > O, such that
f (X) ≥ 0 for all X > O and

∫
X>O f (X)dX = 1. That is, for Xj > O, j = 1, 2 ( positive definite),

f j(Xj) ≥ 0 for all Xj > O and
∫

Xj>O fj(Xj)dXj = 1, j = 1, 2. Let Xj > O have a real matrix-variate
gamma density. That is,

f j(Xj) =
|Aj|γj

Γp(γj)
|Xj|γj− p+1

2 e−tr(AjXj), Xj > O, Aj > O,�(γj) >
p− 1

2
, j = 1, 2 (39)

where, in Equation (39), Aj > O is a p× p real positive definite constant matrix for j = 1, 2.. When p = 1,
we have the corresponding scalar variable gamma density. The real matrix-variate gamma function
Γp(γj) is explained below. In the scalar case we have taken exponents δj > 0, j = 1, 2 but if we
take exponents in the matrix-variate case then the transformations will not produce nice forms for
further derivations, see the types of difficulties from [23], and hence we have taken δ1 = δ2 = 1 in the

matrix-variate case. Let us consider symmetric product U = X
1
2
2 X1X

1
2
2 where X

1
2
2 > O is the positive

definite square root of the positive definite matrix X2 > O. We have taken the symmetric product
because the transformations are on symmetric cases. Let V = X2. Then, from Mathai [23], we can

derive dX1 ∧ dX2 = |V|− p+1
2 dU ∧ dV and then proceeding as in the scalar variable case, the density of

U, denoted again by g(U), is given by the following:

g(U) =
∫

V
|V|−

p+1
2 f1(V− 1

2 UV− 1
2 ) f2(V)dV (40)

where f1 and f2 in Equation (40) are some general densities. Consider the case when f j(Xj) is a real
matrix-variate gamma density given by the following:

f j(Xj) =
|Aj|γj

Γp(γj)
|Xj|γj− p+1

2 e−tr(AjXj), (41)
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for Aj > O, Xj > O,�(γj) >
p−1

2 , j = 1, 2, where Γp(γj) is the real matrix-variate gamma given by

Γp(α) = π
p(p−1)

4 Γ(α)Γ(α− 1
2
)...Γ(α− p− 1

2
),�(α) > p− 1

2
. (42)

For the densities in Equation (41), with Γp(γj) defined in Equation (42), the density of U is given
by the following:

g(U) = C|U|γ1− p+1
2

∫
V>O

|V|γ2−γ1− p+1
2 e−tr(V− 1

2 A1V− 1
2 U)−tr(A2V)dV (43)

for Aj > O, V > O, U > O,�(γj) >
p−1

2 , j = 1, 2 where

C =
2

∏
j=1

|Aj|γj

Γp(γj)
.

This Equation (43) is the Krätzel integral in the real matrix-variate case. Note that, if A1 is a
positive scalar quantity, then it can be taken out of V and then V−1 will be obtained corresponding to
the real scalar case.

The model in Equation (41) is also connected to Maxwell-Boltzmann and Raleigh densities
in physics. Their matrix-variate, multivariate and rectangular matrix-variate extensions and some
applications in reliability analysis are given in [24]. Their complex matrix-variate analogs can be
worked out but they do not seem to be in print in the literature yet.

8. Krätzel Integral in the Complex Matrix-variate Case

Here, we consider p × p Hermitian positive definite matrices X̃j > O, j = 1, 2 and Hermitian

positive definite square root X̃
1
2
2 . Consider the symmetric product Ũ = X̃

1
2
2 X̃1X̃

1
2
2 , Ṽ = X̃2. Then,

from [23] we have dX̃1 ∧ dX̃2 = |det(V)|−pdŨ ∧ dṼ. Let the density of Ũ be denoted by g̃(Ũ) when
X̃j, j = 1, 2 are independently distributed with the complex matrix-variate gamma densities given by

f̃ j(X̃j) =
|det(Aj)|γj

Γ̃p(γj)
|det(X̃j)|γj−pe−tr(AjX̃j), X̃j > O,�(γj) > p− 1, j = 1, 2 (44)

where Γ̃p(α) is the complex matrix-variate gamma given by the following:

Γ̃p(α) = π
p(p−1)

2 Γ(α)Γ(α− 1)...Γ(α− p + 1),�(α) > p− 1. (45)

Then, from Equations (44) and (45), proceeding as in the real matrix-variate case the density of Ũ,
denoted by g̃(Ũ), is the following:

g̃(Ũ) = C̃|det(Ũ)|γ1−p
∫

Ṽ>O
|det(Ṽ)|γ2−γ1−pe−tr(Ṽ− 1

2 A1Ṽ− 1
2 Ũ)−tr(A2Ṽ)dṼ

for �(γj) > p− 1, Aj > O, Ṽ > O, Ũ > O, j = 1, 2 where

C̃ =
2

∏
j=1

|det(Aj)|γj

Γ̃p(γj)
.

9. Extension to Rectangular Matrix-variate Case

Let X = (xij) be a p× q, q ≥ p matrix of full rank p where the elements xijs are distinct real scalar
variables. Let A > O be p× p and B > O be q× q constant real positive definite matrices. Let a prime
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denote the transpose, let tr(·) be the trace of (·), and let, for example, A
1
2 be the positive definite square

root of the positive definite matrix A > O. Consider the model

f (X) = C|A 1
2 XBX′A

1
2 |γ|I + a1(q1 − 1)(A

1
2 XBX′A

1
2 )|−

1
q1−1

× |I + a2(q2 − 1)(A
1
2 XBX′A

1
2 )−1|−

1
q2−1 (46)

for aj > 0, qj > 1, j = 1, 2, γ > − q
2 + p−1

2 . Observe that

lim
qj→1

|I + aj(qj − 1)(A
1
2 XBX′A

1
2 )|−

1
qj−1 = e−tr(A

1
2 XBX′A

1
2 ) (47)

for j = 1, 2. Let

f1(X) = lim
q1→1

f (X), f2(X) = lim
q2→1

f (X), f3(X) = lim
q1→1,q2→1

f (X).

Then,

f1(X) = C1|A
1
2 XBX′A

1
2 |γe−a1(A

1
2 XBX′A

1
2 )

× |I + a2(q2 − 1)(A
1
2 XBX′A

1
2 )−1|−

1
q2−1 . (48)

f2(X) = C2|A
1
2 XBX′A

1
2 |γ|I + a1(q1 − 1)(A

1
2 XBX′A

1
2 )|−

1
q1−1

× e−a2tr(A
1
2 XBX′A

1
2 )−1

. (49)

f3(X) = C3|A
1
2 XBX′A

1
2 |γe−a1(A

1
2 XBX′A

1
2 )−a2(A

1
2 XBX′A

1
2 )−1

. (50)

Then, f3(X), coming from Equations (46) and (47), is the real rectangular matrix-variate version
of Krätzel integral. In a physical model building situation, if Equation (50) is the stable or ideal
situation, then Equations (46), (48) and (49) describe the unstable neighborhoods. From the discussion
in Sections 2 and 3, we can see that the model in Equations (46) and (48)–(50) can also be generated
by M-convolution of product or density of a product in the real matrix-variate case. In Equation (50),
for simplicity, we have taken the coefficient parameters as scalar quantities. We can evaluate the
normalizing constants C, C1, C2, C3 by using the following steps: Let

(L) Y = A
1
2 XB

1
2 ⇒ dX = |A|−

p
2 |B|−

q
2 dY

from the general linear transformation (see [23] for the Jacobian in (L) and other Jacobians to follow).
Let the corresponding function f (X) be denoted by f01(Y). Then,

f01(Y) = C|A|−
p
2 |B|−

q
2 |YY′|γ|I + a1(q1 − 1)(YY′)|−

1
q1−1

× |I + a2(q2 − 1)(YY′)−1|−
1

q2−1 . (51)

Let the corresponding functions f1(X), f2(X), f3(X) be denoted by f11(Y), f21(Y), f31(Y),
respectively. Note that Y has pq real scalar variables whereas S = YY′, which is a p× p real positive
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definite matrix, has only p(p + 1)/2 elements. However, we can obtain a relationship between dY and
dS (see [23]). It is the following:

(M) dY =
π

pq
2

Γp(
q
2 )
|S|

q
2−

p+1
2 dS,

where Y in (M) is p × q, whereas S is p × p. Let the corresponding functions of S be denoted by
f02(S), f12(S), f22(S), f32(S), respectively. Then, for example, f02(S) is the following:

f02(S) = C|A|−
p
2 |B|−

q
2 |S|γ+

q
2−

p+1
2 |I + a1(q1 − 1)(S)|−

1
q1−1

× |I + a2(q2 − 1)(S)−1|−
1

q2−1 .

9.1. Multivariate Situation

In Equation (46) and Equations (48)–(50), let p = 1 and q > 1; then, Y is 1× q and of the form
Y = (y1, ..., yq). Then, YY′ = y2

1 + ... + y2
q. Then, for p = 1, the constant matrix A is 1× 1 and let it be

a3 > 0. Then, from Equation (51),

f01 = Ca−
1
2

3 |B|−
q
2 (y2

1 + ... + y2
q)

γ[1 + a1(q1 − 1)(y2
1 + ... + y2

q)]
− 1

q1−1

× [1 + a2(q2 − 1)(y2
1 + ... + y2

q)
−1]

− 1
q2−1 .

Then, f31 becomes the following:

f31(Y) = C3a−
1
2

3 |B|−
q
2 [(y2

1 + ... + y2
q)]

γ

× e−a1(y2
1+...+y2

q)−a2(y2
1+...+y2

q)
−1

(52)

for −∞ < yj < ∞, j = 1, ..., q. We may call Equation (52) as the multivariate version of the basic Krätzel
integral and f01 for p = 1 as the pathway extended form of f31 in Equation (52).

Note that for a general p > 1 we do not take exponents for (A
1
2 XBX′A

1
2 ) because in the general

case matrix transformations create problems while computing the Jacobians. The types of problem
is described in [23]. However, for the scalar cases in f02, f12, f22, f32, we can take arbitrary exponents.
Hence, we have the general Krätzel integrals in the multivariate case as the following:

f33(Y) = C3a−
1
2

3 |B|−
q
2 [(y2

1 + ... + y2
q)]

γ

× e−a1(y2
1+...+y2

q)
δ−a2(y2

1+...+y2
q)
−ρ

(53)

for δ > 0, ρ > 0. Corresponding exponents can be included in f03, f13, f23 as well. For evaluating the
normalizing constant, we can do the following steps. Make use of the transformation and Jacobian in
(M) for p = 1. Then, S = s is a scalar variable. Then, for p = 1, Equation (53) becomes the following:

f34(s) = a−
1
2

3 |B|−
q
2

π
q
2

Γ( q
2 )

sγ+
q
2−1e−a1sδ−a2s−ρ

.

Since s is a real scalar variable here, one can use the scalar version of Mellin convolution of
a product or density of product of Sections 2 and 3, go to the Mellin transforms to evaluate the
normalizing constant. The same procedure works for all the models f04, f14, f24 also.
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9.2. Evaluation of the Normalizing Constant

Let ∫ ∞

s=0
sγ+

q
2−1e−asδ−bs−ρ

ds = g(b) say.

Let Mg(t) be the Mellin transform of g(b) with Mellin parameter t. Then,

Mg(t) =
∫ ∞

0
bt−1{

∫ ∞

s=0
sγ+

q
2−1e−asδ−bs−ρ

ds}db.

Evaluating the b-integral we have the following:∫ ∞

0
bt−1e−bs−ρ

db = Γ(t)sρt, for �(t) > 0.

Now, evaluating the s-integral, we have the following:

∫ ∞

0
sγ+

q
2+ρt−1e−asδ

ds =
Γ( γ+ρt+q/2

δ )

δa
γ+ρt+q/2

δ

,�(γ + ρt + q/2) > 0.

That is,

Mg(t) =
1

δs
γ+q/2

δ

Γ(t)Γ(
γ + q/2

δ
+

ρ

δ
t)a−

ρ
δ t.

By taking the inverse Mellin transform, we have g(b) as the following:

g(b) =
1

δa
γ+q/2

δ

1
2πi

∫ c+i∞

c−i∞
Γ(t)Γ(

γ + q/2
δ

+
ρ

δ
t)(ba

ρ
δ )−tdt

=
1

δa
γ+q/2

δ

H2,0
0,2

[
ba

ρ
δ
∣∣
(0,1),( γ+q/2

δ , ρ
δ )

]
where H(·) is the H-function, see [5]. Then, the normalizing constant is the following:

C = a
1
2
3 |B|

q
2

Γ( q
2 )

π
q
2

δa
γ+q/2

δ

H2,0
0,2

[
ba

ρ
δ
∣∣
(0,1),( γ+q/2

δ , ρ
δ )

] .

Note that, when ρ = δ, the H-function reduces to the G-function of the form G2,0
0,2

[
ab
∣∣
0, γ+q/2

δ

]
.

Then, replace the H-function by the G-function. Observe that, when p = 1, A is 1× 1 and let it be
a3 > 0. This is the a3 appearing above.
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Abstract: In this work, properties of one- or two-parameter Mittag-Leffler functions are derived
using the Laplace transform approach. It is demonstrated that manipulations with the pair
direct–inverse transform makes it far more easy than previous methods to derive known and
new properties of the Mittag-Leffler functions. Moreover, it is shown that sums of infinite series
of the Mittag-Leffler functions can be expressed as convolution integrals, while the derivatives of
the Mittag-Leffler functions with respect to their parameters are expressible as double convolution
integrals. The derivatives can also be obtained from integral representations of the Mittag-Leffler
functions. On the other hand, direct differentiation of the Mittag-Leffler functions with respect
to parameters produces an infinite power series, whose coefficients are quotients of the digamma
and gamma functions. Closed forms of these series can be derived when the parameters are set to
be integers.

Keywords: derivatives with respect to parameters; Mittag-Leffler functions; Laplace transform
approach; infinite power series; integral representations; convolution integrals; quotients of digamma
and gamma functions

1. Introduction

At the beginning of the previous century, the exponential function was generalized by the Swedish
mathematician G.M. Mittag-Leffler, who introduced a new power series that is named after him
today [1]. Quite unexpectedly, enormous interest has developed regarding the Mittag-Leffler functions
over the last four decades because of their ability to describe diverse physical phenomena far more
easily than other approaches in a host of scientific and engineering disciplines. Consequently, the
Mittag-Leffler functions have become one of the most important special functions in mathematics.
Examples where they appear include kinetics of chemical reactions, time and space fractional diffusion,
nonlinear waves, viscoelastic systems, neural networks, electric field relaxations, and statistical
distributions [2–8]. In mathematics, the Mittag-Leffler functions play an important role in fractional
calculus, solution of systems with fractional differential, and integral equations [9,10]. As a result of
all this activity, there is now extensive literature on their properties and history [11–13]. A number
of reviews have been produced [14–16], and of these, the monograph by Gorenflo, Kilbas, Mainardi,
and Rogosin [17] occupies a special place.

The one-parameter, classical Mittag-Leffler function Eα(z) is defined in the whole complex plane
by the following power series:

Eα(z) =
∞∑

k=0

zk

Γ(αk + 1)
, (1)

where Reα > 0.
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Later, Wiman [18] introduced the two-parameter Mittag-Leffler function Eα,β(z), which is given by

Eα,β(z) =
∞∑

k=0

zk

Γ(αk + β)
, (2)

where Reα> 0 and Reβ> 0. Only these two functions, not generalizations thereafter, will be studied here.
There are two main aims in this work. The first is to show that many well-known and new

functional relations can be easily derived via the Laplace transform theory and the second is to consider
differentiation with respect to the parameters α and β. Throughout this paper, all mathematical
operations or manipulations with functions, series, integrals, integral representations, and transforms
will be formal. There will be no proofs of validity of given expressions, though they are, without
doubt, correct. The following sections present many results that have been derived independently by
other methods, while the new results are verified by two different numerical procedures. Thus, in the
framework of applied operational calculus, the reported results are only valid for real positive values
of arguments and parameters.

My previous involvement with the Mittag-Leffler functions has been limited only to establishing
their connections to the Volterra functions. In my monograph devoted to the Volterra functions [19], I
presented in Appendix A some representations of the Mittag-Leffler functions in terms of other special
functions. They can also be derived directly using the Laplace transform technique when applied to
Eα(±tα) functions. Evidently, this restricts the transform–inverse pair only to the positive real axis.
New results, together with some from [19], are presented below.

According to the definitions of the Mittag-Leffler functions, there is a clear distinction between
the argument, z, and the parameters, α and β, as the latter appear in the coefficients. Nevertheless,
Eα(z) = f (α, z) and Eα,β(z)= f (α, β, z) can be regarded as the bivariate and trivariate functions, respectively.

As this is the first investigation dealing with mathematical operations with respect to variables
α and β, its scope is only limited to derivatives of the Mittag-Leffler functions. The special forms
of the Laplace transforms of Eα(±tα) and Eα,β(±tα) functions will be studied extensively to establish
known properties of the Mittag-Leffler functions and to derive new functional relations. As will be
demonstrated, the differentiation operations will lead to power series with coefficients being quotients
of psi and gamma functions. In some cases, these series can be evaluated in a closed form, i.e., in
terms of elementary and special functions. Computation methods used in this investigation to obtain
the Mittag-Leffler functions and their derivatives with respect to α differ from those reported in the
literature. This results from the fact that the Mittag-Leffler functions are available as the build-in
functions in the MATHEMATICA program.

2. Properties of the Mittag-Leffler Functions in the Laplace Transform Approach

The Laplace transform of the Mittag-Leffler function Eα(tρ) is given by

L
{
Eα(tρ)

}
=

1
s

∞∑
k=0

Γ(ρk + 1)
Γ(αk + 1)

( 1
sρ

)k
, (3)

which is not valid to all values of ρ and α as discussed in [17].
For ρ = α, (3) becomes

L
{
Eα(tα)

}
=

sα−1

sα − 1
, (4)

where Reα > 0 and Res > 1 and for negative tα is

L
{
Eα(−tα)

}
=

sα−1

sα + 1
. (5)
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In a similar manner, the Laplace transforms of two-parameter Mittag-Leffler functions,
tβ−1Eα,β(±λtα), in [17] are found to be

L
{
tβ−1Eα,β(±λtα)

}
=

sα−β
sα − λ , (6)

where Reα > 0, Reβ > 0 and Res > |λ|1/α.
Not only are the inverse transforms simple to derive from them results, but one is able

to identify functions for particular values of α and β. Carrying this out will require algebraic
manipulations, the similarity properties of the Laplace transformation, the Heaviside expansion
theorem, the convolution (product) theorem, some substitution formulas, and other techniques and
rules of the operational calculus.

In the first application of the Laplace transform theory, we consider positive integer values of α
from 1 to 4. Then, the Mittag-Leffler functions reduce to elementary or special functions due to the
simple inverse transforms.

For α = 1, one finds that

E1(t) = L−1L
{
E1(t)

}
= L−1

{ 1
s− 1

}
= et . (7)

For α = 2, one obtains

E2(t2) = L−1L
{
E2(t2)

}
= L−1

{
s

s2−1

}
= L−1

{
s

(s−1)(s+1)

}
=

cosh t ,
(8)

where the dominator has been decomposed into partial fractions. However, the more expedient
method is to evaluate the contributions from the residues at s = ±1.

Carrying out this procedure for −t2 yields

E2(−t2) = L−1L
{
E2(−t2)

}
= L−1

{
s

s2+1

}
= L−1

{
s

(s−i)(s+i)

}
=

seit

s+i

∣∣∣∣
s=+i

+ se−it

s−i

∣∣∣∣
s=−i

= eit

2 + e−it

2 = cos t .
(9)

For α = 3, one finds that

E3(t3) = L−1L
{
E3(t3)

}
= L−1

{
s2

s3−1

}
= L−1

{
s2

(s−1)(s2+s+1)

}
=

L−1
{

s2

(s−1)(s+ 1+i
√

3
2 )(s+ 1−i

√
3

2 )

}
=

s2 et

(s+ 1+i
√

3
2 )(s+ 1−i

√
3

2 )

∣∣∣∣∣∣
s = 1

+ s2 e−t(1+i
√

3)/2

(s−1)(s+ 1−i
√

3
2 )

∣∣∣∣∣∣
s =− 1+i

√
3

2

+ s2 e−t(1−i
√

3)/2

(s−1)(s+ 1+i
√

3
2 )

∣∣∣∣∣∣
s=− 1−i

√
3

2

= 1
3 [e

t + 2e−t/2 cos(
√

3
2 t)] .

(10)

Similarly, for negative tα, one arrives at

E3(−t3) = L−1L
{
E3(−t3)

}
= L−1

{
s2

s3+1

}
=

1
3 [e
−t + 2et/2 cos(

√
3

2 t)] .
(11)

The calculations become more tedious as α increases. However, for α = n, an integer, we obtain in
general case

En(±tn) = L−1L
{
En(±tn)

}
= L−1

{
sn −1

sn − 1

}
. (12)
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It is obvious that for integer values of α, the Mittag-Leffler functions can be expressed in terms of
elementary functions, such as combination of exponential, hyperbolic, and trigonometric functions.

When α is not an integer, special functions are involved. Then, one must use a combination of
tables of inverse Laplace transforms, substitution formulas, the convolution theorem, and other rules.
For example, from the table of inverse transforms [20], we have

L−1
{

1√
s

}
= 1√

πt
,

L−1
{

1√
s−1

}
= 1√

πt
± eter f c(−√t) ,

er f c(−t1/2) = −er f c(t1/2) = er f (t1/2) − 1

(13)

Hence, we find that

E1/2(±
√

t) = L−1L
{
E1/2(±

√
t)
}
= L−1

{
1√

s(
√

s−1)

}
=

L−1
{
− 1√

s
± 1

(
√

s−1)

}
= et[1− er f (

√
t)] .

(14)

The cases with α = ±1/4 are more complex. Therefore, only the final result for α = 1/4 from [19] is
presented here. This is

E1/4(± t1/4) = L−1L
{
E1/4(±t1/4)

}
= L−1

{
1

s3/4(s1/4−1)

}
=

L−1
{

1√
s(
√

s−1)
± 1

s1/4(s−1)
± 1

s3/4(s−1)

}
=

et
{
1 + er f (

√
t) ± γ( 1

4 ,t)

Γ( 1
4 )
± γ( 3

4 ,t)
Γ( 3

4 )

}
,

γ(a, t) = Γ(a) − Γ(a, t) =
t∫

0
xa−1e−xdx ,

(15)

where the last equation in (15) is the integral representation for the incomplete gamma function.
We can also determine relations between the Mittag-Leffler functions using the Laplace

transformation. Putting β = α + 1 in (6) yields

L
{
tαEα,α+1(tα)

}
=

1
s(sα − 1)

. (16)

However, noting that

L
{
Eα(tα) − 1

}
=

sα−1

sα − 1
− 1

s
=

1
s(sα − 1)

, (17)

we can derive the well-known relation for the Mittag-Leffler functions

Eα( tα) − 1 = tαEα,α+ 1( tα) . (18)

A similar result for the two-parameter Mittag-Leffler function can be derived from

L
{
tα+ β−1Eα,α+ β(tα)

}
=

1
sβ(sα − 1)

, (19)

and

L
{

tβ−1Eα, β(tα) − tβ−1

Γ(β)

}
=

sα−β
(sα − 1)

− 1
sβ

=
1

sβ(sα − 1)
. (20)
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Hence, we arrive at

Eα,β( tα) =
1

Γ(β)
+ tα Eα,α+ β( tα) . (21)

For α and β integers, (21) can be written as

E1,β(t) = 1
Γ(β) + t E1,α+1(t) ,

En,β(tn) = 1
Γ(β) + tn En,n + β(tn) ,

En,n(tn) = 1
(n−1)! + tn En,2n(tn) ,

En,m(tn) = 1
(m−1)! + tn En,m + n(tn)

(22)

Of the many substitution formulas in the Laplace transform theory, only three will be employed
here. From [21] we have

L
{
f (t)

}
= F(s) ,

L−1
{

1√
s
F(
√

s)
}
= 1√

πt

∞∫
0

e−u2/4t f (u) du (23)

By wring the Laplace transform of Eα(tα) as

L
{
Eα(tα)

}
=

sα−1

sα − 1
=

1√
s

(
√

s)2α−1

[(
√

s)2α − 1]
, (24)

we find that the Mittag-Leffler function can be represented by

Eα(tα) =
1√
πt

∞∫
0

e− u2/4tE2α(u2α) du . (25)

The operational rule for the Macdonald function K1/3(z) is

L−1
{ 1

s2/3
F(s1/3)

}
=

1
π

∞∫
0

√
u
t

K1/3

(
2u3/2
√

27t

)
f (u) du . (26)

Writing the Laplace transform of Eα(tα) as

L
{
Eα(tα)

}
=

sα−1

sα − 1
=

(s1/3)
3α−1

s2/3[(s1/3)
3α − 1]

, (27)

gives

Eα(tα) =
1
π

∞∫
0

√
u
t

K1/3

(
2u3/2
√

27 t

)
E3 α(u3 α) du . (28)

For specific values of α, the Mittag-Leffler functions in the integrands of (25) and (28) can be
expressed as elementary or special functions. Then, the Mittag-Leffler functions on the left-hand side
will be represented by definite integrals over infinity.

The third substitution formula is

L−1
{ 1

s2 F(
1
s
)
}
=

∞∫
0

√
t
u

J1
(
2
√

tu
)

f (u) du , (29)

where J1(z) is the Bessel function of the first kind and of the first order
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From

L
{
1− Eα(tα)

}
=

1
s
− sα− 1

sα − 1
=

1
s2

( 1
s )
α−1

[( 1
s )
α − 1]

, (30)

it follows that
Eα(tα) − 1√

t
=

∞∫
0

J1(2
√

tu) Eα(uα)
du√

u
. (31)

Many properties and functional relations for the Mittag-Leffler functions can be obtained from
the convolution theorem. These are found by expressing the Laplace transforms of Eα(tα) in various
forms and then evaluating the inverses via convolution integrals. For example, using

L
{
Eα(tα)

}
=

sα−1

sα − 1
=

s2α−1

s2α − 1
+

s2α−1

s2α − 1
· 1

sα
, (32)

immediately yields
Eα(tα) = E2α(t2α) + E2α(t2α) ∗ tα−1

Γ(α) =

E2α(t2α) +
t∫

0
E2α(u2α)

(t−u)α−1

Γ(α) du .
(33)

All convolution integrals can be transformed into finite trigonometric integrals by a suitable
change of variable. Therefore, putting u = t[cosθ]2 in (33) yields

1
Γ(α)

t∫
0

E2α(u2α)(t− u) α−1 du =

tα−1

Γ(α)

π/2∫
0

sin(2θ) [(sinθ)2]
α−1

E2α[t2α(cosθ)4α] dθ
(34)

Similarly, from

L
{
tβ−1Eα,β(tα)

}
=

sα−β
sα − 1

=
s2α−β

s2α − 1
+

s2α−β
s2α − 1

· 1
sα

, (35)

it follows that

Eα,β(tα) = E2α,β(t2α) +

t∫
0

(u
t

)β − 1
E2α,β(u2α)

(t− u)α−1

Γ(α)
du . (36)

A different convolution integral can be derived from

1
sβ+1

=
sα−β

sα − 1
·
[1

s
− 1

sα+1

]
, (37)

whose inverse Laplace transform is

tβ

Γ(β+ 1)
=

t∫
0

uβ−1Eα,β(uα)
[
1− (t− u)α

Γ(α+ 1)

]
du . (38)

Introducing the Laplace transform of Eα,β(±tα) in the form

L
{
tβ−1Eα,β(±tα)

}
=

sα−β
sα − 1

=
sα−1

sα − 1
· 1
sβ−1

, (39)
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gives

tβ−1Eα,β(±tα) = Eα(±tα) ∗ tβ−2

Γ(β− 1)
=

t∫
0

Eα(±uα)
(t− u)β−2

Γ(β− 1)
du . (40)

For β = α, this becomes

tα−1 Eα,α(±tα) = Eα(±tα) ∗ tα−2

Γ(α−1) =
t∫

0
Eα(±uα) (t−u)α−2

Γ(α−1) du .
(41)

For α and β, positive integers, (40) reduces to

tm−1En,m(±tn) =

t∫
0

En(±un)
(t− u)m−2

(m− 2)!
. (42)

where n = 1, 2, 3, . . . and m = 2, 3, 4, . . . .
These convolution integrals are easily evaluated because the Mittag-Leffler functions reduce to

elementary functions. For example, for n = 1 and m = 2 and 3 and noting that E1(t) = et, it follows that

t E1,2(t) =
t∫

0
eu du = et − 1 ,

t2 E1,3(t) =
t∫

0
eu (t− u) du = et − t− 1

(43)

The Mittag-Leffler functions for n = 1 to 4 and m = 2 to 4 are presented in [19].
The operational rules of the Laplace transformation enable us to obtain representations for

derivatives of the Mittag-Leffler functions tβ−1Eα,β(tα). It is obvious from (2) that the derivative for any
order is zero at the origin. In this case, differentiation of the Mittag-Leffler function is equivalent to
multiplying the Laplace transform by powers of s. Because

L
{

f (n)(t)
}
= snF(s) ,

f (0) = f ′(0) = f ′′ (0) = . . . = f (n)(0) ,
n = 1, 2, 3, . . . ,

(44)

we find that for Reα > 0, Reβ ≥ n + 1 and Res > 1

L
{

dn

dtn

[
tβ−1Eα,β(tα)

]}
= sn

(
sα−β

sα − 1

)
=

sα−(β−n)

sα − 1
. (45)

Hence, the Laplace inverse transform becomes

dn

dtn

[
tβ−1Eα,β(tα)

]
= tβ−n−1Eα,β−n(tα) . (46)

In case of Eα(tα) function, its value is unity at the origin. Only the first derivative has a simple
Laplace transform, which is

L
{

d
dt
[Eα(tα)]

}
= s

(
sα−1

sα − 1

)
− 1 =

1
sα − 1

=

(
sα−1

sα − 1

)
· 1

sα−1
, (47)
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the inverse transform of (47) is

d
dt
[Eα(tα)] = Eα(tα) ∗ tα−2

Γ(α− 1)
, (48)

However, according to (41), this convolution integral is also given by

d
dt
[Eα(tα)] = tα−1Eα,α( tα) . (49)

The n-dimensional integrals of the Mittag-Leffler functions are easily evaluated because this is
equivalent to dividing the Laplace transform, F(s), by sn

L

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t∫

0

un−1∫
0

· · ·
u1∫

0

f (u1) du1 du2 · · · dun

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =
1
sn F(s) , (50)

Then, we obtain

L

⎧⎪⎪⎨⎪⎪⎩
t∫

0

un−1∫
0
· · ·

u1∫
0

uβ−1
1 Eα,β(uα1 ) du1 du2 · · · dun

⎫⎪⎪⎬⎪⎪⎭ = 1
sn

(
sα−β
sα−1

)
=

sα−(β+ n)

sα−1 ,

(51)

The inverse transform of (51) is

t∫
0

un−1∫
0

· · ·
u1∫

0

uβ − 1
1 Eα,β(uα1 ) du1 du2 · · · dun = tβ+ n−1Eα,β+ n(tα) . (52)

For n = 1 and β = 1,
t∫

0
uβ−1Eα,β(uα) du = tβ Eα,β+1(tα) ,

t∫
0

Eα(uα) du = t Eα,2(tα) .
(53)

Together with the linearity property of the Laplace transformation, operational calculus is able to
determine the sums of the Mittag-Leffler functions as power series. Consider the infinite and finite
geometrical series, namely,

1 + x + x2 + . . . + xk + . . . = 1
1−x ,

1 + x + x2 + . . . xn−1 + xn = xn + 1−1
x−1

(54)

where 0 < x < 1.
By taking the Laplace transforms of all the terms in the power series of the corresponding

Mittag-Leffler function, one obtains for s > 1,

F(s) =
sα−1

sα − 1
+

sα−2

sα − 1
+

sα−3

sα − 1
+ . . .+

sα−k

sα − 1
+ . . . , (55)

The inverse transform of F(s) is given by the following series of the Mittag-Leffler functions:

L−1{F(s)} = Eα(tα) + t Eα,2(tα) + t2 Eα,3(tα) + . . .

+tk Eα,k+ 1(tα) + . . . =
∞∑

k = 1
tk−1Eα,k(tα) . (56)
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In order to invert F(s), one must express (55) as

F(s) =
sα−1

sα − 1
+

sα−1

sα − 1

{1
s
+

1
s2 +

1
s3 . . .+

1
sk

+ . . .
}

, (57)

The series inside the brackets is merely the geometric series. Using (54) one finds that

F(s) =
sα−1

sα − 1
+

sα−1

sα − 1

[
1

1− (1/s)
− 1

]
=

sα−1

sα − 1
+

sα−1

sα − 1
· 1

s− 1
, (58)

Finally, inverting F(s) yields

∞∑
k = 1

tk−1Eα,k(tα) = Eα(tα) + Eα(tα) ∗ et =

Eα(tα) +
t∫

0
e(t−u)Eα(uα) du .

(59)

For the case of a finite series of the Mittag-Leffler functions, one requires the second result in (54)
to determine the Laplace transform F(s), which is given by

F(s) = sα−1

sα−1 + sα−1

sα−1

[
(1/s)n−1
(1/s)−1 − 1

]
=

sα−1

sα−1 +
{

sα−1

sα−1 − sα−(n + 1)

sα−1

}
· 1

s−1 ,
(60)

According to the convolution theorem, the inverse transform of this finite sum is

n∑
k = 1

tk−1Eα,k(tα) = Eα(tα) + et ∗
{
Eα(tα) − tnEα,n + 1(tα)

}
=

Eα(tα) +
t∫

0
e(t−u)

{
Eα(uα) − unEα,n + 1(uα)

}
du .

(61)

Similarly, we can use (54) for negative value of x

1− x + x2 − . . .+ xk − . . . = 1
1 + x

, (62)

Then, the corresponding Laplace transform becomes

F(s) = sα−1

sα−1 + sα−1

sα−1

{
− 1

s +
1
s2 − 1

s3 + . . .+
1
sk + . . .

}
=

sα−1

sα−1 + sα−1

sα−1

(
s

s+1 − 1
)
= sα−1

sα−1 − sα−1

sα−1 · 1
s+1 ,

(63)

Inversion of this result yields

∞∑
k = 1

(−1)k−1 tk−1Eα,k(tα) = Eα(tα) − Eα(tα) ∗ e−t =

Eα(tα) −
t∫

0
e−(t−u)Eα(uα) du .

(64)

According to the binomial theorem for x < 1, we have

P(x) = 1− 2x + 3 x2 − 4x3 + . . . =
∞∑

k = 1

(−1)k−1k xk−1 =
1

(1 + x)2 , (65)
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The Laplace transform corresponding to this series is

F(s) = sα−1

sα−1 + sα−1

sα−1

{
− 2

s +
3
s2 − 4

s3 . . .
}
= sα−1

sα−1+

sα−1

sα−1

[(
s

s+1

)2 − 1
]
= sα−1

sα−1 − sα−1

sα−1

[
1

(s+1)2 +
2s

(s+1)2

]
,

(66)

The inverse transform of the second term in (66) is

L−1
{
− sα−1

sα−1

[
1

(s+1)2 +
2s

(s+1)2

]}
=

−Eα(tα) ∗
[
t e−t + 2e−t(1− t)

]
= Eα(tα) ∗

[
(t− 2) e−t

]
,

(67)

Thus, the infinite series of the Mittag-Leffler functions in (65) and (67) is

Eα,1(tα) − 2t Eα,2(tα) + 3t2 Eα,3(tα) − 4t3 Eα,4(tα) + . . . =
∞∑

k = 1
(−1)k−1ktk−1Eα,k(tα) =

Eα(tα) +
t∫

0

[
(t− u− 2) e−(t−u)

]
Eα(uα) du .

(68)

From the preceding examples, it is obvious that if the function f (t) is expanded into the Taylor series,

f (x) =
∞∑

k = 0

f (k)(0)
k!

xk (69)

Then, the sum of the corresponding series of the Mittag-Leffler functions can be expressed in
terms of convolution integrals. This is only possible if the inverse Laplace transforms, L−1[f (1/s) − 1],
are known.

Now, consider the binomial series with the power of 1/2. Then, we have some derivatives of the
function f (t), which are equal to zero at the origin

f (x) =
√

1 + x2 = 1 +
x2

2
− x4

8
+

x6

16
− 5x8

128
+ . . . , (70)

The corresponding series of the Mittag-Leffler functions is

S(tα) =
Eα,1(tα) + t2

2 Eα,3(tα) − t4

8 Eα,5(tα) + t6

16 Eα,7(tα) − 5t8

128 Eα,9(tα) − . . . ,
(71)

while the Laplace transform of S(tα) after few manipulations is given by

F(s) = sα−1

sα−1 + sα−1

sα−1

{
1

2s2 − 1
8s4 +

1
16s6 − 5

128s8 + . . .
}
=

sα−1

sα−1 + sα−1

sα−1

[√
1 +

(
1
s

)2 − 1
]
= sα−1

sα−1 + sα−1

sα−1

[
s√

s2+1
− 1

]

= sα−1

sα−1 − sα−1

sα−1 · 1√
s2+1 [s+

√
s2+1]

,

(72)

Noting that the inverse Laplace transform of the Bessel function of the first kind and of the first
order is

L−1

⎧⎪⎪⎨⎪⎪⎩
1√

s2 + 1 [s +
√

s2 + 1]

⎫⎪⎪⎬⎪⎪⎭ = J1(t) , (73)
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one finds that the series of the Mittag-Leffler functions in (74) can be expressed as

Eα,1(tα) + t2

2 Eα,3(tα) − t4

8 Eα,5(tα) + t6

16 Eα,7(tα) − 5 t8

128 Eα,9(tα) − . . .
= Eα,1(tα) − Eα,1(tα) ∗ J1(t) = Eα,1(tα) −

t∫
0

Eα,1(uα) J1(t− u) du

= Eα(tα) −
π/2∫
0

t sin(2θ) Eα[tα(cosθ)2α] J1[t(sinθ)2] dθ .

(74)

3. Differentiation and Integration of the Mittag-Leffler Functions with Respect to Parameters in
the Laplace Transform Approach

The operational rules of the Laplace transformation are also appropriate in the evaluation of
derivatives of the Mittag-Leffler functions with respect to parameters. Differentiation under the integral
transform sign is permissible if the function f (t,α) is continuous with respect to the variable t and the
parameter α. Then, we have

L
{
f (t,α)

}
= F(s,α) ,

L
{
∂ f (t,α)
∂α

}
=
∂F(s,α)
∂α = G(s,α) ,

L−1
{
∂F(s,α)
∂α

}
= L−1{G(s,α)

}
=
∂ f (t,α)
∂α

(75)

The Laplace transform G(s,α) of the derivative of the Mittag-Leffler function Eα(tα) is

G(s,α) = L
{
∂Eα(tα)
∂α

}
= ∂
∂α

(
sα−1

sα−1

)
=
[

sα−1 ln s
sα−1 − s2α−1 ln s

(sα−1)2

]
= − sα−1

sα−1 · ln s
sα−1 = − sα−1

sα−1 · sα−1

sα−1 · ln s
sα−1 .

(76)

In order to avoid evaluating a complex integral in the inversion process, G(s,α) is expressed as
the product of three Laplace transforms. The convolution theorem can be applied for G(s,α) because
inverse of the third term in (76) is given for Reλ > 0 in [20]

L−1
{ ln s

sλ

}
=

tλ−1

Γ(λ)
[ψ(λ) − ln t] , (77)

From (76) and (77) it follows that

∂ Eα(tα)
∂ α

= Eα(tα) ∗ Eα(tα) ∗
{

tα−2

Γ(α− 1)
[ln t−ψ(α− 1)]

}
(78)

where α > 1.
Thus, due to two convolutions, the derivative with respect toα is expressed by a double convolution

integral. If the Laplace transform in (76) is written as

G(s,α) = − sα−1

sα − 1
· sα−λ

sα − 1
· ln s

sα−λ
, (79)

the inverse transform of (79) becomes

∂Eα(tα)
∂α =

Eα(tα) ∗
[
tλ −1Eα,λ(tα)

]
∗
{

tα −λ −1

Γ(α−λ) [ln t−ψ(α− λ)]
} (80)

where 0 < λ < α < 1.
The case α = 1 will be considered in the next section.
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In a similar manner, the Laplace transform of derivative of the Mittag-Leffler function tβ−1Eα,β(tα)
with respect to α is

G(s,α, β) = L
{
∂[tβ −1Eα,β(tα)]

∂α

}
= ∂
∂α

(
sα−β
sα−1

)
=

= − sα−β
sα−1 · ln s

sα−1 = − sα−1

sα−1 · sα−β
sα−1 · ln s

sα−1 ,
(81)

This gives
∂[tβ−1Eα,β(tα)]

∂α =

Eα(tα) ∗
{
tβ−1Eα,β(tα)

}
∗
{

tα−2

Γ(α−1) [ln t−ψ(α− 1)]
} (82)

where α > 1.
As expected, for β = 1, (82) reduces to (78).
For 0 < α < 1, from (79), it follows that

G(s,α, β) = − sα−λ
sα − 1

· sα−β
sα − 1

· ln s
sα−λ

, (83)

and
∂[tβ−1Eα,β(tα)]

∂α ={
tλ −1Eα,λ(tα)

}
∗
{
tβ−1Eα,β(tα)

}
∗
{

tα −λ −1

Γ(α−λ) [ln t−ψ(α− λ)]
} (84)

0 < λ < α < 1.
For β, a variable, the Laplace transform of tβ−1Eα,β(tα) derivative is

H(s,α, β) = L
{
∂tβ −1Eα,β(tα)

∂β

}
= ∂
∂β

(
sα −β
sα−1

)
=

= − sα−β ln s
sα−1 = − sα−(β−λ)

sα−1 · ln s
sλ ,

(85)

and the inverse transform is

∂tβ−1Eα,β(tα)
∂β = tβ −1 ln t Eα,β(tα) + tβ−1 ∂Eα,β(tα)

∂β ={
tβ−λ−1Eα,β−λ(tα)

}
∗
{

tλ−1

Γ(λ) [ln t−ψ(λ)
}

.
(86)

where β > λ > 0.
As in the case with differential operations, there are rules in the Laplace transformation for

evaluation of integrals. The Laplace transform of the Mittag-Leffler function tβ−1Eα,β(tα) enables one to
derive the following integral

I(t,λ) =

λ∫
0

tβ−1Eα,β(tα) dβ , (87)

The Laplace transform of (87) can be determined by changing the order of integration as follows:

∞∫
0

e−st

⎧⎪⎪⎨⎪⎪⎩
λ∫

0
tβ −1Eα,β(tα) dβ

⎫⎪⎪⎬⎪⎪⎭ dt =
λ∫

0

⎧⎪⎪⎨⎪⎪⎩
∞∫
0

e− sttβ −1Eα,β(tα) dt

⎫⎪⎪⎬⎪⎪⎭ dβ =

λ∫
0

sα−β
sα−1 dβ = sα

sα−1 · 1
ln s − sα−λ

sα−1 · 1
ln s .

(88)

The inverse of (lns)−1 is closely related to a Volterra function [19] as

L−1
{ 1

ln s

}
=

∞∫
0

tu−1

Γ(u)
du , (89)
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It follows from (47) that

L−1
{ sα

sα − 1

}
= δ(t) +

d
dt
[Eα(tα)] , (90)

whereas (49) gives
d
dt
[Eα(tα)] = tα−1Eα,α( tα) , (91)

The final result in terms of convolution integrals is

I(t,λ) =
[
δ(t) + tα−1Eα,α(tα) − tλ−1Eα,λ(tα)

]
∗
∞∫

0

tu−1

Γ(u)
du . (92)

Two limits of integration in (87) can be altered to

∞∫
0

tβ−1Eα,β(tα) dβ =
[
δ(t) + tα−1Eα,α( tα)

]
∗
∞∫
0

tu −1

Γ(u) du ,

∞∫
λ

tβ−1Eα,β(tα) dβ =
[
tλ −1Eα,λ( tα)

]
∗
∞∫
0

tu −1

Γ(u) du .
(93)

The second term on the right-hand side of (88), written in a different form as inversion of the
Volterra function, is as follows

L−1
{

sα−λ
sα−1 · 1

ln s

}
= L−1

{
sα−(λ −1)

sα−1 · 1
s ln s

}
= tλ−2Eα,λ −1(tα) ∗ ν(t) ,

ν(t) =
∞∫
0

tu

Γ(u+1) du .
(94)

The connection between the Mittag-Leffler functions and the Volterra functions in the Laplace
transformation is discussed in detail in [19].

4. Derivatives of the Mittag-Leffler Functions with Respect to Parameters α and β Expressed as
Power Series

As it has been shown in the previous section, the differentiation with respect to parameters of the
Mittag-Leffler functions can be represented formally, in closed form, in terms of double convolution
integrals. Unfortunately, these convolution integrals are not amenable to numerical computations.
Hence, an alternative approach is required. Differentiating (1) and (2) with respect to α and β yields

∂Eα(t)
∂α = G(α, t) = − ∞∑

k = 1

(
ψ(αk+1)
Γ(αk+1)

)
ktk ,

∂Eα,β(t)
∂α = − ∞∑

k = 1

(
ψ(αk+β)
Γ(αk+β)

)
ktk .

(95)

and
∂ Eα,β(t)
∂β

= −
∞∑

k = 0

(
ψ(αk + β)
Γ(αk + β)

)
tk . (96)

The second derivatives are

∂2Eα(t)
∂α2 = G′(α, t) =

∞∑
k = 1

⎧⎪⎪⎨⎪⎪⎩
[ψ(αk + 1)]2 −ψ(1) (αk + 1)

Γ(αk + 1)

⎫⎪⎪⎬⎪⎪⎭ k 2tk , (97)
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and
∂2Eα,β(t)
∂β2 =

∞∑
k = 0

{
[ψ(α k+β)]2−ψ(1) (αk+β)

Γ(αk+β)

}
tk ,

∂2Eα,β(t)
∂α∂β =

∞∑
k = 1

{
[ ψ(α k+β)]2−ψ(1)(αk+β)

Γ(αk+β)

}
ktk

(98)

Higher derivatives with respect to α and β yield similar summands, only differing in powers of k.
Infinite series with the digamma functions in their summands do not appear often in mathematical

investigations [22,23]. This changed in 2008 with the huge collection of results in the book by
Brychkov [24]. Nevertheless, in their general form, infinite series with quotients of the digamma
and gamma functions in their summands are still unsolved. However, for specific values of α and β,
MATHEMATICA is able to determine closed forms for them, although they are rather cumbersome
with mixture of elementary and special functions. Their validity was checked by carrying out numerical
calculations with (95) and (96). Only a limited number of results will appear in this section, with the
remainder appearing in Tables 1 and 2.

Table 1. First derivatives of the Mittag-Leffler functions with respect to the parameter α.

α β ∂Eα,β(t)/∂α

1 3 − ∞∑
k = 1

k tk ψ(k+3)
Γ(k+3) =

1−t+γ(t+2)−et+et(t−2)[Chi(t)−Shi(t)−ln t]
t2

1 4 − ∞∑
k = 1

k tk ψ(k+4)
Γ(k+4) =

4−8t−3t2+2γ (t2+4z=t+6)−4et

4t3 +

et(t−3)[Chi(t)−Shi(t)−ln t]
4 t3

1 5 − ∞∑
k=1

k tkψ(k+5)
Γ(k+5) =

36et(t−4)[Chi(t)−Shi(t)−ln t]
36t4 +

6 γ[t3+6t2+18t+24]−[11 t3+54t2+108t−36]−36et

36t4

1 6
− ∞∑

k = 1

k tk ψ(k+6)
Γ(k+6) =

et(t−5)[Chi(t)−Shi(t)−ln t]−et

t5 −
25 t4+176t3+648 t2+1158 t

288 t5 +
12 γ [ t4+8t3+36 t3+96 t2+120 t+24]

288 t5

2 3
− ∞∑

k = 1

k tk ψ(2k+3)
Γ(2 k+3) =

2+4 γ+sinh(
√

t)[(2Chi(
√

t)−ln t)
√

t+4Shi(
√

t)]
4t −

2 cosh(
√

t)[2Chi(
√

t)+
√

tShi(
√

t)−ln t+1]
4t

2 4
− ∞∑

k = 1

k tk ψ(2k+4)
Γ(2 k+4) =

−sinh(
√

t)[6Chi(
√

t)+2
√

tShi(
√

t)−3 ln t+2]
4t3/2 +

cosh(
√

t)[2
√

tChi(
√

t)−√t ln t+6Shi(
√

t)]+4(γ−1)
√

t
4t3/2

2 5
− ∞∑

k = 1

k tk ψ(2k+5)
Γ(2 k+5) =

sinh(
√

t)[ 2
√

t Chi(
√

t)−√t ln t+8Shi(
√

t)]+(2γ−3) t
4 t2 +

−2 cosh(
√

t) [4 Chi(
√

t)+
√

t Shi(
√

t)−2 ln t+1]+8γ+2
4t2

2 6
− ∞∑

k=1

ktkψ(2k+6)
Γ(2k+6) =

√
t[−11t+6γ(t+12)−72]

36t5/2 +

−9sinh(
√

t)(10Chi(
√

t)+2
√

tShi(
√

t)−5 ln t+2]
36t5/2 +

9 cosh(
√

t)[
√

t(2Chi(
√

t)−ln t)+10Shi(
√

t)]
36t5/2
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Table 1. Cont.

α β ∂Eα,β(t)/∂α

4 0 − ∞∑
k = 1

k tkψ(4 k)
Γ(4 k) =

t1/4[sin(t1/4)−sinh(t1/4)] ln t+4 t1/4Chi(t1/4)sinh(t1/4)
8

+
t1/4[−Shi(t1/4) cosh(t1/4)+Si(t1/4) cos(t1/4)−4 Ci(t1/4) sin(t1/4)]

2

4 2
− ∞∑

k = 1

k tk ψ(4 k+2)
Γ(4 k+2) =

[sinh(t1/4)−t1/4 cosh(t1/4)] ln t−4sinh(t1/4)
32 t1/4 +

4Chi(t1/4)[t1/4 cosh(t1/4)−sinh(t1/4)]+4 cosh(t1/4)Shi(t1/4)
32 t1/4 +

t1/4 cos(z1/4)[4Ci(z1/4)−ln t]−4t1/4sinh(t1/4)Shi(t1/4)
32z1/4 +

sin(t1/4)[−4−4Ci(t1/4)+ln t+4t1/4Si(t1/4)]+4Si(t1/4)
32 t1/4

Table 2. First derivatives of the Mittag-Leffler functions with respect to the parameter β.

α β ∂Eα,β(t)/∂β

1 3

− ∞∑
k = 0

tkψ(k+3)
Γ(k+3) =

t−γ (t+1)+et[Chi(t)−Shi(t)−ln t]
t2

− ∞∑
k = 1

(−1)kzkψ(4 k)
Γ(4 k) =

z1/4[sin(z1/4)−sinh(z1/4)] ln z
8 +

4 z1/4[Chi(z1/4) sinh(z1/4)−Shi(z1/4) cosh(z1/4)+
8

1 4 − ∞∑
k = 0

tkψ(k+4)
Γ(k+4) =

et[Chi(t)−Shi(t)−ln t]
t3 +

3t2+4 t−2γ(t2+2t+2)
4 t3

1 5 − ∞∑
k = 0

tkψ(k+5)
Γ(k+5) =

et[Chi(t)−Shi(t)−ln t]
t4 +

11t3+27t2+36t−6γ (t3+3t2+6t+6)
36t4

1 6 − ∞∑
k = 0

tkψ(k+6)
Γ(k+6) =

et[Chi(t)−Shi(t)−ln t]
t5 +

25t4+88t3+216t2+288t−12 γ (t4+4t3+12t2+24t+24)
288t5

4 0 − ∞∑
k = 1

tkψ(4 k)
Γ(4 k) =

t1/4[4Ci(t1/4) sin(t1/4)+ln t][sin(t1/4)−sinh(t1/4)]
8 +

t1/4[Shi(t1/4) cos(t1/4)−4Chi(t1/4) sinh(t1/4)−Shi(t1/4) cosh(t1/4)]
8 − 1

4 1 − ∞∑
k = 1

tkψ(4 k+1)
Γ(4 k+1) =

−Chi(t1/4) cosh(t1/4)−Ci(t1/4) cos(t1/4)
2 +

Shi(t1/4) sinh(t1/4)−Si(t1/4) sin(t1/4)
2 +

ln t[cos(t1/4)+cosh(t1/4)]
8

4 2 − ∞∑
k = 1

tkψ(4 k+2)
Γ(4 k+2) =

−Ci(t1/4) sin(t1/4)−Chi(t1/4)sinh(t1/4)
2t1/4 +

Shi(t1/4) cosh(t1/4)+Si(t1/4) cos(t1/4)
2t1/4 +

ln t[sin(t1/4)+sinh(t1/4)]
8t1/4

4 3 − ∞∑
k = 1

tkψ(4 k+3)
Γ(4 k+3) =

Ci(t1/4) cos(t1/4)−Chi(t1/4) cosh(t1/4)

2
√

t
+

Shi(t1/4)sinh(t1/4)+Si(t1/4) sin(t1/4)

2
√

t
+

ln t[cos(t1/4)−cosh(t1/4)]

8
√

t

4 4 − ∞∑
k = 1

tkψ(4 k+4)
Γ(4 k+4) =

Ci(t1/4) sin(t1/4)−Chi(t1/4) sinh(t1/4)
2t1/4 +

Si(t1/4) cos(t1/4)−Shi(t1/4) cosh(t1/4)
2t1/4 +

ln t[sin(t1/4)−sinh(t1/4)]
8t1/4

Convergence conditions for the power series reported in this section were not established, and
therefore t values are in some cases restricted (e.g., in (99) and (100) for |t| < 1). These summands were
obtained from MATHEMATICA, but the validity was numerically checked for only some of them.
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The simplest cases occur when α and β equal zero or unity. Then, we find that

∂ Eα,β(t)
∂α

| α= 0,β= 1 = −ψ(1)
Γ(1)

∞∑
k = 1

ktk =
γ t

(t− 1)2 , (99)

∂ Eα,β(t)
∂α

| α= 0,β = −
ψ(β)

Γ(β)

∞∑
k = 1

ktk = − ψ(β) t

Γ(β) (t− 1)2 , (100)

∂Eα,β(t)
∂α | α= 1,β = 0 = − ∞∑

k = 1

(
ψ(k)
Γ(k)

)
ktk =

t
{
et(1 + t)[Chi(t) − Shi(t) − ln t] + 1− et

} (101)

∂Eα,β(t)
∂α | α= 1,β = 1 = − ∞∑

k = 1

(
ψ(k+1)
Γ(k+1)

)
ktk =

1− et{t[ln t + Γ(0, t)] + 1
}

; Γ(0, t)] = −Ei(−t) ,
(102)

and
∂ Eα,β(t)
∂β

| α= 1,β= 1 = −
∞∑

k = 0

(
ψ(k + 1)
Γ(k + 1)

)
tk = − et[ln t + Γ(0, t)] , (103)

where Γ(0,t) = −Ei(−t), and the hyperbolic sine and cosine integrals and the exponential integral are
defined by

Shi(t) =
t∫

0

sinhu
u du ,

Chi(t) = −
t∫

0

1−cosh u
u du + γ+ ln t ,

−Ei(−t) =
∞∫
t

e−u

u du .

(104)

γ represents Euler’s constant.
For α, β = 0, 1, and 2, the following sums of infinite series are known:

∂Eα,β(t)
∂α | α= 1,β = 2 = − ∞∑

k = 1

(
ψ( k+2)
Γ( k+2)

)
ktk =

1+γ+et[(t−1) Chi(t)+Shi(t)−t (Shi(t)+ln t)+ln t−1]
t

(105)

∂Eα,β(t)
∂α | α= 2,β = 0 = − ∞∑

k = 1

(
ψ(2k)
Γ(2k)

)
ktk =

√
t [2Chi(

√
t)−ln t][sinh(

√
t)+
√

t cosh(
√

t)]
4 −

2
√

tShi(
√

t)[
√

t sinh(
√

t)+cosh(
√

t)]−2
√

tsinh(
√

t)
4 ,

(106)

∂Eα,β(t)
∂α | α= 2,β = 1 = − ∞∑

k = 1

(
ψ(2k+1)
Γ(2k+1)

)
ktk =

√
tsinh(

√
t)[2Chi(

√
t)−ln t]−2 cosh(

√
t) [
√

tShi(
√

t)+1]+2
4 ,

(107)

∂Eα,β(t)
∂α | α= 2,β = 2 = − ∞∑

k = 1

(
ψ(2k+2)
Γ(2k+2)

)
ktk =

[2Chi(
√

t)−ln t][
√

t cosh(
√

t)−sinh(
√

t)]−2sinh(
√

t)
4
√

t
+

[2Shi(
√

t)[cosh(
√

t)−√t sinh(
√

t)]
4
√

t
,

(108)

and
∂Eα,β(t)
∂β | α= 1,β = 2 = − ∞∑

k = 0

(
ψ(k+2)
Γ(k+2)

)
tk =

−γ+et[Shi(t)−Chi(t)+ln t]
t ,

(109)
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∂Eα,β(t)
∂β | α= 2,β = 0 = − ∞∑

k = 0

(
ψ(2k)
Γ(2k)

)
tk = 1+

√
t
{
sinh(

√
t)[2Chi(

√
t)−ln t]−2 cosh(

√
t)Shi(t)

}
2 ,

(110)

∂Eα,β(−t)
∂β | α= 2,β = 0 = − ∞∑

k = 0

(
ψ(2k)
Γ(2k)

)
(−t)k =

√
t
{
sin(
√

t)[Ci(
√

t)−ln t]−2 cos(
√

t)Si(
√

t)
}

2 ,
(111)

∂Eα,β(t)
∂β | α= 2,β = 1 = − ∞∑

k = 0

(
ψ(2k+1)
Γ(2k+1)

)
tk =

−sinh(
√

t)Shi(
√

t) + cosh(
√

t)[2Chi(
√

t)−ln t]
2 ,

(112)

dEα,β(t)
dβ | α= 2,β = 2 = − ∞∑

k = 0

(
ψ(2k+2)
Γ(2k+2)

)
tk =

−2 cosh(
√

t)Shi(
√

t)+sinh(
√

t)[2Chi(
√

t)−ln t]
2
√

t
,

(113)

and
dEα,β(−t)

dβ | α= 2,β = 2 = − ∞∑
k = 0

(
ψ(2k+2)
Γ(2k+2)

)
(−t)k =

[
√

t cosh(
√

t)−sinh(
√

t)][2Chi(
√

t)−ln t]
4
√

t
+

Shi(
√

t)[cosh(
√

t)−√t sinh(
√

t)]−sinh(
√

t)
2
√

t
,

(114)

where the sine and cosine integrals are defined by

Si(t) =
t∫

0

sin u
u du ,

Ci(t) = −
∞∫
t

cos u
u du

(115)

A number of numerical methods for evaluating the Mittag-Leffler functions and their derivatives
with respect to the argument z are given in the literature [25–27]. Fortunately, the Mittag-Leffler
functions are available in MATHEMATICA, which means that the first and the second derivatives with
respect to α can also be evaluated. The results for 0.05 < α < 5.0 and 0 < t < 2.25 can be obtained from
the author on request. Two numerical methods were used to verify the results. In the first method,
direct summation of infinite series (95) and (96) was performed in MATHEMATICA module, while in
the second method, the calculations were carried out by applying the central differences to O(h4) with
h = 0.001.

∂ Eα(t)
∂ α

=
−Eα+ 2h(t) + 8Eα+ h(t) − 8Eα−h(t) + Eα−2h(t)

12 h
(116)

and
∂ 2Eα(t)
∂α2 =

−Eα+ 2h(t)+16 Eα+ h(t)−30 Eα(t)+16 Eα−h(t)−Eα−2h(t)
12 h2

(117)

The above results of the Mittag-Leffler functions were evaluated in MATHEMATICA.
The Mittag-Leffler functions, f (α,t) = Eα(t), as a function of α for constant t are plotted in Figure 1.

The rapid exponential behavior of these functions means that only narrow intervals of the functions
can be plotted. As can be seen, they are always positive and become more divergent as t increases.
For 0 < α < 1, they possess a maximum, which moves as t is increased. For large values α and t, they
tend to zero.
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E
α
t

α
Figure 1. The Mittag-Leffler functions Eα(t) as a function of α at constant values of argument t. 1—0.25;
2—0.50; 3—0.75; 4—0.85; 5—1.0; 6—1.5; 7—2.0.

The first derivatives of the Mittag-Leffler with respect to α or G(α,t) = ∂Eα(t)/∂α are plotted in
Figure 2 Their behavior mirrors Eα(t), except that they are inverted as they are always negative.

G α t

α
Figure 2. G(α,t)—First derivatives of the Mittag-Leffler functions with respect to α plotted at constant
values of t. 1—0.25; 2—0.50; 3—0.75; 4—0.85; 5—1.0; 6—1.5; 7—2.0.

The second derivatives with respect to α, G’(α,t) = ∂2Eα(t)/∂α2 are presented in Figure 3. Their
behavior resembles that of the Mittag-Leffler functions (Figure 1). However, for small values of t,
they move from negative to positive values. The divergent behavior of G’(α,t) also applies for large
values of t, but for increasing values of α and t, they tend to zero.
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G' α t

α
Figure 3. G’(α,t)—Second derivatives of the Mittag-Leffler functions with respect to α plotted at
constant values of t. 1—0.25; 2—0.50; 3—0.75; 4—0.85; 5—1.0; 6—1.5; 7—2.0.

5. Derivatives of the Mittag-Leffler Functions with Respect to Parameters α and β from Integral
Representations

Derivatives with respect to α and β can be determined by direct differentiation of the integrands
in integral representations of the Mittag-Leffler functions. Because no general expression exists for
integral representations [25,27–33], it is possible to use only those that are valid for real positive and
negative values of t and for restricted values of α and β.

For 0 < α < 1 and t > 0, these are

Eα(tα) =
et

α
− sin(πα)

π

∞∫
o

e−tu uα−1

u2α − 2uα cos(πα) + 1
du , (118)

Eα(−tα) =
sin(πα)
π

∞∫
o

e−tu uα−1

u2α + 2uα cos(πα) + 1
du . (119)

and

Eα,β(tα) =
et

α
− 1
π

∞∫
o

e−tu uα−β{uα sin(πβ) + sin[π(α− β)]}
u2α − 2uα cos(πα) + 1

du , (120)

Eα,β(− tα) =
1
π

∞∫
o

e−tu uα−β{uα sin(πβ) + sin[π(α− β)]}
u2α + 2uα cos(πα) + 1

du . (121)

In (120) and (121), 0 < β < α + 1.
Direct differentiation of (118) and (119) with respect to α gives

∂Eα(tα)
∂α = − et

α2 − cos(πα)
∞∫
o

e−u t uα−1

u2α−2uα cos(πα)+1 du−
sin(πα)
π

∞∫
o

e−u t uα−1 [(1−u2α) ln u−2πuα sin(πα)]

[u2α−2uα cos(πα)+1]2
du ,

(122)
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and
∂Eα(−tα)
∂α = cos(πα)

∞∫
o

e−u t uα−1

u2α+2uα cos(πα)+1 du+

sin(πα)
π

∞∫
o

e−u t uα−1[(1−u2α) ln u+2πuα sin(πα)]

[u2α+2uα cos(πα)+1]2
du

(123)

where the first integrals in (122) and (123) can be written in terms of the Mittag-Leffler functions using
(118) and (119).

In the same manner, one can obtain derivatives of the Mittag-Leffler functions Eα,β(±tα) with
respect to α and β. Thus, we find that

∂Eα,β(tα)
∂α = − et

α2 −
∞∫
o

e−tu uα−β cos[π(α−β)]
u2α−2uα cos(πα)+1 du−

1
π

∞∫
o

e−tu uα−β ln u{2uα sin(πβ)+sin[π(α−β)]}
u2α−2uα cos(πα)+1 du+

2
π

∞∫
o

e−tu u2α−β ln u{uα sin(πβ)+sin[π(α−β)]}[uα−cos(πα)]

[u2α−2uα cos(πα)+1]2
du

+2
∞∫
o

e−tu u2α−β sin(πα){uα sin(πβ)+sin[π(α−β)]}
[u2α−2uα cos(πα)+1]2

du ,

(124)

and
∂Eα,β(tα)
∂β = 1

π

∞∫
o

e−tu uα−β ln u{uα sin(πβ)+sin[π(α−β)]}
u2α−2uα cos(πα)+1 du−

∞∫
o

e−tu uα−β{uα cos(πβ)−cos[π(α−β)]}
u2α−2uα cos(πα)+1 du .

(125)

For the negative real axis, one obtains

tβ−1 ∂Eα,β(−tα)
∂α =

∞∫
o

e−tu uα−β cos[π(α−β)]
u2α+2uα cos(πα)+1 du−

1
π

∞∫
o

e−tu uα−β ln u{2uα sin(πβ)+sin[π(α−β)]}
u2α+2uα cos(πα)+1 du−

2
π

∞∫
o

e−tu u2α−β ln u{uα sin(πβ)+sin[π(α−β)]}[uα+cos(πα)]

[u2α+2uα cos(πα)+1]2
du

+ 2
∞∫
o

e−tu u2α−β sin(πα){uα sin(πβ)+sin[π(α−β)]}
[u2α+2uα cos(πα)+1]2

du ,

(126)

and
tβ−1 ln t Eα,β(−tα) + tβ−1 ∂Eα,β(−tα)

∂β =

− 1
π

∞∫
o

e−tu uα−β ln u{uα sin(πβ)+sin[π(α−β)]}
u2α+2uα cos(πα)+1 du+

∞∫
o

e−tu uα−β{uα cos(πβ)−cos[π(α−β)]}
u2α+2uα cos(πα)+1 du .

(127)

The infinite integrals in (122) to (127) are valid for restricted values of α and β. As can be expected,
they represent the Laplace transforms and are similar to convolution integrals in Section 3.

6. Conclusions

For the first time, the parameters of the Mittag-Leffler functions in (1) and (2) have been treated as
variables, and derivatives with respect to them have consequently been determined and discussed.
Thus, it has been shown that operational calculus is a powerful tool for determining the properties of
the Mittag-Leffler functions. Using the Laplace transform theory, new functional relations, together
with infinite and finite series of the Mittag-Leffler functions, have also been calculated. Moreover,
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derivatives with respect to α and β have been found to be expressible in terms of convolution integrals.
Direct differentiation of (1) and (2) yields infinite power series with quotients of digamma and gamma
functions in their coefficients. For small integer values of α and β, closed forms are derived in terms of
elementary and special functions. The Mittag-Leffler functions, together with their first and second
derivatives, are graphed as functions of α and t. On a final note, it should be mentioned that Biyajima
et al. [30,31] have used (102) in their new blackbody radiation law, but not the closed form given here.
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Abstract: In this review paper, we stress the importance of the higher transcendental Wright functions
of the second kind in the framework of Mathematical Physics. We first start with the analytical
properties of the classical Wright functions of which we distinguish two kinds. We then justify the
relevance of the Wright functions of the second kind as fundamental solutions of the time-fractional
diffusion-wave equations. Indeed, we think that this approach is the most accessible point of view
for describing non-Gaussian stochastic processes and the transition from sub-diffusion processes to
wave propagation. Through the sections of the text and suitable appendices, we plan to address the
reader in this pathway towards the applications of the Wright functions of the second kind.
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1. Introduction

The special functions play a fundamental role in all fields of Applied Mathematics and
Mathematical Physics because any analytical results are expressed in terms of some of these functions.
Even if the topic of special functions can appear boring and their properties mainly treated in
handbooks, we would promote the relevance of some of them not yet so well known. We devote our
attention to the Wright functions, in particular with the class of the second kind. These functions,
as we will see hereafter, are fundamental to deal with some non-standard deterministic and stochastic
processes. Indeed, the Gaussian function (known as the normal probability distribution) must be
generalized in a suitable way in the framework of partial differential equations of non-integer order for
describing the anomalous diffusion and the transition from fractional diffusion to wave propagation.

Furthermore, their usefulness and meaningfulness also extends to other topics. For example,
these functions and their Laplace Transforms can be applied in electromagnetic problems, see the 1958
paper by Ragab [1] (where the Wright functions were used without knowing their existence) and the
recent 2020 paper by Stefański and Gulgowski [2]. Recently, the Wright functions have been used in
the theory of coherent states by Garra, Giraldi, and Mainardi [3].

This survey article aims to discuss the relevance of the Wright Functions and also to focus on the
not well-known Four Sisters Functions and their importance in time-fractional diffusion-wave equations.

The plan of the paper is organized as follows. In Section 2, we introduce the Wright functions,
entirely in the complex plane that we distinguish in two kinds in relation to the value-range of the two
parameters on which they depend. In particular, we devote our attention to two Wright functions of
the second kind introduced by Mainardi with the term of auxiliary functions. One of them, known as
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M-Wright function, generalizes the Gaussian function so it is expected to play a fundamental role in
non-Gaussian stochastic processes.

Indeed, in Section 3, we show how the Wright functions of the second kind are relevant in the
analysis of time-fractional diffusion and diffusion-wave equations being related to their fundamental
solutions. This analysis leads to generalizing the known results r of the standard diffusion equation in
the one-dimensional case that is recalled in Appendix A by means of auxiliary functions as particular
cases of the Wright functions of the second kind known as M-Wright or Mainardi functions. For readers’
convenience, in Appendix B, we will also provide an introduction to the time-derivative of fractional
order in the Caputo sense We remind that nowadays, as usual, by fractional order, we mean a
non-integer order, so that the term “fractional” is a misnomer kept only for historical reasons.

In Section 4, we consider again the Mainardi auxiliary functions functions for their role in
probability theory and in particular in the framework of Lévy stable distributions whose general theory
is recalled in Appendix C.

In Section 5, we show how the auxiliary functions turn out to be included in a class that we denote
the four sister functions. On their turn, these four functions depending on a real parameter ν ∈ (0, 1)
are the natural generalization of the three sisters functions introduced in Appendix A devoted to the
standard diffusion equation. The attribute of sisters was put in by one of us (F. M.) because of their
inter-relations, in his lecture notes on Mathematical Physics, so this is only a personal reason that we
hope to be shared by the readers.

Finally, in Section 6, we provide some concluding remarks paying attention to work to be done in
the next future.

We point out that we have equipped our theoretical analysis with several plots hoping they will
be considered illuminating for the interested readers. We also note that we have limited our review to
the simplest boundary values problems of equations in one space dimension referring the readers to
suitable references for more general treatments in Section 3.1.

2. The Wright Functions of the Second Kind and the Mainardi Auxiliary Functions

The classical Wright function that we denote by Wλ,μ(z), is defined by the series representation
convergent in the whole complex plane,

Wλ,μ(z) :=
∞

∑
n=0

zn

n!Γ(λn + μ)
, λ > −1, μ ∈ C, (1)

The integral representation reads as:

Wλ,μ(z) =
1

2πi

∫
Ha−

eσ+zσ−λ dσ

σμ , λ > −1, μ ∈ C, (2)

where Ha− denotes the Hankel path: this one is a loop which starts from −∞ along the lower side of
negative real axis, encircling it with a small circle the axes origin and ends at −∞ along the upper side
of the negative real axis.

Wλ,μ(z) is then an entire function for all λ ∈ (−1,+∞). Originally, Wright assumed λ ≥ 0 in
connection with his investigations on the asymptotic theory of partition [4,5] and only in 1940 he
considered −1 < λ < 0, [6]. We note that, in the Vol 3, Chapter 18 of the handbook of the Bateman
Project [7], presumably for a misprint, the parameter λ is restricted to be non-negative, whereas the
Wright functions remained practically ignored in other handbooks. In 1993, Mainardi, being aware
only of the Bateman handbook, proved that the Wright function is entire also for −1 < λ < 0 in his
approaches to the time fractional diffusion equation that will be dealt with in the next section.

In view of the asymptotic representation in the complex domain and of the Laplace transform for
positive argument z = r > 0 (r can be the time variable t or the space variable x), the Wright functions
are distinguished in first kind (λ ≥ 0) and second kind (−1 < λ < 0) as outlined in the Appendix F of
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the book by Mainardi [8]. In particular, for the asymptotic behavior, we refer the interested reader to
the two papers by Wong and Zhao [9,10], and to the surveys by Luchko and by Paris in the Handbook
of Fractional Calculus and Applications, see, respectively, [11,12], and references therein.

We note that the Wright functions are an entire of order 1/(1 + λ); hence, only the first kind
functions (λ ≥ 0) are of exponential order, whereas the second kind functions (−1 < λ < 0) are
not of exponential order. The case λ = 0 is trivial since W0,μ(z) = ez/Γ(μ). As a consequence of the
difference in the orders, we must point out the different Laplace transforms proved e.g., in [8,13],
see also the recent survey on Wright functions by Luchko [11]. We have:

• for the first kind, when λ ≥ 0

Wλ,μ(±r) ÷ 1
s

Eλ,μ

(
±1

s

)
; (3)

• for the second kind, when −1 < λ < 0 and putting for convenience ν = −λ so 0 < ν < 1

W−ν,μ(−r) ÷ Eν,μ+ν (−s) . (4)

Above, we have introduced the Mittag–Leffler function in two parameters α > 0, β ∈ C defined
as its convergent series for all z ∈ C

Eα,β(z) :=
∞

∑
n=0

zn

Γ(αn + β)
. (5)

For more details on the special functions of the Mittag–Leffler type, we refer the interested readers
to the treatise by Gorenflo et al. [14], where, in the forthcoming 2nd edition, the Wright functions are
also treated in some detail.

In particular, two Wright functions of the second kind, originally introduced by Mainardi and
named Fν(z) and Mν(z) (0 < ν < 1), are called auxiliary functions in virtue of their role in the time
fractional diffusion equations considered in the next section. These functions, Fν(z) and Mν(z),
are indeed special cases of the Wright function of the second kind Wλ,μ(z) by setting, respectively,
λ = −ν and μ = 0 or μ = 1− ν. Hence, we have:

Fν(z) := W−ν,0(−z), 0 < ν < 1, (6)

and
Mν(z) := W−ν,1−ν(−z), 0 < ν < 1. (7)

Those functions are interrelated through the following relation:

Fν(z) = νzMν(z), (8)

which reminds us of the second relation in (A9), seen for the standard diffusion equation.
The series representations of the auxiliary functions are derived from those of Wλ,μ(z). Then:

Fν(z) :=
∞

∑
n=1

(−z)n

n!Γ(−νn)
=

1
π

∞

∑
n=1

(−z)n−1

n!
Γ(νn + 1) sin (πνn) (9)

and

Mν(z) :=
∞

∑
n=0

(−z)n

n!Γ[−νn + (1− ν)]
=

1
π

∞

∑
n=1

(−z)n−1

(n− 1)!
Γ(νn) sin (πνn), (10)
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where in both cases the reflection formula for the Gamma function (Equation (11)) it has been used
among the first and the second step of Equations (9) and (10),

Γ(ζ)Γ(1− ζ) = π/ sin πζ. (11)

In addition, the integral representations of the auxiliary functions are derived from those of
Wλ,μ(z). Then:

Fν(z) :=
1

2πi

∫
Ha−

eσ−zσν
dσ, z ∈ C, 0 < ν < 1 (12)

and
Mν(z) :=

1
2πi

∫
Ha−

eσ−zσν dσ

σ1−ν
, z ∈ C, 0 < ν < 1. (13)

Explicit expressions of Fν(z) and Mν(z) in terms of known functions are expected for some
particular values of ν as shown and recalled by Mainardi in the first 1990s in a series of papers [15–18]
that is,

M1/2(z) =
1√
π

e−z2/4, (14)

M1/3(z) = 32/3Ai(z/31/3). (15)

Liemert and Klenie [19] have added the following expression for ν = 2/3

M2/3(z) = 3−2/3
[
31/3 z Ai

(
z2/34/3

)
− 3Ai′

(
z2/34/3

)]
e−2z3/27, (16)

where Ai and Ai′ denote the Airy function and its first derivative. Furthermore, they have suggested in
the positive real field IR+ the following remarkably integral representation

Mν(x) =
1
π

xν/(1−ν)

1− ν

∫ π

0
Cν(φ) exp (−Cν(φ)) x1/(1−ν) dφ, (17)

where

Cν(φ) =
sin(1− ν)

sin φ

(
sin νφ

sin φ

)ν/(1−ν)

(18)

corresponding to Equation (7) of the article written by Saa and Venegeroles [20] .
The Wright function of both kinds and in particular the Mainardi auxiliary functions considerd

in this paper turn out to be particular cases of more general transcendental functions as the Fox H
functions, the Fox–Wright functions and the multi-index Mittag–Leffler functions. The relations with
the classical Mittag–Leffler functions with two parameters have already been pointed out so; for more
parameters, we refer the interested reader, e.g., to the papers by Kiryakova [21], Kilbas, Koroleva,
Rogosin [22], and references therein.

We outline that for more Laplace transform pairs involving the Wright and the Mittag–Leffler
functions the reader is referred to Ansari and Refahi Sheikhani [23] and to the tutorial survey by
Mainardi [24].

3. The Wright Functions of the Second Kind and the Time-Fractional Diffusion Wave Equation

As we will see, the Wright functions of the second kind are relevant in the analysis of the
Time-Fractional Diffusion-Wave Equation (TFDWE).

We find it convenient to show the plots of the M-Wright functions on a space symmetric interval
of IR in Figures 1 and 2, corresponding to the cases 0 ≤ ν ≤ 1/2 and 1/2 ≤ ν ≤ 1, respectively.

From these figures, we recognize the non-negativity of the M-Wright function on IR for
1/2 ≤ ν ≤ 1 consistently with the analysis on distribution of zeros and asymptotics of Wright functions
carried out by Luchko, see [11,25] and by Luchko and Kiryakova [26].
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Figure 1. Plots of the M-Wright function as a function of the x variable, for 0 ≤ ν ≤ 1/2.

Figure 2. Plots of the M-Wright function as a function of the x variable, for 1/2 ≤ ν ≤ 1.

For this purpose, we introduce now the TFDWE as a generalization of the standard diffusion
equation and we see how the two Mainardi auxiliary functions come into play. The TFDWE is thus
obtained from the standard diffusion equation (or the D’Alembert wave equation) by replacing the
first-order (or the second-order) time derivative by a fractional derivative (of order 0 < β ≤ 2) in the
Caputo sense, obtaining the following Fractional PDE:

∂βu
∂tβ

= D
∂2u
∂x2 0 < β ≤ 2, D > 0, (19)

where D is a positive constant whose dimensions are L2T−β and u = u(x, t; β) is the field
variable, which is assumed again to be a causal function of time. The Caputo fractional derivative
is recalled in the Appendix B so that in explicit form the TFDWE (19) splits in the following
integro-differential equations:

1
Γ(1− β)

∫ t

0
(t− τ)−β

(
∂u
∂τ

)
dτ = D

∂2u
∂x2 , 0 < β ≤ 1; (20)
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1
Γ(2− β)

∫ t

0
(t− τ)1−β

(
∂2u
∂τ2

)
dτ = D

∂2u
∂x2 , 1 < β ≤ 2. (21)

In view of our analysis, we find it convenient to put:

ν =
β

2
, 0 < ν ≤ 1. (22)

We can then formulate the basic problems for the Time Fractional Diffusion-Wave Equation using
a correspondence with the two problems for the standard diffusion equation.

Denoting by f (x) and g(t) two given, sufficiently well-behaved functions, we define:

(a) Cauchy problem {
u(x, 0+; ν) = f (x), −∞ < x < +∞;

u(±∞, t; ν) = 0, t > 0
(23)

(b) Signalling problem {
u(x, 0+; ν) = 0, 0 ≤ x < +∞;

u(0+, t; ν) = g(t), u(+∞, t; ν) = 0, t > 0
(24)

If 1/2 < ν ≤ 1 corresponding to 1 < β ≤ 2, we must consider also the initial value of the first
time derivative of the field variable ut(x, 0+; ν), since, in this case, Equation (19) turns out to be akin to
the wave equation and consequently two linear independent solutions are to be determined. However,
to ensure the continuous dependence of the solutions to our basic problems on the parameter ν in the
transition from ν = (1/2)− to ν = (1/2)+, we agree to assume ut(x, 0+; ν) = 0.

For the Cauchy and Signalling problems, following the approaches by Mainardi, see, e.g., [15]
and related papers, we introduce now the Green functions Gc(x, t; ν) and Gs(x, t; ν) that for both
problems can be determined by the LT technique, so extending the results known from the ordinary
diffusion equation. We recall that the Green functions are also referred to as the fundamental
solutions, corresponding respectively to f (x) = δ(x) and g(t) = δ(t) with δ(·) is the Dirac delta
generalized function

The expressions for the Laplace Transforms of the two Green’s functions are:

G̃c(x, s; ν) =
1

2
√

Ds1−ν
e(−|x|/

√
D)sν

(25)

and
G̃s(x, s; ν) = e−(x/

√
D)sν

(26)

Now, we can easily recognize the following relation:

d
ds
G̃s = −2ν x G̃c, x > 0 (27)

which implies for the original Green functions the following reciprocity relation for x > 0‘and t > 0 and
0 < ν < 1:

2νxGc(x, t; ν) = tGs(x, t; ν) = Fν(z) = νzMν(z) z =
x√
Dtν

(28)

where z is the similarity variable and Fν(z) and Mν(z) are the Mainardi auxilary functions introduced in
the previous section. Indeed, Equation (28) is the generalization of Equation (A8) that we have seen for
the standard diffusion equation due to the introduction of the time fractional derivative of order ν.

Then, the two Green functions of the Cauchy and Signalling problems turn out to be expressed in
terms of the two auxiliary functions as follows.
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For the Cauchy problem, we have

GC(x, t; ν) =
t−ν

2
√

D
Mν

( |x|√
Dtν

)
−∞ < x < +∞ t ≥ 0 (29)

that generalizes Equation (A5).
For the Signalling problem, we have:

GS(x, t; ν) =
νxt−ν−1
√

D
Mν

(
x√
Dtν

)
x ≥ 0, t ≥ 0 (30)

that generalizes Equation (A7).

3.1. Complements to the Time-Fractional Diffusion-Wave Equations

The use of the Wright functions of the second kind in time fractional diffusion-wave equations has
appeared in several papers for a variety of different purposes, see, e.g., Bazhlekova [27], D’Ovidio [28],
Gorenflo, Luchko and Mainardi [29], Mentrelli and Pagnini [30], Mosley and Ansari [31], Pagnini [32],
Povstenko [33], and references therein.

The boundary value problems dealt with previously can be considered with a source data function
f (x) and g(t) different from the Dirac generalized functions, in particular with box-type functions as it
has been carried out recently by us, see [34].

An interesting generalization of the TFDWE is obtained by considering time-fractional derivatives
of distributed order. In this respect, we cite, e.g., the papers by Kochubei [35], Li, Luchko and
Yamamoto [36], Mainardi, Pagnini and Gorenflo [37], and Mainardi et. al [38].

The TFDWE can also be generalized in 2D and 3D space dimensions. so consequently the Wright
functions play again a fundamental role. However, we prefer to refer the interested reader to the
literature, in particular to the papers by Luchko and collaborators [11,25,39–43], by Hanyga [44] and
to the recent analysis by Kemppainen [45]. All of them are originated in some way from the seminal
paper by Schneider and Wyss [46]. In some of these papers, the authors have considered also fractional
differentiation both in time and in space, so that they have generalized to more than one dimension
the former analysis by Mainardi, Luchko, and Pagnini [47] on the space-time fractional diffusion-wave
equations.

4. The M-Wright Functions in Probability Theory and the Stable Distributions

We recognize that the Wright M-function with support in IR+ can be interpreted as probability
density function (pd f ) because it is non negative and also it satisfies the normalization condition:∫ ∞

0
Mν(x) dx = 1 . (31)

We now provide more details on these densities in the framework of the theory of probability.

Theorem 1. Let Mν(x) be the M-Wright function in R+, 0 ≤ ν < 1 and δ > −1. Then, the (finite) absolute
moments of order δ are given by: ∫ ∞

0
xδ Mν(x) dx =

Γ(δ + 1)
Γ(νδ + 1)

. (32)
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Proof. The proof is based on the integral representation of the M-Wright function:

∫ ∞

0
xδ Mν(x)dx =

∫ ∞

0
xδ

[
1

2πi

∫
Ha−

eσ−xσν dσ

σ1−ν

]
dx

=
1

2πi

∫
Ha−

eσ

[∫ ∞

0
e−xσν

xδdx

]
dσ

σ1−ν

=
Γ(δ + 1)

2πi

∫
Ha−

eσ

σνδ+1 dσ =
Γ(δ + 1)

Γ(νδ + 1)

(33)

The exchange between two integrals and the following identity contributed to the final result for
Equation (33): ∫ ∞

0
e−xσν

xδdx =
Γ(δ + 1)
(σν)δ+1 . (34)

In particular, for δ = n ∈ IN, the above formula provides the moments of integer order. Indeed,
recalling the Mittag–Leffler function introduced in Equation (5) with α = ν and β = 1:

Eν(z) :=
∞

∑
n=0

zn

Γ(νn + 1)
, ν > 0, z ∈ C, (35)

the moments of integer order can also be computed from the Laplace transform pair

Mν(x)÷ Eν(−s) (36)

proved in the Appendix F of [8] as follows:

∫ +∞

0
x n Mν(x) dx = lim

s→0
(−1)n dn

dsn Eν(−s) =
Γ(n + 1)

Γ(νn + 1)
. (37)

4.1. The Auxiliary Functions versus Extremal Stable Densities

We find it worthwhile to recall the relations between the Mainardi auxiliary functions and the
extremal Lévy stable densities as proven in the 1997 paper by Mainardi and Tomirotti [48]. For readers’
convenience, we refer to Appendix C for an essential account of the general Lévy stable distributions
in probability. Indeed, from a comparison between the series expansions of stable densities in (A41)
and (A42) and of the auxiliary functions in Equations (9) and (10), we recognize that the auxiliary
functions are related to the extremal stable densities as follows:

L−α
α (x) =

1
x

Fα(x−α) =
α

xα+1 Mα(x−α) 0 < α < 1 x ≥ 0 (38)

Lα−2
α (x) =

1
x

F1/α(x) =
1
α

M1/α(x) 1 < α ≤ 2 −∞ < x < +∞ . (39)

In the above equations, for α = 1, the skewness parameter turns out to be θ = −1, so we get the
singular limit

L−1
1 (x) = M1(x) = δ(x− 1) . (40)

Hereafter, we show in Figures 3 and 4 the plots the extremal stable densities according to
their expressions in terms of the M-Wright functions, see Equations (38) and (39) for α = 1/2 and
α = 3/2, respectively.
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Figure 3. Plot of the unilateral extremal stable pdf for α = 1/2.

Figure 4. Plot of the bilateral extremal stable pdf for α = 3/2.

We recognize that the above plots are consistent with the corresponding ones shown by
Mainardi et al. [47] for the stable pdf’s derived as fundamental solutions of a suitable space-fractional
diffusion equation.

4.2. The Symmetric M-Wright Function

We easily recognize that extending the function Mν(x) in a symmetric way to all of IR (that is
putting x = |x|) and dividing by 2 we have a symmetric pd f with support in all of IR.

As the parameter ν changes between 0 and 1, the pdf goes from the Laplace pdf to two half discrete
delta pdfs passing for ν = 1/2 through the Gaussian pdf.

To develop a visual intuition, also in view of the subsequent applications, we show n Figures 5
and 6 the plots of the symmetric M-Wright function on the real axis at t = 1 for some rational values
of the parameter ν ∈ [0, 1]
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Figure 5. Plot of the symmetric M-Wright function Mν(|x|) for 0 ≤ ν ≤ 1/2. Note that the M-Wright
function becomes a Gaussian density for ν = 1/2.

Figure 6. Plot of the symmetric M-Wright type function Mν(|x|)| for 1/2 ≤ ν ≤ 1. Note that the
M-Wright function becomes a a sum of two delta functions centered in x = ±1 for ν = 1.

The readers are invited to look the YouTube video by Consiglio whose title is “Simulation of
the M-Wright function”, in which the author shows the evolution of this function as the parameter ν

changes between 0 and 0.85 in a finite interval of IR centered in x = 0.

Theorem 2. Let Mν(|x|) be the symmetric M-Wright function pdf. Then, its characteristic function is:

F
[1

2
Mν(|x|)

]
= E2ν(−κ2) (41)
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Proof. The proof is based on the series development of the cosine function and on Equation (33):

F
[1

2
Mν(|x|)

]
:=

1
2

∫ +∞

−∞
e+iκx Mν(|x|)dx

=
∫ ∞

0
cos (κx)Mν(x)dx

=
∞

∑
n=0

(−1)n κ2n

(2n)!

∫ ∞

0
x2n Mν(x)dx

=
∞

∑
n=0

(−1)n κ2n

Γ(2νn + 1)
= E2ν(−κ2)

(42)

4.3. The Wright M-Function in Two Variables

In view of time-fractional diffusion processes related to time-fractional diffusion equations, it is
worthwhile to introduce the function in two variables

Mν(x, t) := t−ν Mν(xt−ν) 0 < ν < 1 x, t ∈ IR+ (43)

which defines a spatial probability density in x evolving in time t with self-similarity exponent H = ν.
Of course, for x ∈ IR, we have to consider the symmetric version of the M-Wright function. Hereafter,
we provide a list of the main properties of this function, which can be derived from the Laplace and
Fourier transforms for the corresponding Wright M-function in one variable.

From Equations (39) and (43), we derive the Laplace transform of Mν(x, t) with respect to t ∈ IR+,

L {Mν(x, t); t → s} = sν−1 e−xsν
. (44)

From Equation (18), we derive the Laplace transform of Mν(x, t) with respect to x ∈ IR+,

L {Mν(x, t); x → s} = Eν (−stν) . (45)

From Equation (55), we derive the Fourier transform of Mν(|x|, t) with respect to x ∈ IR,

F {Mν(|x|, t); x → κ} = 2E2ν

(
−κ2tν

)
. (46)

Using the Mellin transforms, Mainardi et al. [49] derived the following interesting integral formula
of composition,

Mν(x, t) =
∫ ∞

0
Mλ(x, τ)Mμ(τ, t) dτ ν = λμ . (47)

Special cases of the Wright M-function are simply derived for ν = 1/2 and ν = 1/3 from the
corresponding ones in the complex domain, see Equations (28) and (29). We devote particular attention
to the case ν = 1/2 for which we get the Gaussian density in IR,

M1/2(|x|, t) =
1

2
√

πt1/2 e−x2/(4t) . (48)

For the limiting case ν = 1, we obtain

M1(|x|, t) =
1
2
[δ(x− t) + δ(x + t)] . (49)

We conclude this section pointing out that the M-Wright functions have been applied by several
authors in the theory of probability and stochastic processes, see, e.g., Beghin and Orsingher [50],

65



Mathematics 2020, 8, 884

Cahoy [51,52], Garra, Orsingher and Polito [53], Le Chen [54], Consiglio, Luchko and Mainardi [55],
Gorenflo and Mainardi [56], Mainardi, Mura and Pagnini [57], Pagnini [58], Scalas and Viles [59], and
references therein. Furthermore, these functions have been found in the first passage problem for Lévy
flights dealt by the group of Prof. Metzler, see e.g., [60,61].

5. The Four Sisters

In this section, we show how some Wright functions of the second kind can provide an interesting
generalization of the three sisters discussed in Appendix A. The starting point is a (not well- known)
paper published in 1970 by Stankovic [62], where (in our notation) the following Laplace transform
pair is proved rigorously:

tμ−1 W−ν,μ(x, t)÷ s−μ e−xsν
0 < ν < 1 μ ≥ 0 (50)

where x and t are positive. We note that the Stankovic formula can be derived in a formal way by
developing the exponential function in positive power of s and inverting term by term as described in
the Appendix F of the book by Mainardi [8].

We recognize that the Laplace Transforms of the Three Sisters functions φ̃(x, s), ψ̃(x, s) and χ̃(x, s)
are particular cases of the Equation (50) for ν = 1/2 that is of

tμ−1 W−1/2,μ(x, t)÷ s−μ e−x
√

s, (51)

according to the following scheme:

φ̃(x, s) with μ = 1; ψ̃(x, s) with μ = 0; χ̃(x, s) withμ = 1/2.

If ν is no longer restricted to ν = 1/2, we define Four Sisters functions as follows:

μ = 0, e−xsν ÷ t−1W−ν,0(−xt−ν),

μ = 1− ν,
e−xsν

s1−ν
÷ t−νW−ν,1−ν(−xt−ν),

μ = ν,
e−xsν

sν
÷ tν−1W−ν,ν(−xt−ν),

μ = 1,
e−xsν

s
÷W−ν,1(−xt−ν).

(52)

Hereafter, in Figures 7–9, we show some plots of these functions, both in the t and in the x domain
for some values of ν (ν = 1/4, 1/2, 3/4).

Note that for ν = 1/2 we only find three functions, that is the Three Sisters functions of
Appendix A.
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Figure 7. Plots of the four sisters functions in linear scale with ν = 1/4; top: versus t (x = 1), bottom:
versus x (t = 1).

Figure 8. Plots of the three sisters functions in linear scale with ν = 1/2; top: versus t (x = 1), bottom:
versus x (t = 1).

67



Mathematics 2020, 8, 884

Figure 9. Plots of the four sisters functions in linear scale with ν = 3/4; top: versus t (x = 1), bottom:
versus x (t = 1).

6. Conclusions

In our survey on the Wright functions, we have distinguished two kinds, pointing out the
particular class of the second kind. Indeed, these functions have been shown to play key roles in
several processes governed by non-Gaussian processes, including sub-diffusion, transition to wave
propagation, Lévy stable distributions. Furthermore, we have devoted our attention to four functions
of this class that we agree to called the Four Sisters functions. All these items justify the relevance of the
Wright functions of the second kind in Mathematical Physics.
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Appendix A. The Standard Diffusion Equation and the Three Sisters

In this Appendix, let us recall the Diffusion Equation in the one-dimensional case

∂u
∂t

= D
∂2u
∂x2 (A1)

where u is the field variable, the constant D > 0 is the diffusion coefficient , whose dimensions are
L2T−1, and x , t denote the space and time coordinates, respectively.

68



Mathematics 2020, 8, 884

Two basic problems for Equation (A1) are the Cauchy and Signalling ones introduced hereafter
In these problems, some initial values and boundary conditions are set; specify the values attained
by the field variable and/or by some of its derivatives on the boundary of the space-time domain is
an essential step to guarantee the existence, the uniqueness and the determination of a solution of
physical interest to the problem, not only for the Diffusion Equation.

Two data functions f (x) and g(t) are then introduced to write formally these conditions; some
regularities are required to be satisfied by f (x) and g(t), and in particular f (x) must admit the
Fourier transform or the Fourier series expansion if the support is finite, while h(t) must admit
the Laplace Transform. We also require without loss of generality that the field variable u(x, t) is
vanishing for t < 0 for every x in the spatial domain. Given these premises, we can specify the two
aforementioned problems.

In the Cauchy problem, the medium is supposed to be unlimited (−∞ < x < +∞) and to be
subjected at t = 0 to a known disturbance provided by the data function f (x). Formally:{

limt→0+ u(x, t) = f (x), −∞ < x < +∞;

limx→±∞ u(x, t) = 0, t > 0.
(A2)

This is a pure initial-value problem (IVP) as the values are specified along the boundary t = 0.
In the Signalling problem, the medium is supposed to be semi-infinite (0 ≤ x < +∞) and initially

undisturbed. At x = 0 (the accessible end) and for t > 0, the medium is then subjected to a known
disturbance provided by the causal function g(t). Formally:{

limt→0+ u(x, t) = 0, 0 ≤ x < +∞;

limx→0+ u(x, t) = g(t), limx→+∞ u(x, t) = 0 t > 0.
(A3)

This problem is referred to as an initial boundary value problem (IBVP) in the quadrant {x, t} > 0.
For each problem, the solutions turn out to be expressed by a proper convolution between the

data functions and the Green functions G that are the fundamental solutions of the problems.
For the Cauchy problem, we have:

u(x, t) =
∫ +∞

−∞
GC(ξ, t) f (x− ξ)dξ = GC(x, t) ∗ f (x) (A4)

with
GC(x, t) =

1
2
√

πDt
e−x2/(4Dt). (A5)

For the Signalling problem, we have:

u(x, t) =
∫ t

0
GS(x, τ)g(t− τ)dτ = GS(x, t) ∗ g(t) −∞ < x < +∞, t ≥ 0 (A6)

with
GS(x, t) =

x

2
√

πDt3
e−x2/(4Dt) x ≥ 0, t ≥ 0 . (A7)

Following the lecture notes in Mathematical Physics by Mainardi [63], we note that the following
relevant property is valid for {x, t} > 0:

xGC(x, t) = tGS(x, t) = F(z) (A8)

where
z =

x√
Dt

, F(z) =
z
2

M(z), M(z) =
1√
π

e−z2/4. (A9)
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According to Mainardi’ s notations, Equation (A8) is known as reciprocity relation, F(z) and M(z)
are called auxiliary functions and z is the similarity variable.

A particular case of the Signalling problem is obtained when g(t) = H(t) (the Heaviside unit step
function) and the solution u(x, t) turns out to be expressed in terms of the complementary error function:

u(x, t) = HS(x, t) =
∫ t

0
GS(x, τ)dτ = erfc

( x
2
√

Dt

)
x ≥ 0, t ≥ 0 . (A10)

As is well known, the three above fundamental solutions can be obtained via the Fourier and
Laplace transform methods. Introducing the parameter a = |x|/

√
D, the Laplace transforms of these

functions turns out to be simply related in the Laplace domain Re(s) > 0, as follows:

φ(a, t) := erfc
( a

2
√

t

)
÷ e−as1/2

s
:= φ̃(a, s), (A11)

ψ(a, t) :=
a

2
√

π
t−3/2e−a2/(4t) ÷ e−as1/2

:= ψ̃(a, s), (A12)

χ(a, t) :=
1√
π

t−1/2e−a2/(4t) ÷ e−as1/2

s1/2 := χ̃(a, s) (A13)

where the sign ÷ is used for the juxtaposition of a function with its Laplace transform. We easily
note that Equation (A11) is related to the Step-Response problem, Equation (A12) is related to the
Signalling problem and Equation (A13) is related to the Cauchy problem. Following the lecture notes
by Mainardi [63], we agree to call the above functions the three sisters functions for their role in the
standard diffusion equation. They will be discussed with details hereafter.

Everything that we have said above will be found again as a special case of the Time Fractional
Diffusion Equation where the time derivative of the first order is replaced by a suitable time derivative
of non-integer order.

It is easy to demonstrate that each of them can be expressed as a function of one of the two others
three sisters (Table A1).

Table A1. Relations among the three sisters in the Laplace domain.

φ̃ ψ̃ χ̃

φ̃
e−a

√
s

s
ψ̃

s
−1

s
∂χ̃

∂a

ψ̃ s φ̃ e−a
√

s − ∂χ̃

∂a

χ̃ − ∂φ̃

∂a
−2

a
∂ψ̃

∂s
e−a

√
s

√
s

The three sisters in the t domain may be all directly calculated by making use of the Bromwich
formula taking account of the contribution of the branch cut of

√
s and of the pole of 1/s. We obtain:

φ̃(a, s)÷ φ(a, t) = 1− 1
π

∫ ∞

0
e−rt sin(a

√
r)

dr
r

ψ̃(a, s)÷ ψ(a, t) =
1
π

∫ ∞

0
e−rt sin(a

√
r)dr

χ̃(a, s)÷ χ(a, t) =
1
π

∫ ∞

0
e−rt cos(a

√
r)

dr√
r

.
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Then, through the substitution ρ =
√

r, we arrive at the Gaussian integral and, consequently, we
find the previous explicit expressions of the three sisters that is:

φ(a, t) = erfc(
a

2
√

t
) = 1− 2√

π

∫ a/2
√

t

0
e−u2

du

ψ(a, t) =
a

2
√

π
t−3/2 e−a2/4t

χ(a, t) =
1√
π

t−1/2 e−a2/4t ,

reminding us of the definition of the complementary error function.
Alternatively, we can compute the three sisters in the t domain by using the relations among the

three sisters in the Laplace domain listed in Table A1. However, in this case, one of the three sisters in
the t domain must already be known. Assuming to know φ(a, t) from Equation (A11), we get:

- ψ(a, t) from ψ̃(a, s) = s φ̃(a, s). Indeed, noting

s φ̃(a, s)÷ ∂

∂t
φ(a, t)

since φ(a, 0+) = 0 we can obtain (A12), namely

ψ(a, t) =
a

2
√

π
t−3/2 e−a2/4t ;

- χ(a, t) from χ̃(a, s) = − ∂

∂a
φ̃(a, s) where a is seen as a parameter. Indeed, it immediately follows

Equation (A13), namely

χ(a, t) = − ∂

∂a
φ(a, t) =

1√
π

t−1/2 e−a2/4t .

For more details, we refer the reader again to [63].

Appendix B. Essentials of Fractional Calculus

Fractional calculus is the field of mathematical analysis which deals with the investigation and
applications of integrals and derivatives of arbitrary order. The term fractional is a misnomer, but it is
retained for historical reasons, following the prevailing use.

This appendix is based on the 1997 surveys by Gorenflo and Mainardi [64] and by Mainardi [65].
For more details on the classical treatment of fractional calculus, the reader is referred to the nice
and rigorous book by Diethelm [66] published in 2010 by Springer in the series Lecture Notes
in Mathematics.

According to the Riemann–Liouville approach to fractional calculus, the notion of fractional
integral of order α (α > 0) is a natural consequence of the well known formula (usually attributed to
Cauchy) that reduces the calculation of the n−fold primitive of a function f (t) to a single integral of
convolution type. In our notation, the Cauchy formula reads

Jn f (t) := fn(t) =
1

(n− 1)!

∫ t

0
(t− τ)n−1 f (τ) dτ t > 0 n ∈ IN (A14)

where IN is the set of positive integers. From this definition, we note that fn(t) vanishes at t = 0 with
its derivatives of order 1, 2, . . . , n− 1 . For convention, we require that f (t) and henceforth fn(t) is a
causal function, i.e., identically vanishing for t < 0 .
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In a natural way, one is led to extend the above formula from positive integer values of the index
to any positive real values by using the Gamma function. Indeed, noting that (n− 1)! = Γ(n) and
introducing the arbitrary positive real number α, one defines the Fractional Integral of order α > 0 :

Jα f (t) :=
1

Γ(α)

∫ t

0
(t− τ)α−1 f (τ) dτ t > 0 α ∈ IR+ (A15)

where IR+ is the set of positive real numbers. For complementation, we define J0 := I (Identity
operator), i.e., we mean J0 f (t) = f (t) . Furthermore, by Jα f (0+), we mean the limit (if it exists) of
Jα f (t) for t → 0+ ; this limit may be infinite.

We note the semigroup property Jα Jβ = Jα+β α β ≥ 0 which implies the commutative property
Jβ Jα = Jα Jβ and the effect of our operators Jα on the power functions

Jαtγ =
Γ(γ + 1)

Γ(γ + 1 + α)
tγ+α α ≥ 0 γ > −1 t > 0 . (A16)

These properties are of course a natural generalization of those known when the order is a
positive integer.

Introducing the Laplace transform by the notation L { f (t)} :=
∫ ∞

0 e−st f (t) dt = f̃ (s) s ∈ C and
using the sign ÷ to denote a Laplace transform pair, i.e., f (t)÷ f̃ (s), we point out the following rule
for the Laplace transform of the fractional integral,

Jα f (t)÷ f̃ (s)
sα

α ≥ 0 (A17)

which is the generalization of the case with an n-fold repeated integral.
After the notion of fractional integral, that of fractional derivative of order α (α > 0) becomes a

natural requirement and one is attempted to substitute α with −α in the above formulas. However,
this generalization needs some care in order to guarantee the convergence of the integrals and preserve
the well known properties of the ordinary derivative of integer order.

Denoting by Dn with n ∈ IN the operator of the derivative of order n , we first note that
Dn Jn = I Jn Dn �= I n ∈ IN i.e., Dn is left-inverse (and not right-inverse) to the corresponding
integral operator Jn . In fact, we easily recognize from Equation (A14) that

Jn Dn f (t) = f (t)−
n−1

∑
k=0

f (k)(0+)
tk

k!
t > 0 . (A18)

As a consequence, we expect that Dα is defined as left-inverse to Jα. For this purpose, introducing
the positive integer m such that m− 1 < α ≤ m , one defines the Fractional Derivative of order α > 0 as
Dα f (t) := Dm Jm−α f (t) i.e.,

Dα f (t) :=

⎧⎪⎪⎨⎪⎪⎩
dm

dtm

[
1

Γ(m− α)

∫ t

0

f (τ)
(t− τ)α+1−m dτ

]
, m− 1 < α < m,

dm

dtm f (t) α = m .
(A19)

Defining for complementation D0 = J0 = I , then we easily recognize that Dα Jα = I α ≥ 0 and

Dα tγ =
Γ(γ + 1)

Γ(γ + 1− α)
tγ−α α ≥ 0 γ > −1 t > 0 . (A20)

Of course, these properties are a natural generalization of those known when the order is a
positive integer.
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Note the remarkable fact that the fractional derivative Dα f is not zero for the constant function
f (t) ≡ 1 if α �∈ IN . In fact, (A20) with γ = 0 teaches us that

Dα1 =
t−α

Γ(1− α)
α ≥ 0 t > 0 . (A21)

This, of course, is≡ 0 for α ∈ IN, due to the poles of the gamma function in the points 0,−1,−2, . . . .
We now observe that an alternative definition of fractional derivative was introduced by Caputo in
1967 [67] in a geophysical journal and in 1969 [68] in a book in Italian. Then, the Caputo definition was
adopted in 1971 by Caputo and Mainardi [69,70] in the framework of the theory of Linear Viscoelasticity.
Nowadays, it is usually referred to as the Caputo fractional derivative and reads Dα

∗ f (t) := Jm−α Dm f (t)
with m− 1 < α ≤ m m ∈ IN i.e.,

Dα
∗ f (t) :=

⎧⎪⎪⎨⎪⎪⎩
1

Γ(m− α)

∫ t

0

f (m)(τ)

(t− τ)α+1−m dτ m− 1 < α < m

dm

dtm f (t) α = m .

(A22)

We recall that there are a number of discussions on the priority of this definition that surely was
formerly considered by Liouville as stated by Butzer and Westphal [71]. However, Liouville did not
recognize the relevance of this representation derived by a trivial integration by part, whereas Caputo,
even if unaware of the Riemann–Liouville representation, promoted his definition in several papers
for all the applications where the Laplace transform plays a fundamental role. We agree to denote
Equation (A22) as the Caputo fractional derivative to distinguish it from the standard Riemann–Liouville
fractional derivative (A19).

The Caputo definition (A22) is of course more restrictive than the Riemann–Liouville definition
(A19), in that it requires the absolute integrability of the derivative of order m. Whenever we use the
operator Dα

∗ , we (tacitly) assume that this condition is met. We easily recognize that in general

Dα f (t) := Dm Jm−α f (t) �= Jm−α Dm f (t) := Dα
∗ f (t) (A23)

unless the function f (t) along with its first m− 1 derivatives vanishes at t = 0+. In fact, assuming that
the passage of the m-derivative under the integral is legitimate, one recognizes that, for m− 1 < α < m
and t > 0

Dα f (t) = Dα
∗ f (t) +

m−1

∑
k=0

tk−α

Γ(k− α + 1)
f (k)(0+) (A24)

and therefore, recalling the fractional derivative of the power functions (A20),

Dα

(
f (t)−

m−1

∑
k=0

tk

k!
f (k)(0+)

)
= Dα

∗ f (t) . (A25)

The alternative definition (A22) for the fractional derivative thus incorporates the initial values of
the function and of its integer derivatives of lower order. The subtraction of the Taylor polynomial of
degree m− 1 at t = 0+ from f (t) means a sort of regularization of the Riemann–Liouville fractional
derivative. In particular, for 0 < α < 1, we get

Dα
(

f (t)− f (0+)
)
= Dα

∗ f (t) .

According to the Caputo definition, the relevant property for which the fractional derivative of a
constant is still zero can be easily recognized, i.e.,

Dα
∗1 ≡ 0 α > 0 . (A26)
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We now explore the most relevant differences between the two fractional derivatives (A19)
and (A22). We observe, again by looking at (A20), that Dαtα−1 ≡ 0 α > 0 t > 0 . From above,
we thus recognize the following statements about functions which for t > 0 admit the same fractional
derivative of order α with m− 1 < α ≤ m m ∈ IN

Dα f (t) = Dα g(t) ⇐⇒ f (t) = g(t) +
m

∑
j=1

cj tα−j (A27)

Dα
∗ f (t) = Dα

∗ g(t) ⇐⇒ f (t) = g(t) +
m

∑
j=1

cj tm−j . (A28)

In these formulas, the coefficients cj are arbitrary constants.
For the two definitions, we also point out a difference with respect to the formal limit as α →

(m− 1)+. From (A19) and (A22) we obtain, respectively,

α → (m− 1)+ =⇒ Dα f (t)→ Dm J f (t) = Dm−1 f (t) ; (A29)

α → (m− 1)+ =⇒ Dα
∗ f (t)→ J Dm f (t) = Dm−1 f (t)− f (m−1)(0+) . (A30)

We now consider the Laplace transform of the two fractional derivatives. For the standard fractional
derivative Dα, the Laplace transform, assumed to exist, requires the knowledge of the (bounded) initial
values of the fractional integral Jm−α and of its integer derivatives of order k = 1, 2, . . . , m − 1 .
The corresponding rule reads, in our notation,

Dα f (t)÷ sα f̃ (s)−
m−1

∑
k=0

Dk J(m−α) f (0+) sm−1−k m− 1 < α ≤ m . (A31)

The Caputo fractional derivative appears to be more suitable to be treated by the Laplace transform
technique in that it requires the knowledge of the (bounded) initial values of the function and of its
integer derivatives of order k = 1, 2, . . . , m− 1 analogous with the case when α = m . In fact, by using
Eqaution (A17) and noting that

Jα Dα
∗ f (t) = Jα Jm−α Dm f (t) = Jm Dm f (t) = f (t)−

m−1

∑
k=0

f (k)(0+)
tk

k!
. (A32)

we easily prove the following rule for the Laplace transform,

Dα
∗ f (t)÷ sα f̃ (s)−

m−1

∑
k=0

f (k)(0+) sα−1−k m− 1 < α ≤ m . (A33)

Indeed, the result (A33), first stated by Caputo by using the Fubini–Tonelli theorem, appears as the
most “natural” generalization of the corresponding result well known for α = m .

In particular, Gorenflo and Mainardi have pointed out the major utility of the Caputo fractional
derivative in the treatment of differential equations of fractional order for physical applications. In fact,
in physical problems, the initial conditions are usually expressed in terms of a given number of
bounded values assumed by the field variable and its derivatives of integer order, no matter if the
governing evolution equation may be a generic integro-differential equation and therefore, in particular,
a fractional differential equation.

Appendix C. The Lévy Stable Distributions

We now introduce the so-called Lévy Stable Distributions. The term stable has been assigned by the
French mathematician Paul Lévy, who, in the 1920s, started a systematic research in order to generalize
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the celebrated Central Limit Theorem to probability distributions with infinite variance. For stable
distributions, we can assume the following DEFINITION: If two independent real random variables with the
same shape or type of distribution are combined linearly and the distribution of the resulting random variable
has the same shape, the common distribution (or its type, more precisely) is said to be stable.

The restrictive condition of stability enabled Lévy (and then other authors) to derive the canonic
form for the characteristic function of the densities of these distributions. Here, we follow the
parameterization by Feller [72,73] revisited by Gorenflo & Mainardi in [74], see also [47]. Denoting by
Lθ

α(x) a generic stable density in IR, where α is the index of stability and and θ the asymmetry parameter,
improperly called skewness, its characteristic function reads:

Lθ
α(x)÷ L̂θ

α(κ) = exp
[
−ψθ

α(κ)
]

ψθ
α(κ) = |κ|α ei(sign κ)θπ/2 (A34)

0 < α ≤ 2 |θ| ≤ min {α, 2− α} .

We note that the allowed region for the parameters α and θ turns out to be a diamond in the
plane {α, θ} with vertices in the points (0, 0) (1, 1) (1,−1) (2, 0), which we call the Feller–Takayasu
diamond, see Figure A1. For values of θ on the border of the diamond (that is θ = ±α if 0 < α < 1, and
θ = ±(2− α) if 1 < α < 2), we obtain the so-called extremal stable densities.

We also note the symmetry relation Lθ
α(−x) = L−θ

α (x), so that a stable density with θ = 0
is symmetric.

Figure A1. The Feller–Takayasu diamond for Lévy stable densities.

Stable distributions have noteworthy properties of which the interested reader can be informed
from the relevant existing literature. Hereafter, we recall some peculiar PROPERTIES:

- The class of stable distributions possesses its own domain of attraction, see, e.g., [73].

- Any stable density is unimodal and indeed bell-shaped, i.e., its n-th derivative has exactly n zeros in IR,
see Gawronski [75], Simon [76], and Kwaśnicki [77].

- The stable distributions are self-similar and infinitely divisible.

These properties derive from the canonic form (A34) through the scaling property of the
Fourier transform.

Self-similarity means

Lθ
α(x, t)÷ exp

[
−tψθ

α(κ)
]
⇐⇒ Lθ

α(x, t) = t−1/α Lθ
α(x/t1/α)] (A35)
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where t is a positive parameter. If t is time, then Lθ
α(x, t) is a spatial density evolving on time with

self-similarity.
Infinite divisibility means that, for every positive integer n, the characteristic function can be

expressed as the nth power of some characteristic function, so that any stable distribution can be
expressed as the n-fold convolution of a stable distribution of the same type. Indeed, taking in (A34)
θ = 0, without loss of generality, we have

e−t|κ|α =
[
e−(t/n)|κ|α

]n
⇐⇒ L0

α(x, t) =
[

L0
α(x, t/n)

]∗n
(A36)

where [
L0

α(x, t/n)
]∗n

:= L0
α(x, t/n) ∗ L0

α(x, t/n) ∗ · · · ∗ L0
α(x, t/n)

is the multiple Fourier convolution in IR with n identical terms.
Only for a few particular cases, the inversion of the Fourier transform in (A34) can be carried out

using standard tables, and well-known probability distributions are obtained.
For α = 2 (so θ = 0), we recover the Gaussian pdf that turns out to be the only stable density with

finite variance, and more generally with finite moments of any order δ ≥ 0. In fact,

L0
2(x) =

1
2
√

π
e−x2/4 . (A37)

All the other stable densities have finite absolute moments of order δ ∈ [−1, α) as we will
later show.

For α = 1 and |θ| < 1, we get

Lθ
1(x) =

1
π

cos(θπ/2)
[x + sin(θπ/2)]2 + [cos(θπ/2)]2

(A38)

which for θ = 0 includes the Cauchy-Lorentz pdf:

L0
1(x) =

1
π

1
1 + x2 . (A39)

In the limiting cases θ = ±1 for α = 1, we obtain the singular Dirac pdf’s

L±1
1 (x) = δ(x± 1) . (A40)

In general, we must recall the power series expansions provided in [73]. We restrict our attention
to x > 0 since the evaluations for x < 0 can be obtained using the symmetry relation. The convergent
expansions of Lθ

α(x) (x > 0) turn out to be:
for 0 < α < 1 |θ| ≤ α :

Lθ
α(x) =

1
π x

∞

∑
n=1

(−x−α)n Γ(1 + nα)

n!
sin
[nπ

2
(θ − α)

]
; (A41)

for 1 < α ≤ 2 |θ| ≤ 2− α :

Lθ
α(x) =

1
π x

∞

∑
n=1

(−x)n Γ(1 + n/α)

n!
sin
[nπ

2α
(θ − α)

]
. (A42)

From the series in (A41) and the symmetry relation, we note that the extremal stable densities for
0 < α < 1 are unilateral, precisely vanishing for x > 0 if θ = α, vanishing for x < 0 if θ = −α.
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In particular, the unilateral extremal densities L−α
α (x) with 0 < α < 1 have support in IR+ and Laplace

transform exp(−sα). For α = 1/2, we obtain the so-called Lévy-Smirnov pd f :

L−1/2
1/2 (x) =

x−3/2

2
√

π
e−1/(4x) x ≥ 0 . (A43)

As a consequence of the convergence of the series in (A41) and (A42) and of the symmetry relation,
we recognize that the stable pd f ’s with 1 < α ≤ 2 are entire functions, whereas with 0 < α < 1 have
the form:

Lθ
α(x) =

{
(1/x)Φ1(x−α) for x > 0

(1/|x|)Φ2(|x|−α) for x < 0
(A44)

where Φ1(z) and Φ2(z) are distinct entire functions. The case α = 1 (|θ| < 1) must be considered in the
limit for α → 1 of (A41) and (A42) because the corresponding series reduce to power series akin with
geometric series in 1/x and x, respectively, with a finite radius of convergence. The corresponding
stable pd f ’s are no longer represented by entire functions, as can be noted directly from their explicit
expressions (A38) and (A39).

We omit to provide the asymptotic representations of the stable densities referring the interested
reader to Mainardi et al. (2001) [47]. However, based on asymptotic representations, we can state as
follows: for 0 < α < 2, the stable pd f ’s exhibit fat tails in such a way that their absolute moment of
order δ is finite only if −1 < δ < α. More precisely, one can show that, for non-Gaussian, not extremal,
stable densities the asymptotic decay of the tails is

Lθ
α(x) = O

(
|x|−(α+1)

)
x → ±∞ . (A45)

For the extremal densities with α �= 1, this is valid only for one tail (as |x| → ∞), the other
(as |x| → ∞) being of exponential order. For 1 < α < 2, the extremal pd f ’s are two-sided and exhibit
an exponential left tail (as x → −∞) if θ = +(2 − α) or an exponential right tail (as x → +∞)
if θ = −(2− α) . Consequently, the Gaussian pd f is the unique stable density with finite variance.
Furthermore, when 0 < α ≤ 1, the first absolute moment is infinite so we should use the median
instead of the non-existent expected value in order to characterize the corresponding pd f .

Let us also recall a relevant identity between stable densities with index α and 1/α (a sort of
reciprocity relation) pointed out in [73], that is, assuming x > 0,

1
xα+1 Lθ

1/α(x−α) = Lθ∗
α (x) 1/2 ≤ α ≤ 1 θ∗ = α(θ + 1)− 1 . (A46)

The condition 1/2 ≤ α ≤ 1 implies 1 ≤ 1/α ≤ 2. A check shows that θ∗ falls within the prescribed
range |θ∗| ≤ α if |θ| ≤ 2− 1/α.

We leave as an exercise for the interested reader the verification of this reciprocity relation in the
limiting cases α = 1/2 and α = 1.
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for the solutions to a multi-dimensional space-time-fractional diffusion equation with different
orders of the fractional derivatives. The kernel of the subordination integral is a special case of the
four-parameters Wright function of the second kind. Finally, in the third case study, we shortly
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1. Introduction

In calculus, differential equations, and mathematical physics both elementary and most of the
special functions can be expressed in terms of the so-called generalized hypergeometric function pFq

that is defined as the following series (in the case it converges):

pFq
(
a1, . . . , ap; b1, . . . , bq; z

)
:=

∞

∑
k=0

∏
p
n=1(an)k

∏
q
n=1(bn)k

zk

k!
(1)

with the Pochhammer symbol (z)k, k ∈ N given by the formula

(z)k =
Γ(z + k)

Γ(k)
=

k−1

∏
n=0

(z + n).

In particular, all elementary functions can be represented in terms of the famous hypergeometric
Gauss function 2F1. Other particular cases and properties of the generalized hypergeometric function
can be found in [1].
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If p ≤ q, the series at the right-hand side of the formula (1) is absolutely convergent for all values
of z ∈ C. For p = q + 1, the series converges for |z| < 1 and for |z| = 1 under some additional
conditions. If p > q + 1, the series is divergent.

To overcome this restriction and to somehow define the function pFq in the case p > q + 1, in [2]
Meijer introduced a very general special function presently known in the literature as the G-function.
For definition, properties, and particular cases of the G-function we refer the readers to [1].

However, it turned out that the special functions of Fractional Calculus (FC) belong in general
neither to particular cases of the generalized hypergeometric function pFq nor to particular cases of the
Meijer G-function. They are particular cases of the more general generalized Wright or Fox-Wright
functions or the Fox H-function ([1,3–7]).

The probably most used and important special functions of FC are the Mittag–Leffler function and
its generalizations and the Wright function and its generalizations. For the theory of the Mitag-Leffler
type functions and their applications we refer the readers to the book [3] and the recent survey [8]
(see also numerous references therein). As to the Wright function and its generalizations, parts of their
theory and some applications were presented in [5,6,9–29].

In this paper, the focus is on the four-parameters Wright function and its applications in FC.
Depending on the signs of the parameters, we distinguish between the four-parameters Wright
function of the first kind and of the second kind. The four-parameters Wright function of the first kind
was first considered by Fox in [30] and by Wright in [28] (more precisely, this function was a particular
case of the generalized Fox-Wright function that satisfies some conditions). In [12], the four-parameters
Wright function of the first kind was employed as a kernel of an integral transform. It is the first
application of this function known to the author. Another useful application of the four-parameters
Wright function of the first kind was presented in [31], where the authors developed an operational
calculus for an integral operator with the Gauss hypergeometric function as the kernel. This operational
calculus was then used for derivation of the exact solutions of some integral equations of Volterra-type
with the Gauss hypergeometric function in the kernel in terms of the four-parameters Wright function
of the first kind.

As to the four-parameters Wright function of the second kind, it was first introduced in Luchko
and Gorenflo [18]. Luchko and Gorenflo also provided some important properties of this function
including its integral representation via the Mittag–Leffler function and its asymptotic behavior.
Moreover, they applied the four-parameters Wright function of the second kind for derivation of
the explicit analytical scale-invariant solutions to a one-dimensional space-time fractional diffusion
equation. In this paper, some important results from [18] and the subsequent publications [5,15,32,33]
will be revisited.

The rest of the paper is organized as follows: In the 2nd Section, we introduce the Wright function,
the four-parameters Wright function, and the generalized Wright or Fox-Wright function and provide
some of their important properties with the special focus on the four-parameters Wright function of the
second kind. In the 3rd Section, three examples of applications of the four-parameters Wright function
of the second kind in FC are presented. The first example deals with analysis of the scale-invariant
solutions to a one-dimensional time-fractional diffusion-wave equation ([14,15]). It turns out that
they can be represented in terms of the Wright function of the second kind and the four-parameters
Wright function of the second kind. The second example is devoted to a subordination formula for
the solutions to a multi-dimensional space-time-fractional diffusion equation with different orders
of the fractional derivatives ([33]). The kernel of the subordination integral is a special case of the
four-parameters Wright function of the second kind that is non-negative and can be interpreted as a
probability density function. In the third example, we present an application of the operational method
suggested in [32] for derivation of solution to an initial-value problem for a fractional differential
equation with the left- and right-hand sided Erdélyi-Kober fractional derivatives in terms of the
four-parameters Wright function of the second kind.
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2. The Four-Parameters Wright Function

The generalized hypergeometric function pΨq presently known as the generalized Wright or
Fox-Wright function was introduced and investigated by Fox in [30] and by Wright in [28]. It is defined
by the convergent series

pΨq

[
(a1, A1), . . . , (ap, Ap)

(b1, B1) . . . (bq, Bq)
; z
]

:=
∞

∑
k=0

∏
p
i=1 Γ(ai + Aik)

∏
q
i=1 Γ(bi + Bik)

zk

k!
, z ∈ C (2)

with ai ∈ R, Ai > 0, i = 1, . . . , p, bi ∈ R, Bi > 0, i = 1, . . . , q. In the case Ai = 1, i = 1, . . . , p,
Bi = 1, i = 1, . . . , q, the generalized Wright function coincides with the generalized hypergeometric
function (1) up to a constant factor. Even more, in the case of the positive rational parameters Ai ∈ Q,
i = 1, . . . , p, Bi ∈ Q, i = 1, . . . , q, the generalized Wright function can be represented as a final sum of
the generalized hypergeometric functions with the power functions weights. Say, in the case p = 0,
q = 1, and B1 = n

m ∈ Q, n, m > 0, we have the following representation ([14]):

0Ψ1

[ −
(β, n

m )
; z
]
=

m−1

∑
p=0

zp

p!Γ(β + n
m p) 0Fn+m−1

(
−; Δ(n,

β

n
+

p
m
), Δ∗(m,

p + 1
m

);
zm

mmnn

)
, (3)

where Δ(k, a) and Δ∗(k, a) are defined by

Δ(k, a) = {a, a +
1
k

, . . . , a +
k− 1

k
}, Δ∗(k, a) = Δ(k, a) \ {1}.

In the case of the formula (3), the set Δ∗(k, a) is correctly defined since 1 is an element of any set
Δ(m, p+1

m ), 0 ≤ p ≤ m − 1. The method employed in [14] for derivation of the formula (3) can be
also applied to obtain similar but of course even more complicated representations for the function
pΨq with the positive rational parameters Ai ∈ Q, i = 1, . . . , p, Bi ∈ Q, i = 1, . . . , q in terms of the

generalized hypergeometric function (1).
It is worth mentioning that both in [28,30], the parameters Ai and Bi were supposed to be positive

real numbers. However, in [29], Wright considered a particular case of the function pΨq with p = 0
and q = 1 and the coefficient B1 being any real number greater than -1. Presently this function is called
the Wright function. Following Wright, it is denoted by φ(ρ, β; z):

φ(ρ, β; z) := 0Ψ1

[ −
(β, ρ)

; z
]
=

∞

∑
k=0

zk

k!Γ(β + ρk)
, z ∈ C, ρ > −1, β ∈ C. (4)

For ρ > −1, the series at the right-hand side of the formula (4) is convergent for all z ∈ C. It is
also convergent for ρ = −1 and |z| < 1 and for ρ = −1 and |z| = 1 under the condition �(β) > 1.
However, the Wright function is an entire function only in the case ρ > −1 and thus this condition is
usually included into its definition.

In [3,19], the function (4) with the positive parameter ρ was called the Wright function of the first
kind, whereas in the case of the negative parameter ρ (0 > ρ > −1) it was called the Wright function
of the second kind. In the case ρ = 0, the Wright function is reduced to the exponential function:

φ(0, β; z) =
∞

∑
k=0

zk

k!Γ(β)
=

ez

Γ(β)
. (5)

In analogy to the Wright function (4), the generalized Wright function (2) can be considered also
in the case, some or even all of the parameters Ai and Bi are negative numbers. The well-known
asymptotic behavior of the Euler Gamma-function allows determination of the convergence radius of
the series at the right-hand side of (2): it is absolutely convergent for all z ∈ C under the condition
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Δ > −1, where Δ is determined by the parameters of the generalized Wright function as follows
(see, e.g., [3,16,34]):

Δ =
q

∑
i=1

Bi −
p

∑
i=1

Ai, δ =
p

∏
i=1

|Ai|−Ai

q

∏
i=1

|Bi|Bi , μ =
q

∑
i=1

bi −
p

∑
i=1

ai +
p− q

2
. (6)

In the case Δ > −1, the function (2) is an entire function. However, in the case Δ = −1, the series
at the right-hand side of (2) is also absolutely convergent for |z| < δ and for |z| = δ under the condition
�(μ) > 1/2 (see [34] for details).

In this paper, we mainly deal with another important particular case of the generalized Wright
function (2), specifically with the so-called four-parameters Wright function:

W(ρ1,β1),(ρ2,β2)
(z) := 1Ψ2

[
(1, 1)

(β1, ρ1) (β2, ρ2)
; z
]

. (7)

According to the definition of the generalized Wright function, the series representation of the
four-parameters Wright function is as follows:

W(ρ1,β1),(ρ2,β2)
(z) =

∞

∑
k=0

zk

Γ(β1 + ρ1k)Γ(β2 + ρ2k)
, ρ1, ρ2 ∈ R, β1, β2 ∈ C, z ∈ C. (8)

For ρ1 + ρ2 > 0, the series at the right-hand side of (8) is absolutely convergent ∀z ∈ C. For ρ1 +

ρ2 = 0, the series is absolutely convergent for |z| < 1 and for |z| = 1 under the condition �(β1 + β2) >

2. Finally, the series is divergent for any z �= 0 in the case ρ1 + ρ2 < 0.
Without any loss of generality, in what follows we always suppose that the condition ρ1 ≥ ρ2

holds true in the definition of the four-parameters Wright function. This assumption will lead to
simpler formulations of some results concerning the four-parameters Wright function. Moreover,
we will distinguish between the four-parameters Wright function of the first kind (ρ2 > 0) and of the
second kind (ρ2 < 0). The properties and applications of the four-parameters Wright function of the
second kind are very different from those of the function of the first kind. Thus, we found it appropriate
to introduce a separate notation for the four-parameters Wright function of the second kind:

Φ(ρ1,β1),(ρ2,β2)
(z) := W(ρ1,β1),(ρ2,β2)

(z), ρ2 < 0. (9)

The notation W(ρ1,β1),(ρ2,β2)
is kept for the four-parameters Wright function (including the cases of

the functions of the first and of the second kinds).
In what follows, we always suppose that the condition ρ1 + ρ2 > 0 is satisfied. This condition

along with the inequality ρ1 ≥ ρ2 leads to the inequality ρ1 > 0. Thus, the parameter ρ1 of the
four-parameters Wright function is always positive, whereas the parameter ρ2 is positive in the case of
the function of the first kind and negative in the case of the function of the second kind. In the case
ρ2 = 0, the four-parameters Wright function is reduced to the two-parameters Mittag–Leffler function:

W(ρ1,β1),(0,β2)
(z) =

1
Γ(β2)

Eρ1,β1(z) =
1

Γ(β2)

∞

∑
k=0

zk

Γ(β1 + ρ1k)
. (10)

For the theory and applications of the two-parameters Mittag–Leffler function we refer to the
book [3]; in this paper we do not consider this function. Please note that in [3] the function (7) is called
the generalized Mittag–Leffler function or the four-parametric Mittag–Leffler function.

Another important particular case of the four-parameters Wright function (7) is the Wright
function (4):

W(1,1),(ρ,β)(z) = φ(ρ, β; z). (11)

84



Mathematics 2020, 8, 970

For the properties and applications of the Wright function we refer to the recent survey [5], see also
the references therein.

As already mentioned, the four-parameters Wright function is an entire function provided the
condition ρ1 + ρ1 > 0 holds true.

Theorem 1. Let the condition ρ1 + ρ1 > 0 be satisfied. Then the four-parameters Wright function is an entire
function of the variable z. Its order p and type σ are given by the relations

p =
1

ρ1 + ρ2
, σ =

ρ1 + ρ2(
ρ

ρ1
1 |ρ2|ρ2

) 1
ρ1+ρ2

. (12)

The proof of the theorem is based on the Stirling formula for the asymptotic of the Gamma-function
and can be found in [3,12,16].

Since it is a function of the hypergeometric type, the four-parameters Wright function possesses a
very useful Mellin–Barnes integral representation ([35]):

W(ρ1,β1),(ρ2,β2)
(z) =

1
2πi

∫
L−∞

Γ(s)Γ(1− s)
Γ(β1 − ρ1s)Γ(β2 − ρ2s)

(−z)−s ds, (13)

where L−∞ is a left loop located in a horizontal strip. It goes from the point −∞ + iy1 to the point
−∞ + iy2 with y1 < 0 < y2 and separates the poles of the Gamma-function Γ(s) (the points sk =

0,−1,−2, . . . ) from the poles of the Gamma-function Γ(1− s) (the points sl = 1, 2, 3, . . . ).
The formula (13) can be easily proved by evaluating the Mellin–Barnes integral taking into account

the Jordan lemma, the formula

ress=−kΓ(s) =
(−1)k

k!
, k = 0, 1, 2, . . . , (14)

the known asymptotic of the Gamma-function, and the Cauchy residue theorem.
Depending on the sign of the parameter ρ2 (the parameter ρ1 is always positive), the right-hand

side of the representation (13) can be interpreted as the Fox H-function:

W(ρ1,β1),(ρ2,β2)
(z) = H1,1

1,3

(
(0, 1)

(0, 1), (1− β1, ρ1), (1− β2, ρ2)

∣∣− z
)

, ρ2 > 0, (15)

Φ(ρ1,β1),(ρ2,β2)
(z) = H1,1

2,2

(
(0, 1), (β2,−ρ2)

(0, 1), (1− β1, ρ1)

∣∣− z
)

, ρ2 < 0. (16)

It is worth mentioning that both the Mellin–Barnes integral representation (13) and the Fox
H-function representations (15) and (16) can be used for derivation of several useful properties of
the four-parameters Wright function including its particular cases for the rational values of the
parameters ([1,3,5]) or its asymptotic behavior ([6,7]).

Because the focus of this paper is on applications of the four-parameters Wright function of the
second kind in FC, in the rest of this section we mainly restrict ourselves to a short discussion of its
important properties. For the proofs, we refer the interested readers to [18].

A very useful integral representation of the four-parameters Wright function is given in the
following theorem:

Theorem 2 ([18]). The four-parameters Wright function possesses the following integral representation in
terms of the two parameters Mittag–Leffler function (10):

W(ρ1,β1),(ρ2,β2)
(z) =

1
2πi

∫
γ(ε;ϕ)

eζ ζ−β2 Eρ1,β1(zζ−ρ2) dζ, (17)
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where γ(ε; ϕ) (ε > 0, π
2 < ϕ ≤ π) is a contour in the complex plane with the nondecreasing arg ζ that consists

of the ray arg ζ = −ϕ, |ζ| ≥ ε, the arc −ϕ ≤ arg ζ ≤ ϕ of the circle |ζ| = ε, and the ray arg ζ = ϕ, |ζ| ≥ ε.

In the case of the four-parameters Wright function of the second kind, the integration contour
γ(ε; ϕ) in Theorem 2 can be replaced by a simpler one:

Theorem 3 ([18]). For any k0 ∈ N satisfying the condition k0 > max{−1,�((1 − β2)/(−ρ2))},
the four-parameters Wright function of the second kind can be represented as follows:

Φ(ρ1,β1),(ρ2,β2)
(z) =

k0

∑
k=0

zk

Γ(β1 + ρ1k)Γ(β2 + ρ2k)
+ (18)

1
2πi

∫
L−

(
eζζ−β2 Eρ1,β1(zζ−ρ2)−

k0

∑
k=0

(zζ−ρ2)k

Γ(β1 + ρ1k)

)
dζ,

where L− is a cut in the complex ζ-plane along the negative real semi-axis.

Remark 1. As already mentioned, for β1 = ρ1 = 1, the four-parameters Wright function is reduced to the
Wright function (4) and the integral representation (17) with ρ2 = ρ > −1 and β2 = β ∈ R takes the
well-known form

φ(ρ, β; z) =
1

2πi

∫
γ(ε;ϕ)

exp{ζ + zζ−ρ}ζ−β dζ. (19)

This integral representation was obtained by Wright in [27,29] and then used for derivation of the asymptotic
behavior of the Wright function. In particular, he showed that the Wright function of the second kind has an
algebraic asymptotic expansion on the positive real semi-axis provided the condition 1/3 < −ρ < 1 holds true
(K = 0, 1, 2, . . . ):

φ(ρ, β; x) =
K−1

∑
k=0

x(β−1−k)/(−ρ)

(−ρ)Γ(k + 1)Γ(1 + (β− l − k)/(−ρ))
+ O(x(β−1−K)/(−ρ)), x → +∞. (20)

For the four-parameters Wright function of the second kind, a similar result was obtained in [18].

Theorem 4 ([18]). Under the condition ρ1/3 < −ρ2 < ρ1 ≤ 2, the four-parameters Wright function of the
second kind has the following asymptotic on the positive real semi-axis:

Φ(ρ1,β1),(ρ2,β2)
(x) =

K−1

∑
k=0

x(β2−1−k)/(−ρ2)

(−ρ2)Γ(k + 1)Γ(β1 + ρ1(β2 − 1− k)/(−ρ2))
− (21)

P

∑
p=1

x−p

Γ(β1 − ρ1 p)Γ(β2 − ρ2 p)
+ O(x(β2−1−K)/(−ρ2)) + O(x−1−P), x → +∞

for any K = 0, 1, 2, . . . , and P = 0, 1, 2, . . . .

For geometric properties of the four-parameters Wright function we refer the interested readers to
the very recent paper [11].

3. Applications of the Four-Parameters Wright Function of the Second Kind

In this section, we consider three examples of applications of the four-parameters Wright function
of the second kind in FC.

The first example concerns the well-studied one-dimensional time-fractional diffusion-wave
equation with the Caputo derivative. For analytical treatment of this equation, the Wright functions
of the second kind play a fundamental role ([10,14,15,19,36]). Say, the fundamental solution to this
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equation can be expressed in terms of some special cases of the Wright function of the second kind
(so-called Mainardi auxiliary functions). However, it turns out that the formulas for the scale-invariant
solutions to the one-dimensional diffusion-wave equation involve both the Wright function of the
second kind and the four-parameters Wright function of the second kind.

In the second example, we deal with a subordination formula for solutions to a multi-dimensional
space-time-fractional diffusion equation ([33]). This equation is obtained from the diffusion equation
by replacing the first order time derivative by the Caputo fractional derivative and the Laplace operator
by the fractional Laplacian. This time, it is the four-parameters Wright function of the second kind
that is of importance for this equation. In particular, a special case of the four-parameters Wright
function of the second kind appears in the kernel of a subordination formula that connects the solution
operators of this equation with different orders of the fractional derivatives to the classical solution
of the conventional diffusion equation. Moreover, this kernel function is non-negative and can be
interpreted as a probability density function.

The third example deals with the ordinary fractional differential equations that contain both the
left- and the right-hand sided fractional derivatives. In [32], an operational method for the so-called
composed Erdélyi-Kober fractional derivatives was suggested and applied for derivation of the
analytical solutions to the initial-value problems for a special class of such equations. In this section,
we present an equation of this sort with an explicit solution expressed in terms of the four-parameters
Wright function of the second kind.

3.1. Scale-Invariant Solutions to the One-Dimensional Time-Fractional Diffusion-Wave Equation

In this subsection, we deal with the fractional diffusion-wave equation, which is obtained from
the conventional diffusion or wave equation by replacing the first- or second-order time derivative,
respectively, by the Caputo fractional derivative:

∂αu(x, t)
∂tα =

∂2u(x, t)
∂x2 , 1 < α < 2, t > 0, x > 0. (22)

The Caputo fractional derivative of order α, 1 < α < 2, is defined as follows:

∂αu(x, t)
∂tα =

1
Γ(2− α)

t∫
0

(t− τ)1−α ∂2u(x, τ)

∂τ2 dτ. (23)

In particular, we are interested in the scale-invariant solutions to this equation. First, we introduce
some basic notions concerning the similarity method for the general equation

F(u) = 0, u = u(x, t). (24)

A one-parameter family of scaling transformations, denoted by Tλ, is called a transformation of
the (x, t, u)-space of the form

x̄ = λax, t̄ = λbt, ū = λcu, (25)

where a, b, and c are some constants and λ is a real parameter restricted to an open interval I containing
the value λ = 1.

The general Equation (24) is called invariant under the one-parameter family Tλ of scaling
transformations (25) if and only if Tλ translates any solution u of (24) to a solution ū of the
same equation:

F(ū) = 0 if ū = Tλu. (26)
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A real-valued function η(x, t, u) is called an invariant of the one-parameter family Tλ of scaling
transformations if it is unaffected by the transformations from Tλ:

η(Tλ(x, t, u)) = η(x, t, u) for all λ ∈ I.

The general theory ([37]) says that on the half-space {(x, t, u) : x > 0, t > 0}, the invariants of the
scaling transformations (25) are provided by the functions

η1(x, t, u) = xt−a/b, η2(x, t, u) = t−c/bu. (27)

Say, let the Equation (24) be a second-order partial differential equation

G(x, t, u, ux, ut, uxx, utt, uxt) = 0. (28)

If this equation is invariant under the family Tλ of scaling transformations (25),
then the substitution

u(x, t) = tc/bv(z), z = xt−a/b (29)

reduces the Equation (28) to a second-order ordinary differential equation

g(z, v, v′, v′′) = 0. (30)

In [9,14,15,18], the scale-invariant solutions for the equation of type (22) with the fractional
derivatives in the Caputo and Riemann–Liouville sense and for the more general time- and
space-fractional partial differential equations were obtained. In all cases, these solutions were expressed
in terms of the Wright function of the second kind and the four-parameters Wright function of the
second kind. In what follows, we present some of these results for the Equation (22).

The group of scaling transformations for the fractional diffusion-wave Equation (22) can be
determined in explicit form.

Theorem 5 ([9]). The group of scaling transformations of the Equation (22) has the form

Tλ ◦ (x, t, u) = (λx, λ
2
α t, λcu)

with an arbitrary constant c ∈ R and its invariants are given by the formulas

η1(x, t) = xt−α/2, η2(x, t, u) = t−c α/2u. (31)

In what follows, for the sake of convenience, we use the notation γ = c α/2.
The general theory of the Lie groups ([37]) and Theorem 5 ensure that the scale-invariant solutions

of the Equation (22) have the form

u(x, t) = tγv(y), y = xt−α/2, γ = c α/2. (32)

Substitution of the function u from the formula (32) into the partial fractional differential
Equation (22) transforms it into an ordinary fractional differential equation with an unknown function
v(y). More precisely, the following result holds true:

Theorem 6 ([9]). The scale-invariant solutions of the Equation (22) in the form (32) satisfy the equation

(∗Pγ−1,α
2/α v)(y) = v′′(y), y > 0, (33)
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where the operator ∗Pγ−1,α
2/α is the Caputo type modification of the right-hand sided Erdélyi-Kober fractional

derivative defined by

(∗Pτ,α
δ g)(y) := (Kτ,n−α

δ

n−1

∏
j=0

(τ + j− 1
δ

u
d

du
)g)(y), y > 0, δ > 0, n− 1 < α ≤ n ∈ N. (34)

The operator Kτ,α
δ , α > 0 is the right-hand sided Erdélyi-Kober fractional integral defined by

(Kτ,α
δ g)(y) :=

1
Γ(α)

∫ ∞

1
(u− 1)α−1u−(τ+α)g(yu1/δ) du. (35)

For α = 1 and α = 2, the fractional diffusion-wave Equation (22) is reduced to the conventional
one-dimensional diffusion or wave equation, respectively. The Equation (33) for the scale-invariant
solutions of (22) is an ordinary differential equation, not a fractional one. In the case α = 1 (the diffusion
equation) we have the representation

(∗Pγ,1
2 v)(y) = (γ− 1

2
y

d
dy

)v(y)

and the Equation (33) takes the well-known form

v′′(z) +
1
2

yv′(y)− γv(y) = 0.

In the case α = 2 (the wave equation) we get the formula

(∗Pγ−1,2
1 v)(y) = (γ− 1− y

d
dy

)(γ− y
d

dy
)v(y) = y2v′′(y)− 2(γ− 1)yv′(y) + γ(γ− 1)v(y)

and the equation (33) is transformed to the following ODE:

(y2 − 1)v′′(y)− 2(γ− 1)yv′(y) + γ(γ− 1)v(y) = 0.

These both cases are discussed in detail in [37].
It turns out that the Equation (34) can be solved in explicit form in terms of the Wright function of

the second kind and the four-parameters Wright function of the second kind.

Theorem 7 ([14]). The scale-invariant solutions of the fractional diffusion-wave Equation (22) are given by
the formulas

u(x, t) = C1tγφ(−α

2
, 1 + γ;−y) + C2tγ

(
1
2

φ(−α

2
, 1 + γ; y)− y2+2 γ−1

α Φ
(2,3+2 γ−1

α ),(−α,2−α)
(y2)

)
(36)

in the case 1− α < γ < 1, γ �= 1− α
2 , γ �= 0, and

u(x, t) = C1φ(−α

2
, 1;−y) + C2

(
1
2

φ(−α

2
, 1; y)− y2− 2

α Φ(2,3− 2
α ),(−α,2−α)(y

2)

)
+ C3 (37)

in the case γ = 0, where y = xt−
α
2 is the first scale-invariant (31), φ is the Wright function of the second kind

defined by (4), Φ is the four-parameters Wright function of the second kind defined by (7), and C1, C2, C3 are
arbitrary constants.

For further results regarding the scale-invariant solutions to the fractional diffusion-wave
equations we refer to [9,14,15,18].
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3.2. Subordination Formula for the Multi-Dimensional Space-Time-Fractional Diffusion Equations

The object of analysis in this subsection is the multi-dimensional space-time-fractional
diffusion equation

Dβ
t u(x, t) = −(−Δ)

α
2 u(x, t), x ∈ Rn, t > 0, 0 < α ≤ 2, 0 < β ≤ 1. (38)

In the Equation (38), the time-fractional derivative Dβ
t is defined in the Caputo sense:

Dβ
t u(x, t) =

(
In−β
t

∂nu
∂tn

)
(t), n− 1 < β ≤ n, n ∈ N (39)

with Iγ
t being the Riemann–Liouville fractional integral:

(Iγ
t u)(t) =

⎧⎨⎩ 1
Γ(γ)

∫ t
0 (t− τ)γ−1u(x, τ) dτ for γ > 0,

u(x, t) for γ = 0.

The fractional Laplacian −(−Δ)
α
2 is understood as a pseudo-differential operator with the symbol

−|κ|α ([38,39]): (
F − (−Δ)

α
2 u
)
(κ) = −|κ|α(F u)(κ) , (40)

where (F f )(κ) is the Fourier transform of a function u at the point κ ∈ Rn defined by

(F u)(κ) = f̂ (κ) =
∫
Rn

eiκ·xu(x) dx . (41)

The fractional Laplacian can be also represented as a hypersingular integral ([39]):

− (−Δ)
α
2 u(x) = − 1

dn,m(α)

∫
Rn

(
Δm

h u
)
(x)

|h|n+α
dh, 0 < α < m, m ∈ N, x ∈ Rn (42)

with a suitably defined finite differences operator
(
Δm

h f
)
(x) and a normalization constant dn,m(α).

The representation (42) of the fractional Laplacian in form of the hypersingular integral does not
depend on m, m ∈ N provided α < m ([39]). For other representations of the fractional Laplacian we
refer the reader to [40].

In what follows, we consider the Cauchy problem for the space-time-fractional diffusion
Equation (38) with the Dirichlet initial condition:

u(x, 0) = f (x) , x ∈ Rn. (43)

Because the initial-value problem (38), (43) is linear, its solution can be represented in the form

u(x, t) =
∫
Rn

Gα,β,n(ζ, t) f (x− ζ) dζ. (44)

In (44), the function f is the initial condition and Gα,β,n is the first fundamental solution of (38),
i.e., its solution with the initial condition

u(x, 0) =
n

∏
i=1

δ(xi) , x = (x1, x2, . . . , xn) ∈ Rn

where δ is the Dirac delta function.
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In the case of the conventional diffusion equation (α = 2 and β = 1 in the Equation (38)),
the fundamental solution is well-known:

G2,1,n(x, t) =
1

(
√

4πt)n
exp
(
−|x|

2

4t

)
. (45)

It turned out that the fundamental solution Gα,β,n to the multi-dimensional space-time-fractional
diffusion Equation (38) can be represented in terms of the fundamental solution G2,1,n of the
conventional diffusion equation. The result obtained in [33] for the first time is given in the
following theorem:

Theorem 8 ([33]). For the fundamental solution Gα,β,n(x, t) to the multi-dimensional space-time-fractional
diffusion-wave Equation (38) with 0 < β ≤ 1, 0 < α ≤ 2, and 2β + α < 4 the following subordination formula
is valid:

Gα,β,n(x, t) =
∫ ∞

0
t−

2β
α Ψα,β(st−

2β
α ) G2,1,n(x, s) ds, (46)

where the fundamental solution G2,1,n(x, s) to the conventional diffusion equation is given by the formula (45)
and the kernel function Ψα,β is a probability density function in s, s ∈ R+ for each value of t, t > 0 defined
as follows:

Ψα,β(τ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ
α
2−1 Φ( α

2 , α
2 ),(−β,1−β)

(
−τ

α
2

)
if β

α < 1
2 ,

−τ−1− α
2 Φ(β,1−β),(− α

2 ,− α
2 )

(
−τ−

α
2

)
if β

α > 1
2 ,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
τ

α
2 −1

π ∑∞
k=0 sin

(
πα
2 (k + 1)

) (
−τ

α
2

)k
if 0 < τ < 1

− τ−1

π ∑∞
k=0 sin

(
πα
2 k
) (
−τ−

α
2

)k
if τ > 1

if β
α = 1

2 .

(47)

In the formula (47), the function Φ is the four-parameters Wright function of the second kind defined by (9).

It is worth mentioning that even if the subordination formula (46) concerns just the fundamental
solution, it can be extended to the solution operator for the initial-value problem (38), (43). Indeed,
let us suppose that a more general subordination formula for the fundamental solution Gα,β,n is valid:

Gα,β,n(x, t) =
∫ ∞

0
Ψ(α, β, s, t)Gα̂,β̂,n(x, s) ds, (48)

where the kernel function Ψ = Ψ(α, β, s, t) can be interpreted as a probability density function in
s, s ∈ R+ for each value of t, t > 0 (the formula (47) is a particular case of the formula (48)). Then we
have the following chain of relations:

Sα,β,n(t) f =
∫
Rn

Gα,β,n(ζ, t) f (x− ζ) dζ =
∫
Rn

∫ ∞

0
Ψ(α, β, s, t)Gα̂,β̂,n(ζ, s) ds f (x− ζ) dζ =

∫ ∞

0
Ψ(α, β, s, t)

∫
Rn

Gα̂,β̂,n(ζ, s) f (x− ζ) dζ ds =
∫ ∞

0
Ψ(α, β, s, t)Sα̂,β̂,n(s) f ds.

Thus, the subordination formula

Sα,β,n(t) f =
∫ ∞

0
Ψ(α, β, s, t)Sα̂,β̂,n(s) f ds (49)
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holds true for the solution operator Sα,β,n. Vice versa, any subordination formula for the solution
operator Sα,β,n to the initial-value problem (38), (43) in the form (49) induces a subordination formula
of the type (48) for the fundamental solution Gα,β,n just by setting f to be the Dirac δ-function.

In the rest of this subsection, we provide some important remarks concerning the kernel Ψα,β of
the subordination formula (46).

In [33], the kernel function Ψα,β given by the formula (47) was first deduced in form of the
following Mellin–Barnes integral:

Ψα,β(τ) =
2
α

1
2πi

∫ γ+i∞

γ−i∞

Γ
( 2

α − 2
α s
)

Γ
(
1− 2

α + 2
α s
)

Γ
(

1− 2β
α + 2β

α s
)

Γ (1− s)
τ−s ds. (50)

The series representation (47) was derived by evaluating the Mellin–Barnes integral (50) taking
into account the Jordan lemma, the formula (14) for the residual of the Gamma-function Γ(s) at the
point s = −k, the asymptotic behavior of the Gamma-function, and the Cauchy residue theorem.

The kernel function Ψα,β can be also interpreted as the inverse Laplace transform of the
Mittag–Leffler function Eβ(−λ

α
2 ):

Eβ(−λ
α
2 ) =

∫ ∞

0
Ψα,β(τ) e−λτ dτ, (51)

where the Mittag–Leffler function Eβ is defined as follows:

Eβ(z) = Eβ,1(z) =
∞

∑
k=0

zk

Γ(1 + β k)
, β > 0, z ∈ C. (52)

For the time-fractional diffusion equation (α = 2, 0 < β ≤ 1 in the Equation (38)) the subordination
formula (46) with the kernel function Φα,β given by the 1st line of (47) is valid. In this case,
the four-parameters Wright function of the second kind is reduced to the Wright function of the
second kind and we arrive at the known formula ([41,42])

G2,β,n(x, t) =
∫ ∞

0
t−βφ(−β, 1− β;−st−β)G2,1,n(x, s) ds, 0 < β < 1. (53)

For the space-fractional diffusion equation (β = 1, 0 < α ≤ 2 in the Equation (38)),
the subordination formula (46) with the kernel function Ψα,β given by the 2nd line of (47) is valid. It is
easy to verify that the kernel function can be rewritten in the following form:

−τ−1− α
2 Φ(β,1−β),(− α

2 ,− α
2 )

(
−τ−

α
2

)
= τ−1 Φ(β,1),(− α

2 ,0)

(
−τ−

α
2

)
.

Thus, also in the case of the space-fractional diffusion equation, the four-parameters Wright
function of the second kind from the formula (47) is reduced to the Wright function of the second kind
and we arrive at the subordination formula in the form

Gα,1,n(x, t) =
∫ ∞

0
s−1φ(−α

2
, 0;−s−

α
2 t) G2,1,n(x, s) ds, 0 < α < 2. (54)

3.3. FDEs with the Left- and Right-Hand Sided Erdélyi-Kober Fractional Derivatives

In this part of the section, we consider an initial-value problem for an ordinary fractional
differential equation with the left- and right-hand sided Erdélyi-Kober fractional derivatives defined
on the positive semi-axis. The equations of this type appear in the fractional calculus of variations as
the Euler-Lagrange equations. However, to the best knowledge of the author, the only method for
analytical treatment of these equations defined on an infinite interval, say, on the positive real semi-axis,
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is the operational method recently suggested in [32]. Here we present an example of application of
this method to the following sample equation (a > b > 0, n− 1 < aμ ≤ n, n ∈ N):

( ∗D−α−aμ,aμ
1/a y)(x) + ρ xμ( ∗Pβ−bμ,bμ

1/b y)(x) = f (x), x > 0, ρ > 0 (55)

subject to the initial conditions (k = 0, . . . , n− 1)

lim
x→0

x
1
a (1−α−aμ+k)

n−1

∏
i=k+1

(
1− α− aμ + i + ax

d
dx

)
y(x) = ck. (56)

In the Equation (55), the operator ∗Pβ−bμ,bμ
1/b is the Caputo type modification of the right-hand

sided Erdélyi-Kober fractional derivative given by the formula (34). The operator ∗D−α−aμ,aμ
1/a is the

Caputo type modification of the left-hand sided Erdélyi-Kober fractional derivative defined as follows:

(∗Dγ,δ
β f )(x) = (Iγ+δ,n−δ

β

n−1

∏
k=0

(
1 + γ + k +

1
β

t
d
dt

)
f )(x), (57)

where Iγ,δ
β stays for the left-hand sided Erdélyi-Kober fractional integral of order δ:

(Iγ,δ
β f )(x) =

1
Γ(δ)

∫ 1

0
(1− t)δ−1tγ f

(
xt

1
β

)
dt, δ, β > 0, γ ∈ R. (58)

It is worth mentioning that the initial conditions in form (56) are determined by the projector
operator of the left-hand sided Erdélyi-Kober fractional integral I−α−aμ,aμ

1/a

(P y)(x) = y(x)− (I−α−aμ,aμ
1/a ∗D−α−aμ,aμ

1/a y)(x) =
n−1

∑
k=0

ckx−
1
a (1−α−aμ+k), (59)

ck = lim
x→0

x
1
a (1−α−aμ+k)

n−1

∏
i=k+1

(
1− α− aμ + i + ax

d
dx

)
y(x) (60)

and thus, they are quite natural for the Equation (38).
In this paper, we do not repeat the derivation of the exact solution to the initial-value problem (55),

(56) presented in [32] and restrict ourselves to formulation of the final result.

Theorem 9. Let a > b > 0, n− 1 < aμ ≤ n, n ∈ N, f ∈ O, and the condition

α− 1
a

<
β

b
(61)

be satisfied. Then the initial-value problem (38), (56) possesses a unique solution on the space O in the form

y(x) =
n−1

∑
k=0

ckyk(x) + y f (x), (62)

where the functions yk, k = 0, . . . , n− 1 are defined by

yk(x) = Γ(aμ− k)Γ
(

β +
b
a
(1− α− aμ + k)

)
xμ− 1

a (1−α+k) Φ(aμ,aμ−k),(−bμ,β+ b
a (1−α−aμ+k)(−ρ xμ),

(63)
and the function y f is given by the formula

y f (x) = g(x) + (g
λ∗ yΦ)(x), (64)
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with
g(x) = (I−α−aμ,aμ

1/a f )(x), yΦ(x) = ρ xμ−λΦ(aμ,1−α+a(μ−λ)),(−bμ,β−b(μ−λ)(−ρ xμ)

and the convolution
λ∗ defined as follows:

( f
λ∗ g)(x) = (I1−2α−aλ,α+aλ−1

1/a ∗Pβ,β+bλ
1/b f ◦ g)(x) (65)

with

( f ◦ g)(x) = xλ
∫ 1

0

∫ 1

0
τ−α

1 (1− τ1)
−α τ

β−1
2 (1− τ2)

β−1 f

(
xτa

1

τb
2

)
g
(

x(1− τ1)
a

(1− τ2)b

)
dτ1dτ2. (66)

The function y f satisfies the inhomogeneous Equation (55) and homogeneous initial conditions, whereas
the functions yk, k = 0, . . . , n− 1 satisfy the homogeneous Equation (55) ( f (x) ≡ 0, x > 0) and the initial
conditions (k = 0, . . . , n− 1, j = 0, . . . , n− 1)

lim
x→0

x
1
a (1−α−aμ+j)

n−1

∏
i=j+1

(
1− α− aμ + i + ax

d
dx

)
yk(x) =

{
1, j = k,

0, j �= k.
(67)

In the formulation of the theorem, the space of functions denoted by O consists of the functions
that are continuous on the semi-axis ]0, ∞[ and can be represented as the convergent power series
with the power functions weights in some neighborhoods Uε1(0) and Uε2(+∞) of the points x = 0
and x = +∞, respectively, i.e., in the form

f (x) = xα
∞

∑
k=0

ak(xρ)k, ρ > 0, x ∈ Uε1(0), (68)

and

f (x) = xβ
∞

∑
k=0

bk(x−σ)k, σ > 0, x ∈ Uε2(+∞). (69)

The functions from O have a power law asymptotic behavior at the points 0 and +∞ that appears
to be an appropriate asymptotics for solutions of the fractional differential equations that contain both
the left- and right-hand sided Erdélyi-Kober fractional derivatives.

Finally, we mention that the results formulated in Theorem 9 remain valid also in the case of
the Equation (55) with a negative parameter ρ under the additional condition a/3 < b. This can be
proved by the operational method presented in [32] and employing the asymptotic behavior of the
four-parameters Wright function of the second kind on the positive semi-axis given in Theorem 4.
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Abstract: In this work the complete version of Stirling’s formula, which is composed of the standard
terms and an infinite asymptotic series, is used to obtain exact values of the logarithm of the
gamma function over all branches of the complex plane. Exact values can only be obtained by
regularization. Two methods are introduced: Borel summation and Mellin–Barnes (MB) regularization.
The Borel-summed remainder is composed of an infinite convergent sum of exponential integrals
and discontinuous logarithmic terms that emerge in specific sectors and on lines known as Stokes
sectors and lines, while the MB-regularized remainders reduce to one complex MB integral with
similar logarithmic terms. As a result that the domains of convergence overlap, two MB-regularized
asymptotic forms can often be used to evaluate the logarithm of the gamma function. Though the
Borel-summed remainder has to be truncated, it is found that both remainders when summed with (1)
the truncated asymptotic series, (2) Stirling’s formula and (3) the logarithmic terms arising from the
higher branches of the complex plane yield identical values for the logarithm of the gamma function.
Where possible, they also agree with results from Mathematica.

Keywords: asymptotic series; asymptotic form; Borel summation; complete asymptotic expansion;
divergent series; domain of convergence; gamma function; Mellin–Barnes regularization;
regularization; remainder; Stokes discontinuity; Stokes line/sector; Stokes phenomenon;
Stirling’s formula

MSC: 30B10; 30B30; 30E15; 30E20; 34E05; 34E15; 40A05; 40G10; 40G99; 41A60

1. Introduction

Discovered in the 1730s [1], Stirling’s formula is a well-known result for determining approximate
values of the gamma function, Γ(z), which is so important in the definition of Mittag–Leffler functions.
Mystery has lingered whether it is indeed possible to obtain exact values of the gamma function from
the complete version of the formula as opposed to its more famous truncated form. Moreover, due to
the function’s rapid exponentiation, its logarithm or ln Γ(z) is studied more often. This, however,
introduces multivaluedness, which makes the asymptotic analysis of the function more formidable.
Consequently, no one has ever been able to obtain exact values of either function via the entire formula.

In its entirety, Stirling’s formula is an asymptotic expansion and is, therefore, divergent. Here exact
values of ln Γ(z) are determined for all values of arg z from the complete asymptotic expansion of
the formula. This process known as exactification represents the ultimate goal of hyperasymptotics,
whose primary aim is to obtain far more accurate values from asymptotic expansions than standard
Poincaré asymptotics [2]. In such studies one not only includes all the terms in a dominant asymptotic
series, but also, subdominant exponential terms, which are said to lie beyond all orders [3]. To observe
their effect, hyperasymptotic calculations are generally carried out to more than 20 decimal places.

Since a complete asymptotic expansion is composed of divergent series, exactification involves
obtaining meaningful values from them. This is achieved by the process of regularization, which is

Mathematics 2020, 8, 1058; doi:10.3390/math8071058 www.mdpi.com/journal/mathematics
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defined here as the removal of the infinity in the remainder of an asymptotic series so as to make the
series summable. It was first demonstrated in [4] that the infinity in the remainder of an asymptotic
series arises from an impropriety in the asymptotic method used to derive it. Hence regularization
represents the method of correcting asymptotic methods.

Two very different techniques will be used to regularize the divergent series in this work.
As discussed in [5,6], the most common method of regularizing a divergent series is Borel summation,
but often, it produces results that are not amenable to fast and accurate computation. To overcome
this drawback, the numerical technique of Mellin–Barnes regularization was developed in [7]. In this
method, divergent series are expressed in terms of Mellin–Barnes integrals and divergent arc-contour
integrals. Regularization removes the latter resulting in the Mellin–Barnes integrals yielding finite
values, similar to the Hadamard finite part of a divergent integral [8]. Amazingly, the finite values
obtained from applying the technique to an asymptotic expansion yield exact values of the original
function with the main difference being that instead of dealing with Stokes sectors and lines, one now
deals with overlapping domains of convergence over which the Mellin–Barnes integrals are valid.

2. Stirling’s Formula

Stirling’s formula [1] for the factorial function is often written for large integers, n, as

ln n! = ln Γ(n + 1) = n ln n− n +
1
2

ln(2πn) + · · · . (1)

As this is accurate to within 1% for n > 5, it represents a good approximation in standard (Poincaré)
asymptotics [2], but not so in hyperasymptotics. Moreover, our aim is to consider complex values,
not large integers. Thus, we replace the factorial function by the more general gamma function,
Γ(z + 1). The terms in (1), denoted here by F(z), then become the leading terms of the complete
asymptotic expansion for ln Γ(z). They will be treated as a separate contribution in all calculations
of ln Γ(z), so that the reader will be able to observe just how inadequate standard asymptotics is
compared with hyperasymptotics.

Occasionally, a problem arises where there is an interest in the missing terms in (1). Then Stirling’s
formula is expressed differently. For example, according to No. 6.1.41 in [9], for z → ∞ and |arg z| < π,
ln Γ(z) is given by

ln Γ(z) ∼ F(z) +
1

12z
− 1

360z3 +
1

1260z5 −
1

1680z7 + . . . , (2)

where F(z) represents all the terms in Stirling’s formula, namely,

F(z) =
(

z− 1
2

)
ln z− z +

1
2

ln(2π). (3)

Hence the leading terms are identical to those in (1). In other texts the dots in (2) are replaced by the
Landau gauge symbol, which would be O(z−9) here since it is the next highest order term. In [10]
the power series after ln(2π) is truncated with the coefficients expressed in terms of the Bernoulli
numbers, while the remainder term, RN(z) in No. 8.344, is given as

|RN(z)| =
∣∣∣∣∣ ∞

∑
k=N

B2k

2k(2k− 1)z2k−1

∣∣∣∣∣ < |B2n|
2n(2n− 1)|z|2n−1 cos2n−1((arg z)/2)

. (4)

Although the remainder is dependent upon z and N, for � z > 0, the series diverges once N passes the
optimal point of truncation, NOP. Moreover, the above result is even more vague than (2) because the
expansion is only valid for “large” values of |z| without indicating what large means. Here, we shall
evaluate exact values of ln Γ(z) from the complete version of Stirling’s formula by following the
concepts and theory in [6], but before this can be done, the following lemma is required.
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Lemma 1. Via regularization, the power/Taylor series expansion for arctanu, namely, ∑∞
k=0 u2k+1/(2k + 1),

can be expressed as

∞

∑
k=0

(−1)ku2k+1

(2k + 1)

{
= arctan u , −1 < � (iu) < 1 ,

≡ arctan u , � (iu) ≤ −1, and � (iu) ≥ 1 .
(5)

Proof. For brevity, the proof is not given here, but appears in [11].

It should be noted that an equivalence symbol appears in one of the results, indicating that one
side possesses a divergent series, while the other side represents a finite regularized value. That is,
arctan, u is defined for all values of u, while the series representation for the function is divergent
when u does not lie within −1 < � (iu) < 1. Since the equivalence symbol is less stringent than an
equals sign, we can re-write the lemma as

∞

∑
k=0

(−1)ku2k+1

(2k + 1)
≡ arctan u, ∀u. (6)

Therefore, if the series appears in a problem, then it can be replaced by the right-hand side (rhs).
Though equivalence statements will appear throughout this paper, it does not necessarily mean that a
power series is divergent for all values of the variable.

Now we derive the complete form of Stirling’s formula. This will not be original, but we need to
establish that it is complete. Binet’s second expression for ln Γ(z) in [2] is

ln Γ(z) = F(z) + 2
∫ ∞

0
dt

arctan(t/z)
e2πt − 1

. (7)

By making a change of variable, y = 2πt, and noting that z is complex, we can then introduce (5).
Replacing k by k + 1 yields

ln Γ(z)− F(z) ≡ 1
π

∞

∑
k=1

(−1)k+1

(2k− 1)

( 1
2πz

)2k−1 ∫ ∞

0
dy

y2k−1

ey − 1
. (8)

The left-hand side (lhs) of (8) is finite (convergent), while the rhs can be either divergent or convergent.
From No. 3.411(1) in [10], the integral in the above equivalence is equal to Γ(2k)ζ(2k), where ζ(z)
represents the Riemann zeta function. Thus, the above result becomes

ln Γ(z)− F(z) ≡ 2z
∞

∑
k=1

(−1)k+1

(2k− 1)
Γ(2k) ζ(2k)
(2πz)2k . (9)

From here on, S(z) denotes the series on the rhs. On the other hand, Paris and Kaminski [12,13],
replace the terms on the lhs by Ω(z). With the aid of the reflection formula for the gamma function,
the following continuation formula can be derived:

Ω(z) + Ω
(

ze±iπ
)
= − ln

(
1− e∓2iπz

)
. (10)

This enables one to obtain values of ln Γ(z) whenever z is situated in the left-hand complex plane via
the corresponding values in the right-hand complex plane. Furthermore, the rhs will play an important
role when the Stokes phenomenon is discussed later.

In order to continue with this study, the following definitions are required:

Definition 1. An asymptotic (power) series is defined here as an infinite power series with zero radius of
absolute convergence.
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Definition 2. An asymptotic form is composed of: (1) a complete asymptotic expansion, which not only
possesses all terms in a dominant asymptotic power series, e.g., S(z) above, but also all the terms in each
subdominant asymptotic series, should they exist, and (2) the common sector or ray in the complex plane over
which the argument of the variable in each series is valid.

By truncating S(z) at N terms, we arrive at

S(z) = z
N−1

∑
k=1

(−1)k

(2z)2k Γ(2k− 1) ck(1)− 2z
∞

∑
n=1

∞

∑
k=N

(−1)k

(2πnz)2k Γ(2k− 1), (11)

where the first term will be denoted as TSN(z), N is the truncation parameter and ck(1) represents a
specific value of the cosecant polynomials [14], given by

ck(1) = −2ζ(2k)/π2k. (12)

The infinite series over k in the second term is known as a generalized Type I terminant [6]. Terminants
were first introduced by Dingle [15] because he found that special functions often possess asymptotic
series whose late coefficients exhibit gamma function growth, viz. Γ(k + α). A Type II terminant differs
in that the coefficients possess an extra phase factor of (−1)k.

The notation SI
p,q(N, zβ) was introduced in [6] to denote the generalization of Dingle’s Type I

terminants, which are defined as

SI
p,q

(
N, zβ

)
�

∞

∑
k=N

(−1)k Γ(pk + q)zβ k . (13)

Alternatively, (11) can be expressed as

S(z) = z
N−1

∑
k=1

(−1)k

(2z)2k Γ(2k− 1) ck(1)− 2z
∞

∑
n=1

SI
2,−1

(
N, (1/2nπz)2

)
. (14)

Thus, β and z in (13) are equal to 2 and 1/2nπz in (14). Although [6] states that both p and q
have to be positive and real, it is N + q/p, which appears in the regularized value of a generalized
terminant. Therefore, provided �(N + q/p) > 0, the regularized value of the series still exists.
Alternatively, k can be replaced by k + 1 in the infinite series in (14), in which case q equals unity.
Since SI

2,−1
(

N, z2) = −z2SI
2,1
(

N − 1, z2), we can apply the result in [6] to SI
2,1
(

N − 1, z2) instead.
According to Rule A in ([15], Chapter 1), Stokes lines occur whenever the arguments or phases of

the variable result in the terms of an asymptotic series becoming homogeneous in phase and having
the same sign. In the case of the generalized terminant in (13), this means that Stokes lines occur
whenever arg

(
−zβ
)
= 2lπ, for l, an integer. Then the terms in either SI

2,−1
(

N, 1/z2) or SI
2,1
(

N, 1/z2)

are all positively real. Because l is arbitrary, we can replace −1 by exp(−iπ). Thus, we find that the
Stokes lines for S(z) occur whenever arg z = −(l + 1/2)π, i.e., at half integer multiples of π.

The concept of a primary Stokes sector/line was introduced in [6] to indicate the first Stokes
sector/line over which an asymptotic expansion is derived. It was also necessary to define asymptotic
forms since two functions can have the same complete asymptotic expansion, but will still be different if
the expansion applies over different primary Stokes sectors or lines. For example, in solving a problem
for positive real values of the variable, one may obtain a generalized Type I terminant as the asymptotic
solution. However, as the variable moves off the real axis, it will acquire subdominant semi-residue
contributions of opposing signs in either direction as a result of the Stokes phenomenon. However,
if the same asymptotic solution is obtained for positive imaginary values of the variable, then as the
variable hits the positive and negative real axes, the asymptotic solution will acquire a semi-residue
contribution. When the variable moves into the lower half of the complex plane, the asymptotic
solution will acquire a full residue contribution. Clearly, both cases are different and will yield different
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values even though the same generalized Type I terminant was derived. Hence the original functions or
solutions for these cases are different. In the first case the positive real axis becomes the primary Stokes
line for the generalized Type I terminant, while in the second case, the upper half of the complex plane
represents the primary Stokes sector. Then as more secondary Stokes sectors/lines are encountered
either in a clockwise or anti-clockwise direction from the primary Stokes sector/line, more Stokes
discontinuities arise at the boundaries. Although the choice of a primary Stokes sector/line is arbitrary,
it will be taken here to be the Stokes sector/line situated in the principal branch of the complex plane,
since most asymptotic expansions are derived under the condition that the variable lies initially in the
principal branch of the complex plane.

Before we can regularize the asymptotic series, S(z), we require the following lemma:

Lemma 2. Regularization of the Taylor series for the logarithmic function yields

∞

∑
k=1

(−1)k+1

k
zk

{
≡ ln(1 + z) , � z ≤ −1 ,

= ln(1 + z) , � z > −1 .
(15)

Proof. There is no need for the proof to appear here as it can be found in [16].

As in the first lemma, we can replace the equals sign in the lemma by the less stringent equivalence
symbol, which reduces the lemma to

∞

∑
k=1

(−z)k

k
≡ − ln(1 + z), ∀ z. (16)

With this result we can now regularize S(z), which will enable the asymptotic forms for ln Γ(z) to
be derived.

Theorem 1. As a result of the regularization of its asymptotic power series, the logarithm of the gamma function
possesses the following asymptotic forms:

ln Γ(z) = F(z) + z
N−1

∑
k=1

(−1)k

(2z)2k Γ(2k− 1) ck(1) + RSS
N (z) + SDSS

M (z), (17)

where the remainder RSS
N (z) is given by

RSS
N (z) =

2 (−1)N+1 z
(2πz)2N

∫ ∞

0
dy y2N−2 e−y

∞

∑
n=1

1
n2N−2 ((y/2πz)2 + n2)

, (18)

and the Stokes discontinuity term SDM(z) is given by

SDSS
M (z) = −�M/2� ln

(
− e±2iπz

)
−
(
1− (−1)M)

2
ln
(

1− e±2iπz
)

. (19)

The remainder is valid for either (M − 1/2)π < θ = arg z < (M + 1/2)π or −(M + 1/2)π < θ <

−(M− 1/2)π, where M is a non-negative integer. However, the Stokes discontinuity term possesses two forms
that are complex conjugates. The upper-signed version of (19) applies to (M − 1/2)π < θ < (M + 1/2)π,
while the lower-signed version is valid over −(M + 1/2)π < θ <−(M− 1/2)π. For z lying on the Stokes
lines, i.e., for θ = ±(M + 1/2)π, RSS

N (z) and SDSS
M (z) are replaced by RSL

N (z) and SDSL
M (z), respectively.

Then the remainder is given by

RSL
N (z) =

2z
(2π|z|)2N−2 P

∫ ∞

0
dy y2N−2 e−y

∞

∑
n=1

1
n2N−2(y2 − 4n2π2|z|2) , (20)
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while the Stokes discontinuity term becomes

SDSL
M (z) = (−1)M

(
�M/2�+ 1− (−1)M

2

)
2π|z| − 1

2
ln
(

1− e−2π|z|
)

. (21)

In (20), P denotes the Cauchy principal value.

Proof. For brevity, the proof is not presented here as it can be found in [11].

The remainder in Theorem 1 is conceptually different from the remainder term in standard
Poincaré asymptotics, which is expressed in terms of the Landau gauge symbol, O(), or as + . . . In fact,
(17) would typically be written as

ln Γ(z) = F(z)− c1(1)
4z

+
c2(1)
8z3 − 3c3(1)

8z5 +O
(

1
z7

)
. (22)

Moreover, by introducing c1(1) = −1/3, c2(1) = −1/45, c3(1) = −2/945 and c4(1) = −1/4725,
into the above result, we obtain (2). For real values of z, (22) is referred to as a large z or z → ∞
expansion with the limit point at infinity. For z complex, it becomes a large |z| expansion. In other
cases, where the Landau gauge symbol is omitted, a tilde often replaces the equals sign. Nevertheless,
in all these representations it means that the later terms in the truncated power series have been
neglected despite their eventual divergence past the optimal point of truncation.

3. Numerical Analysis

In the previous section the asymptotic forms for ln Γ(z) were derived via Borel summation.
However, we still need to verify that these results yield exact values of the special function. This section
aims to present such a numerical analysis. For the analysis to be effective, a large number of values of
|z| is not required. This is because the results change across Stokes sectors or rays, but within each
sector or on each line, they behave uniformly with respect to z. Thus, a few values of |z| are necessary
for testing the validity of the asymptotic forms. In fact, only two values of |z| are necessary: a relatively
large one, where the asymptotic series in (17) can be truncated, and a small one, where truncation
breaks down completely. Then a range of values for both N and arg z or θ, need to be considered
across the Stokes sectors and lines. Note also that selecting extremely large/small values of |z| may
result in overflow or underflow problems in the numerical calculations. This would then give the
misleading impression that the asymptotic forms are incorrect rather than implying a deficiency in
the computing system. Since the variable in the asymptotic series is 1/(2nπz)2 with n ranging from
unity to infinity, |z| = 3 is deemed to be sufficiently large, while for |z| = 1/10, there is no optimal
point of truncation. The second value is, therefore, sufficiently small to demonstrate the breakdown of
standard Poincaré asymptotics.

Before undertaking the numerical analysis, let us present plots of ln Γ(z) to help the reader
understand the nature of the function. Figure 1 displays graphs of the real part of the function for
several fixed values of |z| used in this paper as a function of θ over (0, π). There we see for the larger
values of |z|, the real part of ln Γ(z) dips to a minimum before it begins to grow dramatically, which is
the rapid exponentiation mentioned in the introduction. The smaller values of |z| do not vary as much,
although both are similar to the larger values of |z| in that they dip to a minimum and rise afterwards.
Unlike the other graphs, the graph for |z| = 1/2 has a positive minimum and increases rather slowly.

102



Mathematics 2020, 8, 1058

0.5 1.0 1.5 2.0 2.5 3.0

-4

-2

2

4

6

8

Figure 1. � ln Γ(z) as a function of θ between 0 and π for fixed values of |z|.

Figure 2 displays graphs of the imaginary part of ln Γ(z) for the same fixed values of |z| as a
function of θ over (0, π). Here we see that the large values of |z| rise to a positive maximum before
rapidly decreasing into the negative right quadrant. The plot for |z| = 9/10 does not attain a positive
maximum, but decreases relatively slowly from the origin into the negative right quadrant. The graph
for |z| = 1/2 follows that for |z| = 9/10 until about θ = π/2. Then it decreases faster than the
|z| = 9/10 graph, but when θ is close to π, it rises until it meets the |z| = 9/10 graph at θ = π.
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Figure 2. � ln Γ(z) as a function of θ between 0 and π for fixed values of |z|.

The optimal point of truncation, NOP, is determined by calculating the first value of the truncation
parameter, N, when successive terms in an asymptotic series begin to dominate the preceding terms.
That is, it occurs at the first value of k, where the k + 1-th term is greater than the k-th term in
S(z), namely, ∣∣∣∣2k(2k− 1)

(2z)2
ck+1(1)

ck(1)

∣∣∣∣ = ∣∣∣∣2k(2k− 1)
(2πz)2

ζ(2k + 2)
ζ(2k)

∣∣∣∣ ≈ 1. (23)

Since the ratio of the Riemann zeta functions is close to unity, we observe that NOP occurs around
π|z|. Therefore, for |z|=3, NOP will be close to 10, while for |z|=1/10, it does not exist, meaning that
NOP = 0. In the latter case the first or leading term of the asymptotic series will yield the “nearest”
value to ln Γ(z), but it will not be accurate. On the other hand, the larger NOP is, the more accurate
truncation of the asymptotic series becomes.
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Typically, when a software package such as Mathematica [17] determines values of a special
function, it only does so over the principal branch of the complex plane. Hence, the numerical
analysis will be confined to arg z over (−π, π], which means in turn that the numerical analysis of
(17) will only be conducted over the three Stokes sectors, −3π/2 < θ < −π/2, −π/2 < θ < π/2
and π/2 < θ < 3π/2, and the two Stokes lines at θ = ±π/2. In other words, only the M = 0 and
M = ±1 results in Theorem 1 will be tested for the time being. By denoting the truncated sum in (17)
by TSN(z), i.e.,

TSN(z) = z
N−1

∑
k=1

(−1)k

(2z)2k Γ(2k− 1) ck(1), (24)

we need to verify the following results:

ln Γ(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

F(z) + TSN(z) + RSS
N (z) + SDSS,U

1 (z), π/2 < θ ≤ π,

F(z) + TSN(z) + RSL
N (z) + SDSL

0 (z), θ = π/2,

F(z) + TSN(z) + RSS
N (z), −π/2 < θ < π/2,

F(z) + TSN(z) + RSL
N (z) + SDSL

0 (z), θ = −π/2,

F(z) + TSN(z) + RSS
N (z) + SDSS,L

1 (z), −π < θ < −π/2.

(25)

In the above the superscripts, U and L, have been introduced into the Stokes discontinuity terms in
the Stokes sectors to indicate the upper- and lower-signed versions of (21). Although equal to zero,
the Stokes discontinuity term for the third asymptotic form will be denoted as SDSS

0 (z).
If we put N = 4 in the third result of (24) and neglect the final term or remainder, then we arrive

at (2). However, the remaining terms in this result are now expressed as

RSS
N (z) =

2 (−1)N+1 z
(2πz)2N−2

∞

∑
n=1

1
n2N−2

∫ ∞

0
dy

y2N−2 e−y

(y2 + 4π2n2z2)
, (26)

and

RSL
N (z) =

2 z
(2π|z|)2N−2

∞

∑
n=1

1
n2N−2 P

∫ ∞

0
dy

y2N−2 e−y

(y2 − 4π2n2|z|2) , (27)

while the Stokes discontinuity terms are given by

SDSS
1 (z) = − ln

(
1− e±2πzi

)
, (28)

and

SDSL
0 (z) = −1

2
ln
(

1− e−2π|z|
)

. (29)

Note the connection with Ω(z) mentioned below (9).
For the numerical analysis we need to consider the results over the Stokes sectors separately from

those at the Stokes lines since the latter require the evaluation of the Cauchy principal value and the
Stokes discontinuity terms possess a factor of 1/2 compared with zero when |θ| < π/2 or unity when
|θ| > π/2. Thus, ln Γ(z) will be evaluated via two different Mathematica modules: one involving the
standard numerical integration routine called NIntegrate, and another, where NIntegrate is adapted to
evaluate only the Cauchy principal value.
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When θ > 0, the Stokes discontinuity terms can be combined into one expression, denoted by
SD+(z). This is given by

SD+(z) = −S+ ln
(

1− e2πiz
)

, (30)

where the Stokes multiplier, S+, is written as

S+ =

⎧⎪⎪⎨⎪⎪⎩
1 , π/2 < θ ≤ π ,

1/2 , θ = π/2 ,

0 , −π/2 < θ < π/2 .

(31)

Similarly, the Stokes discontinuity terms in the lower half of the principal branch, SD−(z), can be
written in terms of another Stokes multiplier, S−, as follows:

SD−(z) = S− ln
(

1− e−2πiz
)

, (32)

where S− is given by

S− =

⎧⎪⎪⎨⎪⎪⎩
0 , −π/2 < θ < π/2 ,

1/2 , θ = −π/2 ,

1 , −π < θ < −π/2 .

(33)

From the above, we see that the Stokes multipliers are discontinuous, which is known as the
conventional view of the Stokes phenomenon. However, an alternative view of the Stokes phenomenon
arose in the late 1980s where they were no longer regarded as step-functions. Instead, it was proposed
that they undergo a smooth, but rapid, transition from zero to unity, equalling 1/2 at the Stokes
line [18]. Today, this is known as Stokes smoothing, despite the fact that Stokes never regarded the
multipliers as being smooth [19]. According to this approach, first put forward by Berry and then
made more “rigorous” by Olver [20], the Stokes multiplier reduces to the error function, erf(z). Later,
Berry [21] and Paris and Wood [22] found an approximate form for the Stokes multipliers of ln Γ(z),
which were given as

S±(z) ∼ 1
2
± 1

2
erf
(
(θ ± π/2)

√
π|z|
)

. (34)

A graph of (34) for |z| = 3 versus θ is displayed in Figure 3 together with the conventional view
or (31). For θ < 1, (34) is virtually zero, while for θ > 2, it is almost equal to unity. In between, however,
the rapid smoothing occurs with the greatest deviation from the step-function occurring in the vicinity
of the Stokes line where both views possess a common (green) point at (π/2, 1/2). If smoothing occurs,
then Theorem 1 cannot possibly yield exact values of ln Γ(z), especially for θ between 13π/32 and
17π/32 excluding π/2.

We can establish the correct view by calculating ln Γ(z) for θ between 13π/32 and 17π/32 using
(30) since smoothing implies that (30) cannot possibly yield exact values of ln Γ(z). However, if we
obtain exact values of ln Γ(z), then we know that the conventional view holds and smoothing is a
fallacy. The problem with testing (34) directly is that it applies to much larger values of |z| than 3.
The proponents of smoothing have not provided the form for smaller values of |z|. For very large
values of |z|, truncating the asymptotic expansion at a few terms will yield very accurate values
for ln Γ(z), which can obscure both views unless an extremely high precision and time-consuming
analysis is undertaken. Hence much smaller values of |z| will be considered in (30), so that the Stokes
discontinuity term can no longer be neglected.
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Figure 3. The conventional Stokes multiplier S+ (blue) vs. the smoothed version (red) for |z| = 3 as a
function of θ.

Before Stokes smoothing can be investigated, we must show that (24) behaves as a typical
asymptotic expansion. That is, we must show that for large values of |z|, the remainder can be
neglected to yield accurate, but nevertheless approximate, values of ln Γ(z) up to and not very far
from the optimal point of truncation, while for small values of |z|, it is simply invalid to neglect
the remainder. For this demonstration we do not require the Stokes discontinuity terms. Thus,
we shall study the asymptotic series for |θ| < π/2, in particular θ = 0, because it does not require
complex arithmetic.

From (26) we see that the evaluation of the remainder involves two computationally intensive
tasks. The first is the infinite sum over n, which arose due to an infinite number of singularities lying on
each Stokes line. The second issue is the numerical integration of the exponential integral. The latter can
be avoided by decomposing the denominator into partial fractions and using No. 3.383(10) from [10].
For |θ| < π/2, one then obtains

RSS
N (z) =

Γ(2N − 1)
2πi

∞

∑
n=1

1
n

(
e−2πnzi Γ(2− 2N,−2πnzi)

− e2πnzi Γ(2− 2N, 2πnzi)
)

. (35)

The above result can also be obtained by combining (4.3), (4.10) and (4.11) in [22].
A module was written to evaluate ln Γ(z) in Mathematica with the remainder given by (35) and n

set to an upper limit of 105 to ensure 50 figure accuracy. Table 1 displays a small sample of the results
obtained from the code. For more details about the code including its performance and listing as well
as other results, the reader should consult [11]. Note that all the results are real, which is to be expected
since ln Γ(3) = ln 2. In actual fact, Mathematica printed out a tiny imaginary part with each value,
but it was often zero to the first 50+ decimal places and thus was discarded. The appearance of these
tiny imaginary values indicates the size of the numerical error. The few cases where the errors were
less than 50 decimal places will be discussed shortly.
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Table 1. ln Γ(3) via (35) for various values of the truncation parameter, N.

N Quantity Value

F(3) 0.66546925487494697026844282871193190148012386819465

TS 0.02777777777777777777777777777777777777777777777777
2 RSS

2 (3) −0.0000998520927794385973038298896926468609453577911
Total 0.69314718055994530944891677660001703239695628818129

TS 0.02767489711934156378600823045267489711934156378600
5 RSS

5 (3) 3.468406207072280893260950592903359343689305700 × 10−8

Total 0.69314718055994530941723212145817656807550013436025

TS 0.02767792490305420773799675002229807193246527808017
11 RSS

11 (3) 5.889005342650445782024537787635919634947854418 × 10−10

Total 0.69314718055994530941723212145817656807550013436025

TS 0.02767792637739909405287985684200177174299855050138
20 RSS

20 (3) −6.0499126756131034798323054398369045866792543896 × 10−7

Total 0.69314718055994530941723212145817656807550013436025

TS 41.2834736138079254966213754129139774958755379575621
30 RSS

30 (3) −41.255795688122927157472586120167732829280161691396
Total 0.69314718055994530941723212145817656807550013436025

TS 6.0039864088710184849557428450939638222762809177 × 1025

50 RSS
50 (3) −6.003986408871018484955742842326171253776447002 × 1025

Total 0.69314718055994530941723212145817656807550013436025

ln Γ(3) 0.69314718055994530941723212145817656807550013436025

The first column displays the values of the truncation parameter, N for each calculation.
The second row in the table gives the value of Stirling’s formula for z = 3, which only agrees
with the actual value of ln Γ(3) at the bottom of the table to the first decimal place. For each value
of N there are three rows. The first row labelled TS displays the value of the truncated sum in (25),
while the row labelled RSS

N (3) presents the value of the remainder given by (35) with the upper limit
set to 105. The third row labelled Sum is the sum of Stirling’s formula, the truncated sum and the
remainder. It yields the same value of ln 2 as at the bottom of the table except for N = 2.

For N = 2, the truncated sum and remainder equal 0.027 777 · · · and −9.98 529 · · · × 10−5,
respectively. When they are summed with F(3), they yield a value that agrees with ln Γ(3) to 19
decimal places, which is well-below the 50 decimal figure accuracy mentioned above and nowhere
near as accurate as other results such as N=50. The reason this has occurred is that the factor of n2N−2

in the denominator of (26) affects the calculation of the remainder for the small values of N such as 1
or 2. In these cases the upper limit of 105 needs to be increased substantially to improve the accuracy,
which does not apply for higher values of N.

The remainder is smallest in magnitude when N = 11, which agrees with our estimate below
(23) for the optimal point of truncation, NOP. For N = NOP, the sum of the values only differs from
the actual value of ln Γ(3) at the fifty-third decimal place. Moreover, for N close to NOP, there is little
deterioration in the accuracy, but for N = 30 and 50, well past NOP, the remainder dominates, whereas
in the other calculations, it is small. This is consistent with standard Poincaré asymptotics, where the
remainder is neglected. Therefore, for all but the last two calculations, Stirling’s formula yields the
main contribution to ln Γ(3). For the last two values of N, the truncated sum and remainder dominate,
but their divergence is cancelled out. For example, when N = 50, the remainder and truncated
sum are O(1025). Hence the first 26 decimal places of both quantities cancel each other, thereby
enabling Stirling’s formula to become the main contribution. Unfortunately, losing these decimal
places produces an imaginary term that is zero to a reduced number of decimal places, 23 instead of
50+ as mentioned above.

107



Mathematics 2020, 8, 1058

Now consider z = 1/10, which is unheard of in standard Poincaré asymptotics and also in the
hyperasymptotic calculations of [12,18,21,23,24]. Furthermore, Paris [13] has specifically carried out
a hyperasymptotic calculation of ln Γ(z) using Hadamard expansions for Ω(z). Depending on the
number of chosen levels, his results are accurate at best to 10−45 for �z > 8 (NOP > 25). Hence Table 1
displays far more accurate results, but with z = 3.

Table 2 presents a sample of results for z=1/10 in the third asymptotic form of (25) with RSS
N (z)

given by (35). In this case Stirling’s formula is nowhere near as accurate as in Table 1. Except for N = 2,
adding the truncated series to Stirling’s formula worsens the accuracy. This has arisen because there
is no optimal point of truncation. Therefore, the remainder must be evaluated. As a result that the
remainder diverges far more rapidly in this case, there is a greater cancellation of decimal places than
in Table 1. Thus, the total values in Table 2 are generally not as accurate, the exception being very low
values of N. Despite this, these results could not have been achieved without regularization.

Table 2. ln Γ(1/10) via (35) for various values of the truncation parameter, N.

N Quantity Value

F(1/10) 1.73997257040229101538752631827936332290183806908929

TS 0.83333333333333333333333333333333333333333333333333
2 RSS

1 (1/10) −0.3205932520014175333654707340213015524648898035500
Total 2.25271265173420681535538891759139510377028159887258

TS −1.94444444444444444444444444444444444444444444444444
3 RSS

3 (1/10) 2.457184525776359388926618212330380430142089389324197
Total 2.252712651734205959869700086165299308599483016422822

TS −5874.96031746031746031746031746031746031746031746031
5 RSS

5 (1/10) 5875.473057541649375261942492788406592113174013182747
Total 2.252712651734205959869701646368495118615533791559062

TS −2.94867419474845489858725152842799901623431035195 × 1013

9 RSS
9 (1/10) 2.948674194748506172595384719922447233767119265136 × 1013

Total 2.25271265173420595986970164636849511861562722229495

TS −3.60868558918311609670918346035346984255501011055 × 1031

15 RSS
15 (1/10) 3.60868558918311609670918346035352111656314330204 × 1031

Total 2.252712651734205959869701646368495118615627222294953

ln Γ(1/10) 2.252712651734205959869701646368495118615626380692264

Now we assume that the routine, Gamma[N, z], does not exist in Mathematica. Then a new
program implementing the first, third and fifth asymptotic forms in (25) with the remainder given
by (26) is required. As before, the upper limit in the sum will be set to 105. To calculate each term in
the remainder, the program, which appears as the second program in the appendix of [11], employs
NIntegrate inside a Do loop. Since it is a different approach for calculating ln Γ(z), it can be used
to check the results in Table 1. The version in [11] has the precision and accuracy goals set to 30 for
thirty figure accuracy, which means, in turn, that the working precision must be set to a much higher
level, e.g., 60. Higher values for these options can be set, but it comes at the expense of computing
time. The integrand employed in NIntegrate is called Intgrd and is basically the integrand in (26).
Due to lack of space, the calculated quantities are displayed here to 25 decimal places, although they
were frequently far more accurate. In addition, unlike the previous calculations, we consider complex
values of z, i.e., θ takes on values within the principal branch of the complex plane except at ±π/2.
For brevity, only |z| = 1/10 is presented here. The results for |z| = 3 appear in Table 3 of [11].

Table 3 presents a very small sample of the results obtained by running the second program in the
appendix of [11] with |z|=1/10. Although positive values of θ were considered, only negative values
are displayed here. In the table, there are six results for each value of N and θ. Stirling’s formula is
represented by the first value. The second value, denoted by TS, represents the value of the truncated

108



Mathematics 2020, 8, 1058

sum in (24), while the third value is the regularized remainder, (26), as evaluated via NIntegrate.
The fourth value for each calculation of ln Γ(z) is the Stokes discontinuity term, which according to
(32) is zero for |θ| < π/2 and is purely logarithmic for θ over (−π,−π/2). The fifth value, denoted
by Total, represents the sum of the four preceding values, while the final value is the actual value of
ln Γ(z) using LogGamma[z] in Mathematica.

Since there is no optimal point of truncation, the results in Table 3 for N > 3 are mainly dominated
by the truncated sum and its regularized remainder. In fact, both values dominate so much that many
decimal places are cancelled as observed for N = 30 and 50 in Table 1. Once again, pressure is being
put on the accuracy of the final total. For example, for N = 9 and θ =−6π/13, both the truncated
sum and the regularized remainder are O(1013), which means a loss of thirteen decimal places when
they are summed. Since the accuracy and precision goals were set to 30, this implies that the sum
of the truncated series and the regularized remainder should only be accurate to 17 decimal places.
Fortunately, the total value agrees with the value of ln Γ(z) to 28 decimal places because the working
precision was set much higher (to 60) than the precision and accuracy goals.

Table 3. ln Γ(z) via (25) with |z|=1/10 for various values of the truncation parameter, N, and argz.

N θ Quantity Value

F(z) 1.75803888205251701300823152720 + 0.38158365834299627447460123156 i
TS 0.72168783648703220563643597562 − 2.36111111111111111111111111111 i

3 −π/6 RSS
3 (z) −0.2230295240392980035338083054 + 2.52524252152237336263247340087 i

SDSS
0 (z) 0

Total 2.25669719450025121511085919742 + 0.54571506875425852599596352132 i
ln Γ(z) 2.25669719450025121511085784624 + 0.54571506875425852599596430142 i

F(z) 1.88648341970221940135996338478 + 1.03535606610194782214347998160 i
TS 2.87562548020794239198561 × 1013 − 7.0718880105443602759020497 × 1012 i

9 −6π/13 RSS
9 (z) −2.8756254802079022596675 × 1013 + 7.0718880105448298576076792 × 1012 i

SDSS
0 (z) 0

Total 2.28780660084741914752819484319 + 1.50493777173150666351075080995 i
ln Γ(z) 2.28780660084741914752819484319 + 1.50493777173150666351075080994 i

F(z) 1.93811875120925961146815019100 + 1.18372127170949939121742184779 i
TS −6.2877629092633776151775 × 1010 + 1.3406164598876901506339999 × 1010 i

8 −8π/15 RSS
8 (z) 6.28776290922350273134009 × 1010 − 1.3406164598401660891969575 × 1010 i

SDSS,L
1 (z) 0.76110557640259383178972540915 + 0.07527936657383153773373307240 i

Total 2.30047548923720786540859926314 + 1.73424125265375514384575434070 i
ln Γ(z) 2.30047548923720786540859926314 + 1.73424125265375514384575434070 i

F(z) 2.33668492162243351553206801970 + 1.825916904516483614559881067115 i
TS −42.600558891527544536579217000 + 64.60897639111337349406319763878 i

4 −15π/16 RSS
4 (z) 42.0897905773173511704765793260 − 64.54765565501832133510270286263 i

SDSS,L
1 (z) 0.54123306366541416118208181725 + 1.072657474660830843519039814447 i

Total 2.36714967107765431061151216215 + 2.959895115272366617039415657712 i
ln Γ(z) 2.36714967107765431061151216215 + 2.959895115272366617039415657712 i

Although F(exp(iθ)/10) provides a substantial contribution to ln Γ(exp(iθ)/10), it is no longer
accurate. The truncated sum is capable of improving the accuracy slightly for small values of the
truncation parameter. For example, when the truncated sum is added to F(z) for N=3 and θ=−π/6,
the real part is closer to the real part of ln Γ(exp(−iπ/6)/10), but not so the imaginary part. In fact,
all the results are dominated by the truncated sum and its regularized remainder, but since they
act against each other, their sum is not as large as Stirling’s formula. Nevertheless, one cannot
neglect the remainder as in standard Poincaré asymptotics. In order to obtain the exact value of
ln Γ(exp(−iπ/6)/10) via (25), the remainder must counterbalance the truncated sum, which will
only occur if the regularization has been performed correctly. When the regularized remainder is
included in the total, exact values of ln Γ(exp(iθ)/10) are obtained. For θ<−π/2, however, the Stokes
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discontinuity term must be included. In fact, SDSS,L
1 (z) is greater than the sum of the truncated series

and the regularized remainder, which highlights its importance outside the primary Stokes sector.
So far, we have managed to verify the asymptotic forms in (25) connected with Stokes sectors.

Now we consider the asymptotic forms for the two Stokes lines. As θ is fixed in both asymptotic forms,
the Stokes discontinuity term will only depend upon |z|. In other words, it is solely real. Furthermore,
since TSN(z) depends only on odd powers of z in (24), TSN(z) and RSL,

N (z) must be imaginary along
both Stokes lines. This is consistent with Rule D in ([15], Chapter 1), which states that an asymptotic
series crossing a Stokes line generates a discontinuity that is π/2 out of phase with the series on
the line.

The third code in the appendix of [11] implements the second and fourth asymptotic forms of (25)
in Mathematica. This program is very different from the previous program because it includes a Which
statement in the Do loop. This is necessary because the singularity in the Cauchy principal value
integral in (27) alters with each value of n. Moreover, the integral has been divided into several smaller
intervals in order to achieve the best possible accuracy. The interval in which the singularity is situated
is then determined via the Which statement. This interval is, in turn, divided into two intervals to avoid
the singularity in accordance with the definition of the principal value. To ensure that the principal
value is evaluated without encountering convergence problems, the option Method—>PrincipalValue
must also be introduced into NIntegrate. Finally, in order to achieve the same accuracy as in Table 3,
WorkingPrecision has been increased to 80. Hence the program takes much longer to execute.

Table 4 presents a sample of the results generated by running the third program in [11] with the
variable modz set equal to 3. A similar set of calculations was performed for modz equal to 1/10,
whose results appear in Table 6 of [11], but for brevity, they are not presented here. Although both
Stokes lines were considered by putting the variable theta in the program equal to ±Pi/2, only the
results for positive values of theta are presented here, again for the sake of brevity. The calculations
took much longer for larger values of the truncation parameter, ranging from 26 hrs for N = 1 to
47.5 hrs for N = 50. Because the values of F(3 exp(iπ/2)) and SDSL

0 (3 exp(iπ/2)) are independent
of the truncation parameter, they only appear once at the top of the table, while their sum appears
immediately below them in the row labelled Combined. As stated above, the Stokes discontinuity term
is purely real, whereas the truncated sum and regularized value of the remainder are purely imaginary.
Therefore, the real part of the value in the Combined row represents the real part of ln Γ(3 exp(iπ/2)),
which can be checked by comparing it with the real part of ln Γ(3 exp(3iπ/2)) at the bottom of the
table. Thus, the Stokes discontinuity term only corrects the real part of Stirling’s formula on a Stokes
line. On the other hand, the imaginary part of ln Γ(3 exp(iπ/2)) can only be calculated exactly if the
regularization of (25) has been performed correctly. The last decimal figure of the imaginary part of
ln Γ(3 exp(iπ/2)) was printed out as a 6 instead of a 5, because the accuracy was set to 25 decimal
places in the output stage. Since more than 25 figures appear in the table, this statement should have
been modified to consider a higher level of accuracy. Therefore, we should only be worried when
the results agree for less than 25 decimal places. The redundant places have been introduced here to
indicate that the results in the Total column have been computed via a different approach from the
LogGamma routine in Mathematica at the bottom of the table. That is, we should expect differences to
occur at some stage, but only outside the specified level of accuracy.

In the table we see that the regularized value of the remainder decreases steadily until the
truncation parameter reaches NOP around 11, before it begins to diverge. Note that the imaginary part
of the Total value for N=1 is only accurate to 6 decimal places compared with the imaginary part of
ln Γ(3 exp(iπ/2)). As discussed previously, this arises because the power of n in the denominator of
RSL

1 (z) is zero when N is equal to unity. Though not displayed in the table, the remainder at the optimal
point of truncation, R11(3 exp(iπ/2)), has a minimum magnitude of O(10−11). Beyond this point, the
magnitude of the regularized value of the remainder increases so that its magnitude is O(10−6) for
N=20. By the time N = 30, both the truncated series and regularized value of the remainder dominate
the calculation, but since they act against each other, they combine to yield the extra imaginary value
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enabling the imaginary part in the Combined row to agree with ln Γ(3 exp(iπ/2)). In fact, the most
surprising result in the table is the last result for N = 50 because at least 25 decimal places cancel
before we obtain the regularized value for the entire asymptotic series. As mentioned previously,
the cancellation of these decimal places puts pressure on the accuracy and precision goals, which have
been set to 30, as stated above. Fortunately, because WorkingPrecision was set to 80, it appears that
the neglected terms in setting a limit of 105 in the summation are negligible. Thus, the remainder has
been evaluated to a much greater accuracy than specified by the accuracy and precision goals in the
program. Consequently, the Total value for N=50 agrees with the actual value of ln Γ(3 exp(iπ/2)).

Table 4. ln Γ(3 exp(iπ/2)) via (25) for various values of N.

N Quantity Value

F(3 exp(iπ/2)) −4.3427565915140719616112579569 − 0.4895612973931192354299251350522 i
SDSL

0 (3 exp(iπ/2)) 3.256206078642828367679816468 × 10−9

Combined −4.3427565882578658829684295892 − 0.4895612973931192354299251350522 i

TS 0
1 RSL

1 (3 exp(iπ/2)) − 0.0278840894653691199321777792256 i
Total −4.3427565882578658829684295892 − 0.5174453868584883553621029142779 i

TS 0 − 0.0278842394252900781377131527007 i
6 RSL

6 (3 exp(iπ/2)) 0 − 1.8907874105339892863379255 × 10−8 i
Total −4.3427565882578658829684295892 − 0.51744555572628341890753115113225 i

TS 0 − 0.0278842563298976281594154202028 i
9 RSL

9 (3 exp(iπ/2)) 0 + 3.2562060786428283676798164 × 10−9 i
Total −4.3427565882578658829684295892 − 0.51744555572628341890753115113225 i

TS 0 − 0.0278842691899612112195938305035 i
15 RSL

15 (3 exp(iπ/2)) 0 + 1.0856797027741987814423624 × 10−8 i
Total −4.3427565882578658829684295892 − 0.51744555572628341890753115113225 i

TS 0 − 52.07235660935681329352406137393 i
30 RSL

30 (3 exp(iπ/2)) 0 + 52.044472351023649035874440121314 i
Total −4.3427565882578658829684295892 − 0.51744555572628341890753115113225 i

TS 0 − 6.4908409843349435181620453 × 1025 i
50 RSL

50 (3 exp(iπ/2)) 0 + 6.4908409843349435181620453 × 1025 i
Total −4.3427565882578658829684295892 − 0.51744555572628341890753115113225 i

ln Γ(3 exp(iπ/2)) −4.3427565882578658829684295892 − 0.51744555572268341890753115113225 i

So far, we have not seen any evidence of Stokes smoothing as espoused by Berry [18], Olver [20]
and Paris, Kaminski and Wood [12,13,25]. As indicated earlier, smoothing implies that there is no
discontinuity in the vicinity of a Stokes line, whereas we have been able to obtain exact values of
ln Γ(z) near Stokes lines assuming the existence of a discontinuity. Because such smoothing occurs
rapidly in the vicinity of Stokes lines, it could perhaps be argued that we have not investigated the
asymptotic behaviour of ln Γ(z) sufficiently close to the Stokes lines. If a rapid transition does occur,
then it means that we have still not exactified the Stokes approximation in the vicinity of the Stokes
lines. From Figure 3, which represents the situation for |z|=3, Stokes smoothing is expected to be most
pronounced for θ lying between 13π/32 and 19π/32. Alternatively, the Stokes multiplier is expected
to be quite close to 1/2 for small values of δ, where θ = π(1/2 + δ) and |δ| < 3/32. On the other hand,
if the conventional view of the Stokes phenomenon is valid, then the Stokes multiplier S+ will equal
unity for 0 < δ < 1 and zero for −1 < δ < 0 according to (31). Thus, a narrow region of positive and
negative values of δ exists, where one of the views can be disproved. In summary, introducing very
small values of δ into the respective asymptotic forms of (24) should not yield exact values of ln Γ(z) if
smoothing occurs since the Stokes multiplier should be close to 1/2 and not toggle between zero and
unity according to the sign of δ.
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Table 5 presents a small sample of the results obtained by running the second program in [11]
for |z| = 3 and various values of δ, where θ = (1/2 + δ)π. The code was run for different values of N
except those close to unity for the reason given above. For each positive value of δ, there are three rows
of values, while for each negative value there are only two rows because the Stokes discontinuity term
is zero. The first row for each value of δ, labelled LogGamma[z] in the Method column, represents
the value obtained from the LogGamma routine in Mathematica. Depending upon the sign of δ,
the second row displays the Stokes discontinuity term. In general, this term was found to possess real
and imaginary parts of O(10−8) or even a couple of orders lower. The next value for each value of δ is
labelled either 1st AF or 3rd AF in the Method column according to whether the first or third asymptotic
form in (25) was used to calculate the value of ln Γ(z). For brevity, the values of the truncated sum,
the regularized value of the remainder and Stirling’s formula do not appear in the table.

Table 5. ln Γ(3 exp(i(1/2 + δ)π)) via (24) for various values of δ.

δ Method Value

1/10 LogGamma[z] −5.1085546405054331385771175 − 2.43504864133618239587613036 i
SDSS,U

1 (z) 0.0000000146924137960847328 + 0.00000000724920978735477097 i
1st AF −5.1085546405054331385771175 − 2.43504864133618239587613036 i

−1/10 LogGamma[z] −3.1156770612855851062960250 + 0.79152717486178700663566144 i
3rd AF −3.1156770612855851062960250 + 0.79152717486178700663566144 i

1/100 LogGamma[z] −4.4448078360199294879676721 − 0.68426539470619315579497619 i
SDSS,U

1 (z) 0.0000000054543808883397577 − 0.00000000366845661861183983 i
1st AF −4.4448078360199294879676721 − 0.68426539470619315579497619 i

−1/100 LogGamma[z] −4.2360547825638102221663061 − 0.35681003461125834209091866 i
3rd AF −4.2360547825638102221663061 − 0.35681003461125834209091866 i

1/1000 LogGamma[z] −4.3531757575591613140088085 − 0.53385166100905755261595669 i
SDSS,U

1 (z) 0.0000000065016016472424544 − 0.00000000038545945628149871 i
1st AF −4.3531757575591613140088085 − 0.53385166100905755261595669 i

−1/1000 LogGamma[z] −4.3322909095906129602545969 − 0.50110130347126170951651903 i
3rd AF −4.3322909095906129602545969 − 0.50110130347126170951651903 i

1/10,000 LogGamma[z] −4.3438006028809735966127763 − 0.51908338527968766540121412 i
SDSS,U

1 (z) 0.0000000065123040290213875 − 0.00000000003856476898298508 i
1st AF −4.3438006028809735966127763 − 0.51908338527968766540121412 i

−1/10,000 LogGamma[z] −4.3417121085407199183370966 − 0.51580834470414165478538635 i
3rd AF −4.3417121085407199183370966 − 0.51580834470414165478538635 i

1/20,000 LogGamma[z] −4.3438006028809735966127763 − 0.51908338527968766540121412 i
SDSS,U

1 (z) 0.0000000065123851251757157 − 0.00000000001928245580002624 i
1st AF −4.3438006028809735966127763 − 0.51908338527968766540121412 i

−1/20,000 LogGamma[z] −4.3422344065179726897501879 − 0.51662687288967352139359494 i
3rd AF −4.3422344065179726897501879 − 0.51662687288967352139359494 i

It should be noted that when |δ| is extremely small, e.g., O(10−5), NIntegrate experiences
convergence problems because the integration is now too close to the singularities on the Stokes
line. For example, when δ = 10−5, the program printed out a value that agreed with the actual
value to 25 decimal places for the real part, but the imaginary part only agreed to 18 decimal places.
Although this calculation is not presented in the table, it does represent a degree of success since the
imaginary part of the Stokes discontinuity term is O(10−12). That is, the Stokes discontinuity term still
had to be correct to the first six decimal places for the agreement to occur at 18-th decimal place.

For δ > 0 in the table, the first asymptotic form in (25) yields the exact value of ln Γ(z) even
though the Stokes discontinuity term is very small. Nevertheless, in the case of Stokes smoothing,
this term should be almost half the values appearing in the table. For δ < 0, if smoothing occurs,
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then the third asymptotic form in (25) should also not yield exact values of ln Γ(z) because it is missing
almost half the Stokes discontinuity term. Yet, we observe the opposite; the third asymptotic form
yields exact values of ln Γ(z) for δ < 0. Therefore, Stokes smoothing does not occur. These results are
discussed in more detail in [26].

An explanation why Stokes smoothing is fallacious appears in ([6], Section 6.1), where it is shown
that the form for the Stokes multiplier given by Berry and Olver is based on applying standard
asymptotic techniques. Olver’s “rigorous proof” [20] involves truncating an asymptotic series via
Laplace’s method. Since only the lowest order terms are retained in this approach, Olver arrives at the
error function result for the Stokes multiplier. The neglected higher order terms are not only divergent,
but are also extremely difficult to regularize. If they could be regularized, then they would produce the
necessary corrections to turn the smooth function in Figure 3 into a step-function, thereby confirming
the conventional view of the Stokes phenomenon.

4. Mellin–Barnes Regularization

In the preceding section we were able to exactify Stirling’s formula by carrying out
hyperasymptotic calculations of the asymptotic forms in (25). However, there were two drawbacks
with the numerical analysis. The first is that an upper limit was applied to the infinite sums appearing
in the expressions for the regularized value of the remainder. Despite this, the regularized values were
extremely accurate for an upper limit of 105 in (26) and (27). This results in the second drawback,
the considerable effort required to calculate the remainder. Ideally, we do not want to truncate any
result here so that we can dispel any doubt that we are evaluating an approximation. If the infinite
sum over n can be replaced by a single result, then there will be a huge reduction in the execution
time since there would be only one call to NIntegrate. Such an expression emerges when we consider
Mellin–Barnes regularization of ln Γ(z) in the following theorem.

Theorem 2. Via the Mellin–Barnes (MB) regularization of the asymptotic series S(z) given by either (9) or (11),
the logarithm of the gamma function can be expressed as

ln Γ(z) =
(

z− 1
2

)
ln z− z +

1
2

ln(2π) + z
N−1

∑
k=1

(−1)k
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− 2z
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ds
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2πz

)2s e±2Miπs
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SMB(M, z) = ±�M/2� ln
(
− e−2iπz

)
−
(1− (−1)M

2

)
ln
(

1− e±2iπz
)
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for (±M− 1)π < θ = arg z < (±M + 1)π, and M ≥ 0, but excluding θ equal to half-integer values of π.
The strips involving θ represent domains of convergence for the MB integral in (36) with the upper-signed forms
applying to positive θ and the lower-signed ones to negative θ. For θ = ±(M− 1/2)π, SMB(M, z) reduces to
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while for θ = ±(M + 1/2)π, it is given by
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Proof. For the sake of brevity, the proof is omitted as it appears in ([11], Section 4).
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Comparing the above results with those in Theorem 1, we see that not only is the remainder of the
asymptotic series in (11) expressed as an MB integral, but there are also no discontinuities from crossing
Stokes lines. Instead, the MB integral is valid over a strip or domain of convergence with the Stokes
lines situated inside the domains of convergence. Although (38) and (39) apply at half integer values
of π, they no longer represent Stokes lines as in Theorem 1. They have been isolated here as a result of
the MB regularization of S(z) since ln Γ(z) itself possesses jump discontinuities at θ = (l + 1/2)π, for l,
an integer not equal to 0 or −1. Thus, MB regularization produces a totally different representation
of the original function from its asymptotic forms, and relies on the continuity of the function. If the
original function possesses discontinuities as ln Γ(z) does, then the MB-regularized value will not
yield the value of the original function unless the analysis is adapted as explained in the proof.

Since Stokes multipliers do not appear in the MB regularization of ln Γ(z) for θ = ±π/2,
this implies that the Stokes discontinuities obtained by Borel summation can be fictitious. That is,
although we observed jumps in the Stokes multipliers at θ = ±π/2, it does not mean that ln Γ(z)
is necessarily discontinuous there. In fact, discontinuities will only occur at Stokes lines if the
original function possesses singularities on them. In the case of ln Γ(z) singularities only occur
when θ = ±(l + 1/2)π and l > 0.

Another feature of the above results is that the sum over n has vanished. It has effectively been
replaced by the Riemann zeta function. As a consequence, we now only have one integral to evaluate
the remainder in (11). This will save much computational effort provided that the software package is
able to evaluate the zeta function extremely accurately. Fortunately, this is accomplished using the
Zeta routine in Mathematica [17].

Although the results in Theorem 2 have been proven, as in the case of Theorem 1, we cannot
be certain that they are indeed valid because we have observed in the case of “Stokes smoothing”
that proofs in asymptotics are not reliable unless they are verified by numerical analysis. Since the
results in Theorem 1 have already been validated, we can use them to establish the validity of the
MB-regularized forms in Theorem 2. Therefore, the next section presents a numerical analysis where
the MB-regularized forms for ln Γ(z3) are matched with the corresponding Borel-summed forms in
Theorem 1.

5. Further Numerical Analysis

According to the definition of the regularized value [4–7], it must be invariant irrespective of how
it is obtained. Therefore, we need to demonstrate that the MB-regularized forms in Theorem 2 yield
identical values to the Borel-summed forms in Theorem 1, especially for the higher Stokes sectors and
lines not studied previously. To access the higher/lower sectors or lines, higher powers of the variable
z need to considered such as z3 in ln Γ(z). This is tantamount to finding an asymptotic solution to a
problem, which happens to yield the asymptotic forms of ln Γ(z3). In this case the principal branch is
still (−π, π], but Mathematica is only able to evaluate ln Γ(z3) for θ over (−π/3, π/3].

From Theorem 2, two different representations exist for the regularized value of ln Γ(z) since
replacing M by either M− 1 or M + 1 in (36) produces a different asymptotic form, where each is valid
over one half of the domain of convergence for M = M. For example, the upper-signed version of (36)
is valid for π < θ < 3π when M = 2, while for M = 1 and M = 3, it is only valid over 0 < θ < 2π

and 2π < θ < 4π, respectively. Thus, the M = 1 result is valid for the bottom half of the domain of
convergence for M = 2, while the M = 3 result applies to the top half of the domain of convergence for
M = 2. This means that we are not only able to evaluate ln Γ(z) for higher/lower values of θ or arg z,
but we can check the results against the asymptotic forms from overlapping domains of convergence.
In addition, the M = 0 results can be checked with the values of ln Γ(z3) evaluated by Mathematica.
Finally, we can check to see whether the MB-regularized forms of ln Γ(z3) yield identical values to
the corresponding Borel-summed asymptotic forms in Theorem 1. Previously, we had no method of
checking whether the Borel-summed asymptotic forms for ln Γ(z) outside the principal branch were
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correct. Now this problem can be tackled by comparing the resulting Borel-summed asymptotic forms
when z is replaced by a power of itself with the corresponding MB-regularized forms.

If z is replaced by z3, then for M = 0 or −π/3 < θ < π/3, (36) becomes

ln Γ
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(
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)
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z3
)
+ Δ ln Γ

(
z3
)
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where
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In (40), TSN(z) represents the truncated part of the asymptotic series, S(z) at N, as in (25), while the
subscript U or L in (42) denotes whether the upper-signed or lower-signed version has been used.
For M = 0, the subscript is dropped. Thus, ln Γ(z3) is composed of Stirling’s formula, the truncated
series and an MB integral as the regularized value of the remainder. On the other hand, for M = 1,
the upper-signed version of (36) yields

Δ ln Γ
(

z3
)
= −2z3 IU(1)− ln

(
1− e2iπz3

)
. (43)

The domain of convergence for this integral is 0 < θ < 2π/3, but it is not valid when θ = π/2 since
SMB(M, z3) is discontinuous whenever θ = ±(M± 1/2)π/3 excluding M = 0. For θ = π/6, (38) can
be used, but all that happens is the logarithmic term on the right-hand side of (43) is replaced by
ln
(

1− e−2π|z|3
)

, which indicates that there is no discontinuity in ln Γ(z3) at θ = π/6.
For M = 1, when θ = ±(M + 1/2)π/3, θ = ±π/2. The upper value of θ lies in the domain of

convergence for (43). In (36), we substitute (39) with z equal to z3 for SMB(M, z). Then we arrive at

Δ ln Γ
(

z3
)
= −2z3 IU(1)− 2π|z|3 − ln

(
1− e−2π|z|3

)
. (44)

As a result of the penultimate term, we expect a discontinuity when (44) is evaluated later. In addition,
we can replace F(z3) and TSN(z3) in (40) by F(−i|z|3) and TSN(−i|z|3), respectively, while z3 in (44)
can be replaced by −i|z|3.

When compared with (40), we see that (43) and (44) possess extra terms, which are similar to the
Stokes discontinuity term in the Borel-summed asymptotic forms of Theorem 1. The difference here is
that the lines of discontinuity are located in the domains of convergence. Thus, the asymptotic form is
only different on the lines, whereas with Stokes lines, the regularized value is different before, on and
after them. Moreover, we expect both forms for ln Γ(z3) to yield identical values when the domains of
convergence overlap, i.e., over (0, π/3). This does not occur with the Stokes phenomenon, indicating
again that MB regularization is different from Borel summation.

For M = 2 and 3, the upper-signed version of (36) with z replaced by z3 yields

Δ ln Γ
(

z3
)
=

⎧⎨⎩−2z3 IU(2) + ln
(
− e−2iπz3

)
, π/3 < θ < π,

−2z3 IU(3) + ln
(
− e−2iπz3

)
− ln

(
1− e2iπz3

)
, 2π/3 < θ < 4π/3.

(45)

These results, which are similar to (43) except for the logarithmic terms, are not valid for θ=π/2 and
θ=5π/6.
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For M = 1 and θ = ±(M + 1/2)π/3, (39) was used to derive the asymptotic form of ln Γ(z3).
However, when θ=±(M− 1/2)π/3, θ can also equal π/2, but now the upper-signed version of (42)
with M = 2 applies. Moreover, SMB(M, z) is determined by putting M=2 and replacing z by z3 in (38).
Hence for M=2 and θ=π/2, we find that

ln Γ
(

z3
)
= F
(

z3
)
+ TSN

(
z3
)
− 2z3 IU(2)− 2 π|z3|. (46)

For θ = 5π/6, we have either M=3 when θ=(M− 1/2)π/3 or M=2 when θ=(M + 1/2)π/3.
In the first case SMB(M, z) is given by (38) with z= z3 and M=3. In the second case (39) applies with
z = z3 and M = 2. Thus, we obtain

Δ ln Γ
(

z3
)
=

⎧⎨⎩−2z3 IU(3)− ln
(

1− e−2π|z3|
)
+ 2π|z3|, M = 3,

−2z3 IU(2) + 2π|z3|, M = 2.
(47)

The corresponding lower-signed results from (36) with z replaced by z3 are simply complex
conjugates of the above results. For brevity, they are not presented here. However, the interested
reader will find them in ([11], Section 5).

Two separate numerical analyses will be presented here: the first aims to show the agreement
between the MB-regularized asymptotic forms for ln Γ(z3) and their Borel-summed counterparts,
and the second deals with the behaviour of ln Γ(z3) at the Stokes lines/rays. The first one includes an
explanation of how to evaluate ln Γ(z3) from the MB-regularized asymptotic forms. Then the results
are compared with the Borel-summed asymptotic forms in Section 3 with z replaced by z3. We shall
observe that although both MB-regularized asymptotic forms are defined at each Stokes line, they give
incorrect values of ln Γ(z3) with the difference being discontinuous jumps of 2πi. The second study
at the Stokes lines/rays will be concerned with obtaining the correct values of ln Γ(z3) via both the
Borel-summed and MB-regularized asymptotic forms by applying the Zwaan–Dingle principle [6,15],
which states that an initially real function cannot suddenly become imaginary.

Since there are no Stokes lines of discontinuity in the above results, there are always two
MB-regularized asymptotic forms that yield the values of ln Γ(z3) for all values of θ or arg z, except
when θ = kπ/3 and k is an integer. Thus, the values from two different asymptotic forms for the
regularized value of ln Γ(z3) can be checked against each other, which is simply not possible with
Borel-summed results.

Because it represents a value where standard Poincaré asymptotics breaks down, we shall carry
out the numerical study of the above results with |z| set equal to 1/10 as before. Note that the actual
variable in the above asymptotic forms is 2πz3. Therefore, we are dealing with a very small value,
which means that both the truncated series, TSN(z), and the MB integral in the above results begin to
diverge very rapidly for relatively small values of the truncation parameter, e.g., N=4. Consequently,
a cancellation of many decimal places will occur when adding TSN(z) to the MB integral. Despite
the accuracy and precision goals being set to 30, one may not necessarily obtain a final value that is
accurate at this level even though WorkingPrecision is now set higher to 80, not 60 as in Section 3.
As stated earlier, the problem can be overcome by specifying much larger values of AccuracyGoal,
PrecisionGoal and WorkingPrecision in NIntegrate, but it will come at the expense of computing time.

Table 6 presents a very small sample of the results from the fourth program in the appendix of [11]
for various values of N and θ or arg z. There are five sets of results, four with θ positive, and one where
it is negative. The first row of each calculation gives the value of Stirling’s formula, while the next
row displays the value of TSN(z3). Then the remainder denoted by MB Int. appears. As mentioned
earlier, because the domains of convergence of the MB integrals overlap one another, two different
MB integrals are computed for the remainder. The first MB integral is represented by M1, while the
second is represented by M2. The second MB integral is not evaluated when θ= lπ/3 and l, an integer,
as demonstrated by the third calculation. The values of N and θ appear together with the value of the
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first MB integral in each set. The values of SMB(M, z3) are displayed in the rows immediately after the
MB integrals. Then the results for the entire asymptotic form appear, which can be compared with the
value of LogGamma from Mathematica.

Table 6. Values of ln Γ(z3) with |z| = 1/10 and varying N and θ in the Mellin–Barnes
(MB)-regularized forms.

θ N Quantity Value

F(z3) 4.3666691849467394839681993920 + 0.39773534871318634708519397906 i
TS3(z3) 1.964244428861064224518267 × 106 − 1.9641265777308664665975342 × 106 i

−π/12 3 MB Int (M1 = 0) −1.964241888183123016922580 × 106 + 1.964126965801012078012431 × 106 i
SMB(0, z3) 0

Total via M1 6.9073471261543351713515623993 + 0.7858054943246012439632804975 i
MB Int (M2 = −1) −1.964246960282777058252170 × 106 + 1.964127748979378940448405 × 106 i

SMB(1, z3) 5.0720996540413295899999675136 − 0.783178366862435974379475023745 i
Total via M2 6.9073471261543351713515623992 + 0.78580549432460124396328049761 i

LogGamma[zcube] 6.9073471261543351713515623992 + 0.78580549432460124396328049761 i

F(z3) 4.3790700299188033385944250366 − 1.38001259938612058620816944744 i
TS4(z3) 3.03718072746107697324584 × 1011 − 7.332351579151624817641834 × 1011 i

7π/24 4 MB Int (M1 = 0) −3.03718072743578478216056 × 1011 + 7.33235157913793379318864 × 1011 i
SMB(0, z3) 0

Total via M1 6.9082891384461367831946353384 − 2.749115044705401162838355615704 i
MB Int (M2 = 1) −3.03718072748649559827233 × 1011 + 7.33235157914968575273952 × 1011 i

SMB(1, z3) 5.0710816111765935339415417904 − 1.175195955088607468412668235518 i
Total via M2 6.9082891384461367827408810781 − 2.749115044705401165409263040026 i

LogGamma[zcube] 6.9082891384461367827408810777 − 2.749115044705401165409263038133 i

F(z3) 4.3807239279747234048593708927 − 1.57393791944848641246978433502 i
TS2(z3) −83.333333333333333333333333333 + 0 i

π/3 2 MB Int (M1 = 1) 80.791062865366238781576251609 + 0 i
Log. Term (M1 = 1) 5.0698798575073995786757215377 − 1.56765473414130682599285904825 i

Total via M1 6.9083333175150284317780107065 − 3.141592653589793238462643383279 i
LogGamma[zcube] 6.9083333175150284317780107065 − 3.141592653589793238462643383279 i

F(z3) 4.3671839976260822611773860371 + 0.45442183940812929747019906926 i
TS5(z3) −5.95238271839508333182790 × 1017 − 7.737535164228715974701668 × 1011 i

4π/7 5 MB Int (M1 = 1) 5.95238271839508330650668 × 1017 + 7.737535164239864652939712 × 1011 i
SMB(1, z3) 5.0674216504983723676332001993 + 2.46643387314754360954113189663 i

Total via M1 6.9024828161628933968353749191 + 4.03572353636012752353352062801 i
MB Int (M2 = 2) 5.95238271839508335723002 × 1017 + 7.737535164233152240154912 × 1011 i

SU
MB(2, z3) 5.0710816111765935339415417904 − 1.175195955088607468412668235518 i

Total via M2 6.9024828161628933880358773203 + 4.03572353636012787577347290435 i

F(z3) 4.3749562509709981184827498273 − 1.05509306570630337542065838646 i
TS6(z3) 8.41751139369492541714725 × 1023 + 5.154919990982005385545807 × 1017 i

8π/9 6 MB Int (M1 = 2) −8.41751139369492541714722 × 1023 − 5.154919990982005395943833 × 1017 i
SU

MB(2, z3) 0.0054413980927026535517822347 − 3.13845106093620344522418073989 i
Total via M1 6.9134848732085864689307216827 − 5.23334675905750858730776717724 i

MB Int (M2 = 3) −8.41751139369492541714727 × 1023 − 5.154919990982005390723539 × 1017 i
SU

MB(3, z3) 5.0780394872445415442384564511 − 3.660480464761928202988399777482 i
Total via M2 6.9134848732729541247531300647 − 5.233346759035781054140026255124 i

The first calculation in Table 6 lists the results for θ = −π/12 and N = 3. Then (40) and the
complex conjugate of (43) corresponding to M1 = 0 and M2 = -1, respectively, yield the value of
ln Γ(exp(−iπ/4)/1000). Stirling’s formula on the first row is substantial, but not accurate, compared
with the actual value from the LogGamma routine in the bottom row of the calculation. The second
row of the calculation displays the value of TS3(exp(−iπ/4)/1000), which is O(106). Thus, at least six
decimal figures need to be cancelled by the remainder or MB integral, which occurs when the value on
the next row is included in (40). The value of SMB(0, exp(−iπ/4)/1000) (zero since M1 = 0) appears
on the fourth row of the calculation, while the sum of all the preceding quantities appears in the fifth
row labelled as ‘Total via M1’. The total value agrees with the actual value of ln Γ(exp(−iπ/4)/1000)
to 30 decimal places, well within the accuracy and precision limits despite the cancellation of six
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decimal figures. The sixth row of the first calculation displays the value of the MB integral for M2
= −1. As expected, it agrees with the first six decimal figures of the values for both the truncated
sum and the MB integral in (40). However, SMB(1, z3), which is now non-vanishing, appears on the
seventh row. There it can be seen that the real and imaginary parts of this value are much greater in
magnitude than those from Stirling’s formula. If this value is summed only with Stirling’s formula,
then the resulting value deviates from the value of ln Γ(exp(−iπ/4)/1000) far more than either value
on its own, but when it is summed with the truncated sum and MB-regularized remainder, it yields
ln Γ(exp(−iπ/4)/1000) to 29 decimal places despite the cancellation of six decimal figures.

The other calculations in Table 6 are similar to the first set of results except the MB-integrals and
SMB(M, z3) are evaluated according to the relevant domain of convergence. The third calculation
presents less results because it has already been stated that there is only one MB-regularized form,
viz. (44), which is applicable. Nevertheless, the final result agrees with the value obtained from
Mathematica. An interesting result in this calculation is that �(ln Γ(z3)) = −π for θ = π/3 because
the asymptotic series is composed of purely real terms when θ = kπ/3 and k is an integer. Hence the
imaginary part of TSN(z3) vanishes for all these values. In addition, the imaginary part of the MB
integral can be shown to vanish by splitting the integral into two integrals and making the substitutions,
s = c + it in the upper half of the complex plane and s = c− it in the lower half. Then all the terms
become complex conjugates of each other. Expanding out all the terms, one is left with a real integral,
while the imaginary part reduces to

� ln Γ
(
|z|3 exp(iπ)

)
= �F

(
|z|3eiπ

)
−� ln

(
1− e−2iπ|z|3

)
. (48)

From Stirling’s formula we obtain

�F
(
|z|3eiπ

)
= −

(
|z|3 + 1/2

)
π, (49)

while the second term in (48) becomes

� ln
(

1− e−2iπ|z|3
)
= � ln

(
e−iπ|z|3

)
+� ln

(
2i sin(π|z|3)

)
. (50)

Introducing these results into (48) yields

� ln Γ
(

z3
) ∣∣∣

θ=π/3
= −π. (51)

In the last two calculations of Table 6, θ > π/3, which means that the LogGamma routine can
no longer be used. We are now on our own, a new frontier in mathematics, where only the totals via
the M1 and M2 asymptotic forms can yield the value of ln Γ(z3). Moreover, when θ equals 2π/3 or
π, there will only be one MB-regularized form that yields the regularized value. For these cases we
require the Borel-summed regularized values as a check.

In the fifth calculation, N is set equal to 5, which yields a value of O(1017) for the truncated
sum. Hence at least 16 decimal figures need to be cancelled in order to obtain ln Γ(e12iπ/7/1000).
Since θ = 4π/7, the domains of convergence are (0, 2π/3) and (π/3, π) corresponding to M1 = 1 and
M2 = 2. Thus, (43) and (45) apply, which is interesting because SMB(M, z3) is very different in these
asymptotic forms, particularly the imaginary parts. As expected, the MB integrals for both asymptotic
forms yield the 17 decimal figures in the real parts needed to cancel the real part of the truncated sum,
TS5(e12iπ/7/1000). On the other hand, only 11 decimal figures are cancelled in the imaginary parts.
As a result of the cancellation, the real parts in the totals only agree to 17 decimal figures. The same
applies to the imaginary parts, which is surprising since there were less cancelled figures.

Because 4π/7 is closer to the upper limit of 2π/3 of the domain of convergence for (43),
one expects the total obtained via M1 in the table to be the less accurate of the two forms. In actual
fact, it turns out that this value is more accurate than the total via (45) by a few extra decimal places.
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Nevertheless, if WorkingPrecision is set to 100 and AccuracyGoal and PrecisionGoal to 40, then both
totals are found to agree to 32 decimal places, although the computation time is more than doubled.
Another method of avoiding long computation times is to keep N as low as possible.

The final calculation in Table 6 is similar to the previous one except that (45) is introduced into
(40) to yield the MB-regularized asymptotic forms for θ = 8π/9. For N = 6, the truncated sum is
O(1023). Since the highest degree of cancellation between the truncated sum and remainder occurs
here, we find that this calculation yields the least accurate results of all those in the table. Despite
this fact, the final results still agree with each other to 10 decimal places. Hence the results in Table 6
confirm the validity of the MB-regularized asymptotic forms for ln Γ(z3).

We now consider the MB-regularized asymptotic forms near Stokes lines. Although the code
should not be run when θ corresponds directly to a Stokes line, one can do so since the MB integrals are
defined. Table 7 displays some of the results obtained by running the fourth program in [11] near the
Stokes lines at θ = π/2, θ = 5π/6 and θ = −π/6 with |z| = 1/10 and N = 5. When θ = π/2, the code
evaluates ln Γ(z3) via (43) and (45) with M1 = 1 and M2 = 2, respectively. The first two results in the
table display the values of (43) and (45) near the discontinuity at π/2 with θ = 19π/40. As expected,
both forms of ln Γ(z3) yield identical values. At θ = π/2, however, both forms yield different results,
but only for the imaginary parts. In fact, there is a jump discontinuity of 2πi between the results with
the first form yielding −iπ/2 and the second, 3iπ/2. Note, however, that the discontinuities arise only
from taking the logarithm of the gamma function. The gamma function itself is not discontinuous.
As expected, neither result for θ=π/2 is correct. The correct result is the midway between −π/2 and
3π/2. That is, � ln Γ(z3)‖θ=π/2=π/2.

Table 7. ln Γ(z3) via the MB-regularized forms in the vicinity of the lines of discontinuity given by
θ=−π/6, θ=π/2 and θ=5π/6 with |z|=1/10 and N=5.

θ Quantity Value

19π/40 Total via M1(=1) 6.9017797138225092740511474835 − 1.3331484570580039616320161702 i
Total via M2(=2) 6.9017797138225092740511474835 − 1.3331484570580039616320161702 i

π/2 Total via M1(=1) 6.9014712712081946221027015741 − 1.5702191115306805133718396291 i
Total via M2(=2) 6.9014712712081946221027015741 + 4.7129661956489059635534471374 i

21π/40 Total via M1(=1) 6.9015102177011253639269574406 + 4.4758636443386950563445853873 i
Total via M2(=2) 6.9015102177011253639269574406 + 4.4758636443386950563445853873 i

62π/75 Total via M1(=2) 6.9139890062805982640446908483 + 1.6326576822112902043838680277 i
Total via M2(=3) 6.9139890062805982640446908483 + 1.6326576822112902043838680277 i

5π/6 Total via M1(=2) 6.9140376418225537950565521476 + 1.5702191115306805133718396291 i
Total via M2(=3) 6.9140376418225537950565521476 + 1.5702191115306805133718396291 i

63π/75 Total via M1(=2) 6.9140614934733956410110131643 − 4.7754024883371855095758498194 i
Total via M2(=3) 6.9140614934733956410110131643 − 4.7754024883371855095758498194 i

−12π/75 Total via M1(=0) 6.9077182194043652368591902822 + 1.5085404469087662793902283694 i
Total via M2(=−1) 6.9077182194043652368591902822 + 1.5085404469087662793902283694 i

ln Γ(z3) 6.9077182194043652368591902822 + 1.5085404469087662793902283694 i
−π/6 Total via M1(=0) 6.9077544565153742085796268609 + 1.5713735420591127250908037541 i

Total via M2(=−1) 6.9077544565153742085796268609 + 1.5713735420591127250908037541 i
ln Γ(z3) 6.9077544565153742085796268609 + 1.5713735420591127250908037541 i

−13π/75 Total via M1(=0) 6.9077907065971626138255125982 + 1.6342043592171290258017534223 i
Total via M2(=−1) 6.9077907065971626138255125982 + 1.6342043592171290258017534223 i

ln Γ(z3) 6.9077907065971626138255125982 + 1.6342043592171290258017534223 i

The next set of six results display the case where θ is very close to 5π/6, viz. ±π/150 away.
In this case both forms in (45) are used to calculate ln Γ(z3). Once again, both forms yield identical
results below and above θ=5π/6. However, for θ = 5π/6, they yield identical values for both the real
and imaginary parts. In fact, although the imaginary parts have the same value of iπ/2, it is incorrect
because ln Γ(z3) experiences a jump discontinuity of −2πi. Mathematica has simply chosen the wrong
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value for the logarithmic terms in (45), as explained on p. 564 of [17]. Noting that there is a jump of
−2π means that � ln Γ(z3)‖θ=5π/6 = −π/2, which corresponds to midway for the results before and
after the Stokes line.

The final set of results in Table 7 have been obtained for θ very close to −π/6. Because |θ| < π/3,
we can evaluate ln Γ(z3) via the LogGamma[z] routine in Mathematica. Hence there are more results
for this calculation. This calculation employs (40) (M1 = 0) and the complex conjugate of (43) (M2 = 1).
As before, the two versions of ln Γ(z3) give identical values above and below the Stokes line at
θ = −π/6. Moreover, they agree with the values obtained via LogGamma[z]. The interesting point
about this calculation, however, is that all three values at the Stokes line θ = −π/6 also agree. This is
expected since there is no extra logarithmic term in (42), while in the other asymptotic form the
logarithmic term is purely real for θ = ±π/6. Thus, there is no discontinuity in ln Γ(z3) at θ=±π/6,
which shows that Stokes discontinuities in Borel-summed regularized values can be fictitious.

The final calculation is the verification of the Borel-summed asymptotic forms for ln Γ(z3). It was
not possible to check these results previously because their regions of validity do not overlap. Now we
use the MB-regularized asymptotic forms to verify their Borel-summed counterparts. In addition,
we can confirm that the MB-regularized asymptotic forms for θ= kπ/3, where k equals ±1, ±2 and 3,
are correct, since only one MB-regularized asymptotic form is valid for these values.

To carry out the first task, we need to replace z by z3 in Theorem 1. Hence the Borel-summed
regularized values for ln Γ(z3) become

ln Γ
(

z3
)
= F
(

z3
)
+ TSN

(
z3
)
+ R±N

(
z3
)
+ SD±

M

(
z3
)

, (52)

where, as before, TSN(z3) is the truncated form of SN(z3) at N,

R+
N

(
z3
)
=

2(−1)N+1 z3

(2πz3)2N−2

∫ ∞

0
dy y2N−2 e−y

∞

∑
n=1

1
n2N−2 (y2 + (2nπz3)2)

, (53)

R−N
(

z3
)
=

2 z3

(2π|z3|)2N−2 P
∫ ∞

0
dy y2N−2 e−y

∞

∑
n=1

1
n2N−2(y2 − 4n2π2|z3|2) , (54)

SD+
M

(
z3
)
= −�M/2� ln

(
− e±2iπz3

)
− (1− (−1)M)

2
ln
(

1− e±2iπz3
)

, (55)

and

SD−
M

(
z3
)
= (−1)M

(
�M/2�+ 1− (−1)M

2

)
2π|z3| − 1

2
ln
(

1− e−2π|z3|
)

. (56)

The upper- and lower-signed versions of (55) are valid for (M− 1/2)π/3 < θ < (M + 1/2)π/3 and
−(M+ 1/2)π/3 < θ < −(M− 1/2)π/3, respectively, while (56) is only valid for θ = ±(M+ 1/2)π/3.
Therefore, for −π < θ ≤ π or the principal branch for z, Stokes lines occur at ±π/6, ±π/2, and
±5π/6. We shall investigate these cases after we have considered the results for the Stokes sectors first.
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The Borel-summed asymptotic forms that are valid for the Stokes sectors can be expressed as

ln Γ
(

z3
)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F
(
z3)+ TSN

(
z3)+ R+

N
(
z3)− ln

(
− e2iπz3

)
− ln
(

1− e2iπz3
)

, 5π/6 < θ ≤ π,

F
(
z3)+ TSN

(
z3)+ R+

N
(
z3)− ln

(
− e2iπz3

)
, π/2 < θ < 5π/6,

F
(
z3)+ TSN

(
z3)+ R+

N
(
z3)− ln

(
1− e2iπz3

)
, π/6 < θ ≤ π/2,

F
(
z3)+ TSN

(
z3)+ R+

N
(
z3) , −π/6 < θ < π/6,

F
(
z3)+ TSN

(
z3)+ R+

N
(
z3)− ln

(
1− e−2iπz3

)
, −π/2 < θ < −π/6,

F
(
z3)+ TSN

(
z3)+ R+

N
(
z3)− ln

(
− e−2iπz3

)
, −5π/6 < θ < −π/2,

F
(
z3)+ TSN

(
z3)+ R+

N
(
z3)−ln

(
− e−2iπz3

)
−ln
(

1− e−2iπz3
)

,−π < θ < −5π/6.

(57)

The main difference between these results and the earlier MB-regularized values is that though they
possess similar logarithmic terms, they emerge in different sectors within the principal branch.

Table 8 presents a very small sample of the results obtained by running the fifth program in
the appendix of [11] with |z| = 5/2 and the upper limit in R+

N(z
3) and R−N(z

3) set to 105 as in
Section 3. The first calculation displays the results obtained for θ=−π/7 and N=4. Since NOP =8
according to (23), Stirling’s formula or F(z3) yields a reasonable approximation to the actual value of
ln Γ((5/2)3e−3iπ/7), which appears at the bottom of the calculation. Consequently, the truncated sum
is small, only contributing at the third decimal place. Two MB-regularized asymptotic forms apply:
(1) (40) denoted by M1 = 0, and (2) the complex conjugate of (43) denoted by M2 =−1. The MB-Integrals
in the remainder are O(10−12). For M1 = 0, there is no logarithmic term, while for M2 = −1, there is
a contribution, but it is almost negligible, O(10−42). That is, the M1 = 0 and M2 = −1 calculations
are virtually identical to one another, well within the accuracy and precision goals set in NIntegrate.
Therefore, the totals representing the sum of F(z3), the MB integrals and the logarithmic terms, are not
only identical to one another, but they also agree with the value obtained from the LogGamma routine
in Mathematica.

The result labelled Borel Rem represents the Borel-summed remainder or R+
N(z

3) in the fourth
asymptotic form of (57), where the upper limit in the sum has been set to 105. Despite this truncation,
it is identical to the values obtained from the MB regularized asymptotic forms. In actual fact, the Borel
Rem value is identical to the first 34 decimal figures of the MB integrals, well within the accuracy and
precision goals. Bearing in mind that the remainder is very small, this means that only the first 13 or so
decimal figures of each remainder calculation will contribute to the totals. That is, the remainder is
truly subdominant.

The second calculation displays the results for θ = 2π/3 and N = 2, which has only one valid
MB-regularized asymptotic form. In addition, Stirling’s formula, the truncated sum and the MB
integral are all real, while the logarithmic term yields the imaginary contribution of −π/4. Hence we
see that � ln Γ

(
|z|3e2iπ) = −π/4. As expected, the value of the MB integral is very small, O(10−7),

while Stirling’s formula provides an accurate value for � ln Γ (125 exp(2iπ)/8). Appearing below the
Total is the remainder of the Borel-summed version for ln Γ

(
|z|3 exp(2iπ)

)
or R+

N(z
3) in the second

result of (57), which in turn has the same logarithmic term as (45). Hence both calculations are expected
to be identical. However, a closer inspection reveals that they agree to 23 decimal figures, but not the
expected 30 specified by the accuracy and precision goals. This discrepancy, which arises from the
truncation of the Borel-summed remainder, is an example where the upper limit of the sum over n has
to be set much higher in order to achieve the desired accuracy.

The final set of values have been obtained by setting θ equal to 11π/12 and N to 4. Once again,
there are two MB-regularized asymptotic forms, both obtained from (45). The Borel-summed
asymptotic form in this case is given by the first form in (57). All the remainder terms are tiny,
O(10−12). If only the logarithmic term for all three forms is added to Stirling’s formula, then a good
approximation is obtained. In this instance the logarithmic term for the Borel-summed form is identical
to the second form in (45), but by comparing it with the value obtained via the M1=2 form, the extra
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term is very small indeed, only differing at the 20-th decimal place. Nevertheless, all three totals agree
with each other as in the other cases in the table.

Table 8. ln Γ(z3) for |z| = 5/2 and various values of θ and N.

θ N Quantity Value

F(z3) −14.88486001926988218316890967 − 30.6490797188237317042533096605 i
TS4(z3) 0.001187233093636153159546970 + 0.00520018521369322415111941337 i

−π/7 4 MB Int (M1 = 0) 2.63163543021301667181503 × 10−12 − 6.6918000701164118190594 × 10−15 i
Log. Term (M1) 0

Total via M1 −14.88367278617361439457914968 − 30.6438795645051371993532040127 i
MB Int (M2 = −1) 2.63163543021301667181503 × 10−12 − 6.6918000701164118190594 × 10−15 i
Log. Term (M2) −2.67692877187577721034710 × 10−42 − 3.9146393659521104430365 × 10−43 i

Total via M2 −14.88367278617361439457914968 − 30.6438795645051371993532040127 i
Borel Rem 2.63163543021301667181503 × 10−12 − 6.6918000701164118190594 × 10−15 i

Borel Log Term 0
Borel Total −14.88367278617361439457914968 − 30.6438795645051371993532040127 i

LogGamma[zcube] −14.88367278617361439457914968 − 30.6438795645051371993532040127 i

F(z3) 26.8706304919944588244828769703 + 0 i
TS2(z3) 0.0053333333333333333333333333 + 0 i

2π/3 2 MB Int (M1 = 2) −7.27328204587763887038193 × 10−7 + 0 i
Log. Term (M1 = 2) − 0.785398163397448309615660845819 i

Total via M1 26.875963097999587570052547525 − 0.785398163397448309615660845819 i
Borel Rem −7.27328204587763662777752 × 10−7 + 0 i

Borel Log Term − 0.785398163397448309615660845819 i
Borel Total 26.875963097999587570052323265 − 0.785398163397448309615660845819 i

F(z3) −45.81050523277279074549656662 − 7.88812400847329603213924107797 i
TS4(z3) −0.003771750463193365200048475 − 0.00377072066430421316496938343 i

11π/12 4 MB Int (M1 = 2) 1.8403031527099105137119 × 10−12 − 1.86174503255187256069532 × 10−12 i
Log Term (M1 = 2) 69.42004590872447260962314046 − 2.83658512384077187501765734573 i

Total via M1 23.60576892549032880207923528 − 10.7284798529802338653544196797 i
MB Int (M2 = 3) 1.8403031527099105130346 × 10−12 − 1.86174503255187256048211 × 10−12 i

Log Term (M2 = 3) 69.42004590872447260962314046 − 2.83658512384077187501765734573 i
Total via M2 23.60576892549032880207923528 − 10.7284798529802338653544196797 i
Borel Rem 1.8403031527099105130346 × 10−12 − 1.86174503255187256048211 × 10−12 i

Borel Log Term 69.42004590872447260962314046 − 2.83658512384077187501765734573 i
Borel Total 23.60576892549032880207923528 − 10.7284798529802338653544196797 i

Before we can be assured that there is complete agreement between both sets of asymptotic forms,
we need to carry out a final numerical analysis at the Stokes lines. The Borel-summed asymptotic
forms at these lines are given by (52), but now with R−N(z

3) or (54) and SD−
M(z3) or (56). Putting M

equal to 0, 1 and 2, yields the specific forms at the Stokes lines, which are

ln Γ
(

z3
)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

F
(
z3)+ TSN

(
z3)+ R−N

(
z3)− 1

2 ln
(

1− e−2π|z3|
)

, θ = ±π/6,

F
(
z3)+ TSN

(
z3)+ R−N

(
z3)− 1

2 ln
(

1− e−2π|z3|
)

−2π|z3|, θ = ±π/2,

F
(
z3)+ TSN

(
z3)+ R−N

(
z3)− 1

2 ln
(

1− e−2π|z3|
)

+2π|z3|, θ = ±5π/6.

(58)

Note the similarity of the Stokes discontinuity terms with the corresponding terms or SMB(z3)

in the MB-regularized asymptotic forms. The major difference occurs with the logarithmic term,
which is represented by either a zero or full residue contribution in the MB-regularized asymptotic
forms, while it is always represented by a semi-residue or half the contribution in the Borel-summed
asymptotic forms.

Table 9 presents a small sample of the results obtained by running the final program in the
appendix of [11]. Since the MB integrals yielded values of O(10−3), there was no significant
cancellation of decimal figures as in Table 8. The first column of Table 9 displays the value of θ for
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the respective Stokes line. Here they are presented for the Stokes lines at: (1) θ = π/6, (2) θ = −π/2
and (3) θ = 5π/6. As stated before, ln Γ(z3) cannot be evaluated by Mathematica for the last two
cases. Thus, LogGamma[z] appears as an extra result for θ = π/6. The second column of Table 9
displays the equation that was used to calculate the value of ln Γ(z3). The label ‘c.c.’ denotes that
the complex conjugate of the equation was used, which applies here because θ is negative. The third
column displays the actual values to 27 decimal places. We see that not only do the two different
MB-regularized asymptotic forms agree with one another at each Stokes line, they also agree with the
results obtained from the the Borel-summed asymptotic forms in (58) and where possible, with the
LogGamma routine in Mathematica.

Table 9. ln Γ
(
z3) for |z| = 9/10 at the Stokes lines within the principal branch.

θ Method Value

(40) −0.0629795852996006019126614 − 1.86781980997058048039434088 i
π/6 (44) −0.0629795852996006019126614 − 1.86781980997058048039434088 i

Top, (58) −0.0629795852996006019126614 − 1.86781980997058048039434088 i
LogGamma[z] −0.0629795852996006019126614 − 1.86781980997058048039434088 i

(44), c.c. −4.6434216742335191435911954 − 1.86781980997058048039434088 i
−π/2 Bottom, (47), c.c. −4.6434216742335191435911954 − 1.86781980997058048039434088 i

Middle, (58) −4.6434216742335191435911954 − 1.86781980997058048039434088 i

Top, (47) 4.5174625036343179397658872 − 1.86781980997058048039434088 i
5π/6 Bottom, (47) 4.5174625036343179397658872 − 1.86781980997058048039434088 i

Bottom, (58) 4.5174625036343179397658872 − 1.86781980997058048039434088 i

6. Conclusions

In [16] it was stated that a fully-fledged theory of divergent series could only be realized if more
complicated problems were studied than those presented in [6]. Amongst these was the extension
of the asymptotics of the gamma function to the entire complex plane since the Stokes lines possess
an infinite number of singularities rather than one as studied in [6]. This has been achieved here,
which leaves the development of the complete asymptotic expansion for the confluent hypergeometric
function over the entire complex plane as the next problem. In this instance it will be necessary to
develop and regularize infinite subdominant series throughout the complex plane.

Funding: This research received no external funding.

Acknowledgments: The author thanks Professor Mainardi for the invitation to contribute to this special issue.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Wikipedia, the Free Encyclopedia, Stirling’s Approximation. Available online: http://en.wikipe\protect\
discretionary{\char\hyphenchar\font}{}{}dia.org/wiki/Stir\protect\discretionary{\char\hyphenchar\
font}{}{}lings_approxi\protect\discretionary{\char\hyphenchar\font}{}{}mation (accessed on 8 June 2020).

2. Whittaker, E.T.; Watson, G.N. A Course of Modern Analysis, 4th ed.; Cambridge University Press: Cambridge,
UK, 1973; p. 252.

3. Segur, H.; Tanveer, S.; Levine, H. (Eds.) Asymptotics beyond all Orders; Plenum Press: New York, NY,
USA, 1991.

4. Kowalenko, V. Towards a theory of divergent series and its importance to asymptotics. In Recent Research
Developments in Physics; Transworld Research Network: Trivandrum, India, 2001; Volume 2, pp. 17–68.

5. Kowalenko, V. Exactification of the asymptotics for Bessel and Hankel functions. Appl. Math. Comput. 2002,
133, 487–518. [CrossRef]

6. Kowalenko, V. The Stokes Phenomenon, Borel Summation and Mellin-Barnes Regularisation; Bentham Ebooks:
Sharjah, UAE, 2009; Available online: http://www.bentham.org (accessed on 18 June 2020).

123



Mathematics 2020, 8, 1058

7. Kowalenko, V.; Frankel, N.E.; Glasser, M.L.; Taucher, T. Generalised Euler-Jacobi Inversion Formula and
Asymptotics beyond All Orders; London Mathematical Society Lecture Note 214; Cambridge University
Press: Cambridge, UK, 1995.

8. Wikipedia, the Free Encyclopedia, Hadamard Regularization. Available online: https://en.wikipe\protect\
discretionary{\char\hyphenchar\font}{}{}dia.org/wiki/Ha\protect\discretionary{\char\hyphenchar\
font}{}{}da\protect\discretionary{\char\hyphenchar\font}{}{}mard_re\protect\discretionary{\char\
hyphenchar\font}{}{}gula\protect\discretionary{\char\hyphenchar\font}{}{}rization (accessed on
11 April 2020).

9. Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions; Dover: New York, NY, USA, 1965.
10. Gradshteyn, I.S.; Ryzhik, I.M.; Jeffrey, A. (Eds.) Table of Integrals, Series and Products, 5th ed.; Academic Press:

London, OH, USA, 1994.
11. Kowalenko, V. Exactification of Stirling’s approximation for the logarithm of the gamma function. arXiv

2014, arXiv:1404.2705.
12. Paris, R.B.; Kaminski, D. Asymptotics and Mellin-Barnes Integrals; Cambridge University Press: Cambridge,

UK, 2001.
13. Paris, R.B. Hadamard Expansions and Hyperasymptotic Evaluation—An Extension of the Method of Steepest Descents;

Cambridge University Press: Cambridge, UK, 2011.
14. Kowalenko, V. Applications of the cosecant and related numbers. Acta Appl. Math. 2011, 114, 15–134.

[CrossRef]
15. Dingle, R.B. Asymptotic Expansions: Their Derivation and Interpretation; Academic Press: London, UK, 1973.
16. Kowalenko, V. Euler and Divergent Series. Eur. J. Pure Appl. Math. 2011, 4, 370–423.
17. Wolfram, S. Mathematica—A System for Doing Mathematics by Computer; Addison-Wesley: Reading, MA,

USA, 1992.
18. Berry, M.V. Uniform asymptotic smoothing of Stokes’s discontinuities. Proc. R. Soc. Lond. A 1989, 422, 7–21.
19. Stokes, G.G. On the discontinuity of arbitrary constants which appear in divergent developments. In Collected

Mathematical and Physical Papers; Cambridge University Press: Cambridge, UK, 1904; Volume 4, pp. 77–109.
20. Olver, F.W.J. On Stokes’ phenomenon and converging factors. In Asymptotic and Computational Analysis;

Wong, R., Ed.; Marcel-Dekker: New York, NY, USA, 1990; pp. 329–355.
21. Berry, M.V.; Howls, C.J. Hyperasymptotics for integrals with saddles. Proc. R. Soc. Lond. A 1991, 434, 657–675.
22. Paris, R.B.; Wood, A.D. Exponentially-improved asymptotics for the gamma function. J. Comp. Appl. Math.

1992, 41, 135–143. [CrossRef]
23. Berry, M.V.; Howls, C.J. Hyperasymptotics. Proc. R. Soc. Lond. A 1990, 430, 653–658.
24. Berry, M.V. Asymptotics, superasymptotics, hyperasymptotics. In Asymptotics beyond all Orders; Segur, H.,

Tanveer, S., Levine, H., Eds.; Plenum Press: New York, NY, USA, 1991; pp. 1–9.
25. Paris, R.B.; Wood, A.D. Stokes phenomenon demystified. IMA Bull. 1995, 31, 21–28.
26. Kowalenko, V. Reply to Paris’s comments on exacitification for the logarithm of the gamma function. arXiv

2014, arXiv:1408.1881.

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

124



mathematics

Article

Transformations of the Hypergeometric 4F3 with
One Unit Shift: A Group Theoretic Study

Dmitrii Karp 1,∗ and Elena Prilepkina 2,3

1 Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
2 School of Economics and Management, Far Eastern Federal University, Vladivostok 690950, Russia;

pril-elena@yandex.ru
3 Institute of Applied Mathematics, Far Eastern Branch of the Russian Academy of Sciences,

Vladivostok 690041, Russia
* Correspondence: dmitriibkarp@tdtu.edu.vn

Received: 2 October 2020; Accepted: 2 November 2020; Published: 5 November 2020

Abstract: We study the group of transformations of 4F3 hypergeometric functions evaluated at unity
with one unit shift in parameters. We reveal the general form of this family of transformations and its
group property. Next, we use explicitly known transformations to generate a subgroup whose structure
is then thoroughly studied. Using some known results for 3F2 transformation groups, we show that this
subgroup is isomorphic to the direct product of the symmetric group of degree 5 and 5-dimensional
integer lattice. We investigate the relation between two-term 4F3 transformations from our group and
three-term 3F2 transformations and present a method for computing the coefficients of the contiguous
relations for 3F2 functions evaluated at unity. We further furnish a class of summation formulas associated
with the elements of our group. In the appendix to this paper, we give a collection of Wolfram Mathematica®

routines facilitating the group calculations.

Keywords: generalized hypergeometric function; hypergeometric transformations; transformation
groups; symmetric group

1. Introduction and Preliminaries

Groups comprising transformation of the generalized hypergeometric functions that preserve
their value at unity can be traced back to Kummer’s formula ([1], Corollary 3.3.5), see (2) below.
These groups play an important role in mathematical physics. In particular, the group theoretic properties
of hypergeometric transformations constitute the key ingredient of a succinct description of the symmetries
of Clebsh-Gordon’s and Wigner’s 3−j, 6−j and 9−j coefficients from the angular momentum theory [2–5].
The Karlsson-Minton summation formula for the generalized hypergeometric function with integral
parameter differences (IPD) was largely motivated by a computation of a Feymann’s path integral.
Furthermore, IPD hypergeometric functions appear in calculation of several integrals in high energy
field theories and statistical physics [6]. See also introduction and references in [7] for further applications
in mathematical physics and relation to Coxeter groups.

The generalized hypergeometric function ([1], Section 2.1.2), ([8], Chapter 16) is defined by the series

p+1Fp

(
a1, . . . , ap+1

b1, . . . , bp

∣∣∣∣∣ z
)

=
∞

∑
n=0

(a1)n · · · (ap+1)n

n!(b1)n · · · (bp)n
zn (1)
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whenever it converges. When evaluated at the unit argument, z = 1, it represents a function of 2p + 1
complex parameters with obvious symmetry with respect to separate permutation of the p + 1 top
and the p bottom parameters. As the above series diverges at z = 1 if the parametric excess satisfies
�
(

∑
p
k=1(bk − ak)− ap+1

)
< 0, the first problem that arises is to construct an analytic continuation

to the values of parameters in this domain. For 3F2 function this problem is partially solved by the
transformation ([1], Corollary 3.3.5)

3F2

(
a, b, c
d, e

)
=

Γ(e)Γ(d + e− a− b− c)
Γ(e− c)Γ(d + e− b− a) 3F2

(
d− b, d− a, c

d, d + e− b− a

)
(2)

discovered by Kummer in 1836. In the above formula we have omitted the argument 1 from the notation
of the hypergeometric series and this convention will be adopted throughout the paper. The series the
right hand side of (2) converges when �(e− c) > 0 so that we get the analytic continuation to this domain.
An important aspect of the above formula is that it can be applied to itself directly or after permuting some
of the top and/or bottom parameters. This leads to a family of transformations which can can be studied
by group theoretic methods. A notable member of this family is Thomae’s (1879) transformation ([1],
Corollary 3.3.6)

3F2

(
a, b, c
d, e

)
=

Γ(d)Γ(e)Γ(s)
Γ(c)Γ(s + b)Γ(s + a) 3F2

(
d− c, e− c, s
s + a, s + b

)
, (3)

where s = d + e− a− b− c, which gave the name to the whole family of 3F2 transformations generated by
the algorithm described above. In an important work [9] the authors undertook a detailed group theoretic
study of Thomae’s transformations as well as transformations for the terminating 4F3 series and Bailey’s
three-term relations for 3F2. In particular, they have shown ([9], Theorem 3.2) that the function

f (x, y, z, u, v) =
3F2

(
x + u + v, y + u + v, z + u + v

x + y + z + 2u + v, x + y + z + u + 2v

)
Γ(x + y + z + 2u + v)Γ(x + y + z + u + 2v)Γ(x + y + z)

, (4)

is invariant with respect to the entire symmetric group P5 acting on its 5 arguments (note that another,
simpler version of this symmetry is given by ([2], Equation (7)). This symmetry was, in fact, first observed
by Hardy in his 1940 lectures ([10], Notes on Lecture VII). The work [9] initiated the whole stream
of papers on group-theoretic interpretations of hypergeometric and q-hypergeometric transformations.
See, for instance, Refs. [2,4,7,11–14] and references therein.

We note in passing that the analytic continuation problem for general p was solved by Nørlund [15]
and Olsson [16] with later rediscovery by Bühring [17] without resorting to group-theoretic methods.
More recently, Kim, Rathie and Paris derived ([18], p. 116) the following transformation

4F3

(
a, b, c, f + 1

d, e, f

)
=

Γ(e)Γ(ψ)
Γ(e− c)Γ(ψ + c) 4F3

(
d− a− 1, d− b− 1, c, η + 1

d, d + e− a− b− 1, η

)
, (5)

with ψ = d + e− a− b− c− 1 and

η =
(d− a− 1)(d− b− 1) f
ab + (d− a− b− 1) f

.
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This transformation can be iterated, but it is not immediately obvious what is the general form of the
transformations obtained by such iterations. In our recent paper ([19], p. 14, above Theorem 2) we found
another identity of a similar flavor which can be viewed as a generalization of (2):

4F3

(
a, b, c, f + 1

d, e, f

)
=

(ψ f − c(d− a− b))Γ(e)Γ(ψ)
f Γ(e + d− a− b)Γ(e− c) 4F3

(
d− a, d− b, c, ξ + 1
d, e + d− a− b, ξ

)
, (6)

where ξ = f + (d − a − b)( f − c)/(e − c − 1). The main purpose of this paper is to present a general
form of the family of transformations of which the above two identities are particular cases, demonstrate
that this family forms a group and analyze the structure of the subgroup generated by explicitly known
transformations (5)–(8). Before we delve into this analysis let us now record two more transformations
generating this subgroup. A proof will be given in Section 6.

Lemma 1. The following identities hold

4F3

(
a, b, c, f + 1

d, e, f

)
=

( f ψ + bc)Γ(ψ)Γ(d)Γ(e)
f Γ(a)Γ(ψ + b + 1)Γ(ψ + c + 1) 4F3

(
ψ, d− a, e− a, ζ + 1

d + e− a− c, d + e− a− b, ζ

)
, (7)

where ζ = ψ + bc/ f , ψ = d + e− a− b− c− 1; and

4F3

(
a, b, c, f + 1

d, e, f

)
=

(abc + f dψ)Γ(ψ)Γ(e)
f dΓ(e− a)Γ(ψ + a + 1) 4F3

(
a, d− b, d− c, ν + 1
d + 1, ψ + a + 1, ν

)
, (8)

where ν = (abc + f dψ)/(bc + f ψ).

Please note that each 4F3 function containing a parameter pair

[
f + 1

f

]
can be decomposed into a sum

of two 3F2 functions (and we will demonstrate that there are numerous different decompositions of this
type). Hence, each of the identities (5)–(8) can be written as a four-term relation for 3F2. However, it will be
seen from the subsequent considerations that, in fact, all such relations reduce to three or even two terms,
and, moreover, the structure seems to be more transparent if we keep the 4F3 function as the basic building
block of our analysis. It will be revealed that the group structure of our transformations is closely related
to that of the Thomae group generated by two-term transformations (2) and (3) and with contiguous three
terms relations for 3F2. We believe that our subgroup generated by (5)–(8) covers all possible two-term
transformations for 4F3 with one unit shift (more precisely all transformations of the form (10) below),
but we were unable to prove this claim and leave it as a conjecture.

The paper is organized as follows. In the following section we give a general form of the
transformations exemplified above and prove that they form a group. We further demonstrate that
this group is isomorphic to a subgroup of SL(Z) (integer matrices with unit determinant). In Section 3,
we give a comprehensive analysis of the structure of the subgroup generated by the transformations (5)–(8)
by showing that it is isomorphic to a direct product of the symmetric group P5 and the integer lattice
Z5. In Section 4 we explore the relation between our transformations and three-term relations for 3F2

hypergeometric function. In particular, we show that the contiguous relations for 3F2 functions studied
recently in [20] can also be computed from the elements of our group. Section 5 provides a method of
deducing summation formulas for 4F3 with non-linearly restricted parameters while Section 6 contains the
proof of Lemma 1. Finally, the Appendix A contains explicit forms of some key elements of our subgroup
and several Wolfram Mathematica® routines facilitating the group calculations.
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2. The Group Structure of the Unit Shift 4F3 Transformations

Inspecting the 4F3 transformations presented in Section 1 we see that they share a common structure
that we will present below. To this end, let r = (a, b, c, d, e, 1)T be the column vector and define

F(r, f ) = 4F3

(
a, b, c, f + 1

d, e, f

)
. (9)

All transformations found in Section 1 have the following general form

F(r, f ) = C(r, f )F(Dr, η), (10)

where D is a unit determinant 6× 6 matrix with integer entries and the bottom row (0, 0, 0, 0, 0, 1);

η =
ε f + λ(r)

α(r) f + β(r)
, (11)

where ε ∈ {0, 1}, λ(r), α(r) and β(r) are rational functions of the arguments a, b, c, d, e (some of them may
vanish identically, but λ = 1 if ε = 0). The coefficient C(r, f ) has the form

C(r, f ) =
N(r) f + P(r)
K(r) f + L(r)

(12)

where N(r), P(r), K(r), L(r) are (possibly vanishing) functions of Γ-type by which we mean ratios of
products of gamma functions whose arguments are integer linear combinations of the components of
(a, b, c, d, e, 1). When N(r) �= 0 we will additionally require that the ratio P(r)/N(r) be a rational function
of parameters. In fact, this last requirements is redundant, but in order to avoid it the following claim is
needed: the ratio F2(r)/F1(r) with Fi, i = 1, 2, defined in (14), is not a function of gamma type for general
parameters. We were unable to find a proof of this claim in the literature although it seems to be generally
accepted to be true.

Formula (10) defines a transformation T characterized by the matrix D and the functions C(r, f ),
η = η(r, f ). Two such transformations T1, T2 will be considered equal if D1 = D2, C1(r, f ) ≡ C2(r, f ) and
η1(r, f ) ≡ η2(r, f ).

According to the elementary relation ( f + 1)n = ( f )n(1 + n/ f ), we have

F(r, f ) = F1(r) +
1
f

F2(r), (13)

where

F1(r) = 3F2

(
a, b, c
d, e

)
, F2(r) =

abc
de 3F2

(
a + 1, b + 1, c + 1

d + 1, e + 1

)
. (14)

It is not immediately obvious if the composition of two transformations (10) with η and C having
the forms (11) and (12), respectively, should have the same form. The following theorem shows that it is
indeed the case and these transformations form a group.

Theorem 1. Each transformation (10) necessarily has the form

F(r, f ) = M(r)
ε f + λ(r)

f
F(Dr, η), where η =

ε f + λ(r)

α(r) f + β(r)
, (15)
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M(r) is a function of Γ-type, ε ∈ {0, 1}, λ(r), α(r), β(r) are rational functions of the arguments a, b, c, d, e (possibly
vanishing but with λ = 1 if ε = 0).

The collection T of transformations (15) forms a group with respect to composition. More explicitly,
if T1, T2 ∈ T with parameters indexed correspondingly, then T = T2 ◦ T1 is given by

(I) If ε1ε2 + α1(r)λ2(D1r) �= 0, then ε = 1, M(r) = M1(r)M2(D1r)(ε1ε2 + α1(r)λ2(D1r)),

λ(r) =
ε2λ1(r) + λ2(D1r)β1(r)

ε1ε2 + α1(r)λ2(D1r)
, α(r) =

ε1α2(D1r) + α1(r)β2(D1r)

ε1ε2 + α1(r)λ2(D1r)
,

β(r) =
λ1(r)α2(D1r) + β1(r)β2(D1r)

ε1ε2 + α1(r)λ2(D1r)
, D = D2D1.

(II) If ε1ε2 + α1(r)λ2(D1r) = 0, then ε = 0, M(r) = M1(r)M2(D1r)(ε2λ1(r) + λ2(D1r)β1(r)),

λ(r) = 1, α(r) =
ε1α2(D1r) + α1(r)β2(D1r)

ε2λ1(r) + λ2(D1r)β1(r)
,

β(r) =
λ1(r)α2(D1r) + β1(r)β2(D1r)

ε2λ1(r) + λ2(D1r)β1(r)
, D = D2D1.

Each T ∈ T of the form (15) has an inverse T−1 determined by the parameters ε̂, M̂(r), λ̂(r), α̂(r), β̂(r), D̂
given by:

(III) If β(r) �= 0, then ε̂ = 1 and

M̂(r) =
β(D−1r)

M(D−1r)(εβ(D−1r)− α(D−1r)λ(D−1r)
, λ̂(r) = −λ(D−1r)

β(D−1r)
,

α̂(r) = − α(D−1r)

β(D−1r)
, β̂(r) =

ε

β(D−1r)
, D̂ = D−1.

(IV) If β(r) = 0, then ε̂ = 0 and

M̂(r) =
1

M(D−1r)α(D−1r)
, λ̂(r) = 1, α̂(r) =

α(D−1r)

λ(D−1r)
, β̂(r) = − ε

λ(D−1r)
, D̂ = D−1.

Proof of Theorem 1. We start by showing that the form of the coefficient C(r, f ) = (N f + P)/(K f + L)
defined in (12) is restricted to

C(r, f ) = M + W/ f , (16)

where M = M(r), W = W(r) are some functions of Γ-type, possibly one of them vanishing. It follows
from (12) and (13) that transformation (10) is equivalent to

F1(r) f + F2(r)

f
=

(N f + P)(F1(Dr)η + F2(Dr))

(K f + L)η
, (17)

where N = N(r), P = P(r), K = K(r), L = L(r). Solving this equation we get

η =
f ( f N + P)F2(Dr)

LF2(r) + f KF2(r)− f 2NF1(Dr)− f PF1(Dr) + f 2KF1(r) + f LF1(r)
.

129



Mathematics 2020, 8, 1966

In order that η had the form (11) the following identity must hold

f ( f N + P)F2(Dr)(α f + β)

= (ε f + λ)(LF2(r) + f KF2(r)− f 2NF1(Dr)− f PF1(Dr) + f 2KF1(r) + f LF1(r)). (18)

The free term of the cubic on the right hand side equals λLF2(r) while it vanishes on the left hand side,
so that λL = 0. If L = 0 we obtain (16). Otherwise, if λ = 0 identity (18) takes the form

( f N + P)F2(Dr)(α f + β) = LF2(r) + f KF2(r)− f 2NF1(Dr)− f PF1(Dr) + f 2KF1(r) + f LF1(r). (19)

If N = 0, then K = 0 and we again arrive at (16). If N �= 0 the value f = −P/N must be a root of the
quadratic on the right hand side of (19). In other words, we must have

LF2(r)−
P
N

KF2(r)−
P2

N2 NF1(Dr) +
P
N

PF1(Dr) +
P2

N2 KF1(r)−
P
N

LF1(r) = 0

or (
L− P

N
K
)(

F2(r)−
P
N

F1(r)

)
= 0.

Equality L = PK/N again leads to (16). The equality F2(r) = PF1(r)/N is impossible for rational
P/N, as demonstrated by Ebisu and Iwasaki in ([20], Theorem 1.1) which proves our claim (16). If P/N
is a function of gamma type then so is F2(r)/F1(r) which would contradict the claim made before the
theorem, but as we could not find a proof of this claim we explicitly prohibit this situation in the definition
of C(r, f ).

Substituting (N f + P)/(K f + L) by M + W/ f in (17) we can now express η as follows:

η = − (M f + W)F2(Dr)

(MF1(Dr)− F1(r)) f + F1(Dr)W − F2(r)
. (20)

Next suppose M �= 0. Then C(r, f ) = M(ε f + W/M)/ f with ε = 1. Comparison of (20) with (11)
yields W/M = λ which proves that the transformation (10) must have the form (15). Moreover,

α = −MεF1(Dr)− F1(r)

MF2(Dr)
, β = − F1(Dr)λM− F2(r)

MF2(Dr)
.

These equalities can be rewritten as the system{
F1(r) = M(εF1(Dr) + αF2(Dr)),
F2(r) = M(λF1(Dr) + βF2(Dr)).

(21)

Suppose now that M = 0, W �= 0. Then C(r, f ) = W(ε f + λ)/ f with ε = 0, λ = 1. From (20) we have

η =
ε f + λ

α f + β
,

where again ε = 0, λ = 1, and α = F1(r)/(WF2(Dr)), β = −(WF1(Dr)− F2(r))/(WF2(Dr)) or{
F1(r) = WαF2(Dr) = W(εF1(Dr) + αF2(Dr)),
F2(r) = W(F1(Dr) + βF2(Dr)) = W(λF1(Dr) + βF2(Dr)).

(22)
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Renaming W into M we have thus proved that the transformation again has the form (15) and the
system (21) is satisfied.

The computation of composition is straightforward:

T = T2 ◦ T1 ⇐⇒ T : F(r, f ) = M1(r)
ε1 f + λ1(r)

f
F(D1r, η1)

= M1(r)M2(D1r)
ε1 f + λ1(r)

f
ε2(ε1 f + λ1(r))/(α1(r) f + β1(r)) + λ2(D1r)

(ε1 f + λ1(r))/(α1(r) f + β1(r))
F(D2D1r, η2)

= M1(r)M2(D1r)
ε2(ε1 f + λ1(r)) + λ2(D1r)(α1(r) f + β1(r))

f
F(D2D1r, η2)

= M1(r)M2(D1r)
[ε1ε2 + α1(r)λ2(D1r)] f + ε2λ1(r) + β1(r)λ2(D1r)

f
F(D2D1r, η).

If ε1ε2 + α1(r)λ2(D1r) �= 0, we can divide by this quantity leading to case (I). If it vanishes we get case (II).
Given a transformation T ∈ T of the from (15) it is rather straightforward to compute its inverse. We omit
the details.

Remark 1. Theorem 1 implies that each transformation t ∈ T is uniquely characterized by the collection
{ε, M(r), λ(r), α(r), β(r), D}, where ε ∈ {0, 1}, M(r) is a function of gamma type, λ(r), α(r) and β(r) are
rational functions of parameters a, b, c, d, e and D is 6 × 6 unit determinant integer matrix with bottom row
(0, . . . , 0, 1). We will express this fact by writing T ∼ {ε, M(r), λ(r), α(r), β(r), D}. Occasionally, we will omit
the dependence on r in the notation of the functions M(r), λ(r), α(r), β(r) for brevity.

Please note that for ε = 1 and non-vanishing α, β and λ the system (21) takes the form of 4F3 → 3F2

reduction formulas {
F(Dr, α(r)−1) = M(r)−1F1(r),
F(Dr, λ(r)/β(r)) = (M(r)λ(r))−1F2(r).

Next, we clarify the structure of the group T further. The composition rule involves all the parameters
M(r), λ(r), α(r), β(r) and D. The following theorem implies that the matrix D determines all other
parameters uniquely. Denote by ŜL(n,Z) the subgroup of the special linear group SL(n,Z) of n× n integer
matrices with unit determinant comprising matrices whose last row has the form (0, . . . , 0, 1).

Theorem 2. The mapping T ∼ {ε, M(r), λ(r), α(r), β(r), DT} → DT is isomorphism, so that the group (T , ◦) is
isomorphic to a subgroup of ŜL(6,Z) which we denote by (DT , ·).

Proof of Theorem 2. One direction is clear: each transformation T ∈ T by construction defines a matrix
DT ∈ ŜL(6,Z) and the composition rule (I), (II) in Theorem 1 involves the product of matrices. Hence,
to establish our claim it remains to prove that the kernel of the homomorphism T → DT is trivial. Assume
the opposite: there exists a transformation T ∈ T with the identity matrix D = I and non-trivial parameters
ε, M, λ, α, β. The system (21) then takes the form{

(1− Mε)F1(r) = MαF2(r),
MλF1(r) = (1− Mβ)F2(r).

(23)

If α = λ = 0 we get M = ε = 1 from the first equation and β = 1 from the second equation, which amounts
to the trivial identity transformation. We will show that all other cases are impossible. Indeed, Ebisu and
Iwasaki demonstrated in ([20], Theorem 1.1) that the functions F1(r) and F2(r) are linearly independent
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over the field of rational functions of parameters. If α = 0 and λ �= 0, then M = ε = 1 from the first equation
and F1(r)/F2(r) = (1− β)/λ from the second equation contradicting linear independence. Similarly,
if α �= 0 and λ = 0, then M = 1/β from the second equation, so that F2(r)/F1(r) = (1− ε/β)/(α/β) is
rational from the first equation leading again to contradiction. Finally, if both α �= 0 and λ �= 0 we arrive at
the identities

F2(r)

F1(r)
=

1− Mε

αM
=

λM
1− Mβ

⇒ (1− Mβ)(1− Mε) = αλM2.

Linear independence of the functions F1(r), F2(r) over rational functions implies that the function
M = M(r) must be a ratio of products of gamma functions irreducible to a rational function. On the other
hand, by the ultimate equality M(r) solves the quadratic equation with rational coefficients:

M = M(r) = μ(r)±
√

ν(r)

with rational μ, ν. It is easy to see that this is not possible as Γ is meromorphic with infinite number of
poles and no branch points, while μ(r)±

√
ν(r) may only have a finite number of poles and zeros and has

branch points.

3. The Subgroup of T Generated by Known Transformations

We can now rewrite the transformations (5)–(8) in the standard form (15). Denote by ψ = d + e− a−
b− c− 1 the parametric excess of the function on the left hand side of (15). Identity (7) is determined by
the following set of parameters

M1 =
Γ(ψ + 1)Γ(d)Γ(e)

Γ(a)Γ(d + e− a− c)Γ(d + e− a− b)
, ε1 = 1, λ1 =

bc
ψ

, (24a)

D1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 −1 1 1 −1
−1 0 0 1 0 0
−1 0 0 0 1 0
−1 0 −1 1 1 0
−1 −1 0 1 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, α1 =

1
ψ

, β1 = 0. (24b)

We will call this transformation T1.
The standard form (15) of identity (6) is characterized by the following parameters:

M2 =
Γ(e)Γ(ψ + 1)

Γ(e + d− a− b)Γ(e− c)
, ε2 = 1, λ2 =

c(−d + a + b)
ψ

, (25a)

D2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 1 0 0
0 −1 0 1 0 0
0 0 1 0 0 0
0 0 0 1 0 0
−1 −1 0 1 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, α2 = 0, β2 =

e− c− 1
ψ

. (25b)

We will call this transformation T2.
The standard parameters of transformation (8) are given by
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M3 =
Γ(ψ + 1)Γ(e)

Γ(e− a)Γ(e + d− b− c)
, ε3 = 1, λ3 =

abc
dψ

, (26a)

D3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 −1 0 1 0 0
0 0 −1 1 0 0
0 0 0 1 0 1
0 −1 −1 1 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, α3 =

1
d

, β3 =
bc
dψ

. (26b)

We will call this transformation T3.
Finally, transformation (5) in the standard form (15) is parameterized by

M4 =
Γ(e)Γ(ψ)

Γ(e− c)Γ(ψ + c)
, ε4 = 1, λ4 = 0, α4 =

d− a− b− 1
(d− a− 1)(d− b− 1)

, (27a)

D4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 1 0 −1
0 −1 0 1 0 −1
0 0 1 0 0 0
0 0 0 1 0 0
−1 −1 0 1 1 −1
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, β4 =

ab
(d− a− 1)(d− b− 1)

. (27b)

We will call this transformation T4. It is easy to see that it is of order 2, i.e., T2
4 = I.

The four transformations T1, T2, T3, T4 (or, equivalently, (5)–(8)) combined with permutations of the
upper and lower parameters generate a subgroup of T which we will call T̂ . Isomorphism established in
Theorem 2 induces an isomorphism between T̂ and a subgroup of ŜL(6,Z) which we denote by DT̂ .

A complete characterization of T̂ and DT̂ will follow. Before we turn to it, we remark that to our
belief, the complete group T contains no elements other than those in T̂ . We were unable, however,
to prove this claim. Let us thus state it as a conjecture.

Conjecture. The subgroup T̂ generated by the transformations (24)–(27) coincides with the entire
group T of all transformations of the form (10) or, equivalently, of the form (15).

Denote by Sj, j = 1, . . . , 5, the transformation shifting the j-th component of the parameter vector r by
+1, i.e., Sj is characterized by the matrix Ŝj such that Ŝ1r = (a + 1, b, c, d, e, 1), Ŝ2r = (a, b + 1, c, d, e, 1), etc.
It is not a priori obvious that such transformations should exist among the elements of T̂ . The following
theorem shows that it is indeed the case.

Theorem 3. The group T̂ contains the transformations Sj, j = 1, . . . , 5.

Proof of Theorem 3. Due to permutation symmetry it is clearly sufficient to display the transformations
S1 and S4. We will need the inverse of the transformation T1 defined in (24). Using Theorem 1 we calculate

4F3

(
a, b, c, f + 1

d, e, f

)
=

M̂1

f 4F3

(
d + e− a− b− c− 1, d− a− 1, e− a− 1, η̂1 + 1

d + e− a− c− 1, d + e− a− b− 1, η̂1

)
, (28)

where
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M̂1 =
Γ(d)Γ(e)Γ(ψ)

Γ(ψ + b)Γ(ψ + c)Γ(a)
, ε̂1 = 0, λ̂1 = 1, α̂1 =

1
(d− a− 1)(e− a− 1)

,

β̂1 =
−a

(d− a− 1)(e− a− 1)
, so that η̂1 =

(d− a− 1)(e− a− 1)
f − a

.

Next, exchanging the roles of d + e− a− b− 1 and d and the roles of d− a− 1 and c in (5) or, equivalently,
post-composing T4 with permutation (13) (45) we will obtain a transformation that we call T̂4. Then
T̂4 ◦ T̂4 takes the form

4F3

(
a, b, c, f + 1

d, e, f

)
=

Γ(e)Γ(d)Γ(ψ)
Γ(b + ψ)Γ(c + ψ)Γ(a + 1) 4F3

(
ψ− 1, e− a− 1, d− a− 1, η̃4 + 1

c + ψ, b + ψ, η̃4

)
(29)

with

η̃4 =
(ψ− 1)(e− a− 1)(d− a− 1) f

abc + (1 + 2a + a2 − bc− d− ad− e− ae + de) f
.

Applying T−1
1 to the right hand side of (29) we obtain the transformation S1:

4F3

(
a, b, c, f + 1

d, e, f

)
= M

ε f + λ

f 4F3

(
a + 1, b, c, η + 1

d, e, η

)
, (30)

where ε = 1, and

M = 1− bc
(d− a− 1)(e− a− 1)

, λ =
abc

a2 − bc + (d− 1)(e− 1)− a(d + e− 2)
,

α =
d + e− a− b− c− 2

a2 − bc + (d− 1)(e− 1)− a(d + e− 2)
, β = − a(d + e− a− b− c− 2)

a2 − bc + (d− 1)(e− 1)− a(d + e− 2)
.

According to (15) we thus obtain the following expression for η

η =
abc + (1 + 2a + a2 − bc− d− ad− e− ae + de) f

a(2 + a + b + c− d− e)− (2 + a + b + c− d− e) f
.

Application of the transformation T3 given by (26) to itself yields T3 ◦ T3 in the form:

4F3

(
a, b, c, f + 1

d, e, f

)
=

a(d− b)(d− c)(bc + f ψ) + (d + 1)(e− a)(abc + f dψ)

f d(d + 1)eψ 4F3

(
a, b + 1, c + 1, η̃3 + 1

d + 2, e + 1, η̃3

)
,

where

η̃3 =
a(d− b)(d− c)(bc + f ψ) + (d + 1)(e− a)(abc + f dψ)

(d− b)(d− c)(bc + f ψ) + (e− a)(abc + f dψ)
.

On the other hand, using (28) we compute T−2
1 as follows:

4F3

(
a, b, c, f + 1

d, e, f

)
=

(d− 1)(e− 1)( f − a)
f (d− a− 1)(e− a− 1) 4F3

(
a, b− 1, c− 1, η̂′1 + 1

d− 1, e− 1, η̂′1

)
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with

η̂′1 =
(b− 1)(c− 1)( f − a)

(d− a− 1)(e− a− 1)− ψ( f − a)
.

Comparing these formulas we see that the composition T−2
1 ◦ T2

3 gives the transformation S4 shifting
d → d + 1 while a, b, c, e remain intact:

4F3

(
a, b, c, f + 1

d, e, f

)
=

f + λ

f 4F3

(
a, b, c, η + 1
d + 1, e, η

)
, (31)

so that ε = 1, M = 1,

λ =
abc

d(d + e− a− b− c− 1)
, α =

1
d

, β =
(b− d)(c− d) + a(b + c− d)

d(d + e− a− b− c− 1)
, η =

ε f + λ

α f + β
.

Each transformation Sj, j = 1, . . . , 5, obviously generates a subgroup of T̂ isomorphic to Z—the
additive group of integers. Hence, in the parlance of group theory, the above theorem can be restated and
enhanced as follows.

Corollary 1. The group T̂ contains a subgroup S isomorphic to the 5-dimensional integer lattice Z5. Furthermore,
this subgroup is normal.

Proof of Corollary 1. By the previous theorem we only need to prove normality. Denote by S the subgroup
of the matrix group DT̂ generated by the shift matrices Ŝj, j = 1, . . . , 5. Clearly, S comprises 6× 6 matrices
whose principal 5× 5 sub-matrix equals the identity matrix I5, the 6-th row is (0, . . . , 0, 1) and the 6-th
column is (k1, . . . , k5, 1) for some ki ∈ Z. As all elements of DT̂ have integer entries and the bottom row
(0, . . . , 0, 1) it is easy to see that for any shift matrix S ∈ S and any matrix D ∈ DT̂ both products DS and
SD have the principal 5× 5 sub-matrix equal to that of D and the last column of the form (k1, . . . , k5, 1) for
some ki ∈ Z. Running over all elements of S while keeping D fixed we see that the left and right conjugacy
classes of the element D with respect to S coincide.

The above corollary implies that we can take the factor group DT̂ /S . Each element in DT̂ /S is
a conjugacy class containing a representative with the last column (0, . . . , 0, 1)T . Next, we note that
the principal 5× 5 sub-matrix of the matrix D2 from (25b) of the transformation (6) is equal to that of
the Kummer’s transformation (2). This transformation together with the permutation group P3 × P2

representing the obvious invariance with respect to separate permutations of the upper and lower
parameters generate the entire group of Thomae transformations [9]. Next, comparing the principal
5× 5 sub-matrices of the further generators D1, D3, D4 with the matrices of the Thomae transformations
found, for instance in ([4], Appendix 1), we see that all of them occur among the elements of the group of
the Thomae transformations. Hence, it remains to apply Theorem 3.2 from [9] asserting that the group of
the Thomae transformations is isomorphic the 120-element symmetric group P5 of permutations on five
symbols. Isomorphism is given by a linear change of variables seen in (4). Hence, our final result is the
following theorem.

Theorem 4. The group T̂ is isomorphic to P5 ×Z5.
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As the entire group of the Thomae transformations for 3F2 can be generated by the identity (2) and
the permutation group P3 × P2, the above theorem implies that our entire group T̂ can be generated by the
identity (6) (transformation T2) and the top parameter shift transformation S1 together with the obvious
symmetries P3 × P2. For example, the bottom parameter shift transformation can be obtained as follows:

(d− c, e− c, ψ, ψ + a, ψ + b)
T2

2�−→ (a, b, c, d, e)
S1S−1

3�−→ (a + 1, b, c− 1, d, e)

T−2
2�−→ (d− c + 1, e− c + 1, ψ, ψ + a + 1, ψ + b)

S1S2�−→ (d− c, e− c, ψ, ψ + a + 1, ψ + b).

Comparing the first and the last terms in this chain we see that we got the bottom parameter shift
transformation S4 using only T2 and top shift transformations S1, S2, S3 obtained from S1 by permuting
top parameters.

Theorem 4 further implies that there is a straightforward algorithm for computing any transformation
from the group T̂ . Details are given in the Appendix A to this paper.

4. Related 3F2 Transformation

The proof of Theorem 1 shows that each transformation T ∈ T is associated with the system (21) of
two 3F2 transformations. This system leads immediately to the following corollary.

Proposition 1. Each transformation T ∼ {ε, M(r), λ(r), α(r), β(r)} ∈ T induces a transformation for the ratio

Ψ(r) :=
F2(r)

F1(r)
=

abc
de

3F2

(
a + 1, b + 1, c + 1

d + 1, e + 1

)

3F2

(
a, b, c
d, e

) =
d

dx
log 3F2

(
a, b, c
d, e

∣∣∣∣∣ x
)
|x=1

of the form

Ψ(r) =
β(r)Ψ(Dr) + λ(r)

α(r)Ψ(Dr) + ε
.

Next, we observe that any two elements of T generate a three-term relation for 3F2.

Proposition 2. For any two transformations from the group T : T1 ∼ {ε1, M1(r), λ1(r), α1(r), β1(r), D1} and
T2 ∼ {ε2, M2(r), λ2(r), α2(r), β2(r), D2} satisfying the condition α2β1 − α1β2 �= 0, the following identities hold

F1(r) = M1
α2β1ε1 − α1α2λ1

α2β1 − α1β2
F1(D1r) + M2

α1α2λ2 − α1β2ε2

α2β1 − α1β2
F1(D2r) (32)

(the dependence on r is omitted for brevity) and

F2(r) = M1
β1β2ε1 − α1β2λ1

α2β1 − α1β2
F1(D1r) + M2

α2β1λ2 − β1β2ε2

α2β1 − α1β2
F1(D2r), (33)

where as before, F1(r) = 3F2

(
a, b, c
d, e

)
, F2(r) = (abc)/(de)3F2

(
a + 1, b + 1, c + 1

d + 1, e + 1

)
.

Proof of Proposition 2. Solving (21) for each transformation we, in particular, get the system of equations:
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{
F1(D1r) = (β1F1(r)− α1F2(r))/(M1(β1ε1 − α1λ1)),
F1(D2r) = (β2F1(r)− α2F2(r))/(M2(β2ε2 − α2λ2)).

Solving the above system for F1(r), F2(r) we arrive at (32) and (33).

If the matrices D1, D2 contain no shifts (i.e., the last column is (0, 0, 0, 0, 0, 1)T), then they correspond
to Thomae’s relations, so that F1(D1r), F1(D2r) are equal to each other up to a factor of gamma type. In this
case, identities (32) and (33) become two-term transformations. However, for non-zero shifts Proposition 2
generates genuine three-term relations for 3F2(a, b, c; d, e). For example, we obtain

3F2

(
a, b, c
d, e

)
=

Γ(d + 1)Γ(e)Γ(d + e− a− b− c)
Γ(a + 1)Γ(d + e− a− b)Γ(d + e− a− c) 3F2

(
d + e− a− b− c− 1, d− a, e− a

d + e− a− c, e + d− a− b

)

+
(a− d)(d− b)(d− c)

d(1 + d)e 3F2

(
a + 1, b + 1, c + 1

d + 2, e + 1

)
. (34)

An important subclass of these transformations are pure shifts (the principal 5× 5 submatrices of D1, D2

are identity matrices). This subclass comprises the so-called contiguous relations, studied recently in detail
in [20]. In particular, Theorem 1.1 from [20] claims the existence of the unique rational functions u(r), v(r)
such that

3F2

(
a, b, c
d, e

)
= u(r)3F2

(
a + k1, b + k2, c + k1

d + k4, e + k5

)
+ v(r)3F2

(
a + m1, b + m2, c + m3

d + m4, e + m5

)
(35)

for any two distinct non-zero integer vectors (k1, k2, k3, k4, k5), (m1, m2, m3, m4, m5). Furthermore,
Ebisu and Iwasaki presented a rather explicit algorithm in [20] for computing the functions u(r), v(r)
for given shifts. Proposition 2 furnishes an alternative method for computing these functions. For its
realization we provide a collection of Mathematica routines in the Appendix A to this paper. Our algorithm
works as follows: first step is to calculate transformations T1, T2 ∈ T̂ associated with the matrices

D1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 k1

0 1 0 0 0 k2

0 0 1 0 0 k3

0 0 0 1 0 k4

0 0 0 0 1 k5

0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, D2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 m1

0 1 0 0 0 m2

0 0 1 0 0 m3

0 0 0 1 0 m4

0 0 0 0 1 m5

0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

To this end we simply iterate transformations S±, S± realizing the shifts by ±1 of the first and forth
parameters, respectively, combining them with the necessary permutations of the upper and lower
parameters. To calculate the resulting λ, α and β the composition rule from Theorem 1 is used with the
help of Mathematica routine. Then it remains to apply formula (32). For example, we get:

3F2

(
a, b, c
d, e

)
=

d + e− a− b− c− 1
e 3F2

(
a + 1, b + 1, c + 1

d + 1, e + 1

)

+
(a− d)(d− b)(d− c)

d(d + 1)e 3F2

(
a + 1, b + 1, c + 1

d + 2, e + 1

)
. (36)
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Please note that identity (34) is obtained from (36) by an application of a Thomae relation to the first term
on the right hand side. In a similar fashion, contiguous relations and Thomae transformations generate
all three-term relations from Proposition 2, induced by the elements of the the group T̂ . We note that the
relations covered by Proposition 2 are different from the three-term relations for 3F2 summarized by Bailey
in ([21], Section 3.7) and studied from group-theoretic viewpoint in ([9], Section IV). This can be seen for
example by comparing the matrices ([9], Equation (2.6c)) with the matrices D associated with T̂ .

The system (21) follows from the representation (13) of 4F3 with one unit shift as a linear combination
of two 3F2 functions. However, Formula (13) is just one example of such decomposition. The two
propositions below give many more ways to expand the 4F3 with unit shift into linear combination
of 3F2. Proposition 3 is proved directly in terms of hypergeometric series manipulations as its results will
be used below in Section 6 to prove Lemma 1 used to generate the group T̂ .

Proposition 3. The following identities hold true:

3F2

(
α, b, c
d, e

)
+ γ3F2

(
α− 1, b, c

d, e

)
= (γ + 1)4F3

(
α− 1, b, c, ξ + 1

d, e, ξ

)
, (37)

where ξ = (γ + 1)(α− 1);

3F2

(
α, b, c
d, e

)
+ γ3F2

(
α + 1, b, c
d + 1, e

)
= (γ + 1)4F3

(
α, b, c, ν + 1
d + 1, e, ν

)
, (38)

where ν = (γ + 1)αd/(γd + α); and

3F2

(
α, b, c
d, e

)
+ γ3F2

(
α, b + 1, c + 1
d + 1, e + 1

)
= 4F3

(
α− 1, b, c, λ + 1

d, e, λ

)
, (39)

where λ = (α− 1)bc/(bc + γde).

Proof of Proposition 3. We have

3F2

(
α, b, c
d, e

)
+ γ3F2

(
α− 1, b, c

d, e

)
= 1 + γ +

∞

∑
n=1

(α)n(b)n(c)n + γ(α− 1)n(b)n(c)n

(d)n(e)nn!

= (1 + γ)

(
1 +

∞

∑
n=1

(α− 1)n(b)n(c)n

(d)n(e)nn!

(
1 +

n
(α− 1)(γ + 1)

))

= (γ + 1)4F3

(
α− 1, b, c, ξ + 1

d, e, ξ

)
,

where ξ = (γ + 1)(α− 1) and we used (α)n = (α− 1)n(1 + n/(α− 1)). Next,

3F2

(
α, b, c
d, e

)
+ γ3F2

(
α + 1, b, c
d + 1, e

)
= 1 + γ +

∞

∑
n=1

(α)n(b)n(c)n

(d + 1)n(e)nn!

(
1 +

n
d
+ γ +

γn
α

)
= (γ + 1)4F3

(
α, b, c, ν + 1
d + 1, e, ν

)
,

where ν = (γ + 1)αd/(γd + α) and we used (α + 1)n = (α)n(1 + n/α).
Finally, using the obvious identities (b)n = b(b + 1)n−1 and (α)n = (α− 1)n+1/(α− 1) we get
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3F2

(
α, b, c
d, e

)
+ γ3F2

(
α, b + 1, c + 1
d + 1, e + 1

)
= 1 +

∞

∑
n=1

bc(α)n−1(b + 1)n−1(c + 1)n−1(α + n− 1)
de(d + 1)n−1(e + 1)n−1n!

+ γ3F2

(
α, b + 1, c + 1
d + 1, e + 1

)
= 1 +

∞

∑
n=0

(α)n(b + 1)n(c + 1)n

(d + 1)n(e + 1)nn!

(
bc(α + n)
de(n + 1)

+ γ

)
= 1 +

∞

∑
n=0

(α− 1)n+1(b)n+1(c)n+1

(d)n+1(e)n+1(n + 1)!
de

bc(α− 1)

(
bc(α + n)

de
+ γ(n + 1)

)
=

1 +
∞

∑
n=1

(α− 1)n(b)n(c)n

(d)n(e)nn!

(
1 + n

bc + γde
(α− 1)bc

)
= 4F3

(
α− 1, b, c, λ + 1

d, e, λ

)
,

where λ = (α− 1)bc/(bc + γde).

Other ways to represent 4F3 with one unit shift as a linear combination of 3F2 are found by substituting
(32) and (33) into (13). This is done in the following proposition.

Proposition 4. Any two transformations from the group T : T1 ∼ {ε1, M1(r), λ1(r), α1(r), β1(r), D1} and
T2 ∼ {ε2, M2(r), λ2(r), α2(r), β2(r), D2} satisfying the condition α2β1 − α1β2 �= 0 (for brevity we omit the
dependence on r in the parameters) induce the decomposition

4F3

(
a, b, c, f + 1

d, e, f

)
= M1

β1ε1 − α1λ1

α2β1 − α1β2

(
α2 +

β2

f

)
F1(D1r) + M2

α2λ2 − β2ε2

α2β1 − α1β2

(
α1 +

β1

f

)
F1(D2r), (40)

where F1(r) = 3F2

(
a, b, c
d, e

)
.

Let us exemplify (40) with the following two decompositions:

4F3

(
a, b, c, f + 1

d, e, f

)
=

(
d + e− a− b− c− 1

e
+

abc
de f

)
3F2

(
a + 1, b + 1, c + 1

d + 1, e + 1

)

+
(a− d)(d− b)(d− c)

ed(1 + d) 3F2

(
a + 1, b + 1, c + 1

d + 2, e + 1

)

and

4F3

(
a, b, c, f + 1

d, e, f

)
= A3F2

(
a + 1, b, c

d, e

)
+ B3F2

(
a + 1, b + 1, c + 1

d + 2, e + 1

)
,

where

A = 1 +
bc( f − a)

f (b(d− c)− d(d + e− a− c− 1))
, B =

bc(a− d)(b− d)(c− d)( f − a)
de f (1 + d)(b(c− d) + d(d + e− a− c− 1))

.
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5. Summation Formulas

In ([22], Equation (45)) we established the following summation formula

4F3

(
a, b, c, f + 1

d, e, f

)
=

Γ(d)Γ(e)
Γ(a + 1)Γ(b + 1)Γ(c + 1)

, (41a)

valid if

e1(d, e)− e1(a, b, c) = 2 and f =
e3(a, b, c)

e2(a, b, c)− e2(1− d, 1− e)
, (41b)

where ek(·) denotes the k-th elementary symmetric polynomial. Now, if we apply any transformation of
the form (15) and impose the above restrictions on the parameters on the right hand side, we obtain

4F3

(
a, b, c, f + 1

d, e, f

)
= M(r)

ε f + λ(r)

f
F(q, η) =

M(r)(ε f + λ(r))Γ(q4)Γ(q5)

f Γ(q1 + 1)Γ(q2 + 1)Γ(q3 + 1)
, (42a)

where (q1, q2, q3, q4, q5, 1) = Dr, and the conditions e1(q4, q5)− e1(q1, q2, q3) = 2 and

η =
ε f + λ(r)

α(r) f + β(r)
=

e3(q1, q2, q3)

e2(q1, q2, q3)− e2(1− q4, 1− q5)

must hold. Expressing f they are equivalent to

e1(q4, q5)− e1(q1, q2, q3) = 2 and f =
λ(r)(e2(q1, q2, q3)− e2(1− q4, 1− q5))− β(r)e3(q1, q2, q3)

α(r)e3(q1, q2, q3)− ε(e2(q1, q2, q3)− e2(1− q4, 1− q5))
. (42b)

As qi = qi(a, b, c, d, e), i = 1, . . . , 5, are linear functions we arrive at the following proposition:

Proposition 5. Each transformation T ∈ T as characterized by the collection {ε, M(r), λ(r), α(r), β(r), D}
corresponds to a summation formula (42a) valid under restrictions (42b) with (q1, . . . , q5, 1) = Dr.

We will illustrate Proposition 5 by applying it to transformation (25). First condition in (42b) becomes
e = c + 2. In view of this condition formula (42a) takes the form

4F3

(
a, b, c, f + 1
d, c + 2, f

)
=

(c + 1)Γ(d)Γ(d− a− b + 2)( f ψ + c(a + b− d))
Γ(d− a + 1)Γ(d− b + 1) f ψ

,

where ψ = d− a− b + 1 and, by the second condition in (42b),

f = − c(a + b− d)
ψ

+
(d− a)(d− b)c

ψ((d− a)(d− b + c) + (d− b)c + (d− 1)(a + b− d− c− 1))
.

Further examples will be given in [23].

6. Proof of Lemma 1

Write identity (13) in expanded form

4F3

(
a, b, c, f + 1

d, e, f

)
= 3F2

(
a, b, c
d, e

)
+

abc
f de 3F2

(
a + 1, b + 1, c + 1

d + 1, e + 1

)
. (43)
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Applying Thomae’s transformation (3) to both 3F2 functions on the right hand side, we get (ψ = d + e−
a− b− c− 1):

4F3

(
a, b, c, f + 1

d, e, f

)
=

Γ(ψ + 1)Γ(d)Γ(e)
Γ(a)Γ(ψ + b + 1)Γ(ψ + c + 1)

×[
3F2

(
ψ + 1, d− a, e− a

ψ + b + 1, ψ + c + 1

)
+

bc
f ψ

3F2

(
ψ, d− a, e− a

ψ + b + 1, ψ + c + 1

)]
.

Now we employ Proposition 3. Application of Formula (37) to the linear combination in
brackets yields

4F3

(
a, b, c, f + 1

d, e, f

)
=

( f ψ + bc)Γ(ψ)Γ(d)Γ(e)
f Γ(a)Γ(ψ + b + 1)Γ(ψ + c + 1) 4F3

(
ψ, d− a, e− a, η + 1

ψ + b + 1, ψ + c + 1, η

)
,

where η = ψ + bc/ f . This proves transformation given by (7).
In a similar fashion, if we apply the Kummer transformation (2) to 3F2 on the right hand side of (43)

we get:

4F3

(
a, b, c, f + 1

d, e, f

)
=

Γ(ψ + 1)Γ(d)
Γ(d− a)Γ(ψ + a + 1)

[
3F2

(
a, e− b, e− c
e, ψ + a + 1

)
+

abc
f eψ

3F2

(
a + 1, e− b, e− c
e + 1, ψ + a + 1

)]
.

Applying the relation (38) to the linear combination in brackets we then obtain

4F3

(
a, b, c, f + 1

d, e, f

)
=

(abc + f eψ)Γ(ψ)Γ(d)
f eΓ(d− a)Γ(ψ + a + 1) 4F3

(
a, e− b, e− c, λ + 1
e + 1, ψ + a + 1, λ

)
,

where

λ =
abc + f eψ

bc + f ψ
.

This proves transformation (8).
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Appendix A

In this appendix we will display the explicit form of the main building blocks needed for calculating
the elements of the group T̂ . Just as it stands for Thomae’s transformations ([4], Appendix 1), we
have ten different identities with zero shifts. They are obtained as follows: permuting a ↔ b and
a ↔ c in Formula (7) we get three transformations, while a ↔ b, a ↔ c and d ↔ e in (6) leads to six
more transformations. Adding the identity transformation we arrive at ten ”Thomae-like” zero-shift

transformations for 4F3 containing the parameter pair

[
f + 1

f

]
. The entire 120 element subgroup of
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”Thomae-like” zero-shift transformations is obtained by the obvious 12 permutations of three top and two
bottom parameters on the right hand side of each of the ten transformations described above.

All further transformations are obtained by consecutive application of the four shifting
transformations S±, S± and permutations of top and bottom parameters to the 120 transformations
described above. Transformation S+ shifting the top parameter a by +1 (denoted by S1 in Section 3) is
given by (30). Combining parameters it can be written as:

4F3

(
a, b, c, f + 1

d, e, f

)
=

(
1− bc

(d− a− 1)(e− a− 1)

)(
1 +

λ

f

)
4F3

(
a + 1, b, c, η + 1

d, e, η

)
, (A1)

where

λ =
abc

a(2 + a− d− e)− bc + (d− 1)(e− 1)
, η =

abc + ((a + 1)(a + 1− d− e)− bc + de) f
(a− f )(2 + a + b + c− d− e)

.

Its inverse S− is given by:

4F3

(
a, b, c, f + 1

d, e, f

)
=

(
1 +

bc
ψ f

)
4F3

(
a− 1, b, c, η + 1

d, e, η

)
, (A2)

where

η =
(a− 1)(bc + ψ f )

a(d + e− a) + bc− de + ψ f
.

The transformation S+ shifting the bottom parameter d by +1 (denoted by S4 in Section 3) is given
by (31). It can be written more compactly as

4F3

(
a, b, c, f + 1

d, e, f

)
=

abc + ψd f
ψd f 4F3

(
a, b, c, η + 1
d + 1, e, η

)
, (A3)

where ψ = e + d− a− b− c− 1 and

η =
abc + ψd f

d(d− a− b− c) + ab + ac + bc + ψ f
.

Finally, its inverse transformation S− shifting a bottom parameter by −1 has the form

4F3

(
a, b, c, f + 1

d, e, f

)
=

[((d− b− 1)(d− c− 1)− a(d− b− c− 1)) f − abc](d− 1)
(d− a− 1)(d− b− 1)(d− c− 1) f 4F3

(
a, b, c, η + 1
d− 1, e, η

)
, (A4)

where

η =
abc + [(1− d)(d− a− b− c− 1)− ab− ac− bc] f

(d + e− a− b− c− 2)( f − d + 1)
.

In the remaining part of the Appendix we present several Wolfram Mathematica® routines intended
for dealing with the group T together with an example of their use. Listing A1 contains the function
CMPS[T1, T2] that takes as input two transformations T1, T2 and computes their composition T2 ◦ T1.
The form in which the parameters εi, Mi, λi, αi, βi and Di, i = 1, 2, should be supplied can be seen from
the example in Listing A5. Similarly, Listing A2 contains the function INV[T] that computes the inverse of
a given transformation T. The output provided by CMPS and INV can be printed in an easily readable
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form using the function PRN[T] given in Listing A3. The same Listing A3 contains the function INPT[T]
that converts the output form of the functions CMPS and INV into the input form of the same functions,
so that further compositions or inverses could be computed from such output. For numerical verification
of the outputs of CMPS and INV the function RHS[T] presented in Listing A4 converts these outputs into
an expression that can be evaluated by the Mathematica function N[...] after the parameters have been
assigned some numerical values, see an example at the end of Listing A5.

Listing A1. Composition.

1 CMPS[T1_, T2_]:=Module[{eps1=T1[[1]], M1=T1[[2]], lam1=T1[[3]], alpha1=T1[[4]],
2 beta1=T1[[5]], D1=T1[[6]], eps2=T2[[1]], M2=T2[[2]], lam2=T2[[3]], alpha2=T2[[4]], beta2=T2[[5]],
3 D2=T2[[6]], R={{a},{b},{c},{d},{e},{1}}}, RR=Flatten[Drop[R,{6}]];
4 If [ Simplify [eps1∗eps2+alpha1@@RR∗lam2@@Flatten[Drop[D1.R,{6}]]]===0,
5 {0, FullSimplify [M1@@RR∗M2@@Flatten[Drop[D1.R,{6}]]∗(eps2∗lam1@@RR+lam2@@Flatten[Drop[D1.R, {6}]]∗beta1@@RR)], 1,
6 Simplify [(eps1∗alpha2 @@ Flatten[Drop[D1.R,{6}]]+alpha1@@RR∗beta2@@Flatten[Drop[D1.R, {6}]])/
7 (eps2∗lam1@@RR+lam2@@Flatten[Drop[D1.R,{6}]]∗beta1@@RR)], Simplify[(lam1@@RR∗alpha2@@Flatten[Drop[D1.R,{6}]]
8 +beta1@@RR∗beta2@@Flatten[Drop[D1.R, {6}]])/(eps2∗lam1@@RR+lam2@@Flatten[Drop[D1.R,{6}]]∗beta1@@RR)], D2.D1},
9 {1, FullSimplify [M1@@RR∗M2@@Flatten[Drop[D1.R,{6}]]∗(eps1∗eps2+alpha1@@RR∗lam2@@Flatten[Drop[D1.R, {6}]])],

10 Simplify [(eps2∗lam1@@RR+lam2@@Flatten[Drop[D1.R,{6}]]∗beta1@@RR)/
11 (eps1∗eps2+alpha1@@RR∗lam2@@Flatten[Drop[D1.R,{6}]])], Simplify[(eps1∗alpha2@@Flatten[Drop[D1.R, {6}]]
12 +alpha1@@RR∗beta2@@Flatten[Drop[D1.R, {6}]])/(eps1∗eps2+alpha1@@RR∗lam2@@Flatten[Drop[D1.R, {6}]])],
13 Simplify [( lam1@@RR∗alpha2@@Flatten[Drop[D1.R,{6}]]+beta1@@RR∗beta2 @@Flatten[Drop[D1.R, {6}]])/
14 (eps1∗eps2+alpha1@@RR∗lam2@@Flatten[Drop[D1.R,{6}]])], D2.D1}]]

Listing A2. Inversion.

1 INV[TT_]:=Module[{eps=TT[[1]], M=TT[[2]], lam=TT[[3]], alpha=TT[[4]], beta=TT[[5]], D=TT[[6]],
2 R={{a}, {b}, {c}, {d}, {e}, {1}}}, RR=Flatten[Drop[R, {6}]];
3 If [ Simplify [beta@@RR]===0, {0,FullSimplify[1/M@@Flatten[Drop[Inverse[D].R,{6}]]/
4 alpha@@Flatten[Drop[Inverse[D].R, {6}]]], 1, Simplify [alpha@@Flatten[Drop[Inverse[D].R,{6}]]/
5 lam@@Flatten[Drop[Inverse[D].R, {6}]]], −eps/lam@@Flatten[Drop[Inverse[D].R, {6}]], Inverse [D]},
6 {1, FullSimplify [beta@@Flatten[Drop[Inverse[D].R, {6}]]/(M@@Flatten[Drop[Inverse[D].R,{6}]]∗
7 (eps∗beta@@Flatten[Drop[Inverse[D].R, {6}]]−lam@@Flatten[Drop[Inverse[D].R, {6}]]∗
8 alpha@@Flatten[Drop[Inverse[D].R, {6}]]) ) ], Simplify [−lam@@Flatten[Drop[Inverse[D].R,{6}]]/
9 beta@@Flatten[Drop[Inverse[D].R, {6}]]], Simplify [−alpha@@Flatten[Drop[Inverse[D].R,{6}]]/

10 beta@@Flatten[Drop[Inverse[D].R, {6}]]], Simplify [eps/beta @@ Flatten[Drop[Inverse [D].R ,{6}]]], Inverse [D]}]]

Listing A3. Conversion into input form and printing.

1 exprToFunction[expr_, vars_]:=ToExpression[ToString[FullForm[expr ]/.MapIndexed[#1 −> Slot @@ #2 &, vars]]<>"&"];
2

3 INPT[TT_]:=List[TT[[1]], exprToFunction[TT[[2]], {a, b, c, d, e }],
4 exprToFunction[TT [[3]], {a, b, c, d, e }], exprToFunction[TT [[4]], {a, b, c, d, e }],
5 exprToFunction[TT [[5]], {a, b, c, d, e }], TT [[6]]]
6

7 ETA[TT_]:=Collect[Numerator[Together[(TT[[1]]∗f+TT[[3]])/(TT[[4]]∗f+TT[[5]])]], f]/
8 Collect [Denominator[Together[(TT[[1]]∗f + TT[[3]])/(TT[[4]]∗f + TT[[5]]) ]], f ]
9

10 PRN[TT_]:=Module[{}, Print["epsilon=", TT[[1]]];
11 Print ["M=", FullSimplify[TT [[2]]]];
12 Print ["Lambda=", FullSimplify[TT [[3]]]]; Print ["alpha=", TT [[4]]];
13 Print ["Beta=", TT[[5]]];
14 Print ["Parameters=", Flatten[Drop[TT[[6]].{{a}, {b}, {c}, {d}, {e}, {1}}, {6}]]];
15 Print ["eta=", ETA[TT]]];

Listing A4. Conversion into computable form.

1 RHS[TT_]:=Simplify[TT[[2]]∗(TT[[1]]∗f + TT[[3]])/f]∗
2 HypergeometricPFQ[Join[Flatten[Drop[TT[[6]].{{a},{b},{c},{d},{e },{1}},{6}]][[1;;3]], {ETA[TT]+1}],
3 Join [Flatten [Drop[TT[[6]].{{a},{b},{c},{d},{e },{1}},{6}]][[4;;5]], {ETA[TT]}],1]
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Listing A5. Example of use.

1 (* Definition of the first transformation *)
2 eps1=1; M1[a_,b_,c_,d_,e_]:=Gamma[d+e−a−b−c]*Gamma[d]*Gamma[e]/Gamma[a]/Gamma[d+e−a−c]/Gamma[d+e−a−b];
3 lam1[a_,b_,c_,d_,e_]:=b*c/(d+e−a−b−c−1); alpha1[a_,b_,c_,d_,e_]:=1/(d+e−a−b−c−1);
4 beta1[a_, b_, c_, d_,e_]:=0; D1={{−1,−1,−1,1,1,−1}, {−1,0,0,1,0,0}, {−1,0,0,0,1,0}, {−1,0,−1,1,1,0},
5 {−1,−1,0,1,1,0}, {0,0,0,0,0,1}};
6

7 (* Definition of the second transformation *)
8 eps2=1; M2[a_,b_,c_,d_,e_]:=Gamma[d+e−a−b−c]*Gamma[e]/Gamma[d+e−a−b]/Gamma[e−c];
9 lam2[a_,b_,c_,d_,e_]:=(a+b−d)*c/(d+e−a−b−c−1); alpha2[a_,b_,c_,d_,e_]:=0;

10 beta2[a_,b_,c_,d_,e_]:=(e−c−1)/(d+e−a−b−c−1); D2={{−1,0,0,1,0,0}, {0,−1,0,1,0,0}, {0,0,1,0,0,0},
11 {0,0,0,1,0,0}, {−1,−1,0,1,1,0}, {0,0,0,0,0,1}};
12

13 (* composition T2T1*)
14 T1T2=CMPS[{eps1, M1, lam1, alpha1, beta1, D1}, {eps2, M2, lam2, alpha2, beta2, D2}];
15

16 (* Inverse of T1*)
17 T1INV = INV[{eps1, M1, lam1, alpha1, beta1, D1}];
18

19 (* Printing the parameters of T2T1*)
20 PRN[T1T2]
21 epsilon=1
22 M=−(((a c+(1+b−d) e) Gamma[d] Gamma[−1−a−b−c+d+e])/(e Gamma[−b+d] Gamma[−a−c+d+e]))
23 Lambda=−((a b c)/(a c+(1+b−d)e))
24 alpha=(1+b−d)/(a c+e+b e−d e)
25 Beta=0
26 Parameters={1+b,−c+e,−a+e,−a−c+d+e,1+e}
27 eta=(−abc+(ac+e+be−de)f)/((1+b−d)f)
28

29 (*Computing composition of the results of previous operations *)
30 NEW=CMPS[INPT[T1T2], INPT[T1INV]];
31

32 (*Numerical verification of the transformation NEW using RHS[...]*)
33 a=1+2/3; b=−13/17+2; c=3/7; d=5/11; e=5+44/17; f=12/13;
34 In[51]:= N[HypergeometricPFQ[{a, b, c, f + 1}, {d, e, f }, 1], 15]
35 Out[51]= 2.22268615827388
36 In[52]:= N[RHS[NEW], 15]
37 Out[52]= 2.22268615827388
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1. Introduction

This survey article is dedicated to a topic that has received little attention in the past, and therefore
seems not to be very well known by the mathematical community.

Recently the role of the Laguerre derivative was considered in a few papers.
In [1], the authors introduce an interesting application of Wright functions of the first kind

to solve fractional ordinary differential equations, with variable coefficients, generalizing the
Bessel-type equations.

In [2], the authors use the same tool in Combinatorics, a completely different area, and in [3] an
operational approach to the subject has been examined, in the framework of Clifford algebras.

Actually, in past time, the Laguerre-type exponentials and the related Laguerre derivative were
introduced and studied in several articles (see [4–15]) and applications to Special functions, have been
obtained. In particular, Laguerre-type functions of Bessel, Appell, Bell and multivariate functions were
defined.

The operator DxD = D + x D2 determines a linear differential isomorphism, acting onto the
space of analytic functions of the x variable. By using this isomorphism, a sort of parallel structure
is created within this space, in such a way that the differentiation properties have their counterpart,
which can be immediately derived.

Furthermore, iterations of the Laguerre derivative can be defined, so that this parallelism with the
space of analytic functions can be iterated too, in an endless way.

Therefore, a cyclic construction is created within the space that repeats the same structure at
a higher level of differentiation order. It is one of the great cycles that sometimes occur within
mathematical theories: for example, in Number theory the Fibonacci numbers Fn with Fibonacci
indexes constitute a higher sequence of Fibonacci numbers which still satisfies the same recursion, i.e.,
FFn+2 = FFn+1 + FFn , and this property can be iterated at infinity.

Mathematics 2020, 8, 2054; doi:10.3390/math8112054 www.mdpi.com/journal/mathematics
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However the operators DL = DxD and its iterates as DnL = DxDxDx · · ·DxD are not completely
new, since they can be considered to be particular cases of the hyper-Bessel differential operators
when α0 = α1 = · · · = αn = 1 (the special case considered in operational calculus by Ditkin and
Prudnikov [16]). In general, the Bessel-type differential operators of arbitrary order n were introduced by
Dimovski, in 1966 [17] and later called by Kiryakova hyper-Bessel operators, because are closely related
to their eigenfunctions, called hyper-Bessel by Delerue [18], in 1953. These operators were studied in
1994 by Kiryakova in her book [19] (Ch. 3).

Since the Laguerrian exponentials on the positive semi-axis of the abscissas are convex increasing
functions, with a growth lower than the exponential one, in Section 7 a natural application was made
in the context of population dynamics.

Laguerre-type linear dynamical systems were also considered in Section 8.

2. The Laguerre Derivative and the Relevant Exponentials

The Laguerre derivative, is defined by

DL := DxD = D + xD2, (1)

where D = Dx = d/dx.
It is an interesting operator. In fact, as the exponential function eax (a constat) is an eigenfunction

of the derivative operator D = Dx, i.e.,

Deax = aeax , (2)

equally the function

e1(x) :=
∞

∑
k=0

xk

(k!)2 = C0(−x), (3)

where C0(x) is the Tricomi function of order zero, is an eigenfunction of the Laguerre
derivative DL, since:

DL e1(ax) = ae1(ax) . (4)

The proof easily follows, by noting that:

DL e1(ax) =
(

D + xD2) ∞

∑
k=0

ak xk

(k!)2 =

=
∞

∑
k=1

(k + k(k− 1)) ak xk−1

(k!)2 =
∞

∑
k=1

k2 ak xk−1

(k!)2 =

= a
∞

∑
k=0

ak xk

(k!)2 = ae1(ax).

(5)

For this reason, the function e1(x) is called the Laguerre-type exponential (of order 1).
In preceding articles, the role of the Laguerre derivative, in connection with the monomiality

principle—an important technique introduced by G. Dattoli [20]—and its application to the
multidimensional Hermite (Hermite-Kampé de Fériet or Gould-Hopper polynomials, see [21–23]) or
Laguerre polynomials [14,24], has been shown.

The above technique can be iterated, producing Laguerre classes of exponential-type functions,
of higher order, called L-exponentials, and the relevant L-circular, L-hyperbolic, L-Gaussian functions
(see [4]).
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Similar generalized hypergeometric functions, called trigonometric/Bessel type, exponential/
confluent type and Gauss/Beta-distribution, can be found in a book by Kiryakova [19] and also in [25].

Before going on, we notice that the Laguerre derivative verifies [26]:

(DxD)n = DnxnDn , (6)

an equation which can be easily proven by recursion.

2.1. L-Exponentials of Higher Order

We consider the operator:

D2L := DxDxD = D
(

xD + x2D2
)
= D + 3xD2 + x2D3, (7)

and the function:

e2(x) :=
∞

∑
k=0

xk

(k!)3 . (8)

The following theorem holds:

Theorem 1. The function e2(ax) is an eigenfunction of the operator D2L, i.e.,

D2L e2(ax) = ae2(ax) (9)

The proof (see [4]) depends on the identity: k + 3k(k− 1) + k(k− 1)(k− 2) = k3, so that, it can
be recognized that the coefficients of the combination in Equation (7) are the Stirling numbers of the
second kind, S(3, 1), S(3, 2), S(3, 3), (see [27], and [28] (p. 835 for an extended table)).

In general, we can state the following theorem:

Theorem 2. The function

en(x) :=
∞

∑
k=0

xk

(k!)n+1 . (10)

is an eigenfunction of the operator

DnL := Dx · · ·DxDxD = D
(

xD + x2D2 + · · ·+ xnDn) =
= S(n + 1, 1)D + S(n + 1, 2)xD2 + · · ·+ S(n + 1, n + 1)xnDn+1 ,

(11)

i.e., for every constant a it results:

DnL en(ax) = aen(ax) . (12)

Remark 1. The above results show that, for every positive integer n, we can define a Laguerre-exponential
function, satisfying an eigenfunction property, which is an analog of the elementary property (2) of the
exponential. The function en(x) reduces to the exponential function when n = 0, so that we put by definition:

e0(x) := ex, D0L := D.

Obviously, D1L := DL.

Examples of the L-exponential functions are given in Figure 1.
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Figure 1. e1(x), (green) and e2(x), (red).

2.2. L-Circular and L-Hyperbolic Functions

Starting from the equation

e1(ix) =
∞

∑
h=0

(−1)h x2h

((2h)!)2 + i
∞

∑
h=0

(−1)h x2h+1

((2h + 1)!)2 , (13)

we can define the 1L-circular functions as follows

cos1(x) := � (e1(ix)) =
∞

∑
h=0

(−1)h x2h

((2h)!)2 , (14)

sin1(x) := � (e1(ix)) =
∞

∑
h=0

(−1)h x2h+1

((2h + 1)!)2 , (15)

so that we find the Euler-type formulas

cos1(x) =
e1(ix) + e1(−ix)

2
, sin1(x) =

e1(ix)− e1(−ix)
2i

, (16)

Recalling Equation (6), we find the result:

Theorem 3. The 1L-circular functions (14) and (15) are solutions of the differential equation

D2
L v + v =

(
D2x2D2

)
v + v = 0. (17)

The above results hold even for the generalized case.
Write the nL-exponential in the form:

en(ix) =
∞

∑
h=0

(−1)h x2h

((2h)!)n+1 + i
∞

∑
h=0

(−1)h x2h+1

((2h + 1)!)n+1 . (18)

Then we can define the nL-circular functions by putting

Definition 1.

cosn(x) := � (en(ix)) =
∞

∑
h=0

(−1)h x2h

((2h)!)n+1 , (19)
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sinn(x) := � (en(ix)) =
∞

∑
h=0

(−1)h x2h+1

((2h + 1)!)n+1 , (20)

and we find again the Euler-type formulas:

cosn(x) =
en(ix) + en(−ix)

2
, sinn(x) =

en(ix)− en(−ix)
2i

. (21)

Theorem 3 becomes, in general:

Theorem 4. The nL-circular functions (18) and (19) are solutions of the differential equation

D2
nL v + v = 0.

and satisfy the conditions:

cosn(0) = 1, sinn(0) = 0.

Furthermore, we find:

Theorem 5. The nL-circular functions satisfy

DnL cosn(x) = − sinn(x), DnL sinn(x) = cosn(x) . (22)

Examples of the L-circular functions are given in Figures 2 and 3.

Figure 2. cos1(x), (green) and sin1(x), (red).

Figure 3. cos2(x) (green) and sin2(x) (red).
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In a similar way we can define the nL-hyperbolic functions, putting

coshn(x) :=
∞

∑
h=0

x2h

((2h)!)n+1 ,

sinhn(x) :=
∞

∑
h=0

x2h+1

((2h + 1)!)n+1 ,

and the formulas analogues of that of the circular functions are easily derived (see [4]).
All the eigenfunctions e1(x), e2(x), . . . , en(x) can be expressed as generalized hypergeometric

functions pFq, [29], namely: e1(x) = 0F1(−x), e2(x) = 0F2(x), . . . , en(x) = 0Fn(x). In practice, starting
from the Bessel function e1(x), all these eigenfunctions are special cases of the hyper-Bessel functions
of Delerue [18], which are shown to be eigenfunctions of Dimovski’s operators mentioned above.

Naturally, the cosn, sinn functions, in Equations (19) and (20), and their hyperbolic variants,
are special cases of the trigonometric type generalized hypergeometric functions considered in the Kiryakova
book [19].

3. The Isomorphism Tx and Its Iterations

It was previously noted (see e.g., [14]) that, in the space Ax of analytic functions, it is possible to
define an isomorphism Tx that preserves the differentiation properties, by means of correspondence:

D → DL, x· → D−1
x , (23)

where

D−1
x f (x) =

∫ x

0
f (ξ) dξ , D−n

x f (x) =
1

(n− 1)!

∫ x

0
(x− ξ)n−1 f (ξ) dξ , (24)

so that

Tx(xn) = D−n
x (1) =

1
(n− 1)!

∫ x

0
(x− ξ)n−1 dξ =

xn

n!
. (25)

It is worth noting that this kind of isomorphism is widely used in operational calculus and
differential equations also under the name of Transmutation or Similarity operator, since it transforms
one operator into another, and eigenfunctions into each other.

In fact, in such an isomorphism we have the correspondences:

• The exponential function is transformed into the function e1(x), since

Tx(ex) =
∞

∑
k=0

Tx(xk)

k!
=

∞

∑
k=0

xk

(k!)2 = e1(x) .

• The Hermite polynomial H(1)
n (x, y) := (x− y)n becomes the Laguerre polynomial

Ln(x, y) := n!
n

∑
r=0

(−1)ryn−rxr

(n− r)!(r!)2

and by using the monomiality principle we can prove thate all the relations valid in the polynomial
space still hold after the substitutions stated in Equation (23).

Furthermore, an iterative application of Equation (23) gives in sequence the functions
e1(x), e2(x), e3(x), . . . .
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We have, for example:

T 2
x (e

x) =
∞

∑
k=0

Tx(xk)

(k!)2 =
∞

∑
k=0

xk

(k!)3 = e2(x) ,

and so on.
We already noticed that the isomorphism connected with the Laguerre derivative can be iterated

as many times as we wish.
Correspondently, the derivative operator is transformed into

DL = DxD , D2L = DLD−1
x DL = DxDxD ,

D3L = DLD−1
x DLD−1

x DL = DxDxDxD , . . . , (26)

and so on.
We can conclude that the L-exponentials (and the relevant L-circular and L-hyperbolic functions)

are determined by an iterative application of the considered differential isomorphism.

4. Examples of Laguerre-Type Problems

4.1. L-Diffusion Equations

Theorem 6. For any fixed integer n, consider the problem (see [4] (Theorem 5.1)):{
DnL S(x, t) = ∂

∂t S(x, t), in the half plane t > 0,
S(0, t) = s(t),

(27)

with analytic boundary condition s(t).
The operational solution of problem (27) is given by:

S(x, t) = en

(
x

∂

∂t

)
s(t) =

∞

∑
k=0

xk

(k!)n+1
dk

dtk s(t) (28)

Representing s(t) =
∞

∑
k=0

aktk, from Equation (28) we find, in particular:

S(x, 0) =
∞

∑
k=0

ak
xk

(k!)n . (29)

Please note that the operational solution becomes an effective solution whenever the series in
Equation (28) is convergent. The validity of this condition depends on the growth of the coefficients ak
of the boundary data s(t), but it is usually satisfied in physical problems.

More general problems are shown in [4,10], where evolution problems related to an operator of
the type

Dp1 xq1 Dp2 xq2 · · ·Dpr xqr Dpr+1 , (30)

where p1, p2, . . . , pr+1; q1, q2, . . . qr are fixed integers, have been considered.
An operational solution of the problem

Dp1 xq1 Dp2 xq2 · · ·Dpr xqr Dpr+1 S(x, t) = DtS(x, t), in the half plane t > 0 ,

with suitable initial conditions have been determined, in terms of the eigenfunctions of the same operator.
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Remark 2. Please note that the above operators generalize the subsequent Laguerre-type derivatives, since they
are written as:

Dr
nL = (DxDx · · ·DxD)r︸ ︷︷ ︸

(n+1) Derivatives

= DrxrDrxr · · ·DrxrDr , (31)

which is an equation extending (6).

The operator (30) closely recalls the general case of hyper-Bessel B operators, in [17], since integers
q1, q2, . . . qr could be replaced by arbitrary real numbers, as are parameters α0, α1, . . . , αn, considered
in [17,30]. The solutions of the general differential equation By(x) + λy(x) = f (x) are given by
Kiryakova et al. in [31].

4.2. L-Hyperbolic-Type Problems

Theorem 7. Let Ω̂x be a 2nd order differential operator with respect to the x variable, DnL := (DnL)t the
nL-derivative with respect to the t variable, and denote by ψ(t) and χ(t) two functions such that:

DnL ψ(t) = χ(t), DnL χ(t) = ψ(t)

ψ(0) = 1, χ(0) = 0
(32)

then the abstract L-hyperbolic-type problem:⎧⎪⎨⎪⎩
Ω̂2

x S(x, t) = D2
nL S(x, t), in the half plane t > 0,

S(x, 0) = q(x),
DnL S(x, t)|t=0 = v(x)

(33)

with analytic initial condition q(x), v(x), admits the operational solution (see [4], Theorem 5.3):

S(x, t) = ψ
(
tΩ̂x
)

q(x) + χ
(
tΩ̂x
)

w(x), (34)

where w(x) := Ω̂−1
x v(x).

Please note that conditions in (32) are satisfied, for any fixed integer n, assuming:

ψ(x) := coshnL(x), χ(x) := sinhnL(x) .

4.3. L-Elliptic-Type Problems

Theorem 8. Let Ω̂x be a 2nd order differential operator with respect to the x variable, DnL := (DnL)y the
nL-derivative with respect to the y variable, and denote by ϕ(y) and τ(y) two functions such that:

DnL ϕ(y) = −τ(y), DnL τ(y) = ϕ(y)

ϕ(0) = 1, τ(0) = 0
(35)

then the abstract L-elliptic-type problem:{
Ω̂2

x S(x, y) + D2
nL S(x, y) = 0, in the half plane t > 0,

S(x, 0) = q(x),
(36)

with analytic boundary condition q(x), admits the operational solution (see [4], Theorem 5.4):

S(x, y) = ϕ
(
yΩ̂x
)

q(x). (37)
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Please note that conditions in (35) are satisfied, for any fixed integer n, assuming:

ϕ(x) := cosnL(x), τ(x) := sinnL(x) .

Further examples of PDE’s problems involving the Laguerre derivatives can be found in [10,11].

5. Laguerre-Type Special Functions

5.1. Laguerre-Type Bessel Functions

The Laguerre-type Bessel functions, of order 1, (shortly L-Bessel functions), denoted by L Jn(x),
are obtained substituting the exponential with the L-exponential e1(x) in the classic generating
function, i.e., by putting

e1

[
x
2

(
t− 1

t

)]
=

+∞

∑
n=−∞

L Jn(x) tn .

We can derive the explicit expression by applying the isomorphism Tx to both sides of the explicit
expression of the Bessel functions, so that we find:

L Jn(x) :=
∞

∑
n=0

(−1)hxn+2h

2n+2h h!(n + h)!(n + 2h)!
.

We proved the results:

Theorem 9. The L-Bessel functions L Jn(x) satisfy the recurrence relation (see [8], Theorem 2.3):{
D̂−1

x [L Jn−1(x) + L Jn+1(x)] = 2n L Jn(x),
L Jn−1(x)− L Jn+1(x) = 2D̂L L Jn(x).

Theorem 10. The differential equation satisfied by the L-Bessel functions L Jn(x) is (see [8], Theorem 2.5):(
D̂2

L + D̂xD̂L − n2D̂2
x + Î

)
L Jn(x) = 0 ,

where Î denotes the identity operator. This equation can be derived by applying the isomorphism Tx to both
sides of the differential equation of the ordinary first kind Bessel functions.

5.2. Laguerre-Type Hypergeometric Functions

By using the isomorphism technique it is possible to define in general Laguerre-type special
functions, and in particular, the 1st order Laguerre-type hypergeometric functions.

In fact, starting from the Gauss’ hypergeometric equation:

x(1− x)y′′ + [c− (a + b + 1)x]y′ − aby = 0

and applying the isomorphism Tx, we find the equation

x(1− x)D2
Ly + [c− (a + b + 1)x]DLy− aby = 0 , (38)

that is:

[x(1− x)](x2yiv + 4xy′′′ + 2y′′) + [c− (a + b + 1)x](y′ + xy′′)− aby = 0 . (39)
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The solution of Equation (38), corresponding to the Gauss’ hypergeometric equation F(a, b, c; x),
is given by

LF(a, b, c; x) = 1 +
∞

∑
n=1

a(n)b(n)

c(n)
xn

(n!)2 , (40)

where the symbol a(n) denotes the rising factorial.
Of course the rth order Laguerre-type hypergeometric functions are obtained by applying to

both sides of the hypergeometric equation the iterated isomorphism of order r, but the corresponding
differential equation becomes more and more complicated as r increases.

The generalized hypergeometric functions have their 1st order Laguerre-type counterpart, which
are given by:

L pFq(a1, . . . , ap; b1, . . . , bq, ; x) =
∞

∑
n=0

a(n)1 · · · a(n)p

b(n)1 · · · b(n)q

xn

(n!)2 , (41)

and those of higher order immediately follow.
Please note that the function in (41) can be viewed as a generalized hypergeometric function

of the form pFq+1, by moving one of the n! in the first fraction under the sum and considering

Γ(n + 1)/Γ(1) = 1(n) = n! = b(n)q+1 as the (q + 1)-th term.

5.3. Laguerre-Type Bell Polynomials

We first note that for the Laguerre derivative, the chain rule

d
dt

=
d

dx
dx
dt

becomes:

d
dt

t
d
dt

=
d

dx
d
dt

t
dx
dt

, that is : (DL)t =
d

dx
(DL)t x (42)

and in general:

(DnL)t =
d

dx
(DnL)t x.

The problem of constructing Bell polynomials can be extended in the natural way to the case of
the Laguerre-type derivatives.

To this aim, we introduce the definition:

Definition 2. The nth Laguerre-type Bell polynomial, denoted by rLYn (x; [ f , g]n), represents the nth
rLaguerre-type derivative of the composite function f (g(t)).

In [12] we showed that rLYn can be expressed as a polynomial in the independent variable x,
depending on f1, g1; f2, g2; . . . ; fn, gn, in terms of the classical Bell polynomials.

According to Equation (6), the Leibniz rule, gives:

(DxD)n = Dn (xnDn) =
n

∑
k=0

(
n
k

)
Dn−kxnDn+k =

=
n

∑
k=0

[(
n
k

)]2
(n− k)! xk Dn+k =

n

∑
k=0

n!
k!

(
n
k

)
xk Dn+k .

(43)
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Therefore, the following representation formula for the Laguerre-type Bell polynomials, denoted
by LYn, holds:

Theorem 11. The LYn polynomials are expressed in terms of the ordinary Bell polynomials according to the
equation (see [12], Theorem 4.1):

LYn (x; [ f , g]n) =
n

∑
k=0

n!
k!

(
n
k

)
xk Yn+k

(
[ f , g]n+k

)
. (44)

The above results can be easily generalized, since

(D2L)
n = (DxDxD)n = Dn (xnDnxnDn) =

=
n

∑
k1=0

n

∑
k2=0

n!
k1!

(n + k1)!
(k1 + k2)!

(
n
k1

)(
n
k2

)
xk1+k2 Dn+k1+k2 .

(45)

In [12] even the general case of polynomials rLYn Bell is considered, but we do not report here the
equation which is a little more complicated.

6. The Multivariate Case

6.1. Laguerre-Type Appell Polynomials

In a preceding article [32] multivariate extensions of the Appell polynomials (including the
Bernoulli and Euler cases) have been introduced, by means of the generating function [23]:

A(t) exp(xt + yj) =
∞

∑
n=0

R(j)
n (x, y)

tn

n!
,

where j is a fixed integer.
The application of the isomorphism Tx, and its iterations allows defining new classes of

multivariate special polynomials, the Laguerre-type Appell polynomials, and to build their main
properties (recurrence relations, shift operators, differential equations, etc), in an easy and uniform way.

This has been achieved in [6] starting from generating functions of the type

A(t)es(xt)eσ(ytj) =
∞

∑
n=0

R(j)
n (T s

x (x), T σ
y (y))

tn

n!

where es(·) and eσ(·) are Laguerre-type exponentials. Many properties of these functions have been
derived, including recursions and differental equations.

The results obtained in this case are easily extended to the functions of r variables, since the
technique works regardless of the number r.

6.2. Laguerre-Type Appell Series

We limit ourselves to the case of series in two variables, but the equations trivially extend to the
general case. For |x| < 1, |y| < 1 the double series

LF1(a, b1, b2; c; x, y) =
∞

∑
m,n=0

a(m+n)b(m)
1 b(n)2

c(m+n)
xm

(m!)2
yn

(n!)2 (46)

is the Laguerre-type Appell series, obtained by the classical one acting on it with the two isomorphisms
Tx and Ty.
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We avoid to consider further extension to the case of multivariate functions with several
parameters, since they are trivially obtained.

7. Applications to Population Dynamics

7.1. Exponential and L-Exponential Models

In this section a possible application of the Laguerre derivative is recalled [9,13]. Since the
L-exponentials for every x ≥ 0 are convex increasing functions, with a graph lower with respect to
exp(x), it is possible to use these function in the framework of population dynamics, as it seems that
in some cases the growth of the exponential is too fast.

Consider the number N(t) of population individuals at time t and let N(0) = N0 the initial
number at time t = 0.

In the Malthus model, the variation is assumed to be proportional to N(t), i.e.,⎧⎪⎨⎪⎩
d
dt

N(t) = rN(t),

N(0) = N0 ,

where the growth rate r is a suitable constant.
The solution is given by the exponential function

N(t) = N0 ert .

Using the Laguerre derivative, the Laguerre-type Malthus reads:

d
dt

t
dN
dt

= rN(t) i. e.
dN
dt

+ t
d2N
dt2 = rN(t) ,

where r is a positive constant. Assuming the initial conditions

⎧⎨⎩ N(0) = N0,

N′(0) = N1 = N0r ,

we find the solution

N(t) = N0e1(rt) = N0

+∞

∑
k=0

rk tk

(k!)2 .

In this case the population growth increases according to the Laguerre exponential function e1(x),
so that the relevant increasing is slower with respect to the classical Malthus model.

In [9] it has been shown, with tables of data taken from real population dynamics, that the
Laguerre-type Malthus model produces data closer to real population growth.

7.2. Logistic vs. L-logistic Model

Taking into account that the growth rate cannot be constant, since it depends on the environmental
resources, Pierre Verhulst considered the so-called logistic model⎧⎪⎪⎪⎨⎪⎪⎪⎩

dN
dt

= r
[

1− 1
K

N(t)
]

N(t),

N(0) = N0 ,
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where r is called the intrinsic growth rate, and K denotes the environmental capacity.
The exact solution of this problem is given by

N(t) =
N0K

N0 + (K− N0)e−rt ,

so that, if N0 < K the solution is a function monotonically increasing to K, whereas, if N0 > K,
the solution is monotonically decreasing to K. In any case,

lim
t→∞

N(t) = K ,

and the value N(t) = K is a stable equilibrium point for the logistic equation.
The Laguerre-logistic (shortly L-logistic) model is expressed by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

N′(t) + tN′′(t) = rN(t)
(

1− N(t)
K

)
,

N(0) = N0 ,

N′(0) = N1 .

(47)

Please note that if in the above equation N is small with respect to K, then N/K is close to 0 and
consequently DttDtN ≈ rN(t).

If N → K, then N/K → 1, and DttDtN → 0.
The L-logistic equation cannot be solved explicitly, but numerically, using a Runge-Kutta method.
The behavior of the approximate solutions for the L-logistic model is shown in Figure 4. It is

worth noting that the solution tends to the environmental capacity K by an oscillating behavior.
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Figure 4. Solutions to the L-logistic model with N(0) = N′(0) < K (on the left), N(0) = N′(0) > K
(on the right), K = 64, r = 0.8, T = 100, Δt = 0.1.

This is the main difference with respect to the ordinary logistic model, since in that case the
solution was monotonically increasing or decreasing to K.

Similar results could be obtained by using the nL-derivatives, introducing suitable initial
conditions which can be easily derived from the initial observations data.

Please note that as the order n increases, for x > 0, the Laguerrian exponential attenuates its
growth and for n → ∞ it tends to assume the linear value 1 + x, so it can be used to model a growth as
slow as it is needed.
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Remark 3. We recall that the oscillating asymptotic trend of solutions occurs in reality. For example,
the classical experiment of G.F. Gause, relative to the protozoon paramecium shows such a typical behavior,
represented in Figure 5. In this figure the true values, represented by a dotted line, are compared with the
exponential trend of Malthus and with the logistic curve.

Figure 5. The behavior of growth in the Gause experiment.

7.3. Modified L-Logistic Models

Many different models modifying the basic logistic model appeared in the literature: the Bernoulli,
the modified logistic, the Gompertz, the Alee, and the Beverton-Holt models.

In [13] we considered the Laguerre-type version of all of them, showing that in all cases the
oscillating asymptotic behavior of solutions takes the place of the monotonic one.

Instead, it was found that the model of Volterra-Lotka model is invariant under the action of the
isomorphism Tx, since the Laguerre derivative satisfies again the chain rule, according to Equation (42).

8. Laguerre-Type Linear Dynamical Systems

Let A be a r × r matrix and denote by uk, (k = 1, 2, . . . , r) the invariants of A, i.e., the sum of
principal minors (i.e., the elementary symmetric functions of the eigenvalues). The invariants of the
matrix tA are given by uk(t) = tkuk, (k = 1, 2, . . . , r).

Consider the vectors {
Z(t) = (Z1(t), . . . , Zr(t))T

Z0 = (Z1(0), . . . , Zr(0))T .

Then the solution of the linear dynamical system{
Z′(t) = A Z(t) ,
Z(0) = Z0

writes [33]:

Z(t) = etAZ0 =
r−1

∑
h=0

[
1

2πi

r−h−1

∑
j=0

(−1)juj(t)
∮

γ

eλλr−h−j−1

P(λ, t)
dλ

]
· thZh

0 ,

where P(λ, t) is the characteristic polynomial of the matrix tA and γ denotes a simple Jordan curve
encircling all the eigenvalues of A. The choice of γ, without computing the eigenvalues, can be done
by using the Gershgorin theorem.
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In [15], a Laguerre-type version of the above classic result has been shown.
Consider the above r× r matrix, and the vectors⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Z(t) = (Z1(t), . . . , Zr(t))T

Z0 = (Z1(0), . . . , Zr(0))T

Z′0 = (Z′1(0), . . . , Z′r(0))T = A · Z0
...
Zr−1

0 = (Zr−1
1 (0), . . . , Zr−1

r (0))T = A · Zr−2
0 .

The following result holds (see [15] (Theorem 10)):

Theorem 12. The Laguerre-type Cauchy problem for a homogeneous linear differential system⎧⎪⎨⎪⎩
DLZ(t) = Z′(t) + tZ′′(t) = A · Z(t)
Z(0) = Z0

Z′0 = A · Z0 ,

has the solution:

Z(t) = e1(tA) Z0 =
r−1

∑
h=0

[
1

2πi

r−h−1

∑
j=0

(−1)juj(t)
∮

γ

e1(λ) λr−h−j−1

P(λ, t)
dλ

]
· thZh

0 ,

where P(λ, t) and γ have been defined above.
The proof of this result is a straightforward application of the isomorphism Tt. In [15] worked

examples are reported.

9. Conclusions

The Laguerre derivative and the relevant Laguerre-type exponentials allow to associate, to any
given integer n, a new class of special functions. This fact is obtained by exploiting the properties of
an isomorphism, within the space of analytic functions, which acts in such a way as to preserve the
differentiation properties. The successive iterations of this isomorphism produce a cyclic construction
within the space that repeats the same structure at a higher level of the order of derivation.

Infinite many special functions can be defined in this way. A few of them have been presented
explicitly, and the general technique to produce the others has been indicated.

This Survey has shown even possible applications of the Laguerrian derivative in the context
of population dynamics and in the solution of Cauchy problems related to particular linear
dynamical systems.
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1. Introduction

For T > 0, let C0[0, T] be the one-parameter Wiener space and let M denote the class of all Wiener
measurable subsets of C0[0, T]. Let m denote Wiener measure. Then, the space (C0[0, T],M, m) is
complete, and we denote the Wiener integral of a Wiener integrable functional F by∫

C0[0,T]
F(x)dm(x).

Let K ≡ K0[0, T] be the space of all complex-valued continuous functions defined on [0, T] which
vanishes at t = 0 and whose real and imaginary parts are elements of C0[0, T].

In [1], Lee studied an integral transform of analytic functionals on abstract Wiener spaces

Fγ,β(F)(y) =
∫

C0[0,T]
F(γx + βy)dm(x), y ∈ K. (1)

For some parameters γ and β and for certain classes of functionals, the Fourier–Wiener transform,
the modified Fourier–Wiener transform, the analytic Fourier–Feynman transform and the Gauss
transform are popular examples of the integral transform defined by (1) above (see [1–12]). Researchers
have studied some theories of integral transform for functionals on function space. Recently, the integral
transform is generalized by some methods in various papers. One of them uses the concept of Gaussian
process instead of the ordinary process. For a function h on [0, T], the Gaussian process is defined by
the formula

Zh(x, t) =
∫ t

0
h(s)d̃x(s)

Mathematics 2020, 8, 2246; doi:10.3390/math8122246 www.mdpi.com/journal/mathematics
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where
∫ t

0 h(s)d̃x(s) the Paley–Wiener–Zygmund (PWZ) stochastic integral. Many mathematician use
this process to generalize the integral. As representative examples, the generalized integral transforms

F h
γ,β(F)(y) =

∫
C0[0,T]

F(γZh(x, ·) + βy)dm(x) (2)

and
F h1,h2

γ,β (F)(y) =
∫

C0[0,T]
F(γZh1(x, ·) + βZh2(y, ·))dm(x) (3)

are studied in [13–15]. In fact, if h, h1 and h2 are identically 1 on [0, T], then Equations (2) and (3) reduce
to Equation (1).

Another method is using the operators on K. Let S and R be bounded linear operators on K.
In [6,16], the authors used this operators to generalize the integral transforms. A more generalized
form is given by

GS,R(F)(y) =
∫

C0[0,T]
F(Sx + Ry)dm(x). (4)

If R is a constant operator and Sx = Zh(x, ·) for some function h, then Equation (4) reduces to
Equation (2), and hence it reduces to Equation (1) again. In previous studies, many relationships
among the integral transform, the convolution and the first variation have been obtained. However,
most of the results consist of fixed parameters.

In this paper, we use the both concepts, the Gaussian process and the operator, to define a
more generalized integral transform, a generalized convolution product and a generalized first
variation of functionals on function space. We then give some necessary and sufficiently conditions
for holding some relationships between the generalized integral transforms and the generalized
convolution products, and between the generalized integral transforms and the generalized first
variations. In addition, some examples are given to illustrate usefulness for our formulas and results.
By choosing the kernel functions and operators, all results and formulas in previous papers are
corollaries of our results and formulas in this paper.

2. Definitions and Preliminaries

We first list some definitions and properties needed to understand this paper.
A subset B of C0[0, T] is called scale-invariant measurable if ρB is M-measurable for all ρ > 0,

and a scale-invariant measurable set N is called a scale-invariant null set provided m(ρN) = 0 for all
ρ > 0. A property that holds except on a scale-invariant null set is said to hold scale-invariant almost
everywhere (s-a.e.) [17]. For v ∈ L2[0, T] and x ∈ C0[0, T], let 〈v, x〉 denote the Paley–Wiener–Zygmund
(PWZ) stochastic integral. Then, we have the following assertions.

(i) For each v ∈ L2[0, T], 〈v, x〉 exists for a.e. x ∈ C0[0, T].
(ii) If v ∈ L2[0, T] is a function of bounded variation on [0, T], 〈v, x〉 equals the Riemann–Stieltjes

integral
∫ T

0 v(t)dx(t) for s-a.e. x ∈ C0[0, T].
(iii) The PWZ stochastic integral 〈v, x〉 has the expected linearity property.
(iv) The PWZ stochastic integral 〈v, x〉 is a Gaussian process with mean 0 and variance ‖v‖2

2.

For a more detailed study of the PWZ stochastic integral, see [4,5,7–9,11–15,18].
Let

C′0 ≡ C′0[0, T] =
{

v ∈ C0[0, T] : v(t) =
∫ t

0
zv(s)ds, zv ∈ L2[0, T]

}
.

Then, C′0 is the Hilbert space with the inner product

(v1, v2)C′0
=
∫ T

0
zv1(t)zv2(t)dt,
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where vj(t) =
∫ t

0 zvj(s)ds for j = 1, 2. Furthermore, we note that C′0[0, T] ⊂ C0[0, T] and
(C′0[0, T], C0[0, T], m) is one example of the abstract Wiener space [1,16,19,20]. For x ∈ C0[0, T] and
v ∈ C′0[0, T] with v(t) =

∫ t
0 zv(s)ds, zv ∈ L2[0, T], (v, x)∼ ≡ 〈zv, x〉 is a well-defined Gaussian random

variable with mean 0 and variance ‖v‖2
C′0

= ‖zv‖2
2, where (·, ·)∼ is the complex bilinear form on K∗ ×K.

The following is a well-known integration formula which is used several times in this paper. For
each v ∈ C′0 with v(t) =

∫ t
0 zv(s)ds,

∫
C0[0,T]

exp{(v, x)∼}dm(x) = exp
{

1
2
‖v‖2

C′0

}
= exp

{
1
2
‖zv‖2

2

}
. (5)

For each v ∈ C′0[0, T], let
Φv(x) = exp{(v, x)∼}. (6)

These functionals are called the exponential functionals on C0[0, T]. It is a well-known fact that
the class

A ≡ {Φv : v ∈ C′0[0, T]} (7)

is a fundamental set in L2(C0[0, T]). Thus, there is a countable dense S(C0[0, T]) = {Φvn}∞
n=1 ≡

{Φn}∞
n=1 which is dense in L2(C0[0, T]). Thus, we have that, for each F ∈ L2(C0[0, T]),

F(x) = lim
n→∞

n

∑
j=1

ajΦvj(x)

in the L2-sense, where {aj}∞
j=1 is a sequence of constants.

Let L ≡ L(K) be the class of all bounded linear operators on K. Then, for each v ∈ C′0[0, T]
and S ∈ L,

(v, Sx)∼ = (S∗v, x)∼

where S∗ is the adjoint operator of S, see [16,19,21]. We state the conditions for the function h to obtain
mathematically consistency as follows:

(i) For each h ∈ L∞[0, T] ⊂ L2[0, T],

〈zv, Zh(x, ·)〉 = 〈zvh, x〉

where v(t) =
∫ t

0 zv(s)ds for some zv ∈ L2[0, T] because, although zv ∈ L2[0, T], zvh may not be an
element of L2[0, T] for h ∈ L2[0, T].

(ii) Let

h(t) =

{
0, 0 ≤ t < T/2

t + 2, T/2 ≤ t ≤ T
.

Then, h is in L∞[0, T] (and hence h ∈ L2[0, T]). However, Zh(x, t) may not be a Gaussian process.
A condition for h is needed. Let h be an element of L∞[0, T] such that mL(supp (h)) = mL({t ∈
[0, T] : h(t) �= 0}) = T, where mL is the Lebesgue measure. Then, we have ‖h‖2 > 0 and Zh(x, t)
is a Gaussian process.

(iii) For each h ∈ L∞[0, T] and x ∈ C0[0, T], Zh(x, t) is stochastically continuous but it is not
continuous, namely Zh(x, t) may not element of C0[0, T]. However, if h is a function of bounded
variation on [0, T], the Gaussian process Zh(x, t) is continuous and hence SZh(x, ·) is well-defined
for all S ∈ L. Since for v ∈ C′0 with v(t) =

∫ t
0 zv(s)ds, (v, x)∼ = 〈zv, x〉, we have that

(v, SZh(x, ·))∼ = (S∗v, Zh(x, ·))∼ = 〈zS∗v, Zh(x, ·)〉 = 〈hzS∗v, x〉. (8)

(iv) Let H = {h : [0, T]→ R : h ∈ BV[0, T], mL(supp (h)) = T}.
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3. Generalization of the Integral Transform with Related Topics

We start this section by giving definition of generalized integral transform, generalized
convolution product and the generalized first variation of functionals on K.

Definition 1. Let h, h1, h2 be an element of H and let F and G be functionals on K. Let S, R, A, B, C, D, S1,
S2 ∈ L. Then, the generalized integral transform T h

S,R(F) of F, a generalized convolution product (F ∗G)h1,h2
A,B,C,D

of F and G, and a generalized first variation δh1,h2
S1,S2

F of F with respect to h1, h2, S1 and S2 are defined by
the formulas

T h
S,R(F)(y) =

∫
C0[0,T]

F(SZh(x, ·) + Ry)dm(x), (9)

(F ∗ G)h1,h2
A,B,C,D(y) =

∫
C0[0,T]

F(AZh1(x, ·) + By)G(CZh2(x, ·) + Dy)dm(x) (10)

and
δ

h1,h2
S1,S2

F(x|u) ≡ δF(S1Zh1(x, ·)|S2Zh2(u, ·))

=
∂

∂α
F(S1Zh1(x, ·) + αS2Zh2(u, ·))

∣∣∣∣
α=0

(11)

for x, u, y ∈ K if they exist.

Remark 1.

(1) When h(t) ≡ 1 on [0, T], the generalized integral transform T 1
S,R is the Fourier–Gauss transform GS,R [16].

(2) When S and R are the constant operators, the generalized integral transform T h
γ,β is a generalized integral

transform F h
γ,β used in [14,15]. In particular, if h(t) ≡ 1 on [0, T], then T 1

γ,β is the integral transform
used in [5,6,8,10,11,13,22].

(3) When h1(t) ≡ 1 and h2(t) ≡ 1 on [0, T], (F ∗ G)1,1
A,B,C,D is the convolution product used in [11].

We next state some notations used in this paper. For v ∈ L2[0, T], h1, h2, · · · , hn ∈ H and
R1, · · · , Rn ∈ L, let

M(R1, · · · , Rn : h1, · · · , hn : v) ≡ exp
{

1
2

n

∑
j=1

‖hjzR∗j v‖2
2

}
, (12)

where R∗j v(t) =
∫ t

0 zR∗j v(s)ds for each j = 1, 2, · · · , n. Furthermore, we have the symmetric property

for M(· : · : v).
In Theorem 1, we obtain the existence of generalized integral transform, generalized convolution

product and generalized first variation of functionals in S(C0[0, T]). In addition, we show that they
are elements of S(C0[0, T]).

Theorem 1. Let h, h1, h2 be elements of H and let S, R, A, B, C, D, S1, S2 ∈ L. Let Φv and Φw be elements
of S(C0[0, T]) and let u(t) =

∫ t
0 zu(s)ds ∈ C′0. In addition, let khj

(t) =
∫ t

0 hj(s)ds for j = 1, 2. Then,

the generalized integral transform T h
S,R(Φv) of Φv, the generalized convolution product (Φv ∗Φw)

h1,h2
A,B,C,D of

Φv and Φw and the generalized first variation δh1,h2
S1,S2

Φv(x|u) with respect to h1, h2, S1 and S2 exist, belong to
S(C0[0, T]) and are given by the formulas

T h
S,R(Φv)(y) = M(S : h : v)ΦR∗v(y), (13)

(Φv ∗Φw)
h1,h2
A,B,C,D(y)

= M(A : h1 : v)M(C : h2 : w) exp{(h1zA∗v, h2zC∗w)2}ΦB∗v+D∗w(y)
(14)
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and
δ

h1,h2
S1,S2

Φv(x|u) = (h2zS∗2 v, zu)2Φh1zS∗1 v
(x). (15)

for x, y, u ∈ K.

Proof. First, using Equations (5), (1) and (8), it follows that, for all y ∈ K, we have

T h
S,R(Φv)(y) =

∫
C0[0,T]

exp
{
(v, SZh(x, ·))∼ + (v, Ry)∼

}
dm(x)

=
∫

C0[0,T]
exp
{
〈hzS∗v, x〉+ (R∗v, y)∼

}
dm(x)

= exp
{

1
2
‖hzS∗v‖2

2

}
ΦR∗v(y).

Finally, by using Equations (12) and (13) is obtained. We next use Equations (5), (8) and (14) to
obtain the following calculation

(Φv ∗Φw)
h1,h2
A,B,C,D(y) =

∫
C0[0,T]

Φv(AZh1(x, ·) + By)Φw(CZh2(x, ·) + Dy)dm(x)

=
∫

C0[0,T]
exp
{
〈h1zA∗v + h2zC∗w, x〉+ (B∗v + D∗w, y)∼

}
dm(x)

= exp
{

1
2
‖h1zA∗v + h2zC∗w‖2

2

}
ΦB∗v(y)ΦD∗w(y).

Since ‖h‖2
2 = (h, h)2 for all h ∈ L2[0, T], we now note that

1
2
‖h1zA∗v + h2zC∗w‖2

2 =
1
2

(
h1zA∗v + h2zC∗w, h1zA∗v + h2zC∗w

)
2

=
1
2

[
(h1zA∗v, h1zA∗v)2 + (h2zC∗w, h2zC∗w)2 + 2(h1zA∗v, h2zC∗w)2

]
and Φv(y) + Φw(y) = Φv+w(y) for all v, w ∈ C′0[0, T]. Hence, we can obtain Equation (14) as desired.
Finally, we use Equations (8) and (11) to establish Equation (15) as follows:

δ
h1,h2
S1,S2

Φv(x|u) = ∂

∂α

[
Φv(S1Zh1(x, ·) + αS2Zh2(u, ·))

]∣∣∣∣
α=0

=
∂

∂α

[
exp{〈h1zS∗1 v, x〉+ α〈h2zS∗2 v, u〉}

]∣∣∣∣
α=0

= 〈h2zS∗2 v, u〉 exp{〈h1zS∗1 v, x〉}.

We now note that

〈h2zS∗2 v, u〉 =
∫ T

0
h2(t)zS∗2 v(t)zu(t)dt = (h2zS∗2 v, zu)2,

which establishes Equation (15) as desired.

4. Some Relationships with the Generalized Convolution Products.

In this section, we obtain some relationships between the generalized integral transform and
the generalized convolution product of functionals in S(C0[0, T]). In the first theorem in Section 4,
we give a formula for the generalized integral transforms of functionals in S(C0[0, T]). To establish
some relationships, the following lemma is needed.
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Lemma 1. Let h1, h2 ∈ H and let S1, S2, R ∈ L. Then, for each v ∈ C′0,

M(S1 : h1 : R∗v)M(S2 : h2 : v) = M(RS1, S2 : h1, h2 : v). (16)

Proof. Using the following fact S∗1 R∗ = (RS1)
∗ and Equation (12) repeatedly, we have

M(S1 : h1 : R∗v)M(S2 : h2 : v) = exp
{

1
2
‖h1zS∗1 R∗v‖2

2

}
exp
{

1
2
‖h2zS∗2 v‖2

2

}
= exp

{
1
2
‖h1zS∗1 R∗v‖2

2 +
1
2
‖h2zS∗2 v‖2

2

}
= exp

{
1
2
‖h1z(RS1)∗v‖2

2 +
1
2
‖h2zS∗2 v‖2

2

}
= M(RS1, S2 : h1, h2 : v),

which complete the proof of Lemma 1.

Theorem 2. Let S1, S2, R1 and R2 be elements of L and let h1 and h2 be elements of H. In addition, let Φv be
an element of S(C0[0, T]). Then,

T h1
S1,R1

(T h2
S2,R2

(Φv))(y) = M(R2S1, S2 : h1, h2 : v)Φ(R1R2)∗v(y) (17)

for y ∈ K.

Proof. From Theorem 1, we have

T h2
S2,R2

(Φv)(y) = M(S2 : h2 : v)ΦR∗2 v(y).

Applying Theorem 1 once more,

T h1
S1,R1

(T h2
S2,R2

(Φv))(y) = M(S2 : h2 : v)M(S1 : h1 : R∗2v)Φ(R1R2)∗v(y).

Finally, using Equation (16) in Lemma 1, we complete the proof of Theorem 2 as desired.

Equations (18) and (19) in Theorem 3 are the commutative of the generalized integral transform
and the Fubini theorem with respect to the generalized integral transform, respectively.

Theorem 3. Let S1, S2, R1 and R2 be elements of L and let h1 and h2 be elements of H. In addition, let Φv be
an element of S(C0[0, T]). Then,

T h1
S1,R1

(T h2
S2,R2

(Φv))(y) = T h2
S2,R2

(T h1
S1,R1

(Φv))(y) (18)

if and only if

R1R2 = R2R1, and M(R2S1, S2 : h1, h2 : v) = M(S1, R1S2 : h1, h2 : v).

Furthermore,
T h1

S1,R1
(T h2

S2,R2
(Φv))(y) = T h3

S3,R3
(Φv)(y) (19)

if and only if
R1R2 = R3, and M(R2S1, S2 : h1, h2 : v) = M(S3 : h3 : v).

Proof. Using Equation (17) twice, we have

T h1
S1,R1

(T h2
S2,R2

(Φv))(y) = M(R2S1, S2 : h1, h2 : v)Φ(R1R2)∗v(y)
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and
T h2

S2,R2
(T h1

S1,R1
(Φv))(y) = M(S1, R1S2 : h1, h2 : v)Φ(R2R1)∗v(y).

Using these facts and Equation (13), we can establish Equations (18) and (19).

From Theorems 2 and 3, we can establish the n-dimensional version for the generalized
integral transform.

Corollary 1. Let S1, · · · , Sn, R1, · · · , Rn−1 and Rn be elements ofL and let hj be an element ofH, j = 1, 2, · · · .
In addition, let Φv be an element of S(C0[0, T]). Then,

T hn
Sn ,Rn

(· · · (T h1
S1,R1

(Φv) · · · ))(y)
= M(S1, R1S2, R1R2, S3, · · · , R1R2 · · · Rn−1Sn : h1, · · · , hn : v)Φ(R1···Rn)∗v(y).

In our next theorem, we show that our generalized convolution product is commutative.

Theorem 4. Let A, B, C and D be elements of L and let h1, h2 ∈ H. Let Φv and Φw be elements of S(C0[0, T]).
Then,

(Φv ∗Φw)
h1,h2
A,B,C,D(y) = (Φw ∗Φv)

h1,h2
A,B,C,D(y) (20)

if and only if
M(A : h1 : v) = M(C : h2 : v) and M(A : h1 : w) = M(C : h2 : w).

Proof. The proof of Theorem 4 is a straightforward application of Theorem 1.

In Theorem 5, we give a necessary and sufficient condition for holding a relationship between the
generalized integral transform and the generalized convolution product.

Theorem 5. For j = 1, 2, 3, let Sj, Rj ∈ L, and, for = 1, 2, let Ai, Bi, Ci, Di ∈ L. In addition, for k =

1, 2, · · · , 7, let hk ∈ H. Then,

T h1
S1,R1

(Φv ∗Φw)
h2,h3
A1,B1,C1,D1

(y) = (T h4
S2,R2

Φv ∗ T h5
S3,R3

Φw)
h6,h7
A2,B2,C2,D2

(y) (21)

if and only if the following equations hold⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
B1R1 = R2B2 and D1R1 = R3D2

M(B1S1, A1 : h1, h2 : v) = M(S2, A2 : h4, h6 : v)

M(D1S1, C1 : h1, h3 : w) = M(S3, C2 : h5, h7 : w)

(h2 A∗
1v, h3C∗1 w)2 = (h6 A∗

2v, h7C∗2 w)2

.

Proof. To complete the proof of Theorem 5, we first calculate the left hand side of Equation (21).
From Equation (14) in Theorem 1, we have

(Φv ∗Φw)
h2,h3
A1,B1,C1,D1

(y)

= M(A1 : h2 : v)M(C1 : h3 : w) exp{(h2 A∗
1v, h3C∗1 w)2}ΦB∗1 v+D∗

1 w(y).
(22)

Using Equations (13), (12), (16) and (22), we have

T h1
S1,R1

(Φv ∗Φw)
h2,h3
A1,B1,C1,D1

(y) = M(B1S1, A1 : h1, h2 : v)M(D1S1, C1 : h1, h3 : w)

· exp{(h2 A∗
1v, h3C∗1 w)2}ΦR∗1 B∗1 v+R∗1 D∗

1 w(y).
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We next calculate the left hand side of Equation (21). From Equations (12) and (13) twice, we have

T h4
S2,R2

(Φv)(y) = M(S2 : h4 : v)ΦR∗2 v(y) (23)

and
T h5

S3,R3
(Φw)(y) = M(S3 : h5 : w)ΦR∗3 w(y). (24)

We now use Equations (14), (16), (23) and (24) repeatedly to obtain the following calculation

(T h4
S2,R2

Φv ∗ T h5
S3,R3

Φw)
h6,h7
A2,B2,C2,D2

(y) = M(S2, A2 : h4, h6 : v)M(S3, C2 : h5, h7 : w)

· exp{(h6 A∗
2v, h7C∗2 w)2}ΦB∗2 R∗2 v+D∗

2 R∗3 w(y).

Hence, we complete the proof of Theorem 5 as desired.

Corollary 2. The following results and formulas stated bellow easily from Theorem 5.

(1) Let S and R be elements of L, and, for = 1, 2, let Ai, Bi, Ci, Di ∈ L. In addition, for k = 1, 2, · · · , 5,
let hk ∈ H. Then,

T h1
S,R(Φv ∗Φw)

h2,h3
A1,B1,C1,D1

(y) = (T h1
S,RΦv ∗ T h1

S,RΦw)
h4,h5
A2,B2,C2,D2

(y)

if and only if the following equations hold⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
B1R = RB2 and D1R = RD2

M(B1S, A1 : h1, h2 : v) = M(S, A2 : h1, h4 : v)

M(D1S, C1 : h1, h3 : w) = M(S, C2 : h1, h5 : w)

(h2 A∗
1v, h3C∗1 w)2 = (h4 A∗

2v, h5C∗2 w)2

.

(2) For j = 1, 2, 3, let Sj, Rj ∈ L and A, B, C, D ∈ L. In addition, for k = 1, 2, · · · , 7, let hk ∈ H. Then,

T h1
S1,R1

(Φv ∗Φw)
h2,h3
A,B,C,D(y) = (T h4

S2,R2
Φv ∗ T h5

S3,R3
Φw)

h2,h3
A,B,C,D(y)

if and only if the following equations hold⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
BR1 = R2B and DR1 = R3D

M(BS1, A : h1, h2 : v) = M(S2, A : h4, h2 : v)

M(DS1, C : h1, h3 : w) = M(S3, C : h5, h:w)

(h2 A∗v, h3C∗w)2 = (h6 A∗v, h3C∗w)2

.

5. Some Relationships with the Generalized First Variations

In this section, we establish some formulas involving the generalized first variation. We next
obtain a generalized Cameron–Storvick theorem for the generalized first variation and use this to
apply for the generalized integral transform.

Theorem 6. Let h1, h2, h3 ∈ H and S1, S2, S3 ∈ L. Let u ∈ C′0 with u(t) =
∫ t

0 zu(s)ds. Then,

T h1
S1,R(δ

h2,h3
S2,S3

Φv(·|u))(y) = δh2,h3
S2,S3

T h1
S1,R(Φv)(y|u) (25)

if and only if R = I and M(S1 : h1 : vS2,h2) = M(S1 : h1 : v), where vS2,h2 = h2zS∗2 v.
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Proof. First, using Equations (5), (12), (13) and (29), we have

T h1
S1,R(δ

h2,h3
S2,S3

Φv(·|u))(y)

= (h3zS∗3 v, zu)2

∫
C0[0,T]

Φh2zS∗2 v
(S1Zh1(x, ·) + Ry)dm(x)

= (h3zS∗3 v, zu)2

∫
C0[0,T]

exp{(vS2,h2 , S1Zh1(x, ·))∼ + (vS2,h2 , Ry)∼}dm(x)

= (h3zS∗3 v, zu)2

∫
C0[0,T]

exp{〈h1zS∗1 vS2,h2
, x〉+ (R∗vS2,h2 , y)∼}dm(x)

= (h3zS∗3 v, zu)2M(S1 : h1 : vS2,h2) exp{(R∗vS2,h2 , y)∼}
= (h3zS∗3 v, zu)2M(S1 : h1 : vS2,h2)ΦR∗vS2,h2

(y).

On the other hands, using Equations (11)–(13), we have

δh2,h3
S2,S3

T h1
S1,R(Φv)(y|u)

=
∂

∂α

[
T h1

S1,R(Φv)(S2Zh2(y, ·) + αS3Zh3(u, ·))}
]∣∣∣∣

α=0

=
∂

∂α

[
exp
{

1
2
‖h1zS∗1 v‖2

2

}
ΦR∗v(S2Zh2(y, ·) + αS3Zh3(u, ·))

]∣∣∣∣
α=0

= exp
{

1
2
‖h1zS∗1 v‖2

2

}
∂

∂α

[
exp
{
(R∗v, S2Zh2(y, ·))∼ + α(R∗v, S3Zh3(u, ·))∼

}]∣∣∣∣
α=0

= exp
{

1
2
‖h1zS∗1 v‖2

2

}
∂

∂α

[
exp
{
〈h2zS∗2 R∗v, y〉+ α〈h3zS∗3 R∗v, u〉

}]∣∣∣∣
α=0

= (h3zS∗3 R∗v, zu)2M(S1 : h1 : v) exp
{
〈h2zS∗2 R∗v, y〉

}
= (h3zS∗3 R∗v, zu)2M(S1 : h1 : v)Φh2zS∗2 R∗v

(y).

Hence, Equation (25) holds if and only if R = I and

M(S1 : h1 : vS2,h2) = M(S1 : h1 : v).

To establish a generalized Cameron–Storvick theorem for the generalized first variation, we need
two lemmas with respect to the translation theorem on Wiener space.

Lemma 2. (Translation Theorem 1) Let F be a integrable functional on C0[0, T] and let x0 ∈ C′0. Then,

∫
C0[0,T]

F(x + x0)dm(x) = exp
{
−1

2
‖x0‖2

C′0

} ∫
C0[0,T]

F(x) exp{(x0, x)∼}dm(x). (26)

In [23], the authors used Equation (26) to establish Equation (28), which is a generalized translation
theorem. The main key in their proof is the change of kernel for the Gaussian process, i.e.

Zh1(θ0, t) =
∫ t

0
h1(s)d

(∫ s

0
h2(τ)zx0(τ)dτ

)
=
∫ t

0
h1(s)h2(s)zx0(s)ds

=
∫ t

0
h2(s)d

(∫ s

0
h1(τ)zx0(τ)dτ

)
= Zh2(u, t)

(27)
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where θ0(t) =
∫ t

0 h2(t)zx0(t)dt and u(t) =
∫ t

0 h1(s)zx0(s)ds for given x0 ∈ C′0.
The following lemma is said to be the translation theorem via the Gaussian process on

Wiener space.

Lemma 3 (Translation Theorem 2). Let h1, h2 ∈ H. Let x0(t) =
∫ t

0 zx0(s)ds and let F(Zh1(x, ·)) be a
integrable functional on C0[0, T]. Let

θ0(t) =
∫ t

0
h1(s)zx0(s)ds.

Then, ∫
C0[0,T]

F(Zh1(x, ·) + Zh2(θ0, ·))dm(x)

= exp
{
−1

2
‖zx0 h2‖2

2

} ∫
C0[0,T]

F(Zh1(x, ·)) exp{(θ0, Zh2(x, ·))∼}dm(x).
(28)

In our next theorem, we establish the generalized Cameron–Storvick theorem for the generalized
first variation.

Theorem 7. Let x0 ∈ C′0 be given. Let h1, h2 ∈ H and S ∈ L. In addition, let u(t) =
∫ t

0 h1(s)zx0(s)ds and
θ0(t) =

∫ t
0 h2(s)zx0(s)ds. Then,∫

C0[0,T]
δh1,h2

S,S Φv(x|u)dm(x) =
∫

C0[0,T]
(x0, Zh2(x, ·))∼Φv(SZh1(x, ·))dm(x). (29)

Proof. First, by using Equation (11) and the dominated convergence theorem, we have∫
C0[0,T]

δ
h1,h2
S,S Φv(x|u)dm(x)

=
∂

∂α

[∫
C0[0,T]

Φv(SZh1(x, ·) + αSZh2(u, ·))dm(x)
]∣∣∣∣

α=0

=
∂

∂α

[∫
C0[0,T]

Φv(SZh1(x, ·) + SZh2(αu, ·))dm(x)
]∣∣∣∣

α=0
.

Now, let Fh
S (x) = Φv(SZh(x, ·)). Using the key (27) used in [23], we have

Fh1
S (x + αθ0) = Φv(SZh1(x, ·) + SZh2(αu, ·))

where θ0(t) =
∫ t

0 h2(s)zx0(s)ds and u(t) =
∫ t

0 h1(s)zx0(s)ds. This means that

∫
C0[0,T]

δh1,h2
S,S F(x|u)dm(x) =

∂

∂α

[∫
C0[0,T]

Fh1
S (x + αθ0)dm(x)

]∣∣∣∣
α=0

.

We next apply the translation theorem to the functional Fh1
S instead of F in Lemma 2 to proceed

the following formula
∫

C0[0,T]
δh1,h2

S,S F(x|u)dm(x)

=
∂

∂α

[
exp
{
−1

2
‖αθ0‖2

C′
0

} ∫
C0[0,T]

Fh1
S (x) exp{(αθ0, x)∼}dm(x)

]∣∣∣∣
α=0

=
∂

∂α

[
exp
{
− α2

2
‖zx0 h2‖2

2

} ∫
C0[0,T]

Fh1
S (x) exp{α〈zx0 h2, x〉}dm(x)

]∣∣∣∣
α=0

=
∫

C0[0,T]
〈zx0 h2, x〉Φv(SZh1

(x, ·))dm(x).
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Since (θ0, x)∼ = 〈zx0 h2, x〉 = (x0, Zh2(x, ·))∼, we complete the proof of Theorem 7 as desired.

In the last theorem in this paper, we use Equation (29) to give an integration formula involving
the generalized first variation and the generalized integral transform. This formula tells us that we can
calculate the Wiener integral of generalized first variation for generalized integral transform directly
without calculations of them.

Theorem 8. Let h1, h2, h3 ∈ H and let S1, S2 ∈ L. In addition, let u, x0, θ0 be as in Theorem 7. Then,∫
C0[0,T]

δh2,h3
S2,S2

T h1
S1,R(Φv)(y|u)dm(y) = M(S1, RS2 : h1, h2 : v)(h3zx0 , h2zS∗2 R∗v)2. (30)

Proof. Applying Equation (29) to the functional T h1
S1,R(Φv) instead of Φv, we have

∫
C0[0,T]

δh2,h3
S2,S2

T h1
S1,R(Φv)(y|u)dm(y)

=
∫

C0[0,T]
(x0, Zh3(y, ·))∼T h1

S1,R(Φv)(S2Zh2(y, ·))dm(y).

Now, using Equations (8) and (13), it becomes that∫
C0[0,T]

δh2,h3
S2,S2

T h1
S1,R(Φv)(y|u)dm(y)

= M(S1 : h1 : v)
∫

C0[0,T]
(x0, Zh3(y, ·))∼ exp{(R∗v, S2Zh2(y, ·))∼}dm(y)

= M(S1 : h1 : v)
∫

C0[0,T]
〈h3zx0 , y〉 exp{〈h2zS∗2 R∗v, y〉}dm(y).

The following integration formula

∫
C0[0,T]

〈w, x〉 exp{〈p, x〉}dm(x) = (w, p)2 exp
{

1
2
‖p‖2

2

}
, w, p ∈ L2[0, T]

and Equation (12) yield that∫
C0[0,T]

δh2,h3
S2,S2

T h1
S1,R(Φv)(y|u)dm(y)

= M(S1 : h1 : v)
∫

C0[0,T]
〈h3zx0 , y〉 exp{〈h2zS∗2 R∗v, y〉}dm(y)

= M(S1 : h1 : v)(h3zx0 , h2zS∗2 R∗v)2 exp
{

1
2
‖h2zS∗2 R∗v‖2

2

}
= M(S1 : h1 : v)M(RS2 : h2 : v)(h3zx0 , h2zS∗2 R∗v)2.

Finally, by using Equation (16) in Lemma 1, we establish Equation (30) as desired.

6. Application

We finish this paper by giving some examples to illustrate the usefulness of our results and
formulas.

We first give a simple example used in the stack exchange and the signal process. For x ∈ C0[0, T],
let Ks(x)(t) =

∫ t
0 x(s)ds. Then, the adjoint is given by the formula K∗s (x)(t) =

∫ T
t x(s)ds.
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Example 1. Let S = Ks and let v(t) = −t + T
2 and h(t) = t2 on [0, T]. Then, h ∈ H. In addition, we have

S∗v(t) =
∫ T

t
v(s)ds =

1
2

t2 − t
2

T =
∫ t

0
(s− 1

2
T)ds.

This means that zS∗v(t) = t− 1
2 T on [0, T] and hence ‖hzS∗v‖2

2 = 1
12 T4. Thus, we obtain that

T h
S,R(Φv)(y) = exp

{
1
24

T4
}

ΦR∗v(y).

We give two examples in the quantum mechanics. To do this, we consider useful operators used
in quantum mechanics. We consider two cases. However, various cases can be applied in appropriate
methods as examples.

Case 1 : Multiplication operator.

In the next examples, we consider the multiplication operator Tm, which plays a role in physics
(quantum theories) (see [21]). Before do this, we introduce some observations to proceed obtaining
examples. Let R ∈ L such that

R(xy) = xR(y) (31)

for all x, y ∈ C0[0, T]. In addition, for t ∈ [0, T] on C0[0, T], we define a multiplication operator Tm by

(Tm(x))(t) ≡ Tm(x(t)) = tx(t). (32)

Then, we have Tm(xy) = tx(t)y(t) and xTm(y) = x(t)ty(t). Hence, Equation (31) holds.
In addition, one can easily check that T∗mv(t) = tv(t) for all v ∈ C′0. Note that the expected value or
corresponding mean value is

E(x) ≡
∫ T

0
t|x(t)|2dt =

∫ T

0
Tm(|x|2)(t)dt,

where x is the state function of a particle in quantum mechanics and
∫ T

0 |x(t)|2dt is the probability that
the particle will be found in [0, T].

In the first and second examples, we give some formula with respect to the multiplication
operator Tm.

Example 2. Let S = Tm and let v(t) = 1
2 t2 and h(t) = t2 on [0, T]. Then, h ∈ H. In addition, we have

v(t) =
1
2

t2 =
∫ t

0
sds

and

S∗v(t) =
1
2

t3 =
∫ t

0

3
2

s2ds.

This means that zv(t) = t and zS∗v(t) = 3
2 t2 on [0, T] and hence ‖hzS∗v‖2

2 = 3
10 T5. Thus, we obtain that

T h
S,R(Φv)(y) = exp

{
3
10

T5
}

ΦR∗v(y).

Example 3. Let S = Tm and let v(t) = et − 1 and h(t) = t on [0, T]. Then, h ∈ H. In addition, we have

v(t) = et − 1 =
∫ t

0
esds
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and

S∗v(t) = tet − t =
∫ t

0
(ses + es − 1)ds.

This means that zv(t) = et and zS∗v(t) = tet + et − 1 on [0, T] and hence

‖hzS∗v‖2
2 =

1
4

e2T(2T4 + 2T2 − 2T + 1)− 2eT(T2 + 2T − 4) +
1
3

T3 − 33
4

.

Thus, we obtain that

T h
S,R(Φv)(y) = exp

{
1
8

e2T(2T4 + 2T2 − 2T + 1)

− eT(T2 + 2T − 4) +
1
6

T3 − 33
8

}
ΦR∗v(y).

Case 2 : Quantum mechanics operators.

In the next examples, we consider some linear operators which are used to explain the solution of
the diffusion equation and the Schrôdinger equation (see [24]).

Let S : C′0[0, T]→ C′0[0, T] be the linear operator defined by

Sw(t) =
∫ t

0
w(s)ds. (33)

Then, the adjoint operator S∗ of S is given by the formula

S∗w(t) = w(T)t−
∫ t

0
w(s)ds =

∫ t

0
[w(T)− w(s)]ds

and the linear operator A = S∗S is given by the formula

Aw(t) =
∫ T

0
min{s, t}w(s)ds.

In addition, A is self-adjoint on C′0[0, T] and so

(w1, Aw2)C′0
= (Sw1, Sw2)C′0

=
∫ T

0
w1(s)w2(s)ds

for all w1, w2 ∈ C′0[0, T]. Hence, A is a positive definite operator, i.e., (w, Aw)C′0
≥ 0 for all w ∈ C′0[0, T].

This means that the orthonormal eigenfunctions {em} of A are given by

em(t) =
√

2T
(m− 1

2 )π
sin
(
(m− 1

2 )π

T
t
)
≡
∫ t

0
αm(s)ds

with corresponding eigenvalues {βm} given by

βm =

(
T

(m− 1
2 )π

)2

.

Furthermore, it can be shown that {em} is a basis of C′0[0, T] and so {αm} is a basis of Ł2, and that
A is a trace class operator and so S is a Hilbert–Schmidt operator on C′0[0, T]. In fact, the trace of A is
given by TrA = 1

2 T2 =
∫ T

0 tdt. By using the concept of m-lifting on abstract Wiener space, the operators
S and A can be extended on C0[0, T] (see [19,25]).

We now give formulas with respect to the operators S and A, respectively.
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Example 4. Let S be given by Equation (33) and let v(t) = 1
2 t2 and h(t) = t on [0, T]. Then, h ∈ H.

In addition, we have

v(t) =
1
2

t2 =
∫ t

0
sds

Sv(t) =
∫ t

0

1
2

s2ds =
1
6

t3

and

S∗v(t) = tv(T)− Sv(t) =
1
2

tT2 − 1
6

t3 =
∫ t

0

[
1
2

T − 1
2

s2
]

ds.

This means that zv(t) = t and zS∗v(t) = 1
2 T − 1

2 t2 on [0, T] and hence ‖hzS∗v‖2
2 = 1

40 T7. Thus,
we obtain that

T h
S,R(Φv)(y) = exp

{
1

80
T7
}

ΦR∗v(y).

Example 5. Let S = A and let v(t) = 1
2 t2 and h(t) = t on [0, T]. Then, h ∈ H. In addition, we have

v(t) =
1
2

t2 =
∫ t

0
sds,

Av(t) = SS∗v(t) =
∫ t

0
S∗v(s)ds =

∫ t

0

∫ s

0
[v(T)− v(u)du]ds

=
∫ t

0

[
sv(T)−

∫ s

0

1
2

u2du
]

ds =
∫ t

0

[
1
2

sT2 − 1
6

s3
]

ds

=
1
4

T2t2 − 1
24

t4

and

A∗v(t) = Av(t) =
∫ t

0

[
1
2

sT2 − 1
6

s3
]

ds.

This means that zv(t) = t and zS∗v(t) = 1
2 tT2 − 1

6 t3 on [0, T] and hence ‖hzA∗v‖2
2 = 58

2835 T9. Thus,
we obtain that

T h
A,R(Φv)(y) = exp

{
29

2835
T9
}

ΦR∗v(y).

We now give an example with respect to Theorem 8.

Example 6. Let s1 = Tm and S2 = S, as used in the examples above. Let R = I and let h1(t) = h2(t) =

t, h3(t) = t2 on [0, T]. Furthermore, let v(t) = 1
2 t2 on [0, T] and let x0(t) = t =

∫ t
0 1ds ∈ C′0. Then, we have

zv(t) = t, zS∗1 v(t) = 3
2 t2, zS∗2 v(t) = 1

2 T − 1
2 t2 and zx0(t) = 1 on [0, T]. Furthermore, we have

M(S1, RS2 : h1, h2 : v) = exp
{

5
28

T7 +
1
24

T4 − 1
20

T5
}

and
(h3zx0 , h2zS∗2 R∗v)2 =

1
8

T4 − 1
12

T6.

Hence, by using Equation (30) in Theorem 8, we can conclude that∫
C0[0,T]

δh2,h3
S2,S2

T h1
S1,R(Φv)(y|u)dm(y)

= exp
{

5
28

T7 +
1

24
T4 − 1

20
T5
}(

1
8

T4 − 1
12

T6
)

.
(34)
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7. Conclusions

In Sections 3 and 4, we establish some fundamental formulas for the generalized integral
transform, the generalized convolution product and the generalized first variation involving the
generalized Cameron–Storvick theorem. As shown in Examples 2, 4 and 6, various applications
are established by choosing the kernel functions and operators. The results and formulas are more
generalized forms than those in previous papers. From these, we can conclude that various examples
can also be explained very easily.
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Abstract: Dedicated to the memory of Professor Richard Askey (1933–2019) and to pay tribute to the
Bateman Project. Harry Bateman planned his “shoe-boxes” project (accomplished after his death as
Higher Transcendental Functions, Vols. 1–3, 1953–1955, under the editorship by A. Erdélyi) as a “Guide
to the Functions”. This inspired the author to use the modified title of the present survey. Most of
the standard (classical) Special Functions are representable in terms of the Meijer G-function and,
specially, of the generalized hypergeometric functions pFq. These appeared as solutions of differential
equations in mathematical physics and other applied sciences that are of integer order, usually of
second order. However, recently, mathematical models of fractional order are preferred because they
reflect more adequately the nature and various social events, and these needs attracted attention to

“new” classes of special functions as their solutions, the so-called Special Functions of Fractional Calculus
(SF of FC). Generally, under this notion, we have in mind the Fox H-functions, their most widely
used cases of the Wright generalized hypergeometric functions pΨq and, in particular, the Mittag–
Leffler type functions, among them the “Queen function of fractional calculus”, the Mittag–Leffler
function. These fractional indices/parameters extensions of the classical special functions became
an unavoidable tool when fractalized models of phenomena and events are treated. Here, we try
to review some of the basic results on the theory of the SF of FC, obtained in the author’s works
for more than 30 years, and support the wide spreading and important role of these functions by
several examples.

Keywords: special functions; generalized hypergeometric functions; fractional calculus operators;
integral transforms

MSC: 33C60; 33E12; 26A33; 44A20

1. Historical Introduction

Special functions are particular mathematical functions that have more or less estab-
lished names and notations due to their importance in mathematical analysis, functional
analysis, geometry, physics, astronomy, statistics or other applications (Wikipedia: Special
Functions [1]). It might be Euler, who started to talk, since 1720, about lots of the stan-
dard special functions. He defined the Gamma-function as a continuation of the factorial,
also the Bessel functions and looked after the elliptic functions. Several (theoretical and
applied) scientists started to use such functions, introduced their notations and named
them after famous contributors. Thus, the notions as the Bessel and cylindrical functions;
the Gauss, Kummer, Tricomi, confluent and generalized hypergeometric functions; the
classical orthogonal polynomials (as Laguerre, Jacobi, Gegenbauer, Legendre, Tchebisheff,
Hermite, etc.); the incomplete Gamma- and Beta-functions; and the Error functions, the
Airy, Whittaker, etc. functions appeared and a long list of handbooks on the so-called
“Special Functions of Mathematical Physics” or “Named Functions” (we call them also “Classical
Special Functions”) were published. We mention only some of them in this survey.

As Richard Askey (to whose memory we dedicate this survey) confessed in his lectures [2]
on orthogonal polynomials and special functions: “Now, there are relatively large num-
ber of people who know a fair amount about this topic. Nevertheless, . . . most of the
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mathematicians are totally unaware of the power of the special functions. They react to a
paper which contains a Bessel function or Legendre polynomial by turning immediately
to the next paper”, and continued: “Hopefully these lectures will show ... how useful
hypergeometric functions can be. Very few facts about them are known, but these few
facts can be very useful in many different contexts. So, my advice is to learn something
about hypergeometric functions: or, if this seems too hard or dull a task, get to know
someone who knows something about them. If you already know something about these
functions, share your knowledge with a colleague or two, or a group of students. Every
large university and research laboratory should have a person who not only finds things in
the Bateman Project (i.e., [3]), but can fill in a few holes in this set of books ... In any case, I
hope my point has been made; special functions are useful and those who need them and
those who know them should start to talk to each other ... The mathematical community
at large needs the education on the usefulness of special functions more than most other
people who could use them . . . ”.

As a participant in the NATO International Conference on Special Functions and
Applications 2000 (Arizona State University), the author had the chance to witness the late
night long discussions (mainly between Richard Askey and Oleg Marichev) for the merits
and competition of the two great projects on Special Functions, on which the Computer
Algebra Systems packages Mathematica and Maple are based, the Bateman Project [3] and
the NIST Project [4] based on the Abramowitz–Stegun handbook [5] and on a more recent
one, edited by Olver–Lozier–Boisvert–Clark [6].

The author of this survey was tempted to start paying attention to Special Functions
by having the handbook [3] on her desk, while working on a M.Sc. thesis. We cite
some texts from the Preface of this encyclopedia book, known as the Bateman Project:
“. . . During his last years he (Professor Harry Bateman) had embarked upon a project
whose successful completion, he believed, would prove of great value to scientists in
all fields. He planned an extensive compilation of “special functions”—solutions of a
wide class of mathematically and physically relevant functional equations. He intended
to investigate and to tabulate properties of such functions, inter-relations between such
functions, their representations in various forms, their macro- and micro-scopic behavior,
and to construct tables of important definite integrals involving such functions . . . anyone
who has been faced with the task of handling and discussing and understanding in detail
the solution to an applied problem which is described by a differential equation is painfully
familiar with the disproportionately large amount of scattered research on special functions
one must wade through in the hope of extracting the desired information . . . ”. In the
time of Bateman’s death (1946) his notes amounted to a veritable mountain of paper.
His card-catalogue alone filled several dozen cardboard boxes (the famous “shoe-boxes”).
. . . “Bateman planned his Project as a ‘Guide to the Functions’ on a gigantic scale . . . the
great importance of such a work hardly needs emphasis . . . (this) would have made this
book as a kind of ‘Greater Oxford Dictionary of Special Functions’ (from the Introduction
to [3])”. This project resulted in publication of five important reference volumes ([3,7]),
under the editorship of Arthur Erdélyi, in association with W. Magnus, F. Oberhettinger
and F.G. Tricomi.

In 2007, the Askey–Bateman Project was announced by Mourad Ismail as a five- or
six-volume encyclopedic book series on special functions, based on the works of both
Harry Bateman and Richard Askey. Starting in 2020, Cambridge University Press began
publishing Volumes 1 and 2 of this Encyclopedia of Special Functions with series editors
Mourad Ismail and Walter Van Assche [8].

2. Preliminaries—Basic Definitions and Facts

We give here only a short background on the considered Special Functions of Fractional
Calculus (SF of FC). As for the standard special functions and same for the SF of FC, most of
them are entire functions of the complex variable z or analytic ones in disks in C. We skip
the details on defining single-valued branches of the considered functions, functional
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spaces and operators’ properties there (see our previous works, e.g., ref. [9] (§5.5.i)). In
addition, we limit ourselves to the Fox H-functions of one complex variable, as enough
general level to expose our approach and results.

Among the long list of handbooks and surveys dedicated not only to classical SF but
also to the SF of FC, we mention only few of them of the few decades: Mathai–Saxena [10],
1973; Marichev [11], 1978; Srivastava–Gupta–Goyal [12], 1982; Srivastava–Kashyap [13], 1982;
Prudnikov–Brychkov–Marichev [14], 1992; Kiryakova [9], 1994; Yakubovich–Luchko [15],
1994; Podlubny [16], 1999; Kilbas–Saigo [17], 2004; Kilbas–Srivastava–Trujillo [18], 2006;
Mathai–Haubold [19], 2008; Mathai–Saxena–Haubold [20], 2010; Mainardi [21], 2010;
Gorenflo–Kilbas–Mainardi–Rogosin [22], 2014–2020; the recent ones as Cohl–Ismail [23],
2020; Assche–Ismail [8], 2020; Mainardi [24], 2020; etc. (see more sources also the sur-
vey paper Machado-Kiryakova [25]). The basic classes of SF considered here are shortly
discussed below.

Definitions of the Basic Special Functions

We refer to the survey by Mainardi–Pagnini [26] that points out the pioneering role of
Salvatore Pincherle on developing the generalized hypergeometric functions (and, thus,
later appearing G-functions) by means of Mellin–Barnes integrals, where a historical note
from the Bateman Project [3] (Vol. 1, p. 49) is cited: “... Of all integrals which contain
Gamma functions in their integrands the most important ones are the so-called Mellin-
Barnes integrals. Such integrals were first introduced by S. Pincherle, in 1888; their theory
has been developed in 1910 by H. Mellin ... and they were used for a complete integration
of the hypergeometric differential equation by E.W. Barnes, 1908.”

Definition 1. (Ch. Fox [27], 1961, see books as [9,12,14,18], and other earlier and latest
ones) The Fox H-function is a generalized hypergeometric function, defined by means of the
Mellin–Barnes type contour integral

Hm,n
p,q

[
z

∣∣∣∣∣ (ai, Ai)
p
1

(bj, Bj)
q
1

]
=

1
2πi

∫
L

Hm,n
p,q (s) z−sds, with Hm,n

p,q (s)=

m
∏
j=1

Γ(bj+Bjs)
n
∏
i=1

Γ(1−ai−Ais)

q
∏

j=m+1
Γ(1−bj−Bjs)

p
∏

i=n+1
Γ(ai+Ais)

, (1)

with complex variable z �= 0 and a contour L in the complex domain; the orders (m, n, p, q) are non-
negative integers so that 0 ≤ m ≤ q, 0 ≤ n ≤ p, the parameters Ai > 0, Bj > 0 are positive and
ai, bj, i = 1, . . . , p; j = 1, . . . , q are arbitrary complex such that Ai(bj+l) �= Bj(ai−l′−1), l, l′ =
0, 1, 2, . . . ; i = 1, . . . , n; j = 1, . . . , m. Note that the integrand Hm,n

p,q (s) with s �→ −s is the Mellin
transform of the H-function (1).

The details on the properties of the Fox H-function and types of contour L can be found
in many contemporary handbooks on SF as [12,14,18], where its behavior is described in
terms of the following parameters:

ρ =
p

∏
i=1

A−Ai
i

q
∏
j=1

B
Bj
j ; Δ =

q
∑

j=1
Bj −

p
∑

i=1
Ai; γ = lim

s→∞, s∈Li∞
Re s,

μ =
q
∑

j=1
bj −

p
∑

i=1
ai +

p−q
2 ; a∗ =

n
∑

i=1
Ai −

p
∑

i=n+1
Ai +

m
∑

j=1
Bj −

q
∑

j=m+1
Bj.

(2)

Depending on the values in (2), the H-function is a function analytic of z in disks
|z| < ρ or outside them, in some sectors, or in the whole complex plane. In particular,
the integral (1) converges (see [14] (§8.3)), if one of the following conditions is satisfied:
(1) L = Li∞: a∗ > 0, | arg z| < a∗π/2; (2) L = Li∞: a∗ ≥ 0, | arg z| = a∗π/2, γΔ < −1− Re μ;
(3) L = L−i∞: Δ > 0, 0 < |z < ∞, or Δ = 0, 0 < |z| < ρ, or Δ = 0, a∗ ≥ 0, |z| = ρ, Re μ < 0;
or (4) L = L+i∞: Δ < 0, 0 < |z < ∞, or Δ = 0, |z| > ρ, or Δ = 0, a∗ ≥ 0, |z| = ρ, Re μ < 0.
The contour L−i∞ (respectively, L+i∞) is a left (respectively, right) loop in some horizontal
strip that begins the point −∞ + iϕ1 (respectively, +∞ + iϕ1) keeping all poles of the
functions Γ(bj + Bjs), j = 1, 2, ..., m on the left side, and those of Γ(1− ai − Ais), i = 1, 2, ..., n
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on its right side, and ends at the point −∞ + iϕ2 (respectively, +∞ + iϕ2), where ϕ1 < ϕ2.
The contour Li∞ starts at the point γ − i∞ and ends at γ + i∞ in a way to separate the
mentioned poles, same as for L±i∞.

For studies on the behavior of the H-function around the singular points, one can see
also the work of Karp [28], commenting and revisiting the results of Braaksma [29].

If all Ai = Bj = 1, i = 1, ..., p; j = 1, ..., q, the H-function Hm,n
p,q

[
z
∣∣∣∣ (ai, 1)p

1
(bj, 1)q

1

]
reduces

to the Meijer G-function (C.S. Meijer [30], 1936–1941; see details in [3] (Vol. 1) and all
above-mentioned books):

Gm,n
p,q

[
z
∣∣∣∣ (ai)

p
1

(bj)
q
1

]
=

1
2πi

∫
L

Gm,n
p,q (s) z−sds

=
1

2πi

∫
L

m
∏
j=1

Γ(bj + s)
n
∏
i=1

Γ(1− ai − s)

q
∏

j=m+1
Γ(1− bj − s)

p
∏

i=n+1
Γ(ai + s)

z−sds, z �= 0. (3)

In this case, the behavior of the function (3) depends on conditions (2) with ρ = 1,
Δ = q − p, δ = m + n − p+q

2 . Although simpler than (1), the G-function is yet enough
general as it incorporates most of the Classical SF (known also as Named SF) and many
elementary functions (see lists of examples in [3] (Vol. 1), [9] (Appendix C)).

The basic SF of FC that are Fox H-functions but do not reduce to Meijer G-functions in
the general case (of irrational Aj, Bk) are the following generalized hypergeometric functions,
extending the more popular pFq-functions.

Definition 2. (see [9,14,22]) The Wright generalized hypergeometric function pΨq(z), called also
Fox–Wright function (abbrev. as F-W g.h.f. or Wright g.h.f.), is defined as:

pΨq

[
(a1, A1), . . . , (ap, Ap)
(b1, B1), . . . , (bq, Bq)

∣∣∣∣z] = ∞

∑
k=0

Γ(a1 + kA1) . . . Γ(ap + kAp)

Γ(b1 + kB1) . . . Γ(bq + kBq)

zk

k!
(4)

= H1,p
p,q+1

[
−z
∣∣∣∣ (1− a1, A1), . . . , (1− ap, Ap)
(0, 1), (1− b1, B1), . . . , (1− bq, Bq)

]
. (5)

It was introduced and studied by Sir Edward Maitland (E.-M.) Wright in a series of his works
(e.g., [31,32], pp. 1933–1940). In denotations for the parameters (2), the power series (4) defines an
entire function of z if Δ > −1; it is absolutely convergent in the disk {|z|<ρ} for Δ = −1; and it
is the same for |z|=ρ if Re (μ)>1/2, (see details, for example, in [33]).

When all A1 = · · · = Ap = 1, B1 = · · · = Bq = 1, the Wright g.h.f. reduces to the
generalized hypergeometric pFq-function which itself is a case of the G-function (3) (for early
details, see [3] (Vol. 1)):

pΨq

[
(a1, 1),. . ., (ap, 1)
(b1, 1),. . ., (bq, 1)

∣∣∣∣z] = c pFq(a1,. . ., ap; b1,. . ., bq; z) =
∞

∑
k=0

(a1)k . . . (ap)k

(b1)k . . . (bq)k

zk

k!
(6)

= G1,p
p,q+1

[
−z
∣∣∣∣ 1− a1, . . . , 1− ap

0, 1− b1, . . . , 1− bq

]
;

where

c =

[
p

∏
i=1

Γ(ai) /
q

∏
j=1

Γ(bj)

]
, (a)k := Γ(a + k)/Γ(a).

In general (that is, except in certain integer values of parameters when the series
terminates or fails to make sense), pFq converges for all finite z if p ≤ q, converges for
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|z| < 1 if p = q + 1 and diverges for all z �= 0 if p > q + 1. The simplest particular cases are
the Gauss hypergeometric function 2F1, the Kummer (confluent hypergeometric) function
1F1 and the Bessel type functions 0F1.

A very special and important case of SF of FC, as a H-function and also as a Wright
pΨq-function, is the “Queen”-function of FC (see [34]), namely the Mittag–Leffler (M-L)
function, which has recently enjoyed many extensions (along with many basic elementary
and known SF as its particular cases) and wide applications in solutions of fractional order
models. This is the topic of Sections 4 and 5.

3. On the Use of Some G- and H-Functions in Theory of Integral Transforms and
Special Functions

The Meijer G-function includes most of elementary and special functions (the classical
ones) as particular cases, one can find lists of these, say in [3] (Vol. 1), [9] (Appendix C), [11,14].
Naturally, the more general Fox H-function incorporates all cases of the G-functions, and
much more the SF of FC. Here, we attract readers’ attention to the use of two basic classes
of G- and H-functions with specific orders: Gm,0

0,m , respectively, Hm,0
0,m with m = q, n = p = 0;

and Gm,0
m,m, respectively, Hm,0

m,m with m = p = q, n = 0.

3.1. Use of G- and H-Functions as Kernels of Laplace Type Integral Transforms

The Laplace transform

L{ f (t); s} =
∞∫

0

exp(−st) f (t)dt, Re s > μ, (7)

is usually considered for functions f (t) of the form{
f (t) = tp f̃ (t), p > −1, f̃ ∈ C[0, ∞); f (t) = O(exp μt), t → ∞, μ ∈ R

}
.

Definition 3. The G- and H-transforms (see, for example [35], also [15,36]) of the form

G{ f (t); s} =
∞∫

0

Gm,n
p,q

[
st

∣∣∣∣∣ (aj)
p
1

(bk)
q
1

]
f (t)dt, resp. H{ f (t); s} =

∞∫
0

Hm,n
p,q

[
st

∣∣∣∣∣ (aj, Aj)
p
1

(bk, Bk)
q
1

]
f (t)dt,

are said to be generalized integral transforms of Laplace type when

δ = m + n− p + q
2

> 0, resp. a∗ =
n

∑
j=1

Aj −
p

∑
j=n+1

Aj +
m

∑
k=1

Bk −
q

∑
k=m+1

Bk > 0,

and are considered in suitable functional spaces of “transformable” functions.

In 1958, Obrechkoff [37] introduced a far reaching generalization of the Laplace
and Meijer transforms, particular cases of which were studied by many authors years
later, mainly for the purposes of operational calculi for different classes of differential
operators. His aims were to extend the theorem of S. Bernstein for absolutely monotonic
functions representable by means of Laplace–Stieltjes transforms, when the conditions for
nth derivatives are replaced by similar ones with more general differential operators. The
Obrechkoff transform was defined as

F (s) =
∞∫

0

Φ(st) f (t)dt

with a kernel Φ(s) given by the integral representation

Φ(s) =
∞∫

0

· · ·
∞∫

0

uβ1
1 · · · uβp exp

(
−u1 − · · · − up −

s
u1 . . . up

)
du1 · · · dup. (8)
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Later, in 1966, Dimovski [38] introduced a class of differential operators of Bessel
type and of arbitrary integer order m > 1, called by the author (as for example in [9]) as
hyper-Bessel differential operators. They have the alternative representations

B f (t) = tα0
d
dt

tα1
d
dt
· · · tαm−1

d
dt

tαm f (t)

= t−β Pm

(
t

d
dt

)
f (t) = t−β

m

∏
k=1

(
t

d
dt

+ βγk

)
f (t), t > 0, (9)

with arbitrary parameters α0, α1, ..., αm, β := m − (α0 + α1 + ... + αm) > 0, γk := 1
β (αk +

αk+1 + ... + αm), k = 1, ..., m, Pm a polynomial of degree m. Evidently for m = β = 2,
γ1,2 = ± ν

2 , one has the second-order Bessel differential operator Bν with the Bessel function
y(t) = Jν(t) satisfying Bνy(t) = −y(t). For other choices of parameters, many other
particular differential operators appear in equations of mathematical physics, operational
calculus and applied analysis. To combine the Mikusinski type algebraic approach to
operational calculus for (9) with a transform method, Dimovski used a modified Obrechkoff
transform (we shortly call it also Obrechkoff transform), defined as

O{ f (t); s} = β

∞∫
0

tβ(γm+1)−1 K
[
(st)β

]
f (t)dt = β

∞∫
0

λ(t, s) f (t)dt,

with the kernel-function

K(s) =
∞∫

0

. . .
∞∫

0

exp
(
−u1 − . . .− um−1 −

s
u1 . . . um−1

) m

∏
k=1

uγm−γk−1
k du1 . . . dum−1. (10)

In [9] (Ch.3), also in other works like [39], we proved that the kernel-functions (8)
and (10) of the Obrechkoff transforms are representable as Meijer’s Gm,0

0,m-functions, namely
(for a proof see, e.g., Lemma 1 of [39]):

Φ(s)=Gp+1,0
0,p+1

[
s
∣∣∣∣ −−
(βk+1)p

1 , 0

]
, λ(t, s)= s−β(γm+1)+1 Gm,0

m,m

[
(st)β

∣∣∣∣∣ −−
(γk− 1

β+1)m
1

]
. (11)

Therefore, the Obrechkoff transform appears to be a G-transform of Laplace type (because
δ = m/2 > 0), and its theory has been further developed in whole details (convolution
theorems, real and complex inversion formulas, images, examples, etc.) more easily by
using the tools of the G-functions (see for example [9] (Ch.3), [39]).

Another not observed fact was that functions of the form of kernels (8) and (10) of
the Obrehkoff transform were studied yet in 1937 by Erdélyi [40]. He might be the first
who derived a relation between the 0Fm−1-functions (what we mention next as hyper-Bessel
functions) and these kernel-functions (formula (7.4) in [40]). However, at the time of
Erdélyi’s work [40], 1937, the next step in introducing the G-functions had not yet been
done by Meijer [30], 1946. Obrechkoff himself made no attempts to identify the kernel-
function Φ(s) with some known special functions and studied its properties “ad hoc”. Thus,
the Gm,0

0,m-functions seemed to appear in use for the hyper-Bessel operators and related
integral transforms in author’s works since 1980 (see [9] (Ch.3), [41]).

Next, the generalized Obrechkoff transform (a fractionalized analog) was introduced and
studied by Kiryakova [9] (Ch.5), Al-Mussalam–Kiryakova–Tuan [42] and Yakubovich–
Luchko [15], with the Fox Hm,0

m,m-function as kernel:

B(s) = B(ρi),(μi)
{ f (t); s} =

∞∫
0

Hm,0
0,m

[
st

∣∣∣∣∣ −−
(μi − 1

ρi
, 1

ρi
)m

1

]
f (t)dt. (12)

We call it as multi-index Borel–Dzrbashjan transform, because for m = 1 it is reduced to
the Borel transform

B(ρ),(μ){ f (t); s} =
∞∫

0

exp(−sρtρ) tμρ−1 f (t)dt (13)
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whose kernel appears to be a H1,0
0,1 -function. This integral transform was shown by Dzr-

bashjan [43,44] to have inversion formula involving the Mittag–Leffler function E1/ρ,μ.
The generalized Obrechkoff transform (12) is a tool in operational calculus for fractional
multi-order analogs of hyper-Bessel differential operators (9), formally of the kind

D(ρi),(μi)
f (t) = t−1

m

∏
i=1

(
t1+(1−μi)ρi D1/ρi

tρi t(μi−1)ρi
)

f (t), (14)

in the same way as the Laplace transform, the Obrechkoff transform and its particular cases
serve for the classical differentiation, respectively for the hyper-Bessel operators (9).

In the studies on these Laplace type G- and H-integral transforms, we used essentially
the theory of the G- and H-functions, mainly of the cases of orders (m, 0; 0, m). Note that,
for example, Gm,0

0,m(s) is an analytic function in the sector | arg s| < (m/2)π (where in
this case δ = m/2 > 0). Some additional necessary results on these G- and H- kernel
functions were derived by Kiryakova [9] (Appendix), as Lemmas B.1–B.4, Corollaries
B.5–B.7, Formula (E.21), etc.

From the known representations of some elementary and special functions in G- and
H-terms, one observes many particular cases of simpler Laplace type integral transforms.
Namely, the Laplace and Borel–Dzrbashjan transforms (7) and (13) are Obrechkoff trans-
form (10) and multi-index Borel–Dzrbashjan transform (12), respectively, for m = 1, since

exp(−s) = G1,0
0,1

[
s
∣∣∣∣ −−0

]
, exp(−sρtρ) = H1,0

0,1

[
st

∣∣∣∣∣ −−
(μ− 1

ρ , 1
ρ )

]
.

For m = 2, we have the classical Meijer transform as a case of the Obrechkoff transform,

related to the Bessel differential operator Bν =
d
dt

t1−ν d
dt

tν:

Kν{ f (t); s} =
∞∫

0

√
st Kν(t) f (t)dt, since Kν(s) =

1
2

G2,0
0,2

[
s2

4

∣∣∣∣ −−
ν
2 , −ν

2

]
, (15)

the kernel Macdonald function Kν(s) has such a G-function representation.
In a series of papers [45,46], Krätzel introduced a generalization of the Meijer transform

(again with m = 2), and further a more general one of the type of Obrechkoff transform for
arbitrary integer m > 1,

L(m)
ν { f (t); s} =

∞∫
0

λ
(m)
ν [m(st)1/m] f (t)dt :=

∞∫
0

Λ(s, t) f (t)dt. (16)

He used the transformation (16) for operational calculus for the following (hyper-
Bessel type) operator or order m > 1:

B(m)
ν =

d
dt

t
1
m−ν

(
t1− 1

m
d
dt

)m−1
tν+1− 2

m with β = 1, γ1 = 0, γk = ν +
k− 2

m
, k = 2, ..., m. (17)

As expected, we can represent the Krätzel kernel in terms of the G-function corre-
sponding to (11):

Λ(s, t) =
∞∫

0

· · ·
∞∫

0

[
m−1

∏
k=1

uν−1+ k−1
m

k

]
exp
(
−u1 − ...− um−1 −

st
u1...um−1

)
du1...dum−1

= s−ν−1+ 2
m Gm,0

0,m

[
st
∣∣∣∣ −−

0, (ν + k−2
m )m

2

]
. (18)

Krätzel started from the simple case m = 2 with a kernel of the form
∞∫
0

uγ−1 exp(−u−

st/u)du (with some variations as t �→ tρ, ρ > 0), close to the Macdonald function (15),
which is often called as the Krätzel function. Then, many other authors continued to study
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it and established its relations to hypergeometric functions. We can refer to such works
by Kilbas–Saxena–Trujillo [47], Mathai–Haubold [48], etc. In a paper by Glaeske–Kilbas–
Saigo [49], a fractionalized analog of the Krätzel transform (7) was introduced, where
instead of integer m > 1 in the transformation (16), they took a (fractional) parameter
ρ > 0. Then, naturally, its kernel is represented as a H-function (due to some variations
in the definition, it appears as H2,0

1,2 instead of H2,0
0,2 ). Relations with operators of fractional

calculus are considered, but one should mention that such an integral transform is analog
of the generalized Obrechkoff transform (12) for a fractional order differential operator of
the form (14). In all these mentioned cases, the kernel functions have the form of (8) as
also studied earlier by Erdélyi [40]. We conclude here the list of cases of the Obrechkoff
transform with emphasize on the works by Ditkin–Prudnikov (as [50]) on operational calculi
for (hyper-Bessel) operators of the form

B1 =
d
dt

t
d
dt

, and more generally, Bm =
d
dt

t
d
dt

t
d
dt
· · · d

dt
= t−1

(
t

d
dt

)m
, m ≥ 2. (19)

For m = 2, the corresponding integral transform is a variant of the Meijer transform
(with ν = 0), and in the general case m > 1, Ditkin and Prudnikov [50] made use of an
integral transform of the form

B{ f (t); s} = 2
∫ ∞

0
E0m(st) f (t)dt, where we can represent the kernel E0m as a Gm,0

0,m − function.

For more details on the Obrechkoff type transforms with kernels Gm,0
0,m and Hm,0

0,m , their
properties, images and special cases, see Kiryakova [9] (Ch.3, Ch.5), [39].

3.2. Use of G- and H-Functions as Kernels in Generalized Fractional Calculus

For basic background on Fractional Calculus (FC) as theory of operators of integration
and differentiation of arbitrary (fractional) order, and its closely related topics as special func-
tions (SF) and integral transforms, we refer to the books by Samko–Kilbas–Marichev [51],
Podlubny [16], Kilbas–Srivastava–Trujillo [18], and Yakubovich–Luchko [15], as well as
one by the author [9], among many others. For wider list, see, for example, Machado–
Kiryakova [25]. In our works, and mainly for the needs of the SF theory, we consider
the Riemann–Liouville (R-L) type integrals and their corresponding derivatives of R-L
and Caputo type, respectively, their generalizations involving G- and H-functions in the
kernels. Note that we concentrate on the left-hand side variants and skip details (in most
cases being similar) for the Weyl-type, right-hand sided operators.

The basic tools in our studies are the fractional integration operators of the form
Ĩ f (z) = zδ0 Iγ,δ

β f (z), δ0 ≥ 0, to which we refer as “classical fractional integrals”, where

Iγ,δ
β f (z)=

1
Γ(δ)

1∫
0

(1− σ)δ−1σγ f (zσ
1
β ) dσ=

z−β(γ+δ)

Γ(δ)

z∫
0

(zβ − ξβ)δ−1 ξβγ f (ξ)d(ξβ), (20)

is the Erdélyi-Kober operator (E-K) of integration of order δ ≥ 0, depending on two additional
parameters γ ∈ R, β > 0. In this general form, it is introduced in Sneddon’s works [52] and
considered in some books (for example, [9] (Ch.2), [15,18,51]). The earlier versions with
β = 1, β = 2 are due to Kober and Erdélyi. The R-L operator of integration Rδ appears as a
case with one parameter only, for γ=0, β=1, δ0 = δ ≥ 0,

Rδ
0+,z f (z) := Rδ f (z) = zδ I0,δ

1 f (z); conversely, Iγ,δ
1 f (z) = z−γ−δRδzγ f (z). (21)

The E-K fractional derivative Dγ,δ
β , corresponding to (20), is defined explicitly almost

simultaneously in the works of Kiryakova [9] (Ch.2) and Yakubovich–Luchko [15] (Ch.3).

It serves as an interpretation of the formal inversion formula
{

Iγ,δ
β

}−1
= Iγ+δ,−δ

β , namely:

Dγ,δ
β f (z) = Dn Iγ+δ,n−δ

β f (z) =
n

∏
j=1

(
1
β

z
d
dz

+ γ + j
)

Iγ+δ,n−δ
β f (z), n− 1 < δ ≤ n, n ∈ N. (22)
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Here, the simplest integer order derivative (d/dz)n in the definition of the R-L frac-

tional derivative Dδ f (z) :=
(

d
dz

)n
Rn−δ f (z), is replaced by an auxiliary differential

operator Dn of integer order, a polynomial of (z d/dz). The Caputo-type R-L and E-K frac-
tional derivatives are defined in the same way but with exchanged order of the nonnegative
order integration and the integer order differentiation (see, e.g., [53]).

The notion for generalized operators of fractional integration was introduced by Kalla in
his 1969–1979 works (see the survey [54]), who suggested their common form

I f (z) =
1∫

0

Φ(σ) σγ f (zσ)dσ = z−γ−1
z∫

0

Φ(
ξ

z
)ξγ f (ξ)dξ,

where Φ(σ) can be an arbitrary continuous (analytical) function for which the integral
makes sense. The idea of such generalized fractional calculus is to replace the elementary
function in the kernel of R-L and E-K operators (20) (and, say, the logarithmic kernel in the
Hadamard integral) by some special function. Variants with the Gauss-, Bessel-, Whittaker-,
arbitrary G- and H-functions appeared in papers of several authors (see historical details
and references in [54,55]). If such a special function Φ is taken to be too general or too
specific, only some formal operational rules for the corresponding fractional calculus can
be derived. The lucky hint in our studies was to choose suitably the kernel-functions Φ to
be of the form of Gm,0

m,m- and Hm,0
m,m-functions. Then, the operators of the generalized fractional

calculus happen to be also commutative products of classical operators of FC, namely of
finite number of Erdélyi-Kober operators. Thus, the tools of the special functions and the
wide use of the classical FC are combined into a Generalized Fractional Calculus (GFC) in
Kiryakova [9], with developed full theory and many illustrated applications in different
areas of analysis, differential equations, special functions and integral transforms. Below,
we briefly review the basic definitions and few results on this GFC.

Definition 4. (Kiryakova, [9] (Ch.5)) We define the multiple E-K integral (of multiplicity m>1),
by means of the real parameters’ sets (δ1≥0, ..., δm≥0) (multi-order of integration) (γ1, ..., γm)
(multi-weight) and (β1>0, ..., βm >0) (additional multi-parameter), as:

I(γk),(δk)
(βk),m

f (z) :=
1∫

0

Hm,0
m,m

[
σ

∣∣∣∣∣ (γk + δk + 1− 1
βk

, 1
βk
)m

1
(γk + 1− 1

βk
, 1

βk
)m

1

]
f (zσ)dσ, (23)

if
m
∑

k=1
δk > 0; and as the identity operator: I(γk),(0,...,0)

(βk),m
f (z) = f (z), if δ1 = δ2 = · · · = δm = 0.

It is important to mention that, for the particular conditions (2), the above ker-
nel Hm,0

m,m-function is analytic function in the unit disk and Hm,0
m,m(σ) ≡ 0 for |σ| > 1

(Kiryakova, ref. [9]).

In the case of all equal βs: β1=β2= ...=βm =: β > 0, integral (23) has a simpler form
with a Meijer Gm,0

m,m-function ([9] (Ch.1)), which is also analytic in unit disk and Gm,0
m,m(σ) ≡ 0

for |σ| > 1,

I(γk),(δk)
(β,...,β),m f (z) := I(γk),(δk)

β,m f (z)=
1∫

0

Gm,0
m,m

[
σ

∣∣∣∣ (γk+δk)
m
1

(γk)
m
1

]
f (zσ1/β)dσ=

[
m

∏
k=1

Iγk ,δk
β

]
f (z).

(24)
In both cases of (23) and (24), the operators of the form

Ĩ f (z) = zδ0 I(γk),(δk)
(βk),m

f (z), Ĩ f (z) = zδ0 I(γk),(βk)
β,m f (z), with δ0 ≥ 0, (25)

are called generalized fractional integrals of multi-order (δ1, ..., δm).

The important decomposition property (for proof, see for example, [9] (Th.1.2.10,
Th.5.2.1), says that the same GFC integrals (23) and (24) can be represented, instead of
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using the kernel H- and G-functions, by repeated integral representations for the commutative
product of classical E-K operators (20):

I(γk),(δk)
(βk),m

f (z) :=

[
m

∏
k=1

Iγk ,δk
βk

]
f (z)

=

1∫
0

· · ·
1∫

0

[
m

∏
k=1

(1− σk)
δk−1σ

γk
k

Γ(δk)

]
f
(

z σ
1/β1
1 . . . σ

1/βm
m

)
dσ1 . . . dσm. (26)

In the book [9] and subsequent papers, we provided a full set of operational properties
of the operators (23) and (24) that justify their names as operators of GFC, as semigroup
property, formal inversion formula, reduction to identity or to the conventional integration
operators for special parameters’ choice.

Analogously to the R-L and E-K fractional derivatives, we define the corresponding
generalized fractional derivatives. The auxiliary differential operator Dη is chosen on the base
of the specific differential relations for the kernel function, derived for the G-functions, and
especially for Gm,0

m,m by Kiryakova [9] (App., Lemmas B.3, B.4, Cor. B.6) and for Hm,0
m,m by

Kiryakova [9] (Ch.5, Lemma 5.1.7)and Kiryakova–Luchko [53] (Lemma 18).

Definition 5. (Kiryakova [9]) Let Dη be the following polynomial of z(
d
dz

) of degree η1 + ...+ ηm:

Dη =

[
m

∏
r=1

ηr

∏
j=1

(
1
βr

z
d
dz

+ γr + j
)]

, with ηk :=

⎧⎨⎩[δk ] + 1, for noninteger δk,
δk , for integer δk,

k = 1, . . . , m. (27)

The multiple (m-tuple) Erdélyi–Kober fractional derivative of R-L type of multi-order (δ1 ≥
0, . . . , δm ≥ 0) is defined by means of the differ-integral operator:

D(γk),(δk)
(βk),m

f (z) := Dη I(γk+δk),(ηk−δk)
(βk),m

f (z) = Dη

1∫
0

Hm,0
m,m

[
σ

∣∣∣∣∣ (γk + ηk + 1− 1
βk

, 1
βk
)m

1

(γk + 1− 1
βk

, 1
βk
)m

1

]
f (zσ) dσ. (28)

Similarly, the Caputo-type generalized fractional derivative was introduced by Kiryakova and
Luchko [53], as

∗D(γk),(δk)
(βk),m

f (z) = I(γk+δk),(ηk−δk)
(βk),m

Dη f (z). (29)

In the case β1 = ... = βm := β > 0, simpler representations involving the Meijer
G-function hold for the R-L and Caputo-type “derivatives” which correspond to the
generalized fractional integral (24):

D(γk),(δk)
β,m f (z) = Dη I(γk+δk),(ηk−δk)

β,m f (z) =

[
m

∏
r=1

ηr

∏
j=1

(
1
β

z
d
dz

+γr+ j
)]

I(γk+δk),(ηk−δk)
β,m f (z),

∗D(γk),(δk)
β,m f (z) = I(γk+δk),(ηk−δk)

β,m Dη f (z). (30)

More generally, the differ-integral/integro-differential operators of the form

D̃ f (z) = D(γk),(δk)
(βk),m

z−δ0 f (z) = z−δ0 D
(γk−

δ0
β ),(δk)

(βk),m
f (z), and

∗̃D f (z) = ∗D(γk),(δk)
(βk),m

z−δ0 f (z) with δ0 ≥ 0, (31)

are all called generalized (multiple, multi-order) fractional derivatives (of R-L or Caputo type).

Next, in Section 8, we often use also the notion of (generalized) fractional differintegrals.
We have in mind either (generalized) fractional integrals or derivatives or compositions
of some E-K fractional integrals and some E-K fractional derivatives. These appear as
meanings of operators (26) when part of the order’s δs are non-negative and the other parts
are negative.
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For the functional spaces (here, we mainly limit to weighted analytical functions of
complex z), mapping properties, long list of operational properties, images, etc., we refer,
for example, to the work of Kiryakova [9,53,56].

We use also a further extension of the generalized fractional integrals (23), based on
the so-called Wright–Erdélyi–Kober (W-E-K) operator of fractional integration (see [57]), with
parameters as in E-K integral: δ ≥ 0, γ real, β > 0 and additional parameter λ > 0, where
the Wright–Bessel (Bessel–Maitland) function of the form Jμ

ν (see (57)) in Section 5) is used
in the kernel:

Wγ,δ
β,λ f (z) := Iγ,δ

β,λ,1 f (z) = λ

1∫
0

σλ(γ+1)−1 J−λ/β

γ+δ−λ(γ+1)/β
(σλ f (zσ)dσ. (32)

One can show that, for λ = β, the above kernel-function reduces to the kernel of the
E-K operator, therefore the W-E-K integration becomes the E-K one. Using compositions of
W-E-K operators (32), Kalla and Galue [57] tried to develop a next step in the generalized
fractional calculus with Hm,0

m,m kernel-functions that have the same structure but different
parameters βks and λks in upper and low rows. Some revisions and properties of these
operators were further provided by Kiryakova [58–60].

Definition 6. For integer m ≥ 1 and real parameters δk ≥ 0, γk, βk > 0, λk > 0, βk ≥ λk,
k = 1, ..., m, we define the multiple Wright–Erdélyi–Kober (W-E-K) fractional integrals, as follows:

Ĩ f (z) = I(γk),(δk)
(βk),(λk),m

f (z) :=
1∫

0

Hm,0
m,m

[
σ

∣∣∣∣∣ (γi + δi + 1− 1
βi

, 1
βi
)m

1

(γi + 1− 1
λi

, 1
λi
)m

1

]
f (zσ)dσ =

[
m

∏
k=0

Wγk ,δk
βk ,λk

]
f (z), (33)

if
m
∑

i=1
δi > 0; and as the identity operator: Ĩ f (z) = f (z), when δ1 = δ2 = . . . = δm = 0 and

λk =βk, k = 1, . . . , m. For γk > −1, k = 1, ..., m and the above-mentioned conditions on the other
parameters, the operators (33) are shown to preserve the space of analytic functions in disks or in
starlike complex domains.

If βk = λk, k = 1, ..., m, the “new” operators of GFC (33) coincide with operators (23).
The corresponding generalized fractional derivatives D(γk),(δk)

(βk),(λk),m
are defined by means of

differential-integral operators similar to those for (28).
Here, we mention some few of the numerous special cases of the above defined GFC

operators, to emphasize the particular elementary and special functions appearing in their
kernels, and thus as cases of the kernel Hm,0

m,m- and Gm,0
m,m-functions.

For m = 1, we have the kernel-functions:

H1,0
1,1

[
σ

∣∣∣∣ (γ + δ, 1/β)
(γ, 1/β)

]
= β σβ−1G1,0

1,1

[
σβ

∣∣∣∣ γ + δ
γ

]
= β

σβγ+β−1(1− σβ)δ−1

Γ(δ)
, (34)

thus the generalized fractional integrals and derivatives (23) and (28) reduce to the cor-
responding E-K (20) and (22) and R-L operators (21): Iγ,δ

β,1 = Iγ,δ
β , Dγ,δ

β,1 = Dγ,δ
β , Rδ and Dδ.

Many other integration and differentiation operators introduced and used by different
authors appear as their special cases.

In the case m = 2, the kernel functions H2,0
2,2 and G2,0

2,2 reduce to a Gauss hypergeometric
function or its variations, for example:

H2,0
2,2

[
σ

∣∣∣∣∣ (γ1 + δ1 + 1− 1
β , 1

β ), (γ2 + δ2 + 1− 1
β , 1

β )

(γ1 + 1− 1
β , 1

β ), (γ2 + 1− 1
β , 1

β )

]
= G2,0

2,2

[
σβ

∣∣∣∣ γ1 + δ1, γ2 + δ2
γ1, γ2

]

=
σβγ2 (1− σβ)δ1+δ2−1

Γ(δ1 + δ2)
2F1(γ2 + δ2 − γ1, δ1; δ1 + δ2; 1− σβ). (35)

191



Mathematics 2021, 9, 106

Therefore, the generalized fractional integrals in this case are known as hypergeometric
fractional integrals; some of them were introduced and studied by, e.g. Love, Saxena, Saigo
and Hohlov (see [54]).

For m = 3, we have as special case the Marichev–Saigo–Maeda (M-S-M) operators of FC,
the integration operators introduced and studied by Marichev (1974) and Saigo et al. (1996,
1998) (see [55]). This is because their kernel-function, the Appel F3 function (Horn function)

F3
(
a, a′, b, b′, c, z, ξ

)
=

∞

∑
m,n=0

(a)m(a′)n(b)m(b′)n

(c)m+n

zmξn

m!n!
, |z| < 1, |ξ| < 1(see, e.g., [3,14]),

is a case of the GFC kernel-functions H3,0
3,3 and G3,0

3,3 (see, for example, [14], §8.4.51, (2)):

(1− σ)c−1

Γ(c)
F3

(
a, a′, b, b′, c, 1− 1

σ
, 1− σ

)

= G3,0
3,3

[
σ

∣∣∣∣∣ a + b, c− a′, c− b′

a, b, c− a′ − b′

]
= H3,0

3,3

[
σ

∣∣∣∣∣ (a + b, 1), (c− a′, 1), (c− b′, 1)
(a, 1), (b, 1), (c− a′ − b′, 1)

]
, Re c > 0. (36)

Let m ≥ 1 be an arbitrary integer, but all δs be equal integers, say δ1 = ... = δm = 1.
Then, from (24), we obtain the hyper-Bessel integral operators L (we denote below their kernel
by G1) that correspond to the hyper-Bessel differential operators (9) of arbitrary (higher)
integer order m > 1. In practice, these are operators of integer multi-orders (1, 1, ..., 1),
but their fractional powers Lλ, λ > 0 have been represented (Kiryakova [9,41]) as GFC
integrals of multi-order (λ, λ, ..., λ) with kernels Gλ, where

G1(σ) = Gm,0
m,m

[
σ

∣∣∣∣ (γk + 1)m
1

(γk)
m
1

]
, Gλ(σ) = Gm,0

m,m

[
σ

∣∣∣∣ (γk + λ)m
1

(γk)
m
1

]
.

The kernel of Lλ in the form Gλ appeared also in the work of McBride [61]. These
expressions gave us the hint how to introduce our GFC, replacing (λ, λ, ..., λ) by arbitrary
fractional multi-order (δ1, δ2, ..., δm), explanations are in [41]. We can mention also the
Gelfond–Leontiev [62] operator (47) generated by the multi-index M-L functions (see next
section and the works by Kiryakova [63,64]), as a more general example of operators of
fractional multi-order where the Fox Hm,0

m,m-functions serve as kernels.
The H-functions of the form Hq,0

p,q, of which the kernel functions of (23) are cases with
p = q = m, were studied in series of papers by Karp. In [28], he revisited the Braaksma
results [29] for the H-function’s behavior in the neighborhood of the singular points
and its analytical continuation. There he commented also works on applications of H-
functions not only in fractional calculus, but also widely in statistics, including the book by
Mathai–Saxena–Haubold [20].

In relation to the use of the Gm,0
m,m-functions (the kernel-functions of GFC integrals (24))

in applications to statistics, it is interesting to note that, in 1958, Kabe [65] explored them in
statistics, as density functions of a random variable. He also distinguished the cases m = 1
and m = 2 (mentioned above) related to the kernel-functions of the E-K and of the hyper-
geometric fractional integrals, respectively, (34) and (35). Studies on the closely related
Gm,1

m+1,m+1-functions as R-L integrals of Gm,0
m,m can be found in the work by Karp [66].

4. Mittag–Leffler Functions and Their Extensions

The Mittag–Leffler (M-L) function Eα(z) was introduced by G. Mittag–Leffler ([67],
1902–1905), extended to 2-parameters as Eα,β(z) by A. Wiman [68] and studied later by P.
Humbert and R.P. Agarwal [69]. It was presented in the Bateman Project [3], Vol. 3 (1954),
in a chapter for “Miscellaneous Functions”. However, for long time, it was ignored in the
other handbooks on special functions because the applied scientists suffered from the lack
of tables for its Laplace transforms. Although arising from the studies of Mittag–Leffler
on a problem not related to fractional calculus, but on analytical continuation of series to
maximal starlike domain (Mittag–Leffler star), nowadays, the M-L function is the most
popular and most exploited SF of FC. It was titled as the “Queen”-function of FC by Gorenflo
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and Mainardi in 1997 (see also the very recent survey by Mainardi [34]). The basic theory
and more details, can be found, for example, in [22,43] (see also, e.g., [9,16,70,71]).

Definition 7. The Mittag–Leffler (M-L) functions Eα and Eα,β, are entire functions of order
ρ = 1/α and type 1, defined by the power series

Eα(z) =
∞

∑
k=0

zk

Γ(αk + 1)
, Eα,β(z) =

∞

∑
k=0

zk

Γ(αk + β)
, α > 0, β > 0. (37)

As “fractional index” (α > 0) analogs of the exponential and trigonometric functions
that satisfy ODEs of first and second order (α = 1, 2), the M-L functions serve as solutions
of fractional order differential and integral equations. An example is the Rabotnov function,
called also “fractional exponent”, y(z) = zα−1Eα,α(zα) that solves the simplest fractional
order differential equation Dαy(z) = y(z). Let us refer also to the pioneering work by
Hille–Tamarkin [72], where the solution of the Abel integral equation of the second kind
was provided in terms of a M-L function. As far as the Laplace transform images are
mentioned, one can find these for the M-L type functions and their kth derivatives in the
work of Podlubny ([16] (S.1.2.2)):

L
{

zαk+β−1 E(k)
α,β(±λzα)); s

}
=

k! sα−β

(sα ∓ λ
)k+1, Re s > |λ|1/α.

A Mittag–Leffler type function with three indices, known as the Prabhakar function [73],
is also often studied and used (for details, see [22,70,71,74,75] and other contemporary
books and surveys on M-L type functions):

Eγ
α,β(z) =

∞

∑
k=0

(γ)k
Γ(αk + β)

zk

k!
, α, β, γ ∈ C, Re α > 0; (38)

where (γ)0 = 1, (γ)k = Γ(γ + k)/Γ(γ) denotes the Pochhammer symbol. Its Laplace
transform has the form

L
{

Eγ
α,β(λzα); s

}
=

s−β

(1− λs−α)γ
.

For γ = 1, we get the M-L function Eα,β, and, if additionally β = 1, then it is Eα.
These M-L type functions are simple cases of the Wright g.h.f. and of the H-function,

namely:

Eα,β(z) = 1Ψ1

[
(1, 1)
(β, α)

∣∣∣∣z] = H1,1
1,2

[
−z
∣∣∣∣ (0, 1)
(0, 1), (1− β, α)

]
,

Eγ
α,β(z) =

1
Γ(γ) 1Ψ1

[
(γ, 1)
(β, α)

∣∣∣∣z] = H1,1
1,2

[
−z
∣∣∣∣ (1− γ, 1)
(0, 1), (1− β, α)

]
.

Another generalization of M-L function (37) with additional parameters, for exam-
ple l ∈ C, μ ∈ R, was considered by Gorenflo–Kilbas–Rogosin [76], and its relations to
FC operators:

Eα,μ,l(z) =
∞

∑
k=0

ckzk, with ck =
k−1

∏
j=0

Γ[α(jμ + l) + 1]
Γ(α(jμ + l + 1) + 1]

.

A vector index extension of (37) appeared in the works by Luchko et al. (e.g., [15,77,78])
on operational calculus’ methods for some fractional order PDE and multi-term FO differ-
ential equations. Under the name multi-index (multiple) M-L function, it was introduced by
Kiryakova [63,79] using a different approach, as to be the generating function of Gelfond–
Leontiev generalized integration and differentiation operators (47) (see Definition 9) and
inspired from the paper by Dzrbashjan [44] on M-L type function with 2× 2 indices. Fur-
ther, this class of functions were studied in details by Kiryakova [59,80], Kilbas–Koroleva–
Rogosin [81], Paneva–Konovska [74] and many other followers. Luchko et al. also consid-
ered multivariate analogs of the so-called vector index M-L functions [78].
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Definition 8. (Kiryakova [59,80]) Let m > 1 be an integer, (α1 > 0, α2 > 0, . . . , αm > 0)
and (β1, β2, . . . , βm) be arbitrary real parameters. By means of these sets of “multi-indices”, the
multi-index Mittag–Leffler function (abbrev. as multi-M-L f.) is defined as:

E(αi),(βi)
(z) :=E(m)

(αi),(βi)
(z) =

∞

∑
k=0

zk

Γ(α1k + β1) . . . Γ(αmk + βm)
. (39)

Under weakened restrictions on αs (or their real parts) not to be obligatory all non-negative,
the study was extended by Kilbas et al. [81].

As a further extension of both Prabhakar function (38) and of the (2m) multi-index
M-L functions (39), Paneva–Konovska [74,82] introduced and studied the so-called (3m)-
parametric (multi-index) Mittag–Leffler functions, similar to (39) but with additional set of
parameters (γ1, ..., γm):

E(γi),m
(αi), (βi)

(z) =
∞

∑
k=0

(γ1)k . . . (γm)k
Γ(α1k + β1) . . . Γ(αmk + βm)

zk

(k!)m . (40)

For m = 1, one has the Prabhakar function, and, for γ1 = ... = γm = 1, these are (39).
The Mellin transforms of (39), (40) and their particular cases can be found in [83].

The so-called Le Roy type function has been an object of several recent studies, e.g., by
Gerhold [84], Garra–Polito [85], Garrappa–Rogosin–Mainardi [86], Garrappa–Orsingher–
Polito [87], as a new special function

F(γ)
α,β (z) =

∞

∑
k=0

zk

[Γ(αk + β)]γ
, (41)

which is an entire function of z ∈ C for parameters Re (α) > 0, β ∈ R and γ > 0. This
resembles to the M-L function (for γ = 1) and to the multi-index M-L function (39) (for
integer γ = m, all αi = α, βi = β, i = 1, ..., m). The function (41) appeared as extension of

the function Rγ(z) =
∞
∑

k=0
zk/[(k + 1)!]γ, introduced by E. Le Roy [88] (1899), similarly to

the purposes of G. Mittag–Leffler [67] (1903) to study analytical continuations of the sums
of power series, and it seems they were working in competition on such ideas. Similar
to the M-L type functions, (41) is involved in solutions of various problems, including a
Convey–Maxwell–Poison distribution for different degrees of over- and under-dispersion.

Some Basic Properties of the Multi-Index Mittag-Leffler Functions

The basic properties and results for the functions (39) and long lists of their examples,
all of them having wide applications in solutions of integer- and fractional-order models,
are provided in our previous papers (e.g., [59,60,79,80]). Some of them are reminded here.

Theorem 1. The multi-index M-L functions (39) are entire functions with the following order ρ
and type σ:

1
ρ
= α1 + · · ·+ αm,

1
σ
= (ρα1)

ρα1 · · · (ραm)
ραm , (42)

respectively with αis replaced by Re (αi)s. Note that the type σ > 1 for m > 1 and only for m = 1
(classical case (37)): σ = 1. The following asymptotic estimate holds:

|E(αi),(βi)
(z)| ≤ C|z|ρ((1/2)+μ−(m/2)) exp(σ|z|ρ), μ := β1 + · · ·+ βm, for |z| → ∞.

The (3m)-parameters M-L type functions (40) are also entire functions with the same
order and type as in (42), see [74,82].
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Lemma 1. The multi-index M-L functions (39) are important examples of the Wright generalized
hypergeometric functions pΨq and of the Fox H-functions:

E(αi),(βi)
(z) = E(m)

(αi),(βi)
(z) = 1Ψm

[
(1, 1)

(βi, αi)
m
1

∣∣∣∣∣z
]
= H1,1

1,m+1

[
−z

∣∣∣∣∣ (0, 1)
(0, 1), (1− βi, αi)

m
1

]
. (43)

Thus, the following Mellin–Barnes type integral representation holds (cf. with (1)):

E(αi),(βi)
(z) =

1
2πi

∫
L

Γ(s)Γ(1− s)
m
∏
i=1

Γ(βi − sαi)
(−z)−sds, z �= 0,

based on the Mellin transform (see [59,83]; also [18] (p. 48)):

M
{

E(αi),(βi)
(−z); s

}
=

Γ(s)Γ(1− s)
m
∏
i=1

Γ(βi − sαi)
, 0 < Re (s) < 1. (44)

Additionally, as shown by Paneva–Konovska [74,82], the (3m)-parametric functions (40)
can be represented as

E(γi), m
(αi), (βi)

(z)=A mΨ2m−1

[
(γ1, 1), ..., (γm, 1)

(β1, α1), ..., (βm, αm), (1, 1), ..., (1, 1)

∣∣∣∣z]

= A H1,m
m,2m

[
−z
∣∣∣∣ (1− γ1, 1), ..., (1− γm, 1)

[(0, 1), (1− βi, αi)]
m
1

]
, with A =

[
m

∏
i=1

Γ(γi)

]−1

, (45)

which is in agreement with (43) for γ1 = ... = γm = 1.
As an analog of the Laplace transform (L), relationship between the classical M-L

function (37) and the classical Wright function: L{φ(α, β; z); s} = 1
s

Eα,β(
1
s
) (see in the

books [16,18]), we derive the following new relation.

Lemma 2.

L
{

0Ψm

[ −
(β1, α1), ..., (βm, αm)

∣∣∣z]; s
}

=
1
s

E(αi),(βi)
(

1
s
), Re (s) > 0 . (46)

Note that we can consider the 0Ψm-functions on the left-hand side as “fractional indices”
analogs of the 0Fm-functions, that is of the hyper-Bessel functions J(m)

ν1,...,νm of Delerue [89], related
to the hyper-Bessel operators (9) as their eigenfunctions, and discussed further as special
cases of (39). For details on these special functions, see Kiryakova [9] (Ch.3).

Various relations for the multi-M-L functions in terms of the operators of classical
FC and GFC have been derived in our previous works (e.g., [59,80]). First, let us consider
the so-called Gelfond–Leontiev (G-L) operators of generalized integration and differentiation,
generated by the coefficients of an entire function ϕ(σ). For the theory of the G-L operators
in general, see Gelfond and Leontiev’s paper [62]) of 1951, and for details in the case
when the mentioned entire function is taken to be the M-L function or multi-index Mittag–
Leffler function, we refer to Kiryakova [9] (Ch.1), [59,63,79]. Here, we only remind the

definition of the G-L operators related to ϕ(σ)=E(αi),(βi)
(σ) :=

∞
∑

k=0
bkzk whose coefficients

bk = 1/(Γ(α1k + β1)...Γ(αmk + βk)) are taken as multipliers’ sequences below.

Definition 9. (Kiryakova [63,64]) For functions f (z) =
∞
∑

k=0
akzk analytic in a disk {|z| < R},

we consider the operators

D̃ f (z) := D(αi),(βi) f (z) =
∞

∑
k=1

ak
bk−1

bk
zk−1, L̃ f (z) := L(αi),(βi) f (z) =

∞

∑
k=0

ak
bk+1

bk
zk+1, (47)
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and call them multiple (multi-index) Dzrbashjan–Gelfond–Leointiev (D-G-L) differentiations and
integrations, respectively. These are generated by the multi-index M-L functions and the name of
Dzrbashjan is used in addition to Gelfond–Leontiev to honor his contribution to one of the first deep
studies on M-L type functions, the book [43].

Evidently, D(αi),(βi)
L(αi),(βi)

f (z) = f (z), and it is proven that the radii of convergence
(and analyticity) of resulting analytical functions in (47) are the same R as for f (z). Accord-
ing to Theorem 3 in [79], operators (47) can be analytically extended outside the disks to
starlike domains and represented as operators of GFC, as follows:

D̃ f (z) = z−1D(γi−1−αi),(αi)
(1/αi),m

f (z)−
[

m

∏
i=1

Γ(γi)

Γ(γi−αi)

]
f (0)

z
, L̃ f (z) = z I(γi−1),(αi)

(1/αi),m
f (z). (48)

To start with the classical FC operators for the multi-index M-L functions, we state the
following

Lemma 3. (Kiryakova [80] (Lemma 3.2)) For any fixed l, 1 ≤ l ≤ m and integration order
δl > 0, we have for the E-K fractional integral the relation

Iγl−1,δl
1/αl

E(αi),(γ1,...,γl ,...,γm)(λz) = E(αi),(γ1,...,γl+δl ,...,γm)(λz), λ �= 0,

that is, a fractional integration can transform a multi-M-L function into another one with same αis
and corresponding parameter γl increased by the order of integration to γl + δl .

Applying E-K fractional integrals of the form Iγi−1,δi
1/αi

successively m-times (i = 1, ..., m)
to (39) and using the composition (decomposition) property (26), we obtain for the general-
ized fractional integrals (23) the image:

I(γi−1),(δi)
(1/αi),m

E(αi),(γi)
(λz) = E(αi),(γi+δi)

(λz). (49)

Then, for δi := αi, i = 1, ..., m, and applying the operational rules for the operators
I(γi),(δi)
(βi),m

and D(γi),(δi)
(βi),m

of GFC, the following generalized fractional integration and differen-
tiation relations follow:

(λz) I(γi−1),(αi)
(1/αi),m

E(αi),(γi)
(λz) = E(αi),(γi)

(λz)− 1
Γ(γ1)...Γ(γm)

,

D(γi−1−αi),(αi)
(1/αi),m

E(αi),(γi)
(λz) = (λz) E(αi),(γi)

(λz) +
1

Γ(γ1 − α1)...Γ(γm − αm)
, (50)

as analogs of the classical relation zαDαEα(λz) = λzα Eα(λz) +
1

Γ(1− α)
for the R-L deriva-

tive Dα = z−αD−α,α
1 .

It remains to combine the results (48) and (50) to verify the fact that the multi-index
M-L functions that generate the G-L operators (47) appear as their eigenfunctions:

Theorem 2. The multi-index Mittag–Leffer function (39) satisfies the differential equation of
fractional multi-order (α1, ..., αm):

D̃ E(αi),(βi)
(λz) = Dαi ,βi E(αi),(βi)

(λz) = λ E(αi),(βi)
(λz), λ �= 0. (51)

The classical Poisson integral formula, representing the Bessel function via the cosine-
function ([3] (Vol. 2)), can be written in terms of an E-K fractional integral, as

Jν(z) =
2√

π Γ(ν+1/2)

( z
2

)ν
1∫

0

(1− t2)ν−1/2 cos(zt)dt =
1√
π

( z
2

)ν
I−1/2,ν+1/2
1/2 {cos z}. (52)
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This representation has been extended in our works [9] (Ch.4), [90] for the hyper-Bessel
functions (58), m ≥ 2, that is for the 0Fm−1-functions, via generalized fractional integrals (24)
of the function cosm. The details follow in Section 8. For the multi-index M-L functions,
a Poisson type integral representation of the kind of (52) has to explore the more general
fractional calculus operators from Definition 6. This is a part of the general results discussed
in Section 8, but we expose it here as to close (at least partly) the topic with some properties
of the multi-index Mittag–Leffler functions.

Theorem 3. (Kiryakova [59]) Let αk > 1, βk ≥ k
m , k = 1, . . . , m. Then, we have the following

Poisson-type integral representation of the multi-index M-L functions my means of multiple W-E-K
fractional integrals (33) of the cosine function (54) of order m (from the next section):

E(αk),(βk)
(−z) = c∗ I(

k
m−1)m

1 ,(βk− k
m )m

1
(1/αk)

m
1 ,(1)m

1 ,m

{
cosm(mz1/m)

}

= c∗
1∫

0

Hm,0
m,m

[
σ

∣∣∣∣ (βk − αk, αk)
m
1

(k/m− 1, 1)m
1

]
cosm

(
m(zσ)1/m)dσ, with c∗ :=

√
m/(2π)m−1. (53)

Remark 1. The above result is parallel with (52) for the Bessel functions. If we take αk = 1,
βk = k

m , the above GFC operator, the multiple W-E-K fractional integral, has a multi-order
(0, ..., 0) and since also λk = βk, it turns into identity. Then, the E(αk),(βk)

-function reduces
to the cosm(z)-function. It is similar in the simplest case to the Bessel function with index

ν =−1/2: J−1/2(z) =
√

2
πz cos z. More generally, it is also known that the Bessel functions

of “semi-integer” indices (called also “spherical functions” for their use in theory of spherical
waves) are reducible to trigonometric functions or to integer order operators of them: Jn−1/2(z) =
(2z)n+1/2
√

π

dn

(dz2)n

{cos z
z

}
, n = 0, 1, 2, .... In the case of multi-index M-L functions (39), we

can call multi-indices of the form αk = 1, βk := νk− k
m = 0, 1, 2, ...; for k = 1, ..., m, as “semi-

integer multi-indices”. A corollary of Theorem 3 tells that for such multi-indices the functions
E(αk),(βk)

reduce either directly to generalized trigonometric functions, or to integer order integral
or differential operators of them.

The results for the images of the multi-index Mittag–Leffler functions (39) and (40) under
GFC integrals and derivatives, or under their particular cases a R-L, E-K, Saigo, Marichev–
Saigo–Maeda operators, etc. can be written from the general results in Section 7 according
to definition via the Wright g.h.f. 1Ψm.

Series in systems of special functions, in the general cases of 2m- and 3m-parameters
M-L functions and their particular case (mentioned in next section) as the M-L function,
Parbhakar function, multi-index and fractional analogs of the Bessel- and hyper-Bessel
functions, were studied recently in details by Paneva–Konovska in a series of papers and
in the book [74], especially with respect to their convergence in complex domain, including
Cauchy–Hadamard, Abel, Tauber type, Hardy–Littlewood and Ostrovski type theorems.

5. Examples of M-L Type and Multi-Index M-L Functions

5.1. For m = 1, this is the classical M-L function Eα,β(z) with all its special cases:

• α > 0, β = 1: E0,1(z) =
1

1− z
; E1,1(z) = exp(z); E2,1(z2) = cosh(z), E2,1(−z2) =

cos(z); E1/2,1(z1/2) = exp(z)
[
1 + erf(z1/2)

]
= exp(z) erfc(−z1/2) = exp(z)

[
1 +

1√
π

γ(
1
2

, z)
]

(the error functions, or incomplete gamma functions);

• β �= 1: E1,2(z) =
ez−1

z
; E1/2,2(z) =

sh
√

z
z

; E2,2(z) =
sh
√

z√
z

;

the Miller-Ross function zνE1,ν+1(az); etc.;
• β = α: the α-exponential (Rabotnov) function yα(z) = zα−1Eα,α(zα).
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• The trigonometric functions of order m, and, respectively the hyperbolic functions of order m:

cosm(z)=
∞

∑
j=0

(−1)jzmj

(mj)!
=Em,1(−zm), (54)

y(z)=cosm(z) is the solution of IVP y(m)(z) = −y(z), y(0)=1, y(j)(0)=0, j = 1, ..., m−1;

kr(z, m)=
∞

∑
j=0

(−1)jzmj+r−1

(mj+r−1)!
= zr−1 Em,r(−zm), r = 1, 2, . . . ; k1(z, m) :=cosm(z)=Em,1(−zm),

hr(z, m)=
∞

∑
j=0

zmj+r−1

(mj+r−1)!
= zr−1 Em,r(zm), r = 1, 2, . . . ; h1(z, m) := coshm(z) = Em,1(zm),

can also be expressed in terms of the M-L function (see in [3] (Vol. 3) and [16] (Ch.1)); and
the same for their fractionalized versions, as by Plotnikov [91] and Tseytlin [92]:

Scα(z) =
∞

∑
k=0

(−1)kz(2−α)m+1

Γ((2− α)m + 2)
= z E2−α,2(−z2−α),

Csα(z) =
∞

∑
k=0

(−1)kz(2−α)m

Γ((2− α)m + 1)
= E2−α,1(−z2−α),

and by Luchko–Srivastava [77]:

sinλ,μ(z) =
∞

∑
k=0

(−1)kz2k+1

Γ(2μk + 2μ− λ + 1)
= z E2μ,2μ−λ+1(−z2),

cosλ,μ(z) =
∞

∑
k=0

(−1)kz2k

Γ(2μk + μ− λ + 1)
= E2μ,μ−λ+1(−z2),

(see details again in Podlubny [16] (Ch.1)).
• Here, we mention also the so-called Lorenzo–Hartley functions [93], the F-function and its
generalization the R-function, shown to be solutions of some linear fractional differential
equations. We can represent them in terms of M-L function, namely, for z > 0, c = 0, q ≥ 0,
ν ≤ q:

Fq(a, z) =
∞

∑
k=0

akz(k+1)q−1

Γ((k + 1)q)
= zq−1 Eq,q(az),

Rq,ν(a, 0, z) =
∞

∑
k=0

akz(k+1)q−1−ν

Γ((k + 1)q− ν)
= zq−1 Eq,q−ν(az).

5.2. For m = 2: We start with the not enough popular M-L type function of Dzrbash-
jan [44], with 2× 2 indices, which he denoted alternatively by (we need to set 1/ρi :=
αi, μi := βi, i = 1, 2):

Φρ1,ρ2(z; μ1, μ2)=
∞

∑
k=0

zk

Γ(μ1+
k

ρ1
)Γ(μ2+

k
ρ2
)

:= E( 1
ρ1

, 1
ρ2
),(μ1,μ2)

(z)=E(α1,α2),(β1,β2)
(z). (55)

Dzrbashjan found the order and type of this entire function, claimed on few simple
particular cases, and considered some integral relations between (55) and Mellin transforms
on a set of axes. Then, he developed a theory of integral transforms in the class L2, involving
kernel close to functions (55) and, further, proposed approximations of entire functions in
L2 for an arbitrary finite system of axes in complex plane starting from the origin.

The 2× 2-indices M-L type functions (55) were also studied in detail by Luchko in the
recent paper [94]. He allowed the parameters ρ1, ρ2 to be also negative or zero and called
them “4-parameters Wright functions of second kind”, separating the cases when ρ1 + ρ2 > 0,
ρ1 + ρ2 = 0 or ρ1 + ρ2 < 0.

Some of the simple cases of (55), as mentioned and denoted in Dzrbashjan [44], are:
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• the M-L function itself: E 1
ρ ,μ(z) = E( 1

ρ ,0),(μ,1)(z) = Φρ,∞(z; μ, 1); 1
1− z

= E(0,0),(1,1)(z) =

Φ∞,∞(z; 1, 1); the Bessel function: Jν(z) =
( z

2
)ν E(1,1),(ν+1,1

(
− z2

4

)
=
( z

2
)ν Φ1,1

(
− z2

4 ; 1, ν + 1
)

; etc.

To these examples, we added (see, e.g., Kiraykova [59]) the following cases:

• The Struve and Lommel functions (see [3] (Vol. 2); and details in [9] (App.,(C.8)), [79,80]):

sμ,ν(z) =
1
4

zμ+1 E(1,1),((3−ν+μ)/2,(3+ν+μ)/2)(−
z2

4
), Hν(z) =

1
π2ν−1(1/2)ν

sν,ν(z).

• The “classical” Wright function that arose in the studies of Fox ([95], 1928), Wright ([31], 1933)
and Humbert and Agarwal ([69], 1953) and was also referred to in Erdélyi et al. [3] (Vol. 3).
Initially, Wright [31] defined this function only for α > 0, then extended its definition for
α > −1 [32]. Now, we see this is a case of multi-index M-L function with m = 2:

φ(α, β; z) := Wα,β(z) =
∞

∑
k=0

1
Γ(αk + β)

zk

k!
= 0Ψ1

[ −
(β, α)

∣∣∣∣z] = E(2)
(α,1),(β,1)(z), (56)

which is entire function of order 1/(1 + α). The survey papers by Gorenflo–Luchko–
Mainardi [96] and Mainardi–Consiglio [97] reflect in detail its analytical properties and
applications, see also the book [22] as well as the related literature. In the case α ≥ 0, the
Wright function is said to be of first kind, and for −1 < α < 0 of second kind. The latter
survey [97] concentrates on the Wright function of second kind. It is noted that the first
kind Wright function is of exponential order, while the second kind is not of exponential
order, and naturally they have different asymptotic behaviors, Laplace transforms, etc.
(see also Luchko [94]). The function (56) plays an important role in the solutions of linear
partial fractional differential equations as the fractional diffusion-wave equation studied by
Nigmatullin (1984–1986, to describe the diffusion process in media with fractal geometry,
0 < α < 1) and by Mainardi et al. (since 1994, for propagation of mechanical diffusive
waves in viscoelastic media, 1 < α < 2). In the form M(z; β) = φ(−β, 1− β;−z), β := α/2,
this function is recently called as the Mainardi function (see [16] (Ch.1)). In our denotations,
it is a multi-index M-L function with m = 2 and a Dzrbashjan function (55): M(z; β) =

E(2)
(−β,1),(1−β)

(−z) and has its own particular cases, such as M(z; 1/2) = 1/
√

π exp(−z2/4)

and the Airy function, M(z; 1/3) = 32/3 Ai(z/31/3). Note also that, for α = 0, the Wright

function (56) reduces to the exponent, since φ(0, β; z) =
∞
∑

k=0
zk/(k!Γ(β)) = (1/Γ(β)) exp(z).

In alternative form and denotation, the Wright function (56) is known as the Wright–
Bessel function or is misnamed as the Bessel–Maitland function:

Jμ
ν (z)=φ(μ, ν+1;−z)= 0Ψ1

[ −
(ν+1, μ)

∣∣∣∣− z
]
=

∞

∑
k=0

(−z)k

Γ(ν+kμ+1) k!
=E(2)

(1/μ,1),(ν+1,1)(−z) ,

(57)
again as an example of the Dzrbashjan function. It is an obvious (and was introduced as
such by Sir E. Maitland Wright [32]) “fractional index” analog of the classical Bessel function
Jν(z) = c(z/2) 0F1(z2/4), more exactly, of the Bessel–Clifford function Cν(z).

Several further “fractional-indices” generalizations of Jν(z) and Jμ
ν (z) are found in the

studies of other authors (details are in [59]), and we can represent all of them as multi-index
M-L functions. One of them is the so-called generalized Wright–Bessel(–Lommel) functions,
introduced by Pathak ([98], 1966),

Jμ
ν,λ(z)=(z/2)ν+2λ

∞

∑
k=0

(−1)k(z/2)2k

Γ(ν+kμ+λ+1)Γ(λ+k+1)

= (z/2)ν+2λ E(2)
(1/μ,1),(ν+λ+1,λ+1)

(
−(z/2)2

)
, μ > 0.
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For μ = 1, it includes the mentioned Lommel and Struve functions, e.g., J1
ν,λ(z) =

const S2λ+ν−1,ν(z). A next example is the generalized Lommel–Wright function with four
indices, introduced by de Oteiza, Kalla and Conde ([99], 1986), with r > 0, n ∈ N, ν, λ ∈ C:

Jr,n
ν,λ(z) = (z/2)ν+2λ

∞

∑
k=0

(−1)k(z/2)k

Γ(ν+kr+λ+1)Γ(λ+k+1)n

= (z/2)ν+2λ E(n+1)
(1/r,1,...,1),(ν+λ+1,λ+1,...,λ+1)

(
−(z/2)2

)
.

5.3. The above is an interesting example of a multi-M-L function with m = n + 1.

Other particular cases of multi-index (2m-parameters) M-L functions with greater
multiplicity m ≥ 2 are:

• For arbitrary m ≥ 2: let ∀αi = 0 and ∀βi = 1, i = 1, ..., m. Then, from definition (39), we
get again the geometric series

E(m)
(0,0,...,0),(1,1,...,1)(z) =

∞

∑
k=0

zk =
1

1− z
.

• Consider the case m ≥ 2, ∀αi = 1, i = 1, . . . , m. Then, the function

E(m)
(1,1,...,1),(β1,...,βm)

(z) = 1Ψm

[
(1, 1)

(βi, 1)m
1

∣∣∣∣z] = [
m

∏
i=1

Γ(μi)]
−1

1Fm(1; β1, β2, . . . , βm; z)

reduces to 1Fm-function and also to a Meijer’s G1,1
1,m+1-function. Denote βi = γi+1, i=1, . . . , m,

and let additionally one of the βi be 1, e.g., βm = 1, i.e., γm = 0. Then, the multi-index
M-L function becomes a 0Fm−1-function, that is, a hyper-Bessel function in the sense of
Delerue [89] (see also [9] (Ch.3)):

J(m−1)
γi ,...,γm−1(z) =

( z
m

)m−1
∑

i=1
γi

E(m)
(1,1,...,1),(γ1+1,γ2+1,...,γm−1+1,1)

(
−(

z
m
)m
)

(58)

=

[
m−1

∏
i=1

Γ(γi+1)

]−1( z
m

)m−1
∑

i=1
γi

0Fm−1

(
γ1+1, γ2+1,. . ., γm−1+1;−(

z
m
)m
)

:=

[
m−1

∏
i=1

Γ(γi+1)

]−1( z
m

)m−1
∑

i=1
γi

j(m−1)
γ1,..,γm−1(−z), (59)

where j(m−1)
γ1,..,γm−1 is called as normalized hyper-Bessel function.

This representation suggests that the multi-index M-L functions (39) with arbitrary
(α1, ..., αm) �= (1, ..., 1) can be interpreted as fractional-indices analogs of the hyper-Bessel func-
tions (58) and (59), which themselves are multi-index (but integer) analogs of the Bessel func-
tion. Functions (58) and (59) are closely related to the hyper-Bessel differential operators (9)
(see Section 3.1), and form a fundamental system of solutions of the differential equations
of the form By(z) = λy(z); the details are found in Kiryakova [9] (Ch.3, Th.3.4.3). For
example, if the hyper-Bessel operator (9) is with β = m, γ1 < γ2 < ... < γm = 0 < γ1 + 1,
the solution of the Cauchy problem By(z) = −y(z), y(0) = 1, y(j)(0) = 0, j = 1, ..., m−1,
is given by the normalized hyper-Bessel function (59): y(z) = j(m−1)

γ1,..,γm−1(−z). Closely related
functions are also the Bessel–Clifford functions of order m:

Cν1,...,νm(z)=
∞

∑
k=0

(−1)kzk

Γ(ν1+k+1) . . . Γ(νm+k+1) k!
= E(m+1)

(1,...,1),(ν1+1,...,νm+1,1)(−z).

Let us mention the special functions appearing in a very recent paper by Ricci [100].

He considered the so-called Laguerre derivative DL =
d
dz

z
d
dz

and its iterates DmL =

d
dz

z
d
dz

z...
d
dz

z, same as the particular hyper-Bessel differential operators (19) considered in
operational calculus by Ditkin and Prudnikov [50], as mentioned in Section 3.1. Then, the L-

200



Mathematics 2021, 9, 106

exponentials e1(z), e2(z), ..., em(z), ..., which are eigenfunctions of DmL, that is, DmL em(λz) =
λ em(λz), are shown in [100] to have the form

em(z)=
∞

∑
k=0

zk

(k!)m+1 = 0Fm(−; 1, 1, ..., 1; z)= 1Ψm+1

[
(1, 1)

(1, 1), (1, 1), ..., (1, 1)

∣∣∣∣z]. (60)

Then, these are examples of the hyper-Bessel functions (58) and of the multi-index
Mittag–Leffler functions E(m+1)

(1,...,1),(1,...,1)(z) as well. In [100], applications to population
dynamics and in solutions of linear dynamical systems of these SF and of the related
Laguerre-type Bell polynomials and Laguerre-type generalized hypergeometric functions
are discussed.

• The Rabotnov function (the α-exponential function), presented in 5.1., appeared in Rabot-
nov’s works on application of fractional order operators in mechanics of solids. It is inter-
esting to consider its multi-index analog, that is the case with all βi = αi = α > 0, i = 1, ..., m.
This is the function

y(m)
α (z)= zα−1E(m)

(α,...,α),(α,...,α)(z
α)= zα−1

∞

∑
k=0

zαk

[Γ(α+αk)]m
. (61)

Observe that, for α = 1, we get the Ricci function (60), namely: em−1(z) =
∞
∑

k=0

zk

[k!]m
,

and also a case of the original Le Roy function with γ = m.

• In general, for rational values of ∀αi, i = 1, ..., m, the functions (39) are reducible to
generalized hypergeometric functions 1Fm and to Meijer’s G-functions G1,1

1,m+1, that is, to classical
special functions.

Remark 2. Note that all the results we derived for the multi-index M-L functions can be applied
for their particular cases mentioned above.

6. Other Special Cases of the Wright Generalized Hypergeometric Functions pΨq

6.1. Virchenko and Ricci generalized hypergeometric functions. In [101] and some other
papers, Virchenko studied some generalized hypergeometric functions denoted by 2Rτ

1(z)
and 1Φτ

1(z), as well as their integral representations, relations and applications to the gen-
eralized Legendre functions Pm,m

k (z), Qm,n
k (z), gamma functions, Laguerre’s functions, etc.

•
2Rω,μ

1 (a, b; c; z) =
Γ(c)

Γ(a)Γ(b)

∞

∑
k=0

Γ(a + k)Γ(b + ω
μ k)

Γ(c + ω
μ k)

· zk

k!
.

For
ω

μ
:= τ > 0, and a, b, c - complex, a + k �= 0,−1,−2, ...; b + τk �= 0,−1,−2, ..., k =

0, 1, 2, ...; |z| < 1, it is rewritten as
2Rτ

1(a, b; c; z) =
Γ(c)

Γ(a)Γ(b)

∞

∑
k=0

Γ(a + k)Γ(b + τk)
Γ(c + τk)

· zk

k!
,

which is nothing but the Wright g.h.f.
Γ(c)

Γ(a)Γ(b) 2Ψ1

[
(a, 1), (b, τ)

(c, τ)

∣∣∣∣z]. Virchenko also

proposed some examples of elementary functions for these special functions, e.g., (ln (1 +
z))τ and (arcsin z)τ ; some generalized incomplete B-function; the Gauss function 2F1; etc.

•
1Φτ

1(a; c; z) =
Γ(c)
Γ(a)

∞

∑
k=0

Γ(a + τk)
Γ(c + τk)

· zk

k!
,

and, in Virchenko [101], generalizations of the gamma function, incomplete gamma func-
tion, probability integrals and Laguerre’s functions are introduced by means of 1Φτ

1(z),

which is a Wright g.h.f. of the form
Γ(c)
Γ(a) 1Ψ1

[
(a, τ)
(c, τ)

∣∣∣∣z], and, according to our classifica-

tions in Section 8, a confluent type g.h.f.
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• In 5.3., the recent paper by Ricci [100] is mentioned for the Laguerre-type derivatives
and related special functions. Along with the functions (60), there he also considered
the Laguerre-type (L-) Bessel functions, L-type Gauss hypergeometric functions and the
Laguerre-type generalized hypergeometric functions LpFq. They can be shown to be repre-
sentable by pFq+1, thus also as pΨq+1, namely:

LpFq(a1, .., ap; b1, ..., bq; z) =
∞

∑
k=0

a(k)1 ...a(k)p

b(k)1 ...b(k)q

· zk

(k!)2

=
∞

∑
k=0

a(k)1 ...a(k)p

b(k)1 ...b(k)q (1)(k)
· zk

k!
= pFq+1(a1, ..., ap; b1, ..., bq, 1; z). (62)

6.2. Mainardi-Masina and Paris generalized exponential integrals. In [102], Mainardi and
Masina introduced a generalized exponential integral Einα(z) by replacing the exponential
function in the complementary exponential integral Ein(z) by the Mittag–Leffler function
Eα(z) and mentioned the physical applications for 0 < α < 1 in the studies of the creep
features of linear viscoelastic models. In the recent paper [103], Paris made the next
step to involve the two-parameter M-L function, namely to consider the generalized
exponential integral

Einα,β(z) = z
∞

∑
k=0

(−1)k zαk

(ak + 1)Γ(αk + α + β)
, which for β = 1 gives Einα(z). (63)

As observed, this function can be seen as a case of the Wright g.h.f. with p = q = 2,
namely

Einα,β(z) = z
∞

∑
k=0

Γ(αk + 1)Γ(k + 1)
Γ(αk + 2)Γ(αk + α + β)

(−zα)k

k!
= z 2Ψ2

[
(1, α), (1, 1)

(2, α), (α + β, α)

∣∣∣∣− zα

]
.

Paris studied in details the asymptotic expansion of (63) for |z| → ∞. In [102,103],
generalized Sine and Cosine integrals are also considered (of the kind mentioned in 5.1.),
for example Sinα,β(z) = Ein2α,β−α(z), with their asymptotics and plots for different values
of parameters.

6.3. The so-called k-analogs of special functions. Claims on inventing and studying “new”
classes of special functions in several recent papers have been based on the extended notion
of the k-Gamma function, k > 0. However, in all such works, its representation in terms of
the classical Gamma-function is explicitly written there, and then is ignored:

Γk(s) =
∞∫

0

exp(− tk

k
) ts−1dt = k

s
k−1 Γ(

s
k
), s ∈ C, Re (s) > 0, (64)

where Γ(.) is the classical Gamma-function.
In addition, the k-Pochhammer symbol is used in the next denotations:

(λ)ν,κ := Γk(λ + νκ)/Γk(λ), λ ∈ C \ {0}, ν ∈ C, with Γk as in (64). (65)

In [104], using the above two definitions, we showed that most of these “new” functions
are in fact some known special functions, namely Wright g.h.f. and its cases. For the details of
establishing the mentioned relations, see Kiryakova [104]. In addition, in the references
lists of [104,105], one can find the particular authors/sources mentioned below.

• A generalized k-Bessel function was introduced by Gehlot ([106], 2014), and studied by
Mondal ([107], 2016) and Shaktawat et al. ([108], 2017). It is defined by

Wk
ν,c(z) =

∞

∑
n=0

(−c)n

Γk(nk + ν + k)
· (z/2)2n+ ν

k

n!
, z ∈ C, k > 0, Re (ν) > −1, c ∈ C. (66)
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However, after simple exercise, the function (66) can be represented as a Wright g.h.f.
0Ψ1, and even as the simpler g.h.f. 0F1 of the same type as the classical Bessel function:

Wk
ν,c(z) = (z/2)

ν
k

∞

∑
n=0

[−c( z
2 )

2]n

kn+1+( ν
k )Γ(n + 1 + ( ν

k ))Γ(n + 1)
= ...

=
( z

2 )
ν
k

k1+( ν
k )

∞

∑
n=0

[−( c
k )(

z
2 )

2]n

Γ(1 + ( ν
k ) + n.1) Γ(1 + n.1)

=
( z

2 )
ν
k

k1+( ν
k )

1Ψ2

[
(1, 1)

(1 + ν
k , 1), (1, 1)

∣∣∣∣− c
k

( z
2

)2
]
=

(z/2)ν/k

k1+(ν/k) 0Ψ1

[ −−
(1 + ν

k , 1)

∣∣∣∣− c
k

( z
2

)2
]

=
( z

2 )
ν
k

k1+( ν
k )Γ(1 + ν)

0F1

(
−; 1 +

ν

k
;− c

k
z2

4

)
. (67)

Indeed, if we take k = 1 and c = 1, this function reduces to the classical Bessel
function: W1

ν,1(z) =
(z/2)ν

Γ(1+ν) 0F1

(
−; 1+ν;− z2

4

)
. For k > 0 and c = 1 Gehlot [106] used (66)

as a solution of a k-Bessel differential equation. Mondal [107] studied some properties
of (66) for arbitrary c ∈ C. Shaktawat et al. [108] evaluated the Marichev–Saigo–Maeda
(M-S-M) operators of FC

Ia,a′ ,b,b′ ,c f (z) = zc−a−a′
1∫

0

(1− σ)c−1

Γ(c)
σ−a′ F3(a, a′, b, b′; c; 1− σ, 1− 1

σ
) f (zσ)dσ (68)

of this function. Since its kernel Appel F3-function is a H-function (36) with m = 3, in view
of author’s result from Corollary 3 in Section 7, it is well expected that the result appears in
terms of a 3Ψ4-function (because the indices of 0Ψ1 are increased by 3 under the 3-tuple FC
integral).

• Generalized k-Mittag–Leffler function. It was studied by many authors, for example in its
simplest case by Gupta and Parihar ([109], 2014) in the form

Ek,α,β(z) =
∞

∑
n=0

zn

Γk(αn + β)
.

This function has various further extensions, such as the generalized k-Mittag–Leffler
function by Nisar–Eata–Dhaifalla–Choi ([110], 2016):

Eη,δ,p,q
κ,α,β (z) =

∞

∑
n=0

(η)qn,κ

Γk(αn + β) (δ)pn,κ
zn, with κ, p, q ∈ R+; α, β, η, δ ∈ C, (69)

and min{Re (α), Re (β), Re (η), Re (δ)} > 0; q ≤ Re (α) + p.

Again, by using (64) and (65), it can be transformed into a Wright g.h.f. (see [104],
Case 5.2), namely:

Eη,δ,p,q
κ,α,β (z) = k1− β

k
Γ(δ/k)
Γ(η/k) 2Ψ2

[
( η

k , qκ
k ), (1, 1)

( δ
k , pκ

k ), ( β
k , α

k )

∣∣∣∣∣k (q−p)κ−α
k z

]
.

Nisar–Eata–Dhaifalla-Choi [110] put efforts to evaluate FC operators’ images
of (69) by the standard techniques, and as expected in view of the general results in
next Section 7 Theorem 5, Corollarys 1–3) these appear in terms of 5Ψ5-functions (for
the M-S-M operators (68)), in particular, as 4Ψ4-functions (for the Saigo operators (78))
and 3Ψ3-functions (for the R-L and E-K operators). In addition, the pathway integrals (that
are related to E-K integrals) are calculated there.
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• The generalized multi-index Bessel function. In a series of papers, Nisar et al. ([111], 2017,
2019) introduced and studied the function

J
(αj)m ,γ,c
(β j)m ,κ,b (z) =

∞

∑
k=0

ck (γ)κk
m
∏
j=1

Γ(αjk + β j +
b+1

2 )

zk

k!
, m = 1, 2, 3, ..., (70)

with the Pochhammer symbol denotation (65) for (γ)κk; and for αj, β j, γ, b, c ∈ C, j =

1, 2, ..., m;
m
∑

j=1
Re (αj) > max{0, Re (κ)− 1}; κ > 0, Re (β j) > 0, Re (γ) > 0. As shown in

Kiryakova [104], this is only a very special case of the Wright generalized hypergeometric function
1Ψm, namely:

J(α)m ,γ,c
(β j)m ,κ,b(z) =

1
Γ(γ)

∞

∑
n=0

Γ(κn + γ)
m
∏
j=1

Γ
(

αjn + (β j +
b+1

2 )
) (cz)n

n!
(71)

=
1

Γ(γ) 1Ψm

[
(γ,κ)

(β j +
b+1

2 , αj)
m
j=1

; cz

]

=
1

Γ(γ)
H1,1

1,m+1

[
−cz

∣∣∣∣∣ (1− γ,κ)
(0, 1), (1− β j − b+1

2 )m
j=1

]
, that is, it is also a Fox H-function.

Then, the R-L fractional integral (21) can be evaluated as part of Kiryakova’s general
results in next Section 7 (Theorem 5, in particular Corollary 1 for m = 1, γ = β = 1), or
directly from Kilbas’ Theorem 2 in [33], which is a variant of Lemma 1 in Kiryakova [112].
Taking there p = 1, q = m, c1 = γ, C1 = κ, dj = β j +

b+1
2 , Dj = αj and μ = 1, one obtains

the following R-L image for the multi-index Bessel function (70):

Iλ

{
tδ−1 J

(αj)m ,γ,c
(β j)m ,κ,b(z)

}
=

1
Γ(γ)

zδ+λ−1
2Ψm+1

[
(γ,κ), (δ, 1)

(β j +
b+1

2 , αj)
m
1 , (λ + δ, 1)

; cz
]

.

This was to be the result in Theorem 1, Equation (2.4) in arXiv:1706.08039 [111], its v1:
2017, but was written wrongly there—similarly looking but involving a 2Ψ2-function. The
evident true result involves the Wright function 2Ψm+1 (see Kiryakova [104] (5.3.)), as later
corrected in v2: 2019 of [111].

• A special case of (70) appears as a kind of generalized multi-index Mittag–Leffler function.
It was introduced by Saxena and Nishimoto ([113], 2010). As mentioned by Agarwal–
Rogosin–Trujillo ([114], 2015), it is representable also as a Wright g.h.f. 1Ψm, namely:

E(γ,κ)
(αj ,β j)m

(z) =
∞

∑
n=0

(γ)κn
m
∏
j=1

Γ(β j + αj n)
· zn

n!
=

1
Γ(γ) 1Ψm

[
(γ, κ)

(β j, αj)
m
1

∣∣∣∣z]. (72)

Therefore, all the GFC operators (say the R-L, E-K, Saigo, M-S-M operators) of this special
function can be evaluated by means of the general results in Section 7, Corollaries 1–3 there.
For m = 1, b = −1, this is the SF considered by Srivastava and Tomovski ([115], 2009):

Eγ,κ
α,β(z) =

∞

∑
n=0

(γ)κn

Γ(αn + β)
· zn

n!
.

• Similar, but simpler, is the case of the generalized Lommel-Wright function from the paper
by Agarwal–Jain–Agarwal–Baleanu ([116], 2018), which is commented in Kiryakova [117].
It has a representation as a Wright g.h.f. as follows:

Jϕ,m
ω,θ (z) = (

z
2
)ω+2θ

∞

∑
k=0

(−1)k( z
2 )

2k

(Γ(θ + k + 1))m Γ(ω + kϕ + θ + 1)
(73)

= (
z
2
)ω+2θ

1Ψm+1

[
(1, 1); (θ + 1, 1), ..., (θ + 1, 1), (ω + θ + 1, ϕ);−z2/4

]
, ϕ > 0.
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Note, additionally, that (73) is an example of the multi-index Mittag–Leffler func-
tion (39), namely: Jϕ,m

ω,θ (z) = ( z
2 )

ω+2θ( z
2 )

ω+2θE(m+1)
(1,...,1,ϕ),(θ+1,...,θ+1,ω+θ+1)

(
−( z

2 )
2). Then, all

the FC images of (73) evaluated in the commented paper follow at once by our general
results (see details in [117]).

6.4. The S-function. It was introduced by Saxena-Daiya ([118], 2015) as a “new” special
function extending the M-L function (p = q = 0, k = 1), the Prabhakar function (38), the
M-series (76) of Sharma and Jain ([119], 2009) with γ = 1, k = 1, etc., as follows:

S[z] := Sα,β,γ,τ,k
(p,q) (a1, ..., ap; b1, ..., bq; z) =

∞

∑
n=0

(a1)n...(ap)n · (γ)nτ,k

(b1)n...(bq)n · Γk(nα + β)

zn

n!
, (74)

with k ∈ R; α, β, γ, τ ∈ C; Re (α) > 0; Re (α) > k Re (τ), p < q + 1.

For p = q = 0, it reduces to the generalized k-Mittag–Leffler function Eγ,τ
k,α,β(z),

a variant of (69). However, it can be easily seen to be special case of the generalized
hypergeometric function of Wright of the form p+1Ψq+1. Unfortunately, this fact has not
been observed, neither by the authors introducing (74) nor by their numerous followers.
Namely, one can write (74) as follows (see details in [104]):

S[z] = k1− β
k

Γ(b1)...Γ(bq)

Γ(a1)...Γ(ap) · Γ( γ
k )

p+1Ψq+1

[
(a1, 1), ..., (ap, 1), ( γ

k , τ)

(b1, 1), ..., (bq, 1), ( β
k , α

k )
; zkτ− α

k

]
.

That is, the “new” special function S[z] is nothing but a case of the Wright function

p+1Ψq+1

(
zkτ− α

k

)
. Then, all results for images of FC operators, as R-L, E-K, Saigo, M-S-M

and the Euler-transform, follow from the statements in Section 7.

• Special cases of the S-function in 6.4. are the generalized K-series and the M-series. Recently,
(K.) Sharma ([120], 2012) introduced an extension of both g.h.f. pFq(z) and Prabhakar
function Eγ

α,β(z):

p
α,β;γ

K q
(
a1, ..., ap; b1, ..., bq; z

)
=

∞

∑
n=0

(a1)n...(ap)n

(b1)n...(bq)n

(γ)n zn

Γ(αn+β)
, z, α, β ∈ C, Re α > 0, (75)

with integers p ≤ q (and additional requirement |z|<R= αα if p= q+1). For γ = 1, this
gives the M-series (76) of (M.) Sharma and Jain ([119], 2009):

p
α,β
Mq
(
a1, . . . , ap; b1, . . . , bq; z

)
:= p

α,β
Mq (z) =

∞

∑
n=0

(a1)n . . . (ap)n

(b1)n . . . (bq)n

zn

Γ(αn + β)

= κ p+1Ψq+1

[
(a1, 1), . . . (ap, 1), (1, 1)
(b1, 1), . . . , (bq, 1), (β, α)

∣∣∣∣z], where κ =
q

∏
j=1

Γ(bj)/
p

∏
i=1

Γ(ai). (76)

We can mention its particular cases, for example: (1) for β = 1, the (simpler) M-series,
introduced by M. Sharma (2008); (2) for p = q = 0 (no upper and lower parameters),
M-L function Eα,β(z); (3) for p = 0, q = 1, b1 = 1, the Wright function φ(α, β; z), or the
generalized Bessel-Maitland function (57); (4) for p = q = 1, a1 = γ, b1 = 1 in (75), the
Prabhakar type function (38); and (5) for α = β = 1, the g.h.f. pFq(a1, ..., ap; b1, ..., bq; z).

In the recent arXiv preprint [121], Lavault represented (75) as a Wright g.h.f.:

p
α,β;γ

K q
(
a1, ..., ap; b1, ..., bq; z

)
:= p

α,β;γ
K q (z)

=

q
∏
j=1

Γ(bj)

Γ(γ)
p

∏
i=1

Γ(ai)
p+2Ψq+2

[
(a1, 1), ..., (ap, 1), (γ, 1), (1, 1)
(b1, 1), ..., (bq, 1), (1, 1), (β, α)

∣∣∣∣z], (77)
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although this can also be reduced to: =

q
∏
j=1

Γ(bj)

Γ(γ)
p

∏
i=1

Γ(ai)
p+1Ψq+1

[
(a1, 1), . . . (ap, 1), (γ, 1))
(b1, 1), . . . , (bq, 1), (β, α)

∣∣∣∣∣z
]
,

since the two pairs (1, 1) of parameters in the upper and low rows eliminate each other.
In [121] some FC operators of this K-series are calculated, as the R-L, Saigo and M-S-M

operators. Naturally, a R-L integral is transforming a p
α,β;γ

K q-function into a p+1
α,β;γ

K q+1-
function (Theorem 4.1, there), similarly to our Example 11 in [112] for the M-series. Next, in
Theorem 4.2 of [121] for the M-series and Corollary 4.3 for the K-series, the Saigo operator (78)
(with Gauss hypergeometric function (35), GFC with m = 2) is derived,

Iα,β,η f (z)=
z−α−β

Γ(α)

z∫
0

(z− ξ)α−1
2F1(α + β,−η; α; 1− ξ

z
) f (ξ)dξ

=
z−β

Γ(α)

1∫
0

(1− σ)α−1
2F1(α + β,−η; α; 1− σ) f (zσ)dσ. (78)

Since the K-series (75) is a p+1Ψq+1-function, from our results (and Corollary 3 [112];
see also Corollary 2 in the next section), it is expected that the result should be given as a
p+3Ψq+3-function (the indices are to be increased by 2), which is the result (4.10) in [121]:

Iα,β,γ
{

tσ−1
p

ξ,η;ν
K q (czμ)

}

=
∏

q
1 Γ(bj)

∏
p
1 Γ(ai)

zσ−β−1

Γ(ν) p+3Ψq+3

[
(ai, 1)p

1 , (σ, μ), (−β + γ + σ, μ), (ν, 1)
(bj)

q
1, (β + σ, μ), (α + γ + σ, μ), (η, ξ)

∣∣∣∣czμ

]
.

Similarly, the M-S-M-images (68) follow as p+4Ψq+4-functions, according to Corollary 3
in next section.

6.5. k-Wright generalized hypergeometric function pΨk
q. Purohit and Badguzer ([122],

2018) introduced the generalized k-Wright function, as a k-extension (k > 0) of the Wright
g.h.f. (4), by

pΨk
q(z)= pΨk

q

[
(a1, A1), . . . , (ap, Ap)
(b1, B1), . . . , (bq, Bq)

∣∣∣∣z] = ∞

∑
n=0

Γk(a1 + nA1) . . . Γk(ap + nAp)

Γk(b1 + nB1) . . . Γk(bq + nBq)

zn

n!
. (79)

Replacing the k-Gamma function by the classical Gamma function according to (64),
it is seen that the “new” function is again a Wright generalized hypergeometric function,
of the form

const p+1Ψq+1

[
(ai/k, Ai/k)p

i=1
(bj/k, Bj/k)q

j=1

∣∣∣∣∣k(A1+...+Ap−B1−...−Bq)/k · z

]
. (80)

7. Results for the FC and GFC Images of SF of FC

Recently, there have appeared too many papers that deal with evaluation of FC
and GFC operators of various special functions. They use the same standard techniques—
replace the particular function by its power series, then interchange the orders of integration
(fractional order integrals) and summation, etc. Usually only the special functions are
changed and also the FC operators—with more and more general ones (but all these
happen to be cases of our GFC operators). The great number of combinations “special function
+ particular operator” explains the dramatically increasing production of such works.

Based on our older results on GFC for SF, since the work in [9], in the pa-
pers [64,104,112,117,123], and in a recent survey paper [105] in this same journal, we
propose an unified approach how this job can be done at once, for all SF of FC (we mean
the H- and G-functions and in particular the Wright g.h.f., multi-index M-L functions and
all their particular cases) and for all operators of GFC (we mean the generalized fractional
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integrals and derivatives of the form (25) and (28), thus including the R-L, E-K, Saigo,
Marichev–Saigo–Maeda operators, etc.). For the initiating idea, we need to pay tribute to
the initial classical results of 20th century in the Bateman Project on Integral Transforms [7]
and in works by Askey [2], Lavoie–Osler–Tremblay [124], etc. for the R-L images of many
elementary functions and of the simplest pFq-functions, as: 0F1, 1F1 and 1F2. We combined
these with the composition/decomposition rule (26) presenting the GFC operators as com-
positions of weighted R-L/E-K operators. As a recent survey on FC images of elementary
functions, we mention also the work of Garrappa–Kaslik–Popolizio [125].

Below, we remind only the statements of the main results from the mentioned author’s
papers, as surveyed in [105], in this same journal.

Theorem 4. The I(γk),(δk)
(βk),m

-image (23) of a H-function is also a H-function whose last three com-
ponents of the order are increased by m (the multiplicity in GFC operators), and with additional
parameters depending on those of the generalized fractional integration. Namely,

I(γk),(δk)
(βk),m

{
Hs,t

u,v

[
λz

∣∣∣∣∣ (ci, Ci)
u
1

(dj, Dj)
v
1

]}
= Hs,t+m

u+m,v+m

[
λz

∣∣∣∣∣ (ci, Ci)
t
1, (−γk)

m
1 , (ci, Ci)

u
t+1

(dj, Dj)
s
1, (−γk − δk)

m
1 , (dj, Dj)

v
s+1

]
. (81)

Then, GFC images of almost all SF of FC can be evaluated from (81). This result is
based on a formula for the integral of product of two arbitrary H-functions, namely for the
Mellin transform of such a product ([9] (App., (E.21′), [12] (§5.1, (5.1.1)), [14] (§2.25, (1))).
A similar formula presents the GFC operators (with Gm,0

m,m-kernel) of arbitrary G-function,
in terms of another G-function with increased orders and additional parameters (Lemma
1.2.2 in [9] and Corollary 1 in [105]).

Since most of the considered SF of FC are Wright g.h.f., the main and most useful result is
as follows.

Theorem 5. The image of a Wright g.h.f. pΨq(z) by a generalized fractional integral (23) (multiple,
m-tuple Erdélyi-Kober integral), provided δk ≥ 0, γk > −1, k = 1, ..., m, c > −1, μ > 0, λ �= 0,
is another Wright g.h.f. with indices p and q increased by the multiplicity m and additional
parameters related to these of the GFC integral:

I(γk)
m
1 ,(δk)

m
1

(βk)
m
1 ,m

{
zc

pΨq

[
(a1, A1), . . . , (ap, Ap)
(b1, B1), . . . , (bq, Bq)

∣∣∣∣λzμ

]}

= zc
p+mΨq+m

[
(ai, Ai)

p
1 , (γk + 1 + c

βk
, μ

βk
)m

1
(bj, Bj)

q
1, (γk + δk + 1 + c

βk
, μ

βk
)m

1

∣∣∣∣∣λzμ

]
. (82)

Specially, for c = 0, μ = 1, this result is simplified to pΨq(λz) �−→ p+mΨq+m(λz), as above.

Similarly (Theorem 4.2 in [104]; Theorem 4 in [105]),

D(γk)
m
1 ,(δk)

m
1

(βk)
m
1 ,m

{
zc

pΨq

[
(a1, A1), . . . , (ap, Ap)
(b1, B1), . . . , (bq, Bq)

∣∣∣∣λzμ

]}

= zc
p+mΨq+m

[
(ai, Ai)

p
1 , (γk + δk + 1 + c

βk
, μ

βk
)m

1
(bj, Bj)

q
1, (γk + 1 + c

βk
, μ

βk
)m

1

∣∣∣∣∣λzμ

]
. (83)

The simpler results for the pFq-functions read by analogy (Corollarys 4.1 and 4.2 in [104]),
for example with β = 1, as:

I(γk)
m
1 ,(δk)

m
1

1,m
{

zc
pFq
(
a1, . . . , ap; b1, . . . , bq; λz

)}
=

[
m

∏
k=1

Γ(γk+c+1)
Γ(γk+δk+c+1)

]
zc

p+mFq+m
(
ai, ..., ap, (γk+c+1)m

1 ; b1, ..., bq, (γk+δk+c+1)m
1 ; λz

)
. (84)
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We also describe the corollaries of the results (82) and (83) for the particular cases of
most often FC operators on which the other authors have exercised their evaluations, say for:
m = 1 (R-L and E-K), m = 2 (Saigo operators) and m = 3 (M-S-M operators). These results
for arbitrary Wright g.h.f. are mentioned below.

Corollary 1. For the Riemann–Liouville (R-L) integrals and derivatives, the simplest results are
parts of Lemmas 1 and 2 in Kiryakova [105]:

Rδ

{
zc

pΨq

[
(a1, A1), . . . , (ap, Ap)

(b1, B1), . . . , (bq, Bq)

∣∣∣∣∣λzμ

]}
= zc+δ

p+1Ψq+1

[
(ai, Ai)

p
1 , (c + 1, μ)

(bj, Bj)
q
1, (c + δ + 1, μ)

∣∣∣∣∣λzμ

]
, (85)

Dδ

{
zc

pΨq

[
(a1, A1), . . . , (ap, Ap)

(b1, B1), . . . , (bq, Bq)

∣∣∣∣∣λzμ

]}
= zc−δ

p+1Ψq+1

[
(ai, Ai)

p
1 , (c + 1, μ)

(bj, Bj)
q
1, (c + 1− δ, μ)

∣∣∣∣∣λzμ

]
. (86)

The results for the E-K operators have same expressions as in (82) and (83) with m = 1.

Corollary 2. The images of the Wright g.h.f. pΨq and, in particular, of the g.h.f. pFq under the
Saigo operators (78) are given by the formulas:

Iα,β,η

{
zc

pΨq

[
(ai , Ai)

p
1

(bj, Bj)
q
1

∣∣∣∣∣λzμ

]}
= zc−β

p+2Ψq+2

[
(ai , Ai)

p
1 , (η − β + 1 + c, μ), (1 + c, μ)

(bj, Bj)
q
1, (−β + 1 + c, μ), (α + η + 1 + c, μ)

∣∣∣∣∣λzμ

]
, (87)

(for c = 0, μ = 1, this is Corollary 3 in [112]) and

Iα,β,η{
p Fq
(
a1, ..., ap; b1, ..., bq; λz

)}
= z−β

p+2Fq+2
(
a1, ..., ap, η − β + 1, 1; b1, ..., bq,−β + 1, α + η + 1; λz

)
. (88)

Corollary 3. The Marichev–Saigo–Maeda (M-S-M) operators (68) transform a Wright g.h.f.
function into same kind of special function but with indices increased by 3:

Ia,a′ ,b,b′ ,c
{

pΨq

[
(ai, Ai)

p
1

(bj, Bj)
q
1

∣∣∣∣λzμ

]}

= zc−a−a′
p+3Ψq+3

[
(ai, Ai)

p
1 , (a− a′ + 1, 1), (b− a′ + 1, 1), (c− 2a′ − b′ + 1, 1)

(bj, Bj)
q
1, (a− a′ + b + 1, 1), (c− 2a′ + 1, 1), (c− a′ − b′ + 1, 1)

∣∣∣∣∣λzμ

]
. (89)

We state here also the more general result for images of arbitrary Wright generalized
hypergeometric function in the case of multiple Wright–Erdélyi–Kober operators (33).

Theorem 6. (Kiryakova, [60], Theorem 9) The image of a Wright generalized function pΨq(z)
by a multiple W-E-K operator (33) has the form

I(γk),(δk)
(βk),(λk),m

{
pΨq

[
(a1, A1), . . . , (ap, Ap)

(b1, B1), . . . , (bq, Bq)

∣∣∣∣∣z
]}

= p+mΨq+m

[
(aj, Aj)

p
1 ; (γk+1, 1/λk)

m
1

(bk, Bk)
q
1; (γk+δk+1, 1/βk)

m
1

∣∣∣∣∣z
]

. (90)

Conversely, the alternatively stated result reads as: each p+mΨq+m-function can be represented
by means of a multiple (m-tuple) operator Ĩ of GFC, of a pΨq-function, the orders of which are
reduced by m:

p+mΨq+m

[
(aj, Aj)

p
j=1; (ap+i, Ap+i)

m
i=1

(bk, Bk)
q
k=1; (bq+i, Bq+i)

m
i=1

∣∣∣∣∣z
]
= Ĩ

{
pΨq

[
(aj, Aj)

p
j=1

(bk, Bk)
q
k=1

∣∣∣∣∣z
]}

, (91)

with
Ĩ f (z) = I

(ap+i−1)m
i=1,(bq+i−ap+i)

m
i=1

(1/Bq+1)
m
i=1,(1/Ap+1)

m
i=1,m f (z) of the form (33).

A long list of examples how these general results work at once for any of the SF of
FC mentioned in previous sections is provided in author’s works [104,105,112,117,123],
including some of the particular cases of W.g.h.f. and of multi-index M-L f., mentioned in
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Sections 5 and 6. There we also provided the details on the references items for the authors
cited here only with years.

8. Theory of SF of FC in View of GFC Operators

Usually, the special functions of mathematical physics are defined by means of power
series representations. However, some alternative representations can be used as their
definitions. Let us mention the well-known Poisson integral (52) for the Bessel function
and the analytical continuation of the Gauss hypergeometric function via the Euler integral
formula. The Rodrigues differential formulas, involving repeated or fractional differentiation
are also used as definitions of the classical orthogonal polynomials and their generaliza-
tions. As to the other special functions (most of them being pFq- and pΨq-functions), such
representations have been less popular and even unknown in the general case. There
exist various integral and differential formulas, but, unfortunately, quite peculiar for each
corresponding special function and scattered in the literature without any common idea to
relate them.

In our works since 1985 (e.g., [9] (Ch.4), [58,60]), we showed that all the classical SF
and the SF of FC (in the sense of generalized hypergeometric functions pFq and pΨq) can
be presented by means of generalized fractional integrals or derivatives of three basic
elementary functions. On this basis, these special functions have been classified into
three specific classes, and several new integral and differential representations have been
proposed under a unified idea. Besides, for these three classes of SF, we provide analogs of the
mentioned Poisson and Euler integral formulas and of the Rodrigues differential formulas, which
can also be used for alternative definitions of these special functions, their analytical extensions or
for numerical algorithms.

The idea is briefly explained as follows: (i) most of the classical SF (SF of mathematical
physics) and SF of FC are nothing but modifications of the g.h.f. pFq or pΨq; (ii) each pFq-
function or pΨq-function can be represented as an E-K fractional differintegral (i.e., integral
or derivative) of a p−1Fq−1-function or p−1Ψq−1, respectively; (iii) a finite number of steps
(ii) leads to one of the basic g.h.f. (0Fq−p (for q−p = 1: Bessel function); 1F1 (confluent
h.f.) and 0F0 (exponent); and 2F1 (Gauss h.f.) and 1F0 (beta-distribution) to the simplest
functions 0Ψq−p, 1Ψ1, 1Ψ0, respectively); (iv) the above three basic g.h.f. can be considered
themselves as fractional differintegrals of the three elementary functions, depending on
whether p < q, p = q, or p = q + 1; and (v) the compositions of E-K operators arising in
Step (iii) give generalized (q-tuple) fractional integrals or derivatives.

Thus, for the simpler case of pFq-functions, we have the following general proposition.

Theorem 7. (Kiryakova [58]) All the generalized hypergeometric functions pFq can be considered
as generalized (q-tuple) fractional differintegrals (24), (30) (with Gm,0

m,m-kernels) of one of the
elementary functions

cosq−p+1(z) (if p < q), zα exp z (if p = q), zα(1− z)β (if p = q + 1), (92)

depending on whether p < q p = q p = q + 1.

It is based on the known auxiliary result coming yet from the Bateman Project on
integral transforms [7], Askey [2], Lavoie–Osler–Tremblay [124] for the R-L derivatives that
we have paraphrased in terms of E-K operators (e.g., Equation (4.2.2′) in [9] and Lemma 3.2
in [58]) as follows:

Γ(ap)

Γ(bq)
pFq(a1, ..., ap; b1, ..., bq; z)

=

⎧⎨⎩ I
ap−1,bq−ap
1,1

{
p−1Fq−1(a1, ..., ap−1; b1, ..., bq−1; z)

}
if bq > ap,

D
bq−1,ap−bq
1,1

{
p−1Fq−1(a1, ..., ap−1; b1, ..., bq−1; z)

}
if bq < ap,

(93)
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for all complex z, and if p = q + 1 we require additionally |z| < 1. Then, this basic fact is
to be used repeatedly, and combined with the composition/decomposition property (26)
for the operators of GFC. In each of the three separate cases, we reach to one of the basic
functions (92) with smallest possible first index p, namely: 0Fq−p(z) = cosq−p+1(z); 1F1(z)
and then 0F0(z) = exp z; and 2F1(z) and then 1F0(β;−; z) = (1− z)−β.

For the Wright generalized hypergeometric functions (4), this proposition reads almost the
same, only the third basic function (for p = q + 1) is more general, namely 1Ψ0 = H1,1

1,1 , and

the GFC operators have as kernel the Hm,0
m,m-function with different parameters βs and λs in

the upper and low rows.

Theorem 8. (Kiryakova [60] (Theorem 14)) All the Wright generalized hypergeometric functions
pΨq can be represented as multiple (q-tuple) W-E-K fractional integrals (33), or their corresponding
fractional derivatives, of one of the following three basic functions:

cosq−p+1(z) (if p < q) , exp z (if p = q) , 1Ψ0[ (a, A) | z ] (if p = q + 1). (94)

In this case, the basic used result is Theorem 6, following similar Steps (i)–(v) as
described above.

The three cases, for both Theorems 7 and 8, are considered in detail, in separate
statements.

(1) p < q. The Poisson integral representation (52) is extended in [9] (Ch.4) and [90]
for the hyper-Bessel functions (58), m ≥ 2, that is for the 0Fm−1-functions, via generalized
fractional integrals (24) of the function cosm, (54) as follows:

J(m−1)
ν1,..,νm−1(z) =

√
m

(2π)m−1

( z
m

)ν1+...+νm−1
I(

k
m−1),(νk− k

m +1)
1
m ,m−1

{cosm(z)}. (95)

By analogy with the hyper-Bessel functions (58), we consider what we call the Wright
hyper-Bessel functions:

0Ψm

[ −
(b1, B1), ..., (bm, Bm)

∣∣∣∣− z
]
= H1,0

0,m+1

[
z
∣∣∣∣ −
(0, 1), (1− b1, B1), . . . , (1− bm, Bm)

]

=
∞

∑
k=0

zk

Γ(b1 + kB1) . . . Γ(bm + kBm) . k!
:= JB1,...,Bm

b1−1,...,bm−1(z). (96)

The latter denotation is to remind of the analogy with the hyper-Bessel functions (58),
when ∀Bk = 1. It is easy to observe that (96) appears as special case of the multi-index
Mittag–Leffler functions (39), namely: JB1,...,Bm

b1−1,...,bm−1(z) = E(m+1)
(1,B1,...,Bm),(1,b1,...,bm)

(−z).

We have then a result, analogous to (95), and more general than (53) for the multi-M-L
functions, that: each Wright hyper-Bessel function 0Ψq−p, p < q, can be represented by means of
a Poisson type integral of the cosp−q+1-function, written in the form

0Ψq−p

[ −
(b1, B1), ..., (bq−p)

∣∣∣∣− z
]
= JB1,...,Bm

b1−1,...,bm−1(z)

= I
( k

q−p+1−1),(bk− k
q−p+1 )

( 1
Bk

),(1),q−p

{
cosq−p+1

(
(q− p + 1)z

1
q−p+1

)}
. (97)

Let us now apply to the function 0Ψq−p above, p-times the results (90), (91)
(Theorem 6) with m=1, combined with the composition rule for the W-E-K integrals (33).
Then, we obtain the following:

Theorem 9. (Kiryakova [60] (Theorem 15)) Each pΨq-function with p < q is a generalized
q-tuple W-E-K fractional (differ-)integral operator of cosq−p+1(z),

210



Mathematics 2021, 9, 106

pΨq

[
(a1, A1), . . . , (ap, Ap)
(b1, B1), . . . , (bq, Bq)

∣∣∣∣− z
]
= I(γk),(δk)

( 1
Bk

),(λk),q

{
cosq−p+1((q− p + 1) z

1
q−p+1 )

}
, (98)

with the following parameters:

γk =

{
k

q−p+1 − 1,
ak−q+p − 1,

; δk =

{
bk − k

q−p+1 ,
bk − ak−q+p,

; λk =

{
1, k = 1, . . . , q− p

1
Ak−q+p

, k = q− p + 1, . . . , q.

If the following conditions are satisfied:

bk >
k

q− p + 1
, k = 1, . . . , q− p; bk > ak−q+p > 0, k = q− p + 1, . . . , q,

Bk ≥ 1, k = 1, . . . , q− p; Bk ≥ Ak−q+p, k = q− p + 1, . . . , q,

then relation (98) gives a Poisson type integral representation; otherwise, the operator in the R.H.S.
should be interpreted as a multiple W-E-K derivative (see, e.g., Definition 7 in [60]), and then (98)
turns into a new Rodrigues type differential formula, or a mixed differ-integral representation.

The particular case of Poisson type representation (53) for the multi-index M-L func-
tion has been already stated as Theorem 3 in Section 4.

In the other two cases, p = q and p = q + 1, the starting results for pΨq were formu-
lated as Lemmas 11 and 12 in Kiryakova [60]:

1Ψ1

[
(a1, A1)
(b1, B1)

∣∣∣∣z] = Wa1−1,b1−a1
1/B1,1/A1

{ exp z }, if A1 ≥ B1, b1 ≥ a1, for |z| < ∞; (99)

2Ψ1

[
(a1, A1), (a2, A2)

(b1, B1)

∣∣∣∣z] = Wa1−1,b1−a1
1/B1,1/A1

{
1Ψ0

[
(a2, A2)
−

∣∣∣∣z]} (100)

= Wa1−1,b1−a1
1/B1,1/A1

{
H1,1

1,1

[
−z
∣∣∣∣ (1− a2, A2)

(0, 1)

]}
,

if A1 ≥ B1, b1 ≥ a1; and if A2 < 1, for |z| < ∞; or if A2 = 1, for |z| < 1.

After additional (p−1) steps, from pΨq passing via 1Ψ1 to 0Ψ0, respectively, to 1Ψ0,
the following explicit results for the statement in Theorem 8 are provided in [60].

(2) p = q.

Theorem 10. If p = q, each g.h.f. pΨp(z) is an p-tuple W-E-K fractional integral of the exponen-
tial function, namely, if Bk ≥ Ak > 0, bk > ak > 0, k = 1, ..., p:

pΨq

[
(a1, A1), ..., (ap, Ap)
(b1, B1), ..., (bp, Bp)

∣∣∣∣z] = I(ak−1),(bk−ak)

( 1
Bk

),( 1
Ak

),p
{ exp z }, for |z| < ∞. (101)

If for some indices k, the above inequalities for parameters are not satisfied, representation (101)
turns into differ-integral one, or in special cases to purely differential one.

Theorem 10 suggests us to separate the g.h.f-s pΨp with p = q in a class of so-called
Wright g.h.f. of confluent type, involving the confluent hypergeometric function 1F1(a; b; z) =
Φ(a; b; z) and exp z as the simplest cases.

(3) p = q + 1. Analogously, we call the q+1Ψq-functions with p = q + 1 as Wright g.h.f.
of Gauss type, since the simplest case of such special function is the Gauss function. We
have following specific result.

Theorem 11. Each Wright g.h.f. of Gauss type pΨq, that is with p=q + 1, is a q-tuple Wright–
Erdélyi–Kober fractional integral (or differ-integral) of the 1Ψ0-function. Namely, for 0 < A0 ≤ 1
and bk > ak > 0, k = 1, ..., p:
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q+1Ψq

[
(a0, A0), (a1, A1), . . . , (aq, Aq)

(b1, B1), . . . , (bq, Bq)

∣∣∣∣z] = I(ak−1),(bk−ak)

( 1
Bk

),( 1
Ak

),q

{
1Ψ0

[
(a0, A0)
−

∣∣∣∣z]} (102)

= I( 1
Bk

),( 1
Ak

),q

{
H1,1

1,1

[
−z
∣∣∣∣ (1− a0, A0)

(0, 1)

]}
, if A0 < 1 for |z| < ∞; or if A0 = 1, for |z| < 1.

For other arrangements between bk and ak, the operator in (102) is a generalized fractional
derivative.

For particular choices of parameters bk and ak not satisfying the conditions bk > ak > 0,
some integer order differentiations appear in place of the fractional integrals or derivatives
and lead to Rodrigues type differential formulas, analogous to these for the classical orthogonal
polynomials.

Note that the integral representation (102) generalizes the Euler integral formula for the
Gauss hypergeometric functions that serves for its analytical extension outside |z| < 1 to the
domain |arg(1− z)| < π:

2F1(a1, a2; b1; z) =
Γ(b1)

Γ(a2)Γ(b1 − a2)

1∫
0

(1− σ)b1−a2−1σa2−1

(1− zσ)a1
dσ, b1 > a2 > 0. (103)

This gave us the reason to name pΨq with p = q + 1 as a Gauss type g.h.f.
In particular, for A0 = 1, the basic function in the case p = q + 1 reduces to the

geometric series:

1Ψ0
[

(a0, 1)
∣∣z]=H1,1

1,1

[
−z
∣∣∣∣ (1−a0, 1)

(0, 1)

]
=G1,1

1,1

[
−z
∣∣∣∣ 1−a0

0

]
= 1F0(a0;−; z) = (1−z)−a0 .

Therefore, based on the statements in Theorems 7–11, we suggest a classification of the
classical SF and of the SF of FC into three classes, namely “Bessel”, “confluent” and “Gauss”
types, depending on whether p < q, p = q or p = q + 1. This approach can facilitate applied
scientists and engineers, escaping a deep knowledge on SF, to think of them in a very general
view as similar to a cosine- (Bessel) function, exponent or geometric series, because the
fractional integrations keep in some sense the asymptotic and general behavior.

The results from Theorems 7–11 for pΨq, and their specifications for the pFq-functions,
yield also several new integral and differential formulas for them, with possible hints for compu-
tational procedures.

Below, we mention some few of them, say in the simpler cases of pFq-functions.

The case p = q: For the g.h.f. pFp, the integral representation can be written not

only by means of Gp,0
p,p-functions in the kernel, but also avoiding SF due to decomposition

property (26). Thus, we have an integral formula, as follows:

pFp(a1, ..., ap; b1, ..., bp; z) = B z1−a1 I(ak−a1),(bk−ak)
1,p

{
za1−1 exp z

}
= B

1∫
0

. . .
(p)

1∫
0

p

∏
k=1

[
(1−σk)

bk−ak−1σ
ak−1
k

Γ(bk − ak)

]
exp(z σ1...σp) dσ1...dσp, B :=

p

∏
j=1

Γ(bj)

Γ(aj)
, (104)

under conditions bk > ak > 0, k = 1, ..., p. If the parameters do not satisfy them, the GFC
operator above is interpreted as generalized fractional derivative of the form (30).

Specially, let all the differences ak − bk = ηk, k = 1, ..., p be non-negative integers. In this
case, we call the pFp-functions as “spherical” g.h.f. of confluent type, using the analogy with
the spherical Bessel, hyper-Bessel functions and spherical multi-M-L functions E(αi),(βi)

(z)
with “semi-integer” indices, mentioned in Remark 1. Then, the operator in (104) turns into
a differential operator Dη of integer order η = η1 + ... + ηp ≥ 0 of the form (27), and we
obtain a differential formula of the form

Γ(ap)

Γ(bq)
pFq(a1, ..., ap; b1, ..., bq; z)pFp(b1+η1, . . . , bp+ηp; b1, ..., bp; z)
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= pFp(b1+η1, . . . , bp+ηp; b1, ..., bp; z)

=

[
p

∏
j=1

Γ(bj)

Γ(bj+ηj)

][
p

∏
k=1

ηk

∏
j=1

(z
d
dz

+bk+ j−1)

]
{exp z}=Qp(z){exp z}. (105)

The representation (105) gives an example how differential formulas for the “spherical”
g.h.f. introduced by Kiryakova [9] can be used for their explicit calculation, especially
in the case p = q in the form Qp(z){exp z}, where Qp(z) is a p-degree polynomial. A

special case of (105) with bk =ηk = 1, k=1, ..., p and Qp(z) =
d
dz

(
z

d
dz

)p
was presented by

Prudnikov–Brychkov–Marichev [14] (p. 593).

The case p = q + 1: For the Gauss type g.h.f. q+1Fq, we have in the unit disk |z| < 1

an integral representation (if written by repeated integral with no use of the kernel Gq,0
q,q -

function), for bk > ak+1, k = 1, .., q:

q+1Fq(a1, ..., aq+1; b1, ..., bq; z)

=

⎡⎣ q

∏
j=1

Γ(bj)

Γ(aj+1)Γ(bj − aj+1)

⎤⎦ z1−a2 I(ak+1−1)q
1,(bk−ak+1)

q
1

1,q

{
za2−1(1− z)−a1

}

=

⎡⎣ q

∏
j=1

Γ(bj)

Γ(aj+1)Γ(bj−aj+1)

⎤⎦ 1∫
0

. . .
(p)

1∫
0

q

∏
j=1

[
(1−σk)

bk−ak+1−1σ
ak+1−1
k

]
(1− z σ1...σq)

−a1 dσ1...dσq. (106)

In this form, (106) can also be found in [14] (p. 438). In the case q = 1, this is exactly the
Euler integral formula (103) for the Gauss hypergeometric function. Similarly, (106) proposes
a way for an analytical continuation of the functions q+1Fq(z) outside the unit disk to the
domain | arg(1− z)| < π.

In the case when the ak’s and bk’s do not satisfy the above conditions, the operator in (106)
turns into a generalized fractional derivative, and this also provides useful corollaries. By
analogy with the previous two cases (p < q and p = q), we introduce the notion of spherical
g.h.f. of Gauss type when all the differences ak+1 − bk = ηk, k = 1, ..., q are non-negative
integers. Then, q+1Fq(z) is representable by a purely differential operator of a function
(1− z)−a1 , and a special case of such differential formula is presented in [14] (p.572).

Another interesting case concerns the so-called hypergeometric polynomials

q+1Fq(−n, a1, ..., ap; b1, ..., bq; z) =
n

∑
k=0

(−n)k (a1)k...(ap)k

(b1)k...(bq)k

zk

k!
. (107)

Taking aq+1 = −n with integer n ≥ 0 and ak > bk > 0, k = 1, ..., q, the fractional
derivative form of the operator in (106) provides the Rodrigues type formula ([9] (Ch.4)):[

q

∏
j=1

Γ(aj)

Γ(bj)

]
p+1Fq(−n, a1, . . . , aq; b1, ..., bq; z) = D(bk−1),(ak−bk)

1,q {(1− z)n}

= z1−aq D
(bk−aq),(ak−bk)
1,q

{
za1−1(1− z)n

}
= z1−bq Daq−bq zap−bq−1 Dap−1−bq−1

× . . . za3−b2 Da2−b2 za2−b1 Da1−b1
{

za1−1(1− z)n
}

.

(108)

Special cases of (108) yield some classical Rodrigues formulas. For example, p = q = 1
with a1 = n + 1, b1 = 1 and z → 1−z

2 gives the Rodrigues formula for the Legendre polynomials:

Pn(z) = (−1)n
2F1(−n, n + 1; 1;

1− z
2

) =
(−1)n

n!
dn

dzn

[
1− z

2

n
· 1 + z

2

n]
=

1
2nn!

dn

dzn

{
(z2 − 1)n

}
,
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and p = q = 2 with a1 = n + 1, b1 = 1, a2 = ζ, b2 = p (ζ > p > 0) gives the Rodrigues
formula for the Rice polynomials, namely

Rn(z) = 3F2(−n, n + 1, ζ; 1, p; z) =
Γ(p)

n!Γ(ζ)

[
dn

dzn z1−p
(

d
dz

)ζ−p
]
{zn(1− z)n}.

9. Numerical Aspects of SF of FC

In the days before the electronic computers, the necessary complement to a special
function was the computation, by hand, of extended tables of its values, intended to make
the function available for users, similarly to the familiar logarithm tables. After mechani-
cal calculators appeared and were more widespread, several huge special-function-table
projects were started. Let us mention as examples the handbooks Gradshteyn–Ryzhik [126]
and Magnus–Oberhettinger [127], both initiated in 1943.

R. Askey (at the Conf. “SF 2000”, ASU): “. . . The advent of fast computing machines was
thought to have made special functions a subject of the past. The reality has been different.
Continued development of older functions and the introduction of new special functions has
been the reality ... and still remains to be discovered ... The classical handbooks as mentioned,
although useful as references, maybe no longer the primary means of accessing the special
functions of mathematical physics. A number of high level programs appeared that are
better suited for this challenging purpose, to mention as Mathematica, Maple, Matlab,
Mathcad, ...”

We like to add a citation from Stephen Wolfram [128] (Wolfram Mathematica), “... and
special functions became a big business. Table making had become a major activity for the
governments, and was thought strategically important. Particularly for things like navigation,
nuclear physics, military reasons, H-bomb, etc. And there were lots of tables . . . The aspects
of the theory then mattered might be as two: – for numerical analysis, discovery of infinite
series or other analytical expression allowing rapid calculation; and – reduction of as many
functions as possible to the given (better known) function . . . ” (Author’s comment: compare
with the approach applied in works of Kiryakova as [9] (Ch.4), [58,60], discussed in Section 8).
(S. Wolfram:): “. . . There gradually started to appear systematic reference works on the
properties of special functions. Each one based on lot of work . . . ”, “. . . I guess integrals are
timeless. They don’t really bear the marks of the human creators. So we have the tables, but we
really don’t quite know where they came from ...”. (Author’s comment: However, it seems
Marichev knew, and we refer to his book [11]).

In the 1960s and 1970s, a lot of efforts started for developing numerical algorithms for
computers. Evaluation of special functions became a favorite area. S. Wolfram: “Well, a
few years passed. And in 1986, I started designing Mathematica. I wanted to be sure to do
a definitive job, and to have good numerics for all functions, for all values of parameters,
anywhere in the complex plane, to any precision . . . And I remember very distinctly a
phone call I had with someone at a government lab. And there was a silence. And then
he said: “Look, you have to understand that by the end of the 1990s we hope to have the
integer-order Bessel functions done to quad precision.” ... (S.W., cont’d): “You know, it’s
actually quite a difficult thing to put a special function into Mathematica. You don’t just
have to do the numerics... So what makes a special function good? Well, we can start
thinking about that question empirically. Asking what’s true about the special functions
we normally use. And of course, from what we have in Mathematica and in our Wolfram
Functions Site [129], we should be in the best position to answer this.”

Let us note that the standard SF—the hypergeometric functions (Gauss, pFq-), the
Meijer G-function, etc.—are well presented there ([129]), but (it seems) none of the M-L type,
Wright and H-functions, that is cases of SF of FC, are available yet. Meanwhile, the fractional
nature of the world needs better reflection by fractional order (FO) models in whose
solutions the so-called SF of FC appear. Thus, it is yet a challenging trend to be developed.
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Here, we try to provide only a short information on some “recent” numerical jobs done
with respect to the M-L-function, classical Wright function and only few of their extensions.

For numerical algorithms and results in the case of the Mittag–Leffler functions (one- and
two-parameter and matrix analog), we start with reference to Caputo–Mainardi [130] (1971).
We note that this is one of the first works to propose a plot of the M-L function. On those
times, without possibilities to take advantage of software packages such as Mathematica,
Maple and Matlab, this task was difficult, as it was managing series expansions convergent
only in the mathematical sense but not in the numerical sense. Further, some other authors
worked on similar problems either simultaneously but independently, or in years afterward:
Gorenflo–Loutchko–Luchko [131], 2002; Diethelm–Ford–Freed–Luchko [132], 2005; Pod-
lubny [133], 2005–2009–2012, (v 1.2.0.0) 2021; Hilfer–Seybold and Seybold–Hilfer [134,135],
2006–2008; Garrappa [136], 2015 and Garrappa–Popolizio [137], 2018; etc.

Numerical algorithms and results on the (classical) Wright function (56) and its special
cases, including the Mainardi function, can be found in works by Luchko [138], 2008; Luchko–
Trujillo–Velasco [139], 2010; Consiglio [140], 2019; Mainardi–Consiglio [97], 2020; etc.

Concerning the Prabhakar (three-parameter) M-L type function (38), see Garrappa [136],
2015; etc.

For the generalized exponential integrals as (63) and related generalized trigonometric
functions involving M-L functions (in the sense of 6.2.), and shown to be Wright g.h.f.
2Ψ2, one can find some tables and plots for physically interesting parameters and related
models, proposed by Mainardi and Masina [102] (2018) and Paris [103] (2020).

This list can surely be extended with more information.
We would like to attract readers’ attention to the challenging Open Problem: What about

possibilities for numerical and graphical interpretations, plots and tables and implementing
software packages for some more general Special Functions of Fractional Calculus, such
as the multi-index Mittag-Leffler functions? At least, to treat illustrative examples for few
typical sets if multi-indices?

10. Conclusions

In this survey, under the notion of Special Functions of Fractional Calculus (SF of FC), we
have in mind the Fox H-function and the Wright generalized hypergeometric functions pΨq,
including the Mittag–Leffler function, its multi-index extensions and all their particular
cases. The standard (classical) special functions (SF) naturally come as part of this scheme,
as cases of the Meijer G-function and of the pFq-functions, including so many named SF
and orthogonal polynomials. Here, we try to review some of the basic results on the theory
of the SF of FC, obtained in author’s works over more than 30 years, and support the wide
spreading and important role of these functions by several examples.

The short outline of the contents is as follows:

In Section 1, we start with a historical introduction to pay tribute to the older projects
that gave life to the contemporary development of the topic. Some short definitions and
facts on the considered basic special functions are given in Section 2. In Section 3, we
pay attention to the use of the H- and G-functions, especially of orders (m, 0; 0, m) and
(m, 0; m, m), as kernel-functions of generalized integral transforms of Laplace type and
of the operators of the so-called generalized fractional calculus (GFC). In Section 4, we
introduce the Mittag–Leffler functions and the multi-index Mittag–Leffler functions, with
short information on their properties derived in author’s works. Sections 5 and 6 contain
long lists of examples of SF that appear as cases of the multi-index Mittag–Leffler functions
and in more general setting, of the Wright generalized hypergeometric functions pΨq. These
include also citations to many other authors who introduced and applied such functions in
their works. The author’s unified approach to evaluate images of classical SF and of SF of
FC under operators of FC and GFC is shortly described in Section 7, because the details are
presented in another survey paper in the same journal [105]. In Section 8, we collect some
of our basic propositions on the representations of the SF and of SF of FC as operators of
GFC of three basic and simplest elementary functions and propose a classification of the SF
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based on the cases p < q, p = q and p = q + 1. Thus, a new sight on the theory of SF is
proposed. Since the computational aspects related to the considered SF are of important
interest for their applications, in Section 9, we provide some short information on the state
of affairs and some recent works on this direction by other authors. A provoking challenge
in this respect is mentioned.
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Abstract: The cumulative distribution function of the non-central chi-square distribution χ′2n (λ) of n
degrees of freedom possesses an integral representation. Here we rewrite this integral in terms of
a lower incomplete gamma function applying two of the second mean-value theorems for definite
integrals, which are of Bonnet type and Okamura’s variant of the du Bois–Reymond theorem. Related
results are exposed concerning the small argument cases in cumulative distribution function (CDF)
and their asymptotic behavior near the origin.
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1. Introduction with Historical Notes and Motivation

The non-central χ2 distribution with n ∈ N degrees of freedom (in general, n can
be a non-negative real number, see ([1] (p. 436), [2]) and non–centrality parameter
λ > 0 is usually denoted by χ′ 2

n (λ) (see, e.g., [1] (p. 433)) and it is one of the most
applied distributions: it is important in calculating the power function of some statistical
tests [3], precisely in approximating to the power of χ2-tests applied to contingency tables
(goodness of fit tests) ([1] (p. 467)); it frequently occurs in finance, estimation and decision
theory and time series analysis [4,5] and can also be regarded as a generalized Rayleigh
distribution ([1] (p. 435)) in which case it is used in mathematical physics; when it is
used in communication theory then we call the appropriate complementary cumulative
distribution function the generalized Marcum Q-function and the non-centrality parameter
is interpreted as a signal-to-noise ratio [1].

The beginnings of the research that led up to the model and finally results in the χ2
n

distribution, which is the zero non-centrality parameter case of non-central χ′2n (λ), that
is χ2

n ≡ χ′2n (0), can be located around the middle of the 19th century. More precisely
there are two main opinions exposed: firstly, the influential work by Lancaster [6] who
attributed certain preliminary results to Bienaymé in ([7] (p. 58)) (never mentioning normal
distribution), which are in fact the same as what Karl Pearson did to earn his tables [8].
It is not surprising, Bienaymé’s interest in the sum of random squares and the related
distribution of errors; namely, we should have in mind his celebrated result on the linearity
of variance of a sum of independent random variables called the Bienaymé formula.
Lancaster proceeded then to Helmert, who in [9,10] derived that which we understand
in modern notation the χ2

n probability density function (PDF). Finally, Lancaster joined
Kruskal [11], suggesting to call the distribution by Helmert’s name.

However, Sheynin [12], Plackett [13] and especially Kendall [14] have mentioned the
contribution of the applied mathematician and physicists Ernst Abbe, who has published
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in his venia docendi thesis [15] in Jena, 1863, the χ2 distribution’s PDF ([12] (p. 1004)). It is
also worth mentioning that Helmert himself never explicitly mentioned this distribution
as Abbe’s result in this manner, but several times quoted the “modified Abbe’s criterion”
in geodetic literature ([12] (p. 1004)). Kendall emphasizes Abbe’s priority (agreeing with
Sheynin) and wrote a laudatio to his work regarding the derivation of the PDF of χ2

distribution (in a contemporary notation) ([14] (p. 311, Equation (11))), preceding Helmert
for at least twelve years.

A random variable (rv) ξ possesses non-central χ2 distribution, which we signify with
ξ ∼ χ′2n (λ) if the associated probability density function is ([4] (p. 396, Equation (1.7)))

fn,λ(x) =
1
2

e−(x+λ)/2
( x

λ

)(n−2)/4
In/2−1(

√
λ x), λ > 0, x > 0; n ∈ N, (1)

where Iν stands for the modified Bessel function of the first kind of order ν ([16] (p. 77))
and has the power series representation ([17] (p. 375, Equation (9.6.10)))

Iν(z) =
∞

∑
k=0

1
Γ(ν + k + 1) k!

( z
2

)2k+ν
; �(ν) > −1, z ∈ C . (2)

As for the historical background of related PDF and the associated cumulative distribution
function (CDF) we consult the monographs [1,18]. In accordance with ([18] (Chapter 1, §5))
the PDF of ξ ∼ χ′2n (λ) was pioneered in 1928 by Fisher [19] by a limiting process, while the
explicit derivation belongs to Tang [20] ten years later (we also draw the interested reader’s
attention to ([1] (Chapter 29, pp. 435 et seq.)). In 1949 Patnaik [21], then, among others,
Pearson [22], Sankaran [23] and Temme [24] have been studied the χ′2n (λ) distribution;
Temme claimed that his formulae have certain computational advantages

Fn,λ(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1− 1

2

( x
λ

)n/4
[

Tn/2−1(
√

λx, ω)−
√

λ

x
Tn/2(

√
λx, ω)

]
, x > λ

1
2

( x
λ

)n/4
[√

λ

x
Tn/2(

√
λx, ω)− Tn/2−1(

√
λx, ω)

]
, x < λ

,

where ω = 1
2 (
√

x−
√

λ)2/
√

λx and

Tν(α, ω) =
∫ ∞

α
e−(ω+1)t Iν(t)dt.

Here we are interested in the CDF used in communication theory ([25] (p. 66,
Equation (1.1)))

Fn,λ(x) = 1−Qn/2(
√

λ,
√

x ), x > 0, (3)

where [26]

Qν(a, b) =
1

aν−1

∫ ∞

b
tνe−(t2+a2)/2 Iν−1(at)dt, a, ν > 0; b ≥ 0, (4)

denotes the generalized Marcum Q-function of the order ν.
Finally, it is worth mentioning that Brychkov recently published a closed expression

for the generalized Marcum Q-function ([27] (p. 178, Equation (7))) in terms of the com-
plementary error function z �→ erfc(z) ([28] (p. 160, Equation (7.2.2))), which immediately
implies a new formula for CDF (3) in the case when n ∈ N is odd. In turn, in the case of an
even number of the degrees of freedom, Jankov Maširević derived the following expression
for the appropriate CDF for all λ > 0, x > 0 [25]

F2n,λ(x) = 1−
√

λx
2

I1
(√

λx
) [

K0
(√

λx
)
− K0

(√
λx, ln

√
x
λ

)]
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+ λ I0
(√

λx
) ∂

∂λ

[
K0
(√

λx
)
− K0

(√
λx, ln

√
x
λ

)]
− e−

λ+x
2

√
λ

x

n

∑
m=1

(√
x
λ

)m

Im−1
(√

λx
)

. (5)

Here Kν stands for the modified Bessel functions of the second kind and

Kν(z, w) =

√
π

Γ
(

ν + 1
2

) ( z
2

)ν ∫ w

0
e−z cosh t sinh2ν t dt, �(ν) > −1/2,

is its incomplete variant ([29] (p. 26, Equation (1.30))), while

lim
w→∞

Kν(z, w) = Kν(z), �(z) > 0 ,

in the pointwise sense. Jankov Maširević established the computational efficiency of
Expression (5) versus the formulae derived by Patnaik, and those by Temme for even
n ∈ N, concluding that her approach is more efficient, compare ([25] (Section 3)).

The main aim of this paper is to present new results for the CDF (3) concerning
approximation formulae obtained by two variants of the second mean-value theorems for
definite integrals. Throughout, the non-centrality parameter λ > 0 and the variable x > 0.

2. Preliminaries and Auxiliary Results

Combining the integral form of the Marcum Q-function (4) and the integral ([30]
(p. 306, Equation (2.15.5.4)))

∫ ∞

0
tν+1 e−pt2

Iν(ct)dt =
cν ec2/(4p)

(2p)ν+1 , �(p) > 0, �(ν) > −1, | arg(c)| < π ,

we express the CDF (3) for all λ > 0 and x > 0 as

Fn,λ(x) =
e−λ/2

λn/4−1/2

∫ √
x

0
tn/2 e−t2/2 In/2−1

(√
λ t
)

dt . (6)

This formula is the starting point for our main results, which concerns the approximate
calculation of the involved integral using two different types of mean-value theorems.

Our next main tools are two mean-value theorems for integrals, of which the inte-
grands contain products of two suitable functions f , g, say. Both theorems belong to the
so-called second mean-value theorems for definite integrals. The ancestor results of the
first version theorem belongs to Bonnet ([31] (p. 14)); however, for the second one we are
referred to the memoir by du Bois–Reymond ([32] (p. 83)) or also to Hobson’s article [31].
The case in which at least one of the input functions f , g is a constant (first mean-value
theorem) we skip in our present considerations. Now, recall the Bonnet variant of second
mean-value theorem by Schwind–Ji–Koditschek.

Theorem 1. ([33] (p. 559, Theorem 2)). Suppose f ∈ C(a, b] and g ≥ 0 is integrable on (a, b).
Let x ∈ (a, b] be fixed. If both limt→a( f (t)− K)/(t − a)r and limt→a g(t)/(t − a)s exist and
differ from zero for some constant K, a non-zero r and some s > −1 with r + s > −1, then:

1. There exists cx ∈ (a, x] so, that∫ x

a
f (t)g(t)dt = f (cx)

∫ x

a
g(t)dt.
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2. Moreover, for any such choice of cx there holds

lim
x→a

cx − a
x− a

=

(
s + 1

r + s + 1

) 1
r
. (7)

Remark 1. We notice that often a good choice for K in Theorem 1 is to take K = limt→a+ f (t) if
the limit exists or K = 0 otherwise, consult ([33] (p. 561)), also see [34–36] for ancestry of (7),
which describes the asymptotic behavior of cx.

Another approach in approximating the CDF of χ′2n (λ) is based on the use of the
Okamura’s version of the du Bois–Reymond’s second mean-value theorem for definite
integrals [37,38].

Theorem 2. ([39] (Equation (14))). Let f : [a, b] �→ R be monotone and g : [a, b] �→ R integrable.
Then there exists a c ∈ [a, b] such that∫ b

a
f (t)g(t)dt = f (a+)

∫ c

a
g(t)dt + f (b−)

∫ b

c
g(t)dt.

We point out that both Theorems 1 and 2 hold for Riemann integrable input functions.
However, stronger second mean-value theorem results for definite integrals for Lebesgue
integrable functions have been presented by Wituła–Hetmaniok–Słota in ([40] (p. 1614,
Theorem 3)).

3. Approximating CDF of χ′2
n (λ) Distribution

In this section we will state and prove our main results, derived from the formula (6)
and the mean-value Theorems 1 and 2.

Theorem 3. Let n ∈ N, λ > 0 and x > 0.

1. Then, there exists cx ∈ (0,
√

x ] such that

Fn,λ(x) =
( x

λ

)n/4
e−

λ+c2
x

2 In/2
(√

λx
)
. (8)

2. For cx there holds

lim
x→0

c2
x

x
=

n
n + 2

, n ∈ N , (9)

while

Fn,λ(x) =
e−λ/2

Γ(n/2 + 1)

( x
2

)n/2(
1 +O(x)

)
, x → 0. (10)

Proof. Consider the form of CDF given in (6). Making use of Theorem 1, with f (t) =

e−t2/2 ∈ C(R+), which imply K = limt→0 f (t) = 1 and by L’Hospital rule and r = 2
follows

lim
t→0

f (t)− K
tr = lim

t→0

e−t2/2 − 1
t2 = −1

2
�= 0;

then, choosing g(t) = tn/2 In/2−1
(
t
√

λ
)

and s = n− 1 we have

lim
t→0

g(t)
ts = lim

t→0

In/2−1
(
t
√

λ
)

tn/2−1 =
λ(n−2)/4

2n/2−1 Γ(n/2)
�= 0,

bearing in mind the asymptotics of the modified Bessel Iν for small z → 0 which is the
consequence of (2):
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Iν(z) =
1

Γ(ν + 1)

( z
2

)ν (
1 +O(z2)

)
, −ν /∈ N . (11)

Hence, for x > 0 fixed, according to part 1 of Theorem 1, there exists a cx ∈ (0,
√

x ]
for which

Fn,λ(x) =
e−

λ+c2
x

2

λn/4−1/2

∫ √
x

0
tn/2 In/2−1

(
t
√

λ
)

dt =
( x

λ

)n/4
e−

λ+c2
x

2 In/2(
√

λx),

where in the last equality the formula ([41] (p. 676, Equation (6.561.7)))∫ 1

0
tν+1 Iν(at)dt = a−1 Iν+1(a), �(ν) > −1,

was taken.
By the second part of Theorem 1, bearing in mind that cx ∈ (0,

√
x ] and setting

r = 2, s = n− 1, a = 0, we have

lim
x→0

c2
x

(
√

x)2 = lim
x→0

c2
x

x
=

n
n + 2

, n ∈ N ,

that is (9). Now, the asymptotic behavior of the modified Bessel Function (11) approves the
Relation (10).

Corollary 1. Let the situation be the same as in the preamble of Theorem 3. Then there exists
c = cx ∈ (0, 1] such that

Fn,λ(x) =
( x

λ

)n/4
e−

λ+x·c2
2 In/2

(√
λx
)
. (12)

Proof. Using the substitution u = t/
√

x, from (6) mutatis mutandis

Fn,λ(x) =
√

λx e−λ/2
( x

λ

)n/4 ∫ 1

0
un/2e−xu2/2 In/2−1

(
u
√

λx
)

du, (13)

and then applying Theorem 1 repeating the above procedure for f (u) = e−xu2/2, r = 2,
g(u) = un/2 In/2−1

(
u
√

λx
)

and s = n− 1 we readily conclude the Formula (12).

In what follows we propose some numerical approximations for the real number cx
given in part 2 of Theorem 3 for small values of non-centrality parameter λ > 0.

Corollary 2. Let n ∈ N and x > 0. When λ → 0, in (8) we have

c2
x = −2 log

[(
2
x

)n/2
γ
(n

2
+ 1,

x
2

)
+ e−x/2

]
. (14)

Proof. Combining the Formulae (3) and ([26] (p. 70))

lim
a→0

Qν(a, b) =
1

Γ(ν)
Γ
(

ν, b2/2
)

,

where Γ(·, ·) denotes the upper incomplete gamma function ([28] (p. 174, Equation (8.2.2)))

Γ(a, z) =
∫ ∞

z
ta−1 e−t dt, �(a) > 0,
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we obtain

lim
λ→0

Fn,λ(x) = 1− Γ(n/2, x/2)
Γ(n/2)

. (15)

Now, from (11) we observe

lim
λ→0

In/2(
√

λx)
λn/4 =

xn/4

2n/2Γ(n/2 + 1)

which, in conjunction with (8) implies that

lim
λ→0

Fn,λ(x) =
( x

2

)n/2 e−c2
x/2

Γ(n/2 + 1)
, cx ∈ (0,

√
x ] . (16)

Equating the right-hand-side expressions in (15) and (16) we arrive at

Γ(n/2 + 1)− n
2

Γ(n/2, x/2) =
( x

2

)n/2
e−c2

x/2. (17)

The identities ([28] (p. 178, Equation (8.8.2–3)))

Γ(a + 1, z) = aΓ(a, z) + zae−z; γ(a, z) + Γ(a, z) = Γ(a),

where γ(·, ·) is the lower incomplete gamma function, defined by ([28] (p. 174,
Equation (8.2.1)))

γ(a, z) =
∫ z

0
ta−1e−t dt, �(a) > 0,

one transforms (17) into(
2
x

)n/2
γ
(
n/2 + 1, x/2

)
+ e−x/2 = e−c2

x/2.

Now, obvious steps lead to the final form of c2
x.

Corollary 3. For the small enough values of the non-centrality parameter λ and the argument x
the magnitude of approximation satisfies the relation

c2
x

x
− n

n + 2
= − n x

4(n + 4)
+ o(x), x → 0. (18)

Proof. Recalling the asymptotic of the lower incomplete gamma function, which we
deduce from the hypergeometric form expression ([17] (p. 262, Equation (6.5.12))), written
in Landau’s notation

γ(α, z) =
zα

α

(
1− α z

α + 1
+ o(z)

)
, z → 0 ,

after asymptotic expansion of both expressions inside square brackets in (14), we get

c2
x

x
= − 2

x
log
[

x
n + 2

(
1− (n + 2) x

2(n + 4)
+ o(x)

)
+ 1− x

2
+

x2

8
+ o(x2)

]
= − 2

x
log
[

1− nx
2(n + 2)

+
nx2

8(n + 4)
+ o(x2)

]
.

For when n is fixed and x is small enough, it is legitimate to express the logarithm via its
asymptotic expansion log(1 + h) = h + o(h), |h| < 1, which approves (18).
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Remark 2. The associated limit result (18) enables the approximation

Fn,λ(x) �
( x

λ

)n/4
exp
{
−λ

2
− nx

2(n + 2)
+

nx2

8(n + 4)

}
In/2
(√

λx
)
.

This estimate we can readily take into account in numerical calculation of CDF for the purpose of
comparison with another representations like Patnaik’s and Temme’s, for instance.

Corollary 4. For all λ > 0, x > 0 we have

F1,λ(x) =

√
2

πλ
sinh(

√
λx) e−

λ+c2
x

2 , (19)

where

c2
x = x + 2 log

[
1 +

1
λ
−
√

x
λ

cosh(
√

λx)
sinh(

√
λx)

]
.

Moreover,

F2,λ(x) =
√

x
λ

e−
λ+c2

x
2 I1(

√
λx), (20)

where

c2
x = x + 2 log

[
1−
√

x
λ

I2(
√

λx)
I1(
√

λx)

]
.

Proof. Having in mind that for non-negative integer m there holds ([27] (p. 178,
Equation (7)))

Qm+1/2(a, b) =
1
2

[
erfc
(

b− a√
2

)
+ erfc

(
b + a√

2

)]
+ e−(a2+b2)/2

m

∑
k=1

(
b
a

)k−1/2
Ik−1/2(ab),

the Formula (3) for n = 1 becomes

F1,λ(x) =
1
2

[
erf

(√
x−

√
λ√

2

)
+ erf

(√
x +

√
λ√

2

)]
. (21)

As (erf(z))′ = 2e−z2
/
√

π, equating (21) and the Formula (8) and then deriving such
equality with respect to λ we get

e−x/2
(

e−
√

λx − e
√

λx
)
=

2
λ

e−c2
x/2
(√

λx cosh(
√

λx)− (1 + λ) sinh(
√

λx)
)

.

Finally, the definition of hyperbolic sine implies (19).
The Formula (3) for n = 2 becomes F2,λ(x) = 1−Q(

√
λ,
√

x) where Q1(a, b) ≡ Q(a, b)
is the Marcum Q-function. Now, knowing that ([42] (p. 1221, Equation (5)))

∂Q(a, b)
∂a

= b I1(ab) e−(a2+b2)/2,

the first derivative of (8), with respect of λ becomes

−
√

x
2
√

λ
e−(λ+x)/2 I1(

√
λx) =

√
xe−(λ+c2

x)/2

[√
x

2λ
I2(
√

λx)− I1(
√

λx)
2
√

λ

]
,
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that is

e−x/2 = e−c2
x/2

[
1−
√

x
λ

I2(
√

λx)
I1(
√

λx)

]
,

giving (20).

The second approach in approximating the CDF of χ′2n (λ) is to apply Theorem 2.

Theorem 4. Let λ > 0, x > 0 and Rρ(n) = [(2/n− 1)+, 2/n + 1), where (a)+ = max{0, a}.
Then for all ρ ∈ Rρ(1) = [1, 3) there exists some c ∈ [0, 1] for which

F1,λ(x) =
e−λ/2
√

π

( x
2

)(ρ−1)/4
cosh(

√
λx )

[
γ
(3− ρ

4
,

x
2

)
− γ
(3− ρ

4
,

xc2

2

)]
. (22)

When ρ ∈ Rρ(2) = [0, 2) there exists certain c ∈ [0, 1] that

F2,λ(x) = e−λ/2
( x

2

) ρ
2
{

I0
(√

λx
)

γ
(
1− ρ/2, x/2

)
+
[
δρ0 − I0

(√
λx
)]

γ
(
1− ρ/2, xc2/2

)}
, (23)

where δab stands for the Kronecker delta.
Moreover, for all n ∈ N3 = {3, 4, . . . } and ρ ∈ Rρ(n) there exists c ∈ [0, 1] such that

Fn,λ(x) =
λ(2−n)/4
√

2
e−λ/2

( xρ

2ρ−1

)n/4
In/2−1

(√
λx
)

×
[
γ
( (1− ρ)n + 2

4
,

x
2

)
− γ
( (1− ρ)n + 2

4
,

xc2

2

)]
. (24)

We remark that the value of c is not necessarily the same throughout.

Proof. Consider the CDF’s integral representation (13) in which the integration domain is
the unit interval [0, 1]. Our intention is to specify the appropriate input functions f , g in a
simple way and by scaling only the exponent of the power term—the integrand contains a
product of three functions—to prepare it for the use of Okamura’s Theorem 2. Precisely,
consider for some real ρ (which range will be established later):

fn,ρ(t) = tρ n/2 In/2−1
(
t
√

λx
)
; gn,ρ(t) = t(1−ρ) n/2 e−xt2/2 .

From Formula (2) we can conclude that the function Iν(x) increases monotonically for
ν > 0, x > 0. Therefore, fn,ρ(t), as a product of monotonically increasing functions, also
monotonically increases. However, to establish the interconnection between the scaling
parameter ρ and the degrees of freedom n we are forced to employ a more sophisticated
approach. Namely, investigating the monotone behavior of fn,ρ(t), t ∈ (0, 1] we start with

f ′n,ρ(t) = tρ n/2−1
{[

(ρ + 1)n/2− 1
]

In/2−1
(
t
√

λx
)
+ t
√

λx In/2
(
t
√

λx
)}

. (25)

The function Iν is monotone decreasing with respect to the order, viz. ([43] (p. 220,
Equation (2)))

Iν(x) > Iμ(x), μ > ν ≥ 0, x > 0 ,

also consult [44–46] regarding this question. So, evaluating (25) we get

f ′n,ρ(t) ≥ tρ n/2−1 [(ρ + 1)n/2− 1 + t
√

λx
]

In/2(t
√

λx )

≥ tρ n/2−1 [(ρ + 1)n/2− 1
]

In/2(t
√

λx ),
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which is sufficient to see that f ′n,ρ(t) > 0 for ρ > 2/n− 1 and also follows f ′n,2/n−1(t) > 0
directly from (25). On the other side we have∫ 1

0
gn,ρ(t)dt =

1
2

( x
2

)[(ρ−1)n−2]/4
γ
(
[(1− ρ)n + 2]/4, x/2

)
; (26)

this expression makes sense for ρ < 1 + 2/n. Thus, having in mind the finiteness of
fn,ρ(0+) and collecting all these constraints we infer that the range of the scaling parameter
ρ is the interval Rρ(n) = [(2/n− 1)+, 2/n + 1).

Firstly, consider ρ ∈ Rρ(1) = [1, 3) with the associated input functions

f1,ρ(t) = tρ/2 I−1/2
(
t
√

λx
)
=

√
2/π

4
√

λx
t(ρ−1)/2 cosh(t

√
λx ) (27)

g1,ρ(t) = t(1−ρ)/2 e−xt2/2 .

Being ρ ≥ 1, the input limits are

f1,ρ(0+) = 0; f1,ρ(1) =
√

2/π
4
√

λx
cosh(

√
λx ) .

From (13) Okamura’s Theorem 2 there follows (22).
The case n = 2, ρ ∈ Rρ(2) = [0, 2) works since I0(0) = 1. Ergo, we have two different

solutions: when ρ = 0 and, respectively, ρ ∈ Rρ(2) \ {0} ≡ (0, 2). Indeed, since

f ′2,0(t) =
√

λx I1
(
t
√

λx
)
> 0,

f ′2,ρ>0(t) = tρ−1
[
ρ I0
(
t
√

λx
)
+ t
√

λx I1
(
t
√

λx
)]

> 0 , t ∈ (0, 1],

both f2,0(t) and f2,ρ>0(t) monotone increase for t ∈ (0, 1]. The associated limits read

f2,ρ(0+) = δρ0, f2,ρ(1) = I0
(√

λx
)
; ρ ∈ Rρ(2),

which leads to the master Formula (23) for the CDF F2,λ(x).
It remains to see n ∈ N3, ρ ∈ Rρ(n). Knowing that Iν(0) = 0, �(ν) > 0, we have

vanishing fn,ρ(0+) = 0 for ρ ≥ 0 and fn,ρ(1) = In/2−1
(√

λx
)
. By the monotonicity of

fn,ρ(t) and the integration result (26) of gn,ρ(t) we get

Fn,λ(x) =

√
λ

2eλ

(
2
λ

)n/4 ( x
2

)ρn/4
In/2−1

(√
λx
)

×
[
γ
( (1− ρ)n + 2

4
,

x
2

)
− γ
( (1− ρ)n + 2

4
,

xc2

2

)]
.

The rest is obvious. This completes the proof of the expression (24).

Remark 3. Let ξ1, ξ2 be independent random variables defined on a standard probability space
(Ω, A ,P) having χ′2n1

(λ1), χ′2n2
(λ2) distributions, respectively. Then the rv ξ1 + ξ2 ∼ χ′2n (λ),

where n = n1 + n2 and λ = λ1 + λ2, see, e.g., ([18] (p. 33, Teorema 27)). According to this
relation we can consider F2,λ(x) as the CDF of the sum of two χ′21 (λj), j = 1, 2 distributed random
variables where the linear combination λ = θλ1 + (1− θ)λ2, θ ∈ [0, 1] occurs between their
non-centrality parameters.

Moreover, the values θ = 0, 1 correspond to the problem of obtaining the CDF using the
property χ′2n (λ) = χ′21 (λ) + χ′2n−1(0) ≡ χ′21 (λ) + χ2

n−1, where the no–central and the central rvs
on the right are mutually independent, consult ([1] (p. 436)) and the related quotations therein.
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Corollary 5. Let λ > 0, x > 0. Then for all n ∈ N2 = {2, 3, 4, . . . } there exists certain c ∈ [0, 1]
such that

Fn,λ(x) =

√
πλ

2
e−λ/2

( x
λ

)n/4
In/2−1

(√
λx
)[

erf
(√

x/2
)
− erf

(
c
√

x/2
)]

. (28)

Also, for all n ∈ N3 = {3, 4, . . . } there exists some c ∈ [0, 1] for which

Fn,λ(x) = e−λ/2
(

2
λ

)(n−2)/4
In/2−1

(√
λx
) [

γ
(n + 2

4
,

x
2

)
− γ
(n + 2

4
,

xc2

2

)]
. (29)

Proof. The first case occurs when ρ = 1 in Theorem 4. From (27) we have

f1,1(t) =
√

2/π
4
√

λx
cosh(t

√
λx)

which results in f1,1(0+) =
√

2/π/ 4
√

λx. Hence, we consider n ∈ N2 in which case
fn,1(0+) = 0 and fn,1(1) = In/2−1

(√
λx
)
. Additionally, from (25) it follows for all n ∈

N2, t ≥ 0 that

f ′n,1(t) = tn/2−1 In/2−1(t
√

λx )(n− 1) +
√

λx tn/2 In/2(t
√

λx ) ≥ 0 .

So, fn,1(t) monotone increases on [0, 1]. Therefore

Fn,λ(x) =
√

λx e−λ/2
( x

λ

)n/4
In/2−1

(√
λx
) ∫ 1

c
e−xt2/2 dt

=

√
πλ

2
e−λ/2

( x
λ

)n/4
In/2−1

(√
λx
) [

erf(
√

x/2)− erf(c
√

x/2)
]
.

Here, the notation of the error function (or probability integral)

erf(z) =
2√
π

∫ z

0
e−t2

dt,

has been used.
Taking ρ = 0 in Theorem 4, from (27) f1,0(t) =

√
2/(πt)
4√λx

cosh(t
√

λx), no right limit
exists at zero, hence a fortiori n > 1. Having in mind the observations stated in the proof of
Theorem 4 for n ∈ N3 the Formula (29) follows immediately from (24), setting ρ = 0.

Remark 4. Recalling the relation ([28] (p. 176, Equation (8.4.1)))

γ(1/2, x) =
√

π erf(
√

x )

the representation Formula (28) becomes

Fn,λ(x) =

√
λ

2
e−λ/2

( x
λ

)n/4
In/2−1

(√
λx
)[

γ
(
1/2, x/2

)
− γ
(
1/2, xc2/2

)]
.
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25. Jankov Maširević, D. On new formulas for the cumulative distribution function of the non-central chi-square distribution. Mediterr.

J. Math. 2017, 14, 66. [CrossRef]
26. András, S.; Baricz, Á.; Sun, Y. The generalized Marcum Q–function: An orthogonal polynomial approach. Acta Univ. Sapientiae

Math. 2011, 3, 60–76.
27. Brychkov, Y.A. On some properties of the Marcum Q function. Integral Transform. Spec. Funct. 2012, 23, 177–182. [CrossRef]
28. Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. (Eds.) NIST Handbook of Mathematical Functions; NIST and Cambridge

University Press: Cambridge, UK, 2010.
29. Agrest, M.M.; Maksimov, M.S. Theory of Incomplete Cylindrical Functions and Their Applications; Springer: New York, NY, USA, 1971.
30. Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Special Functions; Integrals and Series; Gordon and Breach Science Publishers:

New York, NY, USA, 1986; Volume 2.
31. Hobson, E.W. On the second mean-value theorem of the integral calculus. Trans. Am. Math. Soc. 1908, 2, 14–23. [CrossRef]
32. du, Bois–Reymond, P. Über die allgemeinen Eigenschaften der Klasse von Doppelintegralen, zu welcher das Fouriersche

Doppelintegral gehört. J. Reine Angew. Math. 1868, 69, 65–108.
33. Schwind, W.J.; Ji, J.; Koditschek, D.E. A physically motivated further note on the mean-value theorem for integrals. Am. Math.

Mon. 1999, 106, 559–564. [CrossRef]
34. Bao-Lin, Z. A note on the mean-value theorem for integrals. Am. Math. Mon. 1997, 104, 561–562. [CrossRef]
35. Jacobson, B. On the mean-value theorem for integrals. Am. Math. Mon. 1982, 89, 300–301. [CrossRef]
36. Polezzi, M. On the weighted mean value theorem for integrals. Internat. J. Math. Ed. Sci. Technol. 2006, 37, 868–870. [CrossRef]
37. Matsumoto, T. Hiroshi Okamura. Mem. Coll. Sci. Univ. Kyoto Ser. A Math. 1950, 26, 1–3. [CrossRef]

231



Mathematics 2021, 9, 129

38. Okamura, H. On the second mean-value theorem of integral. In Mathematics; Kyoto Mathematical Society: Kyoto, Japan, 1947;
Volume 1. (In Japanese)

39. Baricz, Á.; Pogány, T.K. On a sum of modified Bessel functions. Mediterr. J. Math. 2014, 11, 349–360. [CrossRef]
40. Wituła, R.; Hetmaniok, E.; Słota, D. A stronger version of the second mean value theorem for integrals. Comput. Math. Appl. 2016,

64, 1612–1615. [CrossRef]
41. Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 6th ed.; Jeffrey, A., Zwillinger, D., Eds.; Academic Press:

New York, NY, USA, 2000.
42. Pratt, W.K. Partial differentials of Marcum’s Q function. Proc. IEEE 1968, 56, 1220–1221. [CrossRef]
43. Jones, A.L. An extension of an inequality involving modified Bessel functions. J. Math. Phys. 1968, 47, 220–221. [CrossRef]
44. Cochran, J.A. The monotonicity of modified Bessel functions with respect to their order. J. Math. Phys. 1967, 46, 220–222. [CrossRef]
45. Nåsell, I. Inequalities for modified Bessel functions. Math. Comput. 1974, 28, 253–256. [CrossRef]
46. Soni, R.P. On an inequality for modified Bessel functions. J. Math. Phys. 1965, 44, 406–407. [CrossRef]

232



mathematics

Review

Some Applications of the Wright Function in Continuum
Physics: A Survey

Yuriy Povstenko

Citation: Povstenko, Y. Some

Applications of the Wright Function

in Continuum Physics: A Survey.

Mathematics 2021, 9, 198. https://

doi.org/10.3390/math9020198

Received: 23 December 2020

Accepted: 17 January 2021

Published: 19 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the author. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Mathematics and Computer Science, Faculty of Science and Technology, Jan Dlugosz University in
Czestochowa, al. Armii Krajowej 13/15, 42-200 Czestochowa, Poland; j.povstenko@ajd.czest.pl

Abstract: The Wright function is a generalization of the exponential function and the Bessel functions.
Integral relations between the Mittag–Leffler functions and the Wright function are presented. The
applications of the Wright function and the Mainardi function to description of diffusion, heat
conduction, thermal and diffusive stresses, and nonlocal elasticity in the framework of fractional
calculus are discussed.

Keywords: fractional calculus; Caputo derivative; Mittag–Leffler functions; Wright function; Mainardi
function; Laplace transform; Fourier transform; nonperfect thermal contact; nonlocal elasticity; frac-
tional nonlocal elasticity

MSC: 26A33; 33E12; 35Q74; 74S40

1. Introduction

The fractional calculus (the theory of integrals and derivatives of non-integer order)
has attracted considerable interest of researchers and has many applications in physics,
chemistry, rheology, geology, hydrology, medicine, engineering, finance, etc. (see, for ex-
ample, West–Bologna–Grigolini [1], Magin [2], Povstenko [3], Tarasov [4], Povstenko [5],
Uchaikin [6], Atanacković–Pilipović–Stanković–Zorica [7], Herrmann [8], Povstenko [9],
Datsko–Gafiychuk–Podlubny [10], West [11], Skiadas [12], Tarasov [13], Kumar–Singh [14],
Su [15] and references therein). The Mittag–Leffler functions and the Wright function
appear in solutions of various types of equations with fractional operators. The Mittag–
Leffler function in one parameter Eα(z) was introduced in [16,17]. The generalized Mittag–
Leffler function in two parameters Eα,β(z) was considered in [18,19]. A comprehensive
treatment of properties of the Mittag–Leffler functions can be found in Erdélyi–Magnus–
Oberhettinger–Tricomi [20], Gorenflo–Mainardi [21], Podlubny [22], Kilbas–Srivastava–
Trujillo [23], Gorenflo–Kilbas–Mainardi–Rogosin [24]. Numerical algorithms for calcula-
tion of the Mittag–Leffler functions were proposed in [25] and implemented in [26]. The
Wright function was presented in [27,28] and later on discussed by Erdélyi–Magnus–
Oberhettinger–Tricomi [20], Gorenflo–Mainardi [21], Podlubny [22], Kilbas–Srivastava–
Trujillo [23], Gorenflo–Kilbas–Mainardi–Rogosin [24], Luchko [29], among others. Numeri-
cal algorithms for calculating the Wright function were suggested in [30].

In 1996, Mainardi [31,32] solved the diffusion-wave equation with the Caputo frac-
tional derivative of the order α

∂αT
∂tα

= a
∂2T
∂x2 , 0 < α ≤ 2, (1)

on a real line (the Cauchy problem) and a half-line (the signaling problem). The solutions
were obtained in terms of the Mainardi function M

(
z; α

2
)

[33], where

z =
|x|√
atα/2 (2)

Mathematics 2021, 9, 198. https://doi.org/10.3390/math9020198 https://www.mdpi.com/journal/mathematics233



Mathematics 2021, 9, 198

is the similarity variable, a can be treated as the generalized thermal diffusivity coefficient.
Equation (1) in the limiting case α → 0 corresponds to the Helmholtz equation

(localized diffusion); the subdiffusion regime is characterized by the values 0 < α < 1. For
1 < α < 2, the diffusion-wave Equation (1) interpolates between the diffusion equation
(α = 1) and the wave equation (α = 2).

Applications of fractional calculus to viscoelasticity have been studied by many
authors. The historical notes and the extensive bibliography on this subject can be found in
the book of Mainardi [34]. According to the Scott–Blair stress-strain law, the dependence
between the stress σ(x, t) and the strain ε(x, t) can be written as [34,35]

σ(x, t) = ρa
∂νε(x, t)

∂tν
, 0 ≤ ν ≤ 1. (3)

The constitutive Equation (3) characterizes a viscoelastic material intermediate between
a perfectly elastic solid (the Hooke law for the value ν = 0) and a perfectly viscous fluid
(the Newton law when ν = 1) with the corresponding interpretations of the coefficient a
in terms of the elasticity constant or the kinematic viscosity. The relation (3) leads to the
evolution Equation (1) with α = 2− ν.

The book [36] presents a picture of the state-of-the-art for solutions of the diffusion-
wave equation with one, two, and three space variables in Cartesian, cylindrical, and
spherical coordinates under different kinds of boundary conditions.

In the present survey article, we briefly discuss the properties of the Mittag–Leffler
functions and Wright function and present the integral relations between the Mittag–
Leffler functions and the Wright function. The applications of the Wright function and the
Mainardi function to the description of diffusion, heat conduction, thermal and diffusive
stresses, and nonlocal elasticity in the framework of fractional calculus are reviewed.

2. Mathematical Preliminaries

2.1. Integrals and Derivatives of Fractional Order

The Riemann–Liouville integral of fractional order α is defined as [21–23]:

Iα f (t) =
1

Γ(α)

∫ t

0
(t− τ)α−1 f (τ)dτ, α > 0, (4)

where Γ(α) is the gamma function.
The Riemann–Liouville derivative of fractional order α has the form

Dα
RL f (t) =

dn

dtn

[
1

Γ(n− α)

∫ t

0
(t− τ)n−α−1 f (τ)dτ

]
, n− 1 < α < n, (5)

whereas the Caputo fractional derivative is written as

Dα
C f (t) ≡ dα f (t)

dtα
=

1
Γ(n− α)

∫ t

0
(t− τ)n−α−1 dn f (τ)

dτn dτ, n− 1 < α < n. (6)

The fractional operators have the following Laplace transform rules:

L{Iα f (t)} = 1
sα

f ∗(s), (7)

L{ Dα
RL f (t)} = sα f ∗(s)−

n−1

∑
k=0

Dk In−α f (0+)sn−1−k, n− 1 < α < n, (8)

L
{

dα f
dtα

}
= sα f ∗(s)−

n−1

∑
k=0

f (k)(0+)sα−1−k, n− 1 < α < n. (9)

Here, the asterisk denotes the transform, and s is the Laplace transform variable.
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2.2. Mittag–Leffler Functions

The Mittag–Leffler function in one parameter α

Eα(z) =
∞

∑
k=0

zk

Γ(αk + 1)
, α > 0, z ∈ C, (10)

can be considered as the extension of the exponential function ez = E1(z), whereas the
generalized Mittag–Leffler function in two parameters α and β is defined by the series
representation

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + β)
, α > 0, β > 0, z ∈ C. (11)

In the general case, the parameters α and β can be treated as complex numbers with some
limitations on their real parts [24], but we restrict ourselves to positive values of α and β.

The following recurrence relations [20,24]

Eα,β(z) =
1

Γ(β)
+ zEα,α+β(z). (12)

Eα,β(z) = βEα,β+1(z) + αz
dEα,β+1(z)

dz
(13)

are valid for the Mittag–Leffler functions.
For investigation of the convergence of integrals containing the Mittag–Leffler func-

tions, their asymtotic representations for large negative values of argument are useful. For
x → ∞, we have

Eα(−x) ∼ 1
Γ(1− α)x

, (14)

Eα,2(−x) ∼ 1
Γ(2− α)x

, (15)

Eα,α(−x) ∼ − 1
Γ(−α)x2 , (16)

Eα,β(−x) ∼ 1
Γ(β− α)x

. (17)

The essential role of the Mittag–Leffler functions in fractional calculus is connected
with the formula for the inverse Laplace transform (see Gorenflo–Mainardi [21], Pod-
lubny [22], Kilbas–Srivastava–Trujillo [23], Gorenflo–Kilbas–Mainardi–Rogosin [24]):

L−1
{

sα−β

sα + b

}
= tβ−1 Eα,β(−btα). (18)

2.3. Wright Function and Mainardi Function

The Wright function is a generalization of the exponential function and the Bessel
functions and is defined as [27,28] (see also refs. [20–24,31,32,37–39])

W(α, β; z) =
∞

∑
k=0

zk

k! Γ(αk + β)
, α > −1, β ∈ C, z ∈ C. (19)

The Wright function satisfies the recurrence equations [20]

αzW(α, α + β; z) = W(α, β− 1; z) + (1− β)W(α, β; z), (20)

dW(α, β; z)
dz

= W(α, α + β; z). (21)
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The Mainardi function M(α; z) [22,31–33] is a particular case of the Wright function

M(α; z) = W(−α, 1− α;−z) =
∞

∑
k=0

(−1)kzk

k! Γ[−αk + (1− α)]
, 0 < α < 1, z ∈ C. (22)

The Wright function and the Mainardi function appear in formulae for the inverse
Laplace transform (see Mainardi [31,32], Stanković [40], Gajić–Stanković [41]):

L−1{exp(−λsα)} = αλ

tα+1 M
(
α; λt−α

)
, 0 < α < 1, λ > 0, (23)

L−1
{

sα−1 exp(−λsα)
}
=

1
tα

M
(
α; λt−α

)
, 0 < α < 1, λ > 0, (24)

L−1
{

s−β exp(−λsα)
}
= tβ−1W

(
−α, β;−λt−α

)
, 0 < α < 1, λ > 0. (25)

2.4. The Integral Transform Relations between the Mittag–Leffler Function and Wright Function

The Laplace transform of the Wright function is expressed in terms of the Mittag–
Leffler function [20,22,23]

L{W(α, β; t)} = 1
s

Eα,β

(
1
s

)
, α > 0, β > 0, (26)

and [37]
L{W(α, β;−t)} = E−α,β−α(−s), −1 < α < 0, β > 0, (27)

whereas, for the Mainardi function, the corresponding relation takes the form

L{M(α; t)} = Eα(−s), 0 < α < 1. (28)

The Mittag–Leffler functions and the Wright function are related by the Fourier cosine
transform (Povstenko [36,42]):∫ ∞

0
Eα(−ξ2) cos(xξ)dξ =

π

2
M
(α

2
; x
)

, 0 < α < 2, x > 0, (29)

∫ ∞

0
Eα,2(−ξ2) cos(xξ)dξ =

π

2
W
(
−α

2
, 2− α

2
;−x
)

, 0 < α < 2, x > 0, (30)

∫ ∞

0
Eα,α(−ξ2) cos(xξ)dξ =

π

2
W
(
−α

2
,

α

2
;−x
)

, 0 < α < 2, x > 0, (31)

∫ ∞

0
Eα,β(−ξ2) cos(xξ)dξ =

π

2
W
(
−α

2
, β− α

2
;−x
)

, 0 < α < 2, β > 0, x > 0, (32)

as well as by the Fourier sine transform∫ ∞

0
ξ Eα(−ξ2) sin(xξ)dξ =

π

2
W
(
−α

2
, 1− α;−x

)
, 0 < α < 2, x > 0, (33)

∫ ∞

0
ξ Eα,2(−ξ2) sin(xξ)dξ =

π

2
W
(
−α

2
, 2− α;−x

)
, 0 < α < 2, x > 0, (34)

∫ ∞

0
ξ Eα,α(−ξ2) sin(xξ)dξ =

π

2
W
(
−α

2
, 0;−x

)
=

απ

4
x M
(α

2
; x
)

, 0 < α < 2, x > 0, (35)

∫ ∞

0
ξ Eα,β(−ξ2) sin(xξ)dξ =

π

2
W
(
−α

2
, β− α;−x

)
, 0 < α < 2, β > 0 , x > 0. (36)
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Due to (16), we can also obtain for Eα,α
(
−ξ2)

∫ ∞

0
ξ2 Eα,α(−ξ2) cos(xξ)dξ = −π

2
W
(
−α

2
,−α

2
;−x
)

, 0 < α < 2, x > 0, (37)

∫ ∞

0
ξ3 Eα,α(−ξ2) sin(xξ)dξ = −π

2
W
(
−α

2
,−α;−x

)
, 0 < α < 2, x > 0. (38)

The equations presented above allow us to obtain additional integral relations between
the Mittag–Leffler functions and the Wright function, which can be helpful when solving
problems in polar or cylindrical coordinates using the Hankel transform of order zero.
Taking into account the integral representation of the Bessel function J0(x) (Watson [43],
Abramowitz-Stegun [44])

J0(x) =
1
π

∫ π

0
cos(x sin θ)dθ, (39)

J0(x) =
2
π

∫ ∞

0
sin(x cosh t)dt, x > 0, (40)

J0(x) =
2
π

∫ ∞

1

sin(xt)√
t2 − 1

dt, x > 0, (41)

we get∫ ∞

0
Eα

(
−ξ2
)

J0(rξ)dξ =
1
2

∫ π

0
M
(α

2
; r sin θ

)
dθ, 0 < α ≤ 2, r > 0, (42)

∫ ∞

0
Eα,2

(
−ξ2
)

J0(rξ)dξ =
1
2

∫ π

0
W
(
−α

2
, 2− α

2
;−r sin θ

)
dθ, 0 < α ≤ 2, r > 0, (43)

∫ ∞

0
Eα,α

(
−ξ2
)

J0(rξ)dξ =
1
2

∫ π

0
W
(
−α

2
,

α

2
;−r sin θ

)
dθ, 0 < α ≤ 2, r > 0, (44)

∫ ∞

0
Eα,β

(
−ξ2
)

J0(rξ)dξ =
1
2

∫ π

0
W
(
−α

2
, β− α

2
;−r sin θ

)
dθ, 0 < α ≤ 2, r > 0. (45)

Similarly,∫ ∞

0
Eα

(
−ξ2
)

J0(rξ)ξ dξ =
∫ ∞

0
W
(
−α

2
, 1− α;−r cosh t

)
dt, 0 < α ≤ 2, r > 0, (46)

∫ ∞

0
Eα,2

(
−ξ2
)

J0(rξ)ξ dξ =
∫ ∞

0
W
(
−α

2
, 2− α;−r cosh t

)
dt, 0 < α ≤ 2, r > 0, (47)

∫ ∞

0
Eα,α

(
−ξ2
)

J0(rξ)ξ dξ =
∫ ∞

0
W
(
−α

2
, 0;−r cosh t

)
dt, 0 < α ≤ 2, r > 0, (48)

∫ ∞

0
Eα,β

(
−ξ2
)

J0(rξ)ξ dξ =
∫ ∞

0
W
(
−α

2
, β− α;−r cosh t

)
dt, 0 < α ≤ 2, r > 0, (49)

and∫ ∞

0
Eα

(
−ξ2
)

J0(rξ)ξ dξ =
∫ ∞

1
W
(
−α

2
, 1− α;−rt

) 1√
t2 − 1

dt, 0 < α ≤ 2, r > 0, (50)

∫ ∞

0
Eα,2

(
−ξ2
)

J0(rξ)ξ dξ =
∫ ∞

1
W
(
−α

2
, 2− α;−rt

) 1√
t2 − 1

dt, 0 < α ≤ 2, r > 0, (51)
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∫ ∞

0
Eα,α

(
−ξ2
)

J0(rξ)ξ dξ =
∫ ∞

1
W
(
−α

2
, 0;−rt

) 1√
t2 − 1

dt

=
αr
2

∫ ∞

0
M
(α

2
; r
√

1 + u2
)

du, 0 < α ≤ 2, r > 0,

(52)

∫ ∞

0
Eα,β

(
−ξ2
)

J0(rξ)ξ dξ =
∫ ∞

1
W
(
−α

2
, β− α;−rt

) 1√
t2 − 1

dt, 0 < α ≤ 2, r > 0. (53)

In addition,∫ ∞

0
Eα,α

(
−ξ2
)

J0(rξ)ξ2 dξ = −1
2

∫ π

0
W
(
−α

2
,−α

2
;−r sin θ

)
dθ, 0 < α ≤ 2, r > 0, (54)

∫ ∞

0
Eα,α

(
−ξ2
)

J0(rξ)ξ3 dξ = −
∫ ∞

0
W
(
−α

2
,−α;−r cosh t

)
dt

= −
∫ ∞

1
W
(
−α

2
,−α;−rt

) 1√
t2 − 1

dt, 0 < α ≤ 2, r > 0.

(55)

3. Applications of the Wright Function

3.1. Fractional Heat Conduction in Nonhomogeneous Media under Perfect Thermal Contact

Time-fractional heat conduction in two joint half-lines was considered by
Povstenko [36,45,46]. In the general case, the heat conduction equation with the Caputo
derivative of the order 0 < α ≤ 2 in one half-line

∂αT1

∂tα
= a1

∂2T1

∂x2 , x > 0, (56)

and the corresponding equation with the Caputo derivative of the order 0 < β ≤ 2 in
another half-line

∂βT2

∂tβ
= a2

∂2T2

∂x2 , x < 0, (57)

were treated under the boundary conditions of perfect thermal contact which state that two
bodies must have the same temperature at the contact point and the heat fluxes through
the contact point must be the same:

T1(x, t)
∣∣∣
x=0+

= T2(x, t)
∣∣∣
x=0−

, (58)

k1D1−α
RL

∂T1(x, t)
∂x

∣∣∣∣∣
x=0+

= k2D1−β
RL

∂T2(x, t)
∂x

∣∣∣∣∣
x=0−

, 0 < α ≤ 2, 0 < β ≤ 2. (59)

In the condition (59), k1 and k2 are the generalized thermal conductivities of two bodies;
the Riemann–Liouville fractional derivative of the negative order D−α

RL ( f (t)) is understood
as the Riemann–Liouville fractional integral Iα( f (t).

Here, we present the fundamental solution to the first Cauchy problem with the
initial condition

t = 0 : T1 = p0 δ(x− �), x > 0, � > 0, (60)

for the case α = β (for details see Povstenko [46]):

T1(x, t) =
p0

2
√

a1tα/2

[
M
(

α

2
;
|x− �|√

a1tα/2

)
+

ε− 1
ε + 1

M
(

α

2
;

x + �√
a1tα/2

)]
, x ≥ 0, (61)

T2(x, t) =
εp0

(ε + 1)
√

a1tα/2 M
(

α

2
;

|x|√
a2tα/2 +

ρ√
a1tα/2

)
, x ≤ 0, (62)
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where

ε =
k1
√

a2
k2
√

a1
. (63)

For the corresponding problem with uniform initial temperature T0 in one of half-
lines [45], in the particular case α = β, we have:

T1 = T0 −
T0

(1 + ε)
W
(
−α

2
, 1;− x√

a1tα/2

)
, x > 0, (64)

T2 =
εT0

(1 + ε)
W
(
−α

2
, 1;− |x|√

a2tα/2

)
, x < 0. (65)

The time-fractional heat conduction equations with the Caputo derivatives in a semi-
infinite medium composed of a region 0 < x < L and a region L < x < ∞ under the
boundary conditions of perfect thermal contact at x = L and the insulated boundary
condition at x = 0 with uniform initial temperature in a layer were investigated in [47].
The approximate solution of the considered problem for small values of time is obtained
based on Tauberian theorems for the Laplace transform. For α = β, this solution reads

T1 � T0 −
T0

1 + ε
W
(
−α

2
, 1;− L− x√

a1tα/2

)
, 0 ≤ x ≤ L, (66)

T2 �
εT0

1 + ε
W
(
−α

2
, 1;− x− L√

a2tα/2

)
, L ≤ x < ∞. (67)

Fractional heat conduction in an infinite medium with a spherical inclusion when a
sphere 0 ≤ r < R is at the initial uniform temperature T0 and a matrix R < r < ∞ is at a
zero initial temperature was considered by Povstenko [36,48]. In the case of perfect thermal
contact at the boundary r = R,

r = R : T1(r, t) = T2(r, t), (68)

k1D1−α
RL

∂T1(r, t)
∂r

= k2D1−β
RL

∂T2(r, t)
∂r

, 0 < α ≤ 2, 0 < β ≤ 2, (69)

the approximate solution for small values of time has the following form (we present only
the solution for α = β):

T1(r, t) � T0 −
RT0k2

(k2 − k1)r

[
W
(
−α

2
, 1;− R− r√

a1tα/2

)
−W

(
−α

2
, 1;− R + r√

a1tα/2

)]

+
cRT0

r

∫ t

0

(t− τ)α/2−1

τα/2

[
M
(

α

2
;

R− r√
a1τα/2

)
(70)

− M
(

α

2
;

R + r√
a1τα/2

)]
Eα/2, α/2

[
−b(t− τ)α/2

]
dτ,

T2(r, t) � − RT0k1

(k2 − k1)r
W
(
−α

2
, 1;− r− R√

a2tα/2

)
+

cRT0

r

∫ t

0

(t− τ)α/2−1

τα/2

× M
(

α

2
;

r− R√
a2τα/2

)
Eα/2, α/2

[
−b(t− τ)α/2

]
dτ,

(71)

where

b =
(k2 − k1)

√
a1a2

R(k1
√

a1 + k2
√

a2)
, c =

k1k2(
√

a1 +
√

a2)

(k2 − k1) (k1
√

a1 + k2
√

a2)
. (72)

It should be mentioned that, for the classical heat conduction, the method of analysis
of the solution for small values of time was described by Luikov [49] and Özişik [50]. In the
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case of fractional diffusion equation, the decay rate at large values of time was analyzed
by Sakamoto–Yamamoto [51].

3.2. Fractional Heat Conduction in Nonhomogeneous Media under Nonperfect Thermal Contact

Near the interface between two solids, a transition region arises whose state differs
from the state of contacting media owing to different conditions of material–particle inter-
action. The transition region has its own physical, mechanical, and chemical properties,
and processes occurring in it differ from those in the bulk. Small thickness of the inter-
mediate region between two solids allows us to reduce a three-dimensional problem to
a two-dimensional one for median surface endowed with equivalent physical properties.
There are several approaches to reducing three-dimensional equations to the corresponding
two-dimensional equations for the median surface. For example, introducing the mixed
coordinate system (ξ, η, z), where ξ and η are the curvilinear coordinates in the median
surface and z is the normal coordinate, the linear or polynomial dependence of the consid-
ered functions on the normal coordinate can be assumed. This assumption is often used in
the theory of elastic shells.

For the classical heat conduction equation, which is based on the conventional Fourier
law, the reduction of the three-dimensional problem to the simplified two-dimensional
one was pioneered by Marguerre [52,53] and later on developed by many authors. In
this case, the assumption of linear or polynomial dependence of temperature on the
normal coordinate or more general operator method were used. An extensive literature
on this subject can be found, for example, in [9]. For time-fractional heat conduction,
the reduction of the three-dimensional equation to the two-dimensional one was carried
out by Povstenko [9,54,55].

A solution to the problem (56), (57) with uniform initial temperature in one of half-
lines under conditions of nonperfect thermal contact was obtained in [56]. In the particular
case α = β, the solution reads

T1 = T0 −
T0

(1 + ε)
W
(
−α

2
, 1;− x√

a1tα/2

)
+

T0(1− ε)

2(1 + ε)

∫ t

0

(t− τ)α/2−1

τα/2

× M
(

α

2
;

x√
a1τα/2

)
Eα/2,α/2

[
−bΣ(t− τ)α/2

]
dτ, x > 0,

(73)

T2 =
εT0

(1 + ε)
W
(
−α

2
, 1;− |x|√

a2tα/2

)
+

T0(1− ε)

2(1 + ε)

∫ t

0

(t− τ)α/2−1

τα/2

× M
(

α

2
;

|x|√
a2τα/2

)
Eα/2, α/2

[
−bΣ(t− τ)α/2

]
dτ, x < 0,

(74)

where ε is defined by (63),

bΣ =
k1
√

a2 + k2
√

a1

CΣ
√

a1a2
, (75)

CΣ is the reduced heat capacity of the median surface of the transition region. When
CΣ → 0, the solutions (73), (74) coincide with the solutions (64), (65).

3.3. Fractional Heat Conduction under Time-Harmonic Impact

Ångström [57] was the first to investigate the standard parabolic heat conduction
equation under time-harmonic impact. An extensive review of literature in this field in the
case of classical diffusion equation can be found in the book by Mandelis [58].

Fractional heat conduction with a source varying harmonically in time was studied by
Povstenko [59]. Equation (1) with a source term

∂αT
∂tα

= a
∂2T
∂x2 + Q0 δ(x)eiωt, 0 < α ≤ 2, (76)
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was solved in the domain −∞ < x < ∞ under zero initial conditions. Temperature is
expressed as

T(x, t) =
Q0

2
√

a

∫ t

0
τα/2−1 W

(
−α

2
,

α

2
;− |x|√

aτα/2

)
eiω(t−τ dτ. (77)

The corresponding problem in the central symmetric case

∂αT
∂tα

= a
(

∂2T
∂r2 +

2
r

∂T
∂r

)
+ Q0

δ(r)
4πr2 eiωt, 0 < r < ∞, 0 < α ≤ 2, (78)

has the solution

T(x, t) =
αQ0

8πa3/2

∫ t

0

1
τ1+α/2 M

(
α

2
;

r√
aτα/2

)
eiω(t−τ dτ. (79)

3.4. Fractional Nonlocal Elasticity

Nonlocal continuum physics assumes integral constitutive equations. In the nonlocal
theory of the continuum mechanics, stresses at the reference point x of an elastic solid at
time t depend not only on the strains at this point at this time, but also on strains at all the
points x′ of a body and all the times prior to and at time t:

t(x, t, εL, εT) =
∫ t

0

∫
V

γ
(
|x− x′|, t− t′, εL, εT

)
σ
(
x′, t′
)
dv(x′)dt′, (80)

σ
(
x′, t′
)
= 2μ e

(
x′, t′
)
+ λ tr e

(
x′, t′
)
I, (81)

where t and σ are the nonlocal and classical stress tensors, x and x′ are the reference
and running points, e the linear strain tensor, λ and μ are Lamé constants, I stands for
the unit tensor. The volume integral in (80) is over the region occupied by the solid.
The time-non-locality describes memory effects, distributed lag (distributed time delay),
and frequency dispersion; the space-non-locality deals with the long-range interaction.
The weight function (the non-locality kernel) γ(|x− x′|, t− t′, εL, εT) depends on two basic
non-locality parameters (see Eringen [60]): the characteristic length ratio

εL =
Internal characteristic length
External characteristic length

and the characteristic time ratio

εT =
Internal characteristic time
External characteristic time

.

When εT → 0, the memory effects are eliminated; for εL → 0 the space-non-locality disappears.
In the pioneering works by Podstrigach [61,62], a new nontraditional thermodynamic

pair (the chemical potential tensor ϕ and the concentration tensor c) was introduced (see
also [63,64]). The tensor character of the chemical potential means that, for solids, the work
of bringing the substance into a point in a body depends on the direction. In this case,
the diffusion equation, split into the mean and deviatoric parts, has the form

ρ
∂(tr c)

∂t
= 3a Δ (trϕ), (82)

ρ
∂(dev c)

∂t
= 2a1 Δ (devϕ), (83)

where ρ is the mass density, and a and a1 are the corresponding diffusion coefficients.
Starting from interrelated equations describing elasticity and diffusion, Podstrigach [65]

eliminated the chemical potential tensor from the constitutive equation for the stress tensor
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and obtained the stress–strain relation containing spatial and time derivatives. In the
infinite medium, this relation can be integrated using the Fourier and Laplace integral
transforms, and the final result, written for the mean and deviatoric parts, has the nonlocal
integral form:

tr σ = 3Kc tr e + 3
Kϕ − Kc

p

∫ t

0

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
γ(p)
(

x− x′, y− y′, z− z′, t− t′
)

× tr e
(
x′, y′, z′, t′

)
dx′ dy′ dz′ dt′, (84)

dev σ = 2μc dev e + 2
μϕ − μc

q

∫ t

0

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
γ(q)
(

x− x′, y− y′, z− z′, t− t′
)

× dev e
(
x′, y′, z′, t′

)
dx′ dy′ dz′ dt′. (85)

Here, Kc, Kϕ, μc, μϕ, p, and q are material constants (for details, see [42,65]). The
kernel γ(p)(x, y, z, t) has the following form:

γ(p)(x, y, z, t) =
( p

2t

)5/2
(

3− p r2

2t

)
exp
(
− p r2

4t

)
, (86)

where r =
√

x2 + y2 + z2; the kernel γ(q)(x, y, z, t) is obtained from the kernel γ(p)(x, y, z, t)
substituting p by q.

The results of Podstrigach [65] were generalized by Povstenko [42] for the case of
fractional diffusion equations

ρ
∂α(tr c)

∂tα
= 3a Δ (trϕ), (87)

ρ
∂α(dev c)

∂tα
= 2a1 Δ (devϕ). (88)

The kernel γ(p)(x, y, z, t) in the fractional generalization of the constitutive Equation (84)
for the mean part of the stress tensor is expressed in terms of the Wright function:

γ(p)(x, y, z, t) = −
√

πp2
√

2 tα+1 r
W
(
−α

2
,−α;−√p

r
tα/2

)
. (89)

The kernel γ(q)(x, y, z, t) in the fractional generalization of the constitutive Equation (85)
for the deviatoric part of the stress tensor is obtained by substituting p with q.

In the case of only space-non-locality, the constitutive equation for the stress ten-
sor reads

t(x, εL) =
∫

V
γ
(
|x− x′|, εL

)
σ
(
x′
)
dv(x′). (90)

The space-nonlocal elasticity reduces to the classical theory of elasticity in the long wave-
length limit and to the atomic lattice theory in the short wave-length limit. Several versions
of nonlocal elasticity based on various assumptions were proposed by different authors
(see, for example, Podstrigach [65], Eringen [66,67], Kunin [68,69] and references therein).

In the case of space-nonlocal constitutive Equation (90), the nonlocal kernel γ(|x− x′|, εL)
is a delta sequence and in the classical elasticity limit εL → 0 becomes the Dirac delta func-
tion. For example, slightly changing the notation, the nonlocal kernel γ(|x− x′|, τ) can be
considered as the Green function of the Cauchy problem for the diffusion operator (see
Eringen [67,70]):

∂γ(x, τ)

∂τ
− aΔ γ(x, τ) = 0, (91)

τ = 0 : γ(x, τ) = δ(x), (92)

242



Mathematics 2021, 9, 198

which results in the kernel

γ(x, τ) =
1

(2
√

πaτ)n exp
(
−|x|

2

4aτ

)
(93)

for n = 1, 2, 3 space variables. In this case, the nonlocal stress tensor is a solution of the
corresponding Cauchy problem:

∂t(x, τ)

∂τ
− aΔ t(x, τ) = 0, (94)

τ = 0 : t(x, τ) = σ(x). (95)

It should be emphasized that in, the formal sense, τ in the initial-value problems (91),
(92) and (94), (95) looks like time, but in fact τ is a non-locality parameter related to the
space-non-locality characteristic ratio εL.

In the paper [71], the nonlocal kernel γ(|x− x′|, τ) was considered as the Green
function of the Cauchy problem for the fractional diffusion operator

∂αγ(x, τ)

∂τα
− aΔ γ(x, τ) = 0, 0 < α ≤ 1, (96)

τ = 0 : γ(x, τ) = δ(x). (97)

In the framework of this approach, instead of the Cauchy problem (94)–(95), we obtain

∂αt(x, τ)

∂τα
− aΔ t(x, τ) = 0, 0 < α ≤ 1, (98)

τ = 0 : t(x, τ) = σ(x). (99)

In the case of one spatial coordinate, the nonlocal kernel takes the form

γ(x, τ) =
1

2
√

aτα/2 M
(

α

2
;

|x|√
aτα/2

)
, 0 ≤ α ≤ 1, (100)

and in the central symmetric case

γ(r, τ) =
1

4πaταr
W
(
−α

2
, 1− α;− r√

aτα/2

)
, 0 ≤ α ≤ 1. (101)

4. Conclusions

In this survey, we have reviewed the main applications of the Wright function and
the Mainardi function in continuum physics based essentially on the author’s works. We
have presented the integral relations between the Mittag–Leffler functions and the Wright
function, which can be useful when solving fractional differential equations. We have
restricted ourselves to the standard Mittag–Leffler functions and Wright function. The
interested reader is referred to publications on further generalizations of the Mittag–Leffler
functions [24,72–75] and of the Wright function [24,29,76–78].
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1. Introduction

The Kilbas-Saigo function is a three-parameter entire function with the convergent
series representation

Eα,m,l(z) = 1 + ∑
n≥1

(
n

∏
k=1

Γ(1 + α((k− 1)m + l))
Γ(1 + α((k− 1)m + l + 1))

)
zn, z ∈ C,

where the parameters are such that α, m > 0 and l > −1/α. It can be viewed as a general-
ization of the one- or two-parameter Mittag–Leffler function since, with standard notations,

Eα,1,0(z) = ∑
n≥0

zn

Γ(1 + αn)
= Eα(z)

and
E

α,1, β−1
α
(z) = Γ(β) ∑

n≥0

zn

Γ(β + αn)
= Γ(β)Eα,β(z)

for every α, β > 0 and z ∈ C. This function was introduced in [1] as the solution to
some integro-differential equation with Abelian kernel on the half-line, and we refer to
Chapter 5.2 in [2] for a more recent account, including an extension to complex values of
the parameter l. In our previous paper [3], written in collaboration with P. Vallois, it was
shown that certain Kilbas-Saigo functions are moment generating functions of Riemannian
integrals of the stable subordinator. This observation made it possible to define rigorously
some Weibull and Fréchet distributions of fractional type via an independent exponential
random variable and the stable subordinator—see [3] for details. In the present paper, we
wish to take the other way round and use the probabilistic connection to deduce some
non-trivial analytical properties of the Kilbas-Saigo function.

In Section 2, we tackle the problem of the complete monotonicity on the negative
half-line. This problem dates to Pollard in 1948 for the one-parameter Mittag–Leffler
function—see e.g., Section 3.7.2 in [2] for details and references. It was shown in [3] that
for every m > 0 and α ∈ (0, 1] the function x �→ Eα,m,m−1(−x) is completely monotone, ex-
tending Pollard’s result and solving an open problem stated in [4]. In Theorem 1 below, we
characterize the complete monotonicity of x �→ Eα,m,l(−x) by α ∈ [0, 1] and l ≥ m− 1/α.
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We also give an explicit representation, albeit complicated in general, of the underlying pos-
itive random variable. Along the way, we study an interesting family of Mellin transforms
given as the quotient of four double Gamma functions.

In Section 3, we establish uniform hyperbolic bounds on the negative half-line for two
families of completely monotonic Kilbas-Saigo functions, extending the bounds obtained
in [5] for the classical Mittag–Leffler function. The argument in [5] relied on stochastic and
convex orderings and was rather lengthy. We use here the same kind of arguments, but the
proof is shorter and more transparent thanks to the connection with the stable subordinator;
which also enables us to derive some monotonicity properties on m �→ Eα,m,l(x) for every
x ∈ R—see Proposition 1 below.

In Section 4, we address the question of the asymptotic behavior at −∞ in the com-
pletely monotonic case α ∈ (0, 1] and l ≥ m− 1/α. It is shown in Theorem 5.5 of [2] that in
the general case α, m > 0 and l > m− 1/α, the entire function Eα,m,l(z) has order ρ = 1/α
and type σ = 1/m. However, precise asymptotics along given directions of the complex
plane do not seem to have been investigated as yet, as is the case—see e.g., Proposition 3.6
in [2] for the classical Mittag–Leffler function. For the negative half-line and α ∈ (0, 1],
the asymptotics are different depending on whether l = m + 1/α or l > m + 1/α. In the
former case, the behavior is in cα,m x−(1+1/m) with a non-trivial constant cα,m obtained
from the connection with the fractional Fréchet distribution and given in terms of the
double Gamma function—see Proposition 7 and Remark 8 (c) below. In the latter case,
the behavior is in cα,m,l x−1 with a uniform speed and a simple constant cα,m,l given in
terms of the standard Gamma function—see Proposition 6 below. The method for the case
l > m + 1/α relies on the computation of the Mellin transform of the positive function
Eα,m,l(−x), which is obtained from the proof of its complete monotonicity, and is inter-
esting in its own right—see Remark 2 (c) below. Along the way, we provide the exact
asymptotics of the fractional Weibull and Fréchet densities at both ends of their support
and we give a series of probabilistic factorizations. The latter enhance the position of the
fractional Fréchet distribution, which is in one-to-one correspondence with the boundary
Kilbas-Saigo function Eα,m,m−1/α(x), as an irreducible factor—see Remark 8 (a) below.

In the last Section 5, we pay attention to the so-called Le Roy function with parameter
α > 0. This is a simple generalization of the exponential function defined by

Lα(z) = ∑
n≥0

zn

(n!)α
, z ∈ C.

Introduced in [6] in the context of analytic continuation, a couple of years before the
Mittag–Leffler function, the Le Roy function has been much less studied. It was shown
in [3] that this function encodes for α ∈ [0, 1] a Gumbel distribution of fractional type, as
the moment generating function of the perpetuity of the α−stable subordinator. This fact is
recalled in Proposition 9 below, together with a characterization of the moment generating
property. The exact asymptotic behavior at −∞ is also derived for α ∈ [0, 1], completing
the original result of Le Roy. Finally, the non-increasing character of α �→ Lα(x) on [0, 1] for
every x ∈ R is established by convex ordering. It is worth mentioning that this property is
an open problem—see Conjecture 5 below-for the Mittag–Leffler function.

As in [3], an important role is played throughout the paper by Barnes’ double Gamma
function G(z; δ) which is the unique solution to the functional equation G(z + 1; δ) =
Γ(zδ−1)G(z; δ) with normalization G(1; δ) = 1, and its associated Pochhammer type symbol

[a; δ]s =
G(a + s; δ)

G(a; δ)
·

We have gathered in Appendix A all the needed facts and formulæ on this double
Gamma function, whose connection with the Kilbas-Saigo function has probably a broader
focus than the content of the present paper (we leave this topic open to further research).
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2. Complete Monotonicity on the Negative Half-Line

In this section, we wish to characterize the property that the function x �→ Eα,m,l(−x)
is completely monotone (CM) on (0, ∞). We begin with the following result on the above
generalized Pochhammer symbols, which is reminiscent of Proposition 5.1 and Theorem 6.2
in [7] and has an independent interest.

Lemma 1. Let a, b, c, d and δ be positive parameters. There exists a positive random variable
Z = Z[a, c; b, d; δ] such that

E[Zs] =
[a; δ]s[c; δ]s
[b; δ]s[d; δ]s

(1)

for every s > 0, if and only if b + d ≤ a + c and inf{b, d} ≤ inf{a, c}. This random variable is
absolutely continuous on (0, ∞), except in the degenerate case a = b = c = d. Its support is [0, 1]
if b + d = a + c and [0, ∞) if b + d < a + c.

Proof of Lemma 1. We giscard the degenerate case a = b = c = d, which is obvious with
Z = 1. By (A2) and some rearrangements—see also (2.15) in [8], we first rewrite

log
(
[a; δ]s[c; δ]s
[b; δ]s[d; δ]s

)
= κ s +

∫ 0

−∞
(esx − 1− sx)

(
e−b|x| + e−d|x| − e−a|x| − e−c|x|

|x|(1− e−|x|)(1− e−δ|x|)

)
dx

for every s > 0, where κ is some real constant. By convexity, it is easy to see that if
b + d ≤ a + c and inf{b, d} ≤ inf{a, c}, then the function z �→ zb + zd − za − zc is positive
on (0, 1). This implies that the function

x �→ e−b|x| + e−d|x| − e−a|x| − e−c|x|

|x|(1− e−|x|)(1− e−δ|x|)

is positive on (−∞, 0) and that it can be viewed as the density of some Lévy measure
on (−∞, 0), since it integrates 1∧ x2. By the Lévy–Khintchine formula, there exists a real
infinitely divisible random variable Y such that

E[esY] =
[a; δ]s[c; δ]s
[b; δ]s[d; δ]s

for every s > 0, and the positive random variable Z = eY satisfies (1). Since we have
excluded the degenerate case, the Lévy measure of Y is clearly infinite and it follows from
Theorem 27.7 in [9] that Y has a density and the same is true for Z.

Assuming first b + d = a + c, a Taylor expansion at zero shows that the density of the
Lévy measure of Y integrates 1∧ |x| and we deduce from (A2) the simpler formula

logE[esY] = log
(
[a; δ]s[c; δ]s
[b; δ]s[d; δ]s

)
= −

∫ ∞

0
(1− e−sx)

(
e−bx + e−dx − e−ax − e−cx

x(1− e−x)(1− e−δx)

)
dx.

By the Lévy–Khintchine formula, this shows that the ID random variable Y is negative.
Moreover, its support is (−∞, 0] since its Lévy measure has full support and its drift
coefficient is zero—see Theorem 24.10 (iii) in [9], so that the support of Z is [0, 1].

Assuming second b + d < a + c, the same Taylor expansion as above shows that the
density of the Lévy measure of Y does not integrate 1 ∧ |x| and the real Lévy process
associated with Y is thus of type C using the terminology of [9]—see Definition 11.9 therein.
By Theorem 24.10 (i) in [9], this implies that Y has full support on R, and so does Z on R+.

249



Mathematics 2021, 9, 217

It remains to prove the only if part of the Lemma. Assuming a ≤ d and b ≤ c without
loss of generality, we first observe that if a < b then the function

s �→ [a; δ]s[c; δ]s
[b; δ]s[d; δ]s

is real-analytic on (−b, ∞) and vanishes at s = −a > −b, an impossible property for
the Mellin transform of a positive random variable. The necessity of b + d ≤ a + c is
slightly more subtle and hinges again upon infinite divisibility. First, setting ϕ(z) =
zb + zd − za − zc and z∗ = inf{z > 0, ϕ(z) < 0}, it is easy to see by convexity and a
Taylor expansion at 1 that if b + d > a + c, then z∗ < 1 and ϕ(z) < 0 on (z∗, 1) with
ϕ(z) ∼ (b + d− a− c)(z− 1) as z → 1. Introducing next the ID random variable V with
Laplace exponent

logE[esV ] = −κ s +
∫ 0

log z∗
(esx − 1− sx)

(
e−a|x| + e−c|x| − e−b|x| − e−d|x|

|x|(1− e−|x|)(1− e−δ|x|)

)
dx,

we obtain the decomposition

log
(
[a;δ]s [c;δ]s
[b;δ]s [d;δ]s

)
+ logE[esV ] =

∫ log z∗
−∞ (esx − 1− sx)

(
e−b|x|+e−d|x|−e−a|x|−e−c|x|

|x|(1−e−|x|)(1−e−δ|x|)

)
dx,

whose right-hand side is the Laplace exponent of some ID random variable U with an
atom because its Lévy measure, whose support is bounded away from zero, is finite—see
Theorem 27.4 in [9]. On the other hand, the random variable V has an absolutely continuous
and infinite Lévy measure and hence it has also a density. If there existed Z such that (1)

holds, then the independent decomposition U d
= V + log Z would imply by convolution

that U has a density as well. This contradiction finishes the proof of the Lemma. �

Remark 1. (a) By the Mellin inversion formula, the density of Z[a, c; b, d; δ] is expressed as

f (x) =
1

2iπx

∫ s0+i∞

s0−i∞
x−s
(
[a; δ]s[c; δ]s
[b; δ]s[d; δ]s

)
ds

over (0, ∞) for any s0 > − inf{b, d}. From this expression, it is possible to prove that this density
is real-analytic over the interior of the support. We omit details. Let us also mention by Remark 28.8
in [9] that this density is positive over the interior of its support.

(b) With the standard notation for the Pochhammer symbol, the aforementioned Proposition 5.1
and Theorem 6.2 in [7] show that

s �→ (a)s(c)s

(b)s(d)s

is the Mellin transform of a positive random variable if and only if b + d ≥ a + c and inf{b, d} ≥
inf{a, c}. This fact can be proved exactly as above, in writing

log
(
(a)s(c)s

(b)s(d)s

)
= −

∫ ∞

0
(1− e−sx)

(
e−ax + e−cx − e−bx − e−dx

x(1− e−x)

)
dx.

This expression also shows that the underlying random variable has support [0, 1] and that it
is absolutely continuous, save for a + c = b + d where it has an atom at zero. We refer to [7] for an
exact expression of the density on (0, 1) in terms of the classical hypergeometric function.

We can now characterize the CM property for Eα,m,l(−x) on (0, ∞).
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Theorem 1. Let α, m > 0 and l > −1/α. The Kilbas-Saigo function

x �→ Eα,m,l(−x)

is CM on (0, ∞) if and only if α ≤ 1 and l ≥ m− 1/α. Its Bernstein representation is

Eα,m,l(−x) = E

[
exp−x

{
Xα,m,l ×

∫ ∞

0

(
1 + σ

(α)
t

)−α(m+1)
dt
}]

(2)

with δ = 1/αm and Xα,m,l = Z[1 + 1/m, (αl + 1)δ; 1, 1/m + (αl + 1)δ; δ].

Proof of Theorem 1. Assume first α ≤ 1 and l ≥ m− 1/α and let

Yα,m,l = Xα,m,l ×
∫ ∞

0

(
1 + σ

(α)
t

)−α(m+1)
dt.

By Proposition 2.4 in [8], and Lemma 1, its Mellin transform is

E[(Yα,m,l)
s] = δs [1 + δ; δ]s[(αl + 1)δ; δ]s

[1; δ]s[1/m + (αl + 1)δ; δ]s

= Γ(1 + s) × [(αl + 1)δ; δ]s
[1/m + (αl + 1)δ; δ]s

where in the second equality we have used (A9). By Fubini’s theorem, the moment
generating function of Yα,m,l reads

E[ezYα,m,l ] = ∑
n≥0

E[(Yα,m,l)
n]

zn

n!

= ∑
n≥0

(
[(αl + 1)δ; δ]n

[1/m + (αl + 1)δ; δ]n

)
zn

= ∑
n≥0

(
n−1

∏
j=0

Γ(α(jm + l) + 1)
Γ(α(jm + l + 1) + 1)

)
zn = Eα,m,l(z)

for every z ≥ 0, where in the third equality we have used (A1) repeatedly. The latter
identity is extended analytically to the whole complex plane and we get, in particular,

Eα,m,l(−x) = E[e−xYα,m,l ], x ≥ 0.

This shows that Eα,m,l(−x) is CM with the required Bernstein representation.

We now prove the only if part. If Eα,m,l(−x) is CM, then we see by analytic contin-
uation that Eα,m,l(z) is the moment generating function on C of the underlying random
variable X, whose positive integer moments read

E[Xn] = n! ×
(

n−1

∏
j=0

Γ(α(jm + l) + 1)
Γ(α(jm + l + 1) + 1)

)
, n ≥ 0.

If α > 1, Stirling’s formula implies E[Xn]
1
n → 0 as n → ∞ so that X ≡ 0, a contradic-

tion because Eα,m,l is not a constant. If α = 1 and l + 1 < m, then

E[Xn] =
n!

(c)nmn ∼ n1−c

mn as n → ∞,
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with c = (l + 1)/m ∈ (0, 1). In particular, the Mellin transform s �→ E[Xs] is analytic on
{�(s) ≥ 0}, bounded on {�(s) = 0}, and has at most exponential growth on {�(s) > 0}
because

|E[Xs]| ≤ E
[

X�(s)
]

=
(
E
[

X[�(s)]+1
]) �(s)

[�(s)]+1

by Hölder’s inequality. On the other hand, the Stirling type Formula (A4) implies, after
some simplifications,

δ−s [1 + δ; δ]s[c; δ]s
[1; δ]s[c + δ; δ]s

= δ−ss1−c(1 + o(1)) as |s| → ∞ with | arg s| < π

and this shows that the function on the left-hand side, which is analytic on {�(s) ≥ 0},
has at most linear growth on {�(s) = 0} and at most exponential growth on {�(s) > 0}.
Moreover, the above analysis clearly shows that

E[Xn] = δ−n [1 + δ; δ]n[c; δ]n
[1; δ]n[c + δ; δ]n

for all n ≥ 0 and by Carlson’s theorem—see e.g., Section 5.81 in [10], we must have

E[Xs] = δ−s [1 + δ; δ]s[c; δ]s
[1; δ]s[c + δ; δ]s

for every s > 0, a contradiction since Lemma 1 shows that the right-hand side cannot be the
Mellin transform of a positive random variable if c < 1. The case α < 1 and l + 1/α < m is
analogous. It consists of identifying the bounded sequence

1
n!
×
(

n−1

∏
j=0

Γ(α(jm + l + 1) + 1)
Γ(α(jm + l) + 1)

)

as the values at non-negative integer points of the function

δ−s× [1; δ]s[1/m + (αl + 1)δ; δ]s
[1 + δ; δ]s[(αl + 1)δ; δ]s

= δ−se−(1−α)s ln(s)+κs+O(1) as |s| → ∞ with | arg s| < π,

where the purposeless constant κ can be evaluated from (A4). On {�(s) ≥ 0}, we see that
this function has growth at most eπ(1−α)|s|/2 and we can again apply Carlson’s theorem.
We leave the details to the interested reader. �

Remark 2. (a) When m = 1, applying (A1) we see that the random variable Xα,1,l has Mellin transform

E[(Xα,1,l)
s] =

[2; δ]s[l + 1/α; δ]s
[1; δ]s[1 + l + 1/α; δ]s

=
(α)αs

(β)αs

with β = 1 + αl ≥ α. This shows Xα,1,l
d
= Bα

α,β−α where Ba,b denotes, here and throughout,
a standard Beta random variable with parameters a, b > 0. We hence recover the Bernstein
representation of the CM function Γ(β)Eα,β(−x) which was discussed in Remark 3.3 (c) in [3].
Notice also the very simple expression of the Mellin transform

E[(Yα,1,l)
s] =

Γ(1 + αl)Γ(1 + s)
Γ(1 + α(l + s))

·

(b) Another simplification occurs when l + 1/α = km for some integer k ≥ 1. One finds

E[(Xα,m,km−1/α)
s] =

[k; δ]s[1 + 1/m; δ]s
[1; δ]s[k + 1/m; δ]s

=
k−1

∏
j=1

(
(αjm)u

(α(jm + 1))u

)
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for u = αms ≥ 0, which implies

Xα,m,km−1/α
d
=
(

Bαm,α × · · · × Bαm(k−1),α

)αm
.

In general, the law of the absolutely continuous random variable Xα,m,l valued in [0, 1] seems
to have a complicated expression.

(c) As seen during the proof, the random variable Yα,m,l defined by the Bernstein representation

Eα,m,l(−x) = E[e−xYα,m,l ]

has Mellin transform

E[(Yα,m,l)
s] = Γ(1 + s) × [(αl + 1)δ; δ]s

[1/m + (αl + 1)δ; δ]s
(3)

with δ = 1/αm, for every s > −1. By Fubini’s theorem, this implies the following exact computa-
tion, which seems unnoticed in the literature on the Kilbas-Saigo function.∫ ∞

0
Eα,m,l(−x) xs−1 dx = Γ(s)E[Y−s

α,m,l ] = Γ(s)Γ(1− s) × [(αl + 1)δ; δ]−s

[1/m + (αl + 1)δ; δ]−s
(4)

for every s ∈ (0, 1). For m = 1, we recover from (A1) the formula∫ ∞

0
Eα,β(−x) xs−1 dx =

1
Γ(β)

∫ ∞

0
E

α,1, β−1
α
(−x) xs−1 dx =

Γ(s)Γ(1− s)
Γ(β− αs)

which is given in (4.10.3) of [2], as a consequence of the Mellin-Barnes representation of Eα,β(z).
Notice that there is no such Mellin-Barnes representation for Eα,m,l(z) in general.

3. Uniform Hyperbolic Bounds

In Theorem 4 of [5], the following uniform hyperbolic bounds are obtained for the
classical Mittag–Leffler function:

1
1 + Γ(1− α)x

≤ Eα(−x) ≤ 1
1 + 1

Γ(1+α)
x

(5)

for every α ∈ [0, 1] and x ≥ 0. The constants in these inequalities are optimal because of
the asymptotic behaviors

Eα(−x) ∼ 1
Γ(1− α)x

as x → ∞ and 1− Eα(−x) ∼ x
Γ(1 + α)

as x → 0.

See [11] and the references therein for some motivations on these hyperbolic bounds.
In this section, we shall obtain analogous bounds for Eα,m,m−1(−x) and Eα,m,m− 1

α
(−x) with

α ∈ [0, 1], m > 0. Those peculiar functions are associated with the fractional Weibull and
Fréchet distributions defined in [3]. Specifically, we will use the following representations
as a moment generating function, obtained respectively in (3.1) and (3.4) therein:

Eα,m,m−1(z) = E

[
exp
{

z
∫ ∞

0

(
1− σ

(α)
t

)α(m−1)

+
dt
}]

(6)

and

Eα,m,m− 1
α
(z) = E

[
exp
{

z
∫ ∞

0

(
1 + σ

(α)
t

)−α(m+1)
dt
}]

(7)
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for every z ∈ C, where {σ
(α)
t t ≥ 0} is the α−stable subordinator normalized such that

E[e−λσ
(α)
t ] = e−tλα

, λ, t ≥ 0.

Observe that these two formulæ specify the general Bernstein representation (2)
in terms of the α−stable subordinator only. We begin with the following monotonicity
properties, of independent interest.

Proposition 1. Fix α ∈ (0, 1] and x ∈ R. The functions

m �→ Eα,m,m−1(x) and m �→ Eα,m,m− 1
α
(x)

are decreasing on (0, ∞) if x > 0 and increasing on (0, ∞) if x < 0.

Proof of Proposition 1. This follows from (6) resp. (7), and the fact that σ
(α)
t > 0 for every

t > 0. �

Remark 3. It would be interesting to know if the same property holds for m �→ Eα,m,m−l(x) and
any l ≤ 1/α. In the case l �∈ {1, 1/α}, this would require from (2) a monotonicity analysis of the
mapping m �→ Xα,m,m−l , which does not seem easy at first sight.

As in [5], our analysis to obtain the uniform bounds will use some notions of stochastic
ordering. Recall that if X, Y are real random variables such that E[ϕ(X)] ≤ E[ϕ(Y)] for
every ϕ : R → R convex, then Y is said to dominate X for the convex order, a property
which we denote by X ≺cx Y. Another ingredient in the proof is the following infinite
independent product

T(a, b, c) = ∏
n≥0

(
a + nb + c

a + nb

)
Ba+nb,c.

We refer to Section 2.1 in [8] for more details on this infinite product, including the
fact that it is a.s. convergent for every a, b, c > 0. We also mention from Proposition 2 in [8]
that its Mellin transform is

E[T(a, b, c)s] =

(
Γ(ab−1)

Γ((a + c)b−1)

)s

× [a + c; b]s
[a; b]s

for every s > −a. The following simple result on convex orderings for the above infinite
independent products has an independent interest.

Lemma 2. For every a, b, c > 0 and d ≥ c, one has

T(a, b, c) ≺cx T(a, b, d).

Proof of Lemma 2. By the definition of T(a, b, c) and the stability of the convex order by
mixtures—see Corollary 3.A.22 in [12], it is enough to show

(a + b)Ba,b ≺cx (a + c)Ba,c

for every a, b > 0 and c ≥ b. Using again Corollary 3.A.22 in [12] and the standard identity

Ba,c
d
= Ba,b × Ba+b,c−b, we are reduced to show(

a + b
a + c

)
= E[Ba+b,c−b] ≺cx Ba+b,c−b

which is a consequence of Jensen’s inequality. �
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The following result is a generalization of the inequalities (5), which deal with the
case m = 1 only, to all Kilbas-Saigo functions Eα,m,m−1(−x). The argument is considerably
simpler than in the original proof of (5).

Theorem 2. For every α ∈ [0, 1], m > 0 and x ≥ 0, one has

1
1 + Γ(1− α)x

≤ Eα,m,m−1(−x) ≤ 1

1 + Γ(1+α(m−1))
Γ(1+αm)

x
·

Proof of Theorem 2. The first inequality is a consequence of Proposition 1, which implies
in letting m → 0

Eα,m,m−1(−x) ≥ E

[
exp
{
−x
∫ ∞

0

(
1− σ

(α)
t

)−α

+
dt
}]

= E
[
e−x Γ(1−α) L

]
=

1
1 + Γ(1− α)x

for x ≥ 0, where the first equality follows from Theorem 1.2 (b) (ii) in [8]. For the second
inequality, we come back to the infinite product representation∫ ∞

0

(
1− σ

(α)
t

)ρ−α

+
dt d

=
Γ(ρ + 1− α)

Γ(ρ + 1)
T(1, ρ−1, (1− α)ρ−1)

which follows from Theorem 1.2 (b) (i) in [8], exactly as in the proof of Theorem 1.1 in [3].
Lemma 2 implies then∫ ∞

0

(
1− σ

(α)
t

)ρ−α

+
dt ≺cx

Γ(ρ + 1− α)

Γ(ρ + 1)
T(1, ρ−1, ρ−1)

d
=

Γ(ρ + 1− α)

Γ(ρ + 1)
L

where the identity in law follows from (2.7) in [8]. Using (6) with ρ = αm and the convexity
of t �→ e−xt, we obtain the required

Eα,m,m−1(−x) ≤ 1

1 + Γ(1+α(m−1))
Γ(1+αm)

x
·

�

Remark 4. (a) As for the classical case m = 1, these bounds are optimal because of the asymptotic
behaviors

1 − Eα,m,m−1(−x) ∼ Γ(1 + α(m− 1))
Γ(1 + αm)

x as x → 0

and
Eα,m,m−1(−x) ∼ 1

Γ(1− α)x
as x → ∞.

The behavior at zero is plain from the definition, whereas the behavior at infinity will be given
after Remark 6 below.

(b) It is easy to check that the above proof also yields the upper bound

Eα,m,m−1(x) ≤ 1
(1− Γ(1− α)x)+

for every α ∈ [0, 1], m > 0 and x ≥ 0, which seems unnoticed even in the classical case m = 1.
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Our next result is a uniform hyperbolic upper bound for the Kilbas-Saigo function
Eα,m,m− 1

α
(−x), with a power exponent which will be shown to be optimal in Remark 8 (c)

below, and also an optimal constant because

1 − Eα,m,m− 1
α
(−x) ∼

(
1 +

1
m

)
× Γ(1 + αm) x

Γ(1 + α(m + 1))
as x → 0.

Proposition 2. For every α ∈ (0, 1], m > 0 and x ≥ 0, one has

Eα,m,m− 1
α
(−x) ≤ 1(

1 + Γ(1+αm)
Γ(1+α(m+1)) x

)1+ 1
m
·

Proof of Proposition 2. The inequality is derived by convex ordering as in Theorem 2:
setting, here and throughout, Γa for a Gamma random variable with parameter a > 0,
one has∫ ∞

0

(
1 + σ

(α)
t

)−ρ−α

+
dt d

=
Γ(ρ)

Γ(ρ + α)
T(1 + αρ−1, ρ−1, (1− α)ρ−1)

≺cx
Γ(ρ)

Γ(ρ + α)
T(1 + αρ−1, ρ−1, ρ−1)

d
=

Γ(ρ + 1)
Γ(ρ + 1 + α)

Γ1+ α
ρ

where the first identity follows from Corollary 3 in [8] as in the proof of Theorem 1.1 in [3],
the convex ordering from Lemma 2 and the second identity from (2.7) in [8]. Then, using (7)
with ρ = αm, we get the required inequality. �

As in Theorem 2, we believe that there is also a uniform lower bound, with a more
complicated optimal constant which can be read off from the asymptotic behavior of the
density at zero obtained in Proposition 7 below:

Conjecture 3. For every α ∈ (0, 1], m > 0 and x ≥ 0, one has

Eα,m,m− 1
α
(−x) ≥ 1

(1 + (αm)−
α

m+1 (Γ(1 + α) G(1− α; αm) G(1 + α; αm))−
m

m+1 x)1+ 1
m
· (8)

Unfortunately, the proof of this general inequality still eludes us. The monotonicity
property observed in Proposition 1 does not help here, giving only the trivial lower bound
zero. The discrete factorizations which are used in [5] are also more difficult to handle in
this context, because the Mellin transform underlying Eα,m,m− 1

α
is expressed in terms of

generalized Pochhammer symbols. In the case m = 1, we could however get a proof of
(8). The argument relies on the following representation, observed in Remarks 3.1 (d) and
3.3 (c) of [3]:

Eα,1,1− 1
α
(z) = Γ(α)E′α,α(z) = Γ(1 + α)E′α(z) = Γ(1 + α)E

[
Tα ezTα

]
= E

[
ezT(1)

α

]
(9)

for every z ∈ C, where Tα = inf{t > 0, σ
(α)
t > 1} is the first-passage time above one of the

α−stable subordinator and T(1)
α its usual size-bias of order one.

Proposition 3. For every α ∈ (0, 1) and x ≥ 0, one has

Eα,1,1− 1
α
(−x) ≥ 1(

1 +
√

Γ(1−α)
Γ(1+α)

x
)2 ·
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Proof of Proposition 3. By (9) and since

E
[
e−x Γ2

]
=

1

(1 + x)2

for every x ≥ 0, it is enough to show, reasoning exactly as in the proof of Theorem 4 in [5], that

T(1)
α ≺st

√
Γ(1− α)

Γ(1 + α)
Γ2, (10)

where ≺st stands for the usual stochastic order between two real random variables. Recall
that X ≺st Y means P[X ≥ x] ≤ P[Y ≥ x] for every x ∈ R. Since T1/2

d
= 2
√

Γ1/2, the case
α = 1/2 is explicit and the stochastic ordering can be obtained directly. More precisely, the
densities of both random variables in (10) are respectively given by

x
2

e−x2/4 and
x
2

e−x/
√

2

on (0, ∞), where they cross only once at x = 2
√

2. It is a well-known and an easy result
that this single intersection property yields (10)—see Theorem 1.A.12 in [12].

The argument for the case α �= 1/2 is somehow analogous, but the details are more
elaborate because the density of T(1)

α is not explicit anymore. We proceed as in Theorem C
of [5] and first consider the case where α is rational. Setting α = p/n with n > p positive
integers and Xα = T(1)

α we have, on the one hand,

E[(Xα)
ns] =

E[(Tα)1+ns]

E[Tα]

=
Γ(2 + ns)Γ(1 + pn−1)

Γ(1 + pn−1 + ps)

=
nns

pps × E

[(
B 2

n , 1
p− 1

n

)s]
× ∏n+1

i=3 (in
−1)s

∏
p
j=2(jp−1 + n−1)s

for every s > −2n−1, where we have used the well-known identity Tα
d
= (σ

(α)
1 )−α in the

second equality, whereas in the third equality we have used repeatedly the Legendre-Gauss
multiplication formula for the Gamma function—see e.g., Theorem 1.5.2 in [13]. The same
formula implies, on the other hand,

E

⎡⎣(√Γ(1− α)

Γ(1 + α)
Γ2

)ns ⎤⎦ =
nns κs

α

pps × E
[(

Γ 2
n

)s]
×
(

n+1

∏
i=3

(in−1)s

)

=
nns

pps × E

[(
κα × Γ 2

n
×

p

∏
j=2

Γ j
p +

1
n

)s ]

× ∏n+1
i=3 (in

−1)s

∏
p
j=2(jp−1 + n−1)s

for every s > −2n−1, with the notation

κα =

(
p

∏
i=1

Γ(ip−1 − n−1)

Γ(ip−1 + n−1)

) n
2

.
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Since
∏n+1

i=3 (in
−1)s

∏
p
j=2(jp−1 + n−1)s

= E

[(
p

∏
i=2

B i+1
n , i

p− i
n
×

n

∏
j=p+1

Γ j+1
n

)s ]

for every s > −3n−1, by factorization and Theorem 1.A.3 (d) in [5] we are finally reduced
to show

B 2
n , 1

p− 1
n
≺st

(
p

∏
i=1

Γ(ip−1 − n−1)

Γ(ip−1 + n−1)

) n
2

× Γ 2
n
×

p

∏
j=2

Γ j
p +

1
n

for every n > p positive integers. The above inequality is equivalent to

(B 2
n , 1

p− 1
n
)

2
n ≺st

(
p

∏
i=2

Γ(ip−1 − n−1)

Γ(ip−1 + n−1)

)
×
(

Γ 2
n
×

p

∏
j=2

Γ j
p +

1
n

) 2
n

and this is proved via the single intersection property exactly as for (5.1) in [5]: the random
variable on the left-hand side has an increasing density on (0, 1), whereas the random
variable on the right-hand side has a decreasing density on (0, ∞), both densities having
the same positive finite value at zero. We omit details. This completes the proof of (10)
when α is rational. The case when α is irrational follows then by a density argument. �

Remark 5. It is easy to check from (A5) and (A6) that

Γ(1 + α)

Γ(1− α)
= αα Γ(1 + α) G(1− α; α) G(1 + α; α),

so that Proposition 3 leads to (8) for m = 1, in accordance with the estimate (13). In general, the
absence of a tractable complement formula for the product G(1− α; δ) G(1 + α; δ) makes however
the constant in (8) more difficult to handle.

Our last result in this section gives optimal uniform hyperbolic bounds for the gener-
alized Mittag–Leffler functions Eα,β(−x) whenever they are completely monotone, that is
for β ≥ α—see the above Remark 2 (a). This can be viewed as another generalization of (5).

Proposition 4. For every α ∈ (0, 1], β > α and x ≥ 0, one has

1(
1 +
√

Γ(1−α)
Γ(1+α)

x
)2 ≤ Γ(α) Eα,α(−x) ≤ 1(

1 + Γ(1+α)
Γ(1+2α)

x
)2

and
1

1 + Γ(β−α)
Γ(β)

x
≤ Γ(β) Eα,β(−x) ≤ 1

1 + Γ(β)
Γ(β+α)

x
·

Proof of Proposition 4. The bounds for Eα,α(−x) are a direct consequence of (9), Proposi-
tion 2 and Proposition 3. Notice that letting α → 1 leads to the trivial bound 0 ≤ e−x ≤
(2/(2 + x))2. To handle the bounds for β > α, we first recall from Remark 2 (a) that

Γ(β) Eα,β(−x) = Γ(β) E
α,1, β−1

α
(−x) = E

[
e−x Yα,1,l

]
with l = (β− 1)/α > 1− 1/α and Yα,1,l

d
= Bα

α,β−α × T(1)
α . Moreover, one has

E[(Yα,1,l)
s] =

Γ(1 + s)Γ(β)

Γ(β + αs)
(11)
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for every s > −1, which implies the factorization L
d
= Yα,1,l × (Γβ)

α. Since, by Jensen’s inequality,

Γ(β + α)

Γ(β)
= E

[
(Γβ)

α
]
≺cx (Γβ)

α,

we deduce from Corollary 3.A.22 in [12] the convex ordering

Yα,1,l ≺cx
Γ(β)

Γ(β + α)
L

which, as above, implies

Γ(β) Eα,β(−x) ≤ 1

1 + Γ(β)
Γ(β+α)

x

for every x ≥ 0.
The argument for the other inequality is analogous to that of Proposition 3. By density,

we only need to consider the case α = p/n and β = (p + q)/n with p < n and q positive
integers. By (11) and the Legendre-Gauss multiplication formula, we obtain

E[(Yα,1,l)
ns] =

nns

pps × E

[(
B 1

n , q
np

)s]
× ∏n

i=2(in
−1)s

∏
p−1
j=1 (jp−1 + (p + q)(np)−1)s

for every s > −n−1. On the other hand, one has

E
[(

Γ(β−α)
Γ(β)

L
)ns ]

= nns

pps E

[(
κα,β × Γ 1

n
× ∏

p−1
j=1 Γ j

p +
p+q
np

)s ]
× ∏n

i=2(in
−1)s

∏
p−1
j=1 (jp−1+(p+q)(np)−1)s

with

κα,β = pp
(

Γ(qn−1)

Γ((p + q)n−1)

)n

.

Comparing these two formulæ we are reduced to show

(B 1
n , q

np
)

1
n ≺st p

p
n

(
Γ(qn−1)

Γ((p + q)n−1)

)
×
(

Γ 1
n
×

p−1

∏
j=1

Γ j
p +

p+q
np

) 1
n

for every p < n and q positive integers. This is obtained in the same way as above via the
single intersection property. We leave the details to the reader. �

4. Asymptotic Behavior of Fractional Extreme Densities

In this section, which is a complement to [3], we study the behavior of the density
functions of the fractional Weibull and Fréchet distributions at both ends of their support.
To this end, we also evaluate their Mellin transforms in terms of Barnes’ double Gamma
function. Along the way, we give the exact asymptotics of x �→ Eα,m,l(x) on the negative
half-line, in the completely monotonic case α ∈ [0, 1] and l ≥ m− 1/α.

4.1. The Fractional Weibull Case

In [3], a fractional Weibull distribution function with parameters α ∈ [0, 1] and λ, ρ > 0
is defined as the unique distribution function FW

α,λ,ρ on (0, ∞) solving the fractional differ-
ential equation

Dα
0+F(x) = λ xρ−α F̄(x)
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where F̄ = 1− F denotes the associated survival function and Dα
0+ a progressive Liou-

ville fractional derivative on (0, ∞). The case α = 1 corresponds to the standard Weibull
distribution. In [3], it is shown that this distribution function exists and is given by

FW
α,λ,ρ(x) = 1 − Eα, ρ

α , ρ
α−1(−λxρ)

for every x ≥ 0—see the formula following (3.1) in [3]. In particular, the density f W
α,λ,ρ is

real-analytic on (0, ∞) and has the following asymptotic behavior at zero:

f W
α,λ,ρ(x) ∼

(
λ Γ(ρ + 1− α)

Γ(ρ)

)
xρ−1 as x → 0.

The behavior of f W
α,λ,ρ at infinity is however less immediate, and to this aim we will

need an exact expression for the Mellin transform of the random variable Wα,λ,ρ with
distribution function FW

α,λ,ρ, which has an interest in itself.

Proposition 5. The Mellin transform of Wα,λ,ρ is

E
[
Ws

α,λ,ρ

]
=

(
ρα

λ

) s
ρ

Γ(1 + sρ−1) × [ρ + (1− α); ρ]−s

[ρ; ρ]−s

for every s ∈ (−ρ, ρ). Consequently, one has

f W
α,λ,ρ(x) ∼

(
ρ

λΓ(1− α)

)
x−ρ−1 as x → ∞.

Proof of Proposition 5. We start with a more concise expression of (3) for l = m− 1, which
is a direct consequence of (A9):

E[(Yα, ρ
α , ρ

α−1)
s] = ρ−s × [1 + (1− α)ρ−1; ρ−1]s

[1; ρ−1]s
·

By Theorem 1.1 in [3] and using the notations therein, we deduce

E
[
Ws

α,λ,ρ

]
= E

⎡⎣( L

λYα, ρ
α , ρ

α−1

) s
ρ

⎤⎦
=
( ρ

λ

) s
ρ Γ(1 + sρ−1) ×

[1 + (1− α)ρ−1; ρ−1]−sρ−1

[1; ρ−1]−sρ−1

=

(
ρα

λ

) s
ρ

Γ(1 + sρ−1) × [ρ + (1− α); ρ]−s

[ρ; ρ]−s

for every s ∈ (−ρ, ρ) as required, where the third equality comes from (A8). The asymptotic
behavior of the density at infinity is then a standard consequence of Mellin inversion. First,
we observe from the above formula and (A10) that the first positive pole of s �→ E

[
Ws

α,λ,ρ

]
is simple and isolated in the complex plane at s = ρ, with

E
[
Ws

α,λ,ρ

]
∼
(

ρα

λ

)
× [ρ + (1− α); ρ]−ρ

[ρ; ρ]−s

∼
(

ρρ+α

λ

)
× [ρ + (1− α); ρ]−ρ

[2ρ; ρ]−ρ
× (ρ)−s =

ρ Γ(ρ− s)
λΓ(1− α)

∼ ρ

λΓ(1− α) (ρ− s)
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as s ↑ ρ, where the second asymptotics comes from (A9) and the equality from (A5).
Therefore, applying Theorem 4 (ii) in [14] beware the correction (log x)k → (log x)k−1 to
be made in the expansion of f (x) therein, we obtain

f W
α,λ,ρ(x) ∼

(
ρ

λΓ(1− α)

)
x−ρ−1 as x → ∞

as required. �

Remark 6. (a) Another proof of the asymptotic behavior at infinity can be obtained from that of the
so-called generalized stable densities. More precisely, using the identity in law on top of p.12 in [3]
and the notation therein, we see by multiplicative convolution, having set f Gα,ρ for the density of the
generalized stable random variable G(ρ + 1− α, 1− α), that

f W
α,λ,ρ(x) = λ xρ−1

∫ ∞

0
f Gα,ρ(y) y−ρ e−

λ
ρ (

x
y )

ρ

dy

=

(
λ

ρ

) 1
ρ
∫ ∞

0
f Gα,ρ

(
x(ρλ−1t)−

1
ρ

)
t−

1
ρ e−t dt

∼
(

ρ

λΓ(1− α)

∫ ∞

0
t e−t dt

)
x−ρ−1 =

(
ρ

λΓ(1− α)

)
x−ρ−1

as x → ∞, where for the asymptotics we have used the Proposition in [15] and a direct integration.
This argument does not make use of Mellin inversion and is overall simpler than the above. However,
it does not convey to the fractional Fréchet case.

(b) The Mellin transform simplifies for α = 0 and α = 1 : using (A1) and (A6) we recover

E[Ws
0,λ,ρ] = λ

− s
ρ Γ(1 + sρ−1)Γ(1− sρ−1) and E[Ws

1,λ,ρ] =
( ρ

λ

) s
ρ Γ(1 + sρ−1)

in accordance with the scaling property Wα,λ,ρ
d
= λ−1/ρWα,1,ρ and the identities given at the

bottom of p.3 in [3]. The Mellin transform takes a simpler form in two other situations.

• For ρ = α, we obtain from (3), (A1) and (A5)

E[(Yα,1,0)
s] =

Γ(1 + s)
Γ(1 + αs)

= E[Z−αs
α ],

in accordance with Remark 3.1 (d) in [3]. This yields

Wα,λ,α
d
=

(
L

λYα,1,0

) 1
α d

= λ−
1
α Zα × L

1
α ,

an identity which was already discussed for λ = 1 in the introduction of [3] as the solution to
(1.3) therein. The Mellin transform reads

E[Ws
α,λ,α] = λ−

s
α

Γ(1 + sα−1)Γ(1− sα−1)

Γ(1− s)
·

• For ρ = 1− α, where we obtain from (A5)

E[Ws
1−ρ,λ,ρ] =

( ρ

λ

) s
ρ Γ(1 + sρ−1)Γ(ρ− s)

Γ(ρ)
and W1−ρ,λ,ρ

d
=
( ρ

λ

) 1
ρ

L
1
ρ × Γ−1

ρ .

(c) The two cases ρ = α and ρ = 1− α have a Mellin transform expressed as the quotient of a
finite number of Gamma functions. This makes it possible to use a Mellin-Barnes representation of
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the density to get its full asymptotic expansion at infinity. Using the standard notation of Definition
C.1.1 in [13], one obtains

f W
α,λ,α(x) ∼ ∑n≥1

nα x−1−nα

λnΓ(1−nα)
and f W

1−α,λ,α(x) ∼ αx−α−1

λΓ(α) ∑n≥0 (−1)n Γ
(

n
ρ +2
)

n!

(
λ
ρ

)− n
ρx−n

which are everywhere divergent. The first expansion can also be obtained from (1.8.28) in [16] using

f W
α,λ,α(x) = λ xα−1 Eα,α(−λxα).

Unfortunately, the Mellin transform of Wα,λ,ρ might have poles of variable order and it seems
difficult to obtain a general formula for the full asymptotic expansion at infinity of f W

α,λ,ρ(x).

Writing

Eα, ρ
α , ρ

α−1(−λxρ) = P[Wα,λ,ρ > x] =
∫ ∞

x
f W
α,λ,ρ(y) dy,

we obtain by integration the following asymptotic behavior at infinity, which is valid for
any α ∈ (0, 1] and m > 0:

Eα,m,m−1(−x) ∼ 1
Γ(1− α) x

as x → ∞.

This behavior, which turns out to be the same as that of the classical Mittag–Leffler
function Eα(−x)—see e.g., (3.4.15) in [2], gives the reason the constant in the lower bound
of Theorem 2 is optimal—see the above Remark 4 (a). It is actually possible to get the exact
behavior of Eα,m,l(−x) at infinity for any α ∈ (0, 1], m > 0 and l > m− 1/α. We include
this result here since it seems unnoticed in the literature on Kilbas-Saigo functions.

Proposition 6. For any α ∈ [0, 1], m > 0 and l > m− 1/α, one has

Eα,m,l(−x) ∼ Γ(1 + α(l + 1−m))

Γ(1 + α(l −m)) x
as x → ∞.

Proof of Proposition 6. The case α = 0 is obvious since E0,m,l(x) = 1/(1− x). For α ∈
(0, 1], setting δ = 1/αm, recall from (4) that for every s ∈ (0, 1) one has∫ ∞

0
Eα,m,l(−x) xs−1 dx = Γ(s)Γ(1− s) × [(αl + 1)δ; δ]−s

[1/m + (αl + 1)δ; δ]−s

∼ [(αl + 1)δ; δ]−1

[1/m + (αl + 1)δ; δ]−1 (1− s)
=

Γ(1 + α(l + 1−m))

Γ(1 + α(l −m)) (1− s)

as s ↑ 1, where in the equality we have used the concatenation formula (A1). The asymptotic
behavior follows then by Mellin inversion as in the proof of Proposition 5. �

Remark 7. In the boundary case l = m− 1/α, the behavior of Eα,m,m−1/α(−x) at infinity, which
has different speed and a more complicated constant, will be obtained with the help of the fractional
Fréchet distribution—see Remark 8 (c) below.

We end this paragraph with the following conjecture which is natural in view of
Proposition 6. We know by Theorem 2 resp. Proposition 4 that this conjecture is true for
the cases l = m− 1 and m = 1.

Conjecture 4. For every α ∈ (0, 1], m > 0, l > m− 1/α and x ≥ 0, one has

1

1 + Γ(1 + α(l−m))
Γ(1+α(l−m+ 1)) x

≤ Eα,m,l(−x) ≤ 1

1 + Γ(1 + αl)
Γ(1 + α(1 + l)) x

·
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4.2. The Fréchet Case

In [3], a fractional Fréchet distribution function with parameters α ∈ [0, 1] and λ,
ρ > 0 is defined as the unique distribution function FF

α,λ,ρ on (0, ∞) solving the fractional
differential equation

Dα
− F̄(x) = λ x−ρ−αF(x)

where Dα
− denotes a regressive Liouville fractional derivative on (0, ∞). The case α = 1

corresponds to the standard Fréchet distribution. In [3], it is shown that this distribution
function exists and is given by

FF
α,λ,ρ(x) = E

α, ρ
α , ρ−1

α
(−λx−ρ)

for every x ≥ 0—see the formula following (3.4) in [3]. In particular, the density f F
α,λ,ρ is

real-analytic on (0, ∞) and has the following asymptotic behavior at infinity:

f F
α,λ,ρ(x) ∼

(
λ Γ(ρ + 1)
Γ(ρ + α)

)
x−ρ−1 as x → ∞.

The behavior of the density at zero is less immediate and we will need, as in the above
paragraph, the exact expression of the Mellin transform of the random variable Fα,λ,ρ with
distribution function FF

α,λ,ρ, whose strip of analyticity is larger than that of Wα,λ,ρ.

Proposition 7. The Mellin transform of Fα,λ,ρ is

E
[
Fs

α,λ,ρ

]
=

(
ρα

λ

)− s
ρ

Γ(1− sρ−1) × [ρ + 1; ρ]s
[ρ + α; ρ]s

for every s ∈ (−ρ− α, ρ). Consequently, one has

f F
α,λ,ρ(x) ∼

⎛⎝ρ
α2
ρ (ρ + α)

λ
1+ α

ρ
Γ(1 + α) G(1− α; ρ) G(1 + α; ρ)

⎞⎠xρ+α−1 as x → 0.

Proof of Proposition 7. The evaluation of the Mellin transform is done as for the fractional
Weibull distribution, starting from the expression

E[(Y
α, ρ

α , ρ−1
α
)s] = ρ−s × [1 + ρ−1; ρ−1]s

[1 + αρ−1; ρ−1]s

which is a consequence of (3) and (A5). By Theorem 1.2 in [3] and (A8), we obtain the
required formula

E
[
Fs

α,λ,ρ

]
= E

⎡⎢⎣
⎛⎝ L

λY
α, ρ

α , ρ−1
α

⎞⎠− s
ρ

⎤⎥⎦ =

(
ρα

λ

)− s
ρ

Γ(1− sρ−1) × [ρ + 1; ρ]s
[ρ + α; ρ]s

·

Then the asymptotic behavior of f F
α,λ,ρ(x) at zero follows as that of f W

α,λ,ρ(x) at infinity,
in considering the residue at the first negative pole s = −(ρ + α) which is simple and
isolated in the complex plane, applying Theorem 4 (i) in [14] with the same correction as
above, and making various simplifications. We omit details. �

Remark 8. (a) Comparing the Mellin transforms, Propositions 5 and 7 imply the factorization

W−1
α,λ,ρ

d
= Fα,λ,ρ × Z(ρ + 1− α, ρ + α; ρ, ρ + 1; ρ). (12)
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In general, it follows from Theorem 1 that for every α ∈ (0, 1], m, λ > 0 and l > m− 1/α,
there exists a positive random variable with distribution function Eα,m,l(−λx−αm), and which is
given by (3), (2) and Theorem 1.2 in [3] as the independent product

Fα,λ,αm × (Xα,m,l)
1

αm
d
= Fα,λ,αm × Z(αl + 1, α(m + 1); αm, α(l + 1) + 1; αm),

where the identity in law follows from (A8). In this respect, the fractional Fréchet distributions can
be viewed as the “ground state” distributions associated with the Kilbas-Saigo functions Eα,m,l , in
the boundary case l = m− 1/α.

(b) As above, the Mellin transform simplifies for α = 0, 1 : we get

E[Fs
0,λ,ρ] = λ

s
ρ Γ(1 + sρ−1)Γ(1− sρ−1) and E[Fs

1,λ,ρ] =

(
λ

ρ

) s
ρ

Γ(1− sρ−1),

in accordance with the scaling property Fα,λ,ρ
d
= λ1/ρFα,1,ρ and the identities given after the

statement of Theorem 1.2 in [3]. The Mellin transform also takes a simpler form in the same other
situations as above.

• For ρ = α, with

E[Fs
α,λ,α] = λ

s
α

Γ(α)Γ(1 + sα−1)Γ(1− sα−1)

Γ(α + s)
·

This yields the identity Fα,λ,α
d
= λ

1
α (Z−1

α )(α) × L−
1
α , which was discussed for λ = 1 in the

introduction of [3] as the solution to (1.4) therein. This is also in accordance with Remark 3.3
(c) in [3], since

(T(1)
α )

1
α

d
= ((Z−α

α )(1))
1
α

d
= (Z−1

α )(α).

Notice that the constant appearing in the asymptotic behavior of the density at zero is also
simpler: one finds

f F
α,λ,α(x) ∼

(
2α Γ(1 + α)

λ2 Γ(1− α)

)
x2α−1 as x → 0. (13)

• For ρ = 1− α, with

E[Fs
1−ρ,λ,ρ] =

(
λ

ρ

) s
ρ

Γ(1− sρ−1)Γ(1 + s) and F1−ρ,λ,ρ
d
=

(
λ

ρ

) 1
ρ

L
− 1

ρ × L.

Here, the density converges at zero to a simple constant: one finds

f F
1−ρ,λ,ρ(x) →

( ρ

λ

) 1
ρ Γ(1 + ρ−1) as x → 0.

(c) Integrating the density and using P[Fα,λ,ρ ≤ x] = E
α, ρ

α , ρ−1
α
(−λx−ρ), we obtain the

following asymptotic behavior at infinity for any α ∈ (0, 1] and m > 0, which is more involved
than that of Proposition 6:

Eα,m,m− 1
α
(−x) ∼ (αm)

α
m Γ(1 + α) G(1− α; αm) G(1 + α; αm) x−1− 1

m as x → ∞.

For m = 1, this behavior matches the first term in the full asymptotic expansion

Eα,1,1− 1
α
(−x) = Γ(α)Eα,α(−x) ∼ Γ(α) ∑

n≥1

(−1)n

Γ(−αn) xn+1 ·
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As for Eα,m,m−1(−x), a full asymptotic expansion of Eα,m,m− 1
α
(−x) at infinity seems difficult

to obtain for all values of m.

5. Some Complements on the Le Roy Function

In this section, we show some miscellaneous results on the Le Roy function

Lα(x) = ∑
n≥0

xn

(n!)α
, α > 0, x ∈ R.

In [3], this function played a role in the construction of a fractional Gumbel distribution
—see Theorem 1.3 therein. The Le Roy function, which has been much less studied than
the classical Mittag–Leffler function, can be viewed as an alternative generalization of the
exponential function. See also the recent paper [17] for a further generalization related to
the Mittag–Leffler function. Throughout, we giscard the explicit case L1(x) = E1(x) = ex.

We begin with the asymptotic behavior at infinity. Le Roy’s original result—see [6]
p. 263-reads

Lα(x) ∼ (2π)
1−α

2√
α

x
1−α

2 eαx
1
α as x → ∞,

and is obtained by a variation of Laplace’s method. An extension of this asymptotic
behavior has been given in [18] for the so-called Mittag–Leffler functions of Le Roy type.
Laplace’s method can also be used to solve Exercise 8.8.4 in [19], which states

Lα(−x) =
2(2π)

1−α
2√

α
x

1−α
2α eα cos(π/α)x

1
α
(

sin
(

π/2α + α sin(π/α)x
1
α

)
+ O(x−

1
α )
)

(14)

for α ≥ 2 and

Lα(−x) ∼ 1
αα Γ(1− α) x (log x)α

(15)

for α ∈ (1, 2), as x → ∞. The following estimate, which seems to have passed unnoticed in
the literature, completes the picture.

Proposition 8. For every α ∈ (0, 1), one has

Lα(−x) ∼ 1
Γ(1− α) x (log x)α

as x → ∞.

Proof of Proposition 8. In the proof of Theorem 1.3 in [3] it is shown that

Lα(−x) = P[L > xLα] =
∫ ∞

0
e−xt fα(t) dt

where
Lα

d
=
∫ ∞

0
e−σ

(α)
t dt

has density fα on (0, ∞) and Mellin transform

E[Ls
α] = Γ(1 + s)1−α, s > −1.

In particular, using the notation in [20], we have fα = e1−α, and Theorem 2.4 therein implies

fα(x) ∼ 1
Γ(1− α) (− log x)α

as x → 0. (16)

Plugging this estimate into the above expression of Lα(−x), we conclude the proof by
a direct integration. �
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Remark 9. (a) The estimate (16) also gives the asymptotic behavior, at the right end of the support,
of the density of the fractional Gumbel random variable Gα,λ which is defined in Theorem 1.3 of [3].
Indeed, by the definition and multiplicative convolution the density of eλGα,λ on (0, ∞) writes∫ ∞

0
e−xy y fα(y) dy ∼ 1

Γ(1− α) x2 (log x)α
as x → ∞,

where the estimate follows from (16) as in the proof of Proposition 8. A change of variable implies then

f G
α,λ(x) ∼

(
λ1−α

Γ(1− α)

)
x−α e−λx as x → ∞.

Notice that at the left end of the support, there is a convergent series representation which is
given by Corollary 3.6 in [3].

(b) In the case α = 2, one has L2(x) = I0(2
√

x) and L2(−x) = J0(2
√

x) for all x ≥ 0,
where I0 and J0 are the classical Bessel functions with index 0. In particular, a full asymptotic
expansion for L2 at both ends of the support is available, to be deduced e.g., from (4.8.5) and (4.12.7)
in [13]. These expansions also exist when α is an integer since Lα is then a generalized Wright
function—see Chapter F.2.3 in [2] and the original articles by Wright quoted therein. The case when
α is not an integer does not seem to have been investigated, and might be technical in the absence of
a true Mellin-Barnes representation.

Our next result characterizes the connection between the entire function Lα(z) and
random variables. Recall that a function f : C→ C which is holomorphic in a neighbor-
hood Ω of the origin is a moment generating function (MGF) if there exists a real random
variable X such that

f (z) = E
[
ezX
]
, z ∈ Ω.

In particular, it is clear that L0 is the MGF of the exponential law L and L1 that of the
constant variable 1. The following provides a characterization.

Proposition 9. The function Lα(z) is the MGF of a real random variable if and only if α ≤ 1. In
this case, one has

Lα(z) = E
[
ezLα

]
, z ∈ C.

Proof of Proposition 9. The if part is a direct consequence of the proof of Proposition 8.
On the other hand, the estimates (14) and (15) show that Lα(z) takes negative values on
R−, so that it cannot be the moment generating function of a real random variable, when
α > 1. This completes the proof. �

Observe that since Lα is non-negative, the above result also shows Lα(−x) is CM
on (0, ∞) if and only if α ≤ 1, echoing Pollard’s aforementioned classical result for the
Mittag–Leffler Eα(−x). One can ask whether there are further complete monotonicity
properties for Lα, as in [21] for Eα. Our last result for the Le Roy function is a monotonicity
property which is akin to Proposition 1.

Proposition 10. The mapping α �→ Lα(x) is non-increasing on [0, 1] for every x ∈ R.

Proof of Proposition 10. The fact that α �→ Lα(x) decreases on R+ is obvious for x ≥ 0, by
the definition of Lα. To show the property on [0, 1] for x < 0, we will use a convex ordering
argument. More precisely, the Malmsten Formula (A3) and the Lévy–Khintchine formula
show that for every t ∈ [0, 1], the random variable G1−t = log L1−t is the marginal at time
t of a real Lévy process, since E[eizG1−t ] = Γ(1 + iz)t = etψ(z) for every z ∈ R, with

ψ(z) = −γiz +
∫ 0

−∞
(eizx − 1− izx)

dx
|x|(e|x| − 1)

·
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This is actually well known—see Example E in [22]. By independence and stationarity
of the increments of a Lévy process, we deduce that there exists a multiplicative martingale

{Mt, t ∈ [0, 1]} such that Mt
d
= L1−t for every t ∈ [0, 1]. Jensen’s inequality implies

Lβ ≺cx Lα

for every 0 ≤ α ≤ β ≤ 1. Applying the definition of convex ordering to the function
ϕ(x) = ex, we get Lβ(x) ≤ Lα(x) for every x < 0 and 0 ≤ α ≤ β ≤ 1, as required. �

Remark 10. (a) In the terminology of [23], the family {L1−α, α ∈ [0, 1]} is a peacock, whose
associated multiplicative martingale is completely explicit. We refer to [23] for numerous examples
of explicit peacocks related to exponential functionals of Lévy processes. Observe from Lemma 2 that
the family {T(a, b, t), t > 0} is also a peacock.

(b) Letting α → 0 and α → 1 in Proposition 10 leads to the bounds

ex ≤ Lβ(x) ≤ Lα(x) ≤ 1
(1− x)+

for every x ∈ R and 0 < α < β < 1. The hyperbolic upper bound is optimal as in Theorem 2 and
Proposition 2, because Lα(x)− 1 ∼ x as x → 0. The exponential lower bound is thinner than the
order given in Proposition 8. On the other hand, it does not seem that stochastic ordering arguments
can help for a uniform estimate involving a logarithmic term.

It is natural to ask if the statement of Proposition 10 is also true for the classical
Mittag–Leffler function, and this problem seems still open.

Conjecture 5. The mapping α �→ Eα(x) is non-increasing on [0, 1] for every x ∈ R.

Numerical simulations suggest a positive answer. It is clear by the definition that
α �→ Eα(x) is non-increasing for every x ≥ 0 on [α0, ∞), where 1 + α0 = 1.46163... is
the location of the minimum of the Gamma function on (0, ∞). A direct consequence of
Theorem B in [5] is also that

α �→ Eα(Γ(1 + α)x)

is non-increasing on [1/2, 1] for every x ∈ R. The constant Γ(1 + α) appears above because
of the convex ordering argument used in [5]. It seems that other kinds of arguments are
necessary to study the monotonicity of α �→ Eα(x) on [0, 1].

We would like to finish this paper with the following related monotonicity result,
which relies on a stochastic ordering argument, for the generalized Mittag–Leffler function.

Proposition 11. For every α ∈ [0, 1] and x ∈ R, the mapping

β �→ Γ(β)Eα,β(x)

is non-increasing on (α, ∞) if x > 0 and non-decreasing on (α, ∞) if x < 0.

Proof of Proposition 11. By Remark 3.3 (c) in [3], we have the probabilistic representation

Γ(β)Eα,β(x) = E

[
ex Bα

α,β−α× T(1)
α

]
for every α ∈ [0, 1], β > α and x ∈ R. Reasoning as in Proposition 3, we see by factorization
that it suffices to show that

β �→ Bα
α,β−α
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is non-increasing on (α, ∞) for the usual stochastic order. On the other hand, the density
function of the random variable Bα

α,β−α is

Γ(β)

Γ(α + 1)Γ(β− α)

(
1− x

1
α

)β−α−1

on [0, 1) and its value at zero is by the log-convexity of the Gamma function an increasing
function of β. Moreover, the density functions of Bα

α,β−α and Bα
α,β′−α cross only once for

β �= β′, at (
1 −

(
Γ(β)Γ(β′ − α)

Γ(β′)Γ(β− α)

) 1
β′−β

)α

∈ (0, 1).

The single intersection property finishes then the argument, as for Proposition 3. �
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Appendix A

In this Appendix we recall some properties of Barnes’ double Gamma function G(z; δ),
which are used throughout the paper. For every δ > 0, this function is defined as the
unique solution to the functional equation

G(z + 1; δ) = Γ(zδ−1)G(z; δ) (A1)

with normalization G(1; δ) = 1. The function is holomorphic on C and admits the following
Malmsten type representation

G(z; δ) = exp
∫ ∞

0

(
1−e−zx

(1−e−x)(1−e−δx)
− ze−δx

1−e−δx + (z− 1)( z
2δ − 1)e−δx − 1

)
dx
x (A2)

which is valid for �(z) > 0—see (5.1) in [24]. Putting (A1) and (A2) together and making
some simplifications, we recover the standard Malmsten formula for the Gamma function

Γ(1 + z) = exp
{
−γz +

∫ 0

−∞
(ezx − 1− zx)

dx
|x|(e|x| − 1)

}
(A3)

for every z > −1, where γ is Euler’s constant. The following Stirling type asymptotic behavior

log G(z; δ) − 1
2δ

(
z2 log z − ( 3

2 + log δ) z2 − (1 + δ) z log z
)
− A z − B log z → C (A4)

is valid for |z| → ∞ with | arg(z)| < π, for some real constants A, B and C which are given
in (4.5) of [24]. There is a second concatenation formula

G(z + δ; δ) = (2π)(δ−1)/2δ1/2−zΓ(z)G(z; δ) (A5)

which is valid for all z ∈ C, the right-hand side being understood as an analytic extension
when z is a non-positive integer—see (4.6) in [25] and the references therein. Observe that
(A1) and (A5) lead readily to the closed formula

G(δ; δ) = G(1 + δ; δ) = (2π)(δ−1)/2δ−1/2. (A6)

In this paper, we make an extensive use of the following Pochhammer type symbol
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[a; δ]s =
G(a + s; δ)

G(a; δ)
(A7)

which is well-defined for every a, δ > 0 and s > −a. The following formula

[aδ−1; δ−1]sδ−1 = (2π)s(1/δ−1)/2 δs2/2δ−s(1+(1−2a)/δ)/2 [a; δ]s (A8)

can be deduced from (4.10) in [25] beware the different normalization for G(1; δ) therein
which becomes irrelevant when considering the Pochhammer type symbol. Notice also
that (A5) yields

δs [a + δ; δ]s = (a)s [a; δ]s (A9)

with the standard notation

(a)s =
Γ(a + s)

Γ(a)

for the usual Pochhammer symbol. Finally, we observe from the double product represen-
tation of G(z, δ)—see e.g., (4.4) in [25] that for every a, δ > 0 one has

inf{s > 0, [a; δ]−s = 0} = a (A10)

and that this zero is simple and isolated on the complex plane.
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Abstract: The multistage differential transformation method (MSDTM) is used to find an approximate
solution to the forced damping Duffing equation (FDDE). In this paper, we prove that the MSDTM
can predict the solution in the long domain as compared to differential transformation method
(DTM) and more accurately than the modified differential transformation method (MDTM). In
addition, the maximum residual errors for DTM and its modification methods (MSDTM and MDTM)
are estimated. As a real application to the obtained solution, we investigate the oscillations in a
complex unmagnetized plasma. To do that, the fluid govern equations of plasma species is reduced
to the modified Korteweg–de Vries–Burgers (mKdVB) equation. After that, by using a suitable
transformation, the mKdVB equation is transformed into the forced damping Duffing equation.

Keywords: multistage differential transformation method; Duffing equation; nonlinear damping
oscillations

1. Introduction

Mathematical techniques are very important tools in mathematics. Mathematicians
have developed many mathematical methods to compute linear or nonlinear differential
equations which describe many important phenomena and applications in science [1–7].
The mathematical techniques are classified as algebraic methods, semi-approximate, gen-
eral analytical, approximate analytical, numerical, or qualitative techniques. The basic
concept of approximate analytical techniques such as Adomian decomposition method
(ADM), Laplacian decomposition method (LDM), or differential transformation method
(DTM) is assuming that the solution is descried by a Taylor expansion form. Indeed, some
solutions of equations have well-known Taylor expansions such as exponential function or
hyperbolic function. In this case, it is easy to determine the exact solution by a few terms
of the Taylor expansion series. Otherwise, the approximate solution will be obtained in the
form of few terms of Taylor expansion series. Since Taylor expansion is local convergent
about the initial condition, the method can approximate the solution in the neighborhood
of the initial point. Thus, the solution is obtained in a very short domain. This feature
of ADM, LDM or DTM has been mentioned by some researchers [8–12]. DTM has been
improved by dividing the domain into subdomains and modifying the initial point in
each subdomain. The other modification is by using the Laplacian transformation and
Padé approximate. In Section 2, we describe these modifications in details. However, it is
very important to determine the optimal modification of DTM to present fast and accurate
techniques.

Mathematics 2021, 9, 432. https://doi.org/10.3390/math9040432 https://www.mdpi.com/journal/mathematics271
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Some of the most important and famous differential equations whose solutions are
related to many natural phenomena, physical concepts, and engineering phenomena are
the Duffing equation (including conservative and non-conservative cases), the Helmholtz
equation (including conservative and non-conservative cases), and their families [13–24].
Given the importance of the family of Duffing equation, a great effort has been made
by many researchers to solve this equation and its family, with a numerical, analytical,
or semi-analytical solution according to the type of Duffing equation. Examples of these
approximate methods for solving the conservative Duffing equation (u′′+ βu(t) + γu3 = 0)
include the homotopy perturbation method [25], harmonic balance method [26], energy bal-
ance method [27], modified variational approach [28], and coupled homotopy–variational
approach [29]. On the other hand, many researchers have tried to find a solution to the
damping Duffing equation (DDE),

(
u′′ + αu′ + βu(t) + γu3 = 0

)
[30–35], since it is more

closely related to reality than the undamping Duffing equation, which is correct only for
idealized isolated systems, i.e., systems in which the frictional force and viscosity are
absent. One of the most important approximate methods that has been used and developed
to solve many differential equations is DTM, which has been used in solving DDE [11].
Nourazar et al. [11] used the modified DTM to get an approximate solution to the DDE. The
authors compared their solution with both the fourth-order Runge–Kutta (RK4) numerical
solution and the DTM solution. They found that the DTM solution is suitable only for small
time intervals while the MDTM solution is suitable for the whole time domain. In our study,
we solve the forced damping Duffing equation (FDDE)

(
u′′ + αu′ + βu(t) + γu3 = F

)
us-

ing the multistage differential transformation method (MSDTM) for arbitrary initial condi-
tions. Moreover, we compare the approximate solutions of DTM and MDTM as well as the
numerical solution using RK4 in order to determine the optimal technique. Furthermore,
the oscillations in complex unmagnetized plasmas are investigated by reducing the fluid
govern equations of the plasma species to an evolution equation and then transform this
equation to the Duffing-type equation using a suitable transformation.

2. Methodology

This section is devoted to briefly describing DTM and its modifications. Assume the
following ordinary differential equation (ODE)

P(u, u′, u′′, ....) = 0, (1)

where u(t) is the solution of this ODE in domain [t0, tN ], P is a polynomial in terms of u
and its derivative, and u(t0) = c.

2.1. Differential Transformation Method (DTM)

Assume that the goal is finding the approximate solution of Equation (1). The main
concept of DTM is based on applying the differential transformation u(t) =⇒ U(k) at
t = t0 as follows:

U(k) =
1
k!
[
dku(t)

dtk ]t=t0 . (2)

The differential inverse transformation U(k) =⇒ u(t) is defined as

u(t) =
∞

∑
k=0

U(k)(t− t0)
k, (3)

Inserting Equation (2) into Equation (3), u(t) can be approximated in finite number
series as follows

uN(t) =
N

∑
k=0

(t− t0)
k

k!
[
dku(t)

dtk ]t=t0 = gN . (4)

Some differential transformation rules are introduced in Table 1.
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Table 1. Differential transformation rules.

Original Function Transformed Function

u(t)± v(t) U(t)±V(t)

cu(t) cU(t) (c is constant)
du(t)

dt
(k + 1)U(k + 1)

dnu(t)
dtn

(k+n)!
k! U(k + n)

u(t)v(t) ∑k
m=0 U(m)V(k−m)

It is well known that, since the DTM based on Taylor expansion, the approximate solu-
tion if it is locally analytic converges to the exact solution with the following approximated
error

|u(t)−gN(t)| ≤
M

(N + 1)!
|t− t0|N+1,

where |u(tN)| ≤ M.
It is obvious that the error increases when |t − t0| incenses for fixed term N. Note

that DTM gives accurate results only in a small domain around the initial point. Therefore,
to obtain good results, some modifications to this method must be introduced. There are
some attempts to improve this method, such as the modified differential transformation
method (MDTM) and the multistage differential transformation method (MSDTM).

2.2. Modified Differential Transformation Method (MDTM)

MDTM is presented in [11]. The idea is described simply by applying the Laplacian
transformation into Equation (3) Lu(t). We obtain the polynomial in terms of 1/ts. Next,
we use Padé approximate, [3/3] or [4/4], and then apply the Laplacian inverse transform.
The method is improved and able to approximate the solution in long domain.

Definition 1. We say the function g(t) is Padé approximate of order [m/n] for function u(t) if

g(t) =
a0 + a1t + a2t2 + ...... + amtm

1 + b0 + b1t + b2t2 + ...... + bntn ,

where u(0) = g(0), u′(0) = g′(0), u′′(0) = g′′(0), ........, u(m+n)(0) = g(m+n)(0). The constants
ai, i = 1, 2, ..., m and bj, j = 1, 2, ..., n are uniquely determined. The Padé approximate is unique for
given n and m.

2.3. Multistage Differential Transformation Method (MSDTM)

The other modification is MSDTM. The main concept is dividing the domain into
subdomains [ti, ti+1] = Di and applying DTM in each subdomain with the initial condition
at ti to approximate u(t) at the subdomain Di.

2.4. Example

In this section, we apply DTM and its modifications to one of the most famous
equations in dynamic systems which is called the Duffing oscillator or the Duffing equa-
tion. It is known that the Duffing equation has many formulas, and, in this paper,
we restrict our attention to investigating the forced damping Duffing equation (FDDE)(

u′′ + αu′ + βu(t) + γu3 = F
)
. This equation is non-integrable and does not have an exact

solution except under certain conditions on its coefficients (α, β, γ). Therefore, the approxi-
mate solution to the following FDDE for arbitrary values of its coefficients (α, β, γ) and for
arbitrary initial conditions is obtained:{

u′′ + αu′ + βu(t) + γu3 = F,
u(0) = u0 &u′ = u′0.

(5)
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In the following analysis, we give some numerical examples to solve the initial value
problem (i.v.p.) (5) using the aforementioned methods and examine the accuracy of these
methods for calculating the residual error for each method compared to the RK4.

2.4.1. MDTM

Firstly, let us use the same values of (α, β, γ, F) = (0.5, 25, 25, 0) as mentioned by [11]
with the initial conditions u(0) = 0.1 andu′(0) = 0. Note that the solution of the i.v.p. (5)
for unforced (F = 0) using MDTM is introduced in details in [11]. In the case of using Padé
approximate of [3/3], we have

u(t) = 0.00194 + 0.000238e−0.25t(411 cos(5.068t)

+ 20.273 sin(5.068t)), (6)

In the case of using Padé approximate of [4/4], the solution is approximated as

u(t) = Ae(−0.60107−15.0816i)t + Be(−0.60107+15.0816i)t

+ Ce(−0.24894−5.0125i)t + De(−0.24894+5.0125i)t, (7)

with

A = 1.6932× 10−5 − 1.3567× 10−4i,

B = 1.6932× 10−5 + 1.3567× 10−4i,

C = 4.9983× 10−2 − 2.5633× 10−3i,

D = 4.9983× 10−2 + 2.5633× 10−3i.

In the second example, we use the values (α, β, γ, F) = (1, 20, 2, 0) and with initial
condition u(0) = −0.2 and u′(0) = 2 and apply Padé approximate of [3/3] and [4/4]. The
solution in the case of using Padé approximate of [3/3] reads

u(t) = 0.003101 exp(−6.3493t)

+ exp(−0.52098t)(0.434516 sin(4.4046t)

− 0.203101 cos(4.4046t)), (8)

and for [4/4] reads

u(t) = Ae(−2.0169+12.6572i)t + Be(−2.0169−12.6572i)t

+ Ce(−0.4965+4.4826i)t + De(−0.4965−4.4826i)t, (9)

with

A = 2.265× 10−4,−4.807× 10−5i,

B = 2.265× 10−4,+4.807× 10−5i,

C = −0.100226− 0.21195i,

D = −0.100226 + 0.21195i.

2.4.2. MSDTM

In this work, we focus our attention to solve the i.v.p. (5) for arbitrary initial conditions
using MSDTM by dividing the domain [0, 20] to subdomains with time step 10−2 and apply
DTM with k = 3 to find ui as follows:

ui
k+1 =

k!
(k + 1)!

yi
k, (10)
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yi
k+1 =

k!
(k + 1)!

[
−βui

k − αyi
k − γ

k

∑
r=0

(
r

∑
l=0

(ui
lu

i
r−l)

)
ui

k−r + F

]
, (11)

where y = u′.
To check the accuracy of the aforementioned methods as compared the RK4 solution,

we use the following error formula for the maximum residual error

LD(method) = max
t0≤t≤tN

|RK(t)− u(t)|.

Figures 1 and 2 demonstrate the approximate solutions to the i.v.p. (5) for different
values of the coefficients (α, β, γ, F). The results show that the MDTM4 and MSDTM are
better approximations than MDTM3. Moreover, the comparison of the maximum residual
errors for the approximate solutions shown in Table 2 proves that the accurate method
is MSDTM. Aljahdaly [10] proved that the MSDTM and RK4 techniques have the same
accuracy, but MSDTM is faster than RK4. Thus, we conclude that MSDTM is a fast, accurate,
and reliable method for many differential equations in physics and in different branches of
science. In the next section, a new application to the damping Duffing equation in plasma
physics is introduced.

Table 2. The error LD(methods) is estimated for different values of the coefficients
(
α, β, γ, u0, u′0

)
.

(α, β, γ, u0, u′
0) Time Range LD(MDTM3) LD(MDTM4) LD(MSDTM)

(0.5, 25, 25, 0.1, 0) 0 ≤ t ≤ 20 1.19631× 10−2 1.67636× 10−3 4.81974× 10−4

(1, 20, 2,−0.2, 2) 0 ≤ t ≤ 6 1.83182× 10−2 7.99595× 10−3 1.96895× 10−5

(a)Comparing RK method and MDTM3

Figure 1. Cont.
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(b)Comparing RK method and MDTM4

(c)Comparing RK method and MSDTM

Figure 1. Plot the solution u(t) for α = 0.5, β = γ = 25, F = 0, u(0) = 0.1, u′(0) = 0.

(a)Comparing RK method and MDTM3

Figure 2. Cont.
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Time

(b)Comparing RK method and MDTM4

(c)Comparing RK method and MSDTM

Figure 2. Plot the solution u(t) for α = 1, β = 20, γ = 2, F = 0, u(0) = −0.2, u′(0) = 2.

3. Application in Plasma Physics

Let us consider the propagation of nonlinear structures in a complex unmagnetized
plasma composed of inertial positive ions (with subscript “i”) and two different types
of electrons (with subscripts “l” and “h” for the lower and higher electron temperatures,
respectively) that follow the kappa distribution in addition to static dust grains with
negative charge (with subscript “d”) [36]. Accordingly, the neutrality condition reads
n(0)

l + n(0)
h + zdn(0)

d = n(0)
i , where n(0)

j represents the unperturbed number density of
species j (j ≡ l, h, d, i) and zd gives the number of electrons residing on the surface of the
dust grains. The dynamics of the nonlinear structures whose phase speed is much larger
than the ion thermal speed but smaller than the electron thermal speed are governed
by the following dimensionless fluid continuity, momentum, and Poisson’s equations,
respectively, ⎧⎨⎩

∂tni + ∂x(niui) = 0,
∂tui + ui∂xui + ∂xφ = η∂2

xui,
∂2

xφ− ne + ni − μd = 0,
(12)

where the number density of the electrons in kappa distribution is given by

ne = nl + nh = μl

(
1− σlφ

Rl

)Sl

+ μh

(
1− σhφ

Rh

)Sh

≡ Γ0 + Γ1φ + Γ2φ2 + Γ3φ3 + · · · , (13)
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with

Γ0 = μl + μh,

Γ1 = −
[

Slμlσl
Rl

+
Shμhσh

Rh

]
,

Γ2 =

[
Slμlσ

2
l (Sl − 1)
2R2

l
+

Shμhσ2
h (Sh − 1)
2R2

h

]
,

Γ3 = −
[

Slμlσ
3
l (Sl − 1)(Sl − 2)

6R3
l

+
Shμhσ3

h (Sh − 1)(Sh − 2)
6R3

h

]
,

Sl =

(
−κl +

1
2

)
& Sh =

(
−κh +

1
2

)
,

Rl =

(
κl −

3
2

)
& Rh =

(
κh −

3
2

)
.

where ni/nl/nh is the normalized number density of the positive ions/low temperature
electrons/high temperature electrons, ui refers to the normalized velocity of the positive
ions, φ is the normalized electrostatic potential, η represents the normalized coefficient of
ionic kinematic viscosity, σl,h = Te f f /Tl,h is the electron temperature ratio, the effective

electron temperature is Te f f = n(0)
e TlTh/

(
n(0)

l Th + n(0)
h Tl

)
, n(0)

e ≡
(

n(0)
l + n(0)

h

)
is the total

unperturbed electrons density, μd = zdn(0)
d /n(0)

i is the dust concentration, μl = n(0)
l /n(0)

i is

the concentration of low electron temperature, μh = n(0)
h /n(0)

i is the concentration of high
electron temperature, and κl,h(> 3/2) is the kappa index parameter [36].

To model and analyze the nonlinear structures that can propagate in the present
plasma model, the reductive perturbation method (RPM) [37,38] is used to reduce the basic
set of fluid Equations (12) and (13) to an evolution equation. According to this method, the
independent variables (x, t, η) can be stretched as follows:

X = ε
(

x− vpht
)

, T = ε3t & η = εη̃, (14)

where ε is a real and small parameter (ε << 1) that measures the strength of the nonlinearity
and vph represents the normalized phase velocity, which is scaled by Ci. In addition, the
dependent quantities Π(x, t) ≡ (ni, ui, φ) are expanded as follows:

Π(x, t) = Π(0) +
∞

∑
s=1

εsΠ(s)(X, T), (15)

where Π(0) ≡ [1, 0, 0]T , Π(s)(X, T) ≡
[
n(s)

i , u(s)
i , φ(s)

]T
, and T gives the matrix transpose.

Inserting both stretching (14) and expansion (15) into the basic set of fluid Equations
(12) and (13), we get a system of reduced equations in different powers of ε. From the
lowest-order of ε, i.e., O(ε), the values of the first-order quantities

(
n(1)

i , u(1)
i

)
and the

phase velocity vph can be obtained as

u(1)
i = vphn(1)

i =
1

vph
φ(1),

vph =
1√
Γ1

. (16)
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The solution of next-order of ε, i.e., O
(
ε2), gives the values of the second-order quanti-

ties
(

n(2)
i , u(2)

i

)
n(2)

i =
1

v4
ph

(
3
2

φ(1)2 + v2
phφ(2)

)
,

u(2)
i =

1
v3

ph

(
1
2

φ(1)2 + v2
phφ(2)

)
, (17)

and the Poisson’s equation gives

Aφ(1)2 + Acφ(2) = 0, (18)

where A =
[
3/
(

2v4
ph

)
− Γ2

]
= 0 at the critical value of low electron temperature con-

centration μl = μlc and the coefficient Ac =
(

1/v2
ph − Γ1

)
represents the compatibility

condition, i.e., Ac = 0.
From the next-order of ε, i.e., O

(
ε3), we get

∂Tn(1)
i + ∂X

(
n(1)

i u(2)
i

)
+ ∂X

(
n(2)

i u(1)
i

)
− vph∂Xn(3)

i + ∂Xu(3)
i = 0, (19)

∂Tu(1)
i + ∂X

(
u(1)

i u(2)
i

)
+ ∂X

(
n(2)

i u(1)
i

)
− vph∂Xu(3)

i + ∂Xφ(3) − η̃∂2
Xu(1)

i = 0, (20)

and the Poisson’s equation gives

∂X

(
n(3)

i − Γ3φ(1)3 − 2Γ2φ(1)φ(2) − Γ1φ(3) + ∂2
Xφ(1)

)
= 0. (21)

By solving Equations (19)–(21) with the help of Equations (16) and (17), we finally get
the mKdVB equation

∂T ϕ + P1 ϕ2∂X ϕ + P2∂3
X ϕ = P3∂2

X ϕ, (22)

with

P1 =
(

15− 6Γ3v6
ph

)
/
(

4v3
ph

)
,

P2 =
v3

ph

2
&P3 =

η̃

2
,

where ϕ ≡ φ(1).
It is known that Equation (22) supports the shock solution due to the presence of

ion kinematic viscosity. However, in this paper, we want to investigate the damping
oscillations in the present model. Accordingly, the transformation ϕ(X, T) = Φ(ξ), where
ξ = X + v f T, is used to transform Equation (22) into the FDDE as follows:

ϕ′′ + αϕ′ + βϕ + γϕ3 = F, (23)

where α = −P3/P2, β = v f /P2, γ = P1/(3P2), and F is the constant of integration.
Let us now investigate the effect of typical complex plasma parameters, namely

(κl , σh, μl , μh) = (3, 0.1, μc, 0.4), and different values for (σl , κh, η̃) on the profile of plasma
oscillations. Some plasma data are used as an example for investigating the solution of
MSDTM, as shown in Figure 3. It is clear from the results in Figure 3 that the enhancement
of the viscosity parameter η̃ leads to an increase in the number of oscillations and decreasing
the time of periodicity. Note that the effect σl has on the profile of oscillation is the same as
its effect on η̃ while κh has the opposite effect, in which the number of oscillations decreases
and the time periodicity increases with the enhancement of κh.
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Figure 3. Plot of the initial solution u(t) for ηh = 0.4; κl = 3; κh = 3; σl = 2.5; σh = 0.1; u f = 0.1; η = 0.3. The plot shows the
effects of: η (a); σl (b); and κh (c).

4. Conclusions

The forced damping Duffing equation
(

ϕ′′ + αϕ′ + βϕ + γϕ3 = F
)

with arbitrary ini-
tial conditions is investigated numerically via the highly-accurate MSDTM. The comparison
between the approximate solutions using MDTM and MSDTM with RK4 numerical so-
lution is reported. Moreover, the maximum residual error for all approximate numerical
solutions as compared to the RK4 solution is estimated. It is observed that the approximate
numerical solution using MSDTM is highly accurate and better than both DTM and MDTM.
Furthermore, the application of the FDDE in the practical plasma model is investigated to
study the dynamics of nonlinear oscillations that occur in a complex unmagnetized plasma.
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This solution might help many researchers in studying and investigating many problems
in various fields of science such as plasma physics and optical fiber.

Future work: in this work, the MSDTM is devoted for solving the FDDE for con-
stant force, but sometimes the perturbation force is not constant but periodic with time(

ϕ′′ + αϕ′ + βϕ + γϕ3 = f (t)
)
, this is considered an important and vital problem but out

of the present scope.
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Abstract: The Bateman functions and the allied Havelock functions were introduced as solutions of
some problems in hydrodynamics about ninety years ago, but after a period of one or two decades
they were practically neglected. In handbooks, the Bateman function is only mentioned as a particular
case of the confluent hypergeometric function. In order to revive our knowledge on these functions,
their basic properties (recurrence functional and differential relations, series, integrals and the Laplace
transforms) are presented. Some new results are also included. Special attention is directed to the
Bateman and Havelock functions with integer orders, to generalizations of these functions and to the
Bateman-integral function known in the literature.

Keywords: bateman functions; havelock functions; integral-bateman functions; confluent hypergeo-
metric functions

1. Introduction

Harry Bateman (1882–1946) has been a renowned Anglo-American applied mathe-
matician, who made outstanding contributions to mathematical physics, namely to aero-
and fluid dynamics, to electro-magnetic and optical phenomena, to thermodynamics and
geophysics and to many other fields [1,2]. His main interests in mathematics were an-
alytical solutions of partial differential and integral equations. His book published in
1932, Partial Differential Equations of Mathematical Physics [3] is even today, a basic textbook
on this subject. Born in Manchester and educated in Trinity College, Cambridge, with
a continuation in Paris and Gottingen, Bateman emigrated to USA in 1910 and starting
since 1917, during nearly three decades he has been Professor of Aeronautical Research
and Mathematical Physics in the California Institute of Technology (Caltech). During these
years he solved a number of various applied problems and simultaneously compiled from
mathematical literature a vast amount of information associated with special functions and
their properties.

From an enormous scientific legacy that Bateman left behind him, it is important
to mention three items which are named after him. The first is the so-called Bateman
equation which is applied in solutions of pbharmacokinetics problems (modeling of effective
therapeutic management of drugs). As usual with Bateman, the origin of this equation came
from an interaction with other scientists, and this one with Ernest Rutherford. It includes
the solution of a set of ordinary differential equations which describes the radioactive decay
process. Mathematically, this process is similar to the behaviour of drugs in the human
body and therefore is frequently used in pharmacokinetic models (see for example [4], and
for prediction of the spread of COVID-19 look in [5]) listed in the fifties of the past century,
and they constitute the so-called Bateman approach.

In mathematics, the Bateman name is mostly associated with the five red books
published in the fifties of the previous century, and they constitute the so-called Bateman
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Manuscript Project. Three volumes are devoted to the properties of special functions [1] and
two volumes to tables of integral transforms [6]. This enormous collection of functions,
series and integrals, together with the description of their properties is based on the material
compiled largely by Bateman, and prepared for publication by four editors A. Erdélyi, R.
Magnus, F. Oberhettinger and F.G. Tricomi. Even today, these five books are indispensable
for everybody, mathematicians, scientists and engineers who are involved in study and
use of special functions and integral transforms. They were essential as a precursor and
model for later appearing in published or in modern on-line forms various compilations of
mathematical reference data (for most important see for example [7–19]).

In 1931 Bateman published a paper entitled: The k-function, a particular case of the
confluent hypergeometric function, where he presented the definite trigonometric integral (1)
and derived for it many properties [20]

kn(x) = 2
π

∫ π/2
0 cos(x tan θ − nθ) dθ, n = 0, 1, 2, 3, . . . (1)

This integral represents the solution of the ordinary differential equation which ap-
peared in Theodore von Kármán’s theory of turbulent flows

x
d2u(x)

dx2 = (x− n)u(x) . (2)

Bateman named the integral in (1) as k-function in tribute for the outstanding contribu-
tion of von Kármán in the field of fluid dynamics. Nowadays, denoted in the mathematical
literature by small or capital k, this function in a more general form, is called the Bateman
function of argument x and order (parameter) ν.

kν(x) =
2
π

∫ π/2

0
cos(x tan θ − νθ) dθ . (3)

The reason that Bateman used integer orders only, came from the fact that kn(x)
functions can then be expressed by the Rodriguez type formulas and they are associated
with the Laguerre polynomials. This also permitted to express sums of them in closed
form and to link the Bateman functions with the confluent hypergeometric and Whittaker
functions. In 1935, some new results were derived by Shastri [21], who showed that
methods of operational calculus can be applied to this function.

Unfortunately, the Bateman functions found later rather limited attention in the
mathematical literature. Few only topics associated with them were considered and
these mainly by Indian mathematicians [22–35]. They included the generalized Bateman
functions, dual, triple and multi series equations of these functions, some integral equations
and recurrence relations. It is worthwhile also to mention that in mathematical textbooks
and tables, the Bateman function is not considered as a some kind of minor special function,
but only indicated as a particular case of the confluent hypergeometric function. Besides,
no plots or tabulations of the Bateman functions are known in the literature.

One of the first attempts to enlarge a knowledge about properties of the Bateman
functions, has been evidently to introduce a new function, by replacing in the integrand of
integral (1) cosine function with sine function

Tn(x) =
2
π

∫ π/2

0
sin(x tan θ − nθ) dθ, n = 0, 1, 2, 3, . . . (4)

In 1950 H.M. Srivastava [25] and in 1966 K.N. Srivastava [29] suggested to denote this
new function as Tn(x), where the capital T letter was adapted to honor Walter Tollmien
who made pioneering works in the transition region between fully established laminar
and turbulent flows. However, an unquestionably historical fact is that both trigonometric
integrals as defined in (1) and (4), were already, six year earlier in 1925, considered by
Havelock who investigated some problems associated with surface waves [36]. In the case
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of a circular cylinder immersed in a uniform flow, he needed to evaluated the following
integrals which are written here in their original notation for k > 0

Lr =
∫ π/2

0
cos(2rφ− k tan φ) dφ , Mr =

∫ π/2

0
sin(2rφ− k tan φ) dφ . (5)

Thus, in view of that 2r = x and k = n, these integrals differ from (1) and (4) only
by the normalization factor 2/π and the minus sign in the second integral. What is even
more important, Havelock was able to present the first six integrals in a closed form. It is
of interest also to mention that Bateman knew about the Havelock paper and of related
integrals investigated by him. These integrals are included in the manuscript (later edited
and published by Erdélyi) which was found among his papers [37]. Taking these facts into
account, it is more fair and consistent to name the sine integral as the Havelock function and
to use similar as in (3) notation

hν(x) =
2
π

∫ π/2

0
sin(x tan θ − νθ) dθ . (6)

In the next step, further generalizations of the Bateman function were proposed by
including powers of trigonometric functions in integrands for m, n = 0, 1, 2, 3, . . . ,

km
ν (x) =

2
π

∫ π/2

0
(cos θ)m cos(x tan θ − νθ) dθ ,

km,n
ν (x) =

2
π

∫ π/2

0
(sin θ)m(cos θ)n cos(x tan θ − νθ) dθ .

(7)

However, by reviewing the papers dealing with these so-called generalized Bateman
functions, Erdélyi pointed out that the integrals in (7) are particular cases of confluent
hypergeometric functions and the derived mathematical expressions are not new because
they follow directly from manipulations with known properties of the Kummer confluent
hypergeometric functions.

Probably, the most paying attention from generalized Bateman functions is that which
was proposed by Chaudhuri [38]. In an analogy with the integral Bessel functions, he
introduced the Bateman-integral function

kin(x) = −
∫ ∞

x

k2n(u)
u

du ; x > 0, (8)

and discussed its properties.
As already mentioned above, in the last decades, the interest in the Bateman functions

was very limited, and only investigations of Koepf and Schmersau [39–41] dealing with
recurrence and other relations of Fn(x) functions, defined by

e− x(1+ t)/(1− t) =
∞

∑
n= 0

tnFn(x),

Fn(x) = (−1)nk2n(x) = (−1)n 2
π

∫ π/2

0
cos(x tan θ − 2nθ) dθ .

(9)

should be mentioned.
Considering that at the present time, the Bateman functions are unjustly neglected and

nearly entirely forgotten, we decided to prepare this survey in order to revive them and to
promote them as independent functions. It seems that the Bateman functions should be
treated separately, less as particular cases of the confluent hypergeometric functions or the
Whittaker functions. Bearing in mind today that the literature on the subject is rather old
and practically unknown, after Introduction, in the second section of this survey we collect
the most important properties of the Bateman functions with integer orders kn(x). In the
next section we present known results associated with the Havelock functions with integer
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orders hn(x). In the fourth section the generalized Bateman and Havelock functions are
discussed. More general aspects related with the Bateman and Havelock functions having
any order are considered in the fifth section. In these sections some new results derived by
us are also included. The sixth section is dedicated to properties of the Bateman-integral
functions. Concluding remarks are included in the last section.

In Appendix A we report various finite and infinite integrals of functions associated
with functions considered in this survey. Differential equations and trigonometric inte-
grals associated with the Kummer confluent hypergeometric function are discussed in
Appendix B. We refer the readers to Appendix C where they can find the integral represen-
tations of known special functions recalled in the text because of their relations with the
Bateman and Havelock functions.

It is expected that all results presented here in analytical and in graphical form will
stimulate a new research devoted to the Bateman and Havelock functions and these
functions will find a desirable and proper place in the mathematical literature.

2. The Bateman Functions with Integer Orders

The Bateman functions with integer order n and with real argument x, are defined by

kn(x) =
2
π

∫ π/2

0
cos(x tan θ − nθ) dθ, n = 0, 1, 2, 3, . . . (10)

For this integral Bateman showed that [20]

kn(0) =
2

πn
sin
(πn

2

)
, k2n(0) = 0,

lim
x→∞

kn(x) = lim
x→∞

k′n(x) = 0,
(11)

and
|kn(x)| ≤ 1

|kn(x)| ≤
∣∣∣n

x

∣∣∣ ; |kn(x)| ≤
∣∣∣∣n2 + 2

x2

∣∣∣∣ ; n > 2,

|k2n(x)| ≤
∣∣∣∣2n

x

∣∣∣∣ ; x > 1,∣∣k′n(x)
∣∣ ≤ ∣∣∣ n

2x

∣∣∣.
(12)

In the case of even integers they are associated with the Havelock integrals (5) and
with Fn(x) functions (9) in the following way [36,39–41]

k2n(x) =
2
π

Ln(x), k2n(x) = (−1)nFn(x), h2n(x) = − 2
π

Mn(x). (13)

The first six Bateman functions were tabulated by Havelock [36] for x > 0,

k0(x) = e− x,

k2(x) = 2xe− x,

k4(x) = 2x(x− 1)e− x,

k6(x) =
2
3

x(2x2 − 6x + 3)e− x,

k8(x) =
2
3

x(x3 − 6x2 + 9x− 3)e− x,

k10(x) =
2
15

x(2x4 − 20x3 + 60x2 − 60x + 15)e− x,

k12(x) =
2
45

x(2x5 − 30x4 + 150x3 − 300x2 + 225x− 45)e− x.

(14)
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In the general case these polynomials can be derived from the Rodriguez type formula

k2n(x) =
(−1)nxex

n!
dn

dxn

[
xn−1e−2x

]
, (15)

which is similar to that of the generalized Laguerre polynomials L(α)
n (x).

L(α)
n (x) =

x−αex

n!
dn

dxn

[
xn+αe−x]. (16)

Bateman showed that for his functions with even integer orders we have [20]

k2n(x) = (−1)ne− x[Ln(2x)− Ln− 1(2x)], (17)

where Lk(z) are the Laguerre polynomials.
It is more difficult to express the Bateman functions with odd orders in terms of other

known functions. For n = 1, Bateman introduced a new integration variable t = tan θ and
obtained [20]

k1(x) =
2
π

∫ π/2

0
cos(x tan θ − θ) dθ =

2
π

∫ π/2

0
cos(x tan θ) cos θ dθ +

2
π

∫ π/2

0
sin(x tan θ) sin θ dθ =

2
π

∫ ∞

0

cos(xt)
(1 + t2)3/2 dt +

2
π

∫ ∞

0

t sin(xt)
(1 + t2)3/2 dt =

2
π

∫ ∞

0

cos(xt)
(1 + t2)3/2 dt− 2x

π

∫ ∞

0

cos(xt)
(1 + t2)1/2 dt.

(18)

The last two integrals are the integral representations of the modified Bessel functions
of the second kind of the first and zero orders [7]

k1(x) =
2x
π

[K1(x)− K0(x)] ; x > 0,

k1(x) = −2x
π

[K1(− x) + K0(− x)] ; x < 0.
(19)

The Bateman functions with other even and odd integer orders can also be derived
by applying the recurrence relations which are in the form of difference equations and
differential-difference equations

(2x− 2n) k2n(x) = (n− 1) k2n− 2(x) + (n + 1) k2n+ 2(x)

4xk′n(x) = (n− 2) kn− 2(x)− (n + 2) kn+ 2(x)

k′n(x) + k′n+ 2(x) = kn(x)− kn+ 2(x)

xk′′n(x) = (x− n) kn(x).

(20)

For example, using the second equation in (20) for n = 1, we have

k3(x) = −1
3

[
4x

dk1(x)
dx

+ k− 1(x)
]

dk1(x)
dx

=
2
π
[K1(x)− K0(x)] +

2x
π

[
dK1(x)

dx
− dK0(x)

dx

]
dK1(x)

dx
=

K2(x) + K0(x)
2

dK0(x)
dx

= −K1(x)

(21)
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and k−1(x) can be expressed by using integrals from (18)

k− 1(x) =
2
π

∫ π/2

0
cos(x tan θ + θ) dθ =

2
π

∫ π/2

0
cos(x tan θ) cos θ dθ − 2

π

∫ π/2

0
sin(x tan θ) sin θ dθ.

(22)

It is also possible to obtain the Bateman functions with odd orders in a different new
procedure, for example k3(x)

k3(x) =
2
π

∫ π/2

0
cos(x tan θ − 3θ) dθ =

2
π

∫ π/2

0
cos(x tan θ) cos(3θ) dθ +

2
π

∫ π/2

0
sin(x tan θ) sin(3θ) dθ,

(23)

but with t = tan θ

sin(3θ) = 3 sin θ − 4(sin θ)3 = sin θ
3− (tan θ)2

1 + (tan θ)2 =
t(3− t2)

(1 + t2)3/2 ,

cos(3θ) = −3 cos θ + 4(cos θ)3 = cos θ
1− 3(tan θ)2

1 + (tan θ)2 =
(1− 3t2)

(1 + t2)3/2 ,
(24)

and therefore (23) becomes

k3(x) =
2
π

∫ ∞

0

(1− 3t2) cos(xt)
(1 + t2)5/2 dt +

2
π

∫ ∞

0

t(3− t2) sin(xt)
(1 + t2)5/2 dt. (25)

However, this type of integrals can be evaluated by differentiating the modified Bessel
functions of the second kind [14]∫ ∞

0

t2n+ 1 sin(xt)
(1 + t2)α

dt = (−1)n+ 1 21/2− α
√

π

Γ(α)
∂2n+ 1

∂x2n+ 1

[
xα− 1/2Kα− 1/2(x)

]
, α > n + 1/2,∫ ∞

0

t2n sin(xt)
(1 + t2)α

dt = (−1)n 21/2− α
√

π

Γ(α)
∂2n+ 1

∂x2n+ 1

[
xα− 1/2Kα− 1/2(x)

]
, α > n.

(26)

Using known expressions for sin(α + 2θ) and cos(α + 2θ) functions with α = 2n + 1,
and taking into account that [7] with t = tan θ

sin(2θ) =
2 tan θ

1 + (tan θ)2 =
2t

(1 + t2)
,

cos(2θ) =
1− (tan θ)2

1 + (tan θ)2 =
(1− t2)

(1 + t2)
,

(27)

the above described procedure can be extended to the Bateman functions with higher odd
orders. Integrals of the type presented in (26) can be also used when derivatives with
respect to the argument are considered with m = 0, 1, 2, 3, . . .

∂2m kn(x)
∂x2m = (−1)m 2

π

∫ π/2

0
(tan θ)2m cos(x tan θ − nθ) dθ,

∂2m+ 1 kn(x)
∂x2m+ 1 = (−1)m 2

π

∫ π/2

0
(tan θ)2m+ 1 sin(x tan θ − nθ) dθ.

(28)

In order to illustrate the behaviour of the Bateman functions as a function of argument
and order, they were numerically evaluated using the MATLAB program and they are
presented in Figure 1 for positive integer orders and in Figure 2 for negative integer order.
As can be observed by comparing both figures, the curves are shifted with the symmetry
predicted by Bateman [20]

k− n(x) = kn(− x) . (29)
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Figure 1. Bateman functions with positive integer orders as a function of argument x.

Figure 2. Bateman functions with negative integer orders as a function of argument x.

Considering similarity with the generalized Laguerre polynomials, Bateman was able
to show the existence of the following expansions associated with his functions with even
orders [20]

∞

∑
n= 0

(−1)ntnk2n(x) = (1− t)α+ 1e− x
∞

∑
n=0

tn L(α)
n (2x),

∞

∑
n= 0

tn

2nn!
k2n+ 2(x) = 2e− (x +t/2)

√
x
t

I1(2
√

xt),

∞

∑
n= 0

(−1)nk4n+2(x) = sin x,
∞

∑
n= 0

(−1)nk4n(x) = cos x.

(30)

where I1 denoted the modified Bessel function of order 1, see (C.8) and [7]. Shabde [22]
demonstrated that

∞

∑
n= 0

(n + 1)tnk2n+ 2(x) =
2xe− x +[2xt/(1+t)]

(1 + t)2 ,

∞

∑
n= 0

(−1)n(2n + 1)t2nk2n+ 2(x) =

2xe− x +2xt2/(1+t2)

(1 + t2)2

[
(1− t2) cos

(
2xt

1 + t2

)
+ 2t sin

(
2xt

1 + t2

)]
,

∞

∑
n= 0

(−1)n(2n + 2)t2n+ 1k4n+ 4(x) =

2xe− x +2xt2/(1+t2)

(1 + t2)2

[
(1− t2) sin

(
2xt

1 + t2

)
− 2t cos

(
2xt

1 + t2

)]
,

(31)
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and

∞

∑
n= 0

(−1)ntn

n!
k2n+ 2(x) =

√
2x
t

e− (x +t) J1(23/2
√

xt),

∞

∑
n= 0

(−1)nt2n

(2n)!
k2n+ 2(x) =

√
2x
t

[
− sin t ber′(23/2

√
xt) + cos t bei′(23/2

√
xt)
]
,

∞

∑
n= 0

(−1)n+ 1t2n+1

(2n + 1)!
k4n+ 4(x) =

√
2x
t

[
cos t ber′(23/2

√
xt) + sin t bei′(23/2

√
xt)
]
,

(32)

where ber′(z) and bei′(z) are the derivatives of the Kelvin functions.
Additional sums of series expansions were reported by Shastri [24]

∞

∑
n= 0

(−1)nt2n+ 1k4n+ 2(x) = ex(t2 − 1)/(1+t2) sin
(

2xt
1 + t2

)
; |t| < 1,

∞

∑
n= 0

(−1)nt2nk4n(x) = ex(t2 − 1)/(1+t2) cos
(

2xt
1 + t2

)
; |t| < 1,

∞

∑
n= 0

(−1)nk4n+ 2(x) = sin x,
∞

∑
n= 0

(−1)nk4n(x) = cos x,

(33)

and
∞

∑
n= 0

k2n(x) sin(2nθ) = sin(x tan θ),

∞

∑
n= 0

k2n(x) sin(2nθ) = sin(x tan θ),

∞

∑
n= 0

k2n(x) = 1.

(34)

The orthogonal relations were established by Bateman [20]

∫ ∞

0
[k2n(x)]2 dx =

{
1 ; n > 0

1/2 ; n = 0∫ ∞

0
k2n(x)k2n+ 2k(x) dx =

{
0 ; k > 1

1/2 ; k = 1∫ ∞

0

kn(x)k2k(x)
x

dx =
4 sin
[

π
2 (2k− n)

]
πn(2k− n)

; k > 0,

(35)

and over the entire integration interval∫ +∞

−∞
k2k(x)k2m(x) dx =

sin[π(m− k)]
π(k−m + 1) (k−m) (k−m− 1)

,

PV
∫ ∞

−∞
k2k + 1(x)k2m+ 1(x)

dx
x

=

{
0 ; k �= m,
2

π(2k+1) ; k = m.

(36)

In the literature there is a number of infinite integrals where the Bateman functions
appear in integrands or in final results of integration. These integrals are collected in
Appendix A, here only the Laplace transforms of the Bateman functions are presented [6,9]:∫ ∞

0
e− stk0(t) dt =

1
s + 1

; Re(s + 1) > 0 ; n = 0, 1, 2, . . .∫ ∞

0
e− stk2n+ 2(t) dt =

2(1− s)n

(s + 1)n+ 2∫ ∞

0
e− stk2ν(t) dt =

sin(πν)

2πν(1− ν) 2F1(1, 2; 2− ν;
1− s

2
) ; Res > 0

(37)
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and ∫ ∞

0
e− ste− t2

k2n(t2) dt =
(−1)n− 1sn− 3/2 es2/16

23n/2+ 1/4 W− n/2−1/4,− n/2−1/4

(
s2

8

)
∫ ∞

0
e− stk2m+ 2(

t
2
) k2n+ 2(

t
2
)

dt
t
=

(−1)m+ n

(s + 1)m+ n+ 2 2F1

(
−m,−n; 2;

1
s2

)
Res > −1∫ ∞

0
e− st e(α+ β)t/2

αβ
k2m+ 2(

αt
2
) k2n+ 2(

βt
2
)

dt
t
=

(−1)m+ n(m + n + 1)! (s− α)m (s− β)n

(m + 1)! (n + 1)!(s + 1)m+ n+ 2 2F1

(
−m,−n;−m− n− 1;

s(s− α− β)

(s− α) (s− β)

)
m, n = 0, 1, 2, . . . ; Res > 0

(38)

where Wκ,μ(z) is the Whittaker function. Formulas in (32) and (33) are accessible in a much
more general forms by applying the basic properties of the Laplace transformation

L{ f (t)} =
∫ ∞

0
e− st f (t) dt = F(s) ; a > 0

L{ f (at)} = 1
a

F
( s

a

)
L
{

e± at f (t)
}
= F(s∓ a)

L{tn f (t)} = (−1)n dnF(s)
dsn

(39)

For example in the simple case of the function k2(t) we have from (39)

L{k2(t)} =
2

(s + 1)2

L{k2(at)} = 2a
(s + a)2

L
{

e± atk2(at)
}
=

2
(s∓ a + 1)2

L{tk2(t)} =
4

(s + 1)3 .

(40)

The initial and final values of the Bateman functions with even integer orders (see
Figure 1) as presented in (11), can also be derived from the rules of the operational calculus

k0(t → +0) = lim
s→∞

[sF(s)] = lim
s→∞

[
s

s + 1

]
= 1

k0(t → ∞) = lim
s→ 0

[sF(s)] = lim
s→ 0

[
s

s + 1

]
= 0

k2n+ 2(t → +0) = lim
s→∞

[sF(s)] = lim
s→∞

[
2s(1− s)n

(s + 1)n+ 2

]
= 0

k2n+ 2(t → ∞) = lim
s→ 0

[sF(s)] = lim
s→ 0

[
2s(1− s)n

(s + 1)n+ 2

]
= 0.

(41)

Since the Bateman function is a particular case of the Whittaker function

k2ν

(
t
2

)
=

1
Γ(ν + 1)

Wν,1/2(t) (42)

it is possible to enlarge a number of the Laplace transforms using transforms of the
Whittaker functions W1/2,1/2(t) and Wν,1/2(t)
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L
{

t1/2e1/2tk1

(
2
t

)}
=

√
π

s
[
H1(2

√
s)−Y1(2

√
s)
]

L
{

te1/2tk1

(
2
t

)}
=

1
2s

H(1)
1 (

√
s) H(2)

1 (
√

s)

L
{

1
t

e− 1/2tk1

(
2
t

)}
=

25/2√s
π

K0(
√

s)K1(
√

s)

L
{

1
t2 e− 1/2tk1

(
2
t

)}
=

4
πs
[
K1(

√
s)
]2

(43)

and

L
{

tα− 1k2ν

(
t
2

)}
=

Γ(α) Γ(α + 1)
Γ(ν + 1)Γ(α− ν + 1)

(
2

2s + 1

)α+ 1

2F1(α + 1,− ν; α− ν + 1;
2s− 1
2s + 1

)

Res > −1
2

L
{

tνe 1/2tk2ν

(
2
t

)}
=

21−2ν

Γ(ν + 1) sν+ 1/2 S2ν,1(2
√

s) ; Re(ν± 1
2
) > −1

2

L
{

1
tν

e− 1/2tk2ν

(
2
t

)}
=

2sν− 1/2

Γ(ν + 1)
K1(2

√
s) ; Res > 0,

(44)

where Hμ(t), Yμ(t), H(1)
μ (t), H(2)

μ (t) and Sμ(t) are the Struve, Bessel, Hankel and Lommel
functions, respectively.

3. The Havelock Functions with Integer Orders

As pointed out above, Havelock in solving the surface wave problem [36] encountered
the following trigonometric integrals with even integer values of order (parameter) n

hn(x) =
2
π

∫ π/2

0
sin(x tan θ − nθ) dθ. (45)

These functions with positive and negative values of order were calculated numerically
by using the MATLAB program and they are plotted in Figures 3 and 4. Comparing both
figures, it is evident that the curves are shifted according to

h− n(x) = − hn(− x). (46)

Figure 3. Havelock functions with positive integer orders as a function of argument x.
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Figure 4. Havelock functions with begative integer orders as a function of argument x.

Havelock was able to present the first six integrals in terms of polynomials and the
logarithmic integrals [36]

h0(x) =
1
2
[
exli(e− x)− e− xli(ex)

]
h2(x) = xe− xli(ex)− 1

h4(x) = x(x− 1)e− xli(ex)− x

h6(x) =
x(2x2 − 6x + 3)e− xli(ex)− (2x2 − 4x + 1)

3

(47)

and

h8(x) =
x(x3 − 6x2 + 9x− 3)e− xli(ex)− x(x2 − 5x + 5)

3

h10(x) =
x(2x4 − 20x3 + 60x2 − 60x + 15)e− xli(ex)

15
−

(2x4 − 18x3 + 44x2 − 28x + 3)
15

h12(x) =
x(2x5 − 30x4 + 150x3 − 300x2 + 225x− 45)e− xli(ex)

45
−

x(2x4 − 28x3 + 124x2 − 198x + 93)
45

(48)

where

li(z) =
∫ z

0

dt
ln t

= γ + ln z +
∞

∑
n= 1

zn

n!n
, z = ex. (49)

In the same way as in the Bateman paper from 1931, the properties of the Havelock
functions with integer orders were studied by Srivastava in 1950 [25]. He found that

|hn(x)| ≤ 1

hn(0) =
2

πn

[
cos
(πn

2

)
− 1
]

h2n(0) =
[

1− (−1)n

πn

]
h4n(0) = 0

lim
x→∞

hn(x) = lim
x→∞

hn
′
(x) = 0,

(50)
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and

h0(x) =
2
π

∫ π/2

0
sin(x tan θ) dθ =

2
π

∫ ∞

0

sin(xt)
1 + t2 dt

h1(x) =
2
π

∫ π/2

0
sin(x tan θ − θ) dθ =

2
π

∫ π/2

0
[sin(x tan θ) cos θ − cos(x tan θ) sin θ] dθ =

2
π

∫ ∞

0

[sin(xt)− t cos(xt)]
(1 + t2)3/2 dt.

(51)

These integrals are of the type presented in (26). In 1950 Srivastava [25] showed that
the infinite integral in (51) can be expressed in terms of the modified Bessel function of the
first kind of zero order and the Struve function of zero order and their derivatives.

The Havelock functions satisfy the following recurrence and differential relations [25,37]

(2n− 4x) hn(x) + (n− 2) hn− 2(x) + (n + 2) hn+ 2(x) = − 8
π

4xh′n(x) = (n− 2) hn− 2(x)− (n + 2) hn+ 2(x)

h′n− 1(x) + h′n+ 1(x) = hn− 1(x)− hn+ 1(x)

xh′′n(x) = (x− n) hn(x)− 2
π

.

(52)

The Laplace transform of the function h0(x) can be obtained in the following way

L{h0(x)} = 2
π

∫ ∞

0
e− sx

(∫ π/2

0
sin(x tan θ) dθ

)
dx =

2
π

∫ π/2

0

( ∫ ∞

0
e− sx sin(x tan θ) dx

)
dθ =

2
π

∫ π/2

0

tan θ

s2 + (tan θ)2 dθ =

2
π

∫ ∞

0

t
(s2 + t2)(1 + t2)

dt =
2 ln(s)

π(s2 − 1)
.

(53)

For the function h1(x) we have

L{h1(x)} = 2
π

∫ π/2

0

( ∫ ∞

0
e− sx[sin(x tan θ) cos θ − cos(x tan θ) sin θ]dx

)
dθ =

=
2
π

∫ π/2

0

[tan θ cos θ − s sin θ]

s2 + (tan θ)2 dθ =
2(1− s)

π

∫ ∞

0

t
(s2 + t2)(1 + t2)3/2 dt =

2
π(s + 1)

[
sec−1(s)√

s2 − 1
− 1
]

.

(54)

The Laplace transforms of the functions h0(x) and h1(x) were also derived by Srivas-
tava [25] in 1950 , but in the final expressions, the factor 2/π is missing.

The Havelock function h2(x) is expressed by

h2(x) =
2
π

∫ π/2

0
sin(x tan θ − 2θ) dθ =

2
π

∫ π/2

0
[sin(x tan θ) cos(2θ)− cos(x tan θ) sin(2θ)] dθ =

2
π

∫ π/2

0

sin(x tan θ) [1− (tan θ)2]− 2 tan θ cos(x tan θ)

1 + (tan θ)2 dθ

2
π

∫ ∞

0

(1− t2) sin(xt)− 2t cos(xt)
(1 + t2)2 dt

(55)
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and its Laplace transform is therefore

L{h2(x)} = 2
π

∫ ∞

0

[∫ ∞

0
e− sx (1− t2) sin(xt)− 2t cos(xt)

(1 + t2)2 dx
]

dt =

−2[s + 1 + ln(s)]
π(s + 1)2

(56)

where the infinite integrals in (53), (54) and (56) were verified using the MATHEMATICA
program. The derived Laplace transforms allow us to obtain the initial and final values of
the Havelock functions, for example for the function h0(x) we have

h0(x → +0) = lim
s→∞

[sF(s)] = lim
s→∞

[
2s ln(s)
s2 − 1

]
= 0

h0(x → ∞) = lim
s→ 0

[sF(s)] = lim
s→ 0

[
2s ln(s)
s2 − 1

]
= 0

(57)

as it is observed in Figure 3.
There is a number of recurrence and differential expressions that include both the

Bateman and the Havelock functions. They were reported by Srivastava [25] and three of
them are presented here

(n− 2) [kn(x)hn− 2(x)− kn− 2(x)hn(x)]+

(n + 2) [kn(x)hn+ 2(x)− kn+ 2(x)hn(x)] = − 8
π

kn(x)

4x
[
kn(x)h′n− 2(x) + k′n− 2(x)hn(x)

]
=

(n− 2) [kn(x)hn− 2(x) + kn− 2(x)hn(x)]+

(n + 2) [kn(x)hn+ 2(x) + kn+ 2(x)hn(x)][
kn(x)h′′n(x)− k′′n(x)hn(x)

]
= − 2

πx
kn(x),

(58)

where n is an even integer.
If we consider the Havelock function in the special case

hn(nx) =
2
π

∫ π/2

0
sin[n(x tan θ − θ)] dθ =

2
π

∫ π/2

0
sin[nα] dθ, (59)

then we recognize that the sums of series of the Havelock can be expressed by finite
trigonometric integrals.

For example from [42]

2
π

∞

∑
n= 1

tn sin(nα) =
2
π

[
t sin α

1− 2t cos α + t2

]
; t2 < 1 (60)

and integrating (60) with interchanging the order of summation and integration, we have

∞

∑
n= 1

tnhn(nx) =
2
π

∫ π/2

0

t sin(x tan θ − θ)

1− 2t cos(x tan θ − θ) + t2 dθ ; t2 < 1. (61)

In a similar way it is possible to obtain for series of the Bateman functions

∞

∑
n= 1

tnkn(nx) =
2
π

∫ π/2

0

1− t cos(x tan θ − θ)

1− 2t cos(x tan θ − θ) + t2 dθ ; t2 < 1. (62)

By this procedure, using various finite and infinite trigonometric series from [42],
many sums of the Bateman kn(nx) and Havelock hn(nx) series with different coefficients,
can be expressed by corresponding integrals.
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4. The Generalized Bateman and Havelock Functions with Integer Orders

In order to solve dual, triple or multi series equations, a number of generalized
Bateman and Havelock functions were introduced [25,26,29–35]. From the generalized
functions only two considered in 1972 by Srivastava [31] are presented here. There is no
agreed uniform notation of the generalized Bateman and Havelock functions. They are
defined by using different letters, with upper and lower indexes. Here these functions are
presented with an additional lower index with k > −1 as

kn,k(x) =
2
π

∫ π/2

0
(cos θ)k cos(x tan θ − nθ) dθ,

hn,k(x) =
2
π

∫ π/2

0
(cos θ)k sin(x tan θ − nθ) dθ.

(63)

It is suggested that if powers of cosine and sine functions appear also in (63), then the
third lower index m is included

kn,k,m(x) =
2
π

∫ π/2

0
(cos θ)k(sin θ)m cos(x tan θ − nθ) dθ,

hn,k,m(x) =
2
π

∫ π/2

0
(cos θ)k(sin θ)m sin(x tan θ − nθ) dθ,

(64)

where this notation differs from that used in (7).
Values of three such integrals having n = 0 and k = 0, 1, 2 are known

∫ π/2

0
(cos θ)2 cos(x tan θ − nθ) dθ =

π(1 + x) e− x

4
=

π

2
k0,2(x)∫ π/2

0
(sin θ)2 cos(x tan θ − nθ) dθ =

π(1− x) e− x

4
=

π

2
k0,0,2(x)∫ π/2

0
cos θ sin θ sin(x tan θ − nθ) dθ =

πx e− x

4
=

π

2
h0,1,1(x).

(65)

The recurrence and differential expressions for the generalized Havelock functions
are [31]

[(n− k− 2) hn− 2,k(x) + (n + k + 2) hn+ 2,k(x) + (2n− x) hn,k(x)] = − 8
π

4xh′n,k(x) = [(n− k− 2) hn− 2,k(x)− (n + k + 2) hn+ 2,k(x) + 2k hn,k(x)]

2xh′n,k(x)− 4
π

= [(n− k− 2) hn− 2,k(x) + (n + k− 2x) hn+ 2,k(x)]

2h′0,2k(x) = [2h0,2k + 2(x)− h0,2k(x)− h2,2k + 2(x)]

xh′′n,k(x)− kh′n,k(x) + (n− x)hn,k(x) = − 2
π

,

(66)

and for the generalized Bateman functions

2k′0,2k(x) = [2k0,2k + 2(x)− k0,2k(x)− k2,2k + 2(x)] . (67)

In 1972 Srivastava [31] was able to show that

k0,2k(x) =
2
π

∫ π/2

0
(cos θ)2k cos(x tan θ) dθ =

2√
π Γ(k + 1)

( x
2

)k + 1/2
Kk + 1/2(x)

h0,2k(x) =
2
π

∫ π/2

0
(cos θ)2k sin(x tan θ) dθ =

2Γ(−k)√
π

( x
2

)k + 1/2
[Ik + 1/2(x)− L− k− 1/2(x)],

(68)

296



Mathematics 2021, 9, 1273

and in the explicit form for the generalized Havelock function

h2n,2k(x) =
1
π
[k2n(x) li(ex)− 2Sn− k−1,k(x)] ; n ≥ k + 1, (69)

where he determined the following polynomials for the expression in (69)

S2,1(x) =
1
6

(
2 + x + x2

)
S3,1(x) = 1

12
(
2− x2 + x3)

S4,1(x) =
1
30

(
4 + x + 2x2 − 4x3 + x4

)
S5,1(x) =

1
180

(
18− 9x2 + 31x3 − 16x4 + 2x5

)
S5,1(x) =

1
180

(
18− 9x2 + 31x3 − 16x4 + 2x5

)
,

(70)

and
S3,2(x) =

1
48

(
16 + 7x + 3x2 + x3

)
S4,2(x) =

1
120

(
24 + 6x + 2x2 + x3 + x4

)
S5,2(x) =

1
360

(
48 + 6x− x3 − 2x4 + x5

)
S6,2(x) = 1

2520
(
268 + 30x + 6x2 + 5x3 + 11x4 − 44x5 + 2x6).

(71)

Besides, in 1972 H.M. Srivastava [31] evaluated four Laplace transforms of the gen-
eralized Bateman and Havelock functions. Two are presented here, long but complex
expressions for the functions k2,2k(x) and h2,2k(x) are omitted here:

L
{

k0,2k(x)
}
=

[
(1− s)

(1− s2)k + 1 −
s√
π

k

∑
m= 1

Γ(k−m + 3/2)
Γ(k−m + 2) (1− s2)m

]

L
{

h0,2k(x)
}
=

1
π

[
2 ln(s)

(1− s2)k + 1 +
k

∑
m= 1

1
(k−m + 1) (1− s2)m

]
.

(72)

For the solution of pairs of dual equations, other researchers called Srivastava [28,29]
reported a few more properties of the generalized Bateman functions, but these functions
are slightly modified in their definitions.

5. The Bateman and Havelock Functions with Unrestricted Orders

General case of the Bateman and Havelock with any order

kν(x) =
2
π

∫ π/2

0
cos(x tan θ − νθ) dθ

hν(x) =
2
π

∫ π/2

0
sin(x tan θ − νθ) dθ

(73)

is practically unknown in the literature, with only one exception, the definition of the
Bateman function in terms of the Whittaker function Wk,μ(z) or Tricomi function U(a, b, z)
(particular cases of the confluent hypergeometric function ) [7]

k2ν(x) =
1

Γ(ν + 1)
Wν,1/2(2x) =

e− x

Γ(ν + 1)
U(− ν, 0; 2x)

U(− ν, 0; 2x) = 2x U(1− ν, 2; 2x)

k2n+ 2(x) = 2xe− x
1F1(−2n; 2; 2x) ; n = 0, 1, 2, 3, . . .

(74)
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Evidently, the corresponding generalized functions are

kν,α,β(x) =
2
π

∫ π/2

0
(cos θ)α(sin θ)β cos(x tan θ − νθ) dθ

hν,α,β(x) =
2
π

∫ π/2

0
(cos θ)α(sin θ)β sin(x tan θ − νθ) dθ,

(75)

where α, β and ν have any real value. By changing the integration variable in (73) and (75),
t = tan(θ) , these functions can be expressed by infinite integrals

kν(x) =
2
π

∫ ∞

0

[
cos(xt) cos[ν tan− 1(t)] + sin(xt) sin[ν tan− 1(t)]

]
1 + t2 dt

kν,α,β(x) =
2
π

∫ ∞

0

tβ
[
cos(xt) cos[ν tan− 1(t)] + sin(xt) sin[ν tan− 1(t)]

]
(1 + t2)α/2+ β/2+1 dt

hν(x) =
2
π

∫ ∞

0

[
sin(xt) cos[ν tan− 1(t)]− cos(xt) sin[ν tan− 1(t)]

]
1 + t2 dt

hν,α,β(x) =
2
π

∫ ∞

0

tβ
[
sin(xt) cos[ν tan− 1(t)]− cos(xt) sin[ν tan− 1(t)]

]
(1 + t2)α/2+ β/2+1 dt.

(76)

In Figures 5 and 6 we illustrate the behavior and the symmetries with respect to the
order of the Bateman functions with fractional positive and negative values: ν = n + 1/2
and ν = −(n + 1/2), with n = 0, 1, 2, 3, 4, 5. The same is demonstrated in Figures 7 and 8
for the Havelock-functions. Similarly as in (28), differentiation of the Bateman functions
with respect to the argument x is for k = 0, 1, 2, 3, . . .

∂2k kν(x)
∂x2k = (−1)k 2

π

∫ π/2

0
(tan θ)2k cos(x tan θ − νθ) dθ

∂2k + 1 kν(x)
∂x2k + 1 = (−1)k 2

π

∫ π/2

0
(tan θ)2k + 1 sin(x tan θ − νθ) dθ.

(77)

and in the case of the Havelock functions

∂2k hν(x)
∂x2k = (−1)k 2

π

∫ π/2

0
(tan θ)2k sin(x tan θ − νθ) dθ

∂2k + 1 hν(x)
∂x2k + 1 = (−1)k 2

π

∫ π/2

0
(tan θ)2k + 1 cos(x tan θ − νθ) dθ

k = 0, 1, 2, 3, . . .

(78)

Figure 5. Bateman functions with positive n + 1/2 orders as a function of argument x.
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Figure 6. Bateman functions with negative n + 1/2 orders as a function of argument x.

Figure 7. Havelock functions with positive n + 1/2 orders as a function of argument x.

Figure 8. Havelock functions with negative n + 1/2 orders as a function of argument x.

Using the definition of these function from (73), it is possible to consider the Bateman
and Havelock functions as functions of two variables x and ν. Thus, it is possible also to
perform differentiation with respect to ν

∂2k kν(x)
∂ν2k = (−1)k 2

π

∫ π/2

0
θ2k cos(x tan θ − νθ) dθ

∂2k + 1 kν(x)
∂ν2k + 1 = (−1)k 2

π

∫ π/2

0
θ2k + 1 sin(x tan θ − νθ) dθ

k = 0, 1, 2, 3, . . .

(79)
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and
∂2k hν(x)

∂ν2k = (−1)k 2
π

∫ π/2

0
θ2k sin(x tan θ − νθ) dθ

∂2k + 1 hν(x)
∂ν2k + 1 = (−1)k 2

π

∫ π/2

0
θ2k + 1 cos(x tan θ − νθ) dθ

k = 0, 1, 2, 3, . . .

(80)

The first derivatives with respect to the order at fixed positive and negative values
of argument x of the Bateman functions are plotted in Figures 9 and 10, and the same
for the Havelock functions in Figures 11 and 12. As can be observed, these functions are
symmetrical in both cases.

If orders are pure imaginary numbers ν = iα then the Bateman and Havelock func-
tions become complex functions which are expressed by integrals with integrands having
products of trigonometric and hyperbolic functions.

As pointed out above, the Bateman and Havelock functions were introduced to the
mathematical literature as solutions of particular problems in fluid mechanics [20,36].

Figure 9. First derivatives of the Bateman functions with respect to the order at fixed positive values
of argument x.

Figure 10. First derivatives of the Bateman functions with respect to the order at fixed negative
values of argument x.
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Figure 11. First derivatives of the Havelock functions with respect to the order at fixed positive
values of argument x.

Figure 12. First derivatives of the Havelock functions with respect to the order at fixed negative
values of argument x.

Years later, these functions were generalized to the form given in (64) and
(75) [25,26,29–35]. It should be mentioned however, that historically, these proposed
generalizations are not new, and they were already discussed much earlier by Giuliani
in1888 [43] and by Bateman in 1931 [44]. They also introduced similar trigonometric
integrals, but in the context of particular cases of the Kummer confluent hypergeometric
functions. It is rather strange, that in the later investigations [25,26,29–35], when the
generalized Bateman and Havelock functions were proposed, previous studies on this
subject were completely ignored. Considering that the trigonometric integrals and associ-
ated with them differential equations presented in the Giuliani and Bateman papers are of
particular importance and interest, it was decided to summarize their results separately,
in Appendix B.

6. The Bateman-Integral Functions

Analogous to the sine-integral, cosine integral and the Bessel-integral functions

si(x) = −
∫ ∞

x

sin t
t

dt

Ci(x) = −
∫ ∞

x
cos t

t dt

Jiν(x) = −
∫ ∞

x

Jν(t)
t

dt.

(81)
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Chaudhuri [26] has introduced the Bateman-integral function

ki2n(x) = −
∫ ∞

x

k2n(t)
t

dt ; t > 0, (82)

and mainly using operational calculus he has discussed its properties.

ki2n(x) =
∫ x

0

k2n(t)
t

dt + ki2n(0)

ki2n(0) = 0 ; n = 2k ; k = 0, 1, 2, 3, . . .

ki2n(0) = − 2
n

; n = 2k + 1

(83)

Using similarity with the Laguerre polynomials, Chaudhuri [26] derived the following
series expressions for the Bateman-integral functions

ki2n(x) =
e− x

n

n

∑
k = 1

(−2)k
(

n
k

)
Lk− 1(x)

ki2n(x) =
1

nx

[
n k2n(x)− 2

n

∑
m= 1

(−1)k
(

n
m

)
[m k2m(2x) + (m + 1)k2m+ 2(2x)− 2k0(2x)

]

ki2n(x) =
(−1)n− 1ex

2n+ 1

[
n

∑
m= 1

m k2k(x)

]
Ln− 1(x) =

ex

2n

n

∑
m= 1

(−1)m
(

n
m

)
m ki2m(x)

ki2(x) = −2 k0(x),

(84)

and the recurrence and differential expressions

k2n(x) =
(n− 1)ki2n− 2(x)− (n + 1)ki2n+ 2(x)

2

n ki2n(x) + (n + 1) ki2n+ 2(x) = −2
n

∑
k = 0

ki2k(x)

x ki′2n(x) =
(n− 1)ki2n− 2(x)− (n + 1)ki2n+ 2(x)

2
x ki′2n(x) = k2n(x).

(85)

He was also able to relate the Bateman-integral functions with the Bessel and the
Bessel integral functions

(n + 1) [Jin+ 1(x)ki2n− 2(x)− Jin− 1(x)ki2n+ 2(x)] =

2xJin− 1(x)ki′2n(x)− 2nJi′n(x)ki2n− 2(x)
∞

∑
m= 1

(−1)mm ki2m(x) ki2m(y) = J0(2
√

xy).
(86)

From integral expressions, the Laplace transform are presented here, when indefinite,
definite and infinite integrals related to of the Bateman-integral functions are given in
Appendix A:
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L{ki2n(x)} = 1
ns

[(
1− s
s + 1

)n
− 1
]
=

1
ns

n

∑
k = 1

(−1)k
(

n
k

)(
2s

s + 1

)k

L{ki2n(2x)} = 1
ns

[(
2− s
s + 2

)n
− 1
]

L{ki0(x)} = − ln(s)
s

L{ki2(x)} = − 2
s + 1

.

(87)

It is also worthwhile to mention that Srivastava [25] expressed the Bateman-integral
function in the following way

ki2n(x) =
π

2
[
k′2n(x)h2n(x)− h′2n(x)k2n(x)

]
=

π

8x
[(2n + 2)[k2n(x)h2n+ 2(x)− k2n+ 2(x)h2n(x)]−

(2n− 2)[k2n(x)h2n− 2(x)− k2n− 2(x)h2n(x)]],

(88)

by including products of the Bateman and Havelock functions.

7. Conclusions

As solutions of fluid mechanics problems, more than ninety years ago, Havelock in
1925 and Bateman in 1931 introduced new functions which are expressed in terms of finite
trigonometric integrals and discussed their properties. Initially, these functions found
attention of a number of mathematicians who further developed this subject and proposed
some generalizations. However, unfortunately, after a rather short period, the Havelock
and Bateman functions were practically abandoned. Today, only the Bateman function
is listed in mathematical handbooks as a particular case of the confluent hypergeometric
function, thus as a minor special function. However, as is clearly showed in this survey,
these functions have interesting properties and a rather large mathematical material was
devoted and associated with them. This leads to conclusion that they should be treated as
independent special functions. Since at present, in reference books, our knowledge about
these functions is very limited, we decided to prepare this survey where basic properties of
the Havelock and Bateman functions are presented. We have found useful for the reader’s
convenience to add two Appendixes: Appendix A is devoted to integrals associated
with the Bateman and Bateman-integral functions whereas Appendix B is devoted to
trigonometric integrals and differential equations associated with the Kummer Confluent
Hypergeometric Functions according to the almost unknown papers by Giuliani [43] and
by Bateman himself [44].

In Appendix C we have added the integral representations of the special functions
used in this survey.

It is worth to note that the Bateman Manuscript is currently under revision with the
name Encyclopedia of Special Functions: the Askey-Bateman Project, see [45]. However the
volume dealing with the confluent hypergeometric functions is not yet available.
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Appendix A. Integrals Associated with the Bateman and Bateman-Integral Functions

The integrals presented here are compiled from the literature and they have a definite
form. Their number can be enlarged by applying interconnections between the Bateman,
Bateman-integral and other special functions and using operational calculus. Besides, there
are many integrals which are expressed in term of infinite series, but they are omitted from
this tabulation.∫ 1

0
(1− t)β− 1 eαt k2n(αt) dt =

(−1)n− 1(n− 1)! Γ(β)

Γ(β + n + 1)
L(β+ 1)

n− 1 (2α) ; β > 0 (A1)

∫ x

0
k2m(t) k2n(x− t) dt =

∫ x

0
k2n(t) k2m(x− t) dt =

1
2
[k2m+ 2n−2(x) + 2k2m+ 2n(x) + k2m+ 2n+2(x)] (A2)

∫ x

0

J0(t)− k0(t)
t

dt = Ji0(x)− ki0(x) + ln 2∫ x

0

Jn(t)− k2n(t)
t

dt = Jin(x)− ki2n(x) +
(−1)n

n

(A3)

∫ ∞

0
J0(2

√
at) k2n(t) dt =

(−1)n− 1

2
[(n− 1)ki2n− 2(a)− 2nki2n (a) + (n + 1)ki2n+ 2(a)]

(A4)

∫ ∞

0
J0(2

√
at) k2n(t)

dt
t
= (−1)nki2n(a) (A5)

∫ ∞

0
e− t J1(23/2

√
xt) k2n(t)

dt
t
=

(−1)n− 1xn− 1/2 e− x
√

2n!
(A6)

∫ ∞

0
e− a t tn+ 1/2 J1(2

√
xt) dt =

(−1)nΓ(n + 2) e− x/2a

an+ 1
√

x
k2n+ 2

( x
2a

)
; a > 0 (A7)

∫ x

0

Jn(t)− k2n(t)
t

dt = Jin(x)− ki2n(x) +
(−1)n

n
(A8)

∫ ∞

0
tn/2− 1e− t J2−n(4

√
xt) k2n(t)

dt
t
=

xn/2− 1 e− x

2
k2n(x) (A9)

∫ ∞

0

e− bt2
Jλ(a

√
t2 + x2) Jν(a

√
t2 + x2)

t (t2 + x2)(λ+ ν)/2
k2n+ 2(bt2) dt =

(−1)n Jλ(ax) Jν(ax)
(2n + 2) xλ+ ν

Re(λ + ν) > −3/2

(A10)

∫ π

0
U2n(

√
x cos θ) (sin θ)2 dθ =

π(2n)! ex/2

2xn!
k2n+ 2(

x
2
)

Un(x) = (−1)n ex2 dn

dxn

{
e− x2
} (A11)

∫ x

0
sin(x− t) ki2(t) dt = cos x− sin x− e− x (A12)

∫ x

0
cos(x− t) ki2(t) dt = cos x− sin x + e− x (A13)
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∫ x

0
sinh(x− t) ki2(t) dt = e− x(1 + x)− cosh x (A14)

∫ x

0
cosh(x− t) ki2(t) dt = −xe− x − sinh x (A15)

∫ x

0
ex− t ki2(t) dt = −2 sinh x (A16)

∫ x

0
(x− t) ex− t ki4(t) dt = sinh x− x cosh x (A17)

∫ ∞

0
e− at ki0(bt) dt =

1
a

ln
(

b
a + b

)
; a, b > 0 (A18)

∫ ∞

0

ki2(at)− ki2(bt)
t

dt = 2 ln
( a

b

)
; a, b > 0 (A19)

∫ ∞

0
J0(2

√
at) ki2n(t) dt = (−1)n k2n(a)

a
(A20)

Appendix B. Trigonometric Integrals and Differential Equations Associated with the

Kummer Confluent Hypergeometric Functions

In a paper devoted to the note of Kummer, where he introduced into mathematics the
confluent hypergeometric function defined by the following polynomial series

1F1(a; b; x) = M(a, b, x) = 1 +
a
b

x
1!

+
a(a + 1)
b(b + 1)

x2

2!
+

a(a + 1)(a + 2)
b(b + 1)(b + 2)

x3

3!
+ . . .

Re(b) > Re(a) > 0.

(B1)

The Italian mathematician Giulio Giuliani [43] in 1888 considered the trigonometric
integral (the original notation is replaced here by that used in this survey)

I(x) =
∫ π/2

0
(cos θ)α−1 cos(

x
2

tan θ + nθ) dθ =
π

2
k−n,α−1(

x
2
) , α > 1. (B2)

We note that this integral is one of particular solutions of the following
differential equation

4x
d2 I(x)

dx2 − 4(α− 1)
dI(x)

dx
− (x + 2n)I(x) = 0. (B3)

Besides, Giuliani introduced two integrals coming from (B2)

Un(α, x) =
∫ π/2

0
(cos θ)α−1 cos(

x
2

tan θ) cos(nθ) dθ,

Vn(α, x) =
∫ π/2

0
(cos θ)α− 1 sin(

x
2

tan θ) sin(nθ) dθ,

(B4)

when ∫ π/2

0
(cos θ)α− 1 cos(

x
2

tan θ + nθ) dθ = Un(α, x)−Vn(α, x). (B5)

He showed that these integrals are solutions of the set of differential equations of the
first order

2(α− 1)
dUn(α, x)

dx
+

x
2

Un(α− 2, x)− nVn(α, x) = 0,

2(α− 1)
dVn(α, x)

dx
+

x
2

Vn(α− 2, x)− nUn(α, x) = 0,
(B6)
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and of the second order

2x
d2Un(α, x)

dx2 − 2(α− 1)
dUn(α, x)

dx
− x

2
Un(α, x) + nVn(α, x) = 0,

2x
d2Vn(α, x)

dx2 − 2(α− 1)
dVn(α, x)

dx
− x

2
Vn(α, x) + nUn(α, x) = 0.

(B7)

From (B6) and (B7) it is possible to obtain a differential equation of the fourth order

4x2 d4Un(α, x)
dx4 − 8(α− 2)x

d3Un(α, x)
dx3 −

2
[

x2 − 2(α− 1)(α− 2)
] d2Un(α, x)

dx2 + 2x(α− 2)
dUn(α, x)

dx
−(

x2

4
+ n2 + 1− α

)
Un(α, x) = 0,

Vn(α, x) =
1
n

(
− 2x

d2Un(α, x)
dx2 + 2(α− 1)

dUn(α, x)
dx

+
x
2

Un(α, x)
)

.

(B8)

In terms of the Kummer confluent hypergeometric functions Giuliani was able to
obtain that ∫ π/2

0
(cos θ)α− 1 cos(

x
2

tan θ + nθ) dθ = Un(α, x)−Vn(α, x) =⎡⎣ π Γ(α− 1) e− x/2

2α Γ
(

α−n+1
2

)
Γ
(

α+n+1
2

) 1F1(
α− n + 1

2
; 1− α; x)−

π2 cos
(

α−n
2
)

xα e− x/2

2α sin(πα) Γ(α) 1F1(
α + n + 1

2
; α + 1; x)

]
,

(B9)

and

Un(α, x) + Vn(α, x) =

⎡⎣ π Γ(α− 1) e− x/2

2α Γ
(

α+n+1
2

)
Γ
(

α−n+1
2

) 1F1(
1− α− n

2
; 1− α; x) ,

− π2 cos
(

α+n
2
)

xα e− x/2

2α sin(πα) Γ(α) 1F1(
α− n + 1

2
; α + 1; x)

]
.

(B10)

These expressions can be presented in terms of the generalized Bateman functions
defined in (75)

k− ν,α,0(x) =[
Γ(α) e− x

2α Γ
(

α−ν
2 + 1

)
Γ
(

α+ν
2
) 1F1(

α− ν

2
+ 1;−α; 2x)−

π cos
(

α−ν+1
2

)
xα+ 1 e− x

2α sin[π(α + 1)] Γ(α + 1) 1F1(
α + ν

2
+ 1; α + 2; 2x)

⎤⎦,

(B11)

and

kν,α,0(x) =

[
Γ(α)e− x

2α Γ
(

α+ν
2 + 1

)
Γ
(

α−ν
2 + 1

) 1F1(
−α− ν

2
;−α; 2x)

−
π cos

(
α+ν+1

2

)
xα+ 1 e− x

2α sin[π(α + 1)] Γ(α + 1) 1F1(
α− ν

2
+ 1; α + 2; 2x)

⎤⎦.

(B12)
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As shown by Giuliani, by changing the integration variable, the finite trigonometric
integrals can be presented as the infinite integrals, for example

∫ π/2

0
(cos θ)α cos(

x
2

tan θ) dθ =
∫ ∞

0

cos
( xt

2
)

(1 + t2)α/2+1 dt . (B13)

Considering the case α = 1 in (B2), Bateman [44] in 1931 noted the link that exists
between the investigated by Giuliani integral and the k-Bateman function with negative
order. He also found that the solution of the following third order differential equation

x
d3 I(x)

dx3 − (α− 1)
d2 I(x)

dx2 − (x + n)
dI(x)

dx
− βI(x) = 0, (B14)

is given by the following trigonometric integral

I(x) =
∫ π/2

0
(cos θ)α(sin θ)β−1 cos(x tan θ + nθ) dθ =

π

2
kn,α,β−1(x) . (B15)

Besides, Bateman showed that for x > 0:∫ π/2

0
(cos θ)m cos[x tan θ + (m + 2n)θ] dθ =

ex sin(πn)
2k + 1

∫ 1

0
tk(1− t)n− 1 e− 2x/t dt ,∫ π/2

0
cos[x tan θ + (m + 2n)θ] dθ =

ex sin(πn)
2

∫ 1

0
(1− t)n− 1 e− 2x/t dt =

π

2
k− 2n(x) .

(B16)

As can be observed, the included material from the 1888 paper by Giuliani and from the
1931 paper by Bateman is important from the historical and mathematical points of view.

Appendix C. Integral Representations of Special Functions Used in This Survey

Hypergeometric Function

2F1(a, b; c; x) =
Γ(c)

Γ(a) Γ(b)

∫ 1

0

tb−1 (1− t)c−b−1

(1− xt)a dt Re(c) > Re(a) > 0 . (C1)

Kummer Confluent Hypergeometric Function

1F1(a, b; x) = M(a, b, x) =
Γ(b)

Γ(a) Γ(b− a)

∫ 1

0
ta−1 ext (1− t)b−a−1 dt Re(b) > Re(a) > 0 . (C2)

Tricomi Confluent Hypergeometric Function

U(a, b, x) =
1

Γ(a)

∫ ∞

0
ta−1 e−xt (1 + t)b−a−1 dt , Re(b) > Re(a) > 0 . (C3)

Whittaker Functions

Mκ,μ(x) =
Γ(1 + 2μ) xμ+1/2 e−x/2

Γ(μ + κ + 1/2) Γ(μ− κ + 1/2)

∫ 1

0
tμ−κ−1/2 ext (1− t)μ+κ−1/2 dt ,

Mκ,μ(x) = xμ+1/2e−x/2 M(μ− κ + 1/2, 1 + 2μ, x)

Re(μ± κ + 1/2) > 0 .

(C4)
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Wκ,μ(x) =
xμ+1/2 e−x/2

Γ(μ− κ + 1/2)

∫ ∞

0
tμ−κ−1/2 e−xt (1 + t)μ+κ−1/2 dt ,

Wκ,μ(x) = xμ+1/2e−x/2 U(μ− κ + 1/2, 1 + 2μ, x)

Re(μ− κ + 12) > 0 .

(C5)

Bessel Functions

Jν(x) =
1
π

∫ π

0
cos(x sin θ − νθ) dθ − sin(πν)

π

∫ ∞

0
e−x sinh t−νt dt. (C6)

Yν(x) =
1
π

∫ π

0
sin(x sin θ − νθ) dθ − sin(πν)

π

∫ ∞

0
e−x sinh t−νt [eνt + e−νt cos(πν)

]
dt. (C7)

Iν(x) =
1
π

∫ π

0
ex cos θ cos(νθ) dθ − sin(πν)

π

∫ ∞

0
e−x cosh t−νt dt. (C8)

Kν(x) =
Γ(ν + 1/2) (2x)ν

√
π

∫ ∞

0

cos(xt)
(1 + t2)ν+1/2 dt =

∫ ∞

0
e−x cosh t cosh(νt) dt. (C9)

Struve Functions

Hν(x) =
2(x/2)ν

Γ(ν + 1/2)
√

π

∫ 1

0
(1− t2)ν−1/2 sin(xt) dt , Re(ν) > −1/2. (C10)

Lν(x) =
2(x/2)ν

Γ(ν + 1/2)
√

π

∫ π/2

0
(sin t)2ν sinh(x cos t) dt , Re(ν) > −1/2. (C11)

Lommel Functions

Sμ,ν(x)xμ
∫ ∞

0
e−xt

2F1

(
1− μ + |nu

2
,

1− μ− ν

2
;

1
2

;−t2
)

dt , Re(x) > 0 . (C12)
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1. Introduction

In two recent papers, S. Gerhold [1] and, independently, R. Garra and F. Polito [2]
introduced the new special function

F(γ)
α,β (z) =

∞

∑
k=0

zk

[Γ(αk + β)]γ
, z ∈ C, (1)

for complex values of the variable z and values of parameters α > 0, β > 0, γ > 0. On a
later stage its definition is extended by R. Garrappa, S. Rogosin and F. Mainardi [3] under
more general conditions for the parameters. However, making sure that the coefficients
[Γ(αk + β)]−γ in the Expansion (1) exist, the values of the parameters have to be restricted.
A natural restriction in this direction would be the following:

α, β ∈ C, γ > 0. (2)

As is established in [3], this function turns out to be an entire function of the complex
variable z for all values of the parameters such that

�(α) > 0, β ∈ C, γ > 0. (3)

Actually, this function has been recently considered in [1–6] from various points of view.
Some of its important properties can be seen therein. For example, different asymptotic
formulae can be found in S. Gerhold [1] and R. Garrappa, S. Rogosin, F. Mainardi [3],
for complete monotonicity see K. Gorska, A. Horzela, R. Garrappa [4] and T. Simon [5].
For studying its properties in relation to some integro-differential operators involving
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Hadamard fractional derivatives or hyper-Bessel-type operators see Garra-Polito [2], differ-
ent integral representations can be seen in [3] and Pogány [6].

The function (1) is a natural generalization of the so-called Le Roy function

F(γ)(z) =
∞

∑
k=0

zk

[Γ(k + 1)]γ
=

∞

∑
k=0

zk

[k!]γ
, z ∈ C, γ ∈ C, (4)

which was named after the great French mathematician Édouard Louis Emmanuel Julien
Le Roy (1870–1954), and probably for that reason the authors of [3] use the name Le Roy
type function for the function F(γ)

α,β .
Keeping with this, and for the sake of brevity, we often use in this paper the name Le

Roy type function for the function F(γ)
α,β , defined by (1). In this paper, considering the Le

Roy type functions (1), we discuss various earlier results which are needed here. These
are results related to inequalities in the complex plane C and on its compact subsets and
asymptotic formula for ‘large’ values of indices of the functions (1). Further, considering
series in such a kind of functions, we provide results for their domains of convergence and
investigate their behaviour ‘near’ the boundaries of their domains of convergence.

In the series of papers [7–10], as well as in the recent book [11], we studied series
in systems of some representatives of the special functions of fractional calculus, which
are fractional index analogues of the Bessel functions and also multi-index Mittag–Leffler
functions (in the sense of [12–15]), and we have proved various results connected with
their convergence in the complex domains.

2. Inequalities and an Asymptotic Formula

For our purpose we consider the family

F(γ)
α,n (z) =

∞

∑
k=0

zk

[Γ(αk + n)]γ
, z ∈ C; n ∈ N, α > 0, γ > 0, (5)

where N means the set of positive integers.
We are going to deal with some analytical transformations of the function (5) for each

value of the parameter n. The following results hold true (for the formulation and proof
see Paneva-Konovska [16]).

Lemma 1. Let z ∈ C, α > 0, γ > 0, n ∈ N and let K ⊂ C be a nonempty compact set. Then
there exists an entire function ϑ

(γ)
α,n such that

F(γ)
α,n (z) =

1
[Γ(n)]γ

(1 + ϑ
(γ)
α,n (z)). (6)

The entire function ϑ
γ
α,n satisfies the following inequality∣∣∣ϑ(γ)

α,n (z)
∣∣∣ ≤ [Γ(α + 1)]γ [Γ(n)]γ

[Γ(α + n)]γ
(

F(γ)
α,1 (|z|)− 1

)
, z ∈ C, (7)

Moreover there exists a positive constant C = C(K), such that

max
z∈K

∣∣∣ϑ(γ)
α,n (z)

∣∣∣ ≤ C
[Γ(n)]γ

[Γ(α + n)]γ
, (8)

for all the positive integers n.
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Theorem 1. Let z ∈ C; n ∈ N, α > 0, γ > 0. Then the Le Roy type functions F(γ)
α,n have the

following asymptotic formula

F(γ)
α,n (z) =

1
[Γ(n)]γ

(1 + ϑ
(γ)
α,n (z)), ϑ

(γ)
α,n (z)→ 0 as n → ∞. (9)

The convergence is uniform in the nonempty compact subsets of the complex plane.

The results above allow us to write the next two remarks.

Remark 1. According to the asymptotic Formula (9), it follows that there exists a natural number
M such that the functions [Γ(n)]γF(γ)

α,n (z) do not vanish for any n great enough (say n > M).

Remark 2. Note that each function F(γ)
α, n (z) (n ∈ N), being an entire function, no identically zero,

has at most finite number of zeros in the closed and bounded set |z| ≤ R ([17], p. 305). Moreover,
because of Remark 1, at most finite number of these functions have some zeros.

3. Series in Le Roy Type Functions

For the sake of simplicity, we introduce an auxiliary family of functions, related to the
Le Roy type functions, adding F̃(γ)

α,0 (z) just for completeness, namely:

F̃(γ)
α,0 (z) = 1, F̃(γ)

α,n (z) = zn [Γ(n)]γ F(γ)
α,n (z), n ∈ N; α > 0, γ > 0, (10)

and we study the series with complex coefficients an (n ∈ N0, i.e., n = 0, 1, 2, ...) in these
functions for z ∈ C, namely:

∞

∑
n=0

an F̃(γ)
α,n (z). (11)

Our major goal is to study the convergence of the series (11) in the complex plane. We
give results, corresponding to the classical Cauchy–Hadamard theorem and Abel lemma
for the power series and more precise results, giving the behaviour of the series ‘near’
the boundary of the domain of convergence, as well. Such kind of results may be useful
for studying the solutions of some fractional order differential and integral equations,
expressed in terms of series (or series of integrals) in special functions of the type (10)
and their special cases (as for example in Kiryakova et al., in [18]—for the Mittag–Leffler
functions; in [19]—for the hyper-Bessel functions; in [14,20]—for the multi-index Mittag–
Leffler functions). Convergence theorems are also obtained for series in other special
functions, for example, for series in Laguerre and Hermite polynomials (the results are
obtained in a number of publications and they can be seen in Rusev [21]), and respectively
by the author for series in Bessel and Mittag–Leffler types functions in the previous
papers [7–10] and the book [11].

4. Cauchy–Hadamard Type Theorem and Corollaries

Let us denote by D(0; R) the open disk with the radius R and centred at the origin,
and let the circle C(0; R) be its boundary, i.e.

D(0; R) = {z : |z| < R} and C(0; R) = {z : |z| = R} (z ∈ C).

In the beginning, we give a theorem of the Cauchy–Hadamard type for the series (11).

Theorem 2 (of Cauchy–Hadamard type). Let z ∈ C, n ∈ N0, α > 0, γ > 0. Then the domain
of convergence of the series (11) with complex coefficients an is the disk D(0; R) with a radius
of convergence

R = 1/ lim sup
n→∞

( |an| )1/n. (12)
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The cases R = 0 and R = ∞ are included in the general case.

Let us note that the series (11) absolutely converges in the open disk D(0; R) with the
radius R, given by (12), and it diverges in its outside (i.e., for z ∈ C with |z| > R), like in
the classical theory of the power series. These facts are established in the process of proving
this basic theorem. Further, three corollaries are formulated. First of them is analogical to
the classical Abel lemma.

Corollary 1. Let z ∈ C, n ∈ N0, α > 0, γ > 0, and let the series (11) converge at the point
z0 �= 0. Then it is absolutely convergent in the disk D(0; |z0|).

Additionally, it turns out that the convergence of the discussed series is uniform inside
the disk D(0; R), i.e., on each closed disk |z| ≤ r < R.

Corollary 2. Let z ∈ C, n ∈ N0, α > 0, γ > 0. Then the convergence of the series (11) is uniform
inside the disk D(0; R), with R defined by (12), i.e., on each closed disk [D(0; r)] = {z ∈ C : |z| ≤
r < R}.

The third corollary considers the behaviour of the series (11) outside the disk D(0; |z0|),
described in Corollary 1.

Corollary 3. Let z ∈ C, n ∈ N0, α > 0, γ > 0, and let the series (11) diverge at the point z0 �= 0.
Then it is divergent for each z with |z| > |z0|.

Theorem 2 and Corollaries 1 and 2 are formulated and proved in [16]. The formulation
and proof of Corollary 3 can be found in author’s paper [22].

Thus, the series (11) absolutely converges in the open disk D(0; R) and it diverges
in the region {z ∈ C : |z| > R}. Inside the open disk D(0; R), i.e., in each closed disk
|z| ≤ r which is a subset of D(0; R), the convergence of the discussed series is uniform.
However, the very disk of convergence is not obligatorily a domain of uniform convergence
and at the points on its boundary divergence cannot be excluded. More precise results,
connected with the behaviour of the series (11) ‘near’ the boundary C(0; R), are obtained
and discussed in the next sections.

5. Abel Type Theorem

Let z0 ∈ C, 0 < R < ∞, |z0| = R and gϕ be an arbitrary angular region with size
2ϕ < π and with a vertex at the point z = z0. Let additionally this region be symmetric
with respect to the straight line passing through the points 0 and z0 and dϕ be its part,
bounded by the arms of the angle gϕ and the arc of the circle centred at the point 0 and
touching the arms of gϕ. The following inequality can be verified for z ∈ dϕ [11] (p. 21):

|z− z0| cos ϕ < 2(|z0| − |z|). (13)

The next theorem refers to the uniform convergence of the series (11) in the set dϕ and
the existence of the limit of its sum at the point z0, provided z ∈ D(0; R) ∩ gϕ.

Theorem 3 (of Abel type). Let {an}∞
n=0 be a sequence of complex numbers, R be the real number

defined by (12) and 0 < R < ∞. If f (z; α, γ) is the sum of the series (11) in the open disk
D(0; R), i.e.,

f (z; α, γ) =
∞

∑
n=0

anF̃(γ)
α, n (z), z ∈ D(0; R),

and this series converges at the point z0 of the boundary C(0; R), then:
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(i) The following relation holds

lim
z→z0

f (z; α, γ) =
∞

∑
n=0

anF̃(γ)
α, n (z0), (14)

provided z ∈ D(0; R) ∩ gϕ.
(ii) The series (11) is uniformly convergent in the region dϕ.

Proof. The proofs of the two assertions (i) and (ii) are separately given.

(i) Beginning with (i) we only note that the detailed idea of its proof is given in [22] and
that is why the proof is omitted here.

(ii) In order to prove (ii), we use the inequality (13) which is a key point of the proof. So,
letting z ∈ dϕ and setting for convenience

Sk(z) =
k

∑
n=0

anF̃(γ)
α, n (z), Sk(z0) =

k

∑
n=0

anF̃(γ)
α, n (z0), lim

k→∞
Sk(z0) = s, (15)

we obtain

Sk+p(z)− Sk(z) =
k+p

∑
n=0

anF̃(γ)
α, n (z)−

k

∑
n=0

anF̃(γ)
α, n (z) =

k+p

∑
n=k+1

anF̃(γ)
α, n (z).

According to Remark 2, there exists a natural number N0 such that F̃(γ)
α, n (z0) �= 0 when

n > N0. Let k > N0 and p > 0. Then, using the denotation

γn(z; z0) = F̃(γ)
α, n (z)/F̃(γ)

α, n (z0),

the difference Sk+p(z)− Sk(z) can be written as follows:

Sk+p(z)− Sk(z) =
k+p

∑
n=k+1

anF̃(γ)
α, n (z0)

F̃(γ)
α, n (z)

F̃(γ)
α, n (z0)

=
k+p

∑
n=k+1

anF̃(γ)
α, n (z0)γn(z; z0).

Now, by the Abel transformation (see in [17]),

k+p

∑
n=k+1

(βn − βn−1)γn = βk+pγk+p − βkγk+1 −
k+p−1

∑
n=k+1

βn(γn+1 − γn),

and additionally denoting βn = Sn(z0)− s, we obtain consecutively:

Sk+p(z)− Sk(z) =
k+p

∑
n=k+1

(βn − βn−1)γn(z; z0)

= βk+pγk+p(z; z0)− βkγk+1(z; z0)−
k+p−1

∑
n=k+1

βn(γn+1(z; z0)− γn(z; z0)),

and

|Sk+p(z)− Sk(z)| ≤ |Sk+p(z0)− s||γk+p(z; z0)|+ |Sk(z0)− s||γk+1(z; z0)|

+
k+p−1

∑
n=k+1

|Sn(z0)− s| ×

∣∣∣∣∣∣ F̃(γ)
α, n (z)

F̃(γ)
α, n (z0)

−
F̃(γ)

α, n+1(z)

F̃(γ)
α, n+1(z0)

∣∣∣∣∣∣. (16)

Then, using the inequality (16), we intend to estimate the module of the difference
Sk+p(z) − Sk(z). Due to (8) and (9), along with the Γ-functions quotient property
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(see e.g., [11] (p. 101)) and the equalities lim
n→∞

1
nαγ = 0, lim

n→∞
(1 + θn(z0))

−1 = 1, we

conclude that there exist numbers A > 0 and N1 > N0 such that |1 + θn(z)| ≤ A/2
for all the positive integers n and |1 + θn(z0)|−1 < 2 for n > N1, whence

|γn(z; z0)| ≤ A for n > N1. (17)

Further, denoting
fn(z; z0) = γn(z; z0)− γn+1(z; z0),

which is the same as

fn(z; z0) =
F̃(γ)

α, n (z)

F̃(γ)
α, n (z0)

−
F̃(γ)

α, n+1(z)

F̃(γ)
α, n+1(z0)

,

and observing that fn(z0; z0) = 0, we apply the Schwartz lemma for the function
fn(z; z0). So, we obtain that there exists a positive constant C such that:

| fn(z; z0)| =

∣∣∣∣∣∣ F̃(γ)
α, n (z)

F̃(γ)
α, n (z0)

−
F̃(γ)

α, n+1(z)

F̃(γ)
α, n+1(z0)

∣∣∣∣∣∣ ≤ C|z− z0||z/z0|n,

whence, and according to (13) as well, we have:

k+p+1

∑
n=k+1

| fn(z; z0)| ≤
∞

∑
n=0

C|z− z0||z/z0|n = C|z0| ×
|z− z0|
|z0| − |z|

<
2C|z0|
cos ϕ

. (18)

Let ε be an arbitrary positive number. Taking in view the third relation (15), we deduce
that there exists a positive number N2 > N0 so large that

|Sn(z0)− s| < min
(

ε

3A
,

ε cos ϕ

6C|z0|

)
for n > N2. (19)

Now, let us take N = N(ε) = max(N1, N2) and k > N. Therefore the inequalities
(16)–(19) give

|Sk+p(z)− Sk(z)| <
2ε

3
+

ε cos ϕ

6C|z0|
k+p+1

∑
n=k+1

| fn(z; z0)| <
2ε

3
+

ε cos ϕ

6C|z0|
2C|z0|
cos ϕ

= ε,

that completes the proof of (ii).

Thus, the theorem is completely proved.

6. Tauber Type Theorem

It is established in Section 5 that the convergence of the considered series in Le Roy
type functions at the point z0 from the boundary of D(0; R) implies the existing of the limit
of its sum when z tends to z0, provided z ∈ D(0; R) ∩ gϕ. It turns out that under additional
conditions on the coefficients of the considered series, the inverse proposition is also valid.

Now, let z0 ∈ C, |z0| = R, 0 < R < ∞, and let F̃(γ)
α, n (z0) �= 0 for n = 0, 1, 2, . . . .

Note that, the last condition is fulfilled due to Remark 2, since each function F̃(γ)
α, n (z) (n ∈ N),

being an entire function, no identically zero, has at most a finite number of zeros in the
closed and bounded set |z| ≤ R, and moreover, no more than a finite number of these
functions have some zeros.

For the sake of brevity, denote

F∗n,α,γ(z; z0) =
F̃(γ)

α, n (z)

F̃(γ)
α, n (z0)

.
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Let the series
∞
∑

n=0
anF∗n,α,γ(z; z0), with an ∈ C, be convergent for |z| < R, and

F(z) =
∞

∑
n=0

anF∗n,α,γ(z; z0), |z| < R. (20)

Then the following theorem can be formulated.

Theorem 4 (of Tauber type). If {an}∞
n=0 is a sequence of complex numbers with

lim{nan} = 0, (21)

and there exists
lim

z→z0
F(z) = S (|z| < R, z → z0 radially), (22)

then the numerical series
∞
∑

n=0
an is convergent and

∞
∑

n=0
an = S.

Proof. Let z belong to the segment [0, z0]. By using the asymptotic Formula (9) for the Le
Roy type functions, we obtain:

anF∗n,α,γ(z; z0) = an

(
z
z0

)n 1 + ϑ
(γ)
α,n (z)

1 + ϑ
(γ)
α,n (z0)

= an

(
z
z0

)n (
1 + ϑ̃

(γ)
α,n (z; z0)

)
, (23)

where ϑ̃
(γ)
α,n (z; z0) =

ϑ
(γ)
α,n (z)− ϑ

(γ)
α,n (z0)

1 + ϑ
(γ)
α,n (z0)

. Then, due to (8) and the Γ-functions quotient

property, ϑ̃
(γ)
α,n (z; z0) satisfies the following relation

ϑ̃
(γ)
α,n (z; z0) = O

(
1

nαγ

)
. (24)

Writing
∞
∑

n=0
anF∗n,α,γ(z; z0) in the form

∞

∑
n=0

anF∗n,α,γ(z; z0) =
∞

∑
n=0

an

(
z
z0

)n 1 + ϑ
(γ)
α,n (z)

1 + ϑ
(γ)
α,n (z0)

(25)

=
∞

∑
n=0

an

(
z
z0

)n(
1 + ϑ̃

(γ)
α,n (z; z0)

)
,

and denoting wn(z) = an

(
z
z0

)n
ϑ̃
(γ)
α,n (z; z0), we consider the series

∞

∑
n=0

wn(z).

According to condition (21), the numerical sequence {nan}∞
n=0, being a convergent

sequence, is bounded. Then, since |wn(z)| ≤ |an| |ϑ̃(γ)
α,n (z; z0)| and having in view (8), there

exists a constant C, such that |wn(z)| ≤ C/n1+αγ for all the positive integers n. Since
∞
∑

n=1
1/n1+αγ converges, the series

∞
∑

n=0
wn(z) also converges, even absolutely and uniformly

on the segment [0, z0]. Therefore, changing the order of the limit and summation, in view
of the equality lim

z→z0
wn(z) = 0, we deduce that

lim
z→z0

∞

∑
n=0

wn(z) =
∞

∑
n=0

lim
z→z0

wn(z) = 0. (26)
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Then, bearing in mind that (20) can be written in the form

F(z) =
∞

∑
n=0

anF∗n,α,γ(z; z0) =
∞

∑
n=0

an

(
z
z0

)n
+

∞

∑
n=0

wn(z),

along with the assumption (22), we conclude that the limit

lim
z→z0

∞

∑
n=0

an

(
z
z0

)n
(27)

also exists and, moreover, in view of (26),

lim
z→z0

F(z) = lim
z→z0

∞

∑
n=0

anF∗n,α,γ(z; z0) = S = lim
z→z0

∞

∑
n=0

an

(
z
z0

)n
. (28)

Now, from (28) and the existence of the limit (27), by the classical Tauber theorem for

the power series, it follows that the series
∞
∑

n=0
an converges and

∞

∑
n=0

an = S .

The conclusion of the above theorem is still valid even if the condition imposed on the
coefficients an is weakened. Namely, the following theorem holds true.

Theorem 5 (of Littlewood type). If {an}∞
n=0 is a sequence of complex numbers with

an = O(1/n), (29)

F(z) is the function defined by (20), and if there exists

lim
z→z0

F(z) = S (|z| < R, z → z0 radially), (30)

then the numerical series
∞
∑

n=0
an is convergent and

∞
∑

n=0
an = S.

Proof. Let z belong to the segment [0, z0]. The proof goes in the same way as the proof
of Theorem 4, and using the same denotations. The only difference is in proving the
estimation for |wn(z)|. More especially, according to the relation (24) and the condition (29),
it follows that there exists a constant C, such that |wn(z)| ≤ C/n1+αγ for all the positive
integers n. Finally, the proof ends applying in the last step Littlewood’s classical theorem
instead of Tauber’s theorem. The details are omitted.

7. (Fα,γ, Z0)—Summation and (J, Z0)—Summation

The theorems in the previous section can be formulated in alternative forms. For this
purpose, two additional definitions are firstly given.

Let us consider the numerical series

∞

∑
n=0

an, an ∈ C, n = 0, 1, 2, . . . (31)

To define its Abel summability ([23], p. 20), we consider also the power series
∞
∑

n=0
anzn.

Definition 1. The series (31) is called A—summable if the series
∞
∑

n=0
anzn converges in the open

unit disk D(0; 1) and moreover there exists

lim
z→1−0

∞

∑
n=0

anzn = S.
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The complex number S is called A-sum of the series (31) and the usual notation of that is

∞

∑
n=0

an = S (A).

Remark 3. The A-summation is regular. It means that if the series (31) converges, then it is
A-summable, and its A-sum is equal to its usual sum.

Remark 4. It is well known that in general, the A-summability of the series (31) does not imply
its convergence. However, with additional conditions imposed on the growth of the general term of
the series (31), the convergence can be provided.

Let z0 ∈ C, |z0| = R, 0 < R < ∞ and F̃(γ)
α, n (z0) �= 0 (note that, the last condition is

again fulfilled due to Remark 2). For the sake of convenience, denote

F∗n,α,γ(z; z0) =
F̃(γ)

α, n (z)

F̃(γ)
α, n (z0)

. (32)

Further, by analogy with the A-summability of the series (31), another definition is

introduced, where the power series
∞
∑

n=0
anzn is replaced by the series in the Le Roy type

functions (32) with the same coefficients.

Definition 2. The numerical series (31) is said to be (Fα,γ, z0)—summable if the series

∞

∑
n=0

anF∗n,α,γ(z; z0), (33)

converges in the open disk D(0; R) and, moreover, there exists the limit

lim
z→z0

∞

∑
n=0

anF∗n,α,γ(z; z0), (34)

provided z remains on the segment [0, z0) (i.e., z radially tends to z0).

Remark 5. The (Fα,γ, z0)—summation is regular, and this property is merely a particular case of
Theorem 3.

Taking into account the latest definitions and remarks, Theorems 4 and 5 can be
formulated in the following alternative ways.

Theorem 6 (of Tauber type). If the numerical series (31) is (Fα,γ, z0)—summable and

lim{nan} = 0, (35)

then it is convergent.

Theorem 7 (of Littlewood type). If the numerical series (31) is (Fα,γ, z0)—summable and

an = O(1/n), (36)

then it is convergent.

Remark 6. We observe that all the functions of the family

(Fα,γ; z0) = {F∗n,α,γ(z; z0), n = 0, 1, . . . } (37)
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are entire functions satisfying the condition F∗n,α,γ(z0; z0) = 1.

For convenience, in order to make Definition 2 more universal and usable for various
considerations, we intend to paraphrase it in the way, given in [11] (p. 35). For this purpose,
we firstly introduce one more denotation.

Let z0 ∈ C, z0 �= 0, |z0| = R, 0 < R < ∞ and let (J; z0) be the following family
of functions

(J; z0) := {jn : jn − entire function, jn(z0) = 1}n∈N0
. (38)

Now, considering the series given below

∞

∑
n=0

an jn(z), jn ∈ (J; z0), (39)

Definition 2 can be expanded as follows.

Definition 3. The numerical series (31) is said to be (J, z0)-summable, if the series (39) converges
in the disk D(0; R), and moreover, there exists the limit

lim
z→z0

∞

∑
n=0

an jn(z), (40)

provided z remains on the segment [0, z0).

Remark 7. Let us note that using this definition must necessarily take into account of the regularity
of the summation.

Ending this section we are going to make one more remark.

Remark 8. Taking jn(z) = F∗n,α,γ(z; z0), the family (38) of entire functions reduces to the family
(37). Therefore, in this case the (J, z0)—summation and (Fα,γ, z0)—summation are the same. Thus
Theorems 6 and 7 can be written in equivalent ways, using the notion (J, z0)−summation (with
jn(z) = F∗n,α,γ(z; z0)), instead of (Fα,γ, z0)—summation. That means that the theorems of Tauber
and Littlewood type are statements relating the (J, z0)—summability and the usual convergence
of a numerical series by means of some assumptions imposed on the general term of the numerical
series under consideration.

8. Special Cases

In this section we consider some interesting special cases of the Le Roy type function
F(γ)

α,β , given by (1), taking the parameters

α, β ∈ C, �(α) > 0 and γ > 0,

when (1) is an entire function.
Case 1. If γ is an arbitrary positive number, α = 1 and β = 1, then the function (1)

coincides with the Le Roy function (confer with (4)), i.e.,

F(γ)(z) = F(γ)
1,1 (z) =

∞

∑
k=0

zk

[Γ(k + 1)]γ
, z ∈ C. (41)

We have to note that, studying the asymptotics of the analytic continuation of the sum
of power series, Le Roy himself used it in [24]. This reason for the origin of (41) sounds
somehow similar to the Mittag–Leffler’s idea to introduce the function Eα(z) for the aims
of analytic continuation (it have to be noted that Mittag–Leffler and Le Roy were working
on this idea in competition). The Le Roy function is involved in the solution of various
problems; in particular it has been recently used in the construction of a Conway–Maxwell–
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Poisson distribution [25] which is important due to its ability to model count data with
different degrees of over- and under-dispersion [26,27].

Case 2. If γ = 1, then the function (1) gives the Mittag–Leffler function Eα,β, namely

Eα,β(z) = F(1)
α,β (z) =

∞

∑
k=0

zk

Γ(αk + β)
, z ∈ C. (42)

In addition, when β = 1, the function (1) reduces to Eα, and to the exponential function,
if α = β = 1, i.e.,

Eα(z) = F(1)
α,1 (z) =

∞

∑
k=0

zk

Γ(αk + 1)
, exp z = F(1)

1,1 (z) =
∞

∑
k=0

zk

k!
; z ∈ C. (43)

The functions (42) and (43) are named after the great Swedish mathematician Gösta
Magnus Mittag–Leffler (1846–1927) who defined the 1-parametric function Eα(z) by a
power series (given by (43)) and he studied its properties in 1902–1905 (detailed description
can be seen in [28]). Actually, Mittag–Leffler introduced the function Eα(z) for the purposes
of his method for summation of divergent series. Later, the function (43) was recognized
as the ‘Queen function of fractional calculus’ [29–31], see also [11], for its basic role for
analytic solutions of fractional order integral and differential equations and systems. In the
recent decades successful applications of the Mittag–Leffler function and its generalizations
in problems of physics, biology, chemistry, engineering and other applied sciences made it
better known among scientists. A considerable literature is devoted to the investigation of
the analytical properties of these functions; among the references of [11,28,32], where are
quoted several authors who, after Mittag–Leffler, have investigated such kinds of functions
from a pure mathematical, applied and numerical oriented point of view as well.

Case 3. If γ = 1/2 and α = β = 1, then the function (1) becomes the function R(z),
given by the series (see Kolokoltsov [33] Formula (50))

R(z) = F(1/2)
1,1 (z) =

∞

∑
k=0

zk
√

k!
, z ∈ C. (44)

The function (44) is used by Kolokoltsov in [33] to estimate the solution of initial
stochastic differential equations. As he comments in his paper, the function R(z) plays the
same role for stochastic equations as the exponential and the Mittag–Leffler functions for
deterministic equations.

Case 4. If the parameter γ = 2 and α = β = 1, then the function (1) can be presented
as Bessel function of the first kind and related to it, and as 2-parametric Bessel–Maitland
function, as well. Namely, the function (1) can be written in the following alternative forms:

F(2)
1,1 (z) = J0(2i

√
z) = I0(2

√
z) = C0(−z) = J1

0 (−z) =
∞

∑
k=0

zk

(k!)2 , z ∈ C. (45)

In this relation J0 and I0 are respectively the classical Bessel function of the first kind
Jν and its modified function Iν with an index ν = 0, C0 is the Bessel–Clifford function Cν

with an index ν = 0, and J1
0 is its 2-parametric Bessel–Maitland generalization Jμ

ν (named
after Sir Edward Maitland Wright and also known as Bessel–Wright function) with indices
ν = 0 and μ = 1.

Case 5. If the number m is a positive integer, γ = m + 1, β = λ + 1 (λ �= 0),
and α = 1, then the function (1) can be expressed with 3−index generalization, as well
as by the 4−index generalization of the Bessel function of the first kind. More especially
if m = 1, then the special function (1) turns, with an exactness to a power function, into
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the generalized Bessel–Maitland (or Wright’s) function Jμ
ν, λ (with ν = 0 and μ = 1) of the

Bessel function Jν(z), introduced by Pathak (for details see [14]):

Jμ
ν, λ(z) = (z/2)ν+2λ J̃μ

ν, λ(z) = (z/2)ν+2λ
∞

∑
k=0

(−1)k(z/2)2k

Γ(k + λ + 1)Γ(μk + ν + λ + 1)
· (46)

More precisely,

J̃1
0, λ(2i

√
z) = F(2)

1,λ+1(z) =
∞

∑
k=0

zk

[Γ(k + λ + 1)]2
· (47)

The special case (for m ≥ 2) is expressed by the generalized Lommel–Wright function
J μ, m

ν, λ with 4 indices (with ν = 0 and μ = 1), introduced by de Oteiza, Kalla and Conde (for
details see [14]):

J μ, m
ν, λ (z) = (z/2)ν+2λ J̃ μ, m

ν, λ (z) = (z/2)ν+2λ
∞

∑
k=0

(−1)k(z/2)2k

(Γ(k + λ + 1))mΓ(μk + ν + λ + 1)
· (48)

Especially,

J̃1,m
0, λ (2i

√
z) = F(m+1)

1,λ+1 (z) =
∞

∑
k=0

zk

[Γ(k + λ + 1)]m+1 · (49)

Just to mention that J μ, 1
ν, λ = J μ

ν, λ, as well as J̃ μ, 1
ν, λ = J̃ μ

ν, λ.
Case 6. If the number m is a positive integer m ≥ 2, then the function (1) can

be presented as the multi-index extensions of (42) (with 2m and 3m parameters,
m = 1, 2, . . . , [11,13,34–36]), i.e., the so-called multi-index Mittag–Leffler functions.
The first one was introduced by Yakubovich and Luchko [37] and studied in details
by Kiryakova [12,34]. It is defined by the formula

E(αi), (βi)
(z) = E m

(αi), (βi)
(z) =

∞

∑
k=0

zk

Γ(α1k + β1) . . . Γ(αmk + βm)
, (50)

for z ∈ C and m > 1. The parameters αi, βi are all complex for i = 1, 2, . . . m and �(αi) > 0.
The second one has m additional complex parameters γi. It was introduced and studied in
details by Paneva-Konovska (for its properties see e.g., [11]). It is defined by the formula

E(γi), m
(αi), (βi)

(z) =
∞

∑
k=0

(γ1)k . . . (γm)k
Γ(α1k + β1) . . . Γ(αmk + βm)

zk

(k!)m , (51)

where (γ)k is the Pochhammer symbol: (γ)k = γ(γ + 1) . . . (γ + k − 1), k = 1, 2, . . . ,
(γ)0 = 1. More precisely, in this case the function (1) turns into the above multi-index
Mittag–Leffler functions, with indices αi = α, βi = β and γi = 1 (i = 1, 2, . . . m), namely

E(α), (β)(z) = E(1), m
(α), (β)

(z) = F(m)
α,β (z) =

∞

∑
k=0

zk

[Γ(αk + β)]m
· (52)

Case 7. If the number m is a positive integer m ≥ 2, α = 1 and β = 1 then the
function (1) is the hyper-Bessel function

J (m−1)
ν1,...,νm−1(z) =

( z
m

)m−1
∑

i=1
νi ∞

∑
k=0

(−1)k( z
m
)km

Γ(k + ν1 + 1) . . . Γ(k + νm−1 + 1)
1
k!
·

introduced by Delerue in 1953 [38]. It is a generalization of the Bessel function of the first
type Jν with vector indices ν = (ν1, ν2, . . . , νm−1). The hyper-Bessel function of Delerue
is closely related to the hyper-Bessel differential operators of arbitrary order m > 1,
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introduced by Dimovski [39]. The function (1) is represented as the hyper-Bessel function
with parameters νi = 0 (i = 1, 2, . . . m− 1), i.e.,

J (m−1)
0, ..., 0

(
m(−z)1/m

)
= F(m)

α,β (z) =
∞

∑
k=0

zk

[Γ(k + 1)]m
· (53)

At last, let us note that if γ = m is a positive integer, then the Le Roy function F(m)
α,β

is the Wright generalized hypergeometric function with 2 × m indices αi = α, βi = β
(i = 1, . . . , m), namely

F(m)
α,β (z) =

∞

∑
k=0

zk

[Γ(αk + β)]m
= 1Ψm

[
(1, 1)

(βi, αi)
m
1

∣∣∣∣z] = 1Ψm

[
(1, 1)
(β, α)m

1

∣∣∣∣z],
and it is a particular case of the Wright generalized hypergeometric function with 2× (p+ q)
indices ai, Ai (i = 1, . . . , p), and bj, Bj (j = 1, . . . , q), defined by the formula

pΨq

[
(a1, A1) . . . (ap, Ap)

(b1, B1) . . . (bq, Bq)

∣∣∣∣σ] = ∞

∑
k=0

Γ(a1 + kA1) . . . Γ(ap + kAp)

Γ(b1 + kB1) . . . Γ(bq + kBq)

σk

k!
·

9. Conclusions

Letting the parameter β in the condition (2) be a positive integer, we consider the
family of Le Roy type functions (5) with parameters as follows:

α > 0, γ > 0, and β = n ∈ N.

In Section 2 we provide an asymptotic formula for these functions for large values
of the parameter n (Theorem 1). We also give upper estimates for the moduli of their
remainder terms in the nonempty compact subsets of the complex plane and in the whole
complex plane as well (Lemma 1). Further, in order to summarize the results obtained here,
we consider the family of the type {

j̃n(z)
}

n∈N
, (54)

with the functions j̃n as in (10), and the series

∞

∑
n=0

an j̃n(z), (55)

in this case coinciding with the series (11) in Le Roy type functions with complex coefficients
an (n = 0, 1, 2, . . . ) and for z ∈ C.

It turns out that the series (55) absolutely converges in the open disk D(0; R) with
the corresponding radius R, given by the Formula (12) and it diverges in its outside,
i.e., for z ∈ C with |z| > R. Moreover, inside the disk D(0; R), i.e., in each closed disk
[D(0; r)] = {z : z ∈ C, |z| ≤ r}with r < R, the convergence is uniform. Near the boundary
C(0; R) the series (55) satisfies Theorem 3 of Abel type. At last, the series fulfills the theorem
of Tauber and Littlewood types, which are inverse of the Abel type theorem.

Now, let us consider the functions from the Section 8 with the same types of parame-
ters. Since in this case they are of the types (5), then all of them satisfy Lemma 1 and the
inequalities therein. Further, paying attention to the fact, that the functions (42), (52), (47)
and (49) can be considered as representatives of different families of the types (5), we have
to note that the functions of each family, discussed above, have the asymptotic Formula (9)
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with the corresponding values of the parameters α and γ. Further, taking the family of the
type (54) with the functions j̃n as follows:

j̃n(z) = zn [Γ(n)]m E((α),(n))(z) = zn [Γ(n)]m F(m)
α,n (z), m, n ∈ N, (56)

in the case (52) (in particular m = 1 in the case (42)), and respectively

j̃n(z) = zn [Γ(n)]m+1 J̃1,m
0, n−1(2i

√
z) = zn [Γ(n)]m+1 F(m+1)

1,n (z), m, n ∈ N, (57)

in the case (49) (m = 1 in the case (47)), and adding, just for completeness j̃0(z) = 1, we
consider the corresponding series (55) with complex coefficients an (n = 0, 1, 2, . . . ) for

z ∈ C, namely the series
∞
∑

n=0
an j̃n(z).

Taking into account that the series (55) is of the type (11) (however with special values
of the parameters), it has the same behaviour. That means that the series (55) absolutely
converges in the open disk D(0; R) with the corresponding radius R, and it diverges in its
outside, i.e., for z ∈ C with |z| > R. Moreover, inside the disk D(0; R), i.e., in each closed
disk [D(0; r)] with r < R, the convergence is uniform. Replacing the parameter γ with the
corresponding value in Theorem 3, it is reduced to the Abel type theorem for the series (55),
referring to the behaviour of (55) near the boundary C(0; R). At last, the series (55) fulfills
the theorem of Tauber and Littlewood types, which are inverse of the Abel type theorem.

Thus, generally speaking, the described behaviour of the series (11) in Le Roy type
functions, as well as in particular the behaviour of the corresponding series (55) (in the
functions of the families (56), respectively (57)), and that of the classical power series are
the same. Moreover, the results discussed here are analogues to the Cauchy–Hadamard,
Abel, Tauber and Littlewood theorems for the widely used power series.
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Abstract: The asymptotic expansion for x → ±∞ of the entire function Fn,σ(x; μ) =
∞
∑

k=0

sin (nγk)
sin γk

xk

k!Γ(μ−σk) ,

γk = (k+1)π
2n for μ > 0, 0 < σ < 1 and n = 1, 2, . . . is considered. In the special case σ = α/(2n),

with 0 < α < 1, this function was recently introduced by L.L. Karasheva (J. Math. Sciences, 250 (2020)
753–759) as a solution of a fractional-order partial differential equation. By expressing Fn,σ(x; μ)

as a finite sum of Wright functions, we employ the standard asymptotics of integral functions of
hypergeometric type to determine its asymptotic expansion. This was found to depend critically on
the parameter σ (and to a lesser extent on the integer n). Numerical results are presented to illustrate
the accuracy of the different expansions obtained.

Keywords: wright function; asymptotic expansions; Stokes phenomenon

MSC: 33C70; 34E05; 41A30; 41A60

1. Introduction

In a recent paper, L.L. Karasheva [1] introduced the entire function

Θn,α(x; μ) :=
∞

∑
k=0

sin (nγk)

sin γk

xk

k!Γ(μ− αk
2n )

, γk :=
(k + 1)π

2n
, (1)

where μ > 0, 0 < α < 1 and n = 1, 2, . . . and, throughout, x is a real variable. This function
is of interest as it is involved in the fundamental solution of the differential equation

∂αu
∂tα

+ (−1)n ∂2nu
∂x2n = f (x, t)

for positive integer n, where the derivative with respect to t is the fractional derivative
of the order α. In the simplest case n = 1, we have Θ1,α(x; μ) = φ(−σ, μ; x), σ := α/(2n),
where φ(−σ, μ; x) is the Wright function

φ(−σ, μ; x) :=
∞

∑
k=0

xk

k!Γ(μ− σk)
(σ < 1), (2)

which finds application as a fundamental solution of the diffusion-wave equation [2].
Under the above assumptions on n and α it follows that the parameter σ associated with
(1) satisfies 0 < σ < 1

2 .
In this study, however, we shall allow the parameter σ to satisfy 0 < σ < 1 and

consider the function

Fn,σ(x; μ) :=
∞

∑
k=0

sin (nγk)

sin γk

xk

k!Γ(μ− σk)
(0 < σ < 1), (3)
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which coincides with Θn,α(x; μ) when σ = α/(2n). From the well-known expansion

sin (nγk)

sin γk
=

n−1

∑
r=0

eiγk(2r−n+1) =
n−1

∑
r=0

e−i(k+1)ωr ,

where

ωr :=
(n− 2r− 1)π

2n
(0 ≤ r ≤ n− 1), (4)

it follows that (3) can be expressed as a finite sum of Wright functions defined in (2) with
rotated arguments (compare [1], Equation (4))

Fn,σ(x; μ) =
n−1

∑
r=0

e−iωr φ(−σ, μ; xe−iωr ). (5)

We note that the extreme values of ωr satisfy ω0 = −ωn−1 = (n− 1)π/(2n), whence
|ωr| < 1

2 π for 0 ≤ r ≤ n− 1.
We use the representation in (5), with the values of ωr in (4), to determine the asymp-

totic expansion of Fn,σ(x; μ) for x → ±∞ by application of the asymptotic theory of the
Wright function. A summary of the expansion of φ(−σ, μ; z) for large |z| is given in
Section 3. The expansions of Fn,σ(x; μ) for x → ±∞ are given in Sections 4 and 5, where
they are shown to depend critically on the parameter σ (and to a lesser extent on the integer
n). A concluding section presents our numerical results confirming the accuracy of the
different expansions obtained.

2. An Alternative Representation of Fn,σ(x; μ)

The Wright function appearing in (2) can be written alternatively as

φ(−σ, μ; x) =
1
π

∞

∑
k=0

xk

k!
Γ(1− μ + σk) sin π(μ− σk)

=
1

2π

{
eπiϑΨ(xeπiσ) + e−πiϑΨ(xe−πiσ)

}
upon use of the reflection formula for the gamma function, where ϑ := 1

2 − μ. The
associated Wright function Ψ(z) is defined by

Ψ(z) :=
∞

∑
k=0

zk

k!
Γ(σk + δ) (0 < σ < 1, δ = 1− μ), (6)

which is valid for |z| < ∞. Hence, we obtain the representation

Fn,σ(x; μ) =
1

2π

n−1

∑
r=0

e−iωr Υr(σ; x),

where
Υr(σ; x) := eπiϑΨ(xeπiσ−iωr ) + e−πiϑΨ(xe−πiσ−iωr ).

If we now exploit the symmetry of the ωr in (4) (and the fact that x is a real variable),
we observe that the values of ωr for 0 ≤ r ≤ N − 1, where N = �n/2�, satisfy

{ω0, ω1, . . . , ωN−1} =
{
(n− 1)π

2n
,
(n− 3)π

2n
, . . . ,

π

2n
εn

}
, εn =

{
1 (n even)
2 (n odd).

(7)
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Then, we can write

Fn,σ(x; μ) =
1
π
�
{N−1

∑
r=0

e−iωr Υr(σ; x) + ΔneπiϑΨ(xeπiσ)

}
, (8)

where

Δn =

{
0 (n even)
1 (n odd).

The form (8) involves half the number of Wright functions Ψ(z) and will be used to
determine the asymptotic expansion of Fn,σ(x; μ) as x → ±∞ in Sections 4 and 5.

3. The Asymptotic Expansion of Ψ(z) for |z| → ∞

We first present the large-|z| asymptotics of the function Ψ(z) in (6) based on the
presentation described in ([3], Section 4); see also ([4], Section 4.2), ([5], §2.3). We introduce
the following parameters:

κ = 1− σ, h = σσ, ϑ = δ− 1
2 , δ = 1− μ, (9)

together with the associated (formal) exponential and algebraic expansions

E(z) := ZϑeZ
∞

∑
j=0

Aj(σ)Z−j, H(z) :=
1
σ

∞

∑
k=0

(−1)k

k!
Γ
(

k + δ

σ

)
z−(k+δ)/σ, (10)

where (The dependence of the coefficients Aj(σ) on the parameter δ is not indicated.)

Z := κ(hz)1/κ , A0(σ) = (2π/κ)1/2 (σ/κ)ϑ. (11)

Then, since 0 < κ < 1, we obtain from ([5], p. 57) the large-z expansion

Ψ(z) ∼

⎧⎨⎩
E(z) + H(ze∓πi) (| arg z| ≤ 1

2 πκ)

H(ze∓πi) ( 1
2 πκ < | arg z| ≤ π),

(12)

where the upper or lower signs are chosen according as arg z > 0 or arg z < 0, respectively.
The expansion E(z) is exponentially large as |z| → ∞ in the sector | arg z| < 1

2 πκ, and
oscillatory (multiplied by the algebraic factor zϑ/κ) on the anti-Stokes lines arg z = ± 1

2 πκ.
In the adjacent sectors 1

2 πκ < | arg z| < πκ, the expansion E(z) continues to be present, but is
exponentially small reaching maximal subdominance relative to the algebraic expansion on
the Stokes lines (On these rays, E(z) undergoes a Stokes phenomenon where it switches off
in a smooth manner (see [6], p. 67).) arg z = ±πκ. In our treatment of Fn,σ(x; μ), we will
not be concerned with exponentially small contributions, except in one special case when
x → −∞ where the expansion of Fn,σ(x; μ) is exponentially small.

The first few normalised coefficients cj = Aj(σ)/A0(σ) are [3,4]:

c0 = 1, c1 =
1

24σ
{2 + 7σ + 2σ2 − 12δ(1 + σ) + 12δ2},

c2 =
1

1152σ2 {4 + 172σ + 417σ2 + 172σ3 + 4σ4 − 24δ(6 + 41σ + 41σ2 + 6σ3)

+120δ2(4 + 11σ + 4σ2)− 480δ3(1 + σ) + 144δ4},

c3 =
1

414,720σ3 {(−1112 + 9636σ + 163,734σ2 + 336,347σ3 + 163,734σ4 + 9636σ5

−1112σ6)− δ(3600 + 220,320σ + 929,700σ2 + 929,700σ3 + 220,320σ4 + 3600σ5)

+δ2(65,520 + 715,680σ + 1,440,180σ2 + 715,680σ3 + 65,520σ4)
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−δ3(161,280 + 816,480σ + 816,480σ2 + 161,280σ3)

+ δ4(151,200 + 378,000σ + 151,200σ2)− 60,480δ5(1 + σ) + 8640δ6}. (13)

In addition to the Stokes lines arg z = ±πκ, where E(z) is maximally subdominant
relative to the algebraic expansion, the positive real axis is also a Stokes line. Here, the
algebraic expansion is maximally subdominant relative to E(z). As the positive real axis
is crossed from the upper to the lower half plane the factor e−πi appearing in H(ze−πi)
changes to eπi, and vice versa. The details of this transition will not be considered here;
see ([5], p. 248) for the case of the confluent hypergeometric function 1F1(a; b; z).

4. The Asymptotic Expansion of Fn,σ(x; μ) for x → +∞

4.1. Asymptotic Character as a Function of σ

Let us denote the arguments of the Ψ functions appearing in (8) by

z±r = x exp [iφ±r ], φ±r = ±πσ−ωr.

The representation of the asymptotic structure of the functions Ψ(z±r ) is illustrated in
Figure 1 for different values of σ. The figures show the rays arg z = ±πσ and the anti-
Stokes lines (dashed lines) arg z = ± 1

2 πκ. In the case σ = 2
3 , the exponentially large sector

is | arg z| < 1
6 π, and it is seen from Figure 1a that the arguments z±r for 0 ≤ r ≤ N − 1 and

xe±πiσ all lie in the domain where Ψ(z) has an algebraic expansion; this conclusion applies
a fortiori when 2

3 < σ < 1. When σ = 1
2 , the exponentially large sector is | arg z| < 1

4 π;
when n = 2, we have ω0 = 1

4 π so that z+0 is situated on the boundary of the exponentially
large sector.

Other values of n ≥ 3 will have some z+r inside this sector, whereas the z−r are in the
algebraic sector for n ≥ 2. Similarly, the case σ = 1

3 , where the rays arg z = ±πσ and
arg z = ± 1

2 πκ coincide, has all the z+r situated in the exponentially large sector, with the
z−r situated in the algebraic domain. Finally, when σ = 1

6 , the exponentially large sector
| arg z| < 5

12 π encloses the rays arg z = ±πσ with the result that all the z+r lie in the
exponentially large sector, whereas the z−r lie in the algebraic domain (except when n = 2
when z−0 lies on the lower boundary of the exponentially large sector).

(a)

Π �6

�Π �6

2 Π �3

�2 Π �4

n � 2

(b)

Π �4

�Π �4

n � 2

Figure 1. Cont.
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(c)

Π �3

�Π �3

n � 2

n � 3

(d)

Π �6

5 Π �12

�Π �6

�5 Π �12

n � 2

n � 2

Figure 1. Diagrams representing the rays arg z = ±πσ and the boundaries of the exponentially
large sector (shown by dashed rays) | arg z| < 1

2 πκ, κ = 1− σ for (a) σ = 2/3, (b) σ = 1/2, (c)
σ = 1/3, and (d) σ = 1/6. Outside the exponentially large sector, the expansion of Ψ(z) is algebraic
in character. The circular quadrants represent the range of the arguments arg z = ±πσ − ωr for
0 ≤ r ≤ �n/2� − 1, with n ≥ 2 and the arrow-head corresponds to n = ∞. When σ = 1/3, the rays
arg z = ±πσ and arg z = ± 1

2 πκ coincide.

To summarise, we have the following asymptotic character of Fn,σ(x; μ) when x → +∞
as a function of the parameter σ:

0 < σ < 1
2 Exp. large + Algebraic (for n ≥ 2)

1
2 ≤ σ < 2

3 Exp, large (dependent on n) + Algebraic

2
3 ≤ σ < 1 Algebraic (for n ≥ 2).

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (14)

4.2. Asymptotic Expansion

From (8) and (10), we have the algebraic expansion associated with Fn,σ(x; μ) given by

H(x) =
1
σ

∞

∑
k=0

x−K

k!Γ(1− K)
θn,k , K :=

k + δ

σ
, (15)

where, with appropriate choices of the factors e±πi in H(z),

θn,k =
(−1)k

sin πK
�
{N−1

∑
r=0

eπiϑ−iωr (eπiσ−iωr · e−πi)−K + e−πiϑ−iωr (e−πiσ−iωr · eπi)−K

+Δneπiϑ(eπiσ · e−πi)−K
}

=
(−1)k

sin πK
�
{N−1

∑
r=0

e(K−1)iωr (eπi(ϑ+κK) + e−πi(ϑ+κK)) + Δneπi(ϑ+κK)
}

= �
{

2
N−1

∑
r=0

e(K−1)iωr + Δn

}
, (16)

as cos π(ϑ + κK) = cos π(K− k− 1
2 ) = (−1)k sin πK.
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For the exponential component, we introduce the quantities

X = κ(hx)1/κ , Φ±
r = ±πϑ

κ
−ωr

(
1 +

ϑ

κ

)
(17)

and the formal asymptotic sum

S(XeiΩ) :=
∞

∑
j=0

Aj(σ)(XeiΩ/κ)−j. (18)

Then, from (8) and (10), we have the exponential expansion in the form

E(x) =
Xϑ

π
�
{N−1

∑
r=0

(
exp [Xeiφ+

r /κ + iΦ+
r ] S(Xeiφ+

r ) + exp [Xeiφ−r /κ + iΦ−
r ] S(Xeiφ−r )

)

+ Δn exp [Xeπiσ/κ + πiϑ/κ] S(Xeπiσ)

}
. (19)

It is important to stress that only the exponential terms with |φ±r | ≤ 1
2 πκ, that is

those with
| ± πσ−ωr| ≤ 1

2 πκ,

are to be retained in E(x) in (19). In addition, it is seen by inspection of Figure 1 that the
second term involving S(Xeiφ−r ) does not contribute to E(x) when 1

3 ≤ σ < 1, since, for
this range of σ, the ray arg z = −πσ lies outside (or, when σ = 1

3 , on the lower boundary
of) the exponentially large sector | arg z| < 1

2 πκ. Thus, when 1
2 ≤ σ < 2

3 , the exponential
expansion is significant if πσ−ω0 ≤ 1

2 πκ; that is, if n ≥ n0 = 1/(2− 3σ).
In summary, we have the following theorem.

Theorem 1. The following expansion holds for x → +∞:

Fn,σ(x; μ) ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E(x) + H(x) (0 < σ < 1
2 ; n ≥ 2)

E(x) + H(x) ( 1
2 ≤ σ < 2

3 ; n ≥ n0)

H(x) ( 1
2 ≤ σ < 2

3 ; n < n0)

H(x) ( 2
3 ≤ σ < 1; n ≥ 2),

where n0 = 1/(2− 3σ) and the exponential and algebraic expansions E(x) and H(x) are defined
in (15) and (19).

4.3. Karasheva’s Estimate for |Θn,α(x; μ)|
When σ = α/(2n) < 1

2 , we see from Theorem 1 that the dominant exponential
expansion as x → +∞ corresponds to r = 0, yielding

Θn,α(x; μ) ∼ A0(σ)Xϑ

π
� exp [Xei(πσ−ω0)/κ+iΦ+

0 ]

=
A0(σ)Xϑ

π
exp [X cos(πσ−ω0)/κ)] cos[X sin(πσ−ω0)/κ) + Φ+

0 ],

where
πσ−ω0

κ
=

2nπσ− (n− 1)π
2n− α

=
(α + 1− n)π

2n− α
.
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Thus, we have the leading order estimate

Θn,α(x; μ) ∼ A0(σ)Xϑ

π
exp
[

X cos
(
(n−1−α)π

2n−α

)]
cos
[

X sin
(
(n−1−α)π

2n−α

)
−Φ+

0

]
(20)

as x → +∞. When expressed in our notation, Karasheva’s estimate for |Θn,α(x; μ)| in ([1],
§8) agrees with (20) (when the second cosine term is replaced by 1), except that she did
not give the value of the multiplicative constant A0(σ)/π given in (11). However, the
presentation of her result as an upper bound is not evident due to the presence of possibly
less dominant exponential expansions and also the subdominant algebraic expansion.

5. The Expansion of Fn,σ(x; μ) for x → −∞

To examine the case of negative x, we replace x by e∓πix, with x > 0, and use the fact
that Ψ(ze2πi) = Ψ(z) to find, from (8), that

Fn,σ(−x; μ) =
1
π
�
{N−1

∑
r=0

e−iωr Υr(−κ; x) + Δn eπiϑΨ(xe−πiκ)

}
. (21)

The rays arg z = ±πσ in Figure 1 are now replaced by the Stokes lines arg z = ±πκ.
The Stokes and anti-Stokes lines arg z = ± 1

2 πκ are illustrated in Figure 2 when 0 < σ < 1
2

and 1
2 < σ < 1. In the sectors 1

2 πκ < | arg z| < πκ, we recall that the exponential expansion
E(z) is still present but is exponentially small as |z| → ∞.

(a)

ΠΚ �2

�ΠΚ �2

ΠΚ

ΠΚ

(b)

�

�

ΠΚ

ΠΚ �2

�ΠΚ �2

�ΠΚ

Figure 2. Diagrams representing the rays arg z = ±πκ and the boundaries of the exponentially large
sector (shown by dashed rays) | arg z| < 1

2 πκ, κ = 1− σ for (a) 0 < σ < 1
2 and (b) 1

2 < σ < 1. The
circular quadrants represent the range of the arguments arg z = ±πκ −ωr for 0 ≤ r ≤ N − 1 with
the arrow-head corresponding to n = ∞. The ± signs in (b) denote the signs to be chosen in H(z) on
either side of the Stokes line arg z = 0.

For the algebraic component of the expansion two cases arise when the argument
πκ −ωr of the second Ψ function in Υr(−κ; x) is either (i) positive or (ii) negative. In case
(i), the algebraic expansion H(z) does not encounter a Stokes phenomenon as its argument
does not cross arg z = 0, whereas in case (ii), a Stokes phenomenon arises for those values
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of r that make πκ −ωr < 0. In case (i), the algebraic component contains the factor inside
the sum over r in (21)

eπiϑ(e−πiκ−iωr · eπi)−K + e−πiϑ(eπiκ−iωr · e−πi)−K

= eiωrK(eπi(ϑ−σK) + e−πi(ϑ−σK)) = 2eiωrK cos π(k + 1
2 ) ≡ 0

upon recalling the definition of K in (15) and noting that δ− ϑ = 1
2 . Similarly, the final

term involves the factor �eπiϑ(e−πiκ · eπi)−K = cos π(ϑ − σK) = 0. Thus, the algebraic
contribution to Fn,σ(−x; μ) vanishes in case (i).

For case (ii) to apply, we require that πκ − ω0 < 0; that is, n > n∗ = 1/(2σ − 1).
Suppose that πκ − ωr < 0 for 0 ≤ r ≤ r0. Then, the algebraic component resulting from
the terms with r ≤ r0 becomes

1
πσ

�
{ ∞

∑
k=0

(−1)kΓ(K)
k!

x−K
r0

∑
r=0

e(K−1)iωr

(
eπiϑ(e−πiκ · eπi)−K + e−πiϑ(eπiκ · eπi)−K

)}

=
2

πσ
�
{ ∞

∑
k=0

(−1)kΓ(K)
k!

x−K
r0

∑
r=0

e(K−1)iωr−πiK cos π(ϑ− σK + πK)
}

,

where, in the second term in round braces, we have taken account of the Stokes phe-
nomenon (the first term and that multiplied by Δn are unaffected). Some routine algebra
then produces the algebraic contribution

Ĥ(x) :=
2
σ

∞

∑
k=0

x−K

k!Γ(1− K)
θ̂n,k, θ̂n,k :=

r0

∑
r=0

cos
{

πK− (K− 1)ωr

}
(22)

when n > n∗ and Ĥ(x) ≡ 0 when n < n∗. (We avoid here consideration of the algebraic
contribution when πκ −ωr = 0, that is, on the Stokes line arg z = 0.)

Reference to Figure 2 shows that there is no exponential contribution to Fn,σ(−x; μ)
from the terms Ψ(xe−πiκ) and Ψ(xe−πiκ−iωr ). From (10) and (21), we find the exponential
expansion results from the terms Ψ(xeπiκ−iωr ), which is given by

Ê(x) :=
Xϑ

π
�

N−1

∑
r=0

exp [−Xe−iωr/κ − iΦ] S(−Xe−iωr/κ), (23)

where X and the asymptotic sum S are defined in (17) and (18) with Φ := ωr(1 + ϑ/κ).
For σ < 1

2 (when the algebraic expansion vanishes), the expansion of Fn,σ(−x; μ) will
be exponentially small provided πκ − ω0 > 1

2 πκ; that is, when n < 1/σ. If n = 1/σ,
there is an exponentially oscillatory contribution, and when n > 1/σ, the expansion is
exponentially large.

To summarise, we have the theorem:

Theorem 2. The following expansion holds for x → +∞:

Fn,σ(−x; μ) ∼

⎧⎨⎩
Ê(x) (0 < σ ≤ 1

2 )

Ê(x) + Ĥ(x) ( 1
2 < σ < 1),

(24)

where the exponential expansion Ê(x) is defined in (23). This last expansion is exponentially small
as x → −∞ when 0 < σ < 1

2 and n < 1/σ. The algebraic expansion Ĥ(x) is given by

Ĥ(x) :=
2
σ

∞

∑
k=0

x−K

k!Γ(1− K)
θ̂n,k (n > n∗), 0 (n < n∗),

where n∗ = 1/(2σ− 1) and K, θ̂n,k are specified in (15) and (22).
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6. Numerical Results

In this section, we describe numerical calculations that support the expansions given
in Theorems 1 and 2. The function Fn,σ(x; μ) was evaluated using the expression in terms
of Wright functions (valid for real x)

Fn,σ(x; μ) = 2�
N−1

∑
r=0

eiωr φ(−σ, μ; xeiωr ) + Δnφ(−σ, μ; x), N = �n/2�, (25)

which follows from (5) and the symmetry of ωr.
In Table 1, we present the results of numerical calculations for x → +∞ compared

with the expansions given in Theorem 1. We choose four representative values of σ that
focus on the different cases of Theorem 1 and n = 2, 3 and 4. The numerical value of
Fn,σ(x; μ) was obtained by high-precision evaluation of (25). The exponential expansion
E(x) was computed with the truncation index j = 3 and the algebraic expansion H(x) was
optimally truncated (that is, at or near its smallest term).

The first case σ = 1
3 has an exponentially large expansion with a subdominant alge-

braic contribution for all three values of n. The second case σ = 1
2 corresponds to n0 = 2;

when n = 2, E(x) is oscillatory and makes a similar contribution as H(x), whereas when
n = 3 and 4, E(x) is exponentially large. The third case σ = 5

9 corresponds to n0 = 3; when
n = 2, there is no exponential contribution, whereas when n = 3, E(x) is oscillatory and
thus makes a similar contribution as H(x); when n = 4, E(x) is exponentially large. Finally,
when σ = 2

3 , the expansion of Fn,σ(x; μ) is purely algebraic in character.

Table 1. The values of the exponential and algebraic expansions compared with Fn,σ(x; μ) for large
x > 0 for different values of σ and n when μ = 3/4 and x = 8.

σ n = 2 n = 3 n = 4

1/3 E(x) −1.81418881× 102 −1.08294258× 103 −3.08231679× 103

H(x) +0.34241316 +0.17280892 +0.34497729

E(x) + H(x) −1.81076468× 102 −1.08276977× 103 −3.08197181× 103

Fn,σ(x; μ) −1.80709370× 102 −1.08284759× 103 −3.08254767× 103

1/2 E(x) +0.06317153 +1.15957937× 103 −4.47945373× 104

H(x) +0.74012019 +1.09449277 +1.45169481

E(x) + H(x) +0.80329172 +1.16067387× 103 −4.47930856× 104

Fn,σ(x; μ) +0.80329527 +1.16069221× 103 −4.47921506× 104

5/9 E(x) −− −0.14805870 +2.77243091× 102

H(x) +0.79825166 +1.17615555 +1.55857242

E(x) + H(x) +0.79825166 +1.02809685 +2.78801663× 102

Fn,σ(x; μ) +0.79825119 +1.02809649 +2.78801134× 102

2/3 H(x) +0.84046066 +1.23266920 +1.63072031
Fn,σ(x; μ) +0.84046066 +1.23266920 +1.63072031

In Table 2, we present illustrative examples of Theorem 2 when x → −∞. The first
case, σ = 1

4 (κ = 3
4 ), has an expansion that is exponential in character; for n < 1/σ = 4,

Ê(x) is exponentially small, whereas for n = 4, the argument πκ − ω0 = 3
8 π lies on the

upper boundary of the exponentially large sector | arg z| < 3
8 π, and thus Ê(x) is oscillatory.

For n ≥ 5, Ê(x) becomes exponentially large as x → −∞. In the second case, σ = 2
5 (κ = 3

5 ),
Ê(x) is exponentially small for n = 2 and exponentially large for n ≥ 3.

In the third case, σ = κ = 1
2 , Ê(x) is oscillatory for n = 2 and exponentially large

for n ≥ 3. Finally, when σ = 3
4 (κ = 1

4 ), the function Fn,σ(x; μ) is exponentially large for
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n = 2, 3 and n ≥ 5. However, for n = 4, the two values ω0 = 3
8 π and ω1 = 1

8 π yield
arguments πκ −ωr (r = 0, 1) situated on both boundaries of the exponentially large sector
| arg z| < 1

8 π. In this case Ê(x) is oscillatory and, since n∗ = 2, there is, in addition, an
algebraic contribution Ĥ(x).

Table 2. The values of the exponential and algebraic expansions compared with Fn,σ(x; μ) for large
x < 0 for different values of σ and n when μ = 3/4 and |x| = 8 (for σ = 1/4, 1/2, 2/5), |x| = 5 (for
σ = 3/4).

σ n = 2 n = 3 n = 4

1/4 Ê(x) +1.59003829× 10−2 +1.77442984× 10−1 +6.49578248× 10−1

Fn,σ(−x; μ) +1.59003416× 10−2 +1.77011100× 10−1 +6.49580223× 10−1

2/5 Ê(x) −4.18901636× 10−2 −3.79446870× 100 −3.02428770× 101

Fn,σ(−x; μ) −4.18889220× 10−2 −3.79475882× 100 −3.02402120× 101

1/2 Ê(x) −0.56022532 +1.23070020× 103 −1.28808653× 104

Fn,σ(−x; μ) −0.56023534 +1.23066913× 103 −1.28803505× 104

3/4 Ê(x) +1.81213632× 1028 +7.55354383× 1013 −0.84956415
Ĥ(x) −− −1.93112636× 10−1 −0.28756658

Ê(x) + Ĥ(x) +1.81213632× 1028 +7.55354383× 1013 −1.13713072
Fn,σ(−x; μ) +1.81213650× 1028 +7.55354314× 1013 −1.13713081

7. Concluding Remarks

We employed the standard asymptotics of the Wright function Ψ(z) defined in (6)
to determine the asymptotic expansion of Fn,σ(x; μ) for x → ±∞. We found that this
behaviour depended critically on the parameter σ. The numerical results presented in
Tables 1 and 2 demonstrate that the asymptotic forms of Fn,σ(x; μ) stated in Theorems 1
and 2 agreed well with the numerically computed values of Fn,σ(±x; μ). In particular, we
showed that, when σ < 1

2 , the expansion of Fn,σ(x; μ) exponentially decays as x → −∞.
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1. Introduction

The year of the birth of Fractional Calculus is considered 1695, when Leibniz dis-
cussed the possibility of introducing the derivative of an arbitrary order in his letters to
Wallis and Bernoulli. Several attempts were made to give a precise meaning to this new
notion. A comprehensive detailed analysis of the history of Fractional Calculus is given in
Reference [1]. One of most productive periods in this history was the middle-end of the
XIX century. Here, we can mention works by Legendre, Fourier, Peacock, Kelland, Tardi,
Roberts, and others. The most advanced approach to the determination of the fractional
derivative of an arbitrary order was proposed by Liouville. A deep analysis of the results
on this subject was given in the article [2] by Letnikov. In particular, he recognized the basic
role of Liouville’s approach. Letnikov said ([2], p. 92): “. . . we give a survey of the results
by Liouville whom we ought to consider as the first scientist paid a serious attention to
clarifying the question on the derivative of an arbitrary order. In 1832, he started to publish
a series of articles devoted to the foundation and the application of his theory of general
differentiation which is the first complete discussion of this topic. Before his work, only
few very important but not completely clear remarks were made on this subject”.

It should be noted that the works by A. V. Letnikov constitute the first rigorous
and comprehensive construction of the theory of the fractional integro-differentiation. An
extended description of the results by Letnikov is presented in the articles of References [3,4]
and in the book of Reference [5], written in Russian.

In the middle-end of the XIX century, an interest to Fractional Calculus in Russia grew
significantly [6–10]. One of the reasons for it was a high standard in the research in Real
and Complex Analysis in Russia in this period. Russian Universities took care of the level
of the education of young scientists. Many applicants for a professorship had been given
the opportunity to spend 1–2 years at the leading research centers and to attend the lectures
of known mathematicians.

Letnikov’s results attracted people to this branch of the Science, at least in Russia.
Nevertheless, these works remained unknown abroad and, for a long time, were unaccessi-
ble. After contribution by Letnikov, the serious works on Fractional Calculus in Russia in
the second part of the XIX century were published by N. Ya. Sonine and P. A. Nekrasov.
They introduced the complex-analytic technique into the study and application of deriva-
tives and integrals of an arbitrary order. It should be noted that Complex Analysis was
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traditionally highly developed discipline starting from Leonard Euler, who worked for
a long period in Russia (1726–1741 and 1776–1783). This part of Mathematical Analysis
was essentially developed in the XIX century by M. V. Ostrogradsky, V. Ya. Bunyakovsky,
P. L. Chebyshev, A. M. Lyapunov, and many others. In particular, Sonine and Nekrasov
found a fractional analog of the classical Cauchy integral formula for analytic functions.

In our article, we describe the contribution of Alexey Vasil’evich Letnikov (1837–1888),
Nikolai Yakovlevich Sonine (1849–1915), and Pavel Alekseevich Nekrasov (1853–1924) to
Fractional Calculus and the role of these results in the modern Fractional Calculus and
its Applications.

2. Liouville’s Approach and Its Analysis by Letnikov

As it was already said, A. V. Letnikov considered (see, e.g., Reference [2,6,7]) that the
Liouville’s theory constitutes the only complete treatment of differentiation of an arbitrary
order. Realizing the great importance of this theory, Lentnikov had seen that its certain
parts did not receive a proper justification and led to some misunderstanding in the works
of Liouville’s followers.

Let us present here Letnikov’s description of the elements of the Lioville’s theory fol-
lowing Reference [2]. Letnikov started his analysis with the definitions given by Liouville.

Definition 1. Let the function y(x) be represented in the form of the following series of exponents:

y(x) = A1em1x + A2em2x + . . . , (1)

which is denoted for shortness as ∑ Amemx.
Fractional derivative of the order p is defined by multiplying each term of the series by p-th

power of the index m:
dpy
dxp = ∑ Ammpemx. (2)

If p is negative, then Formula (2) determined the fractional integral of order −p.

Fractional integral of order −p is denoted by Liouville as
∫ −pydx−p. Liouville consid-

ered this definition as the only possible way to generalize the usual derivative. Evaluating
its role, Letnikov stressed that Definition 1 contains a key ideas to establish a deep analogy
with differences and powers and, thus, could lead to a more simple construction.

Nevertheless, the above definition had a very important restriction. It cannot be
applied to an arbitrary function since not all of them possess representations in series of
exponents. Liouville himself understood this difficulty. He proposed a way to overcome it.
By performing the change of variable z = ex for the function y = F(x), one can expand the
composite function y = F(ln z) (with x = ln z) in a converging power series:

F(ln z) = ∑ Amzm. (3)

Thus, the initial function y = F(x) admits representation via series of exponents

F(x) = ∑ Amemx. (4)

But the possibility to represent y = F(ln z) in form (3) met several restrictions. For
instance, if we suppose to get representation of y = F(ln z) in a form of series in positive
powers of z, then all derivatives of y = F(x) at x = ∞ should be equal to zero since

(F(ln z))′z =
F′(ln z)

z
, (F(ln z))′′z =

F′′(ln z)− F′(ln z)
z2 , . . . .

Similar restriction appears if we suppose to represent y = F(ln z) in a form of series
in negative powers of z since we deal in this case with the function y = F(− ln z). Such
conditions look fairly strong. Moreover, they are neither necessary nor sufficient for the
representation of the type (4).
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Liouville met such a restriction trying to calculate the derivative of a fractional order
of the power function. He started with the Euler formula

1
xm =

∞∫
0

e−xzzm−1dz

Γ(m)
.

Liouville supposed that the above integral can be represented in a form of the expo-
nential sum ∑ Ane−nx. Here, all coefficients in such representation should be infinitely
small. Then, using his main definition, Liouville arrived at the formula of the derivative of
this function:

dp

dxp
1

xm =

∞∫
0

e−xz(−z)pzm−1dz

Γ(m)
. (5)

Thus, by definition of Γ-function, we get, after substituting xz = t, the following for-
mula:

dp

dxp
1

xm =
(−1)pΓ(m + p)

Γ(m)xm+p . (6)

In his first articles, Liouville used the only definition of the Γ-function of positive
variable (later, he noted that he was not familiar with the general definition of the Γ-
function by Legendre and Gauss). Therefore, he supposed that, due to assumptions m > 0,
m + p > 0, one needs to use in the above definition so-called auxiliary functions (more
detailed discussion of the role of auxiliary function is presented below in Section 4; in
fact, such notion appeared in the works by Liouville since he used indefinite integral for
fractional integration). Being very important, the use of auxiliary functions did not lead to
a general definition of the fractional derivative. Liouville showed that, if one supposed an
existence of auxiliary functions, then these necessarily had to be entire functions.

Letnikov claimed and proved that it follows from his analysis that Liouville’s for-
mulas were so general that they had no need of any auxiliary function. Later on, several
attempts to correct Liouville’s approach were made. In particular, Letnikov analyzed in
Reference [2] the works by Kelland, Tardi, and Roberts. But the really rigorous approach
which transformed Liouville’s formulas to the general definition of the fractional derivative
was proposed by Letnikov. We have to note that Letnikov used a definite integral in
his construction (see Section 3.1). For such construction, the notion of auxiliary function
becomes needless.

3. Letnikov’s Contribution to Fractional Calculus

3.1. Letnikov or Grünwald-Letnikov Derivative

Starting his work on determination of the derivative of an arbitrary order, Letnikov
posed this problem [6,7] as interpolation in form of the elements of two sequences consisting
of successive derivatives of the function f (x)

(a) f (x), f ′(x), f ′′(x), . . . , f (n)(x), . . . (7)

and of successive n-fold integrals of this function:

(b) f (x),
∫

f (x)dx,
∫ 2

f (x)dx2, . . . ,
∫ n

f (x)dxn, . . . (8)

In other words, he tried to find such a formula of the derivative of an arbitrary order
α which, for nonnegative integer, α = 0, 1, 2, . . . coincides with the corresponding elements
of the sequence (a), and, for nonpositive integer, α = 0,−1,−2, . . . coincides with the
corresponding elements of the sequence (b). Denoting this formula by

Dα f (x) or
dα f (x)

dxα
,
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he expected to get this new object to have (whenever it is possible) that same properties as
elements of sequence (a) or (b) when α is an integer.

The next idea by Letnikov was to restrict the generality of the above question and to
consider, instead of the sequence (b) (of indefinite n-fold integrals), the sequence of definite
integrals, supposing that f (x) is continuous on certain interval [a, x], i.e., to interpolate in
form elements of the double sequence

(A) . . .
x∫

a

x∫
a

f (x)dx2,
x∫

a

f (x)dx, f ′(x), f ′′(x), . . . , (9)

in which any element is the derivative of the previous one.
The corresponding interpolating object he denoted as

[Dα f (x)]xa .

In order to get such interpolation, Letnikov proposed to examine the following formula:

n
∑

k=0
(−1)k

(
α
k

)
y(x− kh)

hα
, (10)

where h =
x− a

n
, and

(
α
k

)
denotes the binomial coefficient. This approach was inde-

pendently used by Grünwald [11] and by Letnikov [6]. When Letnikov found the paper
by Grünwald, he decided to decline publication of his work, but later changed his mind.
Letnikov developed in Reference [6] more rigorously than in Reference [11] the theory of
the derivative of an arbitrary order and found its relationship with many results known in
this area.

Elementary algebra yields that, for α = m being positive integer number, the deriva-
tives of the corresponding order can be defined as a limit of the above expression

f (m)(x) =

lim
δ→0

f (x)−
(

m
1

)
f (x−δ)+

(
m
2

)
f (x−2δ)+...+(−1)n

(
m
n

)
f (x−nδ)

δm .
(11)

Here, δ → 0 is equivalent to n → ∞, but the sum in the numerator remains finite since
all binomial coefficients with n > m vanishing. Thus, Formula (11) can be taken as the
definition of the derivative of order m ∈ N.

Vice versa, for α = −m being negative integer, the expression under the limit sign in
the right-hand side of (11) equals to

f (x) +
(

m
1

)
f (x− δ) +

(
m
2

)
f (x− 2δ) + . . . +

(
m
n

)
f (x− nδ)

δ−m . (12)

Letnikov showed [6] (pp. 5–12) that the limit of this expression as δ → 0, or equiva-
lently as n → ∞, is equal to the multiple integral, i.e., (in his notation)

[D−m f (x)]xa =

lim
δ→0

f (x)+

(
m
1

)
f (x−δ)+

(
m
2

)
f (x−2δ)+...+

(
m
n

)
f (x−nδ)

δ−m

=
x∫
a

dx1

x1∫
a

dx2 . . .
xm−1∫

a
f (xm)dxm.

(13)

This magnitude [D−m f (x)]xa satisfies certain properties. First of all, if we apply to it
similar operation of order −p, p > 0, then we will have
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[
D−pD−m f (x)

]x
a =
[
D−m−p f (x)

]x
a .

Next, if we take the derivative dp

dxp of order p > 0, then we will have

dp

dxp
[
D−m f (x)

]x
a =
[
D−m+p f (x)

]x
a , i f m > p,

and
dp

dxp
[
D−m f (x)

]x
a =

dp−m f (x)
dxp−m , i f m < p.

Thus, in particular, the symbol [D−m f (x)]xa means m-times differentiable function
whose all derivatives up to m-th order are vanishing at x = a.

Formulas (13) and (11) coincide with the corresponding elements of the double se-
quence (A). Therefore, it led Letnikov to the conclusion that the limit

[Dα f (x)]xa :=

lim
δ→0

f (x)−
(

α
1

)
f (x−δ)+

(
α
2

)
f (x−2δ)+...+(−1)n

(
α
n

)
f (x−nδ)

δα

(14)

is a good candidate to solve the interpolation problem for the sequence (A), i.e., to be the
derivative of arbitrary order.

The relations of this new object to known formulas of the fractional derivatives
(integrals) were described by Letnikov [6] (p. 15) using the following elementary:

Lemma 1. Let (αk) be a sequence of (real or complex) numbers such that

lim
k→∞

αk = 0 and lim
k→∞

(α1 + α2 + . . . + αk) = C,

and let (βk) be a sequence of (real or complex) numbers such that

lim
k→∞

βk = 1.

Then, the sequence of their products has the limits equal to C, i.e.,

lim
k→∞

(α1β1 + α2β2 + . . . + αkβk) = lim
k→∞

(α1 + α2 + . . . + αk) = C.

The above formula is valid for [Dα f (x)]xa with α < 0 (i.e., for fractional integral of
order −α in modern language).

The corresponding justification of the formula of [Dα f (x)]xa with α > 0 (i.e., represen-
tation of fractional derivative) Letnikov supposed additionally that the function f (x) is
(n + 1)-times continuously differentiable on the interval (a, x), where n is a largest integer
smaller than α, i.e., n < α < n + 1. Then, using quite cumbersome transformation of the
binomial coefficients [6] (pp. 21–26), he has got that the limit in (14) is equal:

[Dα f (x)]xa =
f (a)(x− a)−α

Γ(−α + 1)
+

f ′(a)(x− a)−α+1

Γ(−α + 2)
+ . . . +

f (n)(a)(x− a)−α+n

Γ(−α + n + 1)
+ (15)

+
1

Γ(−α + n + 1)

x∫
a

(x− τ)−α+n f (n+1)(τ)dτ.

Note that the same result is true if α ∈ C, Re α > 0. Integration by parts showed
that (15) can be taken as the definition of fractional derivative of an arbitrary order α > 0.
A slightly more general form can be written for any s ∈ Z, s ≥ n, n < Re α < n + 1 (of
course, under additional smoothness conditions):

[Dα f (x)]xa =
s

∑
k=0

f (k)(a)(x− a)−α+k

Γ(−α + k + 1)
+

1
Γ(−α + s + 1)

x∫
a

(x− τ)−α+s f (s+1)(τ)dτ. (16)
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In Reference [6], Letnikov paid attention to relationship of his formulas with known
constructions. In particular, he showed that, if the function f (x) is defined, infinitely
differentiable on [x, ∞), and vanishes together with any derivative when x is tending to ∞,
then the following formula hold for any α, Re α < 0,:

[Dα f (x)]x+∞ =
1

Γ(−α)

x∫
+∞

(x− τ)−α−1 f (τ)dτ =
1

(−1)αΓ(−α)

+∞∫
0

z−α−1 f (x + z)dz,

i.e., coincides with the corresponding integral defined by Liouville. Similarly, for any
α, 0 ≤ n < Re α < n + 1 Letnikov discovered that

[Dα f (x)]x+∞ = 1
Γ(−α+n+1)

x∫
+∞

f (n+1)(τ)dτ
(x−τ)α−n =

1
(−1)α−n−1Γ(−α+n+1)

+∞∫
0

f (n+1)(x+z)dz
zα−n .

(17)

He also noted that the considered class of functions is not empty, it contains, in
particular, all functions of the form xme−x.

In Reference [6], Letnikov also presented a series of formulas for the values of his
derivative of an arbitrary order of elementary functions, such as power function (x− a)β,
exponential function emx, logarithmic function log x, exponential-trigonometric functions
eβx sin γx, eβx cos γx, and rational functions P(x)

Q(x) . These formulas coincide with nowa-
days known formulas (see, e.g., Reference [1,12]). Composition formulas for fractional
derivatives and integrals were found in Reference [6], too. The last result, presented in
Reference [6], was the so-called Leibniz rule for the fractional derivative/integral of the
product of functions. Note, that after the death of A. V. Letnikov, it was created a committee
examined some of his manuscripts [13]. A few results were then published, but not all
were found. In particular, the members of the committee reported that they did not find
any results on Abel integrals, as it was expected by some researchers.

3.2. Solution to Certain Differential Equations

In Reference [14], Liouville made a background for further development of Fractional
Calculus. In order to show an importance of the new branch of Science, he solved in
Reference [15] a number of problems (mainly from geometry, classical mechanics, and
mathematical physics) by using his constructions of integral and derivatives of an arbitrary
order. Later, in Reference [16], he also discussed the tautochrone problem and usage of
fractional derivatives to its solution.

In his master thesis, Letnikov carefully examined these results by Liouville and came
to the conclusion that Liouville’s solutions of the problems can be obtained by using more
traditional methods, too. He also remarked that incorrect usage of Liouville construction
by his followers led to certain misunderstandings, and even mistakes. Note that the master
thesis by Letnikov was reprinted in Russian recently in Reference [4,5].

Nevertheless, Letnikov believed that newly created technique could find proper
applications. One of these applications was presented in his article, Reference [17], devoted
to use of the fractional derivative to the solution of the differential equation

(an + bnx)
dny
dxn + (an−1 + bn−1x)

dn−1y
dxn−1 + . . . + (a0 + b0x)y = 0. (18)

These results were lectured by Letnikov at the meeting of Mathematical Society on
16 April 1876, and at the meeting of the Warsaw Congress of naturalists on 3 September
1876. They were reprinted by P. A. Nekrasov, who parsed the Letnikov’s archive after
his death.

Denoting

ϕ(ρ) := anρn + an−1ρn−1 + . . . + a1ρ + a0, ψ(ρ) := bnρn + bn−1ρn−1 + . . . + b1ρ + b0,
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Equation (18) can be rewritten in the following symbolic form:

ϕ

(
d

dx

)
y + xψ

(
d

dx

)
y = 0. (19)

Suppose that equation
ψ(λ) = 0 (20)

has different zeroes λ1, λ2, . . . , λn. Denoting for each j = 1, 2, . . . , n

y := eλjxY, (21)

one can rewrite (19)

ϕ

(
λj +

d
dx

)
Y + xψ

(
λj +

d
dx

)
Y = 0. (22)

A crucial idea by Letnikov was to look for the solution to Equation (22) in the form:

Y =
[
Dpyj

]x
a , (23)

where yj is a new unknown function, and [Dp]xa is an inter-limit (Letnikov-type) derivative
whose order p is to be defined later.

Let there exist the function yj, vanishing at x = a, together with all derivatives up to
order n− 2, satisfying the following equation:

ϕj

(
d

dx

)
yj + xψj

(
d

dx

)
yj = 0, (24)

where

ψj(ρ) =
ψ(λj + ρ)

ρ
, p + 1 =

ϕ(λj)

ψj(0)
=

ϕ(λj)

ψ′(λj)
= Aj, ϕj(ρ) =

ϕ(λj + ρ)− Ajψj(ρ)

ρ
.

Then, there exists the solution to Equation (19), which is represented in the form:

y = eλjx
[

DAj−1yj

]x

a
. (25)

Thus, by this transformation, we reduce Equation (18) of order n to Equation (24) of
order n− 1. By applying this method, one can reduce the order of the equation up to 1 and
get the possible solution via successive application of the inter-limit derivative.

4. Sonine-Letnikov Discussion

In 1868, A. V. Letnikov published the main part of his master thesis as an article in
Mathematical Sbornik [6], supplemented by the historical survey on the development of the
theory of differentiation of an arbitrary order [2]. This article, and Grünwald’s article [11],
was criticized by N. Ya. Sonine in Reference [9], who also presented in Reference [9] his
own approach to determine the derivatives of an arbitrary order. Sonine’s article started
with the discussion of Liouville’s definition of the derivative of an arbitrary order (not
necessarily positive). The latter definition is based on the derivative of an arbitrary order
p ∈ R of exponential function

dp

dxp emx = mpemx

and on the possibility to expand a differentiable function into exponential series (the
Dirichlet series in modern language):

f (x) =
+∞

∑
k=−∞

Akemkx.

Sonine made two important remarks concerning Liouville’s definition. First, he
showed that the derivative of negative order (i.e., the fractional integral) cannot be con-
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sidered as an inverse to the fractional derivative. The second remark by Sonine is related
to the problem discovered by Liouvile himself. If one applies Liouville’s definition of the
derivative of arbitrary order to power function, then it leads immediately to a kind of
contradiction. Liouville founded this phenomena using the following representation of x:

x = lim
β→0

eβx − e−βx

2β
.

If we suppose that the limit and the fractional derivative are interchangeable, then the
half-derivative of x becomes infinite. Moreover, the derivative of an infinitesimal quantity
could be finite. From these facts, Liouville concluded the existence of additional functions
that are the derivative of zero function and coincide with an entire function with arbitrary
coefficients. Contrariwise, Sonine has shown that such contradiction follows from a not
completely rigorous way of expansion of the function into the series in exponents. He
also remarked that Liouville’s proof of existence of additional functions does not have a
proper rigor.

In the second part of his article [9], Sonine criticized an approach by Grünwald and
Letnikov, in which the fractional derivative is defined by the following limit:

Dα[ f (x)]x=x
x=a :=

lim
δ→0

f (x)−
(

α
1

)
f (x−h)+

(
α
2

)
f (x−2h)+...+(−1)n

(
α
n

)
f (x−nh)

hα ,
(26)

where nh = x− a.
Sonine had two main objections. First, he noted that the series in the numerator of (26)

is converging. Hence, the fraction should be infinite. The second remark by Sonine was
that, if we apply to the fractional integral D−α the fractional derivative Dβ (α, β > 0), then,
by Leibnitz rule, the result should coincide with Dβ−α. It leads to contradiction, even for
the function f (x) = 1, since it should exist for any β, but it is so only for Re α > [Re β],
where [·] means the integer part of the number.

Concerning the first remark, Letnikov noted in Reference [7] that, in the case Re α > 0,
Formula (26) determines the fractional integral (coinciding with m-times repeated integral
if α = m ∈ N) if the series in the numerator of (26) is converging, and its sum is equal to
zero. Moreover, Letnikov gave sufficient conditions for existence of the limit in (26).

The second question by Sonine appeared due to his incorrect application of the
Leibnitz rule. Letnikov noted that fractional integral and fractional derivative are defined
by different formulas:

Dα[ f (x)]x=x
x=a =

1
Γ(−α)

x∫
a

(x− t)−α−1 f (t)dt, α < 0, (27)

Dα[ f (x)]x=x
x=a =

m

∑
k=0

f (k)(a)(x− a)−α+k

Γ(−α + k + 1)
+

1
Γ(−α + m + 1)

x∫
a

(x− t)−α+m f (m+1)(t)dt, (28)

α > 0, m = [α].

Both formulas are applied under certain conditions. Thus, successive application of
these two formulas can lead to certain contradiction if we do not take into account the
above conditions.

5. Sonine’s Contribution to Fractional Calculus

5.1. Sonine’s Fractional Derivative and Integral

In his polemical article [9], N. Ya. Sonine not only criticized Grúnwald-Letnikov
approach but also proposed another form of “general” fractional derivative. For his
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formula, Sonine used generalization of the Cauchy integral (or, better to say, the Cauchy-
type integral, since the below integral is defined for any continuous function f ):

dα f (x)
dxα

=
Γ(p + 1)

2πi

∫
γ

f (τ)dτ

(τ − x)α+1 , (29)

where γ is a closed simple smooth curve on the complex plane surrounding the point x
(without loss of generality, one can assume that γ is the circle of radius r centered at the
point x). This formula is really a good candidate for generalization of usual derivatives
since, for α = p, positive integer (29) gives the value of p-th derivative at the point x,
assuming that the function f is p-time differentiable at x.

This formula was analyzed by Letnikov in his answer [7] on the remarks by Sonine.
Letnikov proved that, under assumption that the function f is (m + 1) = ([α] + 1)-times
continuously differentiable inside the circle γ, Formula (29) coincides with Letnikov’s
Formula (28). Note that Letnikov discussed Sonine’s Formula (29) under the stronger
assumptions on the function f .

dα f (x)
dxα

=
(−r)−α f (x + r)

Γ(−α + 1)
+

(−r)−α+1 f ′(x + r)
Γ(−α + 2)

+ . . . +
(−r)−α+m f (m)(x + r)

Γ(−α + m + 1)
(30)

+
Γ(α−m)

2πrα−m−1

2π∫
0

f (m+1)(x + reiθ)e−(α−m−1)iθdθ.

Since the last integral can be transformed to the form

Γ(p−m)
2πrα−m−1

2π∫
0

f (m+1)(x + reiθ)e−(α−m−1)iθdθ =

(−1)−α+m

Γ(−α+m+1)

x∫
x+r

f (m+1)(τ)(τ − x)−α+mdτ,

then Formula (29) coincides with the definition of the fractional derivative given by Let-
nikov (28). In Reference [9], Sonine concluded that his formula cannot coincide with
Grünwald-Letnikov formula for α > 0 without adding auxiliary function.

Sonine’s definition of a fractional derivative of negative order (i.e., fractional integral)
has been criticized by Letnikov in Reference [7]. Sonine used Leibniz’s rule (composi-
tion formula) for fractional derivatives (which is generally not valid; see Reference [1]).
A fractional integral by Sonine is defined as inverse operation for fractional derivative:

dα

dxα

d−α f (x)
dx−α

= f (x). (31)

From this formula, Sonine concluded that it should be exist as a so-called auxiliary
function ψ(x), satisfying the following relation:

dαψ(x)
dxα

= 0. (32)

Sonine took the function ψ(x) in the form

ψ(x) = A1(x− a)α−1 + A2(x− a)α−2 + . . . + Ak(x− a)α−k,

where Aj, j = 1, 2, . . . , k, are arbitrary constants, k = [p] + 1, but a is not defined by Sonine.
If Cauchy formula is taken as the definition of the derivative of an arbitrary order, then the
auxiliary function has to satisfy the relation∫

γ

ψ(τ)dτ

(τ − x)α+1 = 0.
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Since it was shown that by integration by parts Formula (29) is reduced to the def-
inition of the fractional derivative (28) without any auxiliary function, then Letnikov
concluded that the following alternative holds: either (1) there exists no auxiliary function
of the above form, or (2) formula (29) cannot be taken as the general definition of fractional
derivative of an arbitrary order. Instead, he said that his definition is free of necessity to
add an auxiliary function (in spite of the fact that this definition is reduced to different a
form than (27) and (28) whenever α is negative or positive, respectively).

5.2. Sonine Kernel and Sonine Integral Equations

In one of his pioneering articles [18], Abel presented solution to the integral equation
x∫

0

ϕ(τ)dτ

(x− τ)1−α
= F(x), 0 < α < 1. (33)

The main component of Abel’s method was the following identity:
x∫

0

f (t)dt =
sin πα

π

x∫
0

dt
(x− t)1−α

t∫
0

f (τ)dτ

(t− τ)α
, (34)

where f (x) = F′(x).
Sonine tried to generalize Abel’s identity (34) in order to solve more general equa-

tion than integral Equation (33). He looked for a pair of functions σ(x), ψ(x) satisfying
the identity x∫

0

f (t)dt =
x∫

0

ψ(x− t)dt
t∫

0

f (τ)σ(t− τ)dτ, (35)

or, i.e., a pair of functions generating integral representation of unity

1 =

x∫
0

ψ(x− t)dt
t∫

0

σ(t− τ)dτ. (36)

Sonine described in Reference [19] a possible form of the functions σ(x), ψ(x),

σ(t) =
t−p

Γ(1− p)

∞

∑
k=0

aktk, ψ(t) =
t−q

Γ(1− q)

∞

∑
k=0

bktk,

where p + q = 1, and coefficients ak, bk are defined by the following relations

a0b0 = 1,
n

∑
k=0

Γ(k + p)Γ(q + n− k)an−kbk = 0, n = 1, 2, . . . .

He also applied relation (36) for representation of the solution to the first kind of
integral equations with one of these functions as the kernel:

x∫
0

σ(x− τ)ϕ(τ)dτ = f (x). (37)

Both functions σ(x), ψ(x) are known as Sonine kernels, and integral Equation (37),
generalizing Abel integral Equation (33), is called a Sonine integral equation. In modern
language (see, e.g., Reference [20]), a locally integrable function σ(x) is called the Sonine
kernel if there exists another locally integrable function ψ(x) such that the following
identity holds: x∫

0

σ(x− τ)ψ(τ)dτ = 1, x > 0. (38)

In fact, the function ψ(x) is also called the Sonine kernel (sometimes, these functions
are called the associated Sonine kernels).
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Several special examples of Sonine kernel are presented in Reference [21]. We can
mention also Reference [20], in which the properties of the Sonine kernel are discussed in
modern setting. Several difficulties which one has to overcome by formal application of
Sonine’s approach to the solution of the corresponding integral equations are discovered.
Possible ways to overcome these difficulties are shown.

In Reference [22], the general fractional integrals and derivatives of arbitrary order
are introduced, along with study some of their basic properties and particular cases. First,
a suitable generalization of the Sonine condition is presented, and some important classes
of the kernels that satisfy this condition are introduced. In the introduction of the general
fractional integrals and derivatives, the author follows a recent approach by Kochubei [23].
The general fractional integrals and derivatives with Sonine kernel are defined in the
Riemann-Liouville form (see Reference [21,22] and references therein)

(Iσ f )(x) =
x∫

0

σ(x− t) f (t)dt, x > 0, (39)

(
Dψ f
)
(x) =

d
dx

x∫
0

ψ(x− t) f (t)dt, x > 0, (40)

where the functions σ(x), ψ(x) are associated Sonine kernels. Operators (39) and (40)
are discussed in Reference [21–23] under different conditions on Sonine kernels, and
the constructions are not only similar to Riemann-Liouville-type fractional integrals and
derivatives but also to Dzhrbashian-Caputo-type and to Marshaud-type.

5.3. Higher Order Hypergeometric Functions

The main research interest by Sonine was to study the properties of several classes
of special functions. His results served as an impetus for the development of the theory
of cylindrical functions (or Bessel-type functions) in the second half of the XIX century.
These results are based on the achievements by C. Neumann, O. Schlömilch, E. Lommel,
H. Hankel, N. Nielsen, L. Schlafli, L. Gegenbauer, and others (see, e.g., Reference [24,25]).
Sonine defined in Reference [26] the cylindrical functions Sν(z) as a partial solutions to the
following system of functional-differential equations:⎧⎨⎩

Sν+1(z) + 2S′ν(z)− Sν−1(z) = 0,
2νSν(z) = z[Sν−1(z) + Sν+1(z)],
S1(z) = −S′0(z),

(41)

where z is the complex variable, and ν is an arbitrary complex parameter. Sonine proved
that these partial solutions admit an integral representation:

Sν(z) =
1

2πi

b∫
a

exp
{

z
2

(
t− 1

t

)}
dt

tν+1 . (42)

He found four possible cases for the limits of integration, namely: (1) ∞ · α, ∞ · β; (2)
− 0

α ,− 0
β ; (3)− 0

α , ∞ · β; (4) Im(za) = ±∞, Im(zb) = ±∞, where, in cases (1)–(3), Re (za) < 0,
Re (zb) < 0, but, in case (4) Re (ν) > 0. Sonine denoted the functions obtained in these four
cases by S(k)

ν (z) and showed that

S(1)
ν (z) = Jν(z), S(2)

ν (z) = e−νπi J−ν(z), S(3)
ν (z) =

1
2

H(1)
ν (z), S(4)

ν (z) = Jν(z).

The above integral representation (42) is called Sonine integral representation. It is a
source for obtaining new representations for cylindrical functions (see Reference [25]), as
well as for calculation of certain definite integrals. Among these integrals are those known
as the first and the second Sonine integrals, respectively (or classical Sonine formulas); see,
e.g., Reference [27]:
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Jν+μ+1(aq) =
qν

2νΓ(ν + 1)aν+μ+1

a∫
0

Jμ(qx)(a2 − x2)νxμ+1dx, (43)

a∫
0

Jμ(qx)Jν[z
√

a2 − x2](a2 − x2)
ν
2 xμ+1dx = aν+μ+1qμzν Jν+μ+1(a

√
q2 + z2)

(
√

q2 + z2)ν+μ+1
, (44)

where Reν, Reμ > −1. Sonine formulas find interest in different questions of analysis (e.g.,
in Dunkl theory, as in Reference [28], or in the study of Levy processes [29]).

There exist several multivariate extensions of the classical Sonine integral representa-
tion for Bessel functions of some index μ + ν in terms of such functions of lower index μ
(see, e.g., Reference [30]). For Bessel functions on matrix cones, Sonine formulas involve
beta densities βμ,nu on the cone and go already back to Herz.

Several important results dealing with properties of Γ-function were obtained by So-
nine during his career. They are based on the study of the solution to the difference equation

F(x + 1)− F(x) = f (x). (45)

In these works, Sonine followed the idea by Binet (1838), who examined the relation

log Γ(x + 1)− log Γ(x) = log x.

Sonine found [31], in particular, the form of the remainder factor in the product
representation of Γ-function

Γ(x + 1) =
n!(n + 1)x

(x + 1)(x + 2) · · · (x + n)

(
1 + x

n+1
)x+n+θ(

1 + 1
n+1

)x(1+n+θ)
, x ∈ R, 0 < θ < 1. (46)

In his article on Bernoulli polynomials, Sonine obtained one more representation,
related to Γ-functions (this formula was rediscovered by Ch. Hermite in 1895)

log
Γ(x + y)

Γ(y)
= x log y +

n

∑
k=2

(−1)k ϕk(x)
(k− 1)kyk−1 + Rn(x, y), (47)

where ϕk(x) are Bernoulli polynomials defined by Sonine using difference equation

ϕk(x + 1)− ϕk(x) = kxk−1, ϕk(0) = 0, k = 1, 2, . . . .

Reference [32] contains a number of the most important articles by N. Ya. Sonine, as
well as a survey on his other research.

6. Nekrasov’s Contribution to Fractional Calculus

In Reference [8], Nekrasov proposed a new definition of the general differentiation.
In fact, this definition includes Letnikov’s definition as a special case. The main idea
by Nekrasov was to define the derivative by using integration along closed contour L
crossing the point x and encircling a group of singular points of the differentiable function
f (x). This definition gives, in fact, the differentiation with respect to a doubly connected
domain, which is free of the singular points of f (x), and contains the above said contour
L. Therefore, Nekrasov used the ideas by Sonine (to take into account the properties of
the analytic continuation of a given function and to apply the properties of functions in
complex domains). The main aim of Nekrasov’s construction is to extend the class of
functions to which the general differentiation can be applied.

It should be noted that the construction proposed by Nekrasov is fairly complicated
and needs to use properties of the functions on Riemann surfaces. It follows from the
properties of functions to which Nekrasov tried to apply his definition. The starting point
of his construction is the notion of classes (q, μ) of function. Let L be a closed contour
encircled a group of singular points of the function f (z). Let the function f (z) have the
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following property: if the point z makes a complete detour along L in counter clockwise
direction, then the function f (z), continuously changing, gains the multiplier e2πqi. Then,
this function is of class (q, 0). Thus, any function of the class (q, 0) can be represented in the
form f (z) = (z− a)qφ(z), where a lies inside L, and φ(z) is of the class (0, 0). The function
of the form f (z) = (z− a)q logμ zφ(z), with φ(z) being of the class (0, 0), is said to belong
to the class (q, μ) (with q being the power index, and μ being the logarithmic index which
is supposed to be nonnegative integer number). It is clear that, if the function f (z) belongs
to the class (q, μ), then it belongs to any class (q±m, μ), m ∈ N. Clearly, this definition
depends on the choice of the contour L.

The function f (z), which can be represented in form of a sum of finite number n of
functions belonging to different classes with respect to the contour L, is said to be reducible
to n classes (or simply reducible).

Let the function f (z) be reducible to n classes with zero logarithmic indices, i.e.,

f (z) = f0(z) + f1(z) + . . . + fn−1(z), (48)

where f j(z) is of class (qj, 0). Then, we have the following representation:

f (z) +

(z)∫
(Lk)

d f (t)
dt

dt = αk
0 f0(z) + αk

1 f1(z) + . . . + αk
n−1 fn−1(z), (49)

where integration is performed along the contour L, traversable k-times in counter clock-
wise direction starting from the point z, αj = e2πqji. By assigning the values 0, 1, . . . , n− 1 to
the parameter k, we obtain the system of equations sufficient for determination of functions
f0(z), f1(z), . . . , fn−1(z).

Let the function f (z) be reducible to n classes with non-zero logarithmic indices, i.e.,

f (z) =
n0−1

∑
s=0

(z− a)qs,0 φs,0(z)+

n1−1
∑

s=0
(z− a)qs,1 log(z− a)φs,1(z) + . . . +

nμ−1

∑
s=0

(z− a)qs,μ logμ(z− a)φs,μ(z),
(50)

where n0 + n1 + . . . + nμ = n, and all functions φs,j(z) are of class (0, 0). Then, we have the
following representation:

f (z) +
(z)∫

(Lk)

d f (t)
dt dt =

n0−1
∑

s=0
αk

s,0(z− a)qs,0 φs,0(z)+

n1−1
∑

s=0
αk

s,1(z− a)qs,1{2kπi + log(z− a)}φs,1(z) + . . .

+
nμ−1

∑
s=0

αk
s,μ(z− a)qs,μ{2kπi + log(z− a)}μφs,μ(z),

(51)

where integration is performed along the contour L, traversable k-times in counter clock-
wise direction starting from the point z, αs,j = e2πqs,j i. By assigning the values 0, 1, . . . , n− 1
to the parameter k, we obtain the system of equations sufficient for determination of
functions φs,0(z), φs,1(z), . . . , φs,n−1(z).

Therefore, in both cases, we have a finite sum representation of the function f (z) of
the considered form. Now, the question is to define the integral/derivative of arbitrary
order of each components of the representation (48) or (50). Moreover, any function f (z) of
the class (q, μ) can be determined as the following limit:

f (z) = lim
h→0

[
(z− a)q

(
(z− a)h − 1

h

)μ]
. (52)

Thus, we have the limit of the finite sum of functions belonging to the classes
(q, 0), (q + h,0), . . . , (q + μh, 0). Therefore, the definition of the integral/derivative of ar-
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bitrary order of any reducible function can be completely described if one can define the
definition of a function of class (q, 0). Nekrasov noted that his construction of his deriva-
tive generally speaking cannot be rigorously defined in the case when f (z) is reducible to
infinite number of classes.

For this definition, Nekrasov used Letnikov’s formulas. The only difference is that the
contour of integration is now specially deformed curve on the Riemann surfaces (which
depend on the order of the derivative, i.e., can be either finite-sheeted or infinite-sheeted).

In Reference [33], Nekrasov applied his construction to determinate the solution of
the following differential equation:

n

∑
s=0

(as + bsx)xs dsy
dxs = 0, (53)

which is highly related to the generalized hypergeometric function pFq(z).

7. Conclusions

In this article, we analyzed some important results by Russian mathematicians of the
end of the XIX century, namely A. V. Letnikov, N. Ya. Sonine, and P. A. Nekrasov. The main
attention is paid to their contribution related to Fractional Calculus and Special Functions
Theory. Some of these results are presented for the first time in English.

Our article serves to clarify the beginning steps of the development of Fractional Cal-
culus. We believe that it would be useful and interesting for members of fractional society.

Short Biographies

Letnikov Alexey Vasil’evich (1837–1888), Russian mathematician. A short biography.

A. V. Letnikov was born on 1 January 1837, in Moscow, Russia. When Alexey was
8 years old, his father died. His mother tried to give education to Alexey and his sister. The
mother sent Alexey to a grammar school in 1847. In spite of his evident abilities, he was
not too successful in education. Therefore, he was moved to Konstantin’s land-surveyors
institute (full-time provisional military-type institute). That was a second rank educational
establishment. Its director discovered high interest of Alexey to mathematics and supported
his growth in the subject. The director decided to prepare him to the career of a teacher in
mathematics in Konstantin’s land-surveyors institute. To get the corresponding position,
Letnikov was sent to Moscow University and studied mathematics there for two years
(1856–1858) as an extern student.

After graduation, he was sent to Paris in order to extend his knowledge in the most
known mathematical center for two years and to study the structure and the content of the
technical education in France. In Paris, Letnikov attended lectures of many well-known
mathematicians (Liouville among them) in the Ecole Polytechnique, College de France
and Sorbonne.

Returning from Paris in December 1860, he was appointed as a teacher in the engi-
neering class of the Konstantin’s land-surveyors institute and started to teach Probability
Theory. Letnikov actively participated in mathematical life in Moscow. In particular, he
was among the founders of Moscow Mathematical Society in 1864. In 1863, it was ap-
proved a new Statute of Higher Education. Among other regulations, it was supposed
to enlarge a number of chairs at universities and to recruit new university teachers. To
get a position at university, one needed either to pass graduation gymnasium’s exams
or to receive the degree at a foreign university. Letnikov decided to use the second op-
tion. In 1867, he defended his PhD, “Über die Bedingungen der Integrabilität einiger
Differential-Gleichungen”, at Leipzig University. In 1868, he got a position at recently
reopened Imperial Technical College (now Bauman’s Technical University). Letnikov was
working in this College up to 1883, when he moved to Alexandrov’s Commercial College,
sharing this job with a part-time teacher in Konstantin’s land-surveyors institute and in the
Imperial Technical College.
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It was active time for him, and he was awarded the degree of a state councillor,
got the order of Saint Stanislav, and was appointed in 1884 as a corresponding member
of St.-Petersburg Academy of Sciences (by recommendation of V. Imshenetsky, V. Bun-
yakovsky, and O. Backlund). At the end of 1880s, Letnikov should have received a state
pension and was supposed to leave teaching and to concentrate on the research. He was
dreaming of getting a position at the Moscow University. It was not to happen since, at the
opening ceremony of a new building of Alexandrov’s Commercial College, he caught a
cold. He had no serious illness before and continued to deliver lectures. But, this time, the
illness was strong enough, and he died on 27 February 1888.

Sonine Nikolai Yakovlevich (1849–1915), Russian mathematician. A short biography.

N.Ya.Sonine was born on February 10th, 1849, in Tula, Russia.
He studied at Physical-mathematical Faculty of Moscow University (1865–1869). After

graduation, he continued research in Moscow University for two years and, in 1871,
defended his Master Thesis, “On expansion of functions into infinite series”. In June 1871,
he became Associate Professor (dozent) of Warsaw University.

In 1873, he was sent to Paris to continue research study. In Paris, he attended lectures
by Liouville, Hermite, Bertrand, Serre and Darboux. In September 1874, in Moscow
University, N. Ya. Sonine defended his PhD Thesis, “On integration of partial differential
equations of the second order”. In 1877, he became extra-ordinary Professor of Warsaw
University and, in 1879, becamoe an ordinary Professor of Warsaw University. In 1891, he
resigned from his position at Warsaw University, but he still continued his research. In 1891,
N. Ya. Sonine was elected a corresponding member of Academy of Sciences, and, in 1893,
he became an academician of St.-Petersburg Academy of Sciences (by recommendation
of P. L. Chebyshev). In 1890, he was awarded by V. Ya. Bunyakovsky Prize for the Best
Results in Mathematics.

Starting in 1899, N. Ya. Sonine occupied different administrative positions, mostly in
the education. He died on 18 February 1915, in St.-Petersburg.

Nekrasov Pavel Alekseevich (1853–1924), Russian mathematician and philosopher.
A short biography.

P. A. Nekrasov was born on 1st (13th) February 1853, in Ryazan region, Russia.
After graduation at Ryazan Orthodox seminary in 1874, he entered Physical-

mathematical faculty of the Moscow University. In 1878, he graduated from the Moscow
University with degree of the candidate of sciences and was left at the department of
pure mathematics for preparation to the professorship. From August 1879, P. A. Nekrasov
shared his research with teaching mathematics at the private Voskresensky’s real school. In
1883, he defended his master thesis, “Study of the equation um − pun − q = 0”. For this
work, he was awarded by V. Ya. Bunyakovsky Prize for the Best Results in Mathematics.

In 1985, P. A. Nekrasov became a Privatdozent in the Moscow University (having
defended his Russian PhD “On Lagrange series” in 1886), and, in 1886, he got the position
of an associate professor (extraordinary professor) at Moscow University. In 1890, he
received a full professorship. In 1893, he became the rector of Moscow University. After
his term as the rector, he actually wanted to retire, but he was not allowed to. He also
taught, from 1885–1891, the Probability Theory and the Higher Mathematics in the Land-
surveyors institute.

Starting in 1898, he performed only administrative duties for the Ministry of Education
(he was curator of the Moscow University and responsible for the schools in Moscow and
the surrounding area) and moved in 1905 to Saint Petersburg as a member of the Council
of the Ministry of Education. After the Russian Revolution, he tried to adapt himself to the
new realities, dealt with mathematical economics (which he lectured in 1918–1919), and
studied Marxism. He died of pneumonia on 20 December 1924, in Moscow.
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351



Mathematics 2021, 9, 1736

Funding: The work has been supported by Belarusian Fund for Fundamental Scientific Research
through the grant F20R-083.

Data Availability Statement: The study did not report any data.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives. Theory and Applications; Gordon and Breach Science
Publishers: Yverdon, Switzerland, 1993; Revised in 1987

2. Letnikov, A.V. On historical development of the theory of differentiation of an arbitrary order. Mat. Sb. 1868, 3, 85–112.
(In Russian)

3. Potapov, A.A. A short essay on the origin and formation of the theory of fractional integro-differentiation. Nonlinear World 2003,
1, 69–81. (In Russian)

4. Potapov, A.A. Essays on the development of fractional calculus in the A.V. Letnikov’s works. To 175th anniversary of A. V. Letnikov,
Radioelectronics, Nanosystems. Inf. Technol. (Radioelektron. Nanosistemy Inf. Tehnol.) 2012, 4, 3–102. (In Russian)

5. Letnikov, A.V.; Chernykh, V.A. The Foundation of Fractional Calculus (with Applications to the Theory of Oil and Gas Production,
Underground Hydrodynamics and Dynamics of Biological Systems); Neftegaz: Moscow, Russia, 2011; 429p. (In Russian)

6. Letnikov, A.V. Theory of differentiation of an arbitrary order. Mat. Sb. 1868, 3, 1–68. (In Russian)
7. Letnikov, A.V. To explanation of the main statements of the theory of differentiation of an arbitrary order. Mat. Sb. 1873, 6,

413–445. (In Russian)
8. Nekrasov, P.A. General differentiation. Mat. Sb. 1888, 14, 45–166. (In Russian)
9. Sonine, N.Y. On differentiation of an arbitrary order. Mat. Sb. 1872, 6, 1–38. (In Russian)
10. Vashchenko-Zakharchenko, M.E. On fractional differentiation. Q. J. Pure Appl. Math. Ser. 1 1861, IV, 237–243.
11. Grünwald, A.K. Über “begrentze” Derivationen und deren Anwendung. Zeitschrift für Angew. Math. Phys. 1867, 12, 441–480.
12. Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S. Mittag-Leffler Functions: Related Topics and Applications, 2nd ed.; Springer:

Berlin, Germany; New York, NY, USA, 2020; 540p.
13. Nekrasov, P.A.; Pokrovskii, P.M. On examination of manuscripts by A. V. Letnikov, presented after his death to the Moscow

Mathematical Society. Mat. Sb. 1889, 14, 202–204. (In Russian)
14. Liouville, J. Memoire sur quelques Questions de Geometrie et de Mecanique, et sur un nouveau genre de Calcul pour resoudre

ces Questions. J. Ecole Polytech. 1832, 13, 1–69.
15. Liouville, J. Memoire sur le Calcul des differentielles a indices quelconques. J. Ecole Polytech. 1832, 13, 71–162.
16. Liouville, J. Memoire sur une formule d analyse. J. Reine Angew. Math. (Grelle’s J.) 1834, 12, 273–287.

17. Letnikov, A.V. On integration of the equation (an + bnx) dny
dxn + (an−1 + bn−1x) dn−1y

dxn−1 + . . . + (a0 + b0x)y = 0. Mat. Sb. 1889, 14,
205–215. (In Russian)

18. Abel, N. H. Auflösung einer mechanischen Aufgabe. J. FÜr Die Reine und Angew. Math. 1826, 1, 153–157.
19. Sonine, N.Y. Sur la généralisation d’une formule d’Abel. Acta Math. 1884, 4, 171–176. (In French) [CrossRef]
20. Samko, S.G.; Cardoso, R.P. Integral equations of the first kind of Sonine type. Int. J. Math. Math. Sci. 2003, 57, 3609–3632.

[CrossRef]
21. Luchko, Y. General Fractional Integrals and Derivatives with the Sonine Kernels. Mathematics 2021, 9, 594. [CrossRef]
22. Luchko, Y. General Fractional Integrals and Derivatives of Arbitrary Order. Symmetry 2021, 13, 755 [CrossRef]
23. Kochubei, A.N. General fractional calculus, evolution equations, and renewal processes. Integral Equ. Oper. Theory 2011, 71,

583–600. [CrossRef]
24. Kropotov, A.I. Nikolai Yakovlevich Sonine; Nauka: Leningrad, USSR, 1967; 136p. (In Russian)
25. Olver, F.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. (Eds.) NIST Handbook of Mathematical Functions; National Institute of Standards

and Technology: Gaithersburg, MD, USA; Cambridge University Press: New York, NY, USA, 2010; 951 + xv pages and a CD.
26. Sonine, N.Y. Recherches sur les fonctions celindriques et le développment des fonctions continues en series. Math. Ann. 1880, 16,

1–80. [CrossRef]
27. Grandits, P. Some notes on Sonine-Gegenbauer integrals. Int. Transf. Spec. Funct. 2019, 30, 128–137. [CrossRef]
28. Rösler, M.; Voit, M. Sonine Formulas and Intertwining Operators in Dunkl Theory. Int. Math. Res. Not. 2020. [CrossRef]
29. Barndorff-Nielsen, O.E.; Mikosch, T.; Resnick, S.I. (Eds.) Levy Processes. Theory and Applications; Birkhäuser: Boston, MA, USA,

2001; 418p.
30. Rösler, M.; Voit, M. Beta distributions and Sonine integrals for Bessel functions on symmetric cones. Stud. Appl. Math. 2018, 141,

474–500. [CrossRef]
31. Sonine, N.Y. Note sur une formule de Gauss. Bull. Soc. Math. Fr. 1881, 9, 162–166. (In French) [CrossRef]
32. Sonine, N.Y. Research on Cylindric Functions and Orthogonal Polynomials; Akhieser, N.I., Ed.; GITTL: Moscow, Russia, 1954; 244p.

(In Russian)
33. Nekrasov, P.A. Application of the general differentiation to the integration of the equation of the type ∑(as + bsx)xsDsy = 0. Mat.

Sb. 1889, 14, 344–393. (In Russian)

352



mathematics

Article

Special Functions of Fractional Calculus in the Form of
Convolution Series and Their Applications

Yuri Luchko

Citation: Luchko, Y. Special

Functions of Fractional Calculus in

the Form of Convolution Series and

Their Applications. Mathematics 2021,

9, 2132. https://doi.org/10.3390/

math9172132

Academic Editor: Manuel Manas

Received: 2 August 2021

Accepted: 30 August 2021

Published: 2 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Mathematics, Physics, and Chemistry, Beuth Technical University of Applied Sciences Berlin,
Luxemburger Str. 10, 13353 Berlin, Germany; luchko@beuth-hochschule.de

Abstract: In this paper, we first discuss the convolution series that are generated by Sonine kernels
from a class of functions continuous on a real positive semi-axis that have an integrable singularity
of power function type at point zero. These convolution series are closely related to the general
fractional integrals and derivatives with Sonine kernels and represent a new class of special functions
of fractional calculus. The Mittag-Leffler functions as solutions to the fractional differential equations
with the fractional derivatives of both Riemann-Liouville and Caputo types are particular cases of
the convolution series generated by the Sonine kernel κ(t) = tα−1/Γ(α), 0 < α < 1. The main result
of the paper is the derivation of analytic solutions to the single- and multi-term fractional differential
equations with the general fractional derivatives of the Riemann-Liouville type that have not yet
been studied in the fractional calculus literature.

Keywords: Sonine kernel; Sonine condition; general fractional derivative; general fractional integral;
convolution series; fundamental theorems of fractional calculus; fractional differential equations

MSC: 26A33; 26B30; 44A10; 45E10

1. Introduction

Special functions of mathematical physics are usually defined in the form of a power
series, or as solutions to some differential equations, or via integral representations. Of
course, for a given function, these three (and possibly other) forms coincide for all ar-
guments and parameter values for which they exist. However, the validity domains of
different representations can be unequal. Very often, the series representations of the
special functions hold valid only on some restricted domains. To define the corresponding
functions for other values of their arguments and parameters, analytical continuation of
the series in the form of integral representations is usually employed.

For special functions of fractional calculus (FC), the situation is very similar to the
one described above. For instance, one of the most important FC special functions – the
two-parameter Mittag-Leffler function – is usually defined in the form of a power series:

Eα,β(z) =
+∞

∑
k=0

zk

Γ(α k + β)
, α > 0, β, z ∈ C. (1)

Because the series is convergent for all z ∈ C, this definition can be used for all
z ∈ C without any analytical continuation. Still, the integral representations of the Mittag-
Leffler function are very important, say, for derivation of its asymptotic behavior [1] and
for its numerical calculation [2]. For 0 < α < 2 and �(β) > 0, the following integral
representations of the Mittag-Leffler function in terms of the integrals over the Hankel-type
contours were presented in [1]:

Eα,β(z) =
1

2παi

∫
γ(ε;δ)

eζ1/α
ζ(1−β)/α

ζ − z
dζ, z ∈ G(−)(ε; δ),
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Eα,β(z) =
1
α

z(1−β)/αez1/α
+

1
2παi

∫
γ(ε;δ)

eζ1/α
ζ(1−β)/α

ζ − z
dζ, z ∈ G(+)(ε; δ),

where the integration contour γ(ε; δ) (ε > 0, 0 < δ ≤ π) with non-decreasing arg ζ
consists of the following parts:

(1) the ray arg ζ = −δ, |ζ| ≥ ε;
(2) the arc −δ ≤ arg ζ ≤ δ of the circumference |ζ| = ε;
(3) the ray arg ζ = δ, |ζ| ≥ ε.

For 0 < δ < π, the domain G(−)(ε; δ) is to the left of the contour γ(ε; δ) and the
domain G(+)(ε; δ) is to the right of this contour. If δ = π, the contour γ(ε; δ) consists of the
circumference |ζ| = ε and of the cut −∞ < ζ ≤ −ε. In this case, the domain G(−)(ε; δ) is
the circle |ζ| < ε and G(+)(ε; α) = {ζ : | arg ζ| < π, |ζ| > ε}.

For some parameter values, the Mittag-Leffler function can be also introduced in terms
of solutions to the fractional differential equations with the Riemann-Liouville or Caputo
fractional derivatives. For instance, for 0 < α ≤ 1, the equation

(Dα
0+y)(t) = λ y(t) (2)

has the general solution [3]

y(t) = C tα−1Eα,α(λ tα), C ∈ R. (3)

In Equation (2), the Riemann-Liouville fractional derivative Dα
0+ is defined by

(Dα
0+ f )(t) =

d
dt
(I1−α

0+ f )(t), t > 0, (4)

where Iα
0+ is the Riemann-Liouville fractional integral of order α (α > 0):

(
Iα
0+ f
)
(t) =

1
Γ(α)

t∫
0

(t− τ)α−1 f (τ) dτ, t > 0. (5)

The general solution to the equation

( ∗Dα
0+y)(t) = λ y(t) (6)

with the Caputo fractional derivative

( ∗Dα
0+ f )(t) = (Dα

0+ f )(t)− f (0)
t−α

Γ(1− α)
, t > 0 (7)

has the form [4]
y(t) = C Eα,1(λ tα), C ∈ R. (8)

As we can see, the solutions to the fractional differential Equations (2) and (6) are
expressed in terms of the Mittag-Leffler functions. However, the arguments of these
functions are λ tα and not just λ t. Thus, these solutions are represented in the form of
power series with the fractional and not integer exponents. For more advanced properties
and applications of the Mittag-Leffler type functions, see [1] and the recent book [5].

In [6], the single- and multi-term fractional differential equations with the general
fractional derivatives of the Caputo type have been studied. By definition, their solutions
belong to the class of the FC special functions (as the ones represented in form of solutions
to the fractional differential equations). Moreover, in [6], another representation of these
new FC special functions was derived, namely in terms of the convolution series generated
by the Sonine kernels.
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The convolution series are a far-reaching generalization of the conventional power
series and the power series with the fractional exponents including the Mittag-Leffler
Functions (3) and (8). They represent a new class of the FC special functions worth for
investigation. In [7], the convolution series were employed for derivation of two different
forms of the generalized convolution Taylor formula for representation of a function as a
convolution polynomial with a remainder in the form of a composition of the n-fold general
fractional integral and the n-fold general sequential fractional derivative of the Riemann-
Liouville and the Caputo types, respectively. In [7], the generalized Taylor series in form of
convolution series were also discussed. In this paper, we employ the convolution series
for derivation of analytical solutions to the single- and multi-terms fractional differential
equations with the general fractional derivatives in the Riemann-Liouville sense. This type
of the fractional differential equations has not yet been studied in the FC literature.

One of the main reasons for this situation is that until recently, it was not clear at all
what type of initial conditions is required while dealing with fractional differential equa-
tions with general fractional derivatives of the Riemann-Liouville type. A solution to this
problem was provided in a very recent publication [7], where an explicit form of the projec-
tor operator of the n-fold sequential general fractional derivative in the Riemann-Liouville
sense has been derived for the first time. Another challenge for treatment of fractional
differential equations with general fractional derivatives in the Riemann-Liouville sense is
an absence of methods for derivation of their analytical solutions. In [6], fractional differen-
tial equations with general fractional derivatives of the Caputo type have been studied by
means of an operational calculus developed for these derivatives. An operational calculus
for general fractional derivatives of the Riemann-Liouville has not yet been constructed.
Thus, in this paper, we employ another method for analytical treatment of fractional differ-
ential equations with general fractional derivatives of the Riemann-Liouville type, namely
the method of convolution series. This method is introduced and applied to fractional
differential equations for the first time in the FC literature.

The rest of this paper is organized as follows. In the next section, we introduce general
fractional derivatives of the Riemann-Liouville and Caputo types with Sonine kernels
from a special class of functions and discuss some of their properties needed for further
discussion. In the third section, we first provide some results regarding the convolution
series generated by Sonine kernels. Then, convolution series are applied for derivation of
analytical solutions to single- and multi-term fractional differential equations with general
fractional derivatives in the Riemann-Liouville sense. For a treatment of single- and multi-
term fractional differential equations with general fractional derivatives in the Caputo
sense, we refer interested readers to [6].

2. General Fractional Integrals and Derivatives

General fractional derivatives (GFDs) with kernel k in the Riemann-Liouville and in
the Caputo sense, respectively, are defined as follows [8–13]:

(D(k) f )(t) =
d
dt
(k ∗ f )(t) =

d
dt

∫ t

0
k(t− τ) f (τ) dτ, (9)

(∗D(k) f )(t) = (D(k) f )(t)− f (0)k(t), (10)

where by ∗ the Laplace convolution is denoted:

( f ∗ g)(t) =
∫ t

0
f (t− τ)g(τ) dτ. (11)

The Riemann-Liouville and the Caputo fractional derivatives of order α, 0 < α < 1,
defined by (4) and (7), respectively, are particular cases of the GFDs (9) and (10) with
the kernel

k(t) = h1−α(t), 0 < α < 1, hβ(t) :=
tβ−1

Γ(β)
, β > 0. (12)
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The multi-term fractional derivatives and fractional derivatives of distributed order
are also particular cases of the GFDs (9) and (10) with the kernels

k(t) =
n

∑
k=1

ak h1−αk (t), 0 < α1 < · · · < αn < 1, ak ∈ R, k = 1, . . . , n, (13)

k(t) =
∫ 1

0
h1−α(t) dρ(α), (14)

respectively, where ρ is a Borel measure defined on the interval [0, 1].
Several useful properties of the Riemann-Liouville fractional integral and the Riemann-

Liouville and Caputo fractional derivatives are based on the formula

(hα ∗ hβ)(t) = hα+β(t), α, β > 0, t > 0 (15)

that immediately follows from the well-known representation of the Euler Beta-function in
terms of the Gamma-function:

B(α, β) :=
∫ 1

0
(1− τ)α−1 τβ−1 dτ =

Γ(α)Γ(β)

Γ(α + β)
, α, β > 0.

In Formula (15) and in what follows, the power function hα is defined as in (12).
In our discussions, we employ the integer order convolution powers that for a function

f = f (t), t > 0 are defined by the expression

f<n>(t) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, n = 0,
f (t), n = 1,
( f ∗ . . . ∗ f︸ ︷︷ ︸

n times

)(t), n = 2, 3, . . . .
(16)

For the kernel κ(t) = hα(t) of the Riemann-Liouville fractional integral, we apply
Formula (15) and arrive at the important representation

h<n>
α (t) = hnα(t), n ∈ N. (17)

A well-known particular case of (17) is the formula

{1}n(t) = hn
1 (t) = hn(t) =

tn−1

Γ(n)
=

tn−1

(n− 1)!
, n ∈ N, (18)

where by {1} we denoted the function that is identically equal to 1 for t > 0.
Now let us write down Formula (15) for β = 1− α, 0 < α < 1:

(hα ∗ h1−α)(t) = h1(t) = {1}, 0 < α < 1, t > 0. (19)

In [14,15], Abel employed the relation (19) to derive an inversion formula for the
operator that is presently referred to as the Caputo fractional derivative and obtained it
in form of the Riemann-Liouville fractional integral (solution to the Abel model for the
tautochrone problem).

By an attempt to extend the Abel solution method to more general integral equations
of convolution type, Sonine introduced in [16] the relation

(κ ∗ k)(t) = {1}, t > 0 (20)

that is presently referred to as the Sonine condition. The functions that satisfy the Sonine
condition are called Sonine kernels. For a Sonine kernel κ, the kernel k that satisfies the
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Sonine condition (20) is called an associated kernel to κ. Of course, κ is then an associated
kernel to k. In what follows, we denote the set of the Sonine kernels by S .

In [16], Sonine introduced a class of Sonine kernels in the form

κ(t) = hα(t) · κ1(t), κ1(t) =
+∞

∑
k=0

aktk, a0 �= 0, 0 < α < 1, (21)

k(t) = h1−α(t) · k1(t), k1(t) =
+∞

∑
k=0

bktk, (22)

where κ1 = κ1(t) and k1 = k1(t) are analytical functions and the coefficients ak, bk, k ∈ N0
satisfy the following triangular system of linear equations:

a0b0 = 1,
n

∑
k=0

Γ(k + 1− α)Γ(α + n− k)an−kbk = 0, n ≥ 1. (23)

An important example of the kernels from S in the form (21), (22) was derived in [16]
in terms of the Bessel function Jν and the modified Bessel function Iν:

κ(t) = (
√

t)α−1 Jα−1(2
√

t), k(t) = (
√

t)−α I−α(2
√

t), 0 < α < 1, (24)

where

Jν(t) =
+∞

∑
k=0

(−1)k(t/2)2k+ν

k!Γ(k + ν + 1)
, Iν(t) =

+∞

∑
k=0

(t/2)2k+ν

k!Γ(k + ν + 1)
.

For other examples of Sonine kernels we refer readers to [8,12,13,17].
In this paper, we deal with general fractional integrals (GFIs) with kernels κ ∈ S

defined by the formula

(I(κ) f )(t) := (κ ∗ f )(t) =
∫ t

0
κ(t− τ) f (τ) dτ, t > 0 (25)

and with GFDs with associated Sonine kernels k in the Riemann-Liouville and Caputo
senses defined by (9) and (10), respectively.

In our discussions, we restrict ourselves to a class of the Sonine kernels from space
C−1,0(0,+∞) that is an important particular case of the following two-parameter family of
spaces [6,12,13]:

Cα,β(0,+∞) = { f : f (t) = tp f1(t), t > 0, α < p < β, f1 ∈ C[0,+∞)}. (26)

By C−1(0,+∞) we mean the space C−1,+∞(0,+∞).
The set of such Sonine kernels will be denoted by L1 [13]:

(κ, k ∈ L1) ⇔ (κ, k ∈ C−1,0(0,+∞)) ∧ ((κ ∗ k)(t) = {1}). (27)

In the rest of this section, we present some important results for GFIs and GFDs with
Sonine kernels from L1 on space C−1(0,+∞) and its sub-spaces.

The basic properties of the GFI (25) on space C−1(0,+∞) easily follow from the known
properties of the Laplace convolution:

I(κ) : C−1(0,+∞) → C−1(0,+∞), (28)

I(κ1)
I(κ2)

= I(κ2)
I(κ1)

, κ1, κ2 ∈ L1, (29)

I(κ1)
I(κ2)

= I(κ1∗κ2)
, κ1, κ2 ∈ L1. (30)
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For functions f ∈ C1
−1(0,+∞) := { f : f ′ ∈ C−1(0,+∞)}, GFDs of the Riemann-

Liouville type can be represented as follows [12]:

(D(k) f )(t) = (k ∗ f ′)(t) + f (0)k(t), t > 0. (31)

Thus, for f ∈ C1
−1(0,+∞), GFD (10) of the Caputo type takes the form

(∗D(k) f )(t) = (k ∗ f ′)(t), t > 0. (32)

It is worth mentioning that in FC publications, the Caputo fractional derivative (7) is
often defined as in Formula (32):

( ∗Dα
0+ f )(t) = (h1−α ∗ f ′)(t) = (I1−α

0+ f ′)(t), t > 0. (33)

Now, following [7,12], we define the n-fold GFI and the n-fold sequential GFDs in the
Riemann-Liouville and Caputo senses.

Definition 1 ([12]). Let κ ∈ L1. The n-fold GFI (n ∈ N) is a composition of n GFIs with the
kernel κ:

(I<n>
(κ) f )(t) := (I(κ) . . . I(κ)︸ ︷︷ ︸

n times

f )(t), t > 0. (34)

It is worth mentioning that the index law (30) leads to a representation of the n-fold
GFI (34) in the form of GFI with kernel κ<n>:

(I<n>
(κ) f )(t) = (κ<n> ∗ f )(t) = (I(κ)<n> f )(t), t > 0. (35)

Kernel κ<n>, n ∈ N belongs to space C−1(0,+∞), but it is not always a Sonine kernel.

Definition 2 ([7]). Let κ ∈ L1 and k be its associated Sonine kernel. The n-fold sequential GFDs
in the Riemann-Liouville and in the Caputo sense, respectively, are defined as follows:

(D<n>
(k) f )(t) := (D(k) . . .D(k)︸ ︷︷ ︸

n times

f )(t), t > 0, (36)

( ∗D<n>
(k) f )(t) := ( ∗D(k) . . . ∗D(k)︸ ︷︷ ︸

n times

f )(t), t > 0. (37)

It is worth mentioning that in [6,12], the n-fold GFDs (n ∈ N) were defined in a
different form:

(Dn
(k) f )(t) :=

dn

dtn (k
<n> ∗ f )(t), t > 0, (38)

( ∗Dn
(k) f )(t) := (k<n> ∗ f (n))(t), t > 0. (39)

The n-fold sequential GFDs (36) and (37) are a far-reaching generalization of the
Riemann-Liouville and the Caputo sequential fractional derivatives to the case of Sonine
kernels from L1.

Some important connections between n-fold GFI (34) and n-fold sequential GFDs (36)
and (37) in the Riemann-Liouville and Caputo senses are provided in the so-called first and
second fundamental theorems of FC ([18]) formulated below.

Theorem 1 ([7]). Let κ ∈ L1 and k be its associated Sonine kernel.
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Then, the n-fold sequential GFD (36) in the Riemann-Liouville sense is a left inverse operator
to the n-fold GFI (34) on the space C−1(0,+∞):

(D<n>
(k) I<n>

(κ) f )(t) = f (t), f ∈ C−1(0,+∞), t > 0, (40)

and the n-fold sequential GFD (37) in the Caputo sense is a left inverse operator to the n-fold
GFI (34) on the space Cn

−1,(k)(0,+∞):

( ∗D<n>
(k) I<n>

(κ) f )(t) = f (t), f ∈ Cn
−1,(k)(0,+∞), t > 0, (41)

where Cn
−1,(k)(0,+∞) := { f : f (t) = (I<n>

(k) φ)(t), φ ∈ C−1(0,+∞)}.

Theorem 2 ([7]). Let κ ∈ L1 and k be its associated Sonine kernel.
For a function f ∈ C(n)

−1,(k)(0,+∞) = { f ∈ C−1(0,+∞) : (D
<j>
(k) f ) ∈ C−1(0,+∞), j =

1, . . . , n}, the formula

(I<n>
(κ) D<n>

(k) f )(t) = f (t)−
n−1

∑
j=0

(
k ∗ D

<j>
(k) f

)
(0)κ<j+1>(t) = (42)

f (t)−
n−1

∑
j=0

(
I(k) D

<j>
(k) f

)
(0)κ<j+1>(t), t > 0

holds valid, where I<n>
(κ)

is the n-fold GFI (34) and D<n>
(k) is the n-fold sequential GFD (36) in the

Riemann-Liouville sense.
For a function f ∈ Cn

−1(0,+∞) := { f : f (n) ∈ C−1(0,+∞)}, the formula

(I<n>
(κ) ∗D<n>

(k) f )(t) = f (t)− f (0)−
n−1

∑
j=1

(
∗D

<j>
(k) f

)
(0)
(
{1} ∗ κ<j>

)
(t) (43)

holds valid, where I<n>
(κ)

is the n-fold GFI (34) and ∗D<n>
(k) is the n-fold sequential GFD (37).

For proofs of Theorems 1 and 2 and their particular cases we refer interested readers
to [7].

3. Solutions to Fractional Differential Equations with GFDs in the Riemann-Liouville
Sense in Terms of the Convolution Series

First, we introduce the convolution series and treat some of their properties needed
for the further discussions.

Definition 3. For a function κ ∈ C−1(0,+∞), the series in form

Σκ(t) =
+∞

∑
j=0

aj κ<j+1>(t), aj ∈ R (aj ∈ C) (44)

is called convolution series generated by κ.

Convolution series generated by Sonine kernels κ ∈ L1 were introduced in [13] for
analytical treatment of fractional differential equations with n-fold GFDs of the Caputo
type by means of an operational calculus developed for these GFDs. In [7], some of the
results presented in [13] were extended to convolution series in the form (44) generated by
any function κ ∈ C−1(0,+∞) (i.e., not necessarily a Sonine kernel).

A very important question regarding convergence of the convolution series (44) was
answered in [6,7].
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Theorem 3 ([7]). Let a function κ ∈ C−1(0,+∞) be represented in the form

κ(t) = hp(t)κ1(t), t > 0, p > 0, κ1 ∈ C[0,+∞) (45)

and the convergence radius of the power series

Σ(z) =
+∞

∑
j=0

aj zj, aj ∈ C, z ∈ C (46)

be non-zero. Then the convolution series (44) is convergent for all t > 0 and defines a function from
the space C−1(0,+∞). Moreover, the series

t1−α Σκ(t) =
+∞

∑
j=0

aj t1−α κ<j+1>(t), α = min{p, 1} (47)

is uniformly convergent for t ∈ [0, T] for any T > 0.

In what follows, we always assume that the coefficients of the convolution series
satisfy the condition that the convergence radius of the corresponding power series is
non-zero and thus Theorem 3 is applicable for these convolution series.

As an example, let us consider the geometric series

Σ(z) =
+∞

∑
j=0

λjzj, λ ∈ C, z ∈ C. (48)

For λ �= 0, the convergence radius r of this series is equal to 1/|λ| and thus we
can apply Theorem 3 that says that the convolution series generated by a function κ ∈
C−1(0,+∞) in form

lκ,λ(t) =
+∞

∑
j=0

λjκ<j+1>(t), λ ∈ C (49)

is convergent for all t > 0 and defines a function from the space C−1(0,+∞).
The convolution series lκ,λ defined by (49) plays a very important role in the op-

erational calculus for GFD of Caputo type developed in [6]. It provides a far-reaching
generalization of both the exponential function and the two-parameter Mittag-Leffler
function in form (3).

Indeed, let us consider the convolution series (49) in the case of the kernel function
κ = {1}. Due to the formula κ<j+1>(t) = {1}<j+1>(t) = hj+1(t) (see (17)), the convolution
series (49) is reduced to the power series for the exponential function:

lκ,λ(t) =
+∞

∑
j=0

λjhj+1(t) =
+∞

∑
j=0

(λ t)j

j!
= eλ t. (50)

For the kernel κ(t) = hα(t) of the Riemann-Liouville fractional integral, the formula
κ<j+1>(t) = h<j+1>

α (t) = h(j+1)α(t) (see (17)) holds valid. Thus, the convolution series (49)
takes the form

lκ,λ(t) =
+∞

∑
j=0

λjh(j+1)α(t) = tα−1
+∞

∑
j=0

λj tjα

Γ(jα + α)
= tα−1Eα,α(λ tα) (51)

that is the same as the two-parameter Mittag-Leffler Function (3).
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For κ ∈ L1, another important convolution series was introduced in [6] as follows:

Lκ,λ(t) = (k ∗ lκ,λ)(t) = 1 +

(
{1} ∗

+∞

∑
j=1

λjκ<j>(·)
)
(t), λ ∈ C, (52)

where k is Sonine kernel associated with the kernel κ. It is easy to see that in the case
κ = {1}, the convolution series (52) coincides with the exponential function:

Lκ,λ(t) = 1 +

(
{1} ∗

+∞

∑
j=1

λjhj(·)
)
(t) = 1 +

+∞

∑
j=1

λjhj+1(t) = eλ t. (53)

In the case of the kernel κ(t) = hα(t), t > 0, 0 < α < 1, the convolution series Lκ,λ is
reduced to the two-parameter Mittag-Leffler Function (8):

Lκ,λ(t) = 1 +

(
{1} ∗

+∞

∑
j=1

λjhjα(·)
)
(t) = 1 +

+∞

∑
j=1

λjhjα+1(t) = Eα,1(λ tα). (54)

Analytical solutions to single- and multi-term fractional differential equations with
n-fold GFDs of the Caputo type were presented in [6] in terms of the convolution series
lκ,λ and Lκ,λ. In the rest of this section, we treat linear single- and multi-term fractional
differential equations with n-fold GFDs in the Riemann-Liouville sense.

We start with the following auxiliary result:

Theorem 4. Two convolution series generated by the same Sonine kernel κ ∈ L1 coincide for all
t > 0, i.e.,

+∞

∑
j=0

bj κ<j+1>(t) ≡
+∞

∑
j=0

cj κ<j+1>(t), t > 0 (55)

if and only if the corresponding coefficients of these series are equal:

aj = bj, j = 0, 1, 2, . . . . (56)

Proof. If the corresponding coefficients of two convolution series generated by the same
Sonine kernel κ ∈ L1 are equal, then we have just one series and evidently the identity (55)
holds valid.

The idea of the proof of the second part of this theorem is the same as the one for the
proof of the analogous calculus result for the power series, i.e., under the condition that the
identity (55) holds valid we first show that b0 = c0 and then apply the same arguments to
prove that b1 = c1, b2 = c2, etc.

According to Theorem 3, the convolution series in the form (44) is uniformly con-
vergent on any interval [ε, T], and thus we can apply the GFI I(k) to this series term by
term:(

I(k)

+∞

∑
j=0

aj κ<j+1>(·)
)
(t) =

+∞

∑
j=0

(
I(k) aj κ<j+1>(·)

)
(t) =

+∞

∑
j=0

(
aj (k(·) ∗ κ<j+1>(·)

)
(t) =

a0 +
+∞

∑
j=1

aj

(
{1} ∗ κ<j>(·)

)
(t) = a0 +

(
{1} ∗

+∞

∑
j=1

aj κ<j>(·)
)
(t) = a0 + ({1} ∗ f1)(t),

where f1 is the following convolution series:

f1(t) =
+∞

∑
j=1

aj κ<j>(t) =
+∞

∑
j=0

aj+1 κ<j+1>(t). (57)
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Summarizing the calculations from above, for the convolution series in form (44),
the formula (

I(k)

+∞

∑
j=0

aj κ<j+1>(·)
)
(t) = a0 +

(
{1} ∗

+∞

∑
j=0

aj+1 κ<j+1>(·)
)
(t) (58)

holds valid.
Because the convergence radius of the power series Σ1(t) = ∑+∞

j=0 aj+1 zj is the same

as the convergence radius of the power series Σ(t) = ∑+∞
j=0 aj zj, Theorem 3 ensures the

inclusion f1 ∈ C−1(0,+∞), where f1 is defined by Formula (57). As has been shown in [4],
the definite integral of a function from C−1(0,+∞) is a continuous function on the whole
interval [0, +∞) that takes the value zero at the point zero:

({1} ∗ f1)(t) = (I1
0+ f1)(t) ∈ C[0, +∞), (I1

0+ f1)(0) = 0. (59)

Now we act with the GFI I(k) on the equality (55) and apply Formula (58) to obtain
the relationship

b0 +

(
{1} ∗

+∞

∑
j=0

bj+1 κ<j+1>(·)
)
(t) ≡ c0 +

(
{1} ∗

+∞

∑
j=0

cj+1 κ<j+1>(·)
)
(t), t > 0. (60)

Substituting point t = 0 into equality (60) and using Formula (59), we deduce that
b0 = c0. Now we differentiate equality (60) and obtain the following identity:

+∞

∑
j=0

bj+1 κ<j+1>(t) ≡
+∞

∑
j=0

cj+1 κ<j+1>(t), t > 0. (61)

This identity has exactly same structure as identity (55) from Theorem 4. Thus, we
can apply the same arguments as above and derive the relationhship b1 = c1. By repeating
the same reasoning repeatedly, we arrive at Formula (56) that we wanted to prove.

Now we are ready to apply the method of convolution series for derivation of solutions
to the fractional differential equations with GFDs, and start with the fractional relaxation
equation with the GFD of the Riemann-Liouville type:

(D(k) y)(t) = λy(t), λ ∈ R, t > 0. (62)

As in the case of the power series, we look for a general solution to this equation in the
form of a convolution series generated by the Sonine kernel κ that is an associated kernel
to the kernel k of the GFD from Equation (62):

y(t) =
+∞

∑
j=0

bj κ<j+1>(t), bj ∈ R. (63)

To proceed, let us first calculate the image of the convolution series (63) by action of
the GFD D(k):

(D(k) y)(t) =

(
D(k)

+∞

∑
j=0

bj κ<j+1>(·)
)
(t) =

d
dt

(
I(k)

+∞

∑
j=0

bj κ<j+1>(·)
)
(t).
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In the proof of Theorem 4 we already calculated the image of the convolution se-
ries (63) by action of the GFI I(k) (Formula (58)). Applying this formula, we arrive at the
representation

(D(k) y)(t) =
d
dt

(
b0 +

(
{1} ∗

+∞

∑
j=0

bj+1 κ<j+1>(·)
)
(t)

)
=

+∞

∑
j=0

bj+1 κ<j+1>(t). (64)

In the next step, we substitute the right-hand side of (64) into Equation (62) and obtain
an equality of two convolution series generated by the same kernel κ:

+∞

∑
j=0

bj+1 κ<j+1>(t) =
+∞

∑
j=0

λ bj κ<j+1>(t), t > 0.

Application of Theorem 4 to the above identity leads to the following relationships for
the coefficients of the convolution series (63):

bj+1 = λ bj, j = 0, 1, 2, . . . . (65)

The infinite system (65) of linear equations can be easily solved step by step and we
arrive at the explicit solution in form

bj = b0 λj, j = 1, 2, . . . , (66)

where b0 ∈ R is an arbitrary constant. Summarizing the arguments presented above, we
proved the following theorem:

Theorem 5. The general solution to the fractional relaxation Equation (62) with GFD (9) in the
Riemann-Liouville sense can be represented as follows:

y(t) =
+∞

∑
j=0

b0 λj κ<j+1>(t) = b0 lκ,λ(t), b0 ∈ R, (67)

where lκ,λ is the convolution series (49).

Remark 1. The constant b0 in the general solution (67) to Equation (62) can be determined from a
suitably posed initial condition. The form of this initial condition is prescribed by Theorem 2 (see
also Formula (58)). Indeed, setting n = 1 in the relation (42), we obtain the following representation
of the projector operator of the GFD (9) in the Riemann-Liouville sense:

(P f )(t) = f (t)− (I(κ) D(k) f )(t) =
(
I(k) f

)
(0)κ(t), f ∈ C(1)

−1,(k)(0,+∞). (68)

Thus, the initial-value problem{
(D(k) y)(t) = λy(t), λ ∈ R, t > 0,(
I(k) y

)
(0) = b0

(69)

has a unique solution given by Formula (67).

In the case of the Sonine kernel k(t) = h1−α(t), 0 < α < 1, the Equation (62) is
reduced to Equation (2) with the Riemann-Liouville fractional derivative and its solution
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(67) is exactly the solution (3) of Equation (2) in terms of the two-parameter Mittag-Leffler
function (see Formula (51)). The initial-value problem (69) takes the well-known form{

(Dα
0+ y)(t) = λy(t), λ ∈ R, t > 0,(

I1−α
0+ y

)
(0) = b0.

(70)

Its unique solution is given by the formula y(t) = b0 tα−1Eα,α(λ tα).
Now we proceed with the inhomogeneous equation of type (62)

(D(k) y)(t) = λy(t) + f (t), λ ∈ R, t > 0, (71)

where the source function f is represented in form of a convolution series

f (t) =
+∞

∑
j=0

aj κ<j+1>(t), aj ∈ R. (72)

Again, we look for solutions to Equation (71) in the form of the convolution series (63).
Applying exactly the same reasoning as above, we arrive at the following infinite system of
linear equations for the coefficients of the convolution series (63):

bj+1 = λ bj + aj, j = 0, 1, 2, . . . . (73)

The explicit form of solutions to this system of equations is as follows:

bj = b0 λj +
j−1

∑
i=0

ai λj−i−1, j = 1, 2, . . . , (74)

where b0 ∈ R is an arbitrary constant. Then the general solution to Equation (71) can be
written in form of the following convolution series:

y(t) = b0 κ(t) +
+∞

∑
j=1

(
b0 λj +

j−1

∑
i=0

ai λj−i−1

)
κ<j+1>(t) = b0

+∞

∑
j=0

λj κ<j+1>(t) +
+∞

∑
j=1

j−1

∑
i=0

ai λj−i−1 κ<j+1>(t).

By direct calculation, we verify that the second sum in the last formula can be written
in a more compact form:

+∞

∑
j=1

j−1

∑
i=0

ai λj−i−1 κ<j+1>(t) =
+∞

∑
i=0

ai

+∞

∑
j=1

λj−1 κ<j+i+1>(t) = ( f ∗ lκ,λ)(t),

where the convolution series lκ,λ is defined by (49). We thus have proved the following
result:

Theorem 6. The general solution to the inhomogeneous Equation (71) has the form

y(t) = b0 lκ,λ(t) + ( f ∗ lκ,λ)(t), b0 ∈ R, (75)

where the convolution series lκ,λ is defined by (49).
The constant b0 is uniquely determined by the initial condition(

I(k) y
)
(0) = b0. (76)

Applying Theorem 6 to the case of the Riemann-Liouville fractional derivative (kernel
k(t) = h1−α(t), 0 < α < 1), we obtain the well-known result ([3]):
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The unique solution to the initial-value problem{
(Dα

0+ y)(t) = λy(t) + f (t), λ ∈ R, t > 0,(
I1−α
0+ y

)
(0) = b0

is given by the formula

y(t) = b0 tα−1Eα,α(λ tα) +
∫ t

0
τα−1Eα,α(λ τα) f (t− τ) dτ.

Remark 2. In [6], single- and multi-term fractional differential equations with general fractional
derivatives of the Caputo type have been studied. In particular, the unique solution to the initial-
value problem {

(∗D(k) y)(t) = λy(t) + f (t), λ ∈ R, t > 0,
y(0) = b0, b0 ∈ R

(77)

with the GFD of the Caputo type defined by (10) was derived in the form

y(t) = ( f ∗ lκ,λ)(t) + b0 Lκ,λ(t), (78)

where κ ∈ L1 is the Sonine kernel associated with the kernel k and lκ,λ, Lκ,λ are the convolution
series (49) and (52), respectively.

In the case of the homogeneous initial condition (y(0) = b0 = 0), Formula (10) says that GFDs
of the Riemann-Liouville and Caputo types coincide. As we see, the solutions to the initial-value
problems with the homogeneous initial conditions for Equations (71) and (77) are also identical.

Let us now consider a linear inhomogeneous multi-term fractional differential equa-
tion with the sequential GFDs (36) of the Riemann-Liouville type and with the constant co-
efficients:

n

∑
i=0

λi(D
<i>
(k) y)(t) = f (t), λi ∈ R, i = 0, 1, . . . , n, λn �= 0, t > 0, (79)

where the source function f is represented in form of the convolution series (72).
As in the case of the single-term Equation (71), we look for solutions to the multi-term

Equation (79) in the form of the convolution series (63). First, we determine the images of
the convolution series (63) by action of the sequential GFDs D<i>

(k) , i = 1, 2, . . . , n. For i = 1,
the image is provided by Formula (64). For i = 2, . . . , n, Formula (64) is applied iteratively
and we arrive at the following result:

(D<i>
(k) y)(t) =

+∞

∑
j=0

bj+i κ<j+1>(t), i = 1, 2, . . . , n. (80)

Now we substitute the convolution series (63), its images by action of the sequential
GFDs D<i>

(k) , i = 1, 2, . . . , n provided by Formula (80), and the convolution series (72) for
the source function into Equation (79) and arrive at the following identity:

n

∑
i=0

λi

(
+∞

∑
j=0

bj+i κ<j+1>(t)

)
=

+∞

∑
j=0

aj κ<j+1>(t), t > 0.
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Application of Theorem 4 to the above identity leads to the following infinite triangular
system of linear equations for the coefficients of the convolution series (63):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ0 b0 + λ1 b1 + · · ·+ λn bn = a0,
λ0 b1 + λ1 b2 + · · ·+ λn bn+1 = a1,
. . .
λ0 bn + λ1 bn+1 + · · ·+ λn b2n = an,
λ0 bn+1 + λ1 bn+2 + · · ·+ λn b2n+1 = an+1

. . .

(81)

In this system, the first n coefficients (b0, b1, . . . , bn−1) can be chosen arbitrarily and all
other coefficients are determined step by step as solutions to the infinite triangular system (81)
of linear equations:

bn+l = (al − λ0 bl − · · · − λn−1bn+l−1)/λn, l = 0, 1, 2, . . . (82)

We thus proved the following theorem:

Theorem 7. The general solution to the inhomogeneous multi-term fractional differential Equation
(79) can be represented as the convolution series (63), where the first n coefficients (b0, b1, . . . , bn−1)
are arbitrary real constants and other coefficients are calculated according to Formula (82).

The constants b0, b1, . . . , bn−1 in the general solution to Equation (79) presented in
Theorem (7) can be determined based on the suitably posed initial conditions. The form of
these initial conditions is prescribed by Theorem 2. Indeed, Formula (42) can be rewritten
as follows:

(P f )(t) = f (t)− (I<n>
(κ) D<n>

(k) f )(t) =
n−1

∑
j=0

(
I(k) D

<j>
(k) f

)
(0)κ<j+1>(t), t > 0, f ∈ C(n)

−1,(k)(0,+∞), (83)

where P is the projector operator of the n-fold sequential GFD of the Riemann-Liouville
type. Thus, to uniquely determine the constants b0, b1, . . . , bn−1 in the general solution,
Equation (79) has to be equipped with the initial conditions in the form(

I(k) D
<j>
(k) y

)
(0) = bj, j = 0, 1, . . . , n− 1. (84)

Finally, we mention that the inhomogeneous multi-term fractional differential equation
of type (79) with sequential Riemann-Liouville fractional derivatives (the case of the kernel
k(t) = h1−α(t) in Equation (79)) was treated in [3,19] using operational calculus of the
Mikusiński type for the Riemann-Liouville fractional derivative.
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1. Introduction

Let X be a normed space and let T be a operator on X. In functional analysis theory
and algebraic structures, the homomorphism properties

T( f ∗ g) = T( f )T(g) (1)

and
(T( f ) ∗ T(g)) = T( f g) (2)

are very important subjects to various fields of mathematics for f , g ∈ X, where ∗ denotes
a corresponding convolution product of T.

In [1–3], Segal introduce the Fourier–Wiener transform for the class of polynomial
cylinder functions on Hilbert space. Hida then develop this concept via the Fourier analysis
on the dual space of nuclear spaces [4,5]. In addition, Negrin obtain an explicit integral
representation of the second quantization by use of an integral operator and hence the
Wiener transform [6] is extended. Later, Hayker et al. analyze and study some results and
formulas of them via the matrix expressions [7].

In [8,9], the authors establish the existence, the composition formula, the inversion
formula and the parseval relationship for the Wiener transform. But, they do not establish
homomorphism properties (1) and (2) for the Wiener transform.

In this paper, we shall establish homomorphism properties for the Wiener transform.
In addition, we obtain an integration by parts formula, and give some applications of it
with respect to the Wiener transform. Our integration by parts formula takes a different
form than in the Euclidean space. The reason is that the measure used in this paper is a
probability measure, unlike the Lebesgue measure.

2. Definitions and Preliminaries

In this section, we first state some definitions and notations to understand the paper.
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Let H′ be a real Hilbert space and H be a complexification of H′. The inner product
on H is given by the formula

〈x + iy, x′ + iy′〉H = 〈x, x′〉H′ + 〈y, y′〉H′ + i〈y, x′〉H′ − i〈x, y′〉H′ .

Let A and B be operators defined on H such that there exists an orthonormal basis
B = {eα}α∈A of H (A being some index set) consisting of elements of H with

Aeα = μαeα, Beα = λαeα (3)

for some complex numbers μα and λα. Then we note that for each x ∈ H,

x = ∑
α∈A

〈x, eα〉Heα

and so
Ax = ∑

α∈A
〈x, eα〉Hμαeα

and
Bx = ∑

α∈A
〈x, eα〉Hλαeα.

We now state a class of functions used in this paper.

Definition 1. Let f be a polynomial function on H′ defined by the formula

f (x) = 〈x, eα1〉
n1
H 〈x, eα2〉

n2
H · · · 〈x, eαr 〉nr

H (4)

where n1, · · · , nr ∈ N∪ {0}. Let P be the space of all complex-valued polynomial on H′.

We are ready to state definitions of the Wiener transform, the convolution product
and the first variation for functions in P .

Definition 2. For each pair of operators A and B on H, we define the Wiener transform Fc,A,B( f )
of f by the formula

Fc,A,B( f )(y) =
∫

H′
f (Ax + By)dgc(x) (5)

where f is in P and the integration on H′ is performed with respect to the normalized distribution
gc of the variance parameter c > 0. In addition, we define the convolution product ( f1 ∗ f2)A of f1
and f2 by the formula

( f1 ∗ f2)A(y) =
∫

H′
f1

(
y + Ax√

2

)
f2

(
y− Ax√

2

)
dgc(x) (6)

and the first variation δB f of f is defined by the formula

δB f (x|u) = ∂

∂k
f (x + kBu)

∣∣∣∣
k=0

(7)

where f , f1, f2 ∈ P if they exist.

3. Existence

In this section, we establish the existence of the convolution product and the first vari-
ation for function f of the form (4). Before doing this, we give a theorem for some formulas
with respect to the Wiener transform Fc,A,B which are established by Hayker et al. [9].
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Theorem 1. Let A, B, A′, B′, A′′ and B′′ be operators on H given by

Aeα = μαeα, Beα = λαeα, A′eα = μ′αeα, B′eα = λ′αeα

A′′eα = μ′′α eα, B′′eα = λ′′α eα

where μα, μ′α, μ′′α , λα, λ′α and λ′′α are complex numbers. Then we have the following assertions.

(a) (Existence): for any f ∈ P ,

Fc,A,B( f )(y) =
r

∏
j=1

([nj/2]

∑
p=0

nj Cpμ
2p
αj λ

nj−2p
αj 〈y, eαj〉

nj−2p
H

(2p)!
p!

(
c
2

)p)
(8)

and Fc,A,B( f ) ∈ P .
(b) (Composition formula [9], Theorem 1):

Fc,A′ ,B′(Fc,A,B( f ))(y) = Fc,A′′ ,B′′( f )(y)

if and only if
μ2

α + (μ′αλα)
2 = (μ′′α )

2 and λαλ′α = λ′′α

for α ∈ A.
(c) (Inversion formula [9], Corollary 2):

Fc,A′ ,B′(Fc,A,B( f ))(y) = f (y) (9)

if and only if
μ2

α + (μ′αλα)
2 = 0 and λαλ′α = 1

for α ∈ A.
(d) (Parseval relation [9], Theorem 2):∫

H′
Fc,A,B( f1)(y) f2(y)dgc(y) =

∫
H′
Fc,A,B( f2)(y) f1(y)dgc(y)

if and only if
μ2

α + λ2
α = 1

for α ∈ A. Furthermore, they show that it can be extended to the Unitary extension.

We shall obtain the existence of the convolution product and the first variation. To do
this, we need an observation as below.

Remark 1. For any f1 and f2 in P , we can always express f1 by Equation (4) and f2 by

f2(x) = 〈x, eα1〉
m1
H 〈x, eα2〉

m2
H · · · 〈x, eαr 〉mr

H (10)

using the same nonnegative integer r and αj’s. Because, if f1(x) = 〈x, eα1〉
n1
H 〈x, eα3〉

n3
H and

f2(x) = 〈x, eα1〉
n1
H 〈x, eα2〉

n2
H , then we can set

f1(x) = 〈x, eα1〉
n1
H 〈x, eα2〉0

H〈x, eα3〉
n3
H

and
f2(x) = 〈x, eα1〉

m1
H 〈x, eα2〉

m2
H 〈x, eα3〉0

H.

In addition, if f1(x) = 〈x, eα〉n
H and f2(x) = 〈x, eβ〉m

H for n �= m, then we can set

f1(x) = 〈x, eγ1〉
n1
H 〈x, eγ2〉0

H

371



Mathematics 2021, 9, 2738

and
f2(x) = 〈x, eγ1〉

m1
H 〈x, eγ2〉0

H

where γ1 = α, γ2 = β, n1 = n, n2 = 0, m1 = 0 and m2 = m.

In Theorem 1, we obtain the existence of the convolution product and the first variation
for functions in P .

Theorem 2. Let f1 and f2 be elements of P and A as in Theorem 1. Then the convolution product
( f1 ∗ f2)A of f1 and f2 exists, belongs to P and is given by the formula

( f1 ∗ f2)A(y)

=

(
1

2πc

) r
2 r

∏
j=1

[∫
R

(
1√
2
〈y, eαj〉H +

λαj√
2

uj

)nj

×
(

1√
2
〈y, eαj〉H −

λαj√
2

uj

)mj

exp
{
−

u2
j

2c

}
duj

]
.

(11)

Furthermore, the first variation δA f of f exists, belongs to P and is given by the formula

δA f (x|u) =
r

∑
j=1

njλαj〈u, eαj〉H f j(x) (12)

where
fj(x) = 〈x, eα1〉

n1
H × · · · × 〈x, eαj〉

nj−1
H × · · · × 〈x, eαr 〉nr

H . (13)

Proof. Using Equations (5) and (6), we have

( f1 ∗ f2)A(y)

=
∫

H′

r

∏
j=1

(
1√
2
〈y, eαj〉H +

λαj√
2
〈x, eαj〉H

)nj( 1√
2
〈y, eαj〉H −

λαj√
2
〈x, eαj〉H

)mj

dgc(x)

=

(
1

2πc

) r
2 r

∏
j=1

[∫
R

(
1√
2

vj +
λαj√

2
uj

)nj( 1√
2

vj −
λαj√

2
uj

)mj

exp
{
−

u2
j

2c

}
duj

]

where vj = 〈y, eαj〉H for j = 1, 2, · · · , r. The last integral always exists because

∫
R

p(u) exp
{
−

u2
j

2c

}
du < ∞

for any polynomial function p. In addition, it is a polynomial in the variables

〈y, eα1〉H, · · · , 〈y, eαr 〉H.

We next establish Equation (12). From Equation (7), we have

δA f (x|u) = ∂

∂k

r

∏
j=1

(〈x, eαj〉H + kλαj〈u, eαj〉H)nj

∣∣∣∣
k=0

=
r

∑
j=1

njλαj〈u, eαj〉H f j(x).

Finally, δA f is in P since f j ∈ P for all j = 1, 2 · · · , r.
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4. Homomorphism Properties and Basic Relationships

In this section, we establish some basic relationships among the Wiener transform, the
convolution product and the first variation.

Theorem 3 tells us that the Wiener transform of the convolution product is the product
of their Wiener transforms.

Theorem 3. Let f1, f2, A, B and A′ be as in Theorem 1. Then

Fc,A,B( f1 ∗ f2)A(y) = Fc,A,B( f1)

(
y√
2

)
Fc,A,B( f2)

(
y√
2

)
. (14)

Furthermore, under the hypothesis of Theorem 1, we have

(Fc,A,B( f1) ∗ Fc,A,B( f2))A′(y) = Fc,A,B

(
f1(

·√
2
) f2(

·√
2
)

)
(y). (15)

Proof. Using Equations (2), (6) and (11), we have

Fc,A,B( f1 ∗ f2)A(y)

=
∫

H′

∫
H′

f1

(
Ax + By + Az√

2

)
f2

(
Ax + By− Az√

2

)
dgc(x)dgc(z)

=
∫

H′

∫
H′

r

∏
j=1

(
λαj√

2
〈x, eαj〉H +

μαj√
2
〈y, eαj〉H +

λαj√
2
〈z, eαj〉H

)nj

×
r

∏
j=1

(
λαj√

2
〈x, eαj〉H +

μαj√
2
〈y, eαj〉H −

λαj√
2
〈z, eαj〉H

)mj

dgc(x)dgc(z)

=

(
1

2πc

)r ∫
Rr

∫
Rr

r

∏
j=1

(
λαj√

2
uj +

μαj√
2

vj +
λαj√

2
wj

)nj

×
r

∏
j=1

(
λαj√

2
uj +

μαj√
2

vj −
λαj√

2
wj

)mj

exp
{
−

r

∑
j=1

u2
j + w2

j

2c

}
d�ud�w

where vj = 〈y, eαj〉H for j = 1, 2, · · · , r. Now let u′j =
uj+wj√

2
and w′

j =
uj−wj√

2
for j =

1, 2, · · · , r. Then we have

Fc,A,B( f1 ∗ f2)A(y)

=

(
1

2πc

)r ∫
Rr

∫
Rr

r

∏
j=1

(
λαj u

′
j +

μαj√
2

vj

)nj

×
r

∏
j=1

(
λαj w

′
j +

μαj√
2

vj

)mj

exp
{
−

r

∑
j=1

(u′j)
2 + (w′

j)
2

2c

}
d�u′d�w′

=

(
1

2πc

) r
2 ∫

Rr

r

∏
j=1

(
λαj u

′
j +

μαj√
2

vj

)nj

exp
{
−

r

∑
j=1

(u′j)
2

2c

}
d�u′

×
(

1
2πc

) r
2 ∫

Rr

r

∏
j=1

(
λαj w

′
j +

μαj√
2

vj

)mj

exp
{
−

r

∑
j=1

(w′
j)

2

2c

}
d�w′

where vj = 〈y, eαj〉H for j = 1, 2, · · · , r. Hence, using Equation (8), we can conclude that

Fc,A,B( f1 ∗ f2)A(y) = Fc,A,B( f1)

(
y√
2

)
Fc,A,B( f2)

(
y√
2

)
.
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In addition, using Equation (9), we have

Fc,A′ ,B′(Fc,A,B( f1) ∗ Fc,A,B( f2))A′(y)

= Fc,A′ ,B′(Fc,A,B( f1))

(
y√
2

)
Fc,A′ ,B′(Fc,A,B( f2))

(
y√
2

)
= f1

(
y√
2

)
f2

(
y√
2

)
,

which yields Equation (15) as desired, where Fc,A′ ,B′ is as in Theorem 1.

In our next theorem, we show that the Wiener transform and the first variation
are commutable.

Theorem 4. Let f be as in Theorem 1 and let A and B be as in Theorem 1. Let S be an operator on
H with Seα = γαeα for α ∈ A. Then

δSFc,A,B( f )(y|u) = Fc,A,B(δBS f (·|u))(y). (16)

Proof. Using Equations (5) and (7), we have

δSFc,A,B( f )(y|u)

=
∂

∂k
Fc,A,B( f )(u + kSu)

∣∣∣∣
k=0

=
∂

∂k

∫
H′

f (Ax + By + kBSu)dgc(x)
∣∣∣∣
k=0

=
∂

∂k

∫
H′

r

∏
j=1

(λαj〈x, eαj〉H + μαj〈y, eαj〉H + kμαj γαj〈u, eαj〉H)nj dgc(x)
∣∣∣∣
k=0

=
r

∑
j=1

njμαj γαj〈u, eαj〉HFc,A,B( f j)(y)

where f j is as in Equation (13). We next use Equations (5) and (7) again to get

Fc,A,B(δS f (·|u))(y)

=
∫

H′

∂

∂k
f (Ax + By + kSu)

∣∣∣∣
k=0

dgc(x)

=
∂

∂k

∫
H′

r

∏
j=1

(λαj〈x, eαj〉H + μαj〈y, eαj〉H + kγαj〈u, eαj〉H)nj dgc(x)
∣∣∣∣
k=0

=
r

∑
j=1

njγαj〈u, eαj〉HFc,A,B( f j)(y)

where f j is as in Equation (13). Comparing two expressions, we obtain Equation (16)
as desired.

From Equations (14) and (16) in Theorems 3 and 4, we have the following basic rela-
tionships.

Theorem 5. Let f1 and f2 be as in Theorem 3. Let A and B as in Theorem 1 and let S as in
Theorem 4. Then we have

δ( f1 ∗ f2)S(y|u) = (δ f1(·|u/
√

2) ∗ f2)S(y) + ( f1 ∗ δ f2(·|u/
√

2))S(y), (17)
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Fc,A,B(δBS f1(·|u) ∗ δBS f2(·|u))A(y)

= δSFc,A,B f1(y/
√

2|u)δSFc,A,B f2(y/
√

2|u),
(18)

Fc,A,B(δBS( f1 ∗ f2)A(·|u))(y)
= δS(Fc,A,B f1(·/

√
2)Fc,A,B f2(·/

√
2))(y|u)

= δSFc,A,B( f1 ∗ f2)A(y|u)
(19)

and

(Fc,A,BδBS f1(·|u) ∗ Fc,A,BδBS f2(·|u))A(z) = (δSFc,A,B f1(·|u) ∗ δSFc,A,B f2(·|u))A(y). (20)

Proof. We first note that Equation (17) follows directly from the definition of the first varia-
tion given by (7). Next we note that Equations (18) and (19) follow from Equations (14)–(16).
Finally we note that Equation (20) follows immediately from Equations (14) and (16).

5. Integration by Parts Formula with an Application

In this section, we obtain an integration by part formula, and give an application with
respect to the Wiener transform.

Since the Lebesgue measure mL on Rr is an uniform measure and so we see that∫
Rr

h(�u +�v)dmL(�u) =
∫
Rr

h(�w)dmL(�w)

by substitution for wj = uj + vj for j = 1, 2, · · · , r if the integrals exist. It is called the
translation theorem for the Lebesgue integrals. However, the distribution measure gc used
in this paper is the Gaussian measure and hence, in generally,∫

H′
h(x + y)dgc(x) �=

∫
H′

h(z)dgc(z)

even if the integrals exist, see [10–14]. For this reason, a different form of formula is
obtained in this paper.

Lemma 1. Let s be a non-negative integer and let p be a function on H defined by the formula

p(x) = 〈x, eα〉s
H (21)

for some eα ∈ B. Then for all x0 ∈ H′,∫
H′

p(x + x0)dgc(x)

= exp
{
− 1

2c
〈x0, eα〉2

H

} ∫
H

p(x) exp
{

1
c
〈x, eα〉H〈x0, eα〉H′

}
dgc(x).

(22)
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Proof. We set v = 〈x0, eα〉H. Using Equations (8) and (21), we have∫
H′

p(x + x0)dgc(x)

=

(
1

2πc

) 1
2 ∫

R
(u + v)s exp

{
−u2

2c

}
du

=

(
1

2πc

) 1
2 ∫

R
ws exp

{
− (w− v)2

2c

}
dw

= exp
{
− 1

2c
v2
}(

1
2πc

) 1
2 ∫

R
ws exp

{
−w2

2c
+

1
c

vw
}

dw

= exp
{
− 1

2c
〈x0, eα〉2

H

} ∫
H′

p(x) exp
{

1
c
〈x, eα〉H〈x0, eα〉H

}
dgc(x).

Hence, we have the desired result.

In Theorem 6, we obtain a translation theorem for H-integrals.

Theorem 6 (Translation theorem for H-integrals). Let f be as in Equation (4) and let x0 ∈ H′.
Then ∫

H′
f (x + x0)dgc(x)

= exp
{
− 1

2c

r

∑
j=1
〈x0, eα〉2

H

} ∫
H′

f (x) exp
{

1
c

r

∑
j=1
〈x, eαj〉H〈x0, eαj〉H

}
dgc(x).

(23)

Proof. First, by using fact that∫
H′

f (x)dgc(x) =
∫

H′
〈x, eα1〉

n1
H dgc(x) · · ·

∫
H′
〈x, eαr 〉nr

H dgc(x),

and Equation (22) in Lemma 1 we can establish Equation (23) as desired.

The following theorem is one of main results in this paper.

Theorem 7 (Integration by parts formula). Let f be as in Theorem 6 and let S be as in Theorem 4.
Then

c
∫

H′
δS f (x|u)dgc(x)

= c
∫

H′
f (x)dgc(x) +

∫
H′

f (x)
r

∑
j=1

γαj〈x, eαj〉H〈u, eαj〉Hdgc(x).
(24)

Proof. Using Equations (1) and (7), we have∫
H′

δS f (x|u)dgc(x)

=
∂

∂k

∫
H′

f (x + kSu)dgc(x)
∣∣∣∣
k=0

=
∂

∂k

[
exp
{
− k2

2c

r

∑
j=1

γ2
αj
〈u, eα〉2

H

}

×
∫

H′
f (x) exp

{
k
c

r

∑
j=1

γαj〈x, eαj〉H〈u, eαj〉H

}
dgc(x)

]∣∣∣∣
k=0

=
∫

H′
f (x)dgc(x) +

1
c

∫
H′

f (x)
r

∑
j=1

γαj〈x, eαj〉H〈u, eαj〉Hdgc(x),
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which yields Equation (24) as desired.

Finally, we give an application of Theorem 7.

Theorem 8 (Application of Theorem 7). Let f and S be as in Theorem 7. Let A and B as in
Theorem 5. Then

cFc,A,B(δA f (·|u))(y)

= cFc,A,B( f )(y) +
∫

H′
f (Ax + By)

r

∑
j=1

γαj〈x, eαj〉H〈u, eαj〉Hdgc(x).
(25)

Proof. Using Equations (5) and (7), we have

Fc,A,B(δA f (·|u))(y) = ∂

∂k

∫
H′

f (Ax + By + kAu)dgc(x)
∣∣∣∣
k=0

.

Now, let fy(x) = f (x + y) and f A(x) = f (Ax). Then

f (Ax + By + kAu) = ( fBy)
A(x + ku)

and, hence, using Equation (24) by replacing f with ( fBy)
A, we have

Fc,A,B(δA f (·|u))(y)

=
∂

∂k

∫
H′
( fBy)

A(x + ku)dgc(x)
∣∣∣∣
k=0

=
∫

H′
( fBy)

A(x)dgc(x) +
1
c

∫
H′
( fBy)

A(x)
r

∑
j=1

γαj〈x, eαj〉H〈u, eαj〉Hdgc(x)

= Fc,A,B( f )(y) +
1
c

∫
H′

f (Ax + By)
r

∑
j=1

γαj〈x, eαj〉H〈u, eαj〉Hdgc(x).

Hence, we have the desired results.

6. Applications

In this section, we give some applications to apply our fundamental formulas obtained
in previous sections.

6.1. Application of Theorem 3

We first give an application to illustrate the usefulness of Equations (14) and (15) in
Theorem 3.

Example 1. Let r = 2. Let f1(x) = 〈x, eα2〉2 and let f2(x) = 〈x, eα1〉2〈x, eα2〉. Let A and B be
as in Theorem 3. From Equation (8) we have

Fc,A,B( f1)(y) = λ2
α2
〈y, eα2〉2

H + 2cμ2
α2

and
Fc,A,B( f2)(y) = [λ2

α1
〈y, eα1〉2

H + 2cμ2
α1
][μα2〈y, eα2〉H].

Hence, using Equation (14), we have

Fc,A,B( f1 ∗ f2)A(y)

=

[
λ2

α2

2
〈y, eα2〉2

H + 2cμ2
α2

][
λ2

α1

2
〈y, eα1〉2

H + 2cμ2
α1

][
μα2√

2
〈y, eα2〉H

]
.

(26)
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Furthermore, we note that
f1(x) f2(x) = 〈x, eα1〉2〈x, eα2〉3

and so

Fc,A,B

(
f1(

·√
2
) f2(

·√
2
)

)
(y)

=

[
λ2

α1

2
〈y, eα1〉2

H + 2cμ2
α1

][
λ3

α2

2
〈y, eα2〉3

H +
3c(μ2

α2
+ λα2)√
2

〈y, eα2〉H

]
.

Hence, using Equation (15), we have

(Fc,A,B( f1) ∗ Fc,A,B( f2))A′(y)

=

[
λ2

α1

2
〈y, eα1〉2

H + 2cμ2
α1

][
λ3

α2

2
〈y, eα2〉3

H +
3c(μ2

α2
+ λα2)√
2

〈y, eα2〉H

]
.

These tell us that the Wiener transform of convolution product and the convolution product of
Wiener transforms can be calculated without concept of convolution product very easily.

6.2. Application of Theorem 5

We next give an application of Equation (19) in Theorem 5.

Example 2. Let f1, f2, A and B be as in Example 1. Using Equation (26), we have

δSFc,A,B( f1 ∗ f2)A(y|u)

=
∂

∂k
Fc,A,B( f1 ∗ f2)A(y + kSu)

∣∣∣∣
k=0

=
∂

∂k

([
λ2

α2

2
(〈y, eα2〉H + kγα2〈u, eα2〉H)2 + 2cμ2

α2

]
×
[

λ2
α1

2
(〈y, eα1〉H + kγα1〈u, eα1〉H)2 + 2cμ2

α1

]
×
[

μα2√
2
(〈y, eα2〉H + kγα2〈u, eα2〉H)

])∣∣∣∣
k=0

= λ2
α2
〈u, eα2〉H

[
λ2

α2

2
〈y, eα2〉2

H + 2cμ2
α2

][
λ2

α1

2
〈y, eα1〉2

H + 2cμ2
α1

][
μα2√

2
〈y, eα2〉H

]
+ λ2

α1
〈u, eα1〉H

[
λ2

α2

2
〈y, eα2〉2

H + 2cμ2
α2

][
λ2

α1

2
〈y, eα1〉2

H + 2cμ2
α1

][
μα2√

2
〈y, eα2〉H

]
+

μα2√
2
〈u, eα1〉H

[
λ2

α2

2
〈y, eα2〉2

H + 2cμ2
α2

][
λ2

α1

2
〈y, eα1〉2

H + 2cμ2
α1

][
μα2√

2
〈y, eα2〉H

]
.

Using this, we obtain that

Fc,A,B(δBS( f1 ∗ f2)A(·|u))(y)

= λ2
α2
〈u, eα2〉H

[
λ2

α2

2
〈y, eα2〉2

H + 2cμ2
α2

][
λ2

α1

2
〈y, eα1〉2

H + 2cμ2
α1

][
μα2√

2
〈y, eα2〉H

]
+ λ2

α1
〈u, eα1〉H

[
λ2

α2

2
〈y, eα2〉2

H + 2cμ2
α2

][
λ2

α1

2
〈y, eα1〉2

H + 2cμ2
α1

][
μα2√

2
〈y, eα2〉H

]
+

μα2√
2
〈u, eα1〉H

[
λ2

α2

2
〈y, eα2〉2

H + 2cμ2
α2

][
λ2

α1

2
〈y, eα1〉2

H + 2cμ2
α1

][
μα2√

2
〈y, eα2〉H

]
=

(
λ2

α2
〈u, eα2〉H + λ2

α1
〈u, eα1〉H +

μα2√
2
〈u, eα1〉H

)
Fc,A,B( f1 ∗ f2)A(y).
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6.3. Application of Theorem 7

We finish this paper by giving an application of Equation (25) in Theorem 7. Equation (25)
tells us that ∫

H′
f (Ax + By)

r

∑
j=1

γαj〈x, eαj〉H〈u, eαj〉Hdgc(x)

= cFc,A,B(δA f (·|u))(y)− cFc,A,B( f )(y).

(27)

The left-hand side of Equation (27) contains some polynomial-weight and so it is not easy
to calculate. However, by using Equation (27), we can calculate it very easy via the Wiener
transform and the first variation. We shall explain this as example.

Example 3. Let f1, f2, A and B be as in Example 1. Then we have

Fc,A,B(δA f1(·|u))(y) = 2μα2 λα2〈y, eα2〉H

and
Fc,A,B( f1)(y) = λ2

α2
〈y, eα2〉2

H + 2cμ2
α2

.

Hence, using Equation (27), we obtain that∫
H′
[μα2〈x, eα2〉H + λα2〈y, eα2〉H]2μα2〈x, eα2〉H〈u, eα2〉Hdgc(x)

= 2cμα2 λα2〈y, eα2〉H − cλ2
α2
〈y, eα2〉2

H + 2c2μ2
α2

.

In addition, we have

Fc,A,B(δA f2(·|u))(y) = 2cμ3
α1

λα2〈u, eα1〉H〈y, eα2〉H + 2μ3
α1

λ2
α1
〈u, eα1〉H〈y, eα1〉H

+ μα2〈u, eα2〉H(cμ2
α1
+ λ2

α1
〈y, eα1〉2

H).

and
Fc,A,B( f2)(y) = [λ2

α1
〈y, eα1〉2

H + 2cμ2
α1
][μα2〈y, eα2〉H].

Thus, from Equation (27) we conclude that∫
H′
[μα1〈x, eα1〉H + λα1〈y, eα1〉H]2

× [μα2〈x, eα2〉H + λα2〈y, eα2〉H]
2

∑
j=1

γαj〈x, eαj〉H〈u, eαj〉Hdgc(x)

= 2c2μ3
α1

λα2〈u, eα1〉H〈y, eα2〉H + 2cμ3
α1

λ2
α1
〈u, eα1〉H〈y, eα1〉H

+ cμα2〈u, eα2〉H(cμ2
α1
+ λ2

α1
〈y, eα1〉2

H)

− c[λ2
α1
〈y, eα1〉2

H + 2cμ2
α1
][μα2〈y, eα2〉H].

7. Conclusions

According to some results and formula in previous papers [1–3,7–9,15] and our results
and formulas in previous Sections 3–5, we note that all results can be explained by the
eigenvalue of operators on Hilbert space. As you can see from the results of the previous
Sections 3–5, we are able to obtain various relationships that are not found in the previous
research results. We also see in Section 6 that our results can be applied to various functions
in the application of various fields. Therefore, it can be seen that the results in this paper
are structured in a generalized form.
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Abstract: Currently, the load on railway tracks is increasing due to the increase in freight traffic.
Accordingly, more and more serious requirements are being imposed on the reliability of the roadbed,
which means that studies of methods for monitoring the integrity of the railway roadbed are relevant.
The article provides a mathematical substantiation of the possibility of using seismoelectric and
phasemetric methods of geoelectric control of the roadbed of railway tracks in order to identify
defects and deformations at an early stage of their occurrence. The methods of laboratory modeling
of the natural–technical system “railway track” are considered in order to assess the prospects of
using the presented methods. The results of laboratory studies are presented, which have shown
their high efficiency in registering a weak useful electrical signal caused by seismoacoustic effects
against the background of high-level external industrial and natural interference. In the course of
laboratory modeling, it was found that on the amplitude spectra of the output electrical signals of
the investigated geological medium in the presence of an elastic harmonic action with a frequency
of 70 Hz, the frequency of a harmonic electrical signal with a frequency of 40 Hz is observed. In
laboratory modeling, phase images were obtained for the receiving line when simulating the process
of sinking the soil base of the railway bed, confirming the presence of a transient process that causes
a shift in the initial phase of the signal Δϕ = 40◦ by ~45◦ (Δϕ’ = 85◦), which allows detection of the
initial stage of failure formation.

Keywords: railway transport; roadbed; geodynamic processes; seismoelectric method; stress–strain
process; transfer functions; frequency characteristics; phasometric method; laboratory modeling

1. Introduction

The railway is one of the most important cargo transportation systems in the world
due to the rapid development of this class of heavy transport, as well as its efficiency
in comparison with other transport systems. At the same time, the increase in railway
maintenance costs is directly related to the increase in the volume of cargo transportation [1].
Accordingly, in this regard, the requirements for the reliability and safety of the functioning
of railway tracks and railway infrastructure in general are significantly increasing, the
provision of which through technical monitoring is extremely important and relevant, and,
as a result, is the focus of plentiful scientific and applied research [2–4].
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This task is complicated by the fact that special requirements for the construction
and operation of railways are imposed in areas of activation of geodynamic processes,
where there is a significant risk of landslides and the formation of karst craters, which are
associated with intensive cyclic impact on the ground base of passing trains [4]. According
to the Richter scale, the efficiency of such transport vibration is equivalent to an earthquake
of 3–6 points [5]. Moreover, it is known that landslide deformations affect natural and
artificial geological environments and can have a varied nature of development, and the
activation of karst processes in the area of railway tracks can lead to a gradual destruction
of the subgrade (Figure 1) [4]. In addition, the reasons for the deformation of the roadbed
may be the discrepancy between the power of the upper structure of the track to the
intensive dynamic loads of railway transport, as well as the unfavorable effects of climatic
and engineering–geological factors.

It should be noted that the main undesirable activation of near-surface geodynamics
arises not at the stage of engineering surveys and construction works, but in the process of
direct operation of railway tracks and in most cases is of a sudden, spontaneous nature.

Figure 1. Sudden destruction of the railway roadbed as a result of natural factors.

As a result, the indicated defects and deformations of the subgrade lead to the transi-
tion of the “railway track-subsoil” system into an unstable state, the moment of occurrence
of which is not predicted by modern control systems. Geodeformational changes in the
soil lead to a significant deterioration of the railway track, which, in turn, leads to the need
to reduce the negative impact of geodeformational changes on the railway track, since the
quality and condition of the track directly affects the safety of the movement of trains [3]
and the efficiency of its interaction with infrastructure [4]. To detect the early stage of
the development of deformation processes of the roadbed of a railway track and predict
the dynamics of their development in time, it is important to have current and model
information about its state and possible undesirable changes.

Thus, the purpose of the research is to develop methods for monitoring geodynamic
changes in the railway roadbed, to detect the appearance of various kinds of anomalies
and inhomogeneities, indicating the development of destructive processes in the soil, to
create and test a laboratory model of the natural–technical system “railway track” in order
to assess the prospects of using the presented methods.

2. Literature Review

The most reliable method of monitoring the condition of the railway roadbed at
the moment is surveying and geodetic observations on the reference points of profile
lines [6]. However, due to the large length of railway tracks, the use of this method is
very difficult, and the control of the roadbed and the adjacent territory by engineering–
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geological methods are inappropriate. In this case, it is relevant to attract geophysical
methods that are widely used in exploration and engineering geology.

Currently, to obtain information about the structure of the upper layers of various geo-
logical environments, ground-penetrating radar sounding [7], vibroseismic methods [8–11],
electrometric [9–12] and some other methods are traditionally used. But in some cases, such
as when karst cavities have a developed structure, analysis by groups of these methods is
very difficult [13,14].

According to the results of numerous studies, it has been established that when
organizing automated control of geodynamic objects, the most promising is the use of
geoelectric methods of media sounding. They provide effective observations of geological
objects, as well as assessment of the state and forecast of their development, which is
determined by their high technology [8,10–12,15].

However, as practice shows, the application in geodynamic monitoring of any single
method chosen from the ones considered above is not effective enough. As a result, it is
necessary to choose the most preferred research method for each specific task [16]. For
instance, some research has been done on dynamic prediction models for tunnels [17,18],
railway tracks [19], oil sludge straits [20], as well as various underground structures [21]
and geotechnical applications in general [22]. But the usual problem of such methods is
the ambiguity of the assessment of geophysical data.

The joint use of geoelectric and seismic methods, that is, the use of the seismoelectric
control method [23–29], allows increasing the efficiency of geological media studies by
reducing the ambiguity of the assessment of geophysical data.

In the course of laboratory modeling, it is planned to study the amplitude spectra
of the output electrical signals of the monitored geological environment in the presence
of elastic harmonic action, which will allow using this effect to obtain more detailed
information about the structure of the soil during sounding by electric fields. In this case,
the registration of the phase component of the signal of the receiving lines will presumably
increase the noise immunity of measurements. The presence of a transient process causing
a shift in the initial phase of the signal of the receiving lines of the installation will indicate
the initial stage of the dip formation.

In this regard, the purpose of the work is to substantiate and study an integrated
approach to solving problems of monitoring the subsurface of railway tracks and the
adjacent territory to identify the initial stage of defects and deformations in it based on the
use of the seismoelectric method.

3. Mathematical Description of the Seismoelectric Method of Monitoring the Ground
Bed of Railway Tracks

The seismoelectric control method is based on secondary seismic effects. It consists of
the interpretation of signals of an electrical or seismic nature, recorded by the geodynamic
monitoring system, which are received when vibrations of these types are simultaneously
excited in the studied medium. The method is based on the assumption that the real geo-
logical environment is a porous polyphase complex structure in an energetically unstable
state. The combined effect of physical fields of various nature (electromagnetic and elastic)
on the studied geological environment can lead to a change in its physical properties.
The seismoelectric effect of the first kind is the phenomenon of changing the electrical
resistance of the geological medium under the influence of elastic vibrations; the second
kind is the phenomenon of excitation of an electromagnetic field that occurs under similar
conditions. These effects determine, first of all, the nature of the impact on the results of
electrical measurements of vibrational seismic–acoustic noise caused by the movement of
railway transport. In addition, the nature and degree of their manifestation depend on a
number of additional factors, which include the mineral composition of the solid skeleton
of the geological environment and its structure, porosity, permeability and structure of pore
channels, composition and volume of mineral cement, composition and mineralization of
the liquid saturating the pores, etc.
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The most important advantage of the seismoelectric method in comparison with
traditional methods of applied geophysics is the unambiguity of solving inverse problems.
In addition, the role of this method increases significantly with increasing depth and
resolution of studies.

In the literature [8,9] it has been demonstrated that with the practical use of the
seismoelectric method, the most informative is the study of the recorded electrical signals.
This is due to two factors. Firstly, structural changes in various media, first of all, affect
their average conductivity, which is characterized by a seismoelectric effect of the first
kind. Secondly, there is always a double electric layer with a mobile diffuse part at the
boundaries of solid media and pore fluid. Elastic action on such a medium often leads
to a relative movement of the porous fluid, which, in turn, generates an external electric
current that creates an electromagnetic field—a seismoelectric effect of the second type.
In addition, various rock-forming minerals have different types of conductivity: ionic,
electron, hole. The contact of such minerals with different types of conductivity can also
lead to the emergence of new electric fields. Thus, it is proposed to consider the electrical
component as the observed component of the method under study.

The principal possibility of monitoring the roadbed with the use of natural or ar-
tificially created geophysical fields is determined by the fact that the selected objects
(inhomogeneities) differ in properties from the host medium and as a result create anoma-
lous geophysical fields. In our case, the source of elastic vibrations can be railway trains
passing through the studied area (Figure 2). These effects have high energy, and the charac-
teristics of this effect are a priori known [3,4,7,12,20,29]. Geodynamic variations of these
fields are a consequence of the action of both natural factors and man-made impacts on
the environment, and this makes it possible to distinguish them based on the processing
of geodynamic data. At the same time, the seismic impact will highlight the character-
istic features in the analyzed signal, adding auxiliary information about the structure of
the medium to the controlled parameters, manifested at the combination frequencies of
the impact.

Figure 2. The principle of application of seismoelectric control of the railway trackbed.

Since the ground base of a railway track can be represented as a base formed by solid
particles and a liquid pore filler, the type of deformation processes developing in it will be
determined primarily by the physical causes and properties of the specified components
and described by the dependence of the stress–strain state of the soil depending on the
applied load containing four phases (Figure 3).
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Figure 3. Model of the stress–strain process of the ground base of the railway track.

According to this model, the elastic deformation phase (0) is up to 10% of the per-
missible load on the soil and is limited by the value of structural strength, assuming that
no structural changes occur in the soil under these loads. The compaction phase (I) is
determined by the linear relationship between the applied load and the total deformation
of the soil base. The shift phase (II) characterizes the processes of destruction determined
by significant shear deformations due to exceeding the limit. The extrusion phase (III)
characterizes irreversible deformations, in which the soil is squeezed out from under the
railway track.

A similar character, in accordance with the seismoelectric effect of the first kind, is
the dependence of the electrical resistance of the ground base on the applied mechanical
load (due to the movement of railway transport along the track), which can be considered
its amplitude characteristics, and the amplitude and phase spectra of the response to this
seismic action are indicators of the development of deformation processes.

The advantage of this approach is that the railway transport generates an intense and
long-lasting seismic acoustic signal, the parameters of which change slightly over time
relative to the passing train, which eliminates the need to use additional sources of seismic
signals. Moreover, it is known that the level of noise generated by a rolling stock consists of
the following components: drive noise, aerodynamic noise and wheel rolling noise [30,31].
The first two types of noise can be considered stationary background noise, and the third
one arises due to the contact of wheels with the rail and is associated with the high rolling
pressure of steel on steel, characteristic of the “wheel-rail” system [32]. In the frequency
domain, these noises are sources of low-frequency vibrations, the propagation speed of
which coincides with the speed of the train movement. As a result, the spectrum of the
resulting seismic signal can be divided into four frequency ranges from 3 to 80 Hz.

In accordance with the above, when implementing the seismoelectric method, as
an informative parameter, it is necessary to use the complex transfer function of the
investigated section of the geological environment [33]:

.
N(jω, Δu) =

.
E(jω)
.
I(jω)

=
.
ZA(jω) +

.
ZB(jω) +

n

∑
i=1

Zi(jω, Δu) (1)

where
.
ZA(jω),

.
ZB(jω) are complex resistances of grounding; E(jω), I(jω) are complex

parameters of the electric field; ω is frequency of the probing signal;
.
Zi(jω, Δu) are complex

resistances of the i-th elements of the studied section of the geological environment under
seismoacoustic influence Δu.

The expression of the transfer function of the studied geological medium (1) is a
geoelectric model of complex resistances connected in series. Such a representation allows
us to use the pattern of an N-layer imperfect dielectric. This model contains N elements,
and each element has thickness of d and the following electrical parameters of the i-th
element—dielectric permissivity εi and electrical resistivity ρi. The transfer function of the
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area under investigation can be expressed as the form of RC circuits connected in series,
while each circuit has the following parameters [34]:

Ci = εiS(jω, Δui)/d(Δui), Ri = ρid(Δui)/S(jω, Δui) (2)

where the effective area S(jω) is determined by the skin effect.
If we omit the the grounding parameters, then we might simply represent the transfer

function of the geoelectric section from the dielectric parameters (2):

.
H(jω, Δu) =

N

∑
i=1

Ri

1 + x2
i
− j

N

∑
i=1

Rixi

1 + x2
i

, (3)

where xi = ωRiCi = ωεiρi.
At the same time, when an elastic seismic wave propagates in the geological en-

vironment, each of its i-th element undergoes a mechanical influence described by the
deformation tensor Δu = {Δux, Δuy, Δuz}.

The transfer function (3) can be written in exponential form as

H(p, Δu) = A(p, Δu)ejφ(p,Δu) (4)

where p is the Laplace operator, A(p, Δu) = |H(p, Δu)| =
√

Re2[H(p, Δu)] + Im2[H(p, Δu)]
is the module of the transfer function, Re and Im are real, and the imaginary part of
the complex function, accordingly, φ(p, Δu) = arg[H(p, Δu)] = arctg

[
Im[H(p,Δu)]
Re[H(p,Δu)]

]
is the

argument of the transfer function.
The module and phase of this transfer function can be calculated based on the input–

output model from the ratio

H(p, Δu) =
Y(p, Δu)
X(p, Δu)

(5)

where X(p,Δu) is the probing electrical signal in operator form, Y(p, Δu) is the recorded
electrical signal in operator form.

In this case, the ground base of the railway track can be represented as a dynamic
link—Figure 4.

Figure 4. Representation of the ground base of the railway track in the form of a dynamic link.

By converting (5) taking into account (4), we obtain

H(p, Δu) =

∣∣∣Y(p, Δu)ejφY(p,Δu)
∣∣∣∣∣X(p, Δu)ejφX(p,Δu)
∣∣ = |Y(p, Δu)|

|X(p, Δu)| e
jΔφ(p,Δu) (6)

where Δφ(p, Δu) = φY(p, Δu)− φX(p, Δu).
It follows from the last expression that the control of the ground base of the railway

track can be carried out by tracking both the module and the argument (phase) of the
recorded geoelectric signals (since the parameters of the probing signals are constant and
are a priori known).

4. Methodology of Experimental Research on the Model of the Natural–Technical
System “Railway Track”

To assess the prospects of the seismoelectric method in the railway roadbed monitor-
ing, we have done laboratory modeling of the railway track. The laboratory installation
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is shown in the Figure 5. It allows us to simulate the seismic influence of a train passing
by, as well as the natural processes (changes in soil moisture, suffosion, karst, landslide
processes, sinkholes).

The installation consists of the following parts:

- a small-scale model of a geodynamic object—a tank with sandy soil, in which it is
possible to simulate its full or partial mudflow by means of extracting certain sections
of the bottom of the tank; the seismic effect is a vibration source (black box on the left);

- current signal sources, signal registration—metal rods used to generate and register
an electric field;

- geodynamic data processing system, which is an analog-to-digital converter, seismic
station, personal computer with developed specialized software.

Figure 5. Geodynamic object model.

Primary to the current study, the noise of a railway train was generally registered by
a microphone located in the ground base of the railway track. With direct modeling, the
seismic impact was simulated by reproducing the recorded noise using a seismic signal
source—a vibration loudspeaker.

During the study, we were modeling the soil collapse while registering changes in the
characteristics of seismic and electrical signals. Thus, we obtained information about the
primary stage of the soil collapse. The proposed approach allows detection of the primary
phase of destruction of the railway roadbed, as well as prevention of the man-made
catastrophes in the natural–technical system “railway track”.

5. Results and Discussion

Figure 6 represents amplitude spectra of the output electrical signals of the investigated
geological environment in the absence (a) and presence (b) of elastic action (if applied,
an elastic harmonic impact had a frequency of 70 Hz). At the same time, the harmonic
electrical signal had a frequency of 40 Hz.

It can be seen from the obtained spectrograms that the presence of an elastic seis-
moacoustic impact source in the simulated ground base of the railway track leads to
the formation of a spectral component with a frequency of seismoacoustic impact in the
spectrum of the recorded electrical signal (seismoelectric effect of the second type). This
indicates that in this case, the geological environment has a normal specific resistivity
(seismoelectric effect of the first type), and there is no deformation of the soil compaction.
Depending on the parameters of external elastic influences applied to the investigated
area, the electrical parameters of the medium change their characteristics accordingly. This
makes it possible, during further processing of the received electrical signal, to determine
the presence of heterogeneity in the medium, its depth and deformation state. In this case,
there is no need to place the sensors along the entire monitored area.
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Figure 6. Amplitude spectra of the output electrical signals of the investigated geological environment
in the absence (a) and presence (b) of elastic action.

Further studies have shown that the analysis of changes in the phase characteristics
of the transfer function (6) has a number of significant advantages over the amplitude
method; in particular, it is characterized by increased sensitivity and noise immunity [30]
and also detects and localizes geodynamic processes in geological environments [30–32]. In
Figure 7 as an example, the phase spectrum of the output electrical signals of the geological
medium under study was measured while applying the 70 Hz elastic action, because at
such frequency a phase shift of seismic acoustic action is clearly traced.

Figure 7. Phase spectrum of the output electrical signals of the studied geological medium in the
presence of elastic action.

Studies [25–27] explain the modified phase-measuring method of geoelectric control,
namely the use of several current signal sources placed closely to the test control object and
an array of vector sensors for measuring the electric field. At the same time, the registration
of phase characteristics at a fixed position of the sources and the measuring basis with the
possibility of controlling the parameters of the probing signals is based on the fact that the
primary and secondary electric fields are vector values.

Figure 8 shows a diagram of the laboratory experiment to control the process of
occurrence and subsequent growth of a cavity in the ground foundation of a railway track
by the phasometric method. The research was carried out on a physical model of a railway
track using a specially developed measuring phasometric system. In this case, the current
sources designated as A and B (Figure 8) form quadrature harmonic signals with a phase
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shift of 90 degrees. Sources A and B generate an electric field signal at point O, described
as follows:

→
E AX =

→
E

0

AX + ΔEAX ,
→
E BX =

→
E

0

BX + ΔEBX (7)

where
→
E

0
is the electrical signal recorded before the formation of deformation processes in

the ground; ΔE is an abnormal component of the electric field caused by the presence of
deformation processes in the ground.

Figure 8. Diagram of the laboratory experiment.

When using multipolar geodynamic control systems at registration points (M1–M4,
N1–N4), we have to deal with an elliptically polarized geoelectric field. Moreover, in this
case, vector sensors of electric field measurement with the same indices form pairs; the
signals from each pair are sent to the measuring system for processing. In this case, data
processing of recorded geoelectric signals presupposes the formation of their difference
signal (for filtering in-phase interference), its amplification, phase detection (in relation to
the reference signal) and low-pass filtering. The principle of registration for the phase of
the geoelectric field at an arbitrary receiving point is illustrated in Figure 9.

Figure 9. The registration principle for the phase of the geoelectric field at an arbitrary receiving point.

Using this method, simulation of the process of sinkhole formation of the ground base
of the railway track in the presence of train noise was carried out (the seismogram taken
from the short-period seismic meter ZET 7156 is shown in Figure 10). The electrodes A and
B were used as current sources, while the electrodes M and N with corresponding numbers
were receivers. The following distances between electrodes were used: between A and
B—80 cm, between M1 and N1—70 cm, between M2 and N2—60 cm, between M3 and
N3—50 cm, between M4 and N4—40 cm. The frequency of probing electrical signals was
90 Hz, the amplitude of each probing electrical signal was 200 mV, and the analog-to-digital
converter was set at a sampling rate of 10,101 Hz.
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Figure 10. Seismogram of the railway track in the presence of train noise.

Figure 11 shows an example of a phase image obtained as a result of processing in the
time domain for the receiving line M3N3.

Figure 11. The example of a phase image for the receiving line M3N3, obtained by simulating the
process of sinkhole formation of the ground base of the railway track.

The analysis of this process in the time domain makes it possible at an early stage
to unambiguously determine the time interval corresponding to the active development
of the sinkhole formation process and the direction of its change in time—to localize the
source of the deformation process and predict its future dynamics.

For a comparison, Figure 12 shows a variant of solving a similar problem by the
classical seismoacoustic method using a highly sensitive seismometer.

A comparison of the two approaches to the control of the underground base of the
railway track allows us to conclude that the traditional method allows only the registration
of certain geodynamic events in the geological environment without the possibility of their
qualitative interpretation, which is eliminated when using the seismoelectric method and
monitoring the phase characteristics of the recorded geoelectric signals.

Subsequently, from the recorded signal, it is possible to identify features of soil areas
with impaired integrity [31] using Scale Invariant Feature Transform (SIFT)-Support Vector
Machine (SVM) methods [35–40]. In the presence of high noise level, it is possible to
use a neural back propagation network, which will allow achieving 97% accuracy when
processing monitoring data [36,37,39].
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Figure 12. Seismogram of the process of sinkhole formation of the soil base of the railway roadbed.

6. Conclusions

The paper demonstrates that for the diagnostics of the railway roadbed, a number of
features not found in traditional engineering geology should be taken into account. The
article also theoretically and practically substantiates an integrated approach to solving
problems of monitoring the roadbed of a railway on the basis of combining two geophysical
methods for monitoring the natural environment: geoelectric and seismoacoustic methods.

From the presented research results, it has been established that the proposed methods
for monitoring the railway trackbed have high sensitivity to the primary phase of the
soil destruction.

During laboratory modeling, it was found that in the amplitude spectra of the output
electrical signals of the investigated geological environment in the presence of an elastic
harmonic effect with a frequency of 70 Hz, the frequency of a harmonic electrical signal
with a frequency of 40 Hz was observed, which makes it possible to use this effect to obtain
more detailed information about the structure of the soil when sounding with electric fields.
In laboratory modeling, the obtained phase images for the receiving line of the installation
when simulating the process of sinking the soil base of the railway bed confirmed the
presence of a transient process that causes a shift in the initial phase of the signal Δϕ = 40◦

by ~45◦ (Δϕ’ = 85◦), that precedes the initial stage of failure.
Moreover, the joint processing of geoelectric and seismoacoustic signals makes it

possible to detect heterogeneity in the environment, as well as its depth and its geodynamic
variations. The phasometric ground control method allows increasing the efficiency of
the railway roadbed monitoring systems, in particular, through the use of vertical elec-
trotomography methods with the possible localization of heterogeneity. In this case, the
metrological stability of geodynamic measurements, the insensitivity of the technique to
seismic interference, the simplicity of varying the installation size and the organization of
three-dimensional soil monitoring is ensured.

The information obtained during the monitoring of the roadbed will improve the
reliability and safety of the functioning of railway transport, especially in areas with
intensive geodynamic processes.
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1. Introduction

The appearance of special functions of mathematical physics was associated with
solutions of particular ordinary differential equations, while the integral special functions
arrived much later in mathematical literature after properties of these functions were
investigated. Integral special functions were introduced as new special functions, which
can be applied in many circumstances, especially in operational calculus, where they are
frequently serving as direct and inverse integral transforms. The form of an integrand is
identical for all integral functions, but limits of integration are different in order to assure
the convergence of defined integrals. There are two types of integral special functions:
those with elementary functions in their integrands and those with special functions. To
the first group belong the exponential integral −Ei(−x), the sine and cosine integrals,
si(x), Si(x), ci(x) and Ci(x), and the corresponding integrals of hyperbolic trigonometric
functions, Shi(x) and Chi(x). These functions are defined in the following way [1–5]

E1(x) = −Ei(−x) =
∫ ∞

x

e−t

t
dt, x > 0,

Si(x) =
∫ x

0

sin t
t

dt,

si(x) = −
∫ ∞

x

sin t
t

dt = Si(x)− π

2
,

Ci(x) = −
∫ ∞

x

cos t
t

dt = γ + lnx−
∫ x

0

1− cos t
t

dt = −ci(x),

Shi(x) =
∫ x

0

sinh t
t

dt,

Chi(x) = γ + lnx−
∫ x

0

1− cosh t
t

dt,

(1)

where γ is the Euler–Mascheroni constant. As can be observed in (1), the integral special
functions have integrands in the form, f (t)/t, and the intervals of integrations are 0 < t < x
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or x < t < ∞. Few direct and inverse integral transforms are presented below to illustrate
their applications, for example, in the Laplace transformation [6–8],

F(s) := L[ f (t)] :=
∫ ∞

0
e−st f (t)dt, (2)

we have

L
[

1√
t
Ei(−t)

]
= −2

√
π

s
ln
(√

s +
√

s + 1
)

, Re s > 0,

L[Si(t)] =
cot−1 s

s
, Re s > 0,

L[si(t)] =
tan−1 s

s
,

L[Ci(t)] = − ln
(
1 + s2)
2s

,

L−1
[

ln(s + b)
s + a

]
= e−at[ln(b− a)− Ei((a− b)t)], Re (s− a) > 0,

L−1
[

lns
s2 + 1

]
= cos t Si(t)− sin t Ci(t), Re s > 0,

L−1
[

s lns
s2 + 1

]
= − sin t Si(t)− cos t Ci(t).

(3)

Integrands in the second group of integral special functions include special func-
tions, the most well-known and applied of which are the integral Bessel functions (see,
e.g., [3,7,9–13])

Jiν(x) = −
∫ ∞

x

Jν(t)
t

dt,

Yiν(x) = −
∫ ∞

x

Yν(t)
t

dt,

Iiν(x) = −
∫ x

0

Iν(t)
t

dt,

Kiν(x) = −
∫ ∞

x

Kν(t)
t

dt.

(4)

Already in 1929, van der Pol [9] showed that it is possible to express the differentiation
with respect to the order of the Bessel function of the first kind as a convolution integral,
which includes the integral Bessel function of the zero-order:

∂Jν(t)
∂ν

=
1
2

∫ t

0
Ji0(t− x)[Jν−1(x)− Jν+1(x)]dx. (5)

The integral Bessel functions of the zero-order are inverse transforms of the following
Laplace transforms [7]

L−1

[
sinh−1 s

s

]
= Ji0(t),

L−1

⎡⎢⎣
(

sinh−1 s
)2

s

⎤⎥⎦ = Yi0(t),

L−1
[

ln
(

s +
√

s2 + 1
)
− πi

2

]
= Ii0(t),

L−1

⎡⎢⎣
(

cosh−1 s
)2

2s
+

π2

8s

⎤⎥⎦ = Ki0(t).

(6)
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In analogy to the integral Bessel functions and with the possibility of extension to other
special functions, this work introduces three new integral functions. Furthermore, these
integral functions guide us toward the establishment of integrals and series. Section 2 ex-
plores the integral Mittag-Leffler functions. Sections 3 and 4 discuss the integral Whittaker
and Wright functions, respectively. Section 5 contains concluding remarks.

In order to preserve the applied form of notation, the following two integral functions
are introduced:

Fi(x) =
∫ x

0

f (t)− f (0)
t

dt, (7)

and

fi(x) =
∫ ∞

x

f (t)
t

dt. (8)

To ensure convergence of integrals in (7) or in (8), which depends on the behavior of
f (t)/t integrands at the origin and at infinity, the forms of integral functions Fi(x) or fi(x)
are chosen. Since the explicit expressions for f (t) functions are sometimes given in the
form of f (tα) where α = ± 1

2 ,±1, 2, 3, . . . the corresponding change of integration variables
for these equations is desired.

In the case of Mittag-Leffler, Whittaker and Wright functions, for some values of
parameters, by using the MATHEMATICA program, it was possible to obtain these integral
functions in a closed-form. Derived integral functions are tabulated and also in some cases
graphically presented (see [3]).

2. The Integral Mittag-Leffler Functions

The classical one-parameter and the two-parameter Mittag-Leffler functions are de-
fined by [14]:

Eα(x) =
∞

∑
k=0

xk

Γ(αk + 1)
, Re α > 0,

Eα,β(x) =
∞

∑
k=0

xk

Γ(αk + β)
, Re α > 0, Re β > 0.

(9)

In this investigation, they are only considered for positive real values of the argument,
i.e., x > 0. In the particular case of positive rational α with α = p/q and p and q positive
coprimes, Mittag-Leffler functions are given as a finite sum of generalized hypergeometric
functions (see (A3) in Appendix A).

The Laplace transforms of the Mittag-Leffler functions are derived directly from (2)
and (9), and we have:

L[Eα(t)] =
∫ ∞

0
e−st

[
∞

∑
k=0

tk

Γ(αk + 1)

]
dt =

∞

∑
k=0

k!
Γ(αk + 1)

(
1
s

)k+1
,

L
[
Eα,β(t)

]
=
∫ ∞

0
e−st

[
∞

∑
k=0

tk

Γ(αk + β)

]
dt =

∞

∑
k=0

k!
Γ(αk + β)

(
1
s

)k+1
,

Re s > 1.

(10)

For particular values of parameters α and β, the explicit form of the Mittag-Leffler
functions can be obtained by applying the MATHEMATICA program to sums of infinite
series in (9), and these results are presented in Appendix A. Using Equation (10), many
new Laplace transforms of the Mittag-Leffler functions were evaluated, and they are also
reported in Appendix A. Similarly as in the case when α is positive rational, the Laplace
transforms of the Mittag-Leffler functions can be expressed by the finite sum of products of
generalized hypergeometric functions (see (A4) in Appendix A).
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The integral Mittag-Leffler functions are introduced by considering their exponential
behavior as a function of real, positive variable x (see Appendix A).

Eiα(x) =
∫ x

0

Eα(t)− 1
t

dt,

Eiα,β(x) =
∫ x

0

Eα,β(t)− 1/Γ(β)

t
dt.

(11)

Formally, by introducing (9) into (11) we have

Eiα(x) =
∞

∑
k=1

xk

k Γ(αk + 1)
,

Eiα,β(x) =
∞

∑
k=1

xk

k Γ(αk + β)
.

(12)

For several values of parameters α and β, it is possible to derive the integral Mittag-
Leffler functions in a closed-form by applying the MATHEMATICA program to the sums
of infinite series in (12). These functions are presented in Tables 1 and 2. As it is observ-
able, most of these integral functions are expressed as generalized hypergeometric series.
Typical behavior of one-parameter and two-parameter integral Mittag-Leffler functions is
illustrated in Figures 1 and 2.

Evidently, also direct integration, by using (11), leads to the integral Mittag-Leffler
functions. For example, for E2(x) = cosh

√
x, according to (1), we have

Ei2(x) =
∫ x

0

cosh
√

t− 1
t

dt = −2γ− lnx + 2 Chi
√

x, (13)

and as expected, this result is identical to that derived from (12) (see Tables 1 and 2).
Applying the formulas (A1) and (A2) given in Appendix A, the integral Mittag-

Leffler function for positive rational values of parameter α with α = p/q and p, q positive
coprimes is

Eip/q,β(x) (14)

=
q

∑
k=1

xk

k Γ(k/q + β)
2Fq

(
1, k/q

b0, . . . , bp−1, k/q + 1

∣∣∣∣ xq

pp

)
.

where
bj =

k
q
+

β + j
p

.

In addition, using the sums in (12), it is possible to derive the Laplace transforms of
the integral Mittag-Leffler functions:

L[Eiα(t)] =
∫ ∞

0
e−st

[
∞

∑
k=0

tk+1

(k + 1)Γ(α(k + 1) + 1)

]
dt

=
∞

∑
k=0

(k + 1)!
(k + 1)Γ(α(k + 1) + 1)

(
1
s

)k+2
, Re s > 1.

L
[
Eiα,β(t)

]
=
∫ ∞

0
e−st

[
∞

∑
k=0

tk+1

(k + 1)Γ(α(k + β) + 1)

]
dt

=
∞

∑
k=0

(k + 1)!
(k + 1)Γ(α(k + 1) + β)

(
1
s

)k+2
, Re s > 1.

(15)

The evaluated Laplace transforms of the integral Mittag-Leffler functions are presented
in Tables 3 and 4.
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Table 1. The integral Mittag-Leffler functions derived for some values of parameters α and β by
using (12).

α β Eiα,β(x)

1
3

1
5

x
Γ( 8

15 )
2F2

(
1, 1

3
8
15 , 4

3

∣∣∣∣x3
)
+ x2

2 Γ( 13
15 )

2F2

(
1, 2

3
13
15 , 5

3

∣∣∣∣x3
)
+ 5 x3

3 Γ( 1
5 )

2F2

(
1, 1
6
5 , 2

∣∣∣∣x3
)

1
3

1
4

x
Γ( 7

12 )
2F2

(
1, 1

3
7
12 , 4

3

∣∣∣∣x3
)
+ x2

2 Γ( 11
12 )

2F2

(
1, 2

3
11
12 , 5

3

∣∣∣∣x3
)
+ 4x3

3 Γ( 1
4 )

2F2

(
1, 1
5
4 , 2

∣∣∣∣x3
)

1
3

1
2

2 x3

3
√

π 2F2

(
1, 1
3
2 , 2

∣∣∣∣x3
)
+ x

Γ( 5
6 )

2F2

(
1, 1

3
5
6 , 4

3

∣∣∣∣x3
)
+ 3 x2

Γ( 1
6 )

2F2

(
1, 2

3
7
6 , 5

3

∣∣∣∣x3
)

1
3

3
2

x
Γ( 11

6 )
2F2

(
1, 1

3
4
3 , 11

6

∣∣∣∣x3
)
+ 18 x2

7 Γ( 1
6 )

2F2

(
1, 2

3
5
3 , 13

6

∣∣∣∣x3
)
+ 4 x3

9
√

π 2F2

(
1, 1
2, 5

2

∣∣∣∣x3
)

1
2

1
2

x2√
π 2F2

(
1, 1
3
2 , 2

∣∣∣∣x2
)
+ ex2

F(x), F(x) = e−x2 ∫ x
0 et2

dt

1
2 1 − γ

2 − lnx +
Ei(x2)

2 + 2 x√
π 2F2

( 1
2 , 1
3
2 , 3

2

∣∣∣∣x2
)

1
2 2 1

2

(
1− γ + Ei

(
x2)+ 1−ex2

x2

)
− lnx + 4 x

3
√

π 2F2

( 1
2 , 1
3
2 , 3

2

∣∣∣∣x2
)

1
2 3

2+4x2+(3−2γ)x4−2ex2
(1+x2)+2x4(Ei(x2)−2lnx)
8x4 + 8 x

15
√

π 2F2

( 1
2 , 1
3
2 , 7

2

∣∣∣∣x2
)

1
2 4

12+18x2(1+x2)+(11−6γ)x6−6ex2
(2+x2+x4)+3x6(2Ei(x2)−4lnx)

72x6 + 16 x
105

√
π 2F2

( 1
2 , 1
3
2 , 9

2

∣∣∣∣x2
)

1
2 β x2

2 Γ(β+1) 2F2

(
1, 1

2, β + 1

∣∣∣∣x2
)
+ x

Γ(β+ 1
2 )

2F2

( 1
2 , 1

3
2 , β + 1

2

∣∣∣∣x2
)

1 1
4

x
Γ( 5

4 )
2F2

(
1, 1
5
4 , 2

∣∣∣∣x)
1 1

3
x

Γ( 4
3 )

2F2

(
1, 1
4
3 , 2

∣∣∣∣x)
1 1

2
2x√

π 2F2

(
1, 1
3
2 , 2

∣∣∣∣x)
1 1 −γ− lnx + Chi(x) + Shi(x)

1 3
2

4x
3
√

π 2F2

(
1, 1
5
2 , 2

∣∣∣∣x)
1 β x

Γ(β+1) 2F2

(
1, 1

2, 1 + β

∣∣∣∣x)

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

x

Ei ,1(x)
=1=2=3=4=5

Figure 1. The integral one-parameter Mittag-Leffler function Eiα,1(x) as a function of variable x and
parameters α.
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Table 2. The integral Mittag-Leffler functions derived for some values of parameters α and β by
using (12).

α β Eiα,β(x)

3
2

1
2

4x2

15
√

π 2F4

(
1, 1

7
6 , 3

2 , 11
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∣∣∣∣ x2
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+ 8x2

105
√

π 2F4

(
1, 1

3
2 , 11

6 , 2, 13
6

∣∣∣∣ x2

27

)
3
2 2 8x

15
√

π 2F4

( 1
2 , 1

7
6 , 3

2 , 3
2 , 11

6

∣∣∣∣ x2

27

)
+ x2

48 2F4

(
1, 1

5
3 , 2, 2, 7

3

∣∣∣∣ x2

27

)
2 1

4
16x

5 Γ( 1
4 )

2F3

(
1, 1

9
8 , 11

8 , 2

∣∣∣∣ x
4

)
2 1

3
9x

4 Γ( 1
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2
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(√
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)

The Laplace transforms of the integral Mittag-Leffler functions with positive rational
parameter α with α = p/q and p, q positive coprimes can be evaluated from:

L
[
Eip/q,β(t)

]
(16)

=
1
s2

q−1

∑
k=0

k! s−k

Γ
(

p
q (k + 1) + β

) q+1Fp

(
1, a0, . . . , aq−1
b0, . . . , bp−1

∣∣∣∣ (q/s)q

pp

)
.
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where

aj =
k + 1 + j

q
,

bj =
k
q
+

β + j
p

.

Furthermore, the following relation is satisfied:

L
[
Eip/q,β(t)

]
=

1
pp/qs

L
[
Ep/q,β(t)

]
. (17)
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Figure 2. The integral two-parameter Mittag-Leffler function Ei1,β(x) as a function of variable x and
parameters β.

Table 3. The Laplace transforms of the integral Mittag-Leffler functions Eiα,β derived for some values
of parameters α and β by using (15).

α β L
[
Eiα,β(t)

]
1 1

5 5
Γ( 1

5 )s2 2F1

(
1, 1

6
5

∣∣∣∣ 1s)
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√
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√
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s ln
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s
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1 3
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√
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1
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Table 3. Cont.

α β L
[
Eiα,β(t)

]
3
2

3
2 1
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( 1
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4
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Table 4. The Laplace transforms of the integral Mittag-Leffler functions Eiα,β derived for some values
of parameters α and β by using (15).

α β L
[
Eiα,β(t)

]
3 1

5 125
66 Γ( 1

5 )s2 2F3

(
1, 1

16
15 , 7

5 , 26
15
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27s
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(
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12 , 17
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4
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27s
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(
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9

∣∣∣∣ 1
27s

)
3 1

2 27
15
√

πs2 2F3

(
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7
6 , 3
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6
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(
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4
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(
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)
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)
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Table 4. Cont.

α β L
[
Eiα,β(t)

]
4 1 1

24 s2 2F4

(
1, 1

5
4 , 3

2 , 7
4 , 2

∣∣∣∣ 1
256 s

)
4 4 1

5040 s2 2F4

(
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2 , 11
4
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256 s

)
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(
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4
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)
5 1 1
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(
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6
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5 , 8
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5
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)
5 β 1

Γ(β+5)s2 2F5

(
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5 , β+6
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5 , β+8

5 , β+9
5

∣∣∣∣ 1
3125 s

)

3. The Integral Whittaker Functions

In 1903, Whittaker [15] showed that it is possible to express some special functions
such as Bessel functions, parabolic cylinder functions, error functions, incomplete gamma
functions, and logarithm and cosine integrals in terms of a new function suggested by
him, i.e., the Whittaker function. Two Whittaker functions are applied today, and they are
defined by using the Kummer confluent hypergeometric function [3,4]:

Mκ,μ(x) = xμ−1/2e−x/2
1F1

(
μ− κ + 1

2
1 + 2μ

∣∣∣∣x),

Wκ,μ(x) =
Γ(−2μ)

Γ
(

1
2 − k− μ

)Mκ,μ(x) +
Γ(2μ)

Γ
(

1
2 − k + μ

)Mκ,−μ(x).
(18)

This permits us to introduce four integral Whittaker functions:

Miκ,μ(x) =
∫ x

0

Mκ,μ(t)
t

dt,

miκ,μ(x) =
∫ ∞

x

Mκ,μ(t)
t

dt.
(19)

and

Wiκ,μ(x) =
∫ x

0

Wκ,μ(t)
t

dt,

wiκ,μ(x) =
∫ ∞

x

Wκ,μ(t)
t

dt.
(20)

The integral Whittaker functions with particular values of parameters κ and μ can
be expressed in terms of elementary and special functions. These cases, derived using
the MATHEMATICA program, are presented in Tables 5–9. Several integral Whittaker
functions Miκ,μ(x), miκ,μ(x), Wiκ,μ(x) and wiκ,μ(x) as a function of variable x at fixed
values of parameters κ and μ are plotted in Figures 3–6. Similarly, a long list of the
Whittaker functions Mκ,μ(x) and Wκ,μ(x) with integer and fractional parameters was
prepared (see Appendix B). In some cases, it was possible to obtain for them their Laplace
transforms, and they are also reported in Appendix B.
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Figure 3. The integral Whittaker functions Miκ,μ(x) as a function of variable x at fixed values of
parameters κ and μ.
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Figure 4. The integral Whittaker functions miκ,μ(x) as a function of variable x at fixed values of
parameters κ and μ.
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Figure 5. The integral Whittaker functions Wiκ,μ(x) as a function of variable x at fixed values of
parameters κ and μ.

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

x

wi , (x)
wi0,-3/2(x)
wi1/2,0(x)
wi5/2,0(x)
wi3,-1/2(x)
wi3,3/2(x)

Figure 6. The integral Whittaker functions wiκ,μ(x) as a function of variable x at fixed values of
parameters κ and μ.
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Table 5. The integral Whittaker functions Miκ,μ derived for some values of parameters κ and μ by
using (18) and (19).

κ μ Miκ,μ(x)
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√
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√
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Table 6. The integral Whittaker functions Miκ,μ derived for some values of parameters κ and μ by
using (18) and (19).

κ μ Miκ,μ(x)
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√
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)
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(
1, 1

2, 2, 2

∣∣∣∣ x2

16

)
− 4x2

2F3

(
1, 1

2, 2, 3

∣∣∣∣ x2

16

)
1 0

√
x

30

[
60 1F2

( 1
4

1, 5
4

∣∣∣∣ x2

16

)
+ 3x2

1F2

( 5
4

2, 9
4

∣∣∣∣ x2

16

)
− 20x 1F2

( 3
4

1, 7
4

∣∣∣∣ x2

16

)]
1 1

2 2
(

1− e−x/2
)

1 1 − 2x3/2

45

[
−20 1F2

( 3
4

1, 7
4

∣∣∣∣ x2

16

)
+ 5x2

1F2

( 3
4

7
4 , 3

4

∣∣∣∣ x2

16

)
+ 3x 1F2

( 5
4

2, 9
4

∣∣∣∣ x2

16

)]
3
2 0 2

√
xe−x/2

3
2

1
2

1
6
[
x
(
π L0
( x

2
)
− 8
)

I1
( x

2
)
+
(
πx L1

( x
2
)
− 6x + 4

)
I0
( x

2
)
+ 4
]

3
2 1

√
2π erf

(√
x
2

)
− 2

√
xe−x/2

3
2

3
2

1
5
[
2
(
−3π L0

( x
2
)
+ 8x + 8

)
I1
( x

2
)
+
(
6πx L1

( x
2
)
− 4x + 24

)
I0
( x

2
)
+ 24

]
2 1

2 xe−x/2

2 3
2 4− 2(2 + x)e−x/2

2 5
2 −5x−2

(
6(2 + x)ex − 2x(3 + x)2 − 12

)
+ 30 Shi

( x
2
)

Table 7. The integral Whittaker functions miκ,μ derived for some values of parameters κ and μ by
using (18) and (19).

κ μ miκ,μ(x)

1
2 0

√
2π erfc

(√
x
2

)
1 1

2 2e−x/2

3
2 1 2

√
xe−x/2 +

√
2π erfc

(√
x
2

)
2 1

2 −e−x/2

2 3
2 2(2 + x)e−x/2

5
2 1 − 2

3 x3/2e−x/2

5
2 2 2

√
x(3 + x)e−x/2 + 3

√
2π erfc

(√
x
2

)
3 1

2
1
3 [2 + (x− 2)x]e−x/2

3 3
2 − 1

2 x2e−x/2

4 1
2 − x

12 [12 + (x− 6)x]e−x/2

4 3
2

1
10

[
8 + (x− 2)2x

]
e−x/2
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Table 8. The integral Whittaker functions Wiκ,μ derived for some values of parameters κ and μ by
using (18) and (20).

κ μ Wiκ,μ(x)

− 3
2 0 −2

√
xe−x/2Ei(−x) +

√
2π erfc

(√
x
2

)
1
4

1
4 21/4γ

(
1
4 , x

2

)
1
2 0

√
2π erf

(√
x
2

)
1 − 1

2 2
(

1− e−x/2
)

1 1
2 2

(
1− e−x/2

)
3
2 0 −2

√
xe−x/2

3
2 1

√
2π erf

(√
x
2

)
− 2

√
xe−x/2

2 − 1
2 −2xe−x/2

2 1
2 −2xe−x/2

2 3
2 4− 2(2 + x)e−x/2

5
2 0

√
2π erf

(√
x
2

)
− 2

√
x(x− 1)e−x/2

3 3
2 −2x2e−x/2

3 5
2 16− 2[8 + (4 + x)x]e−x/2

4 − 1
2 −2x[12 + (x− 6)x]e−x/2

4 1
2 −2x[12 + (x− 6)x]e−x/2

4 3
2 16− 2

[
8 + x(x− 2)2

]
e−x/2

4 5
2 −2x3e−x/2

Table 9. The integral Whittaker functions wiκ,μ derived for some values of parameters κ and μ by
using (18) and (20).

κ μ wiκ,μ(x)

− 1
2 1 2x−1/2e−x/2 −

√
2π erfc

(√
x
2

)
− 1

2 2 2x−3/2e−x/2

− 1
2 3 1

3

[
−2(x− 6)(x + 2)x−5/2e−x/2 +

√
2π erfc

(√
x
2

)]
0 − 5

2
1
2 Ei
(
− x

2
)
+ 3x−2(x + 2)e−x/2

0 − 3
2 2x−1e−x/2

0 − 1
2 −Ei

(
− x

2
)

1
2 0

√
2π erfc

(√
x
2

)
1 − 1

2 2e−x/2

1 1
2 2e−x/2

1 5
2 2x−2[6 + x(6 + x)]e−x/2

3
2 0 2

√
xe−x/2
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Table 9. Cont.

κ μ wiκ,μ(x)
3
2 1

√
2π erfc

(√
x
2

)
+ 2

√
xe−x/2

2 1
2 2xe−x/2

2 3
2 2(2 + x)e−x/2

5
2 0

√
2π erfc

(√
x
2

)
+ 2

√
x(x− 1)e−x/2

5
2 1 2x3/2e−x/2

3 − 1
2 2[2 + x(x− 2)]e−x/2

3 1
2 2[2 + x(x− 2)]e−x/2

3 3
2 2x2e−x/2

3 5
2 2[8 + x(4 + x)]e−x/2

4 − 1
2 2x[12 + (x− 6)x]e−x/2

4 1
2 2x[12 + (x− 6)x]e−x/2

4 3
2 2

[
8 + (x− 2)2x

]
e−x/2

There is a number of recurrence relations between the Whittaker functions, for exam-
ple [3,4]

2μ
[
Mκ−1/2,μ−1/2(t)−Mκ+1/2,μ−1/2(t)

]
= t1/2Mκ,μ(t),

(κ + μ)Wκ−1/2,μ(t) + Wκ+1/2,μ(t) = t1/2Wκ,μ+1/2(t),
(21)

and this leads to integrals that are expressed in terms of the integral Whittaker functions

∫ x

0

Mκ,μ(t)
t1/2 dt = 2μ

[
Miκ−1/2,μ−1/2(t)−Miκ+1/2,μ−1/2(t)

]
,∫ x

0

Wκ,μ+1/2(t)
t1/2 dt = (κ + μ)Wiκ−1/2,μ(t) + Wiκ+1/2,μ(t).

(22)

Using the following representation of the Whittaker functions [5]

Mκ,μ(t) = tμ+1/2
∞

∑
n=0

2F1

(
−n, μ− κ + 1

2
1 + 2μ

∣∣∣∣2) (−t/2)n

n!
, (23)

it is possible to obtain the integral Whittaker functions in terms of a rapidly convergent
alternating series as follows:

Miκ,μ(x) = xμ+1/2
∞

∑
n=0

2F1

(
−n, μ− κ + 1

2
1 + 2μ

∣∣∣∣2) (−x/2)n

n!
(

1
2 + μ + n

) . (24)

There is a number of particular cases where the integral Whittaker functions can be
written in a closed-form, for example, from [5]

Mκ,κ−1/2(x) = xκe−x/2, (25)

we have
Miκ,κ−1/2(x) = 2κ γ

(
κ,

x
2

)
, (26)
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but [5]
Mκ,κ−1/2(x) = Wκ,κ−1/2(x) = Wκ,−κ+1/2(x) = e−x/2xκ , (27)

and therefore

Miκ,κ−1/2(x) = Wiκ,κ−1/2(x) = Wiκ,−κ+1/2(x) = 2κ γ
(

κ,
x
2

)
. (28)

Furthermore, from [5]

M0,μ(x) = 22μ+1/2Γ(μ + 1)

√
t
2

Iμ

( x
2

)
, (29)

follows that

Mi0,μ(x) =
xμ+1/2

μ + 1/2 1F2

(
2μ+1

4
μ + 1, 2μ+5

4

∣∣∣∣∣ x2

16

)
. (30)

Similary from

W0,μ(x) =
√

x
π

Kμ

( x
2

)
, (31)

we have

Wi0,μ(x) =
√

π

2 sin πμ

[
4μ Mi0,−μ(x)

Γ(1− μ)
− 4−μ Mi0,μ(x)

Γ(1 + μ)

]
, (32)

and in a general case

Wiκ,μ(x) =
Γ(−2μ)Miκ,μ(x)

Γ
(

1
2 − κ − μ

) +
Γ(2μ)Miκ,−μ(x)

Γ
(

1
2 − κ + μ

) . (33)

For κ = ±1/2, it is possible to obtain

Wi± 1
2 ,μ(x) = F±μ (x) + F±−μ(x), (34)

where we have set

F±μ (x) =
2x1/2+μΓ(−2μ)

(1 + 2μ)Γ
(

1
2 ∓ 1

2 − μ
) (35)

[
1F2

( 1
4 + μ

2
1
2 + μ, 3

4 + μ
2

∣∣∣∣ x2

16

)
∓ x/2

3 + 2μ 1F2

( 3
4 + μ

2
3
2 + μ, 7

4 + μ
2

∣∣∣∣ x2

16

)]
.

Since [16]

2F1

( −n, λ
2λ + 1

∣∣∣∣2) (36)

=
Γ
(

λ + 1
2

)
√

π

⎡⎣(1 + (−1)n

2

) Γ
(

n+1
2

)
Γ
(

λ + n+1
2

) +

(
1− (−1)n

2

)
Γ
( n

2 + 1
)

Γ
(
λ + n

2 + 1
)
⎤⎦,

and

2F1

( −n, λ
2λ− 1

∣∣∣∣2) (37)

=
Γ
(

λ− 1
2

)
√

π

⎡⎣(1 + (−1)n

2

) Γ
(

n+1
2

)
Γ
(

λ + n−1
2

) −(1− (−1)n

2

)
Γ
( n

2 + 1
)

Γ
(
λ + n

2
)
⎤⎦,
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by introducing λ = μ and λ = μ + 1, after some steps, it leads to

Mi± 1
2 ,μ(x) (38)

=
xμ+1/2

μ + 1/2

[
1F2

( μ
2 + 1

4
μ + 1

2 , μ
2 + 3

4

∣∣∣∣ x2

16

)
∓ x/2

2μ + 3 1F2

( μ
2 + 3

4
μ + 3

2 , μ
2 + 7

4

∣∣∣∣ x2

16

)]
.

4. The Integral Wright Functions

In 1933 [17] and in 1940 [18], Wright introduced new special functions that were
considered as a kind of generalization of the Bessel functions. However, today they play
a significant independent role in mathematics and in solutions of physical problems by
modeling space diffusion, stochastic processes, probability distributions and other diverse
natural phenomena [19,20]. The Wright functions are defined by the following series

Wα,β(x) =
∞

∑
k=0

xk

k! Γ(αk + β)
. (39)

If the parameter α is a positive real number, they are called the Wright functions of the
first kind, and when −1 < α < 0, the Wright functions of the second kind.

Furthermore, consider the following functions:

Fα(x) = W−α,0(−x), 0 < α < 1,
Mα(x) = W−α,1−α(−x), 0 < α < 1,
Fα(x) = α x Mα(x).

(40)

These functions with negative arguments x and with particular values of param-
eters are frequently named as the Mainardi functions and are denoted as Fα(x) and
Mα(x) [19,20].

Their explicit form is

Fα(x) =
∞

∑
k=1

(−x)k

k!Γ(−αk)

= − 1
π

∞

∑
k=1

(−x)k

k!
Γ(αk + 1) sin(παk),

Mα(x) =
∞

∑
k=0

(−x)k

k!Γ(−α(k + 1) + 1)

=
1
π

∞

∑
k=0

(−x)k

k!
Γ(α(k + 1)) sin(πα(k + 1)).

(41)

For positive rational α = p/q, where p, q are positive coprimes, we have obtained
reduction formulas for Fp/q(x) and Mp/q(x) in Appendix C. Furthermore, by applying
the MATHEMATICA program to sums of infinite series in (39), it is possible to obtain the
Wright functions of the first and second kinds for particular values of parameters α and β
in an explicit form (Appendix C). The Laplace transforms of these functions are expressed
in terms of the Mittag-Leffler functions, so they are omitted here [19–21].

The two-parameter Eα,β(t) Mittag-Leffler functions defined in (9) differ only by the
absence of factorials from the Wright functions and, therefore, the form of series in (39)
leads to the integral Wright function, which is similar to that introduced in (11) and (12).

Wiα,β(x) =
∫ x

0

Wα,β(t)− 1/Γ(β)

t
dt. (42)

Unfortunately, the notation is the same as the integral Whittaker functions. In an
explicit form from (39), we have
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Wiα,β(x) =
∞

∑
k=1

xk

k k! Γ(αk + β)
. (43)

For p and q positive coprimes, applying (A1) and (A2), the corresponding expression
to (14) is

Wip/q,β(x) (44)

=
q−1

∑
k=1

xk

k k!Γ
(

p
q k + β

) 2Fp+q

(
1, k/q

b0, . . . , bp−1, c0, . . . , cq−1

∣∣∣∣ xq

ppqq

)
,

bj =
k
q
+

β + j
p

, cj =
k + 1 + j

q
.

In the case of the Mainardi functions, we have

Fip/q(x) = − 1
π

q

∑
k=1

(−x)k

k k!
Γ
(

p
q

k + 1
)

sin
(

π
p
q

k
)

Sk(x),

Mip/q(x) =
1
π

q

∑
k=1

(−x)k

k k!
sin
(

π
p
q
(k + 1)

)
Γ
(

p
q
(k + 1)

)
Sk(x),

(45)

where

Sk(x) = p+2Fq+1

(
1, k

q , a0, . . . , ap−1
k
q + 1, b0, . . . , bq−1

∣∣∣∣∣ (−1)p+qxq pp

qq

)
, (46)

aj =
k
q
+

j + 1
p

, bj =
k + 1 + j

q
.

In Tables 10 and 11, the integral Wright functions derived with the help of MATH-
EMATICA program for some values of parameters α and β are derived. There are many
other expressions for these functions, which are available using this program, but being
long and complex, they were omitted. The integral Mainardi fuctions Fiα(x) and Miα(x)
for 0 < α < 1, are presented in Tables 12 and 13. As can be expected, most of these integral
functions are expressed in terms of generalized hypergeometric functions.

Table 10. The integral Wright functions Wiα,β derived for some values of parameters α and β by
using (43).

α β Wiα,β(x)

−1 1
2

1√
π

[
ln4− 2ln

(√
1 + x + 1

)]
−1 3

2 x√
π 3F2

( 1
2 , 1, 1
2, 2

∣∣∣∣− x
)

−1 β x
Γ(β−1) 3F2

(
1, 1, 2− β

2, 2

∣∣∣∣− x
)

0 − 4
3

−γ−lnx+Chi(x)+Shi(x)
Γ(−4/3)

0 β −γ−lnx+Chi(x)+Shi(x)
Γ(β)

1
2 0 − 1

2 + 1
2 0F2

( −
1
2 , 1

∣∣∣∣ x2

4

)
+ x√

π 0F2

( −
1
2 , 3

2

∣∣∣∣ x2

4

)
1
2

1
2 x2

2
√

π 2F4

(
1, 1

3
2 , 3

2 , 2, 2

∣∣∣∣ x2

4

)
+ x 1F3

( 1
2

1, 3
2 , 3

2

∣∣∣∣ x2

4

)

411



Mathematics 2021, 9, 3255

Table 10. Cont.

α β Wiα,β(x)

1
2 1 x

4

[
8√
π 1F3

( 1
2

3
2 , 3

2 , 3
2

∣∣∣∣ x2

4

)
+ x 2F4

(
1, 1

3
2 , 3

2 , 2, 2

∣∣∣∣ x2

4

)]
1
2 2 x2

8 2F4

(
1, 1

3
2 , 2, 2, 3

∣∣∣∣ x2

4

)
+ 4x

3
√

π 1F3

( 1
2

3
2 , 3

2 , 5
2

∣∣∣∣ x2

4

)
1
2 β x2

4 Γ(1+β) 2F4

(
1, 1

3
2 , 2, 2, β + 1

∣∣∣∣ x2

4

)
+ x

Γ( 1
2 +β) 1F3

( 1
2

3
2 , 3

2 , β + 1
2

∣∣∣∣ x2

4

)
1 − 3

2 − x
2
√

π 2F3

(
1, 1

− 1
2 , 2, 2

∣∣∣∣x)
3 3

2 x√
π 2F3

(
1, 1

1
2 , 2, 2

∣∣∣∣x)
1 0 −1 + I0

(
2
√

x
)

1 1
4 x

Γ(5/4) 2F3

(
1, 1

5
2 , 2, 2

∣∣∣∣x)
1 1

2 − 2γ+ln4+lnx−2 Chi(2
√

x)√
π

1 1 x 2F3

(
1, 1

2, 2, 2

∣∣∣∣x)
1 3

2 − 1√
πx

[
2 sinh

(
2
√

x
)
− 2

√
x
(
2γ− 2 + ln4− 2 Chi

(
2
√

x
))]

1 β x 2F3

(
1, 1

2, 2, β + 1

∣∣∣∣x)

Table 11. The integral Wright functions Wiα,β derived for some values of parameters α and β by
using (43).

α β Wiα,β(x)

3
2

1
2

2x2

15
√

π 2F6

(
1, 1

7
2 , 3

2 , 3
2 , 11

6 , 2, 2

∣∣∣∣ x2

108

)
+ x 1F5

( 1
2

2
3 , 1, 4

3 , 3
2 , 3

2

∣∣∣∣ x2

108

)
2 1

4
16 x

5 Γ(1/4) 2F4

(
1, 1

9
8 , 13

8 , 2, 2

∣∣∣∣ x
4

)
2 1

3
9 x

4 Γ(1/3) 2F4

(
1, 1

7
6 , 5

3 , 2, 2

∣∣∣∣ x
4

)
2 1

2
4 x

3
√

π 2F4

(
1, 1

5
4 , 7

4 , 2, 2

∣∣∣∣ x
4

)
2 1 x

2 2F4

(
1, 1

3
2 , 2, 2, 2

∣∣∣∣ x
4

)
2 2 x

6 2F4

(
1, 1

5
2 , 2, 2, 2

∣∣∣∣ x
4

)
2 β x

Γ(β+2) 2F4

(
1, 1

2, 2, β
2 + 1, β+3

2

∣∣∣∣ x
4

)
3 1 x

6 2F4

(
1, 1

4
3 , 5

3 , 2, 2

∣∣∣∣ x
27

)
3 β x

Γ(β+3) 2F5

(
1, 1

2, 2, β
3 + 1, β+4

3 , β+5
3

∣∣∣∣ x
27

)
4 β x

Γ(β+4) 2F6

(
1, 1

2, 2, β
4 + 1, β+5

4 , β+6
4 , β+7

4

∣∣∣∣ x
256

)
5 β x

Γ(β+5) 2F7

(
1, 1

2, 2, β
4 + 1, β+6

5 , β+7
5 , β+8

5 , β+9
5

∣∣∣∣ x
3125

)
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Table 12. The integral Mainardi function Fiα derived for some values of parameter α by using (45).

α Fiα(x)

3
4

−x
[

1
Γ(− 3

4 )
3F3

( 1
4 , 7

12 , 11
12

1
2 , 3

4 , 5
4

∣∣∣∣− 27x4

256

)
+ x

144(
8x

Γ(− 9
4 )

3F3

( 3
4 , 13

12 , 17
12

5
4 , 3

2 , 7
4

∣∣∣∣− 27x4

256

)
− 27√

π 3F4

( 1
2 , 5

6 , 7
6

3
4 , 5

4 , 3
2

∣∣∣∣− 27x4

256

))]
2
3

x
4

[
x

Γ(− 4
3 )

2F2

( 2
3 , 7

6
4
3 , 5

3

∣∣∣∣− 4x3

27

)
− 4

Γ(− 2
3 )

2F2

( 1
3 , 5

6
2
3 , 4

3

∣∣∣∣− 4x3

27

)]
1
2

1
2 erf
( x

2
)

1
3

x
4

[
x

Γ(− 2
3 )

1F2

( 2
3

4
3 , 5

3

∣∣∣∣ x3

27

)
− 4

Γ(− 1
3 )

1F2

( 1
3

2
3 , 4

3

∣∣∣∣ x3

27

)]

1
4

−x
[

1
Γ(− 1

4 )
1F3

( 1
4

1
2 , 3

4 , 5
4

∣∣∣∣− x4

256

)
+ x

72(
9√
π 1F3

( 1
2

3
4 , 5

4 , 3
2

∣∣∣∣− x4

256

)
+ 4x

Γ(− 3
4 )

3F4

( 3
4

5
4 , 3

2 , 7
4

∣∣∣∣− x4

256

))]

Table 13. The integral Mainardi function Miα derived for some values of parameter α by using (45).

α Miα(x)

3
4

x
96

[
48√

π 3F3

( 1
4 , 5

6 , 7
6

3
4 , 5

4 , 5
4

∣∣∣∣− 27x4

256

)
+ 24x

Γ(− 5
4 )

3F3

( 1
2 , 13

12 , 17
12

5
4 , 3

2 , 3
2

∣∣∣∣− 27x4

256

)
+ x3

Γ(− 11
4 )

4F4

(
1, 1, 19

12 , 23
12

3
2 , 7

4 , 2, 2

∣∣∣∣− 27x4

256

)]
2
3 − x3

18 Γ(− 5
3 )

3F3

(
1, 1, 11

6
5
3 , 2, 2

∣∣∣∣− 4x3

27

)
− x

Γ(− 1
3 )

2F2

( 1
3 , 7

6
4
3 , 4

3

∣∣∣∣− 4x3

27

)
1
2

1
2
√

π

[
Chi
(

x2

4

)
− Shi

(
x2

4

)
− ln
(

x2

4

)
− γ
]

1
3 − x3

18 Γ(− 1
3 )

2F3

(
1, 1

5
3 , 2, 2

∣∣∣∣ x3

27

)
− x

Γ( 1
3 )

1F2

( 1
3

4
3 , 4

3

∣∣∣∣ x3

27

)

1
4

− x√
π 1F3

( 1
4

3
4 , 5

4 , 5
4

∣∣∣∣− x4

256

)
+ x2

4 Γ( 1
4 )

1F3

( 1
2

5
4 , 3

2 , 3
2

∣∣∣∣− x4

256

)
+ x4

96 Γ(− 1
4 )

2F4

(
1, 1

3
2 , 7

4 , 2, 2

∣∣∣∣− x4

256

)]

5. Conclusions

For the first time, three new special functions are presented in this investigation: the
integral Mittag-Leffler functions, the integral Whittaker functions, and the integral Wright
functions. These functions are defined in the mathematical literature in the same manner
as other elementary and special integral functions. It is feasible to generate these functions
in an explicit form for certain parameters values using the MATHEMATICA application.
These integral functions are often represented in terms of generalized hypergeometric
functions. The behavior of some of them is shown graphically. In the Appendices, a large
number of Mittag-Leffler, Whittaker, and Wright functions with integral and fractional
parameters, as well as their Laplace transforms, are presented in tabular form.

It may be observed that, generally, it is highly possible to make general integral
functions such as (19) and (20) by using generalized hypergeometric pFp(t), because they
converge in the whole complex t-plane, or, for every real number t.
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Appendix A. Representations of the One- and Two-Parameter Mittag-Leffler Functions

and Their Laplace Transforms

The Mittag-Leffler functions are defined by the sums of infinite series presented
in (9) and their Laplace transforms in (10). For positive variable x and some values of
parameters α and β, these sums can be expressed in terms of elementary and special
functions, especially in terms of generalized hypergeometric functions. They were derived
by using the MATHEMATICA program and presented in Tables A1 and A2 for the Mittag-
Leffler functions, as well as Tables A3 and A4 for the Laplace transforms. These results,
given in terms of infinite series, are mostly new, and only they are only partly known in
the mathematical literature. Knowing that any infinite sum can be split as

∞

∑
k=0

a(k) =
q−1

∑
j=0

∞

∑
k=0

a(qk + j), (A1)

and applying the multiplication formula of the gamma function ([5] (Eqn. 5.5.6)), for
nt �= 0,−1,−2, . . .

Γ(nt) = (2π)(1−n)/2nnt−1/2
n−1

∏
j=0

Γ
(

t +
j
n

)
, (A2)

it is possible to express from (9) the Mittag-Leffler function in the case of positive rational
α = p/q with p and q positive coprimes,

Ep/q,β(x) =
q−1

∑
k=0

xk

Γ
(

p
q k + β

) 1Fp

(
1

b0, . . . , bp−1

∣∣∣∣ xq

pp

)
, (A3)

where
bj =

k
q
+

β + j
p

.

The corresponding Laplace transforms are

L
[
Ep/q,β(t)

]
(A4)

=
q−1

∑
k=0

s−k−1

Γ
(

p
q k + β

) q+1Fp

(
1, a0, . . . , aq−1
b0, . . . , bp−1

∣∣∣∣ (q/s)q

pp

)
,
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where

aj =
k + 1 + j

q
,

bj =
k
q
+

β + j
p

.

Table A1. The Mittag-Leffler functions derived for some values of parameters α and β by using (9).

α β Eα,β(x)

1
2

1
2

1√
π
+ x ex2

[erf(x) + 1]

1
2 1 ex2

[erf(x) + 1]

1
2

3
2

ex2
[erf(x)+1]−1

x

1
2 2 1

x2

[
ex2

[erf(x) + 1]− 1− 2x√
π

]
1
2 3 − 1

3x4

[
3ex2

[erfc(x)− 2] + 4x3+6x√
π

+ 3
(
1 + x2)]

1
2 4 1

30x4

[
30 ex2

[erf(x) + 1]− 4x(4x4+10x2+15)√
π

− 15
(

x4 + 2x2 + 2
)]

1
2 β ex2

x2(1−β)

[
2− Γ(β−1,x2)

Γ(β−1) − Γ(β− 1
2 ,x2)

Γ(β− 1
2 )

]
1 1

2
1√
π
+
√

x ex erf
(√

x
)

1 1 ex

1 3
2

ex erf(
√

x)√
x

1 2 ex−1
x

3
2

1
2

1√
π 1F3

(
1

1
6 , 1

2 , 5
6

∣∣∣∣ x2

27

)
+ x1/3

3

[
ex2/3 − 2 e−x2/3/2 sin

(
π−3

√
3x2/3

6

)]
3
2 1 1

3

[
4x√

π 1F3

(
1

5
6 , 7

6 , 3
2

∣∣∣∣ x2

27

)
+ ex2/3

+ 2 e−x2/3/2 cos
(√

3
2 x2/3

)]
3
2

3
2

2√
π 1F3

(
1

1
2 , 5

6 , 7
6

∣∣∣∣ x2

27

)
+ x−1/3

3

[
ex2/3 − 2 e−x2/3/2 sin

(
π+3

√
3x2/3

6

)]
3
2 2 8x

15
√

π 1F3

(
1

7
6 , 3

2 , 11
6

∣∣∣∣ x2

27

)
+ x−2/3

3

[
ex2/3 − 2 e−x2/3/2 sin

(
π−3

√
3x2/3

6

)]
3
2 β x

Γ(β+ 1
2 )

1F3

(
1

2β+3
6 , 2β+5

6 , 2β+7
6

∣∣∣∣ x2

27

)
+ 1

Γ(β) 1F3

(
1

β+1
3 , β+2

3 , β
3

∣∣∣∣ x2

27

)
2 1

2
1√
π 1F2

(
1

1
4 , 3

4

∣∣∣∣ x
4

)
2 1 cosh

(√
x
)

2 2
sinh(

√
x)√

x

2 3
cosh(

√
x)−1

x

2 4
sinh(

√
x)

x3/2 − 1
x

2 β 1
Γ(β) 1F2

(
1

β+1
2 , β

2

∣∣∣∣ x
4

)
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Table A2. The Mittag-Leffler functions derived for some values of parameters α and β by using (9).

α β Eα,β(x)

3 1 1
3

[
ex1/3

+ 2 e−x1/3/2 cos
(√

3
2 x1/3

)]
3 2 x−1/3

3

[
ex1/3 − 2 e−x1/3/2 sin

(
π−3

√
3x1/3

6

)]
3 3 x−2/3

3

[
ex1/3 − 2 e−x1/3/2 sin

(
π+3

√
3x1/3

6

)]
3 β 1

Γ(β) 1F3

(
1

β+1
3 , β+2

3 , β
3

∣∣∣∣ x
27

)
4 1 1

2

[
cos
(

x1/4
)
+ cosh

(
x1/4
)]

4 2
sin(x1/4)+sinh(x1/4)

2x1/4

4 3
cosh(x1/4)−cos(x1/4)

2
√

x

4 4
sinh(x1/4)−sin(x1/4)

2x3/4

4 β 1
Γ(β) 1F4

(
1

β+1
4 , β+2

4 , β+3
4 , β

4

∣∣∣∣ x
256

)
5 1 0F4

( −
1
5 , 2

5 , 3
5 , 4

5

∣∣∣∣ x
3125

)
5 2 0F4

( −
2
5 , 3

5 , 4
5 , 6

5

∣∣∣∣ x
3125

)
5 3 1

2 0F4

( −
3
5 , 4

5 , 6
5 , 7

5

∣∣∣∣ x
3125

)
5 4 1

6 0F4

( −
4
5 , 6

5 , 7
5 , 8

5

∣∣∣∣ x
3125

)
5 5 1

24 0F4

( −
6
5 , 7

5 , 8
5 , 9

5

∣∣∣∣ x
3125

)
5 β 1

Γ(β) 1F5

(
1

β+1
5 , β+2

5 , β+3
5 , β+4

5 , β
5

∣∣∣∣ x
3125

)

Table A3. The Laplace transforms Mittag-Leffler functions derived for some values of parameters α

and β by using (10).

α β L
[
Eα,β(t)

]
1 1

2

√
s−1+csc−1(

√
s)√

π(s−1)3/2

1
2 1 1

s−1

1 3
2

2 csc−1(
√

s)√
π
√

s−1

1 2 ln
( s

s−1
)

1 β 1
s Γ(β) 2F1

(
1, 1
β

∣∣∣∣ 1s)
3
2

1
2 1√

πs 2F2

(
1, 1
1
6 , 5

6

∣∣∣∣ 4
27s2

)
+ 1

s2 2F2

(
1, 3

2
2
3 , 4

3

∣∣∣∣ 4
27s2

)
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Table A3. Cont.

α β L
[
Eα,β(t)

]
3
2 1 4

3
√

πs2 2F2

(
1, 1
5
6 , 7

6

∣∣∣∣ 4
27s2

)
+ 1

s 2F2

( 1
2 , 1
1
3 , 2

3

∣∣∣∣ 4
27s2

)
3
2

3
2 2√

πs 2F2

(
1, 1
5
6 , 7

6

∣∣∣∣ 4
27s2

)
+ 1

2s2 2F2

(
1, 3

2
4
3 , 5

3

∣∣∣∣ 4
27s2

)
3
2 2 8

15
√

πs2 2F2

(
1, 1

7
6 , 11

6

∣∣∣∣ 4
27s2

)
+ 1

s 2F2

( 1
2 , 1
2
3 , 4

3

∣∣∣∣ 4
27s2

)

3
2 β

1
Γ(β)s 3F3

(
1
2 , 1, 1

β+1
3 , β+2

3 , β
3

∣∣∣∣∣ 4
27s2

)
+

1
Γ(β+ 3

2 )s2 3F3

(
1, 1, 3

2
2β+3

6 , 2β+5
6 , 2β+7

6

∣∣∣∣∣ 4
27s2

)
2 1

2 1√
πs 2F2

(
1, 1
1
4 , 3

4

∣∣∣∣ 1
4s

)
2 1 1

s +
√

π
2 s−3/2e1/(4s)erf

(
1

2
√

s

)
2 2 √

πs−1/2e1/(4s)erf
(

1
2
√

s

)
2 3 1

2s 2F2

(
1, 1
3
2 , 2

∣∣∣∣ 1
4s

)
2 4 1

6s 2F2

(
1, 1
2, 5

2

∣∣∣∣ 1
4s

)
2 β 1

Γ(β)s 2F2

(
1, 1

β+1
2 , β

2

∣∣∣∣ 1
4s

)

Table A4. The Laplace transforms Mittag-Leffler functions derived for some values of parameters α

and β by using (10).

α β L
[
Eα,β(t)

]
3 1 1

s 1F2

(
1

1
3 , 2

3

∣∣∣∣ 1
27s

)
3 2 1

s 1F2

(
1

2
3 , 4

3

∣∣∣∣ 1
27s

)
3 3 1

2s 1F2

(
1

4
3 , 5

3

∣∣∣∣ 1
27s

)
3 β 1

Γ(β)s 2F3

(
1, 1

β+1
3 , β+2

3 , β
3

∣∣∣∣ 1
27s

)
4 1 1

s 1F3

(
1

1
4 , 1

2 , 3
4

∣∣∣∣ 1
256s

)
4 2 1

s 1F3

(
1

1
2 , 3

4 , 5
4

∣∣∣∣ 1
256s

)
4 3 1

2s 1F3

(
1

3
4 , 5

4 , 3
2

∣∣∣∣ 1
256s

)
4 4 1

6s 1F3

(
1

5
4 , 3

2 , 7
4

∣∣∣∣ 1
256s

)
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Table A4. Cont.

α β L
[
Eα,β(t)

]
4 β 1

Γ(β)s 2F4

(
1, 1

β+1
4 , β+2

4 , β+3
4 , β

4

∣∣∣∣ 1
256s

)
5 1 1

s 1F4

(
1

1
5 , 2

5 , 3
5 , 4

5

∣∣∣∣ 1
3125s

)
5 2 1

s 1F4

(
1

2
5 , 3

5 , 4
5 , 6

5

∣∣∣∣ 1
3125s

)
5 3 1

2s 1F4

(
1

3
5 , 4

5 , 6
5 , 7

5

∣∣∣∣ 1
3125s

)
5 4 1

6s 1F4

(
1

4
5 , 6

5 , 7
5 , 8

5

∣∣∣∣ 1
3125s

)
5 5 1

24s 1F4

(
1

6
5 , 7

5 , 8
5 , 9

5

∣∣∣∣ 1
3125s

)
5 β 1

Γ(β)s 2F5

(
1, 1

β+1
5 , β+2

5 , β+3
5 , β+4

5 , β
5

∣∣∣∣ 1
3125s

)

Appendix B. Representations of the Whittaker Functions and Their Laplace Transforms

The Whittaker functions Mκ,μ(x) and Wκ,μ(x) defined in (18) were derived by using
the MATHEMATICA program, and they are presented in Tables A5, A6, A10 and A11.
The corresponding Laplace transforms are in Tables A7–A9 and A12. Most of the reported
results in these tables are unknown in the mathematical reference literature.

Table A5. The Whittaker functions Mκ,μ derived for some values of parameters κ and μ by using (18).

κ μ Mκ,μ(x)

− 5
2 0

√
x

2 ex/2[x(x + 4) + 2]

− 3
2 0

√
xex/2(x + 1)

− 3
2

1
2

x
3
[
(2x + 3)I0

( x
2
)
+ (2x + 1)I1

( x
2
)]

− 3
2 1 ex/2x3/2

− 3
2

3
2

4
5
[
x(2x− 3)I0

( x
2
)
+ [x(2x− 3) + 4]I1

( x
2
)]

− 3
2 2 4x−3/2e−x/2[ex(x3 − 3x2 + 6x− 6

)
+ 6
]

− 3
2

5
2

32
7x
[
x
(
2x2 − 9x + 24

)
I0
( x

2
)
+
(
2x3 − 11x2 + 36x− 96

)
I1
( x

2
)]

− 3
2 3 30x−5/2e−x/2[ex(x4 − 8x3 + 36x2 − 96x + 120

)
− 24(x + 5)

]
− 1

6 0 e−x/2√xL−2/3(x)

− 1
4 0 e−x/2√xL−3/4(x)

− 1
4

1
4

√
π

2 ex/2x1/4erf
(√

x
)

− 1
3 0 e−x/2√xL−5/6(x)

− 1
2

1
2 x

[
I0
( x

2
)
+ I1
( x

2
)]

− 1
2 1 x−1/2e−x/2[2ex(x− 1) + 2]

− 1
2

3
2 4

[
xI0
( x

2
)
+ (x− 4)I1

( x
2
)]

− 1
2 2 12x−3/2e−x/2[ex(x2 − 4x + 6

)
− 2(x + 3)

]
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Table A5. Cont.

κ μ Mκ,μ(x)

0 1
8 x5/8

0F1

( −
9
8

∣∣∣∣ x2

16

)
0 1

7 x9/14
0F1

( −
8
7

∣∣∣∣ x2

16

)
0 1

6 x2/3
0F1

( −
7
6

∣∣∣∣ x2

16

)
0 1

5 x7/10
0F1

( −
6
5

∣∣∣∣ x2

16

)
0 1

4 x3/4
0F1

( −
5
4

∣∣∣∣ x2

16

)
0 1

3 x5/6
0F1

( −
4
3

∣∣∣∣ x2

16

)

Table A6. The Whittaker functions Mκ,μ derived for some values of parameters κ and μ by using (18).

κ μ Mκ,μ(x)

0 1
2 2 sinh

( x
2
)

0 1 4
√

xI1
( x

2
)

0 3
2 12

[
cosh

( x
2
)
− 2

x sinh
( x

2
)]

0 2 32
√

xI2
( x

2
)

0 5
2

120
x2

[(
x2 + 12

)
sinh
( x

2
)
− 6x cosh

( x
2
)]

1
6 0 e−x/2√xL−1/3(x)
1
4 − 5

4 x−3/4e−x/2( 2x
3 + 1

)
1
4 − 3

4 x−1/4ex/2

1
4 − 1

4 x1/4e−x/2

1
4 0 e−x/2√xL−1/4(x)
1
3 0 e−x/2√xL−1/6(x)
1
2 0 e−x/2√x
1
2

1
2 x

[
I0
( x

2
)
− I1
( x

2
)]

1
2 1 2x−1/2e−x/2(ex − x− 1)
1
2

3
2 4

[
−xI0

( x
2
)
+ (x + 4)I1

( x
2
)]

1
2

5
2 32

[
(x + 8)I0

( x
2
)
−
(

x + 4 + 32
x
)

I1
( x

2
)]

1 0
√

x
[
−(x− 1)I0

( x
2
)
+ xI1

( x
2
)]

1 1
2 x e−x/2

1 1 4
3
√

x
[
xI0
( x

2
)
− (x + 1)I1

( x
2
)]

3
2 0 −√xe−x/2(x− 1)
3
2

1
2 − x

3
[
(2x− 3)I0

( x
2
)
+ (1− 2x)I1

( x
2
)]
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Table A6. Cont.

κ μ Mκ,μ(x)
3
2 1 x3/2 e−x/2

3
2

3
2

4
5
[
x(2x + 1)I0

( x
2
)
−
(
2x2 + 3x + 4

)
I1
( x

2
)]

2 0 1
3
√

x
[(

2x2 − 6x + 3
)

I0
( x

2
)
− 2x(x− 2)I1

( x
2
)]

2 1
2 − 1

2 e−x/2x(x− 2)

2 1 − 4
15
√

x
[
2x(x− 2)I0

( x
2
)
+
(
−2x2 + 2x + 1

)
I1
( x

2
)]

2 3
2 x2 e−x/2

2 2 32
35
√

x

[
x
(
2x2 + 2x + 3

)
I0
( x

2
)
−
(

x3 + 2x2 + 4x + 6
)

I1
( x

2
)]

5
2 0 1

2 e−x/2√x
(

x2 − 4x + 2
)

5
2

1
2

x
15
[(

4x2 − 18x + 15
)

I0
( x

2
)
+
(
−4x2 + 14x− 3

)
I1
( x

2
)]

5
2 1 − 1

3 e−x/2x3/2(x− 3)
5
2 2 x5/2 e−x/2

3 1
2

1
6 e−x/2x

(
x2 − 6x + 6

)
3 1 4

√
x

105
[
x
(
4x2 − 24x + 27

)
I0
( x

2
)
−
(
4x3 + 20x2 + 9x + 3

)
I1
( x

2
)]

3 3
2 − 1

4 e−x/2x2(x− 4)

3 5
2 x3 e−x/2

7
2 0 − 1

6 e−x/2√x
(

x3 − 9x2 + 18x− 6
)

4 1
2 − 1

24 e−x/2x
(

x3 − 12x2 + 36x− 24
)

4 3
2

1
20 e−x/2x2(x2 − 10x + 20

)
Table A7. The Laplace transforms of the Whittaker function Mκ,μ derived for some values of
parameters κ and μ.

κ μ L
[
Mκ,μ(t)

]
− 5

2 0
√

π
2

8s2+16s+5
(2s−1)7/2

− 3
2 0 2

√
2π(s+1)

(2s−1)5/2

− 3
2

1
2

{
4
√

4s2−1
(2s−1)3 , s > 1

2

0, s < 1
2

− 3
2 1 2

√
2π

(2s−1)5/2

− 3
2

3
2

⎧⎨⎩
16{−4s[4s2−2s(

√
4s2−1+3)+3(

√
4s2−1+1)]+7

√
4s2−1+2}

5(2s−1)3 , s > 1
2

− 32
5 , s < 1

2

− 1
6 0

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

√
2π

[
(6s+3) 2 F1

(
− 1

2 , 2
3

1

∣∣∣∣∣ 2
2s+1

)
+2 2 F1

( 1
2 , 2

3
1

∣∣∣∣∣ 2
2s+1

)]
5(2s−1)3 , s > 1

2

−
π 2 F1

⎛⎝ 2
3 , 2

3
1
6

∣∣∣∣∣∣s+ 1
2

⎞⎠
(s+ 1

2 )
5/6

Γ( 1
6 )Γ( 1

3 )
, s < 1

2
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Table A7. Cont.

κ μ L
[
Mκ,μ(t)

]
− 1

4
1
4

215/4Γ( 11
4 )

⎡⎣(6s+3) 2 F1

⎛⎝ − 1
4 , 1

2
3
2

∣∣∣∣∣∣ 2
1−2s

⎞⎠−4( 2
2s+1 +1)

1/4

⎤⎦
21(2s−1)7/4(2s+1)

− 1
3 0

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

√
2π

[
(6s+3) 2 F1

(
− 1

2 , 5
6

1

∣∣∣∣∣ 2
2s+1

)
+4 2 F1

( 1
2 , 5

6
1

∣∣∣∣∣ 2
2s+1

)]
3(2s−1)(2s+1)3/2 , s > 1

2

−
π 2 F1

⎛⎝ 5
6 , 5

6
1
3

∣∣∣∣∣∣s+ 1
2

⎞⎠
(s+ 1

2 )
2/3

Γ( 1
6 )Γ( 1

3 )
, s < 1

2

− 1
2 0 2

√
2π

(2s−1)3/2

− 1
2

1
2

{
4

(2s−1)
√

4s2−1
, s > 1

2

0, s < 1
2

− 1
2 1 2

√
2π

[
1√

2s+1
− 1√

2s−1
+ 1

(2s−1)3/2

]
0 1

⎧⎪⎨⎪⎩
23/2[(1−2s)K( 2

2s+1 )+2s E( 2
2s+1 )]√

π(2s−1)
√

2s+1
, s > 1

2
8[(1−2s)K(s+ 1

2 )+4s E(s+ 1
2 )]√

π(4s2−1)
, s < 1

2

0 2

⎧⎪⎨⎪⎩
64[8s(1−2s)K( 2

2s+1 )+(16s2−3)E( 2
2s+1 )]√

π(2s−1)
√

s+ 1
2

, s > 1
2

64[(−16s2+2s+3)K(s+ 1
2 )+(32s2−6)E(s+ 1

2 )]√
π(4s2−1)

, s < 1
2

1
6 0

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

√
2π

[
(6s+3) 2 F1

(
− 1

2 , 1
3

1

∣∣∣∣∣ 2
2s+1

)
−2 2 F1

( 1
3 , 1

2
1

∣∣∣∣∣ 2
2s+1

)]
3(2s−1)(2s+1)3/2 , s > 1

2

√
2πΓ( 7

6 ) 2 F1

⎛⎝ 1
3 , 1

3
− 1

6

∣∣∣∣∣∣s+ 1
2

⎞⎠
(2s+1)7/6Γ( 5

6 )Γ( 1
3 )

, s < 1
2

Table A8. The Laplace transforms of the Whittaker functions Mκ,μ derived for some values of
parameters κ and μ.

κ μ L
[
Mκ,μ(t)

]
1
4 − 5

4
3(s+ 1

2 )Γ( 1
4 )+2 Γ( 5

4 )
3(s+ 1

2 )
5/4

1
4 − 3

4
Γ( 3

4 )

(s− 1
2 )

3/4

1
4 − 1

4
Γ( 5

4 )

(s+ 1
2 )

5/4

0 1
2

4
4s2−1

1
3 0

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

√
2π

[
(6s+3) 2 F1

(
− 1

2 , 1
6

1

∣∣∣∣∣ 2
2s+1

)
−4 2 F1

( 1
6 , 1

2
1

∣∣∣∣∣ 2
2s+1

)]
3(2s−1)(2s+1)3/2 , s > 1

2

Γ( 1
6 )Γ( 1

3 ) 2 F1

⎛⎝ 1
6 , 1

6
− 1

3

∣∣∣∣∣∣s+ 1
2

⎞⎠
22/3

√
3π(2s+1)4/3 , s < 1

2

1
2

1
2

{
4

(2s+1)
√

4s2−1
, s > 1

2

0, s < 1
2
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Table A8. Cont.

κ μ L
[
Mκ,μ(t)

]
1
2 0

√
2π

(2s+1)3/2

1
2 1 2

√
2π

[
− 1√

2s+1
− 1

(2s+1)3/2 +
1√

2s−1

]
1 0

⎧⎪⎨⎪⎩
23/2[−K( 2

2s+1 )+2 E( 2
2s+1 )]√

π(2s+1)3/2 , s > 1
2

2(2s−3)K(s+ 1
2 )+8 E(s+ 1

2 )√
π(2s+1)2 , s < 1

2

1 1
2

4
(2s+1)2

1 1

⎧⎪⎨⎪⎩
− 27/2[−2(s+1)K( 2

2s+1 )+(2s+3)E( 2
2s+1 )]

3
√

π(2s+1)3/2 , s > 1
2

8(2s+5)K(s+ 1
2 )−8(4s+6)E(s+ 1

2 )
3
√

π(2s+1)2 , s < 1
2

3
2 0 2

√
2π(s−1)

(2s+1)5/2

3
2

1
2

{
4
√

4s2−1
(2s+1)3 , s > 1

2

0, s < 1
2

3
2 1 3

√
2π

(2s+1)5/2

2 0

⎧⎪⎨⎪⎩
23/2[4(1−2s)K( 2

2s+1 )+(14s−9)E( 2
2s+1 )]

3
√

π(2s+1)5/2 , s > 1
2

2(2s−1)(6s−13)K(s+ 1
2 )+4(14s−9)E(s+ 1

2 )
3
√

π(2s+1)3 , s < 1
2

2 1
2

8s−4
(2s+1)3

2 1

⎧⎪⎨⎪⎩
27/2[[−5+4s(s+2)]K( 2

2s+1 )−2[(2s+5)−6]E( 2
2s+1 )]

15
√

π(2s+1)5/2 , s > 1
2

8(2s−1)(2s+17)K(s+ 1
2 )−32[s(2s+5)−6]E(s+ 1

2 )
15
√

π(2s+1)3 , s < 1
2

2 3
2

16
(2s+1)3

Table A9. The Laplace transforms of the Whittaker functions Mκ,μ derived for some values of
parameters κ and μ.

κ μ L
[
Mκ,μ(t)

]
5
2 1 2

√
2π(3s−1)

(2s+1)7/2

5
2 2 15

√
2π

(2s+1)7/2

3 1
2

4(1−2s)2

(2s+1)4

3 3
2

8(4s−1)
(2s+1)4

3 5
2

96
(2s+1)4

7
2 0

√
2π(8s3−24s2+15s−3)

(2s+1)9/2

4 1
2

4(2s−1)3

(2s+1)5

4 3
2

32(10s2−5s+1)
5(2s+1)5
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Table A10. The Whittaker functions Wκ,μ derived for some values of parameters κ and μ by using (18).

κ μ Wκ,μ(x)

− 5
2 0

√
x

4 e−x/2[ex(x2 + 4x + 2
)
Γ(0, x)− x− 3

]
− 3

2 0
√

xe−x/2[ex(x + 1)Γ(0, x)− 1]

− 3
2 1 x3/2ex/2Γ(−2, x)

− 1
4

1
4 x1/4ex/2Γ

(
1
2 , x
)

− 1
2 0 x1/2ex/2Γ(0, x)

− 1
2 1 x−1/2e−x/2

− 1
2 2 x−3/2e−x/2(x + 3)

− 1
2 3 x−5/2e−x/2(x2 + 8x + 20

)
− 3

4
3
4

e−x/2

2x−1/4

[
2
√

x−√πex(2x− 1)erfc
(√

x
)]

0 β
√

x
π Kβ

( x
2
)

0 1
2 e−x/2

0 3
2 e−x/2(1 + 2

x
)

0 5
2 e−x/2

(
1 + 6

x + 12
x2

)
1
4 − 5

4 x−3/4e−x/2(x + 3
2
)

1
4 − 3

4 x−1/4ex/2Γ
( 3

2 , x
)

1
4 − 1

4 x1/4e−x/2

1
2 0 x1/2e−x/2

1
2 1 x−1/2ex/2Γ(2, x)
3
4

1
4 x3/4e−x/2

3
4

3
4

1
2 x−1/4e−x/2(2x + 1)

Table A11. The Whittaker functions Wκ,μ derived for some values of parameters κ and μ by using (18).

κ μ Wκ,μ(x)
3
4

5
4 x−3/4ex/2Γ

( 5
2 , x
)

1 1
2 x e−x/2

3
2 0

√
xe−x/2(x− 1)

3
2 1 x3/2e−x/2

3
2 2 x−3/2ex/2Γ(4, x)

2 1
2 x(x− 2)e−x/2

2 3
2 x2e−x/2

2 5
2 x−2ex/2Γ(5, x)

5
2 0

√
xe−x/2(x2 − 4x + 2

)
5
2 1 x3/2e−x/2(x− 3)
5
2 2 x5/2e−x/2
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Table A11. Cont.

κ μ Wκ,μ(x)
5
2 3 x−5/2ex/2Γ(6, x)

3 1
2 e−x/2x

(
x2 − 6x + 6

)
3 3

2 e−x/2x2(x− 4)

3 5
2 x3e−x/2

7
2 0 e−x/2√x

(
x3 − 9x2 + 18x− 6

)
4 1

2 e−x/2x
(

x3 − 12x2 + 36x− 24
)

4 3
2 e−x/2x2(x2 − 10x + 20

)
Table A12. The Laplace transforms of the Whittaker function Wκ,μ derived for some values of
parameters κ and μ.

κ μ L
[
Wκ,μ(t)

]
− 1

2 0 √
2π

[
ln(

√
4s2−1+2s)

(2s−1)3/2 + 2
(1−2s)

√
2s+1

]
− 1

2 1
√

2π
2s+1

1
4 − 5

4
21/4Γ( 1

4 )(3s+1)

(2s+1)5/4

1
4 − 1

4
Γ( 5

4 )

(s+ 1
2 )

5/4

0 1
2

2
2s+1

0 1 8s E( 1
2−s)−2(2s+1)K( 1

2−s)
4s2−1

1
2 0

√
2π

(2s+1)3/2

3
4

1
4

Γ( 7
4 )

(s+ 1
2 )

7/4

3
4

3
4

23/4Γ( 3
4 )(s+2)

(2s+1)7/4

3
4

5
4 4 Γ

(
11
4

)
2F1

( 1
4 , 11

4
5
4

∣∣∣∣ 12 − s
)

1 1
2

4
(2s+1)2

3
2 0 2

√
2π(1−s)

(2s+1)5/2

3
2 1 3

√
2π

(2s+1)5/2

2 1
2

8−16s
(2s+1)3

2 3
2

16
(2s+1)3

5
2 0

√
2π(8s2−16s+5)
(2s+1)7/2

5
2 1 6

√
2π(1−3s)

(2s+1)7/2

5
2 2 15

√
2π

(2s+1)7/2
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Table A12. Cont.

κ μ L
[
Wκ,μ(t)

]
3 1

2
24(1−2s)2

(2s+1)4

3 3
2

32(4s−1)
(2s+1)4

3 5
2

96
(2s+1)4

7
2 0 − 6

√
2π(8s3−24s2+15s−3)

(2s+1)9/2

4 1
2

96(1−2s)3

(2s+1)5

4 3
2

128(10s2−5s+1)
(2s+1)5

Appendix C. Representations of the Wright Functions

The Wright functions Wα,β(x), defined in (39), and presented in Tables A13 and A14,
as well as the Mainardi functions Fα(x) and Mα(x), defined in (40), and presented in
Tables A15 and A16, were derived by using the MATHEMATICA program. Only a small
part of these Wright functions is known in the mathematical reference literature.

In the case of positive rational α = p/q with p and q positive coprimes, applying (A1)
and (A2), it is possible to express the Wright function by

Wp/q,β(x) (A5)

=
q−1

∑
k=0

xk

k! Γ
(

p
q k + β

) 0Fp+q−1

(
−

b0, . . . , bp−1, c∗0, . . . , c∗q−2

∣∣∣∣∣ xq

ppqq

)
,

where
bj =

k
q
+

β + j
p

,

cj =
k + 1 + j

q
,

(A6)

and the set of numbers
{

c∗j
}
=
{

cj
}
\{1}.

For the Mainardi functions, we have the following reduction formulas for positive
rational α = p/q with p and q positive coprimes:

Fp/q(x) (A7)

= − 1
π

q

∑
k=1

(−x)h

k!
Γ
(

p
q

k + 1
)

sin
(

π
p
q

k
)

pFq−1

(
a0, . . . , ap−1
b∗0 , . . . , b∗q−2

∣∣∣∣∣ (−1)p+qxq pp

qq

)
,

and
Mp/q(x) =

q
px

Fp/q(x), (A8)

where

aj =
k
q
+

j + 1
p

,

bj =
k + 1 + j

q
,
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and the set of numbers
{

b∗j
}
=
{

bj
}
\{1}.

Table A13. The Wright functions Wα,β derived for some values of parameters α and β by using (39).

α β Wα,β(x)

−1 1
2

1
2
√

π(x+1)3/2

−1 3
2

1√
π(x+1)1/2

−1 β
(x+1)β−1

Γ(β)

− 1
2 β 1

Γ(β) 1F1

(
1− β

1
2

∣∣∣∣− x2

4

)
+ x

Γ(β− 1
2 )

1F1

( 3
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3
2

∣∣∣∣− x2

4
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− 1

2 −1 1
8
√

π

[
x
(
6− x2)e−x2/4

]
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2 − 1
2

1
4
√

π

[(
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)
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]
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2 0 − x e−x2/4

2
√

π

− 1
2

1
2

e−x2/4√
π

− 1
2 1 erf

( x
2
)
+ 1

− 1
2

3
2 x

[
erf
( x

2
)
+ 1
]
+ 2√

π
e−x2/4

0 − 3
2

3 ex

4
√

π

0 − 1
2

ex

2
√

π

0 1 ex

0 β ex

Γ(β)

1
3 β

1
Γ(β) 0F3

( −
1
3 , 2
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∣∣∣∣ x3

27

)
+ x

Γ(β+ 1
3 )

0F3

( −
2
3 , 4

3 , β + 1
3

∣∣∣∣ x3

27

)
+ x2

2 Γ(β+ 2
3 )

0F3

( −
4
3 , 5

3 , β + 2
3

∣∣∣∣ x3

27

)
1
2 β 1

Γ(β) 0F2

( −
1
2 , β

∣∣∣∣ x2

4

)
+ x

Γ(β+ 1
2 )

0F3
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3
2 , β + 1

2

∣∣∣∣ x2

4

)
1 β x(1−β)/2 Iβ−1

(
2
√

x
)

1 − 3
2

(4x+3) cosh(2
√

x)−6
√

x sinh(2
√

x)
4
√

π

1 − 1
2

2
√

x sinh(2
√

x)−cosh(2
√

x)
2
√

π

1 0
√

xI1
(
2
√

x
)

1 1
2

cosh(2
√

x)√
π

1 1 I0
(
2
√

x
)

1 3
2

sinh(2
√

x)√
πx

1 5
2

2
√

x cosh(2
√

x)−sinh(2
√
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2
√
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Table A14. The Wright functions Wα,β derived for some values of parameters α and β by using (39).

α β Wα,β(x)

3
2 β 1

Γ(β) 0F4

( −
1
2 , β+1

3 , β+2
3 , β

3

∣∣∣∣ x2
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)
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0F4
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3
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6 , 2β+7
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2 β 1
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2
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3
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4
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5 , β+2
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3125

)

Table A15. The Mainardi function Fα derived for some values of parameter α by using (A7).

α Fα(x)

3
4
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4 )√
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√
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√
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2 Γ
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6
2
3
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Table A16. The Mainardi function Mα derived for some values of parameter α by using (A8).

α Mα(x)

3
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2F2
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