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Preface to ”Mobile Health Technologies for Ambient

Assisted Living and Healthcare”

The use of telemedicine and mobile devices is growing, and sensors might aid in creating creative

solutions. Developing these solutions is crucial for monitoring senior citizens, lifestyles, and medical

procedures.

This Special Issue’s goal is to bring together academics and professionals in healthcare and

medicine interested in using information and communication technologies (ICT) to serve people

with special needs. The development of assistive technology for various users to follow sports and

other activities is strongly tied to this study area. Data protection is crucial, and the development of

these solutions for medical uses should be verified. The security and privacy of the information may

be tied to other recognized research projects for their acceptability. ICT research has considerably

improved quality of life and fully assimilated all citizens into society through medical rehabilitation

and assistive technology. The technologies and research fields that influence medical informatics

include databases, networking, graphical user interfaces, data mining, machine learning, intelligent

decision support systems, and specialized programming languages.

Because mobile devices are commonly used for several everyday chores and are equipped with

sensors that monitor various physical and physiological indicators, it is crucial to encourage the

development of m-Health and e-Health solutions for healthcare practitioners. In this area, several

solutions are now being developed. In addition, these can collaborate with emerging technologies for

social assistance while enhancing life quality.

This book presents a collection of 11 studies related to the use of technological equipment for an

improvement in quality of life, establishing its relation with other subjects. The editor would like to

thank the authors for their interest in submission to this Special Issue, the reviewers that collaborated

with the different reviews, the different people that helped in the promotion of this Special Issue, and

the different institutions involved. This work is also funded by FCT/MEC through national funds

and, when applicable, is co-funded by the FEDER-PT2020 partnership agreement under the project

UIDB/50008/2020.

Ivan Miguel Pires

Editor
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Abstract: Data on diagnosis of infection in the general population are strategic for different
applications in the public and private spheres. Among them, the data related to symptoms and people
displacement stand out, mainly considering highly contagious diseases. This data is sensitive and
requires data privacy initiatives to enable its large-scale use. The search for population-monitoring
strategies aims at social tracking, supporting the surveillance of contagions to respond to the
confrontation with Coronavirus 2 (COVID-19). There are several data privacy issues in environments
where IoT devices are used for monitoring hospital processes. In this research, we compare works
related to the subject of privacy in the health area. To this end, this research proposes a taxonomy
to support the requirements necessary to control patient data privacy in a hospital environment.
According to the tests and comparisons made between the variables compared, the application
obtained results that contribute to the scenarios applied. In this sense, we modeled and implemented
an application. By the end, a mobile application was developed to analyze the privacy and security
constraints with COVID-19.

Keywords: data privacy; taxonomy; IoT; COVID-19

1. Introduction

Internet of Things (IoT) devices can be applied in various sectors, acting as a facilitating tool [1].
Devices may help monitor health conditions without the presence of healthcare professionals [2].
There are also wireless technologies that monitor older adults and remotely send data such as heart
rate and blood pressure to their caregivers [3]. In addition to monitoring, other devices have auxiliary
functions, such as automatic insulin injection devices [4]. These are directly linked to sensitive patient

Sensors 2020, 20, 6030; doi:10.3390/s20216030 www.mdpi.com/journal/sensors
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data and provide additional control in critical situations by, for example, setting the dose to be injected
into the insulin pump. Both privacy settings and control information must have an extreme level
of security.

For hospital environments, IoT devices are distributed not only for patient use but also for other
functionalities. According to Farahani et al. [5], some of the IoT applications used in hospital settings
collect patient data, such as heart rate, blood pressure, or glucose level. As far as the environment
is concerned, some sensors detect temperature changes or control the air conditioning; cameras are used
to detect intruders and send alerts. In this context, the devices’ scope ranges from patient monitoring to
evaluate the environment and the equipment used by health professionals. Thus, the data is recorded
from the moment that patients are registered at the reception until they are discharged.

When the patient is registered for admission, basic information is collected and complemented
after screening. In a first-aid environment, to ensure all patients’ safety, many hospitals use a screening
technique known as the Manchester Protocol [6]. After screening, the information is added to the
patient’s record. Next, the person is given a classification according to their condition; this varies from
non-urgent cases to emergency intervention cases. Sensitive information is added to the user record,
whose preservation and confidentiality level must be treated as critical. There is information that
should not be disclosed or related to the patient, as is the case with a patient suspected of having viral
and infectious diseases.

The current pandemic of Severe Acute Respiratory Syndrome Coronavirus 2 (COVID-19 SARS-CoV-2)
causes the patient to be identified as a possible carrier even during the screening process, based on
certain symptoms. According to Rothan and Siddappa [7], those infected usually show symptoms after
approximately five days, the most common signs of illness being fever, cough, and fatigue; the patient
may also present headaches, phlegm, hemoptysis, diarrhea, shortness of breath, and lymphopenia.
These symptoms are identifiable without specific examinations that are directly documented in the
patient’s medical record. Liang et al. [8] mention that for most patients diagnosed with COVID-19,
85.7% had fever, 42.9% had cough, 33.3% had expectoration, 57.1% had fatigue and 38.1% had headache
and dizziness. For this reason, one can see that fever is a common symptom. Thus, this condition
must be checked as soon as the patient is admitted to the hospital. Due to COVID-19’s high rate of
contagion, the patient’s referral to medical care and subsequent isolation should be done quickly and
strictly in confirmation.

When it is confirmed that the patient has a COVID-19 infection, this information is directly linked
to their record, which should remain confidential. Soares and Dall’Agnol [9] comment that privacy is
considered an individual right that includes the protection of the intimacy of the subjects, respect for
dignity, limitation of access to the body, intimate objects, family and social relationships. In addition,
in this same bias, the concern also covers the complete information collected during the patient care
process. Even though patients’ data must be confident among all parties in general, due to the current
pandemic situation and contagion rate, an extra precaution must be taken to join the statistics without
having their information revealed. The application of privacy on patient data must be given to all
levels with access to any information, be it registration, device, or image.

The main purpose of this work is to apply privacy constraints in patients with suspected
COVID-19. The basis for the application of privacy is the same for patients in general, but using
as a basis the fact that it is a pandemic situation, and the discretion in handling data of a suspected
patient is crucial. Also, as it is a highly contagious virus, the process from admission to the emergency
room to the patient’s referral must be done quickly. In this way, a taxonomy was proposed that
covers four topics and five subtopics regarding the entities/environments participating in the hospital
admission process.

The scientific contribution of this paper is a system to support the privacy constraints related to
COVID-19. It started with the study of the state-of-the-art in hospital environment. Next, we defined
a taxonomy, and a mobile application was implemented to test and validate the use of the mobile
application to cover the privacy constraints defined in the taxonomy.
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The main results of this study are related to the identification of the users. Cryptography methods
were implemented control the users according to the diagnosis of COVID-19. As these data are related
to health, it must be secure and anonymous. The data collected included reliable data related to
temperature parameters for the detection of the symptoms, such as fever.

For a better understanding of the matter and a clearer overview of the relevant details, this work
is organized as follows: Section 2 lists the related works; Section 3 describes the taxonomic definition
developed for this project and the attributes of the user parameter, environment, privacy, and device;
Section 4 demonstrates the modeling of the project, including the use cases, sequence and context
diagrams; in Section 5, we present the prototype with the application developed to be validated.
Section 6 presents experiments and results. Finally, in Section 7, we conclude and discuss the
future work.

2. Related Work

Studies on the application of privacy in hospital settings cover different aspects. Various studies
were selected to identify privacy targeting, including encryption, profile privacy, device privacy,
and taxonomic definitions. The focus among the related papers vary from studies on security over
mobile application to systems conceived to protect user privacy.

Barket et al. [10] present a broad study on the context of privacy, developing a taxonomy meant
to connect privacy and technology based on the following aspects: purpose, visibility, and granularity.
According to the authors, the aim is related to why the information is requested; depending on
the cause, more or fewer details about the user are passed on. Visibility refers to who is allowed
to access the user data. Granularity designates the data transfer required for the type of access and
purpose for that particular request.

The work of Asaddok et al. [11] involves mobile devices in the area of health (Mobile
Health (mHealth) and the parameters: usability, security, and privacy. The authors propose a
taxonomy that involves the three parameters mentioned, and, for each, it branches into taxonomies.
One taxonomy is defined by usability, effectiveness, efficiency, satisfaction, and learning. Next,
for security, confidentiality, integrity, and availability is restricted to another taxonomy. Finally,
for privacy, identity, access, and disclosure, the last taxonomy is defined.

Coen-Porisini et al. [12] describe a conceptual model for defining privacy policies that cover the
user, the user’s profile, the information, and the action that will be taken by a third party to request the
information. The authors revealed the link between the three topics mentioned in a Unified Modeling
Language (UML) format. The user is divided into personnel—the person to whom the data is referred;
processor—the person who will request the data; controller—the person who controls the actions
requested by the processor. Data is divided into: identifiable—in situations when it is clear who the
data refers to, such as the name; sensitive—it refers to information, processing, and purpose. We can
also observe that there is an interaction between the medical user and the controller, along with the
processes of access (processing), treatment (purpose), and communication (obligation). The diagram
demonstrates how information is delivered to the medical user through requests, based on their
access profile.

Silva et al. [13] use a notification management system focused on user privacy in this context.
It contributed to the development of an application that can handle different types of notifications.
Moreover, the network made it possible for those involved to ensure that the messages sent and
received followed the rules defined earlier. If applied to health notifications or to alert cases of
COVID-19, this is a strategic tool, addressing messages with defined priorities while also linking
privacy in the traffic sent. Therefore, this work contributes to finding a link between IoT requirements
and definitions. In [14], the authors implemented a system for monitoring and profiling based on data
privacy in IoT. From the results obtained in the tests, they identified different profiles assigned to
random situations. In this case, the health system user’s profile priorities would apply and determine
which profiles would be authorized to receive data. In this work, it was also possible to address
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the evolution and reduction of the hierarchy based on factors that identify users’ frequency in the
environments tested.

Concerning the relationship between data privacy and its use in situations such as the COVID-19
crisis, Zwitter et al. [15] deals with the basic concept of human rights that relates data privacy with
the need to use certain information, such as someone’s location. The authors mention features of
applications developed by China, South Korea, and the United States that use tracking techniques
to indicate close contact with virus carriers or identify specific individuals or groups’ movements.
The study concludes that location data is important in the fight against the spread of the virus, but other
relevant information, such as genetic data, should be considered. It is necessary to use this information
correctly, as stipulated by the law. It also states that data sensitivity classification is contextual;
data protection and privacy are important and must be maintained even in crisis. Information leaks
are inevitable, so organizations should always protect themselves; ethics in data manipulation is
mandatory for more efficient analysis.

Yesmin et al. [16] deal with the privacy of patients’ data in terms of the interoperability of systems
and the employees’ access to information. Also, they tell us that there is no framework for evaluating
privacy audit tools in hospitals yet. The application of a framework would help identify any trend in
accessing the data and allow the hospital to improve its performance in detecting possible data leaks.
According to the authors, the literature reveals that the most significant leakage of information occurs
through employees (nurses, doctors, sellers, and others). An evaluation framework was then developed
and tested using the black box concept, which uses usability testing information. The following must
be monitored through machine learning or artificial intelligence tools: employee access to information,
validation of entry and non-standard behavior, and unexplained access to files.

The work of Islam et al. [17] deal with a survey on the application of IoT devices in the health
system. The authors deal with the IoT network’s topology for health, which facilitates the transmission
and reception of medical data and enables data transmission on demand. They also mention features
of wearable devices, which capture and store patient data. These may include blood sugar levels,
cardiac monitoring, body temperature, and oxygen saturation. The authors explain that the security
requirements applied to healthcare IoT equipment are similar to those of other communication
scenarios. Therefore, the following must be considered: confidentiality, integrity, authentication,
availability, data update, non-denial, authorization, resilience, fault tolerance, and fault recovery.

Sun et al. [18] designed the HCPP (Healthcare System for Patient Privacy) system to protect
privacy and enable patient care in emergency cases. The entities defined for the system are the patient,
the doctor, the data server, the family, the personal device, and the authentication server. According to
the authors, the system meets the following security criteria: privacy, data preservation by backup,
access control, accountability, data integrity, confidentiality, and availability.

Samaila et al. [19] developed a survey in which information was collected regarding work
on security and privacy in IoT in general. The study’s scope ranges from security, encryption,
communication protocols, authentication to privacy, among others. The authors also collected
information on applications, reliability, and other technical issues, combining ten related works.
Additionally, the authors claim that the work covers a system model, a threat model, protocols and
technologies, and security requirements. The work discusses the IoT architecture considering
nine application domains: home automation, energy, developed urban areas, transport, health,
manufacturing, supply chain, wearables, and agriculture. Security measures and system and
threat models were defined for each application domain, including protocols and communications.
The security properties covered were confidentiality, integrity, availability, authenticity, authorization,
non-repudiation, accountability, reliability, privacy, and physical security. These also describe
mechanisms that can be applied to achieve the desired security requirements: authentication,
access control, encryption, secure boot, security updates, backup, physical security of the environment,
and device tampering detection.
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Plachkinova, Andrés and Chatterjee [20] elaborated a taxonomy focused on privacy over mHealth
apps. Downloadable apps through the app store do not have a unified way to provide terms of
use or privacy policies for the user. Apps mostly communicate between patients and doctors,
access to patient medical records, self-diagnosis based on symptoms, etc. The management of
user data after the app is installed may not be precise. The authors elaborated a taxonomy that
embraces the following three dimensions: mHealth app (patient care and monitoring; health apps
for the layperson; communication, education and research; physician or student reference apps),
mHealth security (authentication; authorization; accountability; integrity; availability; ease of use;
confidentiality; management; physical security) and mHealth privacy (identity threats; access threats;
disclosure threats).

Alsubaei, Abuhussein, and Shiva [21] proposed a taxonomy aiming to enhance security among
IoT medical devices, as it has life-threatening risks when a device is not secure. According to the
authors, since security and privacy are becoming challenging due to the sensitivity of data in healthcare,
it is crucial to enhance these measures. The taxonomy is based on the following topics: IoT layer,
intruders, compromise level, attack impact, attack method, CIA compromise, attack origin, attack level,
and attack difficulty. For each topic, some subsections embrace items from that topic. Since new attacks
are always being created, this taxonomy can be updated, according to the authors. The related works
we have selected cover the topics that we cited as critical to privacy. Some applied cryptography in
the study as a reference of types of attacks, and others used cryptography to prevent data from being
accessed from third parties. Most of them applied user profile privacy to prevent any unauthorized
access or mitigate when it happens.

Data encryption is necessary so that in the event of an attack, a third party cannot gain access to
information [22]. Cryptography is part, directly, from [17,18]. Islam et al. [17] mentioned cryptography
among security threats, where cryptographic keys can be stolen to collect user sensitive data.
The work of Sun et al. [18] mentioned encryption as a way to protect health information and
applied identity-based cryptography for encryption, authentication, and deriving shared keys for their
Healthcare system for Patient Privacy (HCPP) protocols. Also, they made use of searchable symmetric
encryption to return encrypted documents to the owner.

The application of private profile was mentioned in all works, except by [21]. The user’s profile
privacy serves to protect any information from being used by third parties [23]. A security layer should
be applied at the device level to prevent third parties from accessing information or even gaining
control of it [24]. The work of Alsubaei, Shiva, and Abuhussein [21] mentions about attacks that
influences on Confidentiality, Integrity and Availability (CIA) triad, which is a basic thread on privacy,
but does not explore ways to protect user privacy concerning data access based on authorization.
Barker et al. [10] are concerned about private profile through who can access the data and which data
can be accessed, based on the purpose of this access request.

Asaddok and Ghazali [11] defined data access based on access to patient identity information,
personal health information, and personal health records, moreover defined in their taxonomy as
identity, access, and disclosure. Coen-Porisini et al. [12] say that data access must be based on access
control based on the users and their roles. Thus, data access must be granted based on a consent given
by the patient. Silva et al. [13] defined their privacy requirements based on the user permissions,
environment, and hierarchy. Leithardt et al. [14] proposed a middleware in which the user’s permission
can be changed due to the environment and the frequency in which the user frequent it. This way,
the given information will vary based on this environment, and the rules of its context.

Zwitter and Gstrein [15] say that data collection and its use must be done concerning the principle
of proportionality and individual’s interests. Their work is based on data collected over the individual’s
location and genetic data. Thus, the authors exposed user data principles as: sensitivity, privacy and
protection, breaches precaution, ethics. The study of Yesmin and Carter [16] was concerned about
the patient data through authorized and unauthorized access. The authors developed a framework
that audits this access, although the study was limited as real patient information could not validate
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the tool. Instead, they used real data and could evaluate the amount of unauthorized/unexplained
accesses to the patient’s data.

Islam et al. [17] treated data with CIA triad, so that confidentiality is related to the medical
information and its protection against unauthorized users. Their study gathered information on
various aspects related to the use of IoT devices in medical care. Thus, they say that policies and
security measures must be introduced for data protection when sharing data with users, organizations,
and applications. Sun et al. [18] combined cryptography with user privacy and their trust relationship
with entities, such as family members, physicians, or his device. Thus, these entities are allowed
to access the patient’s protected health information. In Plachkinova, Andrés, and Chatterjee [20],
the authors studied mHealth apps and the concern about the use of information, terms of use,
and privacy policies. The authors mentioned that it is not clear how the data is managed, neither who
gets access to it. They developed a taxonomy in which user data is part of the identity threats,
access threats, and disclosure threats.

The concern for privacy regarding the device was found in most papers. In Alsubaei, Shiva,
and Abuhussein [21], the IoT device is part of the proposed security taxonomy. As their work concerns
about mHealth devices, it is part of the proposed taxonomy’s wearable devices, which embraces
numerous sensors. The authors describe potential attacks for these devices, as side-channel, tag cloning,
tampering devices, and sensor tracking. In the work of Asaddok and Ghazali [11], the authors classified
mobile devices as part of the application dimension of the taxonomy, present in the topic ’patient care
and monitoring’, as they are used for observation of the patient.

The work of Silva et al. [13] applies privacy over mobile devices regarding aspects such as the
environment. Thus, privacy used on mobile devices is part of their taxonomy and a base point of
their study. Leithardt et al. [14] are guided on device privacy. This topic is the central part of their
work. Zwitter and Gstrein [15] mention mobile devices, although their concern focuses on apps and
location data, not the device itself. Islam et al. [17] treat devices like mobile, connected to the Internet
through IoT providers. Thus, they are vulnerable to security attacks, which may originate within or
outside the network. The authors mention that IoT health devices are part of an attack taxonomy,
including information, host, and network. Sun et al. [18] define the Private Device (P-device) as an
entity involved in the HCPP system, such as smartphones or wearable devices. The patient uses the
P-device to manage privileges on access to his health data. In Plachkinova, Andrés, and Chatterjee [20],
the device must be secured, as it can leak data about the location or sensor of the patient. As the apps
mentioned in their work fail to provide accurate data management information, the device can be a
tool for misusing information.

The use of the data acquired from different sensors needs the implementation of several privacy
and security rules. In [25] is presented a low-cost system that embeds the measurement of temperature,
heart rate, respiration rate and other parameters to define the health state of the person. This system
performs the networking with the healthcare professional to prevent several situations. In addition to
these sensors’ data, it includes the tracking of the location of the user to present several contagious.
This system may be used for a preliminary diagnosis. Mobile devices are capable of acquiring different
types of data in several conditions. Spain was one of the fustigated countries with this pandemic’s
situation, and the authors of [26] proposed the implementation of online sensing networks to provide
social quarantine and reduce the contagious with the virus.

The monitoring of the COVID-19 needs the use of secured technologies, and the IEEE 802.11ah
technology was used in [27] to support the prevention of the contamination with COVID-19. It can
be implemented in telemonitoring technologies to provide reliable information and prevent the
contact. The network should previously know which are the persons that are contaminated with
the virus. The tacking of the location and movements may be performed with location, inertial,
and proximity sensors that communicates the data to social networks to reduce the social contact with
infected individuals. The authors of [28] studied different privacy constraints related to the real-time
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monitoring with the mobile devices. The monitoring with mobile devices can be considered to be a
digital vaccine that help in the reducing number of contagious with massive sharing of the data.

The creation of a taxonomy was proposed by most of the related works. Alsubaei, Shiva,
and Abuhussein [21] proposed a taxonomy regarding IoT layer, intruder type, compromise level,
impact, attack method, CIA compromise, attack origin, attack level, and attack difficulty. As can be
seen, the taxonomy embraces the security and privacy aspects of medical IoT devices. Barker et al. [10]
explored three dimensions to develop a taxonomy, based on visibility, granularity, and purpose.
These three dimensions focus on privacy aspects, where visibility deals with who is permitted
to access the data. Granularity is focused on the characteristics of that data to direct it to the
appropriate use and a dimension that deals with the data’s purpose. In the work of Asaddok
and Ghazali [11], the authors developed a taxonomy containing usability, security, and privacy
aspects to mHealth applications. Each item of the taxonomy is derived in three or more sub-items.
Silva et al. [13] developed a taxonomy or notifications on mobile devices, including communication
protocols, message transmission technologies, privacy, and criteria. Plachkinova et al. [20] proposed
a taxonomy for mHealth apps regarding security and privacy. The items involve app dimension,
security dimension, and privacy dimension.

Table 1 presents a comparison with the related works concerning the application of the privacy
aspects described above with the additional taxonomy application.

Table 1. Scope of related works

Work Cryptography Private Profile Devices Taxonomy

[12] (2007) •
[10] (2009) • •
[20] (2015) • • •
[17] (2015) • • •
[18] (2015) • • •
[11] (2017) • • •
[21] (2017) • •
[13] (2019) • • •
[14] (2020) • •
[15] (2020) • •
[16] (2020) •
[25] (2020) • •
[26] (2020) • •
[27] (2020) • •
[28] (2020) • •
Proposal • • • •

Even though cryptography is one of the main concerns when dealing with data privacy,
descriptions of how to apply it were found explicitly only in the works of Islam et al. [17], Sun et al. [18]
and Riza and Gunawan [27]. As Horst Feistel [29] said almost 50 years ago: “personal data needs
protection, which can be achieved when enciphering the material”. Cryptography will prevent the
plaintext from being accessible to people who are not authorized to have it, whereas it is an important
tool when dealing with personal data. The work of Islam et al. [17] comprises a survey of IoT in
health care, including analysis regarding the security and privacy aspects. However, the authors did
not expose how cryptography can be applied, instead, mentioned that some parts of the flow can be
tampered by attackers to obtain the cryptographic secrets. This way, IoT systems should be designed
with protections against stealing of cryptographic keys.

The work of Sun et al. [18] is focused on cryptography, as it describes a system based on this
aspect. The authors designed protocols for a healthcare system in which the security aspect leverages
on cryptographic tools. The HCPP allows the patient to store their medical record even on public
servers, where only the patient can retrieve the information. The patient’s medical record is encrypted
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to ensure privacy, and its content can only be retrieved by the patient and the physician when some
treatment is being carried out. If by any means the patient is unable to retrieve the medical record,
the system can provide the relevant information to the physician without compromising the patient’s
secret key. In our work, cryptography is used to prevent unauthorized access to the patient’s medical
records. As it can be seen in our proposed taxonomy in Figure 1, cryptography is part of the User’s
items, as it is a critical tool to protect the patient data. The patients’ medical records should be stored
and transmitted in encrypted ways, in a way that only the personnel who has the authorization and,
therefore, the secret keys, can decrypt the data. Therefore, patients’ medical records are encrypted and
can only be accessed by the authorized staff.

In comparison to the selected works, ours stands out because it includes the indication of
encryption, profile privacy, concerns on device, and the definition of the taxonomy meant to define
the theme and scenario of the application more clearly. Our taxonomic definition aims to embrace the
necessary aspects to be covered to enhance security measures throughout the patient’s sensitive data.
We developed a mobile application to validate the data flow of information from the moment patients
are being admitted in the hospital until they are discharged.

The use of a mobile application that implements data privacy parameters related to the data of
patients infected with COVID-19 is another contribution of this study. The data of patients may be
its location, temperature, history of navigation, among others. Therefore, we consider that contagion
can be identified in the first moments spent in the emergency room using basic information on the
health status and the monitoring of the feverish state with the use of IoT devices. The degree of privacy
applied in each user’s registration process should enable identifying infected patients without the
exposure of sensitive data.

To this end, we have developed a taxonomy that highlights how important it is for confidential
information to be handled with care. We have included examples of privacy applications in the use of
IoT devices to receive, screen, and providing patient care with a focus on the COVID-19 pandemic.

3. Taxonomy

We have developed a taxonomic definition for a better classification of the items related to the
privacy parameters. A taxonomy is necessary to identify the critical aspects where security measures
and policies need to be applied. Based on the goals of this paper and the comparisons made with the
related works, we selected the principal parameters to manage privacy, which are divided into other
levels to better embrace the desired security aspects.

As presented in works [13,30,31], a taxonomy allows the systematic organization of relevant data
in the form of a hierarchy. The keywords and concepts used to define a taxonomy establish parameters
throughout the information production cycle, in which distributed professionals can participate in
the knowledge creation process in an organized way. This definition covers four parameters for
managing privacy standards in hospital settings within the previously defined context. The selected
parameters with five attributes were considered necessary for this scenario. Figure 1 shows the
taxonomic definitions proposed in this paper.
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Figure 1. Proposed taxonomy.

3.1. User Parameter

The user parameter designates the person who provides, controls, or operates the sensitive data
used in privacy handling. This parameter refers not only to the patient but also to the participants in
the data’s provision or control. For this parameter, we set the following attributes: profile, collaborative,
hierarchy, cryptography, data. The profile attribute covers several items that will be part of the process.
According to Fengou et al. [32], six entities participate in interactions taking place in the hospital
environment:

• the patient himself/herself;
• the clinical network that will care for the patient, including doctors, family members, volunteers,

health insurance provider, among other things;
• the hospital;
• smart home as an environment with ubiquitous equipment’s capable of providing security and

quality of life;
• the environment in which the patient works, the vehicle with which the patient is transferred to

the clinical center.

Based on the entities listed, it can be observed that the user profile is one that must be substantiated,
along with the profiles of other entities. The patient’s cooperativeness in providing their registration
data is fundamental for a better experience in the given setting. According to Leithardt [33], the user
must provide access to their information and services, thus favoring both their expertise in using
the service and the system’s improvement whole. The hierarchy enables proper separation of the
levels and permissions of each user type. Viswanatham and Senthilkumar [34] proposed the so-called
hierarchy-based user privacy, where the information is encrypted and decrypted based on access levels
and releases.

The General Data Protection Regulation (GDPR) deals with the need to protect confidential data
and the inevitable risk of data theft. Encryption reinforces that all sensitive information must be
covered by an acceptable security level, either at its source or at its destination. Ibraimi et al. [35]
said that patient confidentiality is one of the significant obstacles in obtaining medical data, as some
information is not shared for fear of it being saved in databases that do not comply with security
regulations. The protection of sensitive patient information is an essential task. The Department of
Health and Human Services, 2002 (HIPAA) Privacy Standard [36] deals with the security of sensitive
patient information in the medical field. It is a US federal law created in 1996 to impose standards
for protecting such information and preventing it from being shared without the patient’s consent.
Cooper et al. [37] deal with privacy and security in data mining in the medical field and cites HIPAA
in information privacy matters. In 2002, they suggested that protective measures be imposed by health
plans, clinical centers, and other entities involved.
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3.2. Environment Parameter

The environment parameter represents the smart physical location where user data will flow
between different systems and devices. For this parameter, we define the following attributes: topology,
interoperability, policies, risks, hierarchy. Topology refers to the architecture of a hospital environment.
Costa [38] comments that hospitals used to be built with an emphasis on the utility of the building
and the technique used. The health field’s processes and dynamics are often determined by how the
wards, sectors, and departments that house distinct functions are arranged. In many of the methods
that occur during the patient’s journey through the emergency room, one or more systems are used.

Interoperability between systems is strongly present in the medical field presently. According to
Lopes [39], strategies used to be designed and developed from an internal perspective of organizations,
with no motivation for integration with other systems. In all the smart environments that people
transit, data is shared between information systems and IoT devices. The data are a vital part of the
operation of a health institution. Several policies need to be established to apply access security to these
environments and define what data will be exchanged between systems and devices. According to
Yildirim et al. [40], information security management is an activity that aims to implement a set of
policies that help to define an acceptable level of security in these environments, minimizing the
potential risks inherent in the exploitation of this information.

Risk management in hospital settings is a crucial activity for the proper functioning of the
operation. According to Florence et al. [41], the risk is an estimated value that considers the probability
of occurrence of damage and the severity of said damage. Therefore, procedures are meant to minimize
those factors that need to be mapped, controlled, and defined. The dimension in the patient’s care
is large and complex. It occurs at various times and in multiple environments in the course of
service, along with several interactions between the patient, other participants, and technologies.
Soares et al. [9] emphasize that due to its characteristics and complexity, the hospital environment
favors establishing power and asymmetrical relationships between the nursing team and patients.
The asymmetry results from the patients’ fragility and vulnerability in the face of health-diseases
processes.

3.3. Privacy Parameter

The privacy parameter designates how each piece of information will be handled according to its
characteristics. For this parameter, we define the following attributes: communication, applicability,
controller, consent, operator. The transmission is linked to the type of user profile and will usually
involve unsafe transmitting the information. According to Machado [42], anonymization or encryption
in particular pass through the means of communication, i.e., the very existence of communication
drives the need to apply security measures to data. It is a basic human right to have one’s sensitive data
handled with care. Thus, its applicability is significant. The General Data Protection Law (LGPD) [43],
as the Brazilian Data Protection Law, aims to apply standards and laws regulating and protecting
individuals’ data. Without this application of standards and regulations, sensitive information could
easily be used by those who should not have access to it in the first place.

A categorization determines who has the authority to decide the type of treatment that personal
data will be submitted. As mentioned in the LGPD [43], the controller must obtain the consent of
the individual owner or holder of the concerned data. The user may, in turn, deny or grant access
to their information by a third party. The user must give their consent, a manifestation by which
they agree that their information be used in a specific way for a particular purpose. As mentioned
in the LGPD [43], if the controller wishes to use this data at another time, consent will be requested
once more. The operator shall be responsible for carrying out the data processing determined by the
controller. As mentioned in the LGPD [43], the operator is jointly and severally liable for the damages
caused by data handling if the strategy does not comply with legal provisions or is not in line with the
controller’s instructions. The user provides their consent, and the operator is responsible for processing
the information made available when for personal use or transfer to third parties.
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3.4. Device

The device represents either the IoT equipment present in the smart environment that will
interact with the patient’s data or the wearable IoT device that will be set to monitor the patient’s
temperature. There may be devices that are fixed in the environment, such as surveillance cameras
or devices that can be used to monitor the patient, which can be fixed or mobile. For this parameter,
we define the following attributes: function, location, communication, accessibility, interactivity.
The device must meet the needs of the process to which it will be directed. According to Lupiana and
O’Driscolle Mtenzi [44], one of the relevant requirements for devices is their storage and processing
capacity. The location attribute refers to the location where the device is installed. For Leithardt [14],
the attribute that controls location must be linked to a database where all user data must be included.
This database will be accessible only for updating and validating some data. The other information
should be processed from the point where the user has accessed the system to provide greater security
and reliability. Figure 2 shows both fixed and wearable IoT devices and how the parameters are
applied. For both fixed and wearable IoT devices, all five parameters are used. The last column on the
Figure 2 shows some of the possible options for each attribute.

Figure 2. Devices with its parameters.

The way the device communicates with the user is addressed through the communication attribute
and fits in heterogeneity, a feature that ensures information is handled evenly. According to a study
presented by Pradilla, Esteve, and Palau [45], the devices are responsible for taking data acquisition
through sensors, supporting data treatment with processing units, and acting in conjunction with IoT.
Therefore, it is necessary to use heterogeneity in the communication protocols handled by the device
and the number of services and types available. This attribute is associated with the protocols of the
device, providing security in data transfer. The possibility to access the device whenever necessary is
crucial, and interactivity between the device and the client must be ensured. With this in mind, we have
developed a model based on the characteristics and functionalities defined in the described taxonomy.
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4. Project Modeling

The model consists of use case diagrams, sequence diagrams, and context diagrams. All these
notations are based on UML. The described model refers to the process from the patient’s arrival at
the hospital until his discharge.

4.1. Use Cases Diagrams

The first use case represents the entry of a patient into the emergency room. The patient interacts
with the receptionist and performs some procedures. This use case includes some of the attributes of
the proposed taxonomic definition: privacy, represented by the data which the patient grants access to
and is registered in the systems; user, represented by the patient and the receptionist; environment,
represented by the emergency room, shown in Figure 3.

After first care and registration, the transfer of the patient to the screening area is demonstrated in
the use case pictured in Figure 4. The screening process aims to establish the urgency of the case and
the risk classification. This use case includes some of the attributes present in the proposed taxonomic
definition: privacy, represented by the data which the patient grants access to and is registered in the
systems and the wearable IoT device; user, represented by the patient and the nurse; environment,
represented by the screening room; device, represented by the wearable IoT device that will receive an
identification to record the data and the classification of this patient.

And the last use case represents the patient being attended to by the doctor in the office after
going through the screening process. The wearable IoT device identifies the patient so that the data is
made available, and the doctor proceeds with the consultation. The doctor performs the anamnesis
and records the data in the Electronic Health Record (EHR). This use case uses some of the attributes
of our taxonomy as follows: privacy, represented by the data which the patient grants access to and is
registered in the systems; user, represented by the patient and the doctor; environment, represented by
the office; device, represented by the wearable IoT device used by the patient. This case is illustrated
in Figure 5.

Figure 3. Reception at the Emergency Room.
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Figure 4. Screening Room.

Figure 5. Reception at the Office.

Sequence diagrams of each use case were also developed. Sequence Diagram is a UML tool used
to represent interactions between objects in a scenario, performed through operations or methods.
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4.2. Sequence Diagrams

The sequence diagram displayed in Figure 6 represents the entry of a patient into the
emergency room. It demonstrates the arrival of the patient (user) to the emergency room (environment),
where they request assistance from the receptionist (user). The receptionist provides a password to the
patient waiting to be called on. Upon being called on, the patient offers data for registration updates
(privacy) recorded by the receptionist in the hospital system. The receptionist checks if the patient has
a health plan and then records how this service’s billing issue will be managed. After this procedure,
the patient will be referred to as screening.

Figure 6. Sequence—Reception at the Emergency Room.

The sequence diagram displayed in Figure 7 represents the patient’s entry into the screening room
after completing the first stage in the emergency room. It means the arrival of the patient (user) to
the screening room (environment), where they will convey their data as requested by the nurse (user).
The nurse records the hospital system’s data and the entry into the system that configures the wearable
IoT device that will monitor the patient (device). The receptionist then hands the wearable IoT device
over to the patient and starts the assessment. The patient answers the questions (privacy), and the
nurse records all the information in the hospital system. All patient data is in the system, and the
hospital from their wearable IoT device can track it.

The sequence diagram displayed in Figure 8 shows the patient’s entry into the office after going
through the screening process. It represents the arrival of the patient (user) to the office (environment),
where they will convey their identification data as requested by the doctor (user). The latter records the
electronic record data and refers to the patient’s wearable IoT device in the hospital system. The doctor
performs the anamnesis on the patient, who must answer the questions (privacy). The doctor also
records this information in the patient’s electronic record. The patient has already been attended
to, so they are drugged and released or referred to another hospital ward based on the clinical
condition’s evolution.
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Figure 7. Sequence—Screening Room.

Figure 8. Sequence—Office.

4.3. Context Diagrams

The Context Diagram is a UML tool that represents the entire system as a single process. It consists
of data streams that show the interfaces between the system and external entities [46]. The diagram
illustrates the object of the study, the project, and its relationship to the environment. Figure 9 represents
the context diagram of this project.

The patient (user) requests assistance from the receptionist (user), who will fill in the data
(privacy) in the hospital system. The hospital system interacts with the operator’s system that is
outside the physical environment of the hospital. In the screening process, the nurse (user) conducts
the questionnaire with the patient (user), entering the basic health data in the central hospital
system, which interacts with the wearable IoT devices system. Finally, the doctor (user) performs
the anamnesis, entering the central hospital system’s consultation information. These information
registration processes are focused on privacy determinations, and all processes occur in a clinical
setting, explicitly represented within the context diagram.
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Figure 9. Context Diagram.

5. Prototype

A mobile application was developed as a prototype to illustrate the basic principles, from the
admission of the patient to the emergency room and referral to the office or discharge indication.
The goal of the developed mobile application is to validate some taxonomy items, for it embraces the
environment (interoperability among the system and the wearable IoT device). The application was
developed using NodeJS.

The application comprises an initial customer registration screen, which simulates the process
of filling out the registration form upon admission to the emergency room. The prototype only
contains the primary fields: name, gender, age, and address. The ’encrypt data?’ checkbox has been
included to select the encryption/hash algorithm. Since it is merely a prototype for demonstrating
the flow of information and its security application, the hashes SHA-256 and SHA-512 were made
available. In the real application, they would not serve to encrypt data because hashes are not reversible
and are considered a one-way function [47]; the prototype also includes the Advanced Encryption
Standard (AES) symmetric encryption algorithm. Figure 10 illustrates the first registration screen of
the application with the fields mentioned above.

As shown in Figure 10, the application’s flow is as follows: initially, the patient fills out a form
with personal data. The data is encrypted and sent to the systems through the hospital network,
as necessary. The patient, then, is sent to the screening room to answer more questions and thus help
medical personnel assess their situation. He receives a wearable device to monitor his health status.
All the information collected about the patient and their health status is included in their digital record.
If communication with other systems is required, the information to be sent is encrypted.

The link between this device and the patient’s file allows the information to be collected without
a health professional’s intervention. Based on the information provided by the wearable, the system
makes a temperature analysis. If the patient remains in a feverish state, they are referred to the
doctor’s office. Since fever is one of the symptoms that prevail in detecting COVID-19, its absence can
prompt a discharge. However, the lack of fever is not a guarantee that there is no infection with the
virus [48], so careful monitoring is needed. In addition to the factors described, comparative tests were
performed to validate the application based on the initially defined requirements in the taxonomy.
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Pseudo-Code

The algorithms applied in the development of the prototype application are described below in
pseudo-code format. Pseudo-code covers the generation of a service number, temperature monitoring,
and referral in case of emergency.

Algorithm 1 deals with the generation of the service number, where the patient’s data will be
saved in an encrypted form and forwarded to the monitoring room. In the monitoring room, the service
number to be linked to the customer will be generated.

Algorithm 1: POST New medical care

1 Service Number;
Output: Attendance number

2 save encrypted packet data;
3 send to monitoring room;

Algorithm 2 deals with the process of monitoring temperature. The wearable IoT device collects
the patient’s temperature during the period defined by the medical team and sends it to the server
for the monitor process. First, if it is higher than 38.5 ºC, the patient is referred to the Intensive Care
Unit (ICU). If it is equal to or above 37 ºC for five minutes, the patient is referred to another ward for
medical assistance. Finally, if it is less than 37 ºC for ten minutes, the patient can be released.
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Algorithm 2: Monitoring

1 The wearable IoT device send patient’s’ temperature for the server to monitor;
Input: Temperature
Output: Forwarding

2 while not forwarded do

3 if temperature > 38.5 ºC then

4 forward to the intensive care unit;
5 else if temperature >= 37 for 5 min then

6 forward to the doctor;
7 else if temperature < 37 for 10 min then

8 forward back to home;
9 else

10 nothing to do;
11 end while

Algorithm 3 deals with the alert generated for the ICU in cases where the patient is classified as
an emergency. If there is no emergency, the alert is generated for the doctor, informing that the patient
will be referred for care.

Algorithm 3: Alert
Input : ICU Data
Output : Attendance number

1 when patient need;

2 if has urgence then

3 notify the intensive care unit
4 else

5 notify doctor
6 end if

6. Tests and Results

The flow of controlled information in the application starts after the registration data has been
filled in; it is also possible to apply other requirements such as encryption to the patient’s data.
Figure 11 illustrates the integration of basic patient information and reports that the patient was sent
for temperature control. The temperature was captured and sent to the system, which will classify
the feverish state, suggesting different referrals for each scenario. If the patient exhibits a feverish
state and has other symptoms that may characterize COVID-19, their care must be provided in a
differentiated way.

Figure 11. Saved Information.
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When choosing the type of encryption in the data registration process, the data security level
increases, and the information should only be made available to those who have permission.
For prototype demonstration purposes, we use the AES symmetric key encryption method.
The encryption application aims to secure data while transferring it to other devices. Figure 12 shows
the encrypted patient registration data.

Figure 12. AES Encryption.

After the patient has been registered, and the information is stored safely, the data is sent to a
system that continually gets updates on body temperature. With this prototype’s application, we also
tested the hypothesis that an IoT device can monitor the patient for changes in temperature. To test the
idea, we implemented a set of random values read by the program to simulate this monitoring process.
Every minute, the device will check the temperature of the patients who have entered the system and
are waiting at the emergency room’s reception. If their temperature can be characterized as feverish,
then they are taken to the office with priority. Figure 13 describes the monitoring of a patient whose
temperature remains stable, and hospital discharge is suggested.

Figure 13. Patient record simulating discharge.

If the patient’s state remains feverish for five minutes, a message will be sent to the doctor in
charge, as shown in Figure 14. If the temperature remains stable for ten minutes, the patient will
be released.

After testing and validating the application, it was possible to observe that the information
flows through different devices. For the simulation environment, we experimented with only one
system that communicates with a wearable device. In real applications, there could be more than one
device interacting with more than one method. However, the information’s fluidity would be similar:
the patient’s registration at the time of admission to the emergency room, the system being accessed
by the screening sector to insert health status data, and the information is received from monitoring
devices. At the medical consultation time, the system would receive more details regarding anamnesis,
referrals for exams, or hospital discharge.

Given that the feverish state is strongly associated with a COVID-19 diagnosis, the patient
should be monitored continuously and receive adequate care as long as the symptoms persist.
The high contagion of the virus makes such care essential. The monitoring interval parameters,
indicative of medical discharge or a possible disease carrier, are defined according to medical
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protocols. We emphasize that the interval and discharge suggestion present in this work are meant to
simulate features.

Figure 14. Patient registry simulating medical care admittance.

7. Conclusions

The COVID-19 scenario requires particular solutions for providing the emergency care process
and security in the data generated in all environments. In this sense, this work proposed a taxonomy
that was designed to support the development of privacy mechanisms for health environments.

The taxonomy is branched into four items containing five attributes each; all the items and their
respective attributes are justifiable. For the information flow tests, we developed a prototype and
application that addresses the main questions about data privacy despite being simple. The application
was developed with registration data inputs and different encryption/hash to be applied according
to environmental criteria. The application communicates with a wearable that monitors the patient’s
temperature and provides treatment in line with the patient’s feverish state, guiding the referral to the
doctor’s office or the possibility of discharge. With the application of taxonomic definitions and the
agility of medical professionals in the care of patients with suspected COVID-19, the registration data
is kept confidential through encryption and privacy requirements. Temperature monitoring should
be continuously done; in the case of feverish states that persist for a period defined by the entity and
other symptoms suggestive of the disease, the system suggests the patient’s referral without exposing
personal data.

The main contribution of this research consists of the analysis of different privacy parameters
with a mobile application that considers the different rules proposed in our taxonomy. There is no
concrete analysis previously performed that analyzes the privacy constraints with a mobile application.
Mobile technologies are commonly used by people, and it may help in the prevention of COVID-19.
In addition, more search should be performed, and the taxonomy developed may be improved to be
adapted with the real world.

We believe that the research we have carried out contributes to several other studies currently in
progress in several countries, which propose monitoring without consent and put forward definitions
of use and data privacy criteria. For future work, we are developing improvements for privacy
requirements that can be adapted to different countries, thus expanding variable monitoring features
to identify patients with COVID-19 and obtain new tests and results.
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Abstract: Smartphone sensors have often been proposed as pervasive measurement systems to assess
mobility in older adults due to their ease of use and low-cost. This study analyzes a smartphone-based
application’s validity and reliability to quantify temporal variables during the single sit-to-stand
test with institutionalized older adults. Forty older adults (20 women and 20 men; 78.9 ± 8.6 years)
volunteered to participate in this study. All participants performed the single sit-to-stand test. Each
sit-to-stand repetition was performed after an acoustic signal was emitted by the smartphone app.
All data were acquired simultaneously with a smartphone and a digital video camera. The measured
temporal variables were stand-up time and total time. The relative reliability and systematic bias
inter-device were assessed using the intraclass correlation coefficient (ICC) and Bland-Altman plots.
In contrast, absolute reliability was assessed using the standard error of measurement and coefficient
of variation (CV). Inter-device concurrent validity was assessed through correlation analysis. The
absolute percent error (APE) and the accuracy were also calculated. The results showed excellent
reliability (ICC = 0.92–0.97; CV = 1.85–3.03) and very strong relationships inter-devices for the
stand-up time (r = 0.94) and the total time (r = 0.98). The APE was lower than 6%, and the accuracy
was higher than 94%. Based on our data, the findings suggest that the smartphone application is
valid and reliable to collect the stand-up time and total time during the single sit-to-stand test with
older adults.

Keywords: mobile application; accelerometer sensor; stand-up time; total time; aging

1. Introduction

As the population’s age increases in industrialized countries [1], older adults’ care
is critical for their well-being. Consequently, the evaluation and quantification of daily
activities are essential for determining health status changes and, subsequently, detecting
early signs of loss of autonomy [2]. Standing up from a sitting position and its counterpart
transition, sitting down from a standing position, are the two most common daily motor
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activities that could be critical indicators for older adults’ functional autonomy [3,4]. The
sit-to-stand movement is one of the most challenging activities in terms of mechanics [5].
It requires the optimization of several kinematic tasks, including coordination, balance,
mobility, muscular strength, and power output [6]. Within the population of older adults,
increased sit-to-stand time is associated with a high risk of fall occurrence [7–9], decreased
leg muscle power and strength [10,11], slow walking speed [12–14], and mobility disabil-
ity [15]. Usually, the sit-to-stand test’s time combined with the subject’s age and previous
medical history (e.g., recovering from an injury or surgery) helps identify the fall risk,
assessing functional lower extremity strength, transitional movements, and balance.

Recently, approaches for quantifying mobility emerged that rely on inexpensive sensor
technologies [16]. Remarkably, smartphone use has been suggested as a useful tool to
objectively monitor and improve patients’ health and fitness [17], which has been verified
in research [18] and clinical practice [19]. Smartphone sensor technology has become suffi-
ciently reliable and accurate to substitute specific biomechanics lab equipment and portable
devices used in functional mobility research. Some authors showed that a smartphone with
a motion sensor could be used as a low-cost integration device to evaluate the patient’s
balance and mobility [20]. Other authors demonstrated that the smartphones’ accelerome-
ter could measure kinematic tremor frequencies equivalent to electromyography’s tremor
frequency [21]. Wile et al. [22] utilized a smartwatch to differentiate the symptoms in
patients with Parkinson’s disease and related tremor diseases by calculating the first four
harmonics’ signal power.

Several clinical tests, such as the timed-up and go test and sit-to-stand test, have been
developed to evaluate physical performance and mobility-related to every-day tasks [8,23].
The sit-to-stand test is a widely adopted clinical test used to evaluate older adults’ func-
tionality [24]. Initially designed to measure the lower extremities’ functional capacity [25],
it has been applied and investigated in different populations to assess the rehabilitation
process and functional performance in older people with varied medical conditions [26].
During the sit-to-stand test, researchers and clinicians commonly measure the time spent
to perform a fixed number of repetitions or the number of repetitions performed dur-
ing a specific time [4,14]. Commonly, the evaluators use a chronometer to measure the
time during the sit-to-stand test [27,28]. Despite its low cost and ease of use, chronome-
ters present some limitations, mainly associated with human error (e.g., reaction time
delay and position judgment) [29–31]. Therefore, to overcome the limitations mentioned
above, clinicians and researchers may opt for alternative and reliable technologies to mea-
sure biomechanical parameters during the sit-to-stand test with aged populations [32,33].
Several authors have analyzed smartphone applications to quantify kinematic variables
during the sit-to-stand test using high-speed video recordings [34,35]. Other studies uti-
lized the triaxial accelerometer sensor embedded in the mobile smartphone [30,31,36].
For example, González-Rojas et al. [37] characterized the time measurement of sit-to-stand
transitions by transforming the relative acceleration signal, recorded by a triaxial accelerom-
eter. Cerrito et al. [30] validated a smartphone-based app using the accelerometer sensor
to quantify the sit-to-stand test movement in older adults. These authors captured vertical
ground reaction forces and vertical acceleration simultaneously using two force plates (ref-
erence standard) and a mobile smartphone. The total movement duration, peak force, rate
of force development, and peak power were measured. Chan et al. [31] also developed a
mobile application to calculate the time during the five-repetition sit-to-stand and timed-up
and go tests in older women. The mobile application also includes a beep sound to cue the
participants to initiate the test, which aims to eliminate potential human errors when using
a chronometer, including the reaction time delay.

As frailty is viewed as a transitional state from robustness to functional decline, iden-
tifying a pre-frailty state can alleviate or postpone the consequences of this syndrome [38].
Within this context, temporal variables have been used as predictors of frailty in several
older adults’ studies. For example, Hausdorff et al. [39] measured the stride time, swing
time, stance time, and percentage stance time. Fallers compared with non-fallers revealed
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higher standard deviations and coefficients of variation across all variables. In the study by
Zhou et al. [40], gait is deconstructed into clinically observable spatial-temporal variables
to establish a quantitative model to classify fallers and non-fallers.

Considering that the sit-to-stand test is strongly recommended in clinical and research
settings to assess functional independence, detect frailty, and sarcopenia in aged popula-
tions [15,41], the practicability of using smartphones for assessing the sit-to-stand in older
adults can be a logical advancement of an inherent concept. Therefore, as stated above,
measuring reliably and accurately temporal variables during the sit-to-stand test with older
adults, including the stand-up time and the total time, is determinant to identify those who
present functional impairments and designing individual clinical interventions to improve
functionality [42,43]. Due to the difficulties of performing the different measurements with
older adults, developing an easy-use solution is essential for taking different preventive
actions. Therefore, this study aimed to analyze a smartphone application’s validity and
reliability to acquire temporal descriptors during the single sit-to-stand test with institution-
alized older adults, including the stand-up time and total time. We hypothesized that the
smartphone application would be valid and reliable for measuring the temporal variables
during the single sit-to-stand test with older adults. This study’s novelty consists of creat-
ing a scientifically valid and reliable mobile application for the independent and automatic
measurement of temporal variables during the single sit-to-stand test with older adults. To
our best knowledge, only one study using a mobile app to quantify the sit-to-stand test
with older adults exhibited the data in real-time through graphics [30]. However, analyzing
the data through graphics might not be a practical approach in clinical contexts due to its
complexity and time-consuming. An essential factor to bear in mind is that clinicians and
researchers want to immediately access the results when the test ends to provide feedback
in real-time for the participants. The automatic method will also ensure that the data
were properly collected. Therefore, with our mobile app, the possibility of automatically
recording, processing, and presenting the results in the smartphone screen when the test
ends entails a new clinical approach to assess the single sit-to-stand performance with
older adults.

2. Methods

As part of the research on developing solutions for Ambient Assisted Living (AAL) [44–46],
the scope of this study consists of using technological equipment that embeds inertial sensors
that acquire different data types to measure and identify human movements [47–50].

2.1. Study Design

This study was a cross-sectional design aiming to analyze a smartphone application’s
validity and reliability to capture temporal descriptors during the single sit-to-stand test
with institutionalized older adults. A digital video camera was used further to validate the
correct execution of the sit-to-stand movement, and the results presented in this study only
considered the valid ones. The sit-to-stand test is quick and easy to administer and presents
practical utility in clinical and research settings to evaluate functional independence in older
adults [7,8]. The experimental procedures were carried out over ten weeks. Each session
was performed between 10:00 and 11:00 a.m. in the same location (room temperature
22–24 ◦C). In the first week, we familiarized the participants with the testing procedures.
We also measured the body mass (TANITA BC-601, Tokyo, Japan) and height (Portable
Stadiometer SECA, Hamburg, Germany). Then, from the second to the tenth week, the
participants performed one testing session per week. In each session, we assessed a group
of four to five participants in the sit-to-stand test.

2.2. Participants

Forty institutionalized older adults (20 men and 20 women) volunteered to participate
in this study. Inclusion criteria were age ≥ 65 years old, men and women, capable of
stand-up from a chair independently with the arms crossed over the chest, and willingness
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to participate in the experimental procedures. Exclusion criteria were severe physical and
cognitive impairment (i.e., Barthel index score < 60 and mini-mental state examination score
< 20), deafness, musculoskeletal injuries in the previous three months, and terminal illness
(life expectancy < 6 months). Table 1 presents the characteristics of the participants. All
participants gave their informed consent for inclusion before they participated in the study.
The study was conducted following the Declaration of Helsinki. The Ethics Committee
approved the protocol of the University of Beira Interior (code: CE-UBI-Pj-2019-019).

Table 1. Participants’ characteristics.

n Age (Years) Body Mass (kg) Height (m) BMI (kg/m2)

Women 20 81.9 ± 8.1 65.4 ± 11.6 1.49 ± 0.1 29.4 ± 5.4
Men 20 76.0 ± 8.2 78.0 ± 15.5 1.66 ± 0.1 28.4 ± 4.7
Total 40 78.9 ± 8.6 71.7 ± 15.0 1.57 ± 0.1 28.9 ± 5.0

Data are mean ± standard deviation.

2.3. Sit-to-Stand Test

For this study, we used the single sit-to-stand test, starting with a 10 min general warm-
up consisting of light walking and mobility exercises, as described in Marques et al. [51].
The participants were equipped with a smartphone placed inside a waistband (Sports
Waistband Universal Phone Holder), which was in turn attached to the waist. We placed the
mobile phone on the waist because the center of gravity is located around the abdomen [52].
The waistband was tightened to avoid slight movements of the mobile phone that would
adversely affect data capture. The participants sat on an armless chair (height = 0.49 cm)
with the back straight and the arms crossed over the chest. We did not allow the participants
to lean back on the chair neither to assume a perched position. All participants were
instructed to maintain a 90◦ hip and knee flexion, which the operator closely monitored
during the test. After 10 s of the smartphone application’s activation, an acoustic signal
cued the participants to stand up and sit down on the chair while maintaining the arms
crossed over the chest, thus performing a single sit-to-stand movement. When they finished
the movement, the participant rested on the chair with the arms crossed over the chest for
15 s. The subsequent single sit-to-stand movement was performed after hearing another
acoustic signal. After six single sit-to-stand repetitions, the participants had a 3-min rest
before repeating the test four more times. This procedure was necessary to ensure that
enough and correct data (i.e., having enough rest and without previous body movement
before the beep) was collected for post-analysis. Before each sit-to-stand transition, we
instructed the participants to perform the repetitions as fast as possible immediately after
hearing the acoustic signal. In all trials, a researcher was standing next to the participants
to ensure safety during the movement transitions. Figure 1 illustrates the sit-to-stand
testing procedure.

Figure 1. Illustration of the single sit-to-stand test.
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2.4. Data Acquisition

A smartphone application and a digital video camera acquired the data simultaneously.
The latter device was considered the reference criterion [53–55]. The smartphone model
was the Xiaomi Mi A1. This device embeds a triaxial accelerometer (model Bosch BMI120),
which acquires the data at a sampling frequency of 200 Hz. As described before, we placed
the smartphone inside a waistband, which was then attached to the participants’ waist. The
digital video camera (Canon LEGRIA HF R46, Tokyo, Japan) was positioned perpendicular
to the field of view (distance = 3 m) and attached to a stationary tripod (height = 1.2 m).
We recorded the participants from the sagittal plane at a sampling frequency of 25 frames
per second. Although the sampling frequency between devices was different (200 vs.
25 Hz), this was not considered a significant limitation [53]. In fact, previous studies with
older adults comparing the accelerometer data vs. video camera data during postural
transitions (e.g., sit-to-stand or gait analysis) used different sampling frequencies between
devices [54–56]. Therefore, according to the scientific literature, when comparing handheld
devices (e.g., mobile phones) vs. machines (e.g., video cameras), it is impossible to achieve
synchronization or sampling frequency equality [53].

Regarding using a 25 Hz video camera for analysis, it is essential to note that one
frame’s error corresponds to an error of 0.04 s when using this sampling frequency. Table 2
shows that the stand-up time and total time values are around 1.62 and 2.75 s, respectively.
These results indicate that the video camera’s error is around 2.5% in the stand-up time
(i.e., 0.04/1.68) and 1.5% in the total time (i.e., 0.04/2.75), in the worst-case scenario which
means a minor measurement error. Therefore, as stated by Winter [57], except for high-
speed running and athletic movements, slower movement analyses (e.g., walking) can be
reliably done with minor errors using a 25 Hz video camera. Previous studies with older
adults used a sampling frequency of 25 Hz to analyze kinematic data during movement
transitions, such as sit-to-stand, stand-to-sit, or sit-to-walk [54–56,58,59], which reinforces
the validity and reliability of using this frequency for movement analysis.

Table 2. Relative reliability and relationship inter-devices.

Variable
App (s)

(Mean ± SD)
Video (s)

(Mean ± SD)
Cronbach’s α

ICC
(95% CI)

Correlation (�)
(95% CI)

Stand-up Time
(n = 842) 1.68 ± 0.29 1.62 ± 0.30 0.97 0.92 (0.82–0.96) 0.94 (0.94–0.95) ***

Total Time
(n = 892) 2.81 ± 0.50 2.75 ± 0.50 0.99 0.97 (0.93–0.98) 0.98 (0.97–0.98) ***

CI: confidence interval; ICC: intra-class correlation coefficient; �: Spearman’s rank correlation coefficient; *** p-value < 0.001.

2.5. Data Analysis
2.5.1. Mobile Application

The accelerometer data were acquired with a mobile application, which automatically
pre-processes the raw data and measures the stand-up time and total time (Figure 2). These
measures are related to the occurrence of events, such as when standing up starts or ends.
The mobile application was developed with Android Studio 4.1., with Java SE 12. It was
used for the automatic detection of different events during the sit-to-stand test. It was
developed and adjusted, considering the previous study [60], by this study’s research
team. The application will be available in the market after validation. Contrary to other
studies, and to avoid the mobile device’s incorrect positioning on the waist, we used the
Euclidean norm of the accelerometer’s outputs. After, the data was filtered, and the different
calculations were applied. The different measurements can be performed locally without an
Internet connection. The results are presented as soon as the test ends. The stand-up time
starts from the acoustic signal until the minimum (negative) acceleration value is reached
before the maximum (positive) acceleration value. The time frame between the acoustic
signal and the maximum (positive) acceleration value is defined as the total time (Figure 2).

29



Sensors 2021, 21, 2050

For the measurement of the stand-up time and total time, we researched in the literature
how these variables are automatically detected considering the accelerometer data [41,42].

Figure 2. Signal plot of the acceleration during one sit-to-stand repetition (i.e., the complete cycle of
stand-up and sit down on the chair); ST: stand-up time; TT: total time.

2.5.2. Video-Camera Recordings

The video recording files were transferred to a personal laptop and then analyzed
using Adobe Premiere Pro (version 14.4.0, Adobe Systems, San Jose, CA, USA). We analyzed
all video files frame by frame. The first frame was considered the start of the acoustic
signal. After that, we calculated the stand-up time and total time. The stand-up time
was defined as the moment from the acoustic signal until the participant was stand-up
with the legs fully extended and an upright torso. The total time was measured from
the acoustic signal until the participant returned to the seated position, the moment of
contact with the chair, with vertical velocity decreased to zero. We identified that the
person was entirely sat by monitoring subsequent frames and ensuring that the last frame
corresponded to the moment they were fully seated. We converted the data to seconds
by dividing the frame number by 25 frames per second. The repetitions were invalid
if participants moved any segment of the body the instant before the acoustic signal or
did not complete the sit-to-stand cycle. Therefore, we only selected valid repetitions for
further analysis.

2.6. Statistical Analysis

The calculation of the interquartile range of the mean difference between devices
in each temporal variable enabled the detection of outliers. If data were higher than 1.5
or lower than −1.5 times the Inter-quartile Range (IQR), it was removed [53]. The intra-
class correlation coefficient (ICC with 95% confidence intervals [CI]) analyzed the level
of agreement or relative reliability inter-device [61]. The ICC model was the two-way
random-effects, absolute agreement, single rater/measurement [ICC(2,1)] [61]. Cronbach’s
alpha analyzed internal consistency. ICC values were interpreted as: <0.50, poor; 0.50–0.75,
moderate; 0.75–0.90, good; >0.90, excellent [61]. Bland-Altman plots with 95% limits of
agreement (LOA) (mean difference ± 1.96 × standard deviation [SD] of the differences) an-
alyzed the systematic bias/differences between devices [62]. The Kendall Rank Correlation
Coefficient (τ) between the absolute differences and the mean of both devices analyzed the
degree of heteroscedasticity. If τ > 0.1, the data were considered heteroscedastic and trans-
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formed by logarithms to the base 10 (log10) [63]. Linear regressions and Spearman’s Rank
Correlation Coefficients (ρ) analyzed the concurrent validity inter-device. The magnitude
of correlation was interpreted as: 0.00–0.10, negligible; 0.10–0.39, weak; 0.40–0.69, moderate;
0.70–0.89, strong; 0.90–1.00, very strong [64]. The assumption of homoscedasticity was
analyzed by inspecting the standardized residuals’ scatter plots against the standardized
predicted values. The absolute reliability was analyzed by estimating the standard error
of measurement (SEM = SD of the difference between the smartphone application and
video camera scores divided by the

√
2), the coefficient of variation (CV = (SEM/mean of

both devices) × 100), and minimal detectable change (MDC =
√

2 × SEM × 1.96) [65]. CV
values < 5% were considered acceptable [66]. The absolute percent error of the measure-
ments (APE = ((|smartphone application − video camera)/video camera|) × 100) [67],
and the accuracy ((video camera − (|video camera − smartphone application|)/video
camera) × 100) were also calculated. An APE < 10% was considered acceptable [67]. We
conducted a sample size calculation based on an expected reliability level of 0.90 and a
minimum acceptable reliability level of 0.80. With an alpha value of 0.05 and 6 repetitions
per participant, a minimum sample size of 32 was required to obtain a power of 80% [68].
The significance level was set at p < 0.05. All data were analyzed using Microsoft Office
Excel 2016 and SPSS version 27 (SPSS Inc., Chicago, IL, USA). Figures were designed using
the GraphPad Prism version 7.0 (GraphPad Software Inc., San Diego, CA, USA).

3. Results

Table 2 presents the relative reliability and relationship between devices. The results
obtained through manual based on the video camera recordings correspond to traditional
methods when an operator observes the patient performing the test and times his/her
movements with a chronometer. It is expected that the careful analysis frame-by-frame to
measure the time of the test is more accurate than an operator measuring the time with
a chronometer. Therefore, the results provided in Tables 2 and 3 and Figures 3 and 4
comparing the video camera results and the smartphone-based approach correspond to a
comparison between a traditional and a smartphone-based approach as well. The stand-
up time and total time showed excellent relative reliability and very strong significant
relationships (p < 0.001) inter-devices.

Table 3. Absolute reliability and accuracy inter-devices.

Stand-Up Time
(n = 842)

Total Time
(n = 892)

SEM (s) 0.05 0.05
CV (%) 3.03 1.85

MDC (s) 0.14 0.14
APE (%) 5.79 3.90

Accuracy (%) 94.21 96.10
APE: absolute percent error calculated as: ((|smartphone application − video camera)/video camera|) × 100);
Accuracy calculated as: ((video camera − (|video camera − smartphone application|)/video camera) × 100);
CV: coefficient of variation; MDC: minimal detectable change; SEM: standard error of measurement.

Figure 3 shows the Bland-Altman plots of agreement between the mobile application
and video-camera for the stand-up time (A) and total time (B).

Figure 4 shows the linear regression between the mobile application and the video-
camera for all variables. The line of 45◦ indicates the amount of difference inter-devices in
the measurement of the variables. Both the stand-up time and total time fall nearby the
line of 45◦. The resulting linear regression equation is provided for both variables.

Table 3 presents the absolute reliability and accuracy between devices. The stand-
up time and total time showed CV values lower than 4%, revealing excellent absolute
reliability. In both variables, the APE values were lower than 6%, and the accuracy was
higher than 94%, thus revealing a high accuracy level.
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Figure 3. Bland-Altman plots with 95% limits of agreement (mean difference ± 1.96 × standard
deviation [SD] of the differences) between the mobile application and video-camera for the stand-up
time (A) and total time (B); the solid lines in the middle of the plots represent the mean difference/bias,
while the upper and lower dotted lines represent the upper and lower LOA.
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Figure 4. Linear regression between the mobile application and video-camera for the stand-up time
(A) and total time (B); r2: coefficient of determination; the black lines indicate the regression line,
while the red lines indicate the line of 45◦; dotted lines indicate 95% confidence intervals.

4. Discussion

In this study, we analyzed the validity of a mobile smartphone application to quantify
the stand-up time and total time during the single sit-to-stand test with institutionalized
older adults. The results revealed excellent reliability, high accuracy, and very strong
relationships between devices in both temporal variables. These results agree with our
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central hypothesis, meaning that the mobile application is valid and reliable for measuring
temporal variables during the single sit-to-stand test with institutionalized older adults.

Regarding stand-up time, only two studies reported acquiring this temporal variable
with a mobile application during the sit-to-stand test with older adults. In a study with
stroke patients [36] of both sexes (67.50 ± 13.18 years), the authors could observe a mean
stand-up time of 1.95 s (SD = 0.08), which is 16% longer than the value observed in our study
(1.68 ± 0.29 s). With our study focusing on older adults without any medical conditions
that would affect mobility during the sit-to-stand test, these differences are expected. In the
second study [30], which included community-dwelling older adults (73.5 ± 10.4 years),
the reported mean stand-up time of 1.66 s (SD = 0.42) is close to our results. Possible reasons
for these similarities might be associated with using a triaxial accelerometer embedded
in the smartphone, a similar system to develop the mobile application, the participants’
age, and the maximal intended speed during the sit-to-stand transfer. Other studies that
captured the stand-up time through a mobile application [35] reported significantly lower
times (0.47 ± 0.09 s). However, the results are incomparable as the participant sample pool
included adults of a significantly wider age range (21–87 years), and the stand-up time in
this study was defined as the rising phase of the sit-to-stand movement without taking
into account the preparatory phase, i.e., when the trunk is shifted forward prior to seat-off.
Additionally, the mobile application developed in that study quantified the sit-to-stand
test based on high-speed video recordings and not through the triaxial accelerometer
incorporated in the smartphone. Having only three studies related to the sit-to-stand
test and its analysis using mobile devices suggests that this is an active area of research.
Furthermore, the inconsistent results reported by different studies due to the reasons
mentioned above justify the work performed in our research, which is in a more controlled
and homogeneous age group of older adults, lacking in other studies.

Studies that used body-fixed sensors instead of a mobile device to record the stand-
up time with older adults observed that the time ranged between 1.81 to 2.17 s [69–72].
Furthermore, when the participants were instructed to perform the movement as fast as
possible, the time decreased to 1.74 s (SD = 0.33) [69] and 1.7 s (SD = 0.80) [42]. These results
are relevantly like the stand-up time values presented in our study, mainly when the sit-
to-stand transfer is performed at the maximal intended velocity. Considering the findings
above, the accelerometer data acquired with a hybrid sensor or a mobile application seems
to present similar results in the sit-to-stand test with older adults.

Regarding the total time (i.e., the complete measurement of the stand-up/sit-down
cycle), to our best knowledge, only one study measured this variable with a mobile
application [36]. Merchán-Baeza et al. [36], in a study with stroke patients, reported a total
time of 4.09 ± 0.07 s. This time is 45% higher than the total time presented in our study
(2.81 ± 0.50 s). However, this result is expected as none of our participants had suffered
from a stroke. Hence, the observation of a faster time for sit-to-stand transitions in older
adults without mobility disability when compared to stroke patients can be anticipated.

Our mobile application demonstrated high accuracy levels and minor errors to capture
temporal variables during the single sit-to-stand test with older adults, reinforcing its
validity and reliability. Although several related studies mentioned accurate mobile apps
to measure temporal variables during the sit-to-stand test with older adults [31,35], none
reported the accuracy values like ours, which does not allow valid comparisons with
our results.

We want to note that the paper discusses a mobile app designed primarily for use
in clinical settings or in controlled settings when the patient has help from caregivers,
medical personnel, or family members to set up the application and place the mobile
device properly. If used in an uncontrolled environment, then the test results can be invalid.
However, even in such limiting circumstances, not having to visit a medical center to
perform the test is quite valuable for older adults with mobility and dexterity problems.

Future studies should consider the following limitations and perform new analyses in
the sit-to-stand test with aged populations to strengthen this field’s knowledge. Firstly, the
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sit-to-stand test analysis can be strengthened by capturing other biomechanical variables.
For example, developing an algorithm to calculate the velocity, force, and power generated
during the sit-to-stand transitions will provide insightful information for researchers
and clinicians. Secondly, determining the mobile application’s intra-device reliability by
repeating the experiment over different trials will help analyze the results’ consistency.
Thirdly, analyzing the mobile app’s validity and reliability considering smartphones with
different sampling frequencies will help understand if its use can be generalized among
several devices. Finally, applying other field-based tests such as upper and lower body
strength tests, the timed-up and go, or walking speed tests will enable researchers to
analyze their relationship with the temporal variables collected during the sit-to-stand test.

Another promising avenue for research is to also include capabilities in the mobile
application to identify whether the test was performed correctly, such as due to incorrect
body positioning or performing incomplete movements. For the current research, we
assume that the participants were trained to perform the test when asked to install the
mobile application. Additionally, the mobile app will also include informative videos and
tutorials about the test’s procedures.

5. Conclusions

For older adults, sit-to-stand tasks are an essential facet of independence and well-
being. Therefore, improved quantification of the sit-to-stand test is warranted. It can
provide important information that can help improve the quality of life of older adults. The
smartphone application presented in this study is suitable for valid and reliable measure-
ments of temporal variables during the single sit-to-stand test with institutionalized older
adults, specifically, stand-up time and total time. Researchers and clinicians commonly
use these variables for different purposes, such as identifying frailty and analyzing the
effects of different training interventions on these variables (i.e., do they improve the time
to stand-up from the chair after a training program?). Therefore, having a valid and reliable
instrument like our mobile application to measure these variables is clinically essential for
capturing accurate data. The smartphone application can also be used in contexts where
budget, space, time, and equipment are limited. It is also essential to note that, as the test
ends, the results are presented on the smartphone screen in real-time, meaning that the
evaluators can immediately access the data and provide reliable feedback regarding the
test’s performance. As a result, there is no need to use other materials more sensitive to
human error like chronometers to capture the data. Finally, the data is also stored in the
mobile phone and cloud, enabling follow-up analysis.

In the future, these tests should be evaluated by multidisciplinary teams comprised of
coaches, physiotherapists, physicians, nurses, and technicians to identify potential issues
that might have been neglected during this study. A pilot test in a broader population
performed for a prolonged period should be conducted to evaluate the long-term effects of
exercise or rehabilitation on older adults’ sit-to-stand performance. As a result, it would
help determine whether the current practice should be modified or updated and under
which conditions.
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Abstract: Research on the human activity recognition could be utilized for the monitoring of elderly
people living alone to reduce the cost of home care. Video sensors can be easily deployed in the
different zones of houses to achieve monitoring. The goal of this study is to employ a linear-map
convolutional neural network (CNN) to perform action recognition with RGB videos. To reduce
the amount of the training data, the posture information is represented by skeleton data extracted
from the 300 frames of one film. The two-stream method was applied to increase the accuracy of
recognition by using the spatial and motion features of skeleton sequences. The relations of adjacent
skeletal joints were employed to build the direct acyclic graph (DAG) matrices, source matrix, and
target matrix. Two features were transferred by DAG matrices and expanded as color texture images.
The linear-map CNN had a two-dimensional linear map at the beginning of each layer to adjust the
number of channels. A two-dimensional CNN was used to recognize the actions. We applied the
RGB videos from the action recognition datasets of the NTU RGB+D database, which was established
by the Rapid-Rich Object Search Lab, to execute model training and performance evaluation. The
experimental results show that the obtained precision, recall, specificity, F1-score, and accuracy were
86.9%, 86.1%, 99.9%, 86.3%, and 99.5%, respectively, in the cross-subject source, and 94.8%, 94.7%,
99.9%, 94.7%, and 99.9%, respectively, in the cross-view source. An important contribution of this
work is that by using the skeleton sequences to produce the spatial and motion features and the DAG
matrix to enhance the relation of adjacent skeletal joints, the computation speed was faster than the
traditional schemes that utilize single frame image convolution. Therefore, this work exhibits the
practical potential of real-life action recognition.

Keywords: linear-map convolutional neural network; direct acyclic graph; action recognition; spatial
feature; temporal feature

1. Introduction

Recently, the lifespans of the world’s population are increasing, and society is grad-
ually aging. According to the report of the United Nations [1], the number of elderly
people (over 65) in the world in 2019 was 703 million, and this is estimated to double to
1.5 billion by 2050. From 1990 to 2019, the proportion of the global population over 65 years
old increased from 6% to 9%, and the proportion of the elderly population is expected to
further increase to 16% by 2050. In Taiwan, the report of the National Development Council
indicated that the elderly population with age over 65 will exceed 20% of the national
population at 2026 [2].
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Taiwan will enter a super-aged society in 2026. This means that the labor manpower
will gradually decrease in the future. Thus, the cost of home care for elders will significantly
increase. In homecare, the monitoring of elderly people living alone is a major issue. The
behaviors of their activities have a high relation with their physical and mental health [3,4].
Therefore, how to use artificial intelligence (AI) techniques to reduce the cost of home care
is an important challenge.

The recognition of body activities has two major techniques. One is physical sensors,
like accelerometers [5,6], gyroscopes [7], and strain gauges [8], which have the advantage
that they can be worn on the body to monitor dangerous activities throughout the day and
the disadvantage that few activities can be recognized. Therefore, the physical sensors are
typically not used to identify the daily activities. Another technique is the charge-coupled
device (CCD) camera [9,10], which has the advantage of being able to recognize many daily
activities and the disadvantage that it can only be used to monitor the activities of people
in a local area. Thus, it is suitable to be used in a home environment.

Many previous studies have used deep learning techniques to recognize daily activi-
ties, including two-stream convolutional neural networks (CNNs), long short-term memory
networks (LSTMNs), and three-dimensional CNNs (3D CNNs). For the two-stream CNN,
Karpathy et al. used context stream and fovea streams to train a CNN [11]. The two streams
proposed by Simonyan et al. were spatial and temporal streams, which represent the static
and dynamic frames of each action’s film [12]; however, the spending time for each action
was different.

Thus, Wang et al. proposed a time segment network to normalize the spatial and
temporal streams [13]. Jiang et al. used two streams as the input combined with CNN and
LSTMN [14]. Ji et al. proposed 3D CNN to obtain the features of the spatial and temporal
streams [15]. The two-stream methods using image and optical flow to represent the spatial
and temporal streams had a better performance for recognizing activities compared with
the one-stream methods. However, the weakness is that its doubled data amount requires
more time to train the model.

Studies have used skeletal data as the common input feature for human action recogni-
tion [16–18], where the 3D skeletal data were typically obtained by use of the depth camera.
In these studies, the number of recognized actions was less than 20 [17], and the skeletal
data had to be processed to extract the features. Machine learning methods were used in
these studies. The spatiotemporal information of skeleton sequences was exploited using
recurrent neural networks (RNNs) [19,20].

Both the amount of data and recognized actions were less than in the video datasets [16–20].
An RNN tends to overemphasize the temporal information and ignore the spatial informa-
tion, leading to low accuracy. However, the advantage of methods employing skeletal data
is that these requires less training data and training time compared to those using image
data. Hou et al. used a CNN to recognize actions with skeletal features [21]. Therefore,
an effective method to encode the spatiotemporal information of a skeleton sequence into
color texture images that could be recognized by a CNN is a relevant issue.

A directed acyclic graph (DAG) consists of a combination of nodes and edges. Each
node points to another node by an edge. These directions do not become a circle graph that
will end at the extremities. DAGs are usually used to represent causal relations amongst
variables, and they are also used extensively to determine which variables need to be
controlled for confounding in order to estimate causal effects [22]. The physical posture of
people can be described by the positions of the skeletal joints. The adjacent joints have a
causal relation when the body is moving. Thus, we can define the DAG of skeletal joints to
explain the relations of physical skeletons.

This study aims to recognize the daily activities with films recorded by CCD cameras.
To reduce the large amount of data for model training, we transferred body images to phys-
ical postures with an open system, AlphaPose [23]. The posture information is the skeleton
sequences captured from the films of actions to build the spatial and motion features. These
features all include both the spatial and temporal characteristics of actions. The relations of
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adjacent joints were used to build direct acyclic graph (DAG) matrices, the source matrix,
and the target matrix.

These features are expanded by the DAG matrices as color texture images. The
linear-map CNN has a two-dimensional linear map at the beginning of each layer to
adjust the number of channels. Then, a two-dimensional CNN is used to recognize the
actions. A structure with two streams was used to increase the accuracy of the action
recognition. The datasets (NTU RGB+D) used in this study is an open source supported by
Rapid-Rich Object Search Lab, National Technological University, Singapore [18].

In our work, a total of 49 actions, including daily actions, medical conditions, and mu-
tual actions, were considered for action recognition. The total number of films was 46,452
for the cross-subject and cross-view sources. Of the cross-subject sources, 32,928 films
were used for training, and 13,524 films were used for testing. Of the cross-view sources,
30,968 films were used for training, and 15,484 were used for testing. The experimental re-
sults show that the performance of our method was better than those in the previous studies.

2. Methods

Figure 1 shows the flowchart of action recognition in this study, which has three
phases. In the feature phase, RGB images were processed by AlphaPose [23] to obtain
the coordinate values of the skeletal joints of the subject in an image as a vector. A film
contained 300 images that were used to build a posture matrix as the feature. We defined
the spatial features and motion features by the coordinate values of the skeletal joints for
each film. Spatial features are the position information of skeletons and joints, and motion
features are the optical-flow information of skeletons and joints.

Each feature was expanded into two features of source and target by DAGs. In the
recognition phase, a 10-layer linear-map CNN was used to recognize the activities. The
cross-subject and cross-view evaluations were used to test the performance of this linear-
map CNN. In the output phase, the results of the spatial and motion features were fused to
show the recognized actions.

Figure 1. The flowchart of the action recognition in this study.

2.1. NTU RGB+D Dataset

The datasets of action recognition supported by the Rapid-Rich Object Search Lab,
National Technological University, Singapore [24] were used in the study. There were
56,880 files, including 60 action classes. Each file consists of RGB, depth, and skeleton data
of human actions. All actions were recorded by three Kinect V2 cameras. The size of the
RGB images was 1920 × 1080. There were 40 classes for daily actions, 9 classes for medical
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conditions, and 11 classes for mutual actions. Forty distinct subjects were invited for this
data collection.

The physical activities of only a single person were recognized, and the sample size
of 46,452, including the 49 physical activities, was used in this study. To ensure standard
evaluations for all the reported results on the benchmark, two types of action classification
evaluation (cross-subject evaluation, and cross-view evaluation) were used [24]. In the
cross-subject evaluation, the sample sizes for training and testing sets were 40,320 and
16,560, respectively. In the cross-view evaluation, the sample sizes for training and testing
sets were 37,920 and 18,960, respectively.

2.2. Spatial and Motion Features

The RGB images were processed by the AlphaPose [23] to obtain the coordinate values
of skeleton joints of people in the image, and the format is shown in Equation (1).

pose = {(x0, y0, c0, · · · , xM, yM, cM) ‖ M = 17} (1)

where xi and yi are the coordinate values of ith joint, ci is the confidence score, and M is
the index of the joints. According to the coordinate values of the joints, the spatial and
motion variables were defined, as shown in Table 1. n is the index of the frames. The spatial
variables are the joint data (vi), and skeleton data (si,j). The motion variables are the motion
data of the joints and skeleton (mvi and msi). Thus, there are four features in this study, Fv,
Fs, Fmv, and Fms. Table 2 shows the indexes and definition of 18 joints and 17 edges in the
body. The 17 edges, ei, are defined as the relations between two adjacent joints, i-1th and
ith.

Table 1. The indexes of the joints and relations between every two adjacent joints at the 17 edges.

Spatial Variables

Joint Data Skeleton Data

vi(n) = (xi(n), yi(n)) si,j(n) =
(

xi(n)− xj(n), yi(n)− yj(n)
)

Motion Variables
Joint-Motion Data Skeleton-Motion Data

mvi(n) = vi(n + 1)− vi(n) msi = si,i+1(n + 1)− si,i+1(n)

2.3. Directed Acyclic Graph

DAG was used to describe the relations of 18 joints. The nodes of DAG represent the
joints, and the flows represent the edges. Each edge has a source joint and a target joint.
Thus, two DAG matrices, the source matrix and target matrix, can be defined. If the ith
joint is the source point of the jth edge, the element (j, i) of the source matrix is set as 1.
Otherwise, the element (j, i) is set as 0.

The target matrix is set as the source matrix. Then, each row of the source and target
matrices is normalized to avoid overvalues. To match the size of feature, e(0, 0) = 1 is
defined as a virtual edge. The sizes of the source and target matrices are 18 × 18. Figure 2a
is the source matrix, S, color-none is 0, color-black is 1, and color-original is 0.25. Figure 2b
is the target matrix, T.

44



Sensors 2021, 21, 3112

Table 2. The indexes and positions of the joints and edges for the skeletal data.

Index Joint Position Index Joint Position Indexe of Joints and Edges

0 Nose 9 Right knee
1 Neck 10 Right ankle
2 Right shoulder 11 Left femur
3 Right elbow 12 Left knee
4 Right wrist 13 Left ankle
5 Left shoulder 14 Right eye
6 Left elbow 15 Left eye
7 Left wrist 16 Right ear

8 Right femur 17 Left ear

Figure 2. (a) Source matrix, (b) Target matrix. Color-none is 0, color-black is 1, and color-orange
is 0.25.

2.4. Input Features

We used 300 frames for every film. The joint data built the joint feature (Fv), the
skeleton data built the skeleton feature (Fs), the joint-motion data built the joint-motion
feature (Fmv), and the skeleton-motion data built the skeleton-motion feature (Fms). Figure 3
shows the contents of a feature with x and y values of a data. Thus, the information of the
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film was reduced to four 600 × 18 matrices for four features, Fv, Fs, Fmv, and Fms. The Fv
was expanded by the DAG matrix into two features, Fvin and Fvout.

Fvin = Fv × ST (2)

Fvout = Fv × TT (3)

Fs was expanded by the DAG matrix to Fsin and Fsout; Fmv was expanded to Fmvin and
Fmvout; and Fms was expanded to Fmsin and Fmsout. Table 3 shows the contents of the spatial
feature (Fspatial) and motion feature (Fmotion). Fsaptial is the combination of Fspatial-joint and
Fspatial_skeleton. Fmotion is the combination of Fmotion-joint and Fmotion_skeleton. We used the two
features (Fspatial and Fmotion) to evaluate the performance of the linear-map CNN.

Table 3. The channel contents of the input features.

Fspatial (1200,18,3) Fspatial_joint (600,18,3) (Fv, Fsin, Fsout)
Fspatial_skeleton (600,18,3) (Fs, Fvin, Fvout)

Fmotion (1200,18,3) Fmotion_joint (600,18,3) (Fmv, Fmsin, Fmsout)
Fmotion_skeleton (600,18,3) (Fms, Fmvin, Fmvout)

Figure 3. One feature built by the joint data, skeleton data, joint-motion data, or skeleton-motion data, with the size
of 600 × 18.

2.5. Linear-Map CNN

Figure 4 shows the structure of a 10-layer linear-map CNN. The linear-map was used
to adjust the number of channels at the beginning of each layer. Batch normalization (BN)
can overcome the disappearance of the learning gradient and, thus, use a larger learning
rate. In the CNN, the kernel size is a 9 × 1 matrix, the stride is (1,1), and the padding
is (4,0). In the input feature, columns represent the different joints, and rows represent
the time sequence of the actions. The relation of the adjacent joints was enhanced by the
DAG matrix. Thus, the kernel of convolution is a 9 × 1 matrix. Table 4 shows the detailed
information of the linear-map CNN. The output layer has 49 nodes representing the 49
action classes. The optimal method was momentum. The batch number is 32.
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Table 4. The parameters of linear-map CNN in each layer.

Linear BN AF Conv2d BN AF

L1 In feature (600,18,3),
Out features (600,18,64) 64 ReLu (600,18,64), kernel = (9,1),

stride = (1,1), padding = (4,0) 64 ReLu

L2 In feature (600,18,192),
Out features (600,18,64) 64 ReLu (600,18,64), kernel = (9,1),

stride = (1,1), padding = (4,0) 64 ReLu

L3 In feature (600,18,192),
Out features (600,18,64) 64 ReLu (600,18,64), kernel = (9,1),

stride = (1,1), padding = (4,0) 64 ReLu

L4 In feature (600,18,192),
Out features (600,18,64) 64 ReLu (600,18,64), kernel = (9,1),

stride = (1,1), padding = (4,0) 64 ReLu

L5 In feature (600,18,192),
Out features (600,18,128) 128 ReLu (600,18,128), kernel = (9,1),

stride = (2,1), padding = (4,0) 128 ReLu

L6 In feature (300,18,384),
Out features (300,18,128) 128 ReLu (300,18,128), kernel = (9,1),

stride = (1,1), padding = (4,0) 128 ReLu

L7 In feature (300,18,384),
Out features (300,18,128) 128 ReLu (300,18,128), kernel = (9,1),

stride = (1,1), padding = (4,0) 128 ReLu

L8 In feature (300,18,384),
Out features (300,18,256) 256 ReLu (300,18,256), kernel = (9,1),

stride = (2,1), padding = (4,0) 256 ReLu

L9 In feature (150,18,768),
Out features (150,18,256) 256 ReLu (150,18,256), kernel = (9,1),

stride = (1,1), padding = (4,0) 256 ReLu

L10 In feature (150,18,768),
Out features (150,18,256) 256 ReLu (150,18,256), kernel = (9,1),

stride = (1,1), padding = (4,0) 256 ReLu

Flatten Input 512
Output 49 Softmax

Figure 4. The structure of the 10-layer linear-map CNN.

2.6. Statistical Analysis

According to our proposed method, a film is considered as true positive (TP) when
the classification action is correctly identified; false positive (FP) when the classification
action is incorrectly identified; true negative (TN) when the action classification is correctly
rejected, and false-negative (FN) when the action classification is incorrectly rejected. Here,
the performance of the proposed method was evaluated using these parameters,

Precision(%) =
TP

TP + FP
× 100%, (4)
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Recall(%) =
TP

TP + FN
× 100%, (5)

Speci f icity(%) =
TN

TN + FP
× 100%, (6)

F1score =
2 × Precision × Recall

Precision + Recall
× 100%, (7)

Accuracy(%) =
TP + TN

TP + TN + FP + FN
× 100%. (8)

3. Results

In this study, the hardware employed was CPU Intel Core i7-8700 and GPU GeForce
GTX1080. The operating system was Ubuntu 16.04LTS software, the development system
was Anaconda 3 at python 3.7 version, the tool of deep learning was Pytorch 1.10, and the
compiler was Jupyter Notebook. We evaluated the performance of DAG with the cross-
subject and cross-view sources, and four features (Fspatial_joint, Fspatial-skeleton, Fmotion_joint,
and Fmotion_skeleton). At last, we used the two-stream concept, class score fusion for Fspatial
and Fmotion, to evaluate the performance of the proposed method with cross-subject and
cross-view sources.

Table 5 shows the results without the DAG transfer. The best feature is Fspatial under
the cross-subject source, which resulted in an accuracy and F1-score of 99.3% and 82.8%,
respectively. There were 10 actions with recall rates below 70%: 0, 4, 9, 10, 11, 16, 28, 29,
43, and 48. The worst feature is Fmotion under the cross-subject source, its accuracy and
F1-score are 99.2% and 79.6%, respectively. There are 11 actions with recall rates below
70%: 3, 10, 11, 16, 24, 28, 29, 31, 36, 43, and 45. Table 6 shows the results with the DAG
transfer. The best feature was Fspatial under the cross-view source; its accuracy and F1-score
were 99.9% and 96.2%, respectively.

Only four actions, 10, 11, 28, and 29, had recall rates below 70%. The worst feature
was Fmotion under the cross-subject source, which obtained an accuracy and F1-score of
99.1% and 79.1%, respectively. There were 10 actions with recall rates below 70%: 2, 10, 11,
16, 28, 29, 31, 43, 44, and 45. We found that the DAG transfer could significantly improve
the recognition rate of different actions, not only for spatial features but also for motion
features. Table 7 shows the results of class score fusion with and without DAG transfer. We
found that the performance of DAG transfer used in the cross-view source was better than
used in the cross-subject source, with an accuracy of 99.9% vs. 99.5% and F1-score of 94.7%
vs. 86.3%. The recall rates for all 49 actions were not below 70%.

We used the two-dimensional joint and skeleton features to perform the training and
testing of the linear-map CNN, which could reduce the running time more than those
using two- or three-dimensional joint and skeleton images. Table 8 shows the training and
testing time with and without DAG transfer. We found that the GPU could process about
30 frames/second (fps) in the training phase, and process about 125 fps in the testing phase.
Although the DAG transfer required time to process, the delay time was about 30 min in
the training phase. The maximum testing time was 141 s.
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Table 5. The results without the DAG transfer.

Feature
(Epochs)

Precision
(100%)

Recall
(100%)

Specificity
(100%)

F1-Score
(100%)

Accuracy
(100%)

Actions
(Recall < 70%)

Cross-subject
Fspatial
(70) 84.2% 82.8% 99.7% 82.8% 99.3% 0, 4, 9, 10, 11, 16, 28, 29, 43, 48

Fmotion
(65) 80.8% 79.7% 99.6% 79.6% 99.2% 3, 10, 11, 16, 24, 28, 29, 31, 36, 43, 45

Cross-view
Fspatial
(90) 86.4% 82.0% 99.7% 81.6% 99.3% 4, 9, 11, 16, 18, 28, 43, 44

Fmotion
(20) 82.9% 79.7% 99.7% 79.7% 99.2% 4, 9, 10, 11, 28, 29, 31, 32

Table 6. The results with the DAG transfer.

Feature
(Epochs)

Precision
(100%)

Recall
(100%)

Specificity
(100%)

F1-Score
(100%)

Accuracy
(100%)

Actions
(Recall < 70%)

Cross-subject
Fspatial
(65) 86.9% 86.0% 99.9% 86.2% 99.4% 10, 11, 28

Fmotion
(35) 80.6% 78.7% 99.7% 79.1% 99.1% 2, 10, 11, 16, 28, 29, 31, 43, 44, 45

Cross-view
Fspatial
(65) 94.3% 94.3% 99.9% 94.2% 99.9% 10, 11, 28, 29

Fmotion
(65) 90.9% 90.2% 99.9% 90.4% 99.7% 10, 11, 28, 29

Table 7. The results of class score fusion with and without DAG transfer.

Precision
(100%)

Recall
(100%)

Specificity
(100%)

F1-Score
(100%)

Accuracy
(100%)

Actions
(Recall < 70%)

Cross-subject
Non
GAD 85.7% 85.0% 99.8% 85.0% 99.4% 10, 11, 16, 28, 29, 31

GAD 86.9% 86.1% 99.9% 86.3% 99.5% 10, 11, 28, 29

Cross-view
Non
GAD 89.8% 87.3% 99.8% 87.3% 99.6% 5, 10, 12, 29

GAD 94.8% 94.7% 99.9% 94.7% 99.9%

Table 8. The training and testing time with and without DAG transfer.

Without DAG

Date Source Feature Epoch
Time: Day: Hr.:

Min.:Sec.
Fps

Train Cross-subject Spatial 120 1:12:41:00 30

Motion 92 1:04::04:00 30

Train Cross-view Spatial 120 1:11:39:00 30

Motion 92 1:02:55:00 30

Test Cross-subject Spatial 0:00:02:01 125

Motion 0:00:01:57 125

Test Cross-view Spatial 0:00:02:18 125

Motion 0:00:02:19 125
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Table 8. Cont.

With DAG

Train Cross-subject Spatial 120 1:13:27:00 30

Motion 92 1:04:29:00 30

Cross-view Spatial 120 1:11:05:00 30

Motion 92 1:03:30:00 30

Test Cross-subject Spatial 0:00:02:03 125

Motion 0:00:02:03 125

Cross-view Spatial 0:00:02:21 125

Motion 0:00:02:19 125

4. Discussion

In this study, we used DAG transfer and the two-stream method to improve the
accuracy of action recognition. When the input features were transferred with the DAG
matrices, the precision, recall, specificity, F1-score, and accuracy were improved by 1.2%,
1.1%, 0.1%, 1.3%, and 0.1%, respectively, for the cross-subject source, and were improved by
9.1%, 7.4%, 0.1%, 7.4%, and 0.5%, respectively, for the cross-view source. In the two-stream
method, previous studies have typically used the spatial and temporal, or optical flow
features to perform the active score fusion [11–14]. They also proved that the performance
of two streams was better than one stream.

We used joint and skeleton sequences as the spatial motion features that had temporal
characteristics. We utilized 300 frames to describe an action. Thus, the spatial feature of
one action included the spatial and temporal characters. However, the motion relations of
the joints and skeletons were different from one action to another. Therefore, we defined
the motion variables, mvi and msi, as shown in Table 1, to establish the motion features.

Our results also show that the precision, recall, specificity, F1-score, and accuracy
of the two streams were improved by 0% vs. 6.3%, 0.1% vs. 7.4%, 0% vs. 0.2%, 0.1%
vs. 7.1%, and 0.1% vs. 0.4%, over spatial and motion streams with the DAG transfer in
the cross-subject source, and improved by 0.5% vs. 3.9%, 0.4% vs. 4.5%, 0% vs. 0%, 0.5%
vs. 4.3%, and 0% vs. 0.2% in the cross-view source.

The comparison of our results with the previous studies under the recall rate is shown
in Table 9. These studies all used cross-subject and cross-view sources from the NTU
RGB+D database to recognize actions and also used three-dimensional characteristics of
each posture as the input features [19,25–31]. Our method had the best recall rates of 86.1%
and 94.7% in the cross-subject and cross-view sources.

We analyzed the actions with lower recall rates in the cross-subject and cross-view
sources in Tables 5–7. The four actions that often had lower recall rates were A10 (reading),
A11 (writing), A28 (phone call), and A29 (playing with laptop). Figure 5a is the posture of
reading, and Figure 5b is the posture of writing. The subject is standing up, looking down,
and holding something. The difference between the two images is only in the gestures of
two hands. However, according to the description of the body posture in Table 2, only the
right and left wrist joints are marked, which cannot show the gestures of two hands.

The postures of the subject making a phone call (in Figure 5c) and using the laptop (in
Figure 5d)) had the same problem. The difference between the two images was also in the
gestures of the two hands. These actions were difficult to recognize using spatial features,
such as the movement trajectories of the arms, elbows, and wrists. Thus, the results of our
method with the DAG transfer and two-stream method in Table 7 show that no action had
a lower recall rate in the cross-view source.
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Table 9. These studies all used cross-subject and cross-view sources in the NTU RGB+D database to
recognize the actions, which also used the three-dimensional characteristics of each posture as the
input features [19,25–31]. Our method had the best recall rates in the cross-subject and cross-view
sources at 86.1% and 94.7%.

Methods
Recall Rate (%)

Cross-Subject Cross-View

Lie Group [25] 50.1 52.8
HBRNN [19] 59.1 64.0

Deep RNN [26] 59.29 64.09
Deep LSTM [26] 60.7 67.3

Part-aware LSTM [26] 62.9 70.3
ST-LSTM + Trust Gate [27] 69.2 77.7

Two-stream RNN [28] 71.3 79.5
Clips + CNN + MTLN [29] 79.6 84.8

ST-GCN [30] 81.5 88.3
SR-TSL [31] 84.8 92.4

Proposed DAG + linear-map CNN 86.1 94.7

Figure 5. (a) the posture of reading, (b) the posture of writing, (c) the posture of making a phone call,
(d) the posture of using the laptop.

5. Conclusions

The large scale of the collected data in the NTU RGB+D database enabled us to
apply the posture-driven learning method for action recognition. The posture information
represented by the skeleton data was obtained from the 300 frames of the film. The joint
and skeleton sequences were used to build spatial and motion features that included the
spatial and temporal characteristics of the actions. The relations of the adjacent skeletal
joints were used to build the DAG matrices.

The spatial or motion features were expanded by DAG matrices as color texture
images. The expanded features all indicated that the relations between adjacent joints were
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enhanced. Our method effectively reduced the amount of data for training the linear-map
CNN, and its performance was superior to the previous schemes using deep learning
methods. Notably, since the computation speed can reach around 125 fps in the testing
phase with GPU, our scheme could be used to monitor the daily activities of elders in real
time in home care applications.
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Abstract: Frailty predisposes older persons to adverse events, and information and communication
technologies can play a crucial role to prevent them. CAPACITY provides a means to remotely
monitor variables with high predictive power for adverse events, enabling preventative personalized
early interventions. This study aims at evaluating the usability, user experience, and acceptance
of a novel mobile system to prevent disability. Usability was assessed using the system usability
scale (SUS); user experience using the user experience questionnaire (UEQ); and acceptance with
the technology acceptance model (TAM) and a customized quantitative questionnaire. Data were
collected at baseline (recruitment), and after three and six months of use. Forty-six participants used
CAPACITY for six months; nine dropped out, leaving a final sample of 37 subjects. SUS reached a
maximum averaged value of 83.68 after six months of use; no statistically significant values have
been found to demonstrate that usability improves with use, probably because of a ceiling effect.
UEQ, obtained averages scores higher or very close to 2 in all categories. TAM reached a maximum
of 51.54 points, showing an improvement trend. Results indicate the success of the participatory
methodology, and support user centered design as a key methodology to design technologies for
frail older persons. Involving potential end users and giving them voice during the design stage
maximizes usability and acceptance.

Keywords: frailty; home monitoring; user-centered design; usability; user experience; acceptance

1. Introduction

1.1. Research Context

Intrinsic capacity, according to the World Health Organization (WHO), is the combi-
nation of the physical and mental (including psychological) capacities of the individuals.
Intrinsic capacity is thus part of functional ability together with the environment and
the interactions with it. The concept of frailty is closely related and complementary to
intrinsic capacity. Frailty can be defined as a stage of age-related decline reducing intrinsic
capacity and functional reserve of older persons, thus predisposing them to adverse events
(mortality and disability, among others). These days, there is a pressing need to develop
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comprehensive community-based approaches and to introduce interventions to prevent
functional decline [1].

The risk of developing chronic conditions, including disability and dependency, in-
creases with age [2,3], and is changing the classical approach to manage functionally
declining older persons. Considering that functional decline is accompanied by a loss in
functional reserve, it is very unlikely that disability is reversed. In this way, healthcare
systems need to move towards person-centered approaches that anticipate the earliest
stages of functional decline (i.e., frailty) to prevent disability, since becoming frail can be
delayed, slowed, or even reversed.

Estimated prevalence of frailty is 18% (95% CI: 15–21%), and it seems to be corre-
lated with age, gender (female), and socio-economic factors such as lower education and
wealth [4]. Good news is that frailty is reversible, but to achieve it, it is of paramount
importance to fight inactivity and sedentariness [5]. Scientific literature supports activity-
centered interventions to delay and even reverse frailty and disability [6–11]. Furthermore,
interventions on nutrition, such as modifying habits, increasing protein and micronutrient
intake, are also recommended [12,13], as well as interventions on inadequate drug prescrip-
tions [14–16]. And finally, it is also important that the physiological and social aspects are
not left apart [11].

A frail older person usually shows decreased neurological and muscle function [17],
normally accompanied by an accelerated involuntary weight loss and a decline in the
skeletal muscle [18]. Moreover, considering the results published in a relatively recent
systematic review, in the 30.6% of the studies that were analyzed, associations between gait
speed, disability, frailty, sedentary lifestyle, falls, muscular weakness, diseases, body fat,
cognitive impairment, mortality, stress, lower life satisfaction, lower quality of life, and
poor performance in quantitative parameters of gait were found [19].

Ageing in Place purses that older persons continue living at their homes as they
age [20], which brings along important economic benefits given the reduction of the
institutionalized care [21]; information and communication technologies (ICTs) can play
a crucial role to promote it [22]. For instance, having fresh and periodic information
on variables associated to poor health outcomes (e.g., gait speed, muscle power, and
involuntary weight loss) can be a great asset to trigger early interventions to prevent
disability and dependency. Smart home technologies [23–27], wearable sensors [28,29] or
mHealth technology [30] may enable continuous, ubiquitous and transparent monitoring
of the independent older adult, supporting the traditional geriatric approach to identify
older people at risk of disability. Notwithstanding, more effort is still needed to assess
not only how reliable and valid the ICT-based approached to measure frailty are, but also
deeply study the associated ethical, technical, and economic issues [31].

Nevertheless, the lack of consensus in terms of technology acceptance by older per-
sons must be considered. Several authors have reached the conclusion that older persons
are not interested in innovative technologies [32,33], while others state that older people
have already accepted new technologies, mainly because they have been proven useful in
meeting their information needs, especially in health [34]. Yet it seems that the use of ICTs
by the older population is strongly linked to physical limitations (e.g., abilities, chronic
illnesses, etc.), mental limitations (e.g., fear of damaging the technology, electric shocks,
making mistakes, etc.), educational limitations (e.g., low levels of literacy, limited electronic
literacy, learning barriers, etc.), structural limitations (e.g., design of the appliance), instruc-
tional limitations (e.g., instructions on how to use a technology are hard to follow) and to a
limited access to the technology (e.g., financial costs) [35,36].

The design of those technologies to be used by older persons must be done accord-
ing to their characteristics. Methodologies such as user-centered design (UCD) [37] and
participatory design (PD) are a good alternative to develop right solutions for a specific
audience [33,38], since they help designers better understand the environment of use. Older
people are usually excluded from product design activities since they are stigmatized as
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people reluctant to engage with technology, and this is probably one of the primary causes
that prevent older people becoming loyal users of technological solutions [38,39].

The current demographic challenge is forcing researchers to focus on discovering
feasible alternative ways of providing healthcare to the older population who are at an
increased risk of suffering adverse events [40]. And, as it has been mentioned earlier,
ICTs may help identifying early risk indicators for adverse events, providing a means
for self-managing them. To this extent, its use in the context of frailty still at the very
beginning [41].

1.2. Objective

The main objective of this work is to evaluate the usability, user experience (UX), and
acceptance of older persons’ interaction layer of CAPACITY, a frailty home-monitoring
system aimed at the prevention of disability.

The manuscript is structured as follows. First, the CAPACITY ecosystem is presented
as a modular infrastructure to monitor frailty and prevent disability. Second, the specific
methodology followed in this work is described to later present and discuss the obtained
results. Finally, conclusions are extracted and future work proposed.

2. Materials and Methods

2.1. Overview of the CAPACITY Technological Ecosystem

CAPACITY is a technological ecosystem aimed at preventing disability among the
older population by detecting and intervening regarding frailty; it also provides a substrate
to connect all relevant people in the care process (see Figure 1). Using CAPACITY, the
older population can be remotely supervised by community care professionals. So, in case
worrying declines are detected, specialists (i.e., geriatricians) can be included in the loop.
Intervention provided to older persons is grounded on three main pillars: the VIVIFRAIL
physical activity program (declared as a success story by the European Commission) [42],
personalized nutritional recommendations, and a program to detect risk of polypharmacy.

Figure 1. CAPACITY providers and interactions.

A Randomized Clinical Trial (RCT; ClinicalTrials.gov Identifier: NCT03707145) has
allowed demonstrating that CAPACITY is an effective tool for a fast improvement of the
frailty status as well as to reduce the use of healthcare resources [41].
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2.2. CAPACITY Interaction System

CAPACITY services are offered through a set of user-adapted mobile applications.
The functionalities offered to older persons are:

• Unceasing intrinsic capacity follow-up that enables triggering potential deterioration alarms;
• Access to a customized therapeutic plan (intervention), given the peculiarities and

needs of the older person;
• Retrieving their own evolution;
• Communication with formal carers via asynchronous channels; and
• Notifications on pertinent alarms related to health.

Apart from helping older persons, CAPACITY also offers different functionalities
to other relevant stakeholders, namely primary and specialized care professionals, and
informal caregivers, as shown in Figure 2. Work published [43] contains a wider description
of all functionalities and services offered by the CAPACITY technological ecosystem to all
involved people. In any case, this work solely focuses on the older persons as they are the
center of the care.

Figure 2. Conceptual architecture of CAPACITY.

Older persons being followed by CAPACITY need to use a home monitoring kit aimed
at measuring variables with high predictive value for adverse events. This monitoring
system consists in a gait-speed sensor [44], a sensor to indirectly (through the chair stand
test) measure power in the lower limbs [45], and a wireless commercial weight scale
to measure involuntary weight loss. Figure 3 illustrates the prototypes of the sensors
originally designed for CAPACITY.

The interaction with the home monitoring kit is handled by a mobile application that
acts as a guiding element to the older person, as a data concentrator (bluetooth connection
with the monitoring kit; see Figure 3 and Supplementary Material for details), and as data
input point, not only enabling the older adult using the sensors but also completing a set
of questionnaires to enrich the information handled by the clinical professionals. These
questionnaires are adapted versions of the Frailty Phenotype criteria [46], Mini Nutritional
Assessment (MNA) [47], Barthel Index [48], FRAIL Scale [49], and the Functional Activities
Questionnaire (FAQ) [50].
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Figure 3. Home-monitoring kit.

This interaction system was iteratively designed under a user-centered approach.
Different prototypes were created and tested, first in a laboratory environment, later in a
clinical environment, and, finally, at the final users’ dwellings. In the two last cases, the
system was evaluated by older users. The outcomes of each iteration allowed designers
improve and adapt the interaction system to the needs, preferences, and context of use of
the older adults.

Figure 4 shows how the interaction system evolved during the process. An in-depth
description of this iterative process and the resulting interaction system can be found in [51].

(a) 

Figure 4. Cont.
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(b) 

Figure 4. (a) First and (b) second—final—prototypes.

Figure 5 shows the workflow that needs to be followed to interact with any of the
components of the monitoring kit. The process starts with the app notifying a pending
measurement (prescribed by the physician as part of a personalized follow-up) and the
user pushing the corresponding button to start it. Then, the older person is provided with
a short explanatory video showing how the measurement will be performed. Once the
user is ready, that is explicated by pressing a specific button, the actual measurement takes
place; this part is fully guided by voice commands and accompanying pictures (e.g., ‘please
switch the sensor on’, ‘please sit on a chair’, ‘the process will start after the countdown’,
etc.). Transparently to the user, the app and the sensor establish a bluetooth communication
channel used to register the datum. Once the process is over, the older person receives a
confirmation with some feedback related to the measurement.

Figure 5. CAPACITY’s workflow to collect data from the home monitoring kit.
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2.3. Assessment Tools

The usability, UX, and user acceptance related to the CAPACITY technological ecosys-
tem has been assessed.

Usability, defined as the extent to which a product can be used by specified users to
achieve specified goals with effectiveness, efficiency, and satisfaction in a specified context
of use [52], has been assessed using the system usability scale [53,54]. SUS is a short
10-item Likert questionnaire that provides a measure of people’s subjective perceptions
of the usability of a system; concretely, SUS focuses on learnability and usability, which
are indeed correlated [55]. These 10 items can be evaluated from ‘1—fully disagree’ to
‘5—fully-agree’. The total score ranges from 0 to 100. Although SUS is a simple tool,
a study carried out by Tullis [56], who compared the effectiveness and accuracy of five
questionnaires for assessing usability across different sample sizes, reached the conclusion
that it is a reliable scale, especially when the sample is over 12 users.

UX has been assessed with the user experience questionnaire [57]. UEQ does not
provide an overall score, but a score related to six different categories: attractiveness,
perspicuity, efficiency, dependability, stimulation, and novelty. The score for each category
is calculated by averaging the different items within it; each item’s value ranges from −3 to
3, where extreme values represent two opposite concepts (e.g., attractive vs. unattractive).
UEQ was included as an evaluation tool to complement the domains’ SUS addresses.

Acceptance has been evaluated using the technology acceptance model [58] (adapted
to the use case. See Supplementary Material for details) and a customized short quantitative
questionnaire. TAM evaluates, throughout 12 items (answers range from ‘1—fully disagree’
to ‘5—fully-agree’), two different categories: perceived usefulness and perceived ease of
use. The maximum score is 60 (30 points in each category); final scores are calculated by
averaging. To further investigate acceptance, a customized acceptance interview consisting
in a Likert-type scale (from 1 to 5, the same as SUS) assessing all three components of the
home monitoring kit was used. This interview had the following structure:

• Q1: The information the device provides motivates me to have a healthier lifestyle;
• Q2: The device makes me feel cared for;
• Q3: Using the device is a burden for me;
• Q4: The device enables me to control my own health; and
• Q5: I would use it.

For all the scales and questionnaires, Spanish versions were used (local language).

2.4. Recruitment and Data Collection

The impact of administering a multicomponent intervention partially supported by
the CAPACITY ecosystem was assessed by conducting a pilot, prospective, randomized,
and blind study. The pilot study lasted 12 months: 6 months were dedicated to recruitment,
and 6 months to intervention. Within this wider experiment, where the primary endpoint
was to investigate whether the proposed technology helped preventing or reversing frailty,
usability, UX, and user acceptance were evaluated as secondary endpoints (along with oth-
ers). The pilot study was carried out simultaneously in two institutions: Getafe University
Hospital and Albacete University Hospital.

Participation criteria were:

• Inclusion criteria:

o +70 years old;
o Living at home;
o Barthel index [48] ≥90; and
o Being pre-frail or frail.

• Exclusion criteria:

o Inadequate home infrastructure impeding the installation of the technology;
o Inability to understand how to use CAPACITY;
o Medical condition incompatible with the VIVIFRAIL physical activity program;
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o History of drug/alcohol abuse;
o Psychiatric disorders;
o Living with a participant; and
o Parti9cipating in another interventional clinical study.

Pre-frail participants were those meeting two Frailty Phenotype criteria [46] and
suffering from at least four comorbidities, since they are the ones with the highest risk for
developing frailty. Frail individuals were those meeting at least three Frailty Phenotype
criteria and having at least four comorbidities.

Two research groups (arms) were defined. A control group receiving usual geriatric
care and an intervention group who received the same multicomponent intervention but
partially supported by the CAPACITY system. Stratified randomization by age (70–85, +85),
sex (male, female), diagnosis (pre-frail, frail) and educational level (non-formal education,
higher education, others) was applied to ensure groups were balanced.

Sample size could not be empirically calculated due to a lack of similar studies
aiming to the same primary endpoint, so it was established to 90. Reasons behind this
decision were:

• There were two different groups of interest (i.e., pre-frail and frail older persons);
• Given the usual standards, a recruitment objective of 20 subjects per interest group

and research arm was set, for a total of 80; and
• Researchers assumed that a potential dropout rate of 10–15% over the previous calcu-

lation, so the target sample size was increased to 90.

Data reported in this manuscript are restricted to those participants who were ran-
domly allocated into the intervention group (n = 46), since they were the only ones that
used the CAPACITY system during the six months of intervention. The modules that
supported the intervention were: (1) monitoring system, (2) evolution of the older person
(e.g., access to follow-up information collected by the home-monitoring kit), and (3) basic
asynchronous communication. All technological components were preconfigured prior
to the delivery to the participating older persons (i.e., a tablet was delivered with the app
already installed and configured to receive data from the home monitoring kit), so they
only had to follow notifications and instructions. Besides, older participants received an
initial training during the installation of the technology in their homes. This face-to-face
training was delivered once and lasted approximately one hour. During the session, a user
manual was provided that was used as a reference to show all functionalities to the older
person, who had to repeat what was learnt (e.g., how to measure gait speed or complete a
questionnaire). After this session, a telephone line remained open during the weekdays at
working hours to attend any consultation or issue coming from the older participants.

Data related to usability and acceptance were collected at baseline and after three
and six months of intervention. SUS and TAM were registered in all three sampling
points while UEQ and the ad hoc acceptance questionnaires were only administered
in the last data collection point to enrich the collected data with UX information and
prospective acceptance.

3. Results

A total of 46 older persons used the CAPACITY technological solution to undergo an
intervention aimed at preventing/reversing frailty; 14 were male (30.43%) and 32 female;
mean age was 82.11 (SD = 5.42) years old. Regarding educational level, 20 of participants
using technology did not have formal education (43.48%), 20 had primary studies (43.48%),
5 received secondary education (10.87%), and 1 received higher education (2.17%). Finally,
most of the participants (30 persons -65.22%-) did not have any previous experience with
technology (i.e., smart phones and internet) while 9 of them (19.56%) used it in a daily basis;
the remaining part made an occasional use of the technology (3 subjects -6.52%-) or had
used it once or twice before this study (4 subjects -8.70%-). Table 1 shows the description of
the population that participated in the study.
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Table 1. Description of the older population that participated in the study.

N Proportion (%)

Sex
Female 32 69.57
Male 14 30.43

Educational level

No formal education 20 43.48
Secondary education 20 43.48

Primary education 5 10.87
Higher education 1 2.17

Experience with
technology

No experience 30 65.22
Once or twice 4 8.70
Occasional use 3 6.52

Daily experience 9 19.56

Nine participants dropped out from the study during the follow-up period, raising a
final sample for analysis of 37 subjects. All subjects completed the questionnaires about
usability, UX, and acceptance evaluation at the second visit (three months) and at the end
of the follow-up; 25 participants completed it at baseline.

Table 2 depicts the adherence to the monitoring plan calculated as the average com-
mitment to the measurements that the users needed to perform as part of their treatment.
Full adherence (100%) means that all participants performed all prescribed measurements.
Table 2 also shows the default periodicity for the different measurements, but it must
be taken into consideration that additional measurements could be requested. For all
measurements a push notification was sent to the user through the app.

Table 2. Average adherence to monitoring plan.

Chair
Stand

Weight
Scale

Gait Speed
Frailty Phenotype

Criteria
Barthel
Index

FAQ
FRAIL
Scale

MNA

Default
measurement

periodicity
(weeks)

2 2 2 4 4 4 4 8

Average
adherence (%)

96.38 97.44 95.70 100 99.54 95.95 94.44 94.91

SD 0.12 0.07 0.08 0.00 0.03 0.08 0.23 0.19

Table 3 shows the usability results. Usability obtained averaged SUS values of
80.11/100 (SD = 13.66) at baseline, 83.31/100 (SD = 15.07) at month 3 and 83.68/100
(SD = 1.62) at the end of the study.

Table 4 depicts the results regarding UX, that was only assessed at the end of the
intervention. Averaged values of 2.20/3 (SD = 0.64) in terms of attractiveness, 2.30/3
(SD = 0.73) in perspicuity, 1.99/3 (SD = 0.75) in efficiency, 2.16/3 (SD = 0.66) in dependability,
2.05/3 (SD = 0.72) in stimulation, and, finally, 2.09/3 (SD = 0.98) in novelty were obtained.

Table 5 contains those results corresponding to assessing the acceptance of the CA-
PACITY solution in terms of TAM, that show an improving trend (p = 0.15) starting with a
value of 49.00/60 (SD = 8.24) at baseline, that gets to 50.68/60 (SD = 6.68) at month 3 and
reaches 51.54 (SD = 6.97) at month 6. On the other hand, Table 6 presents the results related
to the administration of the ad-hoc quantitative questionnaires, that evaluate individually
each component of the home-monitoring kit.
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Table 3. SUS results.

SUS Item Baseline Month 3 Month 6

Q1 4.32 4.43 4.32
Q2 2.00 1.65 1.57
Q3 4.48 4.46 4.49
Q4 2.88 2.43 1.92
Q5 4.76 4.38 4.24
Q6 1.48 1.65 1.65
Q7 4.04 3.95 4.00
Q8 1.16 1.19 1.16
Q9 4.84 4.84 4.76

Q10 2.40 2.11 2.35
Mean 80.11 83.31 83.68

SD 13.66 15.07 11.62
Pbaseline-m3 0.57
Pbaseline-m6 0.49

Pm3-m6 0.88

Table 4. Categorized UEQ results.

UEQ Category Mean SD Confidence Conf. Interval (p = 0.05)

Attractiveness 2.20 0.64 0.21 1.99 2.40
Perspicuity 2.30 0.73 0.23 2.06 2.53
Efficiency 1.99 0.75 0.24 1.75 2.23

Dependability 2.16 0.66 0.21 1.95 2.38
Stimulation 2.05 0.72 0.23 1.82 2.28

Novelty 2.09 0.98 0.32 1.78 2.41

Table 5. TAM results.

TAM item Baseline Month 3 Month 6

Perceived
usefulness

Q1 4.16 4.35 4.16
Q2 3.88 3.89 4.03
Q3 3.84 4.16 4.24
Q4 4.08 4.22 4.11
Q5 4.12 4.27 4.30
Q6 4.56 4.51 4.24

Mean 24.64 25.41 25.08
SD 4.79 3.68 4.48

Pbaseline-m3 0.64
Pbaseline-m6 0.84

Pm3-m6 0.40

Perceived
ease-of-use

Q1 3.72 4.30 4.24
Q2 3.88 4.35 4.51
Q3 4.36 4.30 4.65
Q4 4.52 4.11 4.46
Q5 3.72 4.00 4.16
Q6 4.16 4.22 4.43

Mean 24.36 25.27 26.46
SD 4.86 5.16 3.77

Pbaseline-m3 0.25
Pbaseline-m6 0.02

Pm3-m6 0.36
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Table 5. Cont.

TAM item Baseline Month 3 Month 6

Mean 49.00 50.68 51.54
SD 8.24 6.68 6.97

Pbaseline-m3 0.26
Pbaseline-m6 0.15

Pm3-m6 0.83

Table 6. Acceptance results (ad-hoc questionnaires).

Sensor Q1 Q2 Q3 Q4 Q5

Gait speed
Mean 4.19 4.53 1.44 4.00 4.44

Std. dev 0.75 0.61 0.84 0.99 0.88

Chair
stand

Mean 4.61 4.64 1.08 4.53 4.69
Std. dev 0.64 0.68 0.37 0.70 0.79

Weight
Mean 4.69 4.61 1.19 4.61 4.92

Std. dev 0.58 0.90 0.82 0.69 0.28

SUS and TAM data were analyzed according to the educational level (i.e., non-formal
education, primary education, secondary education, or higher education), living conditions
(i.e., alone, with younger relatives, or with other older person), daily help received (i.e.,
from nobody, from a younger relative, from other older person, or from social services),
previous experience with technology (i.e., no experience, used it once or twice before,
occasionally used, or daily use), and frailty diagnosis (i.e., pre-frail, or frail). Table 7 shows
the evolution of the reported SUS and TAM according to the category labels.

Table 7. SUS and TAM evolution per category label.

SUS at
Baseline

SUS at
M3

SUS at
M6

TAM at
Baseline

TAM at M3
TAM at

M6

Non-formal education 75.75 80.16 82.33 46.55 48.56 50.40

Primary education 83.25 84.12 82.94 48.33 51.53 51.12

Secondary education 92.50 85.63 84.50 56.67 55.50 56.40

Higher education 80.00 - - 53.00 - -

p 0.31 0.69 0.94 0.24 0.14 0.24

Living alone 80.21 80.33 82.14 49.08 49.47 49.07

Living with younger
relatives

90.00 88.75 90.63 50.50 54.50 54.75

Living with other older
person

80.91 83.06 81.84 48.64 50.83 52.68

p 0.65 0.60 0.37 0.96 0.41 0.21

Help from nobody 84.04 87.61 84.89 48.77 52.05 51.50

Help from a younger
relative

78.21 75.31 80.71 48.29 47.13 50.43

Help from other older
person

78.13 77.50 79.64 50.75 50.50 53.29

Help from social services 80.00 60.00 77.50 50.00 50.00 48.00

p 0.79 0.052 0.66 0.97 0.37 0.84
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Table 7. Cont.

SUS at
Baseline

SUS at
M3

SUS at
M6

TAM at
Baseline

TAM at M3
TAM at

M6

No previous experience
with technology

79.17 82.60 80.30 49.94 50.50 50.88

Used technology once
or twice

92.50 85.83 94.17 52.00 52.67 56.33

Occasional use of
technology

85.63 84.38 90.71 46.75 51.13 52.14

Daily use of technology 80.00 70.00 71.25 35.00 48.00 50.50

p 0.54 0.66 0.017 0.31 0.96 0.65

Pre-frail 80.00 84.50 83.89 49.69 51.40 53.00

Frail 82.71 82.27 82.59 48.25 50.56 51.07

p 0.62 0.66 0.57 0.67 0.86 0.87

Statistically significance related to the evolution= of the reported SUS and TAM within
the categories described above has been analyzed. Only those older persons living with
a younger relative showed a marginal but significant improvement in the reported SUS
between baseline and month 3 (p = 0.049).

4. Discussion

This research study shows that the CAPACITY technological ecosystem has a very
high-performance in term of usability, UX, and acceptance. Results have been obtained in
a real-world scenario, where pre-frail and frail older persons used CAPACITY as the main
vehicle to avoid transiting to disability.

Usage information demonstrates a high adoption rate, with an average adherence to
the monitoring plan very close to or matching 100% for all components of the monitoring
plan (i.e., use of sensors and completion of questionnaires). This endorses the validity
of data collected in terms of usability, UX, and acceptance, since these are based on an
intensive use of the system under assessment. However, the high usage of the system
is not fully correlated with the expected use; for instance, during the experimentation
the physicians detected that some users were not complying with the temporality of the
monitoring plan (i.e., some measurements were missing, and they had to reach out to
the older person to remind him or her). This has a twofold interpretation: on the one
hand, sometimes notifications are neglected by the users, implying that new strategies
should be found to promote prompt responses; but, on the other hand, the information
that is constantly being provided to the clinical team allows a closer follow-up of the older
persons, enabling early actuation of potentially worrying situations.

Based on the data collected by Sauro [59], the mean SUS score across a large number
of usability studies is 68. If that value is used as a reference, the mean SUS obtained in all
sampling points is highly above average. Furthermore, according to the Sauro–Lewis SUS
grading curve [60], obtained score would be qualified as an A, with the last measurement
really close of reaching A+, set at 84.1. So we can state that the evaluated user interaction
is perceived as very good, almost excellent [61]. However, although usability seems to
improve with use, obtained paired data Student’s test does not demonstrate that this
improvement is statistically significant; a plausible explanation for this non-significant
result could be linked to a ceiling effect, probably associated to an insufficient sample
size. A further analysis by category showed that those older users living with a younger
person marginally but significantly improved reported SUS between baseline and month 3
(p = 0.049), but this isolated result does not entitle to draw any solid conclusion since no
other significant differences were observed.
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Although usability is very high, which implies the UCD process was highly successful,
it is not the highest possible, so there is still room for improvement. Most of the averaged
items scored very close to the edges of the scale, which is good for the evaluation of the
system, but some others deviate a bit from the expected value and are those which are
susceptible to be improved. SUS items Q4, Q7, and Q10 are the ones lowering the overall
score (without significant changes along the follow-up, except for Q4, that seems to show
an improvement trend). The description of these items is:

• Q4: I think that I would need the support of a technical person to be able to use
this system;

• Q7: I would imagine that most people would learn to use this system very quickly; and
• Q10: I needed to learn a lot of things before I could get going with this system.

These relatively low evaluations in these items could be linked to the unfamiliarity
or insecurity of the older adults who used the technology during the intervention (65.22%
of the sample did not have any experience with technology). Actually, obtained results
indicate that, after six months of use, there are statistically significant differences in the
reported SUS depending on the previous experience with technology (p = 0.017), which
implies that its relationship with reported SUS needs to be further investigated.

UEQ does not provide an overall score for the UX but an individual score for each
category. Scores between −0.8 and 0.8 usually represent a neutral evaluation, while
values over 0.8 represent a positive evaluation; values below −0.8 represent a negative
evaluation [62]. Obtained results are exceptional since all categories received averaged
scores higher to or really close to 2, and given the fact that extreme UEQ values are very
uncommon [63]). Furthermore, lower bounds of all confidence intervals per category
are significantly above the minimum threshold established to be considered as positive
evaluations (p = 0.05).

UX results in terms of UEQ have been benchmarked using a dataset with data from
9905 responses corresponding to 246 studies [64]; however, and given the fact that prod-
uct categories have been not considered, this benchmarking can only be used as a first
indicator to assess the UX of the system under study. Figure 6 represents the result of the
benchmarking; in all six categories CAPACITY ranks over average (i.e., top 10%).

 

Figure 6. CAPACITY benchmarking according to UEQ.

It is important to analyze whether the UEQ respondents have provided random
answers to endorse validity of the obtained results. In this case, given the specific char-
acteristics of the population who participated in the study (i.e., older persons with poor
education background and digital literacy), some inconsistencies (i.e., all items in a scale
should measure a similar UX quality aspect; if there is a big difference—>3—this is an
indicator for a problematic data pattern) in the provided answers have been found for
several respondents. These inconsistent answers can be due to misunderstanding of one or
several items. One respondent was inconsistent in three categories, six in two categories,
and eight in one category. According to Schrepp [62], answers to UEQ with two or more
inconsistencies should be considered suspicious. No significant changes are observed
when the doubtful information is removed from the analysis: all six categories stay with
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averaged values above two; in the same way, all categories remain qualified as excellent in
the benchmarking.

Acceptance in terms of TAM reached a maximum score of 51.54 in the last sampling
point, also showing an increasing trend amongst data collection points (p = 0.15 from
baseline to month 6); given the small sample size of this research work, and the fact that
statistical significance is a function of both the sample size and the magnitude of the
estimated effect, p-values lower than 0.2 could be considered statistically significant [65,66].
Furthermore, Student’s t-test was significant (p = 0.02) for the positive evolution of the
perceived ease of use between baseline and month 6. All individual items obtained
averaged values above 4 in the last sampling point. The item that took the longest in
reaching a value of 4 was Q2, under the category of ‘perceived usefulness’; this item
relates to whether users perceived that CAPACITY contributed to his or her daily life
independency. A possible explanation could be related to the fact that results associated to
a physical intervention are not perceived immediately. In any case, this seems to be more
related to the clinical aspects of the project rather than to the technological ones. On the
other hand, the evaluation of each individual device (i.e., each component of the home
monitoring kit) indicates very high acceptance: all questions pursuing a value of 5 got an
average value over 4, while those aiming at 1 got values below 1.5. Acceptance results
not only suggest that the older population would accept using and having CAPACITY
devices at home as a way of being constantly monitored in terms of function, but also that
all components of the monitoring kit are perceived as empowerment tools to motivate
having a healthier lifestyle and to control his or her own health.

Not many RCTs exist in the field of ICTs applied to frailty management, which
prevents the availability of a wider number of works focused on assessing the usability of
technologies for treating frail population [41]. Works analyzing usability-related aspects of
technology during real interventions also report satisfactory results [67,68], however, since
the design procedure followed is scarcely described, the sample size is significantly smaller
than the one presented in this paper, and data related to adherence are not optimal (i.e., far
from 100% adherence as reported in this paper), those results should be interpreted with
caution. On the other hand, the majority of the research addressing how older persons
interact with technology is done in controlled environments and under the supervision
of domain experts [69–73]. Most of the published related research use standardized tools
such as those used in this work, which is aligned with the methods followed in the
current approach; moreover, despite the heterogeneous approaches in terms of the target
application, ranging from rehabilitation [67–69] to exergames [70], monitoring cognitive
impairment [71], fall risk [72], or evaluating available health apps [73], the used interaction
instruments, including mobile devices [67,69,72,73], personal computers [68,71], or custom
prototypes [70], and the diverse characteristics of the target population, that in some cases
have a previous experience with the technology to be used [68] and in some others cannot
use it without help [71], the UCD approach is a commonality backing almost all approaches
from a methodological perspective.

5. Conclusions

The objective of this research work was to investigate the usability, UX, and acceptance
of CAPACITY, a technological ecosystem to prevent disability. This objective has been
achieved, obtaining very satisfactory results in all domains under study. The usability of
CAPACITY (in terms of SUS) was rated as almost excellent, and UX (in terms of UEQ) as
excellent; finally, the proposed technology, both from a software and a hardware perspec-
tive, seems to be highly accepted by the target population (in terms of TAM and ah-hoc
questionnaires). Besides, adherence to using CAPACITY has been found optimal, which
implies both that these superb results are correlated with maximizing the actual use of
the proposed solution in a real environment and that data supporting the conclusions are
based on reliable and solid information.
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The main contribution of this paper is thus the demonstration that following an
iterative UCD approach starting in a controlled laboratory environment to come up with a
pre-validated interaction system, and later upscale it to a real uncontrolled environment
is a valid strategy to maximize usability, UX, acceptance and actual adoption of a system.
Furthermore, this research work contributes with a new experience to the scant number of
RCTs studying how pre-frail and frail older persons interact with technology.

Findings support UCD as a key methodology. Involving potential end users and
giving them voice during the design stage maximizes usability, UX, acceptance and usage.
In this research, older persons were involved from the very beginning: first, older people’s
opinions were captured in a laboratory environment to later move towards clinical and
home environments. Insights collected during this process enabled obtaining these excel-
lent data within a RCT. Results indicate a potential high adoption in a wider deployment
scenario (i.e., production phase). Some limitations must be taken into consideration when
interpreting the results presented in this manuscript. First, the relatively small sample
implies that findings need to be construed with prudence. Second, the external validity of
the findings is not clear (i.e., whether the tested interaction system would obtain equivalent
result in a population with different characteristics, such as culture, education, experience
with technology, etc.); moreover, the assessment tools used to measure usability, UX, and
acceptance, although they have been conceived to provide objective measurements, are
highly dependent on the subjectivity of the respondents, so what is really measured is a
perception on the different explored domains, given that humans are prone to bias while
rating their experiences after interacting with a system. Third, no data related to the use
of the technical assistance telephone line available for participants were collected, which
has prevented integrating that information in the interpretation of the results. And, finally,
no information on patient–physician communication through the platform was registered,
limiting the extent of the presented usage analysis.

The CAPACITY technological ecosystem is constantly being improved, and new
services added. From a service perspective, the current version of the solution incorporates
functionalities to support a novel organizational model that interconnects all relevant
people in the care process: the older person, the informal caregiver, and the primary
and specialized care professionals. This evolved version of CAPACITY also integrates
mechanisms (algorithms) to automatically detect functional decline and alert professionals
and means to provide a multicomponent. Future work includes carrying out a new
multicentric field experimentation (RCTs in Spain, Sweden, and Poland) with a higher
sample size (ClinicalTrials.gov Identifier: NCT04592146) thus further assessment of the
usability, UX and acceptance will be done, including extended work aimed at identifying
ways of improving specific usability issues related to the individual answers to SUS, further
exploring the relationship between usability and external factors (e.g., previous experience
with technology, living conditions, etc.), and finding efficient ways to promote prompt
responses to notifications. In addition, the home monitoring kit is in the process of being
shifted towards a ubiquitous and transparent paradigm, that will probably maximize
acceptance. These new devices will be based IoT technologies, easing their configuration,
replacement, and scalability.
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Abstract: The Internet of Things (IoT) has become quite popular due to advancements in Information
and Communications technologies and has revolutionized the entire research area in Human Activity
Recognition (HAR). For the HAR task, vision-based and sensor-based methods can present better
data but at the cost of users’ inconvenience and social constraints such as privacy issues. Due to
the ubiquity of WiFi devices, the use of WiFi in intelligent daily activity monitoring for elderly
persons has gained popularity in modern healthcare applications. Channel State Information (CSI)
as one of the characteristics of WiFi signals, can be utilized to recognize different human activities.
We have employed a Raspberry Pi 4 to collect CSI data for seven different human daily activities,
and converted CSI data to images and then used these images as inputs of a 2D Convolutional
Neural Network (CNN) classifier. Our experiments have shown that the proposed CSI-based HAR
outperforms other competitor methods including 1D-CNN, Long Short-Term Memory (LSTM), and
Bi-directional LSTM, and achieves an accuracy of around 95% for seven activities.

Keywords: activity recognition; Internet of Things; smart house; deep learning; channel state
information

1. Introduction

The Internet of Things (IoT) is a dynamic global information network consisting of
internet-connected devices [1]. Due to the recent advancements in communication systems
and wireless technology over the last decade, IoT has become a vibrant research field [2].
The concept is straightforward; things or objects are connected to the internet and exchange
data or information with each other over the network. Applications of IoT improve the
quality of life [3]. As one of the main IoT applications, smart houses allow homeowners to
monitor everything, including the health, especially for those with disabilities and elderly
people, by exerting Human Activity Recognition (HAR) techniques [4]. Additionally, the
joint task of HAR and indoor localization can be exerted in smart house automation [4].
A user’s location can change how the IoT devices respond to identical gesture commands.
For instance, users can use the “hand down” signal to reduce the temperature of the air
conditioner, but they can also use the same gesture to lower the television in front of
them [4]. HAR has emerged as one of the most prominent and influential research topics
in several fields, including context awareness [5], fall detection [6], elderly monitoring [7],
and age and gender estimation [8].

HAR techniques can be categorized into three groups: vision-based, sensor-based,
and WiFi-based [7]. Existing sensor-based and vision-based methods for HAR tasks have
achieved acceptable results. However, these methods still have limitations in terms of
environmental requirements. Strictly speaking, camera-based recognition algorithms are
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susceptible to environmental factors such as background, lighting, occlusion, and so-
cial constraints such as privacy issues. Additionally, in sensor-based methods, people
often object to these sensor modalities because they are bothersome or cumbersome. Al-
though the underlying technology employed in these sensors is frequently inexpensive,
IoT-connected versions of these sensors can be significantly more expensive due to added
wireless hardware and branding. WiFi devices, which are less expensive and power-
efficient than the aforementioned technologies, invariant to light, easier to implement, and
have fewer privacy concerns than cameras, have recently attracted much interest in various
applications [4].

The purpose of WiFi-based activity recognition is to distinguish the executed actions
by analyzing the specific effects of each activity on the surrounding WiFi signals. In other
words, the individual’s movement affects the propagated signal from WiFi access points
and can be used to recognize activities. WiFi signals can be described by two character-
istics: Received Signal Strength (RSS) and Channel State Information (CSI) [4]. RSS is
the estimated measure of received signals’ power which has been mainly used in indoor
positioning [9]. As RSS is not stable compared with CSI, it cannot properly capture dynamic
changes in the signal while the activity is performed [10]. As a more informative specifi-
cation of WiFi signals for HAR tasks, CSI has drawn more attention than RSS over recent
years [10]. CSI can save physical layer information from each sub-carrier of the channel.
When a person performs a particular activity between the transmitter and receiver, the re-
flected wireless signals from the body generate a unique pattern [11]. Furthermore, human
body shapes, speed of performing an activity, environmental obstacles, and the path of
performing an activity can cause different changes to received CSI signals. For instance, if a
person walks in a straight line this activity has a different effect on CSI signal, comparing
to the experiment that a person walks around a square path. Many WiFi devices use CSI
to assess the quality of their connection internally. The device collects the experimental
phase and strength of the signal at each antenna for each channel in the provided spectrum,
allowing signal disruptions to be identified. The WiFi-based method takes advantage of
the ubiquitous nature of radio frequency transmissions while also potentially allowing
for developing a system that takes advantage of the existing WiFi infrastructure in smart
houses [4].

Although business applications of HAR are in the beginning stages, many studies in
this field introduce the issues that must be addressed before any practical action. One of
the main issues is the specific hardware/software combination that is required to extract
CSI data. After choosing the proper hardware, the collected CSI data can be further used
as inputs of the Deep Learning (DL) algorithms for HAR task. The effects of each activity
in characteristics of the collected CSI can be used in different DL algorithms to distinguish
activities and finally classify them [11].

Since CSI is a time-series data with temporal dependency, Recurrent Neural Network
(RNN) and its subsets have been exerted more than other DL algorithms in the HAR task.
Long Short-Term Memory (LSTM) and RNN apply sequential processing to long-term
information, meaning that these data pass through all cells in the network before reaching
the present cell. RNNs structure cannot perform efficiently when we need to analyze
long sequences, resulting in vanishing gradients. The vanishing gradient problem persists
even when the switch gates and long memory in the LSTM network are maintained [11].
Furthermore, this module requires a significant amount of memory bandwidth due to the
complexity of the sequential path and Multi-Layer Perceptron (MLP) layers in each cell.
Despite the LSTMs proficiency for prediction and classification tasks in time series, they are
incapable of learning terms with greater than 100 terms [12]. Additionally, LSTMs analyze
the sequential data in one direction, meaning that only past CSI data will be considered [11].
Accordingly, they cannot distinguish between two similar activities, such as lie down and
sit down, which have the same start position but different final positions.
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In real-time activity monitoring, especially for elderly people, each activity’s period
and further information are essential. Therefore, we consider two approaches: 2D-CNN
and Attention-based Bi-directional LSTM. Unlike RNNs and LSTMs, where long-term
data is analyzed sequentially, convolutions analyze the data in parallel. Furthermore, the
training time of LSTMs is slightly longer than the CNNs, and as a result, they require a
greater memory bandwidth for processing. Less consumed time in training and lower
computational complexity, along with mentioned problems, encouraged us to use 2D-CNN.
Since 2D-CNN has high potential in image processing, we convert CSI data into RGB
images. In order to generate RGB images, we made a pseudocolor plot from CSI matrices.
Each element of the matrices is linearly mapped to the RGB colormap. Furthermore, we
applied BLSTM on raw CSI data. HAR’s performance can be improved by using attention-
based BLSTM, which concentrates on regions of greater relevance and assigns them higher
weights to improve performance. The main contributions of this research are as follows:

• We exploit Raspberry Pi for CSI data collection and offer a public CSI dataset for seven
different activities including sit down, stand up, lie down, run, walk, fall and bend in
an indoor environment using the Nexmon CSI tool [13]. Due to reflections induced by
human activity, each subcarrier contains critical information that will increase HAR
accuracy. The CSI matrices in our dataset are composed of 52 columns (available data
subcarriers) and 600 up to 1100 rows depending on the period of each activity. The
results demonstrate that this hardware is capable of providing tolerable data that is
comparable to traditional technologies.

• We propose a new concept in improving the precision of HAR by converting CSI data
into images using pseudocolor plots and feeding them into 2D-CNN. This method
overcomes the mentioned limitations of LSTM and also the training time and computa-
tional complexity are less than those of other existing methods. We also exert a BLSTM
network with an attention layer to address LSTM problems with future information.
The results demonstrate that the conversion idea with 2D-CNN outperforms BLSTM
in accuracy and consumed time.

• We also perform a deep evaluation by implementing two other algorithms, includ-
ing 1D-CNN and LSTM, and compare our results with four different models used
for HAR, including Random Forest (RF) [14], Hidden Markov Model (HMM) [14],
DenseLSTM [15], ConvLSTM [16] and Fully Connected (FC) network [17]. We analyze
the performance of our dataset and proposed DL algorithms.

The rest of this paper is organized as follows: Section 2 reviews HAR studies.
In Section 3, we provide a brief explanation about CSI, required information on hard-
ware, software and firmware. Furthermore, four used neural network’s structures are
discussed in this section. Additionally, we briefly discuss other datasets and their public
accessibility. The main contributions of this research are summarized in Section 4. We
discuss the device configuration to collect CSI, image generation from CSI, and feeding the
data to the neural networks. In Section 5, measurement setups and experimental results
are reported, and finally, conclusions are discussed in Section 6.

2. Related Works

HAR techniques can be divided into three groups: vision-based, sensor-based, and
WiFi-based. Several image-based methods for HAR have been published in recent years,
using datasets such as RGB (red, green, and blue [18]), depth [19], and skeleton images [20].
The RGB dataset may not be qualified and robust enough in this method when the video
contains considerable sudden camera movements and cluttered background. To this end,
Anitha et al. [21] propose a shot boundary detection method. In their proposed method,
the features and edges of videos are extracted. The features were then extracted as images
and subsequently merged with the video feature and fed into the classifier. The Kernel
Principal Component Analysis (KCPA) technique is applied to locate image features and
joint features. The preparation process is thus gradually proficient, making the independent
vector analysis increasingly realistic for real-life applications. The human activity videos are
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classified by K-Nearest Neighbor, obtaining better results than other cutting edge activity
methods. While capturing an image or video of an activity in RGB format, it generates
many pixel values, making it more difficult to distinguish the subject from the surrounding
background and resulting in computational complexity. The aforementioned obstacles
and the view dependency, background, and light sensitivity impair RGB video-based
HAR performance and persuade researchers to exert depth images and other formats of
images or videos to improve HAR performance. Most of the methods introduced for HAR
utilizing skeleton datasets are confined in various ways, including feature representation,
complexity, and performance [22]. In [22], authors propose a 3D skeleton joint mapping
technique that maps the skeleton joints into a spatio-temporal image by joining a line
across the same joints in two adjacent frames, which is then used to recognize the person’s
activities. The 3D skeleton joint coordinates were mapped along the XY, YZ, and ZX planes
to address the view dependency problem. They exploit transfer learning models including
MobileNetV2, DenseNet121, and ResNet18 to extract features from images [22].

In sensor-based methods, wearable sensors capture activities, causing inconvenience
and long-time monitoring unavailability [23]. In the past decade, smartphones have
become more powerful with many built-in sensors, including the accelerator, gyroscope.
The main impediments in using smartphones for HAR tasks are their higher noise ratio
than wearable sensors and fast battery drain [23]. Several researchers have exerted Radio
Frequency Identification (RFID) tags to recognize human activities [24]. Authors in [24]
present a framework for HAR and activity prediction by using RFID tags. They utilize RFID
tags to detect a high-level activity and object usage. Additionally, they employ weighted
usage data and gain activity logs. Since human activities are time series data and the
next activity is related to the current activity and previous ones, they use LSTM to predict
activities with an accuracy of 78.3%. Although RFID tags are cheaper, RFID-based systems
cannot achieve high accuracy in crowded environments. Additionally, as mentioned above,
vision-based HAR needs cameras installation in the environment, which highly depends
on the light source’s consistency and is unable to pass through physical obstacles such as
walls. Since indoor spaces such as smart houses, malls, and nursing homes are filled with
wireless signals, WiFi-based systems have been exploited more than other approaches in
recent years [25].

Due to the growing interest in sensor-less activity detection, the research and indus-
try communities have joined on CSI analytics with the help of neural networks. Com-
mon CSI-based applications include a wide range of activity detection scenarios such as
WiTraffic [26] to delicate activity recognition systems like Wifinger [27], breathtrack [28].
In [29], authors utilize CSI to sense distinct hand movements. They use predefined win-
dows to monitor activity continuously. This method is time-consuming and yields lower
accuracy. To overcome this problem, Wi-Chase [30] does not apply predetermined time
windows. Due to detailed correlated information in different subcarriers, Wi-Chase also
employs all available subcarriers, unlike Wi-Sleep [31] that uses only a subset of them. The
extracted features were trained using machine learning algorithms, including KNN and
Support Vector Machine (SVM) [30]. Although different WiFi-based HAR systems have
been proposed, one of the major challenges has not been addressed properly. That is, WiFi
signal changes are due to the various movement speeds and body types of people. Human
activity is made up of many limb movements, such as lifting an arm or leg. The speed
and scale of activity can naturally alter according to the scenario or period. Furthermore,
physical traits such as body form and height are unique for each person. Therefore, human
activity patterns can vary greatly amongst people. To address this problem, a WiFi-based
HAR proposed in [15] incorporates synthesized activity data that reduces the influence
of activity inconsistency such as varied motion speed. They collect CSI for 10 different
activities including make phone calls, jumps, check wristwatch, lie down, walk, play gui-
tar, fast walk, play piano, run, play basketball with Atheros AR9590 WiFi chipset. The
combination of CSI spectrogram of overall subcarriers is fed into the network as image
inputs. Then, four Dense layers are used to extract spatial features of activities. These
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features are entered to a convolutional layer. Then, a BLSTM is used to extract tempo
features and a linear layer is applied to predict the activities. Three data synthesis methods
are combined with eight types of transformation methods, including dropout, Gaussian
noise, time-stretching, spectrum shifting, spectrum scaling, frequency filtering, sample
mixture, and principal component coefficient. Dense LSTM with consistent accuracy of
90% is applied to efficiently optimize the system for the small-size dataset while keeping
the model compact to minimize overfitting.

For multi-class classification based on extracted features such as HAR, a variety of
machine learning algorithms such as RF, SVM, and HMM and also DL algorithms such as
CNN, RNN, and LSTM can be applied. In [14], they apply RF, HMM, LSTM on their public
dataset which have been collected with NIC 5300 with three antennas for six different
activities including sit down, stand up, fall, walk, run, and bed. A 90-dimensional vector
of CSI amplitude (3 antennas and 30 subcarriers) has been used as the input feature vector.
They apply the PCA on the CSI amplitude for denoising, and Short-Time Fourier Transform
(STFT) for feature extraction. First, they use RF with 100 trees for classification, which
has unacceptable accuracy for bed, sit down and stand up activities. They also apply
HMM on the extracted features obtained by STFT and DWT techniques. The accuracy is
improved compared to RF, but with higher training time. Although HMM has obtained
good results for walk and run activities, it cannot distinguish between stand up, sit down,
and bed activities. They also apply LSTM on activities [14]. The LSTM extracts the features
automatically and directly from raw CSI without any pre-processing. In other words in
contrast to other methods, the LSTM approach does not need PCA and STFT, but it has
more training time [14]. The accuracy of LSTM is reported over 75% for all activities in [15].

Since the static objects in an environment can also affect wireless signals and, respec-
tively, HAR model, authors in [17] propose a deep neural network as baseline classifier
based on the features for four simple activities, including standing up, sitting down, push-
ing and picking, performed in two different complex environments. More precisely, they
propose a network with shared weight to make a similarity network for two different
complex environments. They used one transmit antenna and two receive antennas and
make four grayscale images from CSI amplitude and phase. In feature extraction stage,
Gabor filter is applied on grayscale images to extract features. Gabor filter extracts spatial
information of an image by convoluting the transformed image with a filter at specific
wavelength λ and orientation θ [17]. For each gray-scale image, the final output is 5 (the
number of λ) × 8 (number of θ) × 2 (mean and standard deviation) = 80, and a vector of
dimensions 320 = 4 (number of grayscale images) × 80 are fed into the neural network as
the input. They exert three FC hidden layers as the baseline network and two identical
branches that share the same weight values as the similarity network. A pair of two random
data are selected and fed into the two identical networks simultaneously and each one of
them enters the fully connected network. If the two data belonged to the same category
of activity, they are labeled as “similar”, otherwise “non-similar”. Their model obtains an
accuracy of around 84% overall for the two different environment scenarios.

One of the main issues in Wifi-based HAR is the specific hardware/software combina-
tion for CSI data collection. In other words, Linux 802.11n CSI Tool is limited to older linux
kernels versions and the required hardware cannot be found easily in market. Following
the release of Nexmon CSI Tool [13], it is now possible to extract CSI from a BCM43455C0
wireless chipset, which is used in the Raspberry Pi 3B+ and 4B. As this is a recent release,
Ref. [16] examines the performance of the Raspberry Pi 4 in CSI-based HAR. They collect
CSI signals for different activities performed in normal life as listed: stand up, sit down,
go-to-bed, cook, washing-dishes, brush-teeth, drink, pet a cat, sleeping, walk. They do
not apply any denoising filter, as their results are acceptable comparing to other available
datasets and also additional filtering may affect important information in data. They
pack CSI vectors, collected by Raspberry Pi 4, into windows to train their classification
model. As LSTMs and their extensions have been well-suited in HAR task, they use a deep
convolutional variant of the LSTM model. They apply two 1D-convolutional layers along
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with four BLSTM, which have more training time and computational complexity. Their
model achieves 92% accuracy which demonstrated the Raspberry Pi 4 capabilities for HAR
in smart houses and it can be superseded the Linux 802.11 CSI Tool.

3. System Model

3.1. Preliminary

Transmitting a signal from the transmitter to the receiver, it is deflected, reflected, and
scattered when it comes into contact with obstacles and objects. This results in multipath
overlaid signals at the receiver when the signal encounters obstacles and objects [7]. Fine-
grained CSI can be used to characterize this procedure. The Orthogonal Frequency-Division
Multiplexing (OFDM) modulation is utilized in IEEE 802.11, and it distributes the available
bandwidth across several orthogonal subcarriers [14]. Due to the limited bandwidth
available, the fading that each subcarrier experiences are represented as flat fading [31].
Therefore, the small-scale fading aspect of the channel can be minimized by employing
OFDM techniques. Narrow-band fading per subcarrier causes a considerable variation in
the measured channel dynamics. The greatest advantage of employing CSI is that it can
catch changes occurring at a single frequency and avoid averaging out changes across all
WiFi bandwidth, unlike RSS.

Several subcarriers can be present in the physical link between each pair of transmitter
and receiver antennas. As each subcarrier might serve many data streams, the CSI obtained
from each subcarrier will be unique [14]. CSI can be represented as a channel matrix for t
transmit and r receiving antennas, a given packet transmission n:

CSIn =

⎛
⎜⎝

H1,1 · · · H1,r
...

. . .
...

Ht,1 · · · Ht,r

⎞
⎟⎠ (1)

Ht,r represents a vector that includes complex pairs for each subcarrier. Depending
on the hardware we use and channel bandwidth, the number of available subcarriers is
different [16]. Raspberry Pi 4 and Tp-link archer c20 paired over 5 GHz in 20 MHz band-
width can access 56 data subcarriers. Ht,r can be expressed as below for m data subcarrier in
which hm is a complex number, containing both amplitude and phase of the CSI:

Ht,r = [ht,r,1, . . . , ht,r,m] (2)

3.2. Hardware and Firmware

To the best of our knowledge, the specialized hardware/software combinations that
is required to extract CSI data, are intel 5300 WiFi Network Interface Card (NIC) (Linux
802.11n CSI Tool) [32], Atheros AR9580, AR9590, AR9344, and QCA9558 (Atheros CSI
tool) [33], Raspberry Pi (Nexmon CSI Tool) [13]. The intel 5300 NIC has been used for CSI
collection since 2011 [32]. Although many researchers used 5300 NIC, such as [14], this
hardware configuration has become less important over time since most laptops with this
wireless card are not currently available in the market and third-party tools are required
to collect CSI. More precisely, some type of Mini PCIe to PCI-Express Adapter with three
antennas is required. Atheros CSI tool, as another 802.11n open-source experimental tool
for CSI collection, allows extractions of physical layer wireless communication information,
including CSI, RSS, the received payload packet, the timestamp, the data rate, etc. [33].
The ath9k open-source kernel driver supports Atheros 802.11n PCI or PCI-E chips; thus,
this tool supports any sort of Atheros 802.11n WiFi chipsets. This tool was released in 2015
and there is more hardware with built-in Atheros 802.11n PCI or PCI-E chips rather than
5300 intel NIC, but more expensive.

The release of Nexmon CSI Tool [13] has enabled CSI extraction from Raspberry Pi
3B+ and 4B, Google Nexus 5, and some routers. One of the Nexmon tool benefits is that it
permits several transmit-receive antenna configurations (up to 4 × 4 MIMO). Additionally,
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it includes customizable CSI collection filters that can extract relevant CSI from selected
transmitters and the complete CSI data does not need to be suppressed. Although the
Raspberry Pi utilizes a single transmit/receive antenna pairing, its price and prospective
capabilities make it a suitable tool in WiFi-based healthcare monitoring in smart houses.
Nexmon [13] provided a configuration option to assign a different interface to only the
monitored frames after being configured on the host for monitoring on Raspberry Pi.
This tool can use up to 80 MHz bandwidth and 242 subcarriers. There are three types
of subcarriers in OFDM technology, including null subcarriers, pilot subcarriers, and
data subcarriers. Null subcarriers (also called zero) are the unused subcarriers mainly
employed as a guard against interference from adjacent channels. The pilot subcarriers
do not convey modulated data; nevertheless, they are utilized for channel measurements
and synchronization between the transmitter and receiver. Furthermore, pilot subcarriers
broadcast using a predetermined data sequence and demonstrate an overhead for the
channel. The remaining subcarriers from total subcarriers are called data subcarriers. These
subcarriers will exploit the same modulation format as 802.11ac [34]. As mentioned in
Table 1, we may have different numbers of subcarriers depending on the PHY standard
and bandwidth.

Table 1. Subcarrier description for each PHY standard.

PHY Standards Subcarriers Range Pilot Subcarriers Total/Data Subcarriers

802.11a/g −26 to −1, +1 to +26 −21, −7, +7, +21 52/48
802.11n
802.11ac
20 MHz

−28 to −1, +1 to +28 −21, −7, +7, +21 56/52

802.11n
802.11ac
40 MHz

−58 to −2, +2 to +58 −53, −25, −11,
+11, +25, +53 114/108

802.11ac
80 MHz

−122 to −2,
+2 to +122

−103, −75, −39, −11,
+11, +39, +75, +103 242/234

3.3. Neural Network

Once an activity is performed between transmitter and receiver, it will affect CSI char-
acteristics. When a person performs a particular activity, the received CSI signals generates
a unique pattern [7]. Recently, DL algorithms have been widely used to automatically learn
features from the effects of activities on CSI. While having many layers in these algorithms
offers improved classification skills, overfitting and performance deterioration become
significant when implementing the neural network on a limited amount of dataset. Using
traditional strategies such as weight decay, small batch size, and learning rate might not be
enough to help avoid this problem. Accordingly, all of the pre-existed WiFi-based systems,
such as those in Section 2, would require the implementation of dedicated numbers of
particular neural layers to provide the desired performance. In this research, we present
custom deep learning models that is best suited for situations with a small size dataset and
has less computational complexity and consumed time compared to other methods.

3.3.1. CNN

CNN is a feed-forward neural network that excavates features from data with con-
volution operations. It contains several layers, including Convolution, Pooling, Dense
and Flatten. This classification network requires less pre-processing rather than other
classification techniques. Additionally, CNN can learn required filters or characteristics
without the assistance of the user. CNNs use filters (also known as the kernel, feature
detector) to extract features which are performed using the convolution function [35]. The
initial Convolution Layer (ConvLayer) is designed to handle lower-level features, such
as edges and color. When we employ several ConvLayers in the network topology, the
network can achieve high recognition accuracy since it can also capture high-level features.
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After each two 2D-ConLayer, we use the LeakyReLU activation function, an upgraded
variant of ReLU (Rectified Linear Unit). According to the gradient in the negative direction,
every value of inputs less than zero causes the gradient to be zero. Therefore, the neurons
located in that region are deactivated and may suffer from the dying ReLU problem. In
order to address this problem, instead of claiming that negative inputs values should be
considered zero, a small linear component of S is defined. LeakyReLU can be formulated
as f(S) = max (0.01 × S,S), meaning that if the input is positive, the function returns S
and if the input is negative, it returns 0.01 × S. This minor alteration causes a non-zero
gradient for negative values; thus, we would not find any dead neurons in that location.
Since the feature map output of ConvLayer specifies the specific position of features in
the input, a slight movement in the location of the feature in the input data will create
a significant difference in the feature map. To address this problem, we use the down-
sampling strategy. A better and more widespread strategy is to utilize a pooling layer.
After feature detection in ConvLayer, the Max pooling layer is applied to down-sampled
feature maps and helps in extracting low-level features. After the first ConvLayer with
Leaky ReLU activation function and max pooling, Batch Normalization (B.N.) is applied
to stabilize the network during training and speed up training. B.N. makes the variable
mean and standard deviation estimations more stable across mini-batches and, respectively,
closer to 0 and 1. Dropout layers are applied between convolutional layers, decreasing
overfitting while improving the network’s generalization capability. The pooled features
(the max pooling’s output) should be flattened. Flattening involves concatenating the
feature map matrix to create a single-column matrix. This matrix is passed through a dense
layer where we get our predicted classes. The proposed 2D-CNN structure is depicted in
Figure 1.

Figure 1. 2D-CNN structure used in this paper.

In addition to 2D-CNN exerted on converted RGB images, we also apply 1D-CNN to
CSI data as depicted in Figure 2, which will convolve with moving along one dimension.
Whether the input is 1D, 2D, or 3D, CNNs all have the same properties and use the same
process. The crucial distinction is the dimensionality of the input data and the method in
which the filter slides across it. The 1D-CNN has been trained to identify different activities
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based on sequential observations and map the internal features to different activities. It is
particularly good at learning time-series data such as CSI, as it can leverage raw time
series data and requires no domain expertise to hand-engineer input features. We use two
ConvLayers with ReLU as an activation function. Same as 2D-CNN, after each ConvLayer,
we apply max pooling layer, B.N., and dropout.

Figure 2. 1D-CNN structure used in this paper.

3.3.2. LSTM

RNN has been successfully applied to sequential modeling applications, such as
language understanding [36] and HAR [37]. Nevertheless, when the learning sequence
is long, the standard RNN frequently encounters the problem of the gradient vanishing
and exploding. In order to address this issue, Hochreiter and Schmidhuber [38] designed a
new RNN structure named the LSTM [38]. The LSTM network seeks to overcome gradient
vanishing and exploding by utilizing memory cells with a few gates to retain essential
information with long-term dependencies. The memory block comprises three gate sets.
Each decides the block’s state and produces an output, including forget gate, input gate,
and output gate. The information to be eliminated from the unit is determined by the
forget gate. The input gate handles which input values cause the memory state to be
updated. The output gate determines the output of the block according to the input and
the unit memory.

Since CSI signals are time-series and the LSTM can learn complicated and temporal
dynamics, this network has obtained a remarkable performance for CSI-based HAR. In
the HAR task, LSTM has two advantages. First, it can extract the features automatically
without pre-processing. On top of that, it can hold temporal state information of the
activity, resulting in better performance for similar activities such as lie down and sit down
comparing to 1D-CNN, RF, and HMM. In this paper, we apply a simple LSTM with one
hidden layer and 128 hidden units in which the feature vector is a 52-dimensional vector of
CSI amplitudes. The proposed LSTM structure is depicted in Figure 3.
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Figure 3. LSTM structure used in this paper.

The traditional LSTM network only analyze the CSI data in one direction, meaning
that the present hidden state only considers the past CSI information. Furthermore, future
CSI information is also important for HAR. In this paper, an attention-based BLSTM
is utilized to analyze past and future information and overcome long-term dependency.
It contains a forward and backward layer for extracting information from the two directions.
In other words, it’s a two-layer LSTM sequence processing paradigm: one in which the
input moves forward and the other in which the input moves backward. As the name
suggests, attention is a technique that can allow input sequences of arbitrary length to pay
attention to specified timesteps [11]. The concept is based on the studies about human
vision systems, which indicate that humans consistently focus on a certain region of an
image while identifying it and then altering their focus over time. It has been found
to be effective in image recognition to have the machine focus on the region of interest
while concealing the rest of the image at the same time for a recognition task. Due to the
sequential features learned by the BLSTM network for WiFi-based HAR known to have
high dimensions and feature contributions and time steps may vary from case to case, we
seek to exploit the attention model to automatically learn features’ significance and adjust
feature weights based on activity recognition performance. In this paper, as depicted in
Figure 4, a BLSTM with one attention layer with 400 units is used to learn the relative
importance of features and timesteps and more important characteristics are given higher
weights to obtain better performance.

The comparison between these four networks and five other networks in HAR re-
searches, i.e., RF [14], HMM [14], DenseLSTM [15], ConvLSTM [16] and FC network [17],
are discussed in Section 5. Note that, the proposed networks for our public dataset signifi-
cantly outperforms other techniques in terms of accuracy, computational and structural
complexity, and consumed time.
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Figure 4. BLSTM structure used in this paper.

3.4. Human Activity Recognition Datasets

The amount of data we need for the HAR task depends on the complexity of the task
and the chosen algorithm, hence there is no specific rule about the number of samples,
needed to train a neural network and it is just a process of trial and error. For vision-based
HAR task, [39] used 320 samples for 16 activities and [40] used 567 samples for 20 activities.
We investigated the quantity of samples utilized in some CSI-based HAR researches. In
ConvLSTM [16], they collected CSI data for 11 activities which were performed 100 times in
a home environment (1100 samples). In [41], they collected 600 samples from 3 volunteers
for 8 activities. In [30], they collected 720 samples of activities (12 volunteers × 20 samples ×
3 activities). The authors in [42] collected 50 up to 100 samples for 4 actions (approximately
200 up to 400 samples). In [43], they collected 1400 samples from 25 volunteers. Authors
in [44], collected 50 samples for 10 activities (500 samples). Siamak Yousefi et al. [14],
as one of the most cited articles in WiFi-based human activity recognition, provided a
public dataset for 6 different activities, performed by 6 users for 20 times (720 samples).
According to other researches results, we asked 3 volunteers to perform 7 different ac-
tivities 20 times, resulting in 420 samples. To the best of our knowledge, the WiFi-based
researches data accessibility and number of samples are listed in Table 2. Furthermore,
it should be mentioned that we plan to increase number of samples and perform activities
in different scenarios.
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Table 2. Number of samples and data accessibility in different CSI-based HAR researches.

Research Number of Samples Public Accessibility

[16] 1100 No
[41] 600 Yes
[30] 720 No
[42] 200–400 No
[43] 1400 No
[44] 500 No
[14] 720 Yes

Our Dataset 420 Yes

4. Proposed Method

Despite the numerous advantages that accessibility to CSI would provide to users,
chip manufacturers continue to treat CSI as a private feature. Only a few devices that are
still using the 802.11g and 802.11n technologies are capable of dumping CSI, and they
do so with a number of restrictions. Additionally, the Linux 802.11n CSI Tool is only
compatible with older Linux kernel versions, which can cause significant inconvenience.
In IoT, wireless connectivity is critical for monitoring and control purposes such as HAR.
When it comes to experimentation, the Raspberry Pi might be considered a cheap and
available WiFi-enabled platform. We employ Nexmon Tool [13] and collect CSI data for
seven daily human activities, including walk, run, fall, lie down, sit down, stand up,
and bend. We use Raspberry Pi 4 and a Tp-link archer c20 as an Access Point (AP) in
20 MHz bandwidth on channel 36 in IEEE 802.11ac standard. As depicted in Figure 5,
we use Personal Computer (PC) for traffic generation by pinging or watching a movie
on the internet. The AP will reply with pong packets to the sent pings from the PC.
The Pi is in monitor mode and will sniff through this connection and collect CSI for
each sent-out pong packet. CSI is saved as a pcap file which can be analyzed in many
software including MATLAB. CSI complex numbers are extracted and after removing
null and pilot subcarriers, we export activity rows according to the period of each activity
which has been detached depending on the video of activity performed by users and
stopwatch. Due to reflections induced by human activity, each subcarrier for any given link
experiences a variation [11]. Therefore, each subcarrier includes critical information that
will increase recognition accuracy. A higher proportion of subcarriers boosts precise feature
detection since it provides additional information and boosts identification of challenging
features to analyze a subset of subcarriers. The CSI matrices have 52 columns (available
data subcarriers) and 600 up to 1100 rows depending on the period of each activity. The
dataset is available in GitHub https://github.com/parisafm/CSI-HAR-Dataset (accessed
on 27 October 2021).

Figure 5. Configuration for CSI collection.
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No data pre-processing is applied on the CSI amplitude since any additional filtering
can result in losing important information and affect the system’s performance. If the
simulation results or generated images are disappointing, we can use a low pass filter for
high-frequency reduction, as mentioned in [16]. In order to make RGB images, the data
values must be normalized between 0 and 255 for all activities. We make a pseudocolor
plot from matrices representing them as an array of colored faces in the x-y plane. In a
pseudocolor plot, cells are arranged in a rectangular array with colors specified by the
values in C as normalized CSI input matrices. MATLAB creates this plot by using four
points near each corner of C to describe each cell. Each element of C is linearly mapped to
the RGB colormap. The generated RGB images are resized to the desired size (64 × 64).
Some of these images for each class of activities are depicted in Figure 6. Since the images
are not noisy, we do not need to apply denoising filters and additional denoising technique
may cause information lost.

These images and CSI data are then fed into neural networks. As CSI signals are
typical time-series with temporal dependency, the future information in each step is crucial
for HAR, and also LSTMs cannot effectively analyze more than 100 s term, we consider
two methods. First, we convert CSI signals to RGB images using pseudocolor plot and feed
them into 2D-CNN. By converting CSI to RGB images, the signal pattern for each activity
can be seen in one look. Meaning that the pattern changes due to the human movements
are depicted in image.

Figure 6. Generated RGB images: (a) walk; (b) run; (c) fall; (d) lie down; (e) sit down; (f) stand up; (g) bend.

Therefore, in contrast to LSTM that does not have any information about future steps,
CNN can analyze the whole signals’ alteration. Additionally, CNN process information
parallelly, resulting in faster training than LSTMs with better accuracy. Another method to
address LSTMs mentioned problems is to apply BLSTM on CSI data. BLSTM contains a
forward and backward layer and can analyze both past and future information by extracting
information from the two directions. Since the sequential features learned by the BLSTM
network have high dimensions and feature contributions and timesteps may vary for each
activity, we exploit the attention layer to learn the relative importance of features. Although
BLSTM have high potential to recognize human activities, it needs a greater memory
bandwidth for processing and thus it has more training time than the proposed 2D-CNN.
Lower consumed time in training and less computational complexity, along with the ability
to observe the whole pattern alteration in one look, make the novel image conversion idea
and 2D-CNN implementation the best choice over other mentioned methods.

5. Evaluation

5.1. Measurement Setup

Buster lite 4.19.97 raspian and the main branch of nexmon-csi [45] were installed
on the Raspberry Pi 4. Nexmon tool was configured as follows: Channel 36, bandwidth
20 MHz, Core 1, NSS mask 1, 4000 samples, 20 s. The AP’s MAC address filter was
set to make sure the Raspberry Pi will not connect to another AP on channel 36. The
data collection was conducted from another device linked to the Pi over SSH to avoid
interference, communicating over another 2.4 GHz network. The AP used is a Tp-link
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archer c20 wireless router operating a 5 GHz WiFi network on channel 36 at 20 MHz. A PC
is paired with the AP to generate traffic by watching a video on the internet or pinging,
for which the Pi can capture CSI. We put the Raspberry Pi in monitor mode and with the
use of the sniffing method, we were able to collect CSI data. We collect 4000 samples at
around 20 s which results in 200 Hz sample rate. Ap and Pi were both 1m above the ground
to ensure an unobstructed signal path. They were 3 meters away from each other. The
experimental environment is depicted in Figure 7. Each activity performed in the dataset
was performed 20 times by three users of different ages. These activities are as listed: fall,
stand up, sit down, lie down, run, walk, bend. CSI data were captured in the 20 s, in which
an activity has been performed in the middle of this period. More precisely, users remain
mostly stable at the start and the end of the capture. As the experiment was managed
by the users, the length of time taken for the activity to begin and end may vary slightly,
around 3 to 6 s (around 600 to 1100 rows of 4000 total rows). The activity period is extracted
according to the video of the activity and stopwatch.

Figure 7. Experimental environment.

5.2. Simulations Results

The proposed deep learning architectures can discover more complex patterns in time
series data, compared to hand-crafted features techniques such as RF [14] and HMM [14].
As shown in Figure 8, the ConvLSTM [16] model slightly outperforms the FC network
in [17] and DenseLSTM [15]. Our proposed models have achieved better results compared
with all of them without any extra data augmentations [15] and complex structure like
ConvLSTM [16] and FC [17]. The detailed information about the mentioned methods are
available in Section 2. The dataset was split into train and test in a 75% to 25% ratio. We
implemented four neural networks on Keras for classification, which has been accelerated
by Geforce RTX 2060. The raw CSI amplitude data is a 52-dimensional vector fed into
1D-CNN, LSTM, and attention-based BLSTM. In 1D-CNN model, we have two Conv1D
with ReLU as an activation function and after each Conv1D layer, we added a MaxPooling
layer. The LSTM network contains one LSTM hidden layer and 128 hidden units. For the
BLSTM model, we used one BLSTM layer with 200 hidden nodes and one attention layer
with 400 units. The converted RGB images were fed into 2D-CNN with 2xConv2D layer
(with Leaky ReLU) and 2xMaxPooling layer (after each Conv2D). The structures of these
networks are depicted in Figures 1–4.
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Figure 8. Accuracy of different methods implemented on the dataset.

CNN can detect simple patterns in data, which are subsequently utilized to create
more complex patterns within higher layers. 1D-CNN is highly effective when features are
derived from fixed-length parts of the dataset and the feature’s position in the section is not
crucial, including the analysis of time sequences data (such as gyroscope or accelerometer
data or CSI). Since the LSTM network analyzes temporal dependencies in sequential data,
it outperforms the 1D-CNN technique. As mentioned in Sections 1 and 2, LSTMs suffer
from vanishing gradient and cannot access next step information. For activities like sit
down and lie down which are different at last body movements, it is necessary to have
knowledge about next step information. To address these problems, we converted CSI
data into RGB images for each activity and used them as inputs for 2D-CNN, thus we
can access all the information in past or next steps with one look at images. Additionally,
we used BLSTM with attention layer to consider both past and next step information
and automatically learn features’ significance to assign higher weights based on HAR
performance. The attention-based BLSTM approach and 2D-CNN have achieved the best
performance for the recognition of all activities with an accuracy of around 95%. All of
these comparisons are depicted in Figure 8.

Different activities have different CSI values, resulting in different recognition accuracy [7].
We use a confusion matrix (or error matrix) to describe the performance of our proposed
classifiers for each activity in which the rows represent anticipated classes and the columns
represent actual classes. The activities with more significant body movement, i.e., fall, walk,
and run, have higher recognition accuracy (see Figure 9) since they have more influence on
CSI characteristics. Furthermore, fall activity is crucial, particularly for elderly healthcare
services. Our proposed 2D-CNN and BLSTM network have 98% and 96% accuracy for
this activity, making these models efficient in elderly care systems. Another observation
is that the action “Lie down” has a recognition accuracy similar to “Sit down” for most
methods. The probable explanation is that these activities have a similar impact on CSI
values since the start position is the same and the final positions are different. By applying
attention-based BLSTM and 2D-CNN, the system is less confused between these two
activities. As shown in Figure 9, the model is confused with these two activities around 3%
in BLSTM and 2% in 2D-CNN which are acceptable when compared to LSTM with 8% and
1D-CNN with 9% confusion.
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Figure 9. Confusion matrices of proposed methods: (a) LSTM; (b) 1D-CNN; (c) BLSTM; (d) 2D-CNN.

Consumed time is another critical performance evaluation indicator representing how
much time the model spends training and testing. Table 3 compares the time consumption
(milliseconds per step) of six DL approaches: ConvLSTM [16], DenseLSTM [15], LSTM,
BLSTM, 1D-CNN, and 2D-CNN. We can observe that proposed 2D-CNN has the shortest
time and highest accuracy (Figure 8) compared to the others, making 2D-CNN a better
choice compared with BLSTM, ConvLSTM [16], and DenseLSTM [15] in a fraction of
the time. More precisely, a long-term input is processed sequentially in LSTMs’ gates,
making them not hardware-friendly, as they require greater memory bandwidth to compute
parameters, in addition to time-consuming simulations. In contrast, CNN extracts features
by utilizing convolution operation, which is easier to compute and faster in training.
Furthermore, the CNN accuracy rapidly improved while the BLSTM accuracy slowly
improved in a longer training time.

Table 3. Consumed-time (milliseconds per step) comparison for different models.

Time 1D-CNN LSTM 2D-CNN BLSTM ConvLSTM [16] DenseLSTM [15]

Train 9 13 15 28 36 60
Test 3 6 7 12 19 41
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6. Conclusions

Due to the ubiquity of WiFi devices, HAR based on wireless signals, including CSI,
has witnessed more interest in smart house health monitoring systems. A few CSI datasets
for the HAR task collected with 5300 NIC or Atheros PCI chips, are currently available.
This paper presented a CSI dataset for indoor HAR using a Raspberry Pi, which is one
of the most accessible embedded boards. In this work, we have designed four neural
networks to conduct WiFi-based HAR with more than 87% accuracy for our dataset. We
used a BLSTM network with an attention layer to address LSTM problems with future
information. We also convert CSI data to images using pseudocolor plots and feeding them
into 2D-CNN to overcome the mentioned limitations of LSTM. We showed that the idea of
CSI conversion to images can obtain high accuracy of 95%, close to BLSTM, which is one
of the most successful DL algorithms in time-sequential analysis. Additionally, as CNN
processes different features parallelly, it is faster than other methods and less complex in
computations. The strong performance of the proposed methods indicates that the data
collected by Raspberry Pi can effectively be employed in smart house HAR. The proposed
methods can boost elderly health monitoring systems since it meets the requirements for
acceptable recognition accuracy and recognition speed for the most commonly performed
actions in this task.

Nevertheless, we presented the first version of our public dataset and plan to improve
it by investigating different environments and scenarios. In the future, we will study
human-to-human interactions and the CSI changes in multiple user-multiple environments
scenarios. Since different ages may perform activities differently, according to their physical
ability, we collected CSI data from three different ages, including an adult, a middle-
aged person, and an elderly person and try to study other ages, including child and
teen. Additionally, we will investigate activities with different initial movements, such as
standing + walking and running + walking.
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Abstract: Glaucoma is a silent disease that leads to vision loss or irreversible blindness. Current
deep learning methods can help glaucoma screening by extending it to larger populations using
retinal images. Low-cost lenses attached to mobile devices can increase the frequency of screening
and alert patients earlier for a more thorough evaluation. This work explored and compared the
performance of classification and segmentation methods for glaucoma screening with retinal images
acquired by both retinography and mobile devices. The goal was to verify the results of these methods
and see if similar results could be achieved using images captured by mobile devices. The used
classification methods were the Xception, ResNet152 V2 and the Inception ResNet V2 models. The
models’ activation maps were produced and analysed to support glaucoma classifier predictions. In
clinical practice, glaucoma assessment is commonly based on the cup-to-disc ratio (CDR) criterion, a
frequent indicator used by specialists. For this reason, additionally, the U-Net architecture was used
with the Inception ResNet V2 and Inception V3 models as the backbone to segment and estimate
CDR. For both tasks, the performance of the models reached close to that of state-of-the-art methods,
and the classification method applied to a low-quality private dataset illustrates the advantage of
using cheaper lenses.

Keywords: deep learning; glaucoma screening; retinal images; segmentation; classification

1. Introduction

Glaucoma is one of the main causes of vision loss, mainly due to increased fluid
pressure and improper drainage of fluid in the eye. In 2013, it was estimated that 64.3 mil-
lion people aged 40–80 years were diagnosed with glaucoma worldwide. This disease is
expected to reach nearly 76 million by 2020 and 111.8 million by 2040. The prevalence of
glaucoma is 2.5% for people of all ages and 4.8% for those above 75 years of age [1]. Glau-
coma is an asymptomatic condition, and patients do not require medical assistance until a
late stage, making the diagnosis frequently too late to prevent blindness. Population-level
surveys suggest that only 10–50% of people with glaucoma are aware that they have the dis-
ease. As early diagnosis and treatment of the condition can prevent vision loss, glaucoma
screening has been tested in numerous studies worldwide [2]. An ophthalmologist can
directly examine the eye with an ophthalmoscope or can examine a fundus image capture
with a fundus camera, as can be seen in Figure 1. The examination of these fundus images
is important because the ophthalmologist can record indicators and parameters related to
cupping to detect glaucoma, such as disc diameter, the thickness of the neuroretinal rim
(decreasing in the order inferior (I) > superior (S) > nasal (N) > temporal (T) (ISNT rule)),
peripapillary atrophy, notching and cup-to-disc ratio (CDR), with this last indicator being
the most used measurement by specialists [3–5].
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Figure 1. Representation of capturing an image of the interior surface of the eye (retina).

Usually, glaucoma is diagnosed on the basis of the patient’s medical history, measures
of intraocular pressure (IOP), a visual field loss test and manual evaluation of the optic
disc (OD) using ophthalmoscopy to examine the shape and colour of the optic nerve. The
examination of the OD is important since glaucoma begins to form a cavity and develops an
abnormal depression/excavation at the front of the nerve head, called the optic cup, which,
in advanced stages, facilitates the progression of glaucoma, blocking the OD (Figure 2) [6–8].

 
Figure 2. Retinal image from the normal and glaucomatous eye. Green line: OD boundary; red line:

cup boundary.

After gathering the retinal images, they must be inspected and analysed to look for
indicators of ophthalmologic pathologies. These diagnostic systems offer the potential to
be used on a large scale for the early diagnosis and treatment of glaucoma. However, they
require subjective evaluation by qualified experts, and it is time-consuming and costly to
inspect each retinal image manually. In this regard, deep learning (DL) algorithms help
in the automatic screening of glaucoma and assist ophthalmologists in achieving higher
accuracy in glaucoma screening, especially in repetitive tasks [3,6,9].

The main objective is to develop a system that allows the screening of low-resolution
retinal images captured by a low-cost lens attached to a smartphone. To accomplish
this, secondary objectives must be achieved. In this study, state-of-the-art DL methods
were explored, tested and applied to high-resolution public databases and then applied
to a private database containing low-quality images captured through a low-cost lens
attached to a mobile device. These classification methods provide activation maps that
allow the model’s decision to be analysed and discussed. Segmentation methods were
applied as well, using the CDR to classify images after OD and cup segmentation. These
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segmentation methods can help an ophthalmologist in a subjective and difficult task,
enabling more consistent results that are similar to a clinician’s segmentations. For this
purpose, state-of-the-art works on classification and segmentation methods for glaucoma
screening were reviewed.

2. Literature Review

DL techniques have yielded good results in research on glaucoma screening due to the
development of technologies to detect, diagnose and treat glaucoma. The main approach
is to conduct screening through computer-aided diagnosis (CAD) systems that use DL to
learn and train models through previously labelled available data, identifying patterns
and making decisions with minimal human intervention [10]. This section surveys key
works with methods using automatic classification models and classification methods using
segmentation models.

2.1. Classification Methods

The use of classification methods for screening glaucoma lesions in retinal images is
another well-established approach. An overview of the best methods recently published is
provided in the following.

The study of Gómez-Valverde [2] used the VGG19, GoogLeNet (also known as In-
ception V1), ResNet50 and DENet models. With these models, Valverde compared the
performance between transfer learning and training from scratch. To confirm the perfor-
mance of VGG19, 10-fold cross-validation (CV) was applied. Valverde used three different
databases: RIM-ONE and DRISHTI-GS (public) and Esperanza (private dataset). In the
RIM-ONE database, the images classified as suspect were considered to be glaucomatous
for the study. The best result was obtained with the VGG19 model using transfer learning.

Diaz-Pinto [11] applied five different ImageNet pre-trained models (VGG16, VGG19,
InceptionV3, ResNet50 and Xception) for glaucoma classification and used a 10-fold CV
strategy to validate the results. Five databases were used for this work: ACRIMA, HRF,
DRISHTI-GS, RIM-ONE and Sjchoi86-HRF. The images were cropped around the OD using
a bounding box of 1.5 times the OD radius. All models passed the AUC threshold of 0.96,
indicating excellent results.

Serener et al. [12] selected the ResNet50 and GoogLeNet models and trained them
with two public databases: a database from Kim’s Eye Hospital (total of 1542 images,
including 786 photos from normal patients and 756 from glaucoma patients) and RIM-ONE
r3. The database from Kim’s Eye Hospital was used to train the two models, and for the
performance evaluation, the models were tested with the RIM-ONE r3 database. With
GoogLeNet, Serener obtained better results for early-stage glaucoma than for the advanced
glaucoma stage.

The work performed by Norouzifard [13] used two DL models, namely, VGG19 and
Inception ResNet V2. These two models were pre-trained and then fine-tuned. For this
work, two databases were used: one from the University of California Los Angeles (UCLA)
and another publicly available one called high-resolution fundus (HRF). From the UCLA
database, they randomly selected 70% of the images for training, 25% for validation and
the remaining 5% for testing. To solidify the work, the models were then re-tested with
the HRF database. The Inception ResNet V2 model with the UCLA database obtained a
specificity and sensitivity above 0.9, even when re-tested with the HRF database.

The study by Sreng [5] was performed in two stages: first, DeepLabv3+ detected and
extracted the OD from the entire image, and then three types of convolutional neural net-
works (CNNs) were used to identify images in the segmented OD region as glaucomatous
or normal. After the image was cropped around the OD, 11 ImageNet pre-trained models
23re used: AlexNet, GoogleNet, InceptionV3, Xception, ResNet-50, SqueezeNet, ShuffleNet,
MobileNet, DenseNet, InceptionResNet and NasNet-Large. This method was trained with
five public databases: REFUGE, ACRIMA, ORIGA, RIM-ONE and DRISHTI-GS. The results
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showed that DenseNet with the ACRIMA database had the best performance, followed by
MoblieNet with the REFUGE database.

2.2. Segmentation Methods

Several methods have been published in the literature on segmenting the OD and the
cup disc, mostly using adaptations of U-Net. The following presents an overview of the
best methods recently published.

Al-Bander [14] proposed a method with a DenseNet incorporated with an FCN with
U-shaped architecture. Al-Bander’s approach involved the use of five databases of colour
fundus images: ORIGA, DRIONS-DB, DRISHTI-GS, ONHSD and RIM-ONE. For the pre-
process, only the green channel of the colour images was considered since the other colour
channels contain less useful information. The images were then cropped to isolate the
ROI. For OD segmentation, the model achieved better Dice and intersection-over-union
(IoU) results with the DRISHTI-GS database compared to RIM-ONE, and the same results
were obtained for cup segmentation but with lower values of Dice and IoU compared to
OD segmentation.

In the work of Singh [15], a conditional generative adversarial network (cGAN) model
was proposed to segment the OD. The cGAN is composed of a generator and a discriminator
and can learn statistically invariant features, such as the colour and texture of an input
image, and segment the region of interest. For this method, skip connections were used
for concatenating the feature maps of a convolutional layer with those resulting from the
corresponding deconvolutional layer. To train and evaluate the model, the DRISHTI-GS
and RIM-ONE databases were used, with the size of the images reduced to 256 × 256 and
the value of each pixel normalised between 0 and 1. For OD segmentation, the model for
both databases achieved values above 0.9 for accuracy, Dice and IoU.

Qin [16] proposed neural network constructs utilising the FCN and inception building
blocks in GoogleNet. The FCN is the main body of the deep neural network architecture,
and to this method, they added several convolution kernels for feature extraction after
deconvolution based on the Inception structure in GoogLeNet. Qin’s experiments used two
databases: REFUGE and one from the Second Affiliated Hospital of Zhejiang University
School of Medicine. For this technique, the authors used a fully automatic method using
the Hough circle transform that recognises and cuts the image to obtain an image of the
ROI. In the segmentation of the OD and the cup, the model obtained values above 0.9 for
Dice and the IoU.

In the work by Yu and others [17], a modified U-Net with a pre-trained ResNet-34
model was developed. This work comprised two steps: first, one single-label modified U-
Net model was applied to segment an ROI around the OD, and then after this, the cropped
image was used in a multi-label model whose objective was to segment the OD and cup
simultaneously. In Yu’s study, the RIGA database was used to train and evaluate the CNN,
but then to achieve robust performance, the model trained on RIGA was applied on the
DRISHTI-GS and RIM-ONE r3 databases. All of the database images were pre-processed
with contrast enhancement, followed by resizing to 512x512 dimensions. In this method,
the segmentation of the OD and the cup produced better results with DRISHTI-GS than
RIM-ONE r3.

Cup-to-Disc Ratio

Glaucoma progression is assessed based on the ratio between OD and cup measure-
ments. The cup-to-disc ratio (CDR) is a clinical method that compares the ratio of the cup
to disc, which is currently determined manually, limiting its potential in mass screening.
Manual segmentation is dependent on the experience and expertise of the ophthalmologist,
so it ends up being subjective and differing between observers [18]. The CDR is commonly
used in clinics to classify glaucoma, and specific patterns of change in the region of the
OD and cup are used as evidence of glaucoma or glaucoma progression along with other
clinical tests, such as intraocular pressure and visual field acuity [18,19].
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Accurate segmentation of the OD and cup is essential to a reliable CDR measurement,
and reliance on manual effort restricts the deployment of CDR for mass screening, which
is fundamental in the detection of early glaucoma for effective medical intervention [18].
Machine learning approaches automatically segment the OD and cup regions and then
measure the CDR or extract features that may help to determine whether or not the images
contain glaucoma, as can be seen in Figure 3. A higher CDR indicates a higher risk of
glaucoma [5,20].

 

Figure 3. CDR: (a) VCDR; (b) HCDR; (c) ACDR.

Different parameters can be measured for the CDR to determine the cupping and assess
the eye for the presence of glaucoma, such as the horizontal cup diameter to the horizontal
OD diameter, the vertical cup disc diameter to the vertical OD diameter and the area of the
cup to the area of the OD [19]. If the vertical CDR (VCDR) and horizontal CDR (HCDR) are
more than 0.5, the eye is considered to be at risk of abnormality; otherwise, it is considered
a normal eye [21]. VCDR and HCDR equations are presented in Equations (1) and (2):

VCDR =
Vcup

Vdisc
; (1)

HCDR =
Hcup

Hdisc
. (2)

Alternatively, considering the criteria by Diaz [21], the assessment can be performed
through the area CDR (ACDR) using a threshold of 0.3, as presented in Equation (3):

ACDR =
Acup

Adisc
. (3)

Diaz [21] presented an automatic algorithm that uses several colour spaces and the
stochastic watershed transformation to segment the cup and then obtains handcrafted
features, such as the VCDR, HCDR and ACDR. Diaz’s method was evaluated on 53 images,
obtaining a specificity and sensitivity of 0.81 and 0.87.

After segmentation, Al-Bander [14] calculated the VCDR with varying thresholds and
compared the results with an expert’s glaucoma diagnosis, achieving an AUC of 0.74, very
close to the 0.79 achieved using ground-truth segmentation. After that, the same approach
was used, but with HCDR achieving an AUC of 0.78, close to the 0.77 achieved by the
expert’s annotation and higher than the results obtained with the VCDR.

3. Materials and Methods

The model pipeline in this work is illustrated in Figure 4. In the first task (Task 1: Data
preparation), data pre-processing and organisation processes are described. In the second
task (Task 2: Glaucoma screening), different glaucoma classification methods are explained
based on classification models alongside the respective activation maps and based on OD
and cup segmentation models for CDR calculation. The models and hyper-parameters
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used for each approach are described in the model setups. In the third and last task (Task 3:
Evaluation), the models are evaluated based on each approach’s glaucoma classification.

 

Figure 4. The model pipeline for glaucoma screening.

3.1. Data Preparation

Three public databases were used: RIM-ONE r3, DRISHTI-GS and REFUGE. The RIM-
ONE r3 database has a balanced proportion between normal and glaucomatous samples,
with 85 healthy images and 74 glaucomatous images with a resolution of 2144 × 1424 pixels.
The images in this database vary significantly the quality of the illumination and contrast:
some are low-light images, making it difficult to identify the OD and cup, and others have
good illumination and contrast, helping to identify the retinal components. DRISHTI-
GS has a larger representation of glaucoma samples (70 images) than healthy samples
(31 images), and the images have a resolution of 2896 × 1944 pixels. Compared to RIM-
ONE r3, DRISHTI-GS images have more homogeneous illumination and contrast, which
helps to identify and segment the OD and the cup. The REFUGE database is composed of
400 images with a resolution of 2124 × 2056 pixels, but we only had access to the validation
set, which has a lower representation of glaucoma samples compared to healthy samples
(40 glaucomatous images and 360 normal images).

For each dataset, retina images were divided into a training set (70%), validation set
(15%) and test set (15%). The models were trained with each database separately for the
segmentation and classification approach. The respective OD and cup masks are available
in all of these databases. In the RIM-ONE r3 database, the images classified as suspect were
considered glaucomatous, as was also the case in the work by Gómez-Valverde [2]. Since
we had little data, the three databases were merged into a larger database (called K-Fold
CVDB, standing for K-Fold Cross-Validation DataBase) to perform K-fold cross-validation
(CV). The K-Fold CVDB was divided into 5 similar folds for the cross-validation, and one
set was left out to test and validate each model and verify the robustness after the training
as the final step. The data organisation process is explained in Figure 5.

All images used to train and test the different models were normalised and centralised
in the OD and then cropped to focus the CNNs on the ROI. The cropped images have
512 × 512 resolution and did not suffer from changes in illumination or contrast. Aug-
mentation processes were applied to the databases to avoid overfitting the model, such as
rotations (range = 0.2), zooms (range = 0.05), shifts (width and heigh shift range = 0.05) and
horizontal flips.
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Figure 5. Data organisation for training the models.

3.2. Glaucoma Screening

For both approaches, different models were trained with each database separately,
and then CV was performed (more precisely, leave-one-out K-fold CV). For this step, the
data were partitioned into K equal-sized subsets. K-1 subsets were used to train the CNN,
and the remaining set was used for testing. Additionally, the leave-one-out dataset was
used for testing the model at the end, giving a more thorough evaluation of each model’s
performance since these data were not used to train or test any model. All models were
fine-tuned either for image classification or for OD and cup segmentation. Fine-tuning is
a procedure based on transfer learning to optimise and minimise the error through the
weight initialisation of the convolutional layers using pre-trained CNN weights with the
same architecture. The exception is the layer whose number of nodes depends on the
number of classes. After the weight initialisation, in the last fully connected layer, the
network can be fine-tuned, starting with tuning only the last layer and then tuning the
remaining layers, incrementally including more layers in the update process until achieving
the desired performance. The early layers learn low-level features, and the late layers learn
high-level features specific to the problem in the study [22,23]. For all of the classification
and segmentation models used to detect glaucoma, ImageNet pre-trained weights were
used. All models selected were based on the best results reported in the reviewed literature.

3.2.1. Classification Methods

Classification used the same principles as segmentation, using pre-trained models
with good results inspired by state-of-the-art works. These models were trained with
transfer learning using ImageNet weights. First, the four additional layers were pre-trained,
freezing the remaining layers before the new ones, and after that, the models were fine-
tuned, unfreezing the first layers and training all layers present in the models. We selected
the Xcpetion (C1), ResNet 152 V2 (C2) and Inception ResNet V2 (C3) models.

Xception is an extension of the Inception architecture and stands for Extreme Inception.
It replaces the standard Inception modules with depthwise separable convolutions called
“separable convolution” in frameworks such as TensorFlow and Keras. In the Inception
module, filters of different sizes and dimensions are concatenated into a single new filter,
acting as a “multi-level feature extractor” by computing 1 × 1, 3 × 3 and 5 × 5 convolu-
tions within the same module of the network. Based on these modules, a more complex
and deeper architecture compared to all previous CNN architectures was developed [24].
Depthwise convolution is a spatial convolution performed independently over each chan-
nel, followed by a pointwise convolution, i.e., a 1 × 1 convolution. This architecture’s
premise is that cross-channel correlations and spatial correlations are sufficiently decoupled
to be mapped separately [25].

ResNet is a deep residual network developed with the idea that identifying shortcut
connections allows for increasing the depth of convolutional networks while avoiding the
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gradient degradation problem. These shortcut connections help gradients flow easily in the
backpropagation step, which leads to increased accuracy during the training phase. ResNet
is composed of 4 blocks with a lot of convolutional blocks inside. Each convolutional
operation has the same format in all versions of ResNet (50, 101 and 152), with the only
difference being in the number of subsequent convolutional blocks. This deep residual
network exploits residual blocks to overcome gradient gradation [23,26].

Inspired by the performance of ResNet, hybrids of Inception and ResNet models were
developed. They are two sub-versions of Inception ResNet, i.e., V1 and V2. Inception
ResNet V1 has a computational cost similar to that of Inception V3 and Inception ResNet
V2 and is similar to Inception v4, with the only difference being in the hyper-parameter
settings. They introduce residual connections that use the output of the inception module’s
convolution operation as the input of the next module. Therefore, the input and output
after convolution must have the same dimensions. To increase depth after convolution, 1x1
convolutions were used after the original convolutions [24].

To train all of these models, images and their respective labels (normal or glaucoma)
were used as inputs, and the probability of being one of the classes, normal or glaucoma,
was the output.

3.2.2. Segmentation Methods

The availability of a huge dataset such as ImageNet with a high capacity to train
the model led to a large variety of pre-trained models for the feature encoder in a CNN.
The encoder in a U-Net model is a stack of convolution layers combined with activation
functions and pooling layers that can adopt the architecture that is frequently employed
for feature extraction with pre-trained models. For the segmentation approach in glaucoma
screening, the pre-trained models selected were Inception ResNet V2 and Inception V3 (for
simplification, called S1 and S2, respectively). These pre-trained models are used as feature
encoders in modified U-Net and use the retina image as input and the respective masks
of the OD and cup for training. As output prediction is given, a mask of the OD or cup
segmentation is also then used to measure the indicators of glaucoma presence, such as
CDR. The predicted mask applies morphological processes to remove holes and anomalies
of the prediction if they are present.

3.2.3. Model Setups

Segmentation models: The models trained for segmentation were pre-trained for
20 epochs and fine-tuned for 100 epochs with a batch size of 2 for the validation and
training sets. The encoder weights were frozen for the pre-training step, and for fine-tuning,
the encoder layers were unfrozen; the model was trained again to update all weights.
The learning rate started at 10−4 with Adam optimiser, and binary cross-entropy was
used as the loss function. To prevent the learning rate from stalling on the plateau, the
callback reduces the learning rate on the plateau by a factor of 0.90 and only saves the best
training weights.

Classification models: The classification model was pre-trained for 20 epochs and
fine-tuned for 200 epochs with a batch size of 2 for validation and training sets. The learning
rate started at 10−4 with Adam optimiser, and binary cross-entropy was used as the loss
function; to prevent the learning rate from stalling on the plateau, the callback reduces
the learning rate on the plateau by a factor of 0.90. All of these models are available in
TensorFlow Core and were loaded. The classification layer (last layer/dense layer) was
removed, and after that, 4 new layers were added: a global average pooling 2d layer,
a dropout layer (dropout = 0.5), a batch normalisation layer and, finally, a dense layer
with 2 outputs with SoftMax as the activation function (2 outputs for 2 classes, glaucoma
and normal).
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3.3. Model Evaluation

The metrics for the evaluation of the segmentation model were the intersection over
union (IoU) and the Dice coefficient.

The IoU metric measures the accuracy of an object detector applied to a particular
database. It measures the common area between the predicted (P) and expected (E) regions,
divided by the total area of the two regions, as presented in Equation (4):

IoU =
Area(P ∩ E)
Area(P ∪ E)

(4)

The Dice coefficient is a statistic used to gauge the similarity between two samples (in
this case, between predicted and reference (Ref) segmentation). TP is true positives, FP is
false positives and FN is false negatives, as can be seen in Equation (5):

Dice =
2TP

2TP + FP + FN
(5)

The CDR equations are described in the previous section in Equations (1)–(3). For the
evaluation of the classification models, other metrics were used. The accuracy (Acc) (6) is
the fraction of correct predictions by the model.

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

where TP is true positives, TN is true negatives, FP is false positives and FN is false
negatives. Sensitivity (Sen) (7) measures the proportion of positives that are correctly
identified, and specificity (Sep) (8) measures the proportion of negatives that are correctly
identified.

Sen =
TP

TP + FN
(7)

Sep =
TN

TN + FP
(8)

The F1-score (F1) (9) indicates the balance between precision and recall, where preci-
sion is the number of TP divided by the number of all positives, and recall is the number of
TP divided by the number of all samples that should have been identified as positive. The
F1-score is the harmonic mean of the two.

F1 Score =
2TP

2TP + FP + FN
(9)

4. Results and Discussion

The results are organised in the same way that the methodology is presented in the
workflow. For both methods, glaucoma screening was performed by training the models
with each database separately and with merged data with the K-Fold CVDB. The results are
discussed and compared with the results published by the scientific community. In the end,
both methods are compared to assess their capability for glaucoma screening and determine
how much they can contribute to supporting this important and challenging task.

4.1. Glaucoma Screening Based on Classification Methods

First, for the classification approach, each database was used to train each model
separately to determine which model has the best performance and which database has
the best quality to produce better model results. The challenge of this methodology is that
separately training the models on each database decreases the amount of data that the
models learn since there are fewer data to train and validate the training. The results are
presented in Table 1.
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Table 1. Results for the models trained separately on each database.

Database Model Acc Sen Spe AUC F1

RIM-ONE
C1 0.83 0.79 0.90 0.84 0.85
C2 0.63 0.64 0.60 0.75 0.67
C3 0.67 0.79 0.50 0.70 0.73

DRISHTI-GS
C1 0.67 0.67 0.67 0.80 0.71
C2 0.60 0.89 0.17 0.72 0.73
C3 0.73 0.78 0.67 0.79 0.79

REFUGE
C1 0.97 0.83 0.98 0.98 0.83
C2 0.85 0.67 0.87 0.74 0.47
C3 0.95 0.83 0.96 0.99 0.77

Overall, the database that showed better results was REFUGE for the C1 and C3
models, with an AUC close to one and with high sensitivity and specificity close to the
results presented in Table 2. The C1 and C3 models outperformed those reported by
Sreng [5], who also used the REFUGE database for pre-trained networks with a transfer
learning model ensemble.

Table 2. Results of state-of-the-art glaucoma classification methods.

Author Model Database Sen Spe AUC

Gómez-Valverde [2]

VGG19 RIM-ONE,
DRISHTI-GS and

Esperanza

0.84 0.89 0.92
GoogLeNet 0.89 0.83 0.93
ResNet50 0.84 0.89 0.92

DENet 0.81 0.88 0.91

Diaz-Pinto [11]

VGG16 ACRIMA, HRF,
DRISHTI-GS,

RIM-ONE and
Sjchoi86-HRF

0.91 0.88 0.96
VGG19 0.92 0.88 0.96

Inception V3 0.92 0.88 0.97
ResNet50 0.90 0.89 0.96
Xception 0.93 0.86 0.96

Norouzifard [13] Inception ResNet V2 UCLA and HRF 0.91 0.93 -

Sreng [5]
Pre-train CNNs

as feature extractors
models ensemble

RIM-ONE - - 0.99
DRISTHI-GS - - 0.92

REFUGE - - 0.94
ORIGA - - 0.85

ACRIMA - - 0.99

The RIM-ONE and DRISHTI-GS databases showed lower AUC values than REFUGE
and the results reported by Sreng [5], who also evaluated each database separately. Better
results with a significant difference suggest that the quality of the samples in the REFUGE
database is superior to that of the others, with homogeneity in the contrast, illumination
and resolution of all samples, in contrast to RIM-ONE and DRISHTI-GS, whose images
have heterogeneous quality with a lot of variations in the same factors.

As mentioned in the methodology, the K-fold CV technique was used to train the
models with K-1 folds, and then the other test set was used for testing. The K-Fold CVDB
was divided into five folds, with an extra set left out to test at the end (leave-one-out
method) in all iterations of each model. Of these five folds, four were used to train the
model, and the other was used to evaluate it, changing the test fold and training folds in
each iteration. The results of the classification in each fold are presented in Table 3.
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Table 3. Results for the models with K-fold CV for each test set of each fold with the mean results of
the models for the 5 folds and the standard deviation.

Model Acc Sen Spe AUC F1-Score

C1 0.91 (±0.04) 0.86 (±0.10) 0.93 (±0.04) 0.96 (±0.02) 0.84 (±0.07)

C2 0.90 (±0.02) 0.81 (±0.08) 0.93 (±0.02) 0.94 (±0.02) 0.81 (±0.05)

C3 0.88 (±0.03) 0.77 (±0.10) 0.92 (±0.04) 0.94 (±0.02) 0.78 (±0.05)

Compared to the results presented above, when the models were trained with each
database separately, the K-fold CV technique showed an immediate enhancement and
direct correlation between the amount of data for training and the quality of classification.
All of the models showed similar results, with slightly better performance for the C1 model.
These models outperformed most of the state-of-the-art works mentioned previously, with
some exceptions (Diaz-Pinto [11] and some results of Sreng [5]) owing to fewer data for
training. To evaluate the robustness of the models, they were tested with the test set omitted
from training, and the results are shown in Table 4.

Table 4. Results for the models in K-fold CV for the leave-one-out test set with the respective mean
and standard deviation for the 5 folds of each model.

Model Acc Sen Spe AUC F1-Score

C1 0.84 (±0.01) 0.78 (±0.03) 0.87 (±0.01) 0.91 (±0.01) 0.75 (±0.02)

C2 0.82 (±0.03) 0.69 (±0.10) 0.87 (±0.02) 0.87 (±0.03) 0.69 (±0.07)

C3 0.80 (±0.02) 0.65 (±0.10) 0.86 (±0.04) 0.86 (±0.04) 0.66 (±0.05)

The results of the classification of the leave-one-out set decreased compared to those
discussed above. Nevertheless, most of the models yielded better results than most of
the state-of-the-art works, with the same exceptions as those noted previously. The most
significant decrease in the results was in the sensitivity, showing a lack of representation
and a high rate of false positives for glaucoma samples. The evaluation with the leave-
one-out dataset demonstrated that the best model of the three used is C1, as mentioned
previously, with the smallest decrease in every metric among all of the models.

The classification models can be a “black-box”: extremely hard to explain and hard
for non-experts to understand. Explainable artificial intelligence (AI) approaches are
methods and techniques that can explain to humans why the DL models arrived at a
specific decision. Explainable AI can create transparency, interpretability and explainability
as a foundation for the output of the neural networks. For a visual interpretation of the
output to supplement the results of the classification models, activation maps (Figure 6)
were created that show the regions of the input images that cause the CNNs to classify the
samples as glaucomatous or normal, thus helping clinicians to understand the reason for
the output classification.

Gradient-weighted glass activation mapping (Grad-CAM) uses the gradients of any
target concept flowing into the final convolutional layer to produce a coarse localization
map highlighting the important regions in the image for predicting the concept. These
heatmaps can reveal some important indicators or factors for the classification. The used
models focussed more on the centre of the OD, where the cupping zone is responsible for
and highly correlated with glaucoma cases. The larger the cup area, the more suspicious,
and the more probable that the patient has a case of glaucoma. This type of indicator
can help ophthalmologists to make a better and more reliable decision, with one of these
indicators being the CDR. To calculate this ratio, first, the OD and cup must be segmented,
and the trustworthiness of the screening depends on how well they are segmented. The
segmentation procedure is time-consuming and inconsistent when performed manually, so
to facilitate a more consistent segmentation, we present models for segmentation with a
consequent glaucoma classification based on CDR calculation.
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Figure 6. Activation maps of the classification models of the K-fold CV (left, original; right, heatmap).
The importance is indicated by the emphasized shades in the following order, from the most important
to the least important: red, orange, yellow, green and blue.

4.2. Glaucoma Screening Based on Segmentation Methods

The OD and cup were segmented by two different CNNs, and then the different CDRs
were calculated; glaucoma was then classified based on the CDR model. This requires
the reference (Ref) masks of each database with annotations of the segmentation made by
clinicians, and these were available in the databases selected for this work. Finally, the
segmentation and glaucoma screening were compared with the reference masks using
the same criteria of the glaucoma classification based on CDR values. To perform the
segmentation, two different models, S1 and S2, were used. First, the OD segmentation
results are presented, followed by the cup segmentation results, and finally, the glaucoma
classification based on the CDR calculation with segmentation masks is provided.

4.2.1. OD Segmentation

The procedure in the segmentation methods is the same as the one presented for the
classification approach, with the segmentation in each database performed separately and
with the K-Fold CVDB. For the K-fold CV, the means of IoU and Dice of the five folds in
each model were obtained. The final mask is the intersection/agreement of at least four
masks of the five iterations of each model to compute the final CDRs. The results for OD
segmentation are presented in Table 5.

At first view, the results in every dataset segmentation are very similar to every
compared state-of-the-art method, with a slight but non-significant difference that does
not change the outcome of the CDR calculation. This can be explained by the fact that
the segmentation of OD is an easy task because of the visible contrast and outline of the
OD and the retina, which facilitate identification and segmentation by the neural network.
The K-fold CV showed decreases in the IoU and Dice in both models compared to the
other results since they represent the mean of five iterations in each model. This can affect
the final results, with divergence in the agreement of OD segmentation. However, this
difference was not significant enough to jeopardise the CDR calculation, at least in most of
the samples. The two models had similar results, with a slightly better performance for S1.
After OD segmentation, the procedure was repeated but with different CNN models, this
time training the model to segment the cup.
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Table 5. Results for OD segmentation for each model and the K-Fold CVDB. For comparison,
the results from the literature review are presented as well. S1 is Inception ResNet V2, and S2 is
Inception V3.

Database Model IoU Dice

RIM-ONE

S1 0.91 (±0.08) 0.95 (±0.05)
S2 0.89 (±0.05) 0.94 (±0.03)

Al-Bander [14] 0.83 0.90
Singh [15] 0.93 0.98

Yu [17] 0.93 0.96

DRISHTI-GS

S1 0.94 (±0.02) 0.97 (±0.01)
S2 0.93 (±0.02) 0.96 (±0.01)

Al-Bander [14] 0.90 0.95
Singh [15] 0.96 0.97

Yu [17] 0.95 0.97

REFUGE
S1 0.93 (±0.03) 0.96 (±0.02)
S2 0.92 (±0.03) 0.96 (±0.02)

Qin [16] 0.92 0.97

K-Fold CVDB
S1 0.83 (±0.01) 0.91 (±0.01)
S2 0.81 (±0.01) 0.89 (±0.004)

4.2.2. Cup Segmentation

For cup segmentation, the same models were used, but this time, the network was
trained to localise and segment the excavation region inside the OD. Contrary to the
previous task, cup segmentation is much harder since there is not a high contrast between
the exaction zone and the OD (at least not as high as the contrast between the OD and the
retina). The results from the two models are presented in Table 6 with the same structure as
the one presented for OD segmentation.

Table 6. Results for cup segmentation for each model and the K-Fold CVDB. For comparison, the
results from the literature review are represented as well.

Database Model IoU Dice

RIM-ONE

S1 0.70 (±0.13) 0.82 (±0.09)
S2 0.68 (±0.15) 0.80 (±0.12)

Al-Bander [14] 0.56 0.69
Yu [17] 0.74 0.84

DRISHTI-GS

S1 0.76 (±0.22) 0.84 (±0.19)
S2 0.74 (±0.20) 0.83 (±0.19)

Al-Bander [14] 0.70 0.82
Yu [17] 0.80 0.89

REFUGE
S1 0.81 (±0.07) 0.90 (±0.04)
S2 0.80 (±0.06) 0.89 (±0.04)

Qin [16] 0.90 0.92

K-Fold CVDB
S1 0.64 (±0.03) 0.77 (±0.02)
S2 0.60 (±0.02) 0.74 (±0.02)

Overall, the results achieved the same baseline as the state-of-the-art methods. When
directly compared on the RIM-ONE database, the S1 model had better results than S2
and had better Dice than Al-Bander [14], and IoU and Dice were only worse compared
to Yu’s [17] work. With DRISHTI-GS, the two models had better IoU and Dice than Al-
Bander [14] and a slight difference in IoU and Dice compared to the remaining works, with
an overall better performance observed for the S1 model. In the REFUGE database, the
results from our models and Qin’s [16] work are very similar, with a minor difference in
the Dice, and as observed in the segmentation of the other databases, the S1 model had
better results as well.
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In the K-fold CV, both models had a major decrease in performance compared to the
other works and the performance of the same models using each database separately. As
in the previous verification, the S1 model continued to produce better results. Compared
to OD segmentation, the IoU and Dice were much lower, which is a consequence of these
coefficients being too sensitive to small errors when the segmented object is small and not
sensitive enough to large errors when the segmented object is larger.

The results of OD and cup segmentation were used to calculate the CDRs to use as
an indicator of glaucoma presence. Reference segmentation by clinicians was used as the
ground truth but is not an absolute truth since the segmentation process can be subjective,
and the results can differ between clinicians. Thus, the segmentation predicted by the
CNNs can sometimes cause the misclassification of the images but can be considered
another opinion, especially in cup segmentation since the perimeter of the cup is not as
delimitated and visible as the OD. After the segmentation of the OD and cup, the CDRs
were calculated to obtain the glaucoma classification.

4.2.3. Glaucoma Screening Based on Estimated CDR

The segmentation masks of the OD and cup of both models were computed and used
to calculate the ratio between them. In this work, all CDRs were calculated, including
the vertical and horizontal CDRs and the ratio between the areas of the OD and cup. For
the VCDR and HCDR, the criteria used were CDR < 0.5 for normal and CDR ≥ 0.5 for
glaucomatous, and the ACDR was normal if <0.3 and glaucomatous if ≥0.3, as described in
Diaz’s work [21]. The same criteria were used for the Ref masks to allow a direct comparison
between the results of our models and the segmentation performed by ophthalmologists to
gauge the reliability of segmentation by the S1 and S2 models. The results are expressed in
Table 7.

Table 7. Results of glaucoma classification with CDR calculations for S1, S2 and Ref masks.

S1 S2 Ref

Sen Spe F1 AUC Sen Spe F1 AUC Sen Spe F1 AUC

R
IM

-
O

N
E

VCDR 0.71 0.80 0.77 0.90 0.79 0.90 0.85 0.92 0.75 1.00 0.86 0.84
HCDR 0.71 0.70 0.74 0.78 0.64 0.90 0.75 0.86 0.75 0.86 0.80 0.80
ACDR 0.71 0.90 0.80 0.90 0.64 1.00 0.78 0.92 0.50 1.00 0.67 0.82

D
R

IS
H

T
I-

G
S

VCDR 1.00 0.17 0.78 1.00 1.00 0.50 0.86 1.00 1.00 0.67 0.90 0.94
HCDR 1.00 0.20 0.82 0.96 1.00 0.33 0.82 0.93 1.00 0.67 0.90 0.94
ACDR 1.00 0.50 0.86 1.00 1.00 0.50 0.86 0.98 1.00 0.67 0.90 0.94

R
E

F
U

G
E VCDR 0.80 0.67 0.30 0.87 0.80 0.73 0.33 0.87 1.00 0.72 0.33 0.87

HCDR 0.80 0.36 0.18 0.78 0.80 0.44 0.20 0.78 1.00 0.43 0.20 0.80
ACDR 0.60 0.82 0.33 0.84 0.80 0.85 0.47 0.84 1.00 0.79 0.40 0.86

K
-F

o
ld

C
V

D
B VCDR 0.90 0.68 0.68 0.87 0.90 0.70 0.69 0.87 1.00 0.60 0.91 0.88

HCDR 0.83 0.30 0.49 0.78 0.80 0.46 0.53 0.73 1.00 0.40 0.87 0.83
ACDR 0.80 0.78 0.70 0.84 0.70 0.84 0.68 0.83 0.90 0.60 0.86 0.86

The results for both models were similar to the results using the Ref masks, which
indicates that they produced similar segmentation results or at least provided similar CDRs.
Overall, the results from CDRs based on the Ref masks were better than the results from
the two models, but the difference between the models’ classification and the classification
in the Ref masks, in a lot of cases, was not significant.

With RIM-ONE, the Ref had a better F1-score for the VCDR and HCDR, but the
difference in the F1-scores between the two models was very small. S2 achieved better
sensitivity and specificity, but this difference was also small, which may indicate that the
masks were very close to each other or had similar forms that led to the computation
of similar CDR values. DRISHTI-GS and the K-Fold CVDB were the two datasets with
the worst results for both models in comparison with the Ref results, showing a greater
difference, but the AUC indicated that the difference was not that large. The results from
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REFUGE were better for the S2 model compared to S1 and Ref for sensitivity, specificity and
F1-score, but in all models and the Ref, the values were very low, which may suggest that,
in this case, the CDRs are not a sufficient indicator to produce a classification of glaucoma
or normal; thus, for a better decision, complementary information is needed to support the
final call. All of the ROC curves from the different databases for all CDRs of the models
and Ref masks are presented in Figure 7.

Figure 7. ROC curves for the glaucoma classification through CDR calculations for each database
separately with the S1 and S2 models and the respective CDR calculations with the Ref masks.

Of all CDRs, the VCDR and ACDR had the best results. The HCDR was the worst
result in the two models and the Ref, and the model with the overall best results was
S2. This is also shown in the ROC curves, with the models and the Ref having very
similar results in all AUCs for the glaucoma classification based on the different CDRs.
The difference between the AUCs of the models and the Ref was not significant and was
generally very small, with the Ref showing slightly better performance than the S2 model.
This can reinforce the notion that the masks originating from the S1 and S2 models are
very close to the Ref masks or compute similar CDRs that lead to a similar glaucoma
classification based on CDRs. In the work by Diaz [21], the model obtained specificity
of 0.81 and sensitivity of 0.87, and Al-Bander [14] achieved an AUC of 0.74 using the
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VCDR and 0.78 using the HCDR. The majority of our results surpass the results of the
state-of-the-art glaucoma classification methods based on CDRs.

For the K-fold CV, the results of the ROC curves for both models were very similar to
those of the Ref and had close AUC values, except for the HCDR. As mentioned previously,
the HCDR was the CDR that differed the most, as can be seen in Figure 8.

 

Figure 8. ROC curves for the glaucoma classification through CDR calculation for K-Fold CVDB with
the S1 and S2 models and with the respective CDR calculations with the Ref masks.

For visual comparison, in the following images, the masks and outlines of both models
are drawn in red, and those of the Ref masks are drawn in green. The intersection between
the masks predicted by the models and the Ref masks is indicated by the combination
of green and red (true positive). The green area represents a false negative since there is
no intersection between the masks, and the red area represents a false positive since the
model’s prediction does not correspond to the same result as the Ref mask.

In Figure 9, the CDRs values for higher Dice cases are extremely close to the Ref CDR
values. In the K-fold, the resulting masks are the intersection of at least four agreements
in the model of the different folds. The predicted masks of the OD and cup are very close
to the Ref masks, reflecting high IoU and Dice values. In the lower Dice cases, the CDRs
significantly differ compared to Ref CDRs, but despite this, there is complete agreement in
the final decision for the classification based on CDRs since all apply the same threshold
values, although they differ more than the higher Dice cases.

The two models used achieved state-of-the-art results for the segmentation, and the
outcome was similar to the glaucoma classification based on the CDR with the Ref masks,
indicating that these types of models can mitigate these labour-intensive and subjective
tasks, that is, the segmentation of the OD and cup, providing a more consistent final result.
To complement the CDR indicator, additional examination must be performed to make the
final diagnosis of the patient using, for example, IOP values, anamnesis data and medical
records. Another problem is the thin margin in the threshold CDRs, potentially resulting
in an arbitrary classification; to resolve this obstacle, more diagnosis classes can be added
based on CDRs, such as a suspicious case of glaucoma in the samples for which the CDR
value barely passes or reaches the threshold.
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Figure 9. Higher Dice cases and lower Dice cases for each model for OD and cup segmentation with
the final outlines of the OD and cup for the K-Fold CVDB. Green represents the masks and outlines
of the Ref, and red represents the masks and outlines of the predictions from the models. The lower
right corner shows the mean IoU/Dice for OD and cup segmentation for every fold in each model
with the respective standard deviation; the “Outlines” columns at the top are the Ref values of the
CDRs (VCDR/HCDR/ACDR), and the bottom of the images show the results from CDRs of the
models in the same order as that described for the Ref.
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4.3. Classification Methods on a Private Dataset

For the glaucoma screening based on DL methods, only classification models were
applied on the private dataset, since this did not have ground-truth masks for the appli-
cation of segmentation techniques. For the classification, the same K-fold CV approach
was applied to a private dataset of D-EYE (Portable Retinal Imaging System) images with
lower resolution. The goal was to see if applying the classification methods to images
acquired by mobile devices could achieve similar results to those obtained using high-
resolution images captured by clinical equipment. This would impart some portability to
the glaucoma screening process, expanding it to more people and preventing glaucoma
cases. This dataset was approved by the Ethical Committee of the Universidade Aberta of
Lisbon and by the Health Ministerium of Brazil following the dispatch of the information
DW/2018 of 02-21-2019 provided by the Brazilian Research Ethics Committee. This dataset
consists of D-EYE images collected between October 2018 and March 2020 from patients
aged above 40, either treated or untreated for glaucoma; subjects accepted the research
protocols and allowed the use of data for studies on applications of automatised methods
of glaucoma screening.

The images were obtained using a lens of D-EYE coupled to the camera of an iPhone
6S, which allows photographing the patient’s optical papilla through 75 and 90 diopters
and recording a short video that is stored in .mp4 format and collected in an environment
with low light. From the videos, images that had 1080 × 1920 pixels of resolution and
underwent the same pre-processing treatment as described for the glaucoma screening
with the public databases were selected, and the OD was cropped and centred, obtaining
dimensions of 512 × 512. From the database, a total of 347 images were selected, of which
293 were classified as normal, and 54 were classified as glaucomatous.

For the classification, since it is a small database, K-fold CV was applied with a leave-
one-out set to classification neural networks. Each database was divided into five folds, in
which each fold had 49 normal samples and 9 glaucomatous samples. The leave-one-out
set had 48 normal samples and 9 glaucomatous ones and was used to validate the models
after training. To train the CNNs, the same pre-trained classification models were used,
namely, C1, C2 and C3. The results are presented in Table 8.

Table 8. Results for the models with K-fold CV for each test set of each fold with the mean of results
of the models for the 5 folds and the standard deviation.

Model Acc Sen Spe AUC F1-Score

C1 0.87 (±0.03) 0.36 (±0.11) 0.96 (±0.03) 0.82 (±0.05) 0.45 (±0.10)

C2 0.86 (±0.02) 0.16 (±0.11) 0.99 (±0.02) 0.84 (±0.06) 0.24 (±0.16)

C3 0.87 (±0.05) 0.47 (±0.15) 0.94 (±0.07) 0.87 (±0.05) 0.52 (±0.14)

The models obtained high AUC values and specificity but low sensitivity and F1-score
results, showing that they had difficulty classifying the glaucomatous samples since the
database lacks sufficient representation of glaucoma samples, and most of these images
were classified based on the clinical record, family history and IOP values. The glaucoma
images do not show consistent patterns that indicate glaucoma incidence directly in the
image. To validate the model’s performance, each one was tested with the leave-one-out
dataset, and the results are presented in Table 9.

In Figure 10, image Figure 10a illustrates a case of glaucoma with cataract opacity that
worsens the overall quality of the image. Nevertheless, the C3 model predicted the sample
correctly. The activation map points to a peripheric region with the presence of vases, but
the spot that indicates the incidence of glaucoma is located in the centre of the excavation
zone. Other good examples of a poor focus on the region of interest are images Figure 10b,c,
where the output prediction was correctly classified, but the activation map points to an
excentric zone instead of focussing on the cup area.
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Table 9. Results for the models in K-fold CV for the leave-one-out test set with the respective mean
and standard deviation for the 5 folds of each model for the private dataset.

Model Acc Sen Spe AUC F1-Score

C1 0.85 (±0.02) 0.36 (±0.16) 0.95 (±0.01) 0.79 (±0.04) 0.42 (±0.14)

C2 0.85 (±0.04) 0.29 (±0.05) 0.95 (±0.05) 0.77 (±0.22) 0.38 (±0.07)

C3 0.85 (±0.04) 0.49 (±0.22) 0.92 (±0.08) 0.80 (±0.07) 0.49 (±0.10)

 
Figure 10. Activation maps for D-EYE images of the CV models. The importance is indicated by
the emphasized shades in the following order, from the most important to the least important: red,
orange, yellow, green, blue. All images report glaucoma cases (a–d).

Figure 10c shows slightly better recognition of the centre zone, but the models focus on
the veins and not on the optic cup. The CNNs provide additional information for diagnosis
by an ophthalmologist but, in most cases, have an excentric focus (on veins) instead of
focussing on the centre area (cupping of the OD).

The CNNs can help clinicians to expand glaucoma screening and accelerate the early
screening of glaucoma. This database lacks visual representation of glaucoma samples
since most of the glaucoma images collected do not have visual signs of glaucoma, and
the diagnoses were made based on other indications, such as IOP, clinical records and
family history, as mentioned previously. To improve the results, a more balanced database
is needed with more glaucoma samples with visual patterns and indicators that evidence
the presence of glaucoma. Another way to obtain better results would be to use other types
of clinical data in neural networks to complement the image data.

5. Conclusions

Glaucoma disease has a high incidence around the world, the main cause of which
is the lack of tools for and accessibility to early screening to prevent the evolution of the
disease. Since it is a disorder that is usually asymptomatic, it is frequently detected in the
late stage; by this time, medical treatment cannot reverse the injuries and vision loss but
can only prevent the spread of glaucoma. Glaucoma screening is carried out in clinical
centres by specialised clinicians with expensive tools. Mass screening is time-consuming
and, most of the time, subjective, especially in the early stage, depending on the expertise of
the ophthalmologist. For this reason, different approaches using CNNs can help to expand
mass glaucoma screening, save time and money and help medical staff to perform more
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reliable screening with more consistent decisions, speeding up the process and relieving
hard and repetitive work.

All classification models achieved results similar to those of state-of-the-art methods,
with the Xception model showing an overall better performance. The CNN models for
classification, unlike the CDR and segmentation method, are “black-boxes”; they do not
provide a visual representation of their decisions. Thus, in this work, the model’s activation
maps are presented to provide visual interpretations and analyse the model’s classification,
thus helping medical experts to understand the CNN’s decision. A careful analysis reveals
that, in this case, the CNNs focus on the centre of the OD in the cup, reinforcing the
significance of the cupping area as an indicator of glaucoma presence. The OD and cup can
provide the CDR, which is usually used as an indicator for glaucoma screening. In other
cases, the activation maps focus on peripheral veins that, in most cases, do not correlate
with the incidence of glaucoma.

Since the ratio between the OD and cup is the most used indicator in the ophthalmol-
ogy field, segmentation methods were applied to classify the samples after classification
based on CDRs. The segmentation of the cup is more difficult than segmenting the OD,
which does not usually have a well-defined boundary to help in the segmentation, making
it difficult for clinicians to perform this task. For this reason, the CNNs have proved to
be helpful in facilitating a subjective and hard task that highly depends on the experience
of the ophthalmologist. The CDRs computed through the segmented masks were very
close to the Ref CDRs, reinforcing that the CNNs can conduct an evaluation similar to
that performed by a clinician. The model that produced the best results overall for these
tasks was Inception V3 as the backbone of U-Net, with slightly better performance for the
different CDRs. A way to improve classification based on CDR calculations is to use an
additional class instead of binary classification, providing an extra margin for the threshold.

The classification methods were applied to a private database with images collected
through a lens attached to a mobile device, and the results are promising since this lens
is cheaper and can expand the accessibility and accelerate mass glaucoma screening. The
model with the best results in the private database was Inception ResNet V2, which had
higher sensitivity compared to the remaining models. The Xception model achieved
similar AUC results but had a lower sensitivity compared to Inception ResNet V2. The
classification results of images in this private database are promising but did not achieve
the sensitivity of the models trained with public databases. The model’s classification can
facilitate mass screening with images collected by lenses attached to mobile devices, serving
as an extra opinion and providing activation maps to explain the model’s decision. These
new approaches of collecting retinal images with posterior CNN classification models can
accelerate and contribute to mass screening, mostly in remote areas, helping to redirect
people to medical centres to prevent glaucoma as early as possible.
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Abstract: Precision nutrition is a popular eHealth topic among several groups, such as athletes, people
with dementia, rare diseases, diabetes, and overweight. Its implementation demands tight nutrition
control, starting with nutritionists who build up food plans for specific groups or individuals. Each
person then follows the food plan by preparing meals and logging all food and water intake. However,
the discipline demanded to follow food plans and log food intake results in high dropout rates. This
article presents the concepts, requirements, and architecture of a solution that assists the nutritionist
in building up and revising food plans and the user following them. It does so by minimizing
human–computer interaction by integrating the nutritionist and user systems and introducing off-
the-shelf IoT devices in the system, such as temperature sensors, smartwatches, smartphones, and
smart bottles. An interaction time analysis using the keystroke-level model provides a baseline for
comparison in future work addressing both the use of machine learning and IoT devices to reduce
the interaction effort of users.

Keywords: precision nutrition; food plans; IoT; machine learning; food logging

1. Introduction

Disease caused by inappropriate diets is responsible for 11 million deaths and hun-
dreds of millions of disability-adjusted life years [1]. The use of technology to support
health (eHealth) opens an expansive landscape of opportunities. The emergence of a large
set of smart devices capable of facilitating physiological data recording and other forms of
recording the health status has potentiated many new eHealth applications. Mobile phones
and smartwatches are among the devices with the most potential because of their ubiquity
and sensor capabilities installed [2–4].

The importance of nutrition to health is unquestionable. However, the specificity of
nutritional requirements for a person demands personalized nutrition control. Nutritional
requirements lean on body parameters, genetic and epigenetic makeup, daily routines, and
history of disease or allergies. Thus, health professionals (e.g., doctors and nutritionists)
must intervene to keep food plans adequate for the target person. Nonetheless, the biggest
challenge is not elaborating the food plan but instead is the follow-up. That includes
keeping the food plan always present to the user, replacing unavailable or undesired
foods, adjusting food quantities to exceptional energy consumption, and using logged
food intake data to readjust future food plan revisions. Food intake logging, in particular,
benefits from automation since it is time-consuming, and the discipline demanded by its
operationalization leads to high dropout rates of food plan execution.

State-of-the-art approaches for automation food intake logging exploit the recognition
of food and quantities in images [5,6] taken using the phone camera and unconventional
intrusive devices to detect swallowing patterns associated with calories intake [7]. Notwith-
standing the innovation inherent to these approaches, they suffer from measurement errors
summing to the error introduced by food tables to quantify nutrients. Plus, these solutions
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still require some interaction (e.g., opening the application and taking pictures). A more
realistic solution to reduce human interaction costs is integrating the nutritionist and user
systems and resorting to off-the-shelf smart devices.

Smart devices are essential tools to enable the ubiquity of food plans by allowing
their visualization anywhere. Plus, they act as a data-gathering mechanism for logging
macronutrients, micronutrients, and hydration levels. These data feed into a nutritional
model that can support the nutritionist (or other health professionals) adjusting the next
food plan iteration.

This article presents the requirements and concepts of a solution covering the food
plan life-cycle from its creation by the nutritionist to its visualization, adaptation, and
logging of food intake by the person. It also discusses the system architecture and design
by focusing on

• Devices for food plan creation, visualization, and food logging (smartphones, smart-
watches, and smart bottles).

• Devices for capturing relevant data for food plan adaption (e.g., energy consumption).
• Data integration mechanism.

The rest of this article is organized as follows. Section 2 presents the related work.
Section 3 defines the problem addressed in this article and enumerates the requirements of
a possible solution. Section 4 presents the concepts and formulas used in food plan creation.
Section 5 describes the system architecture and implementation. Sections 6 and 7 describe
the scenarios where the system will be tested. Finally, Section 9 presents the conclusions.

2. Related Work

This paper addresses a multidisciplinary problem connecting several research areas, such
as precision nutrition, Internet of Things (IoT), web technologies, and machine learning.

Precision nutrition is an eHealth research area that depends on the person’s character-
istics to deliver nutritional advice [8]. One prominent research topic in this area is when
advice is supported by machine learning models created from several sources of data—e.g.,
dietary intake (content and time), personal, genetics, nutrigenomics, activity tracking,
metabolomics, and anthropometric. Food intake monitoring, in particular, provides a
fundamental source of data to machine learning algorithms for creating adequate diet
models. However, traditional food logging systems are intrusive, forcing users to change
their routines. Hence, user interaction with the system makes this activity one of the main
contributors to food plan execution dropouts.

Several approaches for automatic food intake logging have been proposed. Wearables
are devices with high potential in healthcare [9], since they could automate the process of
food intake logging. The results of their exploratory use in nutrition to reduce the burden
of manual food intake logging are presented in [7]. The authors explored using a smart
necklace that monitors vibrations in the neck and a throat microphone to classify eaten
food into three food categories. The resultant models trained with data produced by these
wearables revealed higher accuracy for the microphone when compared to the vibrations
sensor. Notwithstanding the potential of wearables for automatic logging of food intake,
they are still in their infancy, requiring development to reduce intrusiveness and achieve
close to perfect accuracy.

Visual-based dietary assessment approaches represent another type of appealing
solution that resorts to pictures to determine the intake of food nutrients. Lo et al. [5]
explores deep learning view synthesis for the dietary assessment using images from any
viewing angle and position. An unsupervised segmentation method identifies the food
item, and a 3D image reconstruction estimates the portion size of food items. Despite the
high accuracy of the approach, the results depend on depth images with separable and
straightforward objects, notwithstanding typical dishes that may overlap several food items.
Another work estimates food energy based on images using the generative adversarial
network (GAN) architecture [6]. It resorts to a training-based system, which contrasts with
approaches based on predefined geometric models which bound the evolution of models to
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food with known shapes. The authors’ approach provides visualization of how food energy
estimation is spatially distributed across the image, enabling spatial error evaluation.

While visual food inference represents a promising research topic for automatic log-
ging of food intake, its accuracy is still unacceptable for most applications. An alter-
native method for food logging is using speech-to-text conversion to reduce the user’s
interaction effort required to introduce nutrient information in the software application.
Speech2Health [10] allows recording of food intake through natural language. A user-
acceptance study using Speech2Health has shown several advantages of a speech-based
approach over text-based or image-based food intake recording. Nevertheless, even minor
errors resulting from identifying food names and portion sizes from voice excerpts are un-
acceptable for generic use. Privacy represents another issue that speech-to-text introduces
in public environments.

Most related work addresses the problem of automatic food intake monitoring. Instead
of explicitly addressing that problem, we devised a holistic approach that depends on food
plans created by nutritionists and followed by target users. By confirming meals or logging
changes, these users produce data for feeding the feedback loop that approximates the
food plan progressively to the actual user’s needs. The availability of a baseline plan and
the use of intelligent devices to record hydration, temperature, and energy expenditure
reduce user interaction effort. Additionally, machine learning is applied to user preferences
modeling, helping nutritionists choose the best food for the plan.

3. Problem Definition

Nutrition is a topic that has received more attention in the last decades due to its
potential for benefiting from advances in technology. The ubiquity of smartphones and the
emergence of wearable devices has created the opportunity to gather data automatically
and support the user in deciding the best food to eat at each meal.

Many smartphone apps provide features to log intake meals and present nutritional
statistics. However, choosing the best food plan for an individual requires a professional
analysis that considers their physical condition (e.g., fat mass, lean mass, and weight),
clinical condition, and goals. Discarding the health practitioner from the process may lead
to inadequate food plans and be dangerous for individuals with health issues. Fortunately,
it is possible to use technology to reduce the manual effort needed to manage the food plan
life-cycle. The problems solved by a holistic solution span over the nutritionist and user
(person following the food plan) domains.

We specified the requirements for the user and nutritionist domains with the support
of several experts, such as nutritionists and doctors from a private hospital. We scheduled
several meetings with these experts in two different phases: (1) requirement analysis, with
the support of high-definition interface prototypes, and (2) deliverable analysis, where we
tested software increments within a limited group of people by creating appointments,
food plans, and performing food logging. Appendices A.1 and A.2 in Appendix A present
the use cases for each of these domains.

3.1. Nutritionist Domain

We identified the following requirements for the nutritionist domain:

1. The nutritionist creates an appointment with the person’s data and all the parameters
needed to obtain the nutrients required to build the food plan. The system should
calculate the energy expenditure.

2. The nutritionist creates the food plan aligned with the nutrition goals obtained from
the appointment. The system should suggest food according to user preferences
and goals.

Nutritionists gather several types of data in the course of the appointment, which
allows determining the person energy expenditure (Section 4) and other metrics and goals
that can further support decisions during food-plan-making.
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Energy expenditure is the core metric for devising the food plan. It provides the calo-
ries further distributed between macronutrients (i.e., proteins, carbs, and lipids) as follows:

energy = α ∗ protein + γ ∗ carbs + β ∗ lipids (1)

After providing the data required to calculate the energy expenditure to the system,
the nutritionist defines values for α, γ, and β. These values represent the contribution
ratio of each macronutrient to the energy expenditure, which is fixed to a specific day and
distributed between meals.

The energy expenditure and its distribution between macronutrients and meals are
dependent on the person’s profile. For example, athletes have an increased demand
for energy compared with sedentary people, and distribution of nutrients needs to be
adapted to specific days (e.g., carbohydrate intake before and after exercise to help restore
suboptimal glycogen reserves).

Fiber, water, and micronutrients are essential food plan elements unrelated to energy
expenditure. The nutritionist adjusts the quantity of each nutrient to the person’s goals and
condition. For instance, during demanding physical activity, the person may need drinks
with added sodium to replace electrolyte losses. On the other side, a person with the risk
of high blood pressure would benefit from lowering sodium intake.

Food plan creation is time-consuming because it involves the combination of different
types of food adequate to the person. That combination should fulfill the target energy
expenditure and its distribution between macronutrients, and approximate the micronutri-
ents specified for the food plan. As for selecting alternative food when the user follows the
plan (user domain), the user preferences model also supports the nutritionist in choosing
the food to be added to the plan. Here, the contribution of each food to the goals established
for energy, macronutrients, and micronutrients represents a crucial input for the classifier.

The nutritionist needs to revise the food plan to adjust the energy and nutrients
to the user goals, respecting the subsequent appointments. For example, suppose the
user goal is not to reduce fat mass but increase muscle instead. In that case, the total
energy intake specified for the plan must be reduced and, consequently, the proportion
of macronutrients contributing to that energy. Since energy expenditure occupies the top
of the energy breakdown hierarchy, it will drive food plan adaption according to data
gathered during previous food plan executions. Smart devices may improve the accuracy
of energy expenditure in further food plan revisions. The physical activity energy expenditure
(Section 4.2) represents one component of energy expenditure that can be easily captured
with acceptable accuracy by smartwatches (or fit bands), alone or combined with heart
rate straps. These data combined with food and water intake logs—registered through the
system interface or obtained through intelligent bottles—provide elements required to tune
the successive food plan revisions.

3.2. User Domain

We identified the following requirements for the user domain:

1. The person accesses the meals defined in the food plan for the current day or specific
event using the mobile phone or smartwatch.

2. The person confirms the ingestion of the meal as it is in the food plan.
3. The person searches for alternatives to the current meal with equivalent nutrition

characteristics aligned with their preferences model.
4. The person logs other food eaten not present in the food plan.
5. The smart bottle logs water ingestion with respect to a specific period.
6. The smartwatch logs the calories spent by the person during the day with respect to

physical activity.
7. All logs are either associated with a specific day or to an event (e.g., sports practice).

Nutritionists must design food plans aligned with user conditions and preferences.
Further, users demand ubiquitous food plan visualization and logging mechanisms with
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small interaction costs. While interaction efforts depend heavily on user interface design,
off-the-shelf IoT devices can be valuable tools to reduce human interaction with the sys-
tem. These devices may be balanced with efficient user interfaces to reduce food plan
execution abandonment.

As food plans are fixed to days of the week, repeating for several weeks, users may
often lack some ingredients when executing the plan. Hence, the system may suggest
alternative food according to the nutritional equivalence and user preferences—using
historical data for similar meals, days of the week, months, or even weather contexts.

3.3. Automation Limits

The number of interactions with the system and the individual interaction cost deter-
mine the total user interaction effort. Logging of meals intake as in the food plan requires
a small interaction effort since the only input is the user confirmation in either the smart-
phone or smartwatch. Sometimes that happens in batches (e.g., by the end of the day),
resulting in low interaction costs and a small number of interactions (one per meal), as
presented in Table 1. In this scenario, the user domain can benefit from integrating the food
plan built by the nutritionist with the smartphone application that allows its visualization
and confirmation of intake meals.

Water intake logging demands a higher number of user interactions when compared
with meal confirmation. The user may take a sip of water dozens or hundreds of times a
day to be hydrated. Consequently, water intake logging is more complex unless they stick
to a standard behavior, such as drinking from the same bottle and logging the bottle storage
capacity when they finish. However, even that standard method has flaws because the user
may never finish the last bottle refill during the day or replace it with new water. Smart
bottles may potentially reduce the number of user interactions for water intake logging
since all the logged water intake is sent to the cloud service and made accessible to our
system without user interaction.

While the previous scenarios offer an automation opportunity, some actions are dif-
ficult to automate, such as logging food not registered in the food plan. As shown in
Table 1, notwithstanding the small number of interactions during the day, the interaction
cost of individual actions is high—justified mainly by the search for additional food and
the introduction of respective quantities. In addition, their automation is complex, and the
closest state-of-the-art approaches rely on machine learning to identify food in pictures
taken using the phone. However, these approaches are still far from one hundred percent
of accuracy, which leads to large errors summed from

• Errors resultant from the identification of food objects;
• Errors inherent to values presented in food nutrient composition tables;
• Food quantification errors, introduced either by visual approximation or predicted

from the picture.

Reduction of interaction costs with respect to activities with low automation potential
needs to be handled at the interface design level. The user application interface should
be optimized to reduce the effort of food-searching for the changing meal and add extra
food actions.
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Table 1. Interaction effort of main actions for each device.

Action

Smartphone Smartwatch Smart Bottle

Interaction Cost
Number of
Interactions

Interaction Cost
Number of
Interactions

Interaction Cost
Number of
Interactions

Meal
confirmation low low low low n/a n/a

Changing meal high low n/a n/a n/a n/a

Add extra food high low n/a n/a n/a n/a

Water logging low high low high none none

4. Energy Expenditure

The user energy expenditure drives the creation of food plans. Adequate diets ap-
proximate intaken calories to the total energy expenditure, which includes the resting
energy expenditure (REE), physical activity energy expenditure (PEE), and thermic effect
of food (TEF).

CB (caloric balance) in the human body approximates the CC (caloric consumption) to
the sum of PEE, REE, and TEF.

CB = CC − PEE − REE − TEF (2)

This section presents the calculation of PEE and REE. Notwithstanding the low contri-
bution of the TEF (between 3% and 10%) to the total energy expenditure (TEE), it may have
an impact on obesity. However, we do not handle it in this article due to its high measure-
ment complexity [11] created by dependency on several other variables (e.g., measurement
duration) [12].

4.1. Resting Energy Expenditure

REE is considered equivalent to the basal metabolic rate (BMR). BMR is the minimum
number of calories required for basic functions at rest. On the other side, RMR is the
number of calories our body burns while at rest. Despite both definitions slightly differing,
the Harris–Benedict equation [13,14] can approximate REE or other equivalent equations
presented in Table 2 for calculation of BMR.

4.2. Physical Activity Energy Expenditure

PEE calculation involves converting metabolic equivalents of activities to calories
expended per minute (cal/min), based on body weight and the varying exercise intensities.
The physical activity level (PAL) is an inexpensive and accurate method for calculation of
PEE, based on the average values of 24 h of TEE and REE, as follows:

PAL = TEE/REE (3)

The effect of gender does not interfere with PAL calculation because the BMR absorbs
the gender difference in energy needs accentuated by the heavier weight of men.

A table that associates physical intensity lifestyles to PAL values (Table 3) can simplify
PAL calculation. In that context, TEE is the result of multiplying REE by the PAL value
associated with the person’s lifestyle category [15].

Another method for PAL calculation combines the time allocated to habitual activities
and the energy cost of those activities (Table 4). In this case, PAL represents an energy
requirement expressed as a multiple of 24-hour physical activity ratio (PAR). Here, PAR is
a factor of BMR (PAR is 1 when there is no energy requirement above REE). Intuitively, the
energy cost (PAR) is multiplied by the activity time to obtain PAL [15,16].
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4.3. Distribution of Nutrients

The TEE estimate represents the total calories in the food selected for the food plan.
TEE is then broken down into macronutrients complemented with micronutrients.

Macronutrients are typically specified in grams per kilo of body weight; such is the
case of protein, carbohydrates, and fat (lipids). The exception is fibers that are specified
in total grams. Water is frequently classified also as being a macronutrient [17]. However,
water and fiber have zero calories, unlike protein, fat, and carbs. Notwithstanding that
fibers do not usually count as calories in food plans, one type of fiber, named soluble
fiber [18], may be absorbed by the organism and thus provide the body with calories.

Compared with macronutrients, the number of micronutrients is vast, and for that
reason, nutritionists only select a few to be used as control metrics during food plan creation.
From the conversation with several nutritionists, we have chosen iron, calcium, sodium,
and magnesium, because of their transversality over several population groups. However,
the selection of micronutrients depends always on the target population group (e.g., elderly,
young people, and athletes).
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Table 3. Classification of lifestyles according to physical intensity (PAL values).

Category PAL

Sedentary or light activity lifestyle 1.40–1.69

Active or moderately active lifestyle 1.70–1.99

Vigorous or vigorously active lifestyle 2.00–2.40

Table 4. Total energy expenditure for a population group.

Activities
Time

Allocation
PAR Time × PAR Mean PAL

Sleeping 6 1.0 6.0

Personal Care
(dressing, showering) 2 2.3 4.6

Eating 2 1.5 3.0

Walking without a load 2 3.2 6.4

Sitting 4 1.5 6.0

Cooking 2 2.1 4.2

Household work 2 2.8 5.6

Light leisure activities 2 1.4 2.8

Driving car 2 2.0 4.0

Total 24 42.6 42.6/24 = 1.8

5. Architecture and Implementation

This section presents the architecture and implementation of the solution proposed in
this article, divided between two front-ends: nutritionist front-end and user front-end.

5.1. Nutritionist Front-End

The nutritionist front-end (Figure 1) implements two important concepts: appointment
and food plan.

The appointment is the concept responsible for managing the energy expenditure—and
its distribution throughout macronutrients—and micronutrients, as presented in Section 4.
Moreover, to support user monitoring between appointments, it should present all historical
data entailing previous food plans and energy distribution by day of the week, event, and
meal type.

Monitoring of physical conditions frequently resorts to the person’s goals, specified in
terms of:

• Weight.
• Body fat.
• Visceral fat.
• Fat-free mass.
• Muscle mass.
• Body mass index.
• Exercise performance.

Control and analysis of generic user goals depend on the previous metrics, although
specific people groups may require other specific metrics; such is the case of groups with
specific diseases that require the control of specific body parameters.

Other important appointment data required for food plan making include the following:

• Bowel function.
• Sleep quality, and wake up and sleeping times.
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• Person’s race.
• Food likes and dislikes.
• Night shifts.
• Job.
• Lifestyle.
• Clinical conditions.
• Current water intake.

Nutritionists rely on the appointment of data for food plan creation. While adding
new meals and foods to the food plan, the nutritionist can balance the food calories with
target energy and nutrients. They can also visualize other relevant information gathered
during the elaboration of appointments.

Nonamed person
Street 1, Some Country

Information and Habits1 Measurements and Planning2 Meals defined in the Food Plan3

Follow Up4 Training5 Analysis6

1. Muscle Analysis - Fat

Height (cm)

Weight (kg)

Hip Girth (cm)

Weist Girth (cm)

Fat Mass (Kg)

Skeletal Muscle Mass (Kg)

Lean Mass (Kg)

Fat Free Mass (Kg)

Bone Mass (Kg)

2. Obesity Analysis

Body Fat Percentage (%)

Body Mass Index (Kg/m2)

3. Segmental Analysis

3.1. Segmental Lean Mass

Left Arm (Kg)

Right Arm (Kg)

Trunk (Kg)

Right Leg (Kg)

Left Leg (Kg)

3.2. Segmental Fat

Left Arm (Kg)

Right Arm (Kg)

Trunk (Kg)

Right Leg (Kg)

Left Leg (Kg)

4. Skinfolds

middle axillary skinfold (mm)

Abdominal Skinfold (mm)

Thigh skinfold (mm)

Pectoral skinfold (mm)

Subscapular skinfold (mm)

Suprailiac Skinfold (mm)

Triceps skinfold  (mm)

6. Viceral Fat Level

Insert a value

5. AEC Rate Analysis

AEC Rate

Measurements

Planning

1. Body Composition History

Intracellular Water (20.8 - 25.4 L)
26.2

Extracelular Water (12.8 - 15.6 L)
16.0

Basal Metabolic Rate (1419 - 1652 Kcal)
1621

Waist-Hip Ratio (0.75 - 0.85)
0.8

Waist Circumference (cm)
0.8

Bone Mineral Content (2.56 - 3.12 Kg)
3.65

Body Cell Mass (29.8 - 36.4 Kg)
37.6

Arm Circumference (cm)
29.8

Arm Muscle Circumference (cm)
27.1

Recommended Calorie Intake 2700 Kcal

2. Goals 

Current Goal Recommended

Weight (Kg)
Define the client weight goal

70 Insert a value (Kg) 58.8

Fat mass percentage (%)
Define the client goal

25,8 Insert a value (%) ——

Body mass index (Kg/m2)
Define the client goal

70 Insert a value (Kg/m2) ——

Physical activity level
Define the client goal

Regular Select….

Basal metabolic rate (Kcal/dia)
Define the client goal

1621 Insert a value (Kg)

Daily Energy Needs (Kcal)
Define the client goal

Insert a value (Kg) ——

Information

Overweight

Reduction of 11.2

Regular

1321

2300

(a)

2. Clinical Information

Smoker Alchool Consumption

Pathologies Medication

Personal History Family History

3. Other Information

Information and Habits1

Clique na etiqueta acima 
para ver detalhes

Food SupplementsFood Supplements

No information inserted…

OK

Other Clinical Information 
Provided by the client

No infoff rmation provided

Goals  
Client’s intention

The  client wants a healthier lifestyle. His profession is quite 

sedentary and needs to improve the quality of the food he eats.

Gender
Male

1. Personal Data

Date of birth
01-01-2004

Marital status
Single

Profession
Teacher

Mobile
9191919191

Email
johndoe@email.com

Intestinal function
Normal

Sleep quality
Good

Physical activity
Regular

Race
Caucasian

Time to get up
08:00

Time to go to bed
22:00

Water intake
1,5l/day

Deprecated foods
apple, beans, rice

Work shifts?
2 shifts

Nonamed person
Street 1, Some Country

Measurements and Planning2 Meals defined in the Food Plan3

Follow Up4 Training5 Analysis6

(b)

Same every day Sportsman Generic Diet No restrictions

CREATE PLAN

Nonamed Person 
200 calories food plan (no restrictions)

Add Meal Add Activity
Total calories of food plan 
based on the meals created for the plan

Total
42459

Total meal nutrients 
based on the meals created for the plan

Energy

Lipids

10 g

Carbohydrates

10 g

Protein

10 g

20 Kcal

Morning Snack

1 apple

Add new food 

10:00

Energy 

0 kcal

Lipids 

0 g

Carbohydrates 

0 g

Protein 

0 g

Observations 
Relevant information about the meal

No observations were registered so faff r…rr

2 -  Fol low up 1 -  Meal Definit ion

(c)

Figure 1. Nutritionist front-end. (a) Appointment. (b) Client details. (c) Food plan.
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5.2. User Front-End

The user front-end (Figure 2a) uses the food plan as the basis for preparing meals,
searching for alternative foods, monitoring consumption of water and calories during the
day, and food logging. Food is presented on the plate (Figure 2b)—useful for elderly, people
with vision impairment, or those that may find it difficult using mobile/smartphones with
mobile devices—and in the list format.

Daily statistics (Figure 2c) are valuable assets for monitoring calories, macronutrients,
micronutrients, and hydration during the day. These values are paired with target values
defined by the nutritionist in the food plan.

Next Meals

Snack
1 dish

Dinner
1 dish

Tomorrow

Today

Lunch
Soup, Main dish, Drink, Desert

ACEITAR

VERIFY

AACCEEIITTAARRACEITAR
ACCEPTED

Snack
1 dish

Dinner
1 dish

Lunch
Soup, Main dish, Drink, Desert

ACEITARAACCEEIITTAARRACEITAR
ACCEPTED

VERIFY

Water
Consumption during the day

REGISTER

(a)

Soup Main dish Salad Drinkain dain

Composition

ACCEPT

Lunch

(b)

Daily Statistics

366kcal 
remain

1247 kcal consumed

3/40 g 3/40 g

3/40 g3/40 g

Protein Lipids

HydrateVitamin

Macronutrients

(c)

Figure 2. User front-end. (a) Daily meals. (b) Meal visualization. (c) Daily statistics.

Notwithstanding the small screen sizes of smartwatches, they are practical for present-
ing meals (Figure 3a), sending notifications, and logging food intake. They also present
statistics regarding nutrients intake (Figure 3b) and hydration (Figure 3c).

5.3. Architecture

Figure 4 presents the solution architecture composed of four different interfaces. The
nutritionist interacts with the system to create appointments and food plans using a web
application. On the other side, the user visualizes the current food plan or logs food
ingestion using a mobile phone or smartwatch.

5.3.1. Web Applications

The mobile application is delivered as a PWA (progressive web application). PWAs
represent a new class of applications alternative to traditional mobile phone apps, with
several advantages over them. Instead of being developed to a specific platform (e.g., iOS
or Android), they are built as a web application that can work offline and be installed on
any smartphone. A previous study reported PWAs 157 times smaller than React Native-
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based interpreted apps and 43 times smaller than Ionic hybrid apps [26]. The Twitter PWA
consumes less than 3% of the device storage space as compared to Twitter for Android [27],
and the Ola PWA is 300 times smaller than their Android app [28]. Additionally, they
are cross-platform, although current implementations may require adaptation between
some browsers.

(a) (b) (c)

Figure 3. Smartwatch. (a) Food plan visualization and logging. (b) Daily control of nutrients. (c) Daily
control of water.

Both applications with respect to the user and nutritionist front-ends were developed
in LitElement [29], a base class to create lightweight web components. Design of the
user front-end for smartphones embraces the PWA principles [30] (e.g., web application
installability, and offline usage).

5.3.2. Smart Bottle

Water consumption is logged either by the user—using the smartphone or smartwatch—
or automatically by a smart bottle. We tested several smart bottles and decided on the
Hidratespark [31], justified by its mature API and good construction and usability of the
bottle. Plus, it can be easily integrated with Fitbit [32], which is used as a gateway to
retrieve data to the user’s back-end.

Water intake goals defined in the food plan are adjusted according to the environment
temperature. Temperature sensors provide the inputs to make that adjustment according
to the rules stated in the food plan.

5.3.3. Smartwatch

As explained in Section 4, determining the energy expenditure of one person is one of
the main challenges in the creation of a food plan. Modern smartwatches provide a good
approximation of energy consumption during physical activity. They provide valuable
information to be used by food plan revision activities, enabling correction of energy
expenditure values predicted by traditional methods during follow-up appointments
(Section 4.2). Pedometers and heartbeat monitors incorporated in devices provide a good
approximation of calories burned data [33].
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user

PWA 
food plan visualization 

food intake logging

smart bottle 
water intake logging

sensor

backend 
user

smart watch 
food plan visualization 

food intake logging 
calories burned logging 

backend 
nutritionist

nutritionist

machine learning

web application 
appointment 

food plan creation

Figure 4. Architecture.

5.3.4. Preference Learning

Exploring machine learning techniques on logged data makes it possible to help
nutritionists model user food preferences. These techniques build up a recommendation
system [34], based on food preference models, that supports the selection of food during
food plan creation. That system will also allow proposing food alternatives to the person
following the plan. That may occur when the food is unavailable, or the person prefers
other equivalent food.

Reinforcement learning seems an adequate tool for applying preference learning to
food recommendation [35]. Starting without knowledge, the agent helps the nutritionist to
choose the food and quantity for the food plan without breaking the constraints imposed by
the goals established for macronutrients and micronutrients. The agent accuracy improves
with the feedback received from the nutritionist and the intake of food logged by the user.
The same agent can help the user choose equivalent food and quantities when executing
the plan based on learned preferences and goals of nutrients.

5.4. Security

Security is a complex and wideband problem. It spans the human-related processes
and the system level (e.g., network and application). Human misconduct is in the origin
of several security threats in eHealth systems [36]. Training people and auditing security
procedures is a natural way of reducing the risk of threats occurrence. Coordination
between developers, users, organizations, and government regulators represents another
security flaw source [37].

In this work, we handle security at the system design level. E-Health systems contain
data that are sensitive to confidentiality, integrity, and availability threats [38]. There
are different types of data sensitiveness. Personal data are the most critical data under
management; thus, ensuring the confidentiality of these data is of the utmost importance.
Hence, we segregate the user data in the application and provide one feature to remove
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these data anytime without compromising their food plan while an anonymous entity. The
latter offers less security risk when unrelated to the person.

The design of the nutritionist application allows deletion of the user’s personal data
without compromising the food plan management features, as long as an ID can identify
the user. The segregation of functionality and data between the user and nutritionist
applications offers an additional protective barrier. The user application uses an application
token to communicate with the nutritionist application, and the former does not store or
handle personal data—an ID identifies the user.

As much as personal data, authentication credentials are sensitive data demanding
theft protection. The HTTPS already ensures protocol-level privacy in the communication
channel. Plus, the front-end encrypts passwords before transmitting them to the back-end,
and they are then handled and stored in an encrypted form.

Feature-oriented access control constrains the access to features available on each web
page. There are three profile types: nutritionists, administrators, and users.

Risk management models, such as the one presented in [39], may complement our
system design. Additionally, other protection schemes against complex attacks [40] are
orthogonal to our system and may also be used.

6. Case Study: Alzheimer’s

Alzheimer’s disease is a progressive loss of mental function, characterized by degener-
ation of brain tissue, including loss of nerve cells, accumulation of an abnormal protein,
and development of neurofibrillary braids [41]. Alzheimer’s patients become dependent on
others, even for the most basic tasks. Controlling feeding and hydrating for an Alzheimer’s
patient is thus a crucial activity performed by the person who supports their daily routine,
called the informal caregiver (IC).

Conditions of malnutrition, super nutrition, and dehydration are common in people
with diseases causing dementia. The loss of autonomy also manifests itself in their inability
to demonstrate food needs. Therefore, it is fundamental to support the nutritionist in the
preparation and follow-up of a food plan aligned with the patient’s needs. Food plan
monitoring is undoubtedly a process that demands much discipline from the IC and the
ability to deal with possible circumstantial adaptations, such as replacing foods prescribed
in the food plan with other equivalents or changing the quantity of water consumed as a
function of ambient temperature.

This case study investigates the problem of creating and monitoring diet plans in pa-
tients with dementia—such as those with Alzheimer’s. It allows the creation of nutritional
plans by the nutritionists and the follow-up of these plans by the ICs through a mobile app
to significantly increase the patient’s quality of life. The app will send the IC notifications
regarding proper nutrition and hydration in the due moment. It also controls hydration
using the smart water bottle. In addition, the application will suggest alternatives to plan
foods if they are unavailable or rejected by the patient. Another feature important for this
group is the dynamic adaptation of water administration to the patient as a function of
environmental conditions observed by temperature and humidity sensors. This feature is
vital when the patient is unable to express thirstiness.

7. Case Study: Sports

The recent growth in the pursuit of sporting activities, motivated by a widespread
increase in the perception of the importance of maintaining physical fitness, campaigns
explicitly aimed at combating physical inactivity, and opportunities created by the reve-
lation of lesser-known modalities, has brought forward fundamental questions such as
the correct nutrition of the practitioners. Several institutions and individuals involved in
physical activity have integrated these concerns into their scope, including nutritionists.

Food plan elaboration and monitoring present two main challenges: (1) obtaining the
person’s biometric data, eating habits, and energy consumption, and (2) monitoring user
food intake and providing dynamic adaptation of the food plan.
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Sports nutrition is one of the most complex areas of nutrition. It requires observing a
comprehensive set of metrics, encompassing the athlete’s physical aspects, physical activity,
and eating habits. Fortunately, devices for measuring specific physical parameters represent
a common practice among athletes. The creation of data repositories to help nutritionists
build the plan is only possible by automatically integrating data collected by these devices
with other data not directly observable—such as dietary habits and subjective metrics.
These repositories also contain data that can help adapt the food plan at its execution stage.
For example, variations in temperature or physical intensity may demand quick changes
in individual energy or hydration needs. In these scenarios, the support system uses data
collected by devices to dynamically adjust the food plan and send alerts to athletes to eat
food or water at the right time.

8. Interaction Results

This section presents the human–computer interaction cost associated with typical
user tasks to visualize the food plan and log food intake.

Traditional methods used in the usability evaluation of an interface fall into two cate-
gories: (1) subjective opinion of users and experts—mainly applying questionnaires [42]
and inspection methods [43,44]—and (2) objective techniques such as rules [45], analytics
modeling [46], and automated testing [47,48]. Notwithstanding that these approaches pro-
vide important tools to determine the usability of the user interface, there is both cost and
time needed to implement user interaction evaluation with acceptable coverage, coupled
with the need to use experts to compensate for the user’s faults.

8.1. Keystroke-Level Model

We applied the keystroke-level model (KLM) [49] to the user interface depicted in
Figure 2, for testing the quality of the human–computer interaction and estimating the time
spent in critical tasks. In this model, a unit task is defined with two parts: task acquisition and
task execution. The total time to complete a unit task is given by Ttask = Tacquire + Texecute.

At the execution level, KLM provides physical, mental, and response operators
with predefined time values. These operators are defined by a letter and include K
(keystroke ≈ 0.12 s), P (point ≈ 1.1 s), H (homing the hand(s) on the keyboard or other
device ≈ 0.4 s), D (draw is measured in real time), B (button press ≈ 0.1 s), M (mental
preparation for action ≈ 1.35 s), and R (system response, which is a parameter measured in
real time). The execution time is the sum of the time for each of the operators from the final
KLM string Texecute = TK + TP + TH + TD + TB + TM + TR.

8.2. Interaction Results

Table 5 presents the time required to execute each application task. The KLM string
generated is represented in the sequence of operators column and the respective time required
to execute each task in the estimated time column. The task “update food entries for train and
competition” allows the creation of periodic food requirements and is specific to the sports
scenario. In contrast, the Alzheimer’s and the sports scenarios share the other tasks. The
results are presented for the user application since we aim to reduce user abandonment
motivated by interaction costs resultant from food logging activities.

As expected, results show that tasks that change the original food plan for logging
purposes manifest higher interaction costs. Food plan visualization requires 1.2 or 2.3 s,
depending on the UI view. Logging one meal by confirming the original food plan only
requires 1.2 s. On the other hand, logging tasks regarding food intake not present in
the food plan are costly. Each extra food added to the food plan requires 8.66 s of the
user’s time.

Manual logging of water using the application requires 3.6 or 4.8 s, depending on the
view. The adoption of smart bottles avoids that interaction, which may repeat dozens of
times during the day.
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The interaction time of tasks performed by the smartwatch (e.g., energy expenditure
logging) is not presented in this section. Despite the automation of the data logging process,
the user can not perform any equivalent task manually.

Table 5. Interaction results.

Actor Tasks Sub-Tasks Sequence of Operators Estimated Time (s)

User Visualize food plan
Graphical representation of

the meal PB 1.20

Composition of the meal
(by food) PBP 2.30

Add new food to the meal * PBPBMHKKKMHPBPB 8.66
Add new extra food (snack

between meals) * PBPBMHKKKMHPBPB 8.66

Remove food * PBPBPB 3.60

User
Log food intake

(items of the sub-tasks column
marked with * repeat in

the meal)

Specify percentage of
food intake * PBPBPBPB 4.80

Change food plan food * PBPBPB 3.60
Confirm food intake from food

plan with no changes * PB 1.20

User Log water intake Through food plan PBPBPB 3.60
Through interaction menu PBPBPBPB 4.80

Fitbit (bottle) Update water intake - 0.00

User Visualize statistics PBPB 1.20

System Update food entries for train
and competition - 0.00

User Change active food plan (train
or competition) PBPBPBPB 4.80

User Connect watch API PBPBPBMH42KMHPB 13.34

User Provide consent to access
Fitbit API PBPBPBR 4.60

8.3. Analysis of Results

The observed results of human–computer interaction times pinpointed the tasks
requiring improvement of interaction times. They provide a baseline for evaluating other
interaction schemes and assessing the contribution of automation (e.g., using IoT devices)
to the goals established in this article. The lower the interaction time, the lower the user
discipline needed to maintain a food plan visualization and logging process, and the lower
the user abandonment rate.

We designed the application to minimize human interaction with the support of UI
experts. The most challenging tasks using a UI (those with more significant interaction
times) require the search of new food manually. Although the interface implementation can
still be questionable in terms of the specific design that may compromise the generalization
of results, it is evident that there is little space for improvement when we need to perform
a generic search for food using text.

Machine learning techniques are natural solutions to help reduce the time required
for logging extra food in addition to—or in replacement of—those present in the food
plan. As referred to in Section 2, there have been several attempts to recognize food objects
in pictures taken with the mobile phone to reduce the burden of manually logging food.
However, interaction is still required to take the picture, and an accuracy less than perfect
could even increase the interaction time since the user would need to correct these data.
The previous rationale leads to a different strategy for exploring machine learning for
reducing interaction time. Creating a food preferences model customized to each user
would likely lessen the food search interaction time considerably. By resorting to historical
data and observable features (e.g., user location, day of the week, and weather), the system
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can anticipate the consumption of specific food. In that scenario, the interaction time would
be equivalent to confirming a meal in the food plan.

9. Conclusions

This article unveils the concepts, requirements, and technologies needed to build a
system that could support the nutritionist in creating food plans aligned with the individual
profile. Further, it presents an architecture and software developed for smartphones (PWA)
and smartwatches. The software furnishes food plan visualization logging of food and
water intake, among other related features. It also integrates other devices, such as smart
bottle technology and temperature sensors, to reduce human–computer interaction.

The availability of off-the-shelf devices has brought unprecedented ways of gathering
data from physical phenomena without resorting to direct human–computer interaction.
We propose an architecture that integrates the nutritionist back-office, the user application,
and smart devices, focused on interaction cost reduction when users follow a food plan.
We presented a baseline of the human interaction effort associated with several tasks
pinpointing the most critical (expensive) operations. Such baseline sustains the evaluation
of future machine learning and IoT approaches targeting the reduction of human interaction
effort when completing critical operations.

As future work, we plan to explore machine learning techniques to reduce interaction
times in two demanding user groups: Alzheimer’s patients and athletes. The Alzheimer’s
group offers interaction challenges since several caretakers are elderly and have difficulties
using apps or are not motivated to use apps as a data logging mechanism. On the other
hand, athletes are very disciplined but need tight control of food intake before, during, and
after physical activity.
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Appendix A

This appendix presents the use cases described using the unified modeling language
(UML) related to the application requirements.

Appendix A.1. Nutritionist Use Cases

Figure A1. Nutritionist login.
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Figure A2. Person registration.

Figure A3. Appointment creation.
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Figure A4. Visualize food nutrients.

Figure A5. Import food table with nutrients.

Figure A6. Food plan creation.
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Appendix A.2. User Use Cases

Figure A7. Visualize food plan.

Figure A8. Log food and water intake.

Figure A9. Update water intake.

Figure A10. Visualize statistics.
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Figure A11. Update periodic food entries and train for competition.

Figure A12. Change active food plan.

Figure A13. Connect watch API.

Figure A14. Provide Fitbit consent.
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Abstract: Elderly people feel vulnerable especially after they are dismissed from health care facilities
and return home. The purpose of this work was to alleviate this sense of vulnerability and empower
these people by giving them the opportunity to unobtrusively record their vital physiological param-
eters. Bearing in mind all the parameters involved, we developed a user-friendly wrist-wearable
device combined with a web-based application, to adequately address this need. The proposed
compilation obtains the photoplethysmogram (PPG) from the subject’s wrist and simultaneously
extracts, in real time, the physiological parameters of heart rate (HR), blood oxygen saturation (SpO2)
and respiratory rate (RR), based on algorithms embedded on the wearable device. The described
process is conducted solely within the device, favoring the optimal use of the available resources.
The aggregated data are transmitted via Wi-Fi to a cloud environment and stored in a database.
A corresponding web-based application serves as a visualization and analytics tool, allowing the
individuals to catch a glimpse of their physiological parameters on a screen and share their digital
information with health professionals who can perform further processing and obtain valuable
health information.

Keywords: wrist-wearable device; PPG processing; physiological parameters; web-based
applications; data analysis

1. Introduction

Average life expectancy has increased over the years, resulting in a rise in senior
populations [1]. The attitude of society towards senior citizens and their well-being is
an indicator of its organization and civilization. Elderly people are a demographic that
needs expert care and dedicated assistance, sometimes even on an everyday basis. They
tend to feel even more vulnerable especially after experiencing health issues and having
been released from a health care facility. This is a crucial point in their recovery and
well-being, and they need all the help they can get, in either physical or virtual form.
Assistive technology based on the Internet of Things (IoT) can support unobtrusive health
monitoring at home with the use of electrical devices, such as sensors and other gadgets
(wearable or not) that provide feedback and remote access to the end user, aiming at
improving inhabitants’ quality of life by providing more independence and better care [2].
According to [3], existing smart home health monitoring technologies include physiological
monitoring, functional monitoring/emergency detection and response, safety monitoring
and assistance, security monitoring and assistance, social interaction monitoring and
assistance, and cognitive and sensory assistance.

Treading on the groundwork of assistive technology, the aim of minimizing the hospi-
talization days of the elderly and sending them home without compromising their safety
seems to be doable. The achievement of this goal has at least two advantages. First, the
elderly benefit from returning home to a safe environment as soon as possible and this
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can work in favor of nurturing a positive psychology for them. Second, the health care
system also profits from early yet safe discharge of the elderly to their home. The financial
resources dedicated to the health sector are not unlimited [4] and the struggle to mitigate
the consequences of the pandemic is ongoing. Unburdening the health care system is
a tangible positive ramification of assistive technology development, and the work we
envisaged could be a major abetment to this line of action.

Wrist-wearable devices are a common accessory of everyday life, worn by many
people just to tell time in the beginning. With the integration of proper sensors, they
evolved to non-invasive monitoring units that aggregate vital signals. With the application
of befitting embedded algorithms, several physiological parameters critical for health
status assessment can be extracted. These devices can also log activities, steps, calories
and sleep patterns. The autonomy and portability of such an apparatus grants the user the
possibility to wear it everywhere and at any time, which is a notable advantage. Identifying
outliers or anomalies in heart rates and other features can help establish patterns that play a
significant role in understanding the underlying cause of the demise of physical well-being.
Additionally, the accumulation of this valuable information in a backend system, in a secure
manner, can be leveraged to the advantage of the end users for optimizing their living
standard. This can be accomplished by providing medical experts with the tools to interact
with the data and draw valuable conclusions regarding health status and everyday lifestyle.

Light, the essence of photoplethysmography, known as PPG, is used to measure
the volumetric variations of blood circulation. This measurement provides invaluable
information regarding humans’ physiological parameters entailing their health status. PPG
technology has been proven less complex operationally, more comfortable for the user and
more cost efficient compared to other monitoring techniques [5]. The continuous detection
and monitoring of human physiological parameters such as heart rate (HR), blood oxygen
saturation (SpO2), and respiratory rate (RR) are of paramount importance. A wearable
device that unobtrusively grants the elderly an opportunity to continuously and without
any intervention extract those parameters constitutes a major achievement. The state-of-
the-art techniques in modern practices approach the task of obtaining such measurements
using validated pulse oximeters, which are worn on individuals’ fingers. These pulse
oximeters are based on the transmission-mode PPG. The continuous monitoring of the
human vital signals has shifted from simply an appealing idea to fitness enthusiasts into an
everyday habit for a plethora of people using a smartwatch. Sensors integrated within smart
watches use reflectance-mode PPG to gather vital signals. Although they are widespread
amongst sportspeople, they have not been widely used in clinical practice [6,7]. This can
be attributed to the fact that PPG signals are vulnerable to Motion Artifacts (MAs) caused
by hand movements, which affect considerably the accuracy of the entailed physiological
parameters [8,9].

PPG signal acquisition becomes increasingly challenging when additional factors
such as environmental noise or sensor misplacement are considered, thus further affecting
the accurate assessment of its features. Measuring physiological parameters utilizing
wrist-wearable devices can be a more perplexing procedure compared with the finger or
another part of the body due to the low blood perfusion in the wrist area. The design of
a wrist-wearable device must consider factors such as the spacing of the light-emitting
diodes (LEDs), photodiode surface, as well as biological factors such as skin tone. It is clear
that efficient PPG processing must be performed to enable reliable reading of its features
and consequently accurate extraction of the physiological values. All the aforementioned
challenges highlight the need for the implementation of a device capable of monitoring
physiological parameters continuously and in an unobtrusive manner, that can easily be
operated without need for excess previous training.

This work is about presenting the architecture and the constituent components of
a comprehensive user-friendly system which provides well-being monitoring services
promoting peace of mind to senior citizens. The overall solution consists of two subsystems
that are integrated via well-defined interfaces, but each one performs autonomous functions
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in an opaque manner: The subsystem of bio signal recording and physiological parameters
extraction and the back-end subsystem of storage, data processing and services. The novelty
of the proposed system predominantly lies on the minimal design of the wearable sensing
device while entailing accurately all the parameters, allowing a least disturbing interaction
with the end user. This system has the capacity to continuously extract in real time the
physiological parameters of HR, SpO2 and RR, to perform well-being status assessment,
and to provide personalized feedback to improve health status. Furthermore, in comparison
with similar solutions, the proposed system has the advantage of functioning without the
aid of a paired smartphone for collecting and delivering the bio parameters to the back-end
system, thus enhancing its user-friendly attribute for users with low digital literacy.

The remainder of this paper is organized as follows: Section 2 introduces the main
challenges regarding the monitoring of physiological parameters using wearable devices
and gives details on related works and their limitations. Section 3 presents design and
implementation aspects of the proposed integrated system at both physical and operational
level as well as performance evaluation features of the proposed wrist-wearable device.
Section 4 describes the implementation and the core components of the web-based applica-
tion, which comprises a front-end to display physiological parameters to end-users, and a
back-end to allow data processing and service provisioning. Finally, Section 5 concludes
this paper with future research directions.

2. Related Work

As shown further, research has been conducted towards producing simultaneously
more than one physiological parameter using the PPG method, through wrist-wearable
devices as enablers of continuous health monitoring in everyday life. With the evolution
of medical science and technology, the wearables are incorporated with multiple different
sensors so that they can keep track of a wide range of measurements such as heart rate,
blood oxygen level, body temperature and activity monitoring including many others.
Nowadays, wearables play an important role in making health care practices more efficient
and cost-effective. These devices can be connected to smart phones or web apps allowing
people to store their data for future reference. An overview of such wearables follows.

Li et al. [10] predicted the outbreak of Lyme disease and inflammation by combining
sensor data along with medical measurements. This work gave evidence of how wearables
can monitor activity along with physiology.

Mishra et al. [11] detected COVID-19 by utilizing physiological (HR) and activity
(steps) data acquired by wearable devices. 5200 subjects participated in the analysis,
including individuals with COVID-19. The study indicated elevated resting heart rates
relative to the subject’s baseline. Two algorithms—resting heart rate difference (RHR-diff)
and heart rate over steps anomaly detection (HROS-AD)—were developed. The first
algorithm was based on standardizing the resting heart rate over a fixed time frame to
observe baseline residuals.

Seshadri et al. [12] performed a data-driven COVID-19 prediction employing an early
detection algorithm (EDA) based on HR, HRV and RR collected from wearables devices.
The EDA can detect physiological changes and alert users of possible infection with SARS-
CoV-2 before they develop clinical symptoms.

Downey et al. [13] showed that only 16% of the subjects remained connected to
obtrusive monitoring systems after 72 h. Furthermore, the cost for a complete vital sign
monitoring system can be quite significant.

Zenko et al. [14] proposed a battery powered wearable device along with a simple al-
gorithm for the extraction of the physiological parameters of HR, Pulse Rate Variability and
SpO2. This work evaluates the acquired HR parameter while calibration and verification of
the SpO2 parameter still needs to be performed.

Son et al. [15] introduced a wearable device which measures oxygen levels in the blood
using a light reflection method while it integrates hardware for wireless data transmission.
Experimental results were compared to the Texas Instruments development board (SpO2
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AFE44x0 EVM), and the maximum deviation was 6.7% in HR measurement and 4.4% in
SpO2 measurement.

Jarchi et al. [16] integrated the AC components of red and infrared PPG signals in
a complex waveform and then by applying the bivariate empirical mode decomposition
algorithm, the SpO2 value is estimated with an approximate error of 3%.

Preejith et al. [17] developed a wrist-based optical heart rate device which, in order to
eliminate the noise, ignores the measurements when motion is detected. The accuracy of
the HR measurements equals to 0.9, expressed as Pearson’s r. The coefficient r indicates
the strength of a correlation between estimated and real values, and the magnitude of 0.9
nominates that the variables can be considered highly correlated.

Eugene et al. [18] designed a wearable device equipped with PPG sensors for extracting
bio-information and the Centralized State Sensing (CSS) algorithm was developed for
estimating HR. After comparisons on readings taken across sensors, it was proved that this
specific algorithm achieved more accurate HR measurements.

Wojcikowski [19] proposed an algorithm for real-time HR estimation by a wrist-
wearable device. The device incorporates PPG and accelerometer sensors. The acceleration
signal is used to detect body movements which distort the PPG signal. The evaluation
results evidenced that the developed algorithm for HR measurements outperformed the
other algorithms from the literature.

Münzner et al. [20] presented methods for development of robust deep learning (DL)
methods for human activity recognition (HAR) addressing the problems of normalization
and fusion of multimodal sensor HAR data. The results show that sensor-specific normal-
ization increases the prediction accuracy of the convolutional neural networks (CNN). In
the context of multimodal HAR, further normalization techniques should be investigated
which focus on other modalities such as physiological sensors.

Tang et al. [21] proposed a new CNN that uses hierarchical split (HS) for a large variety
of HAR tasks, which can enhance multi-scale feature representation ability via capturing a
wider range of receptive fields of human activities within one feature layer. Benchmarks
demonstrated that the proposed HS module is an impressive alternative to baseline models
with similar model complexity and can achieve higher recognition performance.

Zhang et al. [22] presented a Deep Neural Network (DNN) to detect lumbar-pelvic
movements (LPMs), including flexion, lateral flexion, rotation, and extension, locally on-
device, where the data were collected from a clinically validated sensor system. Continuous
monitoring of these movements can provide real-time feedback to both patients and medical
experts with the potential of identifying activities that may precipitate symptoms of low
back pain (LBP) as well as improving therapy by providing a personalised approach.

Aside from the prototypes that emerged from literature research, as depicted in Table 1,
there are wrist-worn commercial products available which utilize PPG sensors for obtaining
physiological measurements, as shown in Table 2. Empatica E4 [23] is a wearable wireless
multisensory device for real-time data acquisition and computerized biofeedback. E4
comprises four embedded sensing modules: a photoplethysmography (PPG) module, an
electrodermal activity (EDA) module, a 3DOF accelerometer module, and a temperature
sensing module. E4 offers the readings of HR, activity status and temperature while being
capable of characterizing the function of the autonomic nervous system, EDA for assessing
the sympathetic activation and HRV for assessing the parasympathetic activation. The
device is compliant with international safety and emissions standards. MaxRefDes103# [24],
is a physiological signal sensing band reference design available to the research community
for further development. It is a wrist-worn wearable exhibiting high sensitivity and algo-
rithmic processing capabilities comprising an enclosure and a biometric sensor hub with an
embedded algorithm that processes PPG signals in real time for extracting HR and SpO2
only. Eventually, its corresponding output and raw data are streamed via Bluetooth to an
Android application or PC GUI for demonstration, evaluation, and further elaboration. In
addition to displaying the extracted HR and SpO2, the Android application furnishes addi-
tional algorithms for calculating RR, HRV, and sleep quality. Other wrist-worn wearables
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used for health monitoring are the Fitbit Versa 3 [25], Samsung Galaxy Watch 4 [26] and
Apple Watch Series 7 [27]. The Fitbit smartwatch records the physiological features: HR,
SpO2, skin temperature variation, sleep stages and RR measurement during sleep. Fitbit
utilizes the BLE communication protocol and has mobile applications compatible with
Android and iOS. Both the Samsung Galaxy Watch 4 and the Apple Watch Series 7 hold the
capability for ECG and sleep monitoring. Moreover, both wearables calculate the HR and
SpO2 physiological parameters and provide their data wirelessly through BLE/Wi-Fi and
BLE correspondingly. The Samsung wearable is compatible with Android while the Apple
wearable is compatible with iOS. As can be seen, among the approaches and the wearable
solutions, there are limitations concerning the set of physiological values provided.

Table 1. Indicative functionalities and features of prototypes emerged from literature research.

Device
Functionalities

and Features

Proposed
Device

Zenko et al. [14] Son et al. [15] Jarchi et al. [16] Preejith et al. [17] Eugene et al. [18] Wojcikowski [19]

PPG X X X X X X X

SPO2 X X X X X

HR X X X X

RR X

Acceleration X

Continuous
Measurement X X X X

Communication
Protocol Wi-Fi N/A 1 BLE BLE BLE BLE BLE

Battery life in
streaming mode 48 h NS 2 NS NS 40 h NS NS

RT raw data X N/A N/A N/A N/A N/A N/A

1 N/A: non-available. 2 NS: non-stated.

Table 2. Indicative functionalities and features of prototypes emerged from literature research.

Device
Functionalities

and Features
Proposed Device Empatica E4 [23]

MaxRef
Des103# [24]

Fitbit Versa 3 [25]
Samsung Galaxy

Watch 4 [26]

Apple Watch
Series 7

[27]

PPG X X X X X X

SPO2 X X X X X X

HR X X X X X X

RR X X

Acceleration X X X X X

Continuous
measurement X X X X X X

Communication
protocol Wi-Fi BLE BLE BLE BLE/Wi-Fi BLE

Autonomy in
streaming mode 48 h 24 + h NS 12 + h 40 h 18 + h

RT raw data X N/A X N/A N/A N/A

Our proposed comprehensive system introduces a non-invasive wrist-wearable device
capable of capturing the PPG signal and extracting in real time the HR, RR, SpO2 physio-
logical parameters simultaneously as well as rendering the raw PPG signal available which
allows further processing for the sake of new bio parameters and features assessment. The
extraction process takes place in situ ensuring the optimal utilization of its resources as
well the network ones. It is a lightweight and embedded device with minimum add-ons
exhibiting optimized memory capacity and processing power. It supports direct connec-
tion to 802.11.xx communication infrastructures which makes it an ideal candidate for
instantaneous unhindered use in existing communication infrastructures offering high
speed information sharing. Additionally, a cloud based back-end infrastructure offers all
the required means to securely store the aggregated via https data in a time-series man-
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ner where end users and health professionals can perform visualization and algorithmic
processing, respectively.

3. Proposed Device Components

This section focuses on the design and development aspects of the proposed wrist-
wearable device for the continuous monitoring of the PPG physiological signal and the
extraction in real time of the HR, SpO2 and RR physiological parameters. Its scope is to
provide an unobtrusive means to accurately assess the physiological data of the users’
enabling them to monitor their well-being status. The proposed design follows a modular
approach both at physical (hardware modules) and at operational level (software modules)
as described below.

3.1. Hardware Modules

The wrist-wearable device is a microcontroller-based device designed for continuous
monitoring of PPG. The device extracts the HR, SpO2 and RR physiological parameters
by implementing dedicated algorithms and transmitting the information over Wi-Fi to
a developed web-based platform. The device is powered by a Lithium Polymer (LiPo)
battery which can be charged using a USB cable. It is also equipped with an on-off switch
for turning on or shutting down the device accordingly. Figure 1 depicts the block diagram
of the proposed embedded device along with its external peripherals.

Figure 1. Block diagram of the developed wearable device.

The hardware components of the device are surface mounted on a custom printed
circuit board (PCB) which was designed considering effortless repair, analysis, and field
modification of circuits with dimensions of 66.0 × 42.0 mm.

• Microcontroller and Radio The device’s microcontroller board incorporates the Espres-
sif ESP-WROOM-02D, which is based on the ESP8266 chip implementing the Wi-Fi
communication protocol [28]. Specifically, the core of the platform is the ESP8266 pro-
cessor of Espressif systems, which is a Wi-Fi SoC integrating the full TCP/IP stack. The
developed firmware code for the acquisition and the processing of the PPG signal, the
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extraction of physiological measurements and the code for the wireless transmission
is being executed on the ESP8266 microprocessor. The ESP8266 integrates a Tensilica
L106 32-bit RISC processor, achieving ultra-low power consumption and reaches a
maximum clock speed of 160 MHz Moreover, ESP-WROOM-02D integrates an RF
switch, matching balun, and a PCB antenna.

• Sensing Components Two sensing components are integrated into the embedded
device, an optical sensor, and an accelerometer. MAX30102 is a high-sensitivity optical
sensor able to continuously obtain the PPG signal and it is mounted on the standalone
MAXREFDES117# reference board [29]. This low-power sensor board with a size of
12.7 mm × 12.7 mm is placed on the downside of the device’s PCB. In addition, the
main board of PCB incorporates the Analog Device’s ADXL362 sensor, which is an
ultra-low-power, 3-DOF MEMS accelerometer with measurement ranges of ±2 g, ±4 g,
and ±8 g [30].

• Power Supply The board is powered by either a Li-Ion 1600 mAh battery or the USB
port. The power supply source is automatically switched on by the hardware. The
battery is being recharged when a common USB power supply is connected to the USB
port with a charging current set at 350 mA, controlled by the Microchip’s MCP73831
chip. The voltage of the power supply is stabilized by the Analog Device’s chip
ADM7170 at 3.0 Volts and the board can harness all the available battery charge. The
ADM7170 monitors constantly the voltage across the battery and cuts off the power
supply of the circuit when the battery is not able to provide the correct voltage and
current to the circuit.

• USB to Serial programmer The USB port can also be used to program the ESP8266
without the need of an external programmer. Furthermore, it is possible to manually
download the code using a switch and two buttons mounted on the PCB. The necessary
translations of the USB protocol to Serial are performed by Silicon Labs, CP2102 chip.

A custom casing was designed to enclose the device using a 3D printer with PLA
material. Figure 2 presents the printed circuit board of the device as well as the complete
wearable device mounted on the wrist. The device is designed to be worn on the left hand
and the placement is approximately 2 cm from the beginning of the wrist. Constant pressure
between the PPG sensor and the skin is applied with the aid of the attached wrist strap.
Inappropriate device placement results in insufficient light detected by the photodetector,
a condition which activates a notification for proper alignment on the interface of the
web-based platform.

 

Figure 2. The proposed wearable device.

3.2. Software Modules

The main operation of the proposed SW modules include
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• The adaptation of the optical sensor configurations to each individual user’s wrist and
skin physiology;

• The processing of the accelerometer’s signal to detect the respective subject’s motion
• The appropriate filtering of PPG signals;
• Their further processing for extracting HR, SpO2 and RR physiological parameters.

Figure 3 overviews the device’s algorithmic operation.

Figure 3. Flow chart of the algorithm.

3.2.1. PPG Acquisition

The principle of the device’s operation is PPG signal recording. During the initial stage,
the Automatic Led Emission Control (ALEC) technique is performed, which algorithmically
mimics the Automatic Gain Control closed-loop feedback circuit. ALEC automatically
adjusts the system to the specific characteristics of each user, as it regulates the LEDs
luminosity depending on skin tone and the diameter of the wrist of each user. During
experimentation it was observed that the ADC output tends to alter in time. The former
observation was attributed to the fact that even with perfect placement, the device is subject
to slight movement, whereas the latter, to the unique physiology of each subject’s wrist and
skin tone. To eliminate this problem, the LED level is adjusted until the ADC output reaches
a satisfactory level that is optimal for the imminent signal processing and for not reaching
saturation. This technique was developed to lead the system to a consistent response.

Subsequent to ALEC the device starts recording the IR and RED PPG signals along
with acceleration data. The acceleration is monitored with the aim to detect conditions of
intense movement. The segments of the PPG signal captured in circumstances of extensive
movement impose catastrophic Motion Artifacts (MAs) onto the raw PPG signal, deeming
the extraction of any physiological parameter unfeasible [31]. To overcome this, segments
of the PPG where motion is detected are excluded and the sampling restarts. To detect
motion, the built-in logic of the ADXL362 is utilized, whose activity and inactivity events
are used as triggers for manipulating the PPG sampling. An activity event is triggered when
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acceleration of the device remains above a predetermined threshold for a specified time
period. The accelerometer features two modes of operation, the absolute and referenced
configuration. During the absolute type of operation, each incoming acceleration sample
is compared with a user defined threshold, which when surpassed for a certain amount
of time, signals that activity is detected. On the contrary, during the referenced mode of
operation, each acceleration sample undergoes a regularization, to remove the effects of
gravity, able to reach 1 g, and account for the status of the device prior to sampling. This is
achieved by subtracting an internally determined value, captured regularly during inactive
periods, from the acceleration sample. The corrected acceleration value is then compared
with the user defined threshold, and in cases it is surpassed, an activity event is issued.
Consequently, activity is detected only when the acceleration has deviated sufficiently
from the initial orientation. The threshold selected for the activity event was set at 350 mg
for at least 1 s. This helps to eliminate only movements whose intensity can obscure the
physiological parameters estimation and allows lower intensity motion to be handled by
the signal processing algorithm.

3.2.2. Signal Processing

The PPG signal consists of AC and DC components. The DC component corresponds
to non-pulsatile tissue, while the AC component alternates according to the heart cycle.
Only the variable part of the signal is relevant for HR and RR determination; thus, the
mean value is usually subtracted from the signal used in the HR and RR measurement. The
recorded raw PPG signal is shown in Figure 4.

Figure 4. Raw PPG signal.

The implemented device, which is thoroughly described in [32], deploys an algorithm
for the digital processing of the PPG signal in the time domain to remove the effect of MAs
and the DC component. Given the fact that the appropriate to our analysis frequencies of
the PPG signal are ranging from 0.1 to 5.0 Hz [33], an IIR Butterworth bandpass filter with
a passband of [0.1, 5] Hz is applied prior to signal manipulation. The variable component
of the signal after filtering is shown in Figure 5.
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Figure 5. Filtered PPG signal.

Aiming at producing reliable estimations of the physiological parameters, extensive
experiments were performed which resulted in the requirement for a PPG signal collection
of at least 30 s. Within this time, useful raw PPG signal is certainly included, enabling the
procedures of processing and physiological data extraction. Consequently, the measure-
ments are produced every 30 s in cases of absence of considerable movement. As long
as there are new measurements, the data are sent to the backend through Wi-Fi. Imple-
menting the mentioned operating specifications, the device sustains a battery life of 48 h in
continuous operation.

3.2.3. Heart Rate Estimation

For the estimation of the HR, the acquired signal of the infrared (IR) led source is
utilized. After filtering the IR PPG signal, the Slope Sum Function (SSF) is applied [34], as
shown in Equation (1). The procedure amplifies the peaks of each pulse and suppresses the
noise represented by lower amplitudes.

SSF = ∑n
k=0 Δxk

2 where Δxk = {Δsk : Δsk > 0, 0 : Δsk ≤ 0}, (1)

At this stage, the emphasized peaks of each window of the SSF output signal are
identified as local maxima, as shown in Figure 6. After locating the peaks and estimating
the time difference -d- between them, the instantaneous HR is computed for every pair of
successive peaks using the Formula (2) [35]:

HRinst =
6 × 104

d
, (2)

Finally, the HR measurement is reckoned as the average of the instantaneous HR
values in a 30 s time window.

3.2.4. Blood Oxygen Saturation Estimation

To enable the assessment of the blood oxygen saturation in the blood, two LEDs,
operating at the RED and IR wavelengths are utilized [36]. The principle of pulse oximetry is
based on the comparison of the two waveforms, whose deviation is a direct indicator for the
oxygen saturation. Their deviation occurs due to the different amount of light absorbed and
emitted by the two types of hemoglobin, namely oxyhemoglobin and deoxyhemoglobin.
Regarding the red wavelengths, deoxyhemoglobin absorbs a higher amount of light than

148



Sensors 2022, 22, 5226

oxyhemoglobin, while the opposite happens in the infrared region. Hence, the responses
from the RED and IR LEDs captured from the photodetector are different.

Figure 6. SSF output.

The PPG waveform consists of two different components: the DC component corre-
sponding to the light diffusion through tissues and non-pulsatile blood layers, and the
AC (pulsatile) component due to the diffusion through the arterial blood. The developed
algorithm locates the existing peaks and valleys and subsequently calculates the AC and
DC components of both RED and IR PPG waveforms [37]. The DC component fluctu-
ates slightly with respiration, while the AC component oscillates in concurrence with the
changes appearing in the volume of arterial blood during the cardiac cycle [38]. Given the
AC and DC components, a ratio R is calculated by the Equation (3):

R =
ACRed/DCRed

ACIR/DCIR
, (3)

Eventually, the SpO2 value is estimated using the Equation (4) provided by Maxim
Integrated:

SpO2 = −45.006 × R2 + 30.354 × R + 94.84, (4)

3.2.5. Respiratory Rate Estimation

To perform RR estimation, two modulated signals need to be extracted from the
original PPG signal obtained from the IR signal [39]. The two components, namely the
Frequency Modulation (FM) and the Amplitude Modulation (AM), illustrate the effects
of respiration as a physiological process on the PPG signal. Respiration is a complex
process consisting of various mechanisms which cause many subtle changes to the original
PPG signal. The most prominent of those effects regard FM which is the manifestation of
the spontaneous increase in the heart rate during the inspiration and the corresponding
decrease during expiration [40] and AM which is the result of reduced stroke volume
during inhalation reducing the pulse’s amplitude [41].

Following the raw PPG acquisition, a bandpass filter is applied to eliminate frequencies
not related to respiratory information. The process of peak characterization includes
separating the waveform in individual pulses and detecting their maximum value. The
FM can be defined as the time difference between two consecutive peaks as described in
Equation (5), whereas the AM is formed by each individual amplitude peak of the signal
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as shown in Equation (6). Each time value assigned to the FM and AM signal samples is
calculated as the mean of the time of occurrence of two peaks as shown in Equation (7).

xFM =
∣∣∣tpeaki−1

− tpeaki

∣∣∣, i = 2, .., N, (5)

xAM =
∣∣∣ypeaki

∣∣∣, i = 1, 2, .., N, (6)

t =

∣∣∣tpeaki+1+
tpeaki

∣∣∣
2

, i = 2, .., N, (7)

The values of the modulated signals are not homogenous, thus inhibiting the signal
processing. To evenly sample the two waveforms, Shape-Preserving Piecewise Cubic
Interpolation is performed on the acquired data points and the sampling rate is set at 4 Hz.
Prior to the Fast Fourier Transform (FFT), a Hamming window is applied to minimize the
side lobes of the frequency response.

At this stage, the two power spectra are combined to amplify the potential peaks, the
dominant frequency (Fd) in the plausible range is identified and the final RR value is then
computed by Equation (8):

RR = Fd × 60 (breaths/min), (8)

3.2.6. Data Transmission

The wearable device transmits data to an API endpoint via Wi-Fi, implementing
the HTTPS communication protocol which follows the HTTP protocol over a secure and
encrypted connection. A time window of 30 s interposes between two data transmissions.
A payload in URL encoded format is generated, which includes the values of physiological
parameters collected by the wearable device; HR, SpO2, and RR. In addition, the payload
includes the MAC address of the Wi-Fi’s Access Point (AP) and the battery level of the
wearable device. The parameters of the payload are described in Table 3.

Table 3. Parameters of payload.

Variable Description

mac MAC address of the Wi-Fi AP
bat Battery level of wearable device

timestamp The time when the measurements are extracted (in the form of
Epoch Unix Timestamp)

hr Heart rate
spo2 Blood oxygen saturation

rr Respiratory rate

The API service, located on the server-side of the proposed web-based application,
provides an endpoint to wearable device in which it can POST requests. Therefore, a
parametric URL, presented in Figure 7, is utilized by the API service. By the time a POST
request is applied to the API service, it parses the URL, deploys the GET variable to extract
the value of each parameter, validates that each parameter has the appropriate format and
stores the parameters into the database.

 

Figure 7. API service parametric URL.

The MAC information is included as the proposed device has the capability of con-
necting to the Wi-Fi AP with the best signal strength in the case there is more than one
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Wi-Fi AP in the surrounding space. The AP with the highest signal strength will be the
closest to the user. Thus, the MAC address of a particular AP can be exploited for assuming
the approximate location of the user, given the location of each AP.

Typically, the SSID and the password of the Wi-Fi network are assigned into variables
within the device’s code. This would require the end-users to enter their Wi-Fi credentials
and upload new code on the device. To overcome this, the Wi-Fi Manager library is
implemented, which allows end-users to connect to different APs without having to interact
with the firmware. More specifically, when the device is activated by a user, a connection to
a previously saved AP is attempted. If this process fails, the AP mode is enabled, allowing
the user to configure a new set of SSID and password. The user has to navigate to a web
page with default IP address 192.168.4.1 and enter his Wi-Fi credentials into a form. Once a
new valid set of SSID and password is set, the device automatically reboots and establishes
a connection.

The device also has the capacity to locally store data in cases of dropped or lost Wi-Fi
connection. ESP8266 module provides the user with a flash memory of 1 MB, from which
the 0.4 MB are occupied by the device’s firmware. The remaining available memory is
utilized for storing the measurements produced during the absence of network connection.
The saved data are transmitted when the Wi-Fi connection is restored and then the device
continues its regular operation. The device extracts the physiological parameters every
30 s and transmits them along with other data. As mentioned, the 30 s time period is
a specification, which emerged during the trials, since within this time period, useful
raw PPG signal is definitely included, facilitating the production of reliable physiological
data values.

3.2.7. Measurements Evaluation

Aiming to evaluate the performance of the suggested wrist-wearable device and the
accuracy of the corresponding extracted physiological parameters, commercial off-the-
shelf certified devices were used. The values obtained by these devices are considered as
reference and are compared with the values of the proposed wrist-wearable device.

Regarding the evaluation process of HR and SpO2 physiological parameters a medical
finger pulse oximeter was utilized. The commercial finger pulse oximeter chosen is a certi-
fied medical device manufactured by Berry: BM2000D Bluetooth Pulse Oximeter [42]. The
accuracy of RR determination methodology was evaluated utilizing the chest worn Zephyr
BioHarness device, which is a physiological monitoring system with proven reliability in
determining RR [43].

Ten healthy subjects with varying wrist circumferences and skin tones were provided
with the wrist-wearable device and the reference devices. In particular, the subjects were
equipped with the proposed wrist-wearable device and the Berry Pulse Oximeter along
with the Zephyr BioHarness as ground truth devices. The experiments were performed at
a sedentary state and the total duration of the experiment for each subject was 1 h, yielding
an aggregation of 10 h of data.

To analyze the alignment between the data acquired from our proposed device and
those from the reference instruments, the Bland–Altman plot was deemed ideal. The
Bland–Altman graph consists of a plot of the difference between paired readings of two
variables, in our case the derived and the reference values, over the average of these
readings. Incorporated into the plot are the ±1.96 SD lines (the Confidence Interval)
parallel to the mean difference line.

Figures 8–10 present the comparative analysis of our data and render the proposed
device a reliable system for the extraction of the desired physiological parameters.
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Figure 8. Bland–Altman plot for HR.

 

Figure 9. Bland–Altman plot for SpO2.

 

Figure 10. Bland–Altman plot for RR.
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The Bland–Altman plot displays four types of data misbehavior: systematic error
(mean offset), proportional error (trend), inconsistent variability, and excessive or erratic
variability. It should be noted that the Bland–Altman comparison method innately as-
sumes that the two methods compared are portraying close results, a condition satisfied in
our analysis.

4. Web-Based Application

Nowadays, web-based applications dominate markets as they offer considerable
advantages over traditional desktop applications. Web-based applications run directly
on web browsers, demand minimal computer resources, do not require any installation
process, are highly scalable, and maintenance tasks are performed centrally on the web
server. In addition, they are portable and cross-platform available, which allows users to
access them from any place and any type of device. Therefore, web-based applications are
deemed to be the optimal solution for flexible projects.

Web-based applications can be structured with various architectural patterns. The
proposed one adopts the client-server model. The client-side refers to the visible and
interactive part of the application, whereas the server-side is responsible for processing
client requests and responses. In most cases, the server-side includes a database to support
transactions with data and API services to support interoperability with end-devices
and systems.

4.1. Front-End Implementation

Front-end stands for the client-side of a web-based application. It provides a graphical
interface, which allows end-users to interact with the web-based application and visualizes
the information acquired by the wearable device. The front-end of the proposed web-based
application employs the core web technologies; HTML5 structures the UI components, CSS
styles the UI components, and JavaScript enables interactivity between the UI components
and the end-users. In addition, a series of external frameworks and libraries were utilized
to optimize the development process, i.e., to meet the business objective of the web-
based application with minimal effort cost, achieve high performance standards, and
ensure the appropriate infrastructure for further scalability. More specifically, Bootstrap
framework, an open-source framework for front-end development, employed to accelerate
the development process, optimize the overall performance in terms of computational
resources, and provide a set of user-friendly and highly customizable UI components. This
framework supports responsive design for web-based applications and incorporates web-
accessibility standards. Chart.js, an open-source JavaScript library, employed for advanced
chart implementation within the front-end. It offers pre-built and highly customizable UI
chart components, allows efficient handling of data objects, optimizes the performance of
charts’ drawing process, and improves the style of visualized data. jQuery, a lightweight
and open-source JavaScript framework, employed to simplify event handling, improve the
manipulation of UI components, and empower the interactivity capabilities.

The dashboard, shown in Figure 11, is the core interface of the front-end, and serves
as personalized analytics overview and real-time monitoring tool. The primary objective
of the proposed dashboard relates to the visualization of the user’s latest measurements,
captured by the wearable device, in an intuitive and user-friendly way. Therefore, it
employs UI components, mainly embedded line charts within cards, to depict the trend
of each physiological parameter over the last one hour. Charts establish an asynchronous
connection with the database; thus, they are automatically updated in a real-time manner
with the latest measurements recorded by the wearable device. The horizontal axis of each
chart represents the time, whereas the vertical axis represents the captured values of the
specific physiological parameter displayed. Below each chart stands a card footer which
informs end-users for the time of the chart’s data latest update.
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Figure 11. The UI of dashboard.

Another core component of the front-end is the horizontal navigation menu bar,
placed at the UI’s header area. It comprises a minimal information area, which displays the
connection status of the wearable device and the battery level, as well as a list that maps
the analytics and account areas of the web-based application. Analytics areas (Figure 12)
visualize historical data for the corresponding physiological parameter in a user-friendly
way. In addition, they implement a data picker filter to allow end-users apply the desired
time span of the displayed data.

 

Figure 12. The UI of heart rate analytics.
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Account area (Figure 13) displays a list with the available Wi-Fi networks and permit
users to perform two (2) actions; edit network and delete network. The ‘edit network’
action allow users to change credentials of an existing Wi-Fi connection and ‘delete network’
action allows users to remove a specific network from the saved networks list. Moreover,
from the ‘Account’ page, users can configure a connection with a new network.

 

Figure 13. The UI of user account page.

4.2. Back-End Implementation

Back-end stands for the server side of a web-based application. On the back-end
side, the web-based application implements embedded PHP scripts within the front-end
code to provide dynamic functionalities. The dynamic aspect of the web-based application
enables the capability to retrieve and visualize data from the database in a near real-time
manner. The back-end comprises a RESTful API that allows submission of collected data
from the wearable device into the database. More specifically, it parses a JSON object with
the payload’s data and decodes it to extract each value and insert it into the database.
A data validation process takes place to ensure the quality of data, such as checks for
duplicate entries, appropriate data format and type, null values. In addition, SQL queries
are executed to confirm that the extracted identifiers exist on the database to avoid conflicts
on the data selection process.

A user authentication mechanism stands at the back-end, too. It has been implemented
with Keycloak, an efficient, reliable, and extendable authentication and resource access
management framework for web-based applications. The proposed application supports
rights for two (2) roles, the administrator and the user. Administrators can access only an
administrative dashboard page from which they can perform administrative tasks such as
manual password resets, user account management, and service health monitoring. Users
can access only the application UI resources—dashboard, analytics pages and account
configuration page—from which they can keep up with visualized insights, apply changes
related to their account information, and configure connections with networks.

The web-based application employs a MySQL database to perform transactions with
data automatically collected by the wearable device and data manually provided by the
end-users. Automatically collected data are included within the transmitted payload,
i.e., physiological parameters, timestamp and MAC address. The database adopts a re-
lational schema which structures the data into tables, as shown in Figure 14. The core
functionality of the web-based application, i.e., data visualization, user authentication,
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and connection configuration, relies on four (4) tables; “Users”, “Devices”, “Connections”
and “HealthRecords”.

 

Figure 14. Database schema.

1. The table of “Users” represents the entity of end-user. It stores information related to
each end-user’s authentication credentials and the identifier of wearable device which
is registered by the specific end-user. The primary key (PK) of this table is ‘UserId’
(int) which is automatically produced when a new end-user registers the web-based
application. Therefore, auto-increment indexing has been declared to this attribute.

2. The table of ‘Devices’ represents the entity of wearable device. It stores minimal
information related to the matching between end-users and wearable devices. The
primary key (PK) of this table is the attribute ‘DeviceId’ (varchar) which corresponds
to the MAC address of each wearable device, as parsed from the transmitted payload.

3. The table of ‘Connections’ stores information related to the Wi-Fi connection estab-
lished between the wearable device and the local network. It stores information about
the credentials of each connection, i.e., SSID and password. For each set of credentials,
stands a ‘ConnectionId’ (int) which is automatically produced at the server-side with
auto-increment indexing.

4. The table of ‘HealthRecords’ stores information related to the physiological parame-
ters. It has composite primary key (PK) which consists of the user identifier, wearable
device identifier, and timestamp of the collected measurements. The attributes of user
and wearable identifiers are foreign keys (FK) ‘Users’ and ‘Devices’, respectively. In
addition, it includes attributes that represent all the physiological parameters collected
by the wearable device, i.e., heart rate, SpO2, and respiratory rate.

5. Discussion

Physiological parameters provide critical information about individuals’ well-being
status and signal early signs of a body dysfunction. For example, detecting an abnormally
high HR could be an indicator that actionable measures should be taken to achieve healthy
levels in order to reduce the risk of cardiovascular disease, while monitoring RR can
detect early signs of a respiratory illness or allergy. SpO2 is useful in any setting where an
individual’s oxygenation may be unstable or low for determining the sufficiency of oxygen
or the need for supplemental oxygen.

Digital health technologies facilitate an individual-focused preventative approach
through continuous monitoring of physiological parameters. This approach paves the way
for personalized treatment, better care access and quality of service.

Providing that the subject be in a sedentary state, the proposed wearable apparatus in-
troduced here, can unfailingly detect PPG signals and then reliably extract the physiological
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parameters of HR, SpO2 and RR. Specifically, the device achieves a mean percentage error
equal to 2.47% and 0.8% for HR and SpO2, respectively, while estimating the RR parameter
with a deviation of ±1.4 breaths per minute. The evaluation procedures showed that the
wrist-wearable device can accurately detect fluctuations of the physiological parameters
in a sedentary state. Consequently, it can be used to effectively monitor well-being status
and provide valuable information. Moreover, a portable and cross-platform available
web-based application has been developed, which serves as an informative and Wi-Fi
connection establishment tool, from which individuals and health professionals can access
the entailed parameters in a user-friendly and efficient way regardless the location, the
type of device, and the operating system, and handle connections with networks in a
simple way.

Impetus for future work is to enhance the accuracy of the extracted parameters in all
respects. Our endeavor aspires to adopt an accelerometer-based detection and removal of
faulty PPG segments or a signal preprocessing approach for MAs elimination. Alongside
this, more trials with different subjects should be further performed. Collecting a larger
amount of sample data from users of a broader spectrum in terms of age or skin color
would also provide an opportunity for better algorithm calibration. Our future research
interest is also focused on a multi wavelength photoplethysmography approach, which
has proven superior performance than the single wavelength. Recently, advances on the
sensing modality for detecting light from multiple sources enabled the development of
a single chip sensor, removing the need for spectrometers, which have a prohibitive size
for a wearable device. Moreover, in an effort to expand our knowledge on the effect of
the light wavelength on the quality of the PPG signal, experiments are being conducted at
wavelengths other than the red and infrared, which are currently used. Last but not least,
such a device paves the way for injury prevention, early detection of illnesses or disorders,
as well as early interventions with the aim to avoid the deterioration of health conditions.

6. Conclusions

This work presents in both physical and operational level all the discrete components
of a comprehensive, user-embracive system able to unobtrusively record and process
vital physiological parameters. It comprises a non-invasive wrist-wearable device able to
incessantly detect PPG signals and solidly extract the physiological parameters of HR, SpO2
and RR and a multimodal web-based application via which the end users visualize real-time
or historical data while allows health professionals to interact with that data for further
algorithmic processing. The configuration of the system and its Wi-Fi connection was
designed to be effortless even for older individuals that are not so much accustomed to high-
end technology. The wrist-wearable device is a lightweight modular embedded device with
a microcontroller based main board exhibiting optimized memory capacity and processing
power, as well as long autonomy, and portable mounted off-the-shelf sensors for capturing
the PPG signal. Moreover, by supporting direct connection to 802.11.xx communication
protocols, it is an ideal device for the utilization of existing communication infrastructures
that offer high speed information sharing. The cloud based back-end infrastructure offers
all the required means to securely store the transmitted data from the wearable device
over HTTPS protocol in a time-series manner. Both health professionals and end users
themselves have easy access to historical and real-time data. The professionals can utilize
the collected historical data to perform statistical analysis or execute AI/ML methods, aim
to obtain valuable health information either for an individual or a group of them, thus
unlocking a vast field of possibilities. The end users can glance at their data according to
their preferences, simply by applying filters to adjust the friendly UI chart components of
the front-end.

The accuracy assessment of the extracted physiological parameters, along with the evalu-
ation of the system performance, were carried out against commercial off-the-shelf certified
equipment, which was worn by healthy subjects with different anatomical characteristics.
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Future actions include the increase in accuracy of the extracted parameters in all
respects, the enhancement of the algorithmic processing capabilities and the execution of
more trials on diverse subjects.
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Abstract: There has been a subsequent increase in the number of elderly people living alone, with
contribution from advancement in medicine and technology. However, hospitals and nursing homes
are crowded, expensive, and uncomfortable, while personal caretakers are expensive and few in
number. Home monitoring technologies are therefore on the rise. In this study, we propose an
anonymous elderly monitoring system to track potential risks in everyday activities such as sleep,
medication, shower, and food intake using a smartphone application. We design and implement
an activity visualization and notification strategy method to identify risks easily and quickly. For
evaluation, we added risky situations in an activity dataset from a real-life experiment with the
elderly and conducted a user study using the proposed method and two other methods varying
in visualization and notification techniques. With our proposed method, 75.2% of the risks were
successfully identified, while 68.5% and 65.8% were identified with other methods. The average
time taken to respond to notification was 176.46 min with the proposed method, compared to 201.42
and 176.9 min with other methods. Moreover, the interface analyzing and reporting time was also
lower (28 s) in the proposed method compared to 38 and 54 s in other methods.

Keywords: elderly monitoring; successful aging; mobile application; gerontechnology

1. Introduction

Advancements in medicine and health care technologies have led to an increase in
life expectancy over the years. It is expected that, by 2050, there will be at least 2 billion
people over the age of 60 years [1]. The statistical handbook of Japan released in 2021 by the
Statistics Bureau, Ministry of Internal Affairs and Communications, Japan has revealed that,
in 2015, there were about 22 million households with residents aged 65 and above, including
6 million who lived alone [2]. Living independently, especially for the elderly, is risky
because, in addition to mental problems such as memory loss, depression, and loneliness,
there can be physical problems such as falling down, issues with eyesight, hearing loss,
back pain, etc. [3]. Though different remedies have been developed for different types of
physical and mental ailments, with an increasing number of elderly people, it is apparent
that there is a need for monitoring and anomaly detection mechanisms. A lot of research
has thus contributed to recognizing, predicting, and monitoring activities inside smart
homes [4,5].

As people get older, their involvement in different physical and mental activities
decline [6]. They go out less, engage in activities related to physical fitness less, have
difficulty with reading for a long time due to weakened eyesight, and so on. Similarly,
they deal with issues they had not dealt when they were younger, such as the need to
take medication every day and the adverse effects of missing a meal. Similarly, falls or
any similar incidents tend to make the elderly cautious in their activities, impacting their
confidence, activity completion, and social interactions. Therefore, it becomes imperative
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to track whether the elderly has completed basic day-to-day activities every day in order
to detect any abnormal conditions that might have occurred or might occur [5,7]. There
have been many advancements in human monitoring, collecting vital health statistics and
tracking human behavior over the recent years [8]. Off-the-shelf sensors can be now used in
houses that can provide information about light intensity, temperature, and usage of doors
and appliances of houses [9], making it possible to determine activities inside the house.

Research has also been carried out in health care centers, but implementing such
technology in the home environment is more suitable for the elderly. The elderlies have
made memories over the years in their home and have possessions they cherish [10].
Hence, they feel more comfortable to live in their own home as well as conduct their basic
everyday activities. Moreover, hospitals and health care centers are either expensive or
overbooked. The cost can be reduced by up to 52% when patients receive treatment and
help in their home compared to hospitals [11]. It is therefore necessary to develop systems
that can help to enhance elderly care in their own home rather than hospitals or support
homes. Professional caretakers are expensive as well, and with the increasing number of
elderly people they tend to be overbooked and busy [5]. Home monitoring technologies
can help family members and relatives who are far away be assured about the safety
and contentment of the elderly [1]. However, their busy schedule may not allow them to
monitor the activities regularly, which is why personnel dedicated to remote monitoring
such as remote caretakers or volunteers should be assigned the monitoring responsibilities.

With these issues in consideration, in this paper, we propose a monitoring system,
PATROL (Participatory Activity Tracking and Risk assessment for anOnymous eLderly
monitoring) that can track basic activities of the elderly anonymously inside their home
and detect or prevent any potential risks in their day to day activities using a smartphone
application. For the successful implementation of the PATROL system, the following re-
quirements need to be fulfilled: (Req. 1) anonymous monitoring, (Req. 2) timely monitoring and
report of activities, and (Req. 3) easy and intuitive risk detection because of the following reasons.

Home monitoring can be considered intrusive as in some cases, the elderly may
prefer to hide things in their house if there is a video based monitoring or surveillance
system [12]. Similarly, they are also usually concerned about privacy and security, and the
types of information about them that are disclosed [1]. This is why we propose anonymous
monitoring (Req. 1), where any personal details of the elderly being monitored is not
disclosed to the monitoring person. Smartphones are a suitable device for regular tracking
and monitoring since many people carry them the whole day or they are always in the
vicinity of the users. Furthermore, notifications have become an essential feature of most
of the smartphone applications [13]. This is why we propose a smartphone application
that can be used by volunteers for tracking and monitoring activities of elderly people.
Similarly, we send frequent notifications in the smartphone application, which ensures that
the monitors can quickly access information about the activities of the elderly, compared
to using web pages (Req. 2). Continuous usage of smartphone applications in general has
been attributed to factors such as ease of navigation, ease of carrying out actions within the
application, and appropriate visual clues [14], which is why we focus on the visualization
of activities and propose a method for visualizing activities and detecting risks in the daily
activities that not only helps to identify risks in the activity visualization easily, but also
incurs a lesser burden to the monitoring person (Req. 3).

Therefore, in this paper, we propose an elderly monitoring system that can be used
by anonymous volunteers to check everyday activities of the elderly and determine if
there are any risky situations in their day to day activities. The anonymity is maintained
by not disclosing any personal or private information of the elderly to the volunteers,
and similarly by not disclosing any personal or private information of the volunteers to the
elderly person. Using volunteers for elderly care is a very common practice in Japan [15]
where part-time civil servants committed by the Minister of Health, Labor, and Welfare as
volunteers, locally known as minsei-iin, are assigned to regularly check the elderly people
personally, have a conversation with them, etc. These part-time civil servants are people
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who volunteer themselves in the area of helping children, elderly people, people with
disabilities, etc. and have no mandatory obligation to serve in such areas. We believe that
our system is an extension of such practice in the field of elderly care. Instead of visiting
the elderly, our volunteers can check the elderly by using the smartphone application
even if they are not in the vicinity of the elderly. This is helpful in cases when the elderly
might not prefer an unknown person to visit them personally, and also in cases where
the number of people serving as minsei-iin might not be enough. Since in our system,
we aim to use multiple monitors, we ensure that the activities of the elderly are regularly
checked. To maintain anonymity, even if the volunteers discover a risky situation in the
daily activities of the elderly, the handling of such a situation, in person, is carried out by
emergency contacts of the elderly, and not the volunteers themselves. For our system, we
define risk as a deviation in start/end time and duration of activities from the usual routine
of the elderly people.

We developed an Android based smartphone application that provides information
about the completion of seven basic activities: sleep, shower, medication, breakfast, lunch,
dinner, and entertainment (use of television (TV)). We created a dataset by including some
risky situations in the elderly activity dataset [16] to determine if those situations can be
detected using our application design. To make the monitoring process less burdensome
and intuitive, we also included visualization features such as a candlestick chart represen-
tation of activities, single interface design, and textual and color codes for their current
state, through which it is easy to infer any deviation in the completion time and duration of
activities. Similarly, we focused on quick tracking and monitoring of activities by including
two types of notifications to trigger frequent use of the smartphone application: one sent
every two hours, and another sent immediately after the elderly completed an activity.

The main contributions of this paper are the following:

1. First, we proposed a novel system that can be used by volunteers to anonymously
monitor completion of daily activities of elderly people, and report if they detect any
deviation in the activities compared to the usual routine of the elderly. We developed
an Android based smartphone application that is designed with numerous visualiza-
tion features and two types of notification strategies to make activity monitoring and
detection of anomalies easy, intuitive, quick, and less burdensome.

2. Second, we evaluated our smartphone application with visualization features and a
two notification strategy by comparing it with baseline methods (the method without
the notification strategy or the visualization features) and confirmed that our proposed
method not only provided better risk identification, but also incurred lesser burden
on the monitoring person. We also show that our proposed method resulted in quick
tracking and monitoring of activities.

The rest of the paper is organized as follows: Section 2 introduces some available
research and how they relate to our study. In the next section, Section 3, we introduce
our system followed by the explanation of our smartphone application. We explain the
evaluation study and findings of the study in Section 4 and in Section 5, and we discuss the
significance of the results for our system along with the limitations of this study. Finally,
we conclude with our contributions in Section 6.

2. Related Studies and Challenges

Increasing demands in safe, secure, and smart homes for the elderly have led to many
research and advances in the field of home monitoring and home automation [4,5,17].
Similarly, with increasing use of smartphone notifications to provide various information to
users, we look into studies that explored reliable triggers to inspire people to respond early
to mobile notifications. With these factors in mind, we studied existing research, which
are divided into two subsections that deal with activity detection and remote monitoring,
and importance of smartphone notifications.
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2.1. Activity Recognition and Remote Monitoring

In recent years, research dedicated to monitoring people and their activities inside
their house has been increasing rapidly since activities of people can be identified with
the help of various sensors that can be attached to different household objects [18]. Most
home monitoring methods utilize camera or video captures to learn about the activities
of the elderly [7]. Video and microphone based monitoring can be time consuming for
monitoring, burdensome, and also intrusive [12], and also restrict the area of the house the
elderly can occupy to regular monitoring [5]. Numerous research studies have been carried
out to tackle not only such problems, but also improve recognition accuracy and reduce
the burden of using wearable sensors. The daily activity pattern of elderly people was
identified using only motion and domotic sensors by identifying the duration of occupancy
of a certain room by the elderly [1]. Similarly, using energy harvesting PIR (passive infrared
sensor) and door sensors, an activity recognition system was developed that was efficient
as well as cost effective [19].

Many other activity recognition systems utilise non-wearable sensors such as motion
sensors [20], Bluetooth Low Energy (BLE) beacon [4,17], wireless accelerometers [21],
a combination of temperature, humidity, and illumination sensors [22], and a combination
of ECHONET Lite appliances and motion sensors [8]. Similarly, deploying a system that
used motion sensors, environmental sensors, and a button to be pressed at the start and
end of an activity, daily activities of the elderly were collected for a period of about two
months in houses consisting of elderly people [16]. All these studies help to highlight
that it is possible to collect activities in the house using sensors such as motion sensors,
environmental sensors, etc. accurately without the use of any wearable sensors in a cost-
effective way and handling concerns for privacy and security.

Activity recognition systems also allow the elderly to live an independent life in their
own house whilst their activities are monitored remotely [5]. There have been measures
to monitor vital signs and biomedical signals of adults with medical conditions [23] or
people working in extreme conditions such as firefighters [24]. The Allocation and Group
Awareness Pervasive Environment (AGAPE) system used on-body sensors to monitor the
elderly and contacted nearby caregiver groups in case it detected an anomaly in sensor
data [25]. Systems can also contact the emergency contact, or caregivers for the elderly if any
anomaly in the collected data are observed, for example, when the data exceed a predefined
threshold [26,27]. When it comes to elderly remote monitoring, fall recognition systems
are also very important, with some systems recording the average response time of fall
detection between 7 min and 21 min [28]. The systems can detect falls using various types
of sensing strategies such as acoustic sensors [29], wearable sensors [30], or accelerometers
in smartphones [31].

Many commercially available products are also available that are used to monitor the
elderly remotely. Systems such as Mimamori [32] and Canary [33] are specially designed
to monitor activities of elderlies by their children and close family members who live in
a distant location. Another system, GreatCall Responder, uses a physical button, called
a responder, that the elderly can press in case they feel they have an emergency, and the
system contacts their caregiver [34]. Similarly, there are systems that track numerous
activities using motion sensors that remote caregivers can monitor using a private and
secure webpage [35,36]. There are also systems that include secure video communication
between doctor and patients for regular or emergency situations, remote health monitoring,
and emergency care services [37,38].

Many elderly people, however, regard new technologies as an invasion of their privacy
and security [10], and tend to accept technologies only if it is beneficial to them or it adheres
to their day to day activities without providing any hindrance [39]. A study revealed that
being monitored in their house, conducting their day to day activities did not affect regular
daily behavior of the elderly [40]. Their extensive study requested the elderly to answer
online questionnaires weekly and included daily activities of sending, reading and deleting
emails, along with tracking their total everyday activities, walking speed, and time spent
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outside their home. Hence, if issues of privacy and security are tackled, and the elderly feel
that the activity recognition system will be valuable to them, then there is higher chance of
acceptance of such a system.

These systems also provide some areas of concern. The alerts are sent to caretakers of
health professionals via text or email [28] or direct phone calls [26]. However, the number
of false alarms, which can be as high as 5 in one hour [29], can cause annoyance to the
caretakers. Similarly, even though the accuracy of fall detection systems is high such
as 97.5% [28] or 94% [30], the information regarding the time it takes such systems to
inform the caretaker or the time it takes caretakers to respond are not explicitly evaluated.
In another system, the activities of elderly were divided into critical, stable, scheduled and
overlooked, and alerts for them were generated in a smartphone application as per the type
such as after 5 min of usual time for critical activity such as medication and after 30 min for
other activities [41]. These alerts were first sent to the elderly, and if they failed to respond,
the caretakers were alerted. However, it is difficult to determine the exact time the elderly
might prefer to do their daily activities. Similarly, in the case of emergency, the elderly may
not be physically able to respond to alerts [41] or press the emergency button [34].

2.2. Smartphone Notifications

Smartphones have become a daily necessity as it helps to tackle isolation, as well
as helping to stay in contact with family and friends easily [42]. Smartphones have be-
come an essential tool to be updated about personal health, work, and news updates [43].
Smartphone owners interact with their phones an average of 85 times a day [44] which
makes them a befitting tool for remote monitoring. Notifications are essential to keep the
users updated about news, emails from work, and information from social media [45].
Although initially they were intended for short message services (SMS) or emails, these
days, notification features are used by almost all of the applications to attract attention
of the users. A study determined that notifications can be divided into two categories:
personal notifications like emails, SMS, or those from social networking sites; and mass
notifications like news and advertisements [46]. They concluded that people tend to attend
to personal notification faster and more frequently than mass notifications.

The response to notifications depends on different factors such as sender, type of alert,
and the visual representation of the alert [47]. In a recent study, it was shown that users
receive approximately 64 notifications each day [48], hence the context of a notification
plays an important role in the response of the notification. Time of notification reception,
activeness of the user, and amount of time the user will take to respond to the received
notification are influential for opening the notification promptly [46]. From a study of about
200 million notifications from more than 40,000 users [13], it was discovered that users view
each notification differently and prefer to respond to notifications from social networking
sites quickly over those from the smartphone system or emails.

Notifications can however lower task performance and affect attention of the user
negatively [45]. Response time and response rate of notifications were determined by
analyzing the current context of the user through audio from their smartphones [49]. They
concluded that the present context of the user plays a very vital role in the response time
as well as response rate of the notifications. Similarly, a systematic review on the effects
of context aware notification management systems found that context aware notifications
increase the response rate [50]. However, it is difficult to predict what time and context
can be considered as appropriate for interruption. Since remote monitoring technologies
can send multiple notifications in a day, it is essential to determine if such notifications
will be viewed as disruptive. Similarly, to our knowledge, the effectiveness of smartphone
notifications in remote monitoring systems, especially using multiple types of notification
strategies, has not been investigated.
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2.3. Challenges

We found out that there are many methods with which activities can be detected
accurately. However, in the case of elderly people, it is also necessary to monitor such
activities on a regular basis [5]. A smartphone application, equipped with adequate
notification strategies, can provide a quicker remote monitoring compared to most of the
remote monitoring platforms that are currently web based [35,37,38]. The smartphone
application that we have designed can be used to instantly monitor completed activities and
receive quick feedback from the monitoring person. It is essential not only to track activities,
but also check if any risks that have occurred, and predict or prevent any potential risks in
the daily life of elderly. Hence, at first, it is necessary to determine what activities to monitor
and if those activities can be properly visualised in the application, and, furthermore, if any
deviation in the routine of the elderly can be distinguished so that any potential risky
situation of the elderly can be detected. Similarly, it is essential to identify if using the
application, and monitoring activities regularly will put a burden on the monitoring person.
With all this in mind, we propose the following research questions (RQs), which we try to
verify with an experimental study:

• RQ1: Is it possible to identify daily routine of individuals using a smartphone application?
• RQ2: Can a monitoring person detect potential risks in day to day activities based on

visualization of activities in our application?
• RQ3: Is constant notification and using the application a burden for the monitoring

person?

3. System Design

In this section, we first explain the overview of the proposed PATROL (Participatory
Activity Tracking and Risk assessment for anOnymous eLderly monitoring) system. Then,
we describe the design and interface of our smartphone application in detail.

3.1. System Overview

The architecture of PATROL system is shown in Figure 1, where we denominate the
elderly being monitored as Target and the person conducting monitoring as Monitor.

Figure 1. System architecture of PATROL.

The monitoring can be conducted in different ways. One Target can be monitored
by a single or multiple Monitors and one Monitor can conduct monitoring of a single or
multiple Targets. Consequently, multiple Monitors can be used to monitor multiple Targets.

The overall system can be further divided into four sections: activity recognition,
monitor generation, notification generation, and smartphone application, as highlighted in
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Figure 1. In this research, we focus mainly on the two sections: notification generation and
smartphone application. We will now discuss each of the sections and their application in
our overall system.

3.1.1. Activity Recognition

Most elderly people have a definite time and duration for their activities, and follow a
routine set of activities throughout the day [51]. It is important to check for everyday basic
activities because, with old age, these important basic daily activities can sometimes be
missed or incomplete or not properly carried out [7]. For the purpose of our research, we
assume that the Target is residing in a smart home equipped with an activity recognition
system, where it is possible to collect information related to daily activities like eating,
sleeping, watching TV, taking medicine, etc. through the use of different kinds of sensors
and power consumption meters available in the house [1,8,16]. We have designed our
system in a way that it can incorporate any available activity recognition systems. Therefore,
it is easy to integrate in houses which already have an activity recognition system. Activities
that we showcase in the smartphone application are shown in Table 1. We believe that
the state of everyday basic activities can be used as criteria to determine the wellness of
the elderly person. There can be instances when anomalies can occur whilst conducting
activities that are not listed in Table 1. However, such incidences will subsequently impact
the occurrence of basic activities that we aim to monitor. Therefore, our system can detect
anomalies that can occur doing activities that are not directly monitored in our application.
Since our aim is to disclose as less information about the Target as possible, whilst making
it possible to determine their current status, we only use time of completion and duration
of the activities to provide information about them. We assume that the activity recognition
system outputs events (i.e., start and end times of activities performed by the resident)
which are utilized for data visualization and notification generation, as shown in Figure 1.
This feature will be further discussed in Section 3.2.

Table 1. Areas and activities to monitor.

Area Home Objects with Sensors Activities

Kitchen • Stove
• Microwave

• Breakfast, Lunch or Dinner

Bedroom • Bed
• Medicine Bottle

• Sleep time
• Medication

Living room • TV • Entertainment
Bathroom • Water consumption • Shower

3.1.2. Monitor Generation

The PATROL system is designed to be used especially for monitoring the elderly,
and to be deployed in nursing homes, elderly residential areas, care homes, municipalities,
etc. The overall system needs to be handled by a system administrator who can be the
head of the residence association or personnel who work in such institutions. In case
of changes in the system administrator, then the outgoing system administrator under
the authority of the local welfare committee (and/or residents’ association) will have to
train the new system administrator immediately. In our context, Monitors are usually
volunteers who work in the field of helping elderly in care homes, elderly residential areas,
etc. The Monitors participate in tracking the activities and determining risky situations in
the activities of the elderly. The system administrators have the responsibility of training the
Monitors to use the smartphone application, assigning Monitors for each Target, assessing
the performance of Monitors and determining if any change needs to be done. In case
of changes in Monitors as well, the training of new Monitors is handled by the system
administrators. Similarly, the initial testing and assessment of our application is handled
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by the system administrators as well who check if the system is working properly, and the
application is generating activity reports and notifications regularly. Since our application
shows activities not just of the current day, but of a period of days (e.g., week), including
previous days, a new user can still be familiar with start/end and duration of activities of a
range of days and deduce a pattern or routine of the target easily.

The number of Targets assigned for each Monitor may vary based on the preference
of each volunteer. The volunteers are free to choose a minimum or maximum number of
Targets to monitor, after which the system administrator will assign them Targets. Therefore,
the number may vary from a single Target to multiple ones based on each volunteer.

3.1.3. Notification Generation

To encourage regular usage of the application, frequent notifications are sent to the
Monitors. This functionality helps to timely track the recent activities of the Target and
detect any change in the usual routine. We think there should be two types of notifications
generated: emergency and general. General notifications are sent to remind monitors about
using the application and check current activities of the target. Emergency notifications
are sent when the system itself detects abnormalities in the recent activities of the target.
We do not generate or analyze emergency notifications in this research because we aim to
determine how often general notifications are responded by the Monitors, if they motivate
the monitors to frequently use the application or not, and if constant notifications will be
burdensome or disturbing.

The notification scheduling techniques that are commonly used can be divided into
three types: randomized time points in a day, timed at specific intervals, and event depen-
dent times [52]. In our system, general notifications are generated by using two types of
notification strategies: timed at specific intervals and event dependent notifications. This
ensures that the monitors are notified regularly to use the application, and can instantly
check information about the activity completed.

3.1.4. Smartphone Application

The information collected from the house of the Target is utilised to create graphical
representation of activity completed in a time series form which helps to identify a pattern
in the time of completion of activity and its duration, so that any deviation from the usual
pattern can be identified with ease. Hence, we develop an Android based smartphone
application, PATROL, which can be used to view the activities completed and send reports.
Since smartphones have become a common gadget among the elderly as well [53], our
application can be used by the young volunteers as well as the elderly. For our research,
we conduct an experiment using smartphones, but the application can also be used in any
other Android based devices like tablets.

The interaction between the Monitor and the application is shown in Figure 2. We
have tried to minimize the number of actions required to be carried out by Monitors. In the
application, the Monitors receive notifications as a trigger so that they can check the time of
completion and duration of the activity for the current day and previous days, after which
they can judge whether the Target is in a risky situation or not, and submit a report. If the
Monitor reports that the Target is in a high risk situation, then the application can notify the
system administrator and emergency contacts of the elderly via text, email, or automated
phone calls, who can take necessary actions immediately. The Monitors did not disclose
any details of the Target even in such situations to maintain the anonymity of our system.
The system administrators, who are in the vicinity of the Target, will take the responsibility
for checking the Target as soon as such reports are received. The report sent by the Monitors
are saved and analyzed to evaluate their monitoring capability.
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Figure 2. Interaction between Monitor and smartphone application.

For the accurate analysis of our application, it is necessary that risky situations of the
Targets are identified correctly. We, however, at first need to define what these risks are,
and how they can be related to real life situations. We created a total of four risk stages,
as shown in Table 2. These risks are based on the changes in the routine of the Target.
If there is no change in their routine i.e., no noticeable deviation in their activity, then
we regard the risk as None. Low and Medium risks are defined based on the amount of
deviation from the usual start/end time or duration of the activities. High risks refer to
situations when the activity has not started, or completed indicating that the Target needs
urgent attention.

Table 2. Risks used in the application and their description.

Risk Description

None Everything seems to be okay with the elderly.
Low There is some problem, but can be handled by elderly themselves.

Medium There is a problem and the elderly should be assisted/checked by caretaker,
family members or doctor.

High Elderly is in emergency and requires immediate medical care.

We have used standard deviation to define low and medium level risks. We calculated
standard deviation of duration and time of completion of each activity, for each targets.
Then, we defined low and medium level of risks as follows:

• Low risk

– duration ±1.5 × standard deviation of duration
– time ±1.5 × standard deviation of activity completion time

• Medium risk

– duration ± 3 × standard deviation of duration
– time ± 3 × standard deviation of activity completion time

The purpose of using this technique is that it gives us a wide range of duration and
activity start/end times that we can relate with risks in real life scenarios. The low risk
indicates that the deviation in time or duration was not so concerning, which meant that
the elderly had some problems but were able to deal with them themselves. Medium risk
indicates a higher deviation in time or duration of activity, which indicates that the elderly
might not be doing so well and need to be attended to personally. Since we have ourselves
defined these ranges of duration and start/end times for low and medium risks, they are
flexible, and hence can be modified based on the activity data of the elderly.
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3.2. Application Design

Even though recent technologies have been designed and developed targeting with
an average young user in mind, who is efficient at handling new systems or devices [54,55],
we have tried to make the interface simple and intuitive so that it can be used by people of
all ages conveniently. As shown in Figure 2, the number of tasks to be carried out by the
Monitor in the application are very minimal. Therefore, we believe that the application will
be easy to use, and the burden of using the application will be low for the Monitors. Our
final goal is to achieve remote elderly care and prompt identification of risky situations;
however, we believe that to achieve them, the design and interface of the application
should be favorable to the monitors. We aim for our concern of providing a continuous
and detailed elderly care system, and an easy and intuitive interface for monitors does not
remain mutually exclusive. The actions in the application to be carried out are: respond to
notifications, check activity, and submit a report. Below, we will explain different features in
the interface of the smartphone application, and the notification strategy that we developed.

3.2.1. Features of the Application Interface

We have designed the application with various features in the interface that is aimed at
helping the monitoring process. All the activities are shown in a single interface to reduce
the burden of going back and forth between interfaces to monitor the activities. We will
now discuss the features of the application interface.

Activity Report

The application shows the option to choose whom to monitor among a list of Targets,
as shown in Figure 3a. Since our application is anonymous, the real names of the Targets are
not shown. We used three commonly used names in Japan (Taro, Watanabe, and Yamazaki)
to denominate the Targets in our application. Once the Target is chosen, then the activity
report interface is shown, as shown in Figure 3b.

(a) (b) (c) (d)
Figure 3. Snippet of the smartphone application for: (a) choosing Targets, (b) sleep card, (c) breakfast
card, and (d) submitting report.

The activity report interface breaks down each activity into different cards, with each
card showcasing the current status of the activity (incomplete, ongoing, or completed),
activity completion time (in graph as well as text), and duration of the activity, as shown in
Figure 3b,c. In case of activities like TV and medication that can occur multiple times in a
day, each separate activity is represented by separate cards. The Candlestick chart style
helps to identify a pattern in the time of completion of activity and its duration, so that any
deviation from the usual routine can be recognized with ease. We use a candlestick chart to
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show activities because it can showcase the time as well as duration with clarity, and the
difference between consecutive days is also understandable.

The Monitor, ideally, should be able to submit only one report per activity per day as
well as provide the report for an activity only after the activity has been completed. Hence,
in order to prevent multiple and erroneous reporting, we use two techniques: color codes
in activity cards; and radio button for reporting. In the cases of activities that occur multiple
times in a day (such as TV, medication), multiple activity cards of the same activity are
shown. To avoid confusion for the users, only one activity card is shown at the start of the
day, when no multiple activities have occurred. The activity cards are then subsequently
added soon after their occurrence.

Colors Codes in Activity Cards

Traffic light colors have been used in various research studies, from labelling traffic
colors on food to indicate their edibility or freshness [56,57], to using traffic colors as a
means of self-monitoring by recording the weight and shortness of breath in a diary [58].
We use traffic color codes for the activity cards in order to make the current status of
activities of the Target clear, as shown in Figure 4.

(a) (b)

(c) (d)
Figure 4. Use of color for representing activity state for: (a) activity not complete, (b) activity ongoing,
(c) activity complete, and (d) activity reported.

The background color of the activity card is represented by red when the Target has
not completed the activity, as shown in Figure 4a. The current status information, shown as
Incomplete , also gives an update that the activity has not been finished for the current day.
The information about end time and the duration of the activity is also empty at this stage.

The background color of the activity card is represented by red when the target starts
the activity, as shown in Figure 4b. The current status information is changed to On-
going in this case, and the information about the start time of that activity is updated.
The information about the duration of the activity is also empty at this stage.

The background color changes to yellow when the activity is finished by the Target.
The current status is also updated, to Complete, along with information about end time and

171



Sensors 2022, 22, 6965

duration of the activity. Along with the change in color, the radio buttons for reporting the
status are also shown below the card, as shown in Figure 4c.

When the Monitor reports about the activity, then the background color of the card is
changed to green. Along with that, the radio buttons for reporting are hidden, as shown in
Figure 4d. Thus, when the Monitor opens the application again after submitting a report,
the option to report again is not available, and the color codes help them identify the
activities they have already reported.

We believe that, since people are familiar with traffic colors and their functions, this
feature in the application is intuitive, and helpful in clearly distinguishing the states of
activity. The colors are also directly related to the state of the elderly as well as the necessity
of Monitor’s attention. When the background color is red, activities are either ongoing or
not started at all, which means that the elderly has not completed any activity. This state
requires a higher amount of attention from the monitor because if the background color
does not change from red for a prolonged time, then it should be deduced by the Monitors
that the elderly might be in a risky situation and thus the Monitor should report, via an
overall report card. When the background color of the card changes to yellow, it indicates
that the elderly has completed an activity, and the monitor should now check the activity
and submit a report. This state requires lower attention from the the Monitor compared to
the red background color state. Similarly, a green color gives Monitors a confirmation that
they have completed the reporting task already and should not pay any attention to that
particular activity anymore.

Overall Report

Along with the activity cards for each activity, there is a separate card called Overall
card. This, in general, is to report about overall impression about the status of the elderly.
This can be reported multiple times by the Monitor throughout the day, and has the same
reporting option of risks and confidence as in other activity cards, as shown in Figure 4d.
Thus, when submitting reports for activities, the Monitor has the option to choose what they
feel is the overall status of the Target based on their judgement of activities completed or not
completed. In cases of High risk situations such as no activity or long deviation, the target
will not register completion of activities regularly, which means that no notifications are
sent and the activity cards are not updated. If no activity has been updated for a significant
time, then the monitors can deduce that there is something wrong with the target. In such
situations, they can report the emergency situation using the Overall card. The card also
shows the type and time of previous response for the Overall card, to make it easier for the
Monitor to recall their previous impression, as shown in Figure 5b.

Submit Report

The task for the Monitor is to check the activity report of the Target and analyze the
information shown and then submit their report. The report can be submitted for one
activity at a time, as well as for multiple activities at the same time. To submit the report
for each activity, the Monitor needs to scroll down in the activity report interface and click
the submit button at the end of the activity report interface as shown in Figure 3d.

If the monitor responds with high risk and high confidence to any activity, then the
application can infer that the elderly might be in an emergency situation, and can promptly
notify the emergency contact of the Target (friends, family or health professionals) via text
message, email, or automated phone calls, and they can take necessary actions. Similarly,
if more than two subsequent medium risks are reported with high confidence, then their
emergency contact can be notified immediately. Thus, to provide a base to analyze the
confidence of the report, we divided the confidence level for each report as Low, Medium
and High, as seen in Figure 4c. The confidence levels hence act as reference points of
risks for each activity, especially when there are multiple Monitors. The confidence level
provides a perception of each of the Monitors and their report, and also helps to analyze
their monitoring capabilities.
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(a) (b)
Figure 5. Overall report card: (a) before report submission and (b) after report submission.

3.2.2. Notification Strategy

We deploy two kinds of notification patterns in our application: recurring notifications
(rN) and activity based notification (abN). We send notifications every two hours (rN) to
provide a trigger to the targets to use the application. The period for recurring notification
is two hours because we feel that two hours is an appropriate time gap for reminding users,
as sending a notification every 30 min or an hour will be too disruptive. Analyzing the
activity completion times and usual gap between activities, we feel that two hours is an
appropriate gap to send a recurring notification. We have also analyzed the perception of
users towards recurring notifications of two-hour intervals, and have empirically proved
that they are not perceived as disturbing and were responded to about 87% of the time [59].

Apart from this, we also send a notification, abN, which is sent as soon as a target
completes an activity. We mentioned in Section 2.2 that it is necessary to provide contextual
information in notifications for quick responses. We provide the name of the target and the
activity completed in the notification, to provide context of the notification to the monitors,
as shown in Figure 6. To make distinction between the two types of notifications, we
indicate abN with a red icon of notification (see Figure 6a) and rN with a blue icon (see
Figure 6b).

(a) (b)
Figure 6. Example of notifications generated: (a) activity based notification (abN) and (b) recurring
notification (rN).

4. Implementation and Evaluation

In this section, we will explain the details of the experiment conducted to analyze the
application, including the dataset used for the application, multiple versions of PATROL
application that we created, and finally explain the result of our study.
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4.1. Multiple Versions of PATROL Application

In order to concretely determine that our proposed method of a graphical interface
(GI), as shown in Figure 3b, is intuitive and has a higher degree of user acceptance, we
needed to compare that interface with commonly used activity representation techniques.
To make that distinction, we created a separate version of our application where activities
were shown in a textual interface, rather than graphs. Figure 7 shows the activity report
interface of this kind of version of the application. All the features of the application
mentioned in Section 3.2 are included in this version as well, so the working principle is
the same regardless of the interface. This helps create less confusion for the participants
and ensures that the performance and perception of users is solely based on the type of
interface, and not on other features of the application.

(a) (b) (c)
Figure 7. Example of tabular interface (TI): (a) activity incomplete, (b) activity complete and
(c) activity reported.

Similarly, we created a third version of our application (GR), in which we did not send
notifications to the monitors when the activity was completed by a target. We only send
them recurring notifications every two hours. With this version of the application, we aim
to determine if the monitors are able to report about activities of the elderly even if they do
not receive activity based notifications (abN) and thus our strategy of providing both abN
(activity based notification) and rN (recurring notification) can be effective to encourage
and motivate monitors to use the application frequently and receive continuous reports of
activities of the target.

Table 3 summarizes the three versions of the application created, and we will use
the same label for versions (GAR, TAR, and GR) in future discussions. GAR refers to
the proposed version of PATROL, which consists of a Graphical interface, Activity based
notification, and Recurring notification. We investigate the accuracy of risk identification,
and the burden of use of our application by comparing the versions GAR and TAR (Tabular
interface, Activity based notification, and Recurring notification). Similarly, we compare the
effectiveness of using activity based notifications by comparing GAR with GR (Graphical
interface and Recurring notification).
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Table 3. Types of versions of PATROL application.

Version
Interface Notification

Graphical Tabular Activity-Based Recurring

GAR � – � �
TAR – � � �
GR � – – �

4.2. Dataset

The dataset used in our experiment is taken from a real life experiment conducted in
the houses of elderly residents over the age of 60 [16]. The activity dataset was obtained by
Matsui et al. through an extensive research conducted over a period of two months, where
motion and environmental sensors were installed in each of the houses. Along with that,
a physical button was installed in each of the houses, and the residents were requested to
press the button whenever they started and ended an activity [16]. The original dataset
consists of activity recognition data from single as well as two-person households. For the
purpose of this research, we selected only single resident households that were three in
total. We use cleaned and collected data from the above-mentioned study, and consider that
the activity recognition system is 100% accurate (we used ground truth labels of activities
in the dataset as the output of the activity recognition method).

The daily activities of the elderly that we want to track and monitor are mentioned
in Table 1. The original dataset, however, does not contain data related to the Medication
activity. Similarly, we also wanted to include multiple activities related to frequent use
of TV. To fulfill our desired dataset, we added aforementioned activities into the original
dataset. The total period of experiment of the two-month study was longer than our
intended experiment period of 10 days. Hence, we only selected data for a 10 day period
from the available two months of data. We included data from the same time period section
for all the three single-resident households.

We included some risky situations into the dataset based on the definition shown in
Table 2. For the purpose of our research, we included only low and medium level risks.
As defined, none risk indicates that there is no problem with the elderly. Hence, we do not
need to alter the dataset for such risk, since they concur with the regular routine of the
elderly. If the level of risk is high, it indicates that the elderly person is in a serious condition
and in need of immediate medical care. In such cases, no activity will be completed by the
elderly, and the activity report in the application will not be updated.

However, our aim is to determine if any deviation from regular routine of the activities
could be determined using our application. Though high risks can occur suddenly, we also
think that, if we regularly monitor and determine low and medium level risks, then high
level risks can be prevented or predicted. Because of this, we did not include high level
risks in our dataset.

4.3. Experiment Details

We recruited a total of nine participants (gender: 6 Male, 3 Female; age range:
25–34 years old, average age: 28.6 years) to take part in our evaluation study. The partici-
pants were playing the role of ‘Monitors’ throughout the experiment. The modified dataset
of the three single-person households were used for the three ‘Targets’ in the application.
The participants were divided into three groups each. Thus, we had three participants
each in three study groups. This was carried out to implement random distribution of our
application in a way that each group, with an equal number of participants, will use a
different application at a given time compared to other study groups. To implement that,
we divided the experiment period into three phases in total. Table 4 simplifies the study
group and application interface division.
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Table 4. Study groups and division of version of PATROL application.

Phase Date (MM/dd) Number of Days StudyGroup A StudyGroup B StudyGroup C

1 08/25–08/27 Three GAR GR TAR
2 08/29–09/01 Four TAR GAR GR
3 09/03–09/05 Three GR TAR GAR

The three versions of the application were uploaded to Google Play Store. Before the
start of the experiment, we conducted a research and experiment introduction session that
all the participants were requested to attend compulsorily. We explained the theme of the
study and experiment in detail, their role as monitors, and the tasks they have to complete
while using the application. They were also provided a document containing all the
information about the working principles of the different versions of the application, along
with QR codes for each version. The documents also indicated the version of the application
they were supposed to use in each phase of the experiment. As a reward for participation
in the experiment, the participants were provided with a gift card worth 2000 JPY.

To make the transition between interfaces easier for the participants, we included a
one day gap between each phase. The participants were asked to take a break for a day in
between the phases. The phases were designed to be of three days each. However, at the
start of phase 2, we encountered some complications with the server connected to our
application, and the application did not work properly until mid-day. Hence, we asked the
participants to continue phase 2 for one day more. Thus, in total, the experiment period
consisted of 12 days, with breaks of two days in total. After the end of each phase, we
asked the participants to fill in a questionnaire developed using Google Forms. Most of the
questions had to be rated on a five-point Likert scale (1 = strongly disagree, 3 = neutral,
5 = strongly agree), while some of them were open-ended. The participants were asked
to respond to questions or statements related to their perception of the version of the
application, as well as the effect of change in the version of the application, such as “The
activity related notifications were helpful in monitoring the elderly as it reminded me to check
the application regularly.”, “I found the change in the interface confusing.”, and “I feel the new
interface needed more mental effort.” At the end of the experiment, the participants were asked
to fill out a final questionnaire. The purpose of these questionnaires is to gain insight into
the impression of the participants for different versions and different notification types.

4.4. Results

The results of our study are analyzed based on the following three conditions:

1. Accurate detection of risky situations;
2. Low burden of monitoring on Monitors;
3. Timely Detection of risky situations.

4.4.1. Accuracy of Risk Detection

In order to verify the effectiveness of our visualization technique, it is necessary
to check if the risks included in the application, as mentioned in Section 4.2, will be
identified correctly. In this section, we report the rate with which the risks included in the
dataset were correctly identified in each phase, using different versions of the application.
Table 5 and Table 6 show rate of correct identification of risks based on study groups and
interfaces, respectively.

From Table 5, we can observe that StudyGroup C was the most consistent group,
with the highest risk identification rate during all of the three phases of the experiment.
The rate of correct identification also increased along with the experiment, which proves that
familiarity with the application helped to analyze the activity reports and submit reports.
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Table 5. Risk identification based on study groups.

Study Group Phase Interface Risk Identification Average

1 GAR 68.4%
StudyGroup A 2 TAR 67.7% 72.6%

3 GR 81.9%

1 GR 32.4%
StudyGroup B 2 GAR 64.7% 46.1%

3 TAR 41.3%

1 TAR 88.4%
StudyGroup C 2 GR 91.3% 90.7%

3 GAR 92.6%

There was a slight decrease in risk identification for StudyGroup A when the interface
changed from graphical (GAR) to tabular (TAR) in phase 2 of the experiment. All of the
participants in StudyGroup A agreed that the new interface needed more time to analyze
in their questionnaires after phase 2, with 66.7% agreeing that the tabular interface (TI)
needed more mental effort than graphical interface (GI). When the interface changed to
graphical layout (GR) in phase 3 of experiment, there was an increase in the correct rate
identification. When asked about the change, participants claimed that it was easier to
understand the routine with the graph compared to tabular layout (66.7% agree, 33.3%
strongly agree).

StudyGroup B showed a considerable increase in correct risk identification, in phase 2,
as shown in Table 5, even though they had graphical layout for both phase 1 (GR) and 2
(GAR). We can predict that familiarity with the application was the reason for such change.
In their questionnaire after phase 2, 66.7% strongly agreed that they were familiar with
the application and found it easier to use the application during this phase. However,
in phase 3, their interface changed to tabular layout (TAR). This led to reduction in risk
identification, with 33.3% strongly agreeing that the change in interface was confusing.

As shown in Table 6, we found out that, in total, using GAR, on average about 75.2% of
the time the risks were identified correctly. In comparison, the risks were identified correctly
about 65.8% of the time using TAR. GR, which in this context, is the same in visualization as
GAR had a risk identification accuracy of about 68.5%. The average rate of risk identification
is lower for tabular interface (TI), compared to both of the graphical interfaces (GI). This can
help to identify that graphical interfaces (GI) provide better understanding or identification
of risks.

Table 6. Risk identification based on interface types.

Phase GAR TAR GR

1 68.4% 88.4% 32.4%
2 64.7% 67.7% 91.3%
3 92.6% 41.3% 81.9%

Average 75.2% 65.8% 68.5%

We also found statistically-significant differences between the average risk identifica-
tion rates of the three interfaces using the one-way ANOVA method (p = 0.037). A Tukey-
HSD post-hoc test revealed a significant pairwise difference between interfaces GAR and
TAR (p = 0.032) whilst no difference was observed between GAR and GR (p = 0.2).

To investigate this further, we combined the results of GAR and GR into a single group
and compared it with TAR, to clearly determine differences between graphical and tabular
interfaces for risk identification. Through the paired t-test analysis, we found that there is a
significant difference between the two (p = 0.047).
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4.4.2. Low Burden Evaluation

We define burden as the time taken by the participants between opening the applica-
tion to check the activity report of targets and submitting the report. We logged the time
of opening of the application as well as the time of reporting using “Shared preference”
functionality available for Android developers. These time periods were saved together in
the Firebase database. We analyzed the burden time for each participant using this data
and calculated an average burden time for each participant over the whole experiment
period, which is shown in Figure 8. The average burden time for each of the versions is
also shown.

Figure 8. Average burden time of participants.

We can see that the burden time for GAR, on average, is always less than TAR.
The mean burden time for GAR, TAR, and GR were observed to be 28 s, 38 s, and 52 s,
respectively. As seen in Figure 8, the burden for participant 1 while using GR is very high
compared to other participants, and other interfaces used by the same participant. Upon in-
spection, it was discovered that, while using GR, for one particular report, the participant
recorded an unusually high burden time, which was uncharacteristic for the participant
based on his other responses. Discarding the unusually high burden time, the average
burden time of the participant 1 was reduced from 193 s to almost 20 s. However, for the
final analysis, the skewed data are kept as it is. Similarly, the burden for participant 2 while
using TAR is zero because the participant did not record any response during phase 2 of
the experiment.

To analyze the link between burden of using the application, and engagement with
the application over time, we calculated the average time it took to report based on the
phases of the experiment. The results are shown in Figure 9. When the interface changed
from graphical (GAR) to tabular (TAR), in phase 2 for StudyGroup A, we can see that the
burden time was higher. In phase 3, when their interface changed back to graphical (GR),
the burden time was observed to be extremely high (94 s) due to the unusual reporting by
participant 1 as explained above. Discarding that particular incident, the burden time was
observed to be lower than in phase 2 (28 s).

For StudyGroup B, the burden time was highest in phase 1, with 47 s, when using
GR. However, the burden time decreased in phase 2 (25 s) when using GAR. This can be
attributed to the participants getting familiar with the interface. In phase 3, however, when
the interface changed to tabular (TAR), we can see that the average burden time increased
to 37 s.
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Figure 9. Average burden time of study groups per phase.

Similarly, when the interface was changed from tabular (TAR) to graphical (GR),
for StudyGroup C in phase 2 of experiment, we can see that the average burden time was
lower (22 s). Even though the burden time increased in phase 3 (25 s), using GAR, it was still
lower than the burden time in phase 1 (42 s). Therefore, over the course of the experiment
period, we can observe that change in interface had some effect on the engagement with
the application and burden time. Familiarity with the application lowered the burden time,
especially using a graphical interface (GI).

We found a statistically-significant difference in the burden time for the three interfaces
using a one-way ANOVA method (p = 0.012). A Tukey-HSD post-hoc test revealed a
significant pairwise difference between interfaces GAR and TAR (p = 0.039) whilst no
difference was observed between GAR and GR (p = 0.13).

For further investigation, we combined the results of GAR and GR into a single group
and compared it with TAR and through a paired t-test analysis; we found that there is a
significant difference between the two (p = 0.049). This analysis, along with the results
from Figures 8 and 9, help to show that there is a significant difference between tabular
and graphical interfaces for the burden faced while using the application, with a graphical
interface resulting in a lower burden for the participants.

Lesser burden also resulted in higher engagement with the application. Figure 10
shows that the total number of reports received using GAR across different phases were
almost consistent across the three phases, and on average higher than when using TAR.
There was a significant decrease in reports using TAR in phase 2 for StudyGroup A. This can
be attributed to change in their interface because, in an earlier phase, they used graphical
interface (GI). They also mentioned in the questionnaire after phase 2 that tabular interface
(TI) was difficult to understand, which resulted in a lower number of reports.

We can thus conclude that GAR provides lesser burden to participants, in comparison
with TAR, and on average has higher engagement and reporting. This further strengthens
our proposal that graphical interface (GI), with adequate textual information, can be
helpful for monitors to identify the routine of targets and distinguish risky situations whilst
spending less time and effort analyzing the interface.

4.4.3. Timely Detection

Figure 11 shows the time taken to report about a completed activity during each phase,
based on types of interface. Over the three phases of experiment, we can observe that using a
graphical interface (GI), the reports for activities were received quicker compared to tabular
interface (TI): GAR (average = 176.46 min, median = 115.01 min), TAR (average = 201.42 min,
median = 118.85 min), and GR (average = 166.9 min, median = 121.12 min). Even though
such high response times for the report are not favorable, we think that there were many
factors that affected the reporting time for activities.
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Figure 10. Total number of reports received.

Figure 11. Response time for activities per phase based on study groups.

The time of notification generated, which is also the time when the activities were
completed, was saved using "Shared preference" functionality, as mentioned in Section 4.4.2.
Similarly, we also saved the time when the activity report was submitted. We determine the
time taken to report an activity by calculating the time difference between report submission
and notification generation. For StudyGroup A, when the interface changed from graphical
(GAR) to tabular (TAR) in phase 2, the reporting time was higher compared to phase 1, even
if they had received both rN (recurring notifications) and abN (activity based notifications)
in both of the phases. This can be attributed to the change in interface because, when their
interface changed back to graphical (GR) in phase 3, the time of response also was observed
to be lower than on phase 2, even though they did not receive abN. This shows that type of
visualization can have an effect on the response time for notifications received.

StudyGroup B were almost consistent in their performance throughout the first two
phases of the experiment period. In phase 2, when their interface changed from GR to
GAR, there was no significant change in their response time even if they did not receive
abN. However, when their visualization changed to tabular (TAR) in phase 3, the time of
responses was higher than in the previous two phases.
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In contrast, StudyGroup C did not show any significant differences in response time
for activities based on changes in interface as well as reception of abN. When their interface
changed from TAR to GR in phase 2 and from GR to GAR in phase 3, their response time for
notifications did not show any high amount of significant differences. StudyGroup C thus
did not show any conclusive effect for the change in visualization or notification strategies
for the reception of reports to activities.

Table 7 shows the average response time of each participant while using each of the
interfaces, where the lowest response time taken among the three interfaces is highlighted.
Even though TAR consisted of both abN and rN notifications, we found that none of the
participants responded quickly while using it. Moreover, the mean response time using
TAR is highest across all the participants (except participant 2, who did not register any
response during phase 2). We found that, even though they did not receive abN, some of
the participants (4) recorded lowest mean response time using GR. GAR and GR recorded
mean response times of about 176.46 min and 166.9 min respectively, while TAR had a
mean response time of 201.42 min. Even though GR had lower average response time, we
observed that the median response time for notification was lower for GAR (115.01 min)
compared to GR (121.12 min) and TAR (118.85 min). This shows that reports were received
quicker using GAR than GR or TAR.

Table 7. Mean response time (in minutes) of each participant.

Participant GAR TAR GR Total Average

1 225 349 243 272
2 335 No response 341 225
3 182 418 260 286

4 146 287 135 189
5 33 146 59 79
6 154 301 167 207

7 187 188 146 173
8 114 171 109 131
9 205 146 110 156

The quickest mean response time for each participant is highlighted in bold text.

Upon further analysis, we found statistically-significant differences between activity
response time for the three interfaces using a one-way ANOVA method (p = 0.005). A Tukey-
HSD post-hoc test revealed a significant pairwise difference between interfaces GR and
TAR (p = 0.05) whilst no difference was observed between GAR and GR (p = 0.64) or
between GAR and TAR (p = 0.055).

We then combined the results of interfaces that received abN, i.e., GAR and TAR, into a
single group and compared it with GR, and found that a paired t-test shows a significant
difference between the two (p = 0.022).

This shows that reception of abN does indeed have an effect on the time for response
to the activities. To investigate this further, we determined the time range within which
the responses to the activity notifications were received. Table 8 shows the cumulative
percentage of reports received within the given time ranges for the three versions of the
application. We divide the time into 30 min intervals; however, the table only shows until
210 min, since the highest average time of response is within the 180–210 min range. We
can see that the amount of responses received does not vary by a large amount if graphical
interfaces are compared. However, for tabular interfaces, the response rate is lower even if
abN was received. This shows that abN, when used with a graphical interface, provides
a better result than compared with tabular interface. We then tried to investigate which
interface provided the quickest response for activities.
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Table 8. Cumulative percentages of responses received per time range (in minutes).

Time Range GAR TAR GR

0–30 18.4% 15.45% 13.24%
30–60 30.55% 23.21% 29.66%
60–90 42.36% 31.22% 41.79%

90–120 51.56% 37.09% 49.44%
120–150 57.63% 41.42% 58.39%
150–180 63.88% 44.04% 65.29%
180–210 68.92% 47.29% 70.52%

We divided the notifications into those that were for regular activities and those that
were for the risky situations. By using the time taken to report to activities, we determined
the minimum time taken to submit a report for an activity among all the participants,
and the version of the application used to submit that report. Thus, we found that, using
which particular version of the application, we received the quickest response for each
of the activities. The results are shown in Figures 12 and 13. We can see that the risky
situations responded quicker when using interfaces that consisted of abN, even though
there is not much difference between interfaces for the quickest time of response to non-
risky notifications.

Figure 12. Quickest response for risky situations.

In the final questionnaire, the participants responded with the reasons that could
also provide the reason for such higher response time. Almost 45% participants (n = 4)
mentioned that they were busy with their research/private work and could not respond to
the notifications on time. We received responses such as: “I was so busy with my work”; “Busy
with my research work or play a game"; “mentally busy with my own work"; “sometimes i was busy”.
Similarly, two of the participants mentioned that they often forgot to check the application.
This can be attributed to the different interface types used and notifications received.

Two of the participants responded in the questionnaire that they did not use the
application if they did not receive any notifications, while six (66%) of them said they did
not wait for the notifications to use the application but were busy with their work and
could not respond immediately. We also wanted to know if the notifications received were
perceived as distracting or disturbing, to analyze if their perception played any role in
the response time. When asked if the notifications received from the application were
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distracting, 2 (22%) of them strongly claimed they were not disturbed, 5 (55%) said they
were not disturbed, while 1 of them was neutral, and 1 agreed that he was distracted.
Similarly, 8 (88%) (strongly agree: 4; agree: 4) agreed that they prefer to receive abN so that
they can be regularly notified monitor frequently, while 1 of them was neutral.

Figure 13. Quickest response for non-risky situations.

5. Discussion and Limitations

In this section, first we discuss the results and verify research questions RQ1–3 men-
tioned in Section 2.3, then we show some remaining issues as limitations.

5.1. Discussion

When considering user engagement and their ability to identify routine of individuals
with the interface, we can conclude that the results are fairly positive towards GAR, as com-
pared to TAR. Using GAR, we found that 75.2% of risky situations were correctly identified
as risks, compared to 65.8% and 68.5% for TAR and GR, respectively. Though identification
of risk varied between study groups using GAR (68.4% for StudyGroup A; 64.7% for Study-
Group B, and 92.6% for StudyGroup C), the overall identification rate is higher for GAR.
This shows that risks can be identified using graphical interface and the style of graph that
we used. A response from a participant , “I can see the difference of the duration directly from
the graph. The table one need to scroll up and down to see all the information, which sometimes
kind of annoying” also suggests that our visualization is effective. These findings justify
our research questions, RQ1 and RQ2, that it is possible to identify the daily routine of
individuals using a smartphone application, and it is possible to detect potential risks in
such routine based on the visualization provided.

Using GAR, participants faced the lowest burden of 28 s, compared to 38 s in tabular
(TAR). Similarly, none of the participants claimed that the application demanded a lot of
time and effort from them. Regarding notifications, only one of the participants found them
distracting, and 88.8% mentioned that they will prefer to receive activity based notifications
for monitoring purposes. Similarly, all of the participants (77.8% strongly agree, 22.2%
agree) responded that the use of traffic colors was useful to identify the state of the activities
quickly. Therefore, we can verify RQ3, that constant notifications and using the application
was not troublesome for the users.

We received a total of 1680 responses from participants over the experiment period.
We can claim that such interaction is a result of their willingness to use the application.
When interface of participants changed from graph to table, there was a reduction in the
number of reports obtained (45.6% for StudyGroup A in phase 2, and 9.8% for StudyGroup
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B in phase 3). Similarly, when the interface changed from tabular to graph, we obtained
an increase in the number of reports by 96.7% for StudyGroup A in phase 3 and reduction
by 11.5% for StudyGroup C in phase 2. In total, the engagement with the application is
high, which along with the lower interface analyzing time, verifies RQ3, that using the
application is not a burden for the monitoring person.

At the end of the experiment, we asked the participants which representation of
activities they preferred: table or graph. All of them agreed that graphical representation
was better. Some of the responses we received, such as, “Got on a quick glance the exact
duration of past activities and could check exact time of the day”; “With graph, it’s easy for me
to compare the length of activity at the glance.”, further strengthens our proposal that the
graphical interface we proposed can help to identify a daily routine in a clear and intuitive
manner and further justifies RQ1, that a smartphone application can be a good tool for
identifying daily activities.

5.2. Limitations

Our system evaluation requires that there are certain risky situations in the activity
of the elderly. We did not conduct a real-time activity recognition of elderly, but instead,
we used a pre-existing activity dataset because, in real-time scenarios, there is no surety
of receiving such risky situations, and we would need to request someone to deliberately
change their activity pattern so that others could detect it. Such a situation can invoke unfa-
vorable reactions. Similarly, since activity recognition systems are not perfectly accurate,
sometimes the activities may not be correctly identified, or falsely identified, which would
hamper our evaluation. Moreover, we recruited students for the experiment, but they are
always busy because of their academic work, and/or personal lives which might have
affected the number and time of reception of reports.

6. Conclusions

In this study, we proposed a system, PATROL, that can be used to anonymously track
everyday activities of the elderly and identify any potential risks in their daily routine using
a smartphone application. Our system is aimed to be deployed in elderly residential areas or
communities and does not disclose any private information such as age, location, etc. to the
monitoring person to maintain the privacy and security of elderly residents. The monitoring
person receives recurring notifications every two hours and activity-based notifications
whenever an elderly person completes an activity from the service server and assesses
elderly condition by a smartphone application visualizing elderly activity history. We
designed our application with features such as single interface design, intuitive graphical
user interface for activity and anomaly detection, and color and textual information for
state of activities. These features altogether help not only to conduct quicker monitoring of
activities of elderly, but also to induce a low amount of burden to the monitoring person,
who at once may be responsible for monitoring single or multiple elderly people.

We added risky situations in an activity dataset obtained from a real-life experiment
with elderly residents and conducted a user study using the proposed method and two
other baseline methods varying in visualization and notification techniques for three groups
consisting of nine participants. We found that with our proposed method, 75.2% of the risks
were successfully identified, while 68.5% and 65.8% were identified with other methods.
The proposed method also provided a better result for the timely reception of activities:
GAR ( median = 115.1 min), TAR (median = 118.85 min), and GR (median = 121.12 min).
Moreover, the interface analyzing and reporting time was also lower (28 s) in the proposed
method compared to 38 and 54 s in other methods. As future work, we will conduct real-
time activity recognition and monitoring using our application. To achieve that, we will
also research/work on activity recognition systems using other kinds of sensors that can not
only potentially provide better activity recognition in real time but also remove dependency
on the elderly person for data collection. Moreover, we will explore the possibility to assess
the elderly’s activity state and detect anomalies by using measurements from ambient
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sensors (temperature, humidity, illumination, etc.). We will also include high risk situations
such as Fall (and no activities after the incident) and try to determine if participants will be
able to deduce such emergency situations quickly. We will also aim to increase the number
of participants to receive more reports and analyze the results based on age, gender, etc.
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Abstract: Heart failure is the most common disease among elderly people, and the risk increases
with age. The use of smart Internet of Things (IoT) systems for monitoring patients with chronic
heart failure (CHF) in a non-intrusive manner can result in better control of the disease, improving
proactive healthcare through real-time and historical patient’s data, promoting self-care in patients,
reducing unneeded interaction between patients and doctors, reducing the number of hospitalizations
and saving healthcare costs. This work presents an active assisted living (AAL) solution based on the
IoT to provide a tele-assistance platform for CHF patients from the public health service of the region
of Murcia in Spain, with formal and informal caregivers and health professionals also as key actors.
In this article, we have detailed the methodology, results, and conclusions of the prevalidation phase
for the set of IoT technologies to be integrated in the AAL platform, the first mandatory step before
the deployment of a large-scale pilot that will lead to improving the innovation of the system from its
current technology readiness level to the market. The work presented, in the framework of the H2020
Pharaon project, aims to serve as inspiration to the R&D community for the design, development,
and deployment of AAL solutions based on heterogeneous IoT technologies, or similar approaches,
for smart healthcare solutions in real healthcare institutions.

Keywords: AAL; IoT; healthcare; prevalidation; deployment; chronic heart failure; large-scale
pilot; H2020

1. Introduction

In a rapidly ageing European society, there is a growing need for implementing infor-
mation and communication technologies (ICT) and digital tools that improve the quality of
life, independence, and overall health of older adults. In this context, the concept of ambient
intelligence (AmI) appears to achieve a future where technology surrounds the users and
helps them in their daily lives [1]. AmI leads to cutting-edge platforms referred to as active
assisted living platforms [2,3]. The Internet of Things (IoT) [4] has also emerged as a set of
technologies, systems, and design principles [5,6] that enable automation in many fields,
such as remote and smart healthcare systems, playing an important role in AAL platforms
and healthcare. A typical IoT environment consists of communication interfaces, sensors,
advanced algorithms, and cloud interfaces [7]. Sensors are responsible for collecting data
from various devices. Additionally, different communication technologies (wired and/or
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wireless), such as wireless sensor networks (WSN), provide network and communication
infrastructure [8], while advanced algorithms are used to analyze and process data [9].
Numerous client/server requests can be exchanged in the cloud environment and allow the
users to have access to various types of services simultaneously [10,11]. Due to cloud com-
puting challenges and high requisites of emerging 5G, such as latency, reliability, resource
constraints, etc. Fog computing is used to overcome these limitations and run the same
applications anywhere close to users with real-time analysis and efficient decision-making
features [12,13].

Considerable effort is being made in the R&D community to integrate IoT technologies,
communications [14], databases, and computing [15], and to develop standardized and
integrated AAL platforms [16], but the diversity of these types of systems has created a
very fragmented market and a lack of standardized architectures and protocols [17].

In the healthcare industry, sanitary systems are being revolutionized by the IoT
paradigm [18]. This plays an important role in telemonitoring in hospitals, especially
at homes for elderly people with chronic diseases [19]. By using this technology, health-
care systems can experience major effects such as a reduction in response time to detect
anomalies, high-quality care, low hospitalization costs, and high life expectancy [18].

In the specific case of heart failure (HF), the most common disease in elderly people
and one that increases in prevalence with age [20], the use of an IoT system for monitoring
patients with chronic heart failure (CHF) in a non-intrusive manner can result in better con-
trol of the disease, improving the proactive healthcare and reducing unneeded interaction
between patients and doctors, thereby reducing the number of hospitalizations and saving
healthcare costs.

HF is a leading cause of hospitalization, representing 1–2% of all hospital admis-
sions [21,22]. In Spain, the prevalence of HF is around 5% (higher than in other EU
countries and USA); the rate rises with age to 8% between the ages of 65 and 74, and to 16%
in persons aged 75 years and over [23]. These rates mean enormous health care resources
are required, e.g., in Spain, during the 2015–2019 period, costs of HF patients were EUR
15,373 per patient, with HF hospitalizations being the most important determinant (51.0%).
Medication costs represented only a small proportion of total costs [24]. The latest data
published by Eurostat revealed that in 2018, HF caused 19,142 deaths in Spain, constituting
4.5% of all deaths, 3.4% in men and 5.6% in women [25]. Within this frame of reference,
cardiologists and family doctors believe that the key to a better control of patients with
CHF is creating a proactive healthcare solution through a non-intrusive and integrated
monitoring system that unifies patients’ medical history and makes it available to all rel-
evant healthcare professionals. This will improve the safety and efficiency of healthcare
by increasing the availability of patients’ real-time information. In addition, the health
and care community are convinced that it is crucial to promote self-care in patients by
providing them and their caregivers with health education and training and other social
and health resources.

This work presents an AAL solution based on IoT to provide a tele-assistance platform
for CHF patients from the public health service of the region of Murcia in Spain. Initially
focused on CHF patients aged 55 and over, the study also included formal and informal
caregivers and healthcare professionals. For the three user groups, two scenarios are
considered to provide a comprehensive healthcare solution:

• Angel of Health, aiming at improving health and care services and follow-up for CHF
patients and involving them in the health and care process from the data perspective;

• Care@Home, aiming at reducing the dependency of CHF patients and to detect emer-
gency situations early.

Figure 1 summarizes the goals, roles and description of the two scenarios considered.
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Figure 1. Scenarios of the Pharaon Murcia pilot.

This work is part of the overall research in progress regarding the H2020 Pharaon
Project (Pilots for Healthy and Active Ageing) [26], which aims at providing a smart and
active lifestyle for Europe’s ageing population by creating a set of integrated and highly
customizable interoperable open platforms with advanced services, devices, and tools in
AAL, including IoT, artificial intelligence, robotics, cloud computing, smart wearables, big
data, and intelligent analytics. Built upon mature existing state-of-the-art open platforms
and technologies/tools, a user-centric approach is being followed for the deployment and
the two-stages validation (prevalidation and large-scale pilots) in six different pilot sites:
Murcia and Andalusia (Spain), Portugal, the Netherlands, Slovenia, and Italy.

The Pharaon ecosystem integrates a big set of services and functionalities which
requires the involvement of a huge number of resources in order to achieve the neces-
sary validation and trials in real-world scenarios. The validation within Pharaon is being
performed through the six large-scale pilots proposed with different types of users, require-
ments, and chosen functionalities. Pharaon aims to carry out the unprecedented validation
of different platforms simultaneously, each supporting a wide variety of advanced and
customized assistive services and tools in six different large-scale pilots with the necessary
resources. For example, the Murcia pilot will validate heart failure and non-intrusive
home monitoring with alarm triggering, whereas the pilot in The Netherlands focuses on
community building and providing tailored advice towards user empowerment in terms
of health literacy.

This approach allows a sufficiently high number of users and healthcare professionals
to use the system at each pilot site for a long-term period, and an unprecedented number
of use cases, services, and technologies will be tested across all pilots.

In this work, the authors present the methodology, results, and conclusions of the
prevalidation phase for the set of IoT solutions and their respective AAL platforms, which
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will introduce the tele-assistance platform for CHF patients from the public health service
of the region of Murcia. The prevalidation stage includes the participation of all actors
involved: patients, formal and informal caregivers, and healthcare professionals. Their
early feedback regarding the functionality and usefulness of the tested technologies and
platforms is the first mandatory step before the deployment of a large-scale pilot that will
lead to improving the innovation of the system from its current technology readiness level
(TRL) (6) to the market (9). The goal is to provide the R&D community with inspiration in
the design and deployment of AAL solutions based on heterogeneous IoT technologies, or
similar approaches, for smart healthcare solutions in real healthcare institutions.

The paper is organized as follows: Section 2 describes in detail the Pharaon Murcia
pilot and the workplan followed for implementing the smart healthcare solution. Section 3
explains the engineering of user requirement tasks that were performed to identify the
scenarios that define the use cases of the AAL healthcare solution and their requisites.
Section 4 looks in depth at the system architecture that must perform the use cases and
technical features of the hardware/software needed. Section 5 describes the roadmap
implemented for the testing phase. Section 6 presents and discusses the results of the
testing. Section 7 shows the conclusions and the future work recommendations. Finally,
Section 8 presents a short discussion about the research limitations.

2. Pharaon Murcia Pilot: Overview and Workplan for the Healthcare
Solution Deployment

The reduction in birth rate and the increase in life expectancy will, in the long term, lead
to a progressive ageing of the population in the region of Murcia, which will manifest itself
in an uninterrupted decline in the working-age population and a continued increase in the
proportion of the population over 65 years of age [27]. One of the priorities of the research
and innovation strategy for smart specialization in the region of Murcia [28] is related
to health, biomedicine, and welfare, addressing, among other fields, housing care and
ITC-supported social services, specialized care, access to services, and remote assistance.

The services and use cases to be deployed under Pharaon in the region of Murcia are
aimed at building the foundations of a new telecare line in the region that will transcend
the current model of health and care services that rely on the patients to notice when
they need help. This new telecare model will allow patients to stay in their preferred
environment and provide a more intense, effective, proactive, and less intrusive care and
observation service. To do that, this work has been organized into a sequence of main steps,
summarized in Figure 2. The first step consists of the elicitation and representation of the
user requirements. This leads to the definition of the use case scenarios of the pilot and
detailed technical requirements referring to the technologies to be used.

 

Figure 2. Work sequence within the Pharaon Murcia pilot.

The second step, informed by the results of step 1, has two main goals: to address
the adaptations required for the compliance of all requirements, and the development and
integration of the technologies and services in the platform.

Finally, step 3 consists of the testing phase, organized into two stages: (1) small-scale
testing with a limited number of participants representing the different target users of the
Murcia–Pharaon system. They provide early feedback regarding the functionality and use-
fulness of the system, enabling rapid and iterative improvements to address shortcomings
discovered by actual system users while its implications are still manageable. The second

192



Sensors 2022, 22, 8961

stage is (2) running the large-scale pilot, which involves all the pilot users in real-world
scenarios for an extended length of time.

3. Engineering of User Requirements in the Pharaon Murcia Pilot

In [29], the authors summarized the co-design and user requirement engineering
work carried out in the pilot study of the region of Murcia. During the co-design phase,
the methodology for the co-design and representation of user requirements was defined
as goal models with a set of components: functional goals, quality goals, and emotional
goals, following work in [30]. Corresponding use case scenarios and user stories were
also defined.

The methodology entailed several up-to-date co-design methods for user requirements’
elicitation. The ISO 9241-210 standard on ergonomics of human–system interaction [31] was
followed. The original plan for eliciting and representing user requirements was modified
due to the COVID-19 outbreak, following three phases:

The first phase is initial desk research on co-design workshops, data, and results from
previous initiatives in which the public health service provider of the region of Murcia
participated: ProEmpower [32], ReadiForHealth [33], INC3A [34], and CARPRIMUR [35].
They helped to identify an initial set of requirements from the stakeholder’s perspective in
the form of functional, quality, and emotional goals.

The second phase is the design and launch of a questionnaire addressing target users
of the Pharaon system that helped to define a map of barriers and opportunities in the
region regarding the assistance of patients suffering from CHF. The goal was to enrich
the results in the previous phase with the opinion of other representatives that were also
target groups (older adults, informal caregivers, and health and care professionals). The
participants were reached through an online questionnaire that was duly promoted at
a regional level, and they participated in a set of virtual co-design sessions in different
focus groups. In total, 250 responses (56% were patients, relatives, or caretakers, and 44%
were health and care professionals) were gathered, and they helped to complete the initial
goal framework.

Next was the virtual co-design phase, consisting of the arrangement of a virtual work-
shop and the creation of different focus groups where representatives from the different
target users of the Pharaon system were involved: health and care providers, older adults,
and informal caregivers. In these workshops, different questions were posed regarding
the CHF, target users, use cases, scenarios, and technologies. The discussions helped to
confirm the goals and requirements identified and new ones appeared.

The outcomes of the three phases resulted in the definitive set of quality, functional,
and emotional goals, and this was the basis for defining the three goal models of the
Pharaon Murcia Pilot (Figure 3):

• Become involved in the health and care process;
• Improve patient care;
• Detect emergency situations.

The results also helped in identifying, clarifying, and organizing the system require-
ments in the Murcia pilot through the definition of seven use cases and the associated
technology requirements [29]:

• Become involved in the health and care process;
• Assess personal situations and risks;
• Strengthen knowledge of healthy lifestyles and behaviors;
• Improve patient care;
• Boost disease follow-up;
• Upgrade interventions;
• Detect emergency situations.
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Figure 3. Representation of the Pharaon Murcia Pilot goal model “Get involved in the health and
care process” [29].

4. Pharaon Murcia Pilot: Architecture and System Development

The technical requirements identified in the use cases found in step 1 of the workplan
led to the selection of the technologies to be implemented (see Table 1) to cover the two
scenarios, the goal models and the use cases with the software applications and platforms
required (see Figures 4 and 5).

Table 1. Technologies of the Pharaon Murcia pilot.

Technology Name
Technology

Classification
Description

Murcia Pilot
Scenario

Hardware/Software
Components

Technical Pre-
Requirements

Amicare (Technical
Research Centre of
Furniture and Wood of
the Region of Murcia)

Indoor
non-intrusive
tracking of daily
habits with
configurable
triggering alarms
on caregivers’
smartphone

Non-invasive system that
monitors older adults’ daily
habits and contributes to the
peace of mind of relatives and
caregivers thanks to the power of
IoT. Out-of-sight textile,
movement, and ambient sensors
are safely connected through the
cloud to any smartphone app
with a preregistered user. The
app can be configured and
personalized by its user to trigger
alarms if certain actions happen
(or do not happen) within
specified time windows, such as:
“if not in bed at any time between
22:00–0:00”, “if on the coach for
more than 3 consecutive hours”,
“if away from bed for more than
45 consecutive minutes between
0:00 and 6:00”.

Care@Home

Hardware components:
-Textile sensor pad;
-HW box including processor,
wireless communications, on-board
sensors (movement, humidity,
luminosity, temperature), and
textile sensor connectivity;
-App for Android device
(smartphone or tablet);
-Web-based user interface for group
of users (e.g., nursing homes).

Wi-Fi connection
is required

uGRID
(MIWenergía)

Energy
Management
Platform

The uGRID software aims to
digitize energy consumption,
providing the final consumer
with more information about
their demand of electrical energy.
The purpose is to achieve the
maximum possible energy
efficiency and to control the
electricity consumption by
setting alerts and
generating reports.

Care@Home

Hardware Components:
-Dedicated database server;
-Dedicated platform web server;
-Power metering devices.
Software Components:
-Web platform based on
PHP/Javascript;
-MariaDB database (MySQL).

Wi-Fi connection
is required
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Table 1. Cont.

Technology Name
Technology

Classification
Description

Murcia Pilot
Scenario

Hardware/Software
Components

Technical Pre-
Requirements

Smartband Solution
(based on Mi band 5 of
Xiaomi)
(Universidad
Politécnica de
Cartagena)

Wearable

Through a commercial
smartband wirelessly connected
to the patient’s smartphone, the
smartband solution allows
recording, in a non-invasive way,
real-time (and historical) data of
patients regarding their heart rate
and daily activity in a number of
steps. The novelty of this solution
is that it also provides the patient
data to his/her caregiver and to
his/her healthcare professional.
Moreover, the healthcare
professional can configure alarms
if heart rate is lower or higher
than a certain threshold.

Care@Home
Angel of
Health

Hardware Components:
-Smartband;
-Charger.
Software Components:
-App for Android devices
(smartphone or tablet) to track
user’s heart rate and daily activity,
reporting real-time and historical
data to patients, caregivers, and
healthcare professionals.

-Connection to a
smartphone
through
Bluetooth is
required
-Internet
connection is
required for the
smartphone

Onesait Healthcare Data
(Indra Minsait)

Telemedicine
Health Platform

It allows the treatment and
follow-up of chronic patients at
home. Through its two user
interfaces, the system integrates
the above technologies and offers
tools for the bidirectional
communication among
healthcare professionals in the
clinical setting and patients at
home, so that patients are
provided with personalized
treatments according to their
clinical conditions and progress.
Onesait Healthcare currently
allows the remote monitoring of
patients suffering from specific
chronic diseases, such as CHF,
diabetes, or hypertension, while
enabling mobility-ubiquity of
users, personalization, and
interoperability between systems
(seamless systems).

Care@Home
Angel of
Health

Software Components:
-MDM: includes managers for
population information, catalogues
and resources, along with a single
sign on and an Audit and Log
Server;
-Onesait Healthcare Global
Repository: health data storage
standardized under HL7 FHIR®

focused on interoperability;
-Onesait Healthcare Professional
Desktop: for professionals, citizens,
managers, researchers, etc. that
allows access to the different tools
or applications;
-Onesait Healthcare HomeCare: for
health professionals to monitor
patients;
-Form Builder: tool for the
configuration and parameterization
of health questionnaires;
-Alert: in charge of managing alarm
triggers and its visualization by the
operators to whom they are
addressed;
-MyHealth App: supports the
functionalities to be used by Older
Adults and their Caregivers.

-Access to
smartphone is
required for
Patients and
Caregivers.
-Access to
personal
computer is
required for
health
professional.

 

Figure 4. Overview of scenarios, technologies, and platform of the Pharaon Murcia pilot.
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Figure 5. User interfaces of the technologies used in the Pharaon Murcia Pilot.

During step 2, technology providers worked on the adaptations of the technologies
for the compliance of all users’ needs identified in step 1 and for their integration into the
Onesait Healthcare Data Platform, following the architecture agreed (see Figure 6).

For the six pilots, the architecture description was jointly carried out as a modelling
exercise, having the defined use case scenarios and requirements for each pilot as the main
input. Starting from the high-level abstraction and working towards adding more details,
the explicit representation of the concept and the Pharaon ecosystem becomes clearer to
everyone involved. It was decided that a technology-agnostic reference architecture model
should be followed, focused on standard-based, non-AAL-specific, and somewhat recog-
nized models, along with an adaptation of the 4 + 1 view model of architecture [36] with
some additional views to ensure a high degree of coherence in the process of documenting
the Pharaon architecture (see Figure 7).

Based on the experience and best practice of previous similar projects and initia-
tives [37–42], the Pharaon Reference Architecture is built on the common approach to “hor-
izontal” functional layering that reflects the IoT implementations across various domains,
and is expanded with two additional dimensions, cross-cutting functions, and properties.

Regarding the functional layers of the Murcia pilot architecture:

1. The device and network layer that represents the functional entities used for sensing,
collecting data and actuating, and enabling network connectivity and transmission of
data to other higher-level functional entities, includes Amicare, Miband 5, and the
power metering devices that send energy consumption data to uGRID.

2. The platform layer, responsible for integration and interoperability of basic func-
tional components for facilitating communication amongst them and exposing the
functionality of these components and databases to provide basic data storage and
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processing services. It comprises the storage and rule engines from Amicare, uGRID,
and Smartband, and the Onesait Healthcare Data platform.

3. The service layer compiles all the services provided by Amicare, uGRID, and Smart-
band. It represents all functional components that support and ease application
development, support mixture of different data streams, analytics and service compo-
nents, and allow insights from data to be extracted and more complex data processing
to be performed. Such services are executed in data centers (Smartband) or in cloud en-
vironments (Amicare and uGRID). They uniformly handle the underlying devices and
networks, thus hiding the complexities of layers 1 and 2. Among these services, remote
device management is included that can perform remote software upgrades, remote
diagnostics or recovery, and dynamically reconfigure application processing such as
setting event filters. Communication-related functions include publish/subscribe and
message queue mechanisms. In general, data storage for anything from raw data
to knowledge representations, and processing capabilities, such as data and event
capture, filtering, and stream processing, are core services implemented by Amicare,
uGrid, and Smartband.

4. The two user interfaces of the Onesait Healthcare data, the Homecare and MyHealth
apps, along with the technologies’ individual dashboard integrated in MyHealth app,
are included in the Application Layer, responsible for representing data in rich visuals
and/or interactive dashboards and providing direct functionality of the system from
a user perspective. Besides visualization, it represents other functional components
that are directly responsible for enabling application-specific visualization and user
interaction (such as application-specific backend services).

 

Figure 6. Murcia pilot high-level architecture.
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Figure 7. Pharaon architecture view model.

Figure 6 represents the architecture of the Murcia pilot at a high level, showing the
elements of each of the horizontal functional layers and their cross-cutting functions,
which address additional functionalities that are not linked to a single layer but whose
provision requires spanning across several layers. This includes security, privacy, reliability,
etc. Table 2 lists the technical description of each technology, including the interactions,
technologies, protocols, and security implemented.

Table 2. Interactions between the elements of the Murcia pilot architecture and their technologies,
protocols, and security.

Interaction Technologies and Protocols Security

Amicare
1–6

I1 MQTT over Wi-Fi Authentication
I2 VNP Authentication
I3 REST API TLS, AWS STS (Security Token Service)
I4 HTTPS JWT, SSL
I5 REST API TLS, AWS STS (Security Token Service)

I6 REST API Authentication in Rest services is through a
JWT token signed with its private key

uGRID
7–12

I7 MQTT over Wi-Fi Login
I8 REST API Uses SSL, API Key
I9 REST API Uses SSL, API Key
I10 .NET Core (Blazor Server) Uses SSL, Login
I11 Ionic + Angular + Cordova Uses SSL, Login

I12 API REST/REST FHIR Authentication in Rest services is through a
JWT token signed with its private key

Smartband
13–18

I13 Local host socket Authentication
I14 HTTPS Authentication (SSL)
I15 HTTPS JWT, SSL
I16 Bluetooth Authentication
I17 HTTPS REST API JWT, SSL

I18 API REST/REST FHIR Authentication in Rest services is through a
JWT token signed with its private key

Onesait Healthcare
Data
19–20

I19 API REST/REST FHIR Oauth 2
I20 API REST/REST FHIR Oauth 2

5. Pharaon Murcia Pilot: Testing the Smart Healthcare Solution

A two-stage approach was defined for testing the Pharaon system with target users in
all pilots:

1. The prevalidation stage, consisting of some initial real-world validation at a small
scale, where a reduced number of participants representing the different target users
(older adults, informal caregivers, and health professionals) test the technologies
described above. The goal is to collect the opinion of the users regarding the use of
these technologies in specific situations and to analyze the key performance indicators
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(KPIs) focused on the users’ level of autonomy, confidence, technology experience,
usability, etc. These tests also help to detect bugs/problems/improvements and solve
them before large-scale deployment.

2. The deployment of large-scale pilots with a significant number of target users testing
the Pharaon system for a period of at least 12 months, where the impact is assessed at
different levels according to a set of indicators agreed.

The present work includes the methods employed and results obtained during the
prevalidation stage because, at the time of writing, the large-scale deployment had just
started, and no significant data have been collected to evaluate the impact.

The six Pharaon pilots followed a common methodology described in a prevalidation
protocol for all pilot sites to assess difficulties and willingness to use and for bug collection.
For the Murcia pilot, this protocol comprised the following steps (see Figure 8):

• The initial approval of the study by the ethics authority where the prevalidation takes
place. For the case of the Murcia pilot, the ethics committee of the Murcia Institute
of Biomedical investigation, as the main ethics authority in the region in clinical
research studies, issued a favorable opinion after the assessment of the proposed
study, considering the relevance of its implementation, compliance with all basic
principles in terms of ethics, and the suitability requirements of the protocol in relation
to the research goals, along with the capacity of the researchers involved and the
appropriateness of the available resources.

• The selection of the participants according to a set of inclusion and exclusion criteria
determined by the nature and objectives of each pilot’s requirements and the living
conditions, digital skills, and health status of the volunteers (see Table 3).

• The definition of the key scenarios for users to perform and assess the technologies dur-
ing the test sessions (see Table 4) and the definition of the key performance indicators
(KPIs) (see Table 5).

• The pseudonymization of each participant and the compilation of socio-demographic
data needed for correlation calculation under impact assessment.

• Technology set-up and configuration following a predefined protocol including all
safety measures, explanations to users for each device that was installed, explanation
and signature of the informed consent.

• The arrangement of test sessions where participants assessed a set of predefined sce-
narios and KPIs in two steps as well: 6 (1) where participants assessed the technologies
individually, and 6 (2) where participants assessed the platform with the technologies
integrated within it.

• The identification of bugs, their registration in a specific space created in Gitlab, and
further improvements.

Table 3. Inclusion and exclusion criteria defined for users involved in the Pharaon Murcia pilot.

User Type Inclusion Criteria Exclusion Criteria

Older Adults

- CHF with any level of left ventricular
ejection fraction (LVEF);

- Frailty score preferably between 4
(vulnerable) and 6 (moderately frail) 1;

- Signed consent form;
- Digital skills;
- Availability of certain electronic devices

and Wi-Fi Connection;
- Digital skills, knowledge in e-health

devices or higher knowledge in his/her
pathologies.

- Planned heart transplantation, cardiac surgery, or left
ventricular assisted device (LVAD) implant;

- Chronic renal replacement therapy (haemodialysis,
peritoneal dialysis, or transplant);

- Evidence of active or suspected cancer or a history of
malignancy in the last five years;

- Inability or unwillingness to provide informed
consent or to comply with study requirements;

- Life expectancy below 1 year (due to another cause
excluding HF) or a frailty scale of 7 and above;

- Serious psychiatric illness;
- Participation in another clinical trial.
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Table 3. Cont.

User Type Inclusion Criteria Exclusion Criteria

Caregivers
- Older than 18 years old;
- Digital skills;
- Availability of electronic devices.

None

Health
Professionals

- Digital skills;
- Proactivity;
- Motivation.

None

1 According to the clinical frailty scale of the Canadian Study on Health and Ageing (CSHA) living at home [43].

 

Figure 8. Prevalidation protocol followed by the six Pharaon pilots.

Table 4. Scenarios defined for each technology of the Pharaon Murcia pilot.

Technology User Type Scenario

Amicare

Patient
1. You want to find out the time you went to bed on a specific date according to Amicare.
2. You want to know the humidity in your home today.

Caregiver

1. You want to check that Mrs. X’s home temperature is between 19 ◦C and 25 ◦C.
2. You want to see if Mrs. X’s movements in her flat were regular over the last 3 days.
3. You want to check that you will receive an alert when the alarm configuration

is fulfilled.

200



Sensors 2022, 22, 8961

Table 4. Cont.

Technology User Type Scenario

uGRID

Patient
1. You want to know your real-time electricity consumption.
2. You want to know if the kitchen has been used for cooking.
3. You want to know which electrical device consumes the most electricity in your home.

Caregiver

1. You want to know which electrical device consumes the most electricity at the
patient’s home.

2. You want to know if Mrs. X has used the washing machine this week.
3. You want to see if you have received any alarms or events about changes in the power

consumption patterns of Mrs. X.

Smartband

Patient
1. You want to see your heart rate.
2. You want to know how many steps you have taken today.

Caregiver
1. You want to find Mr. X´s heart rate.
2. You want to know how many steps Mr. X has taken today.

Onesait
Healthcare
Data

Patient
1. You want to manually register a weight value/blood pressure.
2. You want to access your CHF program to fill in a health questionnaire.
3. You want to access your CHF follow-up program and consult your personal care plan.

Caregiver

1. You want to manually register a weight/blood pressure value of Mrs. Z.
2. You want to access to the follow-up details of Mrs. Z.
3. You want to access Mrs. X´s CHF program to fill in a health questionnaire.
4. You want to access Mrs. X´s CHF follow-up program and consult her personal

care plan.

Health
Professional

1. You want to access Mrs. X’s CHF follow-up program.
2. You want to perform an initial clinical assessment of Mrs. X.
3. You want to create and publish the personal care plan (PCP) for Mrs. X through a

template so she can consult it through the MyHealth App.
4. You want to customize what measures (vital signs) Mrs. X must include in the CHF

follow-up.
5. You want to include a weight range between 50 and 62 kg, outside of which you will

receive an alert for Mrs. X.
6. You want to customize what health questionnaires Mrs. X must fill in from MyHealth

App and how she will have them available: only once, or any time to be filled whenever
she wants.

7. You want to consult the most recent records of Mrs. X’s heart rate and her heart rate
history (Smartband).

8. You want to consult the history of personalized follow-up plans of Mrs. X (the details of
the plan, which professional published it and when).

9. You want to know if Mrs. X has used the washing machine (or any other device that is
being monitored) this week (MIW+).

10. You want to check that you will receive an alert when the alarm configuration is
fulfilled (Amicare).

11. You want to check what patients have alerts from the list of patients of the CHF
follow-up program.

12. You want to finalize Mrs. X´s CHF follow-up program.

Table 5. Key performance indicators used during the prevalidation stage.

KPI Evaluation Area Data Source Kind of Data Source Target

Identification of
potential bugs

Number of bugs detected
during test session Gitlab Platform Test of functionalities

and usage scenarios Table of bugs number

Usage difficulties User acceptance Questionnaire After-Scenario
Questionnaire (ASQ) Medium score ≥ 5

Willingness to use User acceptance Questionnaire System Usability Scale
(SUS) Medium score ≥ 68
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Regarding the KPIs agreed upon (see Table 5), the one focused on usage difficulties
found by the users has been evaluated through the ASQ questionnaire, with three questions
(see Table 6) and a seven-level scale for each one. For the analysis of the results, the
rates equal to or higher than 5 were interpreted as no difficulty. The questionnaire also
comprised a “Comments” section for registering any difficulties or positive feedback about
the scenario evaluated. The KPI focused on willingness to use was assessed by the System
Usability Scale (SUS) questionnaire (see Table 7), a method that allows us to obtain a general
view of subjective assessments of usability for a wide variety of products and services,
including hardware, software, mobile devices, websites, and applications. Due to the
heterogeneity of ICT solutions that comprise the Pharaon pilots, SUS was the user-testing
tool agreed upon by all partners in the Pharaon project, even though there is other research
focused on healthcare solutions that use the popular Technology Acquisition Model (TAM)
questionnaire as the tool to measure the technology acceptability [44].

Table 6. Sample questions in the After Scenario Questionnaire (ASQ).

ASQ1: Overall, I Am Satisfied with the Ease of Completing the Tasks in This Scenario.

Disagree 1 2 3 4 5 6 7 Agree
Comment: specification of agreement or disagreement.

ASQ2: Overall, I Am Satisfied with the Amount of Time It Took to Complete the Tasks in This Scenario.

Disagree 1 2 3 4 5 6 7 Agree
Comment: specification of agreement or disagreement.

ASQ3: Overall, I Am Satisfied with the Support Information (Online-Help, Messages, Documentation) When Completing
the Tasks.

Disagree 1 2 3 4 5 6 7 Agree
Comment: specification of agreement or disagreement.

Table 7. System Usability Scale (SUS).

SUS1. I Think That I Would Like to Use This System Frequently.
Strongly disagree 1 2 3 4 5 Strongly agree

SUS2. I Found the System Unnecessarily Complex.
Strongly disagree 1 2 3 4 5 Strongly agree

SUS3. I Thought the System Was Easy to Use.
Strongly disagree 1 2 3 4 5 Strongly agree

SUS4. I Think I Would Need the Support of a Technical Person to Be Able to Use This System.
Strongly disagree 1 2 3 4 5 Strongly agree

SUS5. I Found the Various Functions in This System Were Well Integrated.
Strongly disagree 1 2 3 4 5 Strongly agree

SUS6. I Thought There Was Too Much Inconsistency in This System.
Strongly disagree 1 2 3 4 5 Strongly agree

SUS7. I Would Imagine That Most People Would Learn to Use This System Very Quickly.
Strongly disagree 1 2 3 4 5 Strongly agree

SUS8. I Found the System Very Cumbersome to Use.
Strongly disagree 1 2 3 4 5 Strongly agree

SUS9. I Felt Very Confident Using the System.
Strongly disagree 1 2 3 4 5 Strongly agree

SUS10. I Needed to Learn a Lot of Things Before I Could Get Going with This System.
Strongly disagree 1 2 3 4 5 Strongly agree
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The SUS scale comprises 10 items that participants had to score from 1 to 5 once the
scenarios of each technology were finalized; the calculation of the results based on the
participants’ scores gives a general score between 0 and 100.

SUS Score = 2.5 × [(SUS1 + SUS3 + SUS5 + SUS7 + SUS9-5) + (25 − SUS2 − SUS4 − SUS6 − SUS8 − SUS10)]

Table 8 shows the general guideline on SUS Score interpretation provided by some
authors [45]. The prevalidation protocol considered those solutions as accepted if the
average score of SUS was graded as A (excellent) or B (Good).

Table 8. General guideline of SUS Score interpretation [45].

SUS Score Grade Adjective Rating

>80.3 A Excellent

68.0–80.3 B Good

68 C Okay

51–68 D Poor

<51 E Awful

Finally, it is necessary to provide a deeper explanation of the way the steps 5–7 were
performed during the prevalidation (see Figure 8):

• Steps 5 (1) and 6 (1) were carried out together for each participant (patient and his/her
caregiver), that is, on a fixed date, the technologies were installed and configured
at the participant’s home. In that visit, the patient and his/her caregiver took time
testing the technologies individually, performing the predefined scenarios for each
technology shown in Table 4 and filling out the ASQ and SUS questionnaires.

• Step 7 was carried out, analyzing the results gathered in the steps before, identifying
and solving bugs and problems, and improving the technologies accordingly. In
some cases, the technologies or their improvements could involve new set-ups or
configurations; then, step 5 (2) was included.

• After the first 5-6-7 iteration, step 6 (2) was performed in different sessions, organized
by type of participant. On the one hand, healthcare professionals participated in
the testing sessions, performing the scenarios defined with the Onesait Homecare
Healthcare software tool, where all technologies were integrated (see Table 2). After
that, they completed the ASQ and SUS. On the other hand, patients and caregivers
performed the second testing round with the improved technology result of step 7
and 5 (2), and all of them already integrated in the MyHealth App. As in the previous
testing session, they completed the ASQ and SUS.

It is important to remark that the second prevalidation phase was affected by COVID-
19 restrictions, and some testing sessions were performed in hybrid mode following the
premises of the Murcia health service.

6. Results

During the prevalidation stages, 44 people participated in testing sessions 6 (1) and
6 (2), namely:

• Prevalidation phase 1. Testing sessions in 6 (1): nine sessions were performed with a
total of fifteen participants—nine older adults and six informal caregivers—from four
municipalities of the region (Murcia, Cartagena, Alcantarilla and Yecla).

• Prevalidation phase 2. Testing session in 6 (2): twelve sessions were performed
with 14 health professionals, ranging from cardiologists, to nurses, family doctors,
neurologists, and pharmacists, and two sessions with eight older adults (two of them
online), and seven informal caregivers.
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Table 9 shows data from participants related to the following five variables: type of
user, gender, year of birth, digital skills, and education level.

Table 9. Socio-demographic information of the recruited participants.

Type of User Gender Year of Birth Digital Skills (*) Education Level (**)
Pre-Validation

Phases Involved

Patients

Female 1964 Some Experience EQF Level 6 Phase1, Phase 2

Female 1946 Some Experience EQF Level 7 Phase1, Phase 2

Male 1959 Some Experience EQF Level 6 Phase1, Phase 2

Male 1936 Some Experience EQF Level 6 Phase1, Phase 2

Male 1968 Experienced/Proficient EQF Level 7 Phase1, Phase 2

Female 1946 Some Experience EQF Level 6 Phase1, Phase 2

Male 1955 Some Experience EQF Level 4 Phase1, Phase 2

Female 1957 Some Experience EQF Level 6 Phase1, Phase 2

Female 1962 Some experience EQF Level 5 Phase1, Phase 2

Caregivers

Female 1962 Some experience EQF Level 5 Phase1, Phase 2

Male 1995 Experienced/Proficient EQF Level 7 Phase1, Phase 2

Female 1972 Some experience
with autonomy EQF Level 5 Phase 2

Male 1945 Some experience EQF Level 6 Phase1, Phase 2

Female 1956 Experienced/Proficient EQF Level 3 Phase1, Phase 2

Female 1955 Some experience EQF Level 5 Phase1, Phase 2

Male 1955 Some experience
with autonomy EQF Level 7 Phase1, Phase 2

Health
Professionals

Male 1970 Some experience
with autonomy EQF Level 8 Phase 2

Male 1977 Some experience
with autonomy EQF Level 8 Phase 2

Female 1962 Some experience
with autonomy EQF Level 6 Phase 2

Female 1982 Some experience
with autonomy EQF Level 6 Phase 2

Male 1965 Some experience
with autonomy EQF Level 8 Phase 2

Female 1974 Some experience
with autonomy EQF Level 6 Phase 2

Male 1969 Experienced/Proficient EQF Level 7 Phase 2

Male 1974 Some experience
with autonomy EQF Level 8 Phase 2

Female 1981 Some experience
with autonomy EQF Level 8 Phase 2

Female 1973 Some experience
with autonomy EQF Level 8 Phase 2
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Table 9. Cont.

Type of User Gender Year of Birth Digital Skills (*) Education Level (**)
Pre-Validation

Phases Involved

Female 1959 Some experience
with autonomy EQF Level 6 Phase 2

Male 1973 Some experience
with autonomy EQF Level 8 Phase 2

Female 1960 Some experience
with autonomy EQF Level 8 Phase 2

Male 1979 Some experience
with autonomy EQF Level 8 Phase 2

(*) No experience, Some experience, Some experience with autonomy, Experienced/Proficient. (**) EQF Level 1:
Primary Education; EQF Level 2: Academic Secondary School Lower Cycle, New Secondary School, and Lower
Secondary School; EQF Level 3: Academic Secondary School Upper Cycle, Intermediate and Higher VET (up to
3rd grade); EQF Level 4: Post-secondary non-tertiary education; EQF Level 5: Short-cycle tertiary education; EQF
Level 6: Bachelor’s Degree, Higher Apprenticeship; EQF Level 7: Master’s Degree, postgraduate certificate and
diplomas; EQF Level 8: Doctorate or Equivalent.

Note that, although the number of participants (samples) in the prevalidation phase
may seem small, many practitioners in the industry have adopted the five-users rule as
standard practice for user-testing, which points out that five participants are enough for
getting a useful result for testing usability.

All participants filled in the ASQ and SUS. The statistical methodology used consisted
of a set of sequential procedures for handling the qualitative and quantitative research data:
collection, counting, presentation, synthesis, and analysis. The analysis was performed
using descriptive and exploratory analysis. The descriptive analysis served to describe
the set of data, thus obtaining the parameters that distinguish the characteristics of a
set of data. The reasons for carrying out this analysis are that it allowed us to know,
in detail, the information we had and to know the way in which the information was
structured. It helps to make deductions directly from the data and parameters obtained.
The exploratory analysis consisted of a set of statistical techniques whose purpose was to
obtain a basic understanding of the data, allowing the detection of salient features, such as
unexpected and outliers. In this work, the mean was the main statistical technique used.
The mean scores and global mean for each questionnaire and question are summarized in
Tables 10–13.

Table 10. ASQ mean scores for the individual technologies during the pre-validation phase 1.

Technology Type of User Scenario

Mean Scores for
Individual Questions Global Mean

ASQ1 ASQ2 ASQ3

Amicare

Patients
1. You want to find out the time you went to bed
on a specific date according to Amicare. 6.00 5.89 6.56 6.15

2. You want to know the humidity in your
home today. 6.89 6.78 6.67 6.78

Caregivers

1. You want to check that Mrs. X’s home
temperature is between 19 ◦C and 25 ◦C. 6.67 6.83 7.00 6.83

2. You want to see if Mrs. X’s movements in her
flat were regular over the last 3 days. 6.00 6.17 6.50 6.22

3. You want to check that you receive an alert
when the alarm configuration is fulfilled. 6.33 6.50 6.50 6.44
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Table 10. Cont.

Technology Type of User Scenario

Mean Scores for
Individual Questions Global Mean

ASQ1 ASQ2 ASQ3

uGRID

Patients

1. You want to know your real-time
electricity consumption. 5.75 5.38 6.25 5.79

2. You want to know if the kitchen has been used
for cooking. 5.88 5.88 6.00 5.92

3. You want to know which electrical device
consumes the most electricity in your home. 6.25 6.25 6.38 6.29

Caregivers

1. You want to know which electrical device
consumes the most electricity at the
patient´s home.

6.67 6.83 7.00 6.83

2. You want to know if Mrs. X has used the
washing machine this week. 6.00 6.17 6.50 6.22

3. You want to see if you have received any
alarms or events about changes in power
consumption patterns of Mrs. X.

6.33 6.50 6.50 6.44

Smartband
Solution

Patients
1. You want to consult your heart rate. 6.86 6.86 6.71 6.81
2. You want to know how many steps you have
taken today. 7.00 7.00 6.86 6.95

Caregivers
1. You want to consult Mr. X´s heart rate. 5.33 5.50 5.67 5.50
2. You want to know how many steps Mr. X has
taken today. 5.67 5.50 5.83 5.67

Table 11. SUS mean scores for the individual technologies during the pre-validation phase 1.

Technology Type of User
Mean Scores for Individual Questions

SUS Mean
Score

SUS1 SUS2 SUS3 SUS4 SUS5 SUS6 SUS7 SUS8 SUS9 SUS10

Amicare
Patient 4.44 1.44 4.78 1.78 4.67 1.33 4.44 1.44 4.56 1.44 88.61

Caregiver 4.67 1.83 4.50 1.33 4.67 1.83 3.33 1.33 4.50 1.50 84.58

uGRID
Patient 4.00 1.50 4.38 1.75 4.38 1.63 3.88 1.50 4.50 1.75 82.50

Caregiver 4.50 1.33 4.83 1.33 4.17 1.33 4.17 1.17 4.83 1.00 90.83

Smartband
Solution

Patient 4.86 1.14 4.86 1.43 4.71 1.14 4.86 1.14 4.29 1.29 93.57

Caregiver 4.60 2.00 4.80 1.20 5.00 1.00 3.80 1.20 4.80 1.20 91.00

In the first prevalidation phase, the mean score of the ASQ questions for each technol-
ogy/scenario resulted in a value higher than 5 for all questions (see Table 10). Only one of
nine patients (11.11%) scored questions ASQ1 and ASQ2 below 5 for Amicare scenario 1,
considering the scenario somewhat difficult and not so fast to complete. The global mean
for all questions reveals that almost all participants performed the requested scenarios with
no difficulties, in an acceptable time, and felt supported throughout the process.

Regarding usability, the mean SUS scores obtained from all technologies (Table 10)
were above 80.3, achieving an “A” grade (Excellent). Only two participants rated the
smartband solution with 80 points.

From the results of the prevalidation phase 1, we concluded that the KPIs were
reached for all technologies/scenarios, fulfilling the requisites of the first testing phase of
prevalidation.

In the second prevalidation phase, the mean scores (Tables 12 and 13) were better than
in the previous sessions in almost all technologies/scenarios, which means that participants
are more satisfied with the solution in terms of difficulty and usability. From the eight
patients that tested the MyHealth App module from Onesait Healthcare Data, the rates
given to the SUS questions of only one patient (12.5%) achieved a score below 80.5. The
six caregivers scored all individual ASQ questions with 5 or above, and for the Homecare
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module from Onesait Healthcare Data, at least one ASQ question from scenarios 5, 6, 9, 10,
and 12 were scored as 4 by four professionals (28.5%). The rates given to the SUS questions
of two health professionals (12.28%) received a score below 80.5.

Finally, it is important to mention that, during the first prevalidation phase, only two
bugs (minor issues) were reported in Gitlab related to the smartband solution that were
solved and the software was updated for step 6 (2). No bugs were reported during the
second phase of pre-validation.

Table 12. ASQ mean scores for Onesait Healthcare Data with the integrated technologies during the
pre-validation phase 2.

Technology Type of User Scenario

Mean Scores for
Individual Questions Total Mean

ASQ1 ASQ2 ASQ3

Onesait
Healthcare Data

Patients

1. You want to manually register a weight
value/blood pressure. 6.50 6.50 7.00 6.67

2. You want to access your CHF program to fill in a
health questionnaire. 7.00 6.50 7.00 6.67

3. You want to access your CHF follow-up program and
consult your personal care plan. 7.00 6.50 7.00 6.67

Caregivers

1. You want to manually register a weight/blood
pressure value of Mrs. Z. 7.00 7.00 7.00 7.00

2. You want to access to the follow-up details of Mrs. Z. 6.67 6.67 6.83 6.72
3. You want to access Mrs. X´s CHF program to fill in a
health questionnaire. 6.67 6.67 7.00 6.78

4. You want to access Mrs. X´s CHF follow-up program
and consult her personal care plan. 6.83 7.00 7.00 6.94

Health
Professionals

1. You want to access Mrs. X CHF follow-up program. 7.00 6.67 6.83 6.83
2. You want to perform the initial clinical assessment to
Mrs. X. 6.75 6.58 6.58 6.64

3. You want to create and publish the personal care plan
(PCP) for Mrs. X through a template so she can consult it
through the MyHealth App.

6.58 6.50 6.50 6.53

4. You want to customize what measures (vital signs) Mrs.
X must include in the CHF follow-up. 6.92 6.83 6.92 6.89

5. You want to include a weight range between 50 and 62
kg, outside of which you will receive an alert for Mrs. X. 6.83 6.58 6.58 6.67

6. You want to customize what health questionnaires Mrs.
X must fill in from MyHealth App and how she will have
them available: only once, or anytime to be filled in
whenever she wants.

6.42 6.83 6.42 6.56

7. You want to consult the last records of Mrs. X’s heart
rate and her heart rate history (Smartband). 5.92 6.25 6.08 6.08

8. You want to consult the history of personalized
follow-up plans of Mrs. X (the details of the plan, which
professional published it and when).

6.92 6.92 6.92 6.92

9. You want to know if Mrs. X has used the washing
machine (or any other device that is being monitored)
this week (MIW+).

6.60 6.50 6.40 6.50

10. You want to check that you receive an alert when the
alarm configuration is fulfilled (Amicare). 6.33 6.25 6.25 6.28

11. You want to check what patients have alerts from the
list of patients of the CHF follow-up program. 6.58 6.67 6.50 6.58

12. You want to finalize the Mrs. X´s CHF
follow-up program. 6.67 6.67 6.67 6.67

Table 13. SUS mean scores for Onesait Healthcare Data with the integrated technologies during the
pre-validation phase 2.

Technology Type of User
Mean Scores for Individual Questions SUS Mean

ScoreSUS1 SUS2 SUS3 SUS4 SUS5 SUS6 SUS7 SUS8 SUS9 SUS10

Onesait
Healthcare

Data

Patients 4.38 1.50 4.75 1.75 4.75 1.50 3.88 1.38 4.38 2.00 85.00

Caregivers 4.67 1.17 5.00 1.00 4.83 1.16 4.16 1.16 4.83 1.16 92.50

Health
Professionals 4.33 1.67 4.75 2.00 4.33 1.25 3.92 1.33 4.58 1.25 86.04
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7. Conclusions and Future work

This work presented an innovative AAL solution built upon novel and mature existing
IoT technologies with the aim of providing a tele-assistance platform for CHF patients
from the public health service of the region of Murcia in Spain. The solution has been
designed with a user-centric approach, but also involves formal and informal caregivers and
health professionals. From the authors’ point of view, this work has been used as a useful
guideline to provide the R&D community with inspiration for the design and deployment
of AAL solutions based on heterogeneous IoT technologies, or similar approaches, for
smart healthcare solutions in real healthcare institutions.

It is important to note some key points of the work presented, as follows. The starting
point must be a set of needs identified. Normally, healthcare professionals or institutions
are the ones who detect the need. In this work, the needs were detected by the healthcare
institution of the Murcia region for CHF patients. After that, a workplan of well-defined
steps must be agreed upon by all parties. It must include at least engineering of user
requirements, design of the system architecture and development, and testing of the
solution for a final step of large-scale deployment. For each step, a clear methodology must
be defined and executed with a set of expected outputs identified, which will serve as input
for the next step(s). The results obtained from each step must be analyzed, identifying the
improvements to implement and lessons learnt.

Regarding the steps defined for this work in depth, it is important to highlight some
important issues regarding timing, participants, key points of the execution, and lessons
learnt. In the engineering of user requirements, at least six months of implementation
were required, with the participation of representatives of all target users involved in
the final AAL solution. In a healthcare solution such as the one presented, patients,
formal and informal caregivers, and healthcare professionals are expected to be involved
at least. Moreover, a high number of participants help to better define the co-design and
representation of user requirements as goal models, use case scenarios, and user stories.
In this work, up to 250 people participated in the different initiatives, workshops, and
meetings organized to define them.

The step focused on architecture definition, development, and integration is a technical
approach with a high load of software development. The duration will depend on the
maturity of the technologies involved, the functional requirements, and the final healthcare
product expected. In this work, this step was planned for one year of work and was
focused on two sequential goals. First, the definition of a functional architecture with a
set of functional layers and others spanned across several layers, such as security, privacy
and reliability, defining the interactions and protocols to use. Second, the development
and adaptations of three innovative IoT technologies—Amicare, Smartband, uGRID—and
the Homecare and MyHealth App as modules of the Onesait Healthcare Data platform.
The main lesson learnt was the importance of using open and interoperable interfaces.
Although some IoT solutions are shown as plug and play, minor or major adoptions must
almost always be carried out. Data privacy and security are also a must.

Regarding the prevalidation step of the AAL solution, the mandatory assessment of
the functionality, usability, and acceptance of the solution by the final users is noteworthy.
It entails the participation of all actors involved in this work: patients, formal and informal
caregivers, and health professionals. Moreover, all technologies must be monitored during
the prevalidation to ensure good performance. In this work, the prevalidation involved the
testing of each stand-alone IoT technology and the testing of all IoT technologies integrated
in the final healthcare platform solution. Over two months, the authors collected feedback
on the tested solution in both phases with 44 participants involved. From the results, the
authors concluded that, on average, the rate of acceptance and usability of all technologies
and software solutions was higher than expected, and no major bugs or unexpected issues
were detected. Then, the product will be ready to be launched in a large-scale pilot.

As a final conclusion, the steps executed, explained in detail in this paper, have been
essential in utilizing the future actions that will improve the innovation of the healthcare
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platform solution presented at its current TRL of 6, to launch a final development in view
of creating a large-scale pilot, where around 450 participants are expected in the Murcia
region, and to design and develop the impact, exploitation, and business plan.

8. Discussion

Although the work presented has been performed to a high professional quality,
following guidelines agreed under a H2020 European project framework, and the results of
the work performed have been very positive and useful, it is also important to mention that
the authors have identified in this contribution a set of limitations without undermining the
quality and integrity of the research. In this section, we summarize them and discuss how
they could impact the work and results, and we provide countermeasures and alternatives
for future work if this applies.

This work has been performed thanks to the collaborative work of six different organi-
zations and professionals of different disciplines. In addition, more than 300 participants
have been reached to participate during the different stages of the research work, which
involved difficult organization and coordination. The COVID-19 outbreak added more
difficulties due to the impossibility of performing face-to-face meetings and other orga-
nizational problems, which resulted in all tasks being redesigned and rescheduled. Time
constraints also affected the research negatively, setting as future work some tasks that
could have been finished or that at least had sufficient results which could have been
included at the time this contribution was written, e.g., the experience of the large-scale
pilot under execution.

Some research/development limitations have been also identified during the develop-
ment of the integrated ICT solution, due to the architecture complexity and high-quality
requirements and/or the lack of knowledge of some specific programming languages
mandatory for the final integration with the platforms provided by Indra-Minsait.

Data and statistics have also been a limiting factor of the research performed. During
the prevalidation phase, 44 participants were reached. Although it is a sufficient sample
size for analyzing usability using SUS, the use of other evaluation questionnaires may need
more samples, or some researchers may even consider 44 a low number of participants in a
testing phase of a large healthcare ICT solution.

The lack of similar research works in the scientific literature has also limited the
comparison with similar approaches and the enrichment that a state of art offer to the
research contributions.

Finally, we remark that the work developed has been an ad hoc solution for specific
target users and healthcare providers, and may show a strong regional focus, limiting its
impact. However, some regional, national, and international stakeholders have already
shown interest in the work for replicating the solution, or part of it, for other healthcare
systems or types of patients (e.g., palliative healthcare).
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Abstract: Rehabilitation aims to increase the independence and physical function after injury, surgery,
or other trauma, so that patients can recover to their previous ability as much as possible. To be
able to measure the degree of recovery and impact of the treatment, various functional performance
tests are used. The Eight Hop Test is a hop exercise that is directly linked to the rehabilitation
of people suffering from tendon and ligament injuries on the lower limb. This paper presents a
systematic review on the use of sensors for measuring functional movements during the execution of
the Eight Hop Test, focusing primarily on the use of sensors, related diseases, and different methods
implemented. Firstly, an automated search was performed on the publication databases: PubMed,
Springer, ACM, IEEE Xplore, MDPI, and Elsevier. Secondly, the publications related to the Eight-Hop
Test and sensors were filtered according to several search criteria and 15 papers were finally selected
to be analyzed in detail. Our analysis found that the Eight Hop Test measurements can be performed
with motion, force, and imaging sensors.

Keywords: Eight Hop Test; systematic review; measurement; sensors; diseases

1. Introduction

The Eight Hop Test is a hop exercise that consists of jumping with one leg in a circuit
in the form of the number eight [1,2]. This test is helpful to evaluate the physical strength
of individuals that suffered from some disease related to the lower limb [2,3].

Different kinds of sensors available in the market allow the measurement of patterns
related to different movements [4–6]. It can handle the creation of automatic methods to
the empowerment of the physical treatments [7–9]. These methods are important to give
the same opportunities to rural environments in terms of treatments and monitoring of
health conditions [10–12]. There are different types of sensors, but the sensors that are
especially important for these measurements are the sensors for motion detection, which
are available in commonly used mobile devices [13–15]. The positioning of these devices
has different limitations, but it is relatively easy due to different support straps that allow
these devices’ statical position [16,17]. Therefore, the technology may help clinicians or
scientists to study the detailed biomechanical parameters of jumping during rehabilitation
programs as relevant variables for clinically significant scores and decide on the initiation
of RTS with more confidence [18].
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This review is included in a project related to the automation of the measurement of dif-
ferent results of the different physical functional tests, including the Heel-Rise Test [19,20],
Timed-Up and Go Test [6,21], Ten Meter Walk Test [22], Six-Minute Walk Test [23], Func-
tional Reach Test [24], 30-s Chair Stand Test [25,26], and Sit-to-Stand Test [27], where the
development of different solutions involved in further studies. Furthermore, it is helpful
and benefits the creation of Enhanced Living Environments [28,29]. The Eight Hop Test is
mainly associated with different musculotendinous injuries, such as Cruciate Ligament of
the Knee, Medial patellofemoral ligament, and Achilles tendon [18] and with injuries on
the anterior cruciate ligament and gluteus medius [30,31].

The physical functional tests, such as bilateral or unilateral vertical and horizontal
jump tests, require muscle strength and neuromuscular coordination for dynamic joint
stability, which deteriorates with a knee injury [32,33]. In this regard, functional tests have
been widely evaluated in laboratories using motion capture cameras, force platforms, and
contact mattresses [32,34] to better understand biomechanical changes after knee injuries.

The monitoring of the biomechanics of the lower limbs during functional activities
may help in the decision making related to the performance of sports or working activities
after injury and prevention of osteoarthritis [35]. The analyzed test in this review allows
the doctors to check the deficit of the significant underlying muscle deficits and ligament
instability are still present throughout the post-operative rehabilitation period [35].

The study’s purpose consists of a systematic review related to the measurement of the
results of the Eight Hop Test with sensors, including motion force and imaging sensors.
With the Eight Hop Test, the sensors can reach different results.

This paragraph ends the introductory section of this systematic review. Next, Section 2
describes research questions, inclusion criteria, search strategy, and analyzed study charac-
teristics. Section 3 shows each study’s results and summary. Third, in Section 4, we discuss
and highlight the most critical points, and finally, Section 5 concludes the paper.

2. Methodology

2.1. Research Questions

The questions of this systematic review were focused on: (RQ1) Which devices can
be used in the Eight Hop Test? (RQ2) Which data are related to the different types of
diseases diagnosed by the Eight Hop Test? (RQ3) What are the benefits of implementing
technological methods for measuring the results of the Eight Hop Tests?

2.2. Inclusion Criteria

The exercises and the sensors/equipment that had been used on the measurements
of the Eight Hop Test results were based on the following inclusion criteria: (1) studies
that measured different parameters related to the Eight Hop Test with sensors/equipment;
(2) studies that used Eight Hop Test as the primary method; (3) studies that relate the
Eight Hop Test with some diseases; (4) studies that clearly present results and population;
(5) studies that were published between 2012 and 2021; (6) studies written in English.

2.3. Search Strategy

The Eight Hop Test consists of activities based on hopping used for rehabilitation
purposes, and some studies only use a few of them. The search was performed with a
Natural Language Processing (NLP)-based framework [36] in the following databases:
IEEE Xplore; PMC; Pubmed Central; Springer; Association for Computing Machinery
(ACM); Elsevier; and Multidisciplinary Digital Publishing Institute (MDPI). The keywords
applied for this research were: “Eight hop test sensors”; “Eight hop test exercises”; and
“hopping”. Each study was filtered using the defined criteria presented in Section 2.2. The
research was performed on 2 November 2021.
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2.4. Extraction of Study Characteristics

There are specific parameters extracted from the studies. The information from the
studies was divided and presented in Table 1 by the following terms: year of publication;
population; the purpose of the studies; sensor/equipment; types of methods; and diseases.
Some studies do not mention all the information required in Table 1, but they always gave
precious data to help answer the questions in Section 2.1. The lack of information provided
in the studies was compensated by contacting the respective authors of the analyzed studies.
The information related to implementing the Eight Hop Test with technological equipment
is limited, and this subject needs more research.

Table 1. Study analysis.

Paper
Year of

Publication
Location Population Purpose of the Study Sensors/Equiment Diseases Studied

Baxter et al.
[37] 2021 United States of

America 10 healthy adults

The study analyses
which Hop exercises
makes a stronger and

durable Achilles tendon

Reflective marker;
12 camera motion

capture system;
Force plate

Achilles tendon
fracture

Ebert et al. [38] 2021 Australia 34 males and 16
females

The study focus on
which Hop Tests syncs
better with isokinetic

knee extensor strength
and the deficits after an

injury in the anterior
cruciate ligament

reconstruction

Stopwatch;
Accelerometer;

Velcro strap;
Isokinetic

dynamometer

Anterior cruciate
ligament

Ebert et al. [39] 2021 Australia 34 males and 16
females

This study aimed to
find if the eight hop

tests can identify limb
asymmetry after
anterior cruciate

ligament reconstruction

Accelerometer;
Stopwatch

Anterior cruciate
ligament

Joschtel et al.
[40] 2021 Australia 46 children

Comparison
fundamental movement

skill proficiency in
children with

bronchiectasis with
measured Physical

Ability

ActiGraph GT3X;
Accelerometer Bronchiectasis

Lawson et al.
[41] 2021 United Kingdom 111 males and 108

females

Studying the
fundamental movement

skill levels in primary
school children

SECA portable
stadiometer;
Nikon video

camera;

Healthy

Biesert et al.
[42] 2020 Sweden 24 patients

This study proposed an
evaluation of a medial

patellofemoral ligament
using patient reported

measures and
functional testing

Goniometer Patellofemoral
ligament

Ergişi et al. [43] 2020 Turkey
15 males, 1 female

and 8 healthy
male controls

This study examines the
functional outcomes,

static-dynamic postural
stability of patients with

an associated gluteus
medius treated injury

Wireless elec-
tromyography;

Bipolar adhesive
surface electrodes

Gluteus medius
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Table 1. Cont.

Paper
Year of

Publication
Location Population Purpose of the Study Sensors/Equiment Diseases Studied

Dingenen et al.
[44] 2019 Belgium

16 non-injured
participants & 28
anterior cruciate

ligament
reconstructed
participants

The study had 2 purposes.
The first one was to

examine the test-retest
reliability of single hop

tests in the forward,
medial and rotational

direction. The second one
was to detect limb

asymmetries of the medial
rotational hop tests in

comparison with forward
hop tests

Measuring tape Anterior cruciate
ligament

Sancho et al.
[45] 2019 United

Kingdom

15 male
recreational

runners

The study examines the
best hopping exercises in

runners with Achilles
tendinopathy based on a

self-reported pain

Metronome;
Ultrasound

scanner

Achilles
tendinopathy

Owusu-Akyaw
et al. [46] 2018 United States of

America 8 male subjects

Comparison between
anterior cruciate ligament
deficient and intact knees

in subjects due to
patellofemoral joint and

mechanics

Magnetic
Resonance (MR)

scanner

Anterior cruciate
ligament;

Patellofemoral
joint

osteoarthritis

Reuter et al.
[47] 2017 Germany 8 professional

athletes

This study proposed to
show a relation of
different dynamic

postural control tests in
healthy professional

athletes and their
measures

Measuring tape Healthy

Lidstone et al.
[48] 2016 United States of

America
8 college-aged

males

This study investigates
changes in plantar flexor

contractile component
length, changes in plantar
flexor muscle activity and
tendon length and how it
could reduce mechanical

efficiency during
exhaustive

stretch-shortening cycle
exercises

Wireless
electrode;

Ultrasound
scanner; Athletic

Tape;
Retro-reflective

markers; MX03 +
NIR Cameras

Healthy

Wibawa et al.
[49] 2016 Indonesia 10 healthy

subjects

Analyses muscle activities
like normal walking,

one-legged forward and
side jumping with a

Musculoskeletal
Modeling System

9 m long
walkway; force

plates; Vicon
Motion System;

Ten cameras;
Reflective
markers;

Electrodes

Healthy

Furlong et al.
[50] 2014 Ireland 7 healthy active

adults

Analyses the center of
pressure locations during

two-legged hopping

Cameras; Force
Plates;

metronome;
Retro-reflective

markers

Healthy

Waldhelm et al.
[51] 2012 United States of

America
15 college-age

males

This study determines
which exercises related to

strength, endurance,
flexibility, motor control
and function are more

reliable in clinical
measurements

Biodex System 3
pro; Biodex

Balance System
SD

Healthy
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3. Results

3.1. Summary of the Search Process Results

As presented in Figure 1, the review has 9608 articles, 2770 of which are duplicates,
and 6747 are marked as ineligible. For these reasons, the articles were removed correctly.
The remaining 91 were filtered as well. In the filtering process (including the complete text
evaluation), we found that 10 were Review/Survey, 61 were not related, one presented
a quiz, two were not written in the English language, and two were not available. The
remaining 15 papers were included in the qualitative synthesis and quantitative synthesis.
In summary, we examined 15 scientific articles.

Figure 1. Flow diagram of identification and inclusion of papers.

Based on the results presented in Table 1, the analyzed studies were published between
2012 and 2021, reporting that the major part of the studies was published in 2021 (five
studies), and, before that, only 10 studies are scarcely distributed between 2012 and 2020.
By analyzing the location where the studies have been performed, a major part of the
studies were performed in the United States of America (four studies), Australia (three
studies), and United Kingdom (two studies), where the remaining studies are distributed
by the globe. Regarding the sensors/equipment used, the most relevant used are cameras
(five studies), reflective markers (four studies), force plates (four studies), electrodes (three
studies), accelerometer (three studies), stopwatches (two studies), ultrasound scanner (two
studies), metronome (two studies), and measuring tape (two studies), where the remaining
sensors/equipment are used in only one study. Regarding the different types of diseases,
only nine studies included people with specific diseases, including injury in an anterior
cruciate ligament (four studies), Achilles tendon injury (two studies), bronchiectasis (one
study), gluteus medius injury (one study), and Patellofemoral ligament injury (one study).
In addition, all the studies used statistical and mathematical methods to prove the test’s
veracity.

3.2. Main Results, Benefits and Limitations of the Selected Studies

In Table 2, we summarize the main results, benefits and limitations of the selected
studies relevant to measurement of the results of the Eight Hop Test.
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Table 2. Study results and benefits.

Study Results and Benefits Limitations

Baxter et al. [37]

The results gave enough data to develop a method to
measure exercise progression that helps increase the
Achilles tendon’s strength based on the magnitude

duration and rate of tendon loading

Only eight healthy adults were included
in the study, the population is limited.

Test were made only on healthy people
that contradicts the purpose of the study

(rehabilitation)

Ebert et al. [38]

The results show that specific hop tests such as single
medial and single countermovement jump correlated
the most with isokinetic knee extensor when the more
sophisticated testing equipment is missing. The hop

measurements of study can inform the clinician of the
possible existence of significant underlying quadriceps

deficits are still present even after the operative
rehabilitation period.

N/D

Ebert et al. [39]

The final results showed that single lateral hop, single
medial hop, timed speedy hop, and single

countermovement jump were the best physical
exercises to demonstrate the functional limb

asymmetry among the patients.

N/D

Joschtel et al. [40]

Results showed that children who suffer from
bronchiectasis are more likely to not achieve age

equivalency for locomotor skills and for object control
skills. However, there were no differences for

sedentary activities, light-intensity activities and
games, waling, and running.

The children who met their age
equivalency for fundamental skill had

more time spent in daily physical activity
than the other who did not.

Lawson et al. [41]

The results find that any child could master all the
fundamental skills mentioned. However, the study

gave precious knowledge, it was found that to
improve essential skills in all children, the effort
should focus on stability skills and force/power

production.

N/D

Biesert et al. [42]

The results showed that patients had worse results
than the control group in all tests, which led the study
to conclude that patients with a medial patellofemoral

ligament reconstruction do not regain normal knee
function.

N/D

Ergişi et al. [43]
The study results showed that patients with an

antegrade trochanteric are more likely to have a good
balance but poor functional performance.

The results cannot be explained by the
study, further studies are needed.

Dingenen et al. [44]

Results showed that medial and rotational hope tests
have the probability of showing limb asymmetries in a
person with anterior cruciate ligament reconstructed

compared to the forward hope test.

There are no sensors included in the
study, for the tests, a rolling tape was
used. The uninjured were only tested

twice and the ACL-reconstructed
participants once.

Sancho et al. [45]
The results showed that education and training with

pain-guided hopping has positive impacts in
recreational runners with Achilles Tendinopathy

Parts of the results were justified by the
participants. Three participants did not

follow up the advised activities.
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Table 2. Cont.

Study Results and Benefits Limitations

Owusu-Akyaw et al. [46]

The results found that the anterior cruciate ligament
was associated with decreased patellar cartilage
thickness by noticing that exercise would induce
cartilage strain compared to the uninjured knees

The first limitation is the fact that only
eight subjects were used for the study.

Second, they were all male, that excludes
a comparison with female subjects.

Reuter et al. [47]

Results demonstrated a correlation between the
single-leg hop test and the star excursion balance test
in terms of performance. These two exercises are the
most efficient to determine overall postural control in

athletes

The population of the study was formed
by male athletes only, that excludes a

possible comparison with female athletes.

Lidstone et al. [48] The results found that the mechanical efficiency of
hopping did not change and remained the same.

The population of the study was formed
by male participants only, which

excluded a possible comparison with
female participants.

Wibawa et al. [49]

Results showed that the study can be used as baseline
for scientific work, to get more reliable and robust

musculoskeletal models, as it contributes to an
uncertainty reduction.

The first limitation is that six subjects had
to be excluded due to abnormal walking,

marker trajectory errors, and errors in
marker data. That leads to a small
population. Second, the Modeling

software can possibly miscalculate the
knee net moment, absence of

co-contraction, and simplified knee joint.

Furlong et al. [50]

The results showed that using retro-reflective markers
in specific joints can determine the center of pressure
during quiet standing and two-legged hopping at a

particular frequency.

The results are limited to quiet standing
and two-legged hopping in healthy

adults. For that reason, more
investigation is required to assure the

accuracy of the method in walking and
running or with clinical populations.

Waldhelm et al. [51]
Results showed that endurance tests are the most

reliable for clinical measurements, followed by
flexibility, strength, motor control, and functional.

The population of the study was formed
by male participants only, which excludes

a possible comparison with female
participants.

3.3. Qualitative Synthesis of the Most Relevant Works

Baxter et al. [37] used four different types of sensors/equipment to implement several
methods. The study used reflective markers, a 12-camera motion capture system, three-
embedded force plates, and open-source musculoskeletal modeling software to perform the
analysis. The study analyzes which rehabilitation exercises, such as single-leg hop, make a
more robust and durable Achilles tendon. For that reason, eight young adults were put to
the test. During the tests, enough data was collected to develop an exercise progression
that helps increase the Achilles tendon’s strength based on the magnitude duration and
rate of tendon loading. In conclusion, peak Achilles tendon loads varied more than 12-fold,
from 0.5 bodyweights during a seated hell raise to 7.3 bodyweights during a forward single
leg hop.

In [38], the authors used motion and force sensors, such as accelerometer and dy-
namometer, to study which Hop Tests syncs better with isokinetic knee extensor strength,
the deficits after an injury in the anterior cruciate ligament reconstruction, and which hop
test correlates more with isokinetic knee extensor strength. Thirty-four males and sixteen
females with surgery in the past 9–12 months (16–50 years of age) were assessed for the
study. The hop tests presented in the study are single (SHD), triple (THD), and triple
crossover (TCHD) hop for distance, six minute timed hop (6 MTH), single medial (MHD),
and single lateral (LHD) hop for distance, single countermovement jump (SLCMJ) and
timed speedy hop (SHT). The results show that specific hop tests such as single medial and
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single countermovement jump correlated the most with isokinetic knee extensor when the
more sophisticated testing equipment is lacking.

Ebert et al. [39] used an accelerometer and a stopwatch to find if the eight hop tests can
identify limb asymmetry after anterior cruciate ligament reconstruction. For this study, fifty
patients (34 males and 16 females) were assessed 9–12 months following anterior cruciate
ligament reconstruction. The test was made in both limbs in a randomized order. These
included single (SHD), triple (THD), and triple crossover (TCHD) hop for distance, six
minute timed hop (6 MTH), single medial (MHD). Single lateral (LHD) hop for distance,
single countermovement jump (SLCMJ), and timed speedy hop (TSHT). The results showed
that single lateral hop, single medial hop, timed speedy hop, and single countermovement
jump was the best physical exercises to demonstrate the functional limb asymmetry among
the patients. In conclusion, if the purpose is to detect lingering functional deficits, it is
recommended to incorporate the previous-hop test mentioned.

The authors of [40] tested the fundamental skill and physical activity of children with
bronchiectasis using ActiGraph GT3x and an accelerometer to show if the performance is
affected by the disease. Forty-six children with bronchiectasis (mean age 7.5 ± 2.6 years,
63% Male) were recruited from the Queensland Children’s Hospital, Brisbane. The chil-
dren were measured by normal quotidian activities like sedentary, light-intensity, games,
walking, running, and moderate-to-vigorous activities. The results showed that children
with bronchiectasis tend to delay their fundamental skills development. Fewer than 5%
of children demonstrated mastery in the run, gallop, hop, and leap, while fewer than 10%
demonstrated the ability to perform the two-handed strike, overarm throw, and underarm
throw. Only eight of the 46 children (17.4%) achieved their age equivalency for locomotor
skills, while just four (8.7%) completed their object control skills. It is important to note
that children in their age equivalency had significantly more time in daily physical activity
during the tests.

The authors of [41] used SECA portable stadiometer, Nikon video camera, and Win-
dows Media Player 2013 to examine primary school children’s fundamental movement skill
proficiency levels. It recruited 219 participants (111 boys, 108 girls) aged between 7–10 years
from three schools in central England to perform eight skills related to locomotor, object
control, and stability skills. The eight fundamental skills involved run, jump, hop, skip,
catch, overarm throw, underarm throw, and stability. The results find that any child could
master all the fundamental skills mentioned. The conclusion says that to improve essential
skills in all children, the effort should focus on stability skills (improving coordination) and
force/power production.

In [42], the authors proposed an evaluation of a medial patellofemoral ligament using
patient-reported measures and functional testing. For this study, 24 patients with a medical
record between 2008 and 2013 were examined with a control group of uninjured persons of
the same age and gender. The evaluation had two phases. In the first part, questionnaires
evaluated the knee function based on the Tegner score, the knee injury and osteoarthritis
outcome score (KOOS), the Lysholm score, SF-36, and EQ-5D-3L. The second part was the
functional performance that involved square jump, steps down test, and the single-leg hop
for distance. The results were: patients 11.5 sets for the square jump versus control 21 sets,
11.5 sets for the step-down test versus control 22 sets, and 77 cm for the single-leg hop for
distance versus control 126 cm. The patients showed worse results than the control group
in all tests, which led the study to conclude that patients with a medial patellofemoral
ligament reconstruction do not regain normal knee function.

In [43], the authors examine the functional outcomes, including static-dynamic pos-
tural stability of patients with an associated gluteus medius treated injury. For this study,
16 patients were chosen with the clinical record (treated with an antegrade trochanteric
IMN) between January 2009 and July 2013 and eight healthy male controls. Some data
was gathered before the physical activity, including muscle strength, static and dynamic
postural stability, and fall risk. The measurements included the participation of imag-
ing sensors electromyography (EMG). The study results showed that patients with an
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antegrade trochanteric IMN are more likely to have a good balance but poor functional
performance. Still, more studies are needed to find the reason behind the results.

In [44], the author did not use any sensor to perform the test, which was evaluated by
an examinator. The study considered 16 non-injured participants and 32 anterior cruciate
ligament reconstruction participants. It was intended to examine the test-retest reliability
of single-hop tests in the forward, medial and rotational direction and then detect limb
asymmetries of the medial rotational hop tests, compared to forward hop tests made for the
participants with a reconstructed anterior cruciate ligament. For the tests, they used some
hop exercises like the single hop for distance (SH), triple hop for distance (TH), medial
side triple hop for distance (MSTH), and 90◦ medial rotation hop for distance (MRH). The
non-injured participants were tested twice, and the anterior cruciate ligament participants
once. To prove the methods, it was calculated the intraclass correlation coefficients (ICCs),
the standard errors of measurement (SEM), and the most negligible detectable differences
(SDD). In the end, these exercises are reliable for rehabilitation purposes. Medial and
rotational hope tests have the probability of showing limb asymmetries in a person with a
reconstructed anterior cruciate ligament compared to the forward hope test.

In [45], the study’s authors examine the best exercises (including hopping) in runners
with Achilles tendinopathy based on self-reported pain. Fifteen male runners with Achilles
tendinopathy were tested by loading the Achilles tendon with running, sprinting, hopping,
jumping, and morning stiffness. The pain was measured before and after the workout with
a numeric rating scale where zero means “no pain” and ten is “the worst possible pain”.
In total, 100% of the participants were recruited, 87% retention, and 93% followed-up.
Exercise adherence was 70%. However, fidelity was 50%. Three participants suffered
adverse events due to not following the advised exercises. Still, five participants were
satisfied, and eight were very satisfied. In conclusion, the recommended education and
training with pain-guided hopping positively impacts recreational runners with Achilles
Tendinopathy.

Owusu-Akyaw et al. [46] used a magnetic resonance scanner to extract images from
the knees before and after each subject performed a series of 60 single-legged hops. Then
the images were converted into three-dimensional surface models of cartilage and bone to
assess the cartilage characteristics in terms of thickness distribution. Eight male subjects
with unilateral anterior cruciate ligament consented to participate in this study. The
results found that the anterior cruciate ligament was associated with decreased patellar
cartilage thickness by noticing that exercise would induce cartilage strain compared to the
uninjured knees.

Reuter et al. [47] took the top German decathlon team, a group of eight professional
athletes, to perform some high-end exercises to study postural control while exercising.
Star Excursion Balance Test (SEBT), single hop for distance (SLH), crossover hop for dis-
tance (COH), triple hop for distance (TH) were used to perform the studies. The results
demonstrated a correlation between the single-leg hop test and the star excursion balance
test in terms of performance. These two exercises are the most efficient to determine overall
postural control in athletes. For measurements, a measuring tape was used.

The author of [48] used Wireless electrodes, ultrasound probe, athletic tape, retro-
reflective markers, and MX03 + NIR Cameras to perform the studies in eight college-aged
males with no musculoskeletal injury. The study’s primary purpose was to investigate
changes in plantar flexor contractile component length, plantar flexor muscle activity,
and tendon length and how it could reduce mechanical efficiency during exhaustive
hopping exercises. For the study, eight college-aged males with no musculoskeletal injury,
neuromuscular disease, or functional limitation in their legs participated in a complete
hopping exercise to the absolute limit. In that time, the data was collected and analyzed.
The results found that the mechanical efficiency of hopping did not change and remained
the same.

Wibawa et al. [49] used a Gait Laboratory (Dept of Rehabilitation Medicine, UMCG,
The Netherlands) to perform the tests, including imaging and force sensors to analyze
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muscle activities like normal walking, one-legged forward, and side jumping with a
Musculoskeletal Modeling System. A nine-meter-long walkway, force plates, Vicon Motion
System, cameras, reflective markers, and electrodes were used to measure and analyze
ten healthy subjects (six males and four females) during the exercises. Each subject was
evaluated, and then the values obtained by doing muscle activity were compared with
the Musculoskeletal Modeling System. Some individuals were excluded during the study
due to abnormal walking, marker trajectory error, and errors in market data. The other
included three trials contributing enough data to conclude the investigation. The electrodes
measured the right leg of the subjects. The correlation between sensors and the Eight Hop
Test can be a game-changing move when the problem is finding how the injuries comport
during the exercises. In conclusion, the study showed differences between the data and the
model extracted from the Musculoskeletal Modeling System.

In [50], the authors used force plates, cameras, retro-reflective markers, and a digital
metronome to analyze the center of pressure locations during two-legged hopping. By
following the university ethics committee’s approval, eight healthy and active adults (five
females; three males) consented to participate in the study, doing at least ten jumps in a
specific frequency. The attachment made the measurements of retro-reflective markers to a
particular joint (metatarsophalangeal joint). The results showed that using retro-reflective
markers in specific joints can determine the center of pressure during quiet standing and
two-legged hopping at a particular frequency. Still, the results are limited to quiet standing
and two-legged hopping in healthy adults. For that reason, more investigation is required
to assure the accuracy of the method in walking and running or with clinical populations.

The authors of [51] used a population of fifteen college-age males, with right lower
extremity dominance, to determine which exercises related to strength, endurance, flexibil-
ity, motor control, and function are more reliable in clinical measurements. It used Biodex
System 3 pro and Biodex Balance System SD to collect some data before their studies began.
For each test, there was a different exercise. Strength: eight isometric tests and a sit-up test.
Endurance tests: the trunk flexor test, trunk extensor test, and bilateral side bridge tests.
Flexibility tests: the sit-and-reach test and active range of the trunk and hip joint motions.
Motor control: limb balance test and proprioception via passive reposition tests of the hips.
Functional: squat test and single-leg hop test for time and distance. The results showed
that endurance tests are the most reliable for clinical measurements, followed by flexibility,
strength, motor control, and functionality.

3.4. Relationship between Studies, Sensors and Diseases

For this section, Table 3 represents a relation between sensors and diseases used to
prove that studying different types of diseases directly related to the Eight Hop test is
important. Still, the combination of the different methods and well-formed strategies has
equal importance when monitoring people with various diseases using the Eight Hop test.
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Table 3. Relation between diseases and sensors used.
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Baxter et al. [37] X X X X
Ebert et al. [38] X X X X
Ebert et al. [39] X X X

Joschtel et al. [40] X X
Lawson et al. [41] X X X
Biesert et al. [42] X X
Ergişi et al. [43] X X

Dingenen et al. [44] X X
Sancho et al. [45] X X X

Owusu-Akyaw et al. [46] X X X
Reuter et al. [47] X X

Lidstone et al. [48] X X X
Wibawa et al. [49] X X X X
Furlong et al. [50] X X X X

Waldhelm et al. [51] X X

4. Discussion

4.1. Summary of Relationship between Sensors and Diseases

The Eight Hop Test, specifically, was not present in any studies. However, the data
collected from each study can help us understand which sensors are used in Hop Tests
since the Eight Hop Test is a part of Hop Tests.

Some studies were based on problems related to a specific disease, and Figure 2
demonstrates various diseases that conducted the studies, where six studies were made
with healthy people, four studies were performed with people with anterior cruciate
ligament reconstruction, and the other studies included people with Achilles tendon (two
studies) and patellofemoral ligament (two studies) as the leading injury. Gluteus Medius
and Borchiectasis were mentioned in one publication each.

As presented in Table 4, the sensors available in the different studies were distributed
in various categories, such as medical sensors, motion sensors, time counting equipment,
imaging sensors, force sensors, and support equipment/consumables. Regarding the
sensors used in the various studies, force sensors (four studies), such as force plates,
dynamometer, Biodex System 3 pro, and Biodex Balance System SD had the most variety
with four different sensors, followed by imaging sensors (seven studies), such as cameras,
magnetic resonance scanner, and ultrasound scanner, and motion sensors (three studies),
such as accelerometer, Vicon motion system, and Actigraph GT3x that had a variety of
three different sensors.
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Figure 2. Distribution of the various diseases by the studies.

Table 4. Relation between sensors used and its categories.

Sensors Categories Sensors

Medical sensors Electromyography

Motion Sensors
Accelerometer

Vicon Motion System
Actigraph GT3x

Time counting equipment Stopwatches
Metronome

Imaging sensors
Cameras

Magnetic Resonance scanner
Ultrasound scanner

Force sensors

Force Plates
Dynamometer

Biodex System 3 pro
Biodex Balance System SD

Support equipment/consumables

Reflective markers
Electrodes

9-m long walkway
Athletic tape

Measuring tape
Velcro strap
Stadiometer
Goniometer

4.2. Relationship between Ages of Participants and Studies

Regarding people’s gender, the studies averaged 20.6 males and 12.8 females, includ-
ing children and adults. Figure 3 presents the distribution of the ages of the different
participants in the analyzed studies, where more than seven studies included individuals
aged between 20 and 34 years old.

All studies used statistical and mathematical methods to study the results. The most
used feature was the distance followed by time and the number of repetitions. Not all
studies used sensors as the primary source of collecting data, where some of them were
based on measuring distances and examining motion captures.
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Figure 3. Relation of ages and number of studies.

4.3. Final Remarks

We can conclude that more studies are needed to develop a global solution for precise
measurements. There is no proven evidence that the use of sensors in the Eight Hop test is
essential, but according to the studies, it helps contribute to the fidelity and viability of the
measurements.

After a deep analysis of the fifteen studies presented in this systematic review, we can
find answers to our main questions. Regarding the RQ1, “Which devices can be used to
perform studies in the Eight Hop Test?”, we verified that the most common sensors used
were the imaging sensors such as cameras, magnetic resonance, and ultrasound scanners.
Furthermore, we have force sensors, time counting sensors, and motion sensors. More than
half of the studies mention the need for support equipment/consumables, helping in the
measuring, and completing the purpose of the sensors in these studies.

Concerning RQ2, “Which data are related to the different types of diseases diagnosed
by the Eight Hop Test?”, the analyzed studies show that different diseases require different
sets of sensors and sensor data. For the same disease, for example Anterior cruciate
ligament, different studies use different sensors. Additional research is needed to find out
which sensor gives the best results, since no comparative analysis could be performed due
to the varying experimental setups of the analyzed studies. Table 3 shows the relation
between the sensors and the various diseases.

Finally, regarding RQ3, “What are the benefits of implementing technological methods
for the measurements of the results of the Eight Hop Tests?”, we verified that in addi-
tion to the limitations presented in Table 2 the studies showed some benefits related to
rehabilitation and empowerment on the clinical information.

More studies are needed on this topic, but one thing is sure: we can use sensors to
measure possible results prevenient from the Eight Hop Test.

5. Conclusions

In this review, a total of 15 studies were selected based on the inclusion criteria and
thoroughly analyzed. The review identified which sensors are used in the Eight Hop Test,
which are the most used sensors, the relevance of sensors in measurements, which diseases
are related to the Eight Hop Test, and which methods can be used to perform the Eight
Hop Test. It is important to mention that there is a lack of studies to develop a method for
analyzing the Eight Hop Test with sensors. However, the sensors increase the viability of
the measurements and help clinical teams to perform better diagnostics in health.

As future work, a mobile application will be developed to create a new method for the
commodity measurement of the results of the Eight Hop Test that will be integrated with
other ongoing studies related to the construction of a Personal Digital Life Coach.
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