
Edited by

Cybersecurity
and Data Science

Krzysztof Szczypiorski
Printed Edition of the Special Issue Published in Electronics

www.mdpi.com/journal/electronics

Cybersecurity and Data Science

Cybersecurity and Data Science

Editor

Krzysztof Szczypiorski

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin

Editor

Krzysztof Szczypiorski

Warsaw University of Technology

Warszawa, Poland

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Electronics (ISSN 2079-9292) (available at: https://www.mdpi.com/journal/electronics/special

issues/Cybersecurity Data).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,

Page Range.

ISBN 978-3-0365-6906-2 (Hbk)

ISBN 978-3-0365-6907-9 (PDF)

Cover image courtesy of Krzysztof Szczypiorski.

© 2023 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.

Contents

About the Editor . vii

Preface to ”Cybersecurity and Data Science” . ix

Krzysztof Szczypiorski

Cybersecurity and Data Science
Reprinted from: Electronics 2022, 11, 2309, doi:10.3390/electronics11152309 1

Milosz Smolarczyk, Krzysztof Szczypiorski and Jakub Pawluk

Multilayer Detection of Network Steganography
Reprinted from: Electronics 2020, 9, 2128, doi:10.3390/electronics9122128 5

Krystian Grzesiak, Zbigniew Piotrowski and Jan M. Kelner

A Wireless Covert Channel Based on Dirty Constellation with Phase Drift
Reprinted from: Electronics 2021, 10, 647, doi:10.3390/electronics10060647 19

Justinas Rastenis, Simona Ramanauskaitė, Ivan Suzdalev, Kornelija Tunaitytė, Justinas

Janulevičius and Antanas Čenys

Multi-Language Spam/Phishing Classification by Email Body Text: Toward Automated
Security Incident Investigation
Reprinted from: Electronics 2021, 10, 668, doi:10.3390/electronics10060668 41

Marta Chmiel, Mateusz Korona, Fryderyk Kozioł, Krzysztof Szczypiorski and Mariusz

Rawski

Discussion on IoT Security Recommendations against the State-of-the-Art Solutions
Reprinted from: Electronics 2021, 10, 1814, doi:10.3390/electronics10151814 51

Gaurav Sharma, Stilianos Vidalis, Catherine Menon, Niharika Anand and Somesh Kumar

Analysis and Implementation of Threat Agents Profiles in Semi-Automated Manner for a
Network Traffic in Real-Time Information Environment
Reprinted from: Electronics 2021, 10, 1849, doi:10.3390/electronics10151849 85

Jacek Krupski, Waldemar Graniszewski and Marcin Iwanowski

Data Transformation Schemes for CNN-Based Network Traffic Analysis: A Survey
Reprinted from: Electronics 2021, 10, 2042, doi:10.3390/electronics10162042 103

Sylwia Rapacz, Piotr Chołda and Marek Natkaniec

A Method for Fast Selection of Machine-Learning Classifiers for Spam Filtering
Reprinted from: Electronics 2021, 10, 2083, doi:10.3390/electronics10172083 139

Jędrzej Bieniasz and Krzysztof Szczypiorski

Dataset Generation for Development of Multi-Node Cyber Threat Detection Systems
Reprinted from: Electronics 2021, 10, 2711, doi:10.3390/electronics10212711 163

Volodymyr Maksymovych, Oleh Harasymchuk, Mikolaj Karpinski, Mariia Shabatura,

Daniel Jancarczyk and Krzysztof Kajstura

A New Approach to the Development of Additive Fibonacci Generators Based on Prime
Numbers
Reprinted from: Electronics 2021, 10, 2912, doi:10.3390/electronics10232912 185

Corentin Rodrigo, Samuel Pierre, Ronald Beaubrun and Franjieh El Khoury

BrainShield: A Hybrid Machine Learning-Based Malware Detection Model for Android Devices
Reprinted from: Electronics 2021, 10, 2948, doi:10.3390/electronics10232948 195

v

Mikołaj Płachta, Marek Krzemień, Krzysztof Szczypiorski, and Artur Janicki

Detection of Image Steganography Using Deep Learning and Ensemble Classifiers
Reprinted from: Electronics 2022, 11, 1565, doi:10.3390/electronics11101565 215

Mateusz Korona, Paweł Szumełda, Mariusz Rawski and Artur Janicki

Comparison of Hash Functions for Network Traffic Acquisition Using a Hardware-Accelerated
Probe
Reprinted from: Electronics 2022, 11, 1688, doi:10.3390/electronics11111688 229

Roberto O. Andrade, Walter Fuertes, Marı́a Cazares, Iván Ortiz-Garcés and Gustavo Navas

An Exploratory Study of Cognitive Sciences Applied to Cybersecurity
Reprinted from: Electronics 2022, 11, 1692, doi:10.3390/electronics11111692 249

Fuji Han and Man Zhou

Threat Matrix: A Fast Algorithm for Human–Machine Chinese Ludo Gaming
Reprinted from: Electronics 2022, 11, 1699, doi:10.3390/electronics11111699 275

Volodymyr Maksymovych, Elena Nyemkova, Connie Justice, Mariia Shabatura, Oleh

Harasymchuk, Yuriy Lakh and Morika Rusynko

Simulation of Authentication in Information-Processing Electronic Devices Based on Poisson
Pulse Sequence Generators
Reprinted from: Electronics 2022, 11, 2039, doi:10.3390/electronics11132039 291

vi

About the Editor

Krzysztof Szczypiorski

Krzysztof Szczypiorski received the M.Sc. (Hons.), Ph.D. (Hons.), and D.Sc. (Habilitation)

degrees in telecommunications from the Faculty of Electronics and Information Technology (FEIT),

Warsaw University of Technology (WUT), Poland, in 1997, 2007, and 2012. He also completed

his postgraduate studies in the psychology of motivation at the University of Social Sciences and

Humanities, Warsaw, in 2013 and the Master of Business Administration (MBA) from the Warsaw

University of Technology Business School, in 2022. He graduated in advanced networking from

Budapest Tech (now Óbuda University), Hungary, in 2003, and the Hass School of Business,

University of California at Berkeley, in 2013. His research interests include: new methods of

phenomenon observation especially in communication and social networks, medicine, and stock

exchange, new algorithms in cybersecurity (network steganography and steganalysis, anomaly

detection, and fraud management), exploring cyber crimes through digital forensics, and design of

advanced intelligence systems. He is currently a Professor of telecommunications with the Institute of

Telecommunications (IT), FEIT, WUT, where he is the head and the co-Founder of the Cybersecurity

Division. Head and co-founder of Research Centre for Cybersecurity and Data Science at WUT

(2020-), head and co-founder B.Sc., M.Sc., MBA Programs in Cybersecurity at WUT (2019-). Since

2015, he has been the co-founder and the R&D Director of Cryptomage S.A. — a cybersecurity

company. He is the author or the co-author of over 220 papers, three patent applications (one is

granted), and over 80 invited talks.

vii

Preface to ”Cybersecurity and Data Science”

The increasing availability of big data, structured and unstructured datasets, raises new

challenges in cybersecurity, efficient data processing and knowledge extraction. The field of

cybersecurity and data science fuels the data-driven economy, so innovations in this field require

strong foundations in mathematics, statistics, machine learning and information security.

This book is a reprint of the Special Issue (SI) on Cybersecurity and Data Science published

in Electronics. The SI comprises high-quality papers dealing with the challenging research topics in

cybersecurity combined with data science, especially with artificial intelligence and machine learning.

The papers included in this reprint discuss various topics ranging from cyberattacks,

steganography, anomaly detection, evaluation of the attacker skills, modelling of the threats, and

wireless security evaluation. Given this diversity of topics, I hope that the book will represent a

valuable reference for researchers in cybersecurity security and data science.

Krzysztof Szczypiorski

Editor

ix

Citation: Szczypiorski, K.

Cybersecurity and Data Science.

Electronics 2022, 11, 2309.

https://doi.org/10.3390/

electronics11152309

Received: 15 July 2022

Accepted: 22 July 2022

Published: 25 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Editorial

Cybersecurity and Data Science

Krzysztof Szczypiorski

Institute of Telecommunications, Warsaw University of Technology, 00-661 Warsaw, Poland;
krzysztof.szczypiorski@pw.edu.pl

Towards the end of the Cold War in 1985, in reference to the theory of leadership for
the first time, in the book ‘Leaders: The Strategies For Taking Charge’ by Warren Bennis
and Burt Nanus [1], a modelled world concept with the acronym VUCA appeared to
properly express its volatility, uncertainty, complexity, and ambiguity. The model adopted
by the military and business circles spoke to a tragic paradigm of regular, often severe, and
confusing changes. The catastrophic world of VUCA, which also fits the view of cyberspace,
has become heavily exploited after almost 35 years; hence, the updated approach presented
by Jamais Cascio in 2020 is BANI—brittle, anxious, non-linear, and incomprehensible.
At first glance, you can treat the BANI world as a VUCA world with a new descriptive
language. Still, a deeper look allows you to have, perhaps absurdly, hope that there is a
method of “controlling” chaos by paving the way for proactive solutions by creating new
roadmaps for the overwhelming world formed in the last few years, mainly due to the
COVID-19 pandemic, and now due to hostilities in Eastern Europe.

The world of BANI excellently describes the challenges faced by modern cybersecu-
rity [2]. When faced with existing phenomena, it has no chance to completely protect the
world from all the unexpected vulnerabilities and defend against all attacks and their often-
unknown consequences. This Special Issue is devoted to promoting the latest cybersecurity
and data science research in a world where digital transformation turns data into the new
oil. The increasing availability of big data, structured, and unstructured datasets raise new
challenges in cybersecurity, efficient data processing, and knowledge extraction. The field of
cybersecurity and data science fuels the data-driven economy. Innovations in this field require
strong foundations in mathematics, statistics, machine learning, and information security.

The unprecedented increase in data availability in many science and technology fields
(e.g., genomic data, data from industrial environments, sensory data of smart cities, and
social network data) require new methods and solutions for data processing, information
extraction, and decision support. This stimulates the development of new data analysis
methods, including those adapted to analysing new data structures and the growing
volume of data.

This Special Issue, ‘Cybersecurity and Data Science’, includes fifteen contributions
from reputable researchers from Canada, China, Ecuador, India, Lithuania, Poland, Ukraine,
the United Kingdom, and the USA.

In the first article entitled ‘Multilayer Detection of Network Steganography’,
Smolarczyk et al. [3] proposed a new method for steganography detection in network
protocols to provide a steganalysis capability for entities with large numbers of devices and
connections. The solution was based on a multilayer approach for the selective analysis of
derived and aggregated metrics utilising machine learning algorithms.

In the article ‘A Wireless Covert Channel Based on Dirty Constellation with Phase
Drift’, Grzesiak et al. [4] presented a novel method of steganographic transmission based
on phase drift in phase-shift keying or quadrature amplitude modulation. The proposed
approach was based on the drift correction modulation method previously used in water-
marking audio signals.

‘Multi-Language Spam/Phishing Classification by Email Body Text: Toward Auto-
mated Security Incident Investigation’ by Rastenis et al. [5] includes a solution based on

Electronics 2022, 11, 2309. https://doi.org/10.3390/electronics11152309 https://www.mdpi.com/journal/electronics1

Electronics 2022, 11, 2309

email message body text-automated classification into spam and phishing emails written
in three languages: English, Russian, and Lithuanian. As most public email datasets almost
exclusively collect English emails, the authors investigated the suitability of automated
dataset translation to adapt it to email classification written in other languages.

In the article entitled ‘Discussion on IoT Security Recommendations against the State-
of-the-Art Solutions’, Chmiel et al. [6] presented an overview of security guidelines for IoT
proposed by various organisations and evaluated some of the existing technologies applied
to ensure IoT security against these guidelines. The authors gathered recommendations
offered by selected government organisations, international associations, and advisory
groups. They compiled them into a set of the most common and essential considerations,
divided into eight categories.

The topics of threat assessment were studied by Sharma et al. in ‘Analysis and
Implementation of Threat Agents Profiles in Semi-Automated Manner for a Network
Traffic in Real-Time Information Environment’ [7]. The authors proposed a semi-automatic
information security model, which can deal with situational awareness data, strategies
prevailing information security activities, and protocols monitoring specific types of the
network next to the real-time information environment.

Krupski et al. [8] presented a survey on data transformation schemes for CNN-based
network traffic analysis. The authors showed a consequence of the fact that network traffic
data and machine learning data have different structures. They introduced a taxonomy of
data transformation schemes and used this categorisation to describe various CNN-based
approaches found in the state-of-the-art of network trafficking analysis.

‘A Method for Fast Selection of Machine-Learning Classifiers for Spam Filtering’ by
Rapacz et al. [9] elaborated on how text analysis influences classification—a key part of the
spam-filtering process. The authors proposed a multistage meta-algorithm for checking the
classifiers’ performance.

Bieniasz et al. [10] proposed a new approach to generating datasets for cyber threat
research in a multi-node system. Towards this purpose, the proof-of-concept of such a
system was implemented and could be used to collect unique datasets with examples of
information hiding techniques.

Maksymovych et al. [11] developed a modification to additive Fibonacci generators,
the essence of which was to use prime numbers as modules of recurrent equations describ-
ing the operation of generators. This modification made it possible to ensure the constancy
of the repetition period of the output pseudorandom pulse sequence in the entire range of
possible values of the initial settings–keys (called seeds) at specific values of the module.

In the article ‘A Hybrid Machine Learning-Based Malware Detection Model for An-
droid Devices’, Rodrigo et al. [12] proposed the BrainShield as a hybrid malware detection
model trained on the Omnidroid dataset to reduce attacks on Android devices. The
simulation results showed that BrainShield improved the accuracy and the precision of
well-known malware detection methods.

‘Detection of Image Steganography Using Deep Learning and Ensemble Classifiers’
by Płachta et al. [13] dealt with the problem of detecting JPEG images that have been
steganographically manipulated. The performance of employing various shallow and deep
learning algorithms in image steganography detection was analysed. The data, images from
the BOSS (Break Our Steganographic System) database, were used with the information
hidden using three popular steganographic algorithms.

Korona et al. in ‘Comparison of Hash Functions for Network Traffic Acquisition
Using a Hardware-Accelerated Probe’ [14], addressed the problem of efficient and secure
monitoring of computer network traffic. The authors proposed, implemented, and tested
a hardware-accelerated implementation of a network probe using the DE5-Net FPGA
development platform. They also researched the problem of choosing an optimal hash
function to be used in a network probe for addressing network flows in a flow cache.

Andrade et al. in ‘An Exploratory Study of Cognitive Sciences Applied to Cybersecu-
rity [15], identified the fundamental concepts related to the application of cognitive sciences

2

Electronics 2022, 11, 2309

in cybersecurity for establishing defence strategies to minimise the impact of cyberattacks.
The authors developed an exploratory study based on two stages: a text mining process
to identify the main interest areas of research in the cybersecurity field and a valuable
review of the papers chosen in a systematic literature review that was carried out using
PRISMA methodology.

The machine learning-based implementation of Chinese Ludo, also known as Aero-
plan Chess, a trendy board game for several decades, is the main topic of the paper by
Han et al. [16]. Unlike most chess programs, which depend on high machine performance,
the evaluation function in the proposed implementation was only a linear sum of four-
factor values. The other contribution of this research was that the authors innovatively
constructed a threat matrix that allows for the quick acquisition of the threat between any
two dice from any two positions.

Finally, the paper entitled ‘Simulation of Authentication in Information-Processing
Electronic Devices Based on Poisson Pulse Sequence Generators’ by Maksymovych [17]
was devoted to modelling authenticators of information-processing electronic devices
by creating a bit template simulator based on a Poisson pulse sequence generator. The
developed generator had improved statistical characteristics for the output pulse sequence
and expanded capabilities for solving specific practical problems.

I would like to thank all the contributors to this Special Issue, including the authors,
reviewers, and the Electronics publishing team. I firmly believe the findings presented in
this Special Issue will benefit the reading of interested researchers and general audiences.

Funding: This research received no external funding.

Acknowledgments: The editor would like to thank all the contributors to this Special Issue, including
the authors and reviewers.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bennis, W.; Nanus, B. Leaders: The Strategies for Taking Charge; Harper & Row: New York, NY, USA, 1985; 244p.
2. Szczypiorski, K. Cyber(in)security. Int. J. Electron. Telecommun. 2020, 66, 243–248. [CrossRef]
3. Smolarczyk, M.; Szczypiorski, K.; Pawluk, J. Multilayer Detection of Network Steganography. Electronics 2020, 9, 2128. [CrossRef]
4. Grzesiak, K.; Piotrowski, Z.; Kelner, J. A Wireless Covert Channel Based on Dirty Constellation with Phase Drift. Electronics

2021, 10, 647. [CrossRef]
5. Rastenis, J.; Ramanauskaitė, S.; Suzdalev, I.; Tunaitytė, K.; Janulevičius, J.; Čenys, A. Multi-Language Spam/Phishing Classification

by Email Body Text: Toward Automated Security Incident Investigation. Electronics 2021, 10, 668. [CrossRef]
6. Chmiel, M.; Korona, M.; Kozioł, F.; Szczypiorski, K.; Rawski, M. Discussion on IoT Security Recommendations against the

State-of-the-Art Solutions. Electronics 2021, 10, 1814. [CrossRef]
7. Sharma, G.; Vidalis, S.; Menon, C.; Anand, N.; Kumar, S. Analysis and Implementation of Threat Agents Profiles in Semi-

Automated Manner for a Network Traffic in Real-Time Information Environment. Electronics 2021, 10, 1849. [CrossRef]
8. Krupski, J.; Graniszewski, W.; Iwanowski, M. Data Transformation Schemes for CNN-Based Network Traffic Analysis: A Survey.

Electronics 2021, 10, 2042. [CrossRef]
9. Rapacz, S.; Chołda, P.; Natkaniec, M. A Method for Fast Selection of Machine-Learning Classifiers for Spam Filtering. Electronics

2021, 10, 2083. [CrossRef]
10. Bieniasz, J.; Szczypiorski, K. Dataset Generation for Development of Multi-Node Cyber Threat Detection Systems. Electronics

2021, 10, 2711. [CrossRef]
11. Maksymovych, V.; Harasymchuk, O.; Karpinski, M.; Shabatura, M.; Jancarczyk, D.; Kajstura, K. A New Approach to the

Development of Additive Fibonacci Generators Based on Prime Numbers. Electronics 2021, 10, 2912. [CrossRef]
12. Rodrigo, C.; Pierre, S.; Beaubrun, R.; El Khoury, F. BrainShield: A Hybrid Machine Learning-Based Malware Detection Model for

Android Devices. Electronics 2021, 10, 2948. [CrossRef]
13. Płachta, M.; Krzemień, M.; Szczypiorski, K.; Janicki, A. Detection of Image Steganography Using Deep Learning and Ensemble

Classifiers. Electronics 2022, 11, 1565. [CrossRef]
14. Korona, M.; Szumełda, P.; Rawski, M.; Janicki, A. Comparison of Hash Functions for Network Traffic Acquisition Using a

Hardware-Accelerated Probe. Electronics 2022, 11, 1688. [CrossRef]
15. Andrade, R.; Fuertes, W.; Cazares, M.; Ortiz-Garcés, I.; Navas, G. An Exploratory Study of Cognitive Sciences Applied to

Cybersecurity. Electronics 2022, 11, 1692. [CrossRef]

3

Electronics 2022, 11, 2309

16. Han, F.; Zhou, M. Threat Matrix: A Fast Algorithm for Human-Machine Chinese Ludo Gaming. Electronics 2022, 11, 1699.
[CrossRef]

17. Maksymovych, V.; Nyemkova, E.; Justice, C.; Shabatura, M.; Harasymchuk, O.; Lakh, Y.; Rusynko, M. Simulation of Authen-
tication in Information-Processing Electronic Devices Based on Poisson Pulse Sequence Generators. Electronics 2022, 11, 2039.
[CrossRef]

4

electronics

Article

Multilayer Detection of Network Steganography

Milosz Smolarczyk 1, Krzysztof Szczypiorski 1,2,* and Jakub Pawluk 1

1 Research & Development Department, Cryptomage SA, 50-130 Wrocław, Poland;
Milosz.Smolarczyk@cryptomage.com (M.S.); jakub.pawluk@cryptomage.com (J.P.)

2 Institute of Telecommunications, Warsaw University of Technology, 00-661 Warsaw, Poland
* Correspondence: krzysztof.szczypiorski@pw.edu.pl or ksz@tele.pw.edu.pl

Received: 19 November 2020; Accepted: 10 December 2020; Published: 12 December 2020

Abstract: This paper presents a new method for steganography detection in network protocols.
The method is based on a multilayer approach for the selective analysis of derived and aggregated
metrics utilizing machine learning algorithms. The main objective is to provide steganalysis
capability for networks with large numbers of devices and connections. We discuss considerations
for performance analysis and present results. We also describe a means of applying our method for
multilayer detection of a popular RSTEG (Retransmission Steganography) technique.

Keywords: steganography; network security; steganography detection; steganalysis; machine
learning; big data; IoT; pattern mining

1. Introduction

Network steganography has recently gained considerable attention in the scientific community.
Many new methods have been developed, and many more will be developed in the near future [1] as
new network protocols are constantly being developed. This paper focuses solely on the detection of
steganography techniques that operate at the network protocol level.

With the growing number of devices in networks, including IoT, network steganography detection
faces new challenges in terms of both accuracy and performance [2]. To be performed effectively,
steganography needs to operate:

• In line with analyzed network traffic;
• In near real-time regimes.

If detection is performed off-line or if it causes too much latency, there will be more traffic waiting to
be analyzed than can actually be analyzed. Performance optimization is the main focus of the research
described here since the main application of network steganography is real-time communication [3,4].

Some of the accurate detection methods tailored for specific network steganography techniques
cannot be effectively implemented in real-time regimes because excessive computing and/or memory
resources are needed [5]. This makes us question the overall accuracy of such methods since they are
unable to analyze high-throughput traffic in a multi-host environment.

In this paper, we present a new method to introduce a compromise between detailed packet
inspection and optimal detection performance. Our motivation is to provide a generic method that
orchestrates network steganography detection in real-time regime, making it possible to implement
in multi-host environments that generate high-throughput traffic. As a part of the method, we have
presented a steganalysis layer selection method that provides an intelligent selection of steganalysis
algorithms, preserving the balance between resource consumption and detection performance. To the
authors’ best knowledge, this is the first generic network steganography detection method that utilizes
a top-down approach for a detection method selection algorithm to ensure optimal computation
resource allocation.

Electronics 2020, 9, 2128; doi:10.3390/electronics9122128 www.mdpi.com/journal/electronics

5

Electronics 2020, 9, 2128

2. Related Work

Historically, most network steganography detection methods had been part of research on new
steganographic techniques. In recent years, there emerged new detection methods that are not
countermeasures for a particular steganographic technique but provide a broader perspective. Based
on the literature, we can distinguish two major categories for network steganography detection
methods: technique-specific and generic, as presented in Figure 1.

Figure 1. Network steganography detection classification.

The first category: technique-specific, comprises methods proposed as countermeasures for
specific steganographic techniques. Methods in this category usually operate on low-level network
data, require relatively much computation resources, and are not able to detect other steganographic
techniques instead of the one or several for which they are designed.

The second category: generic, comprises methods that are not designed to detect one specific
steganographic technique but offer a comprehensive approach to network anomaly detection and
categorization of network traffic for potential steganographic utilization. Methods in this category may
not provide detailed information on detected suspicious traffic but can label it for further investigation.
Most generic methods fall into two subcategories that characterize their approach: statistical or
machine learning.

A majority of methods described in the existing literature fall in the first category. Each of those
methods is applied to specific steganographic techniques categories, as shown in Figure 2 [6].

Figure 2. Network steganography classification.

For packet modification techniques, the steganalysis methods presented so far include:

6

Electronics 2020, 9, 2128

• Header and payload analysis [7], including analysis of Verification Tags values; comparison
between values of Maximum Inbound Streams sent by “normal” users (users who do not use
steganography) and suspicious users; comparison between values of Stream Sequence Number
sent by “normal” users (users who do not use steganography) and suspicious users; checking
the value of Payload Stream Identifier; analysis of a_rwnd values and sizes of received chunks;
analysis of the average number of duplicated chunks; analysis of Shared Key Identifier values;
analysis of Padding Data; checking the existence of IP addresses that are sent in these parameters;
comparison between values of the Heartbeat Info Parameter sent by a regular user (a user who
do not use steganography) and a suspicious user; analysis of RandomNumber; comparison
between values of ASCONF-Request Correlation ID sent by a regular user and a suspicious user.
The methods presented above are dedicated to all packet modification techniques, including
payload modification, header modification, and hybrid techniques.

• Header checksum observation [8], including checksum comparison for retransmitted IEEE 802.11
frames. If the checksum differs for the same payload and header and such observations are
frequent, it is likely that a steganographic technique like HICCUPS has been utilized. The method
is dedicated to header modification steganographic techniques.

• Observation of selected primary or derived features of header data [9], which includes observation
of the least significant bit of the TCP sequence number. The method is dedicated to header
modification steganographic techniques.

For stream modification techniques, several detection methods have been described, including:

• A multi-agent approach for observing network traffic time parameters, and intelligent correlation
of observed meta-histograms utilizing trained machine learning algorithms [10].

• Analysis of inter-packet delays sequence distribution in multiple dimensions: distribution shape,
data variation rule, data statistics. The method proposes an analysis of polarization characteristics,
autocorrelation characteristics and clustering characteristics of the above features [11].

• Statistical analysis of selected metrics, header field comparison, and random number analysis [8].

There also exist steganalysis methods designed for hybrid steganographic techniques, including:

• MoveSteg [12], which is a method for detecting an endpoint from which hidden information is
transmitted by analyzing a distribution of delay between consecutive packets as well as delay
statistical metrics.

• The RSTEG (Retransmission Steganography) detection method [5,13], which is based on outlier
detection of selected metrics, such as a retransmission ratio. Detection based on a retransmitted
segment payload comparison is also proposed.

• The LACK (Lost Audio PaCKets) detection method [14], which is based on observation and outlier
detection of RTP (Real-time Transport Protocol) segment delay.

Some generic methods for steganalysis operating on high-level aggregated metadata have
been proposed:

• Data mining and anomaly detection in various metrics for distributed network covert channel
detection [15].

• A framework that utilizes a statistical approach for monitoring of selected metrics and anomaly
detection in statistical measures, including non-linear chaotic data [2]. The framework analyzes
detected outliers and provides a probability of data leakage.

• A deep-learning approach for the detection and classification of covert channels. The method
requires a data set comprised of covert communication, which can include a mix of various
steganographic techniques [16].

• Detection method based on network traffic visualization [17], in which a fundamental design
principle of the anomaly detection approach is the lack of direct, linear time dependencies for the
created network traffic visualizations.

7

Electronics 2020, 9, 2128

In addition, several generic methods for steganalysis have been proposed for steganogram
detection in digital media. However, these methods apply for a different range of data-hiding
techniques (digital images/media) that are outside the scope of this research. Those methods include:

• A supervised learning-based steganalysis [18], which requires a training phase to learn classification
rules to further classify digital data utilizing deep learning algorithms.

• A simple image comparison and its metadata, such as file size, to extract a steganogram [19].
• Utilizing Bayes classifier for observation of peak frequency in audio signals [20],
• Utilizing a sliding window and a convolutional neural network for steganalysis in audio

transmission [21].

All told, the existing literature on network steganography detection focuses on countermeasures
and methods for the detection of newly described steganography techniques rather than a generic
approach, with exceptions described above.

The generic method described in this paper provides a framework for the utilization of various
steganalysis methods at once. The method requires the use of other existing network steganography
detection methods for optimum effectiveness. The proposed method's main novelty is providing
a capability for intelligent selection of best-fit steganalysis methods for analyzed network traffic to
maintain optimal resource utilization. While some of the existing methods provide a generic approach
to steganography detection, none of those methods provide a unified cooperation model for utilizing
other methods.

3. Multilayer Network Steganography Detection

3.1. Method Description

The core concept for our proposed method of network steganography detection is multilayer
steganalysis and intelligent detection method selection based on packet classification and optimal
resource utilization. We propose a top-down approach for a detection method selection algorithm
as it ensures optimal computation resource allocation. In such an approach, we prefer high-layer
metrics analysis over methods operating on low-level data (which would require more resources)
unless high-level analyzers identify suspicious network traffic.

As shown in Figure 3, the first step is a packet capture (101), which acquires a single network
packet from a hardware resource, such as a network card. The next step is feature extraction (102),
which is the first stage of building a data model. Extracted features may include protocol headers
and other derived data that can be calculated in near real-time. Extracted features serve as an input
for metrics aggregation (103) and steganalysis layer selection (104). Metrics aggregation modules
provide derived metrics operating on various aggregation layers. The scope of the metrics and
calculation algorithms is determined by the steganalysis method(s) for which the method is to be
applied. Examples of the metrics aggregation may include aggregated data counters, port utilization,
etc. The main assumption for metrics aggregation is that high-layer metrics computation should
consume fewer resources and take less time than the computation of low-layer metrics, as shown
in Figure 4. We named the lowest-layer metrics “1st layer aggregated metrics” and the highest-layer
metrics “Nth layer aggregated metrics.”

The calculated metrics and features extracted from each packet serve as input for steganalysis
layer selection (104), which determines the optimal steganalysis layer. We discuss the steganalysis
layer selection in Section 3.2.

8

Electronics 2020, 9, 2128

Figure 3. Multilayer detection method description.

Figure 4. Aggregated Metrics hierarchy.

The Steganography Detection module (105) comprises multiple steganalysis methods. Each steganalysis
method is assigned to a specific layer, based on the method’s complexity and, in particular, on its
resource utilization. Given a maximum of N layers of steganalysis methods, and a function L(m)
defining real-time operating resource consumption for each method m belonging to the set of methods
M, the following is assumed:

∀m ∈M(L(m) < L(m− 1)), provided that N ≥ m > 1 (1)

9

Electronics 2020, 9, 2128

In other words, steganalysis methods in higher layers require fewer resources to effectively detect
network steganography in the real-time regime. Steganography detection methods in each layer may,
but do not have to, operate on corresponding aggregated metrics layers.

The result of the performed multilayer steganalysis is provided to the steganography layer
selection module to update the classification rules.

3.2. Steganalysis Layer Selection

The performance of our proposed method relies on the accuracy of the steganalysis layer selection
algorithm and its parameters. In order to achieve better results, the algorithm should be tailored to
fit specific performance requirements and at least the anticipated types of steganography technique.
We suggest the following selection method, which should suffice for most applications.

As shown in Figure 5, the steganalysis layer selection method can operate in two modes:

1. Rule learning;
2. Packet classification.

Figure 5. Steganalysis layer selection method.

In the first mode, the method applies various machine learning algorithms for frequent pattern
mining, classification, and clustering to the steganalysis result (204) provided by the layered steganalysis
module, computed anomaly scoring (205), and aggregated metrics (201). Learned rules are stored in
memory (203) for the anomaly scoring module and packet classification.

In the second mode, the layer selection method receives a packet’s extracted features (206) to
classify the packet (207) for the selection of the optimal steganalysis layer (208). Packet classification (207)
operates on previously learned rules and may use various classification methods and metrics, including
but not limited to network address classification, network protocol classification, and TCP/UDP
port classification.

The selection and application of specific algorithms for frequent pattern mining, classification,
and clustering utilized by the rule learner module (202) are beyond the scope of this research work as
they are widely discussed in the literature [21,22]. However, we recommend the k-means clustering

10

Electronics 2020, 9, 2128

for mining a predefined number of clusters of network devices, the FP-growth algorithm for frequent
pattern mining, and an optimized SVM (Support-Vector Machine) trainer [23] for classification.

3.3. Applicability

Our proposed method can be applied to optimize the detection of the most known network
steganography techniques shown in Figure 2. The spectrum of detected steganographic techniques
relies on network steganography detection methods utilized by the presented multilayer detection
method. In Table 1, we outline the potential advantages and disadvantages of applying our multilayer
network steganography detection method to each group of techniques.

Table 1. Applicability of detection method.

Group of Techniques Method Applicability

Packet Modification
Network steganography techniques belonging to this group are relatively easy to
detect without utilizing significant resources. Applying our proposed method for

this group may introduce unnecessary overhead for high-layer steganalysis.

Stream Modification

Detection of network steganography techniques belonging to this group needs
significantly more resources to monitor network traffic. Applying our proposed
method for this group provides value by optimizing and narrowing the range of

detection methods used in the described top-down approach.

Hybrid

Detection of network steganography methods belonging to this group needs at
least as many resources as stream modification methods. Applying our proposed
method for this group provides value by optimizing and narrowing the range of

detection methods used in the described top-down approach.

Based on the above findings, we suggest limiting the use of our method to stream modification
and hybrid network steganography detection.

4. Case Study

4.1. Experiment Scope and Methodology

To measure the crucial features of the proposed method, we decided to perform an experiment by
applying the method to a chosen network steganographic technique. The main need was to evaluate
steganalysis time and its characteristics. To perform accurate measurements, we needed to choose a
steganographic technique that has the following features:

• There exists a detection method that compares raw network traffic;
• There exists a detection method that operates on the 1st layer of aggregated metrics;
• There exists a detection method that operates on the 2nd layer of aggregated metrics;
• The method preferably operates under the application layer.

The above set of features ensures that the proposed method application is best utilized and
operates on at least three layers. In our opinion, applying the proposed method to any steganographic
technique satisfying the requirements above should provide performance gains, depending on the
chosen steganalysis methods on each layer. Given the requirements, we chose to apply our method to
RSTEG (retransmission steganography) [5,13,24]. The application to RSTEG detection provides us a
set of steganalysis methods, presented in the literature, that can operate on aggregated metrics as well
as raw data.

The main idea of RSTEG is to not acknowledge a successfully received packet in order to
intentionally invoke retransmission. The retransmitted packet carries a steganogram instead of user
data in the payload field [5]. Although RSTEG is intended for a broad class of protocols that utilize
retransmission mechanisms, we chose to conduct the experiment on hidden communication detection
in TCP/IP networks.

11

Electronics 2020, 9, 2128

The objective of our case study is to document the performance of network steganography
detection utilizing steganalysis method(s) individually and in the multilayer approach presented in
this paper. Various RSTEG steganalysis methods can be implemented using a passive warden [25]
in the architecture we describe in Section 4.2. We proposed detection methods and assigned them to
particular layers.

We measured packet processing time to determine the effectiveness of the method. We divided
the experiment into two parts:

1. Communication capture;
2. Capture analysis.

Processing time was measured between the times the warden started and finished analyzing
captured traffic. All measurements were performed on ~100 MB chunks of ~5 GB of captured network
traffic on a virtual machine with a single CPU and 2 GB of RAM. Each measurement was repeated
10 times to provide average results.

4.2. RSTEG Steganalysis Methods

The most effective methods for RSTEG communication in TCP/IP networks are based either on
payload comparison or anomaly detection in derived stream metrics, i.e.:

1. Comparison of the retransmitted and original payload;
2. Anomaly detection in the number of retransmissions for an individual connection;
3. Anomaly detection in the number of retransmissions for an individual device.

4.2.1. Comparison of the Retransmitted and Original Payload

The method of detection based on a comparison of retransmitted and original payload operates
on the assumption that every retransmitted TCP segment should have a similar payload to the original
one. Any outliers can be safely assumed to be carrying steganograms.

Processing and memory requirements for this method are excessive [5] and limit the method’s
application to selected network connections only. Required resources scale with the amount of
transmitted data and the number of network connections.

Based on the above description, we assign this method to the “Raw Data Steganalysis” layer.

4.2.2. Anomaly Detection in a Number of Retransmissions for an Individual Connection

Anomaly detection in a number of retransmissions for an individual connection requires the
following operations to be performed:

1. Determining whether an individual packet is retransmitted;
2. Determining the TCP segment retransmission ratio for an individual network connection;
3. Outlier detection in the TCP segment retransmission ratio for an individual network connection.

Based on the fact that all of the above steps operate on a packet’s extracted features and aggregated
metrics, we assign this method to the first layer.

4.2.3. Anomaly DETECTION in a number of Retransmissions for an Individual Device

The method of anomaly detection in a number of retransmissions for an individual device is similar
to the method presented above but operates in a broader scope. In this approach, the retransmission
ratio for all network device traffic is determined, and outliers are detected.

Based on the fact that this method operates in a higher layer of aggregated metrics, we assign this
method to the second layer.

12

Electronics 2020, 9, 2128

4.3. Architecture

We conducted the experiment utilizing the following architecture for data capture and
further investigation.

The architecture presented in Figure 6 comprises two endpoints: Alice (303) and Bob (311), who
have established an RSTEG channel and are exchanging steganograms, among other network traffic.
Bob’s endpoint resides in a local network (310) in which all network traffic goes through the core
router (312). The core router sends a copy of all traffic to the passive warden (313). Communication
coming from other network devices (314) not necessarily involved in steganographic communication
is also analyzed.

Figure 6. Implementation architecture.

4.4. Results

To provide an overview of multilayer steganalysis method performance, we measured the
processing time for the methods applied in each layer as well as the total processing time required by
our method. Each measurement was performed using the methodology described in Section 4.1.

As shown in Table 2, an increased ratio of retransmissions in the network causes an increase in
processing time despite the chosen method(s). Processing time increases significantly for lower layers
of steganalysis methods, including raw data steganalysis.

13

Electronics 2020, 9, 2128

Table 2. Steganalysis performance.

Ratio of
Retransmissions (%)

Raw Steganalysis
Time (s)

1st Layer Detection
Time (s)

2nd Layer Detection
Time (s)

1 2.79 0.53 0.04
2 4.50 0.89 0.12
3 4.63 1.33 0.16
4 5.91 1.04 0.13
5 6.54 2.01 0.14

In Figure 7, we show the steganalysis time for raw data steganalysis in the retransmission ratio
domain. As the chart shows, an increase in the network retransmission ratio causes an increase in
the processing time; this increase can be approximated by a linear function. Given that raw data
steganalysis for RSTEG means storing, iterating, and comparing retransmitted segments with the
original ones, the substantial near-linear increase in processing time is fully legitimate.

Figure 7. Raw Data Steganalysis time.

In Figure 8, we show the steganalysis time for the first-layer steganalysis in the retransmission
ratio domain, which also includes raw data steganalysis for selected traffic. For RSTEG application,
the method directs TCP segments belonging to connections that qualified as outliers for further raw
data steganalysis, which means payload comparison.

The results also show an increase that can be approximated by a linear function, which makes
sense because of the significant overhead required for processing separate connections, anomaly
detection, and the potentially higher number of segments directed to lower-layer steganalysis.

In Figure 9, we show the steganalysis time for second-layer steganalysis in the retransmission
ratio domain. Second-layer steganalysis involves selectively directing network traffic to first-layer
steganalysis as well as raw data steganalysis. In our application, the method analyzes the retransmission
ratio in the context of an individual network device, then directs outlier devices to the method that
analyzes network connections and directs outlier traffic to payload comparison for retransmitted
segments (raw data steganalysis).

14

Electronics 2020, 9, 2128

Figure 8. First-layer Steganalysis time.

Figure 9. Second-layer steganalysis time.

The results show a non-linear increase in processing time, which can be closely approximated by
a third-order polynomial function. Given that the method operates on the highest layer of aggregated
metadata, a non-linear increase in processing time is justified. The second-layer method brings the
most substantial gain in steganalysis, with an increasing retransmission ratio in our case.

The percentage gain in processing time when multilayer detection is applied is shown in Figure 10
and Table 3. The results show a significant performance gain for higher-layer detection methods
(as expected). However, the gain slightly decreases in comparison to the lowest retransmission
ratio applied (1%). This is a result of method selection algorithm overhead and aggregation of
required metrics.

15

Electronics 2020, 9, 2128

Table 3. Steganalysis performance gain.

Ratio of
Retransmissions (%)

Raw Steganalysis
Time (s)

1st Layer Detection
Gain (%)

2nd Layer Detection
Gain (%)

1 2.79 526% 6552%
2 4.50 506% 3861%
3 4.63 349% 2956%
4 5.91 568% 4716%
5 6.54 325% 4666%

Figure 10. Steganalysis performance gain.

5. Conclusions

Multilayer steganography detection is a method that utilizes a top-down approach for network
steganography detection and introduces an intelligent choice of steganographic methods applied to
specific network traffic. As a part of the method, we have presented a steganalysis layer selection
method that provides an intelligent selection of steganalysis algorithms, preserving the balance between
resource consumption and detection performance. To the authors’ best knowledge, this is the first
generic network steganography detection method that utilizes a top-down approach for a detection
method selection algorithm to ensure optimal computation resource allocation.

We have described the method’s concept and its key components and discussed the method’s
applicability for network steganography detection in the context of known data-hiding methods.
We also considered steganography detection in real networks in a wider context. The method
requires the use of other existing network steganography detection methods for optimum effectiveness.
The main novelty of the proposed method is providing a capability for intelligent selection of the best-fit
steganalysis method for analyzed network traffic to maintain optimal resource utilization. Other generic
detection methods presented so far do not provide orchestration for network steganography detection.

We applied our method for the detection of the RSTEG data-hiding method, presented the
proposed detection techniques and assigned them to specific layers. The results demonstrated the
method’s performance gain over the steganalysis of raw network data. The presented characteristics
of performance gain lead us to the conclusion that the method’s application for real-time steganalysis
is promising as it introduces a non-linear increase in processing time.

We suggest the following areas of future research:

16

Electronics 2020, 9, 2128

• Performance scaling of required resources;
• Application of the method to other network steganography techniques;
• Application of the method to steganography detection in a broader context not tied to

TCP/IP networks.

Author Contributions: M.S. contributed to theoretical formulation, design methodology, dataset development,
experiment design and implementation, results interpretation, original draft preparation and revision. The other
authors (K.S., J.P.) contributed to project supervision, theoretical formulation, result interpretation, and revision of
the initial draft. All authors have read and agreed to the published version of the manuscript.

Funding: This scientific research work was co-financed by the European Union, project name: “The system
for identification and monitoring of anomalies and risks in ICT networks”. The amount financed by the
European Union was EUR 1,044,534.63. The investment outlay value for the entire project was EUR 1,407,526.46.
The subsidy was allocated from the European Regional Development Fund, Operational Program “Smart Growth”,
sub-measure 1.1.1 “Industrial research and development work implemented by enterprises” (grant number:
POIR.01.01.01-00-0554/15).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Tanwar, R.; Malhotra, S.; Singh, K. Future of Data Hiding: A Walk through Conventional to Network Steganography,
in Cyberspace Data and Intelligence, and Cyber-Living, Syndrome, and Health; Springer Science and Business
Media LLC: Berlin, Germany, 2020; Volume 1230, pp. 123–132.

2. Nafea, H.; Kifayat, K.; Shi, Q.; Qureshi, K.N.; Askwith, B. Efficient Non-Linear Covert Channel Detection in
TCP Data Streams. IEEE Access 2020, 8, 1680–1690. [CrossRef]

3. Collins, J.; Agaian, S. Trends Toward Real-Time Network Data Steganography. Int. J. Netw. Secur. Its Appl.
2016, 8, 1–21. [CrossRef]

4. Seo, J.; Manoharan, S.; Mahanti, A. Network steganography and steganalysis—A concise review.
In Proceedings of the 2016 2nd International Conference on Applied and Theoretical Computing and
Communication Technology (iCATccT), Bengaluru, India, 21–23 July 2016; pp. 368–371.

5. Mazurczyk, W.; Smolarczyk, M.; Szczypiorski, K. Retransmission steganography and its detection.
Soft Comput. 2009, 15, 505–515. [CrossRef]

6. Lubacz, J.; Mazurczyk, W.; Szczypiorski, K. Principles and overview of network steganography.
IEEE Commun. Mag. 2014, 52, 225–229. [CrossRef]

7. Frączek, W.; Mazurczyk, W.; Szczypiorski, K. Hiding information in a Stream Control Transmission Protocol.
Comput. Commun. 2012, 35, 159–169. [CrossRef]

8. Grabski, S.; Szczypiorski, K. Network steganalysis: Detection of steganography in IEEE 802.11 wireless
networks. In Proceedings of the 2013 5th International Congress on Ultra Modern Telecommunications and
Control Systems and Workshops (ICUMT), Almaty, Kazakhstan, 10–13 September 2013; pp. 13–19.

9. Goher, S.Z.; Javed, B.; Saqib, N.A. Covert channel detection: A survey based analysis. In Proceedings of the
9 th International Conference on High Capacity Optical Networks and Emerging/Enabling Technologies,
Istanbul, Turkey, 12–14 December 2012; pp. 57–65. [CrossRef]

10. Bieniasz, J.; Stepkowska, M.; Janicki, A.; Szczypiorski, K. Mobile agents for detecting network attacks using
timing covert channels. J. Univ. Comput. Sci. 2019, 25, 1109–1130.

11. Lu, S.; Chen, Z.; Fu, G.; Li, Q. A Novel Timing-based Network Covert Channel Detection Method. J. Phys.
Conf. Ser. 2019, 1325, 012050. [CrossRef]

12. Szczypiorski, K.; Tyl, T. MoveSteg: A Method of Network Steganography Detection. Int. J.
Electron. Telecommun. 2016, 62, 335–341. [CrossRef]

13. Mazurczyk, W.; Smolarczyk, M.; Szczypiorski, K. On information hiding in retransmissions. Telecommun. Syst.
2011, 52, 1113–1121. [CrossRef]

14. Mazurczyk, W.; Lubacz, J. LACK—a VoIP steganographic method. Telecommun. Syst. 2010, 45, 153–163.
[CrossRef]

15. Cabaj, K.; Mazurczyk, W.; Nowakowski, P.; Żórawski, P. Fine-tuning of Distributed Network Covert Channels
Parameters and Their Impact on Undetectability. In Proceedings of the 14th International Conference on
Availability, Reliability and Security—ARES ’19, Canterbury, UK, 26–29 August 2019; pp. 1–8. [CrossRef]

17

Electronics 2020, 9, 2128

16. Chourib, M. Detecting Selected Network Covert Channels Using Machine Learning. In Proceedings of the
2019 International Conference on High Performance Computing & Simulation (HPCS), Dublin, Ireland,
15–19 July 2019; pp. 582–588.

17. Mazurczyk, W.; Szczypiorski, K.; Jankowski, B. Towards steganography detection through network traffic
visualisation. In Proceedings of the 2012 IV International Congress on Ultra Modern Telecommunications
and Control Systems, Petersburg, Russia, 3–5 October 2012; pp. 947–954. [CrossRef]

18. Chandramouli, R.; Subbalakshmi, K. Current trends in steganalysis: a critical survey. In Proceedings of the
ICARCV 2004 8th Control, Automation, Robotics and Vision Conference, Kunming, China, 6–9 December
2004; pp. 964–967.

19. Krenn, J.R. Steganography and Steganalysis, Internet Publication. Available online: http://www.krenn.nl/
univ/cry/steg/article.pdf (accessed on 9 December 2020).

20. Zeng, W.; Ai, H.; Hu, R.; Gao, S. An algorithm of echo steganalysis based on Bayes classifier. In Proceedings
of the 2008 International Conference on Information and Automation, Changsha, China, 20–23 June 2008;
pp. 1667–1670.

21. Zhao, S.; Chandrashekar, M.; Lee, Y.; Medhi, D. Real-time network anomaly detection system using machine
learning. In Proceedings of the 2015 11th International Conference on the Design of Reliable Communication
Networks (DRCN), Kansas City, KS, USA, 24–27 March 2014; pp. 267–270.

22. Bieniasz, J.; Sapiecha, P.; Smolarczyk, M.; Szczypiorski, K. Towards model-based anomaly detection in
network communication protocols. In Proceedings of the 2016 2nd International Conference on Frontiers of
Signal Processing (ICFSP), Warsaw, Poland, 15–17 October 2016; pp. 126–130.

23. Franc, V.; Sonnenburg, S. Optimized Cutting Plane Algorithm for Large-Scale Risk Minimization. J. Mach.
Learn. Res. 2009, 10, 2157–2192.

24. Mazurczyk, W.; Smolarczyk, M.; Szczypiorski, K. Retransmission Steganography Applied. In Proceedings of
the 2010 International Conference on Multimedia Information Networking and Security, Nanjing, China,
4–6 November 2010; pp. 846–850.

25. Fisk, G.; Fisk, M.; Papadopoulos, C.; Neil, J. Eliminating Steganography in Internet Traffic with Active
Wardens. In Computer Vision—ECCV 2020; Springer Science and Business Media LLC: Berlin, Germany, 2002;
pp. 18–35.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

18

electronics

Article

A Wireless Covert Channel Based on Dirty Constellation with
Phase Drift

Krystian Grzesiak *, Zbigniew Piotrowski and Jan M. Kelner

Citation: Grzesiak, K.; Piotrowski, Z.;

Kelner, J.M. A Wireless Covert

Channel Based on Dirty Constellation

with Phase Drift. Electronics 2021, 10,

647. https://doi.org/10.3390/

electronics10060647

Academic Editors: Juan M. Corchado

and Paulo Ferreira

Received: 31 December 2020

Accepted: 8 March 2021

Published: 11 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute of Communications Systems, Faculty of Electronics, Military University of Technology,
00-908 Warsaw, Poland; zbigniew.piotrowski@wat.edu.pl (Z.P.); jan.kelner@wat.edu.pl (J.M.K.)
* Correspondence: krystian.grzesiak@wat.edu.pl; Tel.: +48-261-885-509

Abstract: Modern telecommunications systems require the use of various transmission techniques,
which are either open or hidden. The open transmission system uses various security techniques
against its unauthorized reception, and cryptographic solutions ensure the highest security. In the
case of hidden transmissions, steganographic techniques are used, which are based on the so-called
covert channels. In this case, the transparency and stealth of the transmission ensure its security
against being picked up by an unauthorized user. These covert channels can be implemented in
multimedia content, network protocols, or physical layer transmissions. This paper focuses on
wireless covert channels. We present a novel method of steganographic transmission which is based
on phase drift in phase-shift keying or quadrature amplitude modulation (QAM) and is included in
the so-called dirty constellation techniques. The proposed approach is based on the drift correction
modulation method, which was previously used in the watermarking of audio-signals. The developed
solution is characterized by a variable bit rate, which can be adapted to the used modulation type
and transmission conditions occurring in radio channels. In the paper, we present the method of
generating and receiving hidden information, simulation research, and practical implementation of
the proposed solution using the software-defined radio platform for selected QAM.

Keywords: wireless communications; covert channel; steganography; steganalysis; dirty constellation;
wireless postmodulation steganography; phase drift; drift correction modulation; undetectability;
security; quadrature amplitude modulation

1. Introduction

The increase in capacity is one feature of emerging communication systems, including
the fifth (5G) and sixth generation (6G) systems. This is due to the use of wider radio
channels, their aggregation, or the use of higher frequency bands, i.e., millimeter, terahertz,
or optical waves. A wider band of transmitted signals also gives greater possibilities to
implement covert data transmission. Hence, the greater interest in searching for new
steganographic methods is more evident [1].

Steganography consists in transmitting information to make the act of transmission
undetectable. Unlike cryptographic information, whose content is encrypted, the very
existence of steganographic information is concealed. Steganographic information, which
is also known as covert information, requires a carrier—or, in other words, a cover. The sim-
plest carrier scenario uses photos [2], audio [3] or video signals [4] (multimedia steganog-
raphy) to hide additional information. One of the important steganography applications
includes creating covert channels. The term “covert channel” was coined by Butler W.
Lampson as: “ . . . any communication channel that can be exploited by a process to transfer
information in a manner that violates the systems security policy . . . ” [5]. B.W. Lampson
focused on the exchange of data between programs. Nowadays, it is assumed that any
method of communication used to illegally transmit information, which violates the system
security policy, is a covert channel.

Electronics 2021, 10, 647. https://doi.org/10.3390/electronics10060647 https://www.mdpi.com/journal/electronics19

Electronics 2021, 10, 647

Data security is generally ensured by the flow control between the sender and autho-
rized recipient. Though wired networks commonly use firewalls, security can be violated
by covert channels. In this case, the information can be embedded by manipulating the
packet timing information (i.e., covert timing channel) [6–10] or putting some bits into
the packet headers (i.e., covert storage channel) [11,12]. So-called network steganography
understood in a broad sense can be applied to both physical layer symbol frames [13],
protocols of medium access control (MAC) [14], routing [15], networks [16], or higher
layers, e.g., Transmission Control Protocol/Internet Protocol (TCP/IP) [11], Hypertext
Transfer Protocol (HTTP) [17], and Domain Name System (DNS) [18]. These methods can
be applied in homogeneous wired and wireless networks (e.g., accordant with the IEEE
802.11 standard [12,13]) as well as in heterogeneous ad hoc networks (e.g., [15]). Along with
the development of network steganography techniques, we may notice novel solutions of
network steganalysis, e.g., [19].

Contrary to the wired network, the wireless physical layer gives further possibilities
for implementing the covert communication. In general, the wireless covert channel has its
advantages and disadvantages [20]. In wired communications, it must be ensured that the
channel is not distorted by network devices on either side of the covert channel. In wireless
communication, the range between two points is limited by the transmitter power and the
parameters of the receiver, e.g., its sensitivity. In this case, the steganography can relate
to both radio and optical (e.g., [21,22]) wired and wireless communications. The further
analysis focuses on wireless radio communication steganography.

In wireless communications, we deal with noise, interference, and fading that can
seriously degrade transmission capabilities. In this case, it is worth introducing the terms
“premodulation” and “postmodulation” steganography [23]. Pemodulation steganography
is related to the bit structure change of the transmitted cover information. In contrast,
postmodulation steganography refers directly to the physical parameter change of the
transmitted waveforms. The proposed method presented in this paper is included in the
category of wireless postmodulation steganography.

In the literature, we can find many ways to implement covert channels based on
the physical layer. For N-ary frequency-shift keying (FSK) signals, E. Szczepaniak et al.
proposed hiding information in a frequency drift and offset [24]. For orthogonal frequency-
division multiplexing (OFDM) signals, different methods may be used, e.g., virtual car-
riers [25], the modification of training sequences, the covert-data-dependent shift of the
signal carrier frequency, or using changes in the cyclic prefix [26]. The disadvantage of
all these solutions is the low bit rates obtained. In contrast, theoretical approaches for the
direct sequence spread spectrum (DSSS) and frequency-hopping spread spectrum (FHSS)
techniques are shown in [27]. The DSSS and FHSS techniques are used primarily in military
communication systems due to the low probability of detection/intercept (LPD/LPI) [28].
However, in [27], B.A. Bash et al. do not show the practical implementation of the proposed
solutions. In the literature, we can also find steganographic solutions based on spatial mul-
tiplexing. P. Cao et al. propose to use multiple-input multiple-output (MIMO) technologies
to create covert channels [29]. In this case, artificial noise modulated from secret messages
is distributed as Gaussian channel noise, which increases the undetectability of a hidden
transmission. Additionally, to improve its transparency, P. Cao et al. propose to modify the
channel state information (CSI) parameters to reduce their correlation [29].

For modulations with constant points in their constellations, such as N-ary phase-
shift keying (PSK) or quadrature amplitude modulation (QAM), dedicated steganography
techniques are applicable. These methods are based on hiding information around the
core points of the modulation constellation, and they seem more practical and convenient.
For example, [30] describes the embedding of points in a constellation offset from the
original points and adopts the term “dirty constellation”. A similar solution defined as
“constellation shaping modulation” is proposed in [31], although it focuses more on in-
creasing covertness. In comparison to [30], the approach of [31] improves nondetectability
at the expense of reliability degradation measured by bit error rate (BER). Creating a covert

20

Electronics 2021, 10, 647

channel by superimposing pseudonoise asymmetric shift keying (PN-ASK) modulation
was proposed in [32]. In this case, covert symbols are mapped by shifting the amplitude of
primary symbols to a high order amplitude-phase modulation on a carrier constellation.
The main drawback of this solution is limitations to the only phase-modulated cover sig-
nals. Moreover, multilevel amplitude modulation of the covert signal causes decreasing
security (increasing detectability). Considering the high concentration of radio emissions
in the available radio spectrum and the ever-growing number of used transceiver devices,
this type of steganographic technique seems to be worth attention, research, and develop-
ment. Considering the fact that [31] and [32] basically made a comparative analysis of [30],
in this paper, we similarly focused on developing a novel idea of dirty modulation.

In this paper, we present a novel dirty modulation that is based on a phase drift and
dedicated to the N-ary PSK or QAM signals. A similar solution, but based on the frequency
drift in the N-ary FSK signals, is presented in [24]. The idea of hiding information in the drift
of radio signal parameters is based on the drift correction modulation (DCM) method [33],
which was used to hide information in audio signals. In this case, Z, Piotrowski also
used the phase drift in the OFDM signal, which was then psychoacoustic corrected and
added to the audio cover [33]. In the developed solution, we hide the information in a
determined phase drift around the current constellation point of the transmitted radio
signal. The phase difference constituting the drift step and the centroid distance from the
constellation points are the parameters of the developed method. These parameters may
be selected adaptive to the modulation type or transmission conditions. The modulation
choice has a significant impact on the number of points (i.e., transmitted symbols) in its
constellation, which translates into the distances of neighboring points on it. The influence
of the transmission conditions, i.e., a signal-to-noise ratio (SNR), translates into a detection
interference of the symbols and hidden subsymbols in the received signal. During the
transmission, the received symbols (i.e., constellation points) change. Hence, phase drift
detection, and thus steganalysis of the developed method, is more difficult than other dirty
modulations. This is due to the fact that we do not set constant points in the constellation as
the place of reading the subsymbol of covert transmission, but we hide the information in
the drift step, i.e., the phase difference of the consecutive constellation points. This proves
the originality of the proposed solution in comparison with other dirty modulation or
wireless postmodulation steganography methods available in the literature.

In the paper, we present a methodology for generating and receiving the covert
channels based on the dirty constellation with the phase drift and compare it with [30] as
others have done. We want to emphasize that in addition to the simulation analysis typical
for this kind of paper, we also present the first lab tests. In this practical implementation,
we conducted tests using hardware and covert transmission over a real radio channel.
To increase the SNR of the covert signal, multiple repetitions of the hidden subsymbols on
the transmitting side and coherent averaging [34] of the successive drift phase differences
on the receiving side shall be applied. This reduces the resulting bit rate of the covert
transmission in the proposed method. However, this approach allows adaptation to the
transmission conditions occurring in the radio channel. The proposed method will be
used in future radio communication systems, including 5G networks dedicated to military
applications. We plan to use it in the upcoming European Defense Agency (EDA) project,
codenamed SOFTANET, for the hidden data layer in the wireless part of a software-defined
network (SDN) [35–37]. It is in line with the trend, visible in the literature, of using
steganography in 5G systems and networks, e.g., [21,38].

Analyzing the security system trends, including those based on cryptography and
steganography, we see numerous threats to the existing techniques. They result from
the increasing use of artificial intelligence (AI) algorithms [39,40] and quantum technolo-
gies [41,42] in security breach systems. On the other hand, these technologies may also be
potential development directions of the security systems. Currently, the literature offers
numerous solutions, including steganographic ones, which are based on modern AI (such
as machine learning (ML) [43,44]) and quantum technologies [45,46] increasing the robust-

21

Electronics 2021, 10, 647

ness, undetectability, and efficiency of emerging security and data transmission systems.
In the case of the developed method, in the near future we want to use these ML techniques
for a time-varying selection of the DCM parameters, which may increase its robustness,
transparency, and the bitrate of the covert transmission.

Based on an approach presented in [47], we want to summarize the contribution
of this paper. This research possesses various contributions in the domain of wireless
steganography, watermarking, and wide-sense security of future wireless systems.

1. First, a DCM-based novel dirty constellation has been proposed, which can be used
in N-ary PSK and QAM signals. The previous DCM solution [33] was dedicated to
watermarking audio signals using the OFDM.

2. Second, based on simulation studies, the impact of the parameter variability of the
developed method on its detection possibility using statistical analysis techniques has
been shown.

3. Third, the efficiency of the developed method and its comparison with another dirty
constellation technique [30] have been presented.

4. Lastly, the possibility of the practical implementation of the proposed solution has
been shown, which gives a premise for its practical use in hidden data layer creation
in SDN for the SOFTANET project and in future wireless systems and networks.

The remainder of the paper is as follows. Section 2 describes the idea of dirty constella-
tion based on [30]. Our solution based on phase drift is presented in Section 3. In Section 4,
we introduce the evaluation criteria of the covert channels. Using them, we analyze the
developed dirty constellation based on the simulation and measurement approaches in
Sections 5 and 6, respectively. Section 7 contains the paper summary.

2. Concept of Dirty Constellation

The main idea for creating covert channels based on the dirty modulation results from
the fact that the received signals do not have an ideal constellation. Instead, we see a radio
channel and parameter imperfection caused by both the transmitting and receiving devices’
influence on blurring (spreading) the received-signal constellations. This effect translates
to phase and amplitude distortions and ultimately to an increase in BER.

To increase the bandwidth efficiency, the N-ary PSK or QAM modulations are com-
monly used in telecommunications together with OFDM access. A time-frequency structure
(waveform) of the OFDM signal provides a lot of space and possibilities for creating the
covert channel, e.g., [26]. The suggested solutions include the use of the OFDM symbol
waveform. When analyzing the QAM signal, the covert channel is provided based on
the errors, which are the differences between the theoretical and the real points of the
constellation. This results from environmental noise and hardware impairments. The theo-
retical, finite M number of constellation points corresponding to the N-ary PSK or QAM,
in practice, has the form of the finite number of constellation point sets concentrated around
the theoretical values without any distortions. Therefore, the channel will remain “hidden”
as long as it is perceived as a noisy version of the carrier signal (i.e., the PSK or QAM signal)
by the third uninformed party. It is important that after applying the covert information,
the carrier remains distorted as little as possible so that the reception of the primary signal
should be error-free.

It is the idea of using the dirty constellation proposed in [30]. The bits of covert
information are mapped into additional constellation points placed around the base (i.e.,
carrier) constellation points, which is illustrated in Figure 1. According to the assumption,
these additional constellation points are perceived as noise/error by the uninformed
user. The value of the covert information symbol is defined in relation to the carrier
constellation point.

22

Electronics 2021, 10, 647

(a) (b)

Figure 1. Dirty constellation: (a) assigning bits to constellation points; (b) chosen constellation point.

The carrier constellation is marked with blue circles, while the constellation related to
the covert subsymbols (i.e., covert message bits) is marked with red ones. The probability
of detection by adversaries is limited by reducing the predistortion radius, r. In addition,
r can be changed (e.g., randomly) within a preset range. A. Dutta et al. for masking
purposes used the fact that the QAM signal is transmitted by using the OFDM [30]. There-
fore, each unused OFDM subcarrier may be a masking element providing more random
(noiselike) in relation to the general character of the covert transmission. Additionally,
A. Dutta et al. propose inserting angle rotation, θ, for successive OFDM harmonics, to in-
crease the number of the received QAM constellation states for the subcarrier set. However,
it does not change the number of constellation points if only one of the OFDM subcarriers
is analyzed.

3. Phase Drift-Based Dirty Constellation

The developed dirty constellation with the phase drift is based on the DCM [33].
The DCM solution was used to create a watermark in audio files. The covert information
is represented in monotonic phase changes of the selected signal harmonics. The mth
harmonic selected for steganography is expressed by the following formula [33]

yk(t) = Am exp j(2π fmt + ϕx + Δχm), (1)

where Am and fm represent amplitude and frequency of the mth signal, respectively, ϕx is
an initial phase and Δχm is the preset phase drift carrying covert information.

In the DCM detector, the signal is subjected to the phase angle scanning procedure,
which results in finding the maximum of the virtual fringe module χVmax. As shown in [33],
the DCM demonstrates good steganographic properties.

In our approach, we adopted the DCM for creating the dirty constellation of the
steganographic channel. For further considerations, we assume that the QAM signal (with-
out the use of the OFDM) is the carrier (cover) of the hidden transmission. The proposed
method uses a covert symbol represented by the K ≥ 2 phase drifts of the successive cover
constellation points. Therefore, the P symbols of the QAM can carry P/K covert symbols.

For the N-ary QAM, the single constellation point is defined in the complex form:

xn = An exp(jϕn) for n = 1, 2, . . . , N, (2)

where An and ϕn are the amplitude and phase of the nth constellation point.
A single M-ary covert message adopts the form of a K-component complex vector:

yk = Am exp j(ϕx + kϕm) for k = 1, 2, . . . , K, (3)

23

Electronics 2021, 10, 647

where Am and ϕm = Δχm are the centroid distance and phase drift step for the proposed
dirty constellation, respectively, and ϕx is a random initial phase, which does not change
when the covert symbol is in progress.

Steganographic information is created by combining (adding) two successive K cover
symbols with successive covert message symbols (i.e., vectors yk). An example of creating
hidden information for a single covert symbol and K = 3 is presented in Figure 2.

(a) (b)

Figure 2. Example of constellation with drift phase: (a) vector yk for K = 3; (b) quadrature amplitude
modulation (QAM) cover (transmitted overt sequence of symbols: 1 + j, 1 − j, 1 − j) and resultant
constellation with drift phase applied for preset vector yk.

Possible phase increments correspond to the M-ary DCM. As a result, we receive new
constellation points in the following form:

yl = Al exp(jθl), (4)

where Al and θl mean the amplitude and phase of the new point in the constellation relative
to the origin of the IQ coordinate system, respectively, which is depicted in Figure 3.

Figure 3. Additional yk and carrier xn constellation points.

The parameters Al and θl are limited by the following relationships:

An − Am ≤ Al ≤ An + Am, (5)

− |arctan(Am/An)| ≤ θl ≤ |arctan(Am/An)|. (6)

Equations (5) and (6) mean that the maximum distortions of module An and phase
ϕn of carrier symbols might be ±Al and ±θl , respectively. These values describe the
degradation level of the original signal by the DCM. On the one hand, it handicaps the

24

Electronics 2021, 10, 647

recreation of the cover information. On the other hand, it shows the possibility of detecting
stenographic transmission.

The proposed approach allows us to better hide the steganographic channel than
the method based on the dirty constellation shown in [30]. This is possible thanks to the
random initial phase ϕx, the adaptive selection of the centroid distance Am and the phase
drift step ϕm. In the general case, the parameters Am and ϕm could also be random within
defined ranges. An example of the phase drift-based dirty constellation for long bit strings
is presented in Figure 4.

(a) (b) (c)

Figure 4. Constellations of carrier and the covert channels applied with: (a) fixed initial phase ϕx; (b) random ϕx; and (c)
random ϕx and Am.

The transceiver (transmitter–receiver) system is shown in Figure 5. This approach is
similar to the framework of wireless covert channel proposed in [31] (Figure 4, p. 5).

Figure 5. Receiver and transmitter (framework) of phase drift-based covert channel.

In the transmitter system, the fixed phase drift is added to the cover constellation
obtained at the output of the QAM modulator. The DCM mapper is used to assign vector
yk. After putting together vector yk with carrier constellation points xn, the transmission
adopts the steganographic form.

In the receiver system, if necessary, the detection of the overt signal (cover) is per-
formed using a traditional QAM demodulator. By contrast, information from the covert
channel is received by using the so-called DCM demapper. In the first instance, this system

25

Electronics 2021, 10, 647

determines the residual signal, which is the difference between the constellation points of
the carrier and the received signal, ŷk. In more detail, it is an assigned complex vector yk
with error ek caused by the signal transmission through the radio channel

ŷk = yk + ek = Âm exp j(ϕx + kϕ̂m), (7)

where Âm and ϕ̂m are the amplitude and phase of the covert symbols in the received signal.
The DCM demodulator performs the phase angle scanning procedure. In this case,

based on the knowledge of the possible angle ϕm values used in the steganographic
transmitter, it calculates the Um values for each ϕm as follows

Um =
K

∑
k=1

ŷk exp(−jkϕm) =
K

∑
k=1

Âm exp j(ϕx + k(ϕ̂m − ϕm)), (8)

The maximum value of the module Um for a given ϕm (m = 1, 2, . . . , M) corresponds
to the assigned symbol of the covert information. It is worth noting that according to
Equation (8), the value K can be treated as the number of averages performed for a single
covert symbol. By providing coherent averaging [34] of the hidden subsymbols, we obtain
an increase in the detection gain of covert transmissions according to [33]. The multiplexing
use of the hidden symbols may increase the effectiveness of its correct detection. In a similar
way, the oversampling application of various credit-related datasets significantly improves
the performance of a credit default prediction model presented in [47].

4. Evaluation Criteria for Covert Channels

To evaluate the covert channel efficiency, we may use the following parameters:

• Covert channel detectability defined by the detection probability,
• Cost understood as the carrier signal distortion,
• Transmission rate and BER in the covert channel.

In steganography, the most important parameter is its transparency, understood as the
undetectability of the transmission existence by outside users (i.e., third parties). It should
be highlighted that an easily detectable covert channel is completely irrelevant, even if it
provides a high transmission rate.

The limit values of the cost function are usually defined for a given cover transmission
standard by an error vector magnitude (EVM). The EVM for a signal with a covert channel
is the cumulative result of influencing the transmitter systems and distortions introduced
by the covert channel. For example, Table 1 contains the EVMs for quadrature PSK (QPSK)
and N-ary QAM in the 5G systems [48] (Table 6.5.2.2-1, p. 48).

Table 1. Error vector magnitudes (EVMs) in 5G standard.

Modulation Scheme for Physical Downlink Shared Channel (PDSCH) Required EVM (%)

QPSK 17.5
16 QAM 12.5
64 QAM 8.0

256 QAM 3.5

There are no clear criteria defining the channel detectability. The presence of a covert
channel can be indicated when an exceedingly high EVM level is observed or the high level
is more frequent (i.e., higher than assumed). This was detected in the statistical studies,
including signal histograms.

Instead of determining the statistical values of the signal at the receiver input by
using the classic prisoner problem proposed by Simmons [49] we may use the scheme
of a moving observer [50] to assess the detection. In this model, Alice, Wendy, and Bob
correspond to the steganographic source (SS), observer (Ob), and steganographic receiver
(SR), respectively. Figure 6 illustrates the analyzed scenario.

26

Electronics 2021, 10, 647

Figure 6. Concept of mobile observer for assessing steganographic method.

In this model, detecting the covert channel depends on the distance from the SS.
As the distance increases, the influence of the radio channel intensifies. However, in the
case of postmodulation steganography, there is a situation in which the mobile Ob, being
near the SR, is able to detect steganographic emission with a high probability. With the
increase in SNR, it is easier to identify the regularity of covert information constellation.
By moving away from the SS, noise and other propagation phenomena occurring in the
real channel make it difficult to detect the emission, as well as its reception, understood as
the reproduction of the bitstream [50].

When considering the detectability of the covert channel as a priority, the proposed
solution offers several basic properties:

• Random Am and ϕx, i.e., no fixed constellation points, which provides robustness on
statistical steganalysis methods—a major advantage over [30];

• Adaptive choice of Am allow minimizing the EVM—a major advantage over [32];
• Possible to adaptively adjust the transmission rate by selecting the number K of phase

changes—a major advantage over [30–32].

In steganographic signals, the lower EVM provides a lower probability of detecting
the covert channel. On the other hand, the lack of fixed constellation points makes the
histograms more random. Therefore, it is worth carrying out statistical analysis based on
histograms and illustrating the covert channel implementation. In this simple example,
we assumed that the cover is the 4 QAM signal, for M = 4, i.e., ϕm takes four values
according to Equation (3). Figures 7–11 show the impact of random Am and ϕx on the
obtained constellations and histograms.

In Figures 7–9, channel interference impact was not considered. On the other hand,
we assumed that the transmitter system did not introduce any impairments, i.e., trans-
mitter EVM is equal to 0%. In real conditions, i.e., EVM > 0, masking the steganographic
information is increasing. So, we can see that thanks to the random parameters Am and
ϕx, the distributions of the constellation points in the planes of the IQ quadrature compo-
nents converge to the Gaussian distributions. Additionally, a real radio channel masks the
presence of a covert channel, which is well illustrated by Figures 10 and 11. In these cases,
we assume that the energy per bit to noise power spectral density ratio, Eb/N0, for the
signal cover is equal to 20 dB. It is worth emphasizing that the initial phase ϕx has no
influence on the resulting bit rate of the covert channel and the obtained BER, but it has a
masking function.

27

Electronics 2021, 10, 647

Figure 7. (a) Constellation (b) in-phase and (c) quadrature histograms for 4 quadrature amplitude
modulation (QAM) cover and drift correction modulation (DCM) covert channel with M = 4 and for
fixed parameters.

Figure 8. (a) Constellation (b) in-phase and (c) quadrature histograms for 4 QAM cover and DCM
covert channel with M = 4 and for random Am.

28

Electronics 2021, 10, 647

Figure 9. (a) Constellation (b) in-phase and (c) quadrature histograms for 4 QAM cover and DCM
covert channel with M = 4 and for random Am and ϕx.

Figure 10. (a) Constellation, (b) in-phase and (c) quadrature histograms for 4 QAM cover and DCM
covert channel with M = 4 and for random Am and ϕx, Eb/N0 = 20 dB for cover.

29

Electronics 2021, 10, 647

Figure 11. (a) Constellation, (b) in-phase and (c) quadrature histograms for 4 QAM cover and
Eb/N0 = 20 dB, and without DCM covert channel.

5. Simulation Analysis of Dirty Constellations

Based on simulation studies, we compared our solution with the dirty constellation
method presented in [30]. In this case, we assumed that the number K of averaging in the
DCM modulator corresponds to the number of covert symbols per carrier symbol (SPS)
in [30], the cover is the 4 QAM signal, and M = 4. For easier comparison, we additionally
assumed that the centroid distance Am and the radius r of covert information dispersion
in [30] remain constant. Figure 12 depicts the obtained comparison results of the transmis-
sion capabilities of the covert channels and the effect of the covert channels on the carrier
QAM signals for EVM = 3%.

The transmission rate obtained for the covert channel is directly related to the number
of symbols transmitted by the cover. Assuming the same value of the cover and stegano-
graphic information, K-fold averaging or given SPS brings about a K-fold reduction in the
number of symbols transmitted over the covert channel. EVM at the level of 3% does not
cause any noticeable deterioration of cover properties. In the proposed solution, compared
to [30] higher numbers of averages need to be used to obtain similar BER levels for a
covert channel.

Introducing random Am reduces the level of energy per symbol of transmitted covert
information, which means that it is necessary to increase the number of averages to provide
the assumed BER level. An example for such a case (i.e., random Am) was presented in
Figures 13–16. The cover is provided by 4 QAM, and M = 4. In Figure 13, we show BER
versus SNR for different K and EVM = 3%. Figure 14 illustrates EVM versus SNR for the car-
rier signal and covert channel (K = 30), whereas Figures 15 and 16 depict the constellations
and histograms for K = 30, EVM = 3%, SNR > 50 dB and SNR = 38 dB, respectively.

The simulation studies carried out showed that the increase in the number K of
averages ensures the BER reduction for a given SNR. On the other hand, introducing the
covert information using the proposed approach did not significantly increase the EVM.
The difference of a few percent is visible only for SNR > 20 dB. However, in this case,

30

Electronics 2021, 10, 647

EVM < 8%. The obtained constellations and histograms show that for good transmission
quality (i.e., SNR = 38 dB and SNR > 50 dB), the randomness of the centroid distance
ensures the undetectability of the proposed method using statistical steganalysis.

(a)

(b)

Figure 12. Comparison of dirty constellation methods based on bit error rate (BER) versus signal-to-noise ratio (SNR)
graphs for EVM = 3%: (a) proposed solution; (b) solution presented in [30].

31

Electronics 2021, 10, 647

Figure 13. BER versus SNR for different K, random Am, and error vector magnitude (EVM) = 3%.

Figure 14. Error vector magnitude (EVM) versus SNR for cover and covert channel (K = 30), and random Am.

32

Electronics 2021, 10, 647

Figure 15. (a) Constellation, (b) in-phase and (c) quadrature histogram for SNR > 50 dB, K = 30,
random Am, and EVM = 3%.

Figure 16. (a) Constellation, (b) in-phase and (c) quadrature histogram for SNR = 38 dB, K = 30,
random Am, and EVM = 3%.

33

Electronics 2021, 10, 647

6. Hardware Implementation

The concept of the phase drift-based dirty constellation was implemented by using
the Universal Software Radio Peripheral (USRP) hardware platform manufactured by
National Instruments (NI, Austin, TX, USA). In this case, we used the USRP-2920 model.
USRP was the essential hardware part for generating a radio signal, while the software
part was provided by the LabView software with MATLAB scripts installed on a personal
computer (PC). An Ethernet network adapter with a bit rate of 1 Gb/s was used to provide
communication between the USRP platforms and PC via a switch. Two USRP-2920 were
used to implement a test-bed for detectors in the transmitter–receiver system. The prepared
test-bed was placed in an office room. The distance between the transmitter and receiver
was 5 m. This configuration is illustrated in Figure 17. The parameters of the carrier signal
and covert information are presented in Table 2.

Figure 17. Test-bed based on USRP-2920 used for practical verification.

Table 2. Parameters of radio signal.

Signal Parameters Value

Cover (carrier)

Modulation type 4 QAM
Carrier frequency 850 MHz

Bandwidth 1 MHz
Transmission rate 4 MHz

Covert information

M 4
Am 0.05·An
ϕm ±π/4, ±3π/4
K 10 and 25

Transmission rate
400 kb/s (for K = 10)
160 kb/s (for K = 25)

The results of the experimental research are presented in Figures 18 and 19. In this
case, we determined a probability density function (PDF) of EVM and BER versus EVM
graphs for two considered K values (see Figure 18). The distribution of the EVM was
estimated by using a normalized histogram (see Figure 19).

The carrier constellation is subject to distortions caused by propagation phenomena
and impairments introduced by the transceiver systems. We may see that the covert signal
detectability reduces if the carrier distortion (i.e., EVM) increases. Tests were performed for
two average values: K = 10 and K = 25. As expected, increasing the number of averages
provides the increase in the covert signal detectability. On the other hand, the transmission
rate decreases.

34

Electronics 2021, 10, 647

Figure 18. Covert signal detection results: probability density function (PDF) of EVM.

Figure 19. Covert signal detection results: BER versus EVM for selected K.

Based on the PDF of EVM, we can conclude that for the analyzed 4 QAM and
Am = 0.05 · An, the average EVM oscillates between 8–12%. Comparing this value with
Table 1, we can expect good transmission quality. On the other hand, increasing the dis-
tance between the transmitter and receiver will degrade the transmission quality due to the
influence of the propagation conditions occurring in the radio channel. Hence, the adap-
tive selection of the parameters of the developed method depending on the propagation
conditions will determine its future usefulness.

35

Electronics 2021, 10, 647

7. Conclusions

In this paper, we presented the novel dirty modulation method based on the phase
drift, which is intended to create covert channels in radio transmissions using the N-ary
PSK or QAM modulations. The method is based on the DCM approach that was previously
used to watermark audio signals. In the proposed solution, a random change of the dirty
constellation parameters is possible. It ensures its greater resistance to detection. On the
other hand, it is possible to adapt these parameters to the modulation type and propagation
conditions in the current radio channel.

In the paper, we described the idea of dirty modulation and developed a solution.
Next, we introduced the criteria of the covert channel evaluation. Based on BER and EVM,
we analyzed the proposed method using simulation studies and practical implementation,
including comparison with other solutions. The obtained results showed that our dirty
modulation method could be a valuable supplement to the existing steganographic methods.

In the near future, we want to focus on developing an adaptive method of selecting
dirty modulation parameters, including the centroid distance and phase drift step, as well as
multiple repetitions, i.e., averaging of secret transmission subsymbols. This will increase the
undetectability of the proposed method. We also consider the effectiveness of this method
in the case of additional use of the OFDM signal. Additionally, practical implementation of
the method in the wireless part of the SDN within the aforementioned SOFTANET project
is planned. In the near future, we want to implement ML algorithms (e.g., [39,40,47]) to
increase the detection correctness of secret transmissions. These algorithms can be also
used for time-variant selection of the developed dirty constellation parameters to improve
their undetectability via various steganalysis techniques.

Author Contributions: Conceptualization, Z.P. and J.M.K.; methodology, K.G., Z.P. and J.M.K.;
software, K.G.; validation, K.G.; formal analysis, K.G., Z.P. and J.M.K.; investigation, K.G.; re-
sources, Z.P.; data curation, K.G. and Z.P.; writing—original draft preparation, K.G., Z.P. and J.M.K.;
writing—review and editing, K.G. and J.M.K.; visualization, K.G.; supervision, Z.P. and J.M.K.; project
administration, Z.P.; funding acquisition, Z.P. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Centre for Research and Development, grant
number CYBERSECIDENT/381319/II/NCBR/2018 on “The federal cyberspace threat detection
and response system” (acronym DET-RES) as part of the second competition of the CyberSecIdent
Research and Development Program—Cybersecurity and e-Identity.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to project restrictions.

Acknowledgments: The authors would like to express their great appreciation to the Electronics
journal editors and anonymous reviewers for their valuable suggestions, which have improved the
manuscript quality.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

5G fifth generation
6G sixth generation
AI artificial intelligence
BER bit error rate
CSI channel state information
DCM drift correction modulation
DNS Domain Name System
DSSS direct sequence spread spectrum
EDA European Defense Agency
EVM error vector magnitude
FHSS frequency-hopping spread spectrum

36

Electronics 2021, 10, 647

FSK frequency-shift keying
HTTP Hypertext Transfer Protocol
IEEE Institute of Electrical and Electronics Engineers
IP Internet Protocol
LPD low probability of detection
LPI low probability of intercept
MAC medium access control
MIMO multiple-input multiple-output
ML machine learning
Ob observer
OFDM orthogonal frequency-division multiplexing
PC personal computer
PDF probability density function
PDSCH physical downlink shared channel
PN-ASK pseudo-noise asymmetric shift keying
PSK phase-shift keying
QAM quadrature amplitude modulation
QPSK quadrature phase-shift keying
SDN software-defined network
SNR signal-to-noise ratio
SPS covert symbols per carrier symbol
SR steganographic receiver
SS steganographic source
TCP Transmission Control Protocol
USRP Universal Software Radio Peripheral

References

1. Zielińska, E.; Mazurczyk, W.; Szczypiorski, K. Trends in steganography. Commun. ACM 2014, 57, 86–95. [CrossRef]
2. Duan, X.; Gou, M.; Liu, N.; Wang, W.; Qin, C. High-Capacity Image Steganography Based on Improved Xception. Sensors 2020,

20, 7253. [CrossRef]
3. Järpe, E.; Weckstén, M. Velody 2—Resilient High-Capacity MIDI Steganography for Organ and Harpsichord Music. Appl. Sci.

2021, 11, 39. [CrossRef]
4. Cao, M.; Tian, L.; Li, C. A Secure Video Steganography Based on the Intra-Prediction Mode (IPM) for H264. Sensors 2020, 20, 5242.

[CrossRef] [PubMed]
5. Lampson, B.W. A note on the confinement problem. Commun. ACM 1973, 16, 613–615. [CrossRef]
6. Gianvecchio, S.; Wang, H.; Wijesekera, D.; Jajodia, S. Model-based covert timing channels: Automated modeling and eva-

sion. In Proceedings of the Recent Advances in Intrusion Detection; Lippmann, R., Kirda, E., Trachtenberg, A., Eds.; Springer:
Cambridge, MA, USA, 2008; Volume RAID 2008, pp. 211–230.

7. Kothari, K.; Wright, M. Mimic: An active covert channel that evades regularity-based detection. Comput. Netw. 2013, 57, 647–657.
[CrossRef]

8. Walls, R.J.; Kothari, K.; Wright, M. Liquid: A detection-resistant covert timing channel based on IPD shaping. Comput. Netw. 2011,
55, 1217–1228. [CrossRef]

9. Liu, G.; Zhai, J.; Dai, Y. Network covert timing channel with distribution matching. Telecommun. Syst. 2012, 49, 199–205. [CrossRef]
10. Li, Y.; Zhang, X.; Xu, X.; Tan, Y. A Robust Packet-Dropout Covert Channel over Wireless Networks. IEEE Wirel. Commun. 2020,

27, 60–65. [CrossRef]
11. Mileva, A.; Panajotov, B. Covert channels in TCP/IP protocol stack—Extended version. Cent. Eur. J. Comput. Sci. 2014, 4, 45–66.

[CrossRef]
12. Frikha, L.; Trabelsi, Z.; El-Hajj, W. Implementation of a covert channel in the 802.11 header. In Proceedings of the 2008 6th

International Wireless Communications and Mobile Computing Conference (IWCMC), Crete Island, Greece, 6–8 August 2008;
pp. 594–599.

13. Szczypiorski, K.; Mazurczyk, W. Steganography in IEEE 802.11 OFDM symbols. Secur. Commun. Netw. 2011, 9, 118–129.
[CrossRef]

14. Shaukat, K.; Iqbal, F.; Hameed, I.A.; Hassan, M.U.; Luo, S.; Hassan, R.; Younas, A.; Ali, S.; Adeem, G.; Rubab, A.; et al.
MAC protocols 802.11: A comparative study of throughput analysis and improved LEACH. In Proceedings of the 2020 17th
International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology
(ECTI-CON), Phuket, Thailand, 24–27 June 2020; pp. 421–426.

37

Electronics 2021, 10, 647

15. Hassan, M.U.; Shahzaib, M.; Shaukat, K.; Hussain, S.N.; Mubashir, M.; Karim, S.; Shabir, M.A. DEAR-2: An energy-aware routing
protocol with guaranteed delivery in wireless ad-hoc networks. In Recent Trends and Advances in Wireless and IoT-Enabled Networks;
Jan, M.A., Khan, F., Alam, M., Eds.; EAI/Springer Innovations in Communication and Computing; Springer International
Publishing: Cham, Germany, 2019; pp. 215–224. ISBN 978-3-319-99966-1.

16. Frączek, W.; Szczypiorski, K. Perfect undetectability of network steganography. Secur. Commun. Netw. 2016, 9, 2998–3010.
[CrossRef]

17. Graniszewski, W.; Krupski, J.; Szczypiorski, K. The covert channel over HTTP protocol. In Proceedings of the Photon-
ics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2016, Wilga, Poland,
29 May–6 June 2016; SPIE: Washington, DC, USA, 2016; Volume 10031, p. 100314Z.

18. Szczypiorski, K.; Drzymała, M.; Urbański, M.Ł. Network Steganography in the DNS Protocol. Int. J. Electron. Telecommun. 2016,
62, 343–346. [CrossRef]

19. Smolarczyk, M.; Szczypiorski, K.; Pawluk, J. Multilayer Detection of Network Steganography. Electronics 2020, 9, 2128. [CrossRef]
20. Chen, O.; Meadows, C.; Trivedi, G. Stealthy protocols: Metrics and open problems. In Concurrency, Security, and Puzzles;

Lecture Notes in Computer Science; Springer: Cham, Germany, 2017; pp. 1–17. ISBN 978-3-319-51045-3.
21. Bordel Sánchez, B.; Alcarria, R.; Robles, T.; Jara, A. Protecting Physical Communications in 5G C-RAN Architectures through

Resonant Mechanisms in Optical Media. Sensors 2020, 20, 4104. [CrossRef] [PubMed]
22. Yen, C.-T.; Huang, J.-F.; Zhang, W.-Z. Hiding Stealth Optical CDMA Signals in Public BPSK Channels for Optical Wireless

Communication. Appl. Sci. 2018, 8, 1731. [CrossRef]
23. Moskowitz, I.S.; Safier, P.N.; Cotae, P. Pre-Nodulation Physical Layer Steganography 2013. U.S. Patent Application 13/573,671,

25 April 2013.
24. Szczepaniak, E.; Piotrowski, Z. Radio transmission masking on the example of FSK modulation. In Proceedings of the

2017 21st International Conference on Signal Processing Algorithms, Architectures, Arrangements, and Applications (SPA),
Poznan, Poland, 20–22 September 2017; pp. 394–399.

25. Hijaz, Z.; Frost, V.S. Exploiting OFDM systems for covert communication. In Proceedings of the 2010 Military Communications
Conference (MILCOM), San Jose, CA, USA, 31 October–3 November 2010; pp. 2149–2155.

26. Classen, J.; Schulz, M.; Hollick, M. Practical covert channels for WiFi systems. In Proceedings of the 2015 IEEE Conference on
Communications and Network Security (CNS), Florence, Italy, 28–30 September 2015; pp. 209–217.

27. Bash, B.A.; Goeckel, D.; Towsley, D.; Guha, S. Hiding information in noise: Fundamental limits of covert wireless communication.
IEEE Commun. Mag. 2015, 53, 26–31. [CrossRef]

28. Hero, A.O. Secure space-time communication. IEEE Trans. Inf. Theory 2003, 49, 3235–3249. [CrossRef]
29. Cao, P.; Liu, W.; Liu, G.; Zhai, J.; Ji, X.; Dai, Y. A novel wireless covert channel for MIMO system. In Proceedings of the 2020

6th International Conference on Artificial Intelligence and Security (ICAIS), Hohhot, China, 17–20 July 2020; Sun, X., Wang, J.,
Bertino, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; Volume 3, pp. 351–362.

30. Dutta, A.; Saha, D.; Grunwald, D.; Sicker, D. Secret agent radio: Covert communication through dirty constellations.
In Proceedings of the Information Hiding, Berkeley, CA, USA, 15–18 May 2012; Kirchner, M., Ghosal, D., Eds.; Springer:
Berlin/Heidelberg, Germany, 2012; Volume IH 2012, pp. 160–175.

31. Cao, P.; Liu, W.; Liu, G.; Ji, X.; Zhai, J.; Dai, Y. A Wireless Covert Channel Based on Constellation Shaping Modulation.
Secur. Commun. Netw. 2018, 2018, 1–15. [CrossRef]

32. D’Oro, S.; Restuccia, F.; Melodia, T. Hiding data in plain sight: Undetectable wireless communications through pseudo-noise
asymmetric shift keying. In Proceedings of the 2019 38th IEEE Conference on Computer Communications (INFOCOM),
Paris, France, 29 April–2 May 2019; IEEE: New York, NY, USA; pp. 1585–1593.

33. Piotrowski, Z. Drift Correction Modulation scheme for digital signal processing. Math. Comput. Model. 2013, 57, 2660–2670.
[CrossRef]

34. Lyons, R.G. Understanding Digital Signal Processing, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2010;
ISBN 978-0-13-702741-5.

35. Zaidi, Z.; Friderikos, V.; Yousaf, Z.; Fletcher, S.; Dohler, M.; Aghvami, H. Will SDN Be Part of 5G? IEEE Commun. Surv. Tutor. 2018,
20, 3220–3258. [CrossRef]

36. Leonardi, L.; Lo Bello, L.; Aglianò, S. Priority-based bandwidth management in virtualized software-defined networks. Electronics
2020, 9, 1009. [CrossRef]

37. Semong, T.; Maupong, T.; Anokye, S.; Kehulakae, K.; Dimakatso, S.; Boipelo, G.; Sarefo, S. Intelligent Load Balancing Techniques
in Software Defined Networks: A Survey. Electronics 2020, 9, 1091. [CrossRef]

38. Alhaddad, M.J.; Alkinani, M.H.; Atoum, M.S.; Alarood, A.A. Evolutionary Detection Accuracy of Secret Data in Audio Steganog-
raphy for Securing 5G-Enabled Internet of Things. Symmetry 2020, 12, 2071. [CrossRef]

39. Shaukat, K.; Luo, S.; Varadharajan, V.; Hameed, I.A.; Xu, M. A Survey on Machine Learning Techniques for Cyber Security in the
Last Decade. IEEE Access 2020, 8, 222310–222354. [CrossRef]

40. Shaukat, K.; Luo, S.; Varadharajan, V.; Hameed, I.A.; Chen, S.; Liu, D.; Li, J. Performance Comparison and Current Challenges of
Using Machine Learning Techniques in Cybersecurity. Energies 2020, 13, 2509. [CrossRef]

41. Roetteler, M.; Svore, K.M. Quantum Computing: Codebreaking and Beyond. IEEE Secur. Priv. 2018, 16, 22–36. [CrossRef]
42. Zhang, H.; Ji, Z.; Wang, H.; Wu, W. Survey on quantum information security. China Commun. 2019, 16, 1–36. [CrossRef]

38

Electronics 2021, 10, 647

43. Chaumont, M. Deep learning in steganography and steganalysis. In Digital Media Steganography; Hassaballah, M., Ed.;
Academic Press: Cambridge, MA, USA, 2020; pp. 321–349. ISBN 978-0-12-819438-6.

44. Li, F.; Tang, H.; Zou, Y.; Huang, Y.; Feng, Y.; Peng, L. Research on information security in text emotional steganography based on
machine learning. Enterp. Inf. Syst. 2020, 1–18. [CrossRef]

45. Sutherland, C.; Brun, T.A. Quantum steganography over noiseless channels: Achievability and bounds. Phys. Rev. A 2020,
101, 052319. [CrossRef]

46. Chaharlang, J.; Mosleh, M.; Rasouli-Heikalabad, S. A novel quantum steganography-Steganalysis system for audio signals.
Multimed. Tools Appl. 2020, 79, 17551–17577. [CrossRef]

47. Alam, T.M.; Shaukat, K.; Hameed, I.A.; Luo, S.; Sarwar, M.U.; Shabbir, S.; Li, J.; Khushi, M. An Investigation of Credit Card
Default Prediction in the Imbalanced Datasets. IEEE Access 2020, 8, 201173–201198. [CrossRef]

48. ETSI. NR; Base Station (BS) Radio Transmission and Reception (3GPP TS 38.104 Version 15.5.0 Release 15); European Telecommunica-
tions Standards Institute (ETSI), 3rd Generation Partnership Project (3GPP): Sophia-Antipolis, France, 2019.

49. Simmons, G.J. The prisoners’ problem and the subliminal channel. In Proceedings of the Advances in Cryptology,
Santa Barbara, CA, USA, 22–24 August 1983; Chaum, D., Ed.; Springer: Berlin/Heidelberg, Germany, 1984; pp. 51–67.

50. Szczypiorski, K.; Janicki, A.; Wendzel, S.; Wendzel, S. “The Good, the Bad and The Ugly”: Evaluation of Wi-Fi steganography.
J. Commun. 2015, 10, 747–752. [CrossRef]

39

electronics

Article

Multi-Language Spam/Phishing Classification by Email Body
Text: Toward Automated Security Incident Investigation

Justinas Rastenis 1,*, Simona Ramanauskaitė 2, Ivan Suzdalev 3, Kornelija Tunaitytė 3, Justinas Janulevičius 1

and Antanas Čenys 1

Citation: Rastenis, J.; Ramanauskaitė,

S.; Suzdalev, I.; Tunaitytė, K.;

Janulevičius, J.; Čenys, A.

Multi-Language Spam/Phishing

Classification by Email Body Text:

Toward Automated Security Incident

Investigation. Electronics 2021, 10,

668. https://doi.org/10.3390/

electronics10060668

Academic Editor: Krzysztof

Szczypiorski

Received: 15 January 2021

Accepted: 7 March 2021

Published: 12 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Information Systems, Vilnius Gediminas Technical University, Sauletekio al. 11,
LT-10223 Vilnius, Lithuania; justinas.janulevicius@vilniustech.lt (J.J.); antanas.cenys@vilniustech.lt (A.Č.)

2 Department of Information Technology, Vilnius Gediminas Technical University, Sauletekio al. 11,
LT-10223 Vilnius, Lithuania; simona.ramanauskaite@vilniustech.lt

3 Department of Aeronautical Engineering, Vilnius Gediminas Technical University, Sauletekio al. 11,
LT-10223 Vilnius, Lithuania; ivan.suzdalev@vilniustech.lt (I.S.); kornelija.tunaityte@stud.vgtu.lt (K.T.)

* Correspondence: justinas.rastenis@vilniustech.lt; Tel.: +370-525-12-333

Abstract: Spamming and phishing are two types of emailing that are annoying and unwanted,
differing by the potential threat and impact to the user. Automated classification of these categories
can increase the users’ awareness as well as to be used for incident investigation prioritization
or automated fact gathering. However, currently there are no scientific papers focusing on email
classification concerning these two categories of spam and phishing emails. Therefore this paper
presents a solution, based on email message body text automated classification into spam and
phishing emails. We apply the proposed solution for email classification, written in three languages:
English, Russian, and Lithuanian. As most public email datasets almost exclusively collect English
emails, we investigate the suitability of automated dataset translation to adapt it to email classification,
written in other languages. Experiments on public dataset usage limitations for a specific organization
are executed in this paper to evaluate the need of dataset updates for more accurate classification
results.

Keywords: spam; phishing; classification; augmented dataset; multi-language emails

1. Introduction

Despite new communication systems and solutions being constantly introduced to
the market, email remains in leading positions for both business and personal use. This
popularity attracts the attention of persons with malicious intentions—spam and phishing
email attacks are one of the most popular cyber-security attacks: in the 3rd quarter of 2020
nearly 50% of email traffic was spam [1]; 98% of cyber-attacks rely on social engineering [2]
which is mostly executed by sending phishing emails [3].

Email filtering systems have been improving continuously to follow malicious, un-
wanted content development to protect the end-users. However, existing solutions are
focusing on spam and phishing email filtering out while further analysis and email labeling
are not fully developed. Therefore, email-based attacks are either analyzed manually or
not investigated at all.

The analysis of cyber-attacks is a must for detecting the attacker and preventing
their further malicious activities. The digital information security forensics is a time- and
resource-consuming process, therefore automation should be used as much as possible to
reduce the investigation time as well as to increase its accuracy [4,5]. One of the first steps
in the forensics is classification of obtained data and its prioritization. Taking into account
the huge number of unwanted emails, the automated classification of malicious emails
would work as initial prioritization of investigating incidents and would work as the initial
phase for automated or semi-automated security incident investigation. The prioritization

Electronics 2021, 10, 668. https://doi.org/10.3390/electronics10060668 https://www.mdpi.com/journal/electronics41

Electronics 2021, 10, 668

is important as the purpose of spam and phishing attacks are different—spam emails
are oriented towards dissemination of advertising, while phishing attacks aim at victims’
personal data collecting and its usage for other cyber-attacks. Therefore phishing emails
should be investigated as fast as possible, with higher attention to them than spam emails.
The automated classification between spam and phishing email would allow appropriate
resource allocation.

This paper aims to automate the identification of phishing emails in spam/phishing
mixed different language email flow. As a consequence, this would simplify email-based
security attack investigation and would lead to a higher degree automation in the forensics
process. To achieve this goal several research questions are raised: (i) are existing English
language spam/phishing email datasets suitable for spam/phishing email classification
in other languages? and (ii) do spam/phishing email text patterns change relating to a
specific region and do they have to be updated to achieve a higher classification accuracy?

The further structure of the paper is organized as follows. Related work chapter
summarizes existing research in the field of spam or phishing email automated classification
as well as datasets, that are usually used to train spam or phishing email detection systems.
Based on the existing solutions new research for spam and phishing email classification is
presented along with the datasets. The paper does not propose a new classification method;
however, it presents research for spam/phishing email following the steps comprising a
common classification workflow (data preparation, text augmentation, text classification),
applied for solving this specific problem. The performance of the proposed solution is
evaluated and experiments on automated email dataset translation as well as the updates
needed are investigated. The paper is summarized with conclusions and future work.

2. Related Work

Spam is undesired electronic information spread aiming to cause psychological and
monetary harm to the victim [6]. While it can be spread within different channels, a
spam email contains an advertisement or irrelevant text, sent by spammers having no
relationship with the recipient [7]. While different definitions of spam exist it is mostly
related to undesired commercial email, and therefore the end user is unsatisfied by receiving
undesired content.

Meanwhile, phishing emails seek to mimic legitimate emails and influence the user
to execute some intended actions and reveal their personal information. Phishing attacks
are classified as social engineering attacks, where the attacker tries to affect the victim
from making rational choices and force the victim to make emotional choices instead [8].
Therefore, phishing attacks are potentially more harmful in comparison to spam mails.

To classify the email automatically, some basic steps are executed: email preprocessing
and email classification (with its performance evaluation).

2.1. Email Preprocessing

An email has some specific properties which can be used for its classification to spam,
phishing, legitimate email (ham), or any other category. An email can be presented in
different file formats, therefore the property extraction should be prepared. However,
for email classification, some additional processing might be used to obtain some specific
features. For example, Ayman El Aassal et al. [9] divide phishing email-related features into
two main categories: email features and website features. Email features are related to the
data and metadata of the email and can be categorized into header, body, and attachment
data. Meanwhile, website features are related to data, which can be gathered from the
email body and links in it. Website features are based on the link and the websites the link
points to. While most solutions [10–12] rely on the data which can be directly gathered
from the email (the link uniform resource locator (URL) presented as internet protocol
(IP), not domain name address; the number of different domains in the links; etc.), some
solutions [9] go even further and analyze the website itself (the content of the website;
script code; etc.) or use some additional tools to validate the URL [13].

42

Electronics 2021, 10, 668

To reduce the classification complexity, the number of extracted features is limited
and expressed as numerical or binary values [14]. Therefore, different feature selection
techniques are used [15,16] to obtain the most important features only and to eliminate
non-significant ones. For example, Jose R. Mendez et al. [17] extracts the topic of the email
and for spam email identification uses topics rather than the full bag of words of the email
text. Sami Smadi et al. [18] uses 22 features, which are calculated, estimated based on a
number or existence of some specific patterns; however, term meaning in the email body is
not analyzed at all. Meanwhile, Andronicus A. Akinyelu and Aderemi O. Adewumi [19]
define 7 features, which are based on the existence or number of some inspected elements
in the email and add 2 features based on the existence of specific terms, words in the email
body (one to define the direction to click some link; another related to action, which should
be done after clicking the link). The proportion of email body content and other features
depends on the author. For example, Saeed Abu-Nimeh et al. [20] and Devottam Gaurav
et al. [21] use only email body features and by using text-mining their solution gathers the
most frequent terms in the email body. To extract the most frequent terms, all hypertext
markup language (HTML) code and unwanted terms (stop words), symbols are removed
from the email body. Then the terms are processed to get the standard form (stemming).
For later analysis, the frequencies or proportion of the specific terms are used as features.

Text analysis is very popular in the latest methods for spam and phishing classification
and might include some additional text preprocessing to obtain more accurate classification
results. For example, Ayman El Aassal et al. [22] takes into account the data from different
datasets that might be associated with the email category, therefore they eliminated as
much content as possible (organizations’ or universities’ names, recipients’ names, domain
names, signatures, etc.), which could associate it to the dataset. Another solution in email
classification is the hierarchical classification [23,24] where, for example, first of all the
email body is classified into some semantic categories and based on it the second layer
identifies the email category itself.

2.2. Email Classification Solutions

Email classification can be implemented as a rule-based [25] system, however, it
requires continuous support and updating. Therefore, hybrid [26] or machine learning [27]
solutions take over where automated rather than manual rule, decision making logic
updates are made. The machine learning solutions allow supervised learning when the
model for email classification is designed based on the provided dataset.

In the field of spam, phishing, and ham email classification, the main classification
methods are support vector machine (SVM), random forest (RF), decision tree (DT), naïve
Bayes (NB), linear regression (LR), k-nearest neighbors (kNN) and other more specific
solutions. The summary of classification method usage is presented in Table 1.

As seen, all email classification solutions are focused on the classification of legitimate,
ham emails and unwanted, malicious (spam, phishing, or both) emails. The results of
presented email classification solutions are high (F-score is 87 or more and even reaches
99.95), however no separation between spam and phishing is analyzed in scientific papers.

The lack of spam and phishing email separation is noticed in email datasets as well.
While the Enron dataset is dedicated to legitimate ham emails, the University of California,
Irvine (UCI) Machine Learning Repository has a dataset for spam emails, the Nazario
dataset stores phishing emails, the SpamAssassin dataset has both spam and ham emails.
Those two categories are separated in the SpamAssassin dataset, however, phishing emails
are included inside of the spam emails. In most cases, some additional, personal email
datasets are used to add variety and an ability to test the proposed solution with real
situations, specific to some organization.

43

Electronics 2021, 10, 668

Table 1. Summary of recent papers on machine learning email classification solutions.

Paper
Classification

Categories
Classification Method Dataset MAX F-Score

El Aassal et al. [9] phishing, ham SVM, RF, DT, NB, LR, kNN,
other

Enron [28],
SpamAssassin [29],

Nazario [30]
99.95

Li et al. [31] phishing, ham DT, NB, kNN SpamAssassin, Nazario 97.30

Verma et al. [32,33] phishing, ham SVM, RF, DT, NB, LR, kNN SpamAssassin, Nazario 99.00

Sonowal et al. [6] phishing, ham RF, other Nazario 97.78

Gangavarapu et al. [34] spam + phishing, ham SVM, RF, NB, other SpamAssassin, Nazario 99.40

Gaurav et al. [21] spam, ham RF, DT, NB
Enron, UCI Machine

Learning
Repository [35]

87.00

Ablel-Rheem et al. [36] spam, ham DT, NB, other UCI Machine Learning
Repository 94.40

Saidani et al. [24] spam, ham SVM, RF, DT, NB, kNN, other Enron 98.90

Jáñez-Martino et al. [37] spam, ham SVM, NB, LR SpamAssassin 95.40

Zamir et al. [23] spam, ham SVM, RF, DT, other SpamAssassin 97.20

Support vector machine (SVM), random forest (RF), decision tree (DT), naïve Bayes (NB), linear regression (LR), k-nearest neighbors (kNN).

3. Research on Text-Based Spam/Phishing Email Classification Solution

While methods for malicious email detection from legitimate emails exist and achieves
high accuracy, there are no solutions to classify spam and phishing emails within the mali-
cious email flow. Therefore, in this paper we propose a solution, dedicated to classifying
unwanted emails to spam and phishing email categories. The proposed email classification
solution incorporates existing classification solutions and is adapted to classify emails of
different languages. In Lithuania, the largest portion of emails is written in Lithuanian,
English and Russian, therefore the solution will be oriented to these three languages in
this paper.

3.1. Email Dataset Preparation

Both spam and phishing emails are undesired for the recipient and sent using very
similar techniques. Therefore, the biggest difference between spam and phishing emails is
their content. Therefore for spam and phishing email classification, we use email message
body only.

We use supervised learning solutions and, therefore, a dataset of labeled spam and
phishing emails is needed. The dataset was constructed by integrating three different
datasets: (i) the Nazario dataset for list of phishing emails, (ii) the SpamAssassin dataset for
a list of spam emails and (iii) an individual spam and phishing email dataset from Vilnius
Gediminas Technical University (VilniusTech).

The Nazario dataset was used as it is to represent phishing email examples. Mean-
while, the SpamAssassin dataset includes spam and ham emails. We used the spam emails
only; however, after inspecting them some phishing emails were found within the spam
emails. Therefore, the dataset was relabeled to indicate spam and phishing emails.

VilniusTech dataset was collected and labeled by VilniusTech information technology
specialists and includes emails from the period of 2018–2020.

All datasets were read by getting an email message body only (programming code
to extract emails message body were written for each dataset). The emails additionally
were preprocessed. Cleanup of email message body text was executed where all HTML,
CSS (cascading style sheets), JavaScript code, special symbols were eliminated, leaving
unformatted text only. As some emails contained personal information, it was eliminated
too. This was done to avoid email message association to a specific dataset—the Nazario

44

Electronics 2021, 10, 668

dataset has very common reference jose@monkey.org, in the VilniusTech dataset Vilnius
Gediminas Technical University is mentioned etc. Therefore, all personal information
(recipient’s name, email address, organizations name) was replaced with keywords (NAME,
EMAIL, ORGANIZATION), and dates (year) were removed from the text. This was
done semi-automatically—part of the personal information was removed by using regex
expressions and then all emails were revised manually.

Formatting and personal information removal revealed duplication of emails. Multiple
instances of the same email templates were noticed and, therefore, unique messages were
selected for the dataset while all duplicated versions were removed.

The individual VilniusTech dataset included emails written in different languages. The
most popular languages (English, Lithuanian and Russian) were left while very rare cases
of different languages (Latvian, German, Spanish, France, etc.) were eliminated from the
dataset. Meanwhile, emails from the Nazario and SpamAssassin datasets were in English
only. Therefore this dataset was translated (by using automated Google Translate service,
integrated via application programming interface (API) into Python code, developed
for preparation of the dataset) into Russian and Lithuanian languages. The keywords
representing the recipient’s personal information were not translated and left as keywords.

During the email filtering of unpopular languages and automated translation, each
record in the dataset was assigned a new property—language. This property will not be
used for email classification (in this paper), however will be used to form different test
cases for the research.

Records from different datasets were combined into one dataset. The number of
phishing emails in the combined dataset was much lower in comparison to spam emails
(see Table 2). Therefore, random emails were selected from each category to obtain the
same number of spam and phishing emails (see Table 2). This reduced the dataset from
3601 record to 1400, where 700 spam and 700 phishing emails are labeled.

Table 2. Summary of prepared spam and phishing dataset.

Initial
Dataset

Language
Before Balancing After Balancing

Spam Emails
Phishing

Emails
Total Spam Emails

Phishing
Emails

Total

SpamAssassin
+ Nazario

English 692 182 874 150 150 300
Lithuanian (translated) 692 182 874 150 150 300

Russian (translated) 692 182 874 150 150 300

VilniusTech
English 559 205 864 200 200 400

Lithuanian 40 38 78 35 35 70
Russian 18 19 37 15 15 30

Total 2693 808 3601 700 700 1400

For text-based classification all message texts were tokenized as separate terms (TF-
IDF—term frequency-inverse document frequency) and pruning was applied. We removed
very common (over 95% occurrence) and very infrequent terms (below 3% occurrence).
The limit of attributes is not applied and reaches about 31,000 attributes (attribute presents
relative, rather than the absolute occurrence of the term). The number of attributes was
relatively large, however it presented words from three different languages. Taking into
account the complexity and variety of word forms in Lithuanian language, the number of
attributes was adequate but can be optimized in future.

3.2. Research Methodology and Results

As the dataset includes 700 spam and 700 phishing emails we do not use deep neural
networks and concentrate on the usage of the most used classification methods. The
research is divided into three main phases (see Figure 1): Figure 1a method selection
Figure 1b multi-language-experiment Figure 1c concept-drift-experiment.

45

Electronics 2021, 10, 668

Figure 1. Workflow diagram of the research. (a) Method selection phase, (b) Multi-language experi-
ment phase, (c) Concept-drift experiments phase.

In the first stage naïve Bayes, generalized linear model, fast large margin, decision
tree, random forest, gradient boosted trees and support vector Machines methods were
selected for the automatic identification of spam/phishing emails. Default settings and the
full (balance of 1400 records) dataset was used in this step. The purpose of this step was to
obtain the tendencies of classification performance and to select the methods we will be
working on further.

For experiment execution, a RapidMiner tool was used to assure equal conditions
for all methods (its standard implementation with possible settings). It was running on a
64-bit Windows 10 operating system on HP ProBook × 360 440 G1 Notebook PC with Intel
core i3 processor and 8GM of RAM.

The results revealed (see Table 3), that 4 out of 7 analyzed solutions are not suitable to
solve this problem as the accuracy does not exceed 60%. While ROC (receiver operating
characteristic) curves (see Figure 2) and AUC (area under curve) values show naïve Bayes
and decision tree methods are close to random solutions and the results obtained give no
value in this situation.

Table 3. Classification methods performance in the initial experiment to classify spam and phishing emails.

Methods Accuracy, % Precision, % Recall, % F Score, % AUC, %
Training Time
(1000 Rows), s

Scoring Time
(1000 Rows), s

Naïve Bayes 59.8 93.0 21.5 34.7 67.7 0.269 14
Generalized Linear Model 82.8 79.6 88.7 83.9 88.9 0.831 10

Fast Large Margin 83.2 79.1 90.7 84.4 92.5 0.157 15
Decision Tree 54.0 100.0 6.1 11.5 52.9 0.419 9

Random Forest 57.2 100.0 12.7 22.4 86.4 5.000 28
Gradient Boost Trees 57.0 93.0 13.7 23.5 98.2 15.000 9

Support Vector Machine 84.0 78.0 95.2 85.6 91.8 2.000 19

Area under curve (AUC).

46

Electronics 2021, 10, 668

Figure 2. ROC (receiver operating characteristic) curves of different classification methods, used for initial email message
classification to spam and phishing.

The support vector machine has the highest accuracy (84.0% ± 1.6%), however is one
of the slowest solutions (for 1000 rows it takes 2s for training and 19s for scoring).

The next step of suitable classification method selection phase, a search for the most
suitable parameters to increase the spam and phishing email classification performance,
was executed with the generalized linear model, fast large margin and support vector
machine. Different methods were used to analyze optimal parameters values—grid search,
genetic algorithms [38], manual experiments. The best parameters were selected manually
from the results obtained.

In this step the best accuracy was achieved with the fast large margin method (which
was second in the initial experiment), using L2 SVM Dual solver, cost parameter C = 1,
tolerance of the termination criteria ε = 0.01, identical class weights, and usage of bias. The
cross-validation was executed with automatic sampling type and 10 fold as in the initial
experiment. With these parameters, the accuracy increased to 90.07% ± 3.17%, and the
confusion matrix of this classificatory is presented in Table 4.

Table 4. Confusion matrix and class prediction as well as class recall values of adjusted parameters
for the fast large margin method.

True Spam True Phishing Class Prediction

Predicted Spam 662 101 86.76%
Predicted Phishing 38 599 94.03%

Class recall 94.57% 85.57%

The obtained configuration is used in parallel (independently) further in multi-
language experiments (see Figure 1b,c).

In a multi-language experiment we investigated if the automated dataset translation
was suitable for dataset augmentation and application for different language emails. This
experiment was oriented to emails of three different languages, where part of the dataset
was translated by Google Translate. If we applied the same model to the English language
only, the accuracy was 89.2% ± 2.14%. This was the same result as in experiments with three
languages and showed that the automated Google translation from English to Lithuanian
and Russian languages was a suitable dataset augmentation method to adapt the dataset
for spam/phishing email classification for different language emails.

The results similarity can be explained by two facts: (a) in most cases spam and
phishing email templates are translated from the English language to other languages and
in some cases, it is done with automated translation tools as well, therefore the augmented
data in the dataset is similar to the data which would be sent in practice; (b) we use TF-
IDF text vectorization where accuracies of separate terms are analyzed, not n-grams and,
therefore the influence of translation quality is not as important.

47

Electronics 2021, 10, 668

A concept-drift experiment was concentrated on evaluating the need for dataset
update. In this experiment, one dataset was used for training and another for testing. We
took records from SpamAssassin and Narazio as the training set and VilniusTech email
records as the testing set. In this situation, the accuracy decreased by more than 10%—if
emails of only the English language were included, the accuracy was 74.94%, while if the
augmented/translated SpamAssassin and Nazario datasets were used and tested with all
records from VilniusTech dataset, the accuracy was 77.00%.

This shows that there are differences between the datasets which might be influenced
by time, region or organization profile (the VilniusTech dataset is constructed from emails,
obtained from university email boxes). The accuracy increase by using the augmented
dataset can be explained by the increased number of records in the training dataset—there
are 300 English language emails in the SpamAssassin and Nazario-based dataset while
adding translations of two additional languages increases this to 900 emails.

4. Conclusions and Future Work

Analysis of the existing spam and phishing email classification solutions has revealed
that there are multiple papers on this topic; however, all of them are focused on legitimate
and malicious (spam and/or phishing) email separation from one email flow. There are no
papers on automated spam and phishing email classification solutions. Spam and phishing
emails sometimes are difficult to separate and the SpamAssassin dataset includes phishing
emails as spam records. However, classification of spam and phishing emails would be
beneficial as could be used to inform the user about the danger level of unwanted email as
well as to assign priorities to the unwanted emails to investigate the cases.

Existing publicly available spam and phishing email datasets are English language
only. This complicates its usage for email classification, which are written in different
languages. The proposed solution with automated translation for dataset augmentation,
adaptation for other languages prove the classification results do not decrease because of
the automated translation—for English-only text, the accuracy was 90.07% ± 3.17% while
for multi-language texts (English, Russian and Lithuanian) it was 89.2% ± 2.14%.

By training the spam and phishing classification model with the SpamAssassin and
Nazario datasets and testing the model with the VilniusTech collected set of spam/phishing
emails, the classification accuracy decreased more than 10% in comparison to a mixed
dataset, used both for training and testing. This proves that the dataset should be updated,
supplemented with data from the organization to obtain more accurate classification results.

For further directions, a deeper spam/phishing email classification performance
analysis could be executed to increase the performance by adapting feature optimization
(including header and formatting related features, feature number minimization or appli-
cation of multi-level classification approaches), and deep-learning solution suitability for
this task evaluation.

From the automated security incident investigation perspective, the emails could be
classified based not only on spam/phishing classification but on potential thread recogni-
tion possibility, prevalence in the organization, and other features as well.

Author Contributions: Conceptualization, J.R. and S.R.; methodology, S.R.; software, J.R. and S.R.;
validation, J.R., S.R. and K.T.; formal analysis, S.R.; investigation, J.R. and I.S.; resources, S.R.; data
curation, J.R.; writing—original draft preparation, J.R and S.R.; writing—review and editing, J.R and
S.R.; visualization, J.R. and S.R.; supervision, J.J.; project administration, A.Č. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Dataset used in this experiment is available. It contains original
SpamAssassin and Nazario records (dataset labeled “1”), its translation to Russian and Lithua-
nian languages (dataset labeled “2”) and individual dataset, collected and labeled by VilniusTech
information technology specialists during the period 2018–2020 (dataset labeled “3”).

Conflicts of Interest: The authors declare no conflict of interest.

48

Electronics 2021, 10, 668

References

1. Spam and Phishing in Q3 2020. Available online: https://securelist.com/spam-and-phishing-in-q3-2020/99325/ (accessed on 15
November 2020).

2. 2020 Cyber Security Statistics. Available online: https://purplesec.us/resources/cyber-security-statistics/ (accessed on 15
November 2020).

3. Social Engineering & Email Phishing–The 21st Century’s #1 Attack? Available online: https://www.wizlynxgroup.com/news/
2020/08/27/social-engineering-email-phishing-21st-century-n1-cyber-attack/ (accessed on 15 November 2020).

4. Carmona-Cejudo, J.M.; Baena-García, M.; del Campo-Avila, J.; Morales-Bueno, R. Feature extraction for multi-label learning in
the domain of email classification. In Proceedings of the 2011 IEEE Symposium on Computational Intelligence and Data Mining
(CIDM), Paris, France, 11–15 April 2011; pp. 30–36.

5. Goel, S.; Williams, K.; Dincelli, E. Got phished? Internet security and human vulnerability. J. Assoc. Inf. Syst. 2017, 18, 22–44.
[CrossRef]

6. Aassal, A.E.; Moraes, L.; Baki, S.; Das, A.; Verma, R. Anti-phishing pilot at ACM IWSPA 2018: Evaluating performance with new
metrics for unbalanced datasets. In Proceedings of the IWSPA-AP Anti Phishing Shared Task Pilot 4th ACM IWSPA, Tempe,
Arizona, 21 March 2018; pp. 2–10.

7. El Aassal, A.; Baki, S.; Das, A.; Verma, R.M. An In-Depth Benchmarking and Evaluation of Phishing Detection Research for
Security Needs. IEEE Access 2020, 8, 22170–22192. [CrossRef]

8. Abu-Nimeh, S.; Nappa, D.; Wang, X.; Nair, S. A comparison of machine learning techniques for phishing detection. In Proceedings
of the Anti-phishing Working Groups 2nd Annual Ecrime Researchers Summit, Pittsburgh, PA, USA, 4–5 October 2007; pp. 60–69.

9. L’Huillier, G.; Weber, R.; Figueroa, N. Online phishing classification using adversarial data mining and signaling games. In
Proceedings of the ACM SIGKDD Workshop on CyberSecurity and Intelligence Informatics, Paris, France, 28 June–1 July 2009;
pp. 33–42.

10. Peng, T.; Harris, I.; Sawa, Y. Detecting phishing attacks using natural language processing and machine learning. In Proceedings
of the 2018 IEEE 12th international conference on semantic computing (icsc), Laguna Hills, CA, USA, 31 January–2 February 2018;
IEEE: New York, NY, USA, 2018; pp. 300–301.

11. Weinberger, K.; Dasgupta, A.; Langford, J.; Smola, A.; Attenberg, J. Feature hashing for large scale multitask learning. In
Proceedings of the 26th Annual International Conference on Machine Learning, Montreal, QC, Canada, 14-18 June 2009; pp.
11–1120.

12. Zareapoor, M.; Seeja, K.R. Feature extraction or feature selection for text classification: A case study on phishing email detection.
Int. J. Inf. Eng. Electron. Bus. 2015, 7, 60. [CrossRef]

13. Smadi, S.; Aslam, N.; Zhang, L. Detection of online phishing email using dynamic evolving neural network based on reinforcement
learning. Decis. Support Syst. 2018, 107, 88–102. [CrossRef]

14. Toolan, F.; Carthy, J. Feature selection for spam and phishing detection. In Proceedings of the 2010 eCrime Researchers Summit,
Dallas, TX, USA, 18–20 October 2010; IEEE: New York, NY, USA, 2010; pp. 1–12.

15. Verma, R.M.; Zeng, V.; Faridi, H. Data Quality for Security Challenges: Case Studies of Phishing, Malware and Intrusion Detection
Datasets. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, London, UK, 11–15
November 2019; pp. 2605–2607.

16. Smadi, S.; Aslam, N.; Zhang, L.; Alasem, R.; Hossain, M.A. Detection of phishing emails using data mining algorithms. In
Proceedings of the 2015 9th International Conference on Software, Knowledge, Information Management and Applications
(SKIMA), Kathmandu, Nepal, 15–17 December 2015; IEEE: New York, NY, USA, 2015; pp. 1–8.

17. Akinyelu, A.A.; Adewumi, A.O. Classification of phishing email using random forest machine learning technique. J. Appl. Math.
2014, 2014. [CrossRef]

18. Gangavarapu, T.; Jaidhar, C.D.; Chanduka, B. Applicability of machine learning in spam and phishing email filtering: Review
and approaches. Artif. Intell. Rev. 2020, 53, 5019–5081. [CrossRef]

19. Li, X.; Zhang, D.; Wu, B. Detection method of phishing email based on persuasion principle. In Proceedings of the 2020 IEEE 4th
Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chongqing, China, 12–14 June
2020; Volume 1, pp. 571–574.

20. Verma, P.; Goyal, A.; Gigras, Y. Email phishing: Text classification using natural language processing. Comput. Sci. Inf. Technol.
2020, 1, 1–12. [CrossRef]

21. Sonowal, G. Phishing Email Detection Based on Binary Search Feature Selection. SN Comput. Sci. 2020, 1. [CrossRef] [PubMed]
22. Ablel-Rheem, D.M.; Ibrahim, A.O.; Kasim, S.; Almazroi, A.A.; Ismail, M.A. Hybrid Feature Selection and Ensemble Learning

Method for Spam Email Classification. Int. J. 2020, 9, 217–223. [CrossRef]
23. Zamir, A.; Khan, H.U.; Mehmood, W.; Iqbal, T.; Akram, A.U. A feature-centric spam email detection model using diverse

supervised machine learning algorithms. Electron. Libr. 2020, 38, 633–657. [CrossRef]
24. Gaurav, D.; Tiwari, S.M.; Goyal, A.; Gandhi, N.; Abraham, A. Machine intelligence-based algorithms for spam filtering on

document labeling. Soft Comput. 2020, 24, 9625–9638. [CrossRef]
25. Saidani, N.; Adi, K.; Allili, M.S. A Semantic-Based Classification Approach for an Enhanced Spam Detection. Comput. Secur. 2020,

94, 101716. [CrossRef]

49

Electronics 2021, 10, 668

26. Jáñez-Martino, F.; Fidalgo, E.; González-Martínez, S.; Velasco-Mata, J. Classification of Spam Emails through Hierarchical
Clustering and Supervised Learning. arXiv 2020, arXiv:2005.08773.

27. Dada, E.G.; Bassi, J.S.; Chiroma, H.; Adetunmbi, A.O.; Ajibuwa, O.E. Machine learning for email spam filtering: Review,
approaches and open research problems. Heliyon 2019, 5, e01802. [CrossRef] [PubMed]

28. Pérez-Díaz, N.; Ruano-Ordas, D.; Fdez-Riverola, F.; Méndez, J.R. Wirebrush4SPAM: A novel framework for improving efficiency
on spam filtering services. Softw. Pract. Exp. 2013, 43, 1299–1318. [CrossRef]

29. Wu, C.H. Behavior-based spam detection using a hybrid method of rule-based techniques and neural networks. Expert Syst. Appl.
2009, 36, 4321–4330. [CrossRef]

30. Enron Email Dataset. Available online: https://www.cs.cmu.edu/~{}enron/ (accessed on 22 October 2020).
31. SpamAssassin Dataset. Available online: https://spamassassin.apache.org/ (accessed on 22 October 2020).
32. Nazario Dataset. Available online: https://www.monkey.org/~{}jose/phishing/ (accessed on 23 October 2020).
33. UCI Machine Learning Repository. Available online: https://archive.ics.uci.edu/ml/datasets.php (accessed on 28 October 2020).
34. Asquith, A.; Horsman, G. Let the robots do it!–Taking a look at Robotic Process Automation and its potential application in

digital forensics. Forensic Sci. Int. Rep. 2019, 1, 100007. [CrossRef]
35. Hayes, D.; Kyobe, M. The Adoption of Automation in Cyber Forensics. In Proceedings of the 2020 Conference on Information

Communications Technology and Society (ICTAS), Durban, South Africa, 11–12 March 2020; IEEE: New York, NY, USA, 2020; pp.
1–6.

36. Syarif, I.; Prugel-Bennett, A.; Wills, G. SVM parameter optimization using grid search and genetic algorithm to improve
classification performance. Telkomnika 2016, 14, 1502. [CrossRef]

37. Vinitha, V.S.; Renuka, D.K. Feature Selection Techniques for Email Spam Classification: A Survey. In Proceedings of the
International Conference on Artificial Intelligence, Smart Grid and Smart City Applications (AISGSC), Coimbatore, India, 3–5
January 2019; Springer: Cham, Switzerland, 2020; pp. 925–935.

38. Mendez, J.R.; Cotos-Yanez, T.R.; Ruano-Ordas, D. A new semantic-based feature selection method for spam filtering. Appl. Soft
Comput. 2019, 76, 89–104. [CrossRef]

50

electronics

Article

Discussion on IoT Security Recommendations against the
State-of-the-Art Solutions

Marta Chmiel †, Mateusz Korona †, Fryderyk Kozioł †, Krzysztof Szczypiorski and Mariusz Rawski *

Citation: Chmiel, M.; Korona, M.;

Kozioł, F.; Szczypiorski, K.; Rawski,

M. Discussion on IoT Security

Recommendations against the

State-of-the-Art Solutions. Electronics

2021, 10, 1814. https://doi.org/

10.3390/electronics10151814

Academic Editor: Rashid Mehmood

Received: 6 July 2021

Accepted: 23 July 2021

Published: 28 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute of Telecommunications, Faculty of Electronics and Information Technology, Warsaw University of
Technology, 00-665 Warsaw, Poland; m.chmiel@tele.pw.edu.pl (M.C.); m.korona@tele.pw.edu.pl (M.K.);
f.koziol@tele.pw.edu.pl (F.K.); k.szczypiorski@tele.pw.edu.pl (K.S.)
* Correspondence: m.rawski@tele.pw.edu.pl
† These authors contributed equally to this work.

Abstract: The Internet of Things (IoT) is an emerging concept comprising a wide ecosystem of
interconnected devices and services. These technologies collect, exchange and process data in order
to dynamically adapt to a specific context. IoT is tightly bound to cyber-physical systems and, in
this respect, has relevant security implications. A need for IoT security guidelines was identified
by the industry in the early 2010s. While numerous institutions across the globe have proposed
recommendations with a goal to help developers, distributors and users to ensure a secure IoT
infrastructure, a strict set of regulations for IoT security is yet to be established. In this paper, we aim
to provide an overview of security guidelines for IoT proposed by various organizations, and evaluate
some of the existing technologies applied to ensure IoT security against these guidelines. We gathered
recommendations proposed by selected government organizations, international associations and
advisory groups, and compiled them into a set of the most common and important considerations,
divided into eight categories. Then we chose a number of representative examples from IoT security
technologies and evaluated them against these criteria. While none of the examined solutions fulfill
all recommendations on their own, the existing technologies introduced by those solutions could be
combined to create a design framework which satisfies all the requirements of a secure IoT device.
Further research on this matter could be beneficial. To the best of our knowledge, this is the first
comprehensive survey to evaluate different security technologies for IoT device security against the
compilation of criteria based on existing guidelines.

Keywords: cybersecurity; IoT; data protection; SoC

1. Introduction

The present day is a time of unprecedented rapid technology development and the
growth of the Internet. The majority of citizens in developed countries are not only
smartphone users, but also surround themselves with intelligent devices such as various
sensors, smart home appliances or CCTV cameras. These objects, which are capable of
collecting, processing and exchanging data via various networks (also without human
intervention), make up the Internet of Things (IoT). Researchers estimate that there were
12 billion IoT devices active in 2020 and this number will at least double within five
years [1,2]. Unfortunately, people often focus only on the benefits of using IoT devices and
tend to underestimate the risks.

Many IoT devices are deployed without sufficient security measures and can be
easily exploited by more or less sophisticated attacks [3] with a significant impact on both
individuals and society. Remote hijacking of a Jeep on the St. Louis highway is a well-
publicized example of a personal IoT security breach [4]. White hat hackers in cooperation
with a brave journalist acting as “the victim”, were not only able to manipulate car interiors
(display, sound system, air conditioning), but also control the engine and brakes—elevating
the severity of the incident from a prank to a potentially fatal attack. On the other end of

Electronics 2021, 10, 1814. https://doi.org/10.3390/electronics10151814 https://www.mdpi.com/journal/electronics51

Electronics 2021, 10, 1814

the danger spectrum are hostile actions that affect nationwide systems. Distributed Denial
of Service (DDoS) attacks from Mirai malware-based botnets (consisting of thousands of
compromised IoT devices) that targeted Internet service providers in France and the USA
are a good example of this [5–7].

The original IoT paradigm is changing and system architectures are becoming increas-
ingly edge-focused, moving processing of the data collected by sensors from the cloud
into closer edge nodes (fog computing [8–10]) in order to reduce latency and required
bandwidth. More and more, applications are expecting IoT nodes to be resilient to network
connectivity issues, which means that IoT devices have to retain more intelligence and
operation capabilities by themselves. The need for advanced data analysis is driving IoT
device implementations in the direction of the entire System-on-Chip (SoC) [11], which
consists of multiple interfaces, analog/digital circuits, memories and CPUs running highly
functional operating systems, such as Linux. All in all, the attack surface of such highly
sophisticated and functional IoT devices has increased greatly.

Many papers have been presented on the subject of IoT security. For instance,
Mahmoud et al. [12] in 2015 discussed the security of a robust IoT network, with divi-
sion into layers (perception, network and application). The authors listed a number of
threats and attacks to which such a system is susceptible and, more importantly, raised
concerns about existing major gaps in addressing basic security, for example, privacy and
confidentiality. In 2019, Mohamad Noor and Hassan published a survey on IoT security
research in the years 2016–2018 [13]. The conclusion was far from optimistic, since not
much had improved over the years. Similarly, layers were insufficiently secured and
not enough effort was put into ensuring comprehensive endpoint security. The rapid
growth of IoT technologies was inevitably followed by an equally fast-paced growth of
attacks. Insufficient focus on security allowed for the development of new, inventive
ways of exploitation. Alladi et al. [14] in 2020 published a case study on vulnerabilities
present in consumer devices. Their findings indicate that not only do the manufacturers
often neglect proper protection of their devices but also that the users are unaware of the
threats posed by, for example, a wireless scale that is in their bathroom. Consequently,
many organizations noticed the IoT security problem and took steps to tackle it. Over the
last decade, a number of them published documents discussing the importance of secure
IoT and proposing guidelines. Some of these recommendations present a very detailed
approach, from the design process to the user experience; others focus on just a part of the
IoT device’s life cycle.

Our work concentrates mainly on hardware and software design and some aspects of
later stages of IoT device functioning, such as updating or event logging. The goal of this
paper is to analyze how existing solutions for trusted computing, especially dedicated for
IoT devices, adhere to these recommendations.

The remainder of this paper is organized as follows. Section 2 discusses our motivation
and related work on the subject matter. In Section 3, security guidelines for IoT proposed
by various organizations are gathered and compiled into a set of the most common and
important. Section 4 contains the analysis of existing technologies addressing IoT security.
We chose a number of representative examples and evaluated them against the criteria
formulated in Section 3. Finally, Section 5 discusses the results and Section 6 concludes
this paper.

2. Motivation and Related Work

IoT security can be analyzed from multiple angles and numerous publications on the
subject are available. As a term, IoT is sometimes used to describe particular solutions,
often from different ends of the technology spectrum requiring a specific approach to
the subject, while sometimes it represents a general concept. The discussion ranges from
security problems of specific technologies, such as RFID networks [15], through solutions
of growing popularity, such as blockchain, machine learning or artificial intelligence [16],

52

Electronics 2021, 10, 1814

to innovative propositions such as moving target defense [17], aiming at more elaborate
structures, such as IoT networks.

National Institute of Standards and Technology (NIST) in 2020 published a document
that focuses on defining an IoT device cybersecurity capability core baseline [18]. NIST
describes the core baseline as a minimal set of capabilities that an IoT device should be
equipped with so that it supports common cybersecurity controls. Advanced security
schemes can be built on this basis. However, NIST does not provide advice on how it
should be achieved. We decided that this was an interesting perspective and further
research on the matter would be beneficial, especially for manufacturers and developers.
As a first step, we conducted a literature search and checked whether other organizations
provide guidelines regarding IoT device security. Secondly, we examined whether existing,
state-of-the-art technologies can be utilized to fulfill the requirements.

We came across multiple survey articles regarding aspects of IoT, from wide-ranging
analysis of an entire IoT system [19], to works focusing on protocols [20,21], IoT platforms [22]
and frameworks, based on contemporary, commercial examples [23]. In each of these papers,
security was considered but the emphasis was rather on existing issues and challenges of
discussed solutions, instead of means of protection. To the best of our knowledge, no surveys
focusing specifically on IoT device security capabilities were available.

Additionally, we researched surveys on IoT security. Our findings showed that
the focus of the published work is again more on the challenges than on the solutions.
For instance, Macedo et al. in 2019 [24] provided a systematic literature review focused on
defining four main aspects of IoT security—authentication, access control, data protection
and trust. Their work is addressed to manufacturers, developers, consumer and providers
of IoT. Interestingly, the authors recognized a lack of reference architectures to develop
secure IoT solutions. Nonetheless, the paper does not present existing guidelines and
a link to state-of-the-art technologies. Abdul-Ghani and Konstantas [25] in their work
provide an overview of several documents regarding the best practices for securing IoT,
published by renowned organizations, such as the Broadband Internet Technical Advisory
Group (BITAG) or the IoT Security Foundation (IoTSF). They also recognize the need
for standardized security and privacy guidelines for IoT. In contrast to our approach,
the analyzed guidelines are not confronted with existing commercial solutions.

Finally, we investigated the availability of articles presenting an overview of contem-
porary solutions, which could be applicable for securing IoT. In their paper published
in 2018, Maene et al. [26] gathered over ten different technologies, dedicated to trusted
computing. Similarly to our work, they are compared against a set of criteria. However,
these criteria are based on capabilities offered by analyzed solutions, rather than existing
guidelines. Even though the trusted computing solutions discussed in this article can, in
some cases, be successfully used for IoT applications, there are other technologies catered
specifically for this purpose that are in our opinion worth considering.

3. Security Recommendations for Internet of Things

With the number of connected IoT devices growing bigger each year, the question
of security has become crucial. The threats and risks related to IoT devices, systems and
services are manifold, and evolve rapidly. Hence, it is important to understand what needs
to be protected and to develop specific security measures to protect the things from cyber
threats. While a strict set of regulations on IoT security is yet to be established, a need for
guidelines was first identified by the industry in the early 2010s and the discussion has
continued since then.

3.1. Existing Guidelines

Numerous institutions across the globe have proposed their recommendations, in or-
der to help developers, distributors and users ensure a secure IoT infrastructure. Govern-
ment organizations, international associations and advisory groups are aware of the prob-
lem and have published many documents on the subject, to name some among many more:

53

Electronics 2021, 10, 1814

• National Institute of Standards and Technology (NIST),
• European Union Agency for Network and Information Security (ENISA),
• GSM Association (GSMA),
• Internet Engineering Task Force (IETF),
• Internet Research Task Force (IRTF),
• IoT Security Foundation (IoTSF),
• ioXt Alliance,
• International Standard Organization (ISO),
• Institute of Electrical and Electronics Engineers (IEEE),
• International Telecommunication Union (ITU),
• Broadband Internet Technical Advisory Group (BITAG),
• Industrial Internet Consortium (IIC),
• Open Web Application Security Project (OWASP),
• Trusted Computing Group (TCG),
• Cloud Security Alliance (CSA),
• GlobalPlatform,
• Internet Society’s Online Trust Alliance (OTA).

Our analysis focuses on just a number of them. A time cut-off of 2017 has been
adopted for two reasons: rapid IoT industry development might outdate some concepts
and, on the other hand, recent publications often reference older ones and align with them
in essential matters. Furthermore, industry standards issued by renowned organizations
or manufacturer associations have been considered over simple brochures or articles.
Last but not least, it was important that the given document (or its independent section)
primarily concentrates on secure IoT device implementation itself, as this is a foundation
for deliberations in the next sections.

NIST, part of the U.S. Department of Commerce, in 2020 issued a report, “IoT Device
Cybersecurity Capability Core Baseline” (NISTIR 8259A) [18]. The authors define an
IoT device cybersecurity capability core baseline, which is a set of device capabilities
generally needed to support common cybersecurity features that protect data, systems and
ecosystems. The proposed baseline represents a coordinated effort to produce a definition
of common capabilities, which is not an exhaustive list. This document highlights activities
that aim to improve cybersecurity levels in manufactured products, which in consequence
reduces the number of exploited IoT devices.

ENISA created a number of documents on secure IoT development. In 2017, “Baseline
Security Recommendations for IoT” [27] was published. The aim of this work was to
provide insight into the security requirements of IoT, with a focus on Critical Information
Infrastructures. The paper offers a thorough analysis of existing cybersecurity threats,
along with a comprehensive set of measures in order to protect IoT systems. The authors
developed a series of recommendations based on the results of their research, the views
expressed by the experts, and good practices, as well as security measures used in the
industry. It is worth noting that this document provides an elaborate list of other security
standards regarding IoT, which can be a valuable starting point for further research.

Documents published by the GSMA provide very useful insight and pose questions
that IoT designers and network administrators will find useful while discussing system
security. The“IoT Security Guidelines” document set [28–30] should especially be consid-
ered at the early stages of development, as it asks a series of important questions regarding
security which are very helpful during the process. These documents promote a methodol-
ogy for developing secure IoT services to ensure security best practices are implemented
throughout the life cycle of the service. The authors provide recommendations on how
to mitigate common security threats and weaknesses within IoT services. The set of doc-
uments analyses two ecosystems—service and endpoint—but also provides a number of
real-life examples.

IETF and IRTF are cooperating, parallel open standards organizations, that focus on
short-term and long-term Internet-related research, respectively. They have issued a couple

54

Electronics 2021, 10, 1814

of highly informative drafts regarding IoT security. In 2017, “Best Current Practices for
Securing Internet of Things” [31] was published by IETF. This report collects guidelines
for IoT designers and developers, written by engineers from Network Heretics, Mozilla
and Arm. It offers valuable remarks on low-level IoT development, by discussing the
authentication, encryption, and design of a device and firmware. Even though it is now
labelled as expired, we find this document provides valuable input into the discussion.
In March 2021, another draft was released—”Security Technical Specification for Smart
Devices of IoT” [32]—collecting detailed recommendations from hardware to software
level and proposing a secure IoT device model. In April 2019, IRTF published “RFC8576—
Internet of Things (IoT) Security: State of the Art and Challenges” [33]. In this document,
the authors present a list of already existing guidelines regarding IoT security; they report
and predict the development of IoT and point out possible challenges, especially with
reference to the nature of resource-constrained IoT devices (e.g., in terms of algorithms
and protocols that would allow IoT devices to safely operate in a heterogeneous network
with powerful, potentially malicious Internet resources). The aforementioned publications
are complementary to each other and were issued by cooperating organizations, therefore
conclusions drawn from them are presented together.

The IoTSF and ioXt Alliance are composed of industry leaders, manufacturers and
government organizations, dedicated to creating a security and privacy standard for IoT—
some of these entities belong to both of these organizations. The first consortium published
“Secure Design—Best Practice Guides” [34] at the end of 2019. This document highlights
the importance of maintaining a chain of trust throughout the hardware and software
layers of IoT device. The ioXt Alliance has recently published “ioXt Pledge: The Global
Standard for IoT Security” [35], in which eight core principles are defined and described.
It considers a wide range of subjects, such as secured interfaces, proven cryptography,
software verification/updates and vulnerability reporting mechanisms. The organization
offers a certification program and creates a network of authorized laboratories. It also
encourages independent researchers to participate in the certification process, by validating
that every security requirement is fulfilled.

It is worth highlighting that ISO is currently working on their own guidelines. As of
June 2021, ISO/IEC CD 27400 “Cybersecurity—IoT security and privacy—Guidelines” is
still under development [36].

3.2. Evaluation Criteria

In this section, we created a set of recommendations with a focus on SoC hardware
and software security, deriving from the documents mentioned in Section 3.1. This selection
is later used to analyze the state-of-the-art IoT security technologies. The aim of Table 1,
presented later in this section, is to collect the most common and important recommendations
from the analyzed literature and to provide a solid overview of what is expected from a
well-secured IoT device. As already described in Section 2, our starting point was a security
core baseline for IoT devices defined by NIST and, as mentioned in Section 3.1, the main
focus during criteria analysis was put on secure IoT device implementation. Therefore, high
level concepts, such as, for instance, network structure or its security remained out of scope.
On the other hand, topics such as the safety of an industrial or automotive IoT node and
its capability to operate in various environmental conditions (e.g., temperature, humidity,
contact with harsh chemicals) do concern device architecture, but are mostly related to its
reliability instead of security. Only the aspects of physical access to the device relevant at the
chip level were considered, because those regarding the product level can be very location or
application specific.

The analyzed papers have multiple points in common. In Table 1, we collected the
most prevailing suggestions and divided them into the following groups on the basis of
key functionalities:

• hardware security,
• trust and integrity management,

55

Electronics 2021, 10, 1814

• data protection and software design,
• device configuration and software update,
• secure interfaces and communication,
• cybersecurity event monitoring and logging,
• cryptography and key management,
• device identification, authentication and strong default security.

The intent was to mimic the process of constructing a secure IoT device by creating a
checklist of requirements it has to fulfill. Almost all of the analyzed documents proposed
the functional classification of secure IoT device characteristics with some exceptions.
A relevant example is GSMA’s document [30], where the requirements were distributed
by implementation priority (Critical, High, Medium, Low). Categories presented in this
paper are similar to the ones recommended by ENISA [27], but the number of groups
was reduced, and an appropriate level of granularity was maintained, which allowed for
concise comparison of available secure IoT implementations.

Hardware Security

This category collects recommendations for designing IoT devices based on the Root
of Trust (RoT) concept and the characteristics such a component should demonstrate.

A Root of Trust is a unit that consists of a computing engine, low level code and data
(e.g., cryptographic keys). It provides security services/features necessary to establish
trust and security within the platform it is a part of. Its vital characteristics are immutability
and predictability—the produced results have to be consistent for the same input data.
The hardware implementation of an RoT enables the fulfillment of these conditions [37,38].

A Root of Trust can provide the following independent security services—identification,
authentication, confidentiality, integrity and measurement (state of the platform), as well
as composite services (relying on the independent ones)—authorization, verification, re-
porting, secure storage and update.

Unsurprisingly, almost every analyzed document provided some guidance on the
hardware role in the security of the final product, ENISA [27] and the GSMA [30] being the
most elaborate. It proves that protecting an IoT device must start at the hardware level.

Trust and Integrity Management

This section focuses on requirements regarding trust establishment and ensuring
integrity, which are fundamental to IoT device security.

An inherently trusted, immutable (hardware) Root of Trust is the trust anchor, from which
trust is extended to the whole platform through a secure boot process. A Hardware Root of
Trust (HWRoT) utilizes its security services to verify the integrity of subsequently executed
software modules (a cryptographic signature of code is checked). Verified software modules
then become the next Chain of Trust elements. If the integrity verification check fails during
one of the secure boot stages, the whole process has to be aborted and the system can only be
trusted up to the given Chain of Trust level. Depending on which advanced capabilities of the
system are available at this point, the device might have to reboot, attempt to return into last
known secure state or remain as it is, that is, for reporting purposes.

Apart from NIST and IETF/IRTF publications, every considered paper included rec-
ommendations on this matter.

Data Protection and Software Design

This category considers recommendations on data handling and fundamental princi-
ples of software architecture. Data confidentiality must be protected through encryption.
Additionally, the designer of the system must also ensure that applications processing data
operate on minimum privilege and are isolated from each other (e.g., through memory com-
partmentalization). These subjects were discussed in the majority of analyzed documents.

56

Electronics 2021, 10, 1814

Device Configuration and Software Update

The question of software updates is highly stressed in the subject matter. All or-
ganizations agree on its importance—a lack of identified vulnerability patching and
protection against the latest threats is a large security risk in IoT. Thus, keeping the
device up-to-date strongly improves its protection. The capability to securely update
device software by an authorized entity is a must, preferably this process should be
automatic and/or remotely available.

Secure Interfaces and Communication

This category analyzes guidance on secure communication, starting from interfaces,
through protocols, to data. The usage of device interfaces should be configurable and,
by default, only those required should be active. Systems should utilize state-of-the-art,
standardized security protocols, with emphasis on using the versions that are intended
for IoT, if available. The majority of publications stress the necessity for making only
intentional and required connections (preceded by mutual authentication of the peers),
which are used to transmit confidential and integral data. Recommendations apply to all
layers of IoT devices—hardware, firmware and software.

Cybersecurity Event Monitoring and Logging

Event logging is a key requirement for security management in an IoT device and
this category summarizes guidelines on this matter. Adequate level of details aids to
solve issues with security incidents, while preventing exposure of sensitive information.
The confidentiality and integrity of logs must be protected so that they are reliable—only
authorized entities should be able to examine them and they should be unmodifiable.

Furthermore, the GSMA suggests creating a reference model of the IoT device behavior
and perform anomaly detection—situations when the device erratically reboots, reconnects
to the network or sends multiple poorly-formed messages might indicate a security issue.

Only the ioXt Alliance did not offer guidance on this subject.

Cryptography and Key Management

Each of the evaluated documents provided an insight for this category. It is clearly
advised to use standardized, proven cryptographic algorithms with secure implementations
and sufficient key lengths. Documents highlight the need to support algorithm agility
in security protocols—to enable the usage of lightweight cryptography and specialized
algorithms for IoT applications, to allow various node types for algorithm and key length
negotiation so they can communicate or ensure the ability to change the algorithm or used
key length in case it is compromised.

A secure and scalable key management policy must be introduced in the IoT system
and every IoT device should be provisioned with a unique private key (possibly per appli-
cation, e.g., device identification, code signature, server communication, etc.). With this
approach, every device becomes a separate attack surface and the whole system is secure
even if one of them is compromised.

Device Identification, Authentication and Strong Default Security

This section discusses the identity of both the device and its user. The device must be
labelled and recognized in a credible way, given that it will operate in a wider network.
It should also be protected from undesired access and provide security for user data.
As for the software developer and the user, this category includes guidance on password
management and general authentication procedures.

57

Electronics 2021, 10, 1814

T
a

b
le

1
.

Sy
nt

he
si

ze
d

re
qu

ir
em

en
ts

fo
r

se
cu

re
Io

T
de

vi
ce

s.

N
o

.
R

e
q

u
ir

e
m

e
n

t
N

IS
T

E
N

IS
A

IE
T

F
IR

T
F

G
S

M
A

Io
T

S
F

io
X

t

C
at

.1
H

ar
dw

ar
e

Se
cu

ri
ty

1.
1

U
ti

liz
at

io
n

of
im

m
u

ta
b

le
H

ar
d

-
w

ar
e

R
oo

t
of

Tr
u

st
(H

W
R

oT
—

Tr
u

st
A

nc
ho

r)
—

tr
u

st
ed

co
m

p
on

en
t

th
at

ex
te

nd
s

th
e

ch
ai

n
of

tr
us

tt
o

ot
he

r
H

W
,

FW
,S

W
co

m
po

ne
nt

s

-
X

X
[3

2]
X

X
-

1.
2

H
W

p
ro

vi
d

ed
se

cu
ri

ty
fe

at
u

re
s

(m
em

-
or

y
lo

ck
in

g,
st

or
ag

e
fo

r
cr

yp
to

gr
ap

hi
c

ke
ys

,
se

cu
re

bo
ot

su
p

p
or

t,
d

ev
ic

e
au

-
th

en
ti

ca
ti

on
,c

om
m

un
ic

at
io

n
co

nfi
d

en
-

ti
al

it
y

an
d

in
te

gr
it

y,
...

)

X
X

X
[3

2]
X

X
-

1.
3

M
ea

su
re

s
fo

r
ta

m
pe

r
pr

ot
ec

tio
n

an
d

de
-

te
ct

io
n

-
X

-
X

X
-

1.
4

U
se

of
p

ro
ve

n/
cr

yp
to

gr
ap

hi
c

qu
al

it
y

R
an

do
m

N
um

be
rG

en
er

at
or

(h
ar

dw
ar

e-
ba

se
d

if
fe

as
ib

le
)

-
X

X
[3

1,
32

]
X

-
-

C
at

.2
Tr

us
ta

nd
in

te
gr

it
y

m
an

ag
em

en
t

2.
1

S
e

cu
re

b
o

o
t

p
ro

ce
ss

b
a

se
d

o
n

H
W

R
o

T
.

B
oo

tp
ro

ce
ss

in
it

ia
liz

es
th

e
m

ai
n

ha
rd

-
w

ar
e

co
m

p
on

en
ts

,
ve

ri
fi

es
ex

ec
u

te
d

co
d

e
(fi

rs
t-

,
se

co
nd

-s
ta

ge
bo

ot
lo

ad
er

,
O

S)
an

d
re

su
lt

s
in

en
vi

ro
nm

en
t

d
et

er
-

m
in

ed
to

be
in

an
un

co
m

pr
om

is
ed

st
at

e

-
X

-
X

X
X

2.
2

So
ft

w
ar

e
(c

od
e,

ap
p

lic
at

io
ns

)
m

u
st

be
si

gn
ed

cr
yp

to
gr

ap
hi

ca
lly

an
d

ve
ri

fi
ed

up
on

in
st

al
la

ti
on

or
ex

ec
ut

io
n

-
X

-
X

X
X

2.
3

Th
e

ab
ili

ty
to

re
st

or
e

la
st

kn
ow

n
se

cu
re

st
at

e
(e

.g
.,

fi
rm

w
ar

e
ro

llb
ac

k,
w

he
n

co
d

e
is

ve
ri

fi
ed

as
d

am
ag

ed
or

ta
m

-
pe

re
d)

-
X

-
X

X
-

2.
4

So
ft

w
ar

e
in

st
al

la
ti

on
co

nt
ro

li
n

op
er

at
-

in
g

sy
st

em
s

(O
S)

,t
o

pr
ev

en
tu

na
ut

he
n-

ti
ca

te
d

so
ft

w
ar

e
an

d
fi

le
s

fr
om

be
in

g
lo

ad
ed

on
to

it

-
X

-
-

-
-

58

Electronics 2021, 10, 1814

T
a

b
le

1
.

C
on

t.

N
o

.
R

e
q

u
ir

e
m

e
n

t
N

IS
T

E
N

IS
A

IE
T

F
IR

T
F

G
S

M
A

Io
T

S
F

io
X

t

C
at

.3
D

at
a

pr
ot

ec
ti

on
an

d
so

ft
w

ar
e

de
si

gn
3.

1
E

nc
ry

p
ti

on
of

d
at

a
st

or
ag

e
m

ed
iu

m
.

Po
ss

ib
ili

ty
of

lo
ck

in
g

or
er

as
in

g
de

vi
ce

co
nt

en
ts

re
m

ot
el

y

X
X

X
[3

2]
-

X
-

3.
2

En
su

ri
ng

th
at

da
ta

is
se

cu
re

pr
io

rt
o

us
e

by
th

e
pr

oc
es

s
(i

np
ut

da
ta

va
lid

at
io

n)
-

X
X

[3
2]

-
X

-

3.
3

P
ro

ce
ss

p
ri

vi
le

ge
m

in
im

iz
at

io
n

-
lim

-
it

ed
pe

rm
is

si
on

of
al

lo
w

ed
ac

ti
on

s,
ap

-
p

lic
at

io
ns

m
u

st
op

er
at

e
at

th
e

lo
w

es
t

pr
iv

ile
ge

le
ve

lp
os

si
bl

e

-
X

X
[3

1]
X

X
-

3.
4

U
ti

liz
at

io
n

of
m

em
or

y
co

m
p

ar
tm

en
-

ta
liz

at
io

n
to

p
re

ve
nt

ro
gu

e
or

co
m

-
p

ro
m

is
ed

ap
p

lic
at

io
ns

fr
om

ac
ce

ss
in

g
m

em
or

y
ar

ea
s

th
at

th
ey

ar
e

no
ta

u
th

o-
ri

ze
d

to
us

e,
pr

oc
es

s
is

ol
at

io
n

-
X

X
[3

1]
X

X
-

C
at

.4
D

ev
ic

e
co

nfi
gu

ra
ti

on
an

d
so

ft
w

ar
e

up
da

te
4.

1
T

he
ab

ili
ty

to
ch

an
ge

th
e

d
ev

ic
e’

s
FW

an
d

SW
co

nfi
gu

ra
tio

n
by

au
th

or
iz

ed
en

-
ti

ti
es

X
-

X
[3

2,
33

]
X

X
-

4.
2

T
he

ab
ili

ty
to

u
pd

at
e

d
ev

ic
e’

s
FW

an
d

SW
th

ro
u

gh
re

m
ot

e
or

lo
ca

lm
ea

ns
by

au
th

or
iz

ed
en

ti
ti

es

X
X

X
[3

1,
32

]
X

X
X

4.
3

U
pd

at
e

fi
le

m
us

tb
e

en
cr

yp
te

d
,s

ig
ne

d
an

d
d

ev
ic

e
ve

ri
fi

es
it

s
in

te
gr

it
y

be
fo

re
ap

pl
ic

at
io

n

X
X

X
[3

1–
33

]
X

X
-

4.
4

A
ut

om
at

ic
up

da
te

ca
pa

bi
lit

y
(c

he
ck

in
g

at
fr

eq
ue

nt
,b

ut
ir

re
gu

la
r

in
te

rv
al

s)
,e

n-
ab

le
d

by
de

fa
ul

t

X
X

X
[3

1,
33

]
X

-
X

4.
5

B
ac

kw
ar

d
co

m
pa

ti
bi

lit
y

of
u

pd
at

es
—

u
p

d
at

e
sh

ou
ld

no
t

ch
an

ge
ne

tw
or

k
p

ro
to

co
l

in
te

rf
ac

es
no

r
m

od
if

y
u

se
r-

co
nfi

gu
re

d
p

re
fe

re
nc

es
,

se
cu

ri
ty

an
d/

or
pr

iv
ac

y
se

tt
in

gs

-
X

X
[3

1]
-

-
-

59

Electronics 2021, 10, 1814

T
a

b
le

1
.

C
on

t.

N
o

.
R

e
q

u
ir

e
m

e
n

t
N

IS
T

E
N

IS
A

IE
T

F
IR

T
F

G
S

M
A

Io
T

S
F

io
X

t

C
at

.5
Se

cu
re

in
te

rf
ac

es
an

d
co

m
m

un
ic

at
io

n
In

te
rf

ac
e

se
cu

ri
ty

5.
1

A
bi

lit
y

to
d

is
ab

le
or

lo
gi

ca
lly

re
st

ri
ct

ac
ce

ss
(e

.g
.,

de
vi

ce
/u

se
ra

ut
he

nt
ic

at
io

n)
to

an
y

lo
ca

la
nd

ne
tw

or
k

in
te

rf
ac

es

X
X

-
-

X
X

5.
2

D
ep

lo
ye

d
de

vi
ce

sh
ou

ld
ne

ve
r

co
nt

ai
n

d
eb

u
gg

in
g,

d
ia

gn
os

ti
c

or
te

st
in

g
in

te
r-

fa
ce

s
th

at
co

ul
d

be
ab

us
ed

by
ad

ve
rs

ar
y

(J
TA

G
,C

LI
,T

el
ne

t,
et

c.
)

-
X

X
[3

2]
X

X
X

Pr
ot

oc
ol

se
cu

ri
ty

5.
3

E
ns

ur
e

th
at

co
m

m
un

ic
at

io
n

se
cu

ri
ty

is
p

ro
vi

d
ed

u
si

ng
st

at
e-

of
-t

he
-a

rt
,

st
an

-
d

ar
d

iz
ed

se
cu

ri
ty

p
ro

to
co

ls
(e

.g
.,

T
L

S
fo

r
en

cr
yp

ti
on

)

-
X

X
[3

2]
X

X
-

5.
4

M
u

tu
al

au
th

en
ti

ca
ti

on
of

th
e

d
ev

ic
es

m
us

tb
e

pe
rf

or
m

ed
be

fo
re

tr
us

tc
an

be
es

ta
bl

is
he

d
(p

re
ve

nt
m

an
in

th
e

m
id

dl
e

at
ta

ck
),

ev
en

w
he

n
gi

ve
n

de
vi

ce
le

av
es

an
d

re
-jo

in
s

ne
tw

or
k

-
X

X
[3

1]
X

X
X

5.
5

M
a

k
e

in
te

n
ti

o
n

a
l

co
n

n
e

ct
io

n
s.

P
re

-
ve

nt
un

au
th

or
iz

ed
co

nn
ec

tio
ns

to
pr

od
-

u
ct

or
ot

he
r

d
ev

ic
es

it
is

co
nn

ec
te

d
to

,
at

al
ll

ev
el

s
of

th
e

pr
ot

oc
ol

s.
Io

T
de

vi
ce

s
m

us
tp

ro
vi

de
no

tic
e

an
d/

or
re

qu
es

t
a

u
se

r
co

nfi
rm

at
io

n
w

he
n

in
i-

ti
al

ly
pa

ir
in

g,
on

bo
ar

di
ng

,a
nd

/o
r

co
n-

ne
ct

in
g

w
it

h
ot

he
r

d
ev

ic
es

,p
la

tf
or

m
s

or
se

rv
ic

es
.

-
X

X
[3

2]
-

X
X

D
at

a
se

cu
ri

ty
5.

6
G

ua
ra

nt
ee

d
iff

er
en

ts
ec

ur
it

y
as

pe
ct

s
of

th
e

tr
an

sm
it

te
d

d
at

a—
co

nfi
d

en
ti

al
it

y,
in

te
gr

it
y,

au
th

en
ti

ci
ty

-
X

X
[3

1,
32

]
X

-
-

60

Electronics 2021, 10, 1814

T
a

b
le

1
.

C
on

t.

N
o

.
R

e
q

u
ir

e
m

e
n

t
N

IS
T

E
N

IS
A

IE
T

F
IR

T
F

G
S

M
A

Io
T

S
F

io
X

t

C
at

.6
C

yb
er

se
cu

ri
ty

ev
en

tm
on

it
or

in
g

an
d

lo
gg

in
g

6.
1

T
he

ab
ili

ty
to

lo
g

cy
be

rs
ec

u
ri

ty
ev

en
ts

fr
om

de
vi

ce
’s

H
W

,F
W

an
d

SW
X

X
X

[3
2]

X
X

-

6.
2

T
he

ab
ili

ty
to

re
co

rd
su

ffi
ci

en
t

d
et

ai
ls

fo
r

ea
ch

lo
gg

ed
ev

en
tt

o
fa

ci
lit

at
e

an
au

-
th

or
iz

ed
en

ti
ty

ex
am

in
in

g
th

e
lo

g
an

d
de

te
rm

in
in

g
is

su
e

or
ig

in

X
-

X
[3

2]
X

X
-

6.
3

T
he

ab
ili

ty
to

re
st

ri
ct

ac
ce

ss
to

th
e

lo
gs

so
on

ly
au

th
or

iz
ed

en
ti

ti
es

ca
n

vi
ew

th
em

an
d

p
re

ve
nt

al
l

en
ti

ti
es

(a
u

th
o-

ri
ze

d
or

u
na

u
th

or
iz

ed
)

fr
om

ed
it

in
g

th
em

X
X

X
[3

2]
-

X
-

6.
4

A
v

o
id

se
cu

ri
ty

is
su

e
s

w
h

e
n

d
e

si
g

n
-

in
g

e
rr

o
r

m
e

ss
a

g
e

s.
A

n
er

ro
r

m
es

sa
ge

sh
ou

ld
gi

ve
/d

is
pl

ay
on

ly
th

e
co

nc
is

e
in

-
fo

rm
at

io
n

th
e

us
er

ne
ed

s—
it

m
us

tn
ot

ex
p

os
e

se
ns

it
iv

e
in

fo
rm

at
io

n
th

at
ca

n
be

ex
pl

oi
te

d
by

an
at

ta
ck

er
,s

uc
h

as
an

er
ro

r
ID

,t
he

ve
rs

io
n

of
th

e
w

eb
se

rv
er

,
et

c.

-
X

X
[3

2]
-

X
-

6.
5

D
ev

ic
e’

s
be

ha
vi

or
sh

ou
ld

be
m

on
ito

re
d

an
d

co
m

pa
re

d
w

it
h

m
od

el
to

d
et

ec
t

an
om

al
ie

s
(e

.g
.,

er
ra

ti
c

re
bo

ot
s/

re
se

ts
,

(d
is

)c
on

ne
ct

io
ns

,d
iff

er
en

tn
et

w
or

k
fin

-
ge

rp
ri

nt
,r

ep
ea

te
d

m
al

fo
rm

ed
m

es
sa

ge
s

se
nt

,e
tc

.)

-
-

-
X

-
-

C
at

.7
C

ry
pt

og
ra

ph
y

an
d

ke
y

m
an

ag
em

en
t

7.
1

U
se

of
St

an
d

ar
d

C
ry

p
to

gr
ap

hi
c

A
lg

o-
ri

th
m

s
an

d
Se

cu
ri

ty
P

ro
to

co
ls

,
w

hi
ch

im
p

le
m

en
ta

ti
on

s
ha

ve
be

en
in

d
ep

en
-

de
nt

ly
re

vi
ew

ed

X
X

X
[3

1–
33

]
-

X
X

7.
2

Se
cu

ri
ty

pr
ot

oc
ol

s
sh

ou
ld

su
pp

or
ta

lg
o-

ri
th

m
ag

ili
ty

(li
gh

tw
ei

gh
tc

ry
pt

og
ra

ph
y

fo
rr

es
ou

rc
e

co
ns

tr
ai

ne
d

de
vi

ce
s,

ab
ili

ty
to

ch
an

ge
al

go
ri

th
m

or
us

e
it

on
ly

w
ith

lo
ng

er
ke

y
in

ca
se

it
is

co
m

pr
om

is
ed

)

X
X

X
[3

1,
33

]
-

X
-

61

Electronics 2021, 10, 1814

T
a

b
le

1
.

C
on

t.

N
o

.
R

e
q

u
ir

e
m

e
n

t
N

IS
T

E
N

IS
A

IE
T

F
IR

T
F

G
S

M
A

Io
T

S
F

io
X

t

7.
3

L
en

gt
h

of
th

e
ke

y
sh

ou
ld

p
ro

vi
d

e
st

ro
ng

se
cu

ri
ty

,m
ak

e
br

ut
e-

fo
rc

e
at

ta
ck

in
fe

as
ib

le

-
X

X
[3

1]
-

X
-

7.
4

Ev
er

y
de

vi
ce

m
us

tb
e

in
st

an
tia

te
d

w
ith

un
iq

ue
pr

iv
at

e
ke

y(
s)

-
X

X
[3

1]
X

X
-

7.
5

Se
cu

re
an

d
sc

al
ab

le
m

an
ag

em
en

t
of

cr
yp

to
gr

ap
hi

c
ke

ys
(g

en
er

at
io

n,
st

or
-

ag
e,

di
st

ri
bu

ti
on

)

-
X

X
[3

1]
X

X
-

C
at

.8
D

ev
ic

e
id

en
ti

fic
at

io
n,

au
th

en
ti

ca
ti

on
,s

tr
on

g
de

fa
ul

ts
ec

ur
it

y
8.

1
D

ev
ic

e
m

u
st

ha
ve

a
u

ni
qu

e
p

hy
si

ca
l

id
en

ti
fi

er
on

ly
au

th
or

iz
ed

en
ti

ti
es

ca
n

ac
ce

ss

X
X

-
X

X
-

8.
2

D
ev

ic
e

m
u

st
be

p
ro

vi
si

on
ed

w
it

h
un

iq
ue

lo
gi

ca
li

de
nt

ifi
er

X
X

X
[3

2]
X

-
-

8.
3

P
re

p
ar

e
ro

bu
st

au
th

en
ti

ca
ti

on
an

d
au

-
th

or
iz

at
io

n
sc

he
m

es
,

so
d

ev
ic

e
ca

n
pr

ov
e

it
s

id
en

ti
ty

X
X

-
X

X
-

8.
4

E
st

ab
lis

h
st

ro
ng

,d
ev

ic
e-

in
d

iv
id

ua
ld

e-
fa

ul
tp

as
sw

or
ds

th
at

ha
s

to
be

ch
an

ge
d

by
th

e
u

se
r

d
u

ri
ng

in
it

ia
ls

et
u

p
(w

ea
k,

nu
ll

or
bl

an
k

p
as

sw
or

d
s

ar
e

no
t

al
-

lo
w

ed
)

-
X

X
[3

1,
32

]
X

X
X

8.
5

R
es

is
ta

nc
e

to
ke

ys
p

ac
e-

se
ar

ch
in

g,
br

u
te

-f
or

ce
or

ot
he

r
lo

gi
n

ab
u

si
ve

at
ta

ck
s

by
lim

it
in

g
nu

m
be

r
of

in
-

va
lid

lo
gi

n
at

te
m

p
ts

or
in

tr
od

u
ci

ng
in

cr
em

en
ti

ng
de

la
ys

be
tw

ee
n

th
em

-
X

X
[3

1,
32

]
X

-
-

8.
6

A
va

ila
bi

lit
y

of
tw

o-
fa

ct
or

au
th

en
ti

ca
-

ti
on

-
X

X
[3

1]
X

X
-

8.
7

Pr
od

uc
ts

ec
ur

it
y

sh
al

lb
e

ap
pr

op
ri

at
el

y
en

ab
le

d
by

de
fa

ul
t.

St
ro

ng
se

cu
ri

ty
co

n-
tr

ol
ss

ho
ul

d
be

so
m

et
hi

ng
th

e
co

ns
um

er
ha

s
to

d
el

ib
er

at
el

y
d

is
ab

le
ra

th
er

th
an

de
lib

er
at

el
y

en
ab

le
.

-
X

X
[3

1]
-

X
X

62

Electronics 2021, 10, 1814

4. Review of Existing Solutions

In this section, we analyze some of the current popular trusted computing solutions
used for IoT devices against the recommendations presented in Section 3. The solutions
chosen are either already mature and currently in use for IoT devices or are emerging
concepts that might bring new quality to the topic. The selection of technologies for IoT
security includes examples that are more hardware-based (e.g., GEON SoC Platform) and
more software-focused, such as Intel Software Guard Extensions (SGX). We chose the most
popular solutions available on the market, such as Arm’s TrustZone or Intel SGX, the most
promising open source ones, such as Keystone and OpenTitan and other representative,
usually hardware-based, solutions. In the last group, we targeted solutions that can be
integrated into a designed SoC in the form of a standalone IP–Rambus RT, similar but more
complex solutions, such as Geon SoC Security Platform, and finally, a solution offered as
an integrated circuit (NXP EdgeLock SE050). A short description is provided for each one
before the analysis of the IoT security in the context of Table 1. We present our findings for
each solution in Table 2. The descriptions are formed from the perspective of a designer
who wants to understand the requirements for a secure IoT device. We assumed that the
analysis is based only on publicly accessible information, no lab testing nor feasible attacks
on devices based on the solutions were performed, and that little to no implementation
experience for each of the discussed solutions is required.

4.1. Arm TrustZone

TrustZone is a security extension offered by Arm for application processors (Cortex-
A family) and microcontrollers (Cortex-M family), which has become popular recently.
There is a growing interest in the subject across academia, and a number of commercial
products utilize TrustZone’s capabilities, for example, Samsung Knox. Arm’s solution
is based on a Trusted Execution Environment (TEE) concept and enables the system to
fulfill Platform Security Requirements [39]—a set of guidelines defined by Arm. This
document provides similar guidelines to those gathered in Section 3, with a strong focus
on hardware and firmware security. There are some differences between architecture-
specific implementations of TrustZone, but the main idea remains the same—on Cortex-A
processors, the secure monitor, a privileged software, implements mechanisms for secure
context switching between worlds; on Cortex-M processors, there is no secure monitor
and hence the change between the secure and non-secure world is handled by a set of
core logic mechanisms. Enabling TrustZone for microcontrollers has allowed for more
widespread usage in resource-constrained devices, which has an impact on IoT devices.
Pinto and Santos [40] provided a detailed explanation of TrustZone’s operation with a
distinction between Cortex-A and Cortex-M implementation. The general concept of
TrustZone’s operation on software and firmware levels is presented in Figure 1.

Figure 1. Concept of a TrustZone supported execution environment on software and firmware levels, based on [41].
The division between non-secure and secure worlds, as well as their construction with accentuated levels of operation, are
presented. The SCR_EL3.NS is a register bit used to switch between the trusted and not trusted environments. The Secure
Monitor, a special processor mode controlling the transition between secure and non-secure states, is presented as a common
base for the environments.

63

Electronics 2021, 10, 1814

TrustZone provides two virtual processors supported by hardware-based access con-
trol, resulting in division into secure and non-secure environments. Both execution envi-
ronments are completely separated in the hardware, thanks to memory isolation and a
special processor mode dedicated to monitoring (secure monitor). A few additional modules,
such as the TrustZone Address Space Controller (TZASC), the TrustZone Memory Adapter
(TZMA) and internal interface modifications, are introduced for separation and memory
partitioning in TrustZone for Cortex-A. Noticeably, Arm states that the use of TZASC and
TZMA is optional in the system. The final decision is left to the designer. Peripherals are
flagged as secure or normal, while the APB-AXI bridge hardware is responsible for access
control and rejecting AXI transactions with insufficient permissions. There is no separated
trusted path since secure and non-secure transactions are multiplexed on the system bus
using the same hardware. Significantly, in TrustZone there are no explicit considerations
for Hardware Root of Trust implementation. However, the implementation of Root of
Trust has been proposed in the literature by Zhao et al. [42], and a commercial solution,
discussed later in this subsection, has also been made available. Some security features
are provided by separate hardware modules. For example, remote attestation is achieved
by an incorporated hardware component, such as a Trusted Platform Module, responsible
for measuring the kernel’s integrity and creating unique cryptographic keys. While there
is no information on random number generation in TrustZone documents, Arm offers a
separate security IP called the True Random Number Generator, advertised as TrustZone
compatible. Similarly, secure storage can be implemented by simply denying access to a
device from a non-secure world.

From a firmware and software perspective, a privileged instruction called the Secure
Monitor Call (SMC) allows for entry to, exit from and general communication between
secure and non-secure world applications. This mechanism involves a monitor software
with higher privileges than the Rich Execution Environment Operating System (REE OS).
Its responsibility is the reliable and protected context switching of the processor [40].
A Non-Secure (NS) bit stored in the Secure Configuration Register (SCR) represents the
current context of the processor and the register’s state is propagated throughout the entire
SoC. Hence, it is possible to use peripheral devices that only allow secure access from
the processor. In TrustZone there is no attestation of processes requesting execution in
the secure world. In the event of an OS falling into the hands of an adversary, messages
that require secure world resources can be crafted and possibly other information may be
gleaned from apparently secured processes. A newer TrustZone technology for Cortex-M
microcontrollers has some changes to allow for usage in more resource-constrained devices.
The division between secure and non-secure worlds is based on memory map partition,
and context switching happens due to code exceptions. To support this, a couple of new,
dedicated instructions were added.

One could assume that TrustZone alone leaves quite some room for interpretation in
terms of security functions implemented in hardware. That being said, Arm proposed the
CryptoCell IP-family [43,44], which acts as HWRoT, offering cryptographic acceleration,
true random number generator, trusted storage, secure boot support and authenticated
debug support, to name a few. CryptoCell-300 is dedicated for Cortex-M implementations,
while CryptoCell-700 is Cortex-A oriented [45]. Both families provide broad support for
symmetric and asymmetric cryptography, as well as lightweight cryptography [46]. Code
integrity and signing, authentication and key management are also mentioned in the docu-
ments. Arm claims that this solution is meant for low power, low area designs [43,44]. It
may seem that TrustZone, complemented by CryptoCell IP, is a powerful security solution,
mostly implemented in hardware.

Analysis for Synthesized Requirements for Secure IoT Devices

Some security flaws inherent to the REE-TEE communication channel have been found
in previous years (Black Hat 2014, Black Hat 2015) [40] and have been used in attacks on
real devices. Additionally, concerns with cache side-channel attacks arise. The lack of

64

Electronics 2021, 10, 1814

inherent memory encryption also raises questions. TrustZone in itself does not have any
recommendations nor requirements for HWRoT implementation other than the need for
the existence of a unique device key [40]. This is paramount for the security of an IoT device
and cannot be left to wide interpretation. One could assume that Arm’s recommendation
is to use IP from the CryptoCell-family, though it is not always feasible. On the software
execution front, the secure-world approach is not the same as an enclave and allows for a
compromised TEE program to interfere with other programs within the TEE. Secure IoT
required functionality, as presented in Section 3, is possible in TrustZone, but with much of
the implementation left to the designers—secure deployment might be at risk. TrustZone
documentation does not provide input on configuration, update or logging mechanisms.
We assume it is at the designer’s discretion. Finally, TrustZone is entwined with Arm’s
technology; it is not a universal solution and porting it to different platforms does not seem
feasible. On one hand, this can be limiting for some implementations, as not all IoT devices
use Arm’s solutions. On the other hand, it would be surprising if one of the leaders in the
processor market did not have a compatible security solution available.

We can conclude that TrustZone certainly offers an end-to-end security solution,
but it requires a good understanding of the framework, some creativity in implementation
and support from external IPs. It is worth repeating that this solution is dedicated for
Arm infrastructure. The vast number of TrustZone supporting products speaks for itself.
TrustZone fulfills most of the security recommendations, but it would not be possible
without supplementary hardware, like CryptoCell or applications. TrustZone alone is not
an off-the-shelf, ready-to-use solution.

4.2. Intel Software Guard Extensions (SGX) and Security Essentials

Intel SGX [47] is a set of CPU instructions that allow the creation of isolated software
containers called enclaves in which code, data and stack of a program are isolated safely
from other processes (even with higher privilege levels) through hardware-based access
policy control and memory encryption. Unsurprisingly, this solution is meant for Intel
architecture. Application code and the hardware it is running on can be attested by a
remote entity [48] by verifying measurements of its code and data (named MRENCLAVE),
calculated during enclave creation. This process provides increased confidence that the
code is running in an enclave and is unmodified by a third party. It provides a mechanism to
run a secure code in an unsecured OS, with support from trusted hardware. After successful
attestation, an encrypted channel (based on public key schemes) between the remote party
and the enclave can be established in order to exchange sensitive data. Data can be sealed
using CPU instructions to generate a key (named MRSIGNER) which allows decryption
only by the same enclave created in the future.

Additionally, in the Intel security ecosystem, a provisioning functionality is present,
which allows trusted entities to update or add software whilst assuring integrity. It is
presented in Figure 2. The provisioning process is described below:

• Creating the enclave—an untrusted REE application creates an enclave environment
in order to protect the software of the trusted provider, during this process the contents
and creation parameters are logged as a measurement,

• Attestation—the enclave informs the software provider about its readiness to receive
new software and the device presents the measurement from before,

• Provisioning—a secure channel between the device and provider is created and the
data is sent,

• Sealing and unsealing—the enclave uses a cryptographic hardware key for encryp-
tion before storing the data in memory. Only an identical enclave will be able to
decrypt and use the new program data in the future,

• Software update—in this step, a new version of a program may ask an older version
to unseal the data. After the update process ends, a new seal is created, which renders
the old software version (which could be compromised due to flaws patched in the
new version) unable to access the new software version data.

65

Electronics 2021, 10, 1814

From a hardware viewpoint, Processor Reserved Memory (PRM) is isolated by SGX
and protected against all memory accesses from outside an enclave, including kernel, hy-
pervisor and system management mode, as well as DMA accesses requested by peripherals.
Enclave’s code and data are stored in Enclave Page Cache (EPC), providing pages of a 4KB
size [49]. The untrusted OS is in charge of assigning EPC pages to enclaves, which creates
a potential exposure. The processor is responsible for assuring that each enclave has only
one EPC on hand; it is monitored in Enclave Page Cache Metadata (EPCM).

Figure 2. Intel SGX Software Lifecycle; steps are executed in the numerical order, sensitive data are
remotely provisioned (3) into the enclave after mutual attestation (2) of the off-platform provider
and created enclave (1), after the enclave is destroyed data are sealed in memory (4) in such a way
that only an identical enclave can access them again. Software updates (5) are also possible via this
scheme and a new seal is created (6) so that an old version of software cannot overwrite the new
version. Based on [47].

SGX in itself is generally a TEE implementation, but other Intel modules and tech-
nologies allow for wider SoC security such as secure boot capabilities, TPM integration or
random number generators [50]. It is advertised that the security extension assists with
securing IoT edge device communication [51].

Analysis for Synthesized Requirements for Secure IoT Devices

Intel SGX is a proprietary enterprise solution; therefore all security functionalities
are tied in with Intel architecture. This means that other custom application accelerators,
interfaces and system bus control are out of the scope for the solution. As such, all SoC
security issues have to be solved by custom design decisions, increasing the risk of creating
an unsecured device. Costan and Devadas [49] in 2016, one year after the Intel SGX debut,
published an in-depth examination of this solution. They exposed a number of potential
vulnerabilities to SGX and claimed that “our security analysis reveals that the limitations
in SGX’s guarantees mean that a security conscious software developer cannot in good
conscience rely on SGX for secure remote computation” ([49], [p. 3]). In the five years
that have passed since this article was published, a number of new side channel attacks
have been discovered [52–55], and although Intel describes these attacks as very difficult to
perform in a data center (i.e., physical access to the platform is required), this changes in an
IoT context (device present in a public space) and remains alarming. Due to a security by
obscurity situation, it is hard to assess the solutions for many requirements in Table 2 and
thus no assurance on their completeness can be given, though an optimistic approach is
taken. Interestingly, it is possible to change all device cryptographic keys by changing a
single register called OwnerEpoch. This process allows for the fast sealing of the device
and serves as additional protection of the enclave content. If the OwnerEpoch value is lost,
the device is rendered inaccessible.

66

Electronics 2021, 10, 1814

SGX and the Security Essentials provide multiple good trusted computing basics but
is not a solution entirely catered for protection of IoT devices. This can be seen in the Cat. 6
and Cat. 8 sections of Table 2. However, the security level it provides and the critique
around it, raises questions about whether it is a good choice at all.

4.3. Keystone

Keystone [56] is an open-source framework designed for creating TEE environments
based on unmodified RISC-V architecture. RISC-V Physical Memory Protection (PMP),
arbitrarily securing the physical memory locations, and the programmable machine mode
(M-Mode) are used to implement the memory protection scheme. The trusted Security
Monitor (SM) program is proposed on M-Mode level and its main task is to manage
the secure handling of hardware and context switching between enclaves (Figure 3). It
should be executed entirely from on-chip memory. This component satisfies typical TEE
requirements such as memory isolation and code/configuration attestation. Keystone
does not propose direct resource management. This responsibility lays on the secure
enclave application developer side. A runtime (RT) component is an enclave-specific
platform for secure applications to be executed on, which also communicates with the
SM and manages virtual memory chunks assigned to the enclave. The RT should have
the functionality of system plugins, interfaces, libc implementations, paging and virtual
memory management. It can be successfully reused between enclaves or modified as
needed. Additionally, because the rich OS is not a part of a typical enclave, the Trusted
Computing Base (TCB) is smaller.

From a hardware perspective, implementing Keystone does not require modifications
to CPU cores or memory controllers. However, several requirements for the platform
are listed in the publication [56]: trusted boot process support, unique authentication
key dedicated for this process and a hardware source of randomness. According to the
Keystone designers, the Root of Trust can be realized in hardware, but does not have
to, which allows for a variety of implementations, for example tamper resistant software
(zeroth-order bootloader) [56].

Figure 3. Overview of a Keystone system setup, based on [56]. The distinction between untrusted
and trusted execution environments is presented, along with support for multiple secure enclaves
and their runtimes. The privilege level for each RISC-V mode is marked. The security Monitor,
operating on M-mode, being common for both execution environments, is the manager of context
switching. Required trusted hardware is included.

With every CPU reset the Root of Trust executes these steps:

• Measures the SM image loaded,
• Generates a new attestation key based on the randomness source,
• Saves the data in a SM memory location isolated by PMP,
• Sends the cryptographically generated metadata via a public key scheme.

In the RISC-V architecture, only the machine mode has access to hardware resources
such as interrupts, system memory, peripherals and devices. The S-mode (supervisor)

67

Electronics 2021, 10, 1814

is used for the OS kernel and the U-mode (user mode) allows execution of typical REE
applications. The machine mode is used as a platform for the SM, because:

• It is programmable,
• It allows control over interrupts and exceptions above the OS level,
• PMP mechanism, which allows the enforcement of access policies.

PMP restricts the physical access to memory locations for the S and U modes. Every
record in the PMP table has a set of access flags for the programmed memory segment.
Each PMP address register encodes a continuous address region and the configuration bits
represent write/read/execute (rwx) permissions for the U/S modes. If a mode attempts
to access an unassigned memory area, the access is rejected by the hardware. The PMP
areas can be dynamically allocated during device operation. During SM image loading,
the first PMP area is configured as the highest priority in order to protect its own resources,
such as code/stack/data. By default, the OS has access to any memory location that is not
part of an assigned PMP area of higher priority. When an application starts an enclave,
the OS finds a continuous area of memory, which does not overlap with any other PMP
configured area, and then switches the request to the SM that creates a new PMP record.
During a context switch from an enclave to the OS or another enclave, the SM takes away
all access permissions, but the enclave’s address region is preserved. As a result, an en-
clave is securely isolated from other processes. Upon creation, the enclave’s memory is
measured and cryptographically signed. The OS uses an interface within the Linux kernel
(/dev/Keystone) for enclave creation.

Analysis for Synthesized Requirements for Secure IoT Devices
The paper that introduces Keystone focuses more on the enclave code execution, while

treating key management, software updates, device authentication and other problems
such as orthogonal. A Root of Trust (either hardware or software) is stated as a necessity
along with a trusted boot process, but it is in the hands of the application designer to make
sure that secure IoT requirements are in place. Process and application privilege levels
are inherent to the RISC-V implementation. Enclave security is supposed to include resis-
tance to side-channel attacks, mapping attacks and syscall tampering attacks. Keystone’s
authors state that their solution is an improvement on SGX [56], and the measures they
took to mitigating the risks that were exposed in Intel’s solution seem to confirm that.
However, Keystone, being based on a similar concept to SGX, can still demonstrate similar
vulnerabilities that may yet to be discovered.

Using concepts presented in Keystone, or even the entire solution, seems like a good
starting point, but it is hardly enough in itself to state that a device is secure in the IoT
field. It certainly offers some degree of flexibility. Keystone being an open-source solution
can also be an advantage. However, as presented in Table 2, there are many important
categories that are left completely at the system designer’s discretion and it can result in
unintentional exposures of the IoT device.

4.4. OpenTitan

OpenTitan is undoubtedly one of the solutions to secure IoT devices that should attract
designers’ attention. This open source Hardware Root of Trust implementation [57] is
endorsed by leading non-profit, academic or commercial organizations such as lowRISC,
ETH Zürich or Google. The project is fully transparent, its sources are available online and
can be inspected by the broader community, which should improve its security.

OpenTitan core is currently under development [58] and multiple features are still
missing from the early stage top-level [59]. However, the intentions of its creators are well
documented and in the complete form it should be a robust solution for various systems’
security as an HWRoT module supporting the secure boot procedure and implementing
miscellaneous cryptographic primitives.

OpenTitan acts as an immutable HWRoT with secure boot procedure support. It
implements multiple cryptographic primitives (AES, RSA, Elliptic Curve Cryptography—

68

Electronics 2021, 10, 1814

ECC or keyed-Hash Message Authentication Code based on SHA-256 algorithm) that are
used to verify the code of subsequent boot stages and authenticate the device during the
ownership transfer process. OpenTitan provides FW to control these primitives, so they can
be used for securing communication confidentiality and integrity, but it is a responsibility
of higher software layers. OpenTitan implements several tamper protection and detection
mechanisms as protection codes or scrambling memory regions that contain secrets. Core
implements hardware Random Number Generators that are compliant with international
standards (e.g., NIST [60,61]).

OpenTitan provides low-level software that is responsible for first stages of the secure
boot process (Silicon Creator level—Figure 4). At the beginning, execution is restricted
to the ROM region (which cannot be modified after silicon is manufactured) and then
ROM_ext part is loaded from flash (provided that integrity check has passed). At this point,
execution is transferred to the entry point of the Silicon Owner code and from now on it is
the Owner who is responsible for further boot stages security. It is also the end user’s software
duty to ensure isolation of the applications.

This solution offers the means to securely update its firmware—the integrity of the
update block is verified prior to the reboot. The capability to update higher layers of
software can be implemented using available cryptographic primitives; however, it is up to
the end user.

Figure 4. Software stages of the OpenTitan secure boot procedure with respect to particular levels
owners, based on [62]. Only low level software layers (ROM, ROM_ext) are provided with the
solution (Silicon Creator level), while the end user (Silicon Owner) is responsible for all higher phases
of secure boot as well as the isolation of executed applications when the system is already up.

Analysis for Synthesized Requirements for Secure IoT Devices

We attempted to analyze the final set of OpenTitan capabilities against requirements
presented in Table 1. The OpenTitan documentation does not mention any means for
logging of cybersecurity events, neither in hardware nor in software. Possibly, some
mechanisms might be implemented by end user in higher layers of software.

As was already mentioned, OpenTitan offers a rich suite of cryptographic primitives.
Algorithm agility may still be improved, especially if it comes to lightweight cryptography,
but it might be that OpentTitan does not target resource-constrained devices. Robust key
derivation mechanisms and management schemes are available.

In summary, the fully operational OpenTitan core meets the assumptions of its
designers—it is a solid foundation for maintaining the trust and integrity of the system,
where it is instantiated. However, it still might not be enough to completely secure IoT
devices in terms of recommendations from Table 1. It is not an out-of-the box solution

69

Electronics 2021, 10, 1814

for all IoT device security aspects and the potential end user has to implement many
missing features.

4.5. NXP EdgeLock SE050

NXP EdgeLock SE050 Plug and Trust Secure Element is presented as a “ready-to-use
IoT secure element solution” by the manufacturer [63]. It is an auxiliary security device
that connects to host. Optional connections to a sensor mode via another I2C interface and
native contactless antenna, granting wireless access are also available (Figure 5). Interestingly,
EdgeLock SE050 holds Common Criteria’s EAL6+ certificate. It is advertised as suitable for
smart cities, smart home, smart industry and smart supply chains. This solution combines
a HWRoT with a Java Card OpenPlatform OS (JCOPOS), on which an IoT Applet runs.
The Applet supports a wide range of secure functionalities, for example, random number gen-
eration, key management, hash operations, Platform Configuration Register (PCR) creation
and management [64], and is provided by the manufacturer. In hardware, many configurable
cryptographic primitives are included, supporting a wide range of algorithms and operations
to choose from: HMAC, CMAC, SHA-1, RSA, ECC, AES. Lightweight cryptography is also
available. What distinguishes NXP SE050 from other discussed solutions is the fact that it is
a separate integrated circuit in its own packaging. This implicates the need for a dedicated
space on the circuit board. It is also the only analyzed technology that supports SmartCard.

Figure 5. NXP SE050 architecture scheme, based on [63]. The communication between SE050 and Host
via I2C bus is presented. The additional interfaces for optional applications, i.e., the antenna and the
extra I2C to communicate with Sensor Actuator, are marked. The software/firmware scheme is also
present in the form of the IoT Applet, running on Java Card OpenPlatform Operating System (JCOPOS).

Analysis for synthesized requirements for secure IoT devices

Some capabilities required for a secure IoT device hardware are present, but unfortu-
nately as a plug-and-play approach the SE050 can provide a false sense of security, if used
inappropriately. No safety is ensured for the host OS, which could in reality be wrongly
configured and utterly unsafe with other interface connections that bypass the secure
element—each communication channel should be trustworthy to a degree required in a
protected IoT device and each communication channel should have the possibility to be
disabled if not needed as per Table 1. No approach to software and firmware updating and
provisioning is presented. It is hard to assess the safety of the I2C communication chan-
nel and possible problems. Additionally, neither software trusted execution nor enclave
creation is possible via the applet. It is uncertain whether the host can freely access and
use the cryptographic functionalities (including the random number generator) or if they
are only available for SE050 internal access. Remarkably, the data sheet states that only

70

Electronics 2021, 10, 1814

the Pseudo Random Number Generator is available [63]. Tamper detection is mentioned,
but there is no information on tamper resistance. Moreover, no information is provided
about the execution privileges in the Java OS nor about what information could be gathered
through the secure logging of modules inside the secure element. If only the secure element
interfaces are used for off chip communication, then they should be safe. Even though
a wide range of secure functionalities is presented in the data sheet, a variety of use cases is
discussed on NXP’s website, cryptographic hardware primitives, coherent with standards
and certifications, are implemented—this cannot be considered as a plug-and-play secure
IoT solution. In fact, software must be developed carefully to ensure a proper level of
security whilst using the SE050. By and large, the solution seems more like an extensively
functional HWRoT with communication between two operating systems rather than an IC
offering complex security for IoT.

4.6. Beyond Semiconductor GEON SoC Security Platform

The GEON SoC Security Platform manufactured by Beyond Semiconductor is pre-
sented as a processor agnostic solution with essentials for hardware IP security. An IoT
application is advertised, including Industrial [65]. The SoC contains a suite of security
modules that work together to create a secure IoT device but can also be used independently.
This includes a customizable Hardware Root of Trust including secure boot functional-
ity (GEON Secure Boot) and even recovery to a vendor software state in the case of a
security breach [66], firmware encryption module (GEON Firmware Encryption) for the
integrity and confidentiality of software, a module that stores and generates secret keys
(GEON Hardware Security Module (HSM)) and hardware cryptographic operations mod-
ule, including random number generation. A wide range of cryptographic algorithms
is supported, including lightweight. Code authentication and cryptography-supported
measurement functionalities are available. Interestingly, GEON SoC Secure Platform offers
GEON Secure JTAG that is claimed to offer a complete debug analysis without compromis-
ing security [67]. As presented in Figure 6, the communication channel for the SoC Security
Platform is realized by AMBA interface (AHB/APB), which may impact the final design of
the IoT design.

Figure 6. GEON SoC Security Platform hardware architecture, based on [65]. External interfaces and suggested connections
to other components of System on Chip are presented.

71

Electronics 2021, 10, 1814

Analysis for Synthesized Requirements for Secure IoT Devices

Multiple cryptographic ciphers and hash functions are available for use. The debug
access is described in some documents mentioned in Section 3 as possibly unsafe and
it is advised to disable it after deployment. It should be stressed, though, that these
guidelines do not consider a highly secured debug interface and that is the case in the
GEON SoC. Agreeably, this functionality can be critical in some applications, and the level
of security claimed by Beyond Semiconductors is very promising. Parts of the GEON
SoC are described as “flexible” and “disposable” depending on the application, which
can obviously be beneficial for system designers, but the lack of awareness can lead to the
creation of an unsecured IoT. Additionally, some key secure functionalities could be missing
if one of the modules is left behind. No information is provided about cybersecurity event
logging and monitoring. In terms of secure updating, firmware downgrade protection is in
place; the confidentiality and integrity of software and firmware are also protected. GEON
SoC Platform Security does not introduce any interference with other interfaces existing
in the system in which it is integrated, mainly no disabling or securing capabilities are
present. The security threat of any interface in the IoT device is unaccounted for. It can be
considered as a plug in to the main bus of SoC. This solution certainly offers a great variety
of hardware-based security features, but the lack of guidance on software and firmware
development can be concerning.

4.7. Rambus RT Family

Rambus has a wide range of security IPs in its portfolio. We decided to focus on
the Root of Trust IP cores, especially those dedicated for IoT—RT-100 [68], RT-130 [69],
RT-140 [70] and RT-260 [71]. It seems that the difference between the aforementioned
modules is the supported cryptography and protocols. The rule of operation is the same.
These products are advertised as complete Hardware Root of Trust engines, offering cryp-
tographic accelerators (both symmetric and asymmetric, in RT-140 also lightweight), secure
boot support, secure asset storage, secure firmware upgrade, device authentication and
identity protection, as well as secure debug. RT-140 supports TLS protocols. Remarkably,
the Rambus solution is architecture agnostic. It can be integrated in an SoC and is claimed
to be compatible with most popular system buses (e.g., AMBA). In order to cooperate
with the device, the CPU requires a dedicated API implementation. Figure 7 illustrates
the architecture and the location in the system of the Rambus component. Unfortunately,
apart from the manufacturer’s materials, there is no literature openly available regarding
the RT family. Therefore, our research relies solely on product briefs published on the
Rambus website. The analyzed documents indicate that Rambus offers the RoT Secure
Boot Toolkit, which may be either a firmware or a software extension to communicate
with the instantiated hardware module. It interfaces with protected software stored in
non-volatile memory and includes a signing tool and boot library.

Analysis for Synthesized Requirements for Secure IoT Devices

Since this is purely a RoT solution, the development of secure software and firmware
is left completely to the designer. One of the greatest advantages is the wide range of
supported cryptography offered. However, there is very little information about securing
memory and data transfers. In conclusion, the Rambus proposition is a foundation for
building a secure IoT, not a complete solution.

72

Electronics 2021, 10, 1814

Figure 7. Rambus RT hardware architecture, on RT-100 example, based on [68]. Corresponding
software elements (e.g., RoT Secure Boot Toolkit), and the location of this component in a system on
chip are presented.

4.8. Summary

Table 2 repeats the requirements from Table 1 and compares the solutions presented
in previous sections against them. For clarity, shortened versions of the requirements are
presented below; the full description is available in Table 1.

Symbols used in Table 2 have the following meanings:

• �—difficult to satisfy this secure IoT requirement using a particular solution;
• �—can be done, but no explicit recommendation nor solution for use in an IoT device

is presented, leaving the design decisions open and potentially unsafe;
• �—strong recommendation or solution which satisfies the requirement.

For the TrustZone, in some cases, �* is used. This means that the requirement is
fulfilled on the condition that TrustZone is combined with CryptoCell. For NXP the
evaluation is based on the use case scenario from the data sheet [63] coined “Plug and
Trust”—the integration with a host processing unit.

73

Electronics 2021, 10, 1814

T
a

b
le

2
.

C
om

pa
ri

so
n

of
th

e
st

at
e-

of
-t

he
-a

rt
ag

ai
ns

tt
he

sy
nt

he
si

ze
d

re
qu

ir
em

en
ts

fo
r

se
cu

re
Io

T
de

vi
ce

s.

N
o

.
R

e
q

u
ir

e
m

e
n

t
A

rm
T

ru
st

Z
o

n
e

In
te

l
S

G
X

K
e

y
st

o
n

e
O

p
e

n
T

it
a

n
N

X
P

S
E

0
5

0
G

E
O

N
S

o
C

R
a

m
b

u
s

R
T

C
at

.1
H

ar
dw

ar
e

Se
cu

ri
ty

1.
1

Im
m

u
ta

bl
e

H
ar

d
w

ar
e

R
oo

to
fT

ru
st

�*
�

�
�

�
�

�
1.

2
H

W
pr

ov
id

ed
se

cu
ri

ty
fe

a-
tu

re
s

�
�

�
�

�
�

�
1.

3
Ta

m
pe

r
pr

ot
ec

tio
n

an
d

de
-

te
ct

io
n

�*
�

�
�

�
�

�
1.

4
R

an
do

m
N

um
be

r
G

en
er

a-
to

r
(h

ar
dw

ar
e-

ba
se

d
if

fe
a-

si
bl

e)

�*
�

�
�

�
�

�

C
at

.2
Tr

us
ta

nd
in

te
gr

it
y

m
an

ag
em

en
t

2.
1

Se
cu

re
bo

ot
pr

oc
es

s
ba

se
d

on
H

W
R

oT
.

�
�

�
�/

�
�

�
�

2.
2

So
ft

w
ar

e
(c

od
e,

ap
p

lic
a-

tio
ns

)s
ig

ne
d

cr
yp

to
gr

ap
h-

ic
al

ly
an

d
ve

ri
fi

ed
u

p
on

in
st

al
la

ti
on

or
ex

ec
ut

io
n

�*
�

�
�

�
�

�

2.
3

R
es

to
re

la
st

kn
ow

n
se

cu
re

st
at

e
(e

.g
.,

fi
rm

w
ar

e
ro

ll-
ba

ck
,

w
he

n
co

d
e

is
ve

ri
-

fi
ed

as
d

am
ag

ed
or

ta
m

-
pe

re
d)

�*
�

�
�

�
�

�

2.
4

So
ft

w
ar

e
in

st
al

la
ti

on
co

nt
ro

l
in

O
S,

to
p

re
ve

nt
un

au
th

en
ti

ca
te

d
so

ft
w

ar
e

an
d

fi
le

s
fr

om
be

in
g

lo
ad

ed
on

to
it

�*
�

�
�

�
�

�

C
at

.3
D

at
a

pr
ot

ec
ti

on
an

d
so

ft
w

ar
e

de
si

gn
3.

1
En

cr
yp

tio
n

of
da

ta
st

or
ag

e
m

ed
iu

m
.

�
�

�
�

�
�

�
3.

2
In

pu
td

at
a

va
lid

at
io

n
�

�
�

�
�

�
�

3.
3

P
ro

ce
ss

p
ri

vi
le

ge
m

in
i-

m
iz

at
io

n
�

�
�

�
�

�
�

3.
4

M
em

or
y

co
m

p
ar

tm
en

ta
l-

iz
at

io
n,

pr
oc

es
s

is
ol

at
io

n
�

�
�

�
�

�
�

74

Electronics 2021, 10, 1814

T
a

b
le

2
.

C
on

t.

N
o

.
R

e
q

u
ir

e
m

e
n

t
A

rm
T

ru
st

Z
o

n
e

In
te

l
S

G
X

K
e

y
st

o
n

e
O

p
e

n
T

it
a

n
N

X
P

S
E

0
5

0
G

E
O

N
S

o
C

R
a

m
b

u
s

R
T

C
at

.4
D

ev
ic

e
co

nfi
gu

ra
ti

on
an

d
so

ft
w

ar
e

up
da

te
4.

1
C

ha
ng

in
g

th
e

d
ev

ic
e’

s
FW

an
d

SW
co

nfi
gu

ra
ti

on
by

au
th

or
iz

ed
en

ti
ti

es

�*
�

�
�

�
�

�

4.
2

U
pd

at
in

g
de

vi
ce

’s
FW

an
d

SW
th

ro
ug

h
re

m
ot

e
or

lo
ca

lm
ea

ns
by

au
th

or
iz

ed
en

tit
ie

s

�
�

�
�

�
�

�

4.
3

U
pd

at
e

fil
e

m
us

t
be

en
cr

yp
te

d,
si

gn
ed

an
d

de
vi

ce
ve

ri
fie

s
its

in
-

te
gr

ity
be

fo
re

ap
pl

ic
at

io
n

�*
�

�
�

�
�

�

4.
4

A
ut

om
at

ic
up

da
te

ca
pa

bi
lit

y
�

�
�

�
�

�
�

4.
5

Ba
ck

w
ar

d
co

m
pa

tib
ili

ty
of

up
-

da
te

s
�

�
�

�
�

�
�

C
at

.5
Se

cu
re

in
te

rf
ac

es
an

d
co

m
m

un
ic

at
io

n
In

te
rf

ac
e

se
cu

ri
ty

5.
1

A
bi

lit
y

to
di

sa
bl

e
or

lo
gi

ca
lly

re
-

st
ri

ct
ac

ce
ss

to
an

y
lo

ca
l

an
d

ne
t-

w
or

k
in

te
rf

ac
es

�
�

�
�

�
�

�

5.
2

D
ep

lo
ym

en
t

w
ith

ou
t

de
bu

gg
in

g,
di

ag
no

st
ic

or
te

st
in

g
in

te
rf

ac
es

th
at

co
ul

d
be

ab
us

ed
by

ad
ve

rs
ar

y

�
�

�
�

�
�

�

Pr
ot

oc
ol

se
cu

ri
ty

5.
3

C
om

m
un

ic
at

io
n

se
cu

ri
ty

us
in

g
st

at
e-

of
-th

e-
ar

t,
st

an
da

rd
iz

ed
se

cu
-

ri
ty

pr
ot

oc
ol

s
(e

.g
.,

TL
S

fo
re

nc
ry

p-
tio

n)

�*
�

�
�

�
�

�

5.
4

M
ut

ua
l

au
th

en
tic

at
io

n
of

th
e

de
-

vi
ce

sb
ef

or
e

tr
us

tc
an

be
es

ta
bl

is
he

d
(p

re
ve

nt
m

an
in

th
e

m
id

dl
e

at
ta

ck
)

�
�

�
�

�
�

�

5.
5

Pr
ev

en
tu

na
ut

ho
ri

ze
d

co
nn

ec
tio

ns
to

pr
od

uc
t

or
ot

he
r

de
vi

ce
s

it
is

co
nn

ec
te

d
to

,
at

al
l

le
ve

ls
of

th
e

pr
ot

oc
ol

s.

�
�

�
�

�
�

�

D
at

a
se

cu
ri

ty
5.

6
C

on
fid

en
tia

lit
y,

in
te

gr
ity

an
d

au
-

th
en

tic
ity

of
th

e
tr

an
sm

itt
ed

da
ta

�*
�

�
�

�
�

�

75

Electronics 2021, 10, 1814

T
a

b
le

2
.

C
on

t.

N
o

.
R

e
q

u
ir

e
m

e
n

t
A

rm
T

ru
st

Z
o

n
e

In
te

l
S

G
X

K
e

y
st

o
n

e
O

p
e

n
T

it
a

n
N

X
P

S
E

0
5

0
G

E
O

N
S

o
C

R
a

m
b

u
s

R
T

C
at

.6
C

yb
er

se
cu

ri
ty

ev
en

tm
on

it
or

in
g

an
d

lo
gg

in
g

6.
1

L
og

gi
ng

cy
be

rs
ec

u
ri

ty
ev

en
ts

fr
om

de
vi

ce
’s

H
W

,F
W

an
d

SW
�

�
�

�/
�

�
�

�
6.

2
R

ec
or

d
in

g
su

ffi
ci

en
t

d
et

ai
ls

fo
r

ea
ch

lo
gg

ed
ev

en
t

�
�

�
�/

�
�

�
�

6.
3

R
es

tr
ic

ti
ng

ac
ce

ss
to

th
e

lo
gs

to
au

th
or

iz
ed

en
ti

ti
es

on
ly

an
d

p
re

ve
nt

al
le

nt
it

ie
s

fr
om

ed
it

in
g

th
em

�
�

�
�/

�
�

�
�

6.
4

A
vo

id
se

cu
ri

ty
is

su
es

w
he

n
d

e-
si

gn
in

g
er

ro
r

m
es

sa
ge

s.
�

�
�

�
�

�
�

6.
5

D
ev

ic
e’

s
be

ha
vi

or
sh

ou
ld

be
m

on
it

or
ed

an
d

co
m

p
ar

ed
w

it
h

m
od

el
to

de
te

ct
an

om
al

ie
s

�
�

�
�

�
�

�

C
at

.7
C

ry
pt

og
ra

ph
y

an
d

ke
y

m
an

ag
em

en
t

7.
1

U
se

of
St

an
d

ar
d

C
ry

p
to

gr
ap

hi
c

A
lg

or
it

hm
s

an
d

Se
cu

ri
ty

P
ro

to
-

co
ls

�*
�

�
�

�
�

�

7.
2

Se
cu

ri
ty

p
ro

to
co

ls
sh

ou
ld

su
p

-
po

rt
al

go
ri

th
m

ag
ili

ty
�*

�
�

�
�

�
�

7.
3

Le
ng

th
of

th
e

ke
y

sh
ou

ld
pr

ov
id

e
st

ro
ng

se
cu

ri
ty

,m
ak

e
br

ut
e-

fo
rc

e
at

ta
ck

in
fe

as
ib

le

�
�

�
�

�
�

�

7.
4

E
ve

ry
d

ev
ic

e
m

u
st

be
in

st
an

ti
-

at
ed

w
it

h
un

iq
ue

pr
iv

at
e

ke
y(

s)
�*

�
�

�
�

�
�

7.
5

Se
cu

re
an

d
sc

al
ab

le
m

an
ag

em
en

t
of

cr
yp

to
gr

ap
hi

c
ke

ys
(g

en
er

a-
ti

on
,s

to
ra

ge
,d

is
tr

ib
ut

io
n)

�*
�

�
�

�
�

�

C
at

.8
D

ev
ic

e
id

en
ti

fic
at

io
n,

au
th

en
ti

ca
ti

on
,s

tr
on

g
de

fa
ul

ts
ec

ur
it

y
8.

1
U

ni
qu

e
p

hy
si

ca
l

id
en

ti
fi

er
on

ly
au

th
or

iz
ed

en
ti

ti
es

ca
n

ac
ce

ss
�*

�
�

�
�

�
�

8.
2

D
ev

ic
e

m
us

tb
e

pr
ov

is
io

ne
d

w
ith

un
iq

ue
lo

gi
ca

li
de

nt
ifi

er
�

�
�

�
�

�
�

76

Electronics 2021, 10, 1814

T
a

b
le

2
.

C
on

t.

N
o

.
R

e
q

u
ir

e
m

e
n

t
A

rm
T

ru
st

Z
o

n
e

In
te

l
S

G
X

K
e

y
st

o
n

e
O

p
e

n
T

it
a

n
N

X
P

S
E

0
5

0
G

E
O

N
S

o
C

R
a

m
b

u
s

R
T

8.
3

R
ob

us
ta

ut
he

nt
ic

at
io

n
an

d
au

th
or

iz
at

io
n

sc
he

m
es

�
�

�
�

�
�

�
8.

4
St

ro
ng

,d
ev

ic
e-

in
d

iv
id

ua
l

d
ef

au
lt

p
as

sw
or

d
s

th
at

ha
s

to
be

ch
an

ge
d

by
th

e
us

er
du

ri
ng

in
it

ia
ls

et
up

�
�

�
�

�
�

�

8.
5

L
im

it
in

g
nu

m
be

r
of

in
-

va
lid

lo
gi

n
at

te
m

p
ts

or
in

tr
od

uc
in

g
in

cr
em

en
ti

ng
de

la
ys

be
tw

ee
n

th
em

�
�

�
�

�
�

�

8.
6

A
va

ila
bi

lit
y

of
tw

o-
fa

ct
or

au
th

en
ti

ca
ti

on
�

�
�

�
�

�
�

8.
7

P
ro

d
u

ct
se

cu
ri

ty
sh

al
l

be
ap

p
ro

p
ri

at
el

y
en

ab
le

d
by

de
fa

ul
t.

�
�

�
�

�
�

�

77

Electronics 2021, 10, 1814

5. Discussion

In the current IoT security landscape, many institutions and entities are defining
security requirements, but no industry-wide standard has been agreed upon. Device
designers and vendors have their own proprietary solutions, which address some issues
but miss the target in others. To the best of our knowledge, no solution addresses all the
requirements presented in Table 1 out-of-the-box which generally leaves the solving of
security problems mainly in the hands of the designing entity with the potential to create
unsecured IoT devices.

Additionally, there is no industry wide standardization of the level of security needed,
which would aid the designers of IoT devices. A different security level is required for
traffic light control in a smart city than for an “intelligent” and connected toothbrush. This
should also be part of the discussion and possibly even have a certification entity. Table 1
could be divided into different security levels and additionally be configurable within
some of the requirements, that is, the key strength or chosen encryption algorithm should
be implicitly standardized for different security needs.

Some solutions presented in Section 4 are, in theory, processor/architecture agnostic,
but others like Arm TrustZone or Intel SGX are tied in with a specific architecture, which
makes the security improvements dependent on the designing entity and the agility of their
bug-fixing process. Additionally, the solutions in the current environment are generally
divided into more hardware or software heavy, even though a combined solution of strong
TEE and software process isolation with hardware cryptographic implementations and
Hardware Root of Trust functionalities would seem to be the most secure. In our opinion,
the discussed open-source solutions, Keystone and OpenTitan, could work together to
create a highly secure prototype of a framework for IoT device protection, whilst being
publicly attestable and with all the benefits of independence.

Many solutions in the present state-of-the-art fulfill a subset of secure IoT device
requirements, but none adheres to all of them. No common approach is present for
many application-level IoT requirements (Table 1), such as the return to a secure state,
interface disabling in the SoC, automatic update by default and the logging of IoT device
security events and others. This is an issue during the design of such devices and could
have a real-world impact in the future. All current solutions focus on the wider trusted
computing paradigm or on providing a hardware cryptographic acceleration, rather than
being dedicated explicitly to IoT devices.

A comprehensive design framework is needed to assist in the design of secure IoT
devices. Such a solution should take into consideration the most important security re-
quirements shown in Section 3. We believe that it would, in a way, simplify the technology
development and mitigate the problem of time-to-market/functionality trade-off in oppo-
sition to security. It should be possible to add, remove or configure IoT security on a block
system level in accordance with the target application of the device.

6. Conclusions

The IoT ecosystem poses new security challenges that extend beyond traditional data
security. There is a need for IoT security guidelines, and numerous institutions across the
globe have proposed their recommendations, aiming to help ensure a secure IoT infrastruc-
ture. Device designers and vendors have their own proprietary solutions, which address
some issues, but miss the target in others. In this paper, selected recommendations have
been analyzed and compiled into a set of the most common and important considerations,
divided into eight categories. The evaluation of representative examples from IoT security
technologies against these criteria shows that there are solutions with the potential to meet
all these recommendations, but at the moment no solution addresses all requirements in an
out-of-the-box capacity, which allows for further research in this field.

Author Contributions: Conceptualization, M.C., M.K., F.K. and M.R.; methodology, M.C., M.K.
and F.K.; investigation, M.C., M.K. and F.K.; writing—original draft preparation, M.C., M.K. and

78

Electronics 2021, 10, 1814

F.K.; writing—review and editing, K.S. and M.R.; visualization, M.K.; supervision, M.R.; project
administration, M.R.; funding acquisition, M.R. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by The Polish National Centre for Research and Development
under project No. CYBERSECIDENT/456446/III/NCBR/2020.

Conflicts of Interest: The authors declare no conflict of interest.The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Abbreviations

Abbreviations
The following abbreviations are used in this manuscript:

79

Electronics 2021, 10, 1814

AC Air Conditioning
AES Advanced Encryption Standard
AHB AMBA High-performance Bus
AMBA ARM Advanced Microcontroller Bus Architecture
APB AMBA Advanced Peripheral Bus
API Application Programming Interface
AXI AMBA Advanced eXtensible Interface
CCTV Closed-circuit Television
CLI Command Line Interface
CMAC Cipher-based Message Authentication Code
CPU Central Processing Unit
DDoS Distributed Denial of Service
DMA Direct Memory Access
ECC Elliptic-curve cryptography
FW Firmware
GSM Global System for Mobile Communications
HMAC keyed-Hash Message Authentication Code
HW Hardware
HWRoT, RoT (Hardware) Root of Trust
I2C Inter-Integrated Circuit communication bus
IC Integrated Circuit
IoT Internet of Things
IP Intellectual Property
JCOPOS Java Card OpenPlatform Operating System
JTAG Joint Test Action Group
M-mode RISC-V Machine Mode
NIST National Institute of Standards and Technology
OS Operating System
REE Rich Execution Environment
RFID Radio-frequency Identification
ROM Read-only Memory
RSA Rivest–Shamir–Adleman (public key cryptosystem)
S-mode RISC-V Supervisor Mode
SGX (Intel) Software Guard Extensions
SHA-1 Secure Hash Algorithm 1
SoC System-on-Chip
SW Software
TCB Trusted Computing Base
TEE Trusted Execution Environment
TLS Transport Layer Security
TPM Trusted Platform Module
U-mode RISC-V User Mode

80

Electronics 2021, 10, 1814

References

1. Ericsson. IoT Connections Outlook. Available online: https://www.ericsson.com/en/mobility-report/dataforecasts/iot-
connections-outlook (accessed on 24 June 2021).

2. Lueth, K.L. State of the IoT 2020: 12 billion IoT Connections, Surpassing Non-IoT for the First Time. Available online:
https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-iot-for-the-first-time/ (accessed on
24 June 2021).

3. Neshenko, N.; Bou-Harb, E.; Crichigno, J.; Kaddoum, G.; Ghani, N. Demystifying IoT Security: An Exhaustive Survey on IoT
Vulnerabilities and a First Empirical Look on Internet-Scale IoT Exploitations. IEEE Commun. Surv. Tutor. 2019, 21. [CrossRef]

4. Greenberg, A. Hackers Remotely Kill a Jeep on the Highway—With Me in It. Available online: https://www.wired.com/2015/0
7/hackers-remotely-kill-jeep-highway/ (accessed on 24 June 2021).

5. Graff, G.M. How a Dorm Room Minecraft Scam Brought down the Internet. Available online: https://www.wired.com/story/
mirai-botnet-minecraft-scam-brought-down-the-internet/ (accessed on 24 June 2021).

6. Ben Herzberg, I.Z.; Bekerman, D. Breaking Down Mirai: An IoT DDoS Botnet Analysis. Available online: https://www.imperva.
com/blog/malware-analysis-mirai-ddos-botnet/ (accessed on 24 June 2021).

7. Green, A. The Mirai Botnet Attack and Revenge of the Internet of Things. Available online: https://www.varonis.com/blog/the-
mirai-botnet-attack-and-revenge-of-the-internet-of-things/ (accessed on 24 June 2021).

8. Bonomi, F.; Milito, R. Fog Computing and its Role in the Internet of Things. Proc. MCC Workshop Mob. Cloud Comput. 2012.
[CrossRef]

9. Gupta, N.; Rodrigues, J.J.P.C.; Dauwels, J. (Eds.) Augmented Intelligence toward Smart Vehicular Application; CRC Press: Boca Raton,
FL, USA, 2020; pp. 7–13. [CrossRef]

10. Park, H.; Zhai, S.; Lu, L.; Lin, F.X. StreamBox-TZ: Secure Stream Analytics at the Edge with TrustZone. In Proceedings of the 2019
USENIX Annual Technical Conference (USENIX ATC 19), Renton, WA, USA, 10–12 July 2019; pp. 537–554.

11. Fournaris, A.P.; Alexakos, C.; Anagnostopoulos, C.; Koulamas, C.; Kalogeras, A. Introducing Hardware-Based Intelligence and
Reconfigurability on Industrial IoT Edge Nodes. IEEE Des. Test 2019, 36, 15–23. [CrossRef]

12. Mahmoud, R.; Yousuf, T.; Aloul, F.; Zualkernan, I. Internet of things (IoT) security: Current status, challenges and prospective
measures. In Proceedings of the 2015 10th International Conference for Internet Technology and Secured Transactions, London,
UK, 8–10 December 2016; pp. 336–341. [CrossRef]

13. binti Mohamad Noor, M.; Hassan, W.H. Current research on Internet of Things (IoT) security: A survey. Comput. Netw. 2019,
148, 283–294. [CrossRef]

14. Alladi, T.; Chamola, V.; Sikdar, B.; Choo, K.K.R. Consumer IoT: Security Vulnerability Case Studies and Solutions. IEEE Consum.
Electron. Mag. 2020, 9, 17–25. [CrossRef]

15. Tsiropoulou, E.E.; Baras, J.S.; Papavassiliou, S.; Qu, G. On the Mitigation of Interference Imposed by Intruders in Passive RFID
Networks. In Decision and Game Theory for Security; Zhu, Q., Alpcan, T., Panaousis, E., Tambe, M., Casey, W., Eds.; Springer
International Publishing: Cham, Switzerland, 2016; pp. 62–80.

16. Mohanta, B.K.; Jena, D.; Satapathy, U.; Patnaik, S. Survey on IoT security: Challenges and solution using machine learning,
artificial intelligence and blockchain technology. Internet Things 2020, 11, 100227. [CrossRef]

17. Zhu, Q.; Başar, T. Game-Theoretic Approach to Feedback-Driven Multi-stage Moving Target Defense. In Decision and Game
Theory for Security; Das, S.K., Nita-Rotaru, C., Kantarcioglu, M., Eds.; Springer International Publishing: Cham, Switzerland, 2013;
pp. 246–263.

18. Fagan, M.; Megas, K.N.; Scarfone, K.; Smith, M. IoT device cybersecurity capability core baseline. In Technical Report; National
Institute of Standards and Technology: Gaithersburg, MD, USA, 2020. [CrossRef]

19. Fortino, G.; Savaglio, C.; Spezzano, G.; Zhou, M. Internet of Things as System of Systems: A Review of Methodologies,
Frameworks, Platforms, and Tools. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 223–236. [CrossRef]

20. Tournier, J.; Lesueur, F.; Mouël, F.L.; Guyon, L.; Ben-Hassine, H. A survey of IoT protocols and their security issues through the
lens of a generic IoT stack. Internet Things 2020, 100264. [CrossRef]

21. Sinche, S.; Raposo, D.; Armando, N.; Rodrigues, A.; Boavida, F.; Pereira, V.; Silva, J.S. A Survey of IoT Management Protocols and
Frameworks. IEEE Commun. Surv. Tutor. 2020, 22, 1168–1190. [CrossRef]

22. Babun, L.; Denney, K.; Celik, Z.B.; McDaniel, P.; Uluagac, A.S. A survey on IoT platforms: Communication, security, and privacy
perspectives. Comput. Netw. 2021, 192, 108040. [CrossRef]

23. Ammar, M.; Russello, G.; Crispo, B. Internet of Things: A survey on the security of IoT frameworks. J. Inf. Secur. Appl. 2018,
38, 8–27. [CrossRef]

24. Macedo, E.L.; De Oliveira, E.A.; Silva, F.H.; Mello, R.R.; Franca, F.M.; Delicato, F.C.; De Rezende, J.F.; De Moraes, L.F. On the
security aspects of Internet of Things: A systematic literature review. J. Commun. Netw. 2019, 21, 444–457. [CrossRef]

25. Abdul-Ghani, H.A.; Konstantas, D. A comprehensive study of security and privacy guidelines, threats, and countermeasures: An
IoT perspective. J. Sens. Actuator Netw. 2019, 8, 22. [CrossRef]

26. Maene, P.; Götzfried, J.; De Clercq, R.; Müller, T.; Freiling, F.; Verbauwhede, I. Hardware-Based Trusted Computing Architectures
for Isolation and Attestation. IEEE Trans. Comput. 2018, 67, 361–374. [CrossRef]

81

Electronics 2021, 10, 1814

27. European Union Agency for Network and Information Security. Baseline Security Recommendations for IoT in the Context of
Critical Information Infrastructures. Available online: https://op.europa.eu/en/publication-detail/-/publication/c37f8196-d9
6f-11e7-a506-01aa75ed71a1/language-en (accessed on 30 June 2021).

28. GSM Association. IoT Security Guidelines Overview Document—Version 2.2. Available online: https://www.gsma.com/iot/wp-
content/uploads/2020/05/CLP.11-v2.2-GSMA-IoT-Security-Guidelines-Overview-Document.pdf (accessed on 30 June 2021).

29. GSM Association. IoT Security Guidelines for IoT Service Ecosystem—Version 2.2. Available online: https://www.gsma.
com/iot/wp-content/uploads/2020/05/CLP.12-v2.2-GSMA-IoT-Security-Guidelines-for-Service-Ecosystems.pdf (accessed on
30 June 2021).

30. GSM Association. IoT Security Guidelines for Endpoint Ecosystem—Version 2.2. Available online: https://www.gsma.com/
iot/wp-content/uploads/2020/05/CLP.13-v2.2-GSMA-IoT-Security-Guidelines-for-Endpoint-Ecosystems.pdf (accessed on
30 June 2021).

31. Moore, K.; Barnes, R.; Tschofenig, H. Best Current Practices for Securing Internet of Things (IoT) Devices. Internet-Draft
draft-moore-iot-security-bcp-01. Internet Eng. Task Force 2017, Work in Progress.

32. Wang, B.; Liu, S.; Wan, L.; Li, J.; Wang, X.T. Technical Requirements for Secure Access and Management of IoT Smart Terminals.
Internet-Draft draft-wang-secure-access-of-iot-terminals-01. Internet Eng. Task Force 2021, Work in Progress.

33. Garcia-Morchon, O.; Kumar, S.; Sethi, M. Internet of Things (IoT) Security: State of the Art and Challenges. Available online:
https://www.rfc-editor.org/info/rfc8576 (accessed on 30 June 2021).

34. Foundation, I.S. Secure Design—Best Practice Guides—Release 2. Internet of Things (IoT) Security: State of the Art and
Challenges. Available online: https://www.iotsecurityfoundation.org/wp-content/uploads/2019/12/Best-Practice-Guides-
Release-2_Digitalv3.pdf (accessed on 30 June 2021).

35. ioXt Alliance. ioXt Pledge—The Global Standard for IoT Security. Available online: https://static1.squarespace.com/
static/5c6dbac1f8135a29c7fbb621/t/5fb43a05bda7c3689ea5bd32/1605646853608/ioXt+Pledge+Book_Secure.pdf (accessed on
30 June 2021).

36. International Organization for Standardization. Cybersecurity—IoT Security and Privacy—Guidelines. Available online:
https://www.iso.org/standard/44373.html (accessed on 30 June 2021).

37. Trusted Computing Group. Trusted Computing Group Glossary. Version 1.1. Available online: https://trustedcomputinggroup.
org/wp-content/uploads/TCG-Glossary-V1.1-Rev-1.0.pdf (accessed on 30 June 2021).

38. GlobalPlatform, Inc. GlobalPlatform Security Task Force Root of Trust Definitions and Requirements. Available online: https:
//globalplatform.org/wp-content/uploads/2018/06/GP_RoT_Definitions_and_Requirements_v1.0.1_PublicRelease_CC.pdf (ac-
cessed on 30 June 2021).

39. Arm. Arm® Platform Security Requirements 1.0. Available online: https://developer.arm.com/documentation/den0106/latest/
(accessed on 30 June 2021).

40. Pinto, S.; Santos, N. Demystifying Arm TrustZone: A comprehensive survey. ACM Comput. Surv. 2019, 51, 36. [CrossRef]
41. Arm. Learn the Architecture: TrustZone for AArch64. Available online: https://developer.arm.com/documentation/102418/0

100 (accessed on 24 June 2021).
42. Zhao, S.; Zhang, Q.; Hu, G.; Qin, Y.; Feng, D. Providing Root of Trust for ARM TrustZone using On-Chip SRAM. In Proceedings

of the 4th International Workshop on Trustworthy Embedded Devices—TrustED ’14, Scottsdale, AZ, USA, 3 November 2014;
pp. 25–36.

43. Arm. CryptoCell-300 Family. Available online: https://developer.arm.com/ip-products/security-ip/cryptocell-300-family
(accessed on 24 June 2021).

44. Arm. CryptoCell-700 Family. Available online: https://developer.arm.com/ip-products/security-ip/cryptocell-700-family.
(accessed on 24 June 2021).

45. Wallace, J. Arm CryptoCell-312: Simplifying the Design of Secure IoT Systems. 2016. Available online: https:
//community.arm.com/developer/ip-products/system/b/embedded-blog/posts/arm-trustzone-cryptocell-312-simplifying-
the-design-of-secure-iot-systems
(accessed on 24 June 2021).

46. Nordic Semiconductor. CRYPTOCELL—ARM® TrustZone® CryptoCell 310. 2021. Available online: https://infocenter.
nordicsemi.com/index.jsp?topic=%2Fps_nrf52840%2Fcryptocell.html (accessed on 24 June 2021).

47. Anati, I.; Gueron, S.; Johnson, S.; Scarlata, V. Innovative technology for CPU based attestation and sealing. In Proceedings of
the 2nd International Workshop on Hardware and Architectural Support for Security and Privacy; ACM: New York, NY, USA, 2013;
Volume 13, p. 7.

48. Intel SGX-Remote Attestation. Available online: https://software.intel.com/content/www/us/en/develop/topics/software-
guard-extensions/attestation-services.html (accessed on 30 June 2021).

49. Costan, V.; Devadas, S. Intel SGX Explained. Available online: https://eprint.iacr.org/2016/086.pdf (accessed on 30 June 2021).
50. Intel SGX—Security Essentials Solution Brief. Available online: https://www.intel.com/content/dam/www/public/us/en/

documents/solution-briefs/intel-security-essentials-solution-brief.pdf (accessed on 30 June 2021).
51. Intel SGX—IoT Edge Devices. Available online: https://software.intel.com/content/www/us/en/develop/topics/software-

guard-extensions.html (accessed on 30 June 2021).

82

Electronics 2021, 10, 1814

52. Brasser, F.; Müller, U.; Dmitrienko, A.; Kostiainen, K.; Capkun, S.; Sadeghi, A.R. Software Grand Exposure:{SGX} Cache
Attacks are Practical. Available online: https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
(accessed on 30 June 2021).

53. Van Bulck, J.; Minkin, M.; Weisse, O.; Genkin, D.; Kasikci, B.; Piessens, F.; Silberstein, M.; Wenisch, T.F.; Yarom, Y.; Strackx, R.
Foreshadow: Extracting the keys to the intel {SGX} kingdom with transient out-of-order execution. In Proceedings of the 27th
{USENIX} Security Symposium ({USENIX} Security 18), Baltimore, MD, USA, 15–17 Auguest 2018, pp. 991–1008.

54. Chen, G.; Chen, S.; Xiao, Y.; Zhang, Y.; Lin, Z.; Lai, T.H. Sgxpectre: Stealing intel secrets from sgx enclaves via speculative
execution. In Proceedings of the 2019 IEEE European Symposium on Security and Privacy (EuroS&P), Stockholm, Sweden, 17–19
June 2019; pp. 142–157.

55. Murdock, K.; Oswald, D.; Garcia, F.D.; Van Bulck, J.; Gruss, D.; Piessens, F. Plundervolt: Software-based fault injection attacks
against Intel SGX. In Proceedings of the 2020 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 17–21 May
2020; pp. 1466–1482.

56. Lee, D.; Kohlbrenner, D.; Shinde, S.; Asanović, K.; Song, D. Keystone: An open framework for architecting trusted execution
environments. In Proceedings of the Fifteenth European Conference on Computer Systems, Heraklion, Greece, 27–30 April 2020;
pp. 1–16.

57. OpenTitan—Open Source Silicon Root of Trust. Available online: https://opentitan.org/ (accessed on 30 June 2021).
58. OpenTitan—Hardware Dashboard. Available online: https://docs.opentitan.org/hw/ (accessed on 30 June 2021).
59. OpenTitan—Earl Gray Top Level Specification. Available online: https://docs.opentitan.org/hw/top_earlgrey/doc/ (accessed

on 30 June 2021).
60. Barker, E.; Kelsey, J.; National Institute of Standards and Technology. NIST Special Publication 800-90A, Revision 1:

Recommendation for Random Number Generation Using Deterministic Random Bit Generators. Available online: https:
//csrc.nist.gov/publications/detail/sp/800-90a/rev-1/final (accessed on 30 June 2021).

61. Barker, E.; Kelsey, J.; National Institute of Standards and Technology. NIST Special Publication 800-90C (Second Draft):
Recommendation for Random Number Generator (RBG) Constructions. Available online: https://csrc.nist.gov/publications/
detail/sp/800-90c/draft (accessed on 30 June 2021).

62. OpenTitan—Logical Security Model. Available online: https://docs.opentitan.org/doc/security/logical_security_model/
(accessed on 30 June 2021).

63. NXP. SE050 Plug and Trust Secure Element. Available online: https://www.nxp.com/docs/en/data-sheet/SE050-DATASHEET.
pdf (accessed on 30 June 2021).

64. NXP. AN12413-SE050 APDU Specification—Application Note—Rev. 2.12. Available online: https://www.nxp.com.cn/docs/en/
application-note/AN12413.pdf (accessed on 30 June 2021).

65. Beyond Semiconductor. GEON SoC Security Platform. 2021. Available online: https://www.beyondsemi.com/116/geon-
security-platform/ (accessed on 30 June 2021).

66. Beyond Semiconductor. GEON Secure Boot. 2021. Available online: https://www.beyondsemi.com/117/geon-secure-boot/
(accessed on 30 June 2021).

67. Beyond Semiconductor. GEON Secure JTAG. 2021. Available online: https://www.beyondsemi.com/119/geon-secure-jtag/
(accessed on 30 June 2021).

68. Root of Trust RT-100. Foundational Security for SoCs and FPGAs. Available online: https://go.rambus.com/root-of-trust-rt-100-
product-brief (accessed on 30 June 2021).

69. Root of Trust RT-130. Foundational Security for SoCs and FPGAs for IoT Servers, Gateways and Edge Devices. Available online:
https://go.rambus.com/root-of-trust-rt-130-product-brief (accessed on 30 June 2021).

70. Root of Trust RT-140. Foundational Security for SoCs and FPGAs for Cloud-Connected Devices. Available online: https:
//go.rambus.com/root-of-trust-rt-140-product-brief (accessed on 30 June 2021).

71. Root of Trust RT-260. Foundational Security for SoCs and FPGAs for Secure MCU Devices. Available online: https://go.rambus.
com/root-of-trust-rt-260-product-brief (accessed on 30 June 2021).

83

electronics

Article

Analysis and Implementation of Threat Agents Profiles in
Semi-Automated Manner for a Network Traffic in Real-Time
Information Environment

Gaurav Sharma 1,*, Stilianos Vidalis 1, Catherine Menon 1, Niharika Anand 2 and Somesh Kumar 3

Citation: Sharma, G.; Vidalis, S.;

Menon, C.; Anand, N.; Kumar, S.

Analysis and Implementation of

Threat Agents Profiles in

Semi-Automated Manner for a

Network Traffic in Real-Time

Information Environment. Electronics

2021, 10, 1849. https://doi.org/

10.3390/electronics10151849

Academic Editor:

Krzysztof Szczypiorski

Received: 2 July 2021

Accepted: 28 July 2021

Published: 31 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computer Science & Engineering, University of Hertfordshire, Hatfield Al10 9AB, UK;
s.vidalis@herts.ac.uk (S.V.); c.menon@herts.ac.uk (C.M.)

2 Indian Institute of Information Technology Lucknow (IIITL), Lucknow 226002, India; niharika@iiitl.ac.in
3 ABV-Indian Institute of Information Technology & Management, Gwalior 474015, India; somesh@iiitm.ac.in
* Correspondence: g.gaurav@herts.ac.uk

Abstract: Threat assessment is the continuous process of monitoring the threats identified in the
network of the real-time informational environment of an organisation and the business of the compa-
nies. The sagacity and security assurance for the system of an organisation and company’s business
seem to need that information security exercise to unambiguously and effectively handle the threat
agent’s attacks. How is this unambiguous and effective way in the present-day state of information
security practice working? Given the prevalence of threats in the modern information environment,
it is essential to guarantee the security of national information infrastructure. However, the existing
models and methodology are not addressing the attributes of threats like motivation, opportunity,
and capability (C, M, O), and the critical threat intelligence (CTI) feed to the threat agents during the
penetration process is ineffective, due to which security assurance arises for an organisation and the
business of companies. This paper proposes a semi-automatic information security model, which can
deal with situational awareness data, strategies prevailing information security activities, and proto-
cols monitoring specific types of the network next to the real-time information environment. This
paper looks over analyses and implements the threat assessment of network traffic in one particular
real-time informational environment. To achieve this, we determined various unique attributes of
threat agents from the Packet Capture Application Programming Interface (PCAP files/DataStream)
collected from the network between the years 2012 and 2019. We used hypothetical and real-world
examples of a threat agent to evaluate the three different factors of threat agents, i.e., Motivation,
Opportunity, and Capability (M, O, C). Based on this, we also designed and determined the threat
profiles, critical threat intelligence (CTI), and complexity of threat agents that are not addressed or
covered in the existing threat agent taxonomies models and methodologies.

Keywords: threat agents; motivation; opportunity; capability; user profiling; implicit; modeling;
real-time user monitoring; complexity threat agent; threat assessment

1. Introduction

Identifying the potential cybersecurity threat capability in real-time is a crucial ac-
tivity. It helps provide practical information about the threat in a network that allows
cybersecurity practitioners to take suitable action to mitigate the risk in a network [1].
Elaborating all the information about the potential cybersecurity threats of an organisation
is typically achieved manually by the existing models and methodology. Threat assessment
is implemented in an automated manner with the help of machine learning techniques
and various real-time models [2]. The behaviours of threat agents are erratic, and the
goals of threat agents change with time. Threat agent groups change their behaviour to
penetrate a network based on motivation, opportunity, and capability [3,4]. The motivation
of the threat agent constantly changes with time depends on the financial gain, revenge

Electronics 2021, 10, 1849. https://doi.org/10.3390/electronics10151849 https://www.mdpi.com/journal/electronics85

Electronics 2021, 10, 1849

from an organisation, etc., and the type of environment targeted. Profiling is a process
that generates a profile for the threat agents based on the historical information extracted
from the Packet Capture Application Programming Interface (PCAP) files captured in
a network with the help of penetration testing phases. The profile can be populated by
having suitable, ample, and precise information about the threat agent like behaviour,
source I.P. address, destination I.P. address, number of open ports, number of packets
generated, location of the threat agent, and time spent on the network with minimal user
intervention [5]. The user has minimal intervention because of the footprints captured
by the capturing data tool like LibPcap, WinPcap, PCAPng, NPcap, etc., during threat
assessment in the form of PCAP files that cannot be altered by the potential threat agent
while traversing an organisation’s network. The threat agent cannot alter because once
they generate the packets in the network, they cannot erase the footprint of generating
the packets because of the accessing property of the network. This research attempts to
recognise the aspects of profiling and deliver solutions by implementing the profiling of
threat agents. Threat profiling is an essential aspect of performing threat assessment for an
organisation. Suppose we have the threat profile for the historically identified threat agents
from the network of an organisation. In that case, we can use these profiles as references
while executing the threat assessment for the situational awareness data captured from
the network. The model can address the recent threat agent effectively identified from a
network with optimised complexity.

It has been accepted that continuous threat assessments practice mitigate the risks
for any organisation and business [6]. However, in the modern, socially driven, virtual
computing era, threat assessments are hindered by a lack of resources, complexity, and data
size [7]. Information Environments are large heterogeneous infrastructures, hosting a large
amount of data collected from different types of sensors and platforms [8]. To cope with
a large amount of data, decision aid tools should understand the situational awareness
property of data and threat assessments required for an organisation. University computer
emergency response team (CMU-CERT) groups determined three critical groups of threat
agents, i.e., the technology of organisation sabotage, compromising with intellectual prop-
erty, and data stream fraud [9]. The number of growing cases highlighted by internet media
in recent years revealed that both business organisations and government organisations
suffered a similar experience. In contrast, the priority information has been filtrated by
the organisation’s internal users and shared with the threat agents [10]. The threat agents
require serious attention from both users and organisations.

Referencing to the COVID-19 pandemic nowadays, organisations and businesses
share their file and documents frequently with the help of the internet to run their business.
It is now standard practice for users of the organisation to have admittance to large
repository documents which are electronically warehoused on distributed file servers.
Many organisations offer company laptops and desktops to the users for work while
using e-mail to organise and schedule/rescheduling meetings. Amenities such as video
conferencing are repeatedly used for holding meetings throughout the world, and users of
an organisation are continuously connected to the internet. The electronic nature of the
files and records of an organisation on the internet makes it easier for the threat agents
to attack the organisation. On the advantageous side of continuous threat assessment, an
organisation can easily capture the activity logs of the internal threat agent while analysing
their captured packets [11]. However, practically analysing such activity logs is infeasible
due to the high volume of activities performed by the user every day.

In this work, we present an efficient model for threat detection and analysis based
on the conception of anomaly detection. The proposed model implements the threat
agent profiles from the PCAP files and determines the cyber threat intelligence based
on evaluating motivation, opportunity, and capability of threats. With the help of these
profiles, comparisons can be populated that show the current observations fluctuate from
the previous observations. To assess the performance of the tactic, we extracted the
valuable information from the PCAP files in a semi-automated manner, and output has

86

Electronics 2021, 10, 1849

been generated in the form of an Excel sheet which consists of various attributes of threat
agents identified in the next to the real-world information environment. The system
executed expressively soundly for detecting the attacks, and the visualisation of reports
enabled us to remember which attributes help determine M, O, C factors for the threat
agents. This paper illustrates all the threats identified in a network captured during the
penetration testing against the ESXi server of the University of Hertfordshire, UK.

The rest of this paper is as follows. Section 2 discusses the related work. Section 3
labels the necessities of analysis, the experimental set-up of the proposed system, and de-
scribes how to evaluate motivation, capability, and opportunity of threat agents. Section 4
presents the actual results from practical experimentation of the system, and Section 5
concludes this paper.

2. Related Work

The field of threat agents profiling and analysis of cyber threat intelligence has recently
received ample attention. Researchers have proposed an assortment of different models
and methodologies designed to detect or prevent attacks [12,13]. Likewise, Vidalis et al. [8]
briefly addresses the TAME (Threat Assessments Model For EPS) methodology for threat
assessments in real-time informational environments and provides a high-level overview
of its phases and process while performing threat assessments. They compare the TAME
(Threat Assessments Model For EPS) methodology with other existing methods based on
the number of parameters as sting, effectiveness, and understanding of information security
from the threat. TAME is the upgraded version of METEORE 2000 for the micropayment
system (MPS). In the initial phases, the authors analyse the number of methodologies
like Alberts 1999, 2001, Baker 1998, Bayne 2002, Blyth 2003, Dimitrakos 2001, Forte 2000,
Hancock 1998, Jones 2002, Nichols 2001, etc., and they found that all are working on the
waterfall model principle, but such approach is not suitable for the Micro Payment System
(MPS). So, they developed a new methodology i.e., TAME (Threat Assessments Model For
EPS) which has ability to resolve the issues related to Micro Payment System (MPS). TAME
(Threat Assessments Model For EPS) is working simultaneously in four phases named as:

(a) Scope of Assessments.
(b) Threat Agent and Vulnerability Analysis.
(c) Scenario Construction and System Modelling.
(d) Evaluation.

According to these phases, TAME determined how much security is required for a
particular organisation and business of the system. All four stages are working simultane-
ously, and one input from a phase becomes the output of another degree. Similarly, the
vice-versa of inputs and outputs are generated from the TAME, and it depends on the
requirements of threat assessments. The authors conclude the TAME by using the assessor
as an asset for better understanding and analysing an organisation’s systems.

Morakis et al. [14] measure vulnerabilities and their exploitation cycle by various tools
such as COPS, NESSUS, SYSTEM SCANNER, RETINA, NET RECON, WHISKER, and
CYBER COB. In this work, the authors address a problem faced by a large amount of data
in the informative environment is cyber-attacks. The authors propose a vulnerability tree
analysis to address such issues faced by several organisations for a long time. They believe
in constructing knowledge information concerning a specific domain in an object-oriented
hierarchy tree and building a formal model to analyse them concerning possible scenarios
of attacks faced by the computer systems. The primary purpose of this is to provide a depth
classification of vulnerabilities, find why such attacks happened on a particular data/asset,
and analyse footprints and scenarios of threat agents to exploit vulnerabilities. The main
aim of the vulnerability tree analysis is to identify the attacks in the early stages and
address them before severe damage to real-world informational systems. Here, the authors
illustrate the various tools capable of analysing the vulnerability of complex organisational
environments; such tools are COPS, NESSUS, SYSTEM SCANNER, RETINA, NET RECON,
WHISKER, and CYBER COB, etc. However, these are not adequate in today’s modern

87

Electronics 2021, 10, 1849

electronic era of cyber-crime because they cannot address hazards like fault-tree analysis,
checklists, event-tree analysis, cause-consequences analysis, etc. To cope with such hazards,
the authors combine these tools of vulnerabilities tree analysis with object-oriented trees
(O.O.) and adequately address such hazards concerning Boolean Mathematics.

Gerald L. et al. [15] briefly explain about threat agents regarding how they can have
unauthorised access to the computer systems of real-world informational environments
and from where they got the motivation, capability, and opportunity to perform such
damage in the networks systems. Here, they also illustrate the threat agents and their
attributes, function, and impact on a network of informational systems. The authors also
analyse the digital attacks that occured in 2002 in several countries. They identify that the
threat agents of real-world informational environments consist of:

(a) Threat agent catalogue.
(b) Historical data.
(c) Technical report enterprises.
(d) Reports of business environments.
(e) Reports of physical environments.
(f) Recent knowledge/information.
(g) Current knowledge of stakeholders.
(h) Current knowledge of the staff.
(i) List of stakeholders.

The authors evaluate the capabilities, motivation, opportunities, and impact with the
help of 3-dimension matrix mathematics. They assess each factor with the help of metrics
and ESA (Empowered Small Agents) threat agents. They identify that because of threat
agents in 2002, the European union’s worldwide economic damage is USD 35 million.
So, as the damage cost is relatively more, the system security officer needs to require all
knowledge and information about the threat agents or risk management to secure the
system from damage done by cyber-attacks in informational environments.

Adetorera Sogbesan et al. [16] developed a model to identify the MERIT (Management
& Education of Risk of Insider Threat) based on the study of insider threat concerning the
institute of CERT/USSS. This MERIT provides the facility to mitigate the insider threat
of an organisation, and the key finding is to make the case study of individual threat
agents, i.e., collision threat. MERIT models the case studies on the insider threat for an
organisation, and based on that, threat assessments have been conducted to determine
the impact of danger on the business. They also show some figures for losses based on
studies done by USSS/CERT. They categorise the insider attack based on the ex-employee,
or the financial gain of any vital position held by an employee in an organisation. Based
on the number of organisations, 69% of companies measured stated data theft events (not
external attacks). These threats were originated from inside the organisation. At the same
time, a massive 91% of companies testified not having operative detection systems for
recognising an insider threat. The MERIT model has a limitation/shortcoming in analysing
compressive pattern analysis based on motivation and behavioural characteristics. The
motivation factor of collusion attack is not able to be addressed by the MERIT model. This
model is not able to explain the capability of an insider threat.

Casillo, M. et al.’s study [17] “Embedded Intrusion Detection System for Detecting
Attacks over CAN-BUS” designs a model based on AIC (availability, integrity, and con-
fidentiality). The authors address the issues related to cyber-attacks on the automotive
vehicle system. They introduce the automotive IDS embedded method for the CAN (con-
trolled area network) BUS. Referencing the Bayesian network approaches, identifying
malicious messages to the connected devices to the vehicles is accomplished. In this paper,
the authors identify the snag for the IoT devices connected to automotive vehicles and
their attacks while using automation. They suggest machine learning approaches, particu-
larly the Bayesian network approach to cope with the cyber-attacks on the CAB bus. The
authors used the CARLA simulator to provides the solution. The PYTHON library and

88

Electronics 2021, 10, 1849

several APIs were cast off for clustering the data and FPGA techniques for developing the
model’s architecture.

Lombardi, M. et al.’s research [18] “EIDS: Embedded intrusion detection system using
machine learning to detect attack over the can-bus” introduced an IDS approach to identify
the threats in the automated vehicles, particularly CAN (controlled area network) bus. The
authors cast off the development of an IDS approach with the help of machine learning
techniques through the Bayesian network approach to detect possible attacks on the CAN
bus. The main benefit of developing an IDS approach was using the embedded framework
for designing and determining the non-linear messages flow. The castigate faced by the
connected IoT devices and the intelligent device for self-driving vehicles was identified
with the help of an introduce IDS approach in the research.

These related works draw an intense observation that access to a real-world data
stream is enormously challenging. Thus, researchers synthesise data into several groups
based on the threat agents identified in a network. The existing model and methodology
did threat assessment manually, due to which their complexity is exorbitant. This research
predominantly wants to epitomise the volume and variety of data analysed in a modern
real-world information environment and display how this could be pooled to form an
overall threat assessment for each PCAP file. We also want to exhibit a wide range of threat
scenarios as epitomised by our data collected from a real-world in a specific environment
and show how our profiling and CTI system of threat agents would detect the different
attacks based on the patterns identified.

3. Experiment Set-Up and Evaluation of MCO Attributes

The work described in this research has been carried out as part of a more comprehen-
sive interdisciplinary project that includes computer security researchers and cyberpsy-
chology experts. CTI data–driven threat agent profiling can be used for determining the
motivation, opportunity, and capabilities attributes of threat agents under the context of a
continuous threat assessment [19]. The threat remains of budding apprehension to govern-
ments and businesses organisation, and it becomes an acute necessity for practical tools to
help mitigate the threat posed. The modern risk assessment models recognise a need to
perform several threat assessments to identify and analyse various threats in the contempo-
rary information environment. If we conduct iterative threat assessment for the network,
then with the help of designing the profiling prepared by practitioners, a new type of threat
agents identified in situational awareness data will be addressed quickly. The continuous
threat assessments help generate the paradox of warning to the cyber operations performed
in the information environment. This paper identifies the research gap in semi-automated
information environments, which consists of large heterogeneous infrastructures, hosting
a large amount of data collected from different types of platforms or environments [20].
The different types of platforms mean different kinds of environment and the conditions
used by the threat agent to attack the particular network. To identify the solution for such
a large amount of data, decision aid tools should understand situational awareness and
critical intelligence feeds of the threats in real-time information environments.

In the modern knowledge-based, socially driven, virtual computing era, threat assess-
ments are hindered by lack of resources, complexity, and data size. Information environ-
ments are large heterogeneous infrastructures, hosting a large amount of data collected
from different platforms with the help of many tools. The purpose of the research paper is
to introduce a novel approach that will enable us to take advantage of the vast amount of
data collected by the large number of platforms designed to identify suspicious traffic, ma-
licious intentions, and network attacks in an automated manner. State of the art on threat
assessment models and methodologies will be considered in this project, while procedural
and technology issues will be resolved by applying cyber analytics principles [21].

89

Electronics 2021, 10, 1849

3.1. Experimental Environment of the System

Figure 1 shows the testing set-up through which we execute the penetration testing
against the specific condition of the platform or environment. The number of VPNs used to
connect with the REDNET network and connect through the firewall saves the data from
unauthorised access. Further, REDNET connects to DMZ (Demilitarized Zone), the number
of V.M.s, and public I.P. of staff to control the activities. BLUENET connects to the user’s
V.M.’s I.P.s, ESXi server, UH CSC WIFI (University of Hertfordshire Wi-Fi), and public I.P.
of staff. In this environment, the PCAP files are collected from the server with the help of
the Wireshark tool [22]. Other tools like SolarWinds Deep Packet Inspection and Analysis,
Paessler Packet Capture, ManageEngine NetFlow Analyzer, Omnipeek Network Protocol
Analyzer, TCPdump, and WinDum, etc. are also available. Still, Wireshark is more efficient
in extracting useful information from PCAP files and provides the advantage of saving
the information in CSV formats. Figure 1 shows the source of the attack I.P. address and
the destination of the attack I.P. address through which penetration is executing on the
network. The role of DMZ is to stop the hacker at the threshold point, and henceforth, no
one is allowed to do access excluded the administrator of the server [23]. The BLUENET
refers to the internal security team that defends against real-world attackers. Red Teams of
REDNET are internal/external entities dedicated to testing the effectiveness of a security
program by emulating the tools and techniques of likely attackers in the most realistic
way possible.

Figure 1. Penetrating Testing Setup at Cybersecurity Laboratory.

3.2. The Architecture of System

The primary purpose of Figure 2 is to understand how the attacker groups generate
traffic in the network, increase a delay time to upload the web page and extract useful
information from the server such as user credentials, webpages I.P. addresses, and accessing
the files from the databases. The architecture in Figure 2 shows that the ESXi server consists
of RED, BLUE, and BLACK NET HP-DL380 ESXi VM WARE CD, DNS, DHCP, which is
further connected to the Blue ESXi security zone, and DMZ (Demilitarised Security Zone).
In this server, all the data and information of the University of Hertfordshire are available,

90

Electronics 2021, 10, 1849

and a dedicated environment installed on V.M.s is available for the attackers. Black ESXi
connected to 27 x juniper srx240 and srx340 firewalls via 27 x lab system multiple images
of the environment and dedicated interface in red, blue, and black networks. DMZ’s role is
to stop the hacker at the threshold point to control further damage by the attacker groups.

Figure 2. Architecture of System.

3.3. Evaluation of Motivation, Capability, and Opportunity

The threat assessment is a continuous process to collect the PCAP files from the net-
work in an informative environment. The evaluation of the impact of threat agent groups
on the organisation or the business, determining the value of assets, vulnerability identifi-
cation, and threat agent’s footprint attributes play a prominent role in the calculation [24].
In Figure 3, the representation of main characteristics in a 3-dimensional matrix is shown,
which needs to be addressed by the model while performing threat assessments of the
real-time network.

A threat assessment is a statement of threats related to vulnerabilities of company
assets and threat agents and a message of believed capabilities that those threat agents
possess. In Equation (1), the function threat can be calculated with the help of the threat
agent’s motivation, capability, opportunity, and the impact of the successful attacks on an
organisation of the nation.

Threat = f (Motivation, Capability, Opportunity, and Impact) (1)

The threat can be evaluated in the above Equation (1) when the extracted attribute
from the PCAP files is analysed. Then, based on the analysis of characteristics, motivation
evaluation can be achieved. Similarly, when the model identifies the open port and the
vulnerable ports from the extracted attributes, opportunity can be evaluated. In the same
way, the model amalgamating all the information of motivation and opportunity leads to

91

Electronics 2021, 10, 1849

assess the capability and impact on the assets by the threats. So, the function (f) can be
evaluated using motivation, opportunity, capability, and impact of acquisitions.

F(X) = f (Cap, Opp, Mto, V(VIA)) Y + f (Vulnerability)Asset + Impact + T (2)

From Equation (2), the function F(X) represents the threat assessment of the model
for all the captured files, Cap stands for capabilities, Opp is an opportunity of the threat
agent, Mto is motivation, V(VIA) stands for the value of intangible assets, Y is for threat
assessments, and T stands for time complexity.

The threat assessment can be evaluated by amalgamating all results determined by the
function for the motivation, opportunity, capability of threat agents, and value of intangible
assets of environments. Similarly, vulnerability exploitation of assets concerning the CVE
list available on the Nation Institute of standard and technology (NIST) database, the
impact of threat agents on an organisation’s assets, and the time complexity to evaluate all
the parameters of the threat agents can be assessed.

Figure 3. Three-Dimensional Matrix and 3D Representation of Threat Assessment.

3.3.1. Motivation

The evaluation of motivation for threats is the problematic part. It could be determined
with the help of analysis of hacktivism branded attacks by groups of assessment models and
the network’s vulnerability in next to real-time semi-automated information environments.
The motivations of attackers are constantly changing, and it could be noticed by the
growing rate of hacktivism attacks by different groups of people. It can also see differences
in unique motivations based on each group. Motivation is the degree to which a threat
agent is prepared to implement a threat. The motivational factors are the elements that
drive a threat agent to consider attacking a computer system. Some common motivations
for threats include [25]:

a. Profit (direct or indirect).
b. Direct grudge.
c. Fun / Reputation.
d. Further access to partner/connected systems.
e. Political.
f. Secular.
g. Personal gain.
h. Religious.
i. Revenge.
j. Power, terrorism.
k. Curiosity.

92

Electronics 2021, 10, 1849

3.3.2. Capability

The capability of threats is determined by analysing risk assessment models and the
network vulnerability in a next to real-time semi-automated information environment [15].

Risk = (Threat) + (Vulnerability) + (Consequences) (3)

In Equation (3), the risk of the threat agent can be evaluated by the combination
of threats, the vulnerability identified for the threat concerning the CVE list of the NIST
database and identified consequences of the threat agents.

Threat = Intent × Capability (4)

Similarly, in Equation (4), the capability of the threat will be evaluated by the multipli-
cation of intention of the threat agents determined by the model and the overall capability
of the threat agent. Further, vulnerability exploitation is achieved with the help of several
kali Linux tools such as NESSUS, SAINTS, WHISKER, SARA, etc. The initial phase of
the automatic version of the threat assessment model is collecting the DataStream/ PCAP
files from the server, which has been achieved by the administration of the server between
2012 to 2019. This data mainly consists of PCAP files, which will be extracted in a semi-
automatic manner with the help of a machine learning PYTHON tool library available
on Tensorflow. The information extracted from these PCAP files having some unique
attributes such as Time (in min), Highest Protocol, TCP protocol, Source I.P. Address,
Destination I.P. Address, Source port, Destination port, Total Packet Length, City, Region,
Country, Latitude, Longitude, and Internet Service Provider. The large number of PCAP
files collected from the server will be converted into a large number of Excel sheets based
on the unique attributes. These Excel sheets consist of all the valuable information available
about the threat in the PCAP files, such as time spent on the network, location of their I.P.s,
and environment used by them while penetrating the server.

A large amount of information about the threats can be profiled based on their activi-
ties performed on the network or specific environment or Protocol used to achieve their
goal. We use all this information to extract all critical threat intelligence (CTI) from these
threats to determine the threats’ capability, opportunity, and motivation. This CTI can
also be used to identify the new threat in-network and extracted all information by taking
previously identified CTI as a reference. As shown in Figure 3, the motivation of these
threat agent groups can be calculated based on the environment used by them, the type of
activities executing during the process, factors responsible for digging information, and
data from the server.

In the first phase of the model, an algorithm was executed against the PCAP files
captured from the ESXi server and extracted the unique attributes from the PCAP files
I.P. addresses, such as time (in min), Highest Protocol, TCP protocol, Source I.P. Address,
Destination I.P. Address, Source port, Destination port, Total Packet Length, City, Region,
Country, Latitude, Longitude, and Internet Service Provider. When the model has all this
information about the attacker, the next phase model extracts the location of the threat
agents from where they generate the traffic in the network. The model considers only those
threat agents for location identification who have generated more than 1000 packets in the
network. The model considers the threshold point based on the level of skill or knowledge
the threat agent showing while traversing the network. Likewise, if considered less than
1000 packets generated I.P. address of threat agent, then the exploitation of vulnerable port
is significantly less or can be ignorable. It is the primary reason for a semi-automatic model
to provide the optimised time complexity for threat assessment of an organisation.

3.3.3. Opportunity

Similarly, opportunity can be calculated by identifying the number of open ports, the
number of protocols that have unrestricted access and would be vulnerable, and what
other factors help a hacker do unauthorised access to the server. The model will evaluate

93

Electronics 2021, 10, 1849

all this information by initialising the PCAP file captured by the model. The model will
determine the open ports with the help of various tools like NMAP, NS-LOOKUP, DIPScan,
etc. The combination of all the information about such attributes led to the evaluation of
the opportunity of the threat agent groups.

4. Results and Discussion

4.1. State-of-the-Art Algorithms

Many different models are used to perform threat assessment for a network in an in-
formational environment on specialised datasets, where some of the datasets are discussed
in the previous section. Here, we illustrate all the threats identified in a network captured
during the penetration testing against the ESXi server of the University of Hertfordshire.
To provide an overview of the current state-of-the-art ML approaches used to perform the
threat assessment, we group all the identified threats from a network based on their profile
maintenance concerning the PYTHON program run against the DataStream/PCAP files
captured in the experiment. Similarly, the critical threat intelligence [26] feed is evaluated
from the group of threat agents based on their footprints extracted during the analysis
phase of the experiment. This overview is further divided into two main categories, i.e.,
traditional extraction of information from the PCAP files and machine learning techniques
applied on the information extracted from the PCAP files to generate the footprints used
by the threat agents during traversing network of the server.

The PYTHON script provides the accuracy and the unique attributes of the threat
agents for precision, false-positive rate (FPR), anomaly detection rate (ADR), and fault-
measure as initially reported [27]. Secondly, we calculated the performance of the threat
agent followed by our proposed three-dimensional metrics, i.e., motivation, opportunity,
and capability. Figure 4 shows that the input is an enormous number of heterogeneous
PCAP files captured during the experiment. The potential output generated with analysis
of PCAP files is the unique number of Excel sheets which consist of information about the
threat agents such as time (in min), Highest Protocol, TCP protocol, Source I.P. Address,
Destination I.P. Address, Source port, Destination port, Total Packet Length, City, Region,
Country, Latitude, Longitude, and Internet Service Provider. The specific attributes for
each experiment run against the PCAP files can be retrieved from https://github.com/
Gauravsbin/Excell-sheets-of-pcap-files-and-results-of-Threat-Assessment-analysis (ac-
cessed on 8 May 2021) [28]. Furthermore, with the help of these unique attributes, we can
determine the capability and opportunity of the threat agents [29]. Based on the footprints
followed by the threat agents during the analysis, we can determine the motivation factor
for attackers.

Some of the captured PCAP files were corrupted during the experiment, and the
PYTHON program list of crashed files generated during the investigation can be fetched as
shown in Figure 5. We also checked all these crashed files manually and with other analysis
tools. We found the same result that no information can be extracted from these files. There
may be some capture issue or the connection lost on the hacker’s end during the network
establishment. The time complexity to generate the unique I.P.s with information attributes
can also be evaluated from this experiment. This is the unique feature of this model as
compared to the existing model and methodologies. This could happen because of the
use of semi-automatic approaches for threat assessment of networks next to the real-time
informational environment.

4.2. Workflow and Comparative Experiments

As per the previous discussion, the output is generated in the form of Excel sheets
with the unique attribute of threat agents in a semi-automatic manner. So, to determine
the motivation, opportunity, and capability of threat agent groups, we applied machine
learning techniques on the previous phase’s output to provide a semi-automatic feature to
the model [30]. This novel approach helps us optimise the threat assessment’s complexity
against the network of influential organisations. This paper also shows the process of

94

Electronics 2021, 10, 1849

using ML libraries of PYTHON on TensorFlow and automatic techniques of the JUPYTER
notebook to identify the unique tuples of DataStream/PCAP files. This approach mainly
depends on the chronological order of packets in PCAP files. Here, we first make groups of
all the unique I.P.s extracted from raw PCAP files captured from the network with the help
of Wireshark. The grouping of all unique I.P.s based on their attributes and characteristic
features was identified during the analysis and implementation of DataStream.

Figure 4. Workflow for raw PCAP file traffic-based feature extraction and experimental results for
Unique I.P. addresses with Time complexity.

Similarly, the potential output generated in the previous phase is used as potential
input for the second phase of analysis and implementation. Such a process is known as the
profiling of threat agents. As in the previous stage, we generated the Excel sheet for each
captured PCAP file consist of helpful information like ports open. They are operating on
that layer: time spent on the network, location of the threat agent, etc.

95

Electronics 2021, 10, 1849

Figure 5. Workflow for raw PCAP file and experimental results for Unique I.P. addresses with
Time complexity.

Based on this analysis, we make one more IPYNB file (Interactive Python Notebook)
known as the Jupyter notebook. Jupyter is a free, open-source, interactive web tool known
as a computational notebook. Researchers can combine software code, computational
output, explanatory text, and multimedia resources in a single document. A Jupyter
Notebook document is a JSON document, following a versioned scheme, containing
an ordered list of input/output cells which can have code, text (using MARKDOWN),
mathematics, plots, and rich media, usually ending with the IPYNB extension [31–33]. This
file consists of an algorithm performing data clustering of Unique I.P.s found in the Excel
sheet of the previous phase. The data clusters of I.P.s form based on the number of I.P.s
facing a particular type of attack. This specific type of attack is determined based on the
number of factors identified during the analysis. The IPYNB file is collecting all the unique
I.P.s as input and extracting the information like on which layer they are operating, what
type of ports and protocols are compromised when they are attacking the source I.P.s of
end-users, and what information they extracted from the particular environment of the
V.M.s, etc. Based on the analysis, the model designed the group of all the threat agents into
particular categories concerning their attacking behaviours identified during the analysis.

Figures 6–8 show the histogram of the bar chart with the help of the IPYNB algorithm
for each Excel sheet generated during the first phase. Note that we have demonstrated
the experimental results of only three PCAP files, and similarly, we can show this for the
other PCAP file. There are two parts to the outputs generated by the. IPYNB file. In the
first part, three histograms are generated for every file in the output Excel sheet, and the

96

Electronics 2021, 10, 1849

second part develops the histograms on the cumulative data of all the files in the folder.
For every file in the output Excel sheet, three histograms have been generated, and all
these three histograms consist of common data at the y-axis, i.e., the number of unique I.P.s.
Figures 6a, 7a and 8a show the protocols being used by the attackers and the number of
unique I.P.s using these protocols. Figures 6b, 7b and 8b show the ports on the host targeted
and the number of unique I.P.s that targeted them. This histogram highlights the vulnerable
ports. Figures 6c, 7c and 8c show the time spent as a function of the number of unique
I.P.s. This histogram highlights how much time an attacker will usually spend to attack a
host. These histograms for the protocols, ports, and time spent on the network will help
evaluate the three main attributes for the threat agents, i.e., motivation, opportunity, and
capability. Once we identify the port open during the network access, we can determine
the opportunity for the groups of threat agents used during the penetration of the network.
In the same way, the above histograms will help us identify the protocols accessed by the
threat agents, evaluate the hacker’s potential capability, and level of skills acquired by
threat actors.

(a) (b)

(c)

Figure 6. Experimental Results for PCAP file (AF 26.11.2014). (a) Number of Unique I.P.s vs. Protocol being used;
(b) Number of Unique Attackers vs. Vulnerable Ports; (c) Number of Unique I.P.s vs. Time Spent.

97

Electronics 2021, 10, 1849

(a) (b)

(c)

Figure 7. Experimental Results for PCAP file (AH 25.11.2014). (a) Number of Unique I.P.s vs. Protocol being used;
(b) Number of Unique Attackers vs. Vulnerable Ports; (c) Number of Unique I.P.s vs. Time Spent.

From this analysis, we can identify the particular groups of threat agents accessing a
specific protocol for penetration of the network. For example, in Figure 8, the TCP protocol
is used by most of the I.P.s and mainly targets the network layers. So, we can conclude that
in this analysis, the threat agents have primarily distributed denial of services (DDOS) type
of attacks.

Figure 9 histograms are based on the accumulated data in the potential output pro-
duced in the Excel sheets. They are used to represent the number of packets generated
for traffic during penetration testing, protocols, or layers being used by threat agents and
targeting vulnerable ports for achieving the goal. Figure 9a shows how many packets are
sent to which port on the host machine, and Figure 9b shows the volume of packets for
every Protocol used to attack the host.

98

Electronics 2021, 10, 1849

(a) (b)

(c)

Figure 8. Experimental Results for PCAP file (AR 17.12.2014). (a) Number of Unique I.P.s vs. Protocol being used;
(b) Number of Unique Attackers vs. Vulnerable Ports; (c) Number of Unique I.P.s vs. Time Spent.

Figure 10 represents the histogram between the total data collected from each unique
I.P., whole time spent on the network, and protocols used to attack the network. Figure 10a
highlights the amount spent by the attacker for every Protocol used to attack the host. In
Figure 10b, the data points for time spent are highlighted in blue, whereas the data points
for total packets sent are highlighted in red. Even though these have different units, it gives
us a statistical relative visual of how the time spent by the attacker varies concerning the
number of packets sent for the same protocols used.

99

Electronics 2021, 10, 1849

(a)

(b)

Figure 9. Histogram for (a) Total Packets sent vs. Vulnerable Ports, (b) Total Packets sent vs. Protocol
used by Attackers.

(a)

(b)

Figure 10. Histogram for (a) Time Spent vs. Protocol used by Attackers, (b) Protocol used by
Attackers vs. Total Packets sent.

100

Electronics 2021, 10, 1849

5. Conclusions and Future Work

Threats and threat agent’s risks are emerging in threat assessment of a network for an
organisation and business of the companies. The security risk management practitioners
enable a mechanism to explore these risks and enforce their countermeasures based on
the threat agent profiling and determining the critical threat intelligence feed to them.
This paper presents a semi-automatic model based on the threat assessment of the PCAP
files captured by the semi-automatic featured tools during the penetration testing run
against the ESXi server of the University of Hertfordshire. The framework captured the
data between 2012 and 2019, which illustrates the value of assets stored on the server,
and the motivation, opportunity, and capability of the threat agents while accessing the
network. We evaluate the situational awareness data through this semi-automatic threat
assessment model by exploring the threat profiles for the historically captured data with
the aid tools. Furthermore, we provide the threat agent practitioners with an idea of
using an automatic model for threat assessment of a network. This research’s findings will
support decision makers, management, and software developer practitioners regarding the
building of threat agent profiling for their historical data. Critical Threat Intelligence feeds
for the threat agent’s groups might be helpful for the evaluation of new threats found in
the network. In the future, we aim to build an automatic machine learning–based threat
and vulnerability analysis security reference model as a security risk management tool
to evaluate the security needs of networks with sequential requirements of the next to
real-time informational environment.

Author Contributions: Conceptualisation, G.S. and S.V.; methodology, G.S.; software, G.S.; valida-
tion, G.S., S.V., and C.M.; formal analysis, G.S.; investigation, G.S.; resources, S.V.; data curation,
G.S.; writing—original draft preparation, G.S.; writing—review and editing, G.S., S.V., C.M., N.A.,
and S.K.; visualisation, G.S.; supervision, S.V., C.M. and N.A.; project administration, S.V.; funding
acquisition, G.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author and are available on GitHub [33].

Acknowledgments: We are grateful for the anonymous reviewers’ hard work and comments that
allowed us to improve the quality of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Iglesias, J.A.; Angelov, P.; Ledezma, A.I.; Sanchis, A. Modelling evolving user behaviours. In Proceedings of the 2009 IEEE Work-
shop on Evolving and Self-Developing Intelligent Systems, Nashville, TN, USA, 30 March–2 April 2009; pp. 16–23. [CrossRef]

2. Xue, M.; Yuan, C.; Wu, H.; Zhang, Y.; Liu, W. Machine Learning Security: Threats, Countermeasures, and Evaluations. IEEE
Access 2020, 8, 74720–74742. [CrossRef]

3. Jones, A. Identification of a Method for the Calculation of the Capability of Threat Agents in an Information Environment; School of
Computing, University of Glamorgan: Pontypridd, UK, 2002; pp. 1–134.

4. Mavroeidis, V.; Bromander, S. Cyber Threat Intelligence Model: An Evaluation of Taxonomies, Sharing Standards, and Ontologies
within Cyber Threat Intelligence. In Proceedings of the 2017 European Intelligence and Security Informatics Conference (EISIC),
Athens, Greece, 11–13 September 2017; pp. 91–98.

5. Atote, B.S.; Saini, T.S.; Bedekar, M.; Zahoor, S. Inferring emotional state of a user by user profiling. In Proceedings of the 2016
2nd International Conference on Contemporary Computing and Informatics (IC3I), Greater Noida, India, 14–17 December 2016;
pp. 530–535.

6. Asgari, H.; Haines, S.; Rysavy, O. Identification of Threats and Security Risk Assessments for Recursive Internet Architecture.
IEEE Syst. J. 2017, 12, 2437–2448. [CrossRef]

7. Azaria, A.; Richardson, A.; Kraus, S.; Subrahmanian, V.S. Behavioral Analysis of Insider Threat: A Survey and Bootstrapped
Prediction in Imbalanced Data. IEEE Trans. Comput. Soc. Syst. 2014, 1, 135–155. [CrossRef]

8. Vidalis, S.; Jones, A.; Blyth, A.; Jones, A. Assessing cyber-threats in the information environment. Netw. Secur. 2004, 2004,
10–16. [CrossRef]

9. Cappelli, D.M.; Moore, A.P.; Trzeciak, R.F. The CERT Guide to Insider Threats: How to Prevent, Detect, and Respond to Information
Technology Crimes (Theft, Sabotage, Fraud); Addison-Wesley: Boston, MA, USA, 2012.

101

Electronics 2021, 10, 1849

10. Susukailo, V.; Opirskyy, I.; Vasylyshyn, S. Analysis of the attack vectors used by threat actors during the pandemic. In Proceedings
of the 2020 IEEE 15th International Conference on Computer Sciences and Information Technologies (CSIT), Zbarazh, Ukraine,
23–26 September 2020; Volume 2, pp. 261–264.

11. Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [CrossRef]
12. Legg, P.A.; Moffat, N.; Nurse, J.R.; Happa, J.; Agrafiotis, I.; Goldsmith, M.; Creese, S. Towards a conceptual model and reasoning

structure for insider threat detection. J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 2013, 4, 20–37.
13. Bishop, M.; Conboy, H.M.; Phan, H.; Simidchieva, B.I.; Avrunin, G.S.; Clarke, L.A.; Osterweil, L.J.; Peisert, S. Insider Threat

Identification by Process Analysis. In 2014 IEEE Security and Privacy Workshops; IEEE: Piscataway, NJ, USA, 2014; pp. 251–264.
14. Morakis, E.; Vidalis, S.; Blyth, A. Measuring vulnerabilities and their exploitation cycle. Inf. Secur. Tech. Rep. 2003, 8,

45–55. [CrossRef]
15. Vidalis, S.; Jones, A. Threat Agents: What InfoSec officers need to know. Mediterr. J. Comput. Secur. 2006, 1, 1–12.
16. Sogbesan, A.; Ibidapo, A.; Zavarsky, P.; Ruhl, R.; Lindskog, D. Collusion threat profile analysis: Review and analysis of MERIT

model. In Proceedings of the World Congress on Internet Security (WorldCIS-2012), Guelph, ON, Canada, 10–12 June 2012;
pp. 212–217.

17. Casillo, M.; Coppola, S.; De Santo, M.; Pascale, F.; Santonicola, E. Embedded intrusion detection system for detecting attacks
over CAN-BUS. In Proceedings of the 2019 4th International Conference on System Reliability and Safety (ICSRS), Rome, Italy,
20–22 November 2019; pp. 136–141.

18. Lombardi, M.; Pascale, F.; Santaniello, D. EIDS: Embedded Intrusion Detection System using Machine Learning to Detect
Attack over the CAN-BUS. In Proceedings of the 30th European Safety and Reliability Conference and 15th Probabilistic Safety
Assessment and Management Conference, Venice, Italy, 21–26 June 2020; p. 2028.

19. Erola, A.; Agrafiotis, I.; Happa, J.; Goldsmith, M.; Creese, S.; Legg, P. RicherPicture: Semi-automated cyber defence using context-
aware data analytics. In Proceedings of the 2017 International Conference On Cyber Situational Awareness, Data Analytics and
Assessment (Cyber SA), London, UK, 19–20 June 2017; pp. 1–8.

20. Deore, U.D.; Waghmare, V. Cybersecurity automation for controlling distributed data. In Proceedings of the 2016 International
Conference on Information Communication and Embedded Systems (ICICES), Chennai, India, 25–26 February 2016; pp. 1–4.

21. Legg, P.A.; Buckley, O.; Goldsmith, M.; Creese, S. Automated Insider Threat Detection System Using User and Role-Based Profile
Assessment. IEEE Syst. J. 2015, 11, 503–512. [CrossRef]

22. Pogrebna, G.; Skilton, M. The Twelve Principles of Safe Places. In Navigating New Cyber Risks; Springer: Berlin/Heidelberg,
Germany, 2019; pp. 171–197.

23. Iskandar, A.; Virma, E.; Ahmar, A.S. Implementing DMZ in Improving Network Security of Web Testing in STMIK AKBA. Int. J.
Eng. Technol. 2018, 7, 99–104. [CrossRef]

24. Vidalis, S.; Jones, A. Analysing Threat Agents and Their Attributes. In Proceedings of the 4th European Conference on Information
Warfare and Security 2005 (ECIW 2005), Glamorgan, UK, 11–12 July 2005.

25. Rubini, R.; Porta, A.; Baselli, G.; Cerutti, S.; Paro, M. Power spectrum analysis of cardiovascular variability monitored by telemetry
in conscious unrestrained rats. J. Auton. Nerv. Syst. 1993, 45, 181–190. [CrossRef]

26. Shin, B.; Lowry, P.B. A review and theoretical explanation of the ‘Cyberthreat-Intelligence (CTI) capability’ that needs to be
fostered in information security practitioners and how this can be accomplished. Comput. Secur. 2020, 92, 101761. [CrossRef]

27. Chen, R.-C.; Cheng, K.-F.; Chen, Y.-H.; Hsieh, C.-F. Using Rough Set and Support Vector Machine for Network Intrusion Detection
System. In Proceedings of the 2009 First Asian Conference on Intelligent Information and Database Systems, Dong Hoi, Vietnam,
1–3 April 2009; pp. 465–470.

28. Available online: https://github.com/Gauravsbin/Excell-sheets-of-pcap-files-and-results-of-ThreatAssessment-analysis (ac-
cessed on 12 June 2021).

29. Rynes, A.; Bjornard, T. Intent, Capability, and Opportunity: A Holistic Approach to Addressing Proliferation as a Risk Management Issue;
Idaho National Laboratory (INL): Idaho Falls, ID, USA, 2011.

30. Rossebo, J.E.; Fransen, F.; Luiijf, E. Including threat actor capability and motivation in risk assessment for Smart GRIDs. In
Proceedings of the 2016 Joint Workshop on Cyber-Physical Security and Resilience in Smart Grids (CPSR-SG), Vienna, Austria,
12 April 2016; pp. 1–7.

31. Saygili, G.; Rathje, E.M.; Wang, Y.; El-Kishky, M. Cloud-Based Tools for the Probabilistic Assessment of the Seismic Performance
of Slopes. In Geotechnical Earthquake Engineering and Soil Dynamics V; American Society of Civil Engineers (ASCE): Houston, TX,
USA, 2018; pp. 19–26.

32. Van Veen, H.; Saul, N.; Eargle, D.; Mangham, S. Kepler Mapper: A flexible Python implementation of the Mapper algorithm. J.
Open Source Softw. 2019, 4, 1315. [CrossRef]

33. Narkar, S.; Thomson, B.L.; Fox, P.A. Designing for 2030: The Impact and Potential of Virtual Laboratories. In Proceedings of the
American Geophysical Union, Fall Meeting 2020, 1–17 December 2020.

102

electronics

Systematic Review

Data Transformation Schemes for CNN-Based Network Traffic
Analysis: A Survey

Jacek Krupski, Waldemar Graniszewski * and Marcin Iwanowski

Citation: Krupski, J.; Graniszewski,

W.; Iwanowski, M. Data

Transformation Schemes for

CNN-Based Network Traffic Analysis:

A Survey. Electronics 2021, 10, 2042.

https://doi.org/10.3390/

electronics10162042

Academic Editor: Amir Mosavi

Received: 2 July 2021

Accepted: 16 August 2021

Published: 23 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute of Control and Industrial Electronics, Warsaw University of Technology, ul. Koszykowa 75,
00-662 Warszawa, Poland; jacek.krupski@ee.pw.edu.pl (J.K.); marcin.iwanowski@ee.pw.edu.pl (M.I.)
* Correspondence: waldemar.graniszewski@ee.pw.edu.pl

Abstract: The enormous growth of services and data transmitted over the internet, the bloodstream
of modern civilization, has caused a remarkable increase in cyber attack threats. This fact has forced
the development of methods of preventing attacks. Among them, an important and constantly
growing role is that of machine learning (ML) approaches. Convolutional neural networks (CNN)
belong to the hottest ML techniques that have gained popularity, thanks to the rapid growth of
computing power available. Thus, it is no wonder that these techniques have started to also be
applied in the network traffic classification domain. This has resulted in a constant increase in the
number of scientific papers describing various approaches to CNN-based traffic analysis. This paper
is a survey of them, prepared with particular emphasis on a crucial but often disregarded aspect
of this topic—the data transformation schemes. Their importance is a consequence of the fact that
network traffic data and machine learning data have totally different structures. The former is a
time series of values—consecutive bytes of the datastream. The latter, in turn, are one-, two- or
even three-dimensional data samples of fixed lengths/sizes. In this paper, we introduce a taxonomy
of data transformation schemes. Next, we use this categorization to describe various CNN-based
analytical approaches found in the literature.

Keywords: network traffic analysis; convolutional neural networks; machine learning; network
traffic images; visualization of traffic

1. Introduction

1.1. Deep-Learning Approach to Network Traffic Analysis

The rapid growth of computer networks over the last decades [1] has entailed a larger
amount of cyber-attacks. In order to minimize the losses, many security methods are in
heavy use. Among others, network traffic analysis is in the lead. This day-to-day operation
consists of processing typical patterns, such as traffic flow, bandwidth usage or resource
access. Together, these patterns identify the normal network behavior, also known as a
baseline. Having this baseline in mind, it is possible to interpret abnormal activities, which
may indicate an attack.

Deep learning methods have also begun gaining popularity recently. This is mainly
caused by the development of computing capabilities based on parallel processors origi-
nated from graphics cards. This has resulted in the rapid increase in efficient implementa-
tions of computationally demanding complex neural networks and, finally, a remarkable
growth in capabilities to solve advanced problems. Among the most successful architec-
tures of this kind are convolutional neural networks (CNNs, conv-nets). They are ideally
suited for multidimensional data, originate from image processing but can be successfully
applied to other computing domains.

Internet traffic analysis and machine learning are the two worlds that must be con-
nected with one another, especially when applying the latter to the data provided by the
former. The originator of the junction of traffic analysis with CNNs is Wang, who, during

Electronics 2021, 10, 2042. https://doi.org/10.3390/electronics10162042 https://www.mdpi.com/journal/electronics103

Electronics 2021, 10, 2042

the innovative presentation at the “Black Hat” conference in 2015 [2], pointed out the simi-
larities between images and TCP flow payloads. Despite the utilization of an autoencoder
to identify network traffic, in a later work, Wang signaled the usefulness of CNNs for
the same task. To the best of our knowledge, this is the first mention of network traffic
identification or malware detection with the advantage of CNNs.

There is a striking change in the number of research papers that are devoted to the
analysis of network traffic by CNN models (see Figure 1). To enhance the analysis, we
distinguish three possible subjects of the articles: malware detection, traffic classification,
and the junction of both. These categories are connected with datasets studied in each
paper. The typical indicators of the datasets are the motifs of data, e.g., captured botnets are
the foundation of the CTU-13 dataset, so each article utilizing it will belong to the malware
detection group.

Figure 1. The growth of CNN-based models, which process transformed network traffic in the years
2015–2020.

What is particularly interesting seems to be the overview from the perspective of
traffic transformation methods before being given as an entry to the CNNs. Deep learning
models require particular data formats that are rarely similar to original computer traffic.
In most of the reviewed articles, the traffic data are transformed into the forms needed
for the analytical part of the whole workflow. These transformations usually require
performing one or more typical actions, e.g., the selection of specific network layers,
trimming the data stream, or computing some traffic features. Due to the given architecture
of some learning algorithms, these data transformations often demand an increase in the
dimensionalities of the traffic data. The network traffic data are a time series, while the
CNNs require multidimensional input consisting of equal-length samples. Due to this
fact, the original traffic data must always be transformed into a format acceptable by the
deep-learning models.

1.2. Our Contributions to the Topic

This survey deals with transformations of the network traffic, which are the input of
the deep learning models, with particular attention paid to the CNN models. We have
studied many articles and finally chose 136 papers written recently in this field of science.
It is essential to highlight that other surveys present these studies from the perspective of
cyber-attacks, particular system traffic, or mixed deep-learning models.

We explicitly focus on the network traffic transformations before being given as an
entry to the CNN models.

1. This paper proposes the new taxonomy of the network traffic transformations for
CNN processing purposes.

2. Additionally, all 136 revised articles are comprehensively investigated and mapped
to the adequate transformation algorithms. The survey differentiates three categories
of research papers:

(a) Traffic classification.
(b) Malware detection.
(c) The combination of traffic classification and malware detection.

104

Electronics 2021, 10, 2042

The first contains all articles that focus on encrypted traffic identification. The malware
detection category is about finding unwanted traffic. The last includes research
about both mentioned categories. These categories are firmly connected with the
datasets utilized by each group of authors. Moreover, it is possible to distinguish
different themes of the datasets, such as dealing with VPN traffic or exploring features
of botnets.

3. This work highlights and describes the utilized datasets and the architecture of each
CNN model.

The proposed taxonomy is the first on this topic. While preparing this work, we
inherited and developed the concept from the CNN chapter from [3].

As the number of papers in the described field is constantly growing, we decided to re-
view the proposed works and highlight all scientific observations. The detailed comparison
in this area can establish current trends as well as enhance network traffic analysis.

1.3. Paper Structure

This paper consists of nine sections. Section 2 touches upon fundamental issues in
the discussed scientific field. The following subsections are devoted to main categories of
methods that reflect the ways that the network traffic is transformed prior to transferring
them into the CNN-based neural models. Section 3 presents approaches based on raw
traffic, i.e., network traffic without any filtering. Section 4 is about all transformations
working on flows—particles of the entire traffic. Section 5 highlights data manipulations
on payloads extracted from the raw traffic. Section 6 focuses on all concepts based on
payload that is extracted from flows. Traffic features approaches are the main subject of
Section 7. Section 8, in contrast to Section 7, gives a concrete overview of those articles that
additionally focus on the feature extraction process. Section 9 concludes the paper.

2. Preliminaries

2.1. Network Monitoring

The internet is based on a protocol suite, which was developed by the Defense Ad-
vanced Research Projects Agency (DARPA). The idea of a distributed topology, with a
packet switched network is described from the time perspective by its author Baran in [4].
With the rapid growth of the internet at the end of the 20th century, there was also a
necessity for network accounting and monitoring. Almost in parallel to network traffic
profiling for accounting reasons, frequent and large-scale network attacks have led to an
increased need for developing techniques for analyzing network traffic. In the design
philosophy of the DARPA internet protocols [5], Clark explained flow as being connected
with the necessity to treat differently those packets transmitted by intermediary network
devices with an appropriate type of service demanded by the endpoints applications. In
such a way, particular packets belonging to the same connection can be distinguished.
According to the basic principles of packet switching networks, each datagram from a
network connection can take different routes. In the beginning, the original ARPANET
host-to-host protocol provided flow control based on both bytes and packets. However,
later, due to efficiency reason, only the bytes number was used for acknowledgments.

Later, at the beginning of the 1990s, Mills et al. proposed internet accounting [6].
Network accounting introduced packet aggregation based on flows, using packet header
information. Then, the idea was developed to use real-time traffic flow measurement
(RTFM) [7]. Claffy et al. proposed a methodology for profiling traffic flows on the internet
for communication analysis [8].

Then, with the implementation of the NetFlow [9] protocol, the traditional under-
standing of IP flow was defined as a set of five, up to seven, IP packet attributes flowing
in a single direction. When a TCP session is considered, a flow consists of all packets
transmitted until this session terminates. NetFlow, among others, uses the following IP
packet attributes: IP source address, IP destination address, source port, destination port,
layer 3 protocol type, type of service, router or switch interface. All packets with the

105

Electronics 2021, 10, 2042

same earlier-mentioned attributes are grouped into a flow, and then packets and bytes
are counted. With the introduction of the IP flow information export (IPFIX) protocol,
the number of flow attributes, named IPFIX information elements, increased to several
hundred. The RFC7011 explains that [10]: “(. . .) A Flow is defined as a set of packets or
frames passing an Observation Point in the network during a certain time interval. All
packets belonging to a particular Flow have a set of common properties. Each property is
defined as the result of applying a function to the values of:

1. One or more packet header fields (e.g., destination IP address), transport header fields
(e.g., destination port number), or application header fields (e.g., RTP header fields
[RFC3550]);

2. One or more characteristics of the packet itself (e.g., number of MPLS labels);
3. One or more of the fields derived from Packet Treatment (e.g., next-hop IP address,

the output interface) (. . .)”.

In the studied papers, we have found different usages of the flow term with sev-
eral nouns, such as traffic, packet, data, and IP packets, which can mislead the read-
ers. Therefore, we have decided to unify network traffic terms for this survey as the
following definitions:

• Raw traffic —network traffic observed in an observation point, such as a line, to which
the probe is attached, an Ethernet-based LAN, or the ports of a switch or router [10].

• Flow (also called traffic flow (e.g., [10]), network connection (e.g., [11]), internet stream
(e.g., [12]))—grouped raw network traffic according the same properties, usually 5-
tuple: source and destination IP address, source and destination port number, and
type of service.

• Session—bi-directional flow. Traffic grouped according to the same properties as a
flow, which mimics conversation between the end devices. A session usually requires
establishing a TCP connection in the form of a three-way handshake.

• Traffic features [13] (also called flow features)—set of features describing the traffic.
They can be statistical features of flow data obtained from flow probe, using one of the
flow profiling protocols, e.g., IPFIX, or processed using the appropriate software or
particular network protocols headers fields [14]. When collected and exported in IPFIX
flow records, they are called information elements (IEs) [10]. Some of these features
can be exported in IPFIX flow records, using a textual representation of IPFIX [15]. A
standard list of IEs is maintained by the internet assigned numbers authority (IANA).
Moreover, the internet community can define their new elements, which fulfill the
applications’ specifications [16]. Hofstede et al. prepared a more detailed specification
of flow monitoring with NetFlow and IPFIX [17].

• Payload—transmitted data encapsulated in the particular ISO/OSI model protocol
data unit (PDU). The Layer 4 (and above layers) payload (L4+ payload) are the actual
upper—layers (L5, L6, L7) data, e.g., HTTP request or response—FTP data. The Layer
3 payload is a segment (TCP) or a datagram (UDP) of the Layer 4 PDU, including the
L5-L7 PDUs. The Layer 2 payload (L2 payload) is a packet—usually an IP packet.

Traffic data can be collected from an observation point with a hardware or software
solution. Written in C, an open-source library Libpcap (see: https://www.tcpdump.org/,
accessed on: 2 July 2021) is available for different platforms. This library delivers an
application programming interface (API), which can be implemented in capturing software,
e.g., tcpdump or Wireshark. Collected traffic data with the libpcap library can be saved in
the pcap file format and used to create a dataset for analytics and classification.

Depending on the available datasets (see Section 2.4) and implemented machine
learning algorithms, traffic datasets can directly feed the chosen CNN-based deep learning
model (CDM) or may have to be pre-processed according to several paths, as is presented in
the upper part of the workflow diagram in Figure 2. Different possible side paths—raw
traffic processing or filtering—are indicated with blue arcs.

106

Electronics 2021, 10, 2042

The straightforward path is with only trimming or padding block. In the case of using
only internet raw traffic for a machine (deep) learning (straight line in Figure 2), there is
a necessity to change the length of the original stream data into chunks to prepare these
according to the input size of the chosen CDM. If the input dimension of the selected model
is smaller than the stream data chunk, the latter has to be trimmed to the size of the CDM’s
input vector dimension. When the input stream is shorter than is expected by the CDM,
the remaining part of the input vector is padded with an arbitrarily selected value—usually
with zeros, to fit the suitable CDM’s input vector dimension.

Following two side paths—alternatively: flows or sessions—requires grouping traffic
data according to the same properties. Then, the flows or sessions’ data must be trimmed
or padded, again as in raw traffic, to fit the suitable CDM’s input vector dimension.

An alternate path for flows or sessions data can lead through selected layers (L2, L3,
L4+) payload extraction. In intrusion detection systems (IDS), such processing is called
deep packet inspection (DPI). Then again, extracted payloads must be trimmed or padded
to fit the suitable CDM’s input vector dimension.

Finally, the traffic data samples became an input for machine learning data described
in more detail in Section 2.2.

Figure 2. Workflow diagram of network traffic classification using deep convolutional neural
networks with various data transformation paths.

2.2. Convolutional Neural Networks

Deep neural networks have recently become one of the hottest methodologies applied
in machine learning and pattern recognition. They provide machine learning models that
surpass previous approaches. Thanks to the rapid development of computing resources
and common usage of relatively cheap parallel-computing platforms, previously long-
lasting machine learning tasks have become available for everyone. Among the most
popular types of deep networks are convolutional neural networks (CNN) [18]. They are
based on convolution operators, the weight of which is a subject of learning. Due to the
multidimensional nature of convolution, the CNN has gained enormous popularity in
image processing and analysis. Their history starts from the LeNet [19] by LeCun et al.,
which was a breakthrough in image pattern recognition. The CNN-based approach consid-
erably surpassed the previous methods to classify hand-written digits recognition (MINIST
datasets). It became possible because the neural network, in this case, is responsible not
only for classifying the data samples (as, up to that time, typical neural nets did) but also

107

Electronics 2021, 10, 2042

for extracting features. In particular, the convolutional layers perform this task. In the case
of conv-nets, the typical structure of the recognition scheme consists of two parts. The
first one is a set of consecutive convolution layers that are stacked alternately with pooling
layers. Convolution layers are responsible for extracting data features while pooling layers
for reduction of the data size. The combination of feature extraction with size reduction
allows for detecting data features at increasing scales. Finally, if necessary, the output of
the convolution and pooling layer is flattened to obtain a final feature vector. Its further
processing is a typical classification task that is usually based on the structure resembling
(or sometimes being equal to) the multilayer perceptron (MLP classifier). Contrary to con-
volutional layers, in classification layers, all neurons located at a given layer are connected
to all in the next one. Because of that, they are called fully connected (FC) or dense layers.
The combination of the CNN and FC layers constitute the complete classification frame-
work. In many papers, the name CNN is spread into the complete neural model consisting
of both parts, the actual CNN and FC. However, formally speaking, it should rather be
used exclusively for the first—feature extraction—part of the model. An example of such
a type of network is shown in Figure 3. The diagram shows the LeNet consisting of the
two parts mentioned above. The data feature extraction part inputs and the 32 × 32 image,
consist of layers—convolution (conv 1), pooling (pool 1), convolution (conv 2), pooling
(pool 2)—and outputs the vector of 400 data features. The classification part consists of
three fully connected layers: the first with 120 neurons, the second with 84 neurons, and
finally, the third with ten neurons. The number of neurons equals the number of output
classes, which is equal, in this case, to the number of possible digits that might appear on
the input image. For the sake of simplicity, we use shortcuts for the principal layers of the
neural model: C—convolutional layer, P—pooling layer and, FC—fully connected layer.
The LeNet structure may thus be coded as C|P|C|P|FC|FC|FC.

Figure 3. Architecture of the LeNet neural network (C|P|C|P|FC|FC|FC).

In the classic case of the image input data, the number of its dimension equals 2 for
gray-level images and 3 for color ones. In the first case, it is a data array, the sizes of which
equal the image sizes. In the second one, such a structure is tripled and consists of three
planes of the size of an image, each of which represents one color component (in most cases
red, green, and blue). The size of the third dimension equals, therefore, 3. Although the 2D
and 3D above structures are mostly used in the digital image domain, the 1D input is also
possible. In such a case, the convolution in at least the first layer is a 1D convolution.

Following the enormous growth in popularity of the CNN structures, they started
to be applied in many domains other than vision systems. One of these domains was
the categorization of the IP network traffic. In this case, the input data to be classified
are samples of the network traffic. The resulting classes, in turn, are related to the types
of traffic.

There are several ways of preparing the traffic data to obtain valuable input for the
machine (deep) learning model described in detail in Section 2.1 (see also Figure 2). One of
the possible preprocessing methods makes use of the traffic features. These features are,
however, different from data features extracted by CNN. The primers are intentionally and
carefully selected features of particular meaning: either properties of the traffic (e.g., IP
address, port) or some statistics (e.g., number of bytes, packets). The data features, in turn,

108

Electronics 2021, 10, 2042

are automatically selected numbers derived from the original data vector that makes the
input of the learning model.

In traffic analysis applications, the input data are one-dimensional time series con-
sisting of consecutive bytes transmitted. Following various dimensionalities of possible
inputs of the CNN (1-, 2- or 3D), one may find in the traffic analysis several solutions that
either keep the original 1D dimensional nature of the traffic data, or increase the number
of dimensions. The 1D CNN solutions consist of 1D convolution filters, at least at the
input layer. The 2D solutions add the second dimension by using, in the vast majority
of cases, two approaches: traffic wrapping or one-hot encoding. The 3D solution either
exploits more sophisticated wrapping or combines both techniques. The schematic diagram
showing the data flow in each case is shown in the lower part of Figure 2.

Independently of the method used to add the second dimension of data, the input
data for the machine learning model should consist of equal-sized data samples. To obtain
such samples, data trimming (for samples originally too long) or padding (for those that
are too short) is usually performed (see Section 2.1 for details).

The traffic wrapping cuts the data sample consisting of n bytes into n2 pieces of the
same length n1. Values of n1 and n2 are chosen in such a way that n1 · n2 = n. In the
output data 2D array, each data value has not only neighbors that were transmitted just
before and just after (these are horizontal neighbors in the 2D array), but also has vertical
neighbors that, coming back to the original 1D data sample, are equivalent to the data
values that appeared at a certain time before and the same time after the current data value.
For example, if the data sample of size n consists of bytes, the t-th byte has two direct
horizontal neighbors, t − 1 and t + 1, and two direct vertical ones, t − n1 and t + n1. The
traffic wrapping is shown in Figure 4. This approach performs in a way that may be called
linear stacking and is applied in all but one among the studied approaches. Several atypical
approaches to 1D to 2D sample mapping (diagonal, waterfall, spirals) were studied in [20].

Figure 4. Introducing the second dimension by wrapping the network traffic data.

The second technique of increasing the traffic data dimensions is one-hot encoding. This
approach replaces numerical integer values by the binary vector such that all but one of its
elements equals zero, and the unique element equals one. Such an approach is applicable
for numerical variables belonging to a finite set of m possible values (for example, a value
of a byte belongs to the set of possible m = 256 values). The one-hot-encoder thus inputs
an integer of m values and outputs a binary vector of size m, containing value one at the
position related to the current input values and zero elsewhere (an alternative solution
encodes n-values variable as a binary vector of size n − 1, where the n-th input value is
encoded as an all-zero output). Replacing single values by vectors converts the 1D vector
of integers into a 2D binary array—see Figure 5.

109

Electronics 2021, 10, 2042

Figure 5. Introducing the second dimension using one-hot encoding.

The origin of the one-hot encoding approach is related to the observation that—in
most cases—elements of the traffic data sample (single values) are not ordered, and there is
no intrinsic order of values represented by bytes. They usually represent some pieces of
information encoded using bytes via standardized codes. They should thus be treated as
unordered categorical values, rather than a set of consecutive integers. This property makes
them different from, for example, image data, where pixel values are ordered—higher
values of pixels represent a higher value of luminance. The property of having ordered
values of the input data is essential in neural network learning algorithms, which are
inseparable parts of the neural models that use gradient descent approaches to modify
network weights iteratively.

The one-hot-encoded vector is the sparse 1D data structure of the length equal to
the encoded variable’s possible values. Making it shorter is possible, using another clas-
sic trick—the embedding technique. It produces a shorter vector of a given length of
possibly the same amount of information as the one-hot-encoded input. The vector em-
bedding is performed using a fully connected layer that takes a binary one-hot-encoded
vector as the input and produces a shorter embedding vector further processed by the
convolution layer(s).

The architecture of the neural models consists of classic convolution, pooling and fully
connected layers. It also includes often typical mechanisms found in other deep-neural
models, such as regularization (mostly drop-out), preventing overfitting, or softmax output
normalization that allows for interpreting the output of the model as probabilities.

In many neural approaches to network traffic analysis, pre-trained neural CNN-
based models are used. They gained popularity in the image analysis domain due to
their effectiveness and ability to work as backbones in many image analysis fields. In
their case, the transfer learning approach in most widely used, where the image pre-
trained model is learned to adapt to the network-traffic data. Pre-trained models focus on
recognizing single objects located within the image and work usually on images with fixed
sizes. To this group belong the following well-known networks: LeNet [19], AlexNet [21],
GoogLeNet/Inception [22], DenseNet [23], ResNet [24], VGG [25], XCeption [26], and
MobileNet [27].

2.3. Visual Aspects of the Traffic Data

The visualization of the network traffic is one of the classic approaches to traffic
monitoring. The most traditional way is visualizing network structure as graphs where

110

Electronics 2021, 10, 2042

nodes and edges represent the network topology. A routing graph is a typical example
of such visualization. However, this is just one of the possible network visualizations.
Along with developing the internet and constantly increasing abilities to process traffic
data, data visualization techniques have always played a significant role in this field. There
have been many contributions in this field since the first editions of the Visualization for
Cyber Security (VizSec) forum [28,29]. To perform meaningful visualizations, in some
cases, authors use data reduction methods, e.g., PCA for dimensionality reduction [30].

Thanks to transforming the 1D time series of the original traffic data into 2- and
3-matrices, one may look at network traffic as digital images [31]. The single elements of
the traffic data samples—which, in most cases, are simply bytes—play the role of pixels.
The luminance of the pixel refers to the value of a particular element/byte, where higher
byte values are represented by lighter pixels. The 1D traffic data converted into higher-
dimensional data samples of a fixed length may be displayed as binary, gray level, or
color images. In the first case, the input must be binary. One uses this type of traffic-
to-image transformation in the case of one-hot-encoded network traffic. In the case of
gray-level images, image pixels, one usually applies wrapping techniques. The resulting
gray-level image looks like an image of a texture, including either irregular or regular
patterns. In rarer cases, the resulting image is a color one, which is the 3D data structure.
The third dimension has a fixed size of 3, due to the number of planes referring to three
color components. Each of them is a gray-level image with the luminance value associated
with the intensity of a particular component.

They interpret the network-traffic samples as images allowed for directly applying
the image-processing techniques to this type of, initially, non-image data. They have been
used, e.g., for detecting anomalies in internet traffic [32,33].

Because 2- and 3D CNN-based neural models were initially developed to process
digital images, image representation of traffic has become an obvious visualization method
in the CNN-based neural models. Since the ready-to-use neural backbone models are
designed to process the input data of a fixed size, the size of the traffic data sample must
become compliant with the input image size.

Because 2- and 3D CNN-based neural models were initially developed to process
digital images, image representation of traffic became an obvious visualization method in
CNN-based neural models. Since the ready-to-use neural backbone models are designed
to process the input data of a fixed size, the size of the traffic data sample must become
compliant with the input image size. This fact is noticeable in many network models
where the size of the traffic data sample is equal to the size of the input of the neural
model initially developed to process images of particular sizes. A typical example of such
a strict dependence of the traffic data sample and the input of pre-trained backbone is a
sample size that equals 784, which appears in many approaches. They also force the 2D
input of the neural model equal to be a square array, where the length of the edge equals
28 (28 × 28 = 784)—see [34]. Such a choice is not motivated by the particular properties of
the network traffic, but by the neural LeNet model, which was originally used to recognize
hand-written digits on squared bitmaps of size 28 × 28. Examples of images of network
traffic processed using the method [34] are shown in Figure 6. The grayscale images are
built from matrices using flow wrapping. The hexadecimal value of black pixels stand for
0x00, and white ones for 0xff. One may see that different samples of the same traffic (rows)
look similar, while images derived from different types of internet traffic differ from one
another (columns).

111

Electronics 2021, 10, 2042

Figure 6. Traffic visualizations of trojan Zeus (the first column), Skype (the second column), Outlook
(the third column), backdoor Htbot (fourth column) and botnet Virut (fifth column). Images were cre-
ated by the authors with the advantage of the tool introduced in [34] on the USTC-TFC2016 dataset.

2.4. The Datasets

The crucial role in all machine learning methods is that of the datasets. They are
necessary to perform the learning process of classifiers. They also help compare various
approaches. In the case of traffic classification, several open datasets are commonly used
in papers under study. The datasets include various types of traffic data: raw traffic,
flows and features. Short characteristics of the most frequently employed in the studied
papers are listed in Table 1. Figure 7 shows the popularity of particular datasets in the
investigated papers.

The group of 28 articles use less popular datasets (Figure 7). These datasets in alpha-
betic order are as follows:

Table 1. The summary of the most popular datasets used in the studied papers—sorted by the year of creation.

Dataset Applied in Format Size [GB] Year

KDD Cup 1999 9 articles: [35–43] features 0.74 1998
NSL-KDD 7 articles: [38,43–48] features 0.04 2009

ISCX-IDS-2012 6 articles: [49–54] flow, raw packets 8.42 2012
CTU-13 5 articles: [55–59] features, raw packets 74.27 2013

UNSW-NB15 5 articles: [31,42,60–62] features, flow, raw packets 0.55 2015
ISCX VPN-nonVPN 19 articles: [12,49,51,57,63–77] features, raw packets 28 2016

USTC-TFC2016 11 articles: [34,66,68,69,78–84] raw packets 3.71 2017
ISCX-IDS-2017 5 articles: [42,49,54,85,86] features, flow, raw packets 51.1 2018

Figure 7. Popularity of the datasets within the reviewed articles. Digits in the brackets stand for the
number of all occurrences of each dataset.

BoT-IoT, CAN 2017, CIC-AAGM2017, CIRA-CIC-DoHBrw-2020, CSE-CIC-IDS2018,
CTU-Malware, CTU-Mixed, DARPA 1998, DARPA 1999, EDU1, ISCX-Bot-2014, ISCX
Tor-nonTor, Malware Capture Facility Project (malware), MAWILab, Mirai-RGU, NIMS,
NLANR AMP, NLANR MAWI, SCU-RNE, UPC Broadband Traffic Research group’s
dataset, VAST 2013 challenge and WRCCDC.

112

Electronics 2021, 10, 2042

All the datasets contain a certain number of labeled traffic samples. Labels refer to the
traffic classes. Classes always belong to one of two groups. In most cases, these groups
are malware and benign traffic. One dataset, VPN-nonVPN, contains classes grouped
according to the VPN connections within the frames of which the traffic was registered.
For details regarding classes, see Table 2.

There are many datasets used in scientific papers for network monitoring and clas-
sification. They usually consist of real or simulated data. Some of them are described
only in publications but are not available for other researchers for methods evaluation.
In this survey, we have selected and compared only those datasets that were used in the
research described in the studied papers. A comprehensive analysis that highlights datasets
utilized for IDS concepts purposes is in [87]. The paper touched upon the question of
pcap and NetFlow differences. It analyzed common datasets concerning the wanted traffic
occurrence (not malware), the data format, anonymity, volume of the traffic, type of traffic,
labeling, etc. It is crucial to point out that some described datasets are publicly available.

Table 2. The traffic details of the most popular datasets. Datasets are sorted by the number of occurrences in articles.

Dataset Type of Data Traffic Details

ISCX VPN-nonVPN encrypted
14 classes: Browsing, VPN-Browsing, Email, VPN-Email, Chat, VPN-Chat,
Streaming, VPN-Streaming, File Transfer, VPN-File Transfer, VoIP, VPN-VoIP, P2P
and VPN-P2P [63].

USTC-TFC2016 malware

20 classes: 10 malware and 10 benign traffic. Malware: Cridex (a worm), Geodo (a
trojan), Htbot (a backdoor), Miuref (a trojan), Neris (a botnet), Nsis-ay (a botnet),
Shifu (a trojan), Tinba (a trojan), Virut (a botnet), Zeus (a trojan). Benign traffic:
BitTorrent, FTP, Facetime, Gmail, MySQL, Outlook, SMB, Skype, Weibo,
WorldOfWarcraft [34].

KDD Cup 1999 malware 41 traffic features and 22 attacks. The 4 attack categories are: Dos, R2L, U2R and
Probing [43].

CTU-13 malware
7 botnets: Neris, Rbot, Virut, Menti, Sogou, Murlo, NSIS.ay in 9 different
characteristics: IRC, SPAM, ClickFraud, Port Scan, DDos, FastFlux, P2P, HTTP and
compiled and controlled by the researchers [88].

ISCX-IDS-2012 malware 4 attack scenarios: Infiltrating the network from the inside, HTTP DoS, DDoS using
an IRC botnet and SSH brute force [87].

NSL-KDD malware 41 features and 1 label. The 3 groups of features are basic features, content features;
and traffic features. Possible attack labels are: DoS, probe, U2R and R2L [45].

ISCX-IDS-2017 malware

16 types of attacks: Brute Force (FTP-Patator, SSH-Patator), DoS/DDoS (DoS
slowloris, DoS Slowhttptest, DoS Hulk, DoS GoldenEye, DDoS LOIT), Web Attacks
(Brute Force, XSS, SQL Injection), Infiltrations (Dropbox download, Cool disk –
MAC), Bugs/Exploits (Heartbleed, Meta exploit Win Vista), Botnet ARES and Port
Scan [89].

UNSW-NB15 malware 9 types of attacks: Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic,
Reconnaissance, Shellcode and Worms [90].

Having a given dataset, in the case of network traffic classification, one follows the
classic machine learning workflow. The dataset is divided into training and testing sets.
The former is used to train the neural model, while the latter is used to test it. However,
this workflow is preceded by transforming the network traffic data into data samples that
the neural model may use. Finally, the evaluation of the results is usually performed using
typical measures: precision, recall, accuracy, and F1-score.

2.5. Other Surveys

Because the classification of computer network traffic seems to be a leading trend
in the latest research, many surveys have been published that widely discuss this topic.
However, each paper examines the scientific problem from a different perspective.

Identifying malware by machine learning techniques was widely investigated in [91].
The paper focused on different types of malware analysis. In addition, one can find a
brief description of common malware types. Then, feature selection, classification, and

113

Electronics 2021, 10, 2042

clustering for malware detection were discussed. Finally, the authors mentioned trends of
malware development. The survey did not focus on network traffic.

Another paper [92], was written on the subject of traffic classification for quality
of service purposes. The article examined many machine learning methods and their
advantages for anomaly and intrusion detection. It is important to highlight that the survey
also discussed the practicality of the methods. Unfortunately, when it comes to CNNs,
there was only one paragraph fully devoted to the history of CNNs.

Unwanted network traffic detection in the Internet of Medical Things (IoMT) was
extensively discussed in [93]. Researchers analyzed types of malware attacks, architec-
tures of the IoT environment and taxonomy of security IoT protocols. The latter focused
on key management, authentication, access control and intrusion detection. The arti-
cle stated that future research will be based, among others, on blockchain usage and
cross-platform detection.

Work in the topic of Android malware classification was categorized in [94]. In the
paper, a novel taxonomy of android malware families was introduced. The interesting part
of the paper is a list of Android malware datasets and the surveyed articles’ limitations.
The paper finished with future directions.

A comprehensive review of malware analysis tools that detect and analyze malware
executables is given in [95]. Except for reverse engineering tools as well as memory
forensics, packet analysis, detection tools, online scanners and sandboxes were elaborated.

Deep learning techniques were introduced as those that can quickly solve complex
problems [96]. The article highlighted the following architectures of deep neural networks
(DNNs): feed-forward neural network (FNN), convolutional neural network (CNN), re-
current neural network (RNN) and generative adversarial network (GAN). One section
touched on the deep learning private data frameworks. The deep learning threats and
attacks, as well as defense techniques, were also examined.

A survey [1] for collecting articles that propose deep learning-based modes to find
intrusion in the network data was introduced. In the paper, one can find the taxonomy of
deep learning models. In the list of research papers on supervised instance classification
models for intrusion detection, there is a brief mention of [34]. The authors, among others,
concluded that advances in deep learning methods are noticeable. On top of that, they
said that it is often impossible to reproduce some deep learning models, due to the lack of
adequate information. The authors also proposed a novel classification of four network
traffic datasets.

The utilization of deep learning methods for the purposes of cybersecurity was ex-
amined in [97]. The paper singled out types of machine learning, types of deep learning
and algorithms for both. Then, deep learning platforms were examined. Finally, the article
outlined network attacks. CNN usage by [34] was only mentioned. The detection of cyber-
attacks to the IoT infrastructure with the advantage of deep learning articles was widely
discussed in [98]. The researchers reviewed the IoT architecture, reference models and IoT
protocols. Then, they introduced threats against IoT systems and continued with intrusion
detection systems (IDS). An interesting IDS taxonomy was also described in the paper. In
the CNN section, they mentioned a few articles, but only [34] is related to security, based
on network traffic. The next survey dealt with the development and detection trends of
unwanted software [99]. In addition, the authors focused on those areas that were omitted
by other surveys, e.g., advances in the creation of new types of malware.

The detection of intrusions throughout analysis of images generated from network
traffic was outlined in [100]. The paper distinguished classical and neural networks
methods. The authors dwelt on deep learning models of the convolutional neural network
(CNN), long short-term memory (LSTM), support vector machine (SVM) and hybrid ones.
When it comes to only CNN models, they detailed the works of [20,34,56,85]. This review
points out that [101] was one of the first concepts of converting network traffic to images.
The paper aroused our interest. The work proposed the creation of two-dimensional images
that consist of 4 bytes in an IP address structure. The matrix then shows the intensity of

114

Electronics 2021, 10, 2042

traffic in the image representation. Nevertheless, this idea does not refer explicitly to CNN,
and is not covered in further sections of this survey.

A systematic literature review highlighted interesting trends in the IoT infrastruc-
ture [102]. The researchers concluded that the majority of attacks take place in the network
layer. There is a mention of the most popular datasets as well as common attacks.

Network traffic classification algorithms, for instance, based on the port number,
statistical characteristics, host behaviors and deep learning, was considered in [3]. The
last category encapsulated the following models: stack autoencoder (SAE), CNN, LSTM
and deep belief networks (DBN). The CNN section described only three methods, where
the CNN input was transformed beforehand—From the one-dimensional data to different
one-dimensional data, to two-dimensional data or to three-dimensional data.

While preparing this survey, we decided to develop the concept of describing nothing
but the CNN models’ usage for traffic classification and malware detection purposes.
Contrary to [3], our article consists of 91 papers, i.e., all papers on this topic written until
2021. The conclusion of the CNN chapter in [3] is that the transformation from the 1st
dimension to the 3rd dimension is better than other transformations. We believe that it is
hard to hypothesize with only a few examples. On top of that, the compared examples
utilized a variety of methods. Therefore, the proposed survey inherits and enhances the
classification of different forms of transformations.

3. Raw Traffic

The first group of transformation methods works on the captured packets as they
come in—the raw traffic. This type of data seems to be the most direct input of the CNN-
based deep learning model (CDM), as its considerable merit is the lack of necessity of the
prepossessing phase. However, only four research groups decided to base their work on
this type of data while crafting the CNN input. These are 1D transformation [78] and 2D
input concepts [35,103] (see Table 3). In addition, ref. [79] proposed both a 1D approach
and a 2D one.

The one-dimensional entry to CNN is a vector created from raw traffic packets. While
transforming packets, Marín et al. proposed the removal of only two attributes of traffic
from protocol data units (PDU), i.e., MAC and IP addresses [78]. After that, a fixed size of
1300 bytes is set. It means that all longer packets are trimmed, while smaller packets are
zero-padded. In the end, each packet is labeled to be either benign or malware. Finally,
vectors are given to the 6-Layer CNN, which is tested on the USTC-TFC2016 dataset. This
is an unwanted traffic detection approach.

The idea of wrapping raw traffic packets into the matrix was proposed by Ko et al.
to test an 11-Layer CDM [103]. Traffic originated from the EDU1 dataset. This research
proposed 200 × 200 bytes images. This is a traffic classification approach.

The scientific concept of raw traffic packets wrapping was further studied by Jia et al. [35].
The traffic images were based on the DARPA 1999. The authors unified the packets length
so that each reached 784 bytes. Then, they wrapped the vector to create a matrix of 28 × 28
bytes size. The paper provided the images as an entry for LeNet [19]. The work’s aim was
to enhance malware detection—in particular, the detection of intrusions.

The following paper, written by Zhang et al., used two different versions of CNN
input [79]. The 1300 bytes size vectors are given to two 10-Layer CDM. 2D CNN obtains a
traffic matrix, whose size is not revealed. It is important to highlight that vector as an entry
to 1D CNN achieves better results than the matrix given to the 2D CDM. In the proposed
approach, the packets are left unchanged. The deep learning model works on raw traffic
from the USTC-TFC2016 dataset to detect malware. The paper proposed two types of
transformations.

115

Electronics 2021, 10, 2042

Table 3. The summary of articles that are in the raw traffic transformation group.

Article Input Dimension Layers Dataset Year

[78] 1D C|P|C|P|FC|FC USTC-TFC2016 2018
[103] 2D (200 × 200) C|C|P|C|P|C|P|F|FC|FC|FC EDU1 2019
[35] 2D (28 × 28) LeNet [19] DARPA 1999 2020
[79] 1D, 2D C|C|P|C|C|P|F|FC|FC|FC USTC-TFC2016 2019

4. Flows

Flows, grouped raw network traffic according to the same properties, form the second
part of network traffic that could be processed while preparing CNN entries. Some papers
work on datasets that already consist of flows, whereas others order the raw traffic to pick
up all packets belonging to each flow.

4.1. One Dimensional CNN Input

A big group of research articles processed, in CNN-based tools, vectors built from
flows. The transformations are basically differentiated in two areas: sizes of input vectors
and data manipulations [49,64,66,80–82,104,105] (Table 4).

An extended version of [78] was widely elaborated by Casas et al. for flow vectors
in network security, i.e., malware detection [104]. The authors decided to use only two
packets and the first 100 bytes of each. This approach was based on statistical calculations.
The 3-Layer CDM was tested on the MAWILab dataset.

The same research group, Marín et al., continued to investigate malware detec-
tion [105]. The authors checked the same, previously proposed CNN tool with vectors
crafted from flows of the CTU-Malware dataset. Then, the tests were extended with USTC-
TFC2016 in the next two papers [80,81]. In each, the 3-Layer CNN obtained the flow vector
as an input. The articles also tested different machine learning models, also not related
exclusively to CNNs.

The objective of traffic classification enhancement was set out by Song et al. in [64].
The authors utilized 8-Layer CDM, which contains an embedding layer (EMB). Pcaps
from ISCX VPN-nonVPN were then transformed to flow vectors to test the CNN models.
Traffic prepossessing was done according to the idea of Wang Wei et al. [34]. Wang’s
concept is described in the next subsection. After the normalization process, the one-hot
encoding method was used for each byte in the vector, which enlarges up to 255 different
values of bytes. The matrix consists of concatenated vectors. To increase the speed and
effectiveness of the process, all one-hot-encoded vectors of the matrix are converted into
low-dimensional dense vectors.

Hwang et al. widely tested different sizes of CNN input vectors [82]. An exam-
ple of the vector is 2 by 50 bytes, which means two flows and 50 bytes of each. The
researchers used pcaps from the USTC-TFC2016, the Mirai-RGU and their own datasets.
The introduced 11-Layer CDM to deal with malware detection, especially anomaly detec-
tion problems.

The proposed concept of Chen et al. can determine whether traffic belongs to any
of the known classes [66]. The idea requires unchanged flows that form vectors, which
later become the input of the 16-Layer CDM. This function enhances the capability of the
detection of yet-unknown traffic. The tool was tested on two datasets: USTC-TFC2016 and
ISCX VPN-nonVPN. This article is an example of both approaches: traffic classification as
well as malware detection.

Flows were also used by Chen et al. to form a 1D-CNN input [49]. Vectors of the sizes
of 784 bytes were created due to the idea of [63]. Three different datasets—ISCX VPN-
nonVPN, ISCX-IDS-2012 and ISCX-IDS-2017—were used to check the proposed 5-Layer
CDM’s effectiveness. The CDM classifies traffic.

116

Electronics 2021, 10, 2042

4.2. Two-Dimensional CNN Input

Contrary to the previously described approaches, the two-dimensional CDM input
requires increasing the dimensionality of the traffic data. Flow wrapping seems to be
one of the leading trends of traffic manipulations within discussed CNN
entries [34,50,55–58,60,61,68,106] (Table 4). The practical concept, which started in 2017,
wraps the network traffic data into the matrix [34].

The very first article that fulfilled the concept of [2] is the paper written by
Wang Wei et al. [34]. This paper seems to be the first practical approach to utilize CNNs
to process network traffic. Ref. [34] uses 6-Layer CNN to detect malware in the USTC-
TFC2016 dataset. The authors decided to give the CDM a matrix of 28 bytes per 28 bytes.
The process of creating the image (matrix) is the following: raw traffic packets are ag-
gregated into flows or sessions, and then data are anonymized. The next step is to trim
the flows to 784 bytes and ’wrap’ the vector so then one has a matrix of 28 × 28 bytes,
visualized as a gray level image. The authors decided to share the tool used to create the
matrix. While aggregating the packets into flow, one can choose one of the four versions of
the process:

• Trim according to flows with all network layers;
• Trim according to flow with only Layer 7 (L4+);
• Trim according to session with all network layers;
• Trim according to sessions with only Layer 7 (L4+).

The choice of the only L4+ could have been placed in Section 6 of our survey. Never-
theless, the remaining two aggregating methods are also widely discussed in the paper,
and this indicator makes the paper ideal for this section.

Moskalenko and Moskalenko proposed a typical flow wrapping to check 2-Layer
CNN for malware detection [55]. To create the matrix, raw packets are aggregated into
flows. Then, 784 bytes of sequential flows are taken to create a wrapped vector—the matrix
of 28 × 28 pixels. The last step is to normalize the matrix values (pixels’ brightnesses) in
the range [0,1]. The CDM is tested by pcaps from the CTU-Mixed and CTU-13 datasets.

Flow wrapping is also utilized to detect malware—more specifically, botnets by
Taheri et al. [56]. The flows from the CTU-13 dataset are transformed into grayscale images
of 28 bytes × 28 bytes and delivered to the entry of the DenseNet CNN [23]. It is important
to underline that all layers of flows are utilized.

Zhou et al. delivered the following sizes of session images to the entry of the 5-Layer
CDM: 16 × 16, 20 × 20, 28 × 28, 32 × 32 [106]. The CDM detecting botnets was tested
on the ISCX-Bot-2014 dataset. The raw traffic packets from the dataset were aggregated
into flows.

The transformation concept of [34] was utilized in the malware detection article of
Wang et al., which introduced the 5-Layer CDM [60]. The tool tests were conducted
on captured packets from the UNSW-NB15 dataset. From the raw traffic, sessions were
cropped. Finally, the CNN input was a 28 by 28 bytes matrix.

The same transformation to 32 by 32 bytes images was used in the research in which
malware detection was a theme [57]. Huang et al., in their article, tested the 7-Layer CDM’s
quality against sessions with all layers from the CTU-13 and ISCX VPN-nonVPN datasets.

The novel transformation of flow via one-hot encoding was proposed by Wang et al. to
test 5-Layer CDM (named HAST-I) [50]. The CNN tool was introduced to detect malware.
The network traffic came from the DARPA 1998, and ISCX-IDS-2012 datasets. In the
beginning, raw packets were aggregated into flows. Then, during thorough tests, flows
were trimmed to either 600 or 800 bytes. Later, one-hot encoding transformed each byte in
the vector into a vector. All the vectors were transpositioned and then concatenated so that
a matrix was formed. The smaller, 256 × 600 bytes image achieved the best classification
results for the ISCX-IDS-2012 dataset, while the 256 × 800 bytes were ideal for DARPA 1998.

A few different traffic transformations for malware detection purposes were based on
three CDMs [61]. Out of the proposed tools, only one was exclusively CNN. The different
CDMs of Millar et al. were given three different types of entries: 50 byte flow vector, 24

117

Electronics 2021, 10, 2042

traffic features and flow wrapping. The first two methods tested non-CNN based models,
whereas the last type of entry was a 2D flow image, which was given to the CNN model. In
these flows’ images, each pixel represents a byte of data in the network. A row of the image
stands for the next packet in the flow. In each field, the value means the packet filling. The
CNN model was tested on UNSW-NB15.

Moskalenko et al. investigated flow wrapping inherited from [34] to detect mal-
ware [58]. It used LeNet [19]. The tests input was taken from two datasets: CTU-Mixed
and CTU-13.

A simple flow wrapping method to 28 × 28 bytes matrices was used during the image
generating process [68]. Li et al. proposed traffic classification for 9-Layer CDM, which
was tested on data from the ISCX VPN-nonVPN and USTC-TFC2016 datasets.

4.3. Various Dimensionalities

A few papers verified the various dimensions of CNN inputs built from
flows [12,63,65,67,69,83,107,108] (see Table 4).

Flow vectors are the input of the 6-Layer CDM proposed by Wang et al. [63]. Data are
transformed as in [34] until the 784-byte vectors are formed. In this approach, the CDM
deals with the ISCX VPN-nonVPN dataset. Additionally, the researchers mentioned that the
proposed method is compared with 2D transformation. The interesting outcome achieved
by the authors was that the 2D approach achieved worse results than the 1D approach.

A thought-provoking transformation of network traffic into the third dimension to
classify traffic was proposed by Ran et al. The researchers utilized the 8-Layer CDM [83],
and then tested it on pcaps from USTC-TFC2016. The 3D model was built in four steps.
The first one identified flows within packets. The next step extracted a chosen number
of bytes from each flow. The third step concerned trimming all packets to one fixed size.
Longer packets were trimmed, whereas shorter ones were padded with zeros. Then, each
packet was transformed into a 2D matrix with the usage of one-hot encoding. To create a
3D image, all 2D images of the same packets had to be put together.

Flow vectors were also used as a CNN entry in the research articles of [107,108].
Aceto et al. utilized three types of CNN entries. Two methods, based on forming 784-byte
vectors, were taken from [63]. The third method proposed a matrix of traffic features as
a CNN entry. We describe this 2D concept in detail in Section 8. The articles utilized
6-Layer CDMs from [34,63]. Flows for this traffic classification approach were taken from
the authors’ own dataset.

While discussing in detail the wrapping flows, one should mention the approach of
Cui et al., which improved it slightly, with the advantage of the sessions’ weights [67].
On top of that, 6-Layer CDM of [63] was checked by traffic that originates from ISCX
VPN-nonVPN. Additionally, during flow transformation, unrelated SNMP, DNS and ARP
sessions were diluted, whereas valid sessions’ weights were increased. The paper’s aim
was to classify traffic. It is important to underline that the paper introduced a 5-Layer
CDM, CapsNet. The core part of the paper, which is a 2D transformation model, achieved
a better outcome than the 1D classification.

The next paper of He and Li distinguished two types of traffic from the ISCX VPN-
nonVPN dataset and touched upon flow wrapping [65]. The raw traffic packets were
aggregated into sessions. Then, for non-VPN traffic, the first 90 non-zero payloads of
flows were taken. In the second group, the VPN traffic one, the first 20 non-zero payloads
were chosen for further processing. In both groups, the tool, introduced in [34], was used.
Additionally, all DNS and NetBIOS names packets were erased. The authors decided to
remove also the three-way handshake packets. Then, traffic images of 28 × 28 byte size
were provided to the 5-Layer CDM for traffic classification. The paper also proposed a 1D
model, which works on 784-byte vectors, and compared its results with the CNN of [70].

Yet another work on the topic of traffic classification slightly modified flow wrap-
ping [12]. The experiment transformed the traffic of the first 20 packets of each flow to
not only 28 by 28 bytes images, but also other square images. These values tested by

118

Electronics 2021, 10, 2042

Pacheco et al. were not explicitly specified. In this paper, CNNs from [34,63] were tested
on traffic captured during research as well as on the VPN-NonVPN dataset.

Recently, the concept of wrapping flows to create CNN input images was also utilized
by Chen et al. for malware detection purposes [69]. The tests were conducted on pcaps
originated from the following datasets: VPN-nonVPN and USTC-TFC2016.

Table 4. All research works of the flow transformation method

Article Input Dimension Layers Dataset Year

[104] 1D C|FC|FC MAWILab 2019
[105] 1D same as [104] CTU-Malware 2019

[80,81] 1D same as [104] USTC-TFC2016 and CTU-Malware 2019 and 2020
[64] 1D EMB|C|C|C|C|P|FC|FC ISCX VPN-nonVPN 2019

[82] 1D C|P|C|P|FC|FC|FC|
FC|FC|FC|FC

USTC-TFC2016 and Mirai-RGU
and own 2020

[66] 1D C|C|P|C|C|P|C|C|C|
P|C|C|C|FC|FC|FC

USTC-TFC2016 and ISCX
VPN-nonVPN 2020

[49] 1D C|P|C|P|FC ISCX VPN-nonVPN,
ISCX-IDS-2012 and ISCX-IDS-2017 2020

[34] 2D (28 × 28) C|P|C|P|FC|FC USTC-TFC2016 2017
[55] 2D (28 × 28) C|C CTU-Mixed and CTU-13 2018
[56] 2D (28 × 28) DenseNet [23] CTU-13 2018

[106] 2D (16 × 16, 20 × 20, 28 × 28
and 32 × 32) C|P|C|P|FC ISCX-Bot-2014 2018

[60] 2D (28 × 28) C|P|C|P|FC UNSW-NB15 2018
[57] 2D (32 × 32) C|P|C|P|C|C|FC CTU-13 and ISCX VPN-nonVPN 2018
[50] 2D (256 × 600 and 256 × 800) C|P|C|P|FC DARPA 1998 and ISCX-IDS-2012 2018
[58] 2D (28 × 28) LeNet [19] CTU-Mixed and CTU-13 2020

[68] 2D (28 × 28) C|P|C|P|C|P|C|P|FC ISCX VPN-nonVPN and
USTC-TFC2016 2020

[63] 1D, 2D (probably 28 × 28) C|P|C|P|FC|FC ISCX VPN-nonVPN 2017
[83] 1D, 2D(NS),3D C|C|P|C|C|P|FC|FC USTC-TFC2016 2018

[107,108] 1D, 2D (28 × 28) same as [34,63] Own 2018
[67] 1D, 2D (28 × 28) same as [63] ISCX VPN-nonVPN 2019
[65] 1D, 2D (NS) C|P|C|P|FC ISCX VPN-nonVPN 2020

[12] 1D, 2D (28 × 28 and other
square images) same as [34,63] own 2020

[69] 1D, 2D (32 × 32) C|P|C|P|C|FC ISCX VPN-nonVPN and
USTC-TFC2016 2020

5. Payload Extracted from Raw Traffic

The next possible transformation is based on the extraction of chosen payloads from
the raw traffic. For example, according to Figure 2, one can remove the headers of Layers 2,
3 and 4. The most popular idea is to remove the L4 header and form the CDM entry from
only the L4+ payload.

5.1. One-Dimensional CNN Input

This section outlines those papers that provided the CNN model a vector, formed
with the advantage of payloads and header manipulations [70–73] (Table 5). In this section,
extractions are made from raw traffic packets.

An interesting concept of Lotfollahi et al. is based on 1D vectors, which reach the
length of 1500 bytes [70]. In the first step, headers of L2 are removed. On top of that, there
are some changes in the L4 layer. According to the design, normally shorter than TCP, UDP
packets are padded with zeros to reach the TCP length. The next step is to remove not
only the entire three-way handshake communication, but also the DNS queries. Finally,
the vectors reach the length of 1500 bytes, in which each byte value is normalized. The
paper used the ISCX VPN-nonVPN dataset to test the 6-Layer CDM. This is typical traffic
classification work.

The same transformation idea, like in the previous work, was inherited to classify
traffic [71]. The authors, Akbari and Tahoun, utilized a federated learning model, called

119

Electronics 2021, 10, 2042

the model-averaging technique, and created 3-Layer and 5-Layer CDMs. The publication’s
models were tested on the USTC-TFC2016 dataset.

5.2. Two-Dimensional CNN Input

The concept of creating traffic images from the extracted payload of raw traffic packets
is a next form of 2D-CNN input. This transformation was carried out in the following
group of scientific investigations [73,109–112] (see Table 5).

In the research of He and Shi, images were generated with the advantage of wrapping
the payload of raw traffic [109]. It seems that the authors chose the L4+ payload, so they
removed the L2, L3 and L4 headers. The researchers aimed to identify traffic, especially
SSH applications. The used 5-Layer CDM was tested on traffic from the article’s own
dataset. The authors informed that the CNN input is a 28 by 28 bytes image.

Li et al. removed the L2 headers and modified the L4+ headers to form the CNN
input [110]. The modification in L4 means unifying the length of TCP and UDP headers.
On top of that, all duplicated and empty packets (with no payload) were erased. In this
research paper, the transformation of packets to 30 × 30 byte matrices was utilized in order
to classify traffic for virtualization purposes with the 5-Layer CNN. Tests were conducted
on traffic captured by the authors.

The payload of L4+ was extracted from the raw traffic packets to create a 2D im-
age [111]. The creation of the image required taking 10,000 packets from each application
traffic captured in the UPC Broadband Traffic research group. Then, payloads of each
packet were divided by four to constitute one pixel of a future image. The sizes of all
application’s traffic were readjusted to the following: 36, 64, 256 and 1024 pixels. In the
case of a smaller number of payload samples, the images were padded with zeros. The
paper of Lim et al. used 4-Layer CDM and also ResNet to classify the captured traffic.

A similar concept of choosing only L4+ payload while creating images was applied by
Xue et al. [112]. The transformation’s last step was to wrap vectors in order to create 2D
images. The paper utilized six different CNN networks: ResNet [24], VGG16, VGG19 [25],
Inception V3 [22], Xception [26] and MobileNet [27]. Their task was to work on traffic
classification issues. Models were tested on traffic captured within the authors’ research.

5.3. Various Dimensionalities

Papers in this section compare a few transformations methods (see Table 5).
Only the transport layer’s payload (L4+) was taken from the raw traffic to form the

CNN input [72]. The authors Xu et al. tested four sizes of input data: 400, 625, 784 and
900 bytes, which were later left as a vector or transformed to an image. Vectors are the
input to the first 8-Layer CDM. Moreover, the entry of the second 12-Layer CDM is a square
matrix. Four variants were investigated: 20 by 20, 25 by 25, 28 by 28 and 30 by 30 bytes.
Traffic classification tests were extensively conducted with the advantage of pcap files
of the ISCX VPN-nonVPN dataset. Due to the dataset choice, this was a typical traffic
classification approach. The CNNs that work on vectors outperformed those models that
deal with matrices.

The paper of Zhang et al. applied three versions of transformations, i.e., to the vector
(1D), to the matrix (2D) and to the cubic form (3D) for traffic classification purposes [73].
The one-dimensional CNN input is a 1456 byte vector that consists of the raw traffic
payload of L4+. The second dimension was implemented by wrapping a different initial
vector (1521 bytes) into a 39 by 39 byte matrix. The third dimension was also created by
wrapping. An initial vector (1452 bytes) was changed into 22 by 22 by 3 bytes RGB colored
cubic forms. The network traffic was taken from the ISCX VPN-nonVPN dataset as well as
their own dataset. For this transformation, the paper used 5-Layer CDM. The results of the
experiments indicate the matrix as the input for achieving the highest classification results.

120

Electronics 2021, 10, 2042

Table 5. Works that extract payload of raw traffic.

Article Input Dimension-Payload Layers Dataset Year

[70] 1D -L3 C|C|P|FC|FC|FC ISCX VPN-nonVPN 2019
[71] 1D -L3 C|C|P|FC|FC and C|P|FC USTC-TFC2016 2019
[109] 2D (28 × 28) -L4+ C|P|C|P|FC Own 2018
[110] 2D (30 × 30) -L4+ C|C|C|C|FC Own 2019

[111] 2D (6 × 6, 8 × 8, 16 × 16 and
32 × 32 [pixels]) -L4+ C|C|P|FC and ResNet [24] Own 2019

[112] 2D (128 × 128) -L4+ ResNet [24], VGG16, VGG19 [25], Inception
V3 [22], Xception [26] and MobileNet [27]

The dataset of the UPC
Broadband Traffic
Research Group

2020

[72] 1D, 2D (20 × 20, 25 × 25, 28 × 28 and
30 × 30) -L4+ C|C|P|C|C|P|FC|FC ISCX VPN-nonVPN 2020

[73] 1D, 2D (39 × 39), 3D -L4+ C|C|FC|FC|FC ISCX VPN-nonVPN
and own 2020

6. Payload Extracted from Flows

This section is entirely devoted to the transformations of raw traffic, which extract
payloads from grouped packets, i.e., flows. This section discusses 13 research papers.

6.1. One Dimensional CNN Input

Another group of articles proposed giving the CNN model an extracted payload of
flows [51,52,113,114] (see Table 6). All papers worked on L4+ payloads, which means that
headers from L2, L3 and L4 were decapsulated.

Zeng et al. created 900 byte vectors from flows and used them to form a 5-Layer CDM
entry [51,52]. While creating the vectors, TCP and UDP headers were removed. In [51] the
malware detection model’s performance was checked with data from ISCX VPN-nonVPN
and ISCX-IDS-2012. The latter paper detected malware in the vehicular ad hoc network
(VANET) by testing the CNN model on the network traffic of the ISCX-IDS-2012 dataset
and their own simulated dataset, NS-3 VANET. The datasets contained pcap files from
which flows were aggregated. In both papers, the main concept was a hybrid deep learning
model, which obtains 30 byte by 30 byte images. These flow images were built according to
the concept of [63]. As the hybrid models do not fulfill the requirements of this CNN-based
survey, the two papers [51,52] are not described in the Section 4.

The next paper of Wang et al. also introduced a CNN input vector, that is, the L4+
payload [113]. The deep learning model’s entry reached the size of 200 bytes. The work
introduced a few models for traffic classification. The solel CNN was App-CNN, which is
a 5-Layer CDM. Flows were taken from the researchers’ own dataset.

Similarly, in the approach of Wang et al., CNN’s entry is a fix-length vector, only
consisting of the flow payloads from L4+ [114]. Then, only the top hundreds of flow bytes
are stuck into the vector. Three different deep learning models, in which one of them is
solely a CNN, were investigated. The 5-Layer CDM classifies traffic. Additionally, it was
tested on the authors’ own dataset.

6.2. Two-Dimensional CNN Input

Some papers decided to process the payload of grouped raw traffic—
flows [20,74,84,115–119] (Table 6). After the extraction step, which is the common part for
all papers, the changes within these concepts arise. The biggest differences are mainly the
layer choice as well as the selection of headers for removal.

A matrix of 32 bytes × 32 bytes was proposed to examine the 6-Layer CDM of Ma
and Qin in the work [115]. The input was formed from 1024 bytes of the L4+ payload.
The flows were caught by the authors. According to the paper, the first 1024 bytes contain
crucial information.

In the next paper, Zhao and Chen used the L4+ payload while transforming network
traffic [116]. On top of that, much larger unidirectional flow images of 87 bytes per 87 bytes
were used to classify the traffic of smartphone applications. The researchers tested the

121

Electronics 2021, 10, 2042

5-Layer CDM model on their own dataset. During the preprocessing phase, all tiny flows
with less than two packets were removed. After that, five flow vectors, 1500 bytes each,
were converted into a 2D image of the mentioned size.

Wrapping the L2 payload of flows to create an image was the dimension transforma-
tion used by Zhang et al. [84]. The paper dealt with the malware detection problem with
the advantage of different CNN models: LeNet [19], AlexNet [21] and VGGNet [25]. Tests
were accomplished on the USTC-TFC2016 dataset. Each input image had 28 by 28 bytes.

Removal of the L4 header, and so choosing the L4+ payload of flow, was applied by
Zhou and Cui [74]. Additionally, the authors examined the usefulness of Alexnet [21] to
classify traffic from the ISCX VPN-nonVPN dataset. The usage of the datasets means that
the authors were dealing with the encrypted payloads.

The next article, written by Feng et al., inherited the idea of [34] of wrapping only
the L4+ payload of flow and widely utilized it for traffic classification purposes [117]. The
paper used 6-Layer CDM. The tests of the model were based on flows coming from the
DARPA 1998 dataset.

A different idea of choosing the L3 payload was tested by Zhao et al. While trans-
forming flows from the Malware Capture Facility Project (malware samples) and their own
dataset (benign samples), researchers decided to focus on the first 32 packets of each flow,
and the first 512 bytes of each packet [119]. Then, chosen data werer saved as a matrix of
32 by 512 bytes. Later, after the normalization process, the final matrix was reshaped to a
128 by 128 byte size. If anything was smaller than the desired size, they were padded with
zeros. The matrices were given as an input to the proposed 7-Layer CDM network. The
paper also utilized an interesting metric regularization term, which enforced the model
to learn more discriminative features. This feature impacted the classification so that the
results were more precise.

A novel approach of the L2 payload of flow transformation was utilized by Saleh and Ji.
The authors constituted images by one of the five possible mappings of flow vector (1D)
into a 2D matrix. Prior to that, pcaps from the authors’ own dataset were aggregated into
flows [20] for the purpose of network traffic classification. Then, all invalid connections
were removed. Matrices of 17 by 17 bytes size or 25 by 25 bytes size were an entry to
the VGG-16 CNN [25], the 16-Layer CNN model. The authors proposed the following
mappings: linear, diagonal, waterfall, center spiral and edge spiral. The first method is
frankly wrapping flows. The diagonal mapping starts by placing bytes from the top left
corner and then arranges them diagonally. The waterfall method is said to imitate nature:
a water stream pulling into a cliff. Here, the first byte is also in the top left corner. The
second byte moves along the diagonal, the third one to the left side, the fourth up and
again along the diagonal and so on. The center spiral starts from the central position and
locates the next bytes around the previous ones. The last mapping is the center spiral in
the reverse order. Despite attempts of various mappings, the classic, linear one—the flow
wrapping—achieved the best results.

6.3. Various Dimensionalities

Research works described in this section deal with two various dimensionalities of
CNN input (Table 6).

Android traffic was transformed into images [118] according to the method of remov-
ing 24 bytes, i.e., the header of L4. The authors, Yunjie et al., decided to enlarge images,
as they used 1024 bytes. Thus, the images achieved 32 by 32 byte sizes. The interesting
part of the algorithm was the step where third party traffic was removed. The paper adds
to a growing corpus of malware detection research. The 7-Layer CDM was used to find
unwanted traffic within the CIC-AAGM2017 dataset. On top of that, the authors dealt with
two various dimensions of CNN input. The 2D method outperformed the 1D concept.

In the following approach, the one dimension is changed into three dimensions to
better detect unwanted traffic [31]. Consequently, the CNN input is three dimensional. The
paper of Millar et al. proposed a segmented CDM of 1D- and 2D-CNNs. Additionally, the

122

Electronics 2021, 10, 2042

1D-CNN and separable 2D-CNN models were introduced. Their quality was tested on
3D flow images generated from the UNSW-NB15 dataset. The 1D CDM was given a 2D
flow image. At the beginning of image creation, 97 bytes of flow were chosen. A total of 47
bytes were taken from the flow’s header, whereas the remaining 50 were from the payload.
Then, an additional nine flows were added, so the 2nd dimension was achieved by the
flow wrapping concept. The third dimension was built with the advantage of one-hot
encoding. While comparing the separate models of the 1D- and 2D-CNNs, one can see that
the application of the one-dimensional transformation resulted in higher effectiveness.

Table 6. Papers that belong to the group extracted payload—flows.

Article Input Dimension-Payload Layers Dataset Year

[51] 1D -L4+ C|P|C|P|FC ISCX VPN-nonVPN and
ISCX-IDS-2012 2019

[52] 1D -L4+ C|P|C|P|FC ISCX-IDS-2012 and own 2019
[113] 1D -L4+ C|P|C|P|FC Own 2020
[114] 1D -L4+ C|P|C|P|FC Own 2020
[115] 2D (32 × 32) -L4+ C|C|C|P|FC| FC Own 2017
[116] 2D (87 × 87) -L4+ C|P|C|P|FC Own 2018

[84] 2D (28 × 28) -L2 LeNet [19], AlexNet [21] and
VGGNNet [25] USTC-TFC2016 2020

[74] 2D (28 × 28) -L4+ Alexnet [21] ISCX VPN-nonVPN 2020
[117] 2D (28 × 28) -L4+ C|P|C|P|FC|FC DARPA 1998 2020

[119] 2D (128 × 128) -L3 C|P|C|P|FC|FC|FC
Own (benign traffic) and Malware
Capture Facility Project (malware

traffic)
2020

[20] 2D (17 × 17, 25 × 25 and 49 × 49) -L2 VGG [25] Own 2020
[118] 1D, 2D (32 × 32) -L4+ C|P|C|P|FC|FC CIC-AAGM2017 2020

[31] 2D (97 × 10), 3D -L4+
C|C|P|C|P|FC|FC|FC and

segmented CNN: C|C|P|C|P|FC
with C|C|P|C|P|FC|FC

UNSW-NB15 2019

7. Traffic Features

The papers collected in this chapter proposed a transformation of the features of the
network traffic to the CNN entry. The difference between this chapter’s concept and the
next one is that here, the research groups utilized only those datasets that consist of traffic
features (e.g., KDD Cup 1999). In contrast, in the next chapter, the papers not only created
interesting CNN entries, but also proposed feature extraction techniques.

7.1. One-Dimensional CNN Input

The transformation of chosen network traffic features into a vector that later becomes
the CNN deep learning model input is a core part of Refs. [36–38,120–122]. These papers
used network traffic datasets with explicitly traffic features, or extracted them from flow,
pcap based datasets. On top of that, four works combined traffic features with the traffic
payload [53,75,123,124].

A simple vector of features was given as an entry to different CDMs, which were used
to detect unwanted traffic, e.g., intrusions [36]. The solely CNNs which were used were
3-Layer CNN, 4-Layer CNN and 5-Layer CNN. The authors, Vinayakumar et al., chose the
KDD Cup 1999 dataset to test the proposed models.

The same transformation was used by Vinayakumar et al. in a work that focused on
SSH traffic identification [120]. The paper concept was ten different deep learning models.
The most interesting are two CNN models, i.e., 3-Layer and 6-Layer. The vector consisted
of flow features, for instance, protocol, duration of flow, maximum packet, etc. The article
made use of publicly available datasets: NLANR AMP, NLANR MAWI and NIMS.

The CNN model is given a vector, which consists of Can 2017 dataset features, which
were collected from in-vehicle on-board diagnostics [121]. The article of Lokman et al.
considered malware and intrusion detections with the advantage of 4-Layer CDM.

123

Electronics 2021, 10, 2042

The 6-Layer CDM, to detect unwanted traffic, was also tested with a vector of network
traffic features [37]. The traffic samples in Manimaran et al. research were taken from the
KDD Cup 1999 dataset.

Another paper, written by Liu and Zhang also proposed 1D input of traffic features to
improve malware detection [38]. Here, the 5-Layer CDM was tested on data from the KDD
Cup 1999 and NSL-KDD datasets.

The same transformation was performed by Susilo and Sari on the BoT-IoT dataset [122].
It appears that the 5-Layer CDM input was the vector of features. The paper showed the
malware detection approach.

The discussed transformation approach was extended by combining ten network
features with additional traffic payloads [53]. The researchers, Cui et al., decided to test
GoogLeNet [22] on the ISCX-IDS-2012 dataset. This work widely investigated malware as
well as intrusion detection.

A combination of network traffic features with flow payloads was classified by a few
AI models [123]. The paper of Zhao et al. used 6-Layer CDM ([63]) and other classical
methods, e.g., random forest. The CNN was given a vector with 29 attributes, where 12
were statistical features, 16 byte values, and the last one was a port number. The statistical
features were the payload size (5 features) and the packet length (7 features). The byte
values were 16 bytes of the payload. The model was tested on the researchers’ own dataset,
which consisted of flows.

The trend of combining traffic payload with its statistical features continued in the
article of Dong et al. [75]. Firstly, all unneeded packets, such as DHCP and NetBios, were
removed from the pcap files. The second step was to aggregate raw traffic packets with
respect to the sessions. After removing all retransmission flows and those related to a
particular application, each packet was trimmed to the set size. Then everything was joined
into one vector. The last step was the normalization of the vector’s data. In this paper, two
6-Layer CNNs from different articles [63,70], were utilized. Both CDMs aimed to classify
encrypted traffic. The input of CNNs was crafted from the ISCX VPN-nonVPN dataset.

The idea of Yang et al. was to create the CNN input in four steps: payload ex-
traction, inter-arrival time calculation, truncating/padding process and normalization
process [124]. The 8-Layer CDM tested this kind of an payload and time feature input.
Flows were originated from the WRCCDC dataset. This article is an example of a traffic
classification approach.

7.2. Two-Dimensional CNN Input

The next method of CNN input transformation is vector of features
wrapping [39–48,76,85,125]. This idea changes the form of input data representation
from a vector to a matrix, similar to that done with flows. The combination of both traffic
features and payload was also proposed in [126].

Vector of features wrapping was first introduced in the work of Liu et al., which was
focused on malware detection and intrusion detection purposes [39]. The paper proposed
32 by 32 byte matrices to be given as an entry of LeNet [19]. CNN was tested on KDD Cup
1999, which consisted of feature vectors. To create feature wrapping images, the authors
chose 1024 bytes from feature vectors, which were later transformed into images.

A novel transformation of network traffic was proposed by Liu et al. in their work
focused on malware detection and the intrusion detection challenge [40]. For this task, the
paper used two CNNs: ResNet 50 [24] and GoogLeNet [22]. Network traffic was taken
from the NSL-KDD dataset. The paper introduced an innovative method to create input
for CNN images. Firstly, all symbolic features from the dataset, i.e., protocol type, flag and
service, were converted into binary vectors (one-hot encoded). All continuous features
were normalized to scale [0–1]. After that, the authors discretized the scaled continuous
value into ten intervals. The next step was to use one-hot encoding again. This time,
the method ordered intervals into binary vectors. The vector with 484 features was then
changed into a greyscale image. Eight bytes were changed into one pixel. Finally, the data

124

Electronics 2021, 10, 2042

became an image of 8 bytes by 8 bytes in size. If necessary, the images were padded with
zeros. It is important to draw attention to the fact that the dataset consisted of vectors of 41
network traffic features. To sum up, vectors of 41 traffic features were transformed into
2D images.

Replicating vectors of features as a 11-Layer CDM entry was proposed by Naseer and
Saleem in their work which dwelt on traffic classification malware detection, mainly intru-
sion detection [41]. The tool was tested on transformed features vectors from the KDD Cup
1999 dataset. The vector contained 41 features. Three symbolic features: ’protocol_type’,
’service’ and ’flag’ were converted to become a quantitative date. Then, whole vectors were
replicated three times, and five chosen features were concatenated. These actions created
128 features vectors. Later, the vectors were again replicated (probably eight times) to
create an image 32 bytes by 32 bytes—2D matrices. These matrices then became greyscale
images, which were the CNN tool entry.

Malware and intrusion detection, more precisely anomaly detection, were closely
investigated [42]. Kim et al. utilized the GoogleLeNet CNN model and tested its usefulness
for the topic with the advantage of three datasets: KDD Cup 1999, UNSW-NB15, and
ISCX-IDS-2017. This means that they dealt with vectors of network traffic features, flows
and raw packets. While processing the dataset, the authors normalized numerical data
with the min–max normalization algorithm. Then they transformed categorical features
into numerical ones with the advantage of one-hot encoding. Later, all data were encoded
to a greyscale vector and reorganized into a greyscale image. Finally, the created images
were of the following sizes:

• 12 by 12 bytes images for KDD Cup 1999.
• 14 by 14 bytes images for UNSW-NB15.
• 9 by 9 bytes images for ISCX-IDS-2017.

A novel transformation of the feature vector into an image was widely examined
Mohammadpour et al. [44]. The first step was taken to convert nominal attributes into
discrete attributes with the advantage of one-hot encoding. This action established the
number of attributes to 122. Then, the authors removed one of the 122 features. The
remaining features were normalized in the range of [0, 1] by max–min normalization.
Finally, the 121 feature vector was wrapped to a 2D matrix. The paper used 7-Layer CDM
to deal with the NSL-KDD dataset traffic. The authors’ aim in this paper was to develop
intrusion as well as malware detection issues.

The same transformation of a feature vector into a 2D matrix was introduced in
the paper of Wang et al., which was fully devoted to the detection of unwanted traf-
fic in the network [43]. The authors checked the usefulness of the proposed 9-Layer
CDM and LeNet [19], on vectors of network features from the KDD Cup 1999 and the
NSL-KDD datasets.

Unchanged transformation from [44] was used to test the 4-Layer CDM of Hu et al.
The introduced tool had to detect malware as well as intrusions in wireless networks. In
the CDM, there is a split convolution module (SPC), which is a special layer to minimize
the problem of an unbalanced dataset [46]. The paper made use of the NSL-KDD dataset.

The researchers Li et al. decided to utilize randomly repeating features to enhance
traffic images [47]. The paper focused on 9 by 9 bytes, 9 by 10 bytes, 10 by 10 bytes and 11
by 11 bytes matrices. The authors decided to find malware, especially intrusions in the net-
work, with 7-Layer CDM. The idea was tested with the advantage of the NSL-KDD dataset.

Network traffic transformation proposed by Mohammadpour et al. [44] was contin-
ued [85]. This time, the authors detected malware and intrusions with 4-Layer CDM on
the traffic from the ISCX-IDS-2017 dataset. The model consists of a layer known as a mean
convolutional layer (MC). This layer enhances classification so that all anomaly samples are
separated during computing. Moreover, this helps in learning the prediction error filters,
which can generate low-level abnormal features.

125

Electronics 2021, 10, 2042

The same idea of 2D transformation was utilized [125], where Zhang proposed
a 6-Layer CDM to deal with malware detection. The vector of features images was
32 × 32 bytes. They were formed from the KDD Cup 1999 dataset.

To detect malware as well as detect intrusions, Pham et al. utilized two methods
of network traffic transformations [76]. The first one, based on histogram creation, was
inherited from [77]. The second one, for the purpose of image creation, multiplied the
packet’s length by the normalized delivery time. This was done in order to differentiate
two packets of the same length, collected at different times. Thanks to multiplication,
the same length packets were stuck in different parts of the image, not disturbing the
sequence pattern. The next step was to reduce the multiplication outcome to the image
size in order to achieve data within the image’s size—the so-called modulo operation. The
researchers created 30 by 30 pixel images for the CSE-CIC-IDS2018 dataset traffic and a 300
by 300 pixels matrix for ISCX VPN-nonVPN. The used CDM was a 9-Layer one.

A novel sliding window based approach was introduced in [126] for traffic classifi-
cation. Li et al. used 7-Layer CDM, which was later evaluated by flows from their own
dataset. The CNN input was an image created in a few steps. At first, the flow traffic was
divided into segments that corresponded to particular applications activities. Then, each
segmented traffic stream was represented by a matrix and a vector. The matrix consisted of
a number of packets received in the chosen time unit. The vector held frequency-domain
features of the traffic.

The same network data transformation, as in [40], was applied by Su et al. The authors
utilized the neuro evolution of augmenting topologies algorithm to find the optimal CNN
architecture [48]. As there was not one chosen CNN for malware detection purposes, this
paper will not be covered in the summary table at the end of this section. Tests of different
CNNs were conducted on the NSL-KDD dataset.

7.3. Three-Dimensional CNN Input

A few articles proposed CLM models that require a 3D entry [127–130] (see Table 7).
Probability distributions of the network flow sequence to images were converted [128].

To fulfill the task, reproducing kernel Hilbert space (RKHS) embeddings were used by
Chen et al. This method is said to create a neat image representation of a (conditional)
distribution. Network flows were originated from the researchers own dataset. The article
aimed to develop traffic classification methods with the advantage of a 7-Layer CDM.

There is a traffic classification in terms of QoS and a security approach in which
CNN input is an RGBA image [127]. The article used four predefined CNNs: LeNet [19],
AlexNet [21], ConvNet and GoogleNet [22]. The network traffic in the form of pcaps
was taken from the researchers’ own dataset. Raw traffic packets were firstly aggregated
into flows. Then, four features—size (s), interarrival_time (t), protocol (p) and direction
(d)—were taken. Merged together, the following vector of the packet’s feature was formed:
[s, t, p, d]. Later, vectors with the packets’ features formed a flow matrix, so that each matrix
element was a vector. Salman et al. highlighted that a feature vector of four elements can
become an RGBA pixel [127]. They followed this idea and created RGBA images. The size
of each was firmly connected to the mode of the model: offline vs. online. The online mode
worked on smaller images with 16 packets of the flow, whereas the offline was capable of
processing 28 packets of the flow.

Volumetric colored images that represent the amount of the data captured within a
chosen time was also utilized as a CNN entry [129]. The concept assumed a colored input
of 656 by 874 pixels. This input was built from the dataset of De Schepper et al. and tested
8-Layer CDM in terms of traffic classification accuracy.

The concept of building a 3D entry from a features vector was used by
Arivudainambi et al. for malware detection [130]. With the advantage of PCA compres-
sions, seven attributes were minimized to only two crucial ones. Then, the CDM model was
given an entry from the traffic captured by the authors. Details of the CNN architecture
were not revealed.

126

Electronics 2021, 10, 2042

In contrast to the previous articles, one work tested various dimensions within the
discussed transformation approach [45]. In the article of Wu et al., 11 by 11 byte images
were given as an entry of a 5-Layer CDM. The classification tool was that of [44], which
was tested on network traffic features from the NSL-KDD dataset. CNN input images
were created as in [44]. This is a malware detection approach. The paper compared the 2D
transformation and classification results with those of 1D. Having analyzed these results,
one can see that the feature wrapping concept is a better method for classification.

Table 7. The summary of all feature-based articles.

Article Input Dimension Layers Dataset

[36] 1D C|P|FC, C|C|P|FC and C|C|C|P|FC KDD Cup 1999
[120] 1D C|P|FC and C|C|C|C|P|FC NLANR AMP, NLANR MAWI and NIMS
[121] 1D EMB|C|P|FC Can 2017
[37] 1D C|P|C|P|FC|FC KDD Cup 1999
[38] 1D C|P|C|P|FC

[122] 1D EMB|C|P|FC|FC BoT-IoT
[53] 1D GoogLeNet [22] ISCX-IDS-2012

[123] 1D same as [63] Own
[75] 1D [63,70] ISCX VPN-nonVPN

[124] 1D C|C|P|C|C|P|FC|FC WRCCDC
[39] 2D (32 × 32) LeNet [19] KDD Cup 1999
[40] 2D (8 × 8) ResNet [24] and GoogLeNet [22] KDD Cup 1999
[41] 2D C|P|C|P|C|P|C|P|F| FC|FC KDD Cup 1999

[42] 2D GoogLeNet [22] KDD Cup 1999, UNSW-NB15 and
ISCX-IDS-2017

[44] 2D (11 × 11) C|P|C|P|FC|FC|FC NSL-KDD
[43] 2D (probably 11 × 11) LeNet [19] and C|C|C|C|C|P|FC|FC|FC KDD Cup 1999 and NSL-KDD
[46] 2D C|SPC|SPC|FC NSL-KDD
[47] 2D (9 × 10, 11 × 11, 9 × 9 and 10 × 10) C|P|C|P|FC|FC|FC NSL-KDD
[85] 2D (11 × 11) MC|C|C|FC ISCX-IDS-2017

[125] 2D (32 × 32) C|P|C|P|C|FC KDD Cup 1999
[76] 2D (30 × 30 and 300 × 300 [pixels]) C|P|C|P|C|P|C|FC|FC CSE-CIC-IDS 2018 and ISCX VPN-nonVPN

[126] 2D C|P|C|P|C|P|FC own
[128] 3D C|P|C|P|FC|FC|FC own

[127] 3D LeNet [19], AlexNet [21], ConvNet,
GoogleNet [22] and ResNet [24] own

[129] 3D C|P|C|P|C|P| FC|FC own
[45] 1D, 2D (11 × 11) C|P|C|P|FC NSL-KDD

8. Extracted Features

When compared to the previous section, this category of traffic transformations fo-
cused not only on classification but also on feature extraction. Here, the used datasets were
mainly flow or packet-based. Therefore, after the extraction process, the CNN models dealt
with traffic features.

8.1. One-dimensional CNN input

These following batch of papers widely elaborated feature extraction approaches to
form input vectors [54,59,62,131,132] (see Table 8).

The different CNN model works on the basis of CTU-Malware, UNSW-NB15 and
SCU-RNE datasets [62]. Shao et al. also proposed a novel method to extract features by a
4-Layer CDM. The idea learns the representation of a time series input data at each network
model layer with the advantage of a hierarchical transformation of a CNN. The researchers
compared the extraction tool with other feedforward networks. Further, the method avoids
explicit feature extraction. The research paper proposed a 5-Layer CNN classifier to detect
malware within computer network traffic.

MontazeriShatoori et al. created in a novel way CNN input vectors from pcaps and
flows originated from the CIRA-CIC-DoHBrw-2020 dataset [131]. While preparing an
input vector for CNN, all statistical features of flows were chosen from raw packets, i.e., the
number of flow bytes sent, the rate of flow bytes sent, the number of flow bytes received,
the rate of flow bytes received, packet length (e.g., mean, variance), packet time (e.g.,

127

Electronics 2021, 10, 2042

mean, variance), request/response time difference (e.g., mean, variance). It is important to
highlight that the authors decided to share their statistical feature extractor tool ’DoHMeter’
publicly. They used CNN and other hybrid deep learning models to detect malware within
DNS over HTTPS tunnels. The details of the CNN were not described.

Yet another publication written by Kolcun et al. utilized vector of features as the
CNN entry to deal with the traffic classification challenge in IoT [132]. There are a few
models proposed, but only one meets the requirements of this review, the 4-Layer CDM.
The model’s input is a vector of features that originates from the authors’ own dataset.
They are 19 chosen features, among others: source and destination ports, a number of
received bytes, mean size of packets, a variance of the packets’ sizes and duration of the
stream.

Fourteen features from the CTU-13 dataset were extracted to form a 5-Layer CNN
input [59]. These features included the traffic flow start time, protocol, the total number of
packets or average packet rate, etc. This is a concept of detecting malware in the network
traffic, especially botnets.

Differentiation of the features of flow packets due to time arrivals was proposed by
Doriguzzi-Corin et al. to create network traffic vectors [54]. Once all flows in a particular
time window were chosen, 11 special features were extracted. Longer flows were truncated.
Then, these feature vectors were normalized and, if needed, zero-padded. The last step was
devoted to labeling. The authors gave the vectors as an entry to 3-Layer CDM. The research
was based on the traffic taken from the following datasets: ISCX-IDS-2012, ISCX-IDS-2017
and CSE-CIC-IDS2018.

8.2. Two-dimensional CNN input

The following eight articles created matrices of wrapped traffic features. These features
were first extracted from the chosen datasets [77,86,107,108,133–136] (Table 8).

The first 2D concept of extracting traffic features from captured flows was proposed by
Lopez-Martin et al. [133]. The authors took advantage of the 6-Layer CDM to classify the
traffic. The deep learning model was given matrices containing six flow features, i.e., source
port, destination port, the number of bytes in payload, TCP window size, interarrival time,
and packet’s direction in each row. The six features were taken from the 20 packets. Thus,
the 2D input size was 20 by 6. Flows were originated from the authors own dataset, from
Spanish research centers.

Two papers [107,108] utilized a few concepts of traffic transformations. The flow
wrapping approaches are widely discussed in Section 4. On top of that, Aceto et al.
followed the idea of [133] and also provided matrices of extracted features to classification
models. The CDM used in this category of traffic manipulations was a 6-Layer CDM. This
is a typical traffic classification study. The traffic was taken from the author’s own capture.

Images based on the arrival time of packets are the input of the deep learning model
of Yang et al. in another traffic classification research article [134]. Scientific work uses
AlexNet CNN [21]. The tool was tested on the author’s own dataset, where flows were
captured. CNN’s input was 10 by 10 bytes matrices. These 2D images are generated from
the inter-arrival time of the first 50 packets of a session or their lengths. For packet lengths,
the 1500 byte maximum transmission unit (MTU), and for an inter-arrival time, the 1200
milliseconds, constitute states which later form matrices.

The same concept of CNN entry was further tested by Hussein et al. on a few models:
LeNet [19], AlexNet [21], ConvNet and GoogleNet [22,135]. Vectors were crafted from
traffic features, which originated from the authors’ own dataset. During processing, input
data were transformed into images with a size of 16 × 16 bytes. The goal of the paper was
to detect malware or find intrusions.

CNNs’ input was created by concatenating matrices [136]. The article tested malware
detection on a few different models. Among others, two were exclusively CNN based:
5-Layer CDM and ResNet [24]. The test was based on flows from VAST 2013 challenge col-
lections. When it comes to the deep learning models’ inputs, the authors created interesting

128

Electronics 2021, 10, 2042

correlation matrices on the numeric features of flows. While doing this, they omitted cate-
gorical data. This means that each numerical feature of the flow had a correlation matrix.
Then all matrices for all traffic features were concatenated. It is important to highlight that
each matrix was surrounded by a chosen value of top features. The image was called SC
matrices. This is an outstanding concept of Liu et al. of the discussed topic when compared
to other proposed ideas. LeNet [19] was used to enhance network traffic classification
field [77]. The tests of the model were carried out on pcaps from the ISCX VPN-nonVPN
and ISCX Tor-nonTor datasets. Raw traffic packets were processed beforehand. The first
step of the process was to aggregate packets into flows. Then flows were divided into 60-s
blocks. The next step was time normalization: the opening time was zero, and the final time
was 1500. That means that 60 s is now 1500. Later, all pairs of IP datagram sizes and arrival
times of the flow were registered in the 2D histogram. Each cell in the histogram contains
the number of received packets in a particular time and of a particular size. Histograms are
1500 by 1500 bytes size and are named Flowpic. Shapira and Shavitt provide Flowpic as an
input of CNN [77]. This is an interesting concept, dealing with the topic of transformations
from different perspective of input data.

A thought-provoking article of Zhang et al. dwells on the traffic classification scientific
problem and amends the concept of [50]. The changes included extracting features from
the raw traffic [86]. The paper assumed that each flow consistsed of five packets, which,
according to the authors’ suggestion, were the most important ones. This assumption
reduced redundant features from the top network layer and proposed more compact
flows. The authors summarized these changes with the statement that more flows can be
processed, and the introduction of zero elements was more firmly reduced. The image
was 16 by 16 bytes in size. The proposed CNN model was a segmented CDM. The top
branch of the model was responsible for image segmentation tasks that handle pixel-level
classifications. The bottom branch main task was to deal with abnormal traffic that was
imbalanced. The model was tested on ISCX-IDS-2017.

Table 8. Extracting features papers.

Article Input Dimension Layers Dataset Year

[62] 1D C|C|P|FC CTU-Malware, UNSW-NB15 and
SCU-RNE 2019

[132] 1D C|C|P|FC Own 2020

[59] 1D C|C|P|FC|FC CTU-13 2020

[54] 1D C|P|FC ISCX-IDS-2012, ISCX-IDS-2017 and
CSE-CIC-IDS2018 2020

[133] 2D (20 × 6 [features]) C|P|C|P|FC|FC Own 2017
[107,108] 2D (20 × 6 [features]) same as [133] Own 2020

[134] 2D (66 × 10, 81 × 10 and 76 × 10
[pixels]) AlexNet Own 2018

[135] 2D (16 × 16) LeNet [19], AlexNet [21], ConvNet and
GoogleNet [22] Own 2019

[136] 2D (3 × 30) C|C|C|P|FC and ResNet [24] VAST 2013 challenge 2019

[77] 2D (1500 × 1500) LeNet [19] ISCX VPN-nonVPN and ISCX
Tor-nonTor 2019

[86] 2D (16 × 16)
Segmented CNN:

|C|C|C|C|C|P|FC and
C|P|C|P|C|P|FC

ISCX-IDS-2017 2019

9. Summary and Conclusions

There have been many scientific publications on CNN-based deep learning models
(CDMs) for traffic classification and malware detection since 2015, as indicated in Figure 1.
The aim of this survey was to study different dataset transformations described in the
selected papers, using different criteria. The following aspects were considered:

• Network traffic data (raw traffic, flow, L2, L3, L4+ payload, traffic feature as shown in
Table 9.

• Network traffic data transformation to the form of the input required by CDM.

129

Electronics 2021, 10, 2042

• Different structure of CNN layers and models.
• Dimensionality of the CDM’s input data.
• Current trends in CDMs for network traffic classification.

The type of network traffic data as an input for CDM is one of the crucial elements.
Network traffic data used in the studied papers were acquired from different sources:
test-beds, real traffic, or datasets prepared for and shared to the scientific community.
Acquisition and the preprocessing of network traffic are an essential part of data analysis.
The two most popular datasets within the elaborated topic are ISCX VPN-nonVPN (19
articles) and USTC-TFC2016 (11 articles). On top of that, many scientists did not share their
datasets (25 articles).

As shown in Table 9, the numerousness of papers in each category highlights the
paths followed by researchers. The most popular categories are manipulations of flows
and traffic features. Using raw traffic so data do not need preprocessing is the least popular
category. Under that reasoning, feature vectors as well flows were widely taken from
utilized datasets.

Table 9. The summary of the most common transformation methods of the CNNs’ inputs.

Transformation Articles’ No. Articles

Raw traffic (1D) 2 [78,79]
Raw traffic (2D) 2 [35,103]
Flows (1D) 13 [49,63–67,80–82,104,105,107,108]
Flows (2D) 14 [12,34,50,55–58,60,61,65,67–69,106]
Flows (3D) 1 [83]
Extracted payload—raw traffic (1D) 4 [70–73]
Extracted payload—raw traffic (2D) 6 [72,73,109–112]
Extracted payload—raw traffic (3D) 1 [73]
Extracted payload—flows (1D) 4 [51,52,113,114]
Extracted payload—flows (2D) 9 [20,31,74,84,115–119]
Extracted payload—flows (3D) 1 [31]
Feature-based approaches (1D) 10 [36–38,53,75,120–124]
Feature-based approaches (2D) 13 [39–48,76,85,125]
Feature-based approaches (3D) 4 [127–130]
Extracting Features (1D) 5 [54,59,62,131,132]
Extracting Features (2D) 8 [77,86,107,108,133–136]

Analyzing CNN layers and models, LeNet was the most common CDM. Moreover,
some papers amended their architecture with one or more additional layers. This was
caused by the usefulness and practicality of the model in other scientific areas, such as data
science and image recognition. Then, there is only a need to adjust the input data (network
traffic), so it fits the requirements of the trained LeNet on, for instance, the MNIST dataset.
This aspect is called transfer learning.

This survey is CNN based, so the majority of papers decided to form a 2D input to the
deep learning model. Vectors as CNN entries were not so frequently used. Methods that
proposed a 3D input to the 3D-CNN, dyed red, were in the minority (see Figure 8).

Figure 8. The popularity of discussed transformation methods, with the CNN architecture.

130

Electronics 2021, 10, 2042

Regarding the comparison of dimensions, as the input data for CDM, we observed the
following trends. Among various dimensions, 2D was the most common approach. The
majority of articles added the second dimension with the advantage of wrapping. In the
group of 2D methods, the entry size of 28 by 28 bytes was the leading trend. This concept
may have been taken from the CNN structure used for the MNIST dataset.

As presented in Table 10, a noticeable batch of research papers utilized two or more
dimensions of the CNN entries. We found out that seven papers gave proof of high results
obtained by lower dimensions. This conclusion was not only unexpected, but also relevant
for further studies (see Table 10). On top of that, manipulations on flows were the most
common ones within the papers that compared various dimensions of CNN entry.

Table 10. The comparison of papers using more than one transformation model for CNN
entry purposes.

Article 1D 2D 3D Transformation

[79] �(best) � — Raw traffic
[63] �(best) � — Flows
[83] � � �(best) Flows
[107] � �(best) — Flows (1D, 2D) & Extracting Features (2D)
[108] � �(best) — Flows (1D, 2D) & Extracting Features (2D)
[67] � �(best) — Flows
[65] �(best) � — Flows
[12] �(best) � — Flows
[69] � �(best) — Flows
[72] �(best) � — Extracted payload—raw traffic
[73] � �(best) � Extracted payload—raw traffic
[118] � �(best) — Extracted payload—flows
[31] - �(best) � Extracted payload—flows
[45] � �(best) - Feature-based approaches

In some of the studied papers, researchers also used other CDMs to analyze network
traffic. For example, the following methods were applied to the study of network traffic
analysis: classical methods (tree-based, K-nearest neighbor, naive Bayes, logistic regression,
support vector machine and semi-supervised) and neuronal methods (recurrent, multilayer
perceptron, autoencoder and hybrid models).

Considering the constant increase in the number of papers on CNN-based models
for computer network traffic analysis, one may conclude that this approach is becom-
ing one of the classic approaches to traffic classification. One may also predict that the
growth in the number of applications will continuously improve both the efficiency and
detection/classification speed.

Funding: The research was funded by POB Cybersecurity and Data Analysis of Warsaw University
of Technology within the Excellence Initiative: Research University (IDUB) program.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gamage, S.; Samarabandu, J. Deep learning methods in network intrusion detection: A survey and an objective comparison. J.
Netw. Comput. Appl. 2020, 169, 102767. [CrossRef]

2. Wang, Z. The applications of deep learning on traffic identification. BlackHat USA 2015, 24, 1–10.
3. Li, J.; Pan, Z. Network Traffic Classification Based on Deep Learning. KSII Trans. Internet Inf. Syst. 2020, 14, 062021.
4. Baran, P. The beginnings of packet switching: Some underlying concepts. IEEE Commun. Mag. 2002, 40, 42–48. [CrossRef]
5. Clark, D. The Design Philosophy of the DARPA Internet Protocols. SIGCOMM Comput. Commun. Rev. 1988, 18, 106–114.

[CrossRef]
6. Mills, C.; Hirsh, D.; Ruth, G. Internet Accounting: Background; Internet Requests for Comments; RFC Editor, 1991. Available online:

https://ieeexplore.ieee.org/abstract/document/920864/ (accessed on 19 July 2021).
7. Brownlee, N. RTFM: Applicability Statement; Internet Requests for Comments; RFC Editor, 1999. Available online: https:

//www.hjp.at/doc/rfc/rfc2721.html (accessed on 24 July 2021).

131

Electronics 2021, 10, 2042

8. Claffy, K.; Braun, H.; Polyzos, G. A parameterizable methodology for Internet traffic flow profiling. IEEE J. Sel. Areas Commun.
1995, 13, 1481–1494. [CrossRef]

9. Claise, B. Cisco Systems NetFlow Services Export Version 9; RFC 3954; RFC Editor, 2004. Available online: https://datatracker.ietf.
org/doc/html/rfc3954.html (accessed on 9 June 2021). [CrossRef]

10. Aitken, P.; Claise, B.; Trammell, B. Specification of the IP Flow Information Export (IPFIX) Protocol for the Exchange of Flow Information;
RFC 7011; RFC Editor, 2013. Available online: https://datatracker.ietf.org/doc/html/rfc7011 (accessed on 13 June 2021).
[CrossRef]

11. Folino, F.; Folino, G.; Guarascio, M.; Pisani, F.; Pontieri, L. On learning effective ensembles of deep neural networks for intrusion
detection. Inf. Fusion 2021, 72, 48–69. [CrossRef]

12. Pacheco, F.; Exposito, E.; Gineste, M. A framework to classify heterogeneous Internet traffic with Machine Learning and Deep
Learning techniques for satellite communications. Comput. Netw. 2020, 173, 107213. [CrossRef]

13. Zhao, J.; Jing, X.; Yan, Z.; Pedrycz, W. Network traffic classification for data fusion: A survey. Inf. Fusion 2021, 72, 22–47.
[CrossRef]

14. Moore, A.; Zuev, D.; Crogan, M. Discriminators for Use in Flow-Based Classification. Ph.D. Thesis, The Queen Mary University
of London, London, UK, 2005

15. Trammell, B. Textual Representation of IP Flow Information Export (IPFIX) Abstract Data Types; RFC 7373; RFC Editor, 2014. Available
online: https://www.hjp.at/doc/rfc/rfc7373.html (accessed on 3 July 2021). [CrossRef]

16. Claise, B.; Trammell, B. Information Model for IP Flow Information Export (IPFIX); RFC 7012; RFC Editor, 2013. Available online:
https://www.hjp.at/doc/rfc/rfc5102.html (accessed on 3 July 2021). [CrossRef]

17. Hofstede, R.; Čeleda, P.; Trammell, B.; Drago, I.; Sadre, R.; Sperotto, A.; Pras, A. Flow Monitoring Explained: From Packet Capture
to Data Analysis With NetFlow and IPFIX. IEEE Commun. Surv. Tutor. 2014, 16, 2037–2064. [CrossRef]

18. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
19. LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation Applied to

Handwritten Zip Code Recognition. Neural Comput. 1989, 1, 541–551. [CrossRef]
20. Saleh, I.; Ji, H. Network Traffic Images: A Deep Learning Approach to the Challenge of Internet Traffic Classification. In

Proceedings of the 10th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 6–8
January 2020; pp. 0329–0334. [CrossRef]

21. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM
2017, 60, 84–90. [CrossRef]

22. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with
Convolutions. arXiv 2014, arXiv:cs.CV/1409.4842.

23. Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. arXiv 2018,
arXiv:cs.CV/1608.06993.

24. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:cs.CV/1512.03385.
25. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015,

arXiv:cs.CV/1409.1556.
26. Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1800–1807. [CrossRef]
27. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient

Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:cs.CV/1409.1556.
28. Nataraj, L.; Karthikeyan, S.; Jacob, G.; Manjunath, B.S. Malware Images: Visualization and Automatic Classification. In

Proceedings of the 8th International Symposium on Visualization for Cyber Security; Association for Computing Machinery: New York,
NY, USA, 2011; VizSec ’11. [CrossRef]

29. Guimarães, V.T.; Freitas, C.M.D.S.; Sadre, R.; Tarouco, L.M.R.; Granville, L.Z. A Survey on Information Visualization for Network
and Service Management. IEEE Commun. Surv. Tutorials 2016, 18, 285–323. [CrossRef]

30. Tan, Z.; Jamdagni, A.; He, X.; Nanda, P.; Liu, R.P.; Hu, J. Detection of Denial-of-Service Attacks Based on Computer Vision
Techniques. IEEE Trans. Comput. 2015, 64, 2519–2533. [CrossRef]

31. Millar, K.; Cheng, A.; Chew, H.G.; Lim, C.C. Using convolutional neural networks for classifying malicious network traffic. In
Deep Learning Applications for Cyber Security; Springer: Berlin/Heidelberg, Germany, 2019; pp. 103–126.

32. Fontugne, R.; Hirotsu, T.; Fukuda, K. An Image Processing Approach to Traffic Anomaly Detection. In Proceedings of the 4th Asian
Conference on Internet Engineering (AINTEC ’08); Association for Computing Machinery: New York, NY, USA, 2008; pp. 17–26.
[CrossRef]

33. Kim, S.; Reddy, A. Image-Based Anomaly Detection Technique: Algorithm, Implementation and Effectiveness. IEEE J. Sel. Areas
Commun. 2006, 24, 1942–1954. [CrossRef]

34. Wang, W.; Zhu, M.; Zeng, X.; Ye, X.; Sheng, Y. Malware traffic classification using convolutional neural network for representation
learning. In Proceedings of the 2017 International Conference on Information Networking (ICOIN), Da Nang, Vietnam, 11–13
January 2017; pp. 712–717. [CrossRef]

132

Electronics 2021, 10, 2042

35. Jia, W.; Liu, Y.; Liu, Y.; Wang, J. Detection Mechanism Against DDoS Attacks based on Convolutional Neural Network in
SINET. In Proceedings of the 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference
(ITNEC), Chongqing, China, 12–14 June 2020; Volume 1, pp. 1144–1148.

36. Vinayakumar, R.; Soman, K.; Poornachandran, P. Applying convolutional neural network for network intrusion detection. In
Proceedings of the 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI),
Udupi, India, 13–16 September 2017; pp. 1222–1228.

37. Manimaran, A.; Chandramohan, D.; Shrinivas, S.; Arulkumar, N. A comprehensive novel model for network speech anomaly
detection system using deep learning approach. Int. J. Speech Technol. 2020, 23, 305–313. [CrossRef]

38. Liu, G.; Zhang, J. CNID: Research of Network Intrusion Detection Based on Convolutional Neural Network. Discret. Dyn. Nat.
Soc. 2020, 2020, 4705982. [CrossRef]

39. Liu, Y.; Liu, S.; Zhao, X. Intrusion detection algorithm based on convolutional neural network. DEStech Trans. Eng. Technol. Res.
2017, 10, 9–13. [CrossRef]

40. Li, Z.; Qin, Z.; Huang, K.; Yang, X.; Ye, S. Intrusion detection using convolutional neural networks for representation learning. In
International Conference on Neural Information Processing; Springer: Berlin/Heidelberg, Germany, 2017; pp. 858–866.

41. Naseer, S.; Saleem, Y. Enhanced Network Intrusion Detection using Deep Convolutional Neural Networks. TIIS 2018, 12,
5159–5178.

42. Kim, T.; Suh, S.C.; Kim, H.; Kim, J.; Kim, J. An encoding technique for CNN-based network anomaly detection. In Proceedings of
the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 2960–2965.

43. Wang, X.; Yin, S.; Li, H.; Wang, J.; Teng, L. A Network Intrusion Detection Method Based on Deep Multi-scale Convolutional
Neural Network. Int. J. Wirel. Inf. Netw. 2020, 27, 503–517. [CrossRef]

44. Mohammadpour, L.; Ling, T.C.; Liew, C.S.; Chong, C.Y. A convolutional neural network for network intrusion detection system.
Proc. Asia Pac. Adv. Netw. 2018, 46, 50–55.

45. Wu, K.; Chen, Z.; Li, W. A Novel Intrusion Detection Model for a Massive Network Using Convolutional Neural Networks. IEEE
Access 2018, 6, 50850–50859. [CrossRef]

46. Hu, Z.; Wang, L.; Qi, L.; Li, Y.; Yang, W. A Novel Wireless Network Intrusion Detection Method Based on Adaptive Synthetic
Sampling and an Improved Convolutional Neural Network. IEEE Access 2020, 8, 195741–195751. [CrossRef]

47. Li, Y.; Xu, Y.; Liu, Z.; Hou, H.; Zheng, Y.; Xin, Y.; Zhao, Y.; Cui, L. Robust detection for network intrusion of industrial IoT based
on multi-CNN fusion. Measurement 2020, 154, 107450. [CrossRef]

48. Su, B.; Li, R.; Zhang, H. Evolving Deep Convolutional Neural Network for Intrusion Detection Based on NEAT. In Proceedings
of the 2020 23rd International Symposium on Wireless Personal Multimedia Communications (WPMC), Okayama, Japan, 19–26
October 2020; pp. 1–6.

49. Chen, M.; Wang, X.; He, M.; Jin, L.; Javeed, K.; Wang, X. A Network Traffic Classification Model Based on Metric Learning. CMC
Comput. Mater. Contin. 2020, 64, 941–959.

50. Wang, W.; Sheng, Y.; Wang, J.; Zeng, X.; Ye, X.; Huang, Y.; Zhu, M. HAST-IDS: Learning Hierarchical Spatial-Temporal Features
Using Deep Neural Networks to Improve Intrusion Detection. IEEE Access 2018, 6, 1792–1806. [CrossRef]

51. Zeng, Y.; Gu, H.; Wei, W.; Guo, Y. Deep-Full-Range : A Deep Learning Based Network Encrypted Traffic Classification and
Intrusion Detection Framework. IEEE Access 2019, 7, 45182–45190. [CrossRef]

52. Zeng, Y.; Qiu, M.; Zhu, D.; Xue, Z.; Xiong, J.; Liu, M. DeepVCM: A Deep Learning Based Intrusion Detection Method in VANET.
In Proceedings of the 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on
High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS), Washington,
DC, USA, 27–29 May 2019; pp. 288–293. [CrossRef]

53. Cui, J.; Long, J.; Min, E.; Liu, Q.; Li, Q. Comparative study of CNN and RNN for deep learning based intrusion detection system.
In International Conference on Cloud Computing and Security; Springer: Berlin/Heidelberg, Germany, 2018; pp. 159–170.

54. Doriguzzi-Corin, R.; Millar, S.; Scott-Hayward, S.; Martinez-del Rincon, J.; Siracusa, D. LUCID: A practical, lightweight deep
learning solution for DDoS attack detection. IEEE Trans. Netw. Serv. Manag. 2020, 17, 876–889. [CrossRef]

55. Moskalenko, V.; Moskalenko, A. Growing Convolutional Neural Network For Malware Traffic Detection. In Proceedings of the
2018 International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo), Odessa,
Ukraine, 10–14 September 2018; pp. 1–5. [CrossRef]

56. Taheri, S.; Salem, M.; Yuan, J.S. Leveraging image representation of network traffic data and transfer learning in botnet detection.
Big Data Cogn. Comput. 2018, 2, 37. [CrossRef]

57. Huang, H.; Deng, H.; Chen, J.; Han, L.; Wang, W. Automatic Multi-task Learning System for Abnormal Network Traffic Detection.
Int. J. Emerg. Technol. Learn. 2018, 13, 4–20. [CrossRef]

58. Moskalenko, A.; Moskalenko, V.; Shaiekhov, A.; Zaretskyi, M. Multi-layer model and training method for information-extreme
malware traffic detector. In Proceedings of the Third International Workshop on Computer Modeling and Intelligent Systems
(CMIS-2020), Zaporizhzhia, Ukraine, 27 April–1 May 2020; CEUR-WS.org: Aachen, Germany, 2020; pp. 288–299.

59. Nugraha, B.; Nambiar, A.; Bauschert, T. Performance Evaluation of Botnet Detection using Deep Learning Techniques. In
Proceedings of the 2020 11th International Conference on Network of the Future (NoF), Bordeaux, France, 12–14 October 2020;
pp. 141–149.

133

Electronics 2021, 10, 2042

60. Wang, Y.; An, J.; Huang, W. Using CNN-based representation learning method for malicious traffic identification. In Proceedings
of the 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS), Singapore, 6–8 June 2018;
pp. 400–404.

61. Millar, K.; Cheng, A.; Chew, H.G.; Lim, C.C. Deep learning for classifying malicious network traffic. In Pacific-Asia Conference on
Knowledge Discovery and Data Mining; Springer: Berlin/Heidelberg, Germany, 2018; pp. 156–161.

62. Shao, G.; Chen, X.; Zeng, X.; Wang, L. Deep Learning Hierarchical Representation From Heterogeneous Flow-Level Communica-
tion Data. IEEE Trans. Inf. Forensics Secur. 2019, 15, 1525–1540. [CrossRef]

63. Wang, W.; Zhu, M.; Wang, J.; Zeng, X.; Yang, Z. End-to-end encrypted traffic classification with one-dimensional convolution
neural networks. In Proceedings of the 2017 IEEE International Conference on Intelligence and Security Informatics (ISI), Beijing,
China, 22–24 July 2017; pp. 43–48. [CrossRef]

64. Song, M.; Ran, J.; Li, S. Encrypted Traffic Classification Based on Text Convolution Neural Networks. In Proceedings of the 2019
IEEE 7th International Conference on Computer Science and Network Technology (ICCSNT), Dalian, China, 19–20 October 2019;
pp. 432–436. [CrossRef]

65. He, Y.; Li, W. Image-based Encrypted Traffic Classification with Convolution Neural Networks. In Proceedings of the 2020 IEEE
Fifth International Conference on Data Science in Cyberspace (DSC), Hong Kong, China, 27–30 July 2020; pp. 271–278. [CrossRef]

66. Chen, Y.; Li, Z.; Shi, J.; Gou, G.; Liu, C.; Xiong, G. Not Afraid of the Unseen: A Siamese Network based Scheme for Unknown
Traffic Discovery. In Proceedings of the 2020 IEEE Symposium on Computers and Communications (ISCC), Rennes, France, 7–10
July 2020; pp. 1–7. [CrossRef]

67. Cui, S.; Jiang, B.; Cai, Z.; Lu, Z.; Liu, S.; Liu, J. A Session-Packets-Based Encrypted Traffic Classification Using Capsule
Neural Networks. In Proceedings of the 2019 IEEE 21st International Conference on High Performance Computing and
Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and
Systems (HPCC/SmartCity/DSS), Zhangjiajie, China, 10–12 August 2019; pp. 429–436. [CrossRef]

68. Li, W.; Zhang, X.Y.; Shi, H.; Liu, F.; Ma, Y.; Li, Z. A Glimpse of the Whole: Path Optimization Prototypical Network for Few-Shot
Encrypted Traffic Classification. arXiv 2020, arXiv:2010.13285.

69. Chen, L.; Jiang, Y.; Kuang, X.; Xu, A. Deep Learning Detection Method of Encrypted Malicious Traffic for Power Grid. In
Proceedings of the 2020 IEEE International Conference on Energy Internet (ICEI), Sydney, NSW, Australia, 24–28 August 2020; pp.
86–91.

70. Lotfollahi, M.; Siavoshani, M.J.; Zade, R.S.H.; Saberian, M. Deep packet: A novel approach for encrypted traffic classification
using deep learning. Soft Comput. 2020, 24, 1999–2012. [CrossRef]

71. Akbari, I.; Tahoun, E. PrivPkt: Privacy Preserving Collaborative Encrypted Traffic Classification. 2019. Available online:
http://www.informationweek.com/news/201202317 (accessed on 29 June 2021).

72. Xu, L.; Zhou, X.; Ren, Y.; Qin, Y. A Traffic Classification Method Based on Packet Transport Layer Payload by Ensemble Learning.
In Proceedings of the 2019 IEEE Symposium on Computers and Communications (ISCC), Barcelona, Spain, 29 June–3 July 2019;
pp. 1–6. [CrossRef]

73. Zhang, J.; Li, F.; Ye, F.; Wu, H. Autonomous Unknown-Application Filtering and Labeling for DL-based Traffic Classifier Update.
In Proceedings of the IEEE INFOCOM 2020-IEEE Conference on Computer Communications, Toronto, ON, Canada, 6–9 July
2020; pp. 397–405.

74. Zhou, Y.; Cui, J. Research and Improvement of Encrypted Traffic Classification Based on Convolutional Neural Network. In
Proceedings of the 2020 IEEE 8th International Conference on Computer Science and Network Technology (ICCSNT), Dalian,
China, 20–22 November 2020; pp. 150–154. [CrossRef]

75. Dong, C.; Zhang, C.; Lu, Z.; Liu, B.; Jiang, B. CETAnalytics: Comprehensive effective traffic information analytics for encrypted
traffic classification. Comput. Netw. 2020, 176, 107258. [CrossRef]

76. Pham, V.; Seo, E.; Chung, T.M. Lightweight Convolutional Neural Network Based Intrusion Detection System. J. Commun. 2020,
15, 808–817. [CrossRef]

77. Shapira, T.; Shavitt, Y. FlowPic: Encrypted Internet Traffic Classification is as Easy as Image Recognition. In Proceedings of
the IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Paris, France, 29 April–2 May 2019;
pp. 680–687. [CrossRef]

78. Marín, G.; Casas, P.; Capdehourat, G. Rawpower: Deep learning based anomaly detection from raw network traffic measurements.
In Proceedings of the ACM SIGCOMM 2018 Conference on Posters and Demos, Budapest, Hungary, 20–25 August 2018; pp. 75–77.

79. Zhang, W.; Wang, J.; Chen, S.; Qi, H.; Li, K. A Framework for Resource-aware Online Traffic Classification Using CNN. In
Proceedings of the 14th International Conference on Future Internet Technologies, Phuket, Thailand, 7–9 August 2019; pp. 1–6.

80. Marín, G.; Casas, P.; Capdehourat, G. Deep in the Dark-Deep Learning-Based Malware Traffic Detection Without Expert
Knowledge. In Proceedings of the 2019 IEEE Security and Privacy Workshops (SPW), San Francisco, CA, USA, 19–23 May 2019;
pp. 36–42.

81. Marín, G.; Caasas, P.; Capdehourat, G. Deepmal-deep learning models for malware traffic detection and classification. In Data
Science–Analytics and Applications; Springer: Berlin/Heidelberg, Germany, 2021; pp. 105–112.

82. Hwang, R.; Peng, M.; Huang, C.; Lin, P.; Nguyen, V. An Unsupervised Deep Learning Model for Early Network Traffic Anomaly
Detection. IEEE Access 2020, 8, 30387–30399. [CrossRef]

134

Electronics 2021, 10, 2042

83. Ran, J.; Chen, Y.; Li, S. Three-dimensional convolutional neural network based traffic classification for wireless communications.
In Proceedings of the 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Anaheim, CA, USA, 26–29
November 2018; pp. 624–627.

84. Zhang, L.; Li, B.; Liu, Y.; Zhao, X.; Wang, Y.; Wu, J. FPGA Acceleration of CNNs-Based Malware Traffic Classification. Electronics
2020, 9, 1631. [CrossRef]

85. Mohammadpour, L.; Ling, T.; Liew, C.; Aryanfar, A. A Mean Convolutional Layer for Intrusion Detection System. Secur. Commun.
Netw. 2020, 2020, 8891185. [CrossRef]

86. Zhang, Y.; Chen, X.; Guo, D.; Song, M.; Teng, Y.; Wang, X. PCCN: Parallel Cross Convolutional Neural Network for Abnormal
Network Traffic Flows Detection in Multi-Class Imbalanced Network Traffic Flows. IEEE Access 2019, 7, 119904–119916. [CrossRef]

87. Ring, M.; Wunderlich, S.; Scheuring, D.; Landes, D.; Hotho, A. A survey of network-based intrusion detection data sets. Comput.
Secur. 2019, 86, 147–167. [CrossRef]

88. Garcia, S.; Grill, M.; Stiborek, J.; Zunino, A. An empirical comparison of botnet detection methods. Comput. Secur. 2014,
45, 100–123. [CrossRef]

89. Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. Toward generating a new intrusion detection dataset and intrusion traffic
characterization. ICISSp 2018, 1, 108–116.

90. Moustafa, N.; Slay, J. UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network
data set). In Proceedings of the 2015 Military Communications and Information Systems Conference (MilCIS), Canberra, ACT,
Australia, 10–12 November 2015 ; pp. 1–6.

91. Ye, Y.; Li, T.; Adjeroh, D.; Iyengar, S.S. A survey on malware detection using data mining techniques. ACM Comput. Surv. (CSUR)
2017, 50, 1–40. [CrossRef]

92. Boutaba, R.; Salahuddin, M.A.; Limam, N.; Ayoubi, S.; Shahriar, N.; Estrada-Solano, F.; Caicedo, O.M. A comprehensive survey
on machine learning for networking: Evolution, applications and research opportunities. J. Internet Serv. Appl. 2018, 9, 1–99.
[CrossRef]

93. Wazid, M.; Das, A.K.; Rodrigues, J.J.; Shetty, S.; Park, Y. IoMT malware detection approaches: Analysis and research challenges.
IEEE Access 2019, 7, 182459–182476. [CrossRef]

94. Alswaina, F.; Elleithy, K. Android malware family classification and analysis: Current status and future directions. Electronics
2020, 9, 942. [CrossRef]

95. Talukder, S. Tools and techniques for malware detection and analysis. arXiv 2020, arXiv:2002.06819.
96. Tariq, M.I.; Memon, N.A.; Ahmed, S.; Tayyaba, S.; Mushtaq, M.T.; Mian, N.A.; Imran, M.; Ashraf, M.W. A Review of Deep

Learning Security and Privacy Defensive Techniques. Mob. Inf. Syst. 2020, 2020, 6535834. [CrossRef]
97. Geetha, R.; Thilagam, T. A review on the effectiveness of machine learning and deep learning algorithms for cyber security. Arch.

Comput. Methods Eng. 2020, 28, 2861–2879. [CrossRef]
98. Asharf, J.; Moustafa, N.; Khurshid, H.; Debie, E.; Haider, W.; Wahab, A. A review of intrusion detection systems using machine

and deep learning in internet of things: Challenges, solutions and future directions. Electronics 2020, 9, 1177. [CrossRef]
99. Caviglione, L.; Choraś, M.; Corona, I.; Janicki, A.; Mazurczyk, W.; Pawlicki, M.; Wasielewska, K. Tight Arms Race: Overview of

Current Malware Threats and Trends in Their Detection. IEEE Access 2020, 9, 5371–5396. [CrossRef]
100. Konopa, M.; Fesl, J.; Janeček, J. Promising new Techniques for Computer Network Traffic Classification: A Survey. In Proceedings

of the 2020 10th International Conference on Advanced Computer Information Technologies (ACIT), Deggendorf, Germany,
16–18 September 2020; pp. 418–421.

101. Kim, S.S.; Reddy, A.N. Modeling network traffic as images. In Proceedings of the IEEE International Conference on Communica-
tions, Seoul, Korea, 16–20 May 2005; Volume 1, pp. 168–172.

102. Bahaa, A.; Abdelaziz, A.; Sayed, A.; Elfangary, L.; Fahmy, H. Monitoring Real Time Security Attacks for IoT Systems Using
DevSecOps: A Systematic Literature Review. Information 2021, 12, 154. [CrossRef]

103. Ko, T.; Raza, S.M.; Binh, D.T.; Kim, M.; Choo, H. Network prediction with traffic gradient classification using convolutional neural
networks. In Proceedings of the 2020 14th International Conference on Ubiquitous Information Management and Communication
(IMCOM), Taichung, Taiwan, 3–5 January 2020; pp. 1–4.

104. Casas, P.; Marín, G.; Capdehourat, G.; Korczynski, M. MLSEC-Benchmarking Shallow and Deep Machine Learning Models for
Network Security. In Proceedings of the 2019 IEEE Security and Privacy Workshops (SPW), San Francisco, CA, USA, 19–23 May
2019; pp. 230–235.

105. Marín, G.; Casas, P.; Capdehourat, G. DeepSec meets RawPower-Deep Learning for Detection of Network Attacks Using Raw
Representations. ACM SIGMETRICS Perform. Eval. Rev. 2019, 46, 147–150. [CrossRef]

106. Zhou, Z.; Yao, L.; Li, J.; Hu, B.; Wang, C.; Wang, Z. Classification of botnet families based on features self-learning under Network
Traffic Censorship. In Proceedings of the 2018 Third International Conference on Security of Smart Cities, Industrial Control
System and Communications (SSIC), Shanghai, China, 18–19 October 2018; pp. 1–7. [CrossRef]

107. Aceto, G.; Ciuonzo, D.; Montieri, A.; Pescapé, A. Mobile encrypted traffic classification using deep learning. In Proceedings of
the 2018 Network traffic measurement and analysis conference (TMA), Vienna, Austria, 26–29 June 2018; pp. 1–8.

108. Aceto, G.; Ciuonzo, D.; Montieri, A.; Pescapé, A. Mobile encrypted traffic classification using deep learning: Experimental
evaluation, lessons learned, and challenges. IEEE Trans. Netw. Serv. Manag. 2019, 16, 445–458. [CrossRef]

135

Electronics 2021, 10, 2042

109. He, L.; Shi, Y. Identification of SSH Applications Based on Convolutional Neural Network. In Proceedings of the 2018
International Conference on Internet and e-Business, Singapore, 25–27 April 2018; pp. 198–201.

110. Li, L.; Ota, K.; Dong, M. DeepNFV: A Lightweight Framework for Intelligent Edge Network Functions Virtualization. IEEE Netw.
2019, 33, 136–141. [CrossRef]

111. Lim, H.K.; Kim, J.B.; Heo, J.S.; Kim, K.; Hong, Y.G.; Han, Y.H. Packet-based network traffic classification using deep learning.
In Proceedings of the 2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC),
Okinawa, Japan, 11–13 February 2019; pp. 046–051.

112. Xue, J.; Chen, Y.; Li, O.; Li, F. Classification and identification of unknown network protocols based on CNN and T-SNE. J. Phys.
Conf. Ser. 2020, 1617, 012071. [CrossRef]

113. Wang, X.; Chen, S.; Su, J. Automatic Mobile App Identification From Encrypted Traffic With Hybrid Neural Networks. IEEE
Access 2020, 8, 182065–182077. [CrossRef]

114. Wang, X.; Chen, S.; Su, J. Real network traffic collection and deep learning for mobile app identification. Wirel. Commun. Mob.
Comput. 2020, 2020, 4707909. [CrossRef]

115. Ma, R.; Qin, S. Identification of unknown protocol traffic based on deep learning. In Proceedings of the 2017 3rd IEEE International
Conference on Computer and Communications (ICCC), Chengdu, China, 13–16 December 2017; pp. 1195–1198.

116. Zhao, S.; Chen, S. Smartphone Application Identification by Convolutional Neural Network. In International Conference on
Machine Learning and Intelligent Communications; Springer: Berlin/Heidelberg, Germany, 2018; pp. 105–114.

117. Feng, W.; Hong, Z.; Wu, L.; Fu, M.; Li, Y.; Lin, P. Network protocol recognition based on convolutional neural network. China
Commun. 2020, 17, 125–139. [CrossRef]

118. Yujie, P.; Weina, N.; Xiaosong, Z.; Jie, Z.; Wu, H.; Ruidong, C. End-To-End Android Malware Classification Based on Pure
Traffic Images. In Proceedings of the 2020 17th International Computer Conference on Wavelet Active Media Technology and
Information Processing (ICCWAMTIP), Chengdu, China, 18–20 December 2020; pp. 240–245.

119. Zhao, L.; Cai, L.; Yu, A.; Xu, Z.; Meng, D. A novel network traffic classification approach via discriminative feature learning.
In Proceedings of the 35th Annual ACM Symposium on Applied Computing, Brno, Czech Republic, 30 March–3 April 2020;
pp. 1026–1033.

120. Vinayakumar, R.; Soman, K.; Poornachandran, P. Secure shell (ssh) traffic analysis with flow based features using shallow
and deep networks. In Proceedings of the 2017 International Conference on Advances in Computing, Communications and
Informatics (ICACCI), Udupi, India, 13–16 September 2017; pp. 2026–2032.

121. Lokman, S.F.; Othman, A.T.B.; Abu-Bakar, M.H. Optimised Structure of Convolutional Neural Networks for Controller Area
Network Classification. In Proceedings of the 2018 14th International Conference on Natural Computation, Fuzzy Systems and
Knowledge Discovery (ICNC-FSKD), Huangshan, China, 28–30 July 2018; pp. 475–481.

122. Susilo, B.; Sari, R.F. Intrusion Detection in IoT Networks Using Deep Learning Algorithm. Information 2020, 11, 279. [CrossRef]
123. Zhao, S.; Chen, S.; Sun, Y.; Cai, Z.; Su, J. Identifying known and unknown mobile application traffic using a multilevel classifier.

Secur. Commun. Netw. 2019, 2019, 9595081. [CrossRef]
124. Yang, K.; Xu, L.; Xu, Y.; Chao, J. Encrypted Application Classification with Convolutional Neural Network. In Proceedings of the

2020 IFIP Networking Conference (Networking), Paris, France, 22–26 June 2020; pp. 499–503.
125. Zheng, W.F. Intrusion detection based on convolutional neural network. In Proceedings of the 2020 International Conference on

Computer Engineering and Application (ICCEA), Guangzhou, China, 18–20 March 2020; pp. 273–277.
126. Li, D.; Li, W.; Wang, X.; Nguyen, C.T.; Lu, S. ActiveTracker: Uncovering the Trajectory of App Activities over Encrypted

Internet Traffic Streams. In Proceedings of the 2019 16th Annual IEEE International Conference on Sensing, Communication, and
Networking (SECON), Boston, MA, USA, 10–13 June 2019; pp. 1–9.

127. Salman, O.; Elhajj, I.H.; Chehab, A.; Kayssi, A. A Multi-level Internet Traffic Classifier Using Deep Learning. In Proceedings of
the 2018 9th International Conference on the Network of the Future (NOF), Poznan, Poland, 19–21 November 2018; pp. 68–75.
[CrossRef]

128. Chen, Z.; He, K.; Li, J.; Geng, Y. Seq2img: A sequence-to-image based approach towards ip traffic classification using convolutional
neural networks. In Proceedings of the 2017 IEEE International Conference on Big Data (big data), Boston, MA, USA, 11–14
December 2017; pp. 1271–1276.

129. De Schepper, T.; Camelo, M.; Famaey, J.; Latré, S. Traffic classification at the radio spectrum level using deep learning models
trained with synthetic data. Int. J. Netw. Manag. 2020, 30, e2100. [CrossRef]

130. Arivudainambi, D.; Varun Kumar, K.A.; Sibi Chakkaravarthy, S.; Visu, P. Malware traffic classification using principal component
analysis and artificial neural network for extreme surveillance. Comput. Commun. 2019, 147, 50–57.

131. MontazeriShatoori, M.; Davidson, L.; Kaur, G.; Habibi Lashkari, A. Detection of DoH Tunnels using Time-series Classification of
Encrypted Traffic. In Proceedings of the 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on
Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology
Congress (DASC/PiCom/CBDCom/CyberSciTech), Calgary, AB, Canada, 17–22 August 2020; pp. 63–70. [CrossRef]

132. Kolcun, R.; Popescu, D.A.; Safronov, V.; Yadav, P.; Mandalari, A.M.; Xie, Y.; Mortier, R.; Haddadi, H. The Case for Retraining of
ML Models for IoT Device Identification at the Edge. arXiv 2020, arXiv:2011.08605.

133. Lopez-Martin, M.; Carro, B.; Sanchez-Esguevillas, A.; Lloret, J. Network traffic classifier with convolutional and recurrent neural
networks for Internet of Things. IEEE Access 2017, 5, 18042–18050. [CrossRef]

136

Electronics 2021, 10, 2042

134. Yang, Y.; Kang, C.; Gou, G.; Li, Z.; Xiong, G. TLS/SSL encrypted traffic classification with autoencoder and convolutional neural
network. In Proceedings of the 2018 IEEE 20th International Conference on High Performance Computing and Communi-
cations; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), Exeter, UK, 28–30 June 2018; pp. 362–369.

135. Hussein, A.; Salman, O.; Chehab, A.; Elhajj, I.; Kayssi, A. Machine Learning for Network Resiliency and Consistency. In
Proceedings of the 2019 Sixth International Conference on Software Defined Systems (SDS), Rome, Italy, 10–13 June 2019;
pp. 146–153. [CrossRef]

136. Liu, X.; Tang, Z.; Yang, B. Predicting Network Attacks with CNN by Constructing Images from NetFlow Data. In Proceedings of
the 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance
and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS), Washington, DC, USA, 27–29
May 2019; pp. 61–66. [CrossRef]

137

electronics

Article

A Method for Fast Selection of Machine-Learning Classifiers for
Spam Filtering

Sylwia Rapacz †, Piotr Chołda † and Marek Natkaniec *,†

Citation: Rapacz, S.; Chołda, P.;

Natkaniec, M. A Method for Fast

Selection of Machine-Learning

Classifiers for Spam Filtering.

Electronics 2021, 10, 2083. https://

doi.org/10.3390/electronics10172083

Academic Editors: Amir Mosavi and

Juan M. Corchado

Received: 22 June 2021

Accepted: 25 August 2021

Published: 27 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Faculty of Computer Science, Electronics and Telecommunications, Institute of Telecommunications,
AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland;
rapaczsylwia@gmail.com (S.R.); cholda@agh.edu.pl (P.C.)
* Correspondence: natkanie@agh.edu.pl; Tel.: +48-12-617-4040
† These authors contributed equally to this work.

Abstract: The paper elaborates on how text analysis influences classification—a key part of the
spam-filtering process. The authors propose a multistage meta-algorithm for checking classifier
performance. As a result, the algorithm allows for the fast selection of the best-performing classifiers
as well as for the analysis of higher-dimensionality data. The last aspect is especially important
when analyzing large datasets. The approach of cross-validation between different datasets for
supervised learning is applied in the meta-algorithm. Three machine-learning methods allowing a
user to classify e-mails as desirable (ham) or potentially harmful (spam) messages were compared in
the paper to illustrate the operation of the meta-algorithm. The used methods are simple, but as the
results showed, they are powerful enough. We use the following classifiers: k-nearest neighbours
(k-NNs), support vector machines (SVM), and the naïve Bayes classifier (NB). The conducted research
gave us the conclusion that multinomial naïve Bayes classifier can be an excellent weapon in the fight
against the constantly increasing amount of spam messages. It was also confirmed that the proposed
solution gives very accurate results.

Keywords: classifiers; e-mail; ham; machine learning; spam

1. Introduction

The spam problem is an ongoing issue: in 2018 14.5 billion spam e-mails were sent per
day [1]. According to the Internet Security Threat Report [2] released in 2019 by Symantec,
spam levels for their customers increased in 2018. What draws the attention is that small
enterprises were attacked more often than large companies, and e-mail malware reached
stable levels. Therefore, there is a need to tailor even simple tools for detection and filtering
of spam in all organizations.

For the sake of the presented study, we follow the definition by Emilio Ferrara, stating
that this is any “attempt to abuse, or manipulate, a techno-social system by producing and
injecting unsolicited and/or undesired content aimed at steering the behavior of humans
or the system itself, at the direct or indirect, immediate or long-term advantage of the
spammer(s)” [3]. Here, we focus on so-called junk e-mails. These are unwanted messages
sent at large scale by e-mail. The term spam refers to the undesired (or even harmful)
e-mails, while ham is used to indicate the valid and important messages desired by the
recipient. Additionally, we assume the scenario where junk e-mails are sent by botnets and
they are not aimed at specific users (contrary to, e.g., spear phishing).

This paper proposes a method for identification of the best-performing machine-
learning-based classifiers and selection of the one with the leading parameters. The
proposed solution solves the problem of fast recognition of the most interesting parameters.
This allows for quick analysis of data of higher dimensionality. This is especially important
if large datasets are to be analyzed and we want to assure the proper scalability of our
system. In our paper, we also show how to find a database to train a machine-learning

Electronics 2021, 10, 2083. https://doi.org/10.3390/electronics10172083 https://www.mdpi.com/journal/electronics139

Electronics 2021, 10, 2083

model used for spam detection (defined here as a binary classifier), to process the text so that
the data can be fed to a machine-learning model and how to implement a selected machine-
learning model-based classifier. We also propose a method that allows for cross-validation
between different datasets in the training and test phases. The obtained results show that
our solution gives accurate results consistent with other literature studies and outperforms
the reported results in some cases. To the best of our knowledge, our paper is the first
which discusses the efficiency of SVM, MNB, k-NN algorithms for such comprehensive
datasets as almost the whole Enron (4 datasets) and Lingspam databases. Moreover, it uses
an unusual cross-validation concept by mixing and applying different datasets for training
and test purposes. Such an approach is extremely rare in the literature. Finally, it presents
a multistage algorithm for fast and precise selection of machine-learning classifiers for
spam filtering. It allows for quick selection of interesting parameters, which is essential
for working with large datasets. The quality of the results is proven by a big numerical
example given for the method validation.

The structure of the paper is as follows. The review of spam filters based on different
machine-learning tools with typical performance metrics and several publicly available
datasets is presented in Section 2. In Section 3, the materials and methods are discussed.
The assumptions, useful databases of spam messages, text-preprocessing aspects (includ-
ing tokenization, conversion, removal of punctuation marks, stemming/lemmatization,
and dictionary construction) as well as the considered supervised learning solutions are
described. The performance of the selected methods is evaluated on four large datasets
in Section 4. The dataset structures created with the unique approach of assuring cross-
validation between different datasets in training and test phases are analyzed first. Next,
the text preprocessing impact on the used dictionary is studied. An innovative multistage
meta-algorithm for checking the classifier performance is described in action and validated.
The final summary is given in Section 5.

2. Related Work

The increasing number of spam e-mails has created a strong need to develop more
reliable and efficient anti-spam filters, including ones based on machine-learning tools.
They are efficient, since they only require the preparation of a set of training samples,
i.e., pre-classified e-mails [4]. In recent years, various machine-learning methods have
been successfully used to effectively detect and filter unwanted messages. The following
classification methods are most commonly used for spam filtering: Support Vector Ma-
chine (SVM), Naïve Bayes classifier (NB), k-Nearest Neighbours (k-NN), Artificial Neutral
Network (ANN), Decision Tree (DT), Random Forest (RF), Logistic Regression (LR). Below,
we present some results reported in the literature. Note that some of the metrics results are
compared with our method during the validation of our approach. The values are given at
the end of the numerical study in separate table.

The applicability of using different machine-learning methods to recognize spam
e-mails was analyzed in [5]. The SpamAssassin dataset, which contains 6000 e-mails with
the spam rate 37.04% used in all experiments. Sharma and Arora in [6] analyzed Bayes Net
(BN), Logic Boost (LB), RT, JRip (JR), J48-based DTs, Multilayer Perceptron (MP), Kstar (KS),
RF, and Random Committee (RC) machine-learning algorithms. The dataset with 4601
instances and 55 spam base attributes downloaded from UCI Machine-Learning Repository
were used in the performed research. Harisinghaney et al. [7] applied the following three
different algorithms: k-NN, NB, and DBSCAN-based clustering. The performance for the
four metrics accuracy, precision, sensitivity, and specificity were calculated and compared.
Unfortunately, contrary to our approach, only a small set of the Enron Corpus dataset was
used in the analysis (2500 mails for training and another 2500 mails for testing from 200,399
messages of the cleaned Enron Corpus). In [8] a comprehensive study of machine-learning
mechanisms for spam mail detection such as NB, SVM, and k-NN combined with NB
is presented. The TREC 2007 public corpus with 12 attributes and 4899 messages as the
spam base dataset was used for performance evaluation. The accuracy and F-measure

140

Electronics 2021, 10, 2083

were calculated and compared for all algorithms. The authors in [9] prepared a special
dataset called SHED: Spam Ham E-mail Dataset. They collected 6002 e-mails (4490 spam
and 1512 ham e-mails) and extracted from them various features. The performance of
different classification approaches (NB, BN, AdaBoost, and RF) was evaluated using four
metrics: accuracy, precision, recall, and time taken to build the model. In [10] the NB,
SVM and hybrid solutions were studied using Lingspam dataset. The authors observed
that the SVM algorithm in most cases offers high precision and recall, while NB offers
faster classification speed. They also require fewer training samples. The authors in [11]
showed how to develop a high-performance and low-computation method for classifying
spam e-mails. The UCI SpamBase dataset was used with a total of 4601 data instances
for experimentation. The following classifiers were evaluated and compared: RF, ANN,
Logistic, SVM, Random Tree, k-NN, Decision Table, BN, NB, and neural networks applying
Radial Basis Functions (RBF). Seven metrics were used to evaluate the performance of
the classifiers. In [12], another comparison between different machine-learning classifiers
was presented. The classifiers analyzed in this paper include SVM, NB, and J48. The
dataset used in this research was enron1 from the Enron collection of e-mails. It contained
3762 spam messages and 5172 ham messages. The performance analysis of seven machine-
learning techniques for e-mail spam classification was analyzed in [13]. The following
techniques were compared: NB, SVM, k-NN, RF, Bagging, Boosting (AdaBoost), and
Ensemble Classifier. The evaluation was performed on the e-mail spam dataset from UCI
Machine-Learning Repository and Kaggle website. In [14], the problem of spam review
detection is addressed. The authors proposed in their system deep-learning methods:
Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), and a variant of
Recurrent Neural Network (RNN) based on Long Short-Term Memory (LSTM) cells. They
also applied traditional classifiers such as NB, k-NN and SVM. They worked on Ott and
Yelp Datasets in their study. The presented results showed that considering accuracy,
both SVM and NB classifiers performed almost same. The problem of spam and malware
elimination from e-mails was discussed in [15]. The authors analyzed and compared
ten classification techniques: k-NN, SVM, DT, RF, AdaBoost, Extra Tree (ET), Gaussian
Naïve Bayes (GNB), Multinomial Naïve Bayes (MNB), Bernoulli Naïve Bayes (BNB), and
Gradient Boosting (GB). These algorithms were trained on previously labeled data from
the shortened Enron and CMU datasets (26,000 spam and 19,000 ham e-mails) and the
accuracy of each classifier was computed. The SVM obtained the best results. We would
like to emphasise that—although we also compare some classifiers—our main aim is to
propose a general meta-algorithm to deal with various classifiers. This differs us from
works such as [15].

Guarav et al. [16] examined the efficiency of NB, DT, and RF algorithms used in the
classification process. The experiments were carried out on three different types of datasets:
Lingspam, Enron and PU. In the comparative study, the authors showed that the accuracy
level for all algorithms highly depended on a specific dataset. In [17] the four classifiers: NB,
DT, Ensemble Boosting and Ensemble Hybrid Boosting (EHB) were analyzed and compared.
The authors used UCI Machine-Learning Repository as a spam dataset. The mentioned
dataset has 4601 instances, 57 attributes, and a single output which allows classification
of e-mail as spam or ham. A large group of machine-learning techniques for e-mail spam
classification was also analyzed and presented in [18]. The authors studied the efficiency
of the following algorithms: SVM, k-NN, NB, DT, RF, AdaBoost and Bagging. They used
e-mail data sets from different websites, such as Kaggle, along with some datasets created
on their own. A spam e-mail dataset from Kaggle was used for training. The performed
research showed that the NB gave the best results, but expressed a limitation due to class-
conditional independence. Gibson et al. [19] analyzed machine-learning algorithms that
are optimized with bio-inspired methods. They implemented Multinominal Naïve Bayes
(MNB), SVM, RF, DT, and Multilayer Perceptron algorithms which were tested on seven
different e-mail datasets: Lingspam, PUA, PU1, PU2, PU3, Enron, and SpamAssassin. The
bio-inspired algorithms such as Particle Swarm Optimization (PSO) and Genetic Algorithm

141

Electronics 2021, 10, 2083

(GA) were added for performance optimization of classifiers. The GA worked well for
RF and DT, whereas PSO worked well for MNB. The authors proved that MNB with
GA performed the best overall. In [20], three techniques, namely NB, k-NN and SVM,
were studied on a prepared dataset. The corpus consists of 16,843 messages, 11,291 of
which are marked as spam (from the Babletext web site) and 5552 are labeled as ham
(from the SpamAssassin web site). The best accuracy was obtained for NB. The authors
in [21] compared: Logistic Regression (LR), DT, NB, k-NN, and SVM as the classifiers. The
assumed dataset was a spam database taken from UCI Machine-Learning Repository. The
RD and k-NN obtained the same performance; however, k-NN algorithm requires more
time to build the model. The accuracy of both algorithms exceeded 99%. Saidini et al. [22]
explored the use of a semantic-based classification approach to improve the accuracy of
spam detection. The NB, k-NN, DT, AdaBoost, and RF machine-learning classifiers were
compared in terms of accuracy, recall, precision, and F-measure. The test dataset was
collected from several public sources: Enron, Lingspam and some specialized forums.
To extend the evaluation part, the authors also used another dataset, called CSDMC2010.
They noted that NB and SVM performed better than the other tested classifiers. The
categorization by domain significantly improved the spam detection process. The best
results were obtained using AdaBoost, NB, and RF classifiers, where the accuracy achieved
more than 98% in most of domains. In [23], the authors implemented MNB, RF, k-NN, GB, as
well as RNN and MLP for deep-learning implementation. The dataset with 4601 instances
(1813 spam and 2788 non-spam messages) from the UCI Machine-Learning Repository
was applied for analysis. Rastenis et al. [24] proposed an automated spam and phishing
e-mail classification solution, which is based on e-mail message body text automated
classification. It also solves the problem of correct classification of e-mails written in
different languages. They compared NB, General Linearized Model (GLM), Fast Large
Margin (FLM), DT, RF, GB, and SVM on Nazario, SpamAssassin, and Vilnius Technical
University datasets. Records from different datasets were mixed into one reduced dataset
(700 spam and 700 phishing e-mails).

Although we focus here on the usage of many classifications simultaneously, it can
be mentioned that a large part of the literature is devoted to the analysis of one type of
model to classify e-mails (e.g., [25]) or the potential attacks on classification tasks (such as
for instance in [26]). Additionally, it is necessary to remember that some works report that
although it is evident that algorithms that perform well in the spam classification (e.g., NB),
in other contexts they offer poor performance (e.g., [27,28]). Therefore, the model should
always be aligned with a specific problem and data type.

3. Materials and Methods

3.1. Assumptions

E-mail spam filtering is a compound task, and in general we follow the methods
elaborated before, where [29] is the main source of inspiration for us. The main goal of this
paper is to explore one of its key areas, i.e., machine-learning-based classification, to help
with the initial decision if a given e-mail message is indeed spam or ham. The element that
enables this research is a dataset selected as a pool for training. The dataset is a collection
of real e-mail examples. Access to a useful dataset is not a trivial issue, since typically in
the academical world it is not possible to obtain e-mails for scientific research. Additionally,
it is necessary to gain access to the database where the messages are already labeled as
spam or ham.

Here, we propose a multistage meta-algorithm that allows us to select the best hyper-
parameters for various classification algorithms and then compare their performance to
decide on which one to use. The meta-algorithm is presented in Figure 1. Please note that
the classification algorithms shown are only used as illustration. The following stages of
the meta-algorithm are as follows:

1. Selection of a database.
2. Text analysis.

142

Electronics 2021, 10, 2083

3. Spam detection: cross-validation on different datasets.
4. Final selection.

Start

Selection of
a database

Text analysis

Spam detection:
cross-validation on
different datasets

Final selection

Stop

Accessibility
Age

Clean

Tokenization
Stemming/lemmatization
Dictionary construction

Multiple substages
Increasing size of

validation/training sets
Fast selection and validation

Criteria
Quality metrics

Comparison

Figure 1. The proposed multistage meta-algorithm for performance check of the spam detection
algorithms.

These elements are presented in the subsequent part of the paper. As for now, we can
emphasise that our approach deals mainly with the impact the text preprocessing has on
the classification process and then analyzes illustratively some of the machine-learning
methods performance in this difficult task. Our solution consists of two parts. The first
one focuses on the text documents (e-mails) analysis and preprocessing (points 1 and
2 above), so that the documents can be represented as an input for the methods used
afterwards. The second one (points 3 and 4 above) implements the classifiers and provides
the tools to evaluate them. First, we present the selection of the database (assumptions in
Section 3.2 and their concretization in Section 4.1) to obtain the samples to train, adjust,
validate, and test any model. Second, we elaborate on how to process the dataset to make
it usable for various models and valuable enough to provide meaningful data. As in many
cases, data processing (along with feature selection) is important since the quality strongly
depends on it. The assumptions behind the text analysis are discussed in Section 3.3,
while the details related to concrete data are shown in Section 4.2. Third, the main part of
the method is performed in a few substages (five in our example case), and assures the
proper scalability of the system. It consists mainly in the preselection of the classifiers
and adjustment of their hyperparameters. The concept lays in the fact that the largest
number of tests is conducted on the smallest dataset. This approach allows us to obtain the
most interesting parameters relatively quickly, and then proceed to check them on data
of higher dimensionality. The exemplary classifiers are shortly refreshed in Section 3.4.
We emphasise that these models are used only to illustrate our method. All substages are
thoroughly shown in the numerical example (Section 4.3). Fourth, as concerns the final
selection, we just present the comparison of the output in Section 4.4. The selection should

143

Electronics 2021, 10, 2083

be performed based on a specific application or user’s needs, and we do not settle these
concerns here.

As can be seen, the proposed meta-algorithm does not solve any specific machine-
learning problem, but is a kind of super-algorithm able to select the best algorithms to
solve classification problems. As concerns the complexity of the meta-algorithm, we can
see that it does not involve any loops or recurrences, so it is purely linear and, therefore,
its scalability is very good. In fact, the only elements that can increase the complexity are
related to its elements. Potentially problematic stages are related to text analysis, but is
it necessary to mention that tokenization, lemmatization, stemming, etc. operate linearly
from the viewpoint of the dataset size and its efficiency is mainly related to the search
mechanisms involved. As we are using the mechanisms built in the popular machine-
learning package, we do not consider their internal complexity. Clearly, a problematic part
of the calculations can be also related to the models themselves. Although it is known
that the pessimistic complexity of the used classification algorithms (k-NNs, NBs, SVMs) is
in general polynomial (no larger than cubic—even in the case of naive implementations),
we additionally purposely limit the calculation time by cutting the hyperparameter and
training processing times by fast skipping of the models with poor performance based on
the training sets with increasing size and complexity. In practice, our experiments were
done on a standard desktop PC and the processing time has not exceeded standard times
reported in the literature.

3.2. Databases

The first issue to solve while dealing with e-mail spam filtering is to find a dataset
needed to train and test the models. It is extremely difficult to find a useful dataset of this
kind. Although the total number of e-mails sent/received worldwide in 2019 was expected
to reach 293.6 billion [30] per day, the access to the data is hindered due to privacy issues.
We had to use publicly accessible data that are free and open to the whole world, which
diminishes the set of potential candidates. Additionally, we were interested in databases
conforming the following properties: (a) accessible: public and free to download for
academic purposes; (b) relatively new: the old databases are not useful since the spamming
environment is extremely dynamic; (c) virus-free. During the research, a few sources were
selected. Their short descriptions are given below.

• Enron Corpus: chosen to be a foundation for this paper. The corpus is described in
detail in the following.

• Lingspam: a part of the database (962 e-mails) was preprocessed and used by Gre-
gory Piatetsky-Shapiro and Matthew Mayo in their implementation of e-mail spam
filtering [29]. The dataset was also downloaded and used in our experiments.

• SpamAssassin (SA): a public corpus which was last updated in 2006 [31]. SA is an
open-source anti-spam platform [32], filtering e-mail and blocking spam. The tests are
carried out on e-mail headers and bodies.

• Honeypot: the last event entered in the website is up to date. Honeypot gathers
statistics about harvesters, spam servers, dictionary attackers, and comment spammers.
The owners claim that they “periodically collate the e-mail messages they receive
and share the resulting corpus with anti-spam developers and researchers” [33].
Unfortunately, they do not provide any ham e-mails.

• MailBait: fills the inbox with e-mails by signing up the provided address for mailing
lists and newsletters [34]. It is not anonymised (browser data and IP pass through)
and it does not provide ham.

The Enron Corpus [35] was collected at Enron Corporation in 2002, during the investi-
gation after the bankruptcy of the company. The original set was generated by 158 employ-
ees and consists of more than 600,000 e-mails. This database has already been used in the
studies on machine-learning-based spam detection [36]. The corpus consists of two subdi-
rectories: the ‘raw’ one (original messages with no modifications) and the ‘preprocessed’

144

Electronics 2021, 10, 2083

one (where the messages in non-Latin encoding, virus-infected e-mails and ham sent by
the owners to themselves were removed).

3.3. Processing of the Data

Text preprocessing plays a crucial role in spam filtering [24,37]. For any spam detection
model to be effective, the content of the e-mails should be normalized and represented as
feature vectors. The starting point is the tokenization of the raw text data. Then there are
several steps shown in Figure 2 to obtain the data in the form that is ready to be analyzed
by the model.

RAW TEXT (e-mails collection)

Tokenization

Conversion to lowercase

Removal of punctuation marks, digits and stop words

Stemming/lemmatization

Dictionary

FEATURE VECTORS (text representation)

Figure 2. Text preprocessing steps.

Tokenization technique allows us to split the content of the e-mails into basic process-
ing units that are called tokens or features. Given that the paper deals with text data, the
tokens are simply separate words. For instance, the tokenized sentence “Subject: christmas
tree farm pictures” is a collection of strings: “Subject”, “:”, “christmas”, “tree”, “farm” and
“pictures”. The next step involves converting all tokens to lowercase. As a result of this
simple operation, the number of words taken into account is significantly reduced. Instead
of treating “Example”, “example” and “EXAMPLE” as three different words, after convert-
ing them to lowercase, we make sure that the program will count them as one (“example”).
Punctuation marks, digits, and stop words are all common in both spam and ham e-mails
and do not add any value to text analysis. Since we implement our solution in Python,
we refer to tools related to this programming language. There are several libraries and
functions that may be applied to eliminate the mentioned language elements not essential
from the spam detection viewpoint. Below is the list of functionalities chosen by us.

• Python method string.isalpha() checks whether the characters in the string are alpha-
betic or not. If the character is a digit, the method returns False.

• The method string.punctuation() allows removal of common punctuation marks, such
as commas, periods, semicolons, etc.

• Natural Language Toolkit (NLTK) offers a module containing a list of stop words that
are the most common words in a language. The examples of stop words are short
words, for example: “the”, “is”, “at”, “which”, or “on” [38]. The universal list of stop
words does not exist, any set can be adopted depending on the purpose.

Next, stemming reduces the morphological variants of the word to its base (stem).
The algorithms enabling that operation are often called stemmers. In Python, that may be
implemented with the use of NLTK [39]. For English language, there exist two stemmers:
PorterStemmer and LancasterStemmer. For the purpose of this paper, the PorterStemmer
(PS) was chosen and tested with the designed models because of its simplicity and the
speed of its operation. PS is dated to 1979 and often generates stems that are not authentic

145

Electronics 2021, 10, 2083

English words. It results from the fact that it is based on suffix stripping (examples shown
in Table 1). Instead of considering linguistics to build the stem, it applies a set of algorithmic
rules that decide if it is reasonable to remove the suffix or not.

Table 1. Examples of stemming with PS.

Word Before Word After

Cats Cat
Trouble Troubl

Troubling Troubl
Troubled Troubl

Other option, known as lemmatization, is a more complex approach to searching a
word’s stem. In this case, the root word is referred to as a lemma. First, the algorithm
identifies the part of the speech of a word; and then, based on this information, it applies
appropriate normalization. As in the stemming case, lemmatization mechanisms are also
provided by NLTK [39]. WordNet Lemmatizer (WNL) generates lemmas by searching for
them in the WordNet Database. Examples are shown in Table 2. In the research reported
here, text preprocessing was supported by the most basic lemmatization version in specific
test cases. However, the method works most efficiently when one defines the context by
assigning the value to pos parameter (for instance by giving it the value v—verb). Testing
with the pos value defined is outside of the scope of this paper, but its usefulness may be
noticed after the analysis of the impact the pos = v has on the verbs shown in Table 2.

Table 2. Examples of lemmatization with WNL.

Value pos Undefined

Word Before Word After

He He
Was Wa
Has Ha

Playing Playing

pos = v

Word Before Word After

He He
Was Be
Has Have

Playing Play

One may ask which one is better: stemming or lemmatization? The answer is that
it depends on the program and the requirements that one is working with. If speed is
a priority, then it is more beneficial to use stemming. When language is crucial for the
application’s purpose, lemmatizing should be a choice as it is more precise.

In e-mail spam filtering, the goal of building the dictionary structure (key-value with
unique keys) consists of assessing the word’s weight and importance given all available
text documents. First, word occurrences are calculated. In the case of the application
presented here, words are limited to strings of the length between 3 and 20 characters.
Single letters and extremely short/long strings do not add value to the paper (they are
common for both ham and spam).

First, we create two separate dictionaries (spamWords and hamWords). The function
responsible for the dictionary generation returns the number n n (defined during the tests)
of the most common words for each of them. Next, another function builds dictionaries
which include common words (subtractFromSpam, subtractFromHam). Based on these
structures, three others are defined:

146

Electronics 2021, 10, 2083

1. spamDictionary = spamWords − subtractFromSpam;
2. hamDictionary = hamWords − subtractFromHam;
3. finalDictionary = spamDictionary + hamDictionary.

According to the informal research carried out by Dave C. Trudgian [40], the unbal-
anced distribution of spam and ham most common words significantly affects the models’
accuracy. The results were improved when the final dictionary included more spam’s most
common words than ham’s most common words. Table 3 presents the ratios implemented
in the application described in this paper.

Table 3. Implemented most common words ratios (spam:ham).

No. Spam Ham Total

1 150 50 200
2 900 600 1500
3 2000 1000 3000

Employing machine-learning methods to classify an e-mail as spam or ham requires
representation of the text in a specific form. Given the chosen classifiers (described in
Section 3.4 below), the structures they need are feature vectors. Signal-to-noise ratio (SNR)
may be used to facilitate the understanding of the feature engineering concept. Although
the exact definition varies depending on the function in spam detection, its basic idea is
straightforward. SNR is the ratio of the input considered relevant to insignificant data.
In spam classification, a signal might be a typical word occurring in spam messages, and is
a noise word that is common for the given language and occurs in both spam and ham e-
mails (for example, one of the stop words) [41]. If the separation of the signal from the noise
is done badly, the noise can blur the true meaning of the signal. There are many feature
elimination techniques that might help us to identify the critical features, as well as decide
which ones should be removed. The methods used in this paper have already been shown
once (Figure 2). The objective of every single stage in the process of building the dictionary
is to reduce the number of irrelevant words. That is why the function responsible for the
dictionary creation and the one that converts e-mails into feature vectors, start with the
same lines of code, from the process of content tokenization to stemming/lemmatization.

The function that extracts features generates a feature matrix as an output. For each
e-mail, it creates a vector (the array data type in Python) of the dictionary’s length, filled
with 0 s. After going through all preprocessing stages, it compares the e-mail’s content
with the dictionary (word by word). If a word from the e-mail occurs in the dictionary,
1 is added to the vector’s elements. As a result, we obtain a feature matrix in which the
number of e-mails is the number of rows and the dictionary’s length describes the number
of columns.

3.4. Methods

The solutions discussed in this paper are based on supervised learning, since they
apply training sets with the target labels annotated. The generated dictionary is a mixture
of labeled words that are assigned to one of the two target categories: spam or ham. The
models make their predictions based on the dictionary’s content. One can imagine that a
question is posed to a program: if this e-mail consists of these words, is it spam or ham?
The model responds to this unknown question by comparing it to the similar questions
and answers (labels) it was given at the starting point.

The process of labeling (generating a dictionary in the case of the described application)
is carried out with the use of a training set. A test set is used to measure the program’s
performance during the last step of the experiment.

Classification, interesting in the context of this paper, is one of the prevailing super-
vised machine-learning tasks. Its goal is to predict discrete values (might be categories,
classes, or labels) for new examples (that had not been seen by the program before) from

147

Electronics 2021, 10, 2083

one or more features. The set of classes is finite and there are several types of learning.
Spam filtering is a two-class learning (also referred to as binary classification) [41]. The
program (or its part) performing a classification task is called a classifier. In this paper, the
classifiers were implemented with scikit-learn (sklearn), which is a free machine-learning
library for the Python programming language.

The training phase is aimed at minimizing the errors, but it is important to remember
that no model is perfect. Here, we use a set of typical measures defined in the context
of a confusion matrix: true negatives (TN), false positives (FP), false negatives (FN), and
true positives (TP). Out of the four, the most undesirable outcome in the case of spam
filtering is a false positive as it may result in losing a portion of critical information. Several
parameters which allow evaluation of the classifiers are built based on the values that make
up the confusion matrix: accuracy, sensitivity, specificity, positive predictive value (PPV),
and negative predictive value (NPV). Accuracy was the main indicator of the classifier
performance in the tests carried out in this research. In the most interesting cases, all five
parameters were calculated for each tested classifier.

Below, we present three machine-learning algorithms we are comparing on the task of
spam detection.

Despite its simplicity, k-nearest neighbours (k-NN) proved to be successful in a great
number of supervised machine-learning tasks [42]. k-NN perform the classification of
the new point (in the multidimensional space, where each point is a vector representing
a sample being a single e-mail), based on k elements in its nearest distance. k-NN is
sometimes called a “lazy learner”, which means that it does not need to learn, but waits for
classification until the very last moment. Gathering and labeling data could be referred
to as a training phase. Once it is ready, the training stage is also completed. However,
this fact leads to a time-consuming testing phase, during which the pairwise distances are
calculated and compared.

Supervised neighbour-based learning methods are provided by the sklearn.neigbours
library. k-NN may be implemented with the use of KNeighboursClassifier and the specific
line of code responsible for the model definition is (when k = 5):

model = KNeighboursClassifier (nneighbours = 5)
When a new query point is given, KNeighboursClassifier carries out learning based

on its k nearest points (n_neighbours). The distance function applied by us is simply the
standard Euclidean distance.

When the corpus we are working with is large, there may be hundreds of thousands
features in the dictionary. If we convert the text documents (for instance e-mails) into
feature vectors, each of them will then have hundreds of thousands of components and
most of them will be zero. Such vectors are referred to as sparse. High-dimensional data
are problematic for all machine-learning tasks due to the well-known curse of dimension-
ality [43].This is due to the higher demand for memory and computation compared to
low-dimensional vectors. This difficulty may be overcome with scipy Python library using
data types that can pull nonzero elements out of the sparse vectors. The second aspect
is related to the fact that with the high dimensionality comes a threat of the insufficient
number of documents in the training set. It is necessary to make sure that there are enough
training instances to cover all features. Otherwise, the algorithm operation may result in
overfitting, where the quality results are satisfactory for the training set of samples, but not
for the testing set (and the following usage cases).

Support vector machines (SVM) [44] are most typically used in classification applica-
tions, although their usefulness is broader (e.g., outlier detection). If given a labeled dataset,
SVM finds a classification (separation) hyperplane by searching for the maximum distance
between data points (vectors representing samples) belonging to different classes. There
exist two types of SVM models: hard-margin (each point needs to be classified accurately)
and soft-margin (incorrect classification is also acceptable). Contrary to k-NN classifier, it
is beneficial for the SVM to operate in high dimensions [45]. By increasing the number of
features, data points tend to be more efficiently separated. The points that are closest to

148

Electronics 2021, 10, 2083

the classification hyperplane are called support vectors. A hyperplane is also referred to
as a decision boundary and separates elements belonging to different categories. The gap
between the two hyperplanes drawn on support vectors is called a margin. The bigger the
margin, the better.

In the application built for the purposes of this paper, two support vector classification
(SVC()) based models, NuSVC() and LinearSVC(), were implemented with sklearn; with
all parameters taking default values.

The family of naïve Bayes (NB) classifiers is based on the Bayes theorem that bounds
absolute and conditional probabilities. In the case of machine learning and spam recogni-
tion, the probabilities can be associated with the relative frequencies of word appearance in
messages (i.e., relative frequency counting of words). The second concept is the so-called
naïve assumption that all features are independent of each other given the output (a class
to which they belong). Although this assumption of independence rarely holds true, naïve
Bayes classifier can perform a very successful classification, even if the training data does
not provide many examples. Moreover, the classifiers that belong to NB family are known
to be fast and simple.

The variant tested for the purpose of this paper is provided by sklearn. Multinomial
naïve Bayes classifier MultinomialNB() applies the NB algorithm to multinomially dis-
tributed data [46]. It is also the most common option used in text classification. The data
are represented in the form of word vector counts.

4. Numerical Results with Validation

The results were obtained based on our proprietary-software solution developed in
Python 3.7.3.

4.1. Datasets Structure

The classifiers were tested on four datasets of various sizes. Three of them (composed
of four datasets: enron1, enron2, enron4, enron5) are the extracts of the Enron Corpus [35].
In this phase, we propose to introduce cross-validation between different datasets (enron 1
and 4 as well as enron 2 and 5) in the training and test phases. These datasets’ structure
is described in detail in Tables 4–6. The fourth dataset (Table 7) is the exact copy of the
part of the Lingspam corpus, used by Gregory Piatetsky-Shapiro and Matthew Mayo as
a foundation for the paper described in [29]. The variety of the datasets provides the
opportunity to carry out broad research.

Table 4. Dataset 1 structure.

Training (≈73%) Test (≈27%)

enron1 enron2

Ham Spam Ham Spam

351 351 130 130

702 260

962

Table 5. Dataset 2 structure.

Training (≈63%) Test (≈37%)

enron1 enron2

Ham Spam Ham Spam

3672 1500 1493 1493

5172 2986

8158

149

Electronics 2021, 10, 2083

Table 6. Dataset 3 structure.

Training (≈67%) Test (≈33%)

enron1 enron4 enron1 enron4 enron2 enron5 enron2 enron5

Ham Spam Ham Spam

3672 1500 1500 4492 1464 1293 1464 1290

5172 5992 2757 2754

11,164 5511

16,675

Table 7. Dataset 4 structure.

Training (≈73%) Test (≈27%)

Lingspam

Ham Spam Ham Spam

351 351 130 130

702 260

962

4.2. Text-Preprocessing Impact on the Dictionary

Although the purpose of using the basic tex preprocessing methods (tokenization,
etc. see Section 3.3) is straightforward and easy to explain, things become complicated
regarding stemming and lemmatization. This chapter shows the differences in the ten
most common words in the dictionary when none of the two methods is applied and when
stemming or lemmatization is implemented. The test was repeated for each dataset and
the results are shown in Tables 8–11.

Table 8. Ten most common features for dataset 1.

Basic Methods Stemming Lemmatization

Word Occurrences Word Occurrences Word Occurrences

enron 462 enron 462 enron 462

nbsp 310 meter 329 meter 329

meter 298 nbsp 310 nbsp 310

pills 267 pill 279 pill 279

http 264 deal 269 deal 270

subject 229 http 264 http 264

deal 201 subject 229 subject 230

thanks 195 need 203 thanks 195

height 179 thank 202 volume 188

width 171 volum 188 need 183

For dataset 1, both stemming and lemmatization caused the number of occurrences of
the word deal increased by almost 70. Moreover, the words need and volum(e) appeared
in the table, pushing the words height and width out (Table 8). For dataset 2, implementing
either stemming or lemmatization resulted in the increase of the number of occurrences of
the word deal by almost 700. Furthermore, the word volum(e) appeared in top 10, pushing
the word forwarded out (Table 9). Table 10 presents the results for dataset 3, which is the
biggest one (includes 16,675 e-mails). Adding the function responsible for stemming or

150

Electronics 2021, 10, 2083

lemmatization contributed to the change in the number of occurrences of the deal word.
The number increased by approximately 800. When none of the method was present
in the program, word statements was the last one in the top 10 list. Once the method
(either stemming or lemmatization) was defined, the word schedul(e) emerged with the
significant number of occurrences (3852 for stemming and 2591 for lemmatization). Taking
dataset 4 into account, the differences were less visible (Table 11). What stands out is the
increased number of occurrences of the word order, which changed by almost 100 after
implementing each of the two methods. With stemming, linguist appears in the top 10,
pushing out the word free.

Table 9. Ten most common features for dataset 2.

Basic Methods Stemming Lemmatization

Word Occurrences Word Occurrences Word Occurrences

enron 6555 enron 6555 enron 6555

subject 4745 subject 4745 subject 4747

deal 2751 deal 3443 deal 3433

meter 2459 meter 2715 meter 2710

please 2230 pleas 2229 please 2230

daren 1901 thank 1945 daren 1901

thanks 1728 daren 1901 thanks 1728

corp 1644 volum 1645 corp 1644

mmbtu 1349 corp 1644 volume 1644

forwarded 1295 mmbtu 1408 mmbtu 1349

Table 10. Ten most common features for dataset 3.

Basic Methods Stemming Lemmatization

Word Occurrences Word Occurrences Word Occurrences

enron 7166 enron 7166 enron 7166

http 3119 deal 3879 deal 3872

deal 3073 schedul 3852 http 3108

meter 2443 http 3108 company 2839

company 2198 compani 2839 meter 2691

dbcaps 2010 meter 2697 schedule 2591

data 1996 dbcap 2010 dbcaps 2010

database 1921 data 1996 data 1996

daren 1901 databas 1908 database 1908

statements 1770 daren 1901 daren 1901

Above, significant differences were shown for only the ten most common words.
Therefore, if we refer to all 200, 1500 and 3000 words, there will be even more dissimilarity
in the number of word occurrences which sometimes leads to either including the word
in the dictionary or not. All designed models (k-NN, SVM, and NB) take e-mails as input.
The e-mails are represented as vectors, with the elements being the word counts, based on
the content of the dictionary. Let us assume that schedul(e) is a word strongly indicating
that the e-mail is not spam. For dataset 3, when the function responsible for building the
dictionary does not apply stemming or lemmatization, schedul(e) is not included in the
small dictionary of ten features (Table 10) and because of that it would not be taken as a

151

Electronics 2021, 10, 2083

valid portion of the information by the model. This could arise from the fact that the word
takes many forms, such as “schedule”, “schedules”, “scheduling”, “scheduled”—which
are all counted as separate words. Using stemming or lemmatization may prevent such
situations.

Table 11. Ten most common features for dataset 4.

Basic Methods Stemming Lemmatization

Word Occurrences Word Occurrences Word Occurrences

order 1190 order 1287 order 1269

report 1135 report 1213 report 1208

language 1089 mail 1107 language 1097

mail 987 languag 1097 address 996

address 959 address 1002 mail 987

e-mail 944 e-mail 960 e-mail 944

program 771 linguist 828 program 803

money 763 program 803 money 763

send 758 send 763 send 758

free 745 money 763 free 745

4.3. Spam Detection

Here, we discuss the results related to the five substages of our meta-algorithm. The
substages are introduced in Table 12.

Table 12. Five substages of checking the classifiers performance.

Substage No. of Tests Dataset Purpose

1 27 1 Checking the performance of the NuSVC, LinearSVC and MNB classifiers.
Finding the best-performing ones for the Stage 3 testing.

2 72 1 Checking the performance of the k-NN classifier for various k values. Finding the
best-performing ones for the Stage 3 testing.

3 10 2 Checking the performance of the classifiers with the specific parameters chosen in
Stage 1 and 2. Finding the best-performing ones for the Stage 4 and 5 testing.

4 4 3 Checking the performance of the classifiers with specific parameters chosen in
Stage 3. Recognition of the leading one.

5 4 4
Checking the performance of the classifiers with specific parameters chosen in
Stage 3. Recognition of the leading one and comparison with the results obtained
by Gregory Piatetsky-Shapiro and Matthew Mayo [29].

The exact results related to various substages are summarized in Appendix A given at
the end of the paper. Here, we give only the main findings. Based on the Substage 1 results,
the following facts may be observed:

• For all tests, the maximum accuracies were achieved by the MNB classifier.
• For each classifier, its maximum accuracy was obtained when stemming was imple-

mented.
• The highest test average accuracy was achieved when dict = 200, with stemming.

After Substage 1, three classifiers were chosen for testing in Substage 2:

• MNB—dict = 1500, lemmatization;
• LinearSVC—dict = 200, stemming;
• NuSVC—dict = 3000, stemming.

152

Electronics 2021, 10, 2083

The results based on confusion matrices are presented in Table 13. MNB classifier
provides the highest probability that the e-mail classified as ham is actually a desired
message (PPV = 0.887), while NuSVC performs best when predicting if the spam e-mail is
in fact a spam (NPV = 0.986).

Table 13. Evaluation of the chosen classifier performance in Substage 1.

Model Accuracy Sensitivity Specificity PPV NPV

MNB 0.923 0.969 0.877 0.887 0.966

LinearSVC 0.842 0.977 0.708 0.770 0.968

NuSVC 0.762 0.992 0.531 0.679 0.986

Substage 2 aimed to find the parameters (k and number of features in the dictionary)
for which k-NN classifies the e-mails most efficiently. Because of the k-NN’s computational
complexity, dataset 1 (the smallest one) was chosen to conduct the experiment. The three
highest accuracy values were obtained for the following parameters:

• accuracy = 0.915, k = 11, dict = 200, lemmatization;
• accuracy = 0.912, k = 9, dict = 200, no stemming or lemmatization;
• accuracy = 0.908, k = 11, dict = 200, no stemming or lemmatization.

The results of Substage 2 are interpreted with the help of graphs. Figure 3 shows the
maximum accuracy obtained for k across all Substage 2 results. The maximum is obtained
for k = 11. For values of k that are bigger than 11, the accuracy rapidly declines. This is
because the greater k, the simpler the classifier. Finally, if k is too big, most of the test points
will belong to the same (prevailing) class.

Figure 3. k-NN accuracy vs. k.

Figure 4 presents the accuracy of the average tests for each dictionary size. The higher
the data dimensionality, the worse the k-NN’s accuracy. The difference between k-NN
when dict = 200 and dict = 1500 or dict = 3000 is significant (≈0.2). To show the tendency,
the power trend line was added to the graph. As we can see, the accuracy tends to change
in a similar way. What is interesting, the power trend line and the exponential curve are
alike. The only difference is that the arc of the first one is more symmetrical [47]. Hence, it
may be concluded that in this case the accuracy experiences an exponential change.

153

Electronics 2021, 10, 2083

Figure 4. Accuracy of the average tests vs. dictionary length.

The three k-NN models with the highest accuracy were chosen to be tested in Sub-
stage 3. Table 14 presents the five indicator values. This allows performance of a more
thorough evaluation.

Table 14. Evaluation of the chosen classifiers performance in Substage 2.

k Accuracy Sensitivity Specificity PPV NPV

11 (1) 0.915 0.938 0.892 0.897 0.935

9 0.912 0.923 0.900 0.902 0.921

11 (2) 0.908 0.915 0.900 0.902 0.914

Substage 3 consisted of ten tests. The first six of them were chosen as the top results
of Substage 1 and Substage 2. The other four were conducted because of their promising
performance in the previous experiments. The top accuracy values were obtained for the
following parameters (these four models were designated for testing in Substages 4 and 5):

• MNB (1)—accuracy = 0.914, dict = 3000, lemmatization;
• MNB (2)—accuracy = 0.909, dict = 1500, lemmatization;
• NuSVC—accuracy = 0.885, dict = 1500, stemming;
• k-NN k = 11—accuracy = 0.828, dict = 200, lemmatization.

Table 15 includes the quality metrics related to the four models that will be tested
in Substages 4 and 5. When compared to MNB, NuSVC and k-NN have lower accuracy,
sensitivity, and NPV. However, both obtained better specificity and PPV parameters. On the
other hand, MNB was better at predicting the negative class.

Table 15. Evaluation of the chosen classifiers performance in Substage 3.

Model Accuracy Sensitivity Specificity PPV NPV

MNB (1) 0.914 0.952 0.876 0.885 0.948

MNB (2) 0.909 0.950 0.868 0.878 0.945

NuSVC 0.885 0.805 0.965 0.959 0.832

k-NN k = 11 0.828 0.719 0.938 0.920 0.769

154

Electronics 2021, 10, 2083

In Substage 4, once again, MNB models achieved the highest values of accuracy: 0.919
and 0.909. Surprisingly, k-NN with k = 11 performed slightly better than NuSVC. Except
for NuSVC, all models obtained higher accuracy than in Substage 3.

A collection of values that facilitate assessing the performance of the classifiers in
Substage 4 is presented in Table 16. A very low specificity was noted for NuSVC. The
model made a considerable mistake by classifying 933 ham e-mails as spam. The number
was approximately two times higher than in the case of the other classifiers.

Table 16. Evaluation of the classifiers performance in Substage 4.

Model Accuracy Sensitivity Specificity PPV NPV

MNB (1) 0.919 0.976 0.863 0.877 0.973

MNB (2) 0.909 0.972 0.846 0.863 0.968

NuSVC 0.829 0.996 0.662 0.746 0.995

k-NN k = 11 0.860 0.865 0.855 0.856 0.863

Substage 5 aimed at testing the classifiers that had performed best in Substage 3, but
on the dataset that was not related to Enron. The sizes of dataset 1 and the one used in this
substage (dataset 4, extracted from Lingspam corpus) were the same and that is why the
accuracies will be compared to those obtained in Substage 1. The training set consisted of
702 e-mails. In the test set, there were 260 messages. In both cases, when MNB classified
the messages, it achieved the highest accuracy. For MNB (1), there were 3000 features in the
dictionary, for MNB (2)—1500. In each case, the lemmatization was added to the program.
k-NN fared the worst—much less than it achieved in Substage 1, when its accuracy was
0.915 for the same parameters. This may be a result of the source dataset content (Enron vs.
Lingspam). NuSVC improved its accuracy by 0.157.

Table 17 summarizes metrics for the 4 models tested in Substage 5 and for the results
obtained by G. Piatetsky-Shapiro and M. Mayo in a similar experiment on the same
dataset [29]. The probability that k-NN classified a harmful message as spam is only
0.608—this is the bottom value among all results. This fact has a direct impact on the
accuracy of k-NNs, which was the lowest one in this substage. Both MNB models obtained
specificity and PPV equal to 1. It means there was not a single non-spam e-mail that would
be misclassified as spam. Moreover, the total number of misclassified e-mails was only 10
(spam classified as ham). In Substage 5, for dataset 4, MNB classifier turned out to be nearly
perfect. The results are a little better than those achieved by G. Piatetsky-Shapiro and
M. Mayo [29]. This is possibly because of the more complex text-preprocessing methods
that were implemented.

Table 17. Evaluation of the classifiers performance in Substage 5.

Model Accuracy Sensitivity Specificity PPV NPV

MNB (1) 0.962 0.923 1 1 0.929

MNB (2) 0.962 0.923 1 1 0.929

NuSVC 0.915 0.862 0.969 0.966 0.875

k-NN k = 11 0.796 0.608 0.985 0.975 0.715

Results obtained by G. Piatetsky-Shapiro and M. Mayo [29]

MNB 0.962 0.931 0.992 0.992 0.935

4.4. Method Validation and Discussion of Results

First, we note that text preprocessing has a significant impact on the behavior of the
classifiers. There is no doubt it is always beneficial to apply the basic methods, such as
conversion to lowercase (or uppercase as the effect is the same), removing stop words,

155

Electronics 2021, 10, 2083

digits or punctuation marks and other techniques, as described in Figure 2. Implementing
advanced text-preprocessing methods (stemming or lemmatization) allows the acquisition
of higher accuracy of the classification.

Second, the selected size of the dictionary (the number of features) matters. For
the support vector machines and naïve Bayes classification, the results were better if
the number of features was larger. On the contrary, k-NNs’ accuracy tends to decrease
rapidly for higher data dimensionality. k-NN obtained the highest accuracy for the smallest
dictionary size. k-NN performs well when that data dimensionality is low. Its efficiency
is also highly dependent on the k parameter. It might be assumed that if k-NN achieves
the maximum accuracy for the given kmax, the performance will experience a sharp drop
for k > kmax. Testing the support vector classification methods proved that LinearSVC is
relatively efficient when the dataset is small. For large datasets NuSVC classification is
more accurate.

Third, among all designed classifiers, MNB turned out to be a leader. In the relevant
stages, the maximum accuracy across all results was obtained by MNB. Naïve Bayes
classification is efficient in all cases but eventually returns the best outcomes when the
dictionary consists of many features and the lemmatization technique is included in the
application.

Fourth, the classifiers that achieved the best results when tested on the extract from
the Enron Corpus, classified the e-mails even more accurately for the dataset extracted
from the Lingspam corpus. This indicates that the content (words) and the structure of the
data impact the model performance directly.

Fifth, the most important aspect related to validation of our work is related to the
quality of the obtained results. Here, one of the most important aspect of our proposal is
summarized with Table 18. It shows a signification progress in comparison with the results
reported in the referenced literature (the highest values are marked in red). One can see
that especially the specificity provided by our approach is attractive. It is important in the
case of unbalanced datasets and applications related to anomaly detection (where spam
detection is also assigned).

Table 18. Comparison of the validation results with various performance metrics.

Method Measure Our Result Results Reported in the Literature

MNB Accuracy 0.962 0.477 [7], 0.598 [24], 0.832 [23], 0.898 [11], 0.917 [14],
0.957 [10], 0.962 [29], 0.994 [5]

MNB Sensitivity 0.923 0.496 [7], 0.897 [11], 0.931 [29]

MNB Specificity 1 .000 0.516 [7], 0.900 [11], 0.992 [29]

SVM Accuracy 0.915 0.840 [24], 0.917 [14], 0.919 [11], 0.940 [12], 0.962 [5],
0.966 [22], 0.971 [10]

SVM Sensitivity 0.867 0.901 [12], 0.918 [11], 0.976 [22]

SVM Specificity 0.969 0.920 [11]

k-NN Accuracy 0.796 0.453 [7], 0.846 [23], 0.908 [11], 0.920 [13], 0.990 [21]

k-NN Sensitivity 0.608 0.319 [7], 0.921 [11]

k-NN Specificity 0.985 0.478 [7], 0.887 [11]

5. Summary

The proposed multistage meta-algorithm for checking the classifiers performance,
including an experimental method that involves the use of cross-validation between differ-
ent datasets, allowed us to obtain reliable performance metrics in our illustrative example
limited to the three important and representative classifiers. According to our results,
which are consistent with other literature studies (but also typically outperform them
from the viewpoint of the used metrics, especially aligned with unbalanced datasets), the
multinomial naïve Bayes classifier is a method that once combined with well-thought text-

156

Electronics 2021, 10, 2083

preprocessing techniques as used in our meta-algorithm, may turn into the best weapon
against spammers, who are becoming wiser every day. The advantage of our solution
is that it can work with large datasets and give reliable results in a short time period by
introducing the concept of fast recognition of the most interesting parameters. Moreover,
the proposed method allows for cross-validation between different datasets in training and
test phases.

Finally, the whole validation study presented in the paper based on our multistage
meta-algorithm, including especially many (five) substages of cross-validation, shows
that the whole method is robust. It is run on a standard desktop PC and operates within
minutes to prove the results.

Author Contributions: Conceptualization, P.C.; methodology, S.R., P.C. and M.N.; software, S.R.;
validation, S.R.; formal analysis, S.R., P.C. and M.N.; investigation, S.R.; resources, S.R.; data curation,
S.R.; writing—original draft preparation, S.R., P.C. and M.N.; writing—review and editing, P.C.
and M.N.; visualization, S.R. and M.N.; supervision, P.C.; project administration, M.N.; funding
acquisition, M.N. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially supported by the National Centre for Research and Develop-
ment, grant number CYBERSECIDENT/381319/II/NCBR/2018 on “The federal cyberspace threat
detection and response system” (acronym DET-RES) as part of the second competition of the Cyber-
SecIdent Research and Development Program—Cybersecurity and e-Identity and partially supported
by the Polish Ministry of Science and Higher Education with the subvention funds of the Fac-
ulty of Computer Science, Electronics and Telecommunications of AGH University of Science and
Technology.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to project restrictions.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Abbreviations
The following abbreviations are used in this manuscript:

157

Electronics 2021, 10, 2083

ANN Artificial Neutral Network
BN Bayes Net(work)
BNB Bernoulli Naïve Bayes
CNN Convolutional Neural Network
DT Decision Tree
EHB Ensemble Hybrid Boosting
ET Extra Tree
FLM Fast Large Margin
GA Genetic Algorithm
GB Gradient Boosting
GLM General Linearized Model
GNB Gaussian Naïve Bayes (Classifier)
k-NN k-Nearest Neighbours
LB Logic Boost
LR Linear Regression
LR Logistic Regression
LSTM Long Short-Term Memory
MLP Multilayer Perceptron
MNB Multinomial Naïve Bayes (Classifier)
NB Naïve Bayes (Classifier)
NLTK Natural Language Toolkit
NPV Negative Predictive Value
PPV Positive Predictive Value
PSO Particle Swarm Optimization
RBF Radial Basis Functions
RC Random Committee
ROC Receiver Operating Characteristic
RNN Recurrent Neural Network
RF Random Forest
SNR Signal-to-Noise Ratio
SVM Support Vector Machine
WNL WordNet Lemmatizer

Appendix A

Here, we present the detailed results related to our numerical study, especially the
ones related to the five substages.

The results obtained in Substage 1, with some additional parameters (such as test/model
average and test/model maximum) are shown in Table A1.

Table A1. Accuracies obtained in Substage 1 tests.

Accuracies

Stem/Lem No. Stemming Lemmatization Model-Avg Model-Max

200 1500 3000 200 1500 3000 200 1500 3000

NuSVC 0.750 0.757 0.758 0.758 0.758 0.762 0.754 0.735 0.738 0.752 0.762

LinearSVC 0.804 0.796 0.804 0.842 0.773 0.762 0.823 0.792 0.781 0.797 0.842

MNB 0.900 0.915 0.919 0.923 0.888 0.885 0.900 0.923 0.915 0.908 0.923

Test-avg 0.818 0.823 0.827 0.841 0.806 0.803 0.826 0.817 0.811

Test-max 0.900 0.915 0.919 0.923 0.888 0.885 0.900 0.923 0.915

All results of Substage 2 are presented in Table A2.

Table A2. Accuracies obtained in Substage 2 tests.

Accuracies

Stem/Lem No. Stemming Lemmatization Model-Avg Model-Max

k 200 1500 3000 200 1500 3000 200 1500 3000

158

Electronics 2021, 10, 2083

The results of Substage 3 are presented in Table A3.

Table A3. Accuracies obtained in Substage 3 tests.

Test Model
Accuracy

(Substage 1/2)
Dictionary Length Stem/Lem

Accuracy
(Substage 3)

1 MNB 0.923 1500 lem 0.909

2 k-NN k = 11 0.915 200 lem 0.828

3 k-NN k = 9 0.912 200 no 0.825

4 k-NN k = 11 0.908 200 no 0.821

5 LinearSVC 0.842 200 stem 0.880

6 NuSVC 0.762 3000 stem 0.884

Additional tests

7 NuSVC 0.762 1500 stem 0.885

8 MNB 0.923 3000 lem 0.914

9 k-NN k = 11 0.915 1500 lem 0.795

10 LinearSVC 0.842 1500 stem 0.859

The results of Substage 4 are shown in Table A4.

Table A4. Accuracies obtained in Substage 4 tests.

Test Model
Accuracy

(Substage 3)
Dictionary Length Stem/Lem

Accuracy
(Substage 4)

1 MNB (1) 0.914 3000 lem 0.919

2 MNB (2) 0.909 1500 lem 0.909

3 NuSVC 0.885 1500 stem 0.829

4 k-NN k = 11 0.828 200 lem 0.860

The accuracies obtained by the classifiers in Substage 5 are presented in Table A5.

Table A5. Accuracies obtained in Substage 5 tests.

Test Model
Accuracy

(Substage 1)
Dictionary Length Stem/Lem

Accuracy
(Substage 5)

1 MNB (1) 0.915 3000 lem 0.962

2 MNB (2) 0.923 1500 lem 0.962

3 NuSVC 0.758 1500 stem 0.915

4 k-NN k = 11 0.915 200 lem 0.796

The confusion matrices of MNB (1) and MNB (2) are identical and presented below
as Table A6.

Table A6. MNB (1) and MNB (2) confusion matrix in Substage 5.

Ham Spam

Ham 130 0

Spam 10 120

159

Electronics 2021, 10, 2083

References

1. Bauer, E. 15 Outrageous Email Spam Statistics that Still Ring True in 2018. Available online: https://www.propellercrm.com/
blog/email-spam-statistics (accessed on 6 August 2021).

2. Symantec. Internet Security Threat Report. 2019. Available online: https://www.symantec.com/content/dam/symantec/docs/
reports/istr-24-2019-en.pdf (accessed on 6 August 2021).

3. Ferrara, E. The History of Digital Spam. Commun. ACM 2019, 62, 82–91. [CrossRef]
4. Dada, E.G.; Bassi, J.S.; Chiroma, H.; Adetunmbi, A.O.; Ajibuwa, O.E. Machine Learning for Email Spam Filtering: Review,

Approaches and Open Research Problems. Heliyon 2019, 5, e01802. [CrossRef] [PubMed]
5. Awad, W.A.; ELseuofi, S.M. Machine Learning Methods for Spam E-Mail Classification. Int. J. Comput. Sci. Inf. Technol. 2011, 3,

173–184. [CrossRef]
6. Sharma, S.; Arora, A. Adaptive Approach for Spam Detection. Int. J. Comput. Sci. Issues 2013, 10, 23.
7. Harisinghaney, A.; Dixit, A.; Gupta, S.; Arora, A. Text and Image Based Spam Email Classification using KNN, Naïve Bayes

and Reverse DBSCAN Algorithm. In Proceedings of the International Conference on Reliability Optimization and Information
Technology (ICROIT), Faridabad, India, 6–8 February 2014; pp. 153–155. [CrossRef]

8. Sharma, D. Experimental Analysis of KNN with Naive Bayes, SVM and Naive Bayes Algorithms for Spam Mail Detection. Int. J.
Comput. Sci. Technol. 2016, 7, 225–228.

9. Sharma, U.; Khurana, S.S. SHED: Spam Ham Email Dataset. Int. J. Recent Innov. Trends Comput. Commun. 2017, 5, 1078–1082.
10. Jawale, D.S.; Mahajan, A.G. Hybrid Spam Detection using Machine Learning. Int. J. Adv. Res. Ideas Innov. Technol. 2018, 4,

2828–2832.
11. Bassiouni, M.; Ali, M.; El-Dahshan, E.A. Ham and Spam E-Mails Classification Using Machine Learning Techniques. J. Appl.

Secur. Res. 2018, 13, 315–331. [CrossRef]
12. Shajideen, N.M.; Bindu, V. Spam Filtering: A Comparison between Different Machine Learning Classifiers. In Proceedings of the

Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 29–31
March 2018; pp. 1919–1922. [CrossRef]

13. Suryawanshi, S.; Goswami, A.; Patil, P. Email Spam Detection: An Empirical Comparative Study of Different ML and Ensemble
Classifiers. In Proceedings of the IEEE 9th International Conference on Advanced Computing (IACC), Tiruchirappalli, India,
13–14 December 2019; pp. 69–74. [CrossRef]

14. Shahariar, G.M.; Biswas, S.; Omar, F.; Shah, F.M.; Hassan, S.B. Spam Review Detection Using Deep Learning. In Proceedings of
the IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC,
Canada, 17–19 October 2019; pp. 0027–0033. [CrossRef]

15. Swetha, M.S.; Sarraf, G. Spam Email and Malware Elimination Employing Various Classification Techniques. In Proceedings
of the 4th International Conference on Recent Trends on Electronics, Information, Communication and Technology (RTEICT),
Bangalore, India, 17–18 May 2019; pp. 140–145. [CrossRef]

16. Gaurav, D.; Tiwari, S.M.; Goyal, A.; Gandhi, N.; Abraham, A. Machine Intelligence-based Algorithms for Spam Filtering on
Document Labeling. Soft Comput. 2020, 24, 9625–9638. [CrossRef]

17. Ablel-Rheem, D.M.; Ibrahim, A.O.; Kasim, S.; Almazroi, A.A.; Ismail, M.A. Hybrid Feature Selection and Ensemble Learning
Method for Spam Email Classification. Int. J. Adv. Trends Comput. Sci. Eng. 2020, 9, 217–223. [CrossRef]

18. Kumar, N.; Sonowal, S. Nishant, Email Spam Detection Using Machine Learning Algorithms. In Proceedings of the Second
International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 15–17 July 2020; pp.
108–113. [CrossRef]

19. Gibson, S.; Issac, B.; Zhang, L.; Jacob, S.M. Detecting Spam Email with Machine Learning Optimized with Bio-Inspired
Metaheuristic Algorithms. IEEE Access 2020, 8, 187914–187932. [CrossRef]

20. Karimovich, G.S.; Jaloldin ugli, K.S.; Salimbayevich, O.I. Analysis of Machine Learning Methods for Filtering Spam Messages
in Email Services. In Proceedings of the International Conference on Information Science and Communications Technologies
(ICISCT), Tashkent, Uzbekistan, 4–6 November 2020; pp. 1–4. [CrossRef]

21. Nandhini, S.; Marseline, K.S. Performance Evaluation of Machine Learning Algorithms for Email Spam Detection. In Proceedings
of the International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), Vellore, India, 24–25
February 2020; pp. 1–4. [CrossRef]

22. Saidani, N.; Adi, K.; Allili, M.S. A Semantic-Based Classification Approach for an Enhanced Spam Detection. Comput. Secur. 2020,
94, 101716. [CrossRef]

23. Hossain, F.; Uddin, M.N.; Halder, R.K. Analysis of Optimized Machine Learning and Deep Learning Techniques for Spam
Detection. In Proceedings of the IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), Toronto, ON,
Canada, 21–24 April 2021; pp. 1–7. [CrossRef]

24. Rastenis, J.; Ramanauskaitė, S.; Suzdalev, I.; Tunaitytė, K.; Janulevičius, J.; Čenys, A. Multi-Language Spam/Phishing Classifica-
tion by Email Body Text: Toward Automated Security Incident Investigation. Electronics 2021, 10, 668. [CrossRef]

25. Şahin, D.Ö.; Demirci, S. Spam Filtering with KNN: Investigation of the Effect of k Value on Classification Performance. In Pro-
ceedings of the 2020 28th Signal Processing and Communications Applications Conference (SIU), Gaziantep, Turkey, 5–7 October
2020; pp. 1–4. (In Turkish). [CrossRef]

160

Electronics 2021, 10, 2083

26. Maria; James, M.; Mruthula, M.; Bhaskaran, V.; Asha, S. Evasion Attacks On SVM Classifier. In Proceedings of the 2019
9th International Conference on Advances in Computing and Communication (ICACC), Kochi, India, 6–8 November 2019;
pp. 125–129. [CrossRef]

27. Di Mauro, M.; Longo, M. Skype Traffic Detection: A Decision Theory Based Tool. In Proceedings of the 2014 International
Carnahan Conference on Security Technology (ICCST), Rome, Italy, 13–16 October 2014; pp. 1–6. [CrossRef]

28. Di Mauro, M.; Longo, M. A Decision Theory Based Tool for Detection of Encrypted WebRTC Traffic. In Proceedings of the
2015 18th International Conference on Intelligence in Next Generation Networks, Paris, France, 17–19 February 2015; pp. 89–94.
[CrossRef]

29. Mayo, M.; Piatetsky-Shapiro, G. Email Spam Filtering: An Implementation with Python and Scikit-Learn. 2017. Available online:
https://www.kdnuggets.com/2017/03/email-spam-filtering-an-implementation-with-python-and-scikit-learn.html (accessed
on 6 August 2021).

30. Radicati. Email Statistics Report, 2019–2023. Available online: https://www.radicati.com/wp/wp-content/uploads/2018/12/
Email-Statistics-Report-2019-2023-Executive-Summary.pdf (accessed on 6 August 2021).

31. SpamAssasin. Available online: https://spamassassin.apache.org/old/publiccorpus/ (accessed on 6 August 2021).
32. SpamAssasin. Available online: https://spamassassin.apache.org (accessed on 6 August 2021).
33. Project Honeypot. Available online: https://www.projecthoneypot.org (accessed on 6 August 2021).
34. MailBait. Available online: https://mailbait.info (accessed on 6 August 2021).
35. Enron Email Dataset; Athens University of Economics and Business. Available online: http://www2.aueb.gr/users/ion/data/

enron-spam (accessed on 6 August 2021).
36. Androutsopoulos, I.; Metsis, V.; Paliouras, G. Spam Filtering with Naive Bayes—Which Naive Bayes? In Proceedings of the CEAS

Third Conference on Email and Anti-Spam 2006, CEAS 2006, Mountain View, CA, USA, 27–28 July 2006.
37. Kadhim, A. An Evaluation of Preprocessing Techniques for Text Classification. Int. J. Comput. Sci. Inf. Secur. 2018, 16, 22–32.
38. Wikipedia. Stop Words. Available online: https://en.wikipedia.org/wiki/Stopwords (accessed on 6 August 2021).
39. Jabeen, H. Stemming and Lemmatization in Python. 2018. Available online: https://www.datacamp.com/community/tutorials/

stemming-lemmatization-python (accessed on 6 August 2021).
40. Trudgian, D. Spam Classification Using Nearest Neighbour Techniques. In Proceedings of the Intelligent Data Engineering and

Automated Learning, IDEAL 2004, Exeter, UK, 25–27 August 2004; pp. 578–585. [CrossRef]
41. Guttag, J.V. Introduction to Computation and Programming Using Python with Application to Understanding Data; The MIT Press:

Cambridge, MA, USA, 2017.
42. Stamp, M. Machine Learning with Applications in Information Security; CRC Press: Boca Raton, FL, USA, 2018.
43. Hackeling, G. Mastering Machine Learning with Scikit Learn, 2nd ed.; Packt Publishing: Birmingham, UK, 2017.
44. Christmann, A.; Steinwart, I. Support Vector Machines; Springer: New York, NY, USA, 2008.
45. Stamp, M. A Survey of Machine Learning Algorithms and Their Application in Information Security. In Computer Communications

and Networks—Guide to Vulnerability Analysis for Computer Networks and Systems; Springer: Cham, Switzerland, 2018; pp. 33–55.
[CrossRef]

46. Scikit-learn. Multinomial Naive Bayes. Available online: https://scikitlearn.org/stable/modules/naivebayes:htm (accessed on 6
August 2021).

47. Excel Trendline Types, Equations and Formulas. Available online: https://www.ablebits.com/office-addins-blog/2019/01/16
/excel-trendline-types-equations-formulas (accessed on 6 August 2021).

161

electronics

Article

Dataset Generation for Development of Multi-Node Cyber
Threat Detection Systems

Jędrzej Bieniasz * and Krzysztof Szczypiorski

Citation: Bieniasz, J.; Szczypiorski, K.

Dataset Generation for Development

of Multi-Node Cyber Threat

Detection Systems. Electronics 2021,

10, 2711. https://doi.org/10.3390/

electronics10212711

Academic Editor: Qusay H.

Mahmoud

Received: 28 September 2021

Accepted: 3 November 2021

Published: 7 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute of Telecommunications, Faculty of Electronics and Information Technology, Warsaw University of
Technology, 00-661 Warsaw, Poland; k.szczypiorski@tele.pw.edu.pl
* Correspondence: J.Bieniasz@tele.pw.edu.pl

Abstract: This paper presents a new approach to generate datasets for cyber threat research in a
multi-node system. For this purpose, the proof-of-concept of such a system is implemented. The
system will be used to collect unique datasets with examples of information hiding techniques. These
techniques are not present in publicly available cyber threat detection datasets, while the cyber threats
that use them represent an emerging cyber defense challenge worldwide. The network data were
collected thanks to the development of a dedicated application that automatically generates random
network configurations and runs scenarios of information hiding techniques. The generated datasets
were used in the data-driven research workflow for cyber threat detection, including the generation
of data representations (network flows), feature selection based on correlations, data augmentation
of training datasets, and preparation of machine learning classifiers based on Random Forest and
Multilayer Perceptron architectures. The presented results show the usefulness and correctness of
the design process to detect information hiding techniques. The challenges and research directions to
detect cyber deception methods are discussed in general in the paper.

Keywords: cybersecurity; data science; machine learning; datasets; cyber threats modeling; multi-agent
systems; cyber deception

1. Introduction

In recent years, threats in cyberspace have evolved into well-organized, long-term,
and resource-intensive intrusion campaigns known as Advanced Persistent Threats. As a
result, there is a need to increase research into and the implementation of new cyber defense
solutions, methods, operations, and procedures. Cybersecurity research activity is very
broad, but it could be summarized by offering new developments and solutions for new
use cases for each function of the NIST Cybersecurity Framework (CSF) [1]. Examples
of a tailored solution that has been developed based on a new use case for cybersecurity
would be physical unclonable functions [2]. The need for a new secure identification and
authentication method was driven by the restricted requirements of cyber-physical systems.
The resulting concept offers low computational cost and resource requirements, whereas
Identify and Protect functions are easily provided for such systems. The same strategy
for research in cyber threat detection is followed in this paper. One of the most important
scientific and technological areas that are increasingly being used for cyber defense is data
science and data-driven methods. The following list summarizes the five areas of work
around data science in cybersecurity:

1. Modeling cyber threats to leverage across the data pipeline, from observation to flaw
detection to actionable cyber threat data—for example modeling techniques: NIST
Incident Response [3], Cyber Kill Chain [4], and MITRE ATT&CK [5].

2. Applying new models of cyber threats and setting up platforms to simulate them in
near-production environments.

3. Elaboration of detection algorithms that are technically feasible in modern networks
and systems.

Electronics 2021, 10, 2711. https://doi.org/10.3390/electronics10212711 https://www.mdpi.com/journal/electronics163

Electronics 2021, 10, 2711

4. Sharing the collected information on cyber threats and applying this information in
technical solutions.

5. Accelerating the decision-making process within cybersecurity teams and depart-
ments together with the company’s decision-makers.

For a more detailed overview of the challenges of data-driven cyber threats and in-
trusion detection, see [6]. This paper presents efforts to create an end-to-end process that
combines aspects 1, 2, and 3. This is possible by extending the established approach for cy-
ber threat detection systems [7], mainly realized by Network and Host Intrusion Detection
Systems (NIDS, HIDS), to Multi-Node Cyber Threat Detection (MNCTD) systems. The cy-
ber defense action matrix [4] shows that classical NIDS or HIDS can be used individually in
four out of seven phases of the Cyber Kill Chain—weaponization, exploitation, installation,
and C2 (Command and Control). MNCTD goes further and proposes the combination of
the detection capabilities of all steps into a cyber threat detection system that focuses on
network communications.

Any research project on such models, algorithms, and systems suffers from the avail-
ability of the right data. The recognized problem of availability of specific datasets for the
particular research hypothesis and preparation of appropriate datasets for cyber threat
detection is a critical challenge [8]. In the first part, this paper summarizes the current
state of datasets for cyber security research available in academia and industry. It then
proposes an approach to create specific datasets for hybrid cyber threat detection sys-
tems research, as such datasets are scarcely available in the public domain. Most of these
available datasets focus on network attacks, such as Distributed Denial of Service (DDoS),
SSH Brute Force, or botnet communication over open text protocols such as HTTP or IRC.
Modern cyber threat modeling shifts thinking to identify threat phases (Cyber Kill Chain)
or tactics realized through various techniques (MITRE ATT&CK) to block a threat as early
as possible. Developing new solutions for cyber defense is about defining the aspects of
the threat using the chosen modeling method and creating certain observable indicators
that can be analyzed by detection algorithms. Such an approach could provide the desired
ability to block and counter cyber threat campaigns as soon as indicators of threat are
detected. Another novelty of this paper is the emphasis on the increasing importance of
detecting information concealment techniques used in cyber attacks, especially in APT
campaigns. One of the most important reports on the rise of stegomalware was the June
2017 McAfee report [9]. In it, steganography was identified as the emerging element used
in new malware campaigns. Information hiding techniques can be used at any stage of
a cyber threat campaign, but the focus is on methods that work with communication
activities over networks:

• Delivery and C2 Phase designated by Cyber Kill Chain methodology.
• Defense Evasion, Exfiltration, and C2 Tactics classified by MITRE ATT&CK methodology.

This paper presents the possibility of preparing datasets with information hiding
techniques to develop the concept of a Multi-Node Cyber Threat Detection platform.
The created multi-agent system for collecting network packet traces was applied in the
automatically generated environment of network nodes and with the random setup of
malicious pairs of hosts (sender-receiver) per experimental run. Then, the collected sample
datasets were used in the data science workflow for cyber threat detection. The classical
pipeline of a data science experiment includes data cleaning, feature selection, under-
or over-selection of rare class examples, and development of the default solution for
classification problems.

The structure of the paper is as follows:

• Section 2 briefly presents the available datasets and the systematic approach to eval-
uating self-generated datasets. It builds the context for the need for the research in
this paper:

164

Electronics 2021, 10, 2711

– Generating datasets for cyber threat detection research in the domain of infor-
mation hiding techniques applied by modern malware and malicious cyber
operations like APTs.

– Establish the possibility to generate these datasets in different and randomized
networking environments with a varying set of sources and destinations for the
simulated cyber attacks.

• Section 3 presents the methodology used to establish the framework for end-to-end
dataset generation for cyber threat detection research. It follows the context of the
research established in Section 2. This section covers the concept of the system for
capturing network traffic in a multi-node setup, simulation of benign and malicious
network flows and scenarios for generating the final datasets, and a simple methodol-
ogy for generating datasets.

• Section 4 shows examples of data science experiments enabled by the generated data.
This part presents the empirical evaluation of the datasets generated by the methods
introduced in Section 3.

• Section 5 concludes the paper with a summary of the results and further research
directions that could be based on this paper.

Contributions of the Paper

The main contributions of the paper are:

• An approach to collect datasets for cyber threat detection research in a multi-node
setup using the developed agent system. This contribution goes far beyond the state-
of-the-art presented in Section 2.3. The majority of the available datasets are focused
on providing indicators for simulated cyber attacks from single endpoints like central
collectors, whereas this research tackles multi-node cyber data collection to follow the
cyber attack path of execution.

• Application of the information hiding techniques in communication networks [10]
to research cyber threats as an emerging problem in cyberspace. The paper shows
how to generate network data streams using information hiding techniques. This
is a key effect, as most of the state-of-the-art datasets presented in Section 2.3 in-
clude the classic types of cyber attacks only with no covert communication samples.
The introduction of this paper and Section 2.4 show the increase in malware applying
information hiding techniques for Command and Control channels, to exfiltrate data
or to persistently maintain the presence in the compromised environments. It means
that any research into cyber threat detection methods in the area of steganography
used in malicious operations has never been as important.

• Development of an automated and randomized tool for setting up network configu-
rations (nodes and links) when performing simulations of network communication
scenarios. According to the state-of-the-art cyber data collection environments of the
datasets presented in Section 2.3 they were mostly configured once with the chosen
sources and destinations of cyber attacks. The contribution of this paper offers a
solution to mitigate the biases in datasets related to the shape and topology of the
environment in which they were collected.

• The execution of reference cyber threat detection experiments on the collected datasets.
Most of the state-of-the-art research papers related to datasets included in Section 2.3
present the datasets and collection process. This paper contributes to the approach
applied by the authors where the collected datasets were evaluated to be feasible in
data-driven cyber threat detection workflows.

2. Related Work

2.1. Multi-Node Cyber Defense Solutions

The systems that could be built upon the results of this paper combine the idea
of network intrusion detection systems with the concept of multi-agent systems into a
multi-node cyber threat detection system. In the last 30 years, it has been investigated in

165

Electronics 2021, 10, 2711

different aspects related to architectures, computational aspects (for example, involving
AI), effective collaboration within multi-agent platforms, and applications. One of the
milestones is the paper [11], where the idea of intrusion detection using autonomous agents
was proposed. Publications such as [12–14] combined are drawing a comprehensive review
of the state-of-the-art in multi-agent cyber defense solutions.

Nowadays, a cyber defense based on multi-agent systems is recognized as a modern
and very efficient approach with continuous emerging. Interest in such systems has
been extensively revisited recently within academia, industry, law enforcement agencies,
and even the military. In [15], the author developed the idea that intelligent autonomous
agents will be the standard on the battlefield of the future. It means that intelligent
autonomous cyber defense agents are going to become the main element of any entity
involved with the battlefield, where cyberspace will become the crucial area of conflict.
The paper introduced several novel ideas with summarization of the other ones into the
reference architecture of any multi-agent system for cyber defense.

A current industrial application of such systems could be any Internet of Things
networks or, in general, cyber-physical systems and networks. The justification behind this
is that these systems are by default distributed and multi-node. Furthermore, the require-
ments on the lightness of the computation on the nodes implicates that only multi-agent
cyber threat detection solutions would fit such environments. For example, the state-of-
the-art in this field from two papers [16,17] introduce the intrusion detection system in
connected vehicles (Vehicle-to-Vehicle, V2V). The system presented in [16] consists of the
part that is analyzing the node of the environment—a vehicle—with the option of central-
ized data analytics in the cloud. The main contribution of the authors was to consider
each single element of the vehicle as the valuable source of data to detect cyber threats.
Next, it was proposed to combine the real time data from such different and distributed
elements together for the classification algorithm based on Bayesian networks. The pa-
per [17] investigates such multi-agent cyber threat detection within a single vehicle more
deeply in terms of how to combine data from different sensors to detect intrusions. Such
an approach complies with the general idea of multi-agent intrusion detection systems and
it is an important example of how to apply it to solve the modern problems of security in
cyberspace. As the use case of a connected vehicle will be rapidly adopted, cyber defense
solutions involving multi-agent concepts crucially need to be developed.

2.2. Generation of Datasets for Cyber Threat Detection Research

The general prerequisite for any discovery problem to be addressed by data science
methods is to have the right data. There are three main approaches to obtaining data for
cyber threat detection:

• Collecting data from actual production networks and cyber intrusions,
• Building models of production networks and simulating network communications

(malicious and benign),
• The use of mathematical, statistical, machine learning, and other algorithms to gener-

ate the data.

The first approach is highly desirable, as working on actual data should guarantee
low-fault detection algorithms that are ready for actual cyber attacks. The main problem
with the reliability of this approach is that few organizations could use such data for cyber
threat detection research. Cyber attacks are very rare if we consider the total observation
time. This means that it would take a very long time to collect enough examples to train a
detection algorithm on these indicators. Another challenge with such data is the privacy
concern. It is impossible to share such information, so the cybersecurity community cannot
benefit from it for cyber threat detection.

The simulation approach is usually used in modern research into intrusion detection
systems in industry and academia. One of the most well-known research institutes in
this field is the Canadian Institute of Cybersecurity (CIC) at the University of Brunswick.
The institute has published nearly 30 datasets over the past decade, while researchers have

166

Electronics 2021, 10, 2711

developed reference methods for generating such data. A 2018 paper [18] summarizes the
current approach to generating the simulated networks and data for cyber threat detection
research over them. The main outcome was the development of a parametric configuration
of the network communication patterns to be simulated, called profiles. This improved the
quality of the resulting datasets. Another systematic approach was presented in [19]. This
paper adds the new idea of simulated datasets for cyber threat detection systems based on
a novel architecture:

• Collecting sensors distributed on network nodes,
• Allowing for continuous communication and coordination between sensors,
• The use of a central processing unit to improve detection decisions,
• The automation of the network scenarios in which the data was collected,
• The use of data science methods to oversample the least representative samples of

malicious data.

The details are presented in Section 3. The latter approach exploits the mathemati-
cal foundations of modeling and data analysis, in particular, to apply machine learning
methods for data generation. It could help to increase the similarity of generated data with
actual production or to address shortcomings of simulations (complementary between
approaches). An example of applying machine learning to improve detection rates and
complement the small number of malicious samples is presented in [20]. It uses adversarial
machine learning methods for cyber threat detection research. Generative Adversarial Net-
works (GAN) are implemented to generate synthetic samples. Then, the module IDS was
trained on them along with the original samples. It also fixes the problems of unbalanced
or missing data on input. This approach greatly improves the performance of the IDS
detection algorithm. The major challenge in applying machine learning for cyber threat
detection is the explainability and transparency of such algorithms.

2.3. Availability of Datasets for Cyber Threat Detection Research

Historically, the first milestones in the public availability of datasets for cyber threat
detection research were in 1998–1999, when the DARPA’98 and KDD’99 datasets were released.
Since then, many other and different datasets have been created, but there are still not enough
publicly available datasets for cybersecurity research. This section presents some examples of
publicly available datasets that are generally recognized as comprehensive, well-prepared,
and appropriate for cybersecurity research on cyber threat detection systems.

Canadian Institute of Cybersecurity datasets: ISCX 2012 Dataset [21] was the first
participation of the Canadian Institute of Cybersecurity that provided a systematic ap-
proach for creating datasets for cyber threat detection systems research. They introduced
the concept of profiles, which contain detailed descriptions of intrusions and abstract distri-
bution models for lower-level applications, protocols, or network entities. Previously, they
analyzed real-world traces to create these profiles. The dataset created included benign
and malicious network traffic traces of HTTP, SMTP, SSH, IMAP, POP3, and FTP. The NSL-
KDD ISCX Dataset [22] was created as a solution to the inherent problems of the original
KDD’99 dataset. It still suffers from some of the problems and may not perfectly represent
real-world networks. Nevertheless, it can be used as a useful benchmark dataset to help
researchers compare different cyber threat detection methods. The CIC 2017 dataset [23]
contains benign and the most recent widespread attacks stored as network traffic traces
from actual real-world executions. Implemented attacks include Brute Force FTP, Brute
Force SSH, DoS, Heartbleed, web attack, infiltration, botnet, and DDoS. Due to the nature
of the prepared profiles, they can be directly applied to a variety of network protocols
with different topologies to create a dataset for specific requirements. The CSE-CIC 2018
dataset [24] follows the pattern in the scaled infrastructure of 500 devices. The dataset
provides the network traffic traces and system logs from each of these devices.

UNSW-NB15 Dataset [25]: The raw network packets of the UNSW-NB 15 dataset
were created in the Cyber Range Lab of the Australian Center for Cyber Security (ACCS).
It contains a mixture of actual normal activities and synthetic current attack behaviors

167

Electronics 2021, 10, 2711

from fuzzers, backdoors, DoS, exploits, generic cyber attacks, reconnaissance, shellcode,
and worms. Argus, Zeek (formerly BroIDS), and the authors’ tools were used for data
collection. Class tagging was also provided. The number of records in the training set
was 175,341, and the testing set was 82,332 from different types of network traffic (benign
and malicious).

UGR’16 Dataset [26]: The dataset was created with real traffic and actual attacks.
The network traffic was recorded by Netflow v9 collectors strategically placed in the
network of one of the Internet Service Providers from Spain. It consists of two datasets
split into weeks:

• CALIBRATION set was collected from March to June 2016 (four months) with accurate
background traffic data.

• itemize TEST was collected from July to August 2016 with factual background and
synthetically generated traffic data of various known attack types.

The main advantage of this dataset is its usefulness for evaluating cyber threat de-
tection algorithms with a long-term perspective. The models can also take into account
differentiation by day/night or working days/off days.

CAIDA Datasets: The Center for Applied Internet Data Analysis (CAIDA) collects
various types of data from geographically and topologically diverse locations and makes
these data available to the research community. Information was collected from active and
passive measurement infrastructures that provide insights into global Internet behavior.
CAIDA collects, curates, archives, and shares the datasets resulting from these measure-
ments. It also processes and shares several derived datasets. Datasets through April 2016
are available at [27]. One of the most well-known CAIDA datasets is the DDoS 2007 dataset,
which contains network traffic traces from large-scale distributed denial-of-service attacks.
More recent datasets are made available on the Impact Cyber Trust Project [28] system.
The Information Marketplace for Policy and Analysis of Cyber-risk Furthermore, Trust
(IMPACT) project was created by the U.S. Department of Homeland Security to support
the global cyber-risk research community through the coordination and development of
real-world data and information sharing capabilities. The IMPACT project enables the
sharing of empirical data and information among the global cybersecurity research and
development (R&D) community in academia, industry, and government to accelerate
solutions to cyber risk and infrastructure security. Datasets are available exclusively to
researchers from the U.S. and collaborating countries.

2.4. Malware with Information Hiding Techniques Applied

Network steganography, as a branch of information hiding techniques, is rapidly
evolving and has attracted tremendous interest from cybersecurity researchers since the
paper [29]. Any network steganography technique must meet three conditions [10]:

• Modified properties of the protocol;
• Modified properties of the protocol may refer to mechanisms related to inadequacies

of the communication channel, the nature of the messages exchanged, or their form;
• Communication parties trying to prevent the observer from detecting the transmission

of data using information hiding techniques.

The Morto worm [30], a malware with network steganography capabilities, used
records stored on Domain Name System (DNS) servers to communicate with C2 servers.
This was the first actual implementation of network steganography in malware ever
discovered. Over the years, DNS has proven to be one of the most popular network
protocols abused for information concealment techniques. Any system from IT that has
access to the Internet must use it, so port 53 is wide open and allowed by firewalls and
cyber threat detection systems. The DNS protocol is characterized by open text messages
that provide many opportunities to hide data in them using text steganography methods.
Another protocol that has been used for network steganography in malware in recent years
is the Secure Shell (SSH) protocol. It was discovered in 2013 in the Fokitor Trojan [31].

168

Electronics 2021, 10, 2711

The motivation to use SSH for such operations is the same as DNS: widely used in IT
systems, port 22 open and allowed. In this method, the SSH protocol connections merely
carried the hidden information as a payload. The Regin malware [32], discovered in 2014,
was equipped with three mechanisms to prevent network communication:

• Stealth data tunneling in ICMP protocol traffic (ping).
• Insertion of steering commands in cookies in the HTTP protocol header.
• Insertion of steering commands into specially prepared TCP protocol segments or

UDP datagrams.

This is the ongoing trend of implementing different steganographic C2 channels and
using them depending on the deployment conditions. Steganography, a cyber deception
method, provides the ability to bypass the detection and measures of standard network
security applications, such as blocking by firewalls or triggering alerts by cyber threat
detection systems.

Another trend is the combination of different methods to hide information, e.g., com-
bining multimedia steganography with hidden communication via TCP/IP protocols.
The typical approach for combining multimedia steganography and network communica-
tion to form hybrid steganography is as follows:

• Use of multimedia steganography to hide the data.
• Use of standard protocols of the TCP/IP stack, especially application network traf-

fic, to smuggle multimedia files between victims and attackers either directly or via
C2 servers.

The first practical application of such an approach was a 2011 malware campaign.
Duqu [33] used multimedia steganography to hide data in JPEG images and then sent
them to the C2 server. This communication looks like an ordinary image file transfer, but in
reality it is used to establish a covert C2 channel. A similar technique was used for the
2014 Zeus Trojan morph, Lurk [34], where images were the carriers of the hidden control
commands. In the following years, the C2 channels used in modern cyber threat campaigns
were considered for information hiding techniques. More recently, the techniques have
evolved, spreading multimedia steganography over open social networks (OSN) and
adding methods of text steganography. This introduced a new level of complexity to any
forensic analysis, making it a problem similar to finding a needle in a haystack. An example
of a practical application is Hammertoss APT, applied by the group APT29 [35]. They used
Twitter to exchange URLs to image files that contained hidden data. Each Twitter message
also contained a specially prepared hashtag needed to decode the hidden part of the
image. The project attracted interest from cybersecurity researchers who were looking for
models to define detection techniques, as the classical signature approach was insufficient.
Interesting proofs-of-concept of steganography systems include:

• Stegobot [36]—one of the pioneering systems using OSNs as an overlay network for
the technical operations.

• Instegogram [37]—a technique that uses the image feed of a given Instagram account
to decode C2 messages from images. The main achievement here was using a popular
internet service to smuggle malware communications.

• StegHash with SocialStegDisc [38]—The StegHash technique was used to distribute
multimedia files with hidden data portions across many Internet services and accounts.
The mechanism of hashtags creates an invisible chain through which the original
message can be recovered. SocialStegDisc implemented the StegHash technique to
address the scheme in a novel steganographic file system.

Therefore, the use of hybrid and network steganography to breach the security of
computer systems, in particular, is an important area of research to identify vulnerabilities
and methods to combat them. This is the critical goal of this work, to improve the security
of cyberspace.

169

Electronics 2021, 10, 2711

3. Generating Datasets for Cyber Threat Detection Research

3.1. Application of Multi-Node Cyber Threat Detection System

A multi-node cyber threat detection system operates in the environment of distributed
network devices running open operating systems (e.g., Linux), mainly programmable
routers. Each router contains the execution environment of mobile agents that are inter-
connected to form a platform that controls the Central Unit. For the purpose of this study,
the monitoring mode of such a system is considered.

On the execution platform, it is possible to run agents with different purpose settings:

• Agents collect network traffic logs in a specific format and send this data to the Central
Unit for analysis.

• Agents equipped with motion logic that follows the developed algorithm for comput-
ing anomaly metrics and cooperates in selecting additional areas of the observation
network. The goal is to discover the sources of the attack.

To build a multi-agent peer-to-peer communication, the concept of the actor sys-
tem [39] has been used. The main purpose of the actor system is to develop a high-level
and non-blocking parallel execution model for computation. The atomic execution units,
called actors, execute their assigned tasks and then share the results via the message box
communication abstraction. The actor system is responsible for creating and managing
the lives of the actors (agents) in various distributed environments. The scheme of the
prepared platform is shown in Figure 1. It shows the main nodes of the architecture:

• The Central Unit node, which manages the actor system of the whole platform and
coordinates the life cycle of the distributed agents and of itself. More details are
presented in Table 1.

• A router with the actor system instance in which the single node managing agent
is instanced and connected with the whole platform managed by the Central Unit.
Furthermore, this agent could spawn other node agents to operate different functions.
Figure 1 shows such an agent called the Interface Sniffer Agent.

Central Unit (CU)

Actor System

Platform Manager Agent

Router

Actor System

Router Manager Agent

Interface Sniffer
Agent

Interface Sniffer
Agent

Figure 1. Scheme of monitoring platform based on actor system approach.

As the prototype of the platform is utilized in the monitor mode (sniffing and collecting
network data), the main functionalities to be included within the main nodes of the
system are:

• Sniffing network traffic on all interfaces of a router;
• Storing PCAP files at the nodes;

170

Electronics 2021, 10, 2711

• Collecting PCAP files across nodes in the Central Unit.

The interface Sniffer Agent would provide the first and second functionality. The third
is implemented by the communication scheme between the Platform Manager Agent,
Router Manager Agents, and Interface Sniffer Agents. The whole platform (node agents
and Central Unit) provides the other functions, such as life cycle management, PCAP
file management, or controlling the operation mode of the system. Table 1 summarizes
the operational aspects for each main component of the platform: Central Unit, a router,
Router Controlling Agent, and Internal Sniffing Agent. It includes the functional role
(Objectives column) realized by each of them and the communication patterns with the
other components that are utilized to fulfill the role (Communication patterns column).

Table 1. Summary of operational aspects of multi-node Network Traffic Monitoring Platform.

Module Objective Communication Patterns

Central Unit

1. Hosting main control agent of entire
platform

2. Managing entire platform
3. Managing joining process of routers

hosting platforms
4. Managing joining process of router control

agents
5. Maintaining status of remote router

hosting platforms and control agents on
each of them

6. Receiving message about new PCAP file
available on router

7. Downloading PCAP file from selected
remote router

8. Managing collection of PCAP files
downloaded from remote routers

1. Initializing the connection between
Central Unit and any router hosting
platform

2. Requesting creation of new controlling
agent on remote router platform

3. Submitting configuration settings to
newly created controlling agent on
remote router platform

4. Receiving notification about availability
of new PCAP file

5. Retrieving PCAP file over HTTP protocol

A router Computing and networking platform that hosts
remote portion of entire agent system Receiving requests to create new control agent

Router Controlling Agent

1. Router management
2. Joining platform agent system
3. Managing network interfaces and setting

up sniffing on them
4. Providing HTTP server through which

PCAP files can be downloaded from
Central Unit

5. Managing status of availability of new
PCAP files

1. Receiving configuration settings from
Central Unit

2. Requesting creation of internal agents to
sniff network interfaces

3. Controlling start and stop of network
sniffing per selected interface

4. Notifying Central Unit about availability
of new PCAP file

Internal Sniffing Agent

1. Creating sniffing process on bound
network interface

2. Managing sniffing strategy
3. Managing end of sniffing action by passing

callback to router control agent

1. Receiving request to start sniffing
2. Receiving request to stop sniffing
3. Collecting information when new PCAP

file is available
4. Notifying router control agent of

availability of new PCAP file

The concept of architecture realized by the presented proof-of-concept is easily ex-
pandable by embedding processing and detection algorithms together with any distributed
computing strategies to be imposed within the system. Any complexity in terms of logical
distribution of the processing and decision-making could be considered. However, the con-
straints and limitations of such an expansion for any logical workflow of the cyber threat
detections and mitigations are driven by:

• The performance related to the type of the networks and its protocols.
• The data flow rates and processing performance.

171

Electronics 2021, 10, 2711

• The physical bandwidth of interfaces within network nodes (routers and the other
network appliances).

• The computational resources within a single network node where the cyber threat
detection agent would operate.

• The multi-node cyber threat detection system management links to the performance.

Network packets need to be processed in the time imposed by the bandwidth of
the interfaces within a network node. If there is an objective to detect and react to cyber
threats inline, then the detection and computation architecture is required to be able to
draw decisions within the time frame of the network packet processing. For 10 Gb/s
networks, one packet of 300 bytes (average size in the Internet) needs to be processed in
240 nanoseconds. Otherwise, the system would process the copy of the data, so the main
constraints will be limited to copy operation, transferring data to the other agents, and the
size of the generated data in time (directly based on the network flow data rates).

In fact, the proof-of-concept was implemented in Python as the most efficient for fast
prototyping. It was used in the monitor mode only to collect PCAPs as datasets. However,
the real production multi-node cyber threat detection system should be implemented in
more suitable hardware and software for technological stacking. Software programming
languages for data processing within constrained environments in terms of computational
resources are C, C++, or Rust. If the software processing cannot fulfill the processing re-
quirements, then hardware solutions to accelerate the computations needs to be considered,
such as ASICs or FPGAs. The Central Unit node or any other node considered in general as
the “computational center” could be built upon Big Data technological stacks characterized
by high scalability, efficiency, and possibility to parallelize computations. The main limita-
tion would be related to the available hardware resources and if it is possible to implement
several computational servers as the component of a production multi-node cyber threat
detection system.

3.2. Network Traffic Streams Simulations
3.2.1. Malicious Network Data Streams

The network data streams within the scope of this paper must contain steganographic
techniques of the various types. For this work, the implementation could be simple so that
the required data can be generated for further research. The choices of such methods are:

• Method based on intentionally lost packets that can carry hidden payloads. It could
be implemented in various network protocols such as SIP or RTP, with one important
characteristic rule—a packet is detected as lost even if it eventually reaches the desti-
nation, it is simply discarded. No verification is performed. This fact can be directly
applied to network steganography in the following way:

– Some packets must be intentionally delayed to be detected as lost.
– The payload of such packets could be overwritten to carry steganograms.
– When such a packet finally arrives at its destination, it is simply discarded. If a

steganographic receiver is installed, it could intercept these packets to extract the
hidden payload.

• Method based on modulating the transmission time between packets to encode bits ‘0’
and ‘1’. Delay-based network steganography is a type of time-based steganography.
It uses modulation of the transmission times of successive packets in network traffic
to encode ‘1’ and ‘0’ bits of hidden data. Probably any network protocol can be used
for such a method. The secret between sender and receiver is to encode and decode
the hidden data in the temporal relationships between the packets. The sender side
must be parameterized with the type of distribution used to generate the network
stream. The receiver side must also be parameterized with this distribution and with
decision thresholds in the decoding module.

The dedicated applications were prepared as the element of the whole end-to-end
framework for cyber threat detection research. The signalization over lost packets in

172

Electronics 2021, 10, 2711

the multimedia stream of packets utilizes the RTP protocol. The hidden communication
over packets with the modulated time of sending uses the ICMP protocol. The prepared
applications could also be executed in benign mode to generate the expected network flows
of the selected protocols (RTP or ICMP).

3.2.2. Benign Network Data Streams

The approach to generating benign network traffic was developed by analyzing
the typical patterns of network communications in consumer and enterprise networks
LAN/WAN. Several specific applications and protocols were identified:

• Surfing the Internet and using the HTTP protocol.
• VoIP communication using SIP, RTP, UDP, HTTP, and TCP protocols.
• Video streaming using RTP and HTTP protocols.
• Data transfer using HTTP, FTP, SSH/SFTP, TCP, UDP, or email protocols.
• Using network-related protocols such as ICMP.

For this study, some publicly available applications and scripts were used to simulate
such traffic. The complementary method uses publicly available network traces to replay
them within a network. The applications mentioned in Section 2.4 are also used in benign
mode to generate legitimate traffic without using information hiding techniques.

3.2.3. Engine of Generation of Network Topologies for Experimentation

A network emulation engine should be used for functions such as:

• Enabling rapid prototyping of new use cases.
• Enabling automatic generation of new network topologies, i.e., setting up a new

dataset.

When generating a new topology, the basic features must be specified, such as:

• The number of routers and hosts,
• IP address ranges and routing,
• Whether to provide access to the Internet,
• Whether a firewall should be included,
• Placement of the Central Unit of the entire Cyber Threat Detection Agent system.

Based on these parameters, a random graph should be generated and then fed into a
network emulation engine via an API or configuration file. Preparing such an automation
promises to minimize any bias in the network topologies on the measured effectiveness of
the newly developed cyber threat detection algorithms. This means that well-generalized
cyber threat detection models should be created that can work equally efficiently in any
network topology.

For this research, we developed such a tool for the automatic generation of test
application scenarios, which consist of the following elements:

• The backend network engine and simulation tool—GNS3 [40];
• The text file to hold the network configuration—nodes and their types;
• the main script in Python, which

– Interprets and validates the entered network configuration,
– Randomly generated connections between nodes,
– Automatically sets up the network using the GNS3 API;

• The set of scripts in Python to configure the senders and receivers of the network
traffic depending on the purpose—to run benign, malicious, or mixed scenarios using
the agent system presented in Section 3.1.

It should be noted that the crucial aspect of the prepared solution is the automated
and randomized mechanism for:

• Generation of links between the configured set of nodes.
• Selection of senders and receivers for each network data stream profile (benign or

malicious).

173

Electronics 2021, 10, 2711

Such an approach allows the generation of datasets from many network scenarios and
data generation configurations. It could also provide the ability to mitigate any factors
associated with configuration bias across the broad spectrum of research in data-driven
cyber threat detection. Data sets were collected in specific network scenarios with a small
degree of variation in the sender-receiver network data configuration (benign or malicious).

3.2.4. Generation of Example Datasets

As presented in Section 3.2.3, the application to automatically generate the network
configurations and network communication scenarios was implemented in this article.
Figure 2 shows an example output topology of the fully working network of nodes (routers,
PC hosts, firewall, Internet connection) prepared by this tool for the purpose of this article.

Among the setup presented in Figure 2, the seven different network scenarios of
hidden communication between transmitters and receivers were run. The configuration
for each scenario is shown in Table 2. A given scenario (Table 2, first column) consists of
the setup of the sender and receiver for a hidden communication over lost packets (second
column in Table 2) and the setup of the sender and receiver for a hidden communication
over lost packets (third column in Table 2). The order of operations to collect the datasets is
as follows:

1. Select nodes (computer hosts) that represent the pairs of a sender and a receiver of a
hidden communication for both techniques in this study.

2. Run benign network communication patterns along with hidden network communication.
3. Collect PCAPs for each network node used.
4. Drag all PCAPs to the Central Unit of the platform.
5. Finish generating and collecting data.

Table 2. Setup of pairs of sender-receiver for generation of hidden communication simulations.

Scenario
Hidden Communication over
Lost Packets

Hidden Communication over
Time Modulation

Scenario 1 Sender: Host H1 Sender: Host H6
Receiver: Host H2 Receiver: Host H7

Scenario 2 Sender: Host H2 Sender: Host H1
Receiver: Host H3 Receiver: Host H6

Scenario 3 Sender: Host H3 Sender: Host H1
Receiver: Host H4 Receiver: Host H2

Scenario 4 Sender: Host H4 Sender: Host H2
Receiver: Host H5 Receiver: Host H3

Scenario 5 Sender: Host H1 Sender: Host H3
Receiver: Host H5 Receiver: Host H7

Scenario 6 Sender: Host H6 Sender: Host H4
Receiver: Host H7 Receiver: Host H5

Scenario 7 Sender: Host H4 Sender: Host H5
Receiver: Host H7 Receiver: Host H6

174

Electronics 2021, 10, 2711

R12
R1

R7

R2

R11

R5

R6

R9

R8
R14

R4

Internet Access

H1
IP: 192.168.42.100

H7
IP: 192.168.49.100

H2
IP: 192.168.43.100

H6
IP: 192.168.47.100

R3

H5
IP: 192.168.46.100

H4
IP: 192.168.45.100

H3
IP: 192.168.44.100

Central Unit
IP: 192.168.15.100

Figure 2. Network setup for simulations of hidden communication techniques.

4. Cyber Threat Detection Research Enabled

4.1. Cyber Threat Detection as Standard ML Classification Problem

In terms of machine learning, cyber threat detection is defined by the principles of the
classification problem adapted to the chosen goal of detection. The two classical objectives
for cyber threat detection algorithms are:

• Anomaly detection to anomalously detect observations defined as a deviation from the
specified base model. The detected anomaly is examined in more detail to determine
if it is a cyber threat.

• Detection of cyber threats by finding patterns of the known nature of a cyber attack.
Tagged records are required.

Since the datasets generated for this work contain the detailed labels of the cyber
threats, the set of experiments follows the second option to be presented. Table 3 shows
the general workflow used in this work for cyber threat detection experiments on the
hidden communication techniques. It presents the objectives to be achieved for each step
of the workflow.

175

Electronics 2021, 10, 2711

Table 3. Generic procedure to research cyber threat detection methods.

Workflow Step Objective

Step 1 Benign and malicious network communication simulation scenarios

Step 2 Collect raw source data

Step 3 Generate network data representation from raw source data

Step 4 Data labeling

Step 5 Feature selection

Step 6 Prepare train and test datasets

Step 7 Train data augmentation to balance samples per each label

Step 8 Train, test, and evaluate a machine learning classifier

4.1.1. Network Flows Generation

The records were collected by the system presented in Section 3.1 as network data
traces in PCAP format. These PCAPs were then processed into network datasets using
CICFlowMeter [41].

Each network flow dataset was bidirectional and consisted of 84 metrics. Network
flows were identified by the classic 5-tuple key (source IP, destination IP, source port,
destination port, Layer 4 protocol code). When a flow exceeded the configured flow timeout
(in seconds) or the flow was inactive (activity timeout), the status was saved and exported.
In the exported flow table, the timestamp adds the 5-tuple key to distinguish the flows.
In the case of this experiment, the parameters were set to:

• flow timeout—120 s
• activity timeout—30 s

The output of the application is a CSV file. Another step was the labeling. It was done
manually through the script based on the coding scheme shown in Table 2. The last step
in the data preparation was to combine all CSV files into a final dataset with all collected
observations from the simulated scenarios. This dataset was then preprocessed in the data
experimentation phase according to the state of the art in data science.

4.1.2. Training Classifiers for Cyber Threat Detection

This part shows how to use the prepared datasets to find the classifier to be used as a
cyber threat detector. The first step was to analyze the metrics in the dataset. The aim was to
check which metrics were more important for predicting the target class (feature selection).
The process involved pairwise correlation between the metrics and the explained variable
(class or label). Figure 3 shows the filtered matrix of the metrics for which the absolute
value of the correlation coefficient of any metric with a label greater than 0.05. The most
positively or negatively correlated metrics were related to time (inter-arrival time (IAT),
time of activity) and volume of the network data (number of packets, number of bytes).
The practical aspect of this step was to reduce the dimension of the problem. The number
of metric outputs was 28 since 52 metrics were filtered and three metrics were skipped
since they were not relevant to the problem (flow ID, timestamp, IP addresses).

176

Electronics 2021, 10, 2711

Figure 3. Pairwise correlation matrix of prepared dataset. Filtered according to level of correlation
between label column and other parameters for feature selection purposes.

Subsequently, the filtered data were divided into training (80% of the datasets) and
testing (20% of the datasets) datasets. The number of collected data streams distributed
among the training and testing datasets after the split is shown in Table 4.

Table 4. Distribution of flows among training and test datasets split from collected dataset as
described in Section 3.2.4.

Types of Flows Flows in Training Dataset Flows in Testing Dataset

Benign traffic (Label: 0) 92,737 23,163

Hidden communication over
lost packets (Label: 1) 742 195

Hidden communication over
time modulation (Label: 2) 457 127

The first problem that arises is the imbalance of the class examples in the training
dataset. The imbalanced classifications poses a challenge to any predictive algorithm.
In the case of imbalance in the training examples, the trained models might have poor
predictive performance, especially for the minor classes. On the other hand, the minor
classes are important because the context of the experiment is cyber threat detection
research, where cyber attacks are sporadic compared to harmless attacks. The Synthetic
Minority Oversampling Technique (SMOTE) [42] and Edited nearest neighbor (ENN) [43]
were applied as data extensions to overcome the problem. SMOTE is used to increase
the number of samples in the minority class by linear interpolation, and ENN is used to
remove the noise from the majority samples. Table 5 contains the number of data streams
before and after applying SMOTE-ENN techniques to the training dataset.

177

Electronics 2021, 10, 2711

Table 5. Data augmentation results—number of flows in training dataset before and after SMOTE-
ENN.

Types of Flows
Flows in Training Dataset
before SMOTE-ENN

Flows in Training Dataset
after SMOTE-ENN

Benign traffic (Label: 0) 92,737 92,737

Hidden communication over
lost packets (Label: 1) 742 92,706

Hidden communication over
time modulation (Label: 2) 457 92,643

The experimental phase was conducted to measure the possibility of predicting cy-
ber threats by applying selected ML classifiers. Two classifiers were chosen to test the
preparation of the example solution for this paper:

• Random Forest (RF) [44] was implemented based on RandomForestClassifier from the
Scikit-learn [45]. The initial setup was based on the default parameters as described
in [46].

• Multilayer Perceptron (MLP) classifier was implemented as the custom architecture in
TensorFlow [47] using the Keras subpackage. The setup of this classifier in terms of
architecture, optimizer, loss function, and evaluation metrics is presented in Table 6.

Table 6. Custom MLP classifier architecture setup per each layer (6) with selected optimizer, loss
function, evaluation metric, and training procedure.

Parameter The Custom MLP Classifier

Layer 1 (Input) Input, size: 28 × 20, activation: relu

Layer 2 Dense, size: 20 × 20, activation: relu

Layer 3 BatchNormalization, size: 20 × 20, activation: relu

Layer 4 Dense, size: 20 × 150, activation: relu

Layer 5 Dense, size: 150 × 20, activation: relu

Layer 6 (Predictions) Dense, size: 20 × 20, activation: softmax

Optimizer Adam with the learning rate: 0.001

Loss Categorical Cross Entropy

Evaluation metrics accuracy

Training setup batch size: 128, epochs: 20, validation split: 0.15

Both classifiers were trained with the SMOTE-ENN training datasets and evaluated
with non-SMOTE-ENN test datasets. The metrics of accuracy, precision, recognition,
and F1 score were used to evaluate the performance. The result metrics for the RF and
MLP classifier are shown in Tables 7 and 8, respectively. The last rows of both tables
show the overall accuracy of the respective classifier. Figures 4 and 5 show the confusion
matrices of the two selected classifier models. The classification was conducted within
three classes (0, 1, or 2), so the size of each confusion matrix was 3 × 3. Each cell presented
the number of instances of a given true class (rows) classified into a given predicted class
(columns). The diagonal of each matrix included true positives. The other cells could be
classically interpreted as false positives, false negatives, and true negatives in relation to a
selected class.

178

Electronics 2021, 10, 2711

Table 7. Performance of RF classifier in terms of precision, recall, F1 score, and overall accuracy
metrics.

Types of Flows Precision Recall F1 Score

Benign traffic (Label: 0) 1.00 0.99 1.00
Lost packets attack (Label: 1) 0.49 0.92 0.64

Packet timing attack (Label: 2) 0.93 1.00 0.97

Overall accuracy 0.99

Table 8. Performance of custom MLP classifier in terms of precision, recall, F1 score, and overall
accuracy metrics.

Types of Flows Precision Recall F1 Score

Benign traffic (Label: 0) 1.00 0.99 1.00
Lost packets attack (Label: 1) 0.42 0.99 0.59

Packet timing attack (Label: 2) 0.84 1.00 0.91

Overall accuracy 0.99

Figure 4. Confusion matrix of RF classifier.

179

Electronics 2021, 10, 2711

Figure 5. Confusion matrix of custom MLP classifier.

4.2. Conclusions and Future Directions

The prepared models show almost perfect results for the Label 2—Time Modulation
Information Hiding Attack. The results for Label 1—Flows with Lost Packets Information
Hiding Technique—were noticeably worse. The presented results should be considered as
an example for the research work with the generated datasets. Table 9 supplements Table 3
with a summary of the actions performed for each step in this work.

Each step of the workflow shown in Table 9 could be considered to be different
research directions, such as:

• Generating more data using the prepared application for simulations, especially for
more examples of hidden communication techniques.

• Selection of a different predictive model or design of a more complex architecture
combining some classifiers.

• To find a data representation that is better suited to the context of detecting information
hiding techniques. The output data representation of CICFlowMeter contains several
different metrics related to temporal aspects of network communication. Thus, this
is the most likely answer as to why the detection of temporally modulated hidden
communication had better performance.

• With other feature selection or data augmentation methods.

180

Electronics 2021, 10, 2711

Table 9. Summary of realized actions per each step of generic procedure to research cyber threat
detection methods.

Workflow Step Objective Realization in This Paper

Step 1 Benign and malicious network
communication simulations

Implementation of the dedicated tool to
set up networks and simulations;
proof-of-concept implementation of
Multi-node Cyber Threat Detection
System to use in monitor and collect
mode

Step 2 Collecting raw source data Network traffic traces collected as PCAP
files

Step 3
Generating network data
representation from raw
source data

Generation of network flows including 80
metrics from [41]

Step 4 Data labeling
Labeling based on Table 2 by adding the
column Label with the respected coding
to the corresponding network flows

Step 5 Feature selection
Selecting features using correlation
coefficient between Label and the other
features

Step 6 Preparing train and test
datasets Train/test split method from [45]

Step 7 Train data augmentation to
balance samples per each label

Augmentation of the training dataset
with SMOTE-ENN method

Step 8 Train, test, and evaluate a
machine learning classifier

Preparing Random Forest and the custom
MLP classifiers.

5. Summary

This paper presents an approach for the availability of datasets for cyber threat
detection research and the application to Data Science. As a first step, the multi-agent
platform for collecting network flows was implemented for this purpose. Such a platform
enabled the collection of network flow data in a multi-node setup. One of the achievements
was the implementation of an automated solution for generating network configurations
and running application scenarios for cyber threat activities. This is a promising aspect
to scale research experiments for cyber threat detection. Another future aspect to be
explored is the ease of practical implementation of such solutions. The input problem
of any practical cyber threat detection solution is the working environment in which the
method is implemented. The standard approach is the learning phase, which assumes
that the cyber detection engine must be adapted to the network environment through
monitoring and learning. After reaching readiness, the cyber threat detection engine is
partially trained with new examples of malicious activity or feedback data from human
operators. The ability to scale the data generated in different network configurations would
improve cyber threat detection engines for the sake of greater generality. Other practical
implications could include easier implementation in working environments and reduced
relearning and manual tuning efforts.

The unique value of this research was to emphasize the recognition of information con-
cealment techniques, which are generally considered concepts within the broad domain of
cyber deception. The most important prerequisite for working on cyber threat detection is
the availability of the right data. All known data sets that are available focus on the publicly
known types of cyber attacks. The examples of the use of cyber deception techniques are
very rare or non-existent. One of the main contributions of this work was the development
of a network environment integrated with the tools to collect such examples. This was
achieved by proposing the implementation of a multi-agent system as a Multi-Node Cyber

181

Electronics 2021, 10, 2711

Threat Detection platform utilizing the monitor mode. Based on the collected data, the ref-
erence data science workflow was evaluated by applying methods for data representation
and classification of malicious network flows. The final result confirms the usefulness of
the presented end-to-end approach for researching the discovery of information hiding
techniques. The authors will apply it in further research and development projects. Cyber
attackers are increasingly using cyber deception techniques. Moreover, advanced cyber
attacks, for example, APT (Advanced Persistent Threat) campaigns, could combine more
than one deception technique in two dimensions:

• Within different abstraction layers within the ISO-OSI 7-layer model, with the applica-
tion layer in particular considered a significant threat.

• Per each step of a cyber attack modeled as Cyber Kill Chain. [4]

This poses a massive threat to the security of cyberspace, so more efforts need to
be made in the coming years to improve cyber defense capabilities in the area of cyber
deception.

Author Contributions: Conceptualization, K.S.; Investigation, J.B.; Methodology, J.B.; Software, J.B.;
Supervision, K.S.; Validation, J.B. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by The Polish National Centre for Research and Development
under project No. CYBERSECIDENT/369532/I/NCBR/2017.

Data Availability Statement: The data cannot be shared due to project restrictions.

Acknowledgments: The authors wish to thank Monika Stępkowska, for her contribution to setting
up the experiments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Barrett, M. NIST Cybersecurity Framework (CSF): Framework for Improving Critical Infrastructure Cybersecurity. Version 1.1.
2018. Available online: https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf (accessed on 22 October 2021).

2. Fragkos, G.; Minwalla, C.; Plusquellic, J.; Tsiropoulou, E.E. Artificially Intelligent Electronic Money. IEEE Consum. Electron. Mag.
2021, 10, 81–89. [CrossRef]

3. Cichonski, P.; Millar, T.; Grance, T.; Scarfone, K. NIST SP 800-61: Computer Security Incident Handling Guide. 2012. Available
online: https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-61r2.pdf (accessed on 22 October 2021).

4. Hutchins, E.; Cloppert, M.J.; Amin, R.M. Intelligence-Driven Computer Network Defense Informed by Analysis of Adver-
sary Campaigns and Intrusion Kill Chains. Lead. Issues Inf. Warf. Secur. Res. 2011, 1, 80. Available online: https://www.
lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/LM-White-Paper-Intel-Driven-Defense.pdf (ac-
cessed on 22 October 2021).

5. MITRE ATT&CK. Available online: https://attack.mitre.org/ (accessed on 5 September 2021).
6. Chou, D.; Jiang, M. Data-Driven Network Intrusion Detection: A Taxonomy of Challenges and Methods. arXiv 2020, arXiv:2009.07352.
7. Ptacek, T.; Newsham, T. Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection; Secure Networks, Inc.:

Mandaluyong, Philippines, 1998. Available online: http://www.icir.org/vern/Ptacek-Newsham-Evasion-98.ps (accessed on 22
October 2021).

8. Nehinbe, J.O. A Simple Method for Improving Intrusion Detections in Corporate Networks. In Information Security and Digital
Forensics; Weerasinghe, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 111–122.

9. McAfee Labs Threats Report—June 2017. Available online: https://www.mcafee.com/enterprise/en-us/assets/reports/rp-
quarterly-threats-jun-2017.pdf (accessed on 5 September 2021).

10. Mazurczyk, W.; Wendzel, S.; Zander, S.; Houmansadr, A.; Szczypiorski, K. Background Concepts, Definitions, and Classification.
In Information Hiding in Communication Networks: Fundamentals, Mechanisms, Applications, and Countermeasures; IEEE-Wiley Press:
New York, NY, USA, 2016; Chapter 2, pp. 39–58.

11. Balasubramaniyan, J.; Garcia-Fernandez, J.; Isacoff, D.; Spafford, E.; Zamboni, D. An architecture for intrusion detection using
autonomous agents. In Proceedings of the 14th Annual Computer Security Applications Conference (Cat. No. 98EX217), Phoenix,
AZ, USA, 7–11 December 1998; pp. 13–24.

12. Herrero, A.; Corchado, E. Multiagent Systems for Network Intrusion Detection: A Review. Comput. Intell. Secur. Inf. Syst. 2009,
63, 143–154.

182

Electronics 2021, 10, 2711

13. Docking, M.; Uzunov, A.V.; Fiddyment, C.; Brain, R.; Hewett, S.; Blucher, L. UNISON: Towards a Middleware Architecture for
Autonomous Cyber Defence. In Proceedings of the 2015 24th Australasian Software Engineering Conference, Adelaide, SA,
Australia, 28 September–1 October 2015; pp. 203–212.

14. Saeed, I.A.; Selamat, A.; Rohani, M.F.; Krejcar, O.; Chaudhry, J.A. A Systematic State-of-the-Art Analysis of Multi-Agent Intrusion
Detection. IEEE Access 2020, 8, 180184–180209. [CrossRef]

15. Kott, A. Intelligent Autonomous Agents are Key to Cyber Defense of the Future Army Networks. Cyber Def. Rev. 2018, 3, 57–70.
16. Pascale, F.; Adinolfi, E.A.; Coppola, S.; Santonicola, E. Cybersecurity in Automotive: An Intrusion Detection System in Connected

Vehicles. Electronics 2021, 10, 1765. [CrossRef]
17. Lombardi, M.; Pascale, F.; Santaniello, D. EIDS: Embedded Intrusion Detection System using Machine Learning to Detect

Attack Over the CAN-BUS. In Proceedings of the 30th European Safety and Reliability Conference and 15th Probabilistic
Safety Assessment and Management Conference, Venice, Italy, 1–5 November 2020; pp. 2028–2035. Available online: https:
//www.rpsonline.com.sg/proceedings/esrel2020/pdf/5090.pdf (accessed on 22 October 2021).

18. Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A. Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic
Characterization. ICISSP 2018, 1, 108–116.

19. Ring, M.; Wunderlich, S.; Grüdl, D.; Landes, D.; Hotho, A. Creation of Flow-Based Data Sets for Intrusion Detection. J. Inf. Warf.
2017, 16, 41–54.

20. Shahriar, M.H.; Haque, N.I.; Rahman, M.A.; Alonso, M. G-IDS: Generative Adversarial Networks Assisted Intrusion Detection
System. In Proceedings of the 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC), Madrid,
Spain, 13–17 July 2020; pp. 376–385.

21. Canadian Institute for Cybersecurity. Intrusion Detection Evaluation Dataset (ISCXIDS2012). Available online: https://www.
unb.ca/cic/datasets/ids.html (accessed on 5 September 2021).

22. Canadian Institute for Cybersecurity. NSL-KDD Dataset. Available online: https://www.unb.ca/cic/datasets/nsl.html (accessed
on 5 September 2021).

23. Canadian Institute for Cybersecurity. Intrusion Detection Evaluation Dataset (CICIDS2017). Available online: https://www.unb.
ca/cic/datasets/ids-2017.html (accessed on 5 September 2021).

24. Canadian Institute for Cybersecurity. A Realistic Cyber Defense Dataset (CSE-CIC-IDS2018). Available online: https://www.
unb.ca/cic/datasets/ids-2018.html (accessed on 5 September 2021).

25. Moustafa, N.; Slay, J. UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network
data set). In Proceedings of the 2015 Military Communications and Information Systems Conference (MilCIS), Canberra, ACT,
Australia, 10–12 November 2015; pp. 1–6.

26. Maciá-Fernández, G.; Camacho, J.; Magán-Carrión, R.; García-Teodoro, P.; Therón, R. UGR’16: A new dataset for the evaluation
of cyclostationarity-based network IDSs. Comput. Secur. 2018, 73, 411–424. [CrossRef]

27. Center for Applied Internet Data Analysis. CAIDA Datasets. Available online: https://www.caida.org/catalog/datasets/
overview/ (accessed on 5 September 2021).

28. Information Marketplace For Policy and Analysis of Cyber Risk & Trust. Available online: https://www.impactcybertrust.org
(accessed on 5 September 2021).

29. Szczypiorski, K. Steganography in TCP/IP Networks—State of the Art and a Proposal of a New System—HICCUPS; Institute of
Telecommunications’ Seminar, Warsaw University of Technology: Warsaw, Poland, 2003.

30. Mullaney, C. Morto Worm Sets a (DNS) Record. 2011. Available online: http://www.symantec.com/connect/blogs/morto-
worm-sets-dns-record (accessed on 22 October 2021).

31. Attackers Hide Communication within Linux Backdoor. Available online: https://www.securityweek.com/attackers-hide-
communication-linux-backdoor (accessed on 5 September 2021).

32. Regin: Top-Tier Espionage Tool Enables Stealthy Surveillance. 2015. Available online: https://docs.broadcom.com/doc/regin-
top-tier-espionage-tool-15-en (accessed on 5 September 2021).

33. Bencsáth, B.; Pék, G.; Buttyán, L.; Félegyházi, M. Duqu: A Stuxnet-like malware found in the wild. CrySyS Lab Tech. Rep. 2011, 14,
60–141. Available online: https://www.crysys.hu/publications/files/bencsathPBF11duqu.pdf (accessed on 22 October 2021).

34. Dell Secureworks. Malware Analysis of the Lurk Downloader. Available online: https://www.secureworks.com/research/
malware-analysis-of-the-lurk-downloader (accessed on 5 September 2021).

35. FireEye Threat Intelligence. HAMMERTOSS: Stealthy Tactics Define a Russian Cyber Threat Group. Available online:
https://www.fireeye.com/blog/threat-research/2015/07/hammertoss_stealthy.html (accessed on 5 September 2021).

36. Nagaraja, S.; Houmansadr, A.; Piyawongwisal, P.; Singh, V.; Agarwal, P.; Borisov, N. Stegobot: A Covert Social Network Botnet.
In Information Hiding; Filler, T., Pevný, T., Craver, S., Ker, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 299–313.

37. Deutsch, J.; Garrie, D. Instegogram: A New Threat and Its Limits for Liability. J. Law Cyber Warf. 2017, 6, 1–7.
38. Bieniasz, J.; Szczypiorski, K. Methods for Information Hiding in Open Social Networks. JUCS-J. Univers. Comput. Sci. 2019,

25, 74–97.
39. Hewitt, C.; Bishop, P.; Steiger, R. A Universal Modular Actor Formalism for Artificial Intelligence. In Proceedings of the 3rd

International Joint Conference on Artificial Intelligence (IJCAI’73), Stanford, CA, USA, 20–23 August 1973; Morgan Kaufmann
Publishers Inc.: San Francisco, CA, USA, 1973; pp. 235–245.

40. GNS3 Network Simulation Tool. 2021. Available online: https://www.gns3.com (accessed on 5 September 2021).

183

Electronics 2021, 10, 2711

41. Canadian Institute for Cybersecurity. CICFlowmeter—Network Traffic Bi-Flow Generator and Analyzer for Anomaly Detection.
Available online: https://github.com/ahlashkari/CICFlowMeter (accessed on 5 September 2021).

42. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority over-Sampling Technique. J. Artif. Int. Res.
2002, 16, 321–357. [CrossRef]

43. Beckmann, M.; Ebecken, N.F.; de Lima, B.S.P. A KNN undersampling approach for data balancing. J. Intell. Learn. Syst. Appl.
2015, 7, 104. [CrossRef]

44. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
45. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
46. Random Forrest Classifier from Scikit-Learn Framework. 2018. Available online: https://scikit-learn.org/stable/modules/

generated/sklearn.ensemble.RandomForestClassifier.html (accessed on 20 September 2021).
47. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: tensorflow.org (accessed on 5 September 2021).

184

electronics

Article

A New Approach to the Development of Additive Fibonacci
Generators Based on Prime Numbers

Volodymyr Maksymovych 1, Oleh Harasymchuk 1, Mikolaj Karpinski 2,*, Mariia Shabatura 1, Daniel Jancarczyk 2

and Krzysztof Kajstura 2

Citation: Maksymovych, V.;

Harasymchuk, O.; Karpinski, M.;

Shabatura, M.; Jancarczyk, D.;

Kajstura, K. A New Approach to the

Development of Additive Fibonacci

Generators Based on Prime Numbers.

Electronics 2021, 10, 2912. https://

doi.org/10.3390/electronics10232912

Academic Editor: Myung-Sup Kim

Received: 16 October 2021

Accepted: 22 November 2021

Published: 24 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Information Technology Security, Lviv Polytechnic National University, 79013 Lviv, Ukraine;
volodymyr.m.maksymovych@lpnu.ua (V.M.); oleh.i.harasymchuk@lpnu.ua (O.H.);
mariia.m.mandrona@lpnu.ua (M.S.)

2 Department of Computer Science and Automatics, University of Bielsko-Biala, 43-309 Bielsko-Biala, Poland;
djancarczyk@ath.bielsko.pl (D.J.); kkajstura@ath.bielsko.pl (K.K.)

* Correspondence: mkarpinski@ath.bielsko.pl

Abstract: Pseudorandom number and bit sequence generators are widely used in cybersecurity,
measurement, and other technology fields. A special place among such generators is occupied by
additive Fibonacci generators (AFG). By itself, such a generator is not cryptographically strong.
Nevertheless, when used as a primary it can be quite resistant to cryptanalysis generators. This
paper proposes a modification to AGF, the essence of which is to use prime numbers as modules of
recurrent equations describing the operation of generators. This modification made it possible to
ensure the constancy of the repetition period of the output pseudorandom pulse sequence in the
entire range of possible values of the initial settings–keys (seed) at specific values of the module.
In addition, it has proposed a new generator scheme, which consists of two generators: the first of
which is based on a modified AFG and the second is based on a linear feedback shift register (LFSR).
The output pulses of both generators are combined through a logic element XOR. The results of
the experiment show that the specific values of modules provide a constant repetition period of the
output pseudorandom pulse sequence in a whole range of possible values of the initial settings–keys
(seed) and provide all the requirements of the NIST test to statistical characteristics of the sequence.
Modified AFGs are designed primarily for hardware implementation, which allows them to provide
high performance.

Keywords: cybersecurity; pseudorandom sequences generators; prime numbers; additive Fibonacci
generator; statistical characteristics

1. Introduction

At the present stage of scientific development and technological progress, pseudoran-
dom bit sequence generators have found more and more application areas. The scientific
and practical importance of generating qualitative pseudorandom sequences are significant
and many researchers are devoted to this area to find the best algorithms for generating
pseudorandom sequences with properties that are closest to random sequences.

In particular, Professor Amalia Beatriz Orue Lopez from Isabel I University in Burgos,
Spain [1–3], Professor Miguel Angel Murillo-Escoba from the Centre for Research and
Higher Education in Ensenada, Baja California, Mexico [4,5] and Rafik Hamza from LAMIE
Laboratory, University of Batna, Algeria [6] in their articles research the various methods of
constructing pseudorandom sequence generators, in order to determine issues regarding
information protection and estimation quality.

Pseudorandom sequence generators are used in various fields of science and technol-
ogy. A special place among such generators is occupied by additive Fibonacci generators
(AFG) [7–16].

Electronics 2021, 10, 2912. https://doi.org/10.3390/electronics10232912 https://www.mdpi.com/journal/electronics185

Electronics 2021, 10, 2912

Almost all Fibonacci generators are designed for hardware implementation are used as
recurrent equation modules equal to the power of two. This greatly simplifies the hardware
implementation of Fibonacci generators but narrows their functionality and does not allow
for the improvement of their statistical characteristics without a significant increase in
the number of bits of structural elements. The main motivation for this work was the
awareness of the need to solve the hardware implementation of Fibonacci generators with
an arbitrary module value. This was also facilitated by the authors’ experience gained in
the hardware implementation of controlled digital frequency synthesizers [17].

Creating new circuit engineering solutions for the hardware implementation of Fi-
bonacci generators allows for the implementation of a new approach to its creation, which,
unlike previous approaches, enables the design of generators with an arbitrary module
of the recurrent equation, in particular with modules whose values are prime numbers.
As a result, there is an opportunity to significantly improve the generator’s statistical
characteristics.

This work was aimed at researching the hardware implementation of an additive
Fibonacci generator, based on an algorithm that uses a module of prime numbers, and to
analyse their characteristics.

2. Related Works

Additive Fibonacci generators (AFG) are widely used in cybersecurity devices to
generate pseudorandom sequences of bits or numbers.

By itself, such a generator is not cryptographically strong. Nevertheless, using it is fun-
damental to create a completely secure and resistant cryptanalysis algorithm. For example,
based on these generators, the algorithms Fish, Pike and Mush are implemented [7,8].

The use of Additive Fibonacci Generators is not limited to cybersecurity systems
(cryptography), they are also used for other applications.

In particular, Ref. [18] describes a method for constructing a pseudorandom number
generator based on a recurrent linear sequence of Fibonacci p-numbers to generate a
variable carrier frequency of pulse-width modulation (PWM) of the power converter
control system to reduce acoustic noise and electromagnetic obstacle level.

The classical algorithm of AGF was formed based on the equation:

xi = (xi−l + xi−k) mod(m), l > k > 0 (1)

General view:

xi = (xi−a + xi−b + . . . + xi−p) mod(m), a > b > . . . > p > 0 (2)

An effective hardware implementation of Equations (1) and (2) are chosen according
to Equation 2 − m = 2n. This simplifies the hardware implementation of the generators.
Compliance with the requirements for the selection of parameters l, k and a, b, . . . , p in
Equations (1) and (2) ensures that the repetition period of the sequence at the output of the
sequence of generators will be no less than 2n − 1 [8].

In articles [10–19], modified additive Fibonacci generators (MAFG) were proposed,
operating according to the equation:

xi = (xi−a + xi−b + . . . + xi−p + a) mod(2n), (3)

where, a = a0 ⊕ a1 ⊕ . . . ⊕ az; ai ((i = 0, 1, . . . , z), (z ≤ n − 1))—values of the number xi
binary bits.

In the studies of [10,11,19], it is shown that the process of adding the number “a” causes
certain “confusion”—the dependence of each bit of the number, including the youngest
bit, from all its other bits, allows to significantly improve the statistical characteristics of
the output signals of the MAFG. An array of initial values of numbers xi, xi−a, xi−b, . . . ,
xi−p, is called the cryptographic generator key and is under the condition of hardware

186

Electronics 2021, 10, 2912

implementation. These numbers are used as the initial values of the registers that are part
of its block diagram.

Our research on AGF and MAGF [10,11,13,18,19] show a significant dependence of
the statistical characteristics of the pseudorandom sequence at the output of the generator
on the output parameters. In particular, they strongly depend on the value of the repetition
period of the output sequence [10,13]. This means the presence of so-called “weak keys”,
which could be relatively easily disclosed.

This paper presents the results of research aimed at eliminating this shortcoming of
AFG and MAFG. We focus on the hardware implementation of generators.

3. Case Study

3.1. The Structure Schema and the Work Principle of the New AFG

As emphasized above, the construction AGF and MAGF uses algorithms in which
the modulus of recurrent Equations (1)–(3) is the power of number 2. This significantly
simplifies hardware implementation.

Papers [17,18] proposed a new approach to constructing two-level frequency synthe-
sizers using the change of the average value of the output frequency with an arbitrarily
given step. These approaches can be effectively applied in the hardware implementation of
our proposed generators.

Figure 1 shows a variant of one such additive Fibonacci generator [10].

ix

1ix2ix

cf

Figure 1. Structure schema of AFG.

AFG consists of registers RG1-RG3, adders AD1-AD2, multiplexer MUX and logical
element OR. The generator functions according to the equation:

xi = (xi−2 + xi−1) mod(m), (4)

where, m—prime number; xi, xi−1, xi−2—numbers in registers RG1, RG2 i RG3.
The number of binary bits n of the structural elements of the scheme (RG1-RG3, AD1,

AD2) is selected based on the need to ensure the condition 2n > m.
Herewith, the smallest value n is selected, at which this condition is fulfilled. The num-

ber A, which is applied to one of the AD2 input groups, is determined by the equation A
= 2n − m. In the absence of carrying signals on the outputs of AD1 and AD2 to the RG1

187

Electronics 2021, 10, 2912

information inputs through the multiplex, MUX passes a number from the output AD1,
and in the presence of one of these signals the number from the output AD2. The initial
number—the key (seed) X(0)—is written to registers RG1-RG3.

Clock pulses receive at the clock inputs of the registers RG1-RG3. The output pseudo-
random bits sequence formed on one of the register’s RG1 bits. The described operating
mode of the generator provides a change of the numbers in registers RG1-RG3 in the range
of values 0 ÷ m − 1.

3.2. Research of the New AFG Characteristics

Figure 2 shows the dependences of the repetition periods of the studied pseudorandom
numbers sequence generators on the value of the key X(0).

Figure 2. Dependences of AFG repetition periods on the key.

Figure 2a,b shows the dependencies for the new AFG, that function following Equation
(4): m = 13 (Figure 2a) and m = 17 (Figure 2b). In Figure 2c, the corresponding dependence
for the classical AFG, which operates following Equation (4) at m = 24 = 16, is given for
comparison. In order to go through all possible values, the initial number is determined by
the formula:

X(0) = (xi−2(0) + m xi−1(0) + m2 xi(0), (5)

where, xi(0), xi−1(0), xi−2(0) are the initial values of the numbers in the registers RG1-RG3,
accordingly.

This article presents only some results of different AFG versions of repetition periods
research. During the work, a large amount of AFG at different modulus values was
analysed. This allows us to draw the following conclusions:

188

Electronics 2021, 10, 2912

• A new type of AFG, in which the modulus of recurrent equations is a prime number
(Figure 1), differs favourably from classical AFG, in which the modulus of recurrent
equations is a power of 2, in the absence or relatively small number of “weak keys”
(in which the repetition period of the pseudo-random sequence is small);

• In AFG of a new type (Figure 1), there are values of the module for which there are no
“weak keys”.

Table 1 presents the values of the repetition periods of the output sequence of new
AFG for some m values fixed on the whole set of possible X(0) values.

Table 1. The dependence of the repetition periods of the new AFG output sequence for some m
values on the whole set of possible X(0) values.

Prime Numbers, Max and Min Repetition Period Values

m 2 3 5 7 11 13 17 19

period 7 13 24
4

48
6

120
10 183 288

16
180
9

m 23 29 31 37 41 43 47 53

period 506
22 871 993 1368

36 1723 231
21 2257 1404

m 59 61 67 71 73 79 83 89

period 58 930 4488
66 5113 5403 3120 2296

82
3960

44
m 97 101 103 107 109 113 127 131

period 3116 100
50 3536 2862 1485 4256 16,257

In Table 1, for values m = 2, 3, 13, 29, 31, 41, 47, 53, 59, 61, 71, 73, 79, 97, 103, 107, 109,
113, 127 no “weak keys” were found in the whole X(0) range values. The only fixed value
of the period is indicated in the table. For other m values, a small number of “weak keys”
were fixed, for which, along with the principal (predominant) reduced values of the period
were indicated.

At sufficiently large m values, the procedure for finding the repetition periods of the
output sequence for all possible X(0) values requires a lot of machine time and, under
certain conditions, is such that it is practically not implemented. Table 2 shows the values
of the repetition periods for relatively large values of m prime numbers when xi(0) = 1,
xi−1(0) = 1, xi−2(0) = 1.

Table 2. Dependence of repetition periods of the new AFG output sequence for some m values, at
xi(0) = 1, xi−1(0) = 1, xi−2(0) = 1.

Prime Numbers, Repetition Period Values

m 8191 9973 65,537
(Fermat number)

2,147,483,647
(Marsenn number)

period 22,366,291 99,46,728 1,431,699,455 >1010

The tendencies revealed at small values of the module m (Table 1) allow us to state
with a high probability that, at relatively large values, the number of “weak keys” will be
small or absent.

According to this property, the proposed Fibonacci generator, in which the mod-
ules of the recurrent equation are prime numbers, differs favourably from the known
Fibonacci generators, in which the value of the modulus is equal to the power of two. For
comparison, Table 3 shows some research results of the repetition periods of the output
pseudo-random sequence of the classical additive Fibonacci generator, which functions
according to Equation (4), at n = 2m. The results are obtained by imitation modelling.

189

Electronics 2021, 10, 2912

Table 3. Dependence of repetition periods of the output sequence of classical AGF for some values of
m on the whole set of values X(0).

m Values, Max and Min Repetition Period Values

m 2 4 8 16 32 64 128 256

period 7 14
7

28
7

56
7

112
7

224
7

448
7

896
7

Thus, in contrast to the proposed device, in the known device, at 2 > m, there are
different values of the repetition periods, including those that have critically small values.
This indicates the presence of “weak keys”. In addition, the maximum values of the
repetition periods are usually smaller than the relative values of module m in the proposed
device. These trends are also observed for arbitrary and much larger values of the modulus
m.

Research of the statistical characteristics of the output pseudorandom bit sequences
of new AFGs were carried out with NIST tests package [20]. If the proportion fell outside
of this interval (0.98–1.0), then this was evidence that the data were non-random. Testing
was carried out at different values. As a result, the sequence was entirely non-random, so
requirements of statistical security were not accepted. For example, Figure 3 presents a
statistical portrait of the output sequence at m = 2,147,483,647.

Figure 3. Statistical portrait of AFG at m = 2,147,483,647.

As can be seen from Figure 3, the sequence of the investigated generator does not
meet the requirements of randomness as most of the tests were valued at 0 and did not fall
within the specified interval.

Thus, new AFGs, built using prime numbers as modules of recurrent equations,
provide the absence or the small number of “weak keys”. At the same time, they do not
accord to the criteria of statistical security; however, they can be used in conjunction with
other pseudorandom bit sequence generators (PRBSGs). In this case, their useful property
can be used to ensure the constancy of the repetition period of the output sequence for all
possible values of the initial settings, and for many values of the module m.

190

Electronics 2021, 10, 2912

3.3. Structure Scheme and Operation Principle of the Combined PRBSG

The structure scheme of the combined PRBSG is given in Figure 4.

ix

1ix2ix

cf

Figure 4. Structure scheme of the combined PRBSG.

The combined PRBSG consists of two generators: a generator based on a new AFG
(Figure 1) and a generator based on the shift register with linear feedbacks LFSR. The
output pulses of both generators are combined through a logic element XOR. The choice of
type and LFSR bit number depends on the need to provide the specified characteristics of
the output bit sequence. Instead of LFSR, other types of PRBSGs be used, which requires
additional research.

In this work, the combined PRBSG used LFSR work according to the forming equation
F(x) = 1 + 18x + 31x. The matrix T1 and the power of the matrix r = 10 [8] are used.

Figure 5 shows a statistical portrait of the LFSR, from which it follows that the output
pseudo-random sequence does not pass only two tests from the NIST set.

191

Electronics 2021, 10, 2912

Figure 5. Statistical portrait of the LFSR (F(x) = 1 + 18x + 31x, matrix T1, power of the matrix r = 10).

Figure 6 shows the result of testing combined PRBSG (Figure 4) with such parameters:
new AFG m = 2,147,483,647, LFSR F(x) = 1 + 18x + 31x, matrix T1 and the power of the
matrix r = 10. The output sequence passes all tests from the NIST set.

Figure 6. Statistical portrait of the combined PRBSG.

Thus, as can be seen from Figure 6, the results of all tests are within the allowable
range. This suggests that the combined PRBSG generator provides the formation of the
output pseudo-random sequence with high statistical characteristics.

4. Conclusions

New AFG (Figure 1), built using prime numbers as modules of recurrent equations
at specific values of modules, provide a constant repetition period of the output pseudo-
random pulse sequence in the whole range of possible values of the initial settings keys
(seed).

According to this property, the proposed Fibonacci generator differs favourably from
the known Fibonacci generators, in which the value of the modulus is equal to the power
of two. In contrast to the proposed device, in the known device, at m > 2, there are different
values of the repetition periods, including those with critically small values. This indicates

192

Electronics 2021, 10, 2912

the presence of “weak keys”. In addition, the maximum values of the repetition periods
in the known device are usually smaller than the relative values of the module m of the
proposed device.

When two pseudorandom pulse sequences combine through a logical element XOR,
the period of the combined sequence is not less than the repetition period of each of them.

Combined PRBSG (Figure 4), under specific requirements for their construction, can
provide the specified statistical characteristics and the absence of “weak keys” in the whole
range of possible values of the initial settings–keys (seed).

The results obtained and presented in the article show that the proposed generators
can be effectively used in cyber security, particularly as components of cryptographic
information protection or noise generators for information security, or as noise-like code
sequences of modern communication systems.

Perspective for further research is the development and analysis of other types of com-
bined PRBSG with the possibility of their hardware implementation, as well as expanding
the scope of such generators.

Author Contributions: Conceptualization, V.M., O.H., M.S.; Methodology, D.J., K.K., M.K.; Valida-
tion, D.J., K.K., V.M.; Formal Analysis, M.K., O.H., M.S.; Investigation, V.M., O.H., M.S., D.J., K.K.,
M.K.; Data Curation, V.M., O.H., M.S., M.K.; Writing—Original Draft Preparation, D.J., K.K., O.H.,
M.S.; Writing—Review and Editing, V.M., O.H., M.S, D.J., K.K., M.K. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cardell, S.D.; Requena, V.; Fuster-Sabater, A.; Orue, A.B. Randomness Analysis for the Generalized Self-Shrinking Sequences.
Symmetry 2019, 11, 1460. [CrossRef]

2. Blanco, A.; Orúe, A.B.; López, A.; Martín, A. On-the-Fly Testing an Implementation of Arrow Lightweight PRNG Using a
LabVIEW Framework. In Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2019; pp. 175–184.

3. Orúe, A.B.; Encinas, L.H.; Fernández, V.; Montoya, F. A Review of Cryptographically Secure PRNGs in Constrained Devices for
the IoT. In Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2017; pp. 672–682.

4. Murillo-Escobar, M.A.; Cruz-Hernández, C.; Cardoza-Avendaño, L.; Méndez-Ramírez, R. A novel pseudorandom number
generator based on pseudorandomly enhanced logistic map. Nonlinear Dyn. 2017, 87, 407–425. [CrossRef]

5. Meranza-Castillón, M.O.; Murillo-Escobar, M.A.; López-Gutiérrez, R.M.; Cruz-Hernández, C. Pseudorandom number generator
based on enhanced Hénon map and its implementation. J. AEU-Int. J. Electron. Commun. 2019, 107, 239–251. [CrossRef]

6. Hamza, R. A novel pseudo random sequence generator for image-cryptographic applications. J. Info. Secur. Appl. 2017, 35,
119–127. [CrossRef]

7. Ivanov, M.A.; Chugunkov, I.V. Theory, Application and Evaluation of the Quality of Pseudorandom Consequences Generators; KUDITS-
OBRAZ: Moskow, Russia, 2003; p. 240.

8. Schneier, B. Applied Cryptography: Protocols, Algorithms, and Source Code in C; John Wiley & Sons: Hoboken, NJ, USA, 2007; p. 675.
9. Orue, A.B.; Montoya, F.; Encinas, L.H. Trifork, a New Pseudorandom Number Generator Based on Lagged Fibonacci Maps. J.

Comput. Sci. Eng. 2010, 2, 46–51.
10. Maksymovych, V.; Harasymchuk, O.; Mandrona, M. Additive Fibonacci Generators Using Prime Numbers. In Proceedings of

the VIIth International Scientific and Technical Conference “Information protection and Information Systems Security”, Lviv,
Ukraine, 30–31 May 2019; pp. 66–68.

11. Mandrona, M.; Maksymovych, V.; Harasymchuk, O.; Kostiv, Y. Generator of pseudorandom bit sequence with increased
cryptographic immunity. Metall. Min. Ind. 2014, 6, 24–28.

12. Aluru, S. Lagged Fibonacci Random Number Generators for Distributed Memory Parallel Computers. J. Parallel Distrib. Computing
1997, 45, 1–12. [CrossRef]

13. Mandrona, M.; Maksymovych, V. Investigation of the statistical characteristics of the modified Fibonacci generators. J. Autom. Inf.
Sci. 2014, 46, 48–53. [CrossRef]

14. Baldoni, S.; Battisti, F.; Carli, M.; Pascucci, F. On the Use of Fibonacci Sequences for Detecting Injection Attacks in Cyber Physical
Systems. IEEE Access 2021, 9, 41787–41798. [CrossRef]

193

Electronics 2021, 10, 2912

15. Agarwal, A.; Agarwal, S.; Singh, B.K. Algorithm for data encryption & decryption using Fibonacci primes. J. Math. Control. Sci.
Appl. 2020, 6, 63–71.

16. Yacoab, M.; Sha, M.; Mustaq Ahmed, M. Secured Data Aggregation Using Fibonacci Numbers and Unicode Symbols for Wsn. Int.
J. Comput. Eng. Technol. 2019, 10, 218–225. [CrossRef]

17. Wang, J.; Przystupa, K.; Maksymovych, V.; Stakhiv, R.; Kochan, O. Computer Modelling of Two-level Digital Frequency
Synthesizer with Poisson Probability Distribution of Output Pulses. Meas. Sci. Rev. 2020, 20, 65–72. [CrossRef]

18. Maksymovych, V.; Mandrona, M.; Garasimchuk, O.; Kostiv, Y. A study of the characteristics of the Fibonacci modified additive
generator with a delay. J. Autom. Inf. Sci. 2016, 48, 76–82. [CrossRef]

19. Maksymovych, V.; Mandrona, M.; Harasymchuk, O. Dosimetric Detector Hardware Simulation Model Based on Modified
Additive Fibonacci Generator. Adv. Intell. Syst. Comput. 2020, 938, 162–171.

20. NIST SP 800-22 version 1a. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications;
NIST: Gaithersburg, MD, USA, 2010; p. 131.

194

electronics

Article

BrainShield: A Hybrid Machine Learning-Based Malware
Detection Model for Android Devices

Corentin Rodrigo 1, Samuel Pierre 1, Ronald Beaubrun 2 and Franjieh El Khoury 1,*

Citation: Rodrigo, C.; Pierre, S.;

Beaubrun, R.; El Khoury, F.

BrainShield: A Hybrid Machine

Learning-Based Malware Detection

Model for Android Devices.

Electronics 2021, 10, 2948. https://

doi.org/10.3390/electronics10232948

Academic Editor: Krzysztof

Szczypiorski

Received: 30 September 2021

Accepted: 23 November 2021

Published: 26 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Mobile Computing and Networking Research Laboratory (LARIM), Department of Computer and Software
Engineering, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada; corentin.rodrigo@polymtl.ca (C.R.);
samuel.pierre@polymtl.ca (S.P.)

2 Department of Computer Science and Software Engineering, Laval University, Pavillon Adrien-Pouliot,
Quebec, QC G1V 0A6, Canada; Ronald.Beaubrun@ift.ulaval.ca

* Correspondence: Franjieh.el-khoury@polymtl.ca

Abstract: Android has become the leading operating system for mobile devices, and the most
targeted one by malware. Therefore, many analysis methods have been proposed for detecting
Android malware. However, few of them use proper datasets for evaluation. In this paper, we
propose BrainShield, a hybrid malware detection model trained on the Omnidroid dataset to reduce
attacks on Android devices. The latter is the most diversified dataset in terms of the number of
different features, and contains the largest number of samples, 22,000 samples, for model evaluation
in the Android malware detection field. BrainShield’s implementation is based on a client/server
architecture and consists of three fully connected neural networks: (1) the first is used for static
analysis and reaches an accuracy of 92.9% trained on 840 static features; (2) the second is a dynamic
neural network that reaches an accuracy of 81.1% trained on 3722 dynamic features; and (3) the third
neural network proposed is hybrid, reaching an accuracy of 91.1% trained on 7081 static and dynamic
features. Simulation results show that BrainShield is able to improve the accuracy and the precision
of well-known malware detection methods.

Keywords: android device; BrainShield; hybrid model; machine learning; malware detection;
Omnidroid

1. Introduction

Due to their popularity, mobile devices are becoming more and more part of our
daily life. However, these devices, which handle both private and confidential data, are
vulnerable to attacks by malicious people, and these are known as cyberattacks. Some of
the most well-known recent examples of cyberattacks include the distributed denial of
service (DDoS) attack by Mirai Botnet [1], and the massive data hijacking carried out by the
WannaCry ransomware [2]. Therefore, this situation makes malware detection techniques
worth investigating and improving. Malware can be any type of software that serves illegal
purposes, such as spoofing or extortion [3]. This is often the case with adware that sends a
lot of ads. In this paper, we generally focus on mobile app malware, and therefore, we use
packages to allow us to install them.

Malware can be found in Google Play, which is the official market for Android apps.
Indeed, since 2015, the number of malware has increased rapidly, which has encouraged
many researchers to develop a number of malware detection methods, such as antivirus
available on the Google Play Store, static method, dynamic method and hybrid method,
as detailed in Section 3. However, these methods still have some limitations in terms of
performance to detect the malware on the newly installed applications on Android devices,
as presented in Section 3.5.

Therefore, this paper presents an extension of our previously published research work
in [4] regarding malware detection on Android devices.

Electronics 2021, 10, 2948. https://doi.org/10.3390/electronics10232948 https://www.mdpi.com/journal/electronics195

Electronics 2021, 10, 2948

In [4], the proposed model is based on client/server architecture to reduce the heavy
computation of data on the mobile device and perform the processing remotely on the
server for prediction of the newly installed applications. We focused on the static analysis
method for malware detection using the random forest regression algorithm ranging from
−100 (benign) to 100 (malware) to manage the uncertainty predictions. We obtained good
prediction results in terms of performance with good correlation coefficients, minimum
computation time, and the smallest number of errors for malware detection.

Consequently, in this paper, we propose BrainShield, a hybrid malware detection
model trained on the Omnidroid dataset [5] to reduce the attacks on Android devices,
by improving the accuracy and the precision of well-known malware detection methods.
More specifically, our main goal is to determine whether new samples provided to our
classification model are malware or not, based on the rules previously established by the
learning algorithm.

The main contributions of this paper are as follows:

1. Describe the architecture of the proposed Model called BrainShield, which is based
on (1) a hybrid machine learning malware detection model for Android devices;
(2) the fully connected neural networks (i.e., dense layers) composed of three layers
(i.e., input layer, hidden layer and output layer) adopting one vector Tensorflow
algorithm; and (3) a binary class classification that provides, as output, a probability
value between 0 (i.e., benign apps) and 1 (i.e., malware apps);

2. Implement the proposed model to perform the prediction;
3. Provide the methodology that brings the detection results;
4. Train the Model with Omnidroid [5], which is the most known and diversified dataset.

This dataset contains 22,000 samples and about 32,000 features (i.e., 26,000 static
features and 6000 dynamic features);

5. Use the machine learning techniques [6], such as dropout and feature selection, to
increase the accuracy of the proposed neural networks.

The rest of the paper is organized as follows. Section 2 details the technical back-
ground. Section 3 presents an overview of the existing malware detection methods for
Android devices and their limitations. All the components of BrainShield’s architecture are
detailed in Section 4. In Section 5, the implementation of the BrainShield prototype and
the methodology that brings the detection results are described. In Section 6, the results
obtained in terms of accuracy, recall, precision, area under curve (AUC) and F1 score are
illustrated, and a discussion of these results is presented. Finally, Section 6 concludes the
paper by emphasizing our contribution and future work.

2. Background

In this section, we introduce a set of definitions related to Android apps, machine
learning, and features used by BrainShield to detect malware apps.

Malware detection is a classification problem [7], which consists of determining the
class of an app. The different classes presented in this paper are of two types: (1) malware
app; and (2) benign app. Malware is an Android package kit (APK), also known as an
Android app, used to serve illegal purposes, such as espionage or extortion. An app is
benign if it is legitimate and harmless.

Machine learning [8] is a discipline that consists of many different methods and
objectives. We use: (1) the fully connected neural networks (i.e., dense layers) with one
vector Tensorflow algorithm; the Dropout regularization on the hidden layer for reducing
overfitting and improving the generalization error of deep neural networks; (2) the Sigmoid
activation function on the output layer to give a probabilistic distribution between 0 and 1;
and (3) the optimizer ADAM to optimize the error.

The common point of these machine learning methods is to provide them with many
features, labeled for supervised learning or not for unsupervised learning, which serve
as input to the learning algorithm. The quantity of data and a balance of data are very
important to build a precise classification model that we adopt in our proposed model.

196

Electronics 2021, 10, 2948

Labeling is the act of considering an app as a malware app (i.e., value = 1) or as a benign
app (i.e., value = 0). Therefore, we use the binary class classification method that gives, as
output, a probability value between 0 (i.e., benign apps) and 1 (i.e., malware apps).

Features are needed in the case of supervised learning. They represent an app as
faithfully as possible. Static features are those obtained using static tools, while dynamic
features are those obtained using dynamic tools [9].

Evaluation metrics [10] are quantifiable measures, which determine if the detection
model efficiently differentiates malware from benign apps. Among these metrics, let us
quote the ones used for the evaluation of the performance of our proposed model. The
accuracy represents the proportion of correct predictions. The precision is the proportion of
correct positive predictions. A detection model producing no false positive has an accuracy
of 1. The recall is the proportion of actual positive results that have been correctly identified.
In addition, the recall is called the true positive rate (TPR). A detection model producing
no false negative has a recall of 1. The F1 score is the harmonic mean of the precision and
the recall. Therefore, this score considers both false positive and false negative. The area
under the receiver operating characteristic (AUROC) curve measures the two-dimensional
area underneath the receiver operating characteristic (ROC) curve. It gives an aggregate
measure of performance across all classification thresholds.

3. Related Work

In this section, we present a literature review based on four categories of malware
detection methods for mobile devices using the Android operating system: (1) company
solutions; (2) static method; (3) dynamic method; and (4) hybrid method. At the end of this
section, we present the limitations of the existing methods.

3.1. Company Solutions

In this section, we present a non-exhaustive list of the most popular Android apps,
known as antivirus, available on the Google Play Store. This list provides solutions
proposed by companies that have additional features to detect malicious apps. Table 1
illustrates a comparison of these Android apps, including the descriptive information for
each app, according to Google Play Store in autumn 2019, as well as the prices offered by
each app publisher.

Table 1. List of antivirus software on Google Play Store.

Play Store Name Publisher Free App Price
Number of
Downloads

Security Master Cheetah Mobile Yes 20 $/year 500,000,000+
AVG Antivirus AVG Mobile Yes 16 $/year 100,000,000+
Avast Antivirus Avast Software Yes 13 $/year 100,000,000+

Kaspersky Mobile Kaspersky Lab Yes 20 $/year 50,000,000+
Security Center Hyper speed Yes No 50,000,000+
Mobile Security ESET No 7 $/year 10,000,000+

McAfee McAfee LLC No 41 $ 10,000,000+
Malware Bytes Malwarebytes No 14 $/year 10,000,000+

Norton Antivirus Norton Mobile Yes 20 $/year 10,000,000+
Sophos Mobile Sophos Limited Yes No 1,000,000+

The detection methods used by Android apps and presented in Table 1 are not known.
This opacity does not allow us to develop our own detection method, but guides us to study
more existing detection methods on the market. In addition, most of these Android apps
provide additional functionalities besides malware detection, such as network scanner,
virtual private network (VPN) service, AppLock, and permissions scanner. Typically, these
features are accessible through a monthly or annual paid subscription.

Even Google Inc. cannot be certain of the 100% detection rate. Although Google Inc.
made huge strides in 2019, its Google Bouncer in 2012 detection system was bypassable.

197

Electronics 2021, 10, 2948

Indeed, the official announcement of its existence in February 2012 [11] caused a boom in
the field of research. Several researchers have studied Google Bouncer to find out more. On
4 June 2012, Jon Oberheide and Charlie Miller [12] presented interesting results. They were
able to explore the system using a command system to search for attributes of the Bouncer
environment, such as the version of the kernel running, the contents of the file system,
or information on some of the devices emulated by the Bouncer environment. Against
all these new and increasingly virulent threats, Google Inc. has revised its policy and
established Google Play Protect [13], which is the integrated malware protection platform
for most Android devices. The Google Play Protect is supported by machine learning
techniques to analyze more than 50 billion apps per day. Despite those advancements,
malware is still found in the Google Play Store [14].

3.2. Static Method

The static analysis method does not require running the app on a device. It focuses on
the app code rather than on its actual behavior when it is executed, since the app code is
supposed to be faithful to the app functionality.

Fournier et al. [4] proposed a static detection method based on 151 Android system
permissions trained with Waikato environment for knowledge analysis (WEKA). The
model is based on training a set of 10,000 apps, consisting of 5000 benign apps and 5000
malware. Malware is from the Drebin dataset [15] dated from 2010 to 2012. The benign
apps come from the top 500 in each category of the Google Play Store. The inconvenience
is that no security check was offered to verify that such apps were non-malware. In the
same vein, the accuracy announced on the test set is 94.62%.

IntelliAV [16] is an on-device malware detection system, which uses static analysis
coupled with machine learning. The app is available on Google Play Store. Based on
a training and validation set of 19,722 apps, including 9664 malware ones, the authors
obtained a TPR of 92.5% and a false positive rate (FPR) of 4.2% on the validation set, with
1000 attributes generated by the training process. Moreover, the authors evaluated their
model on a set of 2898 benign apps and 2311 malware from VirusTotal dated from February
2017. The accuracy is 71.96%.

MaMaDroid [17] detects malware from a behavioral perspective, modeled as a se-
quence of abstract API calls. It is based on a static analysis system that collects API calls
made by an app, and then builds a model from the sequences obtained from the call graph
in the form of Markov chains. This ensures that the model is more resilient to API changes,
and that the feature set is manageable in size. MaMaDroid has been tested using a dataset
of 8500 benign apps, and 35,500 malware collected over a six-year period, with F-measure
reaching 99%.

DroidSieve [18] adopts a combination of features, which is suggested by authors as
crucial for the robust detection of simple and obfuscated malware. Thus, syntactic features
(e.g., API calls and system permissions) are integrated into such a detection method. These
features have been used to build a classifier that is robust for both old and new malware,
which tend to be increasingly obfuscated. To enrich all the syntactic functionalities, new
features based on explicit intentions, meta-information and Dalvik Virtual Machine (DEX)
files have been added. The authors created a ranking system of the most relevant features
for detecting malware, where Android permissions and intents come first. The system
achieves an accuracy of 99.82% with zero false positives.

FlowDroid [19] is a tool that performs taint analysis on the app code, which enables
the discovery of connections where the device’s International Mobile Equipment Identity
(IMEI) is sent to a third party, using the network. It achieves 93% as recall, and 86%
as precision.

Maldozer [20] is based on the classification of raw sequences of calls to API methods,
using deep learning techniques. Maldozer can be used as a malware detection system on
servers, on mobile devices, and even on Internet of Things (IoT) devices. It achieves an

198

Electronics 2021, 10, 2948

F1-Score of 96–99% and a false positive rate of 0.06%. The datasets used were from the
Malgenome project (2010–2011).

AndroGuard [21] is a Python library that extracts various information from code, re-
sources or the AndroidManifest.xml file from Android. It is used for static feature extraction.

3.3. Dynamic Method

The dynamic analysis method requires running the app code on a device. Dynamic
analysis is used in the literature, since techniques, such as encryption, obfuscation of code,
dynamic loading of code or reflection, can be implemented to avoid detection by the static
analysis method. A significant number of searches attempt to work around this problem
by monitoring the actions of the app in an emulator or on a real device.

TaintDroid [22] introduces and prototypes a taint tracking method, which is widely
used. The authors had to manually explore the apps, which greatly limits the number of
apps that can be analyzed. Indeed, only 30 random apps have been selected.

AppsPlayground [23] takes the concept of taint tracking and develops an intelligent
method of input generation and app path for dynamic analysis, which makes the detection
automatic, and where the tests are performed on emulator. On the other hand, like
TaintDroid, it requires a modification of the Android operating system to track data via
taint tracking. AppsPlayground was evaluated with 3968 apps from the Google Play store.

Chen et al. [24] proposed the detection of systems based on data mining by ransomware
for automatic detection. The actual behavior of the apps is controlled and generated in the
call flow graph API (Application Programming Interface) as a set of functionalities.

Emulator vs. real phone [25] offers a detailed study of the differences between the exe-
cution environments. This study is recommended to perform the detection on a real device.

DroidBox [26] allows monitoring a wide range of events, such as file access, network
traffic or DEX files loaded dynamically at runtime. DroidBox uses API 16, which covers
99.6% of smartphones according to Android. It is used for feature extraction in the context
of dynamic analysis.

3.4. Hybrid Method

We define the hybrid analysis method as a method that combines static and dynamic
analysis methods.

MADAM [27] is a hybrid framework using machine learning to detect malware.
It classifies them based on suspicious behavior observed at different levels of Android:
kernel, application, user, and package. MADAM requires administrator privileges on
the phone used, since it works at the kernel level. Thus, the authors specify that their
solution is not intended for the general public, but seeks to prove the strength of such an
approach (i.e., multi-level, dynamic, and on the device). The 2018 version offers real-world
experiments on 2800 malware of 125 different families from three datasets.

SAMADroid [28] uses machine learning to detect malware. It works on both local
hosts (i.e., on-devices) to perform dynamic analysis, and remote hosts, to obtain static
analysis and prediction. The SAMADroid client app is developed for Android devices. The
dataset for neural network training is Drebin (2010–2012) [15], which contains old malware.
However, SAMADroid claims to achieve an accuracy of 99.07%.

AndroPyTool adopted by Martin et al. [29] presents two tools that are of great im-
portance for our own detection method: (1) the AndroPyTool framework; (2) and the
Omnidroid dataset. AndroPyTool is developed in Python, and the code is hosted on
GitHub. It can perform a complete extraction of static and dynamic features. It integrates
the most used Android malware analysis tools (i.e., FlowDroid [19], DroidBox [26], Andro-
Guard [21] and Strace [30]) to perform a source code inspection, and to retrieve information
on behavior when the sample is run in a controlled environment.

3.5. Limitations of the Existing Methods

Static, dynamic or hybrid approaches have the following shortcomings:

199

Electronics 2021, 10, 2948

1. Little or no diversified features [4,16,20]
2. Evaluation of the model based on a poor dataset in terms of sample quantities [4];
3. An evaluation of the model based on a dataset containing old apps [4,28];
4. Obsolete methods due to new Android versions [31].

For dynamic analysis, (1) manual intervention may be required [22,32] to guarantee
full exploration of the app; and (2) the app could determine if the runtime environment
is an emulation. In this case, the malicious code would not be triggered, which would
prevent its detection [23].

In addition to the previous shortcomings, hybrid approaches may have the following
drawbacks: (1) the average performance; and (2) the device must be necessarily rooted.

Finally, all the methods presented above have high accuracy only if they are associated
with: (1) many apps in the dataset for training and evaluation; and (2) recent malware.
Indeed, any method that claims to achieve an accuracy of around 99%, while using old
databases for evaluating the model, is considered to be obsolete.

4. BrainShield

In this section, we present the proposed hybrid malware detection model called
BrainShield. BrainShield consists of three components: (1) dataset; (2) neural networks;
and (3) client/server architecture.

4.1. Dataset

Omnidroid has obtained, thanks to AndroPyTool [29], a hybrid malware detection
tool. The Omnidroid dataset [5] is selected for its static and dynamic features. To the best
of our knowledge, it is the most diversified existing dataset in terms of types of features
(i.e., static or dynamic). The static features are permissions, receivers, services, activities,
Application Programming Interface (API) calls, API packages, opcodes, system commands
and FlowDroid, whereas the dynamic features are opennet, sendnet, fdaccess, dataleaks,
recvnet, cryptousage, and dexclass. Moreover, this dataset is balanced in terms of a number
of copies, sample dates, and features. In addition, the number of apps in this dataset is
significant, since there are 22,000 samples, as well as the number of features, is substantial:
25,999 static features and 5932 dynamic features. Omnidroid’s samples date from 2012 to
2018, which covers a long period.

Moreover, we define a test set, which allows us to avoid over-fitting on the validation
set. The test set is used at the very end of learning, and only once, to verify that the model
can adapt to new samples. We have chosen to distribute our dataset as follows:

1. 70% (15,400) for the training set;
2. 15% (3300) for the validation set;
3. 15% (3300) for the test set.

4.2. Neural Networks

The use of neural networks is preferred, since it offers advantages of adaptation to new
samples, which cannot be overlooked, unlike traditional detection systems operating with
security rules. In particular, we chose to use fully connected neural networks (i.e., dense
layers) with one vector Tensorflow algorithm. We build our model with three layers:
(1) one input layer; (2) one hidden layer; and (3) one output layer. We use: (1) the Relu
activation function on the input layer, which, as input, the features (i.e., static and dynamic)
collected from the Omidroid dataset [5]; (2) the Dropout regularization on the hidden layer
for reducing overfitting and improving the generalization error of deep neural networks;
(3) the Sigmoid activation function on the output layer to give a probabilistic distribution
between 0 and 1; and (4) the optimizer ADAM to optimize the error. During the training,
we aim to minimize the loss function [33]. In our case, it is the binary cross entropy, which
measures the performance of a classification model whose output is a probability value

200

Electronics 2021, 10, 2948

between 0 (i.e., benign apps) and 1 (i.e., malware apps). The binary cross entropy is denoted
in Equation (1) [33]: This is example 1 of an Equation:

Binary cross entropy = −(ylog(p) + (1 − y) × log(1 − p)), (1)

where p is the predicted probability observation and y is the binary indicator (0 or 1). To
carry out good training on a dataset, it is necessary to adjust certain parameters, called
hyperparameters, such as (1) the number of iterations (i.e., 200) as presented in Section 6;
the dropout rate (i.e., 0.3), the learning rate (i.e., 0.002) and the activation function (i.e.,
Relu) proposed by Keras [34]; and (3) the number of neurons as input, as discussed
in Section 5.2.1.

4.3. Architectural Design

A client/server architecture is chosen, in order to perform more flexibility with solu-
tions and to use the feature extraction tools. Static, dynamic and hybrid proposed methods
can be executed separately. Moreover, dynamic methods need to run the apps on a device,
thus it makes sense to run the app in a specific environment. This device can be a real
phone or a virtual machine.

BrainShield’s architecture consists of two parts, as shown in Figure 1: (1) client; and
(2) server.

1. The client is the Android device on which the apps must be analyzed;
2. The server is the place on which malware is detected, and it is developed with Python.

Feature extraction and prediction are done on the server.

After feature extraction, each app corresponds to a feature vector. This vector is the
input of the neural networks. The architecture is common to the static method, dynamic
method, and hybrid method. The differences between these three methods rely on the
static and dynamic feature extractions, as well as on the neural networks. Indeed, An-
droGuard [21] is used for static features, while DroidBox [26] is used to extract dynamic
features. The hybrid prediction is based on both static and dynamic features.

Figure 1. Architecture of BrainShield.

Chen et al. [24] proposed the detection of systems based on data mining by ran-
somware for automatic detection. The actual behavior of the apps is controlled and
generated in the call flow graph API as a set of functionalities.

Emulator vs. real phone [25] offers a detailed study of the differences between the exe-
cution environments. This study is recommended to perform the detection on a real device.

DroidBox [26] allows monitoring a wide range of events, such as file access, network
traffic, or DEX files loaded dynamically at runtime. DroidBox uses API 16, which covers

201

Electronics 2021, 10, 2948

99.6% of smartphones according to Android. It is used for feature extraction in the context
of dynamic analysis.

5. Implementation

In this section, we present the architecture of BrainShield’s prototype and the steps
of the implementation to perform the prediction. Then, we provide the methodology that
brings the detection results.

5.1. BrainShield’s Prototype Implementation

The architecture of BrainShield’s prototype, as shown in Figure 1, is divided into two
parts: (1) the client; (2) and the server.

1. The client is the Android app written in Kotlin 1.3.70 (https://kotlinlang.org/
(accessed on 20 November 2021)) that runs on the Huawei P20 Lite (ANE-LX3)
(Huawei, Shenzen, China) phone;

2. The server is a Python 3.7.6 app (Python, Wilmington, DE, USA) developed with
Flask 1.1 that runs on an Amazon server. This is an Ubuntu Server 18.04 LTS (HVM),
SSD Volume, type t2.xlarge server with 4 vCPUs, x86_64 architecture, 16384 MiB of
RAM and 16 GB of SSD memory.

In this architecture, we present the nine steps to perform the prediction, as shown in
Figure 2: (1) labelling by assigning a class as benign or malicious to each app; (2) training
the fully connected neural networks; (3) acquisition of APKs to be able to predict unknown
apps; (4) client sends the analysis request to the server; (5) server returns the missing APKS
to the client; (6) client sends APKs missing on the server; (7) feature extraction on the server;
(8) prediction provided by the neural network for each app; and (9) sending prediction to
the client.

Figure 2. Steps of BrainShield.

Figure 3 depicts how we train the neural networks. We first load the database and then
randomly shuffle it to have different sets of malicious and benign applications between
each different training. After choosing the features, setting some parameters, creating our
neural network and splitting the database into three groups, the neural network training
can take place. The number of iterations can be varied, and then we finish by evaluating
the neural network on the test set.

202

Electronics 2021, 10, 2948

Figure 3. Pseudocode for training the neural network.

5.2. Methodology

We present hereafter the methodology, which consists of four parts: (1) hyperparame-
ter tuning; (2) feature selection; (3) impact of feature selection; and (4) relabeling.

5.2.1. Hyperparameter Tuning

This section describes how to set the training hyperparameters values of our proposed
model BrainShield based on the neural networks to detect malware.

As initial settings, the dropout rate (i.e., 0.3), the learning rate (i.e., 0.002) and the
activation function (i.e., Relu) are by default proposed by Keras [34]. Moreover, the number
of 50 iterations and the number of 1119 neurons as input are chosen as those large enough
to have viable results and to complete hundreds of training in a suitable time. The final
values of hyperparameters are illustrated in Table 2.

Table 2. Final values of hyperparameters.

Epoch Number Static Dynamic Hybrid

Epoch number 200 250 200
Learning rate 0.002 0.002 0.002
Dropout rate 0.5 0.5 0.5

Batch size 512 512 512
Number of features 840 2800 Static: 840; Dynamic: 2800

Number of neurons as input 280 933 Static: 280; Dynamic: 933
Loss function Binary crossentropy Binary crossentropy Binary crossentropy

Activation function Relu Relu Relu
Function of prediction Sigmoid Sigmoid Sigmoid

In order to obtain the best value for the epoch number (i.e., number of iterations),
we consider 7 values for the epoch number (i.e., 50, 100, 150, 200, 250, 300, 400), and we
compare the different results of training using the evaluation metrics (i.e., the accuracy, the
recall, the precision, the AUC, and the F1 score). The results are obtained from statistical
averages over 10 training sessions and are illustrated in Figure 4. Such results show that
the evaluation metrics are being improved for up to 250 iterations. Then, for higher values

203

Electronics 2021, 10, 2948

of epoch number, no improvement in the evaluation metrics is observed (e.g., 70 training
sessions with a total duration of 157 min were performed).

Figure 4. Epoch number comparison.

Hereafter, we justify the choice of (1) the dropout rate; (2) the learning rate; (3) the
number of neurons, and (4) the activation functions.

Dropout Rate

In the same vein, we vary the value of the dropout rate from 0 (no dropout at all) to
0.9 (we forget 90% between each epoch) to obtain its best value. In Figure 5, we observe
that a dropout rate of 0.3 makes it possible to obtain the best accuracy, as well as the best
F1 score.

Figure 5. Dropout rate comparison.

Learning Rate

A too high learning rate may result in exceeding the minimum value of the loss
function, while a too low learning rate may lead to an unnecessary too long learning
process [35]. In order to obtain the appropriate learning rate value, we vary the learning
rate from 0.00002 to 0.2. Figure 6 illustrates that neural networks with the default value of
0.002, as well as those with the value of 0.0002, enable us to obtain the best results, in terms
of F1 Score. In this context, we choose to keep the default value of 0.002, as proposed by
Keras. Indeed, both recall and AUC are being improved for detecting the false negatives
(malware not detected), which constitutes the basis of malware detection.

204

Electronics 2021, 10, 2948

Figure 6. Learning rate comparison.

Number of Neurons

In order to obtain the best value for the number of neurons as input, we vary the
number of neurons from 10 to 4359 neurons. To attain these limits, we started by choosing
a number of neurons equal to the number of features (i.e., 3359). Then, we increased and
decreased this number with a pace of 250. Moreover, when the number of neurons is less
than 100, we tightened the pace. In Figure 7, we observe that increasing the number of
neurons above the number of features does not improve the results, in terms of accuracy,
recall, precision, AUC, as well as F1 score. In addition, we can notice that the results are
roughly the same from 3359 neurons to 350 neurons. Beyond this threshold, the results
deteriorate. In light of such results, we estimate that the minimum number of neurons as
input must be equal to 10% of the number of features to keep the same results.

Figure 7. Number of neurons comparison.

Activation Function

In order to choose the activation function allowing us to obtain the best results, we
choose to compare all the activation functions offered by Keras [34]. Depending on the
dataset, each activation function has its advantages and disadvantages. In Figure 8, we
note that all the activation functions barely give the same results, except the softmax and
the linear activation functions.

205

Electronics 2021, 10, 2948

Figure 8. Activation functions comparison.

5.2.2. Feature Selection

Omnidroid initially consists of 25,999 static features. In Table 3, we present three
distributions of different features. The initial distribution is Omnidroid, to which no filter
is applied. The other two distributions come from the results of the selection method that
we proposed.

Table 3. Static features repartition.

Initial Step 1 Step 2

Features Nb % Nb % Nb %
Receivers 6415 24.7 216 6.4 171 8.7
Activities 6089 23.4 27 0.8 1 0.1

Permissions 5501 21.2 710 21.1 82 4.2
Services 4365 16.8 82 2.4 3 0.2
API calls 2129 8.2 1914 57.0 1369 69.4

FlowDroid 961 3.7 95 2.8 83 4.2
Opcodes 224 0.9 224 6.7 221 11.2

API Packages 212 0.8 0 0.0 0 0.0
Commands 103 0.4 91 2.7 43 2.2

Total 25,999 100 3359 100 1973 100

Step 1 consists of removing the empty features, as well as eliminating the features for
which the sum of features of an app is equal to 1. In other words, only one feature over
25,999 is equal to 1. As a result, the number of features gets reduced from 25,999 to 3359.
The first step proposed is therefore relevant.

Step 2 consists of removing the features whose sum does not exceed 220 for permis-
sions, opcodes, API calls, system commands, and activities; and which does not exceed
22 for services, receivers, API packages and for FlowDroid, thus going from 3359 to 1973.
The objective is to reduce the size of the dataset to allow faster training, as well as greater
simplicity when loading the dataset into the RAM. We noticed a reduction of 96.8% in load-
ing time. Although the results for the recall and precision assessment metrics are different
in Figure 9, the F1 score shows that the results are very similar for the dataset of 25,999
and 3359 features, and we lose 0.1% of F1 score for that of 1973 features. Therefore, we
confirm that the empty columns do not allow the neural network to improve the detection
results. These features, although not useful for learning, slow down the learning time and
considerably increase the allocated resources.

We now try a selection of static features, using Pearson’s correlation method [36].
It allows us to select the features with the highest correlation between the features and
the malware or benign apps. In Figure 10, we observe that the selection of features with
Pearson’s correlation enables us to improve the results obtained from the model with 3359

206

Electronics 2021, 10, 2948

features. Indeed, the neural networks of 1680 and 840 features enable us to obtain an F1
score of 86.44%, compared to 85.3% in Figure 9.

Figure 9. Static Omnidroid dataset vs. static Omnidroid simplified.

Figure 10. Feature selection with Pearson Correlation.

In the same vein, the approach that we propose for the selection of static features is
carried out for the selection of dynamic features. According to this approach, we remove
the features whose columns are empty or equal to 1, which reduces the number of features
from 5.932 to 3722, as illustrated in Table 4.

Table 4. Dynamic features repartition.

Initial Step 1 Step 2

Features Nb % Nb % Nb %
Opennet 1483 25.0 862 23.2 0 0.0
Sendnet 1186 20.0 718 19.3 0 0.0
Fdaccess 937 15.8 630 16.9 0 0.0
Dataleaks 867 14.6 509 13.7 134 43.2
Recvnet 837 14.1 540 14.5 0 0.0

Cryptousage 488 8.2 369 9.9 156 50.3
Dexclass 134 2.3 94 2.5 20 6.5

Total 5932 100 3722 100 310 100

In Figure 11, we note that 2210 dynamic features of Omnidroid are empty. To obtain
the dataset of the 310 most diverse features, we remove all the features whose sum was less
than or equal to 20. In Figure 11, we note an improvement in the results for 3722 features,

207

Electronics 2021, 10, 2948

which is not the case for 310 features, as presented in Table 3. In this context, we have
chosen to keep 3722 dynamic features.

Figure 11. Dynamic Omnidroid dataset vs. dynamic Omnidroid simplified.

5.2.3. Impact of Feature Selection

Figure 12 illustrates the impact of the number of features on the accuracy, showing the
differences when training and validating a model with 3359 and 840 static features, respectively.

Figure 12. Impact of feature selection on accuracy.

In particular, we observe that the reduction in the number of features makes it possible
to increase the accuracy on the training set and the validation set. Indeed, the training
curve and the validation curve of the model with 840 features are above the training curve
and the validation curve of the model with 3359 features, respectively.

5.2.4. Relabeling

The Omnidroid dataset was labeled by VirusTotal with a threshold ε equal to 1. This
threshold ε represents the number of antiviruses that detects an app as malicious. Thus, a
threshold ε set to 1 means that if only one of the sixty antiviruses on VirusTotal detects an
app as malicious, then this app will be labeled as malicious in Omnidroid. Therefore, we
track the number of apps detected by antivirus according to the number of antiviruses.

208

Electronics 2021, 10, 2948

The results in Figure 13 are valid as of September 2019. We used the VirusTotal
service [37] thanks to an academic API, to obtain a report for each app identified by its
hash. Therefore, such results date from little more than a year and a half after the initial
results obtained by [29]. Thus, we notice that a year and half later, only 9024 apps are
detected as benign, with a threshold ε equal to 1, which corresponds to 0 antivirus on the
abscissa axis. In addition, we note that 1807 apps are classified as malware, even though
only one antivirus has detected them as malicious. A threshold ε equal to 2 would have
been enough to classify them as benign.

Figure 13. Scans on VirusTotal of 22,000 apps.

In Figures 14 and 15, the representations are based on 22,000 app reports from Septem-
ber 2019, which are collected using a python script and a VirusTotal academic key. We have
relabeled Omnidroid for static trainings by setting the threshold ε from 1 to 4 for 2018′s
reports, and from 1 to 10 for 2019′s reports.

Figure 14. Static relabeling comparison.

209

Electronics 2021, 10, 2948

Figure 15. Dynamic relabeling comparison.

In Figure 14, we note an improvement in the results following the relabeling. We
deduce that there have been new scans of antivirus among VirusTotal for a year and a half,
and that this has an impact on the detection of malware.

Moreover, we have relabeled Omnidroid for dynamic trainings in Figure 15, but this
time by varying the threshold ε from 1 to 6 for the reports. As with static relabeling, we
notice an improvement in the results following dynamic relabeling. In particular, the recall
is the metric that is improved the most (i.e., up to 10%). Relabeling has made it possible to
detect more malware that were previously undetected by Omnidroid labeling.

6. Results

Following the relabeling, we set the number of iterations to the value that enables us
to obtain the best scores for each type of neural network. Table 2 shows the final values of
the hyperparameters.

The static feature selection was achieved with a manual method consisting in removing
the empty features from 25,999 to 3359 features, as well as with Pearson’s Correlation, from
3359 to 840 features. Table 5 illustrates the results of the static neural network on the test set.

Table 5. Static results.

Accuracy Precision Number of Features

Martin et al. [29] 89.3% 89.3% 25,999
Proposed model 92.9% 92.1% 840

Gain 3.6% 2.8% 96.8%

Table 6 presents the results of the dynamic neural network on the test set.

Table 6. Dynamic results.

Accuracy Precision Number of Features

Martin et al. [29] 78.6% 78.6% 5932
Proposed model 81.1% 83.4% 3722

Gain 2.5% 4.8% 37.3%

210

Electronics 2021, 10, 2948

Table 7 shows the results of the hybrid neural network on the test set.

Table 7. Hybrid results.

Accuracy Precision Number of Features

Martin et al. [29] 89.7% 89.7% Static: 25,999; Dynamic: 5932
Proposed model 91.1% 91% Static: 3359; Dynamic: 3722

Gain 1.4% 1.3% 77.8%

7. Discussion

We have chosen the Android operating system, since it is the most widely used
operating system in the world, with more than 80% of the mobile market [38]. Moreover,
the results presented in Figure 16 are valid on the date of the samples in the dataset. For a
reminder, the collection of malware is registered in Omnidroid dates from 2012 to 2018. We
have observed the relabeling impact clearly with more recent reports from VirusTotal on
the evaluation metrics. Accordingly, we can wonder what will happen to the accuracy and
the precision of neural networks in several years.

Figure 16. Detection results comparison.

Moreover, the apps may have evolved too much to be run on an API 16 emulator,
which is that of DroidBox [26], the tool for extracting dynamic features. API 16 (summer
2012) enables to run of relatively old apps for the period of summer 2020. However, it
is possible that app developers consider this API too old and set the API minimum to
21. Thus, it would be impossible to run their apps on the emulator. However, this can
be an advantage, since we can analyze old apps. In addition, the extraction of dynamic
features can be difficult in the context of apps requiring identification (Facebook, Instagram,
WhatsApp, Messenger type apps, etc.). In fact, the automatic feature extraction tool would
be blocked at the displaying of identification, and would not be able to explore all the app’s
functionalities. As a reminder, the emulator has a feature called Monkey that enables us
to randomly click on the screen to simulate user clicks. The extracted features would be
either nonexistent or in too little representative quantity to be able to make a prediction.
This is an intrinsic limitation of dynamic analysis.

8. Conclusions

We have proposed static, dynamic and hybrid methods for detecting malware tar-
geting Android mobile devices. Our three methods are based on fully connected neural
networks trained by the Tensorflow/Keras libraries. The static network, reaching an ac-
curacy of 92.9% and a precision of 91.1%, is trained on 840 static features. The dynamic
neural network, reaching an accuracy of 81.1% and a precision of 83.4%, is trained on

211

Electronics 2021, 10, 2948

3722 dynamic features. The hybrid neural network, reaching an accuracy of 91.1% and
a precision of 91.0%, is trained on 7081 features (i.e., 3359 statics and 3722 dynamics).
Feature selection techniques are used, such as Pearson correlation and a manual method.
In addition, we have presented that 22,636 static features and 2210 dynamic features of the
Omnidroid dataset are empty for a total of 24,846 out of 31,931 (i.e., 77.81%).

As future work, this research could be generalized to other operating systems, such as
iOS, which represents about 20% of the mobile market [38]. At that point, new tools for
extracting static and dynamic features should be developed, in order to build a new dataset
that we would be labeled by using VirusTotal. In addition, all results related to the learning
techniques, the evaluation metrics, as well as the hyperparameter configuration, could be
reused for training the neural networks. For further research, it would be necessary to
update the dataset with the most recent labelling techniques, and to develop an automation
tool for updating neural networks automatically.

Author Contributions: Conceptualization, C.R., F.E.K., R.B. and S.P.; methodology, C.R., F.E.K., R.B.
and S.P.; software, C.R. and F.E.K.; validation, C.R., F.E.K., R.B. and S.P.; formal analysis, C.R. and
F.E.K.; data curation, C.R. and F.E.K.; writing—original draft preparation, F.E.K.; writing—review
and editing, F.E.K.; visualization, F.E.K.; supervision, S.P.; project administration, S.P. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by Natural Sciences and Engineering Research Council of Canada
(NSERC), Prompt Quebec, Flex Groups and Q-Links.

Data Availability Statement: Publicly available dataset for Omnidroid [5] is analyzed in this study.
These data can be found here: (http://aida.etsisi.upm.es/download/omnidroid-dataset-v1 (accessed
on 12 September 2021)).

Acknowledgments: We would like to express our gratitude to Flex Groups teams for their techni-
cal support.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References

1. Woolf, N. DDoS Attack that Disrupted Internet was Largest of its Kind in History, Experts Say. Available online: https:
//www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet (accessed on 7 September 2021).

2. Fruhlinger, J. What is WannaCry Ransomware, How Does it Infect, and Who was Responsible? Available online: https://www.cs
oonline.com/article/3227906/what-is-wannacry-ransomware-how-does-it-infect-and-who-was-responsible.html (accessed on 7
September 2021).

3. MalwareBytes. Malware. Available online: https://fr.malwarebytes.com/malware/ (accessed on 10 September 2021).
4. Fournier, A.; El Khoury, F.; Pierre, S. A Client/Server Malware Detection Model Based on Machine Learning for Android Devices.

IoT 2021, 2, 355–374. [CrossRef]
5. AI + DA. OmniDroid Dataset Individual Features V2. Available online: http://aida.etsisi.upm.es/download/omnidroid-dataset-

v1/ (accessed on 12 September 2021).
6. Machine Learning Glossary. Available online: https://developers.google.com/machine-learning/glossary (accessed on 10

September 2021).
7. Machine Learning Crash Course. Available online: https://developers.google.com/machine-learning/crash-course/classificatio

n/ (accessed on 10 September 2021).
8. Witten, I.H.; Frank, E. Data mining: Practical machine learning tools and techniques with Java implementations. ACM Sigmod.

Record. 2002, 31, 76–77. [CrossRef]
9. Tounsi, W. Cybervigilance et Confiance Numérique: La Cyber Sécurité à l’ère du Cloud et des Objets Connectés; ISTE Group: London, UK,

2019; pp. 1–238.
10. Microsoft. Évaluation des Performances d’un Modèle Dans Azure Machine Learning Studio (Classique). 2021. Available

online: https://github.com/MicrosoftDocs/azure-docs.fr-fr/blob/master/articles/machine-learning/classic/evaluate-mod
el-performance.md (accessed on 19 September 2021).

11. Lockheimer, H. Android and Security. Available online: https://googlemobile.blogspot.com/2012/02/android-and-security.h
tml (accessed on 11 September 2021).

12. Oberheide, J. Dissecting Android’s Bouncer. Available online: https://duo.com/blog/dissecting-androids-bouncer (accessed on
11 September 2021).

212

Electronics 2021, 10, 2948

13. Android. Google Play Protect. Available online: https://www.android.com/intl/en_ca/play-protect/ (accessed on 11
September 2021).

14. Then, E. BeiTaAd Adware Discovered in 238 Google Play Store Apps. Available online: https://www.slashgear.com/beitaad-ad
ware-discovered-in-238-google-play-store-apps-05579281/ (accessed on 12 September 2021).

15. Arp, D.; Spreitzenbarth, M.; Hübner, M.; Gascon, H.; Rieck, K.; Siemens, C. Drebin: Effective and explainable detection of android
malware in your pocket. In Proceedings of the NdSS Symposium, San Diego, CA, USA, 23–28 February 2014; pp. 23–26. Available
online: https://www.ndss-symposium.org/wp-content/uploads/2017/09/11_3_1.pdf (accessed on 14 September 2021).

16. Ahmadi, M.; Sotgiu, A.; Giacinto, G. IntelliAV: Building an Effective On-Device Android Malware Detector. 2018. Available
online: http://arxiv.org/abs/1802.01185 (accessed on 17 September 2021).

17. Onwuzurike, L.; Mariconti, E.; Andriotis, P.; De Cristofaro, E.; Ross, G.; Stringhini, G. Mamadroid: Detecting android malware by
building markov chains of behavioral models. ACM Trans. Priv. Secur. 2019, 22, 1–34. [CrossRef]

18. Suarez-Tangil, G.; Dash, S.K.; Ahmadi, M.; Kinder, J.; Giacinto, G.; Cavallaro, L. Droidsieve: Fast and accurate classification of
obfuscated android malware. In Proceedings of the Seventh ACM on Conference on Data and Application Security and Privacy
(CODASPY ‘17), Scottsdale, AZ, USA, 22–24 March 2017; pp. 309–320. [CrossRef]

19. Arzt, S.; Rasthofer, S.; Fritz, C.; Bodden, E.; Bartel, A.; Klein, J.; Le Traon, Y.; Octeau, D.; McDaniel, P. Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android apps. ACM SIGPLAN Not. 2014, 49, 259–269. [CrossRef]

20. Karbab, E.B.; Debbabi, M.; Derhab, A.; Mouheb, D. MalDozer: Automatic framework for android malware detection using deep
learning. In Proceedings of the Fifth Annual DFRWS Europe, Florence, Italy, 21–23 March 2018; pp. S48–S59. [CrossRef]

21. Kali Tutorials, Androguard: Reverse Engineering, Malware and Goodware Analysis of Android Applications. 2019. Available
online: https://kalilinuxtutorials.com/androguard/ (accessed on 12 September 2021).

22. Enck, W.; Gilbert, P.; Han, S.; Tendulkar, V.; Chun, B.-G.; Cox, L.P.; Jung, J.; McDaniel, P.; Sheth, A.N. TaintDroid: An information-
flow tracking system for realtime privacy monitoring on smartphones. ACM Trans. Comput. Syst. (TOCS) 2014, 32, 1–29.
[CrossRef]

23. Rastogi, V.; Chen, Y.; Enck, W. AppsPlayground: Automatic security analysis of smartphone applications. In Proceedings of the
Third ACM Conference on Data and Application Security and Privacy, San Antonio, TX, USA, 18–20 February 2013; pp. 209–220.
[CrossRef]

24. Chen, Z.-G.; Kang, H.-S.; Yin, S.-N.; Kim, S.-R. Automatic ransomware detection and analysis based on dynamic API calls flow
graph. In Proceedings of the International Conference on Research in Adaptive and Convergent Systems (RACS’17), Krakow,
Poland, 20–23 September 2017; pp. 196–201. [CrossRef]

25. Alzaylaee, M.K.; Yerima, S.Y.; Sezer, S. Emulator vs. real phone: Android malware detection using machine learning. In Proceed-
ings of the 3rd ACM on International Workshop on Security and Privacy Analytics (IWSPA ‘17), Scottsdale, AZ, USA, 24 March
2017; pp. 65–72. [CrossRef]

26. The Honeynet Project. Droidbox: An Android Application Sandbox for Dynamic Analysis. Available online: https://www.hone
ynet.org/projects/active/droidbox/ (accessed on 12 September 2021).

27. Saracino, A.; Sgandurra, D.; Dini, G.; Martinelli, F. MADAM: Effective and Efficient Behavior-based Android Malware Detection
and Prevention. IEEE Trans. Dependable Secur. Comput. 2018, 15, 83–97. [CrossRef]

28. Arshad, S.; Shah, M.A.; Wahid, A.; Mehmood, A.; Song, H.; Yu, H. SAMADroid: A Novel 3-Level Hybrid Malware Detection
Model for Android Operating System. IEEE Access 2018, 6, 4321–4339. [CrossRef]

29. Martín, A.; Lara-Cabrera, R.; Camacho, D. Android malware detection through hybrid features fusion and ensemble classifiers:
The AndroPyTool framework and the OmniDroid dataset. Sci. Inf. Fusion 2019, 52, 128–142. [CrossRef]

30. Utilisation de Strace. Available online: https://source.android.com/devices/tech/debug/strace (accessed on 12 September 2021).
31. Enck, W.; Ongtang, M.; McDaniel, P. On lightweight mobile phone application certification. In Proceedings of the 16th ACM

conference on Computer and communications security, Chicago, IL, USA, 9–13 November 2009; pp. 235–245. [CrossRef]
32. Yan, L.K.; Yin, H. DroidScope: Seamlessly reconstructing the OS and Dalvik semantic views for dynamic Android malware

analysis. In Proceedings of the 21st ACM USENIX Conference on Security Symposium, Security’12, Bellevue, WA, USA, 8–10
August 2012; p. 29.

33. Docs. Loss Functions. Available online: https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html (accessed on 12
September 2021).

34. Keldenich, T. Fonction D’activation, Comment ça Marche? 2021. Available online: https://inside-machinelearning.com/fonction-
dactivation-comment-ca-marche-une-explication-simple/ (accessed on 12 September 2021).

35. Machine Learning Crash Course. Reducing Loss: Learning Rate. 2020. Available online: https://developers.google.com/machin
e-learning/crash-course/reducing-loss/learning-rate (accessed on 12 September 2021).

36. Chatterjee, S. Good Data and Machine Learning. 2017. Available online: https://towardsdatascience.com/data-correlation-can-
make-or-break-your-machine-learning-project-82ee11039cc9 (accessed on 12 September 2021).

37. VirusTotal. Available online: https://support.virustotal.com (accessed on 12 September 2021).
38. MMA. Android S’approche des 80% de Parts de Marché. 2019. Available online: https://www.mobilemarketing.fr/android-sap

proche-des-80-de-parts-de-marche/ (accessed on 12 September 2021).

213

Citation: Płachta, M.; Krzemień, M.;

Szczypiorski, K.; Janicki, A. Detection

of Image Steganography Using Deep

Learning and Ensemble Classifiers.

Electronics 2022, 11, 1565. https://

doi.org/10.3390/electronics11101565

Academic Editor: Stefanos Kollias

Received: 14 April 2022

Accepted: 11 May 2022

Published: 13 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Detection of Image Steganography Using Deep Learning and
Ensemble Classifiers

Mikołaj Płachta *, Marek Krzemień, Krzysztof Szczypiorski and Artur Janicki *

Faculty of Electronics and Information Technology, Warsaw University of Technology, Nowowiejska 15/19,
00-665 Warsaw, Poland; marek.krzemien.stud@pw.edu.pl (M.K.); krzysztof.szczypiorski@pw.edu.pl (K.S.)
* Correspondence: mikolaj.plachta.dokt@pw.edu.pl (M.P.); artur.janicki@pw.edu.pl (A.J.)

Abstract: In this article, the problem of detecting JPEG images, which have been steganographically
manipulated, is discussed. The performance of employing various shallow and deep learning
algorithms in image steganography detection is analyzed. The data, images from the BOSS database,
were used with information hidden using three popular steganographic algorithms: JPEG universal
wavelet relative distortion (J-Uniward), nsF5, and uniform embedding revisited distortion (UERD)
at two density levels. Various feature spaces were verified, with the discrete cosine transform
residuals (DCTR) and the Gabor filter residuals (GFR) yielding best results. Almost perfect detection
was achieved for the nsF5 algorithm at 0.4 bpnzac density (99.9% accuracy), while the detection of
J-Uniward at 0.1 bpnzac density turned out to be hardly possible (max. 56.3% accuracy). The ensemble
classifiers turned out to be an encouraging alternative to deep learning-based detection methods.

Keywords: steganography; machine learning; image processing; BOSS database; ensemble classifier;
deep learning; steganalysis; stegomalware

1. Introduction

Steganography is a method of hiding classified information in non-secret material.
In other words, we can hide a secret message in data that we publicly send or deliver, hiding
the very existence of a secret communication. Steganographic methods pose a significant
threat to users, as they can be used to spread malicious software, or can be used by such
malware (so-called stegomalware [1]), for example, for C&C communications or to leak
sensitive data.

An important share of steganographic methods use multimedial data, including
images, as a carrier. These methods are often referred to as digital media steganogra-
phy and image steganography, respectively. An example is a method used by the Vaw-
trak/Neverquest malware [2], the idea of which was to hide URL addresses within favicon
images. Another example would be the Invoke-PSImage [3] tool, where developers hid
PowerShell scripts in image pixels using a commonly used least-significant bit (LSB) ap-
proach. Yet another variance may be hiding information in the structure of GIF files [4],
which is quite innovative due to the binary complexity of the GIF structure.

It is observed that a growing number of malware infections take advantage of some
kinds of hidden transmission, including that based on image steganography. Since malware
infections pose a significant threat to the security of users worldwide, finding efficient,
reliable, and fast methods of detecting hidden content becomes very important. Therefore,
numerous initiatives and projects have been recently initiated to increase malware and
stegomalware resilience–one of them is the Secure Intelligent Methods for Advanced
RecoGnition of malware and stegomalware (SIMARGL) project [5], realized within the EU
Horizon 2020 framework.

The experiments presented in this article are part of this initiative. The aim of our
research was to find the most effective automatic methods for detecting digital steganogra-
phy in JPEG images. JPEG-compressed images are usually stored in files with extensions:

Electronics 2022, 11, 1565. https://doi.org/10.3390/electronics11101565 https://www.mdpi.com/journal/electronics215

Electronics 2022, 11, 1565

.jpeg, .jpg, .jpe, .jif, .jfif, and .jfi. JPEG compression is commonly used for image storage and
transfer; according to [6], 74.3% of web pages contain JPEG images. Therefore, these images
can also be easily used for malicious purposes. In this study, we researched various machine
learning (ML) methods of creating predictive models able to discover steganographically
hidden content that can be potentially used by malware. Such a detection method can be
integrated with antimalware software or any other system performing file scanning for
security purposes (e.g., a messaging system).

The great advantage of our research is that we experimented both with shallow ML
algorithms and with deep learning methods. As for shallow algorithms, we focused on
ensemble classifiers, which have been recently shown to yield good results in detection
tasks. When dealing with deep learning methods, we concentrated on a lightweight
approach, which did not involve computationally-intensive convolutional layers in a
neural network architecture. However, for the sake of simplicity, we did not research the
impact of hidden content on detection accuracy—all experiments were conducted with
random hidden messages.

Our article is structured as follows: first, in Section 2, we briefly review the state of
the art in the area of hiding data in digital images and its detection. Next, in Section 3, we
describe the experimental environment, including the test scenarios and the evaluation
metrics used. The results are described in Section 4. The article concludes with discussion
of the results in Section 5 and a summary in Section 6.

2. Related Work

This article focuses on JPEG images as carriers of steganographically embedded data.
The popularity of this file format has resulted in a number of data-hiding methods being
proposed, as well as various detection methods. In this section, we briefly review the basics
of JPEG-based image steganography, including the most commonly used algorithms. Next,
we proceed to the detection methods.

2.1. JPEG-Based Image Steganography

While multiple steganographic algorithms operate in the spatial domain, there are
some that introduce changes on the level of discrete cosine transform (DCT) coefficients
stored in JPEG files. Moreover, certain algorithms are designed to minimize the probability
of detection through the use of content-adaptiveness: they embed data predominately in
less predictable regions, where changes are more difficult to identify. Such modifications
are the most challenging to detect; this is why we selected them for our study. Follow-
ing other studies, e.g., [7], we chose nsF5 [8], JPEG universal wavelet relative distortion
(J-Uniward) [9], and uniform embedding revisited distortion (UERD) [10]. They are briefly
characterized in the following subsections.

2.1.1. nsF5

The nsF5 [8] algorithm embeds data by modifying the least significant bits of AC
(“alternating current”, having at least one non-zero frequency) DCT coefficients of JPEG
cover objects. Data is hidden using syndrome coding. Assuming that the sender has a
p-bit message m ∈ {0, 1}p to embed using n AC DCT values with their least significant
bits x ∈ {0, 1}n while only k coefficients xi, i ∈ I are non-zero, only some bits xi, i ∈ I are
modified, thus receiving y ∈ {0, 1}n. This vector needs to satisfy:

Dy = m,

where D is a binary p × n matrix that is shared between the sending and receiving party.
The embedding party needs to find the solution for the aforementioned equation that does
not require modifying the bits of zero-valued coefficients (xi = yi, i /∈ I). The solution
needs to minimize the Hamming weight between the modified and unmodified least-
significant-bit vectors (x − y). Using this coding method allows the sender to introduce
fewer changes than there are bits to embed, thus decreasing the impact of embedding

216

Electronics 2022, 11, 1565

on the carrier object. While the example provided shows how syndrome coding works,
usually a more sophisticated coding scheme, syndrome trellis coding (STC) [11], using a
parity-check matrix in place of D, is applied. The y vector represents a path through a
trellis built based on the parity-check matrix.

2.1.2. J-Uniward

J-Uniward [9] is a method for modeling steganographic distortion caused by data
embedding. It aims to provide a function that determines which regions of the cover object
are less predictable and harder to model. Changes introduced during steganographic data
embedding in those areas are harder to detect than if they were introduced uniformly
across the carrier. Through computation of relative changes of values based on directional
filter bank decomposition this method is able to detect smooth edges that are easy to model.
By detecting these predictable and unpredictable areas, this method provides a way of
determining where embedding changes would be least noticeable. This method is paired
with a coding scheme, such as syndrome trellis coding (STC), to create a content-adaptive
data-hiding algorithm.

2.1.3. UERD

UERD [10] is a steganographic embedding scheme that aims to minimize the probabil-
ity of steganographically encoded information’s presence being detected, by minimizing
the embedding’s impact on the statistical parameters of the cover information. It achieves
this by analyzing the parameters of DCT coefficients of given modes, as well as whole
DCT blocks and their neighbors. Through this, the method can determine whether the
region can be considered “noisy” and whether embedding will impact statistical features
such as histograms of the file. “Wet” regions are those where statistical parameters are
predictable and where embedding would cause noticeable changes. The scheme does not
exclude values such as the DC mode coefficients or zero DCT coefficients from being used
when embedding, as their statistical profiles can make them suitable from the security
perspective. UERD attempts to uniformly spread the relative changes of statistics resulting
from embedding. UERD employs syndrome trellis coding (STC) to hide message bits in the
desired values.

Figure 1 shows a sample clean image, the same image with random data hidden using
the UERD algorithm at 0.4 bpnzac (bits per non-zero AC DCT coefficient) rate, and an
image which is the difference between them. As can be observed, despite there being almost
5% hidden data in the image (b) no artifacts can be perceived. What is more, it is hardly
possible to observe any difference between the clean and steganographically-modified
image, even if they are displayed next to one another. It is only the differential image
(c) that proves the manipulation. The same refers to nsF5, J-Uniward, and other modern
algorithms realizing image steganography—their manipulations are often imperceptible
and difficult to detect, considering that the original image is rarely available.

2.2. Detection Methods

In recent years, several methods of detecting image steganography have been re-
searched. They usually involve the extraction of some sort of parameters out of analyzed
images, followed by applying a classification algorithm. They are usually based on an
ML approach, employing either shallow or deep learning algorithms. Therefore, in this
subsection, we first describe the features most frequently used with steganalytic algo-
rithms, and then briefly describe typical examples of shallow and deep learning-based
detection algorithms.

217

Electronics 2022, 11, 1565

(a) (b) (c)

Figure 1. (a) Clean image, (b) image with data hidden using UERD algorithm, and (c) differential
image between them, scaled 100 times. Density of steganographic data: 0.4 bpnzac, which means
here 2638 B of hidden data in each 53 kB image file. Clean image source: unsplash.com (accessed on 8
April 2022).

2.2.1. Feature Extraction

In the literature, several feature spaces for image steganalysis have been researched.
One of them is based on discrete cosine transform residuals (DCTR) [12], the main purpose
of which is to analyze the data resulting from obtaining the DCT value for a given image.
First, in this method, a random 8 × 8 pixel filter is created that will be applied to the entire
analyzed set. Then, a histogram is created after applying the convolution function with
the previously mentioned filter, iterating through each fragment of the analyzed image.
In [13], an example of using DCTR parameters in connection with a multi-level filter is
proposed. A different variation of this approach is a method based on gabor filter residuals
(GFR) [14]. It works in a very similar way to DCTR, but instead of a random 8 × 8 filter,
Gabor filters are used. Article [15] describes a successful application of GFR features in
JPEG steganography detection. Another approach to parameterization is using the phase
aware projection model (PHARM) [16]. In this approach, various linear and non-linear
filters are used, while the histogram is constructed from the projection of values for each
residual image fragment.

2.2.2. Shallow Machine Learning Classifiers

A number of shallow classification methods have been proposed for JPEG steganalysis.
These include the use of algorithms such as support vector machines (SVM) [17–19] or
logistic regression [20]. A method often appearing in recent publications is an ensemble
classifier built using the Fisher linear discriminant (FLD) as the base learner [21]. In certain
cases [7], parameter extractors coupled with this ensemble classifier outperformed more
recent deep learning-based systems. As such, this algorithm has become a point of reference
when looking into the performance of shallow ML methods in detecting steganography.
The rationale driving attempts to increase its detection accuracy is the fact that data is split
randomly into subsets used to train each base learner. Thus, it may be possible that certain
base learners are assigned less varied datasets. Their detection accuracy may suffer from
poor generalization capabilities. Simple ensemble vote-combining methods such as the one
used by default do not take such effects into consideration.

218

Electronics 2022, 11, 1565

2.2.3. Deep Learning Methods

In recent years, neural networks have often been reported as being used for detecting
steganographically hidden data in digital images. As input data, extracted image param-
eters based on decompressed DCT values such as DCTR, GFR, or PHARM have been
used. Proprietary variants of convolutional networks such as XuNet [22], ResNet [23],
DenseNet [24], or AleksNet [25] are most often used for this purpose. The common feature
of these networks is combining the convolution-batch normalization-dense structures,
i.e., the convolutional function, the normalization layer, and the basal layer of neurons with
the appropriate activation function. Functions such as sigmoid [26], TLU [27] (threshold
linear unit), and Gaussian [28] are used, but the most common are rectified linear unit
(ReLU) [29] or TanH [22].

3. Materials and Methods

In our experiments, we compared how shallow and deep learning methods cope with
detecting hidden data in JPEG images. We tested a variety of deep and shallow ML-based
classifiers and various feature spaces. Initially, we used raw DCT coefficients as input
for the tested methods. As it did not produce satisfactory results, we extracted various
parameters from the images. We performed experiments in DCTR, GFR, and PHARM
feature spaces. We taught our models features extracted from pairs of images: without
and with steganographically hidden data. Details of the data and the classifiers used are
presented in the next subsections.

3.1. Datasets Used

We used the “Break Our Steganograhic System” (BOSS) image collection [30], which
contains 10,000 black and white photos (with no hidden data). The photos were converted
into JPEG with a quality factor of 75. Then, we generated three other sets of images, hiding
random data with a density of either 0.4 or 0.1 bpnzac, using three different steganographic
algorithms: J-Uniward, nsF5, and UERD. We used their code published at [31]. All exper-
iments, including generation of the steganographic files, were run on a virtual machine
with 64 GB RAM and 8 vCPU cores of Intel Xeon Gold 5220 processor, running on a DELL
PowerEdge R740 server. Each dataset was divided in parallel into training and test subsets,
in the ratio of 90:10.

3.2. Configuration of Ensemble Classifier

The base component of the shallow classifier is the ensemble classifier based on the
FLD model [21]. A diagram presenting the way the ensemble classifier operates is shown
in Figure 2. The set of feature vectors created by extracting DCTR, GFR, or PHARM charac-
teristics from pictures is used to generate smaller subsets through a random selection of
samples from the original set (a process called bootstrapping). These subsets are then used
to train individual base learners independently from each other to diversify their classifica-
tion logic. Throughout the training process, the size of the subset and the population of the
ensemble (the number of base learners) is adjusted to minimize the out-of-bag error of the
system. These subsets are then used to train individual base learners. Upon testing, each
base learner reaches its decision independently of others and the results from the whole
“population” are aggregated to produce a single decision.

Figure 2. A diagram showing the structure of the ensemble classifier.

219

Electronics 2022, 11, 1565

In our work, we focused on maximizing the detection ability of this classifier through
the use of various methods to combine the votes of base learners. While the individual votes
in the original ensemble were fused by simply choosing the more popular classification
decision, we decided to explore the potential gain of employing machine learning for
this. We trained the original ensemble classifier and then used it to obtain the decisions
of all base learners for both the training and testing sets. The resulting data formed new
feature vectors, which were used for further analysis with different ways of combining the
votes of individual base learners. We performed this analysis using primarily methods
implemented in the scikit-learn library [32]. As such, the original ensemble became a
dimension-reducing layer.

3.3. Deep Learning Environment

The neural network environment was based on the Keras [33] and Tensorflow [34]
library due to the simplicity of the model definition. The network architecture was mainly
based on the Dense-BatchNormalization structure, but not using the convolution part as
described in the available literature. We also tested various activation functions for the
dense layer, such as sigmoid, softsign, TanH, and softmax, but the best results were obtained
for the ReLU function. We used two optimizers: adaptive moment estimation (Adam) [35]
and stochastic gradient descent (SGD) [36], which gave different results depending on
the type of input parameters. The last parameter that significantly influenced the model
learning efficiency was the learning rate. We found that lowering it gave very promising
results without changing the network architecture and the optimizer. One of the network
configurations used is displayed in Figure 3.

Figure 3. Example of 3 Dense-BatchNormalization neural networks used for detecting data hidden
by a JPEG-based steganographic method.

220

Electronics 2022, 11, 1565

3.4. Testing Scenarios

For the shallow ML-based algorithms, we decided to focus on the ensemble classifier,
which has been reported in related studies as one of the most promising. During our
experiments, we verified a number of ML-based methods used to combine the set of votes
coming from all base learners to return the final classifier decision. These include: linear
regression, logistic regression, linear discriminant analysis (LDA), and k nearest neighbors
(k-NN). Moreover, the majority voting scheme (i.e., choosing the most popular classification
decision, which is the original ensemble vote fusion method), as well as unquantized
majority voting (i.e., classification based on the sum of non-quantized decisions of the
whole ensemble) was included for comparison.

As for deep learning methods, two network architectures were selected for experiments:

• Three dense layers with the ReLU activation function, with 250 neurons in the first,
120 in the second, and 50 in the third, used in four reference models;

• Two dense layers also with the ReLU function, having 500 neurons in the first layer
and 250 in the second, used in the last (fifth) reference model.

We decided not to use any convolutional layers due to their high computational
requirements. However, we used additional normalization layers (BatchNormalization)
between the dense layers. Half of the three-layer dense models used the Adam optimizer
and half used SGD models, while the two-layer dense model used only the Adam optimizer.
In the case of learning rate for the Adam optimizer, the values 1 × e−4 or 1 × e−5 were
used, while for SGD, 1 × e−3 or 1 × e−4 were used. The version of the SGD optimizer
with learning rate 1 × e−3 or 1 × e−4 and the 1 × e−4 version of the Adam optimizer
were omitted here, because they yielded much worse results compared to the version with
three dense layers. In total, five different neural network configurations were tested for
steganography detection.

3.5. Evaluation Metrics

To evaluate the models created, we employed commonly used metrics. The first is
accuracy, which indicates what percentage of the entire set of classified data is the correct
classification. The second metric is precision, which determines what proportion of the
results indicated by the classifier as belonging to a given class actually belongs to it. Another
metric is recall, which determines what part of the classification results of a given class is
detected by the model. The fourth metric analyzed is the F1-score, which is the harmonic
mean of precision and recall. It reaches 1.0 when both components give maximum results.
The last metric we used to test the effectiveness of the model is the area under the ROC
curve (AUC). We will also present the ROC curves themselves, as they visually present the
effectiveness of the detection model.

In our results, we focus on evaluating the accuracy for each model combination, while
for the best parameters we also provide the values of the other metrics. Since the testset is
ideally balanced, the accuracy score is not biased and reflects well the detection ability of a
given classifier.

4. Results

Tables 1 and 2 show the results of steganography detection obtained by shallow
and deep methods, respectively. We display the accuracy values achieved for various
steganographic algorithms and various hidden data densities, accompanied by average
accuracies for each classifier/parameter combination.

221

Electronics 2022, 11, 1565

Table 1. Accuracy of image steganography detection (in percentages) for various classifiers and
ensemble configurations. The best values in each column are shown in bold.

Classifier Parameters
J-Uniward nsF5 UERD

Avg.
0.1 0.4 0.1 0.4 0.1 0.4

Majority
voting

DCTR 50.9 84.9 78.7 99.9 66.1 95.3 79.3
GFR 54.9 89.4 70.4 99.2 65.5 95.9 79.2

PHARM 53.9 84.9 70.5 98.7 64.5 94.6 77.9

Unquant.
majority
voting

DCTR 53.3 85.0 79.4 99.9 66.3 95.3 79.9
GFR 55.4 89.5 70.3 99.2 65.9 95.7 79.3

PHARM 54.1 50.8 50.7 51.7 50.0 50.0 51.2

Linear
regression

DCTR 54.2 85.6 79.7 99.9 66.1 95.2 80.1
GFR 56.3 89.8 70.2 99.2 66.2 95.7 79.6

PHARM 54.5 85.7 70.1 98.8 64.0 94.0 77.9

Logistic
regression

DCTR 54.3 85.4 79.4 99.7 66.2 94.9 79.9
GFR 56.3 89.5 70.1 99.1 65.9 95.5 79.4

PHARM 54.6 62.0 − 98.5 64.5 94.7 70.7

LDA
DCTR 54.2 85.6 79.7 99.9 66.1 95.2 80.1
GFR 56.3 89.7 70.2 99.1 66.2 95.7 79.5

PHARM 54.4 85.7 70.1 98.8 64.0 94.0 77.8

k-NN
DCTR 53.8 85.0 78.9 99.9 66.8 95.2 79.9
GFR 56.1 89.8 70.2 99.3 66.1 95.9 79.6

PHARM 54.8 − − 93.9 63.5 94.8 67.8

Table 2. Accuracy of image steganography detection (in percentages) for various architectures of
neural networks and optimizers. The best values in each column are shown in bold.

Network Arch. Optimizer Parameters
J-Uniward nsF5 UERD

Avg.
0.1 0.4 0.1 0.4 0.1 0.4

250 × BN × 120 ×
BN × 50
(3 layers)

Adam 1e−4
DCTR – 83.1 76.3 98.8 66.5 94.5 78.3
GFR – 86.5 68.3 95.5 63.4 92.9 76.1

PHARM – 74.7 62.3 95.9 51.4 88.5 70.5

Adam 1e−5
DCTR – 83.0 74.2 99.7 64.7 93.1 77.5
GFR – 88.4 68.0 98.2 62.6 92.5 76.6

PHARM – 76.1 66.1 93.4 55.5 89.4 71.8

SGD 1e−3
DCTR – 77.0 73.8 99.6 62.8 91.4 75.8
GFR – 78.6 68.8 97.5 58.5 91.9 74.2

PHARM – 58.4 51.4 59.8 50.6 61.5 55.3

SGD 1e−4
DCTR – 73.3 52.1 99.1 51.6 91.9 69.7
GFR – 82.2 58.6 97.6 52.1 91.9 72.1

PHARM – 60.9 – 69.7 50.6 68.9 58.4

500 × BN × 250
(2 layers) Adam 1e−5

DCTR – 80.8 73.5 99.6 61.9 93.5 76.6
GFR 53.6 86.4 67.6 97.4 64.2 91.9 76.9

PHARM – 75.0 54.1 94.2 54.0 87.9 69.2

On average, the use of ML for ensemble vote combination allowed for higher detection
accuracy when using the systems based on DCTR or GFR features, despite marginally
worse performance in certain cases (such as GFR features extracted from nsF5-modified
files at 0.1 bpnzac). The PHARM-features-based classifiers sometimes yielded results worse
than when using the default, majority-based scheme, or failed to converge altogether.
There was no combination of type of parameters used (DCTR, GFR, PHARM) and method
of fusing base-learner votes into the final decision that outperformed the others in all
testing scenarios. The configuration that, on average, achieved the best results for the

222

Electronics 2022, 11, 1565

steganographic algorithms tested turned out to be the linear regression classifier fed with
DCTR features. While using linear discriminant analysis (LDA) to fuse votes coming
from a system operating on DCTR parameters achieved equal averaged accuracy, linear
regression is considered in further sections due to slightly better performance with GFR
and PHARM features.

As for the deep learning algorithms (Table 2), the lowest accuracy was obtained for the
set based on J-Uniward. Better results in terms of accuracy were obtained for the sets based
on UERD, and the best were achieved for nsF5. When analyzing the tested configurations,
the worst results are those based on the SGD optimizer, while the configurations based on
Adam performed better at higher learning rates. Comparing the configuration based on
three layers and two layers, the results are rather similar for the Adam optimizer.

Looking at the various feature spaces, it can be seen that the least accurate results were
always obtained for PHARM. On the other hand, the results obtained for the DCTR and
GFR parameters for all combinations were much better and rather similar, which means
that most probably they can be used interchangeably in JPEG steganalytic tools.

These observations are further confirmed in Figure 4. The PHARM parameters always
yielded the worst results. The GFR features usually gave slightly better results for the
higher embedding rate (0.4 bpnzac), while for the lower embedding rate (0.1 bpnzac) it was
the DCTR feature space that turned out to be slightly better for most of the tested classifiers,
both shallow and deep learning-based.

Figure 4. Accuracy achieved for various feature vectors against classifiers or network architectures.

After conducting the research, we selected the best configurations for specific types of
sets, differentiating for shallow and deep learning methods, and calculated the remaining
metrics. Their outcomes are visualized in Figure 5, while the details are shown in Tables 3
and 4. Based on Figure 6, one can notice that the differences between the main evaluation
metrics for the best shallow and deep methods for density 0.4 bpnzac are only minor.
A somewhat higher difference can be observed for all the tested steganographic algorithms
applied at the lower embedding rate: 0.1 bpnzac. Here, the ensemble (shallow) classifier
usually turned out to be slightly better.

223

Electronics 2022, 11, 1565

Table 3. Results of image steganography detection (in percentages) for the best shallow method
(linear regression).

Metric
J-Uniward nsF5 UERD

Avg.
0.1 0.4 0.1 0.4 0.1 0.4

Accuracy 54.2 85.6 79.7 99.9 66.1 95.2 80.1
Precision 54.2 86.4 80.2 99.9 67.9 96.1 80.8
Recall 54.1 84.4 78.9 99.8 61.1 94.1 78.7
F1-score 54.1 85.4 79.5 99.9 64.3 95.1 79.7
AUC 54.9 91.8 87.7 99.9 72.4 98.8 84.3

Table 4. Results of image steganography detection (in percentages) for the best deep learning method
(250 × BN × 120 × BN × 50 with Adam 1 × e−4 based on DCTR parameters).

Metric
J-Uniward nsF5 UERD

Avg.
0.1 0.4 0.1 0.4 0.1 0.4

Accuracy 50.2 83.1 76.3 98.8 66.5 94.5 78.2
Precision 50.2 80.2 74.5 98.5 63.6 94.6 76.9
Recall 46.1 87.7 80.7 99.0 78.7 94.3 81.1
F1-score 48.1 83.8 77.3 98.8 70.1 94.4 78.8
AUC 50.3 91.6 84.5 99.8 72.8 98.7 83.0

Figure 5. Visualization of evaluation results for the best shallow and deep steganalytic algorithms.

These observations are confirmed by the scores shown in Tables 3 and 4. The highest
difference is for the J-Uniward 0.1 set, where the difference is about 4% relative, while
for other sets we usually observe about 1–2% relative advantage in favor of the ensemble
classifier, which means that these differences are only minor.

In total, the parameters of detecting data hidden using nsF5 at 0.4 embedding rate
are close to 100%, regardless of the method. In contrast, the metrics for detection of data
hidden with J-Uniward at 0.1 bpnzac are very poor. For the ensemble classifier with linear
regression, all metrics are around 54%, while for the best neural network for most of
the results are at the chance level. In general, the detection of all the tested JPEG-based
steganographic methods working at the embedding rate of 0.4 bpnzac can be conducted
with accuracy, with F1-score and AUC scores above 85%. The detection of hidden content
embedded at a low rate of 0.1 bpnzac is problematic both for shallow and deep methods.

224

Electronics 2022, 11, 1565

In the best case, the detection accuracy reached 85% for the easiest, nsF5 algorithm, while it
was significantly lower for UERD and J-Uniward.

(a) (b)

Figure 6. Comparison of ROC curves for the best neural network and the best ensemble classifier for
data hidden (a) with density 0.4 bpnzac and (b) with density 0.1 bpnzac.

5. Discussion

The results obtained were compared to the results of similar studies. In article [37], the re-
search was also carried out for the BOSS dataset using an alternative version of J-Uniward—an
SUniward algorithm. The model was based on the Convolution-BatchNormalization Dense
neural network scheme. The authors obtained AUC at the level of 97.9% for density 0.4 bpn-
zac. It was a similar result to our best model, which is much less computationally complex,
due to the lack of a convolutional layer.

Articles [13,14] also conducted research on the BOSS dataset using the DCTR parame-
ters and the Gabor filters on the J-Uniward algorithm, while using different decision models.
They obtained a detection error, calculated based on false-alarm and missed-detection prob-
abilities, as proposed in [37], of around 0.04–0.05 for DCTR, and the out-of-bag error for
the Gabor filter was around 0.39, both assessed for density 0.4. Unfortunately, these re-
sults are difficult to compare with ours due to the different metrics used and the testing
methodology.

During experimentation with various types of neural network layers, we noticed
that adding a normalization layer significantly improved the effectiveness of a model.
For example, for the nsF5 method, it improved the results by about 15–20% relative, while
for the J-Uniward 0.4 case it made it possible to build a reasonable model. Without this layer,
the network tended to classify all images into one class. It indicates that normalization
layers in the Convolution-Dense-BatchNormalization model are indispensable, in contrast
to convolution layers, the lack of which can be compensated for by, for example, choosing
a different feature space.

The results achieved in our study for the three-layer and two-layer network configu-
rations were quite similar for the Adam optimizer. This may indicate that enlarging the
architecture of a neural network is pointless, as it can only have a negative impact on the
computational efficiency of the neural model.

It is noteworthy that the BOSS dataset used in this study is comprised exclusively of
grayscale images. Thus, only the luma channel was present in each JPEG file. However,
the steganographic algorithms tested (nsF5, J-Uniward, and UERD) typically introduce
changes only to DCT coefficient values of the luma channel. As such, non-grayscale
(colored) images can easily be analyzed in the same way as the files from the BOSS dataset,
with the chrominance channels being ignored in the detection process.

225

Electronics 2022, 11, 1565

6. Conclusions and Future Work

In this article, we analyzed the effectiveness of detecting hidden content in JPEG
images using either shallow, ensemble classifiers, or deep learning methods. We found that
performance depended heavily on the steganographic method used and on the density of
the embedded hidden data. While detecting the presence of content hidden with the nsF5
algorithm at the density 0.4 bpnzac is almost perfect, the detection of data hidden using
J-Uniward at 0.1 bpnzac is hardly possible, regardless of the analysis method used.

One of the aims of our study was to find the best feature space for image steganalysis.
DCTR and GFR parameters yielded the best results, while the feature space built on
the PHARM parameters returned worse scores. Therefore, we recommend extracting
either DCTR or GFR features when scanning JPEG files for security purposes, e.g., by
antimalware software.

We also found that the performance of the best deep learning algorithm (with the
network architecture: 250 × BN × 120 × BN × 50 and the Adam 1 × e−4 optimizer) was
either similar or slightly inferior to that of the best ensemble classifier built on linear
regression. Therefore, we claim that carefully selected ensemble classifiers could be a
promising alternative to deep learning methods in the field of image steganalysis.

Future work could concentrate on searching for effective detection methods for rates
of embedding hidden data lower than 0.4 bpnzac, bearing in mind malware or advanced
persistent threats (APTs) exchanging lower amounts of data. Researchers should especially
focus on steganalysis of algorithms such as J-Uniward, which turned out to be particularly
difficult to detect. It would be also interesting to see an application of elaborated algorithms,
e.g., in an intrusion detection system (IDS). A study on the impact of characteristics of the
hidden data (random, text, script) on the detectability of a JPEG-based steganographic
method would also be beneficial.

Author Contributions: Conceptualization, M.P., K.S. and A.J.; methodology, M.P., M.K. and A.J.;
software, M.P. and M.K.; validation, M.P. and M.K.; investigation, M.P., M.K., K.S. and A.J.; data
curation, M.P.; writing—original draft preparation, M.P., M.K. and A.J.; writing—review and editing,
M.P., M.K., K.S. and A.J.; visualization, M.P.; supervision, A.J. and K.S.; project administration, A.J.;
funding acquisition, A.J. and K.S. All authors have read and agreed to the published version of
the manuscript.

Funding: The study has been supported by the SIMARGL Project—Secure Intelligent Methods for
Advanced Recognition of malware and stegomalware, with the support of the European Commission
and the Horizon 2020 Program, under Grant Agreement No. 833042.

Data Availability Statement: Image data are freely available at https://www.kaggle.com/datasets/
h2020simargl/jpeg-stegochecker-dataset (accessed on 10 May 2022).

Conflicts of Interest: The authors declare no conflict of interest.

Acknowledgments: The authors wish to thank the creators of the BOSS dataset: Tomáš Pevný, Tomáš
Filler and Patrick Bas, for creating and publishing their data.

References

1. Caviglione, L.; Choraś, M.; Corona, I.; Janicki, A.; Mazurczyk, W.; Pawlicki, M.; Wasielewska, K. Tight Arms Race: Overview of
Current Malware Threats and Trends in Their Detection. IEEE Access 2021, 9, 5371–5396. [CrossRef]

2. Cabaj, K.; Caviglione, L.; Mazurczyk, W.; Wendzel, S.; Woodward, A.; Zander, S. The New Threats of Information Hiding: The
Road Ahead. IT Prof. 2018, 20, 31–39. [CrossRef]

3. Encodes a PowerShell Script in the Pixels of a PNG File and Generates a Oneliner to Execute. Available online: https:
//github.com/peewpw/Invoke-PSImage (accessed on 18 January 2022).

4. Puchalski, D.; Caviglione, L.; Kozik, R.; Marzecki, A.; Krawczyk, S.; Choraś, M. Stegomalware Detection through Structural
Analysis of Media Files. In Proceedings of the 15th International Conference on Availability, Reliability and Security, ARES’20,
New York, NY, USA, 25–28 August 2020. [CrossRef]

5. Secure Intelligent Methods for Advanced RecoGnition of Malware and Stegomalware (SIMARGL) Project. Available online:
http://simargl.eu/ (accessed on 18 January 2022).

6. W3Techs—Web Technology Surveys. Available online: https://w3techs.com/technologies/overview/image_format (accessed
on 6 May 2022).

226

Electronics 2022, 11, 1565

7. Yang, Z.; Wang, K.; Ma, S.; Huang, Y.; Kang, X.; Zhao, X. IStego100K: Large-scale Image Steganalysis Dataset. In Proceedings
of the International Workshop on Digital Watermarking, Chengdu, China, 2–4 November 2019; Springer: Berlin/Heidelberg,
Germany, 2019.

8. Fridrich, J.; Pevný, T.; Kodovský, J. Statistically undetectable JPEG steganography: Dead ends, challenges, and opportunities.
In Proceedings of the the 9th ACM Multimedia & Security Workshop, Dallas, TX, USA, 20–21 September 2007; Association for
Computing Machinery: New York, NY, USA, 2007; pp. 3–14.

9. Holub, V.; Fridrich, J.; Denemark, T. Universal distortion function for steganography in an arbitrary domain. EURASIP J.
Multimed. Inf. Secur. 2014, 2014, 1. [CrossRef]

10. Guo, L.; Ni, J.; Su, W.; Tang, C.; Shi, Y.Q. Using Statistical Image Model for JPEG Steganography: Uniform Embedding Revisited.
IEEE Trans. Inf. Forensics Secur. 2015, 10, 2669–2680. [CrossRef]

11. Filler, T.; Judas, J.; Fridrich, J. Minimizing Embedding Impact in Steganography using Trellis-Coded Quantization. In Proceedings
of the Media Forensics and Security II, San Jose, CA, USA, 17–21 January 2010; Memon, N.D., Dittmann, J., Alattar, A.M., Delp,
E.J., III, Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2010; pp. 38–51.

12. Holub, V.; Fridrich, J. Low-complexity features for JPEG steganalysis using undecimated DCT. IEEE Trans. Inf. Forensics Secur.
2015, 10, 219–228. [CrossRef]

13. Wang, C.; Feng, G. Calibration-based features for JPEG steganalysis using multi-level filter. In Proceedings of the 2015 IEEE
International Conference on Signal Processing, Communications and Computing (ICSPCC), Ningbo, China, 19–22 September
2015; pp. 1–4. [CrossRef]

14. Song, X.; Liu, F.; Yang, C.; Luo, X.; Zhang, Y. Steganalysis of adaptive JPEG steganography using 2D Gabor filters. In Proceedings
of the 3rd ACM Workshop on Information Hiding and Multimedia Security, IH&MMSec’15, Portland, OR, USA, 17–19 June 2015;
Association for Computing Machinery: New York, NY, USA, 2015; pp. 15–23.

15. Xia, C.; Guan, Q.; Zhao, X.; Xu, Z.; Ma, Y. Improving GFR Steganalysis Features by Using Gabor Symmetry and Weighted
Histograms. In Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security, IH&MMSec’17,
Philadelphia, PE, USA, 20–22 June 2017; Association for Computing Machinery: New York, NY, USA, 2017; pp. 55–66. [CrossRef]

16. Holub, V.; Fridrich, J. Phase-aware projection model for steganalysis of JPEG images. In Media Watermarking, Security, and Forensics
2015; Alattar, A.M., Memon, N.D., Heitzenrater, C.D., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA,
USA, 2015; pp. 259–269.

17. Fridrich, J.; Kodovský, J.; Holub, V.; Goljan, M. Breaking HUGO—The Process Discovery. In Information Hiding; Lecture Notes in
Computer Science; Springer: Berlin/Heidelberg, Germany, 2011.

18. Bhat, V.H.; Krishna, S.; Shenoy, P.D.; Venugopal, K.R.; Patnaik, L.M. HUBFIRE—A multi-class SVM based JPEG steganalysis using
HBCL statistics and Fr Index. In Proceedings of the 2010 International Conference on Security and Cryptography (SECRYPT),
Athens, Greece, 26-28 July 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1–6.

19. Shankar, D.D.; Azhakath, A.S. Minor blind feature based Steganalysis for calibrated JPEG images with cross validation and
classification using SVM and SVM-PSO. Multimed. Tools Appl. 2020, 80, 4073–4092. [CrossRef]

20. Lubenko, I.; Ker, A.D. Steganalysis using logistic regression. In Media Watermarking, Security, and Forensics III; SPIE: Bellingham,
WA, USA, 2011; Volume 7880, p. 78800K.

21. Kodovsky, J.; Fridrich, K.; Holub, V. Ensemble Classifiers for Steganalysis of Digital Media. IEEE Trans. Inf. Forensics Secur. 2012,
7, 432–444. [CrossRef]

22. Xu, G.; Wu, H.Z.; Shi, Y.Q. Structural Design of Convolutional Neural Networks for Steganalysis. IEEE Signal Process. Lett. 2016,
23, 708–712. [CrossRef]

23. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recongnition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

24. Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.

25. Mohamed, N.; Rabie, T.; Kamel, I.; Alnajjar, K. Detecting Secret Messages in Images Using Neural Networks. In Proceedings of
the 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), Toronto, ON, Canada, 21–24 April
2021 ; pp. 1–6.

26. Tan, S.; Li, B. Stacked convolutional auto-encoders for steganalysis of digital images. In Proceedings of the Signal and Information
Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific, Siem Reap, Cambodia, 9–12 December 2014;
pp. 1–4.

27. Yang, J.; Shi, Y.; Wong, E.K.; Kang, X. JPEG steganalysis based on DenseNet. arXiv 2018, arXiv:1711.09335
28. Qian, Y.; Dong, J.; Wang, W.; Tan, T. Deep learning for steganalysis via convolutional neural networks. In Proceedings of

the Media Watermarking, Security, and Forensics 2015, San Francisco, CA, USA, 8–12 February 2015; Alattar, A.M., Memon,
N.D., Heitzenrater, C.D., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2015; Volume 9409,
pp. 171–180.

29. Pibre, L.; Pasquet, J.; Ienco, D.; Chaumont, M. Deep learning is a good steganalysis tool when embedding key is reused for
different images, even if there is a cover sourcemismatch. Electron. Imaging 2016, 2016, 1–11. [CrossRef]

30. Break Our Steganographic System Base Webpage (BossBase). Available online: http://agents.fel.cvut.cz/boss/ (accessed on 18
January 2022).

227

Electronics 2022, 11, 1565

31. Digital Data Embedding Laboratory. Steganographic Algorithms. Available online: http://dde.binghamton.edu/download/
stego_algorithms/ (accessed on 18 January 2022).

32. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

33. Ketkar, N. Introduction to Keras. In Deep Learning with Python: A Hands-on Introduction; Apress: Berkeley, CA, USA, 2017;
pp. 97–111. [CrossRef]

34. Pang, B.; Nijkamp, E.; Wu, Y.N. Deep Learning With TensorFlow: A Review. J. Educ. Behav. Stat. 2020, 45, 227–248. [CrossRef]
35. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.
36. Ketkar, N. Stochastic Gradient Descent. In Deep Learning with Python: A Hands-on Introduction; Apress: Berkeley, CA, USA, 2017;

pp. 113–132. [CrossRef]
37. Wang, H.; Pan, X.; Fan, L.; Zhao, S. Steganalysis of convolutional neural network based on neural architecture search. Multimed.

Syst. 2021, 27, 379–387. [CrossRef]

228

Citation: Korona, M.; Szumełda, P.;

Rawski, M.; Janicki, A. Comparison

of Hash Functions for Network

Traffic Acquisition Using a

Hardware-Accelerated Probe.

Electronics 2022, 11, 1688.

https://doi.org/10.3390/

electronics11111688

Academic Editor: Taeshik Shon

Received: 29 April 2022

Accepted: 23 May 2022

Published: 25 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Comparison of Hash Functions for Network Traffic Acquisition
Using a Hardware-Accelerated Probe

Mateusz Korona, Paweł Szumełda, Mariusz Rawski and Artur Janicki *

Faculty of Electronics and Information Technology, Warsaw University of Technology, Nowowiejska 15/19,
00-665 Warsaw, Poland; m.korona@tele.pw.edu.pl (M.K.); pawel.szumelda@gmail.com (P.S.);
mariusz.rawski@pw.edu.pl (M.R.)
* Correspondence: artur.janicki@pw.edu.pl

Abstract: In this article we address the problem of efficient and secure monitoring of computer
network traffic. We proposed, implemented, and tested a hardware-accelerated implementation
of a network probe, using the DE5-Net FPGA development platform. We showed that even when
using a cryptographic SHA-3 hash function, the probe uses less than 17% of the available FPGA
resources, offering a throughput of over 20 Gbit/s. We have also researched the problem of choosing
an optimal hash function to be used in a network probe for addressing network flows in a flow cache.
In our work we compared five 32-bit hash functions, including two cryptographic ones: SHA-1 and
SHA-3. We ran a series of experiments with various hash functions, using traffic replayed from the
CICIDS 2017 dataset. We showed that SHA-1 and SHA-3 provide flow distributions as uniform as
the ones offered by the modified Vermont hash function proposed in 2008 (i.e., with low means and
standard deviations of the bucket occupation), yet assuring higher security against potential attacks
on a network probe.

Keywords: traffic analysis; network probe; hash function; SHA-3; FPGA

1. Introduction

At present, society is witnessing an unparalleled pace of technological development
and global expansion of the Internet. An increasing number of ventures rely on network
connectivity, both in the public sector and in business. Entities connected to the Internet
range from those used for leisure purposes to elements of critical infrastructure, such as
industrial process control or transportation management systems. In the background, a
new technology paradigm known as Internet of Things (IoT) is evolving, which consists
of objects that collect, process, and exchange data via diverse networks, often operating
without direct human supervision [1]. This automation is one of the reasons why people
have been already surrounded by massive numbers of IoT devices; it is estimated that
about 75 million IoT devices will be connected to the network by 2025 [2].

In parallel, computer networks enable criminal activities named cybercrimes [3].
Constantly, new cybercrime types are being developed [4]. Some methods were previously
associated only with mafia and now are a threat in the virtual world. This includes
extortion using distributed denial of service (DDoS) attacks or ransomware—software
that encrypts user data for ransom. According to the NETSCOUT Threat Intelligence
Report [5], 9.7 million DDoS attacks were encountered in 2021. As Cybersecurity Ventures
estimates [6], global cybercrime costs will grow yearly by 15%, reaching 10.5 trillion US
dollars annually by 2025. Even though general awareness of various cybersecurity threats
is increasing, as is the overall level of safety, constant effort to improve countermeasures is
required. The growing number of targets, new attack vectors, and the fact that malware
constantly evolves do not make this an easy task. It is estimated that over 450,000 new
malicious programs and potentially unwanted applications (PUA) are registered every
day [7].

Electronics 2022, 11, 1688. https://doi.org/10.3390/electronics11111688 https://www.mdpi.com/journal/electronics229

Electronics 2022, 11, 1688

In response to numerous network threats, various cybersecurity methods have been
proposed. The first safeguards of a network are firewalls and intrusion detection/preven-
tion systems (ID/PS), whose task is to analyze incoming traffic and intercept packets when
a malicious signature is detected. Collecting IP traffic information for network monitoring
is a common practice of network operators and researchers. To build a coarse-grained
understanding of network traffic, the concept of network flows is used. It records traffic
statistics in the form of flow records. Each record contains important information about
a flow, such as its source and destination Internet Protocol (IP) addresses, start and end
timestamps, types of service, and application ports, along with the volume of packets or
bytes, etc. IP packets are assigned into flows based on their characteristics, such as source
or destination address, protocol type carried, and protocol port numbers (for TCP and
UDP) that can be referred to as flow keys. As a result of the analysis procedure, which
often incorporates the most cutting-edge approaches, including machine learning [8–10],
disallowed flows can be eliminated.

Flow-based network monitoring is today the most widespread technology, and Net-
Flow [11–13] is a widely used tool in network measurement and analysis. It is now gradu-
ally evolving into one of the most important means of ensuring network cybersecurity.

Performance of NetFlow monitoring tools has been identified as a crucial factor in
network security allowing for the application of immediate countermeasures. It has been
widely addressed, including the possibility for its hardware acceleration [14–18]. However,
it is important to note that also the monitoring device itself can be a target of a specialized
cyberattack [19], especially when the assailant has appropriate knowledge and is willing to
spend their resources and time for initial reconnaissance. Crossfire [20] is an example of such
a sophisticated attack (in comparison to the brute-force DDoS attack), tailored to a targeted
enterprise, that can isolate a target area by flooding carefully selected network links.

NetFlow-like tools face great challenges when both the speed and complexity of the
network traffic increase. To keep up with the multigigabit speed of network traffic, espe-
cially on high-bandwidth backbone links, NetFlow probes incorporate advanced techniques
to efficiently store and manipulate flow records [21]. A fast local memory inside the probe,
known as flow cache, is used to store the active flows. The flow cache is organized in a data
structure called a flow table, which consists of a list of flow records, one for each active flow.

To efficiently process incoming packets and access the database gathered based on
the flow key of the current packet often requires the use of sophisticated data structures,
which vastly reduces computational complexity. Hash-based data structures are commonly
proposed for this purpose as a solution allowing high-speed packet processing. Such data
structures are usually coupled with a hashing function that maps a flow key to a flow
cache location. Unfortunately, applying a perfect hashing function that maps each flow
key to a distinct flow cache location is not possible in practice. Thus, it is crucial to select a
hashing function that maps a small number of flow keys on to the same flow cache location,
so-called hash buckets. If the number of collisions is sufficiently small, then hash tables
work quite well and give O(1) search times. To ensure optimal utilization of the hash table
and reduce the vulnerability of a NetFlow probe to cyberattacks, the hash function needs
to be carefully chosen. If it is not, malicious traffic may be able to create collisions that
degenerate the hash table to linked lists with worst-case lookup times of O(n) and greatly
reduce the performance of the flow cache modules.

In [19], the authors evaluated the resilience of hash functions used in the software-
based NetFlow probes nProbe and Vermont. Theoretical analysis and real attacks proposed
by the authors show how easily flow monitors can be overloaded if the hash algorithm
has not been carefully chosen. The paper also presents a hash function that seems to
offer protection against hash collision attacks and computes fast enough to be deployed in
high-speed flow meters.

The obvious countermeasure against hash collision-based attacks (hash flooding or
HashDoS) is a hash function for which collisions cannot easily be created. Cryptographic
hash functions would provide such a feature; however, they are computationally expensive,

230

Electronics 2022, 11, 1688

which makes them difficult to use efficiently in NetFlow probes. The implementation of
such network monitoring elements with rigorous throughput may be challenging. Hard-
ware acceleration of their crucial functions can be an aid here. Still, to the best of our
knowledge, there is a lack of publications discussing hardware-accelerated network probes
for network traffic analysis with dedicated hash functions that would be resilient to tar-
geted attacks.

Our article aims at filling up this gap. In this work, we propose a hardware-accelerated
network probe that accelerates extraction of network packet characteristics and calculation
of the hash identifier. In addition, we describe the application of the cryptographic hash
functions SHA-1 and SHA-3 to map a flow key to a flow cache location. The efficiency of
our approach will be compared with the solutions discussed in [19].

Our article is organized as follows: First, in Section 2 we present the concept of a
hardware-accelerated network probe and review different hashing algorithms. Next, in
Section 3 we describe the experiments conducted. Their results are presented in Section 4,
followed by discussion and conclusions in Section 5.

2. Materials and Methods

In this section, we outline the concept of a hardware-accelerated network probe
(Section 2.1). Different hash algorithms that can produce hash table keys are discussed in
Section 2.2. Details of hardware implementations and functional verification of the design
are described in Section 2.3.

2.1. Hardware-Accelerated Network Probe

A network probe is a tool which acquires parameters from network traffic for traffic-
analysis purposes. In this work, we used a hardware-accelerated version of the software
network probe proposed in [22], which is also briefly presented here. The block diagram
of the probe is presented in Figure 1. The network probe processes the traffic data in the
following steps:

• capture network packets from a specific interface,
• analyze packets in chosen network stack layers,
• extract flow key and other features from the current packet,
• compute the hash value from the flow key,
• create or update a network flow record in the active flow cache,
• export inactive flows to the expired flow table,
• calculate flow parameters for the expired flows,
• store flow parameters in the output dataset.

Figure 1. Block diagram of hardware-accelerated network probe.

The traffic captured from a network interface is analyzed and then a network flow
record is created or an existing one is updated in the flow cache. Packet headers are analyzed
in terms of second, third, and fourth ISO/OSI Reference Model layers. Assignment of
new packets to flows is based on a hash function of the header parameters, which is
calculated using the IP source address, the IP destination address, the source port number,
the destination port number, and information on the transport layer protocol.

Considering the transport layer protocols, the conditions for classifying the stream
as ended are RST or FIN flags in the case of TCP, and reaching a predefined inactivity

231

Electronics 2022, 11, 1688

time in the case of UDP. The flows considered as ended are statistically analyzed and their
parameters extracted, as described in the next section. Expired flows are dumped to a file.

Captured packets are processed starting with the second ISO/OSI layer. From the
data link layer, information about the timestamp and the packet length is fetched. The
Ether_type field contains information about the higher-layer protocol used, which is, in the
network probe’s case, IPv4. After receiving the IP header, it is possible to decode the source
and destination IP addresses, along with the transport layer protocol. Knowing the values
of the headers of transport layer protocols, it is possible to decode the recipient’s port, and
the TCP flags, if applicable.

Current flows are stored in flow caches organized in buckets. For every incoming
packet, a hash of the flow key is calculated and then checked against the existing flow keys
in the appropriate bucket. If the hash does not exist, a new flow record is created in the
given bucket, with parameters such as: source and destination IP addresses, source and
destination port numbers, first packet timestamp, and transport layer protocol. If the hash
already exists, the existing flow is updated. The packet count value is incremented, TCP
flags are updated (if applicable), and a new timestamp and the packet size are added to
the list.

In the case of the TCP protocol, the appearance of a FIN or RST flag means the end of
the flow. Then, some of the flow’s parameters are updated. Furthermore, the flow is moved
from the active flows map to the expired flows list. Post-processing of the parameters
consists of converting source and destination IP addresses to ASCII format; marking last
timestamp; and calculating the flow’s duration and total byte count, and its statistical
parameters.

In the case of UDP packets, these are periodically checked by the application thread,
which will be iterating through the active flows cache. The last packet’s arrival time in
a flow is compared to the last packet’s arrival time on the network adapter, and if this
exceeds the time difference by a predefined value (set in our case to 10 s), it is moved from
the current flows cache to the expired flows list.

2.2. Hash Functions

Hashing is an extremely useful technique widely used to construct fast lookup meth-
ods to be able to quickly assign received packets to their corresponding flows. The hash
functions used for mapping flow keys to hash values need to be chosen carefully to ensure
optimal utilization of the hash table. Intuitively, a hash function is a function that maps
every item to a hash value in a fashion that is somehow random. The most obvious model
for a hash function is that it is fully random. Unfortunately, it is almost always impractical
to construct fully random hash functions, as the space required to store such a function is
essentially the same as that required to encode an arbitrary function as a lookupTable [23].
Thus, the hashing applied is usually a compromise between the randomness properties
that are desired in a hash function and the computational resources needed to store and
evaluate such a function.

Hash functions utilized in network monitoring devices should have the following
features:

1. good performance—hash calculation cannot become a bottleneck in the network
monitor;

2. uniform distribution—when this condition is fulfilled, buckets of the hash table which
stores data describing monitored flows are randomly selected for traffic that is not
manipulated, and none of them is likely to contain long list of packets (or to overflow);

3. collision resistance—when the hash function has this feature, it is extremely hard for
an attacker to forge two packets with different flow characteristics that will end in the
same hash table bucket, a situation that might eventually lead to bucket overflow.

Report [19] discusses hash algorithms used in two popular monitoring tools—nProbe [24]
and Vermont [25]. The authors of the current paper have identified some flaws in both
algorithms and proposed a modified version of Vermont. They also suggest that crypto-

232

Electronics 2022, 11, 1688

graphic hash functions might be best for such an application, if their implementations meet
performance demands.

The network probe implements all three algorithms from [19] in hardware. In addition,
two cryptographic hash functions were implemented—the cryptographically broken but
still widely used SHA-1 and the state-of-the-art SHA-3. All of the algorithms are described
in following subsections.

For the proposed network probe, a hash width of 32 bits was considered. If the result
of a given algorithm was wider, this was reduced accordingly to 32 bits. The network probe
considers source IP address, destination IP address, protocol, and protocol (TCP/UDP)
source/destination port numbers as flow keys.

2.2.1. Sum Modulo 32—nProbe

The nProbe [24] monitoring tool utilizes simple sum modulo as its hash algorithm.
For the proposed network probe, the calculation is presented as Equation (1):

h = (srcIP + dstIP + protocol + srcPort + dstPort)mod32 (1)

This algorithm is very simple; however, as the authors of [19] point out, after testing it
with a captured network packet trace, it does not have a perfectly uniform distribution—a
number of buckets contain considerably more entries than others. Another drawback is
relative ease of generating collisions, because an attacker can freely manipulate the values
of the flow keys provided that their sum is constant.

2.2.2. Nested CRC-32—Vermont

Cyclic redundancy checks or cyclic redundancy codes (CRC) have been utilized for
error detection in computing for a long time. A digest is calculated from transmitted data
and is appended to the frame. The same algorithm is applied to data upon frame reception,
and when the result is the same as the code calculated by the transmitter, it means that the
received packet is correct.

The actual algorithm can be described mathematically as polynomial division of binary
data being interpreted as polynomial over GF(2) (every bit is a polynomial coefficient—zero
or one) by generator polynomial G(x). The remainder of that division is treated as a check
sequence, which is appended to the transmitted frame [26].

The CRC-32 implementation used in the proposed network probe is based on IEEE
802.3 [27] polynomial. Implementation parameters, according to [26], are presented in
Table 1.

Table 1. The network probe hardware accelerator CRC-32’s implementation parameters, following [26].

Parameter Value

Polynomial x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x1 + 1
(0x04C11DB7)

Data width 32
Initial value 0xFFFFFFFF
Reflect input True
Reflect output True

Final XOR 0xFFFFFFFF

Vermont [25] is built on nested CRC-32 invocations. The algorithm starts with a given
initial seed, and Figure 2 presents how CRC-32 is invoked five times to include flow keys
in the hash calculation. The result of the preceding CRC-32 function is utilized as seed for
the next one.

233

Electronics 2022, 11, 1688

Figure 2. Illustration of Vermont hashing function.

The authors of [19] found that Vermont is computationally efficient and offers roughly
uniform distribution; however, they also proved that an attacker is still able to create hash
collisions on purpose.

2.2.3. Nested CRC-32 with w Constants—Modified Vermont

Report [19] proved that the CRC-based Vermont algorithm does not protect network
monitoring devices from targeted collision attacks. The goal of the authors of this current
paper was to design a function that does not have this flaw, but that offers the same
statistical qualities. The result of their research is a modified Vermont algorithm, presented
in Figure 3.

Figure 3. Illustration of modified Vermont hashing function, based on [19].

To ensure that an attacker cannot create collisions in a simple way, a unique secret
random value (w(i), initialized during network monitor activation) is added to every flow
key before CRC-32 calculation. This significantly increases the cost of a targeted attack, but
does not prevent it, since the CRC-32 scheme is still used.

2.2.4. SHA-1

SHA-1 is a cryptographic hash function created in 1995, described in [28,29]. In its
cycle of life it is currently marked as deprecated, because it is prone to a variety of attacks.
In 2015, a group of researchers was able to find a freestart collision, where the SHA-1
initialization vector was chosen by themselves [30], but soon the full SHA-1 algorithm was
also cracked [31–33].

An organized crime syndicate in possession of tens of thousands of dollars can create
an SHA-1 collision in about two months, and for instance, forge an SSL certificate. That
is the reason famous brands such as Microsoft, Google, and Mozilla abandoned the SHA-
1 algorithm; however, it still may be useful in real-time applications such as network
monitoring.

The SHA-1 function produces a 160-bit hash. It is capable of hashing messages as long
as 264 − 1 bits, which are divided into 512-bit blocks processed one by one.

The first step of the algorithm is padding, because the length of the message must be a
multiple of 512 bits. During this process, the information about message length is encoded
in 64 bits (hence the message length limit). This number is concatenated with exactly one
“1” bit and an appropriate number of “0” bits, so when the padding bit string is appended
to the message, the total length is a multiple of 512 bits. The temporary value of the hash is
stored in five 32-bit variables H, initialized as in Listing 1.

234

Electronics 2022, 11, 1688

Listing 1. Initial values of H variables in SHA-1 algorithm.

H_0 (0) = 0 x67452301
H_1 (0) = 0xEFCDAB89
H_2 (0) = 0x98BADCFE
H_3 (0) = 0 x10325476
H_4 (0) = 0xC3D2E1F0

Every block of the message is processed through 80 rounds according to the scheme in
Figure 4.

Figure 4. SHA-1 algorithm round scheme.

Variables A to E are assigned values of corresponding H registers from the previous
block or H(0) for the first block. The W array is generated—the first 16 words are 32-bit
chunks of the processed block and subsequent words are calculated with Equation (2).

W(i) = W(i − 3)⊕ W(i − 8)⊕ W(i − 14)⊕ W(i − 16) (2)

Function F and the value of variable K depend on the current round number as in
Equations (3) and (4).

F(i) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(B & C) | ((∼ B) & D) for 0 <= i <= 19
B ⊕ C ⊕ D for 20 <= i <= 39
(B & C) | (B & D) | (C & D) for 40 <= i <= 59
B ⊕ C ⊕ D for 60 <= i <= 79

(3)

K(i) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0x5A827999 for 0 <= i <= 19
0x6ED9EBA1 for 20 <= i <= 39
0x8F1BBCDC for 40 <= i <= 59
0xCA62C1D6 for 60 <= i <= 79

(4)

After 80 rounds for the given block, the H registers are updated as in Listing 2. When
all blocks of the message are processed, the hash can be read as a concatenation of H
variables.

235

Electronics 2022, 11, 1688

Listing 2. Update of H variables when block was processed in the SHA-1 algorithm.

H_0 (i) = H_0 (i −1) + A
H_1 (i) = H_1 (i −1) + B
H_2 (i) = H_2 (i −1) + C
H_3 (i) = H_3 (i −1) + D
H_4 (i) = H_4 (i −1) + E

In the proposed network probe, SHA-1 is applied to a 104-bit string that consists of
32-bit IP source and destination addresses, 8-bit IP protocol information, and 16-bit source
and destination ports of TCP/UDP. The 160-bit hash is reduced to 32-bit words by XORing
(⊕) all H registers together.

2.2.5. SHA-3

SHA-3 [34] is the newest hash standard issued by NIST. Unlike previous SHA algo-
rithms, it is based on sponge construction [35] instead of the Merkle–Damgȧrd structure [36].
SHA-3 is in fact a slightly modified Keccak algorithm [37], the winner of the NIST contest.
SHA-3, like SHA-2, is capable of four hash length generations: 224, 256, 384, and 512 bits,
depending on the underlying sponge construction configuration.

Keccak has an internal state which is b-bit string S; this can be also presented as a
three-dimensional array (named A, Figure 5) with mapping as in Equation (5). For SHA-3,
b = 1600 and two more helper variables are derived from this value: w = b/25 = 64 and
l = log2(w) = 6.

A[x, y, z] = S[w(5y + x) + z] (5)

Figure 5. SHA-3 state as three-dimensional array A.

In Figure 5:

• the color green marks an example column of the state array (x = 1, z = 0),
• the color red marks an example row of the state array (y = 0, z = 0),
• the color blue marks an example lane of the state array (x = 2, y = 3),
• and the color yellow marks an example slice of the state array (z = 3).

An SHA-3 round consists of five step mappings denoted θ, ρ, π, χ, and ι (Equation (6)).
Each of those mappings takes state array A as an input and returns an updated state array
A’. The ι mapping also takes round index ir as an argument.

Rnd(A, ir) = ι(χ(π(ρ(θ(A)))), ir) (6)

A detailed explanation of every step mapping can be found in [34], and the descriptions
below will give a brief idea of how each of these works.

236

Electronics 2022, 11, 1688

The effect of θ is to XOR (⊕) each bit in the state with the parities of two columns in
the array. The ρ operation result is modification of the z coordinate for every bit in each lane
by an offset (modulo lane size), which depends on fixed x and y coordinates of this lane.
The π operation effect is rearranged positions of lanes in every state array slice. In the χ
operation, each bit of the state array is XORed (⊕) with a non-linear function of two other
bits in its row. The effect of the ι operation is to modify some of the bits in Lane(0,0) (the
exact center of the state array slice) in a way that depends on the round index ir. Lane(0,0)
is XORed (⊕) with a w-bit string, where most of the bits are “0”, but a selected few are the
result of rc(x) transformation dependent on round index ir.

Before the message is fed into the sponge construction, a two-bit suffix “01” is ap-
pended to its end. It supports domain separation and allows us to distinguish the SHA-3
hash function from other algorithms. Now the message must be padded so its length is a
multiple of rate (r) parameter, which essentially is the SHA-3 block width. SHA-3 utilizes a
pad10*1 padding scheme, which generates a bit string starting and ending with “1” and
filled with an appropriate number of 0s (hence the asterisk, which in regular expression
notation indicates zero or more).

Figure 6 presents the SHA-3 sponge construction’s principle of operation. At the
beginning, the SHA-3 state is initialized with a 1600-bit (b = 1600) string of zeros. In the
phase called absorption, the padded message is divided into series of r-bit blocks and XORed
(⊕) into a state vector. Then f transformation, which consists of 24 SHA-3 rounds, is applied
to the state. This process is repeated until the whole message is absorbed. In the second
stage, the actual hash is squeezed from the sponge. For all SHA-3 hash lengths, the hash can
be obtained without applying the f transformation again—an appropriate number of bits
is taken directly from the state vector as r is always greater than the hash length (Table 2).
Variable c is the capacity of the sponge, and for SHA-3 it is double the hash length (c = 2d).
As variables r and c satisfy relation r + c = b, the selection of capacity determines the block
width of the SHA-3 algorithm.

Figure 6. Sponge construction, which is the basis of SHA-3.

Table 2. Capacity c and rate r of SHA-3 algorithms in relation to hash length.

Hash Length d Capacity c = 2d Rate r = b − c

224 448 1152
256 512 1088
384 768 832
512 1024 576

In the network probe, SHA-3 is applied to a 104-bit string that consists of 32-bit IP
source and destination addresses, 8-bit IP protocol information, and 16-bit source and
destination ports for TCP/UDP. The SHA-3 digest is trimmed to the 32 most significant
bits, which are considered the flow hash.

237

Electronics 2022, 11, 1688

2.3. Implementation and Verification
2.3.1. Implementation

The proposed network probe hardware accelerator was implemented with the hard-
ware description language Verilog [38]. The accelerator’s top module is depicted in Figure 7.
It has a 128-bit data path with two AXI4-Stream interfaces [39], Slave and Master, used
for data flow. Packets are processed sequentially, and their order is not changed. Block
netprobe_top consists of two submodules that implement the two main functions of the
accelerator:

• netprobe_parser_top, where IP packet parsing and extraction of flow keys along with
some other parameters (e.g., payload length, TCP flags) is performed,

• netprobe_hash_top, where calculation of the 32-bit hash over flow keys extracted from
the IP packet header is carried out.

Figure 7. Block scheme of the network probe hardware accelerator’s top module—netprobe_top.

Figure 8 presents the structure of the packet parser module. The first block in the data
path is a protocol filter, responsible for dropping IP packets that contain a protocol other
than TCP or UDP. Packets that pass this protocol check are distributed in a round-robin
manner between two parallel parser engines which extract flow keys and other information
from the packet header.

Figure 8. Block scheme of the network probe hardware accelerator packet parser module—
netprobe_parser_top.

These modules were parallelized to avoid empty cycles on the Master interface due
to the unfavorable header structure of processed IP packets, e.g., such as IP header length
(IHL), and as a result the TCP header offset that causes the TCP port and TCP flag fields to
be in different packet beats for the 128-bit data path width. Parser engines process the IP
packet header, extract flow keys and the rest of the features, and forward data in an internal
format (two beats in a 128-bit data path). A placeholder for the hash is included, although
it is calculated later in the pipeline.

Module netprobe_hash_top is a block that wraps hash engines. It is parameterized with
a HASH_ALGORITHM variable, which selects an appropriate algorithm submodule to be
instantiated (Table 3).

238

Electronics 2022, 11, 1688

Table 3. Values of HASH_ALGORITHM parameter for netprobe_hash_top module configuration.

HASH_ALGORITHM Value Hash Algorithm

0 None—hash is not appended
1 Sum modulo 32—nProbe
2 Nested CRC-32—Vermont
3 Nested CRC-32 with w constants—modified Vermont
4 SHA-1
5 SHA-3

The module netprobe_hash_top also has a set of strap ports used for modified Vermont
and SHA-3 algorithm configuration as in Table 4. In the network probe hardware accelerator,
w constant straps were tied off to random integers and a 512-bit hash was selected for the
SHA-3 algorithm.

Table 4. Module netprobe_hash_top strap ports for algorithm configuration.

Strap Input Port Width Description

strap_w_src_addr 32 32-bit constant w for modified Vermont algorithm to sum with
Source IP Address key

strap_w_dst_addr 32 32-bit constant w for modified Vermont algorithm to sum with
Destination IP Address key

strap_w_protocol 32 32-bit constant w for modified Vermont algorithm to sum with
IP Protocol key

strap_w_src_port 32 32-bit constant w for modified Vermont algorithm to sum with
Source Port key

strap_w_dst_port 32 32-bit constant w for modified Vermont algorithm to sum with
Destination Port key

strap_hash_length 2 Selection of SHA-3 hash length—2′d0, 2′d1, 2′d2, 2′d3 mean
224, 256, 384, 512 bits, respectively.

The nProbe hash algorithm (for HASH_ALGORITHM = 1) was implemented as a
simple 32-bit adder, whose inputs are flow keys extracted from the internal packet format
and left-padded with zeros to 32-bit width if necessary.

The Vermont hash algorithm (for HASH_ALGORITHM = 2) was implemented as
5-stage pipeline, similarly to the diagram in Figure 2. Internal packet data are registered
in parallel to CRC-32 logic, and at every stage an appropriate flow key is selected to be
included in the hash.

The modified Vermont hash algorithm (for HASH_ALGORITHM = 3) was realized in
a similar manner to regular Vermont. Flow keys are obfuscated with w constants before
being used in CRC-32 calculations, as in Figure 3.

In the case of SHA-1 (for HASH_ALGORITHM = 4), concatenation of all flow keys
forms a 104-bit word, which is considered input to the hash function. The length of the
input word is less than 512 bits, which means that SHA-1 transformation (80 rounds) must
be applied only to a single block. This makes pipelined algorithm implementation possible,
as backpressure towards subsequent packets is not necessary.

Figure 9 presents an example of such a pipeline. Data with extracted flow keys are
constantly fed to the input, and multiple packets are processed simultaneously. Since the
internal packet format requires two cycles to be transmitted in a 128-bit data path, where
only the first cycle carries valid flow keys, a valid hash is obtained at the final stage of the
pipeline only for the first beat of this packet.

In regular SHA-1 implementation, the hash pipeline would have 80 stages—one per
SHA-1 round. It is possible to reduce the number of stages by unfolding the algorithm loop
and implementing two rounds between stage registers. This approach, however, leads to
critical path extension of circuits and as a result decreases maximum clock frequency. The
solution to this problem was proposed in [40], where the authors described a method with

239

Electronics 2022, 11, 1688

the SHA-1 algorithm loop unfolding using additional variables. This technique allows us
to perform two algorithm rounds within one clock cycle and reduces the required number
of stages by half. It was incorporated in the network probe hardware accelerator SHA-1
implementation; therefore, its pipeline had 40 stages.

For SHA-3 (for HASH_ALGORITHM = 5), as previously, concatenation of all flow
keys creates a 104-bit input word. Again, this is less than the SHA-3 block length, so the
approach illustrated in Figure 9 can be applied once more. The SHA-3 pipeline in the
proposed network probe hardware accelerator has 24 stages, one per SHA-3 round.

In all cases, a 32-bit flow hash is inserted into the initial placeholder of the output
accelerator packet.

Figure 9. Pipelined hash algorithm implementation in the network probe hardware accelerator.

2.3.2. Functional Verification

Functional verification of the proposed network probe hardware accelerator was con-
ducted using cocotb—an open source, Python-based testbench environment for VHDL/Ver-
ilog RTL [41]. It adopts the same concepts of constrained random verification as industry-
standard UVM [42]; however, it is implemented in Python rather than SystemVerilog.
This enables swift and productive construction of the verification environment, as Python
scripting is simple, and additionally, a huge library of existing code is available (e.g., packet
generation libraries and cryptographic algorithm implementations).

Figure 10 presents the structure of the cocotb-based verification environment. DUT
(Design Under Test, here netprobe_top) was instantiated as top level in the simulator and was
surrounded by verification environment components as drivers, monitors, and scoreboard,
which were extended from infrastructure provided by cocotb. Ports of the tested module
were stimulated directly from the Python function acting as a test case.

Figure 10. cocotb-based verification environment of netprobe_top module.

240

Electronics 2022, 11, 1688

At the beginning, a number of transaction objects that mimic IP packets were created
and randomized. The goal was to cover a broad space of possible network traffic, so
multiple packet parameters were changed: packet length, addresses, encapsulated protocol,
etc. These objects were passed to an AXI4-Stream driver, which transmitted them onto the
Slave interface of the netprobe_top module. Both Slave and Master interfaces were watched
by AXI4-Stream monitors, which were able to transform waveforms into transaction objects.
Initial packets and those processed by DUT were fed to the scoreboard component. The DUT
behavior model was applied to the stimulus packets there, and the result was compared
with transactions processed by the netprobe_top module itself. They must be the same, and
when this condition is not fulfilled, an error is reported.

Figure 11 is a screen capture from a simulation of netprobe_top module configured
with the SHA-3 algorithm. The selected SHA-3 hash length was 512 bit (strap_hash_length
equals 2’d3). The goal of the executed test case was to check the performance of the design.
Signal axis_m_tready of the accelerator’s Master interface was tied off to high value, which
indicates no backpressure. DUT was flooded with a number of short IP packets—signal
axis_s_tvalid went high at Cursor 1. After 32 clock cycles (latency for SHA-3 configuration),
the first result packets were presented on the Master interface (Cursor 2, axis_m_tvalid goes
high). Checks implemented in the testbench verified whether the axis_s_tready signal goes
low. Module netprobe_top does not introduce backpressure on its own, and even in these
harsh conditions, DUT behaved as expected.

Figure 11. Simulation of netprobe_top module with the SHA-3 hash algorithm using the cocotb-based
verification environment.

2.3.3. Synthesis Results

Synthesis of the network probe hardware accelerator was performed for Intel Stratix V
GX FPGA (5SGXEA7N2F45C2), an element of the Terasic DE5-Net development kit [43],
using Intel Quartus Prime 18.1 software.

Table 5 summarizes the synthesis results of the netprobe_top module for a range of hash
algorithms. Since nProbe, Vermont, and modified Vermont are based on simple hashing
schemes that use basic types of calculations (addition modulo 32 or CRC), hardware imple-
mentation of these algorithms requires little hardware resources (less than 1% of available
resources of FPGA used in the experiment). Although SHA-1 and SHA-3 cryptographic
functions are far more computationally expensive, the proposed implementation requires
few enough resources to be efficiently used as a part of the hardware NetFlow probe. Even
though SHA-1 and SHA-3 were optimized for performance, not for the area, the probe
with the most complex SHA-3 algorithm utilized only 16.44% of resources, leaving enough
of them to implement other functionalities of the NetFlow probe [17]. It is no surprise
that straightforward hash algorithms (such as nProbe, Vermont, or modified Vermont)
implementations can sustain multigigabit throughput, but realizations of cryptographic
functions (SHA-1, SHA-3) definitely match this. All investigated hash algorithms offer
throughput over 20 Gbit/s.

241

Electronics 2022, 11, 1688

Table 5. Module netprobe_top implementation results in Stratix V FPGA.

Hash Algorithm
Logic

Utilization

Maximum Clock
Frequency Fmax

(MHz)

Throughput
(Gbit/s)

Latency (Clock
Cycles/ns)

nProbe 0.56% 206.48 26.43 9/43.59
Vermont 0.69% 207.51 26.56 13/62.65

modified Vermont 0.79% 197.63 25.30 13/65.78
SHA-1 6.17% 201.61 25.81 48/238.08
SHA-3 16.44% 175.04 22.41 32/182.82

It has been assumed that cryptographic hash functions such as SHA are computation-
ally too expensive for efficient use in a flow monitor. The high bandwidth and low latency
of the hardware accelerator based on the SHA-1 and SHA-3 functions definitely enables
construction of a network probe working in a real-time manner—even when it is flooded
with the smallest IP packets.

It is worth mentioning that the low percentage of logic utilization allows for further
design optimization and parallelization [44]. Utilizing such techniques, it should be even
possible to reach a 100 Gbit/s bandwidth limit.

3. Experiments

In our experiments, we wanted to verify the following research hypotheses:

• It is possible to realize a network traffic probe with a cryptographic hash function,
working in a real-time regime.

• Cryptographic hash functions SHA-1 and SHA-3 provide comparable distribution of
flows to the reference methods.

In the experiments, the NetFlow probe was supplied with selected traffic, and the
distribution of flow records in the flow cache buckets was analyzed. We conducted tests for
five hardware-accelerated probes implementing different hash functions. Each probe was
supplied with three different types of network traffic to analyze the impact of traffic type
on flow record distribution over buckets in the flow cache.

3.1. Experimental Testbed

Verification and performance tests of the NetFlow probe hardware-accelerator designs
were carried out using a dedicated testbed. The hardware part of the probe was imple-
mented in the DE5-Net FPGA development platform. A general-purpose PC containing
10 Gbps Ethernet interfaces (Intel 82599 10 Gigabit Ethernet card) was connected to the
DE5-Net kit. The Ethernet connectivity between the DE5-Net FPGA platform and the PC
was established by means of multi-mode fiber optics, with SFP+ transceivers. The PC was
used as a traffic generator running the tcreplay network driver and as a network monitor
implementing the software part of the NetFlow probe.

3.2. Network Traffic Used

In our experiments, we used the CICIDS 2017 dataset [45]. It contains the traffic
captured during five days of activity in a simulated network. Both pcap and bidirectional
flow formats have been published. These datasets cover various kinds of attack, such as
botnets, (D)DoS, web application attacks, and SSH brute-force attempts. In total, 2,830,540
flows were collected over five days (from Monday to Friday).

In our experiments, we used the Monday, Wednesday, and Friday traffic. The traffic
collected on Monday contained 496,943 flows, purely with benign network communication.
The Wednesday traffic embraced 452,601 flows, which, apart from normal traffic, contained
traffic captured during DoS, Heartbleed, slowloris, Slowhttptest, Hulk, and GoldenEye
attacks. The Friday subset was the most numerous—it contained 792,487 flows with normal

242

Electronics 2022, 11, 1688

traffic and traffic with registered DDoS attacks, botnet communication, and various port
scan attacks.

3.3. Metrics

The hardware-accelerated network flow probe was modified so that the flow cache
stores records for all flows during a test session, i.e., flow records for terminated or expired
flows, were not removed from the flow cache buckets. This allowed measurement of such
values as:

• minimal number of flow records in a nonempty bucket (hereinafter named as Min),
• maximal number of flow records in a bucket (Max),
• mean number of flow records in a bucket (Mean),
• standard deviation (SD) of flow records in a bucket,
• number of nonempty buckets (Buckets).

This gave us an overview of the distribution of flow records over all buckets in the
flow cache for a given hash computation scheme and for the selected traffic type.

4. Results

In our experiments, each hash function was used in 16-bit and 32-bit versions, which
organized the flow cache into 216 and 232 buckets, respectively. Every probe was supplied
with three types of traffic from the CICIDS 2017 dataset labeled Normal (Monday), Normal +
attacks (Wednesday), and Normal + attacks (Friday) (see Section 3.2). For each traffic type, the
number of flows it contains was given as N.

The results for hardware-accelerated probes using 16-bit hash functions have been
presented in Table 6. For every traffic type used to supply, all probe metrics proposed
in Section 3.3 were recorded. As can be seen, all hash functions except Mod32 yielded
similar statistics over flow cache buckets. Mod32 function achieved noticeably worse
Max, Mean, and SD values than the rest of the hash functions. We observed, however,
that statistics for all functions were not much affected by anomalous traffic (DoS attacks,
botnet communication, port scan attacks)—see the results for the Wednesday and Friday
traffic. It can be noticed that traffic Normal + attacks (Friday) generated larger values of
recorded parameters for all functions than the other two traffic types. However, this can be
explained by the fact that it contains much more flows than the other two traffic types used.
Graphical presentation of the distribution of flow records over the flow cache buckets for
a hash function based on a simple modulo operation (Mod32), modified Vermont, or the
SHA-3 cryptographic function is shown in Figure 12. It can be seen that the distribution
produced by the simple modulo hash function is far from uniform. The modified Vermont
hash function and that based on the cryptographic SHA-3 function offer much better
distributions.

Table 6. Statistics of bucket occupation for various hash functions—216 buckets used.

Hash Function

Normal (Monday) Normal + Attacks (Wednesday) Normal + Attacks (Friday)
N = 496,943 N = 452,601 N = 792,487

Min Max Mean SD Min Max Mean SD Min Max Mean SD

Mod32 0 38 7.58 5.45 0 34 6.91 5.18 0 52 12.09 7.62
Vermont 0 21 7.58 2.66 0 21 6.91 2.62 2 27 12.09 3.38

Modified Vermont 0 19 7.58 2.63 0 19 6.91 2.47 1 27 12.09 3.32
SHA-1 0 21 7.58 2.76 0 21 6.91 2.62 1 32 12.09 3.47
SHA-3 0 20 7.58 2.75 0 22 6.91 2.62 1 29 12.09 3.47

A more precise overview is given in Table 7, where the results for the 32-bit version of
hash functions are presented. Such a hash size greatly increases the flow cache capacity
(up to 232 buckets). In this case, in addition to the metrics used in Table 6, the number of
nonempty buckets is also given (Buckets column). Again, all hash functions, except Mod32,

243

Electronics 2022, 11, 1688

showed similar distribution over flow cache buckets, which was not affected by typical
anomalous traffic. The Mod32 results significantly deviate from those obtained for the rest
of the hash functions. It is worth noting that for Vermont, modified Vermont, and the two
SHA hash functions, the mean value of flow records in a bucket was 1, and the number of
nonempty buckets was almost equal to the number of all flows present in the traffic. This
indicates that these functions put almost every flow record in a separate bucket, offering
almost uniform distribution of flow records over flow cache buckets for normal traffic and
typical anomalous traffic.

(a) (b) (c)

Figure 12. Visualization of bucket occupation for 216 buckets. (a) Mod32; (b) modified Vermont;
(c) SHA-3.

Table 7. Statistics of bucket occupation for various hash functions—232 buckets used.

Hash

Normal (Monday) Normal + Attacks (Wednesday) Normal + Attacks (Friday)
N = 496,943 N = 452,601 N = 792,487

Min Max Mean SD Buckets Min Max Mean SD Buckets Min Max Mean SD Buckets

Mod32 1 22 2.91 2.43 170,626 1 22 2.93 2.28 154,662 1 32 3.98 3.65 199,241
Vermont 1 2 1 0.01 496,919 1 2 1 0.01 452,577 1 2 1 0.01 792,465

Mod. Verm. 1 2 1 0.01 452,572 1 2 1 0.01 452,572 1 2 1 0.01 792,386
SHA-1 1 2 1 0.01 452,567 1 2 1 0.01 452,567 1 2 1 0.01 792,423
SHA-3 1 2 1 0.01 496,922 1 2 1 0.01 452,583 1 2 1 0.01 792,420

5. Discussion and Conclusions

A proper view of the statistics and the dynamics of a network is of great importance,
since it enables us to detect network attacks. Thus, network monitors using the network
flow concept are an important part of modern cybersecurity defense. As such, these devices
themselves may be the targets of cyberattacks. One of the possible weak points of NetFlow
probes is a network flow cache, which is usually implemented as a hash table. Due to the
limited size of a hash table, it is inevitable that, sooner or later, two different flows will be
mapped to the same hash bucket. It is essential that the hash function used for calculating
the hash keys offers a uniform distribution of NetFlow records over available buckets, so
that the lengths of all bucket lists would be almost equal. This makes it possible to use
a reasonably sized hash data structure to make the flow lookup fast, because of minimal
list lengths. The experiments conducted during this research show that even a relatively
simple hash function may guarantee such characteristics.

However, nowadays, when components of cybersecurity systems themselves may be
a targets of a cyberattack, a no less important feature of such systems is their resistance to
attacks. In the case of a NetFlow probe, it should be impossible for an attacker to create
directed collisions in the hash function. If an attacker is able to fabricate network traffic in
such a way as to lead to a large number of collisions in the hash function, some buckets of
the hash table may overflow, causing malfunction of the probe.

The results from Section 4 show that only very simple hash functions (i.e., Mod32) are
susceptible to common malicious traffic, such as DDoS or port scan attacks. More complex

244

Electronics 2022, 11, 1688

methods, such as Vermont, based on CRC32, offer relatively uniform distribution of flow
records over flow cache buckets for normal traffic, and typical anomalous traffic. However,
as demonstrated in [19], it is possible to prepare a targeted attack exploiting a vulnerability
of the implemented hash function.

Thus, it is crucial to select a hashing function that maps a small number of flow keys
on to the same flow cache location. A hash function should therefore compute hash keys
that are uniformly distributed, so that it should be impossible for an attacker to create
directed collisions. At the same time, the hash function must be fast so that it does not
become a bottleneck of the NetFlow probe.

The obvious countermeasure against hash collision-based attacks is the application
of cryptographic hash functions, for which collisions cannot be created easily. The results
presented in Section 4 prove that the use of the cryptographic functions SHA-1 and SHA-3
offers comparable distribution of flows in the flow cache to the dedicated methods (Vermont,
modified Vermont) used as reference. The advantage of implementing a hash function based
on cryptographic functions in a NetFlow probe is that it is very difficult (or even impossible)
to prepare a targeted attack on such a probe by fabricating network traffic to overflow flow
cache buckets through systematically creating packets that lead to hash collisions.

Cryptographic functions, however, have not usually been candidates for hash func-
tions in NetFlow probes, since they are considered to be computationally too expensive
for efficient use in flow monitoring. Our concept presented in Section 2.3 shows that
it was possible to implement a hardware-accelerated network flow probe employing a
cryptographic hash function that offered sufficient performance to construct a network
probe working in real-time with multigigabit traffic, even when it was flooded with the
smallest IP packets. Relatively low hardware resource utilization makes it possible to
reach a 100 Gbit/s bandwidth limit by applying hardware-specific design optimization
and parallelization.

It has to be emphasized that most available traffic datasets contain traffic with a
relatively small number of flows. The set CICIDS 2017 used in our experiment contains, in
total, 2,830,540 flows. Taking into account the fact that the flow cache of a probe that uses a
32-bit hash function contains 232 buckets, the flow records fill only a small fraction of the
flow cache. The use of datasets with significantly larger numbers of flows with normal and
anomalous traffic might give a better view of possible differences in distribution of flow
records over flow cache buckets for the evaluated hash functions. Such an approach, and
the application of customized traffic containing flows intentionally constructed to produce
hash collisions (which may not be a trivial task for some hash functions), could be the
subject of future work.

To conclude, we can state that the resistance of cryptographic hash functions to
collisions and the multigigabit efficiency of a hardware-accelerated implementation of hash
computation allow the creation of an effective monitoring solution for modern cybersecurity
systems while delivering a high level of resilience to targeted attacks.

Author Contributions: Conceptualization, M.K., M.R. and A.J.; methodology, M.K. and M.R.; soft-
ware, M.K. and P.S.; validation, M.K. and P.S.; formal analysis, M.K. and M.R.; investigation, M.K., P.S.,
M.R. and A.J.; resources, M.K., P.S. and M.R.; data curation, P.S.; writing—original draft preparation,
M.K., P.S., M.R. and A.J.; writing—review and editing, M.K., M.R. and A.J.; visualization, M.K.;
supervision, M.R. and A.J.; project administration, A.J.; funding acquisition, A.J. All authors have
read and agreed to the published version of the manuscript.

Funding: The study has been supported by the SIMARGL Project—Secure Intelligent Methods for
Advanced RecoGnition of malware and stegomalware, with the support of the European Commission
and the Horizon 2020 Program, under grant agreement number 833042. The publication was funded
by the statutory activity subsidy from the Polish Ministry of Education and Science.

Conflicts of Interest: The authors declare no conflict of interest.

245

Electronics 2022, 11, 1688

References

1. Al-Garadi, M.A.; Mohamed, A.; Al-Ali, A.K.; Du, X.; Ali, I.; Guizani, M. A Survey of Machine and Deep Learning Methods for
Internet of Things (IoT) Security. IEEE Commun. Surv. Tutor. 2020, 22, 1646–1685. [CrossRef]

2. Fizza, K.; Banerjee, A.; Mitra, K.; Jayaraman, P.P.; Ranjan, R.; Patel, P.; Georgakopoulos, D. QoE in IoT: A vision, survey and
future directions. Discov. Internet Things 2021, 1, 4. [CrossRef]

3. Federal Bureau of Investigations. The Cyber Threat. Available online: https://www.fbi.gov/investigate/cyber (accessed on
1 April 2022).

4. Caviglione, L.; Choraś, M.; Corona, I.; Janicki, A.; Mazurczyk, W.; Pawlicki, M.; Wasielewska, K. Tight Arms Race: Overview of
Current Malware Threats and Trends in Their Detection. IEEE Access 2021, 9, 5371–5396. [CrossRef]

5. NETSCOUT. NETSCOUT Threat Intelligence Report. Available online: https://www.netscout.com/threatreport (accessed on
1 April 2022).

6. Morgan, S. Cybercrime To Cost The World $10.5 Trillion Annually By 2025. Special Report: Cyberwarfare In The C-Suite. 2020.
Available online: https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/ (accessed on 1 April 2022).

7. AV-TEST Institute. Malware Statistics. 2022. Available online: https://www.av-test.org/en/statistics/malware/ (accessed on
1 April 2022).

8. Wagner, C.; François, J.; State, R.; Engel, T. Machine Learning Approach for IP-Flow Record Anomaly Detection. In Proceedings
of the NETWORKING 2011, Valencia, Spain, 9–13 May 2011; Domingo-Pascual, J., Manzoni, P., Palazzo, S., Pont, A., Scoglio, C.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 28–39.

9. Iglesias, F.; Ferreira, D.C.; Vormayr, G.; Bachl, M.; Zseby, T. NTARC: A Data Model for the Systematic Review of Network Traffic
Analysis Research. Appl. Sci. 2020, 10, 4307. [CrossRef]

10. Krupski, J.; Graniszewski, W.; Iwanowski, M. Data Transformation Schemes for CNN-Based Network Traffic Analysis: A Survey.
Electronics 2021, 10, 2042. [CrossRef]

11. Hofstede, R.; Čeleda, P.; Trammell, B.; Drago, I.; Sadre, R.; Sperotto, A.; Pras, A. Flow Monitoring Explained: From Packet Capture
to Data Analysis With NetFlow and IPFIX. IEEE Commun. Surv. Tutor. 2014, 16, 2037–2064. [CrossRef]

12. Spognardi, A.; Villani, A.; Vitali, D.; Mancini, L.V.; Battistoni, R. Large-Scale Traffic Anomaly Detection: Analysis of Real Netflow
Datasets. In E-Business and Telecommunications; Obaidat, M.S., Filipe, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2014;
pp. 192–208.

13. van der Steeg, D.; Hofstede, R.; Sperotto, A.; Pras, A. Real-time DDoS attack detection for Cisco IOS using NetFlow. In
Proceedings of the 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM), Ottawa, ON, Canada,
11–15 May 2015; pp. 972–977. [CrossRef]

14. Zadnik, M.; Pecenka, T.; Korenek, J. Netflow probe intended for high-speed networks. In Proceedings of the International
Conference on Field Programmable Logic and Applications, Tampere, Finland, 24–26 August 2005; pp. 695–698. [CrossRef]

15. Novotný, J.; Čeleda, P.; Žádník, M. Hardware-Accelerated Framework for Security in High-Speed Networks. In Information
Assurance for Emerging and Future Military Systems; NATO Science and Technology Organization: Brussels, Belgium, 2008.
[CrossRef]

16. Forconesi, M.; Sutter, G.; Lopez-Buedo, S.; Aracil, J. Accurate and flexible flow-based monitoring for high-speed networks. In
Proceedings of the 2013 23rd International Conference on Field programmable Logic and Applications, Porto, Portugal, 2–4
September 2013; pp. 1–4. [CrossRef]

17. Trzepiński, M.; Skowron, K.; Korona, M.; Rawski, M. FPGA Implementation of Memory Management for Multigigabit Traffic
Monitoring. In Man–Machine Interactions 5; Gruca, A., Czachórski, T., Harezlak, K., Kozielski, S., Piotrowska, A., Eds.; Springer:
Berlin/Heidelberg, Germany, 2018; pp. 555–565.

18. Sonchack, J.; Michel, O.; Aviv, A.J.; Keller, E.; Smith, J.M. Scaling Hardware Accelerated Network Monitoring to Concurrent and
Dynamic Queries With *Flow. In Proceedings of the 2018 USENIX Annual Technical Conference (USENIX ATC 18), USENIX
Association, Boston, MA, USA, 11–13 July 2018; pp. 823–835.

19. Eckhoff, D.; Limmer, T.; Dressler, F. Hash tables for efficient flow monitoring: Vulnerabilities and countermeasures. In Proceedings
of the 2009 IEEE 34th Conference on Local Computer Networks 2009, Zurich, Switzerland, 20–23 October 2009; pp. 1087–1094.
[CrossRef]

20. Kang, M.S.; Lee, S.B.; Gligor, V.D. The Crossfire Attack. In Proceedings of the 2013 IEEE Symposium on Security and Privacy,
Berkeley, CA, USA, 19–22 May 2013; pp. 127–141. [CrossRef]

21. Zhao, Z.; Shi, X.; Wang, Z.; Li, Q.; Zhang, H.; Yin, X. Efficient and Accurate Flow Record Collection With HashFlow. IEEE Trans.
Parallel Distrib. Syst. 2022, 33, 1069–1083. [CrossRef]

22. Szumełda, P.; Orzechowski, N.; Rawski, M.; Janicki, A. VHS-22—A Very Heterogeneous Set of Network Traffic Data for Threat
Detection. In Proceedings of the European Interdisciplinary Cybersecurity Conference (EICC 2022), Barcelona, Spain, 15–16 June
2022. [CrossRef]

23. Kirsch, A.; Mitzenmacher, M.; Varghese, G. Hash-Based Techniques for High-Speed Packet Processing. In Algorithms for Next
Generation Networks; Springer: Berlin/Heidelberg, Germany, 2010.

24. Deri, L. nProbe: An Open Source NetFlow Probe for Gigabit Networks. In Proceedings of the TERENA Networking Conference
2003, Zagreb, Croatia, 21 May 2003.

246

Electronics 2022, 11, 1688

25. Lampert, R.T.; Sommer, C.; Münz, G.; Dressler, F. Vermont—A Versatile Monitoring Toolkit for IPFIX and PSAMP. In Proceed-
ings of the IEEE/IST Workshop on Monitoring, Attack Detection and Mitigation (MonAM 2006), Tübingen, Germany, 28–29
September 2006.

26. Williams, R.N. A Painless Guide to CRC Error Detection Algorithms. Available online: http://ross.net/crc/download/crc_v3.txt
(accessed on 24 April 2022).

27. IEEE Std 802.3-2018; IEEE Standard for Ethernet. Revision of IEEE Std 802.3-2015. IEEE: Piscataway, NJ, USA, 2018; pp. 1–5600.
[CrossRef]

28. Dang, Q. Secure Hash Standard (SHS); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2015. [CrossRef]
29. Eastlake, D.E., 3rd; Jones, P. US Secure Hash Algorithm 1 (SHA1); RFC 3174. Available online: https://www.rfc-editor.org/info/

rfc3174 (accessed on 27 April 2022).
30. Stevens, M.; Karpman, P.; Peyrin, T. Freestart Collision for Full SHA-1. In Proceedings of the Annual International Conference on

the Theory and Applications of Cryptographic Techniques, Vienna, Austria, 8–12 May 2016; pp. 459–483.
31. Stevens, M.; Bursztein, E.; Karpman, P.; Albertini, A.; Markov, Y. The First Collision for Full SHA-1. In Proceedings of the

Advances in Cryptology—CRYPTO 2017, Santa Barbara, CA, USA, 20–24 August 2017; pp. 570–596.
32. Leurent, G.; Peyrin, T. From Collisions to Chosen-Prefix Collisions—Application to Full SHA-1. Cryptology ePrint Archive,

Report 2019/459. 2019. Available online: https://ia.cr/2019/459 (accessed on 27 April 2022).
33. Leurent, G.; Peyrin, T. SHA-1 Is a Shambles—First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust.

Cryptology ePrint Archive, Report 2020/014. 2020. Available online: https://ia.cr/2020/014 (accessed on 27 April 2022).
34. Dworkin, M. SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions; National Institute of Standards and

Technology: Gaithersburg, MD, USA, 2015. [CrossRef]
35. Bertoni, G.; Daemen, J.; Peeters, M. Cryptographic Sponge Functions; Citeseer: University Park, PA, USA, 2011.
36. Merkle, R.C. Secrecy, Authentication, and Public Key Systems. Ph.D. Thesis, Stanford university, Stanford, CA, USA, 1979.
37. Bertoni, G.; Daemen, J.; Peeters, M.; Van Assche, G. Keccak. In Advances in Cryptology–EUROCRYPT 2013; Johansson, T., Nguyen,

P.Q., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7881. [CrossRef]
38. IEEE Std 1364-2005; IEEE Standard for Verilog Hardware Description Language. Revision of IEEE Std 1364-2001. IEEE: Piscataway,

NJ, USA, 2006; pp. 1–590. [CrossRef]
39. ARM. AMBA® 4 AXI4-Stream Protocol Version 1.0 (ARM IHI 0051A). 2010. Available online: https://documentation-service.

arm.com/static/60d5e2510320e92fa40b4788 (accessed on 27 April 2022).
40. Lee, E.H.; Kim, S.M.; Lee, J.H.; Cho, K. Design of a High Speed SHA-1 Architecture Using Unfolded Pipeline for Biomedical

Applications. In Proceedings of the International Multi-Conference on Society, Cybernetics and Informatics (IMSCI 2009), Orlando,
FL, USA, 10–13 July 2009.

41. Various. Cocotb’s Documentation. Available online: https://docs.cocotb.org/en/stable (accessed on 24 April 2022).
42. Accellera. Universal Verification Methodology. Available online: https://www.accellera.org/community/uvm (accessed on

24 April 2022).
43. Terasic. DE5-Net FPGA Development Kit. User Manual; Terasic: Hsinchu, Taiwan, 2018.
44. Korona, M.; Skowron, K.; Trzepiński, M.; Rawski, M. High-performance FPGA architecture for data streams processing on

example of IPsec gateway. Int. J. Electron. Telecommun. 2018, 64, 351–356.
45. Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic

Characterization. In Proceedings of the 4th International Conference on Information Systems Security and Privacy (ICISSP 2018),
Funchal, Portugal, 22–24 January 2018.

247

Citation: Andrade, R.O.; Fuertes, W.;

Cazares, M.; Ortiz-Garcés, I.; Navas,

G. An Exploratory Study of

Cognitive Sciences Applied to

Cybersecurity. Electronics 2022, 11,

1692. https://doi.org/10.3390/

electronics11111692

Academic Editor: Krzysztof

Szczypiorski

Received: 25 April 2022

Accepted: 23 May 2022

Published: 26 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

An Exploratory Study of Cognitive Sciences Applied to
Cybersecurity

Roberto O. Andrade 1, Walter Fuertes 2, María Cazares 3, Iván Ortiz-Garcés 4,* and Gustavo Navas 3

1 Facultad de Ingeniería en Sistemas, Escuela Politécnica Nacional, Quito 170525, Ecuador;
roberto.andrade@epn.edu.ec

2 Department of Computer Sciences, Universidad de las Fuerzas Armadas ESPE,
Sangolquí P.O. Box 17-15-231B, Ecuador; wmfuertes@espe.edu.ec

3 IDEIAGEOCA, Universidad Politécnica Salesiana, Cuenca 010102, Ecuador; mcazares@ups.edu.ec (M.C.);
gnavas@ups.edu.ec (G.N.)

4 Facultad de Ingeniería y Ciencias Aplicadas, Escuela de Ingeniería en Tecnologías de la Información,
Universidad de las Américas, Quito 170125, Ecuador

* Correspondence: ivan.ortiz@udla.edu.ec

Abstract: Cognitive security is the interception between cognitive science and artificial intelligence
techniques used to protect institutions against cyberattacks. However, this field has not been ad-
dressed deeply in research. This study aims to define a Cognitive Cybersecurity Model by exploring
fundamental concepts for applying cognitive sciences in cybersecurity. For achieving this, we devel-
oped exploratory research based on two steps: (1) a text mining process to identify main interest areas
of research in the cybersecurity field and (2) a valuable review of the papers chosen in a systematic
literature review that was carried out using PRISMA methodology. The model we propose tries to fill
the gap in automatizing cognitive science without taking into account the users’ learning processes.
Its definition is supported by the main findings of the literature review, as it leads to more in-depth
future studies in this area.

Keywords: cognitive security; cybersecurity; cyberattacks

1. Introduction

Cybersecurity attacks have been relevant since the appearance of the first computers.
However, their evolution due to the level of techniques and tools has converted them into
the world’s main risk. The World Economic Forum [1] has classified cyberattack as one of
the top ten worldwide risks. Its impact is considered more significant than a food crisis due
to its scope in modern society and its probability of occurrence. Reactive solutions focus
mainly on attack alleviation processes, while proactive solutions could predict possible
cyberattacks and generate self-protection systems. This scenario has motivated companies
and researchers in the cybersecurity field to look for alternatives for replacing reactive
solutions with proactive ones. One approach used by specialized firms and researchers is
to establish anomaly detection processes that discover possible attack patterns and identify
attackers’ behaviors. In the last three years (2019–2021), several contributions to anomaly
detection have been developed in different domains such as SCADA systems, smart grids,
smart cities, critical infrastructures, and Cyber-Physical Systems (CPS) [2].

The anomaly detection process requires identifying features or components that differ
from typical behaviors [3]. In the initial phase of this anomaly detection process, modeling
cybersecurity expert knowledge and cognitive processes are relevant for building better
proactive solutions. However, the large volume of data generated by the different intercon-
nected devices in the digital world makes the identification process more challenging to
implement [4]. Several alternatives have been defined for supporting analysts’ cognitive
processes (i.e., augmented cognition) by using computational models that simulate the

Electronics 2022, 11, 1692. https://doi.org/10.3390/electronics11111692 https://www.mdpi.com/journal/electronics249

Electronics 2022, 11, 1692

cognitive processes performed by cybersecurity experts. The identification of security
risk patterns based on the analysts’ cognitive processes can be approached through the
Observe–Orient–Decide–Act model (OODA) or the Monitor–Analyze–Plan–Execute model
(MAPE-K) [5].

Researchers have proposed the automation and support of the cognitive processes de-
fined in the OODA and MAPE-K models through different machine learning techniques [6].
In the same research line, we found that several works from 2019 to 2021 used convolution
networks, K-means, or deep learning for detecting phishing, ransomware, and even attacks
against smart grids [7].

Researchers have identified that the possible actions or strategies of adversaries can
be studied using game theory models with incomplete information based on Stackelberg’s
proposals [8]. This approach could support identifying a possible future attack and the
possible strategies used by the adversary. In this way, cybersecurity research’s central
objective is to expand security analysts’ cognitive capacity through data analysis, machine
learning techniques, and game theory in cybersecurity [9].

Researchers have proposed a more in-depth approach to improve the cybersecurity
proposals, focused on the adversary to identify their behavioral characteristics that lead
them to decide on a specific attack strategy [10]. Furthermore, this allows for identifying
the techniques that the adversary could select and how to use them. This approach
could enable cybersecurity analysts to anticipate and establish a more optimal defense
mechanism. Research has included the psychological perspective to analyze the adversaries’
behavior [11]. Incorporating Artificial Intelligence, Machine Learning, data analytics, and
psychology, among other fields related to cognitive sciences in cybersecurity, has generated
a new cybersecurity approach called cognitive security [12]. This approach goes one step
ahead of security intelligence to propose the best defensive strategies and take advantage
of both cognitive processes: cybersecurity analysts and adversaries [13].

This study aims to identify the fundamental concepts related to the application of
cognitive sciences in cybersecurity for establishing defense strategies to minimize the
impact of cyberattacks. For this reason, we developed an exploratory study based on
two stages:

• A text mining process to identify challenges in the field of cybersecurity and analyze
the impact of cyberattacks and the future direction of cybersecurity solutions based on
cognitive science;

• A Systematic Literature Review (SLR) to identify the contributions of applied cognitive
sciences in cybersecurity as alternatives for proactive strategies. The main contribution
of this study is the definition of a cognitive cybersecurity model supported by the
findings of a literature review in this research area based on the PRISMA methodology.

This study is structured as follows. Section 2 introduces and describes the theory that
explains the components of the research problem under research. Section 3 provides the
methodological procedure applied to judge the validity of the results of this study. Section 4
presents a proposal for a cognitive cybersecurity model. Finally, the Section 6 describes the
main findings and the lines of future work.

2. Background

2.1. Adversarial and User Analysis

In cyberattack scenarios, a competitive advantage by the adversary could exist in the
first instance. Table 1 shows the adversary has valuable information such as personal user
information, type of operating system, and user applications. Additionally, the adversary
has information about the types of security vulnerabilities that can be exploited. The adver-
sary has been trained in several cybersecurity areas, such as ethical hacking, vulnerability
analysis, and reverse engineering. In this context, a user has a clear disadvantage, and
from the perspective of game theory, we are faced with a game scenario with incomplete
information from the user’s side. The user does not know information related to the ad-
versary, such as the type of cyberattack it could perform, which techniques will be used

250

Electronics 2022, 11, 1692

to execute the attack, and which kind of resources are available. Establishing an optimal
defense/security attack strategy requires more information from a user perspective [14].

Table 1. Comparative of resources adversarial versus user.

Role Techniques IT Resources Information

User Empirical Knowledge Office or Home Desktop No information related to the adversaries

Organization Tactics, Techniques, and Procedures (TTP)
Ofensive/Defensive approaches

Perimetral security (Firewall, IPS, IDS)
Security Event Management (SIEM)

No or low information related to adversaries.
Adversaries could use VPN or deep network to
hide their information and maintain anonymity.

Adversaries

Offensive approaches (hacking, vulnerability
scans, deep network)

MITRE ATT&CK defines 245 techniques of
attacks, distributed in 14 categories.

Vulnerability tools
Exploit tools

Obfuscation tools
Lateral Movement Frameworks

Remote access trojans

Data from Social networks
(Facebook, Instagram, twitter)

Data from personal or enterprise blogs
or web pages.

Data for deep network.

Alternatively, another drawback for the user is the stimulus that affects his/her de-
cision criteria. For example, the COVID-19 pandemic has created a scenario where ad-
versaries interact with web pages with drug procurement for the virus or access to free
entertainment platforms [15]. In this context, the response time window in which the user
must decide between clicking or abstaining from clicking is critical. For gathering infor-
mation related to the adversary, pattern recognition techniques are used [7]. Meanwhile,
decision-making models based on Bayesian networks [16] and diffusion models [17] are
used for modeling user response time. Simmons et al. [18] propose the characterization
of cyberattacks based on five major classifiers: attack vector, operational impact, attack
target, defense, and informational impact. The adversary’s characterization is based on
two aspects: Risk adverseness and Experience level. Venkatesan et al. [19] propose that the
modeling of the adversary behavior considers at least the following aspects:

• Cultural characteristics;
• Behavior patterns;
• Types of attacks.

At this point, incorporating cognitive sciences can improve the development of proac-
tive cybersecurity solutions.

2.2. Cognitive Sciences

Research on cognitive sciences applied to cybersecurity acknowledges the importance
of the human factor in cybersecurity; this is particularly relevant with the challenges gener-
ated by the growth of technologies such as cloud, mobile, IoT, and social networks [20,21].
Cognitive science could enhance the processes of perception, comprehension, and projection
used by cybersecurity analysts to detect cyberattacks and establish future defense actions [9].

2.3. Cognitive Process

Currently, information is increasing fast, and the availability of processing data sur-
passes human capacities. According to [22], cognitive architectures and models have
primarily been developed using Artificial Intelligence to serve as decision aids to human
users. Analyzing the rational cognitive process can allow the design of the computational
level of cognitive prediction. Cassenti et al. [23] mention that by using technology based on
adaptive aids, the user’s cognitive state can be obtained and difficulties detected at any
stage of cognition. Additionally, Cassenti mentions that one missing element in technology
models concerns the human learning process, providing feedback that allows technology
to adapt to the user and accomplish goals. According to Cameron [24], cognitive strategies
are mental processes developed by humans to regulate the thought processes inside the
mind to achieve goals or solve problems (See, Figure 1).

251

Electronics 2022, 11, 1692

Figure 1. Relation between Information, Technology aids, and Cognitive Processes.

2.4. Cognitive Security

Cognitive security is the ability to generate cognition for efficient decision-making in
real-time by modeling human thought processes to detect cybersecurity attacks and develop
defense strategies. Specifically, it responds to the need to build situational awareness of
cybersecurity related to the environment of technology systems and the insights about
itself. In addition, cognitive security allows programmers to develop defense actions by
analyzing structured or unstructured information using cognitive sciences approaches, for
instance, by incorporating Artificial Intelligence techniques such as data mining, machine
learning, natural language processing, human-computer interaction, data analytics, big
data, stochastic processes, and game theory. These emulate the human thought process for
generating continuous learning, decision making, and security analysis [5].

2.5. Prisma Methodology

The PRISMA methodology is divided into four stages: identification, screening, eli-
gibility analysis, and inclusion [25]. The identification stage includes the development of
the following phases: study selection, inclusion and exclusion criteria, manual search, and
duplicate removal. The screening stage consists of choosing papers according to relevant
titles and abstracts. Next, the eligibility analysis stage includes the process of reading the
full texts that accomplished the screening criteria. Finally, the inclusion stage consists of
the relevant data extraction from full papers [26].

2.6. Text Mining

In this work, we applied text mining to execute the data analysis of selected papers.
Text mining can be defined as mathematical analysis to deduce patterns and trends in the
data. A classic exploration can detect these patterns because the relationships are very
complex or large amounts of text where repetitive patterns, trends, or rules that explain the
text’s behavior are discovered. Text Mining’s objective, an essential part of Data Science,
is to help understand the content of a set of texts through statistics and search algorithms
related to Artificial Intelligence [27]. In the text mining process, we obtain information
from large amounts of text, with unstructured information and the context in which it
was written, intending to extract non-obvious information. Text mining could conduct
a qualitative research project with a large sample size similar to a quantitative research
study [28].

3. Methods

Cognitive sciences applied to cybersecurity; an exploration based on PRISMA.
The methodology used in this study was the development of a systematic literature

review based on the PRISMA methodology, which includes four stages: identification,
screening, eligibility analysis, and inclusion (see Figure 2). Study selection was based on

252

Electronics 2022, 11, 1692

a systematic review following the Prisma Guidelines [21]. In the identification stage, we
found works in the following databases: Springer, Scopus, IEEE, Association for Computing
Machinery (ACM), Web of Science, and Science Direct, in the last three years, 2019 to 2020,
to identify the trends in cybersecurity. The search queries established were the following:

• “Cybersecurity” AND “Attacks” AND “Trends”;
• “Cybersecurity” AND “Trends” AND “Challenges”.

Figure 2. SLR according to Prisma methodology.

The inclusion criteria were: (i) documents published on the scientific database from
2019 to 2021. The exclusion criteria included: (i) documents not related to cybersecurity
and (ii) documents out of the research period (2019–2021). Figure 3 shows the screening
and eligibility process of the 1244 studies. Then, based on the review of papers’ titles and
abstracts using a web application, Rayyan, created for the systematic review process, we
removed the papers that did not comply with the inclusion criteria. At the end of the
screening process, 813 articles were selected for full-text reading. Finally, we removed
studies without clear proposals in the cybersecurity field, excluding 748 papers.

Figure 3. General topics in cybersecurity between 2019 to 2021.

Qualitative analysis using text mining technique.

Text mining, which is considered another field in cognitive science, is essential for
qualitative cybersecurity research. However, text mining requires text cleaning and tok-

253

Electronics 2022, 11, 1692

enization as prerequisites. In this way, the cleaning process of text, within the scope of
text mining, consists of eliminating everything that does not provide information on its
subject, structure, or content from the corpus. It should be noted that there is no single
way to do this step. It depends on the purpose of the analysis and the text source. We
applied a text mining analysis using R software to all 748 studies obtained in the included
stage of PRISMA methodology. Thus, we eliminated non-informative patterns (web page
URLs), punctuation marks, and single characters. We generated the text tokenization,
which divides the text into the units for the analysis in question. We proceeded to store
the tokenized text. Each element of the tokenized_text column is a list with a character
vector containing the generated tokens. However, there has been a significant change when
doing the tokenization process. Before the text’s division, the study elements (observations)
were the titles and keywords of selected papers. Each one was in a row, thus fulfilling the
condition of tidy data: one observation per row. When performing the tokenization, the
study element has become each token (word), thus violating the condition of tidy data.
Thus, each token list must be expanded to recover the ideal structure, doubling the other
columns’ value as many times as necessary [29]. We carried out the analysis for the years
2020–2021, obtaining the results in Table 2 and Figure 3.

Table 2. General topics in cybersecurity between 2019 to 2021.

5G Cloud Security Microgrid

AC microgrids Data integrity attack (DIA.) Multistate model

Advanced metering Deep learning Offensive Security

Artificial intelligence (AI.) Distributed resilient control Open software

Battery pack DevOps Security Plug-in electric vehicles

Blockchain Digital transformation Robust algorithm

Call detail record (CDR.) Event-triggered mechanism Smart contract

Cybersecurity awareness Energy security Smart sensor

Cyberattacks False data injection attacks Smart meters

Cyberattack detection Human Security Smart City

Cyber-physical systems (CPS.) Internet of Things (IoT) Software-defined architecture

Cyber power network Machine learning Supply chain management

We included the studies of all the works that evidenced the development of strategies
and structures in cybersecurity. Furthermore, we considered articles referring to models
developed for learning defense against a cyberattack.

Then, we developed a word cloud process to obtain more detail on scientific stud-
ies’ contributions in the cybersecurity domain. Algorithm 1 shows the R script used to
determine the cybersecurity topics, and Figure 4 shows the word cloud results.

Algorithm 1: Pseudo-code of R script to word cloud process
wordcloud ⇐ function(group, df)
print(group)
wordcloud(words = df token, freq = dffrequency
max.words = 400, random.order = FALSE,
rot.per = 0.35, color = brewer.pal(8,”Dark2”))

254

Electronics 2022, 11, 1692

Figure 4. Results of a word cloud of 748 papers.

Cybersecurity attacks and their impact

According to the World Economic Forum [1], cyberattacks were considered a fifth of
the worldwide risks above food crisis in 2020. Adversaries developed several cyberattack
scenarios. For instance, the United States Department of Justice discloses public information
about scams perpetrated through websites, social networks, emails, and robocalls, among
other means. All these related to fake news about COVID-19 vaccines, treatments, protective
equipment, and obviously, about criminals who conducted fake businesses to steal identities
or file fraud cite the USDJ. Another cybersecurity scenario covered by the United States
Department of Justice is when adversaries send text messages using fictitious phone
numbers and social media accounts to harass, intimidate, cyberstalk, and attempt to sex-
extort women [30]. On the other hand, CISA mentions that adversaries use Bots to conduct
credential harvesting, mail exfiltration, crypto mining, point-of-sale data exfiltration, and
the deployment of ransomware [31]. According to the FBI, from 2015 to 2019, reports about
fraud in the FBI’s Internet Crime Complaint Center (IC3) went from USD 1.1 billion to
USD 3.5 billion [32]. Establishing the most appropriate cybersecurity defense solution is
necessary to identify the characteristics of cyberattacks [33]. There are currently a great
variety of cyberattacks [34]; Table 3 shows those that are the most recurrent among the
selected papers for this study.

Table 3. Cybersecurity attacks detected in text mining process.

Type Description Reference

Phishing Is a malicious and deliberate attempt of sending fake messages that appear to come from a reputable source [35–40]

Insider threats Are encountered in international security, geopolitics, business, trade, and cybersecurity. Insider threats
could be considered more damaging than outsider attacks [41–43]

APT Are designed to steal corporate or national secrets. [44–46]

Cybercrime Criminal activity either targets or uses a computer, a computer network, or a networked device. [47,48]

Malware Malicious software designed to infiltrate a device without knowledge [49,50]

DDoS Denial of service attack on a computer system or network that causes a service or resource tobe inaccessible
to legitimate users [51–55]

Ransomware A type of malicious program that restricts access to certain parts of files of the infected operating system and
demands a ransom in exchange for removing this restriction [56–60]

Mobile malware Its name suggests malicious software that targets explicitly the operating systems on mobile phones [61–64]

Watering hole Refers to a tactic used during targeted attack campaigns where the APT is distributed through a trusted
website that is usually visited by employees of the target company or entity [65,66]

255

Electronics 2022, 11, 1692

We contrasted this result with an international organization related to cybersecurity.
We found that some of them were considered the most relevant cyberattacks in the year 2020,
according to The European Union Agency for Cybersecurity (ENISA) [34]. Additionally, we
compared this result with the report of a specialized cybersecurity firm. We found that four
out of nine attacks documented in our study had a growth rate of between 7 and 25 percent
in 2020 in America, Europe, and Asia (see Table 4). According to [67], a classification of
cyberattacks is based on the effects they cause against a system or its architecture: misuse
of resources; user access compromise; root access compromise; web access; malware; and
denial of service.

Table 4. Growth rate percentage of cyberattack 2020.

Attack Americas Europa Asia

DDoS 13% 17% 23%

Ransomware 3% 4% 6%

Mobile malware 15% 15% 25%

Phishing 7% 11% 14%

Other cyberattacks use machines as attack vectors [68], while others focus on human
behaviors [69]. In the case of phishing, attackers seek to exploit human vulnerabilities
resulting from factors such as solidarity, desperation, or authority control to carry out their
attack [70]. In contrast, Ransomware attacks exploit vulnerabilities in operating systems
or applications to encrypt users’ or organizations’ sensitive information [71]. Within
this context, Watering hole attackers use exploit kits with stealth features and seek to
compromise a specific group of end-users by infecting websites [65]. A malicious URL
attacker defines a link created to distribute malware or facilitate a scam [72]. Form hacking is
a type of cyberattack where hackers inject malicious JavaScript code into legitimate website
payment forms [73]. Table 5 shows a classification of attacks based on an adversary’s
resource (machine or human).

Table 5. Attacks adversary’s targets (machine or human).

Type Human Machine

Phishing X -
Insider threats X X

Web Based Attacks - X
Advanced persistent threat (APT) - X

Spam X X
Identity theft X X
Data breach X X

Botnets - X
Physical manipulation X -

Cybercrime X X
Malware X X

DDoS - X
Ransomware - X

Mobile malware X X
Watering hole X X

Information leakage X X
X represents the affectation of target due to attack.

Another way to classify cyberattacks could be based on the target, such as energy,
healthcare, and transportation [74,75]. Table 6 shows some services considered targets by
adversaries. An exciting fact obtained from text mining analysis is that most research works
focus on cybersecurity in the energy domain. False data injection is the most famous attack
in energy services because it focuses on modifying forecasted demand data [76]. The main
issue with energy services, such as smart grids, is connected to network infrastructure and
smart meters, which could have some vulnerabilities. This aspect increases the probability

256

Electronics 2022, 11, 1692

of cyberattacks on smart grid infrastructures [77]. Research focuses on preventing and
overcoming cyberattacks by using machine learning techniques, such as artificial neural
networks, to solve cybersecurity challenges, especially with the considerable volume of
data on power systems [74].

Table 6. Classification of cybersecurity attacks based on target services.

Services Description Reference

Financial services

Financial institutions are exposed due to their network dependence.
Financial services include payment systems or trading platforms. An

example of an attacker on financial services is accessing SWIFT
credentials to send fraudulent payment orders.

[38]

The energy
The energy sector is vulnerable to attacks because they need real-time

operations. Cyberattacks can generate failure or breakdown of
generation, transmission, distribution, or substation systems

[51]

Healthcare
The prime target is the theft of medical information. Cyber-criminals’

medical information is more valuable than personal financial
information. Ransomware attacks are growing on medical devices

[52]

Table 7 shows topics related to cybersecurity in energy facilities. Healthcare is another
domain of interest for adversaries for sensitive and personal information [75]. In healthcare,
one relevant issue is legacy software [78]. It is difficult for some hospitals or medical
centers to migrate their medical records to new systems, e.g., for factors such as budget,
data format, or time; this could be a disadvantage from a cybersecurity perspective. Some
research is focused on improving authentication methods to reduce this gap [79], following
the topics related to healthcare cybersecurity:

• Physical security, two-way authentication, security protocol, and privacy;
• Security medical devices and legacy software.

Adversary takes advantage of vulnerabilities in different domains, such as [80]:

• Hardware failure;
• Software failure;
• Data encryption;
• Loss of backup power;
• Accidental user error;
• External security breach;
• Physical security;
• Accidental user error;
• External security breach.

Table 7. Cybersecurity topics related to energy facilities.

Energy Systems Cybersecurity Scope Applied Mechanism

Cyber-physical power system (CPPS) Intrusion detection Temporal-topological correlation

Distribution systems Anomaly detection Multi-agent system

Electric drive system Attack pattern Fuzzy feature analysis

Industrial system Cyberattack monitoring and detection Frequent pattern tree

Smart distribution networks Situation awareness State estimation

Networked control system Resilience control Markov chain

Steam turbines Active defense k-connected graph

Microgrids Quantization effect Ruin probability

Smart grid Sequential false data injection attacks

Power outage

Stealthy attack

False data injection (FDI)

Denial-of-service (DoS)

257

Electronics 2022, 11, 1692

The growth of new electronic services and technologies such as IoT, big data, and
artificial intelligence have allowed the development of new attack vectors [81,82]. IoT has
generated interest by adversaries in carrying out security attacks due to its lack of advanced
security and great coverage [83]. IoT solutions are very attractive for attackers because of
the variety of attacks that can be performed on different components of IoT, among which
we can mention the following [84]:

• Mobile devices;
• Embedded systems;
• Consumer technologies;
• Operational systems.

The growth of crypto-currency and distributed authentication architecture is driving
the use of blockchain architecture [85]. Another use of blockchain is in healthcare orga-
nizations to improve data integrity, authentication, and privacy issues, especially those
with sensitive features such as medical records [86]. On the other hand, IoT is growing
in different domains such as healthcare, smart city, and smart home [26]. Establishing
authentication such as PKI architectures for IoT ecosystems could be expensive for many
IoT devices, so smart contracts based on blockchain architecture are an alternative [87].
Following, we outline the topics related to blockchain and cybersecurity in papers selected
in this work, which were developed between 2019 to 2021:

• Energy trading;
• Cryptocurrency, crypto-jacking, money laundering;
• Public organization;
• Decentralized consensus decision-making (DCDM);
• Fuzzy static Bayesian game model (FSB-GM);
• Internet of Things, smart contracts;
• Electronic health records.

Some cyberattacks take advantage of new technologies such as 5G, IoT, and the cloud
to perform DDoS attacks [88]. The growth of IoT devices with limited computational
resources and lack of security configurations make them vulnerable to different cyberat-
tacks. For instance, Mirai Botnet malware exploited the vulnerabilities of an estimated
600,000 IoT devices, resulting in massive Distributed Denial of Service (DDoS) attacks [89].
Cloud computing services are used to launch Distributed Denial of Service (DDoS) at-
tacks. However, adversaries are focusing on low-rate DDoS attacks because they are more
challenging to detect due to their stealthy and low-rate traffic [58].

On the other hand, using the hijacked Connection-less Lightweight Directory Access
Protocol, an attacker could perform DDoS attacks at 2.3 terabytes per second [90]. Social
media platforms have achieved relevance for interaction and social information exchange.
However, the attackers have used them to deceive people and make them victims of
attacks [91]. An adversary has found a striking attack target in humans because they can
be deceived through persuasion techniques [15]. Attacks based on human vulnerabilities,
called social engineering, have grown in recent years [66]. Figure 5 shows a word cloud
of topics related to social engineering. We can observe that human factors are relevant
in this kind of attack. The pandemic has created tremendous pressure on cybersecurity
aspects. During the COVID-19 pandemic, the social engineering attacks carried out were
phishing, spamming, and scamming. These attacks were combined with socio-technical
methods such as fake emails, websites, and mobile apps [92]. The need to work remotely
has changed the attack surface of organizations. Attacks on VPNs, hijacking of video
meetings, fake news campaigns, and phishing attacks have increased during the COVID-19
pandemic [15]. According to the text mining process, we identified the following topics
related to COVID-19 and cybersecurity:

• Malicious web pages;
• Malicious Mobil Apps;
• Malicious Emails messages;

258

Electronics 2022, 11, 1692

• Misinformation and fake news;
• Security and privacy.

Figure 5. Word cloud of topics related to Social Engineering.

Challenges in cybersecurity solutions

To face cyberattacks, organizations have established cybersecurity mechanisms that
could be physical, software-oriented, or procedural. Below, we show some of the most
common defense mechanisms:

• Security intelligence systems;
• Perimeter controls;
• Encryption technologies;
• Data loss prevention;
• Governance risk;
• Automated policy management.

The mechanisms described above are the most common solutions for cyberattacks.
However, it is possible to define specific defense mechanisms for each type of cyberattack
in some cases. For instance [67], the two defense techniques against phishing attacks are:

• Software-based defense approaches;
• User education.

However, MITRE [93] has defined 245 techniques that the attacker could use for
executing cyberattacks. The techniques are distributed in 14 stages; each stage is associated
with the attackers’ process of executing cyberattacks. Figure 6 shows the number of
techniques associated with each stage. Figure 7 shows the frequency of MITRE techniques
included in the works selected in this study, which were developed between 2019 and
2021. Our text mining analysis found that the most relevant techniques are reconnaissance,
discovery, lateral movement, collection, command-control, and impact. On this point, it
is important to mention that the absence of frequency in other techniques, such as initial
access or privilege escalation, is not an indicator that these techniques are not used in
cyberattacks. The information shown in Figure 8 reveals that researchers are more focused
on the result of one specific technique in their study. However, for the review made, we
can observe that not all selected works considered the cycle of a cyberattack; this aspect
is relevant for developing a good defense strategy. We found that most of the techniques
mentioned in the selected studies focused on gathering information, such as reconnaissance,
discovery, and collection.

259

Electronics 2022, 11, 1692

Figure 6. Cybersecurity Techniques according to MITRE.

Figure 7. Techniques MITRE identified in works selected in this study.

Figure 8. Techniques MITRE used in vertical domains such as Energy, Social Engineering, and IoT.

260

Electronics 2022, 11, 1692

Figure 8 shows the relation between cybersecurity techniques and domain attacks:
energy, IoT, and social engineering. We observed that the relevance of a specific technique
depends on the type of cyberattack. For instance, the most relevant techniques in social
engineering are reconnaissance, resource development, persistence, and defense evasion.
On the other hand, the most relevant techniques in IoT attacks are credential access,
lateral movement, and collection. This number of techniques could be a challenge because
cybersecurity analysts need to have the capability to detect them in real-time when they
are used in cyberattacks to select the best defense strategy.

Figure 9 shows some variants of cybersecurity attacks based on social engineering,
which show the incredible versatility of attacks, which can vary depending on the attack
techniques used digitally, in person, or by phone.

Figure 9. Classification of Social Engineering attacks.

Cybersecurity solutions require adapting to new challenges:

• The heterogeneity of IoT solutions;
• The expansion of the attack surface by IoT and Machine Learning;
• Attacks on Cloud infrastructures;
• Cognitive hacking.

Cybersecurity firms and researchers have been developing some alternatives by mainly
focusing on anomaly detection. Inside the anomaly detection process, the objective is to
detect some pattern, behavior, or component used by attackers [94]. Table 8 shows topic
development from 2019 to 2021 related to anomaly detection. Cybersecurity companies
and researchers in the field have moved on from reactive solutions to proactive ones [95].

Table 8. Cybersecurity topics related to IoT.

The Mechanism Applied Based on IoT Cybersecurity Context

Data analysis IoT attack classification

ANN Attack–defense trees

Graph neural nets DDoS attacks

Cognitive packet network Botnet

Random neural networks Attack countermeasures

Home security threat

Identification anomaly

Cybersecurity research is trying to stay one step ahead and take advantage of cyberse-
curity analysts’ cognitive capabilities to define proactive cybersecurity defense strategies.
So, several research types are focused on incorporating cognitive models to generate these
proactive solutions. In the selected period (2019–2021), several studies included artificial
intelligence and machine earning concepts applied to cybersecurity (See Table 9).

261

Electronics 2022, 11, 1692

Table 9. Topics related to anomalies.

Cybersecurity Context Scope Applied Mechanism

Cyber-physical power system (CPPS) Behavior pattern Multiagentsystems (MASs)

Internet of Things Attack pattern Honeypots

Connected and automated vehicles (CAVs) Anomaly detection Convolution neural network (CNN)

Smart home Anomaly identification Dimensionality reduction

Intelligent transportation system (ITS) Attack pattern Principal component analysis

The use of supervised machine learning such as Decision Tree (DT), Support Vector
Machine (SVM), Naïve Bayes (NB), Random Forest (RF), and unsupervised algorithms
such as K-nearest neighbor (kNN) and Artificial Neural Network (ANN’s) for building
intrusion detection systems (IDS), or anomaly pattern detection, are the most exciting topics
in cybersecurity. A relevant fact observed in the selected papers was the growing number
of studies related to deep learning applications. Researchers have considered deep learning
a good alternative for facing different cybersecurity issues. How can deep learning be
applied to detect IoT attacks, APT, DDoS, malware, and anomaly detection? An interesting
fact is that there are three variants of deep learning:

1. Deep learning;
2. Deep reinforcement learning;
3. Deep transfer learning.

Table 10 shows topics identified from papers in the text mining process related to
security in IoT. Research focus on defense solutions to face DDoS include the use of
cognitive sciences approaches such as [88]:

• Deep learning;
• Machine learning;
• Deep Convolutional Neural Network (CNN);
• Genetic algorithms;
• Game theory;
• PCA;
• Large-Scale System (LSS.)

Table 10. Machine learning applied to cybersecurity.

Learning Techniques Cybersecurity Application Context

Decision Tree Cryptojacking

k-nearest neighbors Internet of things

Random Forest Advanced persistent threat

Naive Bayes Collaborative attacks

Recurrent Neural Networks (RNNs) Traffic flow monitoring

Generative adversarial networks Distributed denial-of-service attacks

Deep learning Malicious javascript detection

Deep reinforcement learning Intruder detection

Deep transfer learning

Below there are some approaches of studies between 2019 and 2021 with solutions
based on machine learning and deep learning for identifying malicious URLs or sentiment
analysis in social media:

• Deep learning for word embedding;
• Natural language processing and sentiment analysis on online social networks.

262

Electronics 2022, 11, 1692

Game theory is another alternative of cognitive sciences applied to cybersecurity. Its
objective is to try to guess the next step for adversaries during cyberattacks. Figure 10
shows a word cloud with topics related to game theory. We identified that game theory
could be applied to different domains such as energy, investment, cyber-physical systems,
and computer security. Additionally, game theory research shows approaches in defense
mechanisms, information dissemination, and decision making. Game theory uses computa-
tional modeling to take advantage of security analysts’ cognitive processes and adversaries
to improve decision-making based on information analysis to face attacks [96]. Game theory
is mostly used in the economy field, which is responsible for studying optimal decisions
and strategies for given situations. According to the definition of Nash equilibrium, the
strategy or set of strategies of each player responds to the other players’ actions to maximize
each player’s profit. The player’s strategy is a specific action at a particular moment of
the game [96]. A game is defined as interacting with two or more participants seeking a
reward. During the game, participants develop strategies to maximize their profit. Players
do not necessarily represent people; they can be organizations or groups. There are two
classic games in-game theory: cooperative games and non-cooperative games. There are
two ways for the mathematical representation of a game: a standard form using matrices
and an extensive form using decision trees. A cooperative game is based on the players’
interaction reaching agreements to establish the decision-making that each player will carry
out, achieving the objective of reaching coalitions, and determining how to distribute the
rewards [97]. However, in non-cooperative games, each player must decide what decision
to make without knowing the rest’s decisions. These are more subject to the reality of what
happens in the cybersecurity domain. Complete information games are those in which
each player knows all the events in the game’s course from the beginning, especially when
making a decision. A classic example of a complete information game is the game of chess.
Incomplete information games, in most cases, are simultaneous decision-making games, so
each player knows something that the others do not. Interactions between an adversary
and the user could be modeled based on two players’ stochastic game. Using a non-linear
program is possible to compute Nash equilibrium to define the best response strategies for
players [98]. Developing games that consider cost, time, reward, and performance could
define effective game strategies.

Figure 10. Game theory research topics.

4. Results and Discussion

Cognitive Cybersecurity Model

Our text mining process found that the works selected in this study do not consider
indirect cognitive processes or cognitive models such as OODA or MAPE-K. Including

263

Electronics 2022, 11, 1692

game theory in cybersecurity can lead to strategies to minimize cyberattacks from a cogni-
tive perspective. A complete information model is the most appropriate to obtain the best
decision from the game theory approach. Big network environments are very complex sce-
narios for developing detection and protection cybersecurity solutions. The integration of
machine learning and deep learning with game theory techniques could improve proactive
security solutions. Concerning Figure 2, Cassenti et al. [23] mention that technology does
not consider the user learning processes. From our perspective, the game theory approach
could be a solution to this because it validates the user’s decision-making processes based
on a set of experiences and patterns. From the game theory perspective, if the user (player)
improves the learning process or the decision-making process based on cognitive processes,
the probability of winning the game increases. In this sense, we propose in Figure 11, a
cognitive cybersecurity model based on integrating cognitive process and machine learning,
deep learning, and game theory approach applied in cybersecurity. As shown in Figure 11,
we structured the model into three layers. The first layer of the cognitive model addresses
the aspects of perception related to the cognitive processes. It associates them with sources
of information that can be analyzed to establish patterns of anomalies based on space-time
criteria. The second layer establishes the association of the understanding processes with
machine learning (ML) techniques or deep learning (DL) that can be used for the anomaly
detection processes. This association must have bi-directional feedback between analysts
and technology to improve ML or DL algorithms’ training processes. The way towards
the analysis allows us to generate perspicacity about cybersecurity situation awareness.
Additionally, this feedback should support the improvement in the analyst’s cognitive
processes to detect cyberattacks.

Figure 11. Proposal for a Cognitive Cybersecurity model.

Finally, the third layer associates the cognitive projection process with game theory
techniques. At this level, the decision-making processes to establish the best defense
strategy must be supported by the information obtained from the ML and DL processes
carried out in the lower layer. The bidirectional relation, in one sense, is the computational
model of the game theory component. In another sense, it should improve the cognitive
decision-making processes. However, establishing the proposed model is complex without
obtaining all the information from the analyst and adversary (See Figure 12). Modeling
the adversary’s characteristics would allow analysts to have a complete vision to establish
a better decision. For instance, they knew that the adversary could use a combination of
tools (T), techniques (Th), and procedures (C2F). However, the list of tools and procedures
can be extensive and varied. Below is a list of the most widespread RATs:

• OSSEC is an open-source HIDS for data gathering;
• Snort is an intrusion Prevention System (IPS) to detect malicious network activity;
• Suricata is an open-source system for real-time intrusion detection (IDS) and intrusion

prevention (IPS);

264

Electronics 2022, 11, 1692

• Security Onion is open-source used for threat hunting, security monitoring, and log
management;

• OpenWIPS-NG is an intrusion prevention system (IPS), preferred for wireless packet
tracking;

• Fail2ban is a software that scans log files and bans IPs that show malicious activ-
ity. Procedures used for adversaries could be based on Command and Control (C2)
frameworks. Following, we list some C2 frameworks:

� FudgeC2 is a campaign-orientated Powershell C2;
� Callidus is an open-source C2 framework that leverages Outlook, OneNote,

Microsoft Teams for command and control;
� APfell is a cross-platform, OPSEC aware, red teaming, post-exploitation C2

framework;
� DaaC2: is an open-source C2 framework that makes use of Discord as a C2;
� Koadic is an open-source for post-exploitation;
� TrevorC2 is a client/server model for masking command and control through

web browsers

Figure 12. Attack and defense components.

We represent in Equation (1) the attack as the combination of tools (T), procedures
(C2F), and techniques (Th), where w represents the weights based on the tool, procedure,
and technique used by the adversary.

Attack = w(T) + w(C2F) + w(T h) (1)

On the other hand, cybersecurity analysts developed a set of cognitive processes
to establish the defense process. From a macro vision, the analyst must decide if a
possible event could be an attack or not, based on the cognitive process of perception.
Bitzer et al. [99] mention that perceptual decision making is applied to two-alternative
forced-choice tasks to judge perceptual feature differences. According to Bitzer, drift-
diffusion models have been used to quantitatively analyze behavioral data, i.e., reaction
times and accuracy. In the same vein, Dale et al. [100] mention that the cognitive analysis of
vast amounts of data requires the application of the heuristics process and that people often
mistakenly judge the likelihood of a situation by not taking all relevant data into account.
However, according to Nikolić et al. [101], the application of heuristics as mental strategies
and certain deformations in the thoughts and perceptions of decision makers affect their
attitudes and approach to problem solving. Trueblood et al. [102] mention that we need
to understand how people make perceptual decisions to improve training to minimize
misdiagnoses in the medical field. So, let us adapt this approach to cybersecurity: the
defense strategy must be oriented toward the factors associated with the cognitive process;
this is described in Equation (2), where: R.T is the Response Time associated with the time

265

Electronics 2022, 11, 1692

for executing a defense action by a cybersecurity analyst; H.T is the heuristic thinking
associated with the process of selecting a decision; B is the Bias related to human thinking,
and S.A is the speed accuracy in the decision-making process.

Cognitive Process = w1(R.T) + w2(H.T) + w3(B) + w4(S.A) (2)

where wi is the weight assigned to each variable.
Once the cognitive process has been carried out, the best decision is made considering

the weight of each variable in the cognitive process, expressed in Equation (3).

Decision(j) = (ΔP j) Cognitive process (3)

where Delta P j is the variation due to weights in cognitive processes.
Therefore, the defense strategy is expressed as Equation (4).

Defense = (Decision j) + Error (4)

However, analysts in the cybersecurity decision-making process could be affected by
factors such as Bias and speed accuracy. Bias (B) effects and speed-accuracy effects are ubiq-
uitous in experimental psychology. Bias effects arise when the two stimulus alternatives
occur with unequal frequency or have unequal rewards attached to them. Speed-accuracy
(SA) effects arise as the result of explicit instructions emphasizing speed or accuracy [103].
Computational models of decision making present a solution to this problem. In partic-
ular, we choose Response Time (RT) models such as the drift-diffusion model (D.D.M.),
proposed by Ratcliff [103], and the linear ballistic accumulator (LBA) model, proposed by
Brown [104]. Accumulator models assume that evidence is accumulated over time until
a threshold amount is reached for a commitment to that response option. These models
contain four primary parameters related to different psychological components of simple
decisions: caution, Bias, stimulus processing, and motor sense.

5. Discussion

In this study, a literature review for the period 2019 to 2021 was carried out. Text-
mining was used to determine the most addressed topics in chosen papers in the area
of cybersecurity. This exploratory analysis focused on the most relevant used words in
the content. The words we found included security, attack, detection, networks, machine
learning, and power. This result made us deduce that cybersecurity research has been
related to detecting cyberattacks on electricity grids through machine learning in recent
years. Another finding in our literature review was that the mainstream research has been
dedicated to implementing proactive cybersecurity. Cognitive science is being applied for
this purpose. We actually found relevant contributions in which machine learning and
deep learning-based solutions were proposed. Figure 13 shows the percentage of works
that use machine learning and deep learning, respectively, from the papers included in the
literature review that we carried out.

Figure 13. Deep Learning vs. Machine Learning.

The period 2019 to 2021 was atypical in the way some activities were carried out
worldwide due to it being in the context of a pandemic driven by COVID-19. In this context,

266

Electronics 2022, 11, 1692

the reasoning in some sectors has to consider the greater use of technological resources,
such as tele-education, tele-health, government, and private electronic services. From
the perspective of the digital transformation of organizations and cities, the pandemic
was an essential accelerator in the adoption of technologies in specific sectors. It made
organizations and people more dependent on technological resources. However, this
context generated the need to address essential aspects of cybersecurity. For example,
children increased their availability of internet connections, increasing their exposure
to online risks [105]. Organizations based their logistics and supply chain processes on
internet-based technologies, expanding the attack surface [106]. The inclusion of IoT for
data collection and process automation increases the need to acquire an end-to-end secure
IoT environment [107]. The use of social engineering attacks based on the human need to
obtain information about the pandemic increased their probability of accessing fake news
or being a victim of social engineering attacks [108].

During the same period, 2019–2021, even within the context of the pandemic, there
was no reduction in attacks on organizations’ information systems or the impact on people
through social engineering attacks. The literature review carried out for the perid 2019–2021
showed that the financial, energy, and healthcare services were the most attacked, and the
fastest-growing attacks were DDoS, Ransomware, Mobile malware, and Phishing. This
context highlighted the need for organizations to strengthen their cybersecurity strategies
concerning:

• Security intelligence systems;
• Perimeter controls;
• Encryption technologies;
• Data loss prevention;
• Governance risk;
• Automated policy management.

While from a user perspective, it highlighted the need to generate more awareness
concerning:

• Malicious web pages;
• Malicious Mobile Apps;
• Malicious Email messages;
• Misinformation and fake news;
• Security and privacy.

Faced with this continuous growth of cybersecurity attacks and the need to improve
security strategies to protect people and organizations, the literature review carried out
shows that research has promoted the use of learning techniques as a resource to strengthen
their security strategies, specifically to automate activities such as behavior pattern, attack
pattern, anomaly detection, and anomaly identification. The most-used learning techniques
in the cybersecurity domain correspond to Decision Tree, k-nearest neighbors, Random
Forest, Naive Bayes, Recurrent Neural Networks (RNNs), generative adversarial networks,
deep learning, deep reinforcement learning, and deep transfer learning, and you can see a
growing interest in what corresponds to deep learning. Although game theory is not new
in its application to cybersecurity, it has had significant growth in recent years, especially
in improving decision-making processes related to cybersecurity in the financial, energy,
and critical infrastructure sectors.

This finding encourages future work to understand how security organizations and
specialists are preparing to adopt cognitive techniques based on learning as a security
strategy. It has also proposed a possible future analysis of how our organizations can have
their learning capacity (situational awareness and self-awareness) capable of establishing
that it is being attacked and can establish a level of resilience. From the user’s perspective,
it highlights how these learning techniques can be used to strengthen cognitive processes
in detecting security attacks, especially those based on social engineering techniques.

267

Electronics 2022, 11, 1692

The design of cognitive models applied in cybersecurity compared to traditional
security methods is based on obtaining or abstracting information from the user’s cognitive
processes, organization, and adversary roles, for which a cognitive model could define the
following steps:

1. Implementation of infrastructure for handling a large volume of data;
2. Incorporation of cognitive sciences in security strategies such as artificial intelligence,

machine learning, data analytics, and psychology;
3. Cognitive model design based on:

A. Cognitive processes Observe–Orient–Decide–Act model (OODA);
B. the Monitor–Analyze–Plan–Execute model (MAPE-K).

4. Identification of cognitive processes:

A. Users’ or analysts’ cognitive processes;
B. The adversary’s behavioral characteristics.

6. Conclusions

The literature review found that much attention has been paid to proactive cyberse-
curity solutions, acceptable cybersecurity practices, and cybersecurity hygiene strategies
for mitigating cyberattacks. In this context, the use of cognitive science techniques has
grown significantly. Answers in this area are being proposed, and they mainly look for the
improvement of the response time of cyberattacks’ countermeasures that work in real-time.

In general, cognitive science is being used to understand the behavior of adversaries
to minimize the impact of cyberattacks. In this context, machine learning and deep learning
are the techniques that are used the most. The model we propose tries to fill the gap that
exists in automatizing cognitive science without considering the users learning processes.
Our opinion is that incorporating game theory represents a significant contribution to
bringing cognitive sciences to decision-making processes. A set of heuristic, Bias, and
quantitative perception measures was defined as part of the cognitive cybersecurity model
we have proposed. These measures make it possible to integrate machine learning and
deep learning techniques with game theory. We conclude that social and psychological
analysis in cybersecurity may improve the process of obtaining information that helps in
the decision-making processes.

The present work, investigating the period 2019–2021, understands the evolution of
cybersecurity under an atypical context such as a pandemic. Work carried out during
the year 2022 has not been considered because it is a period still in progress and has had
a change based on the progressive return of activities. Therefore, we believe that future
complementary work would be to analyze how this new change has affected cybersecurity
processes.

This work was based on the literature review of scientific bases. It would be interesting
to extend it with a study of different organizations and their perspective on the inclusion or
management of cognitive techniques applied to cybersecurity, including understanding
how these techniques can provide security in the requirements analysis, and by performing
security configurations in the context of DevOps [109] and Digital transformation [110],
in addition to how cognitive techniques tie in with Open-source tools, which are widely
used to maintain network security, endpoint security, and system security [111]. Although
our literature review does not show them explicitly, these are very relevant topics in
cybersecurity today. This leads us in future work to propose new search strings that allow
us to expand our study to these topics.

Author Contributions: Conceptualization, R.O.A. and W.F.; methodology, R.O.A.; validation, W.F.;
formal analysis, R.O.A.; investigation, M.C.; data curation, I.O.-G.; writing—review and editing,
I.O.-G. and G.N.; funding acquisition, I.O.-G. and G.N. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

268

Electronics 2022, 11, 1692

Acknowledgments: The authors would like to thank the Universidad de las Fuerzas Armadas ESPE
of Sangolquí, Ecuador, for the resources granted for the development of the research project entitled:
“Detection and Mitigation of Social Engineering attacks applying Cognitive Security, Code: PIC-
ESPE-2020-SE”. The author also acknowledges the Universidad de Las Américas of Ecuador and his
Engineer degree in Information Technology for support in this work. Additionality, we want to thank
the members of the group IDEIAGEOCA for all their support in the research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. WEF: Word Economic Forum. The Global Risks Report 2021. Available online: https://www.weforum.org/reports/the-global-
risks-report-2021 (accessed on 21 May 2021).

2. Donevski, M.; Zia, T. A survey of anomaly and automation from a cybersecurity perspective. In Proceedings of the 2018 IEEE
Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–6. [CrossRef]

3. Yang, Q.; Jia, X.; Li, X.; Feng, J.; Li, W.; Lee, J. Evaluating Feature Selection and Anomaly Detection Methods of Hard Drive Failure
Prediction. IEEE Trans. Reliab. 2020, 70, 749–760. [CrossRef]

4. Alrashdi, I.; Alqazzaz, A.; Aloufi, E.; Alharthi, R.; Zohdy, M.; Ming, H. AD-IoT: Anomaly Detection of IoT Cyberattacks in Smart
City Using Machine Learning. In Proceedings of the IEEE 9th Annual Computing and Communication Workshop and Conference
(CCWC), Las Vegas, NV, USA, 7–9 January 2019; pp. 0305–0310. [CrossRef]

5. Andrade, R.; Torres, J. Self-awareness as an enabler of cognitive security. In Proceedings of the 2018 IEEE 9th Annual Infor-
mation Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, Canada, 1–3 November
2018; pp. 701–708. [CrossRef]

6. Leung, H. An integrated decision support system based on the human ooda loop. In Proceedings of the 2018 IEEE 17th
International Conference on Cognitive Informatics Cognitive Computing (ICCI*CC), Berkeley, CA, USA, 16–18 July 2018; p. 1.
[CrossRef]

7. Shaukat, K.; Luo, S.; Varadharajan, V.; Hameed, I.A.; Xu, M. A Survey on Machine Learning Techniques for Cyber Security in the
Last Decade. IEEE Access 2020, 8, 222310–222354. [CrossRef]

8. Brückner, M.; Scheffer, T. Stackelberg games for adversarial prediction problems. In Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 21–24 August 2011; pp. 547–555.
[CrossRef]

9. Andrade, R.; Torres, J. Enhancing intelligence soc with big data tools. In Proceedings of the 2018 IEEE 9th Annual Infor-
mation Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, Canada, 1–3 November
2018; pp. 1076–1080. [CrossRef]

10. Le, D.C.; Zincir-Heywood, N. Exploring adversarial properties of insider threat detection. In Proceedings of the 2020 IEEE
Conference on Communications and Network Security (CNS), Avignon, France, 29 June–1 July 2020; pp. 1–9. [CrossRef]

11. Rajivan, P.; Gonzalez, C. Creative Persuasion: A Study on Adversarial Behaviors and Strategies in Phishing Attacks. Front.
Psychol. 2018, 9, 135. [CrossRef] [PubMed]

12. Andrade, R.; Yoo, S.G. Cognitive security: A comprehensive study of cognitive science in cybersecurity. J. Inf. Secur. Appl. 2019,
48, 102352. [CrossRef]

13. Alqahtani, H.; Kavakli-Thorne, M. Exploring factors affecting user’s cybersecurity behaviour by using mobile augmented reality
app (cybar). In Proceedings of the 2020 12th International Conference on Computer and Automation Engineering. ICCAE, Sydney, NSW,
Australia, 14–16 February 2020; Association for Computing Machinery: New York, NY, USA; pp. 129–135. [CrossRef]

14. Kakkad, V.; Shah, H.; Patel, R.; Doshi, N. A Comparative study of applications of Game Theory in Cyber Security and Cloud
Computing. Procedia Comput. Sci. 2019, 155, 680–685. [CrossRef]

15. Andrade, R.O.; Ortiz-Garces, I.; Cazares, M. Cybersecurity attacks on smart home during covid-19 pandemic. In Proceedings
of the Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), London, UK, 27–28 July
2021; pp. 398–404. [CrossRef]

16. Orunsolu, A.; Sodiya, A.; Akinwale, A. A predictive model for phishing detection. J. King Saud Univ. Comput. Inf. Sci. 2022,
34, 232–247. [CrossRef]

17. Schubert, A.-L.; Frischkorn, G.T.; Hagemann, D.; Voss, A. Trait Characteristics of Diffusion Model Parameters. J. Intell. 2016, 4, 7.
[CrossRef]

18. Simmons, C.; Ellis, C.; Shiva, S.; Dasgupta, D.; Wu, C. Avoidit: A cyber attack taxonomy. In Proceedings of the 9th Annual
Symposium on Information Assurance (ASIA’14), Albany, NY, USA, 3–4 June 2014.

19. Venkatesan, S.; Sugrim, S.; Izmailov, R.; Chiang, C.J.; Chadha, R.; Doshi, B.; Hoffman, B.; Allison Newcomb, E.; Buchler, N. On
detecting manifestation of adversary characteristics. In Proceedings of the MILCOM 2018—2018 IEEE Military Communications
Conference (MILCOM), Los Angeles, CA, USA, 29–31 October 2018; pp. 431–437. [CrossRef]

20. Andrade, R.O.; Yoo, S.G.; Tello-Oquendo, L.; Ortiz-Garces, I. A Comprehensive Study of the IoT Cybersecurity in Smart Cities.
IEEE Access 2020, 8, 228922–228941. [CrossRef]

269

Electronics 2022, 11, 1692

21. Zambrano, P.; Torres, J.; Tello-Oquendo, L.; Jacome, R.; Benalcazar, M.E.; Andrade, R.; Fuertes, W. Technical Mapping of the
Grooming Anatomy Using Machine Learning Paradigms: An Information Security Approach. IEEE Access 2019, 7, 142129–142146.
[CrossRef]

22. Lebiere, C.; Morrison, D.; Abdelzaher, T.; Hu, S.; Gonzalez, C.; Buchler, N.; Veksler, V. Cognitive models of prediction as decision
aids. In Proceedings of the 14th International Conference on Cognitive Modeling, University Park, PA, USA, 4–6 August 2016.

23. Cassenti, D.; Veksler, V. Using cognitive modeling for adaptive automation triggering. In Proceedings of the AHFE 2017
International Conference on Human Factors in Simulation and Modeling, Los Angeles, CA, USA, 17–21 July 2017; pp. 378–390.
[CrossRef]

24. Cameron, L.; Jago, L. Cognitive Strategies; Springer: New York, NY, USA, 2013; p. 453. [CrossRef]
25. Mengist, W.; Soromessa, T.; Legese, G. Method for conducting systematic literature review and meta-analysis for environmental

science research. MethodsX 2019, 7, 100777. [CrossRef]
26. Andrade, R.O.; Yoo, S.G. A Comprehensive Study of the Use of LoRa in the Development of Smart Cities. Appl. Sci. 2019, 9, 4753.

[CrossRef]
27. Antons, D.; Grünwald, E.; Cichy, P.; Salge, T.O. The application of text mining methods in innovation research: Current state,

evolution patterns, and development priorities. R&D Manag. 2020, 50, 329–351. [CrossRef]
28. Lee, C.; Cheng, C.; Zeleke, A. Can text mining technique be used as an alternative tool for qualitative research in education? In

Proceedings of the 15th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing (SNPD), Las Vegas, NV, USA, 30 June–2 July 2014; pp. 1–6. [CrossRef]

29. Ceron, J.C.A.; Gomez, L.J.P.; Ceballos, H.G.; Cantu-Ortiz, F.J. Twitter data analysis on the topic: Tec de monterrey. In Proceedings
of the 2020 3rd International Conference on Computer Applications Information Security (ICCAIS), Riyadh, Saudi Arabia, 19–21
March 2020; pp. 1–6. [CrossRef]

30. USDJ. New York Man Pleads Guilty to Cyberstalking after Harassing and Sextorting Multiple Victims. 2021. Available
online: https://www.justice.gov/usao-mdfl/pr/new-york-man-pleads-guilty-cyberstalking-after-harassing-and-sextorting-
multiple (accessed on 25 May 2021).

31. CISA. Ransomware Activity Targeting the Healthcare and Public Health Sector. 2021. Available online: https://us-cert.cisa.gov/
ncas/alerts/aa20--302a (accessed on 25 May 2021).

32. FBI. Fraudsters Prey on Emotions and Bank Accounts in Money Mule Schemes. 2021. Available online: https://www.fbi.
gov/contact-us/field-offices/elpaso/news/press-releases/fraudsters-prey-on-emotions-and-bank-accounts-in-money-mule-
schemes (accessed on 25 May 2021).

33. Al-Mohannadi, H.; Mirza, Q.; Namanya, A.; Awan, I.; Cullen, A.; Disso, J. Cyber-attack modeling analysis techniques: An
overview. In Proceedings of the 2016 IEEE 4th International Conference on Future Internet of Things and Cloud Workshops
(FiCloudW), Vienna, Austria, 22–24 August 2016; pp. 69–76. [CrossRef]

34. ENISA. Threat Landscape. 2020. Available online: https://www.enisa.europa.eu/topics/threat-risk-management/threats-and-
trends (accessed on 12 February 2021).

35. Singh, C. Meenu: Phishing website detection based on machine learning: A survey. In Proceedings of the 2020 6th International
Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 6–7 March 2020; pp. 398–404.
[CrossRef]

36. Athulya, A.; Praveen, K. Towards the detection of phishing attacks. In Proceedings of the 2020 4th International Conference on
Trends in Electronics and Informatics (ICOEI) (48184), Tirunelveli, India, 15–17 June 2020; pp. 337–343. [CrossRef]

37. Chapla, H.; Kotak, R.; Joiser, M. A machine learning approach for url based web phishing using fuzzy logic as classifier. In
Proceedings of the 2019 International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India,
17–19 July 2019; pp. 383–388. [CrossRef]

38. Zubair Hasan, K.M.; Hasan, M.Z.; Zahan, N. Automated prediction of phishing websites using deep convolutional neural
network. In Proceedings of the 2019 International Conference on Computer, Communication, Chemical, Materials and Electronic
Engineering (IC4ME2), Rajshahi, Bangladesh, 11–12 July 2019; pp. 1–4. [CrossRef]

39. Kunju, M.V.; Dainel, E.; Anthony, H.C.; Bhelwa, S. Evaluation of phishing techniques based on machine learning. In Proceed-
ings of the 2019 International Conference on Intelligent Computing and Control Systems (ICCS), Madurai, India, 15–17 May
2019; pp. 963–968. [CrossRef]

40. Zheng, K.; Wu, T.; Wang, X.; Wu, B.; Wu, C. A Session and Dialogue-Based Social Engineering Framework. IEEE Access 2019,
7, 67781–67794. [CrossRef]

41. Joshi, C.; Aliaga, J.R.; Insua, D.R. Insider Threat Modeling: An Adversarial Risk Analysis Approach. IEEE Trans. Inf. Forensics
Secur. 2020, 16, 1131–1142. [CrossRef]

42. Duncan, A.; Creese, S.; Goldsmith, M. A combined attack-tree and kill-chain approach to designing attack-detection strategies for
malicious insiders in cloud computing. In Proceedings of the 2019 International Conference on Cyber Security and Protection of
Digital Services (Cyber Security), Oxford, UK, 3–4 June 2019; pp. 1–9. [CrossRef]

43. Khan, A.Y.; Latif, R.; Latif, S.; Tahir, S.; Batool, G.; Saba, T. Malicious Insider Attack Detection in IoTs Using Data Analytics.
IEEE Access 2019, 8, 11743–11753. [CrossRef]

44. Alshamrani, A.; Myneni, S.; Chowdhary, A.; Huang, D. A Survey on Advanced Persistent Threats: Techniques, Solutions,
Challenges, and Research Opportunities. IEEE Commun. Surv. Tutor. 2019, 21, 1851–1877. [CrossRef]

270

Electronics 2022, 11, 1692

45. Su, Y. Research on apt attack based on game model. In Proceedings of the 2020 IEEE 4th Information Technology, Networking,
Electronic and Automation Control Conference (ITNEC), Chongqing, China, 12–14 June 2020; Volume 1, pp. 295–299. [CrossRef]

46. Khosravi, M.; Ladani, B.T. Alerts Correlation and Causal Analysis for APT Based Cyber Attack Detection. IEEE Access 2020,
8, 162642–162656. [CrossRef]

47. Sajal, S.Z.; Jahan, I.; Nygard, K.E. A survey on cyber security threats and challenges in modem society. In Proceedings of the
2019 IEEE International Conference on Electro Information Technology (EIT), Brookings, SD, USA, 20–22 May 2019; pp. 525–528.
[CrossRef]

48. Park, J.; Cho, D.; Lee, J.K.; Lee, B. The Economics of Cybercrime. ACM Trans. Manag. Inf. Syst. 2019, 10, 1–23. [CrossRef]
49. Cao, M.; Badihi, S.; Ahmed, K.; Xiong, P.; Rubin, J. On benign features in malware detection. In Proceedings of the 35th

IEEE/ACM International Conference on Automated Software Engineering ASE’20, Virtual Event, Australia, 21–25 December
2020; Association for Computing Machinery: New York, NY, USA; pp. 1234–1238. [CrossRef]

50. Samantray, O.P.; Tripathy, S.N.; Das, S.K. A study to understand malware behavior through malware analysis. In Proceedings of
the 2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN), Pondicherry, India,
29–30 March 2019; pp. 1–5. [CrossRef]

51. Vishwakarma, R.; Jain, A.K. A survey of DDoS attacking techniques and defence mechanisms in the IoT network. Telecommun.
Syst. 2019, 73, 3–25. [CrossRef]

52. Liang, X.; Znati, T. An empirical study of intelligent approaches to ddos detection in large scale networks. In Proceedings of the
2019 International Conference on Computing, Networking and Communications (ICNC), Honolulu, HI, USA, 18–21 February
2019; pp. 821–827. [CrossRef]

53. Priya, S.S.; Sivaram, M.; Yuvaraj, D.; Jayanthiladevi, A. Machine learning based ddos detection. In Proceedings of the 2020
International Conference on Emerging Smart Computing and Informatics (ESCI), Pune, India, 12–14 March 2020; pp. 234–237.
[CrossRef]

54. Nandi, S.; Phadikar, S.; Majumder, K. Detection of ddos attack and classification using a hybrid approach. In Proceedings of
the 2020 Third ISEA Conference on Security and Privacy (ISEA-ISAP), Guwahati, India, 27 February–1 March 2020; pp. 41–47.
[CrossRef]

55. Rohit, M.H.; Fahim, S.M.; Khan, A.H.A. Mitigating and detecting ddos attack on iot environment. In Proceedings of the 2019
IEEE International Conference on Robotics, Automation, Artificial-intelligence and Internet-of-Things (RAAICON), Dhaka,
Bangladesh, 29 November–1 December 2019; pp. 5–8. [CrossRef]

56. Agrawal, N.; Tapaswi, S. Defense Mechanisms Against DDoS Attacks in a Cloud Computing Environment: State-of-the-Art and
Research Challenges. IEEE Commun. Surv. Tutor. 2019, 21, 3769–3795. [CrossRef]

57. Bijitha, C.V.; Sukumaran, R.; Nath, H.V. A survey on ransomware detection techniques. In Secure Knowledge Management in
Artificial Intelligence Era; Sahay, S.K., Goel, N., Patil, V., Jadliwala, M., Eds.; Springer: Singapore, 2020; pp. 55–68.

58. Alzahrani, A.; Alshahrani, H.; Alshehri, A.; Fu, H. An intelligent behavior-based ransomware detection system for android
platform. In Proceedings of the 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and
Applications (TPS-ISA), Los Angeles, CA, USA, 12–14 December 2019; pp. 28–35. [CrossRef]

59. Adamov, A.; Carlsson, A. Reinforcement learning for anti-ransomware testing. In Proceedings of the 2020 IEEE East-West Design
Test Symposium (EWDTS), Varna, Bulgaria, 4–7 September 2020; pp. 1–5. [CrossRef]

60. Bahrani, A.; Bidgly, A.J. Ransomware detection using process mining and classification algorithms. In Proceedings of the 2019
16th International ISC (Iranian Society of Cryptology) Conference on Information Security and Cryptology (ISCISC), Mashhad,
Iran, 28–29 August 2019; pp. 73–77. [CrossRef]

61. Shahpasand, M.; Hamey, L.; Vatsalan, D.; Xue, M. Adversarial attacks on mobile malware detection. In Proceedings of the 2019
IEEE 1st International Workshop on Artificial Intelligence for Mobile (AI4Mobile), Hangzhou, China, 24 February 2019; pp. 17–20.
[CrossRef]

62. Tahtaci, B.; Canbay, B. Android malware detection using machine learning. In Proceedings of the 2020 Innovations in Intelligent
Systems and Applications Conference (ASYU), Istanbul, Turkey, 15–17 October 2020; pp. 1–6. [CrossRef]

63. Mbaziira, A.V.; Diaz-Gonzales, J.; Liu, M. Deep learning in detection of mobile malware. J. Comput. Sci. Coll. 2020, 36, 80–88.
64. Diaz-Gonzalez, J.; Mbaziira, A.V.; Liu, M. An exploratory deep learning approach to mobile malware detection. J. Comput. Sci.

Coll. 2019, 35, 219.
65. Allen, J.; Yang, Z.; Landen, M.; Bhat, R.; Grover, H.; Chang, A.; Ji, Y.; Perdisci, R.; Lee, W. Mnemosyne: An effective and efficient

postmortem watering hole attack investigation system. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, CCS’20, Virtual Event, USA, 9–13 November 2020; Association for Computing Machinery: New York,
NY, USA, 2020; pp. 787–802. [CrossRef]

66. Research CP. CYBER ATTACK TRENDS: 2020 MID-YEAR REPORT—Check Point Research. 2021. Available online: https:
//research.checkpoint.com/2020/cyber-attack-trends-2020-mid-year-report/ (accessed on 21 May 2021).

67. Dasgupta, D.; Akhtar, Z.; Sen, S. Machine learning in cybersecurity: A comprehensive survey. J. Déf. Model. Simul. Appl. Methodol.
Technol. 2020, 19, 57–106. [CrossRef]

68. Brewer, J.N.; Dimitoglou, G. Evaluation of attack vectors and risks in automobiles and road infrastructure. In Proceedings of
the 2019 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 5–7
December 2019; pp. 84–89. [CrossRef]

271

Electronics 2022, 11, 1692

69. Li, T.; Wang, K.; Horkoff, J. Towards effective assessment for social engineering attacks. In Proceedings of the 2019 IEEE 27th
International Requirements Engineering Conference (RE), Jeju, Korea, 23–27 September 2019; pp. 392–397. [CrossRef]

70. Tandale, K.D.; Pawar, S.N. Different types of phishing attacks and detection techniques: A review. In Proceedings of the 2020
International Conference on Smart Innovations in Design, Environment, Management, Planning and Computing (ICSIDEMPC),
Aurangabad, India, 30–31 October 2020; pp. 295–299. [CrossRef]

71. Badami, C.; Kettani, H. On Malware Detection in the Android Operating System. In Proceedings of the 4th International
Conference on Algorithms, Computing and Systems, Rabat, Morocco, 6–8 January 2020; Association for Computing Machinery:
New York, NY, USA, 2020; pp. 45–50. [CrossRef]

72. George, R.; Jalal, R.; Raju, R.M.; Sunny, S.S.; Hari, M. High responsive plug-in for malicious url detection. In Proceedings
of the 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 23–25 April
2019; pp. 357–359. [CrossRef]

73. Song, X.; Chen, C.; Cui, B.; Fu, J. Malicious JavaScript Detection Based on Bidirectional LSTM Model. Appl. Sci. 2020, 10, 3440.
[CrossRef]

74. Dogaru, D.I.; Dumitrache, I. Cyber security of smart grids in the context of big data and machine learning. In Proceedings of
the 2019 22nd International Conference on Control Systems and Computer Science (CSCS), Bucharest, Romania, 28–30 May
2019; pp. 61–67. [CrossRef]

75. Spanakis, E.G.; Bonomi, S.; Sfakianakis, S.; Santucci, G.; Lenti, S.; Sorella, M.; Tanasache, F.D.; Palleschi, A.; Ciccotelli, C.;
Sakkalis, V.; et al. Cyber-attacks and threats for healthcare—A multi-layer thread analysis. In Proceedings of the 2020 42nd
Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC), Montreal, QC, Canada, 20–24 July
2020; pp. 5705–5708. [CrossRef]

76. Pilz, M.; Naeini, F.B.; Grammont, K.; Smagghe, C.; Davis, M.; Nebel, J.-C.; Al-Fagih, L.; Pfluegel, E. Security attacks on smart grid
scheduling and their defences: A game-theoretic approach. Int. J. Inf. Secur. 2019, 19, 427–443. [CrossRef]

77. Canaan, B.; Colicchio, B.; Abdeslam, D.O. Microgrid Cyber-Security: Review and Challenges toward Resilience. Appl. Sci. 2020,
10, 5649. [CrossRef]

78. Tervoort, T.; De Oliveira, M.T.; Pieters, W.; Van Gelder, P.; Olabarriaga, S.D.; Marquering, H. Solutions for Mitigating Cybersecurity
Risks Caused by Legacy Software in Medical Devices: A Scoping Review. IEEE Access 2020, 8, 84352–84361. [CrossRef]

79. Fatima, K.; Nawaz, S.; Mehrban, S. Biometric authentication in health care sector: A survey. In Proceedings of the 2019
International Conference on Innovative Computing (ICIC), Lahore, Pakistan, 1–2 November 2019; pp. 1–10. [CrossRef]

80. Kazemi, Z.; Fazeli, M.; Hely, D.; Beroulle, V. Hardware security vulnerability assessment to identify the potential risks in a critical
embedded application. In Proceedings of the 2020 IEEE 26th International Symposium on On-Line Testing and Robust System
Design (IOLTS), Napoli, Italy, 13–15 July 2020; pp. 1–6. [CrossRef]

81. Kotenko, I.; Saenko, I.; Kushnerevich, A.; Branitskiy, A. Attack detection in iot critical infrastructures: A machine learning and
big data processing approach. In Proceedings of the 2019 27th Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP), Pavia, Italy, 13–15 February 2019; pp. 340–347. [CrossRef]

82. Sen, S.; Jayawardena, C. Analysis of cyber-attack in big data iot and cyber-physical systems—A technical approach to cybersecurity
modeling. In Proceedings of the 2019 IEEE 5th International Conference for Convergence in Technology (I2CT), Bombay, India,
29–31 March 2019; pp. 1–7. [CrossRef]

83. Neshenko, N.; Bou-Harb, E.; Crichigno, J.; Kaddoum, G.; Ghani, N. Demystifying IoT Security: An Exhaustive Survey on IoT
Vulnerabilities and a First Empirical Look on Internet-Scale IoT Exploitations. IEEE Commun. Surv. Tutor. 2019, 21, 2702–2733.
[CrossRef]

84. Gressl, L.; Steger, C.; Neffe, U. Consideration of security attacks in the design space exploration of embedded systems.
In Proceedings of the 2019 22nd Euromicro Conference on Digital System Design (DSD), Kallithea, Greece, 28–30 August
2019; pp. 530–537. [CrossRef]

85. Chauhan, V.; Arora, G. A review paper on cryptocurrency portfolio management. In Proceedings of the 2019 2nd International
Conference on Power Energy, Environment and Intelligent Control (PEEIC), Greater Noida, India, 18–19 October 2019; pp. 60–62.
[CrossRef]

86. Shahnaz, A.; Qamar, U.; Khalid, A. Using Blockchain for Electronic Health Records. IEEE Access 2019, 7, 147782–147795. [CrossRef]
87. Gong, X.; Liu, E.; Wang, R. Blockchain-based iot application using smart contracts: Case study of m2m autonomous trading.

In Proceedings of the 2020 5th International Conference on Computer and Communication Systems (ICCCS), Shanghai, China,
15–18 May 2020; pp. 781–785. [CrossRef]

88. Chen, Y.-W.; Sheu, J.-P.; Kuo, Y.-C.; Van Cuong, N. Design and implementation of iot ddos attacks detection system based on
machine learning. In Proceedings of the 2020 European Conference on Networks and Communications (EuCNC), Dubrovnik,
Croatia, 15–18 June 2020; pp. 122–127. [CrossRef]

89. Ahmed, Z.; Danish, S.M.; Qureshi, H.K.; Lestas, M. Protecting iots from mirai botnet attacks using blockchains. In Proceedings of
the 2019 IEEE 24th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks
(CAMAD), Limassol, Cyprus, 11–13 September 2019; pp. 1–6. [CrossRef]

90. Sambangi, S.; Gondi, L. A machine learning approach for ddos (distributed denial of service) attack detection using multiple
linear regression. Proceedings 2020, 63, 51.

91. Sai, A.M.V.V.; Li, Y. A Survey on Privacy Issues in Mobile Social Networks. IEEE Access 2020, 8, 130906–130921. [CrossRef]

272

Electronics 2022, 11, 1692

92. Hijji, M.; Alam, G. A Multivocal Literature Review on Growing Social Engineering Based Cyber-Attacks/Threats During the
COVID-19 Pandemic: Challenges and Prospective Solutions. IEEE Access 2021, 9, 7152–7169. [CrossRef] [PubMed]

93. MITRE. Enterprise Attacks Techniques MITRE. 2021. Available online: https://attack.mitre.org/techniques/enterprise/ (accessed
on 25 May 2021).

94. Wankhede, S.B. Anomaly detection using machine learning techniques. In Proceedings of the 2019 IEEE 5th International
Conference for Convergence in Technology (I2CT), Bombay, India, 29–31 March 2019; pp. 1–3. [CrossRef]

95. Wollaber, A.; Peñna, J.; Blease, B.; Shing, L.; Alperin, K.; Vilvovsky, S.; Trepagnier, P.; Wagner, N.; Leonard, L. Proactive cyber
situation awareness via high performance computing. In Proceedings of the 2019 IEEE High Performance Extreme Computing
Conference (HPEC), Waltham, MA, USA, 24–26 September 2019; pp. 1–7. [CrossRef]

96. Iqbal, A.; Gunn, L.J.; Guo, M.; Babar, M.A.; Abbott, D. Game Theoretical Modelling of Network/Cybersecurity. IEEE Access 2019,
7, 154167–154179. [CrossRef]

97. Zhou, X.; Cheng, S.; Liu, Y. A Cooperative Game Theory-Based Algorithm for Overlapping Community Detection. IEEE Access
2020, 8, 68417–68425. [CrossRef]

98. Kwiatkowska, M.; Norman, G.; Parker, D.; Santos, G. Prism-games 3.0: Stochastic game verification with concurrency, equilibria
and time. In Computer Aided Verification; Lahiri, S.K., Wang, C., Eds.; Springer: Cham, Switzerland, 2020; pp. 475–487.

99. Bitzer, S.; Park, H.; Blankenburg, F.; Kiebel, S.J. Perceptual decision making: Drift-diffusion model is equivalent to a Bayesian
model. Front. Hum. Neurosci. 2014, 8, 102. [CrossRef]

100. Dale, S. Heuristics and biases: The science of decision-making. Bus. Inf. Rev. 2015, 32, 93–99. [CrossRef]
101. Nikolić, J. Biases in the decision-making process and possibilities of overcoming them. Èkon. Horiz. 2018, 20, 45–59. [CrossRef]
102. Trueblood, J.S.; Holmes, W.R.; Seegmiller, A.C.; Douds, J.; Compton, M.; Szentirmai, E.; Woodruff, M.; Huang, W.; Stratton, C.;

Eichbaum, Q. The impact of speed and bias on the cognitive processes of experts and novices in medical image decision-making.
Cogn. Res. Princ. Implic. 2018, 3, 28. [CrossRef]

103. Smith, P.; Ratcliff, R. An introduction to the diffusion model of decision making. In An Introduction to Model-Based Cognitive
Neuroscience; Springer: New York, NY, USA, 2015; pp. 49–70. [CrossRef]

104. Nishiguchi, Y.; Sakamoto, J.; Kunisato, Y.; Takano, K. Linear Ballistic Accumulator Modeling of Attentional Bias Modification
Revealed Disturbed Evidence Accumulation of Negative Information by Explicit Instruction. Front. Psychol. 2019, 10, 2447.
[CrossRef]

105. Quayyum, F.; Cruzes, D.S.; Jaccheri, L. Cybersecurity awareness for children: A systematic literature review. Int. J. Child Comput.
Interact. 2021, 30, 100343. [CrossRef]

106. Cheung, K.-F.; Bell, M.G.; Bhattacharjya, J. Cybersecurity in logistics and supply chain management: An overview and future
research directions. Transp. Res. Part E: Logist. Transp. Rev. 2021, 146, 102217. [CrossRef]

107. Hassija, V.; Chamola, V.; Saxena, V.; Jain, D.; Goyal, P.; Sikdar, B. A Survey on IoT Security: Application Areas, Security Threats,
and Solution Architectures. IEEE Access 2019, 7, 82721–82743. [CrossRef]

108. Wang, Z.; Zhu, H.; Sun, L. Social Engineering in Cybersecurity: Effect Mechanisms, Human Vulnerabilities and Attack Methods.
IEEE Access 2021, 9, 11895–11910. [CrossRef]

109. Rahman, A.U.; Williams, L. Software Security in DevOps: Synthesizing Practitioners’ Perceptions and Practices. In Proceedings
of the 2016 IEEE/ACM International Workshop on Continuous Software Evolution and Delivery (CSED), Austin, TX, USA, 14–15
May 2016; pp. 70–76.

110. Maglaras, L.; Drivas, G.; Chouliaras, N.; Boiten, E.; Lambrinoudakis, C.; Ioannidis, S. Cybersecurity in the Era of Digital
Transformation: The case of Greece. In Proceedings of the 2020 International Conference on Internet of Things and Intelligent
Applications (ITIA), Zhenjiang, China, 27–29 November 2020; pp. 1–5. [CrossRef]

111. Sharma, R.; Dangi, S.; Mishra, P. A Comprehensive Review on Encryption based Open Source Cyber Security Tools. In Proceedings
of the 2021 6th International Conference on Signal Processing, Computing and Control (ISPCC), Solan, India, 7–9 October
2021; pp. 614–619. [CrossRef]

273

Citation: Han, F.; Zhou, M. Threat

Matrix: A Fast Algorithm for

Human–Machine Chinese Ludo

Gaming. Electronics 2022, 11, 1699.

https://doi.org/10.3390/

electronics11111699

Academic Editor: Krzysztof

Szczypiorski

Received: 17 April 2022

Accepted: 23 May 2022

Published: 26 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Threat Matrix: A Fast Algorithm for Human–Machine Chinese
Ludo Gaming

Fuji Han and Man Zhou *

School of Cyber Science and Engineering, Huazhong University of Science and Technology,
Wuhan 430074, China; u201911105@hust.edu.cn
* Correspondence: zhou_man1125@hust.edu.cn

Abstract: Chinese Ludo, also known as Aeroplan Chess, has been a very popular board game for
several decades. However, there is no mature algorithm existing for human–machine gambling.
The major challenge is the high randomness of the dice rolls, where the algorithm must ensure that
the machine is smarter than a human in order to guarantee that the owner of the game machines
makes a profit. This paper presents a fast Chinese Ludo algorithm (named “Threat Matrix”) that
we have recently developed. Unlike from most chess programs, which rely on high performance
computing machines, the evaluation function in our program is only a linear sum of four factors.
For fast and low-cost computation, we innovatively construct the concept of the threat matrix, by
which we can easily obtain the threat between any two dice on any two positions. The threat matrix
approach greatly reduces the required amount of calculations, enabling the program to run on a
32-bit 80 × 86 SCM with a 100 MHz CPU while supporting a recursive algorithms to search plies.
Statistics compiled from matches against human game players show that our threat matrix has an
average win rate of 92% with no time limit, 95% with a time limit of 10 s, and 98% with a time limit
of 5 s. Furthermore, the threat matrix can reduce the computation cost by nearly 90% compared to
real-time computing; memory consumption drops and is stable, which increases the evaluation speed
by 58% compared to real-time computing.

Keywords: game software; threat matrix computing; evaluation function; data modeling

1. Introduction

Board games are a form of intellectual confrontation invented over the course of a long
history of production activities [1,2]; in addition, they are important applications that can
help to explore and promote research into artificial intelligence [3]. The selection of pieces
depends on a perfect evaluation function with a computation complexity of approximately
bd, where b is the number of legal moves per position and d is the number of positions of
the chessboard. Because different types of board games have different b and d, the total
amount of calculations varies greatly [4,5]. The evaluation algorithms of chess programs
involve various artificial intelligence (AI) techniques, including machine learning, expert
systems, neural networks, search trees, etc. [6,7]. The critical jobs that most game software
focuses on consist of two aspects: (1) how to define and obtain comprehensive evaluation
factors; and (2) how to construct a perfect evaluation function.

The advance of AI chess can be attributed to two factors: (1) high performance
computing devices [8]; and (2) powerful evaluation algorithms [9]. In recent years, with
the rapid development of high-performance computing and network technologies, as long
as a suitable evaluation algorithm can be constructed a computer will be able process a
very large number of calculations. With the recent rapid development of high-performance
computer and network technologies, as long as the evaluating algorithm is properly
constructed the huge amount of computation can be handled by machines [10,11]. Because
machines are accurate, fast, and not influenced by emotion, they often beat human players.

Electronics 2022, 11, 1699. https://doi.org/10.3390/electronics11111699 https://www.mdpi.com/journal/electronics275

Electronics 2022, 11, 1699

At present, computer players of classic board games such as chess, Go, Shogi [4], and
Checkers [12] can beat expert human players. R. Ruben et al. [13] have described a general
video game AI (GVGAI) that provides a way to benchmark AI algorithms for games written
in specific description languages for many application domains. The continuous promotion
of AI algorithms from games to reality is of great significance for the development of both
robot swarm intelligent collaboration and gaming [14,15].

The world chess champion Garry Kasparov was defeated by IBM’s Deep Blue computer,
which has become a milestone in the advance of artificial intelligence over human beings.
Deep Blue typically searches to a depth of between six and eight moves up to a maximum
of twenty moves, or even more in certain positions [16]. This brute force type of search can
benefit to a degree from advances in computer performance. However, moving from brute
force to informed search is a great endeavour in AI board game research. A recent study by
Ansk involved an idea to solve two-player zero-sum and extensive-form games [17]. They
were able obtain perfect information and simultaneous moves using the Double-Oracle
Method and Serialized Alpha-Beta Search. In addition, Branislav et al. [18] are devoted to
developing synchronous move game algorithms and evaluating exact backward induction
methods with efficient pruning and sampling algorithms under different settings. David B.
and his group focus on evolutionary algorithms, while Sebastian presents a rules learning
method for general game playing. Thus, this great endeavour requires a combination of
methods from a variety of subdisciplines [19,20].

Due to the enormous search space needed for the combination of large moves, the
development of a program that can beat humans at the ancient Chinese chess-like game Go
has been considered as one of the last great challenges [21,22]. Tesauro’s approach is already
considered to outperforms the best human players in playing backgammon. AlphaGo [3],
developed by Google DeepMind, has beaten a top professional human Go player without
handicaps on a full-sized 1919 board. AlphaGo’s algorithm uses a combination of machine
learning and search tree techniques combined with extensive training on both human and
computer play [23].

Similar to chess, Go, and backgammon, Chinese Ludo gaming, known as Aeroplan
Chess, was invented in China by reference to other ancient board games to commemorate
the Flying Tigers in World War II; the game’s rules and paths are derived from Lufbery
circles in air warfare [24]. To encourage students to master chemical equations in the game,
a new flying chess game called CHEMTrans has been developed.

In recent years, many online programs for Chinese Ludo gaming have been developed.
These simply provide a platform for interaction between game players, and the computer
does not engage in intelligent competition [25]. Developing a human–machine Chinese
Ludo gambling game, while an attractive idea, represents a highly challenging task. Apart
from the high randomness of the dice rolling, the algorithm must ensure that the machine
is smarter than humans in order to guarantee that the owner of the game machines makes
a profit. As a game requires 2–4 players and random dice rolling, no such gaming machine
has been developed [26,27].

It is an interesting idea and a challenging task to adapt Chinese Ludo to the gambling
industry. Despite the randomness of the game, the game machines must be “smarter” than
people to ensure that the game owners make money. The primary contributions in this
paper are as follows.

• We develop a human–machine gambling Chinese ludo game which is unlike most
other chessboard programs; while these involve brute-force algorithms that require
high-performance machines, our evaluation function is a simple linear sum of
four variables.

• For high-frequency threat computation between any two dice, we innovatively propose
the concept of a ‘threat matrix’. Using the threat matrix, our program can instantly
acquire the threat value between any two positions, rather than relying on brute-force
computing based on the current positions. As a result, our program can reduce the
real-time (immediate) computation cost by nearly 88%.

276

Electronics 2022, 11, 1699

• Threat matrix can run on an 80 × 86 SCM (Single-Chip Microcomputer), and has
achieved a 97% winning rate against human players.

The rest of this paper is organized as follows. Section 2 briefly introduces the rules of
the Chinese Ludo game and reviews related existing research works. Section 3 provides
details on the evaluation function, threat matrix, and our proposed algorithms. To clearly
show how to calculate the evaluation function, Section 4 presents a concrete example.
Section 5 analyses and compares the complexity of the main algorithms. Section 6 presents
experimental validations and shows comparisons of various strategies. Section 7 concludes
the paper.

2. Chinese Ludo Game

In this section, for convenience in understanding our algorithms we first briefly
introduce the rules of improved man–machine gambling Chinese Ludo by the Lanhai
Technology Company. Note that while the rules may be slightly different among different
versions, the main rules are always the same.

1. Composition

(a) Dice: One traditional dice, with each of its six faces showing a different number
of dots from 1 to 6.

(b) Board: One board, as shown in Figure 1, with 64 square positions marked with
different colors. Each player is assigned a color, either red or blue. The top left
corner and the right bottom corner are staging areas (‘hangars’) and the two
closed rectangles colored with red and blue in the center are the ending squares
corresponding to each game player.

(c) Planes: Each player has four planes, in colors matching those of the board. There
are two players, one human and one machine, and eight planes in total.

Figure 1. The chessboard of the Chinese Ludo game.

2. Game rules

(a) Launch: At the start of the game, all of the planes of the two players are in the
staging area. After randomly determine a player to roll the dice first, the players
take turns rolling the dice. Only when a player rolls a 6 can s/he select one of
her/his planes from its staging area to prepare to fly (in its starting square); the
planes fly in the clockwise direction.

(b) Move: When a player has one or more planes in play, s/he selects one to move
(fly) over squares of the number shown on the dice. If the landing square is the
same color as the plane’s color, the plane can fly directly to the next square in the
same color; however, this cannot be done with circles, which is called a ‘jump’.
Furthermore, if the landing square has the same color and is connected with a
dotted line, the plane can fly along the dotted line, which is called a ‘dotfly’. The
rolling of a 6 earns the player an additional roll in that turn, which can repeat
until the roll is not 6.

277

Electronics 2022, 11, 1699

(c) Hit: If the landing square is occupied by the opponent’s plane(s), the opponent’s
plane(s), either one or more, is hit and forced to return to the staging area. Planes
of the same color are not hit.

(d) Win: The first player who is able to fly all of her/his planes to the ending square
wins the game.

3. Evaluation Function

According to the rules of the Chinese Ludo game, the number that the dice shows
after rolling is random, and the player has to decide which of her/his planes at different
positions to select. Thus, in addition to luck, for a given position winning or losing depends
on the selection of planes.

Compared to traditional chess games, the randomness of the dice in Chinese Ludo
brings uncertainty to the evaluation of potential moves. Additionally, multi-layered nesting
judgement resulting from the rules can introduce looping and crashing during the game.
These two key difficulties may explain why there is no mature algorithm for Chinese Ludo
gaming suitable for human–machine gaming.

Without loss of generality, let us suppose the computer is blue and the opponent is
red. In the rest of the paper, we use blue for computers and red for their human opponents.

3.1. The Description and Definition of the Chess Position

To facilitate the evaluation of the planes, we first define the chess position. First, the
squares in the chessboard are numbered as shown in Figure 2. For planes of the same
player, the only difference is their position (i.e., different squares). Thus, we can use the
number to represent each plane’s position on the game board. The position of each of the
four blue planes is denoted by Xi with (i = 1, 2, 3, 4). Similarly, the position of each of the
red planes is denoted by Yj with (j = 1, 2, 3, 4). We use S(X1, X2, X3, X4, Y1, Y2, Y3, Y4) to
represent the eight planes’ positions on the board and R to represent the number that the
dice shows after rolling. Thus, (S, R) can determine a specific Chinese Ludo position.

Figure 2. The definition of a chess position on the chessboard.

3.2. Evaluation Function

Next, we define the value of a position, denoted as I(Xi), which is the number of
squares from the starting square to the current position; I(Xi) varies with the change of
Xi, and the closer it is to the ending square, the greater it is. Note that the position of blue
restarts from 1 after a modulo operation of 26.

At a chess position (S, R) we need to define an evaluation function, f , in order to
determine which plane to move. Obviously, f is determined by position (S, R); thus,
we use fi(S, R)(i = 1, 2, 3, 4) to represent the evaluation function of the i-th blue plane
at position (S, R). By computing and comparing fi(i = 1, 2, 3, 4), we can make our
decision as to which plane to move. Certainly, fi(S, R) can be used to evaluate the
red/opponent’s planes as well.

278

Electronics 2022, 11, 1699

Considering the game rules, we analyze the four key factors that affect fi(S, R),
as follows.

First, according to its rules (see Section 2), Chinese Ludo allows Jump and Dotfly
moves. Therefore, planes at different squares may move different distances with the same
dice roll. This is referred to as ‘Incremented Distance’, denoted by V1. Without considering
other factors, players intend to choose the plane that can move the longest distance.

Second, we consider Hits, i.e., whether, after moving, a blue plane lands on a square
occupied by a red plane and the red plane is hit back to its staging area. We call this
the ‘Opponent’s Hit Value’, denoted by V2. Clearly, V2 greatly reduces the chances of the
opponent/red player winning and increases the chance that the blue player wins.

Third, if after moving a plane does not hit the opponent’s plane on the current roll,
it may hit the opponent’s plane on the next roll. This means that a plane’s threat to the
opponent’s planes changes with each move. Certainly, players intend to choose the plane
which offers the largest increase in the threat, which we call the ‘Increased Threat Value of
Blue on Red’, denoted by T1.

In the same way, the threat represented by the opponent’s plane changes after each
move. We aim to choosing the plane which will result in the smallest increase in the
opponent’s threat, which we call the ‘Increased Threat Value of Red on Blue’, denoted
by T2.

Through the analysis of the above four factors, it can be seen that all four values
actually reflect changes in position, and position is the ultimate determination of which
player wins or loses the game. Thus, the four values are linearly correlated with the
evaluation function, fi(S, R)(i = 1, 2, 3, 4), where the evaluation function is defined as

fi(S, R) = V1 + V2 + T1 − T2.(i = 1, 2, 3, 4) (1)

By calculating each fi(S, R)(i = 1, 2, 3, 4) according to Equation (1), we are able choose
the plane with the greatest fi(S, R). Next, we provide details on how to calculate the four
values. For the convenience of the reader, we list the main symbols used in this paper
below in Table 1.

Table 1. Notations of the main symbols.

Xi The position of the i-th blue plane
Yj The position of the opponent’s j-th plane in red
I(Xi) The number of squares from the starting square to the current position of Xi
p(Xi, Yj) Possibility of plane Xi to hit plane Yj, that is, threat of Xi to Yj
P The threat matrix, P = (pij)64×64, where pij = p(Xi, Yj)
V1 Incremented distance
V2 Opponent’s hit value
T1 Increased threat value of blue on red
T2 Increased threat value of red on blue
O Computational complexity

3.2.1. Incremented Distance after Moving (V1)

According to the above definition of V1, at position (S, R), if blue’s i-th plane is on Xi
and the number on the dice is R, according to the game rules, there are three cases for Xi
to move:

1. Regular Move: this is the most common case, where the i-th plane moves forward for
R steps; therefore,V1 = R.

2. Jump: if Xi + R = 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, or 58, that is, squares which
have the same color (here, blue), Xi can move four more steps and jump to the next
square of the same color, i.e., V1 = R + 4.

3. Dotfly: if Xi + R = 36 or 40, i.e., two special positions, it can fly along the dotted line, i.e.,

V1 = R + 4 + 16 = R + 20, (2)

279

Electronics 2022, 11, 1699

thus,
V1 = R‖(R + 4)‖(R + 20) (3)

where “‖” means the logical operation “OR”.

3.2.2. Opponent’s Hit Value (V2)

According to the rules, a plane can hit an opponent’s plane if the square on which it
lands is occupied by the opponent’s plane.

1. If Xi + R = Yj, i.e., the current position plus the dice number happens to be the current
position of the opponent, the opponent’s plane is hit back to its staging area;

2. If Xi + V1 = Yj, i.e., after the jump the blue plane can hit the opponent’s plane, red
loses the position, i.e., V2.

For the above two cases, V2 is the position value of the opponent’s plane that is lost by
the hit; otherwise, the opposing plane has no value to lose:

V2 =

{
I(Yj), if Xi + R = Yj or Xi + V1 = Yj

0, otherwise.
(4)

The reason we calculate V1 and V2 separately from T1 and T2 is that the action of V2 is
a definite effect; the valuation of T1 and T2 is based on the randomness of the dice, which is
a probabilistic event belonging to the threat, which we introduce below.

3.2.3. Increased Threat Value of Blue on Red (T1)

In addition to the specific threat of blue to red V2, we must consider the change in the
overall threat due to moving.

At a (S, R), assume a red plane at Yj has the position value I(Yj) and the positions of a
blue plane before and after moving are Xi and Xi + V1, respectively. We use p(Xi, Yj) and
p(Xi +V1, Yj) to represent the respective threat of the blue plane to the red plane before and
after the move. Then, their difference, p(Xi + V1, Yj)− p(Xi, Yj), can denote the increasing
threat of Xi to Yj. If we let the difference multiply the position value of Yj, we obtain the
increased threat value of of Xi to Yj, i.e., T1 = (p(Xi + V1, Yj)− p(Xi, Yj))× I(Yj).

Each player has four planes; thus, before moving, the respective overall threat of the
blue plane compared to the four red planes is the sum of the product of p(Xi, Yj) and I(Yj),

4

∑
j=1

p(Xi, Yj)× I(Yj). (5)

After moving, the respective overall threat of the blue plane compared to the four red
planes is the sum of the product of p(Xi + V1, Yj) and I(Yj),

4

∑
j=1

p(Xi + V1, Yj)× I(Yj). (6)

Thus, the sum of the increased value of the threat of Xi to all Yj(j = 1, 2, 3, 4) T1 can be
computed as

T1 =
4

∑
j=1

p(Xi + V1, Yj)× I(Yj)−
4

∑
j=1

p(Xi, Yj)× I(Yj)

=
4

∑
j=1

(p(Xi + V1, Yj)− p(Xi, Yj))× I(Yj).

(7)

When T1 ≥ 0, which indicates the threat of the blue plane to the red plane, is increasing,
it is beneficial for blue; similarly, if T1 < 0, which indicates the threat of the blue plane to

280

Electronics 2022, 11, 1699

the red plane, is decreasing, this is disadvantageous for blue. Thus, we should choose the
plane with the largest T1.

3.2.4. Increased Threat Value of Red on Blue (T2)

Similar to the above T1, before and after the move of the blue plane, the threat of the
red plane to the blue plane changes. We call the difference between the product of the
blue threat to red and the position value of the blue plane before and after the move as the
“increased threat value of red on blue”, denoted by T2.

At position (S, R), if the red plane is on Yj and the blue plane is on Xi and Xi + V1
before and after the blue plane move, the position values of the blue plane before and after
the move will be I(Xi) and I(Xi + V1). Thus, the respective threat of the red plane to the
blue plane before and after the move is p(Yj, Xi) and p(Yj, Xi + V1).

Then, the total threat value of the four red planes to the blue plane can be calculated
as the product of p(Yj, Xi) and I(Xi) before the move

4

∑
j=1

p(Yj, Xi)× I(Xi). (8)

and as the product of p(Yj, Xi + V1) and I(Xi + V1) after the move

4

∑
j=1

p(Yj, Xi + V1)× I(Xi + V1). (9)

Therefore, according to its definition, the threat increment, T2, is

T2 =
4

∑
j=1

p(Yj, Xi + V1)× I(Xi + V1)−
4

∑
j=1

p(Yj, Xi)× I(Xi). (10)

Intuitively, T2 ≥ 0 indicates that the threat of the red plane to the blue plane increases
and is disadvantageous for blue, while T2 < 0 indicates that the threat to the blue plane
decreases and is advantageous to blue.

Based on the above analysis, when entering Equations (3)–(10) into Equation (1), we
can obtain fi(S, R) as follows:

fi(S, R) = V1 + V2 + T1 − T2

= (R‖(R + 4)‖(R + 20)) + (I(Yj)‖0) +
4

∑
j=1

(p(Xi + V1, Yj)− p(Xi, Yj))× I(Yj)

+
4

∑
j=1

p(Yj + Xi + V1)× I(Xi + V1)− p(Yj, Xi)× I(Xi).

(11)

By computing and comparing each fi with i = 1, 2, 3, 4, we can select the plane which
has the largest fi to move.

Until now, we have not yet shown how to calculate p. As p is the most frequently used
variable in the evaluation function, the key to improving the efficiency of this algorithm is
calculating p rapidly. Next, we address this problem, then focus on the calculation of p in a
separate section.

3.3. Calculating Threat and Threat Matrix
3.3.1. Calculating Threat

From a given position, p(Xi, Yj) is computable according to the rules and the definition
of p.

At a position (S, R), suppose the blue plane is on Xi and the red plane is on Yj. If a hit
happens, i.e., (Yj = Xi), we have p(Yj, Xi) = 1. Sometimes, after moving a plane cannot hit
an opponent’s plane because the moving distance is too short. Then, we must consider the

281

Electronics 2022, 11, 1699

case of rolling the dice continuously until it is not 6. Next, we use an example to explain
how to calculate p(Yj, Xi).

Assume the opponent’s red plane is on Yj, a blue plane is on Xi, and the number on
the die is R. According to the rules, there are three cases we must consider in order to
calculate p(Yj, Xi).

1. If Yj < Xi ≤ Yj + 6, the possibility of the opponent’s plane on Yj hitting blue’s plane
on Xi by rolling once is

p(Yj, Xi) = 1/6. (12)

2. If Yj + 6 < Xi ≤ Yj + 12, the opponent’s red plane on Yj cannot hit blue’s plane on Xi by
rolling once. For it to be possible to hit, the red player must roll 6 the first time, landing on
position Yj + 6, then roll again. Thus, the probability is p(Yj, Xi) = 1/6× 1/6 = 1/36. By
analogy to more general cases, if rolling 6 up to seven times continuously the opponent’s
red plane on Yj does not threaten the blue plane on Xi according to the board. Thus, if
Yj + 6k < Xi ≤ Yj + 6(k + 1) (k = 0, 1, 2, 3, 4, 5, 6, 7), then

p(Yj, Xi) = (1/6)k+1. (13)

3. Calculate the probabilities for special positions. According to the rules, a plane can
jump if the landing square is the same color, such as 2, 6, 10, 14, 18, 22, 26, 30, 34, 38,
42, 46, and 50 for red, which can add the extra possibility of the plane on Yj jumping
and hitting Xi, in addition to the above two cases.
Squares of the same color are separated by three squares. Therefore, after each roll it is
possible to land on the same color square. There are thus two cases, as follows.

(a) When Yj < Xi ≤ Yj + 6 and Xi is on the red square (e.g., Yj = 1 and Xi = 6), if
the dice roll is 5, the plane on Yj hits the plane on Xi, thus there is no jump; if the
dice roll is 2, the plane on Yj first moves onto square 2, then jump onto square 6,
then hits the plane on Xi. The probability is

p(Yj, Xi) = 1/6 + 1/6 = 1/3. (14)

(b) When Yj + 6k < Xi ≤ Yj + 6(k + 1) and Xi is on a red square, then

p(Yj, Xi) = (1/6)k+1 + (1/6)k. (15)

With the above analysis and formulae, we can calculate any position’s threat to another
position and calculate the evaluation function, then make the choice of which plane to move.

3.3.2. Threat Matrix

Based on the above discussion, we have two methods to calculate the threat p:

1. Real-time computing
Real-time computing calculates p for current position (S, R) using
Equations (12)–(15) each time the dice is rolled.
However, in order to reduce the manufacturing cost of the game machine, the program
runs on an 80 × 86 SCM, which has limited computing and storage power. Although
the computing load decreases with respect to certain specific chess positions (such as
all eight planes moving into the circle), the computation takes about 3.7 s in extreme
cases, which is intolerable to players. We therefore sought faster algorithms to perform
the same job.
Through our observations, we found that no matter how the game changes, the threat
is only ever determined by the positions. This naturally triggers a new idea, i.e., to
compute the threat between any two positions and store them in a lookup table that is
independent of any single position, herein called the ‘Threat Matrix’.

2. Using the Threat Matrix to store pre-calculated threat values

282

Electronics 2022, 11, 1699

There are 64 positions on a chessboard. Therefore, we built a 64 × 64 matrix,
P = (pij)64×64, where pij = p(Xi, Yj) is the threat of a plane located on Xi to a
plane located on Yj. From the above discussion, the threat can be calculated using
Equations (12)–(15). Part of the threat matrix is as shown in Table 2.

Table 2. An illustration of our threat matrix.

1 2 · · · 29 30 31 · · · 63 64

1 1 0.1667 · · · 0.00012 0.00025 0.000128 · · · 0 0
2 0 1 · · · 0 0.05556 0 · · · 0 0
...

...
...

...
...

...
...

...
29 0 0 · · · 1 0.1667 0.1667 · · · 0 0
30 0 0 · · · 0 1 0.1667 · · · 0 0
31 0 0 · · · 0 0 1 · · · 0 0
...

...
...

...
...

...
...

...
63 0 0 · · · 0 0 0 · · · 0 0
64 0 0 · · · 0 0 0 · · · 0 0

4. Threat Matrix-Based Movement Strategy

In order for readers to better understand our algorithm, we use the following chess
position (as shown in Figure 3) as an example to illustrate how our algorithm operates. In
this example, it is assumed that S = (3, 5, 0, 0, 1, 11, 0, 0) and R = 3 and it is blue’s turn to
make the choice of its plane.

Figure 3. An example with chess position (S, R), where S = (3, 5, 0, 0, 1, 11, 0, 0) and R = 3.

In this example, there are two blue planes (shown as the third and fifth squares in
Figure 3) and two red planes (shown as the first and eleventh squares in Figure 3) on the
circle, and all other planes are in their staging areas. The threat matrix-based movement
strategy for the plane is shown in Algorithm 1.

283

Electronics 2022, 11, 1699

Algorithm 1: Threat matrix-based movement strategy for plane.
Input: Positions of the blue plane, f1, and opponent plane, f2: X1,X2,Y1,Y2
Output: Movement strategy

1 Initialize position values of blue plane and opponent plane: I(X1) = 29,
I(X2) = 31, I(X3) = I(X4) = 0, I(Y1) = 1, I(Y2) = 11, and I(Y3) = I(Y4) = 0;

2 for plane fi (i = 1, 2) do

3 Compute incremented distance V1 of fi;
4 Compute opponent’s hit value V2 of fi;
5 Compute increased threat value T1 of fi;
6 Compute increased threat value T2 of fi;
7 Compute the evaluation value fi: fi = V1 + V2 + T1 − T2;
8 end

9 return Choose suitable number to move based on evaluation values;

5. Recursion and Complexity Analysis for Multiple Moves

5.1. Recursive for n Plies

In the algorithm and example described above, we have evaluated only one move for
the plane based on the current position, which is somewhat short-sighted. For most chess
games, in order to win the game multiple moves need to be considered, and this is true for
Chinese Ludo.

As the game rules are the same for both sides, the evaluation function applies to both
blue’s planes and red’s planes. The plies of (S, R) are limited because there are only four
planes and the number of R can only be 1 to 6, which makes it possible to look multiple
moves ahead. This means that we can evaluate the opponent’s planes based on their
hypothetical choices and then consider the opponent’s hypothetical assessment.

Let (Sn, Rn) represent the hypothetical position of n moves ahead; we can obtain the
evaluation of n + 1 steps based on fi(Sn, Rn), denoted by fi(Sn+1, Rn+1). Thus, based on
the Equations (1)–(15), we have

fi(Sn+1, Rn+1) = V1 × fi(Sn, Rn) + V2 × fi(Sn, Rn) + T1 × fi(Sn, Rn) + T2 × fi(Sn, Rn). (16)

It is apparent that Equation (16) is a recursive formula; the initial computation is
expressed as Equation (11), with which we can look any number of moves ahead. Although
the more moves we look ahead, the more beneficial it is to the blue, the computation cost
increases exponentially with the increase in the number of moves. Next, we analyze the
relationship between the complexity and the number of moves ahead.

5.2. Complexity Analysis
5.2.1. Computation Complexity of One Move

Let us first look at the computation complexity of evaluating fi(S, R) based on the
current position.

First, according to the evaluation functions in Equations (3) and (4), the calculation
of V1 and V2 does not need to consider the opponent’s threat; Xi and Yj, the positions
of planes, are both integers and not more than 64, and only judgement and a simple
addition operation of the positions are needed. For each side, there are only thirteen special
positions. Therefore, to calculate V1 + V2, there are at most 13 + 13 = 26 comparisons of
special positions.

Next, according to Equations (7) and (10), the calculation of T1 and T2 mainly involves
computing p(Xi, Yj), which is essentially the comparison of positions.

As the real-time computing and threat matrix are two different methods, we discuss
them separately in order to compare their respective advantages and disadvantages.

1. Complexity of Real-Time Computing

284

Electronics 2022, 11, 1699

Considering the most complicated case, where each of Equations (12) and (13) need to
be calculated, Equation (12) includes one comparison and Equation (13) includes eight
comparisons, while Equations (14) and (15) include two special cases with special
positions; thus, there are at most (1+ 8)α comparisons. The number of all comparisons
is at most (1 + 8) + (1 + 8)α.
There are at most four opposing planes in play, and the number of all comparisons is
therefore β × (1 + 8 + α × (1 + 8)).
The above represents the calculation of one blue plane, and the blue player has four
planes; the number of comparisons is therefore

β × (2α + β × (1 + 8 + α × (1 + 8))) = 9αβ2 + 9β2 + 2αβ. (17)

2. Computing Complexity Using Threat Matrix
According to the definition of the threat matrix, there is no need to calculate p(Xi, Yj)
using Equations (12)–(15) each time, as we can simply look up the pre-calculated
matrix. According to Equation (7), we look up the threat matrix twice for each
opposing plane. As there are β opposing planes, there are at most 2β search instances.
Similarly, according to Equation (10), there are at most 2β search instances for T2. Then,
considering the calculation of V1 and V2, which is 2α, the full computation for one of
blue’s planes is 2α + 4β.
As there are at most four blue planes in play, the maximum computation is

β × (2α + 4β) = 4β2 + 2αβ. (18)

Comparing Equation (18) with Equation (17), the computation required for the threat
matrix is obviously only (4β2 + 2αβ)/(9αβ2 + 9β2 + 2αβ) = 7.92% with real-time computing,
showing that the computation of the threat matrix is only one-eighth that required by
real-time computing. In this game, we use the threat matrix instead of real-
time computing.

5.2.2. Complexity of More Moves Ahead/per n Plies

According to Equation (11), each player has four planes; thus, there are at most four
cases of S. R takes a value from 1 to 6; thus, the complexity of computing fi(Sn+1, Rn+1) is
6β instances required to compute fi(Sn, Rn). Therefore, if we look k moves ahead, (6β)k,
i.e., the computation complexity is O((6β)k).

Using the real-time computing method, the complexity is 9αβ2 + 9β2 + 2αβ,
according to Equation (17). If we look one move ahead, the computation is
(9αβ2 + 9β2 + 2αβ)× 6β, and if we look k steps forward, the computation complexity
will be O((54αβ3 + 54β3 + 2αβ2)k);

When using the threat matrix, according to Equation (18) the computation is 4β2 + 2αβ.
If we look one-step forward, the computation is (4β2 + 2αβ)× 6β, and if we look k steps
forward, the computation complexity will be O((24β3 + 12αβ2)k);

It is apparent that there is a clear advantage when using the threat matrix, especially
in multiple recursions, which we validate in the following experimental section.

6. Experiment Validation

The development of the Chinese Ludo game used an 80 × 86 SCM 32-bit single board
computer with a 100 MHz CPU. Because the computing power was very limited, we
used the threat matrix and evaluated only one move ahead of the current position. For
more advanced game players, we have developed a more complex two-layer recursive
algorithm which can evaluate two moves ahead. We used the 32-bit Windows XP OS as
the development platform because the game was eventually expected to run on the 80 ×
86 32-bit microprocessor. In addition, we chose Microsoft Visual C as the programming
language for easier adoption.

285

Electronics 2022, 11, 1699

To verify the effectiveness of our algorithms, we carried out three groups of experiments
to contrast human play versus the machine, evaluation of one move ahead versus two
moves ahead, and real-time computing versus using the threat matrix.

6.1. Contrasting Results for Human versus Machine Play

When the development of the game had finished, a team of 50 players was assigned
to play against the machine. The whole test lasted for about one month during which
there were more than 15,000 matches played, including 5000 matches with no time limit,
5000 matches with a 10 s limit, and 5000 matches with a 5 s limit. The time limit is the
maximum time allowed before reacting after the dice are rolled. It was proposed by the
company to increase fun and accelerate the game speed. Figure 4 shows the match results.
Figure 5 shows the contrast in reaction times between human players and the machine.

(a) (b)

Figure 4. Contrast in match results between humans and machine: (a) statistics on the match results;
(b) comparison of wins.

Figure 5. Comparison of reaction time between humans and machine.

From Figure 5, the following can be seen:

1. Aside from the randomness of dice rolling, the machine is much smarter than humans
at this game. Even without the time limit, the winning rate of human players is only
12%. When there is a 10 s time limit, human players win 7% of the time, and when
there is a 5 s time limit, human players only win 2% of the time. In addition, from the
comparison of reaction times human players takes eight times as long to play as the
machine does.

286

Electronics 2022, 11, 1699

2. When reaction time was limited, human players perform much worse and had much
less of a chance (less than one quarter) of winning compared with the machine, which
indicates that the decision of human players is rushed. Interestingly, through repeated
training certain people were able to make more careful judgements within the 5 s
time limit.

3. Figure 5 shows the comparison of reaction times between a typical human player and
the machine. From Figure 5, it can be seen that the threat matrix has a disadvantage
compared with human player, namely, that the reaction time of the machine is
proportional to the number of planes in play. Thus, the increase in the time spent with
the increase in the number of steps is smooth, and there are no fast decisions. However,
this is very different for humans. Although it generally takes human players longer,
this does not increase in a strictly monotonic fashion, and at times human players
make exceptionally fast decisions. Sometimes, the human player spends much less
time than her/his average time, or even less than the machine (for example, at 29 steps,
46 steps and 54 steps). The reason for this is there are special positions, such as hit,
dotfly, and jump, where human players can make quick decisions without calculation,
whereas a machine must evaluate all planes and then make a choice by comparing
evaluation functions. In this particular case, the algorithm can be improved. However,
the special positions require extra judgments that take up additional memory space
and CPU time. After balancing the potential improvements against the resources
required, the company abandoned the optional improvements.

6.2. Comparison of One Move Ahead and Two Moves Ahead

Obviously, for different positions (S, R), the amount of computation is likely to be
different, which leads to different levels of computational complexity. This indicates that
the evaluations of one move and multiple moves are not comparable. To show the pros
and cons of evaluating one move and two moves, we must compare (S, R) at the same
position. Thus, we set up twenty different typical positions (S, R) in order to evaluate the
difference. Figure 6a shows the comparison of the evaluation result, f , and Figure 6b shows
the comparison of the evaluation times.

(a) Comparison of evaluation value (b) Comparison of evaluation time

Figure 6. Comparison of the evaluation of one move and two moves ahead. The vertical axis indicates
the evaluation results, f , in (a) and indicates the evaluation time in (b).

From Figure 6a, two evaluations are consistent. In order to see their impact on the
selection of planes, we created the following formula:

μ(i, j) =
‖ f 1

i (S, R)− f 2
i (S, R)‖

‖ f 1
i (S, R)− f 1

j (S, R)‖ , (19)

287

Electronics 2022, 11, 1699

where f 1
i (S, R) and f 2

i (S, R) represent the evaluation of the number i plane at one move
ahead and at two moves ahead, respectively. Similarly, f 1

j (S, R) represents the evaluation
of the number j plane at one move ahead.

In Equation (19), if μ(i, j) ≥ 1, it indicates that the difference between the evaluations
of one move and two moves of the same plane is larger than those of one move of two
different planes. Therefore, the choice of planes at the same position will be different.
Otherwise, if μ(i, j) < 1, it means that the evaluations of one move ahead and two moves
ahead will not change the choice of planes. According to Equation (19), we calculate μ(i, j)
for the twenty positions, as shown in Table 3.

Table 3. μ(i, j) for twenty different chess positions (S, R). The * in the table means blank, indicating
that the opponent’s plane is in the staging area.

(S, R) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

μ(2, 1) 0.21 0.32 0.23 0.14 0.52 0.27 0.54 0.21 0.35 0.12 0.42 0.19 0.51 0.72 0.43 0.62 0.75 0.21 * 0.46
μ(2, 3) 0.17 0.13 0.03 0.41 0.12 0.07 0.27 0.24 0.15 0.02 0.12 0.29 0.31 0.25 0.03 0.02 0.15 0.41 0.65 0.07
μ(2, 4) 0.31 0.21 0.10 0.21 0.22 0.08 0.23 0.53 0.81 0.02 0.33 0.13 * * 0.07 0.12 0.60 0.02 0.36 0.21

In addition to the above twenty positions, we compared another fifty positions which
provided a consistent result, i.e., the evaluation of two moves ahead did not change the
choice of planes based compared to the evaluation of one move ahead. In fact, by looking
at Equation (16), cited below, we can find the theoretical reasons for this:

fi(Sn+1, Rn+1) = V1 × fi(Sn, Rn) + V2 × fi(Sn, Rn) + T1 × fi(Sn, Rn) + T2 × fi(Sn, Rn). (20)

In the evaluation of two moves ahead, the two moves need two more rolls of the dice;
however, these are hypothetical. Thus, the further evaluation of the second move ahead is
evaluated under the weight of 1/6 × 1/6 = 1/36, which makes the impact on the further
evaluation small. We can see that this is different from other forms of chess.

However, from Figure 6b, the time cost of evaluating two moves ahead is twenty times
of that of evaluating one move ahead. In addition, the memory consumption is increased
by a large amount.

6.3. Comparison of Real-Time Computing and the Threat Matrix

In order to compare real-time computing and the threat matrix, we conducted experiments
using a 32-bit Windows XP platform.

According to the game rules, the results of dice rolling is random, which means that
it is hard to acquire the same position (i.e., the initial conditions for the computation) to
compare the two evaluations. Therefore, similar to the previous comparison in Section 5.2,
we set typical chess positions in order to ensure the consistency of the initial conditions.
The results are shown in Figure 7.

288

Electronics 2022, 11, 1699

(a) (b)

Figure 7. Comparison of real-time computing and the threat matrix in terms of time complexity and
memory usage: (a) comparison of time complexity; (b) comparison of memory usage.

It can be seen from the results that the time consumption of evaluation using the
threat matrix takes no more than 0.001 s, while the average time when using real-time
calculation is 0.008 s, which is highly unstable compared to the threat matrix. The memory
consumption of real-time computation is far greater than that of the threat matrix as well.

7. Conclusions

High-performance computers have significantly contributed to the development of
artificial intelligence in the gaming industry, however, this should not be a reason to ignore
the effort of pursuing a perfect evaluation method. This paper presents a Chinese Ludo
program. Unlike most chess programs, which depend on high machine performance, the
evaluation function in our program is only a linear sum of four factor values. The other
contribution of this research is that we innovatively constructed a threat matrix that allows
us to easily acquire the threat between any two dice on any two positions. The threat matrix
approach can greatly reduce the amount of calculation, which allows the program to run
on a 32-bit 80 × 86 SCM with a 100 MHz CPU while supporting a recursive algorithms
to search plies. Our results show that, when compared with the real-time computing, our
threat matrix approach can reduce computation costs by nearly 90%. Furthermore, the
memory consumption is both reduced and relatively stable, which speeds up evaluation
by 58%.

Author Contributions: F.H. designed the main methodology and the model; M.Z. developed the
theoretical framework; All authors provided critical feedback and contributed to the research
and analysis of the manuscript. All authors have read and agreed to the published version of
the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China
(6217071437; 62072200).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Danilovic, S.; de Voogt, A. Making sense of abstract board games: Toward a cross-ludic theory. Games Cult. 2021, 16, 499–518.
[CrossRef]

2. Abdalzaher, M.S.; Muta, O. A Game-Theoretic Approach for Enhancing Security and Data Trustworthiness in IoT Applications.
IEEE Internet Things J. 2020, 7, 11250–11261. doi: [CrossRef]

3. Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam,
V.; Lanctot, M.; others. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484–489.
[CrossRef] [PubMed]

4. Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai, M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel, T.; others.
A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 2018, 362, 1140–1144.
[CrossRef] [PubMed]

289

Electronics 2022, 11, 1699

5. Polese, J.; Sant’Ana, L.; Moulaz, I.R.; Lara, I.C.; Bernardi, J.M.; Lima, M.D.d.; Turini, E.A.S.; Silveira, G.C.; Duarte, S.; Mill, J.G.
Pulmonary function evaluation after hospital discharge of patients with severe COVID-19. Clinics 2021, 76. [CrossRef] [PubMed]

6. Zhang, Z.; Ning, H.; Shi, F.; Farha, F.; Xu, Y.; Xu, J.; Zhang, F.; Choo, K.K.R. Artificial intelligence in cyber security: research
advances, challenges, and opportunities. Artif. Intell. Rev. 2021, 55, 1029–1053. [CrossRef]

7. Fu, Y.; Li, C.; Yu, F.R.; Luan, T.H.; Zhang, Y. A survey of driving safety with sensing, vehicular communications, and artificial
intelligence-based collision avoidance. IEEE Trans. Intell. Transp. Syst. 2021, 1–22. [CrossRef]

8. Morandin, F.; Amato, G.; Gini, R.; Metta, C.; Parton, M.; Pascutto, G.C. SAI a Sensible Artificial Intelligence that plays Go. In
Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; IEEE:
Piscataway, NJ, USA, 2019; pp. 1–8.

9. Nilsson, A.; Smith, S.; Ulm, G.; Gustavsson, E.; Jirstrand, M. A performance evaluation of federated learning algorithms. In
Proceedings of the Second Workshop on Distributed Infrastructures for Deep Learning, Rennes, France, 10 December 2018;
Association for Computing Machinery: New York, NY, USA, 2018; pp. 1–8.

10. Nkambule, M.S.; Hasan, A.N.; Ali, A.; Hong, J.; Geem, Z.W. Comprehensive evaluation of machine learning MPPT algorithms for
a PV system under different weather conditions. J. Electr. Eng. Technol. 2021, 16, 411–427. [CrossRef]

11. Shayesteh, S.; Nazari, M.; Salahshour, A.; Sandoughdaran, S.; Hajianfar, G.; Khateri, M.; Yaghobi Joybari, A.; Jozian, F.;
Fatehi Feyzabad, S.H.; Arabi, H.; et al. Treatment response prediction using MRI-based pre-, post-, and delta-radiomic features
and machine learning algorithms in colorectal cancer. Med. Phys. 2021, 48, 3691–3701. [CrossRef] [PubMed]

12. Paveglio, T.B. From Checkers to Chess: Using Social Science Lessons to Advance Wildfire Adaptation Processes. J. For. 2021,
119, 618–639. [CrossRef]

13. Torrado, R.R.; Bontrager, P.; Togelius, J.; Liu, J.; Perez-Liebana, D. Deep reinforcement learning for general video game ai. In
Proceedings of the 2018 IEEE Conference on Computational Intelligence and Games (CIG), Maastricht, The Netherlands, 14–17
August 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–8.

14. Zhu, J.; Villareale, J.; Javvaji, N.; Risi, S.; Löwe, M.; Weigelt, R.; Harteveld, C. Player-AI Interaction: What Neural Network Games
Reveal About AI as Play. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, Yokohama,
Japan, 8–13 May 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 1–17.

15. Lee, C.S.; Tsai, Y.L.; Wang, M.H.; Kuan, W.K.; Ciou, Z.H.; Kubota, N. AI-FML Agent for Robotic Game of Go and AIoT Real-World
Co-Learning Applications. In Proceedings of the 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Glasgow,
UK, 19–24 July 2020; pp. 1–8.

16. Lüscher, T.F.; Lyon, A.; Amstein, R.; Maisel, A. Artificial intelligence: The pathway to the future of cardiovascular medicine. Eur.
Heart J. 2022, 43, 556–558. [CrossRef] [PubMed]

17. Feng, X.; Slumbers, O.; Wan, Z.; Liu, B.; McAleer, S.; Wen, Y.; Wang, J.; Yang, Y. Neural auto-curricula in two-player zero-sum
games. In Proceedings of the Thirty-Fifth Conference on Neural Information Processing Systems (NeurIPS 2021), Virtual, 6–14
December 2021.

18. Bošanskỳ, B.; Lisỳ, V.; Lanctot, M.; Čermák, J.; Winands, M.H. Algorithms for computing strategies in two-player simultaneous
move games. Artif. Intell. 2016, 237, 1–40. [CrossRef]

19. Nangrani, S.; Nangrani, I.S. Artificial Intelligence Based State of Charge Estimation of Electric Vehicle Battery. In Smart Technologies
for Energy, Environment and Sustainable Development; Springer: Berlin/Heidelberg, Germany, 2022; Volume 2, pp. 679–686.

20. Hankey, A. Kasparov versus Deep Blue: An Illustration of the Lucas Gödelian Argument. Cosm. Hist. J. Nat. Soc. Philos. 2021,
17, 60–67.

21. Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton, A.; others.
Mastering the game of go without human knowledge. Nature 2017, 550, 354–359. [CrossRef] [PubMed]

22. Bai, W.; Cao, Y.; Dong, J. Research on the application of low-polygon design to Chinese chess: Take the Chinese chess “knight” as
an example. In Proceedings of the 2021 the 3rd World Symposium on Software Engineering, Xiamen, China, 24–26 September
2021; pp. 199–204.

23. Ma, X.; Shang, T.; others. Study on Traditional Ethnic Chess Games in Gansu Province: The Cultural Connotations and Values.
Adv. Phys. Educ. 2021, 11, 276–283.

24. He, H. The Race Card: From Gaming Technologies to Model Minorities by Tara Fickle. J. Asian Am. Stud. 2021, 24, 515–517.
[CrossRef]

25. Tomašev, N.; Paquet, U.; Hassabis, D.; Kramnik, V. Assessing game balance with AlphaZero: Exploring alternative rule sets in
chess. arXiv 2020, arXiv:2009.04374

26. Available online: https://en.wikipedia.org/wiki/AeroplaneChess (accessed on 1 April 2022).
27. Polk, A.W.S. Enhancing AI-based game playing using Adaptive Data Structures. Ph.D. Thesis, Carleton University, Ottawa, ON,

Canada, 2016.

290

Citation: Maksymovych, V.;

Nyemkova, E.; Justice, C.; Shabatura,

M.; Harasymchuk, O.; Lakh, Y.;

Rusynko, M. Simulation of

Authentication in Information-

Processing Electronic Devices Based

on Poisson Pulse Sequence

Generators. Electronics 2022, 11, 2039.

https://doi.org/10.3390/

electronics11132039

Academic Editor: Krzysztof

Szczypiorski

Received: 24 May 2022

Accepted: 26 June 2022

Published: 29 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Simulation of Authentication in Information-Processing
Electronic Devices Based on Poisson Pulse Sequence Generators

Volodymyr Maksymovych 1, Elena Nyemkova 1,*, Connie Justice 2, Mariia Shabatura 1, Oleh Harasymchuk 1,

Yuriy Lakh 1 and Morika Rusynko 1

1 Department of Information Technology Security, Lviv Polytechnic National University, 79013 Lviv, Ukraine;
volodymyr.m.maksymovych@lpnu.ua (V.M.); mariia.m.mandrona@lpnu.ua (M.S.);
oleh.i.harasymchuk@lpnu.ua (O.H.); yurii.v.lakh@lpnu.ua (Y.L.); morika.k.rusynko@lpnu.ua (M.R.)

2 Purdue School of Engineering and Technology, Indiana University—Purdue University Indianapolis (IUPUI),
Indianapolis, IN 46202, USA; cjustice@iupui.edu

* Correspondence: olena.a.niemkova@lpnu.ua; Tel.: +38-032-235-8323

Abstract: Poisson pulse sequence generators are quite well studied, have good statistical properties,
are implemented both in software and hardware, but have not yet been used for the purpose
of authentication. The work was devoted to modeling authenticators of information-processing
electronic devices by creating a bit template simulator based on a Poisson pulse sequence generator
(PPSG). The generated templates imitated an important property of real bit templates, which reflected
the physical uniqueness of electronic devices, namely Hamming distances between arbitrary template
pairs for the same device were much smaller than the distance between arbitrary template pairs
for two different devices. The limits of the control code values were determined by setting the
range of the average frequency values of the output pulse sequence with the Poisson distribution
law. The specified parameters of the output pulse sequence were obtained due to the optimization
of the parameters of the PPSG structural elements. A combination of pseudo-random sequences
with the control code’s different values formed the bit template. The comparison of the Hamming
distance between the standard and real-time templates with a given threshold value was used as a
validation mechanism. The simulation experiment results confirmed the unambiguous authentication
of devices. The simulation results also showed similarities with the real data obtained for the bit
templates of personal computers’ own noise. The proposed model could be used for improving the
cybersecurity of a corporate network as an additional factor in the authentication of information-
processing electronic devices for which the measurement of noise with the required accuracy is not
possible or significantly difficult.

Keywords: cybersecurity; authentication; bit template; information-processing electronic device;
Poisson pulse sequences generators

1. Introduction

The ability to authenticate electronic information-processing devices based on their
unique characteristics attracts the attention of researchers who work to ensure the cyberse-
curity of information systems. The uniqueness of electronic devices at the physical level
makes it possible to carry out authentication using various methods, namely physically
non-cloneable functions for the Internet of Things (IoT) [1,2], error vector trajectories of the
Global System for Mobile Communications (GSM) mobile phone signals [3], the spectrum
of noise in the signal of radioactivity sensors [4], spontaneous electromagnetic radiation
from operating mobile phones, light-emitting diode (LED) screens, laptops [5], wireless
fidelity transmitters [6], etc. Authentication accuracy depends on the chosen method and
conditions of experiments, but usually does not reach 100 percent.

The implementation of the idea of authentication by individual characteristics is
based on a preliminary measurement of a physical quantity; for example, electromagnetic

Electronics 2022, 11, 2039. https://doi.org/10.3390/electronics11132039 https://www.mdpi.com/journal/electronics291

Electronics 2022, 11, 2039

interference from operating units of the device, the so-called internal electrical noise.
The method of authentication for electronic information-processing devices (personal
computers) by the individual forms of correlograms of their internal electrical noise is
known [7]. The device authenticator—noise bit template—is calculated from the normalized
autocorrelation function of noise. In the future, bit templates could be compared with
each other using the selected metric; this is the Hamming distance in the simplest case.
An important property of the bit template set, obtained from sequential measurements
of the internal noise of a single device, is their closeness in the sense that the Hamming
distances between possible pairs of bit templates are small, while the distances between
pairs of templates for different devices are much larger. This makes it possible to reliably
distinguish these devices, i.e., to authenticate them. The reference templates from each
electronic device are pre-recorded on the server. During authentication, the device presents
a real-time template, which is compared with a reference template. Authentication is
confirmed if the distance between templates is less than a threshold value for the claimed
device. Bit template variations provide dynamic authentication because the templates
do not repeat exactly, and thus the authenticator reuse attack is eliminated. There are
known experiments, a result of which made it possible to authenticate stationary personal
computers of the same series with an accuracy of 98.6% [8].

An integrated sound card can be used to measure the internal noise of computers. Usu-
ally, noise bit templates of desktop computers are stable over time. For laptops the situation
is slightly different. If the laptop gets into a location with a strong external electromagnetic
field that significantly affects the internal noise of the laptop, then authentication errors
occur [8]. In addition, not all electronic information-processing devices have integrated
ADCs, for example, many microprocessors do not have an integrated ADC. For them, the
use of internal noise as a sign of authentication is not possible. Therefore, in this study, the
problem of modeling authentication features based on Poisson pulse sequence generators
was formulated.

Generators of random or pseudo-random pulse sequences have been used for a long
time to solve a wide range of problems in science and technology. Almost all standard
program libraries have the embedded generators of pseudo-random sequences, which users
could utilize. One of the most important generators is the Poisson pulse sequence generator
(PPSG). These generators are widely used in different branches of techniques for simulating
different processes that have a random temporal and spatial nature [9], for sociological
and scientific research [10,11]. Such generators are effectively used to solve cybersecurity
problems [12,13], to simulate the output signals of dosimetric detectors when designing them,
and testing devices for measuring the parameters of ionizing radiation [14–19], because the
number of radioactive decay particles detected by the detector over a period of time is
subject to the Poisson distribution law.

In recently published works quite effective principles of realization of software and
hardware PPSG are presented. Their structures, based on the use of pseudo-random
number generators (PRNGs), were proposed [20–27] and methods for assessing the quality
of their output signals were developed [28–31]. In this case the effectiveness of the possible
application of the PPSG significantly depends on the quality of the designed generator and
on the main characteristics of its output sequence.

The aim of this study was to model bit templates for the authentication of electronic
information-processing devices based on a Poisson pulse sequence generator. The following
tasks were solved to achieve this aim.

1. Optimization of the parameters of the PPSG’s structural elements in order to obtain
the specified parameters of the output pulse sequence. Definition of the limits of
control code values, specification of the range of values of the average frequency of
the output pulse sequence, which corresponds to Poisson’s law of distribution.

2. The bit template simulator was proposed based on the Poisson pulse sequence gener-
ator. Bit sequences with given characteristics were the result of the simulator.

3. The simulation experiment was carried out to test the required properties of bit templates.

292

Electronics 2022, 11, 2039

In this research, based on previously obtained results concerning Poisson pulse se-
quence generators and the development of the control code theory, the needed sequences
were programmatically generated. Sample device bit templates were simulated based on
these sequences and authentication was also performed programmatically. The examina-
tion consisted of calculating pairs of possible Hamming distances between the templates of
the same device (intradistances) and for different devices (interdistances) and comparing
them one with another.

Comparing the set of intradistances with the set of interdistances confirmed the
main idea, that the generated templates could be unmistakably classified as being related
to different devices. The threshold of distances was determined, according to which
classification was made for specific parameters of the PPSG.

In this research the Poisson Pulse Sequence Generator was used for the first time to
create device authentication templates based on the principle of biometrics. Compared
with the best practices, which were using the measured values—electromagnetic radiation,
internal electrical noise—the proposed method had several advantages. Benefits included
100% authentication, significantly more devices, and no time delay for measurements.

2. Materials and Methods

2.1. Structural Scheme PPSG and the Principle of Its Operation

The generator [16–18], whose structural scheme is illustrated in Figure 1, consisted
of a modified additive Fibonacci generator (MAFG), which contained registers Rg1–Rg5,
adders Ad1–Ad3, logical scheme LS, as well as a comparing scheme CS and logical element
&. All the structural MAFG elements, except LS, worked in binary-decimal code.

Figure 1. PPSG structural scheme based on MAFG.

On MAFG output, e.g., on Rg5 output, a sequence of pseudo-random numbers was
formed in accordance with the following expression:

xj+1 =
(

xj + xj−1 + xj−2 + xj−3 + a
)
modm (1)

where xj, xj−1, xj−2, xj−3 are the numbers in registers Rg4, Rg3, Rg2, Rg1, correspondingly,
m = 10q, and q is the number of decades of the scheme’s structural elements. The value of
the variable a is determined by the logical equation

a =
(
a00 ⊕ a01 ⊕ a02 ⊕ a03

)⊕ . . . ⊕ (
aq−10 ⊕ aq−11 ⊕ aq−12 ⊕ aq−13

)
(2)

where aij (i = 0, 1, 2, 3; j = 0, 1, . . . , q − 1) is the value of bits of the binary-decimal number
in Rg5. The number of members of Equation (2) can be selected from the range 0 . . . 4 · q.

293

Electronics 2022, 11, 2039

The theoretical average value of the pulse frequency at the PPSG output is determining
from the following Equation [16]:

fout =
G

10q fm (3)

where G is the control code, fm is the clock pulse frequency.

2.2. Output Signal Parameters and Internal Parameters of the Generator and Their Relationship

The main parameters of the output pulse sequence were as follows:

• average value of frequency fout;
• value range of fout;
• step of frequency fout changing −Δ fout;
• the repetition period of the pulse sequence;
• compliance of the pulse sequence with the Poisson distribution law.

The parameters of the output pulse sequence were determined by the following
internal parameters of the generator (Figure 1):

• the number of decades of the MAFG structural elements;
• initial settings of the registers Rg1–Rg5;
• number of members of Equation (2) involved in the implementation of the logic

scheme LS.

The three internal parameters were clearly defined:

• the repetition period of pseudo-random numbers in the output of the MAFG register
(Rg5 output);

• statistical characteristics of the number sequence of the MAFG output.

Based on the principle of PPSG construction, it could be argued that the repetition
period of the output pulse sequence was equal to the repetition period of numbers in the
MAFG output.

The repetition period and statistical characteristics of the sequence of numbers in
the MAFG output determined the compliance of the output PPSG pulse sequence with
the Poisson distribution law. However, that compliance significantly depended on the
average frequency of an output sequence fout, whose theoretical value was determined
by Equation (3) and, therefore, depended on the correlation between control code value
G and value 10q. In fact, when value G was approaching the value 10q, then fout was
approaching the clock frequency fm and, under such conditions, the output sequence
started losing its pseudo-random properties. From the other side, the lower the frequency
of the output sequence fout, the greater the time interval needed to be to determine its
statistical characteristics. In this case such an interval should not exceed the repetition
period of this sequence. Thus, in principle (theoretically), the original PPSG pulse sequence
might conform to the Poisson distribution law for arbitrarily small average values fout,
however, the sequence repetition period should be of a sufficiently large value. As a limit,
if the average value fout went to zero, the repetition period should go to infinity.

These statements were practical in nature, satisfied most PPSG applications, and are
confirmed below by specific calculations and simulation results. Theoretically, a more
general approach to determine the correspondence of the output sequence to the Poisson
distribution law could be considered, taking into account the value of the average repeti-
tion frequency, repetition period, observation time, and the chosen method of estimating
statistical characteristics. However, such an approach needs to be refined to be applied
in practice.

Taking into account the above, the average frequency fout, the range of its values, and
the step change could be calculated theoretically using Equation (3). The real values of
these quantities were determined as a result of simulation and/or experimentally.

294

Electronics 2022, 11, 2039

2.3. Estimation Method for Statistical Characteristics of the Output Signal

This research was carried out using a generalized method of studying the parameters
of the output PPSG pulse sequence for compliance with the Poisson distribution law using
Pearson’s test [32].

In accordance with the proposed method, the flow of input pulses of the PPSG was
divided into n equal groups, each of which consisted of imax pulses. The maximum number
of groups was nmax. The groups of input pulses corresponded to the groups of output pulses
with the number of pulses k1, k2, . . . knmax . The proposed method was based on the classical
testing method of the hypothesis of the distribution of the general totality according to
Poisson’s law using Pearson’s criterion (χ2 criterion) [32–34]. In this case, taking into
account the specifics of the PPSG construction, the following additions were proposed:

• we fixed nominal (theoretical) average value of numbers k1, k2, . . . knmax − kc, regardless
of the control code value G;

• the value imax was variable, depended on the value G, and was determined by the equation

imax =
10q

G
kc . (4)

As a result of the application of this method we obtained the value χ2
c . According

to the tables of critical distribution points of χ2 [33,34], according to the selected level of
significance α (usually α is assigned one of the three following values: 0.1; 0.05; 0.01), the
number of degrees of freedom k could be obtained using the critical value χ2

cr. If χ2
c < χ2

cr
there was no reason not to accept the hypothesis that the pulse flux corresponded to the
Poisson distribution law.

When determining the statistical characteristics of the PPSG output signal in the range
of values of the control code G, it was useful to average the last (current) h values of χ2

c .
Obtained by such a way, variable χ2

cav was comparable with χ2
cr. The averaging of the

values χ2
c was necessary for a certain “smoothing” of the results. Based on the simulation

experience, one could select value h = 5, which could be changed if needed for a clearer
(more integrated) determination of the control code range G, in which the output pulse
sequence corresponded to the Poisson distribution law.

When designing a PPSG, it is also useful to pre-determine the statistical characteristics
of the number sequence, in this case at the MAFG output. This could be achieved using
standard statistical tests, such as NIST statistical tests [22–27,32,35].

2.4. Defining the Limits of the Range of the Control Code Values

Lower G1 and upper G2 limits of the control code values G, in which the statistical
characteristics of the output pulse sequence corresponded to the Poisson distribution law,
could be determined based on the following.

The sequence evaluation time should not be longer than its repetition period Tn. That
is, based on the above methodology, the following inequality must be satisfied:

imax · nmax ≤ Tn (5)

From Equation (4) and inequality (5) we obtain

G ≥ 10q · kc · nmax

Tn
(6)

This meant that the value G1 was the smallest integer number satisfying Inequality (6). As
a result of PPSG simulation, it was found that the value G2 satisfied the following condition:

G ≤ G2 = s · 10q (7)

In this case the value of the coefficient s was determined separately for a concrete
number of MAFG decades q, and depended on the initial settings of the registers Rg1–Rg5,

295

Electronics 2022, 11, 2039

the number of involved members of Equation (2) and, under certain conditions, was close
to 0.1.

3. Results

3.1. Investigation of the PPSG Based on MAFG When q = 3
3.1.1. Determining the Repetition Period of the MAFG

At a fixed number of decades, the MAFG repetition period of a pseudo-random se-
quence of numbers in its output Tn and, thus, the repetition period of the pulse sequence in
the output of the PPSG, also depended on the number of involved members of Equation (2)
and from the initial settings of the registers Rg1–Rg5.

The performed investigations showed that the initial settings of the registers affected
the statistical characteristics of the output sequence. The values of these settings obtained
as a simulation result, when the statistical characteristics were satisfactory, is shown below.

Dependence of the repetition period Tn on the used number of members from Equation (2)
was significant. Some confirmed results are presented in Table 1, which were obtained for
such initial states of registers Rg1–Rg5, correspondingly 1, 0, 0, 0, 0.

Table 1. Dependence Tn on output signal a of the logical scheme LS, q = 3.

a Tn

a = 0 18,599

a = a00 18,599

a = a00 ⊕ a01 103,404,839

a = a00 ⊕ a01 ⊕ a02 4,348,679

a = a00 ⊕ a01 ⊕ a02 ⊕ a03 20,121,479

a = a00 ⊕ a01 ⊕ a02 ⊕ a03 ⊕ a10 > 109

a = (a00 ⊕ a01 ⊕ a02 ⊕ a03)⊕ (a10 ⊕ a11 ⊕ a12 ⊕ a13)⊕ (a20 ⊕ a21 ⊕ a22 ⊕ a23) > 109

Optimization of equation choosing for the output signal LS was a separate partial task
requiring additional research. Its solution would also affect the speed of the generator.

3.1.2. Determination of Statistical Characteristics and the Range of Values of the
Control Code

Figure 2 illustrates the investigation results of PPSG statistical characteristics based on
the MAFG for q = 3.

Here the following notations were used:

• SS_n—value χ2
c ;

• SS_n_pot—the average value of the last five (current) values χ2
c —χ2

cav;
• Level—number of values χ2

cav greater than χ2
cr.

The results were obtained at the following values of the method parameters for
evaluating the quality of the pulse sequence: nmax = 1000, kc = 10, χ2

cr = 25.
The output signal of the logic circuit of the LS was formed by the following expression:

a =
(
a00 ⊕ a01 ⊕ a02 ⊕ a03

)⊕ (
a10 ⊕ a11 ⊕ a12 ⊕ a13

)⊕ (
a20 ⊕ a21 ⊕ a22 ⊕ a23

)
(8)

as a result of the search for initial states of various variants of registers Rg1–Rg5, it was
found that the value of these settings was satisfactory—G, 0, 0, 0, 0, correspondingly. That
is, the option in which the initial settings depended on the control code. This was for such
initial settings for which results are presented in Figure 2.

296

Electronics 2022, 11, 2039

(a) (b)

(c)

Figure 2. PPSG statistical characteristics based on MAFG (q = 3): (a) the value χ2
c ; (b) the average

value of the last five (current) values χ2
c − χ2

cav; (c) number of values χ2
cav greater than χ2

cr. G—control
code value.

Thus, the range of the control code values G −(G1 ÷ G2), in which the original pulse
sequence corresponded to the Poisson distribution law, in this case (when q = 3), was
determined by the equation

G1 = 1, G2 = 124 (9)

In this case, the value G1 = 1, determined as a result of simulation, coincided with the
value G1, defined theoretically by the expression (6):

G ≥ 10q · kc · nmax

Tn
=

103 · 10 · 103

109 = 10−2 (10)

3.2. Dependence of the Average Value of the Output Signal Frequency on the Control Code

This section is divided by subheadings. It should provide a concise and precise
description of the experimental results and their interpretation, as well as the experimental
conclusions that can be drawn.

Figure 3a illustrates the dependence of the average frequency of the PPSG output pulse
sequence on the control code G, while Figure 3b illustrates a fragment of that dependence.

Here solid lines show the dependences obtained by simulation, and dotted lines
show theoretical values, calculated on the basis of Equation (3). Solid and dotted lines in
Figure 3a almost coincide. To specify the calculations, it was accepted that fm = 1000 Hz.
All real dependences were obtained for the condition of formation of the LS output signal
correspondingly with logical Equation (8) and explained initial states Rg1–Rg5: G, 0, 0, 0,
0, correspondingly.

297

Electronics 2022, 11, 2039

(a) (b)

Figure 3. The value of the average frequency of the PPSG output signal based on MAFG (q = 3)
when ΔG = 1: (a) the dependence of the average frequency on the control code G; (b) the fragment of
that dependence. G—control code value.

Thus, the dependences of the values of the average frequency of the output pulse
sequence of the generator from the control code, obtained as a result of simulation, were
close to theoretical. That practically allowed the use of Equation (3) while determining the
average frequencies of the PPSG output signal.

3.3. Investigation of the PPSG Based on MAFG When q = 6
3.3.1. Determining the MAFG Repetition Period

Dependence of the repetition period Tn on the number of involved members of Equation (2)
is presented in Table 2. The following initial states of the registers Rg1–Rg5, correspondingly
1, 0, 0, 0, 0, were obtained.

Table 2. Dependence of Tn on the output signal a of a logical scheme LS (q = 6).

a Tn

a = 0 9,255,555

a = a00 4,649,999

a = a00 ⊕ a01 > 109

a = a00 ⊕ a01 ⊕ a02 > 109

a = a00 ⊕ a01 ⊕ a02 ⊕ a03 > 109

a = a00 ⊕ a01 ⊕ a02 ⊕ a03 ⊕ a10 > 109

a = (a00 ⊕ a01 ⊕ a02 ⊕ a03)⊕ (a10 ⊕ a11 ⊕ a12 ⊕ a13)⊕ (a20 ⊕ a21 ⊕ a22 ⊕ a23)⊕
(a30 ⊕ a31 ⊕ a32 ⊕ a33)⊕ (a40 ⊕ a41 ⊕ a42 ⊕ a43)⊕ (a50 ⊕ a51 ⊕ a52 ⊕ a53)

> 1010

3.3.2. Determination of Statistical Characteristics and the Range of Values of the
Control Code

Investigation results of the PPSG statistical characteristics based on MAFG for q = 6
are presented in Figure 4.

298

Electronics 2022, 11, 2039

(a) (b)

(c)

Figure 4. PPSG statistical characteristics based on MAFG (q = 6): (a) the value χ2
c ; (b) the average

value of the last five (current) values χ2
c − χ2

cav; (c) number of values χ2
cav greater than χ2

cr. G—control
code value.

The results were obtained for the same values of the parameters of the quality assessing
method of the pulse sequence, as in the previous case (for q = 3): nmax = 1000, kc = 10,
χ2

cr = 25.
Output signal of the logic scheme LS was formed according to the following expression:

a =
(
a00 ⊕ a01 ⊕ a02 ⊕ a03

)⊕ (
a10 ⊕ a11 ⊕ a12 ⊕ a13

)⊕ (
a20 ⊕ a21 ⊕ a22 ⊕ a23

)⊕(
a30 ⊕ a31 ⊕ a32 ⊕ a33

)⊕ (
a40 ⊕ a41 ⊕ a42 ⊕ a43

)⊕ (
a50 ⊕ a51 ⊕ a52 ⊕ a53

) (11)

where the initial settings of registers Rg1–Rg5 were correspondingly the following: G, 0, 0,
0, 0.

Control code range values G −(G1 ÷ G2), in which the output pulse sequence corre-
sponded to the Poisson distribution law, in this case (when q = 6), was determined by the
following equation.

G1 = 1, G2 = 111010 (12)

In this case the value G1 = 1, determined as a result of simulation, coincided with the
value G1, determined theoretically by Expression (6):

G ≥ 10q · kc · nmax

Tn
=

106 · 10 · 103

1010 = 100. (13)

299

Electronics 2022, 11, 2039

3.4. Dependence of the OUTPUT Signal Frequency Average Value on the Control Code

Figure 5a illustrates the dependence of the output of the PPSG’s pulse sequence aver-
age frequency on the control code G, while Figure 5b shows a fragment of this dependence.

(a) (b)

Figure 5. Output signal average frequency of the PPSG based on MAFG (q = 6), when ΔG = 1000:
(a) the dependence of the average frequency on the control code G; (b) the fragment of that depen-
dence. G—control code value.

Here, similarly to Figure 3, solid lines illustrate the dependences obtained by simula-
tion, and dotted lines illustrate theoretical values, calculated on the basis of Equation (3).
Solid and dotted lines in Figure 5a almost coincide. It was accepted that. fm = 1000 Hz.
All the real dependences were obtained under the condition of LS output signal formation
according to the logic of Equation (11) and the above-justified initial states Rg1–Rg5: G, 0,
0, 0, 0, correspondingly.

The fundamental difference between the dependencies presented in Figures 3 and 5 is
that they were obtained using different values for the control code step changing G − ΔG:
in Figure 3 (for q = 3) when ΔG = 1; while in Figure 5 (for q = 6) when ΔG = 1000.

A decrease in value ΔG for q = 6, led to some ambiguity in establishing the average
frequency value of the PPSG output sequence. This is illustrated in Figure 6 where the
dependences were similar to the dependences in Figure 5, for ΔG = 100.

(a) (b)

Figure 6. Output signal average frequency of the PPSG based on MAFG (q = 6), when ΔG = 100:
(a) the dependence of the average frequency on the control code G; (b) the fragment of that depen-
dence. G—control code value.

300

Electronics 2022, 11, 2039

3.5. Comparing PPSG Characteristics Based on MAFG for q = 3 and q = 6

Increasing the number of decades of the generator could significantly increase the
repetition period of the sequence of numbers in the MAFG output and, thus, also the
pulse sequence period of the PPSG output. However, this did not lead automatically to an
increase in the generator’s “distinguishing ability” concerning the established value of the
output sequence average frequency fout, which was actually setting the ability to specify
the changing step fout − Δ fout.

The performed research showed that “distinguishing ability”, at a fixed value for the
number of decades q, depended on the initial settings of the registers Rg1–Rg5 and on the
involved members of Equation (2), which determined the logic of signal generation on the
output of the LS scheme. In this case, the statistical characteristics of the original sequence
depended on these parameters. Taking into account the above considerations, improving a
generator’s “distinguishing ability” could be the subject of a separate study.

As far as increasing the number of decades from q = 3 to q = 6, during the above-
mentioned conditions, in fact did not lead to an increase in the PPSG’s “distinguishing
ability” (decreasing Δ fout) and expanded the range fout. For future work, it would be worth
considering the possibility of the practical use of this generator when q = 3.

3.6. Using the PPSG Based on the MAFG When q = 3

Figure 7 shows the structural scheme of the device, in which to expand the range of
average values of the output frequency, an additional frequency divider FD was introduced.

Figure 7. Structural scheme of the Poisson pulse sequence generator with an extended range of
average values in the output frequency.

At the FD output the clock pulse sequence was formed for the PPSG, the frequency of
which was determined by the equation

fm =
fg

Kd
(14)

where Kd is the division factor FD and fg is the reference generator frequency.
Some generator parameters are presented in the Table 3, of which one is presented

in Figure 7, when fg= 1 MHz. The PPSG was implemented based on the MAFG for
q = 3, while its internal parameters corresponded to the above: the output signal of the
logic scheme LS was formed by the expression (8), and the initial states of the registers
Rg1–Rg5 were G, 0, 0, 0, 0, correspondingly. This allowed us to tell whether the statistical
characteristics of the output pulse sequence in the given ranges of values fout, corresponded
to Poisson’s law of distribution.

The construction of PPSGs based on MAFGs, all elements of which, except those of the
LS, work in binary-decimal code, improves significantly the quality of the output sequence.
This was confirmed by a generalized technique for studying parameters of the PPSG output
pulse sequence for compliance with the Poisson distribution law using the Pearson test.
Investigations of the proposed solutions illustrated that the dependences of the average
frequency values of the generator’s output pulse sequence from the control code, obtained
as a result of simulation, were close to the theoretical ones. It was shown that the number of
decades was enough to choose q = 3, because greater numbers of decades did not actually
lead to an increased “distinguishing ability” for the PPSG; while scheme realization would
be more complicated in that case. In order to expand the output frequency average values
the introduction of a division factor into the PPSG structural scheme was proposed, which
would be divided by the frequency of the reference generator. The question of the selecting

301

Electronics 2022, 11, 2039

number of the equation members to calculate the logical variable a, the value of which
was obtained at the LS output, was rather significant. The number of data members of
the equation and approaches to their choice significantly affected the size of the repetition
period Tn. Further research is needed in this direction in order to improve the initial
characteristics of the PPSG and increase its performance.

Table 3. PPSG parameters with additional FD.

Kd fm [Hz] G fout [Hz] Δfout [Hz]

1 1,000,000 1 1000 1000
2 2000

.
100 10,000

10 100,000 1 100 100
2 200

.
100 10,000

100 10,000 1 10 10
2 20

.
100 1000

1000 1000 1 1 1
2 2

.
100 100

10,000 100 1 0.1 0.1
2 0.2

.
100 10

100,000 10 1 0.01 0.01
2 0.02

.
100 1

1,000,000 1 1 0.001 0.1
2 0.002

.
100 0.1

4. Discussion

4.1. Structural Scheme of the Simulator for the Authentication Bit Templates and the Principle of
Its Operation

Real bit templates of the internal electrical noise of desktop computers (PC), which are
calculated according to the normalized autocorrelation function, have a length of 1000 bits
and contain approximately the same number of zero bits “0” and single bits “1”. When
comparing a pair of real-time templates of one PC, it turns out that they match for most
positions. Only a few positions will have inverted bits. The positions of the inverted bits do
not match for different pairs of templates. A comparison of the real-time bit noise templates
of two different PCs showed much less similarity. The Hamming distances between the
noise templates of different PCs were 5–10 times larger than the distances between the
real-time noise templates of each PC. The developed Poisson pulse sequence generator
made it possible to reproduce these properties.

The generator for q = 6 and G = 10,000 formed a bit sequence A, which contained
mainly zero bits “0”, and the number of single bits “1” for every thousand bits was an
average of 10. The positions of the single bits in each fragment of 1000 bits did not match.
Therefore, to simulate the real-time templates of the same device, it was advisable to choose
the control code of the generator G = 10,000. On average, the Hamming distance between a

302

Electronics 2022, 11, 2039

pair of such fragments will be 20. If at q = 6 the value of the control code G = 100,000, for
the generated sequence B, the number of single bits “1” per thousand bits was on average
equal to 100. The Hamming distance between two 1000-bit fragments of sequence B will be
on average 200. The formation of fragments of bit sequences A and B is shown in Figure 8.

Figure 8. Derivation of groups A and B of bit sequences with a length of 1000 bits for the subsequent
formation of bit templates.

From the beginning, the generation process was set, so the first 1000 bits were dis-
carded for both sequence A (A0) and sequence B (B0).

A combination (direct sum) of fragments of sequences A and B was used to form
bit templates. For each electronic device, a reference template was first created, and the
real-time templates were compared with it. To form a reference bit template for electronic
device N, there was a need to combine one 1000-bit fragment of sequence B, for example
BN with one 1000-bit fragment of sequence A, for example A1, Figure 9.

Figure 9. Formation of reference and real-time templates by two simulators, ti is the time of tem-
plate formation.

The fragment AM was used instead of A1 to form the real-time template M of electronic
device N. The bit templates of the electronic device N were calculated by the expression

BTM
N = BN ⊕ AM. (15)

The structural scheme of the bit template simulator is shown in Figure 10.

Figure 10. The structural scheme of the bit template simulator based on the PPSG.

The simulator functions were as follows. First, sequences A and B were generated and
stored in the memory. To generate them, one could use one PPSG, which was started first
with a control code G = 10,000, and then with a control code G = 100,000. Sequences were
written to memory. Two PPSGs and two memory blocks were used to illustrate the process

303

Electronics 2022, 11, 2039

of forming and storing the necessary sequences in the scheme of Figure 10. The request Q
for the template arrived at the control block, which sent a request to the memory for the
required 1000-bit fragments of the AM of sequence A and BN of sequence B. Fragments AM
and BN arrived at the adder, where the template BTM

N was formed.

4.2. Results of the Simulation Experiment

Comparative analysis of the standard template set BT1
J of individual devices J was

performed for ten devices. The Hamming distances H
(

BT1
J , BT1

I

)
between pairs of stan-

dard template devices J and I were calculated. The calculated distances led to the following
results in Table 4.

Table 4. The characteristics of the distance distribution between standard templates.

Average Value Standard Deviation Minimum Value Maximum Value

184 10 165 205

The results in Table 4 were obtained for the 90 distances, I = 1..10, J = 1..10, I �= J.
Each template was characterized by the template group—standard templates and real-time
templates. For successful device authentication distances within each group needed to be
significantly lower than the distances between standard templates. To check the adequacy
of the proposed simulator model, two types of comparisons should be performed: the first
type compares distances inside of the each group (for the each device), while the second
one compares distances between different groups (between the different devices).

Simulation experiments were performed to generate templates for two devices,
10 templates for each. The distances between different templates M �= K of one de-
vice N (group H1, intradistances) and distances between different templates M �= K of
two devices N �= L (group H2, interdistances) were found, only 90 distances for each group.
The distances between bit templates were calculated by the following expressions.

H1(M, N) = H
(

BTM
N , BTK

N
)
,

H2(M, N) = H
(

BTM
N , BTK

L
)
.

(16)

The distances for M = K corresponded to the comparison of the reference template
with itself for the same device and the comparison of the reference templates of two devices,
and were not taken into account.

The results of calculations using Expression (16) are presented in Figure 11. The left
side of the figure shows the distances between pairs of templates for the same device.
(intradistances), whose numbers are indicated by columns and rows. The right side of the
figure illustrates the distances between pairs of templates for different devices (interdistances).

The threshold value must be set in such a way to provide reliable authentication. For
our calculations, as could be seen from Figure 12, the threshold value needed to exceed the
maximum distance value of the intradistance group and be less than the minimum distance
value of the interdistance group. In that case FRR and FAR were equal to zero.

The results of calculations of the distance distribution of group H1 for N = 1 and
group H2 for N = 1, L = 2 are presented in Figure 12 as histograms.

304

Electronics 2022, 11, 2039

Figure 11. Distances between pairs of templates of the same device (top) and two different devices
(bottom).

Figure 12. Histograms of the distance distribution between bit templates of one device (intradistances)
and two devices (interdistances).

The characteristics of the distance distribution are shown in Table 5.

Table 5. The characteristics of the distance distribution.

Distribution Average Value Standard Deviation Minimum Value Maximum Value

Intradistances 23 6 12 39

Interdistances 205 5 189 215

The distance between the histograms was 150 bits, providing unambiguous authen-
tication between the two devices. The average values were in good agreement with the
theoretical estimates.

305

Electronics 2022, 11, 2039

The repetition period for the developed generator under certain conditions was not
less than 109 (Table 2). This allowed the estimation of the possible number of authenticated
devices, which was determined by the repetition period and the length of the fragments
of the sequence B, which was 106. The same estimate was valid for the number of authen-
tication requests for each of the devices. These estimates determined the class of tasks
for which the proposed model could be applied. For example, it could be a large enough
network with up to a million devices. If you accept the service life of each device as 10 years,
then such a device could be authenticated up to 250 times a day.

Let us compare the obtained simulation results with the existing practice, which uses
authentication by internal electrical noise [8]. For comparison, the following parameters
were selected: authentication reliability, the number of devices in the corporate network
that could be simultaneously authenticated, the bit template calculation time. The results
are presented in the Table 6.

Table 6. Comparison results by efficiency parameters.

Method Reliability Number of Devices Measuring Time, s

Internal electric noises 98.6 175 2

Simulator based on a PPSG 100 1,000,000 -

As can be seen, the proposed method in the article provided better performance
compared to the practice of authentication by internal electrical noise.

5. Conclusions

As a result of this research we executed the modeling of bit templates for information-
processing electronic device authentication on the basis of the pulse Poisson sequences
generator. For the purposes of the study, the Poisson pulse sequence generator was
developed based on a modified additive Fibonacci generator. The developed generator had
improved statistical characteristics for the output pulse sequence and expanded capabilities
for solving specific practical problems.

The proposed simulator scheme contained two generators. The generator for the value
of the control code G = 10,000 formed a bit sequence A, fragments of which had properties
of the real-time templates of each device. The generator for the value of the control code
G = 100,000 formed a bit sequence B, fragments of which reflected the difference between
the series of real-time templates of different devices. In the bit template of the device,
these properties were preserved by applying the action of the direct sum of fragments of
sequences A and B.

An imitation experiment to generate templates for two devices confirmed the effec-
tiveness of the proposed simulator. The properties of the generated bit templates allowed
them to be used for the purpose of unambiguous authentication of information-processing
electronic devices.

Further research will focus on protecting such bit templates from a variety of at-
tacks. From the authors’ point of view, the direction of detecting acoustic traps in speech
recognition systems is also promising for the application of Poisson pulse sequence genera-
tors [36,37].

Author Contributions: Conceptualization, V.M. and E.N.; methodology, V.M. and C.J.; software,
O.H.; validation, Y.L., M.R. and E.N.; formal analysis, C.J., M.S. and O.H.; investigation, V.M, E.N., C.J.,
M.S., O.H., Y.L. and M.R.; writing—original draft preparation, V.M., E.N. and M.S.; writing—review
and editing, Y.L., C.J. and M.R.; supervision, E.N.; project administration, Y.L.; funding acquisition,
E.N. and C.J. All authors have read and agreed to the published version of the manuscript.

306

Electronics 2022, 11, 2039

Funding: This research was funded by CRDF Global, Grant Agreement G-202102-67366 “Developing
software and hardware complex for dynamical authentication of information processing devices in
a corporate network for cybersecurity purposes”, supported by the U.S. Department of State, the
Bureau of European and Eurasian Affairs.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Qureshi, M.; Munir, A. PUF-IPA: A PUF-based Identity Preserving Protocol for Internet of Things Authentication. In Proceedings of
the 2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 10–13 January 2020.
[CrossRef]

2. Scholz, A.; Zimmermann, L.; Sikora, A.; Tahoori, M.B.; Aghassi-Hagmann, J. Embedded Analog Physical Unclonable Function
System to Extract Reliable and Unique Security Keys. Appl. Sci. 2020, 10, 759. [CrossRef]

3. Hasse, J.; Gloe, T.; Beck, M. Forensic identification of GSM mobile phones. In Proceedings of the first ACM Workshop on
Information Hiding and Multimedia Security, Montpellier, France, 17–19 June 2013. [CrossRef]

4. Svoboda, J.; Schanfein, M. Transducer Signal Noise Analysis for Sensor. In Proceedings of the 53rd Annual INMM Meeting,
Idaho Falls, ID, USA, 15–19 July 2012.

5. Chouchang, Y.; Alanson, P. Sample EM–ID: Tag–less Identification of Electrical Devices via Electromagnetic Emissions. In
Proceedings of the 2016 IEEE International Conference on RFID (RFID), Orlando, FL, USA, 3–5 May 2016. [CrossRef]

6. Wang, X.; Zhang, Y.; Zhang, H. Identification and authentication for wireless transmission security based on RF-DNA fingerprint.
J. Wirel. Com. Netw. 2019, 230. [CrossRef]

7. Nyemkova, E. Authentication of Personal Computers with Unstable Internal Noise. Int. J. Comput. 2020, 19, 569–574. [CrossRef]
8. Sikora, A.; Nyemkova, E.; Lakh, Y. Accuracy Improvements of Identification and Authentication of Devices by EM-Measurements.

In Proceedings of the 2020 IEEE 5th International Symposium on Smart and Wireless Systems within the Conferences on Intelligent
Data Acquisition and Advanced Computing Systems (IDAACS-SWS), Dortmund, Germany, 17–18 September 2020. [CrossRef]

9. Kuźmiński, Ł. Using the Poisson Distribution to Estimate the Risk of Hydrological Danger. Studia Ekon. Uniw. Ekon. W Katowicach
2014, 206, 7–19. (In Polish)

10. Deon, A.; Menyaev, Y. Poisson Twister Generator by Cumulative Frequency Technology. Algorithms 2019, 12, 114. [CrossRef]
11. Kim, D.; Kim, J.; Cho, Y.S. A Poisson Cluster Stochastic Rainfall Generator that Accounts for the Interannual Variability of Rainfall

Statistics: Validation at Various Geographic Locations across the United States. J. Appl. Math. 2014, 560390. [CrossRef]
12. Bentley, M.; Stephenson, A.; Toscas, P.; Zhu, Z. A Multivariate Model to Quantify and Mitigate Cybersecurity Risk. Risks 2020,

8, 61. [CrossRef]
13. Leslie, N.O.; Harang, R.E.; Knachel, L.P.; Kott, A. Statistical Models for the Number of Successful Cyber Intrusions. J. Def.

Modeling Simul. 2018, 15, 49–63. [CrossRef]
14. Veiga, A.; Spinelli, E. A Pulse Generator with Poisson-Exponential Distribution for Emulation of Radioactive Decay Events. In

Proceedings of the IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS), Florianopolis, Brazil, 28 February–2
March 2016. [CrossRef]

15. Arkani, M.; Khalafi, H.; Vosoughi, N. A Flexible Multichannel Digital Random Pulse Generator Based on FPGA. World J. Nucl. Sci.
Technol. 2013, 3, 109–116. [CrossRef]

16. Maksymovych, V.; Mandrona, M.; Harasymchuk, O. Dosimetric Detector Hardware Simulation Model Based on Modified
Additive Fibonacci Generator. In Advances in Intelligent Systems and Computing; Hu, Z., Petoukhov, S., Dychka, I., He, M., Eds.;
Springer: Cham, Switzerland, 2020; Volume 938, pp. 162–171.

17. Maksymovych, V.N.; Harasymchuk, O.I.; Mandrona, M.N. Designing Generators of Poisson Pulse Sequences Based on the
Additive Fibonacci Generators. J. Autom. Inf. Sci. 2017, 49, 1–13. [CrossRef]

18. Maksymovych, V.; Harasymchuk, O.; Opirskyy, I. The Designing and Research of Generators of Poisson Pulse Sequences on Base
of Fibonacci Modified Additive Generator. In Advances in Intelligent Systems and Computing; Hu, Z., Petoukhov, S., Dychka, I.,
He, M., Eds.; Springer: Cham, Switzerland, 2018; Volume 754, pp. 43–53.

19. Pomme, S.; Keightley, J.; Fitzgerald, R. Uncertainty of Nuclear Counting. Metrologia 2015, 53. [CrossRef]
20. Takami, K.; Shin-ichi, N.; Shigeru, Y. A Generation of Random-Time Pulses Having a Poisson Distribution. Keisoku Jido Seigyo

Gakkai Ronbunshu 1981, 17, 409–414.
21. Linares-Barranco, A.; Cascado, D.; Jimenez, G.; Civit, A.; Oster, M.; Linares-Barranco, B. Poisson AER Generator: Inter-Spike-

Intervals Analysis. In Proceedings of the 2006 IEEE International Symposium on Circuits and Systems, Kos, Greece, 21–24 May 2006.
[CrossRef]

22. Maksymovych, V.; Shabatura, M.; Harasymchuk, O.; Karpinski, M.; Jancarczyk, D.; Sawicki, P. Development of Additive Fibonacci
Generators with Improved Characteristics for Cybersecurity Needs. Appl. Sci. 2022, 12, 1519. [CrossRef]

307

Electronics 2022, 11, 2039

23. Mandrona, M.M.; Maksymovych, V.M.; Harasymchuk, O.I.; Kostiv, Y.M. Generator of Pseudorandom Bit Sequence with Increased
Cryptographic Immunity. Metall. Min. Ind. 2014, 5, 25–29.

24. Maksymovych, V.; Harasymchuk, O.; Karpinski, M.; Shabatura, M.; Jancarczyk, D.; Kajstura, K. A New Approach to the
Development of Additive Fibonacci Generators Based on Prime Numbers. Electronics 2021, 10, 2912. [CrossRef]

25. Mandrona, M.N.; Maksymovych, V.N. Comparative Analysis of Pseudorandom Bit Sequence Generators. J. Autom. Inf. Sci. 2017,
49, 78–86. [CrossRef]

26. Maksymovych, V.M.; Mandrona, M.M.; Garasimchuk, O.I.; Kostiv, Y.M. A Study of the Characteristics of the Fibonacci Modified
Additive Generator with a Delay. J. Autom. Inf. Sci. 2016, 48, 76–82. [CrossRef]

27. Maksymovych, V.N.; Mandrona, M.N.; Kostiv, Y.M.; Harasymchuk, O.I. Investigating the Statistical Characteristics of Poisson
Pulse Sequences Generators Constructed in Different Ways. J. Autom. Inf. Sci. 2017, 49, 11–19. [CrossRef]

28. Blanco, A.; Orúe, A.B.; López, A.; Martín, A. On-the-Fly Testing an Implementation of Arrow Lightweight PRNG Using a
LabVIEW Framework. In Advances in Intelligent Systems and Computing; Kacprzyk, J., Ed.; Springer: Cham, Switzerland, 2019;
Volume 951, pp. 175–184.

29. Jakobsson, K.S. Theory, Methods and Tools for Statistical Testing of Pseudo and Quantum Random Number Generators. Master’s
Thesis, Linköpings Universitet, Linköping, Sweden, 2014; p. 143.

30. Faster Randomness Testing with the NIST Statistical Test Suite. Available online: https://crocs.fi.muni.cz/_media/public/crocs/
sys_space_2014.pdf (accessed on 20 December 2021).

31. Gorbenko, I.D.; Gorbenko, Y.I. Applied Cryptology: Theory Practice Application; Fort Publishing House: Kharkiv, Ukraine, 2012;
p. 880.

32. Holland, R.; St. John, R. Chi square variants: The lehman distribution. In Statistical Electromagnetics Book; CRC Press: Boca Raton,
FL, USA, 1999; p. 48. [CrossRef]

33. Almeida, F.M.L., Jr.; Barbi, M.; do Vale, M.A.B. A Proposal for a Different Chi-Square Function for Poisson Distributions. Nucl.
Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2000, 449, 383–395. [CrossRef]

34. Horoneskul, M. Tables of Functions and Critical Distribution Points. Sections: Probability Theory. Mathematical Statistics,
Mathematical Methods in Psychology. 2009. (in Ukrainian). Available online: http://repositsc.nuczu.edu.ua/bitstream/12345678
9/1530/1/Tablici.pdf (accessed on 20 December 2021).

35. NIST SP 800-22. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications.
Available online: http://csrc.nist.gov/publications/nistpubs/800-22-rev1a/SP800-22rev1a.pdf (accessed on 20 December 2021).

36. Kwon, H.; Yoon, H.; Park, K.-W. Acoustic-decoy: Detection of adversarial examples through audio modification on speech
recognition system. Neurocomputing 2020, 417, 357–370. [CrossRef]

37. Kwon, H.; Kim, Y.; Yoon, H.; Choi, D. Selective Audio Adversarial Example in Evasion Attack on Speech Recognition System.
IEEE Trans. Inf. Forensics Secur. 2019, 15, 526–538. [CrossRef]

308

MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Electronics Editorial Office
E-mail: electronics@mdpi.com

www.mdpi.com/journal/electronics

MDPI

St. Alban-Anlage 66

4052 Basel

Switzerland

Tel: +41 61 683 77 34

www.mdpi.com ISBN 978-3-0365-6907-9

	A9R283voc_fxs00l_52s
	[Electronics] Cybersecurity and Data Science.pdf
	A9R283voc_fxs00l_52s.pdf

