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2 Faculté de Médecine, Université de Kindu, Kindu, Maniema, Democratic Republic of the Congo

1. Introduction

The ability to execute limb motions derives from composite command signals (or
efferent signals) that stem from the central nervous system through the highway of the
spinal cord and peripheral nerves to the muscles that drive the joints. The brain encodes
information about a given movement using electrical impulses, referred to as action po-
tentials. The modulation of commands is possible via the recruitment principle and motor
unit firing frequency. Because of direct access to the brain, spinal cord and peripheral
nerves pose a significant challenge requiring mainly invasive approaches, and muscles
provide excellent access to study motor control. Electromyography (EMG) is a technique
used for evaluating and recording electrical activity produced by muscles. EMG signals
can be harvested on the skin’s surface, under the skin, and inside the muscle, providing
different levels of information. It is regarded as the biological amplifier of nerve impulses,
providing an improved signal-to-noise ratio. Over the last few decades, there have been
considerable technological advances, including sensor miniaturization and advanced signal
processing algorithms. The development has empowered EMG sensors and the associated
EMG signals to find applications in many areas. In electrodiagnostic (EDX) medicine,
EMG has often been used to cover the entire spectrum of EDX techniques using the needle
electrode to record muscle electrical activity. In robotic and rehabilitation applications,
the EMG signal captures human intention, creating a communication channel between
humans and robots. The EMG is also used to assess swallowing function in motor neuron
disorders and estimate fluid intake. Motion analysis, feedback, and handwriting modelling
are other important areas which involve the application of EMG sensors and signals. EMG
sensors and signals are also used in many research laboratories involved in biomechanics,
movement disorders, motor control, postural control, neuromuscular physiology, and
physical therapy. This Special Issue attempts to capture the latest advances in EMG sensor
development, EMG sensor application, and EMG signal conditioning from theoretical and
experimental approaches. Nineteen papers (two reviews and seventeen research papers)
have been published, providing useful information on the application of EMG sensors and
signals. The 17 research papers addressed several exciting themes: swallowing, motion
detection and prosthesis control, muscle synergies, robotic exoskeleton, driver behavior,
signal conditioning, and muscle assessment.

2. Overview of Contribution

The first review paper [1] presented an in-depth study of 28 articles on TMR-based
prosthesis control strategies, consolidating the field’s current knowledge and outlining the
limits of these strategies. We learned that there is a lack of accepted reference standard
performance evaluation due to several evaluation tests based on different metrics. The
diversity of these evaluation tests makes it difficult to define common guidelines used
for understanding the potential of the proposed control systems. The second review [2]
studied 42 articles. Exactly half of the articles were associated with muscle activity during
activities of daily living, and the other half were related to a reduction in the synergy-based

Sensors 2022, 22, 7966. https://doi.org/10.3390/s22207966 https://www.mdpi.com/journal/sensors1
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dimensionality of EMG. The review identified fundamental challenges and issues relevant
to comprehensively understanding human hand behavior, providing more intuitive control
of prostheses, and achieving realistic biomechanical models.

Within the swallowing theme, Ye Lin et al. used conditional Granger causality from
surface EMG signals to analyze the directed functional coordination between different
swallowing muscles in healthy and dysphagia patients swallowing water, saliva, and
yoghurt [3]. The study indicated that the analysis of functional coordination supplied
relevant information for evaluating motor control synergy and provided a step towards
identifying new and robust biomarkers for the early detection of dysphagia. A second
paper hinted at the potentialities of surface EMGs to differentiate between liquid and non-
liquid swallows and to estimate fluid intake volume [4]. Nevertheless, the performance is
dependent on EMG features. Further research is needed to explore this potential, including
research in real-life environments. Such a novel system is intended for care homes as a step
forward in reducing the rate of dehydration in older adults and improving the quality of
care in healthcare settings. Using EMG to monitor diet and fluid intake is viable because
there are no privacy issues compared with video- or sound-based monitoring.

Motion detection and prostheses were the topics of seven papers in the Special Issue.
A proposed model classifies hand motions and transforms the classification sequence into
virtual movement with the Opensim environment [5]. The model was developed using
an online database. The model has turned out to be an excellent tool for the practical
design of hand prostheses or human-computer based on hand motions. Hagengruber et al.
proposed a new labelling approach for proportional EMG-based control that efficiently
maps muscular activity to proportional control input with good accuracy [6]. Another
study [7] addressed the performance issues caused by electrode shifts, feature vectors, and
posture groups. They proposed adding more electrode shift training sessions. Furthermore,
the Pearson correlation coefficient helped to select the feature vector. These findings might
contribute to the optimization of sEMG-based pattern recognition algorithms.

Commercial prostheses devices use electrodes that can be costly for low-income
settings. As a result, low-cost custom-made embroidered EMG electrodes have proven to
perform similarly to conventional gel-based EMG electrodes in an online experiment [8],
paving the way for low-cost myoelectric sensors. Noor et al. explored the potential use
of surface EMG as a controlling mechanism for developing a home-based lower limb
rehabilitative device for stroke patients [9]. Experimental data showed a moderate positive
correlation between the Fugl–Meyer assessment (FMA) scores and classification accuracies.
Using ablation analysis, the authors of [10] investigated the feasibility of using wearable
sensors and machine learning to differentiate between standing, walking, running, and
sprinting. Results demonstrated that using a reduced sensor set on the lower legs performed
similarly to using all sensors. A study effectively summarized the movement detection
theme by introducing a system that offers the possibility of longitudinal experiments with
advanced prostheses based on a cost-effective Arduino system platform and coupled it
with wearable EMG sensors [11]. Home trials with people with limb loss will be carried
out in future works.

Muscle synergy was addressed in two studies. One study [12] tested the hypothesis
that different subsets of muscle synergies are used in various movement and postural
tasks. The approach includes extracting muscle synergies and examining whether these
synergies explain each motor task. Their results may support the notion of low dimension-
ality in motor outputs. The low-dimensionality principle states that the central nervous
system flexibly recruits fundamental muscle synergies to execute diverse human behav-
iors. Another study on muscle synergies [13] proposed a novel muscle synergy extraction
method based on multivariate curve resolution–alternating least squares (MCR-ALS). This
approach overcomes the limitation of the non-negative matrix factorization (NMF) method
used for extracting non-sparse muscle synergy and provides higher repeatability and
intra-subject consistency.
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Benito de Pedro et al. compare the immediate effectiveness in latent myofascial
trigger points between ischemic compression techniques and deep dry needling using
surface EMG activity in the lateral and medial gastrocnemius of triathletes [14]. Authors
recommended that deep dry needling could be advisable for triathletes who train at
speeds lower than 1 m/s. Ischemic compression could be more advisable for training
or competitions at speeds greater than 1.5 m/s. Lozano García et al. proposed two
noninvasive indices (neuromechanical coupling and mechanical efficiency) of parasternal
intercostal muscles [15]. The two indices are used for the regular assessment of patients
with disordered respiratory mechanics using noninvasive wearable and wireless devices.
The last assessment study [16] presented and validated a framework for continuously
assessing fatigue using a system-based monitoring paradigm. Ultimately, monitoring
and assessing fatigue has important implications for preventing neuromuscular injury,
optimizing training loads, and guiding effective and individualized treatment strategies
for rehabilitation.

Robotic exoskeleton driven by EMG has received significant attention in the literature.
One study in the Special Issue [17] proposed an artificial neural network-trained adaptive
controller mechanism to navigate a wheelchair-mounted upper limb robotic exoskeleton.
The EMG from upper limb muscles informs users’ intentions, and thus are the input sources
to the system. The authors claimed that the system could be tested on people with muscular
dystrophy and neurodegenerative diseases.

One article on driver distraction [18] recommended the use of haptic guidance with
adaptive authority for both attentive and distracted drivers because it resulted in a lower
driver workload than manual driving and fixed authority. Furthermore, haptic guidance
with adaptive authority could reduce lane departure risk.

An interesting paper on statistical analysis [19] proposed a wave train electrical activity
method for exploratory data analysis based on 2D and 3D area under curve (AUC) diagrams.
The technique was designed to analyze, among many biosignals, EMG data collected from
patients with Parkinson’s disease. The aim was to treat the EMG signal as a combination of
wave trains and address the generalized characteristics of the EMG signal based on local
time–frequency changes in the signal. The proposed method and AUC diagrams could
reveal new regularities associated with the high-accuracy diagnosis of Parkinson’s disease.

3. Conclusions

This Special Issue demonstrated the breadth of applications to which EMG sensors and
signals make extensive contributions. Within the area of swallowing functions, the specific
domain of bolus type and fluid volume estimation from EMG has received less attention.
Diet and nutrition are key determinants of healthy ageing, within which optimal hydration
is important, as a balance between fluids and electrolytes is necessary if cells are to survive
and function normally. However, most papers on swallowing functions have aimed to
quantify the changes in swallowing biomechanics due to disorders such as dysphagia or
stroke. I want to encourage researchers within the field of EMG sensors and applications
to contribute to the urgent development of validated methods of assessing fluid intake to
support clinical practice and research interventions, and to prevent dehydration, a costly
recurrent issue in older adults. The scale of EMG applications provides strong evidence
that whenever physiologically appropriate muscles are accessible, EMG sensors should be
sought before any other methods, such as access to peripheral nerves.
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Events and the Estimation of Fluid Intake Volume
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Abstract: Nowadays, society is experiencing an increase in the number of adults aged 65 and over,
and it is projected that the older adult population will triple in the coming decades. As older
adults are prone to becoming dehydrated, which can significantly impact healthcare costs and staff,
it is necessary to advance healthcare technologies to cater to such needs. However, there has not
been an extensive research effort to implement a device that can autonomously track fluid intake.
In particular, the ability of surface electromyographic sensors (sEMG) to monitor fluid intake has
not been investigated in depth. Our previous study demonstrated a reasonable classification and
estimation ability of sEMG using four features. This study aimed to examine if classification and
estimation could be potentiated by combining an optimal subset of features from a library of forty-
six time and frequency-domain features extracted from the data recorded using eleven subjects.
Results demonstrated a classification accuracy of 95.94 ± 2.76% and an f-score of 94.93 ± 3.51%
in differentiating between liquid swallows from non-liquid swallowing events using five features
only, and a volume estimation RMSE of 2.80 ± 1.22 mL per sip and an average estimation error of
15.43 ± 8.64% using two features only. These results are encouraging and prove that sEMG could be
a potential candidate for monitoring fluid intake.

Keywords: surface electromyography; swallowing events; geriatrics; hydration; fluid intake

1. Introduction

The indisputable fact that our society faces nowadays is the increase in the population
aged 65 and over. According to the United Nations [1], by 2050, one in six people will
be aged over 65. The number of persons aged 80 years and over is projected to triple.
This increase in the number of older adults is primarily due to societal improvements
in lifestyle and advances in technology and healthcare. Nevertheless, it will soon pose
new challenges if action is not taken to advance the current monitoring technology, as
older adults necessitate more care and medications. One challenge in our healthcare
system is dehydration, which is a recurrent issue in older adults [2,3]. Dehydration is
mainly provoked by a diminished thirst sensation with ageing and mobility or memory
impairments [4,5]. Moreover, light hydration in older adults increases the chances of
falls and hence the possibility of bone fractures, other than potentially leading to drug
intoxication, confusion, and delirium in severe cases [6–8]. Furthermore, it has been recently
suggested that chronic suboptimal hydration might be a risk factor for increased mortality
in COVID-19 patients on top of risk factors such as male gender and older age [9].

There are no gold standards for identifying dehydration [10,11]. Moreover, signs of
dehydration, such as skin turgor, are often confounded by the age of the patients, and
assessing dehydration is made difficult by a shortage of staff, absence of appropriate
laboratory analyses and memory impairment of senile patients [12,13]. Thus, the best
option is to ensure that older adults intake the recommended daily fluid volume [14,15]. To
keep track of service users’ fluid intake, nurses must fill manually fluid monitoring charts,
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contributing to a substantial increase in their workload. This method is inaccurate and
prone to misreporting, as nurses mainly rely on patient information and relatives rather
than direct observation of the patient [16]. Thus, maintaining adequate oral hydration
for older residents is an ongoing challenge for staff members, bringing the prevalence of
dehydration in nursing homes residents at 37% in the United Kingdom (UK) alone [17],
adding strain to healthcare costs. For example, Xiao et al. [18] reported that the average
length of stay for dehydration in the Healthcare Cost and Utilisation Project (HCUP) data
was 4.6 days, amounting to a total hospitalisation charge per person of $7442. Therefore,
there is an urgent need to develop accurate methods to monitor fluid intake in older adults
to ease the burden on healthcare staff and healthcare finances.

Only a handful of studies in the literature have tried to develop fluid intake monitoring
systems using signals harvested directly from the subjects. Most of these used microphones
only [19,20], and data collection was performed on a very limited number of participants.
Amft and Tröster [21] combined surface electromyography (sEMG) with microphones to
perform classification between solid and liquid foods. The reported classification accuracy
was less than 84%. Apart from this paper, to the best of our knowledge, there is no other
record in the literature of sEMG used with the specific scope of quantifying fluid intake.
Indeed, most of the documentation found in the literature refers to sEMG being used to
study dysphagia, although some of these studies hinted at the possibility that certain neck
sEMG features such as peak amplitudes change according to the swallowed volume [22,23].
Therefore, we conducted a preliminary study on swallowing events classification and
volume estimation using four predefined time-domain features. The aim was to assess
if neck sEMG could distinguish between saliva and liquid swallows and then if it was
possible to perform volume estimation. The results of our published study [24] showed a
mean classification accuracy between saliva and liquid swallows of 86.69 ± 5.52% using the
k-Nearest Neighbour classifier. The average Root Mean Square Error was 2.01 ± 1.39 mL
per swallowed sip using an Artificial Neural Network (ANN) with two hidden layers, each
with fifteen neurons.

While these results were encouraging, it was necessary to investigate further whether
classification and volume estimation could be improved using a more comprehensive set of
features and studying what could be the ideal combination to obtain the best performance
possible. Again, the need to carry out this investigation stemmed from the fact that there is
no record in the literature about an extensive analysis of neck sEMG features. Hence, we
extracted forty-six single features, of which thirteen were frequency-domain, using the list
of features detailed in the paper from Phyniomark et al. [25], and we applied these on the
sEMG of neck muscles involved during the swallowing events.

2. Materials and Methods

The Research Ethics Committee of King’s College London (LRS-18/19-10877) approved
this study. We recruited eleven healthy participants (3 F, 8 M, age range from 20 to 67 years)
with no known underlying medical conditions. All participants agreed voluntarily to
participate in the experiment, and written informed consent was obtained.

Participants sat comfortably, and the skin around the neck was prepared using alcohol
wipes. Two Delsys Trigno sensors (Delsys Incorporated, Natick, MA, USA) were set as
sEMG and placed on the belly of the sternohyoid muscles (infrahyoid group), as shown in
Figure 1. The sternohyoid muscles were chosen, as these are the most superficial muscles
of the infrahyoid group. The correct anatomical placement of the sensors was identified via
palpation of the neck muscles of the participants, as the distancing and position were highly
dependent on the sex and body conformation of participants. We collected data collection
using two pieces of equipment. A TREE KHR502 electronic scale (resolution of 0.01 g and a
capacity of 500 g) was used to measure the volume of water ingested by the subjects during
each task. The Delsys Trigno wireless EMG system (gain: 42 V; bandwidth: 20–450 Hz,
sampling rate: 1 kHz) collected the sEMG signals produced during the swallowing process.
The length of each recording was manually set as 10 s.
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Figure 1. The figure shows the anatomical position on which sensors were placed. The arrows
indicate the use of Delsys trigno system.

Once sensors were placed on the correct anatomical positions, subjects were asked
to perform seven tasks, with six including water at room temperature. The subject was
instructed to swallow for each task following a cue. The time between cues was at the
participant’s discretion, and the recording was initiated two seconds prior to each cue. The
first task consisted of performing one saliva swallow, which was repeated five times. Tasks
II, III, and IV consisted of ingesting water from the administered container five times. For
each of these three tasks, the container used by the subject was randomly changed in a cup
(Task II), bottle (Task III) and straw (Task IV), respectively, and subjects were instructed to
sip as they would normally do in real-life scenarios. The volume of each sip was calculated
using the laboratory scale. The selected fluid container was filled and placed on the scale,
and we noted the initial weight of the container. We cued each subject to take a single
sip as typically as possible and place the container back on the scale. We then subtracted
the final weight from the initial weight to note the swallowed volume. Thus, we did not
impose specific volumes, and the only condition was to take a single sip. Task V consisted
of the participant being administered a total liquid volume corresponding to the highest
volume ingested in Task II plus 5 mL and was performed once. This task had the scope of
improving linear regression and volume estimation. Adding 5 mL to the highest ingested
volume would ideally produce an observation corresponding to the maximum swallowing
capacity of the subject.

The collected EMG signals were processed using the MATLAB R2020b version. First,
a Kaiser window FIR bandpass filter with a bandpass frequency range of 20 to 400 Hz,
transition band steepness of 0.85, and stopband attenuation of 60 dB was applied to the left
and right sternohyoid signals. In order to perform burst extraction and identify the burst
region, the signal was smoothed using a moving RMS envelope with a window length of
1000 ms. These two steps are illustrated by the graphs shown in Figure 2. The burst region
was identified by locating the peak with the highest value of the smoothed signal and
including the 750 data points (0.75 s) to the left and right of the highest peak, thus resulting
in a total burst duration of 1500 ms. Once the burst location was identified, the burst
was extracted from the raw bandpass filtered signal. Finally, baseline noise was extracted
by taking the last 1.5 s of the recorded signal that contained no swallowing information
based on throughout visual inspection of the signals. A total of forty-six single features,
thirty-three time-domain and thirteen frequency-domain features were computed from
each 1500 ms window (burst and the baseline noise). The features used were selected based
on the paper from Phinyomark et al. [25] and presented in Table 1.
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Figure 2. The figure shows the diagram of the ANN model used in this study.

Table 1. This table presents the forty-six single features included in this study. The features are
presented in the order that these were computed.

Feature Full Name Abbreviation Parameters

Integrated EMG IEMG -

Mean Absolute Value MAV -

Mean Absolute Value 1 MAV 1 -

Mean Absolute Value 2 MAV 2 -

Simple Squared Integral SSI -

Variance of EMG VAR -

Root Mean Square RMS -

Second V-Order V2 v = 2

Third V-Order V3 v = 3

Log Detector LOG -

Waveform Length WL -

Average Amplitude Change AAC -

Difference Absolute Standard Deviation Value DASDV -

Maximum Fractal Length MFL -

Myopulse Percentage Rate MYOP threshold = 5.5 μ

Willinson Amplitude WAMP threshold = 0.3 × σ (noise)

Modified Mean Absolute Value MMAV -

Zero Crossing ZC threshold = 0.3 × σ (noise)

Slope Sign Change SSC -

Abs. val. of Third Temporal Moment TM3 order = 3

Abs. val. of Fourth Temporal Moment TM4 order = 4

Abs. val. of Fifth Temporal Moment TM5 order = 5

Abs value of the Summation of Square Root ASS -

Mean Value of Square Root MSR -

Absolute value of the Summation of the expth root of the given signal
and its Mean

ASM -

Kurtosis Kurt -

Skewness Skew -

Amplitude of the First burst AFB -
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Table 1. Cont.

Feature Full Name Abbreviation Parameters

Mean Power MNP -

Total Power TTP -

Median Frequency MDF -

Mean Frequency MNF -

Peak Frequency PKF -

First Spectral Moment SM1 order = 1

Second Spectral Moment SM2 order = 2

Third Spectral Moment SM3 order = 3

Frequency Ratio FR lc < MNF; hc > MNF

Mean Power Density MPD -

Power Spectrum Deformation PSDd -

Variance of Central Frequency VCF -

Higuchi Fractal Dimension HFD k = 128

Sample Entropy SaEn m = 2, r = 0.2 σ

Approximate Entropy ApEn m = 2, r = 0.2 σ

Maximum to Minimum Drop in Power Density Ratio dPDR -

Power Spectrum Ratio PSR n = 20

Area Under the Curve AUC -

Features were calculated per 1500 ms window to represent a single sip. As this study
aimed to verify which features combination performs best for our scope, stepwise forward
selection was used. Each problem (classification or estimation) was performed using single
features. The feature with the highest performance metric was retained as the best feature
and then combined with each of the remaining 45 features and tested in pairs. The pair with
the highest performance metric was then combined with each of the remaining 44 features,
and then, the procedure was repeated until the performance parameters reached a plateau
or did not improve further. A one-way analysis of variance (ANOVA) test was used to test
if the resulting metrics significantly differed with an increasing number of features.

The classification was modelled per subject as a two-class problem, with one class
containing the baseline noise and saliva swallows’ data together (including 11 noise ob-
servations and five saliva bursts) against the class containing liquid swallows (a total of
16 observations). The classifiers employed were Linear Discriminant Analysis (LDA) and
k-Nearest Neighbour with k = 1 (KNN). To estimate the performance of the classifiers, the
Leave-One-Out Cross-Validation (LOOCV) method was used with the following perfor-
mance metrics: Accuracy, Sensitivity, Specificity, Precision, and F-score, as presented in
Equations (1)–(5). Accuracy quantifies the ability of the model to assign the observation
to the correct class. Sensitivity measures the ability of the model to predict actual liquid
swallows. Specificity measures the power of the model to correctly predict non-liquid swal-
lowing events. Precision aims to quantify the proportion of liquid swallows classified as
liquid swallows. Then, the F-score was calculated to assess if the model trade-off between
precision and sensitivity was acceptable.

Accuracy =
true liquid swallows + true non liquid events

number of obs
(1)

Sensitivity =
true liquid swallows

liquid swallows
(2)
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Specificity =
true non liquid events

non liquid events
(3)

Precision =
true liquid swallows

true liquid swallows + false liquid swallows
(4)

F-Score =
2(precision × sensitivity)

precision + sensitivity
(5)

Before proceeding with more sophisticated methods to quantify fluid intake, first, we
wanted to verify if the mean sip volume for each subject could be used to predict fluid
intake within each subject. The mean and standard deviation of the sips taken by each
subject were calculated, and the error was computed as the difference between the mean
value as the predicted intake and actual sip volumes.

Secondly, Linear Regression (LR) and a shallow Artificial Neural Network (ANN)
were used to perform volume estimation analysis. The performance parameters used for
both methods were Root Mean Square Error (RMSE) and mean estimation error as a volume
percentage calculated using Equation (6):

mean EE (%) = mean
(∣∣∣∣predictedi − actuali

actuali

∣∣∣∣× 100
)

(6)

The linear regression model proposed in this study used the recorded sip volumes as
response variables and the extracted features as predictor variables. The model specification
was set to linear, meaning that the model contained an intercept and a linear term for each
predictor, and it used ordinary least squares as a fitting method. Cross-validation was
set to 5 k-fold. The ANN model consisted of one layer of 15 neurons with a hyperbolic
tangent sigmoid transfer function and a linear transfer function for the output layer, as
shown in Figure 2. Data division was performed at random, and the Levenberg–Marquardt
algorithm was used for training. As previously described, the optimum feature subset was
selected using the forward stepwise selection method.

3. Results

3.1. Classification

The optimal classification performance was given by the KNN classifier using five
features, namely: Integrated EMG (IEMG), Sign Slope Change (SSC), Average Amplitude
Change (AAC), Area Under the Curve (AUC) and Variance of Central Frequency (VCF).
However, results showed that the parameters of LDA classifier, when using five features,
were declining compared to the use of four features (IEMG, SSC, AAC and AUC). These
results are illustrated in Table 2. ANOVA tests demonstrated that the difference between
four-feature and five-feature classification was statistically not significant both for LDA
(p = 1) and KNN (p = 0.44). Furthermore, the ANOVA test demonstrated that while for
LDA, there is only a significant difference between single-feature and four-feature classifier
(p = 0.047), this changes for KNN. Indeed, the results showed that classifiers using one and
two features are significantly different from those using three or more features (p < 0.05).
Classifiers using three, four, and five features instead were not statistically different from
each other (p > 0.05).

Table 2. The table illustrates the resulting performance parameters for four features (IEMG, SSC, AAC
and AUC) in the first row and five features (IEMG, SSC, AAC, AUC and VCF) in the second row.

LDA KNN

Accuracy Sensitivity Specificity Precision F Score Accuracy Sensitivity Specificity Precision F Score

95.80 ± 4.62 96.02 ± 6.42 95.61 ± 4.69 93.64 ± 7.14 94.71 ± 5.92 94.84 ± 4.32 94.89 ± 6.74 94.72 ± 3.54 92.30 ± 5.52 93.52 ± 5.69
95.51 ± 3.86 94.89 ± 5.46 95.96 ± 4.56 94.18 ± 6.67 94.39 ± 4.86 95.94 ± 2.76 96.02 ± 5.78 95.84 ± 3.62 94.17 ± 4.80 94.93 ± 3.51
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3.2. Volume Estimation

The method of using the mean sip as the estimation volume resulted in large estimation
errors, as shown in Table 3. When using LR for volume estimation, the best performance
was given by a single feature, namely the Absolute value of the Summation of the expth

root of the given signal and its Mean (ASM), with an RMSE of 3.90 ± 1.58 mL and an
average estimation error of 24.63 ± 7.03% of the actual swallowed sip volume, as shown in
Table 4. Concerning the ANN, the optimal volume estimation performance was given by
SSC and Mean Power Density (MPD) combined with an RMSE of 2.80 ± 1.22 mL and an
average estimation error of 15.43 ± 8.64% of the actual swallowed volume. Results for the
ANN are illustrated in Table 5.

Table 3. The table shows the mean and the standard deviation of the sip volumes ingested by
each subject. The last column shows the estimation error when using the mean as the predicted
swallowed volume.

Subject Mean (mL) SD (mL) Error (%)

F20 23.83 5.13 15.35
F22 19.42 5.17 22.94
F28 8.73 3.05 29.05
M20 12.19 4.33 34.10
M21 11.40 3.71 30.04
M211 13.67 3.15 17.34
M25 18.72 6.14 28.50
M251 7.14 2.96 40.73
M27 12.73 3.98 28.01
M29 15.13 5.99 32.71
M67 21.33 8.75 43.67

Across All 14.93 5.29 29.31

Table 4. The table shows how the RMSE and the average estimation error change for LR as features
are added. As performance did not improve with the addition of the second feature, it was not
deemed necessary to proceed with the addition of further features.

Features RMSE (mL) Average Estimation Error (%)

ASM 3.90 ± 1.58 24.63 ± 7.03
ASM, TM4 3.98 ± 1.60 25.11 ± 8.07

Table 5. The table shows how the RMSE and the average estimation error change for the ANN as
features are added. Performance deteriorated with the addition of a third feature; thus, it was not
deemed necessary to proceed with further feature addition.

Features RMSE (mL) Average Estimation Error (%)

SSC 3.84 ± 2.52 19.35 ± 11.60
SSC, MPD 2.80 ± 1.22 15.43 ± 8.64

SSC, MPD, VAR 3.45 ± 1.71 16.80 ± 6.76

4. Discussion

The classification performances obtained in this study seemingly hint at the suitability
of using surface EMGs to classify between liquid swallows versus non-liquid swallowing
events. By analysing and determining an optimal set of features, classifier performance
seemed to improve compared to the results obtained in our previous study [24] when a
set of predefined features was used. Furthermore, in our previous study, signals coming
from both the digastric and sternohyoid muscles were used, whereas in this study, only
the sternohyoid signals were used. The fact that the performance has not deteriorated if
classification is performed using data harvested from the left and right sternohyoid muscles
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alone hints that there is not a necessity to include digastric muscles in future studies. As
the latter are submental muscles, the inclusion of surface EMGs in that anatomical region
might create discomfort, even if minor, in the movements performed by subjects and even
more so in hospitalised patients. Furthermore, digastric muscles are more sensitive to other
movements, such as chewing and the swallowing preparation phase. These muscles are
recruited to facilitate the ingress of food and fluids in the mouth, thus complicating the
extraction of bursts related to fluid swallowing events. In terms of the optimal number
of features, as summarised in Table 1, a KNN classifier using five features produces the
best performance with an F-score of 94.93. However, statistical analysis demonstrated no
significant difference between the performance of four features compared to five features.
Therefore, while five features provided the highest accuracy, perhaps the choice of using
four features could improve the computational time and cost, especially in continuous
online tasks—an assumption that should be validated by potential future studies using
larger cohorts.

However, while these results seem promising and demonstrated an improvement
on classification performance compared to previous studies [21,24], and they hint at the
potential of surface EMGs to differentiate between liquid versus non-liquid swallows, these
results need to be validated further. Further validation of these results could be performed
by recruiting a larger number of subjects spanning a wide age range (also to verify if age
has an influence on performance), as the results presented in this research are generated
by a small number of participants; thus, it is necessary to observe if the performance
will remain unchanged using a larger pool of participants; by harvesting a larger number
of observations compared to the numbers collected in this study; and there is also the
need to include in the non-liquid swallowing class more tasks such as coughing, talking,
chewing and swallowing food of different viscosities to observe with significant certainty
if surface EMGs possess the ability to distinguish all non-liquid swallowing events from
liquid swallowing ones.

The evidence gathered in this study and our previous one suggests that surface EMGs
also have the potential to estimate fluid intake, thus being an alternative to the use of
microphones for fluid estimation purposes [19,20]. Furthermore, if this potential will be
corroborated in future studies, this will also confirm the observations of previous studies
about the possibility of certain features derived from the neck surface EMGs to differentiate
between swallows of different volumes [22,23]. The first method employed in this paper,
which used the mean sip volume as an estimator, did not return satisfying results. The
estimation error that resulted was larger than that of more sophisticated estimation methods
such as using an ANN. This is mainly due to the fact that, as exposed in our previous study,
the sip volume is influenced by the shape of the container when this is significantly different
in size [24]. Indeed, sips ingested using the straw present a smaller volume compared to
the ones consumed from bigger containers such as cups and bottles. Furthermore, factors
such as the temperature of the liquid and composition (as an example, carbonated drinks),
which were not considered in this study, could influence the sip volume, which might vary
from subject to subject, rendering this method quite susceptible to estimation errors. Thus,
these factors (fluid temperature and fluid composition such as carbonated drinks), which
in real-life scenarios can be commonplace, would render this estimation method ineffective
and inaccurate.

Using Linear Regression and ANN improved performance compared with the mean sip
estimator with an RMSE of 3.90 ± 1.58 mL and an average estimation error of 24.63 ± 7.03%
of the actual swallowed sip volume for the LR. ANN had an RMSE of 2.80 ± 1.22 mL and
an average estimation error of 15.43 ± 8.64% for the ANN. As the two means are statistically
different (p < 0.05), it could be concluded that the best volume estimation performance
is given by the ANN. Furthermore, it is worth noting that the ANN developed in this
study resulted in a similar performance compared to the two-layer, feed-forward network
proposed in our previous study (average RMSE of 2.01 mL), which also used four features
instead of two. Hence, this demonstrates that performance can be improved by selecting the
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appropriate features to combine while also using a network with a lower number of hidden
layers, thus reducing the computational costs. We recommend further research to validate
the hypothesis presented in this paper with a larger cohort and a more significant number
of observations.

However, it is fundamental to reiterate that these findings need to be validated in
future studies using a larger cohort that should span across age groups. Indeed, due to the
restricted number of participants and limited age range, other factors such as the influence
of age on mean sip volume could not be observed. Furthermore, while the classification
results shown in this study were promising, there is a need to verify if the performance
will remain optimal when including different liquid viscosities and other non-liquid events,
such as talking and the ingestion of solid food.

5. Conclusions

The results obtained in this study hint at the potential of surface EMGs not only to
differentiate between liquid and non-liquid swallows but also to estimate fluid intake using
an optimum set of features. While further research is needed to cater for the limitations
presented in this study, our findings could represent a way forward to produce a non-
invasive device that could prevent dehydration in older adults and improve the quality of
care in healthcare settings.
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Abstract: Swallowing is a complex sequence of highly regulated and coordinated skeletal and smooth
muscle activity. Previous studies have attempted to determine the temporal relationship between
the muscles to establish the activation sequence pattern, assessing functional muscle coordination
with cross-correlation or coherence, which is seriously impaired by volume conduction. In the
present work, we used conditional Granger causality from surface electromyography signals to
analyse the directed functional coordination between different swallowing muscles in both healthy
and dysphagic subjects ingesting saliva, water, and yoghurt boluses. In healthy individuals, both
bilateral and ipsilateral muscles showed higher coupling strength than contralateral muscles. We also
found a dominant downward direction in ipsilateral supra and infrahyoid muscles. In dysphagic
subjects, we found a significantly higher right-to-left infrahyoid, right ipsilateral infra-to-suprahyoid,
and left ipsilateral supra-to-infrahyoid interactions, in addition to significant differences in the
left ipsilateral muscles between bolus types. Our results suggest that the functional coordination
analysis of swallowing muscles contains relevant information on the swallowing process and possible
dysfunctions associated with dysphagia, indicating that it could potentially be used to assess the
progress of the disease or the effectiveness of rehabilitation therapies.

Keywords: surface electromyography; Granger causality; functional coordination; dysphagia;
swallowing muscle coupling

1. Introduction

A complete swallow requires a complex sequence of highly regulated and coordinated
oral and pharyngeal events for the safe passage of a bolus into the oesophagus without
compromising the airway [1]. Dysphagia is an inability to swallow foods or liquids properly
that affects 9.4 million adults every year (1 in 25) in the United States [2]. The prevalence of
dysphagia ranges between 12–13% in hospitalized patients, but rises to 30% in the elderly
and to 60% in intensive care unit and home-care patients [3–6]. Dysphagia is usually caused
by another condition, such as aging, neurological diseases, neuromuscular impairment,
head and neck cancers, and gastro-oesophageal reflux disease, among others. Dysphagia
can produce malnutrition, dehydration, aspiration, pneumonia, and even death, as well
as a reduced quality of life, social isolation, and healthcare-related costs [6–8]. The mean
attributable cost of dysphagia is about USD 12,715, 40.36% more than nondysphagic
hospitalized patients [9]. Patel estimated that dysphagia was responsible for between
USD 4.3 to 7.1 billion in additional hospital costs annually in the US [8].
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A videofluoroscopic swallowing study is the reference diagnostic method for assessing
oropharyngeal dysphagia [10]. This technique involves patient exposure to ionizing radia-
tion [10], so it is not recommended for patient follow-up when evaluating the effectiveness
of rehabilitation, although it does not always identify neuromuscular abnormalities in
pharyngeal or laryngeal physiology [10]. An example of the latter could be patients with
muscle tension dysphagia who present functional dysphagia but exhibit normal oropha-
ryngeal and oesophageal swallowing function, as evidenced by videofluoroscopic swallow
study [11,12]. Surface electromyography (sEMG) has emerged as a simple, nonradioactive,
and noninvasive method of measuring the patterns of muscle activity during swallowing
and allows clinicians to describe the physiology of swallowing behaviour [13]. sEMG is the
extracellular recording of the electrical activity of muscle fibres on the skin surface, which
reflects the electrophysiological muscle response to nerve stimulation. Most swallowing-
related studies have used sparse sEMG electrodes to sense the activity and have extracted
electrophysiological information from face and neck muscles, e.g., from the masseteric,
submental (suprahyoid), and infrahyoid regions [14–20]. Unlike classical temporal and
spectral parameters from a single sEMG channel, sEMG signal characterization cannot
precisely characterize the complete swallowing process.

A complete swallowing process in an adult human is an autonomous motor behaviour
requiring not only the coordination of 26 muscles and 5 cranial nerves, but also coordination
with mastication and respiration [21]. According to Bernstein’s motor control theory and co-
ordination dynamics theory, motor behaviour involves the coupling of different physiologic
structures, such as muscles, in task-specific control units known as synergies [22]. In most
motor control synergies, a common neurologic activation pattern associated with a specific
task objective is responsible for providing temporary flexible couplings between muscle
systems [22]. As a high-level neuromuscular synergy driven by the skeletal muscles and
smooth muscles of the pharynx and oesophagus is required in swallowing to successfully
execute the swallowing sequences [23,24], the coordination of different swallowing mus-
cles, also known as muscle coupling, exhibits the hallmark characteristics of motor control
synergy. This coordination is likely to be altered in dysphagic subjects, and its analysis can,
thus, provide new indicators for its early detection or for the quantitative evaluation of
rehabilitation therapies.

Several previous works have studied the coordination of swallowing muscles us-
ing different approaches. Most have analysed the activation sequences and coordination
patterns of the different muscles involved in swallowing using sparse electrode pairs:
suprahyoid [25]; oral and laryngeal [26]; and laryngeal, pharyngeal, and submental [16,27].
The analysis of sequence activation has usually been performed by detecting the fiducial
point of muscle activation, such as the onset and offset timing, from rectified and integrated
sEMGs [15,17,27] to determine the temporal relationship between the muscles and to estab-
lish the activation sequence pattern. Using the sEMGs from 15 electrodes in the face and
throat, McKeown et al. successfully detected the swallowing pattern by separating laryn-
geal excursion, tongue movement, and activation of the buccal and masseteric musculature
using independent component analysis [28]. Zhu et al. showed the feasibility of obtaining
sequential sEMG energy maps from a 2D high-density electrode array on the submental
and infrahyoid muscles to analyse spatiotemporal properties during swallowing [1]. They
found that the sEMG potential maps constructed from a sliding window mainly reflected
the submental and infrahyoid muscles associated with the high intensity on the top and in
the centre of the maps, respectively [1]. Dysphagic subjects were shown to present a signifi-
cantly higher prevalence of inverted muscle activation patterns, i.e., infrahyoid-related was
followed by suprahyoid-related activation [15].

Few studies in the literature have been conducted to assess the functional relationship
or coordination between swallowing muscles with sEMG. Our previous work assessed
the crosstalk and synchronization properties of sEMGs from swallowing muscles based
on cross-correlation [14]. We found the correlation of bilateral suprahyoid muscles to be
moderate and slightly higher than that of bilateral infrahyoid muscles [14]. Wang et al.
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proposed a discoordination index based on cross-correlation coefficients that reflected the
differences between the surface EMG patterns of bilateral muscle groups [13]. Lee et al.
found that suprahyoid muscle activity showed a significant positive correlation with
infrahyoid activity [29]. Covariance was also proposed to examine patterns of functional in-
dependence for tongue muscles during speech and swallowing [30]. Steele et al. found that
sequential liquid swallowing was associated with increased frequency entrainment through
cross-spectral coherence analysis and reduced relative phase variability in tongue–jaw co-
ordination [22]. The EMG–EMG transfer function and coherence function in the first peak
frequency were used to assess jaw and neck muscle coordination in rhythmic chewing [31].
The authors found that the coherence and phase in nonchewing, side-neck muscle activities
exhibited a significant negative correlation [31].

The correlation coefficient, or lagged correlation, measures the linear relationship in
a time domain between two time series [32]. Frequency entrainment [22] and transfer
function [31] estimates from cross-spectra or coherence are traditional measures of linear
correlations in the frequency domain [32]. These measures are seriously affected by instan-
taneous interactions or coupling associated with volume conduction, as it is challenging
to differentiate them from true interactions [32]. They provide information only on the
interchannel interaction strength, not on the directionality of the interaction [32], which is a
relevant physiological characteristic of swallowing. Granger causality (G-causality) has
been widely used to determine brain functional connectivity to identify regional activa-
tions and to characterize functional circuits from functional magnetic resonance imaging,
electroencephalography, and magnetoencephalography [33–36]. Based on the hypothesis
that causes precede and help to predict effects and that manipulations of the cause change
the effects [37], G-causality provides a statistical measurement of functional interaction
strength based on the relative prediction improvement to identify linear directional in-
terdependence between multivariate time series [32,36]. This is a data-driven approach
that estimates the causal statistical influences without the need for physical intervention
that is able to quantify the directional flow of information [33]. The analysis of muscular
interactions, including both strength and directionality, can potentially provide a better
understanding of the underlying physiology of swallowing and the possible alterations in
dysphagic subjects.

This work thus aims to assess functional muscular interactions during swallowing in
healthy individuals and the possible changes in dysphagic subjects by analysing the G-causality
of their sEMGs. For this, we characterize and compare both the directionality and the coupling
strength of multiple swallowing muscles with different bolus consistencies.

2. Materials and Methods

2.1. Data Acquisition

The database was composed of sEMG recordings from 30 healthy volunteers (17 males
and 13 females with average ages of 42.2 ± 15.5 and 46.5 ± 17.6 years old, respectively) and
31 subjects with dysphagia (19 males and 12 females with average ages of 42.4 ± 17.1 and
48.7 ± 13.2 years old, respectively). The volunteers signed an informed consent approved
by the Ethics Committee of the Instituto Tecnológico Metropolitano (Medellín, Colombia).
All the patients included in the study had confirmed diagnoses of functional oropharyngeal
dysphagia due to neurogenic causes (multiple sclerosis: 7; amyotrophic lateral sclerosis:
6; cerebral palsy: 4; muscular dystrophy: 4; ischemic stroke: 3; Parkinson’s disease: 3;
traumatic brain injury: 3; and secondary hydrocephalus (neurocysticercosis: 1)).

To reduce skin-electrode impedance, we first shaved the skin under the electrodes as
required and then exfoliated with abrasion gel (Nuprep, Weaver and Company, Aurora,
CO, USA) before cleaning the recording surface with isopropyl alcohol. Bipolar sEMG
activity was recorded from the following three bilateral muscle groups involved in the oral
and pharyngeal swallowing phases using 6 pairs of disposable Ag/AgCl electrodes (3M
electrodes Ref. 2228; inter-electrode distance of 25 mm): the left and right masseters (LM
and RM), the left and right suprahyoid (LSH and RSH), and the left and right infrahyoid
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(LIH and RIH). Figure 1 shows the electrode placement for multichannel sEMG acquisition.
A Noraxon Ultium EMG amplifier (Noraxon USA; CMMR > 100 dB, 16 bits A/D converter)
was used for signal collection and conditioning. The bipolar sEMG signals were amplified
and band-pass filtered within 10 and 500 Hz and were sampled at 2 kHz.

Figure 1. Electrode placement configuration for acquisition of multichannel sEMG signals. RM and
LM: right and left masseter, respectively; RSH and LSH: right and left suprahyoid, respectively; RIH
and LIH: right and left infrahyoid, respectively.

The recording protocol consisted of three swallowing tasks commonly used in dys-
phagia screening [38,39]: saliva, 10 mL of water, and 10 mL of liquid yoghurt. A 1.5 oz cup
was used to deliver water and yoghurt to the oral cavity. The subjects were seated in an
upright position and asked to swallow the bolus as naturally as possible.

2.2. Conditional Granger Causality

Conditional Granger causality (cG-causality) is defined as the degree to which the
past of target Y helps to predict source X beyond the degree to which X is already predicted
by its own past and the past of the conditioning variable Z [40]. cG-causality can be used
to detect real interactions between different muscles, avoiding false causality due to their
underlying ‘hidden’ interactions [40]. Based on vector autoregressive model theory, we
considered the full (see Equation (1)) and reduced (Equation (2)) regressions of X, including
the conditioning variable Z in both regressions:

Xt =
p

∑
k=1

AXX,k·Xt−k+
p

∑
k=1

AXY,k·Yt−k +
p

∑
k=1

AXZ,k·Zt−k + εX,t (1)

Xt =
p

∑
k=1

A′
XX,k·Xt−k+

p

∑
k=1

A′
XZ,k·Zt−k + ε′X,t (2)

where p is the vector autoregressive model order, the coefficients AXX,k represent the
autodependence of X on its own past, and AXY,k and AXZ,k are the coefficients of the
dependence of X on the past of Y and on the past of the conditioning variable Z, respectively.
εX,t are the model regression residuals with the covariance matrix ΣXX ≡ cov(εX,t).A′

XX,k,
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A′
XZ,k are the corresponding reduced regression coefficients, and ε′X,t are the residual

covariance matrices of the reduced regression Σ′
XX ≡ cov(ε′X,t).

cG-causality from Y to X FY→X|Z is, thus, defined as the log-likelihood ratio of the
determinant of the residual covariance matrix taking into account the joint effects of Z (see
Equation (3)). cG-causality attempts to quantify the degree to which the full regression
represents a “better” model of the data than the reduced regression.

FY→X|Z ≡ |Σ′
XX |

|ΣXX | (3)

We used pairwise-conditional G-causality [40] of the multichannel EMG data G i,j(EMG),
which determines the causality EMGj–EMGi (from muscle j to i) conditioning out all the known
remaining data (see Equation (4)):

G i,j(EMG) ≡ FEMGj→EMGi |EMG[ij]
(4)

where the subscript [ij] denotes omission of the ith and jth variables in the multivariate EMG
data. Details of the algorithm can be found in the original work by Barnett [40].

The optimal order of the vector autoregresssive model to achieve a compromise
between the model’s precision and complexity was determined with the Akaike information
criterion [40].

2.3. Data Analysis

As mentioned above, for a number of reasons we preferred to analyse the interactions
between different swallowing muscles with pairwise cG-causality using sliding windows
of a fixed length rather than the whole recording or contraction epochs. Firstly, there is
no reliable tool for the automatic identification of the onset and offset of the contraction
epoch in sEMG, which remains a challenge for the scientific technical community. Secondly,
swallowing EMG data may present a nonstationary nature, such as EMGs from other
muscles [41], which fails in the assumption of cG-causality on the covariance stationary
stochastic process [40]. Both the contraction epoch and the whole EMG recording have
a variable duration, which could influence the Granger causal inference analysis [42].
The sliding window length was set to 0.5 s with no overlap based on the timing values of
the pharyngeal swallowing phase [38,43]. This selection was experimentally confirmed
through comparison with a 1s window, for which the average percentage (see details
below) of the cG-causality value did not show consistent trends between healthy and
dysphagic subjects.

For each subject, bolus, and muscle pair, we obtained an array of cG-causality values as
the results of the sliding window. Since swallowing muscles are expected to present higher
interactions during contraction than in basal activity (at rest), we considered the maximum
cG-causality value of each interaction pair as their interaction during swallowing-muscle
contraction, obtaining maximum interaction matrix—MIM—(see Figure 2), so that one
6 × 6 MIM was obtained per subject in which each row and column represented one
acquisition channel.

We then sought to determine the relevant interaction pairs for each subject by dis-
carding interactions with weak coupling strengths, i.e., below a threshold of 25% of the
maximum value of each subject’s MIM (MIMmax) or the threshold interaction matrix. For
each interaction pair, we evaluated the percentage of subjects that exceeded this threshold
for each bolus. The average percentage of the three boluses (average percentage matrix)
was then used to compare the occurrence of a relevant interaction between different pairs of
muscle groups, after which the mean value of the average percentage matrix was computed
for the bilateral, ipsilateral, and contralateral muscles of healthy and dysphagic subjects.
For the value of the threshold used, we aimed to achieve a trade-off between the sensitivity
of detecting relevant interactions by a physiological interpretation and obtaining ‘spuri-
ous’ interactions. True interactions associated with swallowing should be reproducible in

19



Sensors 2022, 22, 4513

almost all healthy subjects, achieving approximately 100% of the subjects that exceeded
this threshold. In addition, some of these interactions may be altered in dysphagic subjects.
Specifically, in this work, we compared different threshold values, ranging from 10–40%,
and obtained similar results for threshold ranges of from 20 to 30%.

Figure 2. Flowchart of relevant interaction pairs with relatively high coupling strengths.

The cG-causality difference between healthy and dysphagic subjects was assessed
using the raw MIM, which represented muscle interaction during swallowing. Firstly,
cG-causality values of healthy and dysphagic subjects were compared for each bolus type
and muscle pair using the Wilcoxon rank-sum statistical test (α = 0.05). Secondly, we
analysed the bolus effect on cG-causality for each interaction pair using the Friedman test
(α = 0.05) for both types of subjects. Finally, we evaluated the interaction asymmetry of
each muscle pair (from i to j muscles vs. from j to i muscles) using the Wilcoxon signed-rank
test (α = 0.05) for both subject types.

3. Results

3.1. Assessment of Muscle Interactions

Table 1 shows the average percentage of subjects that exceeded the pre-established
threshold of MIMmax for the three boluses with each muscle-pair interaction. Bilateral
suprahyoid (RSH↔LSH) and infrahyoid (RIH↔LIH) muscles, in general, reacted closely
with each other, with high occurrence between patients. The percentage of subjects who
exceeded the pre-established threshold was greater than 90%, while the bilateral masseter
muscle interaction (RM↔LM) was relevant in a smaller percentage of subjects (70–80%). As
expected, regardless of the muscle groups, the bilateral muscles in healthy subjects seemed
to activate simultaneously, retrieving a similar average percentage in both directions.
Dysphagic subjects obtained a similar average percentage for bilateral muscle interactions.
We also found consistent interactions among subjects for ipsilateral suprahyoid-infrahyoid
muscles (RSH↔RIH and LSH↔LIH), with 88% of the healthy subjects exceeding the
threshold. The ipsilateral couplings between masseter and suprahyoid (RM↔RSH and
LM↔LSH) or infrahyoid (RM↔RIH and LM↔LIH) muscles were moderately consistent
between healthy subjects, with over 76% of the individuals exceeding the threshold. In
dysphagic subjects, the consistency of the average ipsilateral interaction was considerably
reduced (87% healthy vs. 78% dysphagia). The greatest differences between healthy and
dysphagic subjects occurred in the left ipsilateral interactions: LSH→LM (94% vs. 69%)
and LIH→LM (90% vs. 72%). We found that the contralateral interaction was relatively
weaker (68% healthy vs. 64% dysphagia). As the bilateral and ipsilateral muscles presented
higher consistencies of relevant interactions than contralateral muscles in both healthy
and dysphagic subjects, in the succeeding sections we, therefore, focus on the bilateral
interactions and ipsilateral masseter–suprahyoid and suprahyoid–infrahyoid interactions
due to their sequential activations under physiological conditions.
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Table 1. Average percentages of healthy/dysphagic subjects that exceeded the pre-established
threshold for each interaction muscle pair. Bilateral, ipsilateral, and contralateral muscles are shaded
in grey, green, and blue respectively. The overall average percentages of bilateral, ipsilateral, and
contralateral muscle interactions are shown at the bottom of the table. Percentages above 85% are
shown in bold.

From

RM LM RSH LSH RIH LIH

To

RM 78%|79% 85%|79% 66%|57% 84%|75% 65%|53%
LM 72%|77% 73%|63% 94%|69% 59%|70% 90%|72%
RSH 83%|68% 67%|63% 100%|97% 88%|96% 71%|58%
LSH 67%|62% 76%|75% 100%|91% 69%|63% 92%|85%

RIH 78%|63% 68%|65% 96%|92% 74%|75% 98%|95%

LIH 57%|55% 82%|74% 82%|78% 94%|95% 98%|97%

Average Bilateral 91%|89% Ipsilateral 87%|78% Contralateral 68%|64%

Figure 3 shows the cG-causality for bilateral muscles in healthy and dysphagic subjects
for the three boluses. Next, we describe the difference between healthy and dysphagic
subjects, the effect of bolus consistency, and the interaction symmetry for each pair of
muscles. The results of the statistical analysis are described in Section 3.2.

→ → → → → →

→ → → → → →

→ → → → → →

Figure 3. Box-and-whisker plot of the cG-causality values for bilateral muscles in healthy and dys-
phagic subjects for saliva, water, and yoghurt boluses. (A) Masseter, (B) suprahyoid, (C) infrahyoid.
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Bilateral Masseter. Dysphagic subjects showed increased cG-causality in bilateral
masseters for saliva and water boluses when compared to healthy subjects with little
difference in yoghurt. We found a higher coupling strength of the RM→LM interaction
for water and yoghurt than for saliva in the healthy group, but not in dysphagic subjects.
The bilateral masseter cG-causality in both directions was similar for both healthy and
dysphagic subjects, except for with saliva in the first group.

Bilateral suprahyoid. These muscle interactions tended to decrease more in dysphagic
than in healthy subjects. We did not find a clear bolus effect of cG-causality in healthy
subjects, while it tended to be higher for water and yoghurt than for saliva in dysphagic
subjects. Again, bilateral suprahyoid cG-causality was similar in both directions, except for
yoghurt in healthy subjects.

Bilateral infrahyoid. Dysphagic subjects, in general, obtained higher medians of cG-
causality than healthy subjects. We found higher medians of cG-causality in the RIH→LIH
interaction for the water and yoghurt boluses than for the saliva bolus in healthy subjects.
The LIH→RIH interaction showed higher cG-causality for water and yoghurt than for saliva
in both subject groups, being more evident in dysphagics. Bilateral infrahyoid muscles
showed similar cG-causality in both directions in healthy subjects, while dysphagic subjects
had an asymmetric interaction.

Figure 4 gives the cG-causality of ipsilateral muscles in healthy and dysphagic subjects
for the three boluses. The results obtained from each muscle pair is again described,
differentiating between healthy and dysphagic subjects, bolus consistencies, and the
interaction symmetry.

→ → → → → →→ → → → → →

→ → → → → → → → → → → →

Figure 4. Box-and-whisker plot of the cG-causality for ipsilateral muscle interactions in healthy
and dysphagic subjects for saliva, water, and yoghurt boluses. (A) LM↔LSH, (B) LM↔LSH,
(C) LSH↔LIH, and (D) RSH↔RIH.

Ipsilateral masseter↔ suprahyoid. Dysphagic subjects usually obtained slightly higher
than or similar cG-causalities to healthy individuals, with no clear trend. We also found
an upward trend in cG-causality from saliva to yoghurt for healthy subjects, while this
trend was only apparent in LM→LSH for dysphagic subjects. In healthy subjects, the
masseter↔suprahyoid muscle interaction seemed to be symmetric. In general, we found
an asymmetric masseter→suprahyoid interaction, except for with the yoghurt bolus
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on the right side in dysphagic subjects, while the upward direction tended to achieve
greater cG-causality.

Ipsilateral suprahyoid↔infrahyoid. Dysphagic subjects generally obtained similar or
slightly lower cG-causalities in the downward direction than healthy subjects, while dys-
phagic subjects tended to obtain higher cG-causality values than healthy subjects in the
upward direction, especially in RIH→RSH for both saliva and yoghurt. We found an up-
ward trend in cG-causality from saliva to yoghurt in healthy subjects, except for RIH→RSH,
but not in dysphagic subjects. We also found a predominantly downward interaction for
both left and right suprahyoid→infrahyoid muscles in healthy subjects, which matched
with the direction of swallowing. In dysphagic subjects, this predominance was notably
only observed in the LSH→LIH interaction.

3.2. Statistical Analysis

Figures 5–7 illustrate the muscle interactions with statistically significant differences
between healthy and dysphagic subjects, between boluses, and between directions, re-
spectively. Statistically significant differences were found between healthy and dysphagic
subjects for the RIH→LIH bilateral interaction for saliva (Figure 5A), as well as for the
ipsilateral interactions of RIH→RSH and LSH→LIH, also for saliva (Figure 5A), and for
RIH→RSH for yoghurt (Figure 5C). Despite weaker contralateral vertical interactions, we
found statistically significant differences for RIH→LM in water and yoghurt and for ↔ in
yoghurt. The greatest significant differences between healthy and dysphagic subjects were,
notably, obtained with yoghurt.

Figure 5. Schematic representations of statistically significant differences in the cG-causality of inter-
action pairs between healthy and dysphagic subjects for saliva (A), water (B), and yoghurt (C). Signif-
icantly higher and lower interactions in dysphagic subjects are shown in red and blue, respectively.

Figure 6. Diagrams with statistically significant differences in the cG-causality of interaction pairs
between the different boluses in healthy (A) and dysphagic subjects (B).
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Figure 7. Diagrams with statistically significant differences in the cG-causality of the directionality of
interaction pairs (asymmetry) for saliva (A), water (B), and yoghurt (C). Green and red arrows show
healthy and dysphagic subjects, respectively. The continuous lines show the dominant direction.

No significant differences were found between the boluses for healthy subjects (Figure 6A).
In dysphagic subjects, statistically significant differences between the boluses were
found in the bilateral infrahyoid interaction LIH→RIH, the left ipsilateral vertical
interactions of LM→LSH and LSH→LIH, and the contralateral vertical interaction of
RIH→LM (Figure 6B).

For muscle interaction directionality, we found significant asymmetric interactions
with a downward-dominant direction in healthy subjects for the RSH↔RIH interaction
for yoghurt and in the LSH↔LIH interactions for water and yoghurt (Figure 7B,C). In
dysphagic subjects, the asymmetric muscle interactions only appeared in the bilateral
infrahyoid muscle interaction and ipsilateral LSH↔LIH for saliva (Figure 7A).

4. Discussion

4.1. Relevant Muscle Interactions during Swallowing

In this work, we evaluated the functional coordination of three muscle groups involved
in swallowing, i.e., masseters, suprahyoid, and infrahyoid. To the best of the authors’ knowl-
edge, this is the first exploratory work to study the directed functional coordination of
swallowing muscles by means of cG-causality, which is less-influenced by the volume con-
duction effect than simple correlation or coherence-based approaches [32,44]. Regardless
of subject group and bolus type, we found both bilateral and ipsilateral suprahyoid and
infrahyoid muscle activities to be strongly coupled, while the interactions of the bilateral
masseter, the ipsilateral masseter, and the suprahyoid muscles were weaker. The high
degree of supra- and infrahyoid coupling agrees with other authors who found a significant
positive correlation between these muscles [29]. We mostly found a high level of bilateral
suprahyoid rather than bilateral infrahyoid coupling in healthy subjects, which agrees
with our previous study in assessing the functional coordination by cross-correlation [14].
The lower interactions for bilateral masseter muscles may be associated with their being
voluntary movements. Only swallowing tasks that involved more supra- and infrahyoid
activation than masseteric were assessed, since no chewing was required. In general, we
found a high overall occurrence of relevant interactions (high average percentage, see
Table 1) of supra- and infrahyoid muscles under physiological conditions, which is con-
sistent with the electrophysiology of swallowing [45]. We also found a predominantly
downward direction in ipsilateral supra- and infrahyoid muscles, which matches with the
transit of the physiological-descendent bolus. Under physiological conditions, the suprahy-
oid were activated 95 ms earlier than the infrahyoid muscles [46]. This may justify the
relatively higher cG-causality value of suprahyoid-to-infrahyoid interaction (improved pre-
dictability of infrahyoid EMG activity with the known EMG activity from the suprahyoid
muscle) than the value for infrahyoid-to-suprahyoid interaction. In addition, we found that
the overall occurrence of ipsilateral interactions was considerably reduced in dysphagic
subjects. The reduced strength of the swallowing interaction coupling could be associated
with the alteration of stereotyped motor behaviours and could also be a potential dysphagia
biomarker [47].
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4.2. Alterations of Muscle Interactions in Dysphagia

We did not find significant differences in functional coordination between the bilateral
masseters, ipsilateral masseters, and suprahyoid muscles in either healthy or dysphagic
subjects. Our results suggested that the main alterations in dysphagic subjects are mainly
found in the supra- and infrahyoid muscles. This finding may be associated with the fact
that the primary function of the masseter muscles is to raise the jaw when chewing and to
act as mandibular stabilizers during swallowing [48]. In this regard, Zanato et al. showed
that swallowing water demanded a greater activation of the suprahyoid than the masseter
muscles compared to the values at rest (9.57 μV compared to 3.81 μV and 6.15 μV compared
to 3.47 μV, respectively) [49]. Monaco et al. found that masseter muscles showed lower
rectified sEMG values than submental groups during spontaneous saliva swallowing, even
when activated [50].

Our preliminary results showed a significantly increased interaction in RIH→RSH
for both saliva and yoghurt, in RIH→LIH and LSH→LIH for saliva, and in RIH↔LSH
for yoghurt in dysphagic subjects, suggesting an altered sequence of the supra- and in-
frahyoid activation pattern. These findings are consistent with those available in the
literature. Koyama et al. found a significantly higher prevalence of inverted muscle activa-
tion patterns in dysphagic subjects, with the activation of infrahyoid muscles preceding
the suprahyoid muscles [15]. Pre-onset muscle activation is a protective mechanism to
prevent neuromuscular degeneration leading to kinematic and functional loss [51] and
gives rise to prolonged swallowing times, which has been widely described in dysphagic
subjects [52–54]. In fact, the appearance of swallowing with a pre-reflex phase of muscle
activation was reported as a compensatory mechanism to adjust for age-related muscle
weakness [51]. Koyama et al. found prolonged activation of infrahyoid muscles and shorter
activity of suprahyoid muscles in dysphagic subjects, suggesting important changes in
the timing of the initiation of swallowing-muscle activity [15]. This phenomenon may be
caused by the forceful swallowing secondary to the lack of coordination of the swallow-
ing muscles, which increases muscle activity amplitude [15]. Consequently, the previous
activation of the infrahyoid muscle may be the origin of the significantly increased inter-
action strength in RIH→RSH, producing a loss in the physiological downward-dominant
directional RSH→RIH in dysphagic subjects. The symmetry in the RSH↔RIH interaction
directionality may, thus, constitute a new dysphagia biomarker.

The different patterns found in RSH→RIH and LSH→LIH in dysphagic subjects may
well be associated with the right hemispheric lateralization of the pharyngeal phase. This
phenomenon was reported by other authors, who found a reduction in cortical swallowing-
related activation in amyotrophic lateral sclerosis patients with progressive dysphagia in
comparison to healthy controls, the right sensorimotor cortex being predominant [55]. This
right hemispheric lateralization may be associated with the compensatory mechanism to
coordinate the pharyngeal phase of swallowing thanks to brain plasticity [55]. The right
hemispheric lateralization may also give rise to a delayed activation of LIH with respect to
RIH, obtaining a significantly increased RIH→LIH interaction in dysphagic subjects, but
not for LIH→RIH. The delayed triggering of the swallowing reflex for voluntarily initiated
swallowing has also been observed in both amyotrophic lateral sclerosis patients and in
dysphagia for suprabulbar palsy [56,57]. In the latter, when reflex swallowing could be
triggered, it was slow and prolonged [57]. Our results suggest that the loss of symmetrical
interaction of the bilateral infrahyoid muscles could be another dysphagia biomarker,
which agrees with other authors who found that the bilateral muscle discoordination index
was significantly greater in dysphagic than in healthy subjects [13]. Krasnodębska et al.
also reported that patients with atypical swallowing patterns had significantly greater
asymmetry of both the masseter and submental muscles [58].

Previous studies have shown that increasing the bolus consistency in healthy sub-
jects prolonged the duration of oral and pharyngeal swallowing [59–61] as well as dis-
crete and sequential swallowing [62]. Numerous studies have shown that highly viscous
liquids significantly increase the duration of the supra- and some infra-hyoid muscle
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activations [51,59,63,64]. In comparison to swallowing saliva, the highest sEMG ampli-
tude of the supra and infrahyoid muscles was obtained in healthy subjects swallowing
10 mL water and yoghurt [14], suggesting greater muscle recruitment. It was less safe
for dysphagic patients to swallow thin liquids rather than thicker ones [65]. In this work,
we also found that cG-causality was slightly higher for water and yoghurt than for saliva
with no significant difference between them in healthy subjects, who seemed to have a
good ability to fine-tune the activation pattern according to the type of bolus ingested,
namely swallowing reserve [66], leading to similar interaction strengths among the boluses.
The swallowing reserve decline due to neurological and neuromuscular diseases, muscle
weakness caused by aging, and positional changes of swallowing-related organs [66]. This
could explain the difference in the functional interactions among the boluses observed in
dysphagic subjects. Generally, a decline in the swallowing reserve may cause a descent in
the positions of the hyoid bone and larynx, a reduced antero-superior movement range for
the hyoid bone and larynx elevation, larynx elevation delay, and a delay in the stimulation
of the swallowing reflex [66]. The right hemispheric lateralization may also justify the
preservation of the right-side muscle swallowing reserve while losing it in the left mus-
cle group [55], which could explain the significant differences among the boluses in the
LM→LSH and LSH→LIH interactions in dysphagic subjects.

4.3. Study Limitations

Despite its promising results, this study was not completely exempt from limitations.
Firstly, significant differences in the interactions between the healthy and dysphagic sub-
jects, as well as asymmetric interactions, were not consistent for all the boluses. Although
the differences in bolus properties could yield inherently different swallowing responses,
this finding may also be related to the limited sample size and the high intersubject vari-
ability due to population variance and intrasubject variability. The latter could have been
affected by diverse biological factors, such as muscle fatigue, the volume of salivary se-
cretions (which may vary according to the volume of liquid swallowed), the time interval
between swallows, the number of trials, and the sequence of the food intake [46,67]. In
addition, it was reported that dysphagic subjects may show significantly higher intra-
subject variability between repetitions [68]. In this work, we only acquired sEMG data
for a single swallow of each bolus. Repeated swallowing of these would provide a more
robust characterization of the activation pattern of the muscles involved and would reduce
intrasubject variability [46]. Future studies with repeated swallowing are still needed
to corroborate our preliminary results. In addition, due to the limited sample size, we
did not conduct the study by means of dysphagia aetiology to determine the difference
in functional coordination between the subjects. Secondly, although cG-causality was
originally formulated for linear stationary stochastic processes, sEMG has a nonstationary
nature, which was the reason why we carried out the sliding window analysis. Finally,
it should be noted that a multimodal analysis using electroencephalography and sEMG
would provide a better understanding of the underlying electrophysiological mechanisms
involved in swallowing, since the latter requires both voluntary and automatic control
involving multiple brain regions [21].

5. Conclusions

In this work, we conducted a preliminary study on the utility of assessing the directed
functional coordination between the masseter, supra-, and infrahyoid muscles during
swallowing to detect possible alterations in functional coordination. We determined the
physiological functional coordination pattern in normal swallowing (bilateral and ipsi-
lateral supra- and infrahyoid-related activity) to be highly coupled. We also found a
dominantly downward direction of the ipsilateral supra- and infrahyoid muscles in healthy
subjects, which matches with the electrophysiology of swallowing, while the bilateral
interactions were symmetric with no significant differences.
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The main alterations in dysphagic subjects were found in the supra- and infrahy-
oid muscles, with no significant differences in the bilateral masseter and ipsilateral
masseter↔suprahyoid muscle interactions. Specifically, we found that the right-to-left
infrahyoid interaction was significantly higher in dysphagic subjects, suggesting that
the loss in symmetry interaction of the bilateral infrahyoid could be potentially used as
a dysphagia biomarker. We also found different pattern changes in dysphagic subjects
in the left and right supra- and infrahyoid muscle interactions, with the right side
being more resistant to a swallowing decline.

The loss in the asymmetric downward direction of the ipsilateral supra- and in-
frahyoid muscles could also be another dysphagia biomarker. Unlike healthy subjects,
dysphagic subjects showed significant differences in the left masseter–suprahyoid, left
suprahyoid–infrahyoid, left-to-right infrahyoid, and right infrahyoid–left masseter interac-
tions, depending on the bolus consistency.

Our preliminary results suggested that the functional coordination analysis of swal-
lowing muscles provided relevant information for evaluating motor control synergy and
paved the way towards the identification of new, robust biomarkers for the early detec-
tion of dysphagia. Our method potentially contributed to developing a noninvasive and
objective screening method for the early detection of swallowing dysfunction related to
altered functional coordination that is not detectable by a videofluoroscopia swallowing
study and could, therefore, be used to quantitatively assess the progress of dysphagia and
the effectiveness of rehabilitation therapies.
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Abstract: Electromyographic signals have been used with low-degree-of-freedom prostheses, and
recently with multifunctional prostheses. Currently, they are also being used as inputs in the human–
computer interface that controls interaction through hand gestures. Although there is a gap between
academic publications on the control of an upper-limb prosthesis developed in laboratories and its
service in the natural environment, there are attempts to achieve easier control using multiple muscle
signals. This work contributes to this, using a database and biomechanical simulation software, both
open access, to seek simplicity in the classifiers, anticipating their implementation in microcontrollers
and their execution in real time. Fifteen predefined finger movements of the hand were identified
using classic classifiers such as Bayes, linear and quadratic discriminant analysis. The idealized
movements of the database were modeled with Opensim for visualization. Combinations of two
preprocessing methods—the forward sequential selection method and the feature normalization
method—were evaluated to increase the efficiency of these classifiers. The statistical methods of cross-
validation, analysis of variance (ANOVA) and Duncan were used to validate the results. Furthermore,
the classifier with the best recognition result was redesigned into a new feature space using the
sparse matrix algorithm to improve it, and to determine which features can be eliminated without
degrading the classification. The classifiers yielded promising results—the quadratic discriminant
being the best, achieving an average recognition rate for each individual considered of 96.16%, and
with 78.36% for the total sample group of the eight subjects, in an independent test dataset. The study
ends with the visual analysis under Opensim of the classified movements, in which the usefulness
of this simulation tool is appreciated by revealing the muscular participation, which can be useful
during the design of a multifunctional prosthesis.

Keywords: electromyography; classification model; biomechanical simulation

1. Introduction

Research in prosthetic hand control applications most often involves the decoupling
of the surface electromyography (sEMG) signal to decipher the natural regulation. Interpre-
tation of the sEMG signals is an active area of research. One objective is to achieve efficient
control of prostheses, similar to the natural movements of the body. Within these research
publications, one can find studies searching for the ideal place for the electrodes in the
muscular region of interest [1–4]; studies focused on the importance of the type, size, shape
and material of the electrode to be used [5–9]; studies using data mining to find features in
the raw sEMG signals to achieve their decoding [10–12]; and studies evaluating the imple-
mentation to detect the target movements [13–15], aiming to implement the processing in
systems embedded in microcontrollers.
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Prosthetic electronic devices increasingly have more degrees of complexity; however,
it is reported that, within these devices, 60% have 1 to 4 degrees of freedom (DoFs), 30%
have 5 to 10 DoFs and only 10% have more than 10 DoFs [16]. A DoF within a prosthetic
device should be understood as the motion in one direction of the possible movements
of a natural joint. Devices and applications evolve into more complex systems; therefore,
control systems with a greater number of functionalities are necessary, but they must be
intuitive for human control, which is possible with machine learning techniques [15]. A
considerable number of investigations work with machine learning for the classification
and interpretation of EMG signals [17–20]; however, there is still no model that is applicable
in complex systems and outside of controlled environments in laboratories. In our inves-
tigations regarding the decoding of the sEMG signal, we found the use of deep learning
can be used as a method to improve classic classifiers but demands a large amount of data
through many layers of processing [18], the reduction in dimensionality through specific
methods [19] allows the selection of a smaller number of features with higher information
quality, and the use of time–frequency features [20] allows extracting information hidden
in the raw EMG signal and the transfer to new spaces to extract relevant information.
Even though diverse research approaches and applications are emerging in the state of
the art, such as the mathematically intense genetic algorithms and adaptive neuro-fuzzy
systems [21,22] which are powerful methods to solve difficult regression problems, the
load of monitoring the progress of each of the DoFs involved in the movement control
would make it impractical with these models. The control of upper-limb prosthetic systems
requires further research regarding practical utility, and here using traditional methods to
classify multiple discrete targets brings an elegant and viable solution.

It is difficult to obtain real-time applications with multifunctional prostheses due to,
among other issues, the nature of the sEMG signal and the large number of processing
operations required to analyze it. Another drawback regarding progress is the limited
availability of standardized EMG databases, but still, there are some databases that help
address the complexity of multifunctionality and which have sEMG signal conditioning
best practice elements. There are known sites for online multifunction EMG databases
that include movements specific to the hand and fingers [23–29]. Some of the sites have
more than one dataset with different features [24,25,28,29]. The amounts of electrodes and
movements vary, but the movement experiments are captured with EMG surface electrodes,
and some of the databases also contain information from other types of sensors.

In a previous work [17], a first attempt was made to create a simple classification
model of EMG signals, to be combined with a modified virtual biomechanical model of
the wrist and hand in Opensim [30]. In this work, we propose using an online database
to decode the coordinated muscle activity obtained from an array of sEMG electrodes
in the forearm, to develop a model that classifies 15 hand movements, and to transform
the classification sequence into virtual movement with the Opensim environment. In
Opensim, the evolution of muscle movements can be virtually observed from the results of
the classification model and visually compared with those of the ideal movement.

2. Materials and Methods

2.1. Database of Predefined Finger Movements

Although the relatively poor repeatability of the surface EMG measures is a known
issue [31], an exhaustive search was conducted to find databases published online that
were open access [23–29], to determine which was the most convenient to use. A database
found in an EMG repository was selected [25] since it was one of the most complete with
movements that encompassed each finger. This database consists of 15 finger movements,
both individual and combined. Data were acquired in line with the standard protocol
described in [25,32,33] and summarized next.
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2.1.1. Electrode Application Protocol

A ring array of eight sEMG electrodes were equally spaced across the circumference
of the right forearm, with an electrode initially placed over the palmaris longus muscle,
and the complete electrode set is pictured in Figure 1a,b. According to the electrode
position pictures and the given reference descriptions, an illustration that approximates
the distribution of the electrodes on the volume of the forearm is shown in Figure 1c. The
datasets were recorded using the Bagnoli desktop EMG system (Delsys, Inc., Boston, MA,
USA) [34] with the DE-2.1 sensor with 10.0 × 1.0 mm contact dimensions and 10 mm
contact spacing, in differential detection mode, with an overall noise of ≤1.2 uV (RMS,
R.T.I), and a bandwidth of 20–450 Hz. A 2-slot adhesive skin interface was applied on each
of the sensors to firmly stick them to the skin. A conductive adhesive reference electrode
(Dermatrode reference electrode) was placed on the wrist of each of the subjects during
the experiments. The collected EMG signals were amplified using a total gain of 1000. A
12-bit analog-to-digital converter (National Instruments, BNC-2090) was used to sample the
signal at 4000 Hz; the signal data were then acquired using Delsys EMGWorks Acquisition
software. The EMG signals were then bandpass filtered between 20 and 450 Hz with a
notch filter implemented to remove the 50 Hz line interference.

Figure 1. Electrode placement on the right forearm. (a) Anterior electrode positions; (b) posterior
electrode positions; (c) muscle zones and electrodes placed on the cross-section of the forearm.
(a,b) are reprinted/adapted with permission from Ref. [32], Copyright 2012, IEEE.

2.1.2. Subjects

Eight normal subjects (six males and two females) aged between 20 and 35 years were
recruited to perform the required finger movements, and the execution of each movement
was repeated 12 times. They were all from Sydney, with a random sampling; i.e., no specific
sampling requirements were reported. The subjects were all normally limbed with no
neurological or muscular disorders. All participants provided informed consent prior to
participating in the study as was approved by the university research ethics committee and
consented to their data being used for research purposes [25,32].
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2.1.3. Database Protocol

Subjects were seated on an armchair, with their arms supported and fixed at one
position. The 15 movements correspond to flexions, including the flexion of each individual
finger and combinations between them: thumb (T_T); index (I_I); middle (M_M); ring
(R_R); little finger (L_L); the combinations T_I, T_M, T_R, T_L, I_M, M_R, R_L, I_M_R, and
M_R_L; and the closed hand (HC). Table 1 indicates the class label assigned to each of the
movement types in the database. The measured region has a signal detection volume that is
assumed to lie between the largest number of muscular bodies and the region of the joints
of the elbow; the relevance of the use of an array around the circumference of the forearm
is because it also applies to trans-radial amputees [33]. In this ring electrode arrangement,
the information related to the generated movement is found in the surrounding tissue
and is transmitted in all directions by that section of the forearm. Although it is not
possible to indicate a specific muscle for each electrode of the ring, all the electrodes pick
up signals from all the muscle distribution layers. The information available is that there
were electrodes in a given position when the database was captured; repeatability is likely
to be acceptable as long as the same experimental protocol conditions are maintained in
every test subject.

Table 1. Relationship of movement types of the database and their class labels assigned. Flexion of
the fingers involved is indicated.

Class Label Movements Evaluated Description

1 HC Closed hand
2 I_I Index
3 I_M Index–middle
4 IMR Index–middle–ring
5 L_L Little finger
6 M_M Middle
7 M_R Middle–ring
8 MRL Middle–ring–little
9 R_L Ring–little
10 R_R Ring
11 T_I Thumb–index
12 T_L Thumb–little
13 T_M Thumb–middle
14 T_R Thumb–ring
15 T_T Thumb

2.2. Raw Data, Elimination of Outliers, Windowing and Preparation of Feature Matrix

The database consists of 8 subjects and 15 movements, in which each subject per-
forms 12 repetitions for each movement; that is, the database contains 1440 repetitions
of some type of movement. A repetition of a movement is equivalent to collecting, at a
rate of 4000 samples per second, the signals of eight sEMGs for 5 s. An sEMG is encoded
with 12 bits, but it is read as a floating-point unit. Therefore, a repetition of a movement
is equivalent to (4000 samples/s) × (5 s) = 20,000 data sample packages, including eight
electrode signal channels at each sample time.

The database was downloaded from [25], where a zip file can be obtained with eight
folders, one folder for each subject. Within each folder are files in CSV format named with
the name of the movements. The data were loaded with MATLAB’s csvread function. For
each subject, a matrix was created for each movement, named with the abbreviation of
the movement. These matrices comprised eight sEMG columns and 240,000 rows of data,
which represent the total of 12 repetitions of a movement per subject. In addition, a column
with a class label number was added that identifies the type of movement, according to
Table 1, so that at all times it is known which sample corresponds to each subject, type of
movement and sEMG electrode number.
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A folder was created in MATLAB for each subject in which the 15 matrices of the
movements of each subject were stored. The 15 matrices of a subject were concatenated
into a new matrix named sub(i). This matrix was 3,600,000 rows by 9 columns, and it was
saved for each subject. Then, in a global matrix, the data of the eight subjects were stored,
forming a matrix of 28,800,000 rows and 9 columns, all of which are indicated in Figure 2
with circle 1. It should be clarified at this point that the data are ordered from subject 1
to subject 8; that is, the data in the matrix start with movements 1–15 of subject 1, then
include movements 1–15 of subject 2, and so on until the movements of subject 8. When in
a consecutive row, there is a change in column 9, of movement type, from label class 15 to
label class 1, indicating the data edge that exists between two subjects.

Figure 2. Experimentation conducted to determine the best option for creating a classification model
considering recognition percentage and simplicity of the model. MU = single matrix (all eight subjects
concatenated), MP = matrix per subject (eight matrices are formed). The number of circles defines
the order of processing. The nomenclature (A–D) serves for Duncan’s significance test treatment
identification that compares the output of each experiment.

Due to the nature of the signal and the large number of data, these were preprocessed
with cleanup and reduction methods to concentrate the information before creating classi-
fiers. This preprocessing included the steps of removing outliers, grouping clean data into
a single global matrix and across multiple matrices (by individual subjects), setting up a
data window to extract information, and measuring features per window to characterize
the EMG signals.

2.2.1. Method of Elimination of Outliers by a Chi-Square Distribution

According to the literature, an outlier is an observation that deviates from other
observations and raises suspicions about being generated by mechanisms external to
natural ones. Some statistical methods for the detection of multivariate outliers use the
data distribution center and an established distance; in our case, the Mahalanobis distance
was used to determine which data are outliers. The outlier elimination method with a chi-
square distribution was also used [35]. The global matrix, composed of the eight subjects,
was used to find outliers in the entire database. During the outlier elimination, when an
irregular reading of an EMG electrode was detected, the entire line with all its eight EMG
signal channels was eliminated, when the channel corresponding to that atypical event was
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included. This method was implemented in MATLAB, delivering a global matrix without
outliers; the pseudocode for this process is shown in Algorithm 1. From this updated
matrix, a separation into new matrices by individual subjects was carried out manually,
and eight matrices with different lengths were obtained given the nature of the elimination
of outliers. As a result of this process, the information regarding the data values eliminated
and those maintained was known, as the sum of both must coincide with the total data.

Algorithm 1 Pseudocode for Outlier Removal

The data to evaluate are imported.
Statistical parameters (Mean, Covariance) are calculated.
Calculation of the parameters (New_Data, inverse covariance) to obtain the Mahalanobis distance.
- Calculation of New_Data = data minus the mean.

- Inverse covariance is calculated.

Product of New_Data and inverse covariance.
Critical value is obtained according to a chi-square distribution with the function ncx2inv
with MATLAB.
Data are separated according to the critical value.
Outliers are removed and maintained matrices are created.

2.2.2. Preparation of Matrices and Transformation of Data into Functional Features

With the data no longer containing outliers, we created two datasets: The first was a
global matrix updated with the EMG data of all the subjects, which is called MU and has
26,778,435 data packets; 7.02% of data were eliminated for being atypical elements. The
second was a dataset including the data of each subject separately, in eight matrices (called
MPs), with lengths between a minimum and a maximum of 3,147,328 and 3,540,137 data
packets per subject.

Taking a group of 250 rows to form a measurement window, the data were transformed
into functional features. Of the 250 rows of data in the window, 12 features were calculated
for each EMG channel (see Section 2.3.1), which were concatenated horizontally, resulting
in a single vector of 96 electrode features for each window. In addition, the class of the
motion type, to which the new vector belongs, was added in column 97. This vector of
features was stored in a new matrix, continuing with each window, updating the matrix of
features until reaching the end of a movement type. The final window of a specific motion
type was calculated with the remaining data, which can range from 1 to 250 data rows.

The arrays have a column with the class label, and depending on the class, the data
can be separated into motion subarrays. For any of the two groups of matrices (global or
per subject), the MATLAB find() function was used to select the movements that belong
to classes 1 through 15; find() gives us the position in which the rows of the specific
movement searched were found. A submatrix of features was created for each movement
with subscript j, which went from movement 1 to movement 15. Within this cycle of
measurement of features, the first submatrix was taken, that is, movement 1, and once it
was finished with the movement type, it started with the next one, and so on until the
15 movements were finished. At this point, 15 submatrices of each movement with their
corresponding feature vectors resulted.

Upon having the features’ measurements, a rearrangement was performed to obtain
the matrix of a particular subject or the one corresponding to the total MU matrix. From
having the first subject, the cycle was repeated manually, adding the data of subject 2
and so on until subject 8 was reached. At the end of this process, we have the features in
two types of data blocks: a matrix that groups all the subjects and their movements, named
NMU, and the eight matrices that group the movements by subjects (called NMPs). These
procedures are encapsulated in Figure 3.
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Figure 3. General sequence of data manipulation: from the database files to the preparation of feature
matrices, before the experiments being carried out.

Some investigations work only with data from individual subjects, and when modeling
the classifiers by subject, very good classification percentages are obtained. Although
in other studies the clustered data of a group of subjects are used to generate a single
classification model applied to the people in the group, with less promising results, in this
study, we compare the classifiers designed with the two types of data groups.

2.2.3. Selected Features from the Literature

The literature consulted revealed that features useful for extracting information from
raw EMG signals are divided into those of the time domain and those of the frequency
domain, both widely used in classifiers. As one objective of this work is to generate the
simplest and quickest processing in terms of execution speed, it was decided to use only
features in the time domain. As mentioned in [36], one of the major disadvantages of these
types of features is that a stationarity property is assumed, a property that does not coincide
with the nature of the EMG signal; however, they have provided good gesture classification
results in the past (see [32]).

For the size of the data windows, it is necessary to consider the processing time given
to the calculation of the features. In this case, the aim is for the classification to be applied in
real time; therefore, it is convenient to work with small data windows. A non-overlapping
window was used to process the raw EMG data, with a length of 250 rows of raw data per
window. A period of 62.5 ms is required to cover this window length since a row of raw
data is captured at the sampling rate of 4 KHz.

Twelve features were proposed to be extracted from the raw EMG data, and their
definitions are in [37]: mean absolute value; mean square value; simple square integral;
square mean; EMG variance; TM3, TM4 and TM5 time moments; length of wave; zero
crossings; myopulse percentage ratio; and curve sign change. The 12 proposed features
were measured in each of the eight EMG channels and were concatenated, producing a
vector of 96 data (features) for each window per subject. The windowing follows after being
an MU or MP matrix, evaluating the 12 features per EMG channel to create new matrices:
MU > Windowing > Features > NMU, or MP > Windowing > Features > NMPs. This data
transformation process is conceptually visualized in Figures 2 and 3 and was developed to
go along with the classical methods in machine learning and pattern recognition to extract
information from the raw EMG signal; variations can be observed in the window sizes and
in the selected features.

2.3. Classification Models
2.3.1. Machine Learning

Classification problems are often divided into two stages: the decision stage and the
inference stage. These two stages are visualized in Figure 4. The decision stage is when
the model is being trained. The inference stage is used in classification to predict data
once the model is already trained. These stages were used extensively in this study. The
methodology in Figure 3 was established.
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Figure 4. Creation of the classification model. The decision and inference stages of machine learning
can be observed in the creation of classification models.

The classifiers considered for their simplicity were naive Bayes, LDA and QDA, all
with a Bayesian foundation and probabilistic theory. The importance of these classifiers
is that they are very efficient, as well as simple, and they have been used to implement
machine learning in microcontrollers [38]. The MATLAB function fitcdiscr was used to
create LDA and QDA, and the fitcnb function was used for naive Bayes.

Four classification schemes were developed, as conceptualized in Figure 2, generating
combinations of two preprocessing methods; the forward sequential selection method and
the normalized one, were evaluated, in addition to the version without preprocessing.
The intention was to investigate the efficiency of these classifiers, comparing the different
versions in case there were any statistically significant differences, and to decide the best
route for conversion to a new input data space that increases the recognition of the classifier
model and/or assists in reducing the number of required features.

2.3.2. Cross-Validation

One of the most used methods in the validation of classification models in machine
learning is cross-validation. This enables, within a defined dataset, considering all data
as training, validation and test data, and it validates that the results are independent of
the data partitions; the calculations were based on [35]. The methodology in Figure 5
establishes the order in the separation of the data to conduct an adequate cross-validation.
This process was performed for each matrix of the eight subjects and for the matrix with
the data of the eight subjects (NMU). Matrices were created for training, validation and
testing. A MATLAB function called cvpartition was used to separate the data (partition) for
cross-validation. This function was used to separate the original set of data into 10 parts,
9 of which were assigned a TRN-VAL label and 1 of which was assigned a TST label. In
this way, we had 10 parts of our original data. Next, the function created 10 datasets by
traversing the TST label to each part of the original set (divided into 10). The function was
used twice, once to separate the original set of data into 10 parts and create two blocks
called TRN-VAL and TST from the original set and once to separate the data from the
TRN-VAL block into two TRN sub-blocks and VAL. This process is illustrated in Figure 5:
below each cvpartition block are columns of data with 10 sections, which are assigned
a name. For the first block, the columns form two blocks: TRN-VAL (with nine parts)
and TST (with one part). This method creates 10 datasets with the same total data. In the
second cvpartition block are another 10 columns below, which is how one of the previous
TRN-VAL datasets of the first block was divided. Then, 1 of those 10 sets was divided into
10 subsets of data composed of 9 parts of TRN and 1 part of VAL in each of the 10 columns.
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Figure 5. Methodology for cross-validation. The original dataset is split several times to have
partitions of data into subsets for model training and evaluation.

At this point, we had 10 datasets divided into TRN-VAL and TST. In the same way,
the 10 sets of TRN-VAL were now divided each into 10 new subdatasets in TRN and VAL.
That is, we had 100 TRN models validated with 100 sets of VAL. Each result was averaged
to calculate a real percentage of training and validation. At the end of the methodology
in Figure 5, we obtained 100 classification models in which the first partition of the test
(10 in total) of each dataset was tested in 10 subsets of TRN and VAL. Those results were
averaged for each classifier separately.

2.4. Preprocessing Techniques Prior to Classification

When working with classification models obtained through machine learning, it is
desirable to have features that generate maximum differentiation between classes; therefore,
it is necessary to use preprocessing of features. This way, the classification models will
perform better. Therefore, one task was to find the features that best separate the motion
classes in their corresponding spaces and that improve prediction. A feature-selection
method was used that reduces the data volume based on the quality of each feature.
Another method used was the normalization of the features. Finally, the best possible
combination of preprocessing was converted to a new space by the sparse matrix method.

2.4.1. Sequential forward Selection (SFS)

SFS is an iterative method that provides a direct route to determine which features
improve the classification results. With 12 features measured for each electrode, 96 features
were generated; that is, 96 operations must be executed for each window. A large number
of simple operations might work for a real-time procedure; however, the aim was to reduce
the number of electrode features since some can impair the performance of the classifier.

Generally, this method analyzes each feature in an orderly manner from 1 to 96 and is
an iterative process. Once the method has analyzed each feature individually, it will take
the feature that provides the best percentage of recognition; the process will then form
groups of two. Once it has determined the best of the individual features, the process will
join this feature with each of the 95 remaining ones; this process is detailed in Algorithm 2.
Then, the feature that offers the highest percentage to the classifier is selected, and so on
until the percentage stagnates.
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Algorithm 2 Pseudocode Implemented for forward Sequential Selection

SPACE = 1 . . . L //L = number of total features.
EXIT = false
WHILE NOT EXIT
FOR i =1 TO |SPACE|
TEMP(i) = J(SUBSET V SPACE(i)) //TEMP = Temporal variable.
END

BEST_i = ARGMAX(TEMP) //The maximum value of the
//TEMP vector is stored in BEST.

IF TEMP(BEST_i) > BEST_EVAL //Comparison between the best stored
SUBSET = [SUBSET, SPACE(BEST_i)] //evaluation and the best evaluation
BEST_EVAL = TEMP(BEST_i) //of the new subset.
SPACE = SPACE-SPACE(BEST_i)
ELSE

OUTPUT = true
END

END

RETURN SUBSET, BEST_EVAL

Each classifier considered seeks to separate the classes in its own way, and therefore, it
can take the features that offer the best results. All the features’ data were taken from each
of the subjects and from the NMU matrix, and a classifier was generated for each dataset
and for each model (NB, LDA and QDA). That is, the percentage of training was calculated,
and the groups of features were saved based on this. By having the groups of features
for each classifier considered the best, the data were taken again and separated into TRN,
VAL and TST. With 10 × 10 cross-validation, a group of models was generated for each
classifier. It is evident how many features remained and what percentage of classification
was obtained for TRN, VAL and TST. A more detailed description can be found in [39].

2.4.2. Normalization

If the set of measured features is transformed into a normal dataset (i.e., it has a zero
mean and a standard deviation of 1), all the measurements of all the evaluated features
are put in the same range of values. Therefore, a feature in a classifier could operate more
efficiently. The procedure was conducted in a general way for the three classifier models.
The description of this data transformation can be found in [35].

2.4.3. Conversion to Sparse Matrix Space

The conversion of features into new spaces, although it increases the processing
load, can provide good results regarding increasing the recognition of the classifier model
and/or reducing the number of features. It was decided to use this method because it is an
innovative method that has not been widely used and its performance on muscle signals
has not been reported. This algorithm is used in the first instance to increase the distances
between the evaluated classes and reduce the distances between the two data of the same
class. The description of this method is in [40]. The method was carried out only with
the preprocessed data that provided the best results; the group of features that increased
performance was taken, and these were transformed into a new space, to apply later only
the best efficiency classifier model and to calculate the recognition percentage. Figure 6
illustrates the concept of conversion into a new space to improve the classification model.

2.5. Methods of Statistical Validation of the Results

Guided by the statistical tests from similar investigations, the proposed schemes of
ANOVA method, multiple comparison test of Duncan and statistical formulations are used
below for the comparison of results.
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Figure 6. Creation of the classification model after selection of the best preprocessing from the
conversion into a new space.

2.5.1. ANOVA Method

The ANOVA method was used to compare and study the effect of the methods applied
to our data regarding the means of the recognition percentages obtained from the evaluated
classifiers. This analysis is a statistical test to use when comparing the means of two or
more groups. The null hypothesis, from which the different types of ANOVA start, is
that the means of the groups are statistically equal; that is, the mean is the same in the
different groups.

2.5.2. Duncan’s Method

This method is a multiple comparison test that enables us to compare the means of the
treatments (procedures applied to the data and resulting in a percentage of recognition)
after having rejected the null hypothesis.

2.5.3. Statistical Formulations

The sensitivity, specificity, precision and F1 score are statistical parameters that enable
us to evaluate the results obtained. These parameters are visualized in Table 2. They
can also be obtained via a confusion matrix, in which a class of movement is compared
against the other classes of movement, specifically locating each error that occurred when
classifying the data. These parameters should be close to 100% for the model to be ideal.

Table 2. Statistical formulations, in which TP = true positive, FP = false positive, TN = true negative
and FN = false negative.

Formulation Operation

A = Sensitivity TP/(TP + FN)
B = Specificity TN/(TN + FP)
C = Precision TP/(TP + FP)
D = F1 score 2TP/(2TP + FP + FN)

2.6. Opensim Model of the Wrist and Hand Used for the Analysis

Opensim software is an open access biomechanical simulation program. Among its
characteristics, it enables muscle evaluation and movement analysis with visualization files
with a MOT extension. In Opensim’s repository of models, there is a limited model of the
wrist with 10 degrees of freedom, 28 joints and 23 actuators (muscles) with movement in
the forearm, wrist, thumb (no flexion) and index [41]. This original model was modified
for this study by adding the missing degrees of freedom in the thumb, middle finger, ring
finger and little finger to reproduce the total movements that a human hand can perform.
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Figure 7 shows how the hand model appears in the graphical interface of the Opensim
version 4.0 main screen.

 

Figure 7. Screenshot of the software application displaying the degrees of freedom of the model used
in Opensim.

The completed model was used for the simulation of the hand movements performed
in the analyzed database. This model is found in free form in [30] and has 21 degrees of
freedom and 36 joints, allowing any possible hand movement to be carried out. Table 3 lists
the relationship of the degrees of freedom of the model with the movements considered
from the database.

Table 3. Relationship degrees of freedom (DoFs) of the Opensim model of the wrist with the
movements of the database.

Database Finger Movements

DoF HC I IM IMR L M MR MRL RL L TI TL TM TR T

MCP2_lateral x x x x x
MCP2_flex x x x x x
PIP_flex x x x x x
DIP_flex x x x x x
MCP2M_flex x x x x x x x
MPIP_flex x x x x x x x
MDIP_flex x x x x x x x
RCP2M_lateral x x x x x x
RCP2M_flex x x x x x x
RPIP_flex x x x x x x
RDIP_flex x x x x x x
LCP2M_lateral x x x x x x
LCP2M_flex x x x x x x
LPIP_flex x x x x x x
LDIP_flex x x x x x x
thumb_abd x x x x x x
thumb_flex x x x x x x
TCP2M_lateral x x x x x x
TCP2M_flex x x x x x x
TCP2M2_flex x x x x x x

Simulation of Movement in Opensim

The movements were idealized for the simulation of the real movement trajectory;
these must be stable and smooth in their execution. We consider that the 15 movements of
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the database are of this type, and each represents a complete cycle (or repetition) recorded
by means of sEMG signals and described by photographs. The information on the database
was used, the photographs included, but there were no other spatial measurements pro-
vided. With the EMG signal classifiers designed here, the type of movement that an input
data window brings is estimated. With the predictions of the type of movement and its
window time, a reproduction of the movement can be created virtually through Opensim.
Every 62.5 ms (the duration of a data window), an output generated in the classifier de-
mands the next video frame for the virtual model in Opensim. For this reason, advancement
vectors were created for each of the movement classes, which contain the degree of rotation
of each joint involved capable of reproducing any of the movements in the database.

In principle, we deduce the 15 ideal movements that the database contains. Therefore,
the initial and final positions of the movements were taken as a reference based on their
description [32]. Considering that each movement lasts for 5 s and that the number of
decisions of the classifier in that period is 80 window times, and with the full range
of motion of each of the involved joints, their degree of rotation was calculated as the
progress of the movement video frame. Thus, the 15 advance vectors were formed for
each movement class; Table 4 lists all of them. Then, after obtaining the tag predictions
of the classifier and having the table of advance vectors, a motion file can be created for
any complete finger movement input, as shown in Algorithm 3. In addition, 15 ideal
motion files with the MOT extension can be created by simply accumulating the specific
advancement vector itself 80 times, corresponding to the 5 s of a movement repetition. Once
the MOT files are obtained, any movements can be viewed using the Opensim platform.

Algorithm 3 Pseudocode for the Creation of a Motion File From Classification. MOV_NUMBER
Matrix Corresponds to Advancement Vector Table 4

MOV_MATRIX = [zeros]
count = 0
FOR i TO |MAX Window number|
Decision = Model Decision(i)
IF Decision is 1
if count < 18
MOV_MATRIX(i + 1,:) = MOV_MATRIX(i,:) + MOV_NUMBER(1,:)
count = count + 1
else
MOV_MATRIX(i + 1,:)= MOV_MATRIX(i,:) + MOV_NUMBER(2,:)
ELSE
MOV_MATRIX(i + 1,:)= MOV_MATRIX(i,:) + MOV_NUMBER(Decision + 1,:)
END
RETURN MOV_MATRIX

It is possible to observe the movements characterized by classification errors. The vi-
sualization of a badly classified movement can offer a glimpse of how serious or acceptable
that error may be; it is simply a tool to discern a movement classification. The test data can
be separated to verify which of the subjects has a worse ranking. This process identifies
the worst movement evaluated to appreciate a real reproduction (with complete data) of a
subject´s repetition movement in the simulation.

3. Results

3.1. Preprocessing and Processing of the EMG Signal
3.1.1. Elimination of Outliers

The total raw data for each movement were 240,000 lines per subject. However, due
to eliminating outliers, these data were reduced, generating a number of data maintained
per movement and per subject. The percentage data eliminated by movements ranged
from 1.99% (in I_M) to 26.00% (in HC). The percentages of the data eliminated per subject
ranged from 1.66% (subject 5) to 12.57% (subject 4). Figure 8 is a graph encompassing the
maintained and eliminated values, with information on movement and subject, illustrating
what remains of the raw data per movement and per subject.
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Figure 8. Outliers maintained and eliminated. M = maintained, E = eliminated. The total data for the
8 subjects (sub #, subject number) in the 15 movements are displayed.

3.1.2. Feature Selection

After removing the outliers from the total set of raw data, windows of 250 data
rows were created in the resulting matrix, in which each row has the digitized signals of
the eight sEMG channels. In each window, 12 features were measured for each sEMG
channel, according to the processes in Section 2.2.3, resulting in 96 electrode features per
window. Then, the SFS algorithm evaluated the performance of each feature in each of the
considered electrodes.

The SFS algorithm was applied in two scenarios, one scenario using the features in
their originally measured range and the other scenario using the normalized features,
which are the experiments marked 6 and 8, respectively, in Figure 2.

3.1.3. Classification Models

The results regarding the classification models generated the Tables 5–8, which are
displayed according to the experimentation set out in Figure 2, carried out to determine
which is the best option for creating a classification model considering the recognition
percentage. The experimentation was conducted using a 10 × 10 cross-validation of TRN,
VAL and TST for each classifier generated from NB, LDA and QDA. Table 5 lists the
recognition percentages when all 96 features were used without preprocessing. Table 6 lists
the number of features obtained from the SFS algorithm and the percentage of recognition
obtained. In Table 6, with all 96 features, the best classifier created was LDA; however, in
Table 6, with the selected features, the best classifier is QDA, which improves significantly
and has a lower number of features than those initially considered.

Table 7 contains the results of the classification with the set of 96 features used but
normalized. The worst classifier is NB, and the best classifier belongs to QDA. Subsequently,
in Table 8, the best normalized features are selected. The worst classifier continues to be NB,
and the best QDA, both for individual subjects and for the sample group. Although NB has
a smaller number of necessary features, the difference between the recognition percentages
is considerable. The total of normalized features for Table 7 is 96, and in Table 8 the total of
necessary normalized features is reduced but depends on each classifier with SFS.
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Table 5. Experimentation 5: Percentage of recognition using a 10 × 10 cross-validation by dividing
the data into training (TRN), validation (VAL) and test (TST). The subject column is divided into
two parts for each classifier; 1 . . . 8 indicates that an average was performed between the data of the
eight subjects; S1:8 indicates that the total data were a single set of the eight individuals.

Experimentation No. 5 without SFS

Sub TRN VAL TST

NB 1 . . . 8 89.38 89.38 89.38
S1:8 29.3 29.3 29.3

LDA 1 . . . 8 93.22 93.21 93.23
S1:8 53 52.99 52.96

QDA 1 . . . 8 67.5 68.1 68.01
S1:8 33.43 29.84 29.79

Table 6. Experimentation 6: Percentage of recognition using a 10 × 10 cross-validation by dividing
the data into training (TRN), validation (VAL) and test (TST). The subject column is divided into
two parts for each classifier; 1 . . . 8 indicates that an average was performed between the data of the
eight subjects; S1:8 indicates that the total data were a single set of the eight individuals. The N.F
column is the number of features selected through SFS.

Experimentation No. 6 with SFS

Sub N.F TRN VAL TST

NB 1 . . . 8 21 90.71 90.72 90.72
S1:8 27 39.15 39.16 39.18

LDA 1 . . . 8 57 93.08 93.10 93.11
S1:8 80 53.18 53.19 53.15

QDA 1 . . . 8 30 94.68 94.72 94.73
S1:8 24 77.71 77.88 77.86

Table 7. Experimentation 7: The format of the table is the same as Table 5, with the total number
of features used in the tests; normalization was applied to the data before they were used to create
the model.

Experimentation No. 7 without SFS

Sub TRN VAL TST

NB 1 . . . 8 89.94 89.97 89.96
S1:8 29.31 29.3 29.30

LDA 1 . . . 8 93.6 93.61 93.60
S1:8 54.79 54.8 54.78

QDA 1 . . . 8 94.06 94.06 94.05
S1:8 51.15 51.04 51.07

Table 8. Experimentation 8: The format of the table is the same as Table 6, with the number of features
selected for each subset of tests from SFS; normalization was applied to the data before they were
used to create the model.

Experimentation N. 8 Normalization with SFS

Sub N.F TRN VAL TST

NB 1 . . . 8 21 91.33 91.36 91.34
S1:8 27 39.15 39.16 39.18

LDA 1 . . . 8 40 93.10 93.12 93.12
S1:8 69 54.73 54.74 54.75

QDA 1 . . . 8 25 96.09 96.14 96.16
S1:8 49 78.34 78.36 78.36
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The effect that the normalization of the data produces is evident in Tables 5 and 7
without SFS, using the 96 features. The normalization effect significantly improves the
recognition percentage of the QDA. However, as shown in Tables 6 and 8, when the
electrode features are selected, the normalization only produces a slight increase in the
recognition percentage of QDA, which had already been improved with the pure selection
of features without normalization. From Tables 6 and 8, it is evident how many features-
electrodes can be discarded without affecting the percentage of classification obtained for
TRN, VAL and TST.

3.2. Statistical Parameters, ANOVA and Duncan Method

The results in Tables 5–8, regarding the performance of the four treatments outlined in
Figure 2, indicate not only the good results of QDA, but also that the selection of features
and normalization is an important factor in the performance of this type of classifier. An
advantageous difference is that SFS reduces the number of features considered.

Among the tests carried out was an inquiry with subsequent statistical validation
trials regarding which of the four treatments are significant. Therefore, the eight subjects,
who are part of the same population, were taken with the results of their individual QDA
classifier. The four data treatments established were the following:

(A) Normalization and SFS (Table 8);
(B) Only normalization (Table 7);
(C) Only with SFS (Table 6);
(D) Without any processing (Table 5).

Table 9 lists the averages of the 10 × 10 cross-validation of the TST data subset of each
treatment of each subject. The ANOVA test performed exhibited a significant difference
between the means of the results (alpha = 0.05, F = 34.37, p-value < 0.00001), rejecting the
null hypothesis.

Table 9. Percentage of recognition for each treatment for each subject with QDA.

Treatments

Subjects
Without Any

Processing
Only with SFS

Only
Normalization

Normalization
and SFS

1 65.97 96.53 96.68 98.27
2 88.82 95.38 96.37 97.76
3 59.06 91.80 87.57 91.87
4 71.41 92.26 92.32 93.93
5 73.89 97.06 97.48 98.94
6 72.09 95.47 96.92 97.44
7 65.46 95.35 96.06 97.06
8 47.36 94.01 89.04 93.98

Average 68.01 94.73 94.01 96.16

Duncan’s method was applied to determine which of the treatments are statistically
the same and which are different. As shown in Table 10, Duncan’s method revealed that
μA = μC, μA = μB, μC = μB, μC �= μD, μC �= μD and μB �= μD; therefore, treatments A,
B and C are statistically the same and D is different. Therefore, we can select any of A, B
and C. However, as A provides us with a low number of features and a higher value in the
recognition percentage, it was decided to use QDA with normalization and SFS to continue
working with these conditions.

3.3. Conversion to a New Sparse Matrix Space

As established, this method was used to reduce further the number of features used,
to increase the percentage of model recognition and to generate a simpler model. Figure 9
illustrates the main features versus the recognition curve. The more main features are input,
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the more the percentage of recognition grows, but it was only possible to reach the highest
classification rate as before.

Table 10. Table for results of Duncan’s significance testing; the conclusion is that the means of the
results obtained from the procedures A, B and C are equal, and D (without any processing) is not
equal. Therefore, any of the treatments “normalization and SFS”, “only normalization” and “only
with SFS” can be chosen.

Population Difference Sample Difference Compared to Their Rp Range Decision

μA − μC 96.15–94.73 = 1.42 < 7.1 = R4 Not significant
μA − μB 96.15–94.05 = 2.10 < 7.0 = R3 Not significant
μA − μD 96.15–68 = 28.14 > 6.6 = R2 Significant
μC − μB 94.73–94 = 0.67 < 7.0 = R3 Not significant
μC − μD 94.73–68 = 26.75 > 6.6 = R2 Significant
μB − μD 94–68 = 26.04 > 6.6 = R2 Significant

Figure 9. Plot: percentage of classification by selecting a smaller number of features after conversion
to sparse matrices.

3.4. Statistical Formulations for QDA after Space Change

The statistical parameters considered—sensitivity, specificity, precision and F1 score—
for each of the 15 classes were calculated. Table 11 presents these parameters for the average
of the eight subjects evaluated individually; data for the group sample of the eight subjects
are presented in Table 12. As shown in Table 11, the classes 1 (HC), 8 (MRL), 10 (R_R)
and 12 (T_L) are movements that have an ideal classification; Figure 10 illustrates these
hand gestures.

3.5. Evaluation of the Movement in Opensim

Each new classification of a data window is translated into an advancement vector,
which integrates the joints involved in the movement detected, representing a progress
proportional to 62.5 ms of a total motion duration of 5 s. Figure 11 visualizes the com-
plete cycle, from the detection of the movement with the classifier to the choice of the
corresponding advance vector and the addition of this vector to the movement matrix.
Once the movement has finished, the motion file with the MOT extension was used for
the subsequent motion visualization in Opensim. With the generated movement files, we
performed biomechanical movement analysis in Opensim, verifying the activations and
muscular participation within the movements. Some ideal motion files and their videos are
in [30].
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Table 11. Average of the statistical parameters for the eight subjects evaluated individually.

QDA

Class Sensitivity Specificity Precision F1 Score

1 100 100 100 100
2 88.65 99.09 88.65 88.65
3 96.90 99.74 96.90 96.90
4 98.88 99.83 97.80 98.34
5 98.68 100 100 99.33
6 97.32 99.91 99.09 98.19
7 97.80 99.91 98.88 98.34
8 100 100 100 100
9 97.40 99.42 91.46 94.33
10 100 100 100 100
11 92.52 99.74 97.05 94.73
12 100 100 100 100
13 97.75 99.50 93.54 95.60
14 92.39 99.83 97.70 94.97
15 90.78 99.10 86.25 88.46

Table 12. Statistical parameters for the dataset formed by the group of eight subjects with
49 electrode features.

QDA

Class Sensitivity Specificity Precision F1 Score

1 83.26 99.78 97.11 89.65
2 78.99 98.09 78.77 78.88
3 81.87 96.74 70.18 75.57
4 70.71 98.06 77.05 73.75
5 70.05 98.87 85.00 76.80
6 79.25 96.81 68.87 73.69
7 86.20 94.82 58.36 69.60
8 83.33 98.42 81.63 82.47
9 52.60 98.76 78.73 63.06
10 69.56 98.77 82.90 75.65
11 87.71 98.15 80.85 84.14
12 79.65 99.78 97.25 87.58
13 93.19 97.81 79.06 85.54
14 84.44 98.17 81.02 82.69
15 77.91 98.37 81.18 79.51

 

Figure 10. Hand gestures with perfect recognition. From left to right, the classes 10 (R_R), 1 (HC), 12
(T_L) and 8 (MRL).
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Figure 11. Cycle from classification to generation of the movement file for Opensim.

Evaluating the movement classified with an Opensim visualization is a way of illus-
trating the performance of the classifier. After analyzing the recognition of each subject
and its test data class label (type of movement), it was found that, on average, the worst
classified is the RL movement, with subject 6 having the worst recognition percentage for
this movement. Figure 12A illustrates the Opensim reproduction of the ideal RL move-
ment for 5 s. Figure 12B visualizes the classification of the complete repetition of the RL
movement of subject 6 (repetition 1 was taken). A complete move can take up to a maxi-
mum of 80 classification events if there are no outliers removed that reduced the number
of windows. In this repetition of RL, only 76 classifications were provided, of which 11
were erroneous for the RM movement (14.5%) and the others were for the IM movement
(85.5%). A predominance of the middle finger was observed in the misclassification of
movement. In Figure 12B, it is evident how the middle finger progresses most before any
other. How serious the misclassification can be depends on the task to be performed and
the application.

Figure 12. Reproduction of the RL movement for 5 s in Opensim: (A) ideal movement; (B) total
movement of repetition 1 for the movement of subject 6, which was the worst classified.
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4. Discussion

The objective of this work was the evaluation of an open access electromyography
database for the detection of 15 movements of the fingers of the hand through a simple
preprocessing-enhanced classifier to visualize the muscular participation of the predicted
movements in the virtual environment of Opensim and generate new insight for prosthetic
application. The usefulness of the Opensim musculoskeletal simulation environment
in the design of a multifunctional prosthesis was demonstrated, and the evolution of
muscle movements was virtually observed from the results of the classification model and
visually compared with the ideal movement. Working with multiple specific movements
(the flexion of each finger and combinations of flexions) from a database provided a
multifunctional complex system outside of laboratory environments, where the control of
upper-limb prosthetic systems can be investigated in a practical way. The standard models
of classification implemented with a short data window provided a good recognition rate
(in accuracy and number of classes) and will be easy to embed into microcontrollers to
classify a sequence of movements in real time in the future. A description of specific results
follows, along with a discussion of the limitations of the study.

The method for outlier elimination indicates that the closed hand movement was the
most affected, as seen in Figure 9. This was the most complex hand gesture because it
involved flexing all the fingers, which would have favored the proliferation of their outliers.
However, the closed hand flexion is one of the most common movements in daily life, and,
at the same time, it was one of the best-classified movements.

After the removal of outliers, without any type of preprocessing, of the four classifiers
created in Table 5 (experimentation 5 in Figure 2), the best of the algorithms is LDA for the
two groups of data matrices. Table 6 presents the results for when the features were selected
in the creation of the classifier. One more column is displayed, in which the number of
features selected in each classification algorithm is defined. With a set of features selected
from the total set, the classification percentages increase, with the most notable change
being in QDA, reaching 77.86% recognition of the global subject matrix and up to 94.73%
with the individual matrices of the subjects.

The next set of results is shown in Tables 7 and 8, in which the effects of normalization
are evidenced in both cases, either as a single preprocessing or in conjunction with the
selection of features. It is clear there is an improvement in all the algorithms, but again the
QDA model is especially improved. Selecting the features or making none predominate
in the magnitude of their effect helps the classifier. In Table 8, QDA has the best perfor-
mance for the 15 movements, with 96.15% recognition for subjects individually and 78.36%
recognition for the sample group with the eight subjects together.

For the input vector with 96 initial features, these features can be reduced without
degrading the recognition; and with selected features, they even improve the recognition of
the classifiers. In QDA, 25 electrode features remained, on average, for individual subjects,
and 49 remained for the sample group. A curious fact about the electrode features selected
and the position of the significant electrodes is that QDA achieved its classification rate
using practically only four electrodes. Electrodes 3, 4, 5 and 6 were the ones that behaved the
best and correspond to being better positioned to capture the signal from the active flexor
muscles, according to Figure 1. This point demonstrates how redundant the EMG electrode
ring array setup can become. As revealed by the SFS tests on the NB and QDA classifiers,
there is potential to tailor the methodology specifically with a few electrode features to an
individual (up to only 17 in a subject) and achieve a good classification percentage.

The results of each procedure performed are supported by the cross-validation in-
cluded in them and even by an ANOVA test. When the results obtained from the exper-
imental treatments were evaluated with Duncan’s multiple comparisons test, the latter
three experimental procedures (marked 6, 7 and 8 in Figure 2 and Tables 6–8) were similar;
that is, the means of the recognition percentage measurements were not statistically dif-
ferent. Therefore, we could use any of those three treatments; however, for the moment,
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to continue investigating, the chosen model was the quadratic model with a selection of
normalized features.

The statistical formulations of sensitivity, specificity, precision and F1 score of the eight
subjects evaluated separately (Table 11) reveal that the movements 1 HC, 8 MRL, 10 R and
12 TL all have a value of 100% recognition; Figure 11 illustrates these hand gestures. This
finding indicates that the QDA classifier trained for any subject could distinguish these four
gestures without any error. However, a perfect class recognition does not happen when the
data of the eight subjects are assembled into a single data group and processed to generate
a single model for all subjects (Table 12), as is often the case. In this group, a large specificity
is maintained for all classes, and the F1 score indicates a good performance for classes 1
HC and 12 T_L again, confirming them as two robust hand gestures. The class movement
13 T_M might appear to have good performance since it had the greatest sensitivity of the
group, but it had a low precision. Regarding the worst class prediction for the subjects
evaluated individually (Table 11), the flexion of the index finger (2 I_I) had the lowest
sensitivity and specificity, which is in agreement with other research [18], and also the
thumb flexion (15 T_T) presents the lowest precision and F1 score. This might correspond
to the high levels of fine motor dexterity developed between the thumb and index finger
that make them difficult to individually define. As for the whole group classifier (Table 12),
the F1 score is above 63%, with most classes being balanced, but class 9 (R_L) shows a loss
in sensitivity and class 7 (M_R) shows a loss in precision. In these two movements, which
involve the ring finger flexion and the middle finger, misclassification was observed; there
were repetitions with large classification errors and mistagging between themselves.

In Figure 9, it is possible to verify that there is no convenience in converting the
features into a new space through the sparse matrix method. It simply maintained the
recognition percentage already present, so no improvement was seen using the method,
and the increased processing load with its use in a microcontroller is not justified.

To simulate the movements in Opensim, after an output result of the classifier, an
advance vector was chosen and added to the construction of the simulation; therefore,
the class of the movement detected provides each joint of the biomechanical model of the
hand with a possible change in the degrees of rotation. At the end of the reading of the
5 s motion, there is a virtual movement matrix representative of the classification. In this
way, it was possible to reproduce the classified movements of any of the subjects, whether
they were of high hits or poor performance in the classification. Several videos with the
movements of all the joints are in [30,42]. With these movement files (MOT format), in
Opensim, we performed movement analysis and verified muscle participation within each
movement evaluated.

In the videos of a complete movement, the wrong classification of an event does not
necessarily affect the total movement generated. For example, a single error of a window
period translated into movement can be expressed in the same way as a movement executed
at 98%, and perhaps more if the correct movements of some joints are considered within the
errors. For example, if a classification indicates flexion of the index–middle–ring fingers,
and it is actually a movement of the index finger, this is a partially good classification,
as this movement partially helps the correct movement. Even in a normal human hand,
usually, when we want to execute a single movement, taking the ring finger as an example,
the hand generates some movements in the other fingers.

There are some issues to consider in this study. Although there was no significant
difference in the results of the SFS and SFS-normalized tests of the three algorithms, a
further discussion is required regarding the final specifications of the system, whether
to work with the minimum number of electrodes, whether to have the best recognition
or whether it is a matter of real-time implementation. There is a warning related to the
findings on the reduction in the numbers of electrodes and features before application;
although the database used in this research is of the multifunction type, it only included
flexion movements and there was never any extension of a finger. Therefore, further
experimentation with all kinds of finger motions would be required to optimize a classifier.
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An important argument in the works involving EMG signals is the repeatability in the
acquisition of these measurements [43], specifically the difficulty of electrode placement
accuracy. Since data mining and machine learning analyze the information as it is acquired,
a key point in obtaining more reliable classification models is ensuring the same conditions
of the experimental protocol during every measurement. We made sure that the selected
database complied with international best practices, although the material in the dataset
used did not include information about the repeatability of the EMG measurements, and
this is a limitation of the work; at any rate, statistical parameters for the reproducibility
of classification were calculated as a measure of performance. Another limitation of the
study was that the database did not have motion sensors or video recordings that would
allow us to have a direct relationship between EMG signal time and position in space.
The model of Opensim was controlled by the classification results of the machine learning
algorithms; for this reason, the simulated hand movements might be different from the
actual hand movements.

In the future, the validation of the Opensim model using a dataset including the
motion data, such as data from a 3D motion capture system or camera, will be important
to improve the results of this research and to confirm the virtually created movement
with the real movement position data. In addition, another task would be to bring the
15 discriminant functions of the QDA classifier, which are a sum of multiplications, to the
world of portability by embedding them in a microcontroller, which allows us to be one
step closer to real-time processing.

5. Conclusions

The development presented combined biomechanical simulation with automatic
classification of 15 finger movements. An open access database containing the signals
from an array of forearm EMG electrodes was used as input, and traditional machine
learning and signal preprocessing methods were used for the design of the classifiers.
The result turns out to be a nice tool for the practical design of hand prostheses or for
human–computer interface control through hand gestures. It allows one to visualize the
result of classifying a finger movement to consider its performance.

The algorithms created and their input data preprocessing provided good results
in the classification of the finger movements. The QDA algorithm with SFS and data
normalization provided the highest recognition rate (96.16%). The experiments suggest it is
possible to make a classifier specific to a person, using only 17 electrode features and 4 EMG
electrodes. This leads us towards a possible practical implementation and portability of
EMG matrix control.
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Abstract: Different control strategies are available for human machine interfaces based on electromyo-
graphy (EMG) to map voluntary muscle signals to control signals of a remote controlled device.
Complex systems such as robots or multi-fingered hands require a natural commanding, which can
be realized with proportional and simultaneous control schemes. Machine learning approaches and
methods based on regression are often used to realize the desired functionality. Training procedures
often include the tracking of visual stimuli on a screen or additional sensors, such as cameras or force
sensors, to create labels for decoder calibration. In certain scenarios, where ground truth, such as
additional sensor data, can not be measured, e.g., with people suffering from physical disabilities,
these methods come with the challenge of generating appropriate labels. We introduce a new ap-
proach that uses the EMG-feature stream recorded during a simple training procedure to generate
continuous labels. The method avoids synchronization mismatches in the labels and has no need
for additional sensor data. Furthermore, we investigated the influence of the transient phase of the
muscle contraction when using the new labeling approach. For this purpose, we performed a user
study involving 10 subjects performing online 2D goal-reaching and tracking tasks on a screen. In
total, five different labeling methods were tested, including three variations of the new approach as
well as methods based on binary labels, which served as a baseline. Results of the evaluation showed
that the introduced labeling approach in combination with the transient phase leads to a proportional
command that is more accurate than using only binary labels. In summary, this work presents a new
labeling approach for proportional EMG control without the need of a complex training procedure or
additional sensors.

Keywords: electromyography; human machine interface; robotcontrol; EMG-control schemes

1. Introduction

Human machine interfaces based on electromyography (EMG) are a technology used
in many different applications. Besides the control of prosthesis, which is the most common
application of EMG control, it is nowadays also used in rehabilitation [1], robot control [2],
in computer gaming interaction [3], or for teleoperation in space applications [4].

Depending on the application, different control strategies are realized to use the
voluntary muscle activity as an input signal for an external device. In commercially
available prosthesis conventional control techniques, such as threshold-based methods [5,6],
or linear classification [7] are still widely used. However, usually just a few degrees of
freedom (DoFs) are sequentially controlled by these techniques. More complex devices,
such as a robot or multi-fingered prosthesis, require a more natural and versatile control
scheme. Therefore, proportional and simultaneous control strategies are becoming more
widely adapted.

While proportional control allows the user to continuously change the control output
by varying the control input, i.e., the EMG signal, simultaneous control further enables
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the user to command multiple available motor functions or DoFs of the system at the
same time [8]. One way to realize proportional control with classification is given by
Simon et al. [9], where the authors present a two-step method. First, a classifier is trained to
differentiate between the classes. Second, the mean absolute value (MAV) of all EMG chan-
nels per class is applied to calculate a continuous control output. However, this method
only allows to control one motor function or class at a time. To overcome the problem
of non-simultaneous control, regression can be used instead of classification. Regression
allows for a continuous output for multiple DoF and thereby enables simultaneous control.
Hahne et al. [10] could further show that regression leads to an improvement in perfor-
mance and also allows for a better user correction of control commands, when comparing
regression to classification in an online test. Various machine learning methods have been
applied to realize regression methods with EMG. For example, artificial neural networks
(ANN) are commonly used [11–13], as well as support vector regression [14], or more
recently convolutional neural networks [15]. To realize proportional control, the machine
learning methods are also often combined with continuous data gathered by additional
sensors. One example for this is given by Castellini et al. [16], where EMG signals have
been combined with force measurements to control a dexterous multi-fingered hand.

Independent of the mapping method, proportional control methods come with typical
problems of myocontrol, such as sensor shift, signal drift, or muscle fatigue [17,18]. On
top of that, these methods exhibit the additional challenge of acquiring a suitable training
data set with correct labels for model building. Within the last few years, different research
groups investigated a variety of methods to provide suitable training data sets for pro-
portional control. A quite common way to generate the labels is to ask the user to track
a visual stimulus on a screen. The stimulus can be illustrated, for example, by a moving
cursor or the motion of an animated or video-recorded hand shown on a computer screen
such as in [19–21]. EMG data are recorded while the user is following the stimulus on the
screen and the label is calculated based on the state of the visual stimulus. An alternative
way to generate the labels is to use additional tracking devices such as a camera [13,22] or
data glove [23]. Here, the EMG signal is fitted to the motion gathered by the additional
sensors during the training procedure. In terms of amputees, the contra-lateral hand/arm
can be tracked with the sensors while EMG signals are recorded from the arm used with
the prosthesis. This method is called mirroring. EMG signals are also often interpreted
as force. Therefore, additional force sensors can be used to generate the training data set.
Users exert, for instance, finger force to a force sensor during the training procedure [24].

Additional sensors, such as force sensors, measure the motor output directly, which
can be considered as the ground truth of the EMG decoding, which makes it the optimal
signal to generate labels for the mapping. However, in terms of people with disabilities,
additional sensors are usually not an option. People with motor impairments often have a
limited proprioception of muscular activity and in case of amputees, finger force can not
even be measured [24]. In addition, mirroring can cause wrong data, as it is hard for the
subjects to provide exact mirror movements. In Hahne et al. [25], the performance of hand
movements dropped when using labels generated with the co-lateral hand in comparison
to that of the ipsy-lateral hand.

Generating labels without additional sensors, e.g., using a visual stimulus, comes
with the challenge to synchronize the EMG signals to the data used for the labels. When
generating EMG activation during the training procedure, the user may lag behind the
visualization on the screen. Poor synchronization of the data can lead to mismatches
between EMG data and labels, which may result in unreliable or simply wrong control
commands during usage. This can lead to unintended movements of the remote device
and therefore to frustrated users [26].

An additional challenge for the training data set used in proportional EMG control is
to gather the required variations in EMG signals in correlation with the desired continuous
control output. A relevant influencing factor for a robust EMG-based control lies in the in-
or exclusion of the transient phase. Fougner et al. [8] state that the training data needs to
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be as realistic as possible, including continuous movements to achieve good proportional
control. The transient phase of an EMG signal is defined as part of muscular activity in
which the signal rises from rest to contraction level. It includes the burst of the sudden
muscular activity in which not all motor-units (MUs) are activated yet. Compared to
this, the steady-state phase is defined as the phase of a constantly maintained muscle
contraction [27]. Although Englehart et al. [28] showed in an online study that the usage
of steady-state data leads to more accurate performance than using transient data, the
transient phase can give information for continuous labeling. Kanitz et al. [21], for example
state that the onset of a muscle contraction gives predictive information about the upcoming
class. According to Raghu et al. [29], the inclusion of transient data is not trivial, as the
segmentation, synchronization of additional sensors, as well as labeling is challenging with
this dynamic data. As a result to all these challenges, the transient phases of the signal are
often omitted, while the steady-state phase is regularly used for training, as, for example,
shown in [30].

Nevertheless, literature presents various possibilities to generate continuous labels
with varying EMG data. One option is to record and label EMG signals in a graded
representation. Therefore, the user provides muscular activity with different levels of
activation, e.g., at a low, medium, and high level, depending on the maximum voluntary
contraction (MVC) during the training procedure [31]. Another option is to continuously
ramp the motion during training from no contraction to a defined contraction level [32,33].
In Hahne et al. [10], the subject had to increase intensity up to 80% of MVC while a cursor
on the screen moved along the axis in order represent the required intensity. Zia et al. [34]
asked the subjects to provide muscular activity with contraction and relaxing periods of
4 s. In Jiang et al. [35], the forces, which had to be produced during the training procedure,
were visualized on a screen. Subjects were asked to ramp muscle contractions to a medium
force level which was recorded with a force-torque sensor. The force levels were then
used as labels. Gailey at al. [36] also used force sensors to measure finger force during the
training procedure. Phases of in- and decreasing forces allow one to measure different force
levels corresponding to the EMG data stream.

In this work, we focus on an EMG-based interface designed for robot control. The
main application is for people suffering from muscular atrophy. The interface maps
available residual muscular activity to a velocity-based output by using Gaussian process
regression. As presented above, generating continuous labels for proportional control is
often associated with the effort to fuse data from multiple sources. In terms of people with
disabilities, this is often not an option. Furthermore, complex training procedures are often
used to generate the labels, which can cause unreliable control commands.

The interface we are using provides a proportional output and thus comes with the
given challenges. In this work, we address these challenges and introduce a new labeling
approach to generate continuous labels for proportional control in an easy and direct
way. The introduced method directly uses the EMG feature stream of the training data
and creates continuous labels without the use of any additional sensors. As the label is
calculated directly based on the feature stream of the EMG signal, delays are reduced to a
minimum. Furthermore, a simple training procedure leads to easy application for users.
We compare the method to a standard binary labeling method and investigate the effect
of the different labeling strategies on task performance when operating a continuous and
simultaneous EMG-based interface. Additionally, the influence of in- and excluding the
transient phase of the EMG signal is analyzed.

To validate this approach experimentally, a user study with 10 subjects was conducted
using the velocity-based EMG interface. The task performance was analyzed with the help
of a 2D aiming and tracking task on a screen.

To summarize, the contribution of this work is to introduce a new labeling approach,
which generates continuous labels for proportional control in an easy and direct way.
Furthermore, the work includes a validation of this new labeling approach during task
performance and the effect compared to a binary labeling approach.
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2. Materials and Methods

2.1. The EMG-Based Interface

The used interface is interpreting the muscular activity of an operator to control a
remote device, e.g., a robot or cursor on a screen. Muscular activity is measured using
surface EMG sensors at different locations on the operator’s upper and lower arm. Based on
these EMG signals, the interface generates a continuous and velocity-based control signal
in 2D or 3D. The main use case of this interface is for people with severe muscular atrophy.
It provides people with the possibility to control a robot in 3D, when the usage of a joystick
is not an option anymore [37]. An assistive device like the robotic wheelchair EDAN can
present such a system, which is commanded via EMG signals by people suffering from
severe muscular atrophy (c.f. Figure 1 on the right) [38]. Depending on the user, the sensors
are either placed on the prominent muscle bellies, or in case of users with muscular atrophy
on spots along the arm where muscles can be still voluntarily activated. In this study, a 2D
control input was generated to perform tasks on a screen. The schematic overview of the
interface is given in Figure 1.

Figure 1. A schematic overview of the EMG-based interface used in this study. Gathering signals: A
participant is shown with the EMG sensors, holding a handle to generate isometric muscle contrac-
tions. Raw EMG signals are wirelessly transferred for further processing. Signal processing: Four
time-domain features are calculated from the raw EMG signals. A supervised training procedure
allows to generate the labels for the prediction. The labeled data is mapped to a velocity-based control
command by the use of Gaussian process regression. Control: The interface realizes a proportional
and simultaneous control output. 2D as well as 3D applications are feasible, e.g., for a commanding
an assistive robot. In this study, only 2D control was realized to perform tasks on a screen.

2.2. Experimental Setup

In this work, eight wireless electromyography Trigno® sensors from the company
Delsys were used to record muscular activity. A medical grade double-sided tape allows for
an easy attachment of the sensors to the surface of the skin. To record hand and wrist activity,
electrodes were placed close to the muscles M. flexor digitorum superficialis, M. flexor carpi
radialis, M. extensor carpi radialis, and M. extensor digitorum, respectively. Two sensors
were attached to the upper arm, i.e., the M. biceps brachii and to the M. triceps brachii, and
two to the M. deltoid (anterior and posterior). For each participant, the sEMG electrodes
were placed on the same physiological spots along the dominant arm. Figure 1 on the left
shows a subject wearing the eight EMG sensors. The raw biosignals were amplified and
wirelessly transferred to the Delsys Trigno® base station. An analog-to-digital converter
of the company Beckhoff digitized the ±5 V analog signal from the base station into a
12-bit signal at a rate of 1 kHz. A linux real-time computer received the data via EtherCAT,
where the signal was further processed with 1 kHz. The time domain (TD) feature set was
used for preprocessing, which was originally proposed by Hudgins et al. [39] to classify
myoelectric patterns for the control of a multifunction prosthesis. This feature set includes:
waveform-length, slope sign-change, zero-crossing-rate, and sEMG-amplitude. All features
are calculated on each EMG channel with a sliding window of 150 samples.
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Gaussian process (GP) regression was used to map EMG data to the directional control
command (±x, ±y). Here, the pyGP library [40] was utilized, which is based on the
implementation of [41]. Participants were asked to exert forces and torques against a rigid
handle, which was placed in front of them. Thus, they were able to generate reproducible
muscle contraction in an isometric fashion.

2.3. The Training Procedure

A training procedure was conducted with each participant at the beginning of an
experimental session, in order to acquire data to be used for calibration of the GP. Therefore,
participants hold on to a handle with their dominant hand (the same side on which the
electrodes are placed) in front of them with an angled elbow. First, the rest signal of the
arm was recorded while grasping the handle in a comfortable position without any specific
muscle contraction. EMG signals were recorded during this rest state to determine and
remove the signal’s DC offset. Furthermore, this rest data allowed to define an individual
activity threshold to distinguish between rest and voluntarily activated muscles. Based on
this activity threshold, a supervised training procedure was performed in order to generate
a training data set for the GP.

In total, four different directions are decoded: left and right (±x), up and down (±y).
To do so, visual cues on a screen guided the participants through the training procedure.
The screen displayed a coordinate system illustrating these four directions. One direction
at a time was highlighted and participants were asked to exert forces and torques against
the handle to be associated with motion along this highlighted direction. A marker moving
along the axis and into the direction of interest served as a progress bar, to visualize the
amount of collected active samples. Samples were counted as active as soon as the activity
threshold was exceeded. Only these active samples were considered as potential training
data for the direction. Thus, the activity signal allows to track the users state of participation
during the training and the effect of the reaction time is eliminated.

Subjects were asked to provide muscular activity at a level they are comfortable with
and stay within the steady-state phase for at least 3 s. They were not asked to ramp the
EMG data or reach a special activation level. During data acquisition, raw EMG signals
and features were recorded in combination with the indicated direction of motion and
the information of an exceeded activity threshold. For each direction, the visual cue was
displayed until 3000 active samples have been collected. However, participants had no
feedback about their activation level or which muscles were activated during muscle
contraction. Once 3000 active samples had been recorded for the requested direction,
subjects had to return to a resting state (i.e., stay below the activity threshold). Once
remaining in rest for 1000 consecutive data samples, the next direction of motion would be
indicated to the subject, until data had been collected for all four directions.

This data acquisition procedure was repeated four times, while only the last three
repetitions were used to build the training data sets used for mapping. Gaussian process
regression was used to decode continuous velocity commands for each DoF, i.e., one GP
for ±x, and one for ±y, respectively. Further details about the decoder pipeline are given
in Vogel et al. [42].

2.4. Labeling Approach

The goal is to create continuous labels based on the simple data acquisition procedure
described above and without additional sensors. The preprocessed EMG signals, gathered
during the training procedure, serve as the basis for the continuous labels. The onset of
activation was determined by the activity threshold measured during the rest state and
can be used as the onset of the labels. Therefore, unwanted delays due to the participants
reaction time can be avoided. However, an intrinsic delay of 47 ms is introduced by the
data acquisition system. Furthermore, the feature extraction, which uses a 150 ms sliding
window results in additional delay. However, these delays are present not exclusively
during training but they also occur during usage of the interface.
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In previous work [42], an offline analysis was conducted to reveal the features with
the most information content used for the decoding. The results indicated that all four
TD features (waveform-length, slope sign-change, zero-crossing-rate, and amplitude) are
involved in the prediction. Hence, all four features were used to maintain the influence of
the individual features. Furthermore, the data of all eight sensors were considered for the
labels, since each directional command is a composition of different sensors. In total, a data
stream of 32 features (4 features and 8 electrodes) was processed per time step. All of the
following calculation steps have been done separately for each direction.

In a first step, all eight signal values x of the eight electrodes e per TD feature f
were summed up for each time step i, in order to maintain the influence of each electrode
proportionally. This is shown in Equation (1) with ne = 8 for any direction dir. Thus, the
feature stream of each direction, was reduced from 32 to 4 features:

x f ,dir[i] =
ne

∑
e=1

xe, f ,dir[i]. (1)

Further on, each feature stream is normalized for itself between 0 and 1. Since each
TD feature has a different unit, this step provides equal weight to the features. Equation (2)
illustrates this step, where max(x f ,dir) presents the maximum value of each feature f and
xmin is chosen to be the mean of the recorded rest states of all training sequences:

x′f ,dir[i] = (x f ,dir[i]− xmin)/(max(x f ,dir)− xmin). (2)

Finally, the four features (n f = 4) are summed up at each time step i and again
normalized to be between 0 and 1, in order to get a maximum label of 1 for each direction
(c.f. Equation (3)):

labeldir[i] = normalize(
n f

∑
f=1

x′f ,dir[i]). (3)

Based on these equations, different labeling strategies can be realized. In our previous
work [2,42], we used a binary labeling method, which is considered as the baseline for
evaluation. In this binary labeling method, samples of the training set in which the
activity threshold was exceeded are labeled as ±1 for the respective direction. Accordingly,
“inactive” samples as well as samples of a non-active direction were labeled as 0. It has to
be noted that even when the labels for the mapping are binary, the output of the decoder
still allows for continuous signals, when a regression method is used.

Binary labels (labeldir[i] ∈ {−1, 0, 1}) are simple to realize but in contrast to continuous
labels (labeldir[i] ∈ {x ∈ Q | −1 ≤ x ≤ 1}), they can not represent the continuous change
of the EMG signal.

Additionally, the effect of in- and excluding the transient phase of the EMG signal
was investigated. Therefore, data either included the transient phase or relied purely on
the steady-state phase of the EMG signal. The first 1000 samples were discarded in case
of steady-state labeling. In total, five labeling strategies were evaluated. All labels were
derived from the EMG data of the same three training data sets per subject. From the total
of 3000 available samples per direction and repetition, each method took 2000 samples
into account. The sample selection was dependent on the particular method. The label
strategies were realized as followed:

(A) Binary label, including the rising transient phase of the EMG signal in the activ label;
(B) Continuous label, including the rising transient phase of the EMG signal in the

active label;
(C) Binary label, using only the steady state of the EMG signal (excluding transient phases);
(D) Continuous label, using only the steady state of the EMG signal (excluding tran-

sient phases);
(E) Continuous label, including both transient phases (rising and falling) of the EMG signal.
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We limited the evaluation to these 5 combinations of labels in order to keep the
duration of one experimental session below 90 min. A visualization of the different labeling
strategies can be found in Figure 2.

Figure 2. Example for the generated labels. (A) Binary label (0 = not active, 1 = active), including the
rising transient phase of the EMG signal in the active label. (B) Continuous label, including the rising
transient phase of the EMG signal in the active label. (C) Binary label, using only the steady-state
signal (excluding transient phases). (D) Continuous label, only using the steady-state part of the
signal. (E) Continuous label, including the rising and falling transient phases of the EMG signal.

2.5. Experimental Procedure

An online experiment was conducted to evaluate performance in a 2D task on a
computer screen. The decoded EMG signals of the participants were used to control the
velocity of a cursor on the screen. Subjects were able to move the cursor in 2 DoF, i.e.,
up, down and left, right. As one individual predictive model was used for each DoF,
simultaneous movements (e.g., diagonal movements) of the cursor were possible. Using
this interface, subjects performed two different tasks during the experiments: An aiming
task (AT) and a tracking task (TT). The application GUI for both tasks contains crosshairs
with an x- and y-axis. During the AT, a target circle was visible on the screen (c.f. Figure 3,
left side). It was placed 400 px from the starting point along one of the main axes. The
starting point of each trial was set to the middle of the crosshairs. Subjects were asked to
move the cursor as quickly and accurately as possible into the target. The cursor had to
stay within the target circle for at least 500 ms to finish the task successfully. After each
trial, the cursor was set back to the starting position, where it had to steadily remain for 2 s
before the next trial would start. A countdown visualized the 2 s duration before a new trial
was initiated. A test sequence involved all four possible directions of a target, presented
in random order. One experiment included five test sequences, which leads to a total of
20 trials per AT experiment.
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Figure 3. Description of the aiming task (AT) on the left and the tracking task (TT) on the right. The
yellow dot displays the cursor controlled by the participants. The gray dot displays the starting point
in the middle of the coordinate axes. The green circle is the respective target. During the AT, a target
located along the cardinal axis had to be reached as quickly and accurately as possible. During the
TT, participants had to track the target which moved with constant velocity along the horizontal or
vertical DoF.

During the TT, the target moved with a constant speed either horizontal or vertical
along the axis. The target started in the middle of the coordinate system and traveled
in total 1600 px along one DoF (±x or ±y), including two turns (c.f. Figure 3, right side).
Subjects were asked to follow the target and stay within the target diameter as accurately
as possible. One test sequence included both DoFs: horizontally and vertically. Five test
sequences completed one TT experiment.

Each AT and TT was conducted with all calculated models based on the different
labeling strategies. In total, each subject performed five rounds of experiments of AT and
TT. The model order was randomized based on a Latin square design over all subjects. The
subjects could familiarize to the new control output prior to each experiment round. This
included control of the cursor freely on the screen for 30 s, followed by one test sequence,
which was not considered in the evaluation.

2.6. Subjects

Ten right-handed subjects (1 female, 9 males, age range 21–28 years) took part in this
study. None of them reported known neurological diseases or other physical impairments.
All of the subjects had prior experience with the EMG-based interface. In particular, they
had used the interface in combination with labeling method A as this was used in previous
applications. All subjects gave written consent to the procedure, which was explained to
them orally and in a written form. The study was conducted according to the guidelines
of the Declaration of Helsinki, and approved by the Ethics Committee of the Technical
University of Munich, School of Medicine (approval number: 6/14S).

2.7. Performance Measurement and Data Analysis

For analyzing the data of the AT following performance measures were used:

• Success rate;
• Completion time, gross, and fine motion time;
• Average and maximum speed during gross motion;
• Path efficiency.

A trial is counted to be successfully finished when the cursor is placed within the
target circle for more than 500 ms. If a task could not be finished within 10 s, the trial is
considered to be failed. The path efficiency describes the ratio of the shortest distance to
the target to the traveled distance of the cursor. The gross motion time is defined as the
time from the beginning of the task until the cursor touches the target circle for the first
time. The fine motion time starts as soon as the cursor touches the target circle for the first
time (end of gross motion) and lasted until the task is finished successfully. Accordingly,
the completion time is the sum of gross and fine motion time. The evaluation of the TT was
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done using the average distance from the cursor to the center of the target. Furthermore,
the average travel speed was analyzed.

A statistical analysis was performed on the performance measures gross motion time,
fine motion time, completion time, path efficiency, as well as on the performance measures
of the TT. Thereby, the following hypothesis should be proofed:

Hypothesis 1 (H1). The different labeling methods do not influence task performance when using
the EMG-based interface in a 2D task.

The mean value of each subject per labeling approach and performance measure
was used for this analysis to obtain a more expressive result. Since the data was not
normally distributed, a Kruskal–Wallis (KW) test was used for statistical analysis. A
pairwise Wilcoxon test with Bonferroni correction was used as a post hoc test. The effect
size r was estimated through the equation given by Rosenthal, 1991 [43]. One sample of the
TT in method D showed a value more than twice as the mean, which was not explainable.
This value was identified as an outlier and eliminated for further analysis. In addition,
a questionnaire was made after each experiment to gather information on the subjects’
confidence in controlling the cursor.

3. Results

In total, 200 trials were performed per labeling method across all subjects during the
AT. The highest success rate was reached by the labeling method B with 98.5%, and E with
99% (c.f. Table 1). Both methods are based on the new labeling approach and include a
transient phase. Methods C and D show success rates of about 93%, while the baseline
method A has a success rate of 88.5%. Most failures occurred during the fine motion time
independent of the method (A: 19/23, B: 3/3, C: 12/13, D: 12/14, E: 1/2). Gross motion
failures occurred rather rarely. Figure 4 illustrates the failed trials, successful trials with
overshoots, and trials which could be finished directly (without overshooting). It can be
observed that subjects were able to finish the AT in 92% of the cases without any overshoots
using method B. Subjects were able to finish the AT without overshoots in 88.5% of the
trials with method E, while method A shows 56.5% of the trials without overshoots.

Table 1. Success rates and failures over all subjects during the AT.

A B C D E

success rate 88.5% 98.5% 93.5% 93% 99%Complete trial failure 23 3 13 14 2
Fine motion failure 19 3 12 12 1
Gross motion failure 4 0 1 2 1

Figure 4. Overshoots over the whole experiment. For each labeling method A–E, the bar plot
illustrates how often the trials were finished directly by moving the cursor straight into the target
circle (green), a target was overshot before finishing the trial (orange), or the trials failed (red).
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Figure 5 illustrates the completion time, gross motion, and fine motion time for suc-
cessfully finished trials of all subjects. For illustration, the mean values per labeling method
and subject are used, analogous to the statistical analysis. The gross motion time shows
stable results over the different methods. A significant effect could not be identified. In a
direct comparison between all methods using continuous labels (B, D, E) to the methods
based on binary labels (A and C), no significant effect of the gross motion time could be
found either. The results of this comparison can be seen in Figure 5 on the right side.

Figure 5. Results of completion time, fine motion, and gross motion time over all subjects during
AT, based on the mean values of each subject per labeling method. (Left): boxplots of the needed
time sorted by labeling method. The statistical analysis identified a significant effect in fine motion
time between method A and B. (Right): boxplots of needed time sorted by methods based on binary
and continuous labels. Binary includes results performed with model A and C; continuous includes
results from B, D, and E. The KW test could identify a significant effect for the fine motion time.
‘•’ indicates outliers; ‘*’ indicates statistical significance (‘*’ p < 0.05, ‘**’ p < 0.01, ‘***’ p < 0.001).

In contrast to the gross motion time, the fine motion time shows stronger variation
between the methods. A significant effect can be reported by the KW test (p-value < 0.01).
The post hoc test showed that it took significantly longer to finish the fine motion part
when using the binary model A compared to model B (p-value < 0.01, r = 0.66), which is
based on continuous labels. A direct comparison of methods using binary and continuous
labels shows a significant effect as well (p-value < 0.001, r = 0.80).

The analysis could identify a significant effect of the path efficiency during gross
motion. The KW test identified methods based on binary labels with an average path
efficiency of less than 79% to be less efficient (p-value < 0.05, r = 0.52) compared to the
methods based on continuous labels (path efficiency of B,D,E > 83%). These results can be
found in Table 2.

Table 2. Path efficiency and results of the questionnaire. The table show the path efficiency during the
gross motion section of the AT over all subjects. The questionnaire asked the subjects how well they
could control the cursor during each experiment. They could rate from 0 to 20, where 0 represented
bad control of the cursor and 20 represented a perfect control.

A B C D E

path efficiency (PE) mean in % 76.7 83.1 78.9 83.5 84.0
±sd 17.7 15.0 17.9 14.2 14.4

questionnaire: How good was
the control of the cursor?

mean (0–20) 13.6 16.3 15.3 15.4 15.9
±sd 3.2 3.0 1.9 2.3 2.2

When comparing the cursor speeds during the AT, differences can be observed for
the used methods (c.f. Figure 6 on the left side). The maximum cursor speed during
gross motion was reached by method A followed by method C, both with an average
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maximum speed of more than 400 px/s. The cursor would reach a velocity of approximately
600 px/s, if the output of the predictive model is 1. The KW test identified a significant
difference in maximum speed. The baseline method A shows an effect when compared
to the methods based on continuous labels (B, D, E). A faster maximum cursor speed can
also be reported (p-value < 0.001, r = 0.93) in a direct comparison between methods using
binary or continuous labels. The results are visualized in Figure 6 on the right side.

Figure 6. Results of average and maximum speed over all subjects during AT, based on the mean
values of each subject per labeling method. (Left): boxplot of the average speed and maximum
speed in px/s during the gross motion section of the AT. A significant difference was identified for
maximum speed (A-(B, D, E) by the KW test. (Right): boxplot for the average and maximum speed
during the gross motion for methods based on binary and continuously labeled data. A significant
difference was identified for maximum speed. ‘•’ indicates outliers; ‘*’ indicates statistical significance
(‘*’ p < 0.05, ‘**’ p < 0.01, ‘***’ p < 0.001).

During the TT, no significant effect on average distance to the target could be identified.
The left side of Figure 7 illustrates these results of the TT over all subjects. The statistical
analysis obtained a significant difference in average speed during the TT (p-value < 0.01,
r = 0.66). Hence, labeling method A showed a higher average speed compared to method
B, which is based on continuous labels. Results can be seen in Figure 7 on the right side.
While the average speed of method A lies at about 130 px/s, methods using continuous
labels show mainly values lower than 120 px/s. The target moved with a constant speed
of 100 px/s.

Figure 7. Results of the TT over all subjects, based on the mean values of each subject per labeling
method. (Left): boxplot of the average distance from cursor to target. The total distance traveled
per trial was 1600 px. There was no significant effect between the methods. (Right): boxplot of
the average travel speed of the cursor. The target moved with a constant velocity of 100 px/s. A
significant effect was identified between method A and B by the KW test and the post hoc test.
‘•’ indicates outliers; ‘*’ indicates statistical significance (‘*’ p < 0.05, ‘**’ p < 0.01, ‘***’ p < 0.001).
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Subjects had to rate their ability to control the cursor on a scale from 0 (very bad
control) to 20 (very good control) after performing each labeling method. Method B reached
on average the best rating with 16.3± 3 points, while method A was rated worst with
13.6± 3.2 points. The results of the questionnaire can be found in Table 2.

4. Discussion

In this work, we introduced a new labeling approach to generate continuous labels
for proportional electromyographic control. The continuous labels originated from the pre-
processed EMG data, recorded during a simple data acquisition procedure. No additional
sensors were used to generate the labels. Since the labels were created directly from the
EMG feature stream, they reflect the intensity of the muscular activity provided by the par-
ticipant. By using the EMG data without additional sensors, the challenge of synchronizing
external values to the proportional EMG signals as described in Raghu et al. [29] can be
avoided. Mismatches that may occur from tracking a visual stimulus during the training
procedure e.g., through an incorrect activity level or a delayed muscle contraction can be
excluded with this method. The simple training procedure specifies just the category of
the label (in this case, the direction) as well as the time to gather enough data. No ramp or
MVC levels had to be reached. The predefined activity threshold enables to coincide the
onset of the muscular activity with the onset of the labels, including the transient phase.
Thus, no additional time delay occurs between the EMG signals and the labels during the
training. The time delay given by the system, to transfer and process the data, is the only
delay present. However, this delay is inherent to the system and is present during training
but also during the usage of the interface.

The realized EMG-based interface achieved success rates between 88.5% and 99%
during the aiming task. In the literature it has been shown that aiming tasks are viable
to test the performance of EMG-based interfaces [44,45]. In Scheme et al. [44] e.g., two
proportional control schemes where compared using a Fitts’ Law test, which presents a
special type of an aiming task. Proportional control was added here as a post-processing
step to the classification. Since the experimental design differs from our approach (target
distances, target and cursor sizes, and simultaneous control), the results are not directly
comparable, however a good estimate was given for task performance with EMG-based
interfaces during aiming tasks. In Scheme et al. [44], a success rate of up to 96% could be
reached. Kamavuako et al. [45] used as well a Fitts’ Law test to measure performance and
reached success rates of about 91% with a surface EMG approach and 96% in a combined
approach of surface and intramuscular EMG. The success rate of our study (between 88.5%
and 99%) lies in a similar range as the results achieved in the mentioned publications. This
reveals that our approach provides, generally, a useful control output.

A success rate of up to 99% (B: 98.5%, E: 99%) could be achieved by methods based on
the new introduced labeling approach. It is noteworthy that the two continuous labeling
methods that include the transient phase (B and E) performed best. Exclusion of transient
phases in method D led to a drop in success rate to 93%. Here, the result is comparable to
method C (93.5%), a method based on binary labels which also excludes the transient phase.
Figure 8 illustrates the histogram of the labels generated by the new labeling approach. The
effect of in- or exclusion of the transient phase on the labels can be observed. Methods,
including the transient phase, contains more variability in the labels. As an example, in
method B and E, 11 % and 21 % of the labels have a value below 0.5. These are considerably
more as in method D (1.5 %). We assume that the label-variability, given by the transient
phase, improves the control accuracy. This statement is supported by the fact that failures in
method D occurred mainly during fine motion (c.f. Table 1), in which a precise commanding
is needed to reach the target. Including the transient phase allows for more variability in
EMG control while maintaining the simple training procedure. The short transient phases
that are required to reach the steady state signal already provide enough variability in the
EMG signal to improve the level of proportional control, compared to using steady state
data only.
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Figure 8. Histogram of the continuous labels. Shown is a histogram of the generated labels of the
methods using continuous labels B, D, and E. The data includes the labels between 0 and 1 of all
subjects and directions (0 is excluded).

Compared to method B, method E includes two transient phases: the rising as well
as the falling flank of EMG data. The success rate of both models shows similar results.
Further, a significant effect between these models could not be identified. This indicates
that considering the second flank has little effect on task performance. The experience from
our prior studies with people suffering severe muscular atrophy showed that it is often
a problem to relax the muscles abruptly after voluntary muscle contraction. This might
influence the falling EMG signal during training. Therefore, we hypothesize that in our
method, no advantage is given by including the falling flank in the training data.

When comparing methods based on continuous labels with methods based on binary
labels, differences in success rate, fine motion time, and maximum cursor speed can be
observed. Trials performed with a predictive model based on continuous labels show a
higher success rate as methods based on binary labels. The baseline method A showed,
with 88.5% success rate, the lowest value for all methods. On closer inspection, the effect
can be attributed to the fine control of the cursor. While the gross motion time is almost
equal over all methods, the outcome of the fine motion time varies. This means that the
cursor could be moved correctly in the direction of the target and reach it, however the
cursor could not always be moved precisely into the target circle. The statistical analysis
confirmed that the fine motion could be controlled more precisely with the methods based
on continuous labels. We assume that better fine motion indicates better proportional
control as the ability for slow and precise commands is required to place the cursor inside
the goal area.

The analysis of the cursor speed showed that a binary labeling strategy leads to faster
maximum cursor commands during the gross motion. The active EMG data was labeled
with 1 during the data acquisition when a binary label is applied. The generated labels
of the newly-introduced approach (c.f. Figure 8) are spread between 0 and 1. This leads
to a slower control output, which in turn leads to the ability to control the output more
precisely. Although, the maximum cursor velocity during the AT is faster for methods
based on binary labels, the average speed did not increase and the gross motion time did
not decrease for these models. However, the path efficiency showed that the traveled path
was more efficient in methods based on continuous labels (PE for binary labels < 79%;
PE for continuous labels > 83%). The average PE of methods based on continuous labels
correspond to those found in the literature. A PE of up to 82% was reported in [44] during
a Fitts’ Law test. Kamavuako [45] reported a PE of up to 87% in the Fitts’ Law test, which
was performed by nine subjects. Both realized the EMG control by the use of a proportional
classifier. In Ameri et al. [14], a support vector machine was used to achieve simultaneous
and proportional control. Here, a PE of up to 85% could be reported during a 2D aiming
task for one subject with transradial limb deficiency and about 76% for 10 healthy subjects
during a 3D task.
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A detailed inspection shows that especially method A causes differences to the meth-
ods with continuous labels. Besides the lower success rate, method A also produces an
effect in fine motion time and maximum cursor velocity. Method C, which presents a
method that excludes the transient phase, does not cause these effects. This reveals that
the inclusion of the transient phase to the binary label further increases the agility in the
prediction. Thus, model A appears most agile at the cost of less accuracy.

These findings can also be observed for the tracking task. Higher average speed was
achieved when method A was active. A statistical effect was found between A and B.
Method B shows the lowest average speed, which is also closest to that of the moving target.
Nevertheless, the results of the average distance to the target indicates that an equivalent
performance could be reached by all methods. Apparently the selected speed of the target
of 100 px/s can be tracked equally well with all five labeling methods. We suggest further
tests with varying velocities of the target to investigate more detailed effects regarding task
performance during tracking.

With the results shown above, the Hypothesis 1 (H1) can be partially rejected, since the
task performance of fine motion and cursor speed are influenced by the different labeling
methods, especially when distinguishing between continuous and binary labeling methods.

The evaluation of the different labeling strategies indicates that a continuous label
leads to more precision during fine motion control. The control of prostheses or assistive
robots often requires precise proportional control in order to master tasks of daily living.
Therefore, our method can potentially help to improve the control of assistive devices. The
results of the questionnaire indicate that the participants preferred a precise control as
given by method B over a reactive control as given by method A for the given task. This
is expected, as the performance is worse using method A, with participants rating this
method lower. The assessment of the participants supports the results of the quantitative
measures, such as the success rate and fine motion.

A high frustration level due to a lack of control is one of the reasons to reject an
assistive device [26]. An increased confidence about the control may therefore increase the
acceptance of the assistive device. However, the findings about the sensitive control given
through a binary label and the inclusion of the transient phase, as given in method A, are of
interest to systems using shared control. Assistive devices with an integrated shared control
algorithm support the user during complex tasks of daily living. Operators command the
device roughly along a task. Precise movements and fine motions are then supported by
the system [46], which makes the task easier for the user. Here, the advantage of more
reactive control may outweigh that of precise control because deficits in precision can be
compensated by shared control. A detailed analysis of the labels during tasks of daily living
and with and without shared control would be necessary to confirm that assumption.

Prior research shows that the presented EMG-based interface can be used in 3D
applications with a robotic system [38]. Baseline method A was used as labeling method to
perform tasks of daily living with an assistive robot. The interface allows a proportional
and simultaneous control of the robotic device in 3D. Although, in this investigation the
labeling methods were evaluated in a 2D task on a screen, we assume that the results may
be valid for proportional and simultaneous control in 3D.

As sensor shift and drift are still problems in EMG-based control, techniques of online
adaptations are useful to update the predictive model during the application if control com-
mands are not fitting anymore [47]. The introduced approach provides continuous labels
that can be created during the usage of the interface. It is neither dependent on a defined
training procedure nor on additional sensors to generate the continuous labels. Thus, the
training data can be gathered during the application and interrupting the application is
avoidable. This makes the introduced approach ideal to update the predictive model online
with continuous labels.
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5. Conclusions

This work presents a new labeling approach for continuous labels used in propor-
tional EMG control. Labels are directly extracted from EMG features calculated during
data acquisition. The method allows for a simple training procedure and still covers the
variability of the EMG signal by including the transient phase of muscle contraction during
training. No additional sensors were needed and the method ensures a minimum time
delay between the EMG training data and the generated labels. Furthermore, mismatches
due to wrong contraction levels are avoided. Thus, this labeling method presents an ideal
method for people with physical disabilities, especially if additional sensors are not an op-
tion. However, this work does not provide a comparison between the introduced approach
and other labeling strategies, such as tracking a visual stimulus or additional sensors. At
this point we can also not make any statement on the control with prosthesis or other EMG
applications. Further studies are mandatory to verify if the introduced method can be used
or even improve e.g., prosthesis control.

We investigated the effect of the introduced labeling approach on task performance
when using an EMG-based interface. To quantify the effect, participants performed tasks
with five different mappings based on the same training data, however with different
labeling methods. The five different methods included continuous labels, a baseline method
with binary labels, as well as variations thereof with in- and excluding the transient phases
of the EMG signal. In total, three variations of the new labeling approach (called: B, D, and
E) were compared with two variations of a binary labeling strategy (called: A and C). The
evaluation showed that the methods based on continuous labels and including transient
and steady-state phases led to high success rates of 98.5% with B and 99% with method E,
compared to methods based on binary labels, which showed success rates of 88.5% with
A and 93.5% with method C. Differences between the methods were particularly evident
during fine motion. A significant difference could be identified between methods based on
binary and continuous labels, as well as between method A and B. This indicates improved
fine motion capabilities with methods using continuous labels and a higher command
accuracy in comparison with methods using binary labels.

To conclude, the introduced continuous labels in combination with the transient phase
(corresponding to labeling method B) presents an efficient way to map muscular activity to
a proportional control input with good command accuracy. The baseline method, which
uses binary labels, proved to be more reactive and less accurate. In applications where no
precise control is required, as e.g., in systems providing shared control, these strategies
may be advantageous. In future, the introduced approach must be deployed with a robotic
system in 3D to confirm the achieved results with the intended system of use. Furthermore,
the approach must be evaluated with actual users suffering from severe muscular atrophy,
where this labeling method is of particular interest, as additional sensors are not an option
for generating appropriate labels for this group of users.
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Abstract: Surface electromyography (sEMG)-based gesture recognition systems provide the intuitive
and accurate recognition of various gestures in human-computer interaction. In this study, an
sEMG-based hand posture recognition algorithm was developed, considering three main problems:
electrode shift, feature vectors, and posture groups. The sEMG signal was measured using an
armband sensor with the electrode shift. An artificial neural network classifier was trained using
21 feature vectors for seven different posture groups. The inter-session and inter-feature Pearson
correlation coefficients (PCCs) were calculated. The results indicate that the classification performance
improved with the number of training sessions of the electrode shift. The number of sessions
necessary for efficient training was four, and the feature vectors with a high inter-session PCC
(r > 0.7) exhibited high classification accuracy. Similarities between postures in a posture group
decreased the classification accuracy. Our results indicate that the classification accuracy could be
improved with the addition of more electrode shift training sessions and that the PCC is useful for
selecting the feature vector. Furthermore, hand posture selection was as important as feature vector
selection. These findings will help in optimizing the sEMG-based pattern recognition algorithm more
easily and quickly.

Keywords: surface electromyography; pattern recognition; artificial neural network; electrode shift;
hand posture; feature vector; human-computer interaction; armband sensor

1. Introduction

Gestures, involving the physical movements of the hands, face, or body, is a form
of communication used to convey meaningful information or interact with the environ-
ment [1]. Among the various gestures, those typically applied in machine learning algo-
rithms as the interface of human-computer interaction (HCI) are hand gestures. This is
because they constitute the most natural and efficient movements in daily life [2]. As an
HCI interface, a hand gesture recognition system has three advantages [3]. The first advan-
tage is the ease of hygiene management through a contactless interface. This contactless
interface helps in maintaining hygienic conditions for the user by preventing contami-
nation due to contact. Therefore, hand gesture recognition systems are useful in clinical
applications such as healthcare systems. The second advantage is that a hand gesture
recognition system can be applied as an alternative to overcome physical disabilities. It
is easy to apply this system to an assistive device, such as a home-care system or an IoT
system controller, for the disabled or elderly who have difficulty in moving. Furthermore,
the need for a gesture-based HCI interface is increasing, owing to the increasing number of
people who can only communicate through hand gestures (e.g., sign language for the deaf).
The third advantage is that considerable data and commands can be easily managed by the
intuitive movements.

Studies on hand gesture recognition have predominantly used one of the two following
technologies: computer vision or wearable sensors. Computer vision-based systems
use one or more cameras to recognize hand gestures. Shin et al. developed a six-hand

Sensors 2021, 21, 7681. https://doi.org/10.3390/s21227681 https://www.mdpi.com/journal/sensors75
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gesture recognition system using a low-priced USB color camera and entropy analysis;
they achieved a classification accuracy of 97.2% [4]. Stergiopoulou and Papamarkos were
developed a neural network-based hand gesture recognition system using one camera and
thirty-one classified hand gestures with an accuracy of 90.0% [5]. However, these systems
encountered the problem of environmental factors (e.g., shadow, lighting, background, and
camera position) affecting the classification performance. They exemplify the difficulty
involved in optimizing computer vision-based recognition systems under environmental
factors, varying with respect to time and place. Furthermore, the camera, which has a high
resolution for accurate gesture recognition, is expensive and has low portability, and the
output data file is very large.

Wearable sensor-based systems use non-invasive sensors on the user’s skin. The bio-
signal or the motion of the user is detected and measured by the non-invasive sensors, and
the measured data are used to recognize the gestures. A data glove is predominantly used
in studies on wearable sensor-based hand gesture recognition, and is useful for measuring
the posture and gesture of the hand accurately. Nam et al. classified ten hand gestures
with an accuracy of 80.0% using the VLP data glove and hidden Markov model (HMM) [6].
Additionally, Yin et al. developed a hand gesture recognition system that recognizes
nine hand gestures, with an accuracy of 99.8%, using the data glove and neural network
algorithm [7]. However, it is difficult to use the data glove-based gesture recognition
system in daily life, owing to the high price of the glove and consequent contamination
from sweat and oil after long-term use. Furthermore, the data glove restricts the natural
hand gestures of the user, and the glove design causes discomfort because of repetitive
donning and doffing in daily life.

Recently, several studies have applied sEMG sensors to overcome problems encoun-
tered by hand gesture recognition systems. sEMG is a non-invasive method for measuring
the fine bio-signal of muscle activation, and the sEMG signal contains extensive information
about the activity of neurons from the spinal cord to the muscle fibers. Therefore, sEMG
is widely used in clinic and rehabilitation and bio-signal-based control systems for HCI.
Kim et al. classified four-hand gestures from one sEMG sensor and achieved a classification
accuracy of approximately 94.0% using a combination of the K-nearest neighbor (KNN)
and Bayes classifier [8]. Shi et al. developed a four-hand gesture recognition algorithm and
achieved an accuracy of 94.0% using two sEMG sensors and a KNN classifier [9]. These
previous studies suggested using each muscle belly for the positions of the sEMG sensors,
to avoid crosstalk between sEMG signals; however, this decreases the practicality of using
the gesture recognition system because finding the muscle belly is difficult for non-expert
users in daily life.

A wearable sensor, which has the design of an armband or a wristband, has been
suggested to increase the practicality for non-expert users in daily life. Jiang et al. de-
veloped a wristband-type sEMG sensor that includes four channel sEMG modules and
one inertial measurement unit (IMU). They classified eight hand gestures with an accu-
racy of 92.6% using a linear discriminant analysis classifier [10]. Abreu et al. classified
twenty static hand gestures with an accuracy of 98.6% using a support vector machine
(SVM) classifier and a commercial sensor called the Myo Armband (Thalmic Labs, Kitch-
ener, Canada) [11]. However, the two main problems—electrode shift and feature vector
selection—remain unsolved.

Electrode shift is a common issue that arises during donning and doffing of a sensor in
daily life. Many previous studies fixed the positions of both the sEMG and wearable sensors
to avoid misclassifications that result from electrode shift. Feature vector selection is an
important process in the development of a pattern recognition algorithm [12,13]. Previous
studies analyzed the classification performance of each feature vector and applied the
feature vector that delivered the best performance in the hand gesture recognition algorithm.
However, various factors, such as the sensor performance, limb position, and electrode
shift, easily affect the classification performance of the feature vector. Therefore, feature
vector selection, based on classification performance, is inefficient in the development of

76



Sensors 2021, 21, 7681

the pattern recognition algorithm. In previous studies on efficient pattern recognition, a
principal component analysis (PCA) and a genetic algorithm (GA), both of which reduce
the dimension of the feature vector and minimize the data complexity, were suggested
for feature vector selection [14,15]; however, few studies have been conducted on feature
vector selection that consider the electrode shift.

Many previous studies developed hand gesture recognition systems, but the number
of target gestures are limited because of the limitations of the classification performances
of the algorithms and the efficiencies of the systems. Therefore, target gestures were
selected with reference to previous studies. For the HCI interface, Wahid et al. developed
a classification algorithm for the target gestures of a fist, wave in, and wave out [16],
and Zhang et al. developed an algorithm for the target gestures of a double tap, wave
in, wave out, fingers spread, and fist [17]. Castiblanco et al. selected twelve hand wrist
gestures to develop a gesture recognition algorithm for stroke rehabilitation [18]. Kim et al.
selected thirty-eight Korean finger languages in a finger language recognition study [19],
and seven hand gestures were selected in a myoelectric hand prosthesis control study [20].
Andrad et al. developed a hand gesture recognition algorithm for the target gestures of
a cylindrical grasp, tip pinch, and hook (snap, palmar pinch, spherical grasp, and lateral
pinch) [21]; furthermore, they reported that the classification accuracy decreased with
similarity in the same-gesture group (precision grasp: tip, palmar and lateral; power grasp:
cylindrical, hook, and spherical). Therefore, these previous studies were performed to
improve the classification performance with a selected target gesture. However, selected
gestures could be replaced with other gestures which had a similar form or function.
Therefore, the analysis about the gesture selection was important to improve the gesture
recognition algorithm, but few studies have been conducted on classification performance
in accordance with the gesture selection type.

In this study, a hand posture recognition algorithm was developed, taking into con-
sideration the electrode shift, feature vectors, and posture types. A custom armband-type
multi-channel sEMG sensor was used to measure the sEMG signal on the forearm. Experi-
ments were conducted with electrode shifts and the measured sEMG signal was used to
calculate twenty-one feature vectors. Twelve hand postures were selected after a literature
review, and seven posture groups were formed considering the function and muscle activa-
tion of each hand posture. The classification accuracy and inter-session and inter-feature
PCCs were analyzed for the PCC-based feature vector selection.

2. Materials and Methods

2.1. Participants

Ten healthy right-handed adults (7 males, 3 females, 24.1 ± 0.7 years) without neu-
rological disorders were recruited to participate in this study. All participants were fully
informed of any of the risks associated with the experiments, and they gave their written
consent to participate in this study. The experimental procedure was approved by the
Yonsei University Mirae Institutional Review Board (1041849-201704-BM-018-01).

2.2. Equipment

Figure 1 shows the armband-type sEMG sensor and Baseline hand dynamometers
(Fabrication Enterprises, Inc., White Plains, NY, USA) used in this experiment. The custom
armband-type eight-channel sEMG sensor was used to measure the sEMG signal with a
sampling frequency of 500 Hz [19]. Each participant wore the armband sensor on their
right forearm, and the main module of the armband sensor was placed on the belly area of
the anterior part of the forearm during wrist flexion (around the flexor carpi radialis). The
hand dynamometers were used to perform each hand posture with fixed grasp force.
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(a) (b) (c) (d) 

Figure 1. Armband-type multi-channel sEMG sensor (a) and hand dynamometers (b–d).

2.3. Experimental Procedures

Twelve hand postures were selected after a literature review [10,21–30] (Figure 2); the
function of each of these hand postures is presented in Table 1.

      
(a) (b) (c) (d) (e) (f) 

     
(g) (h) (i) (j) (k) (l) 

Figure 2. Twelve hand postures selected for use in this study: (a) rest, (b) spread, (c) scissor-sign,
(d) finger pointing, (e) V-sign, (f) O.K.-sign, (g) thumb-up (hook), (h) cylindrical grasp, (i) spherical
grasp, (j) lateral pinch, (k) palmar pinch, (l) tip pinch.

In this study, seven hand posture groups were constructed, and the classification
performances of each posture group were analyzed to find the most efficient hand posture
group for the development of a hand posture recognition algorithm. The posture groups
were determined using the function and activated muscles of each hand posture. Group
1 was composed of the most frequently used and important hand postures identified in
previous studies. Group 2 and Group 5 consisted of the postures in Group 1 and the
finger-pointing or scissor-sign postures, respectively, which are postures used to point to
objects. Group 3 and Group 4 consisted of the postures in Group 1 and postures such as a
tip pinch and spherical grasp, which have the same function as those included in Group 1.
Seven different hand postures were selected to be part of Group 6, considering the overlap
of the functions and activated muscles on each hand posture. Finally, Group 7 included all
of the listed hand postures.
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In an sEMG-based gesture recognition algorithm, force and muscle fatigue were
classed as critical factors to increase the variability of the sEMG signal. Therefore, all
hand postures were performed with 20% maximum voluntary contraction (MVC) to avoid
muscle fatigue and the confounding factor with the grasp force [20,31]. Hydraulic-hand
and pneumatic-hand dynamometers, and hydraulic pinch gauge (Fabrication Enterprises,
Inc., White Plains, NY, USA) were used for the grasp and pinch postures, respectively. All
participants practiced maintaining 20% MVC in all hand postures except the rest posture.
Postures without the use of the hand dynamometers were performed with the same force
as displayed in the practice. The participants were seated on chairs and performed each
hand posture for 5 s in a random order, and the experimental session was repeated 10 times.
All participants took sufficient rests, removing the sensor between experimental sessions,
and the sensor was worn again before the next session.

2.4. Feature Vector Extraction

The sEMG signal was filtered using the fourth bandpass filter with a bandwidth of
15–250 Hz, and the filtered sEMG signal was used to calculate the feature vectors. In
this study, the feature vectors were selected in the time domain corresponding to real-
time application [32]. Twenty-one time-domain feature vectors and their corresponding
formulas are presented in Table 2. The hand posture recognition algorithm was applied to
feature vectors of a single type. The feature vectors were calculated with a window size of
250 ms and a window shift of 10 ms, as recommended in a previous study [33]. The feature
vectors of AR and CC were calculated using various orders of 1 to 10.

Table 2. Time-domain feature vectors.

N: window size, i: data sample, EMGi: sEMG signal, wi: white noise error term; p: function order

RMS =

√
1
N

N
∑

i=1
EMGi

2 WL =
N−1
∑

i=1
|EMGi+1 − EMGi | MAV = 1

N

N
∑

i=1
|EMGi | MAVSLPi = MAVi+1 − MAVi

MAV1 & MAV2 = 1
N

N
∑

i=1
wi |EMGi |

MAV1 : wi =

{
1, i f 0.25N ≤ i ≤ 0.75N
0.5, otherwise

MAV2 : wi =

⎧⎨
⎩

1, i f 0.25N ≤ i ≤ 0.75N
4i
N , elsei f i < 0.25N

4(i−N)
N , otherwise

ZC =
N−1
∑

i=1
[ f (xi × xi+1) ∩ |xi − xi+1| ≥ threshold]

WAMP =
N−1
∑

i=1
[ f (|xi − xi+1|)] f (x) =

{
1, i f x ≥ threshold
0, otherwise

SSC =
N−1
∑

i=2
[ f [(xi − xi−1)× (xi − xi+1)]]

IEMG =
N
∑

i=1
|EMGi | VAR = 1

N−1

N
∑

i=1
EMGi

2 SSI =
N
∑

i=1
EMGi

2 DASDV =

√
1

N−1

N−1
∑

i=1
(xi+1 − xi)

2

TM3 =

∣∣∣∣ 1
N

N
∑

i=1
EMGi

3
∣∣∣∣

TM4 = 1
N

N
∑

i=1
EMGi

4

TM5 =

∣∣∣∣ 1
N

N
∑

i=1
EMGi

5
∣∣∣∣

LOG = e
1
N ∑N

i=1 log(|EMGi |) MYOP = 1
N

N
∑

i=1
[ f (xi)] AAC = 1

N

N−1
∑

i=1
|xi+1 − xi |

AR = ap; Auto − regressive mode : xi = ∑P
p=1 apxi−p + wi

CC = cp; c1 = −a1; cp = −ap − ∑
p−1
l=1

(
1 − l

p

)
apcp−l ; 1 ≤ l ≤ p

The threshold-based feature vectors, such as ZC, MYOP, WAMP, and SSC, were calcu-
lated using the predefined threshold values. In previous studies, the threshold value was
selected from 50 μV to 100 mV considering the gain of the sEMG sensor and background
noise. The optimization of the threshold value is crucial because a considerably low thresh-
old value leads to the transmission of unwanted information from the background noise,
and a considerably high threshold value misses important information for pattern recogni-
tion. However, finding the optimized threshold value requires significant amounts of time
and high costs for the gesture recognition system. Therefore, many previous studies used
threshold values from other studies, rather than optimizing the threshold values in their
systems; moreover, few studies have been conducted to find the most suitable threshold
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value for each feature vector. Kamavuako et al. suggested Equation (1) for defining various
threshold values using a factor R and the RMS value from the sEMG signal at rest [34]. The
equation proved useful in reducing the time and cost for the optimization of the threshold
values in the gesture recognition algorithm:

Threshold value = R × RMSsEMGat rest , (1)

Consequently, the equation was used in this study to optimize the threshold value for
each feature vector, and a factor R was applied in increments of 0.5, from 0.0 to 10.0. In
addition, the threshold values used in previous studies [13,20,35–43] were applied in the
hand posture recognition algorithm.

2.5. Classifier

An artificial neural network (ANN) is a machine learning algorithm that was devel-
oped by simulating a biological neural network in the brain of a human or animal. The ANN
was constructed with the input layer, hidden layer, and output layer, using artificial neurons,
known as the node, which then classified the input signals through learning processes such
as the backpropagation algorithm. The joint function between the input/hidden/output
layers was easily estimated, and the classification was performed quickly.

In the input and the output layers, the number of nodes were determined by the
feature vector and the target class. However, the hidden layer was able to change the
number of nodes. The optimization of the hidden layer’s nodes was important because
insufficient nodes caused underfitting, while excessive nodes caused overfitting [44,45].
In this study, 8 nodes in the input layer (1 sEMG feature × 8 channels) and 6–12 nodes in
the output layer (the number of hand posture) were determined in ANN, and there were
17 nodes in the hidden layer according to a previous study [46]. Both the training and
testing of the ANN classifier were performed through 10-fold cross validation using the
MATLAB Deep Learning Toolbox (Mathworks, Inc., Natick, MA, USA).

2.6. Performance Evaluation

In this study, twenty-one time-domain feature vectors and two feature combinations
(Hudgins’ set: MAV, WL, ZC, and SSC [38] and Du’s set: IEMG, VAR, WL, ZC, SSC, and
WAMP [47]) from previous studies were applied to the ANN classifier. The classification
accuracy was analyzed based on the number of training sessions and considering the
electrode shift, and the PCC was calculated to analyze the linear relationship between the
sessions or the feature vectors. Many previous studies suggested various methods to select
the feature vectors for the improvement of the classification performance [10,12,14,15].
Correlation-based feature vector selection was primarily used to evaluate the way each
feature vector is able to distinguish a gesture or verify the similarity of the information of
feature vectors. In this study, the inter-session PCC was used to analyze the correlation
between the sessions with the electrode shift, and the similarity of the feature vectors was
analyzed by inter-feature PCC. A factor r represented the linear relationships as follows:
weak linear relationship: 0 < r ≤ 0.3; moderate linear relationship: 0.3 < r ≤ 0.7; and strong
linear relationship: 0.7 < r ≤ 1.0.

A statistical analysis was performed using IBM SPSS Statistics (IBM, Corp., Armonk,
NY, USA), and the results of the evaluation were determined as nonparametric. The
Kruskal–Wallis H test and pairwise comparison were performed to examine the differences
in classification accuracy in accordance with the threshold values, feature vector orders,
and the number of training sessions. The statistical significance was set at p < 0.05 for
all tests.

3. Results

3.1. Classification Accuracy Based on Threshold Values and Feature Vector Orders

In this study, various threshold values obtained using Equation (1), and from previous
studies, were applied to calculate the threshold-based feature vectors. The RMS value
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of the sEMG signal at rest was 3.3 mV, and the threshold values were defined in the
range of 0.0–33.0 mV following accordance with Equation (1), with a step size of 1.65 mV.
The range of the threshold values from Equation (1) included all threshold values from
previous studies.

Figure 3 shows the classification accuracy and inter-session PCC of Group 1 in
accordance with the threshold values (the results for the other groups are shown in
Figures S1–S6). All threshold-based feature vectors showed improved classification accu-
racies corresponding with an increasing number of training sessions. The classification
accuracy and inter-session PCC were dramatically improved by increasing the threshold
value, and then maintained at the constant level. However, excessive threshold values
were found to cause a degradation of the classification accuracy and inter-session PCC. The
best threshold values depended on the feature vector.

 
(a) (b) 

 
(c) (d) 

Figure 3. Classification accuracy and inter-session PCC of Group 1 based on threshold values: (a) ZC; (b) WAMP; (c) MYOP;
(d) SSC; prev: threshold value from the previous study.

The threshold value of 13.2 mV exhibited the best classification accuracy in ZC with
nine training sessions (Group 1: 94.5 ± 2.1%, Group 2: 91.2 ± 2.3%, Group 3: 85.7 ± 4.3%,
Group 4: 86.6 ± 4.6%, Group 5: 89.4 ± 2.9%, Group 6: 93.1 ± 3.8%, Group 7: 76.7 ± 4.7%).
The best threshold value of WAMP with nine training sessions was 9.9 mV (Group 1:
95.6 ± 1.8%, Group 2: 92.7 ± 1.6%, Group 3: 86.1 ± 4.4%, Group 4: 89.5 ± 3.7%, Group 5:
90.8 ± 3.2%, Group 6: 94.5 ± 3.5%, Group 7: 79.3 ± 4.9%). In MYOP and SSC, with
nine training sessions, the best threshold values were 6.6 mV (Group 1: 95.4 ± 2.2%,
Group 2: 92.5 ± 2.2%, Group 3: 86.7 ± 4.7%, Group 4: 89.8 ± 3.8%, Group 5: 90.7 ± 3.0%,
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Group 6: 94.7 ± 3.1%, Group 7: 79.1 ± 4.7%) and 13.2 mV (Group 1: 93.9 ± 2.8%, Group 2:
91.1 ± 2.4%, Group 3: 84.6 ± 4.6%, Group 4: 86.9 ± 5.0%, Group 5: 88.9 ± 2.4%, Group 6:
92.9 ± 3.7%, Group 7: 76.6 ± 5.1%), respectively. Furthermore, the appropriate ranges of
the threshold values were 8.25–23.1 mV, 6.6–18.15 mV, 3.3–14.85 mV, and 8.25–23.1 mV in
the feature vectors of ZC, WAMP, MYOP, and SSC, respectively. These ranges of threshold
values were similar for the posture group in each feature vector. The classification accuracy
and inter-session PCC were high (r > 0.8) for the feature vectors with appropriate ranges of
threshold values.

The classification accuracy and inter-session PCC of Group 1, for the feature vectors
of AR and CC, are shown in Figure 4 (results of the other groups are presented in Figures
S7–S12). The second order exhibited the best classification accuracies for both AR (Group 1:
53.6 ± 7.2%; Group 2: 49.1 ± 6.0%; Group 3: 47.6 ± 6.6%; Group 4: 49.1 ± 7.0%; Group 5:
48.9 ± 6.2%; Group 6: 52.2 ± 8.2%; Group 7: 35.9 ± 5.8%) and CC (Group 1: 53.7 ± 7.2%;
Group 2: 49.5 ± 6.6%; Group 3: 46.8 ± 6.3%; Group 4: 49.6 ± 6.5%; Group 5: 49.2 ± 6.9%;
Group 6: 52.2 ± 8.6%; Group 7: 36.5 ± 5.9%); however, there was no significant difference
between the orders of AR and CC.

  
(a) (b) 

Figure 4. Classification accuracy and inter-session PCC of Group 1 based on the orders: (a) AR; (b) CC.

3.2. Classification Accuracy and Inter-Session PCC

Table 3 present the classification accuracies and inter-session PCCs according to the
number of training sessions and feature vectors in Group 1, respectively (results of the other
groups are presented in Tables S1–S6). The classification accuracy was improved with an
increasing number of training sessions in all feature vectors, and a significant improvement
was observed for four or more training sessions. Although the classification accuracies
for five to nine training sessions (more than four) were higher than those for four training
sessions, no significant difference was found. Across the four training sessions, feature
vectors with high inter-session PCCs (r > 0.7; strong linear relationship) exhibited higher
classification accuracies (Group 1: >90.0%, Group 2: >88.0%, Group 3: >81.0%, Group 4:
>85.0%, Group 5: >86.0%, Group 6: >90.0%, and Group 7: >70.0%) than those of the feature
vectors with low inter-session PCCs (r < 0.7). The feature vectors, which were used in the
feature combination from previous studies, exhibited high inter-session PCCs (r > 0.7).
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Table 3. Classification accuracy and inter-session PCC of the feature vectors in Group 1.

Feature
Vector

Classification Accuracy (%): Mean (Standard Deviation)
PCC (r)

TRN1 TRN2 TRN3 TRN4 TRN5 TRN6 TRN7 TRN8 TRN9

IEMG 84.6 (5.7) 90.1 (3.1) 92.3 (2.2) 93.2 (2.0) 93.8 (1.7) 94.4 (1.6) 94.9 (1.3) 95.4 (1.4) 95.4 (1.2) 0.837

MAV 84.9 (5.8) 90.2 (3.0) 92.5 (1.9) 93.2 (1.8) 93.8 (1.7) 94.3 (1.7) 94.7 (1.5) 95.5 (1.3) 95.4 (1.4) 0.837

MAV1 85.2 (5.5) 90.1 (3.0) 92.2 (2.1) 93.1 (1.8) 93.5 (1.6) 94.3 (1.5) 94.5 (1.3) 94.9 (1.5) 95.4 (1.4) 0.835

MAV2 84.4 (5.3) 89.1 (2.9) 90.4 (2.9) 91.3 (2.6) 91.7 (2.7) 92.2 (2.5) 92.5 (2.5) 93.0 (2.3) 93.2 (2.3) 0.808

SSI 79.6 (6.5) 86.0 (3.8) 89.3 (2.5) 90.5 (1.8) 91.9 (1.3) 93.0 (1.3) 93.3 (1.1) 94.1 (1.3) 94.4 (1.1) 0.735

VAR 79.5 (6.7) 86.0 (3.3) 89.3 (2.1) 90.6 (1.8) 92.2 (1.4) 93.2 (1.3) 93.3 (1.2) 94.0 (1.0) 94.3 (1.2) 0.735

TM3 65.9 (6.1) 73.9 (4.7) 77.7 (4.3) 79.9 (3.6) 81.5 (3.8) 82.4 (3.8) 83.1 (3.7) 83.4 (3.5) 83.6 (4.2) 0.392

TM4 69.6 (7.7) 77.8 (5.5) 82.1 (4.1) 84.1 (3.7) 85.8 (3.5) 86.6 (3.1) 87.6 (3.1) 88.2 (3.4) 88.9 (3.1) 0.428

TM5 61.3 (6.6) 68.7 (5.9) 71.3 (6.2) 71.9 (5.8) 72.4 (6.0) 72.5 (6.3) 72.5 (6.1) 72.1 (6.7) 72.4 (6.9) 0.248

RMS 84.9 (5.9) 90.0 (3.3) 92.4 (2.5) 93.2 (1.8) 93.7 (1.7) 94.3 (1.7) 94.7 (1.4) 95.1 (1.3) 95.5 (1.3) 0.829

LOG 85.8 (5.3) 90.1 (3.1) 92.1 (2.6) 93.0 (2.4) 93.1 (2.4) 93.8 (2.3) 93.8 (2.4) 94.2 (2.3) 94.3 (2.2) 0.859

WL 84.5 (5.9) 90.3 (3.0) 92.4 (2.1) 93.1 (1.9) 93.7 (1.7) 93.9 (1.8) 94.4 (1.6) 94.8 (1.6) 95.0 (2.1) 0.832

AAC 84.6 (5.7) 90.0 (3.3) 92.4 (2.1) 93.2 (1.8) 93.6 (1.9) 94.0 (1.8) 94.5 (1.9) 94.7 (1.8) 95.1 (2.0) 0.832

DASDV 84.5 (5.9) 89.8 (3.7) 92.0 (2.2) 93.2 (1.9) 93.6 (1.9) 94.2 (1.9) 94.3 (1.8) 94.9 (2.1) 95.0 (1.6) 0.824

MAVSLP 39.2 (3.8) 45.5 (4.2) 47.9 (4.3) 49.1 (4.2) 49.8 (4.1) 50.2 (4.2) 50.5 (4.2) 50.9 (4.1) 51.3 (4.0) 0.005

ZC 85.9 (6.7) 90.0 (3.8) 92.0 (3.1) 92.9 (2.6) 93.2 (2.6) 93.6 (2.3) 93.8 (2.3) 94.2 (2.4) 94.5 (2.1) 0.858

WAMP 87.3 (5.8) 91.3 (3.8) 92.9 (2.9) 93.6 (2.4) 94.1 (2.3) 94.3 (2.3) 94.7 (2.0) 94.7 (2.3) 95.6 (1.8) 0.873

MYOP 87.5 (5.0) 91.5 (3.2) 93.1 (2.7) 93.9 (2.4) 94.4 (2.1) 94.5 (2.3) 94.9 (2.4) 95.2 (2.1) 95.4 (2.2) 0.876

SSC 86.0 (6.5) 90.1 (3.9) 91.8 (3.1) 92.4 (2.8) 93.1 (2.6) 93.1 (2.5) 93.6 (2.5) 94.0 (2.6) 93.9 (2.8) 0.862

AR 45.8 (6.6) 48.1 (7.8) 48.3 (8.2) 48.4 (8.0) 49.4 (7.7) 50.6 (7.4) 52.2 (7.3) 53.0 (6.6) 53.6 (7.2) 0.278

CC 45.8 (6.5) 48.2 (7.6) 48.1 (8.2) 48.6 (8.4) 49.7 (7.8) 50.9 (7.7) 52.1 (7.1) 52.5 (7.3) 53.7 (7.2) 0.299

3.3. Classification Accuracy and Inter-Feature PCC

The classification accuracies of all of the feature vectors and their combinations in
Group 1 are presented in Figure 5 (the results for the other groups are presented in
Figures S13–S18). The classification accuracies of all feature vectors, including the combi-
nations of feature vectors, were improved by increasing the number of training sessions.
However, certain feature vectors, such as MAVSLP, AR and CC, demonstrated lower classi-
fication accuracy (51.3%~53.7%) and inter-session PCC (r < 0.3) than other feature vectors,
even though nine training sessions were applied. On the contrary, the feature vectors with
a high inter-session PCC (r > 0.7) showed a classification accuracy of higher than 90.0%,
which was statistically similar with the classification accuracy of the feature vector combi-
nations. Furthermore, Figure 6 and Figures S19–S24 showed that strong linear relationship
in the inter-feature PCC appeared between the feature vectors with a high inter-session
PCC (r > 0.7), while a weak linear relationship in the inter-feature PCC appeared between
the feature vectors with a high inter-session PCC (r > 0.7) and the feature vectors with a
low inter-session PCC (r < 0.3). These results reveal that information was similar between
the feature vectors that had a high inter-session PCC and high classification accuracy.
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Figure 5. Classification accuracies of feature vectors and feature combinations according to training in Group 1.

Figure 6. Confusion matrix of inter-feature PCC in Group 1.

3.4. Classification Accuracies According to Hand Posture Groups

Figure 7 shows the confusion matrices of the Group 1 and Group 7 in MAV, which is a
well-known feature vector (all results are presented in Figures S25–S31). In Group 1, the
hand gestures of rest and cylindrical grasp showed the high classification accuracy, while
the worst classification accuracy appeared in palmar pinch. The misclassification between
palmar pinch and lateral pinch was also minimized from 13.0% to 4.2% by increasing the
number of training sessions. The change in the misclassification in relation to the number
of training sessions in Group 2 were from 12.6% to 4.0% and 14.4% to 3.7% for ‘palmar
pinch vs. lateral pinch’ and ‘finger pointing vs. rest’, respectively (Figure S26). However,
the misclassifications of ‘palmar pinch vs. tip pinch vs. lateral pinch’, ‘cylindrical grasp vs.
spherical grasp’, and ‘scissor sign vs. thumb up (hook)’ were still high despite the increas-
ing number of training sessions in Groups 3–5 (Figures S27–S29). Group 6 (Figure S30)
exhibited a good classification performance independent of the number of training sessions.
Group 7 revealed all types of misclassifications. As shown in the confusion matrices,
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the hand postures of a similar form or function showed more misclassifications, as they
were more difficult to differentiate from one other. However, most misclassifications were
significantly reduced given an increasing number of training sessions. The same results
were obtained in the other feature vectors.

(a) 

(b) 

Figure 7. Confusion matrices of the hand postures: (a) Group 1 and (b) Group 7.

4. Discussion

This study was conducted to develop an sEMG-based hand posture recognition system
that takes into consideration three problems: electrode shift, feature vector selection, and
hand posture selection. The classification accuracy, which is negatively affected by the
electrode shift and misclassification between similar postures, was improved by increasing
the number of training sessions and selecting hand postures with a consideration of
their functions and the associated activated muscles. Furthermore, an efficient feature
vector optimization method was developed by analyzing the relationship between the
classification and inter-session PCC. These findings provide a method for developing an
sEMG-based hand posture recognition system displaying a high practicality.

Electrode positional changes are common in sEMG-based gesture recognition systems
in daily life; however, many previous studies reported that the positions of the sEMG
sensors were fixed to avoid the occurrence of misclassification resultant of the electrode
shift. Lu et al. used seven sEMG sensors with fixed positions on the muscle belly to
control a robotic hand [48]. The measured sEMG signal was applied to a Gaussian Naive
Bayes classifier and an SVM, and six hand gestures were classified with an accuracy of
84.1%. sEMG-based gesture recognition algorithms with fixed sEMG sensor positions are
appropriate for robotic prosthesis, which uses a socket for preventing the electrode shift;
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however, it is not appropriate in the HCI interface for non-expert users. Phinyomark et al.
emphasized the importance of the solution for the confounding factors, such as the electrode
shift, to improve its re-usability and sustainability for real-world application with long-term
use [49]. These confounding factors were addressed by a big dataset that was measured
over a long-term experiment using the electrode shift.

In this study, an armband sensor was designed to measure the EMG signal pattern,
which is related to the hand gesture of the user, even if the individual sensor is not placed on
the specific muscles. Furthermore, the position of the main module was only suggested for
non-expert users, and the experiment was repeated 10 times with the donning and doffing
of the armband sensor to induce the electrode shift. Relatively low classification accuracies
appeared in all posture groups with one training session (in MAV, Group 1: 84.9 ± 5.8%,
Group 2: 80.9 ± 6.6%, Group 3: 75.5 ± 7.9%, Group 4: 79.2 ± 7.8%, Group 5: 79.5 ± 6.4%
Group 6: 83.6 ± 8.6%, and Group 7: 65.5 ± 10.2%) owing to a lack of training on the
electrode shift. The highest classification accuracies appeared after nine training sessions
(in MAV, Group 1: 95.4 ± 1.4%, Group 2: 93.6 ± 2.2%, Group 3: 87.6 ± 3.6%, Group 4:
91.4 ± 3.6%, Group 5: 91.3 ± 3.7%, Group 6: 95.5 ± 2.0%, and Group 7: 80.9 ± 5.2%,
respectively). Hence, in all feature vectors and posture groups, the classification accuracy
improved with an increasing number of training sessions for the electrode shift, and a
statistically significant improvement was observed when at least three training sessions
were conducted. The classification accuracy improved when more than four training
sessions were conducted, but the difference was not as significant. These results indicate
that the problem of classification accuracy degradation could be resolved by increasing
the number of training sessions on the electrode shift; the number of training sessions for
efficiency was four.

Oskoei et al. reported that feeding a myoelectric signal presented as a time sequence
directly to a classifier is impractical because of the large number of inputs and the random-
ness of the signal [50]. Therefore, many previous studies used feature vectors to compress
the data and to normalize the pattern. Most of the previous studies selected the feature vec-
tors according to the results of the classification performance evaluation [9,51,52]; however,
accuracy-based feature vectors selection requires significant time and high costs because
the pattern recognition algorithms are affected by various confounding factors. Data pro-
cessing techniques, such as PCA and GA, were suggested to improve the classification
performance of the feature vectors. Kakoty et al. reported that the classification accuracy
improved by more than 8.0% through the compressed information from the PCA-based
dimension reduction [12], which was useful for reducing the complexity of data or to
reinforce the important information for pattern recognition, but the process of selecting the
feature vector still remains unsolved. Oskoei et al. proposed a method for selecting feature
vectors using entropy and GA [32,50], and Phinyomark et al. reported an RES-index-based
feature vector selection, based on Euclidean distance and standard deviation [12]. These
methods of selecting feature vectors are efficient because the classification performance of
each feature vector can be evaluated before the development of the classifiers; however,
few studies have been conducted on feature vector selection considering the electrode shift.

Twenty-one feature vectors were selected in the time domain, considering the real-time
application in this study. These feature vectors were applied to the ANN-based classifier
as a single type, and the classification performance of each feature vector was analyzed
with the inter-session and inter-feature PCCs. The results indicate that the feature vectors
with a strong linear relationship in inter-session PCC (r > 0.7) had a higher classification
accuracy than that of the feature vectors with low inter-session PCC (r < 0.7), and these
results were obtained for all training conditions and posture groups. Furthermore, in the
threshold-based feature vectors of ZC, WAMP, MYOP, and SSC, the appropriate ranges
of threshold values were found from the high inter-session PCC (r > 0.8). These results
indicate that the inter-session PCC was well-correlated with the classification accuracy
of each feature vector, and the feature vectors and the threshold values could be selected
easily and efficiently by analyzing the inter-session PCC.
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There were two differences in the feature vectors between this study and previous
studies. The first difference was in the classification accuracies of AR and CC, and the
second was in the effects of the feature combinations. AR and CC, which are calculated by
the auto-regressive model, are well known as feature vectors with excellent classification
performances [53]. However, AR and CC exhibited the lowest classification accuracies
in this study, owing to the lack of data to calculate the feature vectors. In this study, the
amount of data available for calculating the feature vectors was less than for previous
studies because the armband sensor had a sampling rate of 500 Hz, whereas previous
studies used sEMG sensors with a sampling rate of at least 1000 Hz. Phinyomark et al.
evaluated the gesture recognition algorithm using various sEMG datasets and reported that
the classification performances of AR and CC degraded owing to a lack of data points [54].
The problem resulting from the lack of data could be solved by increasing the sampling rate,
but this solution will lead to an increase in the computational load and power consumption
in the HCI interface and wearable device that is used over a long period in daily life.
Increasing the window size used to calculate the feature vectors is another solution for
the lack of data, but this solution is not thought to be appropriate because the increased
window size introduces a delay in the feature vector calculation process. Therefore, AR
and CC are inappropriate in the HCI interface and wearable device, as they set high values
for efficiency and real-time classification.

Feature combinations were applied to improve the classification performance of pat-
tern recognition algorithms in previous studies, with Hudgins’ set [38] and Du’s set [47]
being the main combinations used. Hudgins’ set comprises MAV, WL, ZC, and SSC whereas
Du’s set comprises IEMG, VAR, WL, ZC, SSC, and WAMP. Among the feature vectors
in these combinations, those of ZC, WAMP, and SSC are well known to possess the fre-
quency information, although these are included in the time domain [53] and are useful for
gathering various information in real-time applications. Phinyomark et al. compared the
classification performances of the single feature vectors and feature combinations (Hudgins’
set and Du’s set) and reported that the latter is superior [53]. However, they also reported
that the difference in classification accuracy between individual feature vectors with high
inter-session PCCs (r > 0.7) and the feature combinations is not significant. These results
were obtained using the sampling rate of the sensor and noise from the crosstalk via the
electrode shift. Many previous studies that reported improved classification performances
with feature combinations used sEMG sensors with a high sampling rate (approximately
1000 Hz) and fixed positions on specific muscles. These experimental methods had the
advantages of avoiding noise from crosstalk and gathering enough frequency information
with the calculation of ZC, WAMP, and SSC; however, in this study, the frequency informa-
tion was not sufficient in the ZC, WAMP, and SSC, owing to the low sampling frequency
(500 Hz) and noise from the crosstalk. Furthermore, the inter-feature PCC between feature
vectors with a high inter-session PCC (r > 0.7) was higher than 0.8 (strong linear relation-
ship). These results indicate that these feature vectors (even the ZC, WAMP, and SSC) had
the same information. Therefore, the classification performance of the feature combinations
degraded. These problems, such as the degradation of the classification performance by the
crosstalk, could be solved by fixing the position of the electrode, but finding the position
for each specific muscle is difficult for non-expert users in daily life. Additional sensors,
such as the IMU, will help provide diverse information on the feature combinations to
improve the classification performance.

For the development of a gesture recognition algorithm, many studies have applied
various groups of gestures and postures based on their research aim. However, the classifi-
cation accuracy degraded with similar gestures in a gesture group because the function
alone of each gesture was considered. Andrade et al. selected six gestures—cylindrical
grasp, tip pinch, hook (snap), palmar pinch, spherical grasp, and lateral pinch—to develop
an sEMG-based gesture recognition algorithm [21]. Their results indicated that the misclas-
sification for similar gestures that are activated by the same muscle (precision grasp: tip
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pinch, palmar pinch, and lateral pinch; power group: cylindrical grasp, hook, and spherical
grasp) was high for the gesture recognition algorithm.

In this study, twelve hand postures—which are frequently used and are important
in hand posture recognition algorithms—were selected after a literature review. Seven
different posture groups were formed according to the functions and activated muscles
of hand postures to analyze the effects of similar postures. In Andrade’s study, the rate
of misclassification between similar postures was high, and this misclassification was not
addressed in various feature vectors with an increase in the number of training sessions.
The classification accuracies were in the following order: Group 1 (six hand postures)
> Group 6 (seven hand postures considering the function and the muscle activation) >
Group 2 (Group 1 + finger pointing) > Group 4 (Group 1 + similar posture: spherical grasp)
≥ Group 5 (Group 1 + similar posture: scissor-sign) > Group 3 (Group 1 + similar posture:
tip pinch) > Group 7 (twelve hand postures). For Groups 2 to 6, the number of postures
was 7, but the classification accuracies differed with the addition of postures (similar or
not). More specifically, Group 3 exhibited the lowest classification accuracy because of the
tip pinch posture, which was similar to both the palmar pinch and lateral pinch. Groups 2
and 6 were similar in that the postures were selected with consideration to the activated
muscles. Group 2 had the spread posture and Group 6 had the V-sign posture. Group 6
had a higher classification accuracy than Group 2, but the difference was not significant.
Furthermore, the spread posture, which opens the hand and supports loads, is more useful
than the V-sign posture, which expresses emotions. Hence, Group 2 is more efficient in
the HCI interface. These results indicate that the development of the gesture recognition
algorithm could be made more efficient by the selection of gestures, giving consideration
to both functions and the activated muscles.

This study has three limitations. The first is related to pattern information. All EMG
feature vectors were selected in the time domain considering real-time application. In
addition, because the armband sensor had a lower sampling frequency than that of the
sEMG sensor in the previous study, the feature vectors information had to be similar.
The second limitation is that the hand posture recognition algorithm was optimized for
each subject, but normalization did not occur for optimization in all subjects. The gesture
recognition algorithm without the normalization required more time and a higher cost
because the classifier had to be trained for each user. The last limitation is that the gestures
of this study were static postures only, and dynamic gestures were not considered.

5. Conclusions

This paper presented an sEMG-based hand posture recognition algorithm using an
armband sensor, considering the following three problems: electrode shift, feature vector
selection, and postures selection. This study showed that the electrode shift could degrade
the classification performance of the pattern recognition algorithm, and this problem could
be solved by increasing the number of training sessions on the electrode shift. Additionally,
the inter-session PCC was verified as a means for selecting feature vectors because it exhibits
a strong relationship with feature vectors and threshold values, with a high classification
accuracy. Furthermore, information on each feature vector was compared with the inter-
feature PCC, and the results of this analysis confirm that an additional sensor, such as an
IMU, is required to provide diverse information for improving the hand posture recognition
algorithm. In addition, selecting the target postures with consideration to the functions and
activated muscles was as important as selecting feature vectors with a high classification
accuracy for the development of an efficient posture recognition algorithm. These findings
will be helpful in assisting the development process of sEMG-based gesture recognition
algorithms more efficiently. In future works, the IMU sensor and the normalized algorithm
will be applied in the pattern recognition system to provide diverse information and to
reduce the training time and associated costs. Furthermore, the reaction speed and the
practicality of the pattern recognition algorithm will be improved via the recognition of
dynamic gestures to expand the application range.
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Abstract: Commercial myoelectric prostheses are costly to purchase and maintain, making their
provision challenging for developing countries. Recent research indicates that embroidered EMG
electrodes may provide a more affordable alternative to the sensors used in current prostheses.
This pilot study investigates the usability of such electrodes for myoelectric control by comparing
online and offline performance against conventional gel electrodes. Offline performance is evaluated
through the classification of nine different hand and wrist gestures. Online performance is assessed
with a crossover two-degree-of-freedom real-time experiment using Fitts’ Law. Two performance
metrics (Throughput and Completion Rate) are used to quantify usability. The mean classification
accuracy of the nine gestures is approximately 98% for subject-specific models trained on both gel
and embroidered electrode offline data from individual subjects, and 97% and 96% for general
models trained on gel and embroidered offline data, respectively, from all subjects. Throughput
(0.3 bits/s) and completion rate (95–97%) are similar in the online test. Results indicate that em-
broidered electrodes can achieve similar performance to gel electrodes paving the way for low-cost
myoelectric prostheses.

Keywords: myoelectric prostheses; embroidered EMG electrodes; pilot study; online and offline
performance; conventional gel electrodes

1. Introduction

Upper extremity loss is a highly disabling family of injuries that ranges from partial
hand loss to loss of an entire arm. It can dramatically reduce a person’s quality of life by
impairing their ability to interact with their environment creating an economic and social
burden. The total number of people with upper-limb loss is often difficult to quantify
because many countries do not keep track of the incidence of amputation. However, it is
estimated that over half a million people were living with some degree of upper limb loss
in the United States in 2005. This figure is projected to double by 2050 [1]. Upper limb loss
is estimated to be even more prevalent in the developing world, with most of the world’s
amputees and disabled living in low- and middle-income countries [2].

Prostheses, or artificial limbs, can replace lost functionality and improve the quality
of life in people who have suffered upper limb loss. Historically, artificial upper limbs
have been either cosmetic devices that restore the natural appearance of the lost limb or
body-powered prosthetics that offer a limited restoration of functionality. Over the last
century, however, various active artificial upper limbs have entered the literature and,
increasingly, the commercial market. Most commercial functional prostheses, such as
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the Michelangelo hand (Otto Bock, Duderstadt, Germany) and the LUKE arm (Mobius
Bionics, New Hampshire USA), are expensive devices for wealthy individuals in developed
countries. However, a growing number of projects across the world aimed at harnessing
the emerging technologies of the 4th industrial revolution, such as 3D printing, to produce
affordable active prostheses. The Hero Arm (Open Bionics, Bristol, UK) and the Touch hand
(Touch Prosthetics, Cape Town, South Africa) are examples of affordable active prostheses
aimed at high-income and low- to middle-income nations, respectively.

An active prosthetic may be further classified as either an electric or myoelectric
device. The former is controlled using external buttons and joysticks, while the latter is
controlled using electromyographic (EMG) signals [3]. In myoelectric control, time and
frequency domain features are extracted from the user via surface electrodes and are then
fed into a control algorithm. The algorithm, in turn, converts them into motor commands
fed into the prosthesis, thereby allowing the user to control the prosthetic and replace some
of their lost functionality [4].

The development of a more affordable surface EMG electrode is one way that the cost
of producing and maintaining myoelectric-controlled artificial limbs can be reduced and is
an area that has received less attention than other prosthetic components. The two most
common electrode types used in surface EMG are solid metal dry electrodes, which are
widely used in prosthetics [5], and Ag-AgCl gel’ wet’ electrodes, which are the standard in
clinical measurements [6].

Gel electrodes have lower impedance than other surface electrodes due to the large
contact area provided by the electrolyte gel, resulting in minimal impedance and noise.
The adhesive coating on the electrodes also produces a stable skin–electrode contact, which
minimises motion artefacts [6]. Despite their high signal quality, gel electrodes are ill-suited
for the heavy use required in powered prosthetics. The electrolyte gel dries out over time,
causing the signal to decay and eventually fail, after which the electrodes or gel must be
disposed of and replaced. Furthermore, the adhesive coating used in the electrodes can
irritate the skin during use.

The solid metal dry electrodes used in current prostheses are typically made from
stainless steel or titanium with a flat or domed shape. They are usually active with a
preamplifier and other circuitry built directly into the electrode. These electrodes solve
some of the problems posed by gel electrodes: they can be used for prolonged periods
without signal failure, are reusable, and do not require adhesive coatings. However, they
have shortcomings of their own. The metal plates can cause skin irritation through friction,
and they are more susceptible to motion artefacts than gel-based designs. They are also
more expensive to manufacture than gel and other electrode designs.

E-textiles may provide an alternative to the commercial electrode designs currently
on the market. Textile electrodes can be constructed by embedding conductive fibres
into a textile substrate using traditional fabrication techniques, such as embroidery and
weaving [7]. Several textile electrodes for EMG have been presented in the literature [8–10],
and their potential performance in myoelectric control has been demonstrated in wrist and
hand gesture EMG classification experiments [11,12]. Because they are soft and breathable
and do not use any abrasive chemicals, these textile electrodes do not irritate the user’s skin.
Their flexibility enables the electrode to conform to the shape of the arm and ensures that
solid skin contact is maintained throughout the measurement, thereby minimising motion
artefacts. Embroidered electrodes can be easily integrated into commercial prosthesis
sockets [13] or fixed locations on smart garments or sleeves, making the process of placing
the electrodes simple and appropriate for use by amputees. Like other dry electrodes, the
textile designs are also reusable and can be worn for long periods without signal failure.
The use of silver-coated thread has also been shown to have an antibacterial effect that
helps to keep electrodes hygienic [14].

This paper evaluates the usability of affordable embroidered textile electrodes in
real-time myoelectric control against a gel electrode standard. The significant advantage
of this textile electrode design is its simple construction, which could potentially enable
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it to be handmade [15]. The ability to produce the electrodes by hand, coupled with the
advantages inherent to textile electrodes, such as reusability, could make the design as
much as 40% cheaper than gel alternatives [16] and ultimately facilitate the construction of
more affordable myoelectric prostheses.

2. Materials and Methods

2.1. Embroidered Electrode Design

The electrodes were developed in the Centre for Robotics Research (CORE) at King’s
College London in a series of investigations [15–19] and consist of silver-coated thread
(Electro-Fashion Conductive Thread, Kitronik, 40 Ωm−1) embroidered into linen fabric
with a Vilene cut away stabiliser. The embroidered pattern used is a 20 mm diameter
circle with a cross-hatched fill pattern. The hatching has a 2 mm separation, and two
iterations of embroidery are performed. An example of an electrode pair can be seen in
Figure 1. The design parameters are selected to minimise resistance through the electrode
in accordance with [18]. The electrodes are implemented in bipolar pairs with an inter-
electrode distance (IED) of 25 mm. A standard snap fastener (Hemline, 13 mm, brass
rust-proof fastener) is sewn onto each electrode and used to connect the electrode to
an external amplifier. The electrodes are manufactured using a Pfaff Creative 3.0 (Pfaff,
Kaiserslautern Germany) programmable sewing machine designed in the companion 6D
Embroidery Software application.

 
Figure 1. Example of embroidered electrodes used in this study. The outer side shows snap connectors
(top), and the inner side shows conductive thread (bottom).

2.2. Subjects

Three subjects volunteered for the experiments reported here, two female and one
male. The participants were healthy, normally limbed, and ranged in age from 21 to 24.
Due to the pandemic, we are not allowed to recruit more subjects, and thus this is a pilot
study. We are planning to run a follow-up study soon with proper statistical analysis. All
provided written informed consent before testing, and all tests had King’s College Research
Ethics Committee approval (Approval number: LRS-16/17-4213).

2.3. Experimental Setup

Two sets of surface electrodes are used for the experiments, one set of gel electrodes
and one set of embroidered textile electrodes. When applying each set, subjects are seated,
and four bipolar electrode pairs are placed on the forearm. Two pairs are placed over
the extensor muscle group—the extensor carpi ulnaris and extensor digitorum—and two
over the flexor group—the flexor carpi ulnaris and flexor carpi radialis. For experimental
convenience, the textile electrodes are secured using kinesiology tape and covered using a
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tubular bandage. Alcohol wipes are used to clean the target areas before the application of
the electrodes to ensure a clean connection following SENIAM recommendations [6]. For
both sets, an additional reference gel electrode is attached at the elbow. The arrangement
can be seen in Figure 2.

(a) (b) 

(c) (d) 

Figure 2. Experimental setup. (a) The electrodes are first placed with kinesiology tape and then
secured with a bandage. (b) Usability test with the blue cursor and red target. (c) Positions of
electrodes on the anterior and posterior sides of the right forearm. (d) Subject arrangement.

Each electrode is connected via snap connectors to a Quattracento amplifier (OT
Bioelettronica, Torino, Italy), and the EMG signals are amplified with a gain of 1500,
band-pass filtered (bandwidth 10–500 Hz), sampled at 2048 Hz, and A/D converted on
16 bits.

2.4. Experimental Protocol

The protocol consists of an offline test and an online usability test, both of which are
conducted using a custom application implemented in Matlab 2019b (Mathworks, Natick,
MA, USA).

For the offline test, the patients are taken through a series of nine gestures: closed
hand, open hand, wrist extension, wrist flexion, chuck grip, index pointing, supination,
pronation, and rest. These can be seen in Figure 3. Each gesture is performed four times,
each time for six seconds following a three-second count down, which allows the subject to
prepare. There is a six-second rest period between each gesture to prevent muscle fatigue.
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Figure 3. Gestures used in offline experiments. (1) closed hand, (2) open hand, (3) wrist extension,
(4) wrist flexion, (5) chuck grip, (6) index point, (7) supination (8) pronation, and (9) rest.

For the usability test, only the first four gestures, and rest, are used. The subjects are
again asked to perform each motion for six seconds following a three-second countdown
with six seconds’ rest between gestures, but now each gesture is performed three times.
The recorded measurements are used to train an artificial neural network (ANN) for
gestures classification (see Section 2.5). The subjects are then asked to complete a game in
which they move a cursor to a series of square target areas on a two-dimensional grid (see
Figure 2b). Both grid axes range from −110 to +110 units, and each combination of axis and
direction is associated with one of four gestures, while rest causes the cursor to remain in
its previous position on the grid. For each target, the cursor begins at the origin. The subject
can move the cursor a fixed step size in one of the four orthogonal directions by performing
the associated gesture. The subject was asked to hold the position within the target for one
second (dwell time) for the trial to be considered successful. If the subject was unable to
reach the target within a 20 s time limit, the online trial was considered unsuccessful, and
the participant moved on to the next target with the cursor back at the origin.

There are 24 targets in a complete game, and six configurations for the width and
distance from the origin of the targets, each of which is used four times during a game
and has a particular index of difficulty. Each configuration is associated with four target
numbers between 1 and 24, and, before the start of the game, MatLab’s randperm() function
is used to randomise an integer array from 1 to 24 using pseudo uniform random number
generation, which then determines the order in which targets will appear. Table 1 shows
the width and distance combinations for each configuration.

Table 1. Target configurations with associated difficulties and targets numbers.

Target Configuration Distance from Origin Target Width Index of Difficulty Associated Target Number

1 50 5 3.46 1, 7, 13, 19
2 50 10 2.59 2, 8, 14, 20
3 50 20 1.81 3, 9, 15, 21
4 100 5 4.39 4, 10, 16, 22
5 100 10 3.46 5, 11, 17, 23
6 100 20 2.59 6, 12, 18, 24
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The step size for each gesture classification is 110/28. The numerator is the total length
of the axis in each direction, so each step is a fixed fraction of the length. At the same
time, the denominator was chosen through trial and error. Subjects complete the game
three times.

The order of the electrode type (gel first or textile first) was controlled through coun-
terbalancing. The first subject was randomly assigned to one order using a coin flip, and
the order was reversed with each subsequent subject. In practice, because there are only
three subjects, two subjects started in one condition, and one in the other.

2.5. Signal Processing

All offline data are processed using the same procedure. The first and last second of
each EMG recording in a dataset is removed to account for subjects beginning and ending
each gesture, leaving a four-second sample of each gesture. The sample for each gesture is
pre-processed by subtracting the mean value in each channel was s. The sample is then
segmented with a 200 ms window, which is passed over the sample such that each segment
has a 50 ms overlap with the preceding segment. Six features are extracted from each
segment: zero crossings, root mean square, mean absolute value, waveform length, slope
sign change, and Willison amplitude. The feature matrix dimensionality reduction using
principal component analysis (PCA) with a 0.95 variance threshold typically reduced the
number of features to four.

The offline classification performance is evaluated using 10-fold cross-validation. For
each subject, the raw EMG data for each electrode type is pooled, and pre-processing,
feature extraction, and dimensionality reduction is performed. The prepared data are
then divided into training (80%), validation (10%), and testing sets (10%), with the test set
being the kth fold of the cross-validation. Individual subject models are trained using a
feedforward ANN with a single 18-node hidden layer with tansig transfer function and
nine-node softmax output layer. Levenberg–Marquardt error backpropagation is used
for training with validation-based early stopping for regularisation. This is repeated for
each fold, and the mean and standard deviation of the test fold accuracies is taken. The
individual subject data is then pooled together into all gel and all fabric datasets, and
the above cross-validation procedure is repeated to evaluate a general model for each
electrode type.

For the usability test, a similar processing procedure is used as in the offline test to
train an ANN for each subject. Online pattern recognition is achieved by recording 200 ms
samples and feeding each sample to the trained algorithm for real-time classification. A
Fitts’ Law approach is used to assess real-time performance in each round of the online
game, and the completion rate and throughput are calculated as performance metrics. The
completion rate is defined as the percentage of targets successfully reached out of the total
number of targets. Throughput (TP) is the amount of information transmitted by the user
via the EMG electrodes. This can be expressed mathematically as the average ratio of the
index of difficulty (I) of each target and the completion time (C), which is the time required
to reach each target:

T =
I
C

. (1)

The I for the usability test is defined according to the distance of the target centres
from the origin (D) and the width of the target area (W) and is derived from Shannon’s
extension of Fitts’ law in accordance with [20]:

I = log2

(
D
W

+ 1
)

(2)

The values of I for the targets used in the experiment can be found in Table 1.
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3. Results

Offline models were trained and evaluated using the individual subject datasets for
each electrode type and on a pooled dataset containing all electrode types. Table 2 shows the
offline classification accuracy of models trained on individual subject data and their means
and standard deviations. The mean accuracy across the three subject-specific models is 98.4%
for the gel electrodes and 97.9% for the embroidered electrodes overall nine gestures. The
classification accuracy for the general model trained on all gel electrode data is 97.3 ± 1.2%,
and the accuracy for the model trained on all embroidered electrode data is 95.9 ± 1.2%.
These can be seen in the respective confusion matrices (Figures 4 and 5). The percentages in
the main (red and green) square are total classifications made across all classes, so they sum
to 100. Therefore, the numbers on the diagonal are the number of correct classifications
for each class as a percentage of total classifications made. There are nine classes, so they
would each be ~11.1% if the model classified each class perfectly. The accuracy in practice
is close to this for both models, reflecting good accuracy.

Table 2. Percentage classification accuracies of models trained on individual subject data for the
recognition of nine gestures. Results are mean ± standard deviation over ten folds.

Subject
Electrode Type

Gel Fabric

1 99.55 ± 0.29 99.23 ± 0.36
2 99.51 ± 0.58 95.63 ± 1.61
3 96.05 ± 1.06 98.74 ± 0.58

Mean 98.37 ± 2.01 97.87 ± 1.95

Figure 4. Confusion matrix for 10-fold cross-validation of a model trained on combined gel data
from all subjects. The bottom row is the recall, the right column is the precision, and the bottom right
is the overall accuracy.

The results from the usability test, found in Table 3, show similar performance between
electrode types, with a throughput of 0.30 bit/s for both gel and embroidered electrodes.
There is a slight variation in throughput across individual subjects for both electrode types.
Completion rates are slightly higher for the textile electrodes across the three subjects,
with an average of 97.2 ± 3.0% for the embroidered electrodes and 95.4 ± 5.7% for the
gel electrodes. Examples of high-pass filtered EMG recordings and power spectra from
both types of electrodes are shown in Figure 6. The spectra reveal similar frequency
characteristics in both the textile and gel electrodes. Both have peak frequencies around
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100 Hz and trail to zero above 500 Hz (note that no 50 Hz power line noise filtering is
applied to the signals).

Figure 5. Confusion matrix for 10-fold cross-validation of a model trained on combined fabric data
from three subjects. The bottom row is the recall, the right column is the precision, and the bottom
right is the overall accuracy.

Table 3. The mean and standard deviation of throughput (TP) for each experimental subject and
overall during the usability test.

Subject
Electrode Type

Gel Fabric

1 0.31 ± 0.08 0.29 ± 0.08
2 0.29 ± 0.09 0.30 ± 0.09
3 0.29 ± 0.08 0.30 ± 0.09

All 0.30 ± 0.01 0.30 ± 0.01

(C) (A) 

(B) (D) 

Figure 6. Example of recorded high-pass filtered signals from 4th gel and embroidered offline
sessions of subject 1. EMG from gel electrodes (A) and embroidered electrodes (B). Power spectra
of gel (C) and embroidered (D) signals. Samples of each gesture are four seconds in length, and
gestures used, in order, are open hand, closed hand, relax, wrist extension, and wrist flexion. Y-axis
are of arbitrary units.
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4. Discussion

This study compares the performance of embroidered textile EMG electrodes with
disposable gel EMG electrodes in gesture recognition and real-time usability tasks with
a view towards use in affordable upper limb prostheses. The results demonstrate that
embroidered electrodes can achieve comparable performance to gel electrodes both online
and offline. The general classification models of nine hand and wrist gestures trained on
data from all three subjects achieved an average accuracy of approximately 96% for the
embroidered and 97% for the gel electrodes. In contrast, the individual subject-specific
models achieved an average of 98% accuracy for both electrode types, although the accuracy
for the embroidered electrodes is slightly lower in both cases. The lower accuracy for the
models trained on all data was expected as they are more generalised than the individual
models. The accuracy would be expected to improve with a larger sample of subjects, as
the models would become less dependent on subject variation and noise. The individual
models trained using embroidered electrodes also showed slightly higher variability than
the gel electrodes (Table 2), which may be due to a lower signal-to-noise ratio (SNR) in the
embroidered type. The usability of the embroidered and gel electrodes was also shown to
be similar as measured by throughput and completion rate in the Fitts’ law-based reaching
task. The difference in completion rate between electrode types may be a consequence of
the limited number of participants.

Although the results of this investigation are promising, future work is required to
determine the suitability of embroidered electrodes to myoelectric control as there were
several limitations to this pilot study. Examples of limitations include the small number
of subjects, the use of subjects with intact limbs only, and lack of gender balance (two
female subjects and one male), making it difficult to generalise the findings to real-world
situations. Each subject was also only tested in a single session, so the study does not
account for the variation of EMG signal over time due to natural biological fluctuations
and the potential degradation of the fabric electrodes.

Another limiting factor was that the electrodes had to be secured in place using tape
and tubing to ensure good skin contact and prevent motion artefacts, which made the
applied pressure on the electrodes difficult to control and may have produced differences in
signal quality between electrodes and subjects. This method of securing the electrodes also
differs significantly from how the electrodes would be implemented in an actual prosthesis,
making it difficult to generalise the results to practical myoelectric control. Pressure sensors
combined with adjustable bands could have been used to ensure consistent pressure on the
electrodes while maintaining good contact. Using such a setup, the sensitivity of the fabric
electrodes to motion artefacts could be investigated, allowing an optimal level of pressure
to be found that balances signal quality with user comfort.

The experiment is also limited by the electrode design because the 20 mm diameter
of the electrodes restricted the number that could be applied to the forearm and made it
difficult to secure them in place comfortably. Two-dimensional high-density EMG electrode
arrays have shown promise for myoelectric control in recent years, including superior
positional shift robustness and classification accuracy [21]. Such an arrangement has been
proven viable with textile electrodes [11]. Implementing the embroidered electrodes in a
high-density array form may therefore have improved performance.

Future work could also be conducted to analyse the potential for practical use in com-
mercial myoelectric control. Although the classification algorithm used in the experiment is
typical of those used in current sequential commercial prosthetics, testing with a simultane-
ous and proportional control algorithm would have better-assessed serviceability in future
prosthetics. The assessment of applicability in myoelectric control could also have been
improved by testing on amputee subjects rather than able-bodied subjects and by using an
active prosthetic in an actual real-time reaching test rather than using a reaching simulation.
It could also be improved by testing with the electrodes embedded into a fabric socket,
garment, or sleeve, similar to how it would need to be implemented in a commercial device.
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This would allow many of the limiting factors to be investigated simultaneously, including
the ease of placement for users, the susceptibility to motion artefacts, and user comfort.

Another necessary area of investigation would be analysis of the durability of the fabric
electrodes during long-term use, such as would be expected of electrodes in prosthetics,
and should include measuring the evolution of skin-electrode impedance and SNR over
time. The effects of environmental factors, such as temperature and moisture, on signal
quality also require investigation.

Despite these limitations, the results are in line with previous studies showing that
using embroidered electrodes can achieve similar performance with gel sensors in upper
limb movement classification for control of myoelectric prostheses [11,16,21,22]. Besides
EMG, the embroidered electrodes also show promise for use in electroencephalography
(EEG) [23] and electrocardiography (ECG) [24,25]. For instance, a recent study using the
same type of embroidered electrodes for ECG measurement [26] showed that embroi-
dered electrodes can capture high quality ECG signals, albeit with less stability than gel
electrodes due to issues with skin contact. Some studies, such as [27], have investigated
the possibility of using textile EMG electrodes in elasticated fabric bands to ensure skin
contact and improve wearability in prosthetics, which is another potential development for
embroidered electrodes.
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Abstract: Stroke is a cerebrovascular disease (CVD), which results in hemiplegia, paralysis, or death.
Conventionally, a stroke patient requires prolonged sessions with physical therapists for the recovery
of motor function. Various home-based rehabilitative devices are also available for upper limbs and
require minimal or no assistance from a physiotherapist. However, there is no clinically proven
device available for functional recovery of a lower limb. In this study, we explored the potential use of
surface electromyography (sEMG) as a controlling mechanism for the development of a home-based
lower limb rehabilitative device for stroke patients. In this experiment, three channels of sEMG were
used to record data from 11 stroke patients while performing ankle joint movements. The movements
were then decoded from the sEMG data and their correlation with the level of motor impairment
was investigated. The impairment level was quantified using the Fugl-Meyer Assessment (FMA)
scale. During the analysis, Hudgins time-domain features were extracted and classified using linear
discriminant analysis (LDA) and artificial neural network (ANN). On average, 63.86% ± 4.3% and
67.1% ± 7.9% of the movements were accurately classified in an offline analysis by LDA and ANN,
respectively. We found that in both classifiers, some motions outperformed others (p < 0.001 for LDA
and p = 0.014 for ANN). The Spearman correlation (ρ) was calculated between the FMA scores and
classification accuracies. The results indicate that there is a moderately positive correlation (ρ = 0.75
for LDA and ρ = 0.55 for ANN) between the two of them. The findings of this study suggest that a
home-based EMG system can be developed to provide customized therapy for the improvement of
functional lower limb motion in stroke patients.

Keywords: stroke rehabilitation; surface electromyography (sEMG); pattern recognition (PR); ankle
joint movements; home-based physical therapy; lower limb functional recovery

1. Introduction

Stroke remains one of the leading causes of social isolation, disability, and death [1].
In children, the incidence of stroke is rare [2] and it has been estimated that in both men
and women, the risk of stroke increases with age [3] while women have more stroke events
than men [4].

As the average age of population is increasing across the world due to multiple
reasons such as advances in medical technology, health care system, and provision of
cheap and readily available medicines, it is expected that the number of stroke patients will
rise [5,6]. Consequently, more patients will need physical rehabilitation in the future and
governments will require induction of an increased number of healthcare professionals
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than usual to provide physical rehabilitation to these individuals. It is also more likely that
the economic burden of stroke will increase and pose challenges to those health systems
with limited resources [7].

A stroke survivor faces long-term effects after the acute phase of stroke. These effects
include the development of impairment, limitations of activities (disability), and reduced
participation (handicap) [8]. Although stroke results in a variety of physical and cognitive
abnormalities, the most widely recognized is motor impairment, which affects 80% of
stroke patients [9]. Commonly, stroke results in loss of movement control of one side of the
body, impacting locomotion.

In neurological disorders including stroke, the restoration of physical function heavily
depends on the onset, the type of injury, and the paradigm being followed for motor
function recovery [10]. For the rehabilitation of upper limb motor function in stroke patients,
constraint-induced movement therapy (CIMT), robotics, brain–computer interfaces (BCIs),
electromyographic biofeedback, and mental practice (MP) combined with motor imagery
have shown improvements in motor function [11–14]. Additionally, repetitive task training,
high intensity physiotherapy/physical therapy (PT) and PT in combination with MP [15]
have resulted in improved functional outcomes for lower limb mobility [16].

Assessing the outcomes of PT over time is very important in evaluating the functional
performance of patients as well as the administered intervention. There are many scales
used to access motor performance after stroke, but the most commonly used scale for
assessing motor impairments in clinical practice is the Fugl-Meyer Assessment (FMA)
scale [17].

The use of the upper limb is more frequent in performing activities of daily life (ADLs)
and the upper limb has been targeted vastly in the areas of physical rehabilitation. Currently,
there are various commercially available and widely used rehabilitative systems for upper
limb rehabilitation after stroke, such as exoskeletons [18], rehabilitation robots [19], gaming
devices [20], and virtual reality (VR) based systems [21]. Many of these rehabilitative
devices are electromyography (EMG)-based. However, there is no device commercially
available and clinically proven for stroke patients with lower limb motor impairments.
Some of the main challenges hindering the commercial availability of the many proposed
lower limb rehabilitative devices include design limitations and do not account for the
physical requirements of stroke patients [22]. Additionally, more research focus on upper
limbs is also an important factor that has resulted in researchers’ comparatively less
technical inclination toward the development of lower limb rehabilitative devices.

The first step toward the development of an EMG-controlled and home-based lower
limb motor rehabilitation device is to investigate the movements of the lower limb in stroke
patients. In the normal functionality of the lower limbs, movements that occur at the ankle
joint complex have major significance in gait and balance. The available literature on the
decoding of ankle joint motions from the movement intention of a user using surface elec-
tromyography (sEMG) in healthy subjects as well as in stroke patients is limited. However,
Al-Quraishi et al. [23] successfully decoded ankle joint movements in healthy subjects
while investigating the impact of different feature extraction and dimensionality reduction
techniques on classification accuracies using autoregressive (AR) features and the following
classifiers: K-nearest neighbor (k-NN), multilayer perceptron (MLP), and linear discrimi-
nant analysis (LDA). Their findings suggested that k-NN along with fuzzy neighborhood
preserving analysis with QR (FNPA-QR) decomposition, as a dimensionality reduction
technique, provides superior results with an average accuracy of 96.20% ± 4.1%. In another
study exploring the biomechanical strategies used by healthy individuals during walking
over uneven terrain, Gregory et al. [24] utilized time domain (TD) features (second-order
AR coefficients, integrated EMG (IEMG), variance (VAR), waveform length (WL), moving
average, and root mean square (RMS)) to predict user intent of performing ankle joint
motions using LDA and the classification tree (CART) from sEMG signals. They reported
the highest classification accuracy of 77.2% using LDA. Furthermore, Waris et al. [25]
evaluated six different classifiers (LDA, ANN, K-NN, SVM, TREE, and naïve Bayes) in
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a multiday evaluation to identify the most suitable algorithm for sEMG classification of
hand motions. In their study, ANN performed better of all classifiers.

The purpose of this study was to investigate the potential use of sEMG for a home-
based ankle joint rehabilitative device using PR approaches and to evaluate the performance
of two classifiers (ANN and LDA). In this study, the intent of performing different ankle
joint movements was decoded from the recorded sEMG of stroke patients and the relation-
ship between motor impairment and functional movements was explored. Previously, it
has been reported that the classification accuracy for upper limbs is affected by impairment
level in stroke patients [26,27]. Additionally, patients were observed by the data collection
team throughout the experimental protocol and notes were taken. A total of four move-
ments take place at the ankle joint complex: dorsiflexion and plantar flexion in the sagittal
plane, and eversion and inversion in the frontal plane [27].

2. Materials and Methods

2.1. Participants

Fourteen stroke patients participated in this study from Railway General Hospital in
Rawalpindi, Pakistan. All the participants were male. Only those patients who had a Mini-
Mental State Examination (MMSE) score of greater than 24 were included in this study [28],
which means they did not suffer from any severe cognitive disorder and were able to
understand the given instructions. Based on the mentioned criteria, three patients were
dropped (see the patient demographics in Table 1). An informed consent was provided by
all patients prior to their participation in this study. This study was carried out according
to the rules of the Declaration of Helsinki of 1975 and the experimental protocol for this
study was approved by the local ethical committee (Riphah /RCRS /REC /00651). The
Fugl-Meyer Assessment was carried out by a registered Physical Therapist to provide
the scores for motor impairment. The motor section of the Fugl-Meyer Assessment scale
consists of 100 points in total, which are used for the assessment of motor function in the
upper extremity (66 points) and lower extremity (34 points) [29].

Table 1. Demographics of the patients who participated in this study.

Patient
No.

Age Sex
Months

Since
Injury

Affected
Side

Injury

Fugl-Meyer
Score of

Lower Limb
(E-F)

1 59 Male 15 Right Ischemic 30
2 61 Male 7 Right Ischemic 29
3 50 Male 35 Right Ischemic 32
4 56 Male 8 Left Ischemic 26
5 49 Male 20 Right Ischemic 25
6 58 Male 12 Right Ischemic 22
7 62 Male 34 Left Ischemic 29
8 48 Male 8 Left Hemorrhagic 31
9 57 Male 60 Right Hemorrhagic 29
10 60 Male 20 Left Ischemic 20
11 40 Male 40 Left Hemorrhagic 34

2.2. Recordings: Surface EMG

Six surface EMG electrodes (Ambu Neuroline 720 surface electrodes, REF 72000-S/25,
Baltropbakken 13, DK-2750, Ballerup, Denmark) were placed on the paretic leg on Tibialis
anterior, gastrocnemius, and peroneus longus [23]. Two electrodes were placed in bipolar
configuration 2 cm apart on the belly of each muscle to acquire signal from a given muscle.
A moist wristband was used as a reference for signals. The sampling frequency was 2048
Hz, and the signals were amplified with a gain of 10,000 (EMG-USB2+, OT-Bioelettronica
Metropolitan City of Turin, Italy).
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2.3. Experimental Setup

Initially, the sEMG electrodes were placed on the affected leg and the quality of
the signals were examined. The experimental protocol was explained in detail to each
participant and a visual cue (photo of each motion class) was used to guide the subjects
during the experiment (Figure 1). Furthermore, each subject was first asked to perform
ankle joint movements with both limbs to familiarize them with the experimental protocol.
Each subject performed one recording session while seated in a comfortable chair. A
digital trigger was transmitted to the amplifier both at the beginning and at the end of the
recording session so that the EMG recordings and the visual cue were synchronized. The
following motion classes were included: plantar flexion, dorsiflexion, eversion, inversion,
and rest. The time duration of performing a single instance of motion was six seconds (each
patient was told to sustain the muscle contraction for six seconds) and every movement
was repeated ten times. A rest time of six seconds was included between each repetition.
The order of the motion classes was randomized and after completion of one motion class,
the next motion class began.

Figure 1. An illustration of the electromyography (EMG) data recording setup while the patient was performing movements.

3. Data Analysis

3.1. Pre-Processing and Feature Extraction

A bandpass filter with cut-off frequencies of 20 and 500 Hz and a Notch filter from
49–51 Hz were applied to the EMG signals using a second-order Butterworth filter with
no phase shift to remove noise. Every six second repetition of each motion class was
extracted and the first and last seconds were excluded from the analysis. As a result, 4 s
epochs for every repetition of each motion class were obtained. After pre-processing, the
following five (TD) features were extracted: ZC, WL, MAV, SSC [29] and Wilsons amplitude
(WAMP) [30,31]. A 280 ms overlapping data window with a step size of 20% was used for
feature extraction [32]. Figure 2 shows an example of a rectified and filtered EMG signal
for every motion class and the associated channels (muscles) used for recording the EMG.
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Figure 2. Rectified and bandpass-filtered EMG signal (only for understanding and visualization) of all motion classes and
all channels separately for subject 3.

3.2. Classification

LDA and ANN (1 hidden layer and 15 neurons) were used to classify the different
lower limb motions. The classification problem consisted of 5 classes. In this analysis, a
four-fold cross-validation was used and the data were randomly divided into four folds
for both the classifiers. Furthermore, one fold was used for testing while the remaining
three folds were used to train the classifier. The overall average across the four folds is
reported. Within the session, calibration was used to perform the classification, i.e., the
training and testing were performed on the same session’s data. All the extracted features
were included in the analysis. MATLAB R2020a (MathWorks®, Natick, MA, USA) was
used to perform data processing and classification. All the analyses were performed on a
laptop with a 64-bit operating system, a core i5 processor, and 8 GB RAM.

3.3. Statistics

One-way repeated measures of analysis of variance (ANOVA) were used for separate
inferential statistical analysis of the classification results of ANN and LDA to investigate the
performance variance in the different motion classes. A probability value (p-Value of < 0.05)
was used to infer the significance of all statistical analysis. Significant results were fol-
lowed by a post-hoc test with Bonferroni correction for multiple comparisons. Lastly, the
Spearman correlation coefficient (ρ) and coefficient of determination (R2) were calculated
between the lower limb Fugl-Meyer score and the average class accuracies of ANN and
LDA for individual motions, as well as for all motions combined. All statistical analyses
were performed using IBM® SPSS®, Chicago, IL, USA).
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4. Results

The results of this study related to motions classification and the association between
level of motor impairment and its effect on performing ankle joint movements are summa-
rized in Table 2 and in Figures 2–8. As studies have reported differences in EMG signals on
the basis of sex, age, and anthropometric variables; therefore, the results of this study are
not representative of the whole population [33].

Table 2. Values of the Spearman correlation (ρ) and coefficient of determination (R2) analysis between
classification accuracies and movements (individual movement and average of all movements).

Motions
LDA ANN

ρ (p-Value) R2 ρ (p-Value) R2

All Move-
ments 0.75 <0.001 0.71 0.55 0.07 0.27

Dorsiflexion 0.26 0.42 0.05 0.21 0.53 0.00787
Eversion 0.64 0.03 0.34 0.28 0.39 0.05
Inversion 0.22 0.49 0.05 0.43 0.18 0.2

Plantar
flexion 0.51 0.1 0.25 0.54 0.08 0.17

Rest −0.15 0.64 0.03 0.12 0.7 0.02

Figure 3. A column graph representing the average classification accuracies for all subjects using
linear discriminant analysis (LDA) and artificial neural network (ANN) reported in the form of mean
± standard deviation.
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Figure 4. The average classification accuracy for all motion classes across all participants. The results
are reported as mean ± standard deviation and asterisk denotes significant differences between
motion class for each classifier. The asterisk denotes statistically significant difference.

Figure 5. Confusion matrix based on the average classification accuracies of all subjects for LDA with
overall average accuracy of 63.86% ± 4.3%. The Highlighted boxes represents the correct percentage
of predictions made by the classifier.
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Figure 6. Confusion matrix based on the average classification accuracies of all subjects for ANN with
overall average accuracy of 67.1% ± 7.9%. The Highlighted boxes represents the correct percentage
of predictions made by the classifier.
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Figure 7. A regression line fitted to the participants’ data of Limb Fugl-Meyer score and their
classification accuracies (LDA) of individual movement and all movements combined.
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Figure 8. A regression line fitted to the participants’ data of Limb Fugl-Meyer score and their
classification accuracies (ANN) of individual movements and all movements combined.

4.1. Classification Results

On average across all participants, 63.85% ± 4.2% and 67.09% ± 7.8% of the move-
ments were accurately classified in the offline analysis using LDA and ANN, respectively.
One-way repeated measures of analysis of variance (ANOVA) revealed a significant differ-
ence between motion classes for both LDA ((F (4, 40) = 12.48; p < 0.001; partial η2 = 0.55)
and ANN ((F (4, 40) = 3.57; p < 0.001; partial η2 = 0.26). For LDA, the post-hoc test with
Bonferroni correction for multiple comparisons revealed that dorsiflexion was significantly
different from eversion, inversion, and plantar flexion. Additionally, using LDA, dorsiflex-
ion was the easiest to discriminate (83.6%). The accuracies of the other motion classes were
in the range between 48% and 72%. The accuracies of dorsiflexion and the rest class were
higher than all other motion classes, while the accuracies of plantar flexion and inversion
were higher than that of eversion. The confusion matrix in Figure 5 shows that rest and
eversion were mostly confused by LDA. In the classification using ANN, rest was classified
most accurately with an accuracy of 77.1%, and plantar flexion had the lowest accuracy of
57.9%. For ANN, the post-hoc test with Bonferroni correction for multiple comparisons
revealed that dorsiflexion was significantly different from rest.
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On average, ANN outperformed LDA (see Figure 3 showing subject-wise results),
and similarly in motion-wise results, the mean classification accuracy of ANN was better
than LDA; however, LDA identified dorsiflexion and plantar flexion better than ANN.
In addition, there was a significant difference between LDA and ANN when identifying
dorsiflexion (F (9, 90) = 7.07; p < 0.001; partial η2 = 0.414). Figure 4 reports the average
classification accuracy for all the motion classes across all participants in the form of mean
± standard deviation. The confusion matrices (mean across the movements and across
participants) are also shown in Figures 5 and 6 for LDA and ANN, respectively.

4.2. Relationship between Functional Score and Classification Accuracy

The Spearman correlation was calculated between the lower limb FMA score (section
E-F of FMA scale) and the class accuracy across all movements as well as each movement
individually for ANN and LDA separately. Furthermore, the coefficient of determination
(R2) was also calculated between the lower limb FMA score and the classification accuracy
of all movements and each movement separately for both the classifiers. There was a posi-
tive, moderate association between the functional scores and the classification accuracies of
the motion classes; the results for the correlation analysis and coefficient of determination
are presented in Table 2. Additionally, a regression line was fitted to the values of the
lower limb FMA score and the average classification accuracy of LDA and ANN for all
movements and each movement individually (Figures 7 and 8). It can be observed from
Table 2 that the value of R2 for all movements is greater in LDA (R2 = 0.71) compared to
ANN (R2 = 0.27). This suggests that LDA was better at identifying a possible trend between
the classification accuracies and the lower limb FMA scores.

4.3. Patients’ Feedback

For the participating stroke patients, data recording via sEMG was a new experience.
At the end of every recording session, each patient was asked to share their experience
with the computer-guided training, and 9 among the 11 participants responded positively.
Table 3 provides the questions that were posed to each subject at the end of the recording
session along with their answers. Their positive response was foreseeable because of the
interactive nature of the experimental protocol.

Table 3. Set of questions that were posed to each subject at the end of recording session and each
subject’s response.

Q. Questions (Total Participants 11) Yes No

1 Have you ever participated in a
scientific study like this one? 0 11

2
Was it convenient for you to follow the
series of images and perform the
exercise?

11 0

3 Do you want to participate in another
session? 10 1

4
Do you feel in control while doing the
exercise on your own without the help
of a Physical therapist?

10 1

5 Did you feel fatigued? 1 10

6

Are you in favor of a rehabilitative
device that will provide physical
therapy in your own
environment?

10 1

7 Did you feel pain at any time during
the experimental protocol? 0 11

8 Did you feel relaxed during the
experiment? 10 1
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5. Discussion

The aim of this study was to investigate the potential use of sEMG as a controlling
mechanism for a home-based lower limb rehabilitative device for use in post-stroke PT.
In this study, we were able to decode five different motion classes: dorsiflexion, eversion,
inversion, plantar flexion, and rest (also included as a motion class) in stroke patients with
an average accuracy of 63.86% ± 4.3% and 67.1% ± 7.9% using LDA and ANN, respectively.
We found that in both classifiers, some motions outperformed others (p < 0.001 for LDA and
p = 0.014 for ANN). The results revealed that ANN performed better than LDA, which is in
agreement with a recent study aimed at characterizing distinct motions in healthy subjects
and amputees using sEMG and intramuscular electromyography (IEMG) signals [34].

From earlier sources, it was known that ankle joint movements can be decoded from
the recorded sEMG data of healthy subjects [23]. Furthermore, it was reported that the
intent of performing lower limb movement (as decoded from sEMG signals) can be used
to control a rehabilitative device [35]. We were able to successfully decode ankle joint
movements from recorded sEMG data of stroke patients. The findings of the current
study are in accordance with previous studies indicating that EMG activity of attempted
movements can be decoded from stroke patients with motor impairments [26,36–40].
However, the number of sEMG channels used in the current setup was less than in other
studies [40,41]. Hudgins (TD) features [30,31,42–44] were used in this study, but adding
other features derived from autoregressive coefficients or wavelets and increasing the
number of sEMG channels will probably improve the classification accuracy

In the current analysis, we found a positive and moderate association between the
extent of motor impairment (lower limb FMA score) and average classification accuracies
for both the classifiers, indicating that as the classification accuracy increases (in case of both
LDA and ANN) moderately, there is small increase in the lower limb FMA score. This is in
accordance with a previous study, which reported that the classification accuracies decrease
as a function of the severity of stroke [39]. It is more likely that a perfect association was
not found because of the small sample size (limited number of stroke patients) and the
possibility that the lower limb FMA score is not a very sensitive measure for quantifying
the level of impairment in these movements specifically, since the FMA score also includes
reflexes, and muscle synergies, knee movements, etc.

During our investigation, we asked patients to perform various lower limb movements
in order to familiarize themselves with the experimental protocol. We observed that
patients felt relaxed when they were asked to perform the same movement using both
limbs simultaneously. This can be attributed to the interaction between the paralyzed and
the normal cerebral cortex, which results in additional stimulation [45]. It is also known that
exercising both the normal and the affected side in stroke patients is more effective in upper
limb function recovery compared to exercising the affected side alone [46]. New studies
involving lower limbs can improve current knowledge on this factor. It was also observed
that patients seemingly performed movements well when the recording session was closer
to ending, which means that some level of dexterity can be achieved in performing these
motions within only one session of training, but this needs to be further explored in a
specially designed experiment.

For lower limb rehabilitation after stroke, manual PT is mostly used in clinical prac-
tice [47,48]. However, neuro-rehabilitation with the help of robotic devices presents a bright
future [49–51]. These devices facilitate personalized treatment, offer reliable assessments,
and ease PT from rigorous manual therapy [52–54]. Based on mechanical design and
actuation, there are two categories of ankle rehabilitation device: end-effector-based robots
and robotic exoskeletons/orthoses [55]. Furthermore, many lower limb rehabilitation
devices have been developed in the past two decades, but most of these mechatronic
systems use a combination of force sensors and feedback signals from position encoders.
Besides, sEMG has been successfully used as a controlling mechanism for many upper
limb rehabilitation devices but rarely investigated for lower limb rehabilitative devices [56].

118



Sensors 2021, 21, 1575

Despite the successful use of sEMG for upper limb rehabilitative devices, its potential has
not been studied extensively for lower limb PT devices.

The possibility of using sEMG as a controlling mechanism for a home-based reha-
bilitative device was demonstrated in this pilot study. In the current investigation, the
trial arrangement was moderately cumbersome. However, the use of compact sEMG
technologies such as the Myo-armband can make the use of sEMG much easier for pa-
tients. Furthermore, it was shown that comparable accuracies can be achieved using such
setups [57]. New studies should be carried out involving a large sample size and smaller
setups to validate these findings in the future.

Presently, because stroke patients are at great risk to coronavirus disease (COVID-
19) [58], their rehabilitation regimen was severely affected in the months following the
pandemic. The possibility of unavoidable circumstances like COVID-19 also advocates
for shifting the focus of stroke-related research toward home-based PT devices so that
in the future, stroke patients can continue their PT even if physical therapists are not
available or the therapy is not feasible. Many systems have been introduced for the
rehabilitation of the ankle joint, but the majority of these systems cannot be used in
lower limb rehabilitation after stroke [22]. A dire need exists to address the challenges
encountered in the development of EMG-based lower limb rehabilitation devices and the
promotion of home-based PT for stroke patients.

6. Conclusions

It is possible to decode various motion classes of the ankle joint in stroke patients using
a PR-based technique (LDA and ANN) requiring a smaller experimental setup and offering
a high level of classification performance, which is a key factor for the efficacy of home-
based rehabilitative devices. However, the availability of the number of stroke patients
was limited and we propose that more studies are needed to validate these findings with a
bigger sample size of stroke patients. Furthermore, from the current study, we concluded
that research involving experts from different areas and an interdisciplinary approach is
more fruitful and viable.
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Abstract: The field of human activity recognition (HAR) often utilizes wearable sensors and machine
learning techniques in order to identify the actions of the subject. This paper considers the activity
recognition of walking and running while using a support vector machine (SVM) that was trained
on principal components derived from wearable sensor data. An ablation analysis is performed in
order to select the subset of sensors that yield the highest classification accuracy. The paper also
compares principal components across trials to inform the similarity of the trials. Five subjects were
instructed to perform standing, walking, running, and sprinting on a self-paced treadmill, and the
data were recorded while using surface electromyography sensors (sEMGs), inertial measurement
units (IMUs), and force plates. When all of the sensors were included, the SVM had over 90%
classification accuracy using only the first three principal components of the data with the classes
of stand, walk, and run/sprint (combined run and sprint class). It was found that sensors that
were placed only on the lower leg produce higher accuracies than sensors placed on the upper leg.
There was a small decrease in accuracy when the force plates are ablated, but the difference may not
be operationally relevant. Using only accelerometers without sEMGs was shown to decrease the
accuracy of the SVM.

Keywords: human activity recognition; surface electromyography; inertial measurement units;
feature selection; wearable sensors

1. Introduction

Human Activity Recognition (HAR) aims to classify motions with the goal of charac-
terizing the behaviors. HAR has previously been performed while using both wearable
and external sensors [1]. External sensors, such as cameras, photometric sensors, and
motion capture systems, are common tools in activity monitoring, but they have their
drawbacks. Cameras and photometric sensors are commonly used to represent “ground
truth” labeling [2], but they are limited by occlusions and shadows from other objects
in the environment. Additionally, activities present in a variety of ways when viewed
from different angles, so picking the proper view for observation becomes an issue for
two-dimensional (2D) systems [3]. Marker-based motion capture systems, where only the
three-dimensional (3D) marker coordinates are recorded, have been shown to be more
reliable at activity detection than cameras alone, but the system requires a setup that can
be quite costly and it can also be affected by occlusions and extraneous reflections [3].
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Wearable sensors, such as surface electromyography sensors (sEMGs) and inertial mea-
surement units (IMUs), have also been explored for HAR [4,5]. Walking and running are
not only biomechanically different, but they also present differences in EMG activity over
a range of fixed gait speeds [6]. The different EMG profiles make EMG useful for observing
activity differences on various subjects with self-selected natural gait speeds, where one
person’s running speed might be another person’s walking speed. Although, sEMGs are
not without their drawbacks. If the primary muscle used for a specific activity has a weak-
ened signal like in cases of patients going through rehabilitation, the sEMG would need to
be placed on another, related muscle [7], potentially decreasing the accuracy of the activity
classification in situations where the sEMG needs precise placement. If the muscle of
interest is in a region with multiple muscles, then sEMG signals might need to be processed
in order to separate out confounding signals [7]. Another common wearable sensor is the
accelerometer. Although useful on their own, these widely available sensors increase HAR
accuracy in combination with other sensors, such as sEMGs [5,8]. Every sensor has its
benefits and drawbacks, but it has been shown that sensors can be used in tandem with
HAR, and this fusion leads to increased accuracies in recognition of defined activities [9].
Examples of these fusions are using EMGs and IMUs (which contain accelerometers) for
HAR for flexion and extension motions of the trunk [10], as well as IMUs and pressure
sensors to recognize sitting, standing, walking, and running [11].

Data from sensors can be used in order to classify activities while using supervised
machine learning techniques, such as Support Vector Machines (SVMs). The accuracy of
an SVM is affected by the features selected and activities defined, as the methods are trained
while using these data. Supervised models are trained while using a set of features and
known activity labels. In machine learning, a feature is a characteristic of the data collected.
Creating a definition of activities and their specific characteristics is one of the largest
challenges of HAR [2]. Previous efforts across a range of activities have had accuracies that
range from 70 to 95% [5,12,13]. These studies differ in the sensors and features used and
the activities detected, leading to the different measured accuracies. It is unclear which
features or sensor signals drive accuracy and further effort is needed in order to assess
sensitivity and specificity for selected features.

The data and time needed for training will increase with the dimensionality of the
system, which can occur by adding additional sensors and features [2]. Dimensionality re-
duction techniques, such as singular value decomposition (SVD) and principal component
analysis (PCA), can be used in order to eliminate noise and reduce the need for large sets
of training data [14,15]. When PCA is used for HAR in literature, it is typically used only
for feature selection [1,8].

This paper seeks to understand which sensors drive accuracy, sensitivity, and speci-
ficity in human activity classification. The categories of “standing”, “walking”, “running”,
and “sprinting” were chosen because they are common activities that humans perform.
Furthermore, data ablation is used in order to show that sensors on the lower leg produce
higher classification accuracies than sensors on the upper leg. Through the ablation analy-
sis, this paper provides the novel contribution of determining which sensors and sensor
placements contribute to the classification accuracy and an interpretation of these findings.
The subjects performed these motions using a self-paced treadmill, which enables users
to select their own walk and run speeds, creating a natural variability within and across
subjects. In order to use data that are transformed by PCA to train an SVM, it must be
established that these classifications are appropriate for use between subjects and trials.
PCA weightings are vectors in a high dimensional space; therefore, to determine that these
weightings are similar and can be applied across subjects and trials, the angles between
the weighting vectors were analyzed. The effect of the sensor set on classification accuracy
will be presented. First, the paper will discuss the methods that were used to conduct the
study. Subsequently, the results of the principal component similarity test and accuracies
of the SVM training will be presented and discussed. This research informs how wearable
sensors can be selected for classifying standing, walking, and running.
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2. Materials and Methods

2.1. Experimental Setup

The experiment was performed at the MIT Lincoln Lab Sensorimotor Technology
Realization in Immersive Virtual Environments (STRIVE) Center in the Computer Assisted
Rehabilitation Environment (CAREN) (Motek Medical, Amsterdam, The Netherlands). The
CAREN is a 24-foot diameter virtual-reality dome with a six-degree of freedom platform.
The platform had a self-paced, split belt treadmill that was equipped with two force plates,
one under each foot. Though these force plates were not wearable sensors, they could
reasonably be replaced with force sensitive shoe insoles. For data collection, each subject
was outfitted with wireless Trigno sEMG sensors with onboard accelerometers (Delsys Inc.,
Natick, MA, USA) that were placed precisely on certain muscles (Figure 1). Additionally,
each subject was outfitted with motion capture markers, so the Vicon system (Vicon, Oxford,
UK) in the CAREN could record the subject’s motion. The marker set used was a modified
Plug-in-Gait marker set, where the marker that was set on the upper body was reduced, as
the focus of the study is on the lower body. These markers were used for the self-paced
treadmill control and they were not used for activity classification.

The experiment had five subjects with a mean weight of 69.6 ± 19.9 kg and a mean age
of 24.5 ± 4.3 years, all of whom were physically capable of completing all tasks. Subjects
performed six trials on a treadmill, where they were given commands of “stand”, “walk“,
“run”, and “sprint”, via on-screen text. New commands were issued every ten seconds,
and each trial lasted 150 s. The order of the commands was switched for each trial in order
to capture a roughly even distribution of transitions between different states (Figure 2).
The MIT Committee on the Use of Humans as Experimental Subjects approved the proce-
dure, and all of the subjects gave voluntary, informed, written consent to participate.

Figure 1. Trigno sensor locations on the subjects. These sensors include both a surface electromyography sensor (sEMG)
and an accelerometer
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(a) Experiment Commands

(b) Treadmill Speed

Figure 2. (a) The distribution of the commands each subject was given across time. There are six plots, one for each of
the six trials. (b) Example of the self-paced treadmill speed for the first trial Subject 4 completed, where the commands
are reflected in the speed at which the subject was moving. Note that while commands were given for the same duration,
the activities are not all performed for the same duration, justifying the decision to label data points by speed instead of
commanded activity.
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2.2. Feature Selection

All of the features were extracted while using a sliding window of 0.5 s with 0.30 s
overlap, similar to previous work [16,17]. The accelerometer data from all eight sensors
were used as features by taking the vector norm of the accelerometer data in each window
(ACC). The mean vertical force that was applied to the individual force plates (FP) as
well as the standard deviation of the force applied to the force plates were also used as
features. The median frequency (MF) of each sEMG sensor was used as a feature. It has
been found that the frequency domain is useful in assessing muscle fatigue, which is
important, because, as the trials progress, the subject tires, so it is important to ensure
that our classification works for all levels of fatigue [18]. The sEMG signal samples in
each window were binned by assessing the mean and standard deviation (SD) within that
window in order to generate amplitude bin features (H1, H2, H3). Three bins were used
for 0 to 1 SD from the mean (H1), 1 to 2 SD from the mean (H2), and >2 SD from the mean
(H3). This method was chosen, because histogram features work well in high dimensional
space, leading to higher robustness in recognizing activities [19].

In total, there were 44 features used: two force plate means (FPM), two force plate
standard deviations (FPSD), eight sets of accelerometer data (ACC), eight sets of median
sEMG frequencies (MF), and eight sets of three sEMG bins (H1, H2, H3). All of the features
were z-score normalized in order to ensure that all data are on the same scale.

2.3. PCA Analysis

PCA is a dimensionality reduction technique that creates new axes for a set of data that
maximizes the variance that occurs along the axes. From an m× n set of data, where m is the
number of observations and n is the number of features, PCA creates n orthogonal principal
components, where component 1 is a vector in the feature space where the data have the
most variance and each successive component contains decreasing variance, so component
n is a vector where the data show the least variance. These components are defined by
a n × n set of weights, known as coefficients, for each feature. The coefficients indicate how
much each feature is correlated to that particular principal component. Each feature has
a corresponding score, where the scores are representations of the data in the space of the
PCA coefficients, such that T = XW, where T is the original data set, the rows of X are the
coefficients of each score, and the columns of W are the scores of each component [20].

The comparison of PCA weightings between subjects was performed by determining
the angle between the orthogonal vector sets. The angle between every combination of
trials without repeating combinations and the median of every angle was found. An angle
between the PC coefficients can be calculated, because these weightings are the basis of
an orthogonal set of vectors. The angle between components can be found while using the
dot product of coefficients of the trials being compared. Smaller angles between principal
components indicates a greater similarity in the features. Similarity in a matrix comparing
two vectors would mean low values on the diagonal. Because PCA weightings indicate
variance in either direction of the corresponding vector in feature space, we can take
the supplementary angle when differences in vector angles are more than 90 degrees in
order to account for the axis being identical, whether it is srepresented as positive or
negative. In this study, the supplementary angle was taken for comparisons between like-
components. In this context, “like-components” refer to the same principal components
that originate from different trials and/or subjects (e.g., principal component 1 from trial
1 and principal component 1 from trial 2). Before the supplementary angle was taken,
there was a bi-modal distribution that was centered around zero. To more accurately reflect
how far from 0◦ these angles were, the like-components were reported in a range from 0◦ to
90◦. All of the comparisons were done between the first three principal components of each
dataset, as they describe approximately 85% of variance of each dataset. These comparisons
were performed across all trials and subjects.
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2.4. Support Vector Machines

A SVM was used in order to classify the PCA data into categories of motion. SVM finds
separating hyperplanes, such that data points with different labels are maximally sepa-
rated. These data can be “classified” by using the side of the hyperplane on which they are
located [21]. A SVM was chosen from other supervised learning techniques, because vi-
sual inspection and initial observations of the data supported the use of a hyperplane
to separate the data into categories. A Gaussian SVM, which uses a Gaussian kernel,
was used in order to separate the data into the categories of stand, walk, run, and sprint.
Because there was a natural delay between the subject reading the command and then
performing it, we were unable to classify actions based on the time that the command
was initially displayed. Instead, actions were classified manually (Table 1). For training,
speed thresholds were manually set based on the speed that the user was maintaining
at each point in time, as determined by an inspection of the treadmill speed across time.
This labelling also included the transition regions. For example, if the subject was com-
manded to transition from standing to running, then the portion of data where the subject
was moving with their determined walking speeds (Table 1) was labelled as walking
(Figure 2). Subsequently, the class labels that were used for training were filtered with
a sixth order Butterworth filter with a cutoff frequency of 50 Hz to smooth changes in speed
due to high frequency noise.

Table 1. Thresholds of Speeds Used for the Labelling of Each Subject’s Activities.

Speed Threshold (m/s)
Stand Walk Run Sprint

Subject 1 0 (0, 1.3] (1.3, 2.4] (2.4, ∞]
Subject 2 0 (0, 1.6] (1.6, 3.3] (3.3, ∞]
Subject 3 0 (0, 1.6] (1.6, 2.8] (2.8, ∞]
Subject 4 0 (0, 1.4] (1.4, 2.5] (2.5, ∞]
Subject 5 0 (0, 1.2] (1.2, 2.7] (2.7, ∞]

2.5. Accuracy

The accuracy of the SVM was found while using six-fold cross validation, where
whole trials were reserved one at a time for testing. The accuracies for each subject were
only calculated within each subject. During the cross-validation, PCA was performed on
the data that were reserved for training. The data reserved for testing were transformed
into the PCA space of the training data while using the coefficients found; no separate
PCA was performed on the testing data. The accuracy was defined as the percentage of
data points that were correctly classified by the SVM. Because the main difference between
running and sprinting is speed rather than a biomechanical difference, such as presence or
lack of double support as in walk vs. run, the accuracy was also computed when prediction
confusion between running and sprinting was allowed by grouping running and sprinting
labels together. Additionally, the sensitivity and specificity of each set of sensors are
reported. Sensitivity is the proportion of correctly-classified data points with respect to the
overall data points in that class, and specificity is the the proportion of correctly-classified
negative data points versus the number of data points that are truly negative. Positive data
is a correct activity classification, while the negative data is an incorrect classification. All of
the machine learning and mathematical calculations were completed using MATLAB.

2.6. Ablation

In order to determine which sensors were driving the SVM classification of activities,
features that were derived from certain sensors were removed from the total set in a process
that is known as ablation [22] (Figure 3). The ablation process serves two purposes: it will
help to determine which sensors and sensor placements lead to a higher classification
accuracy, and it will lead to a greater understanding regarding which elements of the sensor
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data gathered drives the classification. The PCA and SVM procedure were performed on
the case selected. Comparisons of mean accuracy between cases were evaluated while
using Cohen’s d effect size in order to consider the differences.

Figure 3. Locations of sensors during ablation. Case 1 includes all sensors. Case 2 includes sensors on the upper leg. Case 3
includes sensors on the lower leg. Case 4 includes sensors on the upper leg and the force plate. Case 5 includes sensors on
the lower leg and the force plate. Case 6 includes sensors on the gastrocnemius. Case 7 includes one accelerometer on each
segment of the leg. Case 8 includes one accelerometer per shank.

3. Results and Discussion

3.1. PCA Comparisons

Before discussing the comparisons between principal components, we must first un-
derstand what these principal components represent. Principal Component 1 was observed
to be correlated with treadmill speed, with a median correlation across subjects and trials
of ρ = 0.96 with an inter-quartile range of ρ = 0.02 (Figure 4). The correlations could
be positive or negative, depending on the directionality of the principal components of
each trial, so the absolute value of each trial’s correlation was taken. Additionally, the type
of locomotion was also observed to show distinct clusters across Principal Component
1 (Figure 4). Principal Component 2 of Subjects 2–5 appears to be correlated with the
difference between the left and right force plate, which can be used to infer mediolateral
positioning. The median correlation value was ρ = 0.83 with an inter-quartile range of
ρ = 0.16 (Figure 5). The difference in force plates readings was observed to show a distinct
gradient across the Principal Component 2 axis (Figure 5). Subject 1 did not appear to
have a correlation with the force plate data and PC 2, which was likely due to cross-plate
strikes, as discussed in more detail in Section 3.4. There was no clear relationship between
Principal Component 3 and the collected data observed.
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(a) Principal Component 1 and Treadmill Speed

(b) Striation of Locomotion Modes on Principal Component Plot

Figure 4. (a) A plot of the treadmill speed versus the scores of Principal Component 1. A high level of correlation between
these two parameters can be seen with the strong negative slope. This correlation can be seen over all trials, but Subject
5 Trial 3 was selected as a representative case. (b) A plot of principal component scores where each data point is colored
according to the mode of locomotion the subject was performing. A clear pattern emerges on the Principal Component
1 axis.
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(a) Experiment Commands

(b) Treadmill Speed

Figure 5. (a) A plot of the difference in force plate readings versus the scores of Principal Component 2. A high level of
correlation between the two can be seen with the strong negative slope. This correlation can be seen over all trials, but
Subject 5 Trial 3 was selected as a representative case. (b) Principal component scores plotted with a gradient representing
the difference in force plate readings. When the subject places all of their weight on a single leg (single support), the
difference between force plates is at the maximum absolute value. The gradient can clearly be seen along the axis of the
second principal component, which indicated that this principal component is driven by the variation of right and left
leg motion.
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Table 2 presents the median angle between the first three principal components of
each trial across subjects and they are individually plotted in Appendix A.

Table 2. Median Angle Between Components Across Trial and Subject Combinations.

Component 1 Component 2 Component 3

Component 1 21.05◦ 90.65◦ 89.97◦
Component 2 91.15◦ 51.05◦ 87.42◦
Component 3 90.58◦ 90.01◦ 59.71◦

The comparisons of both Components 1 (the first row and the first column) show the
smallest angle, 21.05◦, is between the like-components, while the other angles are nearly
orthogonal. If two sets of principal components were exactly the same, then the diago-
nal would show 0 degree differences, and all off-diagonal entries would show 90 degree
differences. These separation angles support that all first components are similar. The com-
parisons of Components 2 (the second row and the second column) and of Components 3
(the third row and the third column) have the smallest angle between the like-components
as opposed to non-like components. Although the comparisons between the second and
third components did not have ideal separations, since the like-components are the smallest,
we consider the components that are similar enough to be used for classification, because
the like-components are closer to each other than the non-like components. This assump-
tion is further investigated by determining the classification accuracy.

The spread observed in comparing Component 2 across trials (Figure A5) may be from
the alternation of left and right legs during locomotion, as supported by the correlation of
Component 2 and the force plate readings (Figure 5).

3.2. Classification Accuracy

The median accuracy across all classes for all sensors (Case 1) was 86.4%, with a median
absolute deviation (MAD) of 2.9%. Without allowing for run/sprint confusion, all of the
effect sizes for all comparisons between cases were over 0.8 and considered to be large.
Consequently, the discussion will only focus on the results when run and sprint confusion is
allowed (Table 3). With this confusion, the median accuracy for all sensors was 91.6% with
a MAD of 2.3% (Figure 6). A self-paced treadmill allows for subjects to perform locomotion
close to their natural gait, but it leads to increased variability in speeds when compared to
other studies that use fix-paced treadmills [23]. Despite the increased variability in speeds,
a high classification accuracy was obtained with the full suite of sensors and the first three
principal components.

The Cohen’s d effect sizes across all comparisons that are listed in Table 3 were all large
when directly using the predicted labels from the SVM. Only when run/sprint confusion
was allowed did the effect sizes range across small, medium, and large, meaning that our
reduced sensor sets do not contain enough information to accurately distinguish between
running and sprinting. Our subjects were not expert sprinters, so the run and sprint were
also similar to each other for this reason.

The results show that a higher level of accuracy is achieved when sensors are on the
lower leg (Cases 3 and 5) than when sensors are placed on the upper leg (Cases 2 and
4). Case 3 has a higher accuracy than Case 2 (large effect size), which demonstrates that
there is a significant impact on placing sensors on upper versus lower legs. Removing
sensors on the lower leg and maintaining sensors on the upper leg, with the force plates
(Case 4) as well as without the force plates (Case 2), led to losses in accuracy (large effect
size). This loss in accuracy might be because not enough information about the activity
is provided from the hamstring and vastus medialis, as they have similar EMG profiles
during walking and running [24]. The effect size when both of these cases are compared to
Case 1 is large, and Figure 6 shows that the median classification accuracy is lower than in
Case 1.
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Table 3. Cohen’s d effect sizes.

Comparison
Cohen’s d Value- Allowed

Run/Sprint Confusion
Effect Size

Case 1 vs. Case 2 1.12 Large
Case 1 vs. Case 3 0.65 Medium
Case 1 vs. Case 4 0.82 Large
Case 1 vs. Case 5 0.29 Small
Case 1 vs. Case 6 0.74 Large
Case 1 vs. Case 7 0.53 Medium
Case 1 vs. Case 8 0.91 Large
Case 7 vs. Case 8 1.66 Large
Case 2 vs. Case 3 −0.85 Large
Case 2 vs. Case 4 −1.04 Large
Case 3 vs. Case 5 −0.67 Medium
Case 3 vs. Case 6 0.65 Medium
Case 6 vs. Case 8 0.52 Medium

Figure 6. A box plot of the classification accuracy for all eight cases across all subjects with allowed run/sprint confusion.
The line on the box represents the median, while the whiskers reach 1.5 times the interquartile range. The cases here refer to
the cases that are defined in Figure 3.
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The number of sensors that are placed on the lower leg matters in accurately classifying
activities. When the sensors are only on the gastrocnemius muscle (Case 6), there is
a decrease in accuracy when compared to Case 1 (large effect size) and a decrease in
accuracy when compared to Case 3 (medium effect size). This difference in effect size
means that only having two sensors on the lower leg might be insufficient for classification
between stand–walk–run. During standing, walking, and running, the gastrocnemius and
tibialis anterior co-contract in order to provide stability to the ankle. The removal of the
tibialis sEMG sensors eliminates the ability for co-contraction to be captured within the
algorithm. These results support the method having a higher accuracy when co-contraction
is captured. Additionally, the lower leg is farther away from the center of rotation (the
hips), so the differences in gait are magnified in the lower-leg sensors. There is a greater
difference in how much the sensors on the lower leg swing during walking and running
than the sensors on the upper leg.

Removing the force plates results in changes to accuracy when compared to cases with
the force plate. The removal of the force plate led to reductions in accuracy as observed by
comparing the sensors on the lower leg, Case 3 vs. Case 5 (medium effect), as well as sensors
on the upper leg, Case 2 vs. Case 4 (large effect). The difference here is likely because the
magnitude of the normal force is greater during running than walking, which supported
the classification between those activities. When compared to the accuracy results from
the use of all sensors (Case 1), only using a sensor set on the lower leg with the use of
a force plate (Case 5) results in a small effect size (Table 3). If the sensors are limited and
the motions of standing, walking, and running need to be classified, utilizing the sensors
on the lower leg with force plates may not have operationally relevant differences from the
full suite of sensors. When the sensors are only placed on the lower leg and the force plate
is not utilized (Case 3), the median accuracy decreases by 0.82% compared to the set with
all sensors (Case 1, medium effect size, Table 3). Depending on the use case, this loss in
accuracy may or may not be functionally relevant.

Using accelerometers without sEMGs reduces classification accuracy. Using one
accelerometer on each segment of the leg (Case 7) decreases the median accuracy when
compared to Case 1 (medium effect size). The accelerometer signals provide information
on changing speeds, which can inform running and walking. It is likely that the variation
in acceleration profiles that comes from using a self-paced system yielded a decrease in
accuracy when compared to cases when sEMG signals were present. Case 8 (only four
accelerometers) has a decrease in accuracy when compared to Case 1 (large effect size).
Even removing two accelerometers when no sEMGs are present yields a large decrease in
accuracy, as seen by the large effect size between Cases 7 and 8. When sEMG are not present,
the relative motion between the thigh and shank is captured with the accelerometers on
these segments. More distal points on the leg experience greater accelerations, as linear
acceleration is a function of both the change in angular velocity and the distance from
the center of rotation. It follows that the accelerometers on the lower leg capture greater
relative motion. These results support that there is a higher accuracy when this segment
coordination is captured.

Accelerometers alone do not achieve as high accuracies from the SVM as they do
when used in tandem with other sensors. In Cases 7 and 8, when only accelerometers were
used for classifying all activities, the sensitivity of running sharply decreases (Figure 7).
From the lower sensitivity, it can be concluded that the use of accelerometers alone hinders
the accuracy of the SVM. Similarly, the walking sensitivity sharply decreases for Case 2,
which means that the use of sensors only on the upper leg makes it difficult for a SVM to
positively identify walking. Perhaps the lower accuracy in walking is a result of the lower-
leg muscles having a greater difference in EMG profiles during running than in walking [24].
Overall, the specificities were much higher than the sensitivities, with most of them being
over 90%, which implied that the SVM method of classification does not lead to many
false positives in the data, but mostly false negatives. For wearable robotic applications,
high specificity might decrease potential harm to subjects. It might be more harmful to
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misidentify a change in action than perform no change at all, as a misidentificiation might
lead to an injury if the robotic system performs in a way that the user is not expecting.

Figure 7. Sensitivities and specificities of each action per case.

This study extends the literature by examining the effect of sensor choice and place-
ment on classifying standing, walking, and running. Through ablation, we have found
that it is best to place sensors on the lower leg. Additionally, the ablation process has
helped to gain an understanding regarding how different features contribute to the classifi-
cation, such as the strong contributions of the lower leg when compared to the upper leg.
Although other studies have used PCA for HAR, we have demonstrated that three principal
components of this type of data are sufficient for a high degree of classification accuracy.

3.3. Applications of the Study

There are many applications to the results of this study. The results here can be used as
a heuristic in an exoskeleton controller in order to determine when the wearer shifts from
walking to running and vice-versa, supporting different controller needs. For applications,
such as fitness tracking, sensors can be placed closer to the ankle than the thigh for the
best results, using an EMG if possible. The ablated sensor sets can be used for optimal
sensor selection in future studies. The reduced sensor suites and PCA approach can be
dimensionally reduced for a faster computation time without compromising accuracy.

This paper demonstrated the successful classification of these data into standing,
walking, and running, and enhanced the understanding about which sensor types and
placements drive the classification. However, there are opportunities for further explo-
ration. First, other classifiers can be explored. This paper chose to explore the effects of
an SVM, which is a type of supervised learning, but there are other supervised learning
techniques, such as k-nearest neighbors approximation, which can be utilized. Unsuper-
vised techniques can also be evaluated. Additionally, the techniques that are listed here
can be used to classify other types of human activities, and then ablation can be used to
study which features drive those classifications.
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3.4. Limitations of the Study

The small number of subjects was one major limitation of this study. The methods
of this paper can be repeated with the use of a greater number of subjects, but, due to
global health concerns at the time this paper was written, this was not a possibility for this
particular study.

The ability of the subjects to perform the activities as another limitation of the study.
Some of the subjects experienced more fatigue than others and slowed during run and
sprint, leading to fewer data points for that specific activity to analyze for these cases.
Consequently, we have fewer instances of sprinting and running. Because of the space
that the study was completed in, we were unable to collect data for other common human
activities, such as climbing stairs, but there is opportunity in the future to extend this study
to additional activities.

The threshold speed values of each activity were manually set for truth labelling,
so some data points might have been mislabelled near transitions. The definition of the
truth states was based on the speed that the user was moving at, which was a self-selected
process. Occasionally, users transitioned unintentionally. Smoothing the treadmill speeds
with a Butterworth filter made the range of speeds for each task more clearly defined,
but it did not entirely smooth away every unintentional transition.

The sEMG readings vary from session to session. This study’s data were limited
to a single session per subject and, therefore, less variability was encountered in sEMG
readings than there would be multi-day study, which would be more similar to a daily use
case. It is recommended to collect more data longitudinally in order to assess this variability.

During the study, the subjects were instructed to strike the left force plate with the
left foot and the right force plate with the right foot. During analysis, it was observed that
cross-plate strikes occurred (e.g., a left foot striking the right force plate), with a greater
count towards the end of the study. These cross-strikes may occur, as subjects may have
placed less attention on lateral velocity control and foot placement with study duration or
fatigue onset. These cross-plate strikes were kept in the dataset. Cross-plate strikes do not
affect biomechanical modeling during single-support, but they do affect the modeling of
human joint torques during double-support due to the ambiguity in the length of the joints’
moment arm. We do not analyze moments directly in this work, although there would be
an effect on our force place sensor inputs.

4. Conclusions

This paper demonstrated which sensors were the most important for classifying
standing, walking, and running through ablated data sets and an SVM that was trained
on principal components. Although the ablated sets did not contain enough information
to distinguish between running and sprinting, the results show that using a reduced
sensor set on the lower legs will result in a classification accuracy similar to a classification
accuracy when all of the sensors are used. Although including the force plates resulted in
a higher classification accuracy than when the force plates were not included, the difference
might not be operationally relevant. It was also shown that only using accelerometers
decreases the sensitivity of the classification algorithm. Our methods involved a greater
variation in speeds of activities when compared to using a fixed-speed treadmill, and yet
our classification accuracy remained over 90% with all sensors included. This high accuracy
indicates that the SVM used on PCA data is an effective tool for HAR and relevant sets of
muscles for sensor placements have been found. Moving forward, it would be interesting
to learn more regarding why dissimilarities between principal components occur.
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Appendix A

The following figures are histograms of the angles of separations between all combi-
nations of the principal components.

Figure A1. Histogram of the comparisons between the first principal component of some Trial A and
the first principal components of some Trial B, where these comparisons are made across all trials
and subjects.
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Figure A2. Histogram of the comparisons between the first principal component of some Trial A and
the second principal component of some Trial B, where these comparisons are made across all trials
and subjects.

Figure A3. Histogram of the comparisons between the first principal component of some Trial A and
the third principal component of some Trial B, where these comparisons are made across all trials
and subjects.
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Figure A4. Histogram of the comparisons between the second principal component of some Trial
A and the first principal components of some Trial B, where these comparisons are made across all
trials and subjects.

Figure A5. Histogram of the comparisons between the second principal component of some Trial A
and the second principal component of some Trial B, where these comparisons are made across all
trials and subjects.
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Figure A6. Histogram of the comparisons between the second principal component of some Trial
A and the third principal component of some Trial B, where these comparisons are made across all
trials and subjects.

Figure A7. Histogram of the comparisons between the third principal component of some Trial A
and the first principal components of some Trial B, where these comparisons are made across all
trials and subjects.
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Figure A8. Histogram of the comparisons between the third principal component of some Trial A
and the second principal component of some Trial B, where these comparisons are made across all
trials and subjects.

Figure A9. Histogram of the comparisons between the third principal component of some Trial A
and the third principal component of some Trial B, where these comparisons are made across all
trials and subjects.
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Abstract: Understanding how upper-limb prostheses are used in daily life helps to improve the
design and robustness of prosthesis control algorithms and prosthetic components. However, only a
very small fraction of published research includes prosthesis use in community settings. The cost,
limited battery life, and poor generalisation may be the main reasons limiting the implementation of
home-based applications. In this work, we introduce the design of a cost-effective Arduino-based
myoelectric control system with wearable electromyogram (EMG) sensors. The design considerations
focused on home studies, so the robustness, user-friendly control adjustments, and user supports
were the main concerns. Three control algorithms, namely, direct control, abstract control, and linear
discriminant analysis (LDA) classification, were implemented in the system. In this paper, we will
share our design principles and report the robustness of the system in continuous operation in the
laboratory. In addition, we will show a first real-time implementation of the abstract decoder for
prosthesis control with an able-bodied participant.

Keywords: surface electromyogram; prosthesis control; wearable; low-cost

1. Introduction

Myoelectric prostheses have the potential to restore the functionality of missing limbs.
First developed in 1948 [1], myoelectric prostheses are now widely used by amputees in
their daily lives. Although research and development have led to significant technological
advances in the laboratory, conventional control algorithms are still the mainstream in
clinical trials and commercialised applications. A literature search shows that among
the 1716 articles that mention daily use of prostheses since 1990, only 69 include the
original experiments outside the laboratory [2]. Limited beyond-the-laboratory testing
might explain why the prosthesis rejection rate has remained as high as 50% [3,4].

One main reason for the status quo is that, in community settings, advanced prosthetic
control algorithms do not perform as well as they do in the laboratory [5]. Factors such as
electrode displacement [6,7], changes in limb positions [8,9], extra load on the limb [10],
time between adaptation and application [11], and user learning [12,13] can degrade the
performance of the prosthesis. Expansion of the training dataset helps to increase the
robustness of the control, but training data in community settings are limited, and the data
collected in laboratory settings can be different from user behaviour in daily life. In addition,
the recalibration procedures for advanced algorithms are more complicated than the
conventional control methods, and therefore, it will be challenging, if not impossible,
to retune these algorithms in home trials without the support of specialists [14,15].

The limitations of portable devices are another barrier to the translational studies of
advanced prosthetic technology. Currently, most of the home trials for prosthesis studies
were based on commercialised prosthetic devices [16–18]. These products included self-
contained control systems in their embedded microcontrollers so that they could plug
and play directly in the experiments. Having the merits of convenience and robustness,
these systems have limited functions and flexibility. For instance, they relied on basic
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prosthesis control methods, such as on–off or direct control [19], and the users could not
change settings during use [20,21]. Add-on controller kits [22,23] provide platforms for the
implementation of advanced control algorithms. Due to the high costs involved and the
constraints on adaptable prostheses, users in developing countries have limited access to
these devices.

Arduino is an open-source computing platform that can integrate data collection, sig-
nal analysis, and control on a single microcontroller. It has different series to match various
peripheral devices, and the users can develop systems on built-in libraries. Preliminary
studies have reported development of prosthetic control systems on Arduino boards [22,24].
With an open-source integrated development environment (IDE), developers can build
the systems easily on the basis of previous designs and utilise modules developed in
other projects [25–27]. Currently, the Arduino-based prosthesis research still focuses on
applications with basic control functions [28,29].

In this paper, we describe the development of a cost-effective myoelectric control
system for achieving multiple hand tasks with selectable control algorithms. We demon-
strate its functionality and portability and show its feasibility for long-term prosthetic
control and fair comparison between control algorithms. The features proposed in this
work include the following: (a) a robust system structure that guarantees the accuracy of
control signals during long-term operation; (b) the implementation of a clinical controller,
human-learning-based controller, and pattern-recognition-based controller on a single
system, which allows fair comparisons in prosthetic studies; (c) a friendly user interface
that helps users to learn the system control and to adjust the control preferences in take-
home studies; and (d) extendable data storage for hand-task recording with time stamps.
To guarantee the generalisation, the system was developed on off-the-shelf sensors and
development boards (Arduino).

2. Methods

2.1. System Features
2.1.1. System Overview

The control system consists of five major components (Figure 1). These are: (1) two
sensors for surface electromyogram (EMG) recording (Gravity analog EMG sensors; OYMo-
tion, China); (2) a development board for EMG signal processing, feature extraction, and
control command generation (Arduino MKR ZERO; Arduino LLC, USA); (3) a connector
module for device communication (Arduino MKR CAN shield; Arduino LLC, USA); (4) a
prosthetic hand with six degrees of freedom (DoFs) (Robo-limb hand; Össur, Iceland);
and (5) a data-recording unit (32-GB Kingston micro-SD card; Kingston Technology, USA).
The Gravity analog EMG sensors amplify the surface EMG signals 1000 times and depress
noises through differential input and an analog filter circuit. The amplified EMG signal is
sampled by a 10-bit analog-to-digital converter (ADC) through the Arduino analog inputs
at a 500 Hz sampling frequency. After processing the EMG signals, the corresponding
motor commands are transmitted to the prosthetic hand to drive the motors through the
Controller Area Network (CAN) communication.

One reason to develop the system on Arduino is because of its compatibility with
a variety of analog front ends and radio frequency (RF) front ends, which is very useful
in bridging the EMG sensors with prosthetic devices. It can independently power and
interface with varies types of EMG sensors, including MyoWare muscle sensors (Sparkfun,
USA), the Grove EMG detector (Seeed Technology Inc., China), and Gravity analog EMG
sensors (OYMotion, China). Control signals can be sent to different prosthetic devices, such
as the Robo-limb prosthetic hand (Össur, Iceland) and the COVVI hand (COVVI Ltd, UK)
through a CAN bus or Bluetooth communication. We selected the Gravity analog EMG
sensors in this study because their dry electrode design was simple to use and was more
robust in long-term studies and real-world environments [30,31].
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Figure 1. The prototype of the proposed myoelectric control system.

2.1.2. Signal Recording and Pre-Processing

To accurately control the prosthesis, the system should record and process the EMG
signals quickly so that the delay between muscle contraction and hand movement can
be minimised. Our system applied a 500 Hz sampling rate for signal recording. The
sampled signals were filtered by an EMG filter module developed by OYMotion (OYMotion,
Shanghai, China), which was designed to work synergistically with the analog filters on the
Gravity analog EMG sensors. It was implemented by cascading an anti-hum notch filter,
a second-order Butterworth lowpass filter, and a second-order Butterworth highpass filter
to filter out 50 Hz power line noise, noise above 150 Hz, and noise below 20 Hz, respectively.
Considering the variation in muscle strength among users, a calibration module was added
to normalise the signals based on individual comfortable contraction levels [32].

2.1.3. User-Friendly Control Interface

A customised control interface was developed on a personal computer (PC) to support
users in learning myoelectric control and updating control parameters. As can be seen in
Figure 2, the interface is composed of a data visualisation unit and a control panel. The data
visualisation unit displays the on-the-fly muscle contraction levels or selected features on
the screen. This module helps users develop their control patterns for human-learning-
based controllers [33], and it may also support data collection for pattern recognition [34].
The control panel allows users to select the controller based on their unique preferences
and to recalibrate the system at home. Recalibration requires the users to rest their muscles
and then contract them sequentially at a comfortable contraction level within ten seconds.
The EMG signals in the system will be normalised by the calibration data through a
normalisation equation [32]. This design aims to simplify the protocols for prosthesis
adjustments so that the disruption to the user’s daily life can be minimised.
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Figure 2. User interface for the proposed system.

2.2. Controller Modules

Three control algorithms, including the direct control, abstract control, and linear
discriminant analysis (LDA) classification, were implemented in the system using two
EMG channels. For each channel, the control signal was extracted by the mean absolute
value (MAV) of the EMG signals over a 760 ms window with an update rate of 50 Hz.
The window size was selected to smooth the control output and maintain an acceptable
effector movement [33].

2.2.1. Direct Controller

Direct control is a conventional myoelectric control method that generates a single
command (hand open, hand close, or grip switching) at a time [12]. It normally applies
threshold-based criteria to determine the activation of control signals [35]. In our two-
channel direct controller, the activation of a single control signal directed the prosthetic
hand to open and close, respectively. The co-activation of both control signals allowed
the user to switch the hand function between power grip, tripod grip, and lateral grip.
The hand gesture persisted when neither channel was activated.

2.2.2. LDA Classifier

Classification is the most popular method in myoelectric control. It utilises the train-
ing data to develop a classifier that maps the control signals extracted from the input
signals onto a discrete output variable that encodes prosthetic activities [36,37]. Because of
the robustness, simplicity of implementation, and ease of training, LDA classifiers have
frequently been used in previous studies [38].

In this study, the linear discriminant coefficient matrix W was trained on a PC to
estimate the posterior probability of grips that the user intended to select based on two
EMG channels. The trained matrix was uploaded to the system for real-time classification
using y = Wx, where x is the < 2 × 1 > dimensional vector for the MAVs and y is the
< 5 × 1 > dimensional vector encoding the posterior probability. The grip with the highest
posterior probability was considered as the output of the classifier.
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2.2.3. Abstract Controller

Abstract control is a relatively novel approach for myoelectric control [33]. The
mechanism of abstract control is based on the fact that the motor system is able to learn
multiple novel muscle synergies to achieve specific motor goals [32,39]. To facilitate the
learning, a myoelectric–computer interface (MCI) is used to map the muscle activities to a
non-representational multidimensional control space (Figure 2), which provides continuous
visual feedback for motor system adaption [40]. The position of the cursor (blue dot in
Figure 2) is controlled by the features of the EMG signals, such as the MAV. Users are asked
to practise cursor control in a centre-out task to develop abstract muscle synergies [41],
and each task will be mapped to a grip or a command of the prosthetic hand. More
discussions of how the MCI relates to learning prosthesis control can be found in our
previous studies [13,32]. In this research, the cursor position was controlled by the MAVs
of two channels, and the MCI was separated into five sections, which were mapped to five
different prosthetic activities. When the cursor stayed at the basket (target 0), the prosthetic
hand persisted at the previous grip. Moving the cursor from the basket to target 1 to 4
(from left to right) changed the hand to a power grip, tripod grip, lateral grip, or open
hand, respectively.

2.3. System Evaluation

Ethical approval was granted by the local ethics committee at Newcastle University
(Ref: 17-NAZ-056). To show the feasibility of our cost-effective control system, an online
analysis of the control signals and a simple pick-and-place experiment were conducted with
an able-bodied participant. The participant read an information sheet and gave written
consent prior to the experimental sessions. Sensors were connected to the participant’s
flexor carpi radialis (FCR) and extensor carpi radialis (ECR) muscles of the forearm to
record the EMG activity. To connect the sensor, the skin was cleaned before the experiment.
The participant sat on a chair with his elbow near his body and held his forearm at a
horizontal position. We found the belly of the ECR and the FCR by asking the participant
to repetitively flex and extend the wrist at a comfortable level. After fixing the sensors on
the belly with an elastic band, we marked the sensor locations and orientations to ensure
that they were at the same position in the multi-day experiment.

For training, the system was connected to the PC user interface shown in Figure 2
through USB, which allowed the participant to control the cursor in the MCI through
muscle contraction. The participant first performed a series of contractions to learn the
control of the cursor. To be specific, he was required to develop a repeatable muscle strategy
that could move the cursor from the basket to the desired targets. This muscle strategy was
used for the control of the direct controller and the abstract controller. To train the LDA
classifier, the participant was asked to move the cursor to different targets and hold the
cursor position within one target for six seconds. The MAVs during the holding period
were considered as the patterns for one grip so that the dissimilarity between patterns
for different grips could be guaranteed. After training the participant and the classifier,
the system was connected to the prosthetic hand, and the participant started to control the
hand instead of the cursor.

We first evaluated the controllability and the effector movement by analysing the
real-time control signal. The participant tried to make grasps sequentially with all possible
grips and to open the hand between two grasps. The MAVs, equivalent cursor positions,
controller states, and the selected grips were recorded.

To evaluate the feasibility of the system in completing daily activities, the participant
fitted the prosthetic hand on his right arm (Figure 3A) to carry out a pick-and-place
experiment. Three objects, including a bottle, a roll tape, and a credit card simulator, were
placed on a computer desk in front of the participant (Figure 3B). The participant was asked
to lift the objects with a power grip, tripod grip, and lateral grip, respectively, and place
them on the right-hand side of the red line by opening the hand. Videos of the experiment
were recorded and are supplied as supplementary material.
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A B

Figure 3. The pick-and-place experiment setup. (A) The participant wore the Robo-limb prosthetic
hand on his right arm with a customised socket. The prosthetic hand was powered by the battery
mounted on the socket and the Arduino system was connected to the computer so that the user could
switch the controller during use through the user interface. (B) The participant was instructed to
grasp and relocate three objects using the prosthetic hand.

To verify the system performance during a long-term study, we recorded and com-
pared the control signals before and after continuous operation. The myoelectric control
system was loaded onto the Arduino board at the beginning of the experiment for a five-
day test. On each day, the participant switched on and recalibrated the system based on
the calibration protocol. A trial was conducted after the recalibration to ensure that the
participant could easily move the cursor from the basket to each target. We kept the system
working for eight hours, and the participant was required to repeat the trial at the end of
the day. The MAV signals and the cursor traces were recorded and compared.

3. Results

3.1. Control Signal Analysis

Samples of the control signals and the corresponding prosthetic hand movements are
presented in Figure 4. These demonstrate the relationship between the MAV and state
machines within the system.

In the direct control, contracting the FCR and ECR individually moved the cursor from
the basket to target 1 and target 4, respectively, which closed and opened the prosthetic
hand with the selected grip. Co-contracting the muscles from resting switched the grip
selection, and the hand was reset to the pre-set position. In the abstract control and the
LDA classification, a grasp was completed by directly selecting the desired grip through
muscle contraction/activity. Once a grip was selected, the system reset the hand to the
pre-set position and then completed the grasp after a short waiting period.

Because of the continuous updating, the changes in EMG started to take effect on
the MAV even though we applied a 760 ms averaging window. The delay was calculated
between the time point when the MAV exceeded 5% of the maximum voluntary contraction
and the time point when the cursor state changed. Based on this criterion, the average time
from the participant’s intention for a grasp until the cursor reached the desired target was
224 ms. The delays for the LDA classification and the abstract control were slightly longer,
which were 262 ms and 268 ms, respectively. There was a 240 ms dwell time between the
changes in cursor state and the controller state, which required the participant to retain the
cursor within the target to make a grasp. The aim of this design was to avoid unintended
hand activities due to false triggering or unconscious muscle contraction (Figure 4B).
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Figure 4. Control signals for the (A) direct controller, (B) linear discriminant analysis (LDA) classifier,
and (C) abstract controller.

3.2. Pick-and-Place Experiment

The time series of the pick-and-place experiment are illustrated in Figure 5. The pros-
thetic hand was preset to the open-hand position at the beginning of the test. The participant
sequentially moved the bottle, the roll of tape, and the credit card simulator with the corre-
sponding grips, and opened the hand again to finish the test. The real-time performance
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results for the direct controller, the abstract controller, and the LDA classifier are shown in
supplementary material. It took the participant 23 s to complete the test with the abstract
controller and the LDA classifier, and it required 28 s with the direct controller.

A B

C D

Figure 5. Real-time pick-and-place experiment with three different control algorithms. The participant (A) lifted the bottle
with a power grip, (B) lifted the roll of tape with a tripod grip, (C) lifted the credit card simulator with a lateral grip, and (D)
opened the prosthetic hand to relocate the objects.

3.3. System Performance in a Day-Long Study

The baselines of the control signals are presented in Figure 6A. Continuous system
operation did not introduce obvious zero drift to the MAV for the filtered EMG signals.
The average MAVs of the two channels at the relaxed level were increased by 0.13 and 0.12
mV, respectively, which was much smaller than the muscle contraction levels in Figure 6B.
Possible reasons for the outlier in Ch1 (Test) include the sensor position and the contact
between the skin and electrode.
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Figure 6. Mean absolute value (MAV) comparisons. (A) Comparison of the relaxed levels in the
calibration (reference) and at the end of the day (test). (B) The comfortable contraction levels for two
channels. Cross: mean; error bar: standard deviation; dot: individual data points (n = 5).
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Figure 7 compares the cursor movement between the trial after calibration and the
trial at the end of the day. No significant differences can be observed at the baseline of the
cursor. The sensitivity of both sensors remained unchanged so that the participant could
repeat the cursor trace without recalibration. Some user habits, such as contacting the FCR
while the participant was trying to relax the ECR, could be observed in both trials.

A B C

D EE

Figure 7. Representative cursor traces on (A) Day 1, (B) Day 2, (C) Day3, (D) Day 4, and (E) Day 5.

4. Discussion

We have shown the development of an Arduino-based myoelectric control system
with three independent controllers for achieving multiple hand tasks. The system can be
realised with a total cost of GBP 120, and the sensors can be replaced with any of their
equivalents. The muscle contraction signals were collected by wearable EMG sensors with
a 500 Hz sampling rate and could be processed within 20 ms, which allowed the system to
provide movement updates in real time.

Considering the portability, we soldered the Arduino boards and connectors to a
single printed circuit board (PCB) and removed unnecessary cables in the Gravity analog
EMG sensors when designing the prototype (Figure 1). The total weight of the modified
system was 67.8 g, which would not add significant load to an arm compared to the weight
of a prosthetic limb. The sizes of the PCB and the EMG sensor are 96 × 29 × 29 mm (length
× width × height) and 38 × 32 × 11 mm, respectively. We 3D-printed wearable shells for
the PCB and the sensors (the red casing in Figure 1) so they could be worn on the arm with
straps. When both sensors are actively measuring, the system consumes 16 mA at 3.7 V.
Therefore, a rechargeable LiPo battery with 1000 mAh capacity will allow the system to
work continuously for more than 48 h, in theory.

Regarding the effector movement, three controllers had similar delays. This meant
that the latency was mainly introduced by filtering and the analysis window [42]. With a
50 Hz update rate, the additional latency introduced by the analysis window was below
300 ms and could not be perceivable by the user [43]. We introduced the dwell time to
avoid false triggering, but the period was adjustable. It may be reduced for an experienced
prosthesis user who is less likely to generate unintended commands. The controller delay
of the direct controller was slightly shorter than that of the abstract controller and LDA
classifier. One possible reason is that the difficulty of retaining the cursor on the MCI target
is higher than for the direct control. This latency may be reduced by systematic training [13].
Meanwhile, it was noticed that the time to achieve three grips with the direct control was
longer than those with the LDA classification and the abstract control in Figure 4. Extra
pre-setting time for grip switching makes the direct controller effective only for tasks with
a small number of grips. Otherwise, the grip switching would be time-consuming [44],
which was identified as inadequate for task completion in previous surveys [45].
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In the proposed system, the three controllers shared the same EMG sensors, signal pro-
cessing and feature extraction modules, prosthetic hand drivers, and MCI. This approach
allows a fair comparison between the basic performances of the controllers in achieving
physical tasks. It also provides a platform to study the differences and similarities between
the control of the cursor and the control of the prosthetic hand. For example, it can be
observed from the supplementary videos that the extra time of completion with the direct
controller is mainly because of the pre-setting time, which takes about one and a half
seconds to switch the hand from one grip to the pre-set position of the next grip. The result
matches the control signals in Figure 4. It shows the advantages of the abstract control
and the LDA classification, and it may also verify that the scores of a controller in cursor
control studies [46] can reflect its performances in physical task experiments.

A user interface was developed to visualise the control signals and send commands to
the system through a desktop. It allows users to set up the system properly with visual
feedback and to conduct recalibration in take-home studies. As learning the control on the
MCI increases the performance [13,47], the user interface provides a platform for users to
train themselves during long-term home studies. In the current version, the training of the
LDA classifier requires the support of MATLAB. Planned future works include embedding
the training algorithms into the interface.

To study long-term prosthesis use, system stability is an important aspect. We have
shown that the system could provide stable control signals in a five-day test. Daily re-
calibration of the system only required the participant to provide his relaxed levels and
comfortable contraction levels for each muscle for 10 s. Retraining of the LDA classifier
was not necessary, as we introduced human learning [48] in the design of the patterns.
Instead of retraining the system with new data, which might require several hours with the
support of experienced professionals [49,50], the participant could actively map his muscle
activities to the patterns.

In addition to the amount of time for which the device is turned on, the system allows
the storage of EMG features and control signals, as well as the use of grips to describe
prosthetic use. The data can be saved to a PC through the user interface and the on-board
micro-SD card. Considering the limitation of storage space, the micro-SD only saves the use
of grips with time stamps when new commands have been sent to the prosthetic hand. One
possible way to overcome this barrier is the internet of things (IoT) [51,52], which allows
the end devices (the proposed system) to upload data to a cloud server, such as the Arduino
IoT Cloud. This not only reduces the risks that come with having a large amount of data
stored in a single database, but also enables the comprehensive recording of prosthesis use
in take-home studies [53], which will be useful in the analysis of prosthesis abandonment.

In this study, the system was only tested on a single able-bodied participant. However,
since the EMG sensors are wearable and both the system and the prosthetic hand can be
powered by batteries, it can be easily expanded into a wearable device for different-limbed
users by mounting the components on the socket. Moreover, the update rate of the system
is adjustable, so it is possible to increase the number of EMG channels by allowing a longer
time for signal processing and command updates.

5. Conclusions

We introduce a system that offers the possibility of longitudinal experiments with
advanced prostheses. We implemented it on a cost-effective Arduino-system platform and
coupled it with wearable EMG sensors. The system allows users to adjust system settings,
learn the control strategy, and record the prosthetic use outside the laboratory. This system
enabled fair and balanced comparisons to be conducted between three different control
algorithms. Home trials with people with limb differences will be carried out in planned
future works.

Supplementary Materials: The following are available at https://www.mdpi.com/1424-8220/21/3
/763/s1.
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Abstract: The extent to which muscle synergies represent the neural control of human behavior
remains unknown. Here, we tested whether certain sets of muscle synergies that are fundamentally
necessary across behaviors exist. We measured the electromyographic activities of 26 muscles,
including bilateral trunk and lower limb muscles, during 24 locomotion, dynamic and static stability
tasks, and we extracted the muscle synergies using non-negative matrix factorization. Our results
show that 13 muscle synergies that may have unique functional roles accounted for almost all 24 tasks
by combinations of single and/or merging of synergies. Therefore, our results may support the
notion of the low dimensionality in motor outputs, in which the central nervous system flexibly
recruits fundamental muscle synergies to execute diverse human behaviors. Further studies are
required to validate the neural representation of the fundamental components of muscle synergies.

Keywords: muscle synergies; movements; postures; the central nervous system; motor control; the
neural control

1. Introduction

To execute human movements, the central nervous system (CNS) must control many
degrees of freedom from thousands of motor units within hundreds of skeletal muscles [1].
Several studies that applied factorization algorithms to complex muscle activity have
identified limited sets of motor modules called muscle synergies [2]. Although the question
of whether muscle synergies resulting from matrix factorization represent a neural origin or
are merely a numerical artifact is still being debated [3,4], muscle synergy theory assumes
that the CNS combines a few activation sets to build muscle activation commands, which
simplify the control of movement [5]. Evidence of a limited set of muscle synergies has been
found in various human motor behaviors, such as locomotion [6–9], reaching tasks [10,11],
and sports activities [12–14].

It has been proposed that muscle synergies are shared across various motor tasks [5,10,15].
Shared synergies facilitate the robustness of the neuromuscular system, which is thought to
be beneficial for stable postural control [15,16], development [17], and expert motor skills [18].
In contrast, studies have also discovered the existence of task-specific synergies to meet
each biomechanical demand of the motor tasks [19,20]. An experimental study in frogs
investigated muscle synergies during natural behaviors such as walking, jumping, and
swimming, indicating that each motor behavior is the consequence of a combination of both
synergies shared between behaviors and synergies specific to each or a few behaviors [21].

While the low dimensionality and robustness of muscle synergy models account for
the advantages of redundant control of movement, the flexibility of combining muscle
synergies to adapt to various mechanical demands is also considered necessary to achieve
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efficient movement execution [18,22,23]. A study found that during isometric force genera-
tion, six global muscle synergies extracted from pooled EMG datasets with various joint
angles, directions, and force intensities were selectively recruited and changed during peak
activation patterns depending on different conditions [22]. In this study, several forms
of the merging of global synergies were identified, which may contribute to stabilizing
force generation [22]. Furthermore, other studies found that all three muscle synergies for
cycling can be well reconstructed by merging muscle synergies extracted from walking
with the best reconstruction value found for higher speeds [23] and that specific merging
patterns correlate with an increase in running efficiency, while other merging synergies
correlate with decreased running efficiency [18]. Thus, the interpretation of the existing
literature suggests that the CNS may flexibly select appropriate subsets of muscle syner-
gies, either independently or merged, from a large set that is established to execute motor
tasks [10,23,24]. Although a substantial number of in-born and learned human movements
and postures share some common control variable of importance even if the tasks have
some distinct biomechanical features [25], muscle synergies extracted from a diverse range
of behaviors have not been comprehensively investigated.

The aim of the present study was to test the hypothesis that different subsets of muscle
synergies are used in a variety of movement and postural tasks. To test this hypothesis, we
first extracted muscle synergies from an EMG recording dataset made from 24 motor tasks
based on the assumption that these muscle synergies represent the basic units for explaining
24 motor tasks that share common neuromechanical requirements such as supporting the
body and maintaining balance statically, dynamically, and during locomotion [25,26]. We
then examined whether combinations of these synergies explain each motor task.

2. Materials and Methods

2.1. Experimental Protocol

Ten healthy volunteers (aged 21–35 years, all men) participated in the study. Each
participant provided written informed consent for participation in the study. The study
was conducted in accordance with the Declaration of Helsinki and was approved by the
local ethics committee of the University of Tokyo.

We focused on fundamental movement and postural tasks that serve as the building
blocks for efficient and effective execution of a variety of daily-living activities and high-
skilled performances, such as sports [25,27,28]. Specifically, we used tasks that required
movements through space (locomotion) and controls against gravity (stability) in any
plane [25]. Thus, all participants were asked to perform the 24 tasks described in Table 1.

Table S1 presents the details of each movement and postural task. The order of tasks
was randomly assigned.

2.2. Data Collection

EMG activity was recorded from the following 26 muscles distributed across the
trunk and lower limbs (13 bilateral muscles): tibialis anterior (TA), gastrocnemius medialis
(MG), vastus medialis (VM), rectus femoris (RF), biceps femoris (long head, BF), gluteus
maximus (GM), gluteus medius (Gmed), rectus abdominis (RA), oblique externus (OE),
erector spinae at L2 (ESL2), erector spinae at Th9 (EST9), erector spinae at Th1 (EST1), and
latissimus dorsi (LD). EMG activity was recorded using a wireless EMG system (Trigno
Wireless System; DELSYS, Boston, MA, USA). The EMG signals were bandpass filtered
(20–450 Hz), amplified (with a 300-gain preamplifier), and sampled at 1000 Hz. Three-
dimensional ground reaction force (GRF) data were recorded at 1000 Hz from the force
plates under each belt of the treadmill. GRF data were used to define each trial/stride data
point in the walking and running tasks (i.e., the period between the initial right foot contact
and the next right foot contact). We also used an electrical trigger to define each trial of the
other tasks as the period between the start and end of the movement. The starting point
was initiated with the verbal cue ‘go’ with the electrical trigger manually pressed once by
the examiner. After participants completed the tasks and returned to a resting posture for
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about 1 s, the end of the movement was indicated by a 1-second verbal cue ‘end’ with the
electrical trigger pressed twice.

Table 1. Movement and postural tasks.

Locomotion

1 Walk (1.5 m/s)
2 Run (2.7 m/s)
3 Bilateral jump
4 Rt single leg jump
5 Lt single leg jump
6 Sit to stand to sit

Stability

Static Postures
7 Rt single leg stance
8 Lt single leg stance

Dynamic Postures

9 Deep squat
10 Rt single leg squat
11 Lt single leg squat
12 Rt lunge
13 Lt lunge
14 Rocking backward
15 Rocking forward
16 Rt cross extension
17 Lt cross extension
18 Cat-and-dog

Axial

19 Forward bend
20 Rt side bend
21 Lt side bend
22 Backward bend
23 Rt rotation
24 Lt rotation

Shown are the order of 24 locomotion and stability tasks. Stability tasks are divided into three subcategories:
static postures, dynamic postures and axial. Rt: right; Lt: left.

2.3. EMG Processing

The low-pass cut-off frequency influences the smoothing of EMG patterns and thus
impacts the number of extracted modules [29]. To adequately compare EMG envelopes
(i.e., EMG patterns with the same smoothing) of movements performed for various tasks
that had different features of dynamic activities, the low-pass cut-off frequency had to
be adjusted for each task. Thus, an iterative adaptive algorithm was used to extract the
optimal EMG envelopes [30]. This algorithm utilized information theory to find a sample-
by-sample optimal root-mean-square window for envelope estimation [30]. The algorithm
allowed the filter to adequately follow fast changes in EMG activity while maintaining
optimal extraction when the EMG amplitude was changing slowly [30]. A previous study
used this algorithm and successfully reconstructed muscle synergies during walking in
individuals with and without transfemoral amputation [31]. The smoothed EMG envelopes
were time-interpolated to generate 200 time points for each trial, except for the right and
left single-leg stance tasks, where the period of 15 s was time-interpolated to generate
1400 timepoints.

We created the following two types of EMG matrices for each subject to examine the
repertoire of fundamental muscle synergies that could explain all datasets and how these
synergies are combined in each task. Similar to previous studies [10,22,32], we pooled the
EMG matrices of all 24 tasks to create an “all-task” EMG matrix for each subject (i.e., the
matrix was composed of the 26 muscles × the summation of time points of the 24 single-
task EMG matrices) to extract fundamental muscle synergies across all tasks. We also
created a “single-task” EMG matrix composed of the 26 muscles × 1400 timepoints (seven
trials × 200 timepoints for each task other than the right and left single-leg stance tasks)
for each of the 24 tasks to extract muscle synergies.
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2.4. Muscle Synergy Analysis

In our analysis, we first identified the muscle synergies of each task for each subject
using a factorization algorithm of single-task EMG matrices, and then synergies of all tasks
were extracted from all-task EMG matrices using the same algorithm. We then proceeded
to characterize representative muscle synergies of individual tasks and all tasks across all
participants using a hierarchical clustering algorithm. Lastly, we analyzed the similarity
between synergy cluster centroids of each individual task and single or merged synergies
of the all-task matrix to investigate how muscle synergies utilized by all tasks contribute to
the execution of each individual movement.

To explore muscle synergies, nonnegative matrix factorization (NMF) was used for
each subject from the single-task EMG matrices and the all-task EMG matrix. NMF
has previously been described as a linear decomposition technique [33,34] according to
Equation (1):

M = W·C + e (1)

where M (m × t matrix, where m is the number of muscles and t is the number of samples,
i.e., the spatiotemporal profiles of muscle activity) is a linear combination of the following
muscle weighting components: W (m × n matrix, where n is the number of muscle
synergies) and C (n × t matrix, representing temporal pattern components). e is the
residual error matrix. Each EMG vector in the matrix corresponding to each muscle activity
was normalized to the maximum amplitude across all tasks so that all muscle scales ranged
from 0 to 1. Prior to extracting muscle synergies, each muscle vector in the data matrix
was standardized to have unit variance, thus ensuring that the activity in all muscles
was equally weighted. However, after each synergy extraction, the unit variance scaling
was removed from the data so that each muscle variable ranged from 0 to 1 for data
inspection and interpretation [35]. To determine the number of muscle synergies, NMF was
applied to extract each possible n from 1 to 26 from each dataset. The variance accounted
for (VAF) by the reconstructed EMG (M) was calculated at each iteration to extract the
optimal number of muscle synergies. VAF was defined as a 100 × square of the uncentered
Pearson’s correlation coefficient [36,37]. To prevent the extracted synergies from assuming
a suboptimal local minimum, each synergy extraction was repeated 100 times. Thus, the
iteration with the highest VAF was maintained [8]. We defined the optimal number n as the
number fulfilling the following two criteria: First, n was selected as the smallest number of
modules that accounted for >90% of the VAF [36]. Second, n was the smallest number to
which adding another module did not increase VAF by >5% [38].

2.5. Clustering the Modules across Participants

We identified the representative synergy vectors across participants using hierarchical
clustering analysis (Ward’s method, Euclidian distance) of muscle synergies for each
task and all tasks [8,39]. The optimal number of clusters was determined using the gap
statistic [40]. Subsequently, the muscle synergies in each cluster were averaged across
participants. To assess variability, we calculated the degree of similarity within each cluster
to measure the consistency of each extracted cluster [10]. Here, we assessed similarity by
averaging the values of all the pairwise scalar products (SPs) between the muscle synergies
of each cluster.

2.6. Contributions of the Muscle Synergy of All Tasks to the Execution of Each Task

To explore whether the muscle synergy defined by the all-task matrix contributes to
executing each task of movements and postures, the similarity between muscle synergies
of single-task and all-task matrices was quantified by using the SP between these centroids
of the synergy clusters (normalized to unit vectors). For every comparison, each of the
synergy cluster centroids of all-task was matched to a synergy cluster centroid of each task
by maximizing the total scalar product values. Synergy clusters that could not be matched
with SP ≥ 0.75, were classified as unmatched [41].
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2.7. Contributions of Merging Muscle Synergy of All Tasks towards Single-Task Execution

We also expected that all-task muscle synergies can be merged to execute each single
task of movement and posture [40]. Thus, the merged synergies as a linear combination of
the contributing synergies were modeled by the following formula [18,41]:

Wk ≈ ∑Nb
i=0 DiWi, k = 1, . . . , nb (2)

where Wk is the kth muscle synergy vector from each individual task, Wi is the ith muscle
synergy vector derived from an all-task matrix, Nb is the number of synergies that con-
tribute to the merging, and Di is a non-negative coefficient that scales the ith synergy in
the merging. Di was obtained from a non-negative least-squares fit, implemented using
MATLAB (function lsqnonneg). Wk and Wi were normalized as unit vectors. Following
criteria from previous studies [18,41], the synergy merging was identified when Nb ≥ 2,
Di ≥ 0.2 for all i, and the SP between ∑Nb

i=0 DiWi and Wk was ≥0.75.
To assess whether the synergies from each task can be explained as merging of syn-

ergies from all tasks, we first identified the synergy cluster centroids of single-task and
synergies of the all-task (described above) and reconstructed each synergy cluster centroid
of each individual task by merging every possible combination of the synergy cluster
centroids of all tasks.

3. Results

3.1. Muscle Synergies Extracted from All-Task EMG Matrices

All of the muscle activity was accounted for by 10.6 ± 1.58 muscle synergies of all-task
EMG matrices, and the mean VAF was 0.91 ± 0.001 in ten participants. Figure 1 presents
13 muscle synergies of an all-task matrix incorporating 24 trunk and lower limb movement
tasks (W1 to W13), which were grouped by cluster analysis across participants, Table 2
presents the degree of similarity within each synergy cluster of all tasks, and Table 3
summarizes the characteristics of the muscle synergies.

Figure 1. Muscle synergies of all tasks. Centroids of the hierarchical clustering performed on the
muscle synergies of all tasks across ten participants.
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Table 2. The results for the degree of similarity within each synergy cluster of all tasks.

Similarity
(Normalized)

The Number of Samples

W1 0.77 (±0.13) 8
W2 0.70 (±0.18) 8
W3 0.74 (±0.12) 8
W4 0.76 (±0.14) 7
W5 0.62 (±0.16) 13
W6 0.77 (±0.12) 10
W7 0.81 (±0.08) 6
W8 0.74 (±0.13) 7
W9 0.84 (±0.08) 4
W10 0.58 (±0.17) 8
W11 0.86 (±0.08) 5
W12 0.68 (±0.15) 11
W13 0.82 (±0.17) 11

Table 3. Characteristics of muscle synergy clusters of all tasks.

Unilateral Patterns

Major Muscles Minor MusclesRight
Patterns

Left
Patterns

W1 W6 ispTA, ispRF, ispVM (ispESL2, ispEST9, ispEST1, conTA,
conESL2, conEST9, conLD)

W2 W7 ispVM, ispRF, ispGM,
ispGmed (ispMG, ispOE, conBF, conOE, conESL2)

W3 W8 ispMG, ispGmed (ispRF, ispVM, ispBF, ispGM, ispEST1,
ispLD, conTA, conBF, contOE, conESL2)

W4 W9 ispBF (ispMG, ispGM, ispOE, ispESL2,
conESL2, conEST9)

W5 W10 ispEST9, ispLD
(ispOE, ispESL2, ispEST1, conBF,

conGM, conGmed, conOE, conESL2,
conEST9, conEST1, conLD)

Bilateral patterns
M11 bilESL2 (bilEST9, bilEST1)
M12 bilEST1 (bilLD)
M13 bilRAS, bilOE

The following pairs showed high similarity when the muscles in W6 to W10 were reordered so that muscles
on the left side of W6 to W10 corresponded to the same muscles on the right side of W1 to W5: W1 and W6
(SP = 0.93), W2 and W7 (SP = 0.97), W3 and W8 (SP = 0.97), W4 and W9 (SP = 0.85), W5, and W10 (SP = 0.93). We
categorized W1 to W5 as muscle synergies with right-side dominant patterns and W6 to W10 as muscle synergies
with left-side dominant patterns. W11, W12, and W13 were categorized as bilateral patterns. Muscles that account
for >0.5 of activation levels are classified as major muscles and between 0.1 to 0.5 were as minor muscles. isp:
ipsilateral, con: contralateral, bil: bilateral.

Visual inspection revealed that muscle synergies W1 to W5 were largely composed
of the right-side muscles, while muscle synergies W6 to W10 were mainly composed of
the left-side muscles. Thus, we categorized W1 to W5 as muscle synergies with right-side
dominant patterns and W6 to W10 as muscle synergies with left-side dominant patterns.
The following pairs showed high similarity when the muscles in W6 to W10 were reordered
so that muscles on the left side of W6 to W10 corresponded to the same muscles on the right
side of W1 to W5: W1 and W6 (SP = 0.93), W2 and W7 (SP = 0.97), W3 and W8 (SP = 0.97),
W4 and W9 (SP = 0.85), W5, and W10 (SP = 0.93). Others, such as W11, W12, and W13,
were categorized as bilateral patterns.
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3.2. Relationship between Muscle Synergies Extracted from All-Task EMG Matrices and Those
Extracted from Single-Task Matrices

For each task, two to four synergy clusters were identified using cluster analysis.
Variability in the number of muscle synergies and VAF in subjects, and the degree of
similarity within each synergy cluster of each task are presented in Table S2. Table 4
presents the number of muscle synergies in each task, which were well explained (SP > 0.75)
by independent and merged muscle synergies from the all-task EMG matrices.

Of note, all synergies of each task except the one for the left single-leg stance could
be explained by either single or linear combination of multiple synergies from the all-task
EMG matrices (SP > 0.75). The details of the contributions of muscle synergies of all tasks
to each task execution are presented in Table S3.

Figures 2 and 3 present examples of relationships between muscle synergies from the
all-task EMG matrices and those from the single-task EMG matrices: locomotion tasks
including walking, running, bilateral jump and sit-to-stand-to-sit (Figure 2), and stability
tasks including left lunge, cat-and-dog, forward bend, and left rotation (Figure 3).

Figure 2. The relationship between muscle synergies of all tasks and muscle synergies of locomotion tasks including
(a) walk, (b) run, (c) bilateral jump and (d) sit-to-stand-to-sit. The figures show the synergy cluster centroids of these tasks
that could be explained by either a single or linearly combined multiple synergy cluster centroids of all tasks (synergies
in blue) matched by maximizing scalar product > 0.75. Observed muscle synergies extracted from the single-task EMG
(orange) and their reconstructions by merging their respective W1-combinations (dark orange) are further presented.

The relationships between muscle synergies from the all-task EMG matrices and those
from the other single-task EMG matrices are shown in Figures S1 and S2.
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Figure 3. The relationship between muscle synergies of all tasks and muscle synergies of stability tasks including (a) left
lunge, (b) cat-and-dog, (c) forward bend and (d) left rotation. The figures show the synergy cluster centroids of these task
that could be explained by either a single or linearly combined multiple synergy cluster centroids of all tasks (synergies
in blue) matched by maximizing scalar product > 0.75. Observed muscle synergies extracted from the single-task EMG
(orange) and their reconstructions by merging their respective W1-combinations (dark orange) were further presented.

4. Discussion

Several studies have investigated shared or merged muscle synergies across different
tasks, such as walking and running [8,42], walking and cycling [23], various directions
of reaching [10,11] and stepping and non-stepping postural controls [35]. Their results
indicated that different human behaviors use the fundamental motor modules that reflect
the functional control units as a neural constraint on motor outputs. However, the extent
to which muscle synergies represent the control of diverse human behaviors has not been
comprehensively investigated in previous studies. In our study, we extracted muscle
synergies from a large set of EMG (26 muscles) activities across bilateral locations of the
trunk and lower limbs during 24 locomotion and stability tasks that were fundamental for
a variety of physical activities. We found that 13 clusters of fundamental muscle synergies
accounted for almost all synergy clusters of each of the 24 tasks. When we compared
the synergy clusters extracted from individual tasks across participants, we found a high
similarity (SP > 0.75) of a single or multiple linear combinations from the 13 fundamental
muscle synergy clusters extracted from all tasks across participants. Although the question
of whether muscle synergies derived from factorization algorithms are of neural origin
is still controversial, some recent empirical studies using methods such as probing into
neuroanatomical substrates [43] and stimulating the CNS [44] have provide direct evidence
that muscle synergies observed in motor behaviors may have cortical and subcortical
neural underpinnings [45]. In the following sections, we discuss the possible neural
mechanism underlying a diverse set of human behaviors based on the assumptions that
muscle synergies represent motor modules to coordinate patterns utilized by the CNS [45].

4.1. Characteristics of Muscle Synergies across 24 Tasks

We applied cluster analysis to the muscle synergies from the all-task EMG matrix
across participants and identified 13 synergy clusters. As shown in Table 2, we broadly
categorized muscle synergies into three sets based on the major contributions of the muscles
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(i.e., right muscle patterns, left muscle patterns, and bilateral muscle patterns). In the right
and left muscle patterns, W1 and W6 were dominated by muscles around the ankle and
knee joints (i.e., TA, RF, and VM). W2 and W7 were mainly composed of muscles related
to the knee and hip joints (i.e., RF, VM, Gmed, and GM), and W3 and W8 employed the
ankle and hip joints (i.e., MG and Gmed). Furthermore, BF mainly contributed to W4 and
W9. While all four pairs were predominantly composed of extensor muscles that can move
and stabilize the body during locomotion and postural tasks, they may have a distinct
functional feature because the different tasks require different combinations of muscle
synergies (Table S2). In contrast, the pairs of W5 and W10, W11, W12, and W13 were
composed of back muscles (i.e., ES, LD) and abdominal muscles (i.e., RAS and OE) either in
unilateral or bilateral patterns (Table 2). Notably, they were widely observed across 24 tasks
(Table S2) and may be used for bilateral trunk movements or stabilization of the body
accompanied by W1 to W10 with relatively low levels of trunk muscle activities when the
lower limbs are moving [46]. Although we still do not know how muscle synergies in our
study arise and whether they reflect neural structure for motor outputs, 13 muscle synergies
extracted from our study may form a repertoire of whole lower limb and trunk muscle
activation patterns, which can be shaped by biomechanical interactions and constrain the
environment through a lifetime [18,47].

4.2. Hypothetical Neural Mechanisms Underlying Muscle-Synergy Controlling Diverse Behavior

If we assume that the muscle synergy extracted from the whole-task EMG matrices in
our data may have a unique set of networks in which each synergy provides functionally
necessary compositions in muscle activities, then one can expect that any combinations
of these synergies may provide stable and predictable motor outputs in a diverse range
of human behaviors [47]. The strength of our finding is that it indicates that there is a set
of fundamental muscle synergies with different combinations of these synergies in single
and/or merging states to produce 24 locomotion and stability tasks. Here, we hypothesize
the existence of neural mechanisms underlying the flexible recruitment of muscle synergies
in various combinations to meet the mechanical demands for each movement and posture.
Figure S3 presents the functional contributions of fundamental muscle synergies for walk-
ing and running tasks revealed by merging the coefficient of synergy vectors and temporal
activations of each task. For example, in walking (a), the synergy cluster centroid of No. 1
was recruited during the early stance phase of the right leg. It has been suggested that W1
with the right ankle and knee stabilizers and W2 with the right knee and hip stabilizers
are merged for impact deceleration and body support [48]. Likewise, the synergy cluster
centroid of No. 2 was recruited during the late stance phase of the right leg, in which W3
with the right ankle extensor and hip stabilizer largely contributed to the progression of the
body [48]. Although the lack of kinematic data that define the movement phase precluded
assessment of functional contributions of fundamental muscle synergies for other tasks, we
show that temporal activations of fundamental muscle synergies were well reconstructed
in all tasks (Table S3).

Interestingly, we found that muscle synergies in 24 locomotion and stability tasks were
predominantly reconstructed by merging various combinations of fundamental muscle
synergies (Table 4). A study reported that muscle synergies of cycling can result from
merging synergies of walking [23]. Another recent study showed the merging of original
muscle synergies during running through running training [18]. It is suggested that merged
synergies were the result of the co-recruitment of multiple muscle synergies by neural
networks driving the muscle synergies represented as C in Equation (1) [45,47]. Based on
previous studies, we speculate that the upstream driving layer (e.g., Ctask in Figure 4) may
flexibly recruit the fundamental muscle synergies (e.g., W’ in Figure 4) located at different
levels from the driving layers in the motor hierarchy to execute highly variable tasks (the
schematic structure in Figure 4).
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Figure 4. A hypothetical neural mechanism of merged fundamental muscle synergies with its temporal patterns in a diverse
range of human behaviors. This model shows that the CNS flexibly recruits multiple synergies for different tasks. For
example, Ctask1-1 with W1 and W2 and Ctask1-2 with W2 and W3 turn on while Ctask2-1 and Ctask2-2 turn off to execute task
1. Similarly, Ctask2-1 with W1, W2, and W3 and Ctask2-2 with W2, W3, and W4 turn on, ceasing to be active in Ctask1-1 and
Ctask1-2 for task 2.

Our hypothesis is possibly equivalent to a generalized two-level CPG model for the
control of locomotor muscle activity [49]. The model consists of two distinct neural network
layers: (1) a pattern formation (PF) network layer that defines groups of synergistic and
antagonistic motoneuron pools and (2) a rhythm generation layer that controls the activity
of PF networks. However, it should be noted that the exact neural substrates encoding
muscle synergies and their driving networks in humans remain largely unknown.

Since we propose that upstream driver C presents synchronous recruitments of the
fundamental muscle synergies that have distinct functional roles in organizing muscle
synergies for the 24 locomotion and stability tasks, it is possible that the CNS may also
coordinate other simple or complex human behaviors using certain combinations of these
synergies. Thus, muscle synergies during human behaviors found in previous extensive
research may reflect layered structures composed of the fundamental muscle synergies ex-
tracted from our study. The advantage of these hypothetical mechanisms is that it prevents
the sum of all muscle synergies from exceeding the number of relevant muscles utilized
during diverse human behaviors, supporting the premise of compendium in coordina-
tive patterns to execute several movements under different biomechanical conditions [5].
Further research is needed to investigate the muscle synergies identified by factorization
algorithms coupled with CNS manipulations and/or neural recordings (e.g., CNS stimula-
tions, spinalization, and electroencephalogram) to validate the neural representation of the
fundamental muscle synergies observed in our study [45].

4.3. Clinical Implications

The results of this study may have several clinical implications. First, several studies
have investigated muscle synergies in individuals with different characteristics, such as
musculoskeletal and neurological disorders [50–52] as well as athletes [8,18,53]. Since we
identified the fundamental muscle synergies that may underlie diverse human behaviors
in healthy individuals, investigating the changes in muscle synergies such as the number
of synergies as well as their compositions in a population of interest may facilitate the
understanding of distinct features in motor controls that are associated with severity of
symptoms [41,50] or that profile myriad skills and performance in athletes [27,28]. Second,
previous studies reported that the inner structure of synergies in stroke patients was not
necessarily altered, but that their recruitment patterns due to compromising descending
signals were [41,54]. Since our study found that the flexible recruitments of fundamental
muscle synergies play an important role in executing diverse motor tasks that related to
daily activity livings in healthy individuals, it can be speculated that there is a significant
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relationship between altered recruitments of fundamental muscle synergies and poor motor
function in stroke. Furthermore, if this is the case, it may provide a rationale for designing
interventions targeting each fundamental muscle synergy with simple tasks before practic-
ing complex tasks at the beginning of rehabilitation. Potential interventions include muscle
synergy-based approaches using functional electrical stimulations to optimize the structure
of fundamental synergies and temporal recruitments to improve motor performance in
stroke [55–58]. Lastly, we found that different tasks with various biomechanical demands
and constraints may largely share the same muscle synergies with different combinations
of synergies to be merged. Thus, clinicians may choose to intensively train a particular task
to transfer the effectiveness to other tasks [59], given that the transfer of motor learning
effects among tasks will be high when muscle synergies involved in different motor tasks
are shared [60].

4.4. Limitations

Our study had several limitations. First, it has been reported that the number of
recording muscles may affect the amount and structure of muscle synergies [61]. Although
EMG recordings in our study were relatively large (i.e., 26 EMG channels), we limited the
recording of EMGs from only the major muscles in the trunk and lower limbs. Similarly,
we were also limited to 24 fundamental tasks that involved only locomotion and postural
tasks. As such, tasks that accompany coordination between the upper limbs, trunk, and
lower limbs were not considered [5]. Thus, it is conceivable that some relevant muscle
synergies may have been missed in our study. Second, because we used a larger set of EMG
recordings and tasks, our time constraint during experiments precluded the measurement
of kinematic data such as joint angles as well as velocities, and allowed for the variability
of movements in each task, which may impact muscle synergy extractions. The lack of
availability of kinematic data prevented the separation of the movement phase and we were
thus unable to investigate the contributions of the fundamental muscle synergies for each
phase of each task other than walking and running [47].Third, we extracted fundamental
muscle synergies from pooled EMGs of all tasks similar to that performed in several
studies [10,22,32], assuming the presence of minimum or basic units of muscle synergies
that explain all the datasets [22]. It is possible that this method may overestimate data and
may cause the over-fitting (i.e., 2-4 task-specific synergies are likely to be well reconstructed
using any combination of 13 muscle synergies) [22,62]. Fourth, while the optimal number
of healthy participants recruited in studies involving muscle synergies is unknown [63], it
may be argued that ten participants in our study were not sufficient to describe data. Lastly,
although we extract the fundamental muscle synergies using NMF that may present neural
mechanisms for diverse human behaviors, whether the factorization-derived synergies
reflect neural organization to coordinate human behaviors remains questionable [45]. This
can be due to the possibility that extracted muscle synergies represent biomechanical
constraints of tasks rather than neural constraints [3] and the nonlinearity in magnitude
summations of the EMG or force vectors [64,65].

5. Conclusions

In this paper, we extracted a repertoire of fundamental muscle synergies from the
EMGs applying a factorization algorithm during a variety of human behaviors that involve
trunk and lower limb movements in healthy individuals. We found that the 13 fundamental
muscle synergies in either the independent or merging state can account for almost all
24 behaviors, including locomotion and stability tasks. Our findings may support the
notion that the CNS may flexibly recruit the fundamental muscle synergies to meet the
various mechanical demands in a diverse range of human behaviors.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s21186186/s1, Figure S1: Relationship between muscle synergies of all tasks and muscle
synergies for other locomotion tasks; Figure S2: Relationship between muscle synergies of all tasks
and muscle synergies for other stability tasks; Figure S3: Functional contributions of muscle synergies
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of all tasks (fundamental muscle synergies) for walking and running; Table S1: Full descriptions of
movement and postural tasks; Table S2: Summary of results for the mean number of synergies, mean
VAF of each task in the subjects, and the degree of similarity within each synergy cluster of each
task across subjects; Table S3: Recruitment coefficients of 13 synergy clusters of all tasks for each
task execution.
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Abstract: In this paper, we present a novel muscle synergy extraction method based on multivariate
curve resolution–alternating least squares (MCR-ALS) to overcome the limitation of the nonnega-
tive matrix factorization (NMF) method for extracting non-sparse muscle synergy, and we study
its potential application for evaluating motor function of stroke survivors. Nonnegative matrix
factorization (NMF) is the most widely used method for muscle synergy extraction. However, NMF
is susceptible to components’ sparseness and usually provides inferior reliability, which significantly
limits the promotion of muscle synergy. In this study, MCR-ALS was employed to extract muscle
synergy from electromyography (EMG) data. Its performance was compared with two other matrix
factorization algorithms, NMF and self-modeling mixture analysis (SMMA). Simulated data sets
were utilized to explore the influences of the sparseness and noise on the extracted synergies. As a
result, the synergies estimated by MCR-ALS were the most similar to true synergies as compared
with SMMA and NMF. MCR-ALS was used to analyze the muscle synergy characteristics of upper
limb movements performed by healthy (n = 11) and stroke (n = 5) subjects. The repeatability and
intra-subject consistency were used to evaluate the performance of MCR-ALS. As a result, MCR-ALS
provided much higher repeatability and intra-subject consistency as compared with NMF, which
were important for the reliability of the motor function evaluation. The stroke subjects had lower
intra-subject consistency and seemingly had more synergies as compared with the healthy subjects.
Thus, MCR-ALS is a promising muscle synergy analysis method for motor function evaluation of
stroke patients.

Keywords: muscle synergy; MCR-ALS; sparseness; electromyography; motor function; stroke

1. Introduction

How the central nervous system (CNS) controls the musculoskeletal system to solve
the redundancy problem of degree of freedom (DOF) is an important research topic.
One strategy widely recognized by a significant number of scholars is that the CNS ac-
complishes a variety of behaviors through statistical regularities involving biomechanical
properties of the human body, and then synergistically applies these regularities to perform
different motor tasks [1–3]. These regularities are called “muscle synergies”. The limb
movements are accomplished by activating these synergies coordinately [3,4].

Although the physiological origin and meaning of muscle synergies are still de-
bated [5], it has been confirmed that motor task execution can be described by the coordi-
nation of a limited number of muscle synergies. A muscle synergy represents the relative
activation strengths of a group of muscles, simplifying the control of the musculoskeletal
system. Muscle synergy provides a new method for studying the motor control mechanism
during a movement [6]. Ivanenko et al. found five muscle synergies accounted for muscle
activity during human locomotion [7]. Scano et al. proved that a large variety of grasps can
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be produced by a limited subset of muscle synergies [8]. Aoi et al. developed a motor model
with 69 parameters based on muscle synergy, which produced both walking and running
of a human musculoskeletal model by changing only seven motor control parameters and
concluded a human could change walking and running speed through seven key motor
control parameters [9]. Pan et al. found that the similarity of muscle synergies of subacute
stroke survivors was significantly correlated with the Brunnstrom stage [10]. Cheung et al.
considered muscle synergy to be physiological markers of motor cortical damage, and
the muscle synergies of stroke survivors had three distinct patterns, i.e., preservation,
merging, and fractionation [11]. Thus, a growing number of studies have been focused on
the synergy characteristics of subjects with nervous system diseases, such as stroke [11–13],
spinal cord injury [14,15], cerebral palsy [16], and Parkinson’s disease [17]. The results
have shown that muscle synergy is a promising approach for motor function evaluation.

Various matrix decomposition algorithms have been applied to extract muscle synergy
from recorded and processed electromyographic (EMG) signals of dynamic motor tasks.
Nonnegative matrix factorization (NMF) [11–21], factor analysis (FA) [22,23], independent
component analysis (ICA) [24,25], and principal component analysis (PCA) [26,27] are
the four common synergy extraction algorithms. PCA produces the basis vectors (muscle
synergies) with the best variance description of EMG data through singular value decom-
position (SVD) [6]. Similar to PCA, FA extracts muscle synergy weights by calculating
the eigenvectors of the data’s covariance matrix; the eigenvectors with eigenvalues >1
are considered to be the muscle synergies. The synergies are determined by employing
singular value decomposition for analyzing the data’s covariance matrix. ICA makes the
data statistically independent by transforming it orthogonally. ICA is employed to analyze
the data with non-Gaussian variation and extract synergies that maximize the absolute
value of the fourth moment of the data. In contrast to the aforementioned methods, NMF
is the most widely used algorithm because of its non-negativity constraint and simple
principle [6,15–21,28]. However, NMF has some limitations. For example, it is based on
maximizing Gaussian likelihood, and easily falls into local optimum for identifying de-
pendent and non-sparse components. Thus, some modified methods have been proposed.
Several algorithms based on gamma and inverse Gaussian models have been used to
analyze EMG data in order to deal with the influence of signal noise on muscle synergy
extraction and have provided better reconstruction quality as compared with NMF [29,30].
The sparse NMF (SNMF) has been proposed to improve the performance of NMF for
identifying dependent components [31]. In addition, constrained Tucker decomposition
(consTD) has been employed to deal with the muscle synergy extraction problem from
EMG data of various biomechanically related tasks [32]. However, there are few studies
that have focused on non-sparse synergies extraction [33].

Some human muscles are biarticular and polyarticular muscles, which contribute to
more biomechanical subtasks [31]. As a result, many synergies present a high degree of
coactivation in certain movements with multi-joint or multi-degree of freedom. In addition,
the abnormal coactivations of some muscles may increase the non-sparseness of synergies
and activations for some disease patients, such as stroke [34]. It is well known that NMF
presents excellent performance for extracting sparse components [35,36]. However, the
performance of NMF may decrease in non-sparse synergy extraction, which significantly
restricts the application of muscle synergy for evaluating motor function of stroke patients.
To deal with the problem, a method associated with the characteristics of synergy mixture
system itself is a feasible solution for non-sparse synergies extraction.

Self-modeling mixture analysis (SMMA) is a common signal resolution algorithm
for a linear mixture system, and it can resolve component information by analyzing the
statistical characteristics of various signal variables. Thus, as compared with the randomly
initialized synergy matrix calculated by NMF, the synergy matrix produced by SMMA is
much more consistent with the real ones. In this study, a SMMA-based synergy extraction
approach called multivariate curve resolution–alternating least squares (MCR-ALS) was
proposed and its performance was compared with SMMA and NMF. We evaluated the
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feasibility of the proposed algorithm with simulation data, for which the properties of the
synergies and activations were known. The effects of the sparseness and noise intensity on
the extracted synergies were investigated. In addition, the proposed method was used to
analyze the muscle synergy of upper limb movements of stroke subjects; the intra-subject
consistency and the number of muscle synergies between stroke and healthy subjects were
compared and investigated.

2. Theory and Experiment

2.1. Muscle Synergy Pattern Model

According to the theoretical background of muscle synergy, EMG signals are con-
sidered to be the weighted summation of primitive functions reflecting the activation
time information of several muscle groups, and their synergies (muscle groups) reflect the
relative activation strengths of multiple muscles. Thus, muscle synergies can be extracted
through unmixing EMG data as the following bilinear model [11,37]:

D = CS + E (1)

where D is the m × n matrix which consists of a set of m preprocessed EMG signals and n
data points for each EMG signal, correspondingly; C is the m × r matrix of weight coefficient
describing the enrollment of muscle groups (muscle synergy); r represents the number of
muscle synergies; S is a r × n matrix of activations constituting the basic components or
primitive functions; and E is residual matrix with size of m × n. Every muscle synergy is a
time-invariant module reflecting relative activation strengths of multiple muscles, which is
activated by time-varying commands (activation) descending from CNS [11].

2.2. Simulated Data

A simulation study is a useful approach for synergy extraction algorithm assessment
as the properties of the synergies and activations are known. In this study, various simu-
lated data sets with different noise intensities were constructed to evaluate the accuracy
and robustness of the proposed synergy extraction algorithm. According to the muscle
synergy pattern model (Equation (1)), simulated data, Dsim, was generated according to
following equation:

Dsim = CsimSsim + Esim (2)

where Dsim is a 10 × 1000 matrix which consists of a set of 10 simulated EMG signals
(muscles or channels) and 1000 data points for each EMG signal, correspondingly; Csim is a
10 × 4 weight matrix containing 4 synergies; Ssim is a 4 × 1000 matrix of activation; and
Esim is the signal-dependent noise matrix with a size of 10 × 1000.

In past studies, researchers have proven that the noise in neural control signal increases
with an increase in the magnitude of signal [38]. Thus, in this study, the noise, whose
standard deviation (SD) is positive proportional to noiseless signal value, was added to
the EMG signal [39]. The scale factor a was used to change the noise intensities of EMG
signals; its value varied from 0.05 to 0.15. The signal-dependent noises with a = 0.05, 0.10,
0.15 (SNR = 26, 20, 16 dB) were added to noiseless signal to generate different simulated
data sets, according to Equation (2).

In this study, to evaluate the effect of the sparseness on the proposed synergy extraction
method, the synergies and activation profiles with six degrees of sparseness (0.1, 0.2, 0.3,
0.4, 0.5, 0.6) were used to create the simulated data. The synergies with various degrees of
sparseness were created randomly and their values were between [0, 1]. The activation
profiles with various degrees of sparseness were generated by linear combination of
Gaussian and Lorentz functions by control of the full width at half maximum. The degree
of sparseness of vector x (synergy or activation profile) was evaluated by Equation (3) [40],
which is:

sparseness(x) =

√
n − (∑|xi|)/

√
∑ x2

i√
n − 1

(3)
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where n is the dimension of x, and xi is the ith variable of x. In the following paragraphs, the
sparseness of synergies and activations represents the average sparseness of all synergies
and all activations in muscle synergy pattern model, respectively.

2.3. Experimental Data

Eleven healthy subjects (age range 25–37 years, mean age 26.7 years) and five stroke
subjects (Brunnstrom 3–5, upper limb Fugl-Meyer score of 22–60, arm Fugl-Meyer score
of 16–36, age range 52–79 years, mean age 67.8 years) volunteered to participate in this
study. The healthy subjects had no neurological disorders and limb surgeries in their
clinical histories. The stroke subjects had no limb surgeries in their clinical histories.
The subjects were asked not to drink alcohol and caffeine 24 h before the experiment.
The experiment was performed based on the Declaration of Helsinki and confirmed by the
Ethics Committee of Cixi Institute of Biomedical Engineering.

The EMG data used in this study were collected from upper limb movements based
on an upper limb rehabilitation robot. Subjects sat on a chair with their back straight and
perpendicular to the ground. The robot resistance was adjusted to a uniform and comfort-
able level for each subject. Each subject performed upper limb movements according to the
trajectory (semicircle) on the screen of the rehabilitation robot, shown in Figure 1. In the
experiment, subjects sat on the side of the upper limb rehabilitation robot and operated a
shot stick using their evaluated upper limb (dominant hand for healthy subject and affected
hand for patients) to accomplish the task repeatedly (six trials for each subject). To improve
the repeatability of the experiment, the motion range of the shot stick was limited by a
computer program that ensured it moved along a semicircle trajectory. In any trial, each
subject put his hand on the robot’s tray and grasped the shot stick with five fingers on the
starting position. The experimenter started the data acquisition and give the “go” signal.
The subjects did the movement with the shot stick after the “go” signal and stopped at the
ending position shown on the screen. The consumed time of the movement was about 2 s.
Data collection stopped automatically after 3 s.

 

Figure 1. The upper limb movement experiment based on the rehabilitation robot.

In this study, the activities of seven muscles, including the anterior deltoid (DA),
posterior deltoid (DP), triceps brachii (TI), biceps brachii (BI), extensor carpi radialis (ECR),
flexor carpi radialis (FCR), and brachioradialis (BIO), were recorded through a 16-channel
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EMG system (Delsys Inc., Boston, MA, USA). Before placing the EMG sensors, excessive
hair was shaved from the skin and alcohol was applied to wipe the skin to remove oils and
surface residues. Each EMG sensor was placed on the muscle belly under the guidance of
a therapist. The raw EMG signals were recorded with a sampling frequency of 1926 Hz.
Figure 2 presents the raw EMG signals of seven muscles recorded during a trial of one
healthy subject. To attenuate DC offset and high-frequency noise, the raw EMG signals were
band-pass filtered between 40 and 400 Hz (3th order zero-lag Butterworth) [41]. The filtered
EMG signals were full-wave rectified and low-pass filtered at 5 Hz (3th order zero-lag
Butterworth) to calculate the envelopes of EMG signals [41,42]. The envelopes normalized
by the maximum of each envelope itself were used to extract muscle synergy [12].

Figure 2. Raw EMG data recorded during the trial of one healthy subject. The unit of the Y coordinate is V.

3. Methodology

3.1. NMF

NMF, which was first proposed by Lee and Seung [35,36], is usually used to reduce
data dimension. Because of its nonnegative constraint, NMF is also applied to analyze
medical [43] and space object [44] data.

NMF is the most widely used muscle synergy extraction method [15–21], which is
usually based on the multiplicative update rules [36]. After creation of the random initial
matrices (C and S), the iteration is to minimize the Frobenius norm of the residual matrix
(preprocessed EMG matrix D minus multiplication of the matrix S and C) illustrated by
Equation (4). The stop criterion is set based on the parameter Q, the percentage of change
in the lack of fit between two iterations (fl(S,C) and fl+1(S,C)), which is obtained through
Equation (5). The stop criterion is: (1) Q equal to 0.01% and (2) max number of iterations
equal to 1000. Equations (4) and (5) are as follows:

f (S, C) =
1
2
‖D − CS‖2

F (4)

Q = 100 ·
(

fl+1(S, C)− fl(S, C)
fl(S, C)

)
(5)

3.2. SMMA

SMMA, which is also called simple-to-use interactive self-modeling mixture analysis
(SIMPLISMA), is a matrix decomposition method for a linear mixture system. SMMA
is proposed based on pure variables, which contribute from one component [45]. Thus,
SMMA resolves the signal of mixtures by analyzing the characteristics of various variables
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of signal, and then extracts the values of the variables containing quantitative information to
resolve the linear mixture system. SMMA is usually used in a signal analysis of a chemical
mixture system [46]. According to Equation (1), muscle synergy is also a linear mixture
system and the EMG signals are considered to be weighted summation of time-variant
activation. The nonstationarity of the activation profile demonstrates that it is feasible to
find pure variables in EMG data. The pure variables, which contain the relative content
information of components (synergies), are used to resolve the components (activations).

3.3. MCR-ALS

MCR-ALS, which evolved from SMMA, is a popular matrix factorization algorithm [47,48].
For MCR-ALS, the initial synergy and activation matrices, containing relative content and
component information, respectively, are obtained from SMMA. In addition, alternating
least squares (ALS) is used to optimize the resolution according to Equations (6) and
(7) [49], and nonnegative constraint is imposed to ensure that the decomposition results
have physical significance. In the iterative process, if the elements of S and C are negative,
it is set to zero forcibly. The stop criterion of MCR-ALS is the same as NMF (Q equal to
0.01%, max number of iteration equal to 1000). Equations (6) and (7) are as follows:

C = (DST)(SST)
−1

(6)

S = (CTC)
−1

CT D (7)

3.4. Algorithm Evaluation

To compare the performances of the three algorithms, they were applied to analyze
the simulated data created by synergies and activations with different sparseness and
noise levels. The Pearson’s correlation coefficient between true and extracted synergies
was applied to assess the three muscle synergy extraction algorithms. The match between
extracted and true synergies was performed based on their similarity evaluated by the
Pearson’s correlation coefficient. We paired the true and extracted synergies with highest
similarity. If more than one extracted synergy had the greatest similarity to the same
true synergies, simultaneously, we achieved full math by studying the total correlation
of all synergy pairs. The match pattern with the max sum of correlation coefficient was
used as the final match result. The statistical results (performances on 25 simulated data
containing randomly created synergies and activations for each sparseness combination
and noise level) of the correlation coefficients of full matched synergies were used to assess
the accuracy and robustness of different synergy extraction methods.

In the experimental study, the repeatability of different algorithms was evaluated
by analyzing the variation of repeated estimated synergies (25 times) utilizing Pearson’s
correlation coefficient. The evaluation was based on the Pearson’s correlation coefficient
between matched synergies extracted from any two performances. Similar to the simulation
study, the first step was to match the synergies extracted from two calculations for the same
data set (trial). The pair of synergies with the highest correlation were matched together.
If two or more synergies had the maximum correlation coefficient with the same synergy, a
full match was realized by analyzing the overall correlation of all synergy pairs. The match
pattern with the max sum of correlation coefficient was considered to be the final match
result. The correlation coefficients of all possible combinations of full matched synergies
extracted from 25 repeated performances were used to assess the repeatability of the three
synergy extraction algorithms.

In this study, the intra-subject consistency of synergies across multiple trials of each
subject was applied to assess the robustness of the proposed synergy extraction algorithm.
The intra-subject consistency was calculated by analyzing Pearson’s correlation coefficient
between each pair of trials for each subject. For each pair of trials, the correlation coeffi-
cients of all possible combinations of full matched synergies from the two trial data sets,
respectively, were calculated. For each subject, the average of the correlation coefficients of
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all trial combinations was used to represent intra-subject consistency. A paired t-test was
used to analyze the difference in intra-subject consistency for various algorithms. One-way
ANOVA was performed to detect the difference in intra-subject consistencies between
healthy and stroke subjects.

3.5. Choose the Number of Synergies

In the analysis described above, we assumed that the correct number of synergies was
known before decomposition. However, in many situations, the number of synergies, r, is
unknown. In this study, we applied variance account for (VAF) to determine the number
of muscle synergies r [50–52]. VAF was calculated according to the following equation:

VAF = 1 − (‖D − M‖2/‖D − mean(D)‖2) (8)

where M = CS, which represents the reconstruction matrix of synergy extraction algorithm;
the operator “mean” is to produce a matrix with the same size as D, whose columns are
made up of the mean of corresponding column in D. Here, r is defined as the minimum
when VAF exceeded 80% [11,13].

4. Results

4.1. Evaluation with Simulated Data

In order to evaluate the feasibilities of the three muscle synergy extraction algorithms,
we employed various simulated EMG datasets generated from components (synergies
and activation profiles) with different sparseness combinations. The similarity between
estimated and true components was used to assess various synergy extraction methods.
As a result, the performance of NMF was affected by both the sparseness of synergies
and the sparseness of activations. NMF became less accurate as the degree of sparseness
decreased. In contrast, SMMA and MCR-ALS were mainly affected by activation sparse-
ness, because the purities of pure variables were easily influenced by the non-sparseness of
activations. However, the influence of the non-sparseness of synergies on the two methods
was relatively small. Figure 3 presents the performances of NMF, SMMA, and MCR-ALS
versus synergy sparseness and activation sparseness under the circumstance of noise level
0.05. Obviously, the performance of NMF was different from SMMA and MCR-ALS.

To validate the robustness of each synergy extraction method, we analyzed their
performances under circumstances of different noise intensities. Figure 4 shows the average
correlation coefficients for the fully identified synergies compared across two settings
(sparseness, noise) for the three methods. From the figure, it can be seen that the noise was
an important influence factor for synergy extraction. The estimated synergies became less
accurate as the noise level increased. In the three methods, MCR-ALS provided the best
performance, especially when sparseness of synergy and activation was low. For example,
the average correlation coefficient of synergy estimated by MCR-ALS was 0.96 when
the synergy sparseness and noise level were 0.1 and 0.05, while the average correlation
coefficients of synergies estimated by SMMA and NMF were 0.92 and 0.83, respectively.
As the synergy sparseness increased, the performances of NMF and MCR-ALS became
close. Lacking iterative optimization restricted the performance of SMMA. In addition, the
non-negativity of its decomposing results was hard to be ensured. For the data containing
non-sparse components (synergy or activation), NMF easily fell into local optimum and its
result was non-unique, which lead to its poor performance. However, MCR-ALS could
supply accurate and unique decomposing results.
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Figure 3. The performances of NMF, SMMA, and MCR-ALS versus synergy sparseness and activation sparseness under
the circumstance of noise level 0.05. (The color represents the degree of similarity evaluated by the Pearson’s correlation
coefficient between the synergies and activations extracted by the matrix decomposition algorithms and the true synergies
and activations; the isolines represent the same value of average correlation coefficients; a.u. represents arbitrary unit).

4.2. Results of Motor Function Evaluation by Muscle Synergy

In the simulation study, SMMA provided unique decomposition as compared with
NMF, but it still could not present satisfactory performance. MCR-ALS, a developed
algorithm which evolved from SMMA, optimized the resolution through ALS iteration.
Thus, MCR-ALS was the most reliable and accurate synergy extraction. In this study, MCR-
ALS was also applied to analyze the muscle synergies of upper limb movements of stroke
subjects, to improve the performance of muscle synergy on motor function evaluation.

For each healthy subject, three muscle synergies were needed to ensure the reconstruc-
tion accuracy for the EMG data. For the conventional method (NMF), muscle synergies
were extracted with an average VAF value of 85.67 ± 5.64%. However, for the proposed
method (MCR-ALS), the muscle synergies were identified with an average VAF value of
86.32 ± 4.97%. The number of synergies of stroke subjects was different from healthy
subjects. Three muscle synergies were enough to reconstruct the EMG data accurately for
three stroke subjects, while for the other two stroke subjects, four muscle synergies were
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needed to realize accurate data reconstruction. Muscle synergies were extracted by NMF
with an average VAF value of 86.35 ± 5.44%. For MCR-ALS, the muscle synergies were
identified with an average VAF value of 86.47 ± 5.39%. Obviously, the two methods have
close reconstruction ability.

Figure 4. Average correlation coefficients for the fully identified synergies compared across two
settings (sparseness, noise) for the three methods.

To compare the repeatability of MCR-ALS and NMF, we analyzed 25 repeated de-
composition results for each trial dataset. As a result, the average repeatability of NMF
was 0.86 ± 0.11 and 0.74 ± 0.13 for all healthy and stroke subjects, respectively. Figure 5
is the boxplot of the correlation coefficients of muscle synergies extracted from a typical
trial EMG data of healthy subject. As seen in Figure 5, the average correlation coefficients
of three synergies were 0.92, 0.80, and 0.65, respectively, with box lengths of 0.08, 0.25,
and 0.52. Obviously, NMF presented inferior repeatability for the upper limb movement
data, and it usually fell into local optimum. However, MCR-ALS could extract relative
concentration information through pure variables in the initialization phase instead of
random initialization, thus, its repeatability was one. In other words, the initialized synergy
and activation matrix is unique.
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Figure 5. The boxplots of the correlation coefficients of muscle synergies extracted from a typical
trial data of healthy subject using NMF.

Figure 6 shows the muscle synergies extracted by NMF and MCR-ALS from one
healthy subject. As seen in the figure, the synergies produced by NMF had much larger
standard deviations as compared with the ones identified by MCR-ALS, especially for
Synergy 2 and Synergy 3. As shown in Figure 6, the synergies extracted by NMF and MCR-
ALS all had low sparseness, especially Synergy 2 and Synergy 3. Thus, the performance
of NMF might be affected by the non-sparseness of synergy. A similar conclusion can be
obtained through the synergy analysis of stroke subjects. As Figure 7 shows, the standard
deviations of the synergies extracted by MCR-ALS were much smaller than the ones
identified by NMF.

Figure 6. The statistical chart of synergies extracted by MCR-ALS (a) and NMF (b) from a typical healthy subject.

182



Sensors 2021, 21, 3833

Figure 7. The statistical chart of synergies extracted by MCR-ALS (a) and NMF (b) from a typical stroke subject.

To further evaluate the performance of the two methods, intra-subject consistency was
calculated. Figure 8 represents the statistical results of intra-subject consistency computed
to compare the standard approach (NMF) and the novel approach (MCR-ALS) for healthy
and stroke subjects. For the healthy subjects, there was a significant difference in intra-
subject consistency between the two methods (p < 0.001). The consistencies of MCR-
ALS and NMF were equal to 0.86 ± 0.04 and 0.69 ± 0.09, respectively. For the stroke
subjects, there was also a significant difference in intra-subject consistency between the
two methods (p = 0.01). The consistencies of MCR-ALS and NMF were equal to 0.56 ± 0.11
and 0.38 ± 0.15, respectively. Obviously, NMF had inferior consistency as compared with
MCR-ALS. The main reason may be that NMF could not obtain optimum in non-sparseness
component extraction. From the experimental study, MCR-ALS could provide more reliable
synergy identification as compared with NMF.

Figure 8. The statistical results of intra-subject consistency computed to compare the standard
approach (NMF) and the novel approach (MCR-ALS) for all healthy and stroke subjects.
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Compared with healthy subjects, some chronic stroke subjects had more synergies,
which was consistent with those reported in the literature [11]. The two groups of subjects
had a significant difference in intra-subject consistency (F = 78.275, p < 0.001 for MCR-ALS
and F = 27.835, p < 0.001 for NMF). Stroke subjects had inferior synergy consistencies as
compared with healthy subjects (0.38 ± 0.15 vs. 0.69 ± 0.09 for NMF and 0.56 ± 0.11 vs.
0.86 ± 0.04 for MCR-ALS), which demonstrated that stroke patients had poorer motor
control ability as compared with healthy subject. Thus, the number of synergies and
intra-subject consistency are promising indexes used for motor function evaluation for
stroke patients.

5. Discussion

In the simulation study, NMF showed good performances for identifying sparse syn-
ergies. However, for non-sparse synergy extraction, NMF could not provide satisfactory
performance. The estimated synergies had a large error as compared with true synergies.
Many human muscles are biarticular and polyarticular, which induces the phenomenon of
coactivation and non-sparse synergies in many human movements with multiple degrees
of freedom. The experiment of this study is a great example, the synergies of upper limb
movements involving digital, wrist, elbow, and shoulder joints are non-sparse. In addition,
the abnormal coactivations of stroke patients’ muscles also affects the sparseness of syner-
gies. The analysis results of the experimental data showed that NMF easily fell into local
optimum in extracting non-sparse components.

From the results of the simulation study, SMMA was a feasible method for identifying
muscle synergy. In addition, its decomposing result was unique. However, the non-sparse
activations affected the purities of pure variables. In other words, it was hard to find
several data points completely contributed from one synergy. Thus, SMMA could not
provide satisfying resolution. However, MCR-ALS, as a developed algorithm, optimized
the purities of pure variables through ALS. As a result, MCR-ALS was the most reliable
synergy identification method, even though the EMG data contained non-sparse synergies
and non-sparse activations simultaneously.

Predicting the number of synergies is an important task for muscle synergy analysis.
We applied VAF to predict the number of synergy vectors ensuring enough reconstruction
accuracy of the matrix decomposition algorithm for EMG data. In the analysis of the EMG
study (healthy and stroke subjects), the VAF values of NMF and MCR-ALS were very
close. Thus, MCR-ALS also had enough learning ability for EMG data, ensuring a robust
prediction of the number of synergies.

The non-negativity is also a key index for the matrix decomposition algorithm.
The SMMA usually produces negative values resulting from the amplitude differences
between the pure variables and weight of synergies. Thus, non-negative constraint is
necessary for SMMA to ensure the physical significance of decomposition. However, the
relative relationship between pure variables and weight of synergies would remain if the
non-sparseness of activation profiles were slight. Thus, the synergies were still similar to
real ones. MCR-ALS evolved from SMMA, and its non-negative constraint ensures the
positive decomposing results. As compared with the pure mathematical method (NMF),
MCR-ALS and SMMA are strongly associated with system theory and the structure of the
data itself, thus, they have greater robustness.

For stroke patients, their synergies have a low degree of sparseness because of the
abnormal muscle activations and movements with multiple degrees of freedom. The poor
reliability of NMF severely restricts the application of muscle synergy to motor function
evaluation. MCR-ALS supplied more reliable muscle synergy information as compared
with NMF, contributing to the robust motor function evaluation. In addition, chronic stoke
subjects might have more synergies and inferior intra-subject consistency as compared
with healthy subjects. Therefore, the two parameters are two promising indexes used for
motor function evaluation of stroke survivors. In future study, we plan to analyze the
muscle synergies of more stroke subjects with the novel EMG analysis method.
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6. Conclusions

In this study, a novel muscle synergy extraction method called MCR-ALS was pro-
posed. Its performance was compared with two other matrix decomposition algorithms
(NMF and SMMA). The results showed the following: (1) The problem of non-unique
decomposition of NMF was resolved through pure variable extraction (SMMA and MCR-
ALS); (2) As a developed algorithm evolved from SMMA, MCR-ALS presented the greatest
reliability in synergy identification as compared with NMF and SMMA, especially for
the data containing non-sparse components. In addition, MCR-ALS was used to analyze
the muscle synergy characteristics of stroke subjects. Through comparative study, stoke
subjects have more synergies and inferior intra-subject consistency as compared with
healthy subjects. Therefore, MCR-ALS is a promising muscle synergy extraction method.
The results of this study are of great significance for promoting the application of muscle
synergy for evaluating motor function of stroke patients.
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Abstract: Several studies have shown that gastrocnemius is frequently injured in triathletes. The
causes of these injuries are similar to those that cause the appearance of the myofascial pain syndrome
(MPS). The ischemic compression technique (ICT) and deep dry needling (DDN) are considered
two of the main MPS treatment methods in latent myofascial trigger points (MTrPs). In this study
superficial electromyographic (EMG) activity in lateral and medial gastrocnemius of triathletes with
latent MTrPs was measured before and immediately after either DDN or ICT treatment. Taking into
account superficial EMG activity of lateral and medial gastrocnemius, the immediate effectiveness
in latent MTrPs of both DDN and ICT was compared. A total of 34 triathletes was randomly
divided in two groups. The first and second groups (n = 17 in each group) underwent only one
session of DDN and ICT, respectively. EMG measurement of gastrocnemius was assessed before
and immediately after treatment. Statistically significant differences (p = 0.037) were shown for a
reduction of superficial EMG measurements differences (%) of the experimental group (DDN) with
respect to the intervention group (ICT) at a speed of 1 m/s immediately after both interventions,
although not at speeds of 1.5 m/s or 2.5 m/s. A statistically significant linear regression prediction
model was shown for EMG outcome measurement differences at V1 (speed of 1 m/s) which was only
predicted for the treatment group (R2 = 0.129; β = 8.054; F = 4.734; p = 0.037) showing a reduction
of this difference under DDN treatment. DDN administration requires experience and excellent
anatomical knowledge. According to our findings immediately after treatment of latent MTrPs, DDN
could be advisable for triathletes who train at a speed lower than 1 m/s, while ICT could be a more
advisable technique than DDN for training or competitions at speeds greater than 1.5 m/s.

Keywords: myofascial pain syndrome; trigger points; electromyography; deep dry needling; is-
chemic pressure technique

1. Introduction

The triceps surae complex includes both gastrocnemius and soleus muscles with
attachments proximally at the posterior part of the knee and distally at the posterior part
of the ankle [1], respectively. The triceps surae assists in control of the knee and ankle and
thus, plays a role in all lower extremity activities including triathlon [2,3]. Currently, a
triathlon (swimming, cycling, running) is a growing sport activity [4], with an exponential
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increase in their annual licenses [5]. Several studies have shown that the area that suffers
the greatest number of injuries in this sport is the triceps surae [6,7].

Myofascial pain syndrome (MPS) is a regional pain condition associated with the
presence of myofascial trigger points (MTrPs) [8]. The presence of MTrPs is considered
to be the first sign of muscle overload [9]. This disorder can affect any skeletal muscle
in the body and it usually accounts for 21% of orthopaedic clinic visits, 30% of general
medicine visits, and around 85%–93% of patients who are referred to pain management
clinics [10]. MPS usually occurs in unconditioned muscles, under high tension conditions
or after direct local trauma or strains [11]. The presence of MTrPs is linked to overuse and
inappropriate muscle use [8].

MTrPs which may be considered as the primary source of pain in MPS were defined
as hyperirritable spots within a taut band of skeletal muscle [12]. Two different kinds of
MTrPs were divided according to their classification by clinical activity: (1) latent and
(2) active MTrPs [9,13]. Latent MTrPs can develop after maintaining muscle activation for
long periods of time, exaggerated muscle contractions, or repeated physical activity. Latent
MTrPs pain can be triggered by digital compression, stretching, and/or overload [10].

A very high percentage of injuries in triathlon usually occur mainly for two reasons:
(1) micro-trauma of repetition or traumatisms and (2) muscular overuse [14], both of which
are the main reason for the appearance of MPS [15].

Treatment of this musculoskeletal condition includes deactivation of MTrPs by pro-
cedures such as deep dry needling (DDN) or ischemic compression technique (ICT), in
order to evaluate their effects on pain and functionality. DDN is considered as a safe and
effective method for decreasing pain and improving function by eliciting a local twitch
response (LTR) in the MTrPs [16]. Active MTrPs are associated with higher motor end plate
noise than latent MTrPs, which means that latent MTrPs can display less irritability than
active MTrPs and local twitch responses could be elicited with more difficulty [17]. Eliciting
LTR during treatment with DDN would modulate a motor-neuron activity and disrupt
the abnormal motor end plante activity [18]. The evidence suggests that this method of
treatment performed by physical therapists was more effective than no treatment, sham
dry needling and/or other types of treatment [19].

Another efficient technique for treating MTrPs is manual local ICT [20], whereby a
pressure for 90 s using the thumb is applied to the MTrP [21]. ICT is considered the most
common, non-invasive therapy currently used for the treatment of MTrPs [22].

Diverse studies report alterations in muscle function such as, electromyographic activ-
ity increased in the antagonist and synergists muscles of subjects with latent MTrPs [23,24],
muscle fatigue increased and overload of motor units close to the latent MTrPs [25]. More-
over, latent MTrPs contribute to accelerated fatigability [26].

When performing a surface electromyography (EMG) of the muscles with MTrPs,
resting activity is rarely recorded in them, but they usually show increased motor activity
during contraction [10]; however, when the test is performed by means of an intramuscular
needle EMG; of an unstimulated MTrP, greater spontaneous activity is observed in MTrP
locations than in sites located outside of these MTrPs [27,28]. Spontaneous electrical activity
(SEA) is an indication of spontaneous release of acetylcholine (ACh) at the neuromuscular
junction (NMJ) [29]. This activity is characteristic of both active and latent MTrPs, which is
recorded with an EMG intramuscular needle, when the muscle is at rest. The potential of
the terminal motor plate in dysfunction of the extrafusal fibre of the muscle, may present
two characteristics under the presence of an MTrP: (1) On one hand, a low degree of
continuous electrical activity is present and represents an abnormal activity of end plate or
end plate noise and (2) on the other hand, higher amplitude peaks or end plate peaks are
accompanied by end plate noise of latent MTrPs [28].

Stimulation of a latent MTrPs (either by ICT or DDN) induces local pain and/or
referred pain and presents a lower degree of pain in latent MTrPs than in active ones,
without finding any type of end plate noise in areas of non-MTrPs [27].
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The mode of action of the DDN is associated withs both mechanical and neurophysio-
logical mechanisms, but still the specific mechanism of action of the DDN is not yet known
exactly [30,31]. It is intended that the mechanical effects of the needle interrupt the integrity
of the terminal motor plate in dysfunction [32] and alterations in the length and tension
of muscle fibres [33] increase blood flow in the muscle and therefore oxygenation there
in [33,34]. Kubo et al. found that DDN caused an increase in blood flow at the needling
site, for 30 min starting at the moment of needling onwards [33]. Sato et al. described that
the release of vasoactive substance, such as calcitonin gene-related peptide (CGRP) and
substance p (SP) leads to vasodilatation in small vessels and increased blood flow [35].

Until now we have not found any article that measures the muscle activity in the
gastrocnemius at an electromyographic level immediately after the latent PGM puncture is
carried out, for this reason we have considered it relevant to carry out this investigation, in
order to demonstrate whether the proven acceleration of muscle fatigue typical of latent
PGM is reduced immediately after treatment with PSP and/or ICT, as measured by surface
electromyography.

The aim of the study was to compare the immediate effectiveness in latent medial
and lateral gastrocnemius MTrPs of both DDN and ICT assessed by superficial EMG. We
hypothesized a greater improvement in EMG activity in triathletes who received DDN
than in those receiving ICT.

2. Methods

2.1. Design

The current study was a secondary analysis of a single blinded clinical trial [36]
that used a randomized between-group design to investigate the immediate superficial
electromiographic effects of DDN treatment with a single session of this technique versus
a single treatment session of ICT. Both treatments were applied to latent medial and
lateral gastrocnemius MTrPs of medium-distance triathletes. The principal outcome of
this clincal trial was identification of EMG activity over the latent treated MTrPs. This
superficial EMG measurement was carried out for both groups of triathletes according
to our previously published randomized clinical trial protocol [36]. Measurements were
made in all participants by a blinded evaluator before and 5, 10, 15, 20 and 25 min after
treatment session and those measurements were made 24 h after the last sport session. The
study was approved by the human research committee of the Hospital Clinico San Carlos,
Madrid-Spain (CEIC Hospital Clínico San Carlos 02/17), and before participation in the
study all subjects signed an informed consent form. This clinical trial was prospectively
registered at Clinicaltrials.gov with the number NCT03273985.

2.2. Participants

Participants in this study were medium distance triathletes ((1.9 km of swimming,
90 km of cycling, and 21 km of running) [4] who were recruited from the podiatric and
physiotherapy clinic, Fisiofuenla s.l.p, from September to December 2017, according to a
randomized sampling method. All of them had ≥3 years of experience participating in
triathlons and they trained around 15 to 20 h weekly. They were selected after identifying
them via a clinical exploration conducted by the principal investigator in which, the pres-
ence in gastrocnemius of latent MTrPs in the places determined by Travell and Simons [37]
as the most common and symptomatic, and identification based on selection criteria were
used to select the participants. All participants were evaluated by the same principal
investigator who has extensive experience, at least three years, in MTrPs diagnosis and its
treatment, which increased confidence in the identification of MTrPs [38]. Inclusion criteria
necessary for the participation of triathletes in the study consisted of two parameters:
(1) presence of a knot or hypersensitive point in the taut band of skeletal muscle and
(2) presence of local or referred pain after mechanical stimulation in the superficial area of
the latent MTrP. Several criteria were used to exclude the triathlete from the study: (1) Age
> 75 and <18 years; (2) score ≥ 4 on the Douler Neuropathique 4 (DN4) questionnaire,
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which denotes lower limb neurological disorders [39]; (3) cognitive alterations according
to positive results on the Pfeiffer questionnaire [40]; (4) taking anticoagulant or antiaggre-
gant medication; (5) existence of prosthesis in the lower limb; (6) presence of systemic or
local infection in the lower limb; (7) fibromyalgia, autoimmune disease, iron deficiency, or
hypothyroidism; and (8) fear of needles.

2.3. Simple Size Calculation

A sample size calculation using the G*Power 3.1.9.2 software (G*Power©; University
of Dusseldorf, Dusseldorf, Germany) was obtained according to the difference between
two independent groups. This calculation was based on the EMG percentage (%) at a
medium speed of 1.5 m/s (V2) for voluntary isometric maximum force contraction (MVC)
of the latent MTrP of medial and lateral gastrocnemius muscle measured immediately after
interventions. A pilot study (n = 12) with two groups consisting of six triathletes in the
experimental group who received DDN (expressed as mean ± standard deviation [SD] of
22.96% ± 8.38%) and six triathletes in the intervention group who received ICT (35.41%
± 16.24%) [41] was initially conducted. In addition, a one-tailed hypothesis, effect size of
0.96, α error probability of 0.05, power (1-β error probability) of 0.80, and allocation ratio
N2/N1 = 1 were used in order to determine the suitable sample size calculation. Therefore,
a sample size of 30 triathletes was calculated with an actual power of 0.82. Finally, regarding
possible 10% loss during follow-up, a total sample size of 34 triathletes with ± 17 triathletes
in each of the experimental groups (DDN and ICT, respectively), was used.

2.4. Principal Outcome: Electromyographic Measurement

A double channel surface bipolar EMG was used to measure muscular activity in
the gastrocnemius, (Verity Medical Ltd., Hans, UK), EMG ranged from 0.2 to 2000 μV
root mean square (RMS prolonged) with a sensitivity of 0.1 μV RMS, accuracy of 4% of
indications μV 0.3 μV at 200 Hz, and selective band filter of bandwidth 3 dB differential
instrumentation amplifier.

Electrode preparation and placement of was carried out following the Surface EMG
Recommendations for Non-invasive Assessment of Muscles (SENIAM) recommenda-
tions [42]. The two electrodes were placed longitudinally after careful preparation of the
skin in which each muscle was cleaned with 70% alcohol, marked with and indelible
marker and then shaved. The skin was shaved and scratched with fine sandpaper and
then cleaned with ethyl alcohol [43]. The electrodes were secured with hypoallergenic
adhesive plaster [42] and an elastic bandage was placed on them [44] in order to prevent
their movement.

The location of surface electrodes was established by SENIAM protocol. According
to the protocol, the first electrode should be located in external gastrocnemius near the
junction line between the fibula head and heel. We placed the electrode at 1/3 of the
fibula head following the line of junction [45]. The second one was located in internal
gastrocnemius the electrodes were placed on the most promising area of the muscle [45].

Silver or silver/chloride electrodes with rectangular shape and a measure of 4 × 5 mm
embedded in a round gel pad of 10 mm diameter (MedicotestGmbH, Andernach, Germany)
were used and the reference ground electrode was placed in a free area of the muscle over
the femur [42].

This study was divided into two parts. First, the patient was asked for a voluntary
isometric maximum force contraction (MVC) [46] after receiving precise instructions on
how to perform the MVC of the muscle in question. Three maximal attempts of 6 s each
were performed, separated by 3 min to recover from medial and lateral gastrocnemius
fatigue, and only the best performance was chosen for the statistical analysis [47]. The
participants were instructed to exert maximum effort against resistance. Patients were
placed in prone position, and a plantar flexion movement of the tibio-fibular talar joint,
with the knee extended (a specialized therapist exerted maximum resistance on the sole
of the foot) [48] was required. Patients were verbally encouraged while performing the
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evaluation. The purpose of this test is to allow the researcher to compare the maximum
amplitudes with submaximal tasks, such as walking [44].

Certain studies with intramuscular EMG indicate that muscle with latent MTrP fa-
tigues faster than normal muscles [26]. In 2011 Hong and Arendt Nielsen showed that
reduction in mean power spectral frequency of intramuscular EMG activity occurred earlier
in latent MTrPs than in normal muscle fibers [26].

Therefore, according to the SENIAM protocol, a comparison was carried out with
EMG measurement on the same reference points in the affected leg [42], before and after
treatment. The measurements were taken in order to evaluate muscle activity in the
gastrocnemius with the superficial EMG selected for this study showing high intra and
inter-examiner reliabilities (intraclass correlation coefficient from [ICC] ranging from 0.94
to 0.98). This measurement was performed in the second part of the test protocol at three
different speeds on a treadmill before and after treatment (V1: 1 m/sg, V2: 1.5 m/sg, and
V3: 2.5 m/sg). To determine the fastest speed that the subject could successfully complete,
they were urged to begin the test on the treadmill for the lowest speed before and after
treatment. If the patient could walk comfortably at this speed during the assigned 2 min
period, the speed of the treadmill was increased to the next level. The study continued
until maximum speed data were collected on the treadmill or until the subject could not
maintain the established speed [48].

To carry out the data analysis (Software Watscope, Digital North Inc. Waterloo, ON,
Canada), the first and last 5 s of the EMG study signals were selected, and the mean power
frequency (FPM) was calculated in each segment [49].

2.5. Treatment Allocation

First, an external researcher collected the necessary subject data who participated
in this study. Afterwards, the distribution of the same was carried out in both groups,
DDN or ICT. This distribution was determined with the statistical and epidemiological
analysis system called Epidat 4.2 (Consejería de Sanidad, Xunta de Galicia (España);
Organización Panamericana de Salud (OPS-OMS); Universidad CES Colombia). Individual
and numbered sheets were prepared sequentially with randomized assignment and placed
in sealed opaque envelopes. A second investigator was in charge of opening the envelope.
Each variable was measured five times before and after the intervention by an independent
investigator.

2.6. Experimental Group: DDN

The experimental group of triathletes of this study received only one session of
DDN for which disposable stainless-steel needles (0.3 × 50 mm, Agupunt, Madrid, Spain)
were used. These needles were introduced into the MTrP after its location within the taut
band [50]. The “fast in, fast out” technique was selected to carry out the DDN treatment [16].
First, the area was cleaned with alcohol, and the therapist wore sterile gloves. The needle
was then held firmly between the thumb and the index finger and was directed with
deepening penetration through the MTrP [51]. The needle moved up and down without
exiting the skin. Finally, the DDN technique was applied for a maximum number of 8–10
insertions or up to the limit of patient tolerance [52].

2.7. Intervention Group: ICT

Ischemic compression is a habitually manual pressure technique. In the present study
this technique was applied to the intervention group of triathletes. In order to carry out this
treatment, pressure was applied with the thumb in the latent MTrP until the pain reached
its maximal tolerable level. This pressure was sustained for 1 min [53].

2.8. Statistical Analysis

Statistical analyses were performed by the software IBM SPSS (version 19.0, IBM Corp.,
Armonk, NY, USA). The Shapiro-Wilk test was performed to assess normality. Group
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differences were examined using, the Student’s t-test for independent variables for the
variables that were adjusted to normal (p > 0.05). For the variables that were not adjusted
to normal, the non-parametric Mann–Whitney U test (p < 0.05) was used. These statistical
analyses were carried out according to the provided sample size calculation and following
prior published secondary analyses of this randomized clinical trial [36,54]. The mean ±
SD, range (minimum – maximum), mean differences and the 95% confidence intervals
(CI) for each outcome measurement were calculated. Furthermore, bar graphs including
95% CI error bars were added in order to illustrate statistically significant differences for
parametric data. All analyses were considered statistically significant at p < 0.05, with a CI
of 95%.

In addition, for outcome measurements, reliability analyses were performed. Calcu-
lation of ICCs, minimum detectable changes (MDCs), standard errors of measurement
(SEM) and lower and upper limits of the 95% CI were obtained. The formula SEM =
SD × √

(1-ICC) was used to calculate SEM values and thus measure the error range of
the parameter. The MDC values were calculated to determine the change in magnitude
necessary so that without being influenced by random variations or measurement errors,
confidence changes are provided. SEM and MDC were analysed according to Bland and
Altman. The classification of ICC values was as follows: the value was considered poor
when ICC < 0.40, ICC was fair with an ICC value of 0.40–0.59. ICC was considered good
with value range from 0.60 to 0.74 and ICC value ranging from 0.75–1 was categorized as
excellent [55].

Finally, multivariate regression analyses were carried out in order to predict the EMG
differences after treatments. Linear regression models were carried out by the stepwise
selection method to predict the outcome measurements differences for EMG values at V1
(speed of 1 m/s), V2 (speed of 1.5 m/s) and V3 (speed of 2.5 m/sg) as dependent variables.
Descriptive data, such as sex, height, weight, BMI and foot length, as well as treatment
group (DDN = 0; ICT = 1) were included as independent variables. R2 coefficients were
used to determine the quality of adjustment. Pre-stablished Pin and Pout F-probability
values were set at 0.05 and 0.10, respectively.

3. Results

A total of 46 triathletes were recruited initially to participate in this study. Of all
participants, 12 participants were excluded from the study. Ten were excluded because
they did not present latent MTrPs at the time of the evaluation and two because they
took the medication at the time of study completion. Finally, 34 subjects (20 males and 14
females) agreed to participate in the study. None of the subjects presented any adverse
effects (Figure 1).

3.1. Sociodemographic Characteristic by Treatment Groups.

The demographic data of the sample studied were divided by type of treatment. The
experimental group was treated with DDN, and the intervention group was treated with
ICT. Ages, both in the experimental and intervention groups (35.29 ± 5.39 and 33.76 ±
76 years, respectively) did not present statistically significant differences between them
(p = 0.215). Weight did not present presented statistically significant differences between
experimental and intervention groups 65.17 ± 10.71 and 69.17 ± 10.66 kg, respectively;
p = 0.141. Height did not present statistically significant differences between both ex-
perimental and intervention groups 170.35 ± 12.94 and 174.94 ± 6.96 cm, respectively;
p = 0.103. Body mass index (BMI) did not present statistically significant differences in the
experimental and intervention groups 22.37 ± 1.92 and 22.48 ± 2.35 kg/cm2, respectively;
p = 0.443. Foot length did not show any statistically significant differences between both
groups (p = 0.421) with values in the experimental and intervention groups of 41.55 ± 3.26
and 41.35 ± 2.73 cm, respectively; These results matched the randomization of the sample
when selecting for one treatment or another.
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Figure 1. Flow diagram of patients throughout the course of the study.

3.2. Electromyographic Measurement

According to Tables 1 and 2 and Figure 2, statistically significant differences (p = 0.037)
were shown for a reduction of superficial EMG measurements differences (%) of the
experimental group (DDN) with respect to intervention group (ICT) at a speed of 1 m/s
(V1) immediately after both interventions, although not at speeds of 1.5 m/s (V2) or
2.5 m/s (V3).

Table 1. Sociodemographic characteristics according to the division by treatment groups.

Experimental Group (DDN)
(n = 17)

Control Group (ICT)
(n = 17)

p Value

Age (years) 35.29 ± 5.39 (32.73–37.85) 33.76 ± 5.76 (31.02–36.50) 0.215
Weight (kg) 65.17 ± 10.71(60.08–70.27) 69.17 ± 10.66 (64.10–74.24) 0.141
Height (cm) 170.35 ± 12.94 (164.19–176.50) 174.94 ± 6.96 (171.62–178.25) 0.103

BMI (kg/m2) 22.37 ± 1.92 (21.46–23.29) 22.48 ± 2.35 (21.36–23.6) 0.443
Foot length (cm) 41.55 ± 3.26 (40.00–43.11) 41.35 ± 2.73 (40.05–42.65) 0.421

Abbreviations; DDN, deep dry needling; IC, ischemic compression; m2, meter2; cm, centimetres; kg, kilograms;
BMI, body mass index; 95% CI, confidence interval at 95%. Statistical significance for a p < 0.05 value, with a
confidence interval of 95%.
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Table 2. Electromyographic measurement of muscle activity in medial or lateral gastrocnemius.

Before Treatment After Treatment

Variable
Experimental

Group
(DDN)

Intervention
Group
(ICT)

p Value
Experimental

Group
(DDN)

Intervention
Group
(ICT)

Mean
Difference
(95% CI)

p Value

EMG FPM (μV). V1
(%)

33.75 ± 14.84
(26.69–40.81)

26.79 ± 9.40
(22.32–31.26) 0.056 ** −4.46 ± 11.53

(−30.74–11.08)
3.59 ± 10.00

(−9.29–30.33)
−8.05 (−15.60;

−0.51)
0.037 *

(t = −2.176)

EMG FPM (μV). V2
(%)

34.84 ± 14.43
(27.98–41.70)

30.36 ± 11.34
(24.97–35.76) 0.160 ** −1.00 ± 9.63

(−16.56–19.67)
4.45 ± 10.62

(−13.86–35.56)
−5.45 (−12.53;

1.63)
0.127 *

(t = −1.167)

EMG FPM (μV). V3
(%)

38.69 ± 15.19
(31.46–45.91)

34.68 ± 11.69
(29.12–40.24) 0.197 ** 2.13 ± 7.42

(−8.07–24.15)
3.23 ± 11.46

(−22.83–31.29)
−1.10 (−7.85;

5.84)
0.734 †

(U = 155.00)

Abbreviations: DDN, deep dry needling; ICT, ischemic compression technique; FPM, mean power frequency (μV), % percentage with
respect to the MVC; EMG, electromyography; V1, speed of 1 m/sg; V2, speed of 1.5 m/sg; V3, speed 2.5 m/sg; * Student’s parametric
t test for independent samples. † Non-parametric Mann–Whitney U test for independent samples. Statistical significance for a p-value
< 0.05 (bold).

Figure 2. Bars graph with 95% confidence intervals (CI) error bars of immediate electromyograp- ic
measurement differences after experimental (DDN) and control (ICT) interventions of muscle activity
in medial or lateral gastrocnemius at a speed of 1 m/s (V1).

3.3. Reliability Analysis

V1 EMG measurements showed excellent reliability with an ICC value of 0.969 (lower
and upper limits of the 95% CI ranging from 0.946 to 0.984), SEM of 2.61% and MDC of
3.19%, both expressed in percentage with respect to the MVC. V2 EMG measurements
also showed excellent reliability with an ICC value of 0.957 (lower and upper limits of the
95% CI ranging from 0.924 to 0.977), SEM of 3.07% and MDC of 3.46%, both expressed in
percentage with respect to the MVC. V3 EMG measurements showed excellent reliability
with an ICC value of 0.952 (lower and upper limits of the 95% CI from 0.914 to 0.975), SEM
of 3.32% and MDC of 3.60%, both expressed in percentage with respect to the MVC.

3.4. Multivariate Prediction Analysis

A statistically significant linear regression prediction model was shown for EMG
outcome measurement differences at V1 (speed of 1 m/s) which was only predicted for
the treatment group (R2 = 0.129; β = 8.054; F [1,32] = 4.734; p = 0.037) showing a reduction
of this difference under DDN treatment. The rest of descriptive data, such as sex, height,
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weight, BMI and foot length, were excluded from this linear regression model according to
the pre-stablished Pin = 0.05 and Pout = 0.10 values. Thus, descriptive data did not influence
nor predict the EMG outcome measurement differences at V1 (speed of 1 m/s). In addition,
linear regression models for EMG outcomes measurements differences at V2 (speed of
1.5 m/s) and V3 (speed of 2.5 m/sg) did not show any valid prediction model.

4. Discussion

DDN is an invasive treatment procedure that requires a thorough understanding of
human anatomy in order to be properly performed [56]. It contains a risk of skin infection
as a continuity solution occurs with this technique. Several cases of possible infection are
described [57] and even Lee et al. described the development of an acute cervical epidural
hematoma as a result of needling therapy in the area [43]. Therefore, a thorough knowledge
of the anatomy is suggested to try to avoid these complications and to be thorough with
hygiene measures. Treatment of latent MTrPs with DDN in gastrocnemius is related to
intramuscular oedema, produced by the needling [50], procedure was associated with
acute pain postneedling [50].

DDN of latent MTrPs leads to a temporary increase in muscle tone in the needling area,
possibly due to intramuscular oedema in this area [58]. Regarding adverse effects of DDN,
in 2014, Cummings et al. reported [59] a case of pneumothorax complications after DDN in
the iliocostalis muscle. A deep spine infection [60] and infected of hip prothesis were also
described too [57]. In addition, a cervical epidural hematoma [61] has been reported after
DDN treatment.

Common adverse effects included bruising, bleeding and pain during and after treat-
ment. Correct technique, proper hygiene and anatomical knowledge are stipulated as
preventive measures to avoid risks [62].

In case of obtaining similar results, how it happens in our study in the post treatment at
1.5 and 2.5 m/s speeds, with both techniques and taking into account the possible adverse
effects resulting from DDN treatment [57,58,61], we would choose the ICT technique as the
better treatment option in patients with latent MTrPs in gastrocnemius considering their
EMG activity.

In the triceps surae the existence of latent MTrPs is associated with future muscular
dysfunction [63].

A 2013 study [64], found a high percentage of latent MTrPs in the asymptomatic
population and located a high prevalence of this point in the gastrocnemius muscle [64]

In keeping with the integrated hypothesis of a trigger point proposed by Simons,
the zone around an MTrP is in an ischemic state with a shortage of glucose and oxy-
gen [65]. Therefore, treatment with compression of MTrPs helps to improve sarcomere
contractions [66].

Takamoto et al. demonstrated that compression applied to the MTrPs would affect
to autonomic nervous activity [67]. They published a study in 2009 [67] in which MTrP
compression elevated the activity of the parasympathetic nervous system and showed that
the physiological mechanisms of pain relief could be induced by the pressure application
over MTrPs. That increase entailed an increase in peripheral blood [68], one of the more
important factors involved in relieving muscle fatigue [67]. The increased blood flow,
provides a concurrent increased in the glucose availability to the muscle [69].

The insertion of a needle at the endplate region reduced the quantity of acetylcholine
(ACh) by increasing discharges, leading to a lesser SEA. Hsieh et al. they found an increase
in a number of hypoxic-responsive proteins after DDN stimulation that can promote
angiogenesis, vasodilation, and altered glucose metabolism in MTrP location [69].

In this study, the effects of DDN at the precise site of latent MTrPs, as compared with
those of ICT in the same location shows measure differences in the superficial EMG results,
immediately after treatment, at 1 m/s speed.

At a speed of 1 m/s, triathletes with latent MTPs, treated with DDN, immediately
improve their muscular activity compared to those treated with ICT; in such a way that
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those triathletes who begin their recovery at low training speeds after injuries, they should
receive as treatment, DDN.

Based on our results, from 1.5 m/s of training speed, the activity data of muscle in
triceps surae of triathletes with latent MTPs are similar, so treatment with ICT is recom-
mended, when seeking to demonstrate less adverse effects.

A study on intramuscular EMG in latent MTrPs, in this case the trapezius, associated
their existence with accelerated muscle fatigue, although patients did not have painful
symptoms [65]. These results did not match what we found in our study, in which it
was shown that despite deactivating the latent MTrP from both treatment techniques the
results of EMG measurements were very similar to those before the treatment, perhaps
conditioned by the immediately measurement.

With intramuscular EMG it is evident that a reduction in the fatigue progression
measurement appears earlier in latent MTrPs muscle fibres than in muscle fibres without
latent MTrP during a sustained isometric contraction [26]. These results suggest that latent
MTrPs are associated with accelerated muscle fatigue.

The muscles fibres of latent MTrPs showed increased motor activity during contrac-
tion [10] when the measured was made with surface EMG. Measured with intramuscular
EMG the activity in latent MTrPs was much higher than in areas where there is not latent
MTrPs both at rest and in isometric contraction [24]. On the other hand when the mea-
surement is made with surface EMG, there are no notable differences between the results
obtained at rest and during the contraction [24].

Hong et al. conduced a study in 2014 in which an increase in surface EMG activity in
latent MTrPs in the upper trapezius muscle when the muscle was submitted to low loads
(25% of MVC) and short times (less than 10 s) of isometric contraction was not observed.
On the other hand when the muscle was subject to low loads (25% of MVC) and somewhat
longer times (7 min) of isometric and fatigue contractions an increase in surface EMG
activity in latent MTrPs was induced [24]. These results may not contradict with those in
our study because the performed contraction by triathletes was concentric in the Hong
study. In 2019, Baraja-Vegas et al. published a study in which they used DN over latent
MTrPs of medial gastrocnemius muscle and observed that the RMS peak amplitude of
each subsequent LTR decreased when compared with the initial RMS peak amplitude of
previous LTRs [70].

Another study in computer workers related to upper trapezius muscle demonstrated
a small decrease in superficial EMG activity after the application of ICT [52] or DN [71].

In previous studies by our research group, we observed that both interventions DDN
and ICT showed similarly efficacy in treatment of latent MTrPs in the gastrocnemius of
triathletes in terms of dorsiflexion of tibiofibular-talar joint in addiction to changes in static
and dynamic plantar pressures [36]. In addition, when our research group measured the
pressure pain threshold (PPT) and thermography in latent MTrPs of triathletes treated with
both techniques, we observed that local mechanosensitivity had immediately increased
after treatment with DDN while this increase did not occur when triathletes were treated
with ICT [72].

ICT has demonstrated moderately strong evidence for immediate pain relief in MTrPs,
but this evidence is limited in terms of long-term pain relief. A recent review of the literature
demonstrated moderately strong evidence supporting the use of ischemic pressure for
immediate pain relief at the TrPs, but only limited evidence for long-term pain relief [73].

The great pressure stimulus caused by the needle on the MTrP sends strong neural
impulses to the posterior horn, breaking the pain-spasm-pain circle of the MTrP as described
by the gate control theory [74].

Hsieh et al. [75] demonstrated that when LTRs were elicited by DDN to a MTrP region
suppression of spontaneous electrical activity (SEA) occurred.

According to the various theories, deactivation of trigger points may be attributed
to mechanical [32], and biochemical [76] changes around needle insertion. One study
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demonstrated a decrease in motor end-plate hyperactivity in MTrP, in patients treated with
DDN [77].

Sympathetic system regulation can be affected by the effects of needle insertion, and
DDN might cause reduction of sympathetic response after treatment with this method [61].

Several authors have theorized about the possibility that rapid movement of the
needle into a MTrP might stimulate afferent fibres and could block the pain information
generated in the MTrP´s nociceptors though a ”gate control” mechanism [78].

In 2019, Barajas et al, conducted a study in which only superficial EMG changes,
after the completion of DDN in latent MTrP were described. The decrease in local twitch
response amplitudes (brief and sudden contractions of the MTrP taut band) peak after
DDN with respect to before DDN treatment in the latent MTrPs [70].

In addition, treatment of latent MTrPs with DDN is related to intramuscular oedema,
an improvement of muscle contraction reaction, and increase in muscle stiffness [57].

5. Limitations

As a main limitation, this study reflected only the EMG measurement results imme-
diately after an intervention, and an intervention group with placebo treatment was not
used.

Another limitation was pain measurements of were not obtained in this study because
the aim in this study was measure EMG activity in latent MTrPs.

The fact that a single treatment session was carried out, and in the case of ICT, of only
60 s., could determine that the treatment was scarce in order to see results.

6. Conclusions

DDN administration requires experience and excellent anatomical knowledge. Ac-
cording to our findings immediately after treatment of latent MTrPs when the muscle was
subdued due to a concentric contraction, DDN could be advisable for triathletes who train
at a speed lower than 1 m/s, those who begin their recovery at low training speeds after
injuries, they should receive as treatment, DDN, while ICT could be a more advisable
technique than DDN for training or competition at speeds greater than 1.5 m/s. Further
studies with longer follow-up periods and placebo interventions are suggested.
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Abstract: This study aims to investigate noninvasive indices of neuromechanical coupling (NMC)
and mechanical efficiency (MEff) of parasternal intercostal muscles. Gold standard assessment of di-
aphragm NMC requires using invasive techniques, limiting the utility of this procedure. Noninvasive
NMC indices of parasternal intercostal muscles can be calculated using surface mechanomyography
(sMMGpara) and electromyography (sEMGpara). However, the use of sMMGpara as an inspiratory
muscle mechanical output measure, and the relationships between sMMGpara, sEMGpara, and si-
multaneous invasive and noninvasive pressure measurements have not previously been evaluated.
sEMGpara, sMMGpara, and both invasive and noninvasive measurements of pressures were recorded
in twelve healthy subjects during an inspiratory loading protocol. The ratios of sMMGpara to
sEMGpara, which provided muscle-specific noninvasive NMC indices of parasternal intercostal mus-
cles, showed nonsignificant changes with increasing load, since the relationships between sMMGpara

and sEMGpara were linear (R2 = 0.85 (0.75–0.9)). The ratios of mouth pressure (Pmo) to sEMGpara

and sMMGpara were also proposed as noninvasive indices of parasternal intercostal muscle NMC
and MEff, respectively. These indices, similar to the analogous indices calculated using invasive
transdiaphragmatic and esophageal pressures, showed nonsignificant changes during threshold load-
ing, since the relationships between Pmo and both sEMGpara (R2 = 0.84 (0.77–0.93)) and sMMGpara

(R2 = 0.89 (0.85–0.91)) were linear. The proposed noninvasive NMC and MEff indices of parasternal
intercostal muscles may be of potential clinical value, particularly for the regular assessment of
patients with disordered respiratory mechanics using noninvasive wearable and wireless devices.

Keywords: inspiratory threshold loading; neuromechanical coupling; parasternal intercostal muscles;
respiratory pressure; surface electromyography; surface mechanomyography

1. Introduction

Evaluating respiratory muscle function contributes to enhancing the diagnosis, phe-
notyping, and monitoring of patients with respiratory symptoms and neuromuscular
diseases [1]. Inspiratory pressure generation is dependent on the level of muscle electrical
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activation and the transduction of this electrical activation into pressure, termed neurome-
chanical coupling (NMC). Poor transduction of inspiratory muscle electrical activation
into pressure, neuromechanical uncoupling, is common in obstructive lung disease [2–4],
and has been related to the perception of dyspnea in both obstructive lung disease [5] and
in neuromuscular disease [6]. Measuring inspiratory muscle NMC is therefore clinically
important for the assessment of patients with disordered respiratory mechanics.

Inspiratory muscle NMC estimation requires simultaneous measurement of muscle
electrical activation and mechanical output. To date, most studies reporting inspiratory
muscle NMC have focused on the diaphragm, the principal inspiratory muscle [7]. The
gold standard measurement of diaphragm electrical activation and mechanical output
involves the use of invasive techniques, including crural diaphragm electromyography
using a multipair esophageal electrode catheter (oesEMGdi) to assess neural respiratory
drive [8], and the balloon-catheter technique to measure transdiaphragmatic pressure
(Pdi) [1]. However, the utility of these techniques is limited by the invasive nature of the
measurements, subject tolerance, and requirement for specialist equipment and training.
In this regard, noninvasive measurement of inspiratory muscle NMC would facilitate the
assessment of respiratory muscle function.

Parasternal intercostal muscles are obligatory muscles of inspiration and their activa-
tion is coupled to that of the diaphragm [9]. Measurements of surface electromyography of
the parasternal intercostal muscles (sEMGpara) have been shown to provide a robust mea-
sure of load on the respiratory muscle pump and to strongly correlate with measurements of
oesEMGdi [10–12]. Measurements of sEMGpara have also been related to breathlessness in
both healthy subjects [3,12] and patients with respiratory disease [3,12–15]. Therefore, and
given the advantage of being noninvasive, sEMGpara has been proposed as an alternative
measure for the assessment of neural respiratory drive [10,11].

Surface mechanomyography (sMMG) measures muscle surface vibrations due to mo-
tor unit mechanical activity [16], and represents the mechanical counterpart of motor unit
electrical activity, as measured by surface electromyography (sEMG). In non-respiratory
skeletal muscles, the ratio of sMMG to sEMG has been proposed for the assessment of
muscle electromechanical efficiency [17,18]. In the respiratory system, sMMG and pressure
represent different mechanical states of inspiratory muscles, the latter being a more global
measure of respiratory muscle mechanical output. We have recently used sMMG and sEMG
measurements from lower chest wall intercostal spaces (sMMGlic and sEMGlic, respectively)
to provide noninvasive indices of lower chest wall inspiratory muscle NMC [19], which
did not change significantly with increasing inspiratory load due to the linear relationship
between sMMGlic and sEMGlic measurements. Measurements of sMMGlic have also been
used, in combination with measurements of mouth pressure (Pmo), to calculate the mechan-
ical efficiency (MEff) of lower chest wall inspiratory muscles, that is the transformation of
muscle mechanical activation into pressure generation, in healthy subjects and patients
with chronic obstructive pulmonary disease (COPD) [20]. Lower chest wall recordings are,
however, less easily accessible and more contaminated by non-respiratory chest wall and
abdominal muscle activation than parasternal intercostal recordings [21,22]. Nevertheless,
the use of parasternal intercostal muscle sMMG (sMMGpara) as a noninvasive measure of
inspiratory muscle mechanical output has not previously been investigated.

Inspiratory muscle mechanical output is usually estimated as pressure. Gold stan-
dard Pdi measurements are derived from simultaneous measurements of gastric (Pgas)
and esophageal (Poes) pressures (Pdi = Pgas – Poes). Since Pdi is specific to the diaphragm,
Pdi has been widely used, together with oesEMGdi, for the assessment of diaphragm
NMC [4,12,19,23–26]. Measurements of Poes alone are, however, not specific to the di-
aphragm and are influenced by the activation of all inspiratory muscles [1]. Compared to
Pdi, Poes is therefore expected to better reflect the mechanical output of extra-diaphragmatic
muscles, including the parasternal intercostal muscles. Moreover, Pmo, which provides
a noninvasive approximation of Poes [1], could be used to obtain noninvasive indices of
NMC and MEff of parasternal intercostal muscles. However, to our knowledge, no study
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has evaluated the relationships among simultaneous invasive and noninvasive measure-
ments of respiratory pressures and both sEMGpara and sMMGpara measurements for the
assessment of NMC and MEff of parasternal intercostal muscles.

The principal aim of this study was therefore to investigate the use of sMMGpara
as a novel noninvasive index of parasternal intercostal muscle mechanical output. In
addition, we wished to examine the relationship between sMMGpara and sEMGpara to
provide muscle-specific noninvasive indices of NMC of parasternal intercostal muscles,
in healthy subjects during an incremental inspiratory threshold loading protocol. We
hypothesized that, as in lower chest wall inspiratory muscles, there would be a linear
relationship between measurements of sMMGpara and sEMGpara in healthy subjects, thus
resulting in nonsignificant changes in NMC of parasternal intercostal muscles (the ratio of
sMMGpara to sEMGpara measurements) during threshold loading. We also aimed to explore
the relationship between measurements of sEMGpara and sMMGpara and both invasive and
noninvasive measurements of respiratory pressures, to obtain indices of NMC and MEff of
parasternal intercostal muscles.

2. Materials and Methods

2.1. Data Acquisition and Preprocessing
2.1.1. Measurements

This study was carried out in the Respiratory Physiology Laboratory at the King’s
College London, King’s College Hospital, London, United Kingdom. Ethics approval was
obtained from the National Health Service Health Research Authority (National Research
Ethics Service Committee London—Dulwich 05/Q0703) and the study was conducted in
accordance with the Declaration of Helsinki.

All recordings were obtained from 12 healthy subjects, including 6 male and 6 female,
with no medical history of neuromuscular or cardiorespiratory disease and with the follow-
ing characteristics (median (interquartile range)): age 33 (30–39) years, body mass index
(BMI) 22.2 (20.6–24.2) kg/m2, forced expiratory volume in 1 second 98% (95–106%) % of
predicted, and forced expiratory volume in 1 second/forced vital capacity 82% (74–84%) %
of predicted [19]. Written consent was provided by all subjects prior to study participation.

sEMGpara was acquired using a pair of surface electrodes in bipolar configuration
located bilaterally in the second intercostal space [10,27]. The sEMGpara recordings were
amplified, high-pass filtered with a cut-off frequency of 10 Hz, and alternating current
coupled. sMMGpara was acquired using a triaxial accelerometer (TSD109C2; BIOPAC
Systems Inc, Goleta, CA, USA) attached to the skin in the second intercostal space, be-
tween the sEMGpara electrodes and close to the right one. Pgas and Poes were acquired
using a catheter tip pressure transducer (CTO-2; Gaeltec Devices Ltd., Dunvegan, UK),
as previously described [12]. Airflow was acquired using a pneumotachometer (4830;
Hans Rudolph Inc, Shawnee, KS, USA). Pmo was acquired using a differential pressure
transducer (MP45; Validyne Engineering, Northridge, CA, USA) connected to a side port
of the pneumotachometer.

All respiratory signals were acquired using a 16-bit analog-to-digital converter (Pow-
erLab 16/35; ADInstruments Ltd, Oxford, UK) at a sampling frequency of 4000 Hz
(sEMGpara), 2000 Hz (sMMGpara), and 100 Hz (pressures and airflow). LabChart soft-
ware (Version 7.2, ADInstruments Pty, Colorado Springs, CO, USA) was used to manage
the signal acquisition.

2.1.2. Acquisition Protocol

Initially, each participant carried out two types of maximal volitional respiratory
maneuvers: maximal static inspiratory pressure (PImax) [1] and maximal inspirations to
total lung capacity [10,28]. These maneuvers were performed several times to ensure each
subject’s maximal volitional effort. All signals were recorded during two minutes of resting
breathing (L0). After that, each participant carried out an inspiratory threshold loading
protocol at inspiratory threshold loads ranging from 12% (L1) to 60% (L5) of PImax, in
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increments of 12%, as we previously described [19]. Inspiratory loads were generated using
an electronic inspiratory muscle trainer (POWERbreathe K5; POWERbreathe International
Ltd, Southam, UK) attached to the distal end of the pneumotachometer. Subjects breathed
through the pneumotachometer and performed 30 breaths against each inspiratory load,
with a resting period in between to allow all measurements to return to baseline.

2.1.3. Data Preprocessing

All data were processed and analyzed in MATLAB (The MathWorks, Inc., vR2020a,
Natick, MA, USA). sEMGpara signals were down-sampled at 2000 Hz and filtered between
10 and 600 Hz. Removal of 50 Hz interference was performed by means of a comb filter.
sMMGpara signals were down-sampled at 500 Hz and filtered between 5 and 40 Hz. The
three acceleration components recorded by the accelerometer were root sum squared to
calculate the magnitude of the sMMGpara signal (|sMMGpara|).

A zero-crossing threshold-based detector was applied to Pmo in order to detect in-
spiratory and expiratory segments during resting breathing and each threshold load for
subsequent inspiratory muscle activity estimation. For each respiratory cycle, the following
parameters were calculated: inspiratory time, inspiratory time/total respiratory cycle time,
inspiratory volume (i.e., the area under the curve of the inspiratory flow), and breathing
frequency. The median values of all respiratory cycles were then calculated separately for
L0–L5, and 10 respiratory cycles that contained the four parameters nearest to the median
values were automatically selected, resulting in 60 respiratory cycles per subject.

The moving minimum of the Pdi signal and the moving maximum of the Poes signal
were calculated using a moving window of 1.5 times the maximum inspiratory time of
each load, and subtracted from the Pdi and Poes signals, respectively.

2.2. Data Processing
2.2.1. Inspiratory Muscle Activity Estimation

Inspiratory muscle activity estimation has usually been based on conventional am-
plitude estimators, such as the average rectified value (ARV) or the root mean square
(RMS) [28,29]. However, when applied to myographic respiratory signals, these parameters
are greatly affected by cardiac activity, and therefore prior rejection of signal segments that
contain cardiac noise is required. Fixed sample entropy (fSampEn) has been demonstrated
to reduce cardiac activity in myographic respiratory signals [30,31], allowing inspiratory
muscle activity to be estimated without the need for prior rejection of cardiac artefacts.
fSampEn consists in calculating sample entropy within a moving window over a signal,
using a fixed tolerance value for all windows [30]. In this way, fSampEn is sensitive to
variations in both signal complexity and signal amplitude. Therefore, like ARV and RMS,
fSampEn can track amplitude variations in myographic respiratory signals. Furthermore,
since cardiac artifacts exhibit a more deterministic pattern compared to respiratory EMG
and MMG signals, fSampEn also inherently reduces cardiac activity, and therefore it is less
influenced by cardiac artefacts than ARV or RMS.

In this study, fSampEn was calculated for the sEMGpara (fSEsEMGpara) and |sMMGpara|
(fSE|sMMGpara|) signals, using the optimal fSampEn parameters that we previously de-
scribed for respiratory muscle activity estimation (i.e., a moving window of 500 ms with
a 50 ms step, m equal to 2, and r equal to 0.3 (sEMGpara) and 0.5 (|sMMGpara|) times
the global standard deviation of each signal) [32]. Inspiratory muscle activity was then
estimated for each respiratory cycle as the mean inspiratory Pdi, Poes, Pmo, fSE|sMMGpara|,
and fSEsEMGpara. The mean values of fSE|sMMGpara| and fSEsEMGpara were expressed as
percentages of their respective largest mean values obtained during the inspiratory thresh-
old loading protocol and the two maximal volitional maneuvers (fSE|sMMGpara|%max and
fSEsEMGpara%max).
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2.2.2. Neuromechanical Coupling and Mechanical Efficiency

NMCs of parasternal intercostal muscles were calculated as the ratios of fSE|sMMGpara|
%max, mean Pdi, mean Poes, and mean Pmo to fSEsEMGpara%max (NMCMMG-EMGpara, NMC
Pdi-EMGpara, NMCPoes-EMGpara, and NMCPmo-EMGpara, respectively). MEffs of parasternal
intercostal muscles were calculated as the ratios of mean Pdi, mean Poes, and mean Pmo to
fSE|sMMGpara|%max (MEffPdi-MMGpara, MEffPoes-MMGpara, and MEffPmo-MMGpara, respec-
tively). The average value of the ten respiratory cycles selected for resting breathing and
each load was calculated for all NMCs and MEffs.

2.3. Statistical Analysis

All data correspond to median and interquartile range. Changes in respiratory pres-
sures, fSE|sMMGpara|%max, and fSEsEMGpara%max with increasing threshold load were
assessed using Friedman tests followed by multiple Wilcoxon signed-rank tests with
Bonferroni adjusted p-values.

An increasing NMC with increasing load can be well explained by an exponential rela-
tionship between the measurements involved [19]. By contrast, a NMC that remains almost
constant or increases slightly with increasing load indicates that the relationship between
the measurements involved can be well explained by a linear model. Therefore, in this study,
the relationships between measurements of respiratory pressures, fSE|sMMGpara|%max,
and fSEsEMGpara%max were assessed individually using both linear and exponential regres-
sion models, together with Spearman’s rank correlation coefficients (ρ). Moreover, changes
in NMCs and MEffs during threshold loads L1–L5 were assessed using Friedman tests,
followed by multiple Wilcoxon signed-rank tests with Bonferroni adjustment for multiple
comparisons, with the same method that we previously described [19]. The significance
level for all statistical tests was set at 0.05.

3. Results

Figure 1 shows an example of respiratory signals recorded in a healthy subject during
resting breathing and the inspiratory threshold loading protocol.

Figure 1. Signals recorded during the inspiratory threshold loading protocol in a healthy subject.
Two respiratory cycles are shown for quiet resting breathing and inspiratory threshold loads at 12%,
24%, 36%, 48%, and 60% of maximal static inspiratory pressure. For the sEMGpara and |sMMGpara|
signals, the corresponding fixed sample entropy time-series (fSEsEMGpara and fSE|sMMGpara|
respectively) are also shown. Pmo = mouth pressure, Poes = esophageal pressure, Pdi = transdi-
aphragmatic pressure, sEMGpara = surface electromyography of the parasternal intercostal muscles,
|sMMGpara| = surface mechanomyography of the parasternal intercostal muscles.
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3.1. Respiratory Pressures

Median (interquartile range (IQR)) PImax for the group was 87.0 (78.0–116.5) cmH2O.
The inspiratory threshold loads increased from 10.5 (9.5–14.0) cmH2O during load L1 to
52.0 (47.0–70.0) cmH2O during load L5. Mean Pdi, mean Poes, and mean Pmo increased
significantly between successive loads during the inspiratory threshold loading protocol
(Figure 2). Although all pressures increased in parallel during threshold loading, mean
Pmo was consistently lower than mean Poes and mean Pdi.

Figure 2. Evolution of respiratory pressures during progressive inspiratory threshold loading. Data
points represent median and interquartile (IQR) range of the 12 subjects for each load. All data points
with the same symbol (*, ×, or +) were significantly different to each other.

3.2. sMMG and sEMG of Parasternal Intercostal Muscles during Threshold Loading

Measurements of fSE|sMMGpara|%max increased progressively from 10.9% (9.4–14.8%)
during resting breathing to 64.7% (54.2–75.9%) during load L5 (Figure 3). Similarly,
measurements of fSEsEMGpara%max increased from 13.5% (10.4–17.6%) during resting
breathing to 72.2% (67.2–80.9%) during load L5. Increases in fSE|sMMGpara|%max and
fSEsEMGpara%max were statistically significant between successive loads, except between
loads L3 and L4 in fSEsEMGpara%max, and between loads L4 and L5 in both fSE|sMMGpara|
%max and fSEsEMGpara%max measurements. Moreover, although fSE|sMMGpara|%max and
fSEsEMGpara%max increased in parallel during threshold loading, fSE|sMMGpara|%max
was consistently lower than fSEsEMGpara%max.

3.3. Noninvasive Measurements of Neuromechanical Coupling and Mechanical Efficiency of
Parasternal Intercostal Muscles

Having an increasing or almost constant pattern of NMC and MEff indices with
increasing load depends on whether the relationship between the measurements involved
is exponential or linear respectively, as we previously described [19]. Accordingly, the
relationships between measurements of respiratory pressures, fSE|sMMGpara|%max, and
fSEsEMGpara%max were firstly assessed individually using both linear and exponential
regression models. Secondly, the evolution of the group NMC and MEff indices during
threshold loads L1–L5 was assessed using Friedman tests, followed by multiple Wilcoxon
signed-rank tests with Bonferroni adjustment for multiple comparisons.
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Figure 3. Fixed sample entropy measurements of surface mechanomyography (fSE|sMMGpara|%max)
and surface electromyography (fSEsEMGpara%max) of the parasternal intercostal muscles during
inspiratory threshold loading. Data points represent median and interquartile range of the 12 subjects
for each load. All data points with the same symbol (*, #, ×, or +) were significantly different to
each other.

The relationship between fSE|sMMGpara|%max and fSEsEMGpara%max measurements
shown in Figure 4a was firstly assessed. Very strong positive correlations between fSE|sMMGpara|
%max and fSEsEMGpara%max were found individually (Table 1). Individual linear and exponen-
tial regression results shown in Table 2 indicate that the linear model, besides being simpler,
performed slightly better than the exponential model to describe the relationships between
fSE|sMMGpara|%max and fSEsEMGpara%max. The evolution of the group NMCMMG-EMGpara
during progressive inspiratory threshold loading is shown in Figure 4b. Slight and nonsignifi-
cant increases were found in NMCMMG-EMGpara between loads L1 and L5, confirming that the
relationship between fSE|sMMGpara|%max and fSEsEMGpara%max can be well explained by a
linear model.

Figure 4. Relationship between fixed sample entropy measurements of surface mechanomyography
(fSE|sMMGpara|%max) and surface electromyography (fSEsEMGpara%max) of the parasternal inter-
costal muscles (a) and the corresponding neuromechanical coupling ratio (NMCMMG-EMGpara) (b),
during the incremental inspiratory threshold loading protocol. Data points represent median and
interquartile range of the 12 subjects for each load.
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Secondly, the relationships between mean Pdi, mean Poes, and mean Pmo and fSEsEMG
para%max measurements shown in Figure 5a were analyzed. Individual analyses showed very
strong positive correlations between mean Pdi, mean Poes, and mean Pmo and fSEsEMGpara%max
(Table 1). Moreover, the linear and exponential regression results shown in Table 2 indicated
that these relationships are better described by linear models than by exponential models.
The group NMCPdi-EMGpara and NMCPoes-EMGpara increased very little, not significantly, from
load L1 to load L5 (Figure 5b). The group NMCPmo-EMGpara increased significantly from load
L1 to load L2, but not significantly from load L3 to load L5, thus tending to stabilize around
a constant value as the load increases. These results are consistent with the fact that the
relationships between mean Pdi, mean Poes, and mean Pmo and fSEsEMGpara%max are better
explained by linear than by exponential models.

Figure 5. Relationship between respiratory pressures and fixed sample entropy measure-
ments of both surface electromyography (fSEsEMGpara%max) (a) and surface mechanomyography
(fSE|sMMGpara|%max) (c) of the parasternal intercostal muscles, and the corresponding neurome-
chanical coupling (NMCP-EMGpara) (b) and mechanical efficiency (MEffP-MMGpara) (d) ratios, during
the incremental inspiratory threshold loading protocol. Data points represent median and interquar-
tile range of the 12 subjects for each load. Symbols ∗ and # indicate statistically significant differences
with respect to inspiratory threshold loads L1 and L2, respectively.

Finally, the relationships between mean Pdi, mean Poes, and mean Pmo and fSE|sMMGpara|
%max measurements shown in Figure 5c were analyzed. Individual analyses showed very
strong positive correlations between mean Pdi, mean Poes, and mean Pmo and fSE|sMMGpara|
%max (Table 1). The linear and exponential regression results indicated that these relationships
are better described by linear models than by exponential models (Table 2). Accordingly, the
group MEffPdi-MMGpara and MEffPoes-MMGpara changed very little, not significantly, from load
L1 to load L5 (Figure 5d), and the group MEffPmo-MMGpara increased significantly from load L1
to load L2, but not significantly from load L2 to load L5, thus tending to change little as the
load increases.

4. Discussion

This study describes for the first time the use of sMMGpara as a measure of the me-
chanical activity of parasternal intercostal muscles, allowing calculation of noninvasive
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indices of NMC of parasternal intercostal muscles (NMCMMG-EMGpara, i.e., the ratio of
fSE|sMMGpara|%max to fSEsEMGpara%max). NMCMMG-EMGpara showed little and not sig-
nificant changes with progressive increases in inspiratory load between 12% and 60%
of PImax. This is due to the mostly linear increase in fSE|sMMGpara|%max relative to
fSEsEMGpara%max during threshold loading.

The aforementioned results are equivalent to those found in our previous study using
sMMGlic and sEMGlic recordings from the lower chest wall inspiratory muscles [19]. In
that study, we showed that both sEMGlic and sMMGlic measurements reflect, in part, the
activation of the diaphragm, but also extra-diaphragmatic lower chest wall and abdominal
muscle activation [22,33,34], which progressively increases with increasing threshold load
to optimize the functioning of the diaphragm [35]. The contribution of the activation of
extra-diaphragmatic muscles to sMMGlic and sEMGlic in a similar way was the reason for
the parallel increase of fSE|sMMGlic|%max and fSEsEMGlic%max during incremental thresh-
old loading, and therefore for the nonsignificant changes in lower chest wall inspiratory
muscle NMC from load L1 to load L5.

In the present study, both fSE|sMMGpara|%max and fSEsEMGpara%max measurements
have also been found to increase progressively and mostly in parallel with increasing
threshold load. The increasing pattern of parasternal intercostal muscle activation during
inspiratory threshold loading was previously reported by Reilly et al. [10] using sEMGpara
measurements in healthy subjects. They reported that, although root-mean-square-based
measurements of oesEMGdi%max were consistently greater than those of sEMGpara%max,
there was a strong relationship between them and they increased mostly linearly dur-
ing threshold loading. Such coupling between parasternal intercostal muscles and the
diaphragm had previously been suggested by De Troyer and Sampson [9], who indicated
that parasternal intercostals are involuntarily activated, together with the diaphragm,
during inspiratory breathing efforts. Accordingly, sEMGpara has been proposed as an
alternative noninvasive measure of neural respiratory drive [10,12,14,36].

In non-respiratory skeletal muscles, the relationship between measurements of sMMG
and sEMG has been used to characterize some neuromuscular diseases. Orizio et al. [37]
analyzed the ratio of sMMG to sEMG, which they called electromechanical coupling
efficiency, of finger flexors in patients with myotonic dystrophy, who presented lower
values as compared to those of control subjects. Barry et al. [38] used the ratio of sMMG to
sEMG, recorded from the biceps brachii, to study several pediatric muscle diseases. They
found a significant reduction in the ratio in affected subjects. The same ratio was used in
patients with spastic cerebral palsy by Akataki et al. [39], who found significantly lower
ratios of sMMG to sEMG in the patients than in the normal group.

The sMMG signal provides information about muscle contractile properties, reflects
the mechanical properties of motor unit activity, and serves as an estimate of muscle force
generation [16]. Therefore, relationships between sMMG and sEMG measurements, as
expressed by NMCMMG-EMGpara in this study, provide muscle-specific noninvasive indices
of NMC, which depend mainly on muscle mechanics. In the respiratory system, however,
such indices reflect only the first step in the transformation of neural respiratory drive into
ventilation. Next steps include the translation of respiratory muscle force into pressure,
and the translation of pressure into ventilation. These steps depend on several aspects,
such as chest wall geometry, airways resistance, or lung compliance, which can be altered
in patients with disordered ventilatory mechanics, such as in COPD or in restrictive lung
disease, thus causing neuromechanical and neuroventilatory uncoupling [40]. Therefore, it
is desirable to have noninvasive indices of NMC, other than NMCMMG-EMGpara, capable
of reflecting the uncoupling that may occur in the different steps of the transformation
of neural respiratory drive into ventilation. Different combinations of measurements of
the electrical activation of respiratory muscles, respiratory pressures, and lung volumes
have been proposed in previous studies as indices of NMC and neuroventilatory cou-
pling [2,6,19,41–43]. However, the indices proposed in those previous studies involved at
least one invasive measurement (i.e., Poes, Pdi, or oesEMGdi).

213



Sensors 2021, 21, 1781

This is the first study to explore the relationships between measurements of sEMGpara
and sMMGpara, and measurements of Pdi, Poes, and Pmo to propose noninvasive indices of
NMC and MEff of parasternal intercostal muscles. We found progressive and mostly linear
increases in fSEsEMGpara%max relative to mean Pdi, mean Poes, and mean Pmo during thresh-
old loading. Analogous results were found between fSEsEMGlic%max and Pdi, expressed as
a percentage of maximum, in our previous study [19]. Respiratory pressures are considered
measurements of global respiratory mechanical output [1], thus reflecting the action of
several inspiratory muscles. The linear relationships found between fSEsEMGpara%max
and the three different mean pressures (mean Pdi, mean Poes, and mean Pmo) may result
therefore from the contribution of progressive activation of parasternal intercostal muscles
to sEMGpara, and of parasternal and other extra-diaphragmatic inspiratory muscles to
respiratory pressure measurements. Accordingly, NMCPdi-EMGpara, NMCPoes-EMGpara, and
NMCPmo-EMGpara remained almost constant or increased slightly during threshold loading.
It is noteworthy, however, that NMCPmo-EMGpara increased significantly at the onset of
inspiratory loading and from load L1 to load L2, which was due to the low values of
Pmo during quiet resting breathing. Nevertheless, NMCPmo-EMGpara behaved similarly to
NMCPoes-EMGpara and NMCPdi-EMGpara as load increased. Progressive and mostly linear
increases were also found in fSE|sMMGpara|%max relative to mean Pdi, mean Poes, and
mean Pmo during threshold loading. These results are in accordance with those previously
found between mean fSE|sMMGlic| and mean Pdi in our previous study [33]. Accordingly,
MEffPdi-MMGpara and MEffPoes-MMGpara showed nonsignificant changes during threshold
loading. MEffPmo-MMGpara, as NMCPmo-EMGpara, increased significantly at the onset of
inspiratory loading and from load L1 to load L2, but behaved similarly to MEffPoes-MMGpara
and MEffPdi-MMGpara at higher loads. The NMCPmo-EMGpara and MEffPmo-MMGpara indices
proposed in this study therefore provide noninvasive measurements of the contribution of
parasternal intercostal muscle activation to the generation of respiratory pressures.

Parasternal intercostal recordings have the advantage, over lower chest wall inspira-
tory muscle recordings, of being less affected by the limitations generally associated with
surface recordings, such as the difficulty in finding the optimal sensor position or the strong
influence of chest wall thickness and subcutaneous fat [44,45]. Moreover, parasternal inter-
costal recordings are less susceptible to crosstalk from postural chest wall and abdominal
muscle activity [21,22]. The noninvasive indices of NMCMMG-EMGpara, NMCPmo-EMGpara,
and MEffPmo-MMGpara proposed in this study would therefore make the evaluation of respi-
ratory muscle function easier and faster to perform, and thus more acceptable in patients
with altered respiratory mechanics, such as in obstructive lung disease and neuromuscular
disease. Neuroventilatory uncoupling resulting from respiratory muscle weakness and an
increased elastic load of the lungs has been related to the degree of dyspnea in patients
with neuromuscular disease [6]. Also, in chronic pulmonary diseases, neuromechanical
uncoupling has been associated with the perception of breathlessness and limited exercise
tolerance [3,5]. The proposed indices would therefore be of potential value to the clinical
assessment of these patients.

This study may provide a basis for future research. The clinical utility of the proposed
noninvasive NMC and MEff indices requires testing in disease states, since our study
dataset was recorded from twelve healthy subjects. The size of the dataset reflects the diffi-
culty in recruiting subjects for studies using invasive measures of diaphragmatic function.
The study participants had body mass index values within the normal range. However, it is
well known that sEMG and sMMG are affected by the thickness of subcutaneous fat [46,47].
The effect of body mass index on sMMGpara and sEMGpara measurements should therefore
be a focus of future investigation.

5. Conclusions

We have proposed the combined use of Pmo and parasternal intercostal sEMG and
sMMG recordings to obtain noninvasive indices of NMC and MEff of parasternal inter-
costal muscles, in healthy adults during an incremental inspiratory threshold loading
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protocol. The combination of sMMGpara and sEMGpara measurements (NMCMMG-EMGpara)
provides a muscle-specific noninvasive index of NMC of parasternal intercostal muscles,
whose pattern during threshold loading is similar to that previously found in lower chest
wall inspiratory muscle NMC. Global noninvasive indices of NMC and MEff of paraster-
nal intercostal muscles have also been proposed by combining Pmo measurements and
both sEMGpara and sMMGpara measurements (NMCPmo-EMGpara and MEffPmo-MMGpara,
respectively), reflecting the contribution of parasternal intercostal muscles to global res-
piratory mechanical output. Similar patterns have been found in NMCPmo-EMGpara and
MEffPmo-MMGpara, and their analogous invasive indices, calculated using Poes and Pdi.

The proposed noninvasive indices derived from Pmo, sMMGpara, and sEMGpara may
prove to be useful indices of NMC and MEff of parasternal intercostal muscles, particularly
for the assessment of respiratory muscle function using wearable devices. Advances in
sensor technologies have led to an increasing trend and interest in the use of wearable
and wireless physiological monitoring devices in medicine [48–50]. These devices may
contribute to improving the assessment of patients with chronic respiratory diseases by
allowing home monitoring of respiratory muscle function in a wireless and noninvasive
manner. In this regard, the proposed noninvasive indices of NMC could be easily im-
plemented in a portable device capable of acquiring sEMG and sMMG signals, allowing
regular monitoring of patients with impaired respiratory mechanics.
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Abstract: Current methods for evaluating fatigue separately assess intramuscular changes in individ-
ual muscles from corresponding alterations in movement output. The purpose of this study is to
investigate if a system-based monitoring paradigm, which quantifies how the dynamic relationship
between the activity from multiple muscles and force changes over time, produces a viable metric for
assessing fatigue. Improvements made to the paradigm to facilitate online fatigue assessment are
also discussed. Eight participants performed a static elbow extension task until exhaustion, while
surface electromyography (sEMG) and force data were recorded. A dynamic time-series model
mapped instantaneous features extracted from sEMG signals of multiple synergistic muscles to
extension force. A metric, called the Freshness Similarity Index (FSI), was calculated using statistical
analysis of modeling errors to reveal time-dependent changes in the dynamic model indicative of
performance degradation. The FSI revealed strong, significant within-individual associations with
two well-accepted measures of fatigue, maximum voluntary contraction (MVC) force (rrm = −0.86)
and ratings of perceived exertion (RPE) (rrm = 0.87), substantiating the viability of a system-based
monitoring paradigm for assessing fatigue. These findings provide the first direct and quantitative
link between a system-based performance degradation metric and traditional measures of fatigue.

Keywords: human fatigue monitoring; neuromuscular fatigue; surface electromyography time-
frequency signal analysis; time-series modeling; autoregressive moving average model with exoge-
nous inputs; isometric contraction; elbow extension

1. Introduction

1.1. Background

Fatigue, commonly defined as “any exercise-induced reduction in the ability of a
muscle to generate force or power” [1], is a complex accumulation of psychological and
physiological processes that impair muscle function and diminish the capacity of the central
nervous system to activate muscles [1–3]. Neuromuscular fatigue presents a major obstacle
for achieving desired performance in a variety of circumstances. For healthy individuals
in physically demanding professions (e.g., astronauts, soldiers, athletes, etc.), prolonged
periods of training and operations are known to adversely affect task efficiency [4], move-
ment accuracy [5], and performance [4], while also increasing susceptibility to overuse
injuries [4]. For patients with neurological or cerebrovascular diseases, such as stroke, mul-
tiple sclerosis, and Parkinson’s disease, fatigue is also a typical and potentially debilitating
symptom [6,7]. Thus, assessing fatigue has important implications for preventing neuro-
muscular injury [8], optimizing training loads [9], and guiding effective, individualized
treatment strategies for rehabilitation [7].

In a clinical setting, standard methods for assessing fatigue rely upon self-reported
questionnaires or rating scales [1,10] that capture how an individual experiences fatigue.
Mental fatigue can be experienced as an increase in the perceived effort to complete a
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task [11] or a reduction in motivation and concentration [1]. Ratings of perceived exertion
(RPE) [12–14] are used to study mental fatigue in healthy and affected populations. A
higher perception of effort is known to limit exercise tolerance [13] and adversely affect
physical performance during endurance tasks [11,14]. Although subjective rating scales
contain valuable information, they are indirect measures of fatigue that provide qualitative
information with low-resolution [10]. Moreover, self-perceived fatigue is not always
accompanied by a loss of force-producing capacity [6,11,14] or changes in physiological
variables [13,14], especially during endurance tasks.

A decline in maximum voluntary contraction (MVC) force has become a “gold stan-
dard” [15] indicator for confirming the occurrence of fatigue in the physiological sci-
ences [1,14,15] because it can directly quantify a loss in force-generating capacity. Despite
their value as objective assessment tools, MVC force measures are often taken immediately
before and after a bout of exercise and only capture the overall mechanical manifestation
of fatigue. Consequently, they lack valuable insight regarding the progression of fatigue
during the task itself, including the underlying physiological processes that contribute to
the degraded performance of the neuromuscular system. Neuromuscular fatigue can be
identified by measuring the evoked force from twitch responses after electrically stimulat-
ing muscles during maximal or submaximal voluntary contractions [16]. However, this
technique is also applied before and after a fatiguing exercise.

Surface electromyography (sEMG) has been widely used to address this issue by
enabling the continuous measurement of muscle activity during exercise. Since fatigue
begins to accumulate at the start of a muscle contraction and continuously progresses
throughout the exercise [17], changes in the sEMG signal can reveal indications of localized
muscle fatigue long before a decline in force or power output occurs [1,2,18]. For instance,
during sustained contractions at submaximal force levels, a progressive increase in sEMG
amplitude and compression of the sEMG signal spectrum can be detected [2,17,18]. Fourier-
based spectral features extracted from the sEMG signal, such as the mean or median
frequency, are the most widely used indices of localized muscle fatigue and have been
employed in numerous applications [2,18,19].

Extensive work has been devoted to developing more advanced spectral estimation and
signal processing techniques that can accommodate the non-stationary behavior in sEMG
signals [20,21]. The majority of these efforts, which are thoroughly discussed elsewhere [21–24],
were devoted to developing fatigue assessment metrics that reflect the localized manifes-
tations of fatigue within a muscle. Thus, these metrics are often univariate, monitored
independently for each muscle, and analyzed separately from associated changes in joint
movement. Less attention has been paid to developing multivariate metrics that utilize
more information from the sEMG signal, aggregate activity from all contributing muscles,
and establish a relationship with kinematic or kinetic movement variables. Such metrics
would be beneficial for assessing how the neuromuscular system fatigues as a whole
during exercise.

1.2. Related Literature

Model-based methods that relate sEMG parameters to movement variables have shown
success in producing a single, unified metric for monitoring fatigue, overcoming some of the
aforementioned issues. Previous studies have applied linear regressions [23], artificial neural
networks [23,25,26], linear projection methods [27], and correlations [28] to map net changes
in sEMG parameters to overall reductions in power [23] or force [28]. Although promising,
these approaches do not continuously monitor changes in the dynamic relationship between
sEMG and movement output over time—a relationship that is significantly altered in the
presence of fatigue [29]. They also require (i) a priori assumptions about the linearity of
fatigue progression [23,25,26], (ii) extensive data sets containing the entire time-course of
fatigue to train models [23,25–28], and (iii) reference contractions to probe for fatigue-induced
changes in parameters at the beginning and end of an endurance task [28].
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Recent studies have approached human performance monitoring using a system-
based monitoring paradigm, which is relatively well-known in the machine monitoring
community [30]. The system-based approach monitors how the performance of the human
neuromusculoskeletal (NMS) degrades during prolonged exercise by continuously tracking
changes in the dynamic relationship between sEMG and movement output over time.
Musselman et al. were the first to pursue this direction [31]. The dynamic relationship was
described using vectorial autoregressive models with exogenous inputs (vARX), which took
instantaneous intensity and frequency features from upper-arm sEMG signals as inputs and
related them to joint angular velocities as model outputs. The methodology was tested on
data from participants performing a repetitive sawing movement until voluntary exhaustion.
Xie and Djurdjanovic [32], Madden et al. [33], and Yang et al. [34] modified this work by
instead using autoregressive moving average models with exogenous inputs (ARMAX) with
second-order muscle dynamics to describe the NMS system during both constant force and
repetitive movement tasks. Two additional sEMG features, namely instantaneous variance
and entropy, were incorporated as model inputs with either force [32,33], joint velocity [32],
or limb displacement [33] serving as outputs, depending on the task.

The models in all four studies [31–34] were trained with data from the initial portion of
the task before fatigue onset to capture the system dynamics during a normal, unfatigued
state. Progressive changes in system behavior were evaluated by tracking the divergence of
model prediction error distributions between the unfatigued state and subsequent periods
of time. Statistically significant trends in a divergence measure, referred to as either the
freshness similarity index (FSI) [32,33], fatigue index [34], or global freshness index [31],
provided evidence that performance degradation occurred during the exercises.

The system-based monitoring paradigm overcomes the limitations imposed by alter-
native, model-based approaches to monitoring fatigue [23,25,26,28]. However, the previous
system-based monitoring efforts [31–34] have not established a formal association between
performance degradation and fatigue. Although the studies verified their findings using
trends in sEMG features to reveal indications of localized muscle fatigue in individual
muscles, the indices in [31–34] are constructed as global measures of how the performance
of the entire NMS system changes over time. Thus, to claim that a system-based monitoring
approach is a viable method for monitoring fatigue, further research is needed to formally
associate the performance degradation index with well-established fatigue measures that
quantify a global reduction in force-producing capacity [1,15] and heightened perception
of exertion [12], rather than changes intramuscular mechanisms. Furthermore, modifica-
tions can be made to the system-based paradigm used in these previous works [31–34]
to produce sEMG features that are more representative of neural activation signals to the
NMS system, provide a complete representation of the NMS system by incorporating all
contributing muscles, and facilitate online performance assessment.

To this end, the primary aim of this work is to firmly establish the viability of the
system-based monitoring paradigm for assessing fatigue by relating the performance degra-
dation index to well-accepted measures of fatigue that capture changes in force-generating
capacity (MVC force) and self-perceived fatigue (RPE). We present a methodology, modified
from previous works, to generate a sensitive and concise index of performance degradation
(FSI) occurring across multiple muscles and sensor sources during a submaximal static
exercise. We then substantiate its viability for assessing fatigue by evaluating within-
individual associations between the FSI and measures of MVC force and RPE. We discuss
the improvements made to the paradigm to facilitate its use as an online assessment tool
and more accurately represent changes occurring in the NMS. The results of this work
have promising implications for informing new methods of monitoring fatigue. Tracking
fatigue-related changes in performance may lead to more personalized training regimens
and therapeutic modalities for rehabilitation. Interventions involving robotic exoskeletons
present an especially promising application of the system-based monitoring paradigm be-
cause these devices possess high-resolution sensors that can collect physiological, dynamic,
and kinematic measures in real-time.
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2. Materials and Methods

2.1. Participants

Eight healthy, right-handed men (26.6 ± 6.1 years, 76.2 ± 12.4 kg, 178.9 ± 6.6 cm)
with no known neurological disorders were recruited from the university population
to participate in the study. All participants were fully informed of any risks associated
with the experiments before giving their informed written consent to participate in the
investigation. The study was conducted in accordance with the Declaration of Helsinki [35],
and the experimental procedure was approved by the Internal Review Board organized
by the Office of Research Support at The University of Texas at Austin under the protocol
number 2013-05-0126.

2.2. Experimental Setup

Participants were seated in a high-back chair with a five-point harness that restrained
their waist and shoulders (Figure 1). A single-degree-of-freedom exoskeleton testbed was
grounded to the base of the chair and used for testing. The device consists of an upper arm
linkage, capstan drive elbow joint, and lower arm linkage with a wrist cuff. The chair and
link lengths were adjusted to accommodate each participant. The participants’ upper arm
was positioned at 90◦ of flexion and 45◦ of horizontal abduction, and their elbow placed in
90◦ of flexion. The medial epicondyle of the participants’ humerus was aligned with the
exoskeleton elbow joint axis, and the forearm was placed in a neutral position. The wrist
cuff was positioned below the participants’ ulnar styloid process and securely attached
their forearm to the exoskeleton. The lower arm linkage of the exoskeleton was grounded
to the chair using a mechanical structure to prevent the elbow joint from rotating during
the isometric contractions described in Section 2.3. As a result, the robot actuator remained
unpowered during experimentation. A multi-axis force/torque sensor mounted to a linear
sliding joint was housed between the wrist cuff and exoskeleton linkage and used to
measure the participants’ elbow extension force. The linear slider allowed passive travel
in the direction parallel to the ulna bone to minimize off-axis forces due to robot-human
misalignment [36].

Figure 1. Experimental setup. (Left) Exoskeleton testbed. (Right) sEMG sensor placement: (1) long,
(2) lateral, and (3) medial heads of the triceps brachii, and (4) anconeus muscles.

2.3. Experimental Protocol

Experiments were carried out in the ReNeu Robotics Laboratory at the University of
Texas at Austin. All participants performed the same experiment on two days separated
by 72 h of rest [37,38] in a temperature-controlled room set to 70◦. Both sessions were

222



Sensors 2021, 21, 1024

performed at the same time of day and followed the same general protocol, which consisted
of three elbow extension tasks: (1) baseline maximum voluntary contractions (MVCs) (2) a
constant-force endurance task sustained at 30% MVC until exhaustion, and (3) a follow-up
MVC. Only results from the first session are reported in this paper. Participants were
instructed to refrain from consuming caffeine on the day of testing [39] and exercising 24 h
before the experiment.

Before testing, the participants performed isometric elbow extension, elbow flexion,
shoulder flexion, shoulder abduction, and shoulder extension contractions for which they
were asked to maximally and submaximally exert force. During testing, participants were
provided with real-time visual feedback of their elbow extension force, in the form of a
gauge display, on a computer monitor placed at eye-level. For the MVCs, participants were
instructed to gradually increase extension force output from zero to maximum over a 3 s
period and maintain their maximal force for an additional 2–3 s. The participants were
given strong verbal encouragement to provide maximal effort during each contraction.
At baseline, a minimum of three MVCs separated by one minute of rest were performed.
If peak forces from two of the three MVCs were not within 5%, additional trials were
performed until this criterion was met. The trial consisting of the highest value was
retained and considered the MVC force. Participants then rested for at least eight minutes
to minimize residual fatigue from the MVC tasks.

Before the endurance task, each participant was familiarized with their MVC levels by
performing brief elbow extension contractions at various force levels (i.e., 30% and 60%
MVC). For the endurance task, participants performed a sustained, isometric contraction
at 30% MVC until their force fell below 10–15% of the target value [39,40]. In related
works examining fatigue, the MVC thresholds of the isometric contractions vary between
25–35% [28,39–41]. The contraction level for evaluation was set to 30% MVC for this study,
as it is the average between these ranges. The target force (30% MVC) and the participant’s
actual extension force were displayed on the computer monitor. Participants matched and
tracked the target line for as long as possible and were verbally encouraged to maintain a
steady force output. Every 30 s, participants reported a rating of perceived exertion (RPE)
using the Borg CR-10 scale [12]. These ratings ranged from 0 (“no exertion at all”) to 10
(“maximal exertion”). Immediately after termination of the endurance task, participants
reported a final RPE and performed a follow-up MVC to determine the amount of fatigue
induced.

2.4. Data Acquisition

A Delsys Trigno Wireless EMG system (Delsys Inc., Boston, MA, USA) was used to
collect sEMG activity from the triceps brachii (long, lateral, and medial heads), anconeus,
biceps brachii, brachioradialis, and deltoid (anterior, middle, and posterior) muscles. The
scope of this paper requires analysis of only the muscles that extend the elbow, that is,
the triceps brachii and anconeus (Figure 1). Participants’ body hair was shaved, and
skin lightly abraded with a pumice stone then cleansed with isopropyl alcohol to ensure
good skin-to-electrode contact before sEMG sensor placement. Electrodes were positioned
over each muscle according to European recommendations for Surface Electromyography
for Non-Invasive Assessment of Muscles (SENIAM) [42]. Elbow extension forces were
measured with a multi-axis force/torque sensor (ATI, Nano25). An xPC Target (Mathworks,
MATLAB module) running Simulink Real-Time and hosting NI data acquisition (NI DAQ)
boards (National Instruments, Inc., Austin, TX, USA) synchronously recorded all data at
1 kHz.
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Calculation of the zero- and first-order moments (i.e., < f 0|t > and < f 1|t >) of
C(t, ω) provide the instantaneous energy and instantaneous mean frequency of the sEMG
signal, respectively, with

< f 0|t > =
∫ +∞

−∞
C(t, ω)dω = |ai(t)|2 (2)

< f 1|t > =
∫ +∞

−∞

C(t, ω)

< f 0|t >ωdω = fim(t), (3)

where ai(t) is the instantaneous amplitude—a parameter that is approximately equal to
the RMS amplitude of the sEMG signal [48,49]. The instantaneous mean frequency, labeled
as fim(t), and instantaneous amplitude, ai(t), are widely used as myoelectric indicators of
fatigue. As a result, significant decreasing trends in fim(t) and increasing trends in ai(t)
during the constant-force endurance task would substantiate the presence of localized
muscle fatigue [2,18,19].

Previous system-based monitoring studies [31–33] used the instantaneous energy
(< f 0|t >), rather than ai(t), as an input to the dynamic model described in Section 2.6.3.
However, we adopted ai(t) because it is analogous to the RMS amplitude of the sEMG
signal that reflects changes in “neural drive” due to fatigue [1]. Moreover, the square root
calculation in (2) attenuates the high magnitude spikes produced when computing the zero-
order moment, which is apparent in [31]. Previous works also extracted two additional
sEMG features, representing the second-order moment and entropy of the signal, to be
used as model inputs [32–34]. When including these features in our dynamic model, the
performance degradation metric described in Section 2.6.4 did not significantly change.
Therefore, we reduced the complexity of our model by restricting the number of model
inputs to include only ai(t) and fim(t) for each muscle.

2.6.2. Normalization

Data from the MVC and endurance tasks were smoothed using 10 ms and 1.5 ms
sliding windows, respectively. Maximal values obtained over a 1.5 s period around the
peak MVC reference force were determined for each muscle and used to normalize the
corresponding ai(t) signals from the endurance task. Force and fim(t) signals from the
endurance task were normalized to their average values during the initial 10 s of the
endurance task. All signals were then downsampled to 100 Hz. This procedure prepared
the data to be used in the model described in Section 2.6.3 and shown in Figure 2. Figure 3
depicts the force and sEMG features after normalization for one representative participant.

The normalization strategy presented in this work was another improvement made to
previous system-based monitoring attempts, which used data from the entire endurance
task to normalize the signals [32,33]. By scaling ai(t) to MVC values and fim(t) to initial
values, our normalization approach produced signals that are more representative of
neural activation signals and the frequency-based sEMG indices found in the literature for
assessing localized muscle fatigue. Moreover, our approach could be employed for online
performance assessment because the only data needed for normalization was collected at
the beginning of the experiment (i.e., baseline MVC contractions performed before testing
and the initial few seconds of the endurance task).
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Figure 3. Normalized signals for a single representative participant during the endurance task.
(Top) Elbow extension force. (Middle) Instantaneous amplitude (ai(t)) and (Bottom) instantaneous
frequency ( fim(t)) features for the elbow extensor muscles. Gray shaded area signifies the training
data set.

2.6.3. Modeling

Human skeletal muscle can be considered a viscoelastic system whose physiological
input is a neural signal and output response is a generated force [50]. Thus, the normalized
sEMG features extracted from the triceps brachii (long, lateral, and medial heads) and
anconeus muscles were used as neural inputs to a dynamic model whose output is elbow
extension force. The dynamics were represented using an autoregressive moving average
model with exogenous inputs (ARMAX). This form of parametric system identification
approximates force as a linear transformation of sEMG features and noise terms and can
be expressed as

A(q)y(t) =
nu

∑
i=1

Bi(q)ui(t) + C(q)e(t), (4)
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where the system output, y(t), is the elbow extension force, the system input, ui(t), is an nu
× 1 vector of the normalized sEMG features, and e(k) is the model disturbance considered
to be zero mean Gaussian process noise. Since two sEMG features (ai(k) and fim(k)) were
extracted from each muscle, nu = 8. The polynomials A, Bi, and C are expressed in terms
of the time-shift operator, q−1, and can be written as

A(q) = 1 + a1q−1 + ... + ana q−na

Bi(q) = b1 + b2q−1 + ... + bnb q−nb+1 (5)

C(q) = 1 + c1q−1 + ... + cnc q−nc ,

where na, nb, and nc are their respective orders. The model was structured such that each
muscle is considered a second-order dynamic system [32]. This approach is in line with
Gottlieb and Agarwal [50] and Thelen et al. [51] who found that a second-order system
can adequately describe the functional relationship between sEMG and force [50] or joint
torque [51]. Thus, the orders of the polynomials were selected to be 8 for A(q) and Bi(q)
and 7 for C(q). Separate models were trained for each user with data selected from the
initial 15 s of the endurance task (Figures 2 and 3). This training data set captures the state
of the users before significant fatigue could develop. Thus, the trained model, referred to
as the “fresh model” (Figure 3), captures the system dynamics corresponding to the user’s
least degraded, or least fatigued, state.

2.6.4. Performance Tracking

Using the training data set, a reference distribution, P, of 1-step ahead prediction
errors was generated by the “fresh model” (Figure 2). The remaining data from the
endurance task was segmented into T epochs that were 4 s in length. The endurance time
for each participant determined the total number of epochs. These data segments were
sequentially presented to the “fresh model” to calculate the latest 1-step ahead prediction
error distributions, QT . The Fidelity similarity metric [52,53] was then calculated to evaluate
the amount of overlap between the reference and updated distributions over time. The
metric, which is referred to as the Freshness Similarity Index (FSI), is defined as

FSI = 1 −
N

∑
i=1

√
P(i)QT(i) (6)

and ranges from 0 to 1, where values near 0 indicate a high degree of similarity and those
close to 1 suggest little similarity. For context, if the dynamic system remains unaltered with
time, the updated distributions will be comparable to the fresh distribution. However, if
the system dynamics change due to fatigue or injury, for example, the updated distribution
will shift or change shape, reducing the amount of overlap with the fresh distribution. Thus,
the FSI is a metric that reflects how the ARMAX approximation of the system dynamics
degrades over time with respect to a normal, unfatigued state.

Previous system-based monitoring studies used similarity/divergence measures, in-
cluding Matusita’s overlap coefficient measure [31–33] and the Kullback-Leibler divergence
measure [33]. However, the Fidelity similarity metric was used in this work due to its
superior sensitivity to changes in modeling errors for the data in this study. All data
processing and modeling was conducted using MATLAB software (R2017b) [54].

2.7. Statistical Analysis

A paired samples t-test was used to test for differences between baseline (pre-endurance
task) and follow-up (post-endurance task) MVC forces, and Cohen’s d was used to calculate
the effect size between time points. A one-factor repeated measures analysis of variance
(RM-ANOVA) was used to evaluate mean differences in RPE scores collected after the
first, middle, and last 30 s of the endurance task. For each sEMG feature, a two-factor
RM-ANOVA was used to test for differences across time and within muscles using average
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values over the first, middle, and last 30 s of the endurance task. FSI was quantified in two
ways. For statistical analysis, averages over the first, middle, and last 30 s of the endurance
task were used in a one-factor RM-ANOVA to evaluate mean differences over time. For
graphical representation, average FSI values over each 1% of the endurance time were pre-
sented. A Greenhouse-Geisser correction was applied to correct for violations of sphericity
when Mauchly’s test was significant. Significant main effects were further examined using
estimated marginal means with a Tukey-Kramer adjustment for multiple comparisons.

Within-subject correlations [55] were performed using repeated-measures correlation
(rmcorr) [56] analysis to evaluate the associations between FSI and measures of force-
generating capacity (MVC force) and self-perceived fatigue (RPE scores). Although as-
sociations between parameters may typically be analyzed using simple correlations that
quantify between-subject associations, within-subject associations are more important to
this study because FSI is an individual-specific metric. Rmcorr analysis also provides
benefits over simple correlation techniques when considering the change in variables over
time. Multiple data points per participant can be used in a rmcorr, whereas simple corre-
lations require time-series data to be aggregated so that all observations are independent
of each other. As a result, rmcorr can yield much greater power than simple correlation
methods and detect relationships between variables that might otherwise be masked when
using aggregated data. Two rmcorr analyses were used to estimate linear models with
subject-specific intercepts relating FSI to MVC force and FSI to RPE scores. Paired data
from the start (i.e., pre-endurance task/first 30 s) and end (i.e., post-endurance task/last
30 s) of the endurance task was used for the rmcorr between MVC force and FSI. Paired
data from the first, middle, and last 30 s of the task was used for the rmcorr between RPE
and FSI. The resulting rmcorr coefficient (rrm) quantified the common within-individual
association between variables.

Although the results from the rmcorr analyses were used to evaluate the FSI metric,
between-subject associations were also reported based on simple correlations. Pearson’s
product-moment correlation coefficient (r) was used to assess the association between FSI
and MVC force. The Spearman rank correlation coefficient (rS) was used to evaluate the
relationship between FSI and RPE because the RPE scores were treated as ordinal data. To
minimize biases introduced by the time-dependency among data points, the paired data
was aggregated into difference scores representing the overall change in measures from
the start (i.e., pre-endurance task/first 30 s) to the end (i.e., post-endurance task/last 30 s)
of the endurance task. Shapiro-Wilk tests verified that all difference scores were normally
distributed. We hypothesized that FSI would be negatively correlated with MVC force and
positively correlated with RPE.

Using the guidelines presented in [57], correlation coefficients were interpreted as
very strong (r ≥ 0.9), strong (0.7 ≤ r < 0.9), moderate (0.5 ≤ r < 0.7), weak (0.3 ≤ r < 0.5),
and negligible (r < 0.3). All statistical analyses were conducted using R software (3.6.1)
[58]. RM-ANOVAs and follow-up tests were analyzed using the afex and emmeans packages.
Within-subject correlations were determined using the rmcorr package [56]. Statistical
significance was set at p < 0.05 for all testing. Data are reported as mean ± standard error
of the mean (SE) unless stated otherwise.

3. Results

3.1. Confirmation of Fatigue

The average endurance time across participants was 287.4 ± 28.0 s. The average
MVC force at baseline was 139.8 ± 10.1 N and significantly declined by 49.5 ± 8.8 N, or
35.6 ± 6.1%, (t(7) = −5.63, p < 0.001, d = −1.99; Figure 4a) at follow-up. This substantial
decline in MVC force from baseline to follow-up verifies that the experimental protocol
successfully induced fatigue across participants.
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Figure 4. Measures of fatigue. (a) Maximal voluntary contraction (MVC) forces taken at baseline (pre-endurance task)
and follow-up (post-endurance task). (b) Ratings of perceived exertion (RPE) during the first, middle, and last 30 s of the
endurance task. Dark blue bars and data points connected by solid lines are means ± SE. Dotted lines represent data from a
single participant (n = 8) whose assigned color is consistent across figures. MVC force significantly declined (p < 0.001,
d = −1.99) and RPE significantly increased over time (p < 0.001, η2

p = 0.91).

A significant change in mean RPE scores occurred during the endurance task (F(2, 14) =
74.15, p < 0.001, η2

p = 0.91; Figure 4b). Post hoc pairwise comparisons revealed significant
differences between all measured time points (all p-values < 0.001). There was an overall
mean increase of 5.9 ± 0.5 across participants, with slightly higher changes in scores during
the first half (3.2 ± 0.5) compared to the last half (2.6 ± 0.5) of the task. The overall rise
in RPE scores indicates the endurance task became increasingly more difficult for the
participants as time progressed, providing evidence of self-perceived fatigue.

3.2. Evidence of Localized Muscle Fatigue

A significant main effect of time was found for the instantaneous amplitude (ai(t))
during the endurance task (F(1.38, 9.68) = 116.65, p < 0.001, η2

p = 0.83; Figure 5). No
significant differences were present across muscles (F(2.04, 14.27) = 3.48, p = 0.058,
η2

p = 0.33), nor was there a muscle by time interaction (F(1.94, 13.58) = 3.26, p = 0.071,
η2

p = 0.32). The mean ai(t) across all muscles at the beginning, midpoint, and end of
the task was 0.17 ± 0.02, 0.2 ± 0.02, and 0.34 ± 0.02, respectively. There was an average
increase of 16 ± 1% (p < 0.001) over the course of the task, with a greater increase in ai(t)
during the second half of the task (13 ± 1%, p < 0.05) compared to the first half (3 ± 1%,
p < 0.001).
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Figure 5. Normalized sEMG features from the elbow extensor muscles. (Top) Instantaneous amplitude (ai(t)) and (Bottom)
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figures. There was a significant main effect of time for fim(t) (p < 0.001, η2

p = 0.83) and ai(t) (p < 0.001, η2
p = 0.83).

There was a significant main effect of time for the instantaneous mean frequency ( fim(t))
during the endurance task (F(1.19, 8.34) = 33.97, p < 0.001, η2

p = 0.83; Figure 5). There were
no significant differences across muscles (F(1.88, 13.14) = 2.82, p = 0.098, η2

p = 0.29), nor was
there a muscle by time interaction (F(2.80, 19.57) = 2.55, p = 0.089, η2

p = 0.27). The mean
fim(t) across all muscles during the first, middle, and last 30 s was 0.98 ± 0.02, 0.86 ± 0.02,
and 0.77 ± 0.02, respectively. On average, the decrease in fim(t) during the first half of the
task (12 ± 2%, p < 0.001) was slightly greater than the decrease during the second half of
the task (9 ± 2%, p < 0.05), resulting in an overall decline from start to end of 20 ± 2%
(p < 0.001).

The average increase in ai(t) coupled with a decrease in fim(t) across muscles indicates
that significant localized fatigue developed in the elbow extensor muscles during the
endurance task. These trends in sEMG features can be attributed to central and peripheral
nervous system mechanisms and intramuscular adaptations [2,17,18]. Our results are
consistent with other studies that evaluated the elbow extensor muscles in male participants
during sustained isometric contractions [39,40]. For an isometric endurance task held at
25% MVC, Krogh-Lund and Jorgensen [40] found that the median frequency decreased
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almost linearly in the medial head of the triceps brachii. The RMS amplitude also increased
in this muscle, showing greater changes in the last half of the contraction compared to the
first. These results parallel the average trends across individuals in our study for fim(t)
and ai(t), respectively, of the triceps medial head (Figure 5, third column). Davidson and
Rice [39] observed significant increases in the RMS amplitude of all three triceps heads
(medial, lateral, and long) during an isometric endurance task at 20% MVC. The amplitude
of the anconeus muscle, however, revealed smaller increases from the start to the end of the
task. Moreover, the long head of the triceps displayed the greatest increase in amplitude
across participants at the end of the contraction compared to the other muscles when the
participants’ shoulder was in 90◦ of flexion [39]. The average trends in ai(t) in our study
are in agreement with these findings (Figure 5, top row).

The anconeus and long, lateral, and medial heads of the triceps brachii are considered
a synergistic muscle group because they all act to extend the elbow [59]. Evidence suggests
that these muscles follow a general hierarchic recruitment pattern to preserve energy [60],
where the order of activation depends upon the muscle’s size [60], joint articulation [60,61],
fiber composition [59,62,63], and level of effort required by the task [60,64]. Following
these principles, the anconeus muscle will activate first at low levels of force, followed
by the medial head of the triceps brachii. When effort reaches a moderate-to-high level,
the lateral head will be recruited next, followed by the long head [60]. When averaged
across individuals, the results from our study closely mirror this recruitment strategy
(Figure 5, top row). The anconeus displayed the greatest average ai(t) of all the synergists
at the start of the task. During the first half of the task, sEMG of the medial head showed a
moderate increase in ai(t) and the largest decrease in fim(t). The ai(t) of the lateral head
remained nearly unchanged, while the fim(t) showed a modest decrease during this period,
indicating it may not have been fully recruited yet. During the second half of the endurance
task, all muscles showed a steady increase in ai(t) and decrease in fim(t), with the long and
lateral heads of the triceps brachii showing the greatest mean changes. These results show
that the endurance task, whose target force was only 30% MVC, started as a low effort task
but progressed to a moderate-to-high effort task that required increased recruitment of all
muscles. The average rise RPE confirmed that subjects felt the level of effort required to
maintain force increased during the task.

Although a hierarchic recruitment pattern [60] is evident when averaged across partic-
ipants, considerable inter-individual variation in this strategy was present in our study. For
example, some participants (S6) showed the largest changes in sEMG activity for the long
head of the triceps, whereas others (S4) revealed more dynamic trends in the medial head
(Figure 5). Moreover, trends in the sEMG amplitude of the anconeus muscle varied widely
across individuals. Inter-muscular variability was also evident in our study. The fatigue
response within a muscle is known to be variable over time [28,65] and often exhibits curvi-
linear behavior depending on the intensity of the muscle contraction [66] and activation of
other synergist muscles. This type of behavior is most notable in the non-linear trends in
the instantaneous amplitude of the anconeus muscle and the reversed trends in the triceps
brachii heads over the last half of the endurance task for participant S8 (Figure 5).

3.3. Trends in Performance Degradation

There was a significant change in average FSI over the course of the endurance task
(F(2, 14) = 34.17, p < 0.001, η2

p = 0.83; Figure 6a). Post hoc pairwise comparisons showed
significant differences between all time points (all p-values < 0.001). From the first 30 s
to the last 30 s of the task, FSI increased by an average of 0.45 ± 0.05. These results
demonstrate that the FSI metric was sensitive to fatigue-induced changes in performance
over time. The significant increase observed in the FSI metric (Figure 6) indicates that a
progressive temporal change occurred in the dynamic relationship between muscle activity
and force output during the endurance task. This general trend coincides with changes in
force-generating capacity (MVC force), self-perceived exertion (RPE), and localized muscle
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fatigue ( fim(t) and ai(t)), suggesting that the phenomenon captured by the FSI metric
reflects a degradation in performance over time.

The full time-series of FSI values for each participant are shown in Figure 6b. Although
the average trend in FSI is close to linear when averaged across individuals, most par-
ticipants displayed a non-linear degradation in performance. Moreover, inter-individual
differences in the non-linear trends were also apparent. Performance degraded quickly for
some participants during the first half of the experiment (S7, S8), whereas others (S2, S5,
S6) showed higher rates of change during the latter half.
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Figure 6. Freshness similarity index (FSI). (a) Dark blue data points separated by solid lines are means ± SE for the first,
middle, and last 30 s of the task. (b) The dark blue line with shaded envelope represents the mean ± SE over each 1% of
endurance time. Additional colored lines (dotted in (a), solid in (b)) represent data from a single participant (n = 8) whose
assigned color is consistent across figures. FSI increased significantly over time (p < 0.001, η2

p = 0.83).

3.4. Relationship Between Measures of Performance Degradation and Fatigue

The rmcorr analyses revealed a strong, negative association between FSI and MVC
force (rrm(7) = −0.86, 95% CI [−0.98,−0.32], p < 0.01; Figure 7a), and a strong, pos-
itive association between FSI and RPE (rrm(15) = 0.87, 95% CI [0.64, 0.96], p < 0.001;
Figure 7b). These analyses were used to evaluate whether changes in performance degra-
dation were paralleled by changes in mechanical and self-perceived fatigue within the
individual. In other words, for a given individual, was an increase in FSI associated with a
decrease in MVC force and an increase in RPE. The results indicate that participants who
displayed significant performance degradation also experienced a considerable reduction
in force-generating capacity and a rise in perceived effort. These strong within-subject
relationships between FSI and both well-established measures of fatigue suggest that the
degradation in performance captured by the FSI metric is representative of fatigue, thereby
substantiating the use of an ARMAX-based monitoring paradigm for assessing fatigue.
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Figure 7. Repeated measures correlations between the freshness similarity index (FSI) and (a) maximum voluntary
contraction (MVC) force and (b) ratings of perceived exertion (RPE). Data points are grouped by participant (n = 8),
where each color summarizes all observations from one participant and corresponding lines represent the rmcorr fit for
that participant. Participant color assignments are consistent with those in other figures. FSI revealed a strong, negative
relationship with MVC force (rrm = −0.86, p < 0.01) and a strong, positive relationship with RPE (rrm = 0.87, p < 0.001).

Simple correlations between overall changes in FSI and MVC force (r(6) = 0.41,
p = 0.846) and overall changes in FSI and RPE across participants (rs = −0.34, p = 0.796)
were not significant. However, we did not expect to observe between-subject associations.
Between-subject associations would suggest that participants with high values of FSI also
tend to have high values of RPE and low values of MVC force. However, since the FSI is an
individual-specific metric, its absolute value may not be comparable across participants.

4. Discussion

4.1. Viability of a System-Based Monitoring Approach for Assessing Fatigue

The primary purpose of this study was to substantiate the viability of the system-based
monitoring paradigm for assessing fatigue by relating the FSI metric to well-accepted mea-
sures of fatigue that capture a net reduction in force-generating capacity (MVC force) and
self-perceived fatigue (RPE). The strong within-individual associations between FSI and
these traditional measures indicate that the system-based monitoring approach captured
fatigue-induced changes in performance, substantiating its use for assessing fatigue. These
findings provide the first direct, quantitative link between a system-based approach to
monitoring performance degradation and well-accepted measures of fatigue.

To that end, we verified that participants developed fatigue during the endurance task
by observing significant reductions in MVC force and increases in RPE. Previous studies
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that implemented a system-based monitoring paradigm [31–33] verified their findings by
identifying fatigue in individual muscles using trends in sEMG features. However, trends in
the relevant sEMG features reflect localized intramuscular adaptations rather than a global
reduction in force-generating capacity [15] or heightened perception of exertion [11,12],
whereas the FSI metric is a global representation of system-based performance degradation.
Furthermore, in these works, the sEMG features were used as inputs to the vARX and
ARMAX models, so comparisons of the sEMG features to the results of the FSI metric
might be biased. For these reasons, the present study sought to confirm fatigue using
well-accepted global measures of fatigue that are external to the modeling paradigm (i.e.,
MVC force and RPE) in addition to trends in localized muscle signals. Significant changes
in MVC force, RPE, and the sEMG features ( fim(t) and ai(t)) indicate that the participants
fatigued during the endurance task.

4.2. Improvements to the System-Based Monitoring Paradigm

Additional novelty to the research presented in this paper is in the improvements made
to the system-based monitoring paradigm presented in previous works. The modifications,
which were specified throughout Section 2.6 and are discussed in more detail below, serve
to more accurately represent changes occurring in the NMS and facilitate the use of the
system-based monitoring paradigm as an online assessment tool.

We selected the sEMG instantaneous amplitude (ai(t)) as an input to the ARMAX
model to minimize the influence of high magnitude transients associated with the instan-
taneous energy feature used in other studies [31–34] and provide a comparable sEMG
feature to the commonly used RMS amplitude. As such, ai(t) served to attenuate signal
artifacts and better reflected the neural activation of the muscle [1]. To simplify our model
structure, we excluded two additional sEMG features from the ARMAX formulation that
were used as model inputs in [32–34]. These extra features, which capture the variance and
entropy of the sEMG signal, provided redundant information and added complexity to
our model without improving the sensitivity of the FSI metric to fatigue-related changes in
the dynamic relationship between the sEMG features and force.

We normalized the model inputs and outputs in a way that is both consistent with
how sEMG signals are processed in the literature [18,67,68] and more suitable for online
fatigue assessment compared to previous works [31–33]. As a result, the magnitude of
the sEMG features fell within predictable bounds, and data from only the baseline MVC
contractions and the initial few seconds of the endurance task were needed for scaling. Our
strategy would allow for an ARMAX model to be trained using data from short contractions
performed before the endurance task, then employed for online monitoring during the
endurance task itself. This offers an improvement to previous works whose normalization
methods produced model input values that far exceeded the predictable bounds of 0 to
1 [31] or required data from the entire endurance task to obtain the scaling factors [32,33],
which would restrict the use of the methodology to post hoc analysis.

Lastly, sEMG features from all elbow extensor muscles were incorporated as inputs
to the dynamic model, providing a complete representation of the neuromuscular system
responsible for elbow extension. This comprehensive approach extends the capability of
previous works, which used a single synergistic calf [32] or forearm [34] muscle to represent
the neuromuscular system responsible for isometric plantar flexion and hand grasping,
respectively. Although evidence suggests that elbow extensor muscles follow a general
hierarchic recruitment pattern, these patterns can vary considerably between individuals
and muscles [60], and did vary in our study. Despite these differences, some researchers
choose to monitor only one head of the triceps brachii by assuming the sEMG activity
from one muscle is representative of the entire synergistic group (i.e., the “equivalent
muscle” concept [59]). Although this may be true for brief static contractions [59], the
concept does not apply during submaximal contractions held until failure [39]. As a result,
assessment approaches that only monitor how one muscle from a synergist group fatigues
could underestimate the fatiguing process as a whole. The inclusion of all contributing
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muscles in our model accommodates the inter-individual differences in muscle recruitment
strategies without loss of information by excluding any one particular muscle. Moreover,
our approach eliminates the need for a priori information regarding muscle fatigability.
This is important because the factors contributing to the inter-individual variation (i.e.,
differences in muscle composition, anatomy, and fitness level) are difficult to measure,
making it infeasible to know which muscles will be most fatiguable for a given participant
before an experiment is performed.

4.3. Performance of the FSI Metric

The FSI metric showed sensitivity to the performance degradation occurring across
multiple muscles and sensor sources during an isometric endurance task. The significant
increase in FSI demonstrates that the metric was sensitive to changes in the dynamic
relationship between sEMG features from the elbow extensor muscles and force that
occurred over time. Alterations in this relationship between sEMG amplitude and force
are known to occur in the presence of fatigue during isometric tasks [29]. Moreover, by
utilizing both amplitude and frequency based sEMG features from each muscle [5], our
multivariate ARMAX model effectively detected fatigue-induced changes in the muscle
signals [41] and accounted for changes in muscle behavior due to fatigue and those due to
altered force production [5].

As a single metric, the FSI also proved to be a concise representation of performance
degradation occurring across multiple muscles and sensor sources. Typically, researchers
will evaluate fatigue by using sEMG to separately assess intramuscular changes in indi-
vidual muscles from corresponding alterations in force or movement output. Instead, our
system-based methodology uses an ARMAX formulation to represent the neuromuscu-
loskeletal system as an input-output dynamic model and monitors the model’s residuals
error over time via the FSI metric. This approach reduces the number of potential monitor-
ing parameters from nine (eight sEMG features and one force signal) to one (FSI), thereby
providing a concise representation of fatigue-related degradation in performance.

Most importantly, monitoring the FSI metric also allows for the continuous assessment
of fatigue during a task. This can elucidate non-linear performance changes or adaptations
that arise over time due to fatigue, as evidenced by the curvilinear evolution of the FSI
metric for the majority of individuals in our study. As a result, the system-based monitoring
paradigm has clear benefits over MVC-based approaches that must be performed before
and after bouts of exercise.

4.4. Advantages of a System-Based Monitoring Approach over Alternative Model-Based
Techniques for Fatigue Monitoring

The system-based modeling paradigm presented in this paper offers decided advan-
tages over existing model-based fatigue monitoring strategies. First, the methodology does
not restrict how performance degradation can evolve over time, thereby allowing for a non-
linear progression of FSI. Compared to other model-based fatigue assessment approaches,
which utilize a priori assumptions that fatigue will progress linearly over time [23,25,26],
the methodology is less restrictive and can allow for a more accurate evolution of fatigue-
induced changes in performance. Secondly, the ARMAX model used in this study need
only be trained on a small data set from the initial portion of the task before fatigue onset.
Alternative fatigue modeling attempts require extensive data sets containing the entire
time-course of fatigue to train the models [23,25–28]. This constraint limits the practicality
of these approaches due to time-consuming data collection and computationally expensive
procedures. The system-based methodology also allows changes in performance to be
continually tracked during the endurance task itself, in contrast with other models that use
reference contractions to probe for fatigue-induced changes in parameters at discrete time
points (e.g., the beginning and end of a task) [28]. Furthermore, our paradigm produces a
single overall measure of fatigue, providing an advantage over a model-based technique
that used multiple model kernels to evaluate fatigue in each muscle individually [69].
Lastly, our black-box modeling approach requires very few biomechanical assumptions
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and is capable of performing in a real-time capacity. This offers decided advantages over
musculoskeletal modeling approaches that demand knowledge of anatomical parameters
and involve time-consuming optimization procedures [70].

4.5. Limitations of the Study

Since the system-based modeling paradigm is in a nascent state, the meaning of the
absolute value of the FSI is not yet well understood. This is a common issue shared among
fatigue metrics [25,27,28,71], however, because the relative change in the parameter over
time is generally of more interest than the absolute value of the parameter. The lack of
between-subject associations between FSI and other measures of fatigue found in our study
verified that the relative change in FSI is not reflecting the differences within individuals.
However, with further investigation and participant-specific considerations, FSI values
may become more interpretable.

The sample size may be a limitation of the simple Pearson and Spearman correlations
used in this work. With a larger group of participants, it may be possible to observe
significant between-subject associations between the FSI and both MVC force and RPE. In
fact, a multimuscle fatigue score (MMFS) developed in [28] showed weak (r = 0.31) and
moderate (r = −0.56) relationships with ratings of perceived fatigue (RPF) and changes
in MVC force, respectively, using Pearson product-moment correlations on data from 20
participants. In our study, the sample size was sufficient to evaluate the sensitivity of
the FSI to fatigue-related changes in performance using RM-ANOVAs and demonstrate
the within-subject associations between FSI and both MVC force and RPE using rmcorr
analyses. The rmcorr analysis can accommodate smaller sample sizes because it uses
multiple data points per participant and accounts for non-independence of error between
observations using analysis of covariance to statistically adjust for the inter-individual
variability [56]. As a result, the degrees of freedom and power will generally be higher
using rmcorr compared to simple correlations, which use aggregated measures to meet the
assumption that data is Independent and Identically Distributed (IID) [56].

This study tested only male participants. However, it is not uncommon for fatigue
studies to include only one gender in the participant group [25,28,39,40,65,72]. A related
study that evaluated elbow extensor fatigability during a sustained isometric task at 15%
MVC until failure reported no differences in endurance time or sEMG amplitude across
men and women [73], contrary to observations from other muscle groups that exhibit sex
differences [73,74]. Thus, despite the single-gender participant pool used in our study,
the findings in [73] provide evidence that our system-based paradigm could account for
gender in this muscle group. However, further investigation is necessary to confirm the
accuracy of the proposed system-based monitoring paradigm for gender and other factors,
such as age.

The ARMAX models were trained on data that was individual- and task-specific,
meaning the model parameters, which were estimated for each participant individually
during a specific submaximal isometric task, may not be generalizable to other participants
or exercises. However, this warrants further investigation. Although model specificity
is a shared limitation among other model-based fatigue assessment strategies [23,25,28],
personalized models are still essential for making patient-specific clinical decisions [75] or
when accurate fatigue monitoring is required, that is, during recovery after musculoskeletal
injuries or rehabilitation for patients with neuromuscular disorders [7].

Lastly, insight concerning the specific muscles experiencing fatigue is not reflected
in the FSI, as was the case in the model-based approach by [28]. However, the purpose of
the system-based monitoring paradigm is to provide a concise measure of fatigue-related
changes in performance across multiple muscles and sensor sources. Thus, condensing the
number of monitoring parameters down to a single metric allows for a uniform approach
to assessing how the entire NMS system responsible for the fatiguing task behaves across
individuals. Although only four muscles were considered in the NMS system responsible
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for elbow extension in this study, the system-based monitoring paradigm is flexible to
accommodate any number of inputs.

4.6. Applications of the Study

There are many practical applications of this research. The ability to characterize
and track fatigue-related changes in neuromuscular system performance during exercise
has the potential to inform therapeutic modalities for rehabilitation. It also can become
useful when personalizing exercise regimens to target strength or endurance deficits,
or by indicating when to stop exercising before significant fatigue leads to the onset
of injury. More specifically, this work has the potential to improve fatigue monitoring
techniques during robot-aided movement training, which typically apply traditional signal
processing methods to analyze localized fatigue of individual muscles using sEMG [10].
Robotic exoskeletons are equipped with high-resolution sensors, such as force sensors and
encoders, that can capture kinematic and kinetic measurements reflecting the quality of
a user’s movement [76]. In combination with physiological measures, such as sEMG, a
system-based monitoring paradigm could fuse the data from these sensor sources and
produce a single metric to assess fatigue, such as the FSI. This metric could then be used
as an input to an exoskeleton controller that alters the level of robot-applied assistance or
resistance to accommodate a patient’s capability and needs [77].

4.7. Future Work

Several aspects of the presented methodology are ripe for further exploration to
enhance its utility as a diagnostic and monitoring tool. In this work, we chose to use an
isometric task to validate that the FSI captures fatigue because it is a simple contraction
that does not require the muscle to change length, thereby minimizing the non-stationary
behavior of the sEMG signals. Further validation using concentric and eccentric exercises
will open the possibility of fatigue monitoring during dynamic movements, which are
integral to various therapeutic modalities. Additionally, a formal exploration of how the
FSI metric behaves across multiple days of testing and in response to periods of rest and
recovery would help prove its effectiveness as a clinical tool. Further advancements to
the dynamic model might also lead to improved modeling accuracy and fatigue tracking,
especially when expanding the application of this work to more dynamic movements
involving multiple joints. In this work, we assumed a linear dynamic relationship between
muscle activity and movement output for analytical tractability. Future work could examine
the appropriateness of the linear assumption by comparing its accuracy to non-linear
dynamic models [78]. In the long run, the approach presented in this paper could be
adapted to monitor fatigue in real-time and used to update control laws of robots, e.g.,
exoskeletons, for optimal human-robot performance.

5. Conclusions

This paper presented and validated a framework for continuously assessing fatigue
using a system-based monitoring paradigm. The paradigm modeled the dynamic relation-
ship between sEMG features extracted from multiple synergistic muscles to force output,
then employed statistical analysis of modeling errors to reveal how performance degraded
in each participant over time. The index of performance degradation (FSI) revealed strong,
within-individual associations with two well-established fatigue measures, substantiating
its applicability as a fatigue monitoring tool. The FSI provided a sensitive and concise
representation of the temporal changes in the dynamic relationship between limb force
and sEMG parameters during submaximal static exercise. Improvements were made to
the system-based monitoring paradigm to facilitate online fatigue assessment and more
accurately represent changes occurring in the NMS. This work presents the first step toward
evaluating the clinical viability of a system-based monitoring strategy for assessing fatigue
by comparing its performance with traditional fatigue measures. Ultimately, the ability
to monitor and assess fatigue has important implications for preventing neuromuscular
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injury, optimizing training loads, and guiding effective, individualized treatment strategies
for rehabilitation.
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TFD Time Frequency Distribution
ARMAX Autoregressive Moving Average Model with Exogenous Inputs
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Abstract: Neuro-muscular disorders and diseases such as cerebral palsy and Duchenne Muscular
Dystrophy can severely limit a person’s ability to perform activities of daily living (ADL). Exoskele-
tons can provide an active or passive support solution to assist these groups of people to perform
ADL. This study presents an artificial neural network-trained adaptive controller mechanism that
uses surface electromyography (sEMG) signals from the human forearm to detect hand gestures and
navigate an in-house-built wheelchair-mounted upper limb robotic exoskeleton based on the user’s
intent while ensuring safety. To achieve the desired position of the exoskeleton based on human
intent, 10 hand gestures were recorded from 8 participants without upper limb movement disabilities.
Participants were tasked to perform water bottle pick and place activities while using the exoskeleton,
and sEMG signals were collected from the forearm and processed through root mean square, median
filter, and mean feature extractors prior to training a scaled conjugate gradient backpropagation
artificial neural network. The trained network achieved an average of more than 93% accuracy, while
all 8 participants who did not have any prior experience of using an exoskeleton were successfully
able to perform the task in less than 20 s using the proposed artificial neural network-trained adaptive
controller mechanism. These results are significant and promising thus could be tested on people
with muscular dystrophy and neuro-degenerative diseases.

Keywords: electromyography; artificial neural network; exoskeleton; assistive technology; robotics;
hand gestures

1. Introduction

Actively-actuated exoskeletons with joints with several degrees-of-freedom (DOF)
are complex and powerful due to the use of actuators for the movement of the joint
compared with both passively and non-actuated exoskeletons. The use of active actuators
enhances the ability to move multiple joints at the same time, creating a greater work
space to perform ADL [1] and also offering greater precision compared with the gravity-
offsetting systems of springs, elastic bands, and counter-weights used in passive and non-
actuated exoskeletons. Currently, there are several actively-actuated exoskeletons on the
market, including the Orthojacket [2], Multimodal Neuroprosthesis for Daily Upper Limb
Support (MUNDUS) [3], the robotic upper-extremity repetitive trainer (RUPERT) [4], the
biomimetic orthosis for the neurorehabilitation of the elbow and shoulder (BONES) [5], and
the motorized upper-limb orthotic system (MULOS) [6]. Most of these actively controlled
exoskeletons require a precise control and user interface system that infers a user’s input
to control the actuators in real-time. There are a wide variety of options for intuiting user
input; the simplest and most frequently used option is a switch, key, button, or joystick [7,8].
In fact, a survey of upper limb hybrid exoskeletons in 2017 noted that these were utilized
in 50% of hybrid exoskeletons (exoskeletons with functional electrical stimulation) [8]. The
signal from these kinds of sensors is easier to receive and most directly interpret. However,
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this also limits user movement, taking away the user’s ability to perform activities with
both arms while also controlling the exoskeleton [8]. Another method is the use of voice
commands, which free up the user’s hands but are difficult to utilize in crowded or noisy
environments. There is also a visual system that monitors eye movement to infer user
intent, which is limiting due to the placement of the eye-tracking unit being restricted to a
table [8].

Biological signals are also used as an input to drive the exoskeletons, as well as for
more general feedback to gather information on fatigue or the muscle groups utilized dur-
ing use of the exoskeleton. Electroencephalography (EEG) and surface electromyography
(sEMG) are the most complex inputs used for deriving user intent to control exoskele-
tons [8]. EEG, or electrical signals of the brain, are occasionally used for brain–machine
type interfaces for exoskeleton control [8]. However, when utilized to control exoskeletons,
the EEG signals are not intuitive and are often used with predefined trajectories, such as
for the BCI-Controlled Wearable Robot in 2014 and the BCI-Controlled Exoskeleton in
2015, or predefined trajectories in addition to a joystick for the degree of movement for
the THINK2GRASP exoskeleton in 2013 [8]. The MUNDUS is another example that uses a
brain–computer interface (BCI), but it combines EMG with a USB button and eye-tracking
user input options as well [3].

The use of sEMG, or surface-level electrical muscle signals, is a less complicated input
than the brain but nonetheless can be quite complex. Some exoskeleton controllers have
used simple thresholding on EMG signals [9]. Others take more complex approaches,
offering more possibilities for using the signals, such as a neurofuzzy modifier to estimate
joint torques from EMG signals [10,11]. While this concept of joint torque estimation
is promising, it also requires a higher number of sensors, with 16 wired sEMG sensors
along deltoid, pectoral, biceps, triceps, flexor, and extensor muscles of the arm in one
study [10] and 14 wired sEMG signals covering many of the same muscles in another
study [11]. Although these studies have shown the promise of such a system, commercial
applicability would be difficult to attain given the number and wide-ranging placements
of sensors; imagine a patient trying to put even 14 sensors on alone, or having to them put
on his/her arms and shoulders, each and every day. Of course, there is the possibility of
the development of a sleeve and electrodes that do not require re-placement every day, but
the complexity from the sheer number of signals still remains.

Another study estimated the force of antagonist and agonist muscles of the arm
(biceps—short and long head and flexor and extensor carpi radialis) using the Hill model
and sEMG signal inputs from those muscles and the use of different forces as an input for
a proportional–integral (PI) controller. The same study also looked at a different control
method that used the same sEMG signals but instead utilized machine learning, specifically
linear discriminant analysis, to classify movements [12]. A study using the ETS-MARSE
related sEMG signals to muscle forces and torques using a proportional constant for each
muscle [13]. These various studies show the interest and promise of EMG, as well as the
limitations of the current use of EMG input. This research article proposes a compact,
additive-manufactured, and actively-actuated 3 DOF wheelchair-mounted upper limb
robotic exoskeleton that offers shoulder horizontal abduction and adduction, shoulder
flexion and extension, and elbow flexion and extension movements based on artificial
neural network-trained hand gesture recognition and an adaptive controller mechanism to
ensure the user’s safety while maneuvering the assistive exoskeleton for daily activities.
Eight able-bodied participants without upper limb movement disabilities were recruited in
this feasibility study to evaluate the response of the proposed system during individual
joint control movements followed by a water bottle pick and place task using hand gestures.
Quantitative data sets and subjective feedback were acquired to evaluate the proposed
technology, which has the potential to be utilized in the near future on people with muscular
dystrophy and neuro-degenerative diseases that limit a person’s ability to move their arms
in three-dimensional space.
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2. Methods

The proposed artificial neural network-trained hand gesture recognition system based
on sEMG and an adaptive controller mechanism was implemented on an in-house-built
wheelchair-mounted upper limb robotic exoskeleton. The exoskeleton was intended to be
used for both assistive and rehabilitative tasks for people with upper-limb impairment. The
mechanism was designed based on human anatomical data and the desired workspace to
accommodate functional ranges of motions to perform some ADLs. The system is equipped
with safety features of mechanical joint limits and electronic sensors to communicate with
the user through physiological data, such as EMG and force myography signals (FMG).

2.1. Wheelchair-Mounted Upper Limb Robotic Exoskeleton Design

Human anatomical data from studies on human anatomy were collected to create
the computer-aided design (CAD) model to locate the joints and allow flexion/extension
and abduction/adduction at the shoulder joint and flexion/extension for the elbow. To
accommodate ranges of sizes of subjects while minimizing stresses at the joints, the design
incorporated adjustable linkages. The computer-aided models of the wheelchair-mounted
robotic exoskeleton were created using SolidWorks ®. The entire prototype was divided
into three assemblies, named (1) the adjustable elbow forearm assembly, (2) the shoul-
der flexion/extension assembly, and (3) the shoulder horizontal abduction/adduction
assembly.

The adjustable elbow forearm assembly of the prototype consists of a forearm exoshell
part and an adjustable elbow link. The adjustable link allows the total length of the lower
arm assembly to vary from 21.4 to 26.4 cm, depending on the user’s arm length. The
forearm exoshell is an open L-shaped piece and is rounded at the corner edges in order to
better fit the user, with the strap channels following the rounded contours. At the interface,
filleted holes are added for ventilation to prevent the arm from overheating. The assembly
of the forearm shell (purple) and the adjustable link (cyan) is shown in Figure 1a.

An upper arm exoshell attaches to an upper arm link with a motor case to create
the shoulder flexion/extension assembly, as shown in Figure 1b. Similar to the forearm
exoshell, the upper arm exoshell has holes for ventilation and rectangular channels for
straps. One link on the side of the upper arm exoshell helps to keep alignment with elbow
joint. The last main assembly is the shoulder horizontal abduction/adduction assembly, as
shown in Figure 1c.

Figure 1. (a) Adjustable elbow forearm assembly, (b) shoulder flexion/extension assembly, and
(c) shoulder horizontal abduction/adduction assembly of the exoskeleton.
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The individual parts were assembled as shown in Figure 2a and mounted on a
wheelchair, as shown in Figure 2b. The exoskeleton was manufactured with fusion deposi-
tion modeling using the RAISE3D Pro2 Plus printer using NylonX, a 20% carbon-fiber filled
nylon material and PLA. The overall weight of the printed wheelchair-mounted upper
limb robotic exoskeleton with hardware is less than 6.61 lb, and it was easily mounted on
the back of the powered wheelchair using two screws and did not restrict the movement of
the powered wheelchair through regular-sized doors.The printed robotic exoskeleton with
motors and sensors mounted to a powered wheelchair is shown in Results Section 3.2.

(a)

(b)

Figure 2. (a) Assembly of the exoskeleton, (b) assembly of the exoskeleton mounted on the wheelchair.

2.2. Surface Electromyography Signal Acquisition and Hand Gestures

The Myo armband was used to acquire surface-level muscle signals known as surface
electromyography (sEMG) from the flexor carpi radialis, extensor carpi radialis longus
and brevis, palmaris longus, pronator and supinator teres, flexor and extensor carpi ul-
naris, brachioradialis, flexor digitorium superficialis, and flexor digitorum communis
muscles in the forearm. These muscles generate electrical potentials during finger move-
ments and various hand gestures. Another important decision, besides the features to
extract for sEMG signals, was the hand gestures to use for the exoskeleton control. A
relaxed open hand [14–17]; closed hand, or fist, or grasp [14,15,18]; flexion/extension or
similar wave in/wave out [15–17]; radial and ulnar deviation/flexion [14–18] ; prona-
tion/supination [18]; and non-relaxed open or fingers spread [15] are the hand and wrist
gestures suggested by various past studies on robotic arm, prosthetic, and exoskeleton
control and general EMG signal classification. Five hand gestures were chosen to obtain
sEMG muscle signals for classification: wave in, wave out, radial deviation (angled up),
ulnar deviation (angled down), and rest. However, 5 gestures alone are not sufficient to
control a 3 DOF exoskeleton. Thus, to add to these five gestures without including any
other gestures that involve making a fist or articulating the fingers in spread or individ-
ual configurations, it was initially decided to include forearm pronation and supination
rotations, using a threshold for each direction. Unfortunately, it was found during initial
testing that pronation/supination of the forearm was difficult to achieve while the user is
strapped into the exoskeleton, so two more hand gestures had to be devised instead. All
gestures needed to allow someone to grasp an object, such as a water bottle or the joystick
to control a wheelchair. The first five gestures were chosen to perform this task. Other
gestures such as fingers spread and a fist, recognized as poses by Thalmic Lab’s software
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for the Myo armband (Myo Connect/Myo Armband Manager), were avoided due to the
conflict of being able to make these poses while trying to grasp an object, as well as the
possible confusion by the classification algorithm between the desired movement and the
user simply wanting to grasp an object. Thus, the goal was to choose gestures that would
support object grasping and other operations without accidentally signaling the movement
of the exoskeleton.

A grasp taxonomy of 33 grasp types was identified, with top-level divisions focused
on whether the grasp required more power—that is, “all movements of the object have to
be evoked by the arm”—or precision, followed by the opposition type or direction of force
needed to grasp the object in reference to the palm, namely palm (perpendicular), side
(transverse), or pad (parallel) [19]. Interestingly, only for 4 of the 12 precision categories did
grasping involve the pinky finger at all, while 2 of the 6 intermediate categories (between
precision and power) used the pinky finger. The pinky finger seemed to be more necessary
for power grasping, as it appeared to be used in 12 of the 15 grasp schemes shown in the
GRASP taxonomy [19]. Hence, it could be concluded that the pinky finger may not be
necessary for grasping the majority of the time. Thus, it is proposed that the pinky finger
could be flexed and extended while grasping an object, so flexion and extension of the
pinky finger were ultimately chosen as the other two hand gestures to control the robotic
exoskeleton. This made it possible to have seven different classes of movement in total.
Three more redundant classes were also added, making a total of 10 classes, but still with 7
movements, in order to help with pick and place tasks, such as the water bottle pick and
place task of this research project. The three additional classes were holding a water bottle
as an additional rest position, holding a water bottle while flexing the pinky finger, and
holding a water bottle while extending the pinky finger backward. An illustration of the
gestures for EMG is shown in Figure 3, with class labels (C1–C10) and gesture names (e.g.,
radial deviation) labeled on each gesture image. Feature extraction included the use of the
RMS, median filter, and mean. Raw sEMG signals were processed through these features,
followed by a normalization prior to artificial neural network classification.

Figure 3. Hand gestures used for exoskeleton control.
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Radial deviation, as shown, signals to the exoskeleton controller that the user desires
to rotate the elbow joint in the flexion direction, while ulnar deviation signals desired
assistance with elbow extension. Waving the hand inward corresponds to shoulder exten-
sion, while waving out corresponds to shoulder flexion. Shoulder horizontal adduction
is signaled by curling the pinky finger inward towards the palm in a flexion motion
without and with the water bottle, while horizontal abduction is signaled by stretching
the pinky finger back in extension without and with the water bottle, as shown in the
Figure 3. No movement of the exoskeleton is signaled by the relax gesture and the bottle
grasping gesture.

2.3. Adaptive Controller Mechanism

MATLAB offers several toolboxes for machine learning, including three for neural
networks specifically, namely the Neural Network Pattern Recognition Toolbox, the Neural
Fitting app, and the Neural Clustering app. The first two were of interest for this particu-
lar study. The Neural Network Pattern Recognition Toolbox only uses scaled conjugate
gradient backpropagation for training, while the Fitting app allows a choice between
Levenberg–Marquardt, Bayesian regularization, and scaled conjugate gradient backpropa-
gation. Initial testing was conducted to determine which would offer the highest accuracy
for these features and number of classes, and it was determined that scaled conjugate
gradient backpropagation had the highest accuracy; thus, the scaled conjugate-type neu-
ral network was used for all test subjects. The neural network architecture used for the
real-time control of the exoskeleton is shown in Figure 4, including the number of input,
hidden, and output layers.

Figure 4. Artificial neural network structure.

The number 24 under the input block represents the 24 features used in this study,
and the number 10 under the output block represents the 10 classes; hence, an input
vector of length 24 is expected, as is an output vector of length 10. The figure is a basic
representation of the 10 hidden layer neural network that was used for testing, with the W
block representing an S by R weight matrix, with S referring to the neuron count in that
layer and R representing the input vector elements count and the b block representing the
bias vector of length S [20].

A trained scaled conjugate backpropagation neural network block with two layers
(not to be confused with hidden layers)—one containing netsum and tansig functions
and the other containing netsum and softmax functions—was generated. The netsum
function is a summing function, while the tansig function is a transfer function, as shown
in Equation (1), which calculates the hyperbolic tangent and fits the results between −1
and 1 [21].

c = tansig(n) = 2/(1 + exp(−2 ∗ n)−1) (1)

The Simulink model for communicating with the Myo armband was supplied by the
Myo SDK MATLAB MEX Wrapper [22], a free, open-access package of code and libraries
downloadable from GitHub. Initially, the code was built in Simulink only using Arduino
encoder reading blocks to read the encoders and Digital Output blocks with stair sequence
signal inputs for motor control (as a sort of PWM signal), in addition to the EMG and IMU
data acquisition blocks from the Myo SDK MATLAB MEX Wrapper to read the signals
from the Myo Armband. This made sense because there was already pre-written Simulink
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and MATLAB MyoMex code for reading from the armband freely available on GitHub,
and the neural pattern recognition toolbox allows for both MATLAB and Simulink. The
Simulink blocks making up the tansig and softmax functions are shown in Figure 5.

Figure 5. Scaled conjugate backpropagation neural network layers.

While MATLAB scripts could have been utilized for both the Myo armband and
neural network, it was quickly discovered that the communication rates between MATLAB
and any Arduino board were extremely slow, making MATLAB an impractical option
for real-time control. However, it was also found that Simulink alone was not the best
option, as when the EMG and IMU blocks were combined with the Arduino encoder blocks
and for-loop blocks of stair sequence signals to produce the PWM needed for the stepper
motors, this was ultimately too slow for real-time control. Finally, the solution to the
timing issue was found by dividing tasks between two Arduino boards and two different
software programs, essentially creating parallel computing. Simulink was still used to
communicate with the Myo armband, classify gestures with a trained neural network for
features of sEMG signals, and to output a total of seven digital values to seven different
pins on one Arduino Mega 2560 board. Figure 6b shows a decision making flow chart of
the proposed mechanism.

The seven active digital output pins of this first board were then wired to a second
Arduino Mega 2560 board. This second Arduino microcontroller was programmed accord-
ing to our previously published work on a force myography-based exoskeleton controller
with some minor changes [23]. The first and most important change, of course, was to read
in and use the seven digital inputs from the other board to determine which exoskeleton
joint should move and in what direction. FSR values would still also be recorded and
displayed, but only as data for post-processing, and perhaps later to add in another layer
of safety by using it as an additional logical check. The second revision was to combine all
the individual if statements used to allow multiple joints to move at the same time in FSR
control into one if statement. This is because it was decided early on that the sEMG control
of the exoskeleton would only allow the movement of one exoskeleton joint at the time,
with each hand gesture or arm rotation determining the joint and direction of rotation.
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Figure 6. Algorithm flow chart for (a) Simulink Myo armband hand gesture recognition and (b)
Arduino software controller for exoskeleton joints.

3. Results

3.1. Artificial Neural Network Training and Accuracy

Institutional Review Board (IRB) approval (# 4220) was acquired prior to testing
human subjects at Wichita State University. This feasibility study recruited 8 participants
between the ages of 18 to 60 years without any upper movement disabilities. Surface EMG
signals of participants were recorded and used to train custom neural networks for each test
subject. Based on our previous research on hand gesture-based powered wheelchair control
and virtual robotic arm control, it was decided to use the scaled conjugate backpropagation
type of neural network, due to its higher accuracy and shorter training time [24,25]. The
MATLAB neural network pattern recognition toolbox offers several different graphical
representations of the accuracy of neural networks, including confusion matrices and error
histograms. Confusion matrices show both the count and percentage of false positives, or
when the neural network algorithm falsely identifies the class, and true positives. The target
class on a confusion matrix plot is the correctly-labeled class, while the output class is the
actual labeling of the data by the neural network . A confusion matrix was plotted by the
application after the training, validation, and testing stages of the artificial neural network.
Test subject 3 had the highest training classification accuracy at 97.6%, while subject 8 had
the lowest at 87.3%. For validation accuracies, subject 3 again had the highest at 97.5%,
while subject 8 was the lowest at 88.6%. Testing accuracies ranged from 87.6% for subject 8
up to 96.7% for subject 3. For the overall confusion matrices, test subject 3 had the highest
accuracy at 97.4%, while subject 8 had the lowest accuracy at 87.7%. For classification
accuracy, scores around 85% and upward showed fairly good results for the actual use of
the neural network in real-time testing. Therefore, since classification accuracies for testing
accuracies of all these eight subjects were over 85%, their neural networks were deemed
to be accurate enough to use in the sEMG controller for the exoskeleton. Table 1 shows a
summary of the total classification accuracy of each subject’s neural network during each
phase of the neural network training.

250



Sensors 2021, 21, 5738

Table 1. Artificial neural network classification accuracy.

Subject # Training Accuracy % Validation Accuracy % Testing Accuracy % Overall Accuracy %

1 92.3 91.5 91.1 92.0
2 90.2 90.4 89.9 90.2
3 97.6 97.5 96.7 97.4
4 96.4 96.2 95.7 96.3
5 90.9 90.0 90.1 90.8
6 89.3 87.5 89.0 89.1
7 89.9 91.1 89.9 89.9
8 87.8 88.6 87.6 87.7

3.2. Human Subject Testing Results

Each participant was given two trials to individually control each joint of the exoskele-
ton using the proposed hand gestures followed by a water bottle pick and place task. The
exoskeleton setup is shown in Figure 7, where a participant was seated on a powered
wheelchair and wore the actively-actuated exoskeleton with a Myo armband on the right
forearm. Each participant’s individual joint movements (Section 3.2.1) and water bottle
pick and place (Section 3.2.2) tasks were recorded.

Figure 7. Human subject testing setup views (isometric and top).

3.2.1. Individual Joint Movements

To evaluate the overall efficacy of the control system in real time, all the participants
data sets were recorded during the experimental testing of the exoskeleton. Median
and mean values of different movement types for each participant were calculated and
represented in box plots. Each participant was given two trials to control individual joints
of the exoskeleton, and their second trial was recorded. The adaptive control mechanism
limits any joint movement beyond 70◦, which ranges from +35◦ to −35◦ at the rest condition.
This plays an important role in human safety because it can override human intent and
ensure the user’s safety. Figure 8 shows the raw electromyography signals from two
participants’ forearms while controlling the exoskeleton’s individual joints using hand
gestures. These raw sEMG signals show distinct patterns thats clearly explain the need
for mathematical features to be determined by an artificial neural network to accurately
identify hand gestures. A similar strategy can also be applied in future research to test
people with upper-arm muscle weakness.
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Figure 8. Raw sEMG signals recorded during the elbow flexion/extension movements of the ex-
oskeleton: (a) subject 01 and (b) subject 02.

Each participant’s trained artificial neural network was implemented into the con-
troller unit to identify the number of occurrences for each joint while controlling each
individual joint at a time, mimicking the natural movement of the arm. For example, if
a user only used specific gestures to control elbow flexion/extension movement, there
is a possibility that the user could perform other gestures associated with shoulder flex-
ion/extension or shoulder abduction/adduction movements. Figure 9 demonstrates the
number of occurrences of all three exoskeleton joints during the elbow flexion/extension
movement. The highest median and mean values recorded for elbow flexion and extension
were 11.5 and 14 and 8.5 and 10, respectively. These values are higher than the median
and mean values of shoulder flexion (3 and 4.75) and extension (2 and 2.75) and shoulder
horizontal abduction (5 and 9.125) and adduction (5.5 and 9.375) readings. This type of
adaptability not only improves user acceptance but also allows more than one degree of
freedom to mimic the natural movement of the arm. Average elbow flexion was recorded
at 30%, while average elbow extension was 20%, yielding a combined total of 50% for the
elbow flexion or extension movements.

Figure 9. Average movement occurrence of all the joints during the specific elbow flexion/extension
movement using hand gestures.
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The shoulder flexion/extension movement of the exoskeleton using hand gestures
seems to exhibit the best performance based on the recordings from all the participants.
Figure 10 shows high median and mean values of 14.5 and 14.5 for shoulder flexion and
12 and 11.75 for shoulder extension respectively compared with the very low median and
mean values recorded from elbow flexion (5.75 and 8), elbow extension ( 0 and 0.625),
shoulder abduction (3.5 and 4.25), and shoulder adduction (2.5 and 2.75). These results
show that the hand gestures (wave in and wave out) associated with this task made it very
easy to control the specific joint compared with other elbow flexion/extension or shoulder
horizontal abduction/adduction movements.

Figure 10. Average occurrence of all the joints during the specific shoulder flexion/extension
movement using hand gestures.

Shoulder horizontal abduction/adduction movement of the exoskeleton was often
mistaken by the neural network during the individual testing of the joint. Figure 11 shows
higher occurrences in terms of median and mean values (21.5 and 19.125 for shoulder hori-
zontal abduction and 16.5 and 19.75 shoulder horizontal adduction) during the shoulder
horizontal abduction/adduction movement using the associated gestures (pinky finger
flexion/extension). Despite having a higher occurrence rate using pinky finger movements
for shoulder horizontal abduction and adduction movements, quick changes in hand
gesture classification were observed where elbow flexion/extension movement falsely
identified by the trained artificial neural network due to the use of the pinky finger in
radial and ulnar deviations.

Figure 11. Average occurrence of all the joints during the specific shoulder horizontal abduc-
tion/adduction movement using hand gestures.
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3.2.2. Water Bottle Pick and Place Task

All eight participants who completed the individual joint tests with the EMG controller
also successfully completed the water bottle pick and place task. The shortest time for
completing the water bottle pick and place task was 15.3 s by subject 5, while the longest
time was 62.6 s by subject 3. A summary of the times for the hand gesture-based adaptive
controller used in the water bottle pick and place task is shown in Table 2. The average
completion time of the water bottle pick and place task for EMG control was 36.35 s.

Table 2. Water bottle pick and place time using the proposed hand gestured-based artificial neural
network-trained adaptive wheelchair-mounted upper limb robotic exoskeleton.

Subject # Completion Time (sec)

1 27.7
2 21.2
3 62.6
4 51.2
5 15.3
6 39.4
7 24.2
8 49.2

Figure 12 shows the number of occurrences in terms of median and mean values for
each joint of the exoskeleton during a water bottle pick and place task. The median and
mean values of shoulder horizontal abduction and adduction were 14.5 and 22.375 and
20.5 and 20, respectively. These values, compared with scores of 10 and 11.5 for elbow
flexion, 3.5 and 7.125 for elbow extension, 11 and 12 for shoulder flexion, and 3.5 and 3.625
for shoulder extension, demonstrates the higher use of shoulder horizontal abduction and
adduction during a water bottle pick and place task compared with the almost equally
utilized elbow and shoulder flexion and extension movements.

Figure 12. Number of occurrences during water bottle pick and place task using hand gestures.

The most used movements for the water bottle pick and place task with the proposed
controller were, on average, shoulder adduction at 30% and abduction at 28%, while
shoulder flexion was used 20% of the time on average and elbow flexion was used 15%
of the time, followed by elbow extension at 7% and shoulder extension at only 5% of the
time. The high use of shoulder adduction/adduction could be misleading if taken purely
as intention. Visual observations of the tests showed that desired shoulder abduction and
adduction movements were often confused with each other, which was also evident in the
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individual shoulder abduction/adduction joint test. A summary of these average joint
movement occurrences for all eight participants, with the intended movements highlighted,
is given in Table 3. The highlighted results prove that each participant’s specific hand
gesture associated with specific joint control of the exoskeleton was recognized by the
trained artificial neural network followed by generating control signals for that specific
joint. For example, first three columns of the Table 3 identify the maximum and minimum
usage of the exoskeleton joint which clearly shows that the adaptive controller was able
to maneuver a specific joint during the specific task. The fourth column of the Table 3
shows majority of the participants used shoulder horizontal abduction and adduction
to perform water bottle pick and place compared with shoulder and elbow flexion and
extension movements.

Table 3. Average joint movement occurrence during individual joint control and water bottle pick and place task using the
wheelchair-mounted upper limb robotic exoskeleton.

Motion/Task Elbow Flex/Ext % Shoulder Flex/Ext %
Shoulder Horizontal

Abd/Add %
Water Bottle Pick & Place %

Elbow Flex 30 14 16 15
Elbow Ext 20 2 3 7

Shoulder Flex 10 37 5 20
Shoulder Ext 5 31 3 5

Shoulder Horizontal Abd 17 10 35 28
Shoulder Horizontal Add 16 6 37 30

Table 4 shows subjective feedback on the ease of the proposed hand gestured-based
controller for individual joint control. The average results are on a rating of 1–5, with 5
showing that the controller was easy to control and 1 representing that it was difficult
for questions listed in the Table 4. The scores from all eight participants were averaged
together. Shoulder inward/flexion movement received the highest preference, whereas the
rotating inward shoulder joint movement was noted as being least preferred.

Table 4. Subjective feedback on exoskeleton joint control.

Subjective Feedback Questions Average Score (0–5)

Bending exoskeleton elbow joint inward 3.75
Straightening out exoskeleton elbow joint 3.25
Bending exoskeleton shoulder joint inward 4.125
Straightening out exoskeleton shoulder joint 3.375
Rotating inward (towards body) exoskeleton shoulder joint 2.875
Rotating out (away from body) exoskeleton shoulder joint 3.125

4. Discussion

Experimental testing on human subjects without upper arm movement disability
showed the need for improvements in the upper arm flexion/extension assembly angle for
better fitting, comfort, and classification and improvements in registering hand gestures
for classification.

4.1. Fitting and Comfort

Despite having a compact design of the exoskeleton, participants with a smaller upper
arm radius felt a greater gap between the posterior side of the upper arm and the upper
arm assembly. Due to this gap, participants with a small arm radius sometimes felt a
minor slippage of the upper arm, specifically during shoulder flexion movement. This gap
was filled with a plastic foam to restrict the upper arm from slipping during exoskeleton
control. The shoulder’s complex anatomy makes it very difficult to design an exoskeleton
that mimics the rotation axis of the exoskeleton joint that can align with the human joint
and offer all degrees of freedom when the exoskeleton robot is attached to the exterior
of the human body [26,27]. Future designs of the prototype can include an angular joint
assembly of the upper arm exoskeleton that can reduce the gap between the exoskeleton
and upper arm assembly. A future design will include a locking hinge mechanism for the
upper arm exoshell to adjust to the user’s shoulder angle along the anatomical frontal
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plane, as well as the isolation of the links between shells and motor cases from the surfaces
interfacing directly with the user. The interfacing surfaces can probably still continue to be
fusion deposition modeling-printed PLA or NylonX materials, as well as the motor cases;
however, the separated links will need to be manufactured out of a stronger material, such
as aluminum. The exoshells in the future design will be made more rounded, maybe using
the 3D scanning of an arm to gather further information about the geometry of the arm,
although the current open square design allows for a larger range of arm sizes. One of the
participants commented that flexion of the elbow with the Myo armband on the forearm
could cause pinching because of its size and shape.This issue restricted wrist movements
and was observed during the experimental system setup with one participant. The use of
flexible sEMG sensors has the potential to reduce the pinching effect.

4.2. Hand Gestures and Classification

The use of a feed forward artificial neural network with 10 hidden layers achieved
the highest overall accuracy of 97.4% and the lowest accuracy of 87.7%. Despite its very
high accuracy, the overall system requires a computer with Matlab® software installed
in order to implement the trained artificial neural network. The use of a Simulink-based
model slows down the real-time control operation due to its limited data transfer rate. This
issue also relates to the lower sampling rate of the Myo armband (200 Hz). The future
work can utilize an on-board processor with a built-in trained network and an EMG system
with a faster sampling rate to minimize delays in feature extraction and translation. Two
out of eight participants reported issues regarding pinky finger gestures for the shoulder
joint actuation of the exoskeleton while holding an object in their hand. This issue limits
participants providing a higher gripping force, which will be important for lifting heavy
objects in the near future. With regards to control, the data, survey results, and general
observations show that the shoulder abduction and adduction control with the proposed
hand gestures need to be improved, due to difficulties in signaling user intent to begin with
and misclassification in recognition patterns from sEMG signals from the human forearm.

5. Conclusions

This paper successfully demonstrates an integration of artificial neural network-based
hand gesture recognition with an adaptive upper limb exoskeleton device to extract 10 ges-
tures in order to actuate a 3 DOF wheelchair-mounted upper limb robotic exoskeleton for
activities of daily living. Overall, the trained scaled conjugate gradient neural network
achieved an average of more than 93% accuracy using root mean square, medial filter,
and mean features. The average movement occurrence shows a higher acceptance of the
proposed technology for shoulder flexion/extension followed by elbow flexion/extension
and shoulder horizontal abduction/adduction movements. The designed exoskeleton was
printed using PLA and NylonX, weighs less than 6.61 lb, and can be easily mounted on
the back of a powered wheelchair. All the participants were easily able to adapt to the
proposed controller mechanism without any prior experience and performed individual
joint movements followed by a water bottle pick and place task. The fastest response
recorded while performing the water bottle pick and place task using the proposed technol-
ogy was 15.3 s, which can be compared with the longest response (62.6 s), demonstrating
the variability in user acceptance rates. Subjective feedback from each participant shows
a higher acceptance rate (an average score of 4.125 out of 5) for bending the exoskeleton
shoulder joint, whereas the lowest average score of 2.875 out of 5.0 was found for rotating
the exoskeleton shoulder joint towards the body (shoulder horizontal adduction). Future
work will include testing a force myography (FMG)-based controller mechanism and a
comparison between EMG and FMG controller schemes based on real-time control and
subjective feedback from participants, which will be beneficial for future work on people
with muscular dystrophy.
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Abstract: Driver distraction is a well-known cause for traffic collisions worldwide. Studies have in-
dicated that shared steering control, which actively provides haptic guidance torque on the steering
wheel, effectively improves the performance of distracted drivers. Recently, adaptive shared steering
control based on the forearm muscle activity of the driver has been developed, although its effect on
distracted driver behavior remains unclear. To this end, a high-fidelity driving simulator experiment was
conducted involving 18 participants performing double lane change tasks. The experimental conditions
comprised two driver states: attentive and distracted. Under each condition, evaluations were per-
formed on three types of haptic guidance: none (manual), fixed authority, and adaptive authority based
on feedback from the forearm surface electromyography of the driver. Evaluation results indicated
that, for both attentive and distracted drivers, haptic guidance with adaptive authority yielded lower
driver workload and reduced lane departure risk than manual driving and fixed authority. Moreover,
there was a tendency for distracted drivers to reduce grip strength on the steering wheel to follow the
haptic guidance with fixed authority, resulting in a relatively shorter double lane change duration.

Keywords: driver–automation shared control; haptic guidance steering; adaptive automation design;
surface electromyography; driver distraction

1. Introduction

Steering a car necessitates continuous real-time visual information from the road ahead.
Distractions that inhibit safe and timely driver responses to this information are detrimental to
driving safety; thus, technology designed to monitor and assist distracted drivers is a crucial
advancement [1,2]. Although fully autonomous driving is not likely to be realized in the
near future, partial automation is becoming more readily available in the form of steering
assistance systems and driver attention monitoring [3]. Shared steering control systems assist
drivers with curve negotiation and lane changes by producing a proper haptic guidance
torque on the steering wheel [4,5], particularly when a lack of attention to visual information
results from driver distraction or fatigue [6,7]. Decreased performance due to the lack of
visual information can be compensated for by haptic guidance [8,9].

Some attempts to design an adaptive shared steering control system have been con-
ducted to improve driver–automation cooperation. One way to adjust the driver–automation
control authority is to address vehicle–environment factors, including vehicle position, steer-
ing wheel angle, and yaw rate [10–13]. A haptic shared steering control has been designed
with an adaptive level of authority based on time-to-line crossing, and driver-in-the-loop
experiments demonstrate the effectiveness of the proposed system on decreasing conflict
torques [10]. Shared steering control with adaptive authority based on driver input torque
has been designed to achieve smooth authority transfer from automated driving to manual
driving [11]. Based on the data from lateral offset and lateral velocity to the road center
line, a human driver’s driving intention and the desired maneuver have been recognized
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and used for designing a shared steering control system to avoid obstacles [12]. To further
improve shared steering control performance, driver-in-the-loop model has been included
in the optimal controller design [14–20]. A time-varying assistance factor has been de-
veloped to modulate the haptic steering torque, which is designed from an integrated
driver-in-the-loop vehicle model, and the effectiveness of proposed haptic shared control
method on driver–automation conflict management has been presented by driving tests
conducted with high-fidelity simulations [14]. A Takagi–Sugeno fuzzy control approach
has been proposed to deal with the time-varying driver activity parameter and vehicle
speed under multiple system constraints to improve driver–automation shared steering
performance [17]. A predictive control framework that uses a model of driver-in-the-loop
steering dynamics to optimize the torque intervention with respect to the neuromuscular
response of the driver has been presented. Results show the effectiveness of the proposed
system in avoiding hazardous situations under different driver behaviors with driver-in-
the-loop experiments [15]. Regarding the driver-in-the-loop control, a driver model that
describes the driver steering motion as a sequence of identifiable motion primitives has
been proposed for the calculation of the optimal torque [16]. In addition, a time-varying
driver-in-the-loop path tracking model has been developed for shared steering control,
where the preview behavior of the modelled driver is designed to mimic real human
drivers [19]. By assuming that drivers can learn and incorporate the controller strategy into
their internal model for predictive path following, a driver model has been proposed to
include interactive steering behavior based on model predictive control for indirect shared
control has been proposed [20].

Compared to adjusting the authority based on driver physiological status, the advan-
tage of addressing vehicle–environment factors are apparent, as drivers do not need to
wear bio-signal measuring equipment and driving performance data can be more easily
recorded and processed in real time. However, the disadvantage is that it is difficult to
establish an accurate mapping between driving performance data and individual driver
behavior when compared with directly monitoring physiological status [21]. Moreover, it is
sometimes not possible to establish an accurate driver-in-the-loop model for the controller
design. An adaptive system has been designed to increase the automation authority, as
driver control authority decreases owing to increased workload or decreased workload
capacity [22], and this approach is preferable to an assistance system with fixed and rigid
authority [23–25]. Driver workload can be estimated through physiological signal mea-
surements such as eye and head movements [25] and surface electromyography (sEMG)
signals [7]. For steering tasks, drivers can allocate the control authority with regard to the
haptic guidance system by adjusting the arm admittance [4]. Previous research has sug-
gested a relationship between arm admittance and grip strength on the steering wheel [26]
as measured by sEMG signals from forearm muscles [27]. Inspired by research on the grip-
force-based scheduling of guidance forces [28], our previous study adjusted the authority
of shared steering control according to driver grip strength on the steering wheel to achieve
better driver–automation cooperation performance [29]. We found a reduction in both lane
departure risk and driver workload to be associated with sEMG-based adaptive authority
compared to fixed authority [29].

However, the effect of haptic guidance with adaptive authority on distracted driver
behavior remains unknown. As driver distraction is a well-known cause of traffic collisions
worldwide, the effectiveness of the proposed shared steering control remains to be tested.
Although adaptive automation relieves the driver of the task of engaging and disengaging
the automation, it imposes an additional task of monitoring the time-varying automation
level of the adaptive system with the possibility of increased workload [22]. Moreover,
several experimental studies have indicated that the steering effort of drivers may be even
higher for haptic guidance than for manual driving [4,5]. This situation may be more
complicated when drivers become distracted. Furthermore, humans have a good ability for
adaptation to take advantage of the shared steering control system. When the drivers are
under a distracted state due to the secondary task, they may change their adaptive behavior.
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Therefore, this study aimed to investigate the effect of sEMG-based adaptive shared
control on distracted driver behavior by comparing with an attentive driver state. Fixed
shared steering control and manual driving are also addressed for comparisons. It is
hypothesized that the adaptive haptic guidance would provide more driving safety and
comfort to distracted drivers, whereas fixed haptic guidance could more effectively reduce
the duration of a lane change. This study is expected to especially benefit distracted drivers
by contributing to safer and smoother steering performance in lane changing as well as
lane following tasks under haptic shared control.

2. Materials and Methods

2.1. Participants

Eighteen healthy subjects (two women and 16 men) were recruited to participate in
the experiment. Their ages ranged from 21 to 32 years (mean = 23.5 years, SD = 2.8 years).
All subjects had a valid Japanese driver’s license with driving experience (mean = 2.7 years,
SD = 2.6 years). The experiment was approved by the Office for Life Science Research
Ethics and Safety, Graduate School of Interdisciplinary Information Studies, University of
Tokyo (No. 12 in 2017). Each subject provided written consent to the experimental protocol
and received compensation for their participation.

2.2. Apparatus

A Myo armband (Thalmic Labs, Inc., Waterloo, Canada) acquired the sEMG from
the dominant forearm of the driver (Figure 1). The sEMG was conditioned for further
processing by calculating the root mean square (RMS) value of the activation signal from the
stainless-steel armband sensors [30]. Driver grip strength was normalized with respect to
the maximum sEMG for each participant (sEMGREF). The steering wheel torque provided
by the adaptive haptic guidance was real-time computed based on the normalized sEMG
value.

 

Figure 1. Active steering system and armband worn by driver to enable sEMG-based operation of a
high-fidelity driving simulator.

The experiment was conducted in a moving-based driving simulator with brake and
accelerator pedals, an actuated steering wheel, and an instrument dashboard. The driving
simulator included a 140◦ field-of-view and the moving platform had six degrees of freedom,
which was considered to be high-fidelity. In order to emulate the feeling of on-road driving,
high-frequency vibrations were also produced by the moving platform, engine sounds were
provided by two speakers, and a self-aligning torque was generated by the actuated steering
wheel. The electronic steering system was connected to the host computer of the driving
simulator through a controller area network. The electronic steering system comprised a
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steering wheel, servo motor, and electronic control unit (ECU). The real-time haptic guidance
torque calculated by the host computer served as the input to an ECU. A servomotor was
subsequently actuated by the ECU to apply a haptic guidance torque to the steering wheel.
The haptic guidance torque was calculated based on a model with two look-ahead points,
whereas the magnitude and direction of the haptic guidance torque were determined by
comparing the target vehicle trajectory based on the fifth-degree Bezier curve with the
actual trajectory of the simulated vehicle [29].

2.3. Experimental Conditions and Scenario

The participants drove under six conditions as shown in Table 1. Two driver states
were considered: attentive and distracted. For each state, there were three types of haptic
guidance: manual steering or HG-Non, HG-Fixed (haptic guidance with fixed authority),
and HG-Adaptive (haptic guidance with adaptive authority). Using a 6 × 6 Latin square,
the sequence in which the experimental conditions were presented to the participants
was partially counterbalanced. The three Latin squares partially counterbalanced the
within-subject order of the conditions.

Table 1. Experimental conditions.

Condition Driver State Haptic Guidance

1 Attentive Manual (HG-Non)
2 Attentive HG-Fixed
3 Attentive HG-Adaptive
4 Distracted Manual (HG-Non)
5 Distracted HG-Fixed
6 Distracted HG-Adaptive

To induce driver distraction, a challenging secondary task, called the paced auditory
serial addition task, was applied during the entire driving course. The subjects were given
a number every 3 s and were asked to add the number they just heard with the number
they heard before. The attentive experimental condition was a control session in which the
driver was under normal driving conditions.

For manual driving, the overall gain of haptic guidance was set to 0, whereas the
overall gain of the haptic guidance torque was held at 0.25 for HG-Fixed. The normalized
torque was based on 25% of the gain for an automated double lane change (DLC). To man-
age the driver–automation conflict, the sEMG-based adaptive shared steering control was
designed to reduce the authority of haptic guidance when the driver increased the grip
strength to gain more manual control authority and vice versa. Specifically, the gain of the
haptic guidance torque was computed in real time, and it decreased linearly from 1 (gain
for automated DLC) to 0, when the driver’s grip strength increased from 0 to sEMGREF.
Grip strength above sEMGREF during the DLC task prompted adjustment of the haptic
guidance gain to 0.

The DLC task was composed of two stages of lane changing as illustrated with pylons
in Figure 2. Before the DLC section, there was a straight lane 300 m long and, thus, the
driver was asked to perform a lane keeping task. The speed was controlled by the driving
simulator, and the driver did not need to operate the gas pedal. The initial speed was set at
0 km/h, and the acceleration rate was 1.8 m/s2. After reaching 50 km/h at approximately
50 m from the starting point, the driving speed was kept constant. The aim was to motivate
the driver to adapt their steering behavior, especially for driving with the haptic guidance.
In order to determine the speed value, we conducted a pilot test to compare speeds of 40,
50, and 60 km/h given the same DLC task shown in Figure 2. According to the lane change
performance evaluation, the speed of 40 km/h was found to be less challenging, whereas
60 km/h was overly challenging. Therefore, to improve the replicability of the experimental
results with respect to steering behavior, a PID controller automatically maintained the
simulated vehicle speed at 50 km/h.
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Figure 2. Experimental driving scenario performed in the driving simulator.

2.4. Experimental Procedure

Considering that different drivers have different usage habits with their left and right
hands, each participant was asked about his/her dominant hand so that the armband was
mounted on the dominant forearm. The sEMG normalization was realized by having each
participant grip the driving simulator steering wheel in a “ten-and-two” position for 2 s
with maximum grip strength. This procedure was repeated thrice with 10 s of rest between
each repetition. The mean value across all repetitions for a given participant was used as
the reference sEMG value, sEMGREF, for normalization.

Each subject performed a practice task prior to the actual experiment so that they were
accustomed to operating the simulator. Throughout the practice and experimental trials,
drivers were trained to maintain both hands at the ten-and-two steering wheel position.
The drivers repeated the DLC task five times for each of the six driving conditions and,
thus, each driver performed a total of 30 trials for the actual experiment. The subjective task
load was measured by having each participant complete a questionnaire after each trial.

2.5. Measured Variables

The DLC performance was evaluated based on driver steering behavior, lane departure
risk, and subjective evaluation. The measured driver input torque, DLC duration, steering
wheel angle (SWA), lateral acceleration, and normalized sEMG constituted the evaluation
of driver steering behavior. The normalized sEMG RMS (sEMG/sEMGREF) was calculated
from the measured forearm signals. An increased normalized value indicated greater grip
strength. The driver steering effort was determined by the calculated RMS value of the
driver input torque. Calculating the RMS value of the SWA and peak SWA determined the
magnitude of the steering control activity. The DLC process consisted of two parts: the first
lane change part and the second lane change part. The peak value of SWA for each lane change
part was calculated. The duration of DLC was calculated to express the timing of lane change
maneuvers in a quantitative way. The starting point of the DLC was determined when the
vehicle yaw angle was higher than 1.0 degree through a trial-and-error process. The duration
of DLC was calculated from the starting point to the ending point. The driver normally made
a small adjustment at the ending point to return to the centerline of the lane. Hence, the yaw
rate was considered with yaw angle to determine the ending point. Furthermore, the ending
point of the DLC was determined by trial-and-error process to correspond to a yaw angle and
yaw rate both below 0.5 degrees.

At the conclusion of each lane change stage with the simulated vehicle driving parallel
to the entered lane, the lateral error relative to the centerline of the lane was measured.
The lane departure risk during DLC was evaluated using the lateral error.

Subjective preferences for the different types of tested haptic guidance paired with
each driver state were recorded in conjunction with the NASA task load index (NASA-TLX)
to conduct a subjective evaluation. The participants rated their workload according to
the index after each driving condition. At the conclusion of all experimental trials, each
participant selected the experimental condition with the highest degree of satisfaction.
The preference score for a given condition equaled the number of times the condition was
selected across all participants. Dividing the preference score by two yielded a relative
preference score.
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2.6. Analysis

In accordance with two-way repeated-measures analysis of variance (ANOVA), the extent
of interaction between the state of the driver and haptic guidance that affected driver behavior
was determined. Setting the level of significance to p = 0.05, Mauchly’s test was executed
before the repeated-measures ANOVA. Furthermore, Fisher’s least significant difference for
pairwise comparisons identified the main effects with a selected significance criterion of
p = 0.05. Differences were considered statistically significant when the p-value ≤ 0.05, and a
p-value ≤ 0.1 was interpreted as a tendency toward statistical significance.

3. Results and Discussion

The results in this section are described with regard to driver steering behavior and
lane departure risk in addition to subjective evaluation. The p-values for two-way repeated-
measures ANOVA related to driver behavior as well as the corresponding mean and
standard deviations for experimental variables are listed in Table 2. This includes the main
effect for the driver state, main effect for HG, and interaction effect between the drive state
and HG.

The main effect was significant for HG in terms of the RMS of driver input torque
(p < 0.001), lateral error at the end of the first lane change (p < 0.001), and relative score of
pairwise preference (p < 0.01), although there was no significance for the main effect of
driver state and interaction effect. As for the peak value of SWA in the first lane change,
the main effect was significant for HG (p < 0.05) and driver state (p < 0.05). As for the peak
value of SWA in the second lane change, there was a tendency toward significance for the
HG (p < 0.1) and driver state (p < 0.1). The results of peak value for lateral acceleration
had a similar tendency as the peak value of SWA. As for DLC duration, the main effect
was significant for HG (p < 0.01), and there was a tendency toward significance for the
interaction effect (p < 0.1). The main effect was significant for the driver state in terms of
lateral error at the end of second lane change (p < 0.05) and overall workload according to
the NASA-TLX (p < 0.001), whereas no significant difference was observed for the main
effect of HG and the interaction effect.

3.1. Driver Steering Behavior

The results of driver input torque are shown in Table 2. From pairwise compar-
isons, the driver input torque for manual was significantly greater than that for HG-Fixed
(p < 0.001), greater for manual than for HG-Adaptive (p < 0.001), and greater for HG-Fixed
than for HG-Adaptive (p < 0.001). Therefore, our hypothesis was validated because haptic
guidance significantly reduced driver steering effort, and HG-Adaptive was more effective.

The results of peak value for SWA in the first lane change are shown in Table 2 and
Figure 3. The steering wheel angle and lateral acceleration data from Subject no. 9 were
eliminated due to the fact of its extreme deviation from the data of other subjects when
plotting the figure and conducting the statistical analysis. For the distracted state, the
peak value of SWA was significantly lower for manual steering than for HG-Adaptive
(p < 0.01) and lower for HG-Fixed than for HG-Adaptive (p < 0.05). Moreover, the peak
value of SWA for manual steering was significantly higher with the attentive state than
with the distracted state (p < 0.05). Hence, the distraction reduced the steering activity, and
the haptic guidance system increased the steering activity to a level comparable to that
of the attentive state. A similar tendency was found for the RMS of the SWA, although
the difference was not statistically significant for HG. This may be due to the effect of
HG and distracted state on SWA being less pronounced during the second lane change
compared with first lane change as shown in Table 2. Thus, a more demanding secondary
task or lane change task will be considered in future studies. Moreover, we found that
there was a high correlation and similar tendency between the results of steering wheel
angle and lateral acceleration. In this study, lateral error was mainly used to evaluate the
lane departure risk. If there was no significant difference for lateral error, a lower lateral
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acceleration would indicate a smoother lane change with less steering control activity, thus
implying a relatively lower risk of lane departure.

The results for the DLC duration are shown in Table 2 and Figure 4. From pairwise
comparisons, for attentive, the duration of the DLC was significantly shorter with HG-
Adaptive than with HG-Fixed with p < 0.05, whereas the DLC tended to be significantly
shorter for HG-Adaptive than for manual steering, where p < 0.1. For distracted, the DLC
duration was significantly shorter with HG-Fixed than with manual (p < 0.001) and shorter
with HG-Adaptive than with manual (p < 0.01). Moreover, for HG-Fixed, there was a
tendency for the DLC duration to be shorter with distracted than with attentive (p < 0.1).
Therefore, HG-Fixed could more effectively reduce lane change duration for distracted
drivers as predicted by our hypothesis.

The RMS results of sEMG are shown in Table 2 and Figure 5. Based on pairwise
comparisons, for distracted, the RMS of sEMG was significantly lower with HG-Fixed
than with HG-Adaptive (p < 0.05) and lower with HG-Fixed than with manual (p < 0.1),
indicating that distracted drivers tended to give more control authority to the HG-Fixed by
reducing grip strength. Consequently, the DLC duration was relatively shorter (Figure 4).
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Figure 3. Peak value of SWA at the first lane change. Mean +/− SEM (standard error of mean)
represented by error bars. + p < 0.1, * p < 0.05, and ** p < 0.01.

 
Figure 4. Double lane change duration. Mean +/− SEM represented by error bars. + p < 0.1, * p < 0.05,
and *** p < 0.001.
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Figure 5. RMS of normalized sEMG (%). Mean +/− SEM represented by error bars. + p < 0.1 and * p < 0.05.

3.2. Lane Departure Risk

Figure 6 and Table 2 show the results of the lateral error at the end of the first lane
change. Pairwise comparisons indicated that for the attentive condition, the lateral error
was significantly higher for manual steering than for HG-Fixed with p < 0.05 and tended
to be higher for HG-Adaptive with p < 0.1. The lateral error for distracted was signifi-
cantly lower in the case of HG-Fixed than in manual, where p < 0.05; HG-Adaptive was
significantly lower than HG-Fixed (p < 0.01). Furthermore, HG-Adaptive tended to be
significantly lower than HG-Fixed with p < 0.1. Thus, haptic guidance can reduce lane
departure risk when the driver is attentive as confirmed by our previous study [29]. This
outcome could be attributed to the human driver being limited by the response of the
neuromuscular system, thereby making it difficult to complete the DLC accurately [31].
Furthermore, from this result, haptic guidance is also capable of reducing the lateral error
for distracted drivers with HG-Adaptive being more effective.

 
Figure 6. Lateral error with respected to lane centerline at end of first lane change. Mean +/− SEM
represented by error bars. + p < 0.1, * p < 0.05, and ** p < 0.01.
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The results for lateral error in the case of the second lane change are listed in Table 2.
The lateral error was significantly increased by driver distraction, but the effect of haptic
guidance was insignificant. According to the peak SWA in the second lane change, no sig-
nificance was observed with regard to the effect of HG. In accordance with our previous
study [29], the lateral error at the end of first lane change was almost twice as large than
at the end of the second lane change. The proposed haptic guidance system was more
effective for the first lane change than the second one. This could be because there was
more frequent overshoot during the first lane change, and haptic guidance was effective in
diminishing the overshoot. Moreover, HG-Adaptive was more effective than HG-Fixed
when the driver was distracted.

3.3. Subjective Evaluation

The results of the driver workload assessed by the NASA-TLX are shown in Table 2
and Figure 7. Taking into account the pairwise comparisons, the overall driver workload for
distracted was significantly higher than for attentive (p < 0.001). Moreover, for distracted,
HG-Fixed yielded a lower overall workload (p < 0.1), lower physical demand (p < 0.1), and
lower effort (p < 0.1), and HG-Adaptive yielded a lower temporal demand (p < 0.1). This
indicates that the driver workload increased during the secondary task, and the haptic
guidance system effectively reduced the driver workload.

 

Figure 7. Mean scores on NASA-TLX. Data error bars represent the mean + SEM. + p < 0.1, * p < 0.05,
and *** p < 0.001.

Table 2 shows the relative scores of pairwise driver preferences. For both attentive
and distracted, drivers preferred HG-Fixed over manual, HG-Adaptive over manual, and
HG-Adaptive over HG-Fixed. Moreover, there was a tendency for more drivers to prefer
haptic guidance over the manual when they were distracted, which was expected, as haptic
guidance reduces lane departure risk as well as driver workload.

3.4. Limitations and Future Works

One limitation of this study is that only a constant gain of 0.25 was considered for the
HG-Fixed and linear law (i.e., linearly decreasing from 1 to 0 as the driver grip strength
increased from 0 to sEMGREF) for the HG-Adaptive. In the current study, the linear law
was employed because it was assumed to be more intuitive to the drivers and could act as a
benchmark and a reference for subsequent studies. Considering that drivers might not have
the same behaviors when the fixed gain or adaptive strategies are changed, future studies
could address other fixed gains and other laws (e.g., sigmoid law) for the haptic guidance
design. Another limitation of the current work is that the driver distraction state was not
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measured. Considering that driver distraction could be estimated by monitoring eye and
head movements in real time, an adaptive shared steering control based on multimodal
sensory signal processing will be designed in our future work. Moreover, the driving speed
was kept constant in the current study, resulting in less natural driving behavior. In the
future study, more natural driving conditions with speed variability and a haptic shared
controller design that takes into account speed variation will therefore be addressed. The
current study only focused on lane change behavior on a relatively short driving course.
A longer driving scenario with curved roads will be designed as future work, and the
sEMG-based adaptive shared steering control system will be investigated for both lane
change and lane following tasks. Given that the experimental results in the current study
were based on driving simulations, future studies could consider evaluation of sense of
presence in relation to virtual environments.

4. Conclusions

This driving simulator study focused on the effect of haptic guidance with adaptive
authority on distracted driver behavior. DLC tasks were completed according to experi-
mental conditions that were designed by combining two driver states, namely, attentive
and distracted, along with three haptic guidance categories: HG-Fixed, HG-Adaptive, and
Manual. HG-Adaptive relied on feedback from the real-time forearm sEMG of the driver.

For both attentive and distracted drivers, HG-Adaptive yielded a greater reduction in
the driver workload and lane departure risk than that of HG-Fixed and manual steering.
Moreover, drivers tended to reduce the steering wheel grip strength to provide admittance
to the haptic guidance with fixed authority, resulting in the completion of the DLC in a
relatively short period. As the current study indicated a small lane departure risk induced
by driver distraction, we plan to address the possibility of greater risk by conducting a
future study with a more demanding secondary task or lane change task. Although the
current experiment was conducted in a high-fidelity driving simulator, future work will
address how driver behavior would be in a more natural driving setting via real-vehicle
experiments. Furthermore, the sample size of the present study was relatively small and
biased toward male drivers and, thus, data from more female drivers should be collected
in future work to further assess the effectiveness of the proposed system.
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Abstract: A statistical method for exploratory data analysis based on 2D and 3D area under curve
(AUC) diagrams was developed. The method was designed to analyze electroencephalogram (EEG),
electromyogram (EMG), and tremorogram data collected from patients with Parkinson’s disease. The
idea of the method of wave train electrical activity analysis is that we consider the biomedical signal
as a combination of the wave trains. The wave train is the increase in the power spectral density of
the signal localized in time, frequency, and space. We detect the wave trains as the local maxima
in the wavelet spectrograms. We do not consider wave trains as a special kind of signal. The wave
train analysis method is different from standard signal analysis methods such as Fourier analysis
and wavelet analysis in the following way. Existing methods for analyzing EEG, EMG, and tremor
signals, such as wavelet analysis, focus on local time–frequency changes in the signal and therefore
do not reveal the generalized properties of the signal. Other methods such as standard Fourier
analysis ignore the local time–frequency changes in the characteristics of the signal and, consequently,
lose a large amount of information that existed in the signal. The method of wave train electrical
activity analysis resolves the contradiction between these two approaches because it addresses the
generalized characteristics of the biomedical signal based on local time–frequency changes in the
signal. We investigate the following wave train parameters: wave train central frequency, wave train
maximal power spectral density, wave train duration in periods, and wave train bandwidth. We
have developed special graphical diagrams, named AUC diagrams, to determine what wave trains
are characteristic of neurodegenerative diseases. In this paper, we consider the following types of
AUC diagrams: 2D and 3D diagrams. The technique of working with AUC diagrams is illustrated
by examples of analysis of EMG in patients with Parkinson’s disease and healthy volunteers. It is
demonstrated that new regularities useful for the high-accuracy diagnosis of Parkinson’s disease can
be revealed using the method of analyzing the wave train electrical activity and AUC diagrams.

Keywords: electromyogram; EMG; exploratory data analysis; wave train electrical activity analysis
method; wave trains; wavelets; signal processing; AUC diagrams; ROC analysis; Parkinson’s disease

1. Introduction

The paper provides a detailed description of the method used for analyzing the
wave train electrical activity in biomedical signals. The method was developed to investi-
gate electroencephalograms (EEG), electromyograms (EMG), and accelerometer signals
(tremorograms) in patients with Parkinson’s disease (PD) and identify regularities that are
promising for the early diagnosis of this disease. Recently, many mathematical methods
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for analyzing EEG, EMG, and tremor signals have been developed. Historically, EMG
analysis methods evolved from spectral analysis [1–7] and time-domain signal analysis
methods such as morphological analysis [8], amplitude analysis [9], and autoregressive
analysis [10,11] towards time–frequency domain analysis [12–16]. The state-of-the-art
of EMG analysis methods is characterized by the active use of nonlinear data analysis
methods [17], such as fractal analysis [18], phase analysis [19], recurrent quantification
analysis [4,20,21], and the deep learning of neural networks [12,22–25]. According to the
authors, the existing methods for analyzing EEG, EMG, and tremor signals, such as wavelet
analysis [26–28], focus on local time–frequency changes in the signal and, therefore, do
not reveal the generalized properties of the signal. By contrast, other methods, such as
standard Fourier analysis, ignore local time–frequency changes in the signal and, therefore,
lose a large amount of information that existed in the signal.

Let us consider the spectra of envelopes of EMG signals collected from PD patients
and healthy volunteers (see Figure 1). On the left, an average spectrum of the tremor
right hands of twelve PD patients and an average spectrum of the right hands of ten
healthy volunteers are demonstrated. On the right, an average spectrum of the non-tremor
left hands of the PD patients and an average spectrum of the left hands of the healthy
volunteers are demonstrated. Three peaks are observed in the 4–10 Hz frequency range
in the left figure. Two peaks are observed in this frequency range in the right figure. The
Mann–Whitney statistical test discovers statistically significant differences in the spectra
of the PD patients only in the tremor hands (see the left figure). These differences are
well-known physiological regularity and are used for the diagnosis of PD [3]. However, the
statistically significant differences between the spectra are not observed in the right figure.
Therefore, the conventional spectral analysis does not reveal diagnostic features of PD in the
non-tremor hands of the PD patients. In this paper, we will demonstrate that our method
extracts much more information from the signals. In particular, statistically significant
differences will be demonstrated between EMG signals collected from the non-tremor
hands of the PD patients and healthy volunteers.

Figure 1. An example of the spectra of envelopes of EMG signals collected from PD patients and
healthy volunteers. The spectra are computed using the standard Welch method. The Hann window
was used, the window width was 10 s, and the window overlap was 7/8. The red curve indicates the
PD patients. The green curve indicates the healthy volunteers. On the left, an average spectrum of the
tremor right hands of twelve PD patients and an average spectrum of the right hands of ten healthy
volunteers are demonstrated. On the right, an average spectrum of the non-tremor left hands of the
PD patients and an average spectrum of the left hands of the healthy volunteers are demonstrated.
The abscissa is the frequency. The ordinate is the power spectral density in the logarithmic scale. Two
bars below the figure indicate the results of the Mann–Whitney statistical test. Statistically significant
differences are indicated by the magenta color. The lower bar corresponds to the alpha level 0.05.
The upper bar corresponds to the Bonferroni-corrected alpha level 0.0002. The significant differences
are observed only in the tremor hands of the PD patients.

The wave train analysis method differs from standard signal analysis methods such as
Fourier analysis and wavelet analysis in that it addresses the generalized characteristics of
the biomedical signal based on local time–frequency changes in the signal. The idea of the
method of wave train electrical activity analysis is to extract and analyze so-called wave
trains in wavelet spectrograms. The wave train is the increase in the power spectral density
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(PSD) of the signal localized in time, frequency, and space. The wave trains correspond
to local maxima in the wavelet spectrograms. We investigate the following wave train
parameters: wave train central frequency, wave train maximal PSD, wave train duration
in periods, and wave train bandwidth. Note that in [9,29–33], for EMG analysis, the term
“burst” is used. However, the meaning of this term is different. Usually, the term “burst”
refers to the EMG signal areas characterized by a sharp increase in amplitude. In contrast
to these papers, we investigate the wave trains in the time–frequency domain but not in
the time domain. We consider the biomedical signal as a combination of wave trains, and
we do not consider the wave train as a special type of signal.

We extract the wave trains in a wide frequency range using complex Morlet wavelets.
We consider local maxima in the wavelet spectrograms as wave trains. A technique based
on so-called area under curve (AUC) diagrams is used to identify regularities in signals in
a wide frequency range. The AUC diagrams are specially designed graphical diagrams
that help to determine the wave train parameters that are characteristic of a given neurode-
generative disease. We distinguish the Frequency AUC diagram, Power spectral density
AUC diagram, Duration AUC diagram, and Bandwidth AUC diagram. These types of
AUC diagrams will be discussed in Section 2.4. Moreover, we distinguish 2D and 3D AUC
diagrams. The 2D AUC diagrams are useful for manually searching regularities in the
wave train electrical activity. The 3D AUC diagrams are used for searching statistically
significant differences between groups of subjects using AUC diagrams. The AUC dia-
gram technique is illustrated by examples of analyzing the EMG data from patients with
Parkinson’s disease and healthy volunteers.

Note that the wavelets are not a critical issue of the method of wave train analysis.
Generally speaking, similar data analysis can be carried out based on windowed Fourier
transform. However, the wavelets have the following advantage: the time resolution of
the wavelet changes automatically when different frequencies are investigated. Thus, the
wavelets allow one to investigate wave trains simultaneously in high- and low-frequency
bands. We use the Morlet wavelet because it is simple and people can easily understand
the wavelet diagrams. Our method differs from other methods based on wavelets [15,16]
in that the wave trains are considered and AUC diagrams are applied.

The problem of the early and differential diagnosis of PD is all too real [17,34–37]. It
is difficult to identify the early features of PD because the disease develops over a long
time without clear clinical manifestations. The first clinical stage of PD is characterized by
the patient having a pathological tremor on only one side of the body. At the same time,
another side of the body does not demonstrate the clinical manifestations of PD (has no
trembling hyperkinesis [38,39]). O. E. Khutorskaya [1,2] suggested that the non-tremor
side of the body of PD patients can be considered as a model of the preclinical (early)
stage of PD. Therefore, it is important to investigate the non-tremor side of the body of
first-stage PD patients. This paper demonstrates that wave train analysis can reveal new
regularities in the non-tremor side of the PD patient body which are useful for the diagnosis
of Parkinson’s disease at the preclinical stage.

The method used for analyzing the wave train electrical activity of signals is discussed
in Section 2. Section 3 describes the results of the group data analysis. A discussion of the
data analysis results is given in Section 4.

2. Materials and Methods

The wave train is the increase in the signal PSD localized in space, time, and fre-
quency. We applied wavelet spectrograms calculated using the complex Morlet wavelet
to determine wave trains in signals. An adaptive two-dimensional Gaussian filter was
used to smooth the wavelet spectrogram to eliminate artifacts arising in the process of
calculating wavelets. Then, we detected the local maxima on the wavelet spectrogram. The
attributes of the wave trains were calculated, such as the central frequency of the wave
train, the maximal PSD of the wave train, the duration of the wave train in periods, and
the bandwidth of the wave train.
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2.1. Experimental Data

The object of our investigation is the electromyographic signals in PD patients at the
first stage of the disease according to the classical Hoehn–Yahr scale. Approximately half of
the patients had never taken antiparkinsonian drugs before, and the other patients had not
taken antiparkinsonian drugs for one to two days before the investigation. Additionally,
a group of healthy volunteers participated in the investigation. The average age of the
patients was 56 years (the minimum age was 38 years; the maximum age was 69 years).
The average age of the healthy volunteers was 51 years (the minimum age was 24 years;
the maximum age was 71 years). There were no statistically significant differences between
the ages of the patients and the healthy volunteers (the Mann–Whitney test was used).
Note that the group of PD patients included patients with left-hand tremor (10 persons)
and patients with right-hand tremor (12 persons), with 22 persons in total (see Figure 2).
All the patients were examined at the FSBI Research Center of Neurology, and PD was
diagnosed. The number of healthy volunteers was 10 persons. All patients and healthy
volunteers were right-handed.

10

12

10

Figure 2. A diagram of the investigated groups of subjects. The left-hand tremor PD patients are
indicated by the magenta color; the right-hand tremor PD patients are indicated by the cyan color;
the healthy volunteers are indicated by the green color.

The subjects were sitting in a chair during the data acquisition. Arms were out-
stretched forward. The duration of the single recording was 1 min and 30 s. EMG elec-
trodes were placed on both arms of the patient on the antagonist muscles of the wrist joint
(extensor and flexor muscles: Musculus extensor carpi radialis longus and Musculus flexor
carpi radialis). The eyes were closed during the measurement. The Neuron-Spectrum-5
multifunctional system for neurophysiological studies (Neurosoft Ltd.) was used for EMG
recording. The sampling rate was 500 Hz. The Butterworth high-pass filter with a cut-off
frequency 0.5 Hz and a 50 Hz notch filter were used during the data acquisition.

2.2. Signal Preprocessing

The preprocessing of EMG signals included the following stages:

1. The 50, 100, 150, and 200 Hz notch filters removed the power line interference.
2. The 60–240 Hz fourth-order Butterworth bandpass filter was applied to EMG in the

forward and reverse directions.
3. The envelope of the EMG signal was calculated using the Hilbert transform. The

signal envelope was used for tremor analysis according to the classical method [1,2].
4. The envelope of the signal was decimated; the decimation factor was 4.

2.3. Calculation of Local Maxima in the Wavelet Spectrogram

We used the wavelet spectrograms calculated using the complex Morlet wavelet (1) to
determine wave trains in the signals:

ψ(x) =
1√
πFb

exp(2πıFcx)exp(
−x2

Fb
) (1)
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where Fb = 1 and Fc = 1. We calculated the wavelet spectrogram in the frequency range
from 0.1 to 50 Hz in the examples considered in the paper; the frequency step was 0.1 Hz.

The wavelet spectrogram was smoothed by an adaptive two-dimensional Gaussian
filter to eliminate artifacts arising in the process of calculating the wavelets. The width
of the Gaussian window in time and frequency depends on the width of the time and
frequency windows of the wavelet at the considered frequency. We used a smoothing
window width that was twice less than the time and frequency width of the wavelet
window. The width of the smoothing window should be less than the width of the wavelet
window to prevent the distortion of the wavelet spectrogram shape.

Let us consider an example of a wave train on a wavelet spectrogram of EMG signal
in an extensor muscle of the non-tremor (right) arm of a patient with the left-side tremor of
the body (Figure 3). The central frequency of the wave train is 15.2 Hz; the signal is clearly
distinguished in the time–frequency space.
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Figure 3. A wave train on the wavelet spectrogram of the EMG signal envelope. The abscissa axis
indicates the time; the ordinate axis indicates the frequency.

The envelope of the EMG signal (Figure 3) is demonstrated in Figure 4 (on the left).
One can see three periods of the wave train envelope in the figure. On the right, the source
EMG signal is demonstrated. It is almost impossible to reveal the wave train considered
in the source signal without special processing. Therefore, the standard methods for the
morphological analysis [8] of signals are inapplicable for this signal.
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Figure 4. On the left is the envelope of the EMG signal considered in Figure 3. The abscissa axis
indicates the time; the ordinate axis indicates the envelope of the signal in μV. On the right is the
source EMG signal. The abscissa axis indicates the time; the ordinate axis indicates the amplitude of
the signal in μV. The wave train is indicated by the red circle in both figures.

In Figure 5, other examples of the wave trains are demonstrated. On the left, the
envelope of the EMG signal in the tremor left hand of a PD patient is demonstrated.
On the right, the envelope of the EMG signal in the left hand of a healthy volunteer is
demonstrated. The wave trains are very similar. The central frequency of both wave trains
is ~6.5 Hz. In the framework of our method, we do not try to distinguish “normal” and
“abnormal” wave trains. Instead, we use a statistical analysis based on the number of
detected wave trains.
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Figure 5. On the left: the envelope of the EMG signal in the tremor left hand of a PD patient. On
the right: the envelope of the EMG signal in the left hand of a healthy volunteer. The wave trains
are indicated by the red circles. The abscissa axis indicates the time; the ordinate axis indicates the
envelope of the signal in μV. The wave trains are very similar. We do not try to distinguish “normal”
and “abnormal” wave trains. Instead, we use a statistical analysis based on the number of detected
wave trains.

Note that the computation of wavelet spectrograms and detection of wave trains are
the most time-consuming data processing steps. The processing of the EMG data for the
total group of subjects (32 persons) takes about 2 hours on a 2.30 GHz PC machine. We
do not consider the wave trains in the wavelet spectrogram if the duration of the wave
train is less than 1/10 of the signal period at the central frequency of the local maximum to
increase the speed of computation.

The time duration and the frequency width of the local maximum are measured at the
1/

√
2 maximum height of the local maximum. Figure 6 demonstrates time and frequency

slices of the wave train wavelet spectrogram.

Time

P
S

D

0.7

P
S

D

Frequency

0.7

Figure 6. An example of a wave train spectrogram in the time–frequency domain. On the left is a
time slice of the wavelet spectrogram. The abscissa is time and the ordinate is PSD. On the right is a
frequency slice of the wavelet spectrogram. The abscissa is the frequency and the ordinate is PSD.

The wave train can be characterized by several parameters: the leading (central)
frequency, the maximal PSD, the duration in periods (at 1/

√
2 maximum height), and

the bandwidth (at 1/
√

2 maximum height). These parameters form a multidimensional
space. The analysis aims to select a certain subspace in the given space where a difference
between the groups of subjects is observed. The following notation is used below to denote
the subspace bounds: MinFreq (the minimal wave train frequency), MaxFreq (the maximal
wave train frequency), MinPSD (the minimal wave train PSD), MaxPSD (the maximal wave
train PSD), MinDurat (the minimal wave train duration in periods), MaxDurat (the maximal
wave train duration in periods), MinBandwidth (the minimal wave train bandwidth), and
MaxBandwidth (the maximal wave train bandwidth).

The number of wave trains in the PD patients was compared with the number of
wave trains in the healthy volunteers using ROC curves. The quality of the ROC curve
is characterized by the area under the ROC curve (AUC). AUC values from 0 to 1 can be
obtained when comparing groups of subjects. We were interested in values that significantly
differed from 0.5—that is, values close to 0 and 1. These AUC values have the following
interpretation. AUC > 0.5 means that the number of wave trains is higher in the patients
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than in the healthy volunteers. AUC < 0.5 means that the number of the wave trains is
higher in the healthy volunteers. Both cases are of interest for the investigation and the
diagnosis of PD.

We developed so-called AUC diagrams to search for regularities in the multidimen-
sional space of the wave train parameters. We considered the following types of AUC
diagrams: 2D and 3D diagrams.

2.4. 2D AUC Diagrams

The 2D AUC diagram demonstrates the AUC values corresponding to different ranges
of the given wave train parameter. The range of the wave train parameter is characterized
by the lower and upper bounds—namely, the minimal and maximal values of the parameter.
The abscissa indicates the lower bound of the considered parameter, while the ordinate
indicates the upper bound of the considered parameter. The AUC value is displayed using
a colormap. The standard jet colormap is applied in the examples given in this paper.
Low AUC values are displayed in blue and high AUC values are displayed in red in this
colormap. AUC values close to 0.5 are displayed in green.

We considered AUC diagrams of different types—namely, Frequency AUC diagrams
(see example in Figure 7), Power spectral density AUC diagrams (see example in Figure 8),
Duration AUC diagrams (see example in Figure 9), and Bandwidth AUC diagrams (see
example in Figure 10).

Let us consider the frequency range from 1 to 50 Hz and calculate the number of
wave trains in the EMG signals of each PD patient and each healthy volunteer. The
patients with the left-hand tremor and the patients with the right-hand tremor were
investigated separately.

An example of a Frequency AUC diagram demonstrates the AUC values calculated
for various ranges in the frequency interval from 1 to 50 Hz with 1 Hz steps (see Figure 7).
Corresponding ROC curves compare the number of wave trains in the extensor muscle in
the right non-tremor arm of the left-hand-tremor PD patients with the number of wave
trains in the extensor muscle in the right arm of the healthy volunteers. The red color in the
diagram indicates that the number of wave trains in the patients is greater than that in the
healthy subjects. The blue color in the AUC diagram indicates that the number of the wave
trains in the patients is lower than the number in the healthy subjects. The diagram has a
triangular shape because the upper bound of the range is always bigger than the lower
bound of the range.

Reading the diagram should be carried out in the following way. One should
start by looking at the AUC values located on the diagonal line of the diagram. In the
Frequency AUC diagram, the diagonal line corresponds to narrow frequency ranges
MinFreq ≈ MaxFreq, which allows one to accurately estimate the frequencies where dif-
ferences appear between the patient group and the control group. These frequencies
correspond to red and blue dots on the diagonal line. Next, one should consider the
monochromatic areas adjacent to the diagonal line. The area must be of the same color as
the red/blue dot on the diagonal line. The bigger the area is, the stronger the revealed
difference between the groups of subjects is.

In Figure 7, two bright red areas are observed in the frequency range. The first red area
is situated along the abscissa axis from 0 to 18 Hz; the y-coordinate is equal to approximately
20 Hz. The second area is situated along the ordinate axis from 17 Hz and above; the x-
coordinate is equal to approximately 14 Hz. The brightest point has coordinates of 8 Hz on
the abscissa axis and 20 Hz on the ordinate axis. This point corresponds to the frequency
range from 8 to 20 Hz. The red color indicates that the PD patients have more wave trains
than the healthy subjects in the human physiological tremor frequency area. The AUC
value is approximately 0.88 in this frequency range; thus, the observed regularity can be
used as a diagnostic criterion for Parkinson’s disease.
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Figure 7. An example of the Frequency AUC diagram. The abscissa axis is the lower bound of the
frequency range; the ordinate axis is the upper bound of the frequency range. Two bright red areas
are observed. The first red area is situated along the abscissa axis from 0 to 18 Hz; the y-coordinate
is equal to approximately 20 Hz. The second area is situated along the ordinate axis from 17 Hz
and above; the x-coordinate is equal to approximately 14 Hz. The brightest point corresponds to the
human physiological tremor frequency area from 8 to 20 Hz.

Let us consider a Power spectral density AUC diagram (Figure 8). The diagram is
calculated on the same dataset. In contrast to the Frequency AUC diagram, the ranges
of PSD are considered in the Power spectral density AUC diagram. The range of PSD is
characterized by the lower and upper bounds. The abscissa indicates the lower bound
of the PSD range, while the ordinate indicates the upper bound of the PSD range. The
values of the wave train PSD are considered in the interval from 0 to 1000 μV2/ Hz with
10 μV2/ Hz steps. In the figure, a bright red area is observed along the ordinate axis above
70 μV2/ Hz.
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Figure 8. An example of the Power spectral density AUC diagram. The abscissa axis is the lower
bound of the PSD range; the ordinate axis is the upper bound of the PSD range. A bright red region
is observed along the ordinate axis above 70 μV2/ Hz.

The third type of AUC diagrams is the Duration AUC diagram. Let us consider
an example of the Duration AUC diagram (see Figure 9). The diagram is based on the
same dataset as the previous diagrams; however, the ranges of wave train durations are
considered. As in previous figures, the duration range is characterized by the lower and
upper bounds of the range. The abscissa indicates the lower bound of the range, while
the ordinate indicates the upper bound of the range. The duration of the wave trains is
considered in the interval from 0 to 10 periods with 0.1 period steps.

Figure 9 demonstrates a bright yellow area with the x-coordinate of less than 3.8 peri-
ods. A narrow bright orange area is situated along the ordinate axis; the x-coordinate is
equal to approximately 3.8 periods. This diagram can be explained in the following way:
most wave trains have a duration of approximately 3.8 periods, but shorter wave trains are
observed too.
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Figure 9. An example of the Duration AUC diagram. The abscissa axis is the lower bound of the dura-
tion range in periods; the ordinate axis is the upper bound of the duration range in periods. A narrow
bright orange area is situated along the ordinate axis; the x-coordinate is equal to approximately
3.8 periods.

Let us consider an example of a Bandwidth AUC diagram (Figure 10). The diagram is
based on the same dataset. In the Bandwidth AUC diagram, the ranges of bandwidth of
the wave trains are considered. The bandwidth range is characterized by the lower and
upper range bounds. The abscissa axis indicates the lower bound of the range, while the
ordinate axis indicates the upper bound of the range. In this example, the frequency bands
in the interval from 0 to 50 Hz are considered; the step size is 0.1 Hz.
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Figure 10. An example of the Bandwidth AUC diagram. The abscissa axis indicates the lower bound
of the bandwidth; the ordinate axis indicates the upper bound of the bandwidth. The diagram
demonstrates the multidirectional effects.

The frequency bandwidth of the signal characterizes the shape of the signal. The
narrowband signal is close to the harmonic one; the wideband signal contains fragments of
a complex shape. Figure 10 demonstrates several areas corresponding to multidirectional
differences in the wave train bandwidth between the groups of subjects. In particular, a
bright orange area is observed along the abscissa axis from 0 to 7 Hz; the y-coordinate is
equal to approximately 7 Hz. In addition, a light blue area is observed along the abscissa
axis from 0 to 4.5 Hz; the y-coordinate is equal to approximately 4.3 Hz. There are also
vertical orange columns with x-coordinates equal to approximately 17 Hz and 26 Hz. Note
that multidirectional effect diagrams are more difficult to interpret. In this example, we
can only conclude that it is possible to obtain and investigate multidirectional differences
between the groups of subjects by detailing the wave train bandwidth ranges. This will be
carried out in the further steps of analysis.

The analysis of the wave train electrical activity begins with the calculation of AUC
diagrams of all four types (see Figures 7–10). At the first stage of the analysis, one has
to choose one out of four diagrams that demonstrates the most pronounced differences
between the patients and healthy volunteers—that is, the diagram that contains the most
prominent red or blue area with AUC values close to 0 or 1. The selected red/blue area
corresponds to a certain range of the corresponding parameter. The calculation of all four
diagrams is repeated in the next steps of the analysis. However, only the wave trains that
correspond to the ranges of the wave train parameters selected in the previous steps are
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taken into account. It is possible to identify interesting ranges of all four parameters of the
wave trains (the central frequency, PSD, duration in periods, and bandwidth) by iteratively
repeating the described operations (see the flowchart in Figure 11).

Plot four types of 2D AUC diagrams.

Choose one out of the four AUC diagrams that demonstrates the most 
pronounced differences between the patients and healthy volunteers.

Choose a red/blue area with AUC values close to 0 or 1. Determine the
range of wave train parameters.

Repeat the calculation of all four diagrams. 
The diagrams take into account only the wave trains that correspond 

to the ranges of the wave train parameters selected in the previous steps.

Any further restrictionsons on the wave
 train parameters worsen the AUC values 

or do not change the AUC diagrams.

The recent refinement of the wave train 
parameters sufficiently worsens the AUC values.

The current constraints on the wave train 
parameters are the final 

estimation of the wave train parameters.

No

No

Yes

Yes

The constraints used in the previous iteration 
are the final estimation 

of the wave train parameters.

Figure 11. The flowchart of the method of analysis of the wave train electrical activity in EMG signals.

In the Frequency AUC diagram (Figure 7), we chose a red area with the following coor-
dinates: frequency range from 8 to 20 Hz. Therefore, we will consider only the wave trains
that belong to the frequency interval from 8 to 20 Hz in the further steps of the analysis.
Let us recalculate the other three diagrams taking into account the chosen constraint.

Figure 12 demonstrates the Power spectral density AUC diagram for the wave trains
that belong to the frequency interval from 8 to 20 Hz. The diagram differs from Figure 8
because the frequency band of the considered wave trains is narrowed. The colored areas
in Figure 12 are brighter, but the size and position of the areas are approximately the
same. This means that the applied frequency constraint allows the better recognition of the
differences between the groups of subjects. The diagram demonstrates the most substantial
differences between the patients and control subjects in the following point: the PSD range
from 30 to 700 μV2/ Hz (AUC = 0.96). The maximal PSD of the wave trains may be a
hardware-dependent characteristic; thus, one can consider only the wave trains with a PSD
above 30 μV2/ Hz in the further steps of the analysis.

Let us consider the Duration AUC diagram for the wave trains that belong to the
frequency interval from 8 to 20 Hz (see Figure 13). The diagram differs from Figure 9
because the frequency band is narrowed. The colored areas on the diagram became brighter.
A red column appears along the ordinate; the x-coordinate is equal to approximately
1 period. This means that one can better distinguish the groups of subjects when the
frequency band of the wave trains is narrowed. The most substantial differences between
the patients and control subjects are observed in the wave train duration range from 0.7 to
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2.6 periods (AUC = 0.88). Thus, we can narrow the interval of the wave train durations in
the further step of the analysis. Only durations from 0.7 to 2.6 periods will be considered.
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Figure 12. An example of the Power spectral density AUC diagram. The frequency band of the
wave trains is constrained, and the frequency interval from 8 to 20 Hz is considered. The abscissa
axis indicates the lower bound of the PSD range; the ordinate axis indicates the upper bound of
the PSD range. A bright red area is observed along the ordinate axis; the x-coordinate is equal to
approximately 30 μV2/ Hz. The brightest point has the following coordinates: 30 μV2/ Hz and
700 μV2/ Hz. This point corresponds to the PSD range from 30 to 700 μV2/ Hz.
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Figure 13. An example of the Duration AUC diagram. The frequency interval of considered wave
trains is from 8 to 20 Hz. The abscissa axis indicates the lower bound of the range of durations in
periods; the ordinate axis indicates the upper bound of the range of durations in periods. A bright red
area is observed along the ordinate; the x-coordinate is equal to approximately 1 period. The brightest
point has coordinates of 0.7 and 2.6 periods. This point corresponds to the range of durations from
0.7 to 2.6 periods.

Figure 14 demonstrates the Bandwidth AUC diagram. In the diagram, the wave trains
belong to the frequency interval from 8 to 20 Hz. The diagram differs from Figure 10
because the frequency band is narrowed. The size and position of the red column have
changed. A bright red area appears along the ordinate axis; the x-coordinate is equal to
approximately 2 Hz. This means that the bandwidth of the wave trains characterizing
PD differs sufficiently from the bandwidth of the other wave trains observed during the
medical examination.

Now we are ready to implement the next iteration of the analysis. Once again, we
have to choose which one of the four diagrams demonstrates the most striking regularities.
A new constraint is applied to the wave train parameters based on this diagram. Let us
choose the Power spectral density AUC diagram at this stage. We apply the following
constraint based on this diagram: PSD no less than 30 μV2/ Hz. Let us recalculate the
other three AUC diagrams (frequency, duration, and bandwidth), taking into account two
constraints: a frequency from 8 to 20 Hz and a PSD no less than 30 μV2/ Hz.
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Figure 14. An example of the Bandwidth AUC diagram. The frequency interval of the considered
wave trains is from 8 to 20 Hz. The abscissa axis indicates the lower bound of the frequency
bandwidth; the ordinate axis indicates the upper bound of the frequency bandwidth. The bright
red column corresponds to the frequency bandwidth values of the wave trains that are typical for
PD patients.

Figure 15 demonstrates the Frequency AUC diagram with a PSD that is no less than
30 μV2/ Hz. Note that the frequency constraint needs to be refined using this diagram.
The Frequency AUC diagram (see Figure 15) has changed substantially in comparison with
that of Figure 7. The red areas in Figure 15 are brighter and larger. The blue areas have
disappeared. Thus, the applied constraints made the differences between the groups of
subjects more contrasting. The diagram demonstrates the strongest differences between
the patients and control subjects in the frequency range from 8 to 20 Hz; the AUC value is
equal to 0.93. Note that the disappearing blue area may correspond to another statistical
regularity that differentiates the groups of subjects; however, this regularity is out of the
scope of this paper.
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Figure 15. An example of the Frequency AUC diagram. The PSD of the considered wave trains is
no less than 30 μV2/ Hz. The abscissa axis indicates the lower bound of the frequency range; the
ordinate axis indicates the upper bound of the frequency range. A bright red area is observed in the
frequency range along the abscissa; the y-coordinate is equal to approximately 20 Hz. The brightest
red point has coordinates: 8 Hz and 20 Hz.

In Figure 16, the Duration AUC diagram is demonstrated. In this diagram, the
following constraints are applied to the wave train parameters: a frequency from 8 to 20 Hz
and a PSD no less than 30 μV2/ Hz. Figure 16 differs slightly from Figure 13. The red areas
on the diagram became more intense. An intense red area appears inside the red region.
The intense red area has the following coordinates: x-coordinates from 0 to 0.6 periods and
y-coordinates from 3.6 periods and more. This diagram can be interpreted in the following
way. The duration of most wave trains typical for the PD patients is equal to approximately
1 period. However, there are shorter and longer wave trains as well. Thus, the better
recognition of PD patients is obtained when considering the wave trains in a wider range
from 0.5 to 4 periods. The AUC value in the detected intense red area reaches 0.93, which
is sufficient for the high-quality recognition of PD patients.
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Figure 16. An example of the Duration AUC diagram. The following constraints are applied to the
wave train parameters: a frequency from 8 to 20 Hz and a PSD no less than 30 μV2/ Hz. The abscissa
axis indicates the lower bound of the range of the duration in periods; the ordinate axis indicates
the upper bound of the range of the duration in periods. An intense red area appears inside the red
region. The intense red area has the following coordinates: x-coordinates from 0 to 0.6 periods and
y-coordinates from 3.6 periods and more.

Figure 17 demonstrates the Bandwidth AUC diagram for wave trains that have a
frequency from 8 to 20 Hz and a PSD no less than 30 μV2/ Hz. The diagram differs from
Figure 14 because of the constraints applied to the wave train parameters. The red areas
on the diagram became more intense, while the multidirectional effects are still observed
as the red and blue areas present on the diagram. This means that we cannot confidently
determine the characteristic bandwidth of the wave trains typical for PD based on the
available dataset. We can only conclude that the frequency bandwidth of the wave trains
belongs to a wide interval; the value of the bandwidth can rise to ~28 Hz.
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Figure 17. An example of the Bandwidth AUC diagram. The following constraints are applied to the
wave train parameters: a frequency from 8 to 20 Hz and a PSD no less than 30 μV2/ Hz. The abscissa
axis indicates the lower bound of the bandwidth; the ordinate axis indicates the upper bound of the
bandwidth. The diagram demonstrates multidirectional effects.

At the current step of the analysis, further iterations of the analysis do not change the
Frequency AUC diagram (Figure 15), Power spectral density AUC diagram (Figure 12),
Durations AUC diagram (Figure 16), and Bandwidth AUC diagram (Figure 17). Further
detailing of the duration and bandwidth of the wave trains does not improve the AUC
values. Thus, the iterative process of fitting the wave train characteristics typical for PD
patients can be completed at this point. It was determined that the wave trains that help to
distinguish the PD patients and healthy subjects have the following attributes: a frequency
band from 8 to 20 Hz, a maximum PSD no less than 30 μV2/ Hz, a duration from 0.5
to 4 periods, and a bandwidth from 1 to 28 Hz. The Mann–Whitney test confirms that
a statistically significant difference between the numbers of wave trains with the given
attributes is observed in PD patients and healthy volunteers (p ≤ 0.0011).

In the general case, the iterative process of refinement of the wave train parameters is
to be completed in the following situations:
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1. Any further restrictions on the parameters of the wave trains do not change the AUC
diagrams. This means that the further refinement of the wave train parameters makes
no sense.

2. The refinement of the wave train parameters worsens the AUC values sufficiently
in the AUC diagrams. This means that the investigated ranges of the wave train
parameters became too narrowed; the number of wave trains considered in the AUC
diagrams is too small. Theoretically speaking, in this case the refinement of the wave
train parameters could be continued. However, the available dataset is not sufficient
for this. The investigation of the wave train parameters could be continued if the
number of subjects and/or the duration of EMG records are sufficiently increased.

Note that the initial AUC diagrams (Figures 7–10) had several red and blue areas that
serve as a starting point for the iterative refinement of the wave train parameters. In the
considered example, only one wave train type observed in the right non-tremor arm of
the PD patients with a tremor in the left arm was investigated. The results of the analysis
of other regularities observed in the dataset are given in Tables 1 and 2. In particular, we
analyzed the EMG signals in the left arm of the left-hand-tremor PD patients, the EMG
signals in the left non-tremor arm of the right-hand-tremor PD patients, and the EMG
signals in the right arm of the right-hand-tremor PD patients. Thus, we analyzed both
the non-tremor arms and arms with trembling hyperkinesis of the PD patients. Table 1
contains the results of the iterative analysis of the wave train parameters in the extensor
muscles. Table 2 contains the results of the iterative analysis of the wave train parameters
in the flexor muscles.

Table 1. The characteristics of the wave trains in the extensor muscles.

Investigated Regularity
Frequency,
Hz

PSD,
μV2/ Hz

Duration,
Periods

Bandwidth,
Hz

AUC p

A red area. The right non-
tremor arm in the left-hand-
tremor PD patients.

8–20 ≥30 0.5–4 1–28 0.93 0.0011

A red area. The left non-
tremor arm in the right-hand-
tremor PD patients.

2–9 any 0.8–2.3 any 0.87 0.0033

A blue area. The left tremor
arm in the left-hand-tremor
PD patients.

1–50 any ≥1 ≥3 0 ≤0.001

A blue area. The right tremor
arm in the right-hand-tremor
PD patients.

6–33 any ≥0.5 ≥3.5 0.02 ≤0.001

A red area. The left tremor
arm in the left-hand-tremor
PD patients.

3–7 ≥11 ≥1.5 any 1 ≤0.001

A red area. The right tremor
arm in the right-hand-tremor
PD patients.

4–8 ≥103 ≥1.3 any 1 ≤0.0001

2.5. 3D AUC Diagrams

Wave train electrical activity analysis based on 2D AUC diagrams requires considering
a large number of combinations of the upper and lower bounds of parameter ranges. It is
useful to check what positions of the 2D AUC diagram correspond to statistically significant
differences between the numbers of wave trains in the groups of subjects compared. We
implement this check using the Mann–Whitney nonparametric test; however, the multiple
comparisons problem arises. The essence of the multiple comparisons problem is that
the statistical test may give a sufficient first-type error when a large number of ranges of
parameters are checked in the 2D AUC diagram. The simplest way to solve the multiple
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comparisons problem is to apply Bonferroni correction [40]. The value of the Bonferroni
correction depends on the number of cells in the 2D AUC diagram. We call the number of
rows/columns in the 2D AUC diagram the resolution R of the diagram. If the resolution
of the AUC diagram is high, the value of the Bonferroni correction also becomes high.
The Bonferroni correction changes (2) the alpha level of the Mann–Whitney test using the
correction coefficient C:

αB = 1 − (1 − α0)
1/C (2)

where α0 = 0.05. Let the C correction coefficient (3) be equal to the number of cells in the
upper triangle of the 2D AUC diagram, including the number of cells on the diagonal of
the AUC diagram:

C = R(R + 1)/2 (3)

Table 2. The characteristics of the wave trains in the flexor muscles.

Investigated Regularity
Frequency,
Hz

PSD,
μV2/ Hz

Duration,
Periods

Bandwidth,
Hz

AUC p

A red area. The right non-
tremor arm in the left-hand-
tremor PD patients.

5–13 0–50 any 3.1–3.8 0.92 0.0017

A red area. The left non-
tremor arm in the right-hand-
tremor PD patients.

2–16 any 1.4–2.1 any 0.8 0.0161

A blue area. The left tremor
arm in the left-hand-tremor
PD patients.

1–39 any ≥0.5 ≥2.5 0 ≤0.001

A blue area. The right tremor
arm in the right-hand-tremor
PD patients.

24–34 any any any 0.07 ≤0.001

A red area. The left tremor
arm in the left-hand-tremor
PD patients.

4–7 ≥4 ≥1.2 any 1 ≤0.001

A red area. The right tremor
arm in the right-hand-tremor
PD patients.

2–8 ≥2 ≥2.3 any 0.85 0.0037

The value of the correction coefficient depends on the R resolution according to the
quadratic law. Therefore, the probability of detecting statistically significant differences
in the 2D AUC diagram sufficiently decreases when the resolution is high. On the other
hand, if the resolution R is low, the detailing of the 2D AUC diagram is reduced, and
one can miss certain regularities present in the dataset. Thus, it is necessary to find a
compromise between the level of detail in the 2D AUC diagram and the value of the
Bonferroni correction to reveal interesting statistically significant differences between the
groups of subjects. We developed a special type of AUC diagram, named a 3D AUC
diagram, to solve this problem. The 3D AUC diagram is a generalization of the 2D AUC
diagram. The abscissa and ordinate axes on the 3D AUC diagram indicate the values of the
upper and lower bounds of the range of the considered wave train parameter, as in the 2D
AUC diagram. However, the applicate axis indicates the R resolution of the AUC diagram.
Thus, the horizontal slice of the 3D AUC diagram is a case of the 2D AUC diagram. In the
3D AUC diagrams, only the points that correspond to statistically significant differences
between the numbers of wave trains in the groups of subjects are displayed; Bonferroni
correction (2), which depends on the R resolution, is taken into account when the statistical
significance is checked.

Let us consider an example of the 3D AUC diagram (see Figure 18). This diagram is a
form of Frequency 3D AUC diagram; it demonstrates statistically significant differences
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between the numbers of wave trains in the groups of subjects when considering various
ranges of frequencies. The number of wave trains in the left arm of the left-hand-tremor PD
patients and the number of wave trains in the left arm of the healthy subjects are compared.
The values of the wave train parameter ranges are given in Table 1, line 5. The 3D AUC
diagram demonstrates a 3D isosurface that corresponds to various p ≤ αB. The upper
plateau of the isosurface corresponds to the resolution of 23. The coordinates of the plateau
are from 3.1 to 3.4 Hz along the abscissa axis and from 6.4 to 7.5 Hz along the ordinate axis.
The horizontal slice area of the isosurface grows and then decreases when the resolution
decreases. This is because the Bonferroni correction is softened; however, the degree of
detail in the diagram also decreases. The top point of the isosurface is of interest because it
reveals statistically significant differences in the dataset with the greatest degree of detail.
In the example being considered, the 3D AUC diagram confirms that there are statistically
significant differences between the numbers of wave trains in the groups of subjects in the
frequency range from about 3 to 7 Hz.

Figure 18. The isosurface p ≤ αB. Left-hand-tremor PD patients; extensor muscle; frequencies from
1 to 10 Hz. The abscissa axis indicates the lower bound of the frequency range, the ordinate axis
indicates the upper bound of the frequency range, and the applicate axis indicates the R resolution.

Figure 19 demonstrates the Frequency 2D AUC diagram that corresponds to the
horizontal slice of the 3D AUC diagram (Figure 18) at the resolution R = 15. Figure 19
includes only the points that correspond to statistically significant differences between the
groups of subjects. The diagram demonstrates that the slice has an irregular shape with
coordinates from 2.28 to 4.2 Hz along the abscissa axis and from 6.12 to 8 Hz along the
ordinate axis. The AUC values in the 2D AUC diagram are higher than 0.98; there is an
area with high AUC values up to 1 in the central part of the diagram. The coordinates
of this area are from 2.3 to 4 Hz along the abscissa axis and from 6.12 to 8 Hz along the
ordinate axis. This example demonstrates that one can obtain the best AUC values when
choosing the optimal level of detail in the AUC diagram; this allows high accuracy when
diagnosing PD.
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Figure 19. The Frequency 2D AUC diagram that corresponds to the horizontal slice of the 3D AUC
diagram (see Figure 18) at the resolution R = 15. This Frequency 2D AUC diagram includes only
the points that correspond to statistically significant differences between the groups of subjects. The
abscissa axis indicates the lower bound of the frequency range; the ordinate axis indicates the upper
bound of the frequency range.
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3. Group Data Analysis

The analysis of 2D and 3D AUC diagrams that compare PD patients and healthy
volunteers revealed several types of wave train electrical activity that are a distinctive
feature of PD patients. Let us consider some regularities discovered in the dataset to clarify
what neurophysiological mechanisms may control these types of electrical activity.

Let us consider the scatter plot (see Figure 20) that demonstrates the number of
wave trains detected in two frequency intervals in the extensor muscle of the arms with
trembling hyperkinesis in the PD patients: the physiological tremor frequency interval and
the Parkinsonian tremor frequency interval. The abscissa axis corresponds to lines 3 and 4
in Table 1. The ordinate axis corresponds to lines 5 and 6 in Table 1. We have included the
characteristics of the healthy subjects in the scatter plot for comparison. Each point in the
scatter plot corresponds to one subject. The PD patients are indicated by the red color; the
control subjects are indicated by the green color.
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Figure 20. The scatter plot of the numbers of wave trains per second detected in the extensor
muscle in the tremor arms of the PD patients. The abscissa axis indicates the wave train numbers
corresponding to the physiological tremor; the ordinate axis indicates the Parkinsonian tremor. The
PD patients are indicated by the red color. The control subjects are indicated by the green color. On
the left, the left hand of the subjects are shown. On the right, the right hand of the subjects are shown.

The point cloud corresponding to the PD patients has an elongated shape (see Figure 20).
The point cloud corresponding to the healthy subjects is situated in the lower right corner
of the scatter plot. Note that the point clouds can be easily separated. The PD patient
point cloud is perpendicular to the diagonal of the scatter plot, which is evidence of the
negative correlation between the wave train numbers corresponding to physiological and
Parkinsonian tremors.

The check of the correlation confirmed that the correlation between the number of
wave trains corresponding to the physiological and Parkinsonian tremors is statistically
significant in the right-hand-tremor PD patients (see Figure 20, on the right); the correla-
tion coefficient is −0.6885, the first-type error probability is 0.0133, the Spearman’s rank
correlation coefficient is −0.7483, and the first-type error probability in the Spearman’s
nonparametric test is 0.0074.

The investigation of these types of wave trains in the left-hand-tremor PD patients
reveals a statistical trend (see Figure 20, on the left) that confirms the regularity discovered
in the right-hand-tremor PD patients (see Figure 20, on the right). Note that the point cloud
corresponding to the left-hand-tremor PD patients has approximately the same shape as
that of the right-hand-tremor PD patient point cloud; however, the correlation coefficient is
−0.6349, the first-type error probability is 0.0486, the Spearman’s rank correlation coefficient
is −0.4909, and the first-type error probability in the Spearman’s nonparametric test is
0.1544. A significant correlation is not detected in the healthy subject point clouds (see
Figure 20).

Let us compare the number of wave trains detected in the physiological tremor fre-
quency band in the extensor muscle of the non-tremor hand of the PD patients with the
number of wave trains detected in the Parkinsonian tremor frequency band in the extensor
muscle of the tremor hand of the PD patients (see Figure 21). The abscissa axis of the scatter
plot corresponds to lines 1 and 2 in Table 1. The ordinate axis corresponds to lines 5 and
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6 in Table 1. We included the characteristics of the healthy subjects in the scatter plot for
comparison. Each point corresponds to one subject. The PD patients are indicated by the
red color; the control subjects are indicated by the green color.
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Figure 21. The scatter plot of the numbers of wave trains per second detected in the extensor muscle
of the tremor and non-tremor arms of PD patients. The abscissa axis indicates the wave train numbers
corresponding to the physiological tremor in the non-tremor hand; the ordinate axis indicates the
wave train numbers corresponding to the Parkinsonian tremor in the tremor hand. The PD patients
are indicated by the red color; the control subjects are indicated by the green color. On the left, the
left-hand-tremor PD patients are shown. On the right, the right-hand-tremor PD patients are shown.

The scatter plot demonstrates that the point cloud corresponding to the healthy
subjects is situated along the abscissa axis. The point cloud corresponding to the PD
patients has an elongated shape and is located under the healthy subject point cloud
(Figure 21). Note that the point clouds can be easily separated.

Let us investigate the correlation between the number of the wave trains detected
in the physiological tremor frequency band in the extensor muscle of the left non-tremor
hand of the PD patients with the number of the wave trains detected in the Parkinsonian
tremor frequency band in the extensor muscle of the right tremor hand of the PD patients
(Figure 21, on the right). The correlation coefficient is 0.5775, the first-type error probability
is 0.0493, the Spearman’s correlation coefficient is 0.5315, and the first-type error probability
in the Spearman’s nonparametric test is 0.0793. Thus, a statistical trend is observed.

Let us investigate the correlation between the numbers of wave trains detected in the
left-hand-tremor PD patients (Figure 21, on the left). The correlation coefficient is 0.3105
and the probability of the first-type error is 0.3826—that is, the correlation is not significant.
The Spearman’s correlation coefficient is 0.4424 and the probability of the first-type error in
the Spearman’s nonparametric test is 0.2042. A significant correlation is also not detected
in the healthy subject point clouds (see Figure 21).

Let us compare the number of wave trains detected in the extensor muscle in the
physiological tremor frequency band of the tremor hand of the PD patients with the number
of wave trains detected in the extensor muscle in the physiological tremor frequency band
of the non-tremor hand of the PD patients (see Figure 22). The abscissa axis corresponds
to lines 3 and 4 in Table 1. The ordinate axis corresponds to lines 1 and 2 in Table 1. We
included the characteristics of the healthy subjects in the scatter plot for comparison. Each
point in the scatter plot corresponds to one subject. The PD patients are indicated by the
red color; the control subjects are indicated by the green color.

Figure 22 demonstrates that the point clouds corresponding to the PD patients and
healthy subjects can be easily separated. The healthy subject point cloud is located to the
right of the PD patient point cloud.

The correlation between the number of the wave trains in the tremor and non-tremor
arms of the PD patients is not significant (Figure 22). However, a statistical trend is observed
in the right-hand-tremor PD patients (Figure 22, on the right). In the right-hand-tremor
PD patients, the correlation coefficient is −0.4488, the first-type error probability is 0.1434,
the Spearman’s correlation coefficient is −0.5455, and the first-type error probability in the
Spearman’s nonparametric test is 0.0707.
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In the left-hand-tremor PD patients (Figure 22, on the left), the correlation coefficient is
−0.0872, the first-type error probability is 0.8107, the Spearman’s correlation coefficient is
−0.1515, and the first-type error probability in the Spearman’s nonparametric test is 0.6818.
No significant correlation was detected in the control subject point clouds (see Figure 22).
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Figure 22. The scatter plot of the numbers of wave trains per second detected in the physiological
tremor frequency band in the extensor muscle of the tremor and non-tremor arms of the PD patients.
The abscissa axis indicates the wave train numbers corresponding to the physiological tremor in the
tremor hand; the ordinate axis indicates the wave train numbers corresponding to the physiological
tremor in the non-tremor hand. The PD patients are indicated by the red color; the control subjects
are indicated by the green color. On the left, the left-hand-tremor PD patients are shown. On the
right, the right-hand-tremor PD patients are shown.

The analysis of the correlation between the numbers of wave trains in the physio-
logical tremor frequency band in the tremor arms and the age of the PD patients (see
Figure 23) revealed a statistically significant correlation only in the left-hand-tremor PD
patients (Figure 23, on the left). The correlation coefficient is −0.7246, the first-type error
probability is 0.0178, the Spearman’s correlation coefficient is −0.7356, and the first-type
error probability in the Spearman’s nonparametric test is 0.0153.

Note that the correlation is not observed in the right-hand-tremor PD patients (Figure 23,
on the right). The correlation coefficient is −0.0512, the first-type error probability is 0.8745,
the Spearman’s correlation coefficient is −0.1399, and the first-type error probability in the
Spearman’s nonparametric test is 0.6672.

No significant correlation was found between the other wave train parameters in
Table 1 and age. The correlation analysis of the wave train parameters of the flexor muscle
(see Table 2) revealed no significant correlation.
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Figure 23. The scatter plot of the numbers of wave trains per second detected in the physiological
tremor frequency band in the extensor muscle of the tremor arms of the PD patients. The scatter plot
demonstrates the relation between the wave train number and the age of the patients. On the left, the
left hands of the patients are shown. On the right, the right hands of the patients are shown.

4. Discussion

The obtained results can be explained by the neurophysiological mechanisms of the
tremor maintenance known nowadays.

The negative correlation between the numbers of wave trains in the frequency ranges
corresponding to the Parkinsonian and physiological tremors may indicate the mutual
negative influence of some neurophysiological mechanisms underlying both tremor types
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(Figure 20). It is known that the mechanism of physiological tremor (in the frequency
range from 8 to 12 Hz) is maintained in the cerebello-thalamo-premotor-motor cortical
network [41]. The Parkinsonian tremor mechanism is maintained in the cerebello-thalamic
pathways [42]. Thus, the thalamus is involved in the mechanisms of both types of tremor.
We can assume that the capabilities of the thalamus are limited and that both tremor mecha-
nisms compete for the participation of the thalamus. We propose that Parkinsonian tremor
is more successful than physiological one in this competition. Therefore, as Parkinsonian
tremor intensifies, physiological tremor is suppressed.

We did not observe a correlation between the Parkinsonian tremor in the tremor arms
and the physiological tremor in the non-tremor arms (Figure 21). However, there is a
statistical trend in the right-hand-tremor PD patients. Thus, we cannot prove or deny the
existence of a relation between the tremor in the tremor arms and the non-tremor arms.
The relationship between the Parkinsonian tremor in the tremor arms and the physiological
tremor in the non-tremor arms requires more investigations to be carried out on a larger
group of corresponding patients.

No correlation was observed between the numbers of wave trains in the frequency
range of the physiological tremor in the tremor arms and the numbers of the wave trains in
the frequency range of physiological tremor in the non-tremor arms in the PD patients (see
Figure 22). Note that there is a separation of the wave train clouds in the arms of the healthy
subjects and the PD patients (Figure 22). This separation of the clouds can be explained by the
fact that the physiological tremor in the healthy subjects and the physiological tremor in the
PD patients have different mechanisms. It is known that the physiological tremor in healthy
subjects occurs mainly due to homeostatic peripheral movements of muscles and joints to
maintain posture or the movement of the limbs [43]. The resting tremor in the PD patients
is associated with increased activity in the cerebello-thalamic pathways [44]. In PD patients,
the increased activity of the cerebello-thalamic pathways contributes to the physiological
tremor of the non-tremor arm. Thus, the Parkinsonian tremor contributes to the movement
of the non-tremor arm. The cumulative tremor in the non-tremor arms of the PD patients
can be named the preclinical tremor. Different characteristics of the preclinical tremor in the
non-tremor limbs of the PD patients and physiological tremor in the healthy subject limbs
observed during the medical examination can be used for the early diagnosis of PD.

The analysis of the correlation between the numbers of wave trains in the frequency
range of the physiological tremor and the age of the PD patients revealed substantial
differences between the patients with the right- and left-sided-debut of PD (Figure 23). PD
usually progresses with age. Increasing the age can be considered to be a factor contributing
to the progression of PD [45]. It has been suggested that the dominant and non-dominant
arms may have different specializations [46,47]. Motor lateralization hypothesis [48]
suggests that when the right hand is dominant, it is specialized in the predictive control of
the dynamics of smooth and efficient movements. In contrast, the non-dominant left hand
is specialized in the resilience to unforeseen disturbances [49,50]. Thus, there is a piece of
evidence that different mechanisms control the dominant and non-dominant hands. As the
non-dominant hand specializes in resistance to unforeseen disturbances, we assume that
this mechanism increases with PD progression. It is possible that, in the preclinical stage,
the enhancement of the stability function is more substantial than the process associated
with the development of PD and the increase in the tremor.

The idea of the 3D AUC diagrams described in this paper is based on multiscale data
analysis. We changed the resolution of the diagrams to look for Bonferroni correction that
enables to observe statistically significant differences between the subject groups. The
investigation of the multiple comparisons problem [40,51–54] is currently an important
topic in biomedicine. A large number of methods have been developed to solve the
multiple comparisons problem. These methods are based on the analysis of the family-wise
error rate (FWE), the false discovery rate (FDR), the application of random field theory
(RFT) [54–56], the permutation method [52], etc. Unfortunately, most of these methods do
not consider the connection between the multiple comparisons problem and the problem
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of the multiscale analysis of biomedical data. Meanwhile, these two problems are closely
related both from the point of view of the mathematical apparatus and from the point of
view of the practical application of the methods. The problem with multiscale analysis is
that biomedical data may contain patterns that appear on various, previously unknown
scales of images/signals. It is necessary to investigate data in a certain space of scales to
detect such patterns. However, different scales correspond to different numbers of multiple
comparisons and, therefore, suggest a different level of statistical correction for the number
of multiple comparisons. Moreover, the investigation of the data on the multiple scales
implies multiple comparisons and, therefore, may require the application of additional
correction for the multiple comparisons. This problem, in particular, was considered in the
random field theory, and an approach to analyzing the data based on the space of scales (the
scale space approach) was proposed [57]. Thus, a possible direction in the development
of the method for the analysis of wave train electrical activity is the use of more accurate
corrections for the multiple comparisons instead of the standard Bonferroni correction.

5. Conclusions

The method developed for analyzing the wave train electrical activity is a universal
method for exploratory data analysis and can be applied to other types of biomedical
signals [58–70]. In particular, we demonstrated that the statistical analysis of some charac-
teristics of wave trains in EEG can identify features of the preclinical stage of PD [58–61]. It
was found that the number of wave trains in wavelet spectrograms in the beta frequency
range in first-stage PD patients was significantly reduced in comparison with the control
subjects [71–73]. Statistically significant differences in the signals of the accelerometer [68]
and EMG [63] in patients with PD, essential tremor (ET), and healthy volunteers in the
0.5–4 Hz low-frequency range were found using 2D AUC diagrams. Note that this fre-
quency range has remained unexplored for a long time. The revealed regularities can be
used for the differential diagnostics of PD and ET. The problem of the early and differential
diagnostics of PD and ET by means of wave train analysis was considered in paper [69].
The source code of the Matlab program used for the analysis of EMG data has been pub-
lished in GitHub [74]. The method used for the differential diagnostics of the essential
tremor disease and early and first stages of Parkinson’s disease based on the wave train
electrical activity analysis was patented [75].
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Abstract: The role of the hand is crucial for the performance of activities of daily living, thereby
ensuring a full and autonomous life. Its motion is controlled by a complex musculoskeletal system
of approximately 38 muscles. Therefore, measuring and interpreting the muscle activation signals
that drive hand motion is of great importance in many scientific domains, such as neuroscience,
rehabilitation, physiotherapy, robotics, prosthetics, and biomechanics. Electromyography (EMG)
can be used to carry out the neuromuscular characterization, but it is cumbersome because of the
complexity of the musculoskeletal system of the forearm and hand. This paper reviews the main
studies in which EMG has been applied to characterize the muscle activity of the forearm and hand
during activities of daily living, with special attention to muscle synergies, which are thought to
be used by the nervous system to simplify the control of the numerous muscles by actuating them
in task-relevant subgroups. The state of the art of the current results are presented, which may
help to guide and foster progress in many scientific domains. Furthermore, the most important
challenges and open issues are identified in order to achieve a better understanding of human hand
behavior, improve rehabilitation protocols, more intuitive control of prostheses, and more realistic
biomechanical models.

Keywords: ADL; EMG; forearm muscles; muscles role; synergies; muscle coordination

1. Introduction

The ability to carry out activities of daily living (ADL) is critical to ensure a full
and autonomous life [1], and has been established by the WHO as the main factor for
classifying the degree of disability [2]. ADLs refers to those elementary tasks that allow
anyone to function with minimal autonomy and independence, including any daily activity
that we perform for self-care, work, housework, and leisure. The ability of the hands
to grasp and manipulate is fundamental in the performance of ADL [3] but also for
working life [4]. This ability is achieved thanks to a complex musculoskeletal system,
with 25 degrees of freedom that are controlled by approximately 38 muscles located in the
forearm and hand [5]. These muscles can be divided into two groups: extrinsic and intrinsic
muscles. The extrinsic muscles are located in the anterior and posterior compartments
of the forearm whereas intrinsic muscles are located within the hand itself. Broadly, the
extrinsic muscles are considered to control crude movements of the hand and produce
forceful grip, while the intrinsic muscles would be responsible for the fine motor functions
of the hand [6–8]. However, both the specific role of the different muscles in ADL and how
the Central Nervous System dares with this redundant and complex muscular system are
still unknown [9]. This information is essential for determining the impact on functionality
when a given muscle is compromised because of an accident or pathology.

The measurement and interpretation of the hand kinematics and the associated muscle
activation signals is complex but of great importance to deepen the knowledge of the role
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of the muscles in ADL [8]. This knowledge is not only important to rate disability but also
to improve rehabilitation processes [10,11] or to help in decision-making during surgical
planning, among others [12]. Another important field of application is in the control of
hand prostheses [13–16]. Myoelectric hand prostheses use the electrical action potential of
the residual muscles in the limb emitted during muscular contractions. These emissions
are measured on the skin surface, picked up by electrodes, and are amplified to be used
as control signals for the functional elements of the prosthesis. Therefore, deepening the
knowledge of the role of the forearm muscles in ADL may help in the selection of the
muscles to control this type of prostheses.

Electromyography (EMG) emerged as a diagnostic procedure to assess the health
of Muscles and the nerve cells that control them (motor neurons). The electrodes receive
the electrical signals transmitted by the motor neurons that cause muscle contraction.
However, these EMG signals acquired from muscles require advanced methods for their
detection, decomposition, processing, and classification [17–19] that a specialist interprets.
There are two basic types of electrodes to acquire these signals: surface and intramuscular
electrodes. Surface electrodes are placed on the skin directly over the muscles, recording
the signal from all the fibers under the two electrodes. Intramuscular electrodes can be
indwelling (also known as needle) or fine wire electrodes (Fw-EMG), and they are inserted
through the skin directly into the muscle [20], thus recording the signals from only few
fibers. The general advantage of surface electrodes is that they are non-invasive and easy to
apply. Their use, however, is limited to superficial muscles that are large enough to support
electrode mounting on the skin surface, and crosstalk is particularly problematic for smaller
muscles within a complex mechanical arrangement, such as the forearm [21]. Indwelling
electrodes need significantly more training for their proficient use in comparison to surface
electrodes. Although they are ideal for recording the activity of deep muscles, correct
placement requires a detailed knowledge of musculoskeletal anatomy. Furthermore, the
invasiveness of inserting a needle into the muscles, as well as the associated pain, is the
major disadvantage of intramuscular electrodes [20].

EMG has been incorporated as a diagnostic technique for the detection of pathologies
that affect nervous and muscular structures, and for the spatial location of the origin of the
injury. Examination with needle EMG allows motor unit action potentials (MUAPs) to be
evaluated. High density EMG grids allow also the identification of the MUAPs, but only
for those motor units whose innervation zone was close to the surface of the muscle [22].
The morphology (duration, amplitude, and number of phases) and recruitment pattern of
MUAPs are the key element for diagnosing pathologies using needle EMG. MUAPs are
analyzed per muscle and the results compared with those normally expected for that par-
ticular muscle. For this reason, due to the need for a normal pattern, evaluation of MUAPs
is not useful to gain deeper knowledge of the role of the muscles in ADL. Parameters, such
as time-domain, time-frequency domain, or intensity of muscle activation, could be more
useful for studying tasks. EMG data for these purposes are commonly normalized to a
reference value to avoid variability arising from electrode placement, participants, or even
the day of the experiment. The most popular method is to normalize EMG data to the max-
imum voluntary contraction (MVC) of the muscle of interest [23], which, besides making
data comparable, also informs about how active muscles are relative to their maximum
capabilities. Surface EMG is applied in many fields, such as motor control of human move-
ment, myoelectric control of prosthetic and orthotic devices, and rehabilitation [24–27].
Some studies have performed EMG analyses for intrinsic and/or extrinsic hand muscles in
specific situations: while grasping objects [28–40], during working postures [41–49], and
for the design and improvement of sports equipment, as well as for the study of the role
of Muscles in sports performance [50–55].

The concept of synergy has been used in the field of control of myoelectric hand pros-
theses in an attempt to simplify the study of the complex kinematics and muscular action
of the hand [56–59]. There are some studies describing muscle patterns or muscular syn-
ergies during some postures [60], grasps [61,62], or hand movements [60,63], and during
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particular actions [64–68]. In that research, different activation patterns have been obtained,
revealing coordination between certain intrinsic and extrinsic hand muscles. Thus, EMG
patterns have been studied as a way to control signals [69]. However, the usability of
myoelectric prostheses is still challenged because of issues, such as the effect of electrode lo-
cation or changes in EMG patterns over time, which can lead to long training processes [70].
A small number of studies have investigated the existence of hand muscle synergies in
ADLs, which could help in the selection of Muscles to control myoelectric prostheses.

In this work, a review of the studies in which EMG has been used to record the
muscular activity of hand and forearm muscles during ADL is presented, which may
help to identify the role of these muscles in ADLs. In addition, studies examining EMG
patterns or muscular synergies between the muscles of the hand and forearm are also
presented, in order to simplify the study of the muscular action of the hand. The contents
are organized in two sections: muscle activation in different activities and hand muscle
synergies (dimensional reduction of EMG).

2. Materials and Methods

The literature review consisted in examining research studies that recorded EMG of
hand and forearm muscles regarding the activation of these muscles in ADLs, and the
dimensional reduction of the muscular action of the hand. A systematic literature search
was conducted in the Scopus and PubMed databases until March 2021. Figure 1 shows
the flowchart followed. The search was restricted to papers published in English and
containing the terms (“Electromyography” and “muscles”) and (“thumb” or “finger” or
“hand” or “forearm”) in the title, abstract, or keywords. Then, a refined search was conducted
including different keywords in the title, abstract, or keywords (see Figure 1). Finally, a
manual screening was carried out to remove duplicates and reject non-relevant articles.

Figure 1. Methodology followed for the literature search.
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After the manual screening, 21 articles related to muscle activity during different
ADLs were selected, and 21 articles related to dimensional reduction of EMG of the hand
were identified. Altogether, 42 articles (including two reviews) were selected for inclusion
in the current review. The articles selected are discussed in the following sections.

3. Results

3.1. Muscle Activation in Different Activities

This section includes a review of studies that have characterized hand and forearm
muscle activity while performing specific activities, such as grasps, ADL, work activities,
and sports. Table 2 summarizes the most relevant information of the 21 papers related to
muscle activity during different ADL found in the literature.

Several studies have analyzed the activation of hand and forearm muscles (both
extrinsic and intrinsic) during certain types of grasps. Regarding extrinsic muscles, they
found that in power grasps both the flexor and extensor groups of Muscles (extrinsic
muscles) were activated, although the extensor part underwent greater fatigue [47]. As
regards the intrinsic muscles, they found that during precision grasps intrinsic muscles
play a major role in finely graded force generation, since fine movements require less
stabilization and counterforce to the long flexor action [36].

Many studies have focused specifically on the thumb muscle activation through
EMG while performing different grasps [30,37–40,71], especially during the opposition
movement, due to its great importance in precision grasps. In general, these studies found
a need for a cooperation of thumb muscles to accomplish the tasks performed [39], with
the exception of the Extensor Policis Longus and Flexor Policis Longus (EPL, FPL), which
could be activated separately from the other muscles [40]. Another study [30] explored and
demonstrated the importance of the opposition of the thumb during stable and unstable
lateral grasps. They observed that instability affects some thumb muscles with greater
activation of Abductor Policis Longus (APL) and EPL in the unstable tasks. Similarly,
Kaufman et al. [71] recorded the EMG activity of 7 thumb muscles and their contribution at
the carpometacarpal (CMC) joint during voluntary isometric contractions. They found that:

• Thumb CMC flexion is supported by Flexor Policis Brevis (FPB), Abductor Policis
Brevis (APB), thumb Adductor (ADD), and FPL.

• CMC extension by APB, APL, and EPL; CMC abduction by FPB, APB, APL, and EPL;
and CMC adduction by FPB, APB, EPL, and FPL.

• The Opponens Policis (OPP) was active in all motions.

However, the studies in the literature all focused on small sets of very controlled
and simple activities (a few grasps or simple finger movements). Additionally, they were
limited to very specific muscles, or specific fingers or joints, especially for the role of
the thumb.

EMG has also been used to study the effect of different kinds of work activities on the
forearm muscles, evaluating the influence of different factors on fatigue during repetitive
tasks [41,43,49], such as typing, keying, writing, reading and mousing, and on pulling and
pushing tasks [45,46]. These studies have focused on evaluating and comparing different
forearm and hand positions. Nevertheless, the relationship between force production and
EMG is not well understood, and there are factors that influence the forces generated and
therefore prevent the direct quantification of muscle force from EMG signals. These factors
include variations in the location of the recording electrodes, crosstalk, the involvement
of synergistic muscles, properties of Muscles, tendons, ligaments, etc. Consequently, the
EMG-force relationship differs for each muscle and for each situation [72]. Many studies in
the literature have focused on examining muscle activation of both intrinsic and extrinsic
muscles in writing activities [31,32,35]. One of these studies [35] compared two different
typewriting tasks and the results suggested that the major function of the Extensor Carpi
Radialis (ECR) muscle as a stabilizer of the wrist joint is maintained during handwriting. It
is also suggested that the increased use of extrinsic muscles could result in a diminished
role of intrinsic hand muscles. In that research, the authors showed that EMG of hand and
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arm muscles may be converted into handwriting patterns. However, the results of those
studies were focused on specific activities and in many cases with a low number of subjects
and activities, lacking representativeness in ADL.

EMG has also been used in the design and improvement of sports equipment, as
well as for the study of the role of Muscles in sports performance. Some researchers have
studied the regions that are activated, thereby making the main movement possible, in
sports, such as golf [50] and tennis [51–54]. Other studies have focused on examining the
effect of different features of sports equipment, such as the size of the handle of rackets [53]
or of a golf club [55].

Some authors [50,52] have observed that there is considerable diversity in the protocol
design used for sEMG recording. For example, most of the studies did not specify the
electrode placement, so it is not clear which locations were used to acquire the EMG data,
thus making it difficult to compare values. A recent study [73] recorded sEMG activity from
30 spots distributed over the skin of the whole forearm of six subjects while performing
21 representative ADL from the Sollerman Hand Function Test (SHFT). As a result, they
proposed that the number of sEMG sensors could be reduced from 30 to 7 without losing
any relevant information, using them as representative spots of the muscular activity of
the forearm in ADL.

There are few EMG analyses of upper extremities that examine muscle function dur-
ing daily tasks, and they use little variability and a limited number of tasks (no more
than 10) [74–76]. A wide variety of clinical tests (such as the Jebsen Taylor Hand Function
(JTHF) test [77], Chedoke Arm and Hand Activity Inventory (CAHAI) [78], or SHFT [79])
are often used to evaluate and track functional recovery of the upper extremity simulating
ADL. In these cases, EMG recordings may provide a window into the central nervous
system to evaluate muscle recruitment and coordination. In this sense, Peters and collabora-
tors [75] evaluated the recruitment and coordination between several upper-limb muscles
during some of these clinical tests (JTHF, CAHAI, and Block and box test (BBT)). Specifically,
they recorded sEMG from eight upper-extremity muscles (Anterior and Posterior Deltoid
(AD and PD), Biceps Brachii (BB), Triceps lateral head (TriB), Brachioradialis (Br), ECR,
Flexor Carpi Ulnaris (FCU), and Extensor Digitorum (EDC)), and evaluated which muscles
were used to execute each task and whether activation and co-contraction levels were
similar across tasks. As results, they found that co-contraction levels were similar across
tests and EDC was found to have the greatest activation levels across all tasks, thereby
denoting its importance for common tasks. However, this study has several limitations:
they evaluated a small set of forearm muscles (only four forearm and finger muscles).

Summing up, most research found in the literature presents gaps that require further
investigation, as, in many cases, the studies are focused on small sets of very controlled
and simple activities. Few of them characterize the EMG activity of all the hand muscles
while performing representative actions, either by carrying out all possible grasp types
required in ADL or by performing a representative and conveniently standardized set of
ADL. Furthermore, the lack of a methodology and a standardized protocol hinders the
comparison of EMG results between tasks and subjects. Indeed, at the hand level there
are few specific recommendations to help in this decision, although results from a recent
study [73] could assist in this task, as 7 specific spots were identified as being representative
of the muscular activity of the forearm in ADL. In addition, more studies are required to
improve the knowledge about the relationship between force production and EMG.
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Table 1. Summary of the studies included in the systematic literature review (I). Relevant information contains subjects,
type of EMG used, and muscles recorded in the studies.

Study Relevant Information Description of the Task
Observations about Role

of Muscles

Cooney et al. [38]

8 healthy subjects
Fw-EMG

Extrinsic muscles:
FPL, APL, EPL, EPB

Intrinsic muscles:
ADD, APB, OPP

Isometric F/E and Abd/Ad
thumb movements,

pinch and power grasps

Extensor muscles (EPL, EPB,
and APL) were primary and
contributed nearly equally to
the extension. In flexion, only
the FPL was primary.
ADD and APB are primary in
adduction but the EPL
(adduction) and OPP
(abduction) contribute
significantly.
Three muscles appear to be
primary in pinch and power
grasp: the ADD, OPP,
and FPL.

Kilbreath and Gandevia [80]

7 healthy subjects
needle EMG

Extrinsic muscles:
FPL, FDP

Intrinsic muscles: None

Dynamic movements: Lift a
weight by flexion of one digit

There is a coactivation of other
deep digital flexor muscles
and this coactivation increases
when the digit flexes at a
greater velocity or through a
larger angle.

Maier and
Hepp-Reymond [36]

6 healthy subjects
needle EMG

Extrinsic muscles
FDP, FDS, APB, FPL, EPL EPB,

APL, EDC, EI
Intrinsic muscles:

FDI, FPI, FPB, FLUM
ADD, OPP

Isometric forces with thumb
and index finger

The intrinsic muscles (FDI,
FPI, and FLUM) and the long
flexors (FDP, FDS) of the index
finger, as well as two intrinsic
muscles of the thumb (ADD
FPB), increase their activity
according to the load.
The other thenar muscles
(OPP, APB) and the extrinsic
muscles of the thumb (FPL,
EPL, EPB, and APL) become
active only at higher loads and
may serve to stabilize joints.
The long extensors of the
index finger (EDC, EI) were
classified as antagonistic, and
only act to balance the applied
load and maintain joint
equilibrium.
The intrinsic muscles play a
major role in finely graded
force generation since less
stabilization and counterforce
to the long flexor action are
needed, thus releasing the
intrinsic muscles for precise
force regulation.

Hägg and Milerad [47]

9 healthy subjects
sEMG

Extrinsic muscles:
FCU, FDS, ECR Longus, ECR

Brevis, EDC
Intrinsic muscles: None

Simulations of grips in
industrial work

Fatigue effects are generally
larger on the extensor side
although none of the regimes
studied were acceptable from
point of view of EMG fatigue.
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Table 1. Cont.

Study Relevant Information Description of the Task
Observations about Role

of Muscles

Chow et al. [51]

7 healthy and skilled tennis
subjects
sEMG

Extrinsic muscles:
FCR, ECR

Intrinsic muscles: None

Tennis volley

In general, the ECR was more
active than the FCR during
the volley, suggesting the
presence of wrist extension
and abduction.

Kaufman et al. [71]

5 healthy subjects
Fw-EMG

Extrinsic muscles:
APL, FPL, EPL

Intrinsic muscles:
APB, OPP, FPB, ADD

Isometric thumb motions in
F/E and Abd/Ad

The FPB was most active in
the range from flexion to
abduction with about 50%
activity or less in extension
and adduction.
The OPP displayed activity in
all directions of motion.
The APB displayed maximal
activity in abduction and
abduction-flexion directions.
The ADD was active
during flexion.
The APL was most active in
abduction and/or extension.
The EPL showed the highest
activity during extension in
combination with abduc-
tion/adduction functions.
The FPL was the most active
in flexion and/or
adduction functions.

Johanson et al. [30]

7 healthy subjects
Fw-EMG

Extrinsic muscles:
FPL, EPL, EPB, APL

Intrinsic muscles:
APB, ADD, FDI, FPB OPP

Key and opposition pinch
postures between stable and

unstable tasks

Activation patterns are
different between key and
opposition pinch posture and
between stable and unstable
pinch tasks.
APB and EPL muscles are
necessary to accurately direct
thumb-tip forces in a
functional pinch, not just to
position the thumb,
independently of pinch
force magnitude.
In all unstable conditions,
APB and EPL were among the
most activated muscles and
could provide the task with
directional accuracy.

Van Galen et al. [41]

20 subjects
sEMG

Extrinsic muscles:
BB, TriB, FCU, ECR

Intrinsic muscles: None

Fast movements with an
electronic pen along the

surface of a digitizer

For the forearm muscle
movers, our findings show
that the participants reacted
with a substantial increase in
static muscle activity, i.e., of
antagonistic activation.
For the wrist stabilization
musculature, however, the
effect was reversed.
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Study Relevant Information Description of the Task
Observations about Role

of Muscles

Danion and Galléa [37]

7 healthy subjects
sEMG

Extrinsic muscles:
EPL

Intrinsic muscles:
FPB

Constant force matching task
during precision grasp

Muscle co-contraction is not a
critical factor for force
steadiness during a precision
grasp task.
Muscle co-contraction and
grip force steadiness depend
on grip force magnitude, but
grip force steadiness does not
depend on muscle
co-contraction.

Hatch et al. [53]

16 healthy tennis players
Fw-EMG

Extrinsic muscles:
EDC, ECR Longus, ECR

Brevis, PT, FCR
Intrinsic muscles:

None

Back-hand tennis stroke

There was a progressive
increase in ECRL and FCR
activity from early
acceleration through
ball impact.
There was a progressive
increase in EDC activity
through the early and late
acceleration phases.
At ball impact, all muscle
activity tended to peak, and
then gradually decreased in
the early follow-through
phase.

Ertan [67]

20 healthy subjects
sEMG

Extrinsic muscles:
EDC, FDS

Intrinsic muscles:
None

Dynamic archery shooting

Elite archers relax their finger
flexors so as not to grip the
bow-handle, and contract the
extensors to avoid
holding/gripping the handle
throughout the whole shot.
The main difference between
elite and beginner archers was
that the elite archers had a
greater activation of the EDC.

Linderman et al. [32]

6 healthy subjects
sEMG

Extrinsic muscles:
FCR, EDC, ECU, ECR

Intrinsic muscles:
OPP, APB, FDI

Writing numeric characters

It is feasible to recreate
handwriting solely from EMG
signals thanks to the existence
of muscle patterns during
writing.

Di Dominizio and Keir [46]

12 healthy subjects
sEMG

Extrinsic muscles:
FCR, FCU, FDS, ECR, ECU,

EDC, AD, PD
Intrinsic muscles:

None

Grips with pull and
push tasks

Flexor muscle activity tended
to be lower when performing
push with grip tasks and pull
with grip tasks than extensor
muscle activity.
The highest wrist and finger
extensor (ECR, ECU, and
EDC) activity was elicited
when performing grip tasks in
a pronated posture.
ECU was found to be the most
sensitive to postural changes.
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Study Relevant Information Description of the Task
Observations about Role

of Muscles

Szeto and Lin [49]

17 healthy subjects and
9 symptomatic office workers

sEMG
Extrinsic muscles:

ECR, FCU, ECU, FCR
Intrinsic muscles:

None

Performing mouse-clicking
tasks under different speed

and precision conditions

Higher EMG amplitudes in
the Control Group over Case
Group mostly in the ECU and
ECR muscles and more so in
the more stressful condition.
ECR muscle recorded
significant group differences
in both precision and speed
condition analyses, and FCU
in speed condition analysis.

Marta et al. [50]

Review paper about amateur
and professional golfers

sEMG/Fw-EMG
Extrinsic muscles:

ECR Brevis, PT,
FCR, FCU,

Intrinsic muscles:
None

Different phases of the
golf swing

Higher peak activity in the
leading PT during the
acceleration phase and just
after the impact in
professional golfers compared
to amateur players who
showed peak activation in
the ECRB.
This study also reported
considerably higher levels of
activity in the ECRB in
amateurs during all swing
phases.
Some studies did not specify
the electrode placement, so it
is not clear which locations
were used to acquire the EMG
data, thus making it difficult
to compare values.

Almeida et al. [35]

24 healthy subjects
sEMG

Extrinsic muscles:
Tr, BB, ECR Brevis, FDS

Intrinsic muscles:
None

Writing a word five times

The major function of the
ECRB muscle as a stabilizer of
the wrist joint is maintained
during handwriting tasks and
the increased use of extrinsic
muscles could result in a
diminished role of intrinsic
hand muscles during
handwriting.

Birdwell et al. [40]

7 healthy subjects
Fw-EMG

Extrinsic muscles:
APL, EPB, EPL EDC, FDP,

FDS, FPL
Intrinsic muscles:

None

Activating each specific
muscle during 3 s of MVC

Only two extrinsic thumb
muscles, EPL and FPL, were
capable of sustaining
individual activations from
the other thumb muscles.
Activation of EPB elicited
coactivity levels from EPL
and APL.

Park [31]

36 healthy subjects
sEMG

Extrinsic muscles:
FCU, FCR, ECU, ECR,

Upper Tr
Intrinsic muscles:

None

Writing subtests of the JHFT
ECU was the most active
muscle during writing in both
left- and right-handers.
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Observations about Role

of Muscles

Alizadehkhaiyat and
Frostick [52]

Review paper:
198 healthy (controls)

18 Lateral-epicondylitis
patients

sEMG/Fw-EMG
Extrinsic muscles:

FCU, FCR, ECR, ECU, PT
Intrinsic muscles:

None

Different tennis strokes

Increase in the activity of
wrist extensors including ECR
Brevis and ECR Longus in
multiple phases of forehand,
serve, and backhand strokes
with the activity of wrist
flexors remaining
fairly constant.
Higher EMG activity of ECR
during repetitive pre- and
post-impact in the presence of
unchanged FCR activity has
been suggested as
predisposing players to injury
or delaying the
recovery process.
Finally, an earlier, longer, and
greater activation of ECR
Brevis during backhand
volleys at combined
conditions of velocity and
racket-head impact locations
has been reported in LE
patients compared to
non-injured players.
There was considerable
diversity in the protocol
design used for
EMG recording.

Kerkhof et al. [39]

10 healthy subjects
Fw-EMG

Extrinsic muscles:
FPL, EPB, EPL, APL

Intrinsic muscles:
ADD, APB, FPB OPP

Isometric contractions in a
lateral key pinch, a power
grasp, and a jar twist task

Extrinsic thumb muscles were
significantly more active than
intrinsic muscles in all tasks.
The thumb muscles display a
high variability in muscle
activity during functional
tasks of daily life.
To produce a substantial
amount of force, a
co-contraction between the
intrinsic and extrinsic thumb
muscles is necessary.

Peters et al. [75]

20 healthy subjects
sEMG

Extrinsic muscles:
AD, PD, BB, TriB, BB, ECR

Longus, FCU, EDC
Intrinsic muscles:

None

Clinical tests of upper
extremity function

Minimal muscle force is
required to perform
these tests.
Co-contraction levels were
similar across tests.
EDC has the greatest
activation levels across
all tasks.
The results suggest that
healthy participants used
different strategies to execute
the tests.
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Jarque-Bou et al. [73]

6 healthy subjects
sEMG

Extrinsic muscles:
Muscles recorded from all the

forearm
Intrinsic muscles:

None

21 ADL selected and adapted
from SHFT

The EMG sensors needed to
record relevant information
about forearm muscle activity
could be reduced to 7.
The signals from these seven
spots would be related to
seven different movements:

1. wrist flexion and ulnar
deviation

2. wrist flexion and radial
deviation

3. digit flexion
4. thumb extension and

abduction/adduction
5. finger extension
6. wrist extension and

ulnar deviation
7. wrist extension and

radial deviation

Jarque-Bou et al. [81]

22 healthy subjects
sEMG

Extrinsic muscles:
Seven spots representative of
all available muscle activity of

the whole forearm
Intrinsic muscles:

None

26 representative ADL

Minimal muscle force is
required to perform ADL.
Greater activity is shown
during reaching (to place the
hand to grasp) than during
manipulation.
Finger and wrist extensors
were the most active muscles
while performing ADL.
Muscle activity presented
some variability among
subjects, highlighting the
different possibilities that each
subject may have to carry out
the same activities.

Abbreviations: FLUM—First Lumbrical; FDI—First Dorsal Interosseous; FPI—First Palmar Interosseous; ECU—Extensor Carpi Ulnaris;
PT—Pronator Teres; FCR—Flexor Carpi Radialis; FDS—Flexor Digitorum Superficialis; FDP—Flexor digitorum Profundus.

3.2. Hand Muscle Synergies

This section includes a review of studies that have characterized hand and forearm
muscle activity by studying EMG patterns or muscular synergies between the muscles
of the hand and forearm in order to simplify the study of muscular action of the hand.
Table 2 summarizes the most relevant information in the 21 papers related to hand muscle
synergies that were selected.

The human hand has a complex biomechanical structure, controlled by a neural
structure that is still not completely understood. In the analysis of the biomechanical
and behavioral aspects of the hand, one of the most striking is the high redundancy
of its structure, seemingly having many more muscles than are actually required [56].
Synergies are thought to be used by the nervous system to simplify the control of these
numerous muscles by actuating them in task-relevant subgroups. There are studies both
for and against muscle synergies [82]. Many researchers seek to detect and describe
such simplifying functional muscle groups and how to interpret them in order to reveal
the underlying control strategy used by the brain to coordinate muscles [56,60]. Others
point out the importance of the ability of the brain to break and dissolve such patterns
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of neural synchrony. This might happen to enable flexible and individuated control of
hand muscles [83–85], thus indicating that muscles are recruited flexibly in accordance
with their mechanical action, rather than in fixed groupings. In both cases, EMG of hand
muscle activity has been extensively used to infer the control strategies underlying the
complex coordination of muscle activity within and across digits and as a tool to study the
spatial and temporal coordination of multiple muscles. In fact, this technique has been
used to examine the organization of these muscle synergies in healthy and neurologically
impaired individuals [83,86]. In addition, several studies have examined the covariations
in EMG amplitudes across muscle pairs [36] and among multiple muscles [87,88] related to
hand function.

Previous studies reinforce the idea of hand muscle synergies, and their results con-
cerning the features of hand muscle synergies can be summarized as: muscle synergy
occurs primarily across muscles with similar mechanical features [89]; the coactivity of
some muscles is a way to adapt the limb to different environmental conditions [90,91];
and the whole set of hand and forearm muscles may be approximated with relatively few
adequately scaled and synchronized muscle synergies [60,92–96].

The basic approach of these studies involves four steps:

(1). Measuring sEMG from a large number of Muscles during a complex behavior (or
more than one behavior). Note that surface electrodes are the most widely used
method, since they are non-invasive and a high number of Muscles on the forearm
need to be recorded.

(2). Using a computational analysis, such as non-negative matrix factorization, to identify
a set of synergies from the sEMG recorded. Different factorization methods have been
used to extract muscle synergies from muscle activation patterns during dynamic
tasks. The two most commonly used factorization methods reported in the literature
are non-negative matrix factorization and principal component analysis [97]. Similar
results are obtained in both cases, but the non-negative matrix factorization method
is the most suitable when recording a high number of channels [98].

(3). Evaluating whether the sEMG observed can be well described as the combination of
these synergies.

(4). Relating the muscle synergies identified to task-relevant variables [82].

As a result of the application of this procedure, two different types of synergies are
described in the literature: synchronous synergies and time-varying synergies. A syn-
chronous synergy is a vector of weighting coefficients that specify the relative involvement
(strength of membership) of each muscle in the group. In contrast, a time-varying synergy
is a collection of EMG bursts in various muscles.

Several studies describe muscle patterns or muscular synergies during certain specific
postures or grasps [99] or during the whole-hand grasping performance [60,62]. Some
synergies during specific tasks are also described, such as during finger spelling [60,95], or
the preparatory muscle activation response when a fall occurs [100]. Weiss and Flanders [60]
recorded the EMG activity of 6 hand and forearm muscles (APB, FPB, FDI, EDC, ADM, and
FDS) in four subjects while they held the hand statically, shaping around 26 grasped objects
and forming the 26 letter shapes of a manual alphabet. They found that a single muscle can
be a member of more than one muscle synergy [60,101]. Klein Breteler et al. [95] expanded
the synergy analysis from static synergies to time-varying synergies in order to explore the
timing of muscle activations during finger spelling using a manual alphabet. They recorded
FDI, APB, FPB, ADM, FDS, and EDC and concluded that four time-varying synergies could
account for 80% of the temporal EMG patterns observed, with the first two synergies
accounting for about 60%. In addition, they showed that the first component displayed a
consistent pattern, the first and second component waveforms showed similarities across
subjects, and higher order components were far more variable across subjects. The first
component was a pattern where the EDC and the thumb muscles (APB and FPB) were active
early on, and the other muscles were active later. Recently, Scano and collaborators [62]
extracted muscle synergies from 20 hand grasps with an array of 8 equally spaced electrodes
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on the forearm, two electrodes on finger flexors and extensors, and another two on BB and
TriB. The synergies they found were characterized by two temporal activation patterns: a
strong coactivation corresponding to the grasp/hold phase, and two minor coactivating
patterns related to hand opening (visible in the pre-shaping and release phase).

Synergistic finger patterns have also been described during dynamic free movements
of the wrist and single fingers [102–104]. Tanzarella et al. [104] performed isometric
contractions with each finger and with three combinations of fingers in opposition with the
thumb. They observed a low dimensional control of motor neurons across multiple intrinsic
and extrinsic muscles. Gazzoni et al. [102] identified distinct areas of sEMG activity on
the forearm for different fingers during hand and finger movements. In the same way,
Hu et al. [103] revealed distinct activation patterns during individual finger extensions,
especially for the index and middle fingers. Nevertheless, the detailed location of the
recording electrodes was not reported in most of the studies, which makes comparison
between subjects and activities difficult.

However, few studies have assessed muscle patterns during complex tasks in which
manipulation is the most relevant phase, such as in ADL [61,68], or during particular ac-
tions, such as playing a piano [63], archery [65,67], catching a ball [64], or while performing
a karate punch [66]. Winges et al. [63] studied the muscle activation patterns of 10 pianists,
suggesting that amateur pianists use the same balance as professionals. Nevertheless, in
other research [65,67], the authors found different patterns between elite and beginner
archers, where the main difference was that the expert archers had a greater activation of
the ED. In this sense, in a study on karate punches [66], expert and non-expert karatekas
presented distinct kinematic and EMG patterns. Regarding a more complex activity, such
as catching a ball [64], the authors recorded sEMG data from 16 shoulder and elbow mus-
cles, but only one forearm muscle (Br), in six subjects. They found that the variation in
the muscle patterns was captured by two time-varying muscle synergies, modulated in
amplitude and shifted in time according to the height at which the ball arrived and the
flight duration. The initial muscular response, captured by the first synergy, allowed the
subject’s hand to reach the interception zone. The following component of the muscle
pattern, captured by the second synergy, guided the hand to the interception. Zariffa
et al. [61] characterized what muscle synergies were present while using different types
of hand grips (gripping a block, a cylinder, a ball, a key, and rotating a disk 180 degrees)
extracted from clinical tests. sEMG data was recorded from FDI, FCU, FCR, FDS, ECR,
EDC, EIP, and the thenar eminence muscle group. Two main synergies were found: the first
between EDC and EIP, and the second between FDS and FCU. However, they had some
limitations due to crosstalk, the small number of Muscles recorded, and the little variability
of the ADLs chosen. Ricci et al. [68] recorded data from shoulder and elbow muscles along
with FDS, FCU, ECRLB, and ECU while subjects poured water. In the transport phase,
characterized by weight bearing, handgrip and displacement of the arm in space, a higher
activity of almost all muscles was found. Furthermore, they found that ECR seems to play
a key role in maintaining optimal wrist posture and function regardless of task demand.
That stabilization could be provided by a delicate balance of co-contraction of forearm
muscles to keep the hand in the proper posture to grasp or produce handgrip force [105].
However, few forearm muscles were measured and for very specific actions, and therefore
further studies should be conducted to evaluate more forearm muscle patterns in a wide
range of ADL. Likewise, hand kinematics should be recorded in order to relate muscular
and kinematic hand synergies during representative ADL.

Moving on to the assessment of pathologies, as mentioned above, sEMG has recently
been used for the evaluation of patients with neuromuscular disorders by using muscle
synergies. Muscle synergies have been investigated in acute, subacute, and chronic stroke,
showing abnormalities compared to healthy people [84,106–109], as well as in patients
with dystonia [110] and sclerosis [111] or after spinal cord injury [61]. The results illustrate
that muscle synergy patterns contain rich information in their spatial components and
temporal profiles. Comparing pathological synergies of patients with the baseline synergy
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can reveal deficits in the underlying neuromuscular coordination and control. The analysis
of task-specific muscle synergies should offer both researchers and clinicians new insights
into the impairments in the neural organization of motor control. Yet, in these studies, a
considerable diversity in the protocol design was used for sEMG recording, and it is not
clear which locations were used to acquire the sEMG data, resulting in difficulty when it
comes to comparing values.

Summarizing, EMG has been widely used to detect muscle patterns, although a small
number of studies have investigated the muscular synergies in the hand in greater depth.
There are some gaps that need to be studied in more detail. First, muscular synergies
seem to be task-dependent, and a single muscle can be a member of more than one muscle
synergy. In the literature, researchers have generally investigated the presence of synergies
during some specific hand movements or grasps, but few studies have analyzed the
different coordination and muscular patterns or synergies during the performance of a
representative set of ADL. Second, little has been studied about kinematics and muscular
synergies of the forearm and hand relationship. Consequently, little is known about the
role of the muscles linked to the joint movement of the hand during ADL.

Table 2. Summary of the studies included in the systematic literature review (II). Relevant information contains subjects,
type of EMG used, and muscles recorded in the studies.

Study Relevant Information Description of the Task
Observations about

Muscles Role

Valero-Cuevas et al. [87]

8 healthy subjects
Fw-EMG

Extrinsic muscles:
FDP, FDS, EI, EDC
Intrinsic muscles:
FLUM, FDI, FPI

Static force in five directions

CNS is implementing the
predicted mechanically

advantageous strategies, and
scaling them down to produce

less than maximal forces.
Palmar force used flexors,
extensors, and FDI. Dorsal

force used all muscles. Distal
force used all muscles except

for extensors.
Medial and lateral forces used

all muscles including
significant co-excitation

of FDI.

Valero-Cuevas [88]

8 healthy subjects
Fw-EMG

Extrinsic muscles:
FDP, FDS, EI, EDC
Intrinsic muscles:
FLUM, FDI, FPI

Different levels of fingertip
forces while maintaining their
forefinger in a static posture

Significant muscle
coordination patterns similar
to those previously reported

for 100% of maximal fingertip
forces were found for 50% of

maximal voluntary force.

Weiss and Flanders [60]

4 healthy subjects
sEMG

Extrinsic muscles: EDC, FDS
Intrinsic muscles:

ADM, APB, FPB, FDI

Static postures for 26 objects
and 26 letter shapes of a

manual alphabet

Single muscles may be a
member of more than one

muscle synergy.

Klein Breteler et al. [95]

9 healthy subjects
sEMG

Extrinsic muscles:
EDC, FDS

Intrinsic muscles:
FDI, APB, FPB, ADM

Finger spell words, presented
on a computer screen

The first synergy represented
the main temporal synergy,
accounting for more of the
EMG variance (up to 40%).

This main synergy began with
a burst in the EDC and a silent

period in the flexors. There
were then progressively later
and shorter bursts in the APB,

FPB, ADM, and, finally,
the FDS.
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Martelloni et al. [96]

6 healthy subjects
sEMG

Extrinsic muscles:
TriB, Deltoid, Trapezius, FCR,

ECR, BB
Intrinsic muscles:

None

Performing reach-to-grasp
movements for different

objects placed in
different locations

Activation of proximal
muscles can be statistically
different for different
grip types.
Proximal and distal muscles
are simultaneously controlled
during reaching and grasping.
Patterns of EMG activation in
arm muscles can provide a
reliable representation of
motor behavior during
reaching and grasping of
different objects.

Valero-Cuevas et al. [85]

8 healthy subjects
Fw-EMG

Extrinsic muscles:
EDC, EI, FDP, FDS
Intrinsic muscles:
FDI, FPI, FLUM

Vertical fingertip force vectors
of prescribed constant or
time-varying magnitudes

Evidence for preferential
control of task-relevant
parameters that strongly
suggest the use of a neural
control strategy compatible
with the principle of
minimal intervention.
Only one synergy accounting
for >40% of the variance with
positive correlation among all
muscles (coactivation).
There was no reduction in
dimensionality because each
of the seven principal
components explains a
nontrivial amount of variance.

Marc H. Schieber et al. [83]

10 stroke subjects
sEMG

Extrinsic muscles:
None

Intrinsic muscles:
APB, FDI, ADM

Cyclical F/E or Ab/Ad
movements of each digit

FDI in the control hand was
active only when the index
finger was abducting.
FDI in the affected hand was
also active during movement
of the thumb or the ring finger.
These inappropriate
contractions of FDI in the
affected hand would cause the
index finger to move when
the subject attempted to move
only the thumb or the
ring finger.
Muscle synergies of the
stroke-affected arm were
strikingly similar to those of
the unaffected arm despite
marked differences in motor
performance between
the arms.
In subjects with severe motor
impairment, there was far less
resemblance between the
synergies of the two arms.
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Study Relevant Information Description of the Task
Observations about
Muscles Role

VencesBrito et al. [66]

18 karatekas and 19
non-karatekas

sEMG
Extrinsic muscles:

BB, Br, Deltoid, Pectoralis, PT,
Infraspinatus

Intrinsic muscles:
None

Analysis of a karate punching
movement (choku-zuki) on a

fixed target

The two groups presented
distinct EMG patterns.
The first muscles to be
activated were the agonists of
the arm flexion and
internal rotation.
This was followed by an initial
activation of the forearm
flexor and pronator muscles.
The forearm extensor muscle
initiates its activity slightly
later, followed by the second
activation moment of forearm
pronator muscle.

Cheung et al. [107]

31 stroke subjects
sEMG

Extrinsic muscles:
infraspinatus; rhomboid

major; Trapezius; pectoralis
major; Deltoid; TriB; BB;

brachialis, Br; supinator; PT
Intrinsic muscles:

None

Tasks and reaching
movements with shoulder

and forearm motions

Muscle synergies of the
stroke-affected arm were
strikingly similar to those of
the unaffected arm despite
marked differences in motor
performance between
the arms.
In subjects with severe motor
impairment, there was much
less resemblance between the
synergies of the two arms.

Zariffa et al. [61]

10 healthy subjects
6 Spinal cord-injured subjects

sEMG
Extrinsic muscles:

FDS, FCR, FCU, ECR, EDC
Intrinsic muscles:

EI, FDI, Thenar eminence

7 functional tasks using grasp
types relevant to ADLs

The synergies found were: (1)
EDC and EIP, and (2) FDS
and FCU.
Many tasks involving finger
extension tasks can be
expected to recruit both EDC
and EIP.
The FDS and FCU synergy
suggests that a wrist flexion
was often used to position the
hand during a grasping action,
though this may be a product
of the specific set of tasks
employed in this study.
The most common synergy in
SCI subjects was FCR and
ECR, which was also one of
the average
able-bodied synergies.
FDI and Thenar eminence
were common in both groups,
possibly because of the need
for independent fine thumb
and index finger movements
in many dextrous tasks.
In subjects with SCI, similar
synergies were observed, but
in different proportions.
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Burkhart and Andrews [100]

20 healthy subjects
sEMG

Extrinsic muscles:
BB, Br, Anconaeus, FCR, ECR

Intrinsic muscles:
None

Impacts occurred to the hand
from two heights

Individuals are capable of
selecting an upper extremity
posture that allows them to
minimize the effects of an
impact and the presence of a
preparatory muscle activation
response has been confirmed.

Castellini and
Van Der Smagt [99]

6 healthy subjects
sEMG

Extrinsic muscles:
Two bands surrounding the

forearm
Intrinsic muscles:

None

Five static grasps: flat grasp,
pinch grip, tripodal grip,

small power grasp, and large
power grasp

Three main synergies were
found: uniform activation,
activation of the dorsal
muscles near the radius, and
activation of the flexors near
the radius.

Lee et al. [109]

4 healthy subjects
14 subjects with chronic

hemiparesis
sEMG

Extrinsic muscles: FDS, EDC,
FCR, FCU, ECR, ECU

Intrinsic muscles:
Thenar muscles, FDI,
hypothenar muscles

Wrist F/E finger extension,
lateral pinch, power grip, and

tip pinch

The first synergy, containing
mainly thenar and FDI
activity, was largely active in
the three grip tasks.
The second synergy,
consisting of EDC, ECR, and
ECU, was heavily weighted
during finger/wrist extension.
The third synergy, involving
coactivation of the wrist and
finger muscles.
The fourth synergy, with FCR,
FCU, and EDC activity, was
employed during
wrist flexion.
For stroke survivors, the
composition of these modules
was generally similar to those
of subjects with
no impairment.

Winges et al. [63]

10 healthy subjects
sEMG

Extrinsic muscles:
FDS (2 portions), EDC

Intrinsic muscles:
ADM, APB, FPB, FDI

Piano dynamic movements:
playing 14 selected pieces
with the right hand at a

uniform tempo

Phasic coactivation was
evident between extensor and
flexor muscles during
piano playing.
For the thumb sequence, PC1
first synergy was dominated
by bursts of activity in the
APB and the FPB with activity
in the four-finger ED muscle.
For the index finger sequence,
the central burst of the first
synergy included activity in
two to three flexors of the
index finger.
Higher PC synergies were
variable across subjects.
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Hu et al. [103]

10 healthy subjects
sEMG

Extrinsic muscles:
surface grid centered on the

EDC
Intrinsic muscles:

None

Static and dynamic finger
movements: To extend MCP

joints individually

When the four fingers were
extended simultaneously, the
entire EDC was active.
When individual fingers were
extended separately, distinct
regions of the EDC were
selectively activated, with the
index finger in the most distal
region, the middle finger in
the most proximal region, and
the ring and little fingers
in between.
Index and middle fingers
have a greater degree of
individuation in comparison
to the little and ring fingers.

Ricci et al. [68]

25 healthy subjects
sEMG

Extrinsic muscles:
Trapezius, Serratus, Deltoid,

Pectoralis, BB, TriB, FDS, FCU,
ECR, ECU

Intrinsic muscles:
None

Pouring water task belonging
to the Elui Functional Test of

the Upper Extremity

In the reaching phase, the
main movements observed
were shoulder flexion and
elbow and wrist extension,
accompanied by significant
higher activity of S, D,
and TriB.
The sequence of movements
in this phase ended up with
the subjects grasping the
pitcher, which could be
related to the late coactivation
between ECU and FCU.
Transport phase was mainly
characterized by higher
muscle activity of all muscles,
except for Pectoralis.
There were almost no
significant differences in
muscle activity within the
release phase.
ECR is a key muscle for wrist
posture and function
regardless of the task demand.
Activation of FCU and ECRLB
were identified as the main
control strategy performed to
maintain optimal grasping.

Roh et al. [108]

6 healthy subjects
16 post-stroke subjects

sEMG
Extrinsic muscles:

Br, BB, TriB, Deltoid, and
pectoralis

Intrinsic muscles:
None

Grasping the MACARM’s
gimbaled handle

EMG spatial patterns were
well explained by
task-dependent combinations
of only a few (typically 4)
muscle synergies.
Elbow-related synergies were
conserved across stroke
survivors, regardless of level
of impairment.
Alterations in the shoulder
muscle synergies underlying
isometric force generation
appear prominently.
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Hesam-Shariati et al. [110]

24 post-stroke subjects
sEMG

Extrinsic muscles:
Trapezius, Deltoid medius, BB,

ECR, FCR, FDI
Intrinsic muscles:

None

14-day program focused on
the more- affected upper limb

The profile of coordinated
muscle activation varied by
the level of residual
motor-function in
chronic stroke.
The number of synergies used
increased (although not
significantly) with therapy for
patients with low and
moderate motor-function.
The distribution of muscle
weightings within synergies
changed as a consequence
of therapy.

Lunardini et al. [111]

9 dystonia subjects
9 healthy subjects

sEMG
Extrinsic muscles:

FCU, ECR, BB, TriB, Deltoid,
Supraspinatus

Intrinsic muscles:
None

Writing task

Synergy analysis revealed no
difference in the number of
synergies between children
with and without dystonia.
Two synergies primarily
involved upper limb distal
muscles (distal synergies).
Distal synergies were different
depending on the task.
The other two synergies
mainly included proximal
muscles (proximal synergies).
Proximal synergies were very
similar across groups and
tasks: Synergy 3 involved
shoulder flexors (D), while
synergy 4 mainly comprised
shoulder extensors (D and
supraspinatus).

Pellegrino et al. [112]

11 healthy subjects
11 subjects with multiple

sclerosis
sEMG

Extrinsic muscles:
15 upper limb muscles with
only two forearm muscles

(Br, PT)
Intrinsic muscles:

None

Reaching tasks: subjects
grasped the handle

For both populations, the
analysis identified three
primary synergies that
involved the distal muscles,
another synergy that involved
proximal muscles, and the last
synergy included
shoulder muscles.
Muscle synergy analysis
detected aspects related to
muscle coordination that were
not evident from the analysis
of single muscle activity.
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Scano et al. [62]

28 healthy subjects
sEMG

Extrinsic muscles:
One band of 8 electrodes

surrounding the forearm +
BB, TriB, finger flexor and

extensor
Intrinsic muscles:

None

Performance of 20 grasps

Ten spatial motor modules,
properly elicited in time, are
enough to describe the whole
dataset with good accuracy,
generalizing across subjects.
The coactivating group
composed of forearm
electrodes is very often
grouped together, especially
in the hold phase.
Two activation patterns are
recognizable: a strong
coactivation, often (but not
always) corresponding to the
grasp/hold phase, and two
minor coactivating patterns in
the pre-shaping and release
phases that are often grouped
in a single synergy.
BB is activated during the
reaching phase, thereby
confirming that it is indeed an
active reaching component
that is active in the
pre-shaping and
release phase.

Abbreviations: ADM—Abductor Digiti Minimi; FLUM—First Lumbrical; FDI—First Dorsal Interosseous; FPI—First Palmar Interosseous;
ECU—Extensor Carpi Ulnaris; PT—Pronator Teres; FCR—Flexor Carpi Radialis; FDS—Flexor Digitorum Superficialis; FDP—Flexor
Digitorum Profundus.

4. Discussion

This literature review found 42 papers that matched the defined search criteria: 21 pa-
pers regarding the role played by hand and forearm muscles, and 21 dealing with hand
muscle synergies.

First, studies focused on the role of specific small sets of forearm/hand muscles during
some common tasks and grasps, sport activities, and working tasks were analyzed. Both
extrinsic and intrinsic forearm muscles are required to accomplish these tasks, the extrinsic
ones being responsible for the gross movements and the intrinsic ones in command of the
fine movements, but they also complement each other. Some specific muscles show a high
level of activation across all the tasks, such as EDC, while others seem to have a specific role,
such as ECR as a wrist stabilizer. The tasks performed in ADL seem to require moderate
levels of co-contraction of forearm muscles, needing the cooperation between different
groups of Muscles, this cooperation being non task-dependent [75]. Thumb muscles, such
as EPL and EPB, are able to activate separately from the flexors and extensors of the other
fingers, and their important role in grasps has been widely demonstrated in the literature.

Second, the muscle synergies reflecting the relationship between muscles provide
information in two domains: co-contractions and timing of activation. Therefore, studying
muscle synergies can help to reach a better interpretation of the role of the muscles during
the execution of different movements/tasks. The idea is consistent with the concept that
the central nervous system may embed a modular structure that relies on a limited number
of synergies at hand level. Non-negative matrix factorization and principal component
analysis methods are the most used and present similar results in terms of coordination
patterns. However, the non-matrix factorization method is the most preferred when a high
number of sEMG are recorded [98]. The studies reviewed have demonstrated that a small
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subset of synergies could be generalized across tasks, representing basic building blocks
underlying natural human hand motions/actions. Therefore, muscle synergy analysis
could also be useful for comparing different therapies and evaluating the function recovery
of subjects regarding ADL performance. It has been hypothesized that patients’ functional
deficit may be identified by regularly assessing their muscle synergy profile, which might
be used to track the results of rehabilitation, and to adjust treatments [113]. Synergies have
been suggested as being useful for clinicians to treat motor dysfunctions more effectively
by organizing patients into subclasses and tailoring the treatment to each patient’s specific
deficit [113].

However, some important gaps have also been identified, which should be addressed
in further studies. One of the main gaps found in the literature is the considerable diversity
in the protocol design used to record sEMG from forearm muscles. Most of the studies
do not specify the electrode placement, so it is not clear which locations were used to
acquire the sEMG data. This makes it difficult to compare values or may affect the crosstalk
level, which will depend on the longitudinal level of the muscle where it has been placed.
Therefore, it could be useful to define a method of placing the sEMG electrodes that is
comparable between subjects and that considers all the muscles involved in wrist and
hand movements. It has been seen that this could be achieved by identifying the most
representative forearm areas for ADL performance in terms of EMG activity [73].

The second main gap concerns the lack of representativeness of the tasks used for the
EMG characterization. Most studies found in the literature are focused on studying the role
of specific muscles during simple tasks (hand postures or free finger movements), or during
single activities (such as writing or typing), or during small sets of very controlled activities
(a few grasps, sport movement, etc.). However, only a few studies have dealt with the
analysis of the forearm and hand muscles during ADL, and none of them consider a wide
representative set of ADL. Therefore, defining a selection of a limited set of representative
tasks would improve the current methodology, given the wide variety of ADL that can
be performed by humans. Furthermore, standardization of the tasks would allow for
comparison between subjects and sessions (important for tracking function recovery). The
use of standardized tasks is especially important considering that each different individual
may perform the same activity using several different strategies. Standardization would
help in the comparison of muscular patterns and the identification of different strategies,
by distinguishing between the different task phases [114].

In addition, to go further into synergies, simultaneous measurement of hand kine-
matics is not usually performed, and, when it is measured, it is used only to segment the
different phases of the movement. Therefore, linked EMG-kinematic datasets, at the hand
level, are very limited [81]. Such synchronized datasets are needed if we want to analyze
how hand movements are produced and controlled. This could be helpful in some fields,
like rehabilitation (to help choose the most suitable approaches) or prosthetics (to find a
more reliable and natural control of hand prosthetics).

The review performed provides a basis of knowledge about the role of hand/forearm
muscles, but the lack of a clear methodology introduces some limitations. These method-
ological inconsistencies add additional difficulty for an effective interpretation of findings
and to draw any decisive conclusions.
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Abbreviations

Ab/Ad Abduction/adduction
AD Anterior Deltoid
ADL Activities of daily living
ADM Abductor Digiti Minimi
APL Abductor Policis Longus
APB Abductor Policis Brevis
ADD Thumb Adductor
BB Biceps Brachii
Br Brachioradialis
CMC Carpometacarpal
ECR Extensor Carpi Radialis
ECRB Extensor Carpi Radialis Brevis
ECRL Extensor Carpi Radialis Longus
ECU Extensor Carpi Ulnaris
EDC Extensor Digitorum Communis
EI Extensor Indicis
EMG Electromyography
EPB Extensor Policis Brevis
EPL Extensor Policis Longus
F/E Flexion/extension
FCR Flexor Carpi Radialis
FCU Flexor Carpi Ulnaris
FDP Flexor Digitorum Profundus
FDS Flexor Digitorum Superficialis
FDI First Dorsal Interosseous
FLUM First Lumbrical
FPI First Palmar Interosseous
Fw-EMG Fine-wire EMG
iEMG Intramuscular Electromyography
ICF International Classification of Functioning, Disability and Health
IP Interphalangeal
MCP Metacarpophalangeal
MUAPs Motor unit action potentials
MVC Maximum Voluntary Contractions
OPP Opponens policis
PD Posterior Deltoid
PIP Proximal interphalangeal
PL Palmaris Longus
PT Pronator Teres
sEMG Surface Electromyography
SENIAM Surface electromyography for the non-invasive assessment of Muscles
SHFT Sollerman Hand Function Test
Tr Trapezius
TriB Triceps Brachii
WHO World Health Organization
WMSD Work-related musculoskeletal disorders
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Abstract: The evolution of technological and surgical techniques has made it possible to obtain an
even more intuitive control of multiple joints using advanced prosthetic systems. Targeted Muscle
Reinnervation (TMR) is considered to be an innovative and relevant surgical technique for improving
the prosthetic control for people with different amputation levels of the limb. Indeed, TMR surgery
makes it possible to obtain reinnervated areas that act as biological amplifiers of the motor control.
On the technological side, a great deal of research has been conducted in order to evaluate various
types of myoelectric prosthetic control strategies, whether direct control or pattern recognition-based
control. In the literature, different control performance metrics, which have been evaluated on TMR
subjects, have been introduced, but no accepted reference standard defines the better strategy for
evaluating the prosthetic control. Indeed, the presence of several evaluation tests that are based
on different metrics makes it difficult the definition of standard guidelines for comprehending the
potentiality of the proposed control systems. Additionally, there is a lack of evidence about the
comparison of different evaluation approaches or the presence of guidelines on the most suitable test
to proceed for a TMR patients case study. Thus, this review aims at identifying these limitations by
examining the several studies in the literature on TMR subjects, with different amputation levels,
and proposing a standard method for evaluating the control performance metrics.

Keywords: Targeted Muscle Reinnervation (TMR); upper limb amputee; prosthesis; prosthetic
control; multi-DoF control; pattern recognition

1. Introduction

The amputation of the upper limb causes a huge decrease in dexterity, with a signifi-
cant reduction in patients’ quality of life. People who have had an upper-limb amputation
need a prosthesis that replaces the lost arm functionality. It is very difficult to find epidemi-
ology data on amputations of the upper limb. Over the world, the population of amputees
was estimated as 10 million, 30% of whom are upper limb amputees [1]. Focusing on
European countries, in Italy, there were 2720 upper-limb amputations in 2018, being equal
to 18% of total amputations [2]; in 2003, in the UK, there were 5767 new amputations,
5% were upper limb amputees [3]. Between 2004 and 2013, only in the adult hand emer-
gency clinic of the Nancy University Hospital (France), 2247 patients suffered an upper
limb amputation (partial and pediatric amputation excluded) that was traumatic in 76.32%
of cases [4]. In the USA, approximately 340,000 people have also suffered the loss of a
limb and every year there are 10,000 new upper limb amputations, as reported by the
National Center for Health Statistics [5]. The relevance of the upper limb loss has pushed
international research to seek new prosthetic solutions [6,7].

Sensors 2021, 21, 1953. https://doi.org/10.3390/s21061953 https://www.mdpi.com/journal/sensors325



Sensors 2021, 21, 1953

Prosthesis technology ranges from passive or cosmetic typologies on one end to active
or functional types on the other. Cosmetic prostheses are used to only restore the aesthetic
aspect [8], while active ones are used to restore, as far as possible, the functionality of the
lost arm. Active prostheses can be further classified into body powered, that exploit cables
to control the device with the more proximal joints, and externally powered (electric or
pneumatic) [9], which allow for the movement of the motors of the joints making up the
prosthesis [10]. Externally powered prostheses require a control system in order to associate
an input signal (generated by a sensor and/or a button) to an output action. One of the
most used control systems is the myoelectric one, which exploits the electromyographic
(EMG) signals of a specific muscle to provide discrete movement and of an antagonist
muscle group to make complementary movements. EMG signals have been used to
control prostheses since 1948 [11] and, over the years, various control strategies have been
identified: among these, the control strategies that directly associate a movement of the
prosthetic limb to an EMG input signal are usually referred to as Direct Myoelectric Control
or simply Direct Control (DC). The conventional techniques, to control from one Degree of
Freedom (DoF) to multiple DoFs [12], are [13]: the on/off strategy, which is typically used
to control one DoF and allowing the performance of two opposite movements based on the
exceeding of a preset threshold by the EMG amplitude of two residual antagonist muscles;
the proportional control strategy that considers, instead, the voltage applied to the motor
proportional to the contraction level/intensity of EMG signals.

Such control strategies are generally associated with a method for selecting the joint
to be controlled. The co-contraction method is the first one, which allows the patient
to change from one joint to another by simultaneously contracting the muscles used to
control the joint; however, the principal limit of this technique is that it is possible to only
control one joint at a time. The second is the simultaneous method that is used to control
multi-DoF prostheses, handling more than one joint at the same time. However, in this
case, the number of controllable DoFs depends on the number of independent EMG control
sites [6] Figure 1.

Figure 1. A Block diagram describing the types of Upper Limb Prostheses and control approaches.

The Pattern Recognition (PR) based myoelectric control has been proposed to reach a
more intuitive and adaptable control of the prosthesis in order to overcome these limits
and eliminate the need for mode switching; these PR strategies do not require independent
muscle sites, but they consider muscular activation patterns of different muscle sites to
classify several motion classes. In spite of the progress made in this field based on EMG-
PR [14], the main reasons for the abandonment of the prosthetic device by many users can
be imputed to comfort and function [15]. Regarding the function, technological factors,

326



Sensors 2021, 21, 1953

as the type of prosthetic control and the presence or absence of sensory feedback [16],
have a key role in avoiding the decision of prosthesis abandonment. An indispensable
requirement is that the control system must be simple, direct, and user-friendly [17].

To reach these requirements, a major advancement in the field of upper-limb prosthet-
ics has been reached with the Targeted Muscle Reinnervation (TMR) surgery, which was
developed by Prof. Todd Kuiken and his team at the Rehabilitation Institute of Chicago [18].
The idea behind TMR was that reinnervating the residual nerves of the amputated limb to
new target muscles may allow users to more intuitively control the prosthesis and simply
perform Activities of Daily Living (ADL). This is because the patient’s intention, manifested
with the phantom limb, can be sent, as neural information, to the reinnervated muscle,
which amplifies the EMG signal that is used to control the prosthetic device.

Several control strategies were proposed in the literature for making myoelectric
prostheses control easy, reliable, efficient, and, therefore, for lowering the users’ cognitive
burden for TMR patients. However, the optimal control system that allows users to control
a multiple DoF prosthesis with dexterity, and by using intuitive interfaces between the user
and the device, has not yet been developed [19].

2. Targeted Muscle Reinnervation

After an upper-extremity amputation, the employment of TMR allows for improving
the functionality of myoelectric prostheses: the reinnervation of residual muscles creates
additional myoelectric control sites available for obtaining the multi-DoF prosthetic control,
without the need of switching between modalities available on the device [20]. In 1995,
Kuiken examined muscle recovery and related changes in the motor unit population of
“hyper-reinnervated” rats [18]. Only in 2004, the first TMR surgery was performed on one
human subject with bilateral shoulder disarticulation amputation [21] Figure 2.

Figure 2. An example of a prosthesis control system after Targeted Muscle Reinnervation (TMR)
surgery: the electromyographic (EMG) sensors collected from the reinnervated sites the EMG signals
and communicated to the MicroController Unit (MCU) the user’s intention to translate into arm and
hand movements.

In 2006, Kuiken introduced the following requirements to make TMR surgery suc-
cessful: (i) separate regions of muscles and skin must be reinnervated by multiple donor
nerves; (ii) EMG signals must be acquired from each target area; and, (iii) the prosthesis
must be able to receive numerous EMG input signals and control several motors [22].
TMR can be performed for three different levels of amputation: shoulder disarticulation,
transhumeral, and transradial amputation. The innervation strategies depend on the type
of amputation [23]. For the shoulder disarticulated patients Figure 3B, pectoralis muscles

327



Sensors 2021, 21, 1953

are usually denervated and then reinnervated with residual arm peripheral nerves [22].
Afterward, back muscles (if possible) are also reinnervated to have more active sites. For
the transhumeral amputees Figure 3A, the median nerve is transferred to the short head
of the biceps motor branch to restore the function of hand closing or pronation; the ulnar
nerve is transferred to a residual brachialis motor branch to have additional control sites for
hand closing; finally, the radial nerve is reinnervated to the lateral head of the triceps motor
branch in order to control hand opening or supination [24]. For transradial amputees, the
control of multifunctional prosthetic hands can be reached by using additional Targeted
Muscle Reinnervation signals for improving the function of intrinsic finger and thumb
muscles: the distal median nerve is transferred to the flexor digitorum superficialis, while
the ulnar nerve is reinnervated to the flexor carpi ulnaris [25]. When the muscles usually
chosen cannot be reinnervated, as in [26], three bundles of the anterior tight muscle are
used to obtain three active sites for the prosthetic control. The TMR is also an emerging
technique for the treatment and reduction of the phantom limb pain (PLP) and neuroma
pain [27], for the osseointegrated prostheses [28], and for the targeted sensory Reinnerva-
tion [29] of bidirectional neuroprosthetic devices. Finally, another important outcome is
the use of TMR in the oncologic population, due to the potential to reduce pain without
the use of opioids [30].

Figure 3. Scheme of the reinnervated sites for different levels of amputation. (A) Median (blue), ulnar
(yellow), and radial (red) nerves transfer on biceps brachii (orange), brachialis (violet), and triceps
brachii (green) muscles of transhumeral (TH) amputees; (B) Musculocutaneous (black), median (light
green), radial (blue), and ulnar (yellow) nerves transfer on pectoralis major (clavicular and sternal
head, in red), and pectoralis minor muscles (dark green) of shoulder disarticulation (SD) amputees.

3. Aim of the Study

This paper proposes an in-depth study of the literature on control strategies for prostheses
that were developed for amputee subjects who underwent TMR procedure. The scope is to
consolidate the current knowledge in this field and delineate the limits of these strategies that,
up to now, do not yet allow for natural and simultaneous control of the prosthetic arm DoFs.

Nowadays, according to the literature search, the related review papers on TMR
contributed to defining the advantages of using this surgery technique from a medical
perspective [23,30] without analyzing the most suitable control strategies and performance
evaluation tests that allow exploiting the additional targeted muscle reinnervation sites to
improve the multi-DoF prosthesis control.

This work has the twofold purpose of (i) identifying the main issues and advantages
of the control strategies that were proposed in the literature in order to address the future
research towards the development of prostheses that are functional and able to mimic
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the lost upper limb behavior, replicating the performance of the human arm, for amputee
subjects who have undergone the TMR procedure; and, (ii) suggesting a unified protocol
test for the validation of these control strategies and, in the case of PR, in both offline and
online mode. The expected added value provided by this work is to complete the current
knowledge on the control strategies with more recent papers, by critically evaluating and
comparing (when possible) the available results and pointing out inconsistencies and
neglected aspects.

The paper is organized, as follows. Section 3 describes the methods that were used to
select the reviewed articles. Section 4 introduces the benefits of TMR. Section 5 describes the
control strategies (both DC and PR) that were used in the analyzed papers for TMR patients.
In Section 6, the performance evaluation methods are reported. Section 7 underlines the
principal limits of the current control strategies and suggests a unified protocol for the
control performance evaluation. Finally, conclusions are drawn in Section 8.

4. Materials and Methods

A wide search was conducted through the following databases: PubMed and Google
Scholar. The search terms included the following keywords and their combinations: Tar-
geted Muscle Reinnervation (TMR), upper limb, prosthesis, amputation level, prosthetic
control, real-time and offline performance, multi-DoF control, and pattern recognition.
Only studies that were published between 2004 and February 2020 were selected.

All of the found articles were in English and available in full text on peer-reviewed
journals or in conference proceedings. Some additional papers extracted from the references
of the examined articles have been included.

The authors reviewed all articles fulfilling the following inclusion criteria:

1. Be a study on upper limb prosthesis users that underwent TMR surgery.
2. Concern control techniques in upper limb prosthesis.
3. Involve both direct and pattern recognition control strategies.
4. Use methods for evaluating the performance of the prosthetic control.
5. Be a full-length publication in a peer-reviewed journal or in conference proceedings.

The search strategy was based on the PRISMA (Preferred Reporting Items for System-
atics reviews and Meta-Analyses) statement (2009), as shown in Figure 4.

A total of 136 papers was analyzed by using the previously mentioned search method.
After considering the titles and abstracts, 108 articles were excluded from the initial 136,
because they did not meet the inclusion criteria. The remaining 28 articles have been
carefully analyzed. Eight of them were further excluded because the reported data were
not significant or were repetitive for the purpose of this work. This review discusses the
remaining 20 articles.

The selected studies have been classified into two main groups according to the used
control strategy (DC or PR); one more group was devoted to papers on comparison among
strategies:

1. Direct Control strategy—six papers: Kuiken et al. (2004) [21], Kuiken et al. (2005) [31],
Kuiken et al. (2007) [24], Miller et al. (2008) [32], O’Shaughnessy et al. (2008) [33], and
Miller et al. (2008-b) [34]

2. Pattern Recognition strategy—10 papers: Mastinu et al. (2018) [28], Kuiken et al.
(2009) [35], Smith et al. (2013) [36], Huang et al. (2008) [37], Zhou et al. (2007) [38],
Batzianoulis et al. (2019) [39], Batzianoulis et al. (2018) [40], Xu et al. (2018) [41],
Hargrove et al. (2018) [42], and Tkach et al. (2014) [43].

3. Comparison of different types of control—four papers: Hargrove et al. (2013) [44],
Wurth and Hargrove (2014) [45], Hargrove et al. (2017) [46], and Young et al. (2014) [47]

The following information has been extracted from the studies and reported in Table 1:

• the number of the enrolled patients;
• the amputation level: bilateral shoulder disarticulation (BSD), shoulder disarticulation

(SD), and transhumeral (TH);
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• the number of reinnervated sites/control sites after the TMR surgery;
• the use of prostheses/virtual reality (VR);
• the number of controllable DoF/motion classes; and,
• the adopted performance evaluation methods.

Figure 4. Flow diagram of the search and inclusion process.

Table 1. Summary of the reported analysis.

Study
No. of

Patients
Amp.
Level

No. of Reinnervated
Sites/Control Sites

Prostheses/
Virtual Reality

DoF/
Motion Classes

Performance Evaluation
Methods

Kuiken et al. [21] 1 BSD 4 reinnervated sites/
3 muscle control sites Prosthesis—DC 2 BBT, CRT

Kuiken et al. [31] 2 BSD, TH
4 reinnervated sites/
3 muscle control sites

(BSD) 2 muscle sites (TH)
Prosthesis—DC 2 BBT, CRT, WMFT, AMPS

Kuiken et al. [24] 1 TH 4 muscle sites and
2 sensory sites Prosthesis—DC 2

BBT, AMPS, light touch,
graded pressure, texture,

edge detection, and
thermal feedback

Miller et al. [32] 1 BSD 4 reinnervated sites Prosthesis—DC 3 BBT, CRT, Cubbies, Cups

O’Shaughnessy et al. [33] 3 TH 2 reinnervated sites/
4 control sites Prosthesis—DC 2 BBT, CRT, AMPS

Miller et al. [34] 6 SD, TH
2 reinnervated sites
(TH), 4 reinnervated

sites (SD)
Prosthesis—DC 2 BBT, CRT, AMPS

Mastinu et al. [28] 2 TH 2 reinnervated sites PR without
prosthesis

4 discrete hand and
elbow motions

accuracy offline, classification
error rate of LDA with 4 time
domain features (MAV, WL,

ZC, SSC)

Kuiken et al. [35] 5 SD, TH 4 reinnervated sites,
4 control sites

PR without
prosthesis—VR

10 discrete elbow,
hand and

wrist motions

accuracy offline, motion
selection time, motion

completion time, and motion
completion rate of LDA with

TD features [38]
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Table 1. Cont.

Study
No. of

Patients
Amp.
Level

No. of Reinnervated
Sites/Control Sites

Prostheses/
Virtual Reality

DoF/
Motion Classes

Performance Evaluation
Methods

Smith et al. [36] 5 SD, TH
3–4 reinnervated
sites (SD1, SD2),

2 reinnervated sites (TH)

PR without
prosthesis

9 discrete elbow,
hand and wrist

motions

classification error rate of
LDA with TD features [48]

Haung et al. [37] 3 BSD, TH
4 reinnervated sites

(BSD), 4–2 reinnervated
sites (STH, LTH)

PR without
prosthesis

15 discrete elbow,
hand and wrist

motions

offline accuracy of LDA
classifier with TD features

(MAV, ZC, SSC, WL)

Zhou et al. [38] 4 BSD, STH,
LTH

4 reinnervated sites
(BSD), 4–2 reinnervated

sites (STH, LTH)

PR without
prosthesis

16 discrete
movements of the

arm, hand, and
finger/thumb

offline accuracy of LDA
classifier with TD feature set,

and a combination of
AR-RMS

Batzianoulis et al. [40] 2 TR
TMR surgery for the

neuroma pain, not for
control sites

PR without
prosthesis

5 grasp types
(prismatic-2 fingers,
precision disk, palm

pinch, lateral,
prismatic-4 fingers)

offline accuracy, standard
errors of LDA, two SVMs,

and ESN Network

Batzianoulis et al. [39] 2 TR
TMR surgery for the

neuroma pain, not for
control sites

PR without
prosthesis

3 grasp types
(precision disk,

lateral, and palm
pinch)

offline accuracy of LDA
classifier with TD feature

Xu et al. [41] 1 TH 3 reinnervated sites/
5 control sites Prosthesis—PR

6 discrete elbow,
wrist and hand

motions

offline accuracy, ARAT, LDA
classifier with TD features

(MAV, WL, ZC, SSC)

Hargrove et al. [42] 9 TH not described Prosthesis and VR—PR
6 discrete elbow,
wrist and hand

motions

SHAP, JTHFT, CRT, BBT,
ACMC, the classification

error rate, completion time,
failure rate of LDA classifier

with TDAR

Tkach et al. [43] 4 SD, TH
4 reinnervated sites
(TH), 2 reinnervated

sites (SD)

PR without
prosthesis—VR

8 discrete and
combined elbow,
wrist and hand

motions

offline accuracy of the LDA
classifier with AR feature set

Hargrove et al. [44] 4 SD, TH 4–5 reinnervated
control sites Prosthesis—DC and PR 2 DoFs (sequentially

PR system)
BBT, BST, CRT, classification

error rates

Wurth et al. [45] 1 TH 4 control sites PR and DC without
prosthesis—VR

2 DoFs (sequentially
and simultaneously

PR systems)

FTAT, throughput
(bits/second), path efficiency

(%), completion rate (%)

Hargrove et al. [46] 8 TH 4 control sites Prosthesis—DC and PR 2 DoFs ACMC, SHAP, BBT, CRT

Young et al. [47] 3 SD, TH 2 reinnervated sites/
4 control sites Prosthesis—DC and PR

2 DoFs (sequentially
and simultaneously

PR systems)

TAC test (completion time,
completion rate, length error),

offline classification error

Acronyms of Table 1: BSD: Bilateral Shoulder Disarticulation; SD: Shoulder Disarticulation; TH: Transhumeral; LTH-STH: Long (L)–Short (S)
Transhumeral; TR: Transradial; DC: Direct Control; PR: Pattern Recognition; VR: Virtual Reality; BBT: Box and Block Test CRT: Clothespin
Relocation Test; WMFT: Wolf Motor Functions Tests; AMPS: Assessment of Motor and Process Skills; LDA: Linear Discriminant Analysis;
MAV: Mean Absolute Value; WL: Waveform Length; ZC: Zero Crossing; SSC: Slope Sign Changes; TD: Time Domain; AR-RMS: Auto
Regressive-Root Mean Square; ESN: Echo State Network; SVM: Support Vector Machine; TD-AR: Time Domain and Auto Regressive;
ARAT: Action Research Arm Test; BST: Block stacking test; FTAT: Fitts’ Target Acquisition Task; SHAP: Southampton Hand Assessment
Procedure; JTHFT: Jebsen-Taylor test of Hand Function.

5. Control Strategies

5.1. Direct Control

The control strategies where EMG signals are directly associated with a specific
movement are named direct control strategies, as mentioned in Section 1. Among them,
the most used are on/off and proportional techniques. Multiples control techniques can be
combined with the joint selection method to control multi-DoF prostheses. Figure 5 shows
the DC approach.

In detail, the control techniques indicate the relationship between the value of the
input signal and the value of the output. In the on/off technique there are only two possible
output signals: a predefined speed value (on) and zero (off). The input signal must exceed
the preset threshold in order to generate the output value that is used for motor control.
Instead, with the proportional technique, it is possible to create a proportional link between
the motor speed (output) and the amplitude of the EMG signal (input). Of course, there
is also a threshold below which the output signal is zero; in some cases, there is another
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threshold, above which the output signal is the maximum possible. Regardless of which
control technique is used, when the EMG signals are fewer than the DoFs to be activated,
the user can employ muscle co-contraction to choose the DoFs to be controlled with the
same EMG signal, as mentioned in Section 1. The introduction of TMR surgery made
possible to have more muscle sites to uniquely associate a sEMG signal with a movement
and simultaneously control more than one DoF. This procedure is resumed in Figure 6.

Figure 5. Direct Control approach: the EMG signals are the input to the controller unit. Two control
techniques (the on/off and the proportional) defined the speed necessary to move the joint when the
EMG signal is above a predefined threshold. The joint selection methods allow for the user to switch
joints with muscle co-contraction or to select them simultaneously.

Figure 6. Schematic diagram of direct myoelectric control techniques and joint selection methods.

The following six articles make a clear reference to the use of direct control following
a TMR intervention. Particular attention was paid to information regarding the level
of amputation, the number of sites reinnervated and adopted for the control, and the
used prosthetic devices (when indicated are reported in Figure 7), in order to critically
evaluate and compare the performance of each method, and to point out the most functional
prosthesis control method.

In Kuiken et al. [21], it was demonstrated that a man with a bilateral shoulder disartic-
ulation (BSD), who underwent for the first time TMR, on the left side, was able to control
a 3 DoFs prosthesis by using sEMG sensors placed on the three muscle sites successfully
reinnervated. Prosthesis was composed of open/close (O/C) hand: Greifer Terminal (Otto-
bock); wrist prono/supination (P/S): Wrist rotator (Ottobock); elbow flexion/extension
(F/E): Boston digital arm (included forearm); and, shoulder: LTI-Collier shoulder joint.
The proportional control was employed, with a simultaneous joint selection strategy for the
hand and the elbow, and with co-contraction strategy to switch between hand and wrist.
In details, the patient was able to pass to the control of the wrist from the hand by using
the co-contraction of the hand open/close signals; while the elbow was controlled directly
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with the remaining active site, by modulating the contraction (from weak to strong) for
flexing the elbow slightly or completely, respectively; therefore, the elbow extension was
possible by relaxing the contraction.

Figure 7. Prosthetic systems used in the analyzed papers on the TMR subjects: (A) Wrist rotator
(Ottobock) used in [21,24,31,34]—Photo courtesy of Ottobock; (B) Greifer Terminal (Ottobock) used
in [21,31,34,46]—Photo courtesy of Ottobock; (C) Wrist rotator (Motion Control Inc.) used in [42,46]—
Photo courtesy of Motion Control, Inc.; (D) Danyang Prostheses Co. (Ltd, Danyang City, China) used
in [41]— (http://creativecommons.org/licenses/by/4.0/, accessed on 5 March 2021), this image has
been cut from [41].

The same author, in [31], also extended the reported outcomes in [21] on a patient with
TH amputation, who received the TMR for only two muscle sites. In this case, a powered
hand and the same elbow and wrist prostheses presented in [21] were used to simultane-
ously control three DoFs, by also considering the wrist rotation with shoulder motion.

In Kuiken et al. [24], a case study of a woman with TH amputation was reported
to understand if (i) TMR can improve the prosthesis control and (ii) Targeted Sensory
Reinnervation (TSR) can provide a region with “sensory perception”, by reinnervating
four muscle sites and two sensory sites, respectively. The proportional control with simul-
taneous selection strategy was used to control a prosthetic device after evaluating, with a
grid of 128 monopolar electrodes, the most suitable placements of the sEMG sensors for
recording the hand and elbow signals. In this way, the patient was finally able to control
a three DoFs prosthesis composed of: a passive shoulder components, motorized elbow
(F/E) with a computerised arm controller (LTI), motorized wrist rotator (P/S) (Otto Bock),
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and motorized hand (O/C) (Otto Bock). To control the wrist, two pressure-sensitive pads
were mounted in the patient’s socket, but she rarely operated them because the cognitive
load of simultaneously controlling all three joints was high.

In O’Shaughnessy et al. [33], the proportional control technique was used in order to
allow a simultaneous control of the prosthesis composed of the elbow F/E and the hand
O/C joints. Three TMR patients with TH amputation were enrolled: only two of them had
successful nerve transfers and were able to drive the experimental myoelectric prosthesis.
For both of the patients, a total of four control sites was used for prosthetic control: the two
reinnervated sites to control the hand and two other residual sites for the elbow.

In Miller et al. [34], a case report of three patients with SD and three with TH ampu-
tation are presented. The subjects with TH amputation underwent the reinnervation of
two muscles, while, for the SD patient, four muscles were reinnervated. All of the patients
were equipped with a prosthesis, including Boston Digital Arm, Ottobock device wrist
rotator, and electric terminal device. The only difference among the subjects was the use
of a prosthetic hand or a hook as a terminal organ. The prosthesis was equipped with
proportional control of the elbow and hand joints through the four reinnervated muscle
sites in the case of the SD and the two reinnervated sites plus two residual sites in the
case of the TH patients. The wrist joint was controlled by the signal from one or two FSR
sensors or a potentiometer. At the end of the trials, all of the subjects appreciated the ability
to simultaneously control elbow and hand joints, without changing control with respect to
conventional control, thanks to the TMR.

To summarize, in all the papers analyzed in this sub-section, the proportional con-
trol was employed, combined with both simultaneous and co-contraction joint selection
methods. Prosthesis was composed of three DoFs, which were actuated by the different
modules that are shown in Figure 5. Only in [33]; the prosthesis was composed of 2 DoFs.

5.2. Control via Pattern Recognition

Generally, the pattern recognition strategies applied to the prosthetic control associated
the several inputs based on sEMG signals of different movements to several outputs, as
limb motions related to specific myoelectric patterns [49].

These PR algorithms consist of a first step that is based on feature extraction, in the time
and frequency domain [50], to enhance information about EMG contraction in selected time
windows. Subsequently, in the sequential control technique, a single classifier is trained
that is based on linear or non-linear decision boundaries; instead, in the simultaneous
control technique, multiple classifiers are trained to control multiple joints simultaneously
or a single classifier is trained by considering discrete and combined movements as separate
classes, as shown in Figure 8.

Figure 8. Pattern Recognition approach: the EMG signals are the input to the controller unit. Firstly
the pre-processing step is done; then, in the features extraction step, the time and frequency domain
features are used as input to train a single classifier or multiple classifiers. The classification output is
the motion class to send as the command control to the prosthesis.
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For instance, an extensive analysis can be found in [13] and in [51], where a compara-
tive analysis among Non-linear Logistic Regression (NLR), Multi-Layer Perceptron (MLP),
Support Vector Machine (SVM), and Linear Discriminant Analysis (LDA) is proposed:
the main difference between these algorithms is the linear and nonlinear shape of the
decision boundary; straight line or plane for the LDA algorithm; curved line, or surface,
for the NLR, MLP, and SVM algorithms. Additionally, the robustness and reliability of the
proposed algorithms are key factors for the online control of the prosthetic device and they
depend on their offline performance, complexity, and computational time. In the case of
trans-radial amputees, the LDA and NLR obtained statistically similar values in terms of
F1 Score performance and computational burden in [51] .

To sum up, these strategies used machine learning techniques (Figure 9) in order to
increase the amputee’s ability to control the prosthesis, in a more natural way, by adding
the number of controllable DoFs, because they do not require independent EMG sites for
classifying motion classes of different joints [52].

Figure 9. Schematic diagram of pattern recognition-based myoelectric control techniques and joint
selection methods.

The TMR is considered to be very promising for improving the simultaneous control
of multiple arm functions for many (ADLs) ([34,53]). This surgical technique, combined
with PR-based systems, represents an opportunity, especially for SD and TH amputees,
to overcome the limited number of independent EMG sites that are available for controlling
a multi-DoF prosthetic systems [35]. Indeed, the advanced EMG-based pattern recognition
strategies have the potential to perform, in a more natural way, the simultaneous control of
multiple DoFs with respect to the conventional myoelectric control methods [54], because
they do not require independently control sites or mode-switching to activate multiple
joints like elbow, wrist, and hand. The following 10 articles have been found in the
literature, in which pattern recognition algorithms have been employed in TMR patients:

In this section, for each study, we will analyze the most used strategies introduced to
improve the prosthesis myoelectric control for TMR patients with PR control systems, to
critically evaluate and compare the performance evaluation results of each method, and to
point out the most functional control method and prostheses that replicate the behavior of
the human arm.

In Mastinu et al. [28], the monitoring of TMR myoelectric signals of two TH amputee
subjects, with TMR surgery and an e-OPRA, has been analyzed for 48 weeks after surgery
in order to understand the potentiality as compared to conventional surface electrodes.
The TMR-radial and TMR-ulnar sites were used for hand opening and closure, respectively,
while the triceps and biceps muscles for the flexion and extension of the elbow. The LDA
classifier was used with four TD features: the summation of absolute value of EMG signals,
defined as mean absolute value (MAV); the cumulative length of the EMG signal waveform
defined as waveform length (WL); the zero crossing (ZC) that measures how many times
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two consecutive samples have different sign (when the EMG signal crosses zero) in order
to detect the onset of movement during the procedure of data segmentation; and, the slope
sign changes (SSC), which represents the number of times the slope of EMG signal changes
sign. Four discrete motions of elbow and hand were recorded with the Artificial Limb
Controller, a prosthetic device that was designed for patients with e-OPRA implants [55].

In Kuiken et al. [35], five TMR patients with SD and TH amputations were able to
perform, with a virtual prosthetic arm, 10 different motions that were related to different
joints, like elbow, wrist, and hand (elbow F/E, wrist F/E, wrist P/S, hand opening, three
types of hand grasps -3 jaw chuck, fine pinch, tool grip, and no movement). For each subject,
12 self-adhesive bipolar EMG electrodes were placed over the reinnervated sites: in detail,
four electrodes were placed according to clinical evaluation, while eight additional sites
were chosen by an electrode-placement optimization algorithm that allowed to select, from
high density (HD) EMG recordings, a reduced number of electrodes necessary to preserve
sufficient neural control information for the accurate classification of user’s intention [56].
The proposed PR algorithm was based on an LDA classifier with four TD features (MAV,
ZC, WL, SSC). The LDA classifier was used to produce, in real-time, a new prediction every
100 ms. In details, the performance metricsm such as motion selection time (mst), motion
completion time (mct), and motion completion rate (mcr), were introduced for assessing
the functionality, in real-time, of a virtual multifunction prosthesis.

In Smith et al. [36], the potentiality of PR myoelectric control was investigated when
using wireless implantable devices. Five TMR subjects (three with SD and two with TH)
were employed for evaluating the capability of performing nine motion classes (rest state,
elbow F/E, wrist P/S, F/E, and hand O/C). However, two motion classes (hand open
and wrist extension) were excluded for all subjects, because two subjects (one with SD,
one with TH) did not have a successful fine-wire insertion into sites. In particular, for two
SD subjects, the number of reinnervated muscle sites was equal to 3, while, for one SD
subject, was equal to 4. Both intramuscular EMG signals (imEMG) and sEMG signals were
acquired by locating bipolar fine-wire electrodes and adhesive bipolar surface electrodes,
respectively, on TMR sites. One subject with SD was excluded from pattern classification,
because he had the sEMG signals corrupted by a 60 Hz noise.

In Huang et al. [37], different spatial filters were tested in order to enhance the
spatial selectivity of EMG recordings and the performance of EMG pattern classification
by applying spatial filtering to high-density EMG recordings. Three subjects with TMR
were recruited: the first one had a BSD amputation with four reinnervated muscle sites;
the second one had a very short TH with four reinnervated muscle sites; and, the last TMR
subject had a long TH amputation with two reinnervated muscle sites, and two natively
innervated muscle sites. High-density surface EMG signals were recorded from the above
mentioned muscle sites, which had been clinically selected. The following fifteen different
movements were acquired: elbow F/E, wrist F/E, P/S, ulnar and radial deviation, two
hand opening patterns (that included finger abduction and finger adduction), and five
functional hand-closing patterns (power grip, prehensile (3-jaw chuck) grip, fine pinch
grip, key grip, and trigger grip). The LDA classifier was used to classify the EMG signal
with TD features (MAV, ZC, SSC, and WL) and the surface EMG signals were processed by
various high pass spatial filters, including one-dimensional and two-dimensional filters.

In Zhou et al. [38], 16 movements of the arm, hand, and finger/thumb, with eight
degrees of freedom, were discriminated with an LDA classifier with the TD feature set,
and a combination of AR coefficients and RMS (AR-Root Mean Square) of the signals.
The recordings were made by using monopolar electrode configuration and three bipolar
electrodes in three different directions: transversal, longitudinal, and diagonal. Four TMR
subjects were recruited: the first one with a BSD with four reinnervated muscle sites,
the second one with a very short TH and four reinnervated muscle sites, and two other
subjects with long TH amputations with two reinnervated muscle sites and two natively
innervated sites for elbow flexion/extension.
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In Batzianoulis et al. [40], three different classification systems that were based on LDA,
SVMs (with linear and non-linear kernel), and an Echo State Network (ESN) were evaluated
by considering, for each proposed strategy, the classification performance on three phases
of dynamic reach-to-grasp motions: acceleration (first phase), deceleration (second phase),
and rest (third phase). Eight able-bodied control subjects and four TR amputees, two of
which underwent TMR surgery for the neuroma pain, were enrolled. These TMR patients
did not have additional muscle sites for improving myoelectric control. The EMG muscle
activity was recorded with 12 sEMG sensors from seven muscles of the upper arm and five
muscles of the forearm. For LDA and SVM, three features (i.e., average activation of each
time window, waveform length, and number of slope changes) for each window of 150 ms
have been extracted. Five grasp types (prismatic-2 fingers, precision disk, palm pinch,
lateral, and prismatic-4 fingers) were discriminated. In their most recent study [39], the
same two TMR transradial amputees that were presented in [40] were employed to extend
the previous results by addressing more insights on the LDA potentiality and introducing
the use of the Hellinger distance to quantify the similarity between motion classes. In this
case, the subjects were asked to perform a bimanual task by only considering three grasp
types as the precision disk, lateral, and palm pinch motions. Different from [40], only the
performance of an LDA classifier was evaluated in terms of classification accuracy when
it was trained for each phase and over all motion phases. To train the classifier, the EMG
signals of five muscles of the residual arm were recorded: Flexor Digitorum Superficialis,
Extensor Digitorum Communis, Flexor Carpi Ulnaris, Extensor Carpi Ulnaris, and Flexor
Carpi Radialis.

In Xu et al. [41], the authors investigated how the rehabilitation training improved
the separability of some channels of sEMG signals that remained still coupled over TMR.
A TMR TH patient with five targeted muscles with coupled sEMG signals has been engaged.
Five bipolar EMG electrodes have been placed on targeted muscles that are associated with
the following movements: hand C/O, wrist P/S, and elbow F/E. A new approach that was
based on pattern recognition control with MAV-based threshold switches was introduced
to improve the classification performance of an LDA classifier, based on Bayesian decision,
with TD features (MAV, WL, ZC, and SSC). Subsequently, the obtained classification
parameters have been used for allowing the patient to control a commercial prosthesis
(Danyang Prostheses Co. Ltd, Danyang City, China); a subset of the modified ARAT test
was proposed to compare the online performance of the prosthetic operation.

The LDA classifier with TD-AR (time-domain and auto-regressive) features [57] was
introduced for classifying elbow F/E, wrist S/P, and hand O/C. A grid of stainless steel
electrodes was placed over specific muscles. However, the exact sites of reinnervated
muscles have been not described in detail. The outcome measures, which were obtained
with both a virtual reality and a physical prosthetic system, were introduced to evaluate the
improvements in terms of offline classification errors. For obtaining physical outcomes, all
nine subjects used the following custom-fabricated prosthesis composed of: Boston Digital
Elbow (Liberating Technologies Inc.), wrist Rotator (Motion Control Inc.), and single DoF
terminal device.

In Hargrove et al. [42], the outcome measures, which were obtained with both virtual
reality and a physical prosthetic system, were introduced to evaluate the improvements
in terms of offline classification errors of nine transhumeral TMR subjects, when using
prosthesis after a six-week home trial. Three blocks of the Target Achievement Control
(TAC) test [58] were used to evaluate the performance of the LDA classifier with TD-AR
(time-domain and auto-regressive) features [57]. For obtaining physical outcomes, all nine
subjects used the following custom-fabricated prosthesis that was composed of: Boston
Digital Elbow (Liberating Technologies Inc.), wrist Rotator (Motion Control Inc.), and single
DoF terminal device.

In Tkach et al. [43], it was demonstrated that a generic grid arrangement of electrodes
performed equivalently or better than the control site (specific site for electrode placement).
Four TMR amputee subjects were employed: two TH subjects had four reinnervated
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muscle sites; two SD subjects presented, instead, only two reinnervated muscles sites. EMG
signals were acquired by using 15 bipolar pairs of EMG electrodes placed according to two
conditions: in the “Control Site” condition, the electrodes were placed over muscle control
sites, after clinical palpation; in the “Grid” condition, electrodes were positioned in a grid
configuration, around the residual limb and the surface of the chest, for the TH and SD
subjects, respectively. The LDA algorithm was used with the AR feature set, including the
six coefficients of a 6th order autoregressive model.

To sum up, all 10 studies presented in this sub-section take the pattern recognition
strategy based on LDA classifier with different features set into account: TD features
(MAV, WL, ZC, and SSC) [28,35–38,41]; TD-AR features [57]; AR-RMS [38]; the AR feature
set [43]; Hellinger distance [39]; and, the average activation of each time window, the
waveform length, and the number of slope changes [40]. In Batzianoulis et al. [40], the
SVMs (with linear and non-linear kernel), and an Echo State Network (ESN) PR-based
strategies were also evaluated by considering, for each proposed strategy, the classification
performance on five reach-to-grasp motions. The minimum number of discriminated
classes was equals to four discrete motions related to the elbow and hand [28] or only the
hand [39,40]. While, for the other seven studies, the elbow, wrist, and hand joints were
always considered by including from nine up to 29 motion classes [43] (for both discrete
and simultaneous movements).

5.3. Comparison between DC and PR Strategies

The following four papers presented a comparison between direct control and pattern
recognition based strategies.

Particular attention was paid to information regarding the level of amputation,
the number of sites reinnervated and used for the control, the various DC strategies
and PR algorithms used, and the prosthetic device used (when indicated).

The first study that directly compared the performance of pattern recognition systems to
direct control systems using a physical prosthesis with TMR patients is Hargrove et al. [44].
Four patients (one male with SD, two males and one female with TH amputation) had at
least four reinnervated control sites (five in one case) used for direct control of the elbow
F/E and hand O/C joints. The P/S of the wrist joint was controlled and selected in different
ways by the various patients, in a manner similar to that used with their old prostheses.
For the PR-based control system, four pairs of bipolar electrodes have been added to the
four pairs that were used for direct control. The PR control system was composed of a LDA
classifier with TD features and AR coefficients. The velocity of the desired movement was
computed while using a simple proportional control algorithm. Section 6.3 presents the
performance achieved by all patients experts in the daily use of the myoelectric prosthesis
with DC control and with experience in the laboratory use of the prosthesis controlled with
PR. All of the subjects said that they preferred PR-based control, because it was more intuitive.
However, the authors pointed out that direct control allowed the simultaneous movement
of two joints, while the PR-based control was limited to sequential control, even when tasks
required multiple DoFs.

In Wurth et al. [45], a real-time comparison between DC and PR-based control strate-
gies was carried out to control a multi-DoF myoelectric prosthesis. Only one TH amputee
among the enrolled subjects underwent the TMR procedure, with four independent control
sites. The others were nine healthy control subjects and one TR amputee. For the DC
control, the MAV EMG signals of the wrist flexors and extensors muscles were recorded
from able bodied and TR subjects by using pre-gelled adhesive bipolar Ag-AgCl electrodes.
Instead, for the TH amputee subject, four bipolar electrodes were placed on the flexor and
extensor muscles, in order to simultaneously control more than one DoF. For the PR-control,
the LDA classifier was used with four TD features (MAV, ZC, SSC, and WL) and six AR
coefficients. In particular, the able bodied and TH subjects were asked to perform hand
O/C, wrist F/E, and no motion. Instead, for the TH subject, the elbow F/E was replaced
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by wrist F/E, because this DoF was considered to be more intuitive and relevant to be
controlled for this level of amputation.

In Hargrove et al. [46], a clinical study was reported on eight TH patients, with
different levels of amputation and prosthetic solution composed of motorized Boston
Digital Elbow (LTI), Motion Control Wrist Rotator (Motion Control Inc.), and terminal
device (seven hook from Greifer or EDT and one hand). All of the subjects used prosthesis in
both the controlled (laboratory) and uncontrolled (home) environment. The eight patients
were randomly divided into two groups of four subjects, each of which completed the
home-trial while initially using a prosthesis with a different control strategy, according to
the group that they belonged to. The two configurations were used for six weeks each. The
electrode sites were identified with different methods, depending on the different strategy
adopted: when using direct control, the muscle sites were manually udentified, using a
combination of surgical notes when available, palpation, and myoelectric signal testing.
As for the PR control, linear electrode locations were not targeted over specific muscles,
rather a grid of electrodes was used. The algorithm that was used for PR-based control was
the LDA described in [57]. For the DC control, dual-site differential DC system employed
antagonistic muscle pair in order to control elbow F/E and terminal device O/C (hand or
hook). In addition, mode switches were configured, for each subject, to control the wrist
P/S DoF according to their previous device use.

In Young et al. [47], three different control strategies (direct control with proportional
strategy, sequential PR control—one DoF at time, and simultaneous PR control—two DoFs
at time) were analyzed in order to evaluate the ability of four amputees (two TH and two
SD), who underwent TMR surgery, to simultaneously control up to two DoFs with a virtual
prosthesis. TH patients had two reinnervated muscle sites used for controlling hand O/C
movements, and two natively innervated muscles (the biceps and triceps brachii) used for
elbow F/E motions. The SD subjects had four reinnervated sites for controlling hand O/C
and elbow F/E movements. Four pairs of self-adhesive Ag/AgCl bipolar surface electrodes
were placed in the same muscle sites that were used for the conventional prostheses control.
Other pairs of electrodes were placed near the primary sites where muscle activity could
be palpated. The following eight discrete and combined motions were acquired: elbow
F/E, hand O/C, and elbow F/E combined with hand O/C. The TMR amputees controlled
discrete motions using their four independent muscle sites. For the PR-strategy, an LDA
algorithm with four TD features (MAV, ZC, SSC, and WL) and six AR coefficients of a
sixth-order were used for the classification. As for the sequential control condition, the
same methods that were introduced in [48] were used. Instead, for the simultaneous control
strategy, the authors used the system that was tested on able-bodied subjects in [59].

To summarize, in all of the articles presented this section, a physical prosthetic device
with two [45] or three DoFs [44,46] was employed, except for the [47], in which a virtual
prosthesis was used instead of the physical one. Regarding the direct control strategy,
in all of the studies, the simultaneous joint selection methods were employed. Only in
Young et al. [47] was the control technique specified, i.e., the proportional control technique.
Regarding the reviewed papers on PR-based control, the LDA was always adopted with
TD and AR features.

6. Performance Evaluation Methods

In this section, the performance evaluation methods introduced in the analyzed
papers are reported. These methods allow for evaluating the functional effectiveness of
the prosthesis as a whole with quantitative indicators that highlight the potential and
advantages of the proposed systems.

The reported studies have shown the use of many performance evaluation criteria,
although there is no standard procedure in place so far. The lack of a common standard
is highlighted by the presence of multiple criteria that are necessary for the performance
evaluation in the analyzed papers. In Table 2, for each method, the following information
are reported: the percentage of the number of patients enrolled with respect to the total
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number of the patients considered in all the papers (i.e., 67, which is the sum of column 2
of Table 1) and, the total number of articles in which the performance evaluation method
was employed.

Table 2. Performance evaluation methods.

Test Used
Percentage of

Enrolled Patients (%)
N° of Articles

Qualitative/subjective evaluation (questionnaire) 20 7

Box and Block 50 9

Clothespin Relocation 49 8

Wolf Motor Functions—WMFT 1 1

Assessment of Motor and Process Skills—AMPS 14 3

Cubbies 1 1

Cups 1 1

Target Achievement Control—TAC 19 2

Southampton Hand Assessment Procedure—SHAP 25 2

Accuracy offline 35 8

Classification Error rate 35 5

Assessment of Capacity for Myoelectric
Control—ACMC 25 2

Real Time Virtual Test 14 3

Action Research Arm Test—ARAT 1 1

Jebsen-Taylor Test of Hand Function—JTHFT 13 1

Block stacking 5 1

Fitts’ Target Acquisition Task—FTAT 1 1

6.1. Direct Control

Regarding systems with DC strategies, the following performance evaluation methods
were taken into account: in the Box and Block Test (BBT) [60], the patient had to move the
higher number of standard size cubes from one side of the box to the other in a maximum
time of one minute; however, Kuiken modified the test extending the time limit up to
2 min., to use it with amputee patients who had undergone the TMR procedure. In the
Clothespin Relocation Test (CRT) [21], the patient is prompted to move three clips from the
horizontal bar to the vertical bar; the execution time that is required to complete the task
was measured. The test was repeated three times. Instead, the Cubbies test [32] is a cubicle
reach and retrieve test (Cubbies) composed of 15 cubicles, containing 15 one-inch (2.5 cm)
cubes placed on an adjustable height table; in this test, the subject, without moving his feet,
has to reach, grasp, and place the 1-inch cubes on the table from as many cubicles as he is
able to reach successfully; the total time to grasp a 1-inch cube, place it on the table, and
activate a buzzer is recorded. The score consists of the average time per successful reach
and retrieval of all blocks in the work-space. In the Cups test [32], 11 plastic cups must
be individually retrieved from an inverted stack and positioned in a prescribed pyramid
arrangement; four upside-down cups on the bottom row, until one on the top. The final
eleventh cup has to be placed upright on top of the top upside-down cup of the pyramid.
The time that is needed to stack and unstack the cups is recorded. Finally, the Miscellaneous
ADL consisted of a series of the following activities: cutting meat with a knife and fork;
place three objects onto a tray and then transport the tray; place 3 1-lb cans into a bag
with handles; open and close a jar of peanut butter; stir a spatula in a big bowl; open
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an envelope with a tool; wrap a package; pull on both socks; and, remove and put on a
long-sleeved shirt.

The following six papers used the BBT (modified up to 2 min.) [21,24,31–34] to eval-
uate the performance of the proposed control strategy. In detail, in Kuiken et al. [21], the
comparison of the prosthetic control before and after the TMR surgery has shown an
improvement of the new procedure. An increase in performance was present: +8.3 blocks,
on average, over three tests. In Kuiken et al. [31], for the patient with TH amputation, the
results were: +322% blocks moved with the experimental prosthesis. In Kuiken et al. [24],
there was the evidence of an increase in the performance between pre-surgery and post-
surgery: the average score over three trials changed from 4.0 ± 1.0 to 15.6 ± 1.5 blocks.
In Miller et al. [32,34] and O’Shaughnessy et al. [33] the BBT (modified up to 2 min) was
employed. In Miller et al. [32], the patient achieved better performance with the three DoFs
arm: he moved, on average, 15.0 ± 0.1 blocks, while wearing the six DoFs prosthesis he
only moved 13.7 ± 2.5 blocks. In Miller et al. [34], the improvements ranged from 95%
to 271% (with an average of 198%) of the number of blocks moved. In O’Shaughnessy et
al. [33], both of the patients demonstrated an increase in the number of blocks (on average,
over three tests) of 611% and 150% for patient 1 and patient 2, respectively.

The CRT was also employed in the following six studies [21,22,31–34]. The task
execution time of CRT equals -36 seconds in Kuiken et al. [21,22] and −54.24% in Kuiken
et al. [31]. In Miller et al. [32], the subject was required to flex the shoulder forward once,
and then sequentially activate terminal device, elbow and wrist rotations. This test showed
that the subject was faster with the six DoF arm (58.0 ± 9.2 s of task execution time) than the
three DoF arm (79.2 ± 14.3 s of task execution time). In Miller et al. [34], the improvement
ranged from 31% to 55% (with an average of 45%) reduction in the time to complete the
task. In O’Shaughnessy et al. [33], there was a decrease of the time (in seconds) that is
required to move three clothespins from one beam to another: 55% and 41% for patient 1
and for patient 2, respectively.

The AMPS test was employed in the following four papers [24,31,33,34]. In Kuiken
et al. [24], it went from the score of 0.30 and 0.90 for motor and process, respectively, to the
score of 1.98 in both cases. In O’Shaughnessy et al. [33], a computer-tabulated score was
reported, reflecting motor and processing function concerning activities of daily living.
For patient 1, there was an increase in the score from 0.5 to 1 regarding the motor function
and from 0.3 to 1.1 in the processing function. For patient 2, there was an increase in the
score from 0.9 to 1.56 in the motor function and from 1.09 to 1.43 in the processing function.

In Kuiken et al. [31], the Wolf Motor Functions Tests (WMFT) [61] was also performed
in addition to the Assessment of Motor and Process Skills (AMPS) [62]. The patient with
TH amputation only had an increase in the score of +0.54 and +0.75, respectively. Thus,
for the TH patient, a markedly greater increase in performance has been demonstrated than
that obtained by the BSD patient. In Miller et al. [34], the tasks included cooking, cleaning,
housework, garden work, and home maintenance; all of the TH subjects and two of the
three SD amputees performed the AMPS test. For the SD amputees, an average increase
in the motor score of +0.80 occurred; instead, for the TH subjects, the average scores was
equal to +0.77; for the process score, there was an average score increase of +0.5 for the SD
amputees, and +0.57 for TH ones. However, it should be pointed out that, as the current
tests may not adequately measure improvements in control or prosthetic design due to the
ceiling effect (the task is too easy to be performed by most subjects) or to the floor effect
(the task is too difficult, almost none of the subjects can perform it).

Only in O’Shaughnessy et al. [33], the Miscellaneous ADL was evaluated: both of
the patients used less time to complete the various activities (except wrapping a package)
when using the experimental prosthesis.

Finally, in Miller et al. [32], the Range Of Motion (ROM), the Cubbies, and Cup test
were also employed. In detail, an increase of the ROM of the shoulder flexion: it went
from a range 0–90◦ for the passive shoulder with the old prosthesis to a range of 200◦, from
−15◦ to +185◦, with the new experimental prosthesis. Regarding the Cubbies test, the
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ROM was greater with the six DoF device due to the shoulder and wrist motors: with the
three DoF prosthesis, the subject was only able to access 12 of the cubbies, whereas, with
the 6 DoF device, the patient was able to access all 15 cubbies. Even with the increased
work-space, the time per cubby was approximately the same: 18.6 ± 2.5 s with the 3 DoF
arm and 15.3 ± 9.5 s. In the Cups test, the subject showed an increase in the amount of
time necessary to stack all 11 cups in an inverted pyramid using the 6 DoFs (357 ± 36 s),
compared to the 3 DoFs prosthesis (169 ± 58 s). To unstacking cups, the difference was
lower: (83 ± 13 s) with the three DoF prosthesis and (89 ± 29 s) with the six DoFs one.
Interestingly, the six DoF prosthesis was not always better than the three DoF prosthesis,
on the contrary, it was sometimes worse due to some reasons as: the considerable weight
(about 5.75 kg) of the six DoF prosthesis and the patient’s cognitive effort forcing him to
perform the tasks more slowly. Thus, to make a six DoF limb prosthesis clinically usable, it
is necessary to develop a simpler and more intuitive control system, avoiding using the
shoulder to control wrist movements.

6.2. Control via Pattern Recognition

Instead, in systems with PR control strategies, the following performance evaluation
methods were taken into account: the offline classification accuracy [28,35,37,38], the offline
classification error [28,36,42,43], the mst, mct, and mcr [35], the mean path length error
percentages [43], and the score of six tasks rhat were chosen from Action Research Arm
Test (ARAT) [41].

In detail, in Kuiken et al. [35] the performance metrics as the mst, mct and mcr were
introduced for evaluating the control of a virtual arm in real-time, even if that of a real
prosthesis is more challenging. In detail, mst was defined as the time from the onset
to the first correct classification (i.e., the time that is taken to successfully select a target
movement); mct was the time from movement onset to the 10th correct classification
(i.e., the time from the onset to the completion of the intended movement); finally, mcr
(“success” rate) was the percentage of successfully completed motions out of the total
attempted motions.

In Xu et al. [41], the following six grasping tasks from the ARAT test were performed
for assessing the recovery of upper limb function [63]: the grasping of a Block of 2.5, 5.0,
and 7.5 cm3, of a cricket ball, and a sharpening stone; to pour water from one glass to
another; to displace 1 and 2.25 cm alloy tubes from one side of the table to another.

Only in Hargrove et al. [42], the following TAC, SHAP, JTHFT, and ACMC tests and
the virtual outcome metrics were employed in order to evaluate the performance of the
PR system as following. In particular, three blocks of Target Achievement Control (TAC)
test [58] consisted of moving, within a 15-s time frame, a flesh-colored virtual limb to match
the 12 postures of a translucent grey-colored virtual target limb % in real-time. For the
virtual outcome metrics, the number of postures successfully acquired within their allotted
15-s time frames, and the median completion time required to match the set of postures
in a block, were analyzed. Instead, for evaluating the differences between the control of a
virtual prosthesis in a virtual environment with respect to that of the physical prosthesis,
the following parameters were introduced as physical outcomes: the classification error
rate, the completion time, and the failure rate. The classification error rate is defined as
the number of incorrect decisions that were divided by the total number of decisions;
the completion time was the time from the trial start to the target posture achievement,
while the failure rate measured the percentage of trials that were unsuccessfully completed
during the TAC tests. These physical outcomes were evaluated by using the following
promising tests for assessing the functional effectiveness of a prosthetic system [64]: the
Southampton Hand Assessment Procedure (SHAP) test [65], which consists of 12 abstract
objects and 14 ADLs, and each task is timed by the participant in order to avoid reliability
on the reaction times; Jebsen–Taylor test of Hand Function (JTHFT) [66], which is made up
of seven subsets that are writing, simulated page-turning, lifting small objects, simulated
feeding, stacking, and lifting large, lightweight, and heavy objects; the Assessment for

342



Sensors 2021, 21, 1953

Capacity of Myoelectric Control (ACMC) [67], which consists of 22 items that are related to
capacity for myoelectric control: the need for external support, grip force, coordination of
both hands, different positions and in motion (timing), repetitive grasp and release, and
the need for visual feedback. It is the only test validated for a good test-retest reliability
and interpretation guidelines for evaluating the functionality of upper-limb prostheses [68];
and, BBT and CRT (as described in Section 5).

The following six papers used the classification errors [28,35,37–40] to evaluate the
performance of the proposed PR-based control strategy.

In Mastinu et al. [28], four movements that were related to elbow and hand were
discriminated with a sequential pattern recognition strategy based on a LDA classifier with
TD features. The offline classification accuracy was over 97% since the last follow-up (week
48). Their results showed, for the first time, the evolution and quality of the TMR signals
when using intramuscular electrodes instead of the conventional skin surface electrodes.
In Kuiken et al. [35], ten different motions of elbow, wrist, and hand were classified with a
sequential PR strategy that is based on a single LDA classifier with TD features. The mean
classification accuracy was 88 ± 7% for TMR patients. In Huang et al. [37], fifteen different
discrete movements were discriminated by using a single LDA classifier with TD features
(MAV, ZC, SSC, and WL). The surface EMG signals were processed by various high pass
spatial filters, including one-dimensional and two-dimensional filters. The use of high-
density EMG recordings combined with a single differential filter in transverse direction
(BipT), and a single differential filter in longitudinal direction (BipL), or higher order filters,
allowed for reaching 95% classification accuracy for 15 movements for SD and patients
with a long transhumeral amputation, and above 85% for patient with a short transhumeral
amputation. However, when only considering 12 EMG signals, the double differential
filters obtained 5–15% higher classification accuracies than the filters with a lower spatial
resolution and comparable accuracies to the filters with higher spatial resolution. Thus, the
use of double differential EMG recordings can improve the TMR-based neural interface
for the control of artificial arms. In Zhou et al. [38], a single LDA classifier with the TD
feature set, and a combination of AR coefficients and RMS (AR-RMS) of the signals were
used to classify 16 movements of the arm, hand and fingers. The performance of the
LDA classifier was reported in terms of classification accuracy for the various electrode
configurations: with the monopolar channels, the average overall classification accuracy
was equal to 90.5 ± 6.3% for TD feature sets and 90.0 ± 7.3% for AR-RMS feature sets.
The accuracy of classification consistently improved to an average of 96.0 ± 3.9% with
TD and to 95.0 ± 5.2% with AR-RMS features, for bipolar electrode configurations. Thus,
TMR combined with the LDA classifier was able to extract motor control information from
the reinnervated sites, by using high-density surface EMG recordings. In Batzianoulis
et al. [40], a comparison of offline classification accuracy of four different classification
systems based on LDA, two SVMs, and an Echo State Network (ESN) was presented.
By applying an analysis of variance (ANOVA) (with a significance level of 5%) to the
classifiers’ performance, a significant difference for all the proposed classifiers in terms of
offline accuracy values, for all 5, 4 and 3 classes of movements was not found. Namely, in
the first and third phase, the average classification accuracies are similar for both non-TMR
and TMR patients: 68.6 ± 8.8% and 64 ± 14.4% for the first phase and 87.6 ± 3.4% and
83.6 ± 4% for the third phase, respectively. However, the accuracy of TMR subjects in the
second phase was better than that of non-TMR subjects (90.2 ± 4.6% and 77.8 ± 10.9%,
respectively). Finally, an on-line evaluation of 20 reach-to-grasp motion with RIC hand [69]
was tested only for a non-TMR subject. In Batzianoulis et al. [39], the EMG signals were
analyzed by applying a sliding time window of 150 ms with an increment of 50 ms and
three features (MAV, SSC, WL) were extracted from each time window. The classification
system was composed by three LDA classifiers, one for each phase: the accuracies values
were equal to 42.7 ± 8.2%, 57.8 ± 14.4%, and 74.2 ± 14% in the first, second, and third
phase, respectively. Instead, the single LDA classifier, which was trained with all the
phases, obtained an accuracy of 33.6 ± 12.5%, 51 ± 15.4%, and 66.2 ± 11% for each phase.
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The obtained results underlined that the arm extension towards a specific direction during
a reach-to-grasp motion affected the classification performance. Thus, the introduction of
segmentation into motion phases revealed that higher accuracy values can be obtained
when considering all of the reach-to-grasp motion phases.

The following four papers used the classification errors [28,36,42,43] to evaluate the
performance of the proposed PR-based control strategy.

In Mastinu et al. [28], the evolution of the classification error over time was considered:
for the first subject, the mean error decreased from 10.8% (week 4) to 1.7% (week 48),
while, for the second subject, it remained stable below 5%. In Smith et al. [36], two LDA
classifiers with TD [48] and autoregressive (AR) features [56] were implemented, by using
sEMG and imEMG signals as input, respectively. The use of imEMG instead of sEMG
produced a decrease of 1.39 ± 6.45% (90% confidence interval) of the average error rate,
which was equal to 5.52% for sEMG and 4.13% for imEMG. The proposed results showed
that, despite the variability of imEMG signals, the performance of the LDA classifier did
not decrease. Thus, the imEMG signals can also be used for the PR myoelectric control,
with the benefits of the reduction of EMG crosstalk, the placement on deeper muscles,
and the overcoming of electrode shifting. However, the presence of sparse motor units at
the reinnervated sites increased the MAV, based on the amplitude of the imEMG signals,
and, consequently, this feature could not be used for estimating the proportional velocity.
In Hargrove et al. [42], the average classification error across subjects decreased from 13.4 to
8.3% after home trials. In Tkach et al. [43], the classification errors of five classifiers, based
on the LDA algorithm with the AR feature set, were evaluated when two different electrode
placements were considered: the “Control Site” and Grid “configurations” (as described in
Section 5.2). The five classifiers differ from the output classes: the “Seq Only” PR strategy
was based on a single classifier based on 9 motion classes; the “Seq. Elbow+Hand”, the
“Seq. Elbow+Wrist”, the “Seq. Hand+Wrist”, and “All” employed a single classifier that
was able to classify 13,17,17 and 29 motion classes, respectively. In detail, the eight discrete
and twenty combined motions were the following: elbow F/E, wrist F/E, wrist P/S, and
hand O/C; elbow F/E + hand O/C; elbow F/E + wrist F/E; elbow F/E + wrist P/S; wrist
F/E + hand O/C; wrist P/S + hand O/C; no motion condition. The discrepancies of the
classification error between the Control Site and Grid conditions were equals to 11.47%
for the “All” classifier (29 motion classes) and 1.69% for the “Seq Only” classifier. The
“Seq. Elbow+Wrist” and the “Seq. Hand+Wrist” classifiers, which discriminated 17 motion
classes, both had similar classification errors of 11.5 ± 1.1% and 11.2 ± 1.2% for the Grid
analysis condition. Regarding the Control Site condition, the two classifiers yielded higher
errors of 17.9 ± 1.3% and 21.1 ± 1.7%, respectively. These results showed that the grid-like
arrangement of electrodes can outperform the specific electrode placement on targeted
muscle sites when considering classifiers with a greater number of motion classes.

For the real-time evaluation, in Kuken et al. [35], the LDA classifier was also used
to produce, in real-time, a new prediction every 100 ms. The mean motion completion
rate for the elbow and wrist movements was high (96.3% ± 3.8%) and it was lower for
hand grasp movements (86.9% ± 13.9%) that were considered to be more challenging by
some patients. Thus, the relevance of this study was to have assessed, for the first time, a
protocol to evaluate, in real-time, the PR performance for controlling multi-DoF artificial
arms, in patients with TMR.

Only in Xu et al. [41], comparisons have been made between the PR algorithms with
no post-processing (Control), majority vote, and MAV-based threshold switches, while
using six tasks that were chosen from Action Research Arm Test (ARAT). An LDA classifier
based on Bayesian decision has been adopted with TD features (MAV, WL, ZC, SSC). The
final scores were reported for the three methods: for PR control, they were equal to 11,
11, and 13 with majority vote lengths equal to 3, 5, and 10, respectively; for MAV-based
threshold switches, three threshold values were defined: the standard threshold (ST) was
equal to 0.2 mV; the lower threshold (LT) was equal to the 80% of ST; and, the higher
threshold (HT) was equal to the 120% of ST. The final score values were equal to 14.7 (with
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lower threshold), 16 (with medium threshold), and 14.7 (with higher threshold). Finally,
the improved PR control with MAV-based threshold switches turned out to be the best
configuration for obtaining a robust control of the prosthesis.

Only in Hargrove et al. [42] were the following results about these performance
evaluation tests reported: the TAC test performance metrics improved significantly from
19.9 to 3.7% after home trials: the failure rate improved from 19.9 to 3.7% (p = 0.001),
and the completion time decreased from 7.5 to 5.5 s (p = 0.007). In the virtual test, the
median completion time correlated significantly with the Southampton Hand Assessment
Procedure (p = 0.05, R = −0.86), Box and Blocks Test (p = 0.007, R = −0.82), Jebsen–Taylor
Test (p = 0.003, R = 0.87), and the Assessment of Capacity for Myoelectric Control (p = 0.005,
R = −0.85). The classification error performance only had a strong correlation with the
Clothespin Relocation Test (p = 0.018, R = 0.76). However, only the SHAP (p = 0.001)
and the BBT (p = 0.03) have showed statistically significant improvements after a six-
week home trial. Additionally, the physical outcomes that were related to the use of the
physical prosthesis improved after the home trial. Thus, when considering all metrics as
the classification error rates, the outcome metrics associated with both the virtual TAC test
and the physical prosthesis, the home trial is the best solution for make subjects able to
control the device.

Finally, in Tkach et al. [43], the mean path length error percentages and the mean
offline classification errors of classifiers, with lower complexity than those reported above
for the offline evaluation, were also considered with a virtual limb, for both experimental
conditions (“Control Site” and “Grid”): the sequential real-time classifier (“SeqRT”) was
trained to predict four single-joint motions (elbow F/E and hand O/C, and no motion
class); the simultaneous real-time classifier (“SimRT”) was trained to predict the no motion
class, the four single-joint motions of “SeqRT”, and four combined motions classes (elbow
F + hand O; elbow F + hand C; elbow E + hand O; and, elbow E + hand C). In particular,
as regards the “SeqRT” classifier, the mean path length error percentages for “Control Sites”
and “Grid” conditions were equal to 68.25% and 68.99%, while, for the “SimRT” classifier,
they equaled 22.48% and 25.25%, respectively. Instead, the mean offline classification errors
were equal to 1.6% (“Control Sites”) and 1.3% (“Grid”) for the “SeqRT” classifier; as regards
the “SimRT” classifier, the mean offline classification errors were equals to 19.2% (“Control
Sites”) and 17.1% (“Grid”). The real-time results demonstrated that the simultaneous
PR control of multiple DoFs perform equivalent or slightly better by using either a grid
arrangement of electrodes or site-specific electrode placement.

6.3. Comparison between DC and PR Strategies

Finally, in the papers that reported a comparison between DC and PR, the performance
evaluation methods were the following.

In Hargrove et al. [44], the performance of the proportional DC control and LDA
classifier with TD features and AR coefficients was compared. The patients completed
three different real-time performance tests with each system: BBT (modified up to 2 min)
and block stacking test [70] (this test involves stacking the largest number of 1-inch cubes
on top of each other in three minutes), CRT. In the BBT, the patients achieved an average
40% increase in the number of blocks passing from direct to PR control; in the block stacking
test, the stacked towers were 59% higher while using the pattern recognition control system.
The clothespin task was completed in 25% less time when using the pattern recognition
control system. The average classification error rate for the pattern recognition systems
was 16.3% (±1.6%).

In Wurth et al. [45], the real-time comparison between DC and PR-based control strate-
gies have led to the following performance outcomes. In detail, the authors developed the
Fitts’ target acquisition task (FTAT) test, based on Fitts’ law, which consisted of moving
a cursor in two-dimensional Cartesian space from the center of the screen to a circular
target appearing within a given radius at a given position. It was used in real time for
assessing three EMG-based control strategies in virtual environments: the clinical standard
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of care (DC), a conventional, sequential PR (seqPR) strategy, and a simultaneous PR (simPR)
strategy. The simPR approach considered the classification of each DoF independently. The
parallel strategy that was introduced by [71] was adopted for the simultaneous classifica-
tion of both DoFs. In order to comprehensively compare the three strategies, the following
principal functional performance metrics were introduced: throughput (bits/second) and
path efficiency (%). In detail, the throughput values for discrete motions (1 DoF) were
equal to 2.64 ± 0.24, 3.67 ± 0.23, and 2.11 ± 0.18 for the conventional, seqPR, and simPR,
respectively. Instead, for the combined motions (two DoFs), the throughput values were
equal to 1.24 ± 0.04, 1.32 ± 0.03, and 1.63 ± 0.05 for the conventional, seqPR, and simPR
strategies, respectively. Regarding the path efficiency values, they were equal for discrete
motions (1 DoF) to 90.1 ± 0.23, 97.0 ± 0.96, and 96.3 ± 1.12 for the conventional, seqPR,
and simPR strategies, respectively. Instead, for the combined motions (two DoFs), the path
efficiency values were equal to 71.3 ± 0.8, 71.6 ± 0.76, and 87.7 ± 0.7 for the conventional,
seqPR, and simPR strategies, respectively. Regarding discrete one DoF motions, the func-
tional performance metrics of simultaneous PR were slightly lower than the sequential
pattern recognition strategy that was revealed to be more precise and robust. Additionally,
a qualitative evaluation of the control strategies was performed through a questionnaire
demonstrating that both pattern recognition control strategies outperformed the amplitude-
based DC control when considering two DoF tasks. In fact, the DC control was felt as
unnatural and cumbersome in operating two 2 DoF control. It was only considered to be
efficient for discrete 1 DoF tasks.

For the clinical trial reported by Hargrove et al. [46], the performance evaluation was
carried out, for each type of control (PR and DC), by carrying out a series of tests before
and after the six weeks of the home-trial: ACMC, SHAP, BBT (modified up to 2 min),
and CRT. At the end of the trial, there were no significant differences in the ACMC test
scores between pattern recognition (47.3 ± 3.9) and direct control (44.4 ± 3.4). As for the
SHAP test, a significant improvement (p = 0.041) was noted in the performance that was
achieved by using the PR-based control as compared to the direct control. The authors
also noted that there was a difference between the performance in the pre and post trial
cases (p = 0.038). In the BBT test, there was no particular difference between the pre and
post trial tests; however, it was noted that, at the end of the home trial, the subjects moved
13.4 ± 2.6 blocks using pattern recognition control and 15.6 ± 2.7 blocks using direct control.
Finally, in the CRT test, the subjects obtained significantly better results (p = 0.024) (i.e., the
patients needed less time for concluding the test) using the PR-based control (90.2 ± 39.6 s)
than using the direct control (137 ± 60.2 s). There were no statistically significant changes
between pre- and post-home tests, nor was there any significant interaction between the pre-
and post-home tests and the control strategy used. Quantitative statistics on household use
have been carried out, as measured by the control system: on average, users cumulatively
wore the prosthesis 138.7 ± 34.6 h during the direct control portion of the home trial and
147.7 ± 45.3 h during the PR phase of the home trial. The subjects chose to re-calibrate their
control on 32.6 ± 8.2 occasions over the duration of the home trial. At the end of the trial,
seven out of eight patients said that they preferred PR-based control over DC. As for DC,
many had found pulse control not intuitive; they also found it difficult to control a single
DoF when desired, having the simultaneous activation of two DoFs available. On the other
hand, in the PR-based control, the subjects reported that the prosthesis was sometimes
activated unwantedly.

In Young et al. [47], the performance of the conventional amplitude-based myoelectric
control, the sequential (one DoF at time) PR control, and the simultaneous PR control
(two DoFs at time) were reported. That three strategies were evaluated with a virtual
prosthesis in a virtual environment using the TAC Test that considered the completion
time, completion rate, and length error as performance metrics. The statistical ANOVA
test (p < 0.05) was conducted for the comparison of the reported control strategies. For
two DoFs tasks, the simultaneous PR system performed the best, with the lowest average
completion times, completion rates, and length error when compared to the other control
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strategies. In particular, for the 2 DoFs tasks, the amputees chose to perform simultaneous
movements in 78% of cases with simultaneous PR and in 64% of cases with conventional
control. Furthermore, overall offline classification errors for the PR control strategies
were compared with the ANOVA test (p < 0.05). The average classification error for
sequential control was equal to 11.1% (±5.8 standard error of the mean—SEM), while the
errors for simultaneous PR control were 23.1% (±10.3 SEM) and 33.19% (±11.3 SEM) for
discrete and combined movement classification, respectively. Thus, finally, the authors
have demonstrated that the simultaneous PR system had slightly lower performance with
respect to the sequential PR system that was used for 1 DoF tasks (that required one DoF
motions) and performed better than conventional control on 1 DoF tasks, while it had the
best performance with simultaneous PR control on 2 DoFs tasks when compared to both
conventional or sequential control.

Table 3 summarizes the results of the comparison papers between DC and PR. In most
cases, the systems that are based on PR strategy allow for achieving better performance
than DC one.
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7. Results and Discussion

A comprehensive literature analysis on the most used prosthetic control strategies
for TMR patients was carried out, when considering the amputation level of the enrolled
patients, the number of signals of reinnervated sites, the number of controlled DoFs and,
when available, the methods for validating the control of a prosthetic device, and the
obtained performance. When the prosthesis is controlled with DC strategies (proportional
strategy, usually), it is possible to use the simultaneous method for the selection of the joint
to be controlled. The number of joints that can be controlled simultaneously depends on the
number of input signals available. The reinnervated sites used to acquire EMG signals are
usually three [21] or four [31,32,34,44,47] for SD patient, while it can be two [31,33,34,47] or
four [24,44,45] for TH amputees. Especially when there are less then two reinnervated sites,
additional signals from the residual muscles [21,31,33] can be used to actuate the prosthesis
with the myoelectric control. However, patients simultaneously control, at most, two DoFs
with the only use of EMG signals, whether from reinnervated sites or residual muscle.
Almost all patients have demonstrated that they can control a three DoF prosthesis with
F/E elbow, P/S wrist, and O/C hand movements, by switching with the co-contraction
joint selection strategy from one of the two DoFs simultaneously controlled (usually
elbow or hand) to the third one (wrist) and vice-versa. For patients with more than four
reinnervated sites, as one of the TH amputees in [44], the P/S of the wrist can also be
controlled simultaneously. In some studies, additional inputs were added to EMG signals,
such as those from FSR sensors [32,34] or from switches [24]; these additional inputs
allow for simultaneously controlling more than two DoFs, with a hybrid control. However,
prostheses with more than three DoFs, as in [32], resulted in being difficult and less intuitive
to control.

With respect to the conventional myoelectric control methods, which only consider the
EMG amplitude at specific myoelectric control sites [54], the PR control systems that are based
on both sequential and simultaneous strategies allow for the control of up to 2 DoFs, in a
natural way, as asserted in [44,46], and [45,47]. Regarding the PR strategies, most studies
considered the following discrete motion classes most clinically used for different amputation
levels. In the case of BSD, SD, and TH amputees, from eight to 16 motion classes were mainly
considered: elbow F/E, wrist F/E, wrist S/P, wrist ulnar and radial deviation, hand opening,
two hand opening patterns, including finger abduction and finger adduction, a selection of
various types of hand grasps (as 3-jaw chuck, power grip, fine pinch, key grip, trigger grip,
and tool grip), and a rest state [35–38]. Instead, for the TR TMR amputees, as considered
in [39,40], from three to a maximum number of five grasp types were taken into account:
prismatic-2 fingers, precision disk, palm pinch, lateral, and prismatic-4 fingers. The majority of
these studies [36–40] reported only the offline performance of the LDA classifier with TD, AR,
AR-RMS, and TDAR, except [35], which introduced useful performance metrics as motions
selection time, motion completion time, and motion completion rate for evaluating the control
of a virtual arm in real-time. When only considering that the offline accuracy can be a relevant
limitation for evaluating the prosthetic control, since many studies [72,73] have shown that
offline accuracy does not necessarily correspond to real-time performance. To overcome these
limitations, other studies, such as [41,42], introduced for TH amputees a physical prosthesis
and a virtual limb for controlling, using an LDA classifier with time-domain feature set, the
following discrete movements: elbow F/E, wrist rotation, and hand C/O. It is worth noticing
that, in [42], the differences between the performance achieved with a virtual prosthesis with
respect to that obtained with a physical prosthesis were also evaluated. It is shown that
the TAC test completion time correlated significantly with all physical outcome measures
except the CRT. These results support the importance of reporting also the online performance
metrics rather than only the offline classification error analysis [43,74].

The following studies [44–47] also reported a comparison of real-time performance
between DC and PR based control strategies for SD and TH amputees: [44–46] only con-
sidered a physical prosthesis, while [47] presented a virtual prosthesis for controlling up
to 2 DoFs. In most cases, the patients preferred either the more intuitive sequential or
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simultaneous pattern recognition control to the DC control, because this latter appeared to
be unnatural and especially cumbersome for two DoFs tasks.

It is worth noticing that, with respect to the traditional PR control strategies, which
were limited to sequentially controlling one DoF at the time, [43,45,47,59,71] also introduced
the simultaneous PR control strategy, considered more promising because it showed
improvements in throughputs and path efficiencies when compared to direct control or
sequential PR. Moreover, the simultaneous PR control allowed for amputees to perform
tasks with more than two DoFs with the lowest average completion times, completion
rates and length error compared to the other control strategies, even if [43] argues that the
simultaneous PR system has slightly lower performance with respect to the sequential PR
system, but performs better than conventional DC control.

Clinical Applications

In this section, the principal clinical outcomes of this review are discussed by focusing
on the most relevant control strategies that allow a natural and simultaneous control of the
prosthetic arm DoFs for TMR patients with different upper-limb amputations (i.e., BSD,
SD, TH, and TR).

Firstly, for both the DC and PR strategies, the benefits of TMR surgery on the resulting
control of different joints (as the elbow, wrist, and hand) have been introduced. As reported
in almost all the analyzed papers [24,31,33,34,42,46,53], the patients can achieve better
performance compared to the pre-TMR situation; furthermore, they also increase the ability
to perform some ADLs, improving their quality of life.

These results confirmed that TMR provides new target muscle sites that are physi-
ologically linked to the effective movements of the prosthetic device. However, in some
studies [21,31,41], not all of the reinnervated sites are used as control sites due to the
overlapping of EMG signals. In detail, the number of reinnervated sites is closely related to
the number of DoFs that can be simultaneously controlled when using DC, whereas PR
methods do not require mode-switching and independent EMG signals, even if almost all
of the proposed classifiers only provide sequential control of multiple DoFs [13].

In order to examine the clinical robustness of myoelectric prosthetic control with TMR,
the reported real-time performance metrics were taken into account to test whether the
reinnervated muscles, after TMR surgery, can improve the myoelectric signals for real-time
control of multifunction prostheses. Because of the lack of standard criteria, this review
suggested a unified protocol test for the validation of these control strategies, by defining
which tests are most suitable for the evaluation of prosthetic control for TMR patients with
different amputation level.

Only the ACMC can be considered a standardized test for evaluating myoelectric
control, because it has an established test-retest, inter-rater, and intra-rater reliability and
clinical interpretation guidelines, as claimed by [68]. Additionally, as reported in [42],
the following tests were also considered to be promising for assessing the functionality
of a prosthesis: BBT, SHAP test, CRT, and JTHFT. Indeed, it can be noted that, in the
analyzed works, the evaluation methods most commonly used are: BBT (modified up to
2 min) used in nine papers for a total of 34 subjects and CRT used in eight papers for a
total of 33 subjects. Both of these tests have several advantages: they evaluate patient
performance without differences among amputation levels or the number of reinnervated
sites. Moreover, both tests are applicable for both DC and PR control, so that they were
also used in the studies in which the two types of myoelectric control are compared.
Furthermore, they can also be used on non-TMR patients to evaluate the performance of
the prosthetic control, allow comparing the performance in pre and post-surgery situation,
as in [21,24,31,33,34], to evaluate pre-and post-trial performance, as in [42], or to evaluate
performance when different control strategies were used [44,46]. Lastly, these tests were
used to compare performance in the control of prostheses with three or six DoFs [32].
Among the disadvantages, there is the fact that the above tests cannot be used in the absence
of a prosthetic arm, therefore they cannot be used to evaluate the patient’s performance
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while using virtual reality. In [42], it is demonstrated that the TAC test completion time
is a measure that significantly correlates with all the physical outcome measures, except
the CRT.

For these reasons, we recommend, if possible, the use of Box and Block and Clothes-
pin Relocation tests to evaluate the performance of the functional effectiveness of the
prosthesis (with both DC and PR control) as a whole. In addition, this literature analysis
also highlighted the need to have more quantitative information and to use instrumental
indicators to be associated with these tests. For instance, when virtual reality is used with
PR, real-time performance metrics that include motion selection time, motion completion
time, and motion completion (“success”) rate can be considered for evaluating virtual
arm movements.

Finally, regarding some clinical trials, we have also reported that the initial use of TMR
was to prevent or treat phantom limb pain (PLP) and neuroma pain [25,27]. Other clinical
investigations have focused on the role of the osseointegration [28] and the Targeted Sensory
Reinnervation (TSR) [29] on TMR patients. Regarding the use of the osseointegration
combined with TMR surgery, a direct interface that links the implant to the bone can
provide even more stability when an external prosthesis is worn by amputees [19]. The
TSR, instead, allows for controlling, in a bidirectional way, neuroprosthetic devices, thanks
to the presence of a region with “sensory perception”.

8. Conclusions

This paper has provided an overview of the main advancements of the state of the
art regarding prosthetic control techniques of the upper limb and performance evaluation
methods for patients who have undergone TMR surgery.

Twenty papers were analyzed, highlighting that the most commonly used prosthetic
control techniques are: in the context of direct Control, the proportional strategy and the
method of simultaneous joint selection with co-contraction; in the context of PR methods,
the LDA algorithm with various feature selection sets.

The most common performance evaluation methods, both for DC and PR, are BBT
and CRT. In the case of prostheses controlled with PR, there is always the offline analysis
of accuracy.

The most commonly used myoelectric prostheses are composed of 3 DoFs, for elbow
F/E, wrist P/S, and hand O/C.

This work further highlighted the presence of a variety of tests that were used for the
functional performance evaluation (Table 2), but there is a lack of standard criteria allowing
to define which tests are the most suitable for the evaluation of prosthetic control for TMR
patients with a different amputation level. In order to fill this gap, both the Box and Blocks
and the Clothespin Relocation seem to be the most promising tests for evaluating the
performance of the prosthetic systems.

In addition, we believe that virtual reality can be used to further explore the potential-
ity of the proposed control approaches, before considering them on a physical prosthesis.
In fact, we proposed extending the use of virtual reality performance indexes, defined for
PR, like motion selection time, motion completion time, and motion completion (“success”)
rate also to the DC control in this way: the motion selection time and motion completion
time can be modified by considering the time that is required from EMG onset to remain
above the threshold, while the success rate does not need to be modified. In this way, a
comparative analysis between DC and PR systems can also be done when using a virtual
reality system.

It has to be noted that only few articles presented results regarding the simulta-
neous PR control strategy showing improvements in throughputs and path efficiencies
when compared to direct control or sequential PR [43,45,47,59,71]. Thus, the possibility
of simultaneously controlling the prosthesis still can be improved with simultaneous
PR-based controllers.

351



Sensors 2021, 21, 1953

In conclusion, despite the great progresses in the field of advanced prosthetic control,
this paper highlights the necessity to still identify the best PR/DC-based system allowing
for robust control when considering more than 2 DoFs and of defining standard evaluation
methods of the real-time control strategy performance.
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Abbreviations

The following abbreviations, reported in alphabetic order, are used in this manuscript:

ACMC Assessment for Capacity of Myoelectric Control
ADL Activities of Daily Living
AMPS Assessment of Motor and Process Skills
AR Auto Regressive
ARAT Action Research Arm Test
BBT Box and Block Test
BSD Bilateral Shoulder Disarticulation
CRT Clothespin Relocation Test
DC Direct Control
DoF Degree of Freedom
EMG ElectroMyoGraphy
ESN Echo State Network
F/E Flexion/Extension
FSR Force Sensor Resistor
HD High Density
HT Higher Threshold
I/E Intra/Extra
imEMG intramuscolarEMG
JTHFT Jebsen-Taylor test of Hand Function
LDA Linear Discriminant Analysis
MAV Mean Absolute Value
mcr motion completion rate
mct motion completion time
MCU MicroController Unit
MLP Multi Layer Perceptron
mst motion selection time
NLR Nonlinear Logistic Regression
O/C Open/Close
P/S Pronation/Supination
PLP Phantom Limb Pain
PR Pattern Recognition
PRISMA Preferred Reporting Items for Systematics reviews and Meta-Analyses
RMS Root Mean Square
ROM Range Of Motion
SD Shoulder Disarticulation
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sEMG surfaceEMG
seqPR sequential PR
SHAP Southampton Hand Assessment Procedure
simPR simultaneous PR
SSC Slope Sign Changes
ST Standard Threshold
SVM Support Vector Machine
TAC Target Achievement Control
TD Time Domain
TD-AR Time Domain and Auto Regressive
TH Trans-Humeral
TMR Targeted Muscle Reinnervation
TSR Targeted Sensory Reinnervation
VR Virtual Reality
WL Waveform Length
WMFT Wolf Motor Functions Tests
ZC Zero Crossing
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